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INTRODUCTION

Since the first experimental observation of the Bose-Einstein conden-

sation of a gas of alkali atoms, six years ago, there has been an increasing

interest on this new, highly interdisciplinary, branch of physics.

It was realized, from the very beginning that, despite of the diluteness of

such systems, the nonlinearity was crucial on the understanding of both the

equilibrium and dynamical properties.

In this Thesis we point out that there is a further key aspect that must be

taken into account when the condensates are trapped in deep optical lattices:

discreteness.

The interplay between discreteness and nonlinearity raises a new class of

deeply non-trivial phenomena which disappear in the continuum limit of the

Gross-Pitaevskii equation (GPE). Recognizing and exploiting such interplay

is the main topic of this Thesis.

We think that the dynamics of a Bose-Einstein condensate (BEC) in op-

tical lattices is going to become of central interest in the next future. Optical

potentials provide BEC’s waveguides, which prevent the spatial spreading

of the BEC wave packets and preserve their coherence over long distances.

This has allowed to build high sensitive interferometers, including gyroscopes

and gravitometers. From the theoretical point of view, the big challenge is

1



to reconsider the meaning of phenomena which have been well understood in

homogeneous systems: superfluidity, for instance, is in the top list. A further

example is given by quantum phase transitions.

The connection and the interplay with the language and insights of the

nonlinear physics community is a second challenge. We believe that the re-

sults obtained in the BEC context can provide a new prospective view into

old problems. The understanding of the modulational instability in terms of

phase randomization and a (classical) dynamical phase transition are among

this line, as well as the possibility to generalize the Landau criteria for su-

perfluidity to discrete systems. On the other hand, it is clear that nonlinear

physicists can have much to say about BEC. With this Thesis we hope we

have provided, together with original results, some links between these dif-

ferent languages and views.

In the first part of the Thesis we discuss the dynamical regimes of a

BEC in an optical lattice. There are several important reasons to study this

system, which is under intense experimental and theoretical investigation.

First of all, the experimental realizations [1–8] have reached a high level of

precision, with easily tunable parameters and accurately tailored trapping

profiles. The periodic potential is generally realized with two counterpropa-

gating laser beams. The intensity of the laser is proportional to the interwell

energy barrier and can be varied in a wide spectrum of values, ranging from

a situation in which the optical potential can be considered as a small per-

turbation to the case in which the BEC chemical potential is much smaller
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than the interwell energy barriers.

The key feature that makes the dynamical properties of such systems

particularly interesting is that the periodic potential naturally introduce dis-

creteness in a nonlinear system. The theoretical investigations have pointed

out that the excitation spectrum of a BEC in an optical lattice exhibits

band structure in analogy with the electron energy Bloch bands in a peri-

odic potential [9–12]. When the the power of the laser (i.e. the strength of

the optical potential) is strong enough, the lowest band dynamics maps on a

discrete nonlinear Schrödinger equation (DNLSE) [13] (see Chapter 1). The

dynamics in the array can be therefore studied in the framework of the non-

linear lattice theory [13–15]. The DNLSE is an equation widely investigated

per se in the nonlinear physics [16–18] and it is important in the study of dif-

ferent physical systems, ranging from polaron theory to optical fiber arrays.

The possibility to have an experimental system to test the DNLSE (and more

general discrete nonlinear equations) in the framework of the nonlinear lat-

tice theory is creating a wide interest for the properties of arrays of BECs in

different physics communities. BEC in a periodic potential can allow for the

observations of intrinsic localized modes (i.e. matter excitations localized on

few lattice sites), as well as the study of solitons and breathers, possibly also

with condensates having a repulsive interatomic interactions. The criterion

to have such discrete solitons and breathers (DSB) will be given in section

1.4.

The experimental realization of an array of BECs in an optical lattice

also provides a concrete experimental framework to study the phase dynamics

and the atomic tunneling between neighbour wells of the optical potential.
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The phase coherence of different condensates in the array plays a crucial

role in the dynamics, and can be easily studied experimentally observing

the interference patterns created by the condensates after turning off the

magnetic trap.

Another important issue, motivated from the experiments [1,6–8], is the

study of the effects of external forces on the discrete dynamics of the lat-

tice. In the presence of the gravitational field (i.e. with an linear external

energy in the DNLSE), coherent Bloch oscillations occur [1]. Similarly, Bloch

oscillations are also possible in horizontal optical lattices realized by two

counterpropagating laser beams with a frequency detuning varying linearly

in time (more details on this experimental setup in [19, 20]).

The effect of the nonlinearity is the coherent destruction of the interwell

Bloch oscillations: this manifests in a distortion of the on-site phases of the

condensates in the different traps [1, 13]. A discussion of this case will be

considered in section 1.5.

The dynamics in a harmonic magnetic trap was studied in [7]. The first

direct observation of a Josephson atomic current in a one-dimensional array

of BECs has been reported in [8]; the coherence of multiple adjacent wells

was continuously probed by atomic interference. This experiment and its

theoretical analysis will be discussed in detail in Chapter 2.

Yet, two possible lines of future research are: 1) the study of general-

ized discrete equations which governs the system when the inclusion of on

site collective degrees of freedom are important; 2) the inclusion of a dis-

order potential, created e.g. with additional lasers, in order to investigate

the interplay of discreteness nonlinearity and disorder. In Chapter 3 we will
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discuss the latter problem on a different perspective respect to the current

literature [21].

The discreteness is also relevant for the occurrence of new dynamical in-

stabilities, well known in the theory of nonlinear media (continuous as well

as discrete). In section 2.4 we will discuss both from a theoretical and exper-

imental point of view the occurrence of a discrete Modulational Instability

(MI).

The recent realization of the two-dimensional optical lattices [3] opens

the possibility to study discreteness effects in higher dimensions. Last, but

not least, the high laser power available nowadays could allow for the investi-

gation of low tunneling rates between adjacent wells of the periodic potential:

in these regimes the quantum fluctuations play an important role, and, with

a strength of the optical potential V0 large enough, it is expected a quantum

transition from the superfluid to the Mott insulator phase diagram region.

The observation of squeezed number states was reported in [6]. An estimate

of the coupling between wells as a function of V0 will be presented in section

2.3: from this estimate it is also possible to evaluate the power of the laser

needed to observe the quantum phase transition. We think that this is a very

promising field of research. The competition of thermal and quantum effects

is also, in this regard, another important problem [22, 23].

In the analysis of Part I, we do not consider the effect of the internal

degrees of freedom of the condensates in the different wells. In Part II we

discuss how include these effects for two wells. The main goal is to understand

if the internal modes can affect the Josephson currents, and how. We will

actually show that the Josephson relation between the current and the phase
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difference is still valid, but with time-dependent coefficients which depends

explicitly on the dynamics of the internal degrees of freedom.

In Chapter 4 we consider two different hyperfine levels coupled by a laser,

that induces a Josephson-like coupling between the states. The two compo-

nents feel different effective harmonic traps (with different harmonic trap-

curvatures and/or different positions of trap minima). Using two gaussian-

profile variational wavefunctions we determine dynamical equations coupling

the fractional number difference, the effective phase difference, and the rock-

ing and breathing motions of the BEC profiles. These equations, also de-

scribe one-component ground state BEC tunneling between actual double

wells, considered previously in a fixed-position and rigid-profile-case, but now

with BEC center-of-mass motion and collective modes included. The equa-

tions map onto the dynamics of a momentum-shortened pendulum, as found

in previous works, but now with an additional pendulum-length stretching.

The five fixed points classifying five pendulum modes of oscillation about

average values of 0 or π found previously are preserved, but the modes are

enriched and modified. They are studied in section 4.3. In particular, the

macroscopic quantum self-trapping regime still occurs: the population im-

balance between the two traps is maintained by the interatomic interaction.

The different regimes of the quantum phase dynamics show up in charac-

teristic oscillations of the center-of-mass and density profiles, providing an

experimental tool to detect and study the Josephson oscillations. The re-

sults of this chapter can be generalized to the case of more than two atomic

species, or equivalently, to the case of multiple wells.

In Chapter 5 we discuss how to create a weak link between the two
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hyperfine levels: this is reached by applying a far-detuned laser. The param-

eter of the weak link is showed to be proportional to Ω/δ, where Ω is the

Rabi frequency (i.e. the strength of the laser) and δ is the detuning. We will

also discuss the experimental results obtained with this weak link [24]: the

macroscopic quantum oscillations between the condensates are presented and

compared with the Josephson equations of the system. With the particular

geometry, the center of the two potentials are far 15µm, while their width is

≈ 4µm. The time-dependent Josephson current vanishes in a time of order

200µs: this is the window time in which the Josephson oscillations are de-

tectable (and they have been detected). We compare these results with the

Rabi oscillations of the thermal cloud (i.e. above the critical temperature):

the experimental findings clearly show that they damp more quickly than the

condensate oscillations. Furthermore, we discuss analogies and differences be-

tween the Rabi and the Josephson regimes.
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Part I

BOSE-EINSTEIN

CONDENSATES IN

OPTICAL LATTICES
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Chapter 1

Discrete nonlinear dynamics

1.1 Introduction

In this chapter we discuss the dynamical regimes of a BEC in periodic

potentials, a problem which has recently attracted a lot of interest [9–15,

25–31]. The plan of the chapter is the following: in section 1.2 we derive

the DNLSE from the Gross-Pitaevskii equation (GPE) and we discuss the

validity of a such derivation. The dynamical phase diagram for the horizontal

array (i.e. without any external driven field) is obtained and discussed in

section 1.4: a collective coordinate approach (described in section 1.3) is used

and compared with full numerical calculations. We investigate the different

dynamical regimes: diffusive (in which the boson wave packet spreads out),

self-trapped (with a self-induced pinning), breathing (where the center of

mass of the wave packet moves with an oscillating width), and solitonic (in

which the wave packet shape is exactly preserved during the dynamics). The

equations of motion for the variational parameters which describe the boson

wave packet are derived and systematically studied in App.A. In section 1.5
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we discuss the dynamics of arrays of BECs in a tilted (washboard) potential

describing a vertical optical trap, showing that the effects of the mean field

interaction lead to a breakdown of the Bloch oscillations.

1.2 From GPE to DNLSE

In this section we state the dynamical equations of a BEC in a periodic

potential also in presence of an external driven field. We introduce a collective

coordinate approach: this method was described in [13], where it was studied

the dynamical phase diagrams of the system and the breakdown of Bloch

oscillations due to mean field effects in the Anderson-Kasevich experiment [1].

The variational equations can be cast in Hamiltonian form allowing to define

the group velocity and the effective mass, as in the standard (semiclassical)

Bloch theory of an electron in a periodic potential. The possibility to have a

negative effective mass gets reflected in the existence of bright soliton regimes,

even if the BEC’s interatomic potential is repulsive (we recall that in free

space only dark solitons can exist if the scattering length is positive). In

the regimes in which the effective mass diverges, the wave packet localizes

around a few lattice sites, stopping its motion. The pinning is accompanied

by a breaking of the global coherence. Therefore the variational ansatz breaks

down, but still predicts the mean field energy critical value for the occurrence

of the localization.

The full dynamics (at T = 0) of a BEC in an external potential Vext

satisfies the Gross-Pitaevskii equation (GPE) [32]:

i~
∂Ψ

∂t
= − ~

2

2m
∇2Ψ + [Vext + g0 | Ψ |2]Ψ (1.1)

10



where g0 = 4π~2a
m

, with a s-wave scattering length and m the atomic mass.

The condensate wave function is normalized to the total number of particles

NT . We write the external potential as the sum of the laser field and a

potential V, whose form depends on the particular experiment:

Vext(~r) = V(~r) + VL(y, z) cos2[2πx/λ] (1.2)

where λ is the wavelength of the lasers (the spacing in the lattice is λ/2)

and VL(y, z) is determined by the transverse intensity profile of the (nearly

gaussian) laser beams. E.g., in [1], λ = 850nm and the 1/e2 radius of the

transverse profile is ≈ 80µm, an order of magnitude larger than the transverse

radius of the condensate. Varying the intensity of the laser beam we can

change linearly the trap well depths. We define V0 as the trap depth at

the center of the beam, V0 = βER where ER = ~2k2

2m
is the recoil energy

(k = 2π/λ): for typical experimental values [7, 8], β range from 0 to 6.

