SISSA - SCUOLA
INTERNAZIONALE
SUPERIORE

I STUDI AVANZATI

TRIESTE
Via Beirut 2-4

ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

Hardy Inequalities and Liouville
type Theorems Associated
to Degenerate Operators

CANDIDATE SUPERVISORS

Lorenzo D’Ambrosio Prof. Enzo Mitidieri

Thesis submitted for the degree of Doctor Philosophiae

Academic Year 2001-2002

TRIESTE







-— Anche le cittd credono d’essere opera della mente o del caso, ma né 'una né
Paltro bastano a tener su le loro mura. D'una cittd non godi le sette o le
settantasette meraviglie, ma la risposta che da ad una tua domanda.

— O la domanda che ti pone [...]

ITarno CALVINO, Le citta invisibili

Ringrazio tutti coloro che mi sono stati vicini, mi hanno incoraggiato e
sopportato durante la preparazione del Ph.D. Non vorrei citare ‘esplicitamente
nessuno, ma & davvero difficile trattenermi dal menzionare (in rigoroso ordine

sparso) Marta, Mimmo, Silvia, Lori, Céline, Sandra, Teresa, Antonio, Cristina,
Marta, Mario, Giovanni; le mie famiglie: Rosa (la boss), Mimmo (il boss), Angela,
Marisa e Biri, Anna, Laura, Luigi; un ringraziamento particolare va al mio
supervisor Enzo Mitidieri per quello che mi ha insegnato, per il buon vino, per la
buona musica e per ottimo rapporto umano.

Ognuno di loro ¢ stato essenziale.







Table of Contents

1

Prelace . . 1

Part T Hardy Inequalities

2

Preliminary Facts .. ... o o 7
2.1 NOtatIO o v ot oo 7
2.2 Kohn Laplacian on the Heisenberg group ............. ... ... .... 8
2.3 Grushin type operators . .........ii i 12

2.3.1 PFundamental solution of the Grushin operator.............. 15
Hardy Inequalities ...... .. .. .. ... .. . ... .. 19
3.1 Imtroduction .. ..o e 19
3.2 General TeSUES . o o o 22
3.3 Hardy inequalities related to Grushin type operators.............. 27
3.4 Hardy inequalities related to the Kohn Laplace operator ....... ... 32

3.5 Hardy inequalities with remainder terms in the Heisenberg group
SEUEINE . 38

Part II Nonlinear Liouville Theorems

4

Subcritical Degeneracies ............. ... .o oL P 47
4.1 IntroduCtion .. ...t 47
4.2 Main results . . ... 49
4.3 Applications ............ ... ... e 53
4.3.1 Tricomi-type operators ........... ... ... . i 53
4.3.2 Grushin-type operators . ......... .. o 54
4.3.3 The Kohn Laplacian . ..., 58
4.4 Remarks and generalizations........... ... il 59

4.5 Appendix ... 62




VIII  Table of Contents

5 Critical Degeneracies ......... ... .. i 65
5.1 Introduction . ..o 65
5.2 Grushin type Operators . ...........oiiiiriiii 68
5.3 The stationary inequality in the Heisenberg setting ............... 70
5.4 Some inequalities with critical degeneracy ................ ... ... 72
5.5 A first order evolution inequality for the Kohn Laplacian .......... 76
5.6 A second order evolution inequality for the Khon Laplacian ....... 82

B IS .« o o ot e 87



1 Preface

In this Ph.D. thesis, we shall present two topics related to some degenerate dif-
ferential operators: Hardy inequalities and Liouville type Theorems for semilinear
inequalities. We shall pay particular attention in the cases when the degenerate
operators are the Kohn Laplacian or the Grushin type operators.

The role of Hardy inequalities in the study of partial differential equations is
well known and a very brief exposition can be found in Section 3.1.

On the other hand, there are several reasons for studying nonexistence theorems
for partial differential inequalities. For instance, such results can be used to prove
the existence of solutions for Dirichlet problem in a bounded domain or to prove
blow-up estimates for parabolic problems (see, for instance, [51] and the large
reference therein).

These two different topics are linked. Let us describe the underline idea.

A classical result due to Gidas and Spruck in [37], can be stated as follows. Let
u € F4(RY) be a solution of

~Au=u?, u>0, onRY ¢g>1N >3 (1.1)

Ifl1<q<gqg:=(N+2)/(N —2), then u = 0. Notice that there is no requirement
on the behavior of u at infinity. This result is sharp. Indeed, for ¢ > ¢, (1.1) has
infinitely many solutions [9].

One can consider, instead of (1.1), the inequality

—Au>ul u >0, onRY,g>1,N > 3. (1.2)

It is clear that if (1.2) has no solutions, then also (1.1) has no solutions. It is well
known that (1.2) has a solution if and only if ¢ > g, where ¢, = N/(N — 2), the so
called first critical ezponent (Serrin exponent).

A question arises. What are the inequalities which do not admit a first critical
exponent? In other words, is there any possibility to classify some non linear partial
differential equations of anticoercive type for which the only possible solution is the

trivial one?
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Ni [53] and Brézis and Cabre [12] studied, among other things, the problem

D)

—Au > —15, u>0, on{2, (1.3)
e
where (2 is a smooth bounded domain of RY containing the origin. They proved
that if u is a solution of (1.3) in the distributional sense and u, u?/ |z € L} .(£2),
then u = 0. Those authors deal also with the inequality

— |z Au>u? w>0, on 2\ {0} (1.4)

obtaining a stronger result: if u € L7 (£2\{0}) is a solution of (1.3) in distributional
sense, then u = 0.

On the other hand, Mitidieri and Pohozaev [49, 51] study the inequality
—|z]* Au > |ul?  on RV \ {0},q > 1, (1.5)

without any assumption on the sign of u. They proved that, for any ¢ > 1 the only
weak solution (that is, u € L] (RY \ {0}) and (1.5) is satisfied in distributional
sense) is the trivial one.

Now, recall the classical Hardy inequality:

2
\Vul*dz > ¢ 2 da, (1.6)
2 o |af?

where {2 is an open subset of RY containing the origin, N > 3 and u € % (£2).

It is clear, at this point, the connection between the inequalities (1.3), (1.4),
(1.5) and the Hardy inequality (1.6); indeed we observe that the singularity |z ™2
in (1.3) is exactly the weight function in the inequality (1.6). The natural question
is then: is it true that the weight function [x]_2 is responsible of the non existence of
solutions for (1.5) for any ¢ > 17 Is this a general fact? In this thesis we shall show
that the answer is in the affirmative at least for classes of differential operators
considered in this work. Further links between Hardy inequality (1.6), degenerate
evolution inequalities and their critical exponents can be seen in Section 5.1.

More precisely, let £ be a degenerate second order partial differential operator.
The counterpart of (1.2) for £ is given by

—Lu>ul, u>0 onRY ¢>1 (1.7)

In the last years it has been proved that, for some classes of operators £ the
corresponding problem (1.7) has no positive solutions provided 1 < ¢ < q. =
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Q/(Q~2), where Q is the homogeneous dimension associated to L (see [34, 10, 17,
58)).

For a given L, we wish to classify, at least in some particular cases, the possible
singular or degenerate version of (1.7) (see (1.3) and (1.4)) such that for any ¢ > 1
the only possible solution is u = 0.

In order to realize this programme, having in mind similar problems in the
Buclidean setting, first we prove some Hardy inequalities related to the degenerate
operators involved and then we establish some Liouville type theorems.

The first step, that is the proof of Hardy type inequalities for the Kohn Laplacian
and for Grushin type operators, is presented in Part I below. The main tool we use,
is introduced in [48] for Euclidean case, and it based on the divergence theorem and
on the careful choice of a suitable vector field. The main difficulty is to construct
such a vector field. Indeed, it is necessary to take into account the degeneracies
involved in the definition of the operator under consideration. The results presented
in Chapter 3 are new.

Liouville type theorems are contained in Part II. The techniques we use are
developed in the Euclidean setting in [49, 50, 51], and extended for the Heisen-
berg framework in [58]. The strategy is the following; by a heedful choice of test
functions, we find a priori bounds of the solutions of the inequalities that we are
dealing with. As a byproduct of these estimates, we derive the uniqueness of the
trivial solution. Also the results of the second part are new.

I wish to thank all the people (students, staff and teachers) met at SISSA-ISAS,
where the atmosphere is very warm and scientifically exciting at same time. I wish
to express my gratitude to professor Enzo Mitidieri for his help and encouragement

and for the stimulating conversations about mathematic, wine and music.

Trieste, Lorenzo D’Ambrosio
6 September 2002
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2 Preliminary Facts

In this chapter we shall recall some basic facts related to certain classes of de-
generate partial differential operator. Special focus will be devoted to the Kohn
Laplacian, the Grushin operator and generalized forms of it.

2.1 Notation

We deal with RY which can be split in two or more subspaces RY = R? x R¥
(d,k > 1), whose points are £ € RY, z € R% y € R*. If 2 € R™ then |z| stands
for the Buclidean norm |z| := /Y7, 22. Given o € N? and # € N¥, we shall
denote by (o, 8) and |(«, )], the multi-index (o, ..., aq, f1, ..., Bk) and its length
oy + oo+ ag + P+ ...+ B, respectively. If o,y € N™, then « < v means
a1 < Y1,y am < vm. The scaling operator with respect to z-variable will be
denoted by S{, namely S{f(z,y) := f(Az,y). Similarly SHf(z,y) = f(z, \y).

The symbol |f2] indicates the Lebesgue measure of a measurable set (2. Let
B™(¢, R) be the Euclidean ball of R™ centered at ¢ € R™ and radius R. We set
cp = |0B™(0,1)] for n > 2, and ¢; =1, if n = 1.

Unless otherwise stated (2 stands for an open set of RY.

Let %%(£2) be the set of functions belonging to 6*(12) with compact sup-
port. With %5(£2,R.) we denote the subset of %(£2) of nonnegative functions.

If w: RY — R is a measurable function, then L} C(]R’N ,w) stands for the space of

1
loc

are written as ¢, q' where ¢ > 1 and 1/¢'+1/¢ = 1. We omit to specify the domains

measurable functions v such that |v|%w € L1 (RY). Pair of conjugate exponents
of integration in the integrals that follows when no confusion may arise.

The symbols div and V will denote respectively, the usual divergence operator
and the gradient operator for functions defined on RY.

The symbol I, indicates the square identity matrix of order m. Let X,Y be
vector fields. The symbol [X, Y] stands for the Lie brackets [X,Y] := XY — Y X.
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Finally A(z) < B(z) means that there exists a constant ' > 0, independent of
z, such that A < CB.

2.2 Kohn Laplacian on the Heisenberg group

In this section we present some basic results concerning the Kohn Laplacian. For
more information and proofs we refer the interested reader to [17, 26, 27, 33, 34, 43]
and the reference therein.

Letn>1land N :=2n+1: z,y € R", s € R. For ¢« = 1,...,n, consider the
vector fields __8“ ) ‘)y»_a‘_ . _8_ ) 27/_8_
dx,  rosT TN oy "0s’

and the associated Heisenberg gradient as follows

Xi =

Vir o= (X1, KXo, Y, V)T

The Kohn Laplacian Ay is then the operator defined by

n
Ay = ZX;Z -+ Y;Q.

i=1

_(In 0 2y>
=\ 1, —2)

for any vector field A € €* (2, R?"), we shall use the following notation

Setting

divg (h) := div(ohh).

We note that
Vg =ogV,

and
Ay = div(ohorgV) = divg (Va).

Let (5/1\{ be the dilation defined by
7€) = (Az, My, Ms).

It is not difficult to check that X; and Y; are homogeneous of degree one with
respect to dilation ¢
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X6y = wf (X:), V(o) = A (v2). (2.1)

Let &£ = (21,...,Tn, Y1, - Yn,8) = (2,1,8) € R*"F1. The Heisenberg group

2n-1

H" is the Lie Group whose underline manifold is R endowed with the non

commutative group law

n
Eofi=(2+3,0+0,8+5+2) (Ff — 2:80s)).
i=1

It is important to notice that the vector fields X, Y; are left invariant with
respect to the group action. The Lie algebra of left invariant vector fields associated
to the Heisenberg group is generated by X;, ¥; and 5 := 0/0s. It easy to check that
[X,,Y)] = —46;;5, [ X, X;] = [¥53,Y5] = 0 (4,5 € {1,...,n}). Therefore the vector
fields X;, Y; and their first order comrmutators span the whole Lie algebra.

In H™ we define the norm

i, 9 1/4
Elyr = (Z z} + yf) + s
i=1
and, setting €1 the inverse of ¢ with respect to o (note that £ = —¢), we define

the distance
d(&,n) =|n"" o€,

In what follows we shall use the notation
Ve
2= (), ro=00 a2+ =12, p=|Ely and ¢gi=1s]/ |y
i=1

It is easy to see that || is homogeneous of degree one with respect to the
dilation 6%
The open ball of radius R and centered at ¢ will be denoted by

BH(€7R) = {f] e H"™: dH(fﬂ?) < R}

Let BZ*+1(0, R) be the Euclidean open ball in R***! of radius R centered at the
origin. For R > 1 we have,

B0, R) ¢ By(0,R) C B**(0, R?).

Unless otherwise stated, 2 C H” will denote an open set. A function v : 2 = R,

such that u(¢) = u(r,s) (v depends only on r = /> ;27 + 5,42 and s) is said
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cylindrical, and in particular if u(¢) = u(p), that is u depends only on ||, then u
is said radial.

Let u € ¥(2) be a cylindrical function. In order to compute [,u, as usual
we consider the following transformations. Let {7 be the cylindrical open set
B?™(0,1)%]a, b[, where —oo < a < b < -+oo and B*"(0,1) is the unitary sphere
in R?". We can consider & = (z,y,s) := $1(r,01,...,02n-1,5) defined by

1 = rcost,
y1 = rsindy cos by,

Tp = rsinfysinby ... cosbyy1,
yp = rsinfy sinfy . .. sinla,_1,

5 =s,

for0<r<1,s€eR, 0; €0,7]fori=1,...,2n — 2 and Oy, €]0,27[. Let J(P1)
be the Jacobian of ;. An easy computation shows that

: m—1 - -2 .
det J(P1) = r?" 1sin® "2 01 ... sin oo

Therefore ) .
/ u(r, s)dé = c;)n/ ds/ r2v =ty (r, ) dr, (2.2)
£ Ja 0

where

™ ™ T 2w _—
Cop, = / d@l / d@g P / d@gn_g d@gn_l sin“"~ 5'1 ...sin 9271*2
0 0 0 0

is the 2n-Lebesgue measure of the unit sphere in R*™. If 2 = By (0, R2)\Bg (0, Ry),
with 0 < Ry < Ry < +o00, we can consider £ = (z,v,s) = Pa(p, ¢,01,...,602,1)
defined by

1/2

z1 = p(sin¢)*/* cos 01,

y1 = p(sin ¢)1/? sin B cos 62,

1/2
1/2

Tp, = p(sing)'/*sinfy sinby . .. cos bg,_1,
Yn = p(sin @)

s = p®cos ¢,
for Ry < p < Ra, ¢ €]0,7[ 0; €]0,w[fori=1,...,2n—2 and 03,1 €]0,27[. Noting

that 72 = p? sin ¢, acting as before, we have

sin @y sinfy...sinfqyy_1,

7 Ra
/u(r, s)d§:c2n/ d¢ P2 (sin @) u(py/sin ¢, p? cos ¢)dp. (2.3)
n

0 Ry
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Thereupon, if u has the form uw(¢) = ¥4v(|¢]5), then we have

i Rz 9, .
/ Who(|€]g)dE = s / 22"y ()dp, (2.4)
J 0 J Ry

where we have set s, 1= ¢, [y (sin@)"df.

IP\EH—H

Denoting with || the Lebesgue measure on , it is important to notice that

from (2.3) one gets
|BH(§7 R)] = iBH(O: RH = !BH(O7 1)! RQ)

where @ := 2n + 2 is called the homogeneous dimension of H".

Remark 1. From (2.3) we can derive the following criteria for the integrability of

the function r?p%;

i)if 2n > —p and 2n+ 2 > —p — ¢, then

/ rPpldé < +o0;
BH (O7l>

ii) if 2n > —p and 2n + 2 < —p — ¢, then

/ rPpldé < +co.
H™\ By (0,1)

Let p be such that 1 < p < co. We shall denote by SVP((2) the Banach space of
the functions u € LP(£2) such that the distributional derivatives X;u, Y;u € LP({2)
for i =1,...,n. The norm on S*P(§2) is given by

\ 1/p
ol o= ([ (0l +aP)a)

Sé’p (£2) denotes the closure of %3°(f2) in the above norm, D;}p (£2) the closure
of €;°(£2) in the norm ([, [Vgul’ de)/? and D%f(ﬂ) the closure of 65°(£2) in the
norm ([, |Agul® d€)Y/2. Tt is well known that if {2 is bounded, the norms of Sy (12)
and D}I’p (2) are equivalent (see Theorem 29). If w € L} _(£2) and w > 0 a.e. on 2,
D3P(2,w) denotes the closure of €5°(£2) in the norm (f,, |Vaul? wdé)!/?.

Let u € €' (). If u is radial, then it is easy to check that

\Veu| = vu |v'], (2.5)

and if v is cylindrical, we have
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2 p N2y 2
Verul® = ug + driug. (2.6)

Moreover if u € €*(42), we find respectively

5 2n + 1
Apgu =9y (u” + np u’> , (2.7)

2n — 1

Agu = Upp + Uy + 472U (2.8)

(see Remark 17 for related results).

