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INTRODUCTION




The elementary constituents of extended systems are nuclei and electrons,
whose behavior 1s governed by the laws of quantum mechanics. Therefore—at
least in principle—the physical properties of solids can be predicted and/or
understood solving an appropriate Schrodinger equation. Since in the system
there are typically ~ 10%® interacting particles, an exact solution is obviously
impossible; nonetheless approximations and algorithms have evolved over the
years to such an accuracy that nowadays it is possible to perform calculations
for real materials truly from first-principles (without any experimental input),
and which allow meaningful comparison with experimental measurements in

many interesting situations.

The number of materials and properties which can be accurately described
increases every year, and computational solid state physics is becoming a very
important tool supporting the parallel progress in the experimental ability of
growing artificial structures. Conversely, new experiments on both conventional
and novel materials continue providing more persuasive tests of the theory and

of its approximations.

Most modern computations on real materials make use of the Born-
Oppenheimer approximation [1] to decouple the ionic motion from the
electronic one, and of the density-functional theory (DFT) [2], in the local-
density approximation (LDA) [2] to transform the many-body electronic
problem into a one-electron problem, whose solution is by far simpler. In
fact the problem of solving the one-electron Schrodinger equation in a periodic
potential can be approached expanding the unknown wave-functions in terms

of a complete set of known functions.

DFT describes the electronic ground-state of the solid: basically the
electron density and the total energy (per cell). Several interesting bulk
physical observable of the solid are derivatives of the total energy, taken with
respect to some structural parameters or other kinds of external perturbations.
In a phenomenologic description of electronic ground-state properties of solids
the usual starting point is the expansion of the energy as a Taylor series. The
coefficients of this series are regarded as empirical parameters adjusted to fit
some observed properties of the solid [1]. We will focus in this work mainly
upon three distinct perturbations: microscopic displacements of atoms from
their equilibrium positions, macroscopic strain, and a macroscopic electric field.

The investigation of the response of the solid to these perturbations leads to
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three first derivatives which are respectively the forces acting on atoms, the
stress of the crystal, and the polarization, and to six second derivatives which
are related to the phonon dispersion, the elastic, dielectric and piezoelectric

tensors, internal strain parameters, and Born effective charges.

In two of the above mentioned cases (namely atomic displacements and
macroscopic strain), DFT can be used to obtain the total energy for any given
finite magnitude of the perturbation, and therefore the physical derivative
properties can be obtained by numerical differentiation and compared to the
experiment. The third case—a macroscopic electric field—is much more tricky
and actually it is not possible to compute the total energy of a solid in a
macroscopic electric field. This is because quantum mechanics is formulated in
terms of potentials, and the potential in a macroscopic field is not a lattice-
periodical operator, being therefore incompatible with periodic boundary
conditions. Furthermore the Hamiltonian of any system with a finite electric
field inside is an operator not bounded from below. Notwithstanding, it is
possible to obtain meaningful expressions for the first and second derivatives
of the energy with respect to an electric field (evaluated at zero field).
First-principle calculations of these quantities—i.e. the polarization and the

dielectric constant—are in fact well within the reach of the theory.

Powerful methods have been developed in order to extract the derivatives
of the total energy directly from quantum-mechanical perturbation theory,
and avoiding numerical differentiation. In the framework of DFT-LDA
these methods go under the name of density-functional perturbation theory
(DFPT) [3,4]: extensions and novel implementations of DFPT are considered
in this thesis. One of the main advantages of DFPT is that it allows the
study of perturbations of arbitrary wavelength with a computational workload
equivalent to that of a single selfconsistent calculation at the equilibrium
geometry, while much more demanding supercell calculations would instead

be needed to perform a similar study via numerical differentiation.

Presently, DFPT is well established using a plane-wave (PW) expansion of
the one-electron wave-functions and only a few examples of partial applications
with other basis functions have appeared [5,6]. The drawback of PW’s
with respect to other basis sets—like localized orbitals [7], LMTO’s [8], or
FLAPW’s [9]—is represented by the very large dimension of the basis set

required to describe the fine details of the wave-functions around the nuclei.
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In practice PW’s can be used only to deal with the valence electrons, in
conjunction with a pseudopotential description of the ion cores. It is therefore
necessary to replace the Coulomb potential with an effective potential which

represents the nuclei screened by the core electrons.

For this reason DFPT has been almost exclusively applied to group
IV and III-V semiconductors and their alloys and superlattices, where the
pseudopotential description is accurate. The generalization to other materials
and to complex structures appears as a natural development of these studies:

several cases are considered in this thesis.

The case of II-VI semiconductors is particularly challenging due to the
presence of group-I1IB elements (Zn, Cd, Hg). The most serious problem
in dealing with these elements is the presence of cation d electrons with
energies of order 10 eV below the valence s and p electrons [10]. All-electron
calculations have shown that d electrons give a non negligible contribution to
bond formation both in ZnTe and in CdTe and in II-VI semiconductors in
general; actually they form a flat band whose energy is higher than the anion
s band and for this reason they should be considered as valence electrons.
This cannot be done in practice with the usual PW-formalism, because the
resulting pseudopotential is too hard to allow converged calculations within
reasonable basis sets. One partial solution to this problem has been recently
proposed. The idea is to include d electrons in the frozen-core and to compute
the correct exchange and correlation energy using the total—rather than
valence—charge density: this is achieved by adding the frozen-core charge
to the selfconsistent valence charge. This approach, known as nonlinear
core correction (NLCC), was first used by Louie, Froyen and Cohen for the
description of magnetic systems, but the application to zinc and cadmium
was not thoroughly investigated until now. Even if this approach is less
accurate than other techniques—as the use of either localized basis sets [7]
or ultrasoft pseudopotentials [11]-—it can be generalized to the computation of
stress and forces and to the linear-response theory. Futhermore we show that an
appropriate generation of the pseudopotentials allows to describe quite well the
effect of d electrons: several known experimental properties of II-VI compounds
are reproduced with almost the same accuracy as standard LDA calculations
for conventional semiconductors, while other properties are predicted. We

perform a thorough study of the electronic ground-state of CdTe, ZnTe, CdSe,
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and ZnSe, including the calculation of several linear-response properties via
the appropriate generalization of DFPT. In the case of CdTe, we explain the

intriguing result of a recent experiment [12] on strained superlattices.

A different extension of DFPT considered in this thesis aims at describing
systems and/or physical properties where LDA is not a good approximation.
This happens particularly in presence of bonds among molecular units, as for
instance the bonds which join helical chains in selenium and tellurium, or in
systems where the hydrogen bond has an important role. Even for materials
where LDA is generally a very good approximation, some physical properties
are not accurately predicted: this is the case of the dielectric constant of simple
semiconductors (IV and III-V), which is overestimated by LDA [13,14]. The
evaluation of linear-response properties requires a much higher accuracy in the
energy calculation than the simple structural studies: in fact linear-response
properties can have large errors even if the structural parameters are correct
within 10% and DFPT can be used as an important test of the accuracy of some
of the proposed improvements to LDA. Amongst them, the gradient-corrected
(GC) approximation to LDA in the form provided by Becke and Perdew has
recently attracted a certain attention for its large improvement in the computed
cohesive energy of many molecules. To date, only a few tests of the theory have
appeared for solids [15,16,17]. We extend DFPT to the case where exchange
and correlation energy has an additional dependence on the gradient of the
charge density, and we give explicit expressions of all the terms deriving from
the Becke and Perdew formulation. The GC approximation is tested on the
computation of dielectric constants of simple semiconductors. Furthermore
we show that the GC approximation corrects the error involved in the LDA

description of the weak bonds between the helices of solid selenium.

Besides its usefulness in the interpretation of real experimental measure-
ments, computational solid state physics can be used to perform numerical
experiments in order to test novel theories. Very recently King-Smith and
Vanderbilt [18] proposed a new theory of the macroscopic electric polarization,
where this physical observable occurs as a Berry’s phase, 7.e. as a gauge-
invariant property of the phases of the occupied Kohn and Sham orbitals. We
show that this theory is “numerically” equivalent to DFPT for those quantities
which are accessible to both theories, we discuss the numerical problems in

the implementation of the method and we compare the results for the effective
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charges and piezoelectric tensor of GaAs. Using this new theory, one has access
to computing the macroscopic polarization of a solid: it is therefore possible
to study the linear as well as the nonlinear piezoelectric properties of a mate-
rial. We provide the first application of these new possibilities to a problem
of technological interest. We discuss the case of CdTe, in relation with recent
experiments on strained-layer superlattices [12] where a strong nonlinear piezo-
electric effect has been detected. We show how the numerical experiment allows
to unambiguously separate the different sources of nonlinearity, identifying the

major one.

The following of this thesis is partitioned into three chapters. Each of them
contains both theoretical formulations and computational results for selected
materials. In presenting the theory, we focus mainly on features which are
either original to this work or very novel, while more standard features of
modern electronic structure methods are only briefly outlined where this is

needed for clarity and uniformity of notations.

Chapter 1 i1s devoted to the calculation of the electronic ground-state
and its total energy within DFT-LDA, within a pseudopotential framework,
and using PW-basis sets. We refer to the review paper by Pickett [19]
for a comprehensive account of the well established aspects of the theory,
and we focus mainly on its extension to NLCC and/or GC schemes. Some
discussions on practical implementations in computer codes are also given. We
present in detail our scheme for the generation of the pseudopotentials, with
application to the NLCC pseudopotentials of zinc and cadmium and to the
GC pseudopotential of selenium. Then we discuss the computation of the
total energy, and its application to the study of structural properties of II-VI
semiconductors. Finally we critically review the Hellmann-Feynman theorem
for the computation of forces, and the theorem of Nielsen and Martin for the
evaluation of the stress. Both are generalized to either the NLCC or the GC
case. As an application of the GC case we present the computation of the
equilibrium structure of selenium and we show the usefulness of the GC scheme,
which greatly improves upon the LDA description of the bonds between helical

chains in this element.

Chapter 2 is devoted to DFPT, whose original formulation is due to
Baroni, Giannozzi and Testa [3]. We focus mostly on our NLCC and/or

GC extensions of the approach, while we refer to the paper of Giannozzi et
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al. [4] for a comprehensive formulation within a standard LDA framework. We
start with a brief recall of the phenomenological elasticity theory and of the
theory of lattice dynamics, mainly to establish our notations and conventions.
Then we show how to calculate the first order variation of the valence charge
induced by a given perturbation, and how to relate this microscopic quantity
to the interesting macroscopic physical quantities. We implement the above
formulation to study the following physical problems:

(i) Dielectric constant of II-VI semiconductors in the NLCC framework and

of silicon and germanium in the GC scheme;

(ii) Effective charge tensors of II-VI semiconductors, and of selenium;
(iii) Complete phonon dispersion spectra of II-VI semiconductors;
(iv) Internal strain parameters and piezoelectric tensors of II-VI semiconduc-

tors.

In Chapter 3 we present the Berry’s phase theory of macroscopic polarization,
due to King-Smith and Vanderbilt [18], and we discuss its relationship with
DFPT. We start with some benchmark calculations performed using both this
new theory and DFPT: our case study is GaAs, where all of the technical
ingredients have been kept the same for the two approaches. We demonstrate
that they provide identical results for the physical quantities which are
accessible to both approaches, as far as an accurate implementation guarantees
a fairly small computational error. We then present an application of the theory
to several properties of CdTe, which are relevant to interpret some challenging
experimental data for strained-layer superlattices. Using both DFPT and the
theory of King-Smith and Vanderbilt we study all the material properties of
interest in this problem, and particularly those related to macroscopic strain.
We demonstrate that in CdTe the piezoelectric tensor is accurately linear over
a wide range of volume-conserving strains, while it displays strong nonlinearity

whenever the strain is not volume conserving.



Chapter 1
DENSITY-FUNCTIONAL THEORY

The starting point of many modern ab—initio calculations on real materials
18 the computation of the total energy of the crystal within density-functional
theory. The knowledge of the total energy of a crystal allows the study its
structural properties. In this chapter we show that both II-VI semiconductors
and selentum cannot be described realistically within the standard LDA
pseudopotential theory. We introduce all the novel features needed to implement
the nonlinear core correction (NLCC) and the gradient correction (GC). We
discuss the problem of d electrons in the analysis of II-VI semiconductors and
its possible solution through the NLCC. We present a method for generating
pseudopotentials which is particularly suited to the cases where NLCC 1s useful
and we apply it to the generation of NLCC pseudopotentials of zinc and
cadmium. We show that with these new corrections the structural properties
of II-VI semiconductors are reproduced very well. The GC approzimation is
used to study the equilibrium structure of selenium after the generation of an
appropriate pseudopotential for this element and a generalization to GC and/or
NLCC of the Hellmann-Feynman theorem and of stress theorem. This study
shows that the large error in the description of the weak bonds between selenium

helices 1s due to LDA and can be partially corrected by the introduction of the
GC in DFT.




a - Density-functional theory: from LDA to GC
functional

a.l - Kohn and Sham formulation of DFT

From the standpoint of microscopic quantum mechanics, a crystal is a
system of nuclei and electrons interacting through Coulomb forces. The nuclear
degrees of freedom are usually disentangled from the electronic ones through
the adiabatic approximation [1] which is based on the smallness of the electron
mass as compared to the nuclear mass. Within this approximation the nuclei
are regarded as fixed charges acting as potential sources for the electrons
whose behaviour is described by the electronic ground-state wave-function. The
ground-state electronic energy is a potential energy surface for the nuclei whose
dynamics can also be studied as if they were classical charges.

The quantum mechanical properties of the system of N interacting
electrons in an external nuclear potential are described by the solutions of
the Schrodinger many—body equation:

H\I}(rl,"',r]\f):E\I}(r17"')rN)7 (1)

where H is the Hamiltonian:

1 & N ¢2 1
H=— NV Vewlr) + 5y 2
2me Z—I_i:l )+ ri — ;| ®)

i=1 i#]

Here r; is the position of the i-th electron, and Ve, (r;) is the external
potential which acts on the electrons, depending parametrically upon the
nuclear positions. As in this work we are interested in the properties of periodic
solids, the nuclear positions are fixed by the introduction of the Bravais lattice
vectors [20] R,, and by the choice of the vectors 75 which characterize the
positions of the atoms inside the unit cell. We consider a finite solid of volume
V with periodic boundary conditions where the index g runs on all the cells N,
while s runs on the Ny, atoms which are in one cell. In these formulas, as
well as in the following, we use atomic units with 7 = 1: the energy is measured
in Rydberg if the square of the electron charge ¢* = 2 and the electron mass
me. = 1/2 or in Hartree if ¢ =1 and m, = 1.

Unfortunately, the solutions of Eq. (2) cannot be found in neither analytic

nor numerical form, because of the Coulomb term in the Hamiltonian which
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couples all the electronic degrees of freedom, and for this reason it is convenient
to shift the interest from the many-body wave-functions which solve Eq. (2)
to the ground-state electronic charge density, which allows all the same the
computation of the physical ground-state observable.

Indeed, in practical calculations Eq. (2) is replaced by the equations
derived from density-functional theory (DFT). This theory was introduced in
1964 by Hohenberg and Kohn [21] who demonstrated that the external potential
acting on the electrons is a functional of the electronic ground-state charge
density. This potential, in turn, determines the ground-state wave-function
and therefore all the ground-state properties of the electronic system become
functional of the electronic density.

One particularly important quantity is the total ground-state energy
because from the knowledge of the total energy functional it is easy to compute
the charge density as the function which minimizes the functional. Actually
the total energy functional is unknown, but it can be approximated quite
accurately. This approximation is due to Kohn and Sham (KS) [22]. Formally,
the total ground-state energy of the many—body system is written as the

expectation value of the Hamiltonian on the ground-state. If we define [22]:
Gln] = (ol H|¥y), (3)
we can express the total energy of the solid, nuclei+-electrons, as
Eior = Gn] + E;—, (4)

where F;_; is the interaction energy of the nuclei which, as classical charges,

have a Coulomb energy:

2
e ! L2,
B = — L 5
9 Z R,+71s—R, — 74| (5)
ny 88y
where Z is the charge of the nucleus in 74, and the prime indicates the p = v,
s = 51 term is to be omitted from the summation.
Instead of approximating directly G, KS introduced a new functional

subtracting from G some parts defined through the wave-functions of a gas

of independent electrons with the same density of the interacting system. Let
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us call [¢);) the single particle wave-functions of the noninteracting system, then

its kinetic energy can be written as:
1
T=—-—5— i (i V2 i), 6
gz IV (©

where f; is the Fermi function [20] which is equal to 2-—accounting for spin
degeneracy—if the energy of the i-th level is lower than the Fermi energy, and

0 otherwise. The density of the noninteracting system is:
=3 AP (7)

and it coincides, by construction, with the electronic density of the interacting
system. Hence E;,; must contain a contribution analogous to the classical

Coulomb energy of a charge distribution en(r):

——//dm dr1 |r1)_§2|) (8)

Finally, the interaction of the electronic system with an external potential yields

an interaction energy:

ewt Zfz 1/) |Vext|1/) > (9)

In typical cases the external potential describes the effect of the nuclei, plus in
case other external sources (as for instance an electric field). Subtracting these
terms from the total energy of the interacting electron system, KS isolated
a functional which contains all the many-body effects, and which cannot be
treated in an exact way. This part of the total energy is known as the exchange-

correlation energy of the system:
E..jnl=Gn|—Eeey — T — Eg (10)

If this functional were known, fixing an external potential, we could compute
the total ground-state density minimizing the total energy. It is convenient
to minimize with respect to the single particle wave-functions ¢;(r) with the

constraints:

(Pilps) = 6ij. (11)
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The minimum of the functional can be obtained by the method of Lagrange
multiplies [19] and leads to the KS equation which, in the coordinate

representation, reads:

1
_%Vz + VH(I‘) + Vzc(r) + Vezt(r):| 1/)1(1') = 611/)1(1') (12)
The solutions of Eq. (12) are the single particle KS orbitals which are used to
build up the electronic charge density via Eq. (7). The new potentials which
appear in Eq. (12) are the Hartree potential:

n(r
Vu(r) = 62/ drlﬂ, (13)
1% v —ry|
and the exchange-correlation potential, which is the functional derivative of the
exchange-correlation energy:
6E,.[n]
Vie(r) = ————. 14

The KS procedure introduces a one-body Hamiltonian which has a natural
interpretation as an Hamiltonian of one electron in the mean-field created by
the nuclei and by all the other electrons. However DFT assigns no formal
interpretation to the KS orbitals and to the KS eigenvalues. The physical
observable of the theory are only the ground-state total energy and the ground-
state charge density.

a.2 - LDA and beyond: gradient corrections

The above DFT is formally exact, but as such it is useless in practical
applications because all the difficulties related to the many-body nature of the
electron wave-functions are still unsolved. To proceed further it is necessary to
find an approximation for the exchange-correlation energy. The most common
approach is the local-density approximation (LDA) [2,23] which describes quite
well a large number of systems, and has been successfully applied in almost all
the ab-initio calculations [24] performed in recent years.

The idea is to replace the exchange-correlation energy of a nonuniform

system with the E,. computed as if locally the interacting electron gas had the
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same exchange-correlation energy of a wniform interacting electron gas with

the same density:
E,.[n] =/ dr ezc(n) n. (15)
14

The function e,.(n) depends locally upon the density at the point r. It has
been determined accurately in 1980 through a Monte Carlo simulation [25]
which provided the total ground-state energy of the uniform interacting electron
gas at several densities. These energies have been interpolated by several
authors [26,27] and the computations reported in this thesis are performed
using the recipe of Ref. [26].

LDA is exact for a uniform system and is expected to be valid for
systems with slowly varying electron density. In all the other cases the LDA
approximation is indeed uncontrolled; its justification relies mainly in its ability
of reproducing the experimental ground-state properties of a large number
of solids [19], especially covalent or metallic systems. Even limiting to the
works on silicon and germanium, or III-V semiconductors, literally thousands
of papers have appeared. The theory has been shown capable of dealing on the
same ground with atoms, molecules, clusters, surfaces, interfaces and in many
cases also with dynamical (phonon dispersion) and electrostatic properties
which have been successfully reproduced [4,28].

Nevertheless, besides these successes there are also some drawbacks of the
approximation which usually are overlooked and which prevent the extension of
many computations to some solids. For instance, the cohesive energies of solids
are systematically overestimated, while lattice constants are systematically
underestimated. Errors in the structural properties are usually small for
crystals with covalent or metallic bonds, but it is well known that the hydrogen
bond cannot be described accurately within LDA [17]. In the field of metals,
the ground-state structure of crystalline iron is predicted to be paramagnetic
fce, instead of a ferromagnetic bee [29]. In this thesis we show that LDA is
not sufficiently accurate in the description of the weak bonds between chains in
selenium, and this error propagates in an uncontrolled way to the predictions
of linear-response properties of the material, like phonon frequencies, effective
charges, piezoelectric properties etc.. In fact linear-response properties can be
studied with success only if the structural properties of the material are well
reproduced (with errors lower than 2-3 %). Therefore the precision required

by this type of computations is larger than usual and in many cases it points



16  Density-functional theory

out the necessity of going beyond LDA to obtain meaningful results.

LDA is known to have at least one remarkable failure even in common
semiconductors: the dielectric constants are often overestimated [13], with
an error of the order of 10% or larger, and this prevents a more thorough
study of the derivatives of this quantity which have important experimental
implications, for example in Raman scattering or in photoelastic phenomena.

Various approximations have been introduced in the course of the years
to improve LDA in cases where it fails [30,31], but no commonly accepted
amelioration has been found until now. Here we analyze one possible
improvement to LDA | that is the inclusion of a GC in the exchange-correlation
energy [32]. Whether such GC are definitely an improvements over the LDA or
not, is presently under debate: in this thesis we give some piece of information
to such an issue. Among the large number of proposed forms of GC we decided
to concentrate on the proposal of Becke for the exchange [33] and that of
Perdew for the correlation contribution [34] which is the favorite choice of
other authors [17,16].

The main success of the Becke and Perdew form of the GC is a definite
improvement of the computed cohesive energies of molecules and solids, while
the improvement on other physical quantities is not so striking [15]. In part this
could be due to the fact that this GC approximation has been often tested on
materials and properties where LDA is already a good approximation (like e.g.
most properties of simple semiconductors) [15]. In some case, like e.g. hydrogen
bonded systems, GC did provide an outstanding improvement [17]. We test
the GC on the computation of dielectric constants of simple semiconductors,
where it is well known that LDA can be effectively improved, and we use it to
determine the structural properties of selenium.

In a GC scheme it is assumed that the exchange-correlation functional

depends locally on the density and on the density gradient:
E, = / dr ezc(n,Vn) n. (16)
\4

Following Becke and Perdew, the explicit form of the energy density, in Hartree

units, reads:

eBP(n,Vn) = elPA(n) + 25073 |Vn|?A(n, Vn). (17)

LDA

In this expression we indicated with e/

(n) the expression of exchange-

correlation functional given in Ref. [26]. Furthermore we have extracted the
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dependence on the square of the gradient, which is important for the |Vn| — 0

limit of the derivatives of this energy. The function A(n, Vn) reads:

A(n,Vn) = {273C(n)e % — %}, (18)
where there are two terms which depends upon the gradient of the charge
density:

C(o0) |Vn|
=0.192 19
and
G=14+6nX,sinh™" X,, (20)
with -
x, = 24 V1 (21)
ns

The function C(n) is written in terms of

3 \3
s= | — 22
' <47Tn> (22)

0.002568 + ars + Br?
14+ rs + 612 41045137
and o = 0.023266, 3 = 7.389 x 107°%, v = 8.723, § = 0.472, n = 0.0042. The

reasons for the choice of this form of the functional are explained in the original

as

C(n) = 0.001667 +

(23)

papers, and summarized by Ortiz and Ballone [35]. The important point to
underline here is that this expression has the correct low density (n — 0)
and homogeneous (|Vn| — 0) limits, whereas these features are not shared
by other proposed forms of this functional [30,34]. The numerical values of
the parameters are chosen in such a way to fit the known exchange-correlation
energy of selected atoms in their ground-state. This could be a problem, and
for a solid it would be better to fit the parameters on some response property
of the uniform electron gas. We will discuss further this issue below.

