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Introduction

In the last few years, Density-Functional Theory (DFT) has become
the most widespread method for ab-initio calculations of electronic and
structural properties of molecules and solids. The success of DFT relies upon
the existence of simple approximations for the exchange-correlation energy
functional, which provide surprisingly accurate results for many systems
of interest. Due to the continuous refinement of methods and algorithms
over recent years, and to the availability of increasingly powerful computers,
systems as large as several tens of atoms per unit cell can be presently tackled
on workstations, and ab-initio calculations involving a few hundred atoms

have been recently performed on parallel supercomputers.

However, the rush towards increasingly complex systems is seriously
hindered by the so-called “O(N?®) bottleneck”: the computational cost of
any conventional ab-initio calculations scales ultimately as the third power
of the number of atoms of the system. This is by no means an intrinsic
feature of Density-Functional Theory; actually, within DFT the total energy
is a functional of the charge density alone, and the charge density at a
given point is a local quantity, which can be calculated, in principle, with a
computational workload which does not depend on the size of the system. The
O(N?) bottleneck is a consequence of the fact that conventional approaches

to DFT are formulated in terms of orthogonal Kohn-Sham orbitals. Large-
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scale electronic-structure calculations are rapidly approaching the point where
this N3 scaling becomes the time-limiting factor; therefore, only a slight
increase of the size of the systems which are tractable with conventional
methods can be expected in the next few years. On the other hand, there
are several interesting examples in nature of systems with thousands atoms,
such as organic macromolecules, amorphous systems, extended defects and so
on, which are completely out of reach for conventional schemes. In order for
first-principle calculations to become feasible for such systems, new algorithms

with more favourable scaling laws are called for.

Very recently, some methods have been proposed whose computational
cost scales only linearly with the size of the system, thus opening the way
to first-principles calculations for very large systems. There are basically two
different philosophies behind these so-called “O(N) methods”: in one case
[1-4], the Kohn-Sham orbitals are forced to be localized in real space, thereby
reducing the computational cost of orthogonalization; in the second approach
(5,6], the calculation of Kohn-Sham orbitals is by-passed, and the total energy

is obtained in terms of the real-space density matrix.

In this work, we present a method [7] for the self-consistent calculation of
ground-state properties which is based on the computation of selected elements
of the real-space Green’s function; taking advantage of the localized nature of
the Green’s function, O(IV) scaling is achieved for large systems. The basic

ingredients of our method are:

(i) the real-space representation of the Kohn-Sham hamiltonian on a discrete

mesh, and

(ii) the use of the recursion method (or the equation-of-motion method) for

computing the diagonal elements of the real-space Green’s function. |
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Basically, just two parameters are involved in the calculation of the electronic
charge density: the grid-spacing h, which controls the accuracy of the real-
space representation, and the number of recursion steps (or time steps) n.
The method becomes exact as h — 0 and n — co. No use is made of Kohn-
Sham orbitals: both the charge density and the total energy are obtained in

terms of the diagonal elements of the real-space Green’s function.

The present work is organized as follows. In Chapter 1, we discuss the
conventional approach to Kohn-Sham theory and introduce the new Green’s
function approach. In Chapter 2, the application of the recursion method
to the calculation of the charge density is discussed. The convergence of the
charge density with respect to the number of recursion steps is examined in
detail, and some possible solutions to the problem of reducing the number
of steps without sacrificing the accuracy of the charge density are proposed.
In Chapter 3, this scheme is applied to the self-consistent calculation of the
charge density; the accuracy of total energy and atomic forces is also discussed.

Finally, in Chapter 4 we propose an alternative approach to the calculation
of the charge density based on the equation-of-motion method. Although the
recursion method seems to have the edge on timing, some appealing features

of the equation-of-motion method are outlined.



Chapter 1

Density-Functional Theory

Conventional schemes for the implementation of Density-Functional Theory
suffer from unfavourable scaling with the size of the system. In the present
chapter, an alternative approach to DFT is proposed whose computational cost
scales only linearly with the size of the system. Both the charge density and
the total energy are obtained in terms of the diagonal elements of the real-
space Green’s function; each diagonal element of the Green’s function - being
a local quantity — can be calculated with a computational workload which is
independent of the size of the system. To this end, the real-space representation

of the Kohn-Sham hamiltonian on a discrete mesh plays an important role.




1.1 Conventional approach to Density-Functional Theory

Density-Functional Theory (DFT) relies on two fundamental theorems

8,9] stating that:

i) The ground-state energy Ess; of an interacting electron gas in a local
g g g g

external potential V,.u(r) is determined by the ground-state charge

density alone.

The ground-state charge density minimizes the energy functional
E[n] = Fln] + f Vo) n(r) dr , (L.1)

where F[n] is a universal functional of the density, subject to the

constraint that the total number of electrons N remains constant:

Ess = Elngs] < E[n], for any n such that [n(r)dr = N.

In order to develop a computationally useful scheme out of these statements,

an explicit expression for the functional F[n] is required. In the Kohn-Sham

approach to DFT [10], the existence of a non—injceracting electron gas in an

external effective potential having n(r) as its ground-state charge density is

assumed, and the functional Fn] is cast in the following form:

Fin] = To[n] + Eg[n] + Ezcn], (1.2)

where:

To[n] is the kinetic energy of the non-interacting system with density
n(r);

Ey[n] is the classical electrostatic energy (Hartree energy):

Eyln] :E;//E%S—{)drdr’; (1.3)
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Eyc[n] is the quantum-mechanical exchange-correlation energy, which

accounts for the remaining contributions to the energy functional E[n].

In principle, the functional forms of the kinetic energy Tp[n] and of the

exchange-correlation energy E,[n]| are unknown; however:

(1)

(i)

the kinetic energy of the non-interacting system can be written ezactly

in terms of the so-called Kohn-Sham orbitals {#4(r)}:
B )
Ty = —5 (;1 /¢a(r) Vo (r)dr . (1.4)

The Kohn-Sham orbitals are the solutions of a Schrddinger-like equation
for the non-interacting system; the sum in Eq. (1.4) runs over the N
lowest-energy orbitals. Although some approximate expressions for the
kinetic-energy functional Ty[n] have been proposed recently [11], which
improve considerably over the Thomas-Fermi approximation [12], their
accuracy is still too poor to allow realistic calculations of electronic and

structural properties of solids.

Various approximations for the exchange-correlation energy functional
E,.[n] are available in the literature; the most simple of them, and the

most widely used, is the local-density approximation (LDA):
B20] = [ eacln(r)) nir)ar (1.5)

where €,0(n) is the exchange-correlation energy per particle of a
homogenous electron gas with density n [10]. Despite its simplicity,
the LDA has been surprisingly successful in predicting ground-state

properties of molecules and solids [13].
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In terms of the Kohn-Sham orbitals {¢,(r)} the charge density reads:
N
n(r) =) [balr)?, (1.6)
=1

where the sum runs over the N lowest-lying orbitals. Using Eq. (1.4) for
the kinetic energy of the non-interacting system, we obtain the Kohn-Sham

energy functional:

2 N
Bes [0} = 5 3, [ #206) VPale) de
o (1.7)

+.E;.//%@}%erdersz+/Vm(r) n(r)dr |

which provides the total energy corresponding to the charge density given by
Eq. (1.6). There are basically two conventional approaches to the calculation

of ground-state properties within the Kohn-Sham scheme.

In the global minimization method, the energy functional (1.7) is directly
minimized with respect to the Kohn-Sham orbitals {v¢,}, subject to the

constraint that the orbitals remain normalized and orthogonal to each other:
[ pate) e = 6. (18)

The ground-state charge density is then recovered from Eq. (1.6). This
strategy was first proposed by Car and Parrinello [14], and is usually
implemented using the Steepest-Descent method [14,15] or the Conjugate-
Gradients method [16,17].

In the self-consistent method, the ground-state energy is obtained

indirectly from the self-consistent solution of the Kohn-Sham equation. To
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derive this equation, let us impose the Kohn-Sham energy functional (1.7)
be stationary with respect to a variation of the orbital }(r), subject to
the orthonormality condition (1.8); we obtain the following equation for the
orbital 1, (r):

(—;—m V2 4 Vilnir] 4 Vaeln;r] + Vext(r)) Po(r) = Zﬂ Agptp(r), (1.9)

where A, s are Lagrange multipliers, Vy[n;r] is the classical electrostatic

potential:

Vgln;r] = 5(5;21[.7;] — 82/ l:(_r’r)ll dr, (1.10)

and V,[n;r| is the quantum-mechanical exchange-correlation potential:

6 Eeln]

Vadnir] = =5

(1.11)

Therefore, the Kohn-Sham orbitals can be viewed as the normalized solutions
of a one-electron, Schrodinger-like equation for the non-interacting electron

system:

hZ
(—-—- v 4 VKs[n;r]) PYo(r) = caPa(r), (1.12)
2m
where Vis[n;r] is the so-called Kohn-Sham potential:

Visnir] = Vege(r) + V[nir] + Vi[n;r] . (1.13)

The single-particle Kohn-Sham hamiltonian Hys = —(A°/2m) V? + Viesn ;1]
plays the role of an effective hamiltonian for the non-interacting electron gas
with density n. Since the Kohn-Sham potential depends on the charge density
n(r), and ultimately on the orbitals {¢),(r)}, the Kohn-Sham equation (1.12)
has to be solved self-consistently in order to obtain the ground-state charge

density of the system.



The two approaches described above are equivalent, in the sense that they
produce the same ground-state charge density and the same total energy. We
address now the issue of the computational cost of these conventional schemes
for the calculation of the charge density; we are concerned here with the cost
of either a single step of the global minimization method or a single iteration of
the self-consistent method. Basically, the computational workload is affected

by two factors:
(1) the number N of occupied orbitals, and

(ii) the dimension M of the basis set chosen for representing the Kohn-Sham

orbitals and the Kohn-Sham hamiltonian.
Both these quantities are proportional to the number of atoms of the system.

In traditional band-structure calculations, the Kohn-Sham equation was
solved by direct diagonalization of the Kohn-Sham hamiltonian; this is
necessarily an O(M?) procedure. In the last few years, hovvéver, powerful
iterative techniques have been developed both for the global ininimization of
the Kohn-Sham energy functional [16,17], and for the self-consistent solution
of the Kohn-Sham equation [18]; these techniques are much more efficient than
conventional diagonalization algorithms, particularly when the dimension of
the basis set is considerably larger than the number of occupied states. From
a computational point of view, the two basic steps required by any iterative
method are: (i) the matrix-by vector product H1bo, where 9, is a trial orbital,
and (ii) the orthogonalization of the Kohn-Sham orbitals.

Due to the fact that the Kohn-Sham orbitals of an extended system are
normally extended, the computational cost of each matrix-by-vector product
Hapg is O(M) if the hamiltonian is sparse, and O(M?) if the hamiltonian is

dense. Therefore, the total computational cost ranges between O(NM) and

9



O(NM?). Since the kinetic-energy operator is diagonal in reciprocal space,
and the Kohn-Sham potential is diagonal in direct space, the matrix-by vector
product H, can be conveniently split into two parts: the kinetic-energy
contribution is calculated in reciprocal space, while the potential-energy term
is computed in real space. In this case, the computational workload is

dominated by the cost of Fast-Fourier-Transforms, and scales as N M log M .

The computational cost of the orthogonalization of the Kohn-Sham
orbitals is O(N2M); in fact, each occupied orbital %, must be orthogonalized
to the remaining (N — 1) occupied orbitals 73, and the cost of the scalar
product (1h]%g) is O(M), for the Kohn-Sham orbitals are extended.

We can conclude that, at least for large systems, the computational
workload is dominated by the orthogonalization procedure, and scales as the
third power of the number of atoms. The charge density at a given point,
however, is a local quantity, which is weakly affected by the more distant
environments; therefore, it should be possible to calculate the charge density
at a given point with a computational cost which does not depend on the
system size. The unfavourable scaling law of conventional approaches is due to
the fact that the charge density is expressed in terms of Kohn-Sham orbitals,
which are mot local quantities. In the next sections, we will show how the
charge density and the total energy can be obtained directly from the diagonal
elements of the real-space Green’s function, thus opening the way to an O(N)

algorithm.
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1.2 Green’s function approach to the calculation of the

charge density

The one-electron Green’s function operator associated to the Kohn-Sham
single-particle hamiltonian Hys is formally given by:

G2)=(2—Hes ) = > [#a) Wal , (1.14)

Z—€Eq
where [9,) is the a-th eigenstate of the Kohn-Sham hamiltonian and e,
is the corresponding eigenvalue: Heo [Yo) = €a|¥a). As a function of the
complex variable z, the Green’s function has simple poles on the real axis in
correspondence to the eigenvalues of the Kohn-Sham hamiltonian; the residue
at each pole is the projector upon the corresponding eigenstates. In the
coordinate representation, the Green’s function reads:

Glr,r';2) = (r|(z — Hys) V) = Z.a Pe(r)¥alr) (1.15)

Z'—ea

As we will see, the diagonal elements G(r,r;z) of the real-space Green’s
function contain all the information needed to calculate the electronic charge
density of the system, without resorting to the explicit diagonalization of the

Kohn-Sham hamiltonian.

In order to achieve this goal, we need a link between the Green’s function
and the one-particle density matrix operator, defined as the projector upon

the occupied Kohn-Sham eigenstates:
p= [badlbal 6ler —ea). (1.16)
The Fermi energy € is fixed by the charge neutrality condition:

tro=N 1.17
P 3
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where N is the total number of electrons of the system and trp is the trace
of the density-matrix operator. In the real-space representation, the density

matrix reads:

p(rr) =Y Ya(r) i) Ber — ) ; (1.18)

the diagonal elements of the real-space density matrix yield the electronic

charge density:
n(r) = plr,1) . | (119)

According to the residue theorem, the density matrix is related to the

real-space Green’s function by the following integral representation:

1
p(r,r') = 3 A G(r,x';2)dz , (1.20)
where Cr is an integration contour in the complex energy plane enclosing all
and only the poles of the Green’s function up to the Fermi energy e, (see

Fig. 1.1). We are now able to write the electronic charge density in terms of

the real-space Green’s function:

n(r) ifc G(r,r;z)dz . (1.21)

~ omi
With respect to the conventional approach, based on the diagonalization
of the Kohn-Sham hamiltonian, this equation provides an alternative scheme
for the calculation of the charge density, which does not require, in principle,
the knowledge of Kohn-Sham eigenvalues and eigenfunctions. From this point

of view, the Green’s function approach shows a number of appealing features.

o First of all, only the diagonal elements of the real-space Green’s function

enter the calculation of the charge density. This has to be contrasted
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A Im-z

h %

Figure 1.1 — Iniegration path in the complex energy plane. The thick
line skeiches the spectrum of the hamiltonian; Ep is the Ferm: energy.

with conventional approaches, where the Kohn-Sham orbitals provide
the entire real-space density matrix via Eq. (1.18). In a sense, the
Kohn-Sham orbitals contain much more information than needed for the

calculation of the charge density.

o Second, the Green'’s function diagonal element G(r,r;z) is a local
quantity, which is stable with respect to a variation of the boundary
conditionis far away from the point r [19]. Therefore, each diagonal
clement of the real-space Green’s function can be obtained, in principle,
with a computational workload which does not depend on the size of the

system, at least for large systems.

e Third, the number of sampling points along the integration contour Cp,
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at which the Green’s function has to be evaluated in order to calculate
the integral numerically to a given accuracy, does not depend on the
size of the system. Actually, the number of sampling points depends on
(i) the length of the integration contour, and (ii) the smoothness of the
Green’s function along the contour. The length of the integration contour
is related to the valence band-width, which is an intensive quantity,
independent of the size of the system. The smoothness of the Green’s
function along the integration contour depends, basically, on the distance
between the contour itself and the poles of the Green’s function, which
lie on the real axis; for non-metallic systems, this distance can be always
kept finite. Therefore, the smoothness of the Green’s function depends

on the choice of the integration contour, but not on the system size.

