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1 Abstract 

During neuronal differentiation, lamellipodia and filopodia explore the 

environment in search for the correct path to the axon’s final destination. Although the 

motion of lamellipodia and filopodia has been characterized to an extent, little is known 

about the force they exert. In this study, we used optical tweezers to measure the force 

exerted by filopodia and lamellipodia of dorsal root ganglia (DRG) neurons. 

The first part of this thesis examines the properties of the force exerted by 

filopodia and lamellipodia and the involvement of cytoskeletal components. I have found 

that single filopodium exerts a maximum force of 3 pN, whereas lamellipodia can exert a 

force up to 20 pN. Using metabolic inhibitors, I have shown that no force is produced in 

the absence of actin polymerization and that development of forces larger than 3 pN 

requires microtubule polymerization. These results show that actin polymerization is 

necessary for force production and demonstrate that not only do neurons process 

information, but they also act on their environment exerting forces varying from tenths 

pN to tens of pN.  

In the second part, dynamical properties of force generation in growth cone 

lamellipodia are presented. Using optical tweezers, the force-velocity (Fv) relationship 

and the power dissipated by lamellipodia, is measured with millisecond temporal 

resolution and piconewton sensitivity. When force and velocity are averaged over 3-5 s, 

the Fv relationships can be flat. On a finer time scale, random occurrence of fast growths 

and sub-second retractions become predominant. Maximal power dissipated by 

lamellipodia over a silica bead with a diameter of 1 μm is 10-16 W. The results clarify the 

dynamical properties of force generation: i) force generation is a probabilistic process; ii) 

underlying biological events have a bandwidth up to at least 10 Hz; iii) fast growths of 

lamellipodia leading edge alternate with local retractions. 

The third part of my thesis presents preliminary results describing the molecular 

mechanisms by which lamellipodia generate a force on encountered obstacles such as 

silica beads. Optically trapped bead seals to the membrane of lamellipodium due to 

adhesion forces, leading to reduction in the amplitude of Brownian fluctuations often by 

more than 10 times. Under these conditions, when the lamellipodium grows and pushes 
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the bead, fluctuations of bead position increase, resulting in discrete jumps varying from 

~5 to 50 nm. When the lamellipodium retracts, pulling the beads with it, no discrete 

events are observed. These discrete events are not observed in the presence of 

Latrunculin A, a blocker of actin polymerization. These jumps could be the elementary 

events underlying force generation in lamellipodia. 
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2 Introduction 

 Understanding the dynamics of force generation in growth cone is the main 

objective of the present work. In this chapter, initially I describe growth cone’s structural 

elements and its molecular constitution. Then I discuss the role of growth cone’s 

individual structural parts in the motility and in advancement of neurite. Finally, 

theoretical models proposed for force generation in biological systems are presented in 

the light of force measurements performed in vitro.  

2.1 Neuronal growth cone  

The growing tip of the neurite, the growth cone, plays a critical role in the 

formation of appropriate neuronal connections. Growth cone seeks out and connects to 

the potential target cells during development. Actively exploring tip of neurite explores 

the surroundings and respond to different chemical cues in the vicinity. Ramon y Cajal 

observed these expanded tips for the first time in Golgi preparations in 1890 and named it 

"cone d’accroissement" or growth cone. He later described its activities: "From the 

functional point of view, the growth cone may be regarded as a sort of club or battering 

ram, endowed with exquisite chemical sensitivity, with rapid ameboid movements and 

with certain impulsive force, thanks to which it is able to proceed forward and overcome 

obstacles met in its way, forcing cellular interstices until it arrives at its destination" 

(Landis, 1983). 

2.1.1 Structure of growth cone 

Structurally, the growth cone can be divided into three different domains namely 

peripheral, transition, and central domain (Figure 2.1). 
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Figure 2.1. Large paused cortical growth cone imaged in differential interference contrast 
microscopy. The central, transition, and peripheral regions of the growth cone are indicated in 
green, yellow, and pink, respectively. Note the presence of organelles in the dense central region 
and the thin lamellipodial veil and spiky filopodia in the peripheral region. Adapted from (Dent et 
al., 2003). 
 

 At the peripheral domain, actin monomers are polymerized into filaments 

building the dense sheet-like actin meshwork called lamellipodium and small spike-like 

structures of actin bundles called as filopodia (Figure 2.2). Growth cone motility and 

guidance behaviors that cause the axon to advance, retract, turn and branch are regulated 

by reorganization and dynamics of the actin and microtubule cytoskeleton located in the 

growth cone (Dent and Gertler, 2003). The central region of the growth cone contains 

bundled microtubules, and the periphery is dominated by actin filaments that form both a 

meshwork in veil-like lamellipodia and bundles in fingerlike-like filopodia (Figure 2.2). 

Filopodia play an important role in sensing guidance cues and steering the growth cone 

while lamellipodia are responsible for the advancement of the growth cone.  

Although actin filaments are primarily present in the peripheral region of growth 

cone and microtubules predominate in the central region, these two cytoskeletal elements 

extensively overlap in the transition region of the growth cone between the central 

domain and the periphery (Figure 2.1 and 2.2). Recent studies have shown that 

microtubules do not always remain confined to the central region but frequently penetrate 
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into the peripheral region of the growth cone and even invade filopodia, getting aligned 

with actin filament bundles (Dent and Kalil, 2001;Schaefer et al., 2002). 

 

 
 
Figure 2.2. Actin filaments and microtubules localization in a large paused cortical growth cone. 
(A) A fixed growth cone has been stained with phalloidin and antibodies to tubulin in order to 
fluorescently label F-actin (pseudocolored red) and microtubules (pseudocolored green), 
respectively. Microtubules are bundled together in the axon shaft and form a prominent loop in 
the central region of the growth cone. They also extend out into the periphery where they overlap 
(pseudocolored yellow) with F-actin. (B) A sketch illustrates locations of different populations of 
actin filaments and microtubules. Microtubules (green) are located in the shaft of the axon and its 
branch and in the central region of the growth cone but also extend into the lamellipodium and 
Filopodia .F-actin forms dot-like structures in the axon shaft and central region of the growth 
cone, a meshwork in the lamellipodium, and straight bundles in filopodia. Adapted from (Dent 
and Kalil, 2001). 
 

Both microtubules and actin filaments are highly dynamic structures in the growth 

cone. Through continuous polymerization and depolymerization processes they 

undergoing cycles of growth and shrinkage respectively. Moreover, actin filaments and 

microtubules can move and undergo dramatic changes in their organization and location 

within the growth cone. The actin filaments observed closely apposed to microtubules in 

the growth cone transition region (Figure 2.2 B) are also actin-based protrusive structures 

called as intrapodia, previously reported in growth cones of sympathetic neurons 

(Rochlin et al., 1999). Interactions between actin filaments and microtubules involve their 

coordinated polymerization and depolymerization (Dent and Kalil, 2001). Thus, proper 
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interplay between actin and microtubule is essential for initiating axon growth and 

navigation of growth cone leading axon to proper target. 

2.1.2 Cytoskeleton function in growth cone guidance and 
advancement 

In this work, by using optical tweezers, we have measured the force exerted by 

growth cone filopodia and lamellipodia with millisecond temporal resolution and 

Piconewton force sensitivity. Detailed analysis of these measurements enabled us to 

understand the dynamical properties of force generation. Also in order to understand the 

involvement of individual cytoskeletal components, we have studied the effect of 

different cytoskeleton blocking agents on force exerted by growth cone. In this section, 

the role of individual cytoskeletal element in growth cone motility and guidance is briefly 

discussed. 

The cytoskeleton plays a major role in virtually every cell biological process in 

eukaryotes, from cell division and cell motility to the intracellular trafficking of 

organelles. In the nervous system, the cytoskeleton plays an important part in axon and 

dendrite formation, which allows neurons to establish their exquisite and complex 

morphology. The cytoskeleton also helps in the wiring of neural circuitry by driving both 

the guidance of neuronal processes and the formation of synapses, which are the sites of 

inter-neuronal communication. 

Generally, cytoskeleton network is composed principally of three types of protein 

filaments- actin, microtubules, and intermediate filaments but, in peripheral domain of 

growth cones actin filaments and microtubules are predominantly present, each of which 

possesses unique biophysical and biochemical properties (Dent and Gertler, 2003).  
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Figure 2.3. Growing axons respond to guidance cues in the extracellular milieu. (A) Axon 
growth, fasciculation, and steering are regulated by a wide range of attractive or repulsive axon 
guidance cues that can act over short or long distances. (B) The growth cone detects and responds 
to axon guidance cues. The lamellipodia contain cross-linked F-actin filaments. The filopodia 
extend and retract through regulation of the rates of actin polymerization and depolymerization at 
the plus (+) and minus (-) ends of actin filaments, respectively, and of F-actin retrograde flow. 
Repulsive and attractive cues influence growth cone morphology by regulating these processes. 
Adapted from (Huber et al., 2003). 
  

Neurites form appropriate connections guided by variety of diffusible and surface-

bound extracellular cues (Figure 2.3A). The motile growth cone present at the tip of 

neurites sense spatially and temporally distributed guidance signals that direct the growth 

cone to turn toward (attraction) or away from (repulsion) the guidance source to reach 

their targets (Figure 2.3B) (Tessier-Lavigne and Goodman, 1996). Receptors present on 

the growth cone surface are activated by guidance molecules, which induces a cascade of 

localized intracellular signaling events that steers the growth cone. In nerve growth 

cones, actin and microtubules are the cytoskeletal components responsible for locomotion 

and are the ultimate targets of signaling molecules. 

At the leading edge kinetic force necessary for growth cone motility is generated 

as result of systematic interplay between various processes like actin-based protrusive 

activity coupled with retrograde actin flow from peripheral to central domain and 

attachment of the actin network to the membrane and substrate (Lin et al., 1994;Suter and 

Forscher, 2000). Microtubules are bundled together in the axonal shaft and central region 

(Figure 2.2) of the growth cone, whereas individual microtubules extend and occasionally 

invade the actin-rich peripheral area of growth cone, where they exhibit dynamic 

instability with characteristic rapid growth and shrinkage (Tanaka and Kirschner, 1991). 
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Although both cytoskeletal components are essential for growth cone motility, actin 

cytoskeleton is principally responsible for initiating and directing growth cone steering, 

whereas microtubules consolidate and support the new extension initiated by already 

protruded by actin (Smith, 1988;Mitchison and Kirschner, 1988). 

Thus actin filaments play a central part in cell motility (Pollard and Borisy, 2003) 

and are well positioned at the leading edge of the growth cone to be the direct targets of 

guidance cues. Actin polymerization drives protrusion of the plasma membrane 

(Pantaloni et al., 2001;Pollard and Borisy, 2003), but how this leads to cell motility is still 

controversial. Different cell types have different strategies for moving and changing 

shape (Machesky, 2002) and accordingly they organize their actin filaments at leading 

edge (Bear et al., 2002). Actin filaments also draw the growth cone membrane rearward 

during retrograde actin flow and are involved in growth cone retraction. Steady state 

myosin-dependent retrograde flow occurs in both filopodia and lamellipodia (Lin and 

Forscher, 1995), and involves cycles of net assembly of actin filaments at the leading 

edge, retrograde movement of actin networks, and disassembly of filaments at their 

proximal end (Forscher and Smith, 1988). Retrograde actin flow regulate the rate of 

neurite outgrowth and avoid microtubules from entering into the peripheral domain of the 

growth cone (Zhou and Cohan, 2004).  

2.1.3 Proteins regulating actin dynamics 

 Different proteins regulate actin dynamics at the leading edge of motile cells 

(Figure 2.4). In the case of growth cones, in response to external guidance cues, actin 

polymerization is stimulated by proteins such as profilin, Wasp, or Arp2/3, and actin 

crosslinking proteins such as filamin (Pollard and Borisy, 2003). Proteins such as cofilin 

and gelsolin depolymerize actin filament predominantly in the lamellipodium transition 

domain. In moving growth cones, the actin network moves centripetally backwards from 

the leading edge by retrograde flow (Forscher and Smith, 1988). Retrograde flow is 

driven by myosin motors and by actin assembly at the leading edge (Lin et al., 1996). 
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Figure 2.4. The actin polymerization machinery triggers dendritic nucleation for protrusion at the 
leading edge. The activated Arp2/3 complex nucleates and branches actin filaments at the leading 
edge, pushing the membrane forward. Capping proteins control the half-life of filaments, and by 
blocking a large fraction of barbed ends, promote site-directed elongation of uncapped filaments. 
ADF/cofilin promotes dissociation of ADP-actin from filament pointed ends and severs 
preexisting filaments, generating new barbed ends. Profilin catalyzes the exchange of ADP for 
ATP on monomeric actin molecules, which become available for new polymerization at barbed 
ends Adapted from (Disanza et al., 2005). 
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2.2 Force measurement in biological systems 

In 1675 van Leeuwenhoek observed for the first time cells crawling across his 

microscope slide, but only recently the molecular mechanisms behind cell movement 

have become a scientific focus. Biophysical techniques like optical tweezers (which will 

be described in detail in next chapter), atomic force microscopy and magnetic tweezers 

helped identifying regions where different force generating proteins are located. There 

are reports in literature about, in vitro force measurements (Finer et al., 1994;Dogterom 

and Yurke, 1997;Theriot, 2000;Block et al., 2003;Parekh et al., 2005) and the forces 

associated with cell movement measured in vivo (Oliver et al., 1995;Brunner et al., 2006). 

Theoretical modeling is complementing experimental work and has helped quantifying 

how the proposed mechanisms and the forces generated at a molecular level are 

integrated to produce whole cell movement.  

2.2.1 Force generation by actin polymerization 

The propulsion of the leading edge is a multi-step, complex process (Pollard et al., 

2000;Pollard and Borisy, 2003) but polymerization of actin filaments towards the cell 

membrane i.e. protrusion is a first step towards it. Polymerizing actin filaments alone, 

without any accompanying motors, can generate sufficient force to move leading edge of 

the cell. 

Actin filaments are ~7 nm diameter, semi-flexible polymers with persistence 

length ~17 μm (Gittes et al., 1993). Actin filaments are made up of dimer pairs of 

globular actin monomers (length ~2.7 nm), and are functionally polar in nature (Figure 

2.5). Each filament has two discrete ends: i -fast growing end called the plus end or 

barbed end and ii - slow growing end called the minus end or pointed end (Figure 2.5). 

Critical actin monomer concentration of the plus end of an actin filament is 

approximately six times less than that of minus end, when either of the ends is exposed to 

a concentration of monomeric actin that is greater than its critical concentration, the 

filament end binds monomers and grows by polymerization (Figure 2.5). On the contrary, 

while the monomer concentration is below the critical concentration, monomers detach 

from the filament end, and the filament depolymerizes (Figure 2.5). Basically by having  
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Figure 2.5. Actin Filament Elongation, ATP Hydrolysis, and Phosphate Dissociation The image 
shows an actin filament seed decorated with myosin heads and elongated with ATP-actin. The 
association rate constants have units of μM−1 s−1. Dissociation rate constants have units of s−1. The 
ratio of the dissociation rate constant to the association rate constant gives K, the dissociation 
equilibrium constant with units of μM. Note that the equilibrium constants for ATP-actin differ at 
the two ends, giving rise to slow steady state treadmilling. Hydrolysis of ATP bound to each 
subunit is fast, but dissociation of the γ phosphate is very slow. Adapted from (Pollard and 
Borisy, 2003). 
 
these two different critical actin monomer concentrations at the opposing ends of the 

filament, actin filaments can grow asymmetrically, and when the concentration lies 

between the two values, only the plus end grows while the minus end shrinks. Thus, by 

the process of actin treadmilling length of the filament remains roughly constant and the 

net momentum is transferred forward to generate a force. Even though experimental 

progress towards quantifying these forces is quite slow, theoretical basis for 

understanding them is quite well developed. 

2.2.2 Theoretical models for force generation by actin polymerization 

Mainly two kinds of theoretical models have been proposed to explain force 

generation by actin polymerization: ratchet models (Figure 2.6) (Mogilner and Oster, 

1996;Mogilner and Oster, 2003), and autocatalytic models (Carlsson, 2001;Carlsson, 

2003). 
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2.2.2.1 Ratchet models 

This model considers that cell membrane undergoes constant and random thermal 

fluctuations due to its microscopic size and relative flexibility. It assumes that, an actin 

filament is not an unbending rod that impedes growing once it reaches the membrane, but 

it is an elastic filament that can bend in response to the load. According to this model, if 

the bending of the filament away from the membrane is sufficiently large (angle > ~30°) 

and the filament is enough long (>~70 nm) but without buckling, an actin monomer 

(which is 2.7 nm in size) can easily insert itself between the filament and membrane 

(Mogilner and Oster, 1996;Mogilner and Oster, 2003). The extended filament 

consequently applies an elastic force on the membrane and moves it forward. Every 

addition of a monomer “ratchets” the membrane, preventing backward movement of the 

 
Figure 2.6. Sketch of the Ratchet model. Attached filaments (straight) are nucleated at rate n. 
They dissociate and become "working" filaments (bent). These, in turn, are capped at certain rate. 
The polymerization ratchet force generated by the working filaments is balanced by the force of 
attachment and load force. Adapted from (Mogilner and Oster, 2003). 
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membrane and only a net forward motion of the cell edge. This model, proposed to 

explain force generation by a single polymerizing actin filament, is called the elastic 

Brownian ratchet mode (Mogilner and Oster, 1996). An extension of this model is the 

tethered elastic Brownian ratchet model which includes the transient attachment of actin 

filaments to the membrane and considers two sets of filaments: working filaments, which 

are the filaments that are not attached to the membrane and can exert a force on it, and 

attached filaments, which cannot exert a force on the membrane (Figure 2.6) (Mogilner 

and Oster, 2003). Attached filaments could be converted into working filaments when 

they dissociate from the surface and working filaments could be converted to non 

working filaments when they are capped. Thu, tethered elastic Brownian ratchet model 

presume that new actin filaments/branches are generated independently of existing 

branches, and attempts to understand force generation from the group of actin filaments 

in the network. 

