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Introdu
tionMany variational problems arising in several bran
hes of applied analysis (as image pro
essing, fra
tureme
hani
s, theory of nemati
 liquid 
rystals) lead to 
onsider minimum problems for fun
tionals whi
h
ouple a volume and a surfa
e integral, depending on a 
losed set K and a fun
tion u smooth outside K .Following a terminology by E. De Giorgi, variational problems of this kind are 
alled free-dis
ontinuityproblems, and, in the weak formulation proposed by E. De Giorgi and L. Ambrosio in [13℄, they appearas minimum problems for fun
tionals of the formF (u) = Z
 f(x; u;ru) dx+ ZSu  (x; u�; u+; �u) dHn�1; (1)where 
 is a bounded open subset of Rn , and the unknown fun
tion u belongs to the spa
e SBV (
;RN )of spe
ial fun
tions of bounded variation in 
 with values in RN . We re
all that ru denotes theapproximate gradient of u , Su is the set of essential dis
ontinuity points of u , �u is the approximateunit normal ve
tor to Su , and u�; u+ the approximate limits of u on the two sides of Su (for a pre
isede�nition see Chapter 1); �nally, Hn�1 denotes the (n� 1)-dimensional Hausdor� measure.A typi
al example is provided by the so-
alled Mumford-Shah fun
tional, introdu
ed in [31℄ in the
ontext of image segmentation, whi
h 
an be written asMS�;�(u) := Z
 jruj2dx+ �Hn�1(Su) + � Z
 ju� gj2 dx; (2)where g is a fun
tion in L1(
;RN ), and � > 0 and � � 0 are 
onstants.One of the main features of fun
tionals of the form (1) is that they are in general not 
onvex; there-fore, all the equilibrium 
onditions whi
h 
an be obtained by in�nitesimal variations are ne
essary forminimality, but in general not suÆ
ient.G. Alberti, G. Bou
hitt�e, and G. Dal Maso have proposed in [2℄ a suÆ
ient 
ondition for minimality,whi
h is based on the 
alibration method and applies for fun
tionals of the general form (1) de�ned ons
alar maps.In this thesis we apply this minimality 
riterion to identify a wide 
lass of nontrivial minimizers forthe homogeneous version of the Mumford-Shah fun
tional (de�ned on s
alar maps)MS(u) := Z
 jruj2dx+Hn�1(Su); (3)whi
h o

urs in the theory of inner regularity for minimizers of MS�;� and is obtained by taking � = 1and dropping the lower order term in (2). In the last part we develop the theory of 
alibrations for moregeneral fun
tionals with free dis
ontinuities on ve
tor-valued maps and we des
ribe several appli
ationsof this result.All the appli
ations and the examples shown throughout the thesis share the same purpose: we
onsider a 
andidate u satisfying the equilibrium 
onditions for a fun
tional of the form (1) and we prove1



2 Introdu
tionby 
alibration that u is a minimizer of F in a suÆ
iently small domain; in other words, we show thatthe equilibrium 
onditions are also suÆ
ient to guarantee the minimality on small domains, as in many
lassi
al problems of the Cal
ulus of Variations.Before giving the details of the results, let us des
ribe the basi
 idea behind the 
alibration methodfo
using our attention on Diri
hlet minimizers of (1), that is minimizers with pres
ribed boundary values.Given a 
andidate u , if we are able to 
onstru
t a fun
tional G whi
h is invariant on the 
lass of fun
tionshaving the same boundary values as u , and satis�esG(u) = F (u); and G(v) � F (v) for every admissible v, (4)then u is a Diri
hlet minimizer of F . Indeed, if su
h a fun
tional exists, for every v with the sameboundary values as u we have that F (u) = G(u) = G(v) � F (v):In [2℄ the role of G is 
arried out by the 
ux of a suitable divergen
e-free ve
tor�eld ' : 
�R ! Rn�Rthrough the 
omplete graph �v of v , whi
h is de�ned as the boundary of the subgraph of v (the set of allpoints (x; z) 2 
�R su
h that z � v(x)), oriented by the inner normal ��v . Sin
e ' is divergen
e-free,from the divergen
e theorem the 
ux turns out to be invariant with respe
t to the boundary values,while suitable further 
onditions on ' guarantee (4). Consider for instan
e the 
ase of the homogeneousMumford-Shah fun
tional, for simpli
ity in two dimensions, and denote the variables in 
 by (x; y) andthe \verti
al" variable in R by z . Then it is enough to require that ' = ('xy; 'z) is a bounded regularve
tor�eld satisfying the following assumptions:(a1) 'z(x; y; z) � 14 j'xy(x; y; z)j2 for L2 -a.e. (x; y) 2 
 and every z 2 R ;(a2) 'xy(x; y; u(x; y)) = 2ru(x; y) and 'z(x; y; u(x; y)) = jru(x; y)j2 for L2 -a.e. (x; y) 2 
;(b1) ����Z t2t1 'xy(x; y; z) dz���� � 1 for H1 -a.e. (x; y) 2 
 and every t1 < t2 in R ;(b2) Z u+(x;y)u�(x;y) 'xy(x; y; z) dz = �u(x; y) for H1 -a.e. (x; y) 2 Su .Indeed, the 
ux of ' through �v 
an be expressed asZ
[h'xy(x; y; v);rvi � 'z(x; y; v)℄ dx dy + ZSv Z v+v� h'xy(x; y; z); �vi dz dH1; (5)where v , rv , v� , and �v are 
omputed at (x; y); sin
e 
ondition (a1) implies thath'xy(x; y; v);rvi � 'z(x; y; v) � jrvj2 for L2-a.e. (x; y) 2 
, (6)while 
ondition (b1) impliesZ v+v� h'xy(x; y; z); �vi dz � 1 for H1-a.e. (x; y) 2 Sv; (7)by (5) we have that the inequality in (4) is satis�ed for every admissible v . Moreover, 
onditions (a2)and (b2) guarantee that the equality holds true in (6) and (7), respe
tively, so that the equality in (4) isful�lled for the 
andidate u . We will say that ' is a 
alibration for u with respe
t to the fun
tional MSif ' is a ve
tor�eld satisfying 
onditions (a1), (a2), (b1), (b2), and



Introdu
tion 3(
1) ' is divergen
e-free on 
�R .Summarizing, if there exists a 
alibration ' for u with respe
t to MS , then u is a Diri
hlet minimizerof MS .The �rst appli
ations of this minimality 
riterion are 
ontained in [2℄, where the authors provideseveral examples of nontrivial minimizers for the Mumford-Shah fun
tional with short and easy proofs.The simple expression of the 
alibrations in all these examples is related to the fa
t that they 
on
ern onlyminimizers having either a gradient vanishing almost everywhere or an empty dis
ontinuity set. In the�rst part of this thesis we deal with 
andidates having a more 
ompli
ated stru
ture, that is presentingboth a non vanishing gradient and a nonempty dis
ontinuity set.We re
all from [6℄ and [31℄ that a Diri
hlet minimizer u for MS in 
 � R2 must satisfy the followingequilibrium 
onditions (whi
h 
an be globally 
alled the Euler-Lagrange 
onditions for (3)):(i) u is harmoni
 on 
 n Su ;(ii) the normal derivative of u vanishes on both sides of Su , where Su is a regular 
urve;(iii) the 
urvature of Su (where de�ned) is equal to the di�eren
e of the squares of the tangentialderivatives of u on both sides of Su ;(iv) if Su is lo
ally the union of �nitely many regular ar
s, then Su 
an present only two kinds ofsingularities: either a regular ar
 ending at some point, the so-
alled \
ra
k-tip", or three regularar
s meeting with equal angles of 2�=3, the so-
alled \triple jun
tion".In Chapters 2 and 3 we 
onstru
t 
alibrations for solutions of the Euler equations with a regulardis
ontinuity set, while in Chapter 4 we 
onsider the 
ase of a triple jun
tion. All our results are in twodimensions. The minimality of the 
ra
k-tip has been re
ently proved by di�erent methods in [7℄, whilethe problem of �nding a 
alibration for it is still open.We point out that we do not know of any general method to �nd 
alibrations, but ea
h time, a

ordingto the geometry of the dis
ontinuity set of the 
andidate, we have to perform a di�erent 
onstru
tion. Inspite of the la
k of a general formula, all our 
onstru
tions present a rather similar stru
ture.First of all, in terms of 
alibrations the presen
e of both a non vanishing gradient and a nonemptydis
ontinuity set 
orresponds to a 
on
i
t between 
onditions (a2) and (b2), sin
e (a2) and the Neumann
onditions (ii) imply that 'xy is tangential to Su at the points (x; y; u�(x)) for (x; y) 2 Su , while (b2)requires that its average between u�(x; y) and u+(x; y) is normal to Su for (x; y) 2 Su . It is therefore
onvenient to 
onstru
t the 
alibration ' by pie
es in order to a
t di�erently on the regions aroundthe (usual) graph of u , where ' will be somehow determined by 
ondition (a2), and an \intermediate"region, whi
h will give the main 
ontribution to the integral in (b2). More pre
isely, we de
ompose the
ylinder 
�R in a �nite union of Lips
hitz open sets Ai and de�ne ' in su
h a way that it agrees on Aiwith a suitable divergen
e-free ve
tor�eld 'i ; in order to satisfy 
ondition (
1) we have 
learly to requirethat the ve
tor�elds 'i satisfy a 
ompatibility 
ondition along the boundary of the sets Ai .In a neighbourhood of the graph of u we have to 
onstru
t a divergen
e-free ve
tor�eld satisfying(a2) and su
h that for every (x; y) 2 Su there holdsh'xy(x; y; z); �u(x; y)i > 0 for u� < z < u� + " and for u+ � " < z < u+,h'xy(x; y; z); �u(x; y)i < 0 for u+ < z < u+ + " and for u� � " < z < u� (8)for a suitable " > 0. These properties are 
ru
ial in order to obtain (b1) and (b2) simultaneously.The aim of the de�nition of ' in the remaining region is to make (b2) exa
tly satis�ed, that is toannihilate the tangential 
ontribution and to 
orre
t the normal one due to the presen
e of the �eldaround the graph. Of 
ourse, ' has to be 
arefully 
hosen in order to preserve 
onditions (a1) and (b1).The s
heme of our proofs is the following: we de�ne a ve
tor�eld ' depending on some parametersand satisfying 
onditions (a1), (a2), (b1), and (
1); then we 
hoose the parameters in su
h a way to ful�l



4 Introdu
tionalso 
ondition (b2). The Euler 
onditions are involved in the proof in a rather te
hni
al way: in generalthey 
on
ern the de�nition of ' around the graph, whi
h 
an be therefore regarded as the 
ru
ial pointof the 
onstru
tion.The �rst examples of 
alibrations for dis
ontinuous fun
tions whi
h are not lo
ally 
onstant, are pre-sented in Chapter 2. We prove that if u is a fun
tion satisfying all Euler 
onditions for the homogeneousMumford-Shah fun
tional and whose dis
ontinuity set is a straight line segment 
onne
ting two points of�
, then every point (x0; y0) in Su has an open neighbourhood U su
h that u is a Diri
hlet minimizerof (3) in U , provided the tangential derivatives ��u and �2��u do not vanish at (x0; y0).In Theorem 2.1 we study the spe
ial 
aseu(x; y) := ( x if y > 0,�x if y < 0,whi
h, even if very simple, involves most of the main diÆ
ulties. The main idea of the proof is in thede�nition of ' near the graph of u : in order to verify (a2) and to introdu
e a normal 
omponent satisfying(8) we take as 'xy a suitable \rotation" of the ve
tor 2ru ; in other words, we apply to the ve
tors �2e1a suitable orthogonal matrix R depending on x; y; z and satisfying R(x; y;�x) = I , and we set'(x; y; z) = (�2R(x; y; z)e1; 1):This 
onstru
tion is then adapted in Theorem 2.4 to the 
ase of a general fun
tion u satisfying the Euler
onditions and having a re
tilinear dis
ontinuity set. Near the graph of u we simply take'(x; y; z) = (2R(u; v; z)ru; jruj2);where v is the harmoni
 
onjugate of u , while outside a neighbourhood of the graph we are for
ed tointrodu
e some additional parameters. We will see that it is a
tually 
onvenient to perform a 
hange ofvariables through the mapping (x; y) 7! (u(x; y); v(x; y)), whi
h is 
onformal near (x0; y0), sin
e we areassuming ��u(x0; y0) 6= 0. The additional assumption �2��u(x0; y0) 6= 0 is instead related to the 
hoi
eof the �eld in the region far from the graph and to the proof of (b1): indeed, it guarantees that theparameters appearing in the de�nition of ' 
an be 
hosen in su
h a way that the fun
tionI(x; y; t1; t2) := ����Z t2t1 'xy(x; y; z) dz����has a stri
t maximum at the points (x; y; u�(x; y); u+(x; y)) with (x; y) ranging in Su .These �rst examples are widely generalized in Chapter 3, where we 
onsider 
andidates u whosedis
ontinuity set 
an be any analyti
 
urve and we prove the Diri
hlet minimality in a uniform neigh-bourhood of Su , without additional te
hni
al assumptions. More pre
isely, in Theorem 3.2 we show that,if u is a fun
tion satisfying all Euler 
onditions for the Mumford-Shah fun
tional and Su is an analyti

urve 
onne
ting two points of �
, then there exists an open neighbourhood U of Su \ 
 su
h that uis a Diri
hlet minimizer in U of (3).We note that the analyti
ity assumption for Su does not seem too restri
tive, sin
e it has been provedthat the regular part of the dis
ontinuity set of a minimizer is at least of 
lass C1 and it is a 
onje
turethat it is in fa
t analyti
 (see Chapter 1).The original idea of the new 
onstru
tion essentially relies on the following remark: we 
an de�nedivergen
e-free ve
tor�elds on an open set A � 
�R starting from a �bration of A by graphs of harmoni
fun
tions. Indeed, if futgt2R is a family of harmoni
 fun
tions whose graphs are pairwise disjoint and
over A , then the ve
tor�eld '(x; y; z) = (2rut(x; y); jrut(x; y)j2) (9)



Introdu
tion 5with t = t(x; y; z) satisfying z = ut(x; y), turns out to be divergen
e-free on A ; moreover, it automati
allyful�ls 
onditions (a1) and (a2).We use this te
hnique to 
onstru
t the 
alibration around the graph of u : we take as futg the familyfu+ tvg , where v is a suitable harmoni
 fun
tion, and a

ording to formula (9) we de�ne'(x; y; z) = (2ru+ 2 z�uv rv; jru+ z�uv rvj2);the fun
tion v is 
hosen in su
h a way that rv is normal to Su and (8) is veri�ed.This method of 
onstru
tion reminds of the 
lassi
al method of Weierstrass �elds, where the proof ofthe minimality of a 
andidate u is obtained by the 
onstru
tion of a slope �eld starting from a family ofsolutions of the Euler equation, whose graphs foliate a neighbourhood of the graph of u .In Chapter 3 we deal also with a di�erent notion of minimality: in Theorem 3.2 we 
ompare u withperturbations whi
h 
an be very large, but 
on
entrated in a �xed small domain; we wonder if a minimalityproperty is preserved also on a large domain, when we admit as 
ompetitors only perturbations of u withL1 -norm very small outside a small neighbourhood of Su .A

ording to this idea, we will say that a fun
tion u is a Diri
hlet graph-minimizer of the Mumford-Shah fun
tional if there exists a neighbourhood A of the 
omplete graph of u su
h that MS(u) �MS(v)for all v 2 SBV (
) having the same tra
e on �
 as u and whose 
omplete graph is 
ontained in A .As proved in [2, Example 4.10℄, any harmoni
 fun
tion u : 
 ! R is a Diri
hlet graph-minimizerof MS , whatever 
 is. If we 
onsider instead a solution u of the Euler equations presenting somedis
ontinuities, what we dis
over is that the Diri
hlet graph-minimality of u may fail when 
 is toolarge, even in the 
ase of a re
tilinear dis
ontinuity set, as the 
ounterexample at the beginning ofSe
tion 3.2 shows. Therefore, to a
hieve this minimality property we have to add some restri
tions onthe domain 
. To this aim we introdu
e a suitable quantity whi
h seems useful to des
ribe the 
orre
tintera
tion between Su and 
. Given an open set U (with Lips
hitz boundary) and a portion � of �U(with nonempty relative interior in �U ), we de�neK(�; U) := inf �ZU jrv(x; y)j2dx dy : v 2 H1(U); Z� v2dH1 = 1; and v = 0 on �U n �� :As shown by the notation, K(�; U) is a quantity depending only on � and U , whi
h des
ribes a kindof \
apa
ity" of the pres
ribed portion of the boundary with respe
t to the whole open set. Note that ifU1 � U2 , and �1 � �2 , then K(�1; U1) � K(�2; U2), whi
h suggests that if K(�; U) is very large, thenU is thin in some sense. The qualitative properties of K(�; U) are studied in the �nal part of Se
tion 3.2.Theorem 3.5, whi
h is the main result of Se
tion 3.2, gives a suÆ
ient 
ondition for the Diri
hletgraph-minimality in terms of K(Su;
) and of the geometri
al properties of Su . More pre
isely, weassume that � is a given analyti
 
urve su
h that � \ 
 
onne
ts two points of �
, and 
 n � has two
onne
ted 
omponents 
1 , 
2 with Lips
hitz boundary. We prove that there exists a positive 
onstant
(�) (depending only on the length and on the 
urvature of �) su
h that, if u is a fun
tion satisfying allEuler 
onditions in 
, whose dis
ontinuity set 
oin
ides with � \ 
 and su
h thatmini=1;2K(� \ 
;
i) > 
(�)�k��u�k2C1(�\
) + k��u+k2C1(�\
)� ; (10)then u is a Diri
hlet graph-minimizer of MS .We remark that 
ondition (10) imposes a restri
tion on the size of 
 depending on the behaviourof u along Su : if u has large or very os
illating tangential derivatives, we have to take 
 quite smallto guarantee that (10) is satis�ed. In the spe
ial 
ase of a lo
ally 
onstant fun
tion u , 
ondition (10)is always ful�lled whatever the domain is; so u is always a Diri
hlet graph-minimizer whatever 
 is, inagreement with a result proved in [2℄.The proof of Theorem 3.5 is based again on the 
alibration method. Indeed, to prove the graph-minimality of a 
andidate u it is enough to show that there exist a suitable neighbourhood A of the



6 Introdu
tion
omplete graph of u , and a bounded ve
tor�eld ' on A satisfying 
onditions (a1), (a2), (b1), (b2), and(
1) (where now (x; y; z), (x; y; ti) range in A). Condition (10) guarantees that we 
an extend to aneighbourhood of �u a slightly modi�ed version of the 
alibration of Theorem 3.2.In Chapter 4 we study the minimality of solutions u of the Euler equations whose dis
ontinuity set isgiven by three line segments meeting at the origin with equal angles; in other words, Su is a re
tilineartriple jun
tion, generating a partition of 
 in three se
tors of angle 2�=3, that we 
all A0; A1; A2 . InTheorem 4.1 we prove by 
alibration that, setting ui := ujAi and assuming ui 2 C2(Ai), there exists aneighbourhood U of the origin su
h that u is a Diri
hlet minimizer of MS in U . This result generalizesExample 4 in [1℄ where the fun
tion u was pie
ewise 
onstant.The proof is quite long and te
hni
al, and is split in several steps. The symmetry due to the presen
eof 2�=3-angles is exploited in the whole 
onstru
tion of the 
alibration. First of all, sin
e the fun
tionui has to be harmoni
 in Ai with null normal derivative at �Ai , applying S
hwarz re
e
tion prin
iplewe obtain that ui 
an be harmoni
ally extended to a neighbourhood of the origin, 
ut by a half-line;moreover, from the Euler 
ondition (iii) it follows that the extension of ui 
oin
ides, up to the sign andto additive 
onstants, with uj on Aj for every j 6= i . Using this remark it is easy to see that ea
h uimust be either symmetri
 or antisymmetri
 with respe
t to the bise
ting line of Ai .In Se
tions 4.1 { 4.4 we de�ne ' in the symmetri
 
ase and we prove that it is a 
alibration; inSe
tion 4.5 we adapt the 
onstru
tion to the antisymmetri
 
ase.The 
ru
ial point of both 
onstru
tions is, as usual, the de�nition of the �eld near the graph of u ,where we apply again the \�bration" te
hnique. Indeed, we �brate a neighbourhood of the graph ofea
h ui by a family of harmoni
 fun
tions of the form ui + tvi . Unlike the 
onstru
tion of ' in theproof of Theorem 3.2 where we 
hoose rv orthogonal to Su , in this 
ase it is 
onvenient to take as vi alinear fun
tion whose gradient is parallel to the bise
ting line of Ai . Thanks to the symmetry, this 
hoi
eensures that the tangential 
ontributions to the integral in (b2), given by the regions near u� and u+ ,are always of opposite signs and annihilate ea
h other.The assumption of C2 -regularity for ui does not seem too restri
tive: indeed, by the regularityresults for ellipti
 problems in non-smooth domains (see [22℄), it follows that ui belongs at least toC1(Ai), sin
e ui solves the Lapla
e equation with Neumann boundary 
onditions on a se
tor of angle2�=3. Moreover, sin
e ui is either symmetri
 or antisymmetri
 with respe
t to the bise
ting line of Ai ,one 
an see ui as a solution of the Lapla
e equation on a �=3-se
tor with Neumann boundary 
onditionsor respe
tively mixed boundary 
onditions. By the regularity results in [22℄, it turns out that in the �rst
ase ui belongs to C2(Ai), while in the se
ond one ui 
an be written (in polar 
oordinates 
entred at0) as ui(r; �) = ~ui(r; �) + 
r3=2 
os 32� , with ~ui 2 C2(Ai) and 
 2 R . So, only the fun
tion r3=2 
os 32� isnot re
overed by our theorem: if we were able to 
onstru
t a 
alibration also for this fun
tion, then wewould re
over all possible 
ases.Finally we remark that the 
ase where Su is given by three regular 
urves (not ne
essarily re
tilinear)meeting at a point with 2�=3-angles, is at the moment an open problem and it does not seem to bea
hievable with a plain arrangement of the 
alibration used for the re
tilinear 
ase, essentially be
auseof the la
k of symmetry.The last part of the thesis 
orresponds to Chapter 5 where we generalize the 
alibration methodto fun
tionals of the form (1) de�ned on ve
tor-valued maps. The basi
 prin
iple is the same we haveexplained at the beginning: in order to prove the minimality of a fun
tion u , we want to 
onstru
t afun
tional G satisfying 
onditions (4) and invariant on the 
lass of the admissible 
ompetitors for u .When u is a ve
tor-valued fun
tion, it is 
onvenient to 
onsider a di�erent kind of invariant fun
tional:the 
alibration is no longer a ve
tor�eld, but a pair of fun
tions (S;S0), where S : 
�RN ! Rn issuitably regular, while S0 belongs to L1(
); the 
omparison fun
tional for F is given byG(v) := � Z�
hS(x; v); ��
i dHn�1 + Z
 S0(x) dx; (11)
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tion 7where ��
 is the inner unit normal to �
. It is 
lear that the fun
tional (11) is 
onstant on the fun
tionshaving the same values at �
. Moreover, by the divergen
e theorem we 
an rewrite (11) asZ
 d�v + Z
 S0(x) dx;where �v is the divergen
e (in the sense of distributions) of the 
omposite fun
tion S(�; v(�)). A gener-alized version of the 
hain rule in BV (whi
h is proved in Lemma 5.2) implies that�v = ([divxS℄(x; v) + h(DzS(x; v))� ;rvi)Ln + hS(x; v+)� S(x; v�); �viHn�1bSv;where [divxS℄ denotes the divergen
e of S with respe
t to the variable x 2 
, and (DzS)� the transposeof the Ja
obian matrix of S with respe
t to the variable z 2 RN . Therefore the fun
tional (11) turnsout to be equal toZ
 ([divxS℄(x; v) + h(DzS(x; v))� ;rvi+ S0(x)) dx + ZSvhS(x; v+)� S(x; v�); �vi dHn�1: (12)By 
omparing this expression with the fun
tional (1), we �nd pointwise 
onditions on S0 , S , and thederivatives of S , whi
h guarantee (4), and then the Diri
hlet minimality of a given u . For instan
e, inthe 
ase of the Mumford-Shah fun
tional (3) de�ned on ve
tor-valued maps, it is enough to require thefollowing 
onditions:(a1) [divxS℄(x; z) + S0(x) � � 14 jDzS(x; z)j2 for Ln -a.e. x 2 
, and for every z 2 RN ;(a2) [divxS℄(x; u) + S0(x) = �jru(x)j2 and (DzS(x; u))� = 2ru(x) for Ln -a.e. x 2 
;(b1) jS(x; z1)� S(x; z2)j � 1 for Hn�1 -a.e. x 2 
 and for every z1; z2 2 RN ;(b2) S(x; u+)� S(x; u�) = �u for Hn�1 -a.e. x 2 Su .For a pre
ise statement in the 
ase of a general fun
tional of the form (1) we refer to Lemma 5.4 andLemma 5.5 in Se
tion 5.1.The 
onne
tion between the 
onditions above in the 
ase N = 1 and those ones of the s
alar for-mulation by Alberti, Bou
hitt�e, Dal Maso, is studied in Remark 5.8. Here we only observe that, whilein the s
alar formulation we need 
ondition (
1) to ensure that the 
omparison fun
tional is invariantwith respe
t to the boundary values, in this new framework this is guaranteed just by the expression ofthe fun
tional (11); so, there is no 
ondition 
orresponding to (
1). In fa
t, in the 
ase N = 1, given a
alibration (S;S0), the ve
tor�eld ' = ('x; 'z) : 
�R ! Rn�R de�ned as'x(x; z) := �zS(x; z); 'z(x; z) := �[divxS℄(x; z) � S0(x)is a 
alibration in the sense of Alberti, Bou
hitt�e, Dal Maso. Indeed, ' turns out to be divergen
e-free,and the remaining 
onditions of the s
alar formulation follow from 
onditions (a1), (a2), (b1), and (b2)stated above. Conversely, given any divergen
e-free ve
tor�eld ' = ('x; 'z), we 
an always write 'xas the derivative with respe
t to z 2 R of a suitable fun
tion S : 
�R ! Rn , and using the relation�z'z = �divx'x (whi
h follows from (
1)), we 
an dedu
e that there exists a fun
tion S0 of the variablex su
h that 'z(x; z) = �[divxS℄(x; z) � S0(x). If we rewrite now 
onditions (a1), (a2), (b1), and (b2)of the s
alar formulation by using these expressions of 'x and 'z , we obtain that the pair (S;S0) is a
alibration.The formulation in terms of (S;S0) is related to 
lassi
al �eld theory for multiple integrals of theform F0(u) = Z
 f(x; u;ru) dx:



8 Introdu
tionIn this 
ontext a suÆ
ient 
ondition for the minimality of a 
andidate u 2 C1(
;RN ) is obtained by
omparing F0 with the integral of a null-lagrangian of divergen
e type, whi
h is 
onstru
ted startingfrom a suitably de�ned slope �eld P , 
alled Weyl �eld , and a fun
tion S 2 C2(
�RN ;Rn ), the eikonalmap asso
iated with P (
f., e.g., [18℄). In Se
tion 5.2 we prove that, under suitable assumptions on fand  , whenever a Weyl �eld exists for a fun
tion u 2 C1(
;RN ) (so that u is a Diri
hlet minimizer forF0 ), then there exists a 
alibration for u with respe
t to the fun
tional F (whi
h is given by the eikonalmap S and by S0 � 0), so u is also a Diri
hlet minimizer for F among SBV fun
tions.Some examples and appli
ations are presented in Se
tion 5.3. In Examples 5.14, 5.16, 5.17, and 5.18we deal with minimizers of the Mumford-Shah fun
tional, and we generalize some results proved in [2℄for the s
alar 
ase. A purely ve
torial example is given by Example 5.15, where we study the minimalityof 
ontinuous solutions of the Euler equations for a fun
tional arising in fra
ture me
hani
s, whi
h 
anbe de�ned only on maps from 
 � Rn into Rn .Finally, we point out that, as mentioned in [2℄, one 
ould try to generalize the 
alibration theory fromthe s
alar 
ase to the ve
torial one by repla
ing divergen
e-free ve
tor�elds by 
losed n-forms on 
�RN ,a
ting on the graphs of the fun
tions v , viewed as suitably de�ned surfa
es in 
�RN . This 
ould leadto the idea that our 
hoi
e of writing the 
alibration in terms of the pair (S;S0) is somehow restri
tivewhen N > 1. This is not the 
ase at all, sin
e the existen
e of a 
alibration expressed via di�erentialforms implies the existen
e of a 
alibration expressed in terms of a pair (S;S0), as shown in Se
tion 5.4.The results of Chapter 2 are obtained in 
ollaboration with Gianni Dal Maso and Massimiliano Morini,and are published in [11℄, while the results of Chapter 3 are a
hieved in 
ollaboration with MassimilianoMorini and published in [27℄. The 
ontent of Chapter 4 will appear in [25℄, while the 
ontent of Chapter 5
orresponds to the paper [26℄.



Chapter 1Preliminary resultsIn this 
hapter we 
olle
t some preliminary results whi
h will be useful in the sequel. In Se
tion 1.1 were
all some basi
 results from the theory of fun
tions with bounded variation. In Se
tions 1.2 and 1.3we deal with ne
essary and suÆ
ient 
onditions for the minimality of the homogeneous Mumford-Shahfun
tional on s
alar maps: in Se
tion 1.2 we write the Euler-Lagrange equations, while in Se
tion 1.3 wepresent the theory of 
alibrations.Let us �x some notation. Given x; y 2 Rn , we denote their s
alar produ
t by hx; yi , and the eu
lideannorm of x by jxj . We set Sn�1 := fx 2 Rn : jxj = 1g . Given a set B � Rn , we denote the Lebesguemeasure of B by Ln(B) and the (n� 1)-dimensional Hausdor� measure of B by Hn�1(B). If a; b 2 R ,the maximum and the minimum of fa; bg are denoted by a _ b and a ^ b , respe
tively.1.1 Fun
tions of bounded variationLet 
 be a bounded open subset of Rn , let u 2 L1lo
(
;RN ), and let x0 2 
. We say that u has anapproximate limit at x0 2 
 if there exists z 2 RN su
h thatlimr!0+ 1Ln(Br(x0)) ZBr(x0) ju(x)� zj dx = 0; (1.1)where Br(x0) is the ball of radius r 
entred at x0 . The set Su of points where this property does nothold is 
alled the approximate dis
ontinuity set of u . For any x0 2 
nSu the ve
tor z (whi
h is uniquelydetermined by (1.1)) is 
alled the approximate limit of u at x0 and denoted by ~u(x0).We say that a fun
tion u : 
! RN has bounded variation in 
, and we write u 2 BV (
;RN ), if ubelongs to L1(
;RN ) and its distributional derivative Du is a �nite Radon RnN -valued measure in 
.If 
 has Lips
hitz boundary, we 
an speak about the tra
e of u on �
, whi
h belongs to L1(�
;Hn�1)and will be still denoted by u .If u 2 BV (
;RN ), then Su is 
ountably (Hn�1; n � 1)-re
ti�able, that is, it 
an be 
overed, up toan Hn�1 -negligible set, by 
ountably many C1 -hypersurfa
es. Moreover, for Hn�1 -a.e. x0 2 Su thereexists a triplet (u+(x0); u�(x0); �u(x0)) 2 RN�RN�Sn�1 su
h that u+(x0) 6= u�(x0), �u(x0) is normalto Su in an approximate sense, andlimr!0+ 1Ln(B�r (x0)) ZB�r (x0) ju(x)� u�(x0)j dx = 0; (1.2)where B�r (x0) is the interse
tion of Br(x0) with the half-plane fx 2 Rn : �hx � x0; �u(x0)i � 0g . Thetriplet (u+(x0); u�(x0); �u(x0)) is uniquely determined up to a permutation of (u+(x0); u�(x0)) and a9
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hange of sign of �u(x0). Condition (1.2) says that �u(x0) points from the side of Su 
orresponding tou�(x0) to the side 
orresponding to u+(x0).For every u 2 BV (
;RN ), by applying the Radon-Ni
od�ym theorem we 
an de
ompose the measureDu as Dau+Dsu , where Dau is the absolutely 
ontinuous part with respe
t to the Lebesgue measureLn and Dsu is the singular part. The density of Dau with respe
t to Ln is denoted by ru and agreeswith the approximate gradient of u . The measure Dsu 
an be in turn written as Dju + D
u , whereDju is the restri
tion of Dsu to Su and is 
alled the jump part, while D
u is the restri
tion to 
 n Suand is 
alled the Cantor part. The density of Dju with respe
t to the measure Hn�1bSu is given by thetensor produ
t (u+ � u�)
 �u . We also 
all the sum Dau+D
u the di�use part of the derivative of uand denote it by ~Du .We say that a fun
tion u : 
 ! RN is a spe
ial fun
tion of bounded variation, and we write u 2SBV (
;RN ), if u 2 BV (
;RN ) and D
u = 0.Finally, for every u 2 BV (
;RN ) we de�ne as graph of u the setgraphu := f(x; ~u(x)) : x 2 
 n Sug:In the s
alar 
ase N = 1, for every u 2 BV (
) we 
all 1u the 
hara
teristi
 fun
tion of the subgraphof u in 
�R , namely the fun
tion de�ned by 1u(x; z) := 1 for z � u(x) and 1u(x; z) = 0 for z > u(x).We de�ne as 
omplete graph of u (and we denote it by �u ) the measure theoreti
 boundary of thesubgraph of u , that is the singular set of 1u . We note that, assuming u and Su suÆ
iently regular, the
omplete graph �u 
onsists of the union of the graph of u and of all segments joining (x; u�(x)) and(x; u+(x)) with x ranging in Su .For more details we refer to the book [6℄ by L. Ambrosio, N. Fus
o, and D. Pallara, where a self-
on-tained presentation of BV and SBV spa
es 
an be found.1.2 The Euler-Lagrange equations for the Mumford-Shahfun
tionalLet 
 denote a bounded open subset of R2 with Lips
hitz boundary, and let us 
onsider the homogeneousMumford-Shah fun
tional MS(u) = Z
 jruj2dx+H1(Su) (1.3)for u 2 SBV (
).In the sequel we will refer to the following de�nition of minimizers.De�nition 1.1 An absolute minimizer of (1.3) in 
 is a fun
tion u 2 SBV (
) su
h thatZ
 jruj2dx+H1(Su) � Z
 jrvj2dx+H1(Sv) (1.4)for every v 2 SBV (
) , while a Diri
hlet minimizer in 
 is a fun
tion u 2 SBV (
) su
h that (1.4) issatis�ed for every v 2 SBV (
) with the same tra
e on �
 as u .Let us fo
us our attention on ne
essary optimality 
onditions near a regular portion of Su . Let u bea Diri
hlet minimizer of MS and let U � 
 be an open set su
h that Su \ U is a graph, that isSu \ U = f(t;  (t)) : t 2 Dg



Preliminary results 11for some open set D � R and  : D ! R . Set U+ := f(t; s) 2 U : s >  (t)g and U� := f(t; s) 2 U :s <  (t)g . Let ' 2 C1(U) be a fun
tion vanishing in a neighbourhood of �U+ n Su ; by 
omparing uwith the fun
tion v := u+ "' , from the minimality of u we obtain thatZU+hru;r'i dx = 0:This means that u is a weak solution of the following problem:(�u = 0 in U+,��u = 0 on �U+ \ Su. (1.5)A similar problem is solved by u in U� .The Euler equation (1.5) has been obtained by 
onsidering only variations of u and keeping Su �xed.By 
onsidering also variations of Su we expe
t to derive a transmission 
ondition for u along Su , whi
htakes into a

ount the intera
tion between the bulk and the surfa
e part of the fun
tional. Assume thatu belongs to W 2;2(U+ [ U�) and suppose that Su \ U is the graph of a C2 -fun
tion (that is,  is of
lass C2 ). Then it 
an be proved that�div r p1 + jr j2! = j(ru)+j2 � j(ru)�j2 on Su \ U , (1.6)where the left-hand side is the 
urvature of Su , while at the right-hand side (ru)� denote the tra
es ofru on Su \ U from U� , respe
tively.We note that, if  is known to be only of 
lass C1;
 , equation (1.6) a
tually still holds in a weaksense. Then using (1.6) it is possible to prove that, as soon as we know that Su \ U is of 
lass C1;
 ,then Su \ U turns out to be in fa
t of 
lass C1 .The following 
onje
ture is still an open problem.Conje
ture (De Giorgi). If u is a Diri
hlet minimizer of MS , then Su is analyti
 near its regularpoints.We 
on
lude this se
tion by some remarks on the regularity of the dis
ontinuity set of a minimizer,whi
h represents a very 
hallenging mathemati
al problem. In [31℄ D. Mumford and J. Shah 
onje
turedthat, if u is a Diri
hlet minimizer of MS , then Su is lo
ally the union of �nitely many C1;1 embeddedar
s; moreover, they showed that, if the 
onje
ture is true, then only two kinds of singularity 
an o

urinside 
: either a line terminates at some point, the so-
alled \
ra
k-tip", or three lines meet formingequal angles of 2�=3, the so-
alled \triple jun
tion".In [6, Theorem 8.1℄ the following regularity result is proved.Theorem 1.2 If u 2 SBV (
) is a minimizer of MS , there exists an H1 -negligible set � � Su \ 
relatively 
losed in 
 su
h that 
 \ Su n� is a 
urve of 
lass C1;1 .This result is still far from Mumford-Shah 
onje
ture, sin
e we are only able to say that � is H1 -negligible, and not that it has lo
ally �nite H0 measure.1.3 The 
alibration method for the Mumford-Shah fun
tionalIn this se
tion we present the 
alibration method for the homogeneous Mumford-Shah fun
tional in twodimensions and we brie
y re
all how this 
riterion 
an be adapted to a general fun
tional with freedis
ontinuities de�ned on s
alar maps.