We can conclude that the overall computational cost for the calculation of
the charge density within the Green’s function approach scales only linearly
with the size of the system, provided the local nature of the Green’s function
diagonal elements is properly taken into account. In the next chapters, we
will aiscuss two different methods which exploit the local nature of the charge

density to achieve linear scaling.

1.3 Total energy and expectation values

Within the Kohn-Sham approach to DFT the interacting electron system
is mapped onto a non-interacting electron gas with the same charge density
n(r). The ground-state expectation value of any single-particle operator Ain

the non-interacting system can be directly expressed in terms of the eigenstates

14



o) and eigenvalues €, of the Kohn-Sham hamiltonian:
(A} =) (bal Ala) b(er —ca) . (1.22)
From the definition of the density-matrix operator, Eq. (1.16), it follows that:

(Ay =tr(p4). (1.23)

Therefore, using the integral representation of the density-matrix operator,
we obtain the ground-state expectation value of the operator A in terms of
the self-consistent Green’s function G’(z):

(4) = L tr [é(z) fi} dz . (1.24)

27['7: Cp

In general, both the diagonal and the off-diagonal elements of the real-
space Green’s function G(r,vr’ ;2) are involved in the calculation of the
trace, whereas only the diagonal elements are required for the self-consistent
calculation of the charge density. Therefore, the evaluation of ground-state
expectation values may be much more time consuming than the full calculation
of the charge density. However, when either the operator A is a function of
the Kohn-Sham hamiltonian, or it is diagonal in the coordinate representation,
only the diagonal elements of the Green’s function enter the calculation of the
trace (see Appendix A), and no additional effort is required to obtain the

-

ground-state expectation value of the operator A.

Let us consider first the kinetic energy of the non-interacting electron

system:

To = —— Za (hal V¥ ha) 8(er —€a) - (1.25)
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Using the coordinate representation for the calculation of the trace, we obtain

from Eq. (1.24):

2
/dr —i— V2 G(r,r' ;2)dz . (1.26)
271"1, r! —»r

2m

Unfortunately, this approach turns out to be rather cumbersome, since some
of the off-diagonal elements of the real-space Green’s function are needed.
Therefore, we prefer to adopt an indirect approach to the calculation of the

kinetic energy.

Let Ejp, denote the so-called band-structure energy, corresponding to the

sum of occupied eigenvalues in conventional schemes:
Eyy=y" (ol Hus [ba) 6(ce e =) eafler—ca).  (127)

Since Hyy = —(h?/2m) V? 4 Vi, the kinetic energy of the non-interacting

system reads:

To = Fy, — / Vis(r)n(r)dr . (1.28)
In the Green’s function formalism, the band-structure energy becomes:

1
§ — T , L) . 1.2
Ey o fdr f;FzG(r r;z)dz (1.29)

Therefore, the kinetic energy can be written in terms of the diagonal elements

of the real-space Green’s function as:

=2 /dr j{F 2~ Vis(r)] G(r,r;2)dz . (1.30)

Once the kinetic energy of the non-interacting system has been obtained, the

ground-state energy E can be easily calculated:

BE=T)+~ / V(£ n(r) dr + Eyo + / Veor(x)n(r) dr (1.31)
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where Vy(r) is the Hartree electrostatic potential, F,. is the exchange-
correlation energy, and V..:(r) is the local external potential. Substituting
Eq. (1.30) and (1.21) into Eq. (1.31), one arrives at the following expression of

the energy in terms of the diagonal elements of the real-space Green’s function:

E= i fdr j{ [z — Vies(r) + ! Vu(r) + Veze(r)| G(r,r;2)dz + E,. .
2w Cp 2
(1.32)

Since the Green’s function diagonal elements are local quantities, the overall
computational workload for the calculation of the total energy scales linearly

with the size of the system.

1.4 Real-space discretization of the Kohn-Sham hamiltonian

The Green’s function approach to the calculation of the charge density
leads naturally to an O(N) algorithm, provided each diagonal element of the
real-space Green’s function can be obtained with a computational workload
which does not depend on the size of the system. To this end, the real-space

representation of the Kohn-Sham hamiltonian plays an essential role.

In fact, the hamiltonian matrix is strictly sparse in this representation,
in the sense that the number of non-vanishing matrix elements scales linearly
with the size of the system. This is due to the fact that both the kinetic-
energy operator and the Kohn-Sham potential are short-range operators in
real space. Therefore, for any localized state 1, the computational cost of

the matrix-by-vector product H1 is independent of the size of the system,
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because the state H1) is also localized; as we will see, this property is essential

to any O(N) method.

Furthermore, the real-space representation of the Kohn-Sham hamilto-
nian leads directly to the Green’s functional diagonal elements G(r,r;z); if
a different basis set {¢;} were used, the real-space Green’s function would be

given by:
G(r,r;z) = Zi’j ¢i(r) ¢3(r) Gij(2) , (1.33)

and the off-diagonal matrix elements G j(z) = (qﬁ@[é(z)]%) should be
calculated in order to get the charge density all over the system. From
a computational point of view, the latter approach turns out to be rather
demanding within the recursion method, if compared with the direct real-

space-representation approach.

The real-space representation of the Kohn-Sham hamiltonian is achieved
by discretizing the hamiltonian on a finite grid. The physical system is
enclosed into a  computational box ” ) of appropriate size and shape;
then,” the computational domain is filled with a real-space mesh M =
{rs, 1 =1,---,M}; the number of grid-points and their positions depend,
basically, on the smoothness of the Kohn-Sham potential. In the simple case
of a cubic box of side L filled with a uniform real-space mesh, the building
blocks are small cubes of edge h = L/m, where m is the number of grid-points
along each direction. Therefore, the total number of grid-points is M = m?,
and the coordinates of the points are: r;;r = (1 —1)h, (j —1)h, (k—=1)h,

with i, 5, k=1, - ,m.

An orthonormal basis set {|r;) } can be readily drawn out of the real-

space grid M, each basis vector |r;) being localized at the corresponding

18



grid-point. Any non-singular function $(r), defined over the computational
domain €, can be represented on the basis set {|r;) } by taking the values
of the function at the nodes of the real-space grid. When using periodic
boundary conditions, the discretization of a function ¢(r) on a uniform mesh
with grid-spacing h turns out to be equivalent, by means of the sampling
theorem [20], to a plane-wave expansion retaining all the Fourier components
corresponding to the reciprocal lattice vectors G enclosed in a cubic box with
edge Gmar = 27/h. However, the real-space representation is more flexible
than a conventional plane-wave expansion, because (i) it allows different
boundary conditions to be implemented in a convenient fashion, and (ii) the
real-space grid can be locally refined to deal with a more oscillatory behaviour

of the function.

The discretization of the Kohn-Sham potential over a real-space grid is
straightforward, provided the external potential is local. However, even if
non-local pseudopotentials are used to deal with electron-ion iﬁteractions, the
Kohn-Sham potential can still be represented on a real-space mesh. Since
the range of the non-local part of the pseudopotential is determined by the
core radius (~ 1 a.u.), the Kohn-Sham potential is still a short-range, sparse

operator in real-space.

The discretization of the kinetic-energy operator on a real-space grid is
slightly more complicate. Given an analytic function é(r), defined over the
computational box {1, the laplacian of ¢ at the point r;, V2¢;, can be derived
using a finite-differences scheme. First, the laplacian is formally expanded as:

M

Vz(bi ~ Z Cik (Jsk 3 (1.34)

k=1

where ¢ is the value of the function ¢(r) at the point ry, and k runs over
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the M nodes of the real-space mesh M. Since the laplacian is a local operator
in real-space, it is sensible to retain in expansion (1.34) just a few coeflicients
¢i k, corresponding to m, grid-points localized around the point r;; this set
of m, points fixes the so-called stencil. Then, for each point rj of the stencil,

the function ¢ is Taylor-expanded around the point r;:

1 5} 54 o\"
§ : . — 4 — 1.35
Pk — n! (hk'm Oz Py 0y Pz 82) ¢ — ’ ( )

where h = rj — r;; substituting this Taylor expansion into Eq. (1.34), and
equating the coefficients of the derivatives 02¢/02? , 8%¢/0y? and 8%¢/02*
to 1, and the coefficients of the remaining derivatives to 0, one arrives at a
set of linear equations for the coeflicients ¢;1, -+, €im,. In general, this
linear system cannot be solved unless the derivatives of order n > npqs are
neglected, where n,,,, depends on the choice of the stencil. In other words,
the higher is the ordgr of the derivatives retained — and therefore the accuracy
of the Taylor expansion (1.35) — the larger must be the extension of the real-

space stencil.

As an example, let us consider a uniform mesh with grid-spacing h
and periodic boundary conditions; the simplest discretization of the laplacian

leading to an O(h?) error is provided by a 7-point stencil:
2 1 f . 2
Vigi= (Za¢a—6¢i>+0(h), (1.36)

where a runs over the 6 nearest neighbours of the point r;. Similarly, the
simplest discretization of the laplacian leading to an O(h*) error requires a

13-point stencil:

Vii= o (16 ga= Y 4 -006:) +O),  (130)
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where o and B run over the 6 first nearest-neighbours and the 6 fourth

nearest-neighbours of the point r;, respectively.

The Kohn-Sham hamiltonian in the real-space representation has the

general form:

His =) hij Iri){ril, (1.38)

1Y)
where h;; = 0 for |r; — r;| > Rp. The range of the hamiltonian Rgy 1s
the maximum between the core radius (0 in the case of a local potential)
and the extension of the real-space stencil. In the simple case of a uniform
mesh with grid-spacing h, a local Kohn-Sham potential Vis(r), and a first-
nearest-neighbour discretization of the kinetic energy, the matrix elements of

the hamiltonian are (in atomic units):

hij =4 —1/2h? if 7 and j are nearest neighbours ~ (1.39)
0 otherwise

To test the validity of the real-space discretization of the Kohn-Sham
hamiltonian, we have calculated the charge density of a simple system us-
ing different grids and stencils. The trial system consists of 8 Silicon atoms,
slightly displaced at random from their bulk equilibrium positions. In or-
der to mimic an infinite system, the Silicon afoms are arranged in a cubic
unit cell with periodic boundary conditions; the lattice parameter is fixed
at the experimental value: a9 = 10.26 a.u. The Kohn-Sham potential is ap-
proximated using the Appelbaum-Hamann ionic pseudopotential [21] screened
by the Thomas-Fermi diagonal dielectric function; this approximation will be
used throughout this work for every non-selfconsistent calculation. The hamil-

tonian has been represented on a real-space grid, and diagonalized to yield the
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charge density at the grid-points:
n(r;) = Za |1/)a(r,-)}2 Oer —€a) - (1.40)

For comparison, the “exact” charge density has been obtained by a conven-
tional plane-wave calculation at k = 0, corresponding to periodic boundary
conditions on the unit cell; a kinetic-energy cutoff of 20 Rydbergs has been

used for the plane-wave expansion.

The solid lines in Fig. 1.2 show the exact, plane-wave charge density
along the diagonal of the unit cell; the dots and the circles show, instead, the
charge density obtained using the real-space discretization of the Kohn-Sham
hamiltonian. In the case of Fig. 1.2 (a), the hamiltonian has been represented
on a uniform 24 x 24 x 24 real-space grid, using a T-point stencil (closed circles)
and a 13-point stencil (open circles) for the discretization of the kinetic-energy
operator. As we can see, the 13-point stencil produces a very accurate charge
density, but the 7-point stencil result is also acceptable. In the case of Fig. 1.2
(b), a coarser 16 x 16 x 16 grid has been used; whereas the 13-point stencil
(closed circles) still does reproduce the charge density closely, the 7-point
stencil (open circles) fails. We can conclude that the 16 x 16 x 16 real-space
grid is fine enough to provide an accurate description of the potential in this
case, but requires an O(h*) discretization of the kinetic energy to yield the

charge density correctly.
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Figure 1.2 — Charge density along the (111) direction obtained from a
conventional plane-wave expansion (solid lines) and from the real-space
representation of the Kohn-Sham hamiltonian (circles). Different grids
and stencils have been used. (a): 24 x 24 X 24 real-space grid; (b):
16 x 16 X 16 real-space grid; closed circles: 7-point stencil; open circles:
13-point stencil.
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Chapter 2

Recursion Method

The recursion method [22] provides a simple and efficient scheme for calcu-
lating each diagonal element of the real-space Green’s function with a com-
putational workload which does not depend, in principle, on the size of the
system; this goal is achieved by fully taking into account the local nature of the
real-space Green’s function.. Therefore, the recursion method opens the way
to the formulation of an O(N) algorithm for the self-consistent calculation
of electronic and structural properties of large systems, in the framework of
Density- Functional Théory. The recursion-method formalism is presented in
detail in Appendiz A; in this chapter we discuss its application to the calcula-

lron of the electronic charge density.
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2.1 Calculation of the charge density

Our starting point is the real-space representation of the Kohn-Sham
hamiltonian on a discrete mesh M = {r;,i=1,---,M}. At every point of
the real-space grid M, the charge density is calculated using the integral

representation of the density matrix; according to Eq. (1.21), we have:

n(r;) = L G(ri,ri;2)dz . (2.1)

o 27T"l Cr

The recursion method (RM) provides a simple and powerful algorithm
for computing the diagonal elements G(r;,r;;z) of the real-space Green’s
function. For each point r; of the real-space grid, an independent chain
transformation (see Appendix A) is performed starting from an initial state
|0) localized at the point r;: (r;|0) = é;;, for any point r; € M. The
Kohn-Sham hamiltonian, discretized over the real-space grid, is repeatedly
applied to generate a set of orthonormal states {|n)} via the three-term

recurrence relation:
Hes|n)=ap|n) 4 by |n+1) +b,|n—1), (2.2)

where |— 1) is the null state, and the chain parameters a,’s and b,’s are

chosen to ensure the orthonormality of the recursion states:

an = (n|Hgs|n)
) (2.3)
by = || (Hxs —an)[n) —bn|n—1)] .
Clearly, the chain parameters {a,, b,} and the recursion states {|n)}
depend on the starfing point r;. Since both the kinetic energy and the

Kohn-Sham potential are short-range operators in real-space, the n-th state

of the recursion chain is localized within a region of size R, proportional to
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n around the starting point r;. As an example, let us consider the simple
case of a uniform cubic mesh with a first-nearest-neighbour (7-point stencil)
discretization of the laplacian. Provided the boundary of the real-space grid
has not been reached, the n-th state of the recursion chain is localized within
a regular octahedron centered at the point r;, whose diagonal is given by
R, = 2nh. Similarly, in the case of a fourth-nearest-neighbour (13-point

stencil) discretization of the laplacian, the diagonal of the octahedron is

R, =4nh.

