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Introduction

In recent years, the availability of high-resolution surface-sensitive experimental
techniques such as Helium atom scattering (HAS) and electron energy loss spec-
troscopy (EELS) has opened new perspectives in the study of the dynamical prop-
erties of solid surfaces. In particular, a great deal of experimental data are now
available on the phonon dispersions of surfaces of insulator, semiconductors, and
metals [1]. Among transition metals, the vibrational properties of the hydrogenated
W(110) surface have attracted much attention because they display unusual and
unexpected features which are still poorly understood [2-6]. When a full monolayer
of hydrogen is adsorbed, the surface phonon spectrum undergoes a dramatic change
and an anomalous behavior appears. The phonon dispersion curves observed in
HAS experiments display a shallow dip and a very sharp and deeper indentation at
an incommensurate wave vector along the [001] direction (I'H), whereas only the
shallow dip is observed by EELS. The anomaly is a peculiar feature of the hydrogen
saturated surface: a regular behavior of the phonon dispersions has been detected
at lower coverage and for the clean surface. Similar anomalies have been also found

in the H-saturated Mo(110) surface [4, 5]. The two surfaces W(110) and Mo(110)



have analogous electronic structure and display similar properties.

Phonon anomalies similarly deep and strongly localized in reciprocal space had
only been previously observed in quasi one-dimensional conductors [7, 8]. These
giant Kohn anomalies are known to be caused by a strong electron-phonon coupling,
kinematically enhanced by the presence of extended parallel sections in the quasi
one-dimensional Fermi surface (“nesting”). Angular-resolved photo-emission studies
on H/W(110) and H/Mo(110) gave no evidence of similar nesting features in the
two-dimensional Fermi surfaces [9]. With the exception of W(100) and Mo(100) [10,
11] no other cases are known of strong Kohn anomalies observed in the phonon
dispersions of crystal surfaces. Therefore the appearance of these anomalous features
in the surface scattering experiments on H/W(110) and H/Mo(110) is surprising and
raises much interest and many questions. In particular, it is difficult to reconcile
the different pieces of experimental information: the presence of the huge dip in
the HAS spectra which are missing in the surface phonon dispersions measured by
EELS:; the finding of a phonon anomaly, but the absence of corresponding nesting

features in the experimental Fermi surface contours.

So far no exhaustive explanations of these anomalies has been put forward. In
particular, no detailed theoretical studies of the vibrational properties of these sur-
faces are available. In this thesis we present the results of an ab initio study of
the structural, electronic, and vibrational properties of the clean and hydrogen-
saturated W(110) surfaces. Our calculations are based on density functional theory
(DFT) and density functional perturbation theory (DFPT). An accurate study of

the surface phonon dispersions for the H/W(110) surface allows us to ascertain the



existence of Kohn anomalies, and to clarify the nature of the the anomalous features
observed experimentally. The electronic properties at the Fermi level are investi-
gated in order to determine the existence of nesting properties in the Fermi surface

that can play an important role in the appearance of phonon anomalies.

The vibrational properties of a surface are determined by the force constants
between atoms near it. The surface interatomic force constants are different from
those in the bulk due to the lower atom coordination and to changes both in the
local atomic structure and in the electronic states near the surface. For this reason
semiempirical models, which are usually fitted to some observed lattice-dynamical
properties of the bulk, are expected to have a rather limited predictive power, and the
use of more sophisticated ab initio techniques based on a proper quantum description

of the electronic glue are called for.

DFPT provides a general theoretical and computationally viable tool for obtain-
ing the harmonic force constants of complex systems fully ab initio without the
use of any adjustable parameter. This method-—which is based on the static linear
response of electrons to lattice distortions—gives access to the phonon frequencies
and the corresponding atomic displacement patterns at any point in the Brillouin
zone (B7Z), allowing us to calculate full phonon dispersions even at incommensurate
points in the BZ. This technique has been successfully applied to predict vibrational
and related properties of elemental and binary semiconductors [12] or insulators [13],
semiconductor alloys [14] and eterostructures [15], and more recently to the calcu-

lation of phonon dispersions in bulk metals [16] and semiconductor surfaces [17].

The first Chapter of this thesis is devoted to review the experimental character-



ization of the studied surfaces. In particular the experimental data concerning the
phonon anomalies are summarized, and the different possible scenarios proposed to
explain them are discussed. In Chapter 2 we briefly discuss the theoretical tools used
in this work, namely DF'T and DFPT. Our results on the structural and vibrational
properties of bulk W are presented in Chapter 3, while Chapter 4 is devoted to a
detailed description of the structural, electronic, and vibrational properties of the
clean and hydrogen saturated W(110) surfaces. The last chapter is devoted to our

conclusions and the perspectives for future work.



Chapter 1

Experimental facts

Tungsten is a transition metal which crystallizes in the bee structure. Its (110)
surface is unreconstructed with less than 2% relaxation in the first intra-layer dis-
tance [18]. The phase diagram of adsorbed hydrogen on W(110) is well known [19]:
at low temperature several ordered phases have been found for different coverages:
below half a monolayer the surface reconstructs as (2x1), while a (2x2) reconstruc-
tion arises at higher coverages. These structures disorder at temperatures above 200
and 250 K, respectively. As a full monolayer is adsorbed, the (1x1) periodicity of
the clean surface is recovered. For H-coverages exceeding half a monolayer a sym-
metry loss in the low energy electron diffraction (LEED) pattern has been observed
at low and room temperature [20]. This has been interpreted as an adsorbate in-
duced “reconstruction”, which consists in a lateral shift of the topmost layer of W
atoms in the [110] direction, thus implying that the reflection symmetry about the
[110] plane would be lost (though preserving the translational periodicity). EELS

measurements suggest that the hydrogen atom is bonded in the hollow site above



10 § 1. Experimental facts

the hourglass-shaped hole between the tungsten atoms in the surface layer [21].

The vibrational properties of the clean and hydrogenated W(110) surfaces have
been studied both by HAS [2-5] and by EELS [6]. For the clean surface two surface
phonon modes have been detected by both techniques along the symmetry lines TH,
I'N and TS in the two-dimensional surface Brillouin zone (SBZ). The lowest branch
is the Rayleigh wave (RW) mode falling below the frequency region allowed to bulk
phonons. The second mode, which lie within the bulk band, has been interpreted as
the longitudinally polarized surface mode. Two other surface resonances have been

observed by EELS at higher frequencies (at about 160 and 190 cm™" respectively).

When the W(110) surface is covered by a full monolayer of hydrogen, the RW
branch along the [001] direction (I'H) presents an unexpected anomalous behavior
(see Fig. 1.1). An extremely deep and sharp indentation and a more shallow dip at
the incommensurate wave vector q.q=0.95 A~! are observed in HAS experiments 3,
4]; with EELS, instead, only the shallow dip is observed (see Fig. 1.2). The anomalies
have been found by HAS also at the commensurate zone boundary point q.,=S along
the [112] direction [3]," where the RW dispersion shows a shallow dip and a less
clearly visible deeper indentation. EELS data along this direction are not avalaible.
The observed anomalies are peculiar features of the H-saturated phase: surface
phonons at lower coverages (corresponding to the (2x1) and (2x2) reconstructions)
display smooth dispersion curves and back folding due to the reduced size of the

BZ’s in the reconstructed structures.

The explanation of such anomalies is a puzzling problem, and different scenarios

'Note that the [112] has been erroneously labeled [111] in Ref.[3].
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Figure 1.1: He-atom scattering spectra of clean (left panels) and H-saturated (right panels) W(110)
surface phonon along the [001] direction. The upper panel on the left shows the surface phonon
dispersion data for the clean surface. The solid lines in represent the lower edges of the transverse
(T) and longitudinal (L) bulk phonon bands. The upper panel on the right shows the surface
phonon dispersion data for the H/W(110) surface, the phonon softening occurs at ¢.=0.95 A-1
Typical spectra are shown in the lower panels, the labels on the peaks refers to points in the

respective surface phonon dispersion. (Fig. from Ref.[4]).
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Figure 1.2: Experimental surface phonon dispersion curves of the W(110) surfaces (from Ref. [6]).
The big symbols indicate EELS data of the clean (circles) and H-saturated (triangles) surface. The

small squares are the HAS data for the H-saturated surface.
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have been proposed. The agreement between the HAS and EELS dispersion curves
supports the idea that the shallow indentation is associated to an anomaly of the
RW branch. The interpretation of the second huge and sharp dip, not found in the

EELS experiments, is less straightforward.

In Ref. [22], it was proposed that the anomalous mode is associated to the motion
of hydrogen atoms to which electrons are less sensitive than He atoms. In particular
the authors identify the deep minimum with roton-like excitations of the H-overlayer
found to be in a disordered, possibly liquid-like, state. However no direct link with
H-vibrations has been observed, the dispersions staying unchanged when deuterium
is adsorbed instead of hydrogen [5]. We conclude that the effect of the (D) H
overlayer on W vibrations is indirect and should be mediated by the modification

of the chemical and electronic properties occurring in the substrate.

