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Introduction

The deep interior of the Earth is inaccessible, and almost everything we know

about its structure, history and evolution is not entirely based on direct observa-

tion but rather on models that, although constructed by keeping into account well

assessed physical laws (e.g. the laws of thermodynamics and fluidodynamics), re-

quire a constant interplay with the science of materials at high pressure in order to

asses their validity and predictivity. Just to give an example, an Earth’s core ther-

mal model requires, in order to be predictive, detailed knowledge of the thermal

conductivity of Earth’s core material.

The most important source of direct information concerning the interior of our

planet is provided by seismology. Since it was born as a science, at the beginning

of this century, seismology produced a revolution in our knowledge of the interior

of the Earth. By using seismic waves velocity profiles, Williamson and Adams,

in 1921[1] were able to show that the simple increase of rocks’ density due to

pressure is not sufficient to explain an average density of the Earth of 5.5 gr/cm3,
starting from a density at the surface of 3-3.5 gr/cm3. Thus, they concluded that

”the dense interior cannot consist of ordinary rocks compressed to a small vol-

ume; we must therefore fall back on the only reasonable alternative, namely,the

presence of an heavier material, presumably some metal, which, to judge from its

abundance in the Earths crust, in meteorites and the Sun, is probably iron”.
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Nowadays, the foreseeing claim by Williamson and Adams, has been con-

firmed by a lot of observations. It was by comparing density data as deduced

from seismological measurements and from shock wave experiments that Birch

in 1961[2] was able to show that the Earth’s core is mainly composed of iron di-

luted with light elements. His principal argument was that silicates, although very

abundant, could never achieve the density of the core, as given by seismology,

unless under pressures much larger than the Earth’s interior pressure. Iron, Birch

observed, is instead the only element of relatively great abundance whose density

at Earth’s core pressures is comparable with the Earth’s core density. Moreover,

since the density of pure iron at core pressures is slightly smaller than the core

density, Birch concluded that a few percent of lighter elements was necessary to

bring the density exactly to the core value.

Birch’s original reasonings were based on informations providedbothby seis-

mology and by materials science: major advances in our understanding of Earth’s

deep interior are always linked to major advances in experimental or theoretical

techniques in seismology or high-pressure physics. The claim by Williamson &

Adams [1] concerning the composition of the Earth’s core could be confirmed by

Birch only thanks to the development of shock-wave techniques to measure the

density of materials at very high pressure.

An other important example of the interplay between seismology and mate-

rials science is the construction of the temperature profile as a function of depth

inside the Earth. In fact, while density and pressure can be quite reliably deduced

from seismological measurements, there is no way to estimate the temperature

inside the Earth by seismology alone. The only way to constrain the temperature

in the deep interior of the Earth is to measure the pressure-temperature curves
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for phase transitions responsible for the major seismic discontinuities: it is well

known from seismology that the innermost 1200 kilometers of the core are solid

(the so-called inner core), while its remaining portion (the outer core) is liquid.

The boundary between these two regions is called the inner core boundary (ICB),

and the pressure at this boundary is approximately 330 GPa[3]. Since the Earth’s

core is mainly composed of iron, at the ICB solid and liquid iron coexist; thus,

the melting temperature of iron at ICB pressure (330 GPa) is an estimate ofthe

temperature of the Earth at ICB (for a more accurate value, the effect of lighter

elements in the core should also be considered [4]).

Other quantities of major geophysical relevance, whose estimate can be pro-

vided only by high-pressure physics, are the elastic properties of iron (both liquid

and solid) at Earth’s core conditions, the thermal conductivity coefficient and the

viscosity of liquid iron at outer core conditions.

All the above quantities, as well as the effect that light alloying elements may

have on them, are of primary importance for any modeling of the Earth’s interior.

The task to estimate these quantities has proved a very difficult one for both

experimentalists and theorists. Up to date, despite major efforts, only few of these

quantities are known to a level of accuracy sufficient to solve most of the outstand-

ing geophysical problems

The current knowledge of the high pressure properties of iron will be reviewed

in Chapter 1.

For the time being, let we just mention that estimates of the melting tempera-

ture of iron at ICB pressure range between 4000 and 8000 K and, also due to this

large temperature uncertainty, the density of liquid and solid iron at core condi-

tions is known only roughly. The phase and the elastic behavior of iron at inner
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core pressures are known only at room temperature and are still the subject of

speculations at temperatures close to melting (exotic proposals such as a glassy

structure or a partial melt [5] have also been suggested for the inner core). The

situation is even less clear for what concerns the effect that lighter elements have

on the properties of pure iron at core pressures. In most cases, the high pressure

binary diagram of iron with a light element are extrapolated from the zero pressure

behavior, or ideal mixing conditions are assumed.

First-principle molecular dynamics has proved to be an invaluable tool to ex-

plore the high temperature properties of many systems, because of its superiority

in terms of accuracy and predictivity[6]. Unfortunately, in our case (iron athigh

pressure and temperature) a correct description of the electronic structureis com-

putationally very demanding, as we shall see in Chapter 2. Moreover, even for

simpler systems, such as silicon, a standard first-principle molecular dynamics

approach can seldom be used to fix the value of the melting temperature, because

of unavoidable size effects and because of the poor statistical sampling due to the

short simulation times that can be afforded with first-principle simulations.

On the other hand, molecular dynamic simulations with classical empirical po-

tentials would overcome sampling and finite size problems [7]. Of course, as was

correctly stated in a recent article about first principle calculations oniron, simu-

lations based on empirical potentials suffer ”from the lack of reliabilitythat can be

placed on using potentials beyond the range of empirical fitting” and, therefore,

”the confidence with which one can predict properties outside the experimental

range” is small[8].

In this work we propose a novel method for handling classical potentials

for iron with a procedure that, in our opinion, successfully overcomes the first-
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principle-versus-empirical dilemma. In particular, in our procedure (introduced

and discussed in detail in Chapter 3), the potential is fitted ”in flight” to forces and

stress calculated on first-principle trajectoriesat the desired pressure-temperature

(P-T) thermodynamic point only(and not on a large set of properties of bulk, de-

fects, surfaces, clusters, liquids in a wide range of pressures and temperatures, as

in standard fitting procedures). This ”optimal” potential is then used to extract dy-

namical and thermodynamical informations on the system at given P-T conditions

without limitations of size or simulation time.

Since only the dynamics at a single P-T point is described, the accuracy of the

fit can be very good, and the thermodynamic observables extracted from trajecto-

ries generated with the optimal potential can be pushed to an accuracy comparable

to that obtained with an ab-initio approach (see Chapter 3 for a detailed analysis of

this point). This is obtained at the cost of a very poor transferability of the optimal

potential to P-T conditions different from the ones where it has been constructed.

No attempt is made to construct a potential that describes iron at all conditions,

and when considering a new P-T point, a new potential must be generated. Po-

tentials constructed with our procedure are then explicitly dependent on the P-T

thermodynamic conditions. When a phase transition is encontered at the given

P-T point (e.g. melting), the request will be that the two potentials constructed for

trajectories on both sides (e.g. the solid and the liquid) yield the same transition

temperature.

In Chapter 4, the method outlined above is applied to the calculation of some

of the properties of iron at conditions of relevance for the Earth’s core. Our re-

sults are compared with experiments, where available. The comparison shows

that our method reproduces with very good accuracy the experimental equation
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of state and the elastic properties at room temperature and along the shock-wave

compression line (the so called Hugoniot). This comparison is particularly rel-

evant for assessing the validity of the method, since these quantities are known

experimentally with very small uncertainties. Our method proves able torepro-

duce densities with an accuracy of� 1 % and elastic properties with an accuracy

of � 3 % both at low temperature and at high temperature (along the Hugoniot).

These accuracies are comparable with those expected from the best fully ab-initio

simulations.

We will consider in detail the melting line of iron between 100 and 330 GPa,

showing that our values are compatible, within at most 300 K, with the best mea-

surements at low pressures (up to� 100 GPa) and that the melting temperature at

ICB pressure is 5400 (� 150 ) K.

We will also show that elastic properties of solid iron in a hexagonal close-

packed (hcp) structure at inner core conditions are perfectly compatible with seis-

mic observations. Moreover, we will provide an accurate estimate of the liquid

and solid iron density at ICB conditions. Results concerning other observables

related to the melting, such as the heat of cristallization and the densityjump, will

also be presented and their geophysical implications discussed.



Chapter 1

Physics of Iron and Physics of the

Earth’s Core

The interplay between material science (in particular the physics of iron) and

physics of Earth’s deep interior has become more and more important, and the

two subjects are so deeply entangled that extensive calculations or measurements

of iron properties at high pressure conditions are considered essential to provide

informations to construct reliable models of the Earth’s core. This Chapter is ded-

icated to an overview on the current knowledge of high-pressure physics of iron

and its relation to geophysics.

In Section 1.1, some of the properties of iron at high-pressure high-temperature

conditions that are of particular interest for geophysics and that will be studied in

some details in this work are listed. We will consider the high pressure melting

line, the density of solid and liquid iron at inner core boundary conditions, the

heat of crystallization and the elastic property of solid iron at high pressure. What

it is currently known about these properties from the experimental and theoretical

point of view is then reviewed in the following two sections.



8 Physics of Iron and Physics of the Earth’s Core

1.1 Constraint to models of the Earth from physics

of iron.

1.1.1 Melting temperature

The Earth’s temperature distribution is intimately connected to problems ofstruc-

ture, composition, dynamic state and evolution of the planet. High temperature

sustains the Earth’s convection, and is responsible for the strong geological activ-

ity observed at the surface[9]. Despite this importance, the temperature profile in-

side the Earth is known only very roughly: at variance with density, temperature is

in fact quite poorly constrained by seismological observations[10]. The only way

to safely estimate the temperature inside the Earth is to predict its value at phase

transitions responsible for seismic discontinuities[9]. For example, the inner core

boundary (ICB) separates the inner core, mainly composed of solid iron, from the

outer liquid core. Since it is known from standard seismological models[3] that

the inner core boundary is at a pressure of 330 GPa, the melting temperature of

iron at this pressure crucially constrains the temperature at the ICB, and provides

a valuable pinning point for every thermal model of the Earth. We shall see in

Section 1.2.3 that this quantity, despite a great experimental and theoretical effort,

is presently known only roughly.

The situation is further complicated by the presence, at least in the outer core,

of some percent of impurities (as we will discuss in next subsection). Due to the

presence of these impurities, the temperature at the ICB will be different from

the melting temperature of pure iron at 330 GPa. This difference can be easily

estimated only if ideal solubility conditions are assumed, as shown in Section

4.3. A more accurate estimate would require a very precise knowledge of the
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composition of the outer core[11] and of the iron-rich part of multicomponent

diagrams of iron with the impurities.

1.1.2 Density of the IC and OC

By x-ray diffraction experiments in the diamond anvil cell, Maoet al estimated,

in 1991, the room-temperature density of iron at 330 GPa[12] obtaining a value of

13.87 gr/cm3. This density is� 10 % higher than the density of the outer core at

the ICB (12.17 gr/cm3) extracted from seismological data [3]. A further indication

that the density at the ICB is sensitively smaller than the density of pure iron is

given by the shock-wave measurements of density by Brown and McQueen[13]

(see Section 1.2.2). In their experiment, the density of shocked liquid iron at 333

GPa is shown to be 12.92 gr/cm3, i.e.� 6 % larger than the seismological value.

The exact value of the density difference between pure iron and the outer core

material constrains the quantity of light elements that alloy with iron in the outer

core[14], with the implications we mentioned on the temperature at ICB. A second

(and possibly even more relevant) consequence of the presence of light elements

in the outer core is that a concentration gradient due to crystallization of the liquid

iron alloy in the more pure inner core might sustain mass convection. This mech-

anism could contribute sensitively to the geodynamo energy budget, as suggested

for the first time by Loper in 1978[15]. Values for this density difference currently

accepted in the literature range between 7 and 10 %[9, 11, 16].

Also the inner core is probably alloyed by a small amount of impurities, as

suggested by Jephcoat[17]. The exact percentage of these impurities can be esti-

mated given the density of pure solid iron at ICB conditions.

An accurate theoretical determination of solid and liquid iron density at 330



10 Physics of Iron and Physics of the Earth’s Core

GPa is at present missing, and could shed some light on the above issues.

1.1.3 Heat of crystallization.

Since the Earth is cooling, the liquid iron alloy of the outer core is slowly crystal-

lizing in the more pure iron of the inner core. The rate of this freezing process can

be estimated by thermal models of the Earth and determines the age of the inner

core (according to a recent estimate, this age is� 1.7 Gyears or less[18]; an ear-

lier estimate by Stacey was of 4 Gyears [9]). The crystallization process releases

heat that might contribute sensitively to the Earth energy budget, as suggestedby

some authors[4, 9]. The relevance of this energy release with respect to otherpos-

sible sources of energy (e.g. the mass convection) depends on the rate of growth

of the inner core and on the value of the heat of crystallization�Hm. The value

of �Hm is closely related to the melting line slope (by the Clausius-Clapeyron

relation), and it has been estimated only by simplified models of melting or by

thermodynamic consideration[4, 19].

1.1.4 Elastic properties

The inner core is known to be elastically anisotropic [20, 21]. In particular, longi-

tudinal waves (P-waves) propagate in the inner core with greater velocity parallel

to the Earth’s rotation axis than in the equatorial plane. This difference canbe

explained with a� 3 % elastic anisotropy of the inner core.

Among the possible explanations of this anisotropy [22], one of the most rea-

sonable hypothesis is that the anisotropy could derive from some degree of pref-

erential orientation in the high-pressure phase of iron present in the inner core.

It was recently shown, both theoretically and experimentally, that hcp crystals
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of iron at high pressure and room temperature condition are indeed anisotropic

with respect to P-wave propagation[5, 23]. In particular, Stixtrude and Cohen es-

timated, with a first-principle calculation[23], an anisotropy of�10 % up to ICB

pressures, in very good agreement with the recently revised experimental data by

Maoet al, available up to 210 GPa[5] (see section 1.2.1 and 1.3).

A high-temperature estimate of P-wave anisotropy for hcp iron is at the mo-

ment missing. If iron remains in the room temperature hcp phase also at inner core

conditions, and if we assume the room temperature value for the hcp anisotropy,

the degree of alignment of the iron crystalline domains in the inner core required

to provide the observed 3 % anisotropy would be as large as� 40 %. This may

have important consequences on accretion models for the inner core[22].

Another elastic quantity of great relevance is the value of the shear modulus of

iron at inner core conditions. In fact, it is well known that shear waves propagate

in the inner core at a very low speed, compared to compression waves[3], leading

to a Poisson ratio of� 0.45, very close to the shear-less value of 0.5. In particular,

the value of the shear modulus BS corresponding to the observed velocity of shear

wavesvs is�160 GPa, approximately three times smaller than the value measured

at room temperature[3]. This behavior is in some way anomalous, with respect to

other transition metals (in most of the metals, at least at ambient pressure, Bs is

approximately two times smaller at the melting temperature with respect to the

room temperature value[24]). This has led many authors to suggest that low-shear

phases (other than hcp) might be present in the inner core[5, 25], or, alternatively,

that the inner core could be partially molten[5], with very important consequences

for accretion models of the core. A direct (experimental or theoretical) determi-

nation ofBs for hcp iron at ICB conditions would be very useful to validate these
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suggestions.

1.2 Physics of iron at core conditions: experiments.

In this section the most important experimental findings on the high pressure

physics of iron are overviewed. The geophysical interest of the argument has stim-

ulated, in the last 20 years, an enormous amount of experimental work. Although

our understanding of the properties of high-pressure Fe has greatly improved , we

are still far from an exhaustive comprehension, at least at the level of accuracy

required to solve geophysical issues.

