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Chapter 1

Introduction

Thirteen years after the first experimental observation of a Bose-Einstein

condensed state (BEC) [1] in a dilute Bose gas of alkali atoms, the study of

ultracold quantum systems has become a well established and active area

of research in contemporary physics [2, 3] which encompasses a number of

different fields like atomic, condensed matter and nuclear physics.

The continuous refinements of experimental techniques, recently reported

both in bosonic and fermionic systems [4, 5], have allowed to achieve BEC

states not only for the historical 87Rb, 7Li and 23Na, but also for more

complex systems like metastable 4He, 85Rb, 41K, 123Cs and spin-polarized

hydrogen.

The experimental procedure needed to reach temperatures of order 10−
100nK for dilute atomic gases can be summarized in essentially two distinct

steps. The atoms are first collected in a magnetic-optical trap and cooled to

micro-Kelvin temperature [6]. Then the nano-Kelvin temperature range is

reached by evaporative cooling in a magnetic trap. This is the temperature

range where the phenomenon of Bose-Einstein condensation (BEC) may

occur: in fact the de Broglie wavelength of the bosons

λdB =

√

2π~2

mkBT
(1.0.1)
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Figure 1.1: The velocity distribution of ultracold rubidium atoms after an

expansion performed at JILA [1]. From left to right, the temperature of

the system is decreased from 400nK to 50nK, and a condensate - a macro-

scopic population of the ground state - appears. The left most frame has the

negligible condensate fraction since it is just above the transition temper-

ature. In the right most expansion, nearly all of the atoms are condensed,

corresponding to the sharp peak. Taken from [7]

is comparable or larger than the average interparticle spacing, leading to

a macroscopic occupation of a single quantum state, i.e. the BEC. This

is a low temperature phase transition caused by pure statistical quantum

effects.

After cooling, the velocity distribution of the atoms can be examined

by performing a time-of-flight analysis. Fig. 1.1 shows the momentum dis-

tribution for systems with three different temperatures, one just above the

transition temperature at 400nK and two below the transition temperature

at 200nK and 50nK respectively, observed by the JILA group [1].

The two peculiar features of BEC systems are the extremely low tem-

perature and density. The joint effect of these conditions results in weakly
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microscopic interactions which, in turn, are the key to experimentally con-

trol the system parameters. In fact, in this regime the two-body interaction

can be described by a single parameter, the s-wave scattering length a.

Small values of a indicate a weak coupling between the particles, whereas

its sign is responsible for the type of interactions, being repulsive for a > 0

and attractive when a < 0. In this respect, a substantial breakthrough

has been made by the implementation of the so called Feshbach resonances

technique [8]. Through this technique, which will be discussed in the second

section of this chapter, it is indeed possible to control the sign of the scat-

tering length, providing thus an effective tool to pass from the attractive

regime to the repulsive one and vice versa.

Another very interesting aspect of ultracold atoms is the possibility to re-

alize quasi-one dimensional gases. In particular, the jointly use of Feshbach

resonances technique and optical lattices (OL) [9] made possible to investi-

gate famous one-dimensional toy models like the one-dimensional Bose gas,

i.e. Lieb-Liniger model [10, 11], and its hard core limit [12]. At variance with

the case of higher dimensions, for such a systems several nonperturbative

methods have been developed [13], so that in some cases direct comparisons

between experiments and exact solutions can be made. Among these mod-

els, a special role is played by the integrable ones and their non-integrable

extensions. In several instances, as we will see in Chapters 2-3, a compari-

son of different approaches in integrable models provides useful insights to

treat the corresponding non-integrable version.

Quasi-one-dimensional Bose gases are obtained by using a cigar-shaped

external trapping potential, elongated in one direction, with the other de-

grees of freedom frozen by a tight transverse confinement. Several variants

of the interacting Bose gas in one dimension have been implemented in the

experiments: an optical lattice was added to detect the Mott-superfluid

transition in one dimension [14], the effective one-dimensional interaction
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was tuned [15] to observe a Tonks-Girardeau gas of ultracold atoms [16, 17],

or to study the effect of temperature [18].

Besides the possibility to modify the geometry and tune the interaction

strength of the system, it has recently raised the challenging question of how

it can be implemented an effective N -body interaction. Several proposals

have recently addressed the issue of inducing and controlling three-body

terms. In [19] it has been proposed to use cold polar molecules driven

by microwave fields to obtain strong three-body interactions, controllable

in a separate way from the two-body interactions, which in turn can be

switched off [19]. Three-body interactions can be effectively induced in

mixtures of bosonic particles and molecules: in [20] the ground state of

rotating Bose gases close to a Feshbach resonance has been studied, showing

that for suitable parameters they are fractional quantum Hall states, whose

excitations obey non-abelian exchange statistics. In [21] it was shown that a

system of atoms and molecules in a one-dimensional lattice can be effectively

modeled by a three-body local (i.e., contact) interaction, characterized by

a strength U and in the limit U → ∞ (without a two-body interaction) the

ground state properties were investigated by a Pfaffian-like ansatz. One of

the main reasons of interest of these proposals relies on the fact that exotic

quantum phases, such as topological phases, appear to be ground states of a

Hamiltonian with three or more body interaction terms, an example being

the fractional quantum Hall states described by the Pfaffian wavefunctions

[22]. The excitations of Pfaffian states are non-abelian anyons, on which

schemes of fault-tolerant topological quantum computations are based [23].

Despite the theoretical attractiveness this issue might generate, very few

methods can be used to deal with this kind of systems. In fact, apart from

some ingenious procedures which have been used for specific Hamiltonians

[21] and perturbative methods, a very useful tool which can be used is the

Hartree-Fock (HF) mean-field approximation.
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In this approximation, the one dimensional Bose gas with two-body con-

tact interactions is well described by the Gross-Pitaevskii (GP) equation,

which has the form of a cubic nonlinear Schröedinger equation (NLSE). In

one dimension the GPE is a completely integrable equation, which can be

explicitly solved by means of the inverse scattering transform (IST) method

[24, 25]. The GP equation admits soliton solutions in both repulsive and

attractive cases: in the repulsive case the soliton solutions appear as local

density depletions (grey or dark solitons), while for attractive interactions

they appear like bright matter waves (bright solitons). However, the intro-

duction of an external potential breaks, apart a few specific cases [26, 27, 28],

the integrability of the system preventing the possibility to find any ana-

lytical solution. In the most interesting cases of harmonic traps and optical

lattices a very useful tool to detect low energy properties of the systems

turned out to be the variational approach [29].

In this thesis we will focus on the effect N -body contact interactions

generate on a one-dimensional dilute system of weakly interacting Bose

atoms, both in homogeneous case and in presence of external potentials.

The plan of the thesis is the following:

• In the first chapter we introduce the mean-field theory for weakly in-

teracting Bose gases and related Gross-Pitaevskii equation in the more

general case. After a brief presentation of the variational approach,

needed for the analysis of the low energy properties in presence of

external potentials, we briefly discuss the technique of Feshbach reso-

nances and how it is possible to realize quasi-one dimensional ultracold

systems.

• The second chapter will be focused on integrable techniques for one

dimensional Bose gases. After discussing its Bethe ansatz solution

both for repulsive and attractive case, we present the classical inverse
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scattering method (IST) to find the one-soliton solution of its mean-

field theory, i.e. the 1D cubic nonlinear Schröedinger equation.

• In the third chapter, after introducing the mean-field theory of 1D

attractive boson gases with N -body contact interactions, we study

the ground state of the system and discuss its peculiarity in terms of

N . After showing the singularity of three-body interactions, the effect

of a harmonic trap is analyzed.

• In the last chapter we discuss the effect of an optical lattice (OL)

on the ground state properties of 1D ultracold bosons with three-

body attractive interactions, studying in particular the effects of the

presence of a residual two-body interaction. After studying the soli-

ton solutions of its mean-field counterpart, i.e. the 1D cubic-quintic

Gross-Pitaevskii equation, a variational stability analysis is presented

in presence of both an OL and harmonic trap.

• The paragraph on the perspectives closes the work.

1.1 Mean-Field Theory: the Gross-Pitaevskii

Equation

Studying the stationary and dynamical properties of N interacting bosons

is in general a very complicated problem. However, in the standard con-

text of a weakly interacting Bose-Einstein condensate it is still possible to

implement a satisfactory mean-field theory [2, 3, 6], enabling us to extract

useful informations on the low energy properties.

Let us consider a bosonic system of N particles, of mass m, interact-

ing through a two-body potential U(r − r′) and assume to be loaded in

an external potential Vext(r). In the formalism of second quantization its
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Hamiltonian is given by

Ĥ =
~

2

2m

∫

dr∇Ψ̂†(r)∇Ψ̂†(r) +

∫

drΨ̂†(r)Vext(r)Ψ̂(r)

+
1

2

∫

dr dr′Ψ̂†(r′)Ψ̂†(r′)U(r − r′)Ψ̂(r)Ψ̂(r′) (1.1.1)

where Ψ̂†(r), Ψ̂†(r) are field operators satisfying the canonical equal-time

commutation relations:

[

Ψ̂†(r), Ψ̂(r′)
]

= δ(r − r′),
[

Ψ̂(r), Ψ̂(r′)
]

= 0,
[

Ψ̂†(r), Ψ̂†(r′)
]

= 0

In this representation, the equation of motion for the time-dependent

field operator is given by

i~
∂Ψ̂(t)

∂t
=
[

Ψ̂(t), Ĥ
]

(1.1.2)

Now, by resorting to the hypothesis of the Born approximation we can

replace the two-body interatomic potential with an effective local potential

U(r−r′) ≈ U0 ·δ(r−r′), where U0 = 4π~
2a/m and a is the s-wave scattering

length. At very low temperature, in the regime of weakly interparticle

interactions we can safely assume the system to be in a state close to a

BEC state, in such a way the field operator may be written as

Ψ̂(r, t) = Ψ(r, t) + Ψ̂′(r, t) (1.1.3)

Here the scalar function Ψ(r, t), defined as the expectation value of the field

operator in the grand canonical ensemble, represents the condensate wave

function of the system, while with Ψ′(r, t) has been denoted the quantum

corrections field.

Substituting (1.1.3) in (1.1.2), and neglecting the first order term, we

finally get the time-dependent Gross-Pitaevskii equation (GPE) in the order

parameter Ψ(r, t)

i~
∂

∂t
Ψ(r, t) = − ~

2

2m
∇2Ψ(r, t) +

[

Vext(r, t) + U0 | Ψ(r, t) |2
]

Ψ(,t) (1.1.4)
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This mean-field equation has thus the form of a cubic nonlinear Schröedinger

equation in an external potential. It is worth to notice that in presence of

an external potential with a harmonic cylindrical symmetry, the 3D Gross-

Pitaevskii equation reduces to an effective 1D nonlinear nonpolynomial

Schröedinger equation [30]. Further, we remark that the nonlinear term

U0 | Ψ(r, t) |2 and, as we will see in Chap. 3, the corresponding ground

state properties strongly depend on the “microscopic process” involved. In

this respect we want to point out that a tuning of the scattering length

a, from positive to negative value, amounts to pass from a focusing to a

defocusing regime, while the nonlinearity degree is related to the number of

simultaneous microscopic interactions [31].

1.1.1 Variational approach

Apart from few cases [26, 27], solving explicitly the Gross-Pitaevskii equa-

tion, in presence of an external potential, turns out to be an impossible

task. However some useful insights, on the low energy properties of trapped

gases, are still achievable through a variational approach.

By assuming the system to be in a condensed state, i.e. the N -particle

wave-function to be factorized Ψ(r1, r2, ..., rN) =
∏N

i=1 ψ(ri), the corre-

sponding energy reads

E[ψ] =

∫

dr

[

~
2

2m
| ∇ψ(r) |2 +Vext(r) | ψ(r) |2 +

1

2
U0 | ψ(r) |4

]

(1.1.1)

In the BEC context, the variational approach results in minimizing

the energy functional (1.1.1) with respect to independent variations of the

single-particle wave function ψ(r) and imposing the normalization condition

on the total number of particles

N =

∫ +∞

−∞

| ψ |2 dr. (1.1.2)
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Taking care of this constraint by the method of Lagrange multipliers, the

result is equivalent to minimize E − µN , where µ denotes the chemical

potential of the system. Equating to zero the variation of this quantity we

finally get

− ~
2

2m
∇2ψ(r) + Vext(r)ψ(r) + U0 | ψ(r) |2 ψ(r) = µψ(r) (1.1.3)

which is the time-independent Gross-Pitaevskii equation in the order pa-

rameter ψ(r).

In order to appreciate the efficiency of the method, we shall illustrate

how its application to a dilute trapped gas enable us to grasp its low en-

ergy properties. Let us suppose to consider a bosonic gas trapped in an

anisotropic three-dimensional harmonic-oscillator potential

Vext(x1, x2, x3) =
1

2
m (ω2

1x
2
1 + ω2

2x
2
2 + ω2

3x
2
3) (1.1.4)

where ωi, i = 1, 2, 3 are real parameters, related to the characteristic oscil-

lator lengths by di =
√

~/mωi.

By switching on microscopic interactions between the particles, we ex-

pect that the Gaussian wave function, exhibited by the system when no

scattering process occurs, can modify its dimensions. Let us assume as

variational ansatz the usual Gaussian wavefunction

ψ(x1, x2, x3) =
N1/2

π3/4(σ1σ2σ3)1/2
e−x

2
1/2σ

2
1−x

2
2/2σ

2
2−x

2
3/2σ

2
3 (1.1.5)

where σ1, σ2, σ3 play the role of variational parameters. The substitution of

(1.1.5) into (1.1.1) yields the energy expression

E(σ1, σ2, σ3) = N

3
∑

i=1

~ωi

(

d2
i

4σ2
i

+
σ2
i

4d2
i

)

+
N2U0

2(2π)3/2σ1σ2σ3
, (1.1.6)

which reaches its minimum at

σi =

(

2

π2

)1/10 (
Na

d0

)1/5
ω̄

ωi
d0. (1.1.7)
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where d0 =
√

~/mω̄ and ω̄ = (ω1ω2ω3)
1/3. The ground state energy per

particle thus becomes

E

N
= K

(

Na

d0

)2/5

~ω̄ (1.1.8)

where K is a numerical value given by (5/4)(2/π)1/5. This variational es-

timate predicts that the energy per particle is proportional to N 2/5 when

the kinetic energy is neglected, and of order (Na/d0)
2/5 times greater than

the energy in the absence of interactions in perfect agreement with the

Thomas-Fermi approximation.

