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Introduction

The deep interior of the Earth is inaccessible, and almost everything we know
about its structure, history and evolution is not entirely based on direct observa
tion but rather on models that, although constructed by keeping into account well
assessed physical laws (e.g. the laws of thermodynamics and fluidodynamics), re-
quire a constant interplay with the science of materials at high pressuréantor
asses their validity and predictivity. Just to give an example, an Eantiné ther-

mal model requires, in order to be predictive, detailed knowledge of the thermal
conductivity of Earth’s core material.

The most important source of direct information concerning the interior of our
planet is provided by seismology. Since it was born as a science, at the beginning
of this century, seismology produced a revolution in our knowledge of the interior
of the Earth. By using seismic waves velocity profiles, Williamson andms]a
in 1921[1] were able to show that the simple increase of rocks’ density due to
pressure is not sufficient to explain an average density of the Earth of 5.5 gr/cm
starting from a density at the surface of 3-3.5 gricifhus, they concluded that
"the dense interior cannot consist of ordinary rocks compressed to a small vol-
ume; we must therefore fall back on the only reasonable alternative, nahely,
presence of an heavier material, presumably some metal, which, to judgdgrom i

abundance in the Earths crust, in meteorites and the Sun, is probably iron”.
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Nowadays, the foreseeing claim by Williamson and Adams, has been con-
firmed by a lot of observations. It was by comparing density data as deduced
from seismological measurements and from shock wave experiments that Birch
in 1961[2] was able to show that the Earth’s core is mainly composed of iron di-
luted with light elements. His principal argument was that silicatéispagh very
abundant, could never achieve the density of the core, as given by seismology,
unless under pressures much larger than the Earth’s interior pressure. lam, Bir
observed, is instead the only element of relatively great abundance whosg densit
at Earth’s core pressures is comparable with the Earth’s core densityoWore
since the density of pure iron at core pressures is slightly smaller than the cor
density, Birch concluded that a few percent of lighter elements was negégsar

bring the density exactly to the core value.

Birch’s original reasonings were based on informations proviotedby seis-
mology and by materials science: major advances in our understanding of Earth’s
deep interior are always linked to major advances in experimental or tloabret
techniques in seismology or high-pressure physics. The claim by Williamson &
Adams [1] concerning the composition of the Earth’s core could be confirmed by
Birch only thanks to the development of shock-wave techniques to measure the

density of materials at very high pressure.

An other important example of the interplay between seismology and mate-
rials science is the construction of the temperature profile as a function of depth
inside the Earth. In fact, while density and pressure can be quite reliablyekduc
from seismological measurements, there is no way to estimate the teomeer
inside the Earth by seismology alone. The only way to constrain the temperature

in the deep interior of the Earth is to measure the pressure-temperatues cur
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for phase transitions responsible for the major seismic discontinuities: ills w
known from seismology that the innermost 1200 kilometers of the core are solid
(the so-called inner core), while its remaining portion (the outer core}isdi

The boundary between these two regions is called the inner core boundary (ICB),
and the pressure at this boundary is approximately 330 GPa[3]. Since the Earth’s
core is mainly composed of iron, at the ICB solid and liquid iron coexist; thus,
the melting temperature of iron at ICB pressure (330 GPa) is an estimé#te of
temperature of the Earth at ICB (for a more accurate value, the effegraét

elements in the core should also be considered [4]).

Other gquantities of major geophysical relevance, whose estimate can be pro-
vided only by high-pressure physics, are the elastic properties of iron (both liquid
and solid) at Earth’s core conditions, the thermal conductivity coefficient and the

viscosity of liquid iron at outer core conditions.

All the above quantities, as well as the effect that light alloying eleseraty

have on them, are of primary importance for any modeling of the Earth’s interior.

The task to estimate these quantities has proved a very difficult one for both
experimentalists and theorists. Up to date, despite major efforts, onlyffthese
guantities are known to a level of accuracy sufficient to solve most of theaodtst

ing geophysical problems

The current knowledge of the high pressure properties of iron will be reviewed

in Chapter 1.

For the time being, let we just mention that estimates of the melting tempera
ture of iron at ICB pressure range between 4000 and 8000 K and, also due to this
large temperature uncertainty, the density of liquid and solid iron at core condi-

tions is known only roughly. The phase and the elastic behavior of iron at inner
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core pressures are known only at room temperature and are still the subject of
speculations at temperatures close to melting (exotic proposals such asya glas
structure or a partial melt [5] have also been suggested for the inner core). The
situation is even less clear for what concerns the effect that lighteresits have

on the properties of pure iron at core pressures. In most cases, the high pressure
binary diagram of iron with a light element are extrapolated from the zerspres

behavior, or ideal mixing conditions are assumed.

First-principle molecular dynamics has proved to be an invaluable tool to ex-
plore the high temperature properties of many systems, because of its superiorit
in terms of accuracy and predictivity[6]. Unfortunately, in our case (iromigt
pressure and temperature) a correct description of the electronic strisotora-
putationally very demanding, as we shall see in Chapter 2. Moreover, even for
simpler systems, such as silicon, a standard first-principle molecular dyg;am
approach can seldom be used to fix the value of the melting temperature, because
of unavoidable size effects and because of the poor statistical sampling due to the

short simulation times that can be afforded with first-principle simohesti

On the other hand, molecular dynamic simulations with classical empirical po-
tentials would overcome sampling and finite size problems [7]. Of courseags w
correctly stated in a recent article about first principle calculationgomm simu-
lations based on empirical potentials suffer "from the lack of reliakthigt can be
placed on using potentials beyond the range of empirical fitting” and, therefore,
"the confidence with which one can predict properties outside the experimental

range” is small[8].

In this work we propose a novel method for handling classical potentials

for iron with a procedure that, in our opinion, successfully overcomes the first-
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principle-versus-empirical dilemma. In particular, in our proceduredchiced

and discussed in detail in Chapter 3), the potential is fitted "in flight” toderand
stress calculated on first-principle trajector@she desired pressure-temperature
(P-T) thermodynamic point onliand not on a large set of properties of bulk, de-
fects, surfaces, clusters, liquids in a wide range of pressures and ténnpsras

in standard fitting procedures). This "optimal” potential is then used toebdsa
namical and thermodynamical informations on the system at given P-T conditions

without limitations of size or simulation time.

Since only the dynamics at a single P-T point is described, the accuracy of the
fit can be very good, and the thermodynamic observables extracted from trajecto-
ries generated with the optimal potential can be pushed to an accuracy cbtapara
to that obtained with an ab-initio approach (see Chapter 3 for a detaileganail
this point). This is obtained at the cost of a very poor transferability of the optima
potential to P-T conditions different from the ones where it has been constructed.
No attempt is made to construct a potential that describes iron at all congitions
and when considering a new P-T point, a new potential must be generated. Po-
tentials constructed with our procedure are then explicitly dependent on the P-T
thermodynamic conditions. When a phase transition is encontered at the given
P-T point (e.g. melting), the request will be that the two potentials construated f
trajectories on both sides (e.g. the solid and the liquid) yield the same twansit

temperature.

In Chapter 4, the method outlined above is applied to the calculation of some
of the properties of iron at conditions of relevance for the Earth’s core. Our re-
sults are compared with experiments, where available. The comparisols show

that our method reproduces with very good accuracy the experimental equation
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of state and the elastic properties at room temperature and along the shock-wave
compression line (the so called Hugoniot). This comparison is particuldrly re
evant for assessing the validity of the method, since these quantities are known
experimentally with very small uncertainties. Our method proves abiepmo-

duce densities with an accuracy-ofl % and elastic properties with an accuracy

of ~ 3 % both at low temperature and at high temperature (along the Hugoniot).
These accuracies are comparable with those expected from the best fuilti@b-i
simulations.

We will consider in detail the melting line of iron between 100 and 330 GPa,
showing that our values are compatible, within at most 300 K, with the best mea-
surements at low pressures (updd. 00 GPa) and that the melting temperature at
ICB pressure is 5400+ 150 ) K.

We will also show that elastic properties of solid iron in a hexagonal close-
packed (hcp) structure at inner core conditions are perfectly compatibleeisth s
mic observations. Moreover, we will provide an accurate estimate ofidbel|
and solid iron density at ICB conditions. Results concerning other observables
related to the melting, such as the heat of cristallization and the deumsipy will

also be presented and their geophysical implications discussed.



Chapter 1

Physics of Iron and Physics of the

Earth’'s Core

The interplay between material science (in particular the physics of inoth) a
physics of Earth’s deep interior has become more and more important, and the
two subjects are so deeply entangled that extensive calculations or meastgem

of iron properties at high pressure conditions are considered essential to provide
informations to construct reliable models of the Earth’s core. This Chaptedis de
icated to an overview on the current knowledge of high-pressure physics of iron
and its relation to geophysics.

In Section 1.1, some of the properties of iron at high-pressure high-temperature
conditions that are of particular interest for geophysics and that will be studied in
some details in this work are listed. We will consider the high pressurengelt
line, the density of solid and liquid iron at inner core boundary conditions, the
heat of crystallization and the elastic property of solid iron at high presgvinat
it is currently known about these properties from the experimental and theobretica

point of view is then reviewed in the following two sections.



Physics of Iron and Physics of the Earth’s Core

1.1 Constraint to models of the Earth from physics

of iron.

1.1.1 Melting temperature

The Earth’s temperature distribution is intimately connected to problerstsua-

ture, composition, dynamic state and evolution of the planet. High temperature
sustains the Earth’s convection, and is responsible for the strong geologigal acti
ity observed at the surface[9]. Despite this importance, the temperatfile pr-

side the Earth is known only very roughly: at variance with density, temperetur

in fact quite poorly constrained by seismological observations[10]. The only way
to safely estimate the temperature inside the Earth is to predicliie at phase
transitions responsible for seismic discontinuities[9]. For example, the ioner ¢
boundary (ICB) separates the inner core, mainly composed of solid iron, from the
outer liquid core. Since it is known from standard seismological models[3] that
the inner core boundary is at a pressure of 330 GPa, the melting temperature of
iron at this pressure crucially constrains the temperature at the ICB, andigs

a valuable pinning point for every thermal model of the Earth. We shall see in
Section 1.2.3 that this quantity, despite a great experimental and theordbcgl ef

is presently known only roughly.

The situation is further complicated by the presence, at least in the ouggr cor
of some percent of impurities (as we will discuss in next subsection). Due to the
presence of these impurities, the temperature at the ICB will be differemt f
the melting temperature of pure iron at 330 GPa. This difference can be easily
estimated only if ideal solubility conditions are assumed, as shown inoBecti

4.3. A more accurate estimate would require a very precise knowledge of the
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composition of the outer core[11] and of the iron-rich part of multicomponent

diagrams of iron with the impurities.

1.1.2 Density of the IC and OC

By x-ray diffraction experiments in the diamond anvil cell, Meioal estimated,

in 1991, the room-temperature density of iron at 330 GPa[12] obtaining a value of
13.87 gr/cm. This density is~ 10 % higher than the density of the outer core at
the ICB (12.17 gr/cri) extracted from seismological data [3]. A further indication
that the density at the ICB is sensitively smaller than the density of poneisr
given by the shock-wave measurements of density by Brown and McQueen[13]
(see Section 1.2.2). In their experiment, the density of shocked liquid iron at 333
GPa is shown to be 12.92 gr/éni.e. ~ 6 % larger than the seismological value.

The exact value of the density difference between pure iron and the outer core
material constrains the quantity of light elements that alloy with iromenduter
core[14], with the implications we mentioned on the temperature at ICB. éngkec
(and possibly even more relevant) consequence of the presence of light elements
in the outer core is that a concentration gradient due to crystallization ofjind li
iron alloy in the more pure inner core might sustain mass convection. This mech-
anism could contribute sensitively to the geodynamo energy budget, as suggested
for the first time by Loper in 1978[15]. Values for this density difference currently
accepted in the literature range between 7 and 10 %[9, 11, 16].

Also the inner core is probably alloyed by a small amount of impurities, as
suggested by Jephcoat[17]. The exact percentage of these impurities can be esti-
mated given the density of pure solid iron at ICB conditions.

An accurate theoretical determination of solid and liquid iron density at 330
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GPa is at present missing, and could shed some light on the above issues.

1.1.3 Heat of crystallization.

Since the Earth is cooling, the liquid iron alloy of the outer core is slowlytatys

lizing in the more pure iron of the inner core. The rate of this freezing process ca
be estimated by thermal models of the Earth and determines the age of the inner
core (according to a recent estimate, this age i7 Gyears or less[18]; an ear-

lier estimate by Stacey was of 4 Gyears [9]). The crystallization pooeleases

heat that might contribute sensitively to the Earth energy budget, as sugbested
some authors[4, 9]. The relevance of this energy release with respect tposiaer
sible sources of energy (e.g. the mass convection) depends on the rate of growth
of the inner core and on the value of the heat of crystallizafidhy,,. The value

of AH,, is closely related to the melting line slope (by the Clausius-Clapeyron
relation), and it has been estimated only by simplified models of melting or by

thermodynamic consideration[4, 19].

1.1.4 Elastic properties

The inner core is known to be elastically anisotropic [20, 21]. In particular, fongi
tudinal waves (P-waves) propagate in the inner core with greater velocaigla
to the Earth’s rotation axis than in the equatorial plane. This differencdean
explained with a~ 3 % elastic anisotropy of the inner core.

Among the possible explanations of this anisotropy [22], one of the most rea-
sonable hypothesis is that the anisotropy could derive from some degree of pref-
erential orientation in the high-pressure phase of iron present in the inner core.

It was recently shown, both theoretically and experimentally, that hcpgatsys
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of iron at high pressure and room temperature condition are indeed anisotropic
with respect to P-wave propagation[5, 23]. In particular, Stixtrude and Cohen es
timated, with a first-principle calculation[23], an anisotropy~dfO % up to ICB
pressures, in very good agreement with the recently revised experimetatéyda

Mao et al, available up to 210 GPa[5] (see section 1.2.1 and 1.3).

A high-temperature estimate of P-wave anisotropy for hcp iron is at the mo-
ment missing. If iron remains in the room temperature hcp phase also at inaer cor
conditions, and if we assume the room temperature value for the hcp anisotropy,
the degree of alignment of the iron crystalline domains in the inner core required
to provide the observed 3 % anisotropy would be as large @8 %. This may

have important consequences on accretion models for the inner core[22].

Another elastic quantity of great relevance is the value of the shear modulus of
iron at inner core conditions. In fact, it is well known that shear waves propagat
in the inner core at a very low speed, compared to compression wavesfBhgea
to a Poisson ratio of 0.45, very close to the shear-less value of 0.5. In particular,
the value of the shear modulug Borresponding to the observed velocity of shear
wavesy; is ~160 GPa, approximately three times smaller than the value measured
at room temperature[3]. This behavior is in some way anomalous, with respect to
other transition metals (in most of the metals, at least at ambientypesds is
approximately two times smaller at the melting temperature with ct<pethe
room temperature value[24]). This has led many authors to suggest that low-shea
phases (other than hcp) might be present in the inner core[5, 25], or, alternatively,
that the inner core could be partially molten[5], with very important consequences
for accretion models of the core. A direct (experimental or theoreticalyrdete

nation of B, for hcp iron at ICB conditions would be very useful to validate these
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suggestions.

1.2 Physics of iron at core conditions: experiments.

In this section the most important experimental findings on the high pressure
physics of iron are overviewed. The geophysical interest of the argument has stim-
ulated, in the last 20 years, an enormous amount of experimental work. Although
our understanding of the properties of high-pressure Fe has greatly improved , we
are still far from an exhaustive comprehension, at least at the level afagc

required to solve geophysical issues.