The phase diagram of iron is fully understood only at pressures lower than 20

GPa (see Figure 1.1). Four phases are well known in this pressure range:�-Fe

(bcc), the magnetic ambient condition phase of iron;
-Fe (fcc) at high tempera-

ture and low pressure;�-Fe (bcc) close to the melting point and at low pressure;"-Fe (hcp) at low temperature and pressures above 13 GPa. At higher pressure,

several different melting curves and phase diagrams have been proposed by differ-

ent authors, leading to estimates of the melting temperature at ICB ranging from

4000 to 8000 K. The state-of-the-art concerning this very important issue will be

reviewed in Section 1.2.3. Among the few well-constrained experimental quanti-

ties, we can list the room temperature equation of state (reviewed in Section 1.2.1)

and the value of density and sound velocities along the shock-wave compression

line (Section 1.2.2).
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1.2.1 Room temperature EOS and Elastic constants

Mao et al in 1990 measured the volume of hcp iron up to� 300 GPa with x-ray

diffraction[12]. Their results confirmed and extended the measurements by Jeph-

coatet al [26] up to 70 GPa. Mao et al. also found virtually no difference between

the P-V results of a nickel Fe0:8-Ni0:2 alloy and those on pure iron up to 300 GPa.

The P-V experimental points of Maoet al are reported in Fig. 1 of Chapter 2.

More recently, Maoet al measured the room temperature elastic constants of hcp

iron up to 210 GPa using radial X-ray diffraction and ultrasonic techniques[5].

The observed compressional wave anisotropy is� 8 %, in agreement with the-

oretical calculations by Cohenet al [23]. Their elastic constants at 211 GPa are

reported in Table I of Section 4.1.1

1.2.2 Shock-wave compression line

The sound velocity and density measurements along the shock-wave compres-

sion line (the so-called Hugoniot EOS) for iron up to� 400 GPa by Brown and

McQueen in 1985[13] is one of the cornerstones in the high P-T physics of iron.

In a standard shock-wave experiment, the shock-wave velocity (Us) and the

velocity imparted to the particles of the sample by the shock wave (Up) are di-

rectly measured. Pressure P, internal energy E and density� during the shock

are then deduced from Us and Up through Hugoniot-Rankine relations[10] (see

Section 4.5). Since Hugoniot-Rankine are deduced with the only assumption of

conservation of mass, momentum and energy in the shocked sample, the value of

1Very recently, Singh and Montagner[27] pointed out some inconsistenciesin this set of data,

such as a very low (0.04) Poisson’s ratio along the symmetry axes. Therefore, they suggest to

interpret these data with some caution.
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P,� and E estimated with a shock-wave experiment is considered very reliableand

accurate.

Brown and McQueen extended this method to allow also the measurement of

the longitudinal sound velocityvP in the shocked sample. Since a phase transi-

tion usually causes only a minor kink in the P-versus-� curve, but can produce a

marked discontinuity in thevp-versus-P curve; this method provided a powerful

tool to explore the high-pressure phase diagram of iron.

Brown and McQueen observed thatvP along the Hugoniot grows with pres-

sure up to� 200 GPa, where a first kink is observed (see Figure 4.4); a second

kink is observed at� 240 GPa, and above� 280 GPavP reduces to
pBv=�,

whereBv is the adiabatic bulk modulus and� is the density, indicating that the

sample is completely liquid. The first kink is interpreted by Brown and McQueen

as a solid-solid phase transition (from"-Fe to an unknown phase), the second as

the onset of melting.

By assuming reasonable values for the Gruneisen parameter
 and forCv,
Brown and McQueen also provide an estimate of the temperature along the Hugo-

niot. Their estimate is based on simple thermodynamics and does not keep into

account phase transitions, so it has to be considered as reliable only up to the first

transitions point at 200 GPa. Moreover, the accuracy of this estimate of tempera-

ture is limited by the uncertainties on Cv and
.

The observation of a double kink along the Hugoniot of iron (see Figure 4.4)

has been considered for a long time a strong evidence for the existence of an addi-

tional high-pressure high-temperature phase (other than"-Fe), and this has stim-

ulated a large amount of theoretical and experimental research. Nevertheless, as

we will see in the following, the existence of this phase is still very controversial.
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The second kink observed by Brown and McQueen may rather be a by-product of

the phase coexistence between the solid and the liquid, as suggested by MD sim-

ulations performed on Argon by Belonoshko[28]. Moreover, very recent sound

velocities measurements along the iron Hugoniot by Nguyenet al[29] seem to

cast some doubt on the very existence of a double kink: sound velocities between

220 GPa and 280 GPa decrease, in Nguyenet aldata, almost monotonically, with

no apparent discontinuity in between.

1.2.3 Melting line and high-pressure high-temperature phases

of iron

The phase diagram of iron at pressures higher than 20 GPa is still the subject of

strong controversy. Some of the melting curves presented by different authors are

shown in Figure 1.

Below� 200 GPa, the melting temperature has been measured in static exper-

iments using diamond-anvil-cells (DAC). Above this pressure, the melting tem-

perature can be determined only by dynamic shock-wave experiments in which

the high pressure and density conditions are reached instantaneously by shooting

an impactor on the sample.

The first measurement of the iron melting line performed with a DAC is due

to Williams et al in 1987[30]. Melting is detected in their experiment by a visual

observation of the samples after the laser is switched off (keeping the sample

at high pressure), assuming that, if a change of texture is observed, the sample

has crossed the melting line. They measure the melting temperature up to�
100 GPa, estimating a melting temperature at this pressure of more than 4000 K.

Their melting line connects nicely with higher pressure measurements performed
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Figure 1.1:Experimental phase diagram of iron. Full lines: phases boundaries of

iron below 20 GPa.

Lines: diamond-anvil cell data on the melting line of iron and the 
 � " phase-

boundary. Dashed line: data by Williams et al [30]. Dot-dashed line: data by

Boehler et al [31] and by Saxena et al [32] (up to � 120 GPa). Dotted line: data

by Shen et al [33].

Dashed lines with error bars and symbols: shock wave data on the melting of iron

along the Hugoniot. Triangle: data by Bass et al [34, 35]. Square: data by Yoo et al

[36]. Diamond: data by Brown and McQueen [13] and by Gallagher and Ahrens

[37].
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by shock-wave techniques (see Figure 1.1). Unfortunately their results have not

been confirmed by more recent DAC measurements.

The most extensive measurements of the melting line of iron in a DAC are

due to the Mainz group. Their experiments at high pressure are done by plating

the iron sample on a ruby disk immersed in a pressure medium made of ruby

powder. The sample is heated by a laser. Temperature is measured fitting the

radiation from iron through the ruby disk to a Planck’s radiation function. Melting

is detected visually as the onset of convective motion. Boehleret al in 1990 [38]

reported the melting temperature of iron up to 120 GPa and found the triple point

connecting the" (hcp), 
 (fcc), and liquid phases at about 100 GPa and 2800

K. The existence of this triple point is deduced, in Boehler’s experiments, by the

change in curvature in the solid-liquid boundary. In 1993, Boehler extended his

measurements on Tm up to 190 GPa[31], finding at this pressure a Tm of about

3800 K. In 1994 he confirmed the existence of the triple point at 100 GPa by

experimental data showing all the three branches[39].

Saxenaet al, in 1994[32], using a diamond-anvil cell apparatus similar to that

of the Mainz group, obtained experimental results on the melting line of iron up

to 60 GPa, confirming the curve of Boehleret al. In Saxenaet al’s experiments,

melting is detected by the abrupt change at Tm in the slope of temperature versus

laser power (due to the heat of melting).

Boehler’s curve was further confirmed in 1994 in a DAC experiment per-

formed by Yooet al[40]. The disappearance of the crystalline X-ray diffraction

lines was used in these experiments as a criterion to detect the melting transition.

These data have to be taken with some caution since, as claimed by Shenet al

[33], the absence of crystallographic structure does not necessarily imply melting.
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The experiment by Yooet al was repeated and extended by Shenet al in 1998

[33]. According to their measurements, the"-
-liquid triple point is at 60(�5)

GPa and 2800(�200)K, i.e. at a lower pressure than Boehler suggested. Their

melting line is defined, at every pressure, by the highest temperature where crys-

talline phases is observed, and lies approximately 300 K above Boehler’s melting

line (with approximately the same slope).

All the DAC data concerning the melting line obtained by Boehleret al, Sax-

enaet al, Yoo et aland Shenet alare compatible with each other (within an error

bar of 300 K), with the exception of the early DAC experiment by Williamset

al that gives a completely different melting line slope and a melting temperature

almost 1000 K higher at 100 GPa.

The melting temperature of iron at pressure higher than 200 GPa has been

estimated only by shock-wave experiments. The first estimate of Tm along the

Hugoniot was given, as we already mentioned in Section 1.2.2, by Brown and

McQueen[13], who reported a solid-liquid phase transition at 243 GPa and 5400

K. In this work, however, T is not directly measured, but only estimated.

The melting temperature has been directly measured in a shock wave experi-

ment by the CalTech group (Basset al and Ahrenset al)[34, 35] and by the Liv-

ermore gruoup in 1993[36]. Their results concerning the temperature along the

Hugoniot are in quite good agreement except for the highest pressure datum (at

300 GPa). At 300 GPa, Basset al report a temperature of 9000 K, approximately

1500 K higher than the Yooet al result (see Figure 4.5). Both the CalTech group

and the Livermore group use shock wave radiance to estimate the temperature.

In particular, in both experiments the intensity of radiation from shocked ironat

a given pressure is measured versus frequency, and the temperature is deduced



1.2 Physics of iron at core conditions: experiments. 19

using the Stefan’s law. Melting is detected as a lateral displacement in tempera-

ture along the Hugoniot. Basset al estimate in this way a melting temperature of� 7000 K at� 240 GPa[34]. Yooet alof 6500 K, also at 240 GPa[36]. These val-

ues are more than 1000 K higher than Brown and McQueen’s estimate and 2000

K higher than the extrapolation of the DAC melting lines. If both the DAC and the

shock wave data were correct, the melting line slope between 200 and 240 GPa

should be unphysically high[31].

The simplest possible explanation of the discrepancy is that the shock wave

temperatures are overestimated. This opinion, shared by a part of the shock-wave

community[35, 37], is based on the fact that the radiation emitted from shocked

iron, before being detected by the frequency analyzer, passes through a dielectric

block (Al2O3), and the thermal diffusivity of this material can change the spectrum

of emitted light. This makes a direct measurement of T along the Hugoniot quite

complicated and possibly affected by large systematic errors. In 1994, Gallagher

and Ahrens presented new data , based on better estimates of thermal diffusivity

in Al 2O3; that lowered the calculated values of the melting temperature of iron

by approximately 1000 K from those proposed by Bass et al., bringing Tm at 240

GPa down to� 5500 K[37], i.e. very close to the Brown and McQueen estimate.

If this value of Tm is correct, the slope in the melting line required to con-

nect this point with the upper DAC measurement of Boehler[31] would still be

very large but not unphysical. Nonetheless, the presence of a triple point in the

vicinity of 200 GPa should be assumed, as only a triple point can explain a sharp

increase in the melting line slope[41]. This might be also consistent with the

long-sought solid-solid phase transition observed by Brown and McQueen at 200

GPa along the Hugoniot. Since in this pressure and temperature range no x-ray
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measurement have been performed so far, the nature of this new phase has only

been suggested by theoretical calculations. Many authors (in particular, Ross et

al [42] and Matsuiet al[25]) suggested for this phase a bcc structure. However,

in recent first-principle calculations, the bcc phase was shown to be mechanically

unstable at zero temperature (see Section 3) and to be disfavored with respect to

hcp by� 540 meV/atom [43]. This very large energy difference is believed to

rule out bcc as a possible high temperature phase of iron in the pressure range

considered[41, 44].

The high-pressure high-temperature phase diagram of iron is further compli-

cated by the possible presence of another phase between"-Fe and
-Fe at pres-

sures above� 30 GPa. The presence of this new phase was first suggested by

Saxenaet al, in 1993[45]. They observe, always by the laser-power versus T

method, a new phase boundary from� 1000 K and 30 GPa to� 2000 K and

130 GPa. They suggest that this new phase might form a large part of the Earth’s

core. This phase (of unknown crystallographic structure) was named�-Fe. In

1995[46], they proposed for this phase a dhcp structure: they observed that laser

heated iron, quenched from high temperature up to� 1500 K at 30 to 40 GPa,

transforms to a dhcp structure. Yooet al[47] confirmed the observation in 1996,

at pressure below 40 GPa. However, more recent measurements do not confirm

these observations: in the same pressure field, Andraultet al observed, in 1997,

an orthorhombic structure[48]. Moreover, Shenet al [33], in their x-ray study

on melting, do not observe new phases in the pressure and temperature range of

interest, and they conclude that the appearance of new structures is probably an

effect of temperature gradients in Saxenaet aland Andraultet al experiments.

From this short overview, it should emerge that experimental evidences con-
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cerning the high pressure phase diagram of iron above 20 GPa are still quite am-

biguous, and at least three different scenarios are possible:

� The shock wave temperatures (including Ahrens data) are overestimated by

1000 K or more. The DAC melting line continues monotonically without

any need for a triple point. Iron in the inner core has an hcp (or�) structure.� The DAC melting temperature is underestimated (by� 1000 K or more at

200 GPa). The melting line is shifted upward to the shock wave values and

no new phase is necessary above 200 GPa. Even in this case, iron in the

inner core has an hcp (or�) structure.� DAC measurements and shock wave estimates of Tm by Gallagher and

Ahrens[37] and Brown and McQueen[13] are correct. A triple point with a

new phase of unknown crystallographic structure exists at� 200 GPa. Iron

in the inner core has the structure of this new phase. This scenario would

reconcile the greatest number of experimental observations.

The phase diagrams resulting in these three cases are sketched in Figure 1.2.

The hypothetical phase boundary between" and� phase is also reported in these

diagrams for completeness. We will see in Chapter 4 that our calculations suggest

that the correct scenario is the first one (no definitive indication concerning the

existence of the� phase is provided by our theory).
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Figure 1.2: Three possible speculative scenarios for the high-pressure phase-

diagram of iron. The inner core boundary pressure is indicated as a dashed line.

The hypothetic " � � phase boundary is also reported. Results in this thesis will

support scenario (a), however with no definitive indication concerning the exis-

tence of the � phase.
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1.3 Physics of iron at core conditions: first principle

simulations

The evergrowing interest in the physics of iron at Earth’s core conditions has stim-

ulated a great number of first-principle-based theoretical studies aimed todeter-

mine some of the basic properties of iron at high pressure and high temperature.

At least some of these properties, such as the zero-temperature equation of state,

elastic constants and phase stability, are nowadays well understood at a theoretical

level. Density functional theory is able to reproduce all the measurable experi-

mental quantities with a very satisfactory level of accuracy, thus encouraging the

application of the same methodologies to finite temperature properties. Unfortu-

nately, this has proved quite an ambitious goal, due to intrinsic difficulties ina

fully ab-initio modelization of iron. The only high temperature properties stud-

ied by ab-initio methods so far are the transport and the structural properties in

the liquid phase[49]. In the liquid, ab-initio methods were used topredict some

quantities of geophysical relevance, otherwise unaccessible to experimental mea-

surements (in particular the viscosity). In this Section, we will recallsome of the

results obtained up to now and the technical details of the ab-initio implementation

used.

Some of the earliest ab-initio calculations on solid iron were performed by

Jansenet al[50, 51] in 1994. They concluded that the use of the local density

approximation or local spin-density approximation are not sufficient to describe

the structural and magnetic property of iron with good accuracy.