The form of V varies in the different experiments. V ≡ 0 refers to the

case in which only the optical lattice is present (horizontal array); V ≡ mgx

when also the gravity acts (vertical array) [1]; V harmonic potential [6–8] will

be called in the following parabolic array. We will study in this chapter the

behaviour of the first two types of traps, while the latter will be discussed in

the following chapter.

When the laser power (i.e. V0) is large enough, we can use a tight-binding

approximation and decompose the condensate order parameter Ψ(~r, t) as a

sum of wave functions Φ(~r−~rn) localized in each well of the periodic potential:

Ψ(~r, t) =
√

NT

∑

n

ψn(t) Φ(~r − ~rn), (1.3)

where ψj =
√

nj(t) e
iφj(t) is the j-th amplitude (nj = Nj/NT , where Nj and
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φj are the number of particles and the phase in the trap j).

We remark that the assumption (1.3) relies on the fact the interwell bar-

rier V0 is much higher than the chemical potentials. E.g., in [8] for β = 3 (i.e.

V0 = 3ER) it is µ ∼ 0.06V0. A second important condition is that the en-

ergy of the system should be confined within the lowest band. Higher energy

bands are not contained in DNLSE, and become important when the energy

is of the order of ~ωT , where ωT is the harmonic frequency of a single well

of the lattice. The effective dimensionality of the BEC’s trapped in each well

can also play a crucial role [33], by modifying the degree of nonlinearity of

the DNLSE. Such corrections can be included with site-dependent parame-

ters in DNLSE, but can ultimately complicate its structure. We ignore such

corrections by exploring bulk properties of the system, where the details of

the (tail) density profile are irrelevant. In this prospect, the DNLSE can be

seen as a zero-order (perturbative) approximation of more complicate dis-

crete, nonlinear equations. A comparison between the ground state found in

this approximation and the full ground state (which takes into account the

transverse degrees of freedom) in the Firenze experiment will be given in the

next chapter.

More specifically, the assumption (1.3) is a particular case of the more

general adiabatic approximation

Ψ(~r, t) =
∑

n

cn(t) Φn(~r;Nn(t)), (1.4)

where < ΦnΦm >' δnm and cn =
√
Nne

iφn . The adiabatic approximation

consists on neglecting the time derivative of Φn(~r;Nn(t)). It is found (in

dimensionless units) an equation of the form

iċn = εncn +Kn+1cn+1 +Kn−1cn−1 + Un | cn |α cn (1.5)
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where εn, Kn and Un depends on Nn(t) and on the parameters of the optical

potential, and α is an effective nonlinearity depending on the dependence of

the local (on site) chemical potential by the number of atoms in the same

well.

The (1.5) is highly non-trivial as interesting, and deserves further inves-

tigations (see also next chapter).

Here and in the following we want to investigate effects which arise from

nonlinearity and discreteness, but do not depends on the details of the optical

confinement. We therefore consider a “zero-order” approximation of (1.4)

with the ansatz (1.3): εn, K and U are chosen as averaged values, independent

from Nn(t).

Replacing the ansatz (1.3) in (1.1) we find that the GPE reduces to a

DNLSE:

i~
∂ψn
∂t

= −K(ψn−1 + ψn+1) + (εn + U | ψn |2)ψn, (1.6)

where the tunneling rate is

K ' −
∫

d~r
[ ~

2

2m
~∇Φn · ~∇Φn+1 + ΦnVextΦn+1

]

, (1.7)

the on-site energies are

εn =

∫

d~r
[ ~

2

2m
(~∇Φn)

2 + VextΦ
2
n

]

(1.8)

and the nonlinear coefficient (which we will suppose equal in each site) is

U = g0NT

∫

d~rΦ4
n. (1.9)

In order to cast the Eq.(1.6) in dimensionless form, we rescale the time as

t → ~

2K
t. In [8], for V0 = 3ER it is K ≈ 0.07ER and U ≈ 12ER: the unit
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of the scaled time is 0.32ms (similar numerical value are found e.g in [1]).

Defining En = εn/2K and Λ = U/2K, Eq.(2.6) becomes

i
∂ψn
∂t

= −1

2
(ψn−1 + ψn+1) + (En + Λ | ψn |2)ψn. (1.10)

In Eq.(1.10), the integer n = −∞, . . . ,−1, 0, 1, . . . ,∞.

Eq.(1.10) is the equation of motion ψ̇n = ∂H
∂(iψ∗

n)
, where H is the Hamil-

tonian function

H = −1

2

∞
∑

n=−∞
(ψnψ

∗
n+1 + ψ∗

nψn+1) +
∞
∑

n=−∞
(En | ψn |2 +

Λ

2
| ψn |4) (1.11)

with iψ∗
n, ψn canonically conjugate variables. Both the Hamiltonian H and

the norm
∞
∑

n=−∞
| ψn |2= 1 (1.12)

are conserved.

1.3 Variational dynamics

To study the dynamical regimes of a BEC in an array, we consider the dynam-

ical evolution of a gaussian profile wave packet and we introduce a variational

wave function

ψnV (t) =
√
k · exp

{

− (n− ξ)2

α
+ ip(n− ξ) + i

δ

2
(n− ξ)2

}

(1.13)

where ξ(t) and α(t) are, respectively, the center and the square of the width

γ(t) (α = γ2) of the density ρn =| ψn |2; p(t) and δ(t) are their associated

momenta and k(ξ, α) a normalization factor.

The wave packet dynamical evolution can be obtained by using the Euler-

Lagrange equations for the Lagrangian L =
∞
∑

n=−∞
iψ̇nψ

∗
n −H. The equations
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of motion for the variational parameters which describes the boson wave

packet are derived in App.A and they are







ṗ = −∂V
∂ξ

ξ̇ = sin p · e−η
(1.14)

and






δ̇ = cos p
(

4
α2 − δ2

)

e−η + 2Λ√
πα3

− 8∂V
∂α

α̇ = 2αδ cos p · e−η
(1.15)

where

η =
1

2α
+
αδ2

8
(1.16)

and the effective potential V is given by

V = k

∞
∫

−∞

dnEne
− 2(n−ξ)2

α . (1.17)

The pairs ξ, p and α
8
, δ are canonically conjugate dynamical variables with

respect to the effective Hamiltonian

H =
Λ

2
√
πα

− cos p · e−η + V (ξ, α). (1.18)

We note that for the continuous GPE (i.e. without the optical potential) we

should have

H =
Λ

2
√
πα

+
1

2
p2 +

1

2α
+
αδ2

8
+ V (ξ, γ). (1.19)

In the discrete case we have a band (cos p) and not a simple kinetic term

as in the continuous case (p2): this is a typical lattice effect. Furthermore in

order to find the continuum case from the discrete one we have to expand the

exponential term in (1.18) and to neglect the higher order terms to obtain

(1.19).
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The standard definition of group velocity gives

vg ≡
∂H

∂p
= ξ̇ =

tan p

m∗ (1.20)

with the inverse effective mass given by

1

m∗ ≡ ∂2H

∂p2
= cos p e−η. (1.21)

The quasi-momentum dependence of the effective mass allows a rich variety

of dynamical regimes. Bright solitonic solutions with a positive nonlinear

parameter Λ > 0, for instance, are allowed by a negative effective mass. A

regime with a diverging effective mass m∗ → ∞ leads to a self-trapping of

the wave packet.

1.4 Horizontal array

In the horizontal lattice, only the optical potential is present (V =

0). Therefore the on-site energies En, as well as V (ξ, γ), are constant. The

momentum is, of course, conserved and it is equal to the initial value:

p(t) = p(0) ≡ p0. (1.22)

We will consider the case Λ > 0, in order to make contact with the ex-

periments in which 87Rb atoms with positive scattering length a are used.

However we note that the equations of motion (1.14) and (1.15) are invariant

with respect to the replacement Λ → −Λ, p0 → p0 +π and t→ −t. The case

of a BEC with a < 0 in an optical lattice would be also very interesting, but

at present date has not yet experimentally realized (for a discussion of this

case, see [14]).
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A detailed study of the variational equations of motion is in App.A (and

in [34]). Here we quote only the main results and we discuss rather the

physical implications and the comparison with a full numerical analysis. This

comparison is surprisingly successful in describing even details of the quite

complex dynamical and collisional behaviour. Stability phase diagrams for

such states are obtained by inspection of the profile dynamics equations.

The parameter Λ is the ratio between the nonlinear coefficient, induced

by the interatomic interactions, and the coupling between condensates in

neighbour wells: it is the only (geometry dependent) parameter which governs

the dynamical regimes of the system. When Λ is small, the wave packet

spreads out; in the opposite limit, the nonlinearity leads to a localization

of the wave packet. When cos p0 < 0, an intermediate regime arises: in this

case, the effective mass (1.21) is negative and, for a suitable values of Λ,

it can be reached a balance between nonlinearity and diffusion. In terms of

the variational parameters, this means that in the diffusive regime, α → ∞

and (if p0 6= 0) ξ → ∞, with an effective mass always finite. In the self-

trapped regime, to the contrary, α remains finite and the center of mass ξ

cannot go to ∞; furthermore, 1/m∗ → 0, meaning that η → ∞ and δ → ∞.

Therefore in this regime there is an energy transfer to the internal modes of

oscillations, since δ is the momentum associated to the wave packet width:

in the full numerical solution of Eq.(1.10), this corresponds to a breakdown

of the wave packet. We note that a nonlinear self-trapping occurs also in a

two-site model [35–37].

Now we discuss separately the two different cases cos p0 > 0 and cos p0 <

0, which correspond respectively to positive and negative effective mass.
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1.4.1 Positive effective mass

From the previous discussion follows that, when cos p0 > 0, the solitonic

regime is forbidden and we have only the diffusive and the self-trapped

regimes. In order to show the transition between them, let us consider first

the case p0 = 0, in which the center of mass of the wave packet does not move

(ξ = 0). Using as initial values δ0 = 0 and α0, the initial value of the Hamilto-

nian (1.18) is H0 = Λ/2
√
πα0−e−1/2α0 . Since the Hamiltonian is a conserved

quantity, it is H0 = Λ/2
√
πα− e−1/2α−αδ2/8. Therefore Λ

2
√
πα

−H0 > 0. Using

the previous relation, we can see that when H0 > 0, α have to remain finite

and the we have a self-trapped regime in which the wave packet remain lo-

calized and the nonlinearity forbids the diffusion. Vice versa, when H0 < 0,

α → ∞ for t→ ∞: the wave function spreads out and we are in the diffusive

regime. The transition occurs at H0 = 0, with

Λc = 2
√
πα0e

−1/2α0 . (1.23)

We note that for large t in the self-trapped regime (Λ > Λc) δ → ∞ and in

the diffusive regime δ → 0 (αδ2 ≈ −8 log | H0 |). Physically, this means that

in the self-trapping there is an energy transfer to the internal modes of the

wave packet, as previously discussed. In Figs.1-2 we plot the density | ψn |2 for

different times with Λ in the diffusive region (Fig.1) and in the self-trapped

one (Fig.2): the solid lines are the numerical solutions of Eq.(1.10), the dashed

lines are the solutions of the variational equations (1.14) and (1.15). In Fig.3

we plot the dispersion γ(t) of the wave packet for three different values of Λ

(we recall that α = γ2): when Λ is in the diffusive region, the width increases

with time, and when it is in the self-trapped region reaches a constant value.

The numerical discrepancy in the latter case between the numerical result
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and the variational one is due to the fact the numerical solution of Eq.(1.10)

loses, in the self-trapping region, its gaussian shape (as we can see from

Fig.2). Furthermore, the growing rate of the width increases (decreases) with

Λ for Λ < Λc (Λ > Λc): in Fig.4 we report the variational and numerical

values of the width of the density vs. Λ/Λc after a time τ = 10 (scaled units).

The discrepancy at large Λ/Λc is due to a slight deviation of the numerical

density profile from a gaussian shape.

−30 0 30
n

0.00

0.05

0.10

|ψ
n|2

t=0

t=20

t=40

Figure 1.1: Plot of the wave function density ρn =| ψn |2 at times t = 0, 20, 40

with Λ = 1 in the diffusive region. Numerical values: p0 = 0, δ0 = 0, α0 = 50.

The critical value of Λ is in this case Λc = 24.82. Solid lines: solutions of

Eq.(1.10) with 73 sites; dashed lines: solutions of variational Eqs.(1.14) and

(1.15).