The phase diagram of iron is fully understood only at pressures lower than 20
GPa (see Figure 1.1). Four phases are well known in this pressure rage:
(bcc), the magnetic ambient condition phase of irpiiie (fcc) at high tempera-
ture and low pressur@-Fe (bcc) close to the melting point and at low pressure;
e-Fe (hcp) at low temperature and pressures above 13 GPa. At higher pressure,
several different melting curves and phase diagrams have been proposedrby diffe
ent authors, leading to estimates of the melting temperature at ICB ramgmg f
4000 to 8000 K. The state-of-the-art concerning this very important issue will be
reviewed in Section 1.2.3. Among the few well-constrained experimental quanti-
ties, we can list the room temperature equation of state (reviewedtin®béc2.1)
and the value of density and sound velocities along the shock-wave compression

line (Section 1.2.2).
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1.2.1 Room temperature EOS and Elastic constants

Mao et alin 1990 measured the volume of hcp iron up~4®B00 GPa with x-ray
diffraction[12]. Their results confirmed and extended the measurements by Jeph-
coatet al[26] up to 70 GPa. Mao et al. also found virtually no difference between
the P-V results of a nickel iFg-Ni, » alloy and those on pure iron up to 300 GPa.
The P-V experimental points of Maet al are reported in Fig. 1 of Chapter 2.
More recently, Macet al measured the room temperature elastic constants of hcp
iron up to 210 GPa using radial X-ray diffraction and ultrasonic techniques|[5].
The observed compressional wave anisotropy i8 %, in agreement with the-
oretical calculations by Cohest al [23]. Their elastic constants at 211 GPa are

reported in Table | of Section 4.1.

1.2.2 Shock-wave compression line

The sound velocity and density measurements along the shock-wave compres-
sion line (the so-called Hugoniot EOS) for iron up~0400 GPa by Brown and
McQueen in 1985[13] is one of the cornerstones in the high P-T physics of iron.

In a standard shock-wave experiment, the shock-wave velocifyght the
velocity imparted to the particles of the sample by the shock wayg e di-
rectly measured. Pressure P, internal energy E and demsitying the shock
are then deduced from,land U, through Hugoniot-Rankine relations[10] (see
Section 4.5). Since Hugoniot-Rankine are deduced with the only assumption of

conservation of mass, momentum and energy in the shocked sample, the value of

LVery recently, Singh and Montagner[27] pointed out some inconsisteincibis set of data,
such as a very low (0.04) Poisson'’s ratio along the symmetry axes. oheréfiey suggest to

interpret these data with some caution.
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P, p and E estimated with a shock-wave experiment is considered very rediadhle

accurate.

Brown and McQueen extended this method to allow also the measurement of
the longitudinal sound velocityy in the shocked sample. Since a phase transi-
tion usually causes only a minor kink in the P-vergusdrve, but can produce a
marked discontinuity in the,-versus-P curvethis method provided a powerful

tool to explore the high-pressure phase diagram of iron.

Brown and McQueen observed that along the Hugoniot grows with pres-
sure up to~ 200 GPa, where a first kink is observed (see Figure 4.4); a second
kink is observed at- 240 GPa, and above- 280 GPauvp reduces to,/B,/p,
where B, is the adiabatic bulk modulus andis the density, indicating that the
sample is completely liquid. The first kink is interpreted by Brown and McQuee
as a solid-solid phase transition (frarvFe to an unknown phase), the second as

the onset of melting.

By assuming reasonable values for the Gruneisen paramedad for C,,
Brown and McQueen also provide an estimate of the temperature along the Hugo-
niot. Their estimate is based on simple thermodynamics and does not keep into
account phase transitions, so it has to be considered as reliable only up totthe firs
transitions point at 200 GPa. Moreover, the accuracy of this estimate of tempe

ture is limited by the uncertainties on, @nd~.

The observation of a double kink along the Hugoniot of iron (see Figure 4.4)
has been considered for a long time a strong evidence for the existence of an addi-
tional high-pressure high-temperature phase (other4Haa), and this has stim-
ulated a large amount of theoretical and experimental research. Nevssthese

we will see in the following, the existence of this phase is still very comtrsial.
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The second kink observed by Brown and McQueen may rather be a by-product of
the phase coexistence between the solid and the liquid, as suggested by MD sim-
ulations performed on Argon by Belonoshko[28]. Moreover, very recent sound
velocities measurements along the iron Hugoniot by Nguwteal29] seem to

cast some doubt on the very existence of a double kink: sound velocities between
220 GPa and 280 GPa decrease, in Ngwtaad data, almost monotonically, with

no apparent discontinuity in between.

1.2.3 Melting line and high-pressure high-temperature phases

of iron

The phase diagram of iron at pressures higher than 20 GPa is still the subject of
strong controversy. Some of the melting curves presented by different autbors a
shown in Figure 1.

Below~ 200 GPa, the melting temperature has been measured in static exper-
iments using diamond-anvil-cells (DAC). Above this pressure, the meléng t
perature can be determined only by dynamic shock-wave experiments in which
the high pressure and density conditions are reached instantaneously by shooting
an impactor on the sample.

The first measurement of the iron melting line performed with a DAC is due
to Williams et alin 1987[30]. Melting is detected in their experiment by a visual
observation of the samples after the laser is switched off (keeping thelesam
at high pressure), assuming that, if a change of texture is observed, the sample
has crossed the melting line. They measure the melting temperature~up to
100 GPa, estimating a melting temperature at this pressure of more than 4000 K.

Their melting line connects nicely with higher pressure measurements petform
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Figure 1.1:Experimental phase diagram of iron. Full lines: phases boundaries of
iron below 20 GPa.

Lines: diamond-anvil cell data on the melting line of iron and the v — ¢ phase-
boundary. Dashed line: data by Williams et al [30]. Dot-dashed line: data by
Boehler et al [31] and by Saxena et al [32] (up to ~ 120 GPa). Dotted line: data
by Shen et al [33].

Dashed lines with error bars and symbols: shock wave data on the melting of iron
along the Hugoniot. Triangle: data by Bass et al[34, 35]. Square: data by Yoo et al
[36]. Diamond: data by Brown and McQueen [13] and by Gallagher and Ahrens
[37].
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by shock-wave techniques (see Figure 1.1). Unfortunately their results have not

been confirmed by more recent DAC measurements.

The most extensive measurements of the melting line of iron in a DAC are
due to the Mainz group. Their experiments at high pressure are done by plating
the iron sample on a ruby disk immersed in a pressure medium made of ruby
powder. The sample is heated by a laser. Temperature is measured figing t
radiation from iron through the ruby disk to a Planck’s radiation function. Melting
is detected visually as the onset of convective motion. Boedtlatin 1990 [38]
reported the melting temperature of iron up to 120 GPa and found the triple point
connecting thes (hcp), v (fcc), and liquid phases at about 100 GPa and 2800
K. The existence of this triple point is deduced, in Boehler's experiments, by the
change in curvature in the solid-liquid boundary. In 1993, Boehler extended his
measurements on,,Jup to 190 GPa[31], finding at this pressure ,a af about
3800 K. In 1994 he confirmed the existence of the triple point at 100 GPa by

experimental data showing all the three branches[39].

Saxeneet al, in 1994[32], using a diamond-anvil cell apparatus similar to that
of the Mainz group, obtained experimental results on the melting line of iron up
to 60 GPa, confirming the curve of Boehkdral. In Saxenaet als experiments,
melting is detected by the abrupt change gtiii the slope of temperature versus

laser power (due to the heat of melting).

Boehler's curve was further confirmed in 1994 in a DAC experiment per-
formed by Yooet al[40]. The disappearance of the crystalline X-ray diffraction
lines was used in these experiments as a criterion to detect the mediisgtion.
These data have to be taken with some caution since, as claimed byeSalken

[33], the absence of crystallographic structure does not necessarily implpgelti
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The experiment by Yoet al was repeated and extended by Skeémlin 1998

[33]. According to their measurements, the-liquid triple point is at 6045)

GPa and 280Q(200)K, i.e. at a lower pressure than Boehler suggested. Their
melting line is defined, at every pressure, by the highest temperature wisre cr
talline phases is observed, and lies approximately 300 K above Boehler'agnelti

line (with approximately the same slope).

All the DAC data concerning the melting line obtained by Boekleal, Sax-
enaet al, Yoo et aland Sheret alare compatible with each other (within an error
bar of 300 K), with the exception of the early DAC experiment by Williagts
al that gives a completely different melting line slope and a melting tenyrerat

almost 1000 K higher at 100 GPa.

The melting temperature of iron at pressure higher than 200 GPa has been
estimated only by shock-wave experiments. The first estimate,caldng the
Hugoniot was given, as we already mentioned in Section 1.2.2, by Brown and
McQueen[13], who reported a solid-liquid phase transition at 243 GPa and 5400

K. In this work, however, T is not directly measured, but only estimated.

The melting temperature has been directly measured in a shock wave experi-
ment by the CalTech group (Bassal and Ahrenset al)[34, 35] and by the Liv-
ermore gruoup in 1993[36]. Their results concerning the temperature along the
Hugoniot are in quite good agreement except for the highest pressure datum (at
300 GPa). At 300 GPa, Bass alreport a temperature of 9000 K, approximately
1500 K higher than the Yoet al result (see Figure 4.5). Both the CalTech group
and the Livermore group use shock wave radiance to estimate the temperature.
In particular, in both experiments the intensity of radiation from shockedaton

a given pressure is measured versus frequency, and the temperature is deduced
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using the Stefan’s law. Melting is detected as a lateral displaceméetripera-

ture along the Hugoniot. Bag$ al estimate in this way a melting temperature of

~ 7000 K at ~ 240 GPa[34]. Yocet alof 6500 K, also at 240 GPa[36]. These val-

ues are more than 1000 K higher than Brown and McQueen’s estimate and 2000
K higher than the extrapolation of the DAC melting lines. If both the DAC and the
shock wave data were correct, the melting line slope between 200 and 240 GPa

should be unphysically high[31].

The simplest possible explanation of the discrepancy is that the shock wave
temperatures are overestimated. This opinion, shared by a part of the shazk-wav
community[35, 37], is based on the fact that the radiation emitted from shocked
iron, before being detected by the frequency analyzer, passes through a dielectric
block (Al,Os), and the thermal diffusivity of this material can change the spectrum
of emitted light. This makes a direct measurement of T along the Hugoniot quite
complicated and possibly affected by large systematic errors. In 1994gGal
and Ahrens presented new data , based on better estimates of thermal ¢yffusivi
in Al;O3, that lowered the calculated values of the melting temperature of iron
by approximately 1000 K from those proposed by Bass et al., bringingt240

GPa down tov 5500 K[37], i.e. very close to the Brown and McQueen estimate.

If this value of T,, is correct, the slope in the melting line required to con-
nect this point with the upper DAC measurement of Boehler[31] would still be
very large but not unphysical. Nonetheless, the presence of a triple point in the
vicinity of 200 GPa should be assumed, as only a triple point can explain a sharp
increase in the melting line slope[41]. This might be also consistent with the
long-sought solid-solid phase transition observed by Brown and McQueen at 200

GPa along the Hugoniot. Since in this pressure and temperature range no x-ray
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measurement have been performed so far, the nature of this new phase has only
been suggested by theoretical calculations. Many authors (in particulareRos

al [42] and Matsuiet al[25]) suggested for this phase a bcc structure. However,

in recent first-principle calculations, the bcc phase was shown to be mealanic
unstable at zero temperature (see Section 3) and to be disfavored pitictres

hcp by~ 540 meV/atom [43]. This very large energy difference is believed to
rule out bcc as a possible high temperature phase of iron in the pressure range

considered[41, 44].

The high-pressure high-temperature phase diagram of iron is further compli-
cated by the possible presence of another phase betwEerandy-Fe at pres-
sures above- 30 GPa. The presence of this new phase was first suggested by
Saxenaet al, in 1993[45]. They observe, always by the laser-power versus T
method, a new phase boundary frem1000 K and 30 GPa te- 2000 K and
130 GPa. They suggest that this new phase might form a large part of the Earth’s
core. This phase (of unknown crystallographic structure) was nasegel In
1995[46], they proposed for this phase a dhcp structure: they observed that laser
heated iron, quenched from high temperature up tH500 K at 30 to 40 GPa,
transforms to a dhcp structure. Yebal47] confirmed the observation in 1996,
at pressure below 40 GPa. However, more recent measurements do not confirm
these observations: in the same pressure field, Andetdaltobserved, in 1997,
an orthorhombic structure[48]. Moreover, Shenal [33], in their x-ray study
on melting, do not observe new phases in the pressure and temperature range of
interest, and they conclude that the appearance of new structures is probably an

effect of temperature gradients in Saxetal and Andrauliet al experiments.

From this short overview, it should emerge that experimental evidences con-
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cerning the high pressure phase diagram of iron above 20 GPa are still quite am-

biguous, and at least three different scenarios are possible:

e The shock wave temperatures (including Ahrens data) are overestimated by
1000 K or more. The DAC melting line continues monotonically without

any need for a triple point. Iron in the inner core has an hcg)jatructure.

e The DAC melting temperature is underestimated {by000 K or more at
200 GPa). The melting line is shifted upward to the shock wave values and
no new phase is necessary above 200 GPa. Even in this case, iron in the

inner core has an hcp (@) structure.

e DAC measurements and shock wave estimates,pfby Gallagher and
Ahrens[37] and Brown and McQueen[13] are correct. A triple point with a
new phase of unknown crystallographic structure exists 200 GPa. Iron
in the inner core has the structure of this new phase. This scenario would

reconcile the greatest number of experimental observations.

The phase diagrams resulting in these three cases are sketched in Figure 1.2.
The hypothetical phase boundary betweemd$ phase is also reported in these
diagrams for completeness. We will see in Chapter 4 that our calculations sugges
that the correct scenario is the first one (no definitive indication concerning the

existence of the phase is provided by our theory).
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Figure 1.2: Three possible speculative scenarios for the high-pressure phase-
diagram of iron. The inner core boundary pressure is indicated as a dashed line.
The hypothetic £ — 8 phase boundary is also reported. Results in this thesis will
support scenario (a), however with no definitive indication concerning the exis-

tence of the g phase.
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1.3 Physics of iron at core conditions: first principle

simulations

The evergrowing interest in the physics of iron at Earth’s core conditions Inas sti
ulated a great number of first-principle-based theoretical studies ainuztdo

mine some of the basic properties of iron at high pressure and high temperature.
At least some of these properties, such as the zero-temperature equatiie,of st
elastic constants and phase stability, are nowadays well understood at éiceeore
level. Density functional theory is able to reproduce all the measurable experi
mental quantities with a very satisfactory level of accuracy, thus eagmg the
application of the same methodologies to finite temperature properties. Unfortu-
nately, this has proved quite an ambitious goal, due to intrinsic difficulties in
fully ab-initio modelization of iron. The only high temperature properties stud-
ied by ab-initio methods so far are the transport and the structural properties i
the liquid phase[49]. In the liquid, ab-initio methods were usedraalict some
quantities of geophysical relevance, otherwise unaccessible to experimeatal m
surements (in particular the viscosity). In this Section, we will resathe of the
results obtained up to now and the technical details of the ab-initio impletreanta

used.

Some of the earliest ab-initio calculations on solid iron were performed by
Janseret al[50,51] in 1994. They concluded that the use of the local density
approximation or local spin-density approximation are not sufficient to describe

the structural and magnetic property of iron with good accuracy.