A significant improvement was reported by Stixrudeet al in 1994, who showed

that by the inclusion of the generalized gradient approximation[52, 53] (GGA)



24 Physics of Iron and Physics of the Earth’s Core

excellent agreement with the experimental room temperature equation of stateof

bcc and hcp iron can be obtained[54]. Also the bcc-hcp transition pressure and

the bcc magnetic moment are correctly reproduced within their approach.

In 1995, Stixrude and Cohen[23] presented results on high-pressure elastic

constants of iron, using a tight-binding approach (the parameters of tight binding

Hamiltonian are fitted to first-principles band structures and total energies of fcc,

hcp and bcc). With this method, they show that, at the density of the inner core,

hcp phase of iron is substantially (� 8 %) elastically anisotropic.

A complete theoretical investigation of the zero-temperature properties ofiron

was carried on in 1996 by Soderlindet al[43]. They used an all-electron full-

potential linear-muffin-tin-orbital implementation of density functional theory, within

the GGA. With this implementation, they reproduce, like Stixrudeet al[54], the

zero temperature equation of state for hcp iron within 1 % and the 14 GPa pres-

sure transition between bcc and hcp. Moreover, they study the stability of bcc,

fcc, bct, hcp and dhcp phases as a function of pressure. Of particular relevance

is the estimate of the energy difference between the different phases at an atomic

volume of 7
�A3

, corresponding roughly to the density at the inner core boundary.

At this volume, bcc-Fe is mechanically unstable. The phase of lowest energy is

nonmagnetic hcp (the stable form of iron at high pressure and room temperature

conditions). The other two close-packed phases they consider (fcc and dhcp) are

disfavored by� 68 meV/atom; the eight-fold coordinated bcc and the ten-fold

coordinated bct lie� 540 meV/atom above, indicating that only a exceedingly

large entropic contribution (�S� 1 kB) could stabilize bcc and bct with respect

to close-packed phases at high temperature. They also calculate the magnetic mo-

ment that survives compression in the various phases. At an atomic volume of7
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, the magnetic moment is totally negligible (¡0.01�B) for all the close-packed

phases. For bcc and bct, the magnetic moment is�0.7�B, indicating some resid-

ual magnetism. However, magnetization is expected to decrease strongly with

temperature, and the Curie temperature is not likely to be as high as 5000 K[55].

Thus, whatever is the phase of iron at Earth’s core conditions, magnetism is likely

to play a minor role.

The first attempt to calculate some of the high-temperature properties of iron

making large use of first-principle tools, is due to Wassermanet al[56]. In their

calculation, the electrons are treated within the tight-binding method (whose pa-

rameters are fitted to first-principle calculations). The vibrational partition func-

tion is estimated by a mean field approximation (the so called cell method[57])

which ignores interatomic correlations. The method can be applied only below the

melting transition, where collective motion and diffusion are unimportant. The

main contribution of Wassermanet al is the estimate of the Gruneisen parameter,

the thermal expansivity and of the heat capacity Cv in hcp iron. All these pa-

rameters are shown to depend non-trivially on electronic excitations. Moreover,

they provide an estimate of the temperature and density along the solid branch

of the Hugoniot. Their theoretical values are in good agreement with Brown and

McQueen’s estimates[13] for both the density and for the temperature.

A similar approach, although based fully on first-principle methods, is used

by Vocadloet al[44]. In their work, the vibrational contribution to the free en-

ergy is computed within the quasi-harmonic approximation in some of the stable

structures at zero temperature (the calculation cannot be performed on bcc, be-

cause of its mechanical instability). Within this approximation (that is, however,

likely to fail near melting) hcp remains favored with respect to dhcp andfcc at
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core pressures and up to 8000 K.

The only first-principles molecular dynamics simulation of iron at Earth’s core

conditions has been performed so far by A. De Wijset al[49]. Their calculations

are based on ultrasoft pseudopotentials of the Vanderbilt type[58]. Electronic ex-

change and correlation are treated within the GGA of Perdewet al[53]. They find

out that 3p state partecipate in binding significantly at high pressure, and should

be explicitly included in the valence states. However, since their inclusion is com-

putationally very demanding, simulations of liquid iron are performed without

explicit treatment of 3p-states. To mimic the effect of 3p states, the authors in-

troduced in the simulation a suitable pairwise ad-hoc constructed potential, thus

renouncing to a full first-principle approach. They find that the properties of the

liquid phase are sufficiently well converged for increasing system size ifsimula-

tions are performed on a 64 atoms cell with� point sampling of the Brillouin-

zone. They thermalize a sample in the liquid state at a temperature of 6000 K and

a density of 13.3 g cm�3, corresponding, according to the Anderson and Ahrens

equation of state for liquid iron[59], to the density of liquid iron at 330 GPa and

6000 K. After thermalization, they compute the average pressure and the diffusion

coefficient D via the Einstein relation. Finally, the viscosity is estimated from D

via the Stokes-Einstein relation. The calculated pressure is 358 GPa, 8 % higher

than the Anderson value for that density. The viscosity is�1.5 10�2 Pa s, with

an estimated uncertainty of a factor of three. This estimate, even if rather rough,

is relevant for geophysics, since proposed values for the iron viscosity prior to

this calculations spanned more than ten orders of magnitude[60], and the theo-

retical value is in the low end of the range of previous estimates, with important

consequences on geodynamo models[61].



Chapter 2

First-principle calculations.

The approach that is used in this work to compute the properties of iron at Earth’s

core conditions makes essential use of first-principle tools, since first principle

calculations have been shown to provide a very accurate description of static and

dynamic properties of a lot of materials, including iron (see Section 1.3).

In this Chapter, after an overview of some concepts that are at the basis of first-

principle calculations (in particular, density functional theory, the pseudopotential

approach, and Mermin generalization of these theories to metallic systems), we

will specify the approximations we use in our first-principle calculations on iron

(cutoff in the plane wave expansion, kind of pseudopotential, etc.), discussing

the influence these approximations might have on the accuracy of the results. The

algorithm employed in our code to minimize the Mermin functional will be briefly

described in Appendix A.

In first-principle calculations, the system is represented as a collection of

atomic nuclei and electrons, and the forces on the nuclei are obtained by solv-

ing the Schroedinger’s equation within density functional theory to determine the

electronic ground state.
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Density functional theory (DFT) is based on a theorem, due to Hohenberg

and Kohn[62], showing that the electronic densityn (r) and the external potentialVext (r) are univocally determined by each other. Therefore, the electronic den-

sity totally defines all the electronic properties of any system, including its total

energy.

Thanks to this theorem, the total energy of a system can be written in the formEtot [n (r)] = Eext + Z drVext (r)n (r) + E [n (r)] (2.1)

whereVext (r) is the external potential (due to the nuclei or any other external

source),Eext is the classical energy of the nuclei, andE [n (r)] is a functional of

the electronic density, called thedensity functional. E [n (r)] coincides with the

expectation value, with respect to the all-electron wavefunctions, of thekinetic

energy operator plus the electron-electron interaction.

The density functional can be split in the sum of three terms[63]:E [n] = �12Xi h	ij� j	 ii+ EH [n] + Exc [n] (2.2)

where EH = e22 Z dr dr0 n (r)n (r0)jr� r0j
is the Hartree energy andj	 ii are the orbitals of a fictitious system such thatn (r) =Xi j	i (r)j2 : (2.3)Exc [n] is called exchange and correlation energy, and is defined by eq. (2.2). The

single-particle Hamiltonian whose eigenfunctions are thej	 ii-s is called Kohn-

Sham (KS) Hamiltonian, and has the form:HKS [n] = �12� + VH [n] + Vxc [n] + Vext (2.4)
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whereVH [n] andVxc [n] are the functional derivative with respect to the density

of EH [n] andExc [n] respectively. The corresponding Schroedinger equationHKS [n] j	 ii = "i j	 ii (2.5)

is called Kohn-Sham equation.

In order to use equation (2.5) for calculations in real systems,Vxc has to be

approximated by an explicit function of the electron density. In the so-called local

density approximation (LDA)[64],Vxc is assumed to be a local operator of the

form Vxc (n (r)) ; while in the more sophisticated gradient corrected approxima-

tion (GGA)[52, 53],Vxc is assumed to depend also on the gradient of the density,

i.e. is an operator of the formVxc (n (r) ;rn (r)) :
Another cornerstone concept in first-principle calculation is the so-called pseu-

dopotential technique[65]. Since core electrons are usually ”frozen” in their free-

atom configuration, while chemistry and physics are dominated by the behavior

of valence electrons, it is customary to map the KS problem (2.5) into an equiva-

lent problem involving valence electrons only and where the valence orbitals are

smooth. In particular, a new KS problem of the formHpKS [np] j	pii = "pi j	pii (2.6)

with np (r) = Pi j	pi j2can be defined by the following properties: (i)"pi = "i for

valence electrons in a suitable reference system (usually the free atom); (ii)	pi (r) =	 i (r) for r > ric in the same reference system (ric are called cutoff radii) (iii) forr < ric the	pi (r) are smooth (and nodeless) functions of the radius; (iv)the pseu-

dowavefunctions	pi (r) form an orthonormal set; (v) the charge enclosed withinric for 	pi and	 i is the same[65, 66].

These properties fully define the operatorHpKS if the reference system and a

functional form of the pseudowavefunctions	pi for r < ric is chosen. In particular,
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whereVpsis a suitable (non-local, in the most general case[65]) operator, called

pseudopotential. The set of cutoff radiiric have to be carefully chosen in order to

insure both smoothness of the pseudowavefunctions (this would require a largeric)
and transferability of the pseudohamiltonianHpKS to systems very different from

the reference system used to construct the pseudopotential (this would require a

smallric).
In the rest of this work we will always use the pseudized form of KS Hamilto-

nian and wavefunction (2.6). Therefore, in the following we will drop the super-

scriptp.

If DFT is applied to a metallic system at finite temperature, the procedureout-

lined above has to be slightly generalized, in order to allow fractional occupancies

of the states as determined by the Fermi distribution. It turns out that the use of a

Fermi distribution (or any other ”smearing” of the occupations around the Fermi

level) improves considerably also the convergence rate of the electronic minimiza-

tion. In fact, if equations (2.2) and (2.3) are used in a metallic system the number

of iterations necessary to converge to a specific precision will increase with the

square root of the system size[67], since the energy difference between the last

occupied and the first non-occupied orbital is zero for infinite-size systems, and

thus it will become progressively harder to determine the correct occupied or-

bitals. Moreover, any level crossing along a ionic trajectory will cause a sharp

change in total energy, with difficulties in integrating the equations of motion.

The inclusion of some unoccupied orbitals above the Fermi level, with suit-

able partial occupancies, that we will denote byfi (if a spin-independent form
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for the Hamiltonian is assumed,fi 2 [0; 2]) ensures instead system-size indepen-

dence of the minimization efficiency and, moreover, it minimizes the effects of

level crossings along the ionic trajectory, smoothing out their effect. At large tem-

perature (T> 1000 K) the electronic temperature (Tel) can be set equal to T, while

at low T, Tel can be kept fictitiously larger than T without affecting the calculated

properties[68].

In order to include partial occupancies in a fully consistent manner, the finite

temperature version of DFT developed by Mermin[69] has to be used. At a finite

electronic temperatureTel, the proper variational functional is the free energy of

the electrons : F (	i; fi) = E (	i; fi)� kBTelSel (fi) (2.7)

whereE (	i; fi) = �12Xi fi h	ij� j	 ii+ EH [n] + Exc [n] + Z drVext (r)n (r)
is the total energy of the electrons (the electron density is now defined byn (r) =Pi fi j	ij2 ) andSel (fi) = �Xi (fi ln fi + (1� fi) ln (1� fi))
is the electronic entropy. The free energy (2.7) has to be minimized with respect

to the	i-s thefi-s with the constraints of orthonormality of the wave functions

and of a constant numberNel of electrons. These conditions fully define the occu-

pation numbersfi as a function of KS energies"i (in particular, the occupancies

have the Fermi-Dirac formfi = 1exp� "i�"FkBTel � + 1 ; (2.8)
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where"F is the Fermi energy).

In order to allow an efficient minimization of the free energy (2.7) the self-

consistency minimization scheme developed by Kresse and Furthmuller[68] has

been implemented in a parallel CP code based on a plane-wave expansion of elec-

tronic wavefunctions[70]. This method have been shown to outperform, for metal-

lic systems, any other scheme, including direct minimization ones[71][72] and

consists in splitting the minimization problem into two sub-problems: an iterative

diagonalization of the Hamiltonian at fixed potential and an iterative improvement

of the potential, based on a suitable mixing scheme for the charge density. We will

describe this method in Appendix A.

We will now discuss some technical details concerning the application of the

concepts outlined above to first-principle calculations of iron.

As we recalled in Section 1.3, iron has been the object of extensive studies

by the first-principle community, although results concerning its high tempera-

ture properties are still incomplete. The approach we use in this work makes use

of the detailed know-how that can be extracted from existing experience, in par-

ticular concerning the pseudopotential and the kind of exchange and correlation

functional that has to be used.

In particular, electronic exchange and correlation are treated using the gradi-

ent approximation of Perdewet al[52, 53]. This choice for the exchange and cor-

relation functional was shown[54] to provide an excellent agreement with most

properties of iron both at low and high pressure, including the room temperature

equation of state for bcc and hcp iron, the bcc-hcp transition pressure and the bcc

magnetic moment.

Since it was shown by Soderlindet al[43] that the magnetic moment in all
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close-packed phases of iron at core pressures is almost completely suppressed,

the calculations in this work are performed without taking into account electronic

spin.

In order to generate the pseudopotential, we have used the procedure devel-

oped by Trouiller and Martins[66], since their functional form provides a very

reasonable compromise between smoothness of pseudowavefuctions and transfer-

ability (in the terms discussed in the preliminary part of this Chapter). Within

their approach, we verified that, as already found by A. De Wijset al[49] 3p state

polarize significantly at high pressure, and thus these state have to be explicitly in-

cluded in valence. In particular, failure to include them leads to an overestimation

of � 80 GPa in the stress at inner core densities. In our approach, also 3s states

are included in valence, even if this would not be strictly necessary (their effect

might be mimicked, e.g., by using the nonlinear core-corrections[73]) since their

inclusion yields a much smoother form for the pseudopotential, and therefore a

reduction of the cutoff energy in the plane-wave expansion of KS wavefunctions.

The cutoff radii we use are 1.5 au for all the pseudowavefunctions (s, p and d

channel). With this choice of cutoff radii, energy differences are converged with

respect to the cutoff in the plane-wave expansion of KS wavefunctions at 100

Ryd (e.g., the zero-temperature equation of state for iron with 100 and 150 Ryd

coincide within 0.2 % between 0 and 400 GPa).

Also the system-size convergence of our observables has been tested carefully.

We obtained that, in agreement with de Wijset al[49], a 64 atom cell with�-point

sampling of the Brillouin zone is sufficient to reproduce the k-points converged

pressures within 0.3 % in all the range of atomic volumes of interest for the Earth’s

core physics. In Figure 1, the zero temperature EOS for a 64 atoms cell at 100
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Ryd cutoff is plotted together with the fully converged (196 special points in the

irreducible Brillouin zone and 150 Ryd cutoff) EOS. It is evident that the two

equation of state coincide within an error of 0.5 % for every atomic volume.