2.2.2.2 Autocatalytic Models 

Autocatalytic model also assumes that the load diffuses and that the probability of 

monomer addition to the tip of the polymer takes in to account Boltzmann factor 

(Carlsson, 2003). To understand the force generation by a network, two approaches have 

been used: stochastic simulations of an actin network growing against a load (Carlsson, 

2003), and a deterministic approach that utilizes an explicit rate equation for filament 

orientation distribution (Carlsson, 2001). In both cases the main assumption that new 

actin branches are generated from existing branches, is different from the assumption 

made in the tethered elastic Brownian ratchet model. The transient attachment of actin 

filaments to the surface is not considered in either approaches of the autocatalytic model. 

The stochastic simulation predicts the dependence of growth velocity on capping rate and 

other parameters like, load force, and branching. The simulations show that, for a fixed 

actin concentration, the growth velocity has an inverse linear relation with the capping 

rate and equals zero when the number of branches is less than 1.5 (Carlsson, 2003). These 

simulations, however, could be performed only for a small parameter range that is 

computationally feasible. Hence, the deterministic model was developed to study a larger 
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parameter range and test the generality of the previous numerical results rigorously 

(Carlsson, 2001).  

2.2.3 Force-Velocity (Fv) relationship  

Experimentally verifiable and main prediction of above described models is the 

relation between the load (force) against which a polymerizing actin filament (or 

network) elongates and the filament’s (or network’s) resultant growth velocity. 

For a single filament, the elastic Brownian ratchet model predicts an exponential 

force velocity relation (Mogilner and Oster, 1996): 
 

dep
)Tk/f(

max VV B −= ×− δV ,  
 

Where Vmax is the free polymerization velocity, f is the load force on a single 

filament, and Vdep is the depolymerization velocity. For a single filament, the 

autocatalytic model also predicts the same exponential force-velocity relation, given that 

the underlying basics of both models are the same (Carlsson, 2003). 

 Even if the single filament Fv relationships are similar for both type of models, 

the predicted Fv relationship for a network growing against a load are very different from 

the tethered elastic Brownian ratchet and the autocatalytic models. Probable reasons for 

these differences are: 

 
Figure 2.7. Fv relatioships predicted by the ratchet model (solid line) and autocatalytic branching 
model (dotted line). 
 

1. In autocatalytic model all filaments are assumed to generate force to oppose the 

load force, whereas only the working filaments generate force (opposing the load 
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force and force from attached filaments) in the tethered elastic Brownian ratchet 

model. 

2. New branches are generated only from existing branches in the autocatalytic 

model, while in case of tethered elastic Brownian ratchet model new branches are 

generated independent of existing branches. 

 
The tethered elastic Brownian ratchet model predicts a biphasic force-velocity 

relation where the velocity decreases quickly for small forces and decreases gradually for 

high forces (Figure 2.7) (Mogilner and Oster, 1996). On the other hand, the autocatalytic 

model predicts that the actin network growth velocity is independent of the applied force 

(load), i.e V=V0, the initial velocity, as explained in (Figure 2.7) (Carlsson, 

2001;Carlsson, 2003). A qualitative explanation for the insensitivity of the velocity to the 

force in this model is that if the load increases, the number of filaments pushing the load 

also increases proportionately, leaving the force per filament and the growth velocity 

unchanged (Carlsson, 2001).  

2.2.4 FV relationship in vitro 

The FV relations for actin networks had been obtained in vitro with a pathogenic 

bacteria, Listeria Monocytogens, which is propelled by actin polymerization inside the 

host cell. 

In the first study authors used increasing amounts of methylcellulose to slow 

Listeria velocity and computed the corresponding resistive force due to viscosity exerted 

on the body in each case with the Stokes Equation, knowing the viscosity of 

methylcelluose, the velocity of bacterial motion and the shape factor of the bacterium 

(McGrath et al., 2003). Quantitatively similar Fv relationship as proposed by the tethered 

elastic brownian ratchet model was obtained. In another similar study carried out with so 

called biomimetic system (spherical polystyrene bead coated with WASp on which an 

actin gel grows in the presence of other purified proteins) which also used varying 

amounts of methylcellulose to slow the bead velocity and computed the force acting on 

the bead with the Stokes Equation (Wiesner et al., 2003). In this case Fv relationship 

obtained supported the autocatalytic model. One reason for the different results of these 
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two similar in vitro experiments may be that only the analysis of Wiesner and coworkers 

(Wiesner et al., 2003) incorporates the impact of methylcellulose on the force-velocity 

curve other than due to its viscosity effect alone.  

To better understand polymerization force, several other in vitro motility systems 

have also been designed. Neither model has been unambiguously favored as a result of 

these in vitro data. However, these studies still provide useful estimates of the 

polymerization forces such as the stall force of an actin filament, stall force of an actin 

network, the maximum propulsive force generated by an actin network in the given in 

vitro system and the contribution of each actin filament to the total force measured. They 

also help us begin understanding and investigating the polymerization mechanics 

operating in vivo. 
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3 Materials and methods 

 In this chapter the optical tweezers technique is described and the experimental 

setup utilized in this work is illustrated. Experimental methods to measure the position 

and force are reviewed. Finally biological applications of optical tweezers are 

overviewed. 

3.1 Optical tweezers 

Objects of microscopic size or smaller (such as microspheres or cells) can be 

trapped and manipulated by strongly focused laser beams (Ashkin et al., 1986). Optical 

tweezers is an easily controllable laser light-based technique which permits to measure, 

in real time, displacements in the sub-nanometer range and forces in the tenths to 

hundreds of piconewton with millisecond time-resolution. Radiation pressure imparted by 

photons is used to balance external force acting on the object. Based on this principle, 

optical tweezers is becoming the technique of choice for force measurement, force 

application and fine manipulation of micron sized objects.  

3.1.1 An introduction to optical trapping 

Optical tweezers were first demonstrated by Ashkin (Ashkin et al., 1986) and are 

based on the central observation that photons carry a momentum p =h/λ, where h is the 

Planck’s constant and λ is the wave length of the light. Hence, if some microscopic object 

is placed in the path of photon flow, a force is exerted on the refractive interface of the 

object. On macroscopic objects, this force can be neglected, but on micrososcopic 

objects, such as micron-sized silica or polystyrene microspheres, the effect of this force 

can clearly be observed, if a high-intensity light source such as a laser is used. Two 

different optical forces are of importance to optical trapping: the gradient force and the 

scattering force. The gradient force on an object is pointed in the direction of highest light 

intensity (Figure 3.1A). The scattering force on an object is caused by backscattering of 

photons and acts in the direction of propagation of light beam (Figure 3.1 B). 

 
 

 

 20



 
 
Figure 3.1. Schematics showing the principle of optical tweezers based on ray optics.The 
representative laser paths are shown as black lines with arrows indicating the direction of beam 
propagation. The thickness of the black lines indicates the intensity of the laser beam. The forces 
are shown as green and blue lines with arrows indicating the direction of forces. The length of the 
lines indicates the intensity of forces. (A) Gradient forces which are generated upon refraction 
(FG, fa and fb, green lines). The beam is refracted on the surface of the bead, resulting in the 
change of momentum of the beam. Gradient forces (FG) result to compensate the momentum 
changes on the surface of the bead. The gradient forces from the inner region (fb) are larger than 
that from outer region (fa) of the beam, due to Gaussian profile of the laser. Consequently, the net 
gradient force in the lateral direction directs particles to center of the beam (FG). (B) Stable 3D 
trapping. The scattering forces (Fs, blue line) are in the direction of propagation of the laser beam 
(i.e., downward in this figure), while the gradient forces are directed toward the focused spot. 
Consequently, the bead is trapped slightly beyond the focused spot where the gradient force and 
scattering force are in equilibrium. Adapted from (Kimura and Bianco, 2006). 
 

Although the concept of radiation pressure is well known, it is not trivial to 

provide a theoretical description of micron sized optical trapping by a strongly focused 

laser beam that is generally valid. To simplify this theoretical treatment, particles trapped 

by the optical tweezers can be divided into three regimes: Mie regime, when the radius of 

the particle, r, is much larger than the irradiation wavelength, λ, (r>>λ); Rayleigh regime 

(r<<λ); and a regime in between them (r~λ)(Ashkin and Dziedzic, 1987;Ashkin, 1997). 

In the Mie regime, where the particle size is larger than the wavelength of the 

irradiation light, both the magnitude and the direction of the forces depend on the particle 

shape and trapping is generally restricted to spheres and ellipsoids. The conservation of 

momentum model (or ray optics) is applicable to this case (Ashkin, 1997). Any change of 
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momentum from individual rays of light when striking the particle results in an equal, 

opposite momentum change on the particle. A more intensive beam imparts a larger 

momentum change towards the centre of the trap than the less intensive beam. As shown 

in Figure 3.1 A, when the particle is out of trapping focus, the net momentum changes, 

and net force, can draw the particle back to the centre of the trap. When the particle is 

located in the centre of the trap, individual rays of light are refracting through the particle 

symmetrically, resulting in zero net lateral force and cancelling out the scattering force of 

the laser light (Ashkin and Dziedzic, 1987;Svoboda and Block, 1994). 

 If the particle size is substantially smaller than the wavelength, then the particle 

is in the Rayleigh regime. The direction of the force is independent of the particle shape 

and its magnitude varies with the particle orientation. The trapped particle can be 

considered as an induced dipole and the electromagnetic field of the light pulls the 

particle towards the brightest part of the beam, where the induced dipole minimizes its 

energy. In this case, the scattering force is proportional to the optical intensity and points 

towards the propagation of the laser light, while the gradient force is proportional to the 

gradient intensity and points in the direction of the intensity gradient. The gradient force 

attracts the particle into the region of the highest intensity, but the scattering force draws 

the particle into an equilibrium position that is slightly downstream of the maximum 

intensity. The competition between the two forces can result in stable trapping (Ashkin, 

1992). 

When the particle sizes are comparable with the wavelength of the trapping laser, 

neither the ray optic nor the dipole approach is valid. More complete electromagnetic 

theories are needed to explain optical trapping for particles in this intermediate size 

range. Majority of objects such as bacteria, yeast, organelles of larger cells and dielectric 

microspheres used alone or as handles to manipulate other biological objects, falls in this 

intermediate size range. Recently, a computational toolbox has been developed for a 

quantitative description of optical trapping in this size range (Nieminen et al., 2007). 

3.1.2 Experimental set-up used in this project 

Figure 3.2A shows a schematic drawing of the optical tweezers setup used in the 

experiments presented in this thesis. An inverted microscope (Olympus IX81) was used 
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to build this system (Figure 3.2C). As trapping laser, an Ytterbium Fiber laser (IPG 

Laser, λ = 1064 nm, Pmax= 5W) was used. Infra-red (IR) laser was chosen as it is most 

suitable to work with living cells and absorption, and scattering in biological materials 

are minimized when using IR laser light (Neuman and Block, 2004). After emitting from 

the source, laser was passed through set of lenses (lens L1, L2, L3, and L4), so as to 

expand and collimate the laser to match the size of the entrance pupil of the microscope 

objective. In order to obtain stable trapping conditions, a high NA microscope objective 

(Olympus 100X, NA=1.4, oil immersion) was used to tightly focus the beam in the 

sample plane to the trap particles. A dichroic mirror (DM1) directs the laser beam to the 

microscope objective and let the upcoming illumination beam to pass in order to image 

the sample onto a CMOS camera (Epix, VCA1281 sensor)  

 

 
 

Figure 3.2. (A) Schematic diagram showing optical tweezers setup used in this work (B) Remote 
controls of the setup (To minimize all kinds of unintended noise due to external disturbances, the 
setup was operated from another room) (C) Actual set up. 
 

The dish containing the differentiating dorsal root ganglia (DRG) neurons in 

nerobasal medium and 1µm in diameter silica beads functionalized with NH2 group (PSI-

1.0NH2; G.Kisker GbR, Steinfurt, Germany) was placed on the microscope stage, which 

could be moved by a 3-axis piezoelectric nanocube (17 MAX 301; Melles Griot Inc., 
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USA). In our experiments beads were trapped very close to (1µm ) the coverslip surface. 

We found that NH2 coated silica beads were more suitable  for our study as they settled 

down very fast and did not stick immediately to the surface of  the coverslip. The 

temperature of the dish was maintained at 37oc using a Peltier device and CO2 level was 

maintained at 5% for live cell imaging and measurements. The bead position was 

determined by using back focal plane (BFP) detection (explained in detail in the next 

section). The BFP of the condenser was imaged onto a QPD using the dichroic mirror 

(DM2) and lens L5 (Figure 3.2A), and the light was converted to differential outputs, 

digitized, and low-pass filtered. All components were mounted on an actively-damped 

optical breadboard such that all beams were parallel to the table surface (beam height, 11 

cm). The set up was controlled remotely from another room in order to avoid any kind of 

unintended noise due to external disturbances during experiments (Figure 3.2B). 

Lateral bead displacement d = (dx,dy) from the equilibrium position inside the 

optical trap was also determined also using video tracking by correlation method with 

sub-pixel resolution so as to crosscheck the measurements obtained by QPD. The axial, 

lateral trap stiffness and the detector sensitivity were calibrated using the power spectrum 

method (explained below in 3.1.4.2 section). 

In some experiments, multiple trapping was obtained by shaping the laser beam 

with a phase programmable modulator (PPM Hamamatsu X8267-11). This setup allows 

trapping multiple particles that can be organized in planar or volume arrays and 

manipulating the trapped particles independently in x-y-z directions. 

3.1.3 Position detection 

Accurate position detection and measurement are essential for a quantitative 

optical trapping. Different position detection methods, such as video-based position 

detection and laser-based position detection with a QPD, have been reviewed in (Neuman 

and Block, 2004). In this work we used QPD based position detection method, which can 

measure nanometer displacement at a rate of 10 kHz, which gives capability to measure 

small forces with a very high time resolution.  
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Figure 3.3. Diagram of back focal plane detection. The detection lens is positioned such that the 
back focal plane of the condenser is imaged onto a 2D photodetector. Rotations of the detection 
laser (red) cause translations in the back–focal plane which are read out at the detector. A 
dichroic mirror (green) reflects the detection laser (usually either red or infrared), but transmits 
the green light used for imaging. The voltage signal along diode quadrants are summed pairwise 
and differences are derived so as to obtain displacements along lateral (vx,vy) and axial (vz) 
direction, vx=(v1+v4)-(v2+v3), vy=(v1+v2)-(v3+v4), vz=v1+v2+v3+v4.
 

Displacements of a bead away from the equilibrium position cause rotations in the 

direction of laser propagation. These rotations occur in the image plane where the laser is 

focused, and hence cause translations in the back aperture of the condenser. Objective 

and condenser lenses are aligned in Koehler illumination. Like the objective, the back-

aperture of the condenser lens is inaccessible in a microscope; hence a lens (L5 in Figure 

3.2A) is used to image a photodetector into a plane conjugate to the back focal plane. 

Lateral translations of a bead in the laser focus cause translations of the detection laser in 

the back focal plane and are detected by a quadrant photodiode (QPD) (Lang et al., 

2002). In our setup we adapted this method as shown in (Figure 3.3). More recently, 

(Shaevitz et al., 2003) reported a position sensitive detector, which is able to record the 

position of the center–of–intensity of the laser light in two dimensions and is more 

advantageous as detection is independent of the spot size falling on the detector. The 

detection lens is positioned such that the back focal plane of the condenser is imaged onto 

a photodetector. Rotations of the detection laser cause translations in the back focal plane 
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which are read out at the detector. A dichroic mirror reflects the detection laser (usually 

either red or infrared), but transmits the visible light used for imaging. Axial motion is 

also detected using an optical trap. Axial displacements of a bead through the laser focus 

change the collimation of the laser. As the laser light passes through the condenser iris, 

the outer most ring of light is blocked from the detector. When a bead moves through the 

laser focus axially, the relative amount of light that is blocked changes, and so the total 

amount of light impingent on the photodetector also changes. There is a trade off between 

the lateral and axial detection sensitivities. Because the axial detection relies on blockage 

of the outer edges of the detection beam, narrowing the condenser iris, effectively 

reducing the condenser numerical aperture, increases sensitivity to axial motions. In 

contrast, the lateral detection scheme monitors the rotation of the laser light in the image 

plane, which has a large contribution from the outer most rays. The diameter of the 

condenser iris was set such that the lateral and axial detection sensitivities fit the needs of 

the experiment at hand. The position detector is calibrated by moving a trapped or stuck 

bead while monitoring the x–, y–, and z–voltage signals from the photodetector (Lang et 

al., 2002), (Pralle et al., 1999) . 

3.1.4 Trapping force calibration 

The trapping forces depend on the intensity of the laser power, the shape of laser 

focus, the size and shape of the trapped particles, and the index of refraction of the 

trapped particles relative to the surrounding medium. It is difficult to measure the 

trapping forces directly, but there are several ways to calibrate them. The forces can be 

calibrated by a power spectrum of the Brownian motion of a trapped particle and the 

trapping stiffness can be determined (Sheetz, 1998;Berg-Sorensen and Flyvbjerg, 2004). 

Another way of calibration is based on the fact that the external forces applied to a single 

particle within an optical trapping can push a single particle away from the focal region, 

and the force from the optical tweezers usually draws the particle back to the centre of the 

trap. In the equilibrium position, the external force equals the force from the optical 

tweezers. For a small displacement, the force from the optical tweezers, termed as 

restoring force, can be estimated by: 

F= - αx, 
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where α is the trap stiffness and x is the displacement of the particle away from 

the centre of the trap, when displacements are smaller than half the radius of the particle 

within the focal region. Once the trap stiffness is determined or given, the external force 

applied on the particle can be determined by accurately monitoring the position of a 

particle in an optical trap. Optical tweezers, therefore, have been widely used as a passive 

force measurement tool.  

Considerable effort has been made on measuring the trap stiffness with high 

accuracy. Many methods have been developed for this purpose, three of which will be 

described here.  

