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Introduction

In purely harmonic crystals, ionic mean positions do not change upon increasing tem-
perature, thus crystal thermal expansion is a consequence of anharmonic terms in the
interatomic potential. Anharmonic effects are expected to be larger at material surfaces
than in the bulk, because of the lower symmetry, and as a consequence thermal expansion
of a surface is expected to be enhanced.

Recently this subject has attracted much attention, and enhanced thermal effects
have been experimentally observed on several surfaces, as, for examples, in: Ni(001) [1],
Pb(110) [2], Ag(111) [3], and Be(0001) [4] surfaces. However in some cases the situation
is still debated, not only because interpretation of experimental measurements is not
sraightforward, but also because of contrasting theoretical results, as for example, for
the Ag(111) surface [5]. Finally while good agreement between static calculations and
experiment is generally found for low temperature structures, some systems have been
singled out in which the inclusion of thermal effects seems to be important even to interpret
data taken at room temperatue, as in Be(0001) [4], and Rh(001) [6] surfaces.

Nowadays the equilibrium structure of a large class of materials can be determined
theoretically with great accuracy, thanks to state of the art first principles computational
methods essentially based on Density Functional Theory (DFT)[7,8]. Furthermore, the
study of thermal behaviour from first principles is now at hand also for complex systems,
as surfaces, thanks to the availability of adequate computational power and to the devel-
opment of sophisicated techniques such as Car-Parrinello method [9] or Density Functional
Perturbation Theory [10, 11].

Different approaches have been used to study thermal effects within first-principles
methods. Essentially they are based on Molecular Dynamic (MD) simulations and Quasi
Harmonic Approximation (QHA), other approaches, such as the self-consistent phonon
scheme [12], are presently not feasible from first principles. MD simulations account
exactly for interatomic potential anharmonicity, but treat ionic degrees of freedom classi-
cally, and can give reliable results only near or above Debye temperature, where quantum
effects are negligible. Systems that can be simulated, nowadays, typically consist of about
a hundred atoms and the time scale of the simulation can reach a few picoseconds. The
knowledge of the frequencies of the vibrational modes of a system allows the application
of the QHA scheme. It provides a complementary approach, valid at low temperature,
for determining the temperature dependence of structural properties. Moreover, the pos-
sibility of including vibrational modes calculated at arbitrary wavelengths, should permit
the study of more realistic systems.

Quasi harmonic approximation has been widely used in describing bulk thermal prop-
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erties and is commonly believed to work rather well for not to high temperature [13,14],
however little is known, up to now, about its usefullness at the surface. The presence of
larger anharmonicity than in the bulk could, infact, lead to a failure of this approxima-
tion. Furthermore, to apply QHA scheme vibrational frequencies have to be evaluated as
a function of the value of the structural parameters describing the system, and up to now,
within a first principles approach, QHA has been used to study only systems described
by a small number of structural parameters ( bulk materials or surfaces in which only one
layer is involved in the thermal expansion). The aim of the present work is to assess the
validity of QHA in the study of surface thermal expansion, and to extend this scheme to
systems more complex than those studied so far.

Vibrational frequencies can be computed exactly in every point of the Brillouin Zone
thanks to Density Functional Perturbation Theory (DFPT) [10,11]. However, in order
to study efficiently systems described by a large number of parameters, it is necessary to
calculate the derivative of the vibrational frequencies. This quantity is related to the third
variation of the total energy, and can be calculated, thanks to an extension of the “2n+1
Wigner’s rule”, within the DFPT framework. We have developed a practical and efficient
method for the calculation of the third derivative of the total energy in a metallic system,
within the DFT and DFPT approaches. This method has been explicitly implemented
for this work and has made feasible the study within the QHA of systems in which many
structural parameters are involved in the thermal expansion.

As far as materials are concerned, in this work we focus our attention on the ther-
mal expansion of Be(0001), Be(1010), and Mg(1010) surfaces. Beryllium and Magnesium
are particularly indicated to study the QHA, infact, because of the light atomic masses,
quantum effects are expected to be more pronounced in determining the low temperature
structure, than in other materials. Moreover failure of phenomenological models in de-
scribing Be surface dynamical properties [15,16] make necessary the use of an ab initio
approach to deal with this metal.

Beryllium (0001) surface has recently attracted much experimental [15,17,18] and
theoretical [19-22] interest, because of its large outward relaxation. Recently [4] a large
thermal expansion of the Be(0001) top layer, has been experimentally observed. The first
interlayer spacing expands to 6.7%, with respect to the bulk, at 700 K, and this result
was somehow unexpected, however early calculation [4], done within an oversimplified
QHA scheme, results in agreement with the experiment. The approximations used in this
calculation have been criticized by some authors [5], and this debate has attracted our
attention.

In this work we show an ab initio study of the thermal expansion of Be(0001) sur-
face [23]. Our results describe very well surface phonon dispersions and the bulk thermal
expansion. A very accurate sampling of the vibrational modes, and a careful checking of
all the approximations used is done. Furthermore, in order to assess the validity of the
QHA we compare our results with first principles MD simulations. In spite of the high ac-
curacy of our calculations, they do not reproduce the large measured thermal expansion,
and we argue that the actual surface could be less ideal than assumed.

In the case of Be(0001) surface only one layer is, essentially, involved in the relaxation,
and the study of the thermal expansion, within QHA scheme, can be done by direct
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numerical derivation of the vibrational frequencies. This approach cannot be used for
Be(1010), and Mg(1010) surfaces, as these surfaces are more open than the (0001) one, and
many layers relax, and are involved in the thermal expansion. As previously mentioned
these systems can be studied efficiently by computing analytically third derivatives of the
total energy, and are investigated in this work.

A recent experiment for Mg(1010) surface [24] reports a negative thermal expansion
of the first interlayer spacing, (where the surface region is still expanding as a whole),
and this is one of the few cases reported so far. Our calculation confirm this result, and
predicts the same behaviour also in the case of Be(1010) surface.
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Chapter 1

Motivation of the work

The accurate study of thermal expansion, within a first principles approach, has become
nowadays feasible. In this work we are essentially involved in the study of the thermal
expansion of metallic surfaces within the QHA, and in this chapter we will show the
usefulness of this scheme.

As mentioned in the Introduction one of the main motivations of the present study
is to assess the validity of the QHA for the study of surface thermal behaviour, since it
has not been widely used so far, and little is known about its accuracy in the surface
case. Moreover it has never been used to study systems described by a large number of
structural parameters.

In Sec. 1 we review some concepts in lattice dynamics, and in Sec. 2 we compare
two possible schemes to deal with thermal expansion: Molecular Dynamics and Quasi
Harmonic Approximation. In the remaining of the chapter we discuss some recent exper-
imental results concerning Be and Mg surfaces, that have attracted our attention.

1.1 Lattice dynamics

The study of the motion of a crystal for positions not far from equilibrium can be done
within the harmonic approximation [25].

The underlying approximation is the Born-Oppenheimer or adiabatic one. This is
a widely used approximation in solid state physics, and consists in decoupling ”fast”
electronic degrees of freedom from the ”slow” ionic ones —by virtue of the great difference
of masses— in the Schrodinger equation of interacting electrons and ions. In the adiabatic
scheme electrons are considered as quantum particles moving in the potential of the fixed
nuclei, and they follows adiabatically the ions, always remaining in their ground state.
The ionic motion is then described by an Hamiltonian, whose interatomic potential is
the ground state energy of the system of interacting ions and electrons, in which ionic
positions are treated as parameters:

H = 71z'on + E({Rls})a (11)

where T}, is the kinetic energy of the ions, F'({Rys}) is the total energy of the crystal and
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Ry, is the position of the sy, ion in the [, lattice cell. This Hamiltonian can be studied
classically or with a quantum mechanical approach.

Since we are studying the system for configuration near the equilibrium we can ex-
pand the energy in a Taylor series with respect to the atomic displacements around their
equilibrium positions R.:

0’FE
E({Ry}) = Z du,(R;)0uy (Ry) |,

lsl’ !

us(Rl)us: (Rl/) + O(u3), (1.2)

where u,(R;) = Ry, — RY, is the displacement from equilibrium, and the linear term
vanishes because of equilibrium. The harmonic approximation consists in truncating this
expansion to the second order, thus the classical equations of motion are:

o))

e — C
8“(15 (Rl) ZZ,:G as ﬂs

Ms’i.tas(Rl) er)uﬁs/ (Rl/), (13)

where M, is the mass of the s;, atom, u,, is the ay, component in carthesian coordinates
of u,, and:

0’F
8UQS(R1)8’U,5SI (Rl’) 0
C\s,8s 18 the interatomic force constant matrix, that depends on R; — Ry because of the
translational invariance of the lattice. Other properties are that:

Cas,ﬁs' (_Rl) = C,Bs’,as (Rl)7 Z Cas,ﬁs' (Rl) =0 va? ﬁ (15)

Iss’

Cas,ﬂs' (Rl - Rl') = (14)

This second property comes from the invariance of the energy of the system under a
continuous translation of the entire crystal without distortion.

Due to translational invariance of the lattice, the solution of the infinite set of coupled
Eqgs. 1.3 are normal modes characterized by a vector q in reciprocal space and having the
form:

1 . .
U, (Rl, t) = \/—st (q)elqu_ZUJt, (16)

The equations of motions become:

(@) = 3 Dot (@)1 (@) (1.7)

where D(q) is the dynamical matriz defined as:

Dozs,,é’s' (q) \/7 Z s Bs 6 ik, (18)

D(q) is a 3Ny X 3N, hermitean matrix —N, is the number of atoms per unit cell- and
has the following properties:

Dozs,,é’s' (q) = :;s,ﬁs’ (_q-)7 Das,ﬁs' (q) = D;;’s’,ozs (q) (19)
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Any harmonic vibration of the crystal can be expressed as a linear superposition
of normal-mode vibrations, and, given a q point, eq.1.7 defines the 3/N,; corresponding
normal modes and their vibrational frequencies. A complete description of the harmonic
properties of a crystal can thus be obtained from the knowledge of the interatomic force
constants defined in eqs. 1.4 or 1.8. The quantum mechanical problem, in the harmonic
approximation can be solved in a completely analogous way [26].