Other possible explanations have been suggested by the resemblance between
the deep indentation and phonon anomalies observed in quasi one-dimensional con-
ductors [7]. In these systems the electron-phonon (e-ph) coupling is kinematically
enhanced by the presence of extended parallel portions of the Fermi surface, nested
by a critical wave vector q. = 2kp. This gives rise to strong electronic screening at
q = q. which strongly reduces the atomic force constants. Thus a so called giant
Kohn anomaly occurs in the phonon dispersion at the nesting wave vector. Within
this picture the two anomalous mode in the HAS spectra would be explained if a
second mode, at higher frequencies, were softened together with the RW mode. This
explanation seems to be ruled out by the fact that the lower surface branch is not

visible in EELS experiments.
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If the e-ph coupling and the Kohn anomaly become very strong, the anoma-
lous frequency becomes imaginary and the system instable. A stabilizing distortion
would take place, inducing a charge-density wave (CDW). The hypothesis that the
ground state of the H/W(110) surface is a quasi one-dimensional CDW, incommen-
surate along I'Hl and commensurate along I'S has been suggested in reference [23] in
which it has been proposed that the lower and upper anomalous branches are the
phase and amplitude modes of the CDW, respectively. If this picture were correct
and the lower anomalous branch a phason, it would be detected by HAS, that is
sensitive to the corrugation of the electronic charge density on the surface, but not
by EELS because the electrons are scattered by the cores of the surface atoms. This
would be in agreement with the difference between the spectra observed by the two
experimental techniques. Nevertheless such a phason could exist at an incommen-
surate point like q.;, but it should be absent at the zone boundary commensurate
point q.o [24] contrary to the experimental evidence. Furthermore, the frequency of
CDW modes decreases with increasing temperature (dw/dT < 0); on the contrary,
these anomalous frequencies were found to be independent on temperature [4, 5],
and recent EELS experiments reveal a slight positive temperature dependence of the

shallow dip (dw/dT > 0), consistent with the behavior expected of a Kohn anomaly.

Another interpretation of the experimental data assumes that e-ph coupling and
the associated Kohn anomaly are only moderate, and the unreconstructed surface
structure remains therefore stable. Within this picture electron-hole pair excitations
and phonons become mixed in character and the adiabatic approximation is broken.

One should then expect a predominantly phonon-like excitation resulting in a slight
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softening of the phonon frequency, that can be identified with the shallow dip ob-
served in the RW branch. A predominantly electron-hole like excitation should be
expected at very low energy in agreement with the huge indentation detected by the
HAS scattering. This would explain the absence of the lower anomaly in the EELS
spectra which are not sensitive to charge corrugations on the surface. The agree-
ment of the experimental data and a frozen phonon calculation of the RW frequency
performed at the commensurate zone boundary S point [25] seems to support the
identification the shallow dip with a softening of the RW mode.

The idea that the origin of the surface anomalies is a nesting mechanism at the
Fermi surface is apparently not consistent with angular-resolved photor-emission
studies that do not provide any evidences of nesting in the two-dimensional Fermi
surface (FS) of the H/W(110) [9]. The shape of the experimental Fermi surfaces
disagrees with the results of recent calculations showing nesting features in fair

agreement with what would be expected to explain the phonon anomalies [26, 25].
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Chapter 2

Theoretical tools

The study of the structural, electronic and vibrational properties of the systems
investigated in this thesis, has been performed within ab initio methods based on
density-functional theory. At zero temperature, the properties we are interested in
can be determined starting from the knowledge of the quantum-mechanical elec-
tronic ground-state. From a microscopic point of view, a crystal is a system of
ions and electrons interacting through Coulomb forces. In the spirit of the Born-
Oppenheimer (or adiabatic) approximation [27], the electronic degrees of freedom
can be decoupled from the nuclear ones. Within this approximation, based on the
large difference between the electronic and the nuclear masses, the electrons are as-
sumed to follow adiabatically the ionic motion, remaining very close to their instan-
taneous ground-state configuration. The electrons are described by a Schrodinger
equation where the ions act as fixed potential sources. On the other hand, the dy-
namics of the ions can be studied as if they were classical charged particles, moving

in the effective potential determined by the electronic ground-state energy which

17
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depends parametrically on the nuclear positions. DFT provides a theoretical frame-
work to describe the electronic ground-state of a solid, without having to solve the
Schrodinger equation for the quantum many-electron system, which would be an
impossible task due to the very large number of degrees of freedom involved in the

calculation.

2.1 Density-functional theory

The density-functional theory is based on the Hohenberg-Kohn theorem [28] which
states that the external potential acting on the electrons is uniquely determined by
the ground-state electronic density n(r). This potential, in turn, yields in principle
the ground-state wave-function that determines all the other ground-state properties
of the system, which result therefore to be functionals of n(r). In particular, for a
given external potential Vi (r), it is possible to define the energy functional as

follows:

B4 Vep,n] = /Vext(r)n(r)dr + F[n], (2.1)

where F'[n] is a universal functional of n(r) <i.e. independent on Vext(r)> whose form
is however in general unknown. The energy functional plays a central role because
it is minimized by the ground-state electronic charge density, under the constraint

that the number of electrons N is fixed:

Ey = min (EY [Vepe, 1)) (2.2)

/ n(r)dr = N, (2.3)
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and the value at the minimum corresponds to the ground-state energy Ey. The
problem of determining the ground-state energy and charge density is now reduced
to the one of minimizing a functional of n(r) whose form is however unknown. The
Kohn and Sham [29] idea is to recast this functional separating out of it a term,
To[n], defined as the kinetic energy of a non interacting electron system of density
n(r), and the Hartree term, which is the classical electrostatic interaction between

the electrons:

Mdrdr’ + Eyn(r)]. (2.4)

Flal = Tifn(o)] + [ 52
All our ignorance is now confined to the exchange-correlation energy, E,.[n(r)],
defined by the Eq. 2.4 as the difference between the unknown functional F[n] and

the known terms in its right hand side. Following this approach, the minimization

of the total energy functional E[n] results in a set of self-consistent single-particle

equations:
[= V% + Vacr(r)] ¥ilr) = iu(r), (2.5)
Hys
Vicr(r) = V() +2 [ Pt o), 2:6)

() = 32 1lr) Ol — o) (2.7)

These are the well known Kohn-Sham (KS) equations, where the Fermi energy ep is
defined by the condition on the number of electrons, Eq. 2.3, v,.(r) = 0 E,.[n]/dn(r)
is the exchange-correlation potential, and the single-particle orbitals satisfy the or-
thonormality constraints [ ¢*(r)y;(r)dr = &;;. For electrons in a crystal the external

potential is generated by the ionic cores: Vey(r) = Vien(r). In Eqs. 2.4-2.7, as well
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as in the rest of this thesis, we have used atomic units: €?/2 = h = 2m,. = 1 (the

energy is measured in Rydberg units).

2.1.1 The local-density approximation

The solution of the Kohn-Sham equations gives in principle the ground-state density
and energy, but a practical implementation of it is impossible unless an approxima-
tion to the unknown exchange-correlation potential is specified. The most used
approximation is the so-called local density approximation (LDA), which assumes
that at each point r the exchange-correlation energy density is that of a uniform

electron gas whose density is equal to the local density n(r):

B = [ n(r)esnfr)i (2.

where €,.(n) is the exchange-correlation energy per particle of the electron gas with

uniform density n. The exchange-correlation potential is written in LDA as:

557([)] = Lnean)| = paln(r)) (2.9

n=n(r)

Vge(r) =

Once the KS equations are solved, the ground-state total energy of the crystal can

be written as:
Etot _ Eel [‘/iona ]_I_Eion

- _Ze D — €p /¢ )V 2i(r)dr + /( )n(r)dr

+ Z R a— 42, (2.10)
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where the last term, £%", is the Coulomb interaction between the ionic charges Z,
the vector R runs over the direct lattice, 7, indicates the different atomic positions
within the unit cell of the crystal, and the prime indicates that the R+ 7, — 7/ =0
term has to be omitted from the sum. The total energy, E*°*, depends parametrically
on the ionic position (R+75). The dependence is explicit through the ionic Coulomb
interaction £*" and the ionic potential Vi,,(r), and implicit through the electron

density n(r) and orbitals ;(r).
2.1.2 The plane-wave pseudopotential approach

To solve in practice the Kohn-Sham equations, one usually expresses the KS orbitals
in terms of a suitable finite basis set. When plane-waves (PW) are chosen, taking
advantage of the translational invariance and the resulting Bloch theorem, the KS
orbitals can be expanded as follows:

Yi(r) = Y k(r ZGZHG ek (G), (2.11)

G
where k belongs to the first Brillouin Zone of the crystal, G is a reciprocal lattice
vector, and n is the band index. The dimension of the PW basis set is determined

by fixing the kinetic energy cutoff, K., through the condition:
k4 G° < Eey. (2.12)

The choice of a PW basis has the advantage that the matrix elements of the Hamil-
tonian in Eq. 2.5 are particularly simple and that the accuracy of the expansion can
be easily checked and systematically improved by increasing the value of E . Fur-

thermore, PW’s are independent of the structure of the crystal, and allow a simple
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solution of the Poisson equation 2.6. The number N,, of plane waves is related to

the energy cutoft by the relationship:

N 47
~ 305y

W

Nopw (Feut)?, (2.13)

where Qg7 is the volume of the BZ.