12 Chapter 1We �rst introdu
e a more general notion of minimality whi
h will be useful in the sequel. Let 
 be a�xed bounded open subset of R2 with Lips
hitz boundary, and ��
 its inner unit normal. Let A denotean open subset of 
�R with Lips
hitz boundary, whose 
losure 
an be written asA = f(x; y; z) 2 
�R : �1(x; y) � z � �2(x; y)g;where the two fun
tions �1; �2 : 
! [�1;+1℄ satisfy �1 < �2 .De�nition 1.3 We say that a fun
tion u 2 SBV (
) is an absolute A -minimizer of MS if the 
ompletegraph of u is 
ontained in A and MS(u) � MS(v) for every v 2 SBV (
) su
h that �v � A , while uis a Diri
hlet A -minimizer if we add the requirement that the 
ompeting fun
tions v have the same tra
eon �
 as u .For every ve
tor�eld ' : A! R2�R we de�ne the maps 'xy : A! R2 and 'z : A! R by'(x; y; z) = ('xy(x; y; z); 'z(x; y; z)):We shall 
onsider the 
olle
tion F of all pie
ewise C1 -ve
tor�elds ' : A ! R2�R with the followingproperty: there exist a �nite family (Ai)i2I of pairwise disjoint open subsets of A with Lips
hitz boundarywhose 
losures 
over A , and a family ('i)i2I of ve
tor�elds in C1(Ai;R2�R) su
h that ' agrees at anypoint with one of the 'i .Let u 2 SBV (
) be su
h that �u � A . A 
alibration for u on A (with respe
t to the fun
tionalMS ) is a bounded ve
tor�eld ' 2 F satisfying the following properties:(a1) 'z(x; y; z) � 14 j'xy(x; y; z)j2 for L2 -a.e. x 2 
 and every z 2 [�1; �2℄ ;(a2) 'xy(x; y; u(x; y)) = 2ru(x; y) and 'z(x; y; u(x; y)) = jru(x; y)j2 for L2 -a.e. x 2 
;(b1) ����Z t2t1 'xy(x; y; z) dz���� � 1 for H1 -a.e. (x; y) 2 
, and every t1; t2 in [�1; �2℄ ;(b2) Z u+(x;y)u�(x;y) 'xy(x; y; z) dz = �u(x; y) for H1 -a.e. (x; y) 2 Su ;(
1) ' is divergen
e-free in the sense of distributions in A .If also the following 
ondition is satis�ed:(
2) h'xy; ��
i = 0 H2 -a.e. on �A \ (�
�R);then ' is 
alled an absolute 
alibration for u on A .We note that, in order to prove 
ondition (
1), it is enough to show that div'i = 0 in Ai for everyi 2 I , and the following transmission 
ondition is satis�ed:h'i; ��Aii = h'j ; ��Aj i H2 -a.e. on �Ai \ �Aj ,where ��Ai and ��Aj denote the unit normal ve
tor to �Ai and �Aj , respe
tively.We 
an now state the fundamental theorem of the 
alibration method, whi
h is proved in [1℄ and [2℄.Theorem 1.4 Let u 2 SBV (
) be su
h that �u � A . If there exists a 
alibration for u on A (withrespe
t to MS ), then u is a Diri
hlet A-minimizer of the homogeneous Mumford-Shah fun
tional. Ifthere exists an absolute 
alibration for u on A , then u is an absolute A-minimizer.The following lemma, whi
h allows to 
onstru
t divergen
e-free ve
tor�elds starting from families ofharmoni
 fun
tions, will be useful in the 
onstru
tion of the 
alibrations of Chapters 3 and 4.



Preliminary results 13Lemma 1.5 Let U be an open subset of R2 and I , J be two real intervals. Let u : U�J ! I be afun
tion of 
lass C1 su
h that� u(�; � ; s) is harmoni
 for every s 2 J ;� there exists a C1 -fun
tion t : U�I ! J su
h that u(x; y; t(x; y; z)) = z .Then, if we de�ne in U�I the ve
tor�eld'(x; y; z) := (2ru(x; y; t(x; y; z)); jru(x; y; t(x; y; z))j2);where ru(x; y; t(x; y; z)) denotes the gradient of u with respe
t to the variables (x; y) 
omputed at thepoint (x; y; t(x; y; z)) , ' is divergen
e-free in U�I .Proof. { Let us 
ompute the divergen
e of ' :div'(x; y; z) = 2�u(x; y; t(x; y; z)) + 2h�sru(x; y; t(x; y; z));rt(x; y; z)i+ 2�zt(x; y; z) hru(x; y; t(x; y; z)); �sru(x; y; t(x; y; z))i; (1.7)where �u(x; y; t(x; y; z)) denotes the Lapla
ian of u with respe
t to (x; y) 
omputed at (x; y; t(x; y; z)),and rt(x; y; z) denotes the gradient of t with respe
t to (x; y). By di�erentiating the identity veri�edby the fun
tion t �rst with respe
t to z and with respe
t to (x; y), we derive that�su(x; y; t(x; y; z)) �zt(x; y; z) = 1; ru(x; y; t(x; y; z)) + �su(x; y; t(x; y; z))rt(x; y; z) = 0:Using these identities and substituting in (1.7), we �nally obtaindiv'(x; y; z) = 2�u(x; y; t(x; y; z)) = 0;sin
e by assumption u is harmoni
 with respe
t to (x; y). 2Let us 
onsider now a general fun
tional of the formF (u) := Z
 f(x; u;ru) dx+ ZSu  (x; u�; u+; �u)Hn�1;where 
 is a bounded open subset of Rn with Lips
hitz boundary, the unknown u belongs to SBV (
),and f ,  are Borel fun
tions.Let f� and ��� f denote the 
onvex 
onjugate and the subdi�erential of f with respe
t to the lastvariable. We re
all that the subdi�erential of a fun
tion g : Rn ! [0;+1℄ at the point � 2 Rn is de�nedas the set of ve
tors � 2 Rn su
h that g(�) + h�; � � �i � g(�) for every � 2 Rn .As before, let A be an open subset of 
�R with Lips
hitz boundary whose 
losure 
an be written asA = f(x; z) 2 
�R : �1(x) � z � �2(x)g;where �1; �2 : 
! [�1;+1℄ satisfy �1 < �2 .The regularity assumptions on ' 
an be weakened by requiring that ' is approximately regular, i.e.it is bounded and for every Lips
hitz hypersurfa
e M in Rn+1 there holdsap lim(x;z)!(x0;z0)h'(x; z); �M (x0; z0)i = h'(x0; z0); �M (x0; z0)i for Hn -a.e. (x; z) 2M \A ,where �M (x0; y0) is the unit normal to M at (x0; y0). It is easy to see that, if ' 2 F , then ' isapproximately regular.Let u 2 SBV (
) be su
h that �u � A . A 
alibration for u on A with respe
t to the fun
tional Fis an approximately regular ve
tor�eld ' = ('x; 'z) : A! Rn�R satisfying the following 
onditions:



14 Chapter 1(a1) 'z(x; z) � f�(x; z; 'x(x; z)) for Ln -a.e. x 2 
 and every z 2 [�1; �2℄ ;(a2) 'x(x; u(x)) 2 ��� f(x; u(x);ru(x)) and 'z(x; u(x)) = f�(x; u(x); 'x(x; u(x))) for Ln -a.e. x 2 
;(b1) Z t2t1 h'x(x; z); �i dz �  (x; t1; t2; �) for Hn�1 -a.e. x 2 
, every � 2 Sn�1 , and every t1 < t2 in[�1; �2℄ ;(b2) Z u+(x)u�(x) h'x(x; z); �u(x)i dz =  (x; u�(x); u+(x); �u(x)) for Hn�1 -a.e. x 2 Su ;(
1) ' is divergen
e-free in the sense of distributions in A .If also the following 
ondition is satis�ed:(
2) h'x; ��
i = 0 Hn -a.e. on �A \ (�
�R);then ' is 
alled an absolute 
alibration.The following theorem is proved in [2℄.Theorem 1.6 Let u 2 SBV (
) be su
h that �u � A . If there exists a 
alibration for u on A withrespe
t to F , then u is a Diri
hlet A-minimizer of F , that is F (u) � F (v) for every v 2 SBV (
) withthe same tra
e on �
 as u and su
h that �v � A . If there exists an absolute 
alibration for u on Awith respe
t to F , then u is an absolute A-minimizer of F , that is F (u) � F (v) for every v 2 SBV (
)su
h that �v � A .



Chapter 2Calibrations for minimizers with are
tilinear dis
ontinuity setIn this 
hapter we show the �rst examples of 
alibrations for dis
ontinuous fun
tions, whi
h are not lo
ally
onstant. In parti
ular, we 
onsider solutions w of the Euler-Lagrange equations for the homogeneousMumford-Shah fun
tional MS(w) = Z
 jrw(x; y)j2dx dy +H1(Sw); (2.1)and we assume that the dis
ontinuity set Sw is a straight line segment 
onne
ting two boundary pointsof the domain. We prove that, under the additional assumptions that the tangential derivatives ��w and�2��w of w do not vanish on both sides of Sw , the Euler 
onditions are also suÆ
ient for the Diri
hletminimality in small domains.Let 
 be a 
ir
le in R2 with 
entre on the x-axis, and set
0 := f(x; y) 2 
 : y 6= 0g; S := f(x; y) 2 
 : y = 0g:If w 2 C1(
0) with R
0 jrwj2dx dy < +1 , then it is easy to see that w satis�es the Euler 
onditionsfor the Mumford-Shah fun
tional (see Se
tion 1.2) if and only if w has one of the following forms:w(x; y) = ( u(x; y) if y > 0;�u(x; y) + 
1 if y < 0; (2.2)or w(x; y) = (u(x; y) + 
2 if y > 0;u(x; y) if y < 0; (2.3)where u 2 C1(
) is harmoni
 with normal derivative vanishing on S and 
1 , 
2 are real 
onstants. Forour purposes, it is enough to 
onsider the 
ase 
1 = 0 in (2.2) and 
2 = 1 in (2.3).In both 
ases we will 
onstru
t an expli
it 
alibration for w in the 
ylinder U�R , where U is asuitable neighbourhood of (x0; y0). Sin
e this 
onstru
tion is elementary when (x0; y0) =2 Sw (see [2℄),we 
onsider only the 
ase (x0; y0) 2 Sw .In Se
tion 2.1 we 
onsider the spe
ial 
ase of the fun
tionw(x; y) := ( x if y > 0;�x if y < 0; (2.4)15



16 Chapter 2and give in full details the expression of the 
alibration for w (see Theorem 2.1); then in Theorem 2.3we adapt the same 
onstru
tion to the fun
tionw(x; y) := (x+ 1 if y > 0;x if y < 0: (2.5)In Se
tion 2.2 we 
onsider the general 
ases (2.2) and (2.3): the former 
ase (2.2) is studied in Theorem2.4 by a suitable 
hange of variables and by adding two new parameters to the 
onstru
tion used inTheorem 2.1; the minor 
hanges for (2.2) are 
onsidered in Theorem 2.5.2.1 A model 
aseIn this se
tion we deal with the minimality of the fun
tions (2.4) and (2.5). The aim of the study of thesesimpler 
ases (but we will see that they involve the main diÆ
ulties) is to 
larify the ideas of the general
onstru
tion.Theorem 2.1 Let w : R2 ! R be the fun
tion de�ned byw(x; y) := ( x if y > 0;�x if y < 0:Then every point (x0; y0) 6= (0; 0) has an open neighbourhood U su
h that w is a Diri
hlet minimizer inU of the Mumford-Shah fun
tional (2.1).Proof. { The result follows from Example 4.10 of [2℄ if y0 6= 0. We 
onsider now the 
ase y0 = 0,assuming for simpli
ity that x0 > 0. We will 
onstru
t a lo
al 
alibration of w near (x0; 0). Let us �x" > 0 su
h that 0 < " < x010 ; 0 < " < 132 : (2.6)For 0 < Æ < " we 
onsider the open re
tangleU := f(x; y) 2 R2 : jx� x0j < "; jyj < Ægand the following subsets of U�R (see Fig. 2.1):A1 := f(x; y; z) 2 U�R : x� �(y) < z < x+ �(y)g;A2 := f(x; y; z) 2 U�R : b+ �(�) y < z < b+ �(�) y + hg ;A3 := f(x; y; z) 2 U�R : �h < z < hg;A4 := f(x; y; z) 2 U�R : �b+ �(�) y � h < z < �b+ �(�) yg ;A5 := f(x; y; z) 2 U�R : �x� �(�y) < z < �x+ �(�y)g;where �(y) :=p4"2 � ("� y)2;h := x0 � 3"4 ; �(�) := �4 � 1� ; b := 2h+ �(�) Æ; � := 1� 4"2h :We will assume that Æ < x0 � 3"8 j�(�)j ; (2.7)
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Figure 2.1: Se
tion of the sets A1; : : : ; A5 at x = 
onstant.



18 Chapter 2so that the sets A1; : : : ; A5 are pairwise disjoint.For every (x; y; z) 2 U�R , let us de�ne the ve
tor '(x; y; z) = ('x; 'y; 'z)(x; y; z) 2 R3 as follows:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

 2("� y)p("� y)2 + (z � x)2 ; �2(z � x)p("� y)2 + (z � x)2 ; 1! if (x; y; z) 2 A1;�0; �; �24 � if (x; y; z) 2 A2;(f(y); 0; 1) if (x; y; z) 2 A3;�0; �; �24 � if (x; y; z) 2 A4; �2("+ y)p("+ y)2 + (z + x)2 ; 2(z + x)p("+ y)2 + (z + x)2 ; 1! if (x; y; z) 2 A5;(0; 0; 1) otherwise;where f(y) := � 1h  Z �(y)0 "� ypt2 + ("� y)2 dt� Z �(�y)0 "+ ypt2 + ("+ y)2 dt! :Note that A1 [ A5 is an open neighbourhood of graphw \ (U�R). The purpose of the de�nitionof ' in A1 and A5 (see Fig. 2.2) is to provide a divergen
e-free ve
tor�eld satisfying 
ondition (a2) ofSe
tion 1.3 and su
h that 'y(x; 0; z) > 0 for jzj < x;'y(x; 0; z) < 0 for jzj > x:These properties are 
ru
ial in order to obtain (b1) and (b2) simultaneously.The role of A2 and A4 is to give the main 
ontribution to the integral in (b2). To explain this fa
t,suppose, for a moment, that " = 0; in this 
ase we would have A1 = A5 = ; andZ x�x 'y(x; 0; z) dz = 1;so that the y -
omponent of equality (b2) would be satis�ed.The purpose of the de�nition of ' in A3 is to 
orre
t the x-
omponent of ' , in order to obtain (b1).We shall prove that, for a suitable 
hoi
e of Æ , the ve
tor�eld ' is a 
alibration for w in the re
tangleU . Inequality (a1) is 
learly satis�ed in all regions: the only nontrivial 
ase is A3 , where using (2.6) wehave jf(y)j � 4 (�(y) + �(�y))x0 � 3" � 8p3"x0 � 3" < 2:On the graph of w we have'(x; y; w(x; y)) = ( (2; 0; 1) if y > 0;(�2; 0; 1) if y < 0;
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y

x

y=−δ

y=δ

x=z

Figure 2.2: Se
tion of the set A1 at z = 
onstant.so 
ondition (a2) is satis�ed.Note that for a given z 2 R we have�x'x(x; y; z) + �y'y(x; y; z) = 0 (2.8)for every (x; y) su
h that (x; y; z) 2 A1 [ A5 . This implies ' is divergen
e-free in A1 [ A5 . Moreoverdiv' = 0 in the other sets Ai , and the normal 
omponent of ' is 
ontinuous a
ross �Ai : the 
hoi
e of�(�) ensures that this property holds for �A2 and �A4 (see Fig. 2.3). Therefore ' is divergen
e-free inthe sense of distributions in U�R .We now 
ompute Z x�x 'y(x; y; z) dz:Let us �x y with jyj < Æ . Sin
e 'y(x; y; z) depends on z � x , we haveZ xx��(y) 'y(x; y; z) dz = Z x+�(y)x 'y(�; y; x) d�: (2.9)Using (2.8) and applying the divergen
e theorem to the 
urvilinear triangleT = f(�; �) 2 R2 : � > x; � < y; ("� �)2 + (x� �)2 < 4"2g(see Fig. 2.4), we obtain
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Figure 2.3: Se
tion of the set A2 at x = 
onstant.
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y

ξ

η

ε

x
y

Figure 2.4: The 
urvilinear triangle T .Z x+�(y)x 'y(�; y; x) d� = Z y�" 'x(x; �; x) d� = 2(y + "): (2.10)From (2.9) and (2.10), we get Z xx��(y) 'y(x; y; z) dz = 2(y + "): (2.11)Similarly we 
an prove that Z �x+�(�y)�x 'y(x; y; z) dz = 2(�y + "): (2.12)Using the de�nition of ' in A2 , A3 , A4 , we obtainZ x�x 'y(x; y; z) dz = 1: (2.13)On the other hand, by the de�nition of f , we have immediately thatZ x�x 'x(x; y; z) dz = 0: (2.14)



22 Chapter 2From these equalities it follows in parti
ular that 
ondition (b2) is satis�ed on the jump set Sw \ U =f(x; y) 2 U : y = 0g .Let us begin now the proof of (b1). Let us �x (x; y) 2 U . For every t1 < t2 we setI(t1; t2) := Z t2t1 ('x; 'y)(x; y; z) dz:It is enough to 
onsider the 
ase �x� �(�y) � t1 � t2 � x� �(y). We 
an writeI(t1; t2) = I(t1;�x) + I(�x; x) + I(x; t2);I(t1;�x) = I(t1 ^ (�x+ �(�y));�x) + I(t1 _ (�x+ �(�y));�x+ �(�y));I(x; t2) = I(x; t2 _ (x� �(y))) + I(x� �(y); t2 ^ (x� �(y))):ThereforeI(t1; t2) = I(�x; x) + I(t1 ^ (�x+ �(�y));�x) + I(x; t2 _ (x � �(y)))+ I(t1 _ (�x+ �(�y)); t2 ^ (x� �(y))) � I(�x+ �(�y); x� �(y)): (2.15)Let B be the ball of radius 4" 
entred at (0;�4"). We want to prove thatI(x; t) 2 B (2.16)for every t with x � �(y) � t � x + �(y). Let us denote the 
omponents of I(x; t) by ax and ay .Arguing as in the proof of (2.11), we get the identityay = 2("� y)� 2p(t� x)2 + ("� y)2 � 0:As j'xj � 2, we have also (ax)2 � 4(t� x)2 = (2("� y)� ay)2 � 4("� y)2:From these estimates it follows that (ax)2 + (ay + 4")2 � 16"2;whi
h proves (2.16). In the same way we 
an prove thatI(t;�x) 2 B (2.17)for every t with �x� �(�y) � t � �x+ �(�y):If f(y) � 0, we de�neC := ([0; 2hf(y)℄�[0; 12 � 2"℄) [ (f2hf(y)g�[0; 1� 4"℄);if f(y) � 0, we simply repla
e [0; 2hf(y)℄ by [2hf(y); 0℄. >From the de�nition of ' in A2 , A3 , A4 , itfollows that I(�x+ �(�y); x� �(y)) = (2hf(y); 1� 4") (2.18)and I(s1; s2) 2 C (2.19)
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ontinuity set 23for �x+ �(�y) � s1 � s2 � x� �(y). Let D := C � (2hf(y); 1� 4"), i.e.,D = ([�2hf(y); 0℄�[�1 + 4";� 12 + 2"℄) [ (f0g�[�1 + 4"; 0℄);for f(y) � 0; the interval [�2hf(y); 0℄ is repla
ed by [0;�2hf(y)℄ when f(y) � 0. >From (2.15), (2.13),(2.14), (2.16), (2.17), (2.18) and (2.19) we obtainI(t1; t2) 2 (0; 1) + 2B +D: (2.20)As f(0) = 0, we 
an 
hoose Æ so that (2.7) is satis�ed andj2hf(y)j = x0 � 3"2 jf(y)j � " (2.21)for jyj < Æ . It is then easy to see that, by (2.6), the set (0; 1) + 2B + D is 
ontained in the unit ball
entred at (0; 0). So that (2.20) implies (b1). 2Remark 2.2 The assumption (x0; y0) 6= (0; 0) in Theorem 2.1 
annot be dropped. Indeed, there is noneighbourhood U of (0; 0) su
h that w is a Diri
hlet minimizer of the Mumford-Shah fun
tional in U .To see this fa
t, let  be a fun
tion de�ned on the square Q = (�1; 1)�(�1; 1) satisfying the boundary
ondition  = w on �Q and su
h that S = ((�1;�1=2) [ (1=2; 1))�f0g . For every " , let  " be thefun
tion de�ned on Q" := "Q by  "(x; y) := " (x="; y="). Note that  " satis�es the boundary 
ondition " = w on �Q" . Let us 
ompute the Mumford-Shah fun
tional for  " on Q" :ZQ" jr "j2dx dy +H1(S ") = "2 ZQ jr j2dx dy + ":Sin
e ZQ" jrwj2dx dy +H1(Sw) = 4"2 + 2";we have ZQ" jr "j2dx dy +H1(S ") < ZQ" jrwj2dx dy +H1(Sw)for " suÆ
iently small. 2The 
onstru
tion shown in the proof of Theorem 2.1 
an be easily adapted to de�ne a 
alibration forthe fun
tion w in (2.5).Theorem 2.3 Let w : R2 ! R be the fun
tion de�ned byw(x; y) := (x+ 1 if y > 0;x if y < 0:Then every point (x0; y0) 2 R2 has an open neighbourhood U su
h that w is a Diri
hlet minimizer in Uof the Mumford-Shah fun
tional (2.1).Proof. { The result follows by Example 4.10 of [2℄ if y0 6= 0. We 
onsider now the 
ase y0 = 0; we will
onstru
t a lo
al 
alibration of w near (x0; 0), using the same te
hnique as in Theorem 2.1. We give onlythe new de�nitions of the sets A1; : : : ; A5 and of the fun
tion ' , and leave to the reader the veri�
ationof the fa
t that this fun
tion is a 
alibration for suitable values of the involved parameters.



24 Chapter 2Let us �x " > 0 su
h that 0 < " < 124 ; 0 < " < 132 : (2.22)For 0 < Æ < " we 
onsider the open re
tangleU := f(x; y) 2 R2 : jx� x0j < "; jyj < Ægand the following subsets of U�RA1 := f(x; y; z) 2 U�R : x+ 1� �(y) < z < x+ 1 + �(y)g;A2 := f(x; y; z) 2 U�R : b+ �(�) y + 3h < z < b+ �(�) y + 4hg;A3 := f(x; y; z) 2 U�R : x0 + 3"+ 2h < z < x0 + 3"+ 3hg;A4 := f(x; y; z) 2 U�R : b+ �(�) y < z < b+ �(�) y + hg;A5 := f(x; y; z) 2 U�R : x� �(�y) < z < x+ �(�y)g;where �(y) :=p4"2 � ("� y)2;h := 1� 6"5 ; �(�) := �4 � 1� ; b := x0 + 3"+ �(�) Æ; � := 1� 4"2h :We will assume that Æ < 1� 6"10j�(�)j ; (2.23)so that the sets A1; : : : ; A5 are pairwise disjoint.For every (x; y; z) 2 U�R , let us de�ne the ve
tor '(x; y; z) 2 R3 as follows:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

 2("� y)p("� y)2 + (z � x� 1)2 ; �2(z � x� 1)p("� y)2 + (z � x� 1)2 ; 1! if (x; y; z) 2 A1;�0; �; �24 � if (x; y; z) 2 A2;(f(y); 0; 1) if (x; y; z) 2 A3;�0; �; �24 � if (x; y; z) 2 A4; 2("+ y)p("+ y)2 + (z � x)2 ; 2(z � x)p("+ y)2 + (z � x)2 ; 1! if (x; y; z) 2 A5;(0; 0; 1) otherwise;where f(y) := � 2h  Z �(y)0 "� ypt2 + ("� y)2 dt+ Z �(�y)0 "+ ypt2 + ("+ y)2 dt!for every jyj < Æ . 2
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tilinear dis
ontinuity set 252.2 The general 
aseIn this se
tion we denote by 
 a ball in R2 
entred at (0; 0) and we 
onsider as u in (2.2) and in (2.3)a generi
 harmoni
 fun
tion with normal derivative vanishing on S . We add the te
hni
al assumptionthat the �rst and se
ond order tangential derivatives of u are not zero on S .Theorem 2.4 Let u : 
 ! R be a harmoni
 fun
tion su
h that �yu(x; 0) = 0 for (x; 0) 2 
 , and letw : 
! R be the fun
tion de�ned byw(x; y) := ( u(x; y) for y > 0;�u(x; y) for y < 0:Assume that u0 := u(0; 0) 6= 0 , �xu(0; 0) 6= 0 , and �2xxu(0; 0) 6= 0 . Then there exists an open neighbour-hood U of (0; 0) su
h that w is a Diri
hlet minimizer in U of the Mumford-Shah fun
tional (2.1).Proof. { We may assume u(0; 0) > 0 and �xu(0; 0) > 0. We shall give the proof only for �2xxu(0; 0) > 0,and we shall explain at the end the modi�
ation needed for �2xxu(0; 0) < 0. Let v : 
 ! R be theharmoni
 
onjugate of u that vanishes on y = 0, i.e., the fun
tion satisfying �xv(x; y) = ��yu(x; y),�yv(x; y) = �xu(x; y), and v(x; 0) = 0.Consider a small neighbourhood U of (0; 0) su
h that the map �(x; y) := (u(x; y); v(x; y)) is invertibleon U and �xu > 0 on U . We 
all 	 the inverse fun
tion (u; v) 7! (�(u; v); �(u; v)), whi
h is de�ned inthe neighbourhood V := �(U) of (u0; 0). Note that, if U is small enough, then �(u; v) = 0 if and onlyif v = 0. Moreover, D	 = � �u� �v��u� �v� � = 1jruj2 � �xu �xv�yu �yv � ; (2.24)where, in the last formula, all fun
tions are 
omputed at (x; y) = 	(u; v), and so �u� = �v� , �v� = ��u�and �u�(u; 0) = 0, �v�(u; 0) > 0. In parti
ular, � and � are harmoni
, and�2uu�(u; 0) = 0; �2vv�(u; 0) = 0: (2.25)On U we will use the 
oordinate system (u; v) given by �. By (2.24) the 
anoni
al basis of the tangentspa
e to U at a point (x; y) is given by�u = rujruj2 ; �v = rvjrvj2 : (2.26)For every (u; v) 2 V , let G(u; v) be the matrix asso
iated with the �rst fundamental form of U in the
oordinate system (u; v), and let g(u; v) be its determinant. By (2.24) and (2.26),g = ((�u�)2 + (�v�)2)2 = 1jru(	)j4 : (2.27)We set 
(u; v) := 4pg(u; v).The 
alibration '(x; y; z) on U�R will be written as'(x; y; z) = 1
2(u(x; y); v(x; y))�(u(x; y); v(x; y); z): (2.28)We will adopt the following representation for � : V�R ! R3 :�(u; v; z) = �u(u; v; z)�u + �v(u; v; z)�v + �z(u; v; z)ez; (2.29)



26 Chapter 2where ez is the third ve
tor of the 
anoni
al basis of R3 , and �u , �v are 
omputed at the point 	(u; v).We now reformulate the 
onditions of Se
tion 1.3 in this new 
oordinate system. It is known fromdi�erential geometry (see, e.g., [9, Proposition 3.5℄) that, if X = Xu�u + Xv�v is a ve
tor�eld on U ,then the divergen
e of X is given bydivX = 1
2 (�u(
2Xu) + �v(
2Xv)): (2.30)Using (2.26), (2.27), (2.28), (2.29), and (2.30) it turns out that ' is a 
alibration if the following 
onditionsare satis�ed:(a1) (�u(u; v; z))2 + (�v(u; v; z))2 � 4�z(u; v; z) for every (u; v; z) 2 V�R ;(a2) �u(u; v;�u) = �2, �v(u; v;�u) = 0, and �z(u; v;�u) = 1 for every (u; v) 2 V ;(b1) �Z ts �u(u; v; z) dz�2 +�Z ts �v(u; v; z) dz�2 � 
2(u; v) for every (u; v) 2 V , s; t 2 R ;(b2) Z u�u �u(u; 0; z) dz = 0 and Z u�u �v(u; 0; z) dz = 
(u; 0) for every (u; 0) 2 V ;(
1) �u�u + �v�v + �z�z = 0 for every (u; v; z) 2 V�R .Given suitable parameters " > 0, h > 0, � > 0, that will be 
hosen later, and assumingV = f(u; v) : ju� u0j < Æ; jvj < Æg; (2.31)with Æ < " , we 
onsider the following subsets of V�RA1 := f(u; v; z) 2 V�R : u� �(v) < z < u+ �(v)g;A2 := f(u; v; z) 2 V�R : 3h+ �(u; v) < z < 3h+ �(u; v) + 1=�g ;A3 := f(u; v; z) 2 V�R : �h < z < hg;A4 := f(u; v; z) 2 V�R : �3h+ �(u; v)� 1=� < z < �3h+ �(u; v)g ;A5 := f(u; v; z) 2 V�R : �u� �(�v) < z < �u+ �(�v)g;where �(v) :=p4"2 � ("� v)2;and � is a suitable smooth fun
tion satisfying �(u; 0) = 0, whi
h will be de�ned later. It is easy to seethat, if " and h are suÆ
iently small, while � is suÆ
iently large, then the sets A1; : : : ; A5 are pairwisedisjoint, provided Æ is small enough. Moreover, sin
e 
(u; 0) = �v�(u; 0) > 0, by 
ontinuity we mayassume that 
(u; v) > 128" and �v�(u; v) > 8" (2.32)for every (u; v) 2 V .