2.3 Grushin type operators

In this section we present some definitions and basic facts concerning Grushin type
operators. For more information and proofs on this topic we refer the interested
reader to [8, 17, 28, 29, 30, 31, 35, 39] and the references therein. In Section 2.3.1
we shall compute the fundamental solution of the generalized Grushin operator at
the origin. We believe that this result is new.

Let v be a positive real number and let & = (z1,...,24,v1,-..,Ux) = (z,y) €
REIxR* = RY withd, k > 1 and N = d+k. We denote by || (resp. |y|) the euclidean
norm in RY (vesp. R¥): |z = (/a2 + - + z (vesp. y| =+ /yi + - +yi).

The symbols V, and A, stand respectively for the gradient and the Laplace
operator for functions defined on RY with respect to the z-variable.

Fori=1,...,d,and j = 1,...,k consider the vector fields

0 .0

Xi= P Y o= |a|

dy;’

and the associated gradient as follows,
\7')’ = (le coy Xy Y1, Yk)T = (v337 |z"¥vy)T)

which can be rewritten as V, = ¢7V where

vy (fa O )
g 0 Tgfk ’

The Grushin operator A, is the operator defined by

d k
by XS N = b el =%,
=1 j=1
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Defining on RY the dilation 4] as
0w, y) = (A, ATy, (2.9)

it is not difficult to check that X; and ¥; are homogeneous of degree one with respect
to the dilation: X;(67) = A8 (X;), Y;(6)) = X063 (Y3), and hence V,(4)) = A6} (V).
Notice that it is not possible to endow RY with a group law for which the vector
fields X;, Y; are left invariant (see [4]).
Let [¢] = [(z,1)] be the following distance from the origin on R™:

d k PR
@ =tl= (s et t)
i=1 i=1
We set hn = |V [€]} = |z[” /[€]"-
The function [-] is related to the fundamental solution at the origin of Grushin
operator A, (see [21] and Section 2.3.1). Furthermore it is easy to see that [-] is
homogeneous of degree one with respect to the dilation §). Let B > 0. We shall

denote by Bp the set
Br:={¢ e R" : [¢] < R}.

A function u : 2 — R, such that u(¢) = u([¢]) (v depends only on [£]) is said
radial.
Let u € FL(2). If u is radial, then it is easy to check that
=7

(@)l = L e = s (1D)]. (2.0)

Moreover if u € F*(£2), we find

_ lmlh ( 7 d+(1+7)k_1u/>
NEE [€]

(see Remark 17 for related results).
Let 2 = Bgr, \ Bp,, with 0 < R; < Ry < 400 and u € €({2). As we shall see
below, in some intermediate inequalities appearing in the proof of our results, we

A

shall need to compute [, u. For this task we can proceed as follows: we consider the
transformation ¢ := &(p,0,61,...,04-1,w1,...,wk-1), introduced in [21], defined
by
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: c2 T
x1 = psinf(sin” ) 2T+ cos wy,

3 92 “'.“i“—‘ .
a9 = psinf(sin” f) 2T+ gin wy €os we,

. I N s S, .
Tq_1 = psinf(sin®f) 20+ sinw; sinwsy . .. COS Wy_1,
. T B e . .
T4 = psinf(sin®§)” 2T sinw; sinwsy . .. sinwg-_1,

Yy = T}L?[)H” cos 6 cos 0y,

Y2 = pp" 7 cos Osin 0y cos b,

Yp—1 = 14%pr7 cosfsinfysinfy...cos 1,

Yp = I—}ﬁplﬂ cos@sinf sinfy ... sinby_1,,

for Ry < p < Ry, O3,w; €0, n[fori=1,...,k=2,7=1,...,d =2, 0_1,wg_1 €
10, 27| and 6 €]ag, by[ where ay and by depend on d and &, that is

- 6 €]
- 0 €] >
-0el-5, 5 ifd=1and k> 2,
]
Let J(®) be the Jacobian of &. We have
ldet J(@)l = pQ—1@(9,917 PN ,Qd..g,wl, e ,wkﬁg),

where @ 1= d + (1 + )k and

O = (ﬁ)k sin 9|T37l"7_1 cos* 1 0sin®26; .. .sinfy_osin® % wy ... sinwy_s.
Therefore, if v : 2 — R is radial, i.e. u(§) = u([¢]), then

Ry
[ stiehie =5, [ o2 utera, (2.12)
ke] Ry

where

bg s T 2 T T 2
Sln = / d@/ d@l Ce / Cl@k_g/ dek_l / dwl AN / dwd_g / Clwdﬁlg.
ag 0 0 0 0 0 0

Tt is easy to see that if d,k > 1, than s/, can be written as

by ;
! )k/ lsin@}l_i?—l cos® 1 4dé.

5;1 = Cdck(l e
ag

We note it that from (2.12) one gets
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|Br| = |B1| R,
where Q 1= d + (1 + )k is called the homogeneous dimension.

Remark 2. Using (2.11), we can deduce the following criteria for the integrability
of the function |z[P[£]%;

ifd>—pand Q > —p — g, then
GRS

By

ii)ifd > —p and @ < —p — g, then

/ |z|P[£]9dE < +o0.
RN\B].

Let p be such that 1 < p < co. We shall denote by D2P(02) the closure of €5°(£2)
in the norm ([, [VuPdé)M?. If w € L, (£2) and w > 0 a.e. on 2, DYP(£2,w)

denotes the closure of €5°(£2) in the norm ([, |[Vyul’ wdé)Mp.

2.3.1 Fundamental solution of the Grushin operator

In this section we describe the fundamental solution of the Grushin operator 4,
at (z,y) = (0,0). We find a distribution E such that A, E = do, being 9y the Dirac
measure at 0 € RY. The function [-] defined above plays the same role of the
Euclidean norm for the Laplacian operator.

Let p > 1. Let A, , be the operator defined by

Ay pts = divn,(lvyu]p—z Vyu).

This operator is the analogue of the p-Laplacian operator in the Euclidean setting.
Let up, be the function defined by

p—Q
]t if )
up () = I : p#Q
Inf¢] i p=Q.
After some computation, we can prove the following.

Lemma 3. Let p > 1. The function u, 1s Ay p-Harmonic in RN\ {0}, that is,
Ay yu=0 on RV \ {0}.
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Let v > 0. For any (z,y) # (0,0), we define

— N~k

Blz,y) = CypT = Capq (|77 + (1 + v)*lyl?) WE = CarA1€1779,

where
C7l = (N +ky-2) / il ds
e T = QP+ (TP Py

We remark that v > 0 implies @ := N + kv > 2 and hence F has the origin

(0,0) as singularity.
Theorem 4. The function F is locally integrable on RY and AVE = §y.
To prove this result, we need of the following:

Lemma 5. Let Xy : RY = R4, Xy : RY — R* be two smooth compactly supported
functions and set X = (X1, Xg). For any R > 0, the following relations hold:

[ el ) nleyis = [ v xde =
[€]=R [El>R

= R9! [ X1 (Rz, R™y) - na(z.y) + 2|7 Xo(Rz, RMY) - ny(z, v)dS,
[€1=1

here n = (ng,ny) 1s the unit outward normal to [¢] = R.

Proof. The first equality is a consequence of the divergence theorem. For the second
one we use the change of coordinates { — ), and we obtain

| wxae-
[El>R

- RQ/ (Ve X0)(Rz, RTy) + (Vy - |27 X3) (Ra, RMTy)dé =
le]>1
= R91 / Ve (X1(Rz, R 7y)) + |27 Vy - (X2( Rz, RMy))de.
[e1>1

Applying the classical Green formula we get the claim. O
Now we come back to the proof of Theorem 4.

Proof (of Theorem 4). The local integrability of E follows from the Remark 2.
We prove that [ ¢A,I'dé = Cd"),iﬁrb(()), for any ¢ € €5°(RY). By Lemma 3 for
(z,y) # (0,0), we have A,I" = 0, hence
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/ A LdE = / I'Aypdé = lim/ I'Ay¢dé =
JRN RY [¢]>e

e—0

= lim/ (IF'Aygp — AL dE = hm/ V(DL — NGV dE.
[€]>e [£]>e

£—0 e—0

Combining Lemma 5 with the relation [(ez,e'"7y)] = €[€], we obtain

lim v, - (T, ¢)dE = (2.13)
€20/ el>e
= 1111%5 / Ved(ez, e y) - ng + 57\m|27\7y¢(5$,61+7y) My dS.

et =1

For small €, on suppdN{[z] = 1}, we have !(Vm(/),e'ylx}%/vwﬁ) ‘n| < CwithC' >0
independent of . This implies that the limit in (2.13) vanishes.
We claim that

- / V- (¢4 )dE = O #(0) ase— 0.
UHEE v

We observe that (V.,I')(ez,e'*7y) = (2 — Q)e T[]~ (Jz" =, (1 +v)y). Then
applying Lemma 5, we have

- YV, (pV)dE = (Q — 2) Plex, Y 2P (z - ng + (1 + )y - ny)dS.
l¢l>e [¢]=1
Being z - ny + (1 + )y - ny = (Jz*™ + (1 +9)2y)?) " Y2[e]M, it follows that
e

_ _ n L
/Mxvv = 2)/[@:1(“5:5,5 T (1 2B

Finally, by using Lebesgue theorem we easily conclude. 0






3 Hardy Inequalities

3.1 Introduction

The purpose of this chapter is to present simple proofs of Hardy inequalities for a
quite general vector field. We shall pay particular attention to the Kohn Laplacian
on the Heisenberg group H" and to Grushin type operators.

The well known classical Hardy inequality, written as in [40], is the following

c/:o F(m)};—ﬁdm < /amf(x)pdw.

(r—a

Here f : R — R is a positive measurable function, p > 1 and for a € R, F(z) :=
f; f(t)dt. A higher dimensional generalization of this inequality for function w :
2 — R, where {2 is contained in R", is given by

2
c/ u—zd:c < / |Vu|? d, (3.1)
o |z| n
(see for instance [2, 44] and the references therein). A lot of efforts have been made
to give explicit values of the constant ¢, and even more, to find its best value ¢; (see
[22, 24]). The preeminent rule of the Hardy inequality in the study of linear and
nonlinear partial differential equations is well known. Existence and nonexistence
theorems for elliptic, parabolic and also hyperbolic equations in the form

0
Juf?
Ut = Au+>\~—5, (32)
y B
tt

involve the relationship between A and the best constant ¢ appearing in (3.1). For
instance, let us consider the linear initial value problem

u— Au=A4 2 eR* n>3 t€]0,T[, NeER,
|| (3.3)

u(z,0) = ug(z), z € R", wug € L2(R™), wup > 0.
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72

The problem (3.3) has a solution if and only if A < (%5%)? = ¢; (see [6] for more
details). In the last years this result has been extended in several direction see i.e.
(12,3, 49, 50, 15, 38, 61]. As an example consider the following quasilinear problem,
ug = div([ValP? V) = M (1) € 200, T n > p > 1, 4> 0,
w(z,0) = ug(x), z €82, wuy >0,
u{z,t) =0, x e d, te€]o,T],

where wug satisfies suitable regularity assumptions and {2 is a bounded domain in

R™ containing the origin. In [3], the authors proved that the above problem with

D> nrif‘l has a solution if and only if A < ¢y 1= (l;—p)p. Again the result depends

on the relation between A and the best constant ¢,y in the inequality of type (3.1)

in LP: i »
B (3.4)
P
o lz| n

In the Heisenberg group setting, Garofalo and Lanconelli in [33], Niu, Zhang
and Wang in [56] and the author in [19] proved among other results, the following
Hardy type inequality related to the Kohn Laplacian operator:

62 9 . "
C/Hn %57/%515 < /IHI" IVgul*dé, we % H\{0}) (3.5)

where Vg denotes the vector field associated to the Kohn Laplacian (Ag = Vg -
Vi), p and g are respectively a suitable distance from the origin and a weight
function such that 0 < 9y < 1 (see Section 2.2 for precise definitions).

Recently, in [38], it has been pointed out that the analogue problem of (3.3)
involving the Kohn Laplacian Ay, namely

2

up — Agu = Mp%,l% on R2n+1X]O,T[, A€ER,
u(,O) = UU() OnR2n+1: ug € L?J(RQRWH)a up > 0,

has positive solution if and only if A < ¢ g, where ¢ g is the best constant in (3.5).

Further important connections between the Gelfand problem and Hardy in-
equality have been pointed out in [12, 15].

Even an estimate in the form [, |[Vulf — ¢ [, }—g—{; > R(u), is interesting. When
the remainder term R(u) it happens to be a suitable norm of u, then the functionals
associated to (3.2) is coercive (see [2, 61] for more details).

Having in mind some extensions of this kind of results in the setting of sec-

ond order linear degenerate (or singular) partial differential operators, it appears
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that an important step towards this programme is to establish some fundamental
inequalities of Hardy type.

In this chapter we shall prove some inequalities of the type (3.4) associated
to a quite general second order linear degenerate (or singular) partial differential
operator L. Let ¥V, be a suitable gradient operator (see section 2 for more details)

7

L is defined by L = -V - V. Our aim is to prove inequalities of the type
c/ M%Pdgg/ Vul? de, (3.6)
) 0
where w is one of the following functions: 1/|z| or 1/d(§) with o = (&,-++,&n)

and d denotes a suitable function (see below for the definition). Furthermore, we
give an estimate on the optimal constant in (3.6) and, in some special cases of I,
we show its sharp value.

For this goal we shall mainly use a technique developed in [19, 20, 48]. An
interesting outcome of this approach is that, in some cases, one can easily obtain the
best constant even for higher order generalization of (3.1). We refer to Allegretto
and Huang [1] and to Niu, Zhang and Wang [56] for a different and interesting
approach based on the Picone identity respectively in the Euclidean and Heisenberg
group setting.

We pay particular attention at two special cases of L: the Grushin type operators
and the Kohn Laplacian described in the Chapter 1.

In Section 3.3 we shall study some Hardy type inequalities associated to Grushin
type operators A, := Ay +|z[*7 A, = V,-V,. We prove that the following inequality
holds for u € €5 (£2):

c/ﬁ fulPwPde < /Q [Vul? dé, (3.7)

where w is one of the following functions: 1/|z|, 1/[¢] or |z|7 /[¢]**7. In this
setting we prove a sharp version of inequality (3.7) with the weight function w =

z|" /I

In Section 3.4 we shall prove some inequalities of the type (3.4) on the Heisenberg

group. Moreover, in this setting, we shall consider an extension of the classical
inequality obtained earlier by F. Rellich in the Euclidean setting, that is

2 _ 2 2
n_(n__4~)w/ U——dazﬁ/ (Au)?dz, (3.8)
16 R™ 7"4 R

for u € FE(R™) and n > 4 (see [59]). In [33] and [56], the authors proved (3.5) for
u € G (H™\ {0}). We shall improve (3.5) for powers p # 2 and for u € %5°(£2)
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with 2 any subset of H"™. Moreover, we present several version of (3.5) depending
on the choice of the weights and we obtain the counterpart of (3.8) for p > 1 on
the Heisenberg setting.

Finally, in Section 3.5, we shall study some version of (3.1) and (3.8) with
remainder terms (see Brézis and Vazquez [15] and Gazzola, Grunau and Mitidieri
[36] for the Euclidean case).

3.2 General results

The aim of this section is to present some preliminary results and derive some
Hardy type inequalities for a quite general vector field.

Let 4 € FRY;RY) be a matrix with continuous entries, == (), 1 =1,...,1,
jg=1,...,N. Let X;, (i =1,...,0) be the vector field defined by

al 8
Xy=> mj(ﬁ)ggf
j=1 I
and let V¥, be the vector field defined by
Vo= (X, ., X)) =y,

Let
Al
Xf==> e, 1 (&)
— O
j
be the formal adjoint of X; and set V' := (X7, ... ,Xl*)T.
For any vector field h € ¥ (12, R"), we shall use the following notation

divy, (h) := div(uTh),
that is

l
divp(h) = = > X}h;.
=1

Let L be the second order differential operator defined by

[
Li=div (V) =—> XX = -V VL.
1=1
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Ezample 6. Let Vi, ¥, be the vector fields described in the previous chapter and
let V be the usual gradient operators on R". These quantities are associated (re-

spectively) to the following matrices:

(L, 0 2y o (a o> ,
m=No 1, -2 )’ “\o pp ) Y

The main idea for proving Hardy type inequalities associated to L is to apply

the divergence theorem to a suitable vector field.

Definition 7. We say that o vector field h € FH(2,RY, is p-compatible or V-
compatible, if the function g;(&) = Zézl i (€)hi (&) and its derivative Og;/0&; are
continuous for 7 =1,..., N.

Ezample 8. If the coefficients pu;; € € ({2), then any h € % (2, RY) is p-compatible.
Thus, in particular any smooth vector field h € F1(02,R*™) is o -compatible.

Ezample 9. Let u be the matrix o7. In this case, L is the Grushin type operator
A, (see Section 2.3). If 0 < v < 1, then some entries u;; does not belong to
€1 (£2). However, any h € €' (2, R") is 0”-compatible. Indeed, let h € €+ (2, RY);
for 1 < j < d, we have g; = h;j and 0g;/0¢; = Oh;/0&;, while for d < j < N,
g;(&) = |z|" hj/ and 8g;/0¢; = |x|" 0¢; € B(42). Thus dg;/0¢; is continuous.
Ezample 10. Assume that:

d . .

T——-/J,U(g):o, ‘Z,:—“]_,,Z7j:1§,N (39)

ij

Then any h € (2, RY) is y-compatible. Notice that in this case V;' = — V.