A significantimprovement was reported by Stixredalin 1994, who showed

that by the inclusion of the generalized gradient approximation[52,53] (GGA)
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excellent agreement with the experimental room temperature equation obfstate
bcc and hep iron can be obtained[54]. Also the bcc-hep transition pressure and

the bcc magnetic moment are correctly reproduced within their approach.

In 1995, Stixrude and Cohen[23] presented results on high-pressure elastic
constants of iron, using a tight-binding approach (the parameters of tight binding
Hamiltonian are fitted to first-principles band structures and total ezgedjifcc,
hcp and bcc). With this method, they show that, at the density of the inner core,

hcp phase of iron is substantially @ %) elastically anisotropic.

A complete theoretical investigation of the zero-temperature propertiesof
was carried on in 1996 by Soderlired al[43]. They used an all-electron full-
potential linear-muffin-tin-orbital implementation of density functional theaithin
the GGA. With this implementation, they reproduce, like Stixreti@l[54], the
zero temperature equation of state for hcp iron within 1 % and the 14 GPa pres-
sure transition between bcc and hcp. Moreover, they study the stability of bcc,
fce, bet, hep and dhep phases as a function of pressure. Of particular relevance
is the estimate of the energy difference between the different phasestanan a
volume of 7;13, corresponding roughly to the density at the inner core boundary.
At this volume, bcc-Fe is mechanically unstable. The phase of lowest energy is
nonmagnetic hcp (the stable form of iron at high pressure and room temperature
conditions). The other two close-packed phases they consider (fcc and dhcp) are
disfavored by~ 68 meV/atom; the eight-fold coordinated bcc and the ten-fold
coordinated bct liev 540 meV/atom above, indicating that only a exceedingly
large entropic contributionXS~ 1 kg) could stabilize bcc and bct with respect
to close-packed phases at high temperature. They also calculate theimagnret

ment that survives compression in the various phases. At an atomic volume of
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03
A , the magnetic moment is totally negligible (jO0.03%) for all the close-packed

phases. For bcc and bct, the magnetic momer0i& 1.z, indicating some resid-

ual magnetism. However, magnetization is expected to decrease stroitigly w
temperature, and the Curie temperature is not likely to be as high as 5000 K[55].
Thus, whatever is the phase of iron at Earth’s core conditions, magnetisniys like

to play a minor role.

The first attempt to calculate some of the high-temperature properties of iron
making large use of first-principle tools, is due to Wasseretaa[56]. In their
calculation, the electrons are treated within the tight-binding method (whese pa
rameters are fitted to first-principle calculations). The vibrationditpmar func-
tion is estimated by a mean field approximation (the so called cell m¢&vgy
which ignores interatomic correlations. The method can be applied only below the
melting transition, where collective motion and diffusion are unimportant. The
main contribution of Wassermaet alis the estimate of the Gruneisen parameter,
the thermal expansivity and of the heat capacityi€hcp iron. All these pa-
rameters are shown to depend non-trivially on electronic excitations. Mereo
they provide an estimate of the temperature and density along the solid branch
of the Hugoniot. Their theoretical values are in good agreement with Brown and

McQueen’s estimates[13] for both the density and for the temperature.

A similar approach, although based fully on first-principle methods, is used
by Vocadloet al[44]. In their work, the vibrational contribution to the free en-
ergy is computed within the quasi-harmonic approximation in some of the stable
structures at zero temperature (the calculation cannot be performed on bcc, be
cause of its mechanical instability). Within this approximation (that is,dwes

likely to fail near melting) hcp remains favored with respect to dhcp fandht
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core pressures and up to 8000 K.

The only first-principles molecular dynamics simulation of iron at Earth’s core
conditions has been performed so far by A. De Wij[49]. Their calculations
are based on ultrasoft pseudopotentials of the Vanderbilt type[58]. Electronic ex-
change and correlation are treated within the GGA of Peretea{53]. They find
out that 3p state partecipate in binding significantly at high pressure, and should
be explicitly included in the valence states. However, since their ifmcius com-
putationally very demanding, simulations of liquid iron are performed without
explicit treatment of 3p-states. To mimic the effect of 3p states, theoeaiin-
troduced in the simulation a suitable pairwise ad-hoc constructed potential, thus
renouncing to a full first-principle approach. They find that the properties of the
liquid phase are sufficiently well converged for increasing system s&ieniilla-
tions are performed on a 64 atoms cell withpoint sampling of the Brillouin-
zone. They thermalize a sample in the liquid state at a temperature of 6000 K and
a density of 13.3 g c?, corresponding, according to the Anderson and Ahrens
equation of state for liquid iron[59], to the density of liquid iron at 330 GPa and
6000 K. After thermalization, they compute the average pressure and the diffusion
coefficient D via the Einstein relation. Finally, the viscosity is esteddrom D
via the Stokes-Einstein relation. The calculated pressure is 358 GPa, g% hi
than the Anderson value for that density. The viscosityis5 102 Pa s, with
an estimated uncertainty of a factor of three. This estimate, evathiérr rough,
is relevant for geophysics, since proposed values for the iron viscosity prior to
this calculations spanned more than ten orders of magnitude[60], and the theo-
retical value is in the low end of the range of previous estimates, with iraport

consequences on geodynamo models[61].



Chapter 2

First-principle calculations.

The approach that is used in this work to compute the properties of iron at Earth’s
core conditions makes essential use of first-principle tools, since first plenci
calculations have been shown to provide a very accurate description ofestélti
dynamic properties of a lot of materials, including iron (see Section 1.3).

In this Chapter, after an overview of some concepts that are at the basst-of fir
principle calculations (in particular, density functional theory, the pseudopatenti
approach, and Mermin generalization of these theories to metallic systems
will specify the approximations we use in our first-principle calculations on iron
(cutoff in the plane wave expansion, kind of pseudopotential, etc.), discussing
the influence these approximations might have on the accuracy of the results. The
algorithm employed in our code to minimize the Mermin functional will be briefly
described in Appendix A.

In first-principle calculations, the system is represented as a colheofi
atomic nuclei and electrons, and the forces on the nuclei are obtained by solv-
ing the Schroedinger’s equation within density functional theory to determine the

electronic ground state.
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Density functional theory (DFT) is based on a theorem, due to Hohenberg
and Kohn[62], showing that the electronic densitfr) and the external potential
Vert (r) are univocally determined by each other. Therefore, the electronic den-
sity totally defines all the electronic properties of any system, includstptal
energy.

Thanks to this theorem, the total energy of a system can be written in the form
Euo[0.(6)) = Err [ de Ve () (0) + E (5 (2.2)

whereV,,, (r) is the external potential (due to the nuclei or any other external
source),E.,, is the classical energy of the nuclei, aAdn (r)] is a functional of

the electronic density, called theensity functional E [n (r)] coincides with the
expectation value, with respect to the all-electron wavefunctions, okittetic
energy operator plus the electron-electron interaction.

The density functional can be split in the sum of three terms[63]:

Bln] = —3 S (W AW + By ] + By o) 2.2)

2

where
2 l
B, = / dr dp 01 ()
2 v —r'|
is the Hartree energy an® ;) are the orbitals of a fictitious system such that

n(r) =3 | (x)". (2.3)

E..[n] is called exchange and correlation energy, and is defined by eq. (2.2). The
single-particle Hamiltonian whose eigenfunctions are|thg-s is called Kohn-

Sham (KS) Hamiltonian, and has the form:

Hics In] = ~ 5+ Vig 0] + Vi 1] + Vi @4)
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whereVy [n] andV,. [n] are the functional derivative with respect to the density

of Ey [n] andE,. [n] respectively. The corresponding Schroedinger equation

is called Kohn-Sham equation.

In order to use equation (2.5) for calculations in real systémshas to be
approximated by an explicit function of the electron density. In the so-caiked |
density approximation (LDA)[64]),. is assumed to be a local operator of the
form V... (n (r)), while in the more sophisticated gradient corrected approxima-
tion (GGA)[52, 53],V,. is assumed to depend also on the gradient of the density,
i.e. is an operator of the fori,. (n (r), Vn (r)).

Another cornerstone concept in first-principle calculation is the so-called pse
dopotential technique[65]. Since core electrons are usually "frozen” in thek fre
atom configuration, while chemistry and physics are dominated by the behavior
of valence electrons, it is customary to map the KS problem (2.5) into an equiva-
lent problem involving valence electrons only and where the valence orbitals are

smooth. In particular, a new KS problem of the form
Hie [n"] [W5) = €7 |V5) (2.6)

with n? (r) = 3, |¥7|*can be defined by the following properties:={i)= ; for
valence electrons in a suitable reference system (usually the free &ipir) (r) =
U, (r) for r > r’ in the same reference system ére called cutoff radii) (iii) for
r < rttheW” (r) are smooth (and nodeless) functions of the radius; (iv)the pseu-
dowavefunctionsl” () form an orthonormal set; (v) the charge enclosed within
ré for U7 and ¥ ; is the same[65, 66].

These properties fully define the operatdf. ; if the reference system and a

functional form of the pseudowavefunctiof$ for r < r’ is chosen. In particular,
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HY. ¢ is usually written in the form
P 1 p p
Hp ¢ = —§A+Vg[n ] 4 Ve [0P] 4 Vs

whereV, is a suitable (non-local, in the most general case[65]) operator, called
pseudopotential. The set of cutoff radiihave to be carefully chosen in order to
insure both smoothness of the pseudowavefunctions (this would require a'large
and transferability of the pseudohamiltoniHi} ; to systems very different from

the reference system used to construct the pseudopotential (this would require a
smallr?).

In the rest of this work we will always use the pseudized form of KS Hamilto-
nian and wavefunction (2.6). Therefore, in the following we will drop the super-
scriptp.

If DFT is applied to a metallic system at finite temperature, the proceuliire
lined above has to be slightly generalized, in order to allow fractional oowmigs
of the states as determined by the Fermi distribution. It turns out that the use of a
Fermi distribution (or any other "smearing” of the occupations around the Fermi
level) improves considerably also the convergence rate of the electronmiza-
tion. In fact, if equations (2.2) and (2.3) are used in a metallic system the number
of iterations necessary to converge to a specific precision will ineregth the
square root of the system size[67], since the energy difference between the last
occupied and the first non-occupied orbital is zero for infinite-size systems, and
thus it will become progressively harder to determine the correct occupied or-
bitals. Moreover, any level crossing along a ionic trajectory will eaassharp
change in total energy, with difficulties in integrating the equations of motion.

The inclusion of some unoccupied orbitals above the Fermi level, with suit-

able partial occupancies, that we will denote fy(if a spin-independent form



31

for the Hamiltonian is assumed, € [0, 2]) ensures instead system-size indepen-
dence of the minimization efficiency and, moreover, it minimizes the tsffet
level crossings along the ionic trajectory, smoothing out their effect. geltem-
perature (B 1000 K) the electronic temperaturg,() can be set equal to T, while
at low T, T.; can be kept fictitiously larger than T without affecting the calculated
properties[68].

In order to include partial occupancies in a fully consistent manner, the finite
temperature version of DFT developed by Mermin[69] has to be used. At a finite
electronic temperaturé,;, the proper variational functional is the free energy of

the electrons :
F (W, fi) = E(Y, fi) — kpTaSe (fi) (2.7)

where
B (Vi f) = =5 S (Wl AW + Bulon) + Eneln) + [ de Ve (1) 1)

is the total energy of the electrons (the electron density is now definediy=

> fil®i|") and

S (f) ==Y (filn fi+ (1= f)In(1 = f;))

is the electronic entropy. The free energy (2.7) has to be minimized withatespe
to the ¥;-s the f;-s with the constraints of orthonormality of the wave functions
and of a constant numbar,, of electrons. These conditions fully define the occu-
pation numberg; as a function of KS energies (in particular, the occupancies

have the Fermi-Dirac form

fi = ! (2.8)

exp (—i;;i ) +1
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wheres is the Fermi energy).

In order to allow an efficient minimization of the free energy (2.7) the self-
consistency minimization scheme developed by Kresse and Furthmuller[68] has
been implemented in a parallel CP code based on a plane-wave expansion of elec-
tronic wavefunctions[70]. This method have been shown to outperform, for metal-
lic systems, any other scheme, including direct minimization ones[71][72] and
consists in splitting the minimization problem into two sub-problems: aatitex
diagonalization of the Hamiltonian at fixed potential and an iterative ingrent
of the potential, based on a suitable mixing scheme for the charge density. We will

describe this method in Appendix A.

We will now discuss some technical details concerning the application of the

concepts outlined above to first-principle calculations of iron.

As we recalled in Section 1.3, iron has been the object of extensive studies
by the first-principle community, although results concerning its high tempera-
ture properties are still incomplete. The approach we use in this work mages us
of the detailed know-how that can be extracted from existing experience,-in par
ticular concerning the pseudopotential and the kind of exchange and correlation

functional that has to be used.

In particular, electronic exchange and correlation are treated using ttlie gra
ent approximation of Perdeet a[52,53]. This choice for the exchange and cor-
relation functional was shown[54] to provide an excellent agreement with most
properties of iron both at low and high pressure, including the room temperature
equation of state for bcc and hcp iron, the bce-hep transition pressure and the becc

magnetic moment.

Since it was shown by Soderliret al[43] that the magnetic moment in all
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close-packed phases of iron at core pressures is almost completely sugpresse
the calculations in this work are performed without taking into account electroni

spin.

In order to generate the pseudopotential, we have used the procedure devel-
oped by Trouiller and Martins[66], since their functional form provides a very
reasonable compromise between smoothness of pseudowavefuctions and transfer-
ability (in the terms discussed in the preliminary part of this Chapterjthiw
their approach, we verified that, as already found by A. De lig[49] 3p state
polarize significantly at high pressure, and thus these state have to be Bxplicit
cluded in valence. In particular, failure to include them leads to arestienation
of ~ 80 GPa in the stress at inner core densities. In our approach, also 3s states
are included in valence, even if this would not be strictly necessary @ffect
might be mimicked, e.g., by using the nonlinear core-corrections[73]) since their
inclusion yields a much smoother form for the pseudopotential, and therefore a
reduction of the cutoff energy in the plane-wave expansion of KS wavefunctions.
The cutoff radii we use are 1.5 au for all the pseudowavefunctions (s, p and d
channel). With this choice of cutoff radii, energy differences are converggd w
respect to the cutoff in the plane-wave expansion of KS wavefunctions at 100
Ryd (e.g., the zero-temperature equation of state for iron with 100 and 150 Ryd
coincide within 0.2 % between 0 and 400 GPa).

Also the system-size convergence of our observables has been testedycareful
We obtained that, in agreement with de Wajsal[49], a 64 atom cell witi -point
sampling of the Brillouin zone is sufficient to reproduce the k-points converged
pressures within 0.3 % in all the range of atomic volumes of interest for the’&art

core physics. In Figure 1, the zero temperature EOS for a 64 atoms cell at 100
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Ryd cutoff is plotted together with the fully converged (196 special points in the
irreducible Brillouin zone and 150 Ryd cutoff) EOS. It is evident that the two
equation of state coincide within an error of 0.5 % for every atomic volume.

This theoretical approach gives a low temperature pressure-vs-densigy curv
for hcp iron in excellent agreement with X-ray data[12]. Theoretical andrexpe
mental EOS are compared in Figure 1: experimental densities are reprodticed wi
an accuracy between 1.5 %, (around 150 GPa) and 0.8 % (close to the ICB, at 330
GPa).
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Figure 2.1:Pressure versus Volume equation of state for low temperature hcp

iron. Squares: X-ray data at 300 K[12]. Full line: Birch-Murnaghan fit to first-

principles results on a 64 atoms cell and 100 Ryd of cutoff in the plane-wave

expansion. Dashed line: Birch-Murnaghan fit to first-principle results on a 4 atoms

cell with 196 k-points in the irreducible Brillouin zone and 150 Ryd of cutoff.