In the general GC case the exchange-correlation energy contains the charge
density gradient, and the functional derivative which gives the exchange-

correlation potential reads:

3

oF o[ oF
Veelt) = 50 = 2 B [a(aan)]’ (24)

a=1
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where the function F is defined as F' = n e,.(n,Vn) and dyn is the a—
component of the density gradient. The first term in Eq. (24) is the LDA
result, while the second term is due to GC. This term is easily computed in a
PW-formulation of the problem and requires little extra workload with respect
to standard LDA. We will discuss the details of the implementation after the

derivation of one explicit expression of the solution of Eq. (12).



b - The Plane-Wave pseudopotential method.

b.1 - The pseudopotential approach

Eq. (12) can be solved —in a periodic solid—expanding the KS orbitals in a
complete set of known functions. Among the various existing options, we limit
our discussion to the PW-basis set: besides conceptual simplicity the PW's
have invaluable numerical advantages. In fact such a basis set describes the
charge density with the same degree of accuracy for different crystal structures
because the basis is not biased by the atomic positions. Furthermore PW's
allows a simple integration of the Poisson equation for the computation of the
Hartree potential and are ideally suited to the extension of DFT to perturbative
methods.

Unfortunately PW’s cannot be straightforwardly used with Eq. (12)
because of the fast oscillations of the orbitals in the neighbourhoods of the
nuclei, which would require an enormous basis size to be described with
acceptable resolution. In fact the scale length of the variations of the wave-
functions near the nuclei, depends upon the valence charge Z of the nuclei and
can be very small, especially for heavy nuclei. On the other hand the PW’s
must describe also the valence charge in the scale of the unit cell of the solid
and 1t is impossible to reproduce simultaneously the charge density on this scale
and the fine details of the charge around the nuclei with a reasonable number
of PW's.

However, the energies associated with the core wave-functions are orders of
magnitude higher than the energies associated with the valence wave-functions
and it is well known that the properties of chemical bonds are determined by
the valence charge density quite far from the nuclei, while the core electrons
remain almost inert, frozen in their atomic configuration. Hence it is possible
to simplify Eq. (12) eliminating all the degrees of freedom associated to those
electrons which are so tightly bound to the nuclei that their energy does not
change when the atoms form a solid.

It is then possible to map the all-electron frozen-core problem onto an
equivalent problem involving valence electrons only. The orbitals associated
with these electrons can be described by a resonable number of PW’s which

turns out to be independent from Z if the details of the wave-functions around
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the nuclei are smoothed out. The formal transformation of the Hamiltonian
is the substitution of the nuclear potential with a new pseudopotential whose
lowest energies coincide with the valence all-electron energies and whose wave-
functions coincide with the all-electron wave-functions in regions sufficiently
far from the nucleus.

The ionic pseudopotential consists of a Coulomb attractive term, whose
charge is given by the atomic valence, plus a short-range part, which must
be able to correctly represent the effect of the orthogonalization of the valence
eigenfunctions to the core ones, the effect of the interaction of a valence electron
with the electrostatic potential of the core charge and the effect of exchange-
correlation between valence and core eigenfunctions.

All along the sixties and the seventies the use of pseudopotentials has
been an invaluable approximation, providing a great number of important re-
sults [36]. Initially only the coincidence of the pseudo-energies with the all-
electron valence energies was required in the construction of the pseudopo-
tential, but, after 1979 [37], the importance of the coincidence between wave-
functions was recognized and the pseudopotential concept made a transition
from an uncontrolled approximation to a mathematical transformation of the
frozen-core Hamiltonian, which is essentially exact in a wide range of situa-
tions. Pseudopotentials whose pseudo-wavefunctions coincide with all-electron
wave-functions outside a core radius r. are known as norm-conserving pseu-
dopotentials and the results obtained with these pseudopotentials have an ac-
curacy comparable with the all-electron calculations. The price to be paid for
norm-conservation is nonlocality, i.e. the ionic pseudopotential depends upon
the angular momentum [. In a practical code the potential which the nucleus

exerts upon the electrons is written in the form:

lmal:

V(r) = V() + ) Vil(r) P, (25)

The index s denote the atom, while P; is a projector on the [ angular momentum

defined by its action on a function of the position r:

P = S i)Y (6,0) (26)

m=—1

here Y, is a spherical harmonic of [ angular momentum and fi,,(r) are the

coefficients of the expansion of the function in spherical harmonics. In this
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way the external potential becomes a nonlocal operator. This is not a great
practical difficulty and now we show how to solve Eq. (12) in a periodic solid

and with a nonlocal external potential acting on electrons.
b.2 - PW-solution of the KS equation

Eq. (12) is a nonlinear differential eigenvalue equation. The PW-solution
suited for a periodic solid with volume V', periodic boundary conditions, and
nonlocal pseudopotentials were first given in Ref. [38].

Let us define the KS potential:

Vics(r) = Vegi(r) + Vi (r) + Vie(r), (27)

this potential is periodic with the same periodicity of the Bravais lattice of the
solid:

Viks(r+R,) = Vis(r), (28)

and for this reason we can apply the Bloch theorem, which tells us that the
solutions of Eq. (12) have the form:

pi(r) = i(k, 1) = ™ uy(k, r) (29)

where k is a vector inside the first Brillouin Zone (BZ) of the reciprocal
lattice [20], and u;(k, r) is a periodic function with the periodicity of the direct
lattice:

ui(k, r+ RN) = ui(k, I'). (30)

In a finite solid with N electrons, we need the N/2 lowest filled states
(accounting for spin degeneracy). The number of different k-points inside the
first BZ depends upon the boundary conditions; it coincides with the number
of cells N, in the case of periodic boundary conditions [20]. Hence the number
of full bands Np—in an insulator or in a semiconductors—is equal to one half
of the number of electrons in the unit cell. Inserting Eq. (29) in Eq. (12) we
obtain a k dependent equation for u;(k,r):

(=iV + k)? + Va(r) + Vae(r) + Vear(k, 1) [ui(k, r) = €;(K)ui(k, ), (31)

2Mme

where we have introduced the notation:

Veet(k, 1) = e 7RV, (1), (32)
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to deal with general forms of the potential. In particular we are interested in
general nonlocal expressions of the pseudopotential, and therefore V.. (k,r)
explicitly depends on k (We refer to Ref. [19] for a detailed discussion of the
problems connected with the introduction of a nonlocal external potential in
DFT).

Actually Eq. (31), represent N, different equations. Passing from Eq. (12)
to Eq. (31) we have used all the symmetry properties of the solutions due to
the discrete translational invariance of the solid. It is this invariance which
decouples the equations relative to different k-points. In fact, as we will see
below, any perturbation on the solid with a periodicity different from the
periodicity of the Bravais lattice, will cause a coupling of the solutions of
Eq. (31) which are decoupled in the unperturbed periodic case. Each equation
represented by Eq. (31) can be solved numerically more easily than the original
Eq. (12), because the u;(k,r) have the periodicity of the Bravais lattice. For

this reason, it is possible to expand the solution in PW’s writing:
u;(k,r) = L ch+g iGT (33)
(3 bl - 2 bl
VvV 5

where G is a reciprocal vector. The coefficients cix4q,; are the eigenvectors of

a linear eigenvalue problem:

1
Z[ ‘k‘|‘G‘25G,G1‘|‘VH(G_G1)+Vzc(G_G1)+

2m.

< (34)

+Verr(k + Gk + G1) | cktaG,.i = €i(k)ckta .,

where the Hartree potential is computed from a Fourier transform of the valence

charge density:

ny(G) = é/ﬂdr n,(r)e 6" (35)
) — dre? ny(G)
Vu(G) =4 GE (36)

while V,.(G) is the Fourier transform of the exchange-correlation potential

given Eq. (24) and Q is the unit cell volume. This is well known in the
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standard LDA case and it remains true in the GC case where the exchange-
correlation potential is local. The nonlocality of the external potential gives it

a k dependence:

%m&+(1k+GQ:%aAdmfﬂﬂgxhﬂéQ? (37)
It is important to note that the electrostatic term formally diverges at G = 0,
a feature shared also by the G = 0 component of the external potential, due
to the long-range Coulomb interactions. It can be shown that the divergence
cancel, resulting in a constant value yet ill-defined [39], and which can therefore
be arbitrarily assigned. Conventionally, we set the average of the electrostatic
potential to zero. All the physical properties do not depend on this arbitrary
choice.

The practical solution of Eq. (34) involves the use of a finite basis set. For
a PW-basis the truncation rests on the fact that in a pseudopotential scheme
the modulus of Vi s(G) decreases rapidly as the modulus of G increases. This
feature can be exploited in many ways; one possibility is the use—for each k-
point—of the G vectors for which the kinetic energy is lower than a maximum

cutoff:
1

2m.
another possibility is to fix the number Ny, of PW’s selecting the PW’s with
the lowest kinetic energy. The first choice has the advantage that the precision

k+ G| < Eeur, (38)

of different calculations is independent form the structure of the crystal and it
is possible to compare the total energies of different structures to study phase
stability. Furthermore the precision can be systematically improved increasing
the value of E.u;. The number of PW’s for a cutoft E.,; depends upon the
lattice and upon the k-point. For a simple estimate, in the center of the BZ

the number of PW’s is related to the cutoff energy by the relationship:

iy
Npw = (V Eeut)?, (39)
3Qpz

where Qpz is the volume of the BZ. This equation shows that the number
of PW’s scales as E?

- It is well known that the number of operations

needed to diagonalize an Ny, X Np, matrix is proportional to N;’w [40] with

standard diagonalization methods. We need only the N, lowest eigenvalues
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and eigenvectors of the matrix, and in this case the number of operations can
be reduced to an amount proportional to Ny x Ngw, with more recent iterative

diagonalization techniques.
b.3 - The NLCC approach to the d electrons problem

IT-VI semiconductors are very interesting materials from a technological
point of view. They are becoming very useful as optoelectronic materials in
nonconventional frequencies ranges [41], or as part of superlattices an quantum
wells. The application of the pseudopotential technique to these materials
could be of great help in the interpretation of challenging new experiments,
but to date only few applications of the pseudopotential DFT-LDA theory
have appeared. The early results have been in fact discouraging [42]: even

structural properties had very large errors.

1.5
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Fig. 1. Core and valence charge of zinc and cadmium when d

electrons are frozen in the core.

The reason of the failure is due to the particular electronic structure of
group IIB elements. Zinc and cadmium atomic configurations are [Ar]3d!'%4s?

and [Kr]4d'%5s? and in the early calculations d electrons were frozen in the
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fixed core, considering only s electrons as valence electrons. Unfortunately this
procedure is not justified in IIB elements but it is unavoidable because the
localization of d electrons around the nuclei shows that a kinetic energy cutoff
of the order of 150 Ry at least would be needed to describe accurately d wave-
functions with a PW-basis set. The number of PW’s corresponding to a kinetic
energy cutoff of 150 Ry is of order of 15000 PW’s for typical lattice constants
(see Eq. (39)). This number is actually too large to be treated routinely, even
on a modern supercomputer.

If d electrons are part of the core there are two hypothesis, on which
the pseudopotential method rests, which are no more valid. The energy of d
electrons is only 10 eV under the valence cation s and p bands and is higher than
the anion s band. This fact suggests the possibility of a failure of the frozen-core
approximation, and in the solid there is a core relaxation which is completely
neglected in the pseudopotential picture. Furthermore the valence and the core
charge have a very large overlap as shown in Fig. 1 where we plot the valence
and the core charge of zinc and cadmium when d electrons are considered as
part of the core. When the all-electron Hamiltonian is transformed in a pseudo-
Hamiltonian in the standard way, the exchange-correlation energy is linearized
and only the valence part of the energy is computed. This procedure produces
a poorly transferable pseudopotential if the core and valence charge are not
well separated in space. This is exactly what happens in IIB elements and for
this reason large errors are to be expected.

While the error associated with the core relaxation is almost unavoidable
with PW’s, it is possible to partially correct the large error due to the
charge overlap introducing the so called nonlinear core correction (NLCC)
approximation [43]. The necessity of including this correction first appeared
in the study of magnetic systems and afterwards it was shown that it gave
good results for the first-column elements [44] and for transition metals. As a
matter of fact, the NLCC has been recently applied to II-VI semiconductors
with encouraging results [45,46], but no complete study has appeared until
now.

The idea underlying NLCC is to use the total charge instead of the valence

charge to compute the exchange-correlation energy [43]:

Ezc = / dr 5rc(nv + nc)(nv + TLC), (40)
Vv
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where n. is the charge density of the core electrons, computed as a superposition
of the atomic core charges of the atoms which requires NLCC and n, is the
valence charge. The core charge is computed only once, together with the
pseudopotential and then it is added to the valence charge to compute the
exchange-correlation energy. Eq. (24) which expresses the exchange-correlation
potential remains formally unchanged, but the total charge has to be used
instead of the valence charge. In the following when we need to distinguish the
electron charges, we will indicate the core or valence charge with a subscript,
while n will be the total charge.

Unfortunately, standard pseudopotentials cannot be used together with
Eq. (40) because the pseudopotentials must be generated with the same form
of the exchange-correlation energy used in the computations for the solid.
Therefore we must generate new pseudopotentials of zinc and cadmium. We
describe in next Section a method particularly suited to generate nonlocal
norm-conserving pseudopotentials in the framework of the NLCC. The same
technique has been used also to generate the selenium pseudopotential in a GC

framework.
b.4 - The generation of the pseudopotentials

A parametric form of the pseudopotentials has been introduced in a famous
work by Bachelet, Hamann and Schliiter [47], where the authors report the
coefficients of the LDA pseudopotentials of all the elements. As observed above,
the originally tabulated pseudopotentials for group-IIB atoms do not provide
accurate results if d electrons are frozen in the core, and we now compute new
coefficients for a similar parametric form, but within NLCC. The expressions

of V¢(r) and V"!(r) appearing in Eq. (25) are parameterized as:

loc 2362
Vioe(r) = — er f(\/acr), (41)
r
Vo) = (ar + bir?)e™™ ", (42)

where Z; is the pseudo-valence of the s atoms, and «., a;, b;, a; are parameters
determined by the norm-conservation condition.
Two conceptually distinct methods are in use to find the coefficients of the

pseudopotential. In both of them it is necessary to solve the KS equation for an
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isolated atom with an all-electron technique and to determine the valence wave-
functions and the energies. In the first method the pseudopotential is generated
starting from the pseudo-wavefunctions. These functions are taken coincident
with the all-electron ones outside r., and to have a fixed form inside r.. Then
one inverts the KS equation to obtain the KS potentials which have the pseudo-
wavefunctions as solutions. Finally the KS potentials are unscreened and fitted
with an analytical function analogous to Eqgs. (41), and (42). In the second
method one guesses some initial values of the parameters appearing in these
equations and varies them until the norm-conservation condition is achieved as
accurately as possible. In practice one solves a minimization problem where

the function to be minimized is:

lmat e.@)
Flae anbyar) =Y / Pty — B (r) 2+
=0 7t (43)

lma.E

pseudo AFE 2
+7 § |€l — € | s
=0

where 7 is a parameter used to make the two terms homogeneous. The first
method presents some advantages in dealing with first-row elements, because a
carefully selection of the analytical form of the pseudo-wavefunctions inside r,
allows the elimination of the short wavelength part of the pseudo-wavefunctions:
the resulting pseudopotential [48,49] can therefore be described with a small
number of PW’s for the given atom.

For other atoms the second method can be applied successfully. In this case
the quality of the fit can vary from atom to atom, and the parameters depend
more strongly on the fitted all-electron valence configuration, but it is the only
method which allows the simultaneous fit of different configurations and this
possibility is important in the NLCC generation of the pseudopotentials (see
below). This method is known as von Barth and Car [50] method and one
generalization of it has been used in this work.

With respect to the standard method we have a further arbitrariness due
to the form of the core charge. In fact it is not possible to include in Eq. (40)
the total atomic core charge, because the number of PW’s needed to describe
this localized charge would be very large and the advantages of the NLCC
formulation would be lost. Nonetheless, in the pseudopotential formulation

the valence charge is exact in the range r > r., and to correctly reproduce
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Fig. 2. Comparison of the 4s, 4p, 4d radial wave-functions of zinc, pseudo (solid) vs. all-electron
(dashed). The NLCC pseudopotential is reported in Table II.

exchange-correlation energy, we have to fit the core charge only in the range
r > rg, where rg ~ r.. In the range 0 < r < ry the core charge can be
smoothed with an arbitrary function chosen is such a way that the function
ne(r) is continuous and derivable. Following Ref. [43] the smoothing function

is assumed of the form:
A sin Br
ne(r)=———— 0<r<rg. (44)
r

In order to choose ry we have to come to a tradeoff between the accuracy of
exchange-correlation and the number of PW’s necessary in the total energy
calculation. Tests made in Ref. 43 showed that ro can be chosen in the range
where the core charge is from one to two times larger than the valence charge
density, and in our case we find no essential worsening of the results by choosing
ro as the radius where core and valence charge are equal, using therefore a

smooth core charge.
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Fig. 3. Comparison of the 5s, 5p, 5d radial wave-functions of cadmium, pseudo (solid) vs.
all-electron (dashed). The NLCC pseudopotential is reported in Table II.

After the smoothing, the total core charge is fitted by an analytical

function with a simple Fourier transform to simplify the solid calculations:
2
ne(r) = (dee + beer®)e ™™, (45)

where ac., b.. and «.. are adjustable parameters.

Finally we have to choose an atomic all-electron reference configuration to
be fitted by the pseudo-wavefunctions. In zinc and cadmium the ground-state
atomic valence electron configurations are respectively 4s? and 5s2, but the p
and d orbitals of the outer shell are not bound states of the neutral atom. It is
therefore necessary to choose a partially ionized atomic reference configuration
which, in turn has a core charge slightly different from the neutral atom. This
difference is important in atoms with a large core relaxation as the case of
cadmium. One possible way out, which we have followed, is to fit the core
charge together with the pseudopotential, varying also the core parameters and

fitting simultaneously more than one configuration. In practice we generalize



30  Density-functional theory

the function to be minimized, Eq. (43), introducing a different weight w,, for

each configuration and minimizing the sum of f over all the configurations:

F(acaahblyclaacmacc;bcc) = Z'wnfn(amalablyclaaccaacmbcc)a (46)
n

where f, is the function of Eq. (43) for the n-th configuration. Our
procedure gives therefore pseudopotentials which are better tailored for solid-
state calculations since the effective configuration in the solid is not the one
of the neutral atom. It is obvious that the results of this procedure are
somehow more arbitrary than the standard pseudopotentials, but we found that
different choices of the atomic configurations change only slightly the computed
structural properties, even if they are important in the computation of phonon

dispersion.

Table I. Energy eigenvalues of the all-electron zinc and cadmium atoms compared with
the pseudopotential values. The first row refers to the neutral atom, while the others refer

to the ion.

Zinc Cadmium

Ry Pseudo AE. AE Pseudo AE. AE

52 -0.449 -0.457  0.008 -0.437 -0.438  0.001
st -1.056 -1.054  0.002 -0.998 -0.989  0.009
P° -0.589 -0.588  0.001 -0.560 -0.560 0.0
d° -0.165 -0.166  0.001 -0.169 -0.169 0.0
st -0.753 -0.747  0.005
p°° -0.349 -0.352  0.003

b.5 - NLCC pseudopotentials of zinc and cadmium

The pseudopotentials parameters of zinc and cadmium which we obtained
with the above procedure are reported in Table II. For zinc we fitted only

the ionic configuration 4s'4p°4d°® and then we checked the transferability of
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Fig. 4. Comparison of the 4s, 4p, 4d radial wave-functions of selenium, pseudo (solid) vs.
all-electron (dashed). The GC pseudopotential is reported in Table IV.

the obtained pseudopotential reproducing the neutral atomic configuration. In
the case of cadmium we used three configurations namely 5s?(1), 5s'5p%3(0.2)
and 5s'5p°5d%(0.5) with different weights as indicated in parenthesis. These
configurations have been fitted simultaneously and the parameters of the core
charge have been determined as described above. The all-electron calculations
are performed with a scalar relativistic code, while the pseudoatomic
calculation is done using a nonrelativistic code. Spin corrections are always
neglected. In Table I we report our results for the pseudo-eigenvalues compared
with the energy levels of the all-electron atoms and ions. In Fig. 2 and Fig. 3
we show the pseudo-wavefunctions together with the all-electron ones.

In Table IT we report also the parameters of the selenium and tellurium
pseudopotentials used in all the computations with II-VI semiconductors.
These pseudopotentials are quite standard and could be interchanged with

those reported in Ref. [47] to all practical purposes.
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Table II. Pseudopotentials generated and used in the study of II-VI semiconductors.
For a definition of the symbols, see Egs. (41), (42) and (45). Selenium and tellurium

pseudopotentials are standard LDA and can be interchanged with the parameters of

Ref. [47].
ce e 1=0 1=1 1=2
Zn «@ 0.6808 0.9458 0.9270 0.4563 0.5314
a 0.0741 5.6826 1.1907 -0.0582
b 0.0460 -2.1774 -0.2317 0.3442
Cd « 0.4595 0.7491 0.8439 1.1656 0.6806
a 0.0423 8.8803 13.543 0.2229
b 0.0165 -3.2504 -3.8335 1.9983
Se o 0.8734 1.3679 1.0738 0.9796
a 10.3230 3.9141 -0.0030
b -6.7581 -2.0456 0.1652
Te o 0.7510 1.1954 0.9454 1.0107
a 14.0290 8.5579 -0.6370
b -5.8013 -2.6530 3.0227

b.6 - GC pseudopotential of selenium

To perform the GC computations on selenium (see below) we have
generated a new pseudopotential in a GC framework with the standard
von Barth-Car method. The configuration used for this pseudopotential is
45%24p®54d°, which was chosen since it has a bound 4d state. We checked the
transferability of this pseudopotential reproducing the neutral atomic energy
levels which are reported in Table III. In Fig. 4 we show the all-electron valence
wave-functions and the fitted pseudo-wavefunctions, while the parameters of

the pseudopotential are reported in Table I'V.
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Table III. Energy eigenvalues of the all-electron GC selenium atom
compared with the pseudopotential values. The first two rows refer to the

neutral atom, while the others refers to a partially ionized configuration.

Selenium

Ry Pseudo AE. AE

52 -1.279 -1.280 0.001
p? -0.485 -0.486 0.001
52 -1.619 -1.619 0.0

p33 -0.801 -0.801 0.0

d° -0.062 -0.062 0.0

Table IV. GC pseudopotential of selenium generated and used in this work. For a
definition of the symbols, see Eqs. (41) and (42).

o 1=0 1=1 1=2

Se o 0.9291 1.4420 1.2108 1.0321
10.4258 4.0341 0.1162
b -6.8721 -1.9694 0.2246

o




c - Self-consistency and total energy

From the solution of Eq. (34) we can build the KS orbitals and hence the
charge density of the solid. Several practical details are reported in Appendix B.
From the charge density we can build up a new KS potential via Eq. (27). The
Hartree potential is calculated by solving the Poisson equation with a fast
Fourier transform (FFT) to switch from the real to reciprocal space where the
Laplace operator is diagonal (see Eq. (36)).