Calibrations for minimizers with a re
tilinear dis
ontinuity set 27For (u; v) 2 V and z 2 R the ve
tor �(u; v; z) introdu
ed in (2.28) is de�ned as follows:8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

2("� v)p("� v)2 + (z � u)2 �u � 2(z � u)p("� v)2 + (z � u)2 �v + ez in A1;���(u; v) vp(u� a)2 + v2 �u + ��(u; v) u� ap(u� a)2 + v2 �v + �ez in A2;f(v)�u + ez in A3;���(u; v) vp(u� a)2 + v2 �u + ��(u; v) u� ap(u� a)2 + v2 �v + �ez in A4;� 2("+ v)p("+ v)2 + (z + u)2 �u + 2(z + u)p("+ v)2 + (z + u)2 �v + ez in A5;ez otherwise,where a < u0 � 11Æ; � > 0 (2.33)f(v) := � 1h  Z �(v)0 ("� v)pt2 + ("� v)2 dt� Z �(�v)0 ("+ v)pt2 + ("+ v)2 dt! ;�(u; v) := 12
(a+p(u� a)2 + v2; 0)� 2": (2.34)We 
hoose � as the solution of the Cau
hy problem8><>:��(u; v)(�v �u� + (u� a)�v�) = (�� 1)p(u� a)2 + v2;�(u; 0) = 0: (2.35)Sin
e the line v = 0 is not 
hara
teristi
 for the equation near (u0; 0), there exists a unique solution� 2 C1(V ), provided V is small enough.In the 
oordinate system (u; v) the de�nition of the �eld � in A1 , A3 , and A5 is the same as thede�nition of ' in the proof of Theorem 2.1. The 
ru
ial di�eren
e is in the de�nition on the sets A2 andA4 , where now we are for
ed to introdu
e two new parameters a and � . Note that the de�nition givenin Theorem 2.1 
an be regarded as the limiting 
ase as a tends to +1 .In order to satisfy 
ondition (a1), it is enough to take the parameter � su
h that�24 �2(u; v) � �for every (u; v) 2 V , and require that jf(v)j � 2: (2.36)



28 Chapter 2Sin
e jf(v)j � �(v) + �(�v)h � 4 "h ; (2.37)inequality (2.36) is true if we impose 2 " � h:Looking at the de�nition of � on A1 and A5 , one 
an 
he
k that 
ondition (a2) is satis�ed.By dire
t 
omputations it is easy to see that � satis�es 
ondition (
1) on A1 and A5 . Similarly, theve
tor�eld  � vp(u� a)2 + v2 ; u� ap(u� a)2 + v2!is divergen
e-free; sin
e (u� a)2 + v2 is 
onstant along the integral 
urves of this �eld, by 
onstru
tionthe same property holds for � , so that � satis�es 
ondition (
1) in A2 and A4 .In A3 , 
ondition (
1) is trivially satis�ed.Note that the normal 
omponent of � is 
ontinuous a
ross ea
h �Ai : for the region A3 this 
ontinuityis guaranteed by our 
hoi
e of � . This implies that (
1) is satis�ed in the sense of distributions on V�R .Arguing as in the proof of (2.11), (2.12), (2.14) in Theorem 2.1, we �nd that for every (u; v) 2 VZ �u+�(�v)�u �u(u; v; z) dz + Z h�h �u(u; v; z) dz + Z uu��(v) �u(u; v; z) dz = 0;Z �u+�(�v)�u �v(u; v; z) dz + Z h�h �v(u; v; z) dz + Z uu��(v) �v(u; v; z) dz = 4":Now, it is easy to see that Z u�u �u(u; v; z) dz = �2�(u; v) vp(u� a)2 + v2 ; (2.38)Z u�u �v(u; v; z) dz = 4"+ 2�(u; v) u� ap(u� a)2 + v2 ; (2.39)sin
e for v = 0 we have �(u; 0) = 12
(u; 0)� 2";
ondition (b2) is satis�ed.By 
ontinuity, if Æ is small enough, we haveZ u�u �v(u; v; z) dz > 78
(u; v) (2.40)for every (u; v) 2 V .From now on, we regard the pair (�u; �v) as a ve
tor in R2 . To prove 
ondition (b1) we setI";a(u; v; s; t) := Z ts (�u; �v)(u; v; z) dzfor every (u; v) 2 V , and for every s; t 2 R . We want to 
ompare the behaviour of the fun
tions jI";aj2and 
2 ; to this aim, we de�ne the fun
tiond";a(u; v; s; t) := jI";a(u; v; s; t)j2 � 
2(u; v):



Calibrations for minimizers with a re
tilinear dis
ontinuity set 29We have already shown (
ondition (b2)) thatd";a(u; 0;�u; u) = 0: (2.41)We start by proving that, if V is suÆ
iently small, 
ondition (b1) holds for every (u; v) 2 V , for s 
loseto �u and t 
lose to u . Using the de�nition of �(u; v; z) on A1 and A5 , one 
an 
ompute expli
itlyd";a(u; v; s; t) for js+ uj � �(�v) and for jt� uj � �(v). By dire
t 
omputations one obtainsrv;s;t d";a(u; 0;�u; u) = 0 (2.42)for (u; 0) 2 V .We now want to 
ompute the Hessian matrix r2v;s;t d";a at the point (u0; 0;�u0; u0). By (2.34) and(2.27), after some easy 
omputations, we get�2vv�(u; 0) = 12(u� a)�u
(u; 0) = 12(u� a)�2uv�(u; 0):Using this equality and the expli
it expression of d";a near (u0; 0;�u0; u0), we obtain�2vvd";a(u0; 0;�u0; u0) = � 8"(u0 � a)2 (�v�(u0; 0)� 4") + 2u0 � a�v�(u0; 0) �2uv�(u0; 0)� �2vv(
2)(u0; 0):Sin
e � and 
 do not depend on a and " , for every " satisfying (2.32) we 
an �nd a so 
lose to u0 that�2vvd";a(u0; 0;�u0; u0) < 0: (2.43)Moreover, we easily obtain that�2ttd";a(u0; 0;�u0; u0) = �2ssd";a(u0; 0;�u0; u0) = 8� 4"�v�(u0; 0);�2vtd";a(u0; 0;�u0; u0) = �2vsd";a(u0; 0;�u0; u0) = � 4u0 � a (�v�(u0; 0)� 4");�2std";a(u0; 0;�u0; u0) = 8:By the above expressions, it follows thatdet0� �2vvd";a �2vtd";a�2vtd";a �2ttd";a 1A (u0; 0;�u0; u0) = 16(u0 � a)2 �v�(u0; 0)(�v�(u0; 0)� 4") + 
1(")u0 � a + 
2(");where 
1("), 
2(") are two 
onstants depending only on " . Then, if " satis�es (2.32), a 
an be 
hosenso 
lose to u0 that det0� �2vvd";a �2vtd";a�2vtd";a �2ttd";a 1A (u0; 0;�u0; u0) > 0: (2.44)At last, the determinant of the Hessian matrix of d";a at (u0; 0;�u0; u0) is given bydetr2v;s;t d";a(u0; 0;�u0; u0) = 32"2(u0 � a) (�v�(u0; 0))2�2uv�(u0; 0)(�v�(u0; 0)� 4") + 
3(");where 
3(") is a 
onstant depending only on " . Sin
e, by (2.24),�2uv�(u0; 0) = � �2xxu(0; 0)(�xu(0; 0))3 ;



30 Chapter 2given " satisfying (2.32), we 
an 
hoose a so 
lose to u0 thatdetr2v;s;t d";a(u0; 0;�u0; u0) < 0: (2.45)By (2.43), (2.44), and (2.45), we 
an 
on
lude that, by a suitable 
hoi
e of the parameters, the Hessianmatrix of d";a (with respe
t to v; s; t) at (u0; 0;�u0; u0) is negative de�nite. This fa
t, with (2.41) and(2.42), allows us to state the existen
e of a 
onstant � > 0 su
h thatd";a(u; v; s; t) < 0 (2.46)for js+ u0j < � , jt� u0j < � , (u; v) 2 V , v 6= 0, provided V is suÆ
iently small. So, 
ondition (b1) issatis�ed for js+ u0j < � and jt� u0j < � . We 
an assume Æ < � < �(v) for every (u; v) 2 V .From now on, sin
e at this point the parameters " , a have been �xed, we simply write I instead ofI";a . We now study the more general 
ase js+ uj < �(�v) and jt� uj < �(v).Let us setm1(u; v) := max fjI(u; v; s; t)j : js+ uj � �(�v); jt� uj � �(v); jt� u0j � �g :By the de�nition of A1; : : : ; A5 , for � = �(Æ) + Æ we have (�u; �v) = 0 on (V�[u0� �; u0+ �℄) nA1 and(V �[�u0 � �;�u0 + �℄) nA5 . This implies thatm1(u; v) = max fjI(u; v; s; t)j : js+ u0j � �; � � jt� u0j � �gfor (u; v) 2 V . The fun
tion m1 , as supremum of a family of 
ontinuous fun
tions, is lower semi
on-tinuous. Moreover, m1 is also upper semi
ontinuous; indeed, suppose, by 
ontradi
tion, that there existtwo sequen
es (un), (vn) 
onverging respe
tively to u , v , su
h that (m1(un; vn)) 
onverges to a limitl > m1(u; v); then, there exist (sn), (tn) su
h thatjsn + unj � �(�vn); jtn � unj � �(vn); jtn � u0j � �; (2.47)and m1(un; vn) = jI(un; vn; sn; tn)j . Up to subsequen
es, we 
an assume that (sn), (tn) 
onvergerespe
tively to s , t su
h that, by (2.47),js+ uj � �(�v); jt� uj � �(v); jt� u0j � � ;hen
e, we have that m1(u; v) � jI(u; v; s; t)j = limn!1 jI(un; vn; sn; tn)j = l;whi
h is impossible sin
e l > m1(u; v). Therefore, m1 is 
ontinuous.Let B be the open ball of radius 4" 
entred at (0;�4"). Arguing as in (2.16), we 
an prove thatI(u; v; u; t) 2 B (2.48)whenever 0 < jt� uj � �(v). In the same way we 
an prove thatI(u; v; s;�u) 2 B (2.49)for 0 < js+ uj � �(�v). We 
an writeI(u; v; s; t) = I(u; v; s;�u) + I(u; v;�u; u) + I(u; v; u; t): (2.50)So, for js+ uj � �(�v), jt� uj � �(v), and jt� u0j � � , by (2.49), (2.38), (2.39), and (2.48), we obtainthat I(u; 0; s; t) 2 (0; 
(u; 0)) +B +B;
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tilinear dis
ontinuity set 31hen
e, by (2.32), I(u; 0; s; t) belongs to the open ball of radius 
(u; 0) 
entred at (0; 0), and so, m1(u; 0) <
(u; 0). By 
ontinuity, if V is small enough,m1(u; v) < 
(u; v) (2.51)for every (u; v) 2 V .Analogously, we de�nem2(u; v) := max fjI(u; v; s; t)j : js+ uj � �(�v); js+ u0j � �; jt� uj � �(v); g :Arguing as in the 
ase of m1 , we 
an prove that, if V is small enough,m2(u; v) < 
(u; v) (2.52)for every (u; v) 2 V .By (2.51), (2.52), and (2.46), we 
an 
on
lude that I(u; v; s; t) belongs to the ball 
entred at (0; 0)with radius 
(u; v), for js+uj � �(�v) and jt�uj � �(v). More pre
isely, let E(u; v) be the interse
tionof this ball with the upper half plane bounded by the horizontal straight line passing through the point(0; 34
(u; v)): by (2.50), (2.40), (2.48), (2.49), and (2.32), we dedu
e thatI(u; v; s; t) 2 E(u; v) (2.53)for js+ uj � �(�v) and jt� uj � �(v).We 
an now 
on
lude the proof of (b1). It is enough to 
onsider the 
ase �u � �(�v) � s � t �u+ �(v). We 
an writeI(u; v; s; t) = I(u; v; s ^ (�u+ �(�v)); t _ (u� �(v)))+ I(u; v; s _ (�u+ �(�v)); t ^ (u� �(v))) � I(u; v;�u+ �(�v); u� �(v)): (2.54)By (2.53), it follows thatI(u; v; s ^ (�u+ �(�v)); t _ (u� �(v))) 2 E(u; v): (2.55)Let C1(u; v) be the parallelogram having three 
onse
utive verti
es at the points(2hf(v); 0); (0; 0); �(u; v) (�v; u� a)p(u� a)2 + v2 ;let C2(u; v) be the segment with endpoints(2hf(v); 0); (2hf(v); 0) + 2�(u; v) (�v; u� a)p(u� a)2 + v2 ;and let C(u; v) := C1(u; v) [ C2(u; v).From the de�nition of ' in A2 , A3 , A4 , it follows thatI(u; v;�u+ �(�v); u� �(v)) = (2hf(v); 0) + 2�(u; v) (�v; u� a)p(u� a)2 + v2 (2.56)and I(u; v; s1; s2) 2 C(u; v) (2.57)



32 Chapter 2for �u+ �(�v) � s1 � s2 � u� �(v). LetD(u; v) := C(u; v)� (2hf(v); 0)� 2�(u; v) (�v; u� a)p(u� a)2 + v2 :From (2.54), (2.55), (2.56), and (2.57) we obtainI(u; v; s; t) 2 E(u; v) +D(u; v): (2.58)As jvj < Æ < 10Æ < u� a by (2.33), the angle that the segment C2(u; v) forms with the verti
al is lessthan ar
tan(1=10). Moreover, we may assume that the lenght 2�(u; v) of the segment C2(u; v) is lessthan 
(u; v); indeed, this is true for v = 0 and, by 
ontinuity, it remains true if Æ is small enough. By(2.32) and (2.37), we have also that j2hf(v)j � 
(u; v)=16. Using these properties and simple geometri

onsiderations, it is possible to prove that E(u; v) + D(u; v) is 
ontained in the ball with 
entre (0; 0)and radius 
(u; v). This 
on
ludes the proof of (b1).If �2xxu(0; 0) < 0, it is enough to 
hange the de�nition of � in the sets A2 and A4 , as follows:��(u; v) vp(a� u)2 + v2 �u + ��(u; v) a� up(a� u)2 + v2 �v + �ez;where a > u0 + 11Æ and �(u; v) := 12
(a�p(a� u)2 + v2; 0)� 2": 2Theorem 2.5 Let u : 
 ! R be a harmoni
 fun
tion su
h that �yu(x; 0) = 0 for (x; 0) 2 
 , and letw : 
! R be the fun
tion de�ned byw(x; y) := (u(x; y) + 1 for y > 0;u(x; y) for y < 0:Assume that �xu(0; 0) 6= 0 and �2xxu(0; 0) 6= 0 . Then there exists an open neighbourhood U of (0; 0)su
h that w is a Diri
hlet minimizer in U of the Mumford-Shah fun
tional (2.1).Proof. { We will write the 
alibration ' as in (2.28) and we will adopt the representation (2.29) for� . We will use the same te
hnique as in Theorem 2.4. We give only the new de�nitions of the setsA1; : : : ; A5 and of the fun
tion � when �xu(0; 0) > 0 and �2xxu(0; 0) > 0, and leave to the reader theveri�
ation of the fa
t that this fun
tion is a 
alibration for suitable values of the involved parameters.The 
ase �2xxu(0; 0) < 0 
an be treated by the 
hanges introdu
ed at the end of Theorem 2.4.Let u0 := u(0; 0). Given " > 0, h > 0, � > 0, and assumingV := f(u; v) : ju� u0j < Æ; jvj < Æg;we 
onsider the following subsets of V�RA1 := f(u; v; z) 2 V�R : u+ 1� �(v) < z < u+ 1 + �(v)g;A2 := f(u; v; z) 2 V�R : 5h+ �(u; v) < z < 5h+ �(u; v) + 1=�g;A3 := f(u; v; z) 2 V�R : 2h < z < 4hg;A4 := f(u; v; z) 2 V�R : h+ �(u; v) < z < h+ �(u; v) + 1=�g;A5 := f(u; v; z) 2 V�R : u� �(�v) < z < u+ �(�v)g;



Calibrations for minimizers with a re
tilinear dis
ontinuity set 33where �(v) :=p4"2 � ("� v)2;and � is a suitable smooth fun
tion satisfying �(u; 0) = 0, whi
h will be de�ned later. For (u; v) 2 Vand z 2 R the ve
tor �(u; v; z) is de�ned as follows:8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

2("� v)p("� v)2 + (z � u� 1)2 �u � 2(z � u� 1)p("� v)2 + (z � u� 1)2 �v + ez in A1;���(u; v) vp(u� a)2 + v2 �u + ��(u; v) u� ap(u� a)2 + v2 �v + �ez in A2;f(v)�u + ez in A3;���(u; v) vp(u� a)2 + v2 �u + ��(u; v) u� ap(u� a)2 + v2 �v + �ez in A4;2("+ v)p("+ v)2 + (z � u)2 �u + 2(z � u)p("+ v)2 + (z � u)2 �v + ez in A5;ez otherwise,where a < u0 � 11Æ , � > 0,f(v) := � 1h  Z �(v)0 ("� v)pt2 + ("� v)2 dt+ Z �(�v)0 ("+ v)pt2 + ("+ v)2 dt! ;�(u; v) := 12
(a+p(u� a)2 + v2; 0)� 2";and � is the solution of the Cau
hy problem (2.35). 2





Chapter 3Calibrations for minimizers with aregular dis
ontinuity setIn this 
hapter we 
onsider solutions u of the Euler-Lagrange equations for the homogeneous Mumford-Shah fun
tional (2.1) whose dis
ontinuity set is an analyti
 
urve 
onne
ting two boundary points.Se
tion 3.1 is devoted to the proof of the Diri
hlet minimality of u in a uniform small neighbourhoodof Su . In Se
tion 3.2 we deal with a di�erent notion of minimality: instead of 
omparing u withperturbations whi
h 
an be very large, but 
on
entrated in a �xed small domain, as in Se
tion 3.1, we
onsider as 
ompetitors perturbations of u with L1 -norm very small outside a small neighbourhood ofSu , but support possibly 
oin
iding with 
. A

ording to this idea we give the following de�nition.De�nition 3.1 We say that u is a Diri
hlet graph-minimizer of the Mumford-Shah fun
tional (2.1) in
 if there exists an open neighbourhood A of the 
omplete graph �u of u su
h that u is a Diri
hletA -minimizer of (2.1).In Theorem 3.5 we give a suÆ
ient 
ondition for the graph-minimality in terms of the geometri
al prop-erties of Su (namely, the length and the 
urvature) and of a sort of 
apa
ity of Su with respe
t to thedomain 
, whi
h is de�ned in (3.58) and whose qualitative properties are studied in Subse
tion 3.2.1.We present also a 
ounterexample when the 
ondition of Theorem 3.5 is violated.In the sequel the following notation and remarks will be useful. Given any subset U of R2 and Æ > 0,we denote by UÆ the Æ -neighbourhood of U , de�ned byUÆ := f(x; y) 2 R2 : 9(x0; y0) 2 U su
h that j(x � x0; y � y0)j < Æg:Let � be a smooth 
urve in 
. Fix an orientation of � and 
all � the 
orresponding normal ve
tor�eldto �. If � 7! (x(�); y(�)) is a parameterization of � by the ar
-length, then the (signed) 
urvature isgiven by 
urv �(�) = �h(�x(�); �y(�)); �(�)i; (3.1)sin
e the two ve
tors in (3.1) are parallel, it follows that[
urv �(�)℄2 = (�x(�))2 + (�y(�))2: (3.2)We will denote the length of � by l(�), and the L1 -norm of the fun
tion (
urv �) by k(�).35



36 Chapter 33.1 The Diri
hlet minimalityIn this se
tion we prove that, if we assume that Su is an analyti
 
urve, then the Euler-Lagrange equationsguarantee the Diri
hlet minimality of u in small domains. This result generalizes Theorems 2.4 and 2.5of the previous 
hapter in several dire
tions: the dis
ontinuity set Su does not need any more to bere
tilinear, there are no additional assumptions on the tangential derivatives of u along Su , and theDiri
hlet minimality of u is proved in a uniform neighbourhood of Su \ 
.Let us give and prove the pre
ise statement of the result.Theorem 3.2 Let 
0 be a 
onne
ted open subset of R2 and � be a simple analyti
 
urve in 
0 
on-ne
ting two points of the boundary. Let u be a fun
tion in H1(
0 n�) with Su = � , with di�erent tra
esat every point of � , and satisfying the Euler 
onditions in 
0 , that is,i) u is harmoni
 in 
0 n � ;ii) ��u = 0 on � ;iii) jru+j2 � jru�j2 = 
urv� at every point of � ,where ru� denote the tra
es of ru on � . Finally, let 
 be an open set with Lips
hitz boundary,
ompa
tly 
ontained in 
0 , su
h that 
 \ � 6= ; . Then there exists an open neighbourhood U of � \ 

ontained in 
0 su
h that u is a Diri
hlet minimizer in U of the Mumford-Shah fun
tional (2.1).Proof. { In the sequel, the interse
tion � \
 will be still denoted by �. Let� : (x = x(s)y = y(s)be a parameterization by the ar
-length, where s varies in [0; l(�)℄ ; we 
hoose as orientation the normalve
tor�eld �(s) = (� _y(s); _x(s)).By Cau
hy-Kowalevski theorem (see [24℄) there exist an open neighbourhood U of � 
ontained in
0 and a harmoni
 fun
tion � de�ned on U su
h that�(�(s)) = s and ���(�(s)) = 0:We 
an suppose U simply 
onne
ted. Let � : U ! R2 be the harmoni
 
onjugate of � that vanishes on�, i.e., the fun
tion satisfying �x�(x; y) = ��y�(x; y), �y�(x; y) = �x�(x; y), and �(�(s)) = 0.Taking U smaller if needed, we 
an suppose that the map �(x; y) := (�(x; y); �(x; y)) is invertible onU . We 
all 	 the inverse fun
tion (�; �) 7! (~x(�; �); ~y(�; �)), whi
h is de�ned in the open set V := �(U).Note that, if U is small enough, then (~x(�; �); ~y(�; �)) belongs to � if and only if � = 0. Moreover,D	 = � ��~x ��~x��~y ��~y � = 1jr�j2 � �x� �x��y� �y� � ; (3.3)where, in the last formula, all fun
tions are 
omputed at (x; y) = 	(�; �), and so��~x = ��~y and ��~x = ���~y: (3.4)In parti
ular, ~x and ~y are harmoni
.On U we will use the 
oordinate system (�; �) given by �. By (3.3) the 
anoni
al basis of the tangentspa
e to U at a point (x; y) is given by�� = r�jr�j2 ; �� = r�jr�j2 : (3.5)



Calibrations for minimizers with a regular dis
ontinuity set 37For every (�; �) 2 V , let G(�; �) be the matrix asso
iated with the �rst fundamental form of U in the
oordinate system (�; �), and let g(�; �) be its determinant. By (3.3) and (3.5),g = ((��~x)2 + (��~y)2)2 = 1jr�(	)j4 : (3.6)We set 
(�; �) = 4pg(�; �) .From now on we will assume that V is symmetri
 with respe
t to f(�; �) 2 �(U) : � = 0g .Note that we 
an write the fun
tion u in this new 
oordinate system asu(�; �) = (u1(�; �) if (�; �) 2 V , � < 0,u2(�; �) if (�; �) 2 V , � > 0,where we 
an suppose that u1 and u2 are de�ned in V (indeed, u1 is a priori de�ned only on the setf(�; �) 2 V : � < 0g , but it 
an be extended to V by re
e
tion; an analogous argument applies to u2 ),0 < u1(�; 0) < u2(�; 0) for every (�; 0) 2 V , andi) �2��ui(�; �) + �2��ui(�; �) = 0 for i = 1; 2;ii) ��u1(�; 0) = ��u2(�; 0) = 0;iii) (��u2(�; 0))2 � (��u1(�; 0))2 = 
urv �(�).The 
alibration '(x; y; z) on U�R will be written as'(x; y; z) = 1
2(�(x; y); �(x; y))�(�(x; y); �(x; y); z); (3.7)where � : V�R ! R3 
an be represented by�(�; �; z) = ��(�; �; z)�� + ��(�; �; z)�� + �z(�; �; z)ez; (3.8)where ez is the third ve
tor of the 
anoni
al basis of R3 , and �� , �� are 
omputed at the point 	(�; �).We now reformulate the 
onditions of Se
tion 1.3 in this new 
oordinate system. It is known fromdi�erential geometry (see, e.g., [9, Proposition 3.5℄) that, if X = X���+X��� is a ve
tor�eld on U , thenthe divergen
e of X is given by divX = 1
2 (��(
2X�) + ��(
2X�)): (3.9)Using (3.5), (3.6), (3.7), (3.8), and (3.9) it turns out that ' is a 
alibration if the following 
onditionsare satis�ed:(a1) (��(�; �; z))2 + (��(�; �; z))2 � 4�z(�; �; z) for every (�; �; z) 2 V�R ;(a2) ��(�; �; u(�; �)) = 2��u(�; �), ��(�; �; u(�; �)) = 2��u(�; �), and �z(�; �; u(�; �)) = (��u(�; �))2 +(��u(�; �))2 for every (�; �) 2 V ;(b1) �Z ts ��(�; �; z) dz�2 +�Z ts ��(�; �; z) dz�2 � 
2(�; �) for every (�; �) 2 V , s; t 2 R ;(b2) Z u2u1 ��(�; 0; z) dz = 0 and Z u2u1 ��(�; 0; z) dz = 
(�; 0) = 1 for every (�; 0) 2 V ;(
1) ���� + ���� + �z�z = 0 for every (�; �; z) 2 V�R .



38 Chapter 3Given suitable parameters " > 0 and � > 0, that will be 
hosen later, we 
onsider the followingsubsets of V�R : A1 := f(�; �; z) 2 V�R : z < u1(�; �)� "g;A2 := f(�; �; z) 2 V�R : u1(�; �)� " < z < u1(�; �) + "g;A3 := f(�; �; z) 2 V�R : u1(�; �) + " < z < �1(�; �)g;A4 := f(�; �; z) 2 V�R : �1(�; �) < z < �2(�; �) + 1=�g;A5 := f(�; �; z) 2 V�R : �2(�; �) + 1=� < z < u2(�; �) � "g;A6 := f(�; �; z) 2 V�R : u2(�; �)� " < z < u2(�; �) + "g;A7 := f(�; �; z) 2 V�R : z > u2(�; �) + "g;where �1 and �2 are suitable smooth fun
tion su
h that u1(�; 0) < �1(�; 0) = �2(�; 0) < u2(�; 0), whi
hwill be de�ned later. Sin
e we suppose u2 > 0 on V , if " is small enough, while � is suÆ
iently large,then the sets A1; : : : ; A7 are nonempty and disjoint, provided V is suÆ
iently small.The ve
tor �(�; �; z) introdu
ed in (3.7) will be written as�(�; �; z) = (���(�; �; z); �z(�; �; z));where ��� is the two-dimensional ve
tor given by the pair (�� ; ��). For (�; �) 2 V and z 2 R we de�ne�(�; �; z) as follows: 8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
(0; !1(�; �)) in A1 [ A3;�2ru1 + 2 z�u1v1 rv1; ���ru1 + z�u1v1 rv1���2� in A2;(��(�; �)rw; �) in A4;(0; !2(�; �)) in A5 [ A7;�2ru2 + 2 z�u2v2 rv2; ���ru2 + z�u2v2 rv2���2� in A6;where r denotes the gradient with respe
t to the variables (�; �), the fun
tions vi are de�ned byv1(�; �) := "+M�; v2(�; �) := "�M�;and M and � are positive parameters whi
h will be �xed later, while!i(�; �) := "2M2v2i (�; �) � (��ui(�; �))2 � (��ui(�; �))2 (3.10)for i = 1; 2, and for every (�; �) 2 V . We 
hoose w as the solution of the Cau
hy problem8>>><>>>:�w = 0;w(�; 0) = � 2"1� 2"M Z �0 n(s)(��u1(s; 0) + ��u2(s; 0)) ds;��w(�; 0) = n(�); (3.11)



Calibrations for minimizers with a regular dis
ontinuity set 39where n is a positive analyti
 fun
tion that will be 
hosen later in a suitable way (if V is suÆ
ientlysmall, w is de�ned in V ). To de�ne � , we need some further explanations: we 
all p(�; �) the solutionof the problem 8<:��p(�; �) = ��w��w (p(�; �); �);p(�; 0) = �; (3.12)whi
h is de�ned in V , provided V is small enough. By applying the Impli
it Fun
tion theorem, it iseasy to see that there exists a fun
tion q de�ned in V (take V smaller, if needed) su
h thatp(q(�; �); �) = �: (3.13)At last, we de�ne �(�; �) := 1n(q(�; �)) (1� 2"M):We 
hoose �i , for i = 1; 2, as the solution of the Cau
hy problem(��(�; �)��w(�; �)���i(�; �) + ��(�; �)��w(�; �)���i(�; �)� � = �!i(�; �);�i(�; 0) = 12 (u1(�; 0) + u2(�; 0)): (3.14)Sin
e the line � = 0 is not 
hara
teristi
, there exists a unique solution �i 2 C1(V ), provided V issmall enough.The purpose of the de�nition of � in A2 and A6 is to provide a divergen
e-free ve
tor�eld satisfying
ondition (a2) and su
h that ��(�; 0; z) � 0 for u1 < z < u2;��(�; 0; z) � 0 for z < u1 and z > u2:These properties are 
ru
ial in order to obtain (b1) and (b2) simultaneously.The role of A4 is to give the main 
ontribution to the integral in (b2). The idea of the 
onstru
tion isto start from the gradient �eld of a harmoni
 fun
tion w whose normal derivative is positive on the line� = 0, while the tangential derivative is 
hosen in order to annihilate the � -
omponent of � , as requiredin (b2). Then, we multiply the �eld by a fun
tion � whi
h is de�ned �rst on � = 0 in order to make(b2) true, and then in a neighbourhood of � = 0 by assuming � 
onstant along the integral 
urves ofthe gradient �eld, so that �rw remains divergen
e-free.The other sets Ai are simply regions of transition, where the �eld is taken purely verti
al.Sin
e !i(�; 0) =M2 � (��ui(�; 0))2;
ondition (a1) is satis�ed in A1 [ A3 and in A5 [ A7 if we require thatM > supfj��ui(�; 0)j : (�; 0) 2 V; i = 1; 2g;provided V is small enough.Arguing in a similar way, if we impose that� > sup��24 (1� 2"M)2�1 + 4"2(1� 2"M)2 (��u1(�; 0) + ��u2(�; 0))2� : (�; 0) 2 V � ;
ondition (a1) holds in A4 , provided V is suÆ
iently small.In the other 
ases (a1) is trivial.



40 Chapter 3Looking at the de�nition of � on A2 and A6 , one 
an 
he
k that 
ondition (a2) is satis�ed.Let us prove 
ondition (
1). By Lemma 1.5 it follows that � is divergen
e-free in A2 [ A6 , notingthat it is 
onstru
ted starting from the family of harmoni
 fun
tions ui(�; �) + tvi(�; �).In A4 
ondition (
1) is true sin
e, as remarked above, � is the produ
t of rw with the fun
tion �whi
h is 
onstant along the integral 
urves of rw by 
onstru
tion.In the other sets 
ondition (
1) is trivially satis�ed.Note that the normal 
omponent of � is 
ontinuous a
ross ea
h �Ai : for the regions A2 , A6 , andfor A4 , this 
ontinuity is guaranteed by our 
hoi
e of !i and �i , respe
tively. This implies that (
1) issatis�ed in the sense of distributions on V�R .By dire
t 
omputations we �nd thatZ u2u1 �� dz = 2"��u1 + 2"��u2 + ���2 � �1 + 1�����w; (3.15)Z u2u1 �� dz = 2"��u1 + 2"��u2 + M"2"+M� + M"2"�M� + ���2 � �1 + 1�����w; (3.16)for every (�; �) 2 V .By using (3.11) and the de�nition of � , we obtainZ u2(�;0)u1(�;0) ��(�; 0; z) dz = 0 (3.17)and Z u2(�;0)u1(�;0) ��(�; 0; z) dz = 1; (3.18)so 
ondition (b2) is satis�ed.The proof of 
ondition (b1) will be split in two steps: we �rst prove that 
ondition (b1) holds if sand t respe
tively belong to a suitable neighbourhood of u1(�; �) and u2(�; �), whose width is uniformwith respe
t to (�; �) in V ; then, by a quite simple 
ontinuity argument we show that 
ondition (b1) istrue if s or t is not too 
lose to u1(�; �) or u2(�; �) respe
tively.For (�; �) 2 V and s; t 2 R , we setI(�; �; s; t) := Z ts ���(�; �; z) dzand we denote its 
omponents by I� and I� .Step 1.{ For a suitable 
hoi
e of " and of the fun
tion n (see (3.11)) there exists Æ > 0 su
h that
ondition (b1) holds for js�u1(�; �)j < Æ , jt�u2(�; �)j < Æ , and (�; �) 2 V , provided V is small enough.To estimate the ve
tor whose 
omponents are given by (3.15) and (3.16), we use suitable polar 
oordinates.If V is small enough, for every (�; �) 2 V there exist �";n(�; �) > 0 and ��=2 < �";n(�; �) < �=2 su
hthat I�(�; �; u1(�; �); u2(�; �)) = �";n(�; �) sin �";n(�; �); (3.19)I�(�; �; u1(�; �); u2(�; �)) = �";n(�; �) 
os �";n(�; �): (3.20)In the notation above we have made expli
it the dependen
e on the parameter " and on the fun
tion nwhi
h appears in the de�nition of w (see (3.11)).



Calibrations for minimizers with a regular dis
ontinuity set 41In order to prove 
ondition (b1), we want to 
ompare the behaviour of the fun
tions �";n and 
 forj�j small. We have already proved that �";n(�; 0) = 
(�; 0) = 1; we start 
omputing the �rst derivativeof 
 and of �";n with respe
t to the variable � .Claim 1.{ There holds that ��(jrx;y�(	)j2)(�; 0) = �2 
urv�(�).Proof of the 
laim. By (3.6) we obtainjrx;y�(	)j2 = 1(��~x)2 + (��~y)2 ;hen
e ��(jrx;y�(	)j2) = �[(��~x)2 + (��~y)2℄�2(2��~x �2��~x+ 2��~y �2�� ~y): (3.21)Using the fa
t that (��~x)2 + (�� ~y)2 is equal to 1 at (�; 0), and the equalities in (3.4), we �nally get��(jrx;y�(	)j2)(�; 0) = �2(���~x �2��~y + ��~y �2��~x) = �2 
urv�(�);where the last equality follows from (3.1): therefore the 
laim is proved.Sin
e 
 = (jrx;y�(	)j2)� 12 , one has that ��
 = � 12 (jrx;y�(	)j2)� 32 ��(jrx;y�(	)j2); using the previous
laim we 
an 
on
lude that ��
(�; 0) = �12��(jrx;y�(	)j2)(�; 0) = 
urv�(�):Using the equality�2";n(�; �) = �I�(�; �; u1(�; �); u2(�; �))�2 + [I�(�; �; u1(�; �); u2(�; �))℄2 ;we obtain���";n = 1�";n �� �I�(�; �; u1; u2)� I�(�; �; u1; u2) + 1�";n �� (I�(�; �; u1; u2)) I�(�; �; u1; u2):By (3.17) it follows that the �rst addend in the expression above is equal to zero at (�; 0), while by (3.18)it turns out that I�(�; 0; u1; u2) = �";n(�; 0) = 1; therefore,���";n(�; 0) = �� (I�(�; 0; u1; u2)) : (3.22)By (3.16) it follows that�� (I�(�; �; u1; u2)) = 2"�2��u1 + 2"�2��u2 � "2("+M�)2M2 + "2("�M�)2M2+ �(���2 � ���1)���w + �(�2 � �1 + 1=�)��(���w): (3.23)From (3.14) and the Euler 
ondition iii), we have that�(���2(�; 0)� ���1(�; 0))�(�; 0)��w(�; 0) = �!2(�; 0) + !1(�; 0)= (��u2(�; 0))2 � (��u1(�; 0))2 = 
urv �(�); (3.24)while ��(���w)(�; 0) = ���(���w)(�; 0) = ��(2"��u1(�; 0) + 2"��u2)(�; 0);



42 Chapter 3where we have used the fa
t that �rw is divergen
e-free and the de�nition of � and w . Putting thislast fa
t together with (3.23), (3.24), and the harmoni
ity of ui , we �nally get���";n(�; 0) = 
urv�(�) = ��
(�; 0): (3.25)Claim 2.{ There holds that �2��(jrx;y�(	)j2)(�; 0) = 4 [
urv �(�)℄2:Proof of the 
laim. By di�erentiating with respe
t to � the expression in (3.21) and by (3.4), weobtain �2��(jrx;y�(	)j2) = �2[(��~x)2 + (�� ~y)2℄�2[(�2�� ~x)2 + ��~x �3���~x+ (�2��~y)2 + ��~y �3��� ~y℄+8[(��~x)2 + (�� ~y)2℄�3(��~x �2��~x+ ��~y �2��~y)2= �2[(��~x)2 + (�� ~y)2℄�2[(�2�� ~y)2 + (�2��~x)2 � ��~x �3���~x� ��~y �3���~y℄+8[(��~x)2 + (�� ~y)2℄�3(���~x �2��~y + ��~y �2��~x)2:Note that ���~x �3���~x� ��~y �3���~y = (�2��~y)2 + (�2�� ~x)2 � 12�2��((��~x)2 + (�� ~y)2):Using (3.1), (3.2), and the fa
t that (��~x)2 + (��~y)2 is equal to 1 at (�; 0), we obtain the 
laim.By using Claims 1 and 2, we 
an 
on
lude that�2��
(�; 0) = �34(jrx;y�(	)j2)� 52 [��(jrx;y�(	)j2)℄2 � 12(jrx;y�(	)j2)� 32 �2��(jrx;y�(	)j2)�����(�;0)= [
urv �(�)℄2: (3.26)The se
ond derivative of �";n with respe
t to � is given by�2�� �";n = 1�";n n��� �I�(�; �; u1; u2)��2 + �2�� �I�(�; �; u1; u2)� I�(�; �; u1; u2)+ [�� (I�(�; �; u1; u2))℄2 + �2�� (I�(�; �; u1; u2)) I�(�; �; u1; u2)o� 1�";n [��(�";n)℄2:By the equalities (3.17), (3.18), and (3.22), the expression above 
omputed at (�; 0) redu
es to�2�� �";n(�; 0) = h�� �I�(�; �; u1; u2)���(�;0)i2 + �2�� (I�(�; �; u1; u2))j(�;0) : (3.27)By di�erentiating (3.15) and (3.23) with respe
t to � , we obtain that�� �I�(�; �; u1; u2)� (�; 0) = [�(���2 � ���1)���w + ��� ��w + ��2��w℄j(�;0); (3.28)and�2�� (I�(�; �; u1; u2)) (�; 0) = 4"M3 + �[�2���2(�; 0)� �2���1(�; 0)℄�(�; 0)��w(�; 0)+ 2�[���2(�; 0)� ���1(�; 0)℄��(���w)(�; 0) + �2���(�; 0)��w(�; 0)+ 2���(�; 0)�2��w(�; 0) + �(�; 0)�3���w(�; 0); (3.29)



Calibrations for minimizers with a regular dis
ontinuity set 43while, by using the equation (3.14),[�(�2���2 � �2���1)���w℄j(�;0) = [��!1 � ��!2 � ���(���2 � ���1)���w � ���(���w)(���2 � ���1)℄j(�;0)= [�4"M3 � ���(���2 � ���1)���w + ���(���w)(���2 � ���1)℄j(�;0):Sin
e by (3.24) and by the de�nition of � we have that�[���2(�; 0)� ���1(�; 0)℄ = 
urv �(�)1� 2"M ;and moreover, �(�; 0)��w(�; 0) = �2"(��u1(�; 0) + ��u2(�; 0));we obtain that[�(�2���2 � �2���1)���w + 2�(���2 � ���1)��(���w)℄j(�;0) == �4"M3 + 2"1� 2"M ��((��u1 � ��u2) 
urv �)(�; 0):By using the de�nition of � , we 
an write��� = �(1� 2"M) n0(�)n2(�)��q;�2��� = �(1� 2"M) ��2(n0(�))2n3(�) (��q)2 + n00(�)n2(�) (��q)2 + n0(�)n2(�)�2��q� :In order to 
ompute the derivatives of q , we di�erentiate the equality (3.13) with respe
t to � :��q(�; 0) = ���p(�; 0) = 2"1� 2"M (��u1(�; 0) + ��u2(�; 0));�2��q(�; 0) = �2�2��p(�; 0)��q(�; 0)� �2��p(�; 0) = �� (��w)2(��w)3 �2��w � 1��w�2��w� (�; 0):By the de�nition of w , we obtain�2��q(�; 0) = �n0(�)n(�) � n0(�)n(�) 4"2(1� 2"M)2 (��u1(�; 0) + ��u2(�; 0))2:Finally, we have�2��w(�; 0) = ��2��w(�; 0) = 2"1� 2"M [n0(��u1 + ��u2) + n(�2��u1 + �2��u2)℄j(�;0);�3���w(�; 0) = ��2����w(�; 0) = �n00(�):By substituting all information above in (3.28) and in (3.29), and by using (3.27), we �nally obtain that�2�� �";n(�; 0) = �a"(�)n00(�)n(�) + h"��; n0(�)n(�) �= �a"(�)�n0(�)n(�) �0 + h"��; n0(�)n(�) �� a"(�)�n0(�)n(�) �2 ; (3.30)