3.1.4.1 Equipartition method 

The easiest of these methods calculates the variance in the Brownian motion of a 

trapped bead (Neuman and Block, 2004). According to  equipartition theorem, the energy 

in the Brownian motion of the trapped bead is equal to ½ kBT, whereas the energy stored 

in the spring is equal to the one half times the spring constant, α, times the variance in the 

motion. Setting these two energies equal and solving for the stiffness, α, yields: 

B

TBk

2x
α= . 

Calculation of the variance in position is uncomplicated and easy way to estimate 

the trap stiffness although one needs a calibrated position detector.  

3.1.4.2 Power spectrum method 

An extensively used method and the one we used in the measurements presented 

in this thesis involves measuring the frequency spectrum of the Brownian noise exhibited 

by the bead. Typically, the mass of the bead is so small that the Reynolds number is very 

low and inertial forces are much weaker than those of hydrodynamic drag. In this regime, 

the equation of motion for the bead is that of a massless, damped oscillator driven by 

Brownian motion: 

),t(F)t(x)t(x =+
⋅

αβ  
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where x is the position of the bead, β= 6πηr is the drag coefficient of the bead, η 
is the viscosity of the surrounding fluid, and r is the bead radius. The Brownian noise 

source, F(t), has zero mean, and is essentially white with amplitude: 

( ) Tk4fF~ B
2 β= , 

The Fourier transform of the above equation is: 
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This equation is that of a Lorentzian with corner frequency fc = α/2πβ. Therefore 

the stiffness of the trap is given by α = 2πβfc. Power spectra measurement and subsequent 

fitting of the corner frequency were done by a custom made program in MATLAB as 

shown in Figure 3.4. If the displacement of bead away from trapping center is relatively 

small (approximately 300nm) then the position to photodetector voltage calibration will 

be linear and the corner frequency can be found from the power spectrum of the voltage 

data (Neuman and Block, 2004). 

Optical traps typically work around one micron above the coverslip, where the 

hydrodynamic drag coefficient of the bead is altered by the proximity of the surface. The 

viscous drag on a sphere of radius r whose center is a distance h above a surface is 

(Neuman and Block, 2004): 
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Figure 3.4. Typical calibration experiment recording of 1 μm silica bead trapped with 2 W laser 
power (at source). (A) QPD voltage signal along x, y, z axes in blue, green and red respectively 
(the signal along y is displaced by +1 volt for better visualization). (B) Power spectral densities 
calculated from the signal in volt along x, y and z axes in yellow, magenta and cyan respectively. 
Solid black line indicates Lorentzian fit corresponding to signal along x-axis (yellow) with corner 
frequency fc = 230 Hz, which gives stiffness value of 0.015 pN.nm-1. 
 

  

543

h
r

16
1

h
r

256
45

h
r

8
1

h
r

16
91

r6

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−

=
πηβ . 

A useful table of correction values can be found in (Svoboda and Block, 1994). 

The height of the bead above the coverslip surface can be found by monitoring the axial 

detection signal as the surface is moving into contact with the bead (Lang et al., 2002). 

3.1.4.3 Drag force method  

A third method of stiffness calibration directly balances the trapping force with a 

drag force (Neuman and Block, 2004). The coverslip, attached to a piezo-controlled 

microscope stage, is moved at a constant velocity by nanopositioning devices. For a 

given velocity, the trap stiffness is given by: 

x
v

Δ
βα = , 

where β is the drag coefficient corrected for the proximity to the surface, v is the stage 

velocity, and Δx is the measured displacement of the bead from the trap center. By 

measuring the displacement for a series of different stage velocities, one is able to use 

this method to probe the linearity of the optical trap, which cannot be done with the two 
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methods previously described. In practice, this calibration method is less   straightforward 

than the others. 

When all extra sources of noise and filtering are taken into account, the three 

different methods of calibrating trap stiffness usually agree to within 5–10%. It is a good 

idea to use all three methods when first calibrating an optical trap. However, on a daily 

basis, the power spectrum method was used as it affords the most information in the least 

amount of time. 

3.1.5 Biological applications of optical tweezers 

Optical tweezers have emerged as an important tool for manipulating single cell 

and performing sophisticated biophysical/biomechanical characterizations. Many proteins 

and enzymes, and their assemblies (constituting cell organelles), are true molecular 

motors whose mechanochemistry, as well as the elastic and mechanical properties of 

nucleic acids, are accessible to optical manipulation techniques (Bustamante et al., 2000). 

Biochemical processes investigated to date have revealed that forces developed by 

molecular motors are in the piconewton range, and, among different micromanipulation 

techniques, optical tweezers adapt better to this range.  For instance magnetic tweezers 

normally cover forces up to 10 pN, and atomic force microscopy works well above some 

hundreds of piconewton (Bustamante et al., 2000). 

The study of mechanics requires the measurement of a triad of independent 

magnitudes. Typically, for macroscopic purposes, these are time, distance and mass. At 

the molecule level, where chemical reactions are involved, energy is also very 

representative. 

Optical tweezers constitute a technique that is successfully contributing to the 

explanation of the mechanistic models of protein and cell function. It is taking these 

approaches beyond the hypothesis. At the single-molecule level (Svoboda and Block, 

1994;Bustamante et al., 2000), it is possible, for example, to measure in real time the 

concomitant forces generated during the conformational changes experienced by a 

protein in its folding/unfolding kinetic pathway (Kellermayer et al., 1997;Cecconi et al., 

2005)  or in the catalytic cycle of an enzyme (Bustamante et al., 2000;Stone et al., 

2003;Abbondanzieri et al., 2005), DNA mechanics (Allemand et al., 1998;Bustamante et 
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al., 2003) and the behavior of molecular motors (Finer et al., 1994;Mehta et al., 

1999;Smith et al., 2001;Asbury et al., 2003;Mallik et al., 2004;Pease et al., 2005;Dumont 

et al., 2006). Also, organelles, chromosomes or entire cells have been studied with optical 

tweezers in processes such as cell motility (Block et al., 1989) (Tadir et al., 1989) and 

mitosis (Berns et al., 1989). Cell-scale objects can be held directly in an optical trap and 

the specimen visualized by video microscopy. Molecules and aggregates, on the other 

hand, require their attachment to mechanical handles, usually in the form of silica or 

polystyrene microspheres. Finer attachments can be chemically engineered. For example, 

two dsDNA (double-stranded DNA) molecules could be used. 
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During neuronal differentiation, lamellipodia and filopodia explore the environment in search for the correct path to the
axon’s final destination. Although the motion of lamellipodia and filopodia has been characterized to an extent, little is known
about the force they exert. In this study, we used optical tweezers to measure the force exerted by filopodia and lamellipodia
with a millisecond temporal resolution. We found that a single filopodium exerts a force not exceeding 3 pN, whereas
lamellipodia can exert a force up to 20 pN. Using metabolic inhibitors, we showed that no force is produced in the absence of
actin polymerization and that development of forces larger than 3 pN requires microtubule polymerization. These results show
that actin polymerization is necessary for force production and demonstrate that not only do neurons process information, but
they also act on their environment exerting forces varying from tenths pN to tens of pN.

Citation: Cojoc D, Difato F, Ferrari E, Shahapure RB, Laishram J, et al (2007) Properties of the Force Exerted by Filopodia and Lamellipodia and the
Involvement of Cytoskeletal Components. PLoS ONE 2(10): e1072. doi:10.1371/journal.pone.0001072

INTRODUCTION
During morphogenesis, neuronal precursor cells migrate from the

zone where they are born to their final destination, which, in some

cases, is at a distance of several millimeters[1,2]. After reaching

their destination, neurons must establish appropriate synaptic

connections by sending out from their soma projections called

neurites. The motion of neurites is guided by growth cones located

at their tips[3,4]. Growth cones contain a variety of chemical and

mechanical receptors and sophisticated biochemical machinery

that couples these receptors to the cytoskeleton[5–7]. Extruding

from the tip of the growth cone are highly motile structures called

filopodia and lamellipodia that are used to explore and probe the

environment[3,6]. All these complex events, which are at the basis

of neuronal development and differentiation, involve cell motility

requiring a precise control of cellular and molecular motors. The

motion of these structures has been analyzed and characterized to

some extent by time-lapse microscopy[8–12].However, little is

known about how neurons use these structures to sense the

mechanical properties of their environment and about what range

of forces these structures exert during their exploratory motion.

Analysis of the forces exerted by neurons has been limited to

theoretical considerations; experimental analysis has been limited to

samples of isolated filaments[13–17]or migrating cells[18,19].

Measured forces range from 1 or 2 pN in isolated actin filaments

and microtubules to 1 nN in migrating keratocytes. Quantitative

characterization of the force exerted by lamellipodia and filopodia

during neuronal differentiation could help to elucidate how neurons

sense the environment and process mechanical information. Precise

description of the mechanical and dynamic events that occur during

neuronal differentiation and migration would provide new insights

regarding the molecular events controlling these biological functions.

In addition, it would offer a more precise way for evaluating the role

of molecular motors in cell motility under physiological conditions

and in neurodegenerative disease.

In this study, we used optical tweezers[20–22] to measure the

force exerted by filopodia and lamellipodia during neuronal

differentiation. Unlike other force measurement methods, optical

tweezers are non-invasive and provide direct high temporal

resolution for position detection (,10 nm) and force measurement

(,1 pN), highly relevant in biological systems[21]. We found that

a single filopodium exerts a force not exceeding 3 pN. In contrast,

lamellipodia exert forces of 20 pN or more lasting less than 1 s to

approximately 30 s. Treatment of growth cones with the selective

myosin light chain kinase (MLCK) inhibitor ML-7[23] or the

microtubule depolymerizing agent nocodazole[24] drastically

reduced the motion and force exerted by lamellipodia, while

filopodia continued to move and exert forces up to 3 pN. Growth

cones treated with the actin depolymerizing agent latrunculin

A[24] did not exert any detectable force. These findings suggest

that no force can be produced in the absence of actin

polymerization and that development of forces larger than 3 pN

requires microtubule polymerization. This study shows that not

only do neurons process information, but also they act on the

environment, exerting forces varying 1 to 2 orders of magnitude.
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RESULTS
During neuronal differentiation and development, the growth

cone of each neurite extends its filopodia and lamellipodia to

explore the chemical nature of the environment and to probe the

rigidity and composition of the extracellular matrix[23]. Under

these circumstances, cell motility is strictly linked to the generation

of forces. Therefore, we used optical tweezers[20–22] to measure

the force exerted by the growth cones of differentiating neurons.

Force exerted by growth cones of differentiating

neurons
Neurons from dorsal root ganglia (DRG) were isolated from P10-

P12 rats and plated on poly-L-lysine-coated glass coverslips and

positioned on the stage of an inverted microscope that was used for

imaging and measurement of forces (see Methods). After in-

cubation for 24 to 48 h, neurites could be seen emerging from the

DRG soma. Their motion was analyzed with time-lapse

differential interference contrast microscopy (Movie S1). Filopodia

and lamellipodia moved rapidly, exploring the three-dimensional

space in all directions, with velocities of up to 1.2 mm s-1 and

reaching heights up to 1–3 mm.

Silica beads 1 mm in diameter were functionalized with amino

groups to reduce sticking and trapped with 1064-nm infrared

optical tweezers (laser power between 8 and 44 mW) close to the

growth cones of the differentiating neurites (Fig. 1a and Movie S2).

We verified that 50 mW laser power reaching the specimen plane

and focused on the growth cone did not affect its motion for at

least 1 h. Often we observed both lateral and axial displacement of

the trapped bead by a growth cone. In several experiments, the

growth cone moved the bead as much as 2–3 microns from its

equilibrium position inside the trap (Fig. 1b). After the collision,

the bead did not remain attached to the growth cone and could

return to its original position in the trap (Fig. 1c). We measured the

lateral force exerted by the growth cone Fneu = (Fx, Fy) by

following the bead position with a quadrant photo diode

(QPD)[22] and video tracking[25] (see Methods). When the bead

was far from the growth cone, QPD recordings of Fx and Fy were

Figure 1. Collisions between a growth cone and a trapped bead. (a–c) A growth cone displacing a bead from the optical trap. The red cross
indicates the bead’s equilibrium position inside the optical trap. Scale bar, 2 mm. (d) Example of a force component obtained with QPD when the
bead was distant from the growth cone (upper trace) and when the bead was in contact with the growth cone (lower trace). Red lines are drawn 5 s
from the 0 mark. s, s.d. of force fluctuations. When the QPD trace crossed the red lines for at least 100 ms and a lamellipodium or filopodium was
seen hitting the bead, a reliable collision was detected. (e) Example of Fx and Fy during repetitive collisions between a moving lamellipodium and
a trapped bead. Trap stiffness was 0.05 pN nm21. (f) Comparison of Fx and Fy determined with a QPD (black traces) and video tracking (yellow traces).
doi:10.1371/journal.pone.0001072.g001
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quiet, with a s.d. s of approximately 0.18 pN (Fig. 1d, upper trace

), but when the bead was moved close to the growth cone,

collisions producing a force greater than 5 s were observed

(Fig. 1d, lower trace). On several occasions, Fx and Fy increased

within 1–10 s, reaching values of 20 pN (Fig. 1e), and when the

growth cone stopped pushing, the bead rapidly returned to its

equilibrium position, often in less than 1 ms.

The presence of floating debris and wandering filopodia near

the bead could affect the light pattern impinging on the QPD.

Therefore, a collision was considered reliable when the bead

displacement obtained with the QPD and video tracking were in

agreement (black and yellow traces, respectively, in Fig. 1f) and the

presence of a colliding filopodium or lamellipodium was verified

by visual inspection of the movie. We analyzed collisions between

growth cones and trapped beads in more than 200 experiments.

Each experiment lasted 2 min, and in many experiments there

were several collisions that could be used for statistical analysis (see

Methods). These collisions produced maximal forces ranging from

less than 1 pN to at least 20 pN, with a maximal rate of increase of

10 pN s-1. They lasted for less than 1 s to approximately 60 s.

Typically, larger forces were observed during longer lasting

collisions. As these forces extended over a wide range of intensities

and durations, we took the further step of characterizing the force

developed by each major component of growth cones, filopodia

and lamellipodia.

Force exerted by filopodia
Filopodia have an elongated and well defined shape with diameters

varying from 100 to 500 nm and an average length of approximately

15 mm[26]. Filopodia can exert force during both exploratory

motion and growth. During their exploratory motion often filopodia

pivot and push beads aside, possibly as a consequence of shearing

movements of the lamellipodial actin network where the filopodial

shaft emerges. We refer to the first case as lateral collisions and to the

latter case, where the filopodium pushes the bead, as protrusion. An

isolated filopodium, after wandering around the bead (Fig. 2a),

sometimes collided with it (Fig. 2b and Movie S3), exerting

a maximal force of up to 1 pN (Fig. 2c). The force measured during

lateral collisions depends on the exact geometry of the collision:

a moving filopodium can strike a trapped bead at its center or just

lightly touch its surface. Results from 42 experiments show that

filopodia never exerted a force larger than 2 pN (Fig. 2g), which is

a reliable upper boundary for the maximal force exerted during

a lateral collision. Some lateral collisions lasted less than 1 s, but on

several occasions we observed filopodia pushing beads for 15 s.

The force exerted by a filopodium is generated by its elastic

properties[19] and a variety of molecular processes[27], including

polymerization of actin filaments[28,29], which generates a pro-

trusion force counterbalanced by the membrane resistance force[30–

32], leading to a net force Ftip. To measure forces produced during

protrusion, beads were trapped in front of filopodia tips (Fig. 2d). In

33 experiments, we observed protruding filopodia displacing beads,

often repeatedly (Fig. 2e and Movie S4; see also Figure S1 and Movie

S5). The measured force was approximately 1 pN, and it developed

within 30 ms (Fig. 2f). Ftip did not exceed 3 pN (Fig. 2h). These

collisions rarely lasted more than 30 s.

When a filopodium collides with an encountered obstacle, it senses

the object’s chemical properties and also probes its mechanical

resistance and size. Therefore, we investigated whether the force

exerted by filopodia varies with the stiffness of the optical trap. We

conducted several experiments in which we increased the trap

stiffness from 0.006 pN nm-1 to 0.01 pN nm-1 and analyzed the

collisions that occurred between the same growth cone and trapped

beads. Under the two conditions of trap stiffness, collisions produced

forces similar in magnitude (Fig. 3a, b), but collisions with beads

trapped with a higher stiffness appeared to be shorter in duration.

Data from 18 experiments show a similar distribution of measured

forces under the two conditions but more frequent longer lasting

collisions with the lower trap stiffness (Fig. 3c, d).

As shown in Figure 3, filopodia appeared to modulate their

mechanical response by decreasing the duration of the collision

when encountering a stiffer obstacle. Thus, they appear to be able

to communicate the mechanical properties of the environment to

the internal biochemical machinery that powers the cytoskeleton.

Force exerted by lamellipodia
We often observed that a lamellipodium repeatedly pushes a trapped

bead (Fig. 4a,b and Movie S6), exerting a force of 3–4 pN (Fig. 4c).

Lamellipodia could displace beads from the trap when the maximum

trapping force was 20 pN. In 6 experiments, we observed

lamellipodium increasing the exerted force in well resolved steps of

approximately 0.2 pN, corresponding to displacements of approx-

imately 18 nm (Fig. 4d). These steps have properties very similar to

those observed during microtubule assembly, where discrete jumps

of approximately 20–30 nm are observed[16]. In 65 experiments,

lamellipodia exerted a force ranging from less than 1 pN to at least

20 pN, with a variable duration (Fig. 4e, f).

An isolated filopodium is complex from a molecular point of

view, but it has a defined structure, and the force it exerts is well

localized in space. In contrast, lamellipodia have a more

differentiated structure and are thought to exert a force with

variable direction in space. Therefore, we attempted to charac-

terize the force field generated by lamellipodia by trapping

multiple beads in front of a lamellipodium. Traps were separated

by 3–6 mm and located on the same plane. In several experiments,

3 beads were displaced simultaneously by the lamellipodium

(Fig. 5a), and we determined their trajectory with video imaging.

The direction of forces at the three locations changed during the

experiment and could span a large fraction of the free space

surrounding the moving lamellipodium (Fig. 5b).

