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Introduction.

This thesis deals with the connections between the theory of block Toeplitz
matrices and integrable systems. Toeplitz matrices, both in the scalar and in
the block case, appears in many different fields of mathematics and physics.
Just to mention few aspects we are interested in, these matrices are used
to compute some important quantities is physics (e.g. correlation functions)
and they are an essential tool in the study of (bi)-orthogonal polynomials
on the unit circle; they are connected with some important Riemann-Hilbert
problems as well as with the theory of Fredholm determinants. Connection
with the theory of integrable hierarchies (in the scalar case) had been establi-
shed starting from the '90s; both continuous integrable hierarchies (modified
KdV) and discrete ones (Ablowitz-Ladik) had been involved. The starting
point was the study of the unitary matrix model (see below). Toeplitz ma-
trices are, indeed, very simple objects. Given a function «y(z) on the circle we
denote v(z) = 3, 7¥z* its Fourier expansion. The N truncated Toeplitz
matrix Ty () with symbol «y is nothing but

4O AN
A AN

Tn(v) = (1)
AN 4O

We will denote Dy () its determinant. If the function y(z) is matrix valued
we will speak about block Toeplitz matrices and block Toeplitz determinants.
In recent years it has been shown how to compute (effectively) some phys-
ically relevant quantities (e.g. correlation functions) studying asymptotics
of some block Toeplitz determinants (see [28],[29],[30]). In this way a con-
nection has been established also with quantum spin chains ([28], [29]) and
dimer models ([30]). From a mathematical point of view the study of the

limit of Toeplitz and block Toeplitz determinants for large N has a long
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story. In 1952 Szegd gave a formula for asymptotics of Dy(vy) in the scalar
case [7]. This result has been generalized by H. Widom in the 70’s ([8],[9]
and [10]) for the matrix case; namely he proved that under suitable analytical
assumptions it exists the limit ’

~—

... Dn(y
Doo(7) = ]}}_{{;W

= det(T(7)T(v™))

where G(7) is a normalizing constant and the operator T'(v)T(y~!) is such
that its determinant is well defined as a Fredholm determinant. One im-
portant difference between scalar and matrix case should be, nevertheless,
underlined. While Szegd’s formula is quite explicit its generalization to the
matrix case is far from being explicit. The papers we cited ([28],[29] and
[30]) are precisely devoted to solve this problem: finding explicit formulas
for the Fredholm determinant Dy, (y) (for some given ). The difference be-
tween scalar case and matrix case arises from the non-commutativity of the
algebra of symbols; this fact is evident in the works [28] and [29]. Infact in
these articles the problem of computing D, () is translated in finding certain
Riemann-Hilbert factorizations of y; i.e. in solving a matrix Riemann-Hilbert
problem.

Once the asymptotics had been studied the next quite natural question was
to find an expression relating directly Dy(v), and not just its asymptotics,
to certain Fredholm determinants. The problem was solved many years later
by Borodin and Okounkov in [11] for the scalar case and generalized, in the
same year, for matrix case by E. Basor and H.-Widom in [12]. For matrix
valued case Borodin-Okounkov formula reads

Dn(7) = Deo(y) det(I — K, n)

(here we assume G(v) = 1). The operator (I — K., ) can be written ex-
plicitely in coordinates knowing (again) certain Riemann-Hilbert factoriza-
tions of 7. Its Fredholm determinant is well defined. Now many proofs
of Borodin-Okounkov formula are known (for instance [13] contains another
proof of the same formula, see also the earlier paper [14]).

This thesis is based on the results published in [1] and [2]. In the first
chapter, based on [1], we use block-Toeplitz determinants to compute the 7
function of an (almost) arbitrary solution of Gelfand-Dickey hierarchy

oL i
L whn
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(L differential operator of order n, j # nk).
More precisely to a given point

W =W(z)H™

in the big cell of Segal-Wilson vector-valued Grassmannian we associate a
n x n matrix-valued symbol W(; z) obtained deforming W(z) (see formula
(1.9)). In this way we define a sequence of N-truncated block Toeplitz de-
terminants {7 n(¢) } x>0 which are shown to be solutions of certain rational
reductions of KP; this is our :

First result: Every symbol W(t; z) defines through its truncated deter-
minants a sequence {Twn(t)}n>o of solutions to KP such that

Tu/’N(t) € CKPl,nN N CKPn,n VN > 0.

Here we used the notation from [22]; given a 7 function for KP with corre-
sponding Lax pseudodifferential operator L we say that 7 € cKPp,, iff L™
can be written as the ratio of two differential operators of order m+n and n
respectively. This sequence admits a stable limit which is shown to be equal
to the Gelfand-Dickey 7 function 7y (t) associated to W; this quantity can be
computed using Szegd-Widom'’s theorem. This will give us the remarkable
identity

(1) = det [Proge)| (2)

where Py ., is the Fredholm operator appearing in the Szego-Widom's the-
orem (here we put ¢ instead of ¢ to remember that, when working with
W € Gr'®, times t,; multiple of n must be set to 0). Next step is the study
of Riemann-Hilbert (also called Wiener-Hopf) factorization of symbol W(t; z)
given by

W(t; z) = T-(t; 2) T4t 2) (3)
with 7_ and T, analytical in z outside and inside S* respectively and nor-
malized as

T_(o0) = I.

Here we assume that the symbol can be extended to an analytic function in
a neighborhood of S'. Using Plemelj’s work [15] we show that T_(f; z) must
satify the integral equation

P I-(2) =1 (4)

and we write a solution of (3) in terms of the wave function v (%; z) corre-
sponding to W.



In this way we arrive at our second result:

Second result: Take W € Gr™ in the big cell; denote my(f) its corre-
sponding T function .
Then Tw(t) is equal to the Fredholm determinant of the homogeneous integral
equation )
T%(E;Z)T_(t; z)=0 (5)

related to Riemann-Hilbert problem (8). The solution of this Riemann-Hilbert
problem is unique for every value of parameters t such that

and can be computed by means of related wave function vYw(; z).

At the end of the chapter we consider a particular class of symbols W(t; z)
corresponding to algebro-geometric solutions of Gelfand-Dickey hierarchies.
We formulate an alternative Riemann-Hilbert problem equivalent to (3) and
explain how to solve it using f-functions. In this way we give concrete for-
mulas for a wide class of symbols that do not have half truncated Fourier
series. This is quite remarkable since concrete results for non half truncated
symbols were available, till now, only for the concrete cases presented in [28]
and [29].

The sections of the first chapter are organized as follows:

e First section states some results about Segal-Wilson Grassmannian and
related loop groups we will need in the sequel; proofs can be found in
[3] and [4].

e Second section states Szegd-Widom’s theorem and related results ob-
tained by Widom in [8],[9] and [10] and the Borodin-Okounkov formula
for block Toeplitz determinant [12].

e In the third section we introduce and study the sequence of truncated
determinants {7wx(t)}n>o and its stable limit 7y (¢). We want to
remark that the property of stability was stated for the first time in
[17] (see also [18]). Our sequence is actually a subsequence of the
stabilizing chain studied in [19]; nevertheless, to our best knowledge,
[1] is the first article in which block Toeplitz determinants enter the
game. Also the observation that 7wy € cKP,, is something new.

e Fourth section is devoted to establishing the connection between in-
tegral equations formulated by Plemelj in [15] and Fredholm operator
appearing in Szegdé-Widom’s theorem.
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e In the fifth section we show how to write Riemann-Hilbert factorization
of W(£; z) in terms of wave function 9w (f; z). Of course the relation-
ship between Gelfand-Dickey hierarchy and the factorization problem
is something well known; our exposition here is closely related to [16].
Moreover, knowing Riemann-Hilbert factorization of W(£; z), we can
apply Borodin-Okounkov formula to give an expression of any 7w (%)
as Fredholm determinant and a recursion relation to go from 7y, v (%)

to 7W',N+1(E)-

e Last section gives explicit formulas for symbols and 7 functions asso-
ciated to algebro-geometric rank one solutions of Gelfand-Dickey hi-
erarchies. Also we formulate an alternative Riemann-Hilbert problem
equivalent to (3) in analogy with what has been done in [28] and [29].
We explain how to solve it using #-functions.

The second chapter (based on [2]) extends to the matrix case the link
existing between biorthogonal polynomials on the unit circle and Ablowitz-
Ladik hierarchy. Before going into details let us recall some basic facts about
the unitary matrix model; we will use it to introduce some fondamental
notions we used in the second chapter. Unitary matrix model is nothing but
the study of the one matrix integral

Iy = / exp[—i[%cV(U)}dU.

Zn will be called the nartition function of the model. Here we are integrating
on the group of (N x NN) unitary matrices, dU is the standard Haar measure
on U(N) and V(U) = Y ,cntsU" + spU™F. We will always restrict to the
case where all but a finite number of parameters {#, s, k£ > 1} are zero. The
standard method for computing this integral is to reduce it to a multiple
integral over the eigenvalues of U as explained by Mehta in his book [50].
Namely we have the ‘ormula

N N

T = K(N) § . 1800 Perp [ 3 -10v ()] T 12

where K (N) depends on the size of the unitary group but does not depend
on the potential V. /.(z;) is the standard Vandermonde determinant

A(zs) = det(z;hl)i,po,...N-

Here biorthogonal pciynomials on the unit circle (BOPUC) enter the game.
We start introducing “he space Vy of polynomials of order less or equal to
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N equipped with the bilinear form < .,. > defined by

< P(2),Q(z) >i= f P(2)Q() exp(—V(2)) .

2miz

Then we introduce two sets of biorthogonal polynomial {p{"(z) : i > 0} and
{p®(2) i > 0} such that

dz
2miz

< 2(2),02(2) >= jé P (2)pP () exp(~V (2)) = = hyéy

and such that every pgl)(z),pz{z)(z) is monic of order 4. It is easy to prove
that
N
=KW ] h-
i=0

On the other hand HN_O h; is the determinant of the matrix representing the
bilinear form <, > with respect to the bases given by {pll)( ),i=0...N}
and {p{?(2),i =0...N}; ie.

N
th ~det(<pfl),pj ) .
4,j=0...N

J=

(s)

Now, since every p,” is monic of order i, we have the equality

det ( < pf”,pi ? )i,j=o...N = det ( <> )ij:O...N'

Denoting exp(—V(2)) = 3, V¥ z* the Fourier expansion of exp(—V(z)) we
finally obtain

v(O) ... ... VM

va o YENTD
ZNocdet

v YO

which is precisely, by definition, Dy(exp(—V(z2))).

From the point of view of integrable systems both Zy and its limit for large
N are of interest. The double scaling limit of Zy is related to the string so-
lutions of modified KdV (see for instance [27] and references therein) while,
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for finite IV, the sequence of Zx gives a solution for a particular reduction of
2D-Toda lattice, the Toeplitz lattice introduced by Adler and van Moerbeke
in [41]. The same hierarchy (which is infact equivalent to the already known
Ablowitz-Ladik hierarchy, [33]) has been studied from the point of view of
orthogonal polynomials on the unit circle by Irina Nenciu in [45]. Also re-
lations between unitary matrix model, biorthogonal polynomials on the unit
circle, Painlevé-type and discrete Painlevé equations should be mentioned
(see for instance [42], [43], [41] and references therein.)

AL hierarchy has been introduced in 1975 [33] as a spatial discretization of
AKNS hierarchy. As described by Suris in [34] the idea of Ablowitz and Ladik
consisted in substituting the celebrated Zakharov-Shabat spectral problem

0,9 =LY
0,V =MV

with a discretized version of it; namely

Uipr = LWy,
0, U, = MV,

Here W, ¥, are two-component vectors while L, M, L, and M; are 2 x 2
matrices; in particular
L= (z T )
Yy —z

z T
Ly = .
’ <yk z 1)

When dealing with Ablowitz-Ladik hierarchy one can consider, as usual,
periodic case (k € Zj), infinite case (k € Z) or semi-infinite case (k € N).
Usual Lax equations for AKNS are replaced with semidiscrete zero-curvature
equations

and

BTLk == Mk—HLk - LkMk. (6)

As an example, one of the most important equation of this hierarchy is the
discrete complexified version of nonlinear Schrédinger '

0T = Tpa1 — 2%k + Tho1 — TrY(Thyr + Tr—1)
(7)

Orle = —Yr+1 + 2Uk — Ykt + Tkl (Yrt1 + Y1)

Quite recently different authors (see [41] and [45]) underlined the link
between biorthogonal polynomials on the unit circle (BOPUC) and semi-
infinite Ablowitz-Ladik hierarchy. This is an analogue of the celebrated link
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between Toda hierarchy and orthogonal polynomials on the real line (see for
instance [40]). In particular the approach of [41] allows to treat the case of
Toda and Ablowitz-Ladik hierarchy in a similar way as reductions of 2D-
Toda giving, in this way, a clear and unified explanation of the role played
by orthogonal polynomials on these hierarchies. As noted by the authors of
[41] their approach is quite different from the original one; actually in their
paper they always speak about Toeplitz lattice and the coincidence with
Ablowitz-Ladik hierarchy is just stated in the introduction. Nevertheless,
as explained in the second section of this paper, it is very easy to deduce
semidiscrete zero-curvature equations starting from Adler-van Moerbeke’s
equations. The main point consists in using the recursion relation

pglaz) o, (PE)) < z ) D) )
P () p(2)) A\ 1) \p(2)

for BOPUC (here ﬁﬁf)(z) = z”p,(f)(z“l)) as discrete Lax operator for the
Ablowitz-Ladik hierarchy and make these biorthogonal polynomials evolve
according to 2D-Toda flow. Indeed Ly looks very similar to Ly and, infact,
we can go from one to the other as explained in [46]. In this setting the

already known relationship between BOPUC and Ablowitz-Ladik hierarchy
can be stated as follows. Let’s consider a symbol

7(z) =) AWz
k

without any analytical assumption (i.e. 7 is a formal series). We deform it
with some parameters {t;, s;,7 > 0} in this way:

(¢, s;2) = exp <Z tizi> v(z) exp ( - Z siz“i> .

i>1 i>1

As we did for the particular case of the unitary matrix integral we can con-
sider in this more general case the BOPUC associated to the product < .,. >,

defined by
dz

2miz

<= j‘{ Pla)(t, 5: 2)Q(zY)

(here we consider, as vy is a general formal series, the formal residue, i.e. the
right hand side is nothing but the term in 2~! of the expression inside the
symbol of integral). We will call these biorthogonal polynomials time depen-
dent to underline that they depend on parameters {¢;, s;,7 > 0}. Of course
also the related recursion operators L, appearing in (8) will depend on the
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same parameters. Infact we proved the following
First result: Consider time-dipendent BOPUC {pg)(z),pg) (2)} with

respect to the pairing

dz
2miz

< P(2),Q(2) >yi= f P(2)v(t, 5; 2)Q(="Y)

with ¥(t, 5; 2) = exp(£(t, 2))y(2) exp(—&(s, 27 1)). Then the related recursion
operator (8) evolves according to semidiscrete zero-curvature equations (6)
for the Ablowitz-Ladik hierarchy.