It is important to remark that the occurrence of the transition between

the diffusive and the self-trapped regimes does not depends on the chosen

initial conditions. In Fig.5 we choose a steplike initial condition: ψn(t =

0) = const for n = −L, · · · , L and ψn = 0 elsewhere. For small values of

Λ, the population in the interval
L
∑

n=−L
| ψn |2 decreases with time (Fig.5a)
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Figure 1.2: Plot of the wave function density at times t = 0, 10, 20, 30 with

Λ = 100 in the self-trapping region. The numerical values of the remaining

parameters are as in Fig.1.

and the wave function ψn(t) gradually spreads out with time (Fig.5c). When

Λ is large, to the contrary, the step region remains populated (Fig.5b) and

the wave packet well localized (Fig.5d). We observe that the value given by

Eq.(1.23), despite it is calculated with gaussian wavefunctions, is in quite

good agreement with the numerical critical value. This means, inter alias,

that our dynamical phase diagram depends weakly on the details of the

density profiles of the localized excitations.

Before to pass to the case of p0 6= 0, we briefly discuss the size effects.

With a finite number of sites, the self-trapping condition is not anymore

α < ∞, but α < αsize, where αsize is the square of the finite length of the

lattice. Proceeding as before, it is possible to show that the effective value

at which the transition occurs is related to the critical value (1.23) by the

relation

Λeff
c =

Λc

1 −
√

α0/αsize
. (1.24)
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Figure 1.3: Plot of the wave packet width vs. time for Λ = 1, 10, 100 with

the same numerical parameters of Fig.1. Points (respectively filled squares,

filled circles and open circles): numerical solution of DNLSE; dashed lines:

variational analysis.

Of course, when an infinitely large lattice is used, Λc ≈ Λeff
c ; moreover, when

α0 ≈ αsize, does not make sense to talk about self-trapping.

Let us consider the case of p0 6= 0, in which the center of the wave packet

moves on the lattice: as already discussed, there are two distinct regimes.

When H0 > 0, α(t) < αmax: this is the self-trapped regime in which the

boson wave packet remains localized around few sites. The self-localization

is a genuine nonlinear effect, characterized by a diverging effective mass. In

particular, the self-trapped wave packet cannot translate along the array: this

is a major difference with respect to soliton-like solutions. The limit values

for t→ ∞ are α → Λ2

4πH2
0
, δ → ∞ and ξ̇ → 0.

A diffusive regime occurs when − cos p0 < H0 ≤ 0. In this case α(t →

∞) → ∞ and ξ̇ ≈ −H0/ tan p0 = const. The transition between the two
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Figure 1.4: Variational (solid line) and numerical (circles) width of the density

vs. Λ/Λc after the time τ = 10, scaled units (initial values: p0 = 0, δ0 = 0

and γ0 = 7).

regimes occurs at

Λc = 2
√
πα0 cos p0 e

−1/2α0 . (1.25)

With Λ > Λc, the ratio between the initial value of the width γ0 and the

limit width γmax(t→ ∞) is given by

γ0

γmax
=

Λ − Λc

Λ
. (1.26)

In Fig.6 we plot γ0/γmax vs. Λ/Λc. We checked the stability of self-trapping,

also considering different initial forms of the wave packet. In Figs.7(a)-7(b)

we plot, respectively, the width and the average position for Λ < Λc, i.e.

for a diffusive case. We see that the center of mass and the width goes to

infinite. These two figures have to be compared with Figs.7(c)-7(d), in which

the same numerical parameters are used, but opposite cos p0: we see that the

motion of the center of mass is almost the same, but the the increasing rate
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Figure 1.5: (a) Population in the interval
L
∑

n=−L
| ψn |2 vs. time for Λ = 1.

(b) Population vs. time for Λ = 100. (c) Density profile at t = 40 for Λ = 1

(dotted line: initial condition). (d) Density profile at t = 40 for Λ = 1 (dotted

line: initial condition). The numerical simulations are done with 73 sites and

L = 11. From the numerical solutions, the critical value for the transition

is Λc ≈ 90, in qualitative agreement with Eqs.(1.23) and (1.24), which give

Λc ≈ 100.

of the width is much smaller. The reason is that, with the used parameters,

Λ is in the breather region, i.e. in a regime in which the width remains finite.

A detailed explanation will be presented in the next subsection. The average

position is defined as < n >=
∑

n n | ψn |2 and the width by 2
√
< n2 > with

< n2 >=
∑

n n
2 | ψn |2 − < n >2.

In Fig.8 we consider a self-trapped state (Λ > Λc): the variational pre-

diction is that ξ̇ → 0 and that ξ → const. During the approach to final time,

the width increases (and it goes asymptotically to a constant value) and the

momentum conjugate to the width goes to infinite. The full numerical solu-

tion cannot go to this state, because the transfer of energy to internal state
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Figure 1.6: Universal curve of γ0/γmax vs. Λ/Λc as in Eq.(1.26).

breaks down the wave packet: when the average position approaches to value

predicted from the variational analysis (thick line), the wave packet deform

until it breaks: we can think at the asymptotic value as a wall on which

the wave packet bounces. In the inset we compare the numerical and the

variational average position, where this kind of self -bouncing determines a

deviation between the two lines. We observe anyway, despite the variational

analysis cannot exactly follow the full dynamics in the self-trapping, it can

anyway predict the occurrence of the transition and give a very good value

for the critical point.

The results of this subsection are summarized in Fig.9, in which the

diffusive and the self-trapped regions are reported.

1.4.2 Negative effective mass

In this subsection we discuss the case cos p0 < 0. We will show that

soliton-like structures are present (even if the BEC’s interatomic potential
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Figure 1.7: Width (a) and average position (b) vs. time for p0 = π/10, α0 =

100 and Λ = 0.24 in the diffusive region (from Eq.(1.25) Λc = 33.55). In (c)

and (d) we plot the width and the average position for the same parameters,

but opposite cos p0 (p0 = 9π/10). In this case Λc = 0.17 and Λsol = 0.33.

The variational predictions (dashed lines) are in excellent agreement with

the numerical solutions (solid).

is repulsive). By using the results in App.A, we will also discuss the phase

diagram which have different regimes: diffusive (in which the boson wave

packet spreads out), self-trapped (as in the case cos p0 > 0), but also breath-

ing (where the center of mass of the wave packet moves with an oscillating

width), and solitonic (in which the wave packet shape is exactly preserved

during the dynamics).

Intrinsically localized excitations [38, 39], as solitons (shape preserving)

and breathers (characterized by internal oscillations), are important channels

for energy transport in nonlinear media, such as optical fibres and waveguides

[40], polaronic materials [41] and biological molecules [42]. Intense theoretical

research is now focusing on the existence of solitons and breathers in a lattice
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Figure 1.8: Density profiles at times t = 0, 1.25, 2.5, 3.75 (solid lines) and at

t = 5 (dotted) for p0 = π/4, α0 = 100 and Λ = 50 (Λc = 24.82). The thick line

represents the asymptotic value predicted from the variational analysis. In

the inset the variational (dashed line) and numerical (solid) average position

vs. time are plotted.

(often named discrete solitons and discrete breathers (DSB) [40]). Current

approaches include the search for exact solutions in some limits [43]; effective

(point) particle and variational approaches [44–46]; perturbation around the

linearized case and, of course, numerical solutions [16,40]. The occurrence of

bright soliton in BEC has been considered in [47]. Dark solitons in BECs has

been experimentally studied in [48].

Although intensely studied, DSB have been experimentally observed only

quite recently in superconducting ladders of Josephson junctions [49], in an-

tiferromagnet systems [50], in optical waveguides [51] and in low dimensional

materials [52].

The discrete solitons/breathers are characterized by a dynamical, self-

maintained energy localization, due to both the discreteness and the non-
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Figure 1.9: Dynamical phase diagram in the horizontal array with cos p0 > 0:

we plot Λ vs. cos p0, for α0 fixed (α0 = 10), Λ > 0 and with initial ξ0 = 0

and δ0 = 0. Varying α0 only implies a different slope of solid line, according

to Eq.(1.25).

linearity of the underlying equations of motion. The discreteness provides a

band structure of the excitation spectrum, while the nonlinearity allows for

the tuning of the DSB energy outside the band. The finite energy gap guaran-

tees the (meta-)stability of the DSB’s. These, obviously, have a different na-

ture to the “Anderson localizations”, created by impurities or imperfections

of the lattice [53]; the incorporation of disorder into nonlinear excitations,

and the tracing out of its dynamical effects are also important theoretical

problems. We will discuss the case of DNLSE with impurities in Chapter 3.

The determination of the phase diagram is done in App.A. In the region

cos p < 0 the self-trapping condition is given by H0 >| cos p0 |: the critical

value is given by

Λc = 2
√
πα0 | cos p0 | (1 − e−1/2α0). (1.27)

For Λ < Λc, α→ ∞, while for Λ > Λc, α remains finite.
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A soliton solution can be determined by imposing α̇ = δ̇ = 0. We find

Λsol = 2

√

π

α0
| cos p0 | e−1/2α0 . (1.28)

For Λ = Λsol the center of the wave packet moves with a constant velocity

ξ̇ and its width remains constant in time. We observe that for α0 > 1, it is

Λc < Λsol. In Fig.10 we plot the average position and the width for Λ = Λsol.

Since we are not using periodic boundary conditions (PBC), when he wave

packet arrives to the end of the lattice, it hits a wall: since it is soliton, after

hitting, it regains its shape. This is illustrated in Fig.11, where we show the

profile density at different times.

0 250 500time
−36

0

36

<n
>

Figure 1.10: Width (dotted line) and average position (solid line) calculated

numerically for Λ = Λsol and p0 = 3π/4 in a finite array of 73 sites.

For Λc < Λ < Λsol, ξ → ∞ while α(t) oscillates, corresponding to a

breather solution. When α0 > 1, the breather region extends until a value

Λbreath > Λsol: the equation from which it is possible determine Λbreath is

reported in App.A. In Fig.12 we plot the density profile at different times

when Λ is chosen in the breather region. In Fig.13 the same values are used,
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Figure 1.11: Numerical density profile for t = 0, 50, 100, 150, 200 for the soli-

ton described in Fig.10.

but with opposite cos p0: a diffusive solution is obtained.

The dynamical phase diagram which summarizes the results for the case

cos p0 < 0 is given in Fig.14, where the different regimes are plotted. We

have to mention that when Λc < Λ < Λbreath, the variational width oscillates

between α0 and a value smaller than α0: from numerical analysis, we realized

that these breather solutions are rather unstable and therefore the numerical

transition from breather to self-trapping is quite softened. Yet, Λbreath is in

qualitative agreement with the numerical findings.

Before concluding, we discuss the relation between the present results and

the Modulational Instability. As we will show in the following chapter, if we

consider a small perturbation on a plane wave ψn ∝ eip0n, stability analysis

shows that when cos p0 < 0 the eigenfrequencies of the linear modes be-

come imaginary driving an exponential growth of small perturbations. When

cos p0 > 0, the plane wave is stable. In the present case, we are considering

not a wave plane, but a localized wave function; anyway we expect that we
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Figure 1.12: Numerical density profiles calculated at different times (t =

0, 50, 100, . . . , 400). The value of Λ is inside the breather region of the dy-

namical phase diagram (p0 = 3π/4, γ0 = 10, Λ = 0.24).

can find the result previously stated by considering the case α >> 1. In

this case, when cos p0 > 0, Λc → ∞ and the self-trapped region disappears:

this correspond to the result which there is not modulational instability for

cos p0 > 0. To the contrary, when cos p0 < 0, then Λc → 0 and always the

system exhibits instability to small perturbation. In Fig.14, this means that

we have only self-trapping, as expected.

1.5 Vertical array

In this section we discuss the vertical array, in which the external po-

tential is given by the sum of the laser field and the gravitational potential:

V = mgx. This setup has been realized first in the Anderson-Kasevich ex-

periment at Yale [1]. The one-dimensional vertical optical array was created

by two counterpropagating laser beams (with wavelength λ = 850nm). A
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Figure 1.13: The same parameters as in Fig.12, but for p0 = π/4.

weakly interacting Bose-Einstein condensate was trapped in ∼ 30 wells, sit-

uated at the antinodes of the standing optical wave. Each well contained

approximately 1000 condensate atoms, with the peak densities matching a

gaussian profile. Since the array is oriented vertically, the atoms undergo co-

herent Bloch oscillations, driven by the interwell gravitational potential. At

the edge of the Brillouin zone, a fraction of atoms can Zener tunnel in the

higher energy band which, in this specific case, is in the continuum.