The force simultaneously exerted at the two locations separated

by 3 mm was sometimes in opposite directions, and often the

direction of force exerted at one location reversed within 10 s.

This confirms that the force field generated by a lamellipodium is

complex and dynamic over a short time scale.

Effects of metabolic inhibitors on force exertion
In order to identify the molecular mechanisms of force production,

we analyzed the effect of metabolic inhibitors at concentrations

known to be effective[23,24]. Within 5 min after addition of 50 nM

latrunculin A, an inhibitor of actin polymerization[24], the

exploratory motion of growth cones was drastically reduced; under

this condition, the force exerted by filopodia and lamellipodia did not

exceed 3 or 4 pN, and collisions were shorter (black symbols in

Fig. 6d). When the concentration of latrunculin A was increased to

100 nM, moving filopodia collapsed (Fig. 6a–c), and no detectable

motion or force was observed in filopodia or lamellipodia (red

symbols in Fig. 6d). In contrast, addition of 50 nM nocodazole, an

inhibitor of microtubule polymerization[24], had a more specific

effect. It reduced the motion of lamellipodia but not of filopodia,

which continued to move (Fig. 6e–g), exerting a force of up to 3 pN

(Fig. 6e). Upon addition of 4 mM of the myosin II inhibitor ML-

7[23], a fast retraction of moving filopodia was observed (Fig. 6i–j),

but within 2–5 min new filopodia emerged from the growth cone

(Fig. 6k), which exerted a force in the pN range (Fig. 6l).

These results suggest the existence of two distinct but coupled

molecular motors within growth cones. Actin polymerization
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seems necessary for the development of any significant motion and

force in filopodia and lamellipodia. Microtubule polymerization is

not essential for filopodia motion or for the generation of weak

forces, but it is necessary for lamellipodia motion and generation

of forces larger than 3 pN.

DISCUSSION
A typical growth cone can be divided into two regions: the central

region and the peripheral region. The latter consists of filopodia

and a lamellipodia[33–36]; the motion of these structures is a major

component of neuronal differentiation. This is the first report of

a quantitative determination with a millisecond temporal resolution

of the force exerted by filopodia and lamellipodia in differentiating

neurons. The force developed over time, with a maximal rate of

increase of 10 pN s-1. Thin filopodia, during a protrusion or lateral

collision (Fig. 2), exerted a force not exceeding 3 pN. In contrast,

lamellipodia exerted a force of up to 20 pN and possibly more,

which could increase in discrete steps of approximately 0.2 pN

(Fig. 4d). These steps had properties very similar to those observed

during the assembly of isolated microtubules[16]. The measured

forces were smaller than forces involved in cellular traction force or

measured in migrating keratocytes[15,18]. Measured forces here

reported, may not fully represent the ability that lamellipodia have

because, at least in some cases, only a fraction of the forces exerted

is picked up by the beads and therefore the value of 20 pN here

reported for lamellipodia is the maximal force that was measured.

Indeed we expect lamellipodia to exert larger forces, possibly up to

hundreds of pN, as in migrating epithelial cells[37]. The diameter

of filopodia tips is approximately 100 nm, i.e. 10 times smaller than

the diameter of the used beads, therefore the maximal force

measured for filopodia is expected to be a reliable estimate of the

force exerted by these structures.

Force measurements with optical tweezers require test beads to

be in the harmonic potential well of the trapping optical force and

Figure 2. Force exerted by Filopodia. (a–b) Lateral collision between a filopodium and a trapped bead. Trap stiffness was 0.008 pN nm21. The red
cross indicates the bead’s equilibrium position inside the optical trap. (c) Fx and Fy from the QPD during the lateral collision shown in (a–b). (d–e)
Collision between a protruding filopodium and a trapped bead. (f) Fx and Fy from the QPD during the filopodial protrusion shown in (d–e). Trap
stiffness was 0.008 pN nm21. (g–h) Histograms of forces measured during lateral collisions and protrusions. Data were collected from 75 experiments,
each lasting 2 min. Scale bar, 2 mm.
doi:10.1371/journal.pone.0001072.g002
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to be displaced from its equilibrium position inside the well only by

the force to be measured. When adhesion forces between the bead

and the growth cone and/or between the bead and the substrate

become dominant, the stiffness of the optical trap is profoundly

modified and it is impossible to obtain an accurate force

measurement. Therefore, it is necessary to place the bead at 1

micron or so from the substrate where neurons are growing. As

exploring filopodia and lamellipodia lift up from the substrate,

forces can be reliably measured under these conditions.

Filopodia are composed of bundles of actin filaments and

occasional microtubules [5,24]. We observed that the force exerted

by a protruding filopodium is in the pN range, not exceeding 3 pN.

Its amplitude is of the same order as that measured during

polymerization of actin filaments[14,17] and microtubules[16]. This

similarity implies that the protrusion force generated by polymer-

ization is minimally counterbalanced by the membrane surrounding

actin bundles and microtubules, indicating that the membrane at the

filopodia tips has a low stiffness[38,39].

Simple mechanical considerations show that the force exerted by

a wandering filopodium during a lateral collision (Fig. 2a–c) can be

accounted for by the elastic force expected from its flexural

rigidity[19,40] and its bending or buckling. No additional contribu-

tion from other force-generating mechanisms is required. The exact

mechanisms causing filopodia to bend and/or buckle are not

understood. Thermal fluctuations certainly provide a constant driving

force, but a variety of other motor proteins[19,29,29] present in the

growth cone could intervene, although their relative contribution is

still unknown. Indeed, inhibition of myosin II and microtubule

polymerization blocked lamellipodia motion and drastically reduced

the force produced by growth cones (Fig. 6), while filopodia continued

to move and were able to exert forces in the pN range. In contrast,

with blockade of actin polymerization, filopodia and lamellipodia

produced no measurable forces. Thus, in the absence of actin

polymerization, growth cones cannot exert any force, and microtu-

bule polymerization is necessary for development of forces exceeding

3 pN. Therefore, actin filaments and microtubules cooperate and

interact in a complex way so as to generate a wide range of forces.

The motion of filopodia and lamellipodia seems to follow

stereotyped patterns wherein the stiffness of an obstacle is first

probed. Often, an isolated filopodium changed its direction of

growth after colliding with a trapped bead. In contrast, lamellipodia

could remove an obstacle, often by growing underneath it and lifting

it. Exploring filopodia exerted forces in the pN range, whereas

migrating cells exert forces in the nN range[18]. A migrating neuron

must be able to displace large obstacles; hence, it uses large forces.

Filopodia gently explore their environment using only weak forces,

and lamellipodia can exert a larger force opening the way for the

growth cone. Thus, not only do neurons process information but

they are also able to mechanically modify their environment by

selecting forces varying from less than 1 pN to 1 nN[18]. Indeed,

Figure 3. Effect of trap stiffness on force exerted. (a–b) Fx from the QPD during collisions between the same filopodium and the same bead trapped
with a stiffness of 0.006 and 0.010 pN nm21. Traces were filtered at 50 Hz and sub-sampled. (c–d) Scatter plot of force duration for collisions between
filopodia and beads trapped with a stiffness of 0.006 and 0.010 pN nm21. Data collected from 15 experiments at each stiffness.
doi:10.1371/journal.pone.0001072.g003
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differentiating neurons sense the mechanical and chemical proper-

ties of barriers in front of their neurites and appear to have smart

molecular motor planning, which guides and modifies the ultimate

direction taken by neurites in the developing nervous system.

Notably, these capabilities are in sharp contrast with metal and/or

silicon components used for commercial information processing,

which lack motility and motor planning.

MATERIALS AND METHODS
Rats (P10212) were anesthetized with CO2 and sacrificed by

decapitation in accordance with the Italian Animal Welfare Act.

DRGs were incubated with trypsin (0.5 mg/ml), collagenase (1 mg/

ml), and DNase (0.1 mg/ml) in 5 ml Neurobasal medium in

a shaking bath (37uC, 35–40 min). They were mechanically

dissociated, centrifuged at 300 rpm, resuspended in culture medium,

and plated on poly-L-lysine-coated (0.5 ug/ml) coverslips. Cells were

incubated for 24 to 48 h, and nerve growth factor (50 ng/ml;

Alomone, Israel) was added before measurements were obtained.

The optical tweezers setup was built as previously de-

scribed.[41] The dish containing the differentiating neurons and

the beads (PSI-1.0NH2; G.Kisker GbR, Steinfurt, Germany) was

placed on a microscope stage, which could be moved by a 3-axis

piezoelectric nanocube (17 MAX 301; Melles Griot Inc., USA).

The temperature of the dish was maintained at 37uC using a Peltier

device. Bead position was determined in the x,y plane with an

accuracy of 10 nm, using back focal plane (BFP) detection which

relies on the interference between forward scattered light from the

bead and unscattered light[22,42]. The BFP of the condenser was

imaged onto a QPD, and the light was converted to differential

outputs digitized at 4 kHz and low-pass filtered at 2 kHz. The

bead displacement d = (dx,dy) from the equilibrium position inside

the optical trap was also determined by video tracking using

correlation methods with sub-pixel resolution. The lateral trap

stiffness kx,y = (kx,ky) and the detector sensitivity were calibrated

using the power spectrum method[22], with voltage signals filtered

and digitized at 5 and 20 kHz, respectively. For multiple trapping

experiments, computer-generated diffractive optical elements were

projected onto the liquid crystal display of the phase-programma-

ble modulator (PPM X8267-11; Hamamatsu Photonics, Ja-

pan)[41,43] in order to generate multiple spots in the specimen

with a Gaussian intensity profile. For experiments where a single

Gaussian beam was required, the PPM was switched off. In

multiple trapping experiments, only the direction of the force was

determined but not its amplitude.

Figure 4. Force exerted by lamellipodia. (a–b) A lamellipodium growing and pushing a trapped bead. The red cross indicates the equilibrium
position inside the optical trap. Scale bar, 2 mm. (c) Fneu in the x,y plane obtained from a QPD recording. Trap stiffness was 0.009 pN nm21. (d) The
force exerted by a lamellipodium showing step-like jumps. Red lines, drawn by eye, indicate presumed discrete levels. The QPD recording was sub-
sampled and filtered at 50 Hz. After low-pass filtering, the value of s was reduced to 0.05 pN. Trap stiffness was 0.01 pN nm21. (e) Histogram of
forces measured during collisions between lamellipodia and trapped beads. Data reflect 65 experiments, each lasting 2 min. (f) Scatter plot of force
duration for the collisions shown in (e).
doi:10.1371/journal.pone.0001072.g004

Figure 5. Force field exerted by lamellipodia. (a) A lamellipodium
colliding with three trapped beads. (b) Direction and amplitude (in
arbitrary units, a.u.) of forces exerted on the three beads. Superposition
of bead displacements was obtained by video tracking at 5 Hz from a 4-
min recording. Scale bar, 2 mm.
doi:10.1371/journal.pone.0001072.g005
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For statistical analysis, QPD traces were low-pass filtered at

50 Hz. Collisions selected for statistical analysis had to satisfy three

criteria: 1) maximal amplitude larger than 5s, 2) duration longer

than 100 ms, and 3) presence of a colliding filopodium or

lamellipodium in contact with a bead verified by visual inspection

of the movie. The collision duration was calculated as the interval

between two consecutive crossings of 5s. The force exerted by the

neurite Fneu was calculated as -Ftrap. When the displacement of the

bead from its equilibrium position inside the trap was less than

400 nm, Ftrap = (Fx, Fy) was calculated as Fx = dxkx and Fy =

dyky[22]. When the bead was also moved along the vertical axis, the

lateral displacement measured with the QPD was compared with

data obtained from video tracking; the data were discarded if lateral

displacements measured with the two methods differed by more than

50%. The axial force along the z axis was not measured.

SUPPORTING INFORMATION

Figure S1 (a–b) Another example of a collision between

a protruding filopodium and a trapped bead . The filopodium

grows and hits the trapped bead. Trap stiffness was 0.006 pN/nm.

c: Fy from the QPD during the protrusion lateral of a–b. Scale bar,

2 mm. Numbers in the lower right corner indicate time in seconds.

Found at: doi:10.1371/journal.pone.0001072.s001 (3.29 MB TIF)

Movie S1 Movie of the motion of a growth cone imaged with

time-lapse differential interference contrast (DIC) microscopy on

the surface of the coverslip where the growth cone is located and at

three focal planes 1, 2 and 3 mm above the coverslip. The four

planes were scanned every 5 seconds. Filopodia are often seen in

focus at 2 and 3 mm from the coverslip. (Acquisition rate: 5Hz;

Scale bar, 2 mm). Numbers in the upper right corner indicate time

in seconds.

Found at: doi:10.1371/journal.pone.0001072.s002 (1.97 MB

MOV)

Movie S2 Movie of the collision between the growth cone and

a trapped bead shown in Fig.1a–c. The trap stiffness was 0.02 pN/

nm. The time of image acquisition is indicated in the correspond-

ing frame (Acquisition rate: 5Hz; Scale bar, 2 mm). Numbers in

the upper right corner indicate time in seconds.

Found at: doi:10.1371/journal.pone.0001072.s003 (4.95 MB

MOV)

Movie S3 Movie of the lateral collision between the filopodium

and a trapped bead shown in Fig.2a–b. The trap stiffness was

0.006 pN/nm. (Acquisition rate: 20Hz; Scale bar, 2 mm).

Numbers in the upper right corner indicate time in seconds.

Found at: doi:10.1371/journal.pone.0001072.s004 (4.07 MB

MOV)

Figure 6. Effect of inhibitors on force exertion. A growth cone before (a) and after (b–c) application of 100 nM latrunculin A. No motion was
observed after 3.5 min of exposure. (d) Scatterplot of force duration for collisions after application of 50 nM (black symbols) and 100 nM (red
symbols) latrunculin A. A growth cone is shown before (e) and after (f–g) application of 50 nM nocodazole. The growth cone retracted, but filopodia
continued to move for at least 30 min after drug exposure. (h) Scatterplot of force duration for collisions after application of 50 nM nocodazole. A
growth cone is shown before (i) and after (j–k) application of 4 mM ML-7. Filopodia quickly retracted but then regrew and moved for at least 20 min
after drug application. (l) Scatterplot of force duration for collisions after application of 4 mM ML-7. Scale bars, 2 mm. Drugs were added at time 0.
doi:10.1371/journal.pone.0001072.g006
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Movie S4 Movie of the collision between the protruding

filopodium and a trapped bead shown in Fig.2d–e. The trap stiffness

was 0.006 pN/nm. (Acquisition rate: 20Hz; Scale bar, 2 mm).

Numbers in the upper right corner indicate time in seconds.

Found at: doi:10.1371/journal.pone.0001072.s005 (4.45 MB

MOV)

Movie S5 Movie of the collision between the protruding

filopodium and a trapped bead shown in Supplementary Fig-

ure 1a–b. The trap stiffness was 0.006 pN/nm. (Acquisition rate:

20Hz; Scale bar, 2 mm). Numbers in upper right corner indicate

time in seconds.

Found at: doi:10.1371/journal.pone.0001072.s006 (3.60 MB

MOV)

Movie S6 Movie of the collision between the lamellipodium and

a trapped bead shown in Fig.4a–b. The trap stiffness was 0.02 pN/

nm. (Acquisition rate 20Hz; Scale bar, 2 mm). Numbers in upper

right corner indicate time in seconds.

Found at: doi:10.1371/journal.pone.0001072.s007 (3.20 MB

MOV)
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Abstract 

Polymerization of actin filaments is the primary source of motility in lamellipodia and is 

controlled by a variety of regulatory proteins. The underlying molecular mechanisms are only 

partially understood and a precise determination of dynamical properties of force generation is 

necessary. Using optical tweezers we have measured with millisecond temporal resolution and pN 

sensitivity the force-velocity (Fv) relationship and the power dissipated by lamellipodia of dorsal 

root ganglia (DRG) neurons. When force and velocity are averaged over 3-5 s, the Fv relationships 

can be flat. On a finer time scale, random occurrence of fast growths and sub-second retractions 

become predominant. Maximal power dissipated by lamellipodia over a silica bead with a diameter 

of 1 μm is 10-16 W. Our results clarify the dynamical properties of force generation: i - force 

generation is a probabilistic process; ii - underlying biological events have a bandwidth up to at 

least 10 Hz; iii - fast growths of lamellipodia leading edge alternate with local retractions.  
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Introduction  

Neurons are among the most specialized cells in living organisms and are capable to self 

organize in complex networks, formed by billions of individual cells, at the basis of higher brain 

functions. In order to develop a network, neurons protrude to form neurites, highly motile structures 

exploring the environment in search of the appropriate chemical cues necessary for the formation of 

the correct synaptic connections (1-3). The neurite’s search is guided by growth cones (4-6) located at 

their tip, formed by an extended lamellipodium from which thin filopodia emerge (7). Filopodia tips 

can move at a speed up to 0.8-1 μm s-1 and their motility is at the basis of the efficient formation of 

neural networks. Due to its enormous importance, this system has been the object of intense 

experimental and theoretical investigation. The primary source of motility in growth cones is the 

polymerization of actin filaments (8, 9), a process controlled by a variety of regulatory proteins (10). 

The addition of actin polymers to actin filaments in close contact with the membrane pushes the 

cellular membrane forward exerting a protrusive force (11, 12). The overall dynamics regulating this 

process is not yet clear and mathematical modeling provides a way to link known molecular events to 

force generation (1). A key outcome of these models is represented by the so-called Fv relationships, 

describing how the force F exerted by the actin filament network is related to the velocity v of their 

growing ends (8, 13-17). Fluctuations of contacts between the tip of actin filaments and the 

surrounding membrane is an essential feature of Brownian ratchet models (8, 13, 14) leading to Fv 

relationships in which v decreases exponentially with increasing values of F. In autocatalytic models 

(17, 18) when an obstacle is encountered the actin network, due to the action of controlling proteins, 

originates new branches, so that the velocity v can remain constant with increasing values of F. The 

experimental investigation of the molecular events underlying force generation in growth cones 

requires a precise measurement of Fv relationships with high temporal resolution and sensitivity. 