Then, having this approach in mind, we addressed a question arising from
the following facts:

e Time evolution for orthogonal polynomials on the real line (OPRL)
leads to Toda hierarchy.

e Time evolution for biorthogonal polynomials on the unit circle leads to
Ablowitz-Ladik hierarchy.

e Time evolution for matrix orthogonal polynomials on the real line leads
to non-abelian Toda hierarchy.

What about time evolution for matriz biorthogonal polynomials on the unit
circle?

In other words our goal was to replace the question mark in the table
below with the corresponding hierarchy.

OPRL BOPUC
scalar case Toda Ablowitz-Ladik
matrix case non-abelian Toda ?

In the article [2] we proved that the relevant hierarchy is the non-abelian
version of Ablowitz-Ladik hierarchy. This hierarchy has been already studied
by different authors since 1983 (see [35], [36] and [37]) but, at our best
knowledge, connection with matrix biorthogonal polynomials on the unit
circle was never established before. In our setting this hierarchy appears
naturally considering right and left matrix biorthogonal polynomials with
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respect to a matrix-valued symbol v(z). In the matrix case infact we define
two bilinear pairings

<PQ>p= ]{P (N(=)Q0) 231;

where we define, for a general matrix valued polynomials P(z),
P*(z) == PT(z7%).
Then we have matrix right and left biorthogonal polynomials such that
< B PO > =5k, < P PO S = 5nk.

Slightly generalizing some already known results (see [47],[48]) we found that
these matrix biorthogonal polynomials satisfy block recursion relations

Py l (P (1)1)
i) et (D (9)
2)r N 2)r
(vail PP
(PSn BEL) = (B9 B ch (10)

where, as in the scalar case, for an arbitrary matrix valued polynomial Q(z)
of order k we define

Qz) = Q" (2).

Here the recursion operators L}, and L}, are block matrices defined by

21 o
Lh = < Ai“) (11)

ZYN41
r 2l zyh
Ly = ( yfIVH) . (12)

.,
LTrt1

and their coefficients are (n x n) matrices. Using the Toda flow adapted to
the block case we arrive to the original result contained in [2].

Second result: Consider time-dipendent matric BOPUC { PV (2), PV )
and {P (2), P,(Lz)l(z)} with respect to the pairings

dz
< PQ >p= y{P*(z)V(t’ 52)Q(2) 27iz
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with (t,s;z) = exp(&(t, 21))y(z) exp(—E&(s, z7'1)). Then the related recur-
sion operators (9) and (10) evolves according to semidiscrete zero-curvature
equations (18) and (14) (see below) for the non-abelian Ablowitz-Ladik hier-
archy.

Semidiscrete zero curvature equations are, in this case, given by
8.5 = ML, L — L1V (13)
8L}, = LMy, — MELE. (14)
for some block matrices M} and MF. For instance we have, for this hierarchy,
two versions of non-abelian complexified discrete nonlinear Schrodinger that

read )

O ), = Thyy — 20} + Th_y = Th YRTh — TLYRTh_1
\ - (15)
(0rYk = —¥ + 20% — Yhoa T VR ThVi + VRSV
raszrc = Tjpq — 205 + Ty — Tho1 YT, — ThYTha
3 (16)
(0¥ = —Yha1 + 20k = Ve + Ve TRV + UhThYin
We recall that here coefficients are matrices so that, in general, they do not
commute. If they commute (for instance in the scalar case) we return to the
standard discrete nonlinear Schrodinger (7) (see [38] for a review about these

non abelian equations).
Sections of the second chapter are organized as follows:

e First section gives some preliminary results about 2D-Toda lattice (see
[39] and [41]).

e In the second section we deduce semidiscrete zero-curvature equations
starting from the Toeplitz lattice.

e In the third section the Toeplitz lattice is extended to the case of block
Toeplitz matrices.

e Fourth section gives recursion relations for matrix biorthogonal poly-
nomials on the unit circle; this formulas slightly generalize formulas
contained in [47] and [48] for matrix orthogonal polynomials on the
unit circle.

e In the fifth section we derive block semidiscrete zero-curvature equa-
tions defining non-abelian Ablowitz-Ladik hierarchy. As an example
we write the non-abelian analogue of discrete nonlinear Schrodinger.
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Chapter 1

Block Toeplitz determinants,
constrained KP and
Gelfand-Dickey hierarchies.

1.1 Segal-Wilson Grassmannian and related
loop groups

Here we recall some definitions and results from [3] and [4] that will be
useful in this chapter. :

Definition 1.1.1. Let H™ := L[2(S,C") be the space of complezr vector-
valued square-integrable functions. We choose a orthonormal basis given by

{ear=(0,...,25...,00T ra=1...n,k € Z}

and the polarization
H® =g ¢ H™

where H _(,_“) and H™ are the closed subspaces spanned by elements {eq 1} with
k >0 and k < O respectively.

In the sequel in order to avoid cumbersome notations we will write H
instead of H®).

Definition 1.1.2 ([4]). The Grassmannian Gr(H™) modeled on H™ con-
sists of the subset of closed subspaces W C H™ such that:

e the orthogonal projection pr_ : W — HJ(F”) is a Fredholm operator.
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e the orthogonal projection pr_ : W — H™ is ¢ Hilbert-Schmidt opera-
tor. '

Moreover we will denote Gr'™ the subset of Gr(H™) given by subspaces W
such that zW C W.

It’s well known [3] that through Segal-Wilson theory we can associate a
solution of n'* Gelfand-Dickey hierarchy to every element of Gr{™; this is the
reason why we are interested in them.

Lemma 1.1.3 ([3]). The map

=2:H™ — H
(fo(2), - frma(2))T = f(2) = fo() + ... + 2" o (27)

is an isometry. Iis inverse is given by

fils) == " Q)
¢

Moy
where the sum runs over the n®* roots of z.

Proposition 1.1.4. Under the isometry = we can identify Gr™ with the
subset

{WeGr(H): "W C W}

It is obvious that loop groups act on Hilbert spaces defined above by
multiplications. We want to define a certain loop group L%Gl(n,C) with

good analytical properties acting transitively on Gr™: in such a way we
can obtain any W € Gr{™ just acting on the reference point Hﬁj") with this
group. Good analitycal properties will be necessary as we want to construct
symbols of some Toeplitz operators out of elements of this group and then
apply Widom’s results (see below). Given a matrix g we denote with ||g|| its
Hilbert-Schmidt norm .

lgl® = llgssll?

1,j=1

Definition 1.1.5. Given a measurable matriz-valued loop v we define two
norms [|Vlleo and [|vll1 as

Il = ess sup 9 Ilag = 32 (1K 19*)P)°

z||=1 &

16



where we have Fourier expansion

Yz) =) AW

k=—00

Definition 1.1.6. L%Gl(n, C) is defined as the loop group of invertible mea-
surable loops v such that

¥loo + 17],3 < oo.

Proposition 1.1.7 ([4]). Ly Gl(n,C) acts transitively on Gr'™ and the
isotropy group of Hi”) is the group of constant loops Gl(n,C).

Proof can be found in [4], here we just mention the principal steps nec-
essary to arrive to this result.

o We define a subgroup Glys(H (™) of invertible linear maps g : H™ —
H®™ acting on Gr(H ™) (the restricted general linear group).

e We prove that every element of Gl..s(H™) commuting with multipli-
cation by z must belong to Ly Gl(n,C).

o We take an element W € Gr™ and a basis {w, ..., w,} of the orthog-
onal complement of zW in W.

e Out of this basis, putting vectors side by side, we construct W and
easily check that W = W(z)H\™.

e We verify that multiplication by 'W belongs to Gl...(H™); since it
obviously commutes with multiplication by z we conclude that W(z) €
Ly Gl(n,C).

1.2 Szego-Widom theorem for block Toeplitz
determinants.

In his work ([8],[9] and [10]) H. Widom expressed the limit, for the size
going to infinity, of certain block Toeplitz determinants as Fredholm determi-
nants of an operator P acting on H]”. Also he gave two different corollaries
that allow us to compute this determinant in some particular cases. In this
section we recall, without proofs, these results. Moreover we state Borodin-
Okounkov formula as presented in [12] for matrix case.
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We begin recalling some notations; given a loop v € L 1 Gl(n,C) we denote
with Ty (7) the block Toeplitz matrix given by

FO L 4N

AW AN
Tn(y) =

A R O

where we have the Fourier expansion (z) = >, v®)z*. We denote Dy(7)
its determinant. We use the notation T'(y) for the N x N matrix obtained
letting N go to infinity.

Remark 1.2.1. It’s easy to see that, in the base we have chosen above for
H®™_ T(v) is nothing but the matrix representation of

proovy: Hi”) — Hin)

Theorem 1.2.2 (Szegs-Widom theorem,[10]). Suppose v € L1Gl(n,C)
and

A arg (det (fy(ew))) =0

0<0<27
Then it exists the limit

Doo(7y) == lim Dn(v)

Jim Zee = AT (T (™)

where

G(v) = exp (—21; /OZW log ( det fy(eie))dﬁ)

The proof of the theorem is contained in [10]; instead of rewriting it we
simply consider the operator T'(7)T'(y™!) and explain the meaning of ”det”
in this case.

Lemma 1.2.3. Consider 1,7 € L%Gln(n, C); we have

T(n1v2) = T(m)T () = [Z ’Y§i+k)7§_j—k)}ij>o-

E>1
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PROOF The (1, j)-entry of left hand side reads

0 [e3] —-1 oo

imk) (k—j i—k) _(k—j k) (k—j kA1) (—k—j—1
N A S e S e A S S S
k=00 k=0 k=—c0 k=0

In particular choosing 1 = 7y and v, = v~ we obtain

I-T(MTH™) = [Z AR (1) ”’“)}

i,5220

Definition 1.2.4.

ﬂxfwﬂrW=F~CZWWWﬁH%ﬁ (1)

k>1

Thanks to the fact that

D2 IR =3 kPP < oo

i>0 k>1 k>1

the product we have written on the right of (1.1) is a product of two Hilbert-
Schmidt operators. So P, differs from the identity by a nuclear operator.
Hence its determinant is well defined (see for instance [31]). In our notation
we obtained the equality

Deo() = det(P) (1)

We will call P, Plemelj’s operator as it is related in a clear way with a
Riemann-Hilbert factorization problem already considered by Josip Plemelj
in 1964 [15]. We will consider this fact later in this chapter.

Unfortunately, in concrete cases, det(P,,) turns out to be really hard to com-
pute; nevertheless we can use some shortcuts also provided by Widom in his
works ([8],[9] and [10]).

Proposition 1.2.5 ([8]). Suppose that -y satisfies conditions imposed in
Szegi- Widom theorem and, moreover, v = 0 fori > j+1 or 4 =0
fori<j+1.
Then

Deo(7) = Di(v)G(YY (1.3)

Proposition 1.2.6 ([10]). Suppose we have a symbol v satisfying conditions
imposed in Szegd- Widom theorem. Suppose moreover that v depends on a
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parameter T in such a way that the function x — ~(z) is differentiable. If
v~1 admits two Riemann-Hilbert factorizations

Y7H(2) = ta(2)t—(2) = s_(2)s4(2)

such that
t1(z) = Ztﬂ’f)zk s+(z) := Z sff)zk
k>0 k>0
t_(z) := Z £ ) s-(z):= Z s®) 2k
k<0 k<0
Then

-C%log(Doo('y)) = 5177 f trace {((sz)t_ - (6’23_)s+) aﬂJ dz.  (14)

Also Dy(7y) can be expressed as a Fredholm determinant as pointed out
for the scalar case in [11] and generalized for matrix case in [12].

