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IntrodutionMany variational problems arising in several branhes of applied analysis (as image proessing, fraturemehanis, theory of nemati liquid rystals) lead to onsider minimum problems for funtionals whihouple a volume and a surfae integral, depending on a losed set K and a funtion u smooth outside K .Following a terminology by E. De Giorgi, variational problems of this kind are alled free-disontinuityproblems, and, in the weak formulation proposed by E. De Giorgi and L. Ambrosio in [13℄, they appearas minimum problems for funtionals of the formF (u) = Z
 f(x; u;ru) dx+ ZSu  (x; u�; u+; �u) dHn�1; (1)where 
 is a bounded open subset of Rn , and the unknown funtion u belongs to the spae SBV (
;RN )of speial funtions of bounded variation in 
 with values in RN . We reall that ru denotes theapproximate gradient of u , Su is the set of essential disontinuity points of u , �u is the approximateunit normal vetor to Su , and u�; u+ the approximate limits of u on the two sides of Su (for a preisede�nition see Chapter 1); �nally, Hn�1 denotes the (n� 1)-dimensional Hausdor� measure.A typial example is provided by the so-alled Mumford-Shah funtional, introdued in [31℄ in theontext of image segmentation, whih an be written asMS�;�(u) := Z
 jruj2dx+ �Hn�1(Su) + � Z
 ju� gj2 dx; (2)where g is a funtion in L1(
;RN ), and � > 0 and � � 0 are onstants.One of the main features of funtionals of the form (1) is that they are in general not onvex; there-fore, all the equilibrium onditions whih an be obtained by in�nitesimal variations are neessary forminimality, but in general not suÆient.G. Alberti, G. Bouhitt�e, and G. Dal Maso have proposed in [2℄ a suÆient ondition for minimality,whih is based on the alibration method and applies for funtionals of the general form (1) de�ned onsalar maps.In this thesis we apply this minimality riterion to identify a wide lass of nontrivial minimizers forthe homogeneous version of the Mumford-Shah funtional (de�ned on salar maps)MS(u) := Z
 jruj2dx+Hn�1(Su); (3)whih ours in the theory of inner regularity for minimizers of MS�;� and is obtained by taking � = 1and dropping the lower order term in (2). In the last part we develop the theory of alibrations for moregeneral funtionals with free disontinuities on vetor-valued maps and we desribe several appliationsof this result.All the appliations and the examples shown throughout the thesis share the same purpose: weonsider a andidate u satisfying the equilibrium onditions for a funtional of the form (1) and we prove1



2 Introdutionby alibration that u is a minimizer of F in a suÆiently small domain; in other words, we show thatthe equilibrium onditions are also suÆient to guarantee the minimality on small domains, as in manylassial problems of the Calulus of Variations.Before giving the details of the results, let us desribe the basi idea behind the alibration methodfousing our attention on Dirihlet minimizers of (1), that is minimizers with presribed boundary values.Given a andidate u , if we are able to onstrut a funtional G whih is invariant on the lass of funtionshaving the same boundary values as u , and satis�esG(u) = F (u); and G(v) � F (v) for every admissible v, (4)then u is a Dirihlet minimizer of F . Indeed, if suh a funtional exists, for every v with the sameboundary values as u we have that F (u) = G(u) = G(v) � F (v):In [2℄ the role of G is arried out by the ux of a suitable divergene-free vetor�eld ' : 
�R ! Rn�Rthrough the omplete graph �v of v , whih is de�ned as the boundary of the subgraph of v (the set of allpoints (x; z) 2 
�R suh that z � v(x)), oriented by the inner normal ��v . Sine ' is divergene-free,from the divergene theorem the ux turns out to be invariant with respet to the boundary values,while suitable further onditions on ' guarantee (4). Consider for instane the ase of the homogeneousMumford-Shah funtional, for simpliity in two dimensions, and denote the variables in 
 by (x; y) andthe \vertial" variable in R by z . Then it is enough to require that ' = ('xy; 'z) is a bounded regularvetor�eld satisfying the following assumptions:(a1) 'z(x; y; z) � 14 j'xy(x; y; z)j2 for L2 -a.e. (x; y) 2 
 and every z 2 R ;(a2) 'xy(x; y; u(x; y)) = 2ru(x; y) and 'z(x; y; u(x; y)) = jru(x; y)j2 for L2 -a.e. (x; y) 2 
;(b1) ����Z t2t1 'xy(x; y; z) dz���� � 1 for H1 -a.e. (x; y) 2 
 and every t1 < t2 in R ;(b2) Z u+(x;y)u�(x;y) 'xy(x; y; z) dz = �u(x; y) for H1 -a.e. (x; y) 2 Su .Indeed, the ux of ' through �v an be expressed asZ
[h'xy(x; y; v);rvi � 'z(x; y; v)℄ dx dy + ZSv Z v+v� h'xy(x; y; z); �vi dz dH1; (5)where v , rv , v� , and �v are omputed at (x; y); sine ondition (a1) implies thath'xy(x; y; v);rvi � 'z(x; y; v) � jrvj2 for L2-a.e. (x; y) 2 
, (6)while ondition (b1) impliesZ v+v� h'xy(x; y; z); �vi dz � 1 for H1-a.e. (x; y) 2 Sv; (7)by (5) we have that the inequality in (4) is satis�ed for every admissible v . Moreover, onditions (a2)and (b2) guarantee that the equality holds true in (6) and (7), respetively, so that the equality in (4) isful�lled for the andidate u . We will say that ' is a alibration for u with respet to the funtional MSif ' is a vetor�eld satisfying onditions (a1), (a2), (b1), (b2), and



Introdution 3(1) ' is divergene-free on 
�R .Summarizing, if there exists a alibration ' for u with respet to MS , then u is a Dirihlet minimizerof MS .The �rst appliations of this minimality riterion are ontained in [2℄, where the authors provideseveral examples of nontrivial minimizers for the Mumford-Shah funtional with short and easy proofs.The simple expression of the alibrations in all these examples is related to the fat that they onern onlyminimizers having either a gradient vanishing almost everywhere or an empty disontinuity set. In the�rst part of this thesis we deal with andidates having a more ompliated struture, that is presentingboth a non vanishing gradient and a nonempty disontinuity set.We reall from [6℄ and [31℄ that a Dirihlet minimizer u for MS in 
 � R2 must satisfy the followingequilibrium onditions (whih an be globally alled the Euler-Lagrange onditions for (3)):(i) u is harmoni on 
 n Su ;(ii) the normal derivative of u vanishes on both sides of Su , where Su is a regular urve;(iii) the urvature of Su (where de�ned) is equal to the di�erene of the squares of the tangentialderivatives of u on both sides of Su ;(iv) if Su is loally the union of �nitely many regular ars, then Su an present only two kinds ofsingularities: either a regular ar ending at some point, the so-alled \rak-tip", or three regularars meeting with equal angles of 2�=3, the so-alled \triple juntion".In Chapters 2 and 3 we onstrut alibrations for solutions of the Euler equations with a regulardisontinuity set, while in Chapter 4 we onsider the ase of a triple juntion. All our results are in twodimensions. The minimality of the rak-tip has been reently proved by di�erent methods in [7℄, whilethe problem of �nding a alibration for it is still open.We point out that we do not know of any general method to �nd alibrations, but eah time, aordingto the geometry of the disontinuity set of the andidate, we have to perform a di�erent onstrution. Inspite of the lak of a general formula, all our onstrutions present a rather similar struture.First of all, in terms of alibrations the presene of both a non vanishing gradient and a nonemptydisontinuity set orresponds to a onit between onditions (a2) and (b2), sine (a2) and the Neumannonditions (ii) imply that 'xy is tangential to Su at the points (x; y; u�(x)) for (x; y) 2 Su , while (b2)requires that its average between u�(x; y) and u+(x; y) is normal to Su for (x; y) 2 Su . It is thereforeonvenient to onstrut the alibration ' by piees in order to at di�erently on the regions aroundthe (usual) graph of u , where ' will be somehow determined by ondition (a2), and an \intermediate"region, whih will give the main ontribution to the integral in (b2). More preisely, we deompose theylinder 
�R in a �nite union of Lipshitz open sets Ai and de�ne ' in suh a way that it agrees on Aiwith a suitable divergene-free vetor�eld 'i ; in order to satisfy ondition (1) we have learly to requirethat the vetor�elds 'i satisfy a ompatibility ondition along the boundary of the sets Ai .In a neighbourhood of the graph of u we have to onstrut a divergene-free vetor�eld satisfying(a2) and suh that for every (x; y) 2 Su there holdsh'xy(x; y; z); �u(x; y)i > 0 for u� < z < u� + " and for u+ � " < z < u+,h'xy(x; y; z); �u(x; y)i < 0 for u+ < z < u+ + " and for u� � " < z < u� (8)for a suitable " > 0. These properties are ruial in order to obtain (b1) and (b2) simultaneously.The aim of the de�nition of ' in the remaining region is to make (b2) exatly satis�ed, that is toannihilate the tangential ontribution and to orret the normal one due to the presene of the �eldaround the graph. Of ourse, ' has to be arefully hosen in order to preserve onditions (a1) and (b1).The sheme of our proofs is the following: we de�ne a vetor�eld ' depending on some parametersand satisfying onditions (a1), (a2), (b1), and (1); then we hoose the parameters in suh a way to ful�l



4 Introdutionalso ondition (b2). The Euler onditions are involved in the proof in a rather tehnial way: in generalthey onern the de�nition of ' around the graph, whih an be therefore regarded as the ruial pointof the onstrution.The �rst examples of alibrations for disontinuous funtions whih are not loally onstant, are pre-sented in Chapter 2. We prove that if u is a funtion satisfying all Euler onditions for the homogeneousMumford-Shah funtional and whose disontinuity set is a straight line segment onneting two points of�
, then every point (x0; y0) in Su has an open neighbourhood U suh that u is a Dirihlet minimizerof (3) in U , provided the tangential derivatives ��u and �2��u do not vanish at (x0; y0).In Theorem 2.1 we study the speial aseu(x; y) := ( x if y > 0,�x if y < 0,whih, even if very simple, involves most of the main diÆulties. The main idea of the proof is in thede�nition of ' near the graph of u : in order to verify (a2) and to introdue a normal omponent satisfying(8) we take as 'xy a suitable \rotation" of the vetor 2ru ; in other words, we apply to the vetors �2e1a suitable orthogonal matrix R depending on x; y; z and satisfying R(x; y;�x) = I , and we set'(x; y; z) = (�2R(x; y; z)e1; 1):This onstrution is then adapted in Theorem 2.4 to the ase of a general funtion u satisfying the Euleronditions and having a retilinear disontinuity set. Near the graph of u we simply take'(x; y; z) = (2R(u; v; z)ru; jruj2);where v is the harmoni onjugate of u , while outside a neighbourhood of the graph we are fored tointrodue some additional parameters. We will see that it is atually onvenient to perform a hange ofvariables through the mapping (x; y) 7! (u(x; y); v(x; y)), whih is onformal near (x0; y0), sine we areassuming ��u(x0; y0) 6= 0. The additional assumption �2��u(x0; y0) 6= 0 is instead related to the hoieof the �eld in the region far from the graph and to the proof of (b1): indeed, it guarantees that theparameters appearing in the de�nition of ' an be hosen in suh a way that the funtionI(x; y; t1; t2) := ����Z t2t1 'xy(x; y; z) dz����has a strit maximum at the points (x; y; u�(x; y); u+(x; y)) with (x; y) ranging in Su .These �rst examples are widely generalized in Chapter 3, where we onsider andidates u whosedisontinuity set an be any analyti urve and we prove the Dirihlet minimality in a uniform neigh-bourhood of Su , without additional tehnial assumptions. More preisely, in Theorem 3.2 we show that,if u is a funtion satisfying all Euler onditions for the Mumford-Shah funtional and Su is an analytiurve onneting two points of �
, then there exists an open neighbourhood U of Su \ 
 suh that uis a Dirihlet minimizer in U of (3).We note that the analytiity assumption for Su does not seem too restritive, sine it has been provedthat the regular part of the disontinuity set of a minimizer is at least of lass C1 and it is a onjeturethat it is in fat analyti (see Chapter 1).The original idea of the new onstrution essentially relies on the following remark: we an de�nedivergene-free vetor�elds on an open set A � 
�R starting from a �bration of A by graphs of harmonifuntions. Indeed, if futgt2R is a family of harmoni funtions whose graphs are pairwise disjoint andover A , then the vetor�eld '(x; y; z) = (2rut(x; y); jrut(x; y)j2) (9)



Introdution 5with t = t(x; y; z) satisfying z = ut(x; y), turns out to be divergene-free on A ; moreover, it automatiallyful�ls onditions (a1) and (a2).We use this tehnique to onstrut the alibration around the graph of u : we take as futg the familyfu+ tvg , where v is a suitable harmoni funtion, and aording to formula (9) we de�ne'(x; y; z) = (2ru+ 2 z�uv rv; jru+ z�uv rvj2);the funtion v is hosen in suh a way that rv is normal to Su and (8) is veri�ed.This method of onstrution reminds of the lassial method of Weierstrass �elds, where the proof ofthe minimality of a andidate u is obtained by the onstrution of a slope �eld starting from a family ofsolutions of the Euler equation, whose graphs foliate a neighbourhood of the graph of u .In Chapter 3 we deal also with a di�erent notion of minimality: in Theorem 3.2 we ompare u withperturbations whih an be very large, but onentrated in a �xed small domain; we wonder if a minimalityproperty is preserved also on a large domain, when we admit as ompetitors only perturbations of u withL1 -norm very small outside a small neighbourhood of Su .Aording to this idea, we will say that a funtion u is a Dirihlet graph-minimizer of the Mumford-Shah funtional if there exists a neighbourhood A of the omplete graph of u suh that MS(u) �MS(v)for all v 2 SBV (
) having the same trae on �
 as u and whose omplete graph is ontained in A .As proved in [2, Example 4.10℄, any harmoni funtion u : 
 ! R is a Dirihlet graph-minimizerof MS , whatever 
 is. If we onsider instead a solution u of the Euler equations presenting somedisontinuities, what we disover is that the Dirihlet graph-minimality of u may fail when 
 is toolarge, even in the ase of a retilinear disontinuity set, as the ounterexample at the beginning ofSetion 3.2 shows. Therefore, to ahieve this minimality property we have to add some restritions onthe domain 
. To this aim we introdue a suitable quantity whih seems useful to desribe the orretinteration between Su and 
. Given an open set U (with Lipshitz boundary) and a portion � of �U(with nonempty relative interior in �U ), we de�neK(�; U) := inf �ZU jrv(x; y)j2dx dy : v 2 H1(U); Z� v2dH1 = 1; and v = 0 on �U n �� :As shown by the notation, K(�; U) is a quantity depending only on � and U , whih desribes a kindof \apaity" of the presribed portion of the boundary with respet to the whole open set. Note that ifU1 � U2 , and �1 � �2 , then K(�1; U1) � K(�2; U2), whih suggests that if K(�; U) is very large, thenU is thin in some sense. The qualitative properties of K(�; U) are studied in the �nal part of Setion 3.2.Theorem 3.5, whih is the main result of Setion 3.2, gives a suÆient ondition for the Dirihletgraph-minimality in terms of K(Su;
) and of the geometrial properties of Su . More preisely, weassume that � is a given analyti urve suh that � \ 
 onnets two points of �
, and 
 n � has twoonneted omponents 
1 , 
2 with Lipshitz boundary. We prove that there exists a positive onstant(�) (depending only on the length and on the urvature of �) suh that, if u is a funtion satisfying allEuler onditions in 
, whose disontinuity set oinides with � \ 
 and suh thatmini=1;2K(� \ 
;
i) > (�)�k��u�k2C1(�\
) + k��u+k2C1(�\
)� ; (10)then u is a Dirihlet graph-minimizer of MS .We remark that ondition (10) imposes a restrition on the size of 
 depending on the behaviourof u along Su : if u has large or very osillating tangential derivatives, we have to take 
 quite smallto guarantee that (10) is satis�ed. In the speial ase of a loally onstant funtion u , ondition (10)is always ful�lled whatever the domain is; so u is always a Dirihlet graph-minimizer whatever 
 is, inagreement with a result proved in [2℄.The proof of Theorem 3.5 is based again on the alibration method. Indeed, to prove the graph-minimality of a andidate u it is enough to show that there exist a suitable neighbourhood A of the



6 Introdutionomplete graph of u , and a bounded vetor�eld ' on A satisfying onditions (a1), (a2), (b1), (b2), and(1) (where now (x; y; z), (x; y; ti) range in A). Condition (10) guarantees that we an extend to aneighbourhood of �u a slightly modi�ed version of the alibration of Theorem 3.2.In Chapter 4 we study the minimality of solutions u of the Euler equations whose disontinuity set isgiven by three line segments meeting at the origin with equal angles; in other words, Su is a retilineartriple juntion, generating a partition of 
 in three setors of angle 2�=3, that we all A0; A1; A2 . InTheorem 4.1 we prove by alibration that, setting ui := ujAi and assuming ui 2 C2(Ai), there exists aneighbourhood U of the origin suh that u is a Dirihlet minimizer of MS in U . This result generalizesExample 4 in [1℄ where the funtion u was pieewise onstant.The proof is quite long and tehnial, and is split in several steps. The symmetry due to the preseneof 2�=3-angles is exploited in the whole onstrution of the alibration. First of all, sine the funtionui has to be harmoni in Ai with null normal derivative at �Ai , applying Shwarz reetion priniplewe obtain that ui an be harmonially extended to a neighbourhood of the origin, ut by a half-line;moreover, from the Euler ondition (iii) it follows that the extension of ui oinides, up to the sign andto additive onstants, with uj on Aj for every j 6= i . Using this remark it is easy to see that eah uimust be either symmetri or antisymmetri with respet to the biseting line of Ai .In Setions 4.1 { 4.4 we de�ne ' in the symmetri ase and we prove that it is a alibration; inSetion 4.5 we adapt the onstrution to the antisymmetri ase.The ruial point of both onstrutions is, as usual, the de�nition of the �eld near the graph of u ,where we apply again the \�bration" tehnique. Indeed, we �brate a neighbourhood of the graph ofeah ui by a family of harmoni funtions of the form ui + tvi . Unlike the onstrution of ' in theproof of Theorem 3.2 where we hoose rv orthogonal to Su , in this ase it is onvenient to take as vi alinear funtion whose gradient is parallel to the biseting line of Ai . Thanks to the symmetry, this hoieensures that the tangential ontributions to the integral in (b2), given by the regions near u� and u+ ,are always of opposite signs and annihilate eah other.The assumption of C2 -regularity for ui does not seem too restritive: indeed, by the regularityresults for ellipti problems in non-smooth domains (see [22℄), it follows that ui belongs at least toC1(Ai), sine ui solves the Laplae equation with Neumann boundary onditions on a setor of angle2�=3. Moreover, sine ui is either symmetri or antisymmetri with respet to the biseting line of Ai ,one an see ui as a solution of the Laplae equation on a �=3-setor with Neumann boundary onditionsor respetively mixed boundary onditions. By the regularity results in [22℄, it turns out that in the �rstase ui belongs to C2(Ai), while in the seond one ui an be written (in polar oordinates entred at0) as ui(r; �) = ~ui(r; �) + r3=2 os 32� , with ~ui 2 C2(Ai) and  2 R . So, only the funtion r3=2 os 32� isnot reovered by our theorem: if we were able to onstrut a alibration also for this funtion, then wewould reover all possible ases.Finally we remark that the ase where Su is given by three regular urves (not neessarily retilinear)meeting at a point with 2�=3-angles, is at the moment an open problem and it does not seem to beahievable with a plain arrangement of the alibration used for the retilinear ase, essentially beauseof the lak of symmetry.The last part of the thesis orresponds to Chapter 5 where we generalize the alibration methodto funtionals of the form (1) de�ned on vetor-valued maps. The basi priniple is the same we haveexplained at the beginning: in order to prove the minimality of a funtion u , we want to onstrut afuntional G satisfying onditions (4) and invariant on the lass of the admissible ompetitors for u .When u is a vetor-valued funtion, it is onvenient to onsider a di�erent kind of invariant funtional:the alibration is no longer a vetor�eld, but a pair of funtions (S;S0), where S : 
�RN ! Rn issuitably regular, while S0 belongs to L1(
); the omparison funtional for F is given byG(v) := � Z�
hS(x; v); ��
i dHn�1 + Z
 S0(x) dx; (11)



Introdution 7where ��
 is the inner unit normal to �
. It is lear that the funtional (11) is onstant on the funtionshaving the same values at �
. Moreover, by the divergene theorem we an rewrite (11) asZ
 d�v + Z
 S0(x) dx;where �v is the divergene (in the sense of distributions) of the omposite funtion S(�; v(�)). A gener-alized version of the hain rule in BV (whih is proved in Lemma 5.2) implies that�v = ([divxS℄(x; v) + h(DzS(x; v))� ;rvi)Ln + hS(x; v+)� S(x; v�); �viHn�1bSv;where [divxS℄ denotes the divergene of S with respet to the variable x 2 
, and (DzS)� the transposeof the Jaobian matrix of S with respet to the variable z 2 RN . Therefore the funtional (11) turnsout to be equal toZ
 ([divxS℄(x; v) + h(DzS(x; v))� ;rvi+ S0(x)) dx + ZSvhS(x; v+)� S(x; v�); �vi dHn�1: (12)By omparing this expression with the funtional (1), we �nd pointwise onditions on S0 , S , and thederivatives of S , whih guarantee (4), and then the Dirihlet minimality of a given u . For instane, inthe ase of the Mumford-Shah funtional (3) de�ned on vetor-valued maps, it is enough to require thefollowing onditions:(a1) [divxS℄(x; z) + S0(x) � � 14 jDzS(x; z)j2 for Ln -a.e. x 2 
, and for every z 2 RN ;(a2) [divxS℄(x; u) + S0(x) = �jru(x)j2 and (DzS(x; u))� = 2ru(x) for Ln -a.e. x 2 
;(b1) jS(x; z1)� S(x; z2)j � 1 for Hn�1 -a.e. x 2 
 and for every z1; z2 2 RN ;(b2) S(x; u+)� S(x; u�) = �u for Hn�1 -a.e. x 2 Su .For a preise statement in the ase of a general funtional of the form (1) we refer to Lemma 5.4 andLemma 5.5 in Setion 5.1.The onnetion between the onditions above in the ase N = 1 and those ones of the salar for-mulation by Alberti, Bouhitt�e, Dal Maso, is studied in Remark 5.8. Here we only observe that, whilein the salar formulation we need ondition (1) to ensure that the omparison funtional is invariantwith respet to the boundary values, in this new framework this is guaranteed just by the expression ofthe funtional (11); so, there is no ondition orresponding to (1). In fat, in the ase N = 1, given aalibration (S;S0), the vetor�eld ' = ('x; 'z) : 
�R ! Rn�R de�ned as'x(x; z) := �zS(x; z); 'z(x; z) := �[divxS℄(x; z) � S0(x)is a alibration in the sense of Alberti, Bouhitt�e, Dal Maso. Indeed, ' turns out to be divergene-free,and the remaining onditions of the salar formulation follow from onditions (a1), (a2), (b1), and (b2)stated above. Conversely, given any divergene-free vetor�eld ' = ('x; 'z), we an always write 'xas the derivative with respet to z 2 R of a suitable funtion S : 
�R ! Rn , and using the relation�z'z = �divx'x (whih follows from (1)), we an dedue that there exists a funtion S0 of the variablex suh that 'z(x; z) = �[divxS℄(x; z) � S0(x). If we rewrite now onditions (a1), (a2), (b1), and (b2)of the salar formulation by using these expressions of 'x and 'z , we obtain that the pair (S;S0) is aalibration.The formulation in terms of (S;S0) is related to lassial �eld theory for multiple integrals of theform F0(u) = Z
 f(x; u;ru) dx:



8 IntrodutionIn this ontext a suÆient ondition for the minimality of a andidate u 2 C1(
;RN ) is obtained byomparing F0 with the integral of a null-lagrangian of divergene type, whih is onstruted startingfrom a suitably de�ned slope �eld P , alled Weyl �eld , and a funtion S 2 C2(
�RN ;Rn ), the eikonalmap assoiated with P (f., e.g., [18℄). In Setion 5.2 we prove that, under suitable assumptions on fand  , whenever a Weyl �eld exists for a funtion u 2 C1(
;RN ) (so that u is a Dirihlet minimizer forF0 ), then there exists a alibration for u with respet to the funtional F (whih is given by the eikonalmap S and by S0 � 0), so u is also a Dirihlet minimizer for F among SBV funtions.Some examples and appliations are presented in Setion 5.3. In Examples 5.14, 5.16, 5.17, and 5.18we deal with minimizers of the Mumford-Shah funtional, and we generalize some results proved in [2℄for the salar ase. A purely vetorial example is given by Example 5.15, where we study the minimalityof ontinuous solutions of the Euler equations for a funtional arising in frature mehanis, whih anbe de�ned only on maps from 
 � Rn into Rn .Finally, we point out that, as mentioned in [2℄, one ould try to generalize the alibration theory fromthe salar ase to the vetorial one by replaing divergene-free vetor�elds by losed n-forms on 
�RN ,ating on the graphs of the funtions v , viewed as suitably de�ned surfaes in 
�RN . This ould leadto the idea that our hoie of writing the alibration in terms of the pair (S;S0) is somehow restritivewhen N > 1. This is not the ase at all, sine the existene of a alibration expressed via di�erentialforms implies the existene of a alibration expressed in terms of a pair (S;S0), as shown in Setion 5.4.The results of Chapter 2 are obtained in ollaboration with Gianni Dal Maso and Massimiliano Morini,and are published in [11℄, while the results of Chapter 3 are ahieved in ollaboration with MassimilianoMorini and published in [27℄. The ontent of Chapter 4 will appear in [25℄, while the ontent of Chapter 5orresponds to the paper [26℄.



Chapter 1Preliminary resultsIn this hapter we ollet some preliminary results whih will be useful in the sequel. In Setion 1.1 wereall some basi results from the theory of funtions with bounded variation. In Setions 1.2 and 1.3we deal with neessary and suÆient onditions for the minimality of the homogeneous Mumford-Shahfuntional on salar maps: in Setion 1.2 we write the Euler-Lagrange equations, while in Setion 1.3 wepresent the theory of alibrations.Let us �x some notation. Given x; y 2 Rn , we denote their salar produt by hx; yi , and the eulideannorm of x by jxj . We set Sn�1 := fx 2 Rn : jxj = 1g . Given a set B � Rn , we denote the Lebesguemeasure of B by Ln(B) and the (n� 1)-dimensional Hausdor� measure of B by Hn�1(B). If a; b 2 R ,the maximum and the minimum of fa; bg are denoted by a _ b and a ^ b , respetively.1.1 Funtions of bounded variationLet 
 be a bounded open subset of Rn , let u 2 L1lo(
;RN ), and let x0 2 
. We say that u has anapproximate limit at x0 2 
 if there exists z 2 RN suh thatlimr!0+ 1Ln(Br(x0)) ZBr(x0) ju(x)� zj dx = 0; (1.1)where Br(x0) is the ball of radius r entred at x0 . The set Su of points where this property does nothold is alled the approximate disontinuity set of u . For any x0 2 
nSu the vetor z (whih is uniquelydetermined by (1.1)) is alled the approximate limit of u at x0 and denoted by ~u(x0).We say that a funtion u : 
! RN has bounded variation in 
, and we write u 2 BV (
;RN ), if ubelongs to L1(
;RN ) and its distributional derivative Du is a �nite Radon RnN -valued measure in 
.If 
 has Lipshitz boundary, we an speak about the trae of u on �
, whih belongs to L1(�
;Hn�1)and will be still denoted by u .If u 2 BV (
;RN ), then Su is ountably (Hn�1; n � 1)-reti�able, that is, it an be overed, up toan Hn�1 -negligible set, by ountably many C1 -hypersurfaes. Moreover, for Hn�1 -a.e. x0 2 Su thereexists a triplet (u+(x0); u�(x0); �u(x0)) 2 RN�RN�Sn�1 suh that u+(x0) 6= u�(x0), �u(x0) is normalto Su in an approximate sense, andlimr!0+ 1Ln(B�r (x0)) ZB�r (x0) ju(x)� u�(x0)j dx = 0; (1.2)where B�r (x0) is the intersetion of Br(x0) with the half-plane fx 2 Rn : �hx � x0; �u(x0)i � 0g . Thetriplet (u+(x0); u�(x0); �u(x0)) is uniquely determined up to a permutation of (u+(x0); u�(x0)) and a9



10 Chapter 1hange of sign of �u(x0). Condition (1.2) says that �u(x0) points from the side of Su orresponding tou�(x0) to the side orresponding to u+(x0).For every u 2 BV (
;RN ), by applying the Radon-Niod�ym theorem we an deompose the measureDu as Dau+Dsu , where Dau is the absolutely ontinuous part with respet to the Lebesgue measureLn and Dsu is the singular part. The density of Dau with respet to Ln is denoted by ru and agreeswith the approximate gradient of u . The measure Dsu an be in turn written as Dju + Du , whereDju is the restrition of Dsu to Su and is alled the jump part, while Du is the restrition to 
 n Suand is alled the Cantor part. The density of Dju with respet to the measure Hn�1bSu is given by thetensor produt (u+ � u�)
 �u . We also all the sum Dau+Du the di�use part of the derivative of uand denote it by ~Du .We say that a funtion u : 
 ! RN is a speial funtion of bounded variation, and we write u 2SBV (
;RN ), if u 2 BV (
;RN ) and Du = 0.Finally, for every u 2 BV (
;RN ) we de�ne as graph of u the setgraphu := f(x; ~u(x)) : x 2 
 n Sug:In the salar ase N = 1, for every u 2 BV (
) we all 1u the harateristi funtion of the subgraphof u in 
�R , namely the funtion de�ned by 1u(x; z) := 1 for z � u(x) and 1u(x; z) = 0 for z > u(x).We de�ne as omplete graph of u (and we denote it by �u ) the measure theoreti boundary of thesubgraph of u , that is the singular set of 1u . We note that, assuming u and Su suÆiently regular, theomplete graph �u onsists of the union of the graph of u and of all segments joining (x; u�(x)) and(x; u+(x)) with x ranging in Su .For more details we refer to the book [6℄ by L. Ambrosio, N. Fuso, and D. Pallara, where a self-on-tained presentation of BV and SBV spaes an be found.1.2 The Euler-Lagrange equations for the Mumford-ShahfuntionalLet 
 denote a bounded open subset of R2 with Lipshitz boundary, and let us onsider the homogeneousMumford-Shah funtional MS(u) = Z
 jruj2dx+H1(Su) (1.3)for u 2 SBV (
).In the sequel we will refer to the following de�nition of minimizers.De�nition 1.1 An absolute minimizer of (1.3) in 
 is a funtion u 2 SBV (
) suh thatZ
 jruj2dx+H1(Su) � Z
 jrvj2dx+H1(Sv) (1.4)for every v 2 SBV (
) , while a Dirihlet minimizer in 
 is a funtion u 2 SBV (
) suh that (1.4) issatis�ed for every v 2 SBV (
) with the same trae on �
 as u .Let us fous our attention on neessary optimality onditions near a regular portion of Su . Let u bea Dirihlet minimizer of MS and let U � 
 be an open set suh that Su \ U is a graph, that isSu \ U = f(t;  (t)) : t 2 Dg



Preliminary results 11for some open set D � R and  : D ! R . Set U+ := f(t; s) 2 U : s >  (t)g and U� := f(t; s) 2 U :s <  (t)g . Let ' 2 C1(U) be a funtion vanishing in a neighbourhood of �U+ n Su ; by omparing uwith the funtion v := u+ "' , from the minimality of u we obtain thatZU+hru;r'i dx = 0:This means that u is a weak solution of the following problem:(�u = 0 in U+,��u = 0 on �U+ \ Su. (1.5)A similar problem is solved by u in U� .The Euler equation (1.5) has been obtained by onsidering only variations of u and keeping Su �xed.By onsidering also variations of Su we expet to derive a transmission ondition for u along Su , whihtakes into aount the interation between the bulk and the surfae part of the funtional. Assume thatu belongs to W 2;2(U+ [ U�) and suppose that Su \ U is the graph of a C2 -funtion (that is,  is oflass C2 ). Then it an be proved that�div r p1 + jr j2! = j(ru)+j2 � j(ru)�j2 on Su \ U , (1.6)where the left-hand side is the urvature of Su , while at the right-hand side (ru)� denote the traes ofru on Su \ U from U� , respetively.We note that, if  is known to be only of lass C1; , equation (1.6) atually still holds in a weaksense. Then using (1.6) it is possible to prove that, as soon as we know that Su \ U is of lass C1; ,then Su \ U turns out to be in fat of lass C1 .The following onjeture is still an open problem.Conjeture (De Giorgi). If u is a Dirihlet minimizer of MS , then Su is analyti near its regularpoints.We onlude this setion by some remarks on the regularity of the disontinuity set of a minimizer,whih represents a very hallenging mathematial problem. In [31℄ D. Mumford and J. Shah onjeturedthat, if u is a Dirihlet minimizer of MS , then Su is loally the union of �nitely many C1;1 embeddedars; moreover, they showed that, if the onjeture is true, then only two kinds of singularity an ourinside 
: either a line terminates at some point, the so-alled \rak-tip", or three lines meet formingequal angles of 2�=3, the so-alled \triple juntion".In [6, Theorem 8.1℄ the following regularity result is proved.Theorem 1.2 If u 2 SBV (
) is a minimizer of MS , there exists an H1 -negligible set � � Su \ 
relatively losed in 
 suh that 
 \ Su n� is a urve of lass C1;1 .This result is still far from Mumford-Shah onjeture, sine we are only able to say that � is H1 -negligible, and not that it has loally �nite H0 measure.1.3 The alibration method for the Mumford-Shah funtionalIn this setion we present the alibration method for the homogeneous Mumford-Shah funtional in twodimensions and we briey reall how this riterion an be adapted to a general funtional with freedisontinuities de�ned on salar maps.