1.2 Molecular Dynamics and the Quasi Harmonic Ap-
proximation

In a purely harmonic crystal, ion mean positions do not change upon increasing tem-
perature, thus crystal thermal expansion is a consequence of anharmonic terms in the
interatomic potential. Thermal behaviour of a system can be studied in different ways,
and in this work we have used Molecular Dynamic (MD) simulations, and calculations
based on the Quasi Harmonic Approximation(QHA).

To perform a MD simulation means to compute the time evolution of a system accord-
ing to the Newtonian equations of motion. In a free evolution of a sufficiently large system
(microcanonical run) the temperature, T, of the system is related to the time average of
the kinetic energy by: 3KpT = (2mv?). MD simulations account exactly for interatomic
potential anharmonicity, but treats ionic degrees of freedom classically, and can give reli-
able results only near or above Debye temperature, where quantum effects are negligible.
Within a first principle approach MD simulations can be a heavy computational task, and
as a consequence computationally treatable systems may result not large enough to be
physically realistic. Systems that can be simulated, nowadays, typically consist of about
a hundred atoms and the time scale of the simulation can reach a few picoseconds.

The QHA provides a complementary approach, valid below the melting temperature to
determine the temperature dependence of structural properties. In this approximation,
the equilibrium structural parameters, a = (aj,as,as,...), of a crystal, at any fixed
temperature 7T, are obtained by minimizing the Helmholtz free energy F' of a system of
purely harmonic oscillators having the frequencies of the vibrational modes of the crystal
wyq(a) in that configuration:

F(T,a) = E“’t(a) + FU(T,a) =

— po( hwyq(a _ h;’:q(;)>

_E 2;{ o ) 4 kyTin (1 o } (1.10)

OF(T,a)

O0a

where E''(a) is the static energy of the crystal. To apply this model, the knowledge

of w,q(a) as a function of the structural parameters is requested, thus including some
anharmonic effects.

Application of the QHA scheme is difficult, from a computational point of view, be-

cause of the calculation of F*®. One must be able to calculate frequencies all over the

=0, (1.11)
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Brillouin Zone, and this can be done exactly using DFPT [10,11]. Furthermore this
calculation must be performed at various values of the structural parameters.

As an example, in the simple case of anisotropic thermal expansion of an hcp crystal
(the system is described by two parameters that are the length of the two axis a and c)
one can compute phonon dispersions in a grid of points in the (a, ¢) space and interpolate
in between the second term of eq. 1.10. On the other hand if the system is described by
a large number of structural parameters (we will show that this is the case for hep(1010)
surfaces) the Free energy cannot be directly calculated varying every parameter involved
in the expansion.

In the general case one can proceed being able to compute the vibrational forces 2& o

da;
As a first approximation, assuming a linear dependence of F"* on its arguments, eq. 1.11

becomes:

a Fuib N 8 Etot
8az~ Bai

(a) = 0. (1.12)

Within a first principles approach ag—;ot(a) can be calculated in every point of the space a
thanks to the Hellmann Feynmann theorem [27], thus eq. 1.12 can be easily solved. Once
obtained in this way an estimate of the equilibrium parameters of the system, an exact
solution to the problem could in principle be obtained by calculating vibrational forces in
the new point and iterating the procedure to self consistency.

Using a slightly different notation eq. 1.7 can be rewritten:

"ngvuq = D(q)vuq; (1.13)
with this notation the derivative of the vibrational free energy is given by:

1 ¢ hil hwl/q <qu|d%.,iD(q)|qu>
g 2kBj—' Za,s |Va,s ‘

dFm'b A
dCLZ' - Z %

(1.14)

2ms

Wyq

Since the dynamical matrix D(q) is the second derivative of the total energy with re-
spect to atomic displacements, to calculate the derivative of F"* with respect to atomic
displacements the calculation of the third derivatives of the total energy is necessary.

1.3 Beryllium vs. Magnesium

Be and Mg are simple metals with the same outermost electronic configuration but dif-
ferent properties. They are respectively the 2"® and the 3"¢ element in the 2" column
of the periodic table. In both cases the outermost electronic configuration of the isolated
atom consists of a filled s-shell (Be:2s%, Mg:3s?) and so, in order to form a bond, out-
ermost electrons must hybridize with p states. At room temperature and atmospheric
pressure Be and Mg are stable in the hexagonal close packed (hep) crystalline structure
(Fig. 1.1). A more pronounced covalent character of the bonding in Be reflects in some
physical properties that make Be different from Mg and from the other elements of the
same column.
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Figure 1.1: Schematic drawing of the hcp crystal structure, and of the corresponding Brillouin
zone.

The bonding energy of Be is surprisingly strong when compared with close neighbors
in the Periodic Table (cohesive energy Be: 3.32 eV/atom, Mg: 1.51 eV/atom, Li: 1.63
eV/atom [28]). Also the Debye temperature is very high (Be: 1440 K, Mg: 400 K, Li:
344 K [29]), and thus quantum effects should be more pronounced in determining zero
temperature structural properties.

There are some evidence of directional bonding in Be. First of all Be ¢/a ratio is one
of the most contracted (~ 4%) for hcp metals, unlike the nearly ideal one of Mg ( ideal
c/a ~1.63, Mg: 1.62, Be: 1.57), thus out-of-plane neighbours have shorter bonds than
in-plane neighbours. Another evidence of this anisotropy is that the contribution to the
density of electronic states coming from p, and p, states is different from the one from
p- [30].

Beryllium density of electronic states resembles somewhat that one of a semiconductor,
since it has a minimum near the Fermi energy, while the one of Mg is nearly free electron
like (~ y/€) as shown in Fig. 1.2. In Fig. 1.2 the comparison between calculated Be and
Mg electronic dispersion is also shown . Note that Beryllium bands display a direct gap in
a large part of the shown BZ, unlike Mg. Mg has a filled state at I with energy ~ —1.3eV/,
while the corresponding Be state is above the Fermi energy and its band is nearly flat.
This band is the source of both the low density of states near the Fermi energy and the
high peak above the Fermi energy.

The vibrational motion of atoms in a crystal is related to the direct ion-ion interaction
and to the screening properties of the electronic distribution which can give rise to non-
central forces between ions. For many non-transition metals lattice dynamics can be cor-
rectly described in terms of pairwise central forces, and this can be done, approximatively,
for bulk Mg [31]. On the contrary without taking into account non-central forces it is
impossible to describe even qualitatively Be bulk phonon dispersion [31-33]. For instance
by group theoretical analysis it can be shown, quite generally, that at K= (0,2/3,0)27/a,
in an hcp crystal, there are three vibrational modes polarized in the basal plane. One
of the modes is doubly degenarate, the other two are non degenerate. If the dynamical
properties depend only on pairwise central forces the frequency of the degenerate mode
lies in between the other two. This ordering of the frequencies is incompatible with the
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Figure 1.2: Comparison between Be and Mg electronic band structure calculated by first-
principle methods. Density of States(DOS) is also shown. In the DOS panel the free electron
like DOS of the corresponding material is also shown. Be and Mg have the same outermost
electronic configuration, but while Mg DOS is nearly free electron like, Be DOS “resembles”
that one of a semiconductor, having a minimum near the Fermi energy.
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Figure 1.3: Accurate calculation of Beryllium and Magnesium bulk phonon dispersions of the
three modes polarized in the basal plane in the I'-K direction. The ordering of the three modes
at K for Be, is incompatible with a pairwise central force model (see text).

one found in Be, unlike Mg (Fig. 1.3).

1.4 Be(0001) surface

Because of its large outward relaxation [17] Beryllium (0001) surface has attracted much
experimental [15,17,18] and theoretical [19-22] interest. It is a close-packed surface,
similar to the (111) surface of an fcc crystal. It is well established that the first interlayer
separation on most metal surfaces is contracted at room temperature, Be(0001) is one of
the few exceptions reported so far.

Until very recently there was a substantial disagreement between experimental and
first-principles theoretical [19, 21, 22] results on the amount of topmost interlayer expan-
sion in this system, theoretical calculations giving roughly half of the observed value.
In a recent letter, Pohl and coworkers [4] reconcile experiment and theory on this point
showing that low temperature (110 K) low-energy electron diffraction (LEED) determina-
tions of the first interlayer separation ( dis ~ +3.3% at T=110K) are in agreement with
first-principles calculations and that reported discrepancies at room temperature originate
from a large thermal expansion of the top layer, reaching 6.7% at 700 K. These findings
are very interesting and puzzling, since surface phonons show no sign of enhanced anhar-
monicity [4,15], however the calculation of the surface thermal expansion [4], within a
simplified quasiharmonic approach recently introduced in Ref. [6, 34], results in very good
agreement with experiments.
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Table 1.1: Mg(1010) surface: LEED-IV measurements[24] of the two outer layers thermal
expansion.
di2(%)  dos(%)
T=120K -164  +7.8
T=300 K -20.1 +9.4
T=400 K -20.6  +10.6

As mentioned previously, within the quasi-harmonic approximation the determination
of d15(T) can be done by minimizing the free energy of the system (eq. 1.10), with respect
to dqo. Since the evaluation of the free energy requires the knowledge of the phonon spec-
trum all over the Brillouin zone, that is a heavy computational task, some simplifications
have been introduced in Ref. [6,34] . In particular only three modes at the zone center
are calculated and the frequency so obtained are used to sample the vibrational density of
states in the free energy calculation. The validity of such an approach has been criticized
by some authors [5], because of the very poor sampling of vibrational modes adopted.

In Chap. 4 we address this surface by performing full BZ sampling and comparing
our result with first principles MD simulations. Careful checking of all the approximation
used will also be shown.

1.5 Mg(1010) surface

A schematic drawing of the (1010) surface is reported in Fig. 1.4. This surface is more
open than the(0001) one, and in principle, the truncated bulk can be terminated in two
ways, either with a short first interlayer separation, d2, as shown in Fig. 1.4, or with a long
one, (that can be obtained removing the top-layer from the short-terminated surface).

Recently LEED measurements have determined the termination and interplanar sep-
aration of the clean Mg (1010) surface as a function of temperature [24]. The preferred
termination is the one with short d;» and many layers are involved in the relaxation in an
oscillatory way: while the first interlayer contracts the second expands and so on. Mea-
surement (Tab. 1.1) indicates a negative thermal expansion of the first interlayer spacing,
and these results have not been confirmed by theory, yet.