44 Chapter 3where a"(�)! 1 uniformly in [0; l(�)℄,h"(�; �) ! 2�2 uniformly on the 
ompa
t sets of [0; l(�)℄�R, (3.31)as "! 0.Claim 3.{ There exists " > 0 su
h that for every " 2 (0; "), we 
an �nd an analyti
 fun
tion n :[0; l(�)℄! (0;+1) satisfying�2��(�";n � 
)(�; 0) = � �216 l2(�) and ����n0(�)n(�) ���� � N 8� 2 [0; l(�)℄; (3.32)where N := 1 +max� �4 l(�) ; k(�)� and k(�) = k
urv �k1 .Proof of the 
laim. Set � := n0=n ; in order to prove the 
laim, by (3.30) and (3.26) we study theCau
hy problem 8<:�a"(�)� 0 + h"(�; �)� �2 � [
urv �(�)℄2 = � �216 l2(�) ;�(0) = 0; (3.33)and we investigate for whi
h values of " it admits a solution de�ned in the whole interval [0; l(�)℄ , withL1 -norm less than N . As "! 0, by (3.31) we obtain the limit problem8<:�� 0 + �2 � (
urv �)2 = � �216 l2(�) ;�(0) = 0: (3.34)By 
omparing with the solutions �1 and �2 of the Cau
hy problems8<:�� 01 + �21 = � �216 l2(�) ;�1(0) = 0; 8<:�� 02 + �22 � k2(�) = � �216 l2(�) ;�2(0) = 0; (3.35)one easily sees that the solution of (3.34) is de�ned in [0; l(�)℄ , with L1 -norm less than the maximumbetween k�1k1 and k�2k1 , whi
h is, by expli
it 
omputation, less than maxf�=(4l(�)); k(�)g . Bythe theorem of 
ontinuous dependen
e on the 
oeÆ
ients (see [23℄), we 
an �nd " su
h that, for every" 2 (0; "), the solution of (3.33) is de�ned in [0; l(�)℄ with L1 -norm less than N .For every " 2 (0; "), we set n"(�) := eR �0 �"(s) ds; (3.36)where �" is the solution of (3.33).From now on we will simply write �" and �" instead of �";n" and �";n" .We now want to estimate the angle �"(�; �) by a quantity whi
h is independent of " . Sin
e by (3.15)and (3.16)tan �" = 2"��u1 + 2"��u2 + � ��2 � �1 + 1�����w2"��u1 + 2"��u2 +M"2("+M�)�1 +M"2("�M�)�1 + � ��2 � �1 + 2�����w;



Calibrations for minimizers with a regular dis
ontinuity set 45we have���"(�; 0) = � 2"1� 2"M (��u1 + ��u2)�
urv �� 2"(��u1 + ��u2)n0"(�)n"(�)�+ (1� 2"M)n0"(�)n"(�) ;and so, by Claim 3, if " is suÆ
iently small,j���"(�; 0)j < N 8� 2 [0; l(�)℄: (3.37)Let ~�(�) be an arbitrary 
ontinuous fun
tion with~�(0) = 0 and ~�0(0) = N ; (3.38)by (3.37), it follows that j�"(�; �)j < ~�(�) sign � (3.39)for every (�; �) 2 V , provided V is suÆ
iently small.Given h > 0, we 
onsider the ve
torsbh1(�; �; s) := �0;�2(s� u1(�; �))��u1(�; �)� h(s� u1(�; �))2� ;bh2(�; �; t) := �0; 2(t� u2(�; �))��u2(�; �)� h(t� u2(�; �))2�for (�; �) 2 V and s; t 2 R . We denote by B(r) the open ball 
entred at (0;�r) with radius r .Let us de�ne rh" (�; �; s; t) as the maximum radius r su
h that the set(�"(�; �) sin ~�(�); �"(�; �) 
os ~�(�)) + bh1(�; �; s) + bh2 (�; �; t) +B(r)is 
ontained in the ball 
entred at (0; 0) with radius 
(�; �).Claim 4.{ If we de�ne d := 11 + 16 l2(�)N2=�2 ; (3.40)where N is the 
onstant introdu
ed in the previous 
laim, then there exists h > 0 su
h that for every" 2 (0; ") (see Claim 3), there exists Æ 2 (0; ") so that, if V is small enough,inf �2 rh" (�; �; s; t) : (�; �) 2 V; js� u1(�; �)j � Æ; jt� u2(�; �)j � Æ	 > d2 : (3.41)Proof of the 
laim. Let �h" (�; �; s; t) > 0 and ��=2 < �h" (�; �; s; t) < �=2 be su
h that��"(�; �) sin ~�(�); �"(�; �) 
os ~�(�)�+ bh1 (�; �; s) + bh2 (�; �; t) == ��h" (�; �; s; t) sin �h" (�; �; s; t); �h" (�; �; s; t) 
os �h" (�; �; s; t)� : (3.42)To prove Claim 4, it is enough to show that, for every " 2 (0; "), there exists Æ 2 (0; ") with the propertythat �1� d2 
os �h" (�; �; s; t)� �h" (�; �; s; t) < �1� d2� 
(�; �) (3.43)



46 Chapter 3for js � u1(�; �)j � Æ , jt � u2(�; �)j � Æ , and (�; �) 2 V with � 6= 0, provided V is suÆ
iently small.Indeed, if (3.43) holds, it follows in parti
ular that �h" (�; �; s; t) < 
(�; �), and this inequality with someeasy geometri
 
omputations implies that2 rh" (�; �; s; t) = 
2(�; �)� (�h" (�; �; s; t))2
 � �h" (�; �; s; t) 
os �h" (�; �; s; t) ;at this point, it is easy to see that, if V is small enough, inequality (3.43) implies that 2 rh" (�; �; s; t) > d=2,that is Claim 4. So let us prove (3.43).We set fd;h(�; �; s; t) := �1� d2 
os �h" (�; �; s; t)� �h" (�; �; s; t)��1� d2� 
(�; �)and we note that fd;h(�; 0; u1(�; 0); u2(�; 0)) = 0. We will show that1. r�;s;t fd;h(�; 0; u1(�; 0); u2(�; 0)) = 0 if (�; 0) 2 V ,2. r2�;s;t fd;h(�; 0; u1(�; 0); u2(�; 0)) is negative de�nite if (�; 0) 2 V ,where r�;s;t fd;h and r2�;s;t fd;h denote respe
tively the gradient and the Hessian matrix of fd;h withrespe
t to the variables (�; s; t). Equality 1 follows by dire
t 
omputations and by (3.25). Using (3.42),the equality in (3.32), and (3.38), we obtain�2��fd;h(�; 0; u1(�; 0); u2(�; 0)) = � �216 l2(�) �1� d2�+ d2N2;then by the de�nition of d , �2��fd;h(�; 0; u1(�; 0); u2(�; 0)) = � �232 l2(�) < 0: (3.44)Moreover we easily obtain that�2ttfd;h(�; 0; u1(�; 0); u2(�; 0)) = �2ssfd;h(�; 0; u1(�; 0); u2(�; 0)) = �2h�1� d2� ;�2s�fd;h(�; 0; u1(�; 0); u2(�; 0)) = �2�1� d2� �2��u1(�; 0);�2t�fd;h(�; 0; u1(�; 0); u2(�; 0)) = 2�1� d2� �2��u2(�; 0);�2tsfd;h(�; 0; u1(�; 0); u2(�; 0)) = 0:From the expressions it follows thatdet �2��fd;h �2s�fd;h�2s�fd;h �2ssfd;h ! (�; 0; u1(�; 0); u2(�; 0)) = h(2� d) �232 l2(�) � (2� d)2[�2��u1(�; 0)℄2;and that the determinant of the Hessian matrix of fd;h at (�; 0; u1(�; 0); u2(�; 0)) is given bydetr2�;s;t fd;h(�; 0; u1(�; 0); u2(�; 0)) = �h2(2� d)2 �232 l2(�) + h(2� d)3[(�2��u1(�; 0))2 + (�2��u2(�; 0))2℄:



Calibrations for minimizers with a regular dis
ontinuity set 47By the de�nition of d , if h satis�esh > 32�2 (2� d)l2(�) 2Xi=1 k�2��uik2L1(�); (3.45)then for every (�; 0) 2 V we havedet �2��fd;h �2s�fd;h�2s�fd;h �2ssfd;h ! (�; 0; u1(�; 0); u2(�; 0)) > 0; (3.46)and detr2�;s;t fd;h(�; 0; u1(�; 0); u2(�; 0)) < 0: (3.47)By (3.44), (3.46), and (3.47), we 
an 
on
lude that the Hessian matrix of fd;h at (�; 0; u1(�; 0); u2(�; 0))is negative de�nite: both (3.43) and Claim 4 are proved.Claim 5.{ For every r > 0 and h > 0, there exists ~" > 0 with the property that, if " 2 (0; ~"), one 
an�nd Æ 2 (0; ") so that I(�; �; u2(�; �); t) 2 B(r) + bh2 (�; �; t);I(�; �; s; u1(�; �)) 2 B(r) + bh1 (�; �; s);provided V is small enough, for every jt� u2(�; �)j � Æ , js� u1(�; �)j � Æ .Proof of the 
laim. By the de�nition of � in A6 , we obtain thatI�(�; �; u2(�; �); t) = 2(t� u2(�; �))��u2(�; �);I�(�; �; u2(�; �); t) = 2(t� u2(�; �))��u2(�; �)�M("�M�)�1(t� u2(�; �))2:To get the 
laim, we need to prove that(2(t� u2)��u2)2 + ��M("�M�)�1(t� u2)2 + h(t� u2)2 + r�2 < r2;whi
h is equivalent to(2(t� u2)��u2)2 + ��M("�M�)�1 + h�2 (t� u2)4 + 2r ��M("�M�)�1 + h� (t� u2)2 < 0:The 
on
lusion follows by remarking that, if V is small enough, the left-handside is less than�4(��u2)2 + 2hr � 2Mr3" � Æ2 + o(Æ2);whi
h is negative if " is suÆ
iently small. The proof for u1 is 
ompletely analogous.Let us 
on
lude the proof of the step. By Claim 4, we 
an �nd h > 0 su
h that (3.41) is satis�ed for" 2 (0; "). If we 
hoose r su
h that 2r < d=4, by Claim 5 there exists ~" > 0 su
h that for every " 2 (0; ~")there is Æ 2 (0; ") so thatI(�; �; s; u1(�; �)) + I(�; �; u2(�; �); t) 2 B(2r) + bh1(�; �; s) + bh2 (�; �; t) (3.48)



48 Chapter 3for every js� u1(�; �)j < Æ , jt� u2(�; �)j < Æ , and (�; �) 2 V . If we take " � minf~"; "g , then by Claim 4we have that the setB(2r) + (�"(�; �) sin ~�(�); �"(�; �) 
os ~�(�)) + bh1(�; �; s) + bh2(�; �; t)is 
ontained in the ball 
entred at (0; 0) with radius 
(�; �). Some easy geometri
 
onsiderations showthat the relation between �" and ~� (see (3.39)) implies that also the setB(2r) + (�"(�; �) sin �"(�); �"(�; �) 
os �"(�)) + bh1 (�; �; s) + bh2(�; �; t) (3.49)is 
ontained in the ball 
entred at (0; 0) with radius 
(�; �), if the 
onditionjbh1(�; �; s) + bh2 (�; �; t)j < 2rholds (to make this true, take Æ and V smaller if needed). Sin
eI(�; �; s; t) = I(�; �; s; u1(�; �)) + I(�; �; u1(�; �); u2(�; �)) + I(�; �; u2(�; �); t);by (3.48), (3.19), and (3.20), it follows that I(�; �; s; t) belongs to the set (3.49), and then to the ball
entred at (0; 0) with radius 
(�; �) for every js� u1(�; �)j < Æ , jt� u2(�; �)j < Æ , and (�; �) 2 V . This
on
ludes the proof of Step 1.Step 2.{ If " is suÆ
iently small and Æ 2 (0; "), 
ondition (b1) holds for js � u1(�; �)j � Æ orjt� u2(�; �)j � Æ , and (�; �) 2 V , provided V is small enough.Let us �x Æ 2 (0; ") and setm1(�; �) := maxfjI(�; �; s; t)j : u1(�; �)� " � s � t � u2(�; �) + "; jt� u2(�; �)j � Æg:It is easy to see that the fun
tion m1 is 
ontinuous. Let us prove that m1(�; 0) < 
(�; 0) = 1.Fixed (�; 0) 2 V , u1(�; 0)� " � s � t � u2(�; 0) + " , with jt� u2(�; 0)j � Æ , we 
an writeI(�; 0; s; t) = I(�; 0; s; u1(�; 0)) + I(�; 0; u1(�; 0); u2(�; 0)) + I(�; 0; u2(�; 0); t): (3.50)Claim 6.{ For every r > 0 there exists " > 0 su
h thatI(�; 0; u2(�; 0); t) 2 B(r); I(�; 0; s; u1(�; 0)) 2 B(r)for 0 < js� u1(�; 0)j � " , 0 < jt� u2(�; 0)j � " , and (�; 0) 2 V .Proof of the 
laim. See the similar proof of Claim 5 above.By (3.50), (3.17), (3.18), and Claim 6, it follows thatI(�; 0; s; t) 2 (0; 1) +B(r) +B(r) = (0; 1) +B(2r) (3.51)for 0 < js � u1(�; 0)j � " , Æ � jt � u2(�; 0)j � " . If r < 1=4, the set (0; 1) + B(2r) is 
ontained in theopen ball 
entred at (0; 0) with radius 1.It remains to study the 
ase js � u1j � " and the 
ase jt � u2j � " . Let us 
onsider the latter; theformer would be 
ompletely analogous. We 
an writeI(�; 0; s; u1(�; 0)) = I(�; 0; s ^ (u1(�; 0) + "); u1(�; 0)) + I(�; 0; s _ (u1(�; 0) + "); u1(�; 0) + ");I(�; 0; u2(�; 0); t) = I(�; 0; u2(�; 0); u2(�; 0)� ") + I(�; 0; u2(�; 0)� "; t):



Calibrations for minimizers with a regular dis
ontinuity set 49Therefore, by (3.50)I(�; 0; s; t) = I(�; 0; u1(�; 0); u2(�; 0)) + I(�; 0; s ^ (u1(�; 0) + "); u1(�; 0))+ I(�; 0; u2(�; 0); u2(�; 0)� ") + I(�; 0; s _ (u1(�; 0) + "); t)� I(�; 0; u1(�; 0) + "; u2(�; 0)� "): (3.52)If �2"(��u1(�; 0) + ��u2(�; 0)) � 0, we de�neC := [0;�2"(��u1(�; 0) + ��u2(�; 0))℄�[0; 1� 2"M ℄;if �2"(��u1(�; 0)+��u2(�; 0)) < 0, we simply repla
e [0;�2"(��u1(�; 0)+��u2(�; 0))℄ by [�2"(��u1(�; 0)+��u2(�; 0)); 0℄. From the de�nition of � in A3 [ A4 [A5 , it follows thatI(�; 0; u1(�; 0) + "; u2(�; 0)� ") = (�2"(��u1(�; 0) + ��u2(�; 0)); 1� 2"M) (3.53)and I(�; 0; s; t) 2 C (3.54)for u1(�; 0) + " � s � t � u2(�; 0) � " . Let D := C � (�2"(��u1(�; 0) + ��u2(�; 0)); 1 � 2"M). Sin
eI�(�; 0; u2(�; 0); u2(�; 0)� ") = �M" , from (3.52), (3.17), (3.18), Claim 6, (3.53), and (3.54), we obtainI(�; 0; s; t) 2 [(0; 1) +B(r) +B(r)℄ \ f(x; y) 2 R2 : y < 1� "Mg +D= [(0; 1) +B(2r)℄ \ f(x; y) 2 R2 : y < 1� "Mg +D:If r < 1=4 and if " is suÆ
iently small, the set [(0; 1) + B(2r)℄ \ f(x; y) 2 R2 : y < 1 � "Mg + D is
ontained in the open ball 
entred at (0; 0) with radius 1 and this means that m1(�; 0) < 
(�; 0).Analogously we de�nem2(�; �) := maxfjI(�; �; s; t)j : u1(�; �)� " � s � t � u2(�; �) + "; js� u1(�; �)j � Æg:Arguing as in the 
ase of m1 , we 
an prove that m2 is 
ontinuous and m2(�; 0) < 
(�; 0). By 
ontinuity,if V is small enough, m1(�; �) < 
(�; �) and m2(�; �) < 
(�; �), for every (�; �) 2 V . This 
on
ludes theproof of Step 2.By Step 1 and Step 2 we dedu
e that, 
hoosing " suÆ
iently small and n = n" (see (3.36)), 
ondition(b1) is true for u1(�; �) � " � s; t � u2(�; �) + " and in fa
t for every s; t 2 R , from the de�nition of �in A1 and A7 . 23.2 The graph-minimalityWe start this se
tion with a negative result: if the domain 
 is too large, the Euler 
onditions do notguarantee the graph-minimality introdu
ed in De�nition 3.1, as the following 
ounterexample (proposedby Gianni Dal Maso) shows.Proposition 3.3 Let R be the re
tangle (1; 1 + 4l)�(�l; l) and letu(x; y) := ( x if y � 0,�x if y < 0.Then u satis�es the Euler 
onditions for the Mumford-Shah fun
tional in R , but it is not a Diri
hletgraph-minimizer in R for l large enough.



50 Chapter 3Proof. { The Euler 
onditions are obviously satis�ed by u in R .Let R0 be the re
tangle (0; 4)�(�1; 0) and let w be any fun
tion in H1(R0) su
h that w(x; 0) = xfor x 2 (0; 2), and w(x; y) = 0 for (x; y) 2 �R0 n ((0; 4)�f0g).The idea is to perturb u by the res
aled fun
tion v(x; y) := lw(x�1l ; yl ). We de�ne the perturbedfun
tion ~u(x; y) := 8><>: x on R1 n T",�x+ � (x� 1) on T",�x+ � v(x; y) on R2,where � is a positive parameter and the re
tangles R1 , R2 , and the triangle T" are indi
ated in Fig. 3.1.We want to show that, if we set 
 := RR0 jrw(x; y)j2dx dy , for every l > 
 and for every "0 , �0 > 0 there
x

y

R

R

1

2

 x=1

ε
Tε

4l

2l

2l

Figure 3.1: the regions R1 , R2 and T" .exist " < "0 and � < �0 su
h thatZR jru(x; y)j2dx dy +H1(Su) > ZR jr~u(x; y)j2dx dy +H1(S~u):By de�nition, ~u satis�es the boundary 
onditions. Sin
e by the 
onstru
tion of v the fun
tion ~u is
ontinuous on the interfa
e between T" and R2 , thenH1(Su)�H1(S~u) = 2l� 2pl2 + "2 = �"2l + o("2): (3.55)On the triangle T" , we obtainZT" jru(x; y)j2dx dy � ZT" jr~u(x; y)j2dx dy = 2l"� � l"�2: (3.56)



Calibrations for minimizers with a regular dis
ontinuity set 51Finally, sin
e we have that jr~uj2 = 1 + �2jrvj2 � 2� �xv in R2 , taking into a

ount the boundary
onditions of v , we getZR2 jru(x; y)j2dx dy � ZR2 jr~u(x; y)j2dx dy = ��2 ZR2 jrv(x; y)j2dx dy= �l2�2 ZR0 jrw(x; y)j2dx dy: (3.57)In order to 
on
lude, by (3.55), (3.56), and (3.57), we have to show that for l large we 
an 
hoose " and� arbitrarily 
lose to 0 su
h that�"2l � 
l2�2 + 2l"� � l"�2 + o("2) > 0:If we 
hoose � = "=(
l), then the equality above redu
es to�"2l + "2
 + o("2) > 0;whi
h is true if l > 
 . 2As suggested by Proposition 3.3, to get the graph-minimality we have to add some restri
tions on thedomain 
. To this aim we introdu
e a suitable notion of 
apa
ity: given an open set U (with Lips
hitzboundary) and a portion � of �U (with nonempty relative interior in �U ), we de�ne K(�; U) by thevariational problemK(�; U) := inf �ZU jrv(x; y)j2dx dy : v 2 H1(U); Z� v2dH1 = 1; and v = 0 on �U n �� : (3.58)First of all, it is easy to see that in the problem above the in�mum is attained. Moreover, if U1 � U2 ,and �1 � �2 , then K(�1; U1) � K(�2; U2); this suggests that, when K(�; U) is very large, U has to bethin in some sense. It is 
onvenient to give the following de�nition.De�nition 3.4 Given a simple analyti
 
urve � , we say that an open set 
 is �-admissible if it isbounded, � \ 
 
onne
ts two points of �
 , and 
 n � has two 
onne
ted 
omponents having a Lips
hitzboundary.The following theorem gives a suÆ
ient 
ondition for the graph-minimality in terms of K(�;
) and ofthe geometri
al properties of the 
urve. We re
all that l(�) denotes the length of �, 
urv � its 
urvature,and k(�) the L1 -norm of 
urv �.Theorem 3.5 Let 
0 , 
 , u , and � = Su satisfy the same assumptions as in Theorem 3.2; supposethat 
 is �-admissible and denote by 
1 and 
2 the two 
onne
ted 
omponents of 
 n � , by ui therestri
tion of u to 
i , and by ��ui its tangential derivative on � . There exists an absolute 
onstant
 > 0 (independent of 
0 , 
 , � , and u) su
h that ifmini=1;2K(� \ 
;
i)1 + l2(� \
) + l2(� \ 
)k2(� \ 
) > 
 2Xi=1 k��uik2C1(�\
); (3.59)then u is a Diri
hlet graph-minimizer on 
 .



52 Chapter 3Remark that 
ondition (3.59) imposes a restri
tion on the size of 
 depending on the behaviour of ualong Su : if u has large or very os
illating tangential derivatives, we have to take 
 quite small toguarantee that (3.59) is satis�ed. In the spe
ial 
ase of a lo
ally 
onstant fun
tion u , 
ondition (3.59) isalways ful�lled; so u is a Diri
hlet graph-minimizer whatever 
 is, in agreement with a result of [2℄.Proof. { From the de�nition of d and N (see (3.40) and Claim 3 in the proof of Theorem 3.2) it followsthat there is an absolute 
onstant ~
 > 0 (independent of 
0 , 
, �, and u) su
h that~
 (1 + l2(�)k2(�)) > 16d : (3.60)The absolute 
onstant 
 , whi
h appears in (3.59), is de�ned by
 := max�~
; 64�2� : (3.61)A
tually, to avoid problems of boundary regularity, we shall work not exa
tly in 
, but in a little bitlarger set. Let 
0 be a �-admissible set su
h that 
 �� 
0 �� 
0 , andmini=1;2K(� \ 
0;
0i)1 + l2(� \
0) + l2(� \ 
0)k2(� \ 
0) > 
 2Xi=1 k��uik2C1(�\
0);where 
0i denote the 
onne
ted 
omponents of 
0 n �. This is possible by (3.59) and by the 
ontinuityproperties of K .The idea of the proof is to 
onstru
t �rst a 
alibration ' in a 
ylinder with base an open neighbourhoodof � \ 
0 , and then to extend ' in a tubular neighbourhood of graphu .Constru
tion of the 
alibration around �We essentially re
y
le the 
onstru
tion of Theorem 3.2, but we need to slightly modify the de�nitionaround the graph of u , in order to exploit 
ondition (3.59) and get the extendibility.To de�ne the 
alibration '(x; y; z) we use the same notation and the 
oordinate system (�; �) on U(whi
h is supposed to be an open neighbourhood of �\
0 ) introdu
ed in the proof of Theorem 3.2. Theve
tor�eld will be written as'(x; y; z) = 1
2(�(x; y); �(x; y))�(�(x; y); �(x; y); z); (3.62)where � 
an be represented by�(�; �; z) = ��(�; �; z)�� + ��(�; �; z)�� + �z(�; �; z)ez:Given suitable parameters " > 0 and � > 0, we 
onsider the following subsets of V�R :A1 := f(�; �; z) 2 V�R : u1(�; �)� " v1(�; �) < z < u1(�; �) + " v1(�; �)g;A2 := f(�; �; z) 2 V�R : u1(�; �) + " v1(�; �) < z < u1(�; �) + 2"g;A3 := f(�; �; z) 2 V�R : u1(�; �) + 2" < z < �1(�; �)g;A4 := f(�; �; z) 2 V�R : �1(�; �) < z < �2(�; �) + 1=�g;A5 := f(�; �; z) 2 V�R : �2(�; �) + 1=� < z < u2(�; �) � 2"g;A6 := f(�; �; z) 2 V�R : u2(�; �)� 2" < z < u2(�; �)� " v2(�; �)g;A7 := f(�; �; z) 2 V�R : u2(�; �)� " v2(�; �) < z < u2(�; �) + " v2(�; �)g;
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ontinuity set 53where the fun
tions vi are de�ned asv1(�; �) := 1 +M�; v2(�; �) := 1�M�with M positive parameter su
h that
 (1 + l2(� \ 
0) + l2(� \ 
0)k2(� \ 
0)) 2Xj=1 k��ujk2C1(�\
0) < M < minj=1;2K(� \ 
0;
0i); (3.63)while �1 and �2 are the solutions of the Cau
hy problems (3.14). Sin
e we suppose u2 > 0 on V , if " issmall enough, while � is suÆ
iently large, then the sets A1; : : : ; A7 are nonempty and disjoint, providedV is suÆ
iently small.The ve
tor �(�; �; z) introdu
ed in (3.62) will be written as�(�; �; z) = (���(�; �; z); �z(�; �; z));where ��� is the two-dimensional ve
tor given by the pair (�� ; ��). We de�ne �(�; �; z) as follows:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�2ru1 + 2 z�u1v1 rv1; ���ru1 + z�u1v1 rv1���2� in A1;�2r(u1 + "v1) + 2 z�u1�"v1~v1 r~v1; ���r(u1 + "v1) + z�u1�"v1~v1 r~v1���2� in A2;(0; !1(�; �)) in A3;(��(�; �)rw; �) in A4;(0; !2(�; �)) in A5;�2r(u2 � "v2) + 2 z�u2+"v2~v2 r~v2; ���r(u2 � "v2) + z�u2+"v2~v2 r~v2���2� in A6;�2ru2 + 2 z�u2v2 rv2; ���ru2 + z�u2v2 rv2���2� in A7;where r denotes the gradient with respe
t to the variables (�; �), the fun
tions ~vi are de�ned by~v1(�; �) := 2"+M 0�; ~v2(�; �) := 2"�M 0�while !i(�; �) := "2�M +M 0 vi(�; �)~vi(�; �)�2 � (��ui(�; �))2 � (��ui(�; �))2for i = 1; 2, and for every (�; �) 2 V ; we take the 
onstant � suÆ
iently large in order to get therequired inequality between the horizontal and the verti
al 
omponents of the �eld (see 
ondition (a1) ofSe
tion 1.3), and M 0 so large that !i is positive in V , provided V is small enough. We de�ne w as thesolution of the Cau
hy problem8>>><>>>:�w = 0;w(�; 0) = � 4"1� "M 0 � 6"2M Z �0 n(s)(��u1(s; 0) + ��u2(s; 0)) ds;��w(�; 0) = n(�); (3.64)



54 Chapter 3where n is a positive analyti
 fun
tion that must be 
hosen in a suitable way. We de�ne�(�; �) := 1n(q(�; �)) (1� "M 0 � 6"2M);where the fun
tion q is 
onstru
ted in the same way as in (3.13).Let us prove that for a suitable 
hoi
e of the involved parameters the ve
tor�eld is a 
alibration in asuitable neighbourhood U of � \ 
0 , whi
h is equivalent to prove that � satis�es (a1), (a2), (b1), (b2),and (
1) of page 37. The proof of 
onditions (a1), (a2), (b2), and (
1) is the same as in Theorem 3.2.The proof of (b1) is split again in two steps.Step 1.{ For a suitable 
hoi
e of " and of the fun
tion n (see (3.64)) there exists Æ > 0 su
h that
ondition (b1) holds for js�u1(�; �)j < Æ , jt�u2(�; �)j < Æ , and (�; �) 2 V , provided V is small enough.We essentially repeat the proof given in Theorem 3.2: Claims 1, 2, 3, and 4 are still valid with the sameproof (up to the obvious 
hanges due to the di�erent de�nition of �). Claim 5 must be modi�ed asfollows.Claim 5.{ For h = 64�2 l2(�)P2i=1 k��uik2C1(�\
0) , there exist r 2 (0; d=8) and ~Æ > 0 su
h that for everyÆ 2 (0; ~Æ) I(�; �; u2(�; �); t) 2 B(r) + bh2(�; �; t);I(�; �; s; u1(�; �)) 2 B(r) + bh1(�; �; s);provided V is small enough, for every jt� u2(�; �)j � Æ , js� u1(�; �)j � Æ .Proof of the 
laim. Using the de�nition of � in A7 , the 
laim is equivalent to prove(2(t� u2)��u2)2 + ��M(1�M�)�1 + h�2 (t� u2)4 + 2r ��M(1�M�)�1 + h� (t� u2)2 < 0;note that for a1 2 (0; 1) the left-handside is less than 4 2Xi=1 k��uik2C1(�\
0) + 2hr � 2r1 + a1M! Æ2 + o(Æ2);provided V is small enough. To obtain the 
laim, it is suÆ
ient to prove that2r 2Xi=1 k��uik2C1(�\
0) < 11 + a1M � h: (3.65)Sin
e by (3.63), (3.60), and (3.61) we 
an writeM = �16 + a2d + 64�2 l2(� \ 
0)� 2Xi=1 k��uik2C1(�\
0);with a2 > 0, the inequality (3.65) is equivalent to2r < � 11 + a1 � 1� 64�2 l2(� \ 
0) + 16 + a2d 11 + a1 ;whi
h is true if a1 is suÆ
iently small and r is suÆ
iently 
lose to d=8. The proof for u1 is 
ompletelyanalogous.
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ontinuity set 55To 
on
lude the proof of the step, let r and h be as in Claim 5. If we 
hoose " < " and Æ � minf~Æ; "g ,by Claim 5 we have thatI(�; �; s; u1(�; �)) + I(�; �; u2(�; �); t) 2 B(2r) + bh1(�; �; s) + bh2 (�; �; t) (3.66)for every js� u1(�; �)j < Æ , jt� u2(�; �)j < Æ , and (�; �) 2 V ; sin
e h satis�es (3.45) and 2r < d=4, we
an apply Claim 4 to dedu
e that the setB(2r) + (�"(�; �) sin ~�(�); �"(�; �) 
os ~�(�)) + bh1 (�; �; s) + bh2 (�; �; t)is 
ontained in the ball 
entred at (0; 0) with radius 
(�; �). Some easy geometri
 
onsiderations showthat the relation between �" and ~� (see (3.39)) implies that also the setB(2r) + (�"(�; �) sin �"(�); �"(�; �) 
os �"(�)) + bh1(�; �; s) + bh2 (�; �; t) (3.67)is 
ontained in the ball 
entred at (0; 0) with radius 
(�; �), if the 
onditionjbh1 (�; �; s) + bh2 (�; �; t)j < 2rholds (to make this true, take Æ and V smaller if needed). Sin
eI(�; �; s; t) = I(�; �; s; u1(�; �)) + I(�; �; u1(�; �); u2(�; �)) + I(�; �; u2(�; �); t);by (3.48), it follows that I(�; �; s; t) belongs to the set (3.67), and then to the ball 
entred at (0; 0) withradius 
(�; �) for every js� u1(�; �)j < Æ , jt� u2(�; �)j < Æ , and (�; �) 2 V . This 
on
ludes the proof ofStep 1.Step 2.{ If " is suÆ
iently small and Æ 2 (0; "), 
ondition (b1) holds for js � u1(�; �)j � Æ orjt� u2(�; �)j � Æ , and (�; �) 2 V , provided V is small enough.By using 
ondition (3.63), arguing as in the proof of Claim 5, we 
an prove the following 
laim.Claim 6.{ There exist r < 1=4 and " > 0 su
h thatI(�; 0; u2(�; 0); t) 2 B(r); I(�; 0; s; u1(�; 0)) 2 B(r)for 0 < js� u1(�; 0)j � " , 0 < jt� u2(�; 0)j � " , and (�; 0) 2 V .We 
an 
on
lude the proof of Step 2 in the same way as in Theorem 3.2, with the minor 
hanges dueto the di�erent de�nition of the �eld.By Step 1 and Step 2, we 
on
lude that, 
hoosing " suÆ
iently small and n in a suitable way,
ondition (b1) is true for u1(�; �) � " � s; t � u2(�; �) + " . So, ' is a 
alibration.Constru
tion of the 
alibration around the graph of uNow the matter is to extend the �eld in a tubular neighbourhood of the graph of u . From now on, wereintrodu
e the Cartesian 
oordinates.Let �i be the 
urve � = (�1)ik , where k > 0. If k is suÆ
iently small, for i = 1; 2 the 
urve �i
onne
ts two points of �
0i , divides 
0i (and then 
) in two 
onne
ted 
omponents, and the normalve
tor �i to �i whi
h points towards � 
oin
ides with (�1)i+1r�=jr�j . Set U 0 := U \ f(x; y) 2 
0 :j�(x; y)j < kg and U 00 := U 0 \ 
. Sin
e kr�k = 1 on �, by (3.63) we 
an suppose thatM1�Mk maxi=1;2 kr�kL1(�i) < mini=1;2K(�i;
0i n U 0): (3.68)



