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Chapter 1

Introduction

“String theories were originally developed as a phenomenological model of hadronic interactions.
The suggestion that string theory should be used to describe fundamental interaction including
gravity was pointed by the realisation that in the limit of infinite string tension the interactions
of massless vector particles and massless tensor particles are those of Yang-Mills gauge fields and
graviton respectively” [1, 2, 3, 4],“[5]”. This suggestion identifies the subleading string corrections
to the action of the massless symmetric tensor particle as the quantum corrections to gravity and
provides a systematic approach to study the gravitational quantum corrections. In this thesis we
investigate the perturbative world-sheet corrections to the classical backgrounds and T-duality.

The thesis is organised in the following way,

The second chapter illustrates how the low energy effective action of string theory around a given

background can be constructed

e by requiring an exact conformal symmetry in the corresponding sigma model,

e or from string amplitude considerations.

We present the linear and the quadratic o corrections to backgrounds of dilaton and metric in
the Bosonic String Theories. Also we provide the linear ¢’ corrections to backgrounds of metric,

NS-two form and dilaton in the critical Heterotic String Theory.
In the third chapter we develop a formalism to study T-duality within the framework of the low

5




6 CHAPTER 1. INTRODUCTION

energy effective action. We discuss the general form of the o' corrections to the rules of T-duality.
We compute the linear and the quadratic o’ corrections to the general diagonal Kasner background,
two dimensional black hole, Schwarzschild and their T-dual backgrounds in the Bosonic String
Theory. We utilise these backgrounds to obtain the linear and the quadratic o/ corrections to the
rules of T-duality for time-dependent backgrounds of a diagonal metric and dilaton in the Bosonic

String Theory. This chapter is the review of the works done in [6, 7].

In the fourth chapter we study the linear o/ corrections to null singular backgrounds which represent
a wrapped fundamental string in the supergravity approximation to the critical Heterotic String

Theory. We shall show that there exist schemes in which

1. the inclusion of the linear o’ corrections changes these null singular geometries to black hole
geometries with a regular event horizon -to which we often refere as the stretched horizon- for
which the modified Hawking-Bekenstein entropy [8, 9, 10] is in agreement with the degeneracy
of the states of the wrapped fundamental string,

2. and the higher order o corrections are perturbative outside the horizon.

This means that there exist schemes in which the ¢ stretched horizon is small and also there exist
schemes where the of stretched horizon does not exist at all. Note that the modified Hawking-
Bekenstein entropy is the same for actions related to each other by field redefinition provided that
the o terms are studied as perturbations around a classical solution [11]. Since the stretched
horizon is identified as the exact solution of the truncated equations, the modified Hawking-

Bekenstein entropy depends on the field redefinition ambiguity parameters.

We do not know which scheme would be preferred or chosen by the underlying conformal field
theory since it is not known what type of conformal field theory (nor if it is a unique one) represents
a wrapped fundamental string. Ref. [12, 13] shows that there exists a scheme in which the fields
of the fundamental string background retain their forms in the supergravity approximation, thus
within this scheme the background remains as a null singular background under the inclusion of
all o/ corrections. We will conclude from this that the o’ expansion series is not an absolutely

convergent series on the o stretched horizon whenever the scheme admits the o stretched horizon.

We find it disturbing that the thermodynamical entropy is scheme-dependent. The fact that the

o/ series on the o stretched horizon is not an absolutely convergent series adds to this problem.



These difficulties may indicate that the thermodynamical properties should be expressed in term
of other geometrical properties of null singular geometries rather than requiring the subleading
corrections to convert the null singular geometries to black hole geometries with a regular event
horizon. We will point out that Mathur and Lunin’s description for the entropy [14] may be
employed to generate a thermodynamical entropy for a wrapped fundamental string without first

requiring the o corrections to produce an event horizon covering the singularity. This chapter

reviews [15].

In the fifth chapter we investigate a toroidal compactification of the critical Heterotic String Theory.
We study all the linear o/ corrections to dyons which carry arbitrary KK-momentum and winding
numbers of a wrapped fundamental string in the presence of a KK-monopole and a H-monopole.
We shall compute all the linear o’ corrections, excluding however the gravitational Chern-Simons
ones, to the entropy of dyonic black holes. We address the problem of how the gravitational

Chern-Simons contribution to the entropy could be computed. This chapter reviews [16].
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Chapter 2

The Effective Action

String theory is the consistent quantum theory for strings, where strings are one dimensional
extended objects. Quantum field theory defines point-like particles as unitary finite dimensional
irreducible representations of the little group of the Poincare group. String theory is based on
our understanding of quantum field theory for particles, in the sense that whenever we want to
compute something we first identify each of the oscillatory modes of the string as a point like
particle. Next we apply the quantum field theory techniques on each of the string modes and we
define string theory as a consistent union of all the quantum field theories of its oscillations. Thus

this understanding of string theory requires accomplishing the following two steps:

1. Finding the string modes around a given background. We refer to the string modes as the
spectrum of the string theory. Spectrum of string theory is known only on a few backgrounds

including the flat space time.

2. Writing the interactive quantum field theories for all the modes. This means finding the
effective action for all the modes. It may not be that easy to write an action for a particle
with a given high spin. We can integrate out the massive modes and we can write the explicit
covariant action for the massless modes afterwards. We refer to this action as the low energy

effective action of the string theory.
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The first step is known as the first quantisation and the second step is referred to as the second
quantisation. The second quantisation can be done either by requiring an exact conformal sym-
metry in the corresponding sigma model, or from the string amplitude considerations or by string

field theory.

Let A; represent the set of the fields of a given string background. Let £(A) be the sigma model
Lagrangian density for this string background. As an example for backgrounds of the metric, the

NS two form and the dilaton in the closed Bosonic String Theory {A4;} = {guv, ¢, Buv}, then
L(A) = Vdeth (h‘”" (9 (2) + B (z)) Bpzt 8pz” + o R® qs(m)) : (2.1)

where z#* stands for target space coordinates and hqg is the auxiliary metric on the world sheet and
R® is the two dimensional Ricci scalar constructed from hqs. We define the functional integral
of the sigma model on a given world-sheet > by

Zs[A, J] Vol( e / Dz Dhe™ (2.2)

where Sx(4, J) is the world-sheet action in the presence of the sources on %,

Ss(4,]) = /2 o2 (L(A) + As. ) (2.3)

and Vol(Gyx) is the volume of the symmetry group on . Note that in Zx[A, J] the integration
is done on the target space coordinates z* and h,g. The sum over the sigma model functional
integral of all allowed world sheets defines the generating functional of the string theory.! For the
closed oriented string theory the allowed worldsheets are oriented Riemann surfaces with arbitrary

numbers of genera. Hence the functional integral of the closed oriented string theory is
ZIAT] = Z[AJ)+ 95 2[4, ] + 62 Zeo[A, ] + - (2.4)

where Z [A,J], Z[A, J], Z_ [A,J] and --- are the functional integrals of the sigma model on
worldsheets with topologies of w, ®, e@ and - - - . g5 is defined on the right hand side of (2.4) to treat
the series as a perturbative series. Naturally g, is related to the closed string coupling constant.

1
This definition of string theory is perturbative in g;. We could not compute e 9s corrections to

*The generating functions for string theory were first defined in [17, 18, 19)].
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Z[A, J] based on its definition. Thus we write?
ZIAJ] = ZJAJ) + g5 Zo[AT] + g2 Z[A ] + - + O(e™ ). (2.5)

One can compute the functional integral in each of Z [A,J], Z_|A, J], ZylA,J] and --- by the
steepest descent method, i.e. formal expansion series in o’. The ordinary perturbative techniques
of quantum field theory are applicable for polynomial actions. In general the Lagrangian density
of the sigma model is not polynomial in terms of the target space coordinates. Thus we pick up an
arbitrary point in the target space and we choose a neighbourhood of this point. Then we write

the Taylor expansion of the background fields A; on this neighbourhood,
1
As = Ailzo) + (2" — 26)0p Alw0) + 55" — 25) (2" — 25)Bud Ai(wo) + - (2.6)

Using this expansion series and similar expansion series for the sources in Sy converts Sy to a
polynomial action. In this polynomial action the derivatives of the background fields at =z = zg
play the roles of the coupling constants. Thus‘for slow varying background fields one can employ
the ordinary perturbative techniques of quantum field theory to perform the functional integral in

Zs.

One can obtain a set of conditions that A; should satisfy in order to have an exact conformal
symmetry on the worldsheet X in Zy. These conditions are a set of o/ perturbative equations

which A; should satisfy. Let us represent these conditions for Zy by
_1
Baz = BLs +d AU+ 0?6805+ + 0 ) 2.7)

If we set B4, v = 0 then we get exact conformal symmetry for £. Requiring that the string theory
be consistent on X (84,,x = 0) identifies the dynamics of 4;. In general we expect that there exists
an action for A; , Sp[A], whose functional derivatives with respect to A; is

05z [A]
0A;

KBz, (2.8)

where K is a matrix operator which maps 84 ;5,5 to 5—?%[?1. We refer to Kg as the K-matrix on
¥ and to Sy[A] as the effective action for {A;} at the order X.

®There should exist an M’-theory, the loop expansion of whose functional integral Z (A, J) = [ DM ¢~ s S(M.J)

around gs = 0 coincides with eq. (2.5); M stands for the dynamical variable of the M’-theory and S(M, J) is the
action of the M’-theory.
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String theory requires exact conformal symmetry for Z[A, J], therefore we define the conditions

for the exact conformal symmetry of the closed oriented string by

L
,BAi = lBAiaW + s ﬂAi,@ + 93 lBAi, + o+ O(e gs)' (2'9)

where setting 84,, ., B4, o1 BAi,eo and --- to zero are the conditions for the exact conformal

symmetry on «, @, e» and - - -,

Ban, = B5 +dBY) +a?0 4+ +0) (2.10)
bane = Boro + 8L +a?B0 4+ 0Ew) (2.11)
Baves = BO__ + oY 40269+ 4 0w) (2.12)

We define the string theory conditions by setting 8,4, = 0. Note that setting (2.9) to zero is a
generalisation of the conformal field theory to which we refer as the string conformal theory. For
some specific backgrounds like flat space-time it happens that string conformal theory coincides
with the conformal theory. Subsequently we define the effective action of the string by

5S[A]
5A;

where K is a matrix operator acting on 3 A Any string conformal theory is an extremum of the

effective action. The K-matrix must be invertible for the reverse to hold true.
The effective action of string by construction has the following expansion series
Sl = SO + o SUA] + - + O ) + (2.14)
+95 (SQA] + o SUA] + -+ + O(e™7)) +
+92 (SQA] + o’ SUA] + -+ + O(™)) +

=

4o 4 O(e7%).

We refere to the first line of (2.14) as the o corrections or the world-sheet corrections to the
effective action. The rest of (2.14) will be called the g5 corrections or the string loop corrections to
the effective action. More precisely the first line of (2.14) stands for the perturbative o/ corrections

to the effective action.

Prior to computing the effective action one should choose a regularisation and a renormalisation

scheme in the sigma model. The target space coordinates of different schemes of the sigma model
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are mapped to each other by a perturbative field redefinition in o/;
o — 2t + o Y (z) + Py (z) + -, (2.15)

where y{'(x), y4(z), - -- are functions of z*. Inserting this expansion series into (2.6) implies that
the background fields of different schemes should be mapped to each other by a perturbative field

redefinition;
Ai(z) — Ai(z) + o FO@) + o2 FD(2) + --- | (2.16)

on any given worldsheet. One could choose different schemes to calculate each of Z [A, J],
Z[A,J], Z[A,J] and ---. Therefore the string backgrounds of different schemes generically

are mapped to each other by
Ai(@) = 4i@) + @ F%) +a?F*0) +..0) + (2.17)
+ 95 (@ FM(@) + o FFV(@) + ) +

+

We refer to this as the field redefinition ambiguities. One may interpret the field redefinition
ambiguities as the blurring effects of the quantum mechanics on the classical background fields.
Note that different schemes are mapped to each other by a field redefinition but there might not

exist schemes for any given field redefinition.

In this thesis we study the perturbative o/ corrections to T-duality and the black hole entropy.

Thus from this time on we consider only the o’ corrections to the effective action
S[A] = SOMA] + o/ SOA] + o2 SOA] + - + O(e %, g5, e755). (2.18)

Also we study the perturbative o’ corrections for backgrounds of the metric, the NS two-form and

the dilaton in the closed critical Bosonic String Theory and the Heterotic theory,

A € {guu(x)agb(m)vBuu(x)}- (2.19)

Let us have a closer look at the field redefinition ambiguities for the specific backgrounds that we

are considering at the order of o corrections in the Bosonic String Theory. For this part we follow
g p
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the second section of [20] and we adapt the definitions within this reference. The effective action

should be generally covariant and invariant under B — B + dA,

S = / d*®z /=g L(guv, Ruwns Vi, @), (2.20)

where throughout this thesis we use

Eigenvaluesof ¢ = (-1,1,---,1), (2.21)
R, = OTh, — -, (2-22)
Ry = R, (2.23)
V, = 8u+T,. (2.24)

Note that the index of ¢ in S and L is understood, however we stop writing this index for sake of
simplicity. We should consider only the schemes in which the two gauge symmetries of (2.20) are

preserved. This implies that we are allowed to consider field redefinitions by

O — G + TP+ 2T + -, (2.25)
Bul/ - B[J.V + o S,,(L]{,) + CYIZ S,(ﬁ,) + -, (226)
¢ — ¢+ adD 4 a?0® 4 ... (2.27)

where T,Sil,), S;(B and ®® respectively are rank two tensors, two forms and scalars with appropriate
mass dimensions constructed from gy, By, and ¢. It follows from the path integral representation
for the generating function of the string theory Z [A, J ] [21, 22, 23], under proper treatment of the
dilaton vertex operator or from the scaling symmetry present in the operator formalism expression
for the amplitudes [24, 25, 26], that there exists a subclass of the effective action which have the

following dependence on the dilaton
S = / d®x /g % L(g, Ry, H,V 1, 09) (2.28)

where £ does not depend on the dilaton but its derivatives. The subclass of field redefinitions that
preserve the structure of (2.28) may depend on ¢ through its derivatives. We shall consider only

this subclass of the field redefinitions to simplify the computations in the next chapters.

Consider the transformation of the effective action under a general field redefinition which preserves

the structure of (2.28). Let v = {v;}, i = 1..N be the set of constants which parametrises the
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effective action to some definite order in o/. We call the coefficients A = {\,} C {vi} unambiguous
if field redefinitions do not change them. We call the remaining coefficients p={ugt=v—-2Xa
priori ambiguous. Let V represent the vector space of the a priori ambiguous coefficients. Applying
a general field redefinition on a given set of the a priori ambiguous coefficients generically defines a
hypersurface in V which does not necessarily cover the whole of V. We refer to such a, hypersurface
as an a priori ambiguous hypersurface. The invariant structure of the effective action is presented
by unambiguous coefficients and an a prioﬁ ambiguous hypersurface which the a priori ambigubus

coefficients lay on.

We consider the simplest non-trivial example to illustrate the invariant structure of the effective

action, i.e. the linear o’ corrections to the effective action for backgroﬁnds of the metric and the

dilaton,
S = d®z+\/—detge ™ (Lo + o’ Ly) + O(a'z;gs,e‘E%,e—sLs), (2.29)
Ly = R+ 4(8¢)?, (2.30)
L1 = Xo(RuaR*™ + a1 Ry R™ + ap R? + a3 R*v8,$0,¢ + - (2.31)

+asRIV|* + as RO$ + ag(0¢)* + a70¢ [Vo|? + as |Ve[4).

where in L; we have written down all 6% scalar invariant which are not related to each other by

integration by parts in the action. The general field redefinition for this example reads

Juw — Guv + T/.(ul/) =+ O<a’/2);

o \ (2.32)
T/,w = bl Ru.u + b2 5‘#¢6,,¢ + Guv (bBR + b4 |V¢| + b5 D¢)a

¢ — ¢+ o2V 1 0(?),

(2.33)
@M = (1 + §b1 + 6b3)R + (ca + by + 6b4)(8¢)? + (c5 + 6b5) 0.

Using this field redefinition in the effective action we see that )\ is an unambiguous coefficient

while a; change in the following way

da; = —by, (2.34)
Sag = —2c1, (2.35)
Saz = —dby— by, (2.36)
dag = 2b; —4b3 + 8c; — 2cs, (2.37)

das = —by + 2b3 — 8¢c; — 2c3, (2.38)
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60/6 = 2b5 - 863 y (2.39)
da7 = by + 2by — 4bs — 8co + 8¢z, (2.40)
dag = —2by— 4by + 8co . (2.41)
We see that
dag + 20a7 + 46ag — 8das — 40a4 + 166ay = 0, (2.42)

thus € = ag + 2a7 + 4ag — 8as — 4a4 + 16a2 remains invariant under field redefinition. & = consts
defines a priori hypersurfaces in the vector space spanned by (a,--- ,ag). Given an a priori
ambiguous hypersurface we may choose any point on it to represent the effective action. We may
choose a curve which crosses all the a priori hypersurfaces and crosses each a priori ambiguous
hypersurface only once as the representation of the invariant structure of the effective action. The

simplest representation of the invariant structure of the example we considered above is

ag = ---=uar =0, (2.43)

Perturbative study of the string theory around a given background fixes the invariant structure
of the effective action, i.e. gives a definite value for Ao and ag in the chosen representation of the
invariant structure in (2.43). In this example a priori hypersurfaces are flat. However if we go to
higher order in o/ then the space of the a priori ambiguous coefficients becomes larger and the a
priori hypersurfaces would become curved .i.e. they are described by a set of non-linear equations

on the a priori ambiguous coefficients.

In the above we reviewed how to construct the effective action from the Weyl anomaly free con-
ditions of the corresponding sigma model. The effective action also can be obtained by using the
vertex operator formalism and string S-matrix elements. Any given scattering amplitude of string
theory can be pictured as a compact worldsheet with some punctures on it provided that one uses
an appropriate limit of the worldsheet conformal symmetry. In this compact picture each puncture
represents an incoming or outgoing state of the string and each puncture is described by a local
vertex operator determined by the limiting process. Let V(s;) represent the vertex of the string
state A; carrying quantum number s;. In general s; stands for the target space momentum and the

spin of the state, i.e. angular momentum of the string. Then the n-particle connected S-matrix
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element for the worldsheet with toplogy ¥ around a string background {B} in the path integral
approach is defined by [27]
1 _ n
Ss(s1,-+ 803 {B}) = e / Dz Dhe SE[B]E”’ZW V—=deth V(s;) (2.45)
where S[B] is the action of the sigma model (2.3) and Vol(Gyx) is the volume of the symmetry
group for the worldsheet £. The n-particle S-matrix element of the string is defined by summing

n-particle S-matrix elements on all allowed worldsheet. Thus for the closed oriented string theory

the n-particle scattering element follows

S(s1:--- 583 {B}) = 8§51, ,80;{B}) + 95 & (51, , 503 {B}) +
+928. (51, 803 {B}) + -+ (2.46)

The effective action of string theory is a polynomial functional of {4},

Te({A}) = D cij(s1,52)Ai(s1)4;(s2) +

51,82
+ D cijk(s1, 52, 53) As(s1)Ag(s2) Ak () + -+, (2.47)
51,582,583
whose functional derivative respect to {A;} reproduces S(s1,- - ,sn;{B}),
Tp({A:})
B\ e s {BY). .
0AL 640 | 4, S(s1,- -+, sn;{B}) (2.48)

We prefer to compute the effective action around the critical flat space-time due to the following

reasons

1. The critical flat space-time has an exact conformal symmetry and we know the spectrum of
string propagating in the flat space-time.

2. In the flat space-time, {B} = {g,,(z) = nu, By = 0,¢ = 0,--- }, in the integration in (2.45)

e8] is a simple Gaussian weight for z,,.