In Chap. 4 we report on our study, within QHA approach, of the thermal behaviour of
this surface. This kind of study has been possible thanks to the development of a method
to calculate third order derivative of the total energy in a metallic system.
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Figure 1.4: Schematic drawing of the (1010) surface of an hep crystal. The truncated bulk can
be terminated in two ways, either with a short first interlayer separation di2, or with a long
one. Here only the termination with the shortest dis is plotted, the long-termination can be
obtained removing the top-layer from the short terminated surface. Both in Be and in Mg the
short termination has been theoretically shown to be the most stable and the one observed in
the experiments [24, 35].
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Chapter 2

First principles methods

In the previous chapter (Sec. 1.1 and 1.2) we have shown that a complete study of dy-
namical properties and of thermal expansion, within the quasi-harmonic approximation,
can be performed knowing the second and third derivatives of the total energy of a system
with respect to atomic displacements.

In this chapter we give an overview of the theoretical tools used in this work to calculate
crystal energy and its derivatives up to third order. We have used ab initio methods based
on Density Functional Theory (DFT)[7,8]. These methods have been developed in the
last 30 years and have demonstrated to be one of the most powerful tool in the theory of
the electronic properties of solids, with results and accuracy surprising and unexpected
[36-38].

In order to calculate the ground state energy of a quantum mechanical system, in
principle, it is not necessary to solve directly Schrodinger equation, and to know the
ground state wave function. Within the DFT scheme the basic quantity to be calculated
is the electronic charge density, and in principle the second and third order derivatives of
the ground state energy can be obtained from the knowledge of the first variation of the
electronic charge density thanks to an extension of the “2n + 1”7 theorem [39].

Once the unperturbed problem has been solved in the framework of DFT, Density
Functional Perturbation Theory (DFPT) [10, 11] provides an efficient method to calculate
the electronic linear response to an external perturbation of arbitrary wavelength. DFPT
has been successfully applied to predict vibrational properties of elemental and binary
semiconductors [11] or insulators [40], heterostructures [41], semiconductor alloys [42,
43] and surfaces [44], furthermore it has allowed calculation of phonon dispersions in
metallic bulk [45] and surfaces [46]. DFPT has already allowed third order calculation in
semiconducting systems [47], and in this chapter we will show an extension of this scheme
to metals.

In Sec. 1 we give an account of the quite standard ab initio methods used in this
work to calculate total energy. In Sec. 2, and Sec. 3, after an overview of DFPT we show
how vibrational properties can be calculated in this framework. Finally in Sec. 4 we will
develop a practical and efficient method for the calculation of the third derivative of the
total energy for metallic systems.

15
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2.1 The electronic problem

The Born-Oppenheimer, or adiabatic, approximation, already addressed in Sec. 1.1, re-
duce the full electronic + ionic problem to the calculation of the electronic ground state
energy in the potential energy determined by fixed ions.

2.1.1 Density Functional Theory

The theoretical framework of first-principles calculation used in this work is given by
Density Functional Theory, which has become one of the most powerful tools in the
theory of the electronic properties [36-38]. W. Kohn is one of the developer of DFT and
essentially gave a rigorous theoretical background to it [7, 8]. For this he has been awarded
with the 1998 Nobel Prize for Chemistry.

Given a many-body Hamiltonian of interacting electrons in an external potential v(r),-
that in our case is generated by ionic cores— one can solve, in principle, the Schrodinger
equation and obtain the ground state many-body wavefunction |¢)g), the ground state
energy Eg, and the electronic density n(r).

Hohemberg-Kohn theorem [7] states that, for a given n(r), the v(r) generating it is
unique. According to this theorem we can define F'[n(r)] as a universal (in the sense that
it does not depend on v(r)) functional of n(r):

Fln(r)] = (Ya|Holta) = Ealn(r)] - /v(r)n(r)dr (2.1)

where Hj is the Hamiltonian of the interacting electrons, without the external potential.
For fixed external potential, v(r), we can define the energy functional as:

E,[n(r)] = Fln(r)] + / v(r)n(r)dr. (2.2)

Hohemberg and Kohn also demonstrate [7] that if n(r) is allowed to vary over a range of
functions satisfying the requirement

N = /n(r)dr (2.3)

in correspondence of the ground-state electron density the following stationary principle
is valid:
dE,[n] = 0. (2.4)

It follows from this theorem that without solving the Schrodinger equation —and so without
calculating the wavefunction of a many-body system— one can, in principle, calculate the
ground state energy and the charge density of a system. This could be done exactly if
the form of the functional 2.1 were known.

Application of this variational principle allows to deduce very simple one-particle equa-
tions, known as Kohn and Sham equations [8]. In order to derive them it is customary to
separate F[n(r)] in the following way:

Fln(r)] = Ty[n(r)] + % / %drdr' + Eye[n(r)] (2.5)

r'|
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where Ty[n(r)] is defined as the kinetic energy of a system of non interacting electrons
having n(r) as the ground state density. The two following terms are commonly called
Hartree term (Fy), and exchange-correlation energy functional. Eq. 2.5 is the definition
of E,. in terms of the unknown functional F[n] and of two well defined quantities, Ty[n],
and Ex[n].
With this definition, the set of KS equations is the following and is to be solved
self-consistently:
2
B—m + VKS(r)] i(r) = et(r) (2.6)

6EIC[n]
on(r)

ves(e) = [ L 2ot 1)

n(r) =3 [Wi(r)l” (2.8)

Thus in DFT the calculation of the ground-state properties is reduced to a problem of
noninteracting electrons in an effective potential. The ground state energy of the system
is given by:

N

E,[n] = Eq[n] + Z(mlf—mlwz) =

=1

N

= S e+ {Biln) = [VES ey}, (2.9)

i=1
where

Ein] = % / %drdr'nLEm[n] + / v(r)n(r)dr. (2.10)

2.1.2 Local Density Approximation

To implement Eq. 2.6 in practice an explicit expression for E,. is needed, and in this work
we have used the Local Density Approximation (LDA):

xrc

BEPATn(m)] = [ n(r)ehem (n(r)) dr, (2.11)

hom(p) is the exchange and correlation energy per particle of a uniform electron

gas of density n. It is a very natural approximation for a system with slowly varying
density and it works surprisingly well for a large variety of systems, even better than any
early expectations. In the last decade, many improvements to LDA were proposed [48—
50], including inhomogeneity corrections via density gradient expansions of various kinds,
however none of them seems to provide a definite improvement in all cases.

where €
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2.1.3 Plane Waves and Pseudo Potential approach

The actual solution of KS equations can be obtained expanding the KS wavefunctions on
a finite basis set. One of the most widely used choices for this basis set is that of plane
waves (PW). From the Bloch theorem it comes out that:

() =Y e (k + G) (2.12)
G

where k belongs to the first Brillouin Zone (BZ) of the crystal, G is a reciprocal lattice
vector and v is the band index. The PW basis set is infinite and it is usually truncated
by choosing a kinetic energy cutoff through the condition:

k+ G|* < Eoy. (2.13)

To treat explicitly all the electrons it would be necessary to choose a very large number
of PW in order to describe accurately their rapid oscillations near the nuclei. This problem
can be avoided freezing the core electrons in the atomic configuration around the ions,
and considering only the valence electrons. To this end one introduces pseudopotentials
able to describe the interactions between valence electrons and the pseudoions (ions+
core electrons). The resulting valence electrons wavefunctions are considerably smoother
near the nucleus, but are identical to the “true” wavefunctions outside the core region.
This method is now well-established in computational physics, and its results are very
accurate [51-55].

The widely-used norm-conserving pseudopotentials act in different ways on the dif-
ferent angular momentum components, [, of the wavefunction, and, for each angular
momentum, usually consist of a local contribution for the radial function and a non-local
one for the angular part:

lmaz

vy (r, ') = vl(r)d(r — ') + ; vsu(r)o(r — r')Pi(E, 1), (2.14)

where P, is the projector on the angular momentum [. This form of semilocal pseudopo-
tential is still not the most convenient one from a computational point of view, and for this
reason Kleinman and Bylander (KB) introduced [56] a fully non-local pseudopotential in
which also the radial part of the potential is non-local:

lmax

vV (e, 1) = o) (e — ) + 3 o (1), (2.15)
=0

S S

where

l m sm (Ol Al ! i
(NL) /__zjmﬂﬂ&ﬂﬂﬁ(ﬁwﬁ (0", ¢') R (r")vsa(r')
v r,r)= .
o ( ) <Rs,l|vs,l Rs,l>

m=—I

(2.16)

This form of the potential allows a very convenient simplification of its matrix elements
in reciprocal space, where the KS equations are iteratively solved.
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2.1.4 Smearing technique

Calculation of many quantities for crystalline solids involves integration over k vectors of
Bloch functions in the Brillouin zone. These integration are commonly approximated by
summation over a finite set of sampling k points, weighted with the occupation number
of the electronic states:

P [, fler — 0 00) [0k = Y 0(er — o (k) f) (217

=1

where €, (k) is the energy of an electronic state, ep is the Fermi energy and 6(z) is the
step function: z < 0 = 6(x) = 0, and = > 0 = f(x) = 1. In the case of metals, due to
the presence of energy bands that cross the Fermi energy, the integrand is discontinuous
and a large number of points must be used to reach sufficient accuracy.

The smearing approach consists in using a continuous smeared function é(x), charac-
terized by a smearing width o, instead of the step function §(z). Smoothing the integrand
the calculation converges better, but the results are obviously affected. The only justi-
fication for this ad hoc procedure is that in the limit as ¢ — 0 one would recover the
“absolutely” converged result (at the expense of using a prohibitively fine k mesh), and
that even at finite value of o one can obtain accurate results. Many kind of smearing
functions can be used: Fermi-Dirac broadening, Lorentzian, Gaussian [57], or Gaussian
combined with polynomials [58], to recall only some of them.

Within this approach we should substitute, in the Kohn-Sham equations, eq. 2.8 with:

n(r) =3 0(er — e)|vi(r)[’, (2.18)

/n(r)dr =N = Zé(ep —€) (2.19)

where the Fermi energy ep is defined by eq. 2.19. The natural definition of the total
energy of the system becomes:

E,[n] = /EF en(e)de + {Ez[n] — 5El[n]n(r)dr} _

—00 (5n(r)
. - OF
=Y {bi(er — &) +e(er — )} + {Ef[n] — 5n1([:;]n(r)dr} (2.20)
where 0, (z) = [*._ yd(y)dy, and §(z) = 3%9. It can be shown that the new K-S equations

come out from the minimization of this total energy.