In principle, the chain transformation (2.2) can be carried on until
the state |n,) is generated, m, + 1 being the dimension of the Hilbert
subspace spanned by the vectors {H 2 |0), n=0,---,00}. In disordered
systems n, + 1 coincides with the dimension M of the real-space grid; only
if symmetries are present it may happen that n, +1 < M. The Kohn-Sham
hamiltonian turns out to be tridiagonal in the representation of the recursion

states {|n),n=0,---,n,}, so that it can be easily inverted to yield the
Green’s function diagonal element G(r;,r;;2) = (0] G‘(z) |10):

G(ri7 ri; z) =

b3 (r:) ’
b2 (r:)

z — an, (T;)

z —ag(r;) —

2 —ay(r;) — e —

where the dependence of the chain parameters on the starting point r; has
been made explicit. Once the recursion coefficients {a,(r;), b,(r;)} have been
computed, the charge density at the point r; can be readily obtained by
contour integration; substituting Eq. (2.4) into Eq. (2.1), we obtain:

n(ri)zﬁﬂz_ao(;)_m dz . (2.5)
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The integration contour Cp is somewhat arbitrary, provided it encloses all
the poles of the Green’s function G(r;,r;;2) up to the Fermi energy e, ; in
general, however, an optimum choice exists that minimizes the number of
sampling points at which the Green’s function has to be calculated in order to
evaluate the integral numerically to a given accuracy. We choose a rectangular
path in the complex energy plane (see Fig. 2.1) crossing the real axis at
Rez =€, and Rez = ¢, where ¢, is any lower bound for the spectrum of
the Kohn-Sham hamiltonian; provided the Kohn-Sham potential is bounded
from below, a safe choice for ¢, is given by the minimum of the potential itself.
The integration path is symmetrical with respect to the real axis, and crosses
the imaginary axis at Imz = 0.2 Ryd; the integral is evaluated numerically,

using an adaptive Simpson’s rule.

A Im 2z
CF
>
E
£ Re z
Figure 2.1 — Integration contour in the compler energy plane for the

calculation of the charge density; N is the Fermi energy.
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In the calculation of the charge density, the continued-fraction expansion
(2.4) can be truncated after a relatively small number of steps n < n,;in the
next section, we will discuss in detail the convergence of the charge density
with respect to the number of recursion steps. In order to check the validity
of the recursion-method approach to the calculation of the charge density, we
have performed a trial calculation on the same sample system described in

the previous section. The valence charge density along the (111) direction is

plotted in Fig. 2.2.

~1Ill|\|l|lll|llll

08 — —

®
A
0 2 4 .6 .8 1
x (111)
Figure 2.2 — Charge density along the diagonal of the cubic cell,

as oblained from a conventional plane-wave calculation (solid line) and
from the recursion-method approach (dots).

The solid line is the “exact” charge density, obtained from a well-converged

plane-wave calculation, as discussed in the previous section. The dots show
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the charge density calculated with the present approach. The hamiltonian has
been represented on a uniform 30 x 30 x 30 real-space grid, using a 13-point
stencil for the discretization of the kinetic-energy operator, and the chain
transformation has been carried on until the charge density has converged
within machine precision (500 steps). As we can see, the agreement is nearly

perfect.

2.2 Convergence of the recursion chain

The basic feature of the recursion method, which makes it an efficient
tool for the calculation of local properties, is the fast convergence of any
local energy-integrated quantity with respect to the number of recursion steps.
Within the present approach, the first state of the recursion chain is localized
at a given point of the real-space grid, and the successive states explore the
surrounding regions, expanding outwards at a rate which is linear in the
number of recursion steps. Therefore, the convergence of the charge density
with the number of chain steps reflects the physical intuition that the charge
density at a given point is affected progressively less by the more distant

environments.

In practice, one finds that for insulating systems the charge density
converges exponentially with the number of recursion steps, whereas the rate
of convergence is only a power law for metallic systems at zero temperature.
For finite systems, the spectrum of the Kohn-Sham hamiltonian is always
discrete, and the rate of convergence of the charge density depends basically

on the width of the gap between the highest occupied state and the lowest
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unoccupied state.

We give now a formal argument to explain the convergence of the charge
density with the number of recursion steps. Let us truncate the continued-

fraction expansion of the Green’s function after n steps:

1
G(")(ri,ri;z) =

() (2.6)

z — ag(r;) —

B2 (r;)

z—-al(ri)—---~m

The truncated Green’s function G(")(ri, r;;z) has n+1 distinct poles on the
real axis, and its spectral decomposition reads:

G(")(ri,ri 1z) = i ——Lgi(—-l-‘—z)— , (2.7)

z —e€alri)

a=0

where e,(r;) is th a-th eigenvalue of the recursion chain started at point
r;, and w,(r;) is the corresponding weight. Substituting the spectral
decomposition (2.7) into the equation for the charge density (2.1), we obtain:

n

2 (r;) =" wa(ri) 0(er —ealri)) - (2.8)

a=0

One can show that this is precisely the n-th order Gaussian quadrature formula

for the integral

n(r;) = /oo p(ri;e) 8(er —e)de, (2.9)

—oo
where p(r;;¢) is the ezact local density of states calculated at the point r;.
In an insulating system, the step-like function 6(¢r — €) can be replaced
with a relatively smooth, well-behaved function f(e, — €), for the local
density of states vanishes inside the gap. Since the Gaussian integration

formula converges expomnentially with the number of nodes and weights for
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any non-singular function [23], it follows that the “truncated” charge density
n{™M(r;) converges with an exponential rate to the exact charge density n(r;);
furthermore, the larger is the gap, the faster is the convergence. In a metallic
system at zero temperature, the step-like character of the #-function must
be retained, and the convergence of the Gaussian quadrature formula is only

polynomial-like.

The typical behaviour of the charge density as a function of the number of
recursion steps n is shown in Fig. 2.3. The system considered here is a cubic
supercell containing 216 Silicon atoms in their bulk equilibrium geometry.
The hamiltonian has been discretized on a uniform 48 x 48 x 48 grid with
periodic boundary conditions, and the charge density has been calculated at a
grid-point corresponding to the position of a Silicon atom. As a function of the
number of recursion steps, the point-wise charge density shows a characteristic
damped oscillatory behaviour; each oscillation corresponds to a pole of the
truncated Green’s function dropping below the Fermi level. Since the poles
are nearly uniformly distributed over the spectrum of the hamiltonian, the
period of the oscillations is given by to the ratio between the total band-width
and the valence band-width. The total band-width W depends, basically, on
the grid-spacing h: W o 1/h?; therefore, the finer is the real-space grid,
the larger is the period of the oscillations. As Fig. 2.3 clearly demonstrates,
the charge density converges well before the number of poles below the Fermi
energy equals the number of valence states (432 in this case); in other words,
the number of recursion steps needed to achieve convergence is much smaller

than the dimension of the basis set, (~ 105).

Tet us consider now in more detail the link between the rate of

convergence and the grid-spacing, h. According to our previous discussion,
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Figure 2.3 — Convergence of the poini-wise charge density with the
number n of recursion steps.

the number of poles below the Fermi energy scales as nh®, where n is the
number of recursion steps; however, this is not the only factor affecting the
convergence of the charge density. To clarify this point, we have calculated
the charge density of a simple trial system using different grids. The system
considered here is a cubic cell containing 8 Silicon atoms arranged in their
equilibrium positions, at the experimental lattice constant ap = 10.26 a.u.;
for each real-space grid, the charge density has been calculated at a grid-
point corresponding to the bond-center between two Silicon atoms. The open
circles in Fig. 2.4 show the charge density p as a function of the number
of divisions N} along each direction: Nj = ag/h. For Nj, > 24, the charge

density remains nearly constant. The black circles in Fig. 2.4 show, for
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every value of Ny, the number of recursion steps ncony Which are required to
reproduce the exact charge density p; within 0.5%; evidently, mcony 1s well
approximated by a straight line, so that neony b ~ constant. We can conclude
that the rate of convergence of the charge density scales linearly with the grid
spacing h. For very large systems, this matches the physical intuition that
the convergence of the recursion chain is determined essentially by the spatial

extension of the region explored by the states of the chain.

150 L L B B R B 0.13

100 0.11
: .
o <

50 0.09

O_\ NN T N T T I T SO Y N 1—0_07
10 20 30 40
Ny

Figure 2.4 — Charge density py as a function of the number of grid-
points Ny, along each direction of the unit cell. For each value of Ny,
Tieony gives the number of recursion steps which are needed to obtain py

within 0.5%.

We address now the crucial issue of the relation between the convergence

of the charge density and the size of the system. In order for the computational
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cost to scale linearly with the number of atoms, the rate of convergence of
the charge density with the number of recursion steps must not depend on
the system size. To shed light on this matter, we have calculated the charge
density as a function of the number of chain steps for a set of Silicon supercells
of different size. Within each supercell, the Silicon atoms are arranged in their
bulk equilibrium positions, and periodic boundary conditions are assumed.
The Kohn-Sham hamiltonian has been discretized on a uniform real-space

mesh, adopting the same grid-spacing h = 0.855 a.u. for all the calculations.

RO g T T T T[T T T ] 0.12
100 [ ]
i — 0.08
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0 500 1000 - 1500 2000
Number of atoms
Figure 2.5 ~ Rate of convergence of the point-wise charge density as

a function of the number of atoms of the sysiem. For each supercell s
(see text), the black circles show the ratio Apg/poo , and the open circles
show the number of recursion steps Tcony Tequired to obtain the ezact
charge density ps within 0.5%.
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For every supercell s, the valence charge density ps has been calculated
at a point of the real-space grid corresponding to the position of a Silicon
atomn. The open circles in Fig. 2.5 show the ratio Ap,/poo, Where poo 18
the charge density at the given point for the largest supercell considered here
(2744 atoms), and Aps = ps — Poo is the difference between the exact charge
density of the supercell s and that of the “infinite” system. The black circles
in Fig. 2.5 show, for each supercell s, the number of recursion steps which
are needed to reproduce the exact charge density p, within 0.5%. As the
size of the system grows large (Natoms = 1000), the ratio Aps/poo vanishes,
reflecting the physically intuitive fact that the charge density at a given point
is weakly affected by the more distant regions of space. At the same time, the
rate of convergence of the charge density stabilizes, becoming independent of
the number of atoms. We can conclude from this set of calculations that, at
least for large systems, the number of recursion steps to obtain the point-wise

charge density to a given accuracy does not depend on the size of the system.

As a final test of the convergence of the charge density with the number
of recursion steps, we have considered a very large system, consisting of
9744 Silicon atoms arranged in a cubic supercell, and we have calculated
the charge density along the (111) direction. The Silicon atoms are slightly
displaced at random from their equilibrium positions, to simulate some degree
of disorder. The Kohn-Sham hamiltonian has been represented on a uniform
110 % 110 x 110 real-space grid, using a 13-point stencil for the discretization
of the laplacian. The solid line in Fig. 2.6 is the exact charge density along
the first part of the diagonal of the cubic supercell, as obtained from a well-
converged continued-fraction expansion of the Green’s function. The dotted

line and the dashed line show the charge density obtained by truncating the
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continued-fraction expansion of the Green’s function after 20 levels (dotted

line) and 80 levels (dashed line).

n(x)

.05

4 8
x (111)

Figure 2.6 — Charge density along the (111) direction obtained from a
20-step truncated chain (dotted lines) and from a 80-step truncated chain
(dashed line). For comparison, the exact charge density is also shown

(solid line).

As this example demonstrates, in a realistic calculation a number of recursion
steps of the order of 100 is required to obtain the charge density within a

reasonable accuracy; also, the number of chain steps may be different for

different points of the real-space grid.
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2.3 Computational cost

Let us summarize now how linear scaling is achieved within the present

approach.

e First, the discretization of the Kohn-Sham hamiltonian on a real-space
grid produces a sparse representation, in the sense that the number of

non-vanishing matrix elements scales linearly with the system size.

e Second, for each point of the real-space grid the number of recursion steps
required to achieve a given accuracy in the charge density is independent

of the number of atoms.

e Third, the states of the chain generated by the three-term recurrence
relation (2.2) are localized around the starting point, so that the
computational cost of the matrix-by-vector product Hgs|n) does not

depend on the size of the system.

For large systems, these conditions are satisfied, and the overall computational

workload scales linearly with the size of the system.
In the linear regime, the number of floating-point operations for the
computation of the charge density scales as:

Nitops = (a n*+8n)M , (2.10)

where M is the dimension of the real-space grid, proportional to the number
of atoms of the system, and n is the the number of recursion steps, which we

assume to be the same for every grid-point.

The first term in parenthesis accounts for the calculation of the chain
parameters ag(r;), ++,an(r;) and bi(r;),---,bs(r;), which are generated

by application of the three-term recurrence relation (2.2) to a starting state
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localized at the point r;. The fourth-order power law arises from the fact that
each matrix-by-vector product fIKS\rrZ), with 0 < m < n, involves O(m®)
floating-point operations, because the state |m ), being localized in region of
volume proportional to (mh)® around the point r;, has O(m®) non-vanishing
elements; therefore, the computational cost for the calculation of the first n
recursion coefficients scales as Y ._, m®, which is O(n*). The prefactor
depends basically on the choice of the stencil for the discretization of the
kinetic-energy operator; if a simple nearest-neighbour stencil is adopted, the

value of « is roughly 10.

The second term in parenthesis in Eq. (2.10) accounts for the computa-
tion of the Green’s function diagonal element G(r;,r;;z) via the continued-
fraction expansion (2.6) and for the integration of the Green’s function along
the contour Cr in the complex energy plane. The prefactor 8 depends basi-
cally on the number of sampling points at which the Green’s function has to

be calculated in order to evaluate the integral to a given accuracy.