If all the electrons were treated explicitly, a huge number of PW’s would be nec-
essary to describe the strongly localized core electrons and the rapid oscillations of
the valence wave functions in the core region. In order to obtain an accurate descrip-
tion of the system with a reasonably small number of PW’s the core electrons are
frozen in the atomic configuration around the nuclei, and only the chemically active
valence electrons are treated explicitly. To this end, a smooth angular-momentum-
dependent pseudopotential is then introduced to describe the interaction between
valence electrons and ionic cores (nuclei + core electrons). There are many different
schemes to generate ionic pseudopotentials from first-principles (see for example [30—
33]). Basically, all of them satisfy the following requirements: (i) the lowest pseudo-
energy levels are equal to the valence all-electron energies; (i) each pseudo-wave
function coincides with the corresponding all-electron one outside a properly chosen
core radius; (1i7) as a consequence of (i), the real and pseudo charge inside the core
radius agree for each valence state. This last condition is called norm conservation,
and ensures the transferability of the pseudopotential to different chemical environ-
ments. The accuracy of the results obtained with norm-conserving pseudopotentials

is comparable with those from all-electron calculations [34, 35].

The usual form for the pseudopotential is semilocal (SL), i.e. it is local with
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respect to the radial coordinate and non-local with respect to the angular ones:

lmax

) = 0D =) + D i = OREE) L (21)

where the index s refers to the atomic species. The non-locality arises from the

projector P; on the angular momentum [, defined as:

Z Y™ (0, 6)Y (0, 4, (2.15)

m=—I
Y,"’s being normalized spherical harmonics.

A computationally convenient form for the ionic pseudopotential has been intro-
duced by Kleinman and Bylander (KB) [36]. They pointed out that a significant
reduction of the numerical effort can be achieved if the non locality of the potential
is not restricted to the angular part, as in Eq. 2.14, but if also the radial potential is
replaced by a suitable non local separable operator. With the following substitution:

vsi(r) Rsi (1) R (r" v (r")
(Ratlvst| Bst) ’

va(r)o(r—r') — (2.16)

where R ,(r) is the radial pseudo-wave function, the SL potential in Eq. 2.14 be-
comes a separable operator defined as follows:

lmax

0B (r, 1) = ol(r)d(r — 1) +ZZ¢J;B PrRB (1 (2.17)

=0 m=-1
The computational cost for the application of the KS Hamiltonian in reciprocal
space, (i.e. for the calculation of the Hgg|t;) product), is proportional to N7, if
the SL form is used, and scales as N,, N, when the potential is in the KB form

(where N is the number of atoms in the unit cell of the crystal). It is to be noted
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that all the other terms in the Hamiltonian are local either in the reciprocal space
(kinetic energy) or in the real space, and their application needs a computational
effort proportional to V,,, while passing from a representation to the other through
fast Fourier transform costs ~ N, log N,,,. For a given value of E,, the number of
PW’s scales as Q5, i.e. as the volume of the unit cell of the system Q = (27)*Q3),
that is in turn proportional to N,;. The KB form must be used with some caution
because in some cases it can lead to a wrong description of the chemical properties
of the system, due to the appearance of unphysical states in the energy spectrum of
the isolated atom. These spurious states, known in the literature as ghosts [37], may
occur below or immediately above the physically relevant valence states because—
due to the non locality of the radial potential—it is no longer guaranteed that the
radial wave-functions can be ordered in terms of the increasing number of their

nodes. As discussed in Ref. [37], a slight modification of the I-dependent part of the
(SL)

iy (r), and/or a judicious choice of the reference local potential

pseudopotential v
are often sufficient to remove the ghosts. We rewrite the potential in the following

form:

BB (e ) = (0"%(r) + up(r)) S(r — 1)

+ Y () = v (1) 8(r = ) Pi(E, ) (2.18)

=0 A
where the non local potential vjs(r) corresponding to [ = [*, is used as a reference.
The potential in this form is equivalent to 2.14 for any choice of [* between zero
and [yax, With the only difference that now the potential seen by angular momenta

larger than [y is (v1°°(r) 4+ vi«(r)) instead of v'°¢(r). By changing the choice of [* it
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is often possible to modify AV(r) in order to eliminate the presence of ghost states.

2.2 Lattice dynamics

Phonons are normal modes of the harmonic lattice vibrations. Within the adiabatic
approximation, the lattice dynamics can be studied as if the ions were classical
charges moving in an effective potential determined by the ground-state electronic
energy. Therefore the total energy 2.10, as a function of all nuclear coordinates,
plays the role of a potential surface for the atomic motion. For small displacements
of atoms around their equilibrium positions, us(R), the total energy of the crystal

can be expanded in a Taylor series, which up to second order would read:

B = B4 Y ausqa{)g;m')“S(R)“S'(R/)+O(“3)‘ (219)

Rs,R/s’

The linear terms vanish because of equilibrium. EJ is the total energy of the
crystal at equilibrium, and us(R) is the displacement of the s-th atom in the unit
cell located at R. Within this picture, the harmonic oscillations around equilibrium

positions are governed by the equations of motion:

) DE , ,
M;iios(R) = T ®) szs/:ﬁ Caspsr (R = R)ugy (R). (2.20)

where M, is the mass of the s-th atom, and «,3 = x,y,z are the polarizations.

The interatomic force constants Cys 55 (R — R') are given by:

/ aQEtot
Cas,ﬁs'(R o R) - 6uas(R)auﬁs’(R/)

, (2.21)

0

where the second derivatives are calculated at equilibrium. Cy; 55 (R—R’) represents

the negative of the linear force on atom s in the cell at R along the « direction due
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to a unit displacement of atom s’ in the cell at R’ along the 3 direction. The force
constants are connected to each other by relations due to the symmetry properties
of the crystal. In particular they only depend on the difference (R — R’) because of
the translational invariance of the crystal. Thanks to translational invariance, the

solutions of the infinite set of coupled equations 2.20 are Bloch-waves:

iqR—iwt (222)

= ——u,(q)e

NaTR (a) ,
where the wave vector q belongs to the Brillouin zone. Once the dynamical matrix
is known, the problem of solving the lattice dynamics is reduced to a 3N, x 3Ny,

eigenvalue problem:
w2u5(q) = ZDSS'(Q)US'(Q)- (223)

The dynamical matrix D,y (q) is related to the Fourier transform of the matrix of

force constants :

Do 5 (Q) —aR (2.24)

1
= T Cas,ﬁs’(R)e
AT 2

It is a hermitian matrix, and has the well known properties [38]:

Dasﬁsl((]) = Dgs’,as(q)7 Dasﬁsl(_q) = Dzs,ﬁs’(q)‘ (225)

For each q point in the BZ, the 3N, eigenvalues of the dynamical matrix: w?(q); v =
1,2,---,3N,, are positive for stable systems. Their square root gives the frequency
of the v-th vibrational normal-mode, i.e. the dispersion relations w = w,(q). The
corresponding 3N, eigenvectors u’(q) are related to the normal-mode atomic dis-
placements through the Eq. 2.22. Every harmonic vibration of the lattice is a linear

superposition of the 3V,; normal-modes.
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2.2.1 Ab initio interatomic force constants

A complete description of the harmonic vibrations of a crystal is provided by the
knowledge of the interatomic force constants. Within the adiabatic approximation,
the lattice distortion associated with a phonon can be seen as a static perturbation
acting on the electrons. Furthermore, it is well known that the linear variation of the
electron density upon application of an external, static, perturbation determines the
energy variation up to second order in the perturbation (up to third order, indeed, as
stated by the “(2n+1) theorem” [39]). When the external perturbation is due to ionic
displacements, this allows one to calculate the interatomic force constants which are
directly obtained from the electronic linear-response to ionic displacements. In fact,
the bare ionic (pseudo-)potential acting on the electrons is a continuous function
of the atomic displacements u = {u;(R)}. The electronic contribution to the force
associated with the displacement along « of the s-th ion in the cell at R (u,s(R))
is given by the Hellmann-Feynman theorem [40]:

auas(R) - /n[u](r) auas(R) r, ( . )

where E[eli] is the electronic ground-state energy relative to given values of the atomic
displacements u, and n[,) is the corresponding electron-density distribution. The
electronic contribution to the harmonic force constants is then obtained by differ-

entiating Eq. 2.26 with respect to uy(R’):

D R)umsR) ) \ Gupe (R Guns(®) T auas(R)auﬁsl(R’)> dr,

(2.27)

ray e | (et i
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where all the derivatives are calculated at the equilibrium positions, i.e. at u = 0,
no(r) is the ground-state electronic density of the unperturbed system, V[if]” is the
bare ionic (pseudo) potential acting on the electrons:

Vist(r) = > vy(r — R — 7, — u,(R)), (2.28)