Let A be an open subset of RY with Lipschitz boundary 64 and let hoe
%' (4,R!) be a p-compatible vector field. By the divergence theorem we have

/ divy hdé = / div(p?h)de = hepvds = h-vpdX,
JA A 0A 0A

where v7, 1= uv, and v denotes the exterior normal at point £ € 0A. Let f € ! (A)
and let h be o-compatible. Then b= f.- h is o-compatible and we have

/ Fdivphd€ + / Vif-hdé= { fh-vpdZ. (3.10)
A A 0A

Moreover, if h = Vru with v € ¥*(A) and Vyu is g-compatible, then (3.10) yields
the Gauss—Green formula
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/ fLudé +/ VL f - Vpudé = / FVou - vpdX.
A A 04

Let ¢ € ©(R) be such that g(0) = 0 and let 2 C RY be open. For every
p-compatible vector field k, u € € (§2) choosing f := g(u) in (3.10), we obtain

/ g(u)divphdé = "/ g (uw)Vpu - hdé. (3.11)
2

2

In particular if g(t) = [¢|? for p > 1, then for any u € Fa(82) we have
/ |ul? divp hdé = ~—p/ [uP~ % uVpu - hdé. (3.12)
2 2

Identities (3.11) and (3.12) play an important rule in the proof of the following
Hardy type inequalities and the Poincaré inequality too as well as in Rellich type
inequalities (see Theorem 18, 31, 32).

Theorem 11. Let p > 1. Let h € €12, R!) be a p-compatible vector field such
that divph > 0. Then for any u € €, (§2), we have

/ ulP divy hdé §pp/ h|P |dive b =P | TpulP de. (3.13)
2 2

Proof. We note that the right hand side of (3.13) is finite since u € €5 (§2). Using
the identity (3.12) and Holder inequality we obtain

/ ul? divy, hd€ gp/ lulPt |A] [ Vol de
J 2 2
A

= wlP~ Y divy h| PP
pv/nl 77 |dive bl |diVLh|(p—1)/p

(p—1)/p g |hJP 1/p
<p (/ lulp ‘diVth d&) (/ P — |%u}p df) .
7] o |divphfP

This completes the proof. t

|V u| dé

Theorem 12. Let p,g > 1. Let h € €*(12,R") be a p-compatible vector field such
that divph > 0. Then for any u € €3 (2) we have

/ lufP divhde < p / B dive 0D [Tl [T dE L (3.14)
2 0

! If p < ¢ then oo can occur in the right hand side of (3.14).
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Proof. Without loosing of generality, we assume that the right hand side of (3.14)
is finite. Using the identity (3.12) and Holder inequality, we obtain

/ |ul? divphdé < p/ [uP~H A |V u| dé
0 Ie)
|p—1~p/q |A|

U

= wlP? |divy |V i ;
p/n” diveh \divy bl

v agtae)” ([ pae)
< dive hl d e AV N/
<p (/Q ful? |divy b f) (/p |diVLh|q_1 |Vl ul (§> ;

|Vl dé

which gives (3.14). 0

Remark 15. In case p > q > 1 we can derive Theorem 12 from Theorem 11 by using
the identity .
¢ )
S P/ = () Pl (3.15)

Specializing the vector field h, we shall deduce from (3.13) and (3.14) some
concrete inequalities of Hardy type. To this end we shall assume that there exists
m e N, 1 <m </ such that

a@/?j c ) and pyu(é) =1, fori=1,...,m5=1,...,N. (3.16)
J

Set 1= (£1, ..., &m)-

Theorem 14. Let m > p > 1 and assume that (3.16) is satisfied. Then for every
u € €3 (12) the inequality

|uf?

P it P

Cm,p o [ﬁclp dé < /o IVLU‘ d& (317)
holds with ¢y p = (m — p)/p. In particular if p =2 and m > 3, we have

m—2.9 u? 9
C [ e [ e

A simple generalization is the following

Theorem 15. Let m > g > 1, p > 1 and assume that (3.16) is satisfied. Then for
every u € €y (2), we have

ul? N
_C?n1q>pﬂ)%;ﬁd€§ /leLUWIIU’lp qd§7 (318)

m—q

where cp gp = -
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Proof. Let € > 0. Define
m 1/2 m 1/H 1 T
o= (Z g§> - (ez 4+ Zg$> () = > (o) . (3.19)
€

1=1

div: / 1 72
ivphe = 7 m pr? ,
1 T T
h = |~ = .
ol = | (O> -

If m > p then divigh? > 0. Thus we are in a position to apply Theorem 11 with

h = he. Indeed, by (3.13) we have

]u‘p( )dé < p” " |V ul” dé
3 .2 1 'L ‘S
o TE 0 re(m —ply )Pt
which implies (3.17) by Lebesgue dominated convergence theorem
. . O

In a similar way, using h. and (3.14) we prove the estimate (3.18)

Using the same idea as above, we can prove some other Hardy inequalities of

type (3.6).
Assume that (3.9) are fulfilled and there exist a non constant function d € €= (£2)
and « € R\ {0} such that d* is L-harmonic in {2. In other words

L(d*) =0, on {2 (3.20)
Set 1 1= |V,d(&)] and Z i= {¢ € Qp(e)d() = 0}.
Theorem 16. For any function u € %”01((2 \ Z), we have
/ IV ul® de. (3.21)

Remark 17. Let us derive some consequences of identity (3.20). We have

) = ad(€)** (e — )9 + d(¢) L(d()))
Thus, we infer L(d(¢)) = —(a — 1)9?/d(€) for any ¢ € 2 such that d(£) # 0.
Therefore, if ¢(&) = @(d(& )) with ¢ € ¥%(12), we obtain

L(g) = v (w”(d(ﬁ)) n %w’(ﬂf))) |

(€ € 92).

)
I
™~

—
2

—
o

Q



3.3 Hardy inequalities related to Grushin tvpe operators 27
Proof. Let h be the vector field defined by
hi= e Vd(€)
L= o VLG )
d(s)
Since the conditions (3.9) hold, h is p-compatible and
Y : P
hl = ———, divph = —a——.
M= Tage 2@
Without loss of generality we assume « < 0 (otherwise, we can consider the vector
field —h). From Theorem 11 with p = 2, we complete the proof. O

We end this section proving a Poincaré inequality for the vector field V on

domains {2 contained in a slab.

Theorem 18. Let (5.16) be fulfilled with m > 1 and let §2 be an open subset of
RY. We suppose that there exist R > 0, a real number s such that for any & € 2,
there holds |& — s| < R.

Then for every u € Ca(§2), we have

c /Q P de < /ﬂ Tul? de,

with ¢ = (pl—R)p

The claim follows from Theorem 11 by using the vector field defined by

h = (51(—)—S>

and |h| < R.

3.3 Hardy inequalities related to Grushin type operators

In this section we shall prove some Hardy type inequalities associated to the
Grushin operator A, (see Section 2.3) improving some results of the previous sec-
tion.

With the notation of sections 2.3 and 3.2, it follows that ;1 = o7 and any smooth
vector field is ¢7-compatible. The assumptions (3.9), (3.16) and (3.20) are satisfied

withm =d, d(¢) = [¢(]and a =2~ Q =2 —d — (1 + 7)k, hencewz%%.
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Theorem 19. Let p > 1, d,k > 1 and let o, € R be such that d+ (1 + v)k >
—B—pandd >yp—f. Then, for every u € D (12, |z|P~7P[¢]+1P=0) we have

CQPQB/ ]1/}7) d¢ < / 1, ul? |27~ ) tIPmage (3.22)
where €opap = -——-————~—d+(1+7;k+ﬂ"a.
If 0 € 02 then the constant c%’pﬁ’ﬁ in (3.22) is sharp.
In particular if Q@ == d+ (L+y)k > p > 1, then
Q —p>p/ uf” Jz7? / 1
, dé¢ < YulP de, u € DP(§2), 3.23
(52) [ et < [, oo ) 02
Q —p>p/ |ul® / H 1 M
e dé < V. ulP d&, d>’yp,uED’p( (3.24
Q-p)? iUIp H(”“ )p -
( p ' ]‘5 / [v"/ I 1 l 1+,Y)p 67 (320)
I S
(l>(1+'}’)p7u€D,),p(Q,m .

Remark 20.If v = 0, then the operator 4, is the standard Laplacian operator
acting on functions defined on RY and (3.23) is the classical Hardy inequality (see
(3.4)).

Theorem 21. Let d > p > 1. Then for every u € D},’p(Q) the inequalities

bg)p 1“' z§</ |Vl d, (3.26)
%Zdw/ IV, ul? de, (3.27)

hold with by, == 2.

In particular if p = 2 and d > 3, then we have

(2 /[[ﬂ]? < (@2 /l—z—;d€§/ﬂl%"~42dé-

Remark 22. From the above results it follows that the best constants in (3.26) and
(3.27) lie in [(£2)7, (S2)P].

Theorem 21 follows directly from Theorem 14 and the fact that [{] > |z|.
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Proof (of Theorem 19). Without loss of generality we shall consider smooth func-
tions u € 5°(§2). The general case will follow by density argument.
Let € > 0. Define 7, as in (3.19) and

/L0
e 0 7"2’[/’3 ‘

We use the notation of the previous sections. Let V := 0.V, we shall write
divi(h) := div(och) where h € 1 (2,RY). Let L. be defined by L, := A, +
(2 +|z|*)74,, a sort of regularization of A,.

Clearly, if ¢ = 0, then ry = |z| and

V=V =00V, 4, =div)(%).

Let € > 0. Define

pe = (T?”’Y +(1+7)? Z:&ﬁ)

=1
and the vector field h. as
B
1 ITe
= e . .2
o2 (a e let2> 52

The vector field A, is o-compatible. A simple computation shows that

diveh di 1 ( Ir? )
v, = d1v— _ P
e pe \ (L +y)yrf 7 al?

he(6)

’rf lm{Q
= (A (L h+B8-a) ),
Pe Te
B~7—2y,.12
r T
e = Tl

(o}
€

. 1
(r2z® + (L 4+ )2 l)?
Let f. (¢ > 0) be defined by fe(r) :=d+ (1 +v)k+ 5 — oz)Eg’:‘_%, r > 0.
It is not difficult to see that

fe(r)z{d if (1+~)k+p—a>0,

) (3.29)
d+1+y)k+p—-—aif l+vy)k+5—a<0,

for every r > 0 and € > 0. Since 7. > ¢, if d+ (1 +v)k > a — f, it follows that
divyhe > 0.
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Thus we are in a position to apply the Theorem 11 with h = h.. Indeed from (3.13)

we obtain,

B—2p—yp; 2 9y
'P[Tl°pr PP + (1+f>')l'y\z)f’/2

P?fe(lﬂl)

d€.
(3.30)
Let m = min{d,d+ (1 +v)k + S — a}. By (3.29) and r < re, the integrand on the
right hand side of (3.30) can be estimated as follows;
P
weufp Sl + (1l [l
2Zi’-F/P -B af (IEDP 1 = p-1

/lu . fc |)d¢ < pP

B=pp(It7)p=e ¢ 1110,

€

Therefore, by our assumption d+ (14+v)k > a—f and d > p— 3, we can apply the
Lebesgue dominated convergence theorem to (3.30), and letting ¢ — 0, we obtain
the claim.

The choices (o, 8) = ((1 + v)p,vp), (o,f) = (p,0) and (e, ) = (0,-p), in
(3.22), yield the inequalities (3.23), (3.24) and (3.25) respectively.

It remains to show that the constant (‘% appearing in (3.22) is sharp.

P08
First we consider the case 2 = RY. In doing so we shall adapt the original idea
of Hardy (see [41]) for the one dimensional Euclidean case.

Given € > 0, consider the function

C if pel0,1],
u(p) = e e
Cep~t@pa™if p > 1,

where C¢ = (¢Qpap + €) L. We have

if p €]0, 1],
U'(p)={0 e <ol

QtB—ot
—p 7 Fef p>1,

and by computation

y 2l |/? SPIE]-Q—B-p e
| lutieDP mﬂf-—@’( G fon, P %)

» ;g;[ [:1:17? _Q+ﬁ atp
-G (/51 BT Jos [P Mﬂ]

=CP (/Bl [E]']acz@r/ [Vl || frP ] GFP- O‘d‘f> (3.31)

where, in the last identity, we have used the relation (2.10) and the fact that '
vanish on Bj. Since the addenda in right hand side of (3.31) are integrable (see
remark 2), by letting € — 0, we easily get the claim.

‘,El,ﬁfvp[[g]](lﬂ')p—adé:)
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In order to conclude in the general case we proceed as follows: let ¢,({2) be the
best constant in (3.22). By invariance of (3.22) under the dilation ¢] defined in
(2.9) we have,

cy(Bgr) = ¢p(By) for any R > 0.

We note that if Bg € 2 C RY then,

& pap = B(RY) < er(2) < o(Br) = a(By). (3.32)

Let ¢ € €°(RY). Since the support of ¢ is compact, then (3.22) holds for ¢ with
2 = Bp, R large enough and ¢ = ¢,(Br) = ¢;(B1). Therefore ¢;(B1) < cp(RY),
and from (3.32) we conclude the proof. 0

Remark 23. Let ¢ € €°(£2) and ¢ = 0. Setting h := V¢, we see that Theorem 11
can be reformulated as follows: if A, ¢ > 0, then for any p > 1 and u € % (£2) we
have

/Q [P Aygdé < pP /sz 19,017 | Ay~ [Tuf? de.

Following this idea, one can easily realize that the main problem is to decide
whether such a function exists. Indeed, via a standard regularization argument,
we see that (3.23) can be proved if there exists ¢ € %?(£2) such that V¢ = hg,
where hg is the vector field defined in (3.28) with e =0, a = (1 +)p and £ = p.
A simple computation shows that this is possible only when v =0 or p = 2.

In the case v = 0 and p > 1, we obtain the classical Hardy inequality associated
to the p-Laplacian operator on RY (see [24]), while if v > 0 and p = 2, the function
¢ is given by ¢(€) := In[£].

This show that in the framework of Hardy type inequalities associated to second
order elliptic operator with degenerate or singular coefficients, the method based
on the choice of a general vector ficld is more eflicient.

Let us to state explicitly a Poincare inequality for the vector field V, on domains

{2 contained in a slab.

Theorem 24. Let 2 be an open subset of RY. Suppose that there ezist R > 0, a
real number s and an integer 1 < § < d such that for any & = (z,y) € §2, there
holds |z — s| < R.

Then for every u € €y (2), we have

[ wpie < [ v,

with ¢ = (ﬁ)p.




32 3 Hardy Inequalities

3.4 Hardy inequalities related to the Kohn Laplace operator

In this section we shall present some Hardy inequalities related to the Kohn Lapla-
cian operator Ay (see Section 2.2). We shall improve some results of Section 3.2
and we shall prove some inequalities of higher order.

With the notation of sections 2.2 and 3.2, it follows that 1 = ¢ and any smooth
vector field is o7 -compatible. The assumption (3.9), (3.16) and (3.20) are satisfied
with m = 2n, d(¢) = |{]y and o = 2 — ) = —2n, hence ¢ = KITI!{

Let 2 C H" be an open set.

Theorem 25. Let p > 1, n > 1 and let «,f € R be such that 2n +2 > « — f and
2n > p— B. Then for every u € D}I’p(Q,rﬁ_ppgp"“) we have,

B
@ g [ 10 S < [ [Suprr e, (3.39)
R o) P 0
where cnpap ——~2”+2;Lﬁ =
In particular for Q :=2n+2 >p > 1 we get,
NP p
(Q?£> /g Jul” Phdé < / |VgulP d¢, ue D}E}p(Q), (3.34)
— P p
(Q.J) il dg</ IV ulpwdé, o > p,u € D(2,2), (3.35)
P n PP TP
y P
(Q—p—p> /ﬂ ':f]‘) de </ WHU}P dg, n > p,u € D (12, o £s).(3.36)

Moreover, if 0 € §2, then the constant cf n (5.33)(and hence in (3.34),

(8.35) and (3.86)) is sharp.

npaﬁ

Theorem 26. Let 2n > p > 1. Then for every u € Dilq’p(ﬂ) the inequalities
p
dlr)t,p/ qu—i—df S/ | Virul” dE, (3.37)
27 n
p
&y [ e < [ 1w e (3.38)
Pla PP le

hold with dy, = 252,

In particular if p =2 and n > 2, we have

d 2
(n—1) /—dgs =17 [ Zae < [ vl
nP JnT n
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From the previous theorems, we note that the best constants in (3.37) and (3.38)
i f2n=py\p (2n42—
lie in [(Z52), (* = 2yp).

Before presenting the proof of Theorem 25 and 26, we indicate some simple

generalizations of them.

Theorem 27. Let p,qg > 1, n > 1 and let o, 5 € R be such that 2n +2 > « — f3
and 2n > q — . Then for every u € €, (£2) we have,

C;]””“’ﬁ/yg [ul? ggdﬁ < /0 [Virul? jufP™? ri=ap2=ege. (3.39)
Theorem 28. Let 2n > ¢ > 1 and p > 1. Then for every u € € (£2) we have,
d%,q,p/g %ﬁdé < /p [Virul? |ulP~? dE, (3.40)
dvquq,p/n IZE,]J d§ < /Q\VHUV’ ulP™? de, (3.41)
where dp, gp = 27—11)_—‘]

Theorems 26 and 28 follows from Theorem 14 and 15 respectively.