The importance of this experiment relies in the fact that a coherent leak-

age of atoms from the trap was observed: the output trap can be viewed as an

atom laser whose coherent length (> 500µm) greatly exceeds of the dimen-

sions of the BEC (i.e. the resonator). The time-domain pulses are directly

analogous to the output of a mode-locked laser source, in which interference

occurs between many properly phased continuous-wave output beams. The

nearly constant time interval between successive pulses directly implies that

the relative phase associated with each pulse envelope is well defined. The

realization of an atom laser is nowadays a very active field of research (see
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Figure 1.14: Dynamical phase diagram in the horizontal with cos p0 < 0: the

dashed line is Λsol and it corresponds to solitons, the solid line is Λc and

the dotted is Λbreath. In the region Λc < Λ < Λbreath, the variational analysis

predicts breather solutions. As in Fig.9, α0 is fixed (α0 = 10), Λ > 0 and

with initial ξ0 = 0 and δ0 = 0.

references indicated in [54]).

Furthermore, the coherent output from the laser is an indirect evidence

of the occurrence of Josephson oscillations in the trap. In the ac Josephson

effect, application of a dc voltage across the junction leads to an alternating

current. Here the chemical potential ∆µ = mgλ/2 between adjacent traps

(whose distance is precisely λ/2) is determined by the gravitational potential

and acts as an external dc voltage: in this way a coherent alternating current

with frequency ωJ = ∆µ/~ is obtained. In the following chapter we will

discuss an experiment in which a direct observation of Josephson oscillations

is reported.

The main features of the Anderson-Kasevich experiment can be discussed

in terms of the collective coordinate approach discussed in the previous sec-
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tion. In order to get the on-site energies (1.8), we use gaussian wavefunctions

localized in the different traps

Φn(~r) = Ce−(x−xn)2/2σ2
xe−y

2/2σ2
ye−z

2/2σ2
z (1.29)

with C normalization factor, xn = nλ/2 center of the n-th well along the op-

tical trap and σx,y,z widths to determine variationally. We remark that doing

this approximation we are neglecting implicitly the variation of the widths

along the transverse degrees of freedom. By substituting the gravitational

potentials V = mgx, we find simply

εn = mg
λ

2
n (1.30)

without dependence on the widths σx,y,z of the localized wavefunctions Φn.

In this way, we find En = εn/2K = ωn, where

ω =
mgλ

4K
: (1.31)

by substituting in Eq.(1.17) we get

V (α, ξ) = ωξ (1.32)

as expected. The variational equations of motion read







ṗ = −ω

ξ̇ = sin p · e−η
(1.33)

and






δ̇ = cos p
(

4
α2 − δ2

)

e−η + 2Λ√
πα3

α̇ = 2αδ cos p · e−η
(1.34)

from which

p(t) = −ωt+ p0 (1.35)
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It is well known that single atoms in a tilted washboard potential oscillate

among sites at the Bloch frequency. This regime is described by Eqs.(1.33)

and (1.34) with Λ = 0, corresponding to a negligible mean field condensate

interaction. This is, precisely, the regime investigated in [1] in which a co-

herent output was observed: indeed a simple variational estimate based on

Eq.(B.1) gives Λ ' 0.5 and ω ' 2. Furthermore, K ' 1.5 · 10−24 erg and the

scaled time is in units of ~/2K = 0.35ms. In the limit Λ → 0, the Eqs.(1.33)

and (1.34) can be solved exactly. First, we observe that from dH/dt = 0 we

can get

cos p · d
dt
e−η = − Λα̇

4
√
πα3

from which we can see that with Λ = 0, e−η is a conserved quantity. Let

us put ξ0 = 0 and δ0 = 0: therefore e−η = e−η(t=0) = e−1/2α0 . Since the

(conserved) energy is H0 = − cos p0 · e−1/2α0 , we find

ξ(t) = A[cos (ωt− p0) − cos p0] (1.36)

where

A = − H0

ω cos p0
=
e−1/2α0

ω
. (1.37)

We see from these equations that the amplitude A of the Bloch oscillations

does not depends on the initial velocity and it is inversely proportional to

the strength of the linear external field; furthermore, the greater is initially

the width of the wave packet, the greater is the amplitude of the Bloch

oscillations.

To obtain the solution for the width, we observe that the function

X ≡ αδ
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satisfies the equation Ẋ = −8Aω log (Aω) cos (ωt− p0). Since X (t = 0) = 0,

integrating we obtain

X (t) = −8A log (Aω)[sin (ωt− p0) + sin p0] :

by using the fact that α̇ = 2X e−η cos p, we get finally

α(t) = 4A2 logAω{cos [2(ωt− p0)]−cos 2p0−4 sin p0 sin (ωt− p0)−4 sin2 p0}+α0

(1.38)

and

δ(t) = −8A logAω [sin (ωt− p0) + sin p0]

α(t)
. (1.39)

From Eq.(1.38) we see that when p0 = 0, then the width oscillates at a

frequency twice than the center of mass. In Fig.15 we show that the Bloch

oscillations described by the variational ansatz (dashed line) are in excellent

agreement with the full numerical solution of the DNLSE (solid line).
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Figure 1.15: Numerical (solid line) and variational (dashed) average position

of the density in the vertical array (ω = 2, Λ = 0 and initial p0 = 0, δ0 = 0,

α0 = 100).
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Let us now consider the effect of the nonlinearity on the Bloch oscillations.

This has been studied experimentally in [1] by increasing the density in each

well, and observing a degradation in the interference pattern. With Λ 6= 0

we have:

ξ̈ +
Λδ

2
√
πγ
ξ̇ + ω2ξ = ωH0 −

Λω

2
√
πγ
. (1.40)

The Eq.(1.40) displays an effective damping term proportional to the velocity

ξ̇. We stress that the dynamics is fully Hamiltonian, and real dissipative

processes are absent. For t → ∞, α tends to a constant value αfin and

δ ∼ 2Λ√
πα3

fin

t, so the term Λδ has the correct positive sign (for large t). The

apparent damping is the consequence of a diverging effective mass of the wave

packet m∗ ∼ e
Λ2

2πα2
fin

t2

, which stops the Bloch oscillations. The oscillation

roughly decreases as

ξ(t) ∼ −A(1 − e
− Λ2t2

2πα2
fin cosωt). (1.41)

From Eq.(1.41), we can see that the time τdec in which the Bloch oscillation

stops is of order

τdec ∼
√

2πα

Λ
(1.42)

We observe that with typical experimental numbers of [1] this time is of order

∼ 1s and does not forbid the observation of the coherent leakage of atoms

from the trap. In Fig.16 (solid line) we show the variational Bloch dynamics

with a nonlinear parameter Λ = 10 and initial values ξ0 = 0, p0 = 0 and

δ0 = 0. The solid line shows the full numerical solution of the DNLSE, in

good agreement with the analytical result (dashed line). The discrepancy at

t > 10 is due to the breaking of the gaussian wave packet in the numerical

simulation.
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Figure 1.16: Coherent destruction of Bloch oscillations: numerical (solid line)

and variational (dashed) average position of the density in the vertical array

(ω = 2, Λ = 10 and initial p0 = 0, δ0 = 0, α0 = 100).

The effect of the coherence of the Bloch oscillations can be clearly seen by

looking at the phases of the condensates in the different traps: when Λ = 0,

the Fourier transform of ψn is well peaked around p(t) which is running. This

means that φn ∝ pn (we recall that ψn(t) =
√

nn(t) e
iφn(t)). This reflects in

the coherence of the output. When Λ 6= 0, at times of order τdec, the wave

packet is broken down and the phases deviate from the relation φn ∝ pn,

i.e. the Fourier transform is broken. This effect manifests, in the numerical

analysis of Eq.(1.10), as a distortion of the on-site phases, as showed in Fig.17.
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Figure 1.17: On-site phases φn at different times (from the top of the figure

t = 10, 20, 30). Dotted lines are for Λ = 0 and solid lines for Λ = 300.

Furthermore: N = 73 sites, ω = 2 and initial p0 = 0, δ0 = 0, α0 = 100.

38



Chapter 2

Josephson junction arrays

2.1 Introduction

In this chapter we discuss the experiment realized at the LENS in

Firenze [8], where for the first time has been reported the direct observation

of a Josephson current in an array of weakly coupled Bose-Einstein conden-

sates. The array, as discussed in the previous chapter, is created by a laser

standing-wave, with the condensates trapped in the valleys of the periodic

potential, and weakly coupled by the interwell barriers. By varying the laser

power, the energy barrier and therefore the microscopic tunneling rate (i.e.

the Josephson coupling energy) can be experimentally tuned and different

physical regimes can be investigated.

By suddenly moving the magnetic trap, the condensates are displaced

from the equilibrium position in the harmonic + optical potential. For small

displacement it is observed a coherent current in the trap: the phases of the

condensates are locked and the BECs tunnel all together from a well to the

neighbour one. The coherence of multiple tunneling between adjacent wells is
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continuously probed by observing the interference patterns of the condensates

when the magnetic and potential traps are turned off. As discussed in the

previous chapter, the system is described by a discrete nonlinear Schrödinger

equation (DNLSE), with an harmonic external driven potential: we will show

that the predictions of the full Gross-Pitaevskii equation which describes the

system are reproduced quite well from the DNLSE. Considering the DNLSE

and introducing as collective coordinates the center of mass ξ of the conden-

sates and the phase difference ∆φ between condensates in adjacent wells, it

is possible to show that ξ and ∆φ satisfies the equation of a pendulum: these

equations have the form of the standard Josephson relation for the current

and the phase difference.

From the Josephson equations it is possible to show that the square of

the small-amplitude oscillation frequency is proportional to the microscopic

tunneling rate of each condensate through the barriers, and provides a direct

measurement of the Josephson critical current as a function of the intermedi-

ate barrier heights. We find the expected result that the oscillation frequency

with the lattice is smaller than the frequency without the lattice: by increas-

ing the laser power (i.e. the height of the barriers), the frequency decreases

and the time of the oscillations increases: the barriers slow down the oscilla-

tions.

The frequency calculated from the Gross-Pitaevskii equation is in agree-

ment with the experimental findings, and both are in reasonable agreement

with a variational estimate of the microscopic tunneling rate. An important

consequence of this is that we have a well defined way to calculate the Joseph-

son coupling energy. We will show that when the laser power is high enough
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(i.e. the Josephson energy is low enough), quantum effects should be impor-

tant. Moreover, there is a threshold for a quantum transition between the

superfluid region, which has been investigated in the experiments at LENS

discussed in this chapter, and the region of the Mott insulator. We give an

estimate of the needed power of the laser: we think that this can be a very

stimulating field of future researches.

The array of BECs also have a very interesting and seemingly coun-

terintuitive property: with a large displacement of the harmonic trap, the

condensates stop on a side of the harmonic potential. This behavior is a

clear manifestation of a dynamical instability. Indeed, the study of the vari-

ational equations found in the previous chapter shows that when ∆φ reaches

π/2 during the oscillations, the system should be unstable. This is the oc-

currence in our particular system of a very general feature of the nonlinear

media (discrete as well as continuous): the so-called Modulational Instability

(MI). Using solid-state terminology and making a connection with the previ-

ous chapter, the instability occurs when the effective mass becomes singular.

The reason of the occurrence of the MI can be clearly understood by doing

a stability analysis of the DNLSE: when cos ∆φ < 0, the eigenfrequencies of

the linear modes becomes imaginary and there is an exponential growth of

small perturbations of the carrier wave.

By using the DNLSE, we can estimate the critical value for the displace-

ment: this depends on the energy of the interwell barrier. In this way we can

tune the experimental parameters in order to have or not the modulational

instability. Another important consequence of the MI is that it puts precise

conditions on the stability and on the maximum possible velocity of the wave
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propagation in such kind of lattice.

The plan of the chapter is the following: in section 2.2 we discuss the

Josephson oscillations for small displacements of the magnetic trap and we

derive the pendulum equations. The experimental data are also reported.

In section 2.3 a discussion of the behavior of the Josephson energy vs. the

laser power is reported and an estimate of the critical value for the quantum

transition is given. In section 2.4 the MI in an arrays of weakly coupled BECs

is discussed and preliminary experimental results are shown.

2.2 Josephson currents in arrays of weakly

coupled condensates

The existence of a Josephson current through a potential barrier between

two superconductors or between two superfluids is a direct manifestation of

macroscopic quantum phase coherence [55, 56]. The first experimental evi-

dence of a current-phase relation was observed in superconducting systems

soon after the Josephson effect was proposed in 1962 [57], whilst verification

in superfluid Helium has been presented only recently owing to the difficulty

of creating weak links in a neutral quantum liquid [58, 59].