Rs

and Onpy)(r)/Ouss(R) is the linear-response of the electron density to the displace-
ment of the s-th ion in the unit cell at R. The interatomic force constants can be

written as a sum of two contributions:
Cosps(R—=R')=CZ 5 (R=R)+ C (R—R), (2.29)

where the electronic contribution C¢, is given by Eq. 2.27, and the ionic one C¥%} is
the second derivative of the Coulomb interaction between the ionic cores (which is
essentially the second derivative of an Ewald sum). The matrix of the interatomic

force constants is conveniently calculated in reciprocal space:
1 N :
_ , iqR
CasvﬁSI(R) - N Eq Cas,ﬁs (q)e . (230)

where N is the number of unit cells in the crystal. The electronic contribution is

then written in reciprocal space as follows:

~ el _ On(r) 17 OVion(r) r
Chsps(@) = /{8%5(01)] auﬁs'(q)d
0*Vion(r)
+0ss0 /WO(r)auas(q = 0)Jugy(q = O)dn

where OV, (r)/0uqs(q) is the linear variation of the external ionic potential due to

(2.31)

a periodic lattice distortion of wave vector q:

uqs(R) = uas(q)eiqR, (2.32)
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and dn(r)/0u,s(q) is the corresponding variation of the electron density. Equation
2.31 shows that the harmonic force constants of the crystal can be calculated by
first-principles, once the electronic ground-state density of the unperturbed system
no(r), and its linear response to a lattice distortion of the form 2.32 are known.
When the unperturbed problem is solved in the framework of DF'T, the electronic
linear response is calculated within Density Functional Perturbation Theory [41, 12]

by solving the selfconsistent set of equations:

Hies + Oy — ] Ati{x) = =P, AVsop(r)i(r), (2.33)
AVsorp(2)i(r) = AVioa(£)4(r) + 2 ﬁr‘_(i)' af b Dl A, (s

n=ng(r)
Anr) =43 5 (r) v ), (2.35)

where ¢ runs over the occupied states. In the Eqs. 2.33-2.35, in order to simplify
the notation, A f indicates the derivative with respect to the relevant ionic displace-
ments: Af = %. AVscp(r) is the variation of the self-consistent KS potential due
to the variation of the bare ionic potential produced by the lattice distortion, and
it is self-consistently related to the linear variation of the electronic density, An(r),
through the variation of the Hartree and exchange-correlation potentials (Eq. 2.34).
The operators P, and O, are introduced in order to obtain a numerically stable so-
lution: they orthogonalize the solution with respect to the occupied states and make
the system 2.33 non-singular. These two operators are defined in a different way

for metallic and non-metallic systems. For non-metallic solids, where empty and

occupied states are separated by a finite energy gap, the projection of the perturbed
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orbitals over the unoccupied states many-fold is well defined, and it is the solution

of Eq. 2.33, where P, and O, are defined respectively as:

pc =1- Z |¢v><¢v| ) (236)

Ov =« Z |¢v><¢v| ) (237)

where « is a constant larger than the valence energy band width, in such a way to
make the linear system 2.33 non-singular. In this way only the valence states are
involved in the computation of the linear variation of the charge density, without
explicit introduction of the conduction states. In the case of metals, the smearing
technique [42, 43] is used to deal with BZ integration in the presence of a Fermi
surface (see the appendix A), so that partially-filled states are introduced. As a
consequence, empty and filled states are no more separated in energy, and the pro-
jection of Aw;(r) over the (partially-) unoccupied states is no longer well defined. In

this case the problem is solved by introducing in Eq. 2.33 the “smeared operators”

P., and O,, defined as [16]:
O, =) ailti)(ei] (2.38)

P.o=0p — Z Biilvi) (sl (2.39)

S Opi — Op; ~
Bi; = Opibij + 0p;0;; + 0, ———L94, (2.40)

€ — 6]‘
where éFZ is a smooth approximation of the step function f(ep —¢;), a; being chosen
in such a way that the system 2.33 is non-singular, and it is assumed to vanish

when 1; is unoccupied, so that 3;; vanishes when both ¢ and j refer to unoccupied
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states. Therefore only the partially filled states enter the definition of these “smeared
operators”, and no explicit introduction of the unoccupied states is needed in the
computation of An(r), as for the non-metallic case. A detailed description for
practical implementation of force constants calculation within DFPT can be found

in reference [12] for insulating systems, and in reference [16] for metals.
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Chapter 3

Bulk properties of W

As a preliminary step towards the study of W surfaces, we have studied the struc-
tural and lattice-dynamical properties of the bulk metal. The calculations have
been performed using plane waves up to a kinetic energy cutoff of 28 Ry (i.e. ap-
proximately 300 PW’s per atom, at the equilibrium volume) that will be shown
to be sufficient to obtain accurate results for the structural and vibrational prop-
erties. The Brillouin-zone integration is performed with the “smearing” technique
of reference [43], using the Hermite-Gauss smearing function of order N = 1 (see
appendix A) and a smearing width ¢ = 70 milliRydbergs (mRy). Accurate checks
have shown that this width results in a satisfactory convergence of the calculated
quantities. The BZ sampling is performed on a uniform cubic grid in k-space, follow-
ing the Monkhorst and Pack scheme [44]. Using the point symmetry of the lattice,
only points in the so called irreducible wedge (IW) need to be sampled. The smaller
the value of o, the finer is the mesh needed to achieve convergence with respect

to the number of sampling k-points. For ¢ = 70 mRy a mesh of 55 points in the

33
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IW is enough. We use the ab initio norm-conserving pseudopotential of Bachelet,
Hamann, and Schliiter [31] in the separable KB form [36], with non locality in the
angular momentum up to l,.x = 2, and {* = 1 for the reference local potential. For
the local exchange-correlation energy we choose the parameterization of Perdew and
Zunger [45]. The vibrational properties are studied using ab initio interatomic force

constants calculated within the Density-Functional Perturbation Theory [12, 16, 41].

3.1 Equilibrium structure

Tungsten is a transition metal that crystallizes in the monoatomic bec lattice. The
equilibrium structure is determined by minimizing the total energy of the crystal
with respect to the lattice parameter. For this purpose, the values of the total energy
calculated with a fixed kinetic-energy cutoff at different lattice parameters, a, have
been fitted to a Murnaghan’s equation of state:

! Lo Bé_1+Q + const (3.1)
B—1\0 0 const, .

QB
B(0) = =27
0

where By is the bulk modulus, By its derivative with respect to the pressure, and
Qo = aj/2 the equilibrium volume of the unit cell. Figure 3.1 shows the calculated
energies and the corresponding Murnaghan’s fit, for different cutoffs between 20 and
32 Ry. The results of the interpolations are collected in Table 3.1. A cutoff of 28 Ry
is enough to obtain a convergence for the structural parameters within 1%, and of the
order of the mRy for the total energy. The discrepancy with the experimental values
is 1% for the lattice parameter and 7% for the bulk modulus. This agreement is good

and comparable with the typical accuracy of LDA calculations for semiconductors
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Figure 3.1: Total energy of bulk Tungsten vs lattice parameter, for different energy cutoffs.
The open symbols indicate calculated values. The stars correspond to the minimum energy.

Least-squares fit with Murnaghan’s equation of state are shown with solid lines.

and other metals. Convergence with respect BZ sampling and smearing width, o, has
been further checked, finding only a slight dependence of the structural parameters
upon the value of o. A more critical behaviour is shown instead by the phonon
frequencies (see next Section). The value for o has therefore been fixed by requiring
good convergence on the frequencies. As explained in Sect. 2.1.2, a suitable choice
of the reference local potential can eliminate possible ghost states that may occur
when the pseudopotential is used in the KB form. We have found that with the
usual choice [* = [,.x for the reference local potential, two ghosts appear in the s
and p spectrum of the isolated atom at low energy. We have obtained a ghost-free
pseudopotential using [* = 1. The choice of [* would not be critical if one did not

adopt the KB representation of the pseudopotential. As a check we have compared
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Table 3.1: Convergence study with respect to the energy cutoff for structural parameters of W

bulk. Experimental data are reported as comparison.

20 Ry 24 Ry 28 Ry 32 Ry Exp. [46]
@ (aw) 603 606  6.05 605 597
By (GPa) 378 291 334 333 311
B} 4.8 5.7 4.1 4.3 -

our results to those obtained using the SL form for the pseudopotential with the
different choices of [*, we find no substantial differences: the use of [* = 1 instead

of I* = 2 gives larger values of 2% for ag, and of 10% for By and Bj.

3.2 Dynamical properties

Transition metals are known to present anomalies in the phonon dispersions [47,
48, 49] due to singularities in the electronic screening that can occur when the
periodicity of the involved lattice distortion connects different portions of the Fermi
surface [50]. When almost parallel portions of the F'S are nested by a wave vector
q. = 2kp (where kp is a vector on the Fermi surface) a relatively large number
of states k and k + q. with small energy difference is available around the Fermi
level. This may give rise to a strong enhancement of the electronic screening in
correspondence to the wave vector q. that results in a reduction of the screened
ion-ion interactions and of the corresponding phonon frequency. As a consequence
so called Kohn anomalies appear in the phonon dispersions, as kinks or softenings,

at the nesting wave vectors q.. For example in the phonon dispersions of bulk W



3.2. Dynamical properties 37

a clear dip occurs at the H-point of the BZ, because the dielectric susceptibility is
enhanced near the H point by the nesting properties of the Fermi surface [49].