Proof. Without loss of generality we can consider smooth functions u € 43°(12).
The general case will follow by density argument.

For € > 0, we define
2

n 1/
o (e 3t it)
=1

\
/

|

and the vector field A, as

1/4

n 2
(62 +> et y?)) w) =ty
. i—1

he(£) 1 screrytrf”Q
7 pe yv"f — b))

A simple computation shows that

fm’eﬁ + ytrﬁ =2
divghe = div— | yre — zire -
Pe or2rf—2

P T2
::“E 2n-+(2—#ﬁ3—-a);? ,
€
1 xrf -+ ytrf”Q . rrf~2
B~2 a—2 °

2

’hei =

pe

yrf — ztr
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Introducing the function f.(r) := 2n+ (24— cv)%—: (r > 0,e > 0), it is not difficult
to see that

9 9 o
Jelr) > = £2+p-a20, for every v > 0,¢ > 0. (3.42)
2n-+2+F—aif 2+ 8 —-a <0, '

Therefore if 2n + 2 > o — S, from 7 > ¢, we have divgh! > 0. Thus we are in a
position to apply the Theorem 11 with h = h.. Indeed from (3.13) we obtain

B=2p 2p—a
/1 lp r)d§ < p? /WHUlP fL(“)—pp*E]—df- (3.43)

Let m := min{2n,2n + 2 + 8 — a}. By (3.42) and r < r¢, the integrand appearing
in the right hand side of (3.43) satisfies the estimate

el

B-p 2p—u 1
o S rBP e e LH0).
(2n+ 2+ 8- a)%)p—l mp—1 e Pe (

|Virul?

Under the hypotheses 2n + 2 > « — f and 2n > p — 3, we can apply the Lebesgue
dominated convergence theorem to (3.43), and letting e — 0, we obtain the claim.

The choices (a, 8) = (2p,p), (a, 8) = (p,0) and (o, 8) = (0, —p), in (3.33), yield
the inequalities (3.34), (3.35) and (3.36) respectively.

Analogously, by means of (3.14) and h., we get (3.39).

Now we shall prove that the constants appearing in the previous estimates
(3.33), (3.34), (3.35) and (3.36) are sharp.

First we consider the case 2 = H". We shall adapt the idea of Hardy [41] for one
dimensional Euclidean case. In the sequel we shall use the notation B := Bg(0,1).
Given € > 0, consider the function

{ce if pe[0,1],

u(p) =
(o) Cep Crnwet™¢if p > 1,

where C, 1= (¢hpa,p + €)~%. We have

(o) {o if p €]0,1],

_2n+42+B-a+p —c

—p » if p>1,

and by computation

B Jel .
/ I’U.|p .,r_a_dé' — Cf (/ %df + ] Tﬂp—Qﬂ.fzfﬂ—epd§>
L G BP H™\B
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3 v 2245 -t Y
) 7 T _Int24B-adp P o, o,
=CP </ 7d§+/ ;Elﬂ “rrp “d<$>
JB P H™"\B

"3 / .
=C7F </ %dﬁ ‘I—/ IVH’LL‘p Tﬁ—ppr—ad§> , (3.44)
J B H™

where, in the last identity, we have used the relation (2.5) and the fact that v/ vanish
on B. The addenda in right hand side of (3.44) are integrable (see Remark 1). By
letting e — 0, we easily get the claim for (3.33), and hence for (3.34), (3.35) and
(3.36).

In order to get the claim for the general case, let us denote with ¢;(§2) the best
constant in (3.33). We have

[ [Sil? 8- P~
Jo lulP rBp=ede

cp(£2) = inf{ U € 65 (£2),u #£ 0F.

By invariance of (3.33) under the dilation 67, we obtain ¢, (B (0, R)) =c,(Bx(0,1))
for any R > 0. We note that, if By (0, R) C {2 C H", then '
= ¢p(H") < p(2) < (B (0,R)) = (B (0,1)). (3.45)

P
Cnp.onf =

Finally, let us consider ¢ € €3°(H"). Since the support of ¢ is compact, it follows
that (3.33) holds for ¢ with 2 = By(0, R), R large enough and ¢,(By(0,R)) =
cp(Br(0,1)). Therefore ¢,(By(0,1)) < ¢(H") and from (3.45), we conclude the
proof. O

A Poincaré inequality on the Heisenberg group for domains {2 contained in a

slab is given by the following

Theorem 29. Let (2 be an open subset of H". Suppose that there exist R > 0, a
real number s and an integer 1 < j < n such that for any & = (z,y,t) € §2, there
holds |z; — s| < R [resp. |y; — s| < RJ.

Then for every u € Sé’p(ﬂ), we have

o wpd< [ vl

with ¢ = (})—%)p

Remark 30.If §2 is the cylinder B**(0, R) x R, with B?*(0, R) the ball in R?" of
radius R centered at the origin, a value of ¢ is (]%—%)p. Indeed it is sufficient to repeat

the proof of Theorem 18 with the vector field
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The divergence theorem, in its forms (3.11) and (3.12), allows us to obtain also

inequality involving the Kohn Laplacian operator.

Theorem 31. Let ¢ € €(2) be a positive funclion and let 6 > 0. Suppose that
|2

—Agd > 9‘—‘—7—’%’— Then for p > 1 and every u € %’62(9), there holds
p+9(p—1)>p/ PP » Y
N E— |[Apg| |ulf dé < e | A gul” dE. (3.46)

( p? 0 | o |AmgP™
Proof. Choosing h = —Vg¢ in (3.12) we get,
[P (~ams)de = [ 1 S Vg (3.47
o] Jn
Using (3.47) and hypotheses on ¢ we get,

/ P (— Apd)de < p / P Vi | Vi ] dé
2 2

2 \Y2,, 1/2
g( [ AL d§) ([ otr? v )

/2 ;o 1/2
(5 [ 1 - auoric) ([ ot vl ac)

IA

In other words
e, _
& [ e (ansiie < [ 1P~ G de (3.49)
Pt Jn N

Choosing g(u) := (u® + €2)?/?~ Ty and h := ¢Vgu in (3.11) and letting ¢ — 0, we
have

/ P2 upAgude + / P2 uVig ¢ - Virudé = —(p — 1) / lulP™2 ¢ | Viyul® de.
2 o) Q
Taking into account (3.47), this last identity can be rewritten as

/ P (— A d)dé + plp — 1) / b P~ [Viul de = —p / b [ul 2 uA gudt.
0 o 0 (5.45)



~1

w

3.4 Hardy inequalities related to the Kohn Laplace operator

Using the relations (3.48), (3.49) and Holder inequality, we get

<1+9p )/W (~Ang)dé <

/‘u[p (—Ap¢)dé +plp —1/ |ulP™ “IVHU| dé
<p /Q bl | Al de

¢P ) 1/p '| ) (r=1)/p
< — | Agu d§> (/ Apgd||u d‘-‘) .
([ g 14 [ 186l 1ul a

This completes the proof. O

By specializing the function ¢ in (3.46), we obtain:

Theorem 32. Let p > 1 and n > o > 1. For every u € €¢(2) we have,

lﬂlpdé; /IAHUIP

2a—2p

P
bn,p,a

VB pla=1)+(n—a)(p= 1)

where by p o = 4(n — o -7 . In particular if n > 2, then we get,

2

n%n—Zf[;Ed§<A¥AHm%E. (3.50)

A
Proof. Let ¢ > 0 and define the function ¢ as ¢(£) := 7222, By computation it
follows that

1 r?
(TL - a;‘g)v

a a—
~And =45

2 ,’,,2

-
Vrg|” = 4(a—1)? e = 4(a - 1)2;§m¢-
E €

That is ¢ satisfies the hypotheses of Theorem (31) with # = 2=%. Thus, from (3.46)
and letting € — 0, we easily conclude. 0

Remark 33. From inequality (3.50) it follows that

4
b /Q u2—;—8d§§ /Q (Agu)2de, (3.51)

for n > 2 and u € F2(2) with b := n?(n — 2)%. We expect that (3.51) is true for
n > 1 with b =b:= (n?> — 1)? and b is sharp for u € D%}Q(Hn). See Theorem (40)
and inequality (3.53) in the next section.
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3.5 Hardy inequalities with remainder terms in the Heisenberg
group setting

In this section we show that some Hardy inequalities can be improved by adding
some remainder terms.

We deal with cylindrical and radial functions u defined respectively on the cylin-
der 2 = B**(0, R)x]a, b[, with —co < a < b < +0c0 and on By(0, R). Set

XH .= {w e €([0,1]x]a, b])] w # 0, gmbw(r,s) =w(l,s) =0=w.(0,9)}

and X = {w € €*([0,1])] w # 0,w(1) = 0= w'(0)}. Consider

b 1 et e
Af = inf fa ‘le fo 7147 ‘_vaip dr wex"y
Jods [y ro=t lwl” dr

.. fb ds fol P w, (1, 8)|P dr =
Ap = inf { =% T oW eX ,
[, ds [y rP=tw(r, s)|P dr

1,p——1 Ipd
Ay = mf{w weX}.

Jo ol dr

It easy to see that these quantities are positive and the following relations hold
* H
0< 4, <4, <A

Indeed, if w € X# then w(-,s) € X for all ¢ €]a,b[. Thus, 4, < Ay is verified. From
lv,. [P < |VgolP, we derive the remain inequality.

Remark 84. A, does not depend on a and b. However (a priori) Aj and A;f may
depend on a and b. Actually, A is independent of the value of a and b: for instance
when —co < a < b < +00, it is sufficient to use the change of variable s = a+(b—a)7
L2 ds Jy 7w () [Pdr

J2 ds fg e~ (rs)Pdr

Theorem 35. Letn > 1, 2 = Bg(0,R) C H*, o, f € R be such that 2n+2 > a—f
and 2n + B > 2. For every radial function u € Dé’z(ﬂ,rﬂ’Qp‘L"o‘), the following
inequality holds

n+2+6—-a 2 27”5 /12/ 2 rP / 2 B-2 4-
B —df + = —d¢ < Y “deE.
( 2 ) /nup"‘ R 0l p‘l"zg" Q'HUIT P

(r €[0,1]) into the quotient

In particular

2 2
2 QT' AQ/ 2']“ / 2
n uw—dé+ = | u—=dé < Viru|® dE.
/fz p* “t R o P : ‘nl |
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Theorem 86. Let 2= B*(0, R) x| — co, +ool. For every cylindrical function u €
S 2(2) the following inequality holds

/‘“ e+ %5 [ it < [ [wias

Remark 37. A% is the best Poincare constant for cylindrical functions on the cylin-
der B?(0,1)x] — 0o, +oo[ in H.

Proof. First we prove Theorem 36. Without loss of generality, we shall proceed
considering smooth cylindrical functions u € %5°(§2) and R = 1. The general case

will follow by rescaling and density arguments.

We set ,
I :/ 1VHu[2d§~(n~1)2/ 2 e
0 nT

Putting v(r, s) := r* tu(r, s) it follows that

v Uy Vg

Up = —(n — 1);—; + T Ug =

pn—1’

which, according to (2.6), yields
2 9 2 9 rLLQ
I :/ uy + dreusdé — (n — 1)“/ —5d¢
o] ) nT

)
v VU , vZ
= /Q (Tzntz —2(n— 1)7.27111 +dr? rin— 2) d.

Using (2.2), and the fact that v(1,s) = 0 = v(0, s), we obtain

) +°°
/ T%T dé = cEn/ / vuprdr = 0.

Therefore, by the definition of AZ, (2.2) and (2.6), we get

4292 +o0
Iu/%dgﬁ%/ ds/ r Vo) dr

+cao
A3 02,1/ ds/ ’I“’Uzd’f'_AH/ U clf

This completes the proof of Theorem 36.

The proof of Theorem 35 can be obtained by miming the previous proof and
using the change of variable v(p) 1= p{#"+2+8=2)/24(p) and (2.3). O
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Extensions of the previous results for powers p # 2 in the Kuclidean setting are

contained in [36]. Here, we shall consider only the case p > 2.

Theorem 38. Let 2 < p < 2n. Let u = u(r,s) € Sé’p(!?) be a positive cylindrical
function which 1s non increasing with respect to r. Then

@, [ Wacr 22 [ prac < [ v i

. Dmy —
with dy , = “np P,

Proof. Tt is enough to consider functions u € %5°(B**(0,1)x]a,b[). The claim will
follow by the rescaling (2.1) and a density argument.

P
b= [ (1w ae -, ) a

b2 [ (P -, b ) ae

At this point the proof shadows the one given in [36]. So we shall be brief.
In [36, Lemma 1] is stated that for p > 2, ¢t > 0 and w < ?, the following
inequality holds

Setting

from (2.6), we obtain

(t —w)? >t 4 |wlf — pt?w

Putting v(r, s) := r¥»u(r, s), t 1= dpp? and w := v, We obtain

-1
Ile p—1 P Ur
Iy 2 /Q 72n—p d€ — pdy o Tl dg

The second integral in the right side of the above inequality vanishes. Indeed, as

in the proof of the previous theorem, we can transform the integral with (2.2),
and then use the boundary condition v(1,s) = 0 = v(0,s). Finally, by (2.2), the
definition of A7, and the relation between v and u, we easily get the claim. 0O

In order to prove the estimate of remainder terms for inequality of type (3.40),
we can use the identity (3.15). Indeed by Theorem 36 and (3.15), we obtain the
following:

Theorem 39. Let 2 = B?*™(0, R)x] — oo, +oo[ and p > 2. For every cylindrical
function u € 55’2(9) the following inequality holds

(271 - 2) Jul? AH
p n 2

Pt < / Whruf? fulP~2 dt.
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In order to show an inequality with remainder terms for the Kohn Laplacian,

we set

1, 3721 2
_ 7o (M (w))*dr
o= inf{ L0 T .
Jo m3widr

where M is the operator defined by

JwE X m%(}o,u)} ,

3
M(w) = w" + =w'".
-

. . A . A 2 R .
Notice that I" can be read as the infimum of —ff—‘% over the radial functions
7

w € F2(2) defined on 2 = By(0,1) ¢ H.

Theorem 40. Let n > 2. Set {2 = By(0,R). Then for every radial function u &
€2 (12), we have

27_4 42 * 27a4dt I" 2/],407 - A 2l
n,2 QU ;‘gdg‘f'ﬂn,z'ﬁg QU /)_6 ¢ ‘i"j_g QU —/F &£ < ﬂ(- gu) dE, (3.52)

where Iy, o = n?—1.
Let 2 = H". Then for every radial function u € D%Z(H”) there holds

4 P
2o [ e s [ (A (3.53)
and l%,g 18 sharp.

Proof. Without loss of generality we shall prove (3.52) for radial functions v €
%5°(£2) and R = 1. As usual the claim will follow by rescaling and density argument.
Setting v(p) = p" tu(p), we have
! A !

"o v TR
U ~—n(n—1)m+m—2(n—l)r—n,

v

;L v
U ———('fb——l);ﬂ*ﬁ‘;ﬁm—l,

and by (2.7), it follows that

2 on + 1
AHU = f—i ( " _!—- ._ﬁ.j:._u’>
P P
2 1" !
T v v 2 v
T2 (p””l RPN 1)
2
r2
- s (p2]\4(v) — (n® - 1)v)

A simple computation using (2.3), gives
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4
I:= / (Agu)?de — (n? = 1) / uQLdﬁ
2 J 02
oy

— | i (oM )? — 20~ 1 oM () o

-1
= czn/ (smq'))”“cz(p/ (0*(M())? = 2(n* = 1)pv (v)) dp.
0 0

Since v(1) = v(0) = 0, an integration by part shows that

1 1
/ poM(v)dp = — / o(v/)dp.
0 0

Finally, by definition of I" and A, we obtain
T 1
I=con [ (g™t [ (oM 0)? + 20" ~ 10 dp
40

T s 1
ZFCQH/ (sin¢)" " de [ )V2dp + 2(n* 1)/126271/ (sin (f))”“dqb/ pvdp,
0 0 0

which concludes the proof of (3.52).
The inequality (3.53) holds for all u € %5°(H"). Indeed, let u € 45°(H") and
consider R large enough. Clearly (3.52) holds. This imply the validity of (3.53).
The general case follows by density argument.
The proof of the sharpness of Zn , is similar to the proof of optimality of ol

n,p,a,B
n (3.33). More explicitly, for 0 < € < 1 we can consider the function

) D, it p €[0,1],
U =
P Do~ (=Ucif p> 1,

where D := (I, 2 + 2e — €?) 71, Arguing as in the previous proofs, we get the claim.
i

In order to show a remainder term for (3.50), we set

'l .= inf J. dgfo dT we XEn#*(j0,1[x]a, b)) ; ,
f ds fo T 1U°d7“

where L is the operator defined by
3 2
L(w) = wer + W + drewgs.
Ja(Arw)?

Notice that ' can be seen as the infimum of S over the cylindrical
oW
functions w € €2 (12) defined on 2 = B*(0,1)x]a, b[C HZ
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Theorem 41. Let n > 2. Set 2 = B?(0, R)x] — oo, +oc|. Then for every cylin-
drical function u € D?}Q(Q) we have,

. U2 A [ w2 r#g ;o
77,;172/ —d€ + 2hn 2 o5 / —dé+ —7 / u dé < / (Agru)?de, (3.54)
” 7 R R J 2

where hy o = n(n —2).

Proof. Without loss of generality we shall prove (3.54) for cylindrical functions
u € 4°(N2) and R = 1. As usual the claim will follow by rescaling and density
argument.