12 Chapter 1We �rst introdue a more general notion of minimality whih will be useful in the sequel. Let 
 be a�xed bounded open subset of R2 with Lipshitz boundary, and ��
 its inner unit normal. Let A denotean open subset of 
�R with Lipshitz boundary, whose losure an be written asA = f(x; y; z) 2 
�R : �1(x; y) � z � �2(x; y)g;where the two funtions �1; �2 : 
! [�1;+1℄ satisfy �1 < �2 .De�nition 1.3 We say that a funtion u 2 SBV (
) is an absolute A -minimizer of MS if the ompletegraph of u is ontained in A and MS(u) � MS(v) for every v 2 SBV (
) suh that �v � A , while uis a Dirihlet A -minimizer if we add the requirement that the ompeting funtions v have the same traeon �
 as u .For every vetor�eld ' : A! R2�R we de�ne the maps 'xy : A! R2 and 'z : A! R by'(x; y; z) = ('xy(x; y; z); 'z(x; y; z)):We shall onsider the olletion F of all pieewise C1 -vetor�elds ' : A ! R2�R with the followingproperty: there exist a �nite family (Ai)i2I of pairwise disjoint open subsets of A with Lipshitz boundarywhose losures over A , and a family ('i)i2I of vetor�elds in C1(Ai;R2�R) suh that ' agrees at anypoint with one of the 'i .Let u 2 SBV (
) be suh that �u � A . A alibration for u on A (with respet to the funtionalMS ) is a bounded vetor�eld ' 2 F satisfying the following properties:(a1) 'z(x; y; z) � 14 j'xy(x; y; z)j2 for L2 -a.e. x 2 
 and every z 2 [�1; �2℄ ;(a2) 'xy(x; y; u(x; y)) = 2ru(x; y) and 'z(x; y; u(x; y)) = jru(x; y)j2 for L2 -a.e. x 2 
;(b1) ����Z t2t1 'xy(x; y; z) dz���� � 1 for H1 -a.e. (x; y) 2 
, and every t1; t2 in [�1; �2℄ ;(b2) Z u+(x;y)u�(x;y) 'xy(x; y; z) dz = �u(x; y) for H1 -a.e. (x; y) 2 Su ;(1) ' is divergene-free in the sense of distributions in A .If also the following ondition is satis�ed:(2) h'xy; ��
i = 0 H2 -a.e. on �A \ (�
�R);then ' is alled an absolute alibration for u on A .We note that, in order to prove ondition (1), it is enough to show that div'i = 0 in Ai for everyi 2 I , and the following transmission ondition is satis�ed:h'i; ��Aii = h'j ; ��Aj i H2 -a.e. on �Ai \ �Aj ,where ��Ai and ��Aj denote the unit normal vetor to �Ai and �Aj , respetively.We an now state the fundamental theorem of the alibration method, whih is proved in [1℄ and [2℄.Theorem 1.4 Let u 2 SBV (
) be suh that �u � A . If there exists a alibration for u on A (withrespet to MS ), then u is a Dirihlet A-minimizer of the homogeneous Mumford-Shah funtional. Ifthere exists an absolute alibration for u on A , then u is an absolute A-minimizer.The following lemma, whih allows to onstrut divergene-free vetor�elds starting from families ofharmoni funtions, will be useful in the onstrution of the alibrations of Chapters 3 and 4.



Preliminary results 13Lemma 1.5 Let U be an open subset of R2 and I , J be two real intervals. Let u : U�J ! I be afuntion of lass C1 suh that� u(�; � ; s) is harmoni for every s 2 J ;� there exists a C1 -funtion t : U�I ! J suh that u(x; y; t(x; y; z)) = z .Then, if we de�ne in U�I the vetor�eld'(x; y; z) := (2ru(x; y; t(x; y; z)); jru(x; y; t(x; y; z))j2);where ru(x; y; t(x; y; z)) denotes the gradient of u with respet to the variables (x; y) omputed at thepoint (x; y; t(x; y; z)) , ' is divergene-free in U�I .Proof. { Let us ompute the divergene of ' :div'(x; y; z) = 2�u(x; y; t(x; y; z)) + 2h�sru(x; y; t(x; y; z));rt(x; y; z)i+ 2�zt(x; y; z) hru(x; y; t(x; y; z)); �sru(x; y; t(x; y; z))i; (1.7)where �u(x; y; t(x; y; z)) denotes the Laplaian of u with respet to (x; y) omputed at (x; y; t(x; y; z)),and rt(x; y; z) denotes the gradient of t with respet to (x; y). By di�erentiating the identity veri�edby the funtion t �rst with respet to z and with respet to (x; y), we derive that�su(x; y; t(x; y; z)) �zt(x; y; z) = 1; ru(x; y; t(x; y; z)) + �su(x; y; t(x; y; z))rt(x; y; z) = 0:Using these identities and substituting in (1.7), we �nally obtaindiv'(x; y; z) = 2�u(x; y; t(x; y; z)) = 0;sine by assumption u is harmoni with respet to (x; y). 2Let us onsider now a general funtional of the formF (u) := Z
 f(x; u;ru) dx+ ZSu  (x; u�; u+; �u)Hn�1;where 
 is a bounded open subset of Rn with Lipshitz boundary, the unknown u belongs to SBV (
),and f ,  are Borel funtions.Let f� and ��� f denote the onvex onjugate and the subdi�erential of f with respet to the lastvariable. We reall that the subdi�erential of a funtion g : Rn ! [0;+1℄ at the point � 2 Rn is de�nedas the set of vetors � 2 Rn suh that g(�) + h�; � � �i � g(�) for every � 2 Rn .As before, let A be an open subset of 
�R with Lipshitz boundary whose losure an be written asA = f(x; z) 2 
�R : �1(x) � z � �2(x)g;where �1; �2 : 
! [�1;+1℄ satisfy �1 < �2 .The regularity assumptions on ' an be weakened by requiring that ' is approximately regular, i.e.it is bounded and for every Lipshitz hypersurfae M in Rn+1 there holdsap lim(x;z)!(x0;z0)h'(x; z); �M (x0; z0)i = h'(x0; z0); �M (x0; z0)i for Hn -a.e. (x; z) 2M \A ,where �M (x0; y0) is the unit normal to M at (x0; y0). It is easy to see that, if ' 2 F , then ' isapproximately regular.Let u 2 SBV (
) be suh that �u � A . A alibration for u on A with respet to the funtional Fis an approximately regular vetor�eld ' = ('x; 'z) : A! Rn�R satisfying the following onditions:



14 Chapter 1(a1) 'z(x; z) � f�(x; z; 'x(x; z)) for Ln -a.e. x 2 
 and every z 2 [�1; �2℄ ;(a2) 'x(x; u(x)) 2 ��� f(x; u(x);ru(x)) and 'z(x; u(x)) = f�(x; u(x); 'x(x; u(x))) for Ln -a.e. x 2 
;(b1) Z t2t1 h'x(x; z); �i dz �  (x; t1; t2; �) for Hn�1 -a.e. x 2 
, every � 2 Sn�1 , and every t1 < t2 in[�1; �2℄ ;(b2) Z u+(x)u�(x) h'x(x; z); �u(x)i dz =  (x; u�(x); u+(x); �u(x)) for Hn�1 -a.e. x 2 Su ;(1) ' is divergene-free in the sense of distributions in A .If also the following ondition is satis�ed:(2) h'x; ��
i = 0 Hn -a.e. on �A \ (�
�R);then ' is alled an absolute alibration.The following theorem is proved in [2℄.Theorem 1.6 Let u 2 SBV (
) be suh that �u � A . If there exists a alibration for u on A withrespet to F , then u is a Dirihlet A-minimizer of F , that is F (u) � F (v) for every v 2 SBV (
) withthe same trae on �
 as u and suh that �v � A . If there exists an absolute alibration for u on Awith respet to F , then u is an absolute A-minimizer of F , that is F (u) � F (v) for every v 2 SBV (
)suh that �v � A .



Chapter 2Calibrations for minimizers with aretilinear disontinuity setIn this hapter we show the �rst examples of alibrations for disontinuous funtions, whih are not loallyonstant. In partiular, we onsider solutions w of the Euler-Lagrange equations for the homogeneousMumford-Shah funtional MS(w) = Z
 jrw(x; y)j2dx dy +H1(Sw); (2.1)and we assume that the disontinuity set Sw is a straight line segment onneting two boundary pointsof the domain. We prove that, under the additional assumptions that the tangential derivatives ��w and�2��w of w do not vanish on both sides of Sw , the Euler onditions are also suÆient for the Dirihletminimality in small domains.Let 
 be a irle in R2 with entre on the x-axis, and set
0 := f(x; y) 2 
 : y 6= 0g; S := f(x; y) 2 
 : y = 0g:If w 2 C1(
0) with R
0 jrwj2dx dy < +1 , then it is easy to see that w satis�es the Euler onditionsfor the Mumford-Shah funtional (see Setion 1.2) if and only if w has one of the following forms:w(x; y) = ( u(x; y) if y > 0;�u(x; y) + 1 if y < 0; (2.2)or w(x; y) = (u(x; y) + 2 if y > 0;u(x; y) if y < 0; (2.3)where u 2 C1(
) is harmoni with normal derivative vanishing on S and 1 , 2 are real onstants. Forour purposes, it is enough to onsider the ase 1 = 0 in (2.2) and 2 = 1 in (2.3).In both ases we will onstrut an expliit alibration for w in the ylinder U�R , where U is asuitable neighbourhood of (x0; y0). Sine this onstrution is elementary when (x0; y0) =2 Sw (see [2℄),we onsider only the ase (x0; y0) 2 Sw .In Setion 2.1 we onsider the speial ase of the funtionw(x; y) := ( x if y > 0;�x if y < 0; (2.4)15



16 Chapter 2and give in full details the expression of the alibration for w (see Theorem 2.1); then in Theorem 2.3we adapt the same onstrution to the funtionw(x; y) := (x+ 1 if y > 0;x if y < 0: (2.5)In Setion 2.2 we onsider the general ases (2.2) and (2.3): the former ase (2.2) is studied in Theorem2.4 by a suitable hange of variables and by adding two new parameters to the onstrution used inTheorem 2.1; the minor hanges for (2.2) are onsidered in Theorem 2.5.2.1 A model aseIn this setion we deal with the minimality of the funtions (2.4) and (2.5). The aim of the study of thesesimpler ases (but we will see that they involve the main diÆulties) is to larify the ideas of the generalonstrution.Theorem 2.1 Let w : R2 ! R be the funtion de�ned byw(x; y) := ( x if y > 0;�x if y < 0:Then every point (x0; y0) 6= (0; 0) has an open neighbourhood U suh that w is a Dirihlet minimizer inU of the Mumford-Shah funtional (2.1).Proof. { The result follows from Example 4.10 of [2℄ if y0 6= 0. We onsider now the ase y0 = 0,assuming for simpliity that x0 > 0. We will onstrut a loal alibration of w near (x0; 0). Let us �x" > 0 suh that 0 < " < x010 ; 0 < " < 132 : (2.6)For 0 < Æ < " we onsider the open retangleU := f(x; y) 2 R2 : jx� x0j < "; jyj < Ægand the following subsets of U�R (see Fig. 2.1):A1 := f(x; y; z) 2 U�R : x� �(y) < z < x+ �(y)g;A2 := f(x; y; z) 2 U�R : b+ �(�) y < z < b+ �(�) y + hg ;A3 := f(x; y; z) 2 U�R : �h < z < hg;A4 := f(x; y; z) 2 U�R : �b+ �(�) y � h < z < �b+ �(�) yg ;A5 := f(x; y; z) 2 U�R : �x� �(�y) < z < �x+ �(�y)g;where �(y) :=p4"2 � ("� y)2;h := x0 � 3"4 ; �(�) := �4 � 1� ; b := 2h+ �(�) Æ; � := 1� 4"2h :We will assume that Æ < x0 � 3"8 j�(�)j ; (2.7)
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Figure 2.1: Setion of the sets A1; : : : ; A5 at x = onstant.



18 Chapter 2so that the sets A1; : : : ; A5 are pairwise disjoint.For every (x; y; z) 2 U�R , let us de�ne the vetor '(x; y; z) = ('x; 'y; 'z)(x; y; z) 2 R3 as follows:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

 2("� y)p("� y)2 + (z � x)2 ; �2(z � x)p("� y)2 + (z � x)2 ; 1! if (x; y; z) 2 A1;�0; �; �24 � if (x; y; z) 2 A2;(f(y); 0; 1) if (x; y; z) 2 A3;�0; �; �24 � if (x; y; z) 2 A4; �2("+ y)p("+ y)2 + (z + x)2 ; 2(z + x)p("+ y)2 + (z + x)2 ; 1! if (x; y; z) 2 A5;(0; 0; 1) otherwise;where f(y) := � 1h  Z �(y)0 "� ypt2 + ("� y)2 dt� Z �(�y)0 "+ ypt2 + ("+ y)2 dt! :Note that A1 [ A5 is an open neighbourhood of graphw \ (U�R). The purpose of the de�nitionof ' in A1 and A5 (see Fig. 2.2) is to provide a divergene-free vetor�eld satisfying ondition (a2) ofSetion 1.3 and suh that 'y(x; 0; z) > 0 for jzj < x;'y(x; 0; z) < 0 for jzj > x:These properties are ruial in order to obtain (b1) and (b2) simultaneously.The role of A2 and A4 is to give the main ontribution to the integral in (b2). To explain this fat,suppose, for a moment, that " = 0; in this ase we would have A1 = A5 = ; andZ x�x 'y(x; 0; z) dz = 1;so that the y -omponent of equality (b2) would be satis�ed.The purpose of the de�nition of ' in A3 is to orret the x-omponent of ' , in order to obtain (b1).We shall prove that, for a suitable hoie of Æ , the vetor�eld ' is a alibration for w in the retangleU . Inequality (a1) is learly satis�ed in all regions: the only nontrivial ase is A3 , where using (2.6) wehave jf(y)j � 4 (�(y) + �(�y))x0 � 3" � 8p3"x0 � 3" < 2:On the graph of w we have'(x; y; w(x; y)) = ( (2; 0; 1) if y > 0;(�2; 0; 1) if y < 0;
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Figure 2.2: Setion of the set A1 at z = onstant.so ondition (a2) is satis�ed.Note that for a given z 2 R we have�x'x(x; y; z) + �y'y(x; y; z) = 0 (2.8)for every (x; y) suh that (x; y; z) 2 A1 [ A5 . This implies ' is divergene-free in A1 [ A5 . Moreoverdiv' = 0 in the other sets Ai , and the normal omponent of ' is ontinuous aross �Ai : the hoie of�(�) ensures that this property holds for �A2 and �A4 (see Fig. 2.3). Therefore ' is divergene-free inthe sense of distributions in U�R .We now ompute Z x�x 'y(x; y; z) dz:Let us �x y with jyj < Æ . Sine 'y(x; y; z) depends on z � x , we haveZ xx��(y) 'y(x; y; z) dz = Z x+�(y)x 'y(�; y; x) d�: (2.9)Using (2.8) and applying the divergene theorem to the urvilinear triangleT = f(�; �) 2 R2 : � > x; � < y; ("� �)2 + (x� �)2 < 4"2g(see Fig. 2.4), we obtain
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Figure 2.3: Setion of the set A2 at x = onstant.
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Figure 2.4: The urvilinear triangle T .Z x+�(y)x 'y(�; y; x) d� = Z y�" 'x(x; �; x) d� = 2(y + "): (2.10)From (2.9) and (2.10), we get Z xx��(y) 'y(x; y; z) dz = 2(y + "): (2.11)Similarly we an prove that Z �x+�(�y)�x 'y(x; y; z) dz = 2(�y + "): (2.12)Using the de�nition of ' in A2 , A3 , A4 , we obtainZ x�x 'y(x; y; z) dz = 1: (2.13)On the other hand, by the de�nition of f , we have immediately thatZ x�x 'x(x; y; z) dz = 0: (2.14)



22 Chapter 2From these equalities it follows in partiular that ondition (b2) is satis�ed on the jump set Sw \ U =f(x; y) 2 U : y = 0g .Let us begin now the proof of (b1). Let us �x (x; y) 2 U . For every t1 < t2 we setI(t1; t2) := Z t2t1 ('x; 'y)(x; y; z) dz:It is enough to onsider the ase �x� �(�y) � t1 � t2 � x� �(y). We an writeI(t1; t2) = I(t1;�x) + I(�x; x) + I(x; t2);I(t1;�x) = I(t1 ^ (�x+ �(�y));�x) + I(t1 _ (�x+ �(�y));�x+ �(�y));I(x; t2) = I(x; t2 _ (x� �(y))) + I(x� �(y); t2 ^ (x� �(y))):ThereforeI(t1; t2) = I(�x; x) + I(t1 ^ (�x+ �(�y));�x) + I(x; t2 _ (x � �(y)))+ I(t1 _ (�x+ �(�y)); t2 ^ (x� �(y))) � I(�x+ �(�y); x� �(y)): (2.15)Let B be the ball of radius 4" entred at (0;�4"). We want to prove thatI(x; t) 2 B (2.16)for every t with x � �(y) � t � x + �(y). Let us denote the omponents of I(x; t) by ax and ay .Arguing as in the proof of (2.11), we get the identityay = 2("� y)� 2p(t� x)2 + ("� y)2 � 0:As j'xj � 2, we have also (ax)2 � 4(t� x)2 = (2("� y)� ay)2 � 4("� y)2:From these estimates it follows that (ax)2 + (ay + 4")2 � 16"2;whih proves (2.16). In the same way we an prove thatI(t;�x) 2 B (2.17)for every t with �x� �(�y) � t � �x+ �(�y):If f(y) � 0, we de�neC := ([0; 2hf(y)℄�[0; 12 � 2"℄) [ (f2hf(y)g�[0; 1� 4"℄);if f(y) � 0, we simply replae [0; 2hf(y)℄ by [2hf(y); 0℄. >From the de�nition of ' in A2 , A3 , A4 , itfollows that I(�x+ �(�y); x� �(y)) = (2hf(y); 1� 4") (2.18)and I(s1; s2) 2 C (2.19)



Calibrations for minimizers with a retilinear disontinuity set 23for �x+ �(�y) � s1 � s2 � x� �(y). Let D := C � (2hf(y); 1� 4"), i.e.,D = ([�2hf(y); 0℄�[�1 + 4";� 12 + 2"℄) [ (f0g�[�1 + 4"; 0℄);for f(y) � 0; the interval [�2hf(y); 0℄ is replaed by [0;�2hf(y)℄ when f(y) � 0. >From (2.15), (2.13),(2.14), (2.16), (2.17), (2.18) and (2.19) we obtainI(t1; t2) 2 (0; 1) + 2B +D: (2.20)As f(0) = 0, we an hoose Æ so that (2.7) is satis�ed andj2hf(y)j = x0 � 3"2 jf(y)j � " (2.21)for jyj < Æ . It is then easy to see that, by (2.6), the set (0; 1) + 2B + D is ontained in the unit ballentred at (0; 0). So that (2.20) implies (b1). 2Remark 2.2 The assumption (x0; y0) 6= (0; 0) in Theorem 2.1 annot be dropped. Indeed, there is noneighbourhood U of (0; 0) suh that w is a Dirihlet minimizer of the Mumford-Shah funtional in U .To see this fat, let  be a funtion de�ned on the square Q = (�1; 1)�(�1; 1) satisfying the boundaryondition  = w on �Q and suh that S = ((�1;�1=2) [ (1=2; 1))�f0g . For every " , let  " be thefuntion de�ned on Q" := "Q by  "(x; y) := " (x="; y="). Note that  " satis�es the boundary ondition " = w on �Q" . Let us ompute the Mumford-Shah funtional for  " on Q" :ZQ" jr "j2dx dy +H1(S ") = "2 ZQ jr j2dx dy + ":Sine ZQ" jrwj2dx dy +H1(Sw) = 4"2 + 2";we have ZQ" jr "j2dx dy +H1(S ") < ZQ" jrwj2dx dy +H1(Sw)for " suÆiently small. 2The onstrution shown in the proof of Theorem 2.1 an be easily adapted to de�ne a alibration forthe funtion w in (2.5).Theorem 2.3 Let w : R2 ! R be the funtion de�ned byw(x; y) := (x+ 1 if y > 0;x if y < 0:Then every point (x0; y0) 2 R2 has an open neighbourhood U suh that w is a Dirihlet minimizer in Uof the Mumford-Shah funtional (2.1).Proof. { The result follows by Example 4.10 of [2℄ if y0 6= 0. We onsider now the ase y0 = 0; we willonstrut a loal alibration of w near (x0; 0), using the same tehnique as in Theorem 2.1. We give onlythe new de�nitions of the sets A1; : : : ; A5 and of the funtion ' , and leave to the reader the veri�ationof the fat that this funtion is a alibration for suitable values of the involved parameters.



24 Chapter 2Let us �x " > 0 suh that 0 < " < 124 ; 0 < " < 132 : (2.22)For 0 < Æ < " we onsider the open retangleU := f(x; y) 2 R2 : jx� x0j < "; jyj < Ægand the following subsets of U�RA1 := f(x; y; z) 2 U�R : x+ 1� �(y) < z < x+ 1 + �(y)g;A2 := f(x; y; z) 2 U�R : b+ �(�) y + 3h < z < b+ �(�) y + 4hg;A3 := f(x; y; z) 2 U�R : x0 + 3"+ 2h < z < x0 + 3"+ 3hg;A4 := f(x; y; z) 2 U�R : b+ �(�) y < z < b+ �(�) y + hg;A5 := f(x; y; z) 2 U�R : x� �(�y) < z < x+ �(�y)g;where �(y) :=p4"2 � ("� y)2;h := 1� 6"5 ; �(�) := �4 � 1� ; b := x0 + 3"+ �(�) Æ; � := 1� 4"2h :We will assume that Æ < 1� 6"10j�(�)j ; (2.23)so that the sets A1; : : : ; A5 are pairwise disjoint.For every (x; y; z) 2 U�R , let us de�ne the vetor '(x; y; z) 2 R3 as follows:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

 2("� y)p("� y)2 + (z � x� 1)2 ; �2(z � x� 1)p("� y)2 + (z � x� 1)2 ; 1! if (x; y; z) 2 A1;�0; �; �24 � if (x; y; z) 2 A2;(f(y); 0; 1) if (x; y; z) 2 A3;�0; �; �24 � if (x; y; z) 2 A4; 2("+ y)p("+ y)2 + (z � x)2 ; 2(z � x)p("+ y)2 + (z � x)2 ; 1! if (x; y; z) 2 A5;(0; 0; 1) otherwise;where f(y) := � 2h  Z �(y)0 "� ypt2 + ("� y)2 dt+ Z �(�y)0 "+ ypt2 + ("+ y)2 dt!for every jyj < Æ . 2



Calibrations for minimizers with a retilinear disontinuity set 252.2 The general aseIn this setion we denote by 
 a ball in R2 entred at (0; 0) and we onsider as u in (2.2) and in (2.3)a generi harmoni funtion with normal derivative vanishing on S . We add the tehnial assumptionthat the �rst and seond order tangential derivatives of u are not zero on S .Theorem 2.4 Let u : 
 ! R be a harmoni funtion suh that �yu(x; 0) = 0 for (x; 0) 2 
 , and letw : 
! R be the funtion de�ned byw(x; y) := ( u(x; y) for y > 0;�u(x; y) for y < 0:Assume that u0 := u(0; 0) 6= 0 , �xu(0; 0) 6= 0 , and �2xxu(0; 0) 6= 0 . Then there exists an open neighbour-hood U of (0; 0) suh that w is a Dirihlet minimizer in U of the Mumford-Shah funtional (2.1).Proof. { We may assume u(0; 0) > 0 and �xu(0; 0) > 0. We shall give the proof only for �2xxu(0; 0) > 0,and we shall explain at the end the modi�ation needed for �2xxu(0; 0) < 0. Let v : 
 ! R be theharmoni onjugate of u that vanishes on y = 0, i.e., the funtion satisfying �xv(x; y) = ��yu(x; y),�yv(x; y) = �xu(x; y), and v(x; 0) = 0.Consider a small neighbourhood U of (0; 0) suh that the map �(x; y) := (u(x; y); v(x; y)) is invertibleon U and �xu > 0 on U . We all 	 the inverse funtion (u; v) 7! (�(u; v); �(u; v)), whih is de�ned inthe neighbourhood V := �(U) of (u0; 0). Note that, if U is small enough, then �(u; v) = 0 if and onlyif v = 0. Moreover, D	 = � �u� �v��u� �v� � = 1jruj2 � �xu �xv�yu �yv � ; (2.24)where, in the last formula, all funtions are omputed at (x; y) = 	(u; v), and so �u� = �v� , �v� = ��u�and �u�(u; 0) = 0, �v�(u; 0) > 0. In partiular, � and � are harmoni, and�2uu�(u; 0) = 0; �2vv�(u; 0) = 0: (2.25)On U we will use the oordinate system (u; v) given by �. By (2.24) the anonial basis of the tangentspae to U at a point (x; y) is given by�u = rujruj2 ; �v = rvjrvj2 : (2.26)For every (u; v) 2 V , let G(u; v) be the matrix assoiated with the �rst fundamental form of U in theoordinate system (u; v), and let g(u; v) be its determinant. By (2.24) and (2.26),g = ((�u�)2 + (�v�)2)2 = 1jru(	)j4 : (2.27)We set (u; v) := 4pg(u; v).The alibration '(x; y; z) on U�R will be written as'(x; y; z) = 12(u(x; y); v(x; y))�(u(x; y); v(x; y); z): (2.28)We will adopt the following representation for � : V�R ! R3 :�(u; v; z) = �u(u; v; z)�u + �v(u; v; z)�v + �z(u; v; z)ez; (2.29)



26 Chapter 2where ez is the third vetor of the anonial basis of R3 , and �u , �v are omputed at the point 	(u; v).We now reformulate the onditions of Setion 1.3 in this new oordinate system. It is known fromdi�erential geometry (see, e.g., [9, Proposition 3.5℄) that, if X = Xu�u + Xv�v is a vetor�eld on U ,then the divergene of X is given bydivX = 12 (�u(2Xu) + �v(2Xv)): (2.30)Using (2.26), (2.27), (2.28), (2.29), and (2.30) it turns out that ' is a alibration if the following onditionsare satis�ed:(a1) (�u(u; v; z))2 + (�v(u; v; z))2 � 4�z(u; v; z) for every (u; v; z) 2 V�R ;(a2) �u(u; v;�u) = �2, �v(u; v;�u) = 0, and �z(u; v;�u) = 1 for every (u; v) 2 V ;(b1) �Z ts �u(u; v; z) dz�2 +�Z ts �v(u; v; z) dz�2 � 2(u; v) for every (u; v) 2 V , s; t 2 R ;(b2) Z u�u �u(u; 0; z) dz = 0 and Z u�u �v(u; 0; z) dz = (u; 0) for every (u; 0) 2 V ;(1) �u�u + �v�v + �z�z = 0 for every (u; v; z) 2 V�R .Given suitable parameters " > 0, h > 0, � > 0, that will be hosen later, and assumingV = f(u; v) : ju� u0j < Æ; jvj < Æg; (2.31)with Æ < " , we onsider the following subsets of V�RA1 := f(u; v; z) 2 V�R : u� �(v) < z < u+ �(v)g;A2 := f(u; v; z) 2 V�R : 3h+ �(u; v) < z < 3h+ �(u; v) + 1=�g ;A3 := f(u; v; z) 2 V�R : �h < z < hg;A4 := f(u; v; z) 2 V�R : �3h+ �(u; v)� 1=� < z < �3h+ �(u; v)g ;A5 := f(u; v; z) 2 V�R : �u� �(�v) < z < �u+ �(�v)g;where �(v) :=p4"2 � ("� v)2;and � is a suitable smooth funtion satisfying �(u; 0) = 0, whih will be de�ned later. It is easy to seethat, if " and h are suÆiently small, while � is suÆiently large, then the sets A1; : : : ; A5 are pairwisedisjoint, provided Æ is small enough. Moreover, sine (u; 0) = �v�(u; 0) > 0, by ontinuity we mayassume that (u; v) > 128" and �v�(u; v) > 8" (2.32)for every (u; v) 2 V .



Calibrations for minimizers with a retilinear disontinuity set 27For (u; v) 2 V and z 2 R the vetor �(u; v; z) introdued in (2.28) is de�ned as follows:8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

2("� v)p("� v)2 + (z � u)2 �u � 2(z � u)p("� v)2 + (z � u)2 �v + ez in A1;���(u; v) vp(u� a)2 + v2 �u + ��(u; v) u� ap(u� a)2 + v2 �v + �ez in A2;f(v)�u + ez in A3;���(u; v) vp(u� a)2 + v2 �u + ��(u; v) u� ap(u� a)2 + v2 �v + �ez in A4;� 2("+ v)p("+ v)2 + (z + u)2 �u + 2(z + u)p("+ v)2 + (z + u)2 �v + ez in A5;ez otherwise,where a < u0 � 11Æ; � > 0 (2.33)f(v) := � 1h  Z �(v)0 ("� v)pt2 + ("� v)2 dt� Z �(�v)0 ("+ v)pt2 + ("+ v)2 dt! ;�(u; v) := 12(a+p(u� a)2 + v2; 0)� 2": (2.34)We hoose � as the solution of the Cauhy problem8><>:��(u; v)(�v �u� + (u� a)�v�) = (�� 1)p(u� a)2 + v2;�(u; 0) = 0: (2.35)Sine the line v = 0 is not harateristi for the equation near (u0; 0), there exists a unique solution� 2 C1(V ), provided V is small enough.In the oordinate system (u; v) the de�nition of the �eld � in A1 , A3 , and A5 is the same as thede�nition of ' in the proof of Theorem 2.1. The ruial di�erene is in the de�nition on the sets A2 andA4 , where now we are fored to introdue two new parameters a and � . Note that the de�nition givenin Theorem 2.1 an be regarded as the limiting ase as a tends to +1 .In order to satisfy ondition (a1), it is enough to take the parameter � suh that�24 �2(u; v) � �for every (u; v) 2 V , and require that jf(v)j � 2: (2.36)



28 Chapter 2Sine jf(v)j � �(v) + �(�v)h � 4 "h ; (2.37)inequality (2.36) is true if we impose 2 " � h:Looking at the de�nition of � on A1 and A5 , one an hek that ondition (a2) is satis�ed.By diret omputations it is easy to see that � satis�es ondition (1) on A1 and A5 . Similarly, thevetor�eld  � vp(u� a)2 + v2 ; u� ap(u� a)2 + v2!is divergene-free; sine (u� a)2 + v2 is onstant along the integral urves of this �eld, by onstrutionthe same property holds for � , so that � satis�es ondition (1) in A2 and A4 .In A3 , ondition (1) is trivially satis�ed.Note that the normal omponent of � is ontinuous aross eah �Ai : for the region A3 this ontinuityis guaranteed by our hoie of � . This implies that (1) is satis�ed in the sense of distributions on V�R .Arguing as in the proof of (2.11), (2.12), (2.14) in Theorem 2.1, we �nd that for every (u; v) 2 VZ �u+�(�v)�u �u(u; v; z) dz + Z h�h �u(u; v; z) dz + Z uu��(v) �u(u; v; z) dz = 0;Z �u+�(�v)�u �v(u; v; z) dz + Z h�h �v(u; v; z) dz + Z uu��(v) �v(u; v; z) dz = 4":Now, it is easy to see that Z u�u �u(u; v; z) dz = �2�(u; v) vp(u� a)2 + v2 ; (2.38)Z u�u �v(u; v; z) dz = 4"+ 2�(u; v) u� ap(u� a)2 + v2 ; (2.39)sine for v = 0 we have �(u; 0) = 12(u; 0)� 2";ondition (b2) is satis�ed.By ontinuity, if Æ is small enough, we haveZ u�u �v(u; v; z) dz > 78(u; v) (2.40)for every (u; v) 2 V .From now on, we regard the pair (�u; �v) as a vetor in R2 . To prove ondition (b1) we setI";a(u; v; s; t) := Z ts (�u; �v)(u; v; z) dzfor every (u; v) 2 V , and for every s; t 2 R . We want to ompare the behaviour of the funtions jI";aj2and 2 ; to this aim, we de�ne the funtiond";a(u; v; s; t) := jI";a(u; v; s; t)j2 � 2(u; v):



Calibrations for minimizers with a retilinear disontinuity set 29We have already shown (ondition (b2)) thatd";a(u; 0;�u; u) = 0: (2.41)We start by proving that, if V is suÆiently small, ondition (b1) holds for every (u; v) 2 V , for s loseto �u and t lose to u . Using the de�nition of �(u; v; z) on A1 and A5 , one an ompute expliitlyd";a(u; v; s; t) for js+ uj � �(�v) and for jt� uj � �(v). By diret omputations one obtainsrv;s;t d";a(u; 0;�u; u) = 0 (2.42)for (u; 0) 2 V .We now want to ompute the Hessian matrix r2v;s;t d";a at the point (u0; 0;�u0; u0). By (2.34) and(2.27), after some easy omputations, we get�2vv�(u; 0) = 12(u� a)�u(u; 0) = 12(u� a)�2uv�(u; 0):Using this equality and the expliit expression of d";a near (u0; 0;�u0; u0), we obtain�2vvd";a(u0; 0;�u0; u0) = � 8"(u0 � a)2 (�v�(u0; 0)� 4") + 2u0 � a�v�(u0; 0) �2uv�(u0; 0)� �2vv(2)(u0; 0):Sine � and  do not depend on a and " , for every " satisfying (2.32) we an �nd a so lose to u0 that�2vvd";a(u0; 0;�u0; u0) < 0: (2.43)Moreover, we easily obtain that�2ttd";a(u0; 0;�u0; u0) = �2ssd";a(u0; 0;�u0; u0) = 8� 4"�v�(u0; 0);�2vtd";a(u0; 0;�u0; u0) = �2vsd";a(u0; 0;�u0; u0) = � 4u0 � a (�v�(u0; 0)� 4");�2std";a(u0; 0;�u0; u0) = 8:By the above expressions, it follows thatdet0� �2vvd";a �2vtd";a�2vtd";a �2ttd";a 1A (u0; 0;�u0; u0) = 16(u0 � a)2 �v�(u0; 0)(�v�(u0; 0)� 4") + 1(")u0 � a + 2(");where 1("), 2(") are two onstants depending only on " . Then, if " satis�es (2.32), a an be hosenso lose to u0 that det0� �2vvd";a �2vtd";a�2vtd";a �2ttd";a 1A (u0; 0;�u0; u0) > 0: (2.44)At last, the determinant of the Hessian matrix of d";a at (u0; 0;�u0; u0) is given bydetr2v;s;t d";a(u0; 0;�u0; u0) = 32"2(u0 � a) (�v�(u0; 0))2�2uv�(u0; 0)(�v�(u0; 0)� 4") + 3(");where 3(") is a onstant depending only on " . Sine, by (2.24),�2uv�(u0; 0) = � �2xxu(0; 0)(�xu(0; 0))3 ;