56 Chapter 3Chosen Æ so small that (graphu)Æ \ ((U 00 \ 
1)� R) � A1 and (graphu)Æ \ ((U 00 \ 
2)� R) � A7 , wede�ne the ve
tor�eld '̂(x; y; z) = ('̂xy(x; y; z); '̂z(x; y; z)) 2 R2�R;as follows:8>>>>>>>>><>>>>>>>>>:
'(x; y; z) in f(x; y; z) 2 U 00�R : u1(x; y)� Æ < z < u2(x; y) + Æg,�2ru+ 2 z�uv̂1 rv̂1; ���ru+ z�uv̂1 rv̂1���2� in (graphu)Æ \ (
1 nU 00)�R,�2ru+ 2 z�uv̂2 rv̂2; ���ru+ z�uv̂2 rv̂2���2� in (graphu)Æ \ (
2 nU 00)�R.The fun
tion v̂i is the solution of the problemmin(Z
0inU 0 jrvj2dx dy � M1�Mk Z�i jr�j v2dH1 : v 2 H1(
0i n U 0); vj�(
0inU 0)n�i = 1) : (3.69)Let us show that the problem (3.69) admits a solution. If fvng is a minimizing sequen
e, thensupn (Z
0inU 0 jrvnj2dx dy � M1�Mk Z�i jr�j v2n dH1) < +1: (3.70)We have only to show that fvng is bounded in H1(
0i nU 0). If we put vn := vn � 1, by (3.58) for every� 2 (0; 1) we haveZ
0inU 0 jrvnj2dx dy = Z
0inU 0 jrvnj2dx dy = �Z�i v2ndH1�Z
0inU 0 �����r vn(R�i v2ndH1) 12 !�����2 dx dy� �Z�i(vn � 1)2dH1�K(�i;
0i n U 0)� (1� �)K(�i;
0i n U 0) Z�i v2ndH1 +K(�i;
0i n U 0) �1� 1� �H1(�i); (3.71)where we used Cau
hy inequality. By (3.68), we 
an 
hoose � so small that(1� �)K(�i;
0i n U 0) > M1�Mkkr�kL1(�i);and substituting (3.71) in (3.70), we obtainsupn Z�i v2n dH1 < +1:Using again (3.70) and Poin
ar�e inequality, we 
on
lude that fvng is a
tually bounded in H1(
0i n U 0).The solution of (3.69) satis�es8>><>>:�v̂i = 0 in 
0i n U 0,�� v̂i = M1�Mk jr�jv̂i on �i,v̂i = 1 on �(
0i nU 0) n �i, (3.72)
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ontinuity set 57and so, in parti
ular, belongs to C1(
i nU 00). By a trun
ation argument, it is easy to see that v̂i � 1,so '̂ is well de�ned.Sin
e '̂ is a 
alibration in the set f(x; y; z) 2 U 00�R : u1(x; y)� Æ < z < u2(x; y) + Æg , it remains toprove only that the �eld is globally divergen
e-free in the sense of distributions and that 
onditions (a1),(a2), (b1) are veri�ed in the regions (graphu)Æ \ (
i nU 00)�R . First of all, note that by Lemma 1.5 the�eld '̂ is divergen
e-free in the regions (graphu)Æ \ (
i n U 00)�R , sin
e it is 
onstru
ted starting fromthe family of harmoni
 fun
tions u(x; y) + tv̂i(x; y). To 
omplete the proof, we need to 
he
k that thenormal 
omponents of the tra
es of ' and of the extension �eld are equal on the surfa
e of separation,i.e., h'xy; �ii = �2ru+ 2z � uv̂i rv̂i; �i� on �i; (3.73)where �i = (�1)i+1r�=jr�j . Using the de�nition of ' , we obtain thath'xy; �ii = �(�1)i+1��u+ z � u1�MkM� jr�j;sin
e hru; �ii = (�1)i+1��ujr�j , the equality (3.73) is equivalent toM1�Mk jr�j = 1̂vi hrv̂i; �ii;whi
h is true by (3.72).Conditions (a1) and (a2) are obviously satis�ed, while 
ondition (b1) is true if we take Æ satisfyingÆ � sup(�4jruj+ 2 jrv̂ijv̂i ��1 : (x; y) 2 
i nU 00; i = 1; 2) :Therefore, with this 
hoi
e of Æ , the ve
tor�eld '̂ is a 
alibration. 23.2.1 Some properties of K(�; U)In this subse
tion we investigate some qualitative properties of the quantity K(�; U) and we shall 
omputeit expli
itly in a very parti
ular 
ase. Let us start by a very simple result.Proposition 3.6 Let � be a simple analyti
 
urve and ~� be an extension of � , whose endpoints do not
oin
ide with the endpoints of � . If ��Æ are the two 
onne
ted 
omponents of �Æ n ~� (whi
h are wellde�ned if Æ is suÆ
iently small), then limÆ!0+K(�;��Æ ) = +1:Proof. { For 
onvenien
e we setW�(Æ) := �v 2 H1(��Æ ) : Z� v2dH1 = 1; v = 0 on �(��Æ ) n �� :Suppose by 
ontradi
tion that there exists a sequen
e fÆng de
reasing to 0 su
h that supnK(�;�+Æn) =
 < +1 ; this implies the existen
e of a sequen
e fvng su
h thatvn 2 W+(Æn) and Z�+Æn jrvn(x; y)j2dx dy � 




58 Chapter 3for every integer n . From now on, we regard vn as a fun
tion belonging to H1(�+Æ1) whi
h vanishes on�+Æ1 n �+Æn . By Poin
ar�e inequality it follows immediately that fvng is bounded in H1(�+Æ1), and so itadmits a weakly 
onvergent subsequen
e fvnkg . Let us 
all v the limit of the subsequen
e; sin
e vnkvanishes on �+Æ1 n�+Ænk for every k , then v must vanish a.e.; on the other hand, sin
e R� v2nkdH1 = 1, bythe 
ompa
tness of the tra
e operator, we have that R� v2dH1 = 1, and this is 
learly impossible. 2We remark that by Theorem 3.5 and Proposition 3.6, if U0 is a neighbourhood of � and u 2 SBV (U0)satis�es the Euler 
onditions in U0 with Su = �, then there exists a neighbourhood U of � 
ontained inU0 su
h that u is a Diri
hlet graph-minimizer in U . A
tually, taking U smaller if needed, by Theorem3.2 we get also the Diri
hlet minimality.Proposition 3.7 (Chara
terization of K(�; U)) Let U be an open set with Lips
hitz boundary and� be a subset of �U with nonempty relative interior in �U . The 
onstant K(�; U) is the �rst eigenvalueof the problem 8><>:�u = 0 on U ,��u = �u on �,u = 0 on �U n �. (3.74)Moreover, it is the unique eigenvalue with a positive eigenfun
tion.Proof. { If u is a solution of (3.58), then it is harmoni
 and there exists a Lagrange multiplier � su
hthat ZU hru;r'i dx dy = � Z� u'dH1 8' 2 C1(U) : ' = 0 on �U n �; (3.75)whi
h means, by Green formula, that ��u = �u on �. Using (3.75), one 
an easily see that K(�; U) isin fa
t the minimal eigenvalue of (3.74) and that it has a positive eigenfun
tion (indeed, if u is a solutionalso juj is). Let u be a positive fun
tion belonging to the eigenspa
e of K(�; U) and v another positiveeigenfun
tion asso
iated with the eigenvalue � ; by Green formula we haveZ� v ��u dH1 � Z� u ��v dH1 = 0;therefore (K(�; U)� �) Z� uv dH1 = 0:Sin
e both u and v are positive, from the last equality it follows that � = K(�; U). 2Proposition 3.8 If U = (0; a)�(0; b) and � = (0; a)�f0g , thenK(�; U) = �a tanh ��ba � : (3.76)Proof. { The fun
tion v(x; y) = sin��ax� sinh��a (b� y)�is positive and satis�es (3.74) with � = �a tanh ��ba � . Then, by Proposition 3.7, this quantity 
oin
ideswith K(�; U). 2
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ontinuity set 59Proposition 3.9 Let g : [0; a0℄ ! [0;+1) be a Lips
hitz fun
tion and denote the graph of g by � .Given 0 � a1 < a2 � a0 and b > 0 , if we set �(a1; a2) := graph gj(a1;a2) andR(a1; a2; b) := f(x; y) : x 2 (a1; a2); y 2 (g(x); g(x) + b)g;then limja2�a1j!0K (�(a1; a2); R(a1; a2; b)) = +1 uniformly with respe
t to b:Proof. { The idea is to transform the region R(a1; a2; b) into the re
tangle (0; a2 � a1)�(0; b) by asuitable di�eomorphism in order to use (3.76).Let  : (0; a2� a1)�(0; b)! R(a1; a2; b) be the map de�ned by  (x; y) = (x+ a1; y+ g(x+ a1)). Letv 2 H1(R(a1; a2; b)) be su
h that v = 0 on �R(a1; a2; b) n �(a1; a2) andZ�(a1;a2) v2dH1 = Z a2�a10 v2( (x; 0))p1 + (g0(x))2 dx = 1: (3.77)If we 
all ~v(x; y) := v( (x; y)), then ~v 2 H1((0; a2� a1)�(0; b)), ~v = 0 on the boundary of the re
tangleex
ept (0; a2 � a1)�f0g , and by (3.77) there exists � > 0 su
h that �2 �p1 + kg0k21 and�2 Z a2�a10 ~v2(x; 0) dx = 1:Therefore, sin
e J � 1,ZR(a1;a2;b) jrv(x; y)j2dx dy = Z(0;a2�a1)�(0;b) jrv( (x; y))j2dx dy� (1 + kg0k1 + kg0k21)�1 Z(0;a2�a1)�(0;b) jr~v(x; y)j2dx dy� ��2(1 + kg0k1 + kg0k21)�1K �(0; a2 � a1)�f0g; (0; a2 � a1)�(0; b)�� (1 + kg0k21)�3=2 �2(a2 � a1) tanh� �ba2�a1 � ;where the last inequality follows by the estimate on � and by (3.76). Sin
e v is arbitrary, using the fa
tthat 0 < tanh t � 1 for every t > 0, we obtain thatK (�(a1; a2); R(a1; a2; b)) � (1 + kg0k1)�3=2 �2(a2 � a1) ;so, the 
on
lusion is 
lear. 2We have already remarked (see Proposition 3.6) that the graph-minimality is guaranteed in smallneighbourhoods of the dis
ontinuity set �. As a 
onsequen
e of Proposition 3.9, we obtain that thegraph-minimality holds also in the open sets, whi
h are narrow along the dire
tion parallel to � and maybe very large along the normal dire
tion. This is made pre
ise by the following 
orollary.Corollary 3.10 Let g be a positive fun
tion, analyti
 on [0; a0℄ , that is g admits an analyti
 extension,and denote the graph of g by � . For every M > 0 there exists h = h(M;�) su
h that, if 
 is �-admissible (see De�nition 3.4) and 
 � (a1; a1 + h)�R with a1 2 [0; a0 � h℄ , and if u is a fun
tion inSBV (
) with Su = �\
 , with di�erent tra
es at every point of �\
 , satisfying the Euler 
onditions in
 , and P2i=1 k��uikC1(�\
) �M (where ui is as above the restri
tion of u to the 
onne
ted 
omponent
i of 
 n �), then u is a Diri
hlet graph-minimizer in 
 (see Fig. 3.2).
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Su
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h

Figure 3.2: if the thi
kness of 
 is less than h , then u is a Diri
hlet graph-minimizer in 
.Proof. { By Proposition 3.9 there exists h > 0 su
h that for every a1; a2 2 [0; a0℄ with 0 < a2�a1 � hand for every b > 0, K(�(a1; a2); R(a1; a2; b))1 + l2(�) + l2(�)k2(�) > 
M2:If 
 � (a1; a1+h)�R , then we 
an 
hoose b > 0 so large that, assuming that 
1 is the upper 
omponent,
1 � R(a1; a1 + h; b). Then by the monotoni
ity properties of K(�; A), it follows thatK(� \ 
;
1)1 + l2(�) + l2(�)k2(�) > 
M2 � 
 2Xi=1 k��uik2C1(�\
):Applying the same argument to 
2 , the 
on
lusion follows from Theorem 3.5. 2



Chapter 4Calibrations for minimizers with atriple jun
tionIn this 
hapter we study the Diri
hlet minimality of solutions of the Euler-Lagrange equations for theMumford-Shah fun
tional (2.1) whose dis
ontinuity set presents a triple jun
tion.The pre
ise statement of the result is the following.Theorem 4.1 Let 
 := B(0; 1) be the open dis
 in R2 with radius 1 
entred at the origin, and let(A0; A1; A2) be the partition of 
 de�ned as follows:Ai := �(r 
os �; r sin �) 2 
 : 0 � r < 1; 23�(2� i) < � � 23�(3� i)� 8 i = 0; 1; 2:Let Si;j := Ai \ Aj for every i < j . Let ui 2 C2(Ai) be a harmoni
 fun
tion in Ai , satisfying theNeumann 
onditions on �Ai \ 
 and su
h that jruij = jruj j on Si;j for every i < j . If u is thefun
tion in SBV (
) de�ned by u := ui a.e. in ea
h Ai and u0(0; 0) < u1(0; 0) < u2(0; 0) , then thereexists a neighbourhood U of the origin su
h that u is a Diri
hlet minimizer in U of the Mumford-Shahfun
tional.The proof is very long and te
hni
al and is split in several steps. First of all, the symmetry due to the2�=3-angles allows to dedu
e from the other Euler 
onditions that ea
h ui must be either symmetri
 orantisymmetri
 with respe
t to the bise
ting line of Ai . In Se
tion 4.1 we 
onstru
t an expli
it 
alibration' in the 
ase ui symmetri
 and we prove that ' satis�es 
onditions (a1), (a2), (b2), and (
1) (seeSe
tion 1.3); in Se
tions 4.2 and 4.3 we show some estimates, whi
h will be useful in Se
tion 4.4 to prove
ondition (b1); �nally, in Se
tion 4.5 we adapt the 
alibration to the antisymmetri
 
ase.4.1 Constru
tion of the 
alibrationLet fex; eyg be the 
anoni
al basis in R2 and for i = 1; 2 
onsider the ve
tors �i = (�1=2; (�1)ip3=2),�i = ((�1)ip3=2; 1=2), whi
h are tangent and normal to the set Si�1;i (see Fig. 4.1). As u0(0; 0) <u1(0; 0) < u2(0; 0), there exists an open neighbourhood U of (0; 0) su
h that the fun
tion u belongs toSBV (U), the dis
ontinuity set Su of u on U 
oin
ides with Si<j(Si;j \ U), and the oriented normalve
tor �u to Su is given by �u(x; y) =8><>:�1 for (x; y) 2 S0;1,�2 for (x; y) 2 S1;2,ey for (x; y) 2 S0;2;61



62 Chapter 4by the assumptions on ui , the fun
tion u satis�es the Euler 
onditions for (2.1) in U . We will 
onstru
ta lo
al 
alibration ' = ('xy; 'z) : U�R ! R2�R for u .

S0,1

A2

0A

A1

τ1

τ2 2ν

ν1

S

S0,2

1,2

y

x

Figure 4.1: the triple jun
tion.Applying S
hwarz re
e
tion prin
iple with respe
t to S0;1 and S0;2 , the fun
tion u0 
an be har-moni
ally extended to U n S1;2 , and analogously u1 and u2 
an be extended to U n S0;2 and U n S0;1 ,respe
tively. By the hypothesis on ui and by Cau
hy-Kowalevski theorem (see [24℄) the extension of u0
oin
ides, up to the sign and to additive 
onstants, with u1 on A1 and with u2 on A2 ; analogously,the extension of u1 
oin
ides, up to the sign and to an additive 
onstant, with u2 on A2 . Sin
e the
omposition of the three re
e
tions with respe
t to S0;1 , S1;2 , and S0;2 
oin
ides with the re
e
tion withrespe
t to the bise
ting line of the se
tor A0 , by the previous remarks we 
an dedu
e that u0 is eithersymmetri
 or antisymmetri
 with respe
t to the bise
ting line of A0 .We 
onsider �rst the 
ase u0 symmetri
 (the antisymmetri
 
ase will be studied in Se
tion 4.5). Thenalso u1; u2 are symmetri
 with respe
t to the bise
ting line of A1; A2 , respe
tively, and the extensions ofu0; u1; u2 by re
e
tion are well de�ned and harmoni
 in the whole set U .In order to de�ne the 
alibration for u , let " > 0, li 2 (ui�1(0; 0); ui(0; 0)) for i = 1; 2, and � > 0be suitable parameters that will be 
hosen later, and 
onsider the following subsets of U�R :Gi := f(x; y; z) 2 U�R : ui(x; y)� " < z < ui(x; y) + "g for i = 0; 1; 2,Ki := f(x; y; z) 2 U�R : li + �i(x; y) < z < li + 2�+ �i(x; y)g for i = 1; 2,Hi := f(x; y; z) 2 U�R : li + �=2 < z < li + 3�=2g for i = 1; 2,where �i and �i are suitable Lips
hitz fun
tions su
h that �i(0; 0) = �i(0; 0) = 0, whi
h will be de�nedlater. If " and � are suÆ
iently small, then for every i; j the sets Gi , Kj are nonempty and disjoint,while for every i the set Hi is 
ompa
tly 
ontained in Ki , provided U is small enough (see Fig. 4.2).The aim of the de�nition of the 
alibration ' in Gi is to provide a divergen
e-free ve
tor�eld satisfying
ondition (a2) and su
h thath'xy(s�i; z); �ii > 0 for ui�1 < z < ui�1 + " and for ui � " < z < ui,h'xy(s�i; z); �ii < 0 for ui�1 � " < z < ui�1 and for ui < z < ui + ",
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Figure 4.2: se
tion of the sets Gi;Ki; Hi at x = 
onstant.for i = 1; 2 and s � 0, and analogouslyh'xy(s; 0; z); eyi > 0 for u0 < z < u0 + " and for u2 � " < z < u2,h'xy(s; 0; z); eyi < 0 for u0 � " < z < u0 and for u2 < z < u2 + ";these properties are 
ru
ial in order to obtain (b1) and (b2) simultaneously. Su
h a �eld 
an be obtainedby applying the te
hnique shown in Lemma 1.5, starting from the family of harmoni
 fun
tions ui + tvi ,where we 
hoose as vi the linear fun
tions de�ned byv0(x; y) := h�2; (x; y)i+ "; v1(x; y) := hex; (x; y)i+ "; v2(x; y) := h�1; (x; y)i+ ":



64 Chapter 4So for every (x; y; z) 2 Gi , i = 0; 1; 2, we de�ne the ve
tor '(x; y; z) as 2rui + 2 z � ui(x; y)vi(x; y) rvi; ����rui + z � ui(x; y)vi(x; y) rvi����2! :The role of Ki is to give the exa
t 
ontribution to the integral in (b2). In order to annihilate thetangential 
ontribution on Su given by the �eld in Gi , we insert in Ki the region Hi and for every(x; y; z) 2 Hi , i = 1; 2, we de�ne '(x; y; z) as��2"� (rui�1 +rui) ; ��where � is a positive 
onstant whi
h will be suitably 
hosen later. By the harmoni
ity of ui this �eld isdivergen
e-free and, as ��ui = 0 on Su for every i , its horizontal 
omponent is purely tangential on Su .So, it remains to 
orre
t only the normal 
ontribution to the integral in (b2) due to the �eld in Gi . Torealize this purpose on the two segments Si�1;i , i = 1; 2, we 
ould require that �i(s�i) = �i(s�i) = 0 forevery s � 0 (see the de�nition of Ki ) and de�ne '(x; y; z) for (x; y; z) 2 Ki nHi as� 1� g�h�i; (x; y)i� �i; �� ; (4.1)where g is a fun
tion of real variable 
hosen in su
h a way that (b2) is satis�ed for (x; y) 2 Si�1;i , i.e.,g(t) := 1�p3 "2v0(t; 0) 8t 2 R;as we will see later in (4.19). Note that the two-dimensional �eld g (h�i; (x; y)i) �i is divergen
e-free, sin
eit is with respe
t to the orthonormal basis f�i; �ig , hen
e ' is divergen
e-free in Ki nHi ; moreover, sin
e'z � � on Ki , the normal 
omponent of ' is 
ontinuous a
ross the boundary of Hi , so that ' turnsout to be divergen
e-free in the sense of distributions in the whole set Ki . A
tually it is 
ru
ial to add a
omponent along the dire
tion �i to the �eld in (4.1) in order to make (b1) true, as it will be 
lear in theproof of Step 2 (see Se
tion 4.3); this 
omponent has to be 
hosen in su
h a way that it is zero on Si�1;i(so that (b2) remains valid on these segments) and that it depends only on h�i; (x; y)i (so that the �eldremains divergen
e-free). Therefore we repla
e in (4.1) the ve
tor g (h�i; (x; y)i) �i by�i(x; y) := (�1)i+1f�h�i; (x; y)i� �i + g�h�i; (x; y)i� �i; (4.2)where f is an even smooth fun
tion of real variable su
h that f(0) = 0 and whi
h will be 
hosen laterin a suitable way (see (4.74)). From this de�nition it follows that�x2(x; y) = ��x1(x;�y); �y2(x; y) = �y1(x;�y); (4.3)so that �1(x; 0) + �2(x; 0) = 2�y1(x; 0)ey;i.e., if we assume that �i(x; 0) = �i(x; 0) for every x � 0, the 
ontribution given by the �elds (4.2) tothe integral in (b2) 
omputed at a point of S0;2 is purely normal, as required in (b2), but its modulusis in general di�erent from what we need to obtain exa
tly the normal ve
tor ey . In order to 
orre
t it,we multiply �i by a fun
tion �i whi
h is �rst de�ned on Si�1;i [ S0;2 (more pre
isely, �i is taken equalto 1 on Si�1;i and to the 
orre
ting fa
tor on S0;2 ); then, we extend it to a neighbourhood of (0; 0) byassuming �i 
onstant along the integral 
urves of �i , so that �i�i remains divergen
e-free.



Calibrations for minimizers with a triple jun
tion 65The integral 
urves of �i 
an be represented as the 
urves f(x; y) 2 U : y =  i(x; s)g , where  i(x; s)is the solution of the problem(�x i(x; s)�xi (x;  i(x; s)) � �yi (x;  i(x; s)) = 0; i(s; s) = 0; (4.4)whi
h is de�ned in a suÆ
iently small neighbourhood of (0; 0). By applying the Impli
it Fun
tiontheorem, it is easy to see that if U is small enough, then there exists a unique smooth fun
tion hide�ned in U su
h that hi(0; 0) = 0;  i(x; hi(x; y)) = y: (4.5)Note that the 
urve f(x; y) 2 U : hi(x; y) = sg 
oin
ides with the integral 
urve f(x; y) 2 U : y =  i(x; s)gand that (hi(x; y); 0) gives the interse
tion point of the integral 
urve passing through (x; y) with thex-axis; in other words, the level lines of hi provide a di�erent representation of the integral 
urves of �iin terms of their interse
tion point with the x-axis.

S0,1

S0,2

1

{h1=1/2}

{h =0}1

ν1 x

y

{h =1}

{h1

{h1=-1}

=-1/2}Figure 4.3: integral 
urves of the �eld �1 .We state here some properties of hi and  i for further referen
es. Sin
e  i(s; s) = 0, we have thathi(s; 0) = s (4.6)for every s su
h that (s; 0) 2 U . By (4.4) and by di�erentiating the initial 
ondition in (4.4) with respe
tto s , we obtain�x i(0; 0) = �yi (0; 0)�xi (0; 0) = �yi�xi = (�1)ip3 ; �s i(0; 0) = ��x i(0; 0) = (�1)i+1p3 : (4.7)By di�erentiating the equation in (4.4) with respe
t to x and to s , and by using (4.2), it is easy to seethat �2xx i(0; 0) = �2xs i(0; 0) = 0; (4.8)



66 Chapter 4while by di�erentiating twi
e with respe
t to s the initial 
ondition  i(s; s) = 0, we obtain that�2ss i(0; 0) = �2�2xs i(0; 0) = 0: (4.9)By (4.7) and (4.8), the 
urve fhi = 0g (whi
h 
oin
ides with fy =  i(x; 0)g) is tangent to �i at 0,whi
h may be an in
e
tion point. Moreover, sin
e �x i(0; 0) 6= 0, by 
ontinuity the fun
tion  i(�; s) isstri
tly monotone in a small neighbourhood of 0 for s suÆ
iently small; by this fa
t and by 
omparingthe values of the fun
tion  i(�; hi(s�i)) at the points hi(s�i) and s�xi , it is easy to see thathi(s�i) � 0 (4.10)for every s � 0 su
h that s�i 2 U , provided U is small enough. Remark that by (4.6) and (4.10) itfollows that the segment S0;2 is all 
ontained in the region fhi � 0g , while Si�1;i in the region fhi � 0g .At last, we set �i(x; y) := 8<:1 if hi(x; y) � 0,g(hi(x; y))2�yi (hi(x; y); 0) if hi(x; y) > 0;sin
e by de�nition �yi (0; 0) = g(0)�yi = g(0)=2, the fun
tion �i is 
ontinuous a
ross the 
urve fhi = 0g .Moreover, remark that from (4.3) it follows that  2(x; s) = � 1(x; s), h2(x; y) = h1(x;�y), and then�2(x; y) = �1(x;�y): (4.11)For every (x; y; z) 2 Ki nHi , i = 1; 2, we de�ne '(x; y; z) as� 1��i(x; y)�i(x; y); �� :In the remaining regions of transition it is 
onvenient to take ' purely verti
al. In order to make' divergen
e-free in the whole set U�R , we need the normal 
omponent of ' to be 
ontinuous a
rossthe boundary of Gi and Hi . To guarantee this 
ontinuity a
ross �Gi , we are for
ed to take as third
omponent of ' the fun
tion
!(x; y; z) :=8>>>>>>>>>>><>>>>>>>>>>>:

"2v20(x; y) � jru0j2 for z < l1 + �,"2v21(x; y) � jru1j2 for l1 + � � z < l2 + �,"2v22(x; y) � jru2j2 for z � l2 + �. (4.12)
Finally, we de�ne the fun
tions �i; �i in su
h a way that the normal 
omponent of ' turns out to be
ontinuous also a
ross the boundary of Ki ; more pre
isely, for i = 1; 2 we 
hoose �i as the solution ofthe Cau
hy problem8<: 1��i(x; y)h�i(x; y);r�i(x; y)i � � = � "2v2i�1(x; y) + jrui�1(x; y)j2;�i(s�i) = 0; �i(s; 0) = 0 for s � 0,while �i as the solution of8<: 1��i(x; y)h�i(x; y);r�i(x; y)i � � = � "2v2i (x; y) + jrui(x; y)j2;�i(s�i) = 0; �i(s; 0) = 0 for s � 0.



Calibrations for minimizers with a triple jun
tion 67Sin
e �i is not C1 near the 
urve fhi = 0g , we 
annot expe
t a C1 -solution. Nevertheless, if U issmall enough, then �i; �i are Lips
hitz fun
tions de�ned in U , and the possible dis
ontinuity points ofr�i;r�i 
on
entrate only on the 
urve fhi = 0g ; indeed, if U is suÆ
iently small, the Cau
hy problems8<: 1� h�i(x; y);r~�i(x; y)i � � = � "2v2i�1(x; y) + jrui�1(x; y)j2;~�i(s�i) = 0 (s 2 R); (4.13)and 8<: g(hi(x; y))2��yi (hi(x; y); 0) h�i(x; y);r�̂i(x; y)i � � = � "2v2i�1(x; y) + jrui�1(x; y)j2;�̂i(s; 0) = 0 (s 2 R); (4.14)admit a unique solution ~�i; �̂i 2 C1(U), sin
e the lines fs�i : s 2 Rg and f(s; 0) : s 2 Rg arenot 
hara
teristi
 for these equations. Sin
e the 
urve fhi = 0g , whi
h 
oin
ides with the 
urve fy = i(x; 0)g , is a 
hara
teristi
 line of both equations (4.13) and (4.14) (use (4.4) and g(0)=(2��yi (0; 0)) = 1),the fun
tions ~�i; �̂i assume the same value on the 
urve fhi = 0g . So, �i 
an be regarded as the fun
tionde�ned by �i(x; y) := (~�i(x; y) if hi(x; y) � 0,�̂i(x; y) if hi(x; y) > 0,and therefore �i is C1 in U n fhi = 0g , and all derivatives of �i have �nite limits on both sides offhi = 0g . The same argument works for �i .The 
omplete de�nition of the �eld is therefore the following: for every (x; y; z) 2 U�R , the ve
tor'(x; y; z) = ('xy; 'z)(x; y; z) 2 R2�R is given by8>>>>>>>>>>>><>>>>>>>>>>>>:
�2rui + 2 z�ui(x;y)vi(x;y) rvi; ���rui + z�ui(x;y)vi(x;y) rvi���2� in Gi (i = 0; 1; 2),� 1��i(x; y)�i(x; y); �� in Ki nHi (i = 1; 2),�� 2"� (rui�1 +rui) ; �� in Hi (i = 1; 2),(0; !(x; y; z)) otherwise.Condition (a1) is trivial in Gi for all i .Sin
e rui(0; 0) = 0 for all i (this fa
t easily follows by the assumptions on the regularity of ui andby the Euler 
onditions), we have that "2v2i (0; 0) � jrui(0; 0)j2 = 1 > 0;then, if U is small enough, "2v2i (x; y) � jrui(x; y)j2 > 0for every (x; y) 2 U and for every i = 0; 1; 2, and so ! is always positive.Arguing in a similar way, if we impose that � > 1=(4�2), 
ondition (a1) holds in Ki , provided U issuÆ
iently small.



68 Chapter 4By 
onstru
tion 
onditions (a2) and (
1) are satis�ed.By dire
t 
omputations we �nd that for every (x; y) 2 UZ uiui�1 'xy dz = "2vi�1rvi�1 � "2virvi + 1� (�i � �i + �)�i�i; (4.15)for i = 1; 2, while Z u2u0 'xy dz = "2v0rv0 � "2v2rv2 + 1� 2Xi=1(�i � �i + �)�i�i: (4.16)Note that for i = 1; 2 vi�1(s�i) = vi(s�i) = v0(s; 0) = �s2 + " 8s 2 R; (4.17)rvi�1(x; y)�rvi(x; y) = p3�i 8(x; y) 2 U: (4.18)As hi(s�i) � 0 for every s � 0 by (4.10), we have that �i(s�i) = 1 for every s � 0, while by de�nition�i(s�i) = �i(s�i) = 0. From these fa
ts, (4.15), (4.17), (4.18), and the de�nition of �i , we obtainZ ui(s�i)ui�1(s�i) 'xy(s�i; z) dz = p3 "2v0(s; 0)�i + (�1)i+1f(0)�i + g(s)�i = �i; (4.19)where the last equality follows from the de�nition of g and the fa
t that f(0) = 0. Analogously, by theequalities v0(s; 0) = v2(s; 0) 8s 2 R; (4.20)rv0(x; y)�rv2(x; y) = p3ey 8(x; y) 2 U; (4.21)by the de�nition of �i and �i , and by (4.3), (4.11), (4.16), we haveZ u2(s;0)u0(s;0) 'xy(s; 0; z) dz = p3 "2v0(s; 0)ey + 2�1(s; 0)�y1(s; 0)ey= p3 "2v0(s; 0)ey + g(s)ey = ey; (4.22)where the two last equalities follow from (4.6) and from the de�nition of �1 and g . So 
ondition (b2) issatis�ed.The proof of 
ondition (b1) will be split in the next three se
tions: in Se
tion 4.2 we prove that 
on-dition (b1) holds if t1 and t2 belong to suitable neighbourhoods of ui�1(0; 0) and ui(0; 0), respe
tively;then, in Se
tion 4.3 we prove 
ondition (b1) for t1 and t2 belonging to suitable neighbourhoods of u0(0; 0)and u2(0; 0), respe
tively; �nally, in Se
tion 4.4, by a 
ontinuity argument we show that 
ondition (b1)is true in all other 
ases.4.2 Estimates for t1 and t2 near ui�1 and uiFor (x; y) 2 U and t1; t2 2 R , we setI(x; y; t1; t2) := Z t2t1 'xy(x; y; z) dz (4.23)



Calibrations for minimizers with a triple jun
tion 69and we denote its absolute value by � . In this se
tion, we will show that �(x; y; t1; t2) � 1 in a neigh-bourhood of the point (0; 0; ui�1(0; 0); ui(0; 0)) for i = 1; 2, so that the following step will be proved.Step 1.{ For a suitable 
hoi
e of the parameter " , there exists Æ > 0 su
h that 
ondition (b1) holdsfor jt1 � ui�1(0; 0)j < Æ , jt2 � ui(0; 0)j < Æ with i = 1; 2, provided U is small enough.Note that � is a 
ontinuous fun
tion, but its derivatives with respe
t to x; y may be dis
ontinuousat the points (x; y; t1; t2) su
h that h1(x; y) = 0 or h2(x; y) = 0; indeed, the 
urve fhi = 0g is theboundary of the di�erent regions of de�nition of the fun
tions �i , �i , and �i , whose derivatives maypresent therefore some dis
ontinuities. Nevertheless, if we set Ni := f(x; y) 2 U : hi(x; y) < 0g andPi := f(x; y) 2 U : hi(x; y) > 0g , the restri
tions of �i , �i , and �i to the sets Ni and Pi 
an beextended up to the boundary fhi = 0g as C1 -fun
tions; so, along the 
urve fhi = 0g the tra
es of thederivatives of �i , �i , and �i are de�ned. Then, also the tra
es of the derivatives of � with respe
t tox; y are de�ned at the points (x; y; t1; t2) with h1(x; y) = 0 or h2(x; y) = 0.
τ1

N1

ν1 x

y

 {h1=0}
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Figure 4.4: the regions P1 and N1 .Sin
e we want to study the behaviour of � in a neighbourhood of (0; 0; ui�1(0; 0); ui(0; 0)), we 
ansuppose jt1�ui�1(0; 0)j � " and jt2�ui(0; 0)j � " , so that the possible dis
ontinuities of the derivativesof � 
on
entrate only on the 
urve fhi = 0g . We study separately the two regions Ni and Pi .Consider �rst the 
ase (x; y) 2 Ni , whi
h is the region 
ontaining Si�1;i . We will study the derivativesof � at the points of the form qi(s) := (s�i; ui�1(s�i); ui(s�i)); s � 0:We have already shown (
ondition (b2)) that �(qi(s)) = 1 for every s � 0; we want to prove thatr�(qi(s)) = 0 8s � 0 (4.24)(where now r denotes the gradient with respe
t to x; y; t1; t2 ) and that the Hessian matrix of � withrespe
t to �i; t1; t2 is negative de�nite at qi(0).Let I�i and I�i be the 
omponents of the integral in (4.23) along the dire
tions �i and �i , respe
tively.Sin
e by de�nition �(x; y; t1; t2) = [(I�i(x; y; t1; t2))2 + (I�i(x; y; t1; t2))2℄1=2;



70 Chapter 4the gradient of � is given by r� = 1�(I�irI�i + I�irI�i): (4.25)Note that (4.19) implies thatI�i(qi(s)) = 0 and I�i(qi(s)) = 1 8s � 0; (4.26)hen
e r�(qi(s)) = rI�i(qi(s)): (4.27)By the de�nition of ' in Gi and by (4.15) we 
an 
ompute expli
itly the expression of I�i at (x; y; t1; t2):I�i = �2(t1 � ui�1)��iui�1 + 2(t2 � ui)��iui + 1� (�i � �i + �)�i��ii+ p32vi�1 ("2 � (t1 � ui�1)2) + p32vi ("2 � (t2 � ui)2); (4.28)where ��ii (x; y) = (�1)i+1f(h�i; (x; y)i) and ��ii (x; y) = g(h�i; (x; y)i): (4.29)By di�erentiating (4.28) with respe
t to the dire
tion �i we obtain��iI�i = 2(��iui�1)2 � 2(��iui)2 � 2(t1 � ui�1)�2�i�iui�1 + 2(t2 � ui)�2�i�iui+ 1���i(�i � �i)�i��ii + 1� (�i � �i + �)(��i�i��ii + �i��i��ii )� 34v2i�1 ("2 � (t1 � ui�1)2) + 34v2i ("2 � (t2 � ui)2)+ p3vi�1 (t1 � ui�1)��iui�1 + p3vi (t2 � ui)��iui: (4.30)By the Euler 
onditions, ��iui�1(s�i) = ��iui(s�i) = 0 for every s � 0. Moreover, sin
e jrui�1j = jruijon U (see the remark at the beginning of the proof), in the region Ni the fun
tion �i � �i 
oin
ideswith the solution �i of the problem8<: 1���ii ��i�i + 1���ii ��i�i = "2v2i�1 � "2v2i ;�i(s�i) = 0 (s � 0): (4.31)As ��i�i(s�i) = 0 and vi�1(s�i) = vi(s�i) for every s � 0 (see (4.17)), we have that��i(�i � �i)(s�i) = ��i�i(s�i) = 0: (4.32)By de�nition ��i��ii � 0 and �i(x; y) = 1 for every (x; y) 2 Ni ; using these remarks and the �rst equalityin (4.17), we 
an dedu
e that ��iI�i(qi(s)) = 0 (4.33)