Chapter 3

The optimal potential method

First-principle calculations have rapidly improved in speed and accubatyhe

range of applicability of these methods still remains limited to systemslaf r
tively small size (from 50 to 500 particles) and short simulation timéeya pi-
coseconds). Although this is sufficient to capture the relevant physics in a large
number of cases, a brute-force ab-initio approach can seldom be used to fix the
value of most finite-temperature observables at a high level of accura@ayd®ec

of unavoidable size effects and because of the poor statistical sampling due to the
short simulation time. The case of iron is, in this sense, a good example: the
computer time needed to obtain a good quality electronic wave function on a 64
atoms liquid sample is, within the approximations described in Chapter 2, 30 min-
utes on a 64-node parallel machine in a molecular dynamics run and 3 hours for
a "from-scratch” electronic minimization. It is clear that, in siioas like this,

even the simple evaluation of an average density by an ab-initio constastipges

run would be almost impossible. The use of Vanderbilt ultrasoft pseudopoten-
tial[58] reduces significantly this time, allowing full ab initio evaliget of at least

some observables, like the density and the diffusion coefficient, as shoantlyec
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by Gillan et al [49]. However, even using Vanderbilt pseudopotentials, a fully
ab initio calculation of a melting temperature would be very delicateaulnse of
the great accuracy required in determining free energy differences[74¢dvVer,
even the maximum simulation time that can be afforded nowaday®(ps [49])
would not allow an accurate estimate of the high temperature elastic ntssta

(see Section 4.4) that are, as we have seen, of great geophysical relevance.

On the other hand, classical interatomic potentials constitute a very powerf
tool to perform molecular dynamics simulations on large size systems or for long

simulation times, thus avoiding sampling and finite size problems [7].

For the above reasons, it seemed compelling to try to construct a bridge be-
tween these two different approaches, making use of the large amount of informa-
tion that can be obtained by first-principle methods to construct reliable pdgentia
for large-scale computations . This kind of approach (the so called forcdiimatc
method, developed by Ercolessi and Adams [75]) has proved quite successful in
reproducing the properties of simple metals such as aluminium and lead. The idea
underlying this method is to fit the classical potential in order to reproduce not
only a set of observables (e.g. the equation of state or the cohesive energy) as in
standard potential construction procedures, but also ab-initio forces ¢attola

a large set of configurations (e.g. a cluster, a surface, a liquid sample).

The drawback of all the approaches based on classical molecular dynamics,
including the force-matching method, is the poor capability of classical potential
to describe situations in which relevant changes in the chemistry of thersyste
occur: asingleclassical potential is required to describe the properties of defects,
surfaces, clusters, liquids and glasses in a wide range of pressures and tempe

ature. This property, callettansferability,is considered crucial for the quality
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of the potential. To construct a truly transferable potential is, to say dst,la

very difficult task, and transferability is often incompatible with thewacy in

the description of a single situation. In practice, even if the potentiatesifio
reproduce a large set of properties, its predictivity cannot compare that of an ab-
initio calculation, whatever the complexity of the functional form that is used f
the classical potential. This has led, in the last ten years, to abandon, whenev
possible, of classical potential simulations in favor of the more reliabl@itib-

ones.

The idea of the present approach ig@aounce to transferability in favor of
accuracy This is done by constructing a different classical potential for each
distinct physical situation. This approach assumes that the poor capability of a
standard classical potential to describe accurately a system (e.g. @ dgai
given pressure and temperature) is due to the requiremerththaame potential
should describe, with theameaccuracy, many completely different systems (e.g.

a liquid at another pressure and temperature, or a surface). If this condition is
relaxed, and the classical potential is only required to describe a singésrsis
which no relevant change in electronic structure is expected to occur, gsecalh
potential can, in principle, provide the same information as a full ab-initio run,
with an enormous gain in computer time: after the potential is constructed, the
full dynamical properties of the system of interest can be easily extracied f
extensive classical simulations, without any limitation due to finite-problems

or short simulation time.

In the rest of this work, we will show that it is possible to construct a potential
with these properties, that we will call "optimal potential” (OP), ddsag iron

at a given pressure P and temperature T (also in the presence of melting).
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The OPs are constructed, at a given P-T point, by requiring the matching be-
tween classical and first-principles forces and stress in selatietc configura-
tions. This is done in the framework of a suitable iterative procedure, designed i
order to reproduce the dynamics of the system at P-T. By definition, this OP will
not be transferable to different P-T conditions, where a different potentiallmeust
constructed.

This chapter is organized as follows. In Section 1, we introduce the so-called
embedded-atom functional form of the potentials that have been extensively em-
ployed in classical simulations of metals, and that we used in the poteptial
mization procedure. In Section 2 the force-matching method, as introduced by
Ercolessi and Adams, is briefly reviewed. In Section 3, the iterativeepiure
for constructing the optimal potential is introduced and discussed. In Section 4,
errors due to the OP procedure are estimated by the direct calculation ofiab-ini
observables in a special case. In Section 5 a method for estimating ttiegme
temperature within the OP procedure is introduced. In Section 6 the OP method is
tested by reproducing the thermodynamics of a reference potential by an OP pro-
cedure carried out on a classical potential with a completely differentiturad

form.

3.1 Embedded-atom potentials.

As it is well-known, in a metal a substantial fraction of the cohesive energy

due to delocalized electrons. Modeling interatomic forces in a system of this
kind leads, in the Born-Oppenheimer approximation, to a classical Hamiltonian
depending explicitly on atomic coordinates only, but it is quite unrealistic to model

the electron density dependent cohesive term by a simple two body potential[76].
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To overcome this problem, several so-called embedded-atom potentials or glue
model have been developed. In these potentials the total energy for a monatomic
system is assumed to be of the form
N
E = Y E
k=1
B = X [0 )+ F (o) 31)

J(#k)
where N is the number of atomsp (R) is a two body potential keeping into
account electrostatic interaction and overlap repulsios a function of the posi-
tions of the neighborsi§ of atomk, mimicking the electronic density experienced
by atomk due to the presence of all the other atoms, Bnsl a suitable non-linear
function of p. SinceF (p) is a non-linear function of the atomic positions, forces
arising from the potential (3.1) are in general of the many-body kind. Among the
several functional forms fob, F' andp that have been proposed in the literature,
we have chosen to use in this work the one proposed by M.I. Baskes [77] (the so-
calledmodified embedded-atom potengiaécause it is the most general and rich
we could find (e.g. it includes explicitly angular dependent many body terms) and
the one proposed by A.B. Belonoshko and R. Ahuja [78] because it was developed

specifically for iron at high P-T conditions. In the rest of this Section, wdligrie

review these two functional forms.

3.1.1 Modified embedded-atom potentials

In the modified embedded-atom potentials developed by Baskes[77], the two body
potential® (R) is determined by the zero temperature properties of the monatomic
solid in a suitable reference structure, i.e. in a crystal structureemhetailed

informations are available (e.g. the equilibrium structure of the system).rin pa
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ticular, the two body potential is assumed to be of the form
[E(R)~ F (5" (R))] (3.2)

where Z, E(R) and p° are the coordination number, the energy per atom (as
a function of the atomic distanck) and the density function evaluated in the
reference structure. With this definition, the physical properties of theerater
structure (in particular the zero-temperature pressure-vs-volume eqobsiate)

are automatically reproduced by (3.1) whatever functional formHAaand for

the density is chosen. The functiéh(R) is, by definition, the zero temperature

equation of state of the atom. The equation of state is assumed to be of the form

ER) = —E((14+a)e™®)
a = « <}% — 1> (3.3)

whereFE is the cohesive energR, is the zero-pressure nearest-neighbor distance
anda = /9BQ/E,, where B is the zero pressure bulk modulus afds the

Zero-pressure volume per atom.

The embedding functiof” has the form

(3.4)

(3.5)

The functions, are dependent upon the relative angular positions of the neighbors

R

of atomé. In particular, ifzf; = < are the direction cosines, we have
]

Po = ZPS (Rji)
(#k)
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p = Z(Z P‘f(Rﬂc)I?‘k)
\a (k)

2
P2 = Z ZP% (Ryk)%akxfk) -
3(#k)

Wl

ps (Rjr)
\ of (3(2?5;) )

2
p3 = Z ZP% (&@ﬁﬂfﬁ%) (3.6)

\ o5 \in

wherepf = exp (—ﬁl (R% — 1)) . The eight parameters,, ¢;,, [ = 0,...3 are
determined, in Baskes work, from the experimental shear constants and stacking
fault energies. At variance with Baskes procedure, these parameigesher

with the other four that define a potentiaky( Ry, A and E,) are determined, in

our procedure, by fitting ab-initio forces and stress, as will be discussdwin t

following sections.

3.1.2 Belonoshko potential

Belonoshko and Ahuja have also developed a potential of the embedded atom
form (3.1) for specific application to iron at ICB conditions[78]. The embedded-
atom potential they employ is simpler than the one used by Baskes (it does not
include angular-dependent many-body terms), but it is of completely different
functional form (e.g., the dependence of partial densities on interatomic distance
is a power-law, while in Baskes’ potential it is exponential). This provigdedith

the possibility to test the robustness of our procedure, as described in Section 6

this Chapter.
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The pairwise tern® (R) is assumed to be of the form

o (R) = (%)” — Cgéw + D [exp (—2a (R — Ry)) — 2exp (—a (R — Ry))]
(3.7)
where the first term is a short-range overlap repulsion, the second termvisrthe
der Waals attraction and the third term is of the Morse form. The many-bady ter

has the form

F(p) = Cp? (3.8)

v 3 (w)

J

The nine parameters of the potential, (n, Cyqw, D, o, Ro, C, B andm) are
optimized, in Belonoshko and Ahuja’s original work, by fitting structure, thermal
expansion and compressibility af v ande iron at 300 K and 1 bar, the-iron
equation of state between 22 and 37 GPa, and by imposing that, at ambient con-

ditions, bcc is the stable form of iron.

3.2 The force-matching procedure.

The most important ingredient of our optimization procedure is a force-matching
step, performed on a microscopic configurattbof N particles on which first-

principles stress%

wi,5=1,2and forceF¢,i =1,..., N have been computed.

The goal of a force-matching step is to generate a potékititdat fits accurately
these forces[75] and stress. The requirement to fit also the ab-init&s stre
proved greatly the capability of the fitting routine to find the correct basir-of a
traction. This is because, for a system with many-body forces, the stnestas

trivial function of the forces like in the two-body case.
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The interatomic potential is defined, given its functional form, by its set of pa-
rameters{a}. The force-matching procedure consists of minimizing with respect

to {a}, the distance

S F (o)) ~Fef 3| (o) = Sl

D({a)) = (1 —w) =S S ET

(3.9)
whereF; ({a}) and Sj; ({«}) are the force on atomand the stress tensor, as
obtained with parameterizatidia:} from the classical potential and, (0 < w, <
1) weights the relative contributions of forces and stress in the fit. In spewa
cases (e.g. when a large number of parameters was used) it was necessary to
constrain the value of the parameters around some "reasonable” wdlugkis

was done by including in the distance (3.9) a supplementary term of the form

Zwi (Oéi — @?)2
i

wherew; are suitable weights.

Given the complication of the functional forms of the classical potentials used,
the distance (3.9) has usually multiple local minima. In the present optimization
procedure, a large set-(100) of potentials which minimize the norm (3.9) is
produced by direct Powell minimization starting from randomly chosen impgal
rameters. Potentials such tia{{«}) is too large (> 0.05 for the force contribu-
tion and> 0.01 for the stress contribution) are immediately discarded. Moreover,
a run of~ 1 picosecond is performed with every potential, and the ones with bad
energy conservation are discarded as well. This selection is necdsszyse
no strong bounds on the value of the parameters defining the potentials are intro-
duced, and this can lead, by the minimization procedure, to potentials with sharp
derivatives that fit the ab initio forces and stress with a good accusatgannot

be used in a long MD simulation.
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The required accuracy can be achieved with potentials with differentygara
ters or even different functional forms (in particular of the generalizelesited-
atom form or of the Belonoshko form[77,78]) and we will see in the following
section that, if the microscopic configuration where these potentials are ppdimi
is chosen in a suitable manner, all these potentials describe, within besroa|

the same thermodynamics.

3.3 Self consistent generation of an optimal poten-
tial

The theoretical core of our procedure is the assumption that if potentials generated
by a force-matching methodre used in physical conditions that are not too far
from the one of the microscopic configuration used to optimize,ttienaccuracy
of the fit, together with the requirement of conservation of energy, is enough to
ensure that any thermodynamic observable, calculated by any of these patentials
will coincide within a small error (depending only on the accuracy of the fit). Po-
tentials satisfying this condition will be called in the followingtimal potentials
(OP), with the understanding that every OP is associated with a partuhyaical
condition, defined, in the case of iron, by pressure and temperature (the possibility
of phase transitions at a given pressure and temperature is discussedlimdetai
Section 5).

An example of the accuracy that can be obtained with our procedure is given
in Figure 3.1 (upper part), where the average density of liquid iron at 5500 K and
330 GPa calculated with some OPs is plotted as a function of the constanirpress

MD run time. The potentials are obtained by a force-matching procedure on dif-
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Figure 3.1:Average density as a function of simulation time for twelve potentials
optimized at 5500 K and 330 GPa. Each line style corresponds to potentials
optimized on different configurations. The simulations are carried out with a 320
atoms cell, at a temperature of 5500 K and at a pressure of 330 GPa (upper part)
and 230 GPa (lower part). Note the small spread at 330 GPa and 5500 K (where
the OPs have been optimized) and the larger spread for the same potentials used
at 230 GPa, indicating non-transferability. (Clearly, at 230 GPa a new set of OPs

could be constructed, with spreads as small as the 330 GPa ones.)
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ferent microscopic configurations (each line style corresponds to a different mi-
croscopic configuration) fulfilling the condition outlined above: the microscopic
configurations are, in a sense that we will define more rigorously in the following,
at a temperature of 5500 K and at a pressure of 330 GPa. All densities coincide
within 0.4 % (the variance is 0.2 % only). The parameters defining the potentials
used in Figure 3.1 are reported in Table | (all the potentials are of the modified
embedded atom form introduced in Section 3.1.1, with no angular components
(t; = 0 for=1,2,3 in (3.6), with a cut-off of 8 a.u. for the density-dependent part,
and of 12 a.u. for the two-body part):

o] Ro[a.u.] | « Eo[Ht] | A

2.786 6.4932 | 9.5329 | 0.002195| -6.79499
10.83410| 5.2190 | 3.95768 | 0.0159 | 0.3299
-18.6855| 6.9456 | 11.177 | 0.000481| 0.3506
10.2735 | 5.1973 | 4.245 0.0635 | 0.09671
12.2422 | 5.6778 | 6.2861 | 0.01801 | 0.04013
3.5348 | 5.7603 | 7.9766 | 0.01124 | 0.35985
9.6745 | 6.7919 | 9.6997 | 0.00216 | -0.3952
14917 |6.7673 | -3.433 | 0.0137 | 0.00551
11.3285 | 5.6339 | 9.8181 | 0.00273 | 0.3361
11.2928 | 4.8874 | 0.0165 | 0.0388 | 0.2229
11.043 | 4.7544 | 0.0519 | 0.0379 | 0.3352
12.6624 | 5.5988 | -0.00261| 0.00915 | 0.1398

Table I parametrs of the potentials used in Figure 3.1 and 3.2

Despite of the simiarity in the values of the average densities at 330 GPa and
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5500 K, the parameters defining the potentials are very different. This gigifa

the behavior of optimal potentials extends much further: all the thermodynamical
observables (elastic constants, diffusion coefficients, melting temopeyaiscos-

ity, etc.), if calculated by these potentials, have approximately the salume(see
Figure 3.2 for a comparison of diffusion coefficients calculated with the same po-
tentials and at the same conditions of figure 3.1, and Section 3.5 for a comparison

of melting temperatures, heat of crystallization and density jump atmgglt

The condition that the potentials have to be used in conditions that are close to
the ones of the microscopic configuration on which they have been optimized is
crucial: in figure 3.1 (lower part), the density at 5500 K and 230 GPa as caldulate
with the same potentials used at 5500 K and 330 GPa is reported. The spread in
the predicted values of the density is now much bigger (more than 1 %). This
shows that the very small spread in density values observed at 330 GPa can be
obtained only at a price of a quite weak transferability of the potentials. For thi
reason, the potentials have to be used only in a small neighborhood of the physical
conditions where they are optimized (experience has shown that our potential are
transferable, with the accuracies we require, within a window o030 GPa in
pressure ané- 500 K in temperature around the P-T point where the potential is

fit).,

There are two different methods to ensure that a microscopic configuration is
a "good representation” of a given thermodynamic state (defined, in our case, by
pressure and temperature). The first one is to perform a constant P-T ab-initio
molecular dynamics run on the system of interest and optimize the potaitéal
equilibration This possibility, although very reliable and feasible for a large class

of system, is not realistic for iron, given the cost of performing a single maecul
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Figure 3.2: Mean square root displacement (msrd) as a function of simulation
time for twelve optimal potentials (the same of Figure 3.1). msrd are averaged
on 20 runs carried out with 320 atoms cells, at a temperature of 5500 K and at
a pressure of 330 GPa. A time step corresponds to 0.967 fsec. The observed
spread between the curves of msrd-vs-time corresponds approximately to a 25 %

of uncertainty in the diffusion coefficient.
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dynamics step.