From this time on we consider the effective action constructed around critical fat space-time. The

effective action by construction has the following from

TA] = TJAl+g.LIA] + gL [A] + - (2.49)
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where we have stopped using the index of B on the effective action. I [A], IJ[A] and L [A]
reproduce the S-matrix elements respectively on «, o and es. Also each of L [4], TL[A], T, [A] will

have an expansion in ¢/,

L[4 = TOMU+TOA+ TP+ (2.50)
L[4 = TOMU]+oTOA + o T [A] + - (2.51)
L[4} = TOA]+TOA]+ o TO[A] + - (2.52)

This is due to the fact that V(s;) around the flat space-time is a homogeneous-degree polynomial
of the target space coordinates multiplied with the factor of e %% where k is the target space
momentum of the string. Inserting the expression for V(s;) in (2.45) one sees that in general (2.45)

is proportional to different powers of o for different numbers of insertion of string vertex operators.

The perturbative string S-matrix amplitude does not change under local field redefinitions thus
there exists a large class of the effective action which all correspond to the same string S-matrix
[28, 29, 30]. The perturbative string S-matrix amplitude fixes only the invariant structure of the
effective action. The invariant structure of the effective action constructed from the string S-matrix
elements (2.49) should be the same as the invariant structure of the action constructed from the
Weyl anomaly free conditions in the corresponding sigma model (2.14). This statement is often
referred to as the string equivalence conjecture and it was first put forward in [31, 32, 33, 34, 35].
There is not yet a clear understanding why the string equivalence conjecture is true. The string
equivalence conjecture has been verified to be true up to some power in o for the tree-level effective
action [20, 28, 29, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Presumably the string equivalence is
valid to all order in o/ and gs.

In this thesis we need the invariant structure of the quadratic o’ corrections to backgrounds of
the metric and dilaton in Bosonic String Theory and the invariant structure of the linear o
corrections to backgrounds of the metric, the dilaton and the NS two form in the critical Heterotic
String Theories. The conditions for exact conformal theory on the worldsheet of the free Bosonic
String Theory for backgrounds of the dilaton and the metric in D dimensional space-time at the

quadratic order in o are [44, 45, 46]
1 1
—0i; = Ry + 2Vivi® + 3 o RipimR; H™ (2.53)

1 1
+a’? {§ Uk Ritmn V* B; 7™ — 75 Vi Biimn V3 RFimn
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1 3
+§Rklmn Ri P Rj k”;; - ’8' Riklj Rk;mnp Rl mnp +
1
+ '3_2‘ Vj Vz( Ryimn Rklmn)} =0,
1 D - 26 1 x 1 k.
a—/@ﬁ = o - -2- O¢ + 0rep 8¢ + '1“6‘ o Rymn R™™ (2'54)

3 1
+aI2 {_'ig kanp Rl mnp V' Vz¢ + giRklmannqupq Kl

1 , 1 .
_ﬁRklmannleqmp k + aai(Rk:lmn Rklmn)az¢} =0,

i,---,q € {0..25} .

which are calculated by the dimensional regularisation method [47, 48] and the minimal subtraction
scheme. For backgrounds of the metric, the NS two form and the dilaton in the Heterotic String
Theories the invariant structure of the linear o/ corrections derived from three [5, 49, 50] and four
[50, 51, 52, 53] vertex operator insertions of dilaton, NS two form and graviton on the sphere can

be represented by

5(10) 52{_7; /dlom —ge (L0 + %Lm) (2.55)
1 g
L® = Rpe,+4|Vo] - EHiijzjkv
1
L(l) — Rk’lmanlmn _ _2_ Rklmanlepmn +
1 mn kpq ryl 1 k Ip gyrmg
--S-Hk Hyn H Hpq-l-—zZHklmH qur H .
where
’
H=dB + %w3L(Q) : (2.56)

includes the Lorentz Chern-Simons modification to dB. The Lorentz Chern-Simons modification
to dB is in agreement with the Green-Schwarz anomaly cancellation mechanism [54] in the low
energy effective field theory.® Note that the insertion of three vertex operators on sphere gives rise

to the Chern-Simons modification to H.

3For the definition of the Lorentz Chern-Simons consult page 167 of D-Branes by Clifford Johnson, 2003 Cam-
bridge University Press.
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Chapter 3

T-duality

3.1 Introduction and Motivation

Target space duality was first introduced as a symmetry describing the interchange of the mo-
mentum and winding modes in the closed string compactified on a torus [55, 56]. Later it was
described as the symmetry of the sigma models [57]. The linear o’-corrections to the T-duality
rules are obtained in [58, 59, 60]. Further support for the o’ expansion of T-duality is presented in
[61] where the linear o’ corrections to T-duality in the presence of torsion is obtained. Studying
the higher order o/ corrections to T-duality should provide a better understanding of both the
mathematics of string theory in the curved space time and the pre-big bang scenario in string

cosmology [62] where T-duality is an essential tool.

In this chapter the three loop o/ corrections to T-duality are computed in the critical Bosonic String
Theory at the tree level of the string interaction for time dependent backgrounds of a diagonal

metric and the dilaton. The chapter is organised in the following way:
In the second section we expound how T-duality is realised in the effective action.

In the third section we review the general diagonal Kasner background in D = 26. Since the
Kasner background is of interest in Cosmology [63, 64] and particularly in Cosmological Billiard

[65] calculating its string corrections should be interesting. we generalise the Kasner metric to

21
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a perturbative background in the critical Bosonic string and we calculate the linear (two-loop)
and the quadratic (three-loop) o' corrections to this background at the tree level of the string
interaction. We write the Kasner metric on a periodic space-like directions and we apply T-duality
in one direction to obtain the corresponding T-dual background. Next we add the linear and
the quadratic o/ corrections to the Kasner background and to its T-dual. We will observe that
T-duality fails to relate the o/-corrected Kasner background to its o’ corrected T-dual background.
We will modify the rules by appropriate o terms in such a way that the o/ modified rules relate
the o/-corrected Kasner background to its o’ corrected T-dual background. Finally we will rewrite
the o/-modifications in a Lorentz invariant form consistent with [59] to obtain the o’ corrected

T-duality rules for a general time-dependent background with a diagonal metric and the dilaton.

In the fourth section we review the Schwarzschild background in an arbitrary dimension. We intro-
duce the time-dual of the Schwarzschild background by performing T-duality in the time direction
of the related Euclidean geometry. We observe that the horizon of the Schwarzschild background
changes into an intrinsic singularity under T-duality and the time-dual of the Schwarzschild metric
is massless in D = 4. We introduce massless geometries in arbitrary dimensions for the low energy
gravitational theory of the Bosonic String Theory. We then calculate the linear and the quadratic
o/ corrections to both the Schwarzschild background and its T-dual background in D = 4,5 in the
critical Bosonic String Theory at the tree-level of the string interaction. We observe that when
the asymptotic behaviours of the fields are fixed at infinity the o/ corrections generically diverge
at the horizon of the Schwarzschild black hole. We will discuss this divergence in the fifth chap-
ter. Finally, by requiring that the ¢/ modified T-duality also relates the quadratic o corrected
Schwarzschild background to the quadratic o’ corrected time-dual, we are able to identify uniquely

the quadratic o’ correction to the rule which describes the change of the dilaton under T-duality.

In the fifth section we review the two dimensional black hole. We calculate the quadratic o
corrections to the two dimensional black hole and its T-dual. By requiring that the o/ modified
T-duality also should relate the quadratic o corrected two dimensional black hole to its quadratic
o corrected time-dual, we are able to identify uniquely all the quadratic o’ corrections to the rules

of T-duality.

In the last section we provide a summary and possible generalisations of this work.
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3.2 T-duality and o' corrections

Consider a background of the Bosonic string theory in D + 1 dimensional space-time which is

composed of a time-dependent dilaton and a diagonal metric,

¢ = ot (3.1)
ds? = —dt® + g1 (t)da? + - + g, ()da? (3.2)

where

1. z; are compactified on circle; z; ~ x; + 2,
2. the space-time approaches the flat space-time at late times,

3. €2%() remains bounded at late times.
These conditions guarantee that physics at late times is described by free strings propagating in a
toroidally compactified flat space-time. The spectrum of free string in the toroidally compactified

flat space-time read

T

25 2 2 p2
n; w; R 2 .
m%n,.,w,.) = Zl(ﬁ? + o )+ J(N +N —2) (3.3)

where R; is the radius of circle of z; and n;, w; are the momentum and the winding numbers of
string wrapped around z;. (3.3) is invariant under

/

a
R, — E My Wy (3.4)
for each of 4 € {1,---,25}. Also the vertex operators are invariant under this equivalence. This

equivalence is known as T-duality.

T-duality is a duality connecting different string theories through interchanging the winding and
the momentum numbers of the string wrapped around a non-trivial cycle. Thus T-duality should
exists for strings propagating in a curved space-time which have some topologically invariant
non-trivial cycles. We do not know the spectrum of a free string propagating in such a general

background therefore we develop a mechanism to study T-duality in the effective action.
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Consider an asymptotically flat space-time background where string theory is perturbative in the
flat asymptotic region. It should exist neighbourhoods around the asymptotic infinity in which the
spectrum of strings could be approximated by that of flat space-time. We name the union of all
these neighbourhoods as the flat-neighbourhood. The flat-neighbourhood necessarily covers whole
of the space-time if the background is a consistent string background. Consider a case where in
the flat-neighbourhood the low energy effective action of string theory in D + 1 dimensional space

time is described by

o = o), (3:5)
ds? = —di* + gu(t)da? + -+ gpp(t)deh - (3.6)

Now let T-duality be applied in the direction of z;. Represent the fields of the T-dual background
by

5 = —df +gu(t)de} + -+ Gop(t)dch (8.8)

Note that we have chosen the same coordinate to represent the background and its T-dual, both

metrics are written in the co-moving frame and z; = z; + 27 on both coordinates. (3.4) requires

gu(eo) _ o

o 911(00) (3.9)
Gij(o0) = gjj(00) j#1

We generalise the above relations to all points in the flat-neighbourhood by

gt = gu(t
w0, f = @20 .p), 310)
. -~ .. t
In gnst) LBy, = mguﬁl_) +PL;,i#1, (3.11)
o (a4

where (15“, ﬁJ_’j) and (P), Py;) are functional of (G, $,8;) and (9w ¢,0¢). Let them be repre-

sented by
B = B(ngu,é V), (3.12)
p_l_ = P_L(ln g#ua &7 6#) 3 (313)
P = PF(ngu®: V), (3.14)
P = P_]_(].Ilgp,”, ¢7 v/.l-) ) (315)
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where within these expressions the covariant derivatives act on the logarithm of the components

of metric as if they were scalars. Then (3.9) requires that
22 = A Py = i By = Jim Py = 0 (316)

We also require that applying T-duality twice in the same direction should not change the back-

ground. We satisfy this requirement by choosing

PFi@.¢,V) = F@56Y), (3.17)
PL(3,6,V) = Pi(5,4,V). (3.18)
Therefore we reach to
In 9“()+P”(1ng,¢, V) = <1 g”()+P,,(1ng,¢,V)) (3.19)
In g”()-l—P_L,J(lng,qb,V) = 1n—92'g§—) + Py j(ng,¢,V). (3.20)

Both (g, ¢) and (g, @) solve the equations of motion. The leading equations of motion for (g, ¢)

are

RI_LV "I" ZVMVI}QB + O(a,, gs) = O, (3.21)
1
~500+ Ve +0(d/,9.) = 0, (3:22)

and the equations for (g, $) are

Rﬂv+2©#6u¢~’+o(a,,gs) = 0, (3'23)
1 - -~
—308+ VeI’ +0(e,g:) = 0, (3824)

where R, and RW are Ricci tensors constructed from g and § respectively. A straightforward

calculation shows that if we set

P = 0+0(cd,9s), (3.25)
P = 040(d,gs), (3.26)

then the leading equations (3.21,3.23) of motion are compatible with (3.19,3.20) provided that

- 1 1
qb—zlndetg = c;S——Zlndetg—i-c, (3.27)
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where ¢ is an arbitrary constant real number. e~2¢,/detg governs the gravitational Newtonian
constant. We fix ¢ = 0 to have the same gravitational Newtonian constant at asymptotic infinity

for both backgrounds. Thus the rules describing T-duality in z; direction in the leading effective

action are
gu(t) gu(t)
In = —In = ) , (3.28)
n S5 ® _ v . (3.29)
- 1 _ 1
¢ — Zlnde‘r,g = ¢— Zlndetg. (3.30)
When we consider the subleading corrections then these rules should be modified as follows
w20 P59 = - (028 4 Rngsv)) (3.31)
In g”()+P“(1ng,¢, V) = In 9”()+P i(ing,,V) (3.32)
- = 1
é— Zlndetg—l-Pd,(lng, & V) = ¢— Zlndetg—l-P(i,(lng,qu,V). (3.33)

where P_, similar to the effective action, have a double expansion series in gs; and o'. In the

tree-level approximation to the effective action we have

Bng 6,V) = 0+a'PV(ng,¢,V)+a?PP(lng,¢,V)+, (3.34)
Pl(ng,$,V) = 0+dPY(ing,¢,V)+a?*PP(Ing,¢,V)+---, (3.35)
Py(lng,6,V) = 0+a'PM(ng,¢,V)+a?P (Ing,¢,V)+--, (3.36)

each of which have an expansion series in V, i.e. for example
PY(ng,¢,V) = Ci(9,8)VulngVulngn+ Chy(g:9)Viuln g Vg +
+C* (g, ¢)vu¢vl/¢ + H* (97 ¢)Vuvu¢ -+
+H"(9,6)VuVyIngu (3.37)

where C1(g,9), -+~ and H""(g,¢) are functions of the metric and the dilaton. We conjecture
that

1. The sum over V in each of P®(In g, ¢, V) is a Lorentz covariant sum, i.e. for example

PM(ng,6,V) = AuVFInguVulngy + BrgVH*IngerVyud + (3.38)
+CVH¢V ¢+ HOp + H Olngy
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. — .
A
o ~Modified
et S
T-Duality

| |

Figure 3.1: T-duality and the o corrections. By requiring that o/ modified T-duality maps the o

corrected -dual backgrounds to each other the o modifications to the rules of the T-duality can be identified.

2. Thé ;coefﬁcients in the expansions of P®) do not depend on the metric and dilaton, i.e. Ag,

By 'and -+ - are numbers and they do not depend on the metric and the dilaton.

We refere to these conjectures as the Lorentz-form T-duality conjectures. The Lorentz-form T-
duality c;)njectures shall help us to find the quadratic o’ corrections to T-duality rules for time
dependent backgrounds of diagonal metric and dilaton by studying the quadratic o’ corrections to
the diagonal Kasner background, the Schwarzschild metric, two dimensional black holes and their
T-duals Fig. (3.1). We will prove that the Lorentz-form T-duality conjectures are correct at the

linear order in o/ and we discuss their validity at the order o/2.

3.3 Kasner metrics and o/ corrections

In this section we consider the case of the critical Bosonic String Theory where the leading equations

for the background composed of the metric and dilaton in the string frame read

0 = Ry +2viv; ¢, (3.39)
0 1

¢ — (v9)* + ; R. (3.40)
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The stringy Kasner background [66] determined by the set of {p1, -+ ,Pyss } as a solution of the

above equations is

25
ds? = — dt* + Ztm dz? | (3.41)
i=1
-1
b(t) = —2—7’—2——— Int
25
>opi =1, (3.42)
=1

where satisfying the equations imposes the constraint (3.42). The intrinsic singularity at t = 0 of

this metric shows up in the various scalar curvature terms

R = @_p_tz;_l_)f , (3.43)

R R*™ = 2 (_Z_%;_lﬁ : (3.44)

Ry REVM — 6 + 2 th’: -8 , (3.45)

Ve Ruvan vt RHvAN 16,"21’4 + ZZP;+ r%)? - 2 ’ (3.46)

where R, Ry, and Ry, stand for the Ricci scalar, Ricci and Riemann tensors respectively.

The usual Kasner metric has ¢ = 0 as »,p — 1 = 0.1 Here we allow for a more general
configuration with a time dependent string coupling. The string coupling constant given by the

local vacuum expectation value of the dilaton reads
9s = goe? = got&P V2, (3.47)

Therefore for positive values of > p — 1 the string coupling constant vanishes at the time origin
and diverges at infinity. For negative values of " p — 1 the string coupling constant diverges at

the time origin and vanishes at infinity.

In this work we are interested in calculating the o' corrections at the tree level of the string

interaction. The calculation at the tree level can be trusted as long as gs < 1. For negative values

1 The subleading 3 function (2.54) provides a non-zero value for the dilaton even if it vanishes at the leading order
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of 3°p— 1 this condition is automatically satisfied at large ¢ and for positive values of >p—1we
set go close to 0 to get g < 1 at the vicinity of a fixed large value of time where the perturbation

in o is going to be done.

We have defined the Kasner background as the solution to the leading order B-function equations.
Before moving to the subleading order corrections, one needs to generalise the Kasner background

to a perturbative background in string theory. We implement this generalisation by requiring that
1. String theory admits some time-dependent backgrounds where the metric is globally diagonal
and the only non-vanishing field is the dilaton.

2. The above backgrounds admit a perturbative series expansion in o i.e.

guw(t) = gt + o gl(t) + o? D) + -, (3.48)
o) = ¢00) + o ¢V@) + o2 ¢P@) + ... | (3.49)

where gm,) (t) and ¢(©) (¢) correspond to the Kasner background. All gfw) become automatically

diagonal due to the first assumption.

We expect that for every given Kasner background there exists a string background satisfying the
above conditions. In the next sections we are going to compute the linear and the quadratic o

corrections to the general Kasner background.

3.3.1 The linear o/ corrections to the Kasner metric

We begin to investigate the o’ corrections to the Kasner metric by making the following simple

ansatz the generality of which we will verify at the end of this subsection.

25 2
ds® = —dt’ + Y (1 + 2— b;) dz? + O(— t4) (3.50)
i=1
25
1 a B 12
o) = - 5= p) It + o + O( ), (3.51)

i=1

25
>on =1,
i=1
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where b;’s and B are some unknown constants numbers. Substituting (3.50) and (3.51) in (2.53)

and keeping only the linear o/ term results in the algebraic equations,

25
26i+(—zbj+3)pi+p?—p?=0, (3.52)
j=1
25 25 25 25
6(-> b+ B)— > pi—1+2) p +4) pb=0. (3.53)
=1 i=1 i=1 i=1

Multiplying (3.52) by p; and summing over ¢ gives

25 25 25 25
2sz-pi+(—2bi+3)+zlp?—zp;1=o. (3.54)
=1 i=1 i= i=1

(3.54) and (3.53) are solved by

25 1 25
B - Y bi=30->0. (3.55)
Using (3.52) and (3.55) one easily obtains
1 - 22 0f 1
b = - pi (——-————éil—l + 5 =P (3.56)
25 25 25
1 1 Di 1
B = - Zp?)(;—ng—?f)—;l— > ) (357)

The results obtained for b; and B satisfies (2.54) as well. Now let us investigate the general solution

by writing the corrections in the following form

25 7 /
ds* = —dt? + > (1 + %g— (bs(t) + b)) dz? + O(%;), (3.58)
i=1
1 o a?
ot) = 35 Oop - 1) lnt + (B + B(t)) 55 + O (3.59)

where b; and B are given respectively in (3.56) and (3.57). In order to find bi(t) and B(t) we first

define the following variables
25
z(t) = B() — Y b1, (3.60)
i=1

25
y(t) = D bilt) pi- (3.61)
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Inserting (3.58) and (3.59) in (2.53) and (2.54) and keeping only the linear term in o yields?