The experimental realization of Bose-Einstein condensates (BEC) of weakly

interacting alkali atoms has provided a route to study neutral superfluids in

a controlled and tunable environment and to implement novel geometries for

the connection of several Josephson junctions so far unattainable in charged

systems.

A Josephson junction (JJ) is a simple device made of two coupled macro-

42



scopic quantum fluids [56]. If the coupling is weak enough, an atomic mass

current I flows across the two systems, driven by their relative phase ∆φ as:

I = Ic sin ∆φ (2.1)

where Ic is the “Josephson critical current”, namely the maximal current

allowed to flow through the junction. The relative phase dynamics, on the

other hand, is sensitive to the external and internal forces driving the system:

~
d

dt
∆φ = ∆V (2.2)

with ∆V being the chemical potential difference between the two quan-

tum fluids. The arrays of JJs are made of several simple junctions con-

nected in various geometrical configurations. In the last decade such systems

have attracted much interest, due to their potential for studying quantum

phase transitions in systems where the external parameters can be readily

tuned [60]. Recently, the creation of simple quantum-logic units and more

complex quantum computer schemes have been discussed [61]. A great level

of accuracy has been reached in the realization of two- and three-dimensional

superconducting JJ arrays [60]. One dimensional (1D) geometries are much

more difficult to realize, due to the unavoidable presence of on site frus-

tration charges which destroy the collective phase coherence. 1D JJ arrays

with neutral superfluids (such as Bose-Einstein condensates), on the other

hand, can be accurately tailored, and open the possibility to observe directly

several remarkable phenomena not accessible to other systems [35]. First

experiments with BECs held in a vertical optical lattice have shown the spa-

tial and temporal coherence of condensate waves emitted at different heights

of the gravitational field [1]. More recently, the degree of phase coherence
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among different sites of the array [6] has been explored in the BEC ground

state configuration.

We discuss in this section the realization of a one-dimensional array of JJs

by loading a BEC into an optical lattice potential generated by a standing-

wave laser field. The current-phase dynamics, driven by an external har-

monic oscillator potential provided by an external magnetic field, maps on a

pendulum-like equation and we have performed a measurement of the criti-

cal Josephson current as a function of the interwell potentials created by the

light field.

In the experiment, BECs of 87Rb atoms are produced in the (F = 1,

mF = −1) state confined by a cylindrically symmetric harmonic magnetic

trap and a blue detuned laser standing-wave, superimposed on the axis of the

magnetic trap [11]. The cylindrical magnetic trap is divided into an array of

disk shaped traps by the light standing-wave. By varying the intensity of the

superimposed laser beam (detuned 150 GHz to the blue of the D1 transition

at λ = 795 nm) up to 14mW/mm2 we can vary the interwell barrier energy V0

from 0 to 5ER where ER = h2/2mλ2 is the recoil energy of an atom (of mass

m) absorbing one of the lattice photons. The BEC is prepared by loading

∼ 5× 108 atoms in the magnetic trap and cooling the sample via RF-forced

evaporation until a significant fraction of condensed atoms is produced. We

then switch on the laser standing-wave and continue the evaporation ramp

until no thermal component is experimentally visible. This ensures that the

system reaches the ground state of the combined trap. The BEC splits in the

wells of the optical array: the distance between the wells is λ/2 and ∼ 200

wells are typically occupied, with ∼ 1000 atoms in each well. The interwell
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barrier energy V0, and therefore the tunneling rate, is controlled by varying

the intensity of the laser, chosen to be much higher than the condensate

chemical potential µ. Note that µ ranges between µ ≈ 0.10V0 for V0 = 2ER

to µ ≈ 0.04V0 for V0 = 5ER. Each couple of condensates in neighbouring

wells therefore realizes a bosonic JJ, with a critical current Ic depending on

the laser intensity.

The condensate order parameter satisfies the Gross-Pitaevskii equation

i~
∂Ψ

∂t
= − ~

2

2m
∇2Ψ + [Vext + g0 | Ψ |2]Ψ (2.3)

where

Vext(~r) = V0 cos2(kx) +
1

2
m[ω2

xx
2 + ω2

r(y
2 + z2)] (2.4)

where k = 2π/λ (we recall that λ = 795nm). The axial and radial frequencies

of the magnetic trap are respectively ωx = 2π × 9Hz and ωr = 2π × 92Hz.

The potential (2.4) along the x direction is plotted in Fig.1A.

We can describe the dynamics as discussed in Chapter 1: we recall briefly

the most important results of that chapter. We decompose the condensate or-

der parameter as a sum of wavefunctions localized in each well of the periodic

potential (tight-binding approximation):

Ψ(~r, t) =
√

NT

∑

j

ψj(t)Φj(~r) (2.5)

where NT is the total number of atoms and ψj =
√

nj(t) e
iφj(t) is the j-th

amplitude, with the fractional population nj = Nj/NT and the number of

particles Nj and the phase φj in the trap j.

The validity of assumption (2.5) has been discussed in the previous chap-

ter. It relies on the fact that the height of the interwell barriers is much higher

than the chemical potential. We will prove by a variational calculation that
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Figure 2.1: A) Combined potential of the optical lattice and the magnetic trap

in the axial direction. The curvature of the magnetic potential is multiplied

by a factor of 100 for clarity. B) Absorption image of the BEC released from

the combined trap. The expansion time was 26.5ms and the optical potential

height was 5ER.

this assumption is verified in most of the range of our experimental param-

eters. The validity of the tight-binding approximation is also based on the

fact that the tunneling of atoms in the higher energy band is energetically

forbidden: since the gap is ∼ 5ER, the potential energy 1
2
mω2

x

(

λ
2

)2
j2 for that

would require j ∼ 500, i.e. displacements three times larger than the conden-

sate dimensions. In the following we will compare the ground state which we

found with the ground state obtained taking into account the variation of the
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widths in the transverse directions. As previously discussed, in the present

case the ansatz (2.5) can well describe the bulk properties of the system.

The wavefunction Φj(~r) of the condensate in the j-th site of the array

overlaps in the barrier region with the wavefunctions Φj±1 of the condensates

in the neighbour sites. Therefore, the system realizes an array of weakly

coupled condensates, whose equation of motion satisfies a discrete nonlinear

Schrödinger equation:

i~
∂ψn
∂t

= −K(ψn−1 + ψn+1) + (εn + U | ψn |2)ψn, (2.6)

where, recalling Eqs.(1.7)-(1.9), the tunneling rate is K ' −
∫

d~r
[

~2

2m
~∇Φn ·

~∇Φn+1+ΦnVextΦn+1

]

, the on-site energies are εn =
∫

d~r
[

~
2

2m
(~∇Φn)

2+VextΦ
2
n

]

and the nonlinear coefficient is U = g0NT

∫

d~rΦ4
n. Both the Hamiltonian

H =
∑

j[−K(ψjψ
∗
j+1 + ψ∗

jψj+1) + εj | ψj |2 +Λ
2

| ψj |4] and the norm
∑

j nj = 1.

To evaluate the coefficients of the DNLSE (2.6), we use the variational

ansatz given in section 1.4:

Φn(~r) = Ce−(x−xn)2/2σ2
xe−y

2/2σ2
ye−z

2/2σ2
z (2.7)

with C normalization factor, xn = nλ/2 center of the n-th well along the

optical trap and σx,y,z widths to determine variationally. The details of the

calculation of K, εn, U are in App.B. It is found

εn = Ωn2 (2.8)

where

Ω =
1

2
mω2

x

(λ

2

)2
= 1.54 × 10−5ER. (2.9)

The simple variational estimate discussed in App.B gives for V0 = 3ER the

values K ∼ 0.07ER, Λ ∼ 12ER and a chemical potential µ ∼ 0.06V0 much
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lower than the interwell potential V0. We observe that the wavefunctions Φj,

as well as the tunneling rate K, depend on the height of the energy barrier

V0.

Although we can approximate the condensates in each lattice site as

having their own wavefunctions, tunneling between adjacent wells lock the

phases of the different condensates. As a result when the condensates are

released from the combined trap they will show an interference pattern. This

pattern consists of a central peak plus a symmetric comb of equally spaced

peaks separated by ±2~kltexp/m where kl is the wave vector of the trapping

laser and texp is the expansion time. In practice one can think of the far field

intensity distribution of a linear array of dipole antennas all emitting with

the same phase. A complementary point of view is to regard the density dis-

tribution after expansion as the Fourier transform of the trapped one, i.e.

the momentum distribution. It is easy to show that the sum of De Broglie

waves corresponding to momentum states integer multiples of ±2~kl is the

sum of localized wavefunctions of Eq.(2.5). The expanded cloud density dis-

tribution (Fig.1B and Fig.2) consists of three distinct atomic clouds spaced

by ∼ 306µm' 2~kltexp/m with the two external clouds corresponding to

the first order interference peaks, each containing roughly 10% of the total

number of atoms. When there is not coherence, we have not longer the three

peaks. The interference pattern therefore provides us with information about

the relative phase of the different condensates [3,6], indeed by repeating the

experiment with thermal clouds, even with a temperature considerably lower

than the interwell potential, we did not observe the interference pattern.

We remark that this situation is different from the Bragg diffraction of a
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Figure 2.2: Another absorption image featuring the three peaks.

condensate released from a harmonic magnetic trap [62], where the conden-

sate is diffracted by a laser standing-wave. In our case it is the ground state

of the combined magnetic harmonic trap plus optical periodic potential that

by expansion produces an interference pattern. For the time scales of our

experiment the relative intensities of the three interference peaks do not de-

pend on the time the atoms spend in the optical potential indicating that the

steady state system has been reached. In absence of external perturbations

the condensate remains in the state described by Eq. (2.5) with a lifetime of

∼ 0.3 s at the maximum light power, limited by scattering of light from the

laser standing-wave.

In the ground state configuration the Bose-Einstein condensates are dis-

tributed among the sites at the bottom of the parabolic trap. If we suddenly

displace the magnetic trap along the lattice axis by a small distance ∼ 30µm

(the dimension of the array is ∼ 100µm) the cloud will be out of equilibrium

and will start to move. As the potential energy that we give to the cloud is

still smaller than the interwell barrier each condensate can move along the
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magnetic field only by tunneling through the barriers. A collective motion

can only be established at the price of a well definite phase coherence among

the condensates. In other words, the relative phases among all adjacent sites

should remain locked together in order to preserve the ordering of the col-

lective motion. The locking of the relative phases will again show up in the

expanded cloud interferogram.

For not too large displacements, we observe a coherent collective oscilla-

tion of the condensates, i.e. we see the three peaks of the interferogram of the

expanded condensates oscillating in phase thus showing that the quantum

mechanical phase is maintained over the entire condensate (Fig.3A). In the

top part of the figure we show the positions of the three peaks as a function

of time, and compared with the motion of the condensate in the same dis-

placed magnetic trap but in absence of the optical standing-wave (we refer

to this as “harmonic” oscillation). The motion performed by the center of

mass of the condensate is an undamped oscillation at a substantially lower

frequency than in the “harmonic” case. We will comment on this frequency

shift later, now we would like to further stress the coherent nature of the

oscillation. To do so we repeat the same experiment with a thermal cloud.

In this case, although individual atoms are allowed to tunnel through the

barriers, no macroscopic phase is present in the cloud and no motion of the

center of mass should be observed. The center of mass position of the thermal

clouds is also reported in Fig.3B together with the “harmonic” oscillation of

the same cloud in absence of the optical potential. As can be clearly seen

the thermal cloud does not move from its original position in presence of the

optical lattice.
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We now turn back to the discussion of the frequency reduction observed

in the oscillation of the pure condensate in presence of the optical lattice.

The current flowing through the junction between two quantum fluids has a

maximum value, the critical Josephson current Ic, which is directly propor-

tional to the tunneling rate K. The existence of such a condition essentially

limits the maximum velocity at which the condensate can flow through the

interwell barriers and therefore reduces the frequency of the oscillations. As

a consequence we expect a dependence of the oscillation frequency from the

tunneling rate.