Setting v(r, s) := r"~2u(r, s), we have

up = —(n 2);,31{7 4 Fggr,-, Us = =iy,
wrr = (= 2)(n — D+ s —2An =2, e =

and by (2.8), it follows that

: 2n — 1
Agu = tUpyr + %——ur + 4T2u55

Vg U v .

— aniz + 37171:’_1 - n(n — 2)7~—7L + 4742 7"715;92
1

- ;ﬂ—n‘(?"gL([U) - ‘n,('nj — 2)’[))

A simple computation, using (2.2), gives
I “/(A}]u) d£~7’L (n——Z) / ——df
277, 1 9 ?7,271—1 ’U2
= an/ dS/ [ 2L 'U) “n( ) ) - "N ( 2)"——‘/——74‘ dr

rt 2
- czn/a dsjg [rg(L(v))z — 2n(n — 2)rvL(v)] dr.

Next we evaluate,

b 1 b 1
/ ds/ roL(v)dr = / ds/ [rovy, + 3vv, + 4rivuggldr,
a 0 a 0

' 11)’0 r = [bi)z -
/adsfo dr =172 [ 1(1,9) = 0,)] =0,

/ab ds /01 rovedr = /ab {[rv(r, s)vy(r, 8)I=4 — /Ol[m)r +7rv ]dr} ds

that is
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b 1
= — ds/ rvZdr,
a 0
rb I 1 b q
/ ds/ 7"37)@55(]7":/ 7'3{[v(r,s)’us(r,s)]ﬁig—/ v;ds} dr
a 0 0 a
b 1
= ~/ ds/ r3v?dr,
a 0

where we have used the fact that v(1,s) = v(0,s) =0 = v(r,a) = v(r,b).
Finally, by (2.6), the definition of I'? and A, we obtain

b 1 b 1
I= cz,l/ ds / r3(L(v))3dr + 2n(n — Z)Czn/ ds/ r(v? + 4r¥v?)dr
a 0 a 0

b 1 b 1
> ey, / ds/ ru?dr + 2n(n — 2)/15{02,1 / ds/ ro?dr,
a 0 a 0

which concludes the proof. t

Remark 42. We expect that the results of this section hold for any function u €
%5 (£2) without any other special assumption.
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Nonlinear Liouville Theorems







4 Subcritical Degeneracies

4.1 Introduction

In this chapter we shall investigate the Liouville property for some quasilinear
inequalities associated to a degenerate partial differential operator.

In the last years a lot of efforts have been made to study nonexistence results,
or, in other words, necessary condition for the existence of solutions, for inequalities
of the type

~Lu > a(é)u?, uw>0, on RY ¢ >1, (4.1)

where the operator £ is a degenerate partial differential operator. In [34, 10, 58],
the authors deal with the case £ = Ay and a(é) > fgb%{/]f]%, 0 < 2 (actually,
in [58] the positivity of the solutions is not required). In [17] a more general case
is investigated: £ is a sublaplacian in Hormander form on a stratified group and
a(€) > 1/d(€)? where d is the homogeneous norm (see [17]) and 6 < 2. The authors
also show that the employed technique can be apply also when £ is the Grushin

IZT

operator A, + |z]”" A, with r > 1 integer and a = 1.

In Grushin’s original paper [39], he considers a class of differential operators
L(y, Dy, Dy), which satisfy a suitable quasi-homogeneity condition. On the other
hand, Deng and Levine in [25] suggest to investigate non negative solutions of the
heat equation with a nonlinear term of the form |931|91 e 5|% ut where z; € R%

and R x ... x R% =R"Y, namely
w — Ay =z |- 125" u? on RY x R,.

Motivated by these papers, in this chapter we shall study necessary conditions
for the solvability of the inequality

L(z,y, Dy, Dy)u > |z Py ™" [ul?, = eR%yeRF, (4.2)

where the class of such differential operators L contains, as a particular cases,
Grushin type operators, generalizations to RY of Tricomi operator and operators
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of higher order like |z|7(—2,)? + |y|[7(—=A)™. Our results give a partial answer for
the stationary case to the question posed by Deng and Levine (see Remark 55).

Our basic requirement on the operator L is the quasi-homogeneity property,
that is

L% 220 (z,y) = ML\, \2y), for any A > 0 and f € D(L),

where §1, 69 and h are positive real numbers. Under some suitable assumptions on

d;,0; and h, there exists a (first) critical exponent ¢, = & d+§?f;§,§ig‘s?93 such that
for 1 < ¢ < g, there are no nontrivial solutions of (4.2).

The main technique that will be employed throughout this part is the so called
“test functions method” (see [51]). Roughly speaking, this approach is based on
the derivation of suitable a priori bounds of the weak solutions by careful selection
of special test functions, which takes into account the structure of the operator
involved, that is, the different behavior of the operator in z-variable and in y-
variable. As a byproduct of our estimates on the solutions (see for instance (5.45)
or (5.57) below), we derive some nonexistence theorems for the problems under
consideration. This method, developed in the Euclidean framework (see e.g. [49,
50]), has been recently applied on the Heisenberg group setting (see [18], [58]).

We note that we avoid the use of comparison or maximum principle arguments
and the properties of the fundamental solution of the operator under consideration.
In general, the classes of operators considered here cannot be written in Hormander
form.

We remark that no assumption on the sign of the solution v is required and
that the coefficients of the operator can be singular.

The plan of this chapter is the following. In Section 2 we present a non-existence
theorem for quasi-homogeneous operators. Section 3 is devoted to the applications
of our results to some remarkable operators starting with Tricomi and Grushin
operators. Section 4 contains some generalizations of the Theorem 45 stated in
Section 2 including a quasilinear case.

In the sequel we shall use function ¢y € %”5‘ (R) satisfying the property

1if Jy| <1,

0<p<l and gao<y)={0if oo

and we shall meet quantities as

lea(n)I”
R 0} (7)

?
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or . .

M")(r)‘

/ TdT,

R @y (7)
with ¢ > 1. When we shall claim that these quantities are finite, it means that it is
possible to choose a suitable g, with the property (4.3) such that the integrals are
finite (see [49, 50]). Indeed, it suffices to take a power of g, instead of ¢py. More
precisely, we choose that @y = wg , where 1)y satisfies the condition (4.3), and S
is an integer sufficiently large. A function g satisfying above hypotheses is called

admissible function.

4.2 Main results

In this section we consider the differential inequality
Lu > |z ™% |y|7%|u)? on RY, (4.4)

where 01,0, € R, g > 1 and L is a linear differential operator of order m > 1 of the

form

L('T7y7DfI37D'IJ) = Z lﬂf;ﬂ(aj7y)D:OC/D5 (45>
1< (e 8)|<m

The adjoint of L, denoted by L*, satisfies

/ (Lf)gdzdy = / fL*gdzdy,

for any f € D(L), g € D(L*). Clearly, the domains D(L) and D(L*) depends on
the regularity of the coefficients I, g.
We assume that

/% [y)% D& DB, p(w,y) € LE(RY, o[y ™) ifar < a, f1 < B (4.6)

loc

D DLl p(z,y) = 0. (4.7)

Definition 43. Let ¢ > 1. A function v € L] (RY,|z|~%1|y|7%) is called weak
solution of (4.4) if

/ |3:]“91[y]'02]u}q(pda:dy§/ uL*pdzdy, (4.8)
RN RY

for any ¢ € G°(RY,Ry).
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Notice that (4.6) implies that the right hand side of (4.8) is finite (see the proof of
Theorem 45 for details) and that the symbol of the operator (4.5) is given by

Liz,y,Con) = > (=D)L, g(a,y)cn”.
1<(c,B)<m

Following [39] and [46], we assume that L is quasi-homogeneous in the following

sense:

Definition 44. Let 61,02 > 0 and h € R. An operator L(z,y, Dy, Dy) is called
quasi-homogeneous of type (h,81,8,) if, for any A > 0, (z,y),(¢,n) € RY, there
holds

L0z, A0y, 291 N2) = A" L(z,y, ¢, ). (4.9)

It can be proved (see Appendix at the end of this chapter) that for a quasi-
homogeneous operator L of type (h,d1,d2), one has

LS5 S1L, f = M'8ls S5, Lf  for f e D(L), (4.10)
and
LS5 ST, 9= \'Sl5, S5, L*g  for g € D(L*). (4.11)

The main result of this section is the following.

Theorem 45. Let ¢ > 1, 01,0, € R. Suppose that L is quasi-homogeneous of type
(h,61,09), with h, 81,02 > 0 and that (4.6), (4.7) hold. If

(01d + 02k — h)q < 61d + 62k — 6161 — G209, (4.12)
then (4.4) has no nontrivial weak solutions.

Proof. We shall prove the claim arguing by contradiction. Let u be a nontrivial
weak solution of (4.4) and ¢ € €°(RY,R,). Since ¢ > 1 and u satisfies (4.8), by
Holder inequality we get

/ ’_ L* q
[ e uptpdsdy < [ jap e Dyt 0 oy ey

We point out, as we shall see below, that the integral appearing on the right hand
side of (4.13) is finite for admissible functions ¢. Let g € €5 (R) defined as

1if |s] <1,
= - 0 < < 1. 4.14
eols) {Oif 5| >2, 0= (4.14)
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Choose ¢(z,y) = wollz])oo(ly]) and ¢(z,y) = ¢rlz,y) = wo(B™"|z])po(R™*[y])
with R > 1. From (4.11), it follows that

Yo =Lrop=L"Sh_ s St ¢ = RTMS% 4, SpLs, L' 9.
Using the change of variable ' = R™%g, ¢ = R7%y (4.13) becomes

/Il,l-(ﬂ!y|-02|u|qg0Rd$dy <7 R51d+6glﬂ+5191(q'—l)+§262(q/—1)—h[j/ (415)

where

T— / || (@' =Dy P2la’ ~1) ‘qb ¢l dady. (4.16)

Let us to prove the existence of ¢(z,y) = wo(lz])wo(|y|) such that I is finite. In
turn this will imply that (4.13) is meaningful. Since

L'g= % 5= Clow,az, 81, ) D3 Dytle s D3> D, (4.17)
1<|(@,8)|<m oytaz=a .
p1-+B2=p

for a suitable constant C', we have

5 ! __ ® / 6) I o /

(Jo ™y ™) L gl? S 5 S° (2™ yl®) DS DY g 6| (D52 DL
1< < o +oag=a
<(eB)<m ok

Following [49], we take ¢(z,y) = ¥§(lz)¥§(lyl), with ¥y € FF7(R) satisfying
(4.14) and ¢ > mg'. A simple computation shows that there exists a function
b e GR(RY, R, ) such that [D2*DI(z, )Y < bl ) [Wg (l=)¥§ (ly
multi-index o and fy involved in the sum in (4.17). Combining these estimates

)|9’l*1 for any

and hypothesis (4.6), the claim follows.
In order to complete the proof, we shall distinguish two cases.

1) (51d + 0ok — h)q < §1d + Gk — 6101 — 050s;
ii) (51d + 89k — h)q = §1d + 09k — 0161 — 8205.

If i) holds then we have d1d + 62k + 6101 (¢’ — 1) + 202 (¢' — 1) — hg' < 0. By letting
R — +o00 in (4.15), it follows that

|l i sy =0

a contradiction with the assumption u # 0. This completes the proof in the case

i).
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If ii) is satisfied, then (4.15) reduces to

/Imrm |y‘_92|u|q(p}zdl‘dy < / i-ﬂgl(q -1)|y|(12(q 1)!(/(]((/111 dedy. (4.18)
b

Since the right hand side of (4.18) is finite and independent of R, by letting R —
+oo in (4.18), we deduce that w € LI(RY |2|~%|y|7%). On the other hand, using
(4.8) and Holder inequality, we have

1

" , |4 =
[ el 1 ulepndody < ( | I prdady)
JRY supp(L*ygr) !:L' lly] “

L
T

(/ (la] [y )@ 0 1721 afa;czy.> ”
supp(L*¢r) @3{_1

Arguing as before and using the change of variable 2/ = R™%z, ¢/ = R™%y we

deduce that the second integral in right hand side of the above inequality is finite
and independent of R. We claim that

q
/ %dazdy —0 as R — +oo. (4.19)
supp(L*pg) |'El lly b

Indeed by (4.17) and the assumption (4.7), the characteristic function of supp(L¥gg)
converges pointwise to zero when R — +oco. Since u € LI(RY |z|~%|y|=%), by
Lebesgue theorem we get (4.19). The proof is complete. a

Remark 46. As we shall see below, for some classes of differential operators, the
integrability condition (4.6) can be relaxed (see Theorem 57).

Remark 47. Notice that if §101 + do6, < 61d+ o2k < h, then for any ¢ > 1 the only
weak solution of (4.4) is the trivial one. On the other hand if §;1d + 62k # h, then

by setting
L O1d + Ook — 6161 — 0969

Q= Gd+ 0k —h

it follows that

1) if 6101 + 0205 < h < 61d + b2k, then (4.4) has no nontrivial weak solutions
whenever 1 < g < ¢,.

il) if 61d + S0k < min{h, 161 + 5262}, then (4.4) has no nontrivial weak solutions
for ¢ > max{1, g.}.
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Remark 48. Let L be satisfying the assumptions of Theorem 45. Consider
Lu > |z~ %u)?, withz = (z,y) € RY (4.20)

where 0 > 0 and ¢ > 1. Since |z|? < Cy(|z|? + [y|?), proceeding as in the proof of
Theorem 45, we can easily deduce that (4.20) has only the trivial solution provided

both inequalities
Lu > |z %u|? and Lu> |y %lu¢ on RY,

have no nontrivial weak solutions. For instance, if d1d + dok > h, then (4.20) does

not admit nontrivial weak solutions whenever

h — @ max{6y,d2}

510 < h, 60 < h.
bid+ ok —h 0 WS oSk

1<g<1+

Remark 49. Let us consider the operator u; — 4, on R? x R. This operator is quasi-
homogeneous of type (2,1,2). According to Theorem 45, the critical exponent for

the problem
up — Agzu > Jul? on R x R

is given by ¢, = 1 + % Note that Fujita in [32], found the same critical exponent

for positive solutions of the evolution equation
wp — Agu=u?, onR?x [0, 00)

with positive initial condition u(-,0) = ug > 0 on R

4.3 Applications

In this section we shall consider some clagses of differential inequalities for which

our results apply.

4.3.1 Tricomi-type operators

Let Ty 1= Oge + 9(x)Ay, withz € R, y € R* and let g be a homogeneous function
of order 2y € R. It is easy to check that for v > —1, T, is self-adjoint and quasi-
homogeneous of type (2,1,1 + 7). A consequences of Theorem 45 is the following:
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Theorem 50. Let ¢ > 1, v > —1, 81 > —(¢— 1) + max{0, =2vq}, 0 > —k(g —1).
Then the differential inequalities

+Tu > |z~ 2 uf¢ on RFFL
have no nontrivial weak solutions provided
(T4+7k—1)g <1+ (1 +7)k =027 — (01 + b2).

In particular, for g(z) = x and k = 1, T, is the classical Tricomi operator
T = % + 51:3%27 (see [7, 45, 60] and references therein), and for 1 < ¢ < 5, the

inequality 7u > |u|? on R? admits only the trivial solution.

We emphasize that our results allow to consider also negative -y. Indeed, non-
existence results can be proved for the differential inequalities of the type,

ug £t Agu > 2|2 ul?, e Rt e R,

for any ¢ > 1.

4.3.2 Grushin-type operators

Let A, = A, +|z[*’ A, be a Grushin type operator. This operator is a special case
of

Gy = Ay + g(2) Ay,
where g is a homogeneous function of order 2y € R. Since in the case d = 1, @7
coincides with 77,, we shall need to study only the case d > 2.

Theorem 51. Letd > 2, v > —1, ; > —d(q— 1) +max{0, —2vq}, 02 > —k(g— 1)
and 61 + (1 + )0y < 2. Let u be a weak solution of

—Gou > |y on RY. (4.21)
If
2*91 —(1+7)92
<1 , 4.22
t<gsl+ N +ky—2 (4.22)
then u = 0.

Remark 52. The above theorem contains some results proved in [17]. In that paper,
the authors consider positive solutions of (4.21) in the case 0; = 6 = 0 and with
smooth coefficients g(y) = |y|*", r € N, r > 1.



4.3 Applications 55
The following non-existence theorems for inequalities of the form
27 4,19
=~ 1 u 7
-Gy (au) > yl " Jul on R, (4.23)

~ L el
can be proved by using the same technique of the proof of Theorem 45.

Theorem 53. Let 0 < 2 and v > —1. Let u be a weak solution of (4.23). If

1<9§Qci:1+ﬁﬁ0_fz—; then v = 0.

We point out that in some cases the exponent g. is optimal. This means that
forg > g =1+ m the inequality
>

ly
—Au > -
Tl

[

has a positive solution. Indeed, let @ > 0 and define u(z) := C(1 + [£]?) 7. It
follows that

u? on RY (4.24)

3]

v

—Ayu=2Cax ﬂé’]'; L+ [P 2 (N + ky — 20 = 2)[€]* + N + ky) >
> 2Cw i (N +ky—2a—2)(1+[£*) !
S A |

For g > g, with the choice o = 1/(g — 1) and C = (2a(IN + ky — 2 — 2)) /{01,
we easily check that u is a solution of (4.24).

Remark 54. Notice that for a suitable choice of the positive constant A, the function

u(z,y) = (1 + |z]2)2 + 4]y[2) /(@D

is a solution of |
—(Ap + 22 A)u > vl w>0, onRY, (4.25)

for any q > g, where ¢, = %ﬂfg If ¢ = g, then u solves the equation —(4, +

|z2A,)u = u? on RY. From Theorem 51 we find that the (first) critical exponent
for (4.25) is given by g, = 7\-,% Observe that ¢, > ¢, -
Other inequalities involving the operator A, = A, + |z[*74, will be studied in

Section 5.2 below.