30 Chapter 2given " satisfying (2.32), we an hoose a so lose to u0 thatdetr2v;s;t d";a(u0; 0;�u0; u0) < 0: (2.45)By (2.43), (2.44), and (2.45), we an onlude that, by a suitable hoie of the parameters, the Hessianmatrix of d";a (with respet to v; s; t) at (u0; 0;�u0; u0) is negative de�nite. This fat, with (2.41) and(2.42), allows us to state the existene of a onstant � > 0 suh thatd";a(u; v; s; t) < 0 (2.46)for js+ u0j < � , jt� u0j < � , (u; v) 2 V , v 6= 0, provided V is suÆiently small. So, ondition (b1) issatis�ed for js+ u0j < � and jt� u0j < � . We an assume Æ < � < �(v) for every (u; v) 2 V .From now on, sine at this point the parameters " , a have been �xed, we simply write I instead ofI";a . We now study the more general ase js+ uj < �(�v) and jt� uj < �(v).Let us setm1(u; v) := max fjI(u; v; s; t)j : js+ uj � �(�v); jt� uj � �(v); jt� u0j � �g :By the de�nition of A1; : : : ; A5 , for � = �(Æ) + Æ we have (�u; �v) = 0 on (V�[u0� �; u0+ �℄) nA1 and(V �[�u0 � �;�u0 + �℄) nA5 . This implies thatm1(u; v) = max fjI(u; v; s; t)j : js+ u0j � �; � � jt� u0j � �gfor (u; v) 2 V . The funtion m1 , as supremum of a family of ontinuous funtions, is lower semion-tinuous. Moreover, m1 is also upper semiontinuous; indeed, suppose, by ontradition, that there existtwo sequenes (un), (vn) onverging respetively to u , v , suh that (m1(un; vn)) onverges to a limitl > m1(u; v); then, there exist (sn), (tn) suh thatjsn + unj � �(�vn); jtn � unj � �(vn); jtn � u0j � �; (2.47)and m1(un; vn) = jI(un; vn; sn; tn)j . Up to subsequenes, we an assume that (sn), (tn) onvergerespetively to s , t suh that, by (2.47),js+ uj � �(�v); jt� uj � �(v); jt� u0j � � ;hene, we have that m1(u; v) � jI(u; v; s; t)j = limn!1 jI(un; vn; sn; tn)j = l;whih is impossible sine l > m1(u; v). Therefore, m1 is ontinuous.Let B be the open ball of radius 4" entred at (0;�4"). Arguing as in (2.16), we an prove thatI(u; v; u; t) 2 B (2.48)whenever 0 < jt� uj � �(v). In the same way we an prove thatI(u; v; s;�u) 2 B (2.49)for 0 < js+ uj � �(�v). We an writeI(u; v; s; t) = I(u; v; s;�u) + I(u; v;�u; u) + I(u; v; u; t): (2.50)So, for js+ uj � �(�v), jt� uj � �(v), and jt� u0j � � , by (2.49), (2.38), (2.39), and (2.48), we obtainthat I(u; 0; s; t) 2 (0; (u; 0)) +B +B;



Calibrations for minimizers with a retilinear disontinuity set 31hene, by (2.32), I(u; 0; s; t) belongs to the open ball of radius (u; 0) entred at (0; 0), and so, m1(u; 0) <(u; 0). By ontinuity, if V is small enough,m1(u; v) < (u; v) (2.51)for every (u; v) 2 V .Analogously, we de�nem2(u; v) := max fjI(u; v; s; t)j : js+ uj � �(�v); js+ u0j � �; jt� uj � �(v); g :Arguing as in the ase of m1 , we an prove that, if V is small enough,m2(u; v) < (u; v) (2.52)for every (u; v) 2 V .By (2.51), (2.52), and (2.46), we an onlude that I(u; v; s; t) belongs to the ball entred at (0; 0)with radius (u; v), for js+uj � �(�v) and jt�uj � �(v). More preisely, let E(u; v) be the intersetionof this ball with the upper half plane bounded by the horizontal straight line passing through the point(0; 34(u; v)): by (2.50), (2.40), (2.48), (2.49), and (2.32), we dedue thatI(u; v; s; t) 2 E(u; v) (2.53)for js+ uj � �(�v) and jt� uj � �(v).We an now onlude the proof of (b1). It is enough to onsider the ase �u � �(�v) � s � t �u+ �(v). We an writeI(u; v; s; t) = I(u; v; s ^ (�u+ �(�v)); t _ (u� �(v)))+ I(u; v; s _ (�u+ �(�v)); t ^ (u� �(v))) � I(u; v;�u+ �(�v); u� �(v)): (2.54)By (2.53), it follows thatI(u; v; s ^ (�u+ �(�v)); t _ (u� �(v))) 2 E(u; v): (2.55)Let C1(u; v) be the parallelogram having three onseutive verties at the points(2hf(v); 0); (0; 0); �(u; v) (�v; u� a)p(u� a)2 + v2 ;let C2(u; v) be the segment with endpoints(2hf(v); 0); (2hf(v); 0) + 2�(u; v) (�v; u� a)p(u� a)2 + v2 ;and let C(u; v) := C1(u; v) [ C2(u; v).From the de�nition of ' in A2 , A3 , A4 , it follows thatI(u; v;�u+ �(�v); u� �(v)) = (2hf(v); 0) + 2�(u; v) (�v; u� a)p(u� a)2 + v2 (2.56)and I(u; v; s1; s2) 2 C(u; v) (2.57)



32 Chapter 2for �u+ �(�v) � s1 � s2 � u� �(v). LetD(u; v) := C(u; v)� (2hf(v); 0)� 2�(u; v) (�v; u� a)p(u� a)2 + v2 :From (2.54), (2.55), (2.56), and (2.57) we obtainI(u; v; s; t) 2 E(u; v) +D(u; v): (2.58)As jvj < Æ < 10Æ < u� a by (2.33), the angle that the segment C2(u; v) forms with the vertial is lessthan artan(1=10). Moreover, we may assume that the lenght 2�(u; v) of the segment C2(u; v) is lessthan (u; v); indeed, this is true for v = 0 and, by ontinuity, it remains true if Æ is small enough. By(2.32) and (2.37), we have also that j2hf(v)j � (u; v)=16. Using these properties and simple geometrionsiderations, it is possible to prove that E(u; v) + D(u; v) is ontained in the ball with entre (0; 0)and radius (u; v). This onludes the proof of (b1).If �2xxu(0; 0) < 0, it is enough to hange the de�nition of � in the sets A2 and A4 , as follows:��(u; v) vp(a� u)2 + v2 �u + ��(u; v) a� up(a� u)2 + v2 �v + �ez;where a > u0 + 11Æ and �(u; v) := 12(a�p(a� u)2 + v2; 0)� 2": 2Theorem 2.5 Let u : 
 ! R be a harmoni funtion suh that �yu(x; 0) = 0 for (x; 0) 2 
 , and letw : 
! R be the funtion de�ned byw(x; y) := (u(x; y) + 1 for y > 0;u(x; y) for y < 0:Assume that �xu(0; 0) 6= 0 and �2xxu(0; 0) 6= 0 . Then there exists an open neighbourhood U of (0; 0)suh that w is a Dirihlet minimizer in U of the Mumford-Shah funtional (2.1).Proof. { We will write the alibration ' as in (2.28) and we will adopt the representation (2.29) for� . We will use the same tehnique as in Theorem 2.4. We give only the new de�nitions of the setsA1; : : : ; A5 and of the funtion � when �xu(0; 0) > 0 and �2xxu(0; 0) > 0, and leave to the reader theveri�ation of the fat that this funtion is a alibration for suitable values of the involved parameters.The ase �2xxu(0; 0) < 0 an be treated by the hanges introdued at the end of Theorem 2.4.Let u0 := u(0; 0). Given " > 0, h > 0, � > 0, and assumingV := f(u; v) : ju� u0j < Æ; jvj < Æg;we onsider the following subsets of V�RA1 := f(u; v; z) 2 V�R : u+ 1� �(v) < z < u+ 1 + �(v)g;A2 := f(u; v; z) 2 V�R : 5h+ �(u; v) < z < 5h+ �(u; v) + 1=�g;A3 := f(u; v; z) 2 V�R : 2h < z < 4hg;A4 := f(u; v; z) 2 V�R : h+ �(u; v) < z < h+ �(u; v) + 1=�g;A5 := f(u; v; z) 2 V�R : u� �(�v) < z < u+ �(�v)g;



Calibrations for minimizers with a retilinear disontinuity set 33where �(v) :=p4"2 � ("� v)2;and � is a suitable smooth funtion satisfying �(u; 0) = 0, whih will be de�ned later. For (u; v) 2 Vand z 2 R the vetor �(u; v; z) is de�ned as follows:8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

2("� v)p("� v)2 + (z � u� 1)2 �u � 2(z � u� 1)p("� v)2 + (z � u� 1)2 �v + ez in A1;���(u; v) vp(u� a)2 + v2 �u + ��(u; v) u� ap(u� a)2 + v2 �v + �ez in A2;f(v)�u + ez in A3;���(u; v) vp(u� a)2 + v2 �u + ��(u; v) u� ap(u� a)2 + v2 �v + �ez in A4;2("+ v)p("+ v)2 + (z � u)2 �u + 2(z � u)p("+ v)2 + (z � u)2 �v + ez in A5;ez otherwise,where a < u0 � 11Æ , � > 0,f(v) := � 1h  Z �(v)0 ("� v)pt2 + ("� v)2 dt+ Z �(�v)0 ("+ v)pt2 + ("+ v)2 dt! ;�(u; v) := 12(a+p(u� a)2 + v2; 0)� 2";and � is the solution of the Cauhy problem (2.35). 2





Chapter 3Calibrations for minimizers with aregular disontinuity setIn this hapter we onsider solutions u of the Euler-Lagrange equations for the homogeneous Mumford-Shah funtional (2.1) whose disontinuity set is an analyti urve onneting two boundary points.Setion 3.1 is devoted to the proof of the Dirihlet minimality of u in a uniform small neighbourhoodof Su . In Setion 3.2 we deal with a di�erent notion of minimality: instead of omparing u withperturbations whih an be very large, but onentrated in a �xed small domain, as in Setion 3.1, weonsider as ompetitors perturbations of u with L1 -norm very small outside a small neighbourhood ofSu , but support possibly oiniding with 
. Aording to this idea we give the following de�nition.De�nition 3.1 We say that u is a Dirihlet graph-minimizer of the Mumford-Shah funtional (2.1) in
 if there exists an open neighbourhood A of the omplete graph �u of u suh that u is a DirihletA -minimizer of (2.1).In Theorem 3.5 we give a suÆient ondition for the graph-minimality in terms of the geometrial prop-erties of Su (namely, the length and the urvature) and of a sort of apaity of Su with respet to thedomain 
, whih is de�ned in (3.58) and whose qualitative properties are studied in Subsetion 3.2.1.We present also a ounterexample when the ondition of Theorem 3.5 is violated.In the sequel the following notation and remarks will be useful. Given any subset U of R2 and Æ > 0,we denote by UÆ the Æ -neighbourhood of U , de�ned byUÆ := f(x; y) 2 R2 : 9(x0; y0) 2 U suh that j(x � x0; y � y0)j < Æg:Let � be a smooth urve in 
. Fix an orientation of � and all � the orresponding normal vetor�eldto �. If � 7! (x(�); y(�)) is a parameterization of � by the ar-length, then the (signed) urvature isgiven by urv �(�) = �h(�x(�); �y(�)); �(�)i; (3.1)sine the two vetors in (3.1) are parallel, it follows that[urv �(�)℄2 = (�x(�))2 + (�y(�))2: (3.2)We will denote the length of � by l(�), and the L1 -norm of the funtion (urv �) by k(�).35



36 Chapter 33.1 The Dirihlet minimalityIn this setion we prove that, if we assume that Su is an analyti urve, then the Euler-Lagrange equationsguarantee the Dirihlet minimality of u in small domains. This result generalizes Theorems 2.4 and 2.5of the previous hapter in several diretions: the disontinuity set Su does not need any more to beretilinear, there are no additional assumptions on the tangential derivatives of u along Su , and theDirihlet minimality of u is proved in a uniform neighbourhood of Su \ 
.Let us give and prove the preise statement of the result.Theorem 3.2 Let 
0 be a onneted open subset of R2 and � be a simple analyti urve in 
0 on-neting two points of the boundary. Let u be a funtion in H1(
0 n�) with Su = � , with di�erent traesat every point of � , and satisfying the Euler onditions in 
0 , that is,i) u is harmoni in 
0 n � ;ii) ��u = 0 on � ;iii) jru+j2 � jru�j2 = urv� at every point of � ,where ru� denote the traes of ru on � . Finally, let 
 be an open set with Lipshitz boundary,ompatly ontained in 
0 , suh that 
 \ � 6= ; . Then there exists an open neighbourhood U of � \ 
ontained in 
0 suh that u is a Dirihlet minimizer in U of the Mumford-Shah funtional (2.1).Proof. { In the sequel, the intersetion � \
 will be still denoted by �. Let� : (x = x(s)y = y(s)be a parameterization by the ar-length, where s varies in [0; l(�)℄ ; we hoose as orientation the normalvetor�eld �(s) = (� _y(s); _x(s)).By Cauhy-Kowalevski theorem (see [24℄) there exist an open neighbourhood U of � ontained in
0 and a harmoni funtion � de�ned on U suh that�(�(s)) = s and ���(�(s)) = 0:We an suppose U simply onneted. Let � : U ! R2 be the harmoni onjugate of � that vanishes on�, i.e., the funtion satisfying �x�(x; y) = ��y�(x; y), �y�(x; y) = �x�(x; y), and �(�(s)) = 0.Taking U smaller if needed, we an suppose that the map �(x; y) := (�(x; y); �(x; y)) is invertible onU . We all 	 the inverse funtion (�; �) 7! (~x(�; �); ~y(�; �)), whih is de�ned in the open set V := �(U).Note that, if U is small enough, then (~x(�; �); ~y(�; �)) belongs to � if and only if � = 0. Moreover,D	 = � ��~x ��~x��~y ��~y � = 1jr�j2 � �x� �x��y� �y� � ; (3.3)where, in the last formula, all funtions are omputed at (x; y) = 	(�; �), and so��~x = ��~y and ��~x = ���~y: (3.4)In partiular, ~x and ~y are harmoni.On U we will use the oordinate system (�; �) given by �. By (3.3) the anonial basis of the tangentspae to U at a point (x; y) is given by�� = r�jr�j2 ; �� = r�jr�j2 : (3.5)



Calibrations for minimizers with a regular disontinuity set 37For every (�; �) 2 V , let G(�; �) be the matrix assoiated with the �rst fundamental form of U in theoordinate system (�; �), and let g(�; �) be its determinant. By (3.3) and (3.5),g = ((��~x)2 + (��~y)2)2 = 1jr�(	)j4 : (3.6)We set (�; �) = 4pg(�; �) .From now on we will assume that V is symmetri with respet to f(�; �) 2 �(U) : � = 0g .Note that we an write the funtion u in this new oordinate system asu(�; �) = (u1(�; �) if (�; �) 2 V , � < 0,u2(�; �) if (�; �) 2 V , � > 0,where we an suppose that u1 and u2 are de�ned in V (indeed, u1 is a priori de�ned only on the setf(�; �) 2 V : � < 0g , but it an be extended to V by reetion; an analogous argument applies to u2 ),0 < u1(�; 0) < u2(�; 0) for every (�; 0) 2 V , andi) �2��ui(�; �) + �2��ui(�; �) = 0 for i = 1; 2;ii) ��u1(�; 0) = ��u2(�; 0) = 0;iii) (��u2(�; 0))2 � (��u1(�; 0))2 = urv �(�).The alibration '(x; y; z) on U�R will be written as'(x; y; z) = 12(�(x; y); �(x; y))�(�(x; y); �(x; y); z); (3.7)where � : V�R ! R3 an be represented by�(�; �; z) = ��(�; �; z)�� + ��(�; �; z)�� + �z(�; �; z)ez; (3.8)where ez is the third vetor of the anonial basis of R3 , and �� , �� are omputed at the point 	(�; �).We now reformulate the onditions of Setion 1.3 in this new oordinate system. It is known fromdi�erential geometry (see, e.g., [9, Proposition 3.5℄) that, if X = X���+X��� is a vetor�eld on U , thenthe divergene of X is given by divX = 12 (��(2X�) + ��(2X�)): (3.9)Using (3.5), (3.6), (3.7), (3.8), and (3.9) it turns out that ' is a alibration if the following onditionsare satis�ed:(a1) (��(�; �; z))2 + (��(�; �; z))2 � 4�z(�; �; z) for every (�; �; z) 2 V�R ;(a2) ��(�; �; u(�; �)) = 2��u(�; �), ��(�; �; u(�; �)) = 2��u(�; �), and �z(�; �; u(�; �)) = (��u(�; �))2 +(��u(�; �))2 for every (�; �) 2 V ;(b1) �Z ts ��(�; �; z) dz�2 +�Z ts ��(�; �; z) dz�2 � 2(�; �) for every (�; �) 2 V , s; t 2 R ;(b2) Z u2u1 ��(�; 0; z) dz = 0 and Z u2u1 ��(�; 0; z) dz = (�; 0) = 1 for every (�; 0) 2 V ;(1) ���� + ���� + �z�z = 0 for every (�; �; z) 2 V�R .



38 Chapter 3Given suitable parameters " > 0 and � > 0, that will be hosen later, we onsider the followingsubsets of V�R : A1 := f(�; �; z) 2 V�R : z < u1(�; �)� "g;A2 := f(�; �; z) 2 V�R : u1(�; �)� " < z < u1(�; �) + "g;A3 := f(�; �; z) 2 V�R : u1(�; �) + " < z < �1(�; �)g;A4 := f(�; �; z) 2 V�R : �1(�; �) < z < �2(�; �) + 1=�g;A5 := f(�; �; z) 2 V�R : �2(�; �) + 1=� < z < u2(�; �) � "g;A6 := f(�; �; z) 2 V�R : u2(�; �)� " < z < u2(�; �) + "g;A7 := f(�; �; z) 2 V�R : z > u2(�; �) + "g;where �1 and �2 are suitable smooth funtion suh that u1(�; 0) < �1(�; 0) = �2(�; 0) < u2(�; 0), whihwill be de�ned later. Sine we suppose u2 > 0 on V , if " is small enough, while � is suÆiently large,then the sets A1; : : : ; A7 are nonempty and disjoint, provided V is suÆiently small.The vetor �(�; �; z) introdued in (3.7) will be written as�(�; �; z) = (���(�; �; z); �z(�; �; z));where ��� is the two-dimensional vetor given by the pair (�� ; ��). For (�; �) 2 V and z 2 R we de�ne�(�; �; z) as follows: 8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
(0; !1(�; �)) in A1 [ A3;�2ru1 + 2 z�u1v1 rv1; ���ru1 + z�u1v1 rv1���2� in A2;(��(�; �)rw; �) in A4;(0; !2(�; �)) in A5 [ A7;�2ru2 + 2 z�u2v2 rv2; ���ru2 + z�u2v2 rv2���2� in A6;where r denotes the gradient with respet to the variables (�; �), the funtions vi are de�ned byv1(�; �) := "+M�; v2(�; �) := "�M�;and M and � are positive parameters whih will be �xed later, while!i(�; �) := "2M2v2i (�; �) � (��ui(�; �))2 � (��ui(�; �))2 (3.10)for i = 1; 2, and for every (�; �) 2 V . We hoose w as the solution of the Cauhy problem8>>><>>>:�w = 0;w(�; 0) = � 2"1� 2"M Z �0 n(s)(��u1(s; 0) + ��u2(s; 0)) ds;��w(�; 0) = n(�); (3.11)



Calibrations for minimizers with a regular disontinuity set 39where n is a positive analyti funtion that will be hosen later in a suitable way (if V is suÆientlysmall, w is de�ned in V ). To de�ne � , we need some further explanations: we all p(�; �) the solutionof the problem 8<:��p(�; �) = ��w��w (p(�; �); �);p(�; 0) = �; (3.12)whih is de�ned in V , provided V is small enough. By applying the Impliit Funtion theorem, it iseasy to see that there exists a funtion q de�ned in V (take V smaller, if needed) suh thatp(q(�; �); �) = �: (3.13)At last, we de�ne �(�; �) := 1n(q(�; �)) (1� 2"M):We hoose �i , for i = 1; 2, as the solution of the Cauhy problem(��(�; �)��w(�; �)���i(�; �) + ��(�; �)��w(�; �)���i(�; �)� � = �!i(�; �);�i(�; 0) = 12 (u1(�; 0) + u2(�; 0)): (3.14)Sine the line � = 0 is not harateristi, there exists a unique solution �i 2 C1(V ), provided V issmall enough.The purpose of the de�nition of � in A2 and A6 is to provide a divergene-free vetor�eld satisfyingondition (a2) and suh that ��(�; 0; z) � 0 for u1 < z < u2;��(�; 0; z) � 0 for z < u1 and z > u2:These properties are ruial in order to obtain (b1) and (b2) simultaneously.The role of A4 is to give the main ontribution to the integral in (b2). The idea of the onstrution isto start from the gradient �eld of a harmoni funtion w whose normal derivative is positive on the line� = 0, while the tangential derivative is hosen in order to annihilate the � -omponent of � , as requiredin (b2). Then, we multiply the �eld by a funtion � whih is de�ned �rst on � = 0 in order to make(b2) true, and then in a neighbourhood of � = 0 by assuming � onstant along the integral urves ofthe gradient �eld, so that �rw remains divergene-free.The other sets Ai are simply regions of transition, where the �eld is taken purely vertial.Sine !i(�; 0) =M2 � (��ui(�; 0))2;ondition (a1) is satis�ed in A1 [ A3 and in A5 [ A7 if we require thatM > supfj��ui(�; 0)j : (�; 0) 2 V; i = 1; 2g;provided V is small enough.Arguing in a similar way, if we impose that� > sup��24 (1� 2"M)2�1 + 4"2(1� 2"M)2 (��u1(�; 0) + ��u2(�; 0))2� : (�; 0) 2 V � ;ondition (a1) holds in A4 , provided V is suÆiently small.In the other ases (a1) is trivial.



40 Chapter 3Looking at the de�nition of � on A2 and A6 , one an hek that ondition (a2) is satis�ed.Let us prove ondition (1). By Lemma 1.5 it follows that � is divergene-free in A2 [ A6 , notingthat it is onstruted starting from the family of harmoni funtions ui(�; �) + tvi(�; �).In A4 ondition (1) is true sine, as remarked above, � is the produt of rw with the funtion �whih is onstant along the integral urves of rw by onstrution.In the other sets ondition (1) is trivially satis�ed.Note that the normal omponent of � is ontinuous aross eah �Ai : for the regions A2 , A6 , andfor A4 , this ontinuity is guaranteed by our hoie of !i and �i , respetively. This implies that (1) issatis�ed in the sense of distributions on V�R .By diret omputations we �nd thatZ u2u1 �� dz = 2"��u1 + 2"��u2 + ���2 � �1 + 1�����w; (3.15)Z u2u1 �� dz = 2"��u1 + 2"��u2 + M"2"+M� + M"2"�M� + ���2 � �1 + 1�����w; (3.16)for every (�; �) 2 V .By using (3.11) and the de�nition of � , we obtainZ u2(�;0)u1(�;0) ��(�; 0; z) dz = 0 (3.17)and Z u2(�;0)u1(�;0) ��(�; 0; z) dz = 1; (3.18)so ondition (b2) is satis�ed.The proof of ondition (b1) will be split in two steps: we �rst prove that ondition (b1) holds if sand t respetively belong to a suitable neighbourhood of u1(�; �) and u2(�; �), whose width is uniformwith respet to (�; �) in V ; then, by a quite simple ontinuity argument we show that ondition (b1) istrue if s or t is not too lose to u1(�; �) or u2(�; �) respetively.For (�; �) 2 V and s; t 2 R , we setI(�; �; s; t) := Z ts ���(�; �; z) dzand we denote its omponents by I� and I� .Step 1.{ For a suitable hoie of " and of the funtion n (see (3.11)) there exists Æ > 0 suh thatondition (b1) holds for js�u1(�; �)j < Æ , jt�u2(�; �)j < Æ , and (�; �) 2 V , provided V is small enough.To estimate the vetor whose omponents are given by (3.15) and (3.16), we use suitable polar oordinates.If V is small enough, for every (�; �) 2 V there exist �";n(�; �) > 0 and ��=2 < �";n(�; �) < �=2 suhthat I�(�; �; u1(�; �); u2(�; �)) = �";n(�; �) sin �";n(�; �); (3.19)I�(�; �; u1(�; �); u2(�; �)) = �";n(�; �) os �";n(�; �): (3.20)In the notation above we have made expliit the dependene on the parameter " and on the funtion nwhih appears in the de�nition of w (see (3.11)).



Calibrations for minimizers with a regular disontinuity set 41In order to prove ondition (b1), we want to ompare the behaviour of the funtions �";n and  forj�j small. We have already proved that �";n(�; 0) = (�; 0) = 1; we start omputing the �rst derivativeof  and of �";n with respet to the variable � .Claim 1.{ There holds that ��(jrx;y�(	)j2)(�; 0) = �2 urv�(�).Proof of the laim. By (3.6) we obtainjrx;y�(	)j2 = 1(��~x)2 + (��~y)2 ;hene ��(jrx;y�(	)j2) = �[(��~x)2 + (��~y)2℄�2(2��~x �2��~x+ 2��~y �2�� ~y): (3.21)Using the fat that (��~x)2 + (�� ~y)2 is equal to 1 at (�; 0), and the equalities in (3.4), we �nally get��(jrx;y�(	)j2)(�; 0) = �2(���~x �2��~y + ��~y �2��~x) = �2 urv�(�);where the last equality follows from (3.1): therefore the laim is proved.Sine  = (jrx;y�(	)j2)� 12 , one has that �� = � 12 (jrx;y�(	)j2)� 32 ��(jrx;y�(	)j2); using the previouslaim we an onlude that ��(�; 0) = �12��(jrx;y�(	)j2)(�; 0) = urv�(�):Using the equality�2";n(�; �) = �I�(�; �; u1(�; �); u2(�; �))�2 + [I�(�; �; u1(�; �); u2(�; �))℄2 ;we obtain���";n = 1�";n �� �I�(�; �; u1; u2)� I�(�; �; u1; u2) + 1�";n �� (I�(�; �; u1; u2)) I�(�; �; u1; u2):By (3.17) it follows that the �rst addend in the expression above is equal to zero at (�; 0), while by (3.18)it turns out that I�(�; 0; u1; u2) = �";n(�; 0) = 1; therefore,���";n(�; 0) = �� (I�(�; 0; u1; u2)) : (3.22)By (3.16) it follows that�� (I�(�; �; u1; u2)) = 2"�2��u1 + 2"�2��u2 � "2("+M�)2M2 + "2("�M�)2M2+ �(���2 � ���1)���w + �(�2 � �1 + 1=�)��(���w): (3.23)From (3.14) and the Euler ondition iii), we have that�(���2(�; 0)� ���1(�; 0))�(�; 0)��w(�; 0) = �!2(�; 0) + !1(�; 0)= (��u2(�; 0))2 � (��u1(�; 0))2 = urv �(�); (3.24)while ��(���w)(�; 0) = ���(���w)(�; 0) = ��(2"��u1(�; 0) + 2"��u2)(�; 0);



42 Chapter 3where we have used the fat that �rw is divergene-free and the de�nition of � and w . Putting thislast fat together with (3.23), (3.24), and the harmoniity of ui , we �nally get���";n(�; 0) = urv�(�) = ��(�; 0): (3.25)Claim 2.{ There holds that �2��(jrx;y�(	)j2)(�; 0) = 4 [urv �(�)℄2:Proof of the laim. By di�erentiating with respet to � the expression in (3.21) and by (3.4), weobtain �2��(jrx;y�(	)j2) = �2[(��~x)2 + (�� ~y)2℄�2[(�2�� ~x)2 + ��~x �3���~x+ (�2��~y)2 + ��~y �3��� ~y℄+8[(��~x)2 + (�� ~y)2℄�3(��~x �2��~x+ ��~y �2��~y)2= �2[(��~x)2 + (�� ~y)2℄�2[(�2�� ~y)2 + (�2��~x)2 � ��~x �3���~x� ��~y �3���~y℄+8[(��~x)2 + (�� ~y)2℄�3(���~x �2��~y + ��~y �2��~x)2:Note that ���~x �3���~x� ��~y �3���~y = (�2��~y)2 + (�2�� ~x)2 � 12�2��((��~x)2 + (�� ~y)2):Using (3.1), (3.2), and the fat that (��~x)2 + (��~y)2 is equal to 1 at (�; 0), we obtain the laim.By using Claims 1 and 2, we an onlude that�2��(�; 0) = �34(jrx;y�(	)j2)� 52 [��(jrx;y�(	)j2)℄2 � 12(jrx;y�(	)j2)� 32 �2��(jrx;y�(	)j2)�����(�;0)= [urv �(�)℄2: (3.26)The seond derivative of �";n with respet to � is given by�2�� �";n = 1�";n n��� �I�(�; �; u1; u2)��2 + �2�� �I�(�; �; u1; u2)� I�(�; �; u1; u2)+ [�� (I�(�; �; u1; u2))℄2 + �2�� (I�(�; �; u1; u2)) I�(�; �; u1; u2)o� 1�";n [��(�";n)℄2:By the equalities (3.17), (3.18), and (3.22), the expression above omputed at (�; 0) redues to�2�� �";n(�; 0) = h�� �I�(�; �; u1; u2)���(�;0)i2 + �2�� (I�(�; �; u1; u2))j(�;0) : (3.27)By di�erentiating (3.15) and (3.23) with respet to � , we obtain that�� �I�(�; �; u1; u2)� (�; 0) = [�(���2 � ���1)���w + ��� ��w + ��2��w℄j(�;0); (3.28)and�2�� (I�(�; �; u1; u2)) (�; 0) = 4"M3 + �[�2���2(�; 0)� �2���1(�; 0)℄�(�; 0)��w(�; 0)+ 2�[���2(�; 0)� ���1(�; 0)℄��(���w)(�; 0) + �2���(�; 0)��w(�; 0)+ 2���(�; 0)�2��w(�; 0) + �(�; 0)�3���w(�; 0); (3.29)



Calibrations for minimizers with a regular disontinuity set 43while, by using the equation (3.14),[�(�2���2 � �2���1)���w℄j(�;0) = [��!1 � ��!2 � ���(���2 � ���1)���w � ���(���w)(���2 � ���1)℄j(�;0)= [�4"M3 � ���(���2 � ���1)���w + ���(���w)(���2 � ���1)℄j(�;0):Sine by (3.24) and by the de�nition of � we have that�[���2(�; 0)� ���1(�; 0)℄ = urv �(�)1� 2"M ;and moreover, �(�; 0)��w(�; 0) = �2"(��u1(�; 0) + ��u2(�; 0));we obtain that[�(�2���2 � �2���1)���w + 2�(���2 � ���1)��(���w)℄j(�;0) == �4"M3 + 2"1� 2"M ��((��u1 � ��u2) urv �)(�; 0):By using the de�nition of � , we an write��� = �(1� 2"M) n0(�)n2(�)��q;�2��� = �(1� 2"M) ��2(n0(�))2n3(�) (��q)2 + n00(�)n2(�) (��q)2 + n0(�)n2(�)�2��q� :In order to ompute the derivatives of q , we di�erentiate the equality (3.13) with respet to � :��q(�; 0) = ���p(�; 0) = 2"1� 2"M (��u1(�; 0) + ��u2(�; 0));�2��q(�; 0) = �2�2��p(�; 0)��q(�; 0)� �2��p(�; 0) = �� (��w)2(��w)3 �2��w � 1��w�2��w� (�; 0):By the de�nition of w , we obtain�2��q(�; 0) = �n0(�)n(�) � n0(�)n(�) 4"2(1� 2"M)2 (��u1(�; 0) + ��u2(�; 0))2:Finally, we have�2��w(�; 0) = ��2��w(�; 0) = 2"1� 2"M [n0(��u1 + ��u2) + n(�2��u1 + �2��u2)℄j(�;0);�3���w(�; 0) = ��2����w(�; 0) = �n00(�):By substituting all information above in (3.28) and in (3.29), and by using (3.27), we �nally obtain that�2�� �";n(�; 0) = �a"(�)n00(�)n(�) + h"��; n0(�)n(�) �= �a"(�)�n0(�)n(�) �0 + h"��; n0(�)n(�) �� a"(�)�n0(�)n(�) �2 ; (3.30)