The second possibility is to perform an iterative procedure, in which the dis-
tance from convergence is defined by the variation, on iterationgcoh#ol vari-
able i.e. a macroscopic observable different from the ones fixing the thermody-
namic state of the system (pressure and temperature). In the case of ilwaveve

chosen the densityat P-T as the control variable.

Constant P-T
classicd dynamics
(100 ps)
—» STOP
v p Vi+

A new potential V is
L optimized with ab-initio —
forces and stress

Figure 3.3:lterative procedure for constructing optimal potentials at P-T

The iterative procedure is the following (see also figure 3.3). A trial many-
body interparticle potentidl, [77, 78] is used to produce a classical trajectory for
a (small) numberV of particles in the isothermal-isobaric ensemble at P-T; the
densitypy, averaged on this trajectory, is calculated. In the resulting configuration
C, first-principles stress and forces are computed, and a new pofeénisagener-
ated by a force-matching procedure[75] on this configuration. The configuration
is then evolved with the new potentig], still at P-T, and a new average density
p1 is calculated. Ifp; — py|/po is small (less thah x 1072 in the case of iron) the

classical potentidl; generated in this way is accepted as optimal at the given P-T
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conditions, otherwise the procedure is iterated, generating in this way a sequence

of potentialsl;, each of them defined by a functional form and a set of parameters.

As stated abovéy; is not unique, since other potentials differing in the choice
of the parameters and/or of the functional form can satisfy the required fitting
accuracy on forces and stress (an example is provided by the potentialsén Tabl
). All the potentialsV; can be thought of as belonging to a cl435}, defined
completely by the configuratiofy and by the accuracy of the fit. Potentials be-
longing to the same class produce (at the same P-T conditions), the same density,
within an error ofAp, and the same value for a lot of other thermodynamic ob-
servables (an example of this property is given in figure 3.1, in which every line
style corresponds to a different class akgl/p ~ 0.4 %, and in figure 3.2). The
iterative procedure is stopped if the classes of potentiglsand{V;,;} produce
the same density within 0.5 %. This implies that the two classes desciitibea w

rather good approximation, the same thermodynamics.

It should be noticed that the number of iterations that had to be carried out
to optimize potentials for iron was in fact seldom larger than three: the there
thermodynamics of the system was becoming clear, both from previous calcula-
tions, and from comparison with experimental data, the easier it was to guess

reasonable trial density at P-T, thereby speeding up the procedure.

It also has to be underlined that the potentials are optimized using rathér smal
cells (the number of atoms that can be treated in fully ab initio calauatis
limited) while thermodynamic quantities, such as the melting temperattge, a
most of the times computed on much bigger cells. This provides accurate results
only if the range of interatomic forces is smaller than the size of the celief t

ab initio calculation. In this work, ab initio quantities are computed on 64 atom
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cells, thus at least 3 nearest neighbor shells are included for every atdma in t
simulation. We believe the error induced by this approximation is much smaller
than other errors implicit both in the procedure and in the ab-initio calculation
itself (e.g. poor k-points sampling).

To give an idea of the overall efficiency of this method, if applied to iron at
high P-T conditions, the total number of ab-initio minimizations on independent
64 atoms configurations that it was necessary to perform in order to chazacteri
the full high P-T phase diagram of iron4s 100. The equivalent number of time
steps that we could have afforded in a single "brute force” ab-initio molecular
dynamics run isv 600, i.e. less than 2 ps of trajectory (with a 40 a.u. time step).
This time would have been hardly sufficient to thermalize the systieansingle

pressure and temperature.

3.4 Estimation of errors due to the optimized poten-

tial procedure.

A very important property of potentials optimized by a force matching step is
that the more the optimization procedure has been accurate, the more the Born-
Oppenheimer surface of the ab-initio potential is locally tangent to the constant
energy surface of the classical potential (in particular, if the norm (3.@xc the

two surfaces coincide in a neighborhood of the configurafipnOf course, this

is a local property, and nothing, except for the functional form of the potential,
constrains the two surfaces to remain close to each other fard@roNeverthe-

less, it is interesting to study the differences and similarities ofvtleedynamical

systems (defined by the ab-initio and by the classical potential respgttiael
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fromC.

Let us denote byp, ¢) the canonical variables defining the system,7bip)
the kinetic energy, by, (¢) the ab-initio potential energy, and By, (¢) the
potential energy of the classical optimized potential. By a molecular dynamics
simulation, the trajectory of the system defined by the optimal potentialrgjarti

from the configuratio® can be computed. We denote this trajectory by

(pta Qt) . (3.10)

This trajectory conserves the initial energy, i.e.

Eop(t) =T () + Vop (@) = T (po) + Vop (¢0)

but, of course, it does not conserve the ab initio energy i.e.

Eoi(t) =T (pe) + Vai (@) # T (po) + Vai (q0)

A quantitative measure of the quality of the optimized potential is given by the
behavior with time of the distance between the two surfaces far awaydroen

of the quantity

At) = [Eu(t) = Eai(0)] = [Eop(t) — Eop(0)] =

= [Vai(g) = Vai(g0)] = [Vop(ar) = Vop(g0)] -

A (t) has to be very small for a very good quality OP: if the OP is able to
reproduce exactly the first-principle forces and stress, the OP consesvabal
ab-initio energy and\ (1) = 0. The average value ak (¢) , if compared to the
error that can be accepted on thermodynamic observables, is a very reledle m
surement of the predictivity of the optimized potential. To give an example of the

level of accuracy that can be obtained with our procedure, in figure 3.4 we plot
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Vop (@t) — Viop (q0) andVy; (¢:) — Vi (qo) as calculated on 12 different configura-
tions 200 time steps far apart along the classical molecular dynamics run. The OP
has been optimized on the first configuration (at 200 GPa and 4100 K, on solid
iron). The optimal potential is able to reproduce the variations,pfvith an ac-
curacy better than 100 K, when the variation of the potential energy is larger tha
1500 K, i.e. the value oA(¢) is smaller than 100 K in all the twelve configura-
tions where first-principle energy is calculated. Moreover, the errors gntend
to compensate, so that its average value is smaller than 30 K .

Theinternal energyof the system(V,; (¢)) is estimated, within the optimal

potential procedure, by

U = Vai (0) = Vop (90) + (Vop (0)) (3.11)

Thus(A) =U — (V,; (q)) is an estimate of the error dn.

The order of magnitude of energy differences that are of interest in the system
IS given, e.g., by the heat of crystallization. This is, for iron at ICB conditions,
approximately 5000 K, as we shall see in the following. Thus, the accuracy ob-
served in Figure 3.4 is sufficient to fix energy differences within a pracisf ~
1 %.

The same kind of comparison can be carried out for the stress evaluated along
the classical molecular dynamics run. In particular, the average ab-stites

(S.i (q)) is estimated, in the optimal potential procedure, by

S = Sui (90) = Sop (20) + (Sop (2)) (3.12)

wheresS,, is the stress evaluated by the optimal potential. In Figure 3.5, the trace
of (Sop (@) — Sop (q0)) @and of (S, (¢) — Sai (o)) are plotted for the twelve con-
figurations of Figure 3.4. The quantity defining the predictivity of the optimal
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Figure 3.4:Comparison between potential energies as obtained by an optimal
potential and by ab-initio calculations, along a single OP trajectory. Full line: po-
tential energy in a classical run performed with an OP generated at 200 GPa and
4200 K. Squares: first-principle total energy, referred to the ¢ = 0 configuration,

computed at intervals of 200 time steps along the OP trajectory.
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potential is the difference between the two OP and the first-principlesstidse
OP is able to reproduce the first-principle values with an accuracy be#erlt
GPa in all the twelve configuration, The average value of these erre¢s0i8
GPa, corresponding once againt60 K (VAP) on an energy scale. The error in
atomic volumel” due to this error on the stress can be estimatediby- 1725,
whereB is the bulk modulus (at 200 GPa the bulk moduRiss ~ 1000 GPa ),
thus the errobV/V is less than 0.5 %.

Stress difference [GPa]
)
——

-10 L 1 N 1 N 1 R 1 N 1
0 500 1000 1500 2000 2500

Time steps

Figure 3.5:Comparison between stress as obtained by an optimal potential and
by ab-initio calculations, along a single OP trajectory. Full line: trace of the stress
tensor in a classical run performed with an OP generated at 200 GPa and 4200
K (same run as in Figure 3.4). Squares: first-principle stress, referred to the ¢t = 0

configuration, computed at intervals of 200 time steps along the OP trajectory.
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Expressions like (3.11) and (3.12) for the internal energy and average pressure
are very powerful, since they allow the estimation of the thermodynamrages
(Vi (@) and(S,; (¢)) with a very small error and at the cost of a single evaluation
of ab-initio quantities (in the configuratiaf). If the observable that has to be
computed depends on the size of the system, or if its evaluation requiresallassic
MD runs with a number of particles much larger thanl100, the expressions
(3.11) can be generalized as follows. N,; is the number of particles in the
configurationC (where ab-initio quantities are computed) aNg is the number

of particles used in the classical simulation, we have

<V;1i (Q)> ~ Vai (qO) B ‘/op (qO) + <‘/op (Q)>
Ncl - Naz’ Ncl

where the averages are taken over trajectorie¥ pparticles. This expression
easily allows a size-scaling analysis of the observables, but, asreasdgldis-
cussed, it is correct only if the range of the forces is smaller than the sibe of

cell used to optimize the potential.

3.5 Calculation of melting temperature by optimal
potential technique.

As is well known, the calculation of the melting temperature is a non-trigisk t
even for systems where a good statistical sampling can be afforded[74].

In this Section, we describe a method for estimating the melting tempera-
ture T,, through the optimal potential technique. Sincg iE not known a pri-
ori, the OP technique cannot be applied straightforwardly like for the internal
energy(3.11). In fact, the temperature is, together with pressure, the ediiabl

ing the thermodynamic state of the system. This imposes the use of a further
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iterative procedure, leading, at the end, to a classical potential tbatireal at
P-T,, and whose melting temperature is exadtly. This last property defines the

melting temperature within the optimal potential procedure.

A first trial ; ; ;
melting J| an optimal potential at P-T e iS
temperature generated :
Tgu&ss is
asumed
K
|_E h 4
”g The meiting temperature T g, of
g |thisglueis calculated by
"] | classical todls (phase coexistence

method).

if T, doesn’t change by iteration:
CONVERGENCE

Figure 3.6:lterative procedure for calculating the melting temperature at a given

pressure by the optimal potentials.

The iterative procedure (also described in Figure 3.6) is the following.iigiart
from a trial T2, an OP class is determined at ,and the average melting tem-
peraturel’! of these potentials is computed; a new OP class is then determined
at P-T:, and the procedure is iterated untj|'t ~ T¢ . At the end of the iterative
procedure, all the values for the melting temperature calculated witHasa of
OP-s turned out to coincide withinn100 K, that gives the estimated error or, T
due to the OP procedure. In Table Il the melting temperatures of potentials opti-
mized at 330 GPa and at the temperature reported in the cdiynare reported
, together with the density jump at meltingp/p, the density of the liquigh, at
melting and the heat of crystallizatiah/H. The potentials optimized at 5400 K
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are at convergence with respect to the iterative procedure descrilbesl $ettion.
The spread of the observables//p, p, and A H) within the class of converged

potentials defines the uncertainty due to the OP procedure.

It should be noted that it is n@t priori obvious that the same classical po-
tential can describe with good accuracy both the solid and the liquid, everyif the
are at the same temperature and pressure, and a reliable calculatiomeitihg
temperature is possible only lioth the solid and the liquidre described with
equal accuracy. This requirement imposed a further test of our method. In fact,
the optimization procedure can be carried out, in the vicinity of the melting, both
on liquid and solid trajectories. The first six potentials in Table Il havenbmpti-
mized on liquid samples only, while the last 6 on solid samples only. Firth#y,
thirteenth potential has been optimized using both liquid and solid configurations.
The averagd,, of the set of potentials optimized on liquid samples (keeping into
account converged potentials only)~s100 K higher that the average value for
set optimized on solid samples. This difference might indicate a possible change
in the electronic structure between solid and liquid iron at ICB conditionscdrat
be described neither by classical potentials of the functional form [78] and [77]
nor, probably, ofanyfunctional form. Since 100 K is a rather small error (of the
order of magnitude of the spread ip, Within an OP class) we accepted our results
on melting temperature as sufficiently reliable. Nevertheless, thsapancy is
very likely to become more important in systems where relevant changein e
tronic structure occur at melting (like silicon), and the errors assatiaith the

OP method in these systems is likely to be larger.

In brief, the total estimated error on,,Tof iron at ICB conditions £100 K)

reflects variations of ;J, obtained with different OP-s and this small discrepancy
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between OP-s optimized on solid and liquid samples. Errors due to the ealcula
tion of 7,,, using each classical potential (see the following of this section) were

checked to be« 100K, as is typical for these kind of calculations.

Potential ToptlK] | TwlK] | pulglem?] | Ap/p x 100 | AH x 10°J/Kg
fit to:

liquid 5700 5605 | 12.733 | 1.45 74
liquid 5700 5200 | 12.677 |1.6 .65
liquid 5700 5490 | 12.722 |1.44 .67
liquid 5400 5280 | 12.701 |1.62 .65
liquid 5400 5385 | 12.704 |1.54 .69
liquid 5400 5437 | 12.737 |1.64 .69
solid 5200 5547 | 12.765 | 1.36 74
solid 5200 5685 | 12.748 | 1.87 .76
solid 5200 5300 | 12.757 |1.62 73
solid 5400 5510 |12.714 |1.78 71
solid 5400 5470 | 12.715 |1.85 v
solid 5400 5450 | 12.731 |1.82 .69
liquid+solid | 5400 5490 | 12.707 | 1.58 .68

Table II: Melting temperature, density of the liquid at melting, density jump at
melting and heat of crystallization at 330 GPa computed with OPs optimized on
liquid samples only, solid samples only and both liquid and solid samples at 330

GPa and at a temperature T,,;.