Although in general 8 > «, for most systems the O(n*) contribution
to the total computational time is by far the dominant one. Therefore, it is
vital to keep the number of recursion steps as low as possible; for example,
the calculation of the charge density of a 1000-atom system with a 50-step
truncated chain would require about 10 hours of CPU time on a single 1-
Gflops processor. Unfortunately, it is apparent from the previous examples
(see in particular Fig. 2.6) that quite a large number of steps, of the order of
100 or more, is r.equired to achieve a satisfactory convergence of the charge
density. In the next section, we will discuss some possible solutions to the
problem of reducing the number of chain steps without compromising the

accuracy on the charge density.
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2.4 Approximate terminators

Assuming that the first n states of the chain model for the point r;
have been calculated exactly, the continued-fraction expansion of the Green’s

function diagonal element G(r;,r;;z) can be cast in the form:

1

G(riyri;z) = ) ) (2.11)

z—ai(r;) = —tn(ri;2)

z —ap(r;) —

where i,(r;;2), the so-called n-th order terminator, accounts for the missing

part of the chain:

tolrsi2) = Pualro) e

b?z 2(ri)
z = anta(ri) — Y — o :2(1..) ...

All the information coming from the recursion states which follow |n} in the
chain model is incorporated into the n-th order terminator ¢,(r;;z). Since
the state |n) is localized within a region of size R,  n around the starting
point r;, the regions of the system which are more distant than R, from the
point r; contribute to the Green’s function G(ri,r;;z) exclusively through

the terminator t,(r;;z).

The charge density at a given point, being a local quantity, is scarcely
affected by the more distant environments; therefore, it is physically sensible
to replace the exact terminator i,(r;;z) with an approximate terminator
fo(ri;2), which takes into account the smaller contribution of the more distant
regions to the charge density at the point r;. From a computational point of
view, the aim of an approximate terminator is to reduce as much as possible
the number of chain parameters which have to be calculated exactly to obtain

the charge density to a given accuracy.
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The truncated continued-fraction expansion

(2.13)

el L, T;;2) =
briyTs;2) e

z — ap(r;) — 2

z_al(ri)__..._z_—_a;(—ri—)

corresponds to the choice of a vanishing terminator: ¢,(r;;z) = 0. In a sense,
this is the most simple and cheap approximation for the terminator, though a
very crude one: the surroundings of the point r; are fully taken into account in
the calculation of the charge density, whereas the more distant environments
are completely neglected. Therefore, the convergence of the charge density
with the number of recursion steps is determined by the extension of the cluster
explored by the states of the chain: when the charge density becomes stable
with respect to a variation of the size of the cluster, the continued-fraction
expansion converges. This the basic reason why quite a large number of chain
steps is required to achieve a reasonable accuracy in the charge density, as the

previous examples demonstrate.

Indeed, this is not the only unpleasant feature of the vanishing-terminator
scheme. First, the different regions of space which are actually included in
the calculation of the charge density at a given point are treated on an equal
footing, irrespective of their relative importance and weight. The same real-
space grid, in fact, is used all over the system, whatever the distance from the
selected i)oint is. Second, and related, no use is made of the property that
the recursion chains started at neighbouring points contain nearly the same

amount of physical information.

In order to overcome these difficulties, we have explored a number of

possibilities in search of an accurate and reliable approximate terminator.
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(a) Free-particle terminator

Let us comsider first the “free-particle” terminator t0; this is the
terminator for a free electron moving in a constant potential corresponding to
the average potential of the system. The same real-space grid and the same
boundary conditions as in the real system are employed for the calculation of
the free-particle terminator; in the usual case of a uniform grid with periodic
boundary conditions, the free-particle terminator does not depend on the grid-

point, and is a function of the complex energy z alone: 2 =1%(z).

The recipe for the calculation of the free-particle terminator is extremely
simple: given the real-space representation of the Kohn-Sham hamiltonian
on a discrete grid, the average value Vs of the Kohn-Sham potential is
calculated, and the free-particle chain parameters {a?b, b%}, corresponding

to the hamiltonian Hys = —1 J2V% + Vs, are generated; the free-particle

terminator is then recovered from a converged continued-fraction expansion:

(b5 41)°
10(z2) = + G (2.14)
” — CLO+1 _ n-+2
" z—al ,—

The free-particle approximation consists in replacing the exact n-th order
terminator with the corresponding free-particle terminator: 1,(r;;z) — t5(z).
This is a sort of mean-field approximation for the terminator: the cluster of
points explored by the first n states of the recursion chain is embedded in
a uniform, featureless background. However, it should be kept in mind that
this is not the same thing as setting the potential to a constant average value
outside the cluster spanned by the first n states of the chain and calculating
the charge density for this new system by means of a converged continued-

fraction expansion of the Green’s function; the n-th order terminator, indeed,
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is affected by the potential inside the cluster, and differs from the free-particle
one. Actually, a calculation performed on a very large system has shown that

the free-particle terminator can do nearly the same job, at a much lower cost.

The effect of the free-particle terminator on the convergence of the charge
density is demonstrated in Fig. 2.7. As in the case of Fig. 2.3, the system
considered here is a cubic supercell containing 216 Silicon atoms in their
experimental equilibrium geometry; the charge density has been calculated
at a point of the real-space grid corresponding to the position of a Silicon
atom. The solid line shows the charge density as a function of the number of
levels in the truncated continued-fraction expansion of the Green’s function;
in other words, a vanishing terminator is assumed in this case. The dashed
line in Fig. 2.7 shows the charge density obtained by replacing the exact n-
th order terminator t,(r;;z) with the corresponding free-particle terminator
9(2); a well-converged 300-step chain has been used for the calculation of
the free-particle terminator. The most striking feature of the free-particle
approximation is the lack of periodic oscillations in the charge density; this is
due to the fact that, for any value of n, the number of poles of the Green’s
function coincides with the number of free-particle chain steps (300 in the
present casej. Therefore, the number of poles below the Fermi level is nearly
independent of n; adding a new step to the chain just changes the relative

position of the poles and the corresponding residues.

To test the accuracy of the free-particle approximation, we have per-
formed some trial calculations on large Silicon supercells. The first system
considered here is a cubic cell containing 64 Silicon atoms, slightly displaced at
random from their equilibrium positions to simulate some degree of disorder.

The Kohn-Sham hamiltonian has been represented on a uniform 32 x 32 x 32
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Figure 2.7 — Convergence of the poini-wise charge density with the
number of recursion steps n. The solid line corresponds to the vanishing

_ terminator tn(ri;z) = 0; the dashed line has been obtained using the
free-pariicle terminator: tn(ri ;Z) — t%(z) .

grid with periodic boundary conditions. The Fermi energy was taken from
an exact, conventional orbital calculation involving the diagonalization of the
real-space hamiltonian. The charge density calculated at the grid-points lo-
cated along the diagonal of the cubic cell has been Fourier-interpolated to
yield the continuous lines plotted in Fig. 2.8.

The solid line in Fig. 2.8 (a) shows the exact charge density, resulting
from a well-converged continued-fra.ction expansion of the Green’s function.
The dotted and the dashed lines have been obtained by calculating just the
first 20 steps of the recursion chain exactly: in the first case (dotted line) the

continued-fraction expansion is truncated after 20 levels, assuming a vanishing
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Figure 2.8 — (a) Charge density along the (111) direction obtained
from a 20-step truncated chain (dotted line) and a free-particle termi-
nated 20-step chain (dashed line). (b) Charge density obtained from a
40-step truncated chain (dotted line) and a free-particle terminated 40-
step chain (dashed line). For comparison, the solid lines show the ezact
charge density.
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terminator; in the second case (dashed line) the free-particle terminator t5;(z)
is appended to the continued fraction. The convergence of the charge density
with respect to the number of free-particle chain steps has been checked
carefully, and a 500-step free-particle chain has been used for the calculation

of the free-particle terminator. The corresponding results for a 40-step chain

are shown in Fig. 2.8 (b).

As a second example, let-us consider again the large Silicon supercell
described in the previous section (see Fig. 2.6). The charge density along
the (111) direction is plotted in Figs. 2.9 (a) and 2.9 (b); the solid lines
show the exact charge density. The dotted and the dashed lines in Fig. 2.9
(a) correspond to a truncated 20-step chain and to a free-particle-terminated
chain, respectively. A well-converged 1000-step free-particle chain has been
used for the calculation of the free-particle terminator. The corresponding
results for a 30-step chain are shown in Fig. 2.9 (b).

As these calculations demonstrate, the accuracy of the charge density
for a given number of recursion steps is remarkably enhanced by the use of
the free-particle terminator. Actually, a comparison with Fig. 2.6 shows that
the charge density obtained using the free-particle-terminated 20-step chain
is nearly as accurate as the 80-step truncated chain result. We can conclude
that the free-particle terminator provides a working approximation for the
exact terminator in the calculation of the charge density. Furthermore, this
approximation is extremely cost-effective: due to the point-independence of
the free-particle terminator, its computational cost is independent of the size

of the system, at least for very large rsystems.

Since the free-particle terminator does not depend on the point position,

one could argue that more sophisticated mean-field approaches to the
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Figure 2.9 — (a) Charge density along the (111) direction obtained
from a 20-step truncated chain (dotted line) and a free-particle terma-
nated 20-step chain (dashed line). (b) Charge density obtained from a
30-step truncated chain (dotted line) and a free-particle terminated 30-

step chain (dashed line). For comparison, the solid lines show the ezact
charge densiiy.
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calculation of the terminator should improve the accuracy of the charge
density. In order to test this hypothesis, we have performed a simple
calculation on the same trial system considered in the previous example (see
Fig. 2.8). Let us replace the exact n-th order terminator t,(r;;z) with a
complex constant «y,; the parameter -, can be fitted in order to reproduce
the exact charge density at the point r;. However, if the same value of v,
is used for a large number of grid-points, the accuracy of the charge density
cannot be expected to be so high. Given the exact charge density along the
(111) direction, we have tried to fit the parameter 7, in order to minimize
the mean square deviation ¢, between the exact and the approximate charge
density:

1 al 2 e
Tn = { ~ 2 [ ee) = nlris )] } : (2.15)

i=1
where n(r; ;7,) is the charge density at the point r; obtained by replacing the
exact terminator {,(r;;z) with the parameter y,, and N is the number of
sampling points (32 in this case). The complex constant v7# which minimizes
the mean-square deviation o, provides an approximate charge density, as

shown in Fig. 2.10.

The solid line is the exact charge density along the diagonal of the cubic
cell, whereas the dotted line has been obtained by replacing the terminator
t20(r;; z) with the fitted parameter '*/gét. As we can see, the overall agreement
between the two curves is rather good; however, only a slight improvement is
achieved with respect to the free-particle approximation (see Fig. 2.8). The
approximate terminator 'yggt has been determined by fitting the exact charge
density at a small number of selected grid-points, and we believe it provides
nearly an upper bound to the precision any point-independent approximation

for the terminator can aim to achieve. Therefore, we argue that one has to
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Figure 2.10 — Charge density along the (111) direction, as obtained
by replacing the ezact terminaior tzo(ri i 2) with the fitted constant ’)/:{St
(dashed line); for comparison, the exact charge density (solid line) is also
shouwn.

go beyond the mean-field scheme to improve the accuracy of the free-particle

approximation consistently.

Before discussing different approaches to the calculation of the termina-
tor, it is interesting to compare the free-particle terminator with the “Thomas-
Fermi” terminator. The Thomas-Fermi terminator at the point r; is defined as
the free-particle terminator for a particle in a constant potential corresponding
to the Kohn-Sham potential calculated at the point r;: t2%(r;;2) = 12[V =
Vis(ri); 2]. Both the free-particle and the Thomeas-Fermi terminator are exact
in the limit of a constant potential; however, while the free-particle terminator

may be viewed as a mean-field approximation, the Thomas-Fermi terminator
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accounts for local effects. Although the computation of the Tl}oma.s-Fermi
terminator is nearly as simple as th;t of the free-particle terminator, the
accuracy in the resulting charge density is considerably lower. This is not
surprising, since the states of the recursion chain, due to the orthonormality
constraint, develop a hole in the middle, and become less and less sensitive
to the behaviour of the potential in the neighbourhood of the starting point.
In particular, all the states of the chain, except the first one, vanish at the
starting point; hence, the true terminator ¢,(r;;z) does not depend on the

value of the potential at the point r;.

b) Coarse-grid terminator
g

The basic idea behind the coarse-grid terminator is that the contribution
of the more distant regions of space to the charge density at a given point can
be accounted for in an approximate way using a coarser grid in these regions.
Since the terminator is mostly affected by the more distant environments, this
goal can be achieved by a grid-coarsening approach to the calculation of the
terminator.

Assuming that the first n states of the chain have been generated on a fine
real-space grid M" = {ri, 1=1,--- ,Mh}, we want to evaluate the n-th order
terminator ¢,(r;;z) using a coarser grid ME = {ri, 1=1,-- ,MH}, with
MH < M". The simple idea of replacing the fine-grid terminator ¢%(r;;2)
with the corresponding coarse-grid terminator tH(r;;z), however, has little
justification in this case, because (i) it can be applied only to those points
r; which are shared by the fine and the coarse grid, and (i) the regions of
‘space spanned by the first n recursion states generated on different grids

do not match. Therefore, we have explored two different techniques for the
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calculation of the coarse-grid terminator.

(i) In the first approach, the last two states of the fine-grid chain, |n—1)
and |n), are projected onto the coarse grid, and the recursion chain
is carried on in the new representation by discretizing the Kohn-Sham

hamiltonian on the coarse grid. The n-th order terminator t,(ri;z) is

then obtained from its definition, Eq. (2.12).

(ii) In the second approach, just the last state of the fine-grid chain, |n),
is projected onto the coarse-grid; a new chain is then generated on the
coarse-grid starting from the projected state [n) to obtain the Green’s
function diagonal element G n(Ti 12) = (n[é’(z) \n). Finally, the n-
th order terminator is then recovered from the following equation (see
Appendix A, Eq. A.25):

Poii(ri;z) B 1

P.(ri;z) Gon(ri;z) ’ (2:16)

to(risz) =

where P,(r;;z) and Po11(ri;2) are the monic polynomials for the first

chain.

To test the accuracy of these methods, we have performed some trial
calculations on the same sample system described in the case of Fig. 2.8. The
first n states of the chain are generated on a fine 39 % 32 x 32 uniform grid;
a coarser 16 x 16 x 16 grid is used for the calculation of the terminator. The
same stencil has been used in both cases for the discretization of the kinetic-
energy operator. The charge density along the (111) direction is plotted in
Fig. 2.11. The solid lines in Figs. 2.11 (a) and 2.11 (b) show the exact charge
density, the dotted lines show the 20-step truncated-chain charge density, and
the dashed lines have been obtained using 2 coarse-grid terminator. In the

first case, Fig. 2.11 (a), the last two states of the first chain were projected
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onto the coarse grid and orthonormalized before going on with the new chain.
In the second case, Fig. 2.11 (b), only the last state of the first chain was
projected onto the new basis set, and the coarse-grid approximation for the
terminator was obtained from Eq. (2.16).