Calibrations for minimizers with a triple jun
tion 71for every s > 0, and the equality holds also for the tra
e of ��iI�i at qi(0). Sin
e the derivatives of I�iwith respe
t to t1 and t2 are given by�t1I�i = �2��iui�1 � p3vi�1 (t1 � ui�1); �t2I�i = 2��iui � p3vi (t2 � u1); (4.34)by the Euler 
onditions it follows that�t1I�i(qi(s)) = �t2I�i(qi(s)) = 0: (4.35)As I�i(qi(s)) = 1 for every s � 0, equalities (4.35) imply that ��iI�i(qi(s)) = 0. By this fa
t, (4.27),(4.33), and (4.35), equality (4.24) is proved.Now we need to 
ompute the tra
e of the Hessian matrix of � with respe
t to �i; t1; t2 at the pointqi(0); using (4.26) (4.33), (4.35) and (4.24), the Hessian matrix at qi(0) redu
es tor2�i;t1;t2�(qi(0)) = [r�i;t1;t2I�i 
r�i;t1;t2I�i +r2�i;t1;t2I�i ℄(qi(0)); (4.36)where r�i;t1;t2 denotes the gradient with respe
t to �i; t1; t2 and 
 the tensor produ
t. As before, weknow the expli
it expression of I�i :I�i = �2(t1 � ui�1)��iui�1 + 2(t2 � ui)��iui + 1� (�i � �i + �)�i��ii� 12vi�1 ("2 � (t1 � ui�1)2) + 12vi ("2 � (t2 � ui)2); (4.37)hen
e, using the Euler 
onditions, (4.32), and the fa
t that �i � 1 in Ni , it results that��iI�i(qi(0)) = 12��ivi�1(0; 0)� 12��ivi(0; 0) + ��i��ii (0; 0) = p32 ; (4.38)where the last equality follows by (4.18) and by the equality��i��ii (0) = (�1)i+1f 0(0) = 0: (4.39)By di�erentiating (4.30) and by using the Euler 
onditions, (4.32), the 
onstan
y of �i in Ni , and thefa
t that �2�i�i��ii � 0, we have�2�i�iI�i(qi(0)) = 1���ii (0; 0)�2�i�i(�i � �i)(0; 0) + 32"��ivi�1(0; 0)� 32"��ivi(0; 0) = �p32" ; (4.40)where the last equality follows from1���ii (0; 0)�2�i�i(�i � �i)(0; 0) = �2p3" ; (4.41)whi
h 
an be obtained by di�erentiating (4.31). Using (4.36), (4.38), and (4.40), we obtain that�2�i�i�(qi(0)) = [��iI�i(qi(0))℄2 + �2�i�iI�i(qi(0)) = 34 � p32" < 0; (4.42)provided " is suÆ
iently small. Sin
e �t1I�i(qi(0)) = 0 (this 
an be easily proved using the fa
t thatrui�1(0; 0) = rui(0; 0) = 0), by (4.36) we have that�2�it1�(qi(0)) = �2�it1I�i(qi(0)); �2t1t1�(qi(0)) = �2t1t1I�i(qi(0)):



72 Chapter 4By di�erentiating (4.34) and by using the Euler 
onditions, it turns out that�2�it1I�i(qi(0)) = �2�2�i�iui�1(0; 0); �2t1t1I�i(qi(0)) = �p3" ;so that det �2�i�i� �2�it1��2�it1� �2t1t1� ! (qi(0)) = 32"2  1� p32 "!� 4(�2�i�iui�1(0; 0))2:Arguing in a similar way, one 
an �nd that�2�it2�(qi(0)) = 2�2�i�iui(0; 0); �2t2t2�(qi(0)) = �p3" ; �2t1t2�(qi(0)) = 0;so that detr2�i;t1;t2�(qi(0)) = �3p32"3  1� p32 "!+ 4p3" [(�2�i�iui�1(0; 0))2 + (�2�i�iui(0; 0))2℄:Sin
e for " suÆ
iently small it results thatdet �2�i�i� �2�it1��2�it1� �2t1t1� ! (qi(0)) > 0; detr2�i;t1;t2�(qi(0)) < 0; (4.43)then, by (4.42) and (4.43) the Hessian matrix of � at qi(0) is negative de�nite.At this point we have all the ingredients we need in order to 
ompare the value of � on Si�1;i withits value at a point (x; y; t1; t2) for (x; y) 2 Ni and jt1 � ui�1(0; 0)j � " , jt2 � ui(0; 0)j � " .Remark that sin
e the 
urve fhi = 0g may have an in
e
tion point at the origin, the set Ni mightbe not 
onvex. If the segment joining (x; y) with its orthogonal proje
tion on Si�1;i (whi
h is a pointof the form s�i with s � 0) is all 
ontained in Ni , then we 
an 
onsider the restri
tion of � to thesegment joining (x; y; t1; t2) with qi(s) and write its Taylor expansion of se
ond order 
entred at qi(s).By (4.24) and the fa
t that the Hessian matrix of � is negative de�nite at qi(0) (and then, by 
ontinuityin a small neighbourhood), we have that there exist Æ; C > 0 su
h that, if U is small enough andjt1 � ui�1(0; 0)j < Æ , jt2 � ui(0; 0)j < Æ , then�(x; y; t1; t2) � 1� Cjh�i; (x; y)ij2 � C(t1 � ui�1(s�i))2 � C(t2 � ui(s�i))2 � 1:In the general 
ase, sin
e the 
urve fy =  i(x; 0)g is C2 with null se
ond derivative at 0, one 
an �nds > 0, a 2 R su
h that the segment joining (x; y) with s�i + a�i is all 
ontained in Ni and the ratioj(x; y) � s�i � a�ij=a2 is in�nitesimal as a ! 0. Sin
e s > 0, the segment joining s�i + a�i with itsproje
tion s�i on Si�1;i is all 
ontained in Ni , so that we 
an apply to this point the estimate above; ifwe 
all L the L1 -norm of the gradient of � , we obtain that�(x; y; t1; t2) � �(s�i + a�i; t1; t2) + Lj(x; y)� s�i � a�ij� 1� a2�C � L j(x; y)� s�i � a�ija2 �� C(t1 � ui�1(s�i))2 � C(t2 � ui(s�i))2;whi
h is less than 1, provided U is small enough. So we have proved that, if " is suÆ
iently small, thenthere exists Æ > 0 su
h that�(x; y; t1; t2) � 1 for (x; y) 2 Ni; jt1 � ui�1(0; 0)j < Æ; jt2 � ui(0; 0)j < Æ; (4.44)provided U is suÆ
iently small.
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tion 73Suppose now (x; y) 2 Pi , jt1 � ui�1(0; 0)j � " , jt2 � ui(0; 0)j � " . In order to show that � � 1also in this 
ase, we will 
ompute the tra
es of the gradient and of the Hessian matrix of � at the pointqi(0). The main di�eren
e with respe
t to the previous 
ase is that in the region Pi the fun
tion �i��i
oin
ides with the solution �i of the problem8<: 1��i(x; y)h�i(x; y);r�i(x; y)i = "2v2i�1(x; y) � "2v2i (x; y) ;�i(s; 0) = 0 (s � 0); (4.45)while the fun
tion �i is de�ned as�i(x; y) = g(hi(x; y))2�yi (hi(x; y); 0) 8(x; y) 2 Pi: (4.46)By (4.26) and (4.25) it follows that r�(qi(0)) = rI�i(qi(0)): (4.47)By (4.28) we obtain the following expression for the gradient of I�i with respe
t to �i; �i 
omputed atthe point qi(0): r�i;�iI�i(qi(0)) = g(0)r�i(0; 0) +r��ii (0; 0) + p32 �i; (4.48)where we have used the Euler 
onditions, the fa
t that r(�i � �i)(0; 0) = 0 by (4.45), and thatrvi�1(x; y) +rvi(x; y) = ��i 8(x; y) 2 U:It follows immediately by (4.29) that r��ii (x; y) = g0(h�i; (x; y)i)�i (4.49)and by the de�nition of g that g0(t) = p3"2 �xv0(t; 0)v20(t; 0) = �p32 "2 1v20(t; 0) (4.50)for all t 2 R . By di�erentiating (4.46), we obtain thatr�i(x; y) = 12p(hi(x; y))rhi(x; y); (4.51)where we have set p(t) := g0(t)�yi (t; 0) � g(t)[�yi (t; 0)℄2 �x�yi (t; 0):To 
ompute the gradient of hi it is enough to di�erentiate the se
ond equality in (4.5): this provides�x i(x; hi) + �s i(x; hi)�xhi = 0; �s i(x; hi)�yhi = 1; (4.52)by (4.7) we have that rhi(0; 0) = �2�i: (4.53)Sin
e �x�yi (x; y) = (�1)i+1 34f 0(h�i; (x; y)i)� 14g0(h�i; (x; y)i);



74 Chapter 4we �nd that p(0) = 3g0(0)=g(0), and substituting in (4.51), we have thatr�i(0; 0) = �3g0(0)g(0) �i: (4.54)Sin
e the partial derivatives of I�i with respe
t to t1 and t2 are still given by (4.34), they are equal to 0at the point qi(0), as in the previous 
ase. Then, by (4.47), (4.48), (4.49), (4.54), and (4.50), we dedu
ethat r�(qi(0)) =  3p32 �i; 0; 0! : (4.55)To 
on
lude the study of � in this region, we write the Hessian matrix of � with respe
t to �i; t1; t2 , whi
hstill satis�es (4.36). Di�erentiating (4.37) and using the Euler 
onditions, the fa
t that r(�i��i)(0; 0) =0, ��ii (0; 0) = 0 and (4.39), we obtain that (4.38) still holds. Di�erentiating (4.30) and 
omputing theresult at qi(0), we have that�2�i�iI�i(qi(0)) = 1�g(0)�2�i�i(�i � �i)(0; 0) + g(0)�2�i�i�i(0; 0) + 32" (��ivi�1(0; 0)� ��ivi(0; 0)); (4.56)where we have used in parti
ular that ��i�i(0; 0) = 0 by (4.54) and that �2�i�i��ii � 0. In order to
ompute the se
ond derivative of �i � �i with respe
t to the dire
tion �i , we di�erentiate (4.45) withrespe
t to x and with respe
t to y ; using the fa
t that �x(�i � �i)(s; 0) = 0 for every s � 0, we obtain�2xx(�i � �i)(0; 0) = 0; �2xy(�i � �i)(0; 0) = 6" (�1)i+1 �g(0) ; (4.57)�2yy(�i � �i)(0; 0) = �2p3" �g(0) +p3(�1)i+1�2xy(�i � �i)(0; 0) = 4p3" �g(0) : (4.58)By the relation �2�i�i = 34�2xx + p32 (�1)i�2xy + 14�2yy , it follows that�2�i�i(�i � �i)(0; 0) = �2p3" �g(0) :Sin
e ��ihi(0; 0) = 0 by (4.53), from (4.51) we obtain that�2�i�i�i(0; 0) = 12 � g0(0)�yi (0; 0) � g(0)[�yi (0; 0)℄2 �x�yi (0; 0)��2�i�ihi(0; 0) = 32 g0(0)g(0) �2�i�ihi(0): (4.59)By di�erentiating twi
e with respe
t to the dire
tion �i the se
ond equality in (4.5), we obtain that(�xi )2�2xx i(x; hi) + 2�xi �2xs i(x; hi)��ihi + �2ss i(x; hi)(��ihi)2 + �s i(x; hi)�2�i�ihi = 0;sin
e ��ihi(0; 0) = 0 by (4.53) and �2xx i(0; 0) = 0 by (4.8), we 
an 
on
lude that �2�i�ihi(0; 0) = 0 andthen, by (4.59) also the limit of �2�i�i�i at (0; 0) is equal to 0. Taking (4.17) and (4.56) into a

ount, we
an 
on
lude that �2�i�iI�i(qi(0)) = �p32" ;i.e., (4.40) is still satis�ed. Sin
e it is easy to see that also the other se
ond derivatives of � remainun
hanged, we 
an 
on
lude that the Hessian matrix of � with respe
t to �i; t1; t2 is negative de�nite atqi(0).
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tion 75If the segment joining (x; y; t1; t2) with qi(0) is all 
ontained in Pi , then we 
onsider the Taylor ex-pansion of se
ond order 
entred at qi(0) of the fun
tion � restri
ted to this segment; sin
e the 
omponentof (x; y) along �i is less or equal than 0, by (4.55) and by the fa
t that the Hessian matrix of � withrespe
t to �i; t1; t2 is negative de�nite, we have that there exists Æ > 0 su
h that �(x; y; t1; t2) � 1 forjt1 � ui�1(0; 0)j < Æ , jt2 � ui(0; 0)j < Æ , provided U is small enough. In the general 
ase, we 
an �nds � 0, a 2 R su
h that the segments joining (x; y) with s�i + a�i , and s�i + a�i with (0; 0) are all
ontained in Pi , and j(x; y)� s�i � a�ij=a2 is in�nitesimal as a! 0. Arguing as for the region Ni , thisis enough to obtain the same 
on
lusion. So we have proved that, if " is small enough, there exists Æ > 0su
h that �(x; y; t1; t2) � 1 for (x; y) 2 Pi; jt1 � ui�1(0; 0)j < Æ; jt2 � ui(0; 0)j < Æ; (4.60)provided U is suÆ
iently small.By (4.44) and (4.60) Step 1 is proved.4.3 Estimates for t1 and t2 near u0 and u2This se
tion is devoted to the proof of the following step.Step 2.{ For a suitable 
hoi
e of the fun
tion f (see (4.2)), there exists Æ > 0 su
h that 
ondition (b1)holds for jt1 � u0(0; 0)j < Æ , jt2 � u2(0; 0)j < Æ , provided U is small enough.In order to prove the step, we want to show that the fun
tion � , introdu
ed at the beginning of Se
tion 4.2,is less or equal than 1 in a neighbourhood of the point (0; 0; u0(0; 0); u2(0; 0)). We 
an assume thatjt1�u0(0; 0)j � " , jt2�u2(0; 0)j � " . Sin
e now the derivatives of � may be dis
ontinuous on the 
urvesfh1 = 0g and fh2 = 0g , we have to 
onsider separately four di�erent 
ases, one for (x; y) belonging toea
h one of the regions N1 \N2 , N1 \ P2 , N2 \ P1 , and P1 \ P2 .Let Ix and Iy be the 
omponents of the integral in (4.23) with respe
t to ex and ey , that are thetangent and the normal dire
tion, respe
tively, to the third part of the dis
ontinuity set S0;2 .Consider �rst the 
ase (x; y) 2 P1 \ P2 , whi
h is the region 
ontaining S0;2 ; as before, we will studythe derivatives of � at the points of the formq0(x) := (x; 0; u0(x; 0); u2(x; 0)); x � 0:Condition (4.22) implies that �(q0(x)) = 1 for every x � 0; we want to prove thatr�(q0(x)) = 0 8x � 0 (4.61)and that the Hessian matrix of � with respe
t to y; t1; t2 is negative de�nite at qi(0). By the de�nitionof � , it follows that r� = 1� (IxrIx + IyrIy):Sin
e Ix(q0(x)) = 0 and Iy(q0(x)) = 1 for every x � 0, we have thatr�(q0(x)) = rIy(q0(x)):By (4.16) and by the de�nition of ' in Gi we 
an write the expli
it expression of Iy at (x; y; t1; t2):Iy = �2(t1 � u0)�yu0 + 2(t2 � u2)�yu2 + 1� 2Xi=1(�i � �i + �)�i�yi+ p32v0 ("2 � (t1 � u0)2) + p32v2 ("2 � (t2 � u2)2); (4.62)



76 Chapter 4and by di�erentiating with respe
t to y , we obtain�yIy = 2(�yu0)2 � 2(�yu2)2 � 2(t1 � u0)�2yyu0 + 2(t2 � u2)�2yyu2+ 1� 2Xi=1 [�y(�i � �i)�i�yi + (�i � �i + �)�y(�i�yi )℄� 34v20 ("2 � (t1 � u0)2)+ 34v22 ("2 � (t2 � u2)2) + p3v0 (t1 � u0)�yu0 + p3v2 (t2 � u2)�yu2: (4.63)Sin
e in the region P1 \ P2 the fun
tions �i � �i 
oin
ide with the solutions of the problems (4.45), itresults that �y(�i � �i)(x; 0) = 0 for i = 1; 2. Moreover, di�erentiating (4.11) and the se
ond equalityin (4.3) with respe
t to y , we have that�y�2(x; y) = ��y�1(x;�y); �y�y2(x; y) = ��y�y1(x;�y); (4.64)and then, using again (4.3) and (4.11),�y1(x; 0)�y�1(x; 0) = ��y2(x; 0)�y�2(x; 0); �1(x; 0)�y�y1(x; 0) = ��2(x; 0)�y�y2(x; 0):By the Euler 
onditions, �yu0(x; 0) = �yu2(x; 0) = 0 for every x � 0; using all these remarks and (4.20),we dedu
e that �yIy(q0(x)) = 0 for every x > 0 and the equality holds also for the tra
e of �yIy atq0(0). Sin
e we have that�t1Iy = �2�yu0 � p3v0 (t1 � u0); �t2Iy = 2�yu2 � p3v2 (t2 � u2); (4.65)by the Euler 
onditions it follows that �t1Iy(q0(x)) = �t2Iy(q0(x)) = 0. As Iy(q0(x)) = 1 for everyx � 0, this implies that �xIy(q0(x)) = 0. Thus we have obtained equality (4.61).By (4.61) and (4.22) the Hessian matrix of � 
omputed at q0(0) redu
es tor2y;t1;t2�(q0(0)) = [ry;t1;t2Ix 
ry;t1;t2Ix +r2y;t1;t2Iy℄(q0(0)): (4.66)As before, we know thatIx = �2(t1 � u0)�xu0 + 2(t2 � u2)�xu2 + 1� 2Xi=1(�i � �i + �)�i�xi� 12v0 ("2 � (t1 � u0)2) + 12v2 ("2 � (t2 � u2)2);hen
e, by the Euler 
ondition, the fa
t that �y(�i � �i)(0; 0) = 0 for i = 1; 2, and (4.21), it results that�yIx(q0(0)) = p32 + 2Xi=1 �y(�i�xi )(0; 0) = p32 + 2�y�x1(0; 0) + 2�x1(0; 0)�y�1(0; 0);where we have also used the �rst equalities in (4.3) and in (4.64), and the relation �y�x2(x; y) =�y�x1 (x;�y). From (4.54) we obtain that�y�1(0; 0) = 3p32 g0(0)g(0) :



Calibrations for minimizers with a triple jun
tion 77Then, using the de�nition of �x1 and (4.50), we 
an 
on
lude that�yIx(0; 0) = p32 � 3g0(0) = 2p3: (4.67)By di�erentiating (4.63) with respe
t to y and by using the Euler 
ondition and the fa
t that �y(�i ��i)(0; 0) = 0 for i = 1; 2, we obtain�2yyIy(q0(0)) = 1� 2Xi=1 [�2yy(�i � �i)�yi + �2yy(�i�yi )℄(0; 0) + 3p32" :Equality (4.58) implies that 1� 2Xi=1 [�2yy(�i � �i)�i�yi ℄(0; 0) = 4p3" : (4.68)In order to write expli
itly �2yy�i at (0; 0), we di�erentiate the y -
omponent in (4.51) with respe
t to yand we pass to the limit, taking into a

ount that �yhi(0) = (�1)i+1p3 by (4.53):�2yy�1(0; 0) = 32p0(0) + 12p(0)�2yyhi(0):By di�erentiating with respe
t to y the se
ond equality in (4.52), we obtain that�2yyh1(0; 0) = �(�yh1(0; 0))2 �2ss 1(0; 0)�s 1(0; 0) = 0;where the last equality follows by (4.9). Sin
ep0(0) = 2g00(0)g(0) + 3[g0(0)℄2g2(0) � 4�2xx�y1(0; 0)g(0) ; (4.69)while �2xx�y1(0; 0) = �3p38 f 00(0) + 18g00(0); �2yy�y1(0; 0) = �p38 f 00(0) + 38g00(0); (4.70)and g00(0) = �p3=(2"), we 
an write that1� 2Xi=1(�i � �i + �)�2yy(�i�yi )(0; 0) = (2�y1�2yy�1 + 4�y�1�y�y1 + 2�2yy�y1)(0; 0)= 2p3f 00(0) + 3g00(0)= 2p3f 00(0)� 3p32" : (4.71)Substituting (4.68) and (4.71) in the expression of �2yyIy , we �nd that�2yyIy(q0(0)) = 2p3f 00(0) + 4p3" : (4.72)From (4.66), (4.67), and (4.72), we �nally obtain that�2yy�(q0(0)) = [�yIx(q0(0))℄2 + �2yyIy(q0(0)) = 12 + 4p3" + 2p3f 00(0): (4.73)



78 Chapter 4As in the previous step, we 
an 
ompute expli
itly the other elements of the Hessian matrix of � and we�nd that det �2yy� �2yt1��2yt1� �2t1t1� ! (q0(0)) = �6"f 00(0)� 12p3" � 12"2 � 4(�2yyu0(0; 0))2;detr2y;t1;t2�(q0(0)) = 6p3"2 f 00(0) + 36"2 + 12p3"3 + 4p3" [(�2yyu0(0; 0))2 + (�2yyu2(0; 0))2℄:If we impose the following 
ondition on the se
ond derivative of f at 0:f 00(0) < �2p3� 2" � 2"3 [(�2yyu0(0; 0))2 + (�2yyu2(0; 0))2℄; (4.74)then the Hessian matrix of � is negative de�nite at q0(0).To 
on
lude, we restri
t � to the segment joining (x; y; t1; t2) with q0(x) and we write its Taylorexpansion of se
ond order 
entred at q0(x); using (4.61) and 
hoosing f satisfying (4.74) (so that theHessian matrix of � is negative de�nite at q0(0), and then by 
ontinuity in a small neighbourhood), weobtain that there exists Æ > 0 su
h that�(x; y; t1; t2) � 1 for (x; y) 2 P1 \ P2; jt1 � u0(0; 0)j < Æ; jt2 � u2(0; 0)j < Æ; (4.75)provided U is suÆ
iently small.Let us 
onsider the set N1 \ N2 : in this region �1 = �2 = 1, while the fun
tions �i � �i 
oin
idewith the solutions of the problems (4.31). By (4.22) the gradient of � at the point q0(0) is given byr�(q0(0)) = rIy(q0(0)): (4.76)By (4.62) we derive the expli
it expression for the gradient of Iy with respe
t to x; y ; using the Euler
ondition, the fa
t that r(�i � �i)(0; 0) = 0, the 
onstan
y of �i and the equalityrv0(x; y) +rv2(x; y) = �ex 8(x; y) 2 U; (4.77)we obtain that rx;yIy(q0(0)) = 2Xi=1 r�yi (0; 0) + p32 ex = �12g0(0)ex + p32 ex = 3p34 ex:Sin
e the partial derivatives of Iy with respe
t to t1 and t2 are still given by (4.65), they are equal to0 at q0(0), as in the previous 
ase. Therefore, we have thatr�(q0(0)) =  3p34 ex; 0; 0! : (4.78)If (x; y) 6= (0; 0) belongs to N1 \ N2 and the segment joining (x; y) with (0; 0) is all 
ontained inN1\N2 , then by the Mean Value theorem, (4.78) and the fa
t that x is stri
tly negative, we 
an 
on
ludethat there exists Æ > 0 su
h that�(x; y; t1; t2) � 1 for jt1 � u0(0; 0)j < Æ; jt2 � u2(0; 0)j < Æ; (4.79)provided U is suÆ
iently small. If the segment joining (x; y) with (0; 0) is not 
ontained in N1\N2 , thenwe 
an �nd a regular 
urve 
onne
ting (x; y) and (0; 0), along whi
h we 
an repeat the same estimateas above.



Calibrations for minimizers with a triple jun
tion 79At last 
onsider the set N2 \P1 , sin
e the 
ase N1 \P2 is 
ompletely analogous. In this region, �1 isde�ned by (4.46), while �2 is identi
ally equal to 1; the fun
tion �1 � �1 
oin
ides with the solution ofthe problem (4.45) for i = 1, while �2 � �2 with the one of (4.31) for i = 2. Equality (4.76) still holds,as well as the fa
t that r(�i � �i)(0; 0) = (0; 0) for all i ; sin
e r�1 is given by the formula (4.54) andr�2 � 0, by (4.2), (4.50), (4.62), and (4.77) we have thatrx;yIy(q0(0)) = 2Xi=1 r�yi (0; 0) + �y1(0; 0)r�1(0; 0) + p32 ex= 3p34 (ex + �1) = �3p34 �2;hen
e r�(q0(0)) =  �3p34 �2; 0; 0! :Sin
e the gradient of � vanishes along the dire
tion (�2; 0; 0), we need to 
ompute the Hessian matrix of� with respe
t to �2; t1; t2 at the point q0(0); from the equality r�2;t1;t2Iy(q0(0)) = 0, we have thatr2�2;t1;t2�(q0(0)) = [r�2;t1;t2Ix 
r�2;t1;t2Ix +r2�2;t1;t2Iy℄(q0(0)): (4.80)Using the fa
t that ru0(0; 0) = ru2(0; 0) = 0 and r(�i � �i)(0; 0) = 0, we obtain��2Ix(q0(0)) = 2Xi=1 ��2�xi (0; 0) + ��2�1(0; 0)�x1(0; 0) + 12��2(v0 � v2)= �y�x1(0; 0)� 94g0(0) + p34 = p3;where the se
ond equality follows from (4.54) and from the fa
t that ��2�x1 + ��2�x2 = �y�x1 at (0; 0).If we di�erentiate (4.62) twi
e with respe
t to the dire
tion �2 and we 
ompute the result at the pointq0(0), we obtain�2�2�2Iy(0; 0) =  1� 2Xi=1 �2�2�2(�i � �i)�i�yi + 2Xi=1 �2�2�2�yi + �2�2�2�1�y1 + 2��2�1��2�y1! (0; 0) + 3p34" :(4.81)From (4.57) and (4.58), and from (4.41) it follows respe
tively that�2�2�2(�1 � �1)(0; 0) = 4p3"3 �g(0) ; �2�2�2(�2 � �2)(0; 0) = �2p3" �g(0) : (4.82)Sin
e by (4.51) we have that ��2�1(x; y) = 12p(h1(x; y))��2h1(x; y), then�2�2�2�1(0; 0) = 12p0(0)(��2h1(0; 0))2 + 12p(0)�2�2�2h1(0; 0):Some easy 
omputations show that �2�2�2h1(0; 0) = 0; using (4.53) it results that�2�2�2�1(0; 0) = 32p0(0) = 92 [g0(0)℄2g2(0) + 94p3f 00(0)g(0) ; (4.83)



80 Chapter 4where the last equality follows by (4.69) and by the �rst equality in (4.70). At last, by using (4.3) and(4.70), we obtain that2Xi=1 �2�2�2�yi (0; 0) = 34�2xx�y1(0; 0) + 14�2yy�y1(0; 0) = �58p3f 00(0) + 38g00(0); (4.84)and by substituting (4.82), (4.83), and (4.84) in (4.81), we dedu
e that�2�2�2Iy(q0(0)) = p32 f 00(0) + p3" ;hen
e �2�2�2�(q0(0)) = 3 + p3" + p32 f 00(0):By di�erentiating (4.65) with respe
t to �2 and by (4.80), we obtain�2�2t1�(q0(0)) = �2��2�yu0(0; 0) = ��2yyu0(0; 0); �2�2t2�(q0(0)) = 2��2�yu2(0; 0) = �2yyu2(0; 0):At this point, it is easy to see that, if f satis�es the 
onditionf 00(0) < �2p3� 2" � "6[(�2yyu0(0; 0))2 + (�2yyu2(0; 0))2℄ (4.85)then the Hessian matrix of � with respe
t to �2; t1; t2 is negative de�nite at the point q0(0). Arguingas for the region Pi in the previous se
tion, it 
an be proved that, if f satis�es (4.85), then there existsÆ > 0 su
h that�(x; y; t1; t2) � 1 for (x; y) 2 N2 \ P1; jt1 � u0(0; 0)j < Æ; jt2 � u2(0; 0)j < Æ; (4.86)provided U is suÆ
iently small.Sin
e 
ondition (4.74) implies (4.85), if we require that (4.74) holds, then by (4.75), (4.79), and (4.86),we 
an 
on
lude that Step 2 is true.4.4 Proof of 
ondition (b1)In this se
tion we 
omplete the proof of 
ondition (b1). To this aim it is enough to 
he
k 
ondition (b1)in the three 
ases studied in the following step, as it will be 
lear at the end of the se
tion.Step 3.{ If " is suÆ
iently small, Æ 2 (0; "), and U is suÆ
iently small, 
ondition (b1) is true fort1 � t2 whenever one of the following three 
onditions is satis�ed:1) jt1 � u0(0; 0)j � Æ and jt1 � u1(0; 0)j � Æ ;2) jt2 � u1(0; 0)j � Æ and jt2 � u2(0; 0)j � Æ ;3) jt1 � u0(0; 0)j � Æ and jt2 � u2(0; 0)j � Æ .Let us �x Æ 2 (0; ") and setM1(x; y) := maxfjI(x; y; t1; t2)j : u0(x; y)� " � t1 � t2 � u2(x; y) + ";jt1 � u0(0; 0)j � Æ; jt1 � u1(0; 0)j � Æg:
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tion 81It is easy to see that the fun
tion M1 is 
ontinuous. Let us prove that M1(0; 0) < 1. For simpli
ity ofnotation, from now on we will denote I(0; 0; t1; t2) simply by I(t1; t2) and ui(0; 0) by ui .Let t1; t2 be su
h that u0 � " � t1 � t2 � u2 + " with jt1 � u0j � Æ and jt1 � u1j � Æ . Supposefurthermore that jt1 � u1j � " ; then, we 
an writeI(t1; t2) = I(t1; u1) + I(u1; u2) + I(u2; t2);I(u2; t2) = I(u2; t2 _ (u2 � ")) + I(u2 � "; t2 ^ (u2 � ")):Therefore, we haveI(t1; t2) = I(t1; u1) + I(u1; u2) + I(u2; t2 _ (u2 � "))� I(t2 ^ (u2 � "); u2 � "): (4.87)From the de�nition of ' in G1; G2 it follows thatI(s1; u1) = �1" (s1 � u1)2ex for js1 � u1j � ";I(u2; s2) = 1" (s2 � u2)2�1 for js2 � u2j � "; (4.88)using 
ondition (b2), we have thatI(t1; u1) + I(u1; u2) + I(u2; t2 _ (u2 � ")) 2 �2 � Æ2" ex +R1; (4.89)where R1 is the parallelogram spanned by the ve
tors "�1 and ��"� Æ2" � ex . Let C be the interse
tionof the half-plane f(x; y) 2 R2 : h�2; (x; y)i � 1 �p3"g with the open ball 
entred at 0 with radius 1;some elementary geometri
 
onsiderations show that�2 � Æ2" ex +R1 � C: (4.90)If Ti is the segment joining 0 with g(0)�i , then from the de�nition of ' in Ki , it follows thatI(ui�1 + "; ui � ") = g(0)�i; (4.91)and I(s1; s2) 2 Ti (4.92)for ui�1 + " � s1 � s2 � ui � " , i = 1; 2. Let D := �T2 ; from (4.87), (4.89), (4.90), and (4.92), wededu
e that I(t1; t2) 2 C +D;sin
e g(0) = 1 � p3" , the set C + D is 
ontained in the open ball 
entred at 0 with radius 1. This
on
ludes the proof when jt1 � u1j � " .If jt2 � u1j � " , we 
onsider the de
ompositionI(t1; t2) = I(t1; u0) + I(u0; u1) + I(u1; t2);I(t1; u0) = I(t1 ^ (u0 + "); u0) + I(t1 _ (u0 + "); u0 + ");and the proof is 
ompletely analogous.When jt1 � u1j > " and jt2 � u1j > " , we 
an writeI(t1; t2) = I(t1; u0) + I(u0; u2) + I(u2; t2);I(t1; u0) = I(t1 ^ (u0 + "); u0) + I(t1 _ (u0 + "); u0 + ");I(u2; t2) = I(u2; t2 _ (u2 � ")) + I(u2 � "; t2 ^ (u2 � "));



82 Chapter 4therefore, we haveI(t1; t2) = I(t1 ^ (u0 + "); u0) + I(u0; u2) + I(u2; t2 _ (u2 � "))+ I(t1 _ (u0 + "); t2 ^ (u2 � "))� I(u0 + "; u2 � "): (4.93)Sin
e from the de�nition of ' in G0 it follows thatI(s0; u0) = �1" (s0 � u0)2�2 for js0 � u0j � "; (4.94)using 
ondition (b2) and (4.88), we have thatI(t1 ^ (u0 + "); u0) + I(u0; u2) + I(u2; t2 _ (u2 � ")) 2 ey � Æ2" �2 +R2; (4.95)where R2 is the parallelogram spanned by the ve
tors "�1 and ��"� Æ2" � �2 . Let E be the parallelogramhaving as 
onse
utive sides T1 and T2 , and let F be the set E � g(0)ey ; as I(u1 � "; u1 + ") = 0, from(4.91) it follows that I(u0 + "; u2 � ") = g(0)ey = (1�p3")ey; (4.96)and from (4.92), I(s1; s2) 2 E (4.97)for every u0 + " � s1 � s2 � u2 � " , with js1 � u1j > " and js2 � u1j > " . From (4.93), (4.95), (4.96),(4.97), we obtain that I(t1; t2) 2 ey � Æ2" �2 +R2 + F:The set ey � Æ2" �2 +R2 + F is a polygon, sin
e it is the sum of two polygons, and it is possible to provethat, if " < p3, its verti
es are all 
ontained in the open ball with 
entre 0 and radius 1. Then, underthis 
ondition, the whole set ey � Æ2" �2 +R2 + F is 
ontained in this ball; this 
on
ludes the proof of theinequality M1(0; 0) < 1.By 
ontinuity, 
hoosing U small enough, we obtain that M1(x; y) < 1 for every (x; y) 2 U , whi
hproves 1).To prove 2) and 3), we de�ne analogouslyM2(x; y) := maxfjI(x; y; t1; t2)j : u0(x; y)� " � t1 � t2 � u2(x; y) + ";jt2 � u1(0; 0)j � Æ; jt2 � u2(0; 0)j � Æg;M3(x; y) := maxfjI(x; y; t1; t2)j : u0(x; y)� " � t1 � t2 � u2(x; y) + ";jt1 � u0(0; 0)j � Æ; jt2 � u2(0; 0)j � Æg:It is easy to see that the fun
tions M2 and M3 are 
ontinuous and, arguing as in the 
ase of M1 , we 
anprove that M2(0; 0) < 1 and M3(0; 0) < 1, whi
h yield 2) and 3) by 
ontinuity. Step 3 is proved.Con
lusion.{ As in Step 3, we simply write ui instead of ui(0; 0). Let us show that, if f satis�es(4.74), and " and U are suÆ
iently small, then 
ondition (b1) is true for u0(x; y)�" � t1 < t2 � u2(x; y)+" and in fa
t for every t1; t2 2 R , sin
e 'xy(x; y; z) = 0 for z � u0(x; y)� " and for z � u2(x; y) + " .
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tion 83We start by 
onsidering the 
ase jt1�u0j < Æ . If jt2� u1j < Æ , the 
on
lusion follows from Step 1. Ifjt2�u1j � Æ , the result is a 
onsequen
e of Step 2 when jt2�u2j < Æ , and of Step 3.2) in the other 
ase.We 
onsider now the 
ase jt1 � u0j � Æ . If jt1 � u1j � Æ , the 
on
lusion follows from Step 3.1). Ifjt1�u1j < Æ , the result is a 
onsequen
e of Step 1 when jt2�u2j < Æ , and of Step 3.3) in the other 
ase.This 
on
ludes the proof of 
ondition (b1) and then, of Theorem 4.1 in the 
ase u0 symmetri
. 24.5 The antisymmetri
 
aseIn this se
tion we show how the 
onstru
tion of the 
alibration for ui symmetri
 
an be adapted to theantisymmetri
 
ase.If the fun
tion u0 is antisymmetri
 with respe
t to the bise
ting line of A0 , then the re
e
tion of u0with respe
t to the S0;1 and to S0;2 provides an extension of u0 , whi
h is harmoni
 only on 
nS1;2 andwhi
h is multi-valued on S1;2 , sin
e the tra
es of the tangential derivatives of u0 on S1;2 have di�erentsigns. Sin
e u1; u2 
oin
ide, up to the sign and to additive 
onstants, with the re
e
tions of u0 withrespe
t to S0;1 and S0;2 , respe
tively, they are antisymmetri
 with respe
t to the bise
ting line of A1and A2 , respe
tively, and then, their extensions by re
e
tion are harmoni
 only on 
nS0;2 and 
nS0;1 ,respe
tively.The 
alibration ' 
an be de�ned as before, just repla
ing the sets G0; G1; G2 with~G0 = f(x; y; z) 2 (U n S1;2)�R : u0(x; y)� " < z < u0(x; y) + "g;~G1 = f(x; y; z) 2 (U n S0;2)�R : u1(x; y)� " < z < u1(x; y) + "g;~G2 = f(x; y; z) 2 (U n S0;1)�R : u2(x; y)� " < z < u2(x; y) + "g;and the sets H1; H2 with~H1 = f(x; y; z) 2 (U n (S1;2 [ S0;2))�R : l1 + �=2 < z < l1 + 3�=2g;~H2 = f(x; y; z) 2 (U n (S0;1 [ S0;2))�R : l2 + �=2 < z < l2 + 3�=2g:Sin
e u0 is harmoni
 in 
 n S1;2 , the �eld ' is divergen
e-free in ~G0 by Lemma 1.5. Moreover, thenormal 
omponent of ' is 
ontinuous a
ross the boundary of G0 sin
e ��2u0 = ��2v0 = 0 on S1;2 . Thesame argument works for the sets ~G1; ~G2 . By the harmoni
ity of u0 and u1 , the �eld is divergen
e-freein ~H1 and the normal 
omponent of ' is 
ontinuous a
ross the boundary of H1 sin
e ��2u0 = 0 on S1;2and �yu1 = 0 on S0;2 . Therefore, 
ondition (
1) is still satis�ed in the sense of distributions on U�R .It is easy to see that 
onditions (a1), (a2), and (b2) are satis�ed.The proof of Step 1, Step 2, and Step 3 
an be easily adapted; indeed, even if now the fun
tionjI(x; y; t1; t2)j may present some dis
ontinuities when (x; y) 2 Si;j , we 
an write U as the union of�nitely many Lips
hitz open subsets Ui su
h that jI j is C2(Ui�R2 ) and study the behaviour of jI jseparately in ea
h Ui . So, it results that also 
ondition (b1) is true. 2