The computation of the exchange-correlation part of the KS potential is
particularly simple in real space in the LDA approximation. In this case the
potential is given by:

gF"pA 9=y P4 (n) LDA

LDA _ —
ch (I‘) - an =n an + gzc

(n). (47)

The NLCC approximation does not introduce any new features at this level
provided that we use the total charge instead of the valence charge which is
used in the computation of the Hartree potential.

The GC exchange-correlation potential, Eq. (24), requires also the
computation of the gradient of the density. This quantity is computed in

reciprocal space:
on(r) : iGr
or. = §G 1Gon(G)e'™". (48)

Then we compute the derivative of the function F with respect to the gradient
by the identity:
OF  OF 0Oun
d(0an)  O|Vnl||Vn|’
which is defined where |Vn| # 0. The limit of |Vn| — 0 is well defined as well

because the GC expression is proportional to the square of the gradient of the

(49)

density. The derivative of F is given by:

1 OF 23 OA(n,Vn)
- — 2" )9 A, VI
NI { (n, V) + IVl =5 } (50)
and the derivative of A is:
OA(n,Vn) _1 99 _4  n O0G
—_— = —2 3 [ — - 1
g COgwnre T v (51)
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where the derivatives of G and ¢ are given by:

1

0G 23 X
= X, + —2 )
IR R v 1 | (52)
96 C(o0) 1
=0.192 —.
avn = M%) o (53)

In general these Hartree and exchange-correlation potentials are different
from the potentials used in the KS equation to obtain the charge density. Hence
it 1s necessary to build a new potential and to repeat the computations until
the charge density becomes selfconsistent with the potential.

There are many possibilities of building a new potential while iterating the
KS equation. In general the substitution of the old potential with the potential
produced by the charge density makes the numerical problem unstable. The
method used to mix the two potentials influences the speed of the convergence.
Actually this can be a delicate part of the computation particularly for a solid
with a large unit cell due to the well known charge sloshing problem. On the
contrary the systems which we consider are quite small and this point of the
numerical problem is not particularly delicate: even the simplest choice of the

mixing:
Vi (r) + Vee(r) = B[Vi(r) + Vee()]™ + (1 = 8) [Va(r) + Vae(r)]”'*, (54)

where [ is a suitable number between 0 and 1, gives satisfactory results. We
refer to Ref. [19] for more details about this problem. However we have verified
that the inclusion of the GC approximation and/or of the NLCC does not
worsen the quality of the convergence with respect to standard LDA, at least
in the systems which we analyzed.

After selfconsistency has been reached in solving Eq. (34), we can compute
the total energy of the solid. In the Section a.l we obtained the expression of

the energy in real space for a finite solid:

¢WW)+5//MMJ“WMWM

r) — 1y

Etot =

+ Z fi{¥ilVeat|thi) + /v dr e,e(n,Vn) n+ E;_;
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This expression differs from the standard LDA in two important aspects: the
charge in the exchange-correlation energy is the total charge (NLCC), and/or
€ze(n, Vn)is given by Eq. (17) (GC). This energy is proportional to the number
of cells of a finite solid, and the meaningful physical quantity is the energy
of one unit cell, which should be well defined also in the limit N, — oc.
The main problem to be solved before using Eq. (55) is represented by the
divergence of three terms of this sum when we pass to the infinite solid limit.
Both E,_; and Ep represent the interaction energy of charges of equal sign,
while E.,; 1s the interaction between ions and electrons. The first two terms
are positive, while the last one is negative and they are all divergent. These
divergences do not involve the exchange-correlation energy and for this reason
the demonstration of their cancellation proceeds exactly as in the LDA case.
We show in Appendix D how these divergences cancel.

After the subtraction of the divergent parts, Eq. (55) could be used as such
to compute the total energy, but it can also be rewritten in another widely used

form in terms of the eigenvalues of the KS equation:
Ny
Ewe 2 47e’ Q) In,(G)|?
N :Fzzei(k)_ 9 Z G2 +
¢ ¢k i=1 G#0 (56)
1

— Fc . dr (Vie(r) — eze(r)) n(r) + vEw-

This expression is computed faster than Eq. (55) because it does not involve
the double sum over G and G present in the nonlocal potential term (see
Appendix D), but it has an important drawback, which must be corrected. In
fact while Eq. (55) is quadratic in the variation of the charge density, Eq. (56)
is linear, and small differences between the computed charge and the true
selfconsistent one, can give rise to important errors in the computed total

energy [51]. To correct the problem it is necessary to add a term:

AE = —/ dr [Vi(r,n%"%) — Vg (r,n™")|nm" +

v (57)

+ / dr[ch(r, nold) . ch(r7 nnew)]nnew(r)7
14

old

— new 3 3 n ~ n
ol = n*" but is important away from convergence.

which is obviously zero if n
The knowledge of the total energy of a solid allows the study of its

structural properties. In the case of a cubic material we can compute the
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lattice constant ag, the bulk modulus By [20] and also the derivative of the
bulk modulus Bj, with respect to the pressure. These quantities are related to

the form of the total energy curve as a function of the lattice constant.
c.1 - The structure of II-VI semiconductors

We have computed the structural properties of four II-VI semiconductors,
using both the pseudopotentials of Ref. [47], and the NLCC pseudopotentials
reported in Table II.

II-VI semiconductors ZnTe, ZnSe, CdTe crystallize in the zincblende
structure (see appendix B). CdSe is a special case because it crystalizes in
the wurtzite structure. Nonetheless it exists in a metastable state also in the
cubic zincblende structure, which we study here.

To obtain the structural parameters we used the standard technique
calculating the total energy using a fixed kinetic energy cutoff for a few values

of ag and fitting the results with a Murnaghan equation [52] of state:

. Q()Bo 1 Qo

) Q
E = “OyBo—1 4 7 t. 58
B! 36—1(9) T, T (58)

Qo

where Qo = a /4 is the unit cell volume.

The result of the interpolation for various values of the fixed kinetic energy
cutoff can be seen in Table V. These values show that all the parameters are
completely converged using a kinetic energy cutoff of 24 Ryd which is sufficient
to give accurate results of the lattice constants and of bulk moduli of the four
compounds. This cutoff leads to approximately 500 PW’s at the equilibrium
volume. For BZ integration we used the grid ¢ = 4 (see Appendix B) by
Monkhorst-Pack corresponding to the set of 10 Chadi-Cohen points in the
irreducible wedge [53]. The column BHS reports the results of LDA calculations
performed with the pseudopotentials of Ref. [47] with d electrons frozen in the
core. Neglecting completely the effect of d electrons the LDA pseudopotential
theory severely underestimates the lattice constants, and overestimates the bulk
moduli. The main effect of the NLCC (and therefore of d electrons) is to weaken
the covalent bonds, and to lower the bulk moduli. This Table demonstrates that
this exchange-correlation effect is the major error in standard computations,
and the inclusion of NLCC allows a good description of the main structural

properties of these semiconductors. In fact the errors in the lattice constant
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Table V. Structural properties of II-VI semiconductors. The parameters reported are
obtained with the pseudopotentials of Table II. The label BHS refers to computations performed
with the pseudopotentials of Ref. [47].

(a.u.)(Kbar) 12Ry 18 Ry 24Ry  BHS Expt.

ZnSe ag 10.70  10.70  10.70  10.04  10.72
By 644 660 657 798 625
B, 4.09 426 4.29

ZnTe ag 1147 1146 1146 1046  11.50
By 560 526 523 713 509
B, 5.05 445  4.38

CdSe ag 1149 1148 1149 1016  11.50
By 594 560 561 935 550
B 5.18 4.61 4.44

CdTe ag 1221 1219 1219 1112 12.24
By 456 442 450 666 440
B} 5.35 447 411

is smaller than 1% in all compounds, while the errors of the bulk moduli are
within 3-4%. Actually these results are somehow better than the NLCC results
reported until now, for example in ZnS [45], but they are due to the fact that
the all-electron configurations used to fit the pseudopotential have been checked
on these structural properties. Other choices of the pseudopotentials could
produce slightly larger errors, of the order of 2-3% on the lattice constants,
but this fact does not invalidate the usefulness of the NLCC in the study of
these compounds when other reasons forces the use of pseudopotentials with d

electrons frozen in the core.



d - The Hellmann-Feynman theorem revisited

The structure of II-VI semiconductors is so simple that the search for
structural equilibrium can be successfully afforded with the informations
provided by the total energy. To deal with more complex structures, like the
helical structure of selenium which involves three independent parameters [54]
(see below), it is convenient to compute also the forces acting inside the
solid in nonequilibrium geometries, and the stress present on the system. In
this way the search for structural equilibrium can be performed much more
economically. The forces are the first derivatives of the total energy with respect
to microscopic atomic displacements, while the stress is the derivative of the
total energy with respect to the macroscopic strain.

The direct way of obtaining the derivative of the energy involves a general
result, which for the forces is known as the Hellmann-Feynman theorem [55].
This theorem shows that the unperturbed valence wave-functions are enough to
compute the first order derivative of the energy with respect to any parameter
A in the electronic Hamiltonian. This is a particular case of a more general
theorem, well known in perturbation theory [56,57], which states that the
first 2n + 1 A-derivatives of the energy can be computed knowing only the
perturbation of the valence wave-functions up to the n-order.

The introduction of the GC and/or NLCC in the theory has a nontrivial
consequence on the demonstration of this theorem caused by the explicit
dependence of the exchange-correlation energy upon the parameter \. The
starting point is the derivation of Eq. (55) with respect to an arbitrary
parameter A, assuming that the KS orbitals, the external potential and the
exchange-correlation energy are functions of A, afterwards one uses the fact
that |¢;) are solutions of the KS equation. By charge conservation all the
terms multiplied by:

00l + g
ox 't )\

can be eliminated from the derivative. The final result in terms of Bloch

) _ o, (59)

functions is:

Ny
8Etot Z Z avext(r)
aA - i:1/v r I7b1( 7r) aA 1/)( r)—l_
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The NLCC gives an explicit contribution to the the derivative of the energy
when the core charge varies with the parameter \. The GC influence the
derivative of the energy through its action on the charge density. This is an
important result valid in the GC and/or NLCC case which we now specialize

to several perturbations.
d.1 - Forces within GC and/or NLCC

A first application of Eq. (60) is the computation of the forces. Let us
now suppose that A = uf , is the displacement of the atom in R, + 75 from
its equilibrium position in the « direction (« is a cartesian coordinate). Then
the derivative of the energy is the negative of the force acting upon the atom.
We consider a lattice periodical perturbation which describes a displacement of
one sublattice with respect to all the others. This perturbation is particularly
suited to our technique because it conserves the translational invariance of the
system, even if the space group symmetry of the perturbed solid is lowered.

The core charge depends on the parameter u?. In fact assuming a

superposition of atomic core charges we have:
ne(r) =Y ni(|r— Ry — 71, —ut|), (61)
s

and the derivative of the core charge is given by:

One(r) __ Inz(|x])

ouk o 0%,

(62)

x=r—R,-T

Analogous expressions are valid for the derivatives of the external potential.

Inserting these equations in Eq. (60) we have:
“T N Z dulo

—ZZZ/dW (|X|)

vi(k,r)+  (63)

Xa x=r—R,-T,
(|X|) NEw
— dr Vi.( — )
+ Z/ V. 8xa x=r—R, T, zu: duk 4

In practical computations, the derivatives of the external potential and of

core charge are performed in reciprocal space. We report in Appendix D
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the resulting reciprocal space expression. Furthermore the symmetry
considerations needed to perform in practice the computations of the forces

are reported in Appendix C.
d.2 - Stress within GC and/or NLCC

A second application of Eq. (60) is the so called Nielsen-Martin [58,59]
stress theorem. In general an infinite solid is in equilibrium if both the forces
acting on atoms and the stress of the system are vanishing. In fact a nonzero
force means that we can lower the energy of the solid displacing the atom in
the direction of the force, while a nonzero stress means that we can lower the
energy changing the size or the shape of the unit cell. In the case of a cubic
crystal the stress is isotropic and actually it coincides with pressure which we
have already introduced through the Murnaghan Eq. (58). For a finite system,
the knowledge of the forces acting on each atom, included the surface atoms is
enough to compute also the stress, but for an infinite solid this is not the case
and actually the demonstration that the stress is a bulk property which can be
computed from a quantum mechanical point of view in the framework of DFT
is only ten years old [58]. Today the stress theorem is a standard tool of every
electronic structure calculation performed with pseudopotentials and PW's.
Its computation is of great help in the search of equilibrium configurations
of complex structures [60], in the evaluation of elastic constants, deformation
potentials, internal strain parameters and many other quantities. Nonetheless
the extension of the theorem to a basis set different from the PW’s has not
appeared up to now.

To give a precise definition of the stress it is convenient to start from the
definition of a uniform strain. We say that a uniform strain is applied on a

solid if all the atomic positions are changed through the relationship:

(Ry +7)a = (R +7o)a+ ) €ap(Ru + 75, (64)
8
where € is a 3 X 3 symmetrical matrix.

The macroscopic stress acting on a crystal can be defined as the derivative
of the total energy with respect to the strain, when all the forces acting on the
atoms are zero. We begin by computing:

0 _ _ 1 0Fw

Oup = v aeaﬁ. (65)
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This derivative coincides with the macroscopic stress in the case of a simple
Bravais lattice, while in general an internal strain associated to the macroscopic
strain is necessary to have zero forces on the atoms. For this reason Eq. (64)
does not give the physical atomic positions of the strained solid. However for
the moment we concentrate on the evaluation of Eq. (65), assuming atomic
displacements as in Eq. (64).

Even if the generalization of the Hellmann-Feynman theorem Eq. (60)
would be the natural starting point for the computation of Eq. (65) with A
equal to one component of €, in the first computation of Eq. (65), Nielsen and
Martin [58] followed a different approach introducing a scaling of the ground-
state wave-functions and using the variational nature of the total energy. This
complex path was forced by the fact that a straightforward application of
Eq. (60) leads to boundary sensitive terms which are not well defined in the
infinite solid limit. A simple method to get rid of the these boundary dependent
terms has been devised by R. Resta [61] in the standard LDA case. We
found that this demonstration has a direct generalization to GC and/or NLCC
and now we outline the main points of this derivation. For simplicity in the
derivation we suppose that the ionic potential is local. Actually the nonlocal
term entangles the formulation without adding any new feature. We give,
however the reciprocal space formula which is implemented in our electronic
structure code, in its full nonlocal form.

We start writing the derivative of the external potential with respect to a

strain component:

Werlt) __ 5~ 7, 2Vellx)

86(15 $0 axa

(66)

s x=r—R,-T,

Inserting this equation, and the equivalent expression of the derivative of
the core charge we can write the generalized Hellmann-Feynman expression—

Eq. (60)—as:

<0) oVy(Ix|) ‘
v ZZZZ/M den® 470, TS s
=1 u,s X=r P s
an0(|x|) MVEw
dr V. R slg—————= —N, .
—I_;/V r (r)(Ry, +7s)s 0Xq x=r—R,—T, Oeap

(67)
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Both the external potential term and the NLCC term are in a boundary-
sensitive form. The key idea of this derivation is to get rid of these boundary

sensitive terms through the use of the following commutator:

[<2P2 ) 0 ] _ PaPs 3VKS(F). (68)

r
ﬁara mMe ara

The mean value of the commutator between Bloch states is zero, and this fact

allows to write the following relationship:

g/)l(k, I') =

ZZZZ/dw (k, r)r (|X|)

k =1 u,s Xa x=r—R,—-T
3y / dr 7 (k1) P2 (e )+ (69)
k =1
OV(r) OVae(r)
—/Vdr ny(r)rg ra —/le‘ ny(r)rg o,

Now we use the substitution R, + 7, = (—r + R, + 7,) + r in Eq. (67), and
use Eq. (69) to transform the r term. We end up with the relationship:

Vo Sﬂ)_—ZZZZ/dw (k,r)(r—R )ﬂa‘gg:')

X
k =1 p,s x=r—R,-T
i(k, v —|—ZZZ/ dr ¥ papﬁ'¢i(k,r)+
k =1 Me
aVH avxc
—/dr ny(r)rg or. /dr ny(r)rg ari)
anc(|X|) a’YEw
+Z / dr Vyo(r 4)s R ~Nege
(70)

The Hartree, exchange-correlation, and core terms are still boundary dependent
but they can be transformed quickly in a boundary-insensitive form. The

Hartree term is:

[ e o P e =~ [ dean (e ) T2 20,

' or, lr; — o3 o)
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To deal with the exchange-correlation term we use a trick first employed by
Janak [62] in the LDA case which we generalize to the GC and/or NLCC
scheme. While in LDA the exchange-correlation term contributes an isotropic
pressure only, within GC and/or NLCC the analogous term is qualitatively
different and contributes a nonisotropic stress. We have:

/v dr n,(r)rg a?lfi‘") = —6ag / dr [nv(r)vxc(r) —n(r)@xc(r)]—l-
(r) OF

v
on (n,Vn) On(r)
_/Vdr e B(05m) —I—/vdr Vee(r)rs or.

where we have used both the definition of the exchange-correlation potential
(Eq. (24)), and the following relationship:

(73)

0F(n,Vn)  0n (9F (n,Vn) Z 9?n  OF(n,Vn)
or, ~ Or, Ory,dr, 0(0yn)

The last term of Eq. (72) can be added to the boundary-sensitive NLCC
term in Eq. (70) to form a boundary-independent term. The other two terms
which appear in Eq. (72) are respectively the LDA-NLCC isotropic exchange-
correlation stress and the nonisotropic GC contribution. Both of them are in a
boundary-independent form and can be computed in the infinite solid limit. To

summarize the result we write the final expression of the stress in real space:

Vagoﬁ)——ZZZZ/drg/} (k,r)(r —R, 4+ T,)sx
k =1 pu,s
i(k,r) +222/dr¢ krpap%( r)+
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ry —r2f
+ b / dr [nv( Wee(r) —n(r)ﬁzc(r)] + /Vdr agg) agggéz)n)

On(|x|) NEw
- E dr V. -R, —Ty)g—F—" N,
us /V vV (r)(r g ! )IB aXOz x=r—R,-T * aeaﬁ

(74)

The reciprocal space form of this equation is reported in Appendix D.
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Fig. 5. Projection on the hexagonal plane of the selenium helices. ag is the length of the

hexagonal edge, while u is the radius of the helices.

d.3 - Structure of selenium

Using the expressions for the stress and for the forces given above, we
studied the structural equilibrium of selenium.

The ground-state structure of this elemental crystal is an hexagonal
Bravais lattice, with three atoms in the primitive unit cell [54]. In Fig. 5
we plot a projection of the structure on the xzy plane (we supposed the z axis
parallel to the c-axis of the hexagonal lattice). In each vertex of the hexagon
an helix winds around the c-axis and the projections of the atomic positions
on the zy plane are equilateral triangles. This geometry is described by three

inequivalent atomic positions identified by the vectors:

T1 = ao(u,0,0),
U 3u ¢
T2 =Go(—§777%)7 (75)
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¢
¢

Fig. 6. Chain structure of selenium, showing definitions of various structural parameters.

Chains form a triangular lattice when viewed from the ¢ direction. Only two chains are shown.

u  V3u 2¢
T3 = ao(_._v T 9.
2 2 " 3ag

)7

where a¢ is the length of the hexagonal edge, ¢ is the distance between
hexagonal planes, and u is the radius of the helices. The interchange of the z
coordinates between 79 and T3 yields an equivalent structure, with the helices
winding in the opposite direction. We have determined the equilibrium values
of the three structural parameters ag, ¢ and u which characterize this structure
minimizing the total energy. In this system there are basically two different
types of interactions: covalent bonds between atoms along the chains, and
weak bonds among separate chains whose character is not well defined (in the
following we call molecular bond this weak interaction). In Fig. 6 we plotted two
neighbour chains to define a different set of structural parameters [63], which
are equivalent to the parameters introduced above, but more closely related to

the physics of the bonding. d; is the distance between nearest neighbours, i.e.
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the length of the covalent bond

2
dl = dy 3'u2 + c

7
9ag

(76)

ds 1s the distance between second nearest neighbour u.e. the length of molecular

bond

2

d2 =a0\/3u2—3u—|—1—|—c—2, (77)
9ag

while 9 is the angle between covalent bonds along the chain:

2 2 2
Y = 180 — arccos [a—o(—% + 9673

: )| (78)

Searching for the structural equilibrium, the knowledge of the forces acting on
atoms in nonequilibrium geometries and of the stress acting upon the system
when the forces are zero is useful in order to reduce the computational work.
Our strategy has been the following. For a fixed value of the ratio ¢/ag, we
computed the total energy as a function of ag. In each calculation we used
the knowledge of the forces to obtain a macroscopic meaningful configuration,
(i.e. we vary u until the forces becomes zero). Due to the symmetry of this
configuration the forces are parallel to the hexagonal plane with radial direction,
hence the variation of u allows the simultaneous elimination of the forces acting
upon the three atoms. For a fixed ¢/ap we obtained the total energy as a
function of ag. This curve is fitted with a Murnaghan equation and the value
of ay which gives the minimum of the energy is found. Using these values of
ap and ¢/ag we compute the anisotropic stress o,, — 0,,. The procedure is
repeated for a different value of ¢/ay and a new value of the anisotropic stress
is recorded. At the end, assuming the validity of a linear relationship between
¢/ap and the unisotropic stress we used a linear interpolation to estimate the
value of ¢/ag where the anisotropic stress should be zero. With this value of
¢/ag we repeated the above calculation and found the values of v and a¢ which
gives the equilibrium configuration of selenium.

The above procedure has been applied both using the LDA pseudopotential
of Table IT and the GC pseudopotential of Table IV. In Table VI we report our
results. These computations are performed with 24 Ry kinetic energy cutoff

and the special points reported in Appendix B with ¢ = 4.
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Table VI. Structural parameters of selenium. For a definition of the symbols see
Fig. 5 and Fig. 6 . LDA refers to theoretical results obtained with the pseudopotential
of Table II, while GC refers to results obtained with the pseudopotential of Table IV.

Experimental results are from Ref. [54].

d, do J ag c U uag
LDA 4.61 5.84 103 7.45 9.68 0.256 1.91
GC 4.57 6.60 105 8.29 9.78 0.224 1.86
Expt. 4.51 6.45 102.7 8.23 9.37 0.228 1.88

The LDA description of the selenium helices is quite good. The length of
the covalent bonds d; and the angle 9 between bonds are correct within 1.5 %,
while the description of the molecular bond which determines the distance
between the helices is poor. ag is 10 % too low, and consequently ds is 10 %
too low. These findings are in agreement with Ref. [63]. On the contrary the
GC approximation works well in the description of the molecular bonds, and
the predicted value of ag is close to the experiment, but the description of the
helices is slightly worse than the LDA. In particular the bond angle ¥ is too
large and consequently the helices are slightly too long. However the structure
is overall improved using GC and it seems sufficiently correct to make feasible
a study of the linear-response properties. We have only preliminary result for

the linear-response properties of selenium (not reported in this thesis).
d.4 - The electric polarization as an energy derivative

We conclude this chapter with a last comment about a naive application
of the Hellmann-Feynman theorem Eq. (60) to compute the derivative of
the energy with respect to an electric field. The theory developed up to
this point allows to evaluate first order variations of the total energy due to
an adiabatic change of a parameter A in the crystal Hamiltonian in a null
electric field. Suppose instead that we are interested into the same crystal
transformation, but in an electric field: the key quantity to consider is the
thermodynamic potential F(/\,E) [64] (the electric enthalpy) where the total
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field E is an independent parameter. It follows from macroscopic electrostatic
that F coincides with the total energy studied so far, when the electric field is

zero, while in general, for small fields it reads:
3 Vv
~ EO E E (0)
FINE)~E; (A -V 2 P,(ME, — - - eaﬁ(x\)EaEﬁ, (79)

where P()) is the possible spontaneous polarization in a zero electric field, and

¢ 1s the macroscopic dielectric tensor. The displacement field is defined by:

4 8F(x\, E)
= ———F— 80
vV O0E (80)
while the polarization is defined by electrostatics as:
D.(\E) =E, +47P,(\E) (81)

And from these three equations it is easy to find a relationship between the

spontaneous polarization in a zero field and the corresponding polarization in

a field: ©
Eaf (/\) o 601,3
Po(\E) =) s + Pa()). (82)

8
By the use of Eq. (60) it seems now possible to give a microscopic base
to these considerations. The introduction of an electric field gives rise to the
following modification in the total energy of the solid:
(i) The external potential acting on electrons becomes:

Vewr(r) = V2

ext

(r) —er- Equ, (83)

where V° , is the ionic contribution which we have considered so far, and

E.. is the unscreened (or bare) field.