Theorem 1.2.7 (Borodin-Okounkov formula, [12]). Suppose that our
symboly(z) satisfying conditions of Szeqé- Widom’s theorem admits two Riemann-
Hilbert factorizations

Y(2) = 1= (2) = 0_(2)8.(2)

such that
OSSN RO Py
k>0 k>0
v-(2) = Z’y(_k)zk 0_(z) = Z g% 2
k<0 k<0
and G() = 1. Then for every N
Dn(7) = Deo(y) det(I — Ky,x) (1.5)

where, in coordinates, we have
0 dfmin{s,j} <N
(Koyn)ij =
S, (87 (0T, ) otheruise,
Remark 1.2.8. One can easily verify that §-1~, is the inverse of v_67" so
that, again, we deal with operators of type T'(¢)T(¢™') with ¢ = y_67".
Also we want to point out that the assumption G(7y) = 1 is not necessary.

The formula for G(vy) # 1 is written in [13]; since in our case we will always
have G(v) = 1 we wrote the formula as it was given in [12].
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1.3 7 functions for constrained KP and Gelfand-
Dickey hierarchies as block Toeplitz de-
terminants.

In order to fix notations we state some basic facts about KP hierarchy
and some reductions of it. Standard references are [3] and [5]. For cKP
reductions we make reference to [20],[21],[22],[23] and [24].

Given the pseudodifferential Lax operator

L ==y D+ inD*j

J=1

KP hierarchy is defined as compatibility conditions of equations

L¢=z¢
{5% =(Lj)+¢ j=1...0 (1.6)

where (L£7); denote the differential part of j** power of L. These compati-
bility conditions are written in Lax form as

0

5;;'5 = [(Lj)-i-u L}

and should be seen as differential equations for coefficients {u;} with respect
to variables {¢;}. Equivalently one can introduce the dressing operator

S=1+Y sD
j=1

such that
P = S(ez;iltizi) = elje1 liF (1 + 5127 sz 4L )

is a solution of (1.6). In this way KP hierarchy is rewritten in Sato form as

L=8DS!
{iS Y (L.7)
ot; - -
where (L7)_ = L7 — (L7),. The first equation gives expression of {u;} in

terms of {s;} and the second one gives time evolution for {s;}.
Connection with Grassmannian goes this way: given W € Gr one defines

W (t) = eXim 4= W.
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For every values of parameters {t;} such that the orthogonal projection
pry W — Hy
is still Fredholm one defines
Tw(t) := det (pr+ W — H+>

and KP hierarchy can be recast as a set of differential equations for
(Hirota bilinear form). Actually we have the remarkable formula, due to
Sato,

o TW(t- Til"—]) $oo izi
P(t) = R 0N ¢

e~i=1
(here w (¢ — é) = 7w(t1 — 1,12 — 535,...)) that gives ¢ (and then S and L)
in terms of Ty .
Given the pseudodifferential symbol £ and related tau function 7y we say,
using the notation of [22], that 7 € cKP,, , iff L™ can be written as the ratio
of two differential operators of order m + n and n respectively. For n = 0
we recover the usual definition of m*™ Gelfand-Dickey hierarchy; already Se-
gal and Wilson in [3] noticed that this reduction corresponds to considering
points W € Gr such that z™W C W, i.e. W € Gr{®),
For n generic these reductions begun to be studied in 1995 by Dickey and
Krichever ([20],[21]); a geometric interpretation of corresponding points in
the Grassmannian has been given in [23] and [24]. Namely my € cKP,,, iff
W contains a subspace W' of codimension n in W such that z™W’' C W.

Now, given a subspace W € Gr™, we define the corresponding 7y in
a different way from the one used in [3]. Our approach generalizes what
has been done by Itzykson and Zuber in the study of Witten-Kontsevich 7
function in [17] (see also [18] and [19]). This approach allows us to define not
just 7w but also a sequence of {7w ny}n>o approximating 7 and such that

7wy € cKPy oy NcKP,, VN.

Suppose we have an element W € Gr™; thanks to results stated in Section
1 we can represent this element as

w1 ... .. Wl
W= H_(i_n)’:-W(Z>H_(*_n)

Wip «vv o Wpp



with W(z) € L1 Gl(n, C).
Also we assume that the matrix W(z) = {w;;(2) }i j=1.n satisfies

;

Wi = 1 -+ O(;l;)

qwig = 2(0(3)),4 > j

| wyy = 0(3),1<j

This means that we restrict to the big cell, i.e. we assume that the orthogonal
projection
prp: W — H,

is an isomorphism. Infact we have a base for W € Gr(™ given by
{z*w;:s€N,j=1...n}

where w; is the column vector (wy;...wn;)T.
Using the isomorphim = : H™ — H the corresponding base for W € Gr is
given by
{Wnsej = 2™E(w;) : s €N, j=1...n}
and, as in Section 1, we have

n

E(wy)l(z) =Y 7 wjs(2")

7=

This means that we obtain

Wt (2) = 247 (1 +0 (%))

and from this equation follows that the orthogonal projection onto H, is an
isomorphism since every wy projects to 2k,

For these points W € Gr™ and vectors spanning them we define the standard
time evolution (KP flow) given by

Wnstj(t; 2) 1= exp (Z tizi) Wnstj(2) = exp(€(t, 2))wns+i(2)

Now we want to define the 7 function associated to W as limit for N — oo
of some block Toeplitz determinants Ty n.
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Definition 1.3.1. Take M = Nn a multiple of n.
Tw,n(t) 1= det I:j[z_iwj(t; z)dz} (1.8)
1<i,j<M=Nn

Fist of all we want to prove that 7w v is a block Toeplitz determinant and
write explicitely the symbol.

Lemma 1.3.2. For every j = 1...n we have

w;(t; 2) = E7 (wj(t, 2)) = exp(§(t, 2))w;(2)

where we denote

0 z

0 0

Z=10 1 0
o .. 0 1 0

Proor We simply verify that multiplication by z on Gr corresponds to mul-
tiplication by Z on Gr™ through the isomorphism =-!. O

Proposition 1.3.3. 7y, y is the N-truncated (n x n)—block Toeplitz determi-
nant with symbol
W(t; 2) 1= explE(t, 2))W(2) (19)

Proor Take i,j < n and s,v < N; the (i + sn,j + vn)-entry of the matrix
in the right hand side of (1.8) is given by

fz_i_snwj—i—un(t; Z)dZ — %z—i—snzvnwj(t; ;)dz =

j[ ZHEmIn N ()W g = (1))
keZl=1..n

so that the right hand side of (1.8) is the transposed of the N-truncated n x n
block Toeplitz matrix with symbol W(¢; z). O

In the sequel of this paper we will call such symbols Gelfand-Dickey (GD)
symbols.

Now generalizing what has been done by Itzykson and Zuber in [17] we
expand 7w (t) in characters.
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Proposition 1.3.4.

wa(t)= Y (H‘“(M )le, v (X)

Bynlan>0 4

where X = diag(z1, ..., Tny) 18 related to times {¢;} through Miwa’s parametriza-

tion
Xk
t = trace| —
k
and '
xll+nN—1 ml12+nN~—2 o zllnN
det s e e
ll—i-nN 1 lo4+nN-2 IElnN
i ) (X) — TnN LyN Tt nN
Ly-sinN x;}.N -1 x;LN -2 . 1
det

niN~-1 nN—2
TN TN o1

PROOF We start from determinant representation (1.8). The (i, j)-entry of
the matrix will be
Z w_g_n)pn-f-i—l (t)

where for every n > 0

Pa(t) =

i zn+l

L featta),

are the classical Schur polynomials and p,(t) = 0 for every negative n. Then
resumming everything we obtain

Tw,n (t) Z (Hw ) det[pr; +i—1(8)]ij=1..n1
Ibly 7k'n.N
with k; > 1 — 7.
Equivalently we write
Tw(t) = Z (Hw§_lj+j_1)) det[py;—j4i ()]s j=1..0n-

lyeeslnn >0 J

On the other hand it’s well known that under Miwa’s parametrization this
last determinant can be written as x;, ;. ,(X) (see for instance [17],[18]);
this completes the proof. O
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We now assign degree 1 to every z; or, equivalently, degree m to t,, for every
m. For every N the function 7y, is a formal series belonging to the graded
algebra Cl[t1,ts,...]]. In general given A € C[[ty, 1o, . ..]] we define its degree
as the minimal degree of its terms and we state the following definition of
stable limit for sequences in C[[t1, ta,...]].

Definition 1.3.5. Given a sequence of formal series
{An(t) € C[ft1,t2,.. ], N=0...00}
we say that the sequence admits a stable limit A(t) iff

Aim deg(An(t) — A(t)) = o0

We want to prove that the sequence {7w ny} admits stable limit. It’s easy
1o see that

M
deg(xll---lnzv) = Z L
i==1

From this easily verified property we obtain the following

Lemma 1.3.6. Suppose deg(xy,...1.n) = @ < nN. Then, if the character is
different from zero, we have

Xizdny = Xiz,ulg,0,...,0-

PROOF Suppose [; #0,j >Q and ; =0V i > 7.

The j** column of the matrix [p;,_;4;(¢)] has positive subscripts I +j—1, I, +
i=2,..,1

On the other hand ) l; = @; hence the sum of these subscripts is

j—1 J
Q+ ZT < Zr
r=0 =0

hence two subscripts must be equal, then two lines of the matrix are equal.
O

From this corollary it follows directly the following result.

Proposition 1.3.7. Up to degree Q the function Ty n(t) does not depend on
N with N > Q.



Thanks to this proposition we deduce that it exists the stable limit
w(t) == ]\}im Tw,n (2) (1.10)

On the other hand, in the sequel, we will prove that the symbol W(t) satisfies
Szegd-Widom’s condition for every values of ¢; so that the limit in (1.10) exist
pointwise in time parameters and can be written as a Fredholm determinant.
Now, following again [17], we write a differential operator Aw,x(t) associated
to the function 7w n(t). In the sequel we will always write D for the partial
derivative with respect to t;. We will prove that for every N the pseudo-
differential operator Aw n(t)D~™" satisfies Sato’s equations for the dressing
and we recover the usual relation between 7 and wave functions.

Lemma 1.3.8. Define

fsN Zw pk+nN 1 t)

k>s

Then we have

Twn(t) = Wr(fin(),. .., fann () == det[D™ 7 f; n(8)]1<ijanm

PROOF From definition 1.3.1 the (, j)-entry of matrix defining 7w (t) is

Z Wy pk+z—

k>3
On the other hand we have
D™ () = D (Zw Pk+nN—1(t)> = W™ pesa(t)
k> k>

(using the equation D*(py,(t)) = pm-s(t)). Hence we obtained the proof. O

Definition 1.3.9. We define the differential operator Aw y of order N in

D Wi, fin(®), -, Fawe(D))
Wl"(fl,N(t), ey an’N(t»

where f € H depends in a differentiable way on {t;}i>1.

Awn(f) =

Proposition 1.3.10. The following equations for time-derivatves of Awn
holds: 5

—Awny = (AWNDiAE}N> Awn — Awn(t) D (1.11)
Ot I
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PROOF It is enough to prove the equality of the two differential operators
when acting on fi n(2), ... fanv,n (¢) which are nN indipendent solutions of the
equation

(Awn)(f(£) =0

But this amounts to proving

a ot )
'aT(AW,N) fin(t) + AW,Nb‘ii‘fj,N(t) =0 Vj
i 1
which is true iff 5
'a‘;(AW,ij,N(t)) =0 Vj
This equality is obviously satisfied. |

Multiplying Aw,n from the right with D~ we found a pseudodifferential
operator that, in fact, gives a solution of KP equations.

Definition 1.3.11.
SW,N = AW’ND_HN

Proposition 1.3.12. Swy is a monic pseudo-differential operator of order

0 satisying Sato’s equation

0

B-SW,N = "(SWNDZ'S@%N> Sw,n (1.12)
(A -

Hence the monic pseudo-differential operator of order 1
LW,N = (SWNDSI’/I—/?N) (113)

satisfies the usual Laz system for KP

DN (o) B (1.14)
(78

PROOF It is obvious that Sy is a monic pseudo-differential operator of order
0 since Aw,, which is of order nN, is normalized so that the leading term
is equal to 1. Equation (1.12) follows directly from (1.11). The derivation of
Lax system from Sato’s equations is well known: one has just to derive the
relation

LwnSwy = SwaD
for 1, and use the obvious relation [Ly v, L’év, N =0 O

It remains to prove that 7y v (¢) is really the 7 function for these solutions

28



Lwn(t) of KP equations. We recall the usual relations between the dressing
S, the wave function % and 7 function given by

1

7(2)

(we recall that the notation ¢ — ¢y stands for the vector with i" component

P(t; 2) = S(t)(exp(§(t, 2))) = exp(E(t: 2))

equal to t; — ;17) All we have to prove is the following
Proposition 1.3.13.

Twn(t — 5p)

P—y (1.15)

Ywn (8 2) = Sw,n(exp(&(t, 2))) = exp(¢(t, 2))

PRrOOF Equivalently we prove that

o (t = 7p)

(Aww) exp(£(t, 2)) = exp(E(t, 2))2"" Tw.n(t)

Since we have 1

pa(t — E> = pa(t) — 27 pna (t)

the right hand side of the equality above can be written as

DnN—lfl _ Z_IDanl o fl i Z—lDfl
det
N &z ) DN fon =27 D™ fan .. fan — 27 D fan
Wr(fla te 7an)

(here derivative is with respect to t;, we don’t write dependence on f; on ¢
to avoid heavy notation) The left hand side can be written as

2kl etlt)
det D L. A
DWfn oo oo fan
Wr(f1,. ., fan)
It is easy to check that these two expressions are equal. O

We want now to study the structure of Ly with more attention; our inves-
tigation will lead us to discover that, actually, we are dealing with rational
reductions ([21],]20]) of KP.