Although a slight improvement is achieved in both cases with respect
to the truncated-chain result, the accuracy of the charge density is still too
poor. We believe that the failure of the coarse-grid terminator is related to the
lack of orthonormality between the states of the fine-grid chain and those of
the coarse-grid chain. Since the latter are not prevented by orthogonality
constraints from propagating towards the interior of the region of space
spanned by the states of the fine-grid chain, the terminator contains a large
amount of spurious information originating from the surroundings of the

starting point, which are poorly described by the coarse grid.
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Figure 2.11 — Charge density along the (111) direction obtained from
a 20-step chain with a coarse-grid terminator (dashed lines). In (a) the
last two states of the fine-grid chain have been projected onto the coarse
grid, and the chain has been carried on in the coarse-grid representation;
in (b) just the last state of the chain has been projected onto the new basis
set. For comparison, the 20-step truncated-chain charge density (dotted
line), and the ezact charge demsity (solid line) are also shown.
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Chapter 3

Self-Consistent Calculations

The Kohn-Sham potential Visn;r] depends on the electronic charge density
n(r) through the classical electrostatic potential and the quantum-mechanical
exchange-correlation potential; therefore, the charge density has to be deter-
mined self-consistently in order to evaluate the ground-state properties of the
system. In the present chapter, we describe the practical implementiation of
the self-consistent procedure in the context of the Green’s Function - Recur-
sion Method approach to DFT, and discuss the accuracy of total energies and
atomic forces. Finally, we present some test results for very large Silicon

supercells.
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3.1 Self-consistent calculation of the charge density

Given the atomic positions, the first step is the construction of the ionic
potential Vi,n(r), which accounts for electron-ion interactions. In periodic

systems, the ionic potential is most simply calculated in reciprocal space:

Vinlt) = - Do 0, Val@) Sa(@) 57 (3.1)

where (), is the volume of the unit cell, Vo(G) is the Fourier transform of the
ionic potential for atoms of type a, and S4(G) is the corresponding structure

factor:

Sa(G) =) e iGRia, (3.2)

Ja

where j, runs over the atoms of type a in the unit cell.

A trial Kohn-Sham potential Vks(r) can be obtained by screening the
ionic potential with a model dielectric function, such as the Thomas-Fermi
one. The Kohn-Sham hamiltonian Hys = (—=1/2) V? + Vis(r) is then ‘
discretized on a real-space grid M = {r;,7 = 1,---, M}, according to the
prescriptions discussed in the previous chapters. For each point r; of the
grid, a set of chain parameters {ai(r;), bi(r;), { = 0,---,n} is generated by
the recursion method. The initial state (! = 0) is localized at the point r;,
and the number of recursion steps n determines the accuracy of the charge
density at the point r;. In principle, the number of recursion steps might be
different for different points of the grid; a simple and reliable method exists
[24] which provides an upper and a lower bound to the exact charge density
given the first n coeflicients of the recursion chain. In practice, however, it
seems rather difficult to extrapolate the “right” number of recursion steps

from the knowledge of these bounds; therefore, in our calculations we always
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use the same number of chain parameters for every point of the real-space
grid. The 2(n 4+ 1) x M recursion coeflicients are then stored; neither the

Green’s function nor the approximate terminator are required at this stage.

The next step is the determination of the Fermi energy ¢, which is the

solution of the implicit equation
N(ep) = N, (3.3)

N(e) being the number of electrons with energy lower than €. Using the

integral representation of the density-matrix operator, we obtain:

N(e) = br p(e) = — f; r G(2) dz (3.4)

27
where C. is an integration contour in the complex energy plane enclosing all
the poles of the trace of the Green’s function up to the trial energy e. The
trace of the Green’s function is most simply calculated in real space:

M

tr G’(z) = Z G(ri,ri;2), (3.5)

=1
where the index ¢ runs over the M points of the real-space mesh M.
The Green’s function diagonal elements G(r;,r;;2z) are obtained from the
chain parameters {ai(r;), bi(r;), [ =0,---,n} using a terminated continued-
fraction expansion; if the free-particle approximation (see Section 2.4) is
assumed, the calculation of the trace is particularly simple, due to the
point-independence of the free-particle terminator. In principle, the contour
integration in Eq. (3.4) could be even performed analytically, upon spectral

decomposition of the Green’s function diagonal elements:

M
N(e) = \; Y walri) 8er —ealri)) (3.6)
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where €4(r;) is the a-th eigenvalue of the chain and we(r;) 1s the correspond-
ing residue. From a computational point of view, however, this approach turns
out to be rather expensive, particularly when a non-vanishing terminator is

assumed.

The choice of the integration contour C. for the evaluation of the electron
number N(e) is to some extent arbitrary; we have used a rectangular path
in the complex energy plane crossing the real axis at Rez = ¢, as shown in
Fig. 3.1. The integral can be readily evaluated numerically, by sampling the
trace of the Green’s function at a number of points along the contour C.. The
Fermi energy e is obtained by varying the trial energy ¢ and calculating
the corresponding electron number N(g), until Eq. (3.3) is satisfied within
a given precision. In practice, we find that using a simplified version of
Brent’s algorithm [25], a few steps are enough to get the Fermi energy within
1075 Ryd/atom.

Once the Fermi energy has been determined, the charge density is
calculated at every point of the real-space grid:

n(r;) = i G(r;,ri;z)dz . (3.7)

B 27["1, Cr
The integration contour Cp is closed at the Fermi energy er; the same

integration contour is used for all the grid-points.

The knowledge of the electronic charge density n(r;) over the real-space

grid M allows the calculation of a new Kohn-Sham potential:
VKS[n;ri] - Won(ri) + VH[n;ri] +Vzc[n)rt] 3 (38)

where Vi [n;r;] is the classical electrostatic potential (Hartree potential), and

Vee[n;r;] is the exchange-correlation potential. The Hartree potential is the
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Figure 3.1 — Integration coniour in the complez energy plane for the
calculation of the electron number N(g).
solution of the Poisson equation:
VVy[n ;1) = —dne® n(r;) , (3.9)

. which satisfies the appropriate boundary conditions. The Poisson equation can
be readily mapped onto the real-space grid M by discretizing the laplacian
operator; the same real-space stencil used for the discretization of the kinetic-
energy operator is adopted here for the laplacian. The Poisson equation
reduces to a system of linear equatic;ns which can be solved iteratively to get
the Hartree potential; if multigrid techniques [26] are used , the computational
workload scales linearly with the dimension M of the real-space mesh.

In the common case of a uniform grid with periodic boundary conditions,
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however, the Poisson equation is most simply solved in reciprocal space. The
computational cost of the required Fourier transforms scalés as M log M ;
however, this is only a very small fraction of the total computational time.
The exchange-correlation potential in the local-density approximation has the

simple expression:

de e

dn

VP4 nsr;) = n(ry)

+ eze(n(ri)) , (3.10)

n=n(r;)

where €,.(n) is the exchange-correlation energy per particle of a homogeneous

electron gas with density n. The parametrized form of €,.(n) proposed in

[27] has been adopted.

Adding the Hartree potential and the exchange-correlation potential to
the bare ionic potential, a new Kohn-Sham potential is generated. The input
potential for the next iteration of the self-consistent procedureis then prepared
according to the Anderson’s underrelaxation/extrapolation scheme [28], and
the whole procedure is repeated until input and output potentials agree to

within a given threshold.

Whenever a full-converged continued-fraction expansion is used for the
calculation of the Green’s function, this self-consistent scheme turns out to
be relatively safe, provided a finite gap exists between the highest occupied
state and the lowest unoccupied one. If, due to symmetry reasons, two or
more degenerate states fall exactly at the Fermilevel, and only a few of them
are occupied, the algorithm fails, because all the states at the Fermi level
are either included in the calculation of the charge density, or completely

neglected, thereby violating the charge neutrality condition.

In most cases, however, one has to resort to some approximate terminator

to deal with the calculation of diagonal elements of the Green’s function.
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This may give rise to a number of technical problems in the self-consistent

procedure:

(i)

(i)

(i)

Although each diagonal element of the real-space Green’s function has
a discrete number of well-separated poles along the real axis (n + 1 in
the case of a truncated chain), the position of these poles is different for
different points of the real-space grid. Therefore, the trace of the Green'’s
function has nearly a continuum of poles on the real axis, even inside the
physical gap, if the number of recursion steps is low. Due to the presence
of a dense set of poles on the real axis, the trace of the Green’s function
may have a rather oscillatory behaviour along the integration contour
C.; hence, the numerical evaluation of the integral may require a rather

large number of sampling points to achieve a reasonable accuracy.

A similar problem occurs in the calculation of the charge density. In
correspondence to some points of the real-space grid, the local Green’s
function may happen to have a pole close to the computed Fermi energy;
in this case, a large number of sampling points along the integration
contour Cr may be necessary to obtain the charge density within a given

precision.

Finally, a major difficulty may arise in the context of the self-consistent
procedure, due to the fact that a small variation in the Kohn-Sham
potential may cause a pole of the Green’s function to jump across the
Fermi level, leading to a sharp discontinuity in the charge density (see for
example Fig. 2.3). On turn, the Kohn-Sham potential globally responds
to this local variation of the charge density, determining an instability

which can seriously hinder the achievement of self-consistency.

In order to cope with these problems, we have used a finite-temperature
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approach to deal with the calculation of the charge density and other energy-
integrated quantities. Within the RM, the finite-temperature charge density
at the point r; of the real-space grid reads:

wa(r,-)
TL(I‘,’ ,T) = Za 1 + e[fa(l‘i)'—EF]/KBT 3 (311)

where £,(r;) is the a-th eigenvalue of the terminated recursion chain started
at the point r;, and w,(r;) is the corresponding residue (see Appendix A).
The temperature-dependent Fermi energy ep is the solution of the implicit
equation:

N(er,T) = N, (3.12)

N(e,T) being the number of electrons with energy lower than ¢ at tempera-

ture T':

M
. wa(ri)
N(e,T) = Z; > AT (3.13)

Of course, the finite-temperature charge density slightly differs from the
exact one. However, provided the temperature is much lower than the average
spacing 8¢ among the eigenvalues, KpT < 8¢, (i) only those points of the
real-space grid which happen to have a pole close to the Fermi energy are
affected by the finite temperature, and (ii) for most of these points, the
difference in the charge density is negligible. Therefore, for KpT < ée the
finite-temperature Fermi energy nearly coincides with the zero-temperature

Fermi energy.

In principle, the calculation of the finite-temperature charge density
would require, for every point of the real-space grid, the highly time-consuming
computation of all the eigenvalues of the corresponding recursion chain.

However, since we are concerned here with temperatures which are low
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compared to the average spacing of the eigenvalues, we can focus on a small
energy interval A around the Fermi energy €, , and consider the “depurated”
Green’s function:

é(ri,ri ;z) = G(ri,ri;z) - Z, __f‘_f_o_z_g_[_'_i_)__ (3.14)

@ 2 —eq(r;)’

where the prime indicates that the sum is restricted to the poles included in
the energy interval A. Clearly, the modified Green’s function G’(ri,ri ;z) has
no poles close to the Fermi energy. Provided the energy interval A satisfies
the requirement exp[~A/KpT]| < 1, the finite-temperature charge density

can be written as:

1 wa(r;)

- !
n(ri ,T) - '2% g G(riari ;Z) dz + Ea 1 + e[sa (l‘i)'—EF]/KBT . (315)
F

Only the chain-eigenvalues within an interval A around the Fermi energy e,

have to be calculated explicitly.

Similarly, the total number of electrons with energy lower than ¢ is given

by:

M
1 ~ / wa(ri)
NeT) =0 j{ oz et 2_; Yo TG T (316)

where the primed sum involves the chain-eigenvalues €,(r;) within an energy

interval A around the trial energy €.

The finite-temperature approach has a number of advantages. From a
computational point of view, the numerical evaluation of any integral involving
the modified Green’s function G(z) is greatly simplified, because of the
enhanced smoothness of é(z) along the integration contour. Furthermore,

since the chain-eigenvalues close to the Fermi energy are assigned a weight
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which depends smoothly on their energy, the poles of the Green’s function

are prevented from jumping across the Fermi level in a discontinuous fashion;

therefore, the self-consistent procedure is stabilized, and the convergence is

faster and safer.

3.2 Total energy

Within Density-Functional Theory, the ground-state total energy is a

functional of the self-consistent charge density n:

Bioiln] = Toln] + Enln] + Eseln] + Eeatln] , (3.17)

where:

(1)

(i)

(iii)

To[n] is the kinetic energy of a non-interacting electron gas with density
n(r);
Ey[n] is the classical electrostatic energy, due to electron-electron

interactions:

%M:%/nhﬂﬂﬂﬁ, (3.18)

where Vy[n;r| is the Hartree electrostatic potential;

E,.[n] is the exchange-correlation energy; in the local-density approxi-

mation, it reads:

BEfn) = [ eeolnls) nle) . (3.19)

where €£,.(n) is the exchange-correlation energy of a homogeneous

electron gas with density n.
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(iv) Eezt[n] is the external energy due to electron-ion and ion-ion interactions:
Eemt[n] = /Vion(r) TL(I‘) dr + Eipn—ion - (320)

The integrals occurring in the last three contributions to the total energy
extend over the volume of the system, and can be easily calculated on a real-
space grid with a computational workload which scales linearly with the size

of the system.

Let us consider now the kinetic-energy term 7g[n]; according to the
discussion of section 1.3, in the context of the recursion method the kinetic

energy is most simply calculated following an indirect way:
Toln] = By — / Visin;rjn(r)dr, (3.21)

where the band-structure energy E;, is the ground-state expectation value
of the self-consistent Kohn-Sham hamiltonian Hys = (=1/2) V2 4 Vgs[n;sr).

Using the integral representation of the density matrix, we obtain:

Eyy =tr(p Hys) = L j{ 2t G(2)dz ; (3.22)
Cr

9w

the trace of the self-consistent Green'’s function é(Z) is calculated in real-
space, using the same chain parameters and the same approximate terminator

as in the calculation of the self-consistent charge density.

However, it is by no means obvious that an approximate terminator which
reProduces the charge density to a given precision would work equally well in
the case of the band-structure energy. To check this point let us write the

band-structure energy as:

By = / epo(r) dr | (3.23)
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where eps(r) plays the role of a band-structure energy density:

eps(T) = 5}7;; 3 zG(r,r;z)dz . (3.24)
We have tested a number of approximate terminators in the calculation of
the band-structure energy-density; in particular, the effect of the free-particle
terminator is shown in Fig. 3.2. The system considered here is the same Silicon
supercell described in the case of Fig. (2.6); the band-structure energy-density
is plotted along the (111) direction. The solid lines in Fig. 3.2 (a) and Fig.
3.2 (b) show the exact band-structure energy-density, obtained from a well-
converged continued-fraction expansion of the Green’s function. The dotted
line in Fig. 3.2 (a) has been obtained by truncating the continued-fraction
expansion after 20 steps, whereas the free-particle terminator t9,(2) has been
used in the case of the dashed line. The corresponding results for a truncated
30-step chain (dotted line) and for a free-particle terminated 30-step chain
(dashed line) are shown in Fig. 3.2 (b).