For the isotropic harmonic potential (ωi = ω) , the energy reduces to

the simpler expression [32]

E(λ) =
N ~ω

2

[

3

2
(λ2 + λ−2) + αλ3

]

(1.1.9)

where α ≡
√

2/π(Na/d0), λ = d0/σ is the dimensionless spatial size of the

condensate and σ ≡ σi is the remaining variational parameter. As shown

in Fig.1.2, in the case of attractive interactions (a < 0) a local minimum

exists provided N is less than some critical value Nc while for larger values

of N a collapse is achieved. The critical particle number is given by

Nc | a |
d0

=
2(2π)1/2

55/4
≈ 0.67 (1.1.10)

which is in good agreement with the value 0.57 obtained by numerical in-

tegration of Gross-Pitaevskii equation [33].

1.2 Feshbach resonances

The idea which is behind the Feshbach resonance mechanism is to exploit

the hyperfine structure, that certain species of atoms show, in order to

change the colliding properties of gaseous systems. This phenomenon, which

has been investigated a long time ago in the context of nuclear matter [8],

14
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Figure 1.2: Variational expression for the energy per particle for an isotropic

harmonic trap as a function of the variational parameter σ, for different

values of the dimensionless parameter Na/d0. The dashed line corresponds

to the critical value, approximately −0.67, at which the cloud becomes

unstable

has become essential for fermionic ultracold atoms to study the BCS-BEC

crossover.

The two-body scattering process, between hyperfine species in a mag-

netic field B, can take place with different atomic states, the so called “chan-

nels” (set of quantum numbers) of interaction. As a rule, distinct channels

have different magnetic moments µ and, accordingly, different zero-point

energies (scattering threshold) so that ∆E = ∆µ × B 6= 0. Following the

convention to call “open” and “closed” channels, those ones with the higher

Eop and lower Ecl threshold respectively, the Feshbach mechanism occurs

when a binding energy E0 of the open channel is nearly resonant with the

scattering threshold of the closed channel (vd.Fig. 1.3).

In the limit where detuning parameter δ ≡ E0 − Ecl tends to zero, as

a result of coupling between the channels, the scattering particles in the
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ν δ (B)

S=1
S=0

Internuclear distance

Figure 1.3: Pictorial description of a Feshbach resonance. The lower line

corresponds to the potential between the two scattering atoms in the open

channel and the upper to the interaction potential in the closed channel.

The shift between the continuum states (represented with dashed lines)

between open and closed channels due to magnetic field, corresponds to

δ(B). The detuning parameter ν measures the difference between the bound

state in the closed channel and the zero energy of the open one. Taken from

[34].

closed channel are affected by the bound states in the open one. For such a

reason, a suitable adjusting of the magnetic field makes it possible to vary

δ from positive to negative values, resulting in a change of the effective

scattering length with respect to its background, ruled by the equation

a = a0

(

1 − ∆

B − B0

)

, (1.2.1)

where ∆ is the width of the resonance, a0 the background scattering length

and B − B0 is proportional to the detuning parameter. In particular, an

attractive (a < 0) interaction occurs when the kinetic energy of colliding

particles is below the binding energy of the open channel, while a repulsive

(a < 0) interaction is achieved in the opposite situation (vd. fig. 1.4).
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Figure 1.4: In this picture is shown the scattering length as a function

of the magnetic field: positive (negative) values correspond to repulsive

(attractive) interactions

We remark that the possibility to change the sign of the scattering length

from positive to negative values have already allowed to observe and study

the formation of bright solitons in Bose-Einstein condensates of 7Li and 85Rb

as reported in [35, 36, 37, 38, 39, 40, 41, 42, 43]. On the other hand, several

theoretical investigations on attractive condensates have shown richer sta-

bility properties with respect to the repulsive case [44, 45, 46]. As reported

in the previous section, a critical threshold for the existence of bright soli-

tons has been confirmed also in the case of non-local attraction, where a

richer ranges of stability have been shown [47].

Together with the sign of interatomic interactions, in ultracold systems a

crucial role is played both by the dimension of the system and the trapping

potential.

In three dimensions, for instance, homogeneous attractive bosons with

two-body interactions are unstable against the collapse, which can be pre-

vented by means of an external harmonic trap provided that a critical par-

ticle number is reached. At variance, as we will see in chapter 3, in one

dimension the addition of an harmonic trap always stabilizes the system

irrespectively of the number of particles involved.
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In the next section we will sketch in which way one-dimensional systems

can be successfully realized in the experimental setups.

1.3 One-Dimensional Setups

The usual way to obtain quasi one-dimensional Bose gases is by trapping a

three dimensional system in an external cigar-shaped trapping potential.

For the sake of simplicity, let us suppose to consider a two dimensional

system loaded in a confining potential U(x, y) with a privileged direction,

say x, in such a way it can be approximated as U1(x) ·U2(y), U2(y) being a

freezing potential.

In these conditions the wave functions may thus be written as:

ψ(x, y) = eikxϕ(y) (1.3.1)

where ϕ is a localized state, whose shape depends on the form of the po-

tential. In a simplified picture, if approximate the transverse potential as

an infinite well of width l, as shown in 1.5, ϕ(y) = sin((2ny + 1)πy/l) and

the energy of the system reduces to

E =
k2
x

2m
+

k2
y

2m
(1.3.2)

where kx and ky are the components of the momentum along homonymous

directions. The finite size of the well results in a quantization of transverse

energy (Ey), which in turn leads to energy minibands whose separation is

at least

∆E =
3π2

2ml2
(1.3.3)

see in Fig.1.5. Due to the narrowness of the transverse direction (typically

of order of 60nm [48, 49, 50]), the values of ky are sizable. Hence a one

dimensional system is reached when the distance between the minibands

18



Figure 1.5: On the left is shown the density profile of a bosonic gas in a one-

dimensional tube of transverse size l, propagating along the x direction. On

the right it is drawn the dispersion relation E(k), where k is the momentum

along x, and the minibands resulting from the confining potential in the y

direction. When the temperature, represented by the gray box, is below

the miniband threshold only one miniband can be excited and the system

behaves like one dimensional object. Taken from [9]

is adjusted to be larger than thermal temperature involved. When these

conditions are achieved, the bosons are described by

H =

∫

dx
~

2(∇ψ)†(∇ψ)

2m
+

1

2

∫

dx dx′ U(x− x′)ρ(x)ρ(x′) − µ0

∫

dx ρ(x)

(1.3.4)

where the first term is the kinetic energy, the second term is the interaction

potential U between the bosons and the last term is the chemical potential

µ0. At low density, the interaction potential U(x−x′) can be approximated

by a local interaction

V (x) = V0 δ(x) (1.3.5)

where V0 is the effective interaction strength, resulting from the real three

dimensional two-body interaction and the coupling with transverse degrees

19



of freedom. This model is the well-known Lieb-Liniger model which we will

treat in the next section.

Together with the realization of confining traps, another very interesting

experimental achievement has been the implementation of one dimensional

optical lattices, which allowed to detect and study the one-dimensional

quantum-superfluid–Mott-insulator phase transition [14]

The experimental setup usually consists of Bose gas (1.3.4) loaded in a

periodic potential VL(x) coupled to the density [48]

HL =

∫

dx VL(x)ρ(x) (1.3.6)

where

VL(x) =
VL(1 − cos(2kx))

2
(1.3.7)

while VL and a = π/k are the depth and the width of the optical lattice.

In the high depth regime, i.e. when VL is much higher than the kinetic

energy, each minima of the lattice can be approximated by a harmonic well

2VLk
2x2. Hence, on each site, harmonic oscillator wavefunctions hybridize

to form a band. If VL is large enough, the energy levels in each trap are well

separated so that one can retain only the ground state wavefunctions. The

system can then be represented directly by the Bose-Hubbard model [13]

H = −J
∑

i

(b†i+1bi + h.c.) + U
∑

i

ni(ni − 1) −
∑

i

µini (1.3.8)

where bi (b†i ) destroys (creates) a boson on site i. The parameters J , U ,

and µi are respectively the effective hopping, interaction and local chemical

potential. Because the overlap between different sites is very small the

interaction is really local. Since atoms are neutral this model is a very good

approximation of the experimental situation.

The effective parameters J and U can be computed by a standard tight

binding calculation using the shape of the on site Gaussian wave function

ψ0(x) =
(mω0

~π

)1/4

e−
mω0
2~

x2

(1.3.9)
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where ω2
0 = 4VLk

2. The result [9] is

J = 〈ψ0(x+ a)|Hkin|ψ0(x)〉

U =

∫

dxdydz|ψ(x, y, z)|4
(1.3.10)

where ψ(x, y, z) = ψ0(x)ψ⊥(y)ψ⊥(z), ψ⊥ is (1.3.9) and VL has been replaced

by the transverse confinement V⊥. For large lattice sizes an approximate

formula is given by [51]

J/Er = (4/
√
π)(VL/Er)

(3/4) exp (−2
√

VL/Er)

U/Er = 4
√

2π(as/2a)(VLV
2
⊥/E

3
r )

(1/4)
(1.3.11)

Here Er = ~
2k2/(2m) is the so called recoil energy, i.e. the kinetic energy

for a momentum of order π/a, V⊥ denotes the harmonic confining potential

in the two transverse directions of the tube, while typical values for the

remaining parameters are as ∼ 5nm and a ∼ 400nm respectively [48]. The

repulsion term acts if there are two or more bosons per site. From eqn.

(1.3.11) it is evident that the addition of an optical lattice is a simple way

to freeze the kinetic energy of the system and leaving interactions practically

unaffected.
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Chapter 2

Integrable Methods for

One-Dimensional Bose Gases

In this chapter we will introduce the Lieb-Liniger model for a one-dimensional

Bose gas with two-body contact interactions and discuss the standard meth-

ods to solve it. This toy model, throughly studied starting from sixties [10],

is an integrable model whose complete solution is given by means of the

Bethe ansatz technique.

In the first section we will briefly remind essentials of coordinate Bethe

Ansatz, as it has been developed in the seminal paper by Lieb and Liniger

[10], and recover the ground state energy for both repulsive and attractive

interactions. After pointing out the main differences of the two cases, we

will concentrate on the attractive interaction, showing the limit which we

have to keep in order to validate the Gross-Pitaevskii approximation. In

the second section we will discuss the inverse scattering transform method

(IST) in order to find the well known bright soliton solution for the nonlinear

Schröedinger equation (NLE) in the focusing case (attractive interaction).

This analysis will be carried out starting from a Zakharov-Shabat spectral

problem.
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2.1 Bethe Ansatz

The Lieb-Liniger model is a quantum one-dimensional (1D) system of N

nonrelativistic bosonic particles interacting through a pairwise potential

δ(xi − xj). In proper units the Hamiltonian is given by [10]:

H = − ~
2

2m

N
∑

j=1

∂2

∂x2
j

+ 2c
∑

〈i,j〉

δ(xi − xj) (2.1.1)

where 〈i, j〉 represents the sum over all pairs, m is the mass of the particles

and c the strength of the interaction, which mimics a repulsive interaction or

an attractive one as c > 0 and c < 0 respectively. In terms of experimental

parameters the 1D coupling constant is c = −~
2/ma1D, where a1D is the

effective 1D scattering length. For definiteness, let us suppose the system

to be confined within a ring of length L (i.e. 0 ≤ xi < L) in such a way

periodic boundary conditions are reproduced. From sake of simplicity, let

us fix natural units ~ = 2m = 1 throughout.

In second quantization, this is nothing but the nonlinear Schrödinger

theory for a canonical Bose field,

H =

∫ L

0

dx
{

∂xΨ
†(x)∂xΨ(x) + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)

}

. (2.1.2)

which is a well-known integrable theory. The integrability of the model

guarantees Yang-Baxter equations hold, these being signatures that the

model does not have any “true” three-particle interaction. The physical

content of this statement is that any scattering among three particles can

be decomposed in consecutive scattering in pairs and, more crucially, the

order in which these interactions take place is not important [52].

2.1.1 Repulsive interactions

Let us start by considering the case of N bosonic particles with a repulsive

contact interaction. In this case no bound states are allowed since an infinite
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energy should be necessary to overcome the δ-potential.

The Bethe Ansatz is based on the assumption that the eigenfunctions of

the Hamiltonian can be expressed as a linear combination of plane waves,

depending on a set of pseudo-momenta (or rapidities) {λ1, .., λN}, that is

Ψ(x1, .., xN ;λ1, .., λN) ≡
∑

P

AP

N
∏

i=1

eiλPixi, (2.1.1)

where it is understood that the sum runs over all permutations P of the

parameters and AP denotes a constant coefficient, depending on the per-

mutation involved.

Because of bosonic nature of the system, a symmetry condition under

exchange of coordinate guarantees that

Ψ(x1, .., xN ;λ1, .., λN) ≡ Ψ(xQ1, .., xQN ;λ1, .., λN) (2.1.2)

for every permutation Q of the particles, reducing the problem to the sector

0 ≤ x1 ≤ x2 ≤ ... ≤ xN < L.