First of all we recall a useful lemma (proof can be found for instance in [32]).
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Lemma 1.3.14. Let {g1,...,gm} be a basis of linearly indipendent solutions
of a differential operator K of order m. Then one can factorize K as

K=[D+Tn)(D+Tp-1) - (D+T)

with
T = Wr(gh s 7gm-1)
! Wr(gh e agm>

We will state now properties of symmetry for f, y that will be useful in
the sequel.

Proposition 1.3.15. The following equalities hold:
fs,N+1 (t) = fs—-n,N(t) (116)

fon(t) = D" fornn(t) (1.17)
PROOF We will use the equality

W =W

which follows from the very definition of these coefficients.
Then for (1.16) we have

Forns1(t) = D wl ™ pesninno1(t) = D w5 Prsminna (t) =
p k
ng::)plc+nN—1(t) = foenn(t)
k
For (1.17) we have
D™ (foinn(8) = D* 3w prsmy-1(t) = D T Primrv1-n(t) =
I k

> W p - (t) = fon(t)

k
|

Theorem 1.3.16. For every N > 0 the pseudodifferential operator Ly y
and its nt* power .

can be factorized as

o Lwn=Liwn(Lown)™
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e Lwy = Mywn(Mown)™
where all the factors are differential operators and
e ord(Lywn) =nN+1, ord(Lown)=nN
e ord(Miwn) =2n, ord(Mywn)=n
Hence, for every N, wn € cKP1 oy NcKPy .
PRrRoOOF The first factorization comes directly from the fact that
Lwn(t) = Awn () D(Awan(8) ™
For the second factorization we note that we have the factorization
L (t) = Awn () D™ (Awn (1)

where the first operator Ay, x(t)D™ has order M + n while the second (i.e.
Aw ) has order nN. Moreover as follows from (1.17) we have

e Awnfin=0 Vi=1,...,nN
e AwnD"fin=0 Vi=n+1,...,nN
hence using lemma 1.3.14 one can simplify factorization above as
Lwyn = Mywn(Mown)™
where M, w v is given explicitely by the formula
Mown = (D + Knn)(D + Kpoan)-(D + K1 n)

with

Wr(fn+1N7"-7anN,f1N,...,fj_1N)
K;y=D|lo : : ; ;
o [ & < Wr(fn+1,N7 v 7an,N,f1’N, .. '7fj,N)

Theorem 1.3.17. The sequence {Lwn}n>1 satisfies recursion relation

LW,N+1 = r-TNEJW,N(TN)A (1-18')

with
Ty = (D + Tn,N)(D + Tn-—l,N)---(D -+ Tl,N)

Wr(fiw, - fans finv, ---fj—l,N+1)>

WE(fin, o FanNy JLN41 - fiN41)

Tj=Dlog<
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PROOF We observe that thanks to (1.16)
e Awnfin=0 Vi=1...,nN
o Awnpifin=0 Vi=n+1;...,nN
o Awnyifiny1=0 Vi=1,...,n

Hence using again (1.3.14) we obtain the recursion relation
Awni1 = TnAwy

and from this last equation we recover the recursion relation for the Lax
operator. ' O

We want to point out that the first decomposition as well as the recursion
formula are already known and, as pointed out in [22], come simply from the
fact that we have a truncated dressing. Actually our sequence of {Twx}n>1
is a part of a sequence already studied by Dickey in [19] under the name
of stabilizing chain; in that article Dickey already provided the recursion
formula written above as well as some differential equations for coefficients
of Tn. Nevertheless, to our best knowledge, connection with block Toeplitz
determinants never appeared before our article [1]. Also the fact that 7wy €
cKP, y is something new. Now we want to go one step further and see what
happens for N — oo. Obviously thanks to the property of stabilization
stated in proposition 1.3.7 we can define a pseudodifferential operator Ly
and a wave function ¢ related to 7w in the same way as for finite N and
we will obtain a solution of KP as well. Actually a stronger statement holds.

Proposition 1.3.18. Given W € Gr'™ the functions 7y, Yw and Ly :=
(Lw)™ are respectively the T function, the wave function and the differen-
tial operator of order n corresponding to a solution of n** Gelfand-Dickey
hierarchy.

PrOOF It is known [3] that subspaces satisfying "W C W correspond to
solutions of n** Gelfand-Dickey hierarchy. What we have to prove is that

Lw (t) = (Lw (2))+-

From the usual relation
6¢W
Ot

(t;2) = (Lw)+¥w(t; 2) (1.19)

we obtain immediately

0Sw
Oty

+ SVVDTL = (LW)+SW
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so that we have to prove that

O0Sw
Otn

=0
On the other hand

w(t2) = exp(£(t, 2))(1+ Y si(t)z™")

1=1

Sy 1 500"

Using this explicit expression for the wave function and substituting in (1.19)
we obtain

where

n 851 i
(Lw)+¥w(t; 2) — Z"Pw (t; z) = exp (§ )Z /v
j=1
The left hand side of this equation lies on W (t) = exp({(t, z))W for every t
so that multiplying both terms for exp(—£(¢, z)) one obtains that they belong
to subspaces transverse one to the other (W and H_), hence both of them
vanish. This means that gt—si = 0 for every i. O

In virtue of this proposition, when computing 7y associated to W € Gr™
we will always omit times t;, multiple of n. Setting {t;, = 0,j € N} will be
important in order to be able to apply Szegd-Widom’s theorem, in this case
we will write £ instead of ¢.

Proposition 1.3.19. Teke any W € Gr™ in the big cell of Gr™ and a
corresponding GD symbol W(t; z).
Then

w(t) = det(Pwz.))- (1.20)

ProOF All we have to prove is that conditions of Szegd-Widom’s theorem
are satisfied and G(W(¢; z)) = 1. We observe that

W(E 2) € Ly Gl(n,C) ¥E

since we can always find W(z) € L;Gl(n,C) such that W = W(z)HJ(r")

and exp(£(£, Z)) is continuously differentiable (obviously when restricted to
a finite number of times).
Moreover

detlexp(£(, 2))] =
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since we deleted times multiple of n and det(W(z)) =1+ O(z71) by big cell
assumption. '
This implies that we have

and

We are now in the position to state the main result of this paper.

Theorem 1.3.20. Given any point
W()H™ = W € Gt
and corresponding GD symbol

W(t; 2) = exp < > tiZi> W(z)

i=1
the following facts hold true:

o {Twn(t) = Dn(W(t; 2)) }o<n<oo
15 a sequence of T functions for KP associated to wave function

Y (t; 2) = Swn (=57
and pseudodifferential Laz operator
Lwy = SWNDS{V?N.
The dressing is given by the formula

SI/V,N = AW,ND_HN.

e For every N > 0 we have twn € cKP1nn NcKPy, .

e The sequence admits stable limit
Tw(E> = lim TI/V,N<E)-
N—oo

w(t) is a solution of the n** Gelfand-Dickey hierarchy and can be writ-
ten as the Fredholm determinant

T (t) = det <?W(&z)>.
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ProOOF The expression of the dressing as well as the expression of Ly are
given in Proposition 1.3.12. Proposition 1.3.13 gives the expression of ¥w n
and proves at the same time that 7y is the corresponding 7 function. The
fact that 7w n € cKPy,nv N cKP,, is proven in Theorem 1.3.16 while the
existence of the stable limit 7 (%) is given by Propostion 1.3.7; Proposition
1.3.18 and Proposition 1.3.19 prove respectively that 7w (£) is a solution of
the n** Gelfand-Dickey hierarchy and that it can be written as a Fredholm
determinant. O

Remark 1.3.21. Also all the 7y x(%) can be expressed as Fredholm determi-
nants; in order to give explicit expressions we need a certain Riemann-Hilbert
factorization of symbol W(£; z). This factorization will be obtained in section
5 and it will be exploited to express 7w (%) as a Fredholm determinant.

1.4 Riemann-Hilbert problem and Plemelj’s
integral formula.

It is evident from proposition 1.2.6 that Riemann-Hilbert decompositions
of symbol ~y for a block Toeplitz operator plays an important role in comput-
ing Deo(7)-

Here we will show that actually Plemelj’s operator itself enters in a integral
equation (see [15]) giving solutions of Riemann-Hilbert problem

0(2) =77 (2)e-(2). (1.21)
Here ¢, () and ¢_(z) are respectively analytical functions defined inside and
outside the circle. In this section we consider a smaller class of loops; v(z)
will be a matrix-valued function that extends analytically on a neighborhood
of S'. For convenience of the reader we recall here the main steps to arrive
to Plemelj’s integral formula [15].

Lemma 1.4.1. Suppose that f.(z), f-(2) are functions on S* satisfying
1£(G) = Al <le-Gl*C

for some positive constants p,C and for every (1,(s € S*. Necessary and
sufficient conditions for fi(z) and f_(z) to be boundary values of analytic
functions regular inside or outside S* C C and with value ¢ at infinity are
respectively

f+(¢
o }[ dC =0 (1.22)

gﬂjff' gg D+ f(z)—c=0 (1.23)
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We have to point out that here both ¢ and z lies on S so that one has
to be careful and define (1.22) and (1.23) as appropriate limits. Namely
one proves that taking ¢ slightly inside or outside S* along the normal and
making it approach to the circle we obtain the same result which will be, by
definition, the value of our integral. Now suppose we want to find solutions
of (1.21); we normalize the problem requiring ¢_ taking value C at infinity.
Taking an appropriate linear combination of (1.22) and (1.23) and using
(1.21) we find that ¢_(z) must satisfy the equation

G (Y
C = S d 1.24
o) =5 ¢ T g0 ey

Note that here we do not have to take any limit since the integrand is
well defined for every point of S*. We also want to consider the associate
homogeneous equation

1 _}[ (YD) (2T (¢) - Igp(g)dg (1.25)

0=9()+ 5 WO =T g (1.26)

Obviously, as usual in Fredholm’s theory, the equations (1.25) and (1.26)
either have only trivial solution or they have the same number of linearly
indipendent solutions.

Lemma 1.4.2. Consider two adjoint RH problems

—~

p+(2) = 1(2)To-(2) 1.27)
Vi(2) = v(2)y-(2) (1.28)
normalized as ¥_{co0) = ¢_(c0) = 0.
Any solution @_ of (1.27) is a solution of (1.25) as well as any solution 1.,
of (1.28) is a solution of (1.26).

PROOF We just repeat computations made for non-homogeneous case. O

Now we introduce a new integrable operator acting on HJ(:L) and prove that
it is actually equal to the Plemelj’s operator.

Definition 1.4.3. For every f € HEL”) we define

Bol(z) = pr, (wz) v ) - Iw@)dc) (1.29)

2me (—=z

where pr denote the projection onto Hi").
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Proposition 1.4.4. _
Py =7,

PROOF We write P, in coordinates and verify we obtain the same as in (1.1).
To do so as in the definition of integrals (1.22) and (1.23) we compute (1.29)
imposing |¢| < |z|; the formula will hold when ¢ approach to S* in the same
way as in (1.22) and (1.23). For a consistency check we will prove we obtain
the same result imposing || > |z|. Let’s start with |{| < |z|; we have

ji%ﬂ@TﬂO*f

2m ¢ —

¥(2) + ()¢ =

p - q q s st
2#2_742 ()('Y 1)( )ZPC>Z¢( )¢ _E

Py qEZ s>0

Imposing k& + g + s = 0 we get that this is equal to

2+ DD AP I = () + 30 ST S 4 )k

peZ k>1 520 t€Z k>1 20

Taking the projection on Hi") we obtain exactly formula (1.1). Now for
[¢] > |2| we have

Y(C)d¢ =

o)+ o L0

2m (—=z

., C -1\(a) ,p g s siC_
g § (2 e - 1) S

k>0 p,9€EZ s>0

Imposing ¢ + s = k we arrive to

Z Z,.y(p) —1 (k— s)w(s) Sktp Z Z,_Yt k ),‘/)( )z‘t

k,s>0 peZ k,s>0 teZ

Taking the projection on Hi”) we obtain that this is equal to T'(v)T(y™*) so
that the two computations for |¢| < |z| and for || > |z| coincide in virtue of
lemma 1.2.3 O

Theorem 1.4.5. Suppose we are given a symbol v(z) analytic in a neigh-
borhood of S* and such that

Deo(v) #0
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Then the Riemann-Hilbert problem

P (2) = (=) o-(2)
normalized as p_(o0) = C' admits (if ezisting) a unique solution.

PROOF Suppose we have two distinct solutions (¢1—, v1+) and (pa_, 9. );
taking the difference we obtain a non-trivial solution of (1.27). Then also
(1.28) admits non trivial solutions and the same holds for (1.26). But this

means that we have a non zero ¥(z) € Hg_") such that [P,1](2) = 0 which is
impossible since

det(?’v) = Dw(7) # 0
O

Existence of factorization will be treated in the next section for the specific
case of Gelfand-Dickey symbols. For a general treatment of the problem of
existence see [15].