This theoretical approach gives a low temperature pressure-vs-density curve

for hcp iron in excellent agreement with X-ray data[12]. Theoretical and experi-

mental EOS are compared in Figure 1: experimental densities are reproduced with

an accuracy between 1.5 %, (around 150 GPa) and 0.8 % (close to the ICB, at 330

GPa).
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Figure 2.1:Pressure versus Volume equation of state for low temperature hcp

iron. Squares: X-ray data at 300 K[12]. Full line: Birch-Murnaghan fit to first-

principles results on a 64 atoms cell and 100 Ryd of cutoff in the plane-wave

expansion. Dashed line: Birch-Murnaghan fit to first-principle results on a 4 atoms

cell with 196 k-points in the irreducible Brillouin zone and 150 Ryd of cutoff.





Chapter 3

The optimal potential method

First-principle calculations have rapidly improved in speed and accuracy, but the

range of applicability of these methods still remains limited to systems of rela-

tively small size (from 50 to 500 particles) and short simulation time (afew pi-

coseconds). Although this is sufficient to capture the relevant physics in a large

number of cases, a brute-force ab-initio approach can seldom be used to fix the

value of most finite-temperature observables at a high level of accuracy, because

of unavoidable size effects and because of the poor statistical sampling due to the

short simulation time. The case of iron is, in this sense, a good example: the

computer time needed to obtain a good quality electronic wave function on a 64

atoms liquid sample is, within the approximations described in Chapter 2, 30 min-

utes on a 64-node parallel machine in a molecular dynamics run and 3 hours for

a ”from-scratch” electronic minimization. It is clear that, in situations like this,

even the simple evaluation of an average density by an ab-initio constant pressure

run would be almost impossible. The use of Vanderbilt ultrasoft pseudopoten-

tial[58] reduces significantly this time, allowing full ab initio evaluation of at least

some observables, like the density and the diffusion coefficient, as shown recently



38 The optimal potential method

by Gillan et al [49]. However, even using Vanderbilt pseudopotentials, a fully

ab initio calculation of a melting temperature would be very delicate, because of

the great accuracy required in determining free energy differences[74]. Moreover,

even the maximum simulation time that can be afforded nowadays (� 10 ps [49])

would not allow an accurate estimate of the high temperature elastic constants

(see Section 4.4) that are, as we have seen, of great geophysical relevance.

On the other hand, classical interatomic potentials constitute a very powerful

tool to perform molecular dynamics simulations on large size systems or for long

simulation times, thus avoiding sampling and finite size problems [7].

For the above reasons, it seemed compelling to try to construct a bridge be-

tween these two different approaches, making use of the large amount of informa-

tion that can be obtained by first-principle methods to construct reliable potentials

for large-scale computations . This kind of approach (the so called force-matching

method, developed by Ercolessi and Adams [75]) has proved quite successful in

reproducing the properties of simple metals such as aluminium and lead. The idea

underlying this method is to fit the classical potential in order to reproduce not

only a set of observables (e.g. the equation of state or the cohesive energy) as in

standard potential construction procedures, but also ab-initio forces calculated on

a large set of configurations (e.g. a cluster, a surface, a liquid sample).

The drawback of all the approaches based on classical molecular dynamics,

including the force-matching method, is the poor capability of classical potentials

to describe situations in which relevant changes in the chemistry of the system

occur: asingleclassical potential is required to describe the properties of defects,

surfaces, clusters, liquids and glasses in a wide range of pressures and temper-

ature. This property, calledtransferability, is considered crucial for the quality
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of the potential. To construct a truly transferable potential is, to say the least, a

very difficult task, and transferability is often incompatible with the accuracy in

the description of a single situation. In practice, even if the potential is fitted to

reproduce a large set of properties, its predictivity cannot compare that of an ab-

initio calculation, whatever the complexity of the functional form that is used for

the classical potential. This has led, in the last ten years, to abandon, whenever

possible, of classical potential simulations in favor of the more reliable ab-initio

ones.

The idea of the present approach is torenounce to transferability in favor of

accuracy. This is done by constructing a different classical potential for each

distinct physical situation. This approach assumes that the poor capability of a

standard classical potential to describe accurately a system (e.g. a liquid at a

given pressure and temperature) is due to the requirement thatthe same potential

should describe, with thesameaccuracy, many completely different systems (e.g.

a liquid at another pressure and temperature, or a surface). If this condition is

relaxed, and the classical potential is only required to describe a single system in

which no relevant change in electronic structure is expected to occur, the classical

potential can, in principle, provide the same information as a full ab-initio run,

with an enormous gain in computer time: after the potential is constructed, the

full dynamical properties of the system of interest can be easily extracted from

extensive classical simulations, without any limitation due to finite-size problems

or short simulation time.

In the rest of this work, we will show that it is possible to construct a potential

with these properties, that we will call ”optimal potential” (OP), describing iron

at a given pressure P and temperature T (also in the presence of melting).
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The OPs are constructed, at a given P-T point, by requiring the matching be-

tween classical and first-principles forces and stress in selectedatomic configura-

tions. This is done in the framework of a suitable iterative procedure, designed in

order to reproduce the dynamics of the system at P-T. By definition, this OP will

not be transferable to different P-T conditions, where a different potential mustbe

constructed.

This chapter is organized as follows. In Section 1, we introduce the so-called

embedded-atom functional form of the potentials that have been extensively em-

ployed in classical simulations of metals, and that we used in the potentialopti-

mization procedure. In Section 2 the force-matching method, as introduced by

Ercolessi and Adams, is briefly reviewed. In Section 3, the iterative procedure

for constructing the optimal potential is introduced and discussed. In Section 4,

errors due to the OP procedure are estimated by the direct calculation of ab-initio

observables in a special case. In Section 5 a method for estimating the melting

temperature within the OP procedure is introduced. In Section 6 the OP method is

tested by reproducing the thermodynamics of a reference potential by an OP pro-

cedure carried out on a classical potential with a completely different functional

form.

3.1 Embedded-atom potentials.

As it is well-known, in a metal a substantial fraction of the cohesive energyis

due to delocalized electrons. Modeling interatomic forces in a system of this

kind leads, in the Born-Oppenheimer approximation, to a classical Hamiltonian

depending explicitly on atomic coordinates only, but it is quite unrealistic to model

the electron density dependent cohesive term by a simple two body potential[76].
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To overcome this problem, several so-called embedded-atom potentials or glue

model have been developed. In these potentials the total energy for a monatomic

system is assumed to be of the formE = NXk=1 EkEk = Xj(6=k) �12� (Rkj) + F (� (fRkjg))� : (3.1)

whereN is the number of atoms,� (R) is a two body potential keeping into

account electrostatic interaction and overlap repulsion,� is a function of the posi-

tions of the neighbors (j) of atomk, mimicking the electronic density experienced

by atomk due to the presence of all the other atoms, andF is a suitable non-linear

function of�. SinceF (�) is a non-linear function of the atomic positions, forces

arising from the potential (3.1) are in general of the many-body kind. Among the

several functional forms for�; F and� that have been proposed in the literature,

we have chosen to use in this work the one proposed by M.I. Baskes [77] (the so-

calledmodified embedded-atom potential) because it is the most general and rich

we could find (e.g. it includes explicitly angular dependent many body terms) and

the one proposed by A.B. Belonoshko and R. Ahuja [78] because it was developed

specifically for iron at high P-T conditions. In the rest of this Section, we briefly

review these two functional forms.

3.1.1 Modified embedded-atom potentials

In the modified embedded-atom potentials developed by Baskes[77], the two body

potential� (R) is determined by the zero temperature properties of the monatomic

solid in a suitable reference structure, i.e. in a crystal structure where detailed

informations are available (e.g. the equilibrium structure of the system). In par-
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ticular, the two body potential is assumed to be of the form� (R) = 2Z �E (R)� F ��0 (R)�� (3.2)

whereZ, E (R) and �0 are the coordination number, the energy per atom (as

a function of the atomic distanceR) and the density function evaluated in the

reference structure. With this definition, the physical properties of the reference

structure (in particular the zero-temperature pressure-vs-volume equationof state)

are automatically reproduced by (3.1) whatever functional form forF and for

the density is chosen. The functionE (R) is, by definition, the zero temperature

equation of state of the atom. The equation of state is assumed to be of the formE (R) = �E0 �(1 + a) e�a�a = �� RR0 � 1� (3.3)

whereE0 is the cohesive energy,R0 is the zero-pressure nearest-neighbor distance

and� = p9B
=E0; whereB is the zero pressure bulk modulus and
 is the

zero-pressure volume per atom.

The embedding functionF has the formF (�) = A �Z ln �Z (3.4)

where the density� is of the form� =vuut 3Xl=0 tl�2l (3.5)

The functions�l are dependent upon the relative angular positions of the neighbors

of atomk: In particular, ifx�ij = R�ijRij are the direction cosines, we have�0 = Xj(6=k) �a0 (Rjk)
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�2 = vuuutX�� 0@Xj(6=k) �a2 (Rjk)x�jkx�jk1A2 � 130@Xj(6=k) �a2 (Rjk)1A2
�3 = vuuutX��
 0@Xj(6=k) �a3 (Rjk)x�jkx�jkx
jk1A2

(3.6)

where�al = exp ���l � RR0 � 1�� : The eight parameters�l, tl, l = 0; : : : 3 are

determined, in Baskes work, from the experimental shear constants and stacking

fault energies. At variance with Baskes procedure, these parameters, together

with the other four that define a potential, (�; R0, A andE0) are determined, in

our procedure, by fitting ab-initio forces and stress, as will be discussed in the

following sections.

3.1.2 Belonoshko potential

Belonoshko and Ahuja have also developed a potential of the embedded atom

form (3.1) for specific application to iron at ICB conditions[78]. The embedded-

atom potential they employ is simpler than the one used by Baskes (it does not

include angular-dependent many-body terms), but it is of completely different

functional form (e.g., the dependence of partial densities on interatomic distance

is a power-law, while in Baskes’ potential it is exponential). This providedus with

the possibility to test the robustness of our procedure, as described in Section 6of

this Chapter.
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The pairwise term� (R) is assumed to be of the form� (R) = �AR�n � CvdwR6 +D [exp (�2� (R� R0))� 2 exp (�� (R�R0))]
(3.7)

where the first term is a short-range overlap repulsion, the second term is thevan

der Waals attraction and the third term is of the Morse form. The many-body term

has the form F (�) = C�1=2 (3.8)�i = Xj � BRij�m
The nine parameters of the potential (A; n, Cvdw; D; �; R0; C; B andm) are

optimized, in Belonoshko and Ahuja’s original work, by fitting structure, thermal

expansion and compressibility of�, 
 and" iron at 300 K and 1 bar, the"-iron

equation of state between 22 and 37 GPa, and by imposing that, at ambient con-

ditions, bcc is the stable form of iron.

3.2 The force-matching procedure.

The most important ingredient of our optimization procedure is a force-matching

step, performed on a microscopic configurationC of N particles on which first-

principles stressSaiij , i; j = 1; 2 and forcesFaii , i = 1; : : : ; N have been computed.

The goal of a force-matching step is to generate a potentialV1 that fits accurately

these forces[75] and stress. The requirement to fit also the ab-initio stress im-

proved greatly the capability of the fitting routine to find the correct basin of at-

traction. This is because, for a system with many-body forces, the stress isnot a

trivial function of the forces like in the two-body case.
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The interatomic potential is defined, given its functional form, by its set of pa-

rametersf�g. The force-matching procedure consists of minimizing with respect

to f�g, the distanceD (f�g) = (1� ws)PNi=1 jFi (f�g)� Faii j2PNi=1 jFaii j2 + wsPj;k ��Sjk (f�g)� Saijk��2Pj;k ��Saijk��2
(3.9)

whereFi (f�g) andSjk (f�g) are the force on atomi and the stress tensor, as

obtained with parameterizationf�g from the classical potential andws (0< ws <1) weights the relative contributions of forces and stress in the fit. In some special

cases (e.g. when a large number of parameters was used) it was necessary to

constrain the value of the parameters around some ”reasonable” values�0i . This

was done by including in the distance (3.9) a supplementary term of the formXi wi ��i � �0i �2
wherewi are suitable weights.

Given the complication of the functional forms of the classical potentials used,

the distance (3.9) has usually multiple local minima. In the present optimization

procedure, a large set (� 100) of potentials which minimize the norm (3.9) is

produced by direct Powell minimization starting from randomly chosen initialpa-

rameters. Potentials such thatD (f�g) is too large (> 0.05 for the force contribu-

tion and> 0.01 for the stress contribution) are immediately discarded. Moreover,

a run of� 1 picosecond is performed with every potential, and the ones with bad

energy conservation are discarded as well. This selection is necessarybecause

no strong bounds on the value of the parameters defining the potentials are intro-

duced, and this can lead, by the minimization procedure, to potentials with sharp

derivatives that fit the ab initio forces and stress with a good accuracy,but cannot

be used in a long MD simulation.
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The required accuracy can be achieved with potentials with different parame-

ters or even different functional forms (in particular of the generalized embedded-

atom form or of the Belonoshko form[77, 78]) and we will see in the following

section that, if the microscopic configuration where these potentials are optimized

is chosen in a suitable manner, all these potentials describe, within a small error,

the same thermodynamics.

3.3 Self consistent generation of an optimal poten-

tial

The theoretical core of our procedure is the assumption that if potentials generated

by a force-matching methodare used in physical conditions that are not too far

from the one of the microscopic configuration used to optimize them, the accuracy

of the fit, together with the requirement of conservation of energy, is enough to

ensure that any thermodynamic observable, calculated by any of these potentials,

will coincide within a small error (depending only on the accuracy of the fit). Po-

tentials satisfying this condition will be called in the followingoptimal potentials

(OP), with the understanding that every OP is associated with a particular physical

condition, defined, in the case of iron, by pressure and temperature (the possibility

of phase transitions at a given pressure and temperature is discussed in detail in

Section 5).

An example of the accuracy that can be obtained with our procedure is given

in Figure 3.1 (upper part), where the average density of liquid iron at 5500 K and

330 GPa calculated with some OPs is plotted as a function of the constant-pressure

MD run time. The potentials are obtained by a force-matching procedure on dif-



3.3 Self consistent generation of an optimal potential 47

0 400 800 1200 1600 2000
11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

time steps

330 GPa
5500 K

230 GPa
5500 K

Average densities computed with OP-s

ρ 
[g

/c
m

3 ]

Figure 3.1:Average density as a function of simulation time for twelve potentials

optimized at 5500 K and 330 GPa. Each line style corresponds to potentials

optimized on different configurations. The simulations are carried out with a 320

atoms cell, at a temperature of 5500 K and at a pressure of 330 GPa (upper part)

and 230 GPa (lower part). Note the small spread at 330 GPa and 5500 K (where

the OPs have been optimized) and the larger spread for the same potentials used

at 230 GPa, indicating non-transferability. (Clearly, at 230 GPa a new set of OPs

could be constructed, with spreads as small as the 330 GPa ones.)
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ferent microscopic configurations (each line style corresponds to a different mi-

croscopic configuration) fulfilling the condition outlined above: the microscopic

configurations are, in a sense that we will define more rigorously in the following,

at a temperature of 5500 K and at a pressure of 330 GPa. All densities coincide

within 0.4 % (the variance is 0.2 % only). The parameters defining the potentials

used in Figure 3.1 are reported in Table I (all the potentials are of the modified

embedded atom form introduced in Section 3.1.1, with no angular components

(tl = 0 for l=1,2,3 in (3.6), with a cut-off of 8 a.u. for the density-dependent part,

and of 12 a.u. for the two-body part):� R0 [a:u:] � E0 [Ht] A

2.786 6.4932 9.5329 0.002195 -6.79499

10.83410 5.2190 3.95768 0.0159 0.3299

-18.6855 6.9456 11.177 0.000481 0.3506

10.2735 5.1973 4.245 0.0635 0.09671

12.2422 5.6778 6.2861 0.01801 0.04013

3.5348 5.7603 7.9766 0.01124 0.35985

9.6745 6.7919 9.6997 0.00216 -0.3952

14.917 6.7673 -3.433 0.0137 0.00551

11.3285 5.6339 9.8181 0.00273 0.3361

11.2928 4.8874 0.0165 0.0388 0.2229

11.043 4.7544 0.0519 0.0379 0.3352

12.6624 5.5988 -0.00261 0.00915 0.1398

Table I: parametrs of the potentials used in Figure 3.1 and 3.2

Despite of the simiarity in the values of the average densities at 330 GPa and
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5500 K, the parameters defining the potentials are very different. This similarity in

the behavior of optimal potentials extends much further: all the thermodynamical

observables (elastic constants, diffusion coefficients, melting temperature, viscos-

ity, etc.), if calculated by these potentials, have approximately the samevalue(see

Figure 3.2 for a comparison of diffusion coefficients calculated with the same po-

tentials and at the same conditions of figure 3.1, and Section 3.5 for a comparison

of melting temperatures, heat of crystallization and density jump at melting).