Due to the discontinuity of the wave function at xi = xj we have that

H Ψ(x, λ) =

(

N
∑

i=1

λ2
i

)

Ψ(x, λ) (2.1.3)

+ 2
∑

P

N
∑

i,j=1

δ(xi − xj)[i(A(Pi,P j) − A(Pj,P i))(λPi − λPj) − c(A(Pi,P j) + A(Pj,P i))]e
i(λPi−λPj )

where with (A(Pi,P j) and (A(Pj,P i) we have denoted coefficients differing just

by a transposition. Therefore the eigenvalue equation is satisfied provided

that
A(Pi,P j)

A(Pj,P i)

= −e−i θ(λPi−λPj) (2.1.4)

where

θ(λ) ≡ −2 arctan

(

λ

c

)

(2.1.5)

represents the phase shift that the particles i and j have mutually exchanged

during the interaction, while λPi and λPj are the corresponding rapidities.
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The resulting energy is thus given by

E =

N
∑

j=1

λ2
j (2.1.6)

whereas the total momentum reads

P =
N
∑

j=1

λj (2.1.7)

Finally, by imposing periodic boundary conditions to the wave function

Ψ(x1, x2, .., xj + L, .., xN ) = Ψ(x1, x2, .., xj, .., xN) , j = 1, .., N (2.1.8)

we get the celebrated Bethe Ansatz equations for the rapidities

eiλjL =
∏

i6=j

(

λj − λi + ic

λj − λi − ic

)

, j = 1, ..., N. (2.1.9)

By taking the logarithm, we end up to the equivalent set

λjL +
∑

k

θ(λj − λk) = 2πIj, j = 1, ..., N. (2.1.10)

where the quantum numbers Ij are half-odd integers if N is even, and

integers if N is odd. For the repulsive interaction (c > 0) it can be proved

that, given a proper set of quantum numbers {I}, the solution of the Bethe

equations for the set of rapidities {λ} exists and is unique [53], due to the

convexity of the Yang-Yang action associated with (2.1.10). Furthermore it

can be proved that all solutions {λ} are real [53]. The eigenfunctions of the

Hamiltonian are thus given by the explicit expression [54]

ΨN(x1, ..., xN |λ1, ..., λN) =
∏

N≥j>k≥1

sgn(xj − xk) ×
∑

P

(−1)[P ]ei
PN

j=1
λPj

xj+
i
2

P

N≥j>k≥1
sgn(xj−xk)θ(λPj

−λPk
), (2.1.11)

where we have indicated by [P ] the signature of P . It is worth to note that

these eigenfunctions identically vanish when two pseudo-momenta coincide,
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reproducing a Pauli-like exclusion principle. Therefore all physical states

are generated by a set of different quantum numbers Ij, conferring thus a

fermionic nature to the system.

On the other hand, in the hard-core bosons, i.e. c → ∞, corresponding

to the Tonks-Girardeau limit (TG) [12], the pseudo-momenta space reduces

to a lattice described by λj = 2πIj/L. By assuming an even number of

particles, the ground state is simply given by a set of integers symmetrically

distributed around 0, so that the energy per particle reduces to

ETG
N

=
2π2

3

N2 + 3N + 1

L2
(2.1.12)

which is finite in the thermodynamic limit, i.e. when the number of particles

N and the length of the box L tend to infinity so that their ratio ρ = N/L

remains finite.

2.1.2 Attractive interactions

Differently from the repulsive case, in presence of attractive interactions

bound states are allowed, resulting in additional complex solutions to the

Bethe equations. By putting c̄ = −c > 0 and assuming a complex value for

rapidities we get

eiλαL = eiλL−ηL =
∏

α6=β

λα − λβ − ic̄

λα − λβ + ic̄
. (2.1.1)

If we keep N finite and let L → ∞ we have that if η > 0, then e−ηL → 0

on the left-hand side. So by looking at the finite product on the right-

hand side, we conclude that there must be a rapidity λα′ such that λα′ =

λα − ic̄ + O(e−ηL), the same result we would obtain if η < 0. A general

eigenstate is thus made by partitioning the total number of particles N into

a set of Ns bound-states, each of which is characterized by its length j

N =
∑

j

jNj, Ns =
∑

j

Nj, (2.1.2)
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Figure 2.1: Two string states of a gas of N = 7 atoms. Black: The ground

state consists of a single string centered at k = 0 with all the N particle

aligned on the imaginary axis. Red: An excited states with 4 strings of

length j = 1, 2, 3 and N1 = 2, N2 = 1, N3 = 1, Nj>3 = 0.

the rapidities being parametrized as

λj,aα = λjα + i
c̄

2
(j + 1 − 2a) + iδj,aα (2.1.3)

δ ∼ e−γL

where the index a = 1, ..., j labels rapidities within the string, α = 1, ..., Nj

labels string of a given length and γ is some positive constant (see Fig.?? ).

In this case, once we have fixed N , the limit L → ∞ let the string

states go to perfect arrangements still keeping them in strongly correlated

states. The states are thus represented as fictitious particles with energy

and momentum given by

E(j,α) = j(λjα)
2 − c̄2

12
j(j2 − 1), P(j,α) = jλjα (2.1.4)

behaving like soliton objects. The lowest energy state is reached by putting

all particles in just one string centered on zero, that is

λN,a = i
c̄

2
(N + 1 − 2a) + O(δ) . (2.1.5)
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thus giving

EGS =
∑

a

(λN,a)2 = − c̄2

12
N(N2 − 1). (2.1.6)

and a total momentum equal to zero. It is important to note that, unlike the

repulsive case where the energy is not extensive, in presence of attractive

interactions the ground state grows like N 3, thus reflecting the instability

of the system in the thermodynamic limit.

In order to cure this pathology and keep the ground state finite it is now

necessary to consider the unconventional limit of a large number of particles

N � 1 with weak interactions c̄ � 1, such that g = c̄N remains finite and

the energy per particle simply reduces to EGS = −g2/12.

2.2 Inverse scattering transform

In this section we briefly discuss the technique of the inverse scattering

transform (IST) to find the so called bright soliton solution of the focusing

nonlinear Schröedinger equation.

This method is essentially based on the complete integrability of the

system, that is the existence of a linearized structure over the nonlinear

evolution equation (NLEE) one is interested in. At the sight of the appli-

cation, we will present the main steps of the procedure for NLEE involving

potentials, let’s say q, depending on just one spatial dimension other then

the temporal one. More formally, given a NLEE

qt = F (t,q(x, t),qx,qxx, ...) (2.2.1)

we define as Lax pair a couple of linear operators,

X =X(q,qx, ..., ∂x, ∂xx, ...; k)

T =T(q,qx, ..., ∂x, ∂xx, ...; k)
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on the potentials and a spectral parameter k, such that the overdetermined

problem (spectral problem)

Ψx = XΨ (2.2.2)

Ψt = TΨ (2.2.3)

on the auxiliary eigenfunction Ψ, admits as compatibility condition Ψxt =

Ψtx the evolution equation. The linear problems defined by X and T are

usually referred to as scattering problem and auxiliary problem respectively.

Other requirements are that the spectral parameter to be time-independent

(isospectral) and potentials go to zero as x → ∞.

The IST can be broken into three steps:

• the direct problem: that is constructing the so called scattering

data for the principal problem starting from the potentials q at the

initial time, let us say ti = 0;

• time evolution: determining the evolution of the scattering data by

making use of the auxiliary problem;

• the inverse problem: reconstructing the potentials from the scat-

tering data at final time tf = t.

2.2.1 IST for the nonlinear Schröedinger equation

In this section we will apply the technique of the inverse scattering trans-

form in order to find the one-soliton solution for the nonlinear Schöedinger

equation

i qt = qxx + 2 | q |2 q (2.2.1)

on the whole real line, i.e. x ∈ R.

For the sake of simplicity, we will perform our analysis starting from the
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well-known Zakharov-Shabat spectral problem, defined by

vx =





−ik q

r ik



 v (2.2.2)

and the following auxiliary problem

vt =





2ik2 + iqr −2kq − iqx

−2kr + irxr −2ik2 − iqr



 v (2.2.3)

where v is a two-component vector, k the spectral parameter and the q and

r a couple of auxiliary potentials.

The compatibility condition provides the following system of equations

i qt = qxx − 2 r q2 (2.2.4)

−i rt = rxx − 2 q r2, (2.2.5)

which reduces to NLS through the reduction r = −q∗. Throughout the

symbol “∗” wil indicate the complex conjugate.

Let us firstly analyze the principal problem. Due to the vanishing con-

ditions q, r → 0 for x → ±∞, the eigenfunctions of the scattering problem

are asymptotic to the solutions of

vx =





−ik 0

0 ik



 v (2.2.6)

as | x |→ ∞.

Direct problem

The first step of IST consists in introducing a pair of bases for the spectral

problem, defined by its asymptotic behaviour at x → −∞ (left basis) and

x → +∞ (right basis) as

φ(x, k) ∼





1

0



 e−ikx, φ̄(x, k) ∼





0

1



 eikx, x→ −∞(2.2.1)

ψ̄(x, k) ∼





0

1



 eikx, ψ̄(x, k) ∼





1

0



 e−ikx, x→ +∞(2.2.2)
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These eigenfunctions are linearly independent due to the two following facts.

For any two solutions u(x, k) and v(x, k) of (2.2.2) we have that

d

dx
W (u, v) = 0 (2.2.3)

being W (u, v) the Wronskian of u and v. Further from asymptotics (2.2.6)

one can see that

W (φ, φ̄) = lim
x→−∞

W (φ(x, k), φ̄(x, k)) = 1 (2.2.4)

W (ψ, ψ̄) = lim
x→+∞

W (ψ(x, k), ψ̄(x, k)) = −1 (2.2.5)

The two pairs of eigenfunctions are thus related, for every non singular k,

by the following relations

φ(x, k) = b(k)ψ(x, k) + a(k)ψ̄(x, k) (2.2.6)

φ̄(x, k) = ā(k)ψ(x, k) + b̄(k)ψ̄(x, k) (2.2.7)

which define the scattering coefficients a(k), ā(k), b(k) and b̄(k) of the prob-

lem. More remarkably, they can also be expressed in terms of Wronskians

of the eigenfunctions

a(k) = W (φ, ψ), ā(k) = −W (φ̄, ψ̄) (2.2.8)

b(k) = −W (φ, ψ̄), b̄(k) = W (φ̄, ψ) (2.2.9)

Together with these basis, it is then convenient to consider the set of

Jost functions

M(x, k) = eikx φ(x, k), N̄(x, k) = eikx ψ̄(x, k) (2.2.10)

N(x, k) = e−ikx ψ(x, k), M̄(x, k) = e−ikx φ̄(x, k) (2.2.11)

which satisfy the following set of differential equations

χx(x, k) = ik(J + I)χ(x, k) + (Qχ)(x, k) (2.2.12)

χ̃x(x, k) = ik(J + I)χ̃(x, k) + (Qχ̃)(x, k), (2.2.13)
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with constant boundary conditions

M(x, k) →





1

0



 , M̄(x, k) →





0

1



 , x→ −∞ (2.2.14)

N(x, k) →





0

1



 , N̄(x, k) →





1

0



 , x→ +∞. (2.2.15)

where the quantity J and Q have been defined by

J =





−1 0

0 1



 , Q =





0 q

r 0



 , (2.2.16)

This formulation of the problem allows one to represent the Jost functions

by means of the following Volterra integral equations

M(x, k) =





1

0



 +

∫ +∞

−∞

G+(x− x′, k)(QM)(x′, k)dx′ (2.2.17)

N(x, k) =





0

1



+

∫ +∞

−∞

G̃+(x− x′, k)(QN)(x′, k)dx′ (2.2.18)

M̄(x, k) =





0

1



 +

∫ +∞

−∞

G̃−(x− x′, k)(QM̄)(x′, k)dx′ (2.2.19)

N̄(x, k) =





1

0



 +

∫ +∞

−∞

G−(x− x′, k)(QN̄)(x′, k)dx′, (2.2.20)

the matrix functions G and G̃ being

G± = ±θ(±x)





1 0

0 e2ikx



 (2.2.21)

G̃± = ∓θ(∓x)





e−2ikx 0

0 1



 (2.2.22)

where θ(x) is the Heaviside function. Taking into account the summability

of the potentials q, r it can be proved ([25]) that M(x, k) and N(x, k) are

analytic functions in the upper-k plane and continuous up to the real axis,
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while M̄(x, k) and N̄(x, k) are analytic functions of k in the lower-k plane

and continuous up to the real axis. These properties ensures thus analyticity

for the scattering coefficients a(k) and ā(k) for Im(k) > 0 and Im(k) < 0

respectively, due to the following integral relations

a(k) = 1 +

∫ +∞

−∞

q(x′)M (2)(x′, k)dx′ (2.2.23)

b(k) = 1 +

∫ +∞

−∞

e−2ikx′r(x′)M (1)(x′, k)dx′ (2.2.24)

ā(k) = 1 +

∫ +∞

−∞

r(x′)M̄ (1)(x′, k)dx′ (2.2.25)

b̄(k) = 1 +

∫ +∞

−∞

e2ikx
′

q(x′)M̄ (2)(x′, k)dx′ (2.2.26)

The final step in the analysis of the scattering problem is to extract

the so called proper eigenvalues of (2.2.2), that is the complex values of

k (Imk 6= 0) corresponding to bounded solutions v which vanish for large

values of x. Because of (2.2.7) one can easily show that these values are

the zeroes of a(k) and ā(k) in the upper and lower k-plane respectively.