Previous determinations of the Fv relationships (19) with an Atomic Force Microscope (AFM) 

cantilever (20, 21) had a limited time resolution and were obtained either in vitro or in migrating 

keratocytes exerting forces in the nN range.  

In this work, by using optical tweezers (22-24), we provide an experimental characterization of 

Fv relationships in neuronal growth cones with a millisecond resolution and pN sensitivity. This 

experimental technique enabled us to determine the three components of the force F = (Fx,Fy,Fz) 

exerted by a lamellipodium from rat dorsal root ganglia (DRG) and of the velocity v = (vx,vy,vz) of its 
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leading edge. From these vectorial quantities we have derived several properties of force generation in 

lamellipodia that have important biological consequences. We find that force generation in 

lamellipodia is an intrinsically multi-scale process. At a temporal resolution of 3-5 s, the exerted force 

can increase, maintaining a constant velocity, where the Fv relationships are almost flat. At a 

millisecond resolution, a much more complex behavior is observed, with random occurrence of fast 

growths and sub-second retractions. Our results show that autocatalytic models (15, 17, 18) of force 

generation are correct in a mean approximation. At a higher temporal resolution the network of actin 

filaments evolves in a much more complex manner that can be characterized only probabilistically. 

Fast forward motions consuming up to 104 molecules of ATP s-1 μm-2 alternate with local catastrophes, 

whose duration has a power law distribution. These results provide a precise characterization of the 

dynamics of force generation in lamellipodia, necessary to understand the biochemical events 

underlying force generation.  

 

Results 

DRG neurons isolated from P10-P12 rats were plated on poly-L-lysine-coated glass coverslips, 

positioned on the stage of an inverted microscope used for imaging and measuring forces (see 

Methods). After 1 or 2 days of incubation, neurites emerged from the DRG soma and their motion was 

analysed. Filopodia and lamellipodia moved rapidly exploring the three dimensional (3D) space in all 

directions, which, in some occasions, could have a tip velocity as high as 1 μm s-1. DRG lamellipodia 

were imaged with Atomic Force Microscopy (Fig.1a) and the height of their leading edges varied from 

45 to 660 nm (Fig.1b). Silica beads of 1 μm diameter were trapped with a 1064 nm infrared (IR) laser 

tweezers and positioned in front of the leading edge of a lamellipodium (Fig 1e). When the centre of 

the bead is located at about 800 nm above the coverslip, a thick lamellipodium can push the bead 

(Fig.1c). Visual inspection of lamellipodia indicates the existence of four stereotyped behaviours (25): 

(i) the lamellipodium grows underneath the bead without displacing it (Fig.1d); (ii) the bead seals to 

the cell membrane and when the lamellipodium retracts the bead is pulled away from the trap; (iii) the 

lamellipodium grows underneath the bead displacing it upwards and eventually moving it in a “shovel-

like” manner (26); (iv) the lamellipodium pushes the bead forward exerting a force in the direction of 

its growth (Figs.3a and b). Often, two or more of these stereotyped behaviours were observed in the 

same experiment. In the example illustrated in Fig.1f, initially the lamellipodium pushed the bead 
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upwards by some hundreds nm (at 68.2 s) and the bead returned into the equilibrium position inside 

the trap following lamellipodium retraction (at 94 s). After a few seconds, the lamellipodium grew 

under the bead and, because of the presence of adhesion forces, the bead sealed to the lamellipodium 

membrane. Finally, when the lamellipodium retracted, it dragged away the bead from the trap (after 

100 s). Force velocity relationships were computed only from those experiments in which the 

lamellipodium pushed the bead and then retracted (events of type iv). In all experiments, the growth 

cone behaviour was followed with video imaging and the displacement of the bead x = (x, y, z) was 

measured with a high temporal resolution using a Quadrant Photo Diode (QPD). The z axis is 

perpendicular to the coverslip and parallel to the IR laser beam used for optical trapping. By 

determining the trap stiffness k = (kx, ky, kz), F was obtained as (-x kx, -y ky, -z kz) (23, 27).  

At a low temporal resolution the force can increase with an almost constant velocity and the Fv 

relationships can be flat 

When lamellipodia pushed the bead upwards, they exerted forces up to 20 pN. In the case of 

the experiment shown in Fig.1, when the bead displacement was low pass filtered at 0.2 Hz (green 

trace in Fig.1g) corresponding to a temporal averaging over a time window of 3-5 s, the computed 

velocity vz had little oscillations around an almost constant value. 

From the smoothed values of Fz and vz, the Fv relationship (green trace) shown in Fig.1h was 

obtained. The Fv relationship - following an initial rise – resulted almost flat, indicating that the 

lamellipodium can increase the exerted force while the velocity of its leading edge remains almost 

constant. Nearly identical results were obtained when Fv relationships were computed from the 

modulus of F and not from a single component (Fz).  

An almost flat Fv relationship was observed in other 7/95 experiments but not in all of them. 

As it will be discussed later, force generation is not a deterministic event but a probabilistic process. 

The observation that, in some experiments, Fv relationships filtered at 0.2 Hz are flat, indicates that the 

overall dynamics assumed by autocatalytic models capture basic properties of force generation. These 

models predict that when the underlying system of actin filaments and controlling proteins have the 

time to self-reorganize, v becomes independent of F. Almost flat Fv relationships were obtained 

averaging the values of F and v in a time window of 3-5 s, which could be the time required by the 

underlying system of actin filaments to reorganize properly, as predicted by these models. 

 

 49



 

Fig. 1. (a) AFM image of a lamellipodium. The height is coded as in the coloured scale bar and horizontal scale 
bar (white), 2 μm. (b) Occurrence histogram of measured height of lamellipodium leading edges from 7 growth 
cones. (c -d) A 1 μm bead in front of a thick and a thin lamellipodium respectively. (e) Low resolution image of 
a lamellipodium in front of a bead trapped with an infrared laser. Scale bar, 2 μm. (f) Successive frames 
showing the lamellipodium (55 s) growing towards the bead (64 s) and lifting it up (68.2 s). Subsequently, the 
lamellipodium retracted (94 s) and grew under the bead pulling it out of the trap during retraction (100-123 s). 
Cross indicates the centre of the optical trap. Scale bar, 2 μm. (g) Fz (grey trace) used for computing the Fv 
relationship. The dotted box indicates the section of force measurement used to compute the Fv relationship 
after Gaussian filtering at 0.2 Hz (green trace). (h-i) Fv relationships obtained after smoothing at 0.2 Hz (green 
trace in h) at 1 Hz (pink trace in h) and at 10 Hz (i). 

At a higher temporal resolution the velocity oscillates and transient periods of negative velocities 

are observed  

Averaging a temporal series over a time window of 3-5 s corresponds to smoothing the data 

with a low pass filter with a bandwidth up to 0.2 Hz. This is a strong assumption, and, in order to 

determine if this cut-off frequency is appropriate, we investigated the bandwidth of biological events 

underlying force generation. We computed and compared the power spectrum density PSDnoise(f) of 

forces measured far from any neuron (red inset in Fig.2a) - originating from Brownian fluctuations and 

instrumental noise - and the PSDpush(f) of forces measured when the leading edge of the lamellipodium 

pushed the bead (blue inset). PSDnoise(f) and PSDpush(f) are very similar and almost indistinguishable 

for f > 30 Hz, but at frequencies below 1 Hz the energy of PSDpush(f) is at least 30 times larger than 

that caused by Brownian collisions. The analysis of PSDnoise(f) and PSDpush(f) in 14 experiments 
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indicates that the bandwidth of biological events underlying force generation in DRG lamellipodia 

extends up to 10 Hz. Therefore, events occurring on a time scale of 100 ms cannot be neglected and 

force generation must be analysed at a temporal resolution higher than in previous investigations. In 

some experiments, we also observed 5-30 nm jumps of bead position occurring in less than 1 ms, 

which could constitute the elementary events underlying force generation (26). 

 
Fig. 2. (a) Power spectrum density of forces measured far from the lamellipodium (red trace) and when the 
lamellipodium pushed the bead (blue trace), computed from the red and blue traces respectively shown in the 
inset. Green, pink and, black arrows indicate 0.2, 1 and 10 Hz respectively. (b) Average <Fv>x relationships 
from data filtered up to a bandwidth of X Hz. <Fv>0.2, (green trace), <Fv>1 (pink trace), and <Fv>10 (black 
trace). (c) Probability distribution p (v<-3 σv⎜F/Fmax) of velocities being less than -3σv at fixed forces (F/Fmax). 
Average Fv relationships from 95 experiments obtained from data filtered with a Gaussian filter at a cut-off 
frequency of 0.2 (green), 1 (red) and, 10 (blue) normalized to Fmax. (d-e) Distribution of ON and OFF events, 
respectively. Black straight lines have a slope of -0.6 and -0.78 in (d) and (e) respectively. 

We computed Fv relationships from the experiment of Fig.1g after smoothing at 0.2 (green 

trace in Fig.1h), 1 (pink trace in Fig.1h) and 10 Hz (Fig.1i). When data were smoothed at 1 and 10 Hz 

the velocity oscillated around an almost constant value of 200 nm s-1 reaching occasional peak values 

up to 1-10 μm s-1. In the majority of the experiments (88/95) the shape of measured Fv relationships 

was not constant. Two examples are shown in Fig.1 and Fig.3. In some experiments (14/95) the 

lamellipodium pushed the bead and then retracted repetitively. Also in these cases the maximal force 

and the shape of Fv relationships measured at different times varied. These results suggest that force 

generation in lamellipodia is an inherently probabilistic process and does not follow a deterministic 

 51



mechanism. In order to characterize this probabilistic dynamics we attempted to determine average Fv 

relationships <Fv>. Forces measured in the individual experiments were normalized to the maximal 

exerted force Fmax, defined as the maximal force beyond which the lamellipodium leading edge does 

not advance and the velocity is consistently negative for at least 10 s. This procedure was repeated for 

data filtered at 0.2, 1 and 10 Hz. The three average Fv relationships obtained in this manner exhibited 

the same overall behaviour (Fig.2b), with the velocity increasing together with the force, up to about 

30 nm/s, and remaining approximately constant up to Fmax. Thus, even if in the single events the Fv 

relationship can vary significantly, the average Fv relationship is flat, consistent with autocatalytic 

models. 

Having observed the existence of periods during which lamellipodia leading edges have 

negative velocities, we asked whether these periods occurred at random times or occurred more 

frequently near the maximal measured force Fmax. We computed the probability distribution of 

velocities being less than -3σv at fixed forces F/Fmax, p(v <-3σv⎜F/Fmax), where σv is the standard 

deviation of Brownian fluctuations at a given bandwidth (see next section and Fig.3). This probability 

distribution was estimated from the 95 experimentally determined Fv relationships. The value of p(v 

<-3σv⎜F/Fmax) varied between 0.05 and 0.1 (Fig.2c) and was nearly identical when it was derived from 

Fv relationships computed at 0.2, 1 and 10 Hz bandwidth. This result indicates that retractions of the 

lamellipodium leading edge are not triggered by a strong load but their occurrence is random. 

Statistical properties of Fv relationships were characterized by measuring the distribution of 

time intervals (Δt) with a positive (Fig.2d) and a negative velocity (Fig.2e), representing the ON and 

OFF events of the lamellipodium leading edge. Detected ON and OFF events were seen using a 

bandwidth of 0.2 Hz. The distributions of the ON and OFF events obtained at the a bandwidth of 0.2 

Hz do not have an exponential behaviour but exhibit a power law distribution of the type Δt-0.7 (see 

straight lines in Figs.2d and e) over almost two log units, suggestive of a growth characterized by 

avalanches (28). 

In some experiments, the lamellipodium (Fig.3a) pushed the bead causing a pure lateral 

displacement (Fig.3b) so that only Fx and Fy changed appreciably (Figs.3c and d), whereas Fz remained 

constant (Fig.3e). Transient retractions of the lamellipodium leading edge caused the appearance of 

knots i.e. those periods with a negative velocity in the Fv relationships (Figs.3g and h). Because of the 

limited spatial and temporal resolution of the CCD camera used, these transient retractions could not 

be confirmed by video imaging (Fig.3b). Therefore, we asked whether they could originate from 
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numerical artefacts and noise fluctuations. Indeed, the numerical computation of derivatives from 

noisy data is ill-conditioned (29) and negative velocities could be produced by the specific method 

used to compute the velocity from the displacement. Therefore, we compared two alternative methods 

to obtain the velocity from the displacement, such as Gaussian filtering and Linear regression. In 

Gaussian filtering the velocity is obtained from the displacement by its convolution with the derivative  

 
Fig. 3. (a) Low resolution image of a lamellipodium near the trapped bead. Scale bar, 2 μm. (b) Micrographs of 
the lamellipodium pushing the bead laterally during its protrusion. Images taken at different times during force 
generation as shown in panels c-e. Cross indicates the centre of the optical trap. Scale bar, 2 μm. (c-e) The three 
components Fx, Fy and Fz of force recordings used to compute the Fv relationships (grey trace) and after 
Gaussian filtering at 0.2 and 1 Hz (green and pink traces). The dotted box indicates the section of the recording 
used to compute Fv relationships in f-h. (f) Green and black Fv relationships computed with Gaussian filtering 
at 0.2 Hz and Linear regression, respectively. (g-h) Fv relationships computed with Gaussian filtering at 0.2 and 
1 Hz (green and red traces) from the Fx and Fy component of the force. Dotted red and black lines represent -3σv 
at the 0.2 and 1 Hz bandwidths, respectively. During the push Fy becomes negative and therefore, in panel h, 
transient retractions are associated to positive velocities. (i) Relationship between standard deviation of velocity 
distribution as a function of smoothing and for two trap stiffnesses of 0.005 pN/nm (squares) and 0.045 pN/nm 
(circles). 
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of a Gaussian function with a given cut-off frequency, while in the Linear regression method (see 

Methods) the velocity is obtained from the displacement and a linear interpolation of the data on a 

window containing W data points. In these two methods the time scale is given by the cut-off 

frequency of the Gaussian function and by the number of points W in the window, respectively. As 

shown in Fig.3f (compare green and black traces) the Fv relationships computed by the two methods 

from Fy had the same shape and number of knots.  

 

However, as shown in Figs.3g and h, the number of knots in the Fv relationships computed for 

both the Fx and Fy components, increased when the bandwidth of Gaussian filtering increased from 0.2 

to 1 Hz (green and pink traces respectively). As numerical differentiation is very sensitive to noise and 

it amplifies its high frequency components, we investigated at what extent the knots, are caused by 

Brownian fluctuations. We computed Fv relationships from force measurements obtained far from the 

lamellipodia. The obtained velocity was Gaussian distributed around 0, with a standard deviation σv 

increasing with the bandwidth of Gaussian filtering, depending also on the trap stiffness (Fig.3i). 

Periods with a negative velocity, less than -3σv, could not be ascribed to Brownian fluctuations and all 

negative velocities exceeding -3σv lines (green and red dotted lines in Figs.3g and h) were caused by 

interactions with the lamellipodium: the -3σv line was crossed several times and more often at larger 

bandwidths. 

Lamellipodia dissipate power per unit area up to 10-16 W μm-2 during force generation 

Having determined the Fv relationships and estimated the maximal exerted pressure, we asked 

how much mechanical work and power lamellipodia exert on encountered obstacles such as beads. In 

several occasions we have observed that the lamellipodium leading edge (Fig.4a) pushed the bead in 

an elaborated, non-linear way (Fig.4b) so that its motion was not a simple displacement in one 

preferred direction. In these experiments Fx, Fy, Fz change almost independently, reaching their 

maximum amplitude at different times (Fig.4c). In these cases, the bead motion is not a simple upward 

axial motion as in Fig.1, but the bead moves along a trajectory that often changes its direction (see 

black trace in Fig.4f). The knots in the Fv relationship described in the previous section are a 

consequence of these changes of direction. In order to investigate more quantitatively the nature of 

these events, it is useful to monitor the vectors F and v, with their modulus and direction. The power 

dissipated by the lamellipodium is the scalar product F°v. The amplitude of the instantaneous velocity 
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depends on the bandwidth used for filtering the data and F°v reaches values up to 4×10-18 W, when v 

is computed at a bandwidth of 0.2 Hz but up to 10-16 W at a bandwidth up to 10 Hz (Fig.4d).  

The analysis of the angle φ between F and v provides useful information to understand the 

mechanics of collisions between beads and lamellipodia: when φ is close to 0 the lamellipodium 

pushes the bead and develops a positive work, and when φ  is close to π the lamellipodium retracts. 

When the angle φ is close to π/2 lamellipodia do not perform any work. A negligible work is 

performed primarily in two occasions: firstly, when the lamellipodium exerts a force comparable with 

that caused by Brownian collisions with the surrounding medium molecules; secondly, when the bead 

slides over the lamellipodium and F becomes orthogonal to v and no work is generated. The angle 

φ  was determined as φ=Arccos(F°v / IFI IvI )  (Fig.4e). When the modulus of F was larger than 2 pN, 

φ was usually close to either 0 or to π (Fig.4h), indicating that F and v are parallel or antiparallel with 

an opposite versus. 