- 2z(t) + ga:'(t) t — %x"(t) 2 — yt) + -;—y'(t) t = 0, (3.62)
6z(t) — 4ta’'(t) + ") + 4y@t) — 24/t = O, (3.63)

2
2 b;(t) — gtbg(t)+ %bg’(t) + pi (z(t) — -;-m'(t)) = 0. (3.64)

The general solution of the above system is

bi(t) = —pat+ P+ 2P e, (3.65)
Bit) = a1l = Y pt+ et +2:2mt) ?, (3.66)
>y =0, (3.67)

where c1, ¢, ci1 's and vciz’s are constants of integration. At the first sight the appearance of these

constants of integration may seem disappointing, however a closer look shows that

e c; corresponds to an infinitesimal time displacement ,t =t — o ¢.

co corresponds to a constant shift in the dilaton field.

61(1) ’s correspond to proper scaling in the z; directions.

c§2) describes an infinitesimal change in p;, p; — p; + 20/ cgz) , constrained to }_ p? = 1. (3.67).

Therefore all the arbitrary constants in (3.65) and (3.66) are infinitesimal redefinitions of the
variables. We fix the definition of the variables and set all of the arbitrary constants to zero.
Doing so we obtain (3.56) and (3.57) as the values of the linear o/ corrections to the metric and

the dilaton.?

?(3.62) is obtained from % g% B;; — B,
3In the Heterotic String Theory the 8 functions at two-loop in o' are the same as the ones of the Bosonic String

Theory by replacing o with “7' Therefore the results obtained in (3.56) and (3.57) trivially can be extended to the
Heterotic String Theory.
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3.3.2 The &’ correction to the Kasner metric

Similar to what was done in the previous section the quadratic o’ correction to the metric and the

dilaton may be written as
) ) 25 X o o2 o3
ds? = —dt +Ztm(1+2t—26i+2t—4ci)+o(ﬁf)’ (3.68)
2 3
2 (3.69)

>p— o o
where ¢;’s and W are some unknown constant numbers and b;’s and B are written explicitly in

the (3.56) and (3.57). The equation that comes from the time-time component of (2.53) reads
3 4y2

45 5 17 4 5 6 7 4
+Z( oot -t - 1957+ 1100 - 2 + 14 pY
+— +8) cp+ 2002W R

The remaining equations generated by (2.53) are
3 1 o 3 4 5 v6
0 = P — 7P T 75 — 18 p; + 16 p; —4pz~ (3.711)
5 15
- =M+ —pz oY

+py (0 - 20" + 5P - TP
—p?(gzp“ + i(zp‘l)z) + 508 > p* - 2pf > 1
_%i. Yorr Y+ 4@W - Y I+ 160

Multiplying (3.71) with p; and summing over ¢ gives
= —a S -2 > —;}Zpg’ O _rh? (3.72)
+ Y (—20p° + 179° + Zp‘" + %p‘l — 49"
+ 1’36 + %(Zp‘lf + 16> cp+42W = Y .
From (3.71) and (3.72) one obtains
61 o, 1 ———S—p)-!- (3.73)

ZW—ZC Z(p—— +§p 36
+§Zp > r ——-—(Zp

576 '
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Substituting (3.73) in (3.71) identifies the ¢; giving
.__15__493721_29
@ = b {4“’ R RO TR T R T (3.74)
7 N 5 4 1 . 4\
32 T gP T P Zp g QP

+pi (55 +
1
+ 2(192 pt = 5% - 1—2'8' >_rh? - 7 ZPB} ,

[
. 6
P 3P 1 3
W= R G Tt DR DRV
53210 > 3(Zp 29 ¥rf 19
+{ 384 8 256 T 3300 7o f 2P 75 (3.75)

Having obtained W and ¢;, it is not difficult to find the general o'? corrections to the metric and

the dilaton. Let the quadratic o/ corrections be written in the following way

. 2d 20/2 a3
2 2 E 2p; )
p—1 o a’? o3
o) = =P -1 5 It + 55 B+ G W + W) + 0(5).

We get the following equations for the auxiliary variables z(¢) and y(t) -defined below- as the result

of substituting (3.76) in (2.53) and (2.54)4,
25

a(t) = 2W(t) — D a), (3.77)

25 =
y(t) = > alt) p , (3.78)
20 z(t) — 82/(t)t + z(t) t? —l ;y'(t) t+ 8y(t) = 0, (3.79)
16ci(t) — Te(t)t + cf() ¢ + p (4z(t) — J()t) = 0, (3.80)
—8x(t)+zx(t)t—f;x(t)—2y(t)+—y(t) - 0. (3.81)

The general solution of the above ordinary system of differentiable equations in terms of the

RO @) .

integration constants ci, co, ¢ ;- and ¢;” is as follows

at) = pitte + 1) 4+ 4 It P, (3.82)
_ @)
W) = e tt + —Z—’iz—l t3co + t* Int —2—52—- : (3.83)

%(3.81) is obtained from 1 g B;; — B,
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25 )
ZC§)P1 = 0.
i=1

Again all of the above constants of integration can be eliminated by redefining the variables
appropriately. We set all of these constants of integration to zero and obtain (3.75) and (3.74)
as the quadratic o/ corrections to the dilaton and the metric. Let us emphasise that setting the
constants of integration to zero is the same as fixing the asymptotic behaviour of the metric and

dilaton at infinity as we saw already at the end of the previous subsection.

3.3.3 T-Duality, the o corrections and the Kasner

In this section we are going to obtain the quadratic o/ modifications to the T-duality rules for a
time-dependent background composed of a diagonal metric and dilaton, consistent with the results

of the previous sections on the o’ corrections to the Kasner metric and its T-dual.

In the following we write the Kasner metric on a periodic space-like direction and we apply T-
duality in 95 direction to obtain the corresponding T-dual background. Next we add the o
corrections to the Kasner background and to its T-dual. We will observe that T-duality fails to
relate the o/-corrected Kasner background to its o’ corrected T-dual background. We will modify
the rules by appropriate o/ terms in such a way that the o/ modified rules relate the o'-corrected
Kasner background to its T-dual. We see that the Lorentz T-duality conjectures give rise to
corrections which are consistent with those of [59]. [59] gives the linear o/ corrected T-duality

rules for a general time-dependent background with diagonal metric and dilaton

Let us start the calculation by writing the Kasner background on periodic space directions

25 N2
ds? = —adt? + Y ¥ (%) dz? (3.84)
i=1
-1
ot) = _Z_pz___ Int, (3.85)
25
Zpi? = 1, (3.86)
i=1
T, = x; + 27, (3.87)

where each z; is compactified on a circle with time dependent radius r; (t) = m; tPi.
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For the Kasner background the rules that describe T-duality in o5 read 5

Ingss 25 = — Ingesos, (3.88)
In gm = In 9ii 1 E€ {1, v ,24} R (389)
qE - -i— Indetg = ¢ — i- Indetg . (3.90)

Applying the above rules on the Kasner background returns its T-dual background,

24 ) 2 -
CZ§2 _— dt2 -+ Zt2pi (%) d‘fzs? +t—2p25 (%) dﬂ,’25 3 (391)
i=1
_ 24 lnt
50 = (- - 1) 2 (392)
i=1
j‘i = .’il + 27.

The dual background is still a Kasner background where zo5 is compactified on a circle with radius

Fps (t) = ;‘-"245 t 7. Now let the o/ corrections be added to the Kasner background
rs 20/ o3
ds® = —dt®+ Zt% <—> {1+ i+ el da:i2+0(?s—) (3.93)
lnt a’2 a?
¢t = O_pi+ Py — )45 + ﬂz—B + oW+ O(5 ) (3.94)
i=1

where b;, B, c; and W respectively are identified by (3.56), (3.57), (3.74) and (3.75) for the set of

D1, s Pay,Pas). Adding the corresponding o corrections to the dual background gives
2471725
2 / 92 2
-2 / /2
9 T 2a - 2a
+ tT P2 (-—E-—- .57) {1+ el b,y + Czs}dmzs , (3.96)
_ hlt I - a/z - a/3

where b;, B, & and W respectively are provided by (3.56), (3.57), (3.74) and (3.75) for the set
of (p1,°** ,Py4, —Py5)- It should be noticed that for 1 < i < 24 we have b; = b; but due to the

presence of the under-braced term in (3.74) ¢; # &;.

5These rules are written in such a way that it is manifest that 72 = 1, where T represents the T-duality
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Now let us check whether or not the T-duality rules (3.88, 3.89, 3.90) map the o' corrected
backgrounds (3.95, 3.93) to each other. To perform this check it is better to write the rules

describing the T-duality in the z,, direction in the following way

Ing, 5o + Ingygs o5 0, (3.98)
In ﬁu‘ — In gii = 0 N (399)
0

- ¢+ i (Indetg — Indetj) = (3.100)

Substituting the o/ corrected backgrounds in the Lh.s. of the above formulae gives

- 20/ ~ 202 _ - o3
InGps 05 + NG5 05 = v (bys + bys) + e (€5 + Co5 — bgs - bfs) + O("Eg‘) ) (3.101)
- 202 - a?
Ing, - Ing, = —g(a - &) + O(55) (3.102)
- 1. det
b—¢+-im—d = (B-B+) b-) b) (3.103)

4 detg
2t22W Zc+2b2—2W+Zc—Zb2 +O(

Keeping only the leading non-vanishing o’ terms and expressing the r.h.s. of the above formulae

in term of py,- -+ , p,s gives®
- 2o a’?
Iy + M = — 5 P + O(57) (3.104)
a/2 13
Ingy — Ings = —rpi Pl + 0( ) s (3.105)
¢ — ¢+ 7 lnm = —5aPs T O( ) (3.106)

The above relations indicate that none of the T-duality rules are satisfied and they all must be
modified by appropriate o terms i.e. Py, Py, Py are not zero. In order to find the modifications
let (3.104), (3.105) and (3.106) be written in the following forms

_ a/ - Oz/ 5 arz
Ing,,s + ﬁpzs = - (1n92525 =+ t_z'pzs) + O(t_4)’ (3'107)

60nly the linear o’ term in (3.104) is kept. After finding the linear ¢’ term in (3.126) the quadratic term is fixed
in (3.129) .
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/2 12 13

_ o o a
Ing, + 54 Pi P, = Ing, + 54 Pi p3 + O(t—G)’ (3.108)

~ 1 - a’z ~ 1 0/2 al3
¢ — 1 Indetg — l_t‘fpg"’ = ¢ — 1 Indetg — 1a pgs + O(—t—é-), (3.109)

where p; = p; and p,; = —p,; . Comparing these relations with (3.31), (3.32) and (3.33) we

conclude that

2

)
Py(In gxi, 9, V) = %p§5+ﬁr(1ngkk,¢,\7) + 0(%4—)’ (3.110)
05,2 a/3
Pr(ngpk, ¢, V) = 571 pi Pl + Pi(ln gk, 6, V) + O(5%)> (3.111)
a? o’
Py(In gk, ¢, V) = — ﬂngs + Py (Ingrx, 6, V) + O(3%)> (3.112)

where P} and P} are even under Ing,, ,; — —Ing,; ,

Ing,s 15 — —Ingy o (3-113)
P — Py, (3.114)
qu — P;, (3.115)

and PIT is odd under Ing,, ,s — —Ing,. ,.

We presume that P} = P;; = Pﬁ‘ = 0 and we get

/ 2

Py(In gk, ¢, V) = ‘:—2;055 + 0(9;4—) (3.117)
0/2 0/3
Pi(lngi V) = g pim, + Ol5g (3.118)
0/2
P¢(1ngkk’¢7v) = - 4 14 pir, (3119)

Later we will provide evidence for the validity of this assumption by applying the o' corrected
T-duality rules on other backgrounds including the Schwarzschild metric and the two-dimensional

black hole. The rules of T-duality follow

~ - ~ o~ afl2
Ing,s0s + P[I(lngkkaqba V) = = (Ingy, + 'F’H(lngkk7¢7 V) + O(_t?f)v

(3.120)
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_ _ _ 0/3
Ing, + PL(ngg, ¢, V) = Ing, + P (Ingkk, ¢, V) + O(—t—s—)a (3.121)

- 1 - - = 1 a3
¢ — 1 Indetg + Pp(Ingrk, o, V) = ¢ — i Indetg + Py(Ingek, ¢, V) + O(—E—G—).
' (3.122)

According to the Lorentz form T-duality conjectures we could write the o/ corrections to T-duality

as polynomials in derivatives of the metric and dilaton, in the following covariant forms”
1
Py(n ger, ¢, V) = i Viulng, V*Ingos,s Vilngy .V ing,,; + O(@), (3.123)
1
P (In gk, &, V) = — ZV“ Ing, .- V*¥Ing,,. + O(), (3.124)
A p—
Py(In gk, ¢, V) = 39 Vulngosas Vlnge ., VEV Ing,, o (3.125)

B 1
+ 16 Viuln goso5- VI ga505 Vi Ingys05-V (6 — Zlndetg)

C
+ 32 Vi lngzszs'vﬁ Ing,s,; Olngy,s + O(a,) s

where A, B and C are real numbers satisfying A + B + C = 1. Using the above identities gives

the leading o/ modified T-duality rules on the metric

- e s
InGasps — Zvulngzszs'vﬂlngzszs (3.126)

O.’,

= - {lngzszs ) Vu 1ng2525.V“ 11192525} + O(a,2v4) )

_ a?- = S 1 S =
Ing, -+ 'é'i’vl»b I Gag05-VFIn Gy Vi In Gog 5. V¥ In Gpg (3.127)
/2

(64
= Ing, + Egvu In g, V¥1n gy5 55 Vi 10 g5 55 V7 In g 5 + O(e°VO)

The T-duality rule which describes the change in the dilaton reads
/2

32
o?B

16

"In this notation, the covariant derivative acts on the logarithm of the metric as if it were a scalar.

-1 3 - e
¢ — Zln detg -+ Vuln Gogos ViIngos oy VAV INGys oo (3.128)

+

B B
VI Gog05-VHIN Grg 05 Vi In Gog 5. VY (¢ — i In det g)
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a?C - =

+ 39 Vu I Gy 05-VH# 10 Gy 55 Oln gyq 55

/2
=¢ - %lndetg + — TR Vilngesos Volng, s VAV Ing,. .

o?B

+ ETE Viln gag05-VEIn gy s Vi In gog s VU(¢_—1ndetg)
/20 36

+ ETH VIR g 05-VHIn gy Olngy s + O(a Vo),

where A+ B 4 C = 1. In a similar way one notices that (3.126) should be modified to

- o - = -
Ing,sps — Z pln g stu In g,5 05 (3.129)

O{I /2 p4 al2p2
{11192525 - Z’vu In gy5 .5 V¥ In gys 55 + ] = — t425 )

4
There exists only one way to express %25 as the “covariant” derivative of the dilaton and the
logarithm of the Kasner metric:
o 1 5
—ff' 1_6'(VM In Gos 05 V10 go555)° (3.130)

2
while there are the following five candidates for Z—;%E,

E* = V,Ing,, V¥Ing,, Vi(é— i Indet g) V¥ (¢ — i Indetg), (3.131)
E = V,Ing,., V,Ingy, V¥(¢— ilndetg) V¥ (¢ — %lndet 9), (3.132)
F = —;— Vulngysos Vo lngy .o VVVH(d — -}I Indetg), (3.133)
G = % Vulngosos V(e — i Indet g) V¥V*1In g, 5 , (3.134)
H = —;— VuVuIn g, VEVY In g, o - (3.135)

Therefore we conclude that

12 12

(874
P[|(2)(lngkk>¢a V) 16 (V lngzszsv 11192525) 2 (GE +bF + cG + eH)

(3.136)

where “a,b,c,e” are real numbers satisfying “a 4+ b+ c+ e = 1”. In direct multiplication of spaces
|V (¢ — Z1Indet g)|? can depend on the coordinates of the individual spaces. We assume that T-

duality rules for direct multiplications of curved spaces are given by the T-duality rules of each
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individual space. Therefore we exclude the possibility of writing %} by (3.131). Note that the

2
i by

rest of possibilities respect this assumption and the general form of “(3.129)” must be a linear
combination of them,

) _ 2 _ _ _ _
MGy, — %vumgmsv“mg%% - -012— @E +bF + cG + eH) (3.137)
a' C¥/2
= _{ Ingy .5 — Zvﬂ lngzszsv# Ing,s0 + "i‘é’(vu lngzszsvﬂ 1n92525)2
12

—9‘2—(aE+bF+cG+ eH)}.

where E,--- , H are (E,--- ,H) written for the T-dual backgrounds. The a'? corrections to other

backgrounds should be calculated to fix these numerical coefficients.

The above rules (3.126), (3.127) and (3.137) are written in Lorentz invariant forms compatible with
the Lorentz-form T-duality conjectures and they describe T-duality on backgrounds composed of
diagonal metric and dilaton given that the fields are in the string frame and the co-moving frame.
These rules are in agreement with those of [58] and [59] where only the linear o’ modifications
were considered. This agreement proves the the Lorentz-form T-duality conjectures at the linear

order in o/.

One observes that redefining the metrics g;; and gi; to gj; and gj; in the following way

o2 25
g = Gii €Xp (EZ—Vulngﬁ.ZV“lngkk Vulngkk.vylngkk> , (3.138)
k=1
a/z _ 25 _ _ _
G5 = i exp (ﬁv# ng,. Y VFng, V,ng,.V’n gkk> : (3.139)
k=1

compensates the o’ corrections to the rules describing the change of the metric in the transverse
directions under T-duality in any direction. In general this transformation implies that one really
needs a field redefinition to rewrite the higher order T-duality rules in the same form as the leading

order T-duality rules.

Jack and Parson in [67] have calculated the same corrections to T-duality and proved that O(d, d)
invariance of the conformal invariance condition, observed at one loop [68, 69] and two loops
[70], can be preserved also at three loops given an appropriate field redefinition and coordinate

transformation (either on the background or its T-dual background but not both). They did
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not explicitly provide the modification to T-duality but rewriting their results for the case of the

Kasner background reproduces (3.127).

In this work we do not redefine the metric and the dilaton and we maintain the convention given
by the dimensional regularisation method in the minimal substraction scheme which is the same
as fixing the definition of the metric and dilaton in such a way that the corresponding 3 functions
are provided by (2.53) and (2.54). This convention implies (3.127) which means that applying

T-duality in one direction alters the metric in all directions.

Sometimes writing the fields in the co-moving frame is not easy. Thus we are going to write the o/
T-duality rules in an alternative frame. As a simple generalisation of the co-moving frame let us
introduce an “almost co-moving frame” with a “ characteristic function (f)” in which the metrics

read

ds? = — f(T)dT? + ds?  , & = ¢(T) (3.140)
d&® = — f(T)dT* + d5% , ¢ = ¢(T) (3.141)

where f (T') can be an arbitrary function of time. The ¢/ modified T-duality rules in the almost
co-moving frame for a general characteristic function are provided by those of the co-moving frame

if within (3.128) and (3.137) we replace det g and det g respectively by det*g and det*§ given below

. det g
. det g
det*g FT) (3.143)

For a specific background, one may choose a conveniant characteristic function to simplify the

computations.

3.4 The Schwarzschild black hole

In this section the Schwarzschild background in an arbitrary dimension is reviewed. The time-dual
of Schwarzschild background is introduced by performing a non-compact T-duality in the time
direction of the Schwarzschild metric in the region outside the black hole horizon. We must note

the this non-compact T-duality in a time-like direction is not on the same footing as the usual
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T-duality, but it has been studied in [71]. The linear and the quadratic o corrections to the
Schwarzschild background and its time-dual in D = 4 are computed. Requiring (3.128) to relate
the quadratic o' corrected Schwarzschild background to the quadratic o corrected its time-dual

we are able to identify the unknown coefficients in (3.128) with the values A=1and B=C = 0.

The Schwarzschild background in D dimensions, (D > 3), is given by

d 2
— 4 r%dQp,, (3.144)

1
ds?> = —(1 - ——=)dt* +
rD—3 1 — =3

where the mass has been chosen to give simply a coefficient of one in the metric and we will

maintain this convention in the following sections.