1.5 Factorization for Gelfand-Dickey symbols

Here we will prove that for Gelfand-Dickey symbols we can write the
unique solution of factorization (1.21) in terms of data Ly (f), ¥w(f; z). We
recall that Ly () and ¥y (£; z) are the stable limits of Ly n () and ¥w n(%; 2).
They represent the differential operator and the wave function associated to
the solution 7y (£). Our exposition here is closely related to [16]. At the end of
the section we will use the factorization obtained to express any 7y (%) as a
Fredholm determinant. As we have written before in the proof of proposition
1.3.18 we have the relation

Lw (O)vw(t; 2) = 2™bw(E; 2) (1.30)
where 1w (£; z) admits asymptotic expansion
bw(t; 2) = exp(£(F, 2))(1 + O(= 7))
Now out of ¥y we construct n time-dependent functions
Ywit; 2) = D'(yw(2) :i=0,...,n—1
belonging to the subspace W € Gr.
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Definition 1.5.1.
SO ¢ Yot G) bwaiG ) oo Ywn1(EG)

1 G ... gt Ywolt ) Ywait ) oo Ywn1(GG)

-1

1 Cn s C:_l 'ﬁbVV,O(E; Cn) 7z[)VV,l (177 Cn) v Q/)VV,n-—l (E, Cn)
where (; is the it" root of z.

Proposition 1.5.2. The matriz Yy (t; 2) admits asympotic ezpansion
Uw (% Z) = exp(§(F; 2))( + O(z71))

Moreover under the isomorphism Z7' : H — H™ we can write W € Gr(™
as

W = Uy (0, 2)H™ (1.31)

PROOF One has to note that the 5** column of matrix Wy (£; 2) is nothing but
Z (4hw4(£, 2)) so that asymptotic expansion follows easily. Equation (1.31)
corresponds to the fact that {z"9w;(0,2) : s € Z} is a basis for W. O

Observe that, since we also have

W =W(z)H{

we obtain

Ty (0,2) = W(2)(I +0(zh).

From this equation and from lemma 1.2.3 it follows that for every N > 0 we

have
Ty (W(E; (I + O(z“l))) = T (W(E 2))Tw(I + O(z"1)).

Now since for every N
det(Tw(I + O(z™1)) =1
we will assume, without loss of generality, that
Uy (0, 2) = W(z)

since this is true modulo an irrelevant term that does not affect values of
determinants we want to compute. We now want to define a matrix ®w (f; 2)
analytic in z near 0 and with similar properties as Uy (Z; 2).
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Definition 1.5.3. Let ¢w(f; z) be the unique solution of
Ly (B)¢w (t 2) = 2"¢w(t; 2)
analytic in z = 0 and such that
(D'¢)(0,2)=2:i=0,...,n~1
We define

-1

1 G ... ¢! dwo(t:¢1) dwa(té) .. war(EG)
1 ¢ ... 5‘_1 ¢W0<f3€2) ¢W,1(5§C2) d)W,n—l(&CZ)

HH
S
—~
Sl

e
~—

f

I dwo(t;Gn) dwalt ) oo Pwa-1(fGn)

where as before (; is the i*" root of z and

¢I/V,i(t) = Dl(gbvv(f, Z)) 1= 0, e, — 1.

Remark 1.5.4. @y (%; z) admits regular expansion in z = 0 and Cauchy initial
values we imposed on ¢w imply

Oy (0;2) = 1.
Proposition 1.5.5. Uy (£;2)®; (2, 2) does not depend on t; for any i.
Proor It is well known that equations
0 i
Tt (L )+ f
satisfied by ¢w and ¥w can be translated into matrix equations

0
8—tiF =FM

satisfied by lI/W(f; z) and ®w (f; z) (one can write explicitely M in terms of
coefficients of (L‘ﬁv)+) Hence we have
0 - - - s
vy (Tw(t; 2)5 (G 2) = Uw(E 2) M D3 (E 2)—
Uy (t; 2)0% (5 2)Pw (; 2) MO} (E;2) = 0

40




Theorem 1.5.6. Given a Gelfand-Dickey symbol
W(E 2) = exp (&(F, 2) ) W(z)

one can factorize it as
W(t; z) = {eXp (5 (% Z))‘Ifw(-f, z)} Oy (1 2)

where the term inside the square bracket is analytic around z = oo and the
other is analytic around z = 0. For assigned values of t for which

this is the unique solution of the factorization problem (1.21) normalized at
infinity to the identity.

Proor Using the previous proposition we have

W(t 2) = exp&(t, Z)W(z) = exp(£(F, 2))Tw (0, 2) =
xp(§(E, 2)) ¥ (—1; 2) 05 (—1; 2) 2w (0; 2) = exp(£(F, Z)) ¥ (—F; 2) @35 (—F; 2)

Unicity of the factorization follows from section 4. O

Corollary 1.5.7. For every N > 0
Tw(t) = 1w () det(I — Kooy n)
with
0 ¢ min{i,j} <N

(KW(E;z),N)ij =
Zk (T (—t ))H—L)(\I’W( t ’)'1)(*j“k) otherwise.

Proor It is enough to apply Borodin-Okounkov formula using factorization
obtained above. |

Corollary 1.5.8. For every N >0

TWN(t)

Twa() = det <T(\I]W(“f5 2)) T (Tw (~4; Z)"l))N,N

(observe that the right hand side of this equation is an ordinary n X n deter-
manant, not a Fredholm determinant).
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Proor _
Tw,n (t) _ det(I — Ky, )
Twa(t)  det( — Kwz)ne1)

On the other hand the operator (I — K.y n+1) " (I — Koy n) can be
written as a block matrix obtained taking the identity matrix and replacing
the N*®* block column by the N** block column of the matrix with (4, j)-entry
equal to

o0
D (U (=152)) 9 (g (=8 2) 1) 7,
k=1
Hence proof is obtained applying lemma 1.2.3 O

1.6 Rank one stationary reductions and cor-
responding Gelfand-Dickey symbols

We want to describe, more explicitely, GD symbols corresponding to so-
lutions of Gelfand-Dickey hierarchies obtained by rank one stationary re-
ductions. In order to emphasize that we are dealing with rank-one generic
case instead of the standard expression Krichever locus we will speak about
Burchnall-Chaundy locus.

Definition 1.6.1. Given a point W € Gr™ we say that W stays in Burchnall-
Chaundy locus iff the Lax operator Ly, of the corresponding solution satisfies

for some differential operator My of order m coprime with n. Without loss
of generality we also assume m > n.

The name we use is due to the fact that, already in 1923, Burchnall and
Chaundy were the first to study algebras of commuting differential operators
in [25] where they stated this important proposition we will use in the sequel.

Proposition 1.6.2 ([25]). Given a pair of commuting differential operator
L, M with relatively prime orders it ezists an irreducible polynomial F(z,y)
such that

Flz,y) =2+ ... £ y"
and F(L,M) = 0.

42



This proposition in particular allows us to associate to every Burchnall-
Chaundy solution a spectral curve defined by polynomial relation existing
between the pair of commuting differential operators. From the Grassman-
nian point of view one can define an action A of pseudodifferential operators
in variable t; on H by ’

A:YDOXx H—H
(5 2)) — () (=)ot

and, using this action, prove the following propostition

Proposition 1.6.3 ([6]). Given a point W in the Burchnall-Chaundy locus
one has

"W CW (1.32)
b(z)W CW (1.33)

where Lw and My are of order n and m respectively and b(z) is a series in
z whose leading term is z™. Conversely, if W satisfies above properties, it
stays in the Burchnall-Chaundy locus.

ProoF We just sketch the proof end make reference to Mulase’s article
[6]. Suppose we are given Ly and My ; under conjugation with the dressing
Sw () we have

871

ot}
Under the action A this gives invariance of W with respect to z™ while
invariance with respect to b(z) is obtained acting with

Syt () My (8).Sw (D)

St (&) Lw (£) Sw (2)

Viceversa given W we reconstruct the dressing Sw(%); using it we define
Lw(t) and My (t) conjugating pseudodifferential operators corresponding to
2" and b(z). In particular observe that also 2™ and b(z) will satisfy the same

polynomial relation as Ly (f) and My (2). O
Remark 1.6.4. Without loss of generality we can assume
1 b(z)
— dz=0 Z. )
5 7{ e Vs € (1.34)
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Now suppose we are given an element W = W(z)Hi”) € Gr™ in the
Burchnall-Chaundy locus. Using the explicit isomorphism = we can construct
a matrix B(z) := b(Z) such that

B(z)W C W. (1.35)

Proposition 1.6.5.

has the following properties:
o C(z) is polynomial in z.
o trace(C(z)) =0
e m=max;(j —i+ndegCi(z)) Vij=1...n

o The characteristic polynomial pc(z)(Z) of C(z) defines the spectral curve
of the solution.

Proor Equation (1.35) can be equivalently written as
W(z)B(z)W(z)H™ € HM

and this means precisely that C(z) can’t have terms in z7* for any k& > 0.
The other properties are satisfied if and only if they are equally satisfied by
B(z) so that we will prove them for B(z) instead of C(z). B(z) is traceless
thanks to equation (1.34) and thanks to the fact that

trace(Z*) =0 Vk # sn

The third properties is satisfied as B(z) = b(A) represents in H multiplication
by a series whose leading term is equal to m. For the last property we
observe that if F'(z,y) is the polynomial defining the spectral curve, i.e.
F(Lyw, My) = 0, then we will have

F(diag(z,z,...,2),B(2)) =0
as well; on the other hand thanks to Cayley-Hamilton theorem we have
P5(z)(B(2)) = 0.
Since F' is irreducible and pp(,)(A) has the same form

Pe(A) = A"+ £ 2™
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we conclude that they are equal. . |

Observe that since W(z) is defined modulo multiplication on the left
by invertible triangular matrices also C(z) is defined modulo conjugation
by elements of the group A of upper trianguar invertible matrices. It was
a remarkable observation of Schwarz [26] that actually Burchnall-Chaundy
locus can be described by means of matrices with properties as in proposition
1.6.5 modulo the action of A. Here we adapt the results of [26] to our
situation. Namely we explain how, given C(z), one can recover W(z) and
the corresponding spectral curve.

Proposition 1.6.6. Given a matriz C(z) such that:
e C(z) is polynomial in z.
e trace(C(z)) =0
e m=max;(j —i+ndegCi(z)) Vi=1l...n

it erists a unique W = W(z)Hi") in Burchnall-Chaundy locus such that its
spectral curve is defined by po(z)(N).

In order to prove this proposition we need two lemmas.

Lemma 1.6.7. Given a polynomial matriz C(z) such that

m =max(j —i+ndegCy;(z)) Vi=1l...n
(with m and n coprime) coefficients of characteristic polynomial
Poz(A) = A"+ ()N + L+ c(2)
satisfy

ndegcs <ms Vs=1,...,n—1
degc, =m

Proor From
ndegCi; <m—j+1

and definition of determinant follows immediately that
ndegc; <ms Vs=1,...,n.

Strict inequality for s < n follows from the fact that m and n are coprime.
For the equality

deg ¢, = deg(det(C(z))) =m
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we observe that in every line there is a unique element C;;(z) such that
- m = j — i+ ndeg Cy(z); taking this unique element for every line and
multiplying them we will obtain the leading term of determinant which will
be of order m. O

Lemma 1.6.8. The equation
A" e ()AL +en(2) =0 (1.36)
with
ndege, <ms Vs=1,...,n—1
degc, =m

and n,m coprime has n distinct solutions {X; = b((;), i=1...n} with

b(¢) =("(1+0(™)
(as usual §; is the it" root of z).

Proor Imposing A\; = ([ we have a solution of the equation

() +al@E) ™+ el =0

at the leading order mn. Then imposing A; = ¢™(1 + [1¢§™) and plugging it
into the equation (1.36) one obtains

€+ L+ a( )+ L)+ L+ () = 0

[; can be found so that terms of order nm — 1 in the equation vanish; going
on solving the equation term by term we obtain

=1+ 167

7<0

Clearly coefficients /; do not depend on the choice of the root (; so that it
exists b(\) with stated properties. 0

Now we can prove proposition 1.6.6.

PRrROOF We start computing the characteristic polynomial pg(.)(A); thanks to
lemmas 1.6.7 and 1.6.8 we find n distinct roots b(¢1), . . ., b((,) with properties
stated above.

The aim is to find W(z) such that



Since we have n distinct solutions {b(¢;), ¢=1,...,n} of the equation
Pz (A) =0

it exists a matrix Y((1,...,¢{,) such that

lé'\O [en RN an]

b(Gn)

On the other hand it’s easy to observe that the matrix Z can be diagonalized
as

1 G ... N\ (G 0 ... 0 1 ¢ ... @t
o1 & - ot 0 & ... 0O 1 G ... ¢t
1L G oo 1 0 oo oo bn I

and this means that multiplication by b(z) can be written in Hg_") as
multiplication by

1 G ..o\ aG) o 0 1 G n-1
1 G ... gt 0 b(¢) 0 I G G
b 67 o bG)) \1 G e
Hence we have
L G o g
W =T | e G
1 ¢ ...

Note that W(z) is defined modulo the action of A so that, by construction,
C(z) corresponds to a unique W € Gr™ such that

W =W(z)H™.
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Remark 1.6.9. As it was pointed out by Schwarz [26], matrices C(z) with
properties stated above can be used to describe points in the Grassman-
nian describing string solutions of Gelfand-Dickey hierarchies, i.e. solutions
associated to reduction of type

[L,M] =1

This class of solutions has not been treated here since they do not live in
Segal-Wilson Grassmannian but just on Sato’s Grassmannian constructed
on the space of formal series; this means that we cannot use any more Szego-
Widom theorem as the analytical requirements are not satisfied. Nevertheless
some results obtained in section 3 still hold since the property of stability for
{mwn(t)} does not depend on analytical properties of the symbol W(z).