2.1.5 Non Linear Core Correction

In their simple original form, norm-conserving pseudopotentials substitute the valence-
only charge density to the total one in all contributions to the total energy. While this
is correct, within the frozen core approximation, for the Hartree term, this is only ap-
proximate for exchange-correlation contribution, due to its non-linear form. The idea
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underlying the Non Linear Core Correction (NLCC) is to use the total charge instead of
the valence charge to compute the exchange-correlation energy [59]:

By = /V (0 () + 110(1) ) €ne (10 (1) + 1 (r))d, (2.21)

where n, is the charge density of the core electrons, computed as a superposition of the
atomic core charges of the atoms which require NLCC, and n,, is the valence charge. The
core charge is computed only once, together with the psuedopotential and then it is added
to the valence charge to compute the exchange-correlation energy.

This correction is particularly important when there is a significant overlap between
valence and core charge, as in the case of Beryllium and Magnesium atoms, and improves
the transferability of the corresponding pseudopotentials.

2.2 Density Functional Perturbation Theory

Once the unperturbed problem has been solved in the framework of DFT, DFPT [10, 11]
provides an efficient method to calculate the electronic linear response to an external
perturbation of arbitrary wavelength. DFPT has been developed for semiconductors and
successively adapted to metallic systems [45]. We will state DFPT for metals in a way
slightly different and less elegant than in [45], because in the present form it is more
appropriate to the purpose of this work.

When a perturbation Vb(alr)e is superimposed on the external potential acting on a KS
system, the self consistent potential is modified accordingly: Vscr — Vsor + VS%)F If
Véé)F is assumed to be known, from standard first order perturbation theory the linear
variation of a wavefunction (") and thus the linear variation of electron density n("
can be calculated. The response to a particular external perturbation can be obtained by
iteration up to self-consistency. The system of equations to be solved in the semiconductor
case is the following:

[Hys + aP, — ei]|P)) = = PVigplv:) (2.22)
= Z_{lwi><Pcw£”| +cc.} (2.23)
(1) _ dvm (1)
VSC ( ) ‘/l;are n (I‘) (224)
|I' o I"| n=ngo(n)

where ¢ runs over the occupied states, P. and P, are projectors on conduction and valence
states, and « is an energy chosen so as eq. 2.22 not to be singular. Note that, in order
to solve this system, the knowledge only of the unperturbed valence ground states is
required, and thus the calculation can be implemented efficiently.

To extend this approach to a metallic system, one can consider an energy sufficiently
high, in order to separate partially occupied states from empty ones. Chosen an energy
E > ep + 30, where o is the width of the smearing function 0, eq. 2.22, and 2.23 become:

[Hics + aPy — ]| Py = = PVidp|) (2.25)
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=3 Oril [Pl ) (wi] + cc}+

' G — i ~
S T ) iy (VA 0]+ 3 el ) (2.26)
ij ? J ;

where P, (P:) is a projector on band states with energy < E(> E), 3.7 is a summation
on states with energy < E, 0p; = O(ep — ¢;), and 6 = 260() . Eq. 2.25 should be

Oz €r—€i
solved only for occupied states, and « is to be chosen so as eq. 2.25 not to be singular.

Also in this case the solution of the system requires the knowledge of only a finite number
of states of the unperturbed K-S Hamiltonian ~those with energy < E-.

2.3 Second order and Linear response

The electronic linear response to ionic displacements considered as external perturbations
gives access to interatomic force constants. Infact, within the adiabatic approximation, a
lattice vibration can be seen as a static perturbation acting on electrons, and the linear
variation of electron density upon application of an external perturbation determines
energy variation up to third order [60].

Given a Kohn-Sham system in which the bare external potential acting on electrons
V)i\""is a function of some parameters A, the Hellmann-Feynmann theorem [27] states that:

8‘/’1077.
>‘ /n)\ r (r)dr, (2.27)

where Ei is the electronic ground-state energy relative to some given values of the pa-
rameters A, and ny is the corresponding electron density distribution. Differentiating
this expression one obtains:

O Ee on (I‘) avzon( ) 82Vion(r)
A=A A oI\
NN | / l o | om |t T, 0] dr. (2.28)

From this equation it results that from the knowledge of the linear response of the elec-
tronic charge, the second derivative of the total energy, and thus the dynamical matrix,
can be calculated as:

Das,ﬂs’(q) = D(ils,,é’s ( ) + thxosn,é’s ( )

ol _ on(r) \* ovier(r) . . D*Vion (r) .
P = [ (25) Gt 0o ooV e @0

There are two contributions: one is due to the electronic charge variation, while the
second comes from the direct electrostatic interaction between ions, and is essentially the
second derivative of an Ewald sum [61]. DFPT permits to calculate linear response to
perturbation having an arbitrary wavelength q, and so every term in eq. 2.29 can be
calculated within this framework.
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2.4 Third order for metals

In this section we develop a method to calculate the third order derivative of the total
energy for a metallic system. This method allows the calculation of the derivatives of
the dynamical matrix that will be used to study thermal expansion within the Quasi
Harmonic Approximation [25].

In ordinary quantum mechanics Rayleigh-Schrodinger perturbation theory there exist
a well known result, called Wigner’s 2n + 1 rule [39], which yields energy derivatives
through order 2n+1 starting from the knowledge of the n—th derivative of wavefunctions.
This rule comes from a general principle [62] and its applicability to self consistent field
theories has been known since several years [63,64]. ’2n+1’ rule has been generalized
to DFT by Gonze and Vigneron [60], and has already been applied to semiconducting
systems [47] but not yet to metallic systems.

In what follows we will indicate the n — th derivative of a quantity F', with respect

to a parameter )\, equivalently by F(™ or dA—nF and we will use the follovvlng notations:
Op; = é(eF—ei), Op; = g(eF—ei), and ng = 8(15( ) . Taking the third order derivative
€EFP—E€;

with respect to a generic parameter A of equation 2.20 we obtain:

Z{ WHFZ v (dd)\er) ) 4 O, }+dd)\3 {El[n] - %il([g]n(r)dr} (2.30)

From ordlnary perturbation theory applied to the Shrodinger equation H|i);) = €;]1;), it
can be demonstrated that:

e = (@ HO ")
¢ = WD) + 20| HO )
) = <w£°’|H<3>|¢§°’> +6¢uy | HO — eV i) +
3(ui [ HO ") + 3w | H® |wz- ) (2:31)
The first variation of the charge density is:
d - n *
nD () = 3 A (5 Br) () + Oilus] (1) () + ]} (2.32)
Thus using 2.31 and 2.32, equation 2.30 becomes:
d? OF
/H r)dr + 3/H W (r)dr + FiE {El[n] — 5n1([1'7;]n(r)dr} + K
(2.33)
where
K =
N0 @5 ds @ el
Z{GgFi<¢i Dy + ( )\291%)6 - (591@2) ; +6(d)\9Fz)< NHOWO)} =

~ ~ d ~
S {60r (U [HY — P [67) + 53 (6 — ei))’ +6(20m) (7 HO|9)}
(2.34)
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Here and in what follows H refers to the Kohn-Sham self consistent Hamiltonian. Fol-
lowing [60], from the explicit calculation of eq. 2.33 it results:

B = [ufimn ( Jdr +3 / Errn® (x)dr +

n® (1) (Y, (1) (1 e 4 K
/(5n 6n I" 5%(1‘”) (I‘)n (I‘ )n (I' )drdr dr’ + K.

(2.35)

Eventually we have expressed the third variation of the total energy in a form in which
it depends only on the first variation of charge density and on the first variation of the
Kohn-Sham wavefunctions.

Eq. 2.35 cannot be easily implemented in its present form: we have already shown that
it is possible to calculate n(™(r) in an efficient way both for metals and semiconductors,
however since from standard first order perturbation theory

- 3 e, (2.36)

€ 7€; € — €

an explicit calculation of 2.36 requires the knowledge of both valence and conduction
wavefunctions, moreover the possibility that the denominator approaches to zero may
lead to numerical instability.

To overcome these two difficulties, in the semiconducting case, it has already been
shown [65] that eq. 2.34 reduces to:

= 63 - o) =

62 D P HY | P! Z Op|papVH
(2.37)

where P, is the projector on the conduction states, >." is a summation over valence states,
and Hi(jl) = (; HV1;). As shown in Sec. 2.2 DFPT allows direct evaluation of 1Py,
and in the new form eq. 2.37 can be easily calculated.

The metallic case is slightly different. Let consider an energy E > e + 30, where o
is the width of the smearing function 0, in order to separate partially filled states and
empty ones, and note that:

- ezém VP HD Py +

Eij

+6Z

v HOHOHO i i
+2 Z M(gﬁjfk]’ + ngGji + gFjEik:) +
ijk  Cij€ikCki
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eij

% by — b .

+3e}) {Z L HPHY +2 Zan-<wz-|H“>|Paw£l>>} "
i i

+3(e ) (X 0l HiY) = (e)) (03,

(2.38)

where P; is the projector on the band states with energy > E, .7 is a summation on
states with energy < FE, €; = ¢; — ¢;. Only |P51/)§1)>, corresponding to € < €p + 30,
appears in this formula, and this quantity can be calculated within DFPT, as shown in
Sec. 2.2. Moreover it can be checked that in eq. 2.38 every term having null or very small
denominator have a well defined limit that is finite and explicitly computable. As an
example:

i FPiO PO 05) LY — Oyl O Py VD

€—€j eij

— (Pl P Y H O+ b} + (07 P HO | PV H opi. (2.39)
To summarize the third variation of the total energy has been expressed, even in the

metallic case, in a form in which it depends only on quantities that can be obtained from
the knowledge of the linear response for a finite number of states of the K-S Hamiltonian.



Chapter 3

Structure and dynamical properties

In this chapter we present our study of low temperature structure and dynamical prop-
erties of Be(0001), Be(1010), and Mg(1010) surfaces.