The smearing technique, used to deal with k-space integration, introduces a
broadening in the occupation of the electronic states near the Fermi level, whose
effect is similar to that of a fictitious finite electronic temperature (o ~ T). Since
the Kohn anomalies are strictly related to the sharpness of the Fermi surface, they
depend quite sensitively upon temperature. Therefore we have performed accurate
test calculations in two representative points of the BZ, the anomalous H point and
the regular P point, using different values for o between 5 and 70 mRy. Different
sampling meshes up to 728 k-points in the IW have been used in order to ensure
that the results where adequately converged with respect to the BZ sampling. Both
modes w(H) and w(P) are threefold degenerate by symmetry, and are found exper-
imentally to have practically the same frequency ~ 183 cm~!. An extrapolation
of our calculations to zero smearing width gives the converged value, 187 cm™" for
both frequencies, with an agreement of 3% with the experiment. As expected the
anomalous frequency w(H) has a stronger dependence on ¢ than w(P), that is al-
ready converged within 1% for & = 70 mRy. In order to have the same accuracy for
w(H) a smaller value 0=5 mRy and 728 k-points should be used. Phonon disper-
sions where calculated throughout the BZ using the smearing width ¢ = 70 mRy
and 55 points in the IW. Convergence with respect to the energy cutoff has been
also checked. An energy cutoff of 28 Ry is sufficient to obtain frequencies converged

within 1+2%.
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3.2.1 Real-space interatomic force constants

The force constants C(R) become negligible for interatomic distances R sufficiently
large. The finite number of relevant non vanishing real-space interatomic force
constants can be therefore calculated by Fourier analyzing their reciprocal-space
counterpart, Eq. 2.30, computed on a discrete mesh. The larger the number of real-
space force constants one wants to calculate, the finer must be the reciprocal-space
mesh. In order to obtain the force constants up to an interatomic distance Ry,.x the
discretization parameter of the reciprocal space grid should be Ag ~ %. We used

a grid defined by the q points:

[ m n\ 47
— — <] < — < < — < < — .
Qimn = (L’ L’L) - 0<I<L-1, 0<m<L—-1, 0<n<L-1, (3.2

which corresponds to a uniform mesh in the cube that contains the bce BZ. In
particular we have calculated the force-constant matrices at all the q points corre-
sponding to L. = 8. Calculations have been done explicitly for the q points within
the IW (i.e. 14 points); the force constants at all the other q points are obtained
by symmetry. In this way we are accounting for the interactions between each atom
and all those which lie in a cube of edge 4a centered at its position. Once real-space
force constants have been obtained in this way, reciprocal space dynamical matrices

can be calculated by inverse Fourier transform, Eq. 2.24, at any point of the BZ.

3.2.2 Phonon dispersions

Our phonon dispersions for W, calculated along several symmetry lines, are displayed
in Fig. 3.2; experimental data from neutron scattering experiment [51] are denoted

by diamonds. All the anomalous features found experimentally are well reproduced:
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Figure 3.2: Phonon dispersions for bulk W: our calculations are shown by solid lines and the

neutron scattering data from Ref.[51] are denoted by diamonds. The bee BZ is shown in the inset.

the softening of the longitudinal branch at the H point; the dip in the longitudinal
branch along the H-P direction; the crossing of the two transverse branches along I'-
N due to the steep decrease of one of them near N. The overall agreement is within
the typical accuracy of DFPT calculations of about 1%, except near the anomalies,
where a worse accuracy of about 6% should have been expected on the basis of the

previous convergence study.
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Chapter 4

Clean and hydrogenated W(110)

surfaces

In this chapter we present the results of our study of clean and hydrogenated (110)
surfaces of Tungsten. The hydrogenated surface, H/W(110), is covered by a full
monolayer of hydrogen, i.e. the coverage at which the surface phonon anomalies
have been observed experimentally. The surface properties are studied by modeling
the W(110) surface with a slab of 7 atomic layers of Tungsten. In order to introduce
a three-dimensional periodicity, we have used the “supercell geometry”, by repeating
the W slabs in the [110] direction. A vacuum region of 20.5 A (equivalent to 8 layers
of W) separates one slab from the other. The full Coulomb 1/r potential is used
for hydrogen. We have performed the BZ integration using a mesh of 16 k points
[52] in the IW of the two-dimensional surface Brillouin zone (SBZ). This grid has
approximatively the same density in the [110] plane as the grid of 55 k-points used

for bulk calculations. Since the anomalous phonon frequencies of the hydrogenated

41
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surface are thought to have an important dependence upon the nesting features of
the Fermi surface, we expect these modes to have a critical dependence upon the
smearing width 0. We have studied accurately this issue using smaller value of &

down to 2.5 mRy and accordingly finer SBZ sampling up to 324 k points in the IW.

4.1 Equilibrium structures

It is well known that the equilibrium atomic positions in a crystal surface are gener-
ally different from those in the ideal bulk-terminated surface (i.e. a surface simply
obtained by cutting the infinite perfect crystal along a plane of bonds and leaving
the interatomic distances unchanged).

As a first step we have determined the equilibrium atomic geometry of the
W(110) and H/W(110) surfaces. To this purpose we minimize the total energy
as a function of the atomic positions in order to find the zero-force atomic config-
uration. The minimization is performed with the help of Helmann-Feynman forces
and following the Broyden-Fletcher-Goldfarb-Shanno algorithm [53].

It is well established, from different experimental analysis, that the clean surface
is unreconstructed [54]. The surface retains the same centered rectangular structure
of a bulk (110) layer, as shown Fig. 4.1. In our supercell we have one W atom per
layer. The equilibrium atomic configuration of the unreconstructed W(110) surface
is found by minimizing the total energy with respect to the intralayer distances d;;
indicated in the side view of Fig. 4.1. Our results for the relaxation parameters
Ad;; = (d;j — do)/dy are collected in Table 4.1, where dy=2.27 A is the unrelaxed

intralayer distance in the bulk. We find a small inward relaxation of —2.9% in the



4.1. Equilibrium structures 43

Z ) [110]

y |, [110] "
C *

al2 \*.
oc .,

X | y
[001] [110]
Top view Sideview

Figure 4.1: Surface geometry of W(110). The z direction is perpendicular to the surface. Left: a
top view with first-layer W atoms in black and second-layer ones shaded. Right: a side view, only

one W atom per layer is indicated (black full circles). a is the bulk lattice parameter of W.

first intralayer spacing. The other interplanar distances are substantially unchanged,
considering that the numerical accuracy is of the order of £0.1%.

In order to determine which is the most stable adsorption site for hydrogen,
we have calculated the energy adsorption differences AF,; for the most important
sites indicated in the top view of Fig. 4.2. For each hydrogen position we have
relaxed the atomic coordinates in our supercell. The calculated adsorption energies
are summarized in Table 4.1 together with the corresponding relaxation parame-
ters. The hollow site results to be the most favorable in agreement with EELS
measurements [21]. Both short- and long-bridge positions are clearly energetically
unfavorable, and the on-top position is even worse. The inward relaxation of the

first intralayer distance, dyo, is reduced when hydrogen is adsorbed in the hollow,
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Figure 4.2: Surface geometry of the H/W(110) surface. The z direction is perpendicular to the
surface. Left: a top view with first-layer W atoms in black. The different H sites long-bridge (L),
short-bridge (S), hollow (H), and on-top (T) are also indicated. Right: a side view; only one W

atom per layer is indicated (black full circles) and the smaller white circle on top of the surface

indicates the hydrogen atom.

short-bridge, and long-bridge sites. For on-top adsorption an outward relaxation
is observed. In Table 4.1 we also report the height d. ) of the H atom above the
surface obtained for the different adsorption sites, and its [110] offset d,(z) from
the on-top position when adsorbed in the hollow site (see Fig. 4.2). Estrup et al.
have found a loss of symmetry in their LEED spectra when the W(110) surface is
covered by more then half monolayer of hydrogen, and proposed that a displacement
of the top layer of W atoms would occur along the [110] direction [20]. With the
hydrogen in the hollow position we find a small shift, Ay;=—0.05 A, of the first W

layer along this direction. According to these findings, we will assume hereafter the
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hydrogen atoms stay at their most stable hollow position. Similar results for the
relaxed structures of the clean and hydrogenated surfaces have also been obtained

previously using the full-potential linearized augmented plane wave method [25].
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Table 4.1: Calculated relaxation parameters and adsorption energy differences for the clean

and hydrogenated W(110) surfaces. Results for hydrogen adsorbed in the hollow, long-bridge,

short-bridge, and on-top sites are compared. d, g is the height of the hydrogen above the surface,

and dy gy its [110] offset from the on-top position. Ad;; indicates the change of the intralayer

distance between the i-th and the j-th layer with respect to the bulk interplanar spacing, dg. Ay

is the shift of the topmost W layer with respect to the substrate, along the [110] direction.

clean hydrogenated

hollow short bridge long bridge  on top
d.qmy (A) - 1.15 1.38 1.15 1.80
by (A - e - i :
Adyz (Ndy) -2.9 —1.5 —1.2 —0.8 +1.6
Adys (Ndy) +0.3 —0.1 —0.1 —0.3 —0.9
Adsy (Ndy) —0.1 —0.2 —0.2 —0.2 —0.2
Ay (A) - —0.05 - - -
AFE,; (eV) - 0 0.11 0.32 0.96
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Figure 4.3: Two-dimensional surface Brillouin zone (SBZ). Points along symmetry lines are
marked. The coordinates of high symmetry points in 27/a unit are: H=(3/4,0), N=(0,/2/2),
S=(1/2,2/4).