Before to derive the Josephson equations which describe the system in

the regime of small displacements of the magnetic trap, we want discuss the

ground state of the DNLSE (2.6). As the number of atoms is large the “ki-

netic” energy term of DNLSE is small respect to the potential and nonlinear

terms, and the population density profile of the ground state is simply given

by an inverted discrete parabolic profile:

| ψn |2G.S.=
µ− Ωn2

U
(2.10)

with n < ninv and the inversion point given by

ninv '
√

µ

Ω
. (2.11)

The chemical potential µ is fixed by the condition
∑

n | ψn |2= 1: by substi-

tuting the sums with integrals we get the result

µ =
(3

4
UΩ1/2

)2/3

(2.12)

It is important to remark that the fact that K and U does not depends on

the lattice site n is a consequence of the fact we are using in the transverse
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directions average widths σy,z which does not depend on n. A more detailed

calculation was done in the the work by Pedri et al. [33], where it was cal-

culated the number of particles in the ground state by taking into account

the variation of the widths in the transverse direction (in our formalism, this

means that U and K are site-dependent): their result is

| ψk |2G.S.=
15

16kM

(

1 − k2

k2
M

)2

(2.13)

where

k2
M =

2~ω̃

mω2
x(λ/2)2

(

15

8
√
π
NT

a

aho

λ

2σ

)2/5

with ω̃ = (ωxωr)
1/3, aho =

√

~/mω̃, a the s-wave scattering length and σ

characterizing the width of the condensates on each well (for V0 = 4ER it is

σ/(λ/2) = 0.27). A comparison of Eqs.(2.10) and (2.13) for the experimental

values before given is plotted in Fig.4.

Let us now discuss the dynamical equations of the system: we rewrite

the DNLSE (2.6) in terms of the canonically conjugate population/phase

variables, therefore enlightening its equivalence with the Josephson equations

for a one dimensional junction array. With ψj =
√
nje

iφj we find






~ṅj = 2K
√
njnj−1 sin (φj − φj−1) − 2K

√
njnj+1 sin (φj+1 − φj)

~φ̇j = −Λnj − Ωj2 +K
√

nj−1/nj cos (φj − φj−1) +K
√

nj+1/nj cos (φj+1 − φj)

(2.14)

It is useful to introduce collective coordinates: the center of mass ξ(t)

and the dispersion σ(t) are defined, respectively, as

ξ(t) =
∑

j

jnj (2.15)

and

σ2(t) =
∑

j

j2nj − ξ2. (2.16)
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From Eq.(2.14) we have

~ξ̇ = 2K
∑

j

√
njnj+1 sin (φj+1 − φj). (2.17)

We can use for nj the approximation (2.10) with the population density

profile simply given by an inverted discrete parabolic profile, centered around

ξ:

nj(t) =
µ− Ω[j − ξ(t)]2

Λ

from which we can see that d
dt
σ2 = 0.

During the dynamical evolution, the relative phases across the junctions

φj+1 − φj ≡ ∆φ(t) remain locked together to the same (oscillating) value.

This has been verified studying the Fourier transform ψ̃k =
∑

j ψje
ikj, which

remains well peaked around an oscillating value: for a study of the Fourier

transforms in the dynamics see section 2.4. From the experimental point

of view, the phase locking means that the expanded condensate continues

to show the three peaks of the interferogram of Fig.1. The phase-current

relation is given by







~
d
dt
ξ(t) = 2K sin ∆φ(t)

~
d
dt

∆φ(t) = − mω2
x

(

λ
2

)2
ξ(t)

(2.18)

which, in analogy with the case of a superconducting Josephson junction (in

the resistively shunted junction model [55,56]) and with the case of 3He [59],

is a pendulum equation with the relative phase ∆φ corresponding to the angle

to a vertical axis and the center of mass ξ being the corresponding angular

momentum. We remark that, in the regimes we are considering, the current-

phase dynamics does not depend explicitly on the interatomic interaction.

This allows us to study regimes with a number of condensate atoms spanning
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over different order of magnitude. However, it is clear that the nonlinear

interaction is crucial on determining the superfluid nature of the coupled

condensates, by locking the overall phase coherence against perturbations.

In Fig.5 we show a comparison between the GPE and the DNLSE for

the oscillations corresponding to two different initial displacements: there is

a reasonable agreement. We also note that from the pendulum Eqs.(2.18)

it is possible to say that the frequency of the oscillations should depend on

the initial displacement ξ(0). This is what happens: in Fig.6 we plot the

frequency of the oscillations as a function of the initial displacement: the

GPE results are compared with the DNLSE. We see that there is not an

exact agreement and the frequency of the GPE is greater than the DNLSE,

which is equal to frequency of the pendulum equations (2.18). For the critical

initial displacement given in section 2.4 by Eq.(2.32), the oscillations are not

anymore present: at that point the difference between GPE and DNLSE is of

order 10 per cent. With experimental measurement with an error of less than

10 per cent and controlling the initial displacement with an error less than

5µm, it should be possible to detect the shift of the frequency now discussed.

By defining the current as

I ≡ NT
d

dt
ξ

and the critical Josephson current

Ic ≡
2KNT

~
(2.19)

we readily see that Eqs.(2.18) are equivalent to the Josephson Eqs.(2.1)-(2.2).

We note that the array of junctions behave as a single Josephson junction.

Furthermore, we can see that the small amplitude oscillation frequency

ωl of the current I gives a direct measurement of the critical Josephson
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current Ic and, therefore, of the atomic tunneling rate K of each condensate

through the barriers. The critical current is related to the frequency ω of the

atomic oscillations in the lattice and to the frequency ωx of the condensate

oscillations in absence of the periodic field by the relation

Ic =
4~NT

mλ2

(

ω

ωx

)2

. (2.20)

Fig.7 shows the experimental value of the frequencies of the small oscillations

in the trap compared with the results of the Gross-Pitaevskii equation. The

value of the frequency calculated using Eqs.(2.19), (2.20) and the variational

estimate of K of App.B is also plotted.

2.3 Quantum phase transitions

In this section we briefly discuss the possibility to observe quantum phase

transitions in arrays of weakly coupled BECs. The full quantum Hamiltonian

for the bosonic gas in the optical potentials is

i~
∂

∂t
Ψ̂(~r, t) =

[

T + Vext +

∫

d~r′Ψ̂†(~r′, t)v(~r − ~r′)Ψ̂(~r′, t)
]

Ψ̂(~r, t) (2.21)

where T = −~
2~∇2/2m and v(~r − ~r′) is the two-body potential. Here for

simplicity, we does not consider the harmonic trap: Vext(~r) = V0 cos2(kx). By

doing the standard s-wave scattering approximation (v(~r− ~r′) = g0δ(~r− ~r′))

we obtain the well- known equation

i~
∂

∂t
Ψ̂ =

[

T + Vext + g0Ψ̂
†Ψ̂
]

Ψ̂ (2.22)

from which the Gross-Pitaevskii is usually derived [32].
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When the power laser is high enough, we can do a tight-binding approx-

imation, exactly as in the Chapter 1:

Ψ̂(~r, t) =
√

NT

∑

j

ψ̂j(t)Φj(~r) (2.23)

In (2.23), Φj(~r) is a wavefunction localized in the well n and normalized to

1. The Bose-Hubbard model (or quantum-DNLS) is then obtained:

Ĥ =
∑

j

[−K(ψ̂jψ̂
†
j+1 + ψ̂†

j ψ̂j+1) +
U

2
(ψ̂†

j ψ̂j)
2] (2.24)

where the coefficients K and U are the same of the previous section. As it

is well known, quantum phase transitions for one-dimensional systems are

possible only at T = 0 [63]. The Bose-Hubbard model has been intensively

investigated (for a discussion in one dimension see e.g [64] and reference

therein), also in connection with the properties of arrays of Josephson junc-

tion arrays, which are usually described by the Quantum Phase Model, which

is strongly related to Bose-Hubbard model. For a discussion of the Quantum

Phase Model in one dimension see [23, 65–67].

To connect with the standard notation, we observe that the number of

bosons in the site j is N̂j = NT ψ̂
†
j ψ̂j. Using known results, we have that the

ratio between the Josephson energy

Ej =
K < N >

NT
(2.25)

and the charging energy

Ec =
U

N2
T

(2.26)

determine the transition between the superfluid region and the Mott insu-

lator (in which the phase is undetermined and the atom number states are

squeezed). In Eq.(2.25), < N > is the average value of particles per site.
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When Ej/Ec >> 1, the effects of quantum fluctuations are negligible: this

is precisely the case considered in the experiment described in the previous

section, where Ej/Ec is of order 105. When Ej/Ec approaches to unity, the

quantum fluctuations becomes more and more important: in [6] Ej/Ec ∼

10 − 100. The quantum phase transition occurs when

Ej ∼ Ec.

Since Ej is proportional to K and K decreases when V0 increases, we have

to increase the laser power.

Here we give an estimate of the power of the laser needed to observe

the quantum fluctuations and, possibly, the quantum phase transition. We

calculate K(V0) by using the Eq.(2.20) and calculating the frequency of the

small oscillations with the GPE (which is expected to work until the quantum

fluctuations becomes important). From our results, plotted in Figs.8-9, we

can see that the dependence of the microscopic quantum tunneling (and

therefore of the Josephson energy) on the height of the barriers, V0, is of the

form

K

ER
= C0 e

−ΓV0/ER : (2.27)

this dependence is in agreement with the results in [68]. We numerically find

C0 ≈ 0.15 and Γ ≈ 0.2 (proceeding as in [68] we found a different value for

Γ, which does not fit the experimental data).

Now we can estimate the value V cr
0 at which the transition occurs: this

value of course depends on the number of particles in the lattice, as previously

discussed. With NT ∼ 10000 and ≈ 100 sites, we get

V cr
0 ≈ 45 − 50. (2.28)
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Reducing the number of particles, we get a critical value of the laser power

more realistic value from the experimental point of view (but, of course, is also

more difficult to deal with a so small number of particles): with NT ∼ 1000

and ≈ 50 sites we have

V cr
0 ≈ 30 − 35. (2.29)

2.4 Modulational instability: a classical superfluid-

insulator transition

The Modulational Instability (MI) is a general feature of discrete as well

as continuum nonlinear wave equations. Its demonstrations span a diverse set

of disciplines ranging from fluid dynamics [69] (where it is usually referred to

as the Benjamin-Feir instability) and nonlinear optics [70] to plasma physics

[71].

MI refers to the exponential growth of a small perturbation of a carrier

wave, as a result of the interplay between dispersion and nonlinearity. One

of the early contexts in which its significance was appreciated was the linear

stability analysis of deep water waves which are described by the ubiquitous

model of the nonlinear Schrödinger equation. It was only much later recog-

nized that the conditions for MI would be significantly modified for discrete

settings relevant to the local denaturation of DNA [72] or arrays of optical

fibers [46,51]. In the latter case, the relevant model is the DNLSE and its MI

conditions were discussed in [73]. In fact, it was recently recognized that in

discrete systems, MI is “the first step towards energy localization in nonlinear

lattices” [74], since it leads to the creation of localized coherent structures
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which are subsequently trapped and pinned due to lattice discreteness [75].

In this section we want to discuss how to observe the MI in an array

of weakly coupled BECs and to present some preliminary experimental data

obtained by the LENS group at Firenze. We will refer to the experimental

setup described in section 2.2, with the same values (the only differences

is that in the experiments discussed below the total number of particles

is 50000). As we have discussed, for a small displacement of the magnetic

trap, coherent oscillations in the lattice are observed. The transmission of

coherent matter waves in an array of weakly coupled condensates requires

phase coherence among the sites [8].

However, there is a critical displacement above which the phase coher-

ence is dramatically lost. The relative phase of the condensates localized in

different sites randomizes (by running at different velocities), and the system

becomes an insulator. It is worth stressing that such randomization takes

place between the phases of BECs localized in different “sites”, each BEC

remaining internally coherent. The transmission of coherent matter waves in

an array of weakly coupled condensates requires phase coherence among the

sites.