In contrast, when the modulus of F is smaller than 2 pN (Fig.4g) the value of φ is most of the 

time close to π/2. A sudden change of the bead motion like those shown in Fig.4f could be caused 

either by a momentary sliding of the bead over the lamellipodium or by a transient retraction of the 

lamellipodium leading edge. The position of the lamellipodia was followed by video imaging with a 

CCD camera (see Figs.4a and b) and we could verify by visual inspection that the bead was always in 

contact with the lamellipodium leading edge. In addition, these two mechanisms can be easily 

distinguished observing the work: if the bead slides over the lamellipodium no work will be done and 

φ will remain close to π/2. Instead, if the lamellipodium transiently retracts, the work done by the 

lamellipodium will be negative and φ will remain close to π. With this procedure, we verified that 

periods with negative velocities analyzed in Fig.2 and Fig.3 were indeed associated to values of φ 

close to π and therefore were not caused by an occasional sliding of the bead but by transient 

retractions of the lamellipodium leading edge. 
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Fig. 4. (a) Low resolution image of a lamellipodium pushing a trapped bead. Scale bar, 2 μm. (b) Successive 
frames taken at different times during the push. Cross indicates the centre of the optical trap. Scale bar, 2 μm. 
(c) Three components of the force Fx (blue), Fy (green) and Fz (red) exerted by a lamellipodium during the push 
smoothed at 10 Hz. (d) Instantaneous power F°v acting on the bead. (e) Time evolution of Arcos(F°v / IFI IvI) 
during the push. Data obtained after smoothing at 0.2 Hz. (f) The trajectory of the bead in a 3D space. The black 
arrow indicates the direction of the trajectory. Red and blue arrows on A and B indicate the instantaneous F and 
v respectively at the two times corresponding to 54 and 58 s in panels b-e. When F and v are parallel Arcos(F°v 
/ IFI IvI) is close to 0 and when F and v are antiparallel Arcos(F°v / IFI IvI) is close to π. (g) Histogram of the 
Arcoss (F°v / IFI IvI) when IFI was smaller than 2 pN. (h) Histogram of the Arcoss (F°v / IFI IvI) when IFI 
was larger than 2 pN.  

Discussion 

The present manuscript provides a precise characterization of force generation in DRG 

lamellipodia with millisecond time resolution and pN sensitivity. Previous measurements made with 

the cantilever of an AFM were restricted to a temporal resolution in the second range and were 

obtained in migrating keratocytes producing forces in the nN range (21). By using optical tweezers we 
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measured force generation in DRG growth cones and we could characterize several physical properties 

of the molecular network underlying force generation. As shown in Fig.2, relevant biological events 

occur on a time scale of less than 100 ms and different dynamical properties are seen at a time scale of 

3-5 s. Our results show that: i - force generation is not a deterministic mechanism but follows a 

probabilistic process; ii - underlying dynamical events occur on different time scales varying from 100 

ms to 5 s; iii - fast growths alternate to local retractions of the lamellipodium leading edge. These 

results shed a new light on the biochemical network controlling force generation in neuronal growth 

cone lamellipodia (10, 30, 31). 
 

Physical properties of force generation 

The maximal force exerted by pushing lamellipodia on a bead with a diameter of 1 μm was 

about 20 pN (24). In some experiments this force clearly stopped the lamellipodium growth and could 

be identified as the stall force Fstall, i.e. the force that is able to block protrusion. As very often 

lamellipodia retract spontaneously, in most experiments Fstall was expected to be larger than the 

maximum force that was measured, Fmax. The contact area between pushing lamellipodia and beads 

was determined by the analysis of video images of the event under examination. For all frames i 

corresponding to a detectable force measured with the QPD, we determined the arc Γi of the bead in 

close contact with the leading edge of the lamellipodium and the corresponding angle 2θi on the bead 

center, as shown in red in Figs.5a-c. 

 
Fig. 5. (a-c) Micrographs of a lamellipodium pushing the bead at different times (see time scale in d). Scale bar, 
2 μm. Red angles drawn by eye. (d) Evolution of estimated contact area Sc during the push. (e) Histograms of 
the value of Sc obtained from 4 experiments during which lamellipodia pushed the bead. 
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Then the contact surface at frame i, Sc(i), is assumed to be equal to the corresponding spherical 

cap of the bead. Simple geometrical formulae indicate that Sc(i) = 2 π (1-cos θi) r2, where r is the bead 

radius. Fig.5d reproduces the time evolution of the estimated value of Sc when a lamellipodium pushed 

a bead. The value of Sc varied from 0.25 to 1.57 µm2 (Fig.5e). Therefore, the maximal pressure 

exerted by DRG lamellipodia was 20-80 pN µm-2. The maximum power per unit area exerted by 

lamellipodia was estimated to be 1-4×10-16 W µm-2. The hydrolysis of one molecule of ATP provides 

energy of about 10-19 J (32) and, if this energy is converted into work with an efficiency of 60%, the 

hydrolysis of about 0.25-1×104 s-1 of ATP per µm2 is necessary to produce the measured power. The 

number of actin filaments in keratocyte and fibroblast lamellipodia has been estimated to be of the 

order of 100 per µm2 (21). Therefore, the number of elementary motors per µm2 is likely to be of the 

order of 100, where each elementary motor consumes approximately 25 to 100 ATP per second.  

 

Fv Relationships 

When position and force were filtered at 0.2 Hz, in some experiments, the pushing lamellipodia 

exerted an increasing force maintaining a constant velocity (Fig.1h). In the great majority of the 

experiments performed, however, force generation was characterized by large fluctuations of the 

velocity. This shows that force generation in lamellipodia is probabilistic in nature and only average 

<Fv> relationships (Fig.2b) exhibit a flat shape, during which the mean velocity remains constant 

while the force can increase. Therefore, autocatalytic models correctly describe force generation in a 

mean approximation. In individual experiments, the velocity does not remain constant but oscillates 

and can become negative. In these experiments, the same force can be exerted with a positive and 

negative velocity, a characteristic feature of systems exhibiting hysteresis (20). The time duration of 

periods with a negative velocity has a power law distribution reminiscent of self-organized systems 

near criticality (28). During these events, the force exerted on the bead by the lamellipodium acts in 

the opposite direction of its velocity, indicating that the bead is not simply sliding on the membrane, 

but that the actin filaments network is retracting, possibly due to local catastrophe or organized 

depolymerization controlled by cofilin and other severing proteins (10). Therefore, force generation is 

not a smooth process but it is characterized by a random alternation of fast growths and retractions of 

the lamellipodia leading edges. 
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Possible mechanisms underlying local retractions 

What could be the mechanism underlying the unstable dynamics responsible for the frequent 

occurrence of negative velocities of lamellipodia leading edge? Proteins controlling the network of 

actin filaments, such as cofilin, could randomly sever a large branch of actin filaments leading to a 

local catastrophe causing a transient retraction of lamellipodium leading edge. Although the 

occurrence of local catastrophes seems the most likely biological mechanisms underlying local 

transient retractions, it is possible that instability could originate also from interactions with the 

cellular membrane. Growing and branching of the actin filaments can also be instable because of the 

action of membrane tension. Indeed, the maximum measured force Fmax is approximately 20-100 

pN/μm2, of the same order of the force exerted by a membrane with a surface tension γ equal to 0.005 

kBT/nm2 axially deformed by 1 μm (33). The actin filament network is confronted with a membrane 

exerting a force similar to Fmax, so that the actin filament network is only marginally stable and its 

propulsive force is almost counterbalanced by the membrane tension. Growing and retracting in 

conditions of marginal stability allows fast reactions and could provide lamellipodia the flexibility 

necessary for its physiological functions.  

In conclusion, autocatalytic models (15, 17, 18) capture basic molecular mechanisms 

underlying force generation in a mean approximation. The network of actin filaments underlying force 

generation in lamellipodia, besides giving origin almost continuously to new branches of actin 

filaments, grows in a probabilistic way with fast forward motions consuming up to 104 molecules of 

ATP s-1 μm-2 alternating with local catastrophes, whose duration have a power law distribution.  

Methods 

Neuron preparation 

Wistar rats (P10−12) were anesthetized with CO2 and sacrificed by decapitation in accordance 

with the Italian Animal Welfare Act. DRGs were incubated with trypsin (0.5 mg/ml), collagenase (1 

mg/ml), and DNase (0.1 mg/ml) in 5 ml Neurobasal medium in a shaking bath (37º C, 35-40 min). 

They were mechanically dissociated, centrifuged at 300 rpm, resuspended in culture medium, and 

plated on poly-L-lysine (PLL)-coated (0.5 µg/ml) 30 mm coverslips in Neurobasal medium containing 

10% fetal bovine serum (FBS) at a density of 2.5 x 105 cells/cm2. Cells were incubated for 24 to 48 

hours before the measurements. At this stage, filopodia tips and lamellipodia leading edge could move 
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at a speed of 1 μm s-1. After 2-3 days plated neurons formed a dense network and the growth cones 

motion was drastically reduced. 

 

AFM imaging 

We determined the three dimensional (3D) structure of DRG lamellipodia and filopodia using 

Atomic Force Microscopy (AFM). Before imaging with AFM, DRG neurons were fixed with 

Glutaraldehyde. DRG growth cones were imaged using a commercial AFM (Nanowizard II, JPK 

Berlin) combined with an inverted optical microscope (Zeiss Axiovert 200), and a fluorescence set-up 

(Zeiss X-cite). Soft tips from VEECO with low force constant (OBL, 0.03N/m) were utilized and 

forces were kept between 100 pN and 1 nN during scanning.  

 

Optical tweezers set-up 

The optical tweezers set-up was built as described in (24). The dish containing the 

differentiating neurons and the beads (PSI-1.0NH2, G.Kisker GbR, Steinfurt Germany) was placed on 

the microscope stage which could be moved by a 3 axes piezoelectric nanocube (17 MAX 301, Melles 

Griot Inc., USA). The temperature of the dish was kept at 37º C by a Peltier device. The dish was 

maintained in an environment providing a controlled level of CO2 (5%) and moisture (95%). The bead 

position x = (x,y,z) was determined along all the axes (x, y and z) with an accuracy of 10 nm using 

back focal plane (BFP) detection, which relies on the interference between forward scattered light 

from the bead and unscattered light (23, 27, 34). The BFP of the condenser was imaged onto a 

quadrant position detector (QPD; Hamamatsu C5460SPL 6041) and the light intensity was converted 

to differential outputs digitized at 20 kHz and low pass filtered at 5 kHz. Bead z position was 

determined using the Gouy phase shift effect (23). The trap stiffness Kx,y,z=(kx,ky,kz) and the detector 

sensitivity were calibrated using the power spectrum method (23). Detector sensitivity was also 

checked by measuring voltage signals originating from displacements of a bead stuck to the coverslip 

obtained with the 3 axis piezoelectric nanocube. The force exerted by the lamellipodium F was taken 

as equal to -Ftrap. When the displacement of the bead from its equilibrium position inside the trap 

d=(dx,dy,dz) was less than 400 nm, Ftrap = (Fx, Fy, Fz) was calculated as Fx= dxkx, Fy=dyky and Fz=dzkz 

(23). All experiments of force recordings were monitored by video imaging with a CCD camera at a 

frame rate of 20 Hz. Visual inspection of recorded images allowed to discard from the analysis all 
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force recordings during which visible debris interfered with the optical determination of the bead 

position x.  

 

Data Analysis 

The velocity v=(vx,vy,vz) of the bead was obtained by numerical differentiation of its sampled 

position x=(x(n),y(n),z(n)) n=1,…N. Numerical differentiation was computed either by convolution of 

the position components x(n),y(n) and z(n) with the derivative of a Gaussian filter 1/(σ π2 ) exp(-

t2/σ2 ) (Gaussian filtering) or by Linear regression. In the Linear regression method, the components 

vx(n), vy(n) and vz(n) of velocity v were calculated by a linear least square fit of the equations x(n)= ax 

+ vx(n) (i – n)Δt, y(n)= ay + vy(n) (i – n)Δt and z(n)= az + vz(n) (i – n)Δt with i = -W,…,W where Δt 

was the sampling interval. The two parameters ax and vx(n) were determined by minimizing the cost 

function: 
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and similarly for ay and vy(n) and for az and vz(n). The computation of derivatives with the Linear 

regression method depended on the number of samples W. Fv relationships obtained from the same 

force measurement sampled at 10 kHz with the Linear regression method with W=2200 (black trace in 

Fig.3c) and obtained by using a Gaussian filter with a cut-off frequency of 1 Hz (red trace in Fig.3c) 

had the same number of knots. Similarly, Fv relationships obtained with the Linear regression method 

with W = 10,000 and by using a Gaussian filter with a cut-off frequency of 0.2 Hz had the same shape. 

When the number of points, W, considered for Linear regression was increased, it was equivalent to 

decreasing the band width of the Gaussian filter.  
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Abstract 

Force generation in lamellipodia of growth cones is thought to originate by polymerization of 

actin filaments (1). The progressive addition of actin polymers to the existing network of actin 

molecules is expected to generate a force on the membrane in the range of 1-20 pN for μm2 . By using 

optical tweezers, we have characterized with high temporal resolution and sensitivity the molecular 

mechanisms by which lamellipodia generate force on encountered obstacles such as silica beads. 

Because of  the presence of adhesion forces, beads in close contact with a lamellipodium can seal on its  

membrane reducing the amplitude of Brownian fluctuations often by more than 10 times. Under these 

conditions, when the lamellipodium growths and pushes the bead, fluctuations of bead position 

increase and discrete jumps varying from about 5 to 50 nm are clearly detected. When the 

lamellipodium retracts, pulling the beads with it, no discrete events are observed. These discrete 

events are not observed in the presence of Latrunculin A, a blocker of actin polymerization (2). These 

jumps could be the elementary events underlying force generation in lamellipodia. 
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Introduction 

The growth of actin filament networks is a fundamental biological process that drives a variety of 

cellular and intracellular motions (3). In neuronal growth cone lamellipodia, the kinetic force necessary for 

growth cone motility is a result of the systematic interplay between various processes, such as the actin-

based protrusive activity coupled with retrograde actin flow from peripheral to central domain and the 

attachment of the actin network to both membrane and substrate (5,4). In this study, by using optical 

tweezers, we have characterized with high temporal resolution and sensitivity the molecular mechanisms by 

which lamellipodia generate force on optically trapped beads. We observed that the thermal fluctuations of 

an optically trapped bead were affected when a lamellipodium pushed or pulled the bead. A detailed 

analysis of this change in noise allowed us to characterize the discrete events underlying force generation in 

lamellipodia. 

Neurons obtained from dorsal root ganglia (DRG) were isolated from P10-P12 rats and plated on 

poly-L-lysine-coated glass coverslips, positioned on the stage of an inverted microscope used for imaging 

and measuring forces (see Methods and (6,7)). After 24 to 48 hours of incubation, neurites emerged from 

the DRG soma and their motion was analysed. Often the leading edge of lamellipodia emerging from the 

soma of a DRG neuron grew at a speed of 0.1 μm sec-1 and after about one minute lifted up, initiating a 

three dimensional (3D) shovel like motion, then retracted. In many occasions, during this movement a new 

lamellipodium protruded underneath. The overall cycle of protrusion, 3D buckling and retraction occurred 

repeatedly with a period varying from 60 to 150 sec. Lamellipodia not emerging from the soma but 

originating from growth cones of distal neurites grew and retracted without the large 3D motion observed in 

lamellipodia emerging from the soma of differentiating DRG neurons. 

Results 

By using optical tweezers it is possible to record with a temporal resolution in the kHz range the 

displacement and force exerted by the leading edge of a lamellipodium (6,7). The sensitivity of the 

recording system is limited by the presence of Brownian fluctuations, which make the detection of forces 

smaller than 200 fN difficult. In some occasions, however, beads seal onto the lamellipodium, because of 

the presence of adhesion forces, and Brownian fluctuations almost disappear. Under these conditions it is 
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possible to record discrete jumps with an amplitude varying from 5 to 100 nm which could be the 

elementary events underlying force generation in lamellipodia. 

Change of noise during push and pull         
  Silica beads of 1 μm in diameter were trapped with a 1064 nm infrared (IR) optical tweezers in 

front of lamellipodia of differentiating DRG neurons (Fig.1a). The centre of the bead was positioned at a 

height of about 700 nm from the coverslip so that the protruding lamellipodium could push it. The position 

of the bead, x = (x,y,z), was measured with a quadrant position detector (QPD) from which, by knowing the 

trap stiffness k = (kx,ky,kz), the force exerted on the bead (8,9) F = (Fx,Fy,Fz) is obtained as F = - k · (x –

xeq), where xeq is the equilibrium position inside the optical trap (9).When the protruding lamellipodium 

grew, it pushed the bead (Fig.1b and c) displacing it both laterally and axially. 

  Under these conditions, recordings of bead displacements - and of exerted forces – obtained with 

the QPD (Fig.1f) exhibited a clear increase of noise on the three components. In contrast, when the 

lamellipodium retracted (Fig.1d and e) pulling the bead with it, no increase of noise was observed (Fig.1f) 

and instead a clear reduction of the amplitude of Brownian fluctuations was observed. Under these 

conditions adhesion forces between the bead and the lamellipodium caused the bead to seal on the 

membrane leading to a drastic reduction of the amplitude of Brownian fluctuations. Given the presence of 

these adhesion forces when the lamellipodium retracted it could pull the bead away from the optical trap. 

Observed changes of noise could be caused by modifications of the properties of the optical trap 

following bead displacement from its equilibrium position, fluctuations of adhesion forces between the bead 

and the neuronal membrane or by the random superposition of elementary events underlying force 

generation. If the observed increase of noise is caused by the elementary events of force generation, in the 

presence of drugs interfering with actin polymerization this noise is expected to be altered but it will be the 

same if it originates from changes of trap properties. When differentiating neurons are treated with 100 nM 

of the depolymerising agent Latrunculin A, lamellipodia and filopodia stop moving (6).Under these 

conditions, if the laser beam trapping the bead is moved towards the neuron, the bead can be displaced from 

its equilibrium position as when it is pushed by a protruding lamellipodium. No significant increase of noise 

was observed when the bead was displaced by less than 500 nm from the equilibrium position inside the 

optical trap (Fig.1g). When the bead is lifted up by more than 600 nm, properties of the optical trap and of 

the sensitivity of the detection system of the bead position change, affecting measured displacements. In 
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several occasions, the bead could seal onto the membrane of lamellipodia treated with Latrunculin A and 

Brownian fluctuations drastically decreased but no subsequent increase of noise could be observed. These 

observations suggest that the increase of noise observed during force generation (Fig.1f) for displacements 

less than 300 nm, is associated to the dynamics of the actin filaments network and its analysis can reveal 

properties of elementary events underlying force generation. 