We can conclude from these calculations that, as in the case of the charge
density, the accuracy of the band-structure energy-density is improved by
the free-particle terminator. Furthermore, the computational cost for the
calculation of the band-structure energy scaies only linearly with the size of

the system, for the same reasons discussed in the case of the charge density.

Let us consider now the accuracy of the ground-state total energy. A
number of self-consistent calculations have been performed on a simple trial
system, consisting of a cubic unit cell containing 8 Silicon atoms, slightly
displaced at random from their equilibrium positions; the average value of
the displacement is AR = 0.1 a.u. The Kohn-Sham hamiltonian has been

discretized on a uniform 14 x 14 x 14 grid, using a 13-point stencil for the
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Figure 3.2 — Band-structure energy densily (in Ryd/a.u.) along

the first part of the diagonal of the cubic cell. The solid lines show
the ezact energy density. (a) Energy density obtained from a 20-slep
truncated chain (dotted line) and from a free-particle-terminated 20-step
chain (dashed line). (b) Energy density obtained from a 30-step truncated
chain (dotted line) and a free-particle-terminaied 30-step chain (dashed
line).
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discretization of the kinetic energy. The self-consistent procedure described
in the previous section has been carried on until input and output potentials
agree to within 10™* Ryd. The results are shown in Tab. 3.1 for different

lengths of the recursion chain and different terminators.

# steps TC FP
20 -8.4489 -8.4161
30 -8.4836 -8.4079
40 -8.4438 -8.4216
Exact -8.4236

Table 8.1 — Total energy (in Ryd/atom) as a function of the number
of recursion steps. TC: truncated chain; FP: free-particle-terminated

chain. The “ezact” total energy has been obtained from a well-converged
350-step chain,

An exact self-consistent calculation at zero-temperature has been per-
formed using a well-converged 350-step chain to deal with the calculation of
the Green’s function. The resulting ground-state total energy is shown in the
last row of Tab. 3.1. The remaining entries have been obtained using a trun-
cated chain (TC) or a free-particle-terminated chain (FP); a finite temperature
KgT = 0.002 Ryd, corresponding to room-temperature, has been adopted in
all cases for the calculation of both the self-consistent charge density and the

band-structure energy.
Some conclusions can be drawn from Tab. 3.1:
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(i) The free-particle terminator works consistently better than the vanishing

terminator: the error in the total energy is typically 3-4 times smaller.

(ii) Increasing the number of recursion steps improves the accuracy of the
total energy; however, the error does not decrease monotonically with
the number of recursion steps. For example, the 30-step result is worse
than the 20-step one. Unfortunately, this is true even when the free-

particle terminator is used.

(iii) Finite-temperature effects are relatively small compared to the error
introduced by the terminator. For example, a calculation performed with
a 20-step chain at KpT = 0.0002 Ryd yields E;,: = —8.4483 Ryd/atom
for the truncated chain and F;; = —8.4138 Ryd/atom for the free-

particle-terminated chain.

3.3 Forces

Within Density-Functional Theory, the calculation of forces acting on
atoms relies upon the Hellmann-Feynman theorem. This is a very general
theorem, indeed, stating that whenever the local external potential Vesz(r)
depends on a parameter A, the derivative of the ground-state total energy

with respect to A is:

dE) /avm(r;k) na(r) dr | (3.25)

- o

where n)(r) is the ground-state charge density corresponding to the external

potential Vege(r;A). The validity of the Hellmann-Feynman theorem is based
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on the property that the contributions to the derivative of the total energy

originating from the A-dependence of the charge density vanish:

6Ey Ona(r) ,
/ m(’; ) a"/\ dr=0. (3.26)

This is a consequence of the variational nature of the total energy within
DFT. The functional derivative of the energy with respect to the charge
density n,(r), in fact, is the chemical potential p) appropriate to the external
potential V..¢(r;)); hence, Eq. (3.26) follows from the charge neutrality
condition. In the conventional Kohn-Sham approach to DFT, the ground-
state charge density m)(r) is expressed in terms of the Kohn-Sham orbitals
{¥a(r;A)} which minimize the energy functional E) = Ex[{#o}]. Therefore,

the implicit contribution to the derivative of the total energy reads:

6 a¢a(r§A) _
Zaf&pa(r;A) py Tt =

(3.27)
9 2
-y Eaﬁ/wa(r;m dr =0,

due to the normalization of the Kohn-Sham orbitals.

The force acting on atom 7 is the derivative of the total energy with

respect to a displacement u; of the atom:

dEtot
F,=- 2
dui ;=0 (3 8)
According to the Hellmann-Feynman theorem, we have:
F,=- ] 2=/ dr - —— 0 , 3.29
B u,:OnO(r) r v (3.29)

where Vo, is the ionic potential, Fion_ion is the electrostatic energy of the

ions, and no(r) is the ground-state charge density calculated at u; = 0.
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Within the RM approach to DFT, the numerical implementation of
the Hellmann-Feynman scheme for the calculation of energy derivatives is
straightforward. When an approximate terminator is used for the evaluation
of the Green’s function, however, the variational character of the total energy
is lost, and, strictly speaking, the Hellmann-Feynman theorem does not
apply. Therefore, the contribution originating from the A-dependence of the
charge density should be taken properly into account in the calculation of the

derivative of the energy with respect to the parameter A:

dBx 9B S§Ey Ona(r)
X Bx |gp | J fna(r) oA

dr . (3.30)

We address now the question of the validity of the Hellmann-Feynman
theorem in the context of the calculation of atomic forces. To this end,
we have considered a system of 8 Silicon atoms arranged in a cubic
supercell, at the experimental lattice constant ay = 10.26a.u. The atom
originally at the equilibrium position (0.25, 0.25, 0.25)ap has been moved
to (0.20, 0.20, 0.20) ag . The remaining atoms have been slightly displaced at
random from their equilibrium positions, the average value of the displacement
being AR = 0.1 a.u. The Kohn-Sham hamiltonian has been represented on
a uniform 14 x 14 x 14 grid, using a 13-point stencil for the discretization
of the laplacian; the self-consistent procedure has been carried on until input
and output potentials agree to within 1075 Ryd. The force acting on the
atom at (0.20, 0.20, 0.20) ao along the (111) direction has been calculated
both numerically and by means of the Hellmann-Feynman theorem, according
to Eq. (3.29); the results are given in Tab. 3.2 for different lengths of the
recursion chain and different terminators. All the self-consistent calculations,
except the last one, have been performed at finite temperature: KgT =

0.002 Ryd. The column labeled Fap provides the numerical derivative of
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the total energy with respect to a displacement of the atom along the (111)

direction :
Etot(u) - Etot(—u)
2u ’

Fap = (3.31)

where u = (0.001, 0.001, 0.001) a¢ ; the linearity of the energy as a function of
the displacement u has been checked. The last two columns in Tab. 3.2 give

the Hellmann-Feynman force Fyr and the difference AF = Fgr — Fag.

# steps Terminator Fagp Fyp AF
20 TC 0.424 0.462 0.038
20 FpP 0.460 0.535 0.075
40 TC 0.524 0.502 -0.022
40 FP 0.465 0.396 -0.069
350 TC 0.414 0.413 -0.001

Table 3.2 — Forces acting on the atom at (0.20,0.20,0.20)ay along the
(111) direction (in Ryd/a.u.) as a funciion of the number of recursion
steps. TC: truncated chain; FP: free-particle-terminated chain. Fag is
the numerical derivative of the total energy with respect to a displacement
of the atom in the (111) direction, I'p g s the Hellmann- Feynman force,
and AF is the difference Fyp — Fap.

As these calculations demonstrate, the Hellmann-Feynman theorem is obeyed
in the case of the well-converged 350-step chain, so that the Hellmann-
Feynman force coincides with the numerical derivative of the total energy.

When a vanishing terminator or a free-particle terminator are assumed,
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however, the Hellmann-Feynman theorem does not apply, the typical error
being as large as a few tens of mRyd/a.u. The error is somewhat larger
when the free-particle terminator is used, and decreases as the number of
recursion steps increases. We have found that the effects of finite temperature
on the validity of the Hellmann-Feynman theorem are negligible; therefore, we
can conclude that within the present approach the Hellmann-Feynman forces

provide only a qualitative estimate of the derivatives of the total energy.

Let us consider now the accuracy of the energy derivative Fap, which
reflects the accuracy of the energy difference AE = Eipi(u) — Eypi(—u). In
the case of the free-particle-terminated chain, the error in Fag is of the order
of 0.05 Ryd/a.u., both for the 20-step chain and for the 40-step chain; this
corresponds to an error of ~ 2 x 107* Ryd/atom in the energy difference
AE, which should be compared with the typical error of ~ 0.01 Ryd/atom
affecting the absolute value of the energy (see Tab. 3.1). The error in the
energy derivative Fag is comparable with that introduced by the use of the

Hellmann-Feynman theorem.

3.4 Results

To demonstrate the feasibility of self-consistent calculations in large

systems, we present some results obtained for large Silicon supercells.

(a) Silicon cluster

The system considered here is a spherical Silicon cluster containing 441

atoms; the diameter of the cluster is d = 48.12 a.u. The Silicon atoms are
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arranged in their bulk equilibrium positions, with one atom sitting at the
center of the cluster. The cluster is enclosed in a cubic unit cell of size
a = 61.56 a.u.; periodic boundary conditions are assumed on the cubic cell.
The Kohn-Sham hamiltonian has been discretized on a uniform 90 x 90 x 90
real-space grid filling the cubic unit cell. A free-particle-terminated 15-step
chain has been used for the calculation of the charge density at every point
of the grid. The self-consistent procedure described in section 3.1 has been
carried on until input and output potentials agree to within 0.001 Ryd; about
30 iterations were necessary to achieve self-consistency. The self-consistent
charge density along the diameter in the (110) direction is shown in Fig. 3.3;
there are 7 Silicon atoms along this line, corresponding to the dips in the

charge density.

Once the self-consistent potential had been obtained, we have calculated
the local density of states n(r;; E) at two different points of the real-space
grid. In order to achieve high energy-resolution, a 1000-step continued-fraction
expansion of the Green’s function has been used for the computation of the
local density of states. In one case (left-panel in Fig. 3.4) the density of states
has been calculated at a grid-point corresponding to the bond-center between
the Silicon atom located at the center of the cluster and one of its nearest
neighbours. In the other case (right-panel in Fig. 3.4) the local density of
states in the middle of a dangling-bond close to the surface is shown. Whereas
the local density of states near the center of the cluster resembles the density
of states of bulk Silicon, a pronounced peak corresponding to a surface state

appears in the local density of states close to the surface.

(b) Vacancy in Silicon
As a second example, let us consider a neutral vacancy in Silicon. The
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Figure 3.3 — Self-consistent charge density along the diameter of the
cluster in the (110) direction.

presence of a point defect in a Silicon crystal has important consequences on
both the electronic structure and the atomic geometry [29,30]. Due to the loss
of translational invariance, however, this problem cannot be tackled within
conventional schemes for band-structure calculations; various techniques -
such as finite-cluster, periodic—superéeﬂ, and Green’s function methods — have
been recently devised to deal with the inherent difficulty of the vacancy
problem. Since the perturbation induced in a Silicon crystal by removal of

one atom is screened over relatively short distances, the use of a periodically

73



02 —

01 [\/\/\/\/\/\/\/\f
N IIII\III!ll!llII[

g J l||1[Ll/\1[|

10 <0 30 40 o0 60 70
x (110)

Figure 3.3 — Self-consistent charge density along the diameter of the
cluster in the (110) direction.

presence of a point defect in a Silicon crystal has important consequences on
both the electronic structure and the atomic geometry [29,30]. Due to the loss
of translational invariance, however, this problem cannot be tackled within
conventional schemes for band-structure calculations; various techniques -
such as finite-cluster, periodic—superée]l, and Green’s function methods — have
been recently devised to deal with the inherent difficulty of the vacancy
problem. Since the perturbation induced in a Silicon crystal by removal of

one atom is screened over relatively short distances, the use of a periodically
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Figure 3.4 — Local density of states at the bond-center belween two
Silicon atoms close to the center of the cluster (left-panel) and in the
middle of a dangling bond (right-panel).

repeated supercell makes sense provided the supercell is large enough to avoid

interactions between neighbouring vacancies.

We have investigated the relaxation of the first two shells of atoms around
a vacancy in a Silicon crystal using the supercell technique. A vacancy
has been created in a large Silicon supercell by removing one atom out
of 216; periodic boundary conditions are assumed on the supercell. The
Kohn-Sham hamiltonian has been discretized on a uniform 42 x 42 x 42
real-space grid. The self-consistent calculation has been carried on at finite
temperature (KpT = 0.006 Ryd) until input and output potentials agree to
within 0.001 Ryd; about 30 iterations are required, for each atomic geometry,
to achieve convergence. The relaxed geometry of the system minimizes the
total energy with respect to the atomic positions. Forces acting on atoms are
calculated by means of the Hellmann-Feynman theorem, Eq. 3.29; although

the agreement with the derivative of the total energy is only qualitative, as
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demonstrated in the previous section, nevertheless Hellmann-Feynman forces

provide useful information whenever they are much larger in modulus than

their typical error (~ 1072 Ryd/a.u.).

In the unrelaxed geometry, the atoms surrounding the vacancy are kept
fixed in their bulk experimental positions. In this configuration, we detect
rather large forces acting on the four atoms belonging to the first shell of
neighbours around the vacancy; for each of these atoms, we calculate a force
of 0.115 Ryd/a.u. pointing outwards in the radial direction. The forces
acting on the twelve atoms of the second nearest-neighbour shell are much
weaker, and point inward in the direction of the missing atom. The question
of the direction of the forces acting on the first shell is quite controversial;
for example, SchefHler et al. [29] find an outward displacement of the nearest
neighbours, whereas Kelly and Car [30] obtain an inward relaxation. Our
results are in qualitative and even quantitative agreement with those of
Ref. [29]. When considering the accuracy of our calculation, however,
one should take into account that (i) we have used the local Appelbaum-
Hamann pseudopotential to deal with electron-ion interactions, and (i) for
computational reasons, the Kohn-Sham hamiltonian has been discretized on
a relatively coarse real-space grid. We believe that these are the two main

sources of error in our calculation.

Moving the atoms in the direction of the forces lowers the total energy
of the system. In particular, the first-shell atoms are pushed toward the
interior of the tetrahedra they form with the second-shell atoms, which on
turn move away from the missing atom. In the lowest-energy configuration
we have found, the total energy of the system is 0.54 Ryd lower than the

unrelaxed-configuration energy; the displacement of the first-shell atomsin the
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radial direction is as large as 1.6 a.u., whereas the second-shell atoms move
outward by 0.5 a.u. However, the Hellmann-Feynman forces do not vanish
in this configuration, nor they would in the minimum-energy configuration,

according to our previous discussion.