The condition that the potentials have to be used in conditions that are close to

the ones of the microscopic configuration on which they have been optimized is

crucial: in figure 3.1 (lower part), the density at 5500 K and 230 GPa as calculated

with the same potentials used at 5500 K and 330 GPa is reported. The spread in

the predicted values of the density is now much bigger (more than 1 %). This

shows that the very small spread in density values observed at 330 GPa can be

obtained only at a price of a quite weak transferability of the potentials. For this

reason, the potentials have to be used only in a small neighborhood of the physical

conditions where they are optimized (experience has shown that our potential are

transferable, with the accuracies we require, within a window of� 30 GPa in

pressure and� 500 K in temperature around the P-T point where the potential is

fit).

There are two different methods to ensure that a microscopic configuration is

a ”good representation” of a given thermodynamic state (defined, in our case, by

pressure and temperature). The first one is to perform a constant P-T ab-initio

molecular dynamics run on the system of interest and optimize the potentialafter

equilibration. This possibility, although very reliable and feasible for a large class

of system, is not realistic for iron, given the cost of performing a single molecular
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Figure 3.2: Mean square root displacement (msrd) as a function of simulation

time for twelve optimal potentials (the same of Figure 3.1). msrd are averaged

on 20 runs carried out with 320 atoms cells, at a temperature of 5500 K and at

a pressure of 330 GPa. A time step corresponds to 0.967 fsec. The observed

spread between the curves of msrd-vs-time corresponds approximately to a 25 %

of uncertainty in the diffusion coefficient.
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dynamics step.

The second possibility is to perform an iterative procedure, in which the dis-

tance from convergence is defined by the variation, on iteration, of acontrol vari-

able, i.e. a macroscopic observable different from the ones fixing the thermody-

namic state of the system (pressure and temperature). In the case of iron, wehave

chosen the density� at P-T as the control variable.

A new potential V is
optimized with ab-initio

forces and stress.

Constant P-T 
classical dynamics 

(100 ps)

ρ
1

ρ
0

ρ
i

V
0

V
1

V
i

V i+
1

STOP
ρi= ρi+1

Figure 3.3:Iterative procedure for constructing optimal potentials at P-T

The iterative procedure is the following (see also figure 3.3). A trial many-

body interparticle potentialV0 [77, 78] is used to produce a classical trajectory for

a (small) numberN of particles in the isothermal-isobaric ensemble at P-T; the

density�0, averaged on this trajectory, is calculated. In the resulting configurationC1 first-principles stress and forces are computed, and a new potentialV1 is gener-

ated by a force-matching procedure[75] on this configuration. The configuration

is then evolved with the new potentialV1, still at P-T, and a new average density�1 is calculated. Ifj�1��0j=�0 is small (less than5� 10�3 in the case of iron) the

classical potentialV1 generated in this way is accepted as optimal at the given P-T
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conditions, otherwise the procedure is iterated, generating in this way a sequence

of potentialsVi, each of them defined by a functional form and a set of parameters.

As stated above,Vi is not unique, since other potentials differing in the choice

of the parameters and/or of the functional form can satisfy the required fitting

accuracy on forces and stress (an example is provided by the potentials in Table

I). All the potentialsVi can be thought of as belonging to a classfVig, defined

completely by the configurationCi and by the accuracy of the fit. Potentials be-

longing to the same class produce (at the same P-T conditions), the same density,

within an error of��, and the same value for a lot of other thermodynamic ob-

servables (an example of this property is given in figure 3.1, in which every line

style corresponds to a different class and��=� � 0:4 %, and in figure 3.2). The

iterative procedure is stopped if the classes of potentialsfVig andfVi+1g produce

the same density within 0.5 %. This implies that the two classes describe, with a

rather good approximation, the same thermodynamics.

It should be noticed that the number of iterations that had to be carried out

to optimize potentials for iron was in fact seldom larger than three: the morethe

thermodynamics of the system was becoming clear, both from previous calcula-

tions, and from comparison with experimental data, the easier it was to guessa

reasonable trial density at P-T, thereby speeding up the procedure.

It also has to be underlined that the potentials are optimized using rather small

cells (the number of atoms that can be treated in fully ab initio calculations is

limited) while thermodynamic quantities, such as the melting temperature, are

most of the times computed on much bigger cells. This provides accurate results

only if the range of interatomic forces is smaller than the size of the cell of the

ab initio calculation. In this work, ab initio quantities are computed on 64 atoms
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cells, thus at least 3 nearest neighbor shells are included for every atom in the

simulation. We believe the error induced by this approximation is much smaller

than other errors implicit both in the procedure and in the ab-initio calculation

itself (e.g. poor k-points sampling).

To give an idea of the overall efficiency of this method, if applied to iron at

high P-T conditions, the total number of ab-initio minimizations on independent

64 atoms configurations that it was necessary to perform in order to characterize

the full high P-T phase diagram of iron is� 100: The equivalent number of time

steps that we could have afforded in a single ”brute force” ab-initio molecular

dynamics run is� 600, i.e. less than 2 ps of trajectory (with a 40 a.u. time step).

This time would have been hardly sufficient to thermalize the systemat a single

pressure and temperature.

3.4 Estimation of errors due to the optimized poten-

tial procedure.

A very important property of potentials optimized by a force matching step is

that the more the optimization procedure has been accurate, the more the Born-

Oppenheimer surface of the ab-initio potential is locally tangent to the constant

energy surface of the classical potential (in particular, if the norm (3.9) is zero, the

two surfaces coincide in a neighborhood of the configurationC). Of course, this

is a local property, and nothing, except for the functional form of the potential,

constrains the two surfaces to remain close to each other far fromC. Neverthe-

less, it is interesting to study the differences and similarities of thetwo dynamical

systems (defined by the ab-initio and by the classical potential respectively) far
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from C.

Let us denote by(p; q) the canonical variables defining the system, byT (p)
the kinetic energy, byVai (q) the ab-initio potential energy, and byVop (q) the

potential energy of the classical optimized potential. By a molecular dynamics

simulation, the trajectory of the system defined by the optimal potential starting

from the configurationC can be computed. We denote this trajectory by(pt; qt) : (3.10)

This trajectory conserves the initial energy, i.e.Eop(t) = T (pt) + Vop (qt) = T (p0) + Vop (q0)
but, of course, it does not conserve the ab initio energy i.e.Eai(t) = T (pt) + Vai (qt) 6= T (p0) + Vai (q0)
A quantitative measure of the quality of the optimized potential is given by the

behavior with time of the distance between the two surfaces far away fromC i.e.

of the quantity�(t) = [Eai(t)� Eai(0)]� [Eop(t)� Eop(0)] == [Vai(qt)� Vai(q0)]� [Vop(qt)� Vop(q0)] :�(t) has to be very small for a very good quality OP: if the OP is able to

reproduce exactly the first-principle forces and stress, the OP conserves also the

ab-initio energy and�(t) = 0: The average value of�(t) ; if compared to the

error that can be accepted on thermodynamic observables, is a very reliable mea-

surement of the predictivity of the optimized potential. To give an example of the

level of accuracy that can be obtained with our procedure, in figure 3.4 we plot
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tions 200 time steps far apart along the classical molecular dynamics run. The OP

has been optimized on the first configuration (at 200 GPa and 4100 K, on solid

iron). The optimal potential is able to reproduce the variations ofVai with an ac-

curacy better than 100 K, when the variation of the potential energy is larger than

1500 K, i.e. the value of�(t) is smaller than 100 K in all the twelve configura-

tions where first-principle energy is calculated. Moreover, the errors on�(t) tend

to compensate, so that its average value is smaller than 30 K .

The internal energyof the systemhVai (q)i is estimated, within the optimal

potential procedure, byU = Vai (q0)� Vop (q0) + hVop (q)i (3.11)

Thush�i = U � hVai (q)i is an estimate of the error onU .

The order of magnitude of energy differences that are of interest in the system

is given, e.g., by the heat of crystallization. This is, for iron at ICB conditions,

approximately 5000 K, as we shall see in the following. Thus, the accuracy ob-

served in Figure 3.4 is sufficient to fix energy differences within a precision of�
1 %.

The same kind of comparison can be carried out for the stress evaluated along

the classical molecular dynamics run. In particular, the average ab-initiostresshSai (q)i is estimated, in the optimal potential procedure, byS = Sai (q0)� Sop (q0) + hSop (q)i (3.12)

whereSop is the stress evaluated by the optimal potential. In Figure 3.5, the trace

of (Sop (q)� Sop (q0)) and of(Sai (q)� Sai (q0)) are plotted for the twelve con-

figurations of Figure 3.4. The quantity defining the predictivity of the optimal
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Figure 3.4:Comparison between potential energies as obtained by an optimal

potential and by ab-initio calculations, along a single OP trajectory. Full line: po-

tential energy in a classical run performed with an OP generated at 200 GPa and

4200 K. Squares: first-principle total energy, referred to the t = 0 configuration,

computed at intervals of 200 time steps along the OP trajectory.
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potential is the difference between the two OP and the first-principle stress. The

OP is able to reproduce the first-principle values with an accuracy better than 1

GPa in all the twelve configuration, The average value of these errors is� 0.3

GPa, corresponding once again to�50 K (V�P) on an energy scale. The error in

atomic volumeV due to this error on the stress can be estimated by�V ' V �SB ,

whereB is the bulk modulus (at 200 GPa the bulk modulusB is � 1000 GPa ),

thus the error�V=V is less than 0.5 %.
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Figure 3.5:Comparison between stress as obtained by an optimal potential and

by ab-initio calculations, along a single OP trajectory. Full line: trace of the stress

tensor in a classical run performed with an OP generated at 200 GPa and 4200

K (same run as in Figure 3.4). Squares: first-principle stress, referred to the t = 0
configuration, computed at intervals of 200 time steps along the OP trajectory.



58 The optimal potential method

Expressions like (3.11) and (3.12) for the internal energy and average pressure

are very powerful, since they allow the estimation of the thermodynamic averageshVai (q)i andhSai (q)i with a very small error and at the cost of a single evaluation

of ab-initio quantities (in the configurationC). If the observable that has to be

computed depends on the size of the system, or if its evaluation requires classical

MD runs with a number of particles much larger than� 100, the expressions

(3.11) can be generalized as follows. IfNai is the number of particles in the

configurationC (where ab-initio quantities are computed) andNcl is the number

of particles used in the classical simulation, we havehVai (q)iNcl ' Vai (q0)� Vop (q0)Nai + hVop (q)iNcl
where the averages are taken over trajectories ofNcl particles. This expression

easily allows a size-scaling analysis of the observables, but, as we already dis-

cussed, it is correct only if the range of the forces is smaller than the size ofthe

cell used to optimize the potential.

3.5 Calculation of melting temperature by optimal

potential technique.

As is well known, the calculation of the melting temperature is a non-trivial task

even for systems where a good statistical sampling can be afforded[74].

In this Section, we describe a method for estimating the melting tempera-

ture Tm through the optimal potential technique. Since Tm is not known a pri-

ori, the OP technique cannot be applied straightforwardly like for the internal

energy(3.11). In fact, the temperature is, together with pressure, the variable fix-

ing the thermodynamic state of the system. This imposes the use of a further
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iterative procedure, leading, at the end, to a classical potential that isoptimal at

P-Tm and whose melting temperature is exactlyTm. This last property defines the

melting temperature within the optimal potential procedure.

if Tmelt doesn’ t change by iteration:
CONVERGENCE

an optimal potential at P-Tguess is
generated.

The melting temperature Tmelt  of
this glue is calculated by
classical tools (phase coexistence
method).

T
gu

es
s =

T
m

el
t

A first trial
melting
temperature
Tguess  is
assumed

Figure 3.6:Iterative procedure for calculating the melting temperature at a given

pressure by the optimal potentials.

The iterative procedure (also described in Figure 3.6) is the following. Starting

from a trial T0m, an OP class is determined at P,T0m and the average melting tem-

peratureT 1m of these potentials is computed; a new OP class is then determined

at P-T1m and the procedure is iterated until Ti+1m ' Tim. At the end of the iterative

procedure, all the values for the melting temperature calculated within a class of

OP-s turned out to coincide within�100 K, that gives the estimated error on Tm
due to the OP procedure. In Table II the melting temperatures of potentials opti-

mized at 330 GPa and at the temperature reported in the columnTopt are reported

, together with the density jump at melting��=�, the density of the liquid�l at

melting and the heat of crystallization�H. The potentials optimized at 5400 K
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are at convergence with respect to the iterative procedure described in this Section.

The spread of the observables (��=�; �l and�H) within the class of converged

potentials defines the uncertainty due to the OP procedure.

It should be noted that it is nota priori obvious that the same classical po-

tential can describe with good accuracy both the solid and the liquid, even if they

are at the same temperature and pressure, and a reliable calculation of themelting

temperature is possible only ifboth the solid and the liquidare described with

equal accuracy. This requirement imposed a further test of our method. In fact,

the optimization procedure can be carried out, in the vicinity of the melting, both

on liquid and solid trajectories. The first six potentials in Table II have been opti-

mized on liquid samples only, while the last 6 on solid samples only. Finally,the

thirteenth potential has been optimized using both liquid and solid configurations.

The averageTm of the set of potentials optimized on liquid samples (keeping into

account converged potentials only) is� 100 K higher that the average value for

set optimized on solid samples. This difference might indicate a possible change

in the electronic structure between solid and liquid iron at ICB conditions thatcan

be described neither by classical potentials of the functional form [78] and [77]

nor, probably, ofany functional form. Since 100 K is a rather small error (of the

order of magnitude of the spread in Tm within an OP class) we accepted our results

on melting temperature as sufficiently reliable. Nevertheless, this discrepancy is

very likely to become more important in systems where relevant changes in elec-

tronic structure occur at melting (like silicon), and the errors associated with the

OP method in these systems is likely to be larger.

In brief, the total estimated error on Tm of iron at ICB conditions (�100 K)

reflects variations of Tm obtained with different OP-s and this small discrepancy
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between OP-s optimized on solid and liquid samples. Errors due to the calcula-

tion of Tm using each classical potential (see the following of this section) were

checked to be� 100K, as is typical for these kind of calculations.