The intrinsic singularity of the Schwarzschild metric shows itself in various scalar curvatures
A (D-1)(D-2(D—3)
Ruu/\anW T = r2D—2 !

(D+1)(D-1)?2(D -2>%*D -3) (rD-3
3D-3

(3.145)

—1).  (3.146)

Applying T-duality to the time direction, on the metric outside the horizon, we get the T-dual
background (denoted from hereon by a tilde) is,

dt? dr?

45 = - + o + 7 ds, (3.147)
— 753 — ;D=3

. 1 1

¢(r) = -5l - -5).

The above background solves (3.39) and (3.40). We refer to this background as the “time-dual of
the Schwarzschild background”. The singularities of the time-dual of the Schwarzschild metric can

be seen in the following scalar curvatures,

- (D — 3)?

R = -3 =y (3.148)
- - D —
Ry RFA 5 ~(=2(D-2)(8D = 7)rP3 4+ (3.149)

r2D-2(pD=3 _ 1)
+ (D= 1)(2D — 5+ (D —2)%r2D-6))

Therefore the time-dual of the Schwarzschild metric has two intrinsic singularities at » = 0,1 which

means in particular that the coordinate singularity of the Schwarzschild metric at the horizon has
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changed to an intrinsic singularity in its time-dual metric. This behaviour is similar to what have

been observed in [58] and in [72].

In order to get a better understanding of the time-dual of the Schwarzschild background let us

write it in the Einstein frame8,

4~ 2

1 -2 1 D-2
2 2 2 2
ClSE = (1 — T—D-_—s-) (—“ dt® + dr ) +r (1 — m) dQp_o y (3150)

Br) = —3m(1— 2.

The singularities of the time-dual of the Schwarzschild metric in the Einstein frame are the same

{§]

i

as the ones of the string frame because the Ricci scalar of (3.150) reads

Ry = B3 1 ( - )D—gi (3.151)

D—-2 r2D-4 \yD-3 _ 1
The time-dual of the Schwarzschild metric in the Einstein frame for D > 4 describes a geometry
with two singularities and a Newtonian mass proportional to (4-D)/(D - 2). In D = 4 the

time-dual of the Schwarzschild metric is massless and in the Einstein frame reads
ds? = —dt®* + dr® + r|r — 1](d62 + sin®0dg¢?) , (3.152)
1 1
¢(r) = ~3 In|l ~ ;l :

The above metric (3.152), describes a geometry with a naked singularity at » = 1 and a vanishing
Newtonian mass. In supergravity similar geometries are studied and named massless black(white)
holes [73, 74, 75, 76]. Here (3.152) represents the corresponding object in the low energy gravita-
tional theory of the Bosonic String Theory in D = 4. Other similar objects in higher dimensions
within the low energy theory of the Bosonic String Theory can be found. For example the back-

ground provided below
dr?

ds® = —dt? + ———— 4+ 2d0p_, | 3.153
L Gy o

D —
¢ = + — 2\/_._ ArcSznh( o 3) (3.154)

solves the leading order equations of motion in the Einstein frame.

4

®The Einstein frame is obtained by g, — Guv e Dz
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Op = 0. (3.156)

This background (3.153), represents a geometry with a vanishing Newtonian mass and an intrinsic

singularity at r = 0 as is clear from the corresponding scalar curvature terms

R

q 2
(D - 2)(D - 3) <7'D'3> : (3.157)
g \*
Rypne RW™ = 2(D — 2)(D — 3)(2D - 5) ( - 2) . (3.158)
To ensure that the dilaton is real we must choose ¢ to also be real. We then see that there is a

naked singularity at r = 0.

The massless black holes are stationary and they should not be thought as massless particles but
new vacua of the theory. In superstring it turns out that massless black holes play quite important

roles [73], a modification of these roles is expected to persist to the Bosonic String Theory.

3.4.1 The linear and the quadratic o' corrections to the Schwarzschild back-

ground in D =4

The Schwarzschild metric in D = 3 + 1 reads

ds? = _(1-%) de? + i T dr? + r? (d9? + sin®6 d¢?) , (3.159)
T

where its intrinsic singularity can be seen in the following scalar curvatures

12

Ry M = = (3.160)
180(r — 1
VR VERMM = ——Tg-——) (3.161)
Ve, Ve, Ruvsg VO VERFAT = r12 (56 2 _ 1207 + 65), (3.162)
4 —
Ve, Ve, Ve Ruvay VE VR VS REAT = i‘%——g(mr 10007 + 609) , (3.163)
270
Ve, -+ Ve, Ruan VS - VERIA = 8(5544Or — 2599207° 4 45789812 (3.164)
— 3585227 + 105133) ,
Ve, -+ Ve Ruyan VE -+ VERWAT = 540(r = 1) (9599590 — 127360807 3.165
& Ves Ruvan = — @ ( Tt — T (3.165)

+24176940 7% — 20406448 + 6454623) ,
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The Schwarzschild metric can be generalised to a perturbative consistent background of the Bosonic

String Theory in the critical dimension by assuming that
1. The critical Bosonic String Theory admits the following background
ds® = — gu(r)di® + gr(r)dr® + ga(r) (d62 +sin 0 d¢®) + dz% ,  (3.166)
¢ = (), (3.167)
where d:cﬁ_ and ¢ respectively represent the 22-dimensional flat space and the dilaton.

2. Within the above background the metric and the dilaton admit the following perturbative

series in o/

1
ga(r) = (1=2) (1 + o g+ ? () + ), (3.168)
1
gr(r) = =7 (L + &/ gf0) + o gD(r) + ), (3.169)
go(r) = 12, (3.170)
¢(r) = 0+ o ¢W(r) + o2 @) + .- . (3.171)
Using the f-functions (2.53),(2.54) gives the general solution for the linear o/ corrections
24 3r + 672 1 1

¢M(r) = ——15m  ~(a+ 3) In(l - o), (3.172)

10 — 37 — 672 + 12(co +4c3) 13 1.In(1-12)

[¢)) - 2 3 _ =+ T
(1) 1273 (r — 1) (cs 27 r—1 "7 (3173)

1) B4+ 5r 41272 — 1278 — 12(cp + 2¢3) 78 + ¢4 (rt — 73)
9y (1) = 503 (r ) +  (3.174)
1 1n( )

+(3 —27r)(cg + ) —

In [77] and many following works a particular boundary conditions were chosen for the metric and
dilaton. In these works it was assumed that after choosing (3.168) and (3.169) as the perturbative
series for the metric then the o/ corrections to the metric are finite at the horizon of the black hole
and the dilaton vanishes at infinity,

"V (r)ree = 0, (3.175)

9One star is used upon the metric and dilaton with these boundary conditions. We only review these metrics and

dilaton and we are not going to use them.
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GO ()= < o0,

(=1 < oo

The above boundary conditions fix the constants of the integration to values of ¢; = 0, co = %—g—,
c3 = —-%—, ¢y = 0 giving
2
*(1) 23r + 11r + 6
gz (1) - 1573 ; (3.176)
2
1 _ r“ 4+ 7r 4+ 10
gl = - BT Y S (3.177)
2 4+ 3r + 672
*(1) = L2t T
¢ (r) 1373 : (3.178)

The boundary conditions imposed in (3.175) produce finite corrections to the Hawking temperature
and the entropy of the black-hole. In addition it produces corrections to the Newtonian mass which

is provided by the asymptotic behaviour of gu(r) at large r.

In the next section we first calculate the o' corrections to the time-dual of the Schwarzschild
metric and then we will use the o modified T-duality rules. We obtained these rules by studying
the o/ corrections to the Kasner background. Within the o/-calculations we fixed the asymptotic
behaviours at infinity both for the Kasner background and its dual. To be consistent with those
calculations and due to the intrinsic singularity of the time-dual of the Schwarzschild metric we
use the following boundary conditions on the field contents of the Schwarzschild background (as

opposed to the boundary condition in (3.175)),

¢(Mlr=cc = 0, (3.179)

1 1
gtt(f”)lmoo = 1- - + O(;‘z') )

1 1
Irr(T)lrmoe = 1+ - + O(;_—i) .
Choosing the above boundary conditions and using the 8 functions (2.53),(2.54) identifies the

linear o corrections

2 3 3 4 1
1) 6457+ 1277 — 127° 4+ (18r° —127%) In(1 - 7)
e (r) = TEACEY) : (3.180)
10 — 3r — 672 — 673 In(1 - 1)
1) — T
g’f"l" (T) 12 T3 (7‘ _ 1) ?

3 1
s (r) = 14574 3r2 4+ 3r3In(1—3) .
6 r3
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as well as the quadratic o corrections
(2) 7050 — 57587 + 812572 — 275713 4 19407 + 8140r5 — 196807 + 624077
9i () = 720076 (r — 1)2
1,120 — 457 + 4572 + 126 7 — 320 r% + 104 75

+ In(l- ;) 1208 (r — 1)2
+ {in(1 - )P g%l_—_?—f)—z , (3.181)

6250 — 10154 r + 504972 — 513573 + 188074 — 246075 — 4806
7200 76 (r —1)2
1.85 — 757 +2272 + 873

()

T

1 +r

1
—In(l-= R .
In(1 r) 120 72 (r —1)2 + {inQ1 r)} 8 (r—1)2"° (3.182)
4O = —225 — 327r — 51372 — 20573 — 71074 — 303075 + 4260 75
o= 3600 7 (r — 1)
o 1, =5+ 57 + 1572 — 10178 + 7174
+ In(1 - -) 07 =) : (3.183)

Inserting the above linear and quadratic o corrections in (3.168,3.169,3.171) identifies the quadratic
o corrected Schwarzschild background. The asymptotic behaviours of the fields of the quadratic

o' corrected Schwarzschild background at large r follow

1, 4072 + 457 + 49 9 , 1
grr(r) (1 = =) = 1+ 1075 of + o5 + 0(}—7), (3.184)
1 3072 +9r — 7 , 3 L 1
912(7) T % + 1908 o + P - O(r7) , (3.185)
1057% + 8472 + 707 + 60 1, 1
#(r) = 84077 @t i@ TO0E)  (3186)

Looking carefully at these expressions one notices that at an o/ dependent location outside what
was the horizon at r = 1 the component g;; of the metric passes through zero. At this point both
grr and ¢(r) remain finite. If the zero in gy happens at r = ry then defining a new coordinate

p =1 — 1o the metric near this zero takes the form,
ds? = —pdt® + dp? + Zdw?, (3.187)

where c is a real constant. This metric has a singular Ricci scalar at p = 0 and thus the o

corrections to the Schwarzschild metric appear to give rise to a naked singularity. The fact that
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the generic o corrections to the Schwarzschild metric have singularities outside what was the
g

horizon at r = 1 was already noted in [77].

3.4.2 The linear and the quadratic o corrections to the time-dual of the Schwarzschilc

background in D =4

The time dual of the Schwarzschild metric in D = 4 is

1 1

ds? = -— T di? + — dr? + r? (d6® + sin?6 d¢?) , (3.188)
T T
1 1

The various scalar curvatures show intrinsic singularities at 7 = 0 and at r =1,

1

9 —20r + 1272

uv
R R St (= F 12 (3.191)
9 —207 + 1272
urng
RuneR oy S ) R (3.192)
180 r* — 648 r3 + 900 r? — 568 r + 137
Vo Rume V7 R = i : (3.193)
(r — 1)3r
The local string coupling constant in this background reads
gs = et® = 20 (3.194)

1 -1

r

Therefore far away from r = 1 both the string theory is perturbative and the space-time is asymp-
totically flat. Thus within this regime the time-dual of the Schwarzschild metric can be extended

to the following perturbative background in the critical Bosonic String Theory

ds? = — Gu(r) d? + G (r) dr? + Go(r) (d6* + sin?6 d¢®) + dz7 ,
¢ = CI)(T) )

where the metric and the dilaton admit the following perturbative series in o/

1
Ga(r) = 7—7 (L + o/ GP()+ a? GP0) + ), (3.195)
T
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1

Grr(r) = 777 (1 + o GO + 26D (r) + 1), (3.196)
T

Gol(r) = r?, (3.197)

() = —3h-1) + o/ 3D() + o? 9D) 4+ ... (3.198)

We fix the asymptotic behaviours of the metric and the dilaton at large r by

' 11 1
1 1
Gu(r)lmeo = 1+~ +0(5), (3.200)
1 1

In [78] the linear o’ corrected Schwarzschild metric computed in [77] with the boundary condition
provided in (3.175) and the linear o/ modified T-duality is used to obtain the linear o/ corrections
to the time-dual of the Schwarzschild metric in D = 4. This procedure means choosing a specific
boundary condition for the time-dual of the Schwarzschild metric at 7 = 1. However we think
that due to the inftrinsic singularity at » = 1, it is not reasonable to set any boundary condition

at 7 = 1 in the time-dual of the Schwarzschild background.

Using the f-functions (2.53), (2.54) and the above asymptotic behaviours identifies the linear o’

corrections
¢P() = 137 - 37§ — ((5) :3;1)% el =5, (3.202)
0@y = 10 — 37 1_2(7;;2(; f rla) In(1-1) ’ (3.203)
sW() = 1 -3r -;46T;~2(T——6 ;-)3 In(1-1) 7 (3.204)

as well as the quadratic o’ corrections

300 — 20421 + 212572 + 1557 7% — 74074 — 225405 + 26880 16 — 62407 N
7200 76 (r — 1)2
—72 2 3 _ 4
N 1n(1—1) 75 + 2157 — 72612 + 560r° — 104r
T 120 r2 (r — 1)2

1,9 9—11r +4r2

GD(r) =

(3.205)
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2200 — 4754 + 504972 — 513573 + 1880 7% — 24607° — 4807

2 —
GRr) = 7200 6 (r — 1)2
1, —85+4 75r — 22r% — 8r® 1., r+1
1-= In(1-2)) — 2
A U= R e s s R S mARy v (3-206)
() = ~1350 + 21167 — 456 72 — 875r° + 680 r* — 24607° — 94807° 4 1080077

1440076 (r — 1)2
— 107 + 4572 + 3873 — 248 7% + 180>
24073 (r — 1)2

(- (3.207)

+{In(1 - %)}2&%17175 .

3.4.3 Applying the quadratic o/ modified T-duality on the o/? corrected
Schwarzschild background and its dual in D =4

Earlier we obtained the o modified T-duality rules for time-dependent geometries. These same
rules should also describe T-duality in the Schwarzschild metric, but now the T-duality acts in
the direction of the time-like Killing vector outside the black hole horizon. These include the
Euclidean geometry of the Schwarzschild metric. Consequently the o/ modified T-duality rules
can be legitimately applied to the Schwarzschild background. In order to do this we first introduce
the analog of the co-moving and the almost co-moving frame for the metrics of the Schwarzschild

background and its time-dual.

The quadratic o/ corrected Schwarzschild metric and its time-dual are spherically symmetric. A
spherically symmetric metric can be written in a coordinate where the radial component of the
metric is the identity. This coordinate is the analog of the co-moving frame which we refer to as the
“radial co-moving frame”. On the other hand the “almost radial co-moving frame” is defined as a
coordinate that it can be transformed to the radial co-moving frame by a single re-parametrisation

of the radial direction . In the almost radial co-moving frame the metric reads
ds?® = f(r) dr® + ds? , (3.208)

where f(r) is called the “characteristic function” of the almost radial co-moving frame. The

quadratic o’ Schwarzschild metric in (3.166) and its time-dual in (3.195) are already in the almost
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radial co-moving frame respectively with gr-(r) and G,.(r) as their characteristic functions. These
two characteristic functions are not equal:

3(4r — 3)

m , (3.209)

Grr(r) — grr(r) =

In order to apply the o/ modified T-duality rules to the o/ corrected Schwarzschild metric and its
o' corrected time-dual we should first write them in the almost radial co-moving frame with the
same characteristic functions. In the following, we write the quadratic o' corrected time-dual of
the Schwarzschild metric in the almost radial co-moving frame with the characteristic function of

the quadratic o’ corrected Schwarzschild metric.

The o/ corrected time-dual of the Schwarzschild metric in the new coordinate provided by

a?

T (r—1)r5" (3.210)
reads
ds® = — gu(r) dt® + gp(r) dr? + §o(r) (d6® + sin®0dg?) , (3.211)
¢ = ¢(r),
where g (r) is given by (3.169). Other components of the metric and the dilaton read
: ) . ) )
gw(r) = T T 1+ o gg)(r)-f- a2 gﬁf)(r)), (3.212)
_ 9 ' afz
Golr) = 1 + ST (3.213)
- 1 1 - -
o(r) = —5h(1--) + o ¢0() + o 62(r) . (3.214)
The o coefficients to the dilaton ¢(r) are
- 1—3r—6r2—67r3n(1-1)
(1) - T
¢+ (r) Yy — , (3.215)

JOr) = —1800 + 21167 — 45672 + 10800r7 — 875r° + 680r* — 246075 — 9480r6
: 1440076 (r — 1)2
—2487% 4+ 1807° + 3873 — 107 + 4572 + 5
240 73 (r — 1)2

(3.216)

1

+{ln(1 - %)}2m .
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The o/ coefficients to the g (r) read

3 2 1
_(1) =5 —12r 41272 4+ (12r° — 187%) In(1 — 3)
gy (r) = 2 = 1) , (3.217)
150 + 20427 — 212572 — 1557 7% 4 7407% + 22540° — 268807° + 624077
720075 (r — 1)3

1. 2157 + 75 — 1047r% — 726 2 + 56073

D) =

+in(l - ;) 1207 (r —1)3 (8.218)
r(=11r r2
R

This new coordinate is the almost radial co-moving frame with the characteristic function gr.(r).
Now the o/ modified T-duality rules provided by (3.126,3.127,3.128) can be applied to the quadratic
o corrected Schwarzschild background (3.166) and its time-dual (3.211). '

The tt, ¢¢ and #0 components of the quadratic o corrected Schwarzschild background (3.166) and
its time dual (3.211) satisfy the T-duality rules given by (3.126) and (3.127)

. o = - Su -
Ingy -— Zvulngtt.V“lngﬂ (3.219)

!
= —{lngy — %— Vulngs . V¥Ingg} + O(a'2V4),

12 _ . _
g, + 3VulngnV g, Vulnge V" Inga (3.220)

12
= Ing, + %Z—V” Ing,, . V*Ingy V,1Ingy.VVIngy + 0(a*V") .
Note that in (3.128) we should substitute det g and det § respectively with det*g and det*g given
by
det g

det'g = ——=, 3.221
7.0 (8221
- det g
det*y = . 3.222
0.0 (3.222)

In order to check (3.128) we first calculate

3"‘4"” 12

(r) — -i—lndetg —o(r) + zll-lndetg _

Also the o/? terms in the Lh.s of (3.128)

47 — 3

m + 0(d) , (3.224)

V,Ing, V,Ing, V*V’Ing,,
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- . = R - <y, 1 - 4r — 5

Vulng, . V*ng, V,1ng,, V(¢ - ;lndet's) = m +0(), (3.225)
-~ . = - - 1
Vplng, V¥ng, Blng, ey R o) , (3.226)
and the o2 terms in the r.h.s of (3.128)
pr— 4r — 3 ,

Vylng,, Vylng,, VFV”Ing,, - m + O(e'), (3.227)

1 . 4r — 3
Vulng,,.V¥Ing,, VuIng,,. V" (¢ — 1 Indet*g) = - 6 (r 1) + O(d), (3.228)
Vulng,,V#Ing, Olng,, = 0 + O(d). (3.229)

Inserting the above expressions in (3.128) results the following equations for A, B and C

A+B+C =1 A =1
A+B =1 ={ B = 0 (3.230)
3A+4B—-C = 3 cC =0

which idéntiﬁes A =1and B=C =0. Substituting these values in (3.128) results

-~ 1 - a? - - = - P -
¢ - 1 Indetg + ED) VuIngosos Voln gy VHAVYIn Gog o (3.231)
” 12

1 o
= ¢— Zlnde‘tg + 32 Viulngysos Volngys,s VAV Ing, s + O(al3v6)

The fact that we can find a consistent assignment of the constants A, B, C and satisfy (3.219) and

(3.220) is a nontrivial check on the consistency of our procedure.