44 Chapter 3where a"(�)! 1 uniformly in [0; l(�)℄,h"(�; �) ! 2�2 uniformly on the ompat sets of [0; l(�)℄�R, (3.31)as "! 0.Claim 3.{ There exists " > 0 suh that for every " 2 (0; "), we an �nd an analyti funtion n :[0; l(�)℄! (0;+1) satisfying�2��(�";n � )(�; 0) = � �216 l2(�) and ����n0(�)n(�) ���� � N 8� 2 [0; l(�)℄; (3.32)where N := 1 +max� �4 l(�) ; k(�)� and k(�) = kurv �k1 .Proof of the laim. Set � := n0=n ; in order to prove the laim, by (3.30) and (3.26) we study theCauhy problem 8<:�a"(�)� 0 + h"(�; �)� �2 � [urv �(�)℄2 = � �216 l2(�) ;�(0) = 0; (3.33)and we investigate for whih values of " it admits a solution de�ned in the whole interval [0; l(�)℄ , withL1 -norm less than N . As "! 0, by (3.31) we obtain the limit problem8<:�� 0 + �2 � (urv �)2 = � �216 l2(�) ;�(0) = 0: (3.34)By omparing with the solutions �1 and �2 of the Cauhy problems8<:�� 01 + �21 = � �216 l2(�) ;�1(0) = 0; 8<:�� 02 + �22 � k2(�) = � �216 l2(�) ;�2(0) = 0; (3.35)one easily sees that the solution of (3.34) is de�ned in [0; l(�)℄ , with L1 -norm less than the maximumbetween k�1k1 and k�2k1 , whih is, by expliit omputation, less than maxf�=(4l(�)); k(�)g . Bythe theorem of ontinuous dependene on the oeÆients (see [23℄), we an �nd " suh that, for every" 2 (0; "), the solution of (3.33) is de�ned in [0; l(�)℄ with L1 -norm less than N .For every " 2 (0; "), we set n"(�) := eR �0 �"(s) ds; (3.36)where �" is the solution of (3.33).From now on we will simply write �" and �" instead of �";n" and �";n" .We now want to estimate the angle �"(�; �) by a quantity whih is independent of " . Sine by (3.15)and (3.16)tan �" = 2"��u1 + 2"��u2 + � ��2 � �1 + 1�����w2"��u1 + 2"��u2 +M"2("+M�)�1 +M"2("�M�)�1 + � ��2 � �1 + 2�����w;



Calibrations for minimizers with a regular disontinuity set 45we have���"(�; 0) = � 2"1� 2"M (��u1 + ��u2)�urv �� 2"(��u1 + ��u2)n0"(�)n"(�)�+ (1� 2"M)n0"(�)n"(�) ;and so, by Claim 3, if " is suÆiently small,j���"(�; 0)j < N 8� 2 [0; l(�)℄: (3.37)Let ~�(�) be an arbitrary ontinuous funtion with~�(0) = 0 and ~�0(0) = N ; (3.38)by (3.37), it follows that j�"(�; �)j < ~�(�) sign � (3.39)for every (�; �) 2 V , provided V is suÆiently small.Given h > 0, we onsider the vetorsbh1(�; �; s) := �0;�2(s� u1(�; �))��u1(�; �)� h(s� u1(�; �))2� ;bh2(�; �; t) := �0; 2(t� u2(�; �))��u2(�; �)� h(t� u2(�; �))2�for (�; �) 2 V and s; t 2 R . We denote by B(r) the open ball entred at (0;�r) with radius r .Let us de�ne rh" (�; �; s; t) as the maximum radius r suh that the set(�"(�; �) sin ~�(�); �"(�; �) os ~�(�)) + bh1(�; �; s) + bh2 (�; �; t) +B(r)is ontained in the ball entred at (0; 0) with radius (�; �).Claim 4.{ If we de�ne d := 11 + 16 l2(�)N2=�2 ; (3.40)where N is the onstant introdued in the previous laim, then there exists h > 0 suh that for every" 2 (0; ") (see Claim 3), there exists Æ 2 (0; ") so that, if V is small enough,inf �2 rh" (�; �; s; t) : (�; �) 2 V; js� u1(�; �)j � Æ; jt� u2(�; �)j � Æ	 > d2 : (3.41)Proof of the laim. Let �h" (�; �; s; t) > 0 and ��=2 < �h" (�; �; s; t) < �=2 be suh that��"(�; �) sin ~�(�); �"(�; �) os ~�(�)�+ bh1 (�; �; s) + bh2 (�; �; t) == ��h" (�; �; s; t) sin �h" (�; �; s; t); �h" (�; �; s; t) os �h" (�; �; s; t)� : (3.42)To prove Claim 4, it is enough to show that, for every " 2 (0; "), there exists Æ 2 (0; ") with the propertythat �1� d2 os �h" (�; �; s; t)� �h" (�; �; s; t) < �1� d2� (�; �) (3.43)



46 Chapter 3for js � u1(�; �)j � Æ , jt � u2(�; �)j � Æ , and (�; �) 2 V with � 6= 0, provided V is suÆiently small.Indeed, if (3.43) holds, it follows in partiular that �h" (�; �; s; t) < (�; �), and this inequality with someeasy geometri omputations implies that2 rh" (�; �; s; t) = 2(�; �)� (�h" (�; �; s; t))2 � �h" (�; �; s; t) os �h" (�; �; s; t) ;at this point, it is easy to see that, if V is small enough, inequality (3.43) implies that 2 rh" (�; �; s; t) > d=2,that is Claim 4. So let us prove (3.43).We set fd;h(�; �; s; t) := �1� d2 os �h" (�; �; s; t)� �h" (�; �; s; t)��1� d2� (�; �)and we note that fd;h(�; 0; u1(�; 0); u2(�; 0)) = 0. We will show that1. r�;s;t fd;h(�; 0; u1(�; 0); u2(�; 0)) = 0 if (�; 0) 2 V ,2. r2�;s;t fd;h(�; 0; u1(�; 0); u2(�; 0)) is negative de�nite if (�; 0) 2 V ,where r�;s;t fd;h and r2�;s;t fd;h denote respetively the gradient and the Hessian matrix of fd;h withrespet to the variables (�; s; t). Equality 1 follows by diret omputations and by (3.25). Using (3.42),the equality in (3.32), and (3.38), we obtain�2��fd;h(�; 0; u1(�; 0); u2(�; 0)) = � �216 l2(�) �1� d2�+ d2N2;then by the de�nition of d , �2��fd;h(�; 0; u1(�; 0); u2(�; 0)) = � �232 l2(�) < 0: (3.44)Moreover we easily obtain that�2ttfd;h(�; 0; u1(�; 0); u2(�; 0)) = �2ssfd;h(�; 0; u1(�; 0); u2(�; 0)) = �2h�1� d2� ;�2s�fd;h(�; 0; u1(�; 0); u2(�; 0)) = �2�1� d2� �2��u1(�; 0);�2t�fd;h(�; 0; u1(�; 0); u2(�; 0)) = 2�1� d2� �2��u2(�; 0);�2tsfd;h(�; 0; u1(�; 0); u2(�; 0)) = 0:From the expressions it follows thatdet �2��fd;h �2s�fd;h�2s�fd;h �2ssfd;h ! (�; 0; u1(�; 0); u2(�; 0)) = h(2� d) �232 l2(�) � (2� d)2[�2��u1(�; 0)℄2;and that the determinant of the Hessian matrix of fd;h at (�; 0; u1(�; 0); u2(�; 0)) is given bydetr2�;s;t fd;h(�; 0; u1(�; 0); u2(�; 0)) = �h2(2� d)2 �232 l2(�) + h(2� d)3[(�2��u1(�; 0))2 + (�2��u2(�; 0))2℄:



Calibrations for minimizers with a regular disontinuity set 47By the de�nition of d , if h satis�esh > 32�2 (2� d)l2(�) 2Xi=1 k�2��uik2L1(�); (3.45)then for every (�; 0) 2 V we havedet �2��fd;h �2s�fd;h�2s�fd;h �2ssfd;h ! (�; 0; u1(�; 0); u2(�; 0)) > 0; (3.46)and detr2�;s;t fd;h(�; 0; u1(�; 0); u2(�; 0)) < 0: (3.47)By (3.44), (3.46), and (3.47), we an onlude that the Hessian matrix of fd;h at (�; 0; u1(�; 0); u2(�; 0))is negative de�nite: both (3.43) and Claim 4 are proved.Claim 5.{ For every r > 0 and h > 0, there exists ~" > 0 with the property that, if " 2 (0; ~"), one an�nd Æ 2 (0; ") so that I(�; �; u2(�; �); t) 2 B(r) + bh2 (�; �; t);I(�; �; s; u1(�; �)) 2 B(r) + bh1 (�; �; s);provided V is small enough, for every jt� u2(�; �)j � Æ , js� u1(�; �)j � Æ .Proof of the laim. By the de�nition of � in A6 , we obtain thatI�(�; �; u2(�; �); t) = 2(t� u2(�; �))��u2(�; �);I�(�; �; u2(�; �); t) = 2(t� u2(�; �))��u2(�; �)�M("�M�)�1(t� u2(�; �))2:To get the laim, we need to prove that(2(t� u2)��u2)2 + ��M("�M�)�1(t� u2)2 + h(t� u2)2 + r�2 < r2;whih is equivalent to(2(t� u2)��u2)2 + ��M("�M�)�1 + h�2 (t� u2)4 + 2r ��M("�M�)�1 + h� (t� u2)2 < 0:The onlusion follows by remarking that, if V is small enough, the left-handside is less than�4(��u2)2 + 2hr � 2Mr3" � Æ2 + o(Æ2);whih is negative if " is suÆiently small. The proof for u1 is ompletely analogous.Let us onlude the proof of the step. By Claim 4, we an �nd h > 0 suh that (3.41) is satis�ed for" 2 (0; "). If we hoose r suh that 2r < d=4, by Claim 5 there exists ~" > 0 suh that for every " 2 (0; ~")there is Æ 2 (0; ") so thatI(�; �; s; u1(�; �)) + I(�; �; u2(�; �); t) 2 B(2r) + bh1(�; �; s) + bh2 (�; �; t) (3.48)



48 Chapter 3for every js� u1(�; �)j < Æ , jt� u2(�; �)j < Æ , and (�; �) 2 V . If we take " � minf~"; "g , then by Claim 4we have that the setB(2r) + (�"(�; �) sin ~�(�); �"(�; �) os ~�(�)) + bh1(�; �; s) + bh2(�; �; t)is ontained in the ball entred at (0; 0) with radius (�; �). Some easy geometri onsiderations showthat the relation between �" and ~� (see (3.39)) implies that also the setB(2r) + (�"(�; �) sin �"(�); �"(�; �) os �"(�)) + bh1 (�; �; s) + bh2(�; �; t) (3.49)is ontained in the ball entred at (0; 0) with radius (�; �), if the onditionjbh1(�; �; s) + bh2 (�; �; t)j < 2rholds (to make this true, take Æ and V smaller if needed). SineI(�; �; s; t) = I(�; �; s; u1(�; �)) + I(�; �; u1(�; �); u2(�; �)) + I(�; �; u2(�; �); t);by (3.48), (3.19), and (3.20), it follows that I(�; �; s; t) belongs to the set (3.49), and then to the ballentred at (0; 0) with radius (�; �) for every js� u1(�; �)j < Æ , jt� u2(�; �)j < Æ , and (�; �) 2 V . Thisonludes the proof of Step 1.Step 2.{ If " is suÆiently small and Æ 2 (0; "), ondition (b1) holds for js � u1(�; �)j � Æ orjt� u2(�; �)j � Æ , and (�; �) 2 V , provided V is small enough.Let us �x Æ 2 (0; ") and setm1(�; �) := maxfjI(�; �; s; t)j : u1(�; �)� " � s � t � u2(�; �) + "; jt� u2(�; �)j � Æg:It is easy to see that the funtion m1 is ontinuous. Let us prove that m1(�; 0) < (�; 0) = 1.Fixed (�; 0) 2 V , u1(�; 0)� " � s � t � u2(�; 0) + " , with jt� u2(�; 0)j � Æ , we an writeI(�; 0; s; t) = I(�; 0; s; u1(�; 0)) + I(�; 0; u1(�; 0); u2(�; 0)) + I(�; 0; u2(�; 0); t): (3.50)Claim 6.{ For every r > 0 there exists " > 0 suh thatI(�; 0; u2(�; 0); t) 2 B(r); I(�; 0; s; u1(�; 0)) 2 B(r)for 0 < js� u1(�; 0)j � " , 0 < jt� u2(�; 0)j � " , and (�; 0) 2 V .Proof of the laim. See the similar proof of Claim 5 above.By (3.50), (3.17), (3.18), and Claim 6, it follows thatI(�; 0; s; t) 2 (0; 1) +B(r) +B(r) = (0; 1) +B(2r) (3.51)for 0 < js � u1(�; 0)j � " , Æ � jt � u2(�; 0)j � " . If r < 1=4, the set (0; 1) + B(2r) is ontained in theopen ball entred at (0; 0) with radius 1.It remains to study the ase js � u1j � " and the ase jt � u2j � " . Let us onsider the latter; theformer would be ompletely analogous. We an writeI(�; 0; s; u1(�; 0)) = I(�; 0; s ^ (u1(�; 0) + "); u1(�; 0)) + I(�; 0; s _ (u1(�; 0) + "); u1(�; 0) + ");I(�; 0; u2(�; 0); t) = I(�; 0; u2(�; 0); u2(�; 0)� ") + I(�; 0; u2(�; 0)� "; t):



Calibrations for minimizers with a regular disontinuity set 49Therefore, by (3.50)I(�; 0; s; t) = I(�; 0; u1(�; 0); u2(�; 0)) + I(�; 0; s ^ (u1(�; 0) + "); u1(�; 0))+ I(�; 0; u2(�; 0); u2(�; 0)� ") + I(�; 0; s _ (u1(�; 0) + "); t)� I(�; 0; u1(�; 0) + "; u2(�; 0)� "): (3.52)If �2"(��u1(�; 0) + ��u2(�; 0)) � 0, we de�neC := [0;�2"(��u1(�; 0) + ��u2(�; 0))℄�[0; 1� 2"M ℄;if �2"(��u1(�; 0)+��u2(�; 0)) < 0, we simply replae [0;�2"(��u1(�; 0)+��u2(�; 0))℄ by [�2"(��u1(�; 0)+��u2(�; 0)); 0℄. From the de�nition of � in A3 [ A4 [A5 , it follows thatI(�; 0; u1(�; 0) + "; u2(�; 0)� ") = (�2"(��u1(�; 0) + ��u2(�; 0)); 1� 2"M) (3.53)and I(�; 0; s; t) 2 C (3.54)for u1(�; 0) + " � s � t � u2(�; 0) � " . Let D := C � (�2"(��u1(�; 0) + ��u2(�; 0)); 1 � 2"M). SineI�(�; 0; u2(�; 0); u2(�; 0)� ") = �M" , from (3.52), (3.17), (3.18), Claim 6, (3.53), and (3.54), we obtainI(�; 0; s; t) 2 [(0; 1) +B(r) +B(r)℄ \ f(x; y) 2 R2 : y < 1� "Mg +D= [(0; 1) +B(2r)℄ \ f(x; y) 2 R2 : y < 1� "Mg +D:If r < 1=4 and if " is suÆiently small, the set [(0; 1) + B(2r)℄ \ f(x; y) 2 R2 : y < 1 � "Mg + D isontained in the open ball entred at (0; 0) with radius 1 and this means that m1(�; 0) < (�; 0).Analogously we de�nem2(�; �) := maxfjI(�; �; s; t)j : u1(�; �)� " � s � t � u2(�; �) + "; js� u1(�; �)j � Æg:Arguing as in the ase of m1 , we an prove that m2 is ontinuous and m2(�; 0) < (�; 0). By ontinuity,if V is small enough, m1(�; �) < (�; �) and m2(�; �) < (�; �), for every (�; �) 2 V . This onludes theproof of Step 2.By Step 1 and Step 2 we dedue that, hoosing " suÆiently small and n = n" (see (3.36)), ondition(b1) is true for u1(�; �) � " � s; t � u2(�; �) + " and in fat for every s; t 2 R , from the de�nition of �in A1 and A7 . 23.2 The graph-minimalityWe start this setion with a negative result: if the domain 
 is too large, the Euler onditions do notguarantee the graph-minimality introdued in De�nition 3.1, as the following ounterexample (proposedby Gianni Dal Maso) shows.Proposition 3.3 Let R be the retangle (1; 1 + 4l)�(�l; l) and letu(x; y) := ( x if y � 0,�x if y < 0.Then u satis�es the Euler onditions for the Mumford-Shah funtional in R , but it is not a Dirihletgraph-minimizer in R for l large enough.



50 Chapter 3Proof. { The Euler onditions are obviously satis�ed by u in R .Let R0 be the retangle (0; 4)�(�1; 0) and let w be any funtion in H1(R0) suh that w(x; 0) = xfor x 2 (0; 2), and w(x; y) = 0 for (x; y) 2 �R0 n ((0; 4)�f0g).The idea is to perturb u by the resaled funtion v(x; y) := lw(x�1l ; yl ). We de�ne the perturbedfuntion ~u(x; y) := 8><>: x on R1 n T",�x+ � (x� 1) on T",�x+ � v(x; y) on R2,where � is a positive parameter and the retangles R1 , R2 , and the triangle T" are indiated in Fig. 3.1.We want to show that, if we set  := RR0 jrw(x; y)j2dx dy , for every l >  and for every "0 , �0 > 0 there
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Figure 3.1: the regions R1 , R2 and T" .exist " < "0 and � < �0 suh thatZR jru(x; y)j2dx dy +H1(Su) > ZR jr~u(x; y)j2dx dy +H1(S~u):By de�nition, ~u satis�es the boundary onditions. Sine by the onstrution of v the funtion ~u isontinuous on the interfae between T" and R2 , thenH1(Su)�H1(S~u) = 2l� 2pl2 + "2 = �"2l + o("2): (3.55)On the triangle T" , we obtainZT" jru(x; y)j2dx dy � ZT" jr~u(x; y)j2dx dy = 2l"� � l"�2: (3.56)



Calibrations for minimizers with a regular disontinuity set 51Finally, sine we have that jr~uj2 = 1 + �2jrvj2 � 2� �xv in R2 , taking into aount the boundaryonditions of v , we getZR2 jru(x; y)j2dx dy � ZR2 jr~u(x; y)j2dx dy = ��2 ZR2 jrv(x; y)j2dx dy= �l2�2 ZR0 jrw(x; y)j2dx dy: (3.57)In order to onlude, by (3.55), (3.56), and (3.57), we have to show that for l large we an hoose " and� arbitrarily lose to 0 suh that�"2l � l2�2 + 2l"� � l"�2 + o("2) > 0:If we hoose � = "=(l), then the equality above redues to�"2l + "2 + o("2) > 0;whih is true if l >  . 2As suggested by Proposition 3.3, to get the graph-minimality we have to add some restritions on thedomain 
. To this aim we introdue a suitable notion of apaity: given an open set U (with Lipshitzboundary) and a portion � of �U (with nonempty relative interior in �U ), we de�ne K(�; U) by thevariational problemK(�; U) := inf �ZU jrv(x; y)j2dx dy : v 2 H1(U); Z� v2dH1 = 1; and v = 0 on �U n �� : (3.58)First of all, it is easy to see that in the problem above the in�mum is attained. Moreover, if U1 � U2 ,and �1 � �2 , then K(�1; U1) � K(�2; U2); this suggests that, when K(�; U) is very large, U has to bethin in some sense. It is onvenient to give the following de�nition.De�nition 3.4 Given a simple analyti urve � , we say that an open set 
 is �-admissible if it isbounded, � \ 
 onnets two points of �
 , and 
 n � has two onneted omponents having a Lipshitzboundary.The following theorem gives a suÆient ondition for the graph-minimality in terms of K(�;
) and ofthe geometrial properties of the urve. We reall that l(�) denotes the length of �, urv � its urvature,and k(�) the L1 -norm of urv �.Theorem 3.5 Let 
0 , 
 , u , and � = Su satisfy the same assumptions as in Theorem 3.2; supposethat 
 is �-admissible and denote by 
1 and 
2 the two onneted omponents of 
 n � , by ui therestrition of u to 
i , and by ��ui its tangential derivative on � . There exists an absolute onstant > 0 (independent of 
0 , 
 , � , and u) suh that ifmini=1;2K(� \ 
;
i)1 + l2(� \
) + l2(� \ 
)k2(� \ 
) >  2Xi=1 k��uik2C1(�\
); (3.59)then u is a Dirihlet graph-minimizer on 
 .



52 Chapter 3Remark that ondition (3.59) imposes a restrition on the size of 
 depending on the behaviour of ualong Su : if u has large or very osillating tangential derivatives, we have to take 
 quite small toguarantee that (3.59) is satis�ed. In the speial ase of a loally onstant funtion u , ondition (3.59) isalways ful�lled; so u is a Dirihlet graph-minimizer whatever 
 is, in agreement with a result of [2℄.Proof. { From the de�nition of d and N (see (3.40) and Claim 3 in the proof of Theorem 3.2) it followsthat there is an absolute onstant ~ > 0 (independent of 
0 , 
, �, and u) suh that~ (1 + l2(�)k2(�)) > 16d : (3.60)The absolute onstant  , whih appears in (3.59), is de�ned by := max�~; 64�2� : (3.61)Atually, to avoid problems of boundary regularity, we shall work not exatly in 
, but in a little bitlarger set. Let 
0 be a �-admissible set suh that 
 �� 
0 �� 
0 , andmini=1;2K(� \ 
0;
0i)1 + l2(� \
0) + l2(� \ 
0)k2(� \ 
0) >  2Xi=1 k��uik2C1(�\
0);where 
0i denote the onneted omponents of 
0 n �. This is possible by (3.59) and by the ontinuityproperties of K .The idea of the proof is to onstrut �rst a alibration ' in a ylinder with base an open neighbourhoodof � \ 
0 , and then to extend ' in a tubular neighbourhood of graphu .Constrution of the alibration around �We essentially reyle the onstrution of Theorem 3.2, but we need to slightly modify the de�nitionaround the graph of u , in order to exploit ondition (3.59) and get the extendibility.To de�ne the alibration '(x; y; z) we use the same notation and the oordinate system (�; �) on U(whih is supposed to be an open neighbourhood of �\
0 ) introdued in the proof of Theorem 3.2. Thevetor�eld will be written as'(x; y; z) = 12(�(x; y); �(x; y))�(�(x; y); �(x; y); z); (3.62)where � an be represented by�(�; �; z) = ��(�; �; z)�� + ��(�; �; z)�� + �z(�; �; z)ez:Given suitable parameters " > 0 and � > 0, we onsider the following subsets of V�R :A1 := f(�; �; z) 2 V�R : u1(�; �)� " v1(�; �) < z < u1(�; �) + " v1(�; �)g;A2 := f(�; �; z) 2 V�R : u1(�; �) + " v1(�; �) < z < u1(�; �) + 2"g;A3 := f(�; �; z) 2 V�R : u1(�; �) + 2" < z < �1(�; �)g;A4 := f(�; �; z) 2 V�R : �1(�; �) < z < �2(�; �) + 1=�g;A5 := f(�; �; z) 2 V�R : �2(�; �) + 1=� < z < u2(�; �) � 2"g;A6 := f(�; �; z) 2 V�R : u2(�; �)� 2" < z < u2(�; �)� " v2(�; �)g;A7 := f(�; �; z) 2 V�R : u2(�; �)� " v2(�; �) < z < u2(�; �) + " v2(�; �)g;



Calibrations for minimizers with a regular disontinuity set 53where the funtions vi are de�ned asv1(�; �) := 1 +M�; v2(�; �) := 1�M�with M positive parameter suh that (1 + l2(� \ 
0) + l2(� \ 
0)k2(� \ 
0)) 2Xj=1 k��ujk2C1(�\
0) < M < minj=1;2K(� \ 
0;
0i); (3.63)while �1 and �2 are the solutions of the Cauhy problems (3.14). Sine we suppose u2 > 0 on V , if " issmall enough, while � is suÆiently large, then the sets A1; : : : ; A7 are nonempty and disjoint, providedV is suÆiently small.The vetor �(�; �; z) introdued in (3.62) will be written as�(�; �; z) = (���(�; �; z); �z(�; �; z));where ��� is the two-dimensional vetor given by the pair (�� ; ��). We de�ne �(�; �; z) as follows:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�2ru1 + 2 z�u1v1 rv1; ���ru1 + z�u1v1 rv1���2� in A1;�2r(u1 + "v1) + 2 z�u1�"v1~v1 r~v1; ���r(u1 + "v1) + z�u1�"v1~v1 r~v1���2� in A2;(0; !1(�; �)) in A3;(��(�; �)rw; �) in A4;(0; !2(�; �)) in A5;�2r(u2 � "v2) + 2 z�u2+"v2~v2 r~v2; ���r(u2 � "v2) + z�u2+"v2~v2 r~v2���2� in A6;�2ru2 + 2 z�u2v2 rv2; ���ru2 + z�u2v2 rv2���2� in A7;where r denotes the gradient with respet to the variables (�; �), the funtions ~vi are de�ned by~v1(�; �) := 2"+M 0�; ~v2(�; �) := 2"�M 0�while !i(�; �) := "2�M +M 0 vi(�; �)~vi(�; �)�2 � (��ui(�; �))2 � (��ui(�; �))2for i = 1; 2, and for every (�; �) 2 V ; we take the onstant � suÆiently large in order to get therequired inequality between the horizontal and the vertial omponents of the �eld (see ondition (a1) ofSetion 1.3), and M 0 so large that !i is positive in V , provided V is small enough. We de�ne w as thesolution of the Cauhy problem8>>><>>>:�w = 0;w(�; 0) = � 4"1� "M 0 � 6"2M Z �0 n(s)(��u1(s; 0) + ��u2(s; 0)) ds;��w(�; 0) = n(�); (3.64)



54 Chapter 3where n is a positive analyti funtion that must be hosen in a suitable way. We de�ne�(�; �) := 1n(q(�; �)) (1� "M 0 � 6"2M);where the funtion q is onstruted in the same way as in (3.13).Let us prove that for a suitable hoie of the involved parameters the vetor�eld is a alibration in asuitable neighbourhood U of � \ 
0 , whih is equivalent to prove that � satis�es (a1), (a2), (b1), (b2),and (1) of page 37. The proof of onditions (a1), (a2), (b2), and (1) is the same as in Theorem 3.2.The proof of (b1) is split again in two steps.Step 1.{ For a suitable hoie of " and of the funtion n (see (3.64)) there exists Æ > 0 suh thatondition (b1) holds for js�u1(�; �)j < Æ , jt�u2(�; �)j < Æ , and (�; �) 2 V , provided V is small enough.We essentially repeat the proof given in Theorem 3.2: Claims 1, 2, 3, and 4 are still valid with the sameproof (up to the obvious hanges due to the di�erent de�nition of �). Claim 5 must be modi�ed asfollows.Claim 5.{ For h = 64�2 l2(�)P2i=1 k��uik2C1(�\
0) , there exist r 2 (0; d=8) and ~Æ > 0 suh that for everyÆ 2 (0; ~Æ) I(�; �; u2(�; �); t) 2 B(r) + bh2(�; �; t);I(�; �; s; u1(�; �)) 2 B(r) + bh1(�; �; s);provided V is small enough, for every jt� u2(�; �)j � Æ , js� u1(�; �)j � Æ .Proof of the laim. Using the de�nition of � in A7 , the laim is equivalent to prove(2(t� u2)��u2)2 + ��M(1�M�)�1 + h�2 (t� u2)4 + 2r ��M(1�M�)�1 + h� (t� u2)2 < 0;note that for a1 2 (0; 1) the left-handside is less than 4 2Xi=1 k��uik2C1(�\
0) + 2hr � 2r1 + a1M! Æ2 + o(Æ2);provided V is small enough. To obtain the laim, it is suÆient to prove that2r 2Xi=1 k��uik2C1(�\
0) < 11 + a1M � h: (3.65)Sine by (3.63), (3.60), and (3.61) we an writeM = �16 + a2d + 64�2 l2(� \ 
0)� 2Xi=1 k��uik2C1(�\
0);with a2 > 0, the inequality (3.65) is equivalent to2r < � 11 + a1 � 1� 64�2 l2(� \ 
0) + 16 + a2d 11 + a1 ;whih is true if a1 is suÆiently small and r is suÆiently lose to d=8. The proof for u1 is ompletelyanalogous.



Calibrations for minimizers with a regular disontinuity set 55To onlude the proof of the step, let r and h be as in Claim 5. If we hoose " < " and Æ � minf~Æ; "g ,by Claim 5 we have thatI(�; �; s; u1(�; �)) + I(�; �; u2(�; �); t) 2 B(2r) + bh1(�; �; s) + bh2 (�; �; t) (3.66)for every js� u1(�; �)j < Æ , jt� u2(�; �)j < Æ , and (�; �) 2 V ; sine h satis�es (3.45) and 2r < d=4, wean apply Claim 4 to dedue that the setB(2r) + (�"(�; �) sin ~�(�); �"(�; �) os ~�(�)) + bh1 (�; �; s) + bh2 (�; �; t)is ontained in the ball entred at (0; 0) with radius (�; �). Some easy geometri onsiderations showthat the relation between �" and ~� (see (3.39)) implies that also the setB(2r) + (�"(�; �) sin �"(�); �"(�; �) os �"(�)) + bh1(�; �; s) + bh2 (�; �; t) (3.67)is ontained in the ball entred at (0; 0) with radius (�; �), if the onditionjbh1 (�; �; s) + bh2 (�; �; t)j < 2rholds (to make this true, take Æ and V smaller if needed). SineI(�; �; s; t) = I(�; �; s; u1(�; �)) + I(�; �; u1(�; �); u2(�; �)) + I(�; �; u2(�; �); t);by (3.48), it follows that I(�; �; s; t) belongs to the set (3.67), and then to the ball entred at (0; 0) withradius (�; �) for every js� u1(�; �)j < Æ , jt� u2(�; �)j < Æ , and (�; �) 2 V . This onludes the proof ofStep 1.Step 2.{ If " is suÆiently small and Æ 2 (0; "), ondition (b1) holds for js � u1(�; �)j � Æ orjt� u2(�; �)j � Æ , and (�; �) 2 V , provided V is small enough.By using ondition (3.63), arguing as in the proof of Claim 5, we an prove the following laim.Claim 6.{ There exist r < 1=4 and " > 0 suh thatI(�; 0; u2(�; 0); t) 2 B(r); I(�; 0; s; u1(�; 0)) 2 B(r)for 0 < js� u1(�; 0)j � " , 0 < jt� u2(�; 0)j � " , and (�; 0) 2 V .We an onlude the proof of Step 2 in the same way as in Theorem 3.2, with the minor hanges dueto the di�erent de�nition of the �eld.By Step 1 and Step 2, we onlude that, hoosing " suÆiently small and n in a suitable way,ondition (b1) is true for u1(�; �) � " � s; t � u2(�; �) + " . So, ' is a alibration.Constrution of the alibration around the graph of uNow the matter is to extend the �eld in a tubular neighbourhood of the graph of u . From now on, wereintrodue the Cartesian oordinates.Let �i be the urve � = (�1)ik , where k > 0. If k is suÆiently small, for i = 1; 2 the urve �ionnets two points of �
0i , divides 
0i (and then 
) in two onneted omponents, and the normalvetor �i to �i whih points towards � oinides with (�1)i+1r�=jr�j . Set U 0 := U \ f(x; y) 2 
0 :j�(x; y)j < kg and U 00 := U 0 \ 
. Sine kr�k = 1 on �, by (3.63) we an suppose thatM1�Mk maxi=1;2 kr�kL1(�i) < mini=1;2K(�i;
0i n U 0): (3.68)



56 Chapter 3Chosen Æ so small that (graphu)Æ \ ((U 00 \ 
1)� R) � A1 and (graphu)Æ \ ((U 00 \ 
2)� R) � A7 , wede�ne the vetor�eld '̂(x; y; z) = ('̂xy(x; y; z); '̂z(x; y; z)) 2 R2�R;as follows:8>>>>>>>>><>>>>>>>>>:
'(x; y; z) in f(x; y; z) 2 U 00�R : u1(x; y)� Æ < z < u2(x; y) + Æg,�2ru+ 2 z�uv̂1 rv̂1; ���ru+ z�uv̂1 rv̂1���2� in (graphu)Æ \ (
1 nU 00)�R,�2ru+ 2 z�uv̂2 rv̂2; ���ru+ z�uv̂2 rv̂2���2� in (graphu)Æ \ (
2 nU 00)�R.The funtion v̂i is the solution of the problemmin(Z
0inU 0 jrvj2dx dy � M1�Mk Z�i jr�j v2dH1 : v 2 H1(
0i n U 0); vj�(
0inU 0)n�i = 1) : (3.69)Let us show that the problem (3.69) admits a solution. If fvng is a minimizing sequene, thensupn (Z
0inU 0 jrvnj2dx dy � M1�Mk Z�i jr�j v2n dH1) < +1: (3.70)We have only to show that fvng is bounded in H1(
0i nU 0). If we put vn := vn � 1, by (3.58) for every� 2 (0; 1) we haveZ
0inU 0 jrvnj2dx dy = Z
0inU 0 jrvnj2dx dy = �Z�i v2ndH1�Z
0inU 0 �����r vn(R�i v2ndH1) 12 !�����2 dx dy� �Z�i(vn � 1)2dH1�K(�i;
0i n U 0)� (1� �)K(�i;
0i n U 0) Z�i v2ndH1 +K(�i;
0i n U 0) �1� 1� �H1(�i); (3.71)where we used Cauhy inequality. By (3.68), we an hoose � so small that(1� �)K(�i;
0i n U 0) > M1�Mkkr�kL1(�i);and substituting (3.71) in (3.70), we obtainsupn Z�i v2n dH1 < +1:Using again (3.70) and Poinar�e inequality, we onlude that fvng is atually bounded in H1(
0i n U 0).The solution of (3.69) satis�es8>><>>:�v̂i = 0 in 
0i n U 0,�� v̂i = M1�Mk jr�jv̂i on �i,v̂i = 1 on �(
0i nU 0) n �i, (3.72)