Potential Topt[K] Tm[K] �l[g/cm3] ��=�� 100 �H � 106J/Kg

fit to:

liquid 5700 5605 12.733 1.45 .74

liquid 5700 5200 12.677 1.6 .65

liquid 5700 5490 12.722 1.44 .67

liquid 5400 5280 12.701 1.62 .65

liquid 5400 5385 12.704 1.54 .69

liquid 5400 5437 12.737 1.64 .69

solid 5200 5547 12.765 1.36 .74

solid 5200 5685 12.748 1.87 .76

solid 5200 5300 12.757 1.62 .73

solid 5400 5510 12.714 1.78 .71

solid 5400 5470 12.715 1.85 .7

solid 5400 5450 12.731 1.82 .69

liquid+solid 5400 5490 12.707 1.58 .68

Table II: Melting temperature, density of the liquid at melting, density jump at

melting and heat of crystallization at 330 GPa computed with OPs optimized on

liquid samples only, solid samples only and both liquid and solid samples at 330

GPa and at a temperature Topt.
The solid-liquid coexistence method was used as the melting criterion on each

classical potential[79]. This method consists in performing a simulation of alarge
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(up to 6000 particles) system, with a sample that is prepared, by a suitable con-

strained dynamics, half molten and half frozen (as can be checked from the be-

havior with time of displacements of the particle from the initial positions). If mi-

crocanonical MD is used, and if the initial temperature is not too far fromTm, the

sample tends to stabilize at the melting temperature: e.g., if the initial temperature

is higher thanTm, some of the frozen part will melt, decreasing the temperature

proportionally toNmN Hm, whereHm is the heat of crystallization andNm=N is the

fraction of the sample that melts during the simulation.

Since freezing and melting are accompanied by substantial changes of volume,

it is essential to perform the simulations at constant pressure. In the solid-liquid

coexistence method, liquid and a solid are piled up along the z-axis of a cell,

and the cell dynamics is required to conserve this symmetry. Since the interface

between liquid and solid is orthogonal to the z axis, such an inhomogeneity of

the sample might cause instabilities if the cell were to be evolved by a standard

Parrinello and Rahman dynamics[80]. Our simulation are thus carried out with

a first (quite short) thermalization run at a temperature estimated to beclose toTm, leaving the z axis free to evolve with a Parrinello and Rahman-like dynamics.

This process equilibrates the liquid part of the sample at the required pressure,but

some residual xy-stress remains in the solid part. A microcanonical run is then

carried out with a Parrinello Rahman dynamics for the z axis and, independently,

on the x-y plane (this is achieved by setting to zero thezx andzy components

of the stress). In this way, the solid fraction of the sample is also freeto relax to

zero-stress conditions. By this procedure it is possible to estimateTm within an

error of 50 K using a single run of� 30 ps if the initial guess onTm is correct to

within 300 K (for a system with�S� kB like iron at ICB).
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An additional feature of the solid-liquid coexistence method is that by this

approach it is possible not only to compute the melting temperature, but also to

distinguish the most stable solid phase before melting. If, e.g. a sample of liquid

in equilibrium with a solid phase A stabilizes at 1000 K, while a sample of liquid

in equilibrium with a solid phase B stabilizes at 1100 K, we can conclude that

the stable phase of the system before melting is B. If A is the stable form of the

system at T=0 K, this indicates the existence of a solid-solid phase transition from

A to B below melting. With this approach we to checked the relative stabilities of

bcc and hcp iron at ICB conditions (see the following Chapter).

3.6 Test of the method by a classical reference po-

tential.

The OP method has been tested using a classical ”reference potential” with the

functional form (3.7) (3.8) playing the role of the first-principle potential, and by

optimizing, using our procedure, a potential of generalized embedded-atom form

(3.2), (3.3) (3.4)in order to reproduce thermodynamical quantities provided by the

reference potential, including the melting line.

At variance with the case in which the reference potential is the first-principle

potential, in this case the predictions of the method can be directly compared

with the exact values of the observables, as computed by molecular dynamics run

performed with the reference potential.
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The potential parameter that have been chosen for the reference potential areA = 1:9779 au Ht1=n D = 2:389 10�2Ht � = 1:018 auB = 6:1287au n = 6 R0 = 2:004auC = 1:1301 10�2Ht m = 8:5 Cvdw = 9:6856Ht au6
Potentials of the functional form (3.2), (3.3) (3.4) are able to fit forces and

stress generated by potentials of the form (3.7) ((3.8) with approximately the same

accuracy that can be obtained if first-principle forces and stress are fitted.

As a first check, we repeated the comparison performed in Section 3.4 between

observable directly calculated with the reference potential (the first-principle po-

tential in Section 3.4) and the OP. Since the reference potential is in this case a

classical potential, we could calculate and compare the observables (energyand

stress) on a full run and not only on few configurations as in Section 3.4. The

behavior observed in Figure 3.4 and Figure 3.5 is fully recovered, i.e. the OP is

able to reproduce the potential energy and the stress as computed with the ref-

erence potential with an accuracy better than 100 K and 1 GPa respectively(see

Figure 3.7). The behavior of�(t) as a function of time along the OP run is also

reported in Figure 3.7 (lowest part). This last curve is a very reliable measurement

of the quality of the OP since it indicates that the reference potential total energy

is almost exactly conserved (within� 100 K) in the MD run performed with the

OP.

Finally, we calculated some thermodynamic quantities provided by the refer-

ence potential by the OP technique described in this Chapter. The accuracy ob-

tained is very good both for equilibrium and dynamic properties. E.g., the melting

temperature of the reference potential at 330 GPa is 5600 K. This value is repro-

duced by the optimal potentials within 50 K. The density jump at melting at 330
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Figure 3.7:Comparison between calculations performed with the reference po-

tential and with an optimal potential. Dotted line: reference potential (of the form

(3.7) and (3.8). Full line: optimal potential (of the form (3.2),(3.3), (3.4)). Higher

part: trace of the stress tensor in a run performed with 64 particles at 330 GPa

and 5500 K. Middle part: potential energy in the same run. Lower part: total

energy.
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GPa, averaged on six different OPs, is 1.79 (�0:1) %, only .11 % higher than the

exact value (1.68 %).



Chapter 4

Calculated properties of iron at

Earth’s core conditions

The method outlined in the previous chapter is now applied to the calculation of

the properties of iron at high pressure conditions. Some of the quantities that

are calculated here, in particular the room temperature elastic constants and the

shock-wave compression equation of state and sound velocities, can be directly

compared with experiments, thus supporting the validity of the method. In other

cases (e.g. for the melting temperature), a comparison with experiments, where

available, is more delicate, due to the large spread of experimental data. Our

predictions will be discussed in details also concerning their geophysical implica-

tions.

This Chapter is organized as follows: in Section 4.1, experimental and theo-

retical room temperature elastic constants are compared and it is shown that our

method is able to reproduce the experimental values within few percent of accu-

racy. In Section 4.2, we discuss the application of the method to the calculation

of the melting line of iron between 100 GPa and 330 GPa. Our predictions are
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shown to be in good agreement with DAC measurement, up to the highest pres-

sure where they are available, but not with the values extracted from shock-wave

measurements. Results on other observables related to the melting, such asthe

heat of cristallization and the density jump, are also presented and discussed in

terms of geophysical implications. The density of liquid and solid iron at melting

and at 330 GPa, i.e. at the inner core boundary pressure, is computed in Section

4.3 (we already recalled that the difference between this value and the density of

Earth’s core at the ICB is a quantity of great geophysical relevance, since it con-

strains the amount of light elements in the core). Theoretical values for the bulk

and the shear velocities at ICB conditions are computed as discussed in Section

4.4, where we show that an inner core entirely composed of hcp iron and a mi-

nor amount of impurities is perfectly compatible with seismological data. Finally,

the theoretical shock-wave compression line, the so called Hugoniot, is calculated

and compared with experiments in Section 4.5.

4.1 Room temperature elastic constants

Room temperature elastic constants have been recently measured up to 210 GPain

a work by Maoet al[12], and have been recently calculated with ab-initio methods

[23]. This provided us the possibility to test the OP method, by comparing our

results with well-settled experimental measurements and independent theoretical

estimates.

The low temperature elastic constants are obtained in our procedure by the

finite-strain method [23], thus neglecting differences between 0 K and 300 K val-

ues, on a potential optimized at 210 GPa and 300 K, i.e. at the highest pressure

reached in the experiment. At such low-temperature conditions, the inclusion
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of angular-dependent many-body forces in the functional form for the potential

proved essential to produce a satisfactorily fit of ab-initio forces and stress (in

particular, the inclusion of these terms is essential to reproduce the observed non-

ideal c/a ratio). As the temperature increases, the inclusion of angular dependent

components does not significantly improve the accuracy of the fit. Therefore,

close to the melting line, angular components can actually be neglected.

In the finite-strains method, elastic constants are computed as the second deriva-

tives of the energy (computed for fully relaxed atomic positions within the cell)

with respect to the strain tensor"ij. In particular, we have[81]Cij = 1V @E@�i@�j (4.1)

where�i is directly linked to the strain tensor"ij by the relations�i = "ii for i = 1; 2; 3�4 = "23; �5 = "13 �6 = "12:
In the hexagonal lattice, there are five independent elastic constants: C11; C12,
C33, C44 and C13. Other elastic constants can be obtained as linear combinations

(e.g.C66 = C11 � C12)[81].

The five independent elastic constants can be calculated by applying five in-

dependent strains and estimating the second derivative of the energy with respect

to the applied strain. E.g., if the strain is" (�) = 0BBB@ 0 0 �0 �2 (1� �2) 0� 0 0 1CCCA
the change in total energy is,E (�) = E (0) + 2C44V �2 +O ��4�
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and this gives usC44.
The low-temperature elastic constants, as calculated by our procedure, are

shown in Table I. They compare satisfactorily with full ab-initio calculations[23]

and also with recently revised DAC data[5]. The error on these quantities dueto

OP procedure (again estimated as the spread of the quantity within the single OP

class) is 5 %.

Bulk and shear modulus are computed as Voigt averages[3], i.e. are given byBv = 19 (4C11 + C33 + 4C13 � 4C66) (4.2)Sv = 115 (C11 + C33 � 2C13 + 5C44 + 6C66) (4.3)

The error on Bv and Sv is� 1%; smaller than the error on single elastic con-

stants (possibly errors on single elastic constants tend to compensate in isotropic

averages).

Elastic constants of h.c.p. Fe at 300K and 210 GPa

C11 C12 C33 C13 C44 Bv Sv
Th: opt. pot. 1554 742 1796 820 414 1074 414

Th: ab-initio [23] 1697 809 1799 757 421 1085 445

Exp: D.A.C. [5] 1533 846 1544 835 583 1071 396

4.2 The melting line of iron

The melting temperature of iron at 330 GPa is a quantity of great geophysical

interest, since it constrains the temperature of the Earth at the ICB.

The full melting line of iron between 100 GPa and 330 GPa was computed

with the method outlined in Section 3.5. As already discussed, this method pro-

vides an estimate ofTm with an error of�100 K, as estimated by the spread of
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at ICB conditions has not been unambiguously determined, one should compute

the melting temperature of all the possible phases, the stable one being the one

that melts at the highest temperature. In this work, only hcp and bcc are explic-

itly taken into account. hcp is considered in the literature as the most probable

candidate phase for iron at ICB conditions [33]. Iron in fact remains in the hcp

phase ("-Fe) at room temperature up to very high pressure (more than 400 GPa

[43]). bcc, even if it is calculated to be mechanically unstable at 300 GPa and low

temperature [43], has been proposed several times as the high temperature phase

of iron 300 GPa [25, 42]. We found that bcc iron melts� 300 K below hcp iron at

330 GPa, and� 500 K below at 150 GPa.1 Since these numbers are well above

our accuracy onTm, our calculations confirm that hcp is favored with respect to

bcc at ICB conditions. Concerning other close packed phases suggested in the

literature (fcc, dhcp, etc.) it has to be noticed that free energy differences between

hcp and these phase are likely to be smaller than the accuracy of the OP method.

For example, the difference in the melting temperature of hcp and fcc iron at 330

GPa as found by Poirier with thermodynamical arguments is 100 K (in favor of

hcp). This free energy difference is very small and it is comparable with the error

of the OP procedure. Thus, we decided not to consider the possibility of other

close packed structures but hcp even if these phases have been proposed several

times (in the case of dhcp with some experimental evidence in favor [45, 47], as

1We also calculated the high-pressure elastic constants of bcc iron close tomelting, obtaining

(by the technique described in Section 4.4) very low values for the shear elastic constants. Given

the accuracy that can be obtained with our method on these observables (see Section 4.4), a zero or

negative value cannot be excluded. This might indicate that bcc might be,also at high temperature,

mechanically unstable with respect to more close-packed phases, such as bct and fcc.
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we recalled in Section 1.2.3) with the assumption that the difference will be tiny

not only for the melting temperature, but also for other thermodynamic properties

of geophysical interest, such as the heat of crystallization and the densities.
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Figure 4.1:High-pressure melting line of iron. Theoretical melting line: thick full

line with error bars. Other lines: DAC melting lines (same line code as in figure

1.1). Error bars with symbols: shock-waves melting points (same line code as in

figure 1.1).

The calculated melting line of h.c.p. iron from 100 to 330 GPa is reported in

Figure 4.1. Our melting temperature is in excellent agreement with laser-heated

DAC experiments[31–33], available up to 200 GPa. At the ICB pressure (330

GPa) we find that h.c.p. iron melts at 5400 (�100) K, only slightly higher than the

value proposed by Boehler (4900K) extrapolating his DAC melting line up to 330
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GPa[31]. On the other hand, our value forTm at the ICB is in clear discrepancy

with higherTm values extracted from shock-wave data[34, 36]. We will see in

Section 4.5 that shock-wave compression data, for what concerns densities, sound

velocities and pressure, are actually in good agreement with our results, and that

the disagreement concerns only the temperature. As we already pointed out in the

Section 1.2.2, temperature in shock wave experiments is can be only measured

by indirect methods[34, 36], possibly affected by systematic errors. This might

explain the observed discrepancy, suggesting a reinterpretation of this classof

results.

At 330 GPa the calculated density jump��=� upon melting is 1.6 (�0:1) %.

Approximately the same value is observed at lower pressures. The error on��
due to the OP procedure is smaller than that on� because density jumps turn

out to be much less dependent on the choice of the OP than absolute densities

(see Table II of Chapter 3). Concerning the overall accuracy of our theoretical

density jump, it should be noticed that, as we will see in Section 4.5, the density

differencebetween solid and liquid phases 130 GPa and 3000 K far apart along

the shock-wave compression line is overestimated by 0.3 % only with respect

to experimental data. An even better predictivity is expected in a static melting

process, where pressure and temperature are unchanged. Thus it is likely that the

overall error in��=� is not so different from the intrinsic OP error of 0.1 %.

The heat of melting (�Hm) at 330 GPa is 0.7(�0:05) � 106 J/Kg, also

rather independent of the OP. This coincides with�Hm as extracted, through the

Clausius-Clapeyron equation, from the density jump and our slope of the melt-

ing line (dTm=dP ' 10 K/GPa). The heat of melting is distinctly smaller than

elsewhere suggested [4, 9], except for estimates based on dislocation theory[19].
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Since�Hm is proportional to�� through Clausius-Clapeyron, the accuracy on

this quantity is expected to be the same as the accuracy on��. With our value

for �Hm, the iron-freezing contribution to the geodynamo should be smaller than

suggested[9] or, alternatively, the inner-core lifetime should be shorter.