In correspondence of these critical values, from the relations between the

scattering data and eigenfunctions, one can easily show that the following

hold

φj(x) = cj ψj(x) j = 1, ..., J (2.2.27)

and

φ̄j(x) = c̄j ψ̄j(x) j = 1, ..., J̄ (2.2.28)

where the coefficients cj and c̄j are the norming constants, while J and J̄

denote the total number of zeroes for the coefficients a(k) and ā(k) in the

upper and lower plane. In terms of Jost functions the norming constants

are defined by

Mj = e2ikjx cj Nj(x), M̄j = e−2ik̄jx c̄j N̄j(x) (2.2.29)

On the other hand the NLS corresponds to a symmetry reduction of the

system (2.2.5) r = −q∗. Accordingly this symmetry in the potentials in-
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duces a symmetry between the Jost functions analytic in the upper and

lower complex plane, so that

ψ̄(x, k) =





ψ(2)(x, k∗)

−ψ(1)(x, k∗)





∗

, φ̄(x, k) =





−φ(2)(x, k∗)

φ(1)(x, k∗)





∗

(2.2.30)

N̄(x, k) =





N (2)(x, k∗)

−N (1)(x, k∗)





∗

, M̄(x, k) =





−M (2)(x, k∗)

M (1)(x, k∗)





∗

(2.2.31)

and hence, due to (2.2.26), on the scattering coefficients

ā(k) = a∗(k∗) (2.2.32)

b̄(k) = −b∗(k∗) (2.2.33)

From (2.2.33) it follows that kj is zero of a(k) if and only if k∗j is a zero for

ā(k). Therefore J = J̄ and

k̄j = k∗j , c̄j = −c∗j , j = 1, ..., J. (2.2.34)

Evolution of scattering data

In order to get the time evolution of the scattering data, we can look for

solutions of the auxiliary problem in the form

Φ(x, t) = eA∞tφ(x, t), Φ̄(x, t) = e−A∞tφ̄(x, t) (2.2.1)

Ψ(x, t) = e−A∞tψ(x, t), Ψ̄(x, t) = eA∞tψ̄(x, t) (2.2.2)

where A∞ = 2ik2. Then the evolution equations become

∂t φ =





A− A∞ B

C −A− A∞



φ (2.2.3)

∂t φ̄ =





A+ A∞ B

C −A + A∞



φ (2.2.4)
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being A,B,C the corresponding entries of temporal Lax operator. By tak-

ing into account (2.2.7) and letting x→ +∞ one finally gets

∂t a(k, t) = 0, ∂t ā(k, t) = 0 (2.2.5)

∂t b(k, t) = −2A∞ b(k), ∂t b̄(k, t) = 2A∞ b̄(k) (2.2.6)

whose solution is

a(k, t) = a(k, 0), ā(k, t) = ā(k, 0) (2.2.7)

b(k, t) = e−4ik2t b(k, 0), b̄(k, t) = e4ik2t b̄(k, 0). (2.2.8)

On the other hand, by introducing the reflection coefficients ρ(k, t) = b(k, t)/a(k, t)

and the modified norming constants Cj = cj/a
′(kj), we also have

ρ(k, t) = e−4ik2t b(k, 0), ρ̄(k, t) = e4ik2t b̄(k, 0) (2.2.9)

Cj(t) = Cj(0) e−4ik2t, C̄j(t) = C̄j(0) e4ik2t. (2.2.10)

Inverse scattering problem

The final step of the IST consists in reversing the one-to-one map which,

starting from the potentials, allow to build up the Jost functions of the

principal problem and the corresponding scattering data.

Due to the analyticity of N(x, k) and N̄(x, k) in the regions Imk > 0

and Imk < 0, the functions µ(x, k) and µ̄(x, k) defined by

µ(x, k) = M(x, k) a−1(k), µ̄(x, k) = M̄(x, k) ā−1(k). (2.2.1)

are meromorphic in the upper and lower complex plane, respectively. There-

fore, the inverse problem consists in finding out the unknown sectionally

meromorphic functions satisfying the following “scattering” relations

µ(x, k) = N̄(x, k) + ρ(k)e2ikxN(x, k) (2.2.2)

µ̄(x, k) = N(x, k) + ρ̄(k)e−2ikx N̄(x, k) (2.2.3)
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Let us assume that the potential is such that a(k) have a finite number of

simple zeroes (soliton solutions for NLS) and that a(ξ) 6= 0 for any ξ ∈ R.

By applying the projection operators P− and P+, defined as

P±(f)(k) =
1

2πi

∫ +∞

−∞

f(ζ)

ζ − (k ± i0)
dζ (2.2.4)

to (2.2.3) and (2.2.3) respectively, it can be proved that

N̄(x, k) =





1

0



+

J
∑

j=1

Cj e
2ikjxNj(x)

k − kj
+

1

2πi

∫ +∞

−∞

ρ(ξ)e2iξxN(x, ξ)

ξ − (k − i0)
dξ(2.2.5)

N(x, k) =





0

1



 +
J̄
∑

j=1

C̄j e
−2ik̄jx N̄j(x)

k − k̄j
− 1

2πi

∫ +∞

−∞

ρ̄(ξ)e−2iξxN̄(x, ξ)

ξ − (k + i0)
dξ(2.2.6)

By evaluating now the equations (2.2.6) at k = k̄l for l = 1, ..., J̄ and (2.2.6)

at k = kj for j = 1, ..., J we have

N̄l(x) =





1

0



+
J
∑

j=1

Cj e
2ikjxNj(x)

k̄l − kj
+

1

2πi

∫ +∞

−∞

ρ(ξ)e2iξxN(x, ξ)

ξ − k̄l
dξ(2.2.7)

Nj(x, k) =





0

1



+

¯̄J
∑

m=1

C̄m e
−2ik̄mx N̄m(x)

kj − k̄m
− 1

2πi

∫ +∞

−∞

ρ̄(ξ)e−2iξxN̄(x, ξ)

ξ − km
dξ(2.2.8)

which is a linear algebraic-integral system of equations which, in principle,

solve the inverse problem for the eigenfunctions N(x, k) and N̄(x, k). By

performing the asymptotic expansion of (2.2.8-2.2.8) to the expansions of

(2.2.20) we obtain the

r(x) = −2i
J
∑

j=1

e2ikjxCjN
(2)
j (x) +

1

π

∫ +∞

−∞

ρ(ξ)e2iξxN (2)(x, ξ)dξ (2.2.9)

q(x) = 2i
J̄
∑

j=1

e−2ik̄jx C̄jN̄
(1)
j (x) +

1

π

∫ +∞

−∞

ρ̄(ξ)e−2iξxN̄ (1)(x, ξ)dξ,(2.2.10)

which reconstruct the potentials.
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2.2.2 Soliton solutions for the NLS

In order to recover the one-soliton solution we have to impose that the

ρ(ξ) = 0 for every ξ ∈ R, in such a way the algebraic-integral system (2.2.8-

2.2.8) reduces to the linear algebraic system

N̄l(x) =





1

0



+
J
∑

j=1

Cj e
2ikjxNj(x)

k̄l − kj
(2.2.1)

Nj(x, k) =





0

1



 +

J̄
∑

m=1

C̄m e
−2ik̄mx N̄m(x)

kj − k̄m
(2.2.2)

By fixing J = J̄ = 1 and imposing the reduction r = −q∗, we get

N
(1)
1 (x) = − C∗

1

k1 − k̄∗1
e−2ik∗1x

(

1 − | C1 |2 e2i(k1−k∗1)x

(k1 − k∗1)
2

)−1

(2.2.3)

N
(2)
1 (x) =

(

1 − | C1 |2 e2i(k1−k∗1)x

(k1 − k∗1)
2

)−1

(2.2.4)

and finally from (2.2.10) the one-soliton solution

q(x) = −2iη
C∗

1

| C1 |
e−2iξxsech(2ηx− 2δ) (2.2.5)

where

k1 = ξ + i η, e2δ =
| C1 |
2η

(2.2.6)

Including then the time dependence of C1 given by (2.2.10) the moving

one-soliton solution of the focusing NLS,

q(x, t) = 2ηe−2iξx+4i(ξ2−η2)t−i(ψ0+π/2)sech(2ηx − 8ξηt− 2δ0) (2.2.7)

with

e2δ0 =
| C1(0) |

2η
, ψ0 = argC1(0). (2.2.8)
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Chapter 3

One-Dimensional Bose Gases

with N-Body Attractive

Interactions

As discussed in Chapter 1 , the technique of Feshbach resonances allows for

a change of the sign of the scattering length: by switching from repulsion to

attraction, i.e. from positive to negative scattering length, the homogeneous

1-D Gross-Pitaevskii equation (GPE) admits a solution corresponding to a

localized wave-function (bright soliton) [25]. Bright matter-wave solitons

have been created both in Bose-Einstein condensates of 7Li [35, 37] and

85Rb atoms [55]. Several localized states have also been produced in quasi-

one-dimensional geometries [56].

With attractive two-body interactions, a crucial role is played both by

the dimension of the system and the trapping potential. In three dimen-

sions, for instance, homogeneous attractive bosons are unstable against the

collapse, but the presence of an external harmonic trap can stabilize them:

the critical value of the interaction coupling that gives rise to the collapse

can be obtained from the GPE [2, 3], and the critical particle number is given
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by ∼ NT | a | /aosc where NT is the total number of particles, a < 0 is the

scattering length and aosc is the harmonic oscillator length [33, 32, 57, 47].

In the one-dimensional case, the bright soliton solution is the ground state

of the homogeneous GPE with negative scattering length. Furthermore,

the GPE ground state energy is in agreement, in the thermodynamic limit,

with the ground state energy obtained by Bethe ansatz for the attractive

one-dimensional Bose gas [58] (see more in section 3.1).

In this Chapter, motivated by the recent papers [19, 21] in which dif-

ferent schemes have been proposed to realize effective tunable three-body

interactions, we consider an attractive three-body contact potential and,

more generally, a N -body contact interaction. We consider the limit of

large number of particles, NT >> 1, with the constraint cN (N−1)
T = const

(c being the strength of the N -body interactions) so that the energy per

particle is finite. Since no Bethe solution is known in the general case of N -

body interaction, we employ an Hartree approximation to study the problem

in the limit mentioned above. This means that the ground state energy is

estimated by using the bright soliton solution of a generalized mean-field

GPE equation. As we will show, the N = 3 is a special case: for this value,

in fact, a localized soliton wavefunction exists only for a critical value of

the interaction strength and has an infinite degeneracy. The stabilization

of this bound state can be cured by putting the system in an external har-

monic trap. The variational approach, that we will also employ, reveals the

tendency of the higher body interactions to become more unstable in higher

dimensions. It is worth stressing that the case we are considering does not

consist of a N -body interaction added to the 2-body interaction of the Bose

gas: we are interested, in fact, to the effect of the N -body in its own, since

the coefficient of the two-body interaction can be tuned to be zero [19].

The plan of the chapter is the following: in section 3.1 we introduce

the Hamiltonian corresponding to N -body contact attractive interactions
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and we write the (mean-field) generalized GPE. The familiar case N = 2

is briefly recalled. In section 3.2 the bright soliton solution for the homo-

geneous limit is obtained by using a mechanical analogy with a fictitious

particle moving in a potential, and its properties are investigated. The

comparison with the numerical results confirms that for N ≤ 3 this is the

ground state of the generalized GPE, as expected. The ground state energy

by varying N is also determined. In section 3.3 we consider the effect of an

harmonic trap: using a variational ansatz for the ground state we determine

the critical value of the interaction needed to stabilize the bound state.

3.1 N-body attractive contact interactions

The general quantum Hamiltonian for an homogeneous one-dimensional

Bose gas with N -body interactions V (x1, · · · , xN ) is

Ĥ =

∫

dxΨ̂†(x)

(

− ~
2

2m

∂2

∂x2

)

Ψ̂(x) (3.1.1)

+
1

N !

∫

dx1 · · ·dxN Ψ̂†(x1) · · · Ψ̂†(xN)V (x1, · · · , xN)Ψ̂(xN) · · · Ψ̂(x1) ,

where Ψ̂(x) is the bosonic field operator. Let us note that the Lieb-Liniger

model for the interacting one-dimensional Bose gas [10] is recovered for N =

2 and V (x1, x2) = V0 δ(x1 − x2): where V0 positive (negative) corresponds

to repulsion (attraction) between the bosons. The low-energy properties

of the Lieb-Liniger model can be studied by the Luttinger liquid effective

description [59] obtained by bosonization [60] (a general discussion of the

correlation functions is presented in [61]).

For N -body attractive contact interactions we set

V (x1, · · · , xN) = −c
N−1
∏

i=1

δ(xi − xi+1) c > 0 (3.1.2)
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so that the Hamiltonian (3.1.1) reads

Ĥ =

∫

dxΨ̂†(x)

(

− ~
2

2m

∂2

∂x2

)

Ψ̂(x) − c

N !

∫

dx
[

Ψ̂†(x)
]N [

Ψ̂(x)
]N

.

(3.1.3)

In the Heisenberg representation, the equation of motion for the field oper-

ator is given by

i~
∂Ψ̂

∂t
=
[

Ψ̂, Ĥ
]

= − ~
2

2m

∂2

∂x2
Ψ̂ − c

(

Ψ̂†
)N−1 (

Ψ̂
)N−1

Ψ̂ . (3.1.4)

As we have seen in the previous chapter, the Lieb-Liniger model (N = 2)

is integrable and its ground state energy E reduces, for large L, to the

following expression [62]

E

NT
= −mc

2 (N 2
T − 1)

24~2
, (3.1.5)

where NT is the total number of particles. For large NT , from (3.1.5) it

follows that one has to keep the product cNT = const in order to have a

finite ground state energy per particle. Using the integrability of the N = 2

model, the correlation functions of the one-dimensional Bose gas at zero

temperature were recently calculated both in attractive [65] and repulsive

regime [63, 64].

For the three-body problem (N = 3), no Bethe ansatz solution is avail-

able, except for a more complicate double-δ function Bose gas which can be

mapped in a one-dimensional anyon gas [66]. Hence, to estimate the ground

state energy E we propose here to employ a mean-field (Hartree) approach:

in this approach, the ground state energy is given in terms of the ground

state energy of a generalized GPE. The same procedure will be employed

for other values of N .

Before starting the discussion of the general N -body case, let us briefly

remind how this task can be successfully performed for N = 2 [58]. First

of all, in the mean-field approximation the ground state wavefunction is
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written as

ψGS(x1, · · · , xNT
) ∝

NT
∏

i=1

ψ0(xi) , (3.1.6)

where the function ψ0(x) is the ground state of the time-independent ho-

mogeneous GPE, i.e. the nonlinear Schrödinger equation (NLSE), given

by

− ~
2

2m

∂2

∂x2
ψ0 − c | ψ0 |2 ψ0 = µψ0 , (3.1.7)

where µ is the chemical potential and the normalization is given by

∫

dx | ψ0 |2= NT . (3.1.8)

The energy is expressed as

EGP =

∫

dxψ∗
0(x)

[

− ~
2

2m

∂2

∂x2
− c

2
| ψ0(x) |2

]

ψ0(x) . (3.1.9)

The static bright soliton solution of (3.1.7) is given by

ψ0(x) =
√

NT
N

cosh (kx)
, (3.1.10)

with

k =
mcNT

2~2
, N =

√

mcNT/~2

2
. (3.1.11)

Substituting this expression in (3.1.9) one gets

EGP
NT

= −mc
2N 2

T

24~2
, (3.1.12)

i.e., the exact result (3.1.5) up to a factor ∝ 1/N 2
T . A comment is in

order: in the homogeneous one-dimensional interacting case there is, strictly

speaking, no condensate. However the condition cNT = const implies that,

for large NT , the coupling constant should scale to zero, c → 0: hence, we

are in a weak coupling regime where the mean-field GPE is expected to

give reasonable results. In a similar way, for c < 0 (repulsive interaction)

the comparison between the exact and the GPE ground state energy shows
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that the latter gives the correct behaviour for c → 0 while the Bogoliubov

approximation gives the exact first-order corrections for small | c | [10].