(ii) The ions acquire an energy proportional to the total field:

Epi=)Y Z.e(R,+7,)-E (84)

1,8

(iii) There is an energy associated to the bare field, which is quadratic in the

field: v
EE—E = 8_7TEext : Eel’t (85)
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Obviously also the KS orbitals change, since in a finite field they no longer
have the Bloch form. However Eq. (60) shows that the derivative of the energy
with respect to a parameter depends only from the unperturbed wave-functions,
and it should be meaningful also when A = E,, as in Eq. (80).

The application of Eq. (60) to compute Eq. (80) in the case of zero electric
field, requires another transformation. In fact the parameter A entering in
Eq. (80) is the screened electric field, while in the external potential we have
only the external field. We note however that the screening macroscopic
electric field is contained in the G = 0 component of the Hartree potential. If
we add this term, the field in Eq. (83) and in Eq. (85) becomes the total field,
and we can perform the derivative using Eq. (60). Setting E = 0 after taking

the derivative, we end up with the relationship:

1 0F(\,E)

PV =~y 28

EZO: %/V dr ranv(r) — %Z ZS(RN + Ts)a (86)
ns

Unfortunately both these terms are ill-defined in the infinite solid limit,
or boundary-sensitive in a finite sample. In an infinite periodic solid this
expression, as such, is useless to deal with macroscopic electrostatic from a
microscopic point of view. However it is interesting to note that in a finite
sample with zero electric field Eq. (86) suggests that the polarization is the
total dipole of the finite sample divided by the total volume. It turns out
that experimentally measurable quantities are variations of this dipole and we
will show in the Chapter 2 that the linear variation of P(\) (i.e. derivatives
with respect to A) can be computed exactly and successfully compared to the
experiment. In the Chapter 3 we discuss a more general approach to the
problem of the electric polarization and we will show that it is possible to
find an appropriate definition of the finite difference in polarization between

two crystal states.



Chapter 2

DENSITY-FUNCTIONAL
PERTURBATION THEORY

The study of the ground-state emergy of periodic solids provides much
information about the physical properties of real materials. Indeed many
experimentally measurable properties are related to the deriwvatives of the
ground-state energy. For example the celebrated Born and Huang book [1]
on the dynamical theory of crystals is based on the validity of a quadratic
Taylor expansion of the energy as a function of nuclear displacements. In
this proneering work the derivatives of the energy are parameters which must
be fitted to experimental data to compare the theoretical predictions with
experiments.

Within DFT, in the LDA or GC approzimation, we can compute really ab-
initio all the derivatives, in the sense that no empirical parameter s fed into
the theory. In last years the density-functional perturbation theory (DFPT)
of Baroni, Giannozzi and Testa [3] has imposed itself as the most powerful
method of computing the second derivatives of the total energy within DFT. In
this chapter we discuss in full detail the method, focusing on the generalizations
necessary to include the GC and/or NLCC.

We explain how to compute all the quantities which are needed for a
quadratic expansion of the energy as a function of atomic positions, cell size
and shape, and uniform electric field. These include the dielectric constants, the
piezoelectric tensor, the Born effective charges, the phonon dispersion spectra,
and the internal strains. The DFPT-NLCC is applied to II-VI semiconductors.
The DFPT-GC 1s used to compute the dielectric constants of silicon and
germanium. The theoretical LDA values of this quantity are in fact basically
higher than experimentally observed ones, and for this reason they represent
a good test in order to study the effectiveness of GC. Finally we discuss the

effective charges of selenium.




a - Energy expansions in solids

In Chapter 1 we obtained a closed form of the total energy as a function of
the parameters which define the structure of the solid. The application of the
theory to polar materials, such as II-VI semiconductors, or to selenium, involves
some subtleties related to the long-range of the Coulomb forces which act inside
these materials. For instance the long-range nature of the forces between atoms
manifests itself in a nonanalyticity of the dynamical matrix, which gives rise
to the LO-TO splitting of the optical branch of the phonon spectrum. In the
phenomenological theory these effects are dealt with the introduction of the
macroscopic total electric field as a new parameter of the theory [65].

In the last chapter we introduced the thermodynamic potential which
provides the generalization of the total energy when the solid is inside a uniform
electric field taken as an independent additional variable. We start now with
a definition of the parameters involved in the expansion of this potential in
a Taylor series up to second order. From a purely phenomenological point of

view, and within the adiabatic approximation, we can write:

P E), Q | Q
a6 af
2N2 DD B (R~ Ry ulully — Q) Baegst
€ ppq s,s1 af afy
——ZZ%: Zhs(R ——ZZZ wEaul
s aB~y s

(87)
The electric field is the total macroscopic electric field inside the dielectric,
uniform in space and constant in time. The u# are displacements of the atoms
from the equilibrium position. They have been defined in the first chapter for
a unstrained solid, and they must be understood as the displacements with
respect to the scaled positions, Eq. (64), if a macroscopic strain and atomic
displacements are applied simultaneously upon the solid. € is the macroscopic
strain tensor defined in Section d.2 of chapter 1, not to be confused with ¢,
defined below. Now we discuss the definition of all the derivatives which appear
in Eq. (87), and their physical meaning. We assume that all the derivatives are
calculated in the equilibrium state (zero field, zero strain, zero displacements).

There are three double derivatives:
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(i)

(i)

(iii)

The clamped-ions elastic constants:

- 5 (©)
cv L OF 0% (88)
afyé Ty O€q g0 s Oevs

These quantities measure the stress linearly induced by a macroscopic
strain if atomic positions are determined by Eq. (64) and in the case of a
simple Bravais lattice they coincide with the macroscopic elastic constants.

The high-frequency macroscopic dielectric tensor:

- 4n  O*F aD,,
E g = —— = .
*p V OE,0E;  OE;

(89)

It measures the electric displacement linearly induced by a uniform
electric field assuming that no atomic displacement is associated to the
field. This term accounts for the electronic contribution to screening
which can be experimentally measured by the response of the solid
to a time dependent electric field at frequencies high compared with
lattice vibrational frequencies, but low compared with electronic excitation
frequencies [66].

The harmonic force constants:

O*F

(I)Zsﬁl(Ru _Rﬂl) = Ncm'

(90)
They measure the force linearly induced on the atom in R, 4+ 7, due to
a displacement of the atom in R, + 75,. These are the key quantities

entering in the calculation of phonon dispersion spectra.

Besides the double derivatives there are three mixed derivatives:

(i)

The clamped-ions piezoelectric tensor:

(0) 1 (92F B 30207) B 0P,
TaBy = TV 9En0e5,  OBa | gy

(91)

It measures the stress linearly induced by an electric field, or conversely
the polarization induced by a strain. It coincides with the experimental
piezoelectric tensor in materials where no internal strain is associated with

the application of the electric field (its bulk nature—i.e. the independence
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of this property from any surface effect-—has been recently established [67],
and its first realistic computation within DFT appeared only in 1989 [14]).

(ii) The internal strain parameters:

1 O°F 90y 1 0Fs,

=9 R = — — = c =
( N) Qé)u?a@eﬁy 8u’;‘a Q aEﬁy

—afy

(92)

where F¥ | is the force acting on the atom in R, 4+ 7, when this atom
is moved. They account for the coupling of internal coordinates with
strain. In fact, if the lattice is nonprimitive, a low symmetry macroscopic
strain imposed upon the solid can produce also nonzero forces which are
compensated by atomic displacements from equilibrium positions.

(iii) The Born effective charges:

'R OF, ;0P
6Eaau’;ﬂ - OE, 8u’;ﬂ'

eZ35(R,) = (93)
They measure the polarization linearly induced by an atomic displacement
at zero electric field, or the force induced on the atoms by a uniform electric
field if the atoms remain at their equilibrium positions. These quantities

are important in the study of lattice dynamics of polar materials.

Eq. (87) is a phenomenological expansion of the electric enthalpy, which closely
resembles the expansion of the energy which can be obtained starting from
DFT. The connection with a purely macroscopic phenomenological expansion
of the electric enthalpy [64], rests on the fact that in a real experiment the
positions of the atoms are fixed by the forces acting inside the solid. One often
controls the macroscopic variables only, while the values of the microscopic ones
are determined by equilibrium conditions. It is straightforward to eliminate
atomic displacements from Eq. (87). With a lattice periodic perturbation, the

equilibrium condition is:

Foo=—) Y ®%u,s+Q) Elg e+ > eZ5Ez=0,  (94)
81 8 B~ 8

where we used fact that for a lattice periodic perturbation:

581 1 $81
2= 3 2 2GRy (95)
i
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is independent of the cell index, with analogous relationships holding for the
other quantities. From Eq. (94) we obtain the atomic positions as functions of
the strain and the electric field; together with Eq. (87) they yield the expansion
of the electric enthalpy in terms of the macroscopic parameters, which coincides

with the empirical textbook expansion of macroscopic electrostatic [64]:

F E Q -
N Atfct —|— ﬂg 6001,375601,6676 = gﬂ €asBals—Q gﬂ YasvEa€s~. (96)
apy «@ aBy

The derivation allows to distinguish, in the macroscopic coefficients, a
genuine microscopic electronic part and a contributions due to internal strains.

The elastic constants are:

0) sS1281
Caprs = Chos =D Y Elas®i, " Ejls (97)

8§81 A

the piezoelectric tensor is:

Yagy = Vg, YD eZIBIE, (98)

881 Ap
and the dielectric tensor is:

Oy = e+ T GO ze (99)

881 Ap

Under a coordinate transformation these macroscopic quantities behave
as 3-dimensional tensors, whose symmetry properties are fixed by the point
group of the solid. In 1957 Nye [68] published a general method to find
all the independent components of each macroscopic tensor compatible with
each of the 32 point groups. The method is based on the fact [69] that the
macroscopic properties of a crystal are invariant with respect to the operations
of its point group. On the contrary the symmetry properties of the microscopic
quantities (harmonic force constants, effective charges, internal strains) are
more cumbersome because besides the constraints imposed by the point group
symmetry of the site, there are also important relationships imposed by the
translational and rotational invariance of the infinite solid [65]. In the following
we will state and use the relevant symmetry results whenever needed, as for

example in the case of the effective charges of selenium.
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The analytical computation of the second order derivatives of the electric
enthalpy requires the knowledge of the first order variation of the wave-
functions. This fact, well known in the LDA theory [4], can be generalized
to the GC and/or NLCC scheme by a direct derivation of Eq. (60) which is the

generalization of the Hellmann-Feynman theorem. The result is:

a Vext
aMaA_ZZZ/d”Z’ A 0A( )1/"(1"‘“)

—I_Z[Zk:;/ 3¢ o 8Vg/<( )L/Ji(k,r) +c.e.|+ (100)
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where c.c. means complex conjugated. The first two lines of this equation
and the Ewald term are the well known LDA result, while the remaining parts
which involve derivatives of the core charge are new contributions due to NLCC.
These terms are effective when the perturbation involves the displacement of
an atomic core. On the contrary the GC approximation does not give any
explicit term at this level even if it obviously modifies the KS wave-functions

and their derivatives.



b - Outline of DFPT

Basically DFPT [3,4] gives a selfconsistent scheme which directly provides
the derivatives of the KS wave-functions appearing in Eq. (100). We now
explain the method, extending in next Section the results to the GC and/or
NLCC formulation of DFT. Let us start from the case of a finite system. In
a general quantum mechanical problem described by the KS Eq. (12), a small

change of the external potential due to a variation of the Hamiltonian parameter

]
Avext(,u;r) = Vext(/iy I‘) - Vel’t(o7 I‘), (101)

induces a change of the solutions 1;(r) which, to linear order, can be evaluated
from standard perturbation theory. The first-order variations of the wave-

functions are the solutions of the equation:

Hics(s = 0) = e | () = |40 = AVies(o)[wste), (102)

where

e = (il AVics|ii). (103)

The selfconsistent variation of the potential AVixs must account for the
variation of the external potential and for the effects due to the variation of

the charge density. It is written as:
AVis(r) = AVeu(r) + AVu(r) + AV, (r), (104)

where

_ Veadp,r)

AVer(r) ~ o (105)

n=0
is the bare perturbation, and the remaining two terms are the Hartree and
exchange-correlation contributions, respectively. The Hartree term is linear in

the induced charge density:

AVy(r) = 62/ dry Any(r,) (106)

M)
v r— 1

while the exchange-correlation contribution is linearized as

AVye  foeAn. (107)
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The functional derivative defining this linear term is:

C Vae(r) | 82E[n)
feel®: 1) = S0 = Sn(e)on(en)’ (108)

where F,. is the exchange-correlation energy functional defined by Eq. (16).
The operator f,. is real symmetric, and negative definite (within LDA at least).
The variation of the KS potential depends upon the variation of the valence
charge density which in turn depends on the variation of the KS orbitals. We

have:

An()= Y0 f ['w(r)@”(r) tee|. (109)

Eq. (109), Eq. (104) and Eq. (102) can be solved iteratively in a selfconsistent
way, similarly to the unperturbed problem. Eventually we obtain both the

variation of the KS potential and the variation of the electron charge density.
b.1 - DFPT in a periodic solid

So far we used only standard quantum-mechanical perturbation theory,
where the Hamiltonian depends on its solutions. The advantage of this
formulation appears in the application of the above theory to a periodic solid.
This direct approach allows the computation of the variation of the charge
density due to a perturbation of any wavelength, with the same workload
required for a lattice periodic perturbation. In the past the standard method
used to compute the response of a solid to a long wavelength perturbation was
based on the inversion of the dielectric matrix (DM) [13]. This matrix can
be evaluated starting from the unperturbed wave-functions and its calculation
at any point of the BZ is not much more complex than that at the I'-point.
However the DM method has several drawbacks:

(i) it does not allow the use of nonlocal pseudopotentials, whenever the
perturbation involves ionic displacements;

(ii) the evaluation of the inverse of the dielectric matrix requires summation
over all the conduction orbitals which must be computed diagonalizing
completely the KS Hamiltonian;

(iii) eventually it requires the inversion of a large dielectric matrix to relate the

induced charge to the external potential.
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All these problems are completely avoided in the DFPT framework. We now
explain in detail how this is achieved in the case of a periodic solid.
We restrict ourselves to cases where the variation of the external potential

can be written in the form:
Avext(r) = eiqPAVeaBt(qa I‘), (110)
where AVem(q, r) has the same periodicity of the direct lattice and

AV (—q,v) = AVui(q,T). (111)

This is the typical form of the perturbation due to a phonon of q wave-vector,
but it also includes the case of a uniform perturbation which is obtained in
the limit q — 0. The perturbation couples states at k with states at k + q,
and to first order in perturbation theory the variation of the KS potential
and of the charge density have the same periodicity of the external potential.
Rewriting Eq. (102) on the basis of the unperturbed wave-functions, we find
that the solution ’¢51)(k + q,r) (which is the variation of the orbital ¥;(k,r))
has components on the ¥;(k+q, r) wave-functions, and in k and g-points where

no degeneracy occurs we can formally write:

fv dr ¢’ (k +q,r)AVgs(r)pi(k,r)
Z ei(k) —ej(k+q)

ok +q,r) vi(k+q,r). (112)

IFi
In the computation of the total charge density we need only the projection of
this first order wave-function on the conduction bands manifold. In the case of
a nonmetallic solid, where there is a finite energy gap, this projection is well
defined because all the denominators appearing in Eq. (112) are nonzero if ¢ is
a valence state. This fact can be demonstrated inserting Eq. (112) in Eq. (109)

which expressed in terms of Bloch wave-functions, reads:

Ana(r —ZZZ[ (kg (k + a,0) + 97V (k — g )ik, )|, (113)

k =1

We finally obtain the relationship:

An,(r _4ZZ¢ (k,r)P.(k + q)Go(k + q, €(k))x

vl (114)

P.(k + q)AVks(r)i(k,r).
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where

Golk, ei(k;)) = [ei(kl) —HKS(k)] o (115)

is the Green function of the unperturbed system while P.(k) is the projector

over the conduction-state manifold:
Ny
Po(k) =1-Y [ei(k)) (k). (116)
=1

According to Eq. (114) An, has nonvanishing Fourier components only in
correspondence of wave-vectors q + G. The expansion in Fourier components

yields:

Ny
Mifa+@) =533 /V Y1k, m)e DRk + q)iV (k + g ), (117)

k =1

where P.(k + q)@bgl)(k + q,r) is the solution of Eq. (102), which in practice
is solved projecting over the conduction-state manifold and expanding the

solution in a PW-representation:

Z[ei(k)6G7G1 _Hfﬁys(k +q+ G7 k + q-+ Gl)] cgcl—l)—q—l—Gl,i =

@ (118)

P(k+q)Y AVksk+q+G.k+ Gi)erra, i
G,

where the matrix elements of the variation of the KS potential are:

AVirs(k+q+ G, k+ G1) = AViare(k + g+ G, k+ Gi)+
L AVi(q+ G~ Gi)+ AVu(q + G — Gy).

(119)
In a practical linear-response code we use Eq. (117), Eq. (118) and Eq. (119)
in an iterative scheme, exactly as in the unperturbed selfconsistent problem.
Initially the AVgg matrix is set equal to the chosen external potential, the
linear system Eq. (118) is solved and the solution is used to compute the
variation of the valence charge density. With this quantity a first guess of the
variation of the Hartree and exchange-correlation potential is computed and

a new variation of the KS potential is inserted in Eq. (118). This procedure
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is repeated until the variation of the charge density and of the KS potential
are selfconsistent. The solution of this system and the iterative cycles avoids
completely both the inversion of the dielectric matrix, and the sum over the

conduction states.
b.2 - DFPT in the GC and/or NLCC approximation

The NLCC introduces a simple change in this scheme: the variation of
the charge density which enters Eq. (107) is the variation of the total charge
density:

OVye(r) QP FLDA

ZE (A (r) + Ane(r) = ———An. (120)

AVye(r) ~ 57

When the perturbation corresponds to some atomic displacements, the
variation of the core charge—Eq. (62)—must be accounted in the computation
of the variation of the exchange-correlation potential. Basically this amounts
to substituting the variation of the external potential with an effective variation

which keeps track of the effects of the motion of the core on the valence electrons

0Vze(r)

n

AVigre(r) = AVeyi(r) + Anc(r). (121)

The effect of the GC on the variation of the exchange-correlation potential
is more complex. This involves the presence of a second derivative of the
variation of the charge density, and this derivative must be computed accurately
in reciprocal space. No conceptual new difficulty appears in the formulation of
the problem, whose scheme remain similar to LDA: the amount of computations
required by the GC and/or NLCC formulation is only slightly larger than in the
standard theory. In the general case where also the GC correction is included,
the functional dependence of AV, (see Eq. (107)) upon An is expressed as an

explicit linear function of An and its r-derivatives, as:

F
Al = Z or. [5718 Ba n)] Ant
i’:i 9 [ O*F ]aAn_Zi[ O°F ]82An
a=1 =1 Irq n)0(9gn)| Org — 0(0an)0(9gn) | Oradrg’

/

(122)



62  Density-functional perturbation theory

Within LDA F is independent of the density-gradient, and only the first term
in Eq. (122) is nonvanishing: one thus recovers the standard LDA expression
for fi. [13,4]. To compute this general expression within any GC scheme it is
necessary to evaluate analytically the derivatives of F', while the derivatives of
An can be computed numerically in reciprocal space using a PW-representation
of the charge density. Starting from Eq. (17) which expresses the Becke
and Perdew exchange-correlation energy, we obtain the second derivative with
respect to the charge density:

PF _ PFLPA . 28 25| Vn/? _ 825|Vn|* 9A(n, Vn) . 2% |Vn|?

= ——A
3n2 an2 9 n% (n’vn) 3 n% 3n n3
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(124)
and the double derivative with respect to the gradient:
O*F 23 23 |Vn| OA(n, Vn)
= [2—A(n,V 4 O
0(0an)0(0sn) [ ni (n, V) + ns 9|Vn| ] a
25 [ v . 86 \> 2 ( 0G \® n 0OG ,
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The derivative of A(n,Vn) with respect to the gradient is given by Eq. (51),
while the derivative with respect to the density n is:

OA(n,Vn) oCc Ca_qﬁ n 0G

7 o %) TEan (126)

—275e%(
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where the derivatives of C, ¢ and G are straightforward.

It is interesting to evaluate the f,. operator for a uniform electron gas.
Owing to translational and rotational invariance, this operator is diagonal and
isotropic in reciprocal space, i.e. it depends only on k=|k|. In the GC case
one applies Eq. (122), where only the first and last terms are nonzero, and the
Becke-Perdew f,. can be written in the form:

2 LDA 2

foelk) = aa% +25 (1) [C(n) — 277] (é) , (127)
where kp is the Fermi wave vector. The first (LDA) term in Eq. (127) is a
constant; within GC one gets the following leading term, quadratic in k. This
term in Eq. (127) is proportional to the difference between the parameters 2%77
and C(n). This quantity turns out to be negative for typical valence densities
in solids. As already noted by Ortiz [16], this seems to suggest that the Becke-
Perdew GC scheme enhances screening, at least in the case of a uniform electron
gas. In a nonuniform electron system, the sign of the difference between the
parameters 2%77 and C(n) is not enough to assess whether the GC correction
actually enhances or reduces screening. This main qualitative feature must be
checked instead using the complete Eq. (122), and actually it turns out that
GC reduces screening in silicon, while its sign is more uncertain in germanium
(see below).

The above considerations suggest a new way of assigning the value of the
parameter 7, which could in fact be taken from the second k derivative of f,.
at k = 0, as calculated for the electron gas at different densities. Unfortunately
this quantity is not known at the same level of accuracy as the LDA value of f,.,
which is taken from Monte Carlo quantum simulations [25]. So far, a quantum
Monte Carlo study of the electron-gas linear response has been performed only
in two dimensions [70], while for three dimensions the only available data are
derived from more approximated approaches [71]. The calculations on the
market grossly differ from each other in their low-k behavior, and even disagree
in the sign of the second derivative of f,. at k£ = 0. Although the majority of
the available theories suggests a positive sign, some authors propose a negative
sign [72]. For this reason we preferred to perform our calculation with the value
of n = 0.0042, as originally proposed by Perdew [34]. If and when more accurate
and reliable electron-gas data will become available, a reparametrization of the

GC functional could possibly improve the quality of the results.