Surface-phonon dispersions for these surfaces have been recently obtained by Electron
Energy Loss Spectroscopy (EELS) [15,16,66,67]. While good agreement between theory
and experiment for Mg was obtained previously [67], early attempts to interpret Be data
using bulk truncated models [15] are significantly different from experiment [15, 16, 66],
as it is shown in Fig. 3.1, and 3.2. By bulk truncated model it is meant a model in which
force constants are calculated for the bulk and used also to model the interaction between
atoms at the surface. These models give even a qualitative disagreement with respect
to the experiment, in particular, in the Be(0001) case, the sign of the Rayleigh wave
(RW) dispersion from K to M point in the surface BZ is incorrectly given by the model
calculation. Consequently a fully ab initio approach is needed to describe Be surfaces
dynamical properties.

Here we show that calculations performed within DFPT [10,11] are in very good
agreement with experiments for all the mentioned surfaces. These results allow the study
of the thermal properties within the quasi harmonic approximation, as will be shown in
Chap. 4.

3.1 Be and Mg bulk

As a preliminary step, we have computed the structural and lattice-dynamical proper-
ties of the bulk metals. Our calculations have been performed within the local-density
approximation (LDA) using pseudopotentials and plane-wave (PW) basis sets. Atoms
were described by separable pseudopotentials that include non-linear core correction and
have been generated so as to optimally reproduce several atomic configurations [68, 69],
to enhance transferability. Our basis set included PW’s up to a kinetic energy cutoff of 22
Ry, and 16 Ry, for Beryllium and Magnesium respectively. For both materials BZ integra-
tions were performed with the smearing technique of Ref. [58] using the Hermite-Gauss
smearing function of order one, a smearing width c=50 mRy, and a 120-points grid in
the irreducible wedge of the bulk BZ. Accurate checks have shown that these parameters
result in a satisfactory convergence of all the calculated quantities. Values of the total

25
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Figure 3.1: Be (0001) surface phonon from EELS [15,66]. The filled (open) circles indicate
intense (weak) features in the measured dispersion. Solid lines indicate the calculated dispersion
of surface modes for a bulk-terminated slab. The shaded area corresponds to the projection of
bulk phonon modes onto (0001) surface (Fig. from [15]).
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Figure 3.2: Be (1010) surface phonon from EELS [16]. The filled (open) circles indicate intense
(weak) features in the measured dispersion. Solid lines indicate the calculated dispersion of
surface modes for a bulk-terminated slab. The shaded area corresponds to the projection of
bulk phonon modes onto (1010) surface (Fig. from [16]).
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Table 3.1: Comparison between measured and calculated hcp lattice-constants, a and ¢, bulk
modulus, B, and Poisson ratio, vp, of bulk Be and Mg.

a(aw.) ¢/a  B(Mbar) vp
Be(exp.) 433 1568 1.1 0.02:0.05

Be(teo.) 425 1572  1.25 0.04
Mg(exp.) 6.06 1.623  0.35 0.28
Mg(teo.) 593 1.629  0.40 0.23

energy calculated at different lattice parameters a, with a fixed ¢/a, and a fixed kinetic-
energy cut-off, have been fitted to a Birch-like equation of state [70]. The equilibrium
energy, obtained this way for different ¢/a, are fitted to a third order polynomial. The
resulting equilibrium structural properties are in reasonable agreement with experiments
(Tab. 3.1). Note, in the Be case, the contracted value of ¢/a and the small value of the
Poisson ratio, indicating rather strong and anisotropic bonding along the ¢ axis.

In Figs. 3.3, and 3.4 the calculated phonon dispersions of the two bulk materials are
displayed and compared with neutron-diffraction data from Refs. [71,72]. Our calcula-
tions are done at the static equilibrium configuration, that is without taking into account
lattice expansion due to finite temperature effects. Experimental data for Be are taken
at T=80K, and the overall agreement is very good. Data for Mg are taken at T=290K.
In Chap. 4 it is shown that, in the case of Magnesium, the agreement greatly improves,
considering thermal effects. For Beryllium agreement is slightly worse but still reasonable.

Note that our ab initio calculations have no adjustable parameter and the only uncon-
trolled approximations are the adiabatic one and LDA to deal with electronic correlations.
The good agreement obtained in the Beryllium case is remarkable, since for this material it
is not easy to reproduce accurately experimental data with empirical Born-von Karman
scheme—as, for instance, in Ref. [15]—even after extensive fitting of the experimental
dispersion relations.

3.2 Be (0001) surface

To describe the surface we adopted a repeated slab geometry with 12-layer Be slabs
separated by a ~25 a.u. thick vacuum region (equivalent to 8 atomic layers) to decouple
the surfaces. It has been checked that this number of layers is enough to recover bulk
properties in the middle of the slab. In the BZ integrations we used a 30-point grid,
obtained projecting the bulk grid on the surface BZ. Atomic positions in the slab were fully
relaxed starting from the truncated bulk ones, keeping the in-plane lattice parameter fixed
at the bulk value. Symmetry fixes atomic in-plane positions and relaxation involves only
modification of the inter-layer spacing. The three outmost layers relax significantly from
the bulk value, in agreement with experimental evidence [4,17,18]. The calculated values
for the interlayer spacing variation are reported in Table 3.2, along with experimental data
[17] and previous theoretical results. Our theoretical calculation agrees well with previous
ones, but all theoretical results disagree with early room-temperature LEED-IV structural



28 CHAPTER 3. STRUCTURE AND DYNAMICAL PROPERTIES

)
=

EREAN

=
o1

Frequency (THz)
S
LI I LI

ol

0

B K M r A H L AK HM L DOS

Figure 3.3: Calculated phonon dispersions for bulk Be (lines) and neutron scattering data from
Ref. [71] (full dots). The calculated density of states is also shown. Experimental data are taken
at T=80K, while theoretical calculations are done at the static equilibrium lattice spacing.
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Figure 3.4: Calculated phonon dispersions for bulk Mg (lines) and neutron scattering data from
Ref. [72] (full dots). The calculated density of states is also shown. Experimental data are taken
at T=290K, while theoretical calculations are done at the static equilibrium lattice spacing.
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Table 3.2: Relaxation of the three outer layers of Be (0001) as obtained by LEED and several
electronic structure calculations. The experimental temperature is shown, while for the calcu-
lations the exchange and correlation functional used and the number of layers in the slab are

indicated.
Adlg(%) Ad23(%) Ad34(%)
Exp: LEED (110 K) [4] 3.1 +14 109
LEED (300 K)|[17] +5.8 20.2 +0.2
Th:  LDA-12 layers (this work) — +3.2 +1.0 +0.4
LDA-10 layers [4] +2.9 +1.1 +0.4
LDA-11/13 layers [21] +2.7 +1.2 +0.6
LDA-9 layers [19] +3.9 +2.2
GGA-9 layers [22] +2.5

determination [17]. The use of different exchange and correlation functionals does not
improve the comparison [22]. Recently the importance, in order to get close to LEED
results, of including in first-principles calculations the effect of zero-point vibrations has
been suggested for transition metal surfaces [6]. In the present case, however, calculation
shows ( next chapter) that zero-point vibrations do not modify significantly the top layer
relaxation.

Very recently a new, low temperature (110 K), LEED-IV determination of the struc-
tural properties of Be (0001) surface has been obtained [4]. The agreement between
theoretical results and this new experimental determination is very good, the value for
the topmost layer expansion being 3.1%, with similar agreement for the inner layers. Dis-
agreement with previous experiments [17] seems to be due to a large extent to a very
strong temperature effect [4]. However, first-principles calculation of the surface thermal
expansion gives only a relatively small effect, as will be shown in the next chapter.

Real-space interatomic force constants (IFC) of a 12-layer slab were obtained from
dynamical matrices, calculated on a 6 x 6 grid of points in the surface-BZ. Although the
surface IFC’s are well converged and recover the bulk values in the middle layers of our
slab a thicker sample is necessary to decouple those surface vibrations that penetrate
deeply in the bulk. The dynamical matrices of a 30-layer slab were built matching the
surface IFC’s to the bulk ones in the central region, as sketched in Fig. 3.5.

The resulting phonon dispersions, obtained by Fourier interpolation, are reported in
Fig. 3.6 together with an indication of the surface character of the calculated modes.
Open dots represent modes localized more than 50% in the three topmost layers (dot size
is proportional to this percentage), and full dots represent modes localized more than
30% in the topmost layer, and polarized perpendicularly to the surface. It is evident that
many layers are involved in the surface dynamics. Comparison in the experiment is shown
in Fig. 3.7.

A very good agreement is found between the experimental Rayleigh Wave, the most
clearly revealed peaks in the experiment, and the calculated surface vibration that is
essentially concentrated in the first layer and polarized perpendicularly to the surface
(EELS is a technique particularly sensitive to modes with these characteristics [73]).
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Figure 3.5: Sketch of the procedure used to model the force constant matrix C of a thick slab
(on the right). The force constants calculated for a relaxed slab (S blocks) are used to describe
the interatomic interaction in the topmost surface layers (solid lines) of a thick slab. Dashed
lines indicate bulk layers inserted in order to construct the thick slab. The force constants
describing bulk-bulk and bulk-surface interactions are indicated by the shaded blocks, and have
been assumed to be equal to the interatomic force constants of the bulk.

However our calculation predicts two additional modes below the bulk-band edge that
are not observed in the experiment. These modes are peaked in sub-surface layers and
have both in-plane and out-of-plane components. We suggest that they are not observed
in the experiment because of the strong intensity of the rather close RW, which, in the
region where three modes are predicted, is for more than 70 % localized in the first layer
and z-polarized.

Many of the additional surface vibrations in Fig. 3.7 agree qualitatively with weak
features present in the experiment (open squares). In particular at the M point a shear
horizontal mode has been experimentally observed [66] in the appropriate geometry. The
experimental value of 50.5 meV agrees well with our result (50.0 meV).