3.4.4 The o' corrections to the Schwarzschild metric in D =5

The five dimensional Schwarzschild black hole reads

1

dr?
ds® = —(1 - =) dt?
s ( rz) +1

L
2

+ r2dQs, (3.232)

where the mass of the black hole is appropriately chosen to give a factor of one in ;lg For very
large r this metric can be generalised to a perturbative background of free critical Bosonic String

Theory,?

2
ds® = —fs(r)di® + gs(r)dr? + r2d + da,, , (3.233)

0The linear o’ corrections to the four dimensional black hole were computed in [77].




54 CHAPTER 3. T-DUALITY

for) = (=) (L + @ FO) + o fO) + o), (3.234)
g5(r) = 1_1 1+ o' g ) + o262 + ), (3.235)
5(r) = 0+ ¢(r) + 26D (r) + -, (3.236)

where Zz&’zl represents the 21 flat directions compactified on a torus and ¢(r) is the dilaton. Using
the beta functions and assuming that there is no correction to the mass of the black hole or to the

fall off of the dilaton at infinity, one finds
25 7~2 +1 25 25

Dy — _ =
2
Dy = ___1____. 4_on 8 61,4 _ r?+1
s(r) = T — <48+80r 307° + 157°(r* — 3) ln(—TQ_ 1)) , (3.238)
(1 1 _ r?+1
g5 (r) = T — (11 30rt + 151n ( 1)) , (3.239)
and
@, _ 2364r® — 247875 — 394r* — 953r2 — 915
5 (1) = 7688 rE—1) + (3.240)
(1~ 52) 1976 _ 30504 4 54r% — 54)
642 — 1) T T T
(2, _ 106870 — 3966r° + 12147% — 435+* — 1553r2 + 6048
f57(r) = 576 (2 — 1) 10 = (3.241)
L) (897% — 32175 + 1674 — 10872 + 432) +
48712 (r2 — 1)2 ,
9(r2 — 4 1
P2 Dma - 2y,
8 1 91078 474 4 2 __
géz)(r) _ 8767° +2107° + 5747 + 6449 7% — 4473 + (3.249)

57676 (r2 — 1)3
(73 r4 — 7372 + 144)
Br—1)°

2(7”+1)n RS
S bl - )

2
Note that the o’ corrected metric has a singularity outside the horizon. This is reminiscent of what

In(1 - ) +

happens in the case of four dimensional Schwarzschild black hole. Now let us apply T-duality in

the direction of the time-like Killing vector outside the horizon

dt2 2
di? = - + LU dQs, (3.243)
1-5  1-3
r T

o(r) = 0. (3.244)
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The T-dual of the Schwarzschild metric is singular at “r = 1” which means that the coordinate
singularity of the Schwarzschild metric has changed to an intrinsic singularity. Since T-duality
relates the singular time-dual geometry to the Schwarzschild metric then one expects that the
time-dual metric to be as stable as the Schwarzschild metric [79]. This argument should not sound
strange because the classical stability of a naked singularity recently has been explored in [80]. At
large r T-dual background can be generalised to a perturbative background of string theory whose

quadratic o/ corrections follow !

2

d52 = —fs(r)dt? + gs(r)dr® + r2(1+ W%-:-l—))dng + (3.245)
B = ;2 0+ 00 + 00 + ), (3.246)
s(r) = 0+ a8 + a0 (r) + -+, (3.247)

where we are going to assume that there is no o/-correction to the fall off of f(r) at infinity. Note

that gs(r) is provided by (3.235). The linear and the quadratic terms in ¢ in f5(r) follow

...(1) _ 67"2 -9 3(7°2 - 2)
fs°(r) = 4(r2 = 1)r? + 2(r2 — 1)

In(1 — ;15), (3.248)

7@, _ 1068710 — 52627% 4 5102r® — 1623r* + 10392 + 576
f57(r) = T T + (3.249)
= 8974 — 44872 4324 1 9(r? — 3r2 + 4) 1.9
- 4872 (r2 — 1) In1 - ﬁ) + 8(r2 —1)2 (In(1 - 7—”5)) ’
And the coefficients of o/ in @(r) read
4 2 2
(1) _ 6rf49r° -1 3(r"+1) 1
¢5°(r) = 16r4(r2 — 1) 8(r2 —1) n(1 7”2)’ (3.250)
~ 4956710 — 529878 — 6478 — 1347r* 4 1492r2 — 2151
P = g S LA + (3.251)

2304(r2 — 1)2r8
413r8 — 648r8 + 289r% — 3672 + 18
19474 (r2 — 1)

In(1 — ;}2-))2.

1
111(1 - r—z) +

n 972 (
16 (r2 — 1)2

Instead of writing the o/ corrected Schwarzschild black hole and its T-dual metric in the “radial”
co-moving frame, it is easier to rewrite the rules of T-duality for metrics which can be transform

to the “radial” co-moving frame by the same coordinate transformation. Here the o corrected

'1We have chosen this specific coordinate since it is easier to apply T-duality in this coordinate.
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Schwarzschild black hole and its T-dual can be transformed to the “radial” co-moving frame
by the same coordinate transformation. Luckily this transformation does not alter the rules of
T-duality. It is a straightforward computation to check that the o corrected T-duality rules
(3.126,3.127,3.128) relate the o’ corrected black-hole to its T-dual background.

The o corrected metric is singular outside the horizon. If one insists on having a smooth geometry

then one can choose the boundary conditions by requiring finite corrections at r = 1,

i = —fi(r)(1— =)df? + 95(7") dr? + r2dQ2, (3.252)
T 1-3
B0 = 14ed +cza,2_a,1772 8 _210897° —4811;76—; 810543r ~ 6048
2 6 _ 4 2
i) = 1-d r4:—47+a,2 3557 1565;76-1;349% + 4473
2
s = 0- a,9(11;3}—r24r) 222878 +6r76—8 :8868r — 915

where c¢; and c¢p are numerical constants. These boundary conditions also give finite corrections to
the string coupling constant. One may fix “c; = ¢ = 0” assuming no correction exists at infinity.
The price of having a smooth geometry is to change the fall off of the metric at infinity. The

asymptotic behaviour of the linear o/ corrected metric at large r in the Einstein frame is

11 5
1+4/ 1+4I

ds? = (1420 — Ydt? + (1+ Ydr? + r2dQ3 + 0(a®) + O( 4),

The corrections to the T-dual background are

a'?

k2 fg(r) 2 g;(’f“) 2 2 9
5" = -1 T i dt* + o T dr’ + (1 + 5 = 1))dﬂ3, (3.253)
1772 -9

2576+ 1623 7% — 103972 + 351578 — 1106 76 + 1039710
5768 (r2 —1)2 ’
- 1 1 167t —9r2 +1
* — = - /
) = —ghll-5) o qga
s —15277% 4149272 — 202478 + 3968 7% + 1394710 — 2151
230478 (12 —1)2 '

These expressions are consistent with o' corrected T-duality. We could have used T-duality to find
the corrections, by the same method that [78] finds the linear o’ corrections to the T-dual of the

four dimensional black hole.
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As mentioned earlier a general proof of the validity of T-duality at up to third order in o is
presented in [67]. This implies that once we have fully fixed the constants A, B and C, there
is no need to check further that this form is consistent with the T-duality for other metrics.
One may of course argue that applying T-duality to the Schwarzschild metric is not completely
conventional. To resolve this possible ambiguity one could follow the above algorithm applied
to another homogeneous cosmology for example of the type studied in [81] where T-duality and

cosmology is studied in some detail or the two dimensional black hole as we will study in the next

section.

3.5 Two dimensional black hole

The two-dimensional black hole is as a solution of the leading beta-functions of the non-critical

string theory :

Ru +2V,V,¢ = 0, (3.254)

d-26 _ %md) 4 Ve = 0. (3.255)

6o/

Using the convention“a’ = 26=4” in “g” dimensional space-time this solution reads 82, 83
mg 6 :

ds? = dit? + tanh(t)®dr? + dz3_,, (3.256)
¢(t) = —In(cosh(t)),
where dz4o is “d — 2” flat directions. This solution with an appropriate periodicity (r ~r+2m)

is a fair candidate for a two-dimensional black hole with a geometry of semi-infinite cigar [83, 84].

We assume that the non-critical string theory has the following perturbative'? background

ds? = dt? + f(t)dr® + dz?_,, (3.257)
f(t) = tanh(t)2 (1 -+ a’f(l)(t) + ao’? f(2)(t) + .. .), (3.258)
¢(t) = —In(cosh(t)) + o/ ¢V (&) + a? P (@) + ---. (3.259)

2To make it perturbative, first we analytically extend the two-dimensional black hole to d = 26 — ¢ where ¢ is
a sufficiently small positive number. And at the end of the calculation we analytically extend the solution back to

arbitrary d.
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Inserting these perturbative series in the beta functions gives a set of ordinary linear differential
equations for “f)(¢), F (1), oM (t), 9@ (¢)”. These equations have unique answer for any given
boundary condition. Therefore the assumptions do not contradict themselves in the sense that the
set of differential equations for the o’ terms is not overdetermined. We fix the boundary condition

assuming that there exists no correction at infinity to the fields
fD(e0) = fP(o0) = ¢ (00) = P (c0) =0, (3.260)

and their fall off at asymptotic infinity

g0, _ P, _ ), _ D)
The o/? corrected background constraint to these boundary conditions read
2¢ o (5 — cosh(2t))
= h(£)?(1 — .
ft) tanh(#) (1 cosh(@2 T cosh(D)" + ), (3.262)
o o2 sinh(t)?
?(2) In(cosh(t)) 2 cosh(t)? 2 cosh(t)* (3:263)
We are interested in the T-duality so we consider the following background
1
2 _ o2t g2 2
ds® = dt* + tanh (07 dr* + dzj_o, (3.264)
¢(t) = - In(sinh(t)), (3.265)

in the supergravity approximation which is related to the two-dimensional black-hole by T-duality

in the direction of r. Its /2 corrections follow

ds®> = dt® + f(t)dr?, (3.266)
= o o2 08

f® = ’cam}}.(t)2 1+ sin2h(15)2 + (5si-1’-1h(zt)‘111 (Qt)))’ (3.267)
é(1) = - In(sinh(t)) + o of? cosh()” (3.268)

2 sinh(t)? 2 sinh(t)* ’

where it is assumed that the corrections to the fields at their fall off vanish at infinity. The covariant
form of The T-duality rule (3.137) maps the o/? corrected two-dimensional black hole to its T-dual
if

a = —c, (3.269)
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b = 0,

e = 1.

We set a,b and c to the above values. Furthermore the leading f functions for a time-dependent

background!® implies
cG+aE = c¢(G—FE)~ Byps = 0. (3.270)

Using “(3.269)” and “(3.270)” simplifies the T-duality rule (3.137)
~ al — ~ o - alz = ~ = - 2 .
Ingy50s — 1 Vuln gosos VHIn Gos 05 + gz‘(vu In Gos 05 V10 Gy 55) (3.271)

7 - -
- -I—é_v#vlflngzszs v“vulngﬁﬁ'%

e

. P
Ing,.s — 1 v,u In g, ,s V¥In Gas05 T —3—2—(V“ In gy, V¥ In 92525)2

Il
!
TN

C¥/2

- Tgv#vv In 92525 VEVY In Gos 25) .

This tule beside “(3.126)” and “(3.127)” provides the quadratic o/ corrections to T-duality on
time-dependent backgrounds of diagonal metric and dilaton. As a check of the consistency of our
procedure these rules have been checked to be true for the Schwarzschild metric in “D = 4,5”

dimensions and T-duélity in the direction of the time-like Killing vector outside the horizon.

3.6 Summary, conclusion and discussions of the chapter

We have considered a time dependent background of Bosonic String Theory composed of the

dilaton and a diagonal metric
ds® = —dt*+ g11(t)dz§ + et gdd(t)dm?i (3.272)
¢ = &)

in D = d + 1 dimensional space time where z; is compactified on a circle 1 = z; + 1 and the late

time geometry is flat. This background has a dual

ds* = —dt? + gui(t)de} + - + faa(t)da? (3.273)

13When the components of the metric depend only on time.
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¢ = o(t)

which is related to (3.272) by applying T-duality in the z; direction. In the low energy effective
action we have realised T-duality as a set of rules which map (3.272) to (3.273)

_— o t
n? 1;5 ) R03.3%) = - <ln ———91;§ ) 4 Py(lng,o, V)) : (3.274)

Gii ~ -~ .. t
In g——J(J)ﬁt) + P j(lng,¢,V) = In ———gJ;E ) + P, j(lng,¢,V), (3.275)
é— iln detj+ Py(Ing,6,V) = ¢ - %lndetg + Py(Ing,4,V), (3.276)

where

P(ng,6,9) = 0+a'PV(ng,¢,V)+ B> (1ng,¢,) +- +O0(gs, ™%, € 5 )3.277)
P (lng,6,V) = 0+ a'Pf)(ln 9,6, V) + a'2Pi2) (Ing,é,V)+---+ O(gs, 6"317, e“?li)(3.278)
Py(ng,6,V) = 0+o/P{(lng ¢, V) +a’PP(lng 6, V) + -+ O(gs €, e 5 )3.279).

where Pﬁ(ln 9,6, V), Pi(lng,¢,V) and P;;(ln g,®, V) are identified by demanding that T-duality
rules should commute with the equations of motion. The explicit computation of [67] supports the

expansion of T-duality rules at order /2.

In the previous chapter we saw that the perturbative studies of string theory around flat space-
time identifies only the invariant structure of the effective action. This implies that T-duality
rules could be identified up to such a perturbative field redefinition. However once the rules are
obtained in a given scheme then the rules of any other scheme can be generated by an appropriate
field redefinition. We have chosen the definition of the metric and the dilaton in such a way that
the equations of motions are given by (2.53) and (2.54). We have realised that the quadratic
o' corrections to diagonal Kaser background, the four and five dimensional Schwarzschild black
hole, a general two dimensional black hole and their T-duals beside the Lorentz-form T-duality
conjectures enable one to write the quadratic o’ corrections to the rules of T-duality for a general
time-dependent background composed of a diagonal metric and the dilaton. The quadratic o
corrections to the rules of T-duality in z; direction of (3.273) reads

- o = S - a? - S ~
Ing, - 7 Velng, Vg, + —(Vulng, V¥ )’ (3.280)
12

%%% Ing,, V*V”In g,
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CK/ 0/2
- - (m g = 7 Vulng, V'Ing, + o (Vulng, V¥In g,,)?

12

o
- '—fﬁ—v“vy In gll vuvy ].n gll) 9
a2 - . . -
Ing, -+ gé-vu Ing,.V¥Ing, V,Ing,,.V’Ing,, (3.281)
2
= Ing, + z—QV# Ing,.V¥Ing, V,Ing,,.V’Ing,, + O0(a®*V®) ,
~ 1 al2 ~ - ~ o~
¢ — Zlndetg-i- o) Vylng, Vy,Ing,, V¥V¥Ing,, (3.282)

2

1
= ¢~ 3hdetg + 2 Vulng, Vulng, V*V'Ing, + 0(a"V9),

where covariant derivative acts on the logarithm of the components of metric as if they were scalars.
These are in agreement with the linear o/ corrections to T-duality rules computed in [58] and [59].
This agreement proves the validity of the Lorentz-form T-duality conjectures at the linear order in
o'. The Lorentz-form T-duality conjectures hold true for a general diagonal Kasner background
in D = 26, the Schwarzschild black hole in D = 4,5 and a general two dimensional black hole at
quadratic order in «'. Thus it is decent to accept that the Lorentz-form T-duality conjecture is
valid at the quadratic order in o' for time-dependent backgrounds composed of diagonal metric

and dilaton.

At this stage it is natural to ask if the o/ corrections to T-duality can be cancelled by an ap-
propriate field redefinition. In other words, is there any appropriate renormalisation scheme and
regularisation method which gives no correction to the tree level rules of T-duality? The answer is
negative. One can check that even the linear o corrections to T-duality can not be compensated
by a field redefinition which leaves the tensor property of the metric intact. In the former works
[70, 67] either the redefined metric had not been a tensor or the metric definitions had not been
the same in both spaces. Choosing different definitions for the metrics means choosing different
schemes for the background and for its T-dual. If we do so then the corrections in the space can
not be directly mapped to the corrections in the T-dual space. Choosing a scheme in which the
metric is not a tensor means choosing a regularisation method which breaks the general covariance
of the theory. In such a regularisation method one must be extremely careful about interpreting

the results. It is preferable to work in a scheme which respects the fundamental symmetries of
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the theory. In such a scheme T-duality must be modified. This argument is supported by the fact

that T-duality rules are modified for the conjectured o’ exact backgrounds [85].

We have found intersting, as follows from (3.281), that applying T-duality in one direction alters
the components of the metric in all the directions not only of the direction which the T-duality is
applied in.

Closed Bosonic String Theories are not free from closed tachyon instability. However since T-
duality is common in both Bosonic and supersymmetric string theories then we expect that some

features, like the one we highlighted in the previous paragraph, happen in the superstring theories.

As a generalisation of the work reviewed within this chapter one may consider the four-loop o
corrections in the critical Bosonic String Theory where the corresponding S-functions are computed

in [86, 87] or the four-loop ' corrections in the superstring theory [88, 89, 90, 91, 92, 93].

We have computed the linear and the quadratic o’ corrections to the general diagonal Kasner
metric. Kasner metric has a big-bang like singularity. It would be intersting to explore if there
exists any scheme in which a natural extrapolation of the o'? metric toward the singularity of
the supergravity approximation admits no big bang singularity. For example it would be nice to
find a scheme in which the quadratic o/ corrected Kasner metric can be represented as large time

expansion of

25

ds? = —dt*+ > (% + abe + 4014 % da? (3.283)
=1

6 = EPS ~ L in(020® + o/ 62 4 4O 14 (3.284)

where bz(-'") and ¢{+) are numbers and neither the metric nor the dilaton has singularity in the
interval of ¢t € (—o0,+00) and the maximum of the curvature of the space-time is bigger than
square root of o/. If such a scheme exists than it may be claimed that o’ corrections within such

a scheme can smoothen the big bang singularity.

In this chapter we studied the o corrections to T-duality. Other dualities of string theories may
receive subleading corrections. Among these dualities are AdS/CFT correspondence. One may
compute the o/ corrections to the LLM solutions [94] to study if (and how) the AdS/CFT corre-

spondence needs to be modified upon the inclusion of the subleading o corrections in the string
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side. Also it would be intersting to explore the possibility that the subleading o’ corrections might

change the null singular LLM solutions [95] to either regular black holes or smooth geometries.

S-duality maps the type II string theory compactified on Calabi-Yau manifold to the Heterotic
String Theory compactified on 7. In the supergravity approximation the rules of S-duality are
known. The perturbative world-sheet corrections of the Heterotic String Theory starts at the
linear order in ¢ while the perturbative word-sheet corrections of the superstring starts at cubic
order in o’. It would be intersting to explore how the S-duality rules should be modified upon the
inclusion of different o corrections in the Heterotic and the type II sides. This modification may
require mapping the perturbative o’ corrections of one side to the non-perturbative o/ corrections

of the other side.
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Chapter 4
A wrapped F-String

4.1 Introduction

The massless field of helicity two in the spectfum of string theory is identified as the gravitational
field since its low energy effective action around flat space-time coincides with the Einstein-Hilbert
action [1, 2, 3, 4]. This identification sets the subleading string corrections as the quantum cor-
rections to gravity and allows one to ask if and how quantum corrections preserve or change the
properties‘of the classical backgrounds. In particular one may ask if the subleading string correc-
tions induce a regular horizon on the singular classical geometries which have an entropy associated

to them.