Remark 55. 1f g(z) = 1 (hence v = 0), then Go = Ag = A is the standard Laplace
operator. Applying Theorem 51, we find that if one of the following conditions
holds,
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LN >3, 0 +6; <2and 1 < g < Y=t

2N=20,+6;<2and g>1;
then the differential inequality,
~Au > |z )y 7% |u]? on RY,

has no nontrivial weak solutions. This result gives an answer, for the stationary
case, to a question posed by Deng and Levine [25].

From Remark 48, we obtain the known conditions for the non-existence of so-
lutions of —Au > |€]7%ul? on RY (see i.e. [49]).

Another extension of Grushin operator is given by the self-adjoint operator
Ly = alz]” Ay + bly|" A,

where o and b are real constants. For o,y > —2, the operator L,, is quasi-
homogeneous of type (4 —vyo,2 + 7,2+ o). Applying Theorem 45 we obtain the
following result.

Theorem 56. Let ¢ > 1, 0,y > =2, oy < 4, 8, > —d(¢ — 1) + max{0, —oq} and
0y > —k(q — 1) + max{0, —yq}. If

(2N +vd+ ok — 4+ ov)q < 2N +yd + ok — Oy — oo — 2(0; + 62),

then the problem
—L > gl =01y 02 14,19 RN
ooyt 2 27y TP ul? on

has no nontrivial weak solutions.
Now let us discuss the case b = 0,0 = 0. Theorem 56 can be improved as follows.
Theorem 57. Let ¢ > 1, 61 > —d(q — 1) and 6 € R. Let u be a weak solution of
~Agu > e[y 7%, zeR?y e RE (4.26)

If
(k—=2)g <k~ 0y (4.27)

then u= 0.



=~
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Proof. We begin by proving that if there exists §; > 0 such that
) (k’+§1d*2)(] < k4 01d — 6161 — O, (428)

then (4.26) has no nontrivial weak solutions. Indeed, since the operator L = — A4,
is quasi-homogeneous of type (2,01,1) for any ¢; > 0, then, from the proof of
Theorem 45 we obtain the claim.

Let us consider the assumption (4.27). For this matter we shall distinguish two
cases.

i) If (k—2)g < k— 02, then (4.28) holds for a suitable choice of ¢, and then the
claim follows.

ii) Let (k —2)g = k — 0. Let u be a nontrivial weak solution of (4.26). Choose
wo € %y (R) as in (4.14) and 9 € €°(RY R, ). Proceeding as in the proof of
Theorem 45, with ¢(z,y) = pr(z,y) = ¥(z)ee (Rt yl), we have

[(Aypo) (R™Hy)|Y
0l R y))

[ el ultrdady < [ (124" 161D dady.

, (4.29)
Set I'(y) = |y| % Jpe 2|0 |u(z, y)|9%(z)dz. T'(y) is well defined for a.e. y € R
Arguing as in the proof of Theorem 45, we see that (4.29) implies I" € LYR?) and
we find

j{@k I'(y) oo (R y)dy < (/ F(ym(Rﬂly])d@ e

SR

PR PRIV W LN
(] (o) D g )

where Sg = suppAygoo(%). Since the last integral is finite and fSRF(y)gpo (R y))dy
vanishes as R — 400, we have I'(y) = 0 for a.e. y € R*. By definition of I" and the

arbitrary choice of 1 we deduce that u = 0. This concludes the proof. ]

Remark 58. If we wish to apply directly Theorem 45 or Theorem 56 for studying
(4.26), then we need to assume 63 > —k(g — 1). However, this condition is not
necessary. Indeed, for any ¢ € €5°(RY), the support of A, does not contain the
axes y = 0, hence, the assumption 0; > —d(q — 1) guarantees that I (see (4.16) of
the proof of Theorem 45) is finite.

Remark 59. A particular case of (4.26) has been studied in [17]. In that paper the
authors found that —Ayu > u?, v > 0, on RY, has no nontrivial solutions provided
k> 2and (k—2)g <k
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Remark 60. We notice that the critical exponent given by (4.27) does not depend
on 6.

A higher order version of the differential inequality associate to Grushin operator
is given by
(alz|” AY +Dly|" AT )u > lz| "%y 7% ul? on RY, (4.30)

where a,b € R and the symbol A” stands for the operator A iterated r times. We
have

Theorem 61. Let v > —2p, o > —2m, 4mp > o, 61 > —d(q — 1) + max{0, —oq}
and 0y > —k(q — 1) + max{0, —yq}. If

((2p +7)d + (2m + o)k — dmp + 07))q < (2p +v)(d = 01) + (2m + o) (k — 02),

then (4.30) has no nontrivial weak solutions.

4.3.3 The Kohn Laplacian

Another example of operator for which our result apply, is the Kohn Laplacian.
Let z := (z,y) € R" x R" and s € R. Let Ay be the operator defined in Section

2.2, which can be explicitly rewritten as
Ay = Ay + Ay + 4(a” + |y|*) Des +4(y - Vo — 2 - Vi) Ds. (4.31)

Tt is easy to see that the operator Ag = L(z,s,D,, D;) is quasi-homogeneous of
type (2,1,2).

Theorem 62. Let §; > —2n(g—1), 03 > 1 —q and 61 + 20 < 2. Let u be a weak
solution of

|ul? 2n+1
——AHUZW on R,
If 5
2—0, - 20
<l4+ ———-"
I1<g<1+ om )
then u = 0.

Related results have been proved in [58].
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4.4 Remarks and generalizations

The purpose of this section is to prove some other non existence results under
weaker assumptions on the operator L.
Consider the inequality

L'u > |z] %y % uj? onRY, (4.32)
where L' is defined by
Du(z,y) = > lap@,y)DDy (cas(,y)ulz,y)) .
1<) (@, B)]<m

Here co 5 € L®(RY), the operator 2 o1<|(a,B)|<m laﬁ(x,y)D%Dg is quasi-homoge-
neous and satisfies (4.6) and (4.7). As we shall see below the claim stated in The-
orem 45 holds also for (4.32). Indeed, this result will follow from a general one
involving a quasilinear operator (see Theorem 64).

As an example of quasilinear generalization of L', we consider the operator M

defined by

Mu = E Zalg(m.,y)Dnga(z,y,u), (4.33)
1<|(a,B)|<m

where a : R x R — R is a Caratheodory function.
Let 81,85 € R. Consider the inequality

Mu > |z| %y %2 ul?, 2 cRYy e R (4.34)

Using the notation of Section 4.2, we can rewrite the operator M as M(u) =
L(a(7u))
Throughout this section we shall assume that there exist C,p > 0, ug, u2 € R,
such that
alz,y,s) < Clz |y |sfP =€ RYyecRE s R, (4.35)
and that for any o1 < v, 51 < 3, we have D%JDZ/?1 la,s such that satisfy

P
q-p

jal 4 |y |2 DY D (2, ) € LE7 (RY, [yl 7) (4.36)

Dgpgza,ﬁ(x, y) = 0.

loc

Definition 63. Let ¢ > p > 0. We say that v : RY — R is a weak solution of
(4.84) if u e LI (RN, |z|=0y|=%) and for any ¢ € € (RN, R,), there holds

loc

/ifﬂl"glly\‘gzlu}qwdwdyé /a(x,y,U)L*evdﬂsdy-




60 4 Subcritical Degeneracies

Theorem 64. Let ¢ > p > 0 and a : BY x R — R be a Caratheodory function
verifying (4.35). Consider M = L(a()) as in (4.33), where L is quasi-homogeneous
of type (h,d1,82) with h, 81,8, > 0 and satisfies (4.36). If

‘ (51CZ + (52/@ + 51#1 -+ (52/@ - h)q S ])((51(1 -+ 52k — 5191 — (52(92),

then the differential inequality (4.34) has no nontrivial weak solutions.

Proof. Let u be a nontrivial weak solution of (4.34). Since @ satisfies (4.35), for any
o € E°(RY,R,) we have

/ 2]~y ] pddy < / P 2] [y L* ol dly.

By using Hélder inequality with exponents ¢/p, we obtain

g 01 ptuiq GypFuag 'L*SOIQ/(q_p)
01, (—0 R -~
/|-’E’ Hyl ™ Jultpdzdy S / lz| "y e dedy.
Arguing as in the proof of Theorem 45 we get the claim. ]

It is easy to see that our results can be extended also when we split BY in more
than two subspaces: RY = R% x ... x R,
Let L be defined by

L= > lag, e (T1, -y @) DEL - D2

1§|(C¥1 ;-~-,Q’~7‘)|Sm

The corresponding quasi-homogeneity condition on L becomes
L(A~61$l> e >>‘v6rm’l‘7 )‘51C17 T A6TC’I") = AhL(Cl? Ty Ty, Cl: e aCT)a

for any A > 0, z;,¢; € R% (i =1,...,7), where d1,...,6, > 0 and h € R are fixed.
In this setting, we can obtain non-existence results for inequalities of the type,

Lu> |z "% -z [u]? on RY,

provided A > 0 and

T r V r
(o= n)a <D o=y ity
=1 =1 1=1

with
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. ! g R ! T . —.
2%z DS DS gy e (31, my) € LY (RY |70 a0

for any o < ¢y and D} - D&l e (15 3) = 0.
The previous modification allow us to establish a result on non-existence of

solutions for
ul?

“Agu > ————
B = (g0 [o2 ][

01 + 09 + 205 < 2.

where Ay the Kohn Laplacian.

We end this section with the following results related to an operator which is

not quasi-homogeneous.

Theorem 65. Let 01,05 € R and 61,62 > 0. Let L; (i =1,...,s) be a differential
operator of the form (4.5). Suppose L; (i = 1,...,s) quasi-homogeneous of type
(hs, 01,02) with hy > 0 and the coefficients Zéﬁ satisfy (4.6) and (4.7). Let u be a

weak solution of

s
Lu = ZLiu > |z "y "2 u?  on RY.
i=1
If
(61d + 62k — min hi)g < 61d + ok — 6101 — 8902,

=1,...,8

then u = 0.

A special case of above result is the following. Consider
—Ay(au) = (21 + [y|") Aa(bu) > |z["y] % |ul? on RY, (4.37)

where a,b € LOO(IRN ), 61,02 > 0 and v > 0. Clearly, the operators 4, and
(z1 + |y|7) A, are quasi-homogeneous of type (2,01,1) for any 6, > 0 and (v,v, 1)
respectively. Therefore, (4.37) has no nontrivial weak solutions provided

(vd + k — min{y,2})g < vd+ k — 01 — 0.

Remark 66. We notice that the condition (4.9) is used in the proof of Theorem 45
for estimating |L*p|. Therefore, we can replace the quasi-homogeneity assumption
on L with a weaker one. Our results can be improved up to include a differential

operétor L such that

T
IL*| <> |Lip| for any ¢ € (R, Ry),
i=1
where I; are quasi-homogeneous operators satisfying the hypotheses of Theorem
65.
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5 Appendix

Let L(z,y, Dy, Dy) be defined as in (4.5). We assume that L is quasi-homogeneous
of type (01,02, h) (see Definition 44).

In this appendix we shall prove that (4.10) and (4.11) hold.

The symbol of L is given by

Liz,y, ¢y =y (=)l g(z, )¢9,

1<|(a,B)|<m

indeed,
L(z,y,Dg, Dy) f(z,y) = (27) /2 /eiw‘ceiy‘n[f(-'ﬁ,y;CyT/)Fm,yf(Qha"'/)dCdU =
— (2m) / =SSN (5, ¢ ) £(C, x)dCdndCd,

where F, denotes the Fourier transform on RY.

Lemma 67. Let L be a quasi-homogeneous operator of type (h,d1,82), then
L8l 8 f =8l SH,Lf, for any A >0, f € D(L).
Proof. Since
FouSuSE F(¢n) = o7 B (Fay )@ (B n),
by using the change of variable ¢/ = \1¢, 1/ = X°2n, we obtain
(1845 515 (5,9) = (2m) ™ [ ML 0,1, €y (34, S3E PG m)cdy
= (o) [ S L g,y ¢ ATy PTG NPy
= (2m) "/ / NN (g y NI, N Fyy £ m)dCd
= () [ AN (3, X2, ¢ m) Fey (G )l
= )\hSiTi;SiéLf(:c,y).
This completes the proof. 0
Lemma 68. Let L be a quasi-homogeneous operator of type (h,d1,02), then

L*S15, 81t 9 = A8, S15, L*g, for any X > 0,9 € D(L").
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Proof. For any g € D(L*), we have
£9(6,0) = @)™ [ K¢ v)ale, y)dady

where
K¢ x, m,y) = /ei(m*o'cei(y“)'”fl(w»%Q,n)dédn-

Using the change of variable, we get
185, 534,006, = () A B [ (G X, AP y)go, y)dady.
In order to conclude the proof, it suffices to check that
ATHENZOR (¢ A0 A T0y) = NK(AE ATy, 3, ).

Since this runs as in the proof of Lemma 67 the proof is complete. O
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5.1 Introduction

Nonexistence theorems of positive solutions for singular differential inequalities

Juf? n
—Au > 7 on R", ¢>1, (5.1)

—|z]” Au > |ul? on R, ¢>1,

has been widely studied by many authors. The analogue problems for parabolic
and hyperbolic inequalities have been also largely studied:

Jul?

w — Au > Pl on R"x]0, +oo], (5.2)
|ul? n
uy — Au > o on R"x]0, 4o0. (5.3)

A typical result can be stated as follows: for 1 < g < ¢g (or 1 < g < qq), the
problem has no nontrivial positive solutions, where ¢y depends on n,o and the
equation. For instance, let ¢ > 1 and o < 2, then (5.1) has no nontrivial weak
solutions if and only if ¢ < gp, where gg = 2=5 (see Mitidieri and Pohozaev [49]).

In the case o = 2, it results gg = +oo, that is, for any ¢ > 1 (5.1) has no
nontrivial weak solutions (see [49]). In this case gy does not depend on the dimension
n. For this reason o = 2 is often referred as the critical case. Brézis and Cabre in
[12] treat the equation (5.1) on a bounded set {2 C R" with o =2, ¢ = 2.

For parabolic and hyperbolic problems the same phenomena appear. Under
a suitable assumption on initial condition, the problems (5.2) and (5.3) have no

nontrivial weak solutions for ¢ < 2 and 1 < ¢ < ¢p, where o = @ii—"ﬂ for the
nt+l—
n—1

parabolic case and gg = 2 for the hyperbolic case. When o = 2, the inequalities

u — |z|* Au > Jul® on R™\ {0}x]0,+o00], ¢>1, (5.4)
ugy — |22 A > |ul? on R™\ {0}x]0. + oo, ¢g>1, (5.5)
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have no solutions for 1 < ¢ < qo = 3 (in both problems), provided some suit-
able assumptions on initial conditions are satisfied. Actually, even the higher order
inequality

(=)™ |z*™ Ay > ul? (5.6)

has no nontrivial weak solutions on R™ \ {0} for any ¢ > 1 and the evolution
problems

Wk P AT W, w0 w2 e RE\{0Le > 0,67
g 4+ (=1)™ 2™ A0 > ul?, wl-,0) = ug, (-, 0) = ug © € RV\{0},¢ > 0,(5.8)

have no weak solutions for 1 < ¢ < go with gg = 3 provided fRN ug > 0. See
Mitidieri and Pohozaev [49, 50, 51] for more details, references and further gen-
eralizations. Observe that the critical exponents of previous examples (5.4-5.8)
do not depend on the dimension of the space RY and the operators involved are
quasi-homogeneous in the space variable with A = 0. Notice that if L is quasi-
homogeneous with A = 0, then it is scaling invariant with respect to the dilation
(z,y) = (A, A2y).
A Liouville property related to the Grushin operator for the inequality

(A + 2 Auul s eRYLyeRY, (5.9)

was studied in [17] for positive solutions and > 1 integer. In that papers is showed
that for 1 < ¢ <1+ 2/(IN + 7k —2) (5.9) has no positive solutions.
The counterpart of (5.1) in Heisenberg setting is given by

Jul?
1q)%

Nonexistence results for positive solutions of (5.10) were studied by Garofalo and

—Agu >y n H". (5.10)

Lanconelli [34] under some assumptions on u and later by Birindelli, Capuzzo Dol-
cetta and Cutri [10] under less restrictive assumptions. In [10] the authors proved
that for 0 < 2 and 1 < g < g¢gf =1+ 2—2‘;7”, there exists no positive solutions to
(5.10). The papers [34, 10] require the positivity of the solution w.

Recently, Pohozaev and Veron in [58] studied the inequality

Juf?
13

where a is a measurable and bounded function, and without any hypothesis on sign

—Ag(au) > on H", (5.11)

of u. They proved that for ¢ < 2 and 1 < g < ¢ there exists no weak solutions of
(5.11). Then they extend their result to parabolic and hyperbolic case:
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ul?

uy — A (au) > 1_5‘7 on H" x [0,40c0[, wu(:,0) = uo, (5.12)
SIH

uff

€15

Pohozaev and Veron prove that for o < 2, if

up — A lau) >

on H" x [0,4c0], u(-,0) =ug, u(-,0) =uy. (5.13)

2—0
/nu0(§)d§20 and 1 <q§1+2n+2,
then no weak solutions of (5.12) exist, and if
/ (E)de >0 and 1<q<14—-—2
an
Jin U1 = q = m + 17

then no weak solutions of (5.13) exist.
In all these cases o % 2. Aim of this chapter is to study the critical case o = 2.
More precisely, we deal with the following degenerate inequalities:

2
—‘él.ziLAH(au) > |u|fon H™\ {0}, (5.14)
H

up — —5=Apglau) > |u[on H™\ {0} x]0, 400, u(-,0) = uo, (5.15)

ug — —5+Amlau) > |ulfon H™\ {0} %]0, +oco[, u(-,0) = ug, us(-,0) = u,(5.16)

~[¢]? HZ An(au) > |ulfon RV \ {0}. (5.17)
T
‘We emphasize that we do not assume that the possible solutions are non negative.