The entropy of melting�Sm is 0:86 kb: This value is, once again, quite small

compared with previous estimate [4]: melting of iron at high pressure conditions

is a process with very small jumps of all the thermodynamic observables at phase

transition (in Section 4.4 we shall see that also the shear modulus of the solid

phase at melting is very small). For a close packed solid with small volume jump

at melting, the value of the entropy of melting can also be estimated by the rela-

tion[10] �Sm = kb ln 2 + �BT�Vm
whereBT is isothermal bulk modulus,� is the thermal expansion coefficient,�Vm is the volume jump at melting, andkb ln 2 is the entropy of disorder due to

the existence of line defects in the liquid that are absent in the solid, and is theonly

term that survives for vanishing�Vm. With our values of� and BT (� 1.6 10�5
K�1 and 1400 GPa respectively at 330 GPa and 5400 K) ,�Sm as estimated with

this relation is 0.87kb, in excellent agreement with the direct calculation. This

further confirms the overall consistency of our model of iron at ICB conditions.

It is also remarkable that the contribution to�Sm of the volume jump is 0.18kb
only, so that purely topological entropy dominates (ln 2 kb � 0:69 kb).
4.3 Density of iron at ICB conditions

The density of solid iron at 330 GPa and 5400 K is found to be 13.0 (�0:1) gr/cm3,
about 2 % larger than the density of the inner core at the ICB (12.76 gr/cm3, ac-
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cording to the PREM model[3]), supporting the presence of lighter elements in

the inner core[17]. For liquid iron we find, at 330 GPa and 5400 K, a density of

12.80 (�0:1) gr/cm3. The difference between the calculated liquid iron density at

330 GPa and Tm and the PREM value for the Earth’s outer core density(12.166

gr/cm3) is� 5 % (this difference crucially constraining the amount of lighter ele-

ments in the Earth’s outer core). The values commonly assumed for this difference

are rather higher (7 - 10 %) [9, 16]. Keeping into account a possible systematic

underestimation of� 1 % in our density data, as it can be deduced from zero

temperature EOS data (see Chapter 2) and Hugoniot data (see Section 4.5), our

theoretical estimate for the density deficit in outer core is� 6 %. We find there-

fore that only the lowest values among those commonly assumed are compatible

with our result.2

As we already discussed in Section 4.2, the presence of lighter elements will

necessarily change the melting temperature of the composite alloy with respect toTm of pure iron. If ideal mixing between iron and the impurity is assumed, the

melting temperature Tall of the alloy can be estimated by[4, 10]ln (1� x) = �Hmkb � 1Tm � 1Tall� (4.4)

wherex is the concentration (molar percentage) of the impurity,kb is the Boltz-

mann constant,�Hm is the heat of melting of pure iron and Tm its melting tem-

2Concerning the reliability of our predictions for the density deficit in outer and inner core with

respect to pure iron, it has to be noticed that the PREM itself may not be accurate to the 1 % level.

PREM values for the densities are deduced within a model in which the valueof some variables

is not calculatedbut assigned[3,10]. This is the case of the density jump at ICB (assumed to

be of 0.5 g/cm3) and of the value for the density at the base of the mantle (assumed to be 5.5

g/cm3). Thus, comparison with the PREM, although fully meaningful, may not allow for very

precise determinations of the core density deficit.
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perature. The concentrationx can be estimated by the relationxmimp + (1� x) mFex mimp�imp + (1� x) mFe�Fe = �PREM (4.5)

wheremimp andmFe are the atomic weight of the impurity and of iron,�imp
and�Fe are their densities at ICB conditions. We have used room-temperature

equation of state data for FeO, Si and FeS[10] in order to estimate�imp, and the

molar fractionx of these impurities (by eq. (4.5)). The corresponding melting

temperature Tall in ideal mixing conditions (deduced by eq. (4.4)) is reported in

table: �Fe=�imp x Tall [K]

Fe0 1.3 .16 4500

FeS 1.37 .11 4750

Si 2.15 .099 4810

Tall would coincide with the Earth temperature at the inner core boundary if a sin-

gle impurity would be present. However, it has to be noticed that while impurity

density values as obtained from room temperature equations of state are probably

very reasonable, ideal mixing is a strong hypothesis, often violated in real systems

(e.g. in Fe-Si at zero pressure[10]). For this reason these temperatures have to be

considered only rough estimates.

4.4 High temperature elastic properties

The calculation of sound velocities for hcp iron at inner core conditions is rele-

vant for geophysics, since bulk and shear velocities of the Earth’s core are the only

quantities that can be directly measured by seismological methods[3]. The pres-

ence of impurities in the inner core (� 2%, as we have seen) could, in principle,
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slightly modify the elastic properties. Nevertheless, like for the melting tempera-

ture, the properties of pure iron are an important reference for any elastic model

of the inner core.

High temperature elastic constants are calculated, following Parrinello and

Rahman [82], by performing long classical runs (�500 ps) at constant pressure

on solid samples of�1000 atoms with a potential optimized in the given P-T

conditions. The sample is thermalized at the temperature of interest. In the500

ps run, however, the temperature is not controlled. In these conditions,adiabatic

elastic constants are obtained from strain fluctuations in a constant-pressure MD

run: Cij = kBTV h�i�ji�1
where�i is related to the strain tensor"ij by the relations (4.2). The strain tensor

is defined with respect to a reference cell that, by definition, is the cell averaged

on the whole run. Thus, we have [82]" = 12 �ht�10 hthh�10 � 1�
whereh are the cell variables andh0 = hhi : Shear and bulk sound velocities (or,

equivalently, shear and bulk moduli) are then computed using Voigt relations (4.2)

and (4.3). As a test for the consistency of the method, we have also calculated the

bulk modulus by the alternative expression [82]B = kBTV0
(V � V0)2�
whereV is the volume of the cell andV0 = hV i. The value obtained by this

relation and by eq. (4.2) compare within1 %.

Calculated bulk and shear moduli for hcp iron at 330 GPa and 5400 K are

compared with seismological measurements [3] in Figure 4.2. Our theoretical
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Figure 4.2:Voigt averages(4.2), (4.3) of shear and bulk moduli for compressed

solid iron, as compared with inner-core data and DAC experiments. Lines: room

temperature DAC data [5] (full line: actual data; dashed line: extrapolation). Open

squares: this work (room temperature). Crosses: seismic observations for the

inner core[3]. Full squares: this work (melting temperature). The error bars are

given by the size of the squares.
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values are very close to the seismological values. The 210 GPa room temperature

data are also reported on the same figure for comparison. This finding is somehow

unexpected for what concerns the shear modulus. In fact, it has been noted that the

value of shear modulus in the solid inner core is anomalously low for a closed-

packed phase, leading to suggestions that additional low-shear phases may be

present there, other than h.c.p. [5, 25]. In a lot of solid metals, the shear modulus

at melting shows, at zero pressure, a reduction of less than 50 % from its low

temperature value [24]. The inner core shear modulus [3] displays a threefold

reduction with respect to low temperature measurements[5] and calculations[23]

in pure Fe. Our data show that the shear modulus of compressed h.c.p. iron close

to melting is perfectly compatible with seismic data.

This decreased shear modulus fits very well a Born-Durand picture of melt-

ing[24]. According to this picture, the isobaric thermal dilatation within the solid

phase and after melting is linearly correlated with the drop of shear modulus.

This empirical law is apparently verified in a large class of systems, ranging from

molecules, rare gases, insulators and metals[24]. As shown in Figure 4.3, also

the shear modulus of iron follows closely this law, even if, in comparison with

standard metals, compressed iron melts much closer to the mechanical instability

(vanishing shear modulus), which clearly correlates with the small volumejump

at melting.

4.5 Calculation of iron shock-wave compression line

The shock wave compression line (the so called Hugoniot) is a very reliable source

of informations concerning the high temperature properties of materials. Density,

pressure and sound velocities are either measured directly, or related to impactor
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Figure 4.3:Behavior of the shear modulus of h.c.p. iron as a function of the iso-

baric thermal dilatation. Open square: X-ray diffraction measurements[5]. Filled

squares: theoretical results. The lines are guides to the eye.

speed by simple thermodynamic relations. The measurement of sound velocity

and densities along the Hugoniot for iron up to� 400 GPa by Brown and Mc-

Queen in 1985[13] is considered a cornerstone result for high pressure physics of

iron. The observed double kink in wave velocity (at� 200 GPa and� 240 GPa)

led them to suggest the presence of a new high-pressure high-temperature phase

between the" phase and melting. This has inspired a large amount of research

in the last fifteen years. Indeed, up to now, their observation has never been con-
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firmed unambiguously. On the other hand, theoretical works based on classical

molecular dynamics [28] have suggested that the double kink in sound veloci-

ties could be a by-product of phase coexistence, therefore strongly dependent on

experimental conditions.

Another observable of fundamental importance is the value of the temperature

along the Hugoniot. A reliable estimate of this quantity, together with a correct

interpretation of wave velocities discontinuities, would be equivalent to anexperi-

mental measurement of high pressure melting temperature of iron. Unfortunately,

at variance with pressure and wave velocities, temperature in a shock-wave exper-

iment can be measured only indirectly[36], with possibly large systematic errors,

or estimated without keeping into account phase transition[13, 56].

In this Section we introduce a method for calculating a shock-wave compres-

sion equation of state of iron by a suitable use of the optimal potentials. In this

way, we provide the first theoretical estimate of the temperature along the Hugo-

niot explicitly keeping into account phase transitions.

In a standard shock-wave experiment, the quantities that are measured are

the shock-wave velocity (Us) and the velocity imparted to the particles of the

sample by the shock wave (Up). By assuming conservation of energy, mass and

momentum in the shocked sample, pressure P, internal energy U and density�
during the shock can be deduced from these velocities by the so-called Rankine-

Hugoniot equations[10]: � = �0UsUs � UpP = �0UsUpU = U0 + 12U2p
(U0 and�0 are internal energy and density of the sample before the shock). These
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relations are very useful and reliable, since both UP and US can be measured with

great accuracy. Us and Up can be eliminated from these relations, taking to the

so-called Hugoniot equation of state:12P (V0 � V ) = U � U0 (4.6)

(V is the atomic volume). It should be noticed that thermal equilibrium has to be

assumed in order to derive the Hugoniot-Rankine relations, but this hypothesis is

very likely to be verified almost exactly in shocked samples, as it was shown, e.g.,

by the theoretical calculations of Belonoshko[28].

At high temperature, bothV andU have to be computed as averages on long

runs that cannot be afforded within a fully ab-initio description of iron. Therefore,

we solved equation (4.6) by a suitable use of the optimal potential technique.

The volumeV and internal energyU corresponding to a given pressureP
were calculated by the following iterative procedure:

1. a first trial temperatureeT was assumed, and an OP at
�P; eT�was generated;

the corresponding atomic volumeeV was directly calculated. The internal

energy, at variance witheV , cannot be directly computed as an average over

the OP run, since the zero of the energy for the classical potential is ar-

bitrary. This arbitrariness is eliminated by refering all the energiesto the

unique quantum energy scale. Thus, the internal energyeU corresponding to

the trial temperatureeT is calculated byeU = Erefai � ErefOP + 32k eT + hEOP i
whereErefOP is the OP energy in a reference configuration,Erefai is the ab-

initio energy in the same configuration, andhEOP i is the OP energy av-
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eraged on a run at pressureP and temperatureeT (see Section 3.4 for an

estimate of the accuracy of this procedure).

2. If eU andeV don0t satisfy the Hugoniot equation, a new trial temperature was

estimated by the relation12 hP �V0 � eV � + ePdV i = ePdV + CPdT + eU � U0
wheredV anddT are the volume and temperature change fromeV and eT
that are required in order to satisfy (4.6). Since the volume change can be

estimated by the relationdV = eV �dT; where� is the thermal expansion

coefficient, the new trial temperatureeTnew was estimated bydT = eTnew � eT = 12 hP �V0 � eV �i� �eU � U0�12P eV �+ CP :
The procedure was iterated until the difference12P �V0 � eV � � �eU � U0�,

evaluated at the temperatureeTnew was below� 100 K, i.e. the usual accuracy

that can be obtained by the OP procedure. SinceCp and� were known, at least

approximately, from previous calculations, usually no more than two iteration

were required in order to satisfy condition (4.6).

Relation (4.6) can be easily generalized to include the possibility of phase

coexistence. In particular, if, at a pressureP and a temperatureTtr, the system

can exist in two distinct phasesA andB (e.g. liquid and hcp), the volume per

atom and the internal energy have to be estimated in both phases. Denoting these

quantities byeVA, eVB; eUA and eUB respectively, the molar percentagexA of phaseA along the shock-wave compression line is solution to the equation12 hP �V0 � xAeVA � (1� xA) eVB�i = xA eUA + (1� xA) eUB � U0:
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If this equation admits a solution smaller than one and positive, the volume per

atom and internal energy satisfying the Hugoniot equation (4.6) areeV = xAeVA + (1� xA) eVBeU = xA eUA + (1� xA) eUB
The Hugoniot equation of state calculated with this procedure is compared

with experimental data in Figure 4.4 and 4.5. Shocked iron remains solid up to

a pressure of 195(�5) GPa. At this pressure, the temperature is 4000 K, and

corresponds to the melting temperature of h.c.p. iron. Between 195(�5) GPa

and 280(�5) GPa the system along the shock-wave compression line displays

phase coexistence. In this range of pressure, the supplemental energy due to the

increasing speed of the bullet melts more and more percentage of the system,

while the temperature, by definition of equilibrium, remains identically equal to

the melting temperature. The molar percentage of liquid iron was calculatedat

200 GPa, 220 GPa, 240 GPa and 280 GPa and increases with pressure almost

linearly in the range of pressure considered. Above 280 GPa the system is totally

molten. It has to be remarked that experimental and theoretical stabilityrange

along the Hugoniot for" phase and for liquid phase coincide within 5 GPa, as it

is evident from Figure 4.4.

The density as a function of pressure on the calculated and experimental shock-

wave compression line are compared in Figure 4.4 (top). The agreement is always

better than 1.4 %, with slightly better agreement at lower pressures. The theo-

retical density is always underestimated with respect to the experimental one, so

that density differences are reproduced within an agreement of 0.3 % for every

pressure. This results strenghtens our predictions concerning density of iron at

inner core boundary conditions:�1 % is a small error, of the order of magnitude
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Figure 4.4:Densities (top) and sound velocities (bottom) along the Hugoniot. Full

squares: experiments[13]; circles: theory. Full circles correspond to solid (hcp)

iron; empty circles to liquid iron; gray circles correspond to systems in phase

coexistence regime. The full line and the dotted line are guides to the eye.
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of state-of-the-art ab-initio calculations. Moreover, the same underestimate is ob-

tained also for room temperature densities (see Figure 2.1), and it is probably due

to the GGA approximation or to insufficient k-points sampling in calculating the

electronic wave-function

Experimental and theoretical sound velocities are compared in Figure 4.4 (bot-

tom), showing that our method is able to reproduce the experimental values within

3 %, both in the solid and in the liquid phase. No attempt is done to estimate vs in

the phase coexistence region.

In Figure 4.5, the temperature along the shock-wave compression line, as cal-

culated with our method is plotted together with the same quantity as measured

by Yoo et al [36], Basset al [34], and as computed by Brown and McQueen[13]

on the base of simple thermodynamics and without keeping into account possible

phase transitions. The agreement of our results with Yoo’s data is not good, espe-

cially at low pressure. At 260 GPa (i.e. at the pressure that is claimed to be the

Hugoniot melting pressure by Yooet al), the calculated temperature is� 4650 K,

about 2000 K below the measured temperature at this pressure. This discrepancy

suggests a need for reinterpretation of this class of experimental data, alsoin view

of the excellent agreement of our calculations with DAC measurements for what

concerns the melting temperature. Our data are instead in excellent agreement

with Brown and McQueen’s predictions up to 200 GPa (their estimate is in fact

based on very reasonable assumptions on the values of the Gruneisen parameter

andCv). Above 200 GPa, Brown and McQueen’s temperatures continue to grow

almost linearly (they neglect any latent heat due to phase transformations),while

a substantial change of slope, due to phase coexistence between 195 and 280 GPa,

is observed in our data at 195 GPa. In particular, the temperature coincides inthis
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range of pressure with the melting temperature, by definition of thermal equilib-

rium. Above 280 GPa, the system is no more pinned to the melting temperature,

andT grows with a slope higher than the slope observed in solid iron.