Based on the analysis above, for general N and in the limit c → 0 we

expect that a reasonable description of both the ground state properties and

the low-energy dynamics is given by the mean-field generalized homogeneous

GPE

i~
∂ψ(x, t)

∂t
=

(

− ~
2

2m

∂2

∂x2
− c|ψ(x, t)|α

)

ψ(x, t) , (3.1.13)

where the nonlinearity degree α of the “power-law” nonlinear Schrödinger

equation (PL-NLSE) (3.1.13) is related to N by

N ≡ α

2
+ 1 . (3.1.14)

The mean-field ground state is given by the time-independent PL-NLSE

equation
(

− ~
2

2m

∂2

∂x2
− c|ψ0(x)|α

)

ψ0(x) = µψ0(x) , (3.1.15)

where, as before, µ is chemical potential and ψ0 is normalized to the total

number of particles NT , i.e.
∫

dx|ψ0(x)|2 = NT . eqn. (3.1.13) is a particular

case of the following generalized NLSE

i~
∂ψ(x, t)

∂t
=

(

− ~
2

2m

∂2

∂x2
−F (| ψ(x, t) |)

)

ψ(x, t) , (3.1.16)

where F (| ψ |) is a general function (see more references in the reviews

[67, 68]). Eqn. (3.1.13) corresponds to a power-law dependence F ∼| ψ |α,
and it is used in several physical contexts, including semiconductors [69]

and nonlinear optics [24, 70, 71], where it describes pulse propagation in

optical materials having a power law dependence of the refractive index on

intensity. In the present context of ultracold bosonic gases, the nonlinearity

degree α depends through eqn. (3.1.14) on the number of bodies which

interacts between themselves.
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With N ≥ 2 integer, α is an even integer; however, in eqn. (3.1.15)

α can take any real positive value and, in the following, we will consider

this general case. In this respect let us remark that the axial dynamics

of a Bose-Einstein condensate induced by an external potential with cylin-

drical symmetry in the transverse directions can be studied by introducing

an effective one-dimensional GPE equation with α = 1 [30] and that for

Bose-Einstein condensates in one-dimensional optical lattices the effective

equation has a value of α that depends on the details of the trapping po-

tentials and it is, in general, a non-integer value [72].

3.2 Ground state of the generalized nonlin-

ear Schrödinger equation

In the following we will study the attractive N -body problem in the thermo-

dynamic limit, defined by NT → ∞, with the product G = cN α/2
T kept fixed.

This will ensure the energy per particle of the PL-NLSE bright soliton to

be finite. In dimensionless units, rescaling the wave function ψ0 →
√NTψ0,

eqn. (3.1.15) reads
(

−1

2

∂2

∂x2
− g|ψ0(x)|α

)

ψ0(x) = µ̃ψ0(x) , (3.2.17)

where g and µ̃ are the dimensionless versions of c and µ, respectively (by

choosing ` as unit length, one has µ̃ = µ`2mµ/~2 and g = Gm`2−α/2/~2).

For the ground state of this equation we look for a real solution, with the

normalization condition
∫ ∞

−∞

ψ2
0(x) dx = 1 . (3.2.18)

Obviously, once a static solution ψ0(x) of eqn. (3.2.17) has been found, the

corresponding soliton wave solution with velocity v is given by

ψ0(x, t) = ψ0(x− vt) e−i(µ̃t−vx+v
2t/2) . (3.2.19)
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A-A -A
ψ0

V

Figure 3.1: Typical shape of the potential V (ψ0) for negative values of µ̃.

±A are the inversion points of the motion.

The real solution of eqn. (3.2.17) can be found by using a mechanical anal-

ogy. In fact, interpreting x as the time variable and ψ0(x) as the coordinate

of a fictitious particle, eqn. (3.2.17) formally corresponds to the Newton’s

equation of motion of this particle (of mass M = 1/2), subjected to the

force

F = −µ̃ψ0 − gψα+1
0 . (3.2.20)

This force can be derived by the potential

V (ψ0) =
µ̃

2
ψ2

0 +
g

α + 2
ψα+2

0 . (3.2.21)

As any motion of a particle in a potential, this is accompanied by the integral

of motion that corresponds to its mechanical energy

H =
M

2

(

dψ0

dx

)2

+ V (ψ0) = const . (3.2.22)

Following this mechanical analogy and looking at the typical shape of the

potential (see the plot in Fig. 3.1 ), it is straightforward to realize that

non-trivial motions can take place only if µ̃ < 0.

Notice that a solution is always given by the equilibrium configuration
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of the potential (3.2.21)

ψ0(x) =

(−µ̃
g

)1/α

. (3.2.23)

Since this solution can be normalized only on a finite volume L, from the

normalization condition (3.2.18) we then recover the following relation be-

tween the chemical potential and the volume

µ̃ = −gL−α/2. (3.2.24)

Hence the constant solution simply reads

ψ0 =
1√
L

. (3.2.25)

In order to determine the ground state, we are going to compare the GPE

energy of the above constant solution with the one of a localized wavefunc-

tion.

Taking the mechanical analogy, we look for a solution whose asymptotics

behaviour reproduces a finite value for the auxiliary Hamiltonian H. By

imposing that both the solution ψ0(x) and its derivative dψ0

dx
(x) vanish as

x → ±∞ (localized solution), we get that H is identically zero (notice that

this value is not the GPE energy).

The interpretation is that, the fictitious particle takes off from the origin

at x = −∞, moving to the right (or, equivalently to the left, since the

original equation is invariant under ψ0(x) → −ψ0(x)), until it reaches the

inversion point A at the time x = 0. Once the particle arrives in A, it

inverts its motion and comes back to the origin with a vanishing velocity.

The important point of this picture is that A coincides with the maximum

amplitude of the bright soliton solution. An additional remarks is now in

orded: the kind of motion we have just described occurs for any potential

with the shape shown in Fig. 3.1. Thus, in order to keep a physical meaning

to the wavefunction, a further constraint (3.2.18) has to be imposed. This
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condition can be fulfilled only for a particular shape of the potential, i.e. for

a particular combination of the parameters µ̃ and g: it is as if the solution

is looking for its proper potential.

In the following, it is convenient to introduce the quantities

a2 ≡ − µ̃(α+ 2)

2g
> 0 , b ≡

√

4g

α + 2
, γ ≡ 2

α
. (3.2.26)

Using the integral of motion H, for generic values of µ̃, g and α (with µ̃ < 0,

g > 0 and α > 0) the solution is given by a quadrature

∫ ψ0(x)

A

dq
√

a2q2 − qα+2
= b

∫ x

0

dτ , (3.2.27)

where A = aγ is the inversion point reached by the particle at the ”time”

x = 0. Using the exact expression of the integral of the left hand side [74]

∫ ψ0(x)

A

dq
√

a2q2 − qα+2
= − 1

aα
ln

[

a+
√

a2 − ψα0 (t)

a−
√

a2 − ψα0 (t)

]

, (3.2.28)

one gets

ψ0(x) =
A

coshγ
(

α
2

√−2µ̃ x
) . (3.2.29)

By imposing now the normalization condition (3.2.18) to the solution (3.2.29):

we finally get the relation between µ̃ and g, which is equivalent to fix the

shape of the potential

(−µ̃)
4−α
2α = g2/α

(

2

α + 2

)2/α
αΓ(2/α+ 1/2)√

2πΓ(2/α)
. (3.2.30)

When α 6= 4, we can use this equation to express µ̃ as a function of g and,

in particular, to write the normalization A as

A =

(√

2g

πγ(γ + 1)

Γ(γ + 1/2)

Γ(γ)

)

2

4−α

. (3.2.31)

In Fig. 3.2 we plot the soliton solution (3.2.29) for different values of α at

g = 1.
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Figure 3.2: Ground state wavefunctions of the PL-NLSE (3.2.17) for α =

1, 2, 2.5, 3 (dimensionless units are used with g = 1).

Reamarkably enough, when α = 4, eqn. (3.2.30) leaves µ̃ undetermined:

this means that the corresponding wavefunction

ψ0(x) =

(

√

−3µ̃/g

cosh(2
√−2µ̃ x)

)1/2

(3.2.32)

is solution of the nonlinear Schrödinger equation (3.2.17) for every µ̃. In

this case, however, only a particular value of g, given by

g∗ =
3π2

8
, (3.2.33)

guarantees its correct normalization (3.2.18). Expressed in more physical

terms, the attractive 3-body interaction has the peculiarity that one can

arbitrarily vary the chemical potential provided that the coupling constant

be fine-tuned to the critical value g∗: increasing or decreasing (in modulus)

the chemical potential simply results, in this case, in shrinking or enlarging

the shape of the soliton. This is shown in Fig. 3.3 where the wavefunction

(3.2.32) is plotted for two different values of µ̃: in the inset we plot the
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corresponding potential (3.2.21), showing a larger (smaller) inversion point

corresponding to the smaller (larger) width.

The fact that µ̃ is undetermined and the soliton can arbitrarily change

its shape does not imply that the GPE energy is undetermined: in fact, the

explicit computation of the next subsection shows that, in this case, the

energy does not depend on the value of µ̃. Then, for N = 3 and g = g∗, an

infinite degeneracy parametrized by the chemical potential µ̃ < 0 occurs.

In Fig. 3.4(a)-(b) we plot the chemical potential µ̃ for two different

values of g, one smaller than g∗ and the other larger: it is seen that for

g < g∗ (g > g∗), then µ̃→ 0 (µ̃→ −∞) for α → 4−, while µ̃→ ∞ (µ̃→ 0)

for α → 4+. The singular nature of the 3-body interaction can then be

recovered by studying the limit α → 4 of the formulas (3.2.29), (3.2.30),

(3.2.31) given above: for α → 4−, if g = g∗ the normalization A goes to 1,

while if g < g∗, A → 0 and µ̃ → 0 (i.e. we have a non-localized solution)

whereas if g > g∗, both A and µ̃ diverge, i.e. the wavefunction collapses to

the origin.

It is worth to mention that a singular behavior of the nonlinear Schrödinger

equation, corresponding to a self-focusing singularity present at the value

α = 4 [73], has also been observed in the dynamical blowing up of the

moving wave-packets of this equation [75]. In the present application, this

instability means that the local 3-body attractive interactions cannot sus-

tain a bound state unless there is a fine tuning of the interaction. In the

next section we will show how an external trap can help to stabilize the

bound state for a generic value of the coupling.

To better understand the behaviour of the solution ψ0(x) as a function

of α, let us study in which way the soliton width σα defined as usual

σ2
α =

∫

dxx2ψ2
0(x) (3.2.34)

depends on the microscopic interactions. Inserting (3.2.32) in (3.2.34), one
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Figure 3.3: Wavefunction (3.2.32) for N = 3 and g = g∗ plotted for µ̃ = −1

(solid line) and µ̃ = −5 (dot-dashed line). Inset: corresponding potential

(3.2.21) for µ̃ = −1 (solid line) and µ̃ = −5 (dot-dashed line).

gets

σ2
α =

Γ(γ + 1/2)

πΓ(γ)
· γ(γ + 1)

2Aα
· Iα , (3.2.35)

where

Iγ =

∫

dX
X2

cosh2γ (X)
, γ > 0. (3.2.36)

One finds σ2
2(g) = π2/3g ≈ 3.28/g and σ2

1(g) = (π2 − 6)/(12g)1/3 ≈
1.69/g1/3. For large α one has σ2

α → g/2, while, of course, σ2
α → ∞ for

α → 0 (no localized soliton without interaction).

For g < g∗, from eqn. (3.2.35) one sees that for α → 4−, σα → ∞, while

for α → 4+, σα → 0. In Fig. 3.5 we report, for g = 1 < g∗, the analytical

values of the width σ2
α and their numerical estimates obtained from the

PL-NLSE. A divergence is observed for α → 4−, corresponding to the 3-

body attraction: the bright soliton becomes larger and larger getting close

to α = 4, while for α slightly larger than 4 the soliton becomes extremely
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Figure 3.4: (a)-(c) Chemical potential and energy (in dimensionless units) of

the bright soliton solution (3.2.29) for g = 3 < g∗ (solid line) and g = 4 > g∗

(dashed line) for α < 4 - (b)-(d) chemical potential and energy for g = 3

(solid line) and g = 4 (dashed line) for α > 4.

narrow. This means that there is a collapse of the solution (3.2.29) going

to α = 4 from large values of α.

On the other hand, for g > g∗, then for α → 4−, σα → 0, while for

α → 4+, σα → ∞. It should be stressed that, for α > 4, although (3.2.29)

is a solution of the PL-NLSE (3.2.17), it is no longer its ground state: the

divergence of σα for α→ 4− is a signature of the disappearance of the bound

state due to the 3-body interaction.

To conclude this section, one may wonder how robust is the infinitely

degenerate ground state found for the 3-body interaction at g = g∗, in

particular it is important to see if and how this degeneracy may be lifted

by the quantum fluctuations. We point out that this highly degenerate

ground state is quite peculiar, because the standard linear stability anal-

ysis of the (Hartree) mean-field solutions does not directly apply to this
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case. Indeed, we remind that the results of the standard linear stabil-

ity analysis of stationary spatially localized solutions of the generalized

NLSE (3.1.16) can be summarized by the the Vakhitov-Kolokolov crite-

rion [76, 77, 78]. Shortly, the criterion consists of the following: for the

generalized NLSE i∂ψ
∂t

= −1
2
∂2ψ
∂x2 − F(| ψ |)ψ, one writes the stationary

solutions in the form ψ(x, t) = Φ(x; µ̃)e−iµ̃t (where Φ(x; µ̃) vanishes for

| x |→ ∞) and then computes the quantity ns(µ̃) =
∫∞

−∞
| Φ(x; µ̃) |2 dx.