Calibrations for minimizers with a regular disontinuity set 57and so, in partiular, belongs to C1(
i nU 00). By a trunation argument, it is easy to see that v̂i � 1,so '̂ is well de�ned.Sine '̂ is a alibration in the set f(x; y; z) 2 U 00�R : u1(x; y)� Æ < z < u2(x; y) + Æg , it remains toprove only that the �eld is globally divergene-free in the sense of distributions and that onditions (a1),(a2), (b1) are veri�ed in the regions (graphu)Æ \ (
i nU 00)�R . First of all, note that by Lemma 1.5 the�eld '̂ is divergene-free in the regions (graphu)Æ \ (
i n U 00)�R , sine it is onstruted starting fromthe family of harmoni funtions u(x; y) + tv̂i(x; y). To omplete the proof, we need to hek that thenormal omponents of the traes of ' and of the extension �eld are equal on the surfae of separation,i.e., h'xy; �ii = �2ru+ 2z � uv̂i rv̂i; �i� on �i; (3.73)where �i = (�1)i+1r�=jr�j . Using the de�nition of ' , we obtain thath'xy; �ii = �(�1)i+1��u+ z � u1�MkM� jr�j;sine hru; �ii = (�1)i+1��ujr�j , the equality (3.73) is equivalent toM1�Mk jr�j = 1̂vi hrv̂i; �ii;whih is true by (3.72).Conditions (a1) and (a2) are obviously satis�ed, while ondition (b1) is true if we take Æ satisfyingÆ � sup(�4jruj+ 2 jrv̂ijv̂i ��1 : (x; y) 2 
i nU 00; i = 1; 2) :Therefore, with this hoie of Æ , the vetor�eld '̂ is a alibration. 23.2.1 Some properties of K(�; U)In this subsetion we investigate some qualitative properties of the quantity K(�; U) and we shall omputeit expliitly in a very partiular ase. Let us start by a very simple result.Proposition 3.6 Let � be a simple analyti urve and ~� be an extension of � , whose endpoints do notoinide with the endpoints of � . If ��Æ are the two onneted omponents of �Æ n ~� (whih are wellde�ned if Æ is suÆiently small), then limÆ!0+K(�;��Æ ) = +1:Proof. { For onveniene we setW�(Æ) := �v 2 H1(��Æ ) : Z� v2dH1 = 1; v = 0 on �(��Æ ) n �� :Suppose by ontradition that there exists a sequene fÆng dereasing to 0 suh that supnK(�;�+Æn) = < +1 ; this implies the existene of a sequene fvng suh thatvn 2 W+(Æn) and Z�+Æn jrvn(x; y)j2dx dy � 



58 Chapter 3for every integer n . From now on, we regard vn as a funtion belonging to H1(�+Æ1) whih vanishes on�+Æ1 n �+Æn . By Poinar�e inequality it follows immediately that fvng is bounded in H1(�+Æ1), and so itadmits a weakly onvergent subsequene fvnkg . Let us all v the limit of the subsequene; sine vnkvanishes on �+Æ1 n�+Ænk for every k , then v must vanish a.e.; on the other hand, sine R� v2nkdH1 = 1, bythe ompatness of the trae operator, we have that R� v2dH1 = 1, and this is learly impossible. 2We remark that by Theorem 3.5 and Proposition 3.6, if U0 is a neighbourhood of � and u 2 SBV (U0)satis�es the Euler onditions in U0 with Su = �, then there exists a neighbourhood U of � ontained inU0 suh that u is a Dirihlet graph-minimizer in U . Atually, taking U smaller if needed, by Theorem3.2 we get also the Dirihlet minimality.Proposition 3.7 (Charaterization of K(�; U)) Let U be an open set with Lipshitz boundary and� be a subset of �U with nonempty relative interior in �U . The onstant K(�; U) is the �rst eigenvalueof the problem 8><>:�u = 0 on U ,��u = �u on �,u = 0 on �U n �. (3.74)Moreover, it is the unique eigenvalue with a positive eigenfuntion.Proof. { If u is a solution of (3.58), then it is harmoni and there exists a Lagrange multiplier � suhthat ZU hru;r'i dx dy = � Z� u'dH1 8' 2 C1(U) : ' = 0 on �U n �; (3.75)whih means, by Green formula, that ��u = �u on �. Using (3.75), one an easily see that K(�; U) isin fat the minimal eigenvalue of (3.74) and that it has a positive eigenfuntion (indeed, if u is a solutionalso juj is). Let u be a positive funtion belonging to the eigenspae of K(�; U) and v another positiveeigenfuntion assoiated with the eigenvalue � ; by Green formula we haveZ� v ��u dH1 � Z� u ��v dH1 = 0;therefore (K(�; U)� �) Z� uv dH1 = 0:Sine both u and v are positive, from the last equality it follows that � = K(�; U). 2Proposition 3.8 If U = (0; a)�(0; b) and � = (0; a)�f0g , thenK(�; U) = �a tanh ��ba � : (3.76)Proof. { The funtion v(x; y) = sin��ax� sinh��a (b� y)�is positive and satis�es (3.74) with � = �a tanh ��ba � . Then, by Proposition 3.7, this quantity oinideswith K(�; U). 2



Calibrations for minimizers with a regular disontinuity set 59Proposition 3.9 Let g : [0; a0℄ ! [0;+1) be a Lipshitz funtion and denote the graph of g by � .Given 0 � a1 < a2 � a0 and b > 0 , if we set �(a1; a2) := graph gj(a1;a2) andR(a1; a2; b) := f(x; y) : x 2 (a1; a2); y 2 (g(x); g(x) + b)g;then limja2�a1j!0K (�(a1; a2); R(a1; a2; b)) = +1 uniformly with respet to b:Proof. { The idea is to transform the region R(a1; a2; b) into the retangle (0; a2 � a1)�(0; b) by asuitable di�eomorphism in order to use (3.76).Let  : (0; a2� a1)�(0; b)! R(a1; a2; b) be the map de�ned by  (x; y) = (x+ a1; y+ g(x+ a1)). Letv 2 H1(R(a1; a2; b)) be suh that v = 0 on �R(a1; a2; b) n �(a1; a2) andZ�(a1;a2) v2dH1 = Z a2�a10 v2( (x; 0))p1 + (g0(x))2 dx = 1: (3.77)If we all ~v(x; y) := v( (x; y)), then ~v 2 H1((0; a2� a1)�(0; b)), ~v = 0 on the boundary of the retangleexept (0; a2 � a1)�f0g , and by (3.77) there exists � > 0 suh that �2 �p1 + kg0k21 and�2 Z a2�a10 ~v2(x; 0) dx = 1:Therefore, sine J � 1,ZR(a1;a2;b) jrv(x; y)j2dx dy = Z(0;a2�a1)�(0;b) jrv( (x; y))j2dx dy� (1 + kg0k1 + kg0k21)�1 Z(0;a2�a1)�(0;b) jr~v(x; y)j2dx dy� ��2(1 + kg0k1 + kg0k21)�1K �(0; a2 � a1)�f0g; (0; a2 � a1)�(0; b)�� (1 + kg0k21)�3=2 �2(a2 � a1) tanh� �ba2�a1 � ;where the last inequality follows by the estimate on � and by (3.76). Sine v is arbitrary, using the fatthat 0 < tanh t � 1 for every t > 0, we obtain thatK (�(a1; a2); R(a1; a2; b)) � (1 + kg0k1)�3=2 �2(a2 � a1) ;so, the onlusion is lear. 2We have already remarked (see Proposition 3.6) that the graph-minimality is guaranteed in smallneighbourhoods of the disontinuity set �. As a onsequene of Proposition 3.9, we obtain that thegraph-minimality holds also in the open sets, whih are narrow along the diretion parallel to � and maybe very large along the normal diretion. This is made preise by the following orollary.Corollary 3.10 Let g be a positive funtion, analyti on [0; a0℄ , that is g admits an analyti extension,and denote the graph of g by � . For every M > 0 there exists h = h(M;�) suh that, if 
 is �-admissible (see De�nition 3.4) and 
 � (a1; a1 + h)�R with a1 2 [0; a0 � h℄ , and if u is a funtion inSBV (
) with Su = �\
 , with di�erent traes at every point of �\
 , satisfying the Euler onditions in
 , and P2i=1 k��uikC1(�\
) �M (where ui is as above the restrition of u to the onneted omponent
i of 
 n �), then u is a Dirihlet graph-minimizer in 
 (see Fig. 3.2).



60 Chapter 3
Su

Ω

h

Figure 3.2: if the thikness of 
 is less than h , then u is a Dirihlet graph-minimizer in 
.Proof. { By Proposition 3.9 there exists h > 0 suh that for every a1; a2 2 [0; a0℄ with 0 < a2�a1 � hand for every b > 0, K(�(a1; a2); R(a1; a2; b))1 + l2(�) + l2(�)k2(�) > M2:If 
 � (a1; a1+h)�R , then we an hoose b > 0 so large that, assuming that 
1 is the upper omponent,
1 � R(a1; a1 + h; b). Then by the monotoniity properties of K(�; A), it follows thatK(� \ 
;
1)1 + l2(�) + l2(�)k2(�) > M2 �  2Xi=1 k��uik2C1(�\
):Applying the same argument to 
2 , the onlusion follows from Theorem 3.5. 2



Chapter 4Calibrations for minimizers with atriple juntionIn this hapter we study the Dirihlet minimality of solutions of the Euler-Lagrange equations for theMumford-Shah funtional (2.1) whose disontinuity set presents a triple juntion.The preise statement of the result is the following.Theorem 4.1 Let 
 := B(0; 1) be the open dis in R2 with radius 1 entred at the origin, and let(A0; A1; A2) be the partition of 
 de�ned as follows:Ai := �(r os �; r sin �) 2 
 : 0 � r < 1; 23�(2� i) < � � 23�(3� i)� 8 i = 0; 1; 2:Let Si;j := Ai \ Aj for every i < j . Let ui 2 C2(Ai) be a harmoni funtion in Ai , satisfying theNeumann onditions on �Ai \ 
 and suh that jruij = jruj j on Si;j for every i < j . If u is thefuntion in SBV (
) de�ned by u := ui a.e. in eah Ai and u0(0; 0) < u1(0; 0) < u2(0; 0) , then thereexists a neighbourhood U of the origin suh that u is a Dirihlet minimizer in U of the Mumford-Shahfuntional.The proof is very long and tehnial and is split in several steps. First of all, the symmetry due to the2�=3-angles allows to dedue from the other Euler onditions that eah ui must be either symmetri orantisymmetri with respet to the biseting line of Ai . In Setion 4.1 we onstrut an expliit alibration' in the ase ui symmetri and we prove that ' satis�es onditions (a1), (a2), (b2), and (1) (seeSetion 1.3); in Setions 4.2 and 4.3 we show some estimates, whih will be useful in Setion 4.4 to proveondition (b1); �nally, in Setion 4.5 we adapt the alibration to the antisymmetri ase.4.1 Constrution of the alibrationLet fex; eyg be the anonial basis in R2 and for i = 1; 2 onsider the vetors �i = (�1=2; (�1)ip3=2),�i = ((�1)ip3=2; 1=2), whih are tangent and normal to the set Si�1;i (see Fig. 4.1). As u0(0; 0) <u1(0; 0) < u2(0; 0), there exists an open neighbourhood U of (0; 0) suh that the funtion u belongs toSBV (U), the disontinuity set Su of u on U oinides with Si<j(Si;j \ U), and the oriented normalvetor �u to Su is given by �u(x; y) =8><>:�1 for (x; y) 2 S0;1,�2 for (x; y) 2 S1;2,ey for (x; y) 2 S0;2;61



62 Chapter 4by the assumptions on ui , the funtion u satis�es the Euler onditions for (2.1) in U . We will onstruta loal alibration ' = ('xy; 'z) : U�R ! R2�R for u .

S0,1

A2

0A

A1

τ1

τ2 2ν

ν1

S

S0,2

1,2

y

x

Figure 4.1: the triple juntion.Applying Shwarz reetion priniple with respet to S0;1 and S0;2 , the funtion u0 an be har-monially extended to U n S1;2 , and analogously u1 and u2 an be extended to U n S0;2 and U n S0;1 ,respetively. By the hypothesis on ui and by Cauhy-Kowalevski theorem (see [24℄) the extension of u0oinides, up to the sign and to additive onstants, with u1 on A1 and with u2 on A2 ; analogously,the extension of u1 oinides, up to the sign and to an additive onstant, with u2 on A2 . Sine theomposition of the three reetions with respet to S0;1 , S1;2 , and S0;2 oinides with the reetion withrespet to the biseting line of the setor A0 , by the previous remarks we an dedue that u0 is eithersymmetri or antisymmetri with respet to the biseting line of A0 .We onsider �rst the ase u0 symmetri (the antisymmetri ase will be studied in Setion 4.5). Thenalso u1; u2 are symmetri with respet to the biseting line of A1; A2 , respetively, and the extensions ofu0; u1; u2 by reetion are well de�ned and harmoni in the whole set U .In order to de�ne the alibration for u , let " > 0, li 2 (ui�1(0; 0); ui(0; 0)) for i = 1; 2, and � > 0be suitable parameters that will be hosen later, and onsider the following subsets of U�R :Gi := f(x; y; z) 2 U�R : ui(x; y)� " < z < ui(x; y) + "g for i = 0; 1; 2,Ki := f(x; y; z) 2 U�R : li + �i(x; y) < z < li + 2�+ �i(x; y)g for i = 1; 2,Hi := f(x; y; z) 2 U�R : li + �=2 < z < li + 3�=2g for i = 1; 2,where �i and �i are suitable Lipshitz funtions suh that �i(0; 0) = �i(0; 0) = 0, whih will be de�nedlater. If " and � are suÆiently small, then for every i; j the sets Gi , Kj are nonempty and disjoint,while for every i the set Hi is ompatly ontained in Ki , provided U is small enough (see Fig. 4.2).The aim of the de�nition of the alibration ' in Gi is to provide a divergene-free vetor�eld satisfyingondition (a2) and suh thath'xy(s�i; z); �ii > 0 for ui�1 < z < ui�1 + " and for ui � " < z < ui,h'xy(s�i; z); �ii < 0 for ui�1 � " < z < ui�1 and for ui < z < ui + ",
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Figure 4.2: setion of the sets Gi;Ki; Hi at x = onstant.for i = 1; 2 and s � 0, and analogouslyh'xy(s; 0; z); eyi > 0 for u0 < z < u0 + " and for u2 � " < z < u2,h'xy(s; 0; z); eyi < 0 for u0 � " < z < u0 and for u2 < z < u2 + ";these properties are ruial in order to obtain (b1) and (b2) simultaneously. Suh a �eld an be obtainedby applying the tehnique shown in Lemma 1.5, starting from the family of harmoni funtions ui + tvi ,where we hoose as vi the linear funtions de�ned byv0(x; y) := h�2; (x; y)i+ "; v1(x; y) := hex; (x; y)i+ "; v2(x; y) := h�1; (x; y)i+ ":



64 Chapter 4So for every (x; y; z) 2 Gi , i = 0; 1; 2, we de�ne the vetor '(x; y; z) as 2rui + 2 z � ui(x; y)vi(x; y) rvi; ����rui + z � ui(x; y)vi(x; y) rvi����2! :The role of Ki is to give the exat ontribution to the integral in (b2). In order to annihilate thetangential ontribution on Su given by the �eld in Gi , we insert in Ki the region Hi and for every(x; y; z) 2 Hi , i = 1; 2, we de�ne '(x; y; z) as��2"� (rui�1 +rui) ; ��where � is a positive onstant whih will be suitably hosen later. By the harmoniity of ui this �eld isdivergene-free and, as ��ui = 0 on Su for every i , its horizontal omponent is purely tangential on Su .So, it remains to orret only the normal ontribution to the integral in (b2) due to the �eld in Gi . Torealize this purpose on the two segments Si�1;i , i = 1; 2, we ould require that �i(s�i) = �i(s�i) = 0 forevery s � 0 (see the de�nition of Ki ) and de�ne '(x; y; z) for (x; y; z) 2 Ki nHi as� 1� g�h�i; (x; y)i� �i; �� ; (4.1)where g is a funtion of real variable hosen in suh a way that (b2) is satis�ed for (x; y) 2 Si�1;i , i.e.,g(t) := 1�p3 "2v0(t; 0) 8t 2 R;as we will see later in (4.19). Note that the two-dimensional �eld g (h�i; (x; y)i) �i is divergene-free, sineit is with respet to the orthonormal basis f�i; �ig , hene ' is divergene-free in Ki nHi ; moreover, sine'z � � on Ki , the normal omponent of ' is ontinuous aross the boundary of Hi , so that ' turnsout to be divergene-free in the sense of distributions in the whole set Ki . Atually it is ruial to add aomponent along the diretion �i to the �eld in (4.1) in order to make (b1) true, as it will be lear in theproof of Step 2 (see Setion 4.3); this omponent has to be hosen in suh a way that it is zero on Si�1;i(so that (b2) remains valid on these segments) and that it depends only on h�i; (x; y)i (so that the �eldremains divergene-free). Therefore we replae in (4.1) the vetor g (h�i; (x; y)i) �i by�i(x; y) := (�1)i+1f�h�i; (x; y)i� �i + g�h�i; (x; y)i� �i; (4.2)where f is an even smooth funtion of real variable suh that f(0) = 0 and whih will be hosen laterin a suitable way (see (4.74)). From this de�nition it follows that�x2(x; y) = ��x1(x;�y); �y2(x; y) = �y1(x;�y); (4.3)so that �1(x; 0) + �2(x; 0) = 2�y1(x; 0)ey;i.e., if we assume that �i(x; 0) = �i(x; 0) for every x � 0, the ontribution given by the �elds (4.2) tothe integral in (b2) omputed at a point of S0;2 is purely normal, as required in (b2), but its modulusis in general di�erent from what we need to obtain exatly the normal vetor ey . In order to orret it,we multiply �i by a funtion �i whih is �rst de�ned on Si�1;i [ S0;2 (more preisely, �i is taken equalto 1 on Si�1;i and to the orreting fator on S0;2 ); then, we extend it to a neighbourhood of (0; 0) byassuming �i onstant along the integral urves of �i , so that �i�i remains divergene-free.



Calibrations for minimizers with a triple juntion 65The integral urves of �i an be represented as the urves f(x; y) 2 U : y =  i(x; s)g , where  i(x; s)is the solution of the problem(�x i(x; s)�xi (x;  i(x; s)) � �yi (x;  i(x; s)) = 0; i(s; s) = 0; (4.4)whih is de�ned in a suÆiently small neighbourhood of (0; 0). By applying the Impliit Funtiontheorem, it is easy to see that if U is small enough, then there exists a unique smooth funtion hide�ned in U suh that hi(0; 0) = 0;  i(x; hi(x; y)) = y: (4.5)Note that the urve f(x; y) 2 U : hi(x; y) = sg oinides with the integral urve f(x; y) 2 U : y =  i(x; s)gand that (hi(x; y); 0) gives the intersetion point of the integral urve passing through (x; y) with thex-axis; in other words, the level lines of hi provide a di�erent representation of the integral urves of �iin terms of their intersetion point with the x-axis.
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=-1/2}Figure 4.3: integral urves of the �eld �1 .We state here some properties of hi and  i for further referenes. Sine  i(s; s) = 0, we have thathi(s; 0) = s (4.6)for every s suh that (s; 0) 2 U . By (4.4) and by di�erentiating the initial ondition in (4.4) with respetto s , we obtain�x i(0; 0) = �yi (0; 0)�xi (0; 0) = �yi�xi = (�1)ip3 ; �s i(0; 0) = ��x i(0; 0) = (�1)i+1p3 : (4.7)By di�erentiating the equation in (4.4) with respet to x and to s , and by using (4.2), it is easy to seethat �2xx i(0; 0) = �2xs i(0; 0) = 0; (4.8)



66 Chapter 4while by di�erentiating twie with respet to s the initial ondition  i(s; s) = 0, we obtain that�2ss i(0; 0) = �2�2xs i(0; 0) = 0: (4.9)By (4.7) and (4.8), the urve fhi = 0g (whih oinides with fy =  i(x; 0)g) is tangent to �i at 0,whih may be an inetion point. Moreover, sine �x i(0; 0) 6= 0, by ontinuity the funtion  i(�; s) isstritly monotone in a small neighbourhood of 0 for s suÆiently small; by this fat and by omparingthe values of the funtion  i(�; hi(s�i)) at the points hi(s�i) and s�xi , it is easy to see thathi(s�i) � 0 (4.10)for every s � 0 suh that s�i 2 U , provided U is small enough. Remark that by (4.6) and (4.10) itfollows that the segment S0;2 is all ontained in the region fhi � 0g , while Si�1;i in the region fhi � 0g .At last, we set �i(x; y) := 8<:1 if hi(x; y) � 0,g(hi(x; y))2�yi (hi(x; y); 0) if hi(x; y) > 0;sine by de�nition �yi (0; 0) = g(0)�yi = g(0)=2, the funtion �i is ontinuous aross the urve fhi = 0g .Moreover, remark that from (4.3) it follows that  2(x; s) = � 1(x; s), h2(x; y) = h1(x;�y), and then�2(x; y) = �1(x;�y): (4.11)For every (x; y; z) 2 Ki nHi , i = 1; 2, we de�ne '(x; y; z) as� 1��i(x; y)�i(x; y); �� :In the remaining regions of transition it is onvenient to take ' purely vertial. In order to make' divergene-free in the whole set U�R , we need the normal omponent of ' to be ontinuous arossthe boundary of Gi and Hi . To guarantee this ontinuity aross �Gi , we are fored to take as thirdomponent of ' the funtion
!(x; y; z) :=8>>>>>>>>>>><>>>>>>>>>>>:

"2v20(x; y) � jru0j2 for z < l1 + �,"2v21(x; y) � jru1j2 for l1 + � � z < l2 + �,"2v22(x; y) � jru2j2 for z � l2 + �. (4.12)
Finally, we de�ne the funtions �i; �i in suh a way that the normal omponent of ' turns out to beontinuous also aross the boundary of Ki ; more preisely, for i = 1; 2 we hoose �i as the solution ofthe Cauhy problem8<: 1��i(x; y)h�i(x; y);r�i(x; y)i � � = � "2v2i�1(x; y) + jrui�1(x; y)j2;�i(s�i) = 0; �i(s; 0) = 0 for s � 0,while �i as the solution of8<: 1��i(x; y)h�i(x; y);r�i(x; y)i � � = � "2v2i (x; y) + jrui(x; y)j2;�i(s�i) = 0; �i(s; 0) = 0 for s � 0.



Calibrations for minimizers with a triple juntion 67Sine �i is not C1 near the urve fhi = 0g , we annot expet a C1 -solution. Nevertheless, if U issmall enough, then �i; �i are Lipshitz funtions de�ned in U , and the possible disontinuity points ofr�i;r�i onentrate only on the urve fhi = 0g ; indeed, if U is suÆiently small, the Cauhy problems8<: 1� h�i(x; y);r~�i(x; y)i � � = � "2v2i�1(x; y) + jrui�1(x; y)j2;~�i(s�i) = 0 (s 2 R); (4.13)and 8<: g(hi(x; y))2��yi (hi(x; y); 0) h�i(x; y);r�̂i(x; y)i � � = � "2v2i�1(x; y) + jrui�1(x; y)j2;�̂i(s; 0) = 0 (s 2 R); (4.14)admit a unique solution ~�i; �̂i 2 C1(U), sine the lines fs�i : s 2 Rg and f(s; 0) : s 2 Rg arenot harateristi for these equations. Sine the urve fhi = 0g , whih oinides with the urve fy = i(x; 0)g , is a harateristi line of both equations (4.13) and (4.14) (use (4.4) and g(0)=(2��yi (0; 0)) = 1),the funtions ~�i; �̂i assume the same value on the urve fhi = 0g . So, �i an be regarded as the funtionde�ned by �i(x; y) := (~�i(x; y) if hi(x; y) � 0,�̂i(x; y) if hi(x; y) > 0,and therefore �i is C1 in U n fhi = 0g , and all derivatives of �i have �nite limits on both sides offhi = 0g . The same argument works for �i .The omplete de�nition of the �eld is therefore the following: for every (x; y; z) 2 U�R , the vetor'(x; y; z) = ('xy; 'z)(x; y; z) 2 R2�R is given by8>>>>>>>>>>>><>>>>>>>>>>>>:
�2rui + 2 z�ui(x;y)vi(x;y) rvi; ���rui + z�ui(x;y)vi(x;y) rvi���2� in Gi (i = 0; 1; 2),� 1��i(x; y)�i(x; y); �� in Ki nHi (i = 1; 2),�� 2"� (rui�1 +rui) ; �� in Hi (i = 1; 2),(0; !(x; y; z)) otherwise.Condition (a1) is trivial in Gi for all i .Sine rui(0; 0) = 0 for all i (this fat easily follows by the assumptions on the regularity of ui andby the Euler onditions), we have that "2v2i (0; 0) � jrui(0; 0)j2 = 1 > 0;then, if U is small enough, "2v2i (x; y) � jrui(x; y)j2 > 0for every (x; y) 2 U and for every i = 0; 1; 2, and so ! is always positive.Arguing in a similar way, if we impose that � > 1=(4�2), ondition (a1) holds in Ki , provided U issuÆiently small.



68 Chapter 4By onstrution onditions (a2) and (1) are satis�ed.By diret omputations we �nd that for every (x; y) 2 UZ uiui�1 'xy dz = "2vi�1rvi�1 � "2virvi + 1� (�i � �i + �)�i�i; (4.15)for i = 1; 2, while Z u2u0 'xy dz = "2v0rv0 � "2v2rv2 + 1� 2Xi=1(�i � �i + �)�i�i: (4.16)Note that for i = 1; 2 vi�1(s�i) = vi(s�i) = v0(s; 0) = �s2 + " 8s 2 R; (4.17)rvi�1(x; y)�rvi(x; y) = p3�i 8(x; y) 2 U: (4.18)As hi(s�i) � 0 for every s � 0 by (4.10), we have that �i(s�i) = 1 for every s � 0, while by de�nition�i(s�i) = �i(s�i) = 0. From these fats, (4.15), (4.17), (4.18), and the de�nition of �i , we obtainZ ui(s�i)ui�1(s�i) 'xy(s�i; z) dz = p3 "2v0(s; 0)�i + (�1)i+1f(0)�i + g(s)�i = �i; (4.19)where the last equality follows from the de�nition of g and the fat that f(0) = 0. Analogously, by theequalities v0(s; 0) = v2(s; 0) 8s 2 R; (4.20)rv0(x; y)�rv2(x; y) = p3ey 8(x; y) 2 U; (4.21)by the de�nition of �i and �i , and by (4.3), (4.11), (4.16), we haveZ u2(s;0)u0(s;0) 'xy(s; 0; z) dz = p3 "2v0(s; 0)ey + 2�1(s; 0)�y1(s; 0)ey= p3 "2v0(s; 0)ey + g(s)ey = ey; (4.22)where the two last equalities follow from (4.6) and from the de�nition of �1 and g . So ondition (b2) issatis�ed.The proof of ondition (b1) will be split in the next three setions: in Setion 4.2 we prove that on-dition (b1) holds if t1 and t2 belong to suitable neighbourhoods of ui�1(0; 0) and ui(0; 0), respetively;then, in Setion 4.3 we prove ondition (b1) for t1 and t2 belonging to suitable neighbourhoods of u0(0; 0)and u2(0; 0), respetively; �nally, in Setion 4.4, by a ontinuity argument we show that ondition (b1)is true in all other ases.4.2 Estimates for t1 and t2 near ui�1 and uiFor (x; y) 2 U and t1; t2 2 R , we setI(x; y; t1; t2) := Z t2t1 'xy(x; y; z) dz (4.23)



Calibrations for minimizers with a triple juntion 69and we denote its absolute value by � . In this setion, we will show that �(x; y; t1; t2) � 1 in a neigh-bourhood of the point (0; 0; ui�1(0; 0); ui(0; 0)) for i = 1; 2, so that the following step will be proved.Step 1.{ For a suitable hoie of the parameter " , there exists Æ > 0 suh that ondition (b1) holdsfor jt1 � ui�1(0; 0)j < Æ , jt2 � ui(0; 0)j < Æ with i = 1; 2, provided U is small enough.Note that � is a ontinuous funtion, but its derivatives with respet to x; y may be disontinuousat the points (x; y; t1; t2) suh that h1(x; y) = 0 or h2(x; y) = 0; indeed, the urve fhi = 0g is theboundary of the di�erent regions of de�nition of the funtions �i , �i , and �i , whose derivatives maypresent therefore some disontinuities. Nevertheless, if we set Ni := f(x; y) 2 U : hi(x; y) < 0g andPi := f(x; y) 2 U : hi(x; y) > 0g , the restritions of �i , �i , and �i to the sets Ni and Pi an beextended up to the boundary fhi = 0g as C1 -funtions; so, along the urve fhi = 0g the traes of thederivatives of �i , �i , and �i are de�ned. Then, also the traes of the derivatives of � with respet tox; y are de�ned at the points (x; y; t1; t2) with h1(x; y) = 0 or h2(x; y) = 0.
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Figure 4.4: the regions P1 and N1 .Sine we want to study the behaviour of � in a neighbourhood of (0; 0; ui�1(0; 0); ui(0; 0)), we ansuppose jt1�ui�1(0; 0)j � " and jt2�ui(0; 0)j � " , so that the possible disontinuities of the derivativesof � onentrate only on the urve fhi = 0g . We study separately the two regions Ni and Pi .Consider �rst the ase (x; y) 2 Ni , whih is the region ontaining Si�1;i . We will study the derivativesof � at the points of the form qi(s) := (s�i; ui�1(s�i); ui(s�i)); s � 0:We have already shown (ondition (b2)) that �(qi(s)) = 1 for every s � 0; we want to prove thatr�(qi(s)) = 0 8s � 0 (4.24)(where now r denotes the gradient with respet to x; y; t1; t2 ) and that the Hessian matrix of � withrespet to �i; t1; t2 is negative de�nite at qi(0).Let I�i and I�i be the omponents of the integral in (4.23) along the diretions �i and �i , respetively.Sine by de�nition �(x; y; t1; t2) = [(I�i(x; y; t1; t2))2 + (I�i(x; y; t1; t2))2℄1=2;



70 Chapter 4the gradient of � is given by r� = 1�(I�irI�i + I�irI�i): (4.25)Note that (4.19) implies thatI�i(qi(s)) = 0 and I�i(qi(s)) = 1 8s � 0; (4.26)hene r�(qi(s)) = rI�i(qi(s)): (4.27)By the de�nition of ' in Gi and by (4.15) we an ompute expliitly the expression of I�i at (x; y; t1; t2):I�i = �2(t1 � ui�1)��iui�1 + 2(t2 � ui)��iui + 1� (�i � �i + �)�i��ii+ p32vi�1 ("2 � (t1 � ui�1)2) + p32vi ("2 � (t2 � ui)2); (4.28)where ��ii (x; y) = (�1)i+1f(h�i; (x; y)i) and ��ii (x; y) = g(h�i; (x; y)i): (4.29)By di�erentiating (4.28) with respet to the diretion �i we obtain��iI�i = 2(��iui�1)2 � 2(��iui)2 � 2(t1 � ui�1)�2�i�iui�1 + 2(t2 � ui)�2�i�iui+ 1���i(�i � �i)�i��ii + 1� (�i � �i + �)(��i�i��ii + �i��i��ii )� 34v2i�1 ("2 � (t1 � ui�1)2) + 34v2i ("2 � (t2 � ui)2)+ p3vi�1 (t1 � ui�1)��iui�1 + p3vi (t2 � ui)��iui: (4.30)By the Euler onditions, ��iui�1(s�i) = ��iui(s�i) = 0 for every s � 0. Moreover, sine jrui�1j = jruijon U (see the remark at the beginning of the proof), in the region Ni the funtion �i � �i oinideswith the solution �i of the problem8<: 1���ii ��i�i + 1���ii ��i�i = "2v2i�1 � "2v2i ;�i(s�i) = 0 (s � 0): (4.31)As ��i�i(s�i) = 0 and vi�1(s�i) = vi(s�i) for every s � 0 (see (4.17)), we have that��i(�i � �i)(s�i) = ��i�i(s�i) = 0: (4.32)By de�nition ��i��ii � 0 and �i(x; y) = 1 for every (x; y) 2 Ni ; using these remarks and the �rst equalityin (4.17), we an dedue that ��iI�i(qi(s)) = 0 (4.33)



Calibrations for minimizers with a triple juntion 71for every s > 0, and the equality holds also for the trae of ��iI�i at qi(0). Sine the derivatives of I�iwith respet to t1 and t2 are given by�t1I�i = �2��iui�1 � p3vi�1 (t1 � ui�1); �t2I�i = 2��iui � p3vi (t2 � u1); (4.34)by the Euler onditions it follows that�t1I�i(qi(s)) = �t2I�i(qi(s)) = 0: (4.35)As I�i(qi(s)) = 1 for every s � 0, equalities (4.35) imply that ��iI�i(qi(s)) = 0. By this fat, (4.27),(4.33), and (4.35), equality (4.24) is proved.Now we need to ompute the trae of the Hessian matrix of � with respet to �i; t1; t2 at the pointqi(0); using (4.26) (4.33), (4.35) and (4.24), the Hessian matrix at qi(0) redues tor2�i;t1;t2�(qi(0)) = [r�i;t1;t2I�i 
r�i;t1;t2I�i +r2�i;t1;t2I�i ℄(qi(0)); (4.36)where r�i;t1;t2 denotes the gradient with respet to �i; t1; t2 and 
 the tensor produt. As before, weknow the expliit expression of I�i :I�i = �2(t1 � ui�1)��iui�1 + 2(t2 � ui)��iui + 1� (�i � �i + �)�i��ii� 12vi�1 ("2 � (t1 � ui�1)2) + 12vi ("2 � (t2 � ui)2); (4.37)hene, using the Euler onditions, (4.32), and the fat that �i � 1 in Ni , it results that��iI�i(qi(0)) = 12��ivi�1(0; 0)� 12��ivi(0; 0) + ��i��ii (0; 0) = p32 ; (4.38)where the last equality follows by (4.18) and by the equality��i��ii (0) = (�1)i+1f 0(0) = 0: (4.39)By di�erentiating (4.30) and by using the Euler onditions, (4.32), the onstany of �i in Ni , and thefat that �2�i�i��ii � 0, we have�2�i�iI�i(qi(0)) = 1���ii (0; 0)�2�i�i(�i � �i)(0; 0) + 32"��ivi�1(0; 0)� 32"��ivi(0; 0) = �p32" ; (4.40)where the last equality follows from1���ii (0; 0)�2�i�i(�i � �i)(0; 0) = �2p3" ; (4.41)whih an be obtained by di�erentiating (4.31). Using (4.36), (4.38), and (4.40), we obtain that�2�i�i�(qi(0)) = [��iI�i(qi(0))℄2 + �2�i�iI�i(qi(0)) = 34 � p32" < 0; (4.42)provided " is suÆiently small. Sine �t1I�i(qi(0)) = 0 (this an be easily proved using the fat thatrui�1(0; 0) = rui(0; 0) = 0), by (4.36) we have that�2�it1�(qi(0)) = �2�it1I�i(qi(0)); �2t1t1�(qi(0)) = �2t1t1I�i(qi(0)):



72 Chapter 4By di�erentiating (4.34) and by using the Euler onditions, it turns out that�2�it1I�i(qi(0)) = �2�2�i�iui�1(0; 0); �2t1t1I�i(qi(0)) = �p3" ;so that det �2�i�i� �2�it1��2�it1� �2t1t1� ! (qi(0)) = 32"2  1� p32 "!� 4(�2�i�iui�1(0; 0))2:Arguing in a similar way, one an �nd that�2�it2�(qi(0)) = 2�2�i�iui(0; 0); �2t2t2�(qi(0)) = �p3" ; �2t1t2�(qi(0)) = 0;so that detr2�i;t1;t2�(qi(0)) = �3p32"3  1� p32 "!+ 4p3" [(�2�i�iui�1(0; 0))2 + (�2�i�iui(0; 0))2℄:Sine for " suÆiently small it results thatdet �2�i�i� �2�it1��2�it1� �2t1t1� ! (qi(0)) > 0; detr2�i;t1;t2�(qi(0)) < 0; (4.43)then, by (4.42) and (4.43) the Hessian matrix of � at qi(0) is negative de�nite.At this point we have all the ingredients we need in order to ompare the value of � on Si�1;i withits value at a point (x; y; t1; t2) for (x; y) 2 Ni and jt1 � ui�1(0; 0)j � " , jt2 � ui(0; 0)j � " .Remark that sine the urve fhi = 0g may have an inetion point at the origin, the set Ni mightbe not onvex. If the segment joining (x; y) with its orthogonal projetion on Si�1;i (whih is a pointof the form s�i with s � 0) is all ontained in Ni , then we an onsider the restrition of � to thesegment joining (x; y; t1; t2) with qi(s) and write its Taylor expansion of seond order entred at qi(s).By (4.24) and the fat that the Hessian matrix of � is negative de�nite at qi(0) (and then, by ontinuityin a small neighbourhood), we have that there exist Æ; C > 0 suh that, if U is small enough andjt1 � ui�1(0; 0)j < Æ , jt2 � ui(0; 0)j < Æ , then�(x; y; t1; t2) � 1� Cjh�i; (x; y)ij2 � C(t1 � ui�1(s�i))2 � C(t2 � ui(s�i))2 � 1:In the general ase, sine the urve fy =  i(x; 0)g is C2 with null seond derivative at 0, one an �nds > 0, a 2 R suh that the segment joining (x; y) with s�i + a�i is all ontained in Ni and the ratioj(x; y) � s�i � a�ij=a2 is in�nitesimal as a ! 0. Sine s > 0, the segment joining s�i + a�i with itsprojetion s�i on Si�1;i is all ontained in Ni , so that we an apply to this point the estimate above; ifwe all L the L1 -norm of the gradient of � , we obtain that�(x; y; t1; t2) � �(s�i + a�i; t1; t2) + Lj(x; y)� s�i � a�ij� 1� a2�C � L j(x; y)� s�i � a�ija2 �� C(t1 � ui�1(s�i))2 � C(t2 � ui(s�i))2;whih is less than 1, provided U is small enough. So we have proved that, if " is suÆiently small, thenthere exists Æ > 0 suh that�(x; y; t1; t2) � 1 for (x; y) 2 Ni; jt1 � ui�1(0; 0)j < Æ; jt2 � ui(0; 0)j < Æ; (4.44)provided U is suÆiently small.