In order to explain the occurrence of MI in the array, let us consider

the DNLSE (2.6) with εn = 0 (which corresponds to neglect the effect of

the harmonic trap). We observe that among the eigenstates of Eq.(2.6) there

are plane waves of the form ψ = ψ0 exp(ikn), and the chemical potential is

given by: µ = − cos k + Λ | ψ0 |2. The stability analysis of such states can

be carried out by writing: ψn = ψ0e
ikn(1 + ueiqn + v∗e−iqn). The DNLSE
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excitation spectrum (for εn = 0) is given by:

ωn,± = sin k sin q ± 2

√

cos2 k · sin4 q

2
+ Λ|ψ0|2 cos k · sin2 q

2
(2.30)

The MI occurs when the eigenfrequency ωn becomes imaginary: we see

that when cos k > 0, cos2 k · sin4 q
2
+Λ|ψ0|2 cos k · sin2 q

2
> 0, and ωn is always

real. Instead, for cos k < 0, we see that cos2 k · sin4 q
2
+Λ|ψ0|2 cos k · sin2 q

2
< 0

if

Λ | ψ0 |2> − cos k · sin2 q

2
(2.31)

Therefore, when Λ > 0, the system would become unstable leading to expo-

nential growth of all phonon q−modes when the quasi-momentum k of the

carrier wave is such that k > π/2. This result still hold for non-homogeneous

carrier waves, when the wave-packet has a width much larger than the wave

length associated with the collective motion. This conclusion can be further

exploited by studying the stability of the collective coordinate equations of

motion [13].

The effect of the exponential growth of phonon modes of arbitrary mo-

menta, leads to an effective dephasing among different sites, and the wave

suddenly stops. The complete delocalization in momentum space leads to

strong localization in real space, hence the appearance of localized pulse-like

coherent structures of large amplitude. However, it is well-known that dis-

creteness, due to the presence of the so-called Peierls-Nabarro barrier [75],

pins such large amplitude solutions [74,76], not allowing them to propagate.

The excess of kinetic energy is partially converted to wakes of small ampli-

tude extended wave radiation [75] and partially stored to the internal mode

breathing oscillations [77] of the resulting pulses.
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By considering also the external potential εn = Ωn2, the previous con-

clusions are essentially unchanged. By using the Eqs.(2.18), we see that the

MI instability occurs when the initial displacement ξ(0) is such that in the

pendulum oscillations ∆φ reach π/2. The critical value for the initial dis-

placement, ξcr(0), is given by the formula

ξ2
cr(0) =

16K

mω2
xλ

2
=

2K

Ω
(2.32)

where Eq.(2.20) was also used. From this equation we can see that for laser

power V0 increasing, the critical value ξcr(0) decreases and the region of the

MI increases. In Fig.10 we plot the critical displacement vs. the laser power

V0, as given by Eq.(2.32).

The average value momentum < k > is calculated from the Fourier trans-

form ψ̃k of the wavefuction ψn: it is

< k >=
∑

k

k | ψ̃k |2 (2.33)

(in this equation ψ̃k is normalized to 1:
∑

k | ψ̃k |2= 1). As discussed in

section 2.2, it is in

< k >= ∆φ. (2.34)

In Fig.11 we show that for a small initial displacement ξ(0) < ξcr(0), < k(t) >

oscillates with time as the pendulum Eqs.(2.18) predicts. When ∆φ reaches

π/2, the MI is activated and the Fourier transform, as well as the wave

function, breaks down.

As a consequence of the instability, the on site phases randomize. This

can be shown by defining an “order parameter”

Ψ =
∑

n

ψn+1ψ
∗
n. (2.35)
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In Fig.12 we show that | Ψ |2 is 1 for ξ(0) < ξcr(0). When ∆φ → π/2, the

order parameters drops suddenly to zero, due to a loss of coherence among

interwell phases. In this sense we can say that we are dealing with a classical

superfluid-insulator transition. In Fig.13 the center of mass motion is plotted

in the MI region: a comparison between GPE and DNLSE is done and a

reasonable agreement is found.

The decoherence, localization and pinning are in agreement with the

experimental as well as with the model (with both GPE and DNLSE) ob-

servations and clearly indicate the importance of MI in inducing energy lo-

calization in this effectively discrete nonlinear system. As we discussed, for

small displacements the system can oscillate coherently by locking the rela-

tive phases to the same value ∆φ(t) = p(t), where p =< k > is the quasi-

momentum of the wave-packet. However, MI “unlocks” the relative phases,

which start to run independently with different velocities. The overall phase

coherence is quickly lost, and the system behaves as an insulator. Such a tran-

sition occurs for classical field theories and it is qualitatively different from the

quantum Mott insulator-superfluid (QMIS) transition in mesoscopic Joseph-

son junction chains, which is driven by the competition between zero-point

quantum phase fluctuations and the potential energy. Yet, it is possible to

draw an analogy. In the former (MI) case, the insulator regime is associated

with a vanishing temporal correlation among the phases of each site, each

phase still being meaningful in the GPE sense. The quantum transition, on

the other hand, is driven by the large quantum phase fluctuations induced by

the squeezing of atom number states in each site, and, therefore, by the non-

commuting nature of the number-phase observables. Clearly, such quantum
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fluctuations cannot be captured within the GPE framework.

In Fig.14 we report preliminary experimental results of the LENS group

which shows that the condensate stops for initial large displacement, and this

is accompanied by a loss of coherence: the three peaks disappear, as we can

see in the inset.
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Figure 2.3: A) Center of mass position of the three peaks in the interferogram

of the expanded condensate as a function of the time spent in the combined

trap after displacement of the magnetic field. Up and down triangles corre-

spond to the first order peaks, filled circles to the central peak. Open circles

show the center of mass position of the BEC in absence of the optical lattice.

The continuous lines are the fits to the data. B) Center of mass positions of

the thermal cloud as a function of time spent in the displaced magnetic trap

with the standing wave turned on (filled circles) and off (open circles).
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Figure 2.4: Comparison of the Eqs.(2.10), dashed line, and (2.13), solid, for

α = 4 and NT = 200000.
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Figure 2.5: Comparison of the Gross-Pitaevskii equation (solid line) and the

discrete nonlinear discrete Schrödinger equation (dashed) for two different

initial displacements (20 and 40 sites). V0 = 4ER and NT = 200000 are used.
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Figure 2.6: Frequency of the oscillations vs. initial displacement (expressed

in lattice sites) with the Gross-Pitaevskii equation (black circles) and the

discrete nonlinear discrete Schrödinger equation (open circles). V0 = 5ER

and NT = 50000 are used.
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Figure 2.7: Frequency of the atomic oscillations in the trap as a function of

the laser barrier height. Black circles: experimental data; solid line: solution

of the GPE; dashed line: frequency obtained using Eq.(2.20) with K given

by the variational calculation in App.B.
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Figure 2.8: Plot of the frequency of the small oscillations as a function of

the height of the energy barriers between adjacent wells V0: black circles

correspond to the solution of the GPE (2.3) and the long-dashed line to the

variational estimate given in App.B.
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Figure 2.9: Plot in logarithmic scale of the microscopic tunneling rate K

(in units of ER) as a function of the height of the energy barriers between

adjacent wells V0: K is obtained by using the Eq.(2.20) and the frequencies

of the small oscillations given by the solution of the GPE.
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Figure 2.10: Plot of the initial critical displacement ξcr(0) vs. the laser power

V0, as given by Eq.(2.32).
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Figure 2.11: Plot of the quasi-momentum < k > vs. time for three different

initial displacements: 40, 80 and 90 sites. We are considering the values V0 =

5ER and NT = 50000: the Eq.(2.32) gives an initial critical displacement

ξcr(0) ≈ 84 sites. It is clearly seen that when < k > reaches π/2 (i.e. with an

initial displacement greater than ξcr(0)), the MI is activated.
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Figure 2.12: Plot of the modulus square of the order parameter Ψ defined

by Eq.(2.35) for three different initial displacements (40, 80 and 90 sites)

and with the same parameters of Fig.11. In the instant in which the quasi-

momentum < k > reaches π/2 (i.e. with an initial displacement greater than

ξcr(0)), the order parameter drops to 0: see Fig.11.
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Figure 2.13: Center of mass vs. time for an initial displacement of 150 sites,

greater than the critical displacement. We are considering the values V0 =

5ER and NT = 50000. Solid line: GPE; dashed line: DNLSE.
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Figure 2.14: Preliminary experimental results of the LENS group on the

occurrence of MI in arrays of weakly coupled BECs. Blue and black points:

oscillations of the center of mass after the expansion (t = 26.5ms) without

optical lattice (only harmonic trap); green points: the optical lattice is turned

on with V0 = 3ER; red points: V0 = 5ER. The number of particles is NT =

50000 and the center of mass is in arbitrary units.
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Chapter 3

Superfluidity versus disorder

3.1 Introduction

In Chapters 1 and 2 we studied the properties of a BEC in a deep

optical lattice, showing that the dynamics is governed by a discrete nonlin-

ear Schrödinger equation. We also remarked that the possibility to have a

physical system modeled by a such widely studied equation is one important

reason of interest of the study of arrays of BECs. Yet, the inclusion of (possi-

bly random) defects in the system BEC + periodic potential would allow to

investigate the interplay between nonlinearity (provided by the interatomic

potential), discreteness (given by the optical lattice) and disorder (e.g. the

random potentials added to laser beams). The study of a such interplay has

become one of the fundamental issues of the last decades in the study of

many physical and biological systems (both discrete and continuous) [39].

It is well known that nonlinearity or disorder may lead to localized ex-

citations - “solitonic” structures [78] and “Anderson localization” [53], re-

spectively. The natural questions that arise are what happens when both
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nonlinearity and disorder are present and how the transport properties are

affected. This problem is of central experimental relevance, since impurities

can be reduced but never completely eliminated. In particular, it can be asked

if random defects will (and, if so, how) destroy the propagation of traveling

plane waves or localized excitations (allowed by the nonlinearity), and what

are the conditions for crossing from a “superfluid” regime with propagation

(and coherence) preserved (due to, for instance, a large nonlinearity), to a

”normal” regime with disorder induced damping.

In this chapter we consider the dynamical properties of DNLSE in an

annular geometry and in the presence of impurities. Apart from the already

mentioned fact that a BEC in an optical lattice map on a DNLSE, there are

also other reasons which motivate such analysis: 1) the DNLSE is a general

equation [16] which has all the required ingredients: nonlinearity, disorder

and discreteness; 2) the continuum nonlinear Schrödinger equation (CNLSE)

limit is exactly integrable; 3) other real physical systems, like optical fibers,

map onto the DNLSE and also provide the ideal framework to investigate ex-

perimentally the competition between superfluidity and disorder in discrete

systems. The annular geometry is paradigmatic for studying superfluid prop-

erties [54], and allows a clear comparison between the discrete and continuous

limits.

With regard to optical fibers, a typical experimental setup is realized with

an array of one dimensional nonlinear coupled waveguides [51]. As the light

propagates along the array, the coupling induces an exchange of power among

the single waveguides. In the low power limit (i.e. when the nonlinearity is

negligible), the optical field spreads over the whole array. Upon increasing
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the power, the output field narrows until it is localized in a few waveguides,

and discrete solitons can finally be observed [51,79]. The evolution of En(τ),

the electrical field in the nth waveguide, as a function of the position, τ , is

governed by the DNLSE Eq.(3.1). In this case Λ is proportional to the Kerr

nonlinearity and the on-site potentials εn are the effective refraction indices

of the individual waveguides. In [80] a linearly growing index was considered,

which allowed the observation of Bloch oscillations.

In this chapter we show that a traveling plane wave with initial wave

vector k splits, in momentum space, into two waves with ±k. The DNLSE

dynamics with a single defect can be mapped onto an effective non-rigid

pendulum Hamiltonian. The different predicted (and numerically confirmed)

regimes include large amplitude pendulum oscillations, corresponding to the

complete reflection and refocusing of the initial wave due to the impurity,

fixed points given by solitonic structures, and self-trapped (or superfluid)

states due to the pendulum rotations (section 3.2). With two impurities on

the lattice in the dynamics enters not the spatial distance between the defects,

but the relative phase between them and the creation of barriers transparent

to incident waves is made possible. These (and additional) regimes are also

present given an arbitrary (including random) distribution of defects, the

dynamics still being governed by a non-rigid pendulum Hamiltonian with

parameters depending on the distribution of defects (sections 3.3 and 3.4

and also [21]).
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3.2 The discrete nonlinear Schrödinger equa-

tion with a single impurity

The DNLSE with defects εn is (in the dimensionless form used in the

previous chapters):

i
∂ψn
∂τ

= −1

2
(ψn−1 + ψn+1) + (εn + Λ | ψn |2)ψn, (3.1)

where Λ is the nonlinear coefficient and n = 1, · · · , N (N number of sites).

These defects can be spatially localized or extended; for instance, the impu-

rities in optical fibers can be induced by different (possibly random) effective

refraction indices of the guides or with varying spatial separations between

them. In BEC’s trapped in optical lattices, the defects can be created with

additional lasers and/or magnetic fields; the presence of a thermal compo-

nent can also be phenomenologically modeled, in some limits, by a random

distribution of defects.