Ezample 1.6.10 (Symmetric n-coverings). Take a symmetric n-covering € of
P! given by equation

nk+4-1

At =P(z)= [](z—ay) (1.37)

=1

For this particular type of curves, choosing in a appropriate way the divisor on
the curve, we can write explicitely W(z), B(z) and C(z). We start to observe
that for any W corresponding to this spectral curve we have b(z)W C W
with

b(z) = P(z")»
Then it’s eagy to prove that the corresponding B(z) = b(A) can be written
as

0 0o ... 0 Z"% P(z)=
7wP(z)s 0 ... 0 0
0 . )
B(z) =
0 0 =z wP(z)n 0
Now we define n functions
P\ & 1
wi(z) == ( ( >> = , i=1,...,n
z [[57 (2 —ay)

]

We take
W = diag(w;(2), ..., wn(2))
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It is easy to verify that the matrix

0 0 zy’v:fl'P(z 7 n(2)
L wi(z)
2wP(2)n 2l 0 0 0
0
1 L Wy
0 o 0 ZTRP(z)wieal) 0

is polynomial in z. It is worth noticing that this example already gives all pos-
sible double coverings; hence for any (possibly singular) hyperelliptc surface
we found (assigning a particular divisor) the GD symbol of the corresponding
algebro-geometric rank one solution of KdV.

Ezample 1.6.11 (Rational solutions). As pointed out by Segal and Wilson
[3], subspace of Burchnall-Chaundy locus corresponding to rational curves
are given by W = W(z)H. i") with W(z) rational in z. In particular the corre-
sponding Gelfand-Dickey symbol will satisfy hypothesis given in proposition
1.2.5 so that we recover the following (known) result.

Proposition 1.6.12. Every rational solution of Gelfand-Dickey hierarchies can
be written as a finite-size determinant.

For instance, for n = 2, taking

T —d?z1 0
W(z) = ( 0 1- 022“1> HE"

the inverse of Gelfand-Dickey symbol is equal to

Wt 2) =
. ) Z
cosh(z2 (Zizo t2i+1z2z)> —2z3 sinh(z3 ( D is0 7521‘+1221)) 2 0
—z"7 sinh(z2 ( D i>0 t21+1z2i)> cosh(zz < >0 t2i+122i)> 0 " j o2

Simply taking the residue one obtains that the corresponding 7 function will
be equal to

cosh < Y iso tainn d2i+1> —dsinh ( Siso taisa d2i+1)
Tvv(tl,t;g, ) = det

-1 2i+1 2i+1
—c~!sinh (Zizo tos1 st ) cosh (ZiZO ot )
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and recover 2-solitons solution for KdV.

We want to point out that, for algebro geometric solutions treated in this
section, the problem of factorization for Gelfand Dickey symbol can be easily
translated into a Riemann-Hilbert problem on some cuts on the plane with
constant jumps. For simplicity we reduce to the case n = 2; the procedure
used here is equivalent to the one used by Its, Jin and Korepin in [28] and
generalized by Its, Mezzadri and Mo in [29]. Suppose we want to solve the
factorization problem

W(F 2) 1= exp (&(F, 4) ) W(z) = T-(5 2) T (F; 2)

for our GD symbol with W(z) = diag(w:(z), ws(z)) as in example 1.6.10;
since it will appear many times we denote A the matrix

(1)

2g+1

P(z):= H (z = ay)

J=1

Also we impose

with all a; having modulo less then 1 and

lall < llaall < ... < [lazgsl]

We denote Iy, ...l;+; the oriented intervals (a1, a2), (as, as), ...(a2g+1,00). In-
stead of looking for T_(f; z) and T(f;z) we define a new matrix S(%; z)
imposing

S(2) ==Aexp (- EEG,AN)T-(52z) z>1

S(t; 2) := AW()THE2) =<1
Proposition 1.6.13. S(t; z) has the following properties:
e [t has no jumps on S*

o It has jumps on intervals l;; precisely calling Sp(t;z) and Sg(%; ) the
values of S(t; z) approaching from the left and approching from the right
the interval we have



o [i is invertible in any points but a;; there it has singular behaviour of

type ‘
o )
7 1 1 0 +1 ~
sE2~ (1 1) -0\ 56
with S;(t; z) invertible in a;; minus s for a1, ..., ag, plus for the others.

e At infinity it behaves as

. exp(—\/%'(tlz+t3z+...)) \/Eexp(—-\/z(tlz—i—tgz—k...))

S(t; z) ~

PROOF Let’s call S, (£; z) and S_(Z; z) the limiting values of S(f; z) approach-
ing the unit circle from inside and outside; we have

S_(t 2)S71(F 2) = Aexp(—€(F, 2))T-(F; 2) Ty (£ 2)W™ (2) A7 =

Aexp(—¢(t,2)) exp(€(E, 2)) W)W (2) A7 = T
and this proves we haven’t any jumps on S*.
Writing explicitely S(Z; z) as
( exp(—\/g(tlz-i—tg,z—#...)) \/Eexp(—\/i(tlz+t3z—l-...))
S(t; 2) =
exp (ﬁ(t1z+t3z+...)> —/zexp <\/E(tlz+t3z+ . ))
< . _ (P
[[i=o(z —a))
S(t2) = T (52) 2<1
(e
\ H?___O(z - a’j)

we obtain almost immediately the other points of the proposition; the only
thing we have to observe is that both T\ (f;z) and T_(¢;z) are invertible
inside and outside the circle respectively. This is because we have

s (P - V) det(T. (5 »
det W(t; 2) = oz —a) det (T4 (t; 2)) det(T-(¢; 2))

This condition combined with

lim det(T(%; 2)) =1

200

o1

exp (\/E(tlz +tgz+ .. )) —v/zexp (ﬁ(tlz +isz+ .. ))

T(



gives
det(T(t,2)) =1

det(T_(£ 2)) = ——(—Pﬂ)—%—-—

H?:o(z - a;)
O

The Riemann-Hilbert problem given by propostion 1.6.13 is equivalent to
the one proposed in section 5. What can be done is to write explicitely the
solution S(%; z) using @ functions associated to the curve; this is what has
been done in [28] and [29]. Actually comparing previous proposition with
results obtained in section 5 we immediately realize that

Ywo(t;vz)  Ywa(tVz)
Ywo(t; —vz) Ywa(l; —/2)

so that all we have to do in our case is to write down Baker-Akhiezer func-
tion in terms of special functions. We can carry on the same procedure for n
arbitary; the only difference will be that the jump matrices will remain con-
stant but more complicated; in any case the solution of this Riemann-Hilbert
problem with constant jumps will be

Ywo(t; ) YwalG¢) - Ywaa Q)
Ywolt;G) Ywal ) oo Ywai(EG)

S(t;z) =

Yot Gn) Ywalt ) oo Vw1 )

Explicit formulas involving special functions can be used here to apply propo-
sition 1.2.6 to our case. For instance taking the elliptic curve € given by
equation

w? =42° — goZ — g3

with uniformization given by the Weierstass p function

(z,w) = (p(u), ¢'(u))

one can write wave function as

o(u—c—z)o(c)
o(u—c)o(z +c)

bt u) = exp (2C(u) — 16/(w)
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(here ¢ and o are Weierstrass ¢ and o function respectively, z and ¢ cor-
respond to the first and the third time). With some tedious computations,
making the change of variables u = u(z), the right hand side of equation
(1.4) can be obtained. It turns out that the only relevant factorization is the

one given by
W (z,t;u) = [W‘l(u)‘lf(—:c, ét; u)} [‘I’”I(—x, —t; u) exp{—zA — tA3)}
where as before (we just wrote z as a function of u) we have

o) = (| (Sfp(?ii))_ (S o)
)

Plugging into equation (1.4) we obtain

d
EE’T‘(:E, t) = Kt +2((—c) — 2¢(z — ¢)

(here K is some constant); taking another derivative we obtain elliptic solu-
tion of KdV as expected.
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Chapter 2

Matrix biorthogonal
polynomials on the unit circle
and non-abelian
Ablowitz-Ladik hierarchy.

2.1 2D-Toda; linearization and biorthogonal
polynoinials.
In this section we recall some basic facts about 2D-Toda hierarchy as
presented in [39]. Moreover we describe the connection with biorthogonal
polynomials as originally explained in [41].

We are interested in the semi-infinite case; we start denoting with A the shift
matrix

A = (57;‘)1"]'20.

For the transpose w= use the notation A = A~!. Then we define two Lax
matrices

L= A+ Y a Al
Ly:= a(_zil\'1 + 2 50 a§2)Ai

where {ags), s = 1,2 are some diagonal matrices. 2D-Toda equations, ex-
pressed in Lax form:, arises as compatibility conditions for the following
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Zakarov-Shabat spectral problem:

(LT = 2T,

LIWs = 7103
8, W1 = (L7)+ Ty
0, U5 = —(L1)3 03
05, V1 = (L§)-T,
(05, U5 = —(L5)13

Here we introduced two infinite sets of times {¢;,7 > 0} and {s;,% > 0}. We
denoted with N, the upper triangular part of a matrix N (including the
main diagonal) and with N_ the lower triangular part (excluding the main
diagonal). ¥; and ¥} are semi-infinte column vectors of type

\Ifl(Z) = (\1’1’0(2), \Iil’l(Z), .. .)T
\If;(z) = (‘Ilé,o(z)y‘lf’é,l(ZL . ')T-

For every k the two expressions e~¢®)¥ () and e~¢(*=)T3 , (z7) are poly-
nomials in z of order k. Lax equations are written as

O Li = (L), Li) 0, Li = [(L3)-, L;], i=1,2

It should be noted that, while in the first section we had Lax equations
for (pseudo-)differential operators, here we have Lax equations for matrices.
Nevertheless we use the same letter L (plus different subscripts) since this is
the standard notation used in almost every article. The same holds for the
letters ¢ and ¥ which are used for wave functions in the first secion and for
wave vectors in the second.

2D-Toda equations can be linearized with a procedure very similar to the one
used with Grassmannians in the first section. We describe it as presented in
[39]. We start with an initial value matrix M (0,0) = {M;;(0,0)}; j>0 and we
define its time evolution through the equation

M(t;5) = exp (£(¢,A) ) M(0,0) exp (= €(s,471))
We assume that there exist a factorization
M(O, O) = Sl (O, O)"ng(O, O)

Here \5; is lower triangular while Sy is upper triangular. We assume that both
S1 and S; have non zero elements on the main diagonal and we normalize
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.them in such a way that every element on the main diagonal of S; is equal

to 1. Moreover we consider values of t and s for which we can write
M(t,s) = Si(t, 8) 7 Sa(t, 5) (2.1)

with 5, and S, having the same properties as above. Now we denote with |
x(z) the infinite vector x(2) :== (1 z 22 .. .)T. Wave vectors for 2D-Toda
and Lax matrices are constructed in the following way.

Theorem 2.1.1 ([39]). The wave vectors

Uy (z) == exp(¢(t, 2)) Six(2)
U3(2) = exp(—€(s,271))(S71) x (=)
and the two Laz operators Ly := S;AST Land Ly = SoAL ST 1 satisfy 2D-
Toda Zakharov-Shabat spectral problem.
PRrROOF We jus®sketch the proof and make reference to the article [39]. It is
clear that the matrix M (¢, s) satisfies differential equations
O, M = A'M
O, M = —MA™".
Then it is easy to deduce Sato’s equations
0, S1=—(L})_51
0,82 = (LT)+52
05,51 = (L3)-51
05, S2 = —(L5)+.S.
and Zakharov-Shabat’s equations can be deduced from the expression of wave
vectors in terms of S; and Ss. a

The last thing we need is the link between factorization of M and biorthog-
onal polynomials; we introduce a bilinear pairing on the space of polynomials
in z defining

<2 >y= M;;.

The following proposition is a direct consequence of (2.1).
Proposition 2.1.2 ([41]).

¢® = (¢M)izo == Six(2)

2 -~
0 = (g0 = (55")x(2)
are biorthonormal polynomials with respect to the pairing <, >, i.e.

<P, ¢ >u=8; Vi,jeN
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2.2 From Toeplitz lattice hierarchy to semidis-
crete zero-curvature equations for Ablowitz-
Ladik hierarchy.

In this section we briefly recall the reduction from 2D-Toda to Toeplitz
lattice as described in [41]. Then we will show how Ablowitz-Ladik equations
are easily obtained from Toeplitz lattice.

Suppose that our initial value M(0,0) is a Toeplitz matrix; i.e. we have

,Y(O) fy(_l) 7(_2)

,.)/(1) ,.Y(O) r)/(_’l)
M(0,0) =T(7)

7(2) 7(1) 7(0)

for some formal power series Y(2) = Y,z 7™2". Now since A = T'(z71) is
an upper triangular Toeplitz matrix it follows easily (see for instance [49])
that

M(t, s) = exp (g(t, A))M(o, 0) exp ( (5,47 =
T((exp (66,27 v(2) e (— £(5,2)) ).

This means that Toeplitz form in conserved along 2D-Toda flow, hence we
are dealing with a reduction of it. This reduction is called Toeplitz lattice
in [41]. In that article the authors noticed, in the introduction, that this is
nothing but Ablowitz-Ladik hierarchy. Now we will describe how to obtain
the original formulation of Ablowitz-Ladik equations starting from Adler-van
Moerbeke’s formulation. ,

The key observation is that, in this case, the bilinear pairing < p,q¢ >
between two arbitrary polynomials is given by

dz

omiz

<p,q>u= j[ p(2)v(2)g*(2)

Here the symbol of integration means that we are taking the residue of the
formal series p(z)v(z)g*(z) and ¢*(z) = ¢(z™'). In other words qgl) and qj(-2)
are nothing but orthonormal polynomials on the unit circle. We also define
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monic biorthogonal polynomials

p® = (pM )iz := Six(2)
P = (pP)iz0 1= B(S7 1) x(2)

with h = diag(hqg, h1, he, .. .) some diagonal matrix.
Now given an arbitrary polynomial g(z) we define its reversed polynomial
§(z) := z"q*(z) and reflection coefficients

We can state the standard recursion relation associated to biorthogonal po-
lynomials on the unit circle.