Calibrations for minimizers with a triple juntion 73Suppose now (x; y) 2 Pi , jt1 � ui�1(0; 0)j � " , jt2 � ui(0; 0)j � " . In order to show that � � 1also in this ase, we will ompute the traes of the gradient and of the Hessian matrix of � at the pointqi(0). The main di�erene with respet to the previous ase is that in the region Pi the funtion �i��ioinides with the solution �i of the problem8<: 1��i(x; y)h�i(x; y);r�i(x; y)i = "2v2i�1(x; y) � "2v2i (x; y) ;�i(s; 0) = 0 (s � 0); (4.45)while the funtion �i is de�ned as�i(x; y) = g(hi(x; y))2�yi (hi(x; y); 0) 8(x; y) 2 Pi: (4.46)By (4.26) and (4.25) it follows that r�(qi(0)) = rI�i(qi(0)): (4.47)By (4.28) we obtain the following expression for the gradient of I�i with respet to �i; �i omputed atthe point qi(0): r�i;�iI�i(qi(0)) = g(0)r�i(0; 0) +r��ii (0; 0) + p32 �i; (4.48)where we have used the Euler onditions, the fat that r(�i � �i)(0; 0) = 0 by (4.45), and thatrvi�1(x; y) +rvi(x; y) = ��i 8(x; y) 2 U:It follows immediately by (4.29) that r��ii (x; y) = g0(h�i; (x; y)i)�i (4.49)and by the de�nition of g that g0(t) = p3"2 �xv0(t; 0)v20(t; 0) = �p32 "2 1v20(t; 0) (4.50)for all t 2 R . By di�erentiating (4.46), we obtain thatr�i(x; y) = 12p(hi(x; y))rhi(x; y); (4.51)where we have set p(t) := g0(t)�yi (t; 0) � g(t)[�yi (t; 0)℄2 �x�yi (t; 0):To ompute the gradient of hi it is enough to di�erentiate the seond equality in (4.5): this provides�x i(x; hi) + �s i(x; hi)�xhi = 0; �s i(x; hi)�yhi = 1; (4.52)by (4.7) we have that rhi(0; 0) = �2�i: (4.53)Sine �x�yi (x; y) = (�1)i+1 34f 0(h�i; (x; y)i)� 14g0(h�i; (x; y)i);



74 Chapter 4we �nd that p(0) = 3g0(0)=g(0), and substituting in (4.51), we have thatr�i(0; 0) = �3g0(0)g(0) �i: (4.54)Sine the partial derivatives of I�i with respet to t1 and t2 are still given by (4.34), they are equal to 0at the point qi(0), as in the previous ase. Then, by (4.47), (4.48), (4.49), (4.54), and (4.50), we deduethat r�(qi(0)) =  3p32 �i; 0; 0! : (4.55)To onlude the study of � in this region, we write the Hessian matrix of � with respet to �i; t1; t2 , whihstill satis�es (4.36). Di�erentiating (4.37) and using the Euler onditions, the fat that r(�i��i)(0; 0) =0, ��ii (0; 0) = 0 and (4.39), we obtain that (4.38) still holds. Di�erentiating (4.30) and omputing theresult at qi(0), we have that�2�i�iI�i(qi(0)) = 1�g(0)�2�i�i(�i � �i)(0; 0) + g(0)�2�i�i�i(0; 0) + 32" (��ivi�1(0; 0)� ��ivi(0; 0)); (4.56)where we have used in partiular that ��i�i(0; 0) = 0 by (4.54) and that �2�i�i��ii � 0. In order toompute the seond derivative of �i � �i with respet to the diretion �i , we di�erentiate (4.45) withrespet to x and with respet to y ; using the fat that �x(�i � �i)(s; 0) = 0 for every s � 0, we obtain�2xx(�i � �i)(0; 0) = 0; �2xy(�i � �i)(0; 0) = 6" (�1)i+1 �g(0) ; (4.57)�2yy(�i � �i)(0; 0) = �2p3" �g(0) +p3(�1)i+1�2xy(�i � �i)(0; 0) = 4p3" �g(0) : (4.58)By the relation �2�i�i = 34�2xx + p32 (�1)i�2xy + 14�2yy , it follows that�2�i�i(�i � �i)(0; 0) = �2p3" �g(0) :Sine ��ihi(0; 0) = 0 by (4.53), from (4.51) we obtain that�2�i�i�i(0; 0) = 12 � g0(0)�yi (0; 0) � g(0)[�yi (0; 0)℄2 �x�yi (0; 0)��2�i�ihi(0; 0) = 32 g0(0)g(0) �2�i�ihi(0): (4.59)By di�erentiating twie with respet to the diretion �i the seond equality in (4.5), we obtain that(�xi )2�2xx i(x; hi) + 2�xi �2xs i(x; hi)��ihi + �2ss i(x; hi)(��ihi)2 + �s i(x; hi)�2�i�ihi = 0;sine ��ihi(0; 0) = 0 by (4.53) and �2xx i(0; 0) = 0 by (4.8), we an onlude that �2�i�ihi(0; 0) = 0 andthen, by (4.59) also the limit of �2�i�i�i at (0; 0) is equal to 0. Taking (4.17) and (4.56) into aount, wean onlude that �2�i�iI�i(qi(0)) = �p32" ;i.e., (4.40) is still satis�ed. Sine it is easy to see that also the other seond derivatives of � remainunhanged, we an onlude that the Hessian matrix of � with respet to �i; t1; t2 is negative de�nite atqi(0).



Calibrations for minimizers with a triple juntion 75If the segment joining (x; y; t1; t2) with qi(0) is all ontained in Pi , then we onsider the Taylor ex-pansion of seond order entred at qi(0) of the funtion � restrited to this segment; sine the omponentof (x; y) along �i is less or equal than 0, by (4.55) and by the fat that the Hessian matrix of � withrespet to �i; t1; t2 is negative de�nite, we have that there exists Æ > 0 suh that �(x; y; t1; t2) � 1 forjt1 � ui�1(0; 0)j < Æ , jt2 � ui(0; 0)j < Æ , provided U is small enough. In the general ase, we an �nds � 0, a 2 R suh that the segments joining (x; y) with s�i + a�i , and s�i + a�i with (0; 0) are allontained in Pi , and j(x; y)� s�i � a�ij=a2 is in�nitesimal as a! 0. Arguing as for the region Ni , thisis enough to obtain the same onlusion. So we have proved that, if " is small enough, there exists Æ > 0suh that �(x; y; t1; t2) � 1 for (x; y) 2 Pi; jt1 � ui�1(0; 0)j < Æ; jt2 � ui(0; 0)j < Æ; (4.60)provided U is suÆiently small.By (4.44) and (4.60) Step 1 is proved.4.3 Estimates for t1 and t2 near u0 and u2This setion is devoted to the proof of the following step.Step 2.{ For a suitable hoie of the funtion f (see (4.2)), there exists Æ > 0 suh that ondition (b1)holds for jt1 � u0(0; 0)j < Æ , jt2 � u2(0; 0)j < Æ , provided U is small enough.In order to prove the step, we want to show that the funtion � , introdued at the beginning of Setion 4.2,is less or equal than 1 in a neighbourhood of the point (0; 0; u0(0; 0); u2(0; 0)). We an assume thatjt1�u0(0; 0)j � " , jt2�u2(0; 0)j � " . Sine now the derivatives of � may be disontinuous on the urvesfh1 = 0g and fh2 = 0g , we have to onsider separately four di�erent ases, one for (x; y) belonging toeah one of the regions N1 \N2 , N1 \ P2 , N2 \ P1 , and P1 \ P2 .Let Ix and Iy be the omponents of the integral in (4.23) with respet to ex and ey , that are thetangent and the normal diretion, respetively, to the third part of the disontinuity set S0;2 .Consider �rst the ase (x; y) 2 P1 \ P2 , whih is the region ontaining S0;2 ; as before, we will studythe derivatives of � at the points of the formq0(x) := (x; 0; u0(x; 0); u2(x; 0)); x � 0:Condition (4.22) implies that �(q0(x)) = 1 for every x � 0; we want to prove thatr�(q0(x)) = 0 8x � 0 (4.61)and that the Hessian matrix of � with respet to y; t1; t2 is negative de�nite at qi(0). By the de�nitionof � , it follows that r� = 1� (IxrIx + IyrIy):Sine Ix(q0(x)) = 0 and Iy(q0(x)) = 1 for every x � 0, we have thatr�(q0(x)) = rIy(q0(x)):By (4.16) and by the de�nition of ' in Gi we an write the expliit expression of Iy at (x; y; t1; t2):Iy = �2(t1 � u0)�yu0 + 2(t2 � u2)�yu2 + 1� 2Xi=1(�i � �i + �)�i�yi+ p32v0 ("2 � (t1 � u0)2) + p32v2 ("2 � (t2 � u2)2); (4.62)



76 Chapter 4and by di�erentiating with respet to y , we obtain�yIy = 2(�yu0)2 � 2(�yu2)2 � 2(t1 � u0)�2yyu0 + 2(t2 � u2)�2yyu2+ 1� 2Xi=1 [�y(�i � �i)�i�yi + (�i � �i + �)�y(�i�yi )℄� 34v20 ("2 � (t1 � u0)2)+ 34v22 ("2 � (t2 � u2)2) + p3v0 (t1 � u0)�yu0 + p3v2 (t2 � u2)�yu2: (4.63)Sine in the region P1 \ P2 the funtions �i � �i oinide with the solutions of the problems (4.45), itresults that �y(�i � �i)(x; 0) = 0 for i = 1; 2. Moreover, di�erentiating (4.11) and the seond equalityin (4.3) with respet to y , we have that�y�2(x; y) = ��y�1(x;�y); �y�y2(x; y) = ��y�y1(x;�y); (4.64)and then, using again (4.3) and (4.11),�y1(x; 0)�y�1(x; 0) = ��y2(x; 0)�y�2(x; 0); �1(x; 0)�y�y1(x; 0) = ��2(x; 0)�y�y2(x; 0):By the Euler onditions, �yu0(x; 0) = �yu2(x; 0) = 0 for every x � 0; using all these remarks and (4.20),we dedue that �yIy(q0(x)) = 0 for every x > 0 and the equality holds also for the trae of �yIy atq0(0). Sine we have that�t1Iy = �2�yu0 � p3v0 (t1 � u0); �t2Iy = 2�yu2 � p3v2 (t2 � u2); (4.65)by the Euler onditions it follows that �t1Iy(q0(x)) = �t2Iy(q0(x)) = 0. As Iy(q0(x)) = 1 for everyx � 0, this implies that �xIy(q0(x)) = 0. Thus we have obtained equality (4.61).By (4.61) and (4.22) the Hessian matrix of � omputed at q0(0) redues tor2y;t1;t2�(q0(0)) = [ry;t1;t2Ix 
ry;t1;t2Ix +r2y;t1;t2Iy℄(q0(0)): (4.66)As before, we know thatIx = �2(t1 � u0)�xu0 + 2(t2 � u2)�xu2 + 1� 2Xi=1(�i � �i + �)�i�xi� 12v0 ("2 � (t1 � u0)2) + 12v2 ("2 � (t2 � u2)2);hene, by the Euler ondition, the fat that �y(�i � �i)(0; 0) = 0 for i = 1; 2, and (4.21), it results that�yIx(q0(0)) = p32 + 2Xi=1 �y(�i�xi )(0; 0) = p32 + 2�y�x1(0; 0) + 2�x1(0; 0)�y�1(0; 0);where we have also used the �rst equalities in (4.3) and in (4.64), and the relation �y�x2(x; y) =�y�x1 (x;�y). From (4.54) we obtain that�y�1(0; 0) = 3p32 g0(0)g(0) :



Calibrations for minimizers with a triple juntion 77Then, using the de�nition of �x1 and (4.50), we an onlude that�yIx(0; 0) = p32 � 3g0(0) = 2p3: (4.67)By di�erentiating (4.63) with respet to y and by using the Euler ondition and the fat that �y(�i ��i)(0; 0) = 0 for i = 1; 2, we obtain�2yyIy(q0(0)) = 1� 2Xi=1 [�2yy(�i � �i)�yi + �2yy(�i�yi )℄(0; 0) + 3p32" :Equality (4.58) implies that 1� 2Xi=1 [�2yy(�i � �i)�i�yi ℄(0; 0) = 4p3" : (4.68)In order to write expliitly �2yy�i at (0; 0), we di�erentiate the y -omponent in (4.51) with respet to yand we pass to the limit, taking into aount that �yhi(0) = (�1)i+1p3 by (4.53):�2yy�1(0; 0) = 32p0(0) + 12p(0)�2yyhi(0):By di�erentiating with respet to y the seond equality in (4.52), we obtain that�2yyh1(0; 0) = �(�yh1(0; 0))2 �2ss 1(0; 0)�s 1(0; 0) = 0;where the last equality follows by (4.9). Sinep0(0) = 2g00(0)g(0) + 3[g0(0)℄2g2(0) � 4�2xx�y1(0; 0)g(0) ; (4.69)while �2xx�y1(0; 0) = �3p38 f 00(0) + 18g00(0); �2yy�y1(0; 0) = �p38 f 00(0) + 38g00(0); (4.70)and g00(0) = �p3=(2"), we an write that1� 2Xi=1(�i � �i + �)�2yy(�i�yi )(0; 0) = (2�y1�2yy�1 + 4�y�1�y�y1 + 2�2yy�y1)(0; 0)= 2p3f 00(0) + 3g00(0)= 2p3f 00(0)� 3p32" : (4.71)Substituting (4.68) and (4.71) in the expression of �2yyIy , we �nd that�2yyIy(q0(0)) = 2p3f 00(0) + 4p3" : (4.72)From (4.66), (4.67), and (4.72), we �nally obtain that�2yy�(q0(0)) = [�yIx(q0(0))℄2 + �2yyIy(q0(0)) = 12 + 4p3" + 2p3f 00(0): (4.73)



78 Chapter 4As in the previous step, we an ompute expliitly the other elements of the Hessian matrix of � and we�nd that det �2yy� �2yt1��2yt1� �2t1t1� ! (q0(0)) = �6"f 00(0)� 12p3" � 12"2 � 4(�2yyu0(0; 0))2;detr2y;t1;t2�(q0(0)) = 6p3"2 f 00(0) + 36"2 + 12p3"3 + 4p3" [(�2yyu0(0; 0))2 + (�2yyu2(0; 0))2℄:If we impose the following ondition on the seond derivative of f at 0:f 00(0) < �2p3� 2" � 2"3 [(�2yyu0(0; 0))2 + (�2yyu2(0; 0))2℄; (4.74)then the Hessian matrix of � is negative de�nite at q0(0).To onlude, we restrit � to the segment joining (x; y; t1; t2) with q0(x) and we write its Taylorexpansion of seond order entred at q0(x); using (4.61) and hoosing f satisfying (4.74) (so that theHessian matrix of � is negative de�nite at q0(0), and then by ontinuity in a small neighbourhood), weobtain that there exists Æ > 0 suh that�(x; y; t1; t2) � 1 for (x; y) 2 P1 \ P2; jt1 � u0(0; 0)j < Æ; jt2 � u2(0; 0)j < Æ; (4.75)provided U is suÆiently small.Let us onsider the set N1 \ N2 : in this region �1 = �2 = 1, while the funtions �i � �i oinidewith the solutions of the problems (4.31). By (4.22) the gradient of � at the point q0(0) is given byr�(q0(0)) = rIy(q0(0)): (4.76)By (4.62) we derive the expliit expression for the gradient of Iy with respet to x; y ; using the Eulerondition, the fat that r(�i � �i)(0; 0) = 0, the onstany of �i and the equalityrv0(x; y) +rv2(x; y) = �ex 8(x; y) 2 U; (4.77)we obtain that rx;yIy(q0(0)) = 2Xi=1 r�yi (0; 0) + p32 ex = �12g0(0)ex + p32 ex = 3p34 ex:Sine the partial derivatives of Iy with respet to t1 and t2 are still given by (4.65), they are equal to0 at q0(0), as in the previous ase. Therefore, we have thatr�(q0(0)) =  3p34 ex; 0; 0! : (4.78)If (x; y) 6= (0; 0) belongs to N1 \ N2 and the segment joining (x; y) with (0; 0) is all ontained inN1\N2 , then by the Mean Value theorem, (4.78) and the fat that x is stritly negative, we an onludethat there exists Æ > 0 suh that�(x; y; t1; t2) � 1 for jt1 � u0(0; 0)j < Æ; jt2 � u2(0; 0)j < Æ; (4.79)provided U is suÆiently small. If the segment joining (x; y) with (0; 0) is not ontained in N1\N2 , thenwe an �nd a regular urve onneting (x; y) and (0; 0), along whih we an repeat the same estimateas above.



Calibrations for minimizers with a triple juntion 79At last onsider the set N2 \P1 , sine the ase N1 \P2 is ompletely analogous. In this region, �1 isde�ned by (4.46), while �2 is identially equal to 1; the funtion �1 � �1 oinides with the solution ofthe problem (4.45) for i = 1, while �2 � �2 with the one of (4.31) for i = 2. Equality (4.76) still holds,as well as the fat that r(�i � �i)(0; 0) = (0; 0) for all i ; sine r�1 is given by the formula (4.54) andr�2 � 0, by (4.2), (4.50), (4.62), and (4.77) we have thatrx;yIy(q0(0)) = 2Xi=1 r�yi (0; 0) + �y1(0; 0)r�1(0; 0) + p32 ex= 3p34 (ex + �1) = �3p34 �2;hene r�(q0(0)) =  �3p34 �2; 0; 0! :Sine the gradient of � vanishes along the diretion (�2; 0; 0), we need to ompute the Hessian matrix of� with respet to �2; t1; t2 at the point q0(0); from the equality r�2;t1;t2Iy(q0(0)) = 0, we have thatr2�2;t1;t2�(q0(0)) = [r�2;t1;t2Ix 
r�2;t1;t2Ix +r2�2;t1;t2Iy℄(q0(0)): (4.80)Using the fat that ru0(0; 0) = ru2(0; 0) = 0 and r(�i � �i)(0; 0) = 0, we obtain��2Ix(q0(0)) = 2Xi=1 ��2�xi (0; 0) + ��2�1(0; 0)�x1(0; 0) + 12��2(v0 � v2)= �y�x1(0; 0)� 94g0(0) + p34 = p3;where the seond equality follows from (4.54) and from the fat that ��2�x1 + ��2�x2 = �y�x1 at (0; 0).If we di�erentiate (4.62) twie with respet to the diretion �2 and we ompute the result at the pointq0(0), we obtain�2�2�2Iy(0; 0) =  1� 2Xi=1 �2�2�2(�i � �i)�i�yi + 2Xi=1 �2�2�2�yi + �2�2�2�1�y1 + 2��2�1��2�y1! (0; 0) + 3p34" :(4.81)From (4.57) and (4.58), and from (4.41) it follows respetively that�2�2�2(�1 � �1)(0; 0) = 4p3"3 �g(0) ; �2�2�2(�2 � �2)(0; 0) = �2p3" �g(0) : (4.82)Sine by (4.51) we have that ��2�1(x; y) = 12p(h1(x; y))��2h1(x; y), then�2�2�2�1(0; 0) = 12p0(0)(��2h1(0; 0))2 + 12p(0)�2�2�2h1(0; 0):Some easy omputations show that �2�2�2h1(0; 0) = 0; using (4.53) it results that�2�2�2�1(0; 0) = 32p0(0) = 92 [g0(0)℄2g2(0) + 94p3f 00(0)g(0) ; (4.83)



80 Chapter 4where the last equality follows by (4.69) and by the �rst equality in (4.70). At last, by using (4.3) and(4.70), we obtain that2Xi=1 �2�2�2�yi (0; 0) = 34�2xx�y1(0; 0) + 14�2yy�y1(0; 0) = �58p3f 00(0) + 38g00(0); (4.84)and by substituting (4.82), (4.83), and (4.84) in (4.81), we dedue that�2�2�2Iy(q0(0)) = p32 f 00(0) + p3" ;hene �2�2�2�(q0(0)) = 3 + p3" + p32 f 00(0):By di�erentiating (4.65) with respet to �2 and by (4.80), we obtain�2�2t1�(q0(0)) = �2��2�yu0(0; 0) = ��2yyu0(0; 0); �2�2t2�(q0(0)) = 2��2�yu2(0; 0) = �2yyu2(0; 0):At this point, it is easy to see that, if f satis�es the onditionf 00(0) < �2p3� 2" � "6[(�2yyu0(0; 0))2 + (�2yyu2(0; 0))2℄ (4.85)then the Hessian matrix of � with respet to �2; t1; t2 is negative de�nite at the point q0(0). Arguingas for the region Pi in the previous setion, it an be proved that, if f satis�es (4.85), then there existsÆ > 0 suh that�(x; y; t1; t2) � 1 for (x; y) 2 N2 \ P1; jt1 � u0(0; 0)j < Æ; jt2 � u2(0; 0)j < Æ; (4.86)provided U is suÆiently small.Sine ondition (4.74) implies (4.85), if we require that (4.74) holds, then by (4.75), (4.79), and (4.86),we an onlude that Step 2 is true.4.4 Proof of ondition (b1)In this setion we omplete the proof of ondition (b1). To this aim it is enough to hek ondition (b1)in the three ases studied in the following step, as it will be lear at the end of the setion.Step 3.{ If " is suÆiently small, Æ 2 (0; "), and U is suÆiently small, ondition (b1) is true fort1 � t2 whenever one of the following three onditions is satis�ed:1) jt1 � u0(0; 0)j � Æ and jt1 � u1(0; 0)j � Æ ;2) jt2 � u1(0; 0)j � Æ and jt2 � u2(0; 0)j � Æ ;3) jt1 � u0(0; 0)j � Æ and jt2 � u2(0; 0)j � Æ .Let us �x Æ 2 (0; ") and setM1(x; y) := maxfjI(x; y; t1; t2)j : u0(x; y)� " � t1 � t2 � u2(x; y) + ";jt1 � u0(0; 0)j � Æ; jt1 � u1(0; 0)j � Æg:



Calibrations for minimizers with a triple juntion 81It is easy to see that the funtion M1 is ontinuous. Let us prove that M1(0; 0) < 1. For simpliity ofnotation, from now on we will denote I(0; 0; t1; t2) simply by I(t1; t2) and ui(0; 0) by ui .Let t1; t2 be suh that u0 � " � t1 � t2 � u2 + " with jt1 � u0j � Æ and jt1 � u1j � Æ . Supposefurthermore that jt1 � u1j � " ; then, we an writeI(t1; t2) = I(t1; u1) + I(u1; u2) + I(u2; t2);I(u2; t2) = I(u2; t2 _ (u2 � ")) + I(u2 � "; t2 ^ (u2 � ")):Therefore, we haveI(t1; t2) = I(t1; u1) + I(u1; u2) + I(u2; t2 _ (u2 � "))� I(t2 ^ (u2 � "); u2 � "): (4.87)From the de�nition of ' in G1; G2 it follows thatI(s1; u1) = �1" (s1 � u1)2ex for js1 � u1j � ";I(u2; s2) = 1" (s2 � u2)2�1 for js2 � u2j � "; (4.88)using ondition (b2), we have thatI(t1; u1) + I(u1; u2) + I(u2; t2 _ (u2 � ")) 2 �2 � Æ2" ex +R1; (4.89)where R1 is the parallelogram spanned by the vetors "�1 and ��"� Æ2" � ex . Let C be the intersetionof the half-plane f(x; y) 2 R2 : h�2; (x; y)i � 1 �p3"g with the open ball entred at 0 with radius 1;some elementary geometri onsiderations show that�2 � Æ2" ex +R1 � C: (4.90)If Ti is the segment joining 0 with g(0)�i , then from the de�nition of ' in Ki , it follows thatI(ui�1 + "; ui � ") = g(0)�i; (4.91)and I(s1; s2) 2 Ti (4.92)for ui�1 + " � s1 � s2 � ui � " , i = 1; 2. Let D := �T2 ; from (4.87), (4.89), (4.90), and (4.92), wededue that I(t1; t2) 2 C +D;sine g(0) = 1 � p3" , the set C + D is ontained in the open ball entred at 0 with radius 1. Thisonludes the proof when jt1 � u1j � " .If jt2 � u1j � " , we onsider the deompositionI(t1; t2) = I(t1; u0) + I(u0; u1) + I(u1; t2);I(t1; u0) = I(t1 ^ (u0 + "); u0) + I(t1 _ (u0 + "); u0 + ");and the proof is ompletely analogous.When jt1 � u1j > " and jt2 � u1j > " , we an writeI(t1; t2) = I(t1; u0) + I(u0; u2) + I(u2; t2);I(t1; u0) = I(t1 ^ (u0 + "); u0) + I(t1 _ (u0 + "); u0 + ");I(u2; t2) = I(u2; t2 _ (u2 � ")) + I(u2 � "; t2 ^ (u2 � "));



82 Chapter 4therefore, we haveI(t1; t2) = I(t1 ^ (u0 + "); u0) + I(u0; u2) + I(u2; t2 _ (u2 � "))+ I(t1 _ (u0 + "); t2 ^ (u2 � "))� I(u0 + "; u2 � "): (4.93)Sine from the de�nition of ' in G0 it follows thatI(s0; u0) = �1" (s0 � u0)2�2 for js0 � u0j � "; (4.94)using ondition (b2) and (4.88), we have thatI(t1 ^ (u0 + "); u0) + I(u0; u2) + I(u2; t2 _ (u2 � ")) 2 ey � Æ2" �2 +R2; (4.95)where R2 is the parallelogram spanned by the vetors "�1 and ��"� Æ2" � �2 . Let E be the parallelogramhaving as onseutive sides T1 and T2 , and let F be the set E � g(0)ey ; as I(u1 � "; u1 + ") = 0, from(4.91) it follows that I(u0 + "; u2 � ") = g(0)ey = (1�p3")ey; (4.96)and from (4.92), I(s1; s2) 2 E (4.97)for every u0 + " � s1 � s2 � u2 � " , with js1 � u1j > " and js2 � u1j > " . From (4.93), (4.95), (4.96),(4.97), we obtain that I(t1; t2) 2 ey � Æ2" �2 +R2 + F:The set ey � Æ2" �2 +R2 + F is a polygon, sine it is the sum of two polygons, and it is possible to provethat, if " < p3, its verties are all ontained in the open ball with entre 0 and radius 1. Then, underthis ondition, the whole set ey � Æ2" �2 +R2 + F is ontained in this ball; this onludes the proof of theinequality M1(0; 0) < 1.By ontinuity, hoosing U small enough, we obtain that M1(x; y) < 1 for every (x; y) 2 U , whihproves 1).To prove 2) and 3), we de�ne analogouslyM2(x; y) := maxfjI(x; y; t1; t2)j : u0(x; y)� " � t1 � t2 � u2(x; y) + ";jt2 � u1(0; 0)j � Æ; jt2 � u2(0; 0)j � Æg;M3(x; y) := maxfjI(x; y; t1; t2)j : u0(x; y)� " � t1 � t2 � u2(x; y) + ";jt1 � u0(0; 0)j � Æ; jt2 � u2(0; 0)j � Æg:It is easy to see that the funtions M2 and M3 are ontinuous and, arguing as in the ase of M1 , we anprove that M2(0; 0) < 1 and M3(0; 0) < 1, whih yield 2) and 3) by ontinuity. Step 3 is proved.Conlusion.{ As in Step 3, we simply write ui instead of ui(0; 0). Let us show that, if f satis�es(4.74), and " and U are suÆiently small, then ondition (b1) is true for u0(x; y)�" � t1 < t2 � u2(x; y)+" and in fat for every t1; t2 2 R , sine 'xy(x; y; z) = 0 for z � u0(x; y)� " and for z � u2(x; y) + " .