The solid-liquid coexistence method was used as the melting criterion on each

classical potential[79]. This method consists in performing a simulatiotarfa
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(up to 6000 particles) system, with a sample that is prepared, by a suitable con-
strained dynamics, half molten and half frozen (as can be checked from the be-
havior with time of displacements of the particle from the initial positiorfghit
crocanonical MD is used, and if the initial temperature is not too far figmthe
sample tends to stabilize at the melting temperature: e.g., if the imtigé¢rature

is higher tharil},,, some of the frozen part will melt, decreasing the temperature
proportionally td\I’V—mHm, whereH,, is the heat of crystallization andl,,, /N is the

fraction of the sample that melts during the simulation.

Since freezing and melting are accompanied by substantial changes of volume,
it is essential to perform the simulations at constant pressure. In thelisoiid-
coexistence method, liquid and a solid are piled up along the z-axis of a cell,
and the cell dynamics is required to conserve this symmetry. Since theacgerf
between liquid and solid is orthogonal to the z axis, such an inhomogeneity of
the sample might cause instabilities if the cell were to be evolved bynalata
Parrinello and Rahman dynamics[80]. Our simulation are thus carried out with
a first (quite short) thermalization run at a temperature estimated ttobe to
T,,, leaving the z axis free to evolve with a Parrinello and Rahman-like dysgami
This process equilibrates the liquid part of the sample at the required predasure,
some residual xy-stress remains in the solid part. A microcanonical runris the
carried out with a Parrinello Rahman dynamics for the z axis and, independently,
on the x-y plane (this is achieved by setting to zero theand zy components
of the stress). In this way, the solid fraction of the sample is alsotfreelax to
zero-stress conditions. By this procedure it is possible to estiijatgithin an
error of 50 K using a single run @ 30 ps if the initial guess off;,, is correct to

within 300 K (for a system witlAS ~ kg like iron at ICB).
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An additional feature of the solid-liquid coexistence method is that by this
approach it is possible not only to compute the melting temperature, but also to
distinguish the most stable solid phase before melting. If, e.g. a sample of liquid
in equilibrium with a solid phase A stabilizes at 1000 K, while a sample of liquid
in equilibrium with a solid phase B stabilizes at 1100 K, we can conclude that
the stable phase of the system before melting is B. If A is the stable form of the
system at T=0 K, this indicates the existence of a solid-solid phase toanfsaim
A to B below melting. With this approach we to checked the relative stigisilof

bcc and hep iron at ICB conditions (see the following Chapter).

3.6 Test of the method by a classical reference po-

tential.

The OP method has been tested using a classical "reference potentrathevit
functional form (3.7) (3.8) playing the role of the first-principle potential, and by
optimizing, using our procedure, a potential of generalized embedded-atom form
(3.2), (3.3) (3.4)in order to reproduce thermodynamical quantities provided by the

reference potential, including the melting line.

At variance with the case in which the reference potential is the firstipte
potential, in this case the predictions of the method can be directly compared
with the exact values of the observables, as computed by molecular dynamics run

performed with the reference potential.
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The potential parameter that have been chosen for the reference potential are

A =1.9779 au Ht'/™ D = 2.389 10~2H¢t a = 1.018au
B = 6.1287au n==6 Ry = 2.004au
C =1.1301 10 2 Ht m=8.5 Claw = 9.6856 Ht au®

Potentials of the functional form (3.2), (3.3) (3.4) are able to fit forces and
stress generated by potentials of the form (3.7) ((3.8) with approximately the same
accuracy that can be obtained if first-principle forces and stress ac fitt

As afirst check, we repeated the comparison performed in Section 3.4 between
observable directly calculated with the reference potential (theginstiple po-
tential in Section 3.4) and the OP. Since the reference potential is in $esaca
classical potential, we could calculate and compare the observables (anergy
stress) on a full run and not only on few configurations as in Section 3.4. The
behavior observed in Figure 3.4 and Figure 3.5 is fully recovered, i.e. the OP is
able to reproduce the potential energy and the stress as computed with the ref-
erence potential with an accuracy better than 100 K and 1 GPa respe¢sigely
Figure 3.7). The behavior ak (¢) as a function of time along the OP run is also
reported in Figure 3.7 (lowest part). This last curve is a very relialdlasurement
of the quality of the OP since it indicates that the reference potential totegyene
is almost exactly conserved (within 100 K) in the MD run performed with the
OP.

Finally, we calculated some thermodynamic quantities provided by the refer-
ence potential by the OP technique described in this Chapter. The accuracy ob-
tained is very good both for equilibrium and dynamic properties. E.g., the melting
temperature of the reference potential at 330 GPa is 5600 K. This value is repro-

duced by the optimal potentials within 50 K. The density jump at melting at 330
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Figure 3.7:Comparison between calculations performed with the reference po-
tential and with an optimal potential. Dotted line: reference potential (of the form
(3.7) and (3.8). Full line: optimal potential (of the form (3.2),(3.3), (3.4)). Higher
part: trace of the stress tensor in a run performed with 64 particles at 330 GPa
and 5500 K. Middle part: potential energy in the same run. Lower part: total

energy.
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GPa, averaged on six different OPs, is 1.79.() %, only .11 % higher than the

exact value (1.68 %).



Chapter 4

Calculated properties of iron at

Earth’s core conditions

The method outlined in the previous chapter is now applied to the calculation of
the properties of iron at high pressure conditions. Some of the quantities that
are calculated here, in particular the room temperature elastic constaohthe
shock-wave compression equation of state and sound velocities, can be directly
compared with experiments, thus supporting the validity of the method. In other
cases (e.g. for the melting temperature), a comparison with experimdmse w
available, is more delicate, due to the large spread of experimental data. O
predictions will be discussed in details also concerning their geophysicatampli
tions.

This Chapter is organized as follows: in Section 4.1, experimental and theo-
retical room temperature elastic constants are compared and it is shaiout
method is able to reproduce the experimental values within few percent of accu-
racy. In Section 4.2, we discuss the application of the method to the calculation

of the melting line of iron between 100 GPa and 330 GPa. Our predictions are
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shown to be in good agreement with DAC measurement, up to the highest pres-
sure where they are available, but not with the values extracted from shenek-w
measurements. Results on other observables related to the melting, sheh as
heat of cristallization and the density jump, are also presented and didduass
terms of geophysical implications. The density of liquid and solid iron at melting
and at 330 GPa, i.e. at the inner core boundary pressure, is computed in Section
4.3 (we already recalled that the difference between this value and théydensi
Earth’s core at the ICB is a quantity of great geophysical relevance, singe-it ¢
strains the amount of light elements in the core). Theoretical values for tke bul
and the shear velocities at ICB conditions are computed as discussed onSecti
4.4, where we show that an inner core entirely composed of hcp iron and a mi-
nor amount of impurities is perfectly compatible with seismological data.lligina

the theoretical shock-wave compression line, the so called Hugoniot, isataidul

and compared with experiments in Section 4.5.

4.1 Room temperature elastic constants

Room temperature elastic constants have been recently measured up to 240 GPa
awork by Macet al[12], and have been recently calculated with ab-initio methods
[23]. This provided us the possibility to test the OP method, by comparing our
results with well-settled experimental measurements and independerstitaor
estimates.

The low temperature elastic constants are obtained in our procedure by the
finite-strain method [23], thus neglecting differences between 0 K and 300-K val
ues, on a potential optimized at 210 GPa and 300 K, i.e. at the highest pressure

reached in the experiment. At such low-temperature conditions, the inclusion
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of angular-dependent many-body forces in the functional form for the potential
proved essential to produce a satisfactorily fit of ab-initio forces aresst(in
particular, the inclusion of these terms is essential to reproduce the othsenve
ideal c/a ratio). As the temperature increases, the inclusion of angular depende
components does not significantly improve the accuracy of the fit. Therefore,
close to the melting line, angular components can actually be neglected.

In the finite-strains method, elastic constants are computed as the seceond deri
tives of the energy (computed for fully relaxed atomic positions within thg cel
with respect to the strain tenseg. In particular, we have[81]

1 OF

Cij - Vaﬁian

(4.1)
whereg; is directly linked to the strain tensey; by the relations

€, — & for Z:1,2,3

€4 = €23, €5 = E€13 € = €12

In the hexagonal lattice, there are five independent elastic constantsC¢,
Cs3, Cyy and G3. Other elastic constants can be obtained as linear combinations
(.9.Cs6 = C11 — C12)[81].

The five independent elastic constants can be calculated by applying five in-
dependent strains and estimating the second derivative of the energy witbtrespe

to the applied strain. E.g., if the strain is

0 0 )
e(@) =10 2(1-6) 0
) 0 0

the change in total energy is,

E(0) =E(0)4+2CuVé + 0 (5
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and this gives us’y,.

The low-temperature elastic constants, as calculated by our procedure, are
shown in Table I. They compare satisfactorily with full ab-initio edétions[23]
and also with recently revised DAC data[5]. The error on these quantitiesodue
OP procedure (again estimated as the spread of the quantity within the single OP
class) is 5 %.

Bulk and shear modulus are computed as \Voigt averages|3], i.e. are given by

1

B, =~
9

(4C11 4+ Cs3 + 4C43 — 4C%p) (4.2)

1
Sy = 15 (Ci1 + C3 — 2C13 + 5C14 + 6Cis) (4.3)

The error on B and S is ~ 1%, smaller than the error on single elastic con-

stants (possibly errors on single elastic constants tend to compensat&apitsot

averages).
Elastic constants of h.c.p. Fe at 300K and 210 GPa
Cll C12 033 C13 C44 Bv Su
Th: opt. pot. 1554 | 742 | 1796 | 820 | 414 | 1074 | 414

Th: ab-initio [23] | 1697 | 809 | 1799 | 757 | 421 | 1085 | 445
Exp: D.A.C.[5] | 1533 | 846 | 1544 | 835| 583 | 1071| 396

4.2 The melting line of iron

The melting temperature of iron at 330 GPa is a quantity of great geophysical
interest, since it constrains the temperature of the Earth at the ICB.

The full melting line of iron between 100 GPa and 330 GPa was computed
with the method outlined in Section 3.5. As already discussed, this method pro-

vides an estimate df,, with an error of+100 K, as estimated by the spread of
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T,, within a class of optimal potentials. In principle, since the stable phaserof ir

at ICB conditions has not been unambiguously determined, one should compute
the melting temperature of all the possible phases, the stable one being the one
that melts at the highest temperature. In this work, only hcp and bcc are explic-
itly taken into account. hcp is considered in the literature as the most peobabl
candidate phase for iron at ICB conditions [33]. Iron in fact remains in the hcp
phase {-Fe) at room temperature up to very high pressure (more than 400 GPa
[43]). bcc, even ifitis calculated to be mechanically unstable at 300 G&oar
temperature [43], has been proposed several times as the high temperature phase
of iron 300 GPa [25, 42]. We found that bcc iron melts$00 K below hcp iron at

330 GPa, and- 500 K below at 150 GP&. Since these numbers are well above

our accuracy o, our calculations confirm that hcp is favored with respect to

bcc at ICB conditions. Concerning other close packed phases suggested in the
literature (fcc, dhcp, etc.) it has to be noticed that free energy diffesdmetgveen

hcp and these phase are likely to be smaller than the accuracy of the OP method.
For example, the difference in the melting temperature of hcp and fcc iron at 330
GPa as found by Poirier with thermodynamical arguments is 100 K (in favor of
hcp). This free energy difference is very small and it is comparable wéletror

of the OP procedure. Thus, we decided not to consider the possibility of other
close packed structures but hcp even if these phases have been proposéd severa

times (in the case of dhcp with some experimental evidence in favor [45, 47], as

We also calculated the high-pressure elastic constants of bcc iron closstiog, obtaining
(by the technique described in Section 4.4) very low values for the shefic €asstants. Given
the accuracy that can be obtained with our method on these observables (sae44yta zero or
negative value cannot be excluded. This might indicate that bcc migaldoeat high temperature,

mechanically unstable with respect to more close-packed phases, such as bct and fcc.
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we recalled in Section 1.2.3) with the assumption that the difference wilhige t
not only for the melting temperature, but also for other thermodynamic properties

of geophysical interest, such as the heat of crystallization and the densities.

7000

5000

T [K]

Figure 4.1:High-pressure melting line of iron. Theoretical melting line: thick full
line with error bars. Other lines: DAC melting lines (same line code as in figure
1.1). Error bars with symbols: shock-waves melting points (same line code as in

figure 1.1).

The calculated melting line of h.c.p. iron from 100 to 330 GPa is reported in
Figure 4.1. Our melting temperature is in excellent agreement with laséeche
DAC experiments[31-33], available up to 200 GPa. At the ICB pressure (330
GPa) we find that h.c.p. iron melts at 54@0100) K, only slightly higher than the
value proposed by Boehler (4900K) extrapolating his DAC melting line up to 330
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GPa[31]. On the other hand, our value gy at the ICB is in clear discrepancy

with higherT,, values extracted from shock-wave data[34, 36]. We will see in
Section 4.5 that shock-wave compression data, for what concerns densities, sound
velocities and pressure, are actually in good agreement with our resudtthat

the disagreement concerns only the temperature. As we already pointed out in the
Section 1.2.2, temperature in shock wave experiments is can be only measured
by indirect methods[34, 36], possibly affected by systematic errors. This might
explain the observed discrepancy, suggesting a reinterpretation of thiso€lass

results.

At 330 GPa the calculated density jumyp/p upon melting is 1.6+£0.1) %.
Approximately the same value is observed at lower pressures. The errop on
due to the OP procedure is smaller than thatpdpecause density jumps turn
out to be much less dependent on the choice of the OP than absolute densities
(see Table Il of Chapter 3). Concerning the overall accuracy of our theoretical
density jump, it should be noticed that, as we will see in Section 4.5, the density
differencebetween solid and liquid phases 130 GPa and 3000 K far apart along
the shock-wave compression line is overestimated by 0.3 % only with respect
to experimental data. An even better predictivity is expected in agtagiting
process, where pressure and temperature are unchanged. Thus it is likely that the

overall error inAp/p is not so different from the intrinsic OP error of 0.1 %.

The heat of melting £ H,,) at 330 GPa is 0.71+0.05) x 10° J/Kg, also
rather independent of the OP. This coincides witH,,, as extracted, through the
Clausius-Clapeyron equation, from the density jump and our slope of the melt-
ing line (d7,,/dP ~ 10 K/GPa). The heat of melting is distinctly smaller than

elsewhere suggested [4, 9], except for estimates based on dislocation theory[19]
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SinceAH,, is proportional toAp through Clausius-Clapeyron, the accuracy on
this quantity is expected to be the same as the accuracyporith our value

for AH,,, the iron-freezing contribution to the geodynamo should be smaller than
suggested[9] or, alternatively, the inner-core lifetime should be shorter.