In correspondence to the lowest-energy configuration, we have calculated
the local density of states at a few selected points of the real-space grid. The
local density of states averaged over the Wigner-Seitz cell around the vacancy
is shown in Fig. 3.5 (a); the corresponding average density of states around
a Silicon atom located 17.8 a.u. far away from the vacancy is plotted in Fig.
3.5 (b). The Fermi energy is ¢, = 0.719 Ryd. As Fig. 3.5 demonstrates, the

Fermi energy is pinned by a localized state in the gap.

76



SOIIIIITIIiIIIIlIIIIIiI

u (a) _

20 +— —

n(E)

10

Ol!ll‘lllllllli!lll‘tlll

4 5 6 7 8 9
E (Ryd)

60 1T T T T T T T T T T T T

- () -

Figure 3.5 — (a): average density of states around the vacancy;

(b): average densily of states around a Silicon atom far away from the
vacancy.
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Chapter 4

Equation-of-Motion Method

The Equation-of-Motion (EOM) method provides an alternative approach
to the calculation of the electronic charge density within the Kohn-Sham
scheme. Actually, the EOM method was originally introduced to deal with
the computation of the local density of states in large, disordered systems [31];
however, its eztension to the calculation of energy-integrated quantities, such

as the charge densily, is straightforward.
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4.1 Real-time propagator

The basic ingredient of the equation-of-motion method is the real-time
propagator:

g(t) = e (4.1)

A system in the state (0) at time ¢ = 0 will find itself in the state

() = §(t)9(0) at time t > 0. The spectral decomposition of the real-time

propagator reads:
§(6) =), Wallpal e, (4.2)

where [1o) is the a-th eigenstate of the hamiltonian H, and e, is the
corresponding eigenvalue: H jpo) = 0 [tha) -

The Green’s function operator G (z) is related to the real-time propagator

§(t) by a Laplace transform:
é(z) = —if §(t) et#t di , for Imz > 0 (4.3a)
0

and

é(z) = z/ §T(t)e ™ dt, for Imz<0. (4.3b)
0

The Green’s function operator defined by equations (4.3a) and (4.3b) correctly
satisfies the property é(z*) = GT(z).

A simple, direct relation exists between the density-matrix operator and
the real-time propagator. To derive this equation, let us introduce the spectral

operator
Ae) = Ialdal 8(e —ca), (44)

which is related to the imaginary part of the Green’s function:
- 1 A
Ale) = —= lim ImG(e +1y). (4.5)

iy 7—»0""
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From equation (4.3a), we obtain:

fi(e):% lim Re / a(t) et gy, (4.6)

‘y——>0+ 0
In terms of the spectral operator A(e), the density matrix reads:
G
5= / Ae)de (4.7)
39

where €, is any lower bound for the energy-spectrum of the hamiltonian:
£, < min{e,}. Provided the potential energy is bounded from below, a safe
choice for €, is given by the minimum of the potential. Substituting equation
(4.6) into (4.7), and integrating over the energy, we arrive at the following

expression for the density-matrix operator:

1 00 eispt _
)= — Hbm Im g(t
' 1Y - 'y—-*I}é)l'*' . g() ¢

iept

eV dt . (4.8)

€

The expectation value of the real-time propagator on a normalized state

g is the time-correlation amplitude:
90(t) = {1bol 5(8) o) = {abol ™" tho) (4.9)

The corresponding diagonal element of the spectral operator provides the local

density of states projected upon the state 7y :
1 1 . * i(e+1
no(e) = (Yol A(e) o) = — lim Re / got) e (it g (4.10)
T y—07 0

For the integral over time to converge, the imaginary part of the energy must

be finite and positive:
1 = et _—t
no(e) = —Re go(t) et e™ " dt (4.11)
T 0
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which corresponds to a Lorentzian broadening « of the spectrum. However,

a Gaussian broadening can also be introduced in a simple way:
1 = iet —o?t?
no(e) = —Re go(t) e e dt . (4.12)
m 0

The expectation value of the density-matrix operator on the state 1y reads:

o0 iept

1 e
= b =— h I t
po = (ol p ltbo) L m Im 0 go(t) :

et

T edt.  (4.13)

In this case, the integral converges even for v = 0, because it reduces to a
sum of Sine integrals; however, a finite broadening of the spectrum may be

useful to accelerate the convergence.

The numerical implementation of the EOM method involves two basic

steps:
(i) the calculation of the time-correlation amplitude go(t);

ii) the evaluation of time-integrated quantities, such as the local density of
g y

states or the density matrix.

The calculation of the time-correlation function go(t) is performed by
propagating the initial state o forward in time; this is equivalent to the

solution of the time-dependent Schrédinger equation
i =Hap, (4.14)

subject to the initial condition (¢ = 0) = 1bp. A considerable literature exists
concerning the numerical integration of the Schrodinger equation. Basically,
the solution is evaluated at a number of consecutive time steps i, = nbt,
with n = 0,1,--- . The choice of the time interval 6t dépends on the

hamiltonian H and, also, on the integration algorithm; in order to describe

81



the most oscillatory component of the real-time propagator correctly, 6t must
be small compared to 1/emaz, Where €4, is the largest eigenvalue of the
hamiltonian. If 4, is the solution of the Schrodinger equation af time ¢ = iy,

the real-time propagator provides the exact solution at time ¢ = tp41:
Ysr = 3(58) b (4.15)

in general, however, the real-time propagator is unknown, and one has to

resort to some approximation to evaluate 1,41 .

A simple and reliable method for the numerical integration of the

equation of motion is provided by the so-called leap-frog (LF) algorithm:
Vg1 = Pn_1 — 26t H iy, . (4.16)

One can show by simple arguments (see for example [32]) that the numerical
solution of the Schrodinger equation by means of the LF algorithm (4.16)
is equivalent to the use of the real-time propagator corresponding to an

approximate “leap-frog” hamiltonian i

g =T, (417)
where: )
N in (H

i arcsn:sg t) ' (4.18)

A few comments are in order here:
o Provided the LF hamiltonian H“" is real, the LF propagator §""(t)
is unitary, so that the norm of the wave-function is conserved in time.
This requirement determines the stability condition for the leap-frog

algorithm:

6t < 1/max{leq|}, (4.19)
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where {e4} are the eigenvalues of the hamiltonian H .

e The LF propagator reduces to the exact, real-time propagator in the limit

6t — 0.

¢ The error in the LF propagator is first-order in 6¢; this does not mean,
however, that one has to choose an exceedingly small time interval to
integrate the equation of motion properly. Quite surprisingly, in fact, any
time-integrated quantity can be corrected a-posteriori to compensate for

the systematic error introduced by the discrete time interval ét.

Let us consider first the Green’s function operator G(z). Substituting the
LF propagator into equations (4.3&) and (4.3b), we obtain the leap-frog
Green’s function G*7(z), whose poles 227 are shifted with respect to the
eigenvalues of the hamiltonian by a finite amount: 257 = Fi(es), where
Fsi(z) = arcsin(z6t)/6t. The corrected Green’s function can be derived
observing that the poles of GrF (Fsi(2)) coincide with the eigenvalues of
the hamiltonian, but the residues are scaled by 1/1 — €2 6¢%; therefore, the

function

G(z) = —meer G (F(2)) (4.20)

Vi- 2268
has the same singularities and the same residues as the exact Green’s function.
Notice that the extra singularities at z = +1/§t lie outside the spectrum,
because of the stability condition (4.19). It is now an easy task to derive the

corrected local density of states:

ﬁo(a):_——l—-—— lim Re / gET (1) el Fa(e)tinlt gy (4.21)
0

w1 — g2 612 Y07

and the corrected density matrix:

1 0 eith(EF)t . eiFﬁt(EL)t
e st [ e
T 40+ 0 1 .
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where g&¥(t) is the leap-frog time-correlation amplitude.

The numerical evaluation of the integrals occurring in these equations
is affected by two main sources of error: (i) the leap-frog time-correlation
function gZ(t) is known at discrete time steps ¢, = ndt, because it is
obtained from the leap-frog solution of the equation of motion; (ii) a finite

time-cutoff T' = N6t has to be assumed as the upper limit of the integral.

As far as the first point is concerned, a simple, first-order integration algorithm
can be devised which provides, in principle, the exact density of states and,
consequently, the exact density matrix. Basically, the integrals over time are

replaced by infinite sums to yield:

S (o) bt i (Fae(e)tinltn _ 1
e {7£+ Rez 9" 2]

(4.23)

and:

p

lim Im Z 5" e Thn

st { i For(er)tn _ i Fsi(er) tn
0=
tn

=0+

(4.24)

— & [Fuuler) - Fat(m]} -

However, the sums occurring in these equations have to be truncated after
a finite number of steps N, corresponding to the time-cutoff T' = Nét;
according to the energy-time uncertainty relation, the peaks in the density

of states are broadened by a quantity Ae ~ 2r/T, even if « vanishes.
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4.2 Calculation of the charge density

In the present section we discuss the application of the EOM method to
the calculation of the electronic charge density, and compare this approach
with the recursion method. The real-space representation of the real-time

propagator §(t) reads:
g(r, v’y 1) = (r] e HE ) (4.25)

given the wave-function at time ¢t = 0, the real-space propagator yields the

wave-function at any time ¢ > 0:
P(r,t) = /g(r, r's t) ¥(r',0)dr’ . (4.26)

The real-space propagator g(r, r’; t) leads directly to the real-space density

matrix p(r, r'); from equation (4.8) we obtain in fact:

o0 iept

1 .. e
P(I', rl) = - ‘Y]i_'nol+ Im A g(r, rl; t) ;

eiEL‘t :
e " dt . (4.27)
Therefore, the charge density n(r) = p(r, r) is related to the real-space time-

correlation function g(r, r; t).

- The numerical implementation of the EOM method for the calculation

of the charge density proceeds along the following lines:

(i) A real-space basis set M = {r;, i =1,---, M} is selected, and the Kohn-
Sham hamiltonian Hys is discretized over the real-space grid. For each

grid-point r;, an initial state 3o localized at the point r; is constructed:
(rplbo) = b5, for any rp € M. (4.28)

(ii) The time-dependent Schrodinger equation i1 = Hyg b, subject to the
initial condition %(t = 0) = ), is solved on the real-space grid. The
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(i11)

(iv)

wave-function (1) is evaluated a,twdiscrete time steps t, = n 8 using the
leap-frog algorithm; for the first time step 1, a second-order expansion
of the real-time propagator is employed. If a uniform real-space mesh
with grid-spacing h is adopted, a safe choice for the time interval 67 is
§t ~ (h?/20) a.u. ; this choice ensures that the stability condition (4.19)

is satisfied. The equation of motion is integrated up to a finite time-cutoff

T = Nét.
At each time step t,, the LF time-correlation function g**(r;,r;; t) is
given by:

9" (ri,ristn) = (Yolthn) , (4.29)

where 1), is the leap-frog solution of the Schrédinger equation at time
t=1y.
Finally, the charge density at point r; is calculated as:

n(e) = 2 1m 577 () — 5 [Bules) = Fules)] . (430)

where SX7(r;) is the finite sum:

eiFét(EF) th __ e‘l:F“(EL) tn

N
S (r;) = Z (r;,r;tn) i e, (4.31)

A finite broadening factor « is chosen such that vy7T = 1.

Since the states {i,} generated along with the numerical solution of the

Schrodinger equation are localized around the starting point r;, the EOM

method provide, in principle, an O(N) algorithm for the calculation of the

charge density.

The charge density obtained using the EOM method is compared in Fig.

4.1 with the result of a recursion-method calculation. The system considered
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Figure 4.1 — Charge density along the diagonal of the cubic cell; the
solid line shows the exact result. The charge density obtained from a
100-step recursion chain (dotted line) is compared with the EOM charge
density after 2000 time steps (dashed line).

here is the same Silicon supercell described in the case of Fig. (2.2); the solid
line in Fig 4.1 shows the exact charge density along the (111) direction.

A time interval 6t = 0.02 a.u., corresponding to ~ 2/3 of the maximum value
compatible with the stability constraint (4.19), has been used for the numerical
integration of the Schrédinger equation with the leap-frog algorithm; we have
checked that a longer time interval ¢ = 0.04 a.u. leads to instabilities in the
solution of the equation of motion.} The dashed line in Fig. 4.1 shows the
EOM charge density after 2000 time steps, corresponding to a time-cutoff
T = 40 a.u. The dotted line has been obtained using a 100-step truncated

chain within the recursion-method approach.
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As these calculations demonstrate, a much larger number of steps is
required within the EOM method to achieve a similar accuracy; actually, we
have found that nearly 20000 time steps are needed to reproduce the exact
charge density of the system closely. Furthermore, the computational cost
of each time step is roughly twice the cost of a recursion step, due to the
fact that the time-dependent wave-function is complex-valued. Therefore, the
timing of the EOM method is largely unfavourable. A qualitative explanation
of the slow convergence of the charge density with the number of time steps
is provided by the following argument. Due to the finite number of steps N,
the peaks in the density of states are broadened by a quantity Ae ~ 27 [N bt ;
roughly speaking, the charge density converges when Ae < €, where €6 Is
the gap-width. In the case considered here, the gap is rather small, of the
order of 0.01 Ryd, so that a large number of time steps N ~ 10* is needed
to achieve a reasonable convergence of the charge density. Nevertheless, a
few points deserve a further comment, since they could open the way to new

strategies for the implementation of the EOM method.

e From a physical point of view, the asymptotic behaviour of the time-
correlation amplitude go(t) is more meaningful then the evolution of the
recursion coefficients a,,’s and b, ’s with the number of recursion steps.
Also, the calculation of the time-correlation function from a given density
of states is straightforward, compared to the tricky computation of the

corresponding chain parameters within the recursion method.

‘e The states {¢,} generated alc;ng with the numerical solution of the
Schrodinger equation are not constrained to be orthogonal to each other;
this can facilitate a grid-coarsening approach to the calculation of the

long-time tail of the correlation function g(r;,r;; t). Furthermore, due to
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the fact that the time interval 6 can be taken proportional to the square
of the grid-spacing, 6t o« h%, the computational cost of the numerical
integration of the equation of motion up to a given cutoff T' scales as

1/h?, so that much has to be gained from a grid-coarsening scheme.

The tail of the time-correlation function contributes to the charge density

just through an additive term:
n(r,-) = 'n,T(I‘i) + An(ri) R (4.32)

where n”(r;) is the charge density obtained by integrating the equation
of motion up to the finite time T'. This has to be contrasted with the
complicate dependence of the charge density on the terminator within

the recursion method.

Finally, the off-diagonal elements of the real-time propagator in a given
representation {¢;} can be calculated as easily as the diagonal elements,
with little extra computational cost. This opens the way to the use
of smaller basis sets, namely atomic orbitals, for the calculation of the

charge density, or, at least, of its long-time component An(r;).
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Conclusions

In this work we have presented a method for the self-consistent calcula-
tion of ground-state properties based on the computation of selected elements
of the Green’s function. Both the charge density and the total energy, in fact,
can be expressed in terms of the diagonal elements of the real-space Green’s

function.