Calibrations for minimizers with a triple juntion 83We start by onsidering the ase jt1�u0j < Æ . If jt2� u1j < Æ , the onlusion follows from Step 1. Ifjt2�u1j � Æ , the result is a onsequene of Step 2 when jt2�u2j < Æ , and of Step 3.2) in the other ase.We onsider now the ase jt1 � u0j � Æ . If jt1 � u1j � Æ , the onlusion follows from Step 3.1). Ifjt1�u1j < Æ , the result is a onsequene of Step 1 when jt2�u2j < Æ , and of Step 3.3) in the other ase.This onludes the proof of ondition (b1) and then, of Theorem 4.1 in the ase u0 symmetri. 24.5 The antisymmetri aseIn this setion we show how the onstrution of the alibration for ui symmetri an be adapted to theantisymmetri ase.If the funtion u0 is antisymmetri with respet to the biseting line of A0 , then the reetion of u0with respet to the S0;1 and to S0;2 provides an extension of u0 , whih is harmoni only on 
nS1;2 andwhih is multi-valued on S1;2 , sine the traes of the tangential derivatives of u0 on S1;2 have di�erentsigns. Sine u1; u2 oinide, up to the sign and to additive onstants, with the reetions of u0 withrespet to S0;1 and S0;2 , respetively, they are antisymmetri with respet to the biseting line of A1and A2 , respetively, and then, their extensions by reetion are harmoni only on 
nS0;2 and 
nS0;1 ,respetively.The alibration ' an be de�ned as before, just replaing the sets G0; G1; G2 with~G0 = f(x; y; z) 2 (U n S1;2)�R : u0(x; y)� " < z < u0(x; y) + "g;~G1 = f(x; y; z) 2 (U n S0;2)�R : u1(x; y)� " < z < u1(x; y) + "g;~G2 = f(x; y; z) 2 (U n S0;1)�R : u2(x; y)� " < z < u2(x; y) + "g;and the sets H1; H2 with~H1 = f(x; y; z) 2 (U n (S1;2 [ S0;2))�R : l1 + �=2 < z < l1 + 3�=2g;~H2 = f(x; y; z) 2 (U n (S0;1 [ S0;2))�R : l2 + �=2 < z < l2 + 3�=2g:Sine u0 is harmoni in 
 n S1;2 , the �eld ' is divergene-free in ~G0 by Lemma 1.5. Moreover, thenormal omponent of ' is ontinuous aross the boundary of G0 sine ��2u0 = ��2v0 = 0 on S1;2 . Thesame argument works for the sets ~G1; ~G2 . By the harmoniity of u0 and u1 , the �eld is divergene-freein ~H1 and the normal omponent of ' is ontinuous aross the boundary of H1 sine ��2u0 = 0 on S1;2and �yu1 = 0 on S0;2 . Therefore, ondition (1) is still satis�ed in the sense of distributions on U�R .It is easy to see that onditions (a1), (a2), and (b2) are satis�ed.The proof of Step 1, Step 2, and Step 3 an be easily adapted; indeed, even if now the funtionjI(x; y; t1; t2)j may present some disontinuities when (x; y) 2 Si;j , we an write U as the union of�nitely many Lipshitz open subsets Ui suh that jI j is C2(Ui�R2 ) and study the behaviour of jI jseparately in eah Ui . So, it results that also ondition (b1) is true. 2





Chapter 5The alibration method forfuntionals on vetor-valued mapsThe purpose of this hapter is to present and develop a generalization of the alibration method tofuntionals with free disontinuities de�ned on vetor-valued maps.In the sequel 
 is a �xed bounded open subset of Rn with Lipshitz boundary, ��
 is its inner unitnormal, while U is a losed subset of 
�RN . The letter x usually denotes the variable in 
 (or Rn ),while y or z is the variable in RN . We will onsider funtionals of the formF (u) = Z
 f(x; u;ru) dx+ ZSu  (x; u�; u+; �u) dHn�1; (5.1)where f : 
�RN�RnN ! [0;+1℄ , and  : 
�RN�RN�Sn�1 ! [0;+1℄ are Borel funtions, Sn�1 :=fv 2 Rn : jvj = 1g , and the unknown funtion u belongs to the spae SBV (
;RN ) of speial funtionsof bounded variation in 
. Sine the triplet (u+; u�; �u) is uniquely determined up to a permutationof (u+; u�) and a hange of sign of �u (see Setion 1.1), we will assume that  satis�es the ondition (x; y; z; �) =  (x; z; y;��).We start this hapter with the proof of a generalized hain rule in BV , whih will be useful in thefollowing. If u 2 BV (
;RN ) and S is a Lipshitz ontinuous funtion from RN into RM , it is knownthat S Æu belongs to BV (
;RM ). When in addition S 2 C1(RN ;RM ), the following hain rule formulaan be written: ~D(S Æ u) = DS(~u(x)) ~Du(x) on 
 n Su;Dj(S Æ u) = [S(u+)� S(u�)℄
 �uHn�1bSu; (5.2)(see Theorem 3.96 in [6℄). Following an idea by [32℄, we generalize formula (5.2) to the ase of a funtionS , whih may depend also on the variable x and is only pieewise C1 in the sense of the followingde�nition.De�nition 5.1 We say that a Lipshitz ontinuous funtion S : U ! RM is pieewise C1 if S an bewritten as S(x; y) = X�2AS�(x; y)1U�(x; y); (5.3)where (U�)�2A is a �nite family of pairwise disjoint Borel sets suh that [�2AU� = U , and (S�)�2Ais a family of Lipshitz ontinuous funtions belonging to C1(
�RN ;RM ) .85



86 Chapter 5Lemma 5.2 Let S : U ! RM be a Lipshitz ontinuous funtion, pieewise C1 in the sense of De�ni-tion 5.1, and satisfying (5.3), and let u 2 BV (
;RN ) be suh that graphu � U . Then, v := S(�; u(�))belongs to BV (
;RM ) and~Dv = X�2A 1U�(x; ~u)(DxS�(x; ~u)Ln +DyS�(x; ~u) ~Du) on 
 n Su; (5.4)Djv = [S(x; u+)� S(x; u�)℄
 �uHn�1bSu: (5.5)Proof. { Sine the funtion S an be extended to a Lipshitz funtion on the whole 
�RN , byTheorem 3.101 in [6℄ we have that the funtion v = S(�; u(�)) belongs to BV (
;RM ) and formula (5.5)holds true.Sine S� is globally Lipshitz and of lass C1 on 
�RN , by Theorem 3.96 in [6℄ the funtionv� := S�(�; u(�)) belongs to BV (
;RM ) and the di�use part of its derivative satis�es the followingequality: ~Dv� = DxS�(x; ~u)Ln +DyS�(x; ~u) ~Du: (5.6)Consider now the set E� := fx 2 
 n Su : ~v(x) = ~v�(x)g:Sine v and v� are both BV funtions and their jump sets are both ontained in Su , by the loalityproperty of the derivative of a BV funtion (see Remark 3.93 in [6℄) it follows that DvbE� = Dv�bE� .Sine E� � 
 n Su , the previous equality an be rewritten as~DvbE� = ~Dv�bE�: (5.7)If we de�ne P� := fx 2 
 n Su : (x; ~u(x)) 2 U�g;sine P� � E� , by (5.7) and (5.6) we an onlude that~DvbP� = ~Dv�bP� = DxS�(x; ~u)LnbP� +DyS�(x; ~u) ~DubP�;whih immediately gives formula (5.4). 2The plan of the hapter is the following: in Setion 5.1 we present the alibration method for fun-tionals of the form (5.1) on vetor-valued maps; Setion 5.2 is devoted to the link between alibrationtheory and lassial �eld theory; Setion 5.3 ontains some appliations to the Mumford-Shah funtional(for vetor-valued funtions) and to funtionals arising in frature mehanis; �nally, in Setion 5.4 wereformulate the theory of alibrations in terms of di�erential forms and show that this formulation doesnot lead to new results.5.1 Calibrations for funtionals on vetor-valued mapsAording to De�nitions 1.1 and 1.3, we onsider the following de�nition of minimizers of F .De�nition 5.3 An absolute minimizer of (5.1) in 
 is a funtion u 2 SBV (
;RN ) suh that F (u) �F (v) for all v 2 SBV (
;RN ) , while a Dirihlet minimizer in 
 is a funtion u 2 SBV (
;RN ) suh thatF (u) � F (v) for all v 2 SBV (
;RN ) with the same trae on �
 as u . A funtion u is a U -minimizerif the graph of u is ontained in U and F (u) � F (v) for all v 2 SBV (
;RN ) whose graph is ontainedin U , while u is a Dirihlet U -minimizer if we add the requirement that the ompeting funtions v havethe same trae on �
 as u .



The alibration method for funtionals on vetor-valued maps 87Before proving the key lemma about alibrations, we �x some further notation.Given two funtions S : U ! Rn , and u : 
 ! RN , we will denote the divergene of the ompositefuntion S(�; u(�)) by divx[S(x; u(x))℄ , while the divergene of S with respet to the variable x omputedat the point (x; u(x)) by [divxS℄(x; u(x)). The Jaobian matrix of S with respet to y will be denotedby DyS and its transpose by (DyS)� . Note that if S and u are suÆiently regular,divx[S(x; u(x))℄ = [divxS℄(x; u) + h(DyS(x; u))� ;rui:As in Setion 1.3, we all f� and ��� f the onvex onjugate and the subdi�erential of f with respetto the last variable. It is well known that, if g is any funtion from RnN into [0;+1℄ , h�; �i�g�(�) � g(�)for every �; � 2 RnN , and the equality holds if and only if � 2 ��� g(�). Moreover, if g is onvex anddi�erentiable, then ��� g(�) = f��g(�)g . Using these properties, we an prove the following lemma.Lemma 5.4 Let F be the funtional de�ned in (5.1). Let S 2 C1(
�RN ;Rn ) be Lipshitz ontinuousand let S0 2 L1(
) . Assume that the following onditions are satis�ed:(a1) [divxS℄(x; y)+S0(x) � �f�(x; y; (DyS(x; y))� ) for Ln -a.e. x 2 
 and for every y with (x; y) 2 U ;(b1) hS(x; z) � S(x; y); �i �  (x; y; z; �) for Hn�1 -a.e. x 2 
 , for every � 2 Sn�1, and for every y; zwith (x; y) 2 U; (x; z) 2 U:Then for every u 2 SBV (
;RN ) suh that graphu � U we have that divx[S(�; u(�))℄ is a Radon measureon 
 , whih will be denoted as �u , andF (u) � Z
 d�u + Z
 S0(x) dx: (5.8)Moreover, equality holds in (5.8) for a given u if and only if(a2) [divxS℄(x; u) + S0(x) = �f�(x; u; (DyS(x; u))� ) and (DyS(x; u))� 2 ��� f(x; u;ru) for Ln -a.e.x 2 
;(b2) hS(x; u+)� S(x; u�); �ui =  (x; u�; u+; �u) for Hn�1 -a.e. x 2 Su;where u , u� , ru , and �u are always omputed at x .Proof. { Let u 2 SBV (
;RN ) be suh that graphu � U . By Theorem 3.96 in [6℄ the funtionS(�; u(�)) belongs to SBV (
;Rn ), and therefore, its divergene is a Radon measure on 
. Moreover, wehave thatDxi [Si(x; u)℄ = �xiSi(x; u)Ln +DySi(x; u)�xiuLn + [Si(x; u+)� Si(x; u�)℄(�u)iHn�1bSu;so that the measure �u an be written as�u(x) = nXi=1Dxi [Si(x; u(x))℄= [divxS℄(x; u)Ln +Xi DySi(x; u)�xiuLn +Xi [Si(x; u+)� Si(x; u�)℄(�u)iHn�1bSu= [divxS℄(x; u)Ln + h(DyS(x; u))� ;rui Ln + hS(x; u+)� S(x; u�); �uiHn�1bSu;



88 Chapter 5and the funtional at the right-hand side of (5.8) has the following expressionZ
 d�u + Z
 S0(x) dx = Z
 ([divxS℄(x; u) + h(DyS(x; u))� ;rui+ S0(x)) dx+ ZSuhS(x; u+)� S(x; u�); �ui dHn�1: (5.9)Using assumption (a1) we obtain that for Ln -a.e. x 2 
[divxS℄(x; u) + h(DyS(x; u))� ;rui+ S0(x) � �f�(x; u; (DyS(x; u))� ) + h(DyS(x; u))� ;rui� f(x; u;ru);and onsequentlyZ
 ([divxS℄(x; u) + h(DyS(x; u))� ;rui+ S0(x)) dx � Z
 f(x; u;ru) dx: (5.10)Moreover, equality holds in (5.10) if and only if (DyS(x; u))� 2 ��� f(x; u;ru) and [divxS℄(x; u)+S0(x) =�f�(x; u; (DyS(x; u))� ); whih is ondition (a2).As for the seond integral in (5.9), ondition (b1) implies thatZSuhS(x; u+)� S(x; u�); �ui dHn�1 � ZSu  (x; u�; u+; �u) dHn�1: (5.11)Moreover, equality holds in (5.11) if and only if (b2) is satis�ed.The statement follows now from (5.9), (5.10), and (5.11). 2The assumption of C1 -regularity for S is often too strong for many appliations. We prove now anew version of Lemma 5.4 under weaker regularity assumptions for S .Lemma 5.5 Let F be the funtional de�ned in (5.1). Let S : U ! Rn be a Lipshitz ontinuousfuntion, pieewise C1 in the sense of De�nition 5.1, and satisfying (5.3). Let S0 2 L1(
) . Assume thatthe following onditions are satis�ed:(a1) [divxS�℄(x; y) + S0(x) � �f�(x; y; (DyS�(x; y))� ) for every � 2 A , for Ln -a.e. x 2 
 , and forevery y 2 RN with (x; y) 2 U�;(b1) hS(x; z) � S(x; y); �i �  (x; y; z; �) for Hn�1 -a.e. x 2 
 , for every � 2 Sn�1, and for every y; zwith (x; y) 2 U; (x; z) 2 U:Then for every u 2 SBV (
;RN ) suh that graphu � U we have that divx[S(�; u(�))℄ is a Radon measureon 
 , whih will be denoted as �u , andF (u) � Z
 d�u + Z
 S0(x) dx: (5.12)Moreover, equality holds in (5.8) for a given u if and only if(a2) [divxS�℄(x; u) + S0(x) = �f�(x; u; (DyS�(x; u))� ) and (DyS�(x; u))� 2 ��� f(x; u;ru) for every� 2 A , for Ln -a.e. x 2 
 suh that (x; u(x)) 2 U� :(b2) hS(x; u+)� S(x; u�); �ui =  (x; u�; u+; �u) for Hn�1 -a.e. x 2 Su;where u , u� , ru , and �u are always omputed at x .



The alibration method for funtionals on vetor-valued maps 89Proof. { Let u 2 SBV (
;RN ) be suh that graphu � U . By Lemma 5.2 the funtion S(�; u(�))belongs to SBV (
;Rn ), and therefore, its divergene is a Radon measure on 
. By (5.4) and (5.5) wehave that the measure �u an be written as�u(x) = X�2A 1U�(x; u)[divxS�℄(x; u)Ln +X�2A 1U�(x; u)h(DyS�(x; u))� ;rui Ln+ hS(x; u+)� S(x; u�); �uiHn�1bSu:The proof of Lemma 5.4 an be now repeated simply replaing [divxS℄ with P�2A 1U� [divxS�℄ , andDyS with P�2A 1U�DyS� . 2De�nition 5.6 We say that a pair of funtions (S;S0) is a alibration for u 2 SBV (
;RN ) on Uwith respet to the funtional (5.1) if S : U ! Rn is a Lipshitz ontinuous funtion, pieewise C1in the sense of De�nition 5.1, S0 2 L1(
) , and they satisfy assumptions (a1), (b1), (a2), and (b2) inLemma 5.5.We an now prove the main result of this setion.Theorem 5.7 Let u be a funtion in SBV (
;RN ) whose graph is ontained in U . Assume that thereexists a alibration (S;S0) for u on U with respet to the funtional (5.1). Then u is a Dirihlet U -minimizer of F . If, in addition, the normal omponent of S at �U \ (�
�RN ) does not depend on y ,namely for Hn�1 -a.e. x 2 �
 there exists a onstant a(x) 2 R suh thathS(x; y); ��
(x)i = a(x) for every y suh that (x; y) 2 U , (5.13)then u is also an absolute U -minimizer of F .Proof. { Let v be a funtion in SBV (
;RN ) suh that v = u on �
 and graphv � U . Then thede�nition of the measure �v and the divergene theorem imply thatZ
 d�v = � Z�
hS(x; v); ��
i dHn�1:If v has the same trae on �
 as u , from this identity it follows thatZ
 d�v = Z
 d�u; (5.14)and by applying Lemma 5.5 we obtainF (v) � Z
 d�v + Z
 S0(x) dx = Z
 d�u + Z
 S0(x) dx = F (u):We have thus proved that u is a Dirihlet U -minimizer of F .If we assume, in addition, that (5.13) holds true, then R
 d�v = � R
 a dHn�1 for every v 2SBV (
;RN ) whose graph is ontained in U ; so, the equality (5.14) is ful�lled even if the traes ofu and v on �
 di�er. This proves that u is an absolute U -minimizer of F . 2Remark 5.8 It is natural to wonder what is the link in the ase N = 1 between our vetorial theoryand the alibration method for the salar ase, realled in Setion 1.3, whih involves a divergene-freevetor�eld ' .



90 Chapter 5Let N = 1. Let us suppose that (S;S0) is a alibration for u and assume furthermore that S isglobally C1 . Take the vetor�eld ' = ('x; 'z) : U ! Rn�R de�ned by 'x(x; z) := �zS(x; z) and'z(x; z) := �[divxS℄(x; z) � S0(x). Then ' satis�es all the assumptions of Setion 1.3. Indeed, byRemark 2.3 in [2℄ ' is approximately regular on U . Moreover, onditions (a1) and (a2) on (S;S0)learly imply that ' sati�es (a1) and (a2) of Setion 1.3, respetively. By de�nition of ' we have thatZ t2t1 'x(x; z) dz = S(x; t2)� S(x; t1);so that onditions (b1) and (b2) on (S;S0) imply onditions (b1) and (b2) of Setion 1.3, respetively.If S is C2 and S0 is C1 , then it is trivial that ' is C1 and div' = 0; in the general ase, one an provethat ' is divergene-free by an approximation argument.Analogously it is easy to see that, if ' is a bounded Lipshitz C1 -vetor�eld satisfying the alibrationonditions of Setion 1.3, then we an onstrut a alibration (S;S0). Take indeedS(x; z) := Z z�(x) 'x(x; t) dt and S0(x) := h'x(x; �(x));r�(x)i � 'z(x; �(x));where � is any smooth funtion satisfying (x; �(x)) 2 U for every x 2 
.5.2 An appliation related to lassial �eld theoryWe reall now some lassial results from �eld theory for multiple integrals of the formF0(u) = Z
 f(x; u;ru) dx; (5.15)where u 2 C1(
;RN ) and f 2 C2(
�RN�RnN ).We will all extremals of F0 or f -extremal the solutions u of lass C2 of the Euler equations for theintegral F0 , i.e. nXi=1Dxi [��ijf(x; u(x);ru(x))℄ � �ujf(x; u(x);ru(x)) = 0; 1 � j � N: (5.16)In the lassial �eld theory for multiple integrals several suÆient onditions for the minimality of anf -extremal have been proposed. Among the others, we reall Weyl �eld theory, whih is stritly relatedto the alibration theory for vetor-valued funtionals and ensures that a given f -extremal u is in fat aminimizer of F0 among all funtions of lass C1 , with the same boundary values as u and whose graphis ontained in a suitable neighbourhood of the graph of u . It onsists in the onstrution of a suitableslope �eld P , alled Weyl �eld, and of a smooth funtion S , alled the eikonal map assoiated with the�eld, satisfying the system of equations (5.17) { (5.18). This set of onditions arises from the omparisonof F0 with an invariant funtional of divergene type, whih is nothing but the funtionalZ
 divx[S(x; v)℄ dx;where S is the eikonal map (see, e.g. [18, Chapter 7, Setion 4℄).We will show via alibrations that, if a Weyl �eld exists for an f -extremal u (and then there existsa neighbourhood U of the graph of u suh that u minimizes F0 among C1 -funtions with the sameboundary values as u and with graph ontained in U ), then u is also a Dirihlet U -minimizer of thefuntional (5.1) in the sense of De�nition 5.3, provided U is a suÆiently small neighbourhood of thegraph of u and the funtion  satis�es the estimate (5.20); moreover, if S is the eikonal map assoiatedwith the Weyl �eld, then the pair (S;S0) with S0 � 0 is a alibration for u on U .



The alibration method for funtionals on vetor-valued maps 91De�nition 5.9 Let U be a losed domain in 
�RN . A mapping p : U ! U�RnN is alled a slope �eldon U if it is of lass C1 and of the formp(x; y) = (x; y;P(x; y)) for every (x; y) 2 U ;we denote P(x; y) = (Pij(x; y)) as the slope funtion of the �eld p . We say that a map u 2 C1(
;RN )�ts the slope �eld p if graphu � U and�xiuj(x) = Pij(x; u(x)) for every x 2 
 .Finally, a slope �eld p is said to be a Weyl �eld if there is a map S 2 C2(U ;Rn ) suh that fS;Pg solvesthe Weyl equations: [divxS℄(x; y) = f(x; y;P(x; y))� hP(x; y); ��f(x; y;P(x; y))i; (5.17)�yjSi(x; y) = ��ijf(x; y;P(x; y)): (5.18)The funtion S is alled the eikonal map assoiated with p .The main results in Weyl �eld theory an be stated as follows. For a proof we refer to [18℄.Theorem 5.10 (1) Assume that the funtion f satis�esf(x; y; �)� f(x; y; �)� h� � �; ��f(x; y; �)i � 0for every (x; y) 2 U and �; � 2 RnN , and let u 2 C2(
;RN ) �t a Weyl �eld p : U ! U�RnN withthe eikonal map S : U ! Rn . Then u is a minimizer of F0 among all v 2 C1(
;RN ) suh thatvj�
 = uj�
 and graph v � U ; in partiular, u is an f -extremal. Moreover, if there is a onstant� > 0 suh thatXi;j;h;k �2�ij�hkf(x; y; �)�ij�hk � �j�j2 8(x; y) 2 
�RN ; �; � 2 RnN ; (5.19)then u is a strit minimizer of F0 in the same lass.(2) Vie-versa, if f satis�es the strit onvexity ondition (5.19), then every f -extremal �ts at leastloally a Weyl �eld and is therefore loally minimizing F0 . In other words, for every x0 2 
 thereexist " > 0 and an open neighbourhood A of x0 suh that u minimizes F0 among all v 2 C1(A;RN )suh that vj�A = uj�A and graphv � f(x; y) 2 A�RN : jy � u(x0)j � "g .Let us now state and prove a similar result for free-disontinuity problems.Theorem 5.11 Let f : 
�RN�RnN ! [0;+1℄ be a funtion of lass C2 satisfying (5.19) and let : 
�RN�RN�Sn�1! [0;+1℄ be a Borel funtion satisfying (x; y; z; �) �  �(jy � zj); (5.20)where  is a positive onstant, while � is suh that limt!0+ �(t)t = +1 . Let u be an f -extremal. Thenfor every x0 2 
 there exist " > 0 , an open neighbourhood A (with Lipshitz boundary) of x0 , and apair (S;S0) suh that (S;S0) is a alibration for u with respet to the funtional (5.1) on the setU := f(x; y) 2 A�RN : jy � u(x0)j � "g; (5.21)therefore u is a Dirihlet U -minimizer of the funtional (5.1).



92 Chapter 5Proof. { Let u be an f -extremal. By the seond part of Theorem 5.10 for every x0 2 
 there exist" > 0 and an open neighbourhood A (with Lipshitz boundary) of x0 suh that u �ts a Weyl �el in theset (5.21). Denote the Weyl �eld by p(x; y) = (x; y;P(x; y)) and the eikonal map assoiated with p byS . We laim that, if we take S0(x) := 0 for every x 2 
, then the pair (S;S0) is a alibration for uon U with respet to the funtional F de�ned in (5.1), provided " is suÆiently small. Let us prove it.Sine f is onvex, for every � 2 RnN we have thatf(x; y; �)� h�; ��f(x; y; �)i = �f�(x; y; ��f(x; y; �));this fat, jointly with (5.17), implies that[divxS℄(x; y) = �f�(x; y; ��f(x; y;P(x; y)))= �f�(x; y; (DyS(x; y))� ); (5.22)where the seond equality follows from (5.18). Therefore, ondition (a1) is satis�ed.Condition (a2) follows from (5.22) and (5.18), using the fat that u �ts the �eld P , hene P(x; u(x)) =ru(x) for every x 2 
.If we all L the L1 -norm of the Jaobian matrix of S on U , then we have thathS(x; z)� S(x; y); �i � L jz � yj (5.23)for every x 2 
, y; z 2 RN suh that (x; y) 2 U , (x; z) 2 U , and � 2 Sn�1 . By the assumption on thefuntion � there exists Æ > 0 suh that �(t) � Lt= for every t 2 (0; Æ); then from (5.20) it follows that (x; y; z; �) � Ljy � zj for jy � zj < Æ. (5.24)Taking " < Æ=2, from (5.23) and (5.24) we have that ondition (b1) is satis�ed.Sine Su = ; , ondition (b2) is trivial.The onlusion follows now from Theorem 5.7. 2As made preise in the next proposition, when the funtion f depends only on the variables x; � , weare able to prove the minimality of an f -extremal u on the whole domain 
 and to give an estimate ofthe width " of the neighbourhood of the graph of u where the minimality holds.Proposition 5.12 In addition to the assumptions of Theorem 5.11, suppose that f = f(x; �) . Let u bean f -extremal. For every (x; y) 2 
�RN de�neS(x; y) := [��f(x;ru(x))℄� (y � u(x)) + �(x); (5.25)where � : 
 ! Rn is a solution of the equation div� = f(x;ru) . Then the pair (S;S0) with S0 � 0 isa alibration for u with respet to the funtional (5.1) on the setU := f(x; y) 2 
�RN : jy � u(x)j � "(x)g; (5.26)where "(x) < 12 inf �t > 0 :  �(t)t < j��f(x;ru(x))j� ; (5.27)and ; � are the quantities appearing in (5.20). Therefore u is a Dirihlet U -minimizer of the funtional(5.1).



The alibration method for funtionals on vetor-valued maps 93Proof. { Note that by the assumption on � , the in�mum in (5.27) is stritly positive for every x 2 
.Let us prove that (S;S0) satis�es all the onditions in Lemma 5.4.By diret omputations we have that DyS(x; y) = [��f(x;ru)℄� ; using the Euler equations (5.16),the de�nition of � , and the onvexity of f , we �nd out that[divxS℄(x; y) = Xij Dxi(��jif(x;ru))(yj � uj)� h[��f(x;ru)℄� ;rui+ div�= �h[��f(x;ru)℄� ;rui+ f(x;ru)= �f�(x; [��f(x;ru)℄� ):Conditions (a1) and (a2) are therefore satis�ed.By the de�nition of S we obtainjS(x; z)� S(x; y)j � j��f(x;ru(x))j � jz � yj;sine jz � yj � 2"(x), (5.27) implies thatj��f(x;ru(x))j � jz � yj �  �(jz � yj);so ondition (b1) follows now from (5.20).Condition (b2) is trivial sine Su is empty. This onludes the proof.We notie that the thesis an be proved also in the following way: if we de�ne P(x; y) := ru(x) forevery (x; y) 2 
�RN , it is easy to see that the �eld p(x; y) := (x; y;P(x; y)) is a Weyl �eld, S is theeikonal map assoiated with p , and u �ts p . Then we an follow the proof of Theorem 5.11: the hekof ondition (a1), (a2), (b2) remains the same, while the estimate on the size of "(x) is given by a moreareful proof of ondition (b1). 2Remark 5.13 When the funtional (5.1) satis�es some speial further onditions, it is enough to provethe Dirihlet minimality of a given u on a neighbourhood of its graph to onlude that u is in fata Dirihlet minimizer on the whole ylinder 
�R , reduing the domain 
 if needed. For istane, inaddition to the assumptions of Proposition 5.12, suppose that the two following onditions are satis�ed:(1) f(x; �) � f(x; (I � ej
ej) �) for every x 2 
, � 2 RnN , j = 1; : : : ; N , where fe1; : : : ; eNg is theanonial basis of RN ;(2)  (x; y; z; �) �  (x; T ba(y); T ba(z); �) for every (x; y) 2 
�RN , � 2 RnN , � 2 Sn�1 , a; b 2 RN ,where we have set T ba : RN ! RN ; (T ba)j(y) := (yj ^ aj) _ bj :If u is an f -extremal, then by Proposition 5.12 we know that u is a Dirihlet U -minimizer of F , whereU is the set (5.26). We want to show that for every x0 2 
 there exists an open neighbourhood A (withLipshitz boundary) of x0 suh that u is a Dirihlet minimizer of F in A .First of all, we an �nd an open neighbourhood A (with Lipshitz boundary) of x0 and two vetorsm;M 2 RN suh that jM �mj < "(x) for every x 2 A andmj � uj(x) �Mj 8x 2 A; 1 � j � N: (5.28)Let v be a funtion in SBV (A;RN ) with the same trae on �A as u and de�ne v̂ := TMm (v), whih stillbelongs to SBV (A;RN ). Note that rv̂j = 1fmj<vj<Mjgrvj for every j , so that, if we all J0(x) theset of all indexes j suh that vj(x) 62 (mj ;Mj), the matrix rv̂(x) an be written asrv̂(x) = rv(x)� Xj2J0(ej
ej)rv(x):



94 Chapter 5By using iteratively ondition (1), we obtain that f(x;rv̂) � f(x;rv), whih impliesZA f(x;rv̂) dx � ZA f(x;rv) dx: (5.29)Sine Sv̂ � Sv , and v̂� = TMm (v�), v̂+ = TMm (v+) on Sv̂ , by ondition (2) we obtainZSv̂\A  (x; v̂�; v̂+; �v̂) dHn�1 � ZSv\A  (x; v�; v+; �v) dHn�1: (5.30)On the other hand, by (5.28) the funtion v̂ has the same trae on �A as u , and its graph is ontainedin the set f(x; y) 2 A�RN : jy � u(x)j � "(x)g:Sine u is a Dirihlet minimizer on this set, we have thatZA f(x;ru) dx � ZA f(x;rv̂) dx+ ZSv̂  (x; v̂�; v̂+; �v̂) dHn�1: (5.31)Therefore by (5.29), by (5.30), and (5.31), u is a Dirihlet minimizer of F in A .The same result an be ahieved by alibration: indeed, we an extend the funtion S in (5.25) tothe whole 
�RN simply by taking Ŝ(x; y) := S(x; TMm (y)); it is easy to see that assumptions (1) { (2)guarantee that the pair (Ŝ ;S0) provides a alibration for u on A�RN .We onlude the remark with some omments on onditions (1) { (2). Condition (1) ensures thatthe funtional dereases when any row of the matrix ru is annihilated, whih is what ours when aomponent of u is trunated. For istane, (1) is ful�lled for f(�) = Pij 'ij(�ij) where 'ij are onvexand positive, and 'ij(0) = 0. As for ondition (2), note that it is satis�ed whenever  depends on y; zonly through the distane jz � yj .5.3 Some further appliationsIn this setion we present some examples and appliations. In Examples 5.14, 5.16, 5.17, and 5.18 we dealwith minimizers of the Mumford-Shah funtional, and we generalize some results proved in [2℄ for thesalar ase. Example 5.15 is a purely vetorial example, sine it involves a funtional arising in fraturemehanis whih an be de�ned only on maps from 
 � Rn into Rn .Example 5.14 Let u : 
! RN be a harmoni funtion. It is well known that u is an extremal of thefuntional R
 jruj2 , and a Dirihlet minimizer of it. We an prove via alibrations that u is a Dirihletminimizer also of the homogeneous Mumford-Shah funtionalMS(u) = Z
 jruj2dx +Hn�1(Su); (5.32)if the following ondition is satis�ed: os
 u � sup
 jruj � 1; (5.33)where os u denotes the modulus of the vetor in RN whose omponents are the osillations of theomponents of u . When (5.33) is not ful�lled, u is still a Dirihlet U -minimizer of the funtional MS ,where U := �(x; y) 2 
�RN : jy � u(x)j � 14jru(x)j� : (5.34)



The alibration method for funtionals on vetor-valued maps 95This seond result diretly follows from Proposition 5.12, where f(�) = j�j2 and  � 1. Moreover, aalibration is given by (S;S0) with S0 � 0 andS(x; y) = 2[ru(x)℄� (y � u(x)) + �(x);where � : 
 ! Rn is a solution of the equation div� = jruj2 . Sine u is harmoni in 
, it is easy tosee that we an take �(x) := [ru(x)℄�u(x), so thatS(x; y) = 2[ru(x)℄� �y � u(x)2 � : (5.35)As for the Dirihlet minimality of u , we an show that, under the assumption (5.33), the alibration(S;S0) an be extended to the whole 
�RN , applying a similar argument to the one used in Remark 5.13.We reall that, in the ase of the funtional (5.32), onditions (a1), (a2), (b1), and (b2) in Lemma 5.5beome(a1) [divxS�℄(x; y) + S0(x) � � 14 jDyS�(x; y)j2 for every � 2 A , for Ln -a.e. x 2 
, and for everyy 2 RN with (x; y) 2 U� ;(a2) [divxS�℄(x; u)+S0(x) = �jru(x)j2 and (DyS�(x; u))� = 2ru(x) for every � 2 A , and for Ln -a.e.x 2 
 suh that (x; u(x)) 2 U� ;(b1) jS(x; z) � S(x; y)j � 1 for Hn�1 -a.e. x 2 
 and for every y; z 2 RN suh that (x; y) 2 U ,(x; z) 2 U ;(b2) S(x; u+)� S(x; u�) = �u for Hn�1 -a.e. x 2 Su ,where S(x; y) =P�2A S�(x; y)1U�(x; y).Let mj and Mj be the in�mum and the supremum of uj in 
, respetively (then os uj =Mj�mj ).Let T be the funtion from RN into RN de�ned as Tj(y) = (yj _mj=2) ^Mj=2. De�neŜ(x; y) := 2[ru(x)℄� T�y � u(x)2 � :It is easy to see that (Ŝ ;S0) satis�es onditions (a1) and (a2). Condition (b2) is trivial. Finally, forevery y; z 2 RN we havejŜ(x; z)� Ŝ(x; y)j � 2jru(x)j � jT (z � u=2)� T (y � u=2)j: (5.36)Sine Tj(z� u=2) and Tj(y� u=2) belong to the interval [mj=2;Mj=2℄ for every 1 � j � N , we deduethat jT (z � u=2)� T (y � u=2)j � jM �mj=2; so, ondition (b1) follows from (5.36) and (5.33).These two minimality results generalize those obtained in [1℄ for salar harmoni funtions. Note thatthe minimality of u an be proved by applying the salar argument to eah omponent uj , but thisprovides a more restritive ondition on the size of the domains where the minimality holds. Indeed, bythe salar result in [1℄, sine uj is harmoni for every j , ifos
 uj � sup
 jruj j � 1N 1 � j � N; (5.37)then Z
 jruj j2dx � Z
 jrvj j2dx+ 1NHn�1(Svj )for every vj 2 SBV (
) with the same boundary values as uj ; summing over j , we obtain the Dirihletminimality of u in 
. On the other hand, it is easy to see that ondition (5.37) is stronger than (5.33).Analogous remarks hold for the Dirihlet minimality of u in a neighbourhood of its graph.