The entropy of melting\S,,, is 0.86 k. This value is, once again, quite small
compared with previous estimate [4]: melting of iron at high pressure conditions
is a process with very small jumps of all the thermodynamic observables at phase
transition (in Section 4.4 we shall see that also the shear modulus of the solid
phase at melting is very small). For a close packed solid with smalhweljump
at melting, the value of the entropy of melting can also be estimated byl#ie re
tion[10]

AS,, = kyIn2 + aBrAV,,

where Br is isothermal bulk modulusy is the thermal expansion coefficient,
AV, is the volume jump at melting, and In 2 is the entropy of disorder due to
the existence of line defects in the liquid that are absent in the solid, andaslthe
term that survives for vanishingyV,,,. With our values ofxr and By (~ 1.6 10°°

K~! and 1400 GPa respectively at 330 GPa and 5400Xy9,, as estimated with
this relation is 0.87;, in excellent agreement with the direct calculation. This
further confirms the overall consistency of our model of iron at ICB conditions.
It is also remarkable that the contributionAd),,, of the volume jump is 0.18,

only, so that purely topological entropy dominatesXk;, ~ 0.69 k).

4.3 Density of iron at ICB conditions

The density of solid iron at 330 GPa and 5400 K is found to be 23001 gr/cn?,
about 2 % larger than the density of the inner core at the ICB (12.76 §rémn
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cording to the PREM model[3]), supporting the presence of lighter elements in
the inner core[17]. For liquid iron we find, at 330 GPa and 5400 K, a density of
12.80 @0.1) gr/cm?. The difference between the calculated liquid iron density at
330 GPa and ;}; and the PREM value for the Earth’s outer core density(12.166
gr/cm?) is ~ 5 % (this difference crucially constraining the amount of lighter ele-
ments in the Earth’s outer core). The values commonly assumed for this ddéere
are rather higher (7 - 10 %) [9, 16]. Keeping into account a possible systematic
underestimation of~ 1 % in our density data, as it can be deduced from zero
temperature EOS data (see Chapter 2) and Hugoniot data (see Section 4.5), our
theoretical estimate for the density deficit in outer core i6 %. We find there-
fore that only the lowest values among those commonly assumed are compatible
with our result.?

As we already discussed in Section 4.2, the presence of lighter elements will
necessarily change the melting temperature of the composite alloy withate®
T,, of pure iron. If ideal mixing between iron and the impurity is assumed, the
melting temperature jJ; of the alloy can be estimated by[4, 10]

AH, (1 1
(-0 = 2 (T——T”) (4.4)

wherezx is the concentration (molar percentage) of the imputigyis the Boltz-

mann constant) H,, is the heat of melting of pure iron and,Tits melting tem-

2Concerning the reliability of our predictions for the density defitivuter and inner core with
respect to pure iron, it has to be noticed that the PREM itself may not besgeta the 1 % level.
PREM values for the densities are deduced within a model in which the vhkmme variables
is not calculatedbut assignefB, 10]. This is the case of the density jump at ICB (assumed to
be of 0.5 g/cm) and of the value for the density at the base of the mantle (assumed t& be 5
glcn?). Thus, comparison with the PREM, although fully meaningful, may allow for very

precise determinations of the core density deficit.
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perature. The concentratiancan be estimated by the relation

T My + (1 — ) mpe

Mimp 1 _ mFre
X Pimp +( x) PFe

= PPREM (4.5)

wherem,,,, andmp, are the atomic weight of the impurity and of irop,,

and pr. are their densities at ICB conditions. We have used room-temperature
equation of state data for FeO, Si and FeS[10] in order to estimateand the
molar fractionz of these impurities (by eq. (4.5)). The corresponding melting
temperature J; in ideal mixing conditions (deduced by eq. (4.4)) is reported in

table:

Pre/ Pimp | T Tan [K]

FeO| 1.3 .16 | 4500
FeS| 1.37 11 | 4750
Si | 215 .099| 4810

T, would coincide with the Earth temperature at the inner core boundary if a sin-
gle impurity would be present. However, it has to be noticed that while impurity
density values as obtained from room temperature equations of state are probably
very reasonable, ideal mixing is a strong hypothesis, often violated in reahsys
(e.g. in Fe-Si at zero pressure[10]). For this reason these temperatueds e

considered only rough estimates.

4.4 High temperature elastic properties

The calculation of sound velocities for hcp iron at inner core conditions is rele-
vant for geophysics, since bulk and shear velocities of the Earth’s core areyhe onl
guantities that can be directly measured by seismological methods[3]. The pres

ence of impurities in the inner core-(2%, as we have seen) could, in principle,
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slightly modify the elastic properties. Nevertheless, like for the imgkempera-
ture, the properties of pure iron are an important reference for any elastielm
of the inner core.

High temperature elastic constants are calculated, following Pdaiaat
Rahman [82], by performing long classical rurs500 ps) at constant pressure
on solid samples 0f1000 atoms with a potential optimized in the given P-T
conditions. The sample is thermalized at the temperature of interest. 50the
ps run, however, the temperature is not controlled. In these conditidiahatic
elastic constants are obtained from strain fluctuations in a constant-gr&dBur

run:
Cij =~ (e;)
wheree; is related to the strain tensey; by the relations (4.2). The strain tensor

is defined with respect to a reference cell that, by definition, is the eetbged

on the whole run. Thus, we have [82]

e = (h{ 'h’hhy' — 1)

1
2
whereh are the cell variables arigsh = (h) . Shear and bulk sound velocities (or,
equivalently, shear and bulk moduli) are then computed using Voigt relations (4.2)
and (4.3). As a test for the consistency of the method, we have also calculated the

bulk modulus by the alternative expression [82]

ksTVy
RUEDS)
whereV is the volume of the cell andl; = (V). The value obtained by this
relation and by eq. (4.2) compare withi9o.
Calculated bulk and shear moduli for hcp iron at 330 GPa and 5400 K are

compared with seismological measurements [3] in Figure 4.2. Our theoretical
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Figure 4.2:Voigt averages(4.2), (4.3) of shear and bulk moduli for compressed
solid iron, as compared with inner-core data and DAC experiments. Lines: room
temperature DAC data [5] (full line: actual data; dashed line: extrapolation). Open
squares: this work (room temperature). Crosses: seismic observations for the
inner core[3]. Full squares: this work (melting temperature). The error bars are

given by the size of the squares.
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values are very close to the seismological values. The 210 GPa room teungerat
data are also reported on the same figure for comparison. This finding is somehow
unexpected for what concerns the shear modulus. In fact, it has been noted that the
value of shear modulus in the solid inner core is anomalously low for a closed-
packed phase, leading to suggestions that additional low-shear phases may be
present there, other than h.c.p. [5, 25]. In a lot of solid metals, the shear modulus
at melting shows, at zero pressure, a reduction of less than 50 % fronwits lo
temperature value [24]. The inner core shear modulus [3] displays a threefold
reduction with respect to low temperature measurements[5] and caosa3]
in pure Fe. Our data show that the shear modulus of compressed h.c.p. iron close
to melting is perfectly compatible with seismic data.

This decreased shear modulus fits very well a Born-Durand picture of melt-
ing[24]. According to this picture, the isobaric thermal dilatation within tbkeds
phase and after melting is linearly correlated with the drop of shear modulus.
This empirical law is apparently verified in a large class of systeamging from
molecules, rare gases, insulators and metals[24]. As shown in Figure 43, als
the shear modulus of iron follows closely this law, even if, in comparisoh wit
standard metals, compressed iron melts much closer to the mechartabilitys
(vanishing shear modulus), which clearly correlates with the small vojump

at melting.

4.5 Calculation of iron shock-wave compression line

The shock wave compression line (the so called Hugoniot) is a very reliableesour
of informations concerning the high temperature properties of materials. Rensit

pressure and sound velocities are either measured directly, or redataegdctor



80

Calculated properties of iron at Earth’s core conditions

800 ‘ T T T T T T T T T ‘ T T T ‘ T T T
r h.c.p. Fe .
- P = 330 GPa -
‘s 600 4
al
S 1
- 1
3 1
=
3 400 —
o 1
£ .
¢ solid (5400 K) .
© L 1
<
d 200 —
i liquid (5400 K)
0 [ IR N SR R 1LJ.._»J |
0 2 4 6 8 10

isobaric dilatation (percent)

Figure 4.3:Behavior of the shear modulus of h.c.p. iron as a function of the iso-
baric thermal dilatation. Open square: X-ray diffraction measurements[5]. Filled

squares: theoretical results. The lines are guides to the eye.

speed by simple thermodynamic relations. The measurement of sound velocity
and densities along the Hugoniot for iron up~0400 GPa by Brown and Mc-
Queen in 1985[13] is considered a cornerstone result for high pressure physics of
iron. The observed double kink in wave velocity (at200 GPa and~ 240 GPa)

led them to suggest the presence of a new high-pressure high-temperature phase
between the phase and melting. This has inspired a large amount of research

in the last fifteen years. Indeed, up to now, their observation has never tween c
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firmed unambiguously. On the other hand, theoretical works based on classical
molecular dynamics [28] have suggested that the double kink in sound veloci-
ties could be a by-product of phase coexistence, therefore strongly dependent on
experimental conditions.

Another observable of fundamental importance is the value of the temperature
along the Hugoniot. A reliable estimate of this quantity, together with a correct
interpretation of wave velocities discontinuities, would be equivalent exaeri-
mental measurement of high pressure melting temperature of iron. Unfortynately
at variance with pressure and wave velocities, temperature in a shenekexper-
iment can be measured only indirectly[36], with possibly large systemabcser
or estimated without keeping into account phase transition[13, 56].

In this Section we introduce a method for calculating a shock-wave compres-
sion equation of state of iron by a suitable use of the optimal potentials. In this
way, we provide the first theoretical estimate of the temperature alongupe-H
niot explicitly keeping into account phase transitions.

In a standard shock-wave experiment, the quantities that are measured are
the shock-wave velocityl{,) and the velocity imparted to the particles of the
sample by the shock wavé/(). By assuming conservation of energy, mass and
momentum in the shocked sample, pressure P, internal energy U and gensity
during the shock can be deduced from these velocities by the so-called Rankine-

Hugoniot equations[10]:

— pOUs
P = U,
P = poUsUp
1

(Up andp, are internal energy and density of the sample before the shock). These
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relations are very useful and reliable, since bothdnd Us can be measured with
great accuracy. Jand U, can be eliminated from these relations, taking to the

so-called Hugoniot equation of state:
1
5P Vo=V)=U -0, (4.6)

(V' is the atomic volume). It should be noticed that thermal equilibrium has to be
assumed in order to derive the Hugoniot-Rankine relations, but this hypothesis is
very likely to be verified almost exactly in shocked samples, asstskawn, e.g.,

by the theoretical calculations of Belonoshko[28].

At high temperature, both™ andU have to be computed as averages on long
runs that cannot be afforded within a fully ab-initio description of iron. Therefore
we solved equation (4.6) by a suitable use of the optimal potential technique.

The volumeV and internal energy/ corresponding to a given pressure

were calculated by the following iterative procedure:

1. afirsttrial temperaturﬁ was assumed, and an OP(&%, T) was generated;
the corresponding atomic volumé was directly calculated. The internal
energy, at variance witht, cannot be directly computed as an average over
the OP run, since the zero of the energy for the classical potential is ar-
bitrary. This arbitrariness is eliminated by refering all the enertpethe
unique quantum energy scale. Thus, the internal eniérggrresponding to

the trial temperaturé; is calculated by
rr __ pref ref 3. ~

where E/¢] is the OP energy in a reference configuratiéli;’ is the ab-

initio energy in the same configuration, afllop) is the OP energy av-
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eraged on a run at pressufeand temperatur@ (see Section 3.4 for an

estimate of the accuracy of this procedure).

2. If U andV dont satisfy the Hugoniot equation, a new trial temperature was

estimated by the relation
1 ~ ~ ~ ~
. [P (VO—V) +Pdv] — PdV + CpdT + U — U

wheredV anddT are the volume and temperature change fiérand 7

that are required in order to satisfy (4.6). Since the volume change can be
estimated by the relatiofl” = X~/adT, whereq is the thermal expansion
coefficient, the new trial temperatufeew was estimated by

aor PV (0-0)
o LPVa+Cp '

The procedure was iterated until the differerjde (VO _ 17> _ (ﬁ _ UO>,
evaluated at the temperatui‘veew was below~ 100 K, i.e. the usual accuracy
that can be obtained by the OP procedure. Siicand« were known, at least
approximately, from previous calculations, usually no more than two iteration
were required in order to satisfy condition (4.6).

Relation (4.6) can be easily generalized to include the possibility of phase
coexistence. In particular, if, at a pressuteand a temperaturé;,, the system
can exist in two distinct phase$ and B (e.g. liquid and hcp), the volume per
atom and the internal energy have to be estimated in both phases. Denoting these
quantities byVs, Vi, U4 andUy respectively, the molar percentagg of phase

A along the shock-wave compression line is solution to the equation

% [P (VO —aaVa— (1 —x) ‘N/B>] = 24Us+ (1 —24) U — Up.
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If this equation admits a solution smaller than one and positive, the volume per

atom and internal energy satisfying the Hugoniot equation (4.6) are

V = xAvA+(1—l‘A)‘73

U = .’L’AﬁA—i-(l—{L’A)f]B

The Hugoniot equation of state calculated with this procedure is compared
with experimental data in Figure 4.4 and 4.5. Shocked iron remains solid up to
a pressure of 195(5) GPa. At this pressure, the temperature is 4000 K, and
corresponds to the melting temperature of h.c.p. iron. BetweentB)5GPa
and 280£#5) GPa the system along the shock-wave compression line displays
phase coexistence. In this range of pressure, the supplemental energy due to the
increasing speed of the bullet melts more and more percentage of the system,
while the temperature, by definition of equilibrium, remains identically equal t
the melting temperature. The molar percentage of liquid iron was calcudated
200 GPa, 220 GPa, 240 GPa and 280 GPa and increases with pressure almost
linearly in the range of pressure considered. Above 280 GPa the system is totally
molten. It has to be remarked that experimental and theoretical stalaitige
along the Hugoniot for phase and for liquid phase coincide within 5 GPa, as it
is evident from Figure 4.4.

The density as a function of pressure on the calculated and experimental shock-
wave compression line are compared in Figure 4.4 (top). The agreement is always
better than 1.4 %, with slightly better agreement at lower pressures. h€be t
retical density is always underestimated with respect to the expeadhuarg, So
that density differences are reproduced within an agreement of 0.3 % for every
pressure. This results strenghtens our predictions concerning density of iron at

inner core boundary conditions:1 % is a small error, of the order of magnitude
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Figure 4.4:Densities (top) and sound velocities (bottom) along the Hugoniot. Full

squares: experiments[13]; circles: theory. Full circles correspond to solid (hcp)

iron; empty circles to liquid iron; gray circles correspond to systems in phase

coexistence regime. The full line and the dotted line are guides to the eye.
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of state-of-the-art ab-initio calculations. Moreover, the same understis ob-
tained also for room temperature densities (see Figure 2.1), and it is probably due
to the GGA approximation or to insufficient k-points sampling in calculating the

electronic wave-function

Experimental and theoretical sound velocities are compared in Figure 4.4 (bot-
tom), showing that our method is able to reproduce the experimental values within
3 %, both in the solid and in the liquid phase. No attempt is done to estimate v

the phase coexistence region.