¢ - First Order Polarization: dielectric constant

From the expression of ¢* Eq. (89) and the link between electric

displacement and polarization Eq. (81) the macroscopic dielectric tensor is

defined
clined as aPa
OE;’

where P is the macroscopic electronic polarization linearly induced by the

ey =1+4n (128)

(screened) field E. The derivative of the polarization can be heuristically
expressed starting from Eq. (86) which is the expression of the dipole of a
finite solid, even if this expression does not have a well defined infinite-solid

limit. The result is:

On,
620ﬂ:1—|—47r§/‘/dr ro gE(;), (129)

which provides the standard expression for the macroscopic dielectric con-

stant [4]. An alternative derivation of Eq. (129) is obtained starting from the
general expression for the second derivative of the electric enthalpy Eq. (100)
with A = Eg and ¢ = E, with the same considerations that allowed to perform
the derivative with respect to the screened electric field to obtain from Eq. (80)
the polarization given by Eq. (86). All the terms appearing in Eq. (100) due to
the variation of the core charge are zero if the perturbation is a uniform electric
field. This fact demonstrates that the standard computation of the dielectric
constant remains unchanged in the GC and/or NLCC. These corrections affects
the value of the dielectric constant only indirectly through their effect on the
KS orbitals and their derivatives.

The same reasoning used in the derivation of the variation of the charge

density (see Eq. (114)), can be applied in this case and we arrive to the result:

5 ZZ | e 0 PGt 0PIV e )
(130)

This formula shows that the derivative of the polarization is defined in terms of
the projection on the conduction-state manifold of the variation the KS wave-
functions determined by the selfconsistent iterative procedure (see Eq. (102)-
(109)). It requires an expression for the variation of the KS potential due to

an electric field in the # direction.
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To determine the correct expression, it proves useful to write the
selfconsistent perturbation potential AViks in a slightly different way from
Eq. (104), separating in it the macroscopic field from the microscopic one (also
called “local field”). The potential of the screened macroscopic field—due to
both the bare and the Hartree terms in Eq. (104)—is written as —eE - r, while
the remaining microscopic term is lattice-periodical in the infinite solid limit.
We replace therefore Eq. (104) with

AVI(S’ =—cE-r+ A‘/H + fchn (131)

Indeed, the term AVpy amounts to solving Poisson equation, with in principle
arbitrary boundary conditions. In Eq. (131) the lattice-periodical solution is
implicitly understood: this is unique modulo an (irrelevant) additive constant.

The matrix elements of the r operator appearing in Eq. (130) are boundary
dependent in any finite sample and therefore they are ill-defined in an infinite
solid. However it happens that in the first order derivative of the polarization
only off-diagonal elements of the r operator are involved, contrary to what
happens in Eq. (86) where we expressed the total dipole of the solid as a
function of the diagonal elements of r. The off-diagonal elements can be readily

transformed into a boundary-insensitive form using the relationship:

(Wi(k)|v]e; (k)

(vi(k)[r[v;(k)) = —i : (132)
’ ei(k) — €j(k)
where the velocity operator v is defined as:
N ] (133)
Me ’

and 7 and j states are nondegenerate eigenstates of the Hamiltonian. This is
always the case in Eq. (130) because ¢ is a valence state while j is a conduction
state. Strictly speaking, the left hand side of Eq. (132) is defined only for a
finite system, and Eq. (132) should be considered as a definition of the off-
diagonal matrix elements of r for an infinite system. In practice we define the

functions [4]:

ia(k, ) = Po(K)rati(k,r) = iP.(k)Go(k, &(k))P-(k)vibi(k,r)  (134)
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which are computed only once because they are independent of the variation

of the charge density, and then we recast Eq. (129) in the form:

- 167>\~ - ra (1)
5016 = 601,5 + VvV Z Z v dr ¢z (k7 I')’L/)iﬂ (k7 I') (135)
k =1

c.1 - II-VI semiconductors

We have computed the dielectric constants of all the II-VI semiconductors
using the NLCC pseudopotentials reported in Table II. For a cubic zincblende
structure the dielectric tensor is isotropic and can be described by a scalar:
52% = €00ag. In Table VII we report both our results and the results obtained
using the BHS pseudopotentials [47]. All of the results are obtained at the

theoretical lattice constant reported in Table V.

Table VII. Comparison between theoretical predictions and experi-
mental measurements for the dielectric constants of II-VI semiconductors.
BHS refers to computations performed with pseudopotentials of Ref. [47],
NLCC refers to results obtained using pseudopotentials of Table II. Exper-

imental values are from Ref. [73].

€oo ZnSe ZnTe CdSe CdTe
BHS 5.9 7.7 5.4 6.7
NLCC 6.3 7.7 6.2 7.2
Expt. 6.3 7.3 6.2 7.1

It 1s interesting to note that in II-VI semiconductors the dielectric con-
stants are generally underestimated, particularly with BHS pseudopotentials.
This is the contrary of what happens in the case of group IV or III-V [14.,4]
semiconductors. The values obtained using the NLCC pseudopotentials are
much closer to the experimentally measured values (from Ref. [73] for ZnSe
and CdSe, from Ref. [74] for CdTe and Ref. [75] for ZnTe), but this is probably
due to the cancellation of two opposite effects: LDA overscreening and neglect

of core polarization. In fact it is well known from previous computations on
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silicon [13] and on III-V semiconductors [14] that screening tends to be overes-
timated in theoretical computations performed within the LDA approximation.
The only known exceptions are the indium compounds which turn out to have a
lower theoretical value of the dielectric constant [14]. This fact has been inter-
preted with an important contribution of d electrons to screening, contribution
which i1s completely neglected in the pseudopotential framework.

This effect is amplified in II-VI compounds and obviously the NLCC
approximation does not solve the problem: even if the exchange-correlation
energy of the valence electrons is computed correctly, d electrons are nonetheless
frozen in the core. The fact that we obtain actually correct results is probably
due to the exact cancellation of LDA overscreening and pseudopotential
underscreening, which happens to be correct at a lattice constant close to the
experimental value (as in NLCC case), but is not effective in the case of BHS

pseudopotentials which basically overestimate the bond strength.
c.2 - New Results for silicon and germanium

Silicon and germanium are probably the most studied compounds in the
framework of pseudopotentials DFT-LDA. Apart from their intrinsic interest
as technologically important materials, nowadays a large set of well known
theoretical results is available for most of their properties. For this reason they
have become good systems where to test new approximations of the DFT. For
instance the values of the dielectric constants of these compounds have been
computed by various authors (see Table IX) with several approximations. It is
by now well established that the dielectric constant of silicon is overestimated
by LDA with an error of the order of 12-18% depending on the value of the
lattice constant used in the computation. For germanium the results are less
clear. In fact in this case the KS gap is almost zero [76] and small errors in
its value are amplified in the evaluation of the dielectric constant due to the
energy denominators appearing in Eqs. (130) and (132). For this reason the
results are sensitive to the pseudopotentials used and errors as large as 35%
between theoretical and experimental results are reported.

In order to access how much the values are sensitive to the choice of
the exchange-correlation functional, we decided to apply GC to both these
compounds. For consistency we have generated new pseudopotentials for silicon

and germanium within the GC scheme. We used the method of von Barth and
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Table VIII. Lattice constants ag and bulk modulus Bg of silicon and germanium in

a GC approximation. The results are compared both with experiments and with standard

LDA.
Silicon Germanium
ap (a.u.) By (Kbar) ap (a.u.) By (Kbar)
LDA 10.20 960 10.59 742
GC 10.38 850 10.80 630
Expt. 10.26 990 10.68 767

Car already described in the first chapter, performing both the all-electron and
the pseudopotential calculations within a GC scheme. To check the accuracy of
the pseudopotentials we reproduced the lattice constants and bands of silicon
and germanium already reported by Ortiz [16], obtaining the same results for
the lattice constants and differences lower than 0.04 eV for the band energies.
In Table VIII we report our structural results, both using standard LDA and
the GC approximation. The reported results are obtained with 24 Ry cutoff
and 28 special points in the irreducible Brillouin zone (IBZ) which ensure
a complete convergence in these semiconductors. It is worth pointing out
that while the lattice constants in the GC approximation are only slightly
overestimated, and the error is comparable with the LDA underestimate, the
errors in the theoretical values of the bulk moduli are much larger. This finding

is in agreement with the calculations reported in Ref. [15].

The available theoretical DFT-LDA values of the dielectric constants of
silicon and germanium are reported in Table IX, where we also report the
lattice constants used to perform the calculations, when available. In the same
table we report our results as well, both for the LDA case and in the GC
scheme.

It is interesting to note that different authors do not agree on the
experimental value to compare with the theoretical result. In particular two
different values for silicon are reported. The reason of the discrepancy can

be attributed to the difficulty of extrapolating to the zero temperature limit
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Table IX. Electronic dielectric constants of silicon and germanium. In the table we
report previous theoretical LDA values, (BGT, BR from Ref. [13], HL from Ref. [77], and
LA from Ref. [78]), together with our results for different lattice constants. LDA refers to
standard theory while GC are the new gradient corrected results. The * indicates results at

the experimental lattice constant (see text).

Silicon Germanium

ap (a.u.) €oo ap (a.u.) €oo
BGT.BR 10.20 12.7
HL ? 12.9 20.7
LA 10.26 13.5 10.68 21.3
LDA* 10.26 12.9 10.68 17.3
GC* 10.26 12.4 10.68 21.7
LDA 10.20 12.7 10.59 16.3
GC 10.38 12.6 10.80 22.4

measurements which are performed at finite temperature. In this case in fact
the derivative of the dielectric constant with respect to the temperature is quite
large. In Ref. [79] the dielectric constant of silicon and germanium have been
measured as a function of the temperature, and a simple extrapolation gives
the experimental values 11.4 for silicon and 15.2 for germanium. The different
value 11.7 reported for silicon is attributed to Ref. [66], but in this case no
temperature dependence is studied, and the value reported agrees well with
the T'= 300K value of Ref. [79].

We have calculated the static dielectric constant, both at theoretical
equilibrium volume and at the experimental one. These values show that the
variation of the dielectric constant with the pressure is quite high and for this
reason it is important to choose the correct lattice constant in the calculation.
This choice is a kind of ideological matter. Some authors prefer indeed to use
the experimental lattice constant: for such a choice the GC is an important
improvement over the LDA, the error being reduced to only 9% for silicon. The
situation is less clear in the case of germanium, where the GC worsens the LDA
result, but in this case it is difficult to disentangle the effect of the change of the
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pseudopotential and the effect of the GC. However also in the case of silicon we
find that it is important to use throughout the computed equilibrium geometry
within the chosen theoretical scheme. Besides the aesthetical concern of a
completely ab-initio picture we have found such a choice absolutely essential
when dealing with the piezoelectric effect as we will show in the following. In
the present study, we find that the sizeable improvement (i.e the screening
reduction) due to GC is partially compensated by the small lattice expansion
due to GC as well, so that the final theoretical GC result is only slightly closer
to the experiment than the LDA one.



d - First order polarization: effective charges

The effective-charge tensor can be calculated through Eq. (93) from the
polarization linearly induced in a material from the displacement of one
sublattice with respect to all the others, when the internal electric field is
kept zero.

The interest in the effective-charge tensors is motivated by the study of
lattice dynamics. They are related to the additional dipole moment which is
produced by the relative displacement of the ions inside the cell. This dipole is
due to the different deformation of the electron density, which is proportional to
the displacement. When added to the bare ionic dipole, this effect is equivalent
to a replacement of the ionic charge with an effective charge Z*°. It is worth
pointing out that the deformation dipole moment can give rise to nonzero
effective charges even on elemental crystals. This effect must be symmetry
allowed, and an important theorem due to Zallen [80] shows that the effect
is symmetry allowed if the crystal structure has at least three atoms in the
primitive unit cell. One of the simplest systems where this effect is observable
is selenium.

The starting point of actual calculations, within DFT, is the derivative of
the polarization as a function of atomic positions. The general expression of
the second derivative of the energy—Eq. (100)—can be used as well: if A = E,
and u = ugﬁ it gives the expression for electronic contribution to the effective
charge, after an appropriate use of an equation similar to Eq. (95) to recover

the translational invariance in the q — 0 limit:
o _ L In(r)
My = FG zﬂ:/vdr ra@. (136)

In this case we sum over all the cells, assuming that u? = u; is independent of
the cell index.

Computing the variation of the charge density we arrive to an equation
similar to derivative of the polarization with respect to the electric field,
Eq. (130), but in this case the variation of the KS potential is due to the
presence of a phonon with q = 0 wavelength, which moves the atoms of
sublattice s in the § direction. Within the GC and/or NLCC approximation
the correct expression for AVi g is Eq. (104) where the variation of the external
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potential is (see Eq. (121)):

aVi( |x|
Avaare s,@ = usﬁ‘l’
Z aXﬁ x=r—R,-T, 137
5ch Z ancs |X| u ( )
an x=r—R,-T, o

Using now considerations similar to the case of the dielectric constant to get

rid of the off-diagonal r matrix elements we obtain:

B ZZ e il ) (138)

This equation gives the electronic contribution to the effective charge. To
recover the total effective charge we add the ionic pseudo-charge Z;.

At this point we note that the translational invariance of the solid imposes
a relationship between the components of the effective-charge tensors which is

know as acoustic sum rule [81]:
Z Z = (139)

Obviously in our calculation this relation is not imposed by hand and it
represents a stringent benchmark for the accuracy of the computations. We now
discuss the results of the application of this technique to II-VI semiconductors

and to selenium, and we compare the results to the experiment.
d.1 - II-VI semiconductors

In a zincblende structure the effective-charge tensor is isotropic. The
acoustic sum rule shows that there is only one independent component and
the effective charges of the two atoms are equal and opposite. One of the
first computations where the precision was so high that Eq. (139) was verified
to better than 1% is within BGT theory in 1987 [3]. Our calculations are
converged to better than 1% and we give a single scalar quantity.

In Table X we report both the NLCC results obtained with the pseudopo-
tentials of Table IT and the results obtained with the BHS pseudopotentials of
Ref. [47]. We note again that also in the evaluation of effective charges the
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Table X. Comparison between theoretical predictions and experiments for
the effective charges. BHS indicates calculations made with the pseudopotentials
of Ref. [47], while NLCC are results obtained with the pseudopotentials of Table II.
All the experimental results are from Ref. [67].

7* ZnSe Zn'Te CdSe CdTe
BHS 1.78 1.54 1.69 1.67
NLCC 2.01 1.95 2.20 2.17
Expt. 2.03 2.00 2.30 2.35

NLCC approximation basically improves the agreement with the experiment
and the results are almost of the same quality as those obtained in the past for

ITI-V semiconductors.
d.2 - Selenium

In this Section we wish to discuss briefly some results which we have
obtained computing the values of the effective charges of selenium. Selenium
has been studied experimentally very accurately, and many theoretical
models [82] have been proposed to explain its linear-response properties [83,84].
Nonetheless many features are still unclear. For this reason it seems an ideal
material to be tackled by DFPT.

Since selenium has more than two atoms in the unit cell, the elemental
crystal exhibits infrared active modes, and the effective charges are rather large.
The point group D34 has three irreducible representations: two 1-dimensional
representations symmetric (A; ) and antisymmetric (A ), and one 2-dimensional
representation (E). The 9x9 dynamical matrix acts on the 9-dimensional space
generated by the unit cell atomic coordinates. In this space the point group of

the crystal has a reducible representation I' which can be decomposed as
'=A4,+2A,+3E: (140)

this decomposition gives the symmetry of the 9 zone-center phonons. A

convenient basis set in this space is built taking the vectors represented in
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Fig. 7. which are three radial vectors r;, three tangential vectors t;, and three
vectors z; directed along the c-axis. Taking linear combinations of this basis
vectors it is possible to reduce the dynamical matrix to one 1 x 1 block (A,
mode), one 2 x 2 block (A; modes), and two 3 x 3 blocks (E modes). We do
not report the basis here (for more informations see Ref. [84]).

The A; mode is the so called “chain breathing” mode, where the radius of
the helices oscillates. The two As modes are an acoustic mode of zero frequency,
and a “chain-twisting” mode where the helices rigidly rotate. This optic mode
is particularly interesting because the nearest-neighbour bond angle and bond
length remain unchanged and the frequency of the mode depends only upon the
interchain interactions. The six E modes are degenerate, so that there are only
one independent acoustic mode and two optical modes. The nature of these
two modes is more complex than the A modes and involves both interchain

and intrachain interactions.

—

Fig. 7. Basis vectors for local systems of coordinates in the selenium
unit cell. Z; vectors are along the C-axis orthogonal to the triangle

plane.

The infrared active modes are the optical As mode and the two optical £
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modes, so that the effective-charge tensor of selenium has three independent
components. To obtain them we have to express the effective-charge tensor
in the basis which block diagonalizes the dynamical matrix. In this basis the

effective-charge tensors for the three atoms are:

0 0 0
z* =10 0 0], (141)
0 Z*(Az) O
0 Z*(E:) Z*(En)
Z? =10 0 0 : (142)
0 0 0
0 0 0
Z¥ =10 Z*(Ey) Z*(E) |. (143)
0 0 0

We have computed these tensors with the LDA pseudopotential of selenium
reported in Table II, both at the theoretical equilibrium structure and at the
experimental one. In Table XI we report our results which are obtained using
the k-points mesh obtained as explained in Appendix B with ¢ = 4. The kinetic
energy cutoff is of 16 Ry. The acoustic sum rule imposes a stringent test on
the computed results. In fact many elements of the effective-charge tensor in
the rotated basis are zero by symmetry, but other become zero due to the
acoustic sum rule. With the above mesh we obtained as the largest error due
to the acoustic sum rule A = 0.06. However to check the convergence of the
result we repeated our calculation with the ¢ = 5 mesh obtaining A = 0.04 and
maximum differences of the order of 1% for the values reported in Table XI.

As can be seen from the table the theoretical values of effective charges
in selenium are completely wrong when computed in the equilibrium LDA
structure, while the agreement with the experimental figure (taken from
Ref.[82]) is improved in the experimental structure. The effective charge
associated to the A; mode has the most serious error even at the experimental
lattice constant. This fact, once again, shows that the interchain bond is
described quite inaccuratelly by LDA and a better functional is needed in order
to deal with these weak bonds.
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Table XI. Comparison between theoretical predictions and experiments for
the effective charges of selenium. LDA th. indicates calculations performed at the
theoretical equilibrium structure, LDA exp. indicates calculations performed at

the experimental structure, while experimental data are from Ref. [85].

Z{E) 7B Z%(A)

LDA th. 0.67 2.05 1.65
LDA exp. 0.54 1.65 1.42
Expt. 0.15 1.2 0.7




e - Phonons in II-VI semiconductors

The total energy of the solid expanded up to second order in the atomic
displacements as in Eq. (87) with zero strain and zero electric field can be
regarded as the potential energy of the nuclear system in presence of the
inhomogeneous electron gas. This expansion is now used to compute the
phonon dispersion spectra of II-VI semiconductors. In this Section we present
all the technical details needed to achieve such a goal.

The harmonic force constants are given by the general expression of the
second order derivative of the energy Eq. (100) with A = u#, and p = uy 5.
It is well known from the phonon theory [65] that the dynamical matrix of a

periodic solid can be obtained from the Fourier transform of the force constants:

581 1 —1 — 581
3@ = 77 2 BTG (R - Ry), (144)

¢ pw

thence phonon frequencies at each point of the BZ can be obtained.
Unfortunately the real-space force constant are not directly accessible within
the formalism introduced so far because the displacement of a single atom in
one cell does not produce a periodic variation of the KS potential as required
by Eq. (110). On the contrary it is possible to compute directly the Fourier
transform of the force constants in any g-point, but complete phonon dispersion
requires this Fourier transform in a large number of g-points. Hence one
possible computational strategy is the following: we compute the @Z‘gﬂl(q) on a
regular grid of g-points, usually 4 x 4 x 4 and then use the inverse of Eq. (144)
to recover the force constants in real space. This Fourier deconvolution yields
the real-space interatomic force constants up to the 9-th shell of neighbours.
Afterwards phonon frequencies along low-symmetry lines are obtained fitting
@Z‘E (q) using the above force constants. For nonpolar materials this procedure
is correct and gives accurate phonon dispersion spectra.

In the case of polar materials like II-VI or III-V semiconductors, the
displacement of one atom creates a dipole, which gives rise to long-range force
constants in real space. The long-range nature of the force constants makes the
FFT technique of no use. The solution of this problem is known since a long
time [81]. In fact the long-range part of the force constants in real space can
be related to the small-q properties of the force constants in reciprocal space.

Hence it is possible to subtract the long-range part of the force constants, and
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to use the difference to compute the short-range part which can be dealt as
in the case of nonpolar materials. The reciprocal space force constants are

rewritten in the form:

Are? D0, 2309y 25 Zsg s

35 () =255 " (a) + : (145)
where ®4" is the Fourier transform of the short-range force constants which
can be inverted to real space. The dielectric constant and the effective-charge
tensors which are necessary to compute the nonanalytic part of the force
constants coincide with the quantities which we have discussed in previous
Sections. Finally from the force constants in reciprocal space we obtain the

phonon frequencies diagonalizing the dynamical matrix:
@5 (a)
/MM,

where M, 1s the mass of the atom at site 7.

Ds(a) = (146)

To compute the dynamical matrix at fixed q it is convenient to introduce
the perturbation produced by a frozen phonon inside the solid. This phonon

can be built from the displacement pattern given by the relationship:
u’, = e ®uu,, (q). (147)

The variation of the external potential due to this perturbation is written as:

aV( |X| i
Avaare sa - Z axa em T usa(q)e qRM+
o (148)
5V, e(r) Ones(|X]) R,
+ Z on (5 A - teala)e ’
n n=Ts

where we have used the general expression of the variation of the external
potential Eq. (121), as appropriate to the GC and/or NLCC scheme. The
perturbation in Eq. (148) has indeed the periodic form required by Eq. (110).
This fact can be demonstrated computing the Fourier transform of AVygpe(r)sa
which has only nonvanishing components at q + G.

It is now straightforward to insert the expression of DFPT real space force
constants Eq. (100) in the dynamical matrix Eq. (146) and to show that the
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dynamical matrix is a function of the variation of the KS wave-functions due
to this frozen phonon. Furthermore the expression of the dynamical matrix
involves only the projection of the variation of the KS wave-functions over the
conduction-state manifold of the undistorted crystal. The final expression of

the reciprocal space force constants is:
¢l(k7 I')—|—

*Vi(|x[)
(I) A 85122/611.1/) krzax a;(ﬂ x=r—R,-T,
4 ol i ovi(k
‘ﬁ?g/ﬂr (= N Pk
oV (x))
(2 P

> aXﬁ
/ 6V
N

e'aR > vi(k,r)+
x=r—R, —Ts

xc (Z ancs |X| e—iqRu> x
aXa x=r—R,-T,
(Z an081(|x|) eiqR,,)_I_
v aXﬂ x=r—R,—-T;
1 (9 0 nes([x])
_535 d xc
+ Nc 1/V rV. Z 6xa8x/3

PVBw  iqm, -
+Z%e iq(R,~R,)
ny

_I_
x=r—R,-T,

(149)
The electronic contribution is usually computed in reciprocal space, using the
fact that the wave-functions are expressed in PW’s. We report in Appendix D
the complete expression.

The final problem to be solved before using in practice these relationships
involves the symmetry properties of the dynamical matrix. The sums over
k-points appearing in Eq. (149) are performed on a IBZ and the result is an
unsymmetrized dynamical matrix. The dynamical matrix is recovered from the
unsymmetrized parts with considerations similar to those used to recover the
total force from the unsymmetrized part (see Appendix C). We simply note
that the symmetrization of one dynamical matrix at one g-point involves the
knowledge of all the unsymmetrized dynamical matrices at points q,, related to
q by a symmetry operation. It is then necessary to compute simultaneously a

complete star of unsymmetrized dynamical matrices. This is not a problem
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if all the points are on the same grid of q-points. Finally we note that
the computation of the variation of the wave-function ¥;(k,r) involves the
unperturbed Hamiltonian in the point k + q (see Eq. (118)). For this reason a
large saving of computer time is obtained if the k + q mesh coincides up to a
syminetry operation, or up to a reciprocal vector translation, with the k-mesh.