4.2 Electronic properties

Metals in low dimensions are often characterized by an enhanced nesting of their
Fermi surface, so that strong Kohn anomalies are expected to occur [55]. Giant
Kohn anomalies have been observed in certain systems of effectively reduced dimen-
sionality, such as layer and chain bulk compounds [56, 7], due to the presence of
extended almost parallel portions of the Fermi surface.

Since the electronic properties at the Fermi level play such an important role
in the vibrational properties, we have calculated the band structure and the Fermi
surfaces for the clean and H-covered W(110) surfaces, and analyzed their nesting
properties. The slab band structure of the clean and hydrogenated W(110) surfaces,
along the I'S and QS lines in the SBZ (shown in Fig. 4.3) are reported in Fig. 4.4. The
energies from bulk and slab calculations are aligned by matching the corresponding
Fermi levels. The slab states within the gap of the surface-projected bulk bands

(i.e. within the energy regions forbidden in the bulk), are surface states. The
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corresponding wave functions have their maximum amplitude near the surface and
decay exponentially into the slab. Since the calculations are performed using the
slab geometry, all surface states occur pairwise, one from each surface of the slab.
Due to the finite thickness of the slab, states localized on the two surfaces can couple,
and the degeneracy may be lifted. The stronger the surface character of the states,

the smaller is the splitting between the two levels.

In the band structure of the clean W(110) surface (left panels in Fig. 4.4), a sur-
face state is present along the 'S and the QS lines, which intersects the Fermi level.
This state is quite close to the bulk energies and it is not very localized at the surface,
as can be seen form the rather large splitting. When a full monolayer of hydrogen
is adsorbed on the surface (right panels in Fig. 4.4), this state is pushed towards
higher energy in the middle of the gap of bulk states, and its surface character is
enhanced: the pair of states corresponding to the two surfaces of the slab are in fact
almost perfectly degenerate in the H-covered surface. We are particularly interested
in what happens at the Fermi level. In figure 4.5 we show the Fermi surfaces calcu-
lated for the clean W(110) and the hydrogenated H/W(110) surfaces. The shaded
region is the projection of the bulk Fermi surface on the SBZ. The solid lines that fall
outside the shaded region, indicate the F'S of the surface states previously discussed:
they form a circuit of elliptical shape around the S point, and are hole orbits in the
sense that enclose unoccupied levels. The effect of hydrogen adsorption is to enlarge
the contours of the surface-localized Fermi surface, pushing it well inside the bulk
gap. The existence of these elliptically shaped portions of the surface Fermi surfaces

around the S point has been also found experimentally with high-resolution angle-
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Figure 4.5: Calculated Fermi surfaces of the surface-localized states (solid lines), for the clean
(upper panel) and H-covered (lower panel) W(110) surfaces. The shaded region is the projection
of calculated FS of the bulk, within the SBZ. q.1, q.2 and q.3 indicate the nesting vectors for the
hydrogenated surface. The contour of the SBZ, and the high symmetry points are also indicated.
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Table 4.2: Theoretical Fermi surface nesting wave vectors compared to the critical wave vector of
phonon anomalies measured in HAS and EELS experiments. The results are reported both in A=!

and in units of %TW’ where a 1s the lattice parameter.

¢-direction Theory Exp.*’

Qe (A7) o 0.88 0.95
(% units) (0.45)  (0.48)
Qo2 (A7) TS 1.21 1.22
(%” units) (0.62)  (0.61)
a  (A) 3.20 3.16

“Ref. [3], *Ref. [6]

resolved photo emission-measurements [9] (ARP). In agreement with our findings
the experimental data also indicate that these elliptical orbits are enlarged when the
hydrogen is adsorbed on the surface, but their shape differs considerably from the
theoretical one (see Fig. 4.6).

The theoretical Fermi surface of the hydrogenated surface presents parallel por-
tions associated with well localized surface states, that give rise to a quasi one-
dimensional nesting. The wave vectors connecting these states are q.;, parallel to
the TH direction, and q.,, parallel to the I'S direction. These nestings can give
rise to pronounced Kohn anomalies in the phonon dispersions in correspondence of
the critical wave vectors q.; and q.. In Table 4.2 the nesting wave vectors which
result from our calculations are compared with the critical wave vectors at which

the phonon anomalies have been detected by HAS and EELS experiments [3, 6]:
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Figure 4.6: Experimental Fermi surface contours for (a) the clean W(110) and (b) the H/W(110)

surfaces from ARP measurements of Ref.[9].

resulting in very good agreement. Similar results have also been obtained by a pre-
vious calculation [25]. Since the states connected by the nesting are well-localized
surface states, one expects the surface phonon modes that are well localized at the
surface to be mostly affected by the corresponding Kohn anomaly. Contrary to
these theoretical results, the experimental Fermi surfaces (see Fig. 4.6) do not pro-
vide any evidence of nesting vectors in correspondence of the detected anomalies.
The disagreement between the experimental and the theoretical FS contours may
be attributed to the approximations used in the calculations or to some lack of
accuracy in the experiments. The theoretical Fermi surfaces have obtained within
LDA and neglecting e-ph interactions (adiabatic approximation). The nesting fea-

tures revealed by the FS calculated under these assumptions indicate that the e-ph
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coupling is strongly enhanced at the nesting wave vectors, thus possibly modifying
the profile of the Fermi surfaces expected from experiments which obviously probe
dressed rather than bare quasiparticle excitations. In any case the nesting mecha-
nism that is at the origin of the Kohn anomalies arises from features of the adiabatic
Fermi surface. Therefore the absence of nesting features in the experimental F'S is
not compelling. Moreover we note that the Fermi surface reported in Ref. [9] is
affected by some inconsistence as regards its symmetry properties. In fact the ellip-
tical orbits centered at S should coincide with that centered at —S when translated
by the reciprocal lattice vector G = (1,v/2/2)2m/a. As this is not clearly the case in
Fig. 4.6, we cannot ruled out that this is due to some inaccuracy in the experimental

data.

We suggest the presence of a third nesting wave vector q.s3 that can give rise
to a corresponding Kohn anomaly. This wave vector connects states which have a
weaker surface character than the states connected by the nesting vectors q.; and
de2- We expect that its effective coupling with surface phonons and the related

Kohn anomaly are therefore less pronounced.

4.2.1 Work function

The work function W is defined as the minimum energy required to extract one
electron from the metal. We have computed the work function, for the clean and
the hydrogenated W(110) surfaces, as W = Vi — Ep, where Ep is the Fermi energy
and Vg is the value of the electrostatic potential energy in the middle of the void

region of our supercell, which mimics the vacuum. The planar and macroscopic
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Table 4.3: Computed values of the work function Wejean for the clean W(110) surface and of its

change upon hydrogenation. Experimental data are reported for comparison.

Theory Experiment

(eV) (eV)
Wclean 5.22 5.25%
(Wclean - WH—covered) 0.54 04Sb

“Ref. [59], °Ref. [58]

averages (see Ref. [57]) of the electrostatic energy for the clean and hydrogenated
surfaces are shown in the Figs. 4.7 and 4.8, together with the planar and macroscopic
averages of the electronic density.