In Figure 4.5, the temperature along the shock-wave compression line, as cal-
culated with our method is plotted together with the same quantity as measured
by Yoo et al [36], Basset al[34], and as computed by Brown and McQueen[13]
on the base of simple thermodynamics and without keeping into account possible
phase transitions. The agreement of our results with Yoo’s data is not good, espe-
cially at low pressure. At 260 GPa (i.e. at the pressure that is claimbd the
Hugoniot melting pressure by Yaai al), the calculated temperature~s4650 K,
about 2000 K below the measured temperature at this pressure. This discrepancy
suggests a need for reinterpretation of this class of experimental datay aiew
of the excellent agreement of our calculations with DAC measurements for what
concerns the melting temperature. Our data are instead in excellent agteem
with Brown and McQueen’s predictions up to 200 GPa (their estimate iin fa
based on very reasonable assumptions on the values of the Gruneisen parameter
andcC,). Above 200 GPa, Brown and McQueen’s temperatures continue to grow
almost linearly (they neglect any latent heat due to phase transformatidnis),

a substantial change of slope, due to phase coexistence between 195 and 280 GPa,

is observed in our data at 195 GPa. In particular, the temperature coincitis in
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range of pressure with the melting temperature, by definition of thermal equilib-
rium. Above 280 GPa, the system is no more pinned to the melting temperature,
andT grows with a slope higher than the slope observed in solid iron.

All of this provides, in our opinion, a satisfactorily framework to interphet t
available experimental data on iron Hugoniot: our method is able to reproduce all
the experimental data (densities, sound velocities, stability field af pirase and
of the liquid phase along the Hugoniot) , with the exception of temperature mea-
surements by Yoet al[36] and by Bas®t al [34]if the region along the Hugoniot
between the last observed point in thehase £ 200 GPg and the first observed
pointin the liquid phase+ 280 GPa)is interpreted as a phase-coexistence region,
where the temperature is pinned to the melting temperature and sound velocitie

are not univocally defined, since the sample is non-uniform.
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Figure 4.5:Temperature along the Hugoniot. Gray squares: experimental values
from Bass et al [34]. Empty squares: experimental values from Yoo et al [36].
Full squares and black dotted line: estimate by Brown and McQueen based on
simple thermodynamics (the two squares correspond to the discontinuities in the
sound velocity)[13]. Circles: theory. Black corresponds to solid (hcp) iron; empty
circles correspond to liquid iron; gray to systems in phase coexistence regime.
The dashed lines are guides to the eye. The dash-dotted line corresponds to our

theoretical melting line.



Summary and Conclusions

Since the core of the Earth is mainly composed of iron diluted with lighter el-
ements, and since a solid-liquid interface exists inside the core (the inreer cor
boundary) properties of iron close to melting at core pressures are direetiydel

to properties of Earth’s core. In this thesis we have discussed in detaiks sf
these properties that are of particular relevance for geophysics. In partizala
have considered the melting line, the density of liquid and solid iron, the @lasti
properties of solid iron at inner core pressures and the heat of crystalliztion
ICB pressure. All of these quantities were known from experiments and previous
theoretical calculations only very approximately, as we have seen in CHagpte
and therefore a careful theoretical evaluation will probably prove venyfillah
improving the accuracy of Earth’s core models.

The method employed here to provide an estimate of these quantities is based
on the combined use of first-principle and classical molecular dynamics simula-
tions.

A correct account of the electronic structure at the ab-initio level is fundame
tal for an accurate and reliable description of the dynamical properties o&iron
Earth’s core conditions[23, 43, 49]. Our calculations, as we discussed in Chapter
2, are based on a finite-temperature extension of density-functional theory within

the gradient-corrected local density approximation, and on a pseudopotential de-
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scription of the valence electron interaction with the ion core (nucleus plus 1
2s, 2p atomic core states). This theoretical approach gives a low temperature
pressure-vs-density curve for hcp iron in excellent agreement with X-rtayldd
(first-principle densities are 1 % smaller than experiment at all pressures). How-
ever, finite temperature properties can hardly be extracted from brutefii@tce
principles simulations, due to the short simulation times (a few picoseconds) tha

can be afforded nowadays[49].

In this work we make use of the large amount of informations provided by
first-principles simulations to construct a classical potential for iraian ex-
plicit dependence on the thermodynamic P-T conditions. The potential, which in-
cludes genuine non-two-body terms [77, 78] and angular forces [77], is accurately
optimized to reproduce the dynamics of iranthatP-T condition, by imposing
the matching between classical and first-principles forces and strédss frame-
work of a suitable self-consistent (iterative) procedure described in @hapthe
full dynamical and thermodynamical properties of iron at a given P-T condition
are then easily extracted from extensive classical molecular dynamiatations.

The "optimal potential” (OP) constructed in this way will not be transferable
different P-T conditions, where a different potential must be constructed. Our
approach is thus totally different from previous attempts to estimate thenmel
temperature of iron based on classical potentials[25, 78], where a single pbtenti

is used at all P-T conditions.

Some examples of the ability of an OP to reproduce ab-initio quantities are
provided in Chapter 3. E.g. , first-principle energy differences and stress are
reproduced by the OP with an accuracy always better than 100 K and 1 GPa re-
spectively (Figure 3.4 and 3.5).
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The calculated melting line of hcpfhase [33]) iron from 100 to 330 GPa
is reported in Figure 4.2. Our melting temperature is in excellent agreeniiént w
laser-heated DAC experiments[31-33], available up to 200 GPa. At the ICB pres
sure (330 GPa) we find that hcp iron melts at 548000) K, only slightly higher
than Boehler’s extrapolation (4900 K)[31]. On the other hand, our valug fat
the ICB is in clear discrepancy with high&y, values extracted from shock-wave
data[30, 36], suggesting a need for reinterpretation of this class of experiments,
also because, as discussed below, our theoretical data for density, peassure
sound velocities along the shock-wave compression line are instead in very good

agreement with experiments.

The heat of melting4 H,,) at 330 GPa is 0.7+0.05) x 10° J/Kg respectively.
AH,, is distinctly smaller than elsewhere suggested [4, 9], except for essmat
based on dislocation theory[19]. With our value foF,,, the iron-freezing con-
tribution to the geodynamo should be smaller than suggested[9] or, alternatively,

the inner-core lifetime should be shorter.

For the solid, we calculated the bulk and the shear moduli of hcp ir@h, at
and found them (Figure 4.2) to be in good agreement seismic data for the inner

core, thus invalidating suggestions of a partially molten or glassy inner core.

The density of solid iron at 330 GPa and 5400 K is found to be 1B(D01{
gr/cm?, about 2 % larger than the density of the inner core at the ICB (12.76
gr/cm?, according to the PREM model[3]), supporting the presence of lighter ele-
ments in the inner core[17] Moreover, we find for liquid iron at 330 GPa and 5400
K a density of 12.804£0.1) gr/cm?. The difference between the calculated liquid
iron density at 330 GPa and,Tand the PREM value for the Earth’s outer core

density(12.166 gr/ch) is ~ 5 %. This difference crucially constrains the amount
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of lighter elements in the Earth’s outer core. By considering our systematic un-
derestimation ot 1 % in the density, we find that only the lowest value among

those commonly assumed (i.e. 7 - 10 % [9, 16]) is compatible with our result.

Finally, we provide the first-principles-quality determination of the Hugoniot
EOS for iron which explicitly takes into account melting and is not restdct
to the solid portion, as in previous works[56]. The calculated density along the
Hugoniot are~ 1 % smaller than the experimental one[13] both in solid and lig-
uid phases (Figure 4.4). The theoretical sound velocities are~afs&6 smaller
than the experimental ones. These errors are small for a first-principléatadn.
Moreover, the error on the density is systematic and thus does not affect density
differences. Our calculations suggest a reinterpretation of Brown and Me@ue
data for sound velocities along the Hugoniot[13]. We find that the first kink (at
195 GPa) in Brown and McQueen’s data is related to melting rather treasiod-
solid transition. The Hugoniot would then intercept the melting line at 195 GPa
and 4100 K, in nice agreement with the DAC melting results[31], thus reconcil-
ing Brown and McQueen’s shock-wave measurements with static DAC data. W
suggest that the second kink observed by Brown amd McQueen is not associated
with a phase transition, but may rather be a by-product of the phase coexistence
between the solid and the liquid, as suggested by MD simulations performed on
Argon by Belonoshko[28] and thus strongly dependent on experimental condi-
tions. This scenario would be confirmed by the recent repetition of Brown amd
McQueen experiment, by Nguyen and Holmes where the second kink is no more

observed[29].

In conclusions, our results provide a satisfactorily framework to interpost

of the available experimental data on high P-T iron: our method is able to repro-
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duce all these data (densities, sound velocities, stability fielgpbbse and liquid
phase along the Hugoniot, DAC melting temperatures where available), with the
exception of temperature measurements in shock-wave experiments[34, 36].
The optimal potential method, applied in this work to study the high-pressure
high-temperature physics of iron, could be of some help also for other applica-
tions, whenever the system size is to big for a fully ab-initio molecular dynami
simulation, but a very good accuracy in the determination of thermodynamical

guantities is required.






Appendix A

Self-consistency methods for
minimizing the free-energy

functional .

At least two strategies are commonly used to calculate the ground state bf 2.7.
the so-calledlirect methodsthe minimum of the free energy functional is found
directly, e.g. by a suitable preconditioned second order dynamics for the wave
functions’ degrees of freedom[71] or by a DIIS minimization[72]. In contrast
with these methods, in the so-called self-consistency methods[68] the problem
of minimizing the free energy functional is split into two problems: an iteeat
diagonalization of the Hamiltonian at fixed potential and an iterative ingme@nt

of the potential, based on a suitable mixing scheme for the charge density.

In this Appendix we will describe the self-consistent minimization method
introduced by Kresset a[68] and used in this work. At the beginning of the

calculation, a reasonable set of trial wave functions and charge density isichose



96

Appendix A

In the absence of a better guess, the atomic wave functions and the relatye char
density are used. Then, leaving the charge density (i.e. the potential) fixed, the KS
problemHgs |¥;) = ; |¥;) is solved (in the so-called "internal cycle”). When
this problem is solved within a fixed accuracy, a new electronic depsity{ ¥, })
=Y. fi|¥; (r)| is computed.

The new electronic density and the new poteniigls are constructed as a
function of p,,; and of the densities at the previous steps by a suitable mixing
procedure (the so-called "external cycle”), and the procedure is iterateglfto

consistence.

A.1 Theinternal cycle: DIIS diagonalization of Kohn-
Sham Hamiltonian.

The goal of the internal cycle is to diagonalize the Kohn-Sham HamiltaHian
with fixed potential. In a case of a plane-wave basis{4&t) = ¢'>*}, direct
diagonalization is unfeacible because of the extremely large sizestiNeHamil-
tonian matrix (N> 10%). However, diagonalizindix s is equivalent to minimize
with respect to the wave functions the quan@{\;bl (U,;| Hks |V ;), and then
perform a unitary transformation on the wave functions in order to take théxmatr
(V| Hrs |¥;) to a diagonal form (the KS energieswill be the eigenvalue of
this matrix). Several approaches have been developed in order to speed up the
above minimization. We outline here the DIIS procedure.

In the standard steepest-descent dynamics, ahstépthe new wave function

| @) would be given by

(W) = [Uh) - K |D}) (A.1)
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where|D?) is the gradient in wave function space, defined by
D) = Hies |V75) (A.2)
and K is a suitable preconditioning function, i.e. an operator of the form

K=Y k(G)|G)(G].

The best possible choice for the preconditioning funcfiomwould be, of course,
the inverse off 5. This would yield to the solution of the problem in a single
step, but, of course, at the cost of invertiig s. Thus, the preconditioning func-
tion K is chosen[72] as the inverse of the diagonal part of the Hamiltonian, or,

more exactly, as
l/Hk:sGG lf GZGC
k(G) = ’
( ) {I/HksGC,GC if G<Gc

where(. is a free parameter that can be adjusted to accelerate convergence. In
the application to iron, we have checked tli&t/2 = 1.5 Hartree provides the
best performance.

In the DIIS scheme[72], equation (A.1) is improved with the following pro-
cedure. An "optimal” residual vectdD’ *) and wave function¥'’> ) are de-
termined in order to improve the efficiency of the search in wave funcpanes
and the new wave function is defined as a function/&f ) and|¥"" ) by a

steepest-descent like step of the form (A.1):
[w7H) = [ 7) — K [D}). (A.3)

where optimal wave functions and residual vectors are expressed as lindar com
nations of the residual vectors and wave functions ofth@revious steps respec-

tively, as

n—1
Py = ) ol [T (A.4)

[=n—m
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n—1

DY) = ), ai[DY)

l=n—ml
where the constraint_, «;; = 1 has been imposed and the coefficienfsare
chosen in order to minimize the norm B> . Conditions (A.4) are satisfied if

thea!-s are, for every, the solution to the linear system

d?—m,n—m L d?—m,n—l 1 a?—m 0
d?—l,n—m L. d?—l,n—l 1 04?_1 - 0
1 e 1 0 —A 1

whered}' = (D% | DL).
This condition fully defines the new trial wave functibﬁ?“} as a function
of residual vectors and wave functions at the previous steps. In fact, using (A.3)

and (A.4), we have

n—1

Wity = > i (i) - K [D5).

[=n—m

After a certain number of DIIS step (smaller than five in our implemeat
the procedure is stopped, and the final set of wavefuncfiph$ ,i = 1,..., N}
is orthonormalized.

Finally, a rotation in wave functions space is performed in order to take the
KS matrix (¥ ;| Hggs |¥;) to a diagonal form and the new occupation numkfers

are calculated by (2.8).

A.2 The external cycle: charge mixing.

In the Kresse algorithm, the charge density used to upgrade the KS potential is

defined as a function of the charge densities at previous steps by a DIIS-like dy-
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namics performed also for the density. The role of the gradient (A.2) in the DIIS

algorithm is played in the charge mixing scheme by the residue

R (pm) = Pout (pm) — Pin (A5)

wherep;, is the density used to construct the potential ad(p;,) is the density
corresponding to the wavefunctions diagonalizing the potential (as obtained by
the internal cycle). At convergende(p;,) = 0, i.e. the charge density does not
change on iteration.

Like in the DIIS scheme, the input charggat stepn is finally determined by
a charge density mixing scheme applied on an optimal charge deffséyd an
optimal residueR (p)

pn = py + f R(py) (A.6)

wheref is a suitable preconditioning function of the form (in reciprocal space)

G2

f(G) = AWG(Q)
whereG, and A are suitable parameters. The weighting function is introduced in
order to avoid charge sloshing due to the divergence for siialbf the dielectric
matrix in metals (withA = 1 andG% = 47 x €2, wherey is the dielectric suscep-
tibility, f (G) would be the inverse of the dielectric constant for a free-electron
gas)[68].

At stepn the new optimal charge density is searched as a linear combination

of all the previous densities as

Py = Z Qo

I<n

with Zl<n o = 1.
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The coefficientsy;, are determined in order to minimize the norm
(R(pP) IR = D (R (p) |R (pr))
I<n, k<n
with the constraind_,_, v = 1 (linearity of the residual vector with respect to
the charge density, is assumed). The optima} are then given by

Zlgn AZ;I
Zlgn, k<n Al?ﬂl

(A.7)

o; =

with A = (R (1) [R (pr))-

It has been proved that the convergence speed is greatly improved if the sca
products defining4,, are calculated by a suitable metric weighting in different
manner the different reciprocal space components. Thus, the scalar products be-
tween the residues (A.5) are computed in reciprocal space using a weightorg fac
of the formG +G] , WhereG, is a parameter.

Thus, in a charge-mixing scheme, the input chargeat stepn in reciprocal

space has the form:

pn = p + f (G => ai(p+f (G)R(m)) (A.8)

I<n
where they; are defined by (A.7).

The implementation of (A.8) requires the storage-irspace of charges and
residues at all the steps of the minimization procedure. For practical purposes,
summation in (A.8) are limited to the 3-4 steps preceding stept step 1, the
charge density? in (A.8) is either extrapolated linearly from charge densities at
previous steps (in a molecular dynamics run) or constructed as a superposition of

atomic charge densities.
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