The Vakhitov-Kolokolov criterion for the onset of the soliton instability

results in dns(µ̃)/dµ̃ = 0, the stability (instability) region correspond-

ing to dns(µ̃)/dµ̃ < 0 (dns(µ̃)/dµ̃ > 0). When this criterion is applied

to the PL-NLSE (3.1.13) for α = 4, i.e. F = −g | ψ |4, one obtains

Φ(x; µ̃) = [A/ cosh(Kx)]1/2, where µ̃ = −K2/8 and A2(K) = 3K2/8g. It fol-

lows ns(µ̃) = πA(K)/K =
√

g∗/g, then giving dns(µ̃)/dµ̃ ≡ 0 identically for

every µ̃ < 0. This result makes evidence of the peculiarity of the 3-body de-

generate ground state and the study of its stability with respect to quantum

fluctuations is therefore an interesting problem requiring an investigation

going beyond the standard linear stability analysis.

3.2.1 Ground state energy

Using the bright soliton solution (3.2.29) we can now estimate the energy

per particle. Going back to the physical dimensions of all quantities and

normalizing now ψ0 to NT , for α 6= 4 the chemical potential is given by

µ = − ~
2γ2

2mf
2α/(4−α)
γ

(

2mG

~2γ(γ + 1)

)
4

4−α

, (3.2.37)

where

fγ =

√
π Γ(γ)

Γ(γ + 1/2)
.
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Figure 3.5: σ2
α versus the nonlinearity degree α. Solid line: eqn. (3.2.35);

open circles: 〈x2〉 from the numerical determination of the ground state of

the PL-NLSE (3.2.17). The value g = 1 < g∗ and dimensionless units are

used.

The energy per particle is then obtained from the PL-NLSE energy func-

tional

EGP =

∫

dxψ∗
0(x)

[

− ~
2

2m

∂2

∂x2
− 2c

α + 2
| ψ0(x) |α

]

ψ0(x) . (3.2.38)

Using eqn. (3.2.29) we obtain

EGP
NT

= − ~
2

2m

(

2mG

~2

) 4

4−α

E(α) , (3.2.39)

where

E(α) =

{

1

γ(γ + 1)f 2
γ

}
4

4−α

·
[

γ2f 2
γ −

α

α + 2
γ(γ + 1)fγfγ+1

]

. (3.2.40)

For N = 2, µ = −mc2N 2
T/8~

2 and the previous energy (3.1.12) is recovered.

From eqn. (3.2.39) it follows that in order to maintain finite the energy per

particle for large NT one has to keep G fixed.

By a numerical determination of the ground state of the PL-NLSE, we

have verified that (3.2.29) indeed coincides with the ground state for α < 4
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both for g < g∗ and g > g∗. In Fig. 3.6 we compare for g = 1 < g∗ the

ground state energy per particle from eqn. (3.2.39) with the ground state

energy obtained for some values of α obtained from the numerical PL-NLSE.

For g > g∗ and α < 4, a similar agreement is obtained.

For α = 4, as discussed in the previous section, the chemical potential is

undetermined. However, a direct substitution of (3.2.32) in (3.2.38) reveals

that EGP = 0 for g = g∗. Since (3.2.32) is a solution of the PL-NLSE

(3.2.17) for arbitrary µ < 0, and then with arbitrary width, we conclude

that an infinite degeneracy - parametrized by a negative chemical potential

- occurs.

Using the energy (3.2.39) we can also estimate the energy of the constant

solution in the finite interval [−L/2, L/2]: it is Econst/NT = −2cρα/2/(α+2),

where ρ = NT/L is the density. To compare this energy with the previous

result (3.2.39) for the bright soliton solution we have to choose how to

perform the thermodynamic limit: if we choose to keep fixed the quantity

G = cN α/2
T , with large but finite value of NT , sending L to infinite the

energy of the constant solution vanishes. This means that for α > 4 the

constant solution is the ground state of the system; α = 4 and g = g∗ is the

case in which both the solutions have zero energy.

3.3 Effect of an harmonic trap

As we have discussed in the section 1.1.1, the instability of a three-

dimensional Bose gas with two-body attractive interactions can be cured by

means of a harmonic trap provided if the number of particles don’t exceed

its critical value. In one dimension, this situation changes drastically: in

fact, here a stable bright soliton there always exist.

In this section we consider the problem of analysing the effect of a har-

monic trap in one dimensional Bose gas with a 3-body interaction, and more
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Figure 3.6: Ground state energy vs. α. Solid line (dashed line): eqn.

(3.2.38) for α < 4 (α > 4); open circles: energy of the numerical ground

state of the PL-NLSE (3.2.17). Dimensionless units (with NT = 1) and

g = 1 < g∗, as well as different scales of the energy for α < 4 (left part) and

α > 4 (right), are used.

generally, a N -body contact interaction. We show that there is a critical

value c∗ of the interaction, such that for c < c∗, the bound state is stable.

Following the procedure of section 1.1.1, we use the variational wave-

function

ψV (x) = C exp(−x2/σ2) , (3.3.41)

normalized to NT . The energy to be minimized is obtained by inserting the

variational wavefunction (3.3.41) in the generalized GPE functional

E =

∫

dxψ∗(x)

[

− ~
2

2m

∂2

∂x2
− 2c

α + 2
| ψ(x) |α +

m

2
ω2x2

]

ψ(x) . (3.3.42)

To better illustrate the peculiarities of the one-dimensional case, it is

useful to perform the analysis in higher dimensions by choosing the obvious

variational generalized wavefunction

ψV (x1, · · · , xD) = C exp[−(x2
1 + · · ·+ x2

D)

σ2
], (3.3.43)
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where D is the spatial dimension.

The energy in D = 1, 2, 3 is then given by

E

NT
= D

~
2

2mσ2
− cfα,D

N
α
2

T

σ
Dα
2

+D
mω2σ2

8
, (3.3.44)

where

fα,D ≡ 2

α+ 2

(

π

α + 2

)
D
2
(

2

π

)Dα+2

4

. (3.3.45)

Let us consider initially the homogeneous case: for ω = 0 the energy

(3.3.45) has a minimum only when Dα < 4. The critical condition is then

Dα = 4 . (3.3.46)

For D = 1, the critical value corresponds to α = 4: this is in agreement

with the result of the previous section, which is now obtained by a varia-

tional approach. We observe that, without the harmonic trap, the criterion

(3.3.46) can be obtained without choosing a particular variational form for

the ψ, and studying the boundedness of the Hamiltonian [67]. The con-

dition (3.3.46) is plotted in Fig.3.7, which shows that the higher N -body

interactions tend to be more unstable in higher dimensions.

Let us now examine for ω = 0 the critical point Dα = 4. The energy

(3.3.44) reads
E

NTfα,D
=

1

σ2
(c∗ − c) N α/2

T , (3.3.47)

where we defined the critical value

c∗ =
D~

2

2mfα,DN α/2
T

: (3.3.48)

a plot of the energy (3.3.47) is drawn in Fig.3.8. It is clear that for c < c∗

the energy is positive and the minimum corresponds to σ → ∞; at variance,

for c > c∗ the energy is negative and the minimum corresponds to σ → 0,

signaling the collapse. When c = c∗, the energy is zero for every width: this

is how the variational approach mimics the infinite degeneracy of the ground
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Figure 3.7: Stability region according to eqn. (3.3.46): D = 1, 2, 3 corre-

sponds respectively to α = 4, 2, 4/3, i.e. N = 3, 2, 5/3.

state, which was discussed in the previous section. Notice that for D = 1

and α = 4 the critical value (in dimensionless units) is g∗ = 3
√

3π/4 ≈ 4.08,

in good agreement with the analytical value g∗ = 3π2/8 ≈ 3.70.

When the harmonic trap is present (ω 6= 0), there is still a minimum

when α < 4/D. When Dα > 4, we can identify the critical value c∗ as

indicated in [32] for the D = 3 and α = 2 case: since E → −∞ for σ → 0

and E → ∞ for σ → ∞, the critical value is obtained by the conditions

∂E/∂σ = ∂2E/∂σ2 = 0. In this way we arrive to the result

c∗N
α
2

T =

(

Dα− 4

4mω2

)
Dα−4

8
(

16~
2

m(Dα + 4)

)
Dα+4

8 α + 2

2α

(

α + 2

π

)
D
2 (π

2

)D α+2

4

.

(3.3.49)

For c < c∗ there is a minimum and the system is stable, while for c∗ the

energy does not have ever a minimum: hence, irrespectively of how large

ω may be, the system always collapses. For ω = 0 (no trap) and c < c∗

(c > c∗), the minimum value of the energy is then obtained for σ = 0

(σ = ∞).

The instability curve (3.3.49) depends on D: with dimensionless units
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Figure 3.8: Plot of the variational energy (3.3.44) vs. σ at the critical

point Dα = 4 for ω = 0: the dashed, dot-dashed and solid lines correspond

respectively to c < c∗, c > c∗ and c = 0, with c∗ given by eqn. (3.3.48).

(and NT = 1), in one dimension as α → ∞ the critical value g∗ goes to

zero for ω ≥ π and to infinity otherwise; in two dimensions the behaviour

is similar except that g∗ → π/e when ω = π; while in three dimensions

critical value goes to infinity for π ≥ ω and to zero otherwise. A plot of g∗

in D = 1 for α > 4 is presented in Fig. 3.9.
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Figure 3.9: Critical value g∗ vs. α for α > 4, with D = 1. Dimensionless

units (with g = NT = 1) are used, with ω = 1 (dashed line) and ω = 4

(solid line).
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Chapter 4

Ultracold Bosons with 3-Body

Attractive Interactions in an

Optical Lattice

The mean-field dynamics for BECs loaded into the OL is described by the

cubic Gross-Pitaevskii equation (GPE) with a periodic potential [2, 3, 79].

The respective Bogoliubov’s excitation spectrum features a band structure,

similar to the electronic Bloch bands in solid state. If the OL poten-

tial is deep enough, the lowest-band dynamics maps into a discrete non-

linear Schrödinger (NLS) equation [80]. Using this correspondence, the

BEC dynamics was studied in the framework of the nonlinear-lattice theory

[80, 81, 82, 83]. The presence of the OL gives raise to the occurrence of en-

ergetic and dynamical instabilities, which have been predicted theoretically

[84, 85, 86, 87, 88, 89, 90, 91] and studied experimentally [92, 93].

Another important application of the OLs is their use in the manipu-

lation and control of the dynamics of matter-wave solitons: the periodic

potential allows for the creation of localized gap solitons even in case of the

repulsive two-body interaction, as it has been shown in the experiment [94]
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(with the attractive interactions, bright matter-wave solitons were created

and observed in condensates of 7Li [35, 37] and 85Rb [?] atoms). More gen-

erally, the possibility to use space- and time- dependent modulating fields

acting on atoms is a powerful way to control soliton properties [29]: for

instance, while the GPE without external potentials admits stable soliton

solutions only in the 1D geometry [28, 25], periodic potentials can stabilize

soliton solutions even in higher dimensions [95, 96].

As we have seen in the previous chapter, in presence of three-body in-

teractions (N = 3), the system is described by a quintic GPE, i.e. the re-

spective nonlinear term in the energy density is proportional to |ψ|6, where

ψ is the single-atom mean-field wave function (a similar term accounting

for the two-body interactions, N = 2, is proportional to |ψ|4).

For N = 3, normalizable soliton solutions exist only at a critical value of

the interaction strength, at which an infinite degeneracy of the ground states

occurs [31]: wave functions ψ(x) = const · cosh−1/2 (x/σ) with arbitrary

width σ are solutions to the time-independent quintic GPE having the same

energy, but different values of the chemical potential. A relevant issue is

how this infinite degeneracy is lifted by a periodic potential like the one

created by an OL [95, 97].

When the two-body interaction is present, the mean-field equation is a

cubic-quintic (CQ) GPE [97, 98]. In particular, if the two-body interaction

is repulsive while its three-body counterpart is attractive, soliton solutions

to the CQ GPE can be found in an exact analytical form (in the absence of

an external potential), but they are unstable [98], see section 4.1.1 below.

The issue we address in this chapter is the possibility to stabilize such

localized solitons by adding an OL. Recently it has been shown [19] that it

is possible to tune the two-body interaction independently from the three-

body ones. It is relevant to mention that, in the framework of the effective

GPE for the BEC loaded into a nearly 1D (“cigar-shaped”) trap, with tight
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transverse confinement, an effective attractive quintic term appears in the

absence of any three-atom interactions, as a manifestation of the deviation

from the one-dimensionality [99, 98]. We also mention that in pure one-

dimensional case the CQ GPE equation arises only if the three-body losses

are negligible.

Apart from the BEC context, where the nonlinearity degree is related

to the number of atoms simultaneously involved in the microscopic contact

interaction, the quintic NLS equation and, more generally, ones with the

power-law and CQ nonlinearities are also important as models of the light

propagation in self-focusing media [100]. In the cubic case (Kerr medium),

the effect of imprinted optical lattices have been investigated both in local

[101, 95] and non-local [102, 103] models. In Refs. [95, 101, 96, 104, 105] it

was shown that the addition of an OL stabilizes solitons against the collapse

in every dimension, the peculiarity of one-dimensional cubic GPE being the

absence of a threshold (minimum necessary norm) for the existence of the

soliton.

In this chapter, we study effects of the OL on the existence and stability

of localized states of the 1D boson gas with three-body contact interactions.

First, we look for soliton solutions to the quintic GPE in the presence of

the periodic potential by introducing a variational wave function (ansatz ),

which is modeled on the respective Townes-type soliton, i.e., it yields the

exact solution in the absence of the lattice, and analyze energy minima

corresponding to this ansatz. The OL with any value of its strength (i.e.,

with zero threshold) opens a stability window around the critical point [97],

where the soliton solutions are stable, as we discuss in Section II.

A new situation arises when the repulsive cubic (two-body) interaction

is added to the quintic (three-body) attractive term. In the absence of the

external potential, the respective solitons are strongly unstable, in the sense

of having an unstable eigenvalue in the Bogoliubov - de Gennes spectrum
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of small perturbations around them [98], while the Townes solitons in the

quintic equation are, in the same sense, neutrally stable degenerate objects,

whose actual instability is subexponential, being accounted for by a zero

eigenvalue. We demonstrate that the OL opens a stability window for soli-

tons in this situation too, but only if the lattice strength exceeds a finite

threshold value.