All of this provides, in our opinion, a satisfactorily framework to interpret the

available experimental data on iron Hugoniot: our method is able to reproduce all

the experimental data (densities, sound velocities, stability field of the" phase and

of the liquid phase along the Hugoniot) , with the exception of temperature mea-

surements by Yooet al[36] and by Basset al [34]if the region along the Hugoniot

between the last observed point in the" phase (� 200 GPa) and the first observed

point in the liquid phase (� 280GPa)is interpreted as a phase-coexistence region,

where the temperature is pinned to the melting temperature and sound velocities

are not univocally defined, since the sample is non-uniform.
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Figure 4.5:Temperature along the Hugoniot. Gray squares: experimental values

from Bass et al [34]. Empty squares: experimental values from Yoo et al [36].

Full squares and black dotted line: estimate by Brown and McQueen based on

simple thermodynamics (the two squares correspond to the discontinuities in the

sound velocity)[13]. Circles: theory. Black corresponds to solid (hcp) iron; empty

circles correspond to liquid iron; gray to systems in phase coexistence regime.

The dashed lines are guides to the eye. The dash-dotted line corresponds to our

theoretical melting line.



Summary and Conclusions

Since the core of the Earth is mainly composed of iron diluted with lighter el-

ements, and since a solid-liquid interface exists inside the core (the inner core

boundary) properties of iron close to melting at core pressures are directly related

to properties of Earth’s core. In this thesis we have discussed in details some of

these properties that are of particular relevance for geophysics. In particular, we

have considered the melting line, the density of liquid and solid iron, the elastic

properties of solid iron at inner core pressures and the heat of crystallizationat

ICB pressure. All of these quantities were known from experiments and previous

theoretical calculations only very approximately, as we have seen in Chapter 1,

and therefore a careful theoretical evaluation will probably prove very helpful in

improving the accuracy of Earth’s core models.

The method employed here to provide an estimate of these quantities is based

on the combined use of first-principle and classical molecular dynamics simula-

tions.

A correct account of the electronic structure at the ab-initio level is fundamen-

tal for an accurate and reliable description of the dynamical properties of ironat

Earth’s core conditions[23, 43, 49]. Our calculations, as we discussed in Chapter

2, are based on a finite-temperature extension of density-functional theory within

the gradient-corrected local density approximation, and on a pseudopotential de-
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scription of the valence electron interaction with the ion core (nucleus plus 1s,
2s, 2p atomic core states). This theoretical approach gives a low temperature

pressure-vs-density curve for hcp iron in excellent agreement with X-ray data[12]

(first-principle densities are� 1% smaller than experiment at all pressures). How-

ever, finite temperature properties can hardly be extracted from brute forcefirst-

principles simulations, due to the short simulation times (a few picoseconds) that

can be afforded nowadays[49].

In this work we make use of the large amount of informations provided by

first-principles simulations to construct a classical potential for iron with an ex-

plicit dependence on the thermodynamic P-T conditions. The potential, which in-

cludes genuine non-two-body terms [77, 78] and angular forces [77], is accurately

optimized to reproduce the dynamics of ironat thatP-T condition, by imposing

the matching between classical and first-principles forces and stress in the frame-

work of a suitable self-consistent (iterative) procedure described in Chapter 3. The

full dynamical and thermodynamical properties of iron at a given P-T condition

are then easily extracted from extensive classical molecular dynamicssimulations.

The ”optimal potential” (OP) constructed in this way will not be transferableto

different P-T conditions, where a different potential must be constructed. Our

approach is thus totally different from previous attempts to estimate the melting

temperature of iron based on classical potentials[25, 78], where a single potential

is used at all P-T conditions.

Some examples of the ability of an OP to reproduce ab-initio quantities are

provided in Chapter 3. E.g. , first-principle energy differences and stress are

reproduced by the OP with an accuracy always better than 100 K and 1 GPa re-

spectively (Figure 3.4 and 3.5).
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The calculated melting line of hcp ("-phase [33]) iron from 100 to 330 GPa

is reported in Figure 4.2. Our melting temperature is in excellent agreement with

laser-heated DAC experiments[31–33], available up to 200 GPa. At the ICB pres-

sure (330 GPa) we find that hcp iron melts at 5400 (�100) K, only slightly higher

than Boehler’s extrapolation (4900 K)[31]. On the other hand, our value forTm at

the ICB is in clear discrepancy with higherTm values extracted from shock-wave

data[30, 36], suggesting a need for reinterpretation of this class of experiments,

also because, as discussed below, our theoretical data for density, pressureand

sound velocities along the shock-wave compression line are instead in very good

agreement with experiments.

The heat of melting (�Hm) at 330 GPa is 0.7(�0:05)�106 J/Kg respectively.�Hm is distinctly smaller than elsewhere suggested [4, 9], except for estimates

based on dislocation theory[19]. With our value for�Hm, the iron-freezing con-

tribution to the geodynamo should be smaller than suggested[9] or, alternatively,

the inner-core lifetime should be shorter.

For the solid, we calculated the bulk and the shear moduli of hcp iron atTm,

and found them (Figure 4.2) to be in good agreement seismic data for the inner

core, thus invalidating suggestions of a partially molten or glassy inner core.

The density of solid iron at 330 GPa and 5400 K is found to be 13.0 (�0:1)

gr/cm3, about 2 % larger than the density of the inner core at the ICB (12.76

gr/cm3, according to the PREM model[3]), supporting the presence of lighter ele-

ments in the inner core[17] Moreover, we find for liquid iron at 330 GPa and 5400

K a density of 12.80 (�0:1) gr/cm3. The difference between the calculated liquid

iron density at 330 GPa and Tm and the PREM value for the Earth’s outer core

density(12.166 gr/cm3) is� 5 %. This difference crucially constrains the amount
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of lighter elements in the Earth’s outer core. By considering our systematic un-

derestimation of� 1 % in the density, we find that only the lowest value among

those commonly assumed (i.e. 7 - 10 % [9, 16]) is compatible with our result.

Finally, we provide the first-principles-quality determination of the Hugoniot

EOS for iron which explicitly takes into account melting and is not restricted

to the solid portion, as in previous works[56]. The calculated density along the

Hugoniot are� 1 % smaller than the experimental one[13] both in solid and liq-

uid phases (Figure 4.4). The theoretical sound velocities are also� 3 % smaller

than the experimental ones. These errors are small for a first-principle calculation.

Moreover, the error on the density is systematic and thus does not affect density

differences. Our calculations suggest a reinterpretation of Brown and McQueen’s

data for sound velocities along the Hugoniot[13]. We find that the first kink (at

195 GPa) in Brown and McQueen’s data is related to melting rather than toa solid-

solid transition. The Hugoniot would then intercept the melting line at 195 GPa

and 4100 K, in nice agreement with the DAC melting results[31], thus reconcil-

ing Brown and McQueen’s shock-wave measurements with static DAC data. We

suggest that the second kink observed by Brown amd McQueen is not associated

with a phase transition, but may rather be a by-product of the phase coexistence

between the solid and the liquid, as suggested by MD simulations performed on

Argon by Belonoshko[28] and thus strongly dependent on experimental condi-

tions. This scenario would be confirmed by the recent repetition of Brown amd

McQueen experiment, by Nguyen and Holmes where the second kink is no more

observed[29].

In conclusions, our results provide a satisfactorily framework to interpretmost

of the available experimental data on high P-T iron: our method is able to repro-
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duce all these data (densities, sound velocities, stability field of" phase and liquid

phase along the Hugoniot, DAC melting temperatures where available), with the

exception of temperature measurements in shock-wave experiments[34, 36].

The optimal potential method, applied in this work to study the high-pressure

high-temperature physics of iron, could be of some help also for other applica-

tions, whenever the system size is to big for a fully ab-initio molecular dynamic

simulation, but a very good accuracy in the determination of thermodynamical

quantities is required.





Appendix A

Self-consistency methods for

minimizing the free-energy

functional .

At least two strategies are commonly used to calculate the ground state of 2.7.In

the so-calleddirect methods,the minimum of the free energy functional is found

directly, e.g. by a suitable preconditioned second order dynamics for the wave

functions’ degrees of freedom[71] or by a DIIS minimization[72]. In contrast

with these methods, in the so-called self-consistency methods[68] the problem

of minimizing the free energy functional is split into two problems: an iterative

diagonalization of the Hamiltonian at fixed potential and an iterative improvement

of the potential, based on a suitable mixing scheme for the charge density.

In this Appendix we will describe the self-consistent minimization method

introduced by Kresseet al[68] and used in this work. At the beginning of the

calculation, a reasonable set of trial wave functions and charge density is chosen.
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In the absence of a better guess, the atomic wave functions and the relative charge

density are used. Then, leaving the charge density (i.e. the potential) fixed, the KS

problemHKS j	ii = "i j	ii is solved (in the so-called ”internal cycle”). When

this problem is solved within a fixed accuracy, a new electronic density�out (f	ig)
=
Pi fi j	i (r)j is computed.

The new electronic density and the new potentialHKS are constructed as a

function of �out and of the densities at the previous steps by a suitable mixing

procedure (the so-called ”external cycle”), and the procedure is iterated toself-

consistence.

A.1 The internal cycle: DIIS diagonalization of Kohn-

Sham Hamiltonian.

The goal of the internal cycle is to diagonalize the Kohn-Sham HamiltonianHKS,

with fixed potential. In a case of a plane-wave basis set
�jGi = eiG�r	, direct

diagonalization is unfeacible because of the extremely large size the N�N Hamil-

tonian matrix (N> 103). However, diagonalizingHKS is equivalent to minimize

with respect to the wave functions the quantity
PNbi=1 h	 ijHKS j	 ii, and then

perform a unitary transformation on the wave functions in order to take the matrixh	 jjHKS j	 ii to a diagonal form (the KS energies"i will be the eigenvalue of

this matrix). Several approaches have been developed in order to speed up the

above minimization. We outline here the DIIS procedure.

In the standard steepest-descent dynamics, at stepn+1, the new wave function��	n+1i �
would be given by��	n+1i � = j	nii �K jDni i (A.1)
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wherejDni i is the gradient in wave function space, defined byjDni i = HKS j	nii (A.2)

andK is a suitable preconditioning function, i.e. an operator of the formK =XG k (G) jGi hGj :
The best possible choice for the preconditioning functionK would be, of course,

the inverse ofHKS. This would yield to the solution of the problem in a single

step, but, of course, at the cost of invertingHKS. Thus, the preconditioning func-

tion K is chosen[72] as the inverse of the diagonal part of the Hamiltonian, or,

more exactly, as k (G) = � 1=HksG;G if G � Gc1=HksGc;Gc if G < Gc
whereGc is a free parameter that can be adjusted to accelerate convergence. In

the application to iron, we have checked thatG2c=2 = 1:5 Hartree provides the

best performance.

In the DIIS scheme[72], equation (A.1) is improved with the following pro-

cedure. An ”optimal” residual vectorjDn; opi i and wave functionj	n; opi i are de-

termined in order to improve the efficiency of the search in wave function space,

and the new wave function is defined as a function ofjDn; opi i and j	n; opi i by a

steepest-descent like step of the form (A.1):��	n+1i � = j	n; opi i �K jDn; opi i : (A.3)

where optimal wave functions and residual vectors are expressed as linear combi-

nations of the residual vectors and wave functions of them previous steps respec-

tively, as j	n; opi i = n�1Xl=n�m�li ��	li� (A.4)
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where the constraint

Pl �li = 1 has been imposed and the coefficients�li are

chosen in order to minimize the norm ofDn; opi . Conditions (A.4) are satisfied if

the�li-s are, for everyi, the solution to the linear system0BBBBBBB@ dn�m;n�mi � � � dn�m;n�1i 1� � � � � � � � � � � �dn�1; n�mi � � � dn�1; n�1i 11 � � � 1 0
1CCCCCCCA
0BBBBBBB@ �n�mi� � ��n�1i��

1CCCCCCCA = 0BBBBBBB@ 0� � �01
1CCCCCCCA

wheredk; li = 
Dki ��Dli�.
This condition fully defines the new trial wave function

��	n+1i �
as a function

of residual vectors and wave functions at the previous steps. In fact, using (A.3)

and (A.4), we have ��	n+1i � = n�1Xl=n�m�li ���	li��K ��Dli�� :
After a certain number of DIIS step (smaller than five in our implementation)

the procedure is stopped, and the final set of wavefunctionsfj	ii ; i = 1; : : : ; Nbg
is orthonormalized.

Finally, a rotation in wave functions space is performed in order to take the

KS matrixh	 jjHKS j	 ii to a diagonal form and the new occupation numbersfi
are calculated by (2.8).

A.2 The external cycle: charge mixing.

In the Kresse algorithm, the charge density used to upgrade the KS potential is

defined as a function of the charge densities at previous steps by a DIIS-like dy-
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namics performed also for the density. The role of the gradient (A.2) in the DIIS

algorithm is played in the charge mixing scheme by the residueR (�in) = �out (�in)� �in (A.5)

where�in is the density used to construct the potential and�out (�in) is the density

corresponding to the wavefunctions diagonalizing the potential (as obtained by

the internal cycle). At convergenceR (�in) = 0; i.e. the charge density does not

change on iteration.

Like in the DIIS scheme, the input charge�n at stepn is finally determined by

a charge density mixing scheme applied on an optimal charge density�opn and an

optimal residueR (�opn ) �n = �opn + f R (�opn ) (A.6)

wheref is a suitable preconditioning function of the form (in reciprocal space)f (G) = A G2G2 +G20
whereG0 andA are suitable parameters. The weighting function is introduced in

order to avoid charge sloshing due to the divergence for smallG-s of the dielectric

matrix in metals (withA = 1 andG20 = 4� � e2, where� is the dielectric suscep-

tibility, f (G) would be the inverse of the dielectric constant for a free-electron

gas)[68].

At stepn the new optimal charge density is searched as a linear combination

of all the previous densities�l as�opn =Xl�n �l�l
with

Pl�n �l = 1:
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The coefficients�l are determined in order to minimize the normhR (�opn ) jR (�opn )i = Xl�n; k�n�l�k hR (�l) jR (�k)i
with the constraint

Pl�n �l = 1 (linearity of the residual vector with respect to

the charge density�n is assumed). The optimal�l are then given by�i = Pl�nA�1liPl�n; k�nA�1lk (A.7)

with Alk = hR (�l) jR (�k)i.
It has been proved that the convergence speed is greatly improved if the scalar

products definingAlk are calculated by a suitable metric weighting in different

manner the different reciprocal space components. Thus, the scalar products be-

tween the residues (A.5) are computed in reciprocal space using a weighting factor

of the formG2+G21G2 , whereG1 is a parameter.

Thus, in a charge-mixing scheme, the input charge�n at stepn in reciprocal

space has the form:�n = �opn + f (G) R (�opn ) =Xl�n �l (�l + f (G)R (�l)) (A.8)

where the�l are defined by (A.7).

The implementation of (A.8) requires the storage inG space of charges and

residues at all the steps of the minimization procedure. For practical purposes,the

summation in (A.8) are limited to the 3-4 steps preceding stepn. At step 1, the

charge density�op1 in (A.8) is either extrapolated linearly from charge densities at

previous steps (in a molecular dynamics run) or constructed as a superposition of

atomic charge densities.
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