96 Chapter 5Example 5.15 In this example we onsider a funtional related to GriÆth and Barenblatt theories offrature mehanis of the formH(u) := � Z
 je(u)j2dx+ �2 Z
(divu)2 dx+ ZSu �(ju+ � u�j) dHn�1where u is a funtion from 
 � Rn into Rn , e(u) denotes the symmetrized gradient of u , � is apositive funtion satisfying limt!0+ �(t)=t = +1 , and �; � are real parameters. In the ontext offrature mehanis, 
 is a referene on�guration of an elasti body, possibly subjet to frature, and uparameterizes its displaement; the bulk term represents the energy relative to the elasti deformationoutside the frature, while the surfae integral is the energy needed to produe the rak.The funtional H is learly of the form (5.1) with f(�) = � j(�� + �)=2j2 + �2 (tr �)2 and  (y; z) =�(jz � yj). However, sine the bulk term in H involves only the symmetri part of the matrix ru , theappropriate setting for the minimum problem for H is not exatly the spae SBV (
;Rn ), but the spaeSBD(
) of speial funtions with bounded deformation (for a omplete overview on the properties ofthis spae see [5℄). Even if the alibration method has been developed only for SBV funtions, we anatually prove by alibration that, if u is an f-extremal, i.e. u 2 C1(
;Rn ) \ C2(
;Rn ) and u solvesthe equation ��u+ (�+ �)r(divu) = 0 on 
, (5.38)then u minimizes H among all funtions v 2 SBD(
) with the same trae on �
 as u , and whosegraph is ontained in the set U := f(x; y) 2 
�Rn : jy � u(x)j � "(x)g;where "(x) < 12 inf �t > 0 : �(t)t < j2�e(u)(x) + �divu(x)I j� :Indeed, sine ��ijf(�) = �(�ji+�ij)+�(tr �)Æij , Proposition 5.12 implies that u is a Dirihlet U -minimizerof H in the lass SBV (
;Rn ) and a alibration is given by (S;S0) with S0 � 0 andS(x; y) = [2�e(u)(x) + �divu(x)I ℄�y � u(x)2 � ; (5.39)this last fat follows from formula (5.25) where we have taken �(x) := [�e(u)(x)+ �2divu(x)I ℄u(x), whihis a solution of div� = f(ru) thanks to (5.38).On the other hand, we an show that the pair (S;S0) provides a alibration also in the spae SBD(
)in the following sense: onsider the funtionalH1(v) := � Z�
hS(x; v); ��
i dHn�1;whih is the same used as omparison funtional in the proof of Theorem 5.7; then, H1 is well de�nedon SBD(
), is invariant on SBD funtions having the same trae on �
, and satis�es the equalityH1(u) = H(u) and the inequality H1(v) � H(v) for every v 2 SBD(
). This implies that u is aDirihlet minimizer of the funtional H in the lass of SBD funtions.Let us prove the properties of H1 stated above. If we set for simpliity of notation A(x) := 2�e(u)(x)+�divu(x)I , by (5.39) the funtional H1 an be rewritten asH1(v) = �12 Z�
hA(2v � u); ��
i dHn�1;



The alibration method for funtionals on vetor-valued maps 97whene it is lear that it is well de�ned on SBD(
) and invariant on the lass of funtions in SBD(
)having the same trae on �
. By the generalized Green's formula in SBD(
) we have that�12 Z�
hA(2v � u); ��
i dHn�1 = 12 Z
h2v � u; divAi dx+ 12 Z
Ad(2Ev �Eu)= 12 Z
hA; 2e(v)� e(u)i dx+ ZSvhA(v+ � v�); �vi dHn�1;(5.40)where the last equality follows by the fat that divA = 0, by the deomposition theorem for the measuresEv;Eu and by the remark that Su = ; . Using the de�nition of the matrix A and (5.40) it is easy to seethat H1(u) = 12 Z
hA; e(u)i dx = H(u); (5.41)while, using also the elementary inequality 2h�; �i � j�j2 + j�j2 for every �; � 2 Rn2 , we obtainZ
hA; e(v)i dx = 2� Z
he(u); e(v)i dx+ � Z
 divu divv dx� � Z
 je(v)j2dx+ �2 Z
(divv)2dx+H(u): (5.42)Sine the graph of v is ontained in U , we have that hA(v+� v�); �vi � �(jv+� v�j) Hn�1 -a.e. on Sv ,so that ZSvhA(v+ � v�); �vi dHn�1 � ZSv �(jv+ � v�j) dHn�1: (5.43)By (5.40), (5.41), (5.42), and (5.43), we dedue that H1(v) � H(v) for every v 2 SBD(
) whose graphis ontained in U .We onlude this example by notiing that the existene of a weak solution in W 1;2(
;Rn ) forthe Dirihlet boundary value problem assoiated with the equation (5.38) is guaranteed if � > 0 and2�+ 3� > 0; moreover, the additional requirements of regularity for u are always satis�ed in any opensubset 
0 �� 
 (see [10℄).Example 5.16 Let 
 be a produt of the form (0; a)�V , where V is a regular domain in Rn�1 , andlet u be the step funtion de�ned as u(x) := 0 for 0 < x1 <  , and u(x) = h for  < x1 < a , where 2 (0; a) and h 2 RN , h 6= 0. Then, u is a Dirihlet minimizer of the Mumford-Shah funtional (5.32)in 
 if jhj2 � a .This result generalizes Example 4.12 in [1℄, where u is a salar step funtion.We prove the statement by alibration. Let fe1; : : : ; eng be the anonial basis of Rn . A alibrationfor u is given by the pair (S;S0) with S0 � 0 andS(x; y) := 8>><>>:0 if hy; hjhji � �2 hx; e1i,2��hy; hjhji � �2 hx; e1i� e1 if �2 hx; e1i � hy; hjhji � �2 hx; e1i+ �2a,a�2e1 if hy; hjhji � �2 hx; e1i+ �2a, (5.44)where � := 1=pa . Some diret omputations show thatjDyS(x; y)j2 = (4�2 if �2 hx; e1i � hy; hjhji � �2 hx; e1i+ �2a,0 otherwise,divS(x; y) = (��2 if �2 hx; e1i � hy; hjhji � �2 hx; e1i+ �2a,0 otherwise,



98 Chapter 5so that ondition (a1) is trivially satis�ed, while ondition (a2) is true if jhj � �2x1 + �2a for everyx1 2 [; a), whih is guaranteed by the assumption jhj2 � a .One easily heks that the vetor S(x; z) � S(x; y) an always be written as �e1 with j�j � 1 (�depending on x; y; z ), so that ondition (b1) is ful�lled. As for ondition (b2), sine jhj � �2 ( + a) bythe assumption jhj2 � a , we have that S(x; h) � S(x; 0) = a�2e1 � 0 = e1 for every x 2 Su .We note that the minimality of u an be proved by applying the salar result to one omponent ofu . Take, indeed, j 2 f1; : : : ; Ng suh that hj 6= 0; we know that if h2j � a , thenHn�1(Suj ) � Z
 jrvj j2dx+Hn�1(Svj )for every v 2 SBV (
) with the same boundary values as u . Now, the left-hand side oinides withMS(u), while the right-hand side is less than or equal to MS(v), sine Svj � Sv . So, the Dirihletminimality of u is shown, but under the stronger ondition h2j � a .Atually, sine the Mumford-Shah funtional is invariant by rotation (and then u is a Dirihletminimizer if and only if R Æ u is a Dirihlet minimizer, where R is any rotation in RN ), the salarresult an be exploited in a more eÆient way. Let R be a rotation in RN transforming the vetor h=jhjin e1 and let û := R Æ u . Applying the argument above to the �rst omponent of û , we have that ûis a Dirihlet minimizer of MS if jhj2 � a , whih is the same ondition we have found via vetorialalibration theory. We also note that the alibration (5.44) an be obtained starting from the vetor�eldwhih alibrates û1 simply replaing the one-dimensional vertial variable by the omponent of the vetory along h=jhj and following the instrutions of Remark 5.8.Example 5.17 Let 
 := B(0; r) be the open ball in R2 entred at the origin with radius r , and let(A1; A2; A3) be the partition of 
 de�ned as follows:Ai := �x = (� os �; � sin �) : 0 � � < r; 23�(i� 1) � � < 23�i� :Let u 2 SBV (
;RN ) be the funtion de�ned as u := ai in eah Ai , where a1; a2; a3 are three distintvetors in RN . In [2, Example 4.14℄ it is proved that, when N = 1, u is a Dirihlet minimizer of theMumford-Shah funtional (5.32) if the values ai are suÆiently far apart, more preisely ifminfja1 � a2j; ja2 � a3j; ja3 � a1jg � p2r: (5.45)This result an be generalized to the vetorial ase N > 1, where beside ondition (5.45) we require thatmaxfja1 � a2j; ja2 � a3j; ja3 � a1jg �q(2 +p3)r: (5.46)Note that when N = 1 ondition (5.46) is implied by (5.45): indeed, without loss of generality we anassume that a1 � a2 � a3 , so that the maximum in (5.46) is a3 � a1 ; then by (5.45) we obtaina3 � a1 = (a3 � a2) + (a2 � a1) � 2p2r >q(2 +p3)r:We prove the statement by alibration. For every i; j we all Sij the interfae between Ai and Aj ,whih is oriented by the normal �ij pointing from Ai to Aj and we suppose that the maximum in (5.46)is given by ja1 � a2j . Let S0 � 0 andS(x; y) := [�1(x; y) _ 0℄ �31 + [�2(x; y) _ 0℄ �32;where �1(x; y) := 1� jy � a1j2r � h�31; xi ; �2(x; y) := 1� jy � a2j2r � h�32; xi :



The alibration method for funtionals on vetor-valued maps 99For any r0 < r the funtion S is Lipshitz in B(0; r0)�RN . By diret omputations we have thatjDyS(x; y)j2 = 4 jy � a1j2(r � h�31; xi)2 1f�1>0g + 4 jy � a2j2(r � h�32; xi)2 1f�2>0g+ 4 hy � a1; y � a2i(r � h�31; xi)(r � h�32; xi)1f�1>0; �2>0g; (5.47)while [divxS℄(x; y) = � jy � a1j2(r � h�31; xi)2 1f�1>0g � jy � a2j2(r � h�32; xi)2 1f�2>0g: (5.48)Condition (a1) is therefore ful�lled if and only if hy � a1; y � a2i � 0 for every y suh that there existsx 2 B(0; r0) so that �1(x; y) > 0 and �2(x; y) > 0. Taking into aount the de�nition of �1; �2 , this isequivalent to require the following: if y belongs to the intersetion of the ball entred at a1 with radius(r � h�31; xi) and the ball entred at a2 with radius (r � h�32; xi), then the angle spanned by the twovetors y � a1 and y � a2 is greater or equal to �=2. Some elementary geometri onsiderations showthat this is guaranteed ifja1 � a2j2 � (2r � h�31; xi � h�32; xi) 8x 2 B(0; r0);whih is implied by ondition (5.46).From (5.45) it follows that �2(x; a1) � 0, so that by (5.47) and (5.48) we have jDyS(x; a1)j2 = 0 and[divxS℄(x; a1) = 0. Sine (5.45) implies analogously that �1(x; a2) � 0, and �1(x; a3) � 0, �2(x; a3) � 0,we dedue that ondition (a2) is satis�ed.Let (x; y); (x; z) 2 B(0; r0)�RN . If neither (x; y) nor (x; z) belongs to f�1 > 0; �2 > 0g , then it iseasy to hek that the vetor S(x; z)�S(x; y) an be written as a linear ombination �1�31��2�32 witheither �1; �2 2 [0; 1℄ or �1; �2 2 [�1; 0℄ (depending on x; y; z ); sine �31 and ��32 span an angle equal to2�=3, the modulus of S(x; z)�S(x; y) is in this ase less than or equal to 1. If (x; y) 2 f�1 > 0; �2 > 0g ,only two ases an our: either S(x; z) � S(x; y) is a linear ombination of �31 and ��32 of the samekind as before (so, the same onlusion holds), or S(x; z)�S(x; y) an be written as �1�31+�2�32 with�i 2 [0; �i(x; y)℄ (depending on x; y; z ). In this seond ase, we obtainjS(x; z)� S(x; y)j2 � �21(x; y) + �22(x; y) + �1(x; y)�2(x; y) � (�1(x; y) + �2(x; y))2:It is easy to see that, under ondition (5.46), �1(x; y) + �2(x; y) � 1 for every (x; y) 2 f�1 > 0; �2 > 0g ,so that (b1) is always satis�ed.Finally, using (5.45) we have that S(x; a2)�S(x; a1) = �32 � �31 = �12 for every x 2 S12 , S(x; a3)�S(x; a2) = ��32 = �23 for every x 2 S23 , while S(x; a1) � S(x; a3) = �31 for every x 2 S31 ; so, we anonlude that (b2) holds true for every x 2 Su .We have thus proved that under onditions (5.45) { (5.46), u is a Dirihlet minimizer of MS inB(0; r0) for every r0 < r . By an approximation argument this implies the Dirihlet minimality of u inthe whole B(0; r).As in the previous example, the minimality of u an be proved by using the salar result in [2℄:indeed, even if Suj is stritly ontained in Su for every j , one an always �nd a rotation R in RNtranforming the range of u in a set of three vetors whih di�er eah other for the same omponentand apply the salar result to this omponent. This proedure leads to the following ondition: u is aDirihlet minimizer if maxv2RN;jvj=1 min fjha1 � a2; vij; jha2 � a3; vij; jha3 � a1; vijg � p2r;whih is always more restritive than (5.45) { (5.46), exept when the vetors ai � aj are ollinear.



100 Chapter 5Example 5.18 In this example we deal with the omplete Mumford-Shah funtionalMS�;�(u) := Z
 jruj2dx + �H1(Su) + � Z
 ju� gj2 dx; (5.49)where 
 � R2 , g is a given funtion in L1(
;RN ), and �; � are positive parameters.Let f�igi2I be a �nite family of simple and onneted urves of lass C2 suh that for every i �iis either a losed urve ontained in 
 or it orthogonally meets �
. Suppose also that �i \ �h = ; ifi 6= h . If g is a pieewise onstant funtion, whose disontinuity set oinides with [i2I�i , then for largevalues of � the funtion g itself is an absolute minimizer of (5.49).We prove the statement by alibration. We reall that onditions (a1), (a2), (b1), and (b2) inLemma 5.5 read for the funtional (5.49) as(a1) [divxS ℄(x; y) + S0(x) � � 14 jDyS(x; y)j2 + �jy � g(x)j2 for every  2 A , for L2 -a.e. x 2 
, andfor every y 2 RN with (x; y) 2 U ;(a2) [divxS ℄(x; u)+S0(x) = �jru(x)j2+�ju� gj2 and (DyS(x; u))� = 2ru(x) for every  2 A , andfor L2 -a.e. x 2 
 suh that (x; u(x)) 2 U ;(b1) jS(x; z)�S(x; y)j � � for H1 -a.e. x 2 
 and for every y; z 2 RN suh that (x; y) 2 U , (x; z) 2 U ;(b2) S(x; u+)� S(x; u�) = ��u for H1 -a.e. x 2 Su ,where S(x; y) =P2A S(x; y)1U (x; y).Let fEjgj2J be the partition of 
 generated by the family f�igi2I . Then the funtion g an bewritten as g(x) =Xj2J aj1Ej (x);where aj 2 RN and aj 6= ak if j 6= k . For j < k we all Sjk the interfae between Ej and Ek , orientedby the normal �jk pointing from Ej to Ek (in other words, Sjk is the set of all x 2 Sg suh thatg�(x) = aj and g+(x) = ak ). In this way we have simply relabelled the urves �i .For every j < k we an onstrut a C1 -vetor�eld  jk : 
! Rn suh that it agrees with �jk on Sjk ,is supported on a neighbourhood of Sjk , is tangent to the boundary of 
, and j jk j � 1 everywhere.Sine the urves Sjk are disjoint, the funtions  jk an be onstruted in suh a way that their supportsare still disjoint; moreover, if Sjk is losed, we an also assume that the support of  jk is relativelyompat in 
. Finally, for every j < k we de�ne the funtions �jk : RN ! R as�jk(y) := �� hy � aj ; ak � ajijak � aj j2 � ;where � : R ! [0; �℄ is a nondereasing funtion of lass C2 suh that �(t) := 13�t3 for t 2 [0; 1=8℄,�(t) := �+ 13�(t� 1)3 for t 2 [7=8; 1℄, �0(t) 2 [0; 2�℄ for every t , and j�00(t)j � 16� for every t .Now we setS(x; y) := X(j;k):j<k �jk(y) jk(x); S0(x) := �� X(j;k):j<k div jk(x)1Ek (x);and we laim that the pair (S;S0) is a alibration for g when � is large enough.First of all, independently of the hoie of � , the funtion S has vanishing normal omponent on �
beause of the hoie of  jk , so that ondition (5.13) of Theorem 5.7 is satis�ed.Using the fat that the supports of the funtions  jk are disjoint, and that j jk j � 1, while �jk takesvalues only on [0; �℄ , it is easy to see that ondition (b1) is ful�lled.



The alibration method for funtionals on vetor-valued maps 101Sine Sg is the union of the disjoint urves fSjkgj<k , for every x 2 Sg there exists one and only onepair (j; k) with j < k suh that x 2 Sjk , so thatS(x; g+(x)) � S(x; g�(x)) = (�jk(ak)� �jk(aj)) jk(x) = (�(1)� �(0)) �jk(x) = ��g(x):Therefore, also ondition (b2) is satis�ed.By diret omputations we obtain that[divxS℄(x; y) = X(j;k):j<k �jk(y) div jk(x);while DyS(x; y) = X(j;k):j<k �0 � hy � aj ; ak � ajijak � aj j2 � jk(x) 
 ak � ajjak � aj j2 :If x 2 Eh for any h 2 J , then[divxS℄(x; g(x)) = [divxS℄(x; ah) = Xj<h �jh(ah) div jh(x) +Xk>h�hk(ah) div hk(x)= �Xj<h div jh(x);where the last equality follows from the fat that �jh(ah) = �(1) = � , while �hk(ah) = �(0) = 0.Arguing analogously, sine �0(0) = �0(1) = 0, we have that DyS(x; g(x)) = 0, so that, taking intoaount the de�nition of S0 , ondition (a2) is satis�ed.It remains to prove ondition (a1). Let (x; y) 2 
�RN . If x does not belong to any of the supportsof the funtions  jk , then [divxS℄(x; y) = 0, S0(x) = 0, and DyS(x; y) = 0, so (a1) is trivially satis�ed.If x belongs to the support of  jk for any j < k , then[divxS℄(x; y) = �jk(y) div jk(x); S0(x) = ��div jk(x)1Ek (x);DyS(x; y) = �0� hy � aj ; ak � ajijak � aj j2 � jk(x) 
 ak � ajjak � aj j2 ;if we write the vetor y � aj as the sum v + t(ak � aj) where v 2 RN is orthogonal to ak � aj , andt 2 R , ondition (a1) turns to be equivalent todiv jk(x)(�(t) � �1Ek(x)) � �14 j jk(x)j2j�0(t)j2 + �jv + t(ak � aj) + aj � g(x)j2: (5.50)Sine we are assuming that x is in the support of  jk , x belongs either to Ej or to Ek . When x 2 Ej ,inequality (5.50) redues todiv jk(x)�(t) � �14 j jk(x)j2j�0(t)j2 + �jvj2 + �jak � aj j2t2;whih is implied by div jk(x)�(t) � �14 j jk(x)j2j�0(t)j2 + �jak � aj j2t2: (5.51)So, let us prove (5.51) for every t 2 R and x 2 Ej . Sine in (5.51) the equality holds for t = 0, it isenough to show the following inequalitydiv jk(x)�0(t) < �14 j jk(x)j22�0(t)�00(t) + 2�jak � aj j2t for t > 0; (5.52)



102 Chapter 5and the opposite inequality for t < 0. Sine �0 � 0 for t > 1, inequality (5.52) is trivially satis�ed fort > 1. For 0 < t � 1, (5.52) follows immediately from�kdiv jkk1�0(t) > 12�0(t)j�00(t)j � 2�jak � aj j2t;whih is satis�ed (taking into aount the struture of the funtion � ) for�jak � aj j2 > 8�kdiv jkk1 + 64�2:The same ondition implies also the opposite inequality for t < 0. Moreover, the same argument an beapplied in the ase x 2 Ek .In onlusion, ondition (a1) is ful�lled for � > �0 , where �0 is de�ned by�0 := max(j;k):j<k 1jak � aj j2 �8�kdiv jkk1 + 64�2� : (5.53)We onlude this example by notiing that this result generalizes Example 5.5 in [2℄, where g is theharateristi funtion of a regular set. As in the previous examples, the vetorial statement an beproved by applying the salar result to one suitable omponent of g , but this leads to a worse estimateon �0 .5.4 Calibrations in terms of losed di�erential formsIn this setion we develop the theory of alibrations in terms of di�erential forms. The salar methodpresented in Setion 1.3 involves a divergene-free vetor�eld on 
�R (and its ux through the ompletegraph of the maps u), whih is now replaed by a losed n-form on 
�RN , ating on the graphs of themaps u , viewed as suitably de�ned n-surfaes in 
�RN .As we will see, this formulation is indeed not preferable to the one desribed in Setion 5.1, sine itleads to the same kind of onditions, requiring a greater tehnial e�ort.For simpliity we restrit our disussion to pieewise smooth funtions u 2 SBV (
;RN ) in the senseof the following de�nition.De�nition 5.19 We say that a funtion u 2 SBV (
;RN ) is pieewise smooth, and we write u 2 A(
) ,if the following onditions are satis�ed: up to an Hn�1 -negligible set, Su is a �nite union of pairwisedisjoint (n � 1)-dimensional boundaryless C1 -manifolds of Rn ; u is C1 on 
 n Su up to Su , that isu 2 C1(
 n Su;RN ) and there exist the limits of u and ru on both sides of (the regular part of) Su .For u 2 A(
) we de�ne the n-surfaes�u := f(x; y) 2 
�RN : x 2 Su and 9 t 2 [0; 1℄ suh that y = tu+(x) + (1� t)u�(x)g;�u := graphu [ �u:Using notation from [19℄, let us onsider an n-form! : 
�RN ! ^nRn+N ;!(x; y) = Xj�j+j�j=n!��(x; y) dx� ^ dy�;whose oeÆients !�� are of lass C1 , and for u 2 A(
) the following funtionalZ�u !; (5.54)



The alibration method for funtionals on vetor-valued maps 103where the orientation of �u will be de�ned later in a preise way.If ! is a losed form, then the funtional (5.54) is onstant on the funtions u whih take the samevalue on �
. Moreover, if F is the funtional (5.1), and ifZ�v ! � F (v) for every v 2 A(
),and Z�u ! = F (u) for a given u 2 A(
), (5.55)then u is a Dirihlet minimizer of F in the lass A(
).Let us now look for pointwise onditions on the oeÆients of the form ! whih guarantee (5.55).By de�nition we have that Z�u ! = Zgraphu ! + Z�u !: (5.56)On the graph of u we onsider the natural orientation given by the parameterization x 2 
 n Su 7!(x; u(x)), so that Zgraphu ! = Xj�j+j�j=nZ
 !��(x; u(x))���(x) dx; (5.57)where ���(x) := �(�) det��u��x�̂ (x)� :In the previous formula �̂ denotes the inreasing omplement of � in f1; : : : ; ng , �(�) is the sign ofpermutation of (1; : : : ; n) into (�; �̂), and �u��x�̂ is the j�j�j�j matrix �u�i�x�̂j .On �u we onsider the orientation given by the following parameterization: sine u 2 A(
), withoutloss of generality, we may assume that Su is an (n�1)-dimensional C1 -manifold of Rn without boundaryand that Su an be overed by just one parameter path  : S ! Su , where S is an (n� 1)-dimensionaldomain (the general ase an be easily obtained by summing over the C1 -piees). Assume that  yields�u as orientation, that is the vetor�((�)) := nXi=1(�1)n�i det�d̂�d� (�)� ei(where fe1; : : : ; eng is the anonial basis of Rn ) satis�es�((�))j�((�))j = �u((�)) 8� 2 S:We onsider as parameterization of �u the funtion � = (�x; �y) : S�[0; 1℄ ! 
�RN de�ned as�x(�; t) := (�), �y(�; t) := tu+((�)) + (1 � t)u�((�)) for every (�; t) 2 S�[0; 1℄, so that the seondintegral in (5.56) is given byZ�u ! = Xj�j+j�j=nZ 10 ZS !��(�(�; t)) det� �����(�; t) (�; t)� d�dt; (5.58)where ��� = (�x�1 ; : : : ; �x�p ; �y�1 ; : : : ; �y�q ) for j�j = p and j�j = q = n� p . By diret omputations onean �nd that det� ��0̂0�(�; t)� = 0;



104 Chapter 5while for every 1 � i � n , 1 � j � Ndet� ���̂j�(�; t)� = (u+j � u�j ) det�d̂�d� � = (�1)n�i(u+j � u�j )(�u)ij�j;where all the funtions at the right-hand side are omputed at (�). Finally, by straightforward ompu-tations, if we set a := �̂ , for jaj = j�j = q � 2 it results thatdet� �����(�; t)� = qXm;k=1 �(�; abk)(�1)n�q+m�ak (u+�m � u��m) det �(tu+ + (1� t)u�)�m�xabk ! (�u)ak j�j;where �bm , abk are the inreasing omplement of �m in f�1; : : : ; �qg and of ak in fa1; : : : ; aqg , respe-tively, while �(�; abk) is the sign of permutation of (�; abk) in ak ; again all the funtions at the right-handside are omputed at (�). Set wt := tu++(1� t)u� and substitute all the above expressions in formula(5.58); sine j�j d� is the area element of the manifold Su parameterized by  , we obtainZ�u ! = Xi;j Z 10 ZSu(�1)n�i!�̂j(x;wt)(u+j � u�j )(�u)i dHn�1dt+ Xjaj=j�j=qq�2 Z 10 ZSu !â�(x;wt) qXm;k=1 �(�; abk)(�1)n�q+m�ak (u+�m � u��m) det �wt�m�xabk !(�u)ak dHn�1dt=: ZSu g!(x; u�; u+;ru�;ru+; �u) dHn�1; (5.59)where the last equality follows from hanging the order of integration and alling g! the integrand withrespet to Hn�1 . Now we wonder what kind of onditions on !�� guarantee thatg!(x; u�; u+;ru�;ru+; �u) �  (x; u�; u+; �u) on Su (5.60)for every admissible u . The answer is given by the following proposition.Proposition 5.20 Inequality (5.60) holds true for every u 2 A(
) if and only if the following onditionsare satis�ed:(b0') !�� � 0 for every �; � suh that j�j � 2 , j�j+ j�j = n ;(b1') Xi;j Z 10 (�1)n�i!�̂j(x; tz+(1�t)y)(zj�yj)�i dt �  (x; y; z; �) for every x 2 
 , for every y; z 2 RN ,and for every � 2 Sn�1.Moreover, the equality holds for a given u if and only if(b2') Xi;j Z 10 (�1)n�i!�̂j(x; tu+ + (1� t)u�)(u+j � u�j )(�u)i dt =  (x; u�; u+; �u) for every x 2 Su .Proof. { Let (x; y) 2 
�RN , and let us prove that !��(x; y) = 0 for j�̂j = j�j = 2. By renumberingthe oordinates of x and y , we may suppose that � = (1; 2) and a = �̂ = (1; 2). Given C 2 R , we



The alibration method for funtionals on vetor-valued maps 105an onstrut u 2 A(
) suh that x 2 Su , ru�(x) = ru+(x) (hene rwt(x) = ru�(x) for everyt 2 [0; 1℄), and �xiwtj(x) = 0 for every (i; j) 6= (1; 1) and �x1wt1(x) = C . With this hoie we have thatg!(x; u�; u+;ru�;ru+; �u) =Xi;j Z 10 (�1)n�i!�̂j(x;wt)(u+j � u�j )(�u)i dt+ C Xi6=1;j 6=1 Z 10 (�1)i!(1;i)(1;j)(x;wt)(u+j � u�j )(�u)i dt:Sine the value of C is arbitrary and independent of u�(x); u+(x); �u(x), inequality (5.60) implies thatXi6=1;j 6=1 Z 10 (�1)i!(1;i)(1;j)(x;wt)(u+j � u�j )(�u)i dt = 0 (5.61)whatever are the values of u�(x); u+(x); �u(x). Choosing �u(x) suh that (�u(x))i = 0 for every i 6= 2,(�u(x))2 = 1, we have that (5.61) is equivalent toXj 6=1 Z 10 !(1;2)(1;j)(x;wt)(u+j � u�j ) dt = 0 (5.62)whatever are the values of u�(x); u+(x). Choosing u�(x) = y , while u+j (x) = yj for every j 6= 2,u+2 (x) = y2 +  with  6= 0, we obtain that (5.62) is equivalent to Z 10 !(1;2)(1;2)(x; y1; y2 + t; y3; : : : ; yN) dt = 0 (5.63)for every  6= 0. By a hange of variables, (5.63) an be rewritten asZ y2+y2 !(1;2)(1;2)(x; y1; s; y3; : : : ; yN) ds = 0: (5.64)Sine (5.64) has to be true for every  6= 0, this implies that !(1;2)(1;2)(x; y) = 0.Using the fat that the oeÆients !�� � 0 for every j�j = 2, we an repeat the same proof to showthat !�� � 0 for every j�̂j = j�j = 3, and so on.We have thus proved that (5.60) implies ondition (b0'). At this point, it is trivial that (5.60) impliesalso ondition (b1'), and that the equality holds in (5.60) for a given u if and only if also (b2') is satis�ed.2Summarizing, if onditions (b0') and (b1') hold true, by Proposition 5.20 inequality (5.60) is satis�ed,hene by (5.59) we have that Z�u ! � ZSu  (x; u�; u+; �u) dHn�1 (5.65)for every u 2 A(
), while the equality holds in (5.65) for a given u if and only if also (b2') is veri�ed.Assuming that ! satis�es ondition (b0'), formula (5.57) redues toZgraphu ! = Z
0�!0̂0(x; u(x)) +Xi;j (�1)n�i!�̂j(x; u(x))�xiuj(x)1A dx= Z
 (!0̂0(x; u(x)) + hA!(x; u(x));ru(x)i) dx;



106 Chapter 5where in the last equality (A!(x; y))ji := (�1)n�i!�̂j(x; y). It is easy to see that, if we require thefollowing ondition:(a1') !0̂0(x; y) � �f�(x; y; A!(x; y)) for Ln -a.e. x 2 
 and every y 2 RN ;then Zgraphu ! � Z
 f(x; u;ru) dxfor every u 2 A(
); moreover, the equality holds for a given u if and only if(a2') (A!)ij(x; u(x)) 2 ��ijf(x; u(x);ru(x)) and !0̂0(x; u(x)) = �f�(x; u(x); A!(x; u(x))) for Ln -a.e.x 2 
.Therefore by (5.56) we an onlude that (5.55) is guaranteed if onditions (a1'), (a2'), (b0'), (b1'),and (b2') are satis�ed. In other words, we have proved the following theorem.Theorem 5.21 Let u be a funtion in A(
) . Assume that there exists a losed n-di�erential form! : 
�RN ! ^nRn+N with oeÆient of lass C1 and satisfying ondition (a1'), (a2'), (b0'), (b1'), and(b2'). Then u is a Dirihlet minimizer of the funtional (5.1) in the lass A(
) .We onlude this setion by proving that, if u 2 A(
) and there exists a di�erential form ! whihalibrates u in the sense of Theorem 5.21, then there exists a alibration (S;S0) for u in the sense ofDe�nition 5.6.Proposition 5.22 Let u be a funtion in A(
) and let ! : 
�RN ! ^nRn+N be a losed n-di�erentialform satisfying all the assumptions of Theorem 5.21. Then there exists a alibration (S;S0) for u , withS 2 C2(
�RN ;Rn ) and S0 2 C1(
) .Proof. { First of all, we notie that from ondition (b0') it follows that!(x; y) = !0̂0(x; y) dx +Xi;j !�̂j(x; y) dx�̂ ^ dyj :Sine ! is a losed form, by omputing expliitly the exterior derivative of ! , we obtain that theoeÆients !0̂0; !�̂j satisfy the two following equations:nXi=1(�1)n�i �!�̂j�xi (x; y)� �!0̂0�yj (x; y) = 0 1 � j � N; (5.66)(�1)n�i �!�̂j�yk (x; y) = (�1)n�i �!�̂k�yj (x; y) 1 � i � n; 1 � j; k � N: (5.67)The last ondition is equivalent to require that for every i the vetor ((�1)n�i!�̂j(x; y))j=1;::: ;N isthe gradient with respet to y of a funtion of lass C2 ; more preisely, there exists a funtion S 2C2(
�RN ;Rn ) suh that�yjSi(x; y) = (�1)n�i!�̂j(x; y) 1 � i � n; 1 � j � N: (5.68)Equation (5.66) an be therefore rewritten as0 = nXi=1 �2Si�xi�yj (x; y)� �!0̂0�yj (x; y) = �yj " nXi=1 �xiSi(x; y)� !0̂0(x; y)# 1 � j � N;



The alibration method for funtionals on vetor-valued maps 107and then there exists a funtion S0 : 
! R of lass C1 suh that !0̂0(x; y) = [divxS℄(x; y) + S0(x). Bysubstituting this equality and (5.68) in onditions (a1') and (a2'), we diretly obtain that the pair (S;S0)satis�es onditions (a1) and (a2) of Lemma 5.4. Sine the left-hand side in (b1') an be rewritten asXi;j Z 10 (�1)n+i!�̂j(x; tz + (1� t)y)(zj � yj)�i dt= Xi;j Z 10 �yjSi(x; tu+ + (1� t)u�)(u+j � u�j )(�u)i dt= nXi=1 Z 10 ddt [Si(x; tu+ + (1� t)u�)℄(�u)i dt= nXi=1 [Si(x; u+)� Si(x; u�)℄(�u)i= hS(x; u+)� S(x; u�); �ui;ondition (b1') implies that the funtion S satis�es ondition (b1) of Lemma 5.4, and in the same way(b2') implies (b2). 2
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