Proposition 2.2.1 ([42]). The following recursion relation holds:

@) _g, (P2 @) ( z +> () oy
Bt () p(2))  \gvme 1) A\50(2)
Using this recursion relation Adler and van Moerbeke in [41] wrote the

peculiar form of Lax operators for the Toeplitz reduction.

Proposition 2.2.2 ([41]). Laz operators of Toeplitz lattice are of the fol-
lowing form:

—~T1Y 1—T1n 0

—IpYo —T2y1 1 — Tl 0 .
hlLh=| ~%%0 —T3y1  —Tsy l—zsys O
—Tolh —Zpl —ZolYs
l—mzy; —zie —Z1Y3
Ly = 0 1—2zay2  —%293
: 0 1— T3Y3
0

Corollary 2.2.3. In particular we obtain

h’n+1
hn

=1—ZTnp1Ynt1-
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We can now state the theorem that relate Toeplitz lattice to the original
form of Ablowitz-Ladik hierarchy. "

Theorem 2.2.4. Toeplitz lattice flow can be written in the form
Z)) (2.3)
z)

(
(
z nl) z
Jold) e

for some matrices My, n, My, » depending on {z;,y;, z}.
PrOOF We prove it for times ¢.
We denote d([z]) = diag(1, z,2%, 2%,...). We have the identities
Uy (2) = exp(£(t, 2))p™M(2)
T3(2) = h™d([27"]) exp(—€ (s, 271))5P ()

that gives the following time evolution for orthogonal polynomials
8,0 (2) = —2'pW(2) + (L) 1pM(2)
0,5 (2) = —hd([2]) (L)L h (27 DF (2).
Here (L%)44 denotes the strictly upper diagonal part of L?. Formulas above

are obtained from a straightforward computation and using the fact, proven
in [41], that
ati 10g(hn) = (L?L)nn
Hence we have that, for every k, 0;, p,(cl) is a linear combination of {p,(cl) , p,(clll,p,(illm .}
with coefficients in Clz;, y;]. In the same way, for every k, Bti;ﬁ,(f) is a linear

combination of {]5;(3),131(;2—)1715;(3_)2, ...} with coefficients in C[z;,y;]. Now using

the recursion relation (2.2) and its inverse

D)) _ g (Pph()) Z < —> P (2)
@) () e e 1) ()

we can obtain the desired matrices My, ,,. O

Corollary 2.2.5 (Ablowitz-Ladik semidiscrete zero-curvature equa-
tions). Matrices L,, satisfy the following time evolution

8ti£’n = Mti,n—{—l'ﬁ’n - Lthi,n (
si'f-’n = Msi,n—i—l'an - LnMsi,n- (

O
o Ut
e’ N
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PRroOF These equations are nothing but compatibility conditions of recur-
sion relation (2.2) with time evolution (2.3) and (2.4). O

Remark 2.2.6. Actually our Lax operator L, is slightly different from the
Lax operator L, used in [33] by Ablowitz and Ladik and written in the
introduction above. Nevertheless, as shown in [46], these two Lax operators
are linked through a simple change of spectral parameter.

Ezample 2.2.7 (The first flows; discrete nonlinear Schridinger.). First ma-
trices My, , and M, , are easily computed. We have '

3tlp;(;1) = ‘sz(gl) - 5’3k+1ykp1(;1) "r‘P;(glle = —'mk+1ykp](gl) + $k+115§c2)
B, 5O = —z L5 (1 _ 52

szk—l = ZYrPr  — 2Pk
k

that gives immediately
~Tk+1Yk Tkt
M =

One can do an analogue computation for s; or even skip it using some sym-
metry considerations between ¢-times and s-times as in [41]. In this way we

obtain
27t =27y
M, 5= .
—Yk+1 TrYk+1

Already with these two times plus the introduction of two trivial rescal-
ing times we can write the well known integrable discretization of nonlinear
Schrodinger. Trivial rescaling times are introduced with substitutions

p(l) — exp(to)p(l)

ﬁ(2) — exp(— so)ﬁ(z)

10
Mioyk = <O 0)
0 0
Msg,k = (0 __1> .

and correspond to matrices

Now we can construct the matrix

M'r,k = Mtl,k + Msl,k h Mto,k - Mso,k =

-1 -1
270 = 1= Tpp1lk Ty — 2 Tk
ZYk — Yk+1 TpYpr1+1—2
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associated to the time T = t; +5; —tg — 3¢ so that semidiscrete zero-curvature
equation

81"£’/7<: = M‘r,k-}—l’c‘k - ’C’kMT,k

is equivalent to the system

Or Ty, = Tpy1 — 2Tp + Tp—1 — TEYk(Tra + Th_1)
(2.7)
OrYe = —Vk+1 + 20k — Yr—1 + TeYr(Yrt1 + Y1)

i.e. exactly the complexified version of discrete nonlinear Schrédinger. Rescal-
ing 7 — i7 and imposing y, = £z} we obtain

—’iaTCEk = Tr+1 — 2£Ek + Tp—1 F ||xk||2(:ck+1 + :ck_l). (28)

2.3 Toda flow for block Toeplitz matrices and
related Lax operators.

We want now to generalize Toeplitz lattice to the block case. This means
that we start with a matrix-valued formal series

(=) =Y A"

keZ

Here every element v\*) is a n x n matrix. Then we define its time evolution
as

v(t,8;2) == exp ( —&(s, z“ll))7(z) exp (£(t, 21)).

where I is the n x n identity matrix. Differently from the scalar case (and
also from the first section) we don’t consider just one Toeplitz matrix but
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the two block Toeplitz matrices, right and left, given by
ry(o) ry("l) 7(“2)

ry(l) 7(0) ry("‘l)
T(v) =

7(2) 7(1) 7(0)

7(0) 7(1) 7(2)

fy(""l) ,),(0) 7(1)
T'(v) =

7(“2) r)/(_l) f)/(o)

In this way we obtain the following linear time evolution for our block
Toeplitz matrices (in the following we will omit the symbol 7):

O, T = AN'T" 8, T =T A™" (2.9)
05, T' = —T'A™" 8, T" = —A'T" (2.10)

where, in this case, we have A = T7(27*I). Then we assume that there exist
two factorizations

T'= 85718y, T" = 2,27 .

Here Sy, Z, are block-lower triangular while Sy, Z; are block-upper triangu-
lar. We assume that all these matrices have non degenerate blocks on the
main diagonal (i.e. these blocks must have non zero determinants) and we
normalize them in such a way that every element on the main block-diagonal
of S; and Z, is equal to the identity matrix I (as we did before we assume
that these conditions hold when every time is equal to 0 and the we consider
just values of ¢ and s for which these conditions still hold). In the matrix
case we can define two bilinear pairings given by the following definition.

PDefinition 2.3.1.

<R@»=fp%h@@mdz

2miz

<RQ»=fPMW@@@>

where P and Q are two arbitrary matriz polynomials and P*(z) := (P(z71))T

63



Our two factorizations give exactly biorthonormal polynomials for <, >,
and <, >;. In the following we denote x(z) := (I, 21, 221, 2°1,.. .)7.

Proposition 2.3.2.

Qél)l
QW= | QM| = S1x(2) (2.11)
QY
QW = | @' | = (ST x(2) (2.12)
QU= (@I QM ) =x(2)\" 7 (2.13)
QP = (@ QP ) =x(a)(Z) (2.14)

are the biorthonormal polynomials associated to the pairing <,>; and <, >,.
This means that for every,j we have

< Q’El)l’ Q§2)l >= 5ij < Q§2)7, Q.gl)r Zr= 5ij

PROOF We just prove, as an example, the proposition for the right polyno-
mials; on the other hand the one for left polynomials is identical to the usual
proof for 2D-Toda. We have

( < QP QW >, ) = ( > (27 < 21,21 >, (Zl)l]) =
1,720

k>0

I3 2 =1 =T = 2,271

(it should be noted that, in this case, subscripts of type (Z1);; denote the
block in position (7,7) and not the element (3, ).) O

We are now in the position to write the corresponding Sato’s equations for
S; and Z;. It is convenient to introduce the following Lax operators.

Definition 2.3.3.
L]_ = SlASfl L2 = SQA_ltS’;l (215)
R] = Zl'lA"lZl R2 = Z;lAZQ (216)
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Proposition 2.3.4. The following Sato’s equations are satisfied.

01,51 = —(LY)-S1 0,21 = —Z1(RY)+ (2.17)
01,82 = (L})+S2 Oy, Zo = Za2(RY) - (2.18)
05,51 = (L3)-S1 05,2y = Z1(R3)+ (2.19)

s, 92 = —(L3)+52 05,22 = —Zp(Ry)- (2.20)

Proor We will just prove, as an example, the equations involving t-derivative
of Z1 and Z2.
‘We assume as an ansatz that we have

8th1 = ZlA
3th_q = ZQB

for some matrices A and B. Then exploiting time evolution of 7" we can
write

TTA_n = 8tnTT = 8tn (ZzZi—l) -
ZoBZTY — ZoZ7 21 AZTY = Zo(B — A) Z7t

hence we must have (B — A)Z;' = Z;7'A™™; keeping in mind that B must
be lower triangular and A upper triangular we arrive to the proof. O

Now it’s just a matter of trivial computations to write down the correspond-
ing Lax equations for L; and R;.

Proposition 2.3.5. The following Laz equations are satisfied:

8 Li= (L), L] 8B = [Ri, (B])] (2.21)
8, Li = [(Lg)_,Li] 8, R; = [R,.,(Rg)@. (2.22)

The definition of our Lax operators will give us eigenvalue equations for
suitably defined wave vectors.

Definition 2.3.6.

Uy (z) := exp(£(t, 21))S1x(2) (2.23)
®1(z) = exp(&(t, 21)) [X(z)} TZ1 (2.24)
U3(2) = exp(=€£(s, 27 D))(S71) x(=7) (2.25)
®3(2) = exp(—&(s, - D)x(=) (25 (2.26)



Proposition 2.3.7. The following equations hold true:
LUy (2) = 21¥41(2) @1(2)R; = zI1®1(2) (2.27)
LEUi(2) = 271 1W5(2)  ®3(2)RE = 2711@5(2). (2.28)
Proor We will just prove the last equation, all the other ones are proved in
a similar way. From the very definition we have
O3(2)R; = z1@5(2) <= [x(z"(Z; )Ry = 2 (=) (Z1)F =
(EOTATHZ = Ry = ZA7H(Z;7)" <= Ry = Z;' Ay

The proof of the following proposition is straightforward.

Proposition 2.3.8. Laz equations (2.21) and (2.22) are compatibility condi-
tions of eigenvalue equations (2.27) and (2.28) with the following equations:

(L1)+\111 8, &1 = ®1(RY)_ o (2.29)
= (L3)-T1 0:,%1 = 1(Ry)+ (2.30)
6% (L?+)T‘I’2 0;, @5 = —@5(Ry_)" (2.31)
Os., —(L5)7¥5  0,,®85 = —®5(R,)". (2.32)

2.4 Recursion relations for matrix biorthog-
onal polynomials on the unit circle.

In order to generalize scalar theory we have to construct an analogue of
recursion relation given by proposition 2.2.1. Recursion relations for matrix
orthogonal polynomial on the unit circle are already known, see [47] and [48].
Here we slightly generalize to the case of matrix biorthogonal polynomials
on the unit circle.

We define the following important n X n matrices:

Definition 2.4.1.
Wy i=SC(T.1) hly =8C(Th.1)
where SC denote the n X n Schur complement of a block matrix with

respect to the upper left block; for instance

f)/("'N)

SC(Txs) =7 = (W .. o AW T
r)/('”l)
(here and below Ty" := (T%)~! and similarly for A%y, b, and T%).
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Proposition 2.4.2. Monic biorthogonal polynomials such that
< PP PV > = guhn < P PO = gl

are given by the following formulas:

FO N )
PIT =8C U
O-1) NORNEWEY
I P2 EEUR-2 bt SRS |
FO L N
(PP =sc| ...
AN @ N
M 4D ZN1
FO L WD)
PO =gCl ... o
SENHD 0 pN-1g
AN A N
( ’y(o) cee e 'y(N‘l) ,),(1)
—
(Py) =SC
fy(_N+1) . r)/(o) fy(N_l)
I 1 A B |

Proor We will just prove the first formula, the second one is proved similarly.
First of all we have VO<m < N -1

f)/("'N)
7 Lr —m — — RPN dZ
<z I,PJ(\,) (z)>r=%z 'y(z)(zNL—(I o 2NN TR >27riz
(1)
In the same way VO <m < N -1
I
(2)r ~) M - —N —r m dZ
< Py (2),2™] >,= g( (z I- (™ .. o ) TR )fy(z)z .
z—»N—i-lI

,.Y(N—m) _ ,Y(N—-m) =0.
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Finally

< PP (2), PYT(2) >r=< L PYT > =
f}/(—N)

YO~ (T | | = hy
fy(“l)

This completes the proof of the first formula, the second one is proved simi-
larty. ]

Remark 2.4.3. Note that, imposing

Iyl i) 2)1 — 2)1
=P QP = ()PP
1 1 —r 2)r 2)r
0= P QP = B

we obtain biorthonormal polynomials.