The plan of the chapter is as follows. In the section 4.1 the properties of

the (unstable) soliton solutions to power-law GPE equation are summarized

and cubic-quintic (CQ) GPE corresponding to the mean-field description of

the 1D Bose gas with two-body repulsive and three-body attractive inter-

actions is introduced. In the sections 4.2 and 4.3, we use the variational

approximation (VA)[109] to discuss the effect of the OL on solitons. We

introduce an appropriate ansatz and compute the corresponding energy.

The limit of the vanishing two-body interaction is considered and compared

with previous results [97]. In section 4.4, the stability region for the soli-

ton solution in the presence of the repulsive two-body interaction and OL

is determined and compared with numerical findings. The effect of an ad-

ditional harmonic-trap potential is studied in section 4.5, wher it will be

shown that the stability region depends on the matching between minima

of the periodic potential and the location of the minimum of the harmonic

trap.

4.1 The model

The quantum many-body Hamiltonian for the 1D Bose gas with N -body

contact attractive interactions loaded in an external potential is

Ĥ =

∫ +∞

−∞

dx

{

Ψ̂†(x)T̂ Ψ̂(x) − c

N !

[

Ψ̂†(x)
]N [

Ψ̂(x)
]N

+ Ψ̂†(x)Vext(x)Ψ̂(x)

}

,

(4.1.1)
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where T̂ = − (~2/2m) ∂2/∂x2 is the kinetic-energy operator, Ψ̂(x) the bosonic-

field operator, c > 0 the interaction strength and Vext(x) the external po-

tential.

In the mean-field approximation, the classical counterpart of quantum

Hamiltonian (4.1.1) is

E =

∫

dxψ∗(x)

[

T̂ − 2c

α + 2
|ψ(x)|α + Vext(x)

]

ψ(x), (4.1.2)

and the respective 1D dynamics obeys the power-law GPE:

i~
∂ψ(x, t)

∂t
=

(

− ~
2

2m

∂2

∂x2
− c|ψ(x, t)|α + Vext(x)

)

ψ(x, t), (4.1.3)

where macroscopic wave function ψ(x, t) is normalized to the total number

of atoms, NT , and the nonlinearity degree is related to the order of the

multi-body interactions N by

α = 2 (N − 1) . (4.1.4)

In eqn. (4.1.3), Vext(x) typically includes a superposition of an harmonic

trap and periodic potential

Vext(x) = VH(x) + VOL(x) (4.1.5)

so that VH(x) = mω2x2/2 and VOL = ε sin2 (qx + δ) , where ε is propor-

tional to the power of the laser beams which build the OL, and q = 2π/λ,

with λ = λlaser sin (θ/2), λlaser being the wavelength of the beams, and θ the

angle between them (the period of the lattice is λ/2). Parameter δ corre-

sponds to a mismatch between minima of the lattice potential VOL and the

minimum (at x = 0) of the parabolic potential VH : when δ = 0 (δ = π/2)

a minimum (maximum) of VOL coincides with the minimum of VH . Except

for the last section , we consider the situation without the parabolic trap

(i.e., ω = 0), therefore we set δ = 0.
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The time-independent power-law GPE corresponding to eqn. (4.1.3) is
[

−1

2

d2

dx2
− c|ψ(x)|α + Vext(x)

]

ψ(x) = µψ(x), (4.1.6)

where µ is the chemical potential, Vext(x) ≡ ε sin2 (qx), and the wave func-

tion is normalized to 1. Let us keep in mind that, if one fixes coefficient c in

front of the interaction term, the Townes solitons exist for a particular value

of the norm of the wave function [106, 97]. On the other hand, fixing the

normalization of the wave function (in our units, the norm is 1) amounts,

for α 6= 4, to fixing a relation among the chemical potential and the in-

teraction strength [31], so that for each c it is possible to obtain a single

soliton solution (although, in the infinite system, these solutions provide

the ground state only for α < 4, i.e. for N < 3).

As we have seen in the previous chapter, for the attractive three-body

interactions, eqn. (4.1.6) reduces to
[

−1

2

∂2

∂x2
− c|ψ(x)|4 + Vext(x)

]

ψ(x) = µψ(x). (4.1.7)

where the chemical potential µremains indefinite, assuming arbitrary nega-

tive values, while the soliton solution of the form

ψ(x) =
(3k2/8c)

1/4

√

cosh(kx)
, k2 = −8µ (4.1.8)

satisfies the unitary normalization condition at a single (critical) value of

the interaction strength [106, 31],

c = c∗ ≡ 3π2/8. (4.1.9)

At c = c∗, all solutions (4.1.8) share a common value of the energy, which

is simply E = 0 [97, 31], as follows from Eqs. (3.3.42) and (4.1.9).

When, besides the three-body attractive interaction, the two-body in-

teraction is present, the mean-field equation is the GPE with the CQ non-

linearity,
[

−1

2

d2

dx2
+ g|ψ(x)|2 − c|ψ(x)|4 + Vext(x)

]

ψ(x) = µψ(x) . (4.1.10)
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As said above, we chiefly focus on the case of the repulsive two-body inter-

action, i.e. g ≥ 0. As we will show in the next section, a family of exact

soliton solutions to Eq, (4.1.10) for Vext(x) = 0 can be obtained in the exact

form [107, 108, 98], which is, for g ≥ 0, the following

ψ2(x) =
A2

(1 + ξA2) cosh (2
√

2|µ|x) − ξA2
, (4.1.11)

where ξ = g/ (4|µ|), and A2 is the maximum value of the density, at the

soliton center, which is expressed in terms of other parameters,

A2 =
3

c

(

g

4
+

√

g2

16
+
c|µ|
3

)

. (4.1.12)

Obviously, for g = 0 solution (4.1.11) reduces to the Townes soliton (4.1.8).

Imposing the above-mentioned normalization,
∫ +∞

−∞

|ψ(x)|2dx = 1, (4.1.13)

on solution (4.1.11), one arrives at relation
√

6

c
tan−1

(

√

1 + 2ξA2
)

= 1 , (4.1.14)

from where it follows that, for g > 0, solutions with a negative chemical

potential satisfying the normalization condition exists for c > c∗.

4.1.1 Localized solutions of the cubic-quintic Gross-

Pitaevskii equation

Assuming that ψ(x) is real, we look for localized solutions to the CQ NLS

equation,

−1

2

d2ψ

dx2
+ gψ3 − cψ5 = µψ (4.1.15)

with c > 0 and g ≥ 0. Interpreting x as a formal time variable and ψ(x)

as the coordinate of a particle, eqn. (4.1.15) formally corresponds to the

Newton’s equation of motion of this particle,

M
d2ψ

dx2
= −∂V

∂ψ
, (4.1.16)
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where the effective mass is M = 1/2, and the potential is

V (ψ) =
µ

2
ψ2 − g

4
ψ4 +

c

6
ψ6 , (4.1.17)

where an arbitrary additive constant was chosen so as to have V (0) = 0.

Potential (4.1.17) for µ < 0, which corresponds to normalizable solutions,

is plotted in Fig. (3.2.21). Condition V (±A) = 0 yields expression (4.1.12)

for the soliton amplitude.

Making use of the conservation of the corresponding Hamiltonian,

H =
M

2

(

dψ

dx

)2

+ V (ψ), (4.1.18)

and the boundary conditions for localized solutions: ψ(x → ∞) → 0,

dψ/dx(x → ∞) → 0, one has H = 0. Taking into regard the fact that

V (ψ) ≤ 0 for 0 ≤ ψ ≤ A, and looking for solutions with dψ/dx < 0 at

x > 0, one obtains

x =

∫ A

ψ(x)

dψ

2
√

−V (ψ)
, (4.1.19)

from where it follows

E =
ψ2(x)

A2

2a2 + b2A2

2a2 + b2ψ2(x) + 2a
√

a2 + b2ψ2(x) − ψ4(x)
, (4.1.20)

with E ≡ e−2
√

2|µ|x. In eqn. (4.1.20), we use notation a2 = 3|µ|/c and

b2 = 3g/2c. Thus, from eqn. (4.1.20) one obtains

ψ2(x) =
4a2A2 (2a2 + b2A2) E

[2a2 + b2A2 (1 − E)]2 + 4a2A4E2
. (4.1.21)

One can easily check that this expression yields ψ2(x) = A2/ cosh (2
√

2|µ|x)
for g = 0, and that ψ(0) = A, as it must be. Finally, using relation

a2 + b2A2 = A4, one obtains eqn. (4.1.11) from eqn. (4.1.21), after some

algebra.

However, such localized solutions are unstable [98] (in particular, be-

cause they do not satisfy the Vakhitov-Kolokolov stability criterion [76]).

In the following section we will discuss how the OL can stabilize such local-

ized solutions.
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4.2 Variational approximation

Both for α = 2 and 4 (N = 2 and 3), and for the GPE with the mixed

CQ nonlinearity, the presence of the periodic potential makes it necessary

to resort to approximate methods for finding solitons. To this end, we

resort to the VA (variational approximation) [57, 109] based on the ansatz

which yields exact soliton solution (4.1.8) of the quintic NLS equation in

the absence of the external potential:

ψV (x) =
A

√

cosh(x/σ)
. (4.2.22)

Here, width σ is the variational parameter to be determined by the mini-

mization of the energy, while amplitude A will be found from normalization

condition (4.1.13). We expect that ansatz (4.2.22), which does not explic-

itly include the modulation of the wave function induced by the OL, may

give a reasonable estimate of the soliton energy for small values of ε, cf. the

known result for the 2D equation with the cubic nonlinearity (α = 2) and

OL potential [95, 104]. In the case of the 3D GPE which includes the cubic

term and harmonic trap, this approach leads to an estimate for the critical

value of the number of atoms above which the condensate collapses, which

was shown to be in a reasonable agreement with results produced by the

numerical solution of the GPE [32, 33]. In one dimension, the VA based

on the simple Gaussian ansatz leads to a conclusion that the wave function

of the ground state is localized even in the absence of the harmonic trap

[110], in agreement with the obvious fact that the single-soliton solution

represents the ground state in that case. Similar analyses carried out in the

model including the cubic term and OL [101, 95, 111] have demonstrated

that, unlike the 2D and 3D cases, in one dimension the soliton does not

have an existence threshold in terms of its norm (number of atoms).

The energy to be minimized is obtained by inserting ansatz (4.2.22) in

the GPE energy functional given by eqn. (3.3.42). The kinetic and quintic-
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interaction energy terms in the functional both scale as σ−2; then, the energy

per particle computed from expression (3.3.42) is

E =
β

σ2
+

g

π2σ
+
ε

2
[1 − sech(πqσ)] , (4.2.23)

β ≡ 1

16
− c

6π2
=
c∗ − c

6π2
, (4.2.24)

where c∗ is defined in eqn. (4.1.9).

For ε = 0 (without the OL), the scenario discussed in the previous section

for the uniform CQ GPE with the attractive three-body and repulsive two-

body interactions is recovered, as energy (4.2.23) reduces in that case to

E =
β

σ2
+

g

π2σ
. (4.2.25)

For g = 0, the energy is positive when c < c∗ (i.e., β > 0) and vanishes

at σ → ∞; for c = c∗ (i.e., β = 0) one obtains E = 0, in agreement with

the above-mentioned exact result showing the infinite degeneracy of soliton

family (4.1.8), while for c > c∗ the energy is negative and diverges (to −∞)

for σ → 0, signaling, in terms of the VA, the onset of the collapse. With

g > 0, expression (4.2.25) does not give rise any minimum of the energy,

which agrees with the known fact of the absence of stable solitons in this

case [98].

A detailed study of minima of variational energy (4.2.23) is presented

in 4.6. In the following subsection, we consider the case of the self-focusing

quintic GPE in the presence of the OL (ε > 0, g = 0), while the discussion

of the general case (g > 0) is given in section 4.4.

4.3 Self-focusing quintic GPE with the optical-

lattice potential

Here we address the stability of localized variational mode (4.2.22), for

different values the OL parameters, strength ε and wavenumber q, keeping
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g = 0. The results of the analysis of minima of the variational energy

(4.2.23), presented in section 4.6, can be summarized as follows (see also

Fig. 4.1): for c ≥ c∗, the infinitely deep minimum of the energy is obtained

for σ → 0, which corresponds to the collapse, as shown in Fig. 4.1(a). For

c < c∗, the collapse may be avoided, and three possibilities arise: there

exists another special value c′ < c∗, such that for every c between c′ and

c∗ the energy has a minimum at σ = σ1 and a maximum at σ = σ2, while

for c < c′ the energy does not have a minimum at any finite value of σ, see

Fig. 4.1(d). Further, two different situations should be distinguished for c

between c′ and c∗: there exists a specific value (see 4.6)

c∗∗ = c∗ − 3ε

2q2
Tc , where Tc ≈ 2.13, (4.3.26)

(with c∗∗ > c′) such that, for c∗∗ < c < c∗, the energy has a global minimum

at σ = σ1 (which, thus, represents the ground state of the boson gas in

this situation), while, for c′ < c < c∗∗, the energy minimum at σ = σ1 is a

local one. In other words, since the energy tends to value ε/2 at large σ, for

c∗∗ < c < c∗ (c′ < c < c∗∗ ) it satisfies inequality E(σ1) < ε/2 (E(σ1) > ε/2),

as showed in Figs. 4.1(b,c).

From the above analysis, we infer the VA predicts that, for c < c∗∗, the

ground state is a delocalized one, for c > c∗ it is collapsing, and for c∗∗ < c <

c∗ it is represented by a finite-size soliton configuration (in agreement with

Ref. [97]). Equation (4.3.26) shows that the width of the stability region

depends on ratio ε/q2: keeping fixed all other parameters, the decrease of

the lattice spacing (i.e., the increase of q) leads to a reduction of the stability

region. Equation (4.3.26) also shows that for ε/q2 = 2c∗/3Tc ≈ 1.16 one has

c∗∗ = 0: however, for c = 0, the ground state is delocalized, hence variational

ansatz (4.2.22) becomes irrelevant, as it does not take into account the

modulation induced by the deep OL potential.