3.3 Be(1010) surface

A schematic drawing of the (1010) surface of an hep is shown in Fig. 1.4. Two termination
are possible, in the Beryllium case the most stable termination is the one with the shortest
first interlayer separation [35]. Beryllium (1010) surface is more open than the (0001) one
and a larger number of layers are involved in the relaxation, thus a larger number of layers
is necessary to describe this surface. We have used a 16-layer Be slabs separated by a 6
atomic layers equivalent vacuum region to decouple the surfaces. We used a 32-point grid
in the irreducible surface Brillouin zone (SBZ), chosen in order to give a similar density
of points as the projection of the bulk grid on the SBZ. Atomic positions in the slab were
fully relaxed starting from the truncated bulk, keeping the in-plane lattice parameters
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Figure 3.6: Calculated phonon dispersion for a 30-layer slab modeling the Be(0001) surface.
Surface modes are represented with dots: modes localized more than 50% in the three topmost
layers are shown, and the dot size is proportional to this percentage. Full dots correspond
to modes localized more than 30% in the topmost layer and polarized perpendicularly to the

surface.
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Figure 3.7: Comparison between EELS data from Ref. [15] and calculated surface vibrations
of Be(0001) surface. Full and open gray squares correspond to experimental data (intense and
weak features, respectively). Dots correspond to calculated modes (see caption of Fig. 3.6).
Thick lines delimit the bulk band continuum.
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Table 3.3: Relaxation of the four outer layers of Be(1010) surface, compared with previous
electronic structure calculation and experimental LEED results. Experimental errorbar are
shown in parenthesis.

di2(%) das (%) d34(%) das (%)

Theory (this work) -24.5 +6.6 -14.8 +4.7
Theory [35] -20 +4.4 -13 +3.8
Experiment [35] -25(-4/43)  +5(-3/+5) -11(-5/48) +2(-2/+4)

fixed at the bulk value.

The calculated values for the interlayer spacing variation are reported in Table 3.3,
along with recent experimental LEED structural data and previous theoretical results
[35]. Good agreement is found within experimental errorbar. The numerical values of d;
and d34 relaxations seem to be very large (—25% and —10% respectively), but it should
be kept in mind that they refers to variation of a small quantity: the short interlayer
spacing ( d ~ 1.3a.u.). Due to Be rather light atomic mass, a precise determination of the
bulk and (1010) surface structure of Be should take into account also zero point motion.
In the next chapter we will show that inclusion of this term does not affect the interlayer
relaxation in an appreciable way.

Surface-phonon dispersions of Be (1010) were calculated by sampling the SBZ of our
16-layer slab on a 6 x 4 grid of points and Fourier interpolating dynamical matrices in
between to obtain real-space interatomic force constants (IFC). The surface IFC’s are well
converged and recover the bulk values in the middle layers of the slab. The dynamical
matrices of a 104-layer slab were therefore built matching the surface IFC’s to the bulk
ones in the central region, with the procedure sketched in Fig. 3.5. A thicker slab than
the one used to describe (0001) surface is necessary since vibrational modes penetrate
more deeply in the bulk.

In Ref. [16] EELS spectra have been taken in the T — M and T — A directions in
the SBZ. Since in both scattering geometries the sagittal plane coincides with a mirror
plane of the crystal, vibrations polarized perpendicularly to this plane (shear horizontal
modes) cannot be excited [73]. In the following we will call forbidden modes those modes
that cannot be detected in the experimental configuration used for the corresponding
momentum.

In Fig. 3.9 the dispersion of a slab modeling the Be(1010) surface is shown together
with an indication of the surface character of the calculated modes. Dots represent modes
localized more than 25% in the three topmost layers (dot size is proportional to this
percentage), gray dots represent modes with a polarization forbidden in the scattering
geometry used in Ref. [16], and full dots represent modes localized more than 25% in the
topmost layer, and polarized perpendicularly to the surface.

Comparison with experiment is shown in Fig. 3.10. The interpretation is straightfor-
ward at zone boundaries. At the A point only one very pronounced peak is measured (see
Fig. 3.8), while three surface modes are predicted by calculation. The two modes at 26.4
and 32.3 meV are mainly polarized perpendicularly to the surface and are concentrated
in the second and in the first layer, respectively. The mode localized in the first layer (
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Figure 3.8: Be(1010) surface: a set of typical loss spectra taken at the high-symmetry points
of the surface Brillouin zone (Fig. from [35])
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Figure 3.9: Calculated phonon dispersion for a slab modeling the Be(1010) surface. Surface
modes of a 104-layer slab are represented with dots: modes localized more than 25% in the
three topmost layers are shown, and the dot size is proportional to this percentage. Gray dots
correspond to modes with polarization forbidden in the scattering geometry used in Ref. [16],
that is: modes having momentum along the T — M (T — A) SBZ direction and polarized along
I — A (T — M) direction are forbidden. Full dots correspond to modes localized more than 25%
in the topmost layer and polarized perpendicularly to the surface.
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Figure 3.10: Comparison between EELS data from Ref. [16] and calculated surface vibrations
of Be(1010) surface. Full and open gray squares correspond to experimental data (intense and
weak features, respectively). Dots correspond to calculated modes (see caption of Fig. 3.9)
not forbidden in the scattering geometry used in Ref. [16]. Thick lines delimit the bulk band
continuum.
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Figure 3.11: Comparison between EELS data from Ref. [16] and calculated vibrational Surface
Density of States (SDOS) of Be(1010) surface. Full and open dots correspond to experimental
data (intense and weak features, respectively). Shaded region represents SDOS. Modes are
weighted according to their localization in the 4 outermost layers and symmetry forbidden
modes are not considered. Different color correspond to different intensity according to the
correspondence reported in the inset.
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~ 32 meV) reproduces very well the energy and the dispersion of the experimental loss
even inside the bulk band edge. Intensity and width of this peak probably mask the
other mode, as can be argued from the reported loss spectra [16] shown in Fig. 3.8. The
theoretical mode at 63.7 meV is polarized along T' — M and is thus forbidden. At the M
point experiment shows two peaks, while calculation finds many modes with different po-
larizations. There are three calculated modes essentially polarized perpendicularly to the
surface at 41.4, 49.8 and 56.0 meV. The first two reproduce very well the two measured
losses, the lowest one being essentially concentrated in the first layer and corresponding
to the most intense experimental loss.

Again the reported loss spectra [16] shown in Fig. 3.8 suggest that the vicinity of
the three modes and the intensity of the first two peaks probably mask the weaker loss
at 56.0 meV. Calculation predicts other modes with polarization parallel to the sagittal
plane between 69.4 and 76.5 meV, they are less intense and near one to the other, so they
probably cannot be separated and are possibly masked by the tail of the Rayleigh wave.
Calculation also predicts at 54.3, 61.1 and 68.7 meV three modes with very pronounced
surface character but polarized along the I' — A direction and thus forbidden in the
experimental configuration.

At zone center the situation is less clear. Three losses are experimentally observed,
measured in the two different scattering geometries ( see Fig. 3.8). Among the calculated
modes with the most pronounced surface character, one (at 45.9 meV) is polarized per-
pendicular to the surface and reproduces well the energy and the dispersion of the lowest
measured loss. Other calculated modes are polarized in the sagittal plane along the I' — M
(52.9, 73.9 meV) or ' — A (84.78 meV) directions. These modes are spread on the 5-6
topmost layers, so they probably are not easily detectable by EELS.

In general, surface energy losses may derive not only from excitation of a single mode
localized at the surface but also from regions of the bulk spectrum where the vibrational
motion at the surface is high due to high vibrational Surface Density of States (SDOS),
in spite of the small contribution of each individual mode. From the comparison between
experimental data and calculated SDOS (Fig. 3.11) we can associate the experimental loss
around 63.3 meV to a zone of high SDOS deriving from the high DOS in the bulk (see
Fig. 3.9) and not from large surface contribution of a single mode. Note that at the zone
boundaries the Rayleigh wave xsis essentially concentrated in the first layer and gives rise
to the most intense losses, thus we think that weak losses deriving from high SDOS can
be clearly detected only near zone center.

The third experimentally observed loss at T' (at 55.2 meV) does not correspond to
any calculated surface mode or resonance of allowed symmetry. From Fig. 3.9 it can be
seen that a forbidden mode is actually present in that region of the spectrum. At the
present, stage we can only speculate that this weak experimental loss might result from a
local breaking of the selection rule for the ideal surface [73] due to impurities or roughness
probably present at the Be (1010) surface and not included in the calculation.

In conclusion we find that ab initio calculations of the vibrational properties of Be
(1010) surface reproduce very well the energy and dispersion of many experimentally
observed losses. In particular modes polarized perpendicularly to the surface and localized
in the first few surface layers compare very well with the most intense experimental peaks
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Table 3.4: Relaxation of the four outer layers of Mg(1010) surface, compared with previous
electronic structure calculation and experimental LEED results, taken at T=120K.
dio(%) d23(%) d3a(%)  das(%)
Theory (this work) -19.0 +7.9  -10.8  +3.9
Theory [74] -14.9 +6.9 -7.5 +1.7
Experiment, [24] -16.4  +7.8 — —

at the zone boundaries.

3.4 Mg(1010) surface

As usual to describe the surface we adopted a repeated slab geometry with 16-layer Mg
slabs separated by a 6 atomic layers equivalent vacuum region to decouple the surfaces.
Using a 24-point grid in the irreducible surface Brillouin zone (SBZ) all calculated prop-
erties resuted well converged. Atomic positions in the slab were fully relaxed starting
from the truncated bulk, keeping the in-plane lattice parameters fixed at the bulk value.
Further details are in Sec. 3.1.

Again many layers are involved in surface relaxation. The calculated values for the
interlayer spacing variation are reported in Table 3.4, along with experimental, low tem-
perature, LEED structural data [24] and previous theoretical results [74]. Reasonable
agreement is found. Using a slab of 22-layers and a 20 Ry plane wave cut-off results do
not change significatively.

Surface-phonon dispersions of Mg (1010) were calculated by sampling the SBZ of our
16-layer slab on a 4 x 2 grid of points and Fourier interpolating dynamical matrices in
between to obtain real-space interatomic force constants (IFC). The surface IFC’s are well
converged and recover the bulk values in the middle layers of the slab. The dynamical
matrices of a 96-layer slab were therefore built matching the surface IFC’s to the bulk
ones in the central region (see Fig. 3.5). Dispersion is shown in Fig. 3.12 together with
an indication of the surface character of the calculated modes. Dots represent modes
localized more than 30% in the three topmost layers (dot size is proportional to this
percentage). Full dots represent modes localized more than 25% in the topmost layer,
and polarized perpendicularly to the surface.