The calculated work function Wijea, for the clean surface is in remarkable agree-
ment with the experimental value. Experimental measurements [58] have shown
that the work function of the hydrogenated W(110) surface decreases monotonically
with increasing hydrogen coverage up to a full monolayer. In good agreement with

the experiment we find that at a full hydrogen coverage the work function is reduced

by ~ 0.5 eV (see Table 4.3).
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VACUUM

-30 - 0 A

Figure 4.7: Planar and macroscopic averages (dotted and solid line) of the electronic density
(upper panel) and electrostatic energy (lower panel) for the W(110) surface. z is the direction
perpendicular to the surface. The full dots indicate the position of W atoms within the slab. The

work function W is also reported.
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VACUUM

~30 L T g

Figure 4.8: Planar and macroscopic averages (dotted and solid line) of the electronic density
(upper panel) and electrostatic energy (lower panel) for the H/W(110) surface. z is the direction
perpendicular to the surface. The big full dots indicate the position of W atoms within the slab,

the small one is the H atom. The work function W is also reported.
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4.3 Vibrational properties

The surface lattice dynamics has been dealt with by calculating the harmonic force
constants of the fully relaxed slab of seven W-layers (plus the two H-layers in the
case of the H-covered surface). We have verified that the force constants coupling
atoms on the opposite surfaces of the slab are negligible, and that those which couple
the central layer to the other ones are very close to the force constants calculated for
the bulk. This guarantees that the two surfaces of the slab are decoupled and that
the surface force constants are well described. A thicker slab is necessary to decouple
the surface vibrational modes which penetrate more than three layers. Therefore
the force constants calculated for the 7-layer slab were used to model the dynamical
matrices of a much thicker slab builded up by inserting a number of bulk layers
in the middle of the seven-layer slab, as sketched in Fig. 4.9. The force constants
between atoms in the four surface layers of such a thicker slab (S blocks in Fig. 4.9),

are those calculated for the seven-layer slab:

—layer
Co(ay) = Co ™ (q), (4.1)

where s, and s’ correspond to the atoms on the four topmost layer of the slab surfaces.
All the other force constants are taken equal to the interatomic force constants in
the bulk, CPuk(R), previously calculated (see Sect. 3.2.1). Therefore, for any wave
vector q in the SBZ, the force constants “shaded” in Fig. 4.9 (describing the bulk-

bulk and bulk-surface interactions) have been obtained as follows:

Cw(ay) = Y CPIN(R, — R} e n(RRY), (4.2)
R
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—_— S

relaxed slab relaxed slab + bulk layers

Il
|

S

S’

Figure 4.9: Sketch of the procedure used to model the force constant matrix C of a thick slab
(on the right). The force constants calculated for a seven-layer relaxed slab (S blocks) describe
the interactions between atoms in the four topmost surface layers (solid lines) of the thick slab.
Dashed lines indicate bulk layers inserted in order to make the slab thicker. The force constants
describing bulk-bulk and bulk-surface interactions are indicated by the shaded blocks, and have

been assumed to be equal to the interatomic force constants of the bulk.
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where Ry runs over the two-dimensional direct lattice of the surface, and R, =
R|| + 75.

The normal modes of the slab can be classified [60] as surface modes, bulk modes,
or resonances according to the behaviour of the atomic-displacement amplitudes as
the center of the slab is approached, and provided that the slab is sufficiently thick.
For q points along high symmetry directions in the two-dimensional surface Brillouin
zone, the normal modes can be further classified according to their symmetry. Modes
in which the atomic displacements lie in the sagittal plane defined by the normal
to the surface and the direction of q (which is parallel to the surface) are referred
to as sagittal modes. Modes in which the displacements are normal to the sagittal
plane, are referred to as shear horizontal (SH) modes. Selection rules allows both
helium atom scattering and electron energy loss spectroscopy to sample only modes

with displacements in the sagittal plane.!

'This is true in the usual experimental configuration for which the scattering plane is a reflection plane.
The SH modes can be measured by tilting the sample in such a way that the scattering plane does not

contain the surface normal [61].
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4.3.1 Clean surface

The phonon dispersions of the clean W(110) surface, calculated along the THN line?
using a slab of 69 W-layers, are shown with green lines in Fig. 4.10. The branches
that fall outside the region of bulk projected modes, which is delimited by the thick
blue lines, are surface modes. The surface modes do not change significantly for
slabs thicker than 15 layers. The only important effect of increasing further the slab
thickness is to provide more dense mode frequencies in the bulk region. We have
checked that the calculated frequencies are converged within about 1% with respect
to the broadening width using c=70 mRy.

The surface phonon dispersions of the W(110) surface have been measured both
by HAS [2, 3] and EELS [6] experiments. The intensity of the He inelastic scattering
decreases towards the SBZ boundary, along T'H. Therefore the dispersion curves
have only been measured for wave vectors within the first two thirds of the SBZ. The
EELS measurements have detected the whole dispersion up to the SBZ boundary,
and are in excellent agreement with the HAS data where available. Therefore we
compare our calculation with the more complete EELS data which are indicated
with the red dots in Fig. 4.10, and we find a remarkably good agreement.

In order to evidentiate which ones of the calculated slab modes have a dominant
surface character, and how these modes are polarized, we have calculated their

localization rate, defined as:
2 Uon(v: )
Ju(v, q)|”

where u(v, q) is the amplitude of the atomic displacements for the v-th normal mode

lo(v,q) = , with a=u=z,y,2 (4.3)

%j.e. for wave vectors q = (gz,0), at the point N is ¢ = 27/a.
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Figure 4.10: Phonon dispersions calculated for a 69 W-layers slab modelling the W(110) surface
(green lines). The blue thick lines are the limits of the region of bulk-allowed modes, projected
onto the surface BZ. The full dots indicate the experimental EELS data.
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at the wave vector q, « is the polarization index, and the sum runs over the atoms
of the two topmost layers of each side of the slab. The localization rate [,(v,q)
indicates the percentage of the displacement amplitude along the « direction in the
two topmost surface layers for the normal mode v at the wave vector q. In Fig-
ure 4.11 the modes for which the localization rate is larger than 40% are indicated
with full diamonds, one panel for each polarization. We can clearly identify three
branches of surface-localized modes, one for each polarization of atomic displace-
ments (displayed in the three panels of Fig. 4.11). Some surface resonance can be
also identified at about 170 cm™! and 200 cm™!. The lower branch is a predomi-
nantly z-polarized surface mode (Rayleigh mode), whose frequencies are in excellent
agreement with the EELS data. The intermediate surface branch is a SH mode (i.e.
mainly y-polarized) and therefore it cannot be detected in the experiments. We

can identify the third branch of longitudinal (i.e. mainly x-polarized) surface modes

with the second branch observed by EELS above the RW mode.
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Figure 4.11: Phonon dispersions calculated
for a 31-layer W(110) slab (solid lines).
The normal modes localized at the sur-
faces more than 40% are indicated with
diamonds, for each one of the three po-
larizations, x, y, and z of the atomic dis-
placements (reported in the three panels,
respectively). Colors indicate the surface
localization, [, of the vibrational modes:
from yellow to blue in order of increased
localization rate. The small dots indicate

the EELS data.
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The EELS spectrum, recorded in the specular direction (i.e. q = T') at low
impact energy, shows a dipole active tungsten surface mode at a frequency of about
190 cm™!. The dipole-active surface resonance can be followed up out of I' within
the SBZ. We have not found strongly localized surface modes for any of the three
different polarizations corresponding to this surface resonance. We have calculated
the surface dipole for each normal mode of the slab, assuming that the dipole moment
is proportional to the difference between the displacement amplitude perpendicular
to the surface in the first two layers. The results are reported in Fig. 4.12. We
interpret the experimental surface resonance at about 190 cm™' as due to dipole
surface modes. In the inset of the Fig. 4.12 we show the dipole spectrum calculated
at I': in very good agreement with the experimental spectrum we have found the

maximum dipole intensity at a frequency of 197 cm™1.
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Figure 4.12: Phonon dispersions calculated for a 31 W-layers slab (solid lines). The surface dipole
intensity of the modes is indicated with the gray full diamonds. The gray intensity is proportional
to the dipole intensity of the vibrational modes. The red small dots indicate the EELS data. In

the inset we show the dipole spectrum calculated at T'.
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4.3.2 Hydrogenated surface

The phonon dispersions of the hydrogen-saturated W(110) surface have been cal-
culated along the THN line using a 31-layer W(110) slab with the two equivalent
surfaces covered by one layer of hydrogen atoms. The surface force constants are
those calculated for the hydrogen-saturated slab of 7 W-layers. The dispersion re-
lations obtained using a broadening width ¢=70 mRy are shown by green lines in
the Fig. 4.13. These data do not display any anomaly, but a slight tendency to
softening in the RW branch. The calculated dispersion is in very good agreement
with the experimental EELS and HAS data, except in the region where the anoma-
lies occur (dashed line), i.e. between g, ~0.4(27/a) and ¢, ~0.6(27/a). Since the
phonon anomalies have a critical dependence upon the broadening width we have
studied this dependence in detail. The effect of too large a value of ¢ is to smooth
out the phonon anomalies similarly to what happens at high temperature in real
systems. The use of a smaller broadening width requires a finer SBZ sampling and
the calculation of the full dynamical matrix of the slab becomes impractical. We
have therefore focused our attention on the anomalous RW frequency which is the
only one that depends sensitively on o. The Rayleigh frequency w, (o) and the cor-
responding eigenmode u, (o) have been calculated by iterative perturbation theory,
and considering the dynamical matrix for smaller o as a perturbation to the matrix
calculated for =70 mRy. In order to obtain the correction to a given mode, we
start from the corresponding lattice distortion, u,, and calculate the electron den-

sity response to it using a smaller value of o. This gives us access directly to a full
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Figure 4.13: Phonon dispersions calculated for a 31-layer W(110) slab, with the two equivalent
surfaces saturated by hydrogen atoms (green lines). The blue thick lines indicates the limits of the
bulk modes. The red full dots indicate the EELS data, and open diamonds indicate the HAS data.
The dashed curve indicates the portion of the phonon branch which is not well converged with the

value 0=70 mRy for the smearing width.
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column of the “perturbed” dynamical matrix, D(o):
£(0) = Do), (). (1.4)

Standard perturbation theory allows one to estimate the first-order correction to the
frequency:

wi(o) = (£, (o), (@) + O ((Ac)?) (4.5)
and displacement pattern:

Aufh = 3 @) ) (4.6)
2 () - (o)

Correspondingly, the second-order correction to the frequency is:
Aw?? = (AuDE, (o). (4.7)

If necessary, the above procedure can be iterated to obtain higher order corrections.