We have inserted the NLCC modifications in a code that already computed
all the other terms and we have computed complete phonon dispersion spectra
of the II-VI semiconductors considered in this work. In Table XII we report

the numerical values of the phonon frequencies on high symmetry points.

Table XII. Phonon frequencies calculated at the high-symmetry points P, X, and L,
for the II-VI semiconductors considered in this thesis obtained with the pseudopotentials

reported in Table II. Experimental data are in parenthesis.

ZnSe Zm'Te CdSe CdTe
T'ro 219 (212) 188 (179) 187 (-) 152 (144)
I'ro 260 (254) 213 (206) 222 (211) 176 (170)
Xra 71 (72) 58 (55) 46 (-) 40 (36)
Xra 194 (190) 144 (143) 153 (-) 135 (128)
Xro 210 (210) 180 (177) 195 (-) 154 (147)
Xro 216 (212) 189 (184) 184 (-) 138 (133)
Lya 54 (52) 43 (43) 36 (—) 32 (30)
Lia 176 (170) 138 (135) 133 (-) 115 (108)
Lto 216 (-) 184 (178) 190 (-) 150 (144)
Lio 217 (-) 184 (182) 195 (-) 152 (145)

The theoretical NLCC-LDA phonon dispersion relations of ZnSe, ZnTe,
CdSe, and CdTe along several symmetry lines are shown in Fig. 8; these
are compared to the neutron diffraction data, wherever available. The
agreement between the present calculations and the experimental data is of
almost the same quality as previously obtained for elemental and group III-V
semiconductors [4]: this gives confidence in the reliability of the approximations

used, in particular when low-symmetry crystal distortions are involved; the
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same level of accuracy (of order of 10 em™!) is expected from our predictions

where the neutron data do not exist.
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Fig. 8. Calculated phonon dispersion of ZnSe, ZnTe,
CdSe, and CdTe. Triangles indicate experimental data from
Refs.[86](ZnSe), [74](ZnTe), and [75](CdTe).

Our first-principles calculations, which are basically parameter-free, agree
with experiments in a similar manner as previous semiempirical models
depending on many adjustable parameters [74,75,87]. Some differences still
exist, for instance concerning the TO branch of CdTe which is predicted to

be flat in the present calculation, whereas it bends upwards according to the
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shell model of [75]. In a recent paper [88] it has been suggested that the LO
branch of ZnSe along some symmetry line should be rather flat, with a zone-
edge frequency close to the LO(T") frequency. Our calculations do not seem to
support such a suggestion.

The case of CdSe deserves a special comment. In its most common form, it
crystallizes in the wurtzite structure, with a ¢/ag ratio very close to that of an
ideal tetrahedral structure. The LO(T") frequency measured [73] on the wurtzite
phase is 209-211 em™!, in good agreement with our theoretical zincblende-

phase value of 222 cm™!.

Very recently, however, an experimental value of
201 em ™! for the zincblende phase has been inferred from Raman scattering

measurements on superlattices [89].



f - Piezoelectricity in II-VI semiconductors

The piezoelectric tensor expresses the second derivative of the total electric
enthalpy with respect to an applied electric field and strain (see Eq. (98)). It can
be defined equivalently as the polarization linearly induced by a macroscopic
strain, when the macroscopic electric field is kept vanishing, or as the stress
linearly induced by the application of a uniform electric field at zero strain.

The bulk nature of the piezoelectric effect has been the subject of
controversy until 1972, when R.M. Martin, in an important paper [67] proved
that the piezoelectric tensor is a ground-state bulk property of a solid,
independent of surface effects. His demonstration starts from the microscopic
definition of the polarization linearly induced by a uniform strain, and through
a symmetry argument, he shows that this quantity, apparently boundary
dependent, can be actually written in terms of purely bulk quantities.

In fact, after the separation of a term related to the internal strain as in

Eq. (98), the clamped-ions piezoelectric tensor can be rewritten as:
(0) 1 s s s
704,@7 = _6 Z |:Qozﬂ'y + anﬁ + QB’YQ s (150)

where @7 5. is the quadrupole moment linearly induced by a displacement of

the atom s in the § direction:

on(r)

Qiﬁ’y = /VdI' ramry. (151)

It is important to note that this quadrupole moment is independent of the
cell p in which the atom s is displaced, due to the translational invariance of
the solid; however it is related to the variation of the charge density due to a
displacement of a single atom inside the solid. This perturbation is not easily
dealt with within DFPT theory because it cannot be recast in the periodic
form as required by Eq. (110). Its evaluation could be afforded by a finite
difference of the charge density provided by two selfconsistent calculations, but
in this case it would be necessary to use a large supercell to avoid interference
effects. Similar quantities have been indeed evaluated via supercell calculations
in Ref. [90]. Another possibility could be the evaluation of the charge variation

due to phonons of a finite wavelength on a g-points grid and the use of an
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inverse Fourier transform, following the method used in the computation of
the harmonic force constants. In fact, to date, the difficulty of computing this
charge variation prevented the use of Eq. (150), in the computation of the
piezoelectric tensor. For the same reason the direct use of the derivative of
the polarization —through an equation analogous to Eq. (130)—is not useful
because in this case AVig would be the variation of the KS potential due to
a uniform strain, which cannot be written in a periodic form. These problems
prevented the computation of the piezoelectric tensor from first principles until
1989 when a more direct approach was used [14]. The idea was to start from
the definition of the stress (see Eq. (74)) and to compute the derivative of
the stress when an external electric field is imposed upon the crystal. The
stress equation is already in a boundary-insensitive form and its derivation
with respect to an electric field does not introduce any additional difficulty
due to boundary conditions. The equivalence of this path with respect to
the direct derivation of the polarization, rests on Eq. (91) which expresses
the clamped-ions piezoelectric tensor as a mixed derivative. However it is
interesting to prove the equivalence of the two formulations from a microscopic
point of view. This is done here, using boundary-sensitive quantities, which are
meaningful in a finite solid. Furthermore, in this demonstration we use a local
external potential because so far we have not been able to find an appropriate
generalization of these equations to a nonlocal potential. Moreover the effect
of NLCC is not considered.

It is convenient to introduce the density response function of the system
defined through the relationship:

AnM(r) = /v dr' x(r, v ) AV, (v (152)

The function y is symmetric in the interchange of the indices r and r’. This
quantity is well known in many-body theory [91] as the density-density response
function, and gives directly the response of the system to the variation of the
external potential. Two interesting cases are considered: uniform strain, as in
Eq. (66), and a uniform electric field, where AV, ,(r) = —er- E. The clamped-
ions piezoelectric tensor, expressed as the derivative of the polarization with

respect to the strain is:

0y _ avezt( )
Vagy = //dr dr’ rox(r,r')——= o (153)
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where we used Eq. (152) to define the variation of the charge density due to
the strain. The expression of the polarization is well defined because we are
dealing with a finite solid. Now we observe that the integral over r expresses the
change of the charge density due to an electric field so that the clamped-ions

piezoelectric tensor can be written:

(0) _ _i 0 / avezt
Tapy = V OE, v dr TL(I‘) aeﬁ’y (I‘), (154)

which is exactly the derivative of the electronic stress with respect to the
total electric field. The generalization of this equation to the case of a
nonlocal potential is actually the starting point of modern computations of
the piezoelectric tensor. The explicit derivative of the stress Eq. (74) simplifies
very much because only the wave-functions depends upon the electric field.

In Table XIII we report our computed values of the piezoelectric tensor
for all the II-VI semiconductors. The piezoelectric tensor of a crystal with the
zincblende structure has only one independent component ~,,. = 14 (for a
definition of the two equivalent notations see Ref. [20]). In this case we can
rewrite Eq. (91) in the form:

a2 a2 .
:0714 = :0752) + Z*¢, (155)

where Z* is the Born effective charge, and ( is the single parameter describing
the internal strain in a zincblende semiconductor: this is related to = (see
Eq. (92)) by the relationship:

—1

¢ = al M:Jl; , (156)
TO

where 1 is the reduced mass of the two atoms and wro is the zone center TO
phonon frequency.

In Table XIIT we report all the terms involved in Eq. (155) computed at
the equilibrium lattice constant for all the II-VI semiconductors.

The agreement of these values with the experimental figures is only
fair, (with the exception of CdTe). In fact the piezoelectric constant is a
difficult quantity to reproduce, and in general in II-VI semiconductors the
error with respect to the experiment is larger than the error reported in I1I-V

semiconductors. The main reason of this large error is that the piezoelectric
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Table XIII. Theoretical values of the piezoelectric coefficient, calculated in the present
thesis with the pseudopotentials of Table II. We report all the terms appearing in Eq. (155).
Experimental data are from Ref. [67].

ZnSe Zm'Te CdSe CdTe
Ly 1332 —1.381 ~1.489 1535
¢ 0.663 0.648 0.797 0.756
¢z* 1.352 1.268 1.780 1.639
Sy 0.02(0.10)  —0.11(0.07) 029 (0.47)  0.096 (0.08)

tensor is the difference between two large terms, and it turns out that in II-VI
semiconductors this difference is of the order of 10 % of each of the terms, so
that the cancellation error is in this case large.

The most important problem of the theory is represented by ZnTe which
turns out to have the wrong sign. This feature had been already found in
Ref. [92] where different pseudopotentials were used. For this reason we have
analyzed the possibility of an error in the experimental data, but this seems
not to be the case. Our experimental data are from Ref. [93] of 1963, where
the piezoelectric tensor of many other materials has been measured correctly.
Furthermore recent measurements [94] of the piezoelectric tensor in the alloy
Zn,Cd;_,Te, extrapolated to * = 1 seem to suggest a positive sign. At the
moment the disagreement of this sign is an open issue, and perhaps the main
failure of NLCC in the description of II-VI semiconductors.



Chapter 3
THEORY OF THE POLARIZATION

At the end of Chapter 1 we gave the definition of the macroscopic
polarization of a finite sample as its total dipole per unit volume; we also
observed that this i1s not a bulk quantity of the solid, since the dipole depends
on sample termination. The major problem is therefore performing a correct
thermodynamic limit. We have then studied in Chapter 2 the derivatives
of the macroscopic polarization with respect to a parameter in the electronic
Hamailtonian: we have shown—using linear response—that the first derivatives
are well defined in the thermodynamic limit, and they can be efficiently
calculated from DFPT.

In this chapter we investigate again macroscopic polarization in crystalline
dielectrics, beyond the linear regime. An elegant theory has recently been
developed, where the polarization difference between any two crystal states—in
a null electric field—is unambiguously defined as a bulk property of the crystal
in terms of a geometric phase of the Bloch eigenstates. The theory naturally
provides an efficient algorithm for practical implementation.

We giwve a brief summary of this new theory, following the original
papers [18,95].  We describe several practical details which are mnecessary
to compute the polarization of a real material in a pseudopotential PW's
framework. We test the method on GaAs, showing that it provides the same
theoretical values as DFPT when used to compute the linear properties which
are 1n the range of both theories. We then present an original application of
this new method to the study of a strained superlattice of CdTe/Zn, Cdy_, Te,
where nonlinear piezoelectricity has been recently detected [12]. We analyze
the possible nonlinearities of all the quantities which enter in the macroscopic
description of this experiment, and we provide a mew interpretation of the

experimental results.




a - Polarization as a geometric quantum phase

Pyroelectric and ferroelectric materials are known to have a spontaneous
macroscopic polarization. While in the former materials one typically measures
only the temperature derivative of the polarization, in the latter the value of
the polarization is measured via hysteresis cycles: polarization can be switched
between two saturation values by application of an electric field.

As outlined at the end of Chapter 1, starting with a simple-minded ap-
plication of the Hellmann-Feynman theorem, one gets the well known expres-
sion of the dipole per unit volume which is ill-defined in the thermodynamic
limit, while we have shown in Chapter 2 how to cope with derivatives of the
macroscopic polarization with respect to a given perturbation in the electronic
Hamiltonian. We have in fact provided closed-form expressions for the macro-
scopic dielectric constants and for the effective-charges tensors. The case of
piezoelectricity is more complex and was dealt with in a different way: the
problem is that macroscopic strain amounts to change the boundary condi-
tions for Schrodinger equation (for a different problem suffering from the same
drawback see Ref. [96]).

The theory presented here allows to define and compute, from a quantum
mechanical point of view, the polarization difference between two crystal states.
The polarization itself is not accessible, but this is not a true problem because
in any experiment the genuine physical observable is not the polarization
itself, but rather a differential polarization with respect to a reference initial
state [97,98]. This includes of course measurements of ferroelectricity via
polarization reversal.

We can imagine a continuous adiabatic transformation of the electronic
Hamiltonian which drives the solid from the initial state with polarization P(®)
to the final state with polarization P{!). We parametrize the external potential
along the transformation with a parameter A, which is arranged to have values
0 and 1 in the two states. Under the hypothesis that the solid remains an
insulator along the path, we can compute the derivative of the polarization in
each point of the path, and hence the finite change of polarization between

initial and final states as follows:

v P
AP_/O noe. (157)
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Using the results of Chapter 2, AP is well defined for the infinite solid in
the thermodynamic limit. It is worth noticing that Eq. (157) is equivalent
to defining the polarization as the integrated current which flows during the
adiabatic transformation through a wire which connects two opposite surfaces
of the sample, as opposed to Eq. (86) where the polarization is related to the
electron charge density of the finite sample.

The implementation of Eq. (157) is feasible, though not very convenient,
since it requires the evaluation of the derivatives of P in several points along
the path connecting the initial and the final states. Furthermore the use of
Eq. (157) requires the choice of an appropriate path between the two states,
along which the solid remains an insulator. King-Smith and Vanderbilt [18]
demonstrated that it is possible to substantially reduce the numerical work
implicit in the use of Eq. (157), and at the same time they provided a deeper
understanding of the role of the quantum mechanical wave-functions in the
definition of the polarization. Several considerations (see the original work [18])
which we do not report here, let them show that if the phases of the Bloch

wave-functions are such that:
P (k4 Gor) = 9V k), (158)
so that the periodic parts fulfills the relationship:
Wk +G,r) = e GV k1), (159)

the integral (157) can be identically transformed into an expression which
involves only the eigenfunctions at the initial (A=0) and final (A=1) state. The

main result is:

. N, 1
21€ *(\) 0 eN)
AP, = — E g [/ dr ui( (k) v, (k,r)| (160)
V==l ok

0

and its implementation requires obviously a much smaller workload than
Eq. (157). One of the surprising features of Eq. (160) is that it provides
the correct physical result despite the value of the integrand being strongly
nonunique. It depends in fact on the phase relationship between wave-functions
at different k-points, which is completely arbitrary: such arbitrarinessis usually

referred to as the choice of a gauge. The value of AP is gauge-invariant,
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and even the numerical algorithm used for evaluating Eq. (160) must conserve
gauge-invariance.

The theory—in its present status—does not apply to the polarization
induced by an electric field because in such a case the wave-functions at
A#0 do not have the Bloch form. The theory applies instead to the study
of the polarization induced by any perturbation which does not break the
translational invariance, as e.g. variations of the position of the atoms inside
the unit cell. When the variation of the parameter A changes the size or the
shape of the cell Eq. (160) does not apply as it stands, as outlined above:
however the theory can be generalized to such cases as well [95].

We recall that the classical theory of the microscopic polarization [99] rests
on the possibility of partioning the total charge of the solid into well defined
localized and neutral contributions, as it happens in any Clausius-Mossotti-like
description of the polarization. On the contrary, in the Bloch picture there is
no unique way of isolating localized and neutral parts of the charge density,
and every attempt to define the polarization starting from the dipole of a unit
cell is doomed to failure because this dipole depends upon the form of the
cell. There is however another possibility of partioning the charge density of
a periodic solid into localized units which is based on the introduction of the
Wannier functions as [100]:

VA

) = 5o [, dkw k). (161)

These functions are defined only after choosing the gauge, i.e. the relative
phases of the KS orbitals at different k-points. Therefore the Wannier functions
are strongly nonunique: nonetheless, it is possible to define via them several
physical quantities in a gauge-invariant way. One simple example is the electron
charge density which is easily written in terms of Wannier functions starting

from Eq. (7) and inverting Eq. (161). We have that:

v Mk r) = V2 MRV —R,), (162)
I
and the charge density becomes:

Ny
ANy =233 |aMr - R, (163)
=1 pn
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Since the periodic charge density is now decomposed into a sum of localized
and neutral charge distributions, its dipole moment per cell is well defined and

the difference of polarization between two crystal states is given by:

Ny
2 \
=53 [arefld w1V (164
i=1 79

which can be taken as a new boundary independent definition of the electronic
differential polarization. This definition actually coincides with Eq. (160). The
convergence of this integral follows from the results of Blount [100], while the
proof that this is indeed a well defined gauge-invariant quantity is given in
Ref. [95]. We do not reproduce these demonstrations here, but in the following
we will give a slightly different justification of the gauge-invariance of AP,
defined as in Eq. (164). For the moment we simply note that the difference
in polarization turns out to be gauge-invariant and well defined modulo a

“quantum”:

R,. (165)

One often expects |AP| to be much smaller than such quanta, and for this
reason in many cases there is no ambiguity.

To proceed further it is convenient to rewrite Eq. (160) in a different
way which not only allows the numerical calculation of the polarization, but
also shows the close relationship between polarization and quantum Berry’s

phases [101]. We start introducing the overlap matrix [18]:

) 1 «(\) )
SNk, ky) = ﬁ/gdr w0, 1) (y v). (166)
This matrix is gauge-dependent. Its dimensions are Ny x Ny with the 2 and j
indices running over filled bands. As a function of S Eq. (160) reads:
2e
A]-:)el = ZV zk: tr [Vk1 S(l)(ka kl) - V'k1 S(O)(kv kl )}

, (167)
k1:k

where the tr symbol indicates the trace performed on the indices of the S

matrix. We now transform the two terms using the relationship [102]:

tr{S™'VS} =V log det S, (168)
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and we obtain

2
AP = Ve Z [~ Vie oWk, ki) + Vi, 0 (k, ky )] , (169)
k ki=k

where we have introduced the phase of the determinant of the S matrix:
eWM(k, ki) = Im log det S™(k, k). (170)

This phase is defined modulo 27, and it measures the “phase difference”
between the KS orbitals at k and k;, once the Bloch phase is removed. It
is a property of the filled KS manifold as a whole and it is of course gauge-
dependent; its infinitesimal variation enters in Eq. (169) and it is expressed

as:

de™ = Vi, oM (K, k) ik (171)

It is easy to see that the phase difference between two points k and k + G
in reciprocal space is gauge-invariant due to Eq. (159). If we now consider a

continuous path C joining these two points, the line integral of the differential
phase, which enters in Eq. (169):

Y0y == [ ag. (172

is a gauge-invariant as well, and has the properties of a geometric Berry’s
phase [103]. This result is a generalization to the occupied KS manifold of a
well known work of Zak [104] who proved a similar result for a single band.

The sum over k-points in Eq. (169) is equivalent to an integral over the
3-dimensional BZ and it can be evaluated upon performing two line integrals
followed by a surface integration. This procedure—followed in the rest of this
thesis—has been applied also by King-Smith and Vanderbilt [18]. However it
requires the decomposition of the BZ in an equivalent domain in reciprocal
space, in such a way that the integration lines are parallel to the polarization
direction.

In difficult geometries, it can be cumbersome to find the form of this
integration domain with an axis parallel to the polarization direction. It is
then possible to use a scaled formulation introduced in Ref. [95] which moreover

makes feasible the study of perturbations which involve variations of the shape
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and size of the unit cell. This formulation starts from the observation that a

k-point can be written in the reciprocal vector basis:

k = &by + &by + Ebs. (173)

This equation can be considered a change of variables in Eq. (169), where we

can write:
3

1 a@(fngl,l)
Vil kil =50 2 50

J=1

&i1=¢&" (174)

which, inserted in Eq. (169), gives the components of the polarization in
the base of the direct lattice. Whenever the crystal symmetry restricts the

polarization to be along as, Eq. (169) can be conveniently written in the form:

AP, = @/ d§1/ dé, /C dp — /C de], (175)

where Cy is defined by £ = (£1,&2,2,0), 0 <z <1 and C; by € = (&1,62,2,1),
0 <2 <1 (& = A). In the general case, we have the components of the
polarization in the basis of the direct lattice, which are computed with an
integration upon a cubic domain. Thanks to the present scaled formulation,

the restriction to cell conserving perturbations can be eliminated with no harm.
In fact in this case Eq. (175) becomes:

(1') (0)
a
AP = / daé, / e[ 255 / do+ gt [ el 7o)

This equation is the necessary generalization of Eq. (160), and it is based on
Eq. (164). It can be obtained upon performing a two-step transformation on
the solid: first a pure scaling of the charge on one of the two crystal states, and
then a suitable cell-conserving transformation of the electronic Hamiltonian.
As a final important point, we wish to discuss the relationship between
this quantum phase integral and the DFPT treatment of the polarization.
This discussion gives the reason why the polarization itself is ill-defined while
the derivatives of the polarization are well defined (and can be successfully
computed from DFPT). Following closely Ref. [95] it is convenient to switch to

a quadridimensional notation, defining state vectors |u;(£)) which are discrete
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eigenstates of the parametric KS Hamiltonian H(¢) = HMN (k). Tt is possible
then to define the Berry’s connection of the problem [105]:

Ny

X(6) =1 (wil(&)|Veui(E)). (177)

=1

The circuit integral of the connection along any closed path C in &-space is just

the Berry’s phase:
C)=—¢ dp= ¢ X(£)-dE, 178

The difference in electronic polarization between two crystal states is a plane

integral of Berry’s phases and then manifestly gauge-invariant. We rewrite

Eq. (175) as:
cas [ 1
apu =2 [Laa [ denio) (179)
72 Jo 0

where the path C is the contour of the unit square in the plane parallel to the
€3 and &4 axes, at fixed values of £; and &;.

In this theory the connection play the same role as the ordinary vector
potential in the theory of the Aharonov-Bohm effect [106]. Through an
appropriate generalization of the Stokes theorem it must be possible to find
the correspondent magnetic field which is a physical observable. In fact,

transforming the line integral into a surface integral we have:

(O = ~1m Y [ do(Teus©)  [Veui(©) (150)

where do is an area element in £-space and the integral is performed over any
surface enclosed by the contour C'. This transformation is the key point of
the demonstration: inserting this form of v(C') into Eq. (179) we obtain again
the difference of polarization as an integral over A exactly as in the original
Eq. (157). The integrand is the curvature of the problem which is analogous
to the magnetic field of the Aharonov-Bohn effect and is gauge-invariant: it
coincides with the derivative of the dipole moment (see Eq. (130)) of DFPT.
The details of the demonstration are in Ref. [95], and we do not report them
here. Instead we show “numerically” the equivalence of the two formulations

through a specific example on GaAs.



b - Practical aspects of the method: the case of
GaAs

In practical implementations the difference in polarization between two
states of the same material is evaluated via Eq. (176) which is manifestly gauge-
invariant, and suited to arbitrary perturbations of the size and the shape of
the cell, or equivalently via Eq. (169) where, in the general case, two separate
integrals are performed. Each integral—assuming from now on the z axis to

be in the polarization direction—has the form:

€

py _ __2e //|G|dk—a Nk, k) (181)
el — (27’(’)3 1) akl,zsa s B -

1=

where A is the base of a prism which has the same volume of the BZ and the ¢-
axis parallel to the polarization. The integral over the basal plane is performed
using a mesh of N special points (see Appendix B), k; with relative weights
wy, defined in the plane. We end up with the relationship:

(N _ 264 oo 1 (A) ;
P ——S?Zwmﬁ (ki) (182)

The phases ¢ are gauge-invariant and defined by a line integral in k-space:

0
ki .

log det SN (k, k) (183)

[
oM (k) = Im / dk.
0 k:k1

The integration path is a line which connects the point k; on the basal plane
with the correspondent point k; + G, on the opposite plane of the prism
surface. The integral can be discretized using a uniform mesh of N, points:
k; = (j —1)Gh + ki, with h = 1/(N. — 1). Evaluating the derivative as a
finite difference and using the fact that S(k,k) = 1, we approximate Eq. (183)

as [18]:
N;—1

¢V (k) = Im log [] det S(k; kjt1). (184)

j=1
This is the final equation which has been actually implemented in a computer
code to compute the Berry’s phase along a line. It requires the computation

of N, — 1 overlap matrices, and their determinants. This product is performed
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for each special point k; in the plane orthogonal to the z axis and at the end
the polarization is computed from Eq. (182).