Chapter 5The 
alibration method forfun
tionals on ve
tor-valued mapsThe purpose of this 
hapter is to present and develop a generalization of the 
alibration method tofun
tionals with free dis
ontinuities de�ned on ve
tor-valued maps.In the sequel 
 is a �xed bounded open subset of Rn with Lips
hitz boundary, ��
 is its inner unitnormal, while U is a 
losed subset of 
�RN . The letter x usually denotes the variable in 
 (or Rn ),while y or z is the variable in RN . We will 
onsider fun
tionals of the formF (u) = Z
 f(x; u;ru) dx+ ZSu  (x; u�; u+; �u) dHn�1; (5.1)where f : 
�RN�RnN ! [0;+1℄ , and  : 
�RN�RN�Sn�1 ! [0;+1℄ are Borel fun
tions, Sn�1 :=fv 2 Rn : jvj = 1g , and the unknown fun
tion u belongs to the spa
e SBV (
;RN ) of spe
ial fun
tionsof bounded variation in 
. Sin
e the triplet (u+; u�; �u) is uniquely determined up to a permutationof (u+; u�) and a 
hange of sign of �u (see Se
tion 1.1), we will assume that  satis�es the 
ondition (x; y; z; �) =  (x; z; y;��).We start this 
hapter with the proof of a generalized 
hain rule in BV , whi
h will be useful in thefollowing. If u 2 BV (
;RN ) and S is a Lips
hitz 
ontinuous fun
tion from RN into RM , it is knownthat S Æu belongs to BV (
;RM ). When in addition S 2 C1(RN ;RM ), the following 
hain rule formula
an be written: ~D(S Æ u) = DS(~u(x)) ~Du(x) on 
 n Su;Dj(S Æ u) = [S(u+)� S(u�)℄
 �uHn�1bSu; (5.2)(see Theorem 3.96 in [6℄). Following an idea by [32℄, we generalize formula (5.2) to the 
ase of a fun
tionS , whi
h may depend also on the variable x and is only pie
ewise C1 in the sense of the followingde�nition.De�nition 5.1 We say that a Lips
hitz 
ontinuous fun
tion S : U ! RM is pie
ewise C1 if S 
an bewritten as S(x; y) = X�2AS�(x; y)1U�(x; y); (5.3)where (U�)�2A is a �nite family of pairwise disjoint Borel sets su
h that [�2AU� = U , and (S�)�2Ais a family of Lips
hitz 
ontinuous fun
tions belonging to C1(
�RN ;RM ) .85



86 Chapter 5Lemma 5.2 Let S : U ! RM be a Lips
hitz 
ontinuous fun
tion, pie
ewise C1 in the sense of De�ni-tion 5.1, and satisfying (5.3), and let u 2 BV (
;RN ) be su
h that graphu � U . Then, v := S(�; u(�))belongs to BV (
;RM ) and~Dv = X�2A 1U�(x; ~u)(DxS�(x; ~u)Ln +DyS�(x; ~u) ~Du) on 
 n Su; (5.4)Djv = [S(x; u+)� S(x; u�)℄
 �uHn�1bSu: (5.5)Proof. { Sin
e the fun
tion S 
an be extended to a Lips
hitz fun
tion on the whole 
�RN , byTheorem 3.101 in [6℄ we have that the fun
tion v = S(�; u(�)) belongs to BV (
;RM ) and formula (5.5)holds true.Sin
e S� is globally Lips
hitz and of 
lass C1 on 
�RN , by Theorem 3.96 in [6℄ the fun
tionv� := S�(�; u(�)) belongs to BV (
;RM ) and the di�use part of its derivative satis�es the followingequality: ~Dv� = DxS�(x; ~u)Ln +DyS�(x; ~u) ~Du: (5.6)Consider now the set E� := fx 2 
 n Su : ~v(x) = ~v�(x)g:Sin
e v and v� are both BV fun
tions and their jump sets are both 
ontained in Su , by the lo
alityproperty of the derivative of a BV fun
tion (see Remark 3.93 in [6℄) it follows that DvbE� = Dv�bE� .Sin
e E� � 
 n Su , the previous equality 
an be rewritten as~DvbE� = ~Dv�bE�: (5.7)If we de�ne P� := fx 2 
 n Su : (x; ~u(x)) 2 U�g;sin
e P� � E� , by (5.7) and (5.6) we 
an 
on
lude that~DvbP� = ~Dv�bP� = DxS�(x; ~u)LnbP� +DyS�(x; ~u) ~DubP�;whi
h immediately gives formula (5.4). 2The plan of the 
hapter is the following: in Se
tion 5.1 we present the 
alibration method for fun
-tionals of the form (5.1) on ve
tor-valued maps; Se
tion 5.2 is devoted to the link between 
alibrationtheory and 
lassi
al �eld theory; Se
tion 5.3 
ontains some appli
ations to the Mumford-Shah fun
tional(for ve
tor-valued fun
tions) and to fun
tionals arising in fra
ture me
hani
s; �nally, in Se
tion 5.4 wereformulate the theory of 
alibrations in terms of di�erential forms and show that this formulation doesnot lead to new results.5.1 Calibrations for fun
tionals on ve
tor-valued mapsA

ording to De�nitions 1.1 and 1.3, we 
onsider the following de�nition of minimizers of F .De�nition 5.3 An absolute minimizer of (5.1) in 
 is a fun
tion u 2 SBV (
;RN ) su
h that F (u) �F (v) for all v 2 SBV (
;RN ) , while a Diri
hlet minimizer in 
 is a fun
tion u 2 SBV (
;RN ) su
h thatF (u) � F (v) for all v 2 SBV (
;RN ) with the same tra
e on �
 as u . A fun
tion u is a U -minimizerif the graph of u is 
ontained in U and F (u) � F (v) for all v 2 SBV (
;RN ) whose graph is 
ontainedin U , while u is a Diri
hlet U -minimizer if we add the requirement that the 
ompeting fun
tions v havethe same tra
e on �
 as u .



The 
alibration method for fun
tionals on ve
tor-valued maps 87Before proving the key lemma about 
alibrations, we �x some further notation.Given two fun
tions S : U ! Rn , and u : 
 ! RN , we will denote the divergen
e of the 
ompositefun
tion S(�; u(�)) by divx[S(x; u(x))℄ , while the divergen
e of S with respe
t to the variable x 
omputedat the point (x; u(x)) by [divxS℄(x; u(x)). The Ja
obian matrix of S with respe
t to y will be denotedby DyS and its transpose by (DyS)� . Note that if S and u are suÆ
iently regular,divx[S(x; u(x))℄ = [divxS℄(x; u) + h(DyS(x; u))� ;rui:As in Se
tion 1.3, we 
all f� and ��� f the 
onvex 
onjugate and the subdi�erential of f with respe
tto the last variable. It is well known that, if g is any fun
tion from RnN into [0;+1℄ , h�; �i�g�(�) � g(�)for every �; � 2 RnN , and the equality holds if and only if � 2 ��� g(�). Moreover, if g is 
onvex anddi�erentiable, then ��� g(�) = f��g(�)g . Using these properties, we 
an prove the following lemma.Lemma 5.4 Let F be the fun
tional de�ned in (5.1). Let S 2 C1(
�RN ;Rn ) be Lips
hitz 
ontinuousand let S0 2 L1(
) . Assume that the following 
onditions are satis�ed:(a1) [divxS℄(x; y)+S0(x) � �f�(x; y; (DyS(x; y))� ) for Ln -a.e. x 2 
 and for every y with (x; y) 2 U ;(b1) hS(x; z) � S(x; y); �i �  (x; y; z; �) for Hn�1 -a.e. x 2 
 , for every � 2 Sn�1, and for every y; zwith (x; y) 2 U; (x; z) 2 U:Then for every u 2 SBV (
;RN ) su
h that graphu � U we have that divx[S(�; u(�))℄ is a Radon measureon 
 , whi
h will be denoted as �u , andF (u) � Z
 d�u + Z
 S0(x) dx: (5.8)Moreover, equality holds in (5.8) for a given u if and only if(a2) [divxS℄(x; u) + S0(x) = �f�(x; u; (DyS(x; u))� ) and (DyS(x; u))� 2 ��� f(x; u;ru) for Ln -a.e.x 2 
;(b2) hS(x; u+)� S(x; u�); �ui =  (x; u�; u+; �u) for Hn�1 -a.e. x 2 Su;where u , u� , ru , and �u are always 
omputed at x .Proof. { Let u 2 SBV (
;RN ) be su
h that graphu � U . By Theorem 3.96 in [6℄ the fun
tionS(�; u(�)) belongs to SBV (
;Rn ), and therefore, its divergen
e is a Radon measure on 
. Moreover, wehave thatDxi [Si(x; u)℄ = �xiSi(x; u)Ln +DySi(x; u)�xiuLn + [Si(x; u+)� Si(x; u�)℄(�u)iHn�1bSu;so that the measure �u 
an be written as�u(x) = nXi=1Dxi [Si(x; u(x))℄= [divxS℄(x; u)Ln +Xi DySi(x; u)�xiuLn +Xi [Si(x; u+)� Si(x; u�)℄(�u)iHn�1bSu= [divxS℄(x; u)Ln + h(DyS(x; u))� ;rui Ln + hS(x; u+)� S(x; u�); �uiHn�1bSu;



88 Chapter 5and the fun
tional at the right-hand side of (5.8) has the following expressionZ
 d�u + Z
 S0(x) dx = Z
 ([divxS℄(x; u) + h(DyS(x; u))� ;rui+ S0(x)) dx+ ZSuhS(x; u+)� S(x; u�); �ui dHn�1: (5.9)Using assumption (a1) we obtain that for Ln -a.e. x 2 
[divxS℄(x; u) + h(DyS(x; u))� ;rui+ S0(x) � �f�(x; u; (DyS(x; u))� ) + h(DyS(x; u))� ;rui� f(x; u;ru);and 
onsequentlyZ
 ([divxS℄(x; u) + h(DyS(x; u))� ;rui+ S0(x)) dx � Z
 f(x; u;ru) dx: (5.10)Moreover, equality holds in (5.10) if and only if (DyS(x; u))� 2 ��� f(x; u;ru) and [divxS℄(x; u)+S0(x) =�f�(x; u; (DyS(x; u))� ); whi
h is 
ondition (a2).As for the se
ond integral in (5.9), 
ondition (b1) implies thatZSuhS(x; u+)� S(x; u�); �ui dHn�1 � ZSu  (x; u�; u+; �u) dHn�1: (5.11)Moreover, equality holds in (5.11) if and only if (b2) is satis�ed.The statement follows now from (5.9), (5.10), and (5.11). 2The assumption of C1 -regularity for S is often too strong for many appli
ations. We prove now anew version of Lemma 5.4 under weaker regularity assumptions for S .Lemma 5.5 Let F be the fun
tional de�ned in (5.1). Let S : U ! Rn be a Lips
hitz 
ontinuousfun
tion, pie
ewise C1 in the sense of De�nition 5.1, and satisfying (5.3). Let S0 2 L1(
) . Assume thatthe following 
onditions are satis�ed:(a1) [divxS�℄(x; y) + S0(x) � �f�(x; y; (DyS�(x; y))� ) for every � 2 A , for Ln -a.e. x 2 
 , and forevery y 2 RN with (x; y) 2 U�;(b1) hS(x; z) � S(x; y); �i �  (x; y; z; �) for Hn�1 -a.e. x 2 
 , for every � 2 Sn�1, and for every y; zwith (x; y) 2 U; (x; z) 2 U:Then for every u 2 SBV (
;RN ) su
h that graphu � U we have that divx[S(�; u(�))℄ is a Radon measureon 
 , whi
h will be denoted as �u , andF (u) � Z
 d�u + Z
 S0(x) dx: (5.12)Moreover, equality holds in (5.8) for a given u if and only if(a2) [divxS�℄(x; u) + S0(x) = �f�(x; u; (DyS�(x; u))� ) and (DyS�(x; u))� 2 ��� f(x; u;ru) for every� 2 A , for Ln -a.e. x 2 
 su
h that (x; u(x)) 2 U� :(b2) hS(x; u+)� S(x; u�); �ui =  (x; u�; u+; �u) for Hn�1 -a.e. x 2 Su;where u , u� , ru , and �u are always 
omputed at x .
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alibration method for fun
tionals on ve
tor-valued maps 89Proof. { Let u 2 SBV (
;RN ) be su
h that graphu � U . By Lemma 5.2 the fun
tion S(�; u(�))belongs to SBV (
;Rn ), and therefore, its divergen
e is a Radon measure on 
. By (5.4) and (5.5) wehave that the measure �u 
an be written as�u(x) = X�2A 1U�(x; u)[divxS�℄(x; u)Ln +X�2A 1U�(x; u)h(DyS�(x; u))� ;rui Ln+ hS(x; u+)� S(x; u�); �uiHn�1bSu:The proof of Lemma 5.4 
an be now repeated simply repla
ing [divxS℄ with P�2A 1U� [divxS�℄ , andDyS with P�2A 1U�DyS� . 2De�nition 5.6 We say that a pair of fun
tions (S;S0) is a 
alibration for u 2 SBV (
;RN ) on Uwith respe
t to the fun
tional (5.1) if S : U ! Rn is a Lips
hitz 
ontinuous fun
tion, pie
ewise C1in the sense of De�nition 5.1, S0 2 L1(
) , and they satisfy assumptions (a1), (b1), (a2), and (b2) inLemma 5.5.We 
an now prove the main result of this se
tion.Theorem 5.7 Let u be a fun
tion in SBV (
;RN ) whose graph is 
ontained in U . Assume that thereexists a 
alibration (S;S0) for u on U with respe
t to the fun
tional (5.1). Then u is a Diri
hlet U -minimizer of F . If, in addition, the normal 
omponent of S at �U \ (�
�RN ) does not depend on y ,namely for Hn�1 -a.e. x 2 �
 there exists a 
onstant a(x) 2 R su
h thathS(x; y); ��
(x)i = a(x) for every y su
h that (x; y) 2 U , (5.13)then u is also an absolute U -minimizer of F .Proof. { Let v be a fun
tion in SBV (
;RN ) su
h that v = u on �
 and graphv � U . Then thede�nition of the measure �v and the divergen
e theorem imply thatZ
 d�v = � Z�
hS(x; v); ��
i dHn�1:If v has the same tra
e on �
 as u , from this identity it follows thatZ
 d�v = Z
 d�u; (5.14)and by applying Lemma 5.5 we obtainF (v) � Z
 d�v + Z
 S0(x) dx = Z
 d�u + Z
 S0(x) dx = F (u):We have thus proved that u is a Diri
hlet U -minimizer of F .If we assume, in addition, that (5.13) holds true, then R
 d�v = � R
 a dHn�1 for every v 2SBV (
;RN ) whose graph is 
ontained in U ; so, the equality (5.14) is ful�lled even if the tra
es ofu and v on �
 di�er. This proves that u is an absolute U -minimizer of F . 2Remark 5.8 It is natural to wonder what is the link in the 
ase N = 1 between our ve
torial theoryand the 
alibration method for the s
alar 
ase, re
alled in Se
tion 1.3, whi
h involves a divergen
e-freeve
tor�eld ' .



90 Chapter 5Let N = 1. Let us suppose that (S;S0) is a 
alibration for u and assume furthermore that S isglobally C1 . Take the ve
tor�eld ' = ('x; 'z) : U ! Rn�R de�ned by 'x(x; z) := �zS(x; z) and'z(x; z) := �[divxS℄(x; z) � S0(x). Then ' satis�es all the assumptions of Se
tion 1.3. Indeed, byRemark 2.3 in [2℄ ' is approximately regular on U . Moreover, 
onditions (a1) and (a2) on (S;S0)
learly imply that ' sati�es (a1) and (a2) of Se
tion 1.3, respe
tively. By de�nition of ' we have thatZ t2t1 'x(x; z) dz = S(x; t2)� S(x; t1);so that 
onditions (b1) and (b2) on (S;S0) imply 
onditions (b1) and (b2) of Se
tion 1.3, respe
tively.If S is C2 and S0 is C1 , then it is trivial that ' is C1 and div' = 0; in the general 
ase, one 
an provethat ' is divergen
e-free by an approximation argument.Analogously it is easy to see that, if ' is a bounded Lips
hitz C1 -ve
tor�eld satisfying the 
alibration
onditions of Se
tion 1.3, then we 
an 
onstru
t a 
alibration (S;S0). Take indeedS(x; z) := Z z�(x) 'x(x; t) dt and S0(x) := h'x(x; �(x));r�(x)i � 'z(x; �(x));where � is any smooth fun
tion satisfying (x; �(x)) 2 U for every x 2 
.5.2 An appli
ation related to 
lassi
al �eld theoryWe re
all now some 
lassi
al results from �eld theory for multiple integrals of the formF0(u) = Z
 f(x; u;ru) dx; (5.15)where u 2 C1(
;RN ) and f 2 C2(
�RN�RnN ).We will 
all extremals of F0 or f -extremal the solutions u of 
lass C2 of the Euler equations for theintegral F0 , i.e. nXi=1Dxi [��ijf(x; u(x);ru(x))℄ � �ujf(x; u(x);ru(x)) = 0; 1 � j � N: (5.16)In the 
lassi
al �eld theory for multiple integrals several suÆ
ient 
onditions for the minimality of anf -extremal have been proposed. Among the others, we re
all Weyl �eld theory, whi
h is stri
tly relatedto the 
alibration theory for ve
tor-valued fun
tionals and ensures that a given f -extremal u is in fa
t aminimizer of F0 among all fun
tions of 
lass C1 , with the same boundary values as u and whose graphis 
ontained in a suitable neighbourhood of the graph of u . It 
onsists in the 
onstru
tion of a suitableslope �eld P , 
alled Weyl �eld, and of a smooth fun
tion S , 
alled the eikonal map asso
iated with the�eld, satisfying the system of equations (5.17) { (5.18). This set of 
onditions arises from the 
omparisonof F0 with an invariant fun
tional of divergen
e type, whi
h is nothing but the fun
tionalZ
 divx[S(x; v)℄ dx;where S is the eikonal map (see, e.g. [18, Chapter 7, Se
tion 4℄).We will show via 
alibrations that, if a Weyl �eld exists for an f -extremal u (and then there existsa neighbourhood U of the graph of u su
h that u minimizes F0 among C1 -fun
tions with the sameboundary values as u and with graph 
ontained in U ), then u is also a Diri
hlet U -minimizer of thefun
tional (5.1) in the sense of De�nition 5.3, provided U is a suÆ
iently small neighbourhood of thegraph of u and the fun
tion  satis�es the estimate (5.20); moreover, if S is the eikonal map asso
iatedwith the Weyl �eld, then the pair (S;S0) with S0 � 0 is a 
alibration for u on U .
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alibration method for fun
tionals on ve
tor-valued maps 91De�nition 5.9 Let U be a 
losed domain in 
�RN . A mapping p : U ! U�RnN is 
alled a slope �eldon U if it is of 
lass C1 and of the formp(x; y) = (x; y;P(x; y)) for every (x; y) 2 U ;we denote P(x; y) = (Pij(x; y)) as the slope fun
tion of the �eld p . We say that a map u 2 C1(
;RN )�ts the slope �eld p if graphu � U and�xiuj(x) = Pij(x; u(x)) for every x 2 
 .Finally, a slope �eld p is said to be a Weyl �eld if there is a map S 2 C2(U ;Rn ) su
h that fS;Pg solvesthe Weyl equations: [divxS℄(x; y) = f(x; y;P(x; y))� hP(x; y); ��f(x; y;P(x; y))i; (5.17)�yjSi(x; y) = ��ijf(x; y;P(x; y)): (5.18)The fun
tion S is 
alled the eikonal map asso
iated with p .The main results in Weyl �eld theory 
an be stated as follows. For a proof we refer to [18℄.Theorem 5.10 (1) Assume that the fun
tion f satis�esf(x; y; �)� f(x; y; �)� h� � �; ��f(x; y; �)i � 0for every (x; y) 2 U and �; � 2 RnN , and let u 2 C2(
;RN ) �t a Weyl �eld p : U ! U�RnN withthe eikonal map S : U ! Rn . Then u is a minimizer of F0 among all v 2 C1(
;RN ) su
h thatvj�
 = uj�
 and graph v � U ; in parti
ular, u is an f -extremal. Moreover, if there is a 
onstant� > 0 su
h thatXi;j;h;k �2�ij�hkf(x; y; �)�ij�hk � �j�j2 8(x; y) 2 
�RN ; �; � 2 RnN ; (5.19)then u is a stri
t minimizer of F0 in the same 
lass.(2) Vi
e-versa, if f satis�es the stri
t 
onvexity 
ondition (5.19), then every f -extremal �ts at leastlo
ally a Weyl �eld and is therefore lo
ally minimizing F0 . In other words, for every x0 2 
 thereexist " > 0 and an open neighbourhood A of x0 su
h that u minimizes F0 among all v 2 C1(A;RN )su
h that vj�A = uj�A and graphv � f(x; y) 2 A�RN : jy � u(x0)j � "g .Let us now state and prove a similar result for free-dis
ontinuity problems.Theorem 5.11 Let f : 
�RN�RnN ! [0;+1℄ be a fun
tion of 
lass C2 satisfying (5.19) and let : 
�RN�RN�Sn�1! [0;+1℄ be a Borel fun
tion satisfying (x; y; z; �) � 
 �(jy � zj); (5.20)where 
 is a positive 
onstant, while � is su
h that limt!0+ �(t)t = +1 . Let u be an f -extremal. Thenfor every x0 2 
 there exist " > 0 , an open neighbourhood A (with Lips
hitz boundary) of x0 , and apair (S;S0) su
h that (S;S0) is a 
alibration for u with respe
t to the fun
tional (5.1) on the setU := f(x; y) 2 A�RN : jy � u(x0)j � "g; (5.21)therefore u is a Diri
hlet U -minimizer of the fun
tional (5.1).



92 Chapter 5Proof. { Let u be an f -extremal. By the se
ond part of Theorem 5.10 for every x0 2 
 there exist" > 0 and an open neighbourhood A (with Lips
hitz boundary) of x0 su
h that u �ts a Weyl �el in theset (5.21). Denote the Weyl �eld by p(x; y) = (x; y;P(x; y)) and the eikonal map asso
iated with p byS . We 
laim that, if we take S0(x) := 0 for every x 2 
, then the pair (S;S0) is a 
alibration for uon U with respe
t to the fun
tional F de�ned in (5.1), provided " is suÆ
iently small. Let us prove it.Sin
e f is 
onvex, for every � 2 RnN we have thatf(x; y; �)� h�; ��f(x; y; �)i = �f�(x; y; ��f(x; y; �));this fa
t, jointly with (5.17), implies that[divxS℄(x; y) = �f�(x; y; ��f(x; y;P(x; y)))= �f�(x; y; (DyS(x; y))� ); (5.22)where the se
ond equality follows from (5.18). Therefore, 
ondition (a1) is satis�ed.Condition (a2) follows from (5.22) and (5.18), using the fa
t that u �ts the �eld P , hen
e P(x; u(x)) =ru(x) for every x 2 
.If we 
all L the L1 -norm of the Ja
obian matrix of S on U , then we have thathS(x; z)� S(x; y); �i � L jz � yj (5.23)for every x 2 
, y; z 2 RN su
h that (x; y) 2 U , (x; z) 2 U , and � 2 Sn�1 . By the assumption on thefun
tion � there exists Æ > 0 su
h that �(t) � Lt=
 for every t 2 (0; Æ); then from (5.20) it follows that (x; y; z; �) � Ljy � zj for jy � zj < Æ. (5.24)Taking " < Æ=2, from (5.23) and (5.24) we have that 
ondition (b1) is satis�ed.Sin
e Su = ; , 
ondition (b2) is trivial.The 
on
lusion follows now from Theorem 5.7. 2As made pre
ise in the next proposition, when the fun
tion f depends only on the variables x; � , weare able to prove the minimality of an f -extremal u on the whole domain 
 and to give an estimate ofthe width " of the neighbourhood of the graph of u where the minimality holds.Proposition 5.12 In addition to the assumptions of Theorem 5.11, suppose that f = f(x; �) . Let u bean f -extremal. For every (x; y) 2 
�RN de�neS(x; y) := [��f(x;ru(x))℄� (y � u(x)) + �(x); (5.25)where � : 
 ! Rn is a solution of the equation div� = f(x;ru) . Then the pair (S;S0) with S0 � 0 isa 
alibration for u with respe
t to the fun
tional (5.1) on the setU := f(x; y) 2 
�RN : jy � u(x)j � "(x)g; (5.26)where "(x) < 12 inf �t > 0 : 
 �(t)t < j��f(x;ru(x))j� ; (5.27)and 
; � are the quantities appearing in (5.20). Therefore u is a Diri
hlet U -minimizer of the fun
tional(5.1).
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tor-valued maps 93Proof. { Note that by the assumption on � , the in�mum in (5.27) is stri
tly positive for every x 2 
.Let us prove that (S;S0) satis�es all the 
onditions in Lemma 5.4.By dire
t 
omputations we have that DyS(x; y) = [��f(x;ru)℄� ; using the Euler equations (5.16),the de�nition of � , and the 
onvexity of f , we �nd out that[divxS℄(x; y) = Xij Dxi(��jif(x;ru))(yj � uj)� h[��f(x;ru)℄� ;rui+ div�= �h[��f(x;ru)℄� ;rui+ f(x;ru)= �f�(x; [��f(x;ru)℄� ):Conditions (a1) and (a2) are therefore satis�ed.By the de�nition of S we obtainjS(x; z)� S(x; y)j � j��f(x;ru(x))j � jz � yj;sin
e jz � yj � 2"(x), (5.27) implies thatj��f(x;ru(x))j � jz � yj � 
 �(jz � yj);so 
ondition (b1) follows now from (5.20).Condition (b2) is trivial sin
e Su is empty. This 
on
ludes the proof.We noti
e that the thesis 
an be proved also in the following way: if we de�ne P(x; y) := ru(x) forevery (x; y) 2 
�RN , it is easy to see that the �eld p(x; y) := (x; y;P(x; y)) is a Weyl �eld, S is theeikonal map asso
iated with p , and u �ts p . Then we 
an follow the proof of Theorem 5.11: the 
he
kof 
ondition (a1), (a2), (b2) remains the same, while the estimate on the size of "(x) is given by a more
areful proof of 
ondition (b1). 2Remark 5.13 When the fun
tional (5.1) satis�es some spe
ial further 
onditions, it is enough to provethe Diri
hlet minimality of a given u on a neighbourhood of its graph to 
on
lude that u is in fa
ta Diri
hlet minimizer on the whole 
ylinder 
�R , redu
ing the domain 
 if needed. For istan
e, inaddition to the assumptions of Proposition 5.12, suppose that the two following 
onditions are satis�ed:(1) f(x; �) � f(x; (I � ej
ej) �) for every x 2 
, � 2 RnN , j = 1; : : : ; N , where fe1; : : : ; eNg is the
anoni
al basis of RN ;(2)  (x; y; z; �) �  (x; T ba(y); T ba(z); �) for every (x; y) 2 
�RN , � 2 RnN , � 2 Sn�1 , a; b 2 RN ,where we have set T ba : RN ! RN ; (T ba)j(y) := (yj ^ aj) _ bj :If u is an f -extremal, then by Proposition 5.12 we know that u is a Diri
hlet U -minimizer of F , whereU is the set (5.26). We want to show that for every x0 2 
 there exists an open neighbourhood A (withLips
hitz boundary) of x0 su
h that u is a Diri
hlet minimizer of F in A .First of all, we 
an �nd an open neighbourhood A (with Lips
hitz boundary) of x0 and two ve
torsm;M 2 RN su
h that jM �mj < "(x) for every x 2 A andmj � uj(x) �Mj 8x 2 A; 1 � j � N: (5.28)Let v be a fun
tion in SBV (A;RN ) with the same tra
e on �A as u and de�ne v̂ := TMm (v), whi
h stillbelongs to SBV (A;RN ). Note that rv̂j = 1fmj<vj<Mjgrvj for every j , so that, if we 
all J0(x) theset of all indexes j su
h that vj(x) 62 (mj ;Mj), the matrix rv̂(x) 
an be written asrv̂(x) = rv(x)� Xj2J0(ej
ej)rv(x):
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ondition (1), we obtain that f(x;rv̂) � f(x;rv), whi
h impliesZA f(x;rv̂) dx � ZA f(x;rv) dx: (5.29)Sin
e Sv̂ � Sv , and v̂� = TMm (v�), v̂+ = TMm (v+) on Sv̂ , by 
ondition (2) we obtainZSv̂\A  (x; v̂�; v̂+; �v̂) dHn�1 � ZSv\A  (x; v�; v+; �v) dHn�1: (5.30)On the other hand, by (5.28) the fun
tion v̂ has the same tra
e on �A as u , and its graph is 
ontainedin the set f(x; y) 2 A�RN : jy � u(x)j � "(x)g:Sin
e u is a Diri
hlet minimizer on this set, we have thatZA f(x;ru) dx � ZA f(x;rv̂) dx+ ZSv̂  (x; v̂�; v̂+; �v̂) dHn�1: (5.31)Therefore by (5.29), by (5.30), and (5.31), u is a Diri
hlet minimizer of F in A .The same result 
an be a
hieved by 
alibration: indeed, we 
an extend the fun
tion S in (5.25) tothe whole 
�RN simply by taking Ŝ(x; y) := S(x; TMm (y)); it is easy to see that assumptions (1) { (2)guarantee that the pair (Ŝ ;S0) provides a 
alibration for u on A�RN .We 
on
lude the remark with some 
omments on 
onditions (1) { (2). Condition (1) ensures thatthe fun
tional de
reases when any row of the matrix ru is annihilated, whi
h is what o

urs when a
omponent of u is trun
ated. For istan
e, (1) is ful�lled for f(�) = Pij 'ij(�ij) where 'ij are 
onvexand positive, and 'ij(0) = 0. As for 
ondition (2), note that it is satis�ed whenever  depends on y; zonly through the distan
e jz � yj .5.3 Some further appli
ationsIn this se
tion we present some examples and appli
ations. In Examples 5.14, 5.16, 5.17, and 5.18 we dealwith minimizers of the Mumford-Shah fun
tional, and we generalize some results proved in [2℄ for thes
alar 
ase. Example 5.15 is a purely ve
torial example, sin
e it involves a fun
tional arising in fra
tureme
hani
s whi
h 
an be de�ned only on maps from 
 � Rn into Rn .Example 5.14 Let u : 
! RN be a harmoni
 fun
tion. It is well known that u is an extremal of thefun
tional R
 jruj2 , and a Diri
hlet minimizer of it. We 
an prove via 
alibrations that u is a Diri
hletminimizer also of the homogeneous Mumford-Shah fun
tionalMS(u) = Z
 jruj2dx +Hn�1(Su); (5.32)if the following 
ondition is satis�ed: os

 u � sup
 jruj � 1; (5.33)where os
 u denotes the modulus of the ve
tor in RN whose 
omponents are the os
illations of the
omponents of u . When (5.33) is not ful�lled, u is still a Diri
hlet U -minimizer of the fun
tional MS ,where U := �(x; y) 2 
�RN : jy � u(x)j � 14jru(x)j� : (5.34)
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ond result dire
tly follows from Proposition 5.12, where f(�) = j�j2 and  � 1. Moreover, a
alibration is given by (S;S0) with S0 � 0 andS(x; y) = 2[ru(x)℄� (y � u(x)) + �(x);where � : 
 ! Rn is a solution of the equation div� = jruj2 . Sin
e u is harmoni
 in 
, it is easy tosee that we 
an take �(x) := [ru(x)℄�u(x), so thatS(x; y) = 2[ru(x)℄� �y � u(x)2 � : (5.35)As for the Diri
hlet minimality of u , we 
an show that, under the assumption (5.33), the 
alibration(S;S0) 
an be extended to the whole 
�RN , applying a similar argument to the one used in Remark 5.13.We re
all that, in the 
ase of the fun
tional (5.32), 
onditions (a1), (a2), (b1), and (b2) in Lemma 5.5be
ome(a1) [divxS�℄(x; y) + S0(x) � � 14 jDyS�(x; y)j2 for every � 2 A , for Ln -a.e. x 2 
, and for everyy 2 RN with (x; y) 2 U� ;(a2) [divxS�℄(x; u)+S0(x) = �jru(x)j2 and (DyS�(x; u))� = 2ru(x) for every � 2 A , and for Ln -a.e.x 2 
 su
h that (x; u(x)) 2 U� ;(b1) jS(x; z) � S(x; y)j � 1 for Hn�1 -a.e. x 2 
 and for every y; z 2 RN su
h that (x; y) 2 U ,(x; z) 2 U ;(b2) S(x; u+)� S(x; u�) = �u for Hn�1 -a.e. x 2 Su ,where S(x; y) =P�2A S�(x; y)1U�(x; y).Let mj and Mj be the in�mum and the supremum of uj in 
, respe
tively (then os
 uj =Mj�mj ).Let T be the fun
tion from RN into RN de�ned as Tj(y) = (yj _mj=2) ^Mj=2. De�neŜ(x; y) := 2[ru(x)℄� T�y � u(x)2 � :It is easy to see that (Ŝ ;S0) satis�es 
onditions (a1) and (a2). Condition (b2) is trivial. Finally, forevery y; z 2 RN we havejŜ(x; z)� Ŝ(x; y)j � 2jru(x)j � jT (z � u=2)� T (y � u=2)j: (5.36)Sin
e Tj(z� u=2) and Tj(y� u=2) belong to the interval [mj=2;Mj=2℄ for every 1 � j � N , we dedu
ethat jT (z � u=2)� T (y � u=2)j � jM �mj=2; so, 
ondition (b1) follows from (5.36) and (5.33).These two minimality results generalize those obtained in [1℄ for s
alar harmoni
 fun
tions. Note thatthe minimality of u 
an be proved by applying the s
alar argument to ea
h 
omponent uj , but thisprovides a more restri
tive 
ondition on the size of the domains where the minimality holds. Indeed, bythe s
alar result in [1℄, sin
e uj is harmoni
 for every j , ifos

 uj � sup
 jruj j � 1N 1 � j � N; (5.37)then Z
 jruj j2dx � Z
 jrvj j2dx+ 1NHn�1(Svj )for every vj 2 SBV (
) with the same boundary values as uj ; summing over j , we obtain the Diri
hletminimality of u in 
. On the other hand, it is easy to see that 
ondition (5.37) is stronger than (5.33).Analogous remarks hold for the Diri
hlet minimality of u in a neighbourhood of its graph.