Now we will write a long list of relations among this polynomials and
reflection coefficients. First of all, as before, given any matrix polynomial
®@(z) of degree n we define the associated reversed polynomial as

Q(z) = 2"Q(2).
The reflection coefficients are the following:

ahy = PPN0)  aly = PYT(0)

o

i = (PO yy = (P (0)T
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Proposition 2.4.4. The following formulas hold true:

P} — 2P = gl P (2.33)

PJ%)-Tl - P(r)) ZyN+1P(l)l (2.34)

PEY, — 2Py = P, (2.35)

B - PP = 2Pyl (2.36)
PJ\rlirl = zP(l)T(I — Y Thg) + P(Q-)+-ll Tl (2:37)
PN% 21— zhy Y ) P + v Py (2.38)
N+1 =(I- yN+1$N+1>P(2)r + yN+1P]£/'1—)}-ll (2.39)
PN+1 = PJ(\}?)I(I - $N+1yN+1) + P l~)+T1?J1\r+1 (2.40)
zhhhy = kil (2.41)

yhly = hiyyy (2.42)

hy Ry =1 = Yy @i (2.43)
hlyhy = 1= 2 Y- (2.44)

Proor The first four formulas are proved observing, for instance for the first
case, that V1 <7 < N we have

0 =< PP, — 2PP" 211 =< P, 211 >,

so that PJ(\;% - ZPJ(V.1 ¥ and P(Z)T must be proportional. Setting z = 0 you also
find the constant of proportlonality. In particular, when proving (2.34) and
(2.36), we find a formula and then we have to take the reversed one. (2.37) is
proved substituting (2.36) into (2.35) and similarly for (2.38),(2.39),(2.40).
(2.41) and (2.42) are proven respectively observing that we have

P(l)l P (1)r > =< P(l)l P(l)r
and 3
< PP PP >,=< PP, P

and then doing explicit computations. Finally (2.43) is obtained rewriting
(2.37) as

PJ(\;.)T P(l)T . o

;N—:'-%l - 5\7 (I = Ynsr2he) + (PJ(\H)-1) TN 1)

multiplying from the left for P, 1)17 and then taking the residue. (2.44) is

proved similarly. i

Now we define two sets of block matrices {L% }n>o and {L}a>o. They will
have in the matrix case the same role played by {L,},>0 in the scalar case.
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Definition 2.4.5.

I
Lho={ % N+1) 2.45
wim (e e
; I 2y
LT = <x yJIVH) : (2.46)
N+1

Corollary 2.4.6. The following block matrices recursion relations are satis-

fied '
(! (1)
mel =LY Jff(g)r (2.47)
Py Py
(Per BRL) = (PPr BOY) oy (2.48)
ProOF These are nothing but (2.33),(2.34),(2.35) and (2.36). O

2.5 Explicit expressions for Lax operators and
related semidiscrete zero-curvature equa-
tions.

Using our recursion relations we want to find explicit expression for L,
and R; in terms of our reflection coefficients %, z7, %, y;. Before doing this
we underline a remarkable symmetry that will allow us to reduce the amount
of our computations. Doing the following three substitutions

1

Z 2z
t— —s
5k —t

we obtain immediately the following proposition.

Proposition 2.5.1. Under the symmetry above dressings, orthogonal poly-
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nomials, Laz operators and reflection coefficients change as follows:

T =T T T"
Sl*—')Zz_l Sgi—*Zl—l
L]_HRQ LQHRl

Q(l)l — (Q(Z)r)* Q(,‘Z)l — (Q(l)'r)*
P(l)l — (P(2)T)* P(2)l — (P(Z)’r)*

.’Eli—-?yr yl}__)l,r

hfc — hy,.

This means in particular that we can write just the left theory and then
we will have the right one as well; actually every computation made above
for right theory can be deduced from left theory and this symmetry which
will be called in the sequel t — s symmetry. In the theorem below the symbol
HJAi ~+2 means that the terms in the product must be taken in decrescent
order from left to right while HJASV 4o Means that the product must be taken
in the opposite direction.

Theorem 2.5.2 (Lax operators for block Toeplitz lattice). Laz oper-
ators L; and R; are expressed in terms of reflection coefficients according to
the following formulas:

VN>M2>-1
M-
(L) = _$§V+1< H I- yJTxé)) Yars1 (2.49)
j=N+2
M—
(Re)nvpre1 = ”y;v+1< H (I- méy;))IlM-i-l (2.50)
j=N+2
M+
(Lodaesin = ~hipahen (T T—vie)) )bl (250)
j=N+2
M+
(Ri)asrw = — JT/IT+1@/§VI+1( H I- xgyé))myvﬂh;v- (2.52)
j=N+2
Moreover
(Li)vwe = (Re)v vt =1 (2.53)
Loy = Wy (Bu)vw = hyahy (2.54)
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PROOF (2.53) and (2.54) follow trivially from the expressions of dressings S;,
Z; and normalization of biorthonormal polynomials. Now let’s begin with
(2.49) and (2.50); the important point is that we have

T = exp(£(t, 21)) P,
Hence as done in [41] we can find that VN > M > —1 we have

(LI)N,M-H = —wg\f-}-l N J_VIT+1y;v.r+1- (2.55)
Infact VN > M > -1

< P — 2P PRl — <P im < <P P
- < PJ(V:—l_z_ll +...+ (Ll)N7M+1PJ(\2+l_1 +. Pgll_l >p= — (L1>N,M+1h_lM+1-
On the other hand using recursion relations I also have VN > M > —1

11 1) 2)1 = (2)r = (1)r
< PJ(V—)H - ZPJ(V 7PM+1 - ZPJ&) >1=< $5V+1P1(v) ; (y5\4+1)TPJE/I) >1=

_ dz
m.lZ\r-}‘l(sz M(PJ(Vz) ) v(z )P]E/}) 27rzz>y§w+1:

!

l (2r _N-Mp(l)r
< Py',z Py >, @/M+1 TNyt N?JM+1

TN+1
and comparing them we find (2.55). Now we use ¢t — s symmetry to simplify
this expression. We obtain

Y L
(Ro)wpr41 = Y1 hvPara o

and thanks to recursion (2.44) we get (2.50). (2.49) is obtained using t — s
symmetry. For (2.51) and (2.52) we start defining R, such that zPr =
P 1)TR1 then we will have By = A" R;h~" and computations for R is carrled
on similarly as for L;. O

Remark 2.5.3. Our equations (2.49),(2.50),(2.51) and (2.52) extend to the
matrix biorthogonal setting the equations written in [48] for matrix orthogo-
nal polynomials (see equation (4.2),(4.3)). In that article properties of M are
applied to study some problems in computational mathematics (multivariate
time series analysis and multichannel signal processing) and no relation is
established with Lax theory and integrable systems.

Theorem above describe completely the block-analogue of Toeplitz lattice;
we are now in the position to prove the analogue of theorem 2.2.4.
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Theorem 2.5.4. Block Toeplitz lattice flow can be written in the form

P(l)l( ) , P(l)l(z)
ati/si (PCZ)T( ) = Mti/si,N pJJ(\\;‘?.)T(z) (256)
B (P (2) BP'() = (PP () PPM(2) My (257)

for some block matrices MY, v, M5, 5, M, v, ML,y depending on the matrices
{xé,yj-,x}, yi} and the spectral parameter z.

PRoOF As we did for the scalar case we prove it just for ¢ times. The relevant
equations linking biorthogonal polynomials with wave vectors are

Wi (2) = exp(€(t, 21) PV (2)
@3 () = exp(~&(s, 1)) (P Td([=))
®1(z) = exp((t, 21)) PO AT
U3(z) = exp(—£(s, 2'11))(h’l)Td([z“1])(P(Q)Z)T_

Then trivial computations give the following time evolution:

8, PV = (L), POl — zn
8,, PP = —d([2])(RY)-d([z71]) PO
8, PO = pO (R (RM)_A™ + R (8, h") — 2™)
8, PO = POY_pY( L™ bl + Y8, 1Y)

the last two can be simplified giving

8y, PWL = (L7) PWE — or L
8,, PP = —d([2])(R})-d ([~ ]) P
8tnP(1)'r P(l)r(h r( '{L)’__hr _ ZnI)

B, P = — P ([ DA (L) s hld(2]) ).

where (RT)__ means the lower triangular part including the main diagonal
and (L7).; means the strictly upper diagonal part. This simplification can
be obtained evaluating the terms h~"(8, h") and h~!(8;,h')) using Sato’s

equations or, equivalently, observing that P](\, " and P](\,2 ) are monic so that

the derivative of the leading term is equal to 0. Then the proof is obtained
as we did in the scalar case using forward and backward recursion relations
(2.33),(2.35),(2.39) and (2.40). O

73



Corollary 2.5.5 (Non-abelian AL semidiscrete zero-curvature equa-
tions). Matrices LT and L' satisfy the following time evolution
87:,-/5,-'557, = Mii/si,n+1’£’£1, - L;Mii/si,n (262)
ati/SiL:L = L:I.M;/Si,n—}-l - M;/si,‘nLT (2'63)

ne

PROOF These equations are nothing but compatibility conditions of recur-
sion relations (2.47) and (2.48) with time evolution (2.56) and (2.57). O

Remark 2.5.6. It should be noticed that, with respect to the equations orig-
inally written in [35], here we have two coupled non-abelian Ablowitz-Ladik
equations.

Ezample 2.5.7 (The first flows; non-abelian analogue of discrete nonlinear
Schrédinger). As we did for the scalar case we will compute the first ma-

trices J\’[;/ }51’,3 and use them to construct the non-abelian version of discrete
nonlinear Schrédinger. We start with M} ,; (2.58) gives us immediately

1)l 1) r p(1) 1)1
0u B = B~ aj yf P — 2P =

1)l (2 r () ! r (U 5(2)r
Zplg ot ziHP}g - z§c+1ykplgl) - ZPIEI) = _zic—klykplsl) + mllk+1pk(2)

while we obtain immediately from (2.59) that
8y, PP = —21hphiT BT
Then we use recursion relation (2.39) combined with
hihily = (I—yiak)

(this one comes from recursion relation (2.41) combined with ¢t — s symmetry)
to arrive to _
8y, P = zyr PO _ P,
These computations give us
‘%Hyg $§a+1
M = : (2.64)
2V —zI
Also exploiting ¢ — s symmetry we can write immediately
!

-1 -1
27l -z

M., = : (2.65)

s1,
T T l
“Yrr1 YTk
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Analogue computations for M}, gives us

atl = Plf—li-){ - Pfl)rykzk+1 — 2P =
zP,:(T) + P(z)l P(l)ryizk+1 — zPl(T) P,f2)lmk+ — P,Sl)ryfzxzﬂ

and
81&1 2)l — P (@) (hk 1hl) 15,52)12 + Plc(l)rzyi:

(here we started from (2.60) and (2.61) and we used recursion relations
(2.37),(2.40),(2.42), the last one combined with ¢ — s symmetry). -Then we

arrive to z z
T
“YUrTpi1 RUg

M, .= (2.66)
Thpr  —21
and using again ¢t — s symmetry we also get
27—y
M, = . (2.67)

51: -1
—27 Ty :Ekyk+l

As we did for the scalar case we introduce times 5 and sy that give matrices
r/l I 0
ai- (1 9) .

r/l 0 0
M/ = (0 —1> . (2.69)

Then we construct the matrices

Mi’ = Mil k + Msl k Mto k Ml

SOJ

—1..1

-1 l T [
pl=l—mpyp Ty — 2T
T T 1 -
ZYp — Y+ Yy T + 1 — 21
T T T T _
k Mtl k + Msl kT to,e 50,k

-1 ! 7 ! !
2l =1 -y, Yk~ Yk

T —-1,.r T ol
Ty, — 27Ty, Ty — 21+ 1
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associate to the time 7 = t; + 87 — tg — 8g. Semidiscrete zero-curvature
equations

I _ l Ll
a.,-L e T Mf,k+1£’k - Lk‘MT,k

T __ PTNT T prT
aT'E"k - LkM'r,k-}-l - MT,]CL]C :

are equivalent to the systems

(o .1 .1 ! ! ! ! 1or.l
Oy, = Tpyy — 2T + Ty — Ty YTl — TRYpThoy
(2.70)
_ ! !
L Or ¥k = —Vrt1 + 2Uk — Yie1 T Vi1 Tlk T YiTili—a
( _ ! !
Or Ty = Ty — 2Tf + Th — Tp 1 UpTh — TrYeTha
(2.71)
1 .1 ! ! ! ! 1,7l
07Uk = =Vt T 20k — Yio1 T Ye1ZkYk T YiThVry1-

Note that both of them are equivalent to the discrete matrix NLS as writ-
ten, for instance, in [38]. Using (2.70) and (2.71) together we perform the
reduction to the hermitian case in a different way from [38]. First of all we
rescale 7 +— 47 and then we impose

Note that this reduction (with the sign plus) corresponds to studying the
theory of matrix orthogonal polynomials on the unit circle as described in
[47] and [48], hence it is very natural. This reduction gives us the two coupled
equations

N N B R ! v (el
—i0, T}, = Ty y — 22 + of_y F xf o (2) 7, F 2 (2h) iy

(2.72)

. T T T T T I \%,..T T ol N T
—i0, 3} = T}y — 22}, + Ty F T (21)* 7] F 75(75) Ty

already studied in [36] and generalized in [37].
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