The convergence of the RW mode frequency at the critical wave vector ¢, = 0.45
(27 /a) is shown in Table 4.4. The frequency is considerably lowered by reducing
o, and it reaches the converged value of ~ 76 cm™' for 0=5 mRy. Moving away
from the critical wave vector the convergence is obtained for larger . Outside the
critical region the frequencies are already converged for c=70 mRy. The RW mode
dispersion obtained with c=10 mRy is shown in figure 4.14 with the green line and
the converged value for the critical wave vector is indicated by the cross. It clearly
display an anomalous softening in correspondence to the critical wave vector nesting
the Fermi surface of surface-localized states.

The theoretical results are in good agreement with the shallow dip (see Fig. 4.13)
observed in both HAS and EELS experiments. This allows us to identify this ex-

perimental feature as a Kohn anomaly of the RW mode branch. Our calculations
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Figure 4.14: Dispersion of the RW mode of the H/W(110) surface, calculated with a broadening
width 6=10 mRy (green line). The cross indicates the converged frequency at the critical wave
vector, obtained using a width of 2.5 mRy. The red full dots indicate the experimental EELS
data. Open diamonds ndicate the HAS data. The blue thick lines are the limits of the region of
bulk-allowed modes, projected onto the surface BZ.
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Table 4.4: Convergence of the RW mode frequency at the critical wave vector ¢, = 0.45 (27/a),
with respect to the broadening width, ¢, and number of k-points in the IW of the SBZ, Ng. The

experimental value of the shallow dip is also reported as comparison.

o (mRy) Ny w(ecm™) | exp. (em™!)
70 16 106 83
30 64 96
10 144 82
5 324 76
2.5 324 77

give a very accurate description of the vibrational properties of bulk W and its (110)
surfaces, and to reproduce the anomalous feature in the phonon dispersions, in good
agreement with the available experimental data. The calculated dispersions for the
H/W(110) do not show any feature comparable with the huge dip found in HAS
measurements. On the base of these findings we rule out the interpretation of the
deep anomaly as due to adiabatic vibrational excitations, and we suggest that some
breakdown of the Born-Oppenheimer approximation should be invoked in order to
explain these data.

The surface character of the slab normal modes and their polarization are dis-
played in Fig. 4.15. The full diamonds indicates, for each polarization, the vibra-
tional modes of the slab that have a localization rate, [, larger than 35% over the

three surface layers (i.e. the two topmost W-layers and the H-layer).
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Figure 4.15 Phonon dispersions calculated
with 0=70 mRy for an hydrogen saturated
31-layer W(110) slab (solid lines). The dia-
monds indicate the normal modes localized
at the surfaces more than 35%, for each
one of the three polarizations x, y, and z.
Colors indicate the surface localization of
the vibrational modes: from green to vio-
let in oredr of increased localization rate,
lo. The full dots indicate the experimental
EELS data, open diamonds the HAS data.
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The lowest surface branch along T'H, that is the RW mode (see the panel of z-
polarized surface modes in Fig. 4.15), becomes more localized at the surface right in
the region of the anomaly. Between H and N the RW branch crosses the longitudinal
surface branch, merging at N with bulk allowed modes. In agreement with the
experiments, after H-saturation the RW mode of the W(110) surface is essentially
unchanged far from the anomaly between I' and H, and is stiffened between H and N.
We can identify the upper branch observed in the HAS spectra, as the longitudinal
surface resonance (as sown in the panel of x-polarized surface modes in Fig. 4.15).
Our calculations show the presence of a third branch of surface-localized SH modes,
that cannot be observed in the experiments. The SH mode of the H/W(110) surface

is increased in frequency with respect to the SH branch of the clean surface.
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Conclusions

In this thesis we have performed an accurate study of the electronic, vibrational
and structural properties of bulk Tungsten and its clean and hydrogenated (110)
surfaces. In particular the bulk phonon dispersions result in good agreement with
the neutron scattering experimental data, reproducing all the anomalous features
of the spectrum. Up to our best knowledge the study presented in this work is the
first surface phonon calculation performed from first principles for a metal surface.
Our calculations give a very accurate description of the vibrational mode of the
clean and H-covered W(110) surfaces, and our surface phonon dispersions are in
excellent agreement with the available experimental data. In particular we found an
anomalous behavior in the RW mode dispersion of the hydrogen saturated surface
in correspondence of the nesting vector connecting parallel portions in the surface
localized Fermi surface. The anomalous softening displayed by our RW mode dis-
persion is in good agreement with the shallow dip detected by HAS and EELS

measurements on H/W(110). Due to the nesting features observed in the calculated
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Fermi surfaces, the e-ph coupling is kinematically enhanced in correspondence of
the nesting vector. Since the electronic states connected by the nesting are well-
localized surface states, one expects the phonon modes that are well localized at the
surface to be mostly affected by the corresponding Kohn anomaly. The anomalous
softening we found in the RW mode is a fingerprint of this enhanced e-ph coupling.
On the base of these results we can therefore unambiguously identify the less pro-
nounced experimental anomaly as a Kohn anomaly of the RW mode. The huge dip
observed in HAS experiment is not predicted by our results, indicating that it is not
an adiabatic phonon excitation. In particular this sharp and pronounced indentation
cannot be accounted for by a giant Kohn anomaly of the surface phonon dispersions.
We think that this huge anomaly is due to non adiabatic predominantly electron-
hole like excitations due to the enhanced electron-phonon coupling occurring at the
nesting wave vector. Further calculations of the e-ph coupling will give access to
the energy of non-adiabatic excitations allowing us to give a definitive explanation

for the origin of the huge dip.
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Appendix A
Smearing technique in Brillouin-

zone integration for metals

Calculation of observable quantities such as charge density, forces, interatomic force-
constants, etc..., requires integration of periodic functions over k-vectors in the
Brillouin-zone. In the case of metals the functions to be integrated are discontinuous
at the Fermi level, due to the partial filling of the energy bands. This fact leads
to a very slow convergence with respect to the k points density, when the integral
is evaluated on a uniform mesh in the BZ. On the other hand, the use of a very
fine k-mesh is prohibitive, in practical implementations, for time- and memory-
limit reasons. To overcome this problem, Methfessel and Paxton proposed an high-
precision scheme for BZ integration in metals [43]. It consists in a modification of
the more popular gaussian smearing technique of Fu and Ho [42].

The integrals over the BZ that we wish to evaluate have the following general

form

= [ J0)0 (er = (k) dk (A.1)
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where €(k) represents an energy band as a function of the wave vector, ep is the
Fermi energy, and € is the step function for the Fermi cutoft:

0 (e — e(k)) = /_ 5 (e — e(k)) de. (A.2)

o0

The k-convergence can be easly improved by broadening the ¢ function in eq. A.2
into Gaussian, Lorentzian or similar smooth functions with characteristic linewidth
o. In fact, provided that the average energy separation between neighboring com-
puted eigenvalues is small with respect to o, the discontinuity arising from the step
function is smeared out, and the integral can be computed accurately on a discreet
grid of points in the BZ.

However the only justification for this ad hoc procedure is that in the limit o — 0
one recovers the absolutely converged result at the expense of using a prohibitively
fine mesh. Thus, for each choice of o, the k-sum converges to a different value, and
convergence with respect to the broadening width ¢ must be further checked.

Methfessel and Paxton suggested an efficient way to achieve absolute conver-
gence, based on a more sophisticated choice of the broadening function. They ex-

pand the delta function as:

() =Y A Hy(x)e™™ (A.3)

e—e(k

where © = ), H,, are Hermite polynomials, A, are the expansion coefficients,
and o is an arbitrary "linewidth”.
By truncating the sum in eq. A.3 to a finite order N one obtains a broadened

S-function and a corresponding smooth approximation 0 for the step function A.2.
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The order N = 0 corresponds to the simple gaussian broadening [42]. By construc-
tion, truncation to the finite order N leads to a negligible error in the evaluation
of the integral A.1, if the function f is representable as a polynomial of degree 2N
or less in an interval of ~ 50 around the Fermi energy. The k-converged result can
therefore be made to approach the true value either by increasing N or by reducing
o. Unless f is a constant near the Fermi level, the simple gaussian smearing gives
results considerably far from the desired zero-width limit, and a good convergence is
obtained only for a very small linewidth. In many instances, the first-order approxi-
mation (N=1) in the smearing function is enough to have a significant enhancement
in precision with a minimal extra effort in the BZ sampling (see reference [16]), and

satisfactory converged results can be obtained using a broadening width of ~ leV.
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