Good agreement is found between measured losses and the calculated Rayleigh wave
dispersion (Fig. 3.13). Comparing the two analogous Be(1010) and Mg(1010) surfaces, it
is remarkable that the dispersion in the A — I direction, of the mode confined in the first
layer has different sign in the two materials.
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Figure 3.12: Calculated phonon dispersion for a 96-layer slab modeling the Mg(1010) surface.
Surface modes are represented with dots: modes localized more than 30% in the three topmost
layers are shown, and the dot size is proportional to this percentage. Full dots correspond
to modes localized more than 25% in the topmost layer and polarized perpendicularly to the

surface.
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Figure 3.13: Comparison between EELS data from Ref. [67] (gray dots) and calculated surface
vibrations of Mg(1010) surface. Dots correspond to calculated modes (see caption of Fig. 3.12).
Thick lines delimit the bulk band continuum.



Chapter 4

Thermal expansion

In this chapter we present a first-principles study, within the quasi harmonic approxima-
tion, of the thermal behaviour of Be(0001), Be(1010), and Mg(1010) surfaces.

Our calculation describes well the thermal expansion for the bulk materials and has
been checked against first-principles molecular dynamics simulations in the (0001) sur-
face case. We do not find the large (0001) surface thermal expansion recently observed
experimentally [4] and we argue that the morphology of the actual surface could be less
ideal than assumed.

In the case of Be(0001) only one layer is, essentially, involved in the relaxation, and the
study of the thermal expansion, has been done by direct derivation of the vibrational free
energy. The more complex Be and Mg (1010) cases, where many layers are involved in
the expansion, have been studied calculating the third order variation of the total energy,
with the method described in Chap. 1. In both (1010) surfaces QHA predicts negative
thermal expansion of the first interlayer spacing, though surfaces as a whole expand. This
behaviour has been recently experimentally observed at Mg(1010) surface [24].

4.1 Be and Mg bulk

In this section the thermal expansion of bulk Be and Mg in the hcp structure is stud-
ied within the QHA scheme. The structural properties shown in Chap. 3, were instead
obtained minimizing only the static energy, E%*!(a) in eq. (1.10).

For the hcp structure the QHA free energy is a function of the two axis lengths, a and
¢, and has been calculated from first principles on a grid of points in the two-parameter
space. The vibrational contribution to the free energy resulted to be remarkably linear
in the two parameters in both materials. Due to low atomic number of Be and Mg,
the contribution of zero-point vibrations is expected to be more important than in other
systems, especially for Beryllium, and in fact it results in an increase in both lattice
parameters of ~ 0.7% in Be and ~ 0.3% in Mg. The agreement with experimental data
is thus further improved (see Tab. 4.1).

The calculated temperature variations of the bulk lattice parameters are reported,
together with available measurements, in Figs. 4.1, and 4.2. From this comparison we
conclude that QHA accounts well for Be and Mg bulk anisotropic thermal expansion in

39
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Table 4.1: hep Be and Mg bulk lattice constants. Comparison between experiments(exp.) and
calculations done at static equilibrium(static) or including zero-point effects within the Quasi
Harmonic Approximation (QHA).

Be Mg

a c/a a c/a
static  4.25 1.572 5.93 1.629
QHA 4.28 1.571 5.95 1.629
exp. 4.33 1.568 6.06 1.623

the whole temperature range of interest. It is remarkable that in the case of Beryllium c¢/a
ratio contracts increasing the temperature, while in the case of Magnesium it expands,
and that this feature is correctly reproduced by the calculation.

In Figs. 4.3, 4.4 we compare bulk phonon measurements taken at finite temperature
(T=80 for Be, T=290 for Mg), and already shown in Figs. 3.3, 3.4, with theoretical
dispersion obtained at the calculated lattice structures corresponding to the experiment
temperature. In the case of Magnesium the agreement between experiment and theory is
greatly improved, while for Beryllium the agreement becomes slightly worse, still remain-
ing inside the typical errors obtainable with DFPT.

4.2 Be (0001) surface

Recently a large thermal expansion of the Be(0001) top layer (reaching 6.7% at 700
K) has been experimentally observed [4]. This result was somehow unexpected, since
surface phonons show no sign of enhanced anharmonicity [4, 15], however the calculation
of the surface thermal expansion [4], within a simplified quasiharmonic approach recently
introduced in Ref. [6,34], resulted in very good agreement with experiments. In Ref.
[4,6,34] the sum over vibrational modes in the vibrational part of the free energy is
replaced by the sum over only three “representative wave packets” corresponding to modes
at the surface BZ center where the top layer moves on a rigid substrate, and the validity
of such an approach has been criticized by some authors [5]. We have decided to check
the accuracy of this approximation [23].

4.2.1 Our calculation

The thermal expansion of the first surface-layer has been calculated by minimizing the
QHA free-energy as a function of the first interlayer separation, di». The vibrational
free-energy is calculated summing over a 75 x 75 regular grid in the surface BZ and over
all the vibrational branches of a 30 layers slab, obtained Fourier interpolating dynamical
matrices calculated on a 6 x 6 grid (further details are given in sec. 3.2).

In-plane lattice parameter, a, and all other interatomic distances were assumed to
vary according to the calculated bulk thermal expansion. In order to evaluate the free
energy variation with respect to di2 and g, full phonon dispersions have been calculated
for two different values of di2, corresponding to i) static lattice equilibrium and i) the
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Figure 4.1: Be bulk anisotropic thermal expansion: comparison between experimental data from
Ref. [29] and calculation performed within the quasi harmonic approximation. For a comparison:
Be bulk Debye Temperature = 1440K, Melting Temperature= 1623K.
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Figure 4.2: Mg bulk anisotropic thermal expansion: comparison between available experimental
data from Ref. [29] and calculation performed within the quasi harmonic approximation. For a
comparison: Mg bulk Debye Temperature = 400K, Melting Temperature= 924K.
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Figure 4.3: Be bulk phonon dispersion: comparison between neutron scattering data taken at
T=80K from Ref. [71] (full dots), and theoretical phonon dispersions calculated at the static
equilibrium lattice spacing (a = 4.25a.u., ¢/a = 1.572, dashed lines) and at the calculated lattice
spacing corresponding to T=80K (a = 4.28a.u., ¢/a = 1.571, continuous lines).
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Figure 4.4: Mg bulk phonon dispersion: comparison between neutron scattering data taken at
T=290K from Ref. [72] (full dots), and theoretical phonon dispersions calculated at the static
equilibrium lattice spacing (¢ = 5.93a.u., ¢/a = 1.629, dashed lines) and at the calculated lattice
spacing corresponding to T=290K (a = 5.98a.u., ¢/a = 1.629, continuous lines).
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Figure 4.5: Be (0001) surface toplayer expansion: comparison between measurements and
calculation done within the quasi harmonic scheme. The upper experimental point at room
temperature is from Ref. [17], all other from Ref. [4].

topmost layer further expanded by 2%, and two in-plane lattice parameters, corresponding
to 1) static equilibrium geometry and ii) the theoretical bulk value at 7' =700 K (a = 4.31
a.u.). The resulting vibrational free energies were interpolated (bilinearly) in between.

We have examined the effect of varying the second interlayer spacing on our results
and found that they are unaffected by its precise value: varying Adays/dy between 0 and
1.5% the total energy of the slab as a function of dj5 does not change neither minimum
position nor its curvature.

Our results are reported in Fig. 4.5 along with experimental data [4,17]. Zero-point
motion does not change significantly the first interlayer distance at zero temperature
(3.3%) with respect to the static result (3.2%). By increasing the temperature the topmost
layer relaxes outward reaching 4.1% expansion, relative to the corresponding bulk value,
at 700 K. At all temperatures, the expansion is mainly due to anharmonicity in the
out-of-plane vibrations that accounts for about 90 % of the effect. On the contrary the
large thermal expansion calculated in Ref. [4] with the “three mode samplig” is due to
softening of the in-plane “vibrations”. Good agreement with experimental data is found
at the lowest temperature as well as “reasonable” disagreement at room temperature,
in view of the scatter between experimental data, mainly due to different experimental
analysis [4]. At the highest temperature, however, the discrepancy is well beyond the
experimental errorbar.
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Figure 4.6: Be (0001) surface: first layer thermal expansion calculated at various levels of

approximation (full dots and lines, see text) compared with theoretical results from Ref.
[4] (open circles).

4.2.2 Comparison with previous theoretical results

Since in Ref. [4] very good agreement has been obtained with experimental data using
the simplified QHA approach introduced recently in Ref. [6,34], we tested the validity of
this approach in the present case. In Ref. [4,6,34] the sum over vibrational modes in the
vibrational part of the free energy is replaced by the sum over three “representative wave
packets” corresponding to modes at the surface BZ center where the top layer moves on a
rigid substrate. Moreover the in-plane lattice parameter is kept fixed at all temperatures.

In Fig. 4.6 we report the results of calculations at various degrees of approximation
(full dots) together with the theoretical results from Ref. [4] for comparison (open circles).
The lowest curve (full line) is our most accurate result, already shown in Fig. 4.5. Keeping
fixed the in-plane lattice parameter at the static equilibrium value, still performing the
full summation over vibrational modes in the free energy calculation, results in an almost
rigid outward shift of the top layer (dashed line). This is a trivial effect associated with
the zero-point motion tendency to make the system to expand. No large thermal effect
is observed. It is only when the accurate sampling of the vibrational mode is drastically
reduced to include only the three “representative wave packets” that a large (spurious)
thermal effect appears in the calculated interlayer separation (dotted line), very similar
to the results obtained with the same approximation in Ref. [4] (open circles). A similar,
although less dramatic, overestimation of the surface thermal expansion due to the three-
modes approximation [6, 34] has also been found for Ag (111) surface [75].
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Figure 4.7: Be (0001) surface: comparison between experimental [4] and theoretical root mean
square vibrational displacements. Results for the first two layers and for the bulk are shown:
outer layers display larger rms amplitudes. Theoretical values are shown for vibrations perpen-

dicular (continuous lines) and parallel (dashed lines) to the surface and display some amount of
anisotropy in the topmost layer. In the experimental analysis isotropic vibrations were assumed.