 
Fig.1. (a) Low resolution image of a lamellipodium protruding from the DRG neuron soma. The bead is trapped in 
front of the lamellipodium leading edge by an IR laser. Scale bar, 1 μm. (b-c) Successive high resolution frames of the 
lamellipodium during a push. At 24 s the bead is in its equilibrium position in front of the leading edge of the 
lamellipodium (b). Subsequently, the lamellipodium grows and pushes the bead (47 s) displacing it both laterally and 
axially (c). The cross indicates the equilibrium position of the optical trap. Scale bar, 1 μm. (d-e) Successive high 
resolution frames of the lamellipodium during a pull. The lamellipodium retracted, pulling the bead back into its 
equilibrium position (56 s). Then, it continues retracting (88 s) pulling further the bead. The cross indicates the 
equilibrium position of the optical trap. Scale bar, 1 μm. (f) The three components of the bead displacement x (blue), y 
(green), and z (red). Insets highlight the increase of noise during the push (2), the decrease of noise during pull (3) 
with respect to the amplitude of the Brownian fluctuations of the trapped bead in the equilibrium position (1) for the 
axial (red) and one of the lateral components (green). (g) The three components of the bead displacement x (blue), y 
(green), and z (red) recorded while moving the laser beam trapping the bead towards the neuron, after treatment with 
100 nM Latrunculin A. 
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Fig.2. (a) Low resolution image showing the trapped bead sealed on the lamellipodium membrane. Scale bar, 1 μm. 
(b) Four subsequent microimages depicting the lamellipodium while it retracts and pulls the bead which happens to be 
sealed to the lamellipodium membrane. The cross indicates the equilibrium position of the optical trap. Scale bar, 1 
μm. (c) From top to bottom: the three components of the bead displacement (x, y, and z respectively) during the pull 
of the bead performed by the retracting lamellipodium. All the components show a clear reduction of the amplitude of 
the Brownian fluctuations due to the adhesion of the bead to the membrane of the retracting lamellipodium. Blue and 
red parts of the traces correspond respectively to Brownian motion and adhesion considered for the analysis of the 
power spectrum density (PSD) shown in (e). (d) Variance of the bead displacement for the three components in (c) vs 
time. (e) Top: power spectrum density (PSD) of the bead displacement during Brownian fluctuations (blue trace) and 
during adhesion (red trace) for the x component of the bead displacement shown in (c). Bottom: power spectrum 
density (PSD) of the bead displacement during Brownian fluctuations (blue trace) and during adhesion (red trace) for 
the z component of the bead displacement shown in (c). (f) Histogram of the variance reduction of the Brownian 
fluctuations during adhesion. (g) Histogram of the modulus of the adhesion force Fad. (h) Relation between the 
variance reduction of displacement fluctuations and the modulus of the adhesion force. 
 

Adhesion properties            
  Electrical recordings from single channels (10) provide a major experimental tool for 

understanding molecular mechanisms underlying electrical signals in neurons. In single channel recordings 

the recorded noise is reduced when the tip of patch electrodes seals on the membrane patch (10) as a 

consequence of the development of adhesion forces between the membrane and the electrode glass. When 

the silica bead seals (Fig.2a) on the membrane and is pulled by the retracting lamellipodium (Fig.2b), the 

Brownian noise affecting force and displacement recordings is drastically reduced on the three components 

x,y and z (Fig.2c). In several experiments, the variance of lateral and axial fluctuations of displacement far 
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from the lamellipodium was about 200 and 1000 nm2, respectively, but during adhesion it could decrease by 

more than 10 times (Fig.2d). In several occasions, the bead was attracted towards the lamellipodium (lower 

trace in Fig.2c) and its axial position z decreases by 100-300 nm (10) and, simultaneously, Brownian 

fluctuations greatly reduced and often their variance σz
2 decreased to less than 5 nm2 (Fig.2d). The power 

spectrum density (PSD) of Brownian fluctuations far from the lamellipodium, SFF(f), had a Lorentzian 

distribution of the type (9): 

SFF(f) = KB T / π β ( fB

2
c
2 + f  )                                                               (1) 2

 

where KB, and T are the Boltzmann’s constant and the absolute temperature, respectively, β is the 

hydrodynamic drag coefficient of the bead and f

B

c is equal to  κ/2πβ, where κ is the trap stiffness. In our 

experiments fc varied from 80 to 120 Hz. The PSD of position fluctuations during the establishment of 

adhesion could be fitted by the same Lorentzian distribution but with a higher value of drag coefficient β 

(Fig.2e), presumably because of the formation of bonds between the lamellipodium membrane and the bead. 

The amplitude distribution of Brownian fluctuations in the three coordinates x,y and z during the 

establishment of adhesion had always a normal distribution with a progressively smaller variance. During 

adhesion, the variance of Brownian fluctuations could decrease by 20 up to 80 % (Fig.2f). After 

establishment of adhesion, in many experiments when the lamellipodium retracted it pulled the bead away 

from the optical trap and the modulus of adhesion force Fad was larger than the maximum trapping force 

Fmax, which in our experiments varied from 5 to 20 pN. In these circumstances adhesion forces (12,11) - 

exceeding the maximal trapping force – hold the bead anchored to the lamellipodium (12,14,13). Often, 

during retraction the bead returned abruptly inside the trap and the maximum measured force provided a 

good measure of the modulus of Fad. Collected values from 16 experiments show that the modulus of Fad 

varied from just 2 pN to 10 pN (Fig.2g). The analysis of the relation between estimated modulus of Fad  and 

decrease of the standard deviation of displacement fluctuations indicate that larger adhesion forces are 

associated on average to a larger decrease of noise (Fig.2h). 

 

Increase of noise during push          
  Often adhesion of the bead reduced drastically the amplitude of Brownian fluctuations so that the 

standard deviation, σz, could be less than 5-10 nm (lower traces Fig.2c) and, in the presence of this reduced 

noise, when the lamellipodium pushed the bead, a different kind of noise was observed, in which discrete 
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jumps in displacement and force recordings could be observed. In several experiments, during the 

establishment of adhesion the amplitude of Brownian fluctuations decreased and when the lamellipodium 

pushed the bead, the variance of recorded displacements increased (Fig.3a and e). Changes in noise are 

better analysed when the slow component was removed, leaving unaltered all frequencies above 0.1 Hz 

(Fig.3b and 3f). The autocorrelation function ρx(t), ρy(t) and ρz(t) of Brownian fluctuations along the three 

components x, y and z, measured before adhesion, as expected were delta functions δ(t) (blue traces in 

panels of Fig.3c and g). However, the autocorrelation functions during the pushing phase following 

adhesion, were not anymore delta functions, but exhibited an exponential behaviour e-t/λ with a value of λ 

varying between 10 and 40 msec (red traces in Fig.3c and g). Similarly, the cross-correlation functions 

ρx,y(t), ρx,z(t) and ρy,z(t) before adhesion were δ(t) functions, but exhibited a clear cross-correlation when 

lamellipodia pushed the bead (Fig.3d and h). In these experiments the bead remained within 700 nm from 

the center of the optical trap, and changes of stiffness and sensitivity were less than 20 % (9) and measured 

forces were corrected for these changes. This new kind of noise is not observed when growth cones were 

treated with Latrunculin A (Fig.1g) and is referred as Latrunculin-sensitive noise. 

Detection of discrete jumps          
  Visual inspection of the Latrunculin-sensitive noise shows the presence of discrete jumps with 

variable amplitude ranging from just 3-5 nm to about 50 nm, corresponding to force jumps varying from 

some tens of fN to 100-200 fN. These fluctuations were significantly larger than those observed during the 

initial phase of bead adhesion and were different from Brownian fluctuations observed when the bead was 

far from the lamellipodium. 

Visually observed discrete jumps were detected by appropriate algorithms. Discrete jumps with 

varying amplitude were detected using well known tools from signal processing. 
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Fig.3. (a) The three components of the bead displacement x (blue), y (green), and z (red) during a mainly vertical 
push. (b) From top to bottom: the three components in (a) after removal of the slow component. The colored parts of 
each trace were considered for the calculation of the autocorrelation (see panels (c) and (g)) and cross-correlation (see 
panels (d) and (h)) in the region of Brownian fluctuations (light blue) and push (light green), respectively. (c) From 
left to right: autocorrelation functions ρx(t)=<x·x>, ρy(t)=<y·y>, and ρz(t)=<z·z>, respectively, calculated for Brownian 
fluctuations (in blue) and push (in red), for the parts of the traces in panel (b) colored in light blue and light green. (d) 
From left to right: cross-correlation functions ρxy(t)=<x·y>, ρxz(t)=<x·z>, and ρyz(t)=<y·z>, respectively, calculated for 
Brownian fluctuations (in blue) and push (in red), for the parts of the traces in panel (b) colored in light blue and light 
green. (e) The three components of the bead displacement x (blue), y (green), and z (red) during a mainly lateral push. 
(f)-(h) Same as panels (b)-(d) for the displacement in (e). 
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Fig.4. (a) The three components of the bead displacement x (blue), y (green), and z (red). The Latrunculin sensitive 
noise can be visually detected in the part of the trace contained in the black rectangle. (b) The original trace contained 
in the black rectangle in (a) is here shown in gray with superimposed the regularized trace in red (see text for more 
details). “A” and “P” stand for “adhesion” and “push”, respectively. (c) Top: No jumps are detected during the 
adhesion phase (indicated with “A” in panel (b)). Bottom: jumps detected during the exertion of the force by the 
lamellipodium leading edge (indicated with “P” in panel (b)) (d) Distribution of upward (blue) and downward (red) 
jumps. 
 

We used a nonlinear diffusion filtering (15) in which two parameters s and γ are used to fix a 

threshold for the detection of jumps (minimal length detected, 5 nm) and for their bandwidth (up to 5 kHz), 

described in Supplementary Information 1. This procedure allowed the original data (Fig.4a and grey trace 

in Fig.4b) to be approximated with a smooth piece-wise function (red trace in Fig.4b) interrupted by discrete 

jumps or discontinuities. Almost no jumps were detected during the adhesion phase (Fig.4c, upper panel), 

but jumps became evident only when the exerted force increased (Fig.4c, lower panel). The distributions of 

upward and downward jumps were very similar (Fig.4d), but more upward jumps were detected. 

Shape of the elementary events          
  We superimposed large discrete events by aligning the steepest portion of the rising phase, so to 

obtain a representative profile of these jumps. A good fit of the profile of these jumps is obtained with the 

simple equation A t e-t/a, with a value of a corresponding to 2.5 msec. These observations suggest that force 
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generation could originate from the superposition of discrete events with a profile similar to A t e-t/a. In order 

to test this possibility, we developed a procedure (see Supplementary Information 2) to detect events of this 

shape during recordings of displacement when lamellipodia pushed the bead (Fig.5a). 

Many events with this shape were detected (Fig.5b) and indeed entire recordings during pushing 

could be fitted as the superposition of events of this kind, but with a variable amplitude (A) and time 

constant (a). The majority of best fit (red curves) is found during the push (Fig.5b and 5c). 

 

 
Fig.5. (a) The three components of the bead displacement x (blue), y (green), and z (red) during a push performed by 
the growing lamellipodium. The black rectangle corresponds to the part of the lateral trace considered in (b). (b) The 
lateral trace delimited by the black rectangle in (a) is here depicted in blue and shown superimposed with the events of 
the type A t e-t/a. The rectangle indicates the part of the trace which is shown in (c). (c) Zoom of the trace in (a) 
showing the original trace and superimposed the fit to the step with functions of the type A t e-t/a having different 
values of the amplitude A. The color of the fitting curve indicates how well the fit approach the original signal. Red 
curves correspond to best agreement. 
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Discussion 

The present manuscript shows that when a lamellipodium exerts a force on a silica bead confined 

in an optical trap, measurements of bead position are affected by a noise different from that originating from 

Brownian fluctuations (Fig.1 and Fig.3). This noise is characterized by the presence of discrete jumps with 

amplitude varying from 5 to 30 nm (Fig.4), corresponding to forces from 40 to 200 fN and it is not observed 

when growth cones were treated with 100 nM Latrunculin A. In contrast, when lamellipodia pull away silica 

beads which have sealed onto the cellular membrane no additional noise is observed (Fig.1 and Fig.2). As a 

consequence of bead adhesion on the membrane, often the amplitude of Brownian fluctuations decreases by 

80 % and if the lamellipodium pushes the bead it is possible to observed putative elementary events (Fig.5) 

underlying force generation. This experimental procedure is reminiscent to the detection of single channel 

currents in electrophysiological experiments, when single discrete current are detected after the pipette 

sealed on the membrane and Brownian noise is consequently decreased (10).  

 

Adhesion forces between a bead and living cells are usually dominated by non specific adhesions 

caused by electrostatic and Vander Waals forces (12) with an amplitude of less than 40 pN. Stronger forces 

are produced by the formation of chemical bonds between adhesion molecules such as integrins and the 

bead, leading to larger forces (12,14,13). By anchoring the bead to the lamellipodium membrane, these 

forces reduce the Brownian fluctuations of bead (Fig.2) and this fact is likely to be caused by multiple 

concomitant mechanisms. The establishment of adhesion forces between beads and lamellipodia is a 

necessary event for pulling. 

The increase of noise observed when lamellipodia push the bead is abolished by Latrunculin A 

and therefore its orgin could be attributed to polymerization and depolymerisation dynamics of the network 

of actin filaments present at lamellipodia leading edge. Although our results do not establish a causal link 

between the actin filaments dynamics and the observed noise, it is useful to consider this possibility and 

evaluate its implication on the notion that actin filaments polymerization is the mechanism underlying force 

generation at lamellipodia leading edge. Observed discrete jumps have an amplitude from just some nm up 

to 40-60 nm, with most frequent values around 25-30 nm (Fig.4d). As the dimension of a single actin 

monomer is 2.7 nm, observed discrete jumps could be caused by a burst of polymerization and/or by the 

insertion of an actin polymer constituted by some tens of actin molecules. These discrete jumps correspond 
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to force increases varying from 40 to 200 fN, which could be caused by the elementary motors inside 

lamellipodia. Prass et al 2006 have recently estimated that about 100 active actin filaments impinge on 1 μm 

of the leading edge of a keratocyte lamellipodium. Abraham et al 1999 have estimated the number of actin 

filaments in fibroblast lamellipodia to be about 240 in a frontal area of 176 nm x 1 μm. Therefore, the 

estimated density of actin filaments, possibly constituting the elementary motors impinging on the leading 

edge of a lamellipodium, is between 100 and 200 per μm2. If each elementary motor exert a force varying 

from 40 to 200 fN, the maximal force per μm2 varies from 4 to 40 pN, in agreement with the maximal force 

measured by lamellipodia with beads with a diameter of 1 μm (6). 

By monitoring filament buckling with fluorescent microscopy, the force exerted by polymerization 

of single actin filaments was estimated to be in the order of 1 pN (16). Direct measurement with optical 

tweezers of the force exerted by a bundle of  about 8 parallel actin filaments provides an estimate of about 1 

pN (17) corresponding to approximately 125 fN per single actin filament. The force exerted by a 

polymerizing actin filament on a silica bead positioned on the other side of the membrane, as in our 

experimental conditions, will depend on geometrical and physical properties of the growth cone. This force 

depends on the incidence angle between the filament and the membrane and it will be maximal when the 

actin filament will be normal, i.e. at 90 degrees, to the membrane and when actin filaments are not normal to 

the membrane, the net force will be lower. The force exerted by isolated polymerizing actin filaments is 

expected to be larger than that observed when actin filaments are in lamellipodia: when actin filaments push 

on a membrane, the force exerted on an extracellular object, such as a bead, depends on the elastic 

properties of the membrane. A rigid membrane will damp the protrusion force exerted by polymerizing actin 

filaments and, therefore, we expect that the transmitted force to be attenuated at some extent. These 

considerations suggest that the force exerted by single polymerizing actin filaments across the membrane on 

an external object, such a silica bead used in our experiments, is expected to have a broad range of values 

not exceeding 125-200 fN, consistently with the distribution of forces measured during detected jumps. 

The analysis of the shape of detected discrete events suggests a profile of the elementary push of 

the type A t e-t/a, consistent with a sudden jump followed by two low pass stages with a time constant in the 

msec range. As the cellular membrane is expected to dump any sudden protrusion from the cytoplasmic 

side, one of these time constants could be indeed caused by the membrane. 
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Conclusions and perspectives 

The present manuscript shows that force generation in DRG lamellipodia is characterized by the presence of 

discrete jumps occurring in a millisecond window with amplitude varying from some nm up to 60 nm, 

corresponding to forces from 40 to 200 fN. These sudden jumps have a stereotyped shape approximately 

similar to A t e-t/a with a in the millisecond range. These jumps could be the putative elementary events 

underlying force generation. Future work will consist in performing a statistical analysis of these jumps, and 

in treating the differentiating neurons with drugs that will change the membrane rigidity/fluidity, in order to 

explore changes in the characteristics of the jumps and of their shape. Moreover, we envisage the study of 

theoretical mechanisms for the generation of elementary events with a certain shape. 

Supplementary Information 1          
  Non linear diffusion filtering In order to detect discrete jumps (discontinuities), an algorithm 

based on the theory of anisotropic diffusion (a branch of non linear diffusion filtering) (15) was 

implemented. After selection of the part of the trace of interest, the original signal was smoothed in order to 

obtain a smooth piece-wise trace where the discrete jumps were enhanced. The discrete jump detection was 

an iterative process which rested on the choice of two parameters: the contrast λ, related to the detection 

sensitivity, i.e. the minimal jump amplitude detected (5 nm in our case), and the scale τ, which sets the 

amplitude of the temporal window where the steps were searched (in our case, 10 ms). 

Supplementary Information 2          
  Shape of the elementary events The study of the shape of the putative elementary events was 

performed by using a custom made algorithm (Matlab 7.0.1, http://www.mathworks.com). This algorithm 

spans the whole signal of the bead displacement, searching for events having the shape f(t)=A t e-t/a, with a 

variable amplitude A, time constant a equal to 2.5 msec, within a time window of 10 ms. The curves which 

best fit the original signal are chosen among those which minimize the distance between the curve and the 

original data, taking into account a similarity threshold which is set by the user. 