We find that these are critical cases too. As well as in FEuclidean case, the
exponent g is go = +oo for (5.14) and (5.17) and go = 3 for (5.15) and (5.16).

Our approach does not need the knowledge of the behavior of the fundamental
solution of the differential operators appearing on left hand side of the problems
(5.14)—(5.17).

As in the previous chapter, the main technique that will be employed is based
on the so called “test functions method” (see Section 4.1 for a roughly description
and [51]). Another interesting aspect of our approach is that for instance, the result
on inequalities (5.14), (5.17), can be stated as follows: let ¢ > 1, then (5.14) and
(5.17 ) has no nontrivial weak solutions. For the evolutionary inequalities (5.15) and
(5.16), we can easily find sufficient integral conditions on the behavior of the initial
data, for the nonexistence of global solutions. ‘
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The stationary inequalities (5.14) and (5.17) are studied in the next two sections.
Other cases with critical degeneracies are presented in Section 5.4. The last two
sections are devoted to study the evolution inequalities (5.15) and (5.16).

5.2 Grushin type operators

In this section we shall assume that ¢ > 1, v,01,02,> 0 and a & LOO(RN). Let A,
be the Grushin-type operator defined as A, = Ay + |z]?7 A,
In Section 4.3 we saw that the inequality,

Jul*

Ay (au) > .,
"t oy

. (5.18)

has no nontrivial weak solutions on RY if 1 < g < ge =1+ 2:%1&%%2;2;91 and
(1 +)0; + 0y < 2. When (1 + )83 + 01 = 2 a stronger non-existence result holds.
Namely, inequality (5.18) has no nontrivial weak solutions for any ¢ > 1. Our aim
is to study nonexistence results for a generalized version of inequality (5.18).

Since % < 1, in order to study non-existence results for the differential inequal-
ity —[€]2A, (au) > |ul?, it suffices to consider

o ™
SaE

Definition 69. Let ¢ > 1 and a € L®(RY). A function u € Lzoc(RN \ {0}) is a
weak solution of (5.19), if

—[e1* A (au) lul? on RY\ {0}. (5.19)

o
v [
for any o € RN\ {0}, R.).

lul%pde < — / wa s ([E]P0)de, (5.20)
RN

Theorem 70. Let ¢ > 1. Then the inequality (5.19) has no nontrivial weak solu-
tions.

Proof. In the sequel we set 1 := |z|7 /[€]". Let u be a nontrivial weak solution of
(5.19). Since u satisfies (5.20), using Holder inequality, we get

lm)Q’r q d 21,149 d
Awwﬁmwaﬁsmm(éyhdwg

This implies

ﬂ€ﬂ2¢0!q )
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/) P2 |ul%p(2) d§<l[aHf1 / 2(-4 L‘%D%J;‘(‘P“Ldé (5.21)

RV

For any ¢ € G2(R\ {0},R,), the function ¢ defined by @(z) = []"“#([£])
belongs to €5 (R™ \ {0}, R, ), hence, this function is admissible for testing (5.20).
We have

AP O(ED) = 1179 ([P 446 (IED) + 202 — Q)IED ' (1D (LD
= ?[¢]7% ([EPP"(I€D) + TE1G3 — @)/ (D) -

Hence, from (5.21), we obtain

. 2 11 ~ - / q
|G R gttenae < ol || g [P D + VG = QDI ), (5 )

[£1€ [19a([EDr
Combining (2.12) and ¢ = ]] 1, it follows that
U , oo | 42 411 3 - ’ q /
[, wibotende ot | P a2 OF 4 — a1

(5.23)

From now on the proof proceeds as in the Heisenberg settings (see next section),

hence we shall be brief. Let o € F2(R) be as in (4.14). We choose ¢(p) = wo(lnp)
with R > 1. Thus the integral I; becomes

WG’S;Z/R) L(2-0Q) %(Z/R) g

I :/ , , ds. 5.24
' Jrepsi<en 0d ' (s/R) (524

Since we have I; = R!~7 I, where
1 (2 — ! q
/ lpo(r)/R Fq/(_l Q) o ()] dr < M < 400
<|r|<2 wi (1)
with M independent of R, it follows that

Iy =

2!“' 22 q If) 1- q
/_R<M]]<€R?/) [GE ¢ < Jallcosnla R

Letting R — +o0 in the above inequality, we deduce that u = 0, thereby concluding
the proof. O

Qur next result is related to singular inequalities associated to Grushin type

operators 4.,.
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Definition 71. Let ¢ > 1, a € L(RY) and s € L (RY). A function u is a weak

loc
solution of

—A , > RN 0 , 5.25
”Y(au') = [[é-}]gf), S(.’IJ, y) on \ 1 } (O O)
if "—Jf- e L} (RV\ {0}) and
T [ _ ﬂ
e &< — ua . pd 5.
o T e 77 < = g o 5200

for any ¢ € EF(RY\ {0}, Ry).
Two canonical cases are s(z,y) = [¢]? and s(z,y) = |l‘]9l 1y|02.
Corollary 72. Let ¢ > 1. Then the problem

|z]

[€1?

2y !Ulq

Gk on RV \ {0} (5.27)

— Ay (au) =

3

has no nontrivial weak solutions.

Proof. Tt suffices to prove that any solution of (5.27) is a solution of (5.19). Let
u be a solution of (5.25) with s(z,y) = [¢]?. For any ¢ € GZ(RY \ {0}, R.), we
choose ¢(z) = [¢]?¢(2). Now, from (5.26), we deduce that (5.20) holds, hence the
claim follows. O

Corollary 73. Let ¢ > 1. Let 01,05 > 0 be such that (1 + )0y + 0, = 2. Then the
problem

on RV \ {0} (5.28)

has no nontrivial weak solutions.

Being |z| < [€¢] and |y| < [£]71, every solution of (5.28) is a solution of (5.27).
The conclusion follows from Corollary 72.
5.3 The stationary inequality in the Heisenberg setting

In this section we consider the inequality

2
—@AH(CL’U,) > |ul? on H" \ {0}, (5.29)
b

where a is a fixed function belonging to L*°(H").
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Definition 74. Let ¢ > 1. We say that u is o weak solution of (5.29) if u €
LY (H™\ {0})and

loc

/’W”w o€t <~ [ alehu(e) An(Iel ol6)e (5.30)
0 =7 ))dg,

€l
for any non negative @ € €5 (H*\{0}).
Theorem 75. For any q > 1, (5.29) has no nontrivial weak solutions.

Proof. For sake of simplicity, here we shall write 1) instead of 9y. Let u be a
nontrivial weak solution of (5.29) and ¢ € ¢ (H™\{0}), ¢ > 0. We shall specialize
@ later in order to have a contradiction. Set

Iy = €)% Age — dn €|y (Vi |l V).

Since u satisfies (5.30), using Holder inequality, we get

B0 o v < ol [ T ge
f oo p()ssunmﬁélﬂg .

/ lu|‘7 . \1/(] |[’1|ql /¢
2 2od 1
gnmwkémm%¢w€) A;K@¢WQ¢¢4®> ’

and therefore

lul* 2(€)d, ¢ 07 ”
/Hn mcﬂl p(§)d¢ < lla!!oo/Hﬂ [ﬂ%wzqu%q,_lcg, (5.31)

Choosing ¢ radial, i.e. ¢ = ¢(|¢]) with ¢ € FF(R\ {0}), by (2.5) and (2.7) I}
becomes
Iy =42 [|el ¢ (o) + (1= 20) ]y #/(6)]

\n

Thus, using (2.12), the quantity I; := an g —tgi 1
H

dé can be rewritten as

+00 | 251 1_9 s
. :Sn/ 020" (p) + (1 = 2n)pi/ (p) | d6dp.
0

e ~1p
The transformation ¢(s) = ¢(p), with s = Inp(= In|{|,), yields

+00 l~// oo q
@"(s) — 2n@'(s)|
I{ =s — ds.
o[
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Taking ¢(s) = @o(%), with @g as in (4.3), we obtain

S
1}90

=] A ] (]/

| GR) _ e/

I = 571/ 71
R<|s|<2R wy (s/R)

ds = s, R'™7 Iy, (5.32)

where

/1 — 20! ¢
he [ leoyRomAC)
“ ] R
1<]r|<2 vy (7)
Let ¢g an admissible function. For R > 1, it follows that Io < M < 400, with
M independent of R.
Merging (5.31) and (5.32) and taking into account the choice on (&) =

P(Inlely) = po(ME), we have

q 7 !
/ [l p2de < )l sula R
E_RSMHSER ‘g'H

Letting R — 400, we deduce u = 0. O

Remark 76. Let ¢ = 1 and a € R\ {0}. In this setting the inequality (5.29) admits
solutions of the form u = |£|%. For instance, if a = 1, then [¢| is a solution of
(5.29) whenever a € [aq, ag), where ay = —n — v/n? — L and &y = —n + Vn? -1,
and moreover for u = |£|3 (i=1,2), u realizes the equality.

The results presented in the previous section can be proved for the Kohn Lapla-
cian in the Heisenberg group setting. Let £ = (z,5) = (z,y,s) € H", a € L*(H").
Arguing as in the previous section, we can prove that the inequalities,

z|? z|% |uld
—e|h Ar(au) > | I, lul?, —Ax(au) > Ui__.lz_
1357, €15 1€l
B
—Ap(au) > HAPGRE 01 + 20, = 2,
|2/ ul?

-—AH(G,U,) 01 + 0y + 205 = 2,

>
T el |mlPrlyl®e]s)%

have no nontrivial weak solutions for every ¢ > 1.

5.4 Some inequalities with critical degeneracy

In this section we shall study other problems related to degenerate operators
with critical degeneracy. Let RY = R? x R* and consider a differential opera-
tor L(z,y, Dy, Dy) of type (4.5). We expect that if L is sum of a term with critical
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degeneracy in the variable z € R? and other terms are independent of z, then
the critical exponent will not depend on d. As a model operator we first consider
L(z,y, Dy, Dy) = Ay + |z|* 4.

Definition 77. Let g > 1 and a,b € L®(RY). We say that u is a weak solution of
Pu = —Ay(au) — |z)2A5(bu) > |ul? on R\ {0} x RF, (5.33)

ifue LL (RN {0} x R*) and

loc
/|u|qg0da7dy < /uP*cpd;rdy, (5.34)

for any ¢ € €2(RT\ {0} x RF Ry).
Theorem 78. Let one of the following conditions be satisfied:

1.d#<2and 1 <qg<1+42/k;
2.d=2k#1land1 <qg<1+2/(k—
8d=2,k=1andqg>1; '
4.a=0 and g > 1.

Then (5.33) has no nontrivial weak solutions.

Proof. Let u be a nontrivial weak solution of (5.33). Since u satisfies (5.34), then

by Hoélder inequality we have,

[ ey < [V doiy S jalgn +biLe (535)

where

n _/‘ W‘ dedy and I /l—é—m—dmdy

Let ¢(z,y) = |z|%1(ja)pz(ly]) where o1 € F%(R\ {0},Ry) and ¢z €
%%,(R,R,). The crucial point is that A (|z>~%p1(|z])) does not involve ¢, but
only ¢} and ¢/; indeed

Ay (|21 (J2)) = P~ (12]) + (3 — d)lz]* ey (J]). (5.36)

Let 61,00 > 0 and R > 1. Let p1(|z]) = cpo(%g—') and @y(|z]) = @0(%‘%’;), where
o € €%(R) is defined as in (4.14). We can estimate I as follows:

glz l)+(2_d)R~51(p/(1glﬁl ¢

!R——2(51 ”( )
Ro1 0\ Roy
Iy S/ (PO }lzyfgt dy/ ’J‘Id lglz|yg —1 de.
QDD( R(51 )L]
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Using the change of variable y = -t and s = 1;(',}{7 it follows that
g (s) Lol
+oo | F= 4+ (2 — d) gy (s
I < Rik=ild'=1) wolly)dy g Jeale) ds =: ROF=01(¢-1) 4
o B oo pols)7 1 |

(5.37)
Similarly we obtain,

- —d M ’AU('OO(R )]q y <
= et [ S s

Csoa gy [T Aypo(|y])] —k
< Rpi-6:(2 —h)/ ds / L_!»L(P_L_d = R8¢~k B (533
~ - SOO(S) RE (po(]yl)q —1 ( )

Now, as shown in the proof of Theorem 45, we can can choose g such that there
exists a positive constant M, independent of R > 1 such that A, B < M. Thus
from (5.35), we deduce that

PTILY ; I 1. / o /
/ :;L:q y S Nall R0 g ROE 0, (5.:39)
2r '

where 2z = {exp(—R%) < |z < exp(R*)} x {|y| < R%}.

Choose §; = 2 and §3 = 1. We have 61 — 02(2¢' — k) = 0ok — d1(¢' — 1) =
2+k—2¢ <0 provided ¢ < 1+ 2/k. Letting R — +o0 in (5.39), it follows that
u = 0. This contradicts our assumption, so that we get the claim. In the case
g = 1+2/k, from (5.39), we obtain |z|"%ul? € L*(R%\ {0} x R¥). Hence, by an
argument as in the proof of Theorem 45, we easily conclude.

Further, if d = 2, then (5.37) implies that I < R%2#~02¢'-1) With the choice
01 = 03 = 1 and arguing as before we get the claim.

Finally,ifa = 0 for ¢ > 1, §; = 1 and & small enough, we have dok—0d1(¢'—1) < 0
and then the claim follows from (5.39) by letting R — +oo0. ]

Remark 79. The previous result can be generalized in several directions. As an ex-
ample, consider the following differential inequality with a singularity in y-variable,
namely:

~(y + 2l Ag)u = [yl lul on R4\ {0} x RE. (5.40)

Using a slight modification of the proof of Theorem 78, we can prove that if 2 >
8> —-k(g—1)and 1 < g <1+ (2—0)/k, then (5.40) has no nontrivial solutions.
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Let RY = [T7_,R% and z = (z},2%,...,2") e RN with2' e R% (i = 1. .7).

Definition 80. Letq > 1 and a; € LO(RY), i = 1,...,r. We say that u is a weak

3

solution of

Bu=—y |2 Ag(a) > [ul? on I (R%\ {0}), (5.41)

=1

ifue LY (ITh_ (R%\ {0})) and

loc

/‘1u|qud$dy < /'U,P:gpd:z:dy,

for any @ € G5 ([T, (R% \ {0}),Ry).

Theorem 81. Let ¢ > 1 and m be the number of two-dimensional subspaces in the
splitting ITI_, (R% \ {0}), that is dy = ... =dm = 2, dpp1 # 2,...,dr # 2. If

(2r —m —2)q < (2r —m),
then (5.33) has no nontrivial weak solutions.

Proof. Without loosing generality, we only discuss the case r = 2 and set d := dy,
k := dy. Let u be a nontrivial weak solution of (5.33). Choosing

lg |7]

or(z,y) = ?Oﬂl“dlyl”%o(-ﬁg‘)%(lgly]),

R

where @y € %5 (R) satisfies (4.14), 61,62 > 0 and R > 1, from a computation similar
to (5.39) it follows that:

i) for d,k > 1, we have
/luquﬁRdde’y §R51+62—51q’ +R51+52——52q’; (5.42)
i) if k = 2, then
/[u’qtdemdy §R61+62——261q’ +R51+52—(52q’;
iii) if k =d =2, then

u|?ppdedy < ROL+02-201 | pé1+62—202¢"
' =
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The choices §; = dy = 1 in cases i) and iii), and 6, = 1, é» = 2 in ii), imply
Jex [u]%dazdy = 0. This contradiction concludes the proof. O

In the statement of the above theorem, the critical exponent depends only on
the number of splits and it is independent of the comprehensive space dimension
N. Hence, the scaling invariant operator P, contains a set of critical degeneracies.

The previous result can be generalized up to include some polyharmonic oper-
ators. As an example, it is possible to prove that also the critical exponent for the
inequality

ST (= A )™ (aiw) > [ul? on Ty (R%\ {0}),
=1

does not depend on the space dimension N.

5.5 A first order evolution inequality for the Kohn Laplacian

The aim of this section is to study the evolution inequality

{w - \iliiAH(au > |u]? on H™\ {0} x]0, +o0, (5.43)

u(€,0) = ug(€) on H"\ {0},
where a € R,

Definition 82. Let ¢ > 1. We say that u is o weak solution of (5.43) if ug €
Lioe(HM\{0}), u € L, (H"\{0} x [0, +00[) and

+0o0 q +4-c0 o
[ ﬂ%w%wdfdts— [ ausn(el opasar +

+00 Cw
—= Y 0)d y
/ /]} €19 — g Vhprdidt /Hn K@ww(f, )dé,  (5.44)

for any non negative ¢ € Ee(H™\ {0} x [0, 400[).