Two different approaches have been discussed which allow the calculation
of the Green’s function without 'requiring the time-consuming evaluation of
Kohn-Sham orbitals. In the recursion method, the point-wise Green’s function
is obtained by generating a set of orthonormal states starting from an initial
state localized at the given point. In the equation-of-motion method, the
initial state is evolved in time to get the time-correlation function, which
is the Laplace transform of the Green’s function. Both these methods take
advantage of the localized nature of the real-space Green’s function to achieve
linear scaling for large systems. However, they suffer from a relatively slow
convergence with the size of the region explored by the states generated
from the initial point. Some possible solutions to this problem have been
discussed; in particular, we have shown that the free-particle terminator, in
the framework of the recursion method, provides a working approximation
to deal with the self-consistent calculation of the charge density and other

ground-state properties.

90



Appendix A

Technicalities of the
Recursion Method

A.1 Transformation to a Chain

Given a normalized state | 0) and a hamiltonian H , the recursion method

(RM) aims at calculating the Green’s function diagonal element

Go(2) = (0] G(2)|0) , (4.1)

where:

G(z)=(z—H)". (4.2)

This goal is achieved by generating a set of orthonormal states {|n) } starting
from the initial state |0 ), through the application of the three-term recurrence

relation:
ﬁ|n):an]n>—{—bn+1|n+1)+bn|n—1), (4.3)
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where |— 1) is assumed to be the null state. In order to guarantee the
orthonormality of the states {|n)}, the recursion coeflicients {ay by} must

be chosen according to the following rules:

an=<n|£f|n)
) (A.4)
boy1 = || (H —an)|n) =bu|n—1) |,

where || |u) | denotes for the norm of the state |u). The orthonormality
property can be easily proved by induction: first, it is obviously satisfied
by the state |0) alone; second, assuming the orthonormality of the states
|0}, ---,|m), the state |m + 1) turns out to be (i) normalized and (ii)
orthogonal to all the previous states. The recursion coeflicients {an by} are
always real, as follows from Eq. (A.4); the recursion states {|n)} are also

real, provided both the hamiltonian H and the initial state | 0) are real.

In principle, the three-term recurrence relation (A.3) can be carried on
until the state |n,) is generated, n, + 1 being the dimension of the Hilbert
subspace spanned by the vectors H"|0), n = 0,1,---co. Since the recursion
states |0), -+-,|n,) are orthonormal, they form a complete basis set for this
subspace; therefore, the state H Ins) is a linear combination of the states
|0}, |ns), and the coeflicient by,+1 vanishes. For disordered systems, one
usually has n, = M — 1, M being the dimension of the whole Hilbert space;
only if symmetries are present it may happen that n, < M — 1. In the
representation of the recursion states {|n),n =0, - ,n,} the hamiltonian
turns out to be tridiagonal; as shown by Eq. (A.4), the diagonal elements are
given by the coefficients {a,,n =0, --- ,n,}, while the off-diagonal elements

are given by the coefficients {b,,n =1, -+ ,ns}:
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by a1 by 0 0
0 bz a9 e 0 0
H=|. . . . . (A.5)
0 0 0 n,—1  bn,
0 O O b'n,,, Ay,

This hamiltonian can be Interpreted as the tight-binding hamiltonian of a
linear chain of fictitious atoms: the recursion states |0), -+ ,|n,) correspond
to the “atomic orbitals”, whereas the recursion coefficients a,’s and b,’s
play the role of “on-site” and “hopping” terms, respectively. Therefore, any
quantum-mechanical system can be transformed, by means of the three-term
recurrence relation (A.3), into a simple one-dimensional model, the so-called

chain model, which can be pictorially represented in the following way:

von £

o

>

The chain model is exactly equivalent to the physical system, provided the

recursion states span the entire Hilbert space.
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A.2 Green’s Function

Once the transformation to the chain model has been performed, the
calculation of the Green’s function diagonal element Go(z) = (0] é(z) |0) is
straightforward. In the representation of the recursion states [0), -+, |ns)

the Green’s function matrix reads:

Z — Qg ~b1 0 0 0 -t
—-bl Z — a7 —bz 0 0
0 —~by z—ay 0 0
G(z) = , . (A.6)
0 0 0 Z =y, -1 ""bna
0 0 0 by, Z = Oy,

Let An(z) be the determinant of the matrix obtained from (z—H) by deleting

the first n rows and columns; the Green’s function diagonal element reads:

~1 - As(z)

0= A (A7)

Go(2) = (z — H)

Ayio(z), we obtain:

Since Ap(2) = (2 — an) Apti(z) — b2

n-+1

1

Go(2) = 2 —ag — b2 Ay(2)/ D (2)

(4.8)

Carrying on this procedure, the Green’s function diagonal element Go(z) can

be expanded as a continued fraction:

%@:K<5i>: L L (A9)

Z— apn

z — g — bz

Thy

Z— Gn,
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An important feature of the continugd-fraction expansion (A.9) is that it
converges quickly to the required value Go(2), at least for complex values of z.
From a physical point of view, this is a consequence of the fact that in the chain
model the more distant “atomic orbitals” contribute less to the expectation
value of the Green’s function on the initial state |0). The convergence of
the continued-fraction expansion (A.9) depends on the value of the complex

energy z: the further is z from the real axis, the faster is the convergence.

The continued fraction {A.9) can be evaluated backwards, by repeated

application of the fractional transformation

G () = = (4.10)

z— ap—1 — b2 Gn(2)

to the starting function G,,(2) = 1/(z — en,). Any property of the function
Gn,(2z) which is conserved by the fractional transformation (A.10) is also
shared by the Green’s function Gy(2). In particular, one can easily show that
Go(z*) = G§(z), and that Gg(z) satisfies the so-called Herglotz property:

sgnlm Go(z) = —sgnlmz.

The Green’s function diagonal element Go(z) can also be expressed as -
the ratio of two polynomials. Let Qn(z) and P,(z) be the so-called “monic

polynomials”, recursively defined in the following way:

QQ(Z) - 0
Q:1(z) =1

Qni1(2) = (2 — an) Qn(2) — bi Qn-1(2)

and
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Pg(z) =1

Pl(Z) =2 —

Posa(2) = (2 = an) Pa(2) = B, Paca(2)

The continued-fraction expansion (A.9) is mathematically equivalent to the

polynomial ratio:

Go(z) = %L’:—;% : (4.11)

The polynomials Py, Py -+, Py, 41 form a Sturm sequence; therefore,
the n, + 1 zeros of Pp,11(2) are real and distinct. Since the polynomial
P,,.1 coincides with the characteristic polynomial of the hamiltonian matrix
in the representation of the recursion states, ifs zeros are the eigenvalues of
the hamiltonian restricted to the subspace spanned by the states H™[0). Let
{eq, ¢ = 0,--+,n,} be the n, + 1 zeros of P, 41(z). Since the n, zeros of
Qn.+1(2) separate the n, + 1 zeros of Py, 41(2), the Green’s function Go(z)
has n, + 1 simple poles corresponding to the eigenvalues €4, and n, simple

zeros corresponding to the zeros of @, +1(z). Therefore, it can be written as:

g We
Go(2) =) ——, (A4.12)
=0 &

where wo is the residue at the pole e,. The residue w, can be easily

calculated using the following trick:
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wy = Hm (2 — e4) Go(2)

2—Eq

— Lm (Z - 504) Qnﬁ-l(z)
Z2-Eq Pns+1(z) - Pn3+1(ea) (A13)

_ Qn,+1(ea) .
Pr’z,+1(€a)

The polynomials P/ (z) satisfy the following recurrence relation:
Ppii(2) = Pol2) + (2 — an) Po(2) = 0, Pr 1 (2) (4.14)

with Py(z) =0 and P{(z) =1.

A.3 Terminator

Let us consider the first n -+ 1 states of the chain model, and let P(™) he

the projector upon these states:
PO =" |1)(1]. (4.15)
=0

The Green’s function operator projected upon the first n + 1 states of the
chain reads:

G (z) = P G(z) P™ | (A.16)

and the corresponding matrix is given by:

z—ay b ... 0 0 -1
b z—-ay ... 0 0
G (z) ' L : : , (4.17)
0 0 Z— Qp—1 —bn
0 0 b,z —t,(2)



where t,(z) is the so-called terminator, which accounts for the remaining

ns — n states of the chain model:

tn(z) = bt : (A.18)

The inverse matrix occurring in Eq. (A.17) provides all of the matrix elements
of the projected Green’s function G(™(z); specifically, the diagonal element

Go(z) can be expanded as a continued fraction terminated by tn(2):

Go(2) = ! . (4.19)

by

z—ay — - —tp(2)

zZ — ag —

The convergence of the continued-fraction expansion of the Green’s function
means that the terminator can be neglected, provided n is large enough;
however, it should be kept in mind‘ that a continued-fraction expansion differs
from a series expansion in that the convergence of the continued fraction does
not require the terminator to vanish. In terms of the monic polynomials, the

terminated Green’s function reads:

—1
G()(Z) — QTH‘](Z) ”(z) Qn(z) . (Azo)
Pris(2) — tal2) Pal?)
Clearly, the analytic properties of the terminator, as given by Eq. (A.18), are
similar to those of the Green’s function; in particular, ¢,(z) has n,—n distinct
poles on the real axis. Furthermore, the terminator satisfies the identity

tn(2*) = t%(2) and the Herglotz property sgn Im t,(z) = —sgn Im z.

The terminator accounts for the more distant “atomic orbitals” of the

chain model, which contribute less to the Green’s function Gy ; actually, only
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the states of the chain further than n steps from the initial state are involved
in the construction of the terminator t,. Therefore, it is physically sensible
to replace the exact terminator t,(z) with an approximate terminator &, (z);

the corresponding approximate Green’s function Go(2) is then recovered from

Egs. (A.19) or (A.20).

Of course, the most simple approximate terminator is the vanishing
terminator #,(z) = 0, which neglects all the states beyond n. The
approximate Green’s function Go(2) is then given by the truncated continued-

fraction expansion:

Go(z) = 7 , (4.21)

zZ—ag— " — : 7

2 — al w—— 5 0 O n

zZ—an
or, equivalently, by the polynomial ratio:
5 Qn+1(z)

G = s _ A.22
O(Z) Pn+1(z) ( )

More sophisticated approximations for the terminator require a careful

consideration of the problem at hand.

It might be useful to have an expression relating the exact terminator to

the Green’s function diagonal element
Goal2) = (n]G(2) In) (4.23)

which could be easier to approximate. Starting from Eq. (A.17), we obtain:

P.(z)
2 — ap — tn(2)] Pa(2) — b2 Pr_1(2)

Grn(z) = i
(A.24)




whence:

Py 1 (4.25)

A.4 Density of States and Expectation Values

The local density of states projected upon the state |0}, no(e), is related

to the imaginary part of the Green’s function diagonal element Go(2):

no(e) = —~ Tim TmGo(e +i7) . (A26)

e 7——»0“‘

Therefore, the RM provides an efficient tool for the calculation of the local
density of states. In finite systems, the local density of states is always given
by a set of delta-functions, located at the poles of the Green’s function and
weighted by the corresponding residues. From the spectral decomposition of

the Green’s function, Eq. (A.12), we obtain:
no(e) = Z we (e —€q) - (A.27)
a=0

A similar expression holds when the recursion chain is truncated after n steps,

assuming a vanishing terminator:

n§(e) =Y wa be —ea) - (A.28)

In order to mimic the local density of states of an infinite system, the discrete
density of states can be smoothed using a normalized broadening function
fole —€a):

no(e) = Za we fole —€a), (A.29)
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where:

1 2
fo(z) = N e~ (#/29) (Gaussian broadening)
To
or
o 1 . .
fo(z) = gl S (Lorentzian broadening)

The latter is equivalent to the use of a finite imaginary part of the Green’s
function argument in Eq. (A.27). The total density of states n(e) can be

obtained tracing the Green’s function:

nle) = L lim ImtrG(e +iv). (4.30)

™ 'Y_’O+

For a system of non-interacting particles, the ground-state expectation

value of a generic one-particle operator A reads:
(A) =) (balAlda) b(er —ca), (4.31)

where 1, denotes the a-th eigenstate of the single-particle hamiltonian g,
and €, is the corresponding eigenvalue. Here e is the Fermi energy of the

non-interacting system, and §(z) is the step-like function:

1 fz>0
b(z) = (A.32)
0 fz<0

Introducing the one-particle density-matrix operator
p=y, [a)(bal er —ca), (4.33)
the expectation value of the operator A becomes:

(A)=tr(pA). (4.34)
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The density matrix p is related to the one-particle Green’s function operator

é(z) by the following integral representation:

s= 1§ Gz, (4.35)

271'1: Cp

where Cr is an integration contour in the complex energy plane enclosing all
and only the poles of the Green’s function up to the Fermi energy er. Eq.
(A.35) can be easily proved starting from the spectral decomposition of the
Green’s function operator:
: [a) (Yol
G(z) = ALEaTA LS A.36
(=Y, Lelltel, (4.30)

and using the residue theorem.

The ground-state expectation value of the operator A can now be written

in terms of the Green’s function é(z) as:

(A) = & w[Ce)A]de. (A.37)

27["1: Cr

In general, the evaluation of this integral requires the calculation of the
off-diagonal elements of the Green’s function. Unfortunately, this is a
rather demanding task within the recursion method; however, this bottleneck
can be by-passed whenever (i) the operator A is an analytic function of
the hamiltonian: A = f(H), or (i) the operator A is diagonal in the
representation chosen for the calculation of the trace. In the first case, it

follows from Eq. (A.37) that:

(A) = L (2) tr G(2) dz . | (A.38)

271 Cr

Only the diagonal elements of the Green’s function enter the calculation of

the trace. Therefore, the RM provides an efficient algorithm for calculating
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‘expectation values: given a complete set of orthonormal states {¢;,i =

-, M}, Eq. (A.38) yields:

M /
=5 § 1) 2 10 6160 dz. (4.39)

Since the singularities of the Green’s function lie on the real axis, the
integration contour can be deformed until it collapses on the real axis; in

this case, we have:

(A)=-1 hmf £(e) Tm tr Ce + i) de

T —\/-—>O+

= /—Z fle)n(e)de

For a generic operator A, the calculation of the off-diagonal elements of

(4.40)

the Green’s function can be by-passed using the following trick. Let @AA(z)

be the perturbed Green’s function:
CM(z) = (z— H=2A) ' = G°(2) + AG°(2) AG(2) + O(NY), (A41)

where Go(z) = (z — 1';[)_1 . Since

= Go(z) A G’O(z) , (A.42)
we obtain from the residue theorem:

dz . (A.43)

omi A=0

(A) = — fz%trGM()

The derivative of the trace can be calculated numerically to get the expectation

value of the operator A.
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