Before explaining all the details needed to compute effective charges and
clamped-ions piezoelectric tensors of a zincblende material, we wish to discuss
a little deeply the reason way Eq. (184) is gauge-invariant. Let us consider the
effect of a gauge transformation on this phase. If we modify all the periodic

parts of the Bloch wave-functions by a phase:
ui(kj,r) — ey, (k;, r) (185)

The determinant of S(k;,k;+1) is modified as:
det S(k; kj41) — ¢ im0 D) gep (1 ki) (186)

The product of all the determinants becomes:

N:—1 NN . N1
[T det S(kj,kji) — e 2 G =00) TT det S(kj, kyp).  (187)
Jj=1 J=1

Eq. (159) must be fulfilled in the new gauge and therefore 6;(k;) is equal to
6:(ky.) modulo 27. If this relationship holds, the product of the determinants
and hence ¢ are invariant for a phase change defined by Eq. (185). Actually
this equation does not account for possible interchanges of two wave-functions
and the above demonstration is not a rigorous proof of the gauge-invariance of
Eq. (184) in points where two bands cross each other, but it shows the delicate
part of the numerical procedure. In a practical case the diagonalization routine
provides u;(ky,r) and wu;(ky,,r), without any definite phase relationship
between them. For this reason Eq. (159) must be forced by hand. We started
from the wave-function with the wrong phase and we build the new wave-

function:
—iGr ui(kn,,r)

(uj(ko)lui(kn, )’
which is used to compute the last overlap matrix in the product of Eq. (184).

’ﬁi(sz,r) = € (188)

Actually this formula requires the identification of the j-th wave-function at
the initial point of the path, which may become the i-th at the end. If no band
crossing occurs j = ¢, otherwise we define the j-th state as the state which

has maximum overlap with the i-th. We found that Eq. (188) is slightly more
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accurate than other ways of imposing Eq. (159). For example, the most obvious
method, would be not to compute at all u;(ky,,r) and to use instead directly
Eq. (159) and u;(ky,r). With a infinite number of PW’s this method would be
equivalent to the first after an appropriate account of band crossing, while in

a finite basis Eq. (188) is slightly more accurate.

(111)

iy

/ )

S

[

Fig. 9. Integration domain for Berry’s phase computations. The

hexagonal cell has a volume equivalent to the fcc BZ.

We now specialize the above formulation to the case of a zincblende
structure and we give the formulae to extract the effective-charge tensor and
the clamped-ions piezoelectric tensor from the computation of the Berry’s
phase. Let us start from the effective charge. The motion of all the atoms
of sublattice two from their equilibrium positions in 72 = ao(1/4,1/4,1/4) to
Th = T2 + apu(l,1,1) produces a polarization along the (111) direction. This
polarization is given to linear order by Eq. (93) in the q = 0 limit, which in

the actual case reads:

ag 6\/§

Pel —
| |(111) 0

uZ?, (189)
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where Z, is the effective charge associated to the sublattice 2. This polarization
can be computed performing a selfconsistent computation with the atoms of
sublattice two in the displaced positions and using Eq. (182). By definition
the effective charge yields the polarization linearly induced by a unit ionic
displacement at zero field. Therefore u must be sufficiently small to ensure
that the finite difference reproduces the derivative. We checked the linearity
performing several calculations at different u’s and found that v = 1+5x 1073
is quite appropriate to isolate only the linear part of the polarization. The
prismatic integration domain equivalent to the BZ with the c-axis on the (111)
direction, used in Eq. (182), is shown in Fig. 9. The G vector is :
G=2"011,1) (190)

ao
while the area of the plane orthogonal to the c-axis is:

(27)% ag

A=
Q

(191)

&l

Inserting these equations in Eq. (182) we obtain the electronic part of the
effective charge of atom 2:

1 X
b= ) wie(k) (192)

3ru
=1

At the end, the total effective charge is recovered adding the bare ionic
pseudocharge.

The effect of strain upon a macroscopic crystal can be uniquely
decomposed—within the adiabatic approximation—as a rigid scaling of the
atomic positions (alias uniform strain as in Section d.2 in Chapter 1), and
an internal strain (discussed in Section a and f in Chapter 2). We study
the polarization induced by these two sources separately. The clamped-ions
piezoelectric tensor is defined through the polarization induced by a off-diagonal
uniform strain in a zero electric field. In a zincblende material this strain can

be written in Voigt notations as:

0 64/2 64/2
e=|e/2 0 e/2]. (193)
64/2 64/2 0
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The fce lattice becomes trigonal with the c-axis parallel to the (111) direction
of the fcc. We fix the position of the first atom in the origin, and compute the
position of the second atom by Eq. (64). In this way the electronic polarization
produced in the sample along the (111) direction is given by:

P11y = V31 e = 2V37 e, .. (194)

The tensor 4(®) so obtained coincides with the one defined in Eq. (150) for a
finite sample, and whose infinite solid limit has been discussed in Section f of
Chapter 2. The physical piezoelectric tensor is recovered at the end adding
the ionic contribution due to internal strain as in Eq. (155). In general, as
we have seen, in a zincblende semiconductor an off-diagonal strain induces
nonzero internal strain, and the real position of the second atom 72 in the

distorted crystal is

T, =Ty + (1,1,1). (195)

esao(l — ()
4

We can perform a Berry’s phase computation, using this atomic position, and
the polarization obtained in this way is the total electronic contribution to the
piezoelectric tensor. To recover the total piezoelectric tensor we have to add a
final term, obtained using again Eq. (155) but with the bare ionic charge. One
example of this procedure is given below.

The integration domain for the Berry’s phase computation is analogous to
the domain shown in Fig. 9, where the base and the height are slightly changed.

We have a scaled G vector, whose modulus is:

27 1
G| =v3— 196
and finally:
(o € HEe) NS st 197
T4 = ag “Sres Zul¢’ 1) (197)

Actually, in Eq. (192) and in Eq. (197), we wrote only one term of Eq. (169).
However, we stress once again that only the difference of electric polarization
between two states of the solid is well defined. Implicit in Eq. (192) and
Eq. (197) is the assumption that the polarization of a solid with the zincblende
structure is zero by symmetry. As a matter of fact, it turns out that since we

perform a Berry’s phase computation on a zincblende structure with a finite
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number of k; points on the plane and N, points on the lines, the asymmetry
of the mesh—as well as its finiteness—is responsible for an apparent nonzero
polarization. This spurious polarization is a systematic numerical error, which
however affects in the same way the distorted and the undistorted crystal,
without spoiling the quality of the calculated polarization differences. As a
further check we have calculated the average of the Berry’s phases induced by
+e4 and —ey verifying that it coincide with the spurious phase. The importance
of the spurious term decreases, increasing the values of u or €4 or increasing
the number of points N, used to perform the line integral, but we found with
our choice of the parameters and of k-points, that it contributes to 10 % of ’yii)
and i1t gives important contributions to the computed value of the piezoelectric

coefficient which is the difference between two terms of comparable magnitude

(see Eq. (155)).

Table XIV. Comparison between effective charges and piezoelectric
tensors computed within LRT and within the theory of King-Smith and
Vanderbilt (KSV).

%0’78) ¢ A %0’714
LRT 10pt k —1.446 0.538 2.06 —0.370
LRT 28pt k —1.407 0.543 2.00 —0.319
KSV —1.392 LRT 2.00 —0.320

We have tested the method, comparing Berry’s phase computations with
the results from LRT. We computed the effective charge and the clamped-
ions piezoelectric tensor of GaAs which was used as a benchmark also by the
authors of Ref. [18]. They found an error of the order of 30 % between their
computed value of the macroscopic piezoelectric coefficient and the linear-
response computation of Ref. [14]. In fact a comparison between results
which are obtained with different pseudopotentials, probably different cutoff
energies, and different choices of k-points, are influenced by spurious factors
and 1t is difficult to assess the reasons of the discrepancy. We implemented

both techniques and we performed our test with exactly the same technical
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ingredients. The only difference in the two calculations is the choice of the
k-points, because it is difficult to find a set of k-points suited to both DFPT
and Berry’s phase calculations. The planar integral appearing in Eq. (181)
was performed as in Eq. (182), where the points have been obtained projecting
on the plane the 10 Chady and Cohen points. It turns out that these are 17
k-points, while the line integrals are evaluated with N, = 20, which correspond
to a mesh finer than the 10 points mesh. In Table XIV we report our DFPT
results obtained both with 10 k-points and with 28 k-points. These results are
compared with the results of the Berry’s phase computation. We note that
the agreement is remarkable, expecially with the 28 k-points. We conclude
that the errors reported in the first computations of the Berry’s phase [18] are
due simply to different technical ingredients, but DFPT and Berry’s phase are

“numerically” equivalent.



c - Nonlinear piezoelectricity in CdTe

In this section we present one application of the above theory to a problem
of technological interest: the nonlinear piezoelectricity in a strained layer
superlattice.

Semiconductors superlattices are nowadays routinely grown with a
monolayer precision [107], and, for sufficiently thin layers it is possible to
grow epitaxially lattice-mismatched materials with essentially no misfit defect
generation. The lattice-constant mismatch is accommodated by coherent strain
in the individual layers. This strain is responsible for many new phenomena by
deformation potential effects [108]. Moreover, if the growth direction is a polar
one, a qualitatively new behaviour is expected because of the piezoelectrically
generated polarization field. The phenomenon has been first theoretically
predicted by Smith [109] and Mailhiot [110], and then experimentally verified in
a superlattice GaAs/Gaj_,In, As grown along the (111) direction [111]. Since
then many other authors have been investigating the effect in III-V and II-VI
compounds [112,113]. In these systems the piezoelectric field was estimated
from the field-generated shifts in the photoreflectance spectra. Until recently,
the measured electric field was in agreement, within the (rather large) errors,
with the predictions obtained from the known (linear) elastic and piezoelectric
properties of the materials [73].

Recently a large discrepancy has been reported [12] between the measured
and predicted piezoelectric field in a superlattice of CdTe grown upon a
substrate of Cd;_,Zn,Te or Cdy_;Mn,Te, along the (111) direction. By
variations of the zinc or manganese concentrations it is possible to control
the lattice constant @ in the plane orthogonal to the growth axis. The in-plane
strain of the CdTe layer is defined as:

e, = 87 %0) (198)

Go
where ag is the equilibrium CdTe lattice constant. Assuming linear elasticity
and linear piezoelectricity, the measured field should be proportional to the off-
diagonal part of the strain which is also proportional to €;. On the contrary
the authors of Ref. [12] report a quadratic dependence of the field upon the in-
plane strain, independently from the substrate, which they explained assuming

a linear dependence of the piezoelectric tensor of CdTe upon €, as shown in
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Fig. 10. Experimental measurements of the piezoelectric coefficient

of CdTe as a function of in-plane strain. Data from Ref.[12].

Fig. 10, taken from Ref. [12].

DFPT can be applied to this problem by analyzing all the material
constants which appear in the problem and studying their dependence upon
the in-plane strain. Moreover the new theory of polarization allows a complete
calculation of the polarization induced by an arbitrarily large strain, beyond
the linear regime. Actually, the values of the piezoelectric coefficients have a
large error in these materials, as discussed at the end of the previous chapter,
but the reported nonlinearity is much larger than the expected errors, and the
qualitative features of the phenomenon can be explained.

Let us start discussing linear elasticity in our case study [107]. The starting
point is the expansion of the electric enthalpy up to second order as in Eq. (96),
applied to a zincblende structure. In a cubic system the energy of the solid due

to a uniform strain, at zero electric field is:

F

1
7= 5011 (€] + €5+ €5] +2Cua [ + €2 + €3] +Chz 265 + €163 + €162, (199)

where we switched to the Voigt notation. The equilibrium geometry of a solid
grown on a substrate of lattice constant a can be found minimizing this elastic
energy, Eq. (199), with the constraints imposed by the condition that the
interface is pseudomorphic with the substrate. These constraints are obtained
for an arbitrary growth direction, introducing three orthonormal versors {IN;}
where Ny, Ny are in the superlattice plane, while N3 is in the orthogonal

direction.
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When a strain is imposed on a zincblende material, the primitive vectors

a; becomes strained vectors aj with:

! 1 1 ¢
aj, =(1+e)a, + 566a1y + §e5alz, (200)
and analogous relationships for the other components and for a), and a. For

a pseudomorphic interface the constraints are represented by the invariance of

the projection of the new vectors on the surface vectors:

!
aq -T@l = a; -T@l

) (201)
aq 'TQQ = a; 'TQQ

and the analogues are valid for a; and as. In the first members of Eq. (201), a;
are computed with the lattice constant a of the substrate, while in the second
member the a’ are strained vectors of CdTe with lattice constant ag.

If the growth axis is the (111) we have:

1
N; = —(1,-1,0
1 \/i( )
1
N = —(1,1,-2 202
2 \/6( ) (202)
1
N3 = —(1,1,1),

&

and the constraints become €; = €3 = €3, €4 = €5 = €5 and

1
€1 — 564 =€ (203)
Inserting these relationships in Eq. (199) we obtain an energy which depends

on one parameter €; with no constraints. The minimization yields:

4644
€ = €. 204
! ci1 + 2¢i2 + 4cyq + (204)
2
= — ci1 + 2ci2 . (205)

€

c11 + 2¢12 + 4eqq
These equations show that in a strained superlattice CdTe undergoes a
macroscopic strain whose tensor has only two independent components: €

(diagonal), and €4 (off-diagonal), which are proportional to the in-plane strain.
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The off-diagonal strain is responsible for the presence of a piezoelectric
field. As we have seen, in a zincblende material the piezoelectric tensor has
only one independent component v,,. = 714, so that only the off-diagonal
strain induces a polarization along the (111) direction, whose modulus is given
by:

|P|(111) = \/571464- (206)

The strain induced polarization can generate an electric field or displacement

field, depending upon boundary conditions. The electric field is given by:
4
1El(11) = g|P|(111)7 (207)

where ¢ is the static dielectric constant. Collecting all these results we can

relate the induced electric field to the in-plane strain:

87V3  ci1 + 2¢12
o c11+ 2c12 +4cqa

|E|(111) = Y1a€1 (208)
This equation is the main result implied by the linear elasticity and linear
piezoelectricity: it shows that, if vy4 is independent from €, , |E| is linear in
€1 and not quadratic as experimentally found. Therefore, the hypothesis used
to derive Eq. (208) which rests on the validity of the quadratic expansion of
the energy of the solid Eq. (87), must be incorrect when applied to CdTe since
the predicted field disagree with the experiment. We checked the validity of
all these expressions by computing the elastic constants and the piezoelectric
tensor which appear in Eq. (208) and analyzing their dependence upon the
diagonal and off-diagonal strain. Clearly a possible dependence of these
quantities upon the strain is due to a sizeable effect of the relevant cubic terms
in the Taylor expansion of the electric enthalpy.

Let us start from elasticity. The elastic constants are related to the second
derivative of the total energy with respect to the strain. Actually these are the
only quantities appearing in Eq. (87) which have not been computed by DFPT.
Here we have used the standard method: we have performed selfconsistent
ground-state calculations in strained geometries, up to strains of the order of
2%. Basically, our procedure is the same as in Ref. [58]: we evaluate ¢y and
¢12 by considering a crystal uniaxially strained along (001), and we measure
the induced stress in (001) and (010) directions. A (001) strain transform the



106  Theory of the Polarization

¢ (Kbar)

Fig. 11. Stress strain relation in CdTe. Here € indicates the
amplitude of a tetragonal strain along (001). The curve labeled cq1
shows the stress along the (001) direction, and the one labeled c12
shows the stress in the plane orthogonal to it. The slopes provide
the theoretical values of the linear elastic constants c11 and c12.
Triangles indicate actual calculated points, while the continuous lines

are linear fits.

cubic lattice in a tetragonal lattice and in this geometry an internal strain is
symmetry forbidden. For this reason the linear relationship between stress and
strain gives directly the macroscopic elastic constants. In Fig. 11 we show our
results for strain values as large as +3 %. From the slope of these lines we
obtain ¢17 = 578 Kbar (expt. 562) [114], and ¢;2 = 375 Kbar (expt. 394) [114].
The case of the shear constant c44 1s more complex, since it involves internal
strain as well (see Eq. (97)) [59]: in a zincblende geometry this can be dealt
with in a way similar to Eq. (155). We identify in c44 a clamped-ions term cii),

and a term due to internal strain:
(0 1

Cqq4 = 044) - Eﬂw’%oczu (209)

where p is the reduced mass of the two atoms and w7 is the zone center
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phonon frequency. We consider a crystal with off-diagonal strain €4, and we
measure both the off-diagonal stress and the force acting on one of the two
atoms: the results are reported in Fig. 12. From the slopes of the lines we
obtain cf&) = 401 Kbar, and an internal strain parameter equal to the value
reported in Table XIII, and independent of the value of €4; finally we use
wro = 152 em™! already computed by LRT (see Table XII), and we get from

Eq. (209) c44 = 218 Kbar (expt. 206) [114].

0.02
= 3
3 N
% 0 ~
~ =
° =

—-0.02

Cooo o by T
—-0.02 0 0.02
€4

Fig. 12. Stress and force produced in CdTe by a off-diagonal

strain €4. The slope of the lines is proportional respectively to

0
the clamped ion elastic constant c;,  and to the internal strain
parameter. Triangles and squares indicates actual calculated points,

while the continuous lines are linear fits.

The plots shown in Fig. 11 and in Fig. 12 demonstrate that linear elasticity
theory is quite adequate to deal with strain values up to 2% in CdTe. The only
possible source of nonlinearity in Eq. (208) is thus the piezoelectric constant v14.
Our finding supports in fact the suggestion of Cibert et al. [12], who proposed
a nonlinear piezoelectric effect to explain their measured values of |E|, which

are much larger than predicted by Eq. (208). Our theoretical investigation of
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nonlinear piezoelectricity is given in the following.

We start noticing that an isotropic volume change has a dramatic effect on
the piezoelectric tensor. This was demonstrated in Ref. [14] through a sample
calculation for GaAs, and in fact it is the main reason why a well converged
theoretical equilibrium lattice constant is essential in calculations. This volume
effect is enhanced by the cancellation of the electronic and ionic terms in the
piezoelectric tensor (see Eq. (155)): we expect it to be very important in CdTe
where such cancellation is almost complete. The volume of a CdTe slab is not
conserved in a strained (111) superlattice, and this fact accounts for at least
one component of the nonlinear piezoelectric effect, which is studied—to start
with—upon performing DFPT calculations at nonequiltbrium cubic geometries.
Further possible nonlinear effects besides this are investigated using the novel
approach due to King-Smith and Vanderbilt [18].

In a strained (111) superlattice CdTe undergoes a macroscopic strain
whose tensor has only two independent components: €; (diagonal), and e4
(off-diagonal). As we have seen, linear elasticity is more than adequate for
the values of e€; of interest here, and actually we double-checked this fact
upon performing a test calculation on a strained sample with e;=—0.0077 and
€2=0.024, which are the values provided by Eq. (204) and Eq. (205) when
€1=—0.02. In a cubic sample at this volume the internal strain parameter is
(=0.798; we have explicitly verified that the forces and the stress vanish in this
configuration, with the exception of the in-plane stress components which are

neutralized by the constraining substrate.

We then analyze the volume dependence of the three material constants
appearing in Eq. (155), namely ’yii), Z*, and (, for values of the cubic lattice
constant ranging from 12.1 a.u. to 12.3 a.u., and corresponding to an isotropic
pressure of p = 10.2 Kbar and p = —11.6 Kbar, respectively. At the latter
negative value, which could experimentally be realized over a suitable substrate,
we predict a sign reversal for the piezoelectric effect: although we are not aware
of any report, this qualitative fact should be experimentally detectable. We
find anyhow a linear dependence of all these quantities on the lattice constant,
and from the slopes of the lines we obtain aod’yii)/dao = —0.866 C/m?,
apdZ* [day = 4.268, agd(/dayg = —5.536. This implies a linear dependence

of the piezoelectric tensor on the applied pressure, and summing all the results
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Fig. 13. Theoretical values of the piezoelectric tensor upon variations
of the cubic lattice constants. Triangles indicate DFPT results, while

circles are the geometric phase results, from the method of Ref. [18].

we find:
d % d dz* 2 C
dag dag ag day ag dag ag m2

where the dominant term is due to the variation of the internal strain parameter
with the pressure. This derivative is large and implies a doubling of the
piezoelectric tensor with a variation of —0.1 a.u. of the lattice constant. In
Fig. 13 we report the actual LRT calculations of ;4 at the different cubic
lattice constants (triangles).

As outlined above, the volume-dependent linear term discussed so far is
just one component of the nonlinear effect. The transformation leading from
the unstrained to the strained solid can be decomposed in two steps, switching
on the two independent strain components €; and €4 one at a time. The former
step induces—upon symmetry grounds—a vanishing polarization; the latter

step accounts for the whole piezoelectric effect. We have indeed switched the
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traceless term on at the isotropically strained geometry, but the macroscopic
polarization has been studied so far only to linear order in ¢4. The next step
is to investigate a possible nonlinear dependence of the polarization upon the
traceless strain.

We have used the Berry’s phase technique explained in previous Sections
to compute the piezoelectric tensor as a function of a finite €4 strain. At the
equilibrium volume we get P perfectly linear in €4, up to ¢4 = £0.02: the
derivative yields ’yii) = —0.589 C/m?, equal to the value obtained from LRT.
The calculation of the effective charge performed using the Eq. (192) gives
Z* = 2.16. With these numbers we get v;4 = 0.039 C/m?.

This latter calculation demonstrates that all of the nonlinear piezoelectric
effect in CdTe is indeed a pure volume effect, which can be quite accurately
recovered from the linear piezoelectric tensor, evaluated for the cubic solid at
nonequilibrium volume: its behavior, as a function of the cubic lattice constant,
is given in Eq. (210).

We have further checked the above findings upon performing some
geometric phase calculations at nonequilibrium volumes. At the cubic lattice
constant 12.1 a.u. (corresponding to e | =—0.02) the LRT piezoelectric constant
is, from Fig. 13, 714 = 0.084 C/m?. We consider a traceless strain and we
evaluate the polarization from Eq. (182), as above. First we keep (=0, and we
get the clamped-ions value ’yii) = —0.592 C/m?, in agreement with Eq. (210).
The volume variation of ’yii) is small, showing once more that most of the
nonlinear effect in the polarization is due to the volume dependence of (.
Then we have studied the strained structure with a frozen-in transverse optical
phonon of amplitude corresponding to ( = 0.798, which is the appropriate value
at this volume (see Eq. (195)). We thus obtain both the electronic contributions
to the piezoelectric tensor (i.e. the clamped-ions term, and the electronic term
in the effective charge) from a single calculation. Subtracting the contribution
due to the bare ions, we get 14 = 0.078 C/m?, which compares well with the
LRT result reported above.
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In this work we have extended some of the methods of modern ab-initio
electronic-structure theory in order to study selected “difficult” cases. We work

in the framework of DFT, using a plane-wave pseudopotential method.