In Fig. (4.2), we plot a numerically found ground state of the quintic
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Figure 4.1: Variational energy E versus σ (in units of ε/2) for c ≥ c∗ (a);

c∗∗ < c < c∗ (b); c′ < c < c∗∗ (c); c < c′ (d). In (a) the dotted (solid) line

is the energy for c > c∗ (c = c∗); in (b)-(c), points of the energy minimum

and maximum, σ1 and σ2, are indicated.
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GPE in a 1D box (x is taken between −L and L, with L = 10). It is seen

that, with the increase of c∗ − c, the configuration becomes broader and

broader, until a critical value is reached, as discussed in [97]. In the inset of

Fig. (4.2) we plot the width of the numerically found ground state versus

c, which makes the delocalization transition evident. Variational estimate

(4.3.26) for the critical value of c∗ − c, as predicted by the variational ap-

proximation [see eqn. (4.3.26)], is displayed in Fig. (4.3) together with

numerical results. One observes sees a reasonable agreement between them,

especially for small ε, which is due both to the use of the more adequate

ansatz (4.2.22), rather than a Gaussian, and also because Tc is found as the

value at which the global (rather than local) minimum disappears.

4.4 The stability region for the condensate

with the competing two- and three-body

interactions

The most interesting situation is that when the two-body repulsive inter-

action (with g > 0) competes with the the attractive three-body collisions

(c > 0). As mentioned above, all solitons in the free space (ε = 0) are

strongly unstable in this situation [98], and the possibility of their stabiliza-

tion by the OL was not studied before. The analysis of variational energy

(4.2.23), presented in 4.6, yields the following results for this case. For

c > c∗, the energy does not have a minimum at finite σ, hence the OL

cannot stabilize the solitons. If c = c∗, the energy has a global minimum at

finite value of σ when

G ≡ 2gq

πε
< Gc ≈ 0.663 . (4.4.27)
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Figure 4.2: The numerically found ground state of the quintic GPE

with the periodic (OL) potential, for several values of nonlinearity coef-

ficient c. Solid lines, starting from the narrowest configuration, refer to

c = 3.7, 3.5, 3, 2.5, 2, 1.9 (recall that c∗ = 3π2/8 ' 3.701), and the dashed

line – to c = 1.8. Inset: width σ of the ground state as a function of c (the

dot-dashed line is a guide to the eye). Critical value c∗∗ obtained from the

numerical analysis is c∗∗ = 1.87(3), which should be compared with value

(4.3.26) predicted by the variational approximation, c∗∗ ' 1.57. parameters

of the OL are ε = 6 and q = 3.

For c < c∗, the energy features a global minimum at finite σ for c∗∗(G) <

c < c∗, where the critical value is given by

c∗∗ (G) ≡ c∗ − 3ε

2q2
Tc(G) , (4.4.28)

cf. definition (4.3.26) for G = 0. The value Tc depends upon G, vanishing

for G larger than some critical value, Gcrit. This means that, to balance the

destabilizing effect of the repulsive two-body interactions, the strength of

the periodic potential, ε, must exceed its own critical value,

εcrit =
2qg

πGcrit
. (4.4.29)
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Figure 4.3: Dotted line: the variational estimate for c∗∗ as a function of

ε/q2, according eqn. (4.3.26), the dashed line corresponding to c∗ = 3π2/8.

Discrete symbols represent results obtained from the numerical solution of

the quintic GPE. They designate the transition form the localized ground

state to the extended one (parameters are the same as in Fig. (4.2). Ac-

cording to the variational approximation, the ground state is delocalized

(σ → ∞) below the dotted line, and it collapses (σ → 0) for c above the

dashed line.

Otherwise, eqn. (4.4.28) yields c∗∗ = c∗, and the OL cannot stabilize the

solitons.

In Fig. (4.4) we plot the numerically found ground-state of CQ GPE

(4.1.10) as a function of ε, for a particular choice of parameters. It is seen

that, at small ε, the wave function ψ remains delocalized, until a critical

value is reached. In the inset of Fig. (4.4) the width of the numerically

generated ground state is plotted versus ε. The comparison between vari-

ational estimate (4.4.29) and numerical results is reasonable, and it can

be further improved by choosing a variational wave function which, in the

limit of ε = 0 (uniform space) reproduces exact CQ soliton (4.1.11). In

Fig. (4.5), we compare critical value εcrit, as given by eqn. (4.4.29), with
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Figure 4.4: The numerically found ground state of the cubic-quintic GPE for

several values of ε. Solid lines, starting from the narrowest wave function,

refer to ε = 4, 3, 2.8, 2.6, 2.4, and the dashed line – to ε = 2.3. Inset: the

width of the ground state versus ε (the dot-dashed line is a guide to the eye).

Critical value εcrit obtained from the numerical data is εcrit = 2.35(5), which

should be compared to the value given by eqn.(4.4.29), which is εcrit ' 2.88.

The parameters are c = 3.65, g = 1, q = 3, L = 5.

numerical results: for small g, the predicted linear dependence of εcrit on g

is well corroborated by the numerical results, the relative error in the slope

being ∼ 20%.

4.5 The effect of the harmonic trap

In this section we use the variational approximation based on ansatz (3.3.41)

to examine the combined effect of the parabolic trapping potential acting

together with an OL, i.e., we take the external potential as

Vext(x) = ω2x2/2 + ε sin2 (qx+ δ) , (4.5.30)
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Figure 4.5: Solid line: εcrit vs. g given by eqn. (4.4.29). Symbols refer

to results obtained from the numerical solution for the ground state of

the cubic-quintic GPE. They represent the delocalization transition. The

parameters as the same in Fig. (4.4).

focusing on the limit of g = 0 (no binary collisions). Value δ = 0 (δ = π)

corresponds to the match (mismatch) between the minimum of the har-

monic potential and a local minima of the lattice potential. The respective

variational energy is obtained from (4.1.2) with potential (4.5.30), and it is

given by

E =
β

σ2
+
π2ω2σ2

8
+
ε

2
[1 − cos (2δ)sech(πqσ)] . (4.5.31)

With cos(2δ) ≥ 0, the system is stable for c < c∗, and it collapses

otherwise. With cos(2δ) < 0, a richer behavior is predicted by the VA.

The system does stabilize for c < c∗, while, for c > c∗, the presence of

the mismatched harmonic trap gives rise to a metastability region. Since

E → −∞ as σ → 0 and E → +∞ as σ → ∞, one can encounter two

possibilities: either ∂E/∂σ is positive for all σ (and there are no energy

minima), or equation ∂E/∂σ = 0 has two roots, corresponding to a local

minimum and a maximum. The equation for the value of σ at which energy
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(4.5.31) reaches a local minimum is

|β| =
ε |cos (2δ)|

4π2q2
`(θ), (4.5.32)

where θ ≡ πqσ, and

`(θ) ≡ θ3

(

sinh θ

cosh2 θ
− ηθ

)

, (4.5.33)

η ≡ ω2

2εq2 | cos(2δ) | . (4.5.34)

One sees that, for c = c∗ (i.e., β = 0), eqn. (4.5.32) does not have a

nonvanishing solution if q is smaller than a critical value,

q(cr) =
ω

√

2ε |cos (2δ)|
, (4.5.35)

while it has a nonvanishing solution for q > q(cr).

Actually, for c > c∗ (i.e., β < 0), eqn. (4.5.32) with q > q(cr) has two

nonvanishing roots, one of which is a local minimum, while such roots do

not exist for q < q(cr). For q > q(cr), the right-hand side. of eqn. (4.5.32) has

a maximum value, which fixes the maximum value of β, i.e. the maximum

value of c, to which we refer as c∗∗∗. Then, for c > c∗∗∗, the variational

energy does not have a local minimum. For c∗ < c < c∗∗∗ there appears a

finite metastability region, in terms of wavenumber q, as illustrated by Fig.

4.6. In other words, for c fixed, metastable states appear at large values of

ε.

4.6 The variational energy

In this section we aim to study minima of variational energy (4.2.23). When

g = 0, one sees that, for c > c∗, the energy per particle tends to −∞ at

σ → 0, and ε/2 at σ → ∞. Then, with regard to ∂E/∂σ > 0, no local

(metastable) minima exist, and variational wave function (4.2.22) is not
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Figure 4.6: The critical line separating in the (q, c− c∗) plane of the model

(including the parabolic trap) the metastable region from the unstable one.

Values ε = 1, cos (2δ) = −0.5, and ω = 1 were chosen here.

the ground state for any finite width. For c = c∗, one obtains the global

minimum at σ = 0, which implies the collapse. For c < c∗, the situation is

different: E → ∞ as σ → 0 (because β > 0), and E− ε/2 → +0 as σ → ∞.

Then one has to find out for what value of β derivative ∂E/∂σ has two real

zeros. Introducing parameter

T =
4βπ2q2

ε
, (4.6.36)

with β defined as per eqn. (4.2.24), one can write condition ∂E/∂σ = 0 as

T = θ3 sinh θ

cosh2 θ
, (4.6.37)

where θ = πqσ, as defined above. Equation (4.6.37) can be satisfied if T

is smaller than a maximum value T ′ ≈ 2.67, and it then has two roots,

θ1 and θ2, which correspond, respectively to the minimum at σ = σ1, and

maximum at σ = σ2 (see Fig. (4.1)). For T > T ′, eqn. (4.6.36) has no

roots, hence the variational energy has no minima at finite values of the
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Figure 4.7: The solid line: θ1 as a function of parameter T [defined

in eqn. (4.6.37)] for g = 0 . The dashed line: the plot of function

T − 2θ2
1(T )/ cosh θ1(T ) versus T . The maximum value of θ1 at T = T ′

is indicated.

soliton width, σ. A plot of θ1 as a function of T is presented in Fig. (4.7),

where the maximum value of θ1 is θmax
1 ≈ 3.0415. The minimum at θ1 is a

global one if E(θ1) < ε/2; using eqn. (4.2.23), this condition reads

T − 2θ2
1(T )

cosh θ1(T )
< 0. (4.6.38)

As one can see from Fig. (4.7), condition (4.6.38) is satisfied for T < Tc,

where Tc ' 2.1289: then, a global minimum exists only for 0 < T < Tc,

while for Tc < T < T ′ the minimum is local, corresponding to a metastable

state. Using the value of Tc and definition (4.6.36), one arrives at eqn.

(4.3.26).

For g > 0 (recall it corresponds to the two-body repulsion), variational

energy (4.2.23) for c > c∗ does not have a minimum at finite values of σ.

However, for c = c∗ a finite minimum is possible. Indeed, with definition of
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G as per eqn. (4.4.27), condition ∂E/∂σ = 0 can be written as

G = θ2 sinh θ

cosh2 θ
. (4.6.39)

For G < G′ ≈ 1.0341, eqn. (4.6.39) has two roots. By imposing the

condition that the value of the energy at σ = σ1 is smaller than ε/2, one

gets G < Gc ' 0.6627. Then, similar to the situation considered above,

a global minimum exists only 0 < G < Gc, while for Gc < G < G′ the

minimum is local.

For c < c∗, condition ∂E/∂σ = 0 reads

T = θ3 sinh θ

cosh2 θ
−Gθ. (4.6.40)

One can see that condition (4.6.40) is satisfied for T < T ′(G), with T ′(G′) =

0. Then, for G > G′, i.e., for ε small enough, the variational energy does

not have a minimum. Imposing the condition that the minimum is global

leads to T < Tc, with Tc(Gc) = 0. Then, for G > Gc, i.e. for ε smaller

than a critical value, the variational energy cannot have a global minimum

for a finite value of σ, i.e., localized states. Functions T ′(G) and Tc(G) are

plotted in Fig. (4.8); in Fig. (4.9), we plot maximum value θmax
1 of θ1 for

T = T ′(G), as a function of G.
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Figure 4.8: The solid (dashed) line: the plot of Tc (T ′) as a function of

parameter G.
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Figure 4.9: The plot of maximum value θmax
1 of the smaller root of eqn.

(4.6.37), θ1 [at T = T ′(G)], as a function of G.
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Conclusions and Outlook

In this thesis we have analyzed one-dimensional Bose gases with N -body

local attractive interactions.

By using a mean-field approach, we found that, in the homogeneous case,

N = 3 is a critical point, and that bright soliton solutions are possible only

for a specific value of the interaction strength c∗. At this critical value, an

infinite degeneracy occurs: this degeneracy is parametrized by the chemical

potential µ, i.e. eigenfunctions with the same negative µ have the same

energy. For N < 3, the bright soliton coincides with the ground state of

the Gross-Pitaevskii equation: in particular, as N → 3− the soliton width

tends to diverge when c < c∗ or to vanish when c > c∗.

We have also discussed how a harmonic trap can stabilize this bound

state. The result of our variational analysis was that a localized state is

possible only if the interaction strength is smaller than the homogeneous

critical value c∗, while for c ≥ c∗ the collapse cannot be prevented even

for very large trap frequency. We discussed also the role played by the

dimension for N -body local attractive interactions, showing that higher

body interactions lead to more unstable solitons in higher dimensions. We

remark that the analysis of two-body nonlocal attractive interactions has

revealed different ranges of stability with respect to the local ones [47]: we

expect that, for 3- and N -body interactions, this effect may become even

more relevant, and thus object of future investigations.

The second issue we have addressed within this study is the effect of an
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optical lattice (OL) on the ground state properties of 1D Bose gases with

attractive three-body and repulsive two-body interactions, described by the

GPE (Gross-Pitaevskii equation) with the CQ (cubic-quintic) nonlinearity.

We have demonstrated that the OL opens a stability window for the

solitons, provided that the OL strength ε exceeds a finite minimum value.

The size of the window depends on ε/q2, where q is the OL’s wavenumber.

We have also considered the effects of the additional harmonic trap, finding

that, if the quintic nonlinearity is strong enough (c ≥ c∗), a metastabil-

ity region may arise, depending on the matching between minima of the

periodic potential and harmonic trap.

A very interesting perspective comes from the recent proposals to real-

ize experimentally ultracold boson systems which are described by effective

Hamiltonians with three-body interaction terms [19, 21]. Indeed, an exper-

imental realization of these systems would open the possibility to test the

stationary properties we have found for the three-body systems and assess,

at the same time, the validity of the Gross-Pitaevskii approximation. In this

respect, the possibility to induce and tune effective 3-body interactions may

become an important tool to control the nonlinear dynamical properties of

localized wave-packets propagating in optical lattices: in this context, we

believe that our results may provide a useful theoretical framework.
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