Methods              
  Rats (P10−12) were anaesthetised with CO2 and sacrificed by decapitation in accordance with the 

Italian Animal Welfare Act. DRGs were incubated with trypsin (0.5 mg/ml), collagenase (1 mg/ml), and 
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DNase (0.1 mg/ml) in 5 ml Neurobasal medium in a shaking bath (37 °C, 35-40 minutes). DRGs were 

mechanically dissociated, centrifuged at 300 rpm, resuspended in culture medium and plated on poly-L-

lysine-coated (0.5 ug/ml) coverslips. Cells were incubated for 24 to 48 hours followed by the addition of 

nerve growth factor (50 ng/ml; Alomone, Israel) before the measurements.  

The optical tweezers setup was built as previously described (6). The dish containing the 

differentiating neurons and the beads (PSI-1.0NH2, G.Kisker GbR, Steinfurt Germany) was placed on the 

microscope stage which could be moved by a 3 axis piezoelectric nanocube (17 MAX 301, Melles Griot 

Inc., USA). The temperature of the dish was kept at 37oC by a Peltier device. Bead position was determined 

in the x,y and z plane with an accuracy of 10 nm using back focal plane (BFP) detection, which relies on the 

interference between forward scattered light from the bead and unscattered light (9,18). The BFP of the 

condenser was imaged onto a QPD and the light was converted to differential outputs digitized at 10 kHz 

and low pass filtered at 5 kHz. Both the lateral and axial trap stiffness, κx,y=(kx,ky) and kz, respectively, as 

well as the detector sensitivity were calibrated using the power spectrum method  (9)with voltage signals 

filtered and digitized at 5 and 20 kHz respectively. The force exerted by the neurite Fneu was taken as equal 

to -Ftrap. When the bead displacement of the bead from its equilibrium position inside the trap was less than 

400 nm, Ftrap = (Fx, Fy, Fz) was calculated as Fx= kxdx,, Fy=kydy, and Fz=kzdz, respectively (9).  
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5. Discussion and conclusions 

With sequencing the complete genome, we are starting to have an exhaustive picture of all 

the proteins present in an organism, yet in many cases we still have little understanding of how 

these proteins function. Irrespective of cell type, all biochemical processes where the cytoskeleton 

plays an important role involve understanding forces and motion, questions for which in vivo 

optical traps are ideal tools (Gross, 2003). The main outcome of my thesis is the development of an 

experimental system for force measurements in living cells under appropriate physiological 

conditions in both lateral as well as axial direction. We developed high temporal resolution (10 

KHz) and force sensitivity (1 pN), optical tweezers setup to perform accurate measurements on 

living neurons without causing any photodamage. To the best of our knowledge this thesis presents 

the first quantitative determination of force exerted by filopodia and lamellipodia of neuronal 

growth cone during neuronal differentiation (Cojoc et al., 2007). 

The advancing growth cone is undoubtedly subjected to a rich chemical environment in the 

developing nervous system, different molecular cues guiding growth cone to the proper target but 

there is a growing evidence that mechanical signal also plays important role in growth cone 

guidance (Anava et al., 2009;Heidemann and Buxbaum, 1994;Heidemann et al., 1995). Quantitative 

characterization of the force exerted by lamellipodia and filopodia during neuronal differentiation 

could help to elucidate how neurons sense the environment and process mechanical information. 

The maximum force exerted by filopodia during their exploratory motion (lateral collision) was 2 

pN and during growth (protrusion) 3 pN. The diameter of filopodia tips is approximately 100 nm, 

i.e. 10 times smaller than the diameter of the beads we used, therefore the maximal force measured 

for filopodia is expected to be a reliable upper limit of the force exerted by these structures. Its 

amplitude is of the same order as that measured during in vitro actin filament (Kovar and Pollard, 

2004;Footer et al., 2007) and microtubule growth (Kerssemakers et al., 2006), this similarity with in 

vitro measurement implies that filopodial protrusion is minimally counterbalanced by the 

membrane surrounding actin bundles and microtubules (occasional), indicating that the membrane 

at the filopodia tips has a low stiffness (Dai and Sheetz, 1995;Kwik et al., 2003;Liu and Fletcher, 

2006) Filopodia appeared to modulate their mechanical response by sensing the mechanical 

properties of the environment. The duration of the collision was decreased when filopodia 

encountered a stiffer obstacle. 
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Lamellipodia exerted a force of up to 20 pN and possibly more, which could increase in 

discrete steps of approximately 0.2 pN. The measured forces were smaller than forces involved in 

cellular traction force or measured in migrating keratocytes (Marcy et al., 2004). Maximum force 

reported here, may not fully represent the ability that lamellipodia have because, at least in some 

cases, only a fraction of the forces exerted is picked up by the beads, as the contact area between 

bead and lamellipodium leading edge changes dynamically. The contact area between pushing 

lamellipodia and beads was determined by the analysis of video images of the event under 

examination and was observed to vary from 0.25 to 1.57 µm2 (Shahapure R. et al., 2009). Indeed, 

we expect lamellipodia to exert larger forces, possibly up to hundreds of pN, as in migrating 

epithelial cells (du Roure et al., 2005). Therefore, the maximal pressure exerted by DRG 

lamellipodia was 20-80 pN µm-2. The maximum power per unit area exerted by lamellipodia was 

estimated to be 1-4×10-16 W µm-2. The hydrolysis of one molecule of ATP provides energy of about 

10-19 J (Bray, 1992) and, if this energy is converted into work with an efficiency of 60%, the 

hydrolysis of about 0.25-1×104 s-1 of ATP per µm2 is necessary to produce the measured power. 

The number of actin filaments in keratocyte and fibroblast lamellipodia has been estimated to be of 

the order of 100 per µm2 (Prass et al., 2006).Therefore, the number of elementary motors per µm2 is 

likely to be of the order of 100, where each elementary motor consumes approximately 25 to 100 

ATP per second. 

Inhibition of myosin II and microtubule polymerization blocked lamellipodia motion and 

drastically reduced the force produced by growth cones, while filopodia continued to move and 

were able to exert forces in the pN range (Cojoc et al., 2007). In contrast, with the blockade of actin 

polymerization, filopodia and lamellipodia produced no measurable forces. Thus, in the absence of 

actin polymerization, growth cones cannot exert any force, and microtubule polymerization is 

necessary for development of forces exceeding 3 pN at the leading edge of filopodia and 

lamellipodia. Therefore, actin filaments and microtubules cooperate and interact in a complex way 

so as to generate a wide range of forces. 

We provided an experimental characterization of Fv relationships in neuronal growth cones 

with millisecond resolution. We found that force generation in lamellipodia is an intrinsically multi-

scale process. At a temporal resolution of 3-5 s, the exerted force can increase, maintaining a 

constant velocity, where the Fv relationships are almost flat (Shahapure R. et al., 2009). At a 

millisecond resolution, a much more complex behavior is observed, with random occurrence of fast 

growths and sub-second retractions (Shahapure R. et al., 2009). Our results show that autocatalytic 

models  of force generation (Carlsson, 2003;Carlsson, 2001;Mogilner, 2006)are correct in a mean 
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approximation. At a higher temporal resolution the network of actin filaments evolves in a much 

more complex manner that can be characterized only probabilistically. Fast forward motions 

consuming up to 104 molecules of ATP s-1 μm-2 alternate with local catastrophes, whose duration 

has a power law distribution. These results provide a precise characterization of the dynamics of 

force generation in lamellipodia, necessary to understand the biochemical events underlying force 

generation. Occurrence of local catastrophes seems the most likely biological mechanisms 

underlying local transient retractions such as proteins controlling the network of actin filaments, e.g. 

cofilin, could randomly sever a large branch of actin (Pollard and Borisy, 2003) or transient 

increase in rate of retrograde actin flow over protrusion rate at leading edge (Lin and Forscher, 

1995) causing a transient retraction of lamellipodium leading edge. It is possible that instability 

could originate also from interactions with the cellular membrane. Growing and branching of the 

actin filaments can also be instable because of the action of membrane tension. Indeed, the 

maximum measured force Fmax is approximately 20-100 pN/μm2, of the same order of the force 

exerted by a membrane with a surface tension γ equal to 0.005 kBT/nm2 axially deformed by 1 μm 

(Atilgan et al., 2006). The actin filament network is confronted with a membrane exerting a force 

similar to Fmax, so that the actin filament network is only marginally stable and its propulsive force 

is almost counterbalanced by the membrane tension. Growing and retracting in conditions of 

marginal stability allows fast reactions and could provide lamellipodia the flexibility necessary for 

their physiological functions.  

A detailed analysis of fluctuations in biochemical processes can provide insights into the 

underlying kinetics beyond what can be inferred from studies of average rates alone (Shaevitz et al., 

2005). Thermal fluctuations of optically trapped bead were affected when lamellipodia pushed the 

bead, producing different type of noise other than Brownian motion. This noise is characterized by 

the presence of discrete jumps with amplitude varying from 5 to 50 nm, corresponding to forces 

from 40 to 200 fN and it is not observed when growth cones were treated with 100 nM Latrunculin 

A. In contrast, when lamellipodia pulled away silica beads which have sealed onto the cellular 

membrane no additional noise was observed. As a consequence of bead adhesion on the membrane, 

often the amplitude of Brownian fluctuations decreases by 80 % and, when the lamellipodium 

pushes the bead it is possible to observed putative elementary events underlying force generation. 

This experimental procedure is reminiscent to the detection of single channel currents in 

electrophysiological experiments, when single discrete current are detected after the pipette sealed 

on the membrane and Brownian noise is consequently decreased (Neher and Sakmann, 1976) .  
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 In future it will be interesting to perform detailed statistical analysis of these jumps, and by 

pharmacologically altering membrane rigidity, explore changes in the characteristics of these jumps 

and their shape. With respect to the physiological significance it would be important to examine the 

growth cones subject to different adhesion substrates or extracellular factors that can either 

accelerate or inhibit growth cone motility. Furthermore, it would be extremely interesting if the 

beads are coated with certain guidance molecules and examine the mechanic responses.  

 

 

 



 88

References 

 1.  Anava,S., A.Greenbaum, E.Ben Jacob, Y.Hanein, and A.Ayali. 2009. The regulative role of 
neurite mechanical tension in network development. Biophys. J. 96:1661-1670. 

 2.  Atilgan,E., D.Wirtz, and S.X.Sun. 2006. Mechanics and dynamics of actin-driven thin 
membrane protrusions. Biophys J 90:65-76. 

 3.  Bray,D. 1992. Cell Movements. Garland Publishing, New York. 

 4.  Carlsson,A.E. 2001. Growth of branched actin networks against obstacles. Biophys J 81:1907-
1923. 

 5.  Carlsson,A.E. 2003. Growth velocities of branched actin networks. Biophysical Journal 
84:2907-2918. 

 6.  Cojoc,D., F.Difato, E.Ferrari, R.B.Shahapure, J.Laishram, M.Righi, E.M.Di Fabrizio, and 
V.Torre. 2007. Properties of the force exerted by filopodia and lamellipodia and the 
involvement of cytoskeletal components. PLoS ONE 2:e1072. 

 7.  Dai,J. and M.P.Sheetz. 1995. Mechanical properties of neuronal growth cone membranes 
studied by tether formation with laser optical tweezers. Biophys. J. 68:988-996. 

 8.  du Roure,O., A.Saez, A.Buguin, R.H.Austin, P.Chavrier, P.Siberzan, and B.Ladoux. 2005. 
Force mapping in epithelial cell migration. Proceedings of the National Academy of Sciences 
of the United States of America 102:2390-2395. 

 9.  Footer,M.J., J.W.Kerssemakers, J.A.Theriot, and M.Dogterom. 2007. Direct measurement of 
force generation by actin filament polymerization using an optical trap. Proc. Natl. Acad. Sci. 
U. S. A 104:2181-2186. 

 10.  Gross,S.P. 2003. Application of optical traps in vivo. Biophotonics, Pt B 361:162-174. 

 11.  Heidemann,S.R. and R.E.Buxbaum. 1994. Mechanical tension as a regulator of axonal 
development. Neurotoxicology 15:95-107. 

 12.  Heidemann,S.R., P.Lamoureux, and R.E.Buxbaum. 1995. Cytomechanics of axonal 
development. Cell Biochem. Biophys. 27:135-155. 

 13.  Kerssemakers,J.W., E.L.Munteanu, L.Laan, T.L.Noetzel, M.E.Janson, and M.Dogterom. 
2006. Assembly dynamics of microtubules at molecular resolution. Nature 442:709-712. 

 14.  Kovar,D.R. and T.D.Pollard. 2004. Insertional assembly of actin filament barbed ends in 
association with formins produces piconewton forces. Proc. Natl. Acad. Sci. U. S. A 
101:14725-14730. 

 15.  Kwik,J., S.Boyle, D.Fooksman, L.Margolis, M.P.Sheetz, and M.Edidin. 2003. Membrane 
cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent 
organization of cell actin. Proc. Natl. Acad. Sci. U. S. A 100:13964-13969. 



 89

 16.  Lin,C.H. and P.Forscher. 1995. Growth Cone Advance Is Inversely Proportional to 
Retrograde F-Actin Flow. Neuron 14:763-771. 

 17.  Liu,A.P. and D.A.Fletcher. 2006. Actin polymerization serves as a membrane domain switch 
in model lipid bilayers. Biophysical Journal 91:4064-4070. 

 18.  Marcy,Y., J.Prost, M.F.Carlier, and C.Sykes. 2004. Forces generated during actin-based 
propulsion: A direct measurement by micromanipulation. Proceedings of the National 
Academy of Sciences of the United States of America 101:5992-5997. 

 19.  Mogilner,A. 2006. On the edge: modeling protrusion. Curr Opin Cell Biol 18:32-39. 

 20.  Neher,E. and B.Sakmann. 1976. Single-channel currents recorded from membrane of 
denervated frog muscle fibres. Nature 260:799-802. 

 21.  Pollard,T.D. and G.G.Borisy. 2003. Cellular motility driven by assembly and disassembly of 
actin filaments. Cell 112:453-465. 

 22.  Prass,M., K.Jacobson, A.Mogilner, and M.Radmacher. 2006. Direct measurement of the 
lamellipodial protrusive force in a migrating cell. Journal of Cell Biology 174:767-772. 

 23.  Shaevitz,J.W., S.M.Block, and M.J.Schnitzer. 2005. Statistical kinetics of macromolecular 
dynamics. Biophys. J. 89:2277-2285. 

 24.  Shahapure R., Difato F., Laio A., Cojoc D., Ferrari E., Laishram J., Bisson G., and Torre V. 
2009. Force generation in lamellipodia is a probabilistic process with fast growth and 
retraction events. submitted. 

 

 

 
 



 90

6. Acknowledgements 

 
I would like to express my deep and sincere gratitude to my supervisor, Prof Vincent Torre, who 
greatly supported me during this entire period of my PhD. I thank him for all the hours of 
valuable discussion, his never ending patience and indulgence. He has taught me the right 
attitude towards science. 

I am deeply grateful to Francesco Difato without whose support it was impossible to accomplish 
this work. I am deeply indebted to Dr. Dan Cojoc, and Enrico Ferrari for their collaboration and 
for introducing me to this new technique of optical tweezers. 

I wish to express my sincere thanks to my current experimental team members Erika Ercolini 
and Ladan Amin. I would like to specially acknowledge Erika for critical reading of my thesis 
and for her comments and suggestions to improve it. 

My special gratitude to Jummi, who was always there to support me for carrying out 
experiments, whenever I was in need. 

I would like to give special thanks to Giacomo, Shripad and Walter, who brought kuch jada hi 
MatLab in my poor Biologist’s life. 

I would like to acknowledge Dr Allesandro Laio, for his valuabale suggestions for the data 
analysis presented in this work and Massimo Righi for teaching me to prepare DRG neuron cell 
culture.  

I would like to thank Daniela for answering my queries related to biological part of this project 
and teaching me immunohistochemistry.  

I would like to thank all my lab mates Fredric (western Guru whose filopod-ish hand would 
appear on my side of the desk from his side), Paolo (coolest man), Diana (logical lady), Anil (the 
complete man), Jelena, Giulietta, Elisabetta and Monica who were directly or indirectly helped 
me during four years of my stay in the lab. I would like to remember Jacobo, Valentina, Arin & 
Lin for their silent encouragement. 

My sincere thanks to Manuela, who was always ready to assist me whenever I needed her. 

It gives me great pleasure to acknowledge Vikas, Fauzia, and Shyju, who supported and 
encouraged me in the final stage of my PhD.  

I owe my loving thanks to my family whose patience and love enabled me to complete this work. 
They have lost a lot due to my research far from home. Without their encouragement and 
understanding it would have been impossible for me to finish this work. Last but not the least, I 
would like to thank the most important person in my life, Cecilia, who is always there for me.  

 

 
 


	Title.pdf
	Thesis Rajesh 25March 2009.pdf
	indexlast.doc
	chap 1 & 2.doc
	1 Abstract
	2  Introduction
	2.1 Neuronal growth cone 
	2.1.1 Structure of growth cone
	2.1.2 Cytoskeleton function in growth cone guidance and advancement
	2.1.3 Proteins regulating actin dynamics

	2.2  Force measurement in biological systems
	2.2.1 Force generation by actin polymerization
	2.2.2 Theoretical models for force generation by actin polymerization
	2.2.2.1 Ratchet models
	2.2.2.2 Autocatalytic Models

	2.2.3 Force-Velocity (Fv) relationship 
	2.2.4 FV relationship in vitro



	Chapter 3.doc
	3 Materials and methods
	3.1 Optical tweezers
	3.1.1 An introduction to optical trapping
	3.1.2 Experimental set-up used in this project
	3.1.3 Position detection
	3.1.4 Trapping force calibration
	3.1.4.1 Equipartition method
	3.1.4.2 Power spectrum method
	3.1.4.3 Drag force method 

	3.1.5 Biological applications of optical tweezers


	 References
	4  Results

	Plosone_Article.pdf
	4_2_chapter5.doc
	4_3.doc
	Chapter5_new.doc
	5. Discussion and conclusions
	6.  Acknowledgements