Lemma 83. Let ¢ > 1. Let u be a weak solution of (5.43). Fm" any admissible
function oy € 99”2( ) (see end of section 4.1) and 0 < € < qq there emists a
positive constant Co such that the following estimate holds

| 1 ln]é“l o

where C =1 — eq/q, and
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A= {(£,)[0 <t <R, |nfély +2nat| < R},
Adg = {€] [ln |é| | < 2R}.

Moreover, the constant Cy has the form Co = E;,” Cylpo, p1), where
+2 Jagy (1) (v) + ¢ (1) po (0)|
Cqylpo, / drdwv, 5.46
pon) = (va()pr(r)7 ! 940

and @116 F2([0,400|) is any admissible function.
The estimate (5.45) allows us to get the following nonexistence results.

Theorem 84. Let 1 < g < 3. Let u be a weak solution of (5.43), then
+00 q
/ / [l q/}Hdz;dt < Uy,

where

Uy = hmmf/ UO(QQ/H de (possibly infinite).
R—+oo Jp-1<|e| <R |S|H

Therefore, if Uy > 0, then (5.43) has no nontrivial weak solutions.

Remark 85. From the above result, as particular case, we have that if ug > 0, then
(5.43) has no weak solutions for 1 < ¢ < 3.

In the following theorem, in order to get nonexistence results for ¢ > 3, we shall
analyze the asymptotic behavior of the initial condition g at infinity and at the

origin.

Theorem 86. Let ¢ > 3 and ug # 0. Let po € F2(R) be an admissible function.
Set, for R > 0, Fy(R) as follows

1

Let Cy be the constant defined in Lemma (83). We suppose that the following con-
ditions hold:

1)

lim inf Fy(R) > 0;
R—+4o0
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i qu <=
bl 2 /) < G

There exists no weak solutions of the problem (5.43).

As simple corollary of previous theorem in case of non negative initial data is
the following.

Corollary 87. Let ug > 0 and there exist cg > 0, 0 < a < 1 and Ry > 0, such that
o

> m (5.47)

up(§) >

for 0 < ¥y < Ro or |&]y > Ro. Then (5.43) has no weak solutions for 1 < ¢ <
+ 2 - Ifg=1 + , then there exists a positive constant ¢, given by

1 - -1 . o .
Cop 1= L—ﬁ)q(,_q__z inf{Cy (o, p1)| wo, 1 admissible functions},
q .

where Cy(po, p1) 18 defined in (5.46), such that if co > ca, then (5.43) has no weak
solutions.

Remark 88. We note that in Corollary 87, like in Theorem 84, the exponent gy =
14 % does not depend on the dimension of H".

Proof (of Lemma 83). Here and in the following proofs we shall write ¢ instead of
¢p. Let u be a nontrivial weak solution of (5.43) and ¢ € E5(H™\ {0} x [0, +oo[),
© > 0. We set

Ty = a (1€ Amp — 4nl€ly (Y€l , Virw) ) + e

Since u satisfies (5.44), using Holder inequality, we have

f+oo/H L ddu/[;ﬂn’.g%w%(g,omgg/£+°°/'n'”Fﬂdug

+o0 ]! Va
<[] Sovteeaa ) 1.
" Ela
where [ := O+OO Jar l—g—l@——lg}z_%mdtdf. Applying Young inequality, for 0 < € <

1
qe, we get
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+oo [ iuiq 2 .
Cy / —Qq/)‘ga(é)dtdf + 7/) w(&,0)dé < Csls, (5.48)
o Ju [y | |H
with C) :=1—€9/q and C3 := 1/(6‘1/q’).
In order to obtain the estimate (5.45), we shall specialize the function . We
begin requiring that ¢ be radial in the & variable, that is ¢ = ¢(|¢] 5, t) = w(p,t).
With this assumption we have

Iy =92 [a (p*0pp + (1= 2n)p0,) + 4] ,

and then, using (2.12), we obtain

/

Foo 4o Ja (p%p,, + (1 = 2n)pp,) + @]’
I2 — 571/ / { ( Pp gpq/_lp P) ‘ dtdp

Introducing the change of variable s = In p, and setting @(s,t) = ¢(p, 1), we get
+oo  pto0 2 + q
b—wn/ / la{Pss = 7W9 L

We perform our choice of ¢ by taking

where 7 is such that

1if0<y <1,

5.49
0if y > 2, (5:49)

0<p; <1 and ‘Pl(y):{

and (g is chosen as in (4.3). Now, the change of variable s = Rz and ¢ = R%7,

yields
, (2o hee bz +2naR1)+ @) (T)eo(z -l-2naR7‘)[ql
_ . p3-2 lap1(7) g (z +2na R7) + @) (T)po
Iy = spR / / (Polm + 2naRr)en ()71 drdz.
(5.50)
Finally, choosing
Iniély+2nat t
p(&t) = ‘PO(——ug_'R“““*—)Wl('@)a (5.51)

with ¢g and ¢; admissible, the integral in the right hand side of (5.50) is finite and
independent of R.
Being ¢ = 1 on Ag, from (5.48) and (5.50), we obtain the estimate (5.45). O
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Proof (of Theorem 84). Let g € %’(;Q(IR) an even, non increasing on R, admissible
function. Under these assumptions it follows that

- hﬂal
lim inf 2 tél d 1 f —)"d, U,
imin / ‘é’ /) o( —=%)d¢ > limin /1 ' ?/1 &= Uy

R—+c0 R—4o0 0 ‘g o

(see remark 2.2 in [50]).
If 1 < g < 3, taking the inferior limit as R — +oco in (5.45), we have

6‘] +oo
— / / ——qp dtdé + Uy <0,
H™ lg H

and then passing to the limit as e — 0, we obtain the claim.
Let ¢ = 3. Taking the inferior limit as R — o0 in (5.45), we get

“+co lul
Cy > Cl/ / w dtd¢ + Up. (5.52)

Without loss of generality, we assume |Up| < +oo (otherwise there is nothing to
prove), it follows that inequality (5.52) implies

[

Using the notation of previous proof, our choice (5.51) on ¢, allows us to rewrite
Iyas Iy = % (I} + I'F), where

(5.53)

t . Iy +2nat

1.
Iy = @éﬁl(ﬁg)%( = )
t In|él; +2nat
F22 = G’QD/1<R2)(/DO( HR )7

which vanish respectively outside the sets

Bk = {(£,)]0 <t < 2R* R <|n|¢|y +2nat| < 2R},
B% = {(&,1)|R* <t < 2R? |In|é|y +2nat| < 2R}

Next from (5.44), by Hélder inequality, we have
ul” o In €]
vtads [ oo <
AR 16’%{ fo}z | IQ R

: /B}z Egﬁ " /

dtd§<11/qfl/q FLALE L (5.54)
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where

l At ,
Iy g = /Bl }M P2 dtde, IR = /Bl ‘ﬁ\Q 1/ R* q(]fd€7
H

H

,__ Iu[q J ‘F)q 2¢'
b= | g Tn: /B LR e

Standard argument shows that indeed I g < M and Iy g < M with M < +o00
independent of R. From (5.53), we deduce that for R — +o0, I1 g — 0 and I3 g —
0. Hence, by taking the inferior limit of (5.54), we get the claim. O

Proof (of Theorem 86). Let u be a weak solution of (5.43). Let R, — +oco be a

sequence, such that

-3 [t}
q = —

liminf ——— = lim

R—4o0 Fo(R) n FO(RTL) '

Fixed € > 0 small and for n large enough, we have

g=3

-1
RS

'y — 1 < —e(s.
ZFo(Rn) < —elp

Thus, the estimate (5.45) can be rewritten as

q-3
_ RIT
Ol/ ful” Q?,b dtd£<C'R *Fo(Rn):Fo(Rn) Oyl 1},
Ar, [Elg *Fo(Rn)
hence
e IU[ 2
zp dtd¢ < 0.
0 3
This contradiction completes the proof. O

Proof (of Corollary 87). Let u be a weak solution of (5.43) with initial condition
ug. Assume that for |£],; > Ro > 0, (5.47) holds for ¢g > 0 and 0 < o < 1. The
proof when the behavior (5.47) occurs near the origin, that is for 0 < || < Ry, is
similar.

Choose 0 < € < q%, o and 1 admissible functions and moreover if ¢ =1 + %
we require then they are such that ¢y > El;?;‘é(?q(npg, ©1) > Cq, which from Lemma
83, implies that £2%2 > Cs.
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Since ug > 0, assumptions i) and 1) of Theorem 86 hold. Therefore we have a
contradiction. Indeed, in this case, for R > Rg, we have

Fy(R) z/ 2R IR+/ e LD gde > ORI - O(Ro),
19, |€ IH Ro<mnlely <k (IN[E[ )" 1-

where I = [—R\111|SIH<R0 I€IQ¢2LZ€ and C(Rg) is a non negative constant. This

proves the claim. t

Remark 89. If in Corollary 87 we fix ¢ > 3, then (5.43) has no weak solutions if the
initial condition ug > 0 satisfy (5.47) with 0 < a < q_z_—l Actually, from Theorem
86, it is possible to see that Corollary 87 still holds if ug is an infinitesimal of order

smaller than (In|¢|,)™7 at infinity or at the origin. For instance, the function

w does not satisfy (5.47) with no 0 <a < ;=2 1, but it belongs to the

(1n|§|H)f1 1
blow-up case.

Remark 90. The hypothesis a € R can be weakened requiring a suitable assumption
of asymptotic behavior of a at infinity. Let us consider a simple case. Let a €

LO°(H™ x [0,+00]), ¢ € R such that |c —a(é,1)] < f—(l—gl‘fm, where f is a function
such that

f(e®, R?r) > Ra(s,7,R) > Rey > 0,

for =2 <5 <2 0<7 <2 R>Ry>0, and a suitable function . With these
assumptions Theorem 84 still holds.

5.6 A second order evolution inequality for the Khon Laplacian

In this section we study the following second order evolution inequality

Ut — mH AH(aU) > |u|? on H™ \ {0}%]0, 400,
u(é, 0) = Uo(ﬁ) on H™\ {0}, (5.55)
ug(€,0) = u1(§) on H™\ {0},

where a € L (H" x [0, +00]).
Definition 91. Let ¢ > 1. We say that u is a weak solution of (5.43) if ug,u; €

L} (H"{0}), w € L] (H™\{0} x [0,+o00[) and

loc
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+oo t“iq 5 +oo  p o
/ / —gYirpdidt < — / / aud g (€| 57" p)dedt
o Jur ¢l o Jmr

e U 2 ¢2 e V] ¢ (R ER
+/o /W E‘,‘g’¢’gsﬂttd§dt + /H” I‘fg [uo (£ (€, 0) — u1(§)w(€,0)] d€, (5.56)

for any non negative o € Cg(H™\{0} x [0, +o0]).

Lemma 92. Let ¢ > 1. Let u be a weak solution of (5.55). For any admissible
1

function @g € €*(R), Ry > 0 and 0 < € < g7, there exists o positive constant Cy

such that for R > Ry, the following estimate holds

- q . Inlé /
o / M@‘fﬁ%dtdé‘ +/ o HZL}‘HM& < CyR¥ (5.57)
Jar [Elg Adr2 ¥

where Cy =1 —¢%/q and

Ap = {10 <t <R, |In|¢ly] < R*,
ADpe = {€|In [¢] 5] < 2R7}.

Moreover, the constant Cy has the form Cq = e’?—llq_’ SUP g~ ry Kql@o, 1, R), where

2 +2 T T T 27
Kq(po, 1, R) = /d’i’/ dv j[d(—) /d@l e /d@gn_g/ dBop,_1 sin™ Bsin®" 26y - - -
0 -2 0 0 0 0

B ' " q
6(e720, ..., Oan-, Br)or (r) (52 — 2 (v) + ¢ (7)o v)
sin an_g 3 (5.58)

(o (V)1 (7)) 1

w1 € Fa([0, +ool) is any admissible function and by the change of variable (2.11),
we have set @(p,0,...,0,-1,t) = a(,t). '

Estimate (5.57) allows us to get the following nonexistence results.

Theorem 93. Let 1 < g < 3. Let u be a weak solution of (5.55), then

+oco }U|CJ 5
; g ¥mdedt < —U,

135
where
U := limi ul(g) 2 . P
1 := liminf o Yirdé (possibly in finite).
Rtoo Jp-i<el <R ¢

Therefore, if Uy > 0, then (5.55) has no nontrivial weak solutions.
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Remark 94. From the above result, it follows that if u; > 0, then (5.55) has no
weak solutions for 1 < ¢ < 3. Furthermore, no assumptions is made on the initial

condition ug.

In the following theorem, in order to get nonexistence results for ¢ > 3, we shall
analyze the asymptotic behavior of the initial condition u) at infinity and at the

origin.

Theorem 95. Let ¢ > 3 and uy # 0. Let g € GE(R) be an admissible function.
Let R >0, and set Fi(-) as follows:

1
fuRy—/“ Eﬂdﬂo<ﬂgﬁ)@

Let C5 be the constant defined in Lemma (92). Suppose that
i)

liminf 1 (R) > 0,
R—+o0

i)
q-3 .
fmint 2 o
hmint ey < oy

then problem (5.55) has no weak solutions.

As simple corollary of previous theorem in case of non negative initial data u

is the following.

Corollary 96. Let ui # 0. Moreover, suppose that there exist ¢y >0, 1/2 < a <1
and Ry > 0, such that
€1
w(é) > v a
I €] 5[
for 0 < €|y < Ro or |é]y > Ro. Then (5.55) has no weak solutions for 1 < q <
1+ Wg_—l If g =1+ —2%, then there erists a positive constant ¢, such that, if

c1 > b, (8.55) has no weak solutions, and the value of c, is given by

(5.59)

/
(63

1— 1 Do .
= (__?‘_L(zl_l 'lnf{< sup Kq(po, 91, )) | ©o, @) admissible functions},
Snq? R>Rg

where K, (o, 1, R) is defined in (5.58).

Remark 97. We note that in Corollary 96, like in Theorem 93, the exponent gy =
T+ 555 1 does not depend on the dimension of H".
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Proof (of Lemma 92). As in the previous proofs we set ¢ = ¥y. Let u be a non-
trivial weak solution of (5.55) and ¢ € €5 (H™\ {0} x [0, +o0[), ¢ > 0. We set

Iy = a (|¢3 A = 4n €y (Vi 1€l Vi) ) + b,

Since u satisfies (5.56), as in the previous sections, by Holder and Young inequality,

we obtain

0o 2
o] ’“l‘;w ade + | %@ 01 (€ (6,0) ~ wolE)pu(€,0)] € < Ts1a,
(5.60)

where Iy 1= fO_FOO S W)J%%T‘_—ldtdév Cyi=1—¢l/qand Cz:= 1/(e¢).
Assuming that the function  is radial in the variable &, that is p = @(|¢] ,t) =

w(p,t), we have
20 (.2
Iy =9 (alp®@pp + (1= 20)pp,) + o) -
The change of variable § = @(p,0,01,...,02,-1), defined in (2.11), allows us to

write

+oo 400 27
Iy = / dt/ / de - / d@gnho/ B9y, 1 sin™ @ sin?" 2 gy -
0

l&(pchpp (1— 2”)999/) ‘*“(Ptt’
ppd 1

.- 8in 9277,_2
Setting @(s,t) = ¢(p,t), with s = Inp, we get

oo “+co ™ ™ 2
I, = / dt / ds / do- - / dfop_o / dfyy,_1 sin™ @sin®" 26y - - -
0 J —c0 0 JO 0

i (6 0,. )(9033 2”‘95) + (Ptt‘q
-1

+- - 8inbonn

Next we choose ¢ as follows:

5= pol)er (1)

where oy and @1 are admissible functions as in (4.3) and (5.49) respectively. The
change of variable s = R’z and ¢t = Rr, yields

Iy = R K, (g, 01, R), (5.61)

where Ky(po, @1, R) is defined in (5.58). Setting ¢ = HaHg;, since ()9 is convex, we

obtain
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L I'Q + |20 ()]
Ky(po, 01, R) < Csy, {// cor (T ’SO g + [2niep (@)l drdx
@y (z)

_F//ﬁ 0o(2) /sz;)wM}

This estimate furnishes an upper bound for supp. p, K,(o, 91, R), consequently

the quantity Cy is well defined.
Therefore, the final choice on ¢ is given by

ple.t) = oo, ( L),

Being ¢ =1 on Ag, from (5.60) and (5.61), we obtain the claim. O

Proof (qfvT/zem*@m 93). Let u be a weak solution of (5.55) and let ¢y € €5 (R) be
an even, non increasing on R, admissible function.
If 1 < g < 3, taking the inferior limit as R — +oo in (5.57), we get the claim.
When ¢ = 3 and |U}] < +oo, (5.57) implies

/%O/Hn IIU| Y2dtdé < +oo,

and arguing as in the proof of Theorem 84, we complete the proof. a

For sake of brevity, we omit the proofs of Theorem 95 and Corollary 96 since
they are very similar respectively to the proofs of Theorem 86 and Corollary 87.

Remark 98. If in Corollary 96 we fix ¢ > 3, then (5.55) has no weak solutions if
the initial condition u; > 0 satisfy (5.59) with % <a< %—F &—i_l—' Actually, from
Theorem 95, it is possible to see that Corollary 96 still holds if 4y is an infinitesimal

1 1
of order smaller than (In|¢|,) T4 2 at infinity or at the origin For instance, the
‘lnlln|§[H ' }
3+
(nfg] )2 " a=T
belongs to the blow-up case.

function u; = does not satisfy (5.59) with no 2 <a<s + ——l, but it
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