We have chosen as test cases materials and/or properties where the
well established LDA methods have known drawbacks. We focus on three
kinds of crystalline materials: II-VI semiconductors, selenium, and group IV
semiconductors; we discuss several physical properties of the II-VI’s, while
we concentrate upon the equilibrium structure of selenium and the dielectric
constant of silicon and germanium. The physical reasons why a standard LDA
pseudopotential scheme is inadequate to deal with our test cases are different

and require different remedies.

In the case of II-VI semiconductors the problem is due to the presence of
shallow d electrons in the atoms of the group IIB. In fact the large overlap
between core and valence charge of these elements invalidates the fundamental
hypotheses underling the pseudopotential formulation of the theory. In this
case we have used a NLCC scheme to account for the exchange-correlation

error due to valence-core overlap.

In the case of selenium the problem is due to the presence of weak bonds
which join the helices of the solid. The LDA approximation is too crude to
describe these weak interactions and we have used the GC approximation to

improve the energy functional.

As for the dielectric constant of silicon and germanium we have used the
GC approximation as well. In fact it is known since several years that the LDA
theoretical values are overestimated with respect to the experimental values.
Hence any improvement upon LDA should be able to correct at least part of
this error.

The modifications of standard LDA-DFPT due to NLCC and/or GC
can be readily implemented in the codes used in standard calculations. We
have generated new pseudopotentials for zinc, cadmium, selenium, silicon and
germanium and we have discussed all the theory needed to implement the above
approximations, generalizing the Hellmann-Feynman theorem, the Nielsen-
Martin stress theorem, and the standard DFPT.

The main results of our studies suggest the following separate comments:

(i) II-VI semiconductors. The NLCC approximation has been shown quite

adequate to discuss all the statical and lattice-dynamical properties of
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ZnSe, CdSe, ZnTe, CdTe. We provided both the theoretical structural
properties of these systems, and all the linear-response properties obtaining
an agreement almost of the same quality as standard calculations for group
IV and III-V semiconductors. In particular we have computed dielectric
constants, piezoelectric tensors, effective-charge tensors and complete
phonon dispersion spectra of these compounds [115].

(ii) Selenium. In this case we limited the discussion to the computation of
structural properties, showing the ability of GC approximation to correct
to a large extent the error involved in a LDA description of weak bonds
between selenium chains. On the contrary the single chains whose covalent
bonds are described quite well in standard LDA, are described slightly less
accurately by the GC scheme. However the theoretical GC structure is in
overall quite good agreement with the experimental one.

(iii) Silicon and germanium. In the case of silicon we find that GC provides
a sizeable improvement for the calculated dielectric constant at fixed
lattice constant; the improvement is much less striking when the dielectric
constant is calculated at the equilibrium GC lattice constant [116]. In the
case of germanium we had more contradictory results, due to the difficulty

of disentangling the effect of different pseudopotentials and of GC.

Finally we have implemented the new method introduced by King-Smith and
Vanderbilt [18] to compute the electronic polarization of a periodic solid and
we have tested it by comparing the values of the effective charges and of the
piezoelectric tensors of GaAs, as obtained from both DFPT and from the new
technique. We demonstrated “numerically” the equivalence of the two methods
when all the technical ingredients are kept the same.

Then we have used the new theory in conjunction with our NLCC scheme,
to understand a recent experiment performed on strained-layer superlattices,
where a strong nonlinear piezoelectric effect in CdTe has been detected by
optical means. We have analized this experiment checking the hypotheses of
linear elasticity and piezoelectricity which were used in the standard analysis
of the experimental data. Our major result is that piezoelectricity in CdTe
is accurately linear over a wide range of volume-conserving strains, while it
displays strong nonlinearity whenever the strain is not volume conserving. This
finding implies that the observed nonlinear effects can be accurately accounted

for by the linear piezoelectric response of the cubic system at the strained
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volume [117].
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Matrix elements of the nonlocal pseudopotential

The parametrizations used for the pseudopotential, (see Eq. (41) and
Eq. (42) ) are particularly convenient from a computational point of view.
In fact the eigenvalue equation which must be solved to obtain the KS orbitals

contains the external potential in the form:

1 4 4
Ve(k+ G k+ G = Z/ dr e G (n R 7 )ei(HGOr (911
ps 7V

Inserting Eq. (25) in Eq. (211) and changing variable in the integral this

expression becomes:

1 < 4 .
_ - § —i(G—G1)T. loc —i(G—G)r
Vext — Q . [ |:/v dI‘ Vs (T)e

(212)
-|-Z/ dr e_i(k+G)rV8’?ll(r)Plei(k+G1')r .
I 14

For this reason it is important to be able to calculate the Fourier transform of
the local part of the potential which—using the parametrization given in the

text—is:
ZAme?r a2

o€ (213)

This formulais valid only if G # 0. The limit of G = 0 has been discussed in the

main text (see also Appendix C). Here we note that subtracting the potential of

VSIOC(G) — /Vdr Vsloc(r)e—iGr —

a neutralizing background, we obtain a closed-form Fourier transform in G = 0

7 €? Z me?
) — . (214)

V() = au0) = [ dr (Vior(e) +

\% T

Qe

The nonlocal part is short range. To compute its matrix elements it is

useful to use the expansion of a PW in spherical harmonics:

%) l
¢TI —ar NN ik + GIY™ (B as k@)Y (B, 6e) (215)
=0 m=-—1

where j; are the [ order Bessel function. Thanks to this expansion we can

integrate on the angular variables the expression for the non local part of the
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potential appearing in Eq. (212):

vy (k +Gk+Gy) = / dr e—i(k—l—G)rV;zll(T)Plei(k—}-GL)r
1%

a3 / dr ik + GV (Bt s s )X
m=—1
VI ik + Gilr)Y,™ (bx+as Slra, s
(216)
and using a sum rule which relates products of spherical harmonics to the

Legendre polynomial:

20+ 1
4

Py(cosa) Z Vi (81, 61)Y,™ (62, 62) (217)

m=—1

where « is the angle between two unit vectors identified by the points (6;, ¢1)
and (63, ¢2), we obtain:

Vik+Gk+Gy) =

4m(20 4+ 1)Pi(cos oz)/ dr ji(|k + G|r)V87”ll(r)jl(|k + Gq|r)r?,
0
(218)

where: (k+ Gk +G)
+ + Gy
= . 21
cos « K+ G|kt G| ( 9)

Inserting now Eq. (42) in this expression it is easy to see that the matrix
elements of the external potential can be computed with two integrals of the

type:

/ dr r)‘ealr2jl(qr)jl(q1r), (220)
0

with A = 2 or A = 4. These integrals can be calculated numerically on a regular

mesh.
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Symmetry and special points

From the solution of the secular problem, Eq. (34), we get the coeflicients
ck+a,i of the pseudo-wavefunctions of the lowest N bands in one k-point.
A fast Fourier transform (FFT) implements efficiently Eq. (33) which yields
the wave-functions in real space. To recover the charge density we should,
in principle, sum the square modulus of these wave-functions over all the k-
points in the BZ. We approximate this sum using a selected set of k-points,
exploiting both the space group symmetry of the crystal, and a clever sampling
of the BZ. Due to the space group symmetry we can restrict the sum over k
to an irreducible part of the Brillouin zone (IBZ), and then we can sample this
zone with the special point technique. We now describe briefly both these two
methods.

Let us start recalling some well known facts about the symmetry properties
of a solid[118]. The most general symmetry operation which maps a crystal
into itself is a combination of a rigid body rotation (or pseudo-rotation) S™
plus a rigid translation f™. Let us define (S™|f™) (m = 1--- Ngym) as an
operation of the space group of the crystal if for each R, and 7, it is possible

to find a direct lattice vector R, and a vector Tgm(4) such that:
Sm(RN—I—TS)—fm:R,,—I—TSm(S), (221)

with the atom S™(s) of the same type of the atom s. Thanks to the invariance
with respect to these symmetry operations the KS eigenvectors satisfy the
relation [119]:

$i((5™) M r) = (K, §™e — £). (222)

Furthermore, by time reversal symmetry the following relation holds:

¢z(k7 I') = I/Jf(—ka I'), (223)

and for this reason, we can augment the point group adding the inversion
operation. These properties can be used to decompose the charge density into
a sum of symmetry related terms each of them computed as a sum over the
IBZ. In fact the density is given by Eq. (7), which translated in the language
of Bloch waves reads:

Naym

n(r) =2 Z DD STk )P = ) digm(r). (224)

m=1 ke€IBZ j=1 m=1
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This equation defines ngm, which can be computed with a sum over the IBZ.
Furthermore, using Eq. (222) we can relate figi to figo where S is the identity
of the group:

Ny
Aggm-1(r) =2 Y Y [ih(k, S — £™)|* = fago(S™r — £™).  (225)

keIBZ j=1

In practice we compute the function ngo(r) which involves a sum over the IBZ,
and use Eqgs. (224) and (225) to obtain the total valence charge density.

A optimal set of k-points inside the IBZ is obtained through the special-
point technique which was introduced by Baldereschi in 1973 [120], and since
then generalized by several authors [53,121] who provided quite general recipes
for generating these points.

The special-point generation is based on the following ideas. Suppose we
are interested into the sum:

S 5, (226)
keBZ

where f(k) is a periodic function of k which could also be parametrically
dependent upon the position r as happens for example for the charge density
in Eq. (224). If f(k) has not the same point group symmetry of the reciprocal
lattice, we can symmetrize it because only the symmetric part enters in the
sum (226). Then we expand f(k) in symmetrized Fourier components, in the

form: - -
FR) = > =" f.Ga(k), (227)

n=0 |R|€C, n=0
where C), is the shell of lattice vectors R related to each other through the

operations of the point group:
Ch={Rm=5"Ro | m=1,,Nyym}. (228)
From the definition of G (k) it follows that:

Y Gulk)=0 if |R|#0, (229)

keBZ

This equation shows that the exact value of the sum over the BZ of the function

f is fo. If we now perform the sum over k-points with an arbitrary discrete
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set of points, Eq. (229) is only approximately fulfilled and the discrete sum of
f(k) differs from f, with an error which depends from the values of G,,. In the
extreme limit, if Eq. (229) could be fulfilled with a single point k* such that
Gn(k*) = 0 for each n, we could have f; = f(k*). Actually this point does
not exist but, as the coefficients f,, usually drop rapidly as n becomes large,
it is sufficient to fulfill Eq. (229) for a finite number of shells, to have a good
approximation of the integral. Obviously we need more than one point to fulfil
Eq. (229) with n larger than 2 or 3. In fact, suppose that we could find a set
of Ni points and relative weights {k;, «;} such that:

Ny,
» ai=1, (230)
=1
Ny,
Y aiGuki) =0 n=1,---,N,, (231)
=1

then we could approximate fy with:
Ny,
fo= ) aif(k), (232)
=1
with an error of the order:

e=— > iaifnGn(ki), (233)

n=Np+1 i=1

which systematically decrease increasing Ny.

To proceed further, we need a method to generate a set of k-points and
relative weights. For most common Bravais lattice, several series of points
have been published in the literature [122]. Usually it is assumed that the
point-group of the Bravais lattice is the same point group of the crystal. We
need several series of k-points for the hexagonal lattice of selenium which has
the D34 point group. Actually Dsg4 is a subgroup of the point group (Dsp )
of the hexagonal lattice and therefore the points published in the literature
for this lattice are not suited to the D34 group. To study the structure of
selenium we generated several series of k-points meshes optimized for the D3,

group. To this purpose we used the technique of Monkhorst and Pack which
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Fig. 14. The first Brillouin zone for the face centered cubic lattice. Some high symmetry lines

are reported in the figure.

we now briefly describe. To fix some ideas we start with some well known
results regarding the zincblende lattice with Ty point group. This lattice is the
most common structure of III-V and II-VI semiconductors. The Bravais lattice
is a face centered cubic (fec) with two atoms in the unit cell. If we put the
origin above one atom 71 = (0,0,0), the other one is on the cube diagonal in
T2 = “2(1,1,1), where ag is the edge of the cubic conventional cell. The BZ
of an fcc lattice is represented in Fig. 14. To build a series of special points in
this zone, following Monkhorst and Pack we define a regular mesh, using the

relation:
_2p—gq—1

Up = 5 and p=1,2,---¢q, (234)

and selecting ¢> k-points in the form:

kprs = upbl + ’LLTbQ + usbg, (235)
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where the b; vectors are the principal vectors of the reciprocal lattice, and
u, and us have a definitions similar to u,. Then we divide the ¢* points in
symmetry-related shells, and we choose per each shell one point in the IBZ,
assigning as weight of the point the number of points of the shell. The point
group (Ty) [118] has 24 symmetry operations. There are 8 rotations of an angle
2?” around the diagonals of the cube and 3 rotations of an angle © around an
axis of the type (100). With the identity operation these are all the proper
rotations of the group. Then there are 6 reflections with respect to planes of
the type © = ty, and 6 rotoreflections made up by a rotation of +7/2 around
an axis of the type (100), followed by a reflection with respect to a plane
orthogonal to the axis. The choice ¢ = 4 in Eq. (234) yields 64 points which can
be partioned in 10 shells of symmetry-related points. The resulting points are
equivalent to well known 10 Chadi and Cohen points originally obtained with a
different procedure [53]. These 10 points and relative weights satisfy Eq. (231)
up to N, = 37 [53], and the first failure is for the shell of R, = a(4,0,0).
The precision of BZ integration can be increased changing ¢ and repeating the
procedure. For instance ¢ = 6 corresponds to 28 points in the IBZ. These points
satisfy Eq. (231) up to N, = 114 and the first failure is at R, = a¢(6,0,0).
The same procedure has been applied to selenium.

The BZ of the hexagonal lattice is shown in Fig. 15. We chose a uniform
grid in this zone with a parametrization slightly different from Eq. (234) as
suggested in Ref. [123]:

p—1
Upyr=—— and p,r=1---,¢,

_2s—q—1
= 2

Ug

and s=1,---,q. (236)

The use of Eq. (236) with ¢ = 4 yields 64 points which can be partioned in 10
symmetry shells. In fact the point group of this structure is the trigonal point
group D3q4. The group has been described by several authors: it has 6 symmetry
operations. There are 3 rotations of an angle QT” (one is the identity), which
involve a related fractional translation of £ along the z axis, and 3 twofold axis

in the zy plane. If we measure k, in units 27 /ag, k, in units 27r/\/§a0 and k.
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Fig. 15. The first Brillouin zone for the hexagonal lattice. Some high symmetry lines are

reported in the figure.
in units 27 /¢, we write the ten points and their relative weights as:
k1 I(O,O,é) ’LU1=2 kzz(%,%,é) ‘LU2=6

k3:(i7i7é) w3 =6 k4:(0707%) Wy =2

With this choice we have the first failure of Eq. (231) at N, = 32, with
R, = ao(4,0,0). This suggests that the precision reached in the computation
using this set should be similar to 10 points of the fcc lattice. This feature has

obviously to be checked explicitly, because the real precision depends upon the
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convergence to zero of the f,, coefficients. These are the points which we used
in the computation of all the properties of selenium. To check the convergence
with the special points grid we generated also the ¢ = 5 mesh which yields 19
points and whose first failure is for R, = a¢(5,0,0) and the ¢ = 6 mesh which
yields 30 points and whose first failure is R, = a((6,0,0).
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Conventions on the symmetries

Many of the formula reported in the main text involve a sum over the BZ
which is usually performed restricting to an IBZ as we have already explained
in the case of the valence charge density. For vectorial of tensorial quantities,
the symmetry considerations needed to restrict the sum to an IBZ are similar
to those used in the case of the charge density. In this Appendix we report our
conventions on the symmetry matrices and we discuss the symmetrization of
the forces as an example. The same approach is used for the other quantities
but is not discussed in this thesis.

We have defined the operations of the space group of the solid by (pseudo)-
rotations S and fractional translations f™. A fractional translation is
represented by a 3-dimensional vector in real space which can be expressed

in the cartesian basis, or in the direct vectors basis:

3 3
f= Zl fie, = Z f;a;. (237)
a= =1

In this formula, as well as in the text, we used latin index to express the
components of a vector in the basis of direct lattice and a greek index to express
cartesian coordinates. The matrix 5™ is a 3 X 3 matrix whose definition is the
following: if we rotate the crystal by the operation ™, the direct lattice vectors

a; become new vectors a; with:

3
aj=>» Siha;. (238)
j=1

If a vector v has components v; in the direct lattice basis, the rotated vector

has the same components on the rotated basis, and components:
vi=Y_ Shvi, (239)

on the original lattice vectors. On the contrary, if a vector k is expressed
in reciprocal space on the basis of the reciprocal vectors by, then the rotated

components are on the same basis:

3
K=Y 5™ k. (240)
k=1
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Finally we note that in the cartesian basis, the components of the 5™ matrix

are related to the components S;"; by the relation:
T =Y aaiSibs . (241)

Let us now discuss the use of these formulas as applied to the case of the
forces. When the crystal is subjected to a symmetry operation (S™|f™), which
maps the atom in R, + 7, in the position R, + T gm ), the displacement vector
u” associated with this site is both rotated in the same sense as the crystal and
is transferred to the new site. This means that if before the rotation the vectors
u” describe the displacement pattern, after the application of the symmetry,
the pattern is described by u# and the relation between the two patterns is
given:

ﬁgm(s), Z S 3 l7 (242)

The external potential acting on ions W111 not change if expressed in the rotated

frame. The relevant relation is:
Veed(S™ THr +£), Ry + 7+ 0¥) = Voo (v, S™(Ryy +75) — £+ @) (243)

At this point we can regroup in the first term of Eq. (60) the contributions of
symmetry related k-points in the BZ and pass to the components of the force

in the basis of a;:

R 253 Y S [ desitens

u m=1 kelIBZ h=1 (244)

m—1 m
% avewt(s (r‘l’f)7Ru + 75+ u I/Jh k I‘ Z F(I)S :

m
8u87j

using Eq. (242) and Eq. (243) it is possible to relate FWS" 4o FOS and
Eq. (244) becomes:

FY) = Z Z s FLS o (245)

m=1 [=1
This relation shows that it is possible to limit the sum over k-points to the
IBZ, but as a trade-off we have to compute the unsymmetrized forces on each
atom of the same type, because the unsymmetrized contributions are related

to one another.
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Reciprocal space formula

In this Appendix we show explicitly the cancellation of the divergences
in the total energy of an infinite solid and we report many reciprocal-space
expressions for the quantities introduced in the main test. These are the
expressions implemented in a numerical code. To show the cancellation of
the divergences in the total energy, it is convenient to rewrite Eq. (55) in
terms of the Bloch functions in reciprocal space. In this space many terms are
proportional to the number of unit cells of the finite solid N, and we can write

the energy of a unit cell as:

ol ) Q
J\tfct - N Zme ZZZMHM k+GP+ ==Y |n|G|2)| +

G =1 G#0

+ 3G Y OV G) + o Z as(0)+

G#0 s

Z Z Z CktG,iCk+Gy,i V| {k+G,k+Gi)e —i(G-G)T. |
k i=1 I,s G,G,

Z2 J e? . E,;_;
r— )

G=0 Q \% T Nc
(246)
where we introduced the total charge of a unit cell Z = ) Z,. The definitions
of as(0) and of the matrix elements of the potential are in Appendix A. Two

47e?Q) |y, (G)|?
‘|‘an a":xc ‘|‘ B |G|2

infinite terms (formally corresponding to G = 0) have been extracted from
the Hartree energy and from the interaction with the external potential. The
third divergence is due to the ion-ion energy. This energy is given by Eq. (5)
which can be computed in closed form if we subtract the energy of a uniform

neutralizing background of negative charges:

Z
— o+ o [ dr S (247)

1 4dre? -1gkF 2
e € n
T (215)

G0
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A more efficient algorithm could be obtained adding a real-space contribu-
tion [19]; in our work we have used simply Eq. (248), which corresponds to
giving a small gaussian spread to the nuclei. For n large enough, the value of
the converged sums in Eq. (248) is independent of the actual value of  and
provides the physical vg,,.

At last the G = 0 term of the Hartree energy can be formally written as

the average energy of a uniform charge distribution n = Z/Q:

Z2 2
-5 / dr =, (249)

r

47e? Q) Iny,(G)|?
2 |GP

G=0

and this shows how the three divergent terms cancel each other.

The GC and/or NLCC forces are computed from Eq. (63) which is

translated in reciprocal space as:

s,] N Q ZZ Z Ck—i—G iCk+G,i€ —HG-GT (G —Gy);x

k =1 GG1
X [VSIOC(G ~G1)+ Y VIi(k+Gk+ Gl)] + (250)
l
. . OvE
* s 1GT, w
+1 EG: V(G)né(G)G e 6T — Bu”

The derivative of the Ewald term is straightforward. Introducing the ionic

positions in Eq. (248) and expanding the derivatives, we obtain [124]:

G|2

OV Ew ' .
aug,j B Z z;é: C;z;é:ozsl |(}|2 sin G( Tsl) e (251)

where the limiting process on n explained above is understood.

The GC and/or NLCC expression of the stress is reported in Eq. (74) in

the case of local pseudopotentials; the corresponding nonlocal expression in
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reciprocal space reads:

Evoﬁ NQm Z Z|ck+Gz k‘|‘G) (k‘|‘G) +
! e P

k =1
: ovlee(G A
+ Z n*(G) Z e—zGTs |:VsloC(G)(5aﬁ + %2(—}&(}‘7} + (SQI@(Z O!S)ﬁ
G#0 s s
—i(G—G1)T. a‘/snll(k + G7 k + Gl)
Z( 1) ck—|—G ch+G ; )
B O€ap
s,l 1=1 G,G;
4ne? (@) [, GuGs *
9 Z |G| [2 G2 dap| + dap Zn (G)[Vm(G) - em(G)]—l—
G0 G
G.Gj = n(G) _ar aF( ) 1 0vkw
iGT.y,, Gan® 1
GZ# > a|G| )+ 2 1Gar " (GG G ey

The Ewald part of the stress can be obtained analogously as in the case of

forces. The result is:

G2
VEw e
Feny = Z

G#

2G.Gjs ,G? .
[T<E +1)—=0ag (252)

ZZ iGT,

The GC and/or NLCC form of the dynamical matrix is given in Eq. (149).

This formula transformed in reciprocal space reads:

CER e 2
(I)aﬂ (a) f= “N.Q bssy ZZ Z Ck1G,i%k+G1,i(G — G1)a(G — G1)gx

k =1 GG,
T ) Sp SR

k =1 GG,
X ciepg e ATETGIT AYbere(k 4 g 4 Gk + Gy )+

1 L GIT
£ o Y fue G = G AT THAHEIT (g 4 G)ala + G ) x
GG,

x e MGGy (k + Gk + Gy) +

X nk(q+ Gnes, (@ + G1) = b4, Z G)e 'GT G Gyn.s(G)

(253)
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The ionic contribution is well known from the rigid ion model [65]. It can

be computed starting from Eq. (248). The reciprocal space term is:

Z a YEw —zq(RM—R,,) —
0

usaaus B
4:7T€2 e_(q-I;G)2
77]Z5Z5 G)a G a+G)(T:—T.y) ¢
Q Z lq + G2 (a+ Galg + G)ge (254)
G,q+ G0
Gz
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