Amongst these singular classical geometries are the half BPS null singular ones which represent
a wrapped fundamental string with general momentum and winding numbers [96]. These null
singular geometries have a statistical entropy associated to them since string states with given
momentum and winding numbers are degenerate [97]. It is conjectured that quantum effects

convert these singular geometries to black holes with a regular horizon.

The leading world-sheet corrections of the Heterotic string includes the square of the Riemann
tensor -Eq. (2.55). Ref [98], motivated by [99], observed that the inclusion of the square of the
Riemann tensor and its supersymmetric completion in D = 4 [100, 101, 102, 103, 104, 105, 106, 107,
108, 109] induces a local horizon with geometry AdS, x 52 on these backgrounds and for which the

65
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modified Hawking-Bekenstein entropy [8, 9, 10] is in agreement with the statistical entropy. This
observation renewed interest in the subject [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 116].
Ref. [113, 120, 121] introduced the entropy formalism and concluded that the inclusion of the
Gauss-Bonnet action as a part of the linear o/ corrections in an arbitrary dimension induces a
local horizon with geometry AdSy x SP~2 for which the modified Hawking-Bekenstein entropy is

in agreement with the statistical entropy up to a numerical constant factor.

In this chapter we present a way to calculate all the linear o/ corrections in an arbitrary dimension
and we study how these corrections may change these null singular backgrounds to black holes.

The chapter is organised in the following way;

In the second section we review the classical solutions representing a wrapped fundamental string
on a cycle. We realise them as ten dimensional backgrounds composed of the metric, the NS two
form and the dilaton first compacted on a torus of appropriate dimensionality to D+1 dimensional

space-time and then through KK compactification on a circle to a D dimensional space-time.

In the third section we study the field redefinition ambiguities. We require that the generalisation
of the Einstein tensor is covariantly divergence free. This requirement fixes the curvature squared
terms to the Gauss-Bonnet Lagrangian keeping some of the field redefinition ambiguity parameters

untouched.

In the fourth section we discuss how the singularity could be modified by the inclusion of the o/
corrections. We employ the compactification process of the second section to account for all the
linear of corrections in lower dimensions using the corrections in ten dimensions. We compute the
local horizon configuration parameters for all field redefinitions compatible with ten dimensional
diffeomorphism group. Note that the modified Hawking-Bekenstein entropy is the same for actions
related to each other by field redefinition provided that the ¢/ terms are studied as perturbations
around a classical solution [11]. Since the stretched horizon is the exact solution of the truncated
equations then the modified Hawking-Bekenstein entropy depends on the field redefinition ambi-
guity parameters. We show that there exist schemes in which the inclusion of all the linear o
corrections in an arbitrary dimension gives rise to a local horizon with geometry AdSs x SP=2 for
which the modified Hawking-Bekenstein entropy is in agreement with the statistical entropy and

outside which the higher order o corrections are perturbative. We also discuss on the existence of
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a smooth solution connecting the local horizon to asymptotic infinity.

In the fifth section the conclusions are presented.

4.2 The induced action

We consider a ten-dimensional Riemannian manifold M1y homeomorphic to Mp x T2 whose

metric has 10 — D killing vectors in 719~ and admits an asymptotically flat region. We represent

the coordinate patch that covers the asymptotic flat region of My by =(zl, -, P, 2, -
210D where o+ = (zl,-- ,zP) and 2™ = (21, 22,- -+, 210-D) are coordinates respectively on Mp
and TP and (dz!,--- ,dz'%"P) are the killing vectors. We refer to z* and 2™ respectively as

the D dimensions and the compactified space. The string perturbations can be studied at the
vicinity of the asymptotic region of My which is covered by x!. We realise this neighbourhood
as a background of the Heterotic string theory composed of the metric, the NS two-form and the

dilaton whose field configuration follows

D 10-D
ds®> = Z 9w (z)dztdz” + Z {2g,m,(x) dz™ dz# + gm,m(z)(dz™)?},
,r=1 m==1
10-D
B = B, (z)dz" Adz” + Z Bmy,(z)dz” A dz™, (4.1)
m=1
¢ = o¢(z), (4.2)

We use the bold symbols to represent the fields in ten dimensions. We rewrite the metric in the

following form
10-D
ds? = g (z) detde” + Y Tpn(z)*(de™ + 247 (z)dz*)?, (4.3)

m=1
where g,,, T;, and AZ‘ are used to re-express the components of the ten dimensional metric in
a way that we shall see is more convenient. The metric (4.3) is invariant under the following

transformations

2™ — 2™ — 2A™(x) (4.4)
A7 (z) — AF(z) + 0,A™ () (4.5)
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where A™(z) are arbitrary scalars. These symmetries are remnants of the ten-dimensional diffeo-
morphism. We interpret A} (z), --- and A}LO‘D (z) as 10 — D distinct U(1) gauge connections in

the D dimensions because they are vectors and they have U(1) symmetries associated to them.

We rewrite the NS two-form in the following way

10—D
B = By det Adz¥ +2 Y APTPI Az A (d2™ + 247 de") (4.6)
m=1
where B, AE‘D , -+ and AﬁO‘ZD are used to re-express the components of the ten dimensional

NS two-form in a way that we shall see is more convenient. Note that the U(1) transformations
associated to A}L(m), ,A}P“D (z) leave intact By, (z), A*P(z), - , A20-2D (1) since dz™ +
2A™dz is gauge invariant. The sigma model for the background we are considering is invariant

under altering B by any exact two-form, i.e.
B — B+dA, (4.7)

and thus the low energy action is invariant under B — B + dA . Amongst these A’s we consider

the ones given by
6

A = Ay(z)det = Y AP ()™,
m=1
which imply that the LEEA is invariant under
B — B+dA, (4.8)
ARP(z) — AP(z) +8,A" P (2) (4.9)
AR (g) — AP (g) + 5,07 *P (). (4.10)

We see that independent U (1) symmetries are associated to AL =P (z), - -, A2~2P(z). These U(1)
symmetries are remnants of the gauge symmetries in ten-dimensions. We interpret A}f‘D (z), -,

A2-2D(z) as 10 — D distinct gauge connections in the D dimensions.

Due to the symmetries of the metric we can choose a sufficiently large volume for any non-trivial

cycle! in the compactified space in the patch of a'. Thus we ignore the world-sheet or target space

LA cycle which does not shrink to a point under any given homeomorphism.
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instantons corrections to the LEEA. The rest of the string corrections respect the ten dimensional

diffeomorphism symmetry group. Therefore the ten-dimensional low energy effective action reads

S = 3717;/dlow\/—detge”zd’L(B,g,qb), (4.11)

where L(B,g,¢) includes all the perturbative string corrections and it is invariant under ten-
dimensional diffeomorphism and B — B +dA. Inserting (4.3) and (4.6) into the action (4.11) we

obtain

1

T 32 Pz -/~ detge™ L(gu, By, Ay, AR, Tho-p, 9), (4.12)
where the integration on the compactified space is performed and we have defined

10—-D
20=2¢- > InTp—InV, (4.13)

m=1
where V' is the volume of the compactified space. (4.12) is the pullback of the action into the D
dimensions and we refer to it as the induced action. The induced action inherits the remnants
symmetries of the ten dimensional action. Thus it is invariant under D dimensional diffeomorphism
group, U(1) symmetries associated to A},---,A2~2D and B — B + dA. This means that the
induced Lagrangian is expressible in a covariant form in terms of the Riemann tensor constructed

from g,,, the form fields, T3, , - -+, Tio—p, ¢ and their covariant derivatives with respect to gy,
L = L(Ruxy, Bu,AL,--- JA22D 1y ... T v 4.14
( pvAns Puv, Ay, 143y 41, » £10—-D, ¢7 Guv, I—L) . ( . )

It is not a hard task to obtain the explicit form of the induced action at the level of supergravity

approximation,
s  — L/de\/—det "% (R—BEE‘I“HV(ZSF"
~32n g 12
10-D ) dAm+10—D
> (VI Tnf? — [T dA™ 2 — e ) R CR
m=1

where R denotes the Ricci scalar of g,, and integrations by parts are understood. We do not
obtain the explicit form of the linear o’ corrections to the induced action. We suffice to present
the linear o’ corrections to the induced action by

s = -3-2}-7; dPz\/—detge 2 LW (4.16)
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and we know that L(1) is a functional of the D dimensional Riemann tensor, the gauge fields and

their covariant derivatives,
LV = L(l)(R/W)\??’B#V’AllL"” 7AiO—2D,T1,... s T10-D1 B> Gy V) - (4.17)

We divide LX) to a part which is the pull back of the gravitational Chern-Simons terms in ten

dimension Lg)s and a part which is the pull back of the rest of the corrections Lgé)c S

LW = 18+l (4.18)

L%)CS is a functional of the D dimensional Riemann tensor, the exterior derivatives of the gauge

fields and their covariant derivatives,
O = LG dB,dAl,--- ,dA®" Ty,... | T
LNCS = LNC’S(RMVXW ) ? ’ y41, 3y 410—D)» ¢v Juv, vu) ) (419)

while Lg‘)g depends on the gauge fields. In this chapter and the next chapter we calculate the

(1)

corrections given by Lg\l,)cs to the black hole entropy and we discuss on the contribution of Lés to

black holes entropy.

In this chapter we consider the backgrounds in which

Al = AW (4.20)

AP =A@ (4.21)
_ 3 _ _ Al0—-D __ pl2-D __ . A20-2D __

A2 = A= =A)P =AY =... =47 =0, (4.22)

T2 = 7% = ... = TP = Constants. (4.23)

A family of the extrema of the compactified action in the supergravity approximation is given by

dsfm.ng = —eMM 2 + dr? + r2dQ%_,, (4.24)
D-3 D-3 D-3
—46(r)  _ (r +2W) (r +2N) _ T + 2N
€ - r2(D=3) ) T(r) D=3 L oW’ (4.25)
N w
® - _ @ () — —
A () rD=3 12N’ AP0 = - pmgaw (4)

where N and W are two arbitrary numbers labelling the solution. We only consider the case

where N and W are both positive. These backgrounds are constructed in [96] as singular limits
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of regular black-holes obtained by applying a solution generating transformation [122, 123] on a
higher dimensional Kerr metric. Here we use the notation of [124]. Ref. [96] proved that they break
half of the ten dimensional supersymmetries leaving eight unbroken supersymmetry parameters.
These backgrounds are null-singular, i.e. the horizon coincides with the singularity. They represent
BPS states of an elementary string carrying n units of momentum and w units of winding charges

along one cycle where [124]

_ (D=38)0p_s
= — 2N, (4.27)
_ (D —-3)Qp—2

w o= TPy, (4.28)

and the unit of o/ = 16 is used.? For general values of N and W a tachyon instability may exist
around the singularity, reminiscent of the tachyon instability outside the horizon of Euclidean
black holes presented in [125, 126]. We focus on the cases where N ~ W and this instability is not

present.

An entropy may be associated to these backgrounds since in general there exists more than one
state of the Heterotic string carrying w units of winding and n units of momentum. For large
n and w the degeneracy of these states grows as e*™vnw [127]. Thus the entropy, defined by the

logarithm of the degeneracy of the states, is given by:

Sstatistica.l = 4dmy/nw, (4.29)

when n and w are large. We refer to this entropy as the statistical entropy. A dilemma will
arise as soon as the statistical entropy is associated to these tree-level backgrounds since they are
singular and do not possess a regular event horizon to which the thermodynamical properties can

be connected. This dilemma can be resolved in either of the following ways,

I. Statistical entropy should not be associated to these backgrounds.

I1. Thermodynamical properties should be expressed in term of other geometrical properties of

the null singular geometries.

*We have chosen a specific value for the radius of the compactification because the o’ perturbative corrections to
(4.24) do not depend on the radius of the compactification. The solution which represents KK-compactification on a
circle with an arbitrary radius can be generated by rescaling the compact direction and applying the compactification

process. This solution is written in [124].
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III. The subleading string corrections will induce an event horizon and the horizon cloaks the

singularity.

Of the above possibilities, the first seems unnatural since the statistical entropy is associated to
regular black holes [128, 129, 130] and these singular backgrounds are a limit of regular black
holes. The fact that both the Euclidean path integral approach® [132] and the Noether current
method [8, 9] express the entropy of a given black hole in term of its event horizon is not sufficient
to conclude that entropy could not be associated to geometries without the event horizon. We
would like to point out that Mathur and Lunin’s description of the entropy [14] may resolve the
dilemma in the second way. It is intersting that for the case of singular backgrounds representing
D1-D5 branes, which have an entropy associated to them, both Mathur-Lunin’s description [133]
and the subleading string corrections [119] can generate the entropy. In this chapter we study if
the inclusion of subleading corrections can generate a horizon for the backgrounds representing a

fundamental string.

4.3 The o corrections

The string coupling constant of (4.24), g2 = gae??, is
_ D3
0 /rD=% + 2W)(rD-3 + 2N)

where go is an arbitrary parameter. We choose a sufficiently small value for go. Thus we ignore

2

9 <4, (4.30)

the string loop corrections. The o corrections to the Lagrangian read
L=L%4+dLW+a?L® + ..., (4.31)

where L© stands for the tree-level Lagrangian and the rest is its successive subleading corrections.
This series may not make sense for (4.24) since each term of the o' series diverges at its singularity.

However note that the o/ corrections change the background itself

g—g=g° +ag? +a%g® + .-, (4.32)

3Note that in string theory the presence of the tachyon-like winding modes of the tachyon wrapped around the
Euclidean time which survive GSO projection [125, 126] adds to the known disturbing aspect [131] of the Euclidean

approach.
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and the o'-corrected metric, possibly, can have a horizon outside which the o expansion makes
sense. Also the o/ corrections to the string coupling constant may remain finite outside the horizon
and the string loop corrections could be ignored consistently. In order to check this possibility we
truncate the equations of motion at O(a?). Then we study if a exact solution of the truncated
equations is a black hole with a regular horizon outside which the higher order o/ corrections are

perturbative.

The exact solutions of the truncated equations depend on the a'priori ambiguous parameters of
the effective action. We study the exact solutions for a set of the a priori ambiguous parameters.

‘We consider a general field redefinition

Bij — Bij + O{/Si]’, (434)
X
& — b-a, (435)

which induces a change in (2.55) of the form [134]

. 1
AL = —T”(Rij—ZHilejkl+2V,-Vj¢’)+ (4.36)

; 1
-I-(-;-Ti’ + X)(R - EH2 +4V2¢ — 4(V)?) — %vkslmﬂ’“m :

where X, S;; and T;; are tensors with appropriate properties and are polynomials of 9ij: Bij, &

and their derivatives. We consider only a class of the a priori ambiguities parameters given by

b
Ti; = aRy;+ gHilejkl +(e—12f) g;;R+ Fgij Hypm H"™, (4.37)
1 . d ..
X +5T; = (c—12/)R+ (Ii + 3f)H ;) H7* (4.38)
Sy = 0, (4.39)

where a,b,c,d,e and f are real numbers representing some of the ambiguous parameters. This

class of field redefinition alters the linear o/ corrected action by

d c d

+ - _ R P _ 2 a ¢ € 2 0 20
> AL aR;;R" + (c—e)R +(12 E +4)RH 144(H) (4.40)
a bio i [ —
-f—(4 S)H“R +32Hin + O(Vae),

“To compute AL it is enough to remember that g”/6R;; = (V*VJ — g“0)ég,;.[135]
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where

H% = HyH;", (4.41)
H?> = H;;HI*, (4.42)

and the derivatives of the dilaton are not written to save space. In the forthcoming computations
we do not need them. We require the generalisation of the Einstein tensor to be covariantly
divergence free for a trivial dilaton. Adding this requirement to the linear o corrections changes
it to the first order Lovelock gravity [136] where (a,c—¢) = (3, §).> Thus we set (a,c) = (3,3+e)

for which the linear o’ corrected action reads

S = d%z\/—detge ™ L (4.43)

327r
L = R- %Hz + 4V + L + OV ) + O0(a?) (4.44)
@ 1 1 kE oprl 1 ki
LN)C’S = gLGB + 192HklmH H, PET™ TéRklmnH HP™
b 1 2 ry2ij € 1 2 212 1 2
2 _ ¢ _\mrH -_2 ij
gy — g Hull ™ + ( T 144(H 7+ (3 )H B

where Lgp = R-,:jklR":jkl — 4;R1;jRij + R? is the Gauss-Bonnet term. In the work [137] the o/
corrections were required not to produce new extrema, for the bi-linear part of the action describing
deviation from flat Minkowski space. This criterion, the no-ghost criterion, is questionable since
the new extrema are not perturbative in o’. The criterion we used produces the same results
and is independent of the perturbative behaviour of the o/ series. However both of these criteria
fail to identify a unique action. Mavromates and Miramontes have suggested exploiting the field
redefinition ambiguities to demand that the K-matrix operator -(2.8) and (2.13)- should contain
no derivative operators acting on the 3 equations and have claimed that this criterion, the MM-
criterion, is essential to ensure perturbative invertibility of the K-matrix [134, 140]. It is intriguing
that for the Bosonic string the action resulting from the application of the MM-criterion is uniquely
specified and is manifestly free of ghosts. It is intersting to apply the MM-criterion at the linear

order in o in the presence of the gravitational Chern-Simons terms and then to study if the

®Lovelock gravity [136] is a generalisation of Einstein-Hilbert action where the generalisation of Einstein tensor
Gi;: (1) is symmetric in its indices, (2) is a function of the metric and its first two derivatives, (3) is covariantly
divergence free. The linear o corrections can be chosen to satisfy all these conditions [137]. However the higher
order o corrections include also higher derivatives of the metric and can not be rewritten as higher order [138]

Lovelock gravity [139].
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resulting action converts the singular backgrounds representing the F-string to a regular black

hole.

4.4 Modification of the singularity

We presume that there exists an exact o background in the large dimensions which in the string

frame reads

dSexact = "f('r')dt2 +dr® + g(r)szD_z (4'45)
¢ = ¢(T)7 T = T(T)7 (446)
AV = AP, AP = AP (), (4.47)

the large r limits of which are (4.24), (4.25) and (4.26). The number of the modified supersymmetry
cha,r_ges6 of this o’ exact background should be the same as the number of SUSY charges of the
treé—ievel background. It is conjectured [124] that this o/ exact background has a regular event
horizon with isometry group of AdS; x SP~2 whose fields in the vicinity of its horizon can be

approximated by

ds®> = vl(fp2d72+%%g)+v2dﬂ%_2, (4.48)
B0 = : (4.49)
T() = T, (4.50)
FY = e, (4.51)
FY = e, | (4.52)

where vy, vg,5, T,e; and ep are constant real (s, T are positive) numbers to be fixed by the
equations of motion and the behaviour of the fields at infinity. We often refer to this horizon as
the stretched horizon. A concrete proof or refutal of this conjecture requires knowing all the o’
corrections. Neither the string scattering amplitudes nor the sigma model techniques nor CSFT

are practically useful to compute the infinite terms of the o/-expansion series. There exists no

6In LEEA the supersymmetry is realised as the symmetry of the action therefore, at least, the on shell SUSY

constraints needs modification upon the inclusion of the subleading corrections.
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other known method capable of producing the full o’-corrected action.” Currently the conjecture

is supported by

I. Inclusion of only the Gauss-Bonnet action in the induced action allows for the existence of a
local horizon geometry whose modified thermodynamical entropy [8, 9, 10]® is in agreement

with the statistical entropy up to a numerical constant [124].