4.2.3 Comparison with the experiments

In the previous section we conclude that, in the case of Be (0001) surface, the better the
calculation the worse is the agreement with the experiment. This failure might suggest
that QHA itself is inadequate at high temperature, due to the enhanced anharmonicity
at the surface [76] with respect to the bulk case, where QHA works well. Comparison
of experimental and theoretical root mean square (rms) vibrational displacements also
shows (Fig 4.7) good agreement for the bulk values, over the whole temperature range of
interest, while for the two topmost surface layers experimental rms displacements appear
to be much larger than theoretical ones. Note, however, that enhanced anharmonicity
cannot be the (only) reason for these discrepancies. In fact, experimental surface-layer rms
values are larger than theoretical ones even at low temperatures where QHA is expected
to be accurate and accounts well for the observed surface relaxation. Note also that
the temperature dependence of the rms displacements is well described by the calculation
and the agreement with experiment could be greatly improved by a rigid shift in the
theoretical, or experimental, data.

It is well known (see for instance Refs. [77,78]) that it is very difficult to tell apart
static and dynamical displacements in LEED analysis and we believe that Fig. 4.7 carries
strong indications that in the actual surface some degree of structural disorder is present,
which has erroneously been attributed to dynamical effects. Deviations from clean and flat
morphology would certainly affect the apparent rms displacements, the layer relaxations
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Table 4.2: Be (0001) surface layer expansion and out-of-plane (in-plane) rms displacements
at 700 K. Comparison between results obtained from FPMD, QHA, and QHA with classical
statistics (CQHA).
FPMD CQHA QHA
Adyfdy  +3.7% +3.8% +3.6%
Adgg/do +17% - -
ul(A) 0.15 (0.12) 0.14 (0.12) 0.14 (0.13)
uQ(A) 0.12 (0.11) 0.11 (0.12) 0.11 (0.12)
u3(A) 0.11 (0.11) 0.10 (0.11) 0.10 (0.11)

and their temperature dependence in LEED analysis of “nominally ideal” surfaces. We
found, for instance, that a complete fcc Be adlayer, whose stacking-fault cost is only 50
meV /atom in LDA, relaxes outward 2% more than the hcp terminated surface. Since
adatoms are more stable, by ~ 40 meV, in fec sites than in hcp ones [21], mixed fec/hep
layers could exist, especially if some residual H, affecting the local energetics of defects
[21] were present. More experimental and theoretical work is still needed on this issue.

4.2.4 First principles molecular dynamics

In order to further asses the accuracy of QHA we have performed a first-principles molecu-
lar dynamics (FPMD) simulation, where anharmonicity is fully taken into account, study-
ing the system at the highest (700 K) temperature of interest, where the disagreement of
QHA results with experimental data is largest and the classical treatment of the atomic
motion in FPMD is most reliable. Our FPMD simulation cell consists of 8 atomic layers
separated by = 4-layer thick vacuum region, with 3 X 3 in-plane periodicity; in-plane
lattice parameter was fixed at the calculated bulk value at 7= 700 K (4.31 a.u.). Data
were taken for about 2 ps in a microcanonical run, with average total kinetic energy cor-
responding to T" = 700 K. The result for the interlayer separations and rms amplitudes
of the simulation are reported in Table 4.2. The estimated statistical error associated to
these results is of a fraction of percent for the interlayer separations and somewhat larger
for the rms displacements.

In order to make a direct comparison with QHA results and to check for potential
errors associated with the reduced BZ sampling—corresponding to the limited in-plane
periodicity in the FPMD simulation—as well as the reduced number of layers and vacuum-
layer thickness, the QHA calculation have been redone using the same technical details
involved in the FPMD simulation. To display the relevance of quantum effects on the
atomic motion at this temperature the calculation have been performed using both quan-
tum statistics, Eq. (1.10), or classical Boltzmann statistic. All these data are gathered in
Table 4.2 where it is evident that: i) FPMD simulation, consistently with QHA results,
shows only a small top-layer expansion at 700 K and rms amplitudes smaller than exper-
imentally reported; i) QHA is perfectly adequate to deal with anharmonic effects in Be
(0001) surface at this high temperature; i) classical or quantum statistics makes very
little difference at 700 K, of the order of the difference due to reduced BZ sampling and
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slabs thickness (our most accurate QHA calculation gives, for instance, a value of 4.1%
for the top layer expansion).

In conclusion, from the comparison with FPMD, we find that QHA is well suited to
describe thermal properties of Be (0001) surface up to the high temperature experimen-
tally investigated, but results obtained in oversimplified approaches must be handled with
care. This is an important result in view of the application of QHA to the study of surface
thermal properties of other systems.

Comparison with experiments shows that accurate LDA calculations for the clean and
flat Be (0001) surface cannot explain the large reported first-layer thermal expansion. We
argue that the origin of the disagreement should be searched in the morphology of the
real surface.

4.3 Be and Mg(1010) surfaces

In this section we show our preliminary calculation of the Be and Mg(1010) surfaces
thermal expansion. Many layers are involved in the thermal expansion and eq. 1.12 has
been solved within an ab initio approach.

With the scheme of Sec. 2.4 we have calculated derivative of Be and Mg dynamical
matrices for a 16-layers slab at the equilibrium positions of the static equilibrium lattice
parameters. Details of the calculation are the same as in Chap. 3.

In order to test the separation of the two surfaces of the slab, it has been checked that
variation of the dynamical-matrix elements corresponding to atoms of the central layers
is negligible, for displacements of the 5 outermost layers, for both materials.

Free energy derivatives with respect to displacements perpendicular to the surface of
the 5 outermost layers (OF"*/dd;,i = 1,...,5) have been calculated according to eq. 1.14,
and results are shown in Fig. 4.8. We have used a 32-layers slab (built as described in Fig.
3.5), and summation was performed on two different grid of q-points, that is the 4 high
symmetry points in the surface BZ, or only T and M. In the case of Be both grid were
used while for Mg only a preliminary calculation on the 2 g-point grid has been done.

From Fig. 4.8 it can be seen that improving the sampling in the case of Beryllium,
some of the calculated values change noticeably, however the resulting surface relaxation
is only slightly affected. As a consequence we believe that the “4q-points” sampling is
accurate enough for the present purpose, and also that our preliminary calculation for Mg
gives qualitatively correct results. In the case of Be(0001), where we have performed a
very accurate sampling of the modes, we have checked that a summation on an analogous
grid indeed gives correct results. Note that the “3-mode” sampling of Ref. [6, 34], already
addressed in Sec. 4.2.2 considers only the frequencies of three “effective modes” at the
zone centre, corresponding to the motion of the first layer on a rigid substrate. On the
contrary in our calculations all the modes of a sufficiently large slab are calculated exactly.
These results indicate that a correct description of the vibrational modes of the system
is crucial, even though the number of g-point used to sample the Brillouin zone is not so
critical.

Using the vibrational forces (0F"®/dd;) so obtained, and solving eq. 1.12 we have
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calculated the thermal expansion of the 4 outermost interlayer spacings (d;;+1). Results
are shown in Fig. 4.9 (full lines) together with LEED measurements [24, 35] (open dots).
To make a comparison in Fig. 4.9 we also show the expansion obtained relaxing atomic
positions at the calculated lattice spacings corresponding to a given temperature, neglect-
ing other thermal contributions (dashed lines), and the static equilibrium lattice spacing
results (full dots). Note that while the static contribution leads to an overall contraction,
inclusion of entropic terms leads to an overall expansion of the surfaces. At T = 0K
zero-point motion does not change appreciably interlayer distances with respect to static
results, this is related to the fact that while bulk effects increase the in-plane lattice spac-
ing, thus contracting the surface, surface free energy leads the surface to expand. It is
remarkable that in all cases studied (see also Sec. 4.2.1) these two effects cancel each other
almost exactly. The overall agreement with experiments is rather good, in particular we
have reproduced the negative thermal expansion of the first interlayer spacing at Mg(1010)
surface, and we predict that the same behaviour should be observed at Be(1010) surface.

Results shown in this section are only preliminary for several reasons. Vibrational
forces calculated for deeper layers should be included to achieve higher accuracy on dys.
Moreover {0F"®/dd;} have been computed at the equilibrium lattice spacing, and effects
due to in-plane lattice expansion should be included also in this part of our calculation,
although we expect that, as was the case for the Be(0001) surface, this quantity does not
change significantly varying the lattice spacing according to the temperature. Finally the
static energy term has been approximated with its second order expansion with respect
to the atomic displacements calculated at the equilibrium positions of the expanded lat-
tice spacing corresponding to a given temperature. In conclusion improvements in our
calculation are necessary, but we believe that the obtained general behaviour is correct,
and reproduces observed results.
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Conclusions

The present work has been devoted to the study of the surface thermal expansion within
a fully ab initio approach. We have investigated the usefulness of the Quasi Harmonic
Approximation (QHA) in dealing with surfaces, and we have extended this scheme to sys-
tems more complex than those studied so far. In order to do this, a method to calculate
analytically third order derivative of the total energy of a metallic system has been im-
plemented within the framework of Density Functional Theory (DFT)[7, 8], and Density
Functional Perturbation Theory (DFPT) [10,11].

Our attention has focused on Be(0001), Be(1010), and Mg(1010) surfaces, and for
both these simple metals our approach describes very well the low temperature structural
and dynamical properties of the bulk material and of the considered surfaces. Only one
layer is, essentially, involved in the thermal expansion of the Be(0001) surface, and this
system has been studied by direct numerical derivation of the quasi-harmonic free energy.
On the contrary a larger number of layers expands in the case of Be(1010), and Mg(1010)
surfaces, and to study these systems is has been necessary to calculate analytically the
free energy derivative with respect to many atomic displacements.

Beryllium (0001) surface has recently attracted much attention because of its measured
anomalously large outward relaxation [4]. We have studied Be(0001) surface thermal ex-
pansion within the QHA scheme, and we have performed first-principles molecular dynam-
ics simulations. From the comparison of the results obtained with the two approaches we
deduce that QHA is well suited to describe thermal properties of the Be(0001) surface up
to the high temperature experimentally investigated. We have performed a very accurate
sampling of the vibrational modes necessary to calculate quasi-harmonic free energy, and
a study of the approximations involved indicates that results obtained in oversimplified
approaches [4] are misleading, in this case. We have studied the clean and flat Be (0001)
surface, and we do not find the large thermal expansion experimentally observed, thus we
suggest that the origin of the disagreement should be searched in the morphology of the
real surface.

Recently a negative thermal expansion of the first interlayer spacing has been exper-
imentally observed for the Mg(1010) surface [24]. This is one the few cases reported at
present, and our preliminary calculation confirms this result, predicting the same effect
at the Be(1010) surface.

ol
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