96 Chapter 5Example 5.15 In this example we 
onsider a fun
tional related to GriÆth and Barenblatt theories offra
ture me
hani
s of the formH(u) := � Z
 je(u)j2dx+ �2 Z
(divu)2 dx+ ZSu �(ju+ � u�j) dHn�1where u is a fun
tion from 
 � Rn into Rn , e(u) denotes the symmetrized gradient of u , � is apositive fun
tion satisfying limt!0+ �(t)=t = +1 , and �; � are real parameters. In the 
ontext offra
ture me
hani
s, 
 is a referen
e 
on�guration of an elasti
 body, possibly subje
t to fra
ture, and uparameterizes its displa
ement; the bulk term represents the energy relative to the elasti
 deformationoutside the fra
ture, while the surfa
e integral is the energy needed to produ
e the 
ra
k.The fun
tional H is 
learly of the form (5.1) with f(�) = � j(�� + �)=2j2 + �2 (tr �)2 and  (y; z) =�(jz � yj). However, sin
e the bulk term in H involves only the symmetri
 part of the matrix ru , theappropriate setting for the minimum problem for H is not exa
tly the spa
e SBV (
;Rn ), but the spa
eSBD(
) of spe
ial fun
tions with bounded deformation (for a 
omplete overview on the properties ofthis spa
e see [5℄). Even if the 
alibration method has been developed only for SBV fun
tions, we 
ana
tually prove by 
alibration that, if u is an f-extremal, i.e. u 2 C1(
;Rn ) \ C2(
;Rn ) and u solvesthe equation ��u+ (�+ �)r(divu) = 0 on 
, (5.38)then u minimizes H among all fun
tions v 2 SBD(
) with the same tra
e on �
 as u , and whosegraph is 
ontained in the set U := f(x; y) 2 
�Rn : jy � u(x)j � "(x)g;where "(x) < 12 inf �t > 0 : �(t)t < j2�e(u)(x) + �divu(x)I j� :Indeed, sin
e ��ijf(�) = �(�ji+�ij)+�(tr �)Æij , Proposition 5.12 implies that u is a Diri
hlet U -minimizerof H in the 
lass SBV (
;Rn ) and a 
alibration is given by (S;S0) with S0 � 0 andS(x; y) = [2�e(u)(x) + �divu(x)I ℄�y � u(x)2 � ; (5.39)this last fa
t follows from formula (5.25) where we have taken �(x) := [�e(u)(x)+ �2divu(x)I ℄u(x), whi
his a solution of div� = f(ru) thanks to (5.38).On the other hand, we 
an show that the pair (S;S0) provides a 
alibration also in the spa
e SBD(
)in the following sense: 
onsider the fun
tionalH1(v) := � Z�
hS(x; v); ��
i dHn�1;whi
h is the same used as 
omparison fun
tional in the proof of Theorem 5.7; then, H1 is well de�nedon SBD(
), is invariant on SBD fun
tions having the same tra
e on �
, and satis�es the equalityH1(u) = H(u) and the inequality H1(v) � H(v) for every v 2 SBD(
). This implies that u is aDiri
hlet minimizer of the fun
tional H in the 
lass of SBD fun
tions.Let us prove the properties of H1 stated above. If we set for simpli
ity of notation A(x) := 2�e(u)(x)+�divu(x)I , by (5.39) the fun
tional H1 
an be rewritten asH1(v) = �12 Z�
hA(2v � u); ��
i dHn�1;
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e it is 
lear that it is well de�ned on SBD(
) and invariant on the 
lass of fun
tions in SBD(
)having the same tra
e on �
. By the generalized Green's formula in SBD(
) we have that�12 Z�
hA(2v � u); ��
i dHn�1 = 12 Z
h2v � u; divAi dx+ 12 Z
Ad(2Ev �Eu)= 12 Z
hA; 2e(v)� e(u)i dx+ ZSvhA(v+ � v�); �vi dHn�1;(5.40)where the last equality follows by the fa
t that divA = 0, by the de
omposition theorem for the measuresEv;Eu and by the remark that Su = ; . Using the de�nition of the matrix A and (5.40) it is easy to seethat H1(u) = 12 Z
hA; e(u)i dx = H(u); (5.41)while, using also the elementary inequality 2h�; �i � j�j2 + j�j2 for every �; � 2 Rn2 , we obtainZ
hA; e(v)i dx = 2� Z
he(u); e(v)i dx+ � Z
 divu divv dx� � Z
 je(v)j2dx+ �2 Z
(divv)2dx+H(u): (5.42)Sin
e the graph of v is 
ontained in U , we have that hA(v+� v�); �vi � �(jv+� v�j) Hn�1 -a.e. on Sv ,so that ZSvhA(v+ � v�); �vi dHn�1 � ZSv �(jv+ � v�j) dHn�1: (5.43)By (5.40), (5.41), (5.42), and (5.43), we dedu
e that H1(v) � H(v) for every v 2 SBD(
) whose graphis 
ontained in U .We 
on
lude this example by noti
ing that the existen
e of a weak solution in W 1;2(
;Rn ) forthe Diri
hlet boundary value problem asso
iated with the equation (5.38) is guaranteed if � > 0 and2�+ 3� > 0; moreover, the additional requirements of regularity for u are always satis�ed in any opensubset 
0 �� 
 (see [10℄).Example 5.16 Let 
 be a produ
t of the form (0; a)�V , where V is a regular domain in Rn�1 , andlet u be the step fun
tion de�ned as u(x) := 0 for 0 < x1 < 
 , and u(x) = h for 
 < x1 < a , where
 2 (0; a) and h 2 RN , h 6= 0. Then, u is a Diri
hlet minimizer of the Mumford-Shah fun
tional (5.32)in 
 if jhj2 � a .This result generalizes Example 4.12 in [1℄, where u is a s
alar step fun
tion.We prove the statement by 
alibration. Let fe1; : : : ; eng be the 
anoni
al basis of Rn . A 
alibrationfor u is given by the pair (S;S0) with S0 � 0 andS(x; y) := 8>><>>:0 if hy; hjhji � �2 hx; e1i,2��hy; hjhji � �2 hx; e1i� e1 if �2 hx; e1i � hy; hjhji � �2 hx; e1i+ �2a,a�2e1 if hy; hjhji � �2 hx; e1i+ �2a, (5.44)where � := 1=pa . Some dire
t 
omputations show thatjDyS(x; y)j2 = (4�2 if �2 hx; e1i � hy; hjhji � �2 hx; e1i+ �2a,0 otherwise,divS(x; y) = (��2 if �2 hx; e1i � hy; hjhji � �2 hx; e1i+ �2a,0 otherwise,
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ondition (a1) is trivially satis�ed, while 
ondition (a2) is true if jhj � �2x1 + �2a for everyx1 2 [
; a), whi
h is guaranteed by the assumption jhj2 � a .One easily 
he
ks that the ve
tor S(x; z) � S(x; y) 
an always be written as �e1 with j�j � 1 (�depending on x; y; z ), so that 
ondition (b1) is ful�lled. As for 
ondition (b2), sin
e jhj � �2 (
 + a) bythe assumption jhj2 � a , we have that S(x; h) � S(x; 0) = a�2e1 � 0 = e1 for every x 2 Su .We note that the minimality of u 
an be proved by applying the s
alar result to one 
omponent ofu . Take, indeed, j 2 f1; : : : ; Ng su
h that hj 6= 0; we know that if h2j � a , thenHn�1(Suj ) � Z
 jrvj j2dx+Hn�1(Svj )for every v 2 SBV (
) with the same boundary values as u . Now, the left-hand side 
oin
ides withMS(u), while the right-hand side is less than or equal to MS(v), sin
e Svj � Sv . So, the Diri
hletminimality of u is shown, but under the stronger 
ondition h2j � a .A
tually, sin
e the Mumford-Shah fun
tional is invariant by rotation (and then u is a Diri
hletminimizer if and only if R Æ u is a Diri
hlet minimizer, where R is any rotation in RN ), the s
alarresult 
an be exploited in a more eÆ
ient way. Let R be a rotation in RN transforming the ve
tor h=jhjin e1 and let û := R Æ u . Applying the argument above to the �rst 
omponent of û , we have that ûis a Diri
hlet minimizer of MS if jhj2 � a , whi
h is the same 
ondition we have found via ve
torial
alibration theory. We also note that the 
alibration (5.44) 
an be obtained starting from the ve
tor�eldwhi
h 
alibrates û1 simply repla
ing the one-dimensional verti
al variable by the 
omponent of the ve
tory along h=jhj and following the instru
tions of Remark 5.8.Example 5.17 Let 
 := B(0; r) be the open ball in R2 
entred at the origin with radius r , and let(A1; A2; A3) be the partition of 
 de�ned as follows:Ai := �x = (� 
os �; � sin �) : 0 � � < r; 23�(i� 1) � � < 23�i� :Let u 2 SBV (
;RN ) be the fun
tion de�ned as u := ai in ea
h Ai , where a1; a2; a3 are three distin
tve
tors in RN . In [2, Example 4.14℄ it is proved that, when N = 1, u is a Diri
hlet minimizer of theMumford-Shah fun
tional (5.32) if the values ai are suÆ
iently far apart, more pre
isely ifminfja1 � a2j; ja2 � a3j; ja3 � a1jg � p2r: (5.45)This result 
an be generalized to the ve
torial 
ase N > 1, where beside 
ondition (5.45) we require thatmaxfja1 � a2j; ja2 � a3j; ja3 � a1jg �q(2 +p3)r: (5.46)Note that when N = 1 
ondition (5.46) is implied by (5.45): indeed, without loss of generality we 
anassume that a1 � a2 � a3 , so that the maximum in (5.46) is a3 � a1 ; then by (5.45) we obtaina3 � a1 = (a3 � a2) + (a2 � a1) � 2p2r >q(2 +p3)r:We prove the statement by 
alibration. For every i; j we 
all Sij the interfa
e between Ai and Aj ,whi
h is oriented by the normal �ij pointing from Ai to Aj and we suppose that the maximum in (5.46)is given by ja1 � a2j . Let S0 � 0 andS(x; y) := [�1(x; y) _ 0℄ �31 + [�2(x; y) _ 0℄ �32;where �1(x; y) := 1� jy � a1j2r � h�31; xi ; �2(x; y) := 1� jy � a2j2r � h�32; xi :
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tor-valued maps 99For any r0 < r the fun
tion S is Lips
hitz in B(0; r0)�RN . By dire
t 
omputations we have thatjDyS(x; y)j2 = 4 jy � a1j2(r � h�31; xi)2 1f�1>0g + 4 jy � a2j2(r � h�32; xi)2 1f�2>0g+ 4 hy � a1; y � a2i(r � h�31; xi)(r � h�32; xi)1f�1>0; �2>0g; (5.47)while [divxS℄(x; y) = � jy � a1j2(r � h�31; xi)2 1f�1>0g � jy � a2j2(r � h�32; xi)2 1f�2>0g: (5.48)Condition (a1) is therefore ful�lled if and only if hy � a1; y � a2i � 0 for every y su
h that there existsx 2 B(0; r0) so that �1(x; y) > 0 and �2(x; y) > 0. Taking into a

ount the de�nition of �1; �2 , this isequivalent to require the following: if y belongs to the interse
tion of the ball 
entred at a1 with radius(r � h�31; xi) and the ball 
entred at a2 with radius (r � h�32; xi), then the angle spanned by the twove
tors y � a1 and y � a2 is greater or equal to �=2. Some elementary geometri
 
onsiderations showthat this is guaranteed ifja1 � a2j2 � (2r � h�31; xi � h�32; xi) 8x 2 B(0; r0);whi
h is implied by 
ondition (5.46).From (5.45) it follows that �2(x; a1) � 0, so that by (5.47) and (5.48) we have jDyS(x; a1)j2 = 0 and[divxS℄(x; a1) = 0. Sin
e (5.45) implies analogously that �1(x; a2) � 0, and �1(x; a3) � 0, �2(x; a3) � 0,we dedu
e that 
ondition (a2) is satis�ed.Let (x; y); (x; z) 2 B(0; r0)�RN . If neither (x; y) nor (x; z) belongs to f�1 > 0; �2 > 0g , then it iseasy to 
he
k that the ve
tor S(x; z)�S(x; y) 
an be written as a linear 
ombination �1�31��2�32 witheither �1; �2 2 [0; 1℄ or �1; �2 2 [�1; 0℄ (depending on x; y; z ); sin
e �31 and ��32 span an angle equal to2�=3, the modulus of S(x; z)�S(x; y) is in this 
ase less than or equal to 1. If (x; y) 2 f�1 > 0; �2 > 0g ,only two 
ases 
an o

ur: either S(x; z) � S(x; y) is a linear 
ombination of �31 and ��32 of the samekind as before (so, the same 
on
lusion holds), or S(x; z)�S(x; y) 
an be written as �1�31+�2�32 with�i 2 [0; �i(x; y)℄ (depending on x; y; z ). In this se
ond 
ase, we obtainjS(x; z)� S(x; y)j2 � �21(x; y) + �22(x; y) + �1(x; y)�2(x; y) � (�1(x; y) + �2(x; y))2:It is easy to see that, under 
ondition (5.46), �1(x; y) + �2(x; y) � 1 for every (x; y) 2 f�1 > 0; �2 > 0g ,so that (b1) is always satis�ed.Finally, using (5.45) we have that S(x; a2)�S(x; a1) = �32 � �31 = �12 for every x 2 S12 , S(x; a3)�S(x; a2) = ��32 = �23 for every x 2 S23 , while S(x; a1) � S(x; a3) = �31 for every x 2 S31 ; so, we 
an
on
lude that (b2) holds true for every x 2 Su .We have thus proved that under 
onditions (5.45) { (5.46), u is a Diri
hlet minimizer of MS inB(0; r0) for every r0 < r . By an approximation argument this implies the Diri
hlet minimality of u inthe whole B(0; r).As in the previous example, the minimality of u 
an be proved by using the s
alar result in [2℄:indeed, even if Suj is stri
tly 
ontained in Su for every j , one 
an always �nd a rotation R in RNtranforming the range of u in a set of three ve
tors whi
h di�er ea
h other for the same 
omponentand apply the s
alar result to this 
omponent. This pro
edure leads to the following 
ondition: u is aDiri
hlet minimizer if maxv2RN;jvj=1 min fjha1 � a2; vij; jha2 � a3; vij; jha3 � a1; vijg � p2r;whi
h is always more restri
tive than (5.45) { (5.46), ex
ept when the ve
tors ai � aj are 
ollinear.



100 Chapter 5Example 5.18 In this example we deal with the 
omplete Mumford-Shah fun
tionalMS�;�(u) := Z
 jruj2dx + �H1(Su) + � Z
 ju� gj2 dx; (5.49)where 
 � R2 , g is a given fun
tion in L1(
;RN ), and �; � are positive parameters.Let f�igi2I be a �nite family of simple and 
onne
ted 
urves of 
lass C2 su
h that for every i �iis either a 
losed 
urve 
ontained in 
 or it orthogonally meets �
. Suppose also that �i \ �h = ; ifi 6= h . If g is a pie
ewise 
onstant fun
tion, whose dis
ontinuity set 
oin
ides with [i2I�i , then for largevalues of � the fun
tion g itself is an absolute minimizer of (5.49).We prove the statement by 
alibration. We re
all that 
onditions (a1), (a2), (b1), and (b2) inLemma 5.5 read for the fun
tional (5.49) as(a1) [divxS
 ℄(x; y) + S0(x) � � 14 jDyS
(x; y)j2 + �jy � g(x)j2 for every 
 2 A , for L2 -a.e. x 2 
, andfor every y 2 RN with (x; y) 2 U
 ;(a2) [divxS
 ℄(x; u)+S0(x) = �jru(x)j2+�ju� gj2 and (DyS
(x; u))� = 2ru(x) for every 
 2 A , andfor L2 -a.e. x 2 
 su
h that (x; u(x)) 2 U
 ;(b1) jS(x; z)�S(x; y)j � � for H1 -a.e. x 2 
 and for every y; z 2 RN su
h that (x; y) 2 U , (x; z) 2 U ;(b2) S(x; u+)� S(x; u�) = ��u for H1 -a.e. x 2 Su ,where S(x; y) =P
2A S
(x; y)1U
 (x; y).Let fEjgj2J be the partition of 
 generated by the family f�igi2I . Then the fun
tion g 
an bewritten as g(x) =Xj2J aj1Ej (x);where aj 2 RN and aj 6= ak if j 6= k . For j < k we 
all Sjk the interfa
e between Ej and Ek , orientedby the normal �jk pointing from Ej to Ek (in other words, Sjk is the set of all x 2 Sg su
h thatg�(x) = aj and g+(x) = ak ). In this way we have simply relabelled the 
urves �i .For every j < k we 
an 
onstru
t a C1 -ve
tor�eld  jk : 
! Rn su
h that it agrees with �jk on Sjk ,is supported on a neighbourhood of Sjk , is tangent to the boundary of 
, and j jk j � 1 everywhere.Sin
e the 
urves Sjk are disjoint, the fun
tions  jk 
an be 
onstru
ted in su
h a way that their supportsare still disjoint; moreover, if Sjk is 
losed, we 
an also assume that the support of  jk is relatively
ompa
t in 
. Finally, for every j < k we de�ne the fun
tions �jk : RN ! R as�jk(y) := �� hy � aj ; ak � ajijak � aj j2 � ;where � : R ! [0; �℄ is a nonde
reasing fun
tion of 
lass C2 su
h that �(t) := 13�t3 for t 2 [0; 1=8℄,�(t) := �+ 13�(t� 1)3 for t 2 [7=8; 1℄, �0(t) 2 [0; 2�℄ for every t , and j�00(t)j � 16� for every t .Now we setS(x; y) := X(j;k):j<k �jk(y) jk(x); S0(x) := �� X(j;k):j<k div jk(x)1Ek (x);and we 
laim that the pair (S;S0) is a 
alibration for g when � is large enough.First of all, independently of the 
hoi
e of � , the fun
tion S has vanishing normal 
omponent on �
be
ause of the 
hoi
e of  jk , so that 
ondition (5.13) of Theorem 5.7 is satis�ed.Using the fa
t that the supports of the fun
tions  jk are disjoint, and that j jk j � 1, while �jk takesvalues only on [0; �℄ , it is easy to see that 
ondition (b1) is ful�lled.
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e Sg is the union of the disjoint 
urves fSjkgj<k , for every x 2 Sg there exists one and only onepair (j; k) with j < k su
h that x 2 Sjk , so thatS(x; g+(x)) � S(x; g�(x)) = (�jk(ak)� �jk(aj)) jk(x) = (�(1)� �(0)) �jk(x) = ��g(x):Therefore, also 
ondition (b2) is satis�ed.By dire
t 
omputations we obtain that[divxS℄(x; y) = X(j;k):j<k �jk(y) div jk(x);while DyS(x; y) = X(j;k):j<k �0 � hy � aj ; ak � ajijak � aj j2 � jk(x) 
 ak � ajjak � aj j2 :If x 2 Eh for any h 2 J , then[divxS℄(x; g(x)) = [divxS℄(x; ah) = Xj<h �jh(ah) div jh(x) +Xk>h�hk(ah) div hk(x)= �Xj<h div jh(x);where the last equality follows from the fa
t that �jh(ah) = �(1) = � , while �hk(ah) = �(0) = 0.Arguing analogously, sin
e �0(0) = �0(1) = 0, we have that DyS(x; g(x)) = 0, so that, taking intoa

ount the de�nition of S0 , 
ondition (a2) is satis�ed.It remains to prove 
ondition (a1). Let (x; y) 2 
�RN . If x does not belong to any of the supportsof the fun
tions  jk , then [divxS℄(x; y) = 0, S0(x) = 0, and DyS(x; y) = 0, so (a1) is trivially satis�ed.If x belongs to the support of  jk for any j < k , then[divxS℄(x; y) = �jk(y) div jk(x); S0(x) = ��div jk(x)1Ek (x);DyS(x; y) = �0� hy � aj ; ak � ajijak � aj j2 � jk(x) 
 ak � ajjak � aj j2 ;if we write the ve
tor y � aj as the sum v + t(ak � aj) where v 2 RN is orthogonal to ak � aj , andt 2 R , 
ondition (a1) turns to be equivalent todiv jk(x)(�(t) � �1Ek(x)) � �14 j jk(x)j2j�0(t)j2 + �jv + t(ak � aj) + aj � g(x)j2: (5.50)Sin
e we are assuming that x is in the support of  jk , x belongs either to Ej or to Ek . When x 2 Ej ,inequality (5.50) redu
es todiv jk(x)�(t) � �14 j jk(x)j2j�0(t)j2 + �jvj2 + �jak � aj j2t2;whi
h is implied by div jk(x)�(t) � �14 j jk(x)j2j�0(t)j2 + �jak � aj j2t2: (5.51)So, let us prove (5.51) for every t 2 R and x 2 Ej . Sin
e in (5.51) the equality holds for t = 0, it isenough to show the following inequalitydiv jk(x)�0(t) < �14 j jk(x)j22�0(t)�00(t) + 2�jak � aj j2t for t > 0; (5.52)



102 Chapter 5and the opposite inequality for t < 0. Sin
e �0 � 0 for t > 1, inequality (5.52) is trivially satis�ed fort > 1. For 0 < t � 1, (5.52) follows immediately from�kdiv jkk1�0(t) > 12�0(t)j�00(t)j � 2�jak � aj j2t;whi
h is satis�ed (taking into a

ount the stru
ture of the fun
tion � ) for�jak � aj j2 > 8�kdiv jkk1 + 64�2:The same 
ondition implies also the opposite inequality for t < 0. Moreover, the same argument 
an beapplied in the 
ase x 2 Ek .In 
on
lusion, 
ondition (a1) is ful�lled for � > �0 , where �0 is de�ned by�0 := max(j;k):j<k 1jak � aj j2 �8�kdiv jkk1 + 64�2� : (5.53)We 
on
lude this example by noti
ing that this result generalizes Example 5.5 in [2℄, where g is the
hara
teristi
 fun
tion of a regular set. As in the previous examples, the ve
torial statement 
an beproved by applying the s
alar result to one suitable 
omponent of g , but this leads to a worse estimateon �0 .5.4 Calibrations in terms of 
losed di�erential formsIn this se
tion we develop the theory of 
alibrations in terms of di�erential forms. The s
alar methodpresented in Se
tion 1.3 involves a divergen
e-free ve
tor�eld on 
�R (and its 
ux through the 
ompletegraph of the maps u), whi
h is now repla
ed by a 
losed n-form on 
�RN , a
ting on the graphs of themaps u , viewed as suitably de�ned n-surfa
es in 
�RN .As we will see, this formulation is indeed not preferable to the one des
ribed in Se
tion 5.1, sin
e itleads to the same kind of 
onditions, requiring a greater te
hni
al e�ort.For simpli
ity we restri
t our dis
ussion to pie
ewise smooth fun
tions u 2 SBV (
;RN ) in the senseof the following de�nition.De�nition 5.19 We say that a fun
tion u 2 SBV (
;RN ) is pie
ewise smooth, and we write u 2 A(
) ,if the following 
onditions are satis�ed: up to an Hn�1 -negligible set, Su is a �nite union of pairwisedisjoint (n � 1)-dimensional boundaryless C1 -manifolds of Rn ; u is C1 on 
 n Su up to Su , that isu 2 C1(
 n Su;RN ) and there exist the limits of u and ru on both sides of (the regular part of) Su .For u 2 A(
) we de�ne the n-surfa
es�u := f(x; y) 2 
�RN : x 2 Su and 9 t 2 [0; 1℄ su
h that y = tu+(x) + (1� t)u�(x)g;�u := graphu [ �u:Using notation from [19℄, let us 
onsider an n-form! : 
�RN ! ^nRn+N ;!(x; y) = Xj�j+j�j=n!��(x; y) dx� ^ dy�;whose 
oeÆ
ients !�� are of 
lass C1 , and for u 2 A(
) the following fun
tionalZ�u !; (5.54)
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ise way.If ! is a 
losed form, then the fun
tional (5.54) is 
onstant on the fun
tions u whi
h take the samevalue on �
. Moreover, if F is the fun
tional (5.1), and ifZ�v ! � F (v) for every v 2 A(
),and Z�u ! = F (u) for a given u 2 A(
), (5.55)then u is a Diri
hlet minimizer of F in the 
lass A(
).Let us now look for pointwise 
onditions on the 
oeÆ
ients of the form ! whi
h guarantee (5.55).By de�nition we have that Z�u ! = Zgraphu ! + Z�u !: (5.56)On the graph of u we 
onsider the natural orientation given by the parameterization x 2 
 n Su 7!(x; u(x)), so that Zgraphu ! = Xj�j+j�j=nZ
 !��(x; u(x))���(x) dx; (5.57)where ���(x) := �(�) det��u��x�̂ (x)� :In the previous formula �̂ denotes the in
reasing 
omplement of � in f1; : : : ; ng , �(�) is the sign ofpermutation of (1; : : : ; n) into (�; �̂), and �u��x�̂ is the j�j�j�j matrix �u�i�x�̂j .On �u we 
onsider the orientation given by the following parameterization: sin
e u 2 A(
), withoutloss of generality, we may assume that Su is an (n�1)-dimensional C1 -manifold of Rn without boundaryand that Su 
an be 
overed by just one parameter pat
h 
 : S ! Su , where S is an (n� 1)-dimensionaldomain (the general 
ase 
an be easily obtained by summing over the C1 -pie
es). Assume that 
 yields�u as orientation, that is the ve
tor�(
(�)) := nXi=1(�1)n�i det�d
̂�d� (�)� ei(where fe1; : : : ; eng is the 
anoni
al basis of Rn ) satis�es�(
(�))j�(
(�))j = �u(
(�)) 8� 2 S:We 
onsider as parameterization of �u the fun
tion � = (�x; �y) : S�[0; 1℄ ! 
�RN de�ned as�x(�; t) := 
(�), �y(�; t) := tu+(
(�)) + (1 � t)u�(
(�)) for every (�; t) 2 S�[0; 1℄, so that the se
ondintegral in (5.56) is given byZ�u ! = Xj�j+j�j=nZ 10 ZS !��(�(�; t)) det� �����(�; t) (�; t)� d�dt; (5.58)where ��� = (�x�1 ; : : : ; �x�p ; �y�1 ; : : : ; �y�q ) for j�j = p and j�j = q = n� p . By dire
t 
omputations one
an �nd that det� ��0̂0�(�; t)� = 0;



104 Chapter 5while for every 1 � i � n , 1 � j � Ndet� ���̂j�(�; t)� = (u+j � u�j ) det�d
̂�d� � = (�1)n�i(u+j � u�j )(�u)ij�j;where all the fun
tions at the right-hand side are 
omputed at 
(�). Finally, by straightforward 
ompu-tations, if we set a := �̂ , for jaj = j�j = q � 2 it results thatdet� �����(�; t)� = qXm;k=1 �(�; abk)(�1)n�q+m�ak (u+�m � u��m) det �(tu+ + (1� t)u�)�
m�xabk ! (�u)ak j�j;where �bm , abk are the in
reasing 
omplement of �m in f�1; : : : ; �qg and of ak in fa1; : : : ; aqg , respe
-tively, while �(�; abk) is the sign of permutation of (�; abk) in 
ak ; again all the fun
tions at the right-handside are 
omputed at 
(�). Set wt := tu++(1� t)u� and substitute all the above expressions in formula(5.58); sin
e j�j d� is the area element of the manifold Su parameterized by 
 , we obtainZ�u ! = Xi;j Z 10 ZSu(�1)n�i!�̂j(x;wt)(u+j � u�j )(�u)i dHn�1dt+ Xjaj=j�j=qq�2 Z 10 ZSu !â�(x;wt) qXm;k=1 �(�; abk)(�1)n�q+m�ak (u+�m � u��m) det �wt�
m�xabk !(�u)ak dHn�1dt=: ZSu g!(x; u�; u+;ru�;ru+; �u) dHn�1; (5.59)where the last equality follows from 
hanging the order of integration and 
alling g! the integrand withrespe
t to Hn�1 . Now we wonder what kind of 
onditions on !�� guarantee thatg!(x; u�; u+;ru�;ru+; �u) �  (x; u�; u+; �u) on Su (5.60)for every admissible u . The answer is given by the following proposition.Proposition 5.20 Inequality (5.60) holds true for every u 2 A(
) if and only if the following 
onditionsare satis�ed:(b0') !�� � 0 for every �; � su
h that j�j � 2 , j�j+ j�j = n ;(b1') Xi;j Z 10 (�1)n�i!�̂j(x; tz+(1�t)y)(zj�yj)�i dt �  (x; y; z; �) for every x 2 
 , for every y; z 2 RN ,and for every � 2 Sn�1.Moreover, the equality holds for a given u if and only if(b2') Xi;j Z 10 (�1)n�i!�̂j(x; tu+ + (1� t)u�)(u+j � u�j )(�u)i dt =  (x; u�; u+; �u) for every x 2 Su .Proof. { Let (x; y) 2 
�RN , and let us prove that !��(x; y) = 0 for j�̂j = j�j = 2. By renumberingthe 
oordinates of x and y , we may suppose that � = (1; 2) and a = �̂ = (1; 2). Given C 2 R , we
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an 
onstru
t u 2 A(
) su
h that x 2 Su , ru�(x) = ru+(x) (hen
e rwt(x) = ru�(x) for everyt 2 [0; 1℄), and �xiwtj(x) = 0 for every (i; j) 6= (1; 1) and �x1wt1(x) = C . With this 
hoi
e we have thatg!(x; u�; u+;ru�;ru+; �u) =Xi;j Z 10 (�1)n�i!�̂j(x;wt)(u+j � u�j )(�u)i dt+ C Xi6=1;j 6=1 Z 10 (�1)i!(
1;i)(1;j)(x;wt)(u+j � u�j )(�u)i dt:Sin
e the value of C is arbitrary and independent of u�(x); u+(x); �u(x), inequality (5.60) implies thatXi6=1;j 6=1 Z 10 (�1)i!(
1;i)(1;j)(x;wt)(u+j � u�j )(�u)i dt = 0 (5.61)whatever are the values of u�(x); u+(x); �u(x). Choosing �u(x) su
h that (�u(x))i = 0 for every i 6= 2,(�u(x))2 = 1, we have that (5.61) is equivalent toXj 6=1 Z 10 !(
1;2)(1;j)(x;wt)(u+j � u�j ) dt = 0 (5.62)whatever are the values of u�(x); u+(x). Choosing u�(x) = y , while u+j (x) = yj for every j 6= 2,u+2 (x) = y2 + 
 with 
 6= 0, we obtain that (5.62) is equivalent to
 Z 10 !(
1;2)(1;2)(x; y1; y2 + 
t; y3; : : : ; yN) dt = 0 (5.63)for every 
 6= 0. By a 
hange of variables, (5.63) 
an be rewritten asZ y2+
y2 !(
1;2)(1;2)(x; y1; s; y3; : : : ; yN) ds = 0: (5.64)Sin
e (5.64) has to be true for every 
 6= 0, this implies that !(
1;2)(1;2)(x; y) = 0.Using the fa
t that the 
oeÆ
ients !�� � 0 for every j�j = 2, we 
an repeat the same proof to showthat !�� � 0 for every j�̂j = j�j = 3, and so on.We have thus proved that (5.60) implies 
ondition (b0'). At this point, it is trivial that (5.60) impliesalso 
ondition (b1'), and that the equality holds in (5.60) for a given u if and only if also (b2') is satis�ed.2Summarizing, if 
onditions (b0') and (b1') hold true, by Proposition 5.20 inequality (5.60) is satis�ed,hen
e by (5.59) we have that Z�u ! � ZSu  (x; u�; u+; �u) dHn�1 (5.65)for every u 2 A(
), while the equality holds in (5.65) for a given u if and only if also (b2') is veri�ed.Assuming that ! satis�es 
ondition (b0'), formula (5.57) redu
es toZgraphu ! = Z
0�!0̂0(x; u(x)) +Xi;j (�1)n�i!�̂j(x; u(x))�xiuj(x)1A dx= Z
 (!0̂0(x; u(x)) + hA!(x; u(x));ru(x)i) dx;



106 Chapter 5where in the last equality (A!(x; y))ji := (�1)n�i!�̂j(x; y). It is easy to see that, if we require thefollowing 
ondition:(a1') !0̂0(x; y) � �f�(x; y; A!(x; y)) for Ln -a.e. x 2 
 and every y 2 RN ;then Zgraphu ! � Z
 f(x; u;ru) dxfor every u 2 A(
); moreover, the equality holds for a given u if and only if(a2') (A!)ij(x; u(x)) 2 ��ijf(x; u(x);ru(x)) and !0̂0(x; u(x)) = �f�(x; u(x); A!(x; u(x))) for Ln -a.e.x 2 
.Therefore by (5.56) we 
an 
on
lude that (5.55) is guaranteed if 
onditions (a1'), (a2'), (b0'), (b1'),and (b2') are satis�ed. In other words, we have proved the following theorem.Theorem 5.21 Let u be a fun
tion in A(
) . Assume that there exists a 
losed n-di�erential form! : 
�RN ! ^nRn+N with 
oeÆ
ient of 
lass C1 and satisfying 
ondition (a1'), (a2'), (b0'), (b1'), and(b2'). Then u is a Diri
hlet minimizer of the fun
tional (5.1) in the 
lass A(
) .We 
on
lude this se
tion by proving that, if u 2 A(
) and there exists a di�erential form ! whi
h
alibrates u in the sense of Theorem 5.21, then there exists a 
alibration (S;S0) for u in the sense ofDe�nition 5.6.Proposition 5.22 Let u be a fun
tion in A(
) and let ! : 
�RN ! ^nRn+N be a 
losed n-di�erentialform satisfying all the assumptions of Theorem 5.21. Then there exists a 
alibration (S;S0) for u , withS 2 C2(
�RN ;Rn ) and S0 2 C1(
) .Proof. { First of all, we noti
e that from 
ondition (b0') it follows that!(x; y) = !0̂0(x; y) dx +Xi;j !�̂j(x; y) dx�̂ ^ dyj :Sin
e ! is a 
losed form, by 
omputing expli
itly the exterior derivative of ! , we obtain that the
oeÆ
ients !0̂0; !�̂j satisfy the two following equations:nXi=1(�1)n�i �!�̂j�xi (x; y)� �!0̂0�yj (x; y) = 0 1 � j � N; (5.66)(�1)n�i �!�̂j�yk (x; y) = (�1)n�i �!�̂k�yj (x; y) 1 � i � n; 1 � j; k � N: (5.67)The last 
ondition is equivalent to require that for every i the ve
tor ((�1)n�i!�̂j(x; y))j=1;::: ;N isthe gradient with respe
t to y of a fun
tion of 
lass C2 ; more pre
isely, there exists a fun
tion S 2C2(
�RN ;Rn ) su
h that�yjSi(x; y) = (�1)n�i!�̂j(x; y) 1 � i � n; 1 � j � N: (5.68)Equation (5.66) 
an be therefore rewritten as0 = nXi=1 �2Si�xi�yj (x; y)� �!0̂0�yj (x; y) = �yj " nXi=1 �xiSi(x; y)� !0̂0(x; y)# 1 � j � N;
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tion S0 : 
! R of 
lass C1 su
h that !0̂0(x; y) = [divxS℄(x; y) + S0(x). Bysubstituting this equality and (5.68) in 
onditions (a1') and (a2'), we dire
tly obtain that the pair (S;S0)satis�es 
onditions (a1) and (a2) of Lemma 5.4. Sin
e the left-hand side in (b1') 
an be rewritten asXi;j Z 10 (�1)n+i!�̂j(x; tz + (1� t)y)(zj � yj)�i dt= Xi;j Z 10 �yjSi(x; tu+ + (1� t)u�)(u+j � u�j )(�u)i dt= nXi=1 Z 10 ddt [Si(x; tu+ + (1� t)u�)℄(�u)i dt= nXi=1 [Si(x; u+)� Si(x; u�)℄(�u)i= hS(x; u+)� S(x; u�); �ui;
ondition (b1') implies that the fun
tion S satis�es 
ondition (b1) of Lemma 5.4, and in the same way(b2') implies (b2). 2
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