II. Inclusion of RijxR“® and the terms needed by SUSY [100, 101, 102, 103, 104, 105, 106,
107, 108, 109] in the four dimensional induced action allows for a local horizon whose mod-
ified thermodynamical entropy is in agreement with the statistical entropy [98]. In higher

dimensions it is not known which terms should be added to RijklRij kl to maintain SUSY.
The conjecture may be contradicted by :

I. The fundamental string is a special case of the null sigma models [12, 13]. It means that
there exists a scheme in which the background fields retain their forms in the supergravity
approximation. Thus within this scheme the fundamental string remains as a null singu-
lar background even after the inclusion of all the o' corrections. Does this contradict the

- appearance of a horizon due to the inclusion of the o corrections?

II. The value of the Wald entropy is invariant under field redefinition provided that the o terms
are studied as perturbations around a classical background [11]. Here since Wald’s formula
is applied on the local horizon which is the exact solution of the truncated equations of

motion then the Wald entropy depends on the a priori ambiguous parameters. Therefore

"There have been attempts to guess a compact form for the o’ expansion series of the metric [141, 142].
8The Wald’s formula for the entropy of a D dimensional static spherical black hole, g;;, is

6L

1
S - Z 6R’r‘t‘r‘t gt'l‘. g-rr

Ap_2lr=0,

where L stands for the Lagrangian not including /detg, and Ap.» is the area of the horizon, and the radial
coordinate is chosen in such a way that the horizon is at r = 0. Note that }ff:rt is simply the functional derivative
of L with respect to Rrsr: holding gi; (and V;) fixed,
6L _ oL v, oL +
5thrt 6thrt avithrt
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which values should be chosen for the a priori ambiguous parameters s to calculate the Wald

entropy?

II1. The Gauss-Bonnet action or the supersymmetric version of curvature squared terms are not
all the linear o/ corrections. Does the inclusion of all the linear o/ corrections allow for the

existence of the horizon?
IV. Is there a smooth interpolating solution from the horizon toward the asymptotic infinity?

V. Could the higher order o' corrections be consistently neglected?
g g

Let us consider the o’ expansion series for the Lagrangian density,

Llp) = > o™ Ly(p) (4.53)

n=0
where p represents a point in the space-time on which the Lagrangian density is evaluated and
Lo(p) is the Lagrangian density in the supergravity approximation and Ly(p) is the n*® order
o corrections to the Lagrangian density in the supergravity approximation. There exist neigh-
bourhoods around the asymptotic infinity where 3~ o L, (p) is an absolute convergent series. We
call the union of all these neighbourhoods as the C-neighbourhood. We refer to the boundary of
the Csneighbourhood as the C-horizon. The C-neighbourhood defines a subset of the space-time
in which )7 o™ L,(p) is defined unambiguously in the sense that the rearrangements of terms in
> o™ Ly (p) does not change the series sum, £(p). The singularity of the supergravity approxima-
tion is outside of the C-neighbourhood. In general the o/ corrections could be positive or negative.
This means that there exist neighbourhoods in which Y /™ L,(p) is a conditionally convergent
series. We refere to the union of all these neighbourhoods as the N'C-neighbourhood. The NC-
neighbourhood has two boundaries, the C-horizon is one of them and we call the other boundary
as the A'C-horizon®. The Lagrangian density on the singularity should be defined as the extrapo-
lation of 3 o™ Ly(p) from NC-neighbourhood toward the singularity. In the A'C-neighbourhood

®The C-horizon and NC-horizon are scheme dependent. The C-horizon could be pushed toward infinity by a
field redefinition but the ANC-horizon might not shrink to a point under any field redefinition. It is tempting either
to identify the boundary of the union of the A/C-neighbourhoods of all the schemes as a mathematical description
for the “stretched horizon” defined in [14] applied to the case of a wrapped fundamental string or to choose the
schemes in which the AC-horizon coincides with the C-horizon and then to identify the boundary of the union of

the C-neighbourhoods of all such schemes as the “stretched horizon”.
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by a suitable rearrangement of terms, £(p) may be made to converge to any desired values or
even diverge. In the number theory this statement sometimes is referred to as the Riemann the-
orem. The field redefinition can be thought of as a tool to “rearrange” the o' series. Thus the
Lagrangian density before reaching the singularity of the supergravity approximation depends on
the rearrangements of the terms or almost equivalently on the field redefinition ambiguities. We do
not know which of these rearrangements would be preferred or chosen by the underlying conformal
field theory since it is not known what a conformal field theory (and if a unique one) represents
a wrapped fundamental string. Ref. [12, 13] shows that there exists a scheme in which the back-
ground fields retain there forms in the supergravity approximation. This does not mean that we
could not rearrange the o expansion series in the NC-neighbourhood and then extrapolate the
Lagrangian density toward the singularity in such a way that the singularity is covered by an o
stretched horizon. The consistency will requires that the o’ stretched horizon should be at least
outside the C-neighbourhood. Thus the o series on the ¢ stretched horizon are not absolutely

convergent series.

We do not know all the o series. Therefore we could not identify the C-neighbourhood and the
NC-neighbourhood in order to compare them with the stretched horizon. In the following we
include all the linear o corrections in a general scheme. We truncate the o' series at O(a/?). We
will show that the local horizon exists upon the inclusion of all linear o/ corrections. We illustrate
that in general the modified Hawking-Bekenstein entropy associated to the local horizon is not the
same for actions related to each other by field redefinitions. Amongst these actions, the choices
for which the modified Hawking-Bekenstein entropy is in agreement with the statistical entropy
would be preferred. We provide convincing arguments that the interpolating solution exists and we
show that in some schemes the higher order corrections are perturbative outside the o' stretched

horizon.

We obtain the linear o’ corrections to the induced action by applying the compactification process
to the linear o/ corrected action in ten dimensions (4.43). We consider the linear o’ corrected
action in (4.43) for all values of the field redefinition parameters, (b,d,e, f). We have seen that the
pull back of (4.36) to the four dimensional space time has a covariant representation. Thus we can
employ the Wald formula to calculate the entropy. For the time being we exclude the gravitational

Chern-Simons terms to use the entropy formalism [113, 121]. We discuss on the contribution of
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the gravitational Chern-Simons terms to the entropy at the end of this section. For the sake of
simplicity from this time on we set D = 4 and we study the four dimensional background. The

entropy formalism utilises the entropy function defined by

f(v,T,8) = 32 dfdp~/—detgsL(7,T,¢) (4.54)

where L(#,T,€) is the induced Lagrangian evaluated on the horizon configuration,

S = 32ﬂ_ d*z\/—detge ¢ L(¥ , €). (4.55)

Then the equations of motions are equivalent to

g—é = 0, (4.56)
'8;9‘3[ = 0, (4.57)
g—; = 0, (4.58)
—gg = %f- (4.59)
écl—fg = _v;/_ (4.60)

Where We have used the notation of Appendix A of [121] for the normalisation of the charges.
To evaluate the induced action near the horizon we reconstruct the horizon configuration in ten

dimensions from (4.48)-(4.52)1°

ds® = ds®+ T%(dy + 2 ey TdT)2+ZdZi2,
-2¢ _ 35
€ T 7 (4-61)

B —2egrdr A dy.

where the gauges are fixed by

A1 = (e1r0,0,0), (4.62)
Az = (e27m,0,0,0). (4.63)

Note that the class of field redefinitions considered in (4.40) includes any field redefinition which

produces non-zero terms in the action near the horizon (4.61) and whose metric and NS two-form

'®The compactification of the Gauss-Bonnet action has been done in [143].
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equations of motion are second order differential equations. Using the ten dimensional background

near the horizon (4.61) one finds that

2 2 2e,2 T2 2¢e;2

= R— —H? = -2 + = 4.64
LU 12H Vi + (% + 1)12 ’U12 T2 ( 6 )
1 1 T2 612
= ZLam = — 4.
L g ¢B V1 Vg + v12 vg (4.65)
4
— __H ch H lpHrmq — ____?_2___ .
Le 192 km " 20,4 T4 (4.66)
1 612 6‘22 622
Ly = ‘““—Rklmanlepmn = ’014 T 03 T2 (4.67)
b 4 ‘
= —————H‘?Hz” Gb——— 4.
2 2 2
— (2 _%g2pi = _ €1 62 ¢z
Ls (8 S)H”R 2(6-1)( or T2) (4.69)
d e 1 es? 1
ILg = (——=——=)RH?*=nh 2 L el L 4.7
¢ (2% 96) “ (vf T2 o o TP (4.70)
_ d 122 _ 624
Ly = i (H*)* = 4T4 (4.71)
where we used h defined by h = 4d —8e — 5 L to represent Ls in a more convenient way. Inserting
the above expressions in ten dimensional action we get
1 7
§ = §=q0- / dtdr d¢ dcos @ sv; ve (Lo + o ZLZ) +0(a?,d/CS), (4.72)

i=1

where the integration over the compact space is understood. Then the entropy function follows

7
1
f(5,85,T) = gsviva(Lo + o > L) (4.73)
i=1

where we have truncated the o series. Using (4.73) in (4.56)-(4.60) gives the equations of motion.
The solution of the equations of motion identifies the horizon parameters. The identification of
the near horizon geometry of half BPS backgrounds is an example of the supersymmetric attractor
mechanism [144, 145], where the explicit equations of motion are solved rather than the supersym-
metric constraints. Solving the equations of motion was first carried out by Ashoke Sen in [124]
where only the Gauss-Bonnet Lagrangian was included in the induced action. The Gauss-Bonnet

Lagrangian in four dimensions reads

1 g g 1
g(RynR7™ — ARG RY + RY) = ——— (4.74)
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which coincided with the first term in L;. We see that in total five terms in the the summation of

Lj+---+ L7 are not reproduced by the inclusion of the four-dimensional Gauss-Bonnet Lagrangian.

A linear combination of the equations of motion of T and of v; factorises

%ﬁ— = 0-—=f=0, (4.75)
10 o 2
e —43125{1-) o = (T2 = 20)(). (4.76)

Eq. (4.76) implies that some of the solutions may be given by

VoL (4.77)

‘1 oT *

Eq. (4.77) simplifies the equations of motion of v;, ve, s and T and enables one to solve them,

!

u = Garad)y, (478)
ve  _ 4(1 + hz?)
vi  —hat+ (3h+4b—5)z2+15° (4.79)

sNW hzt+1 vy

TV Tu 35 (-D2w (4.80)
N

T = \/m (4.81)

e = -;—\/EI:I;T, (4.82)
where z is a root of
(—4d—6b—h+-§—)m4—6(1—b)x2+9 = 0, (4.83)

Note that we used z as a different parametrisation of b, d, h to express the near horizon configuration
in a more convenient way. Eq’s (4.77)-(4.82) identify the near horizon configuration. We use the
entropy formula of entropy formalism [113, 120, 121] to calculate the Wald entropy associated to
the local horizon. The entropy formalism expresses the Wald entropy, Sz, by

0
Spry = 2m(z—e; +=——es — f), (4.84)
€1 €2
which is evaluated on the horizon. We can use (4.56)-(4.60) to write

N
Spg = 271'(5 er +°Ig/—62) =T/ NWzu; (4.85)
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where we used the local horizon parameters (4.77), (4.81) and (4.82). We see that both the local
horizon parameters and the entropy depend on the a priori ambiguous parameters. We have
expected this dependence since we have applied the Wald entropy formula on the exact solution
of the truncated action. The equality of the statistical entropy (4.29) and the Wald entropy (4.85)

happens in the schemes where
zv; = o (4.86)

provided that the gravitational Chern-Simons terms can be excluded. In order to elaborate the
local horizon in more details we exclude the gravitational Chern-Simons terms and we select the
schemes given by (4.86). There exist a set of ranges for the parameters of the field redefinition
ambiguity where vy, ve, T, s are all positive. It is straightforward to identify these ranges. Here we
focus on the subset of the parameters where identity is a root of (4.83) or equivalently h = ~—4d-|—lzl.
In this subset T-duality in the compactified direction remains trivial in the sense that interchanging
N and W describes T-duality both at asymptotic infinity and near the horizon. Then using (4.86)

forz=1fixesdtod = —é— for which the near horizon configuration is simplified to

v = 16, (4.87)
2 g (4.88)
T = % (4.89)
e = 2 %;_ (4.90)
2 = 2 —V-][\i— (4.91)
s = -Z-\/W (4.92)

and we have chosen b = 0 and used the unit of &/ = 16. We see that (%,%) ~ (1,1), and
the stretched horizon is not larger than o’. We can choose other values for the field redefinition
ambiguity parameters to make the local horizon arbitrarily large. For example we can choose

x=%,b=0,h=52,d=%l-toget

vy = 2d, (4.93)
224
Vg = *69— C!’ 5 (494)
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T = 2%—, (4.95)
e = :21- —O-‘%V— (4.96)
s = % ﬁﬁ/{\f (4.97)
s = z N;V, (4.98)

for which one can argue that the higher order o’ corrections are suppressed outside the horizon
and the higher order o/ corrections only provide perturbations around the “black hole”. This
shows that there exist schemes in which the Wald entropy for a black hole is in agreement with the
statistical entropy and (2}, %) >> (1, 1), therefore the higher order o/ corrections could be ignored
outside the stretched horizon within these schemes. Also within these schemes the gravitational
Chern-Simons terms could be studied as perturbations outside the black hole. However we notice
thaf‘cr the values of the field redefinition parameters are not small in these schemes. For the case of
the”:WZW models where the exact conformal theory is known the values of the field redefinition
amBiguity in which the background fields retain their forms are of order one [146]. Thus it is
unlikely that very large values for the field redefinition ambiguity parameters are going to be chosen
by the underlying conformal field theory. This suggests that higher order o corrections can not be
totally ignored outside the stretched horizon in physically acceptable schemes, however it allows

for some “physically acceptable” schemes in which the higher order o' corrections contribute to

the thermodynamical entropy in a perturbative way.

Note that there exist field redefinition ambiguities which vanish near the horizon and infinity. The
class of field redefinitions that leave the equations of the metric and NS two-form as second order

differential equations is

Tij = aViVip+c9;00+c3VipVig+ cugy;| Vol (4.99)
X = cs0¢+cs| V| (4.100)
where c1,c¢9,- -+ ,cg are arbitrary real numbers. Ref. [124, 147] have looked for a numerical in-

terpolating solution in one single set of the a priori ambiguity parameters. One should study if
there exists any set of values for b,d, e, f,c1,- - - , cg for which a smooth solution interpolates from

the near horizon geometry to infinity. This question needs further investigation, however due to
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the large number of free parameters it is tempting to argue that the interpolating solution exists
in general. If we knew the interpolating solution in an arbitrary scheme then we would treated
the gravitational Chern-Simons terms as perturbation around the interpolating solution to com-
pute how the gravitational Chern-Simons contributions to the entropy. Finding the interpolating

solution requires a further investigation.

4.5 Summary: geometry of a wrapped F-string?

We have studied the linear o corrections and the field redefinition ambiguities in the critical
Heterotic String Theory for the backgrounds representing a fundamental string wrapped around a

two cycle.

We have required the o/ corrections to the Einstein tensor to be covariantly divergence free. This
requirement has enabled us to rewrite the square of the Riemann tensor as the Gauss-Bonnet
Lagrangian keeping some of the field redefinition ambiguity parameters untouched. One may ask
if this requirement, similar to the ghost-freedom criterion [148], could be applied to all orders in

o. This question needs further investigation.

Having excluded the gravitational Chern-Simons terms, we have shown that there exist schemes
in which the o stretched horizon is large and the Wald entropy is comparable with the statistical
entropy. Thus the higher order o corrections are perturbative outside the stretched horizon within
these schemes. Also we have argued that a smooth solution connects the o' stretched horizon to
the fall off of the fields at asymptotic infinity. The gravitational Chern-Simons terms outside the
stretched horizon can be studied as perturbation around the interpolating solution. If we knew
the interpolating solution in a general scheme then we could have computed the Chern-Simons
contributions to the entropy and we could have preferred the schemes in which the statistical

entropy is in agreement with the thermodynamical entropy.

This means that there exist schemes in which the o stretched horizon is small and also there exist
schemes where the o stretched horizon does not exist at all. We do not know which scheme would
be preferred or chosen by the underlying conformal field theory since it is not known what type of a

conformal field theory (nor if a unique one) represents a wrapped fundamental string. Ref. [12, 13]



4.5. SUMMARY: GEOMETRY OF A WRAPPED F-STRING? 85

shows that there exists a scheme in which the fields of the fundamental string background retain
their forms in the supergravity approximation, thus within this scheme the background remains
as a null singular background under the inclusion of all o/ corrections. We have concluded from
this that the o’ expansion series is not an absolutely convergent series on the o’ stretched horizon

whenever the scheme admits the o’ stretched horizon.

It would be intersting to apply the MM-criterion on the linear o/ corrected action in the presence
of the gravitational Chern-Simons terms and to study if the MM-criterion allows for a solution for

which the statistical entropy is in agreement with the thermodynamical entropy.

Although we have argued on the existence of the schemes in which the o/ stretched horizon is
larger than the string length and for which the statistical entropy is in agreement with the Wald
entropy, still we find it disturbing that the the thermodynamical entropy is scheme-dependent.
The fact that the o series on the o' stretched horizon is not an absolutely convergent series adds
to this disturbing problem. These difficulties indicate that the thermodynamical properties should
be expressed in term of other geometrical properties of the null singular geometries rather than
requiring the subleading corrections to convert the null singular backgrounds to black holes with

a:regular event horizon.

We would like to point out that Mathur and Lunin’s description for the entropy [14] may be
employed to generate a thermodynamical entropy for a wrapped fundamental string without first

requiring the o’ corrections to produce an event horizon covering the singularity.
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Chapter 5

Dyons

5.1 Introduction

Dyons carry both electric and magnetic charges. Dyonic black holes are black holes which carry
electric charges and magnetic charges of some gauge fields. Some of the dyonic black holes can be
realised as the solutions of the supergravity approximation to the critical Heterotic String Theory
compactified on 7. There exists a proposal for the exact degeneracy of microsates of dyons in
torodially compactified critical Heterotic String Theory [149, 150, 151, 152, 153, 154, 155]. The
logarithm of the degeneracy of dyons defines the statistical entropy.

In the supergravity approximation the Hawking-Bekenstein entropy is in agreement with the large-
charge-limit of the statistical entropy. The dominant string corrections to the dyons are the
o corrections. Thus the o corrections to the thermodynamical entropy for the dyonic black
hole should be in agreement with the large charge expansion series of the statistical entropy.
Ref [156, 103, 104, 157, 106, 107, 158, 159] observed that upon the inclusion of the square of
the Riemann tensor and a supersymmetric completion of that, the modified Hawking-Bekenstein
entropy [8, 9] is in agreement with the statistical entropy. Ref [160] showed that the inclusion of
the Gauss-Bonnet action gives the same corrections in modified Hawking-Bekenstein entropy as

those given by the inclusion of supersymmetric version of the square of the Riemann tensor.
The Gauss-Bonnet Lagrangian or the supersymmetric version of square of the Riemann tensor

87
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are not all the linear o/ corrections to the dyonic black holes. It remains unanswered why other
linear o/ terms should not contribute to the modified Hawking-Bekenstein entropy. In this chapter
we consider a BPS static spherical four dimensional dyonic black hole representing a wrapped
fundamental string carrying arbitrary winding and momentum charges along one cycle in the
presence of KK-monopole and H-monopole charges associated to another cycle. Then we compute
all the linear o corrections in the modified Hawking-Bekenstein entropy [8, 9] for this dyon. This

chapter is organised in the following way:

In the second section we consider the Low Energy Effective Action of the Heterotic String Theory.
We study a KK-compactification of the Heterotic String Theory on T® relevent for a BPS static
spherical four dimensional dyonic black hole representing a wrapped fundamental string carrying
arbitrary winding and momentum charges along one cycle in the presence of KK-monopole and

H-monopole charges of another cycle [161].

In the third section we apply the compactification process of the second section to account for all the
linear o corrections in the induced action. We study the o’ corrections as perturbations outside the
horizon. We notice that for a general black hole requiring a smooth o/ perturbation on the horizon
may alter the charges of the black hole. The attractor equations and the entropy formalism do not
answer if (and how much) the charges are corrected. Therefore generically the attractor equations
[144, 145] and the entropy formalism [113, 121] do not suffice to express the parameters of the
horizon configuration in terms of the values of the charges in the supergravity approximation. We
show that the charges of a dyonic black hole retain their values in the supergravity approximation
because there exists a scheme in which the fields in the supergravity approximation do not receive

any o corrections [13, 12].

In the fourth section we divide the induced action to the gravitational Chern-Simons terms and
the rest of the terms. We evaluate the induced action near the horizon configuration. We employ
the attractor mechanism [144, 145] and the entropy formalism [113, 121] to calculate the modified
Hawking-Bekenstein entropy when the gravitational Chern-Simons terms are excluded. Then we
will see that agreement between the statistical entropy and thermodynamical entropy requires

taking into account the gravitational Chern-Simons terms.

In the last section we summarise and discuss the results.
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5.2 Dyonic black holes and the o' corrections

In the second section of the previous chapter we have studied the low energy effective action for
the compactification of the Heterotic string backgrounds composed of the metric, the NS two form
and dilaton on T%~P. In this chapter we consider such a compactification on T® where only the
U(1) gauge fields associated to two cycles are not trivial. Let y; and y, represent cycles then the
- ten dimensional background reads

2

ds* = gu(z)datdz’ + > Trm(z)(dy™ + 24T dz*)? + dz° (5.1)
m=1
2
B = Bul(z)de Adz” +2  AXMdgh A (dy™ + 247 dz") (5.2)
m=1
¢ = ¢(z) (5.3)

wh:ere A}L, Ai, Az and Aﬁ represents four distinct gauge connections in the four dimensions z# =
(t,wzt, 6,¢). At the level of the four dimensional supergravity approximation we consider a static
splierical dyonic black hole which carries electric charges of A' and A% and magnetic charges of
A% and A* in an asymptotically flat space-time. The electric charges of A' and A3 represent
reéﬁectively the KK-momentum and winding numbers of a fundamental string wrapped around
thé»cycle of y1. The magnetic charges of A% and A* represent respectively the KK-monopole and
thev H-monopole charges associated to the cycle of y3. The explicit forms of the fields for this dyonic
black hole are presented in [161]. When none of the charges is zero then the dyonic black hole has
a regular horizon with geometry of AdS; x S? outside which the string loop corrections can be
ignored. In the supergravity approximation the SO(6,22) x SL(2,Z) duality transformations can
be applied on the dyonic black hole to obtain a general dyonic black hole [162]. Recalling the o
correction t0 T-duality of third chapter, we expect that the duality transformations themselves get
modified by the o corrections. We do not use the duality transformations. We consider a dyonic
black hole with large momentum, winding, KK-monopole and H-monopole charges and we study

the o’ corrections as perturbations on and outside its horizon.

We use ¥; to represent all the fields of the dyonic black hole in a collective fashion!,

v, € {gp.u(x)aTl(m)aT2($)7A}1,($)7'" 7A21¢(m)7¢($)} . (5'4)

!This collective notation is constructed in analogy with the compact notation used in [163].




90 CHAPTER 5. DYONS

The action for fhis collective notation follows
S[U] = S[0]+ ST+ O(e?), (5.5)

the equations of motion of which read

_ oS[¥] _ oSOy ,6SM[Y] ,2
0= 43" = 59, T9 5y, To0°) (5.6)

where 3‘2,17 stands for the functional derivative respect to ¥;. We write an ¢ expansion series for
]

¥; and we solve (5.6) perturbatively,
U, = W94+d0l+0(?). (5.7)

Inserting this perturbative expansion in (5.6) gives

55010 5250[\11] ol 55 [\1;] o
6; v T 5\1/ 5, TG00, oo Vi |a,=o)+0(a ) =0, (5.8)
which implies
§S°[w]
o (5.9)
§%5°[9] ) 351 [T
5‘1’16\IJJ ‘a’=0 i =T 6\1]1 Ia/=0 ) (510)

Note that (5.9) stands for the equations of motion in the supergravity approximation and (5.10)
gives a set of non-homogeneous linear second order differential equations for {U1} for any given

solution in the supergravity approximation {¥9}.

Let us first study the solutions to the homogeneous equations which correspond to (5.10),
6250[W]
5‘1’1(5\I’J

These are the equations describing the fluctuations around ¥ = ¥y in the supergravity approxi-

| Wi = 0. (5.11)

o/ =0 J

mation. For the dyonic black hole, the equation for a static spherical fluctuation of the dilaton in

the canonical frame is simplified to
8- ((r—ru)’0¢p) = 0, (5.12)

where 7 is the radius of the horizon and ¢} is the fluctuation of the dilaton and we have used the
explicit form of the background fields presented in [161]. The general solution of (5.12) is diverging

on the horizon,

h(r) = + ca. (5.13)
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The diverging mode of the dilaton fluctuations plays the role of the diverging source for the
fluctuations of all other fields through their couplings to the dilaton. Thus the fluctuations of all

other fields admit modes which diverge on the horizon. Therefore we conclude that

Lemma 1: The general solutions to the homogeneous equations (5.11) diverge on the

horizon.

The diverging solutions on the horizon should be excluded by the boundary conditions. We impose

the following boundary conditions on the solutions of (5.10)

V@) = 0,

T==00

(5.14)
7 (z)

< o0,

x on the Horizon

we refer to which as the H-boundary conditions. The first condition of the H-boundary conditions
set the o corrections to zero at infinity and its second condition excludes the diverging modes on
the horizon. Depending on how we decide to represent the metric, some of the components of the
metric may diverge on the horizon in the supergravity approximation. For these components of

the metric we substitute the second condition of the H-boundary conditions by

Ul(z)
lim —i
=, VI(z)

< o0, (5.15)

where X, represents any point on the horizon. Because the o’ corrections reaches their largest
values on the horizon then having fixed the symmetries the H-boundary conditions guaranty that

¥}(z) is bounded outside the horizon,
Ui z) < oo, V|z| € [ra, o). (5.16)

Second order linear differential equations have two solutions. In general the H-boundary conditions
exclude one of the solutions and identify the other one. There exists no further freedom to impose

more constraints on the solutions. Thus we conclude that:

Lemma 2: The H-boundary conditions do not necessarily retain the fall off of the

fields at asymptotic infinity.
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Note that these lemmas are not in contradiction with supersymmetry. If we knew the o/ corrections
to the supersymmetric constraints then we could have used the supersymmetric constraints rather
the equations of motions to obtain a set of non-homogeneous first order linear differential equations
for the o' corrections to the background fields. Requiring the o’ corrections to vanish at infinity
fixes all the boundary conditions for these first order equations. Thus again we conclude that the
fall off of the fields at asymptotic infinity might receive o corrections. In addition we learn that
the diverging modes on the horizon are non-supersymmetric fluctuations on the supersymmetric

background.

For the Schwarzschild black hole, as has been showed in the second chapter, imposing the H-
boundary conditions produces corrections to the Newtonian mass of the black hole which is given
by the fall off of the time-time component of the canonical metric at asymptotic infinity. The fall
off of the fields identifies the charges of the dyonic black hole. Thus the second lemma implies that
the charges of the dyonic black hole might get modified by the ¢ corrections.

In the perturbative study of the string scattering amplitudes one is allowed to redefine the fields,

U, = U, +dR; + 0(?) (5.17)

where R; are tensors of appropriate degree and dimension constructed from polynomials of 9 and
their derivatives. The field redefinition alters the induced action and subsequently the equations
of motion derived from the action. For example a general field redefinition given by (5.17) changes
the equations for the linear o’ corrections (5.10) to,
§25°[¥] | E = _5_51}_[_\3][ 82509 | &
0W;00; 'ar=0 J 0¥; 'w=o V00, 'a'=0

The field redefinition ambiguity is related to the freedom in choosing different renormalisation

(5.18)

and regularisation schemes in the sigma model. Ref. [13] has considered the dyonic black as a
generalisation of the null chiral sigma models [12] and has proved that there exists a scheme in
which 1119 does not receive any o' corrections. This means that there exists R; = R;* for which the
right hand side of (5.18) vanishes and ﬁfjl = 0 is the solution to (5.18). Thus the solution in the

scheme where the o’ corrections are given by (5.10) reads
U, = U — o R* + 0(?), (5.19)

Since any field redefinition should contain two derivatives then the fall off of ¥; at infinity relevant

for the charge identification is the same as the one of ¥?. We conclude that
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Lemma 3: There exists no o' correction to the charges of the dyonic black hole.

5.3 The o corrections to the entropy of dyons

The near horizon configuration of the dyonic black hole in the supergravity approximation is
AdS> x S%. When the horizon is large the o/ corrections do not change the geometry of the
horizon. Therefore the near horizon configuration of the o' corrected dyonic black hole can be

written in the following way -

ds? = wy(—r?dr® + %;) + vg(d6? + sin? 0dg?), (5.20)
T\ = T, T =Ty, e?® =5, (5.21)
0 p0
FL = e, F =e5, F = %sinH, Fjy = T-sind, (5.22)
where the horizon is located at 7 = 0 and vy,-- -, p40 are constant parameters labelling the hori-

zgn Note that v; and ve are constant due to the geometry of the horizon and Ty, Ts, s are
constant since they represent the limit r — 0 of the scalars. ey, es, pJ and pj are constant due
to.the coordinates chosen to represent the background and in accordance with the supergravity

approximation.

In the second section of the previous chapter we saw that the induced action can be partition
the part which is the pull back of the ten-dimensional gravitational Chern-Simons terms into four
dimension, S¢g, and the rest of the o’ corrections Sycg. Each of Scg and Sycg contributes to
the entropy of a dyonic black hole. In this chapter we compute the contribution of Sycog to the

entropy of the black hole and we postpone computing the contribution of Sgg to future studies.

Snes is a functional of the gauge field strengths but not of the gauge fields themselves. Thus the
entropy formalism techniques [113, 121] can be employed to express the parameters of the near
horizon configuration in terms of the charges of the dyonic black hole. The entropy formalism

utilises the entropy function defined by

- 1 fod
f({;, T7 é’,ﬁ,S)‘ = 55—7; d9d¢v_detQSL(777 T, €7ﬁ)1 (523)

where L(7, T, €,7) is the induced Lagrangian (4.14) evaluated on the horizon configuration when
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H = dB. The equations of motions are equivalent to

v, =0
or@, 1.8 _

8T ’
or@ 1,855 _ ,

0 |
af(”’gcj;’ 3 _ g, ie{1,3)
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(5.24)

where ¢; and gs are the electric charges of the dyonic black hole and pe and p, are identified as

the magnetic charges. In the following we first obtain these equations and next we find their o

perturbative solutions.

To evaluate the induced action on the horizon configuration we use (4.3), (4.6) and (4.13) to write

the ten dimensional fields for the near horizon configuration,

ds? = ds®+ Ty(dy1 + 2e;rdt)? + Te(dys — %2; cos0dp)? + dz2,, (5.25)
B = 2egrdiAdy; — %cos@dqb/\dyz, (5.26)
-2¢ _ §
e VT T, (5.27)
where V is the volume of the compactified space and the gauges (5.22) are chosen by
A, = [e17,0,0,0], A} = [es7,0,0,0], (5.28)
s 4 py
2 _ _Pg _ _Py
A, = [0,0,0, 7 08 ], 4, = [0,0,0, 1 <O 6]. (56.29)
In ten dimensions using the ten dimensional fields (5.25) and (5.26) one finds that
1 -
Ly = Rpea— EHMHW’“ = (5.30)
_ _2__}__2__’_2612'-7"12 2eg? _P22T22_
T u v vy2 0,2T;2  8ug?m?  8up272 T2’
1
L; = nglmanlm" (5.31)
— 1 + 1 _ 3612T12 _ 3p22T22 11T14€14 11p24T24
2012 2up2 v;3 16 vg3m2 2v;4 512 vgdnd’
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Ly = _%Rklmanlepmn = (5.32)
_ e pp? es” es” + Py’ p2®
C w3 Ty? 1672 ve8 Th? vt 256 14 vad
Is = ——mmg, e oo _3et  3p° (5.33)
64 k tmn pa '1)14 T14 2567T4 ’024 T24 ’ '
1 634 p44
Ly = —Hpy,H* HWPH™ - : 34
‘ 1927 HmS pattr DA T2 | 5127 0t T8 (5:34)

Inserting the above expressions in the ten dimensional action in the supergravity approximation

and its linear o/ corrections (2.55) gives

S = 8§ = —3—;—; dtdrdoddcosb sv; vg (Lg -+ Oz,(LJ + Ly +L3+L4))+O(a'2),

(5.35)

where the integration over the compactified space has been done. Then the entropy function reads
= 1

f(9,T,8,p, s) = -8-8 vy vg (Lo + O:,(LJ + Ly + Ls+ L))+ O(O/2) , (5.36)

and inserting this in (5.24) gives the equations of motion near the horizon. These equations should
be solved perturbatively. Thus we write o/ expansion series for the constant parameters labelling

the horizon conﬁguration,

vo= u'(1+ o6+ 0?), (5.37)
T, = T°(1+d Ti + 0(a),

g = &°(1+d &+ 0?),

s = 21 +d'5 + 0(?)).

Note that the electric and magnetic charges retain their values if we add not only Sysc but also
Ssc. We are not including the gravitational Chern-Simons terms thus we should write o expansion

series for the electric charges

!

(84 -
q; = q10(1 -+ — o 11 -+ O(CX'Q)), (538)
Pepy
o
g = gs°(1 + ——5 gz + 0(?)), (5.39)
bapy
o
pe = ps(1+ —— 2 + 0(?)), (5.40)
bsDj
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/

o
py = p] (1 +—550; + 0(a?)), (5.41)
Pspy

where 7, g3, pe, and p; are the corrections to the charges due to imposing the H-boundary
conditions on the solutions. Note that we have to include the corrections to the charges since we
are not including all the linear ¢/ corrections and we are excluding the gravitational Chern-Simons
corrections. The equations of motion (5.24) in the supergravity approximation (¢/ = 0) are solved
by |

0,0

Ps Py
4727

’1)20 =
0 0
| P
T10 = ’—% ) T20 = q_lg'7
2 ds
0,0 ,0 0,0 .0
e,° 1 /43 P2 P es® = 1 /41 P2 Py
4 g 4m g
0 .0
O = 8w/
P2 Py

These are the horizon configuration parameters in the supergravity approximation. Inserting (5.37)

(5.42)

and (5.42) in (5.24) gives a set of linear algebraic equations for the linear o corrections (5.37) to

the supergravity approximation (5.42). These linear equations are solved by

o o= 0, (5.43)

1 ~ . 2

-7 (5.44)
P2 Py

The modified Hawking-Bekenstein (Wald) entropy is expressed by the Legendre transformation of
the entropy function

8f(v, T,8,7,5) 8f(@,T,8,7,s)
+ €z

861 863 - f(’l), T7 €D, 5)) N (545)

Sy = 27!’(61

evaluated on the horizon configuration [113, 121]. Inserting (5.37) and (5.42) in (5.45) we get

2 1 /

T o' e

Spr = y/psp]dfaf (1 + —5—5 + 555 (@1 +ds+P2 +54) + 0(e).  (546)
P2 Py 2pypy

Note that (5.46) is computed by doing perturbation in pj?%—g. Therefore we could not extrapolate
2 Py

(5.46) to the case of a wrapped fundamental string as an extremal dyon with zero-magnetic charges.
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Therefore (5.46) being valid for large pJ and pf is not necessarily in contradiction with the limit

of vanishing pJ and pf studied in the previous chapter.

In the following we would like to compare all the linear o’ corrections to the entropy (5.46) with
the corrections given by only the inclusion of the Gauss-Bonnet Lagrangian in the induced action
[160]. In this part we do add the o/ corrections to the charges. The square of the Riemann tensor
of the four dimensional metric is

1 1

2'012 + 2’022

1 »
= Rijiq R9¥ = (5.47)

8
We see that (5.47) coincides with the first two terms in L;. In total ten terms in L; + Ly + Lg + L

are not given by the square of the Riemann tensor. The Gauss-Bonnet Lagrangian in the four

dimensions is

Lep = RyjuR™ — 4R;RY + R? = — (5.48)

vy Vg
Including the Gauss-Bonnet action to the induced action in the supergravity approximation is
equal to including (5.47) and performing a field redefinition. Thus ten terms in the linear o
corrections to the induced action are not produced by the inclusion of the Gauss-Bonnet action.
The inclusion of the Gauss-Bonnet action in the induced action in the supergravity approximation

gives the following entropy function
N 1 1 o
f = gs ’1}1 Vg (L0+'8—LGB) —S ’01 V2 Lo—-é-s +O(C¥) (549)
where we used * to distinguish the near horizon parameters identified by (5.49) with those identified

by (5.36). This entropy function (5.49) identifies the horizon configuration parameters to

v;* e;* 2m2al  Ti* 5* 212 of
= =1 =1, — =12 5.50
vl el s pJ T,0 s0 ps p] (5:50)
where v9, ---, 80 are given by (5.42) and for which the entropy reads
2
D2 P4

Ref. [160] has included the Gauss-Bonnet action in the induced action in the supergravity approx-
imation and has solved the corresponding truncated o’-corrected equations of motion exactly. We
note that (5. 51) is in agreement w1th the large charge expansion of eq. (3.13) of ref. [160] after
setting n =2¢7, w=2 q3, N = W = — “ and using the unit of o/ = 16.
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We notice that (5.51) is not in agreement with (5.46) therefore we see that as long as we are
excluding the gravitational Chern-Simons contribution to the entropy then the corrections are not
in agreement with those reproduced by inclusion of only the Gauss-Bonnet Lagrangian to the

Lagrangian density in the supergravity approximation.

The contribution of the gravitational Chern-Simons terms to the entropy within the framework
of the entropy formalism or attractor equations. Also employing H-boundary conditions on the

Chern-Simons o' corrections may alter the values of the charges of the dyonic black hole

/

g = a1+ ;‘25;)—2 @* + 0(a)), (5.52)
6 = a1+ p;g &* + 0(a)), (5.53)
pe = pf(1+ pg%?zfe* + 0@™), (5.54)
p = 2l +};?1;7pz* + 0(a)), (5.55)

where ¢;*,...p;* are numbers and could be computed. Then the third lemma of the previous section

implies that

@ = -4~ (5.56)
ds = —ds”, (5.57)
P2 = —p2”, (5.58)
o = —P, (5.59)

Computing the Chern-Simons contributions to the entropy requires further investigation.

5.4 Conclusions

We studied all the linear o’ corrections to the thermodynamical entropy for a four dimensional
dyonic black hole carrying arbitrary momentum, winding, KK-monopole and H-monopole charges

in the toroidal compactification of the Heterotic String Theory.

We have computed all the linear o’ corrections, excluding however the gravitational Chern-Simons

ones, to the entropy of a dyon. We have seen that the Chern-Simons gravitational contribution
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to the entropy should not vanish if the statistical entropy [149]-[155] is in agreement with thermo-
dynamical entropy. Thus the gravitational Chern-Simons correction to the entropy of the dyonic

black hole must be computed.

We have studied the o' corrections as perturbation on a given black hole geometry in an asymp-
totically flat space time. We have shown that in general the existence of smooth o’ corrections on
and outside the horizon requires a modification of the fall off of the fields at asymptotic infinity.
Thus the charges may receive o’ corrections. The attractor equations and the entropy formalism
do not answer if (and how much) the charges are corrected. Therefore generically the attractor
equations [144, 145] and the entropy formalism [113, 121] do not suffice to express the parameters
of the horizon configuration in terms of the values of the charges in the supergravity approxima-
tion. We have shown that the charges of the dyonic black retain their values in the supergravity

approximation.
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