First, we consider the DNLSE with a single defect

εn = ε δn,n̄ (3.2)

at the site n̄, and we study the propagation of a plane wave ψn(τ = 0) = eikn.

In the following we assume Λ > 0 (which corresponds to a repulsive in-

teratomic interaction in BEC’s, as is the case for 87Rb atoms). Note, how-

ever, that Eq.(3.1) is invariant with respect to the transformation Λ → −Λ,

εn → −εn, τ → −τ and ψn → ψne
iπn. Since we consider periodic boundary

conditions (due to the annular geometry), we have k = 2πl/N with l integer

(l = 0, · · · , N − 1).

In the CNLSE (translationally invariant) limit of the DNLSE, a well know

argument suggested by Landau implies that the finite nonlinearity allows a
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superfluid regime when the traveling speed is smaller than the sound velocity

(for weak perturbations). The key point of this argument is that the nonlin-

earity provides an energy barrier for the creation of elementary excitations

which would dissipate the energy of the incident wave [54].

This scenario is completely changed by the discreteness. First, as we

discussed in Chapter 2, when cos k < 0 the system becomes modulation-

ally unstable [73]. Stability analysis reveals that the eigenfrequencies of the

linear modes become imaginary driving an exponential growth of small per-

turbations. This modulation instability disappears, for Λ > 0, in the CNLSE

limit.

Let us consider, then, the case in which cos k > 0. We anticipate that

when Λ = 0 and the strength of the impurity is not too strong (i.e. not

greater than the hopping term, which is 1 in our units), the wave is always

reflected by the defect, and the angular momentum, defined as

L(τ) = i
∑

n

(ψnψ
∗
n+1 − c.c), (3.3)

oscillates between the initial value L0 and −L0. What is very different from

the continuum case is that only plane waves with wave vector ±k play a role,

while the excitation of the other modes is inhibited by higher energy barriers.

The occurrence of such barriers in the discrete case will be explained in the

following. In Fig.1 we plot (in log-log scale) the frequency of the oscillations of

the angular momentum; the dashed line is the result of the-mode model (3.5)

in which only the plane waves ±k enter on the dynamics. As we will show

below, when Λ = 0, the oscillation of L are sinusoidal and their frequency is

given by

ν =
ε

πN
. (3.4)
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Figure 3.1: Numerical (black circles) and analytical (dashed line) frequency

of the oscillations of the angular momentum as a function of the strength

ε of the impurity without nonlinearity. A log-log scale is used. Numerical

parameters of the simulations: N = 100, l = 10. The numerical analysis

shows that there is not dependence of ν on the momentum k = 2πl/N .

The argument for which only the modes ±k plays a role can be extended

to the case of a finite nonlinearity, Λ 6= 0. In Fig.2 we plot, as an example,

the angular momentum L (normalized to the initial value L0) for a finite

value of Λ. The plot of the Fourier transforms of ψn at four different times

is in Fig.3: it shows that the most part of the Fourier transform is peaked

around ±k.

Therefore we introduce a two-mode ansatz for the dynamical evolution

of the wave function:

ψn(τ) = A(τ)eikn +B(τ)e−ikn. (3.5)

We put A,B =
√

nA,B(τ)eiφA,B(τ), z = nA − nB and φ = φA − φB. We will

compare the numerical solution of (3.1) with the analytical solution of (3.10)

obtained from the ansatz (3.5).
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Figure 3.2: Numerical (solid line) and analytical (dashed) angular momen-

tum, normalized to the initial value L0, vs. time. Numerical parameters of

the simulations: ε = 0.01, N = 40, l = 4, Λ/Λc = 0.5, where Λc = 4ε/N . The

Fourier transform at points (a), · · · , (d) is reported in Fig.3.

Let us, for the moment, discuss the validity of (3.5). With an impurity

smaller than the hopping term, ε << 1, the momentum distributions, peaked

around ±k, do not overlap. This condition preserves the two-mode dynamics

through all the time scales we have been able to explore numerically. The

situation changes in the (quasi-)continuum limit. In this case phonons can

be emitted only with quasi-momentum close to k, a condition which allows

the applications of the Landau superfluidity criteria. The crossover between

continuum and discrete limit is a very interesting one, and deserves further

investigations. Here we stress, and we will show it explicitly below at the end

of the present section, that the pendulum (two-mode) dynamics is crucially

related to discreteness and nonlinearity, and disappears in the continuum

limit. Yet, there is a striking analogy: in both cases (in the Landau and

in the ”pendulum” criteria) the phonon emission out of the incident wave
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Figure 3.3: Fourier transform fk of ψn at times marked respectively as

(a), · · · , (d) in Fig.2.

(which, therefore, dissipates its energy) can be inhibited by an effective energy

barrier. The key difference lies on the corresponding spectrum of the emitted

phonons, which leads to a completely different dynamics.

A further important point is that the two mode ansatz (3.5) remains valid

even with a time-dependent, extended or random distribution of defects,

so long as the sum of the impurity strengths remains small compared to

unity (in our dimensionless units). These situations will be discussed in this

chapter. Furthermore, when the initial wave function is given by the sum of

more waves ψn(0) =
∑

j Aje
ikjn the ansatz (3.5) can be straightforwardly

generalized so long as the quasi-momentum distributions peaked around kj

do not overlap. The collision of a soliton with a single impurity has been

studied, from a different perspective, in [44]. A numerical analysis of the

propagation of plane waves across a segment with defects was done in [81].

Let us now come back to the derivation of the equations of motion for a
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single defect. We can define an effective Lagrangian as

L =
∑

n

iψ̇nψ
∗
n −H, (3.6)

where

H =
∑

n

[−1

2
(ψnψ

∗
n+1 + ψ∗

nψn+1) + εn | ψn |2 +
Λ

2
| ψn |4] (3.7)

(both the Hamiltonian H and the norm
∑

n | ψn |2= N are conserved).

Substituting the ansatz (3.5) in (3.6), we find

L = −NnAφ̇A −NnBφ̇B − ΛnAnB − 2ε

N

√
nAnB cos (φA − φB + 2kn̄) (3.8)

where we used the relation
∑

n

e2ikn = 0. (3.9)

From (3.8), the Euler-Lagrange equations d
dt
∂L
∂q̇i

= ∂L
∂qi

for the variational

parameters qi(τ) = nA,B, φA,B give:







ż = −2ε
N

√
1 − z2 sinφ

φ̇ = 2ε
N

z√
1−z2 cosφ+ Λz,

(3.10)

with the replacement φ+ 2kn̄→ φ. The total (conserved) energy is:

H =
Λz2

2
− 2ε

N

√
1 − z2 cosφ (3.11)

and the equations of motion (3.10) can be written in the Hamiltonian form

ż = −∂H
∂φ

and φ̇ = ∂H
∂z

with z and φ canonically conjugate variables. We

observe that when Λ = 0, the Eqs.(3.10) give

z̈ = −
(2ε

N

)2

z, (3.12)

from which Eq.(3.4) is readily found.
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The Eqs.(3.10) have been studied in very different contexts, including

the polaron dynamics, where the dimer Eq.s(3.10) had been solved ana-

lytically [82], and in the Josephson dynamics of two weakly coupled Bose-

Einstein condensates [35]. Eqs.(3.10) are those of a nonrigid pendulum: φ

is the angular position and z its conjugate momentum. The non-rigidity of

the pendulum is due to its momentum dependent length. The study of a

non-rigid pendulum enriched by internal modes will be presented in Chapter

4.

The pendulum phase portrait, z-φ, has been studied in detail in [36]. Let

us briefly recall the main results. We have a) oscillations around < φ >= 0

and < z >= 0 (0-states); b) oscillations around < z >6= 0 with running

phase < φ >∝ t (self-trapped states); c) oscillations around < z >= 0 and

< φ >= π (π-states); d) oscillations about < z >6= 0 and < φ >= π (self-

trapped π-states). The < . . . . > stand for a time average.

To understand the meaning of these regimes in our system, we observe

that the angular momentum is proportional to z. Using the ansatz (3.5) in

(3.3) we get

L = 2Nz sin k (3.13)

or, expressing the momentum in units of its initial value L0:

L

L0
= z. (3.14)

Therefore < z >= 0 implies that the wave is completely reflected, and <

z(τ) >> 0 (or < z(τ) >< 0) that the wave is only partially reflected by the

impurity. The latter regime is given by a complete rotation of the pendulum

about its center, and can be considered as a self-trapping of the angular

momentum. Equivalently, there is an effective energy barrier which forbids
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the complete reflection of the incident wave, and preserve its coherence. The

observation of a persistent current is associated to a superfluid regime of the

DNLSE equation.

We can derive the critical value for the occurrence of the transition be-

tween the regimes with < z >= 0 (reflection of the wave) and the regimes

with < z >6= 0 in the following way. Let us consider initial values z(0) = 1

and φ(0) = 0: the (conserved) initial energy is H0 = Λ
2
. We want to find

the condition for which z cannot reach the value 0. Since H(z = 0) =

−(2ε/N) cos φ ≤ 2ε/N , we find a critical value for the pendulum oscillations

about its center given by

Λc =
4ε

N
: (3.15)

when Λ < Λc, z oscillates around 0. When Λ = Λc, asymptotically z(τ) → 0

and with Λ > Λc, < z(τ) >6= 0. In Fig.4 we plot the normalized angular

momentum L(τ)/L0 vs. time for different Λ/Λc in order to illustrate the

transition. In Fig.5 we plot the time average value of the normalized angular

momentum for different values of Λ/Λc and z(0) = 1, φ(0) = 0. The numerical

solutions of Eq.(3.1) are in agreement with the two-mode approximation

(3.10), dashed line. For Λ < Λc there is, on average, no transport in the

lattice.

For arbitrary initial conditions, the critical value of Λ is given by

H(φ(0), z(0) = 2ε/N (3.16)

As a further difference from the Landau criteria, we remark that the critical

value for self-trapping (and superfluidity) in the case of a single impurity

does depend on the strength of the defect, but not on the quasi momentum

k.
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Figure 3.4: Normalized angular momentum L(τ)/L0 vs. time for different

values of Λ/Λc = 0.5, 0.75, 1, 1.5, 25 respectively corresponding to (a), · · · , (e)

(Λc = 4ε/N). Numerical parameters in the simulation: ε = 0.01, N = 100,

z(0) = 1, φ(0) = 0.

Let us now study the fixed points of Eqs.(3.10) and the related physical

regimes. By solving for ż = 0, φ̇ = 0, we find first







z = 0

φ = 2mπ
(3.17)

with | A |=| B | (m is an integer). It corresponds to a time-independent

solution ψn ∝ cos (kn) and to a minimum of the energy (3.11). The fixed

point (3.17) is stable and the oscillations about it are the 0-states: the small-

amplitude oscillations have frequency ∝
√

1 + Λ. In Fig.6 we show the large

amplitude oscillations, comparing numerical and analytical solutions: we fix

Λ and φ(0) = 0 and we vary the initial imbalance z(0). By using the same

argument as before, when z(0) is smaller than a critical value zcr(0) we have

< z(0) >= 0. By approaching to zcr(0) the oscillations become more and

more anharmonic, and they goes to 0 asymptotically for zcr(0). For z(0) >
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<L
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Figure 3.5: Average value of the normalized angular momentum vs. the

nonlinear coefficient Λ/Λc. The filled circle are the numerical solutions of

Eq.(3.1), the dashed line is obtained from equations (3.10). Numerical pa-

rameters as in Fig.4.

zcr(0) the self-trapped regime is retrieved. By using Eq.(3.16), it is found

z2
cr(0) =

2 Λ
4ε/N

− 1
(

Λ
4ε/N

)2 (3.18)

The other fixed points of Eqs.(3.10) are







z = 0

φ = (2m+ 1)π
(3.19)

and






z = ±
√

1 − 2ε/N
Λ

φ = (2m+ 1)π
(3.20)

The fixed point (3.19) correspond to a time-independent solution of Eq.(3.1)

of the form ψn ∝ sin (kn) and the oscillations around him are the π-states

previously introduced. The oscillation around (3.20) are the self-trapped π-

states, in which the nonrigid pendulum does complete oscillations on its top.
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Figure 3.6: Normalized angular momentum as a function of time for Λ =

8ε/N , φ(0) = 0 and different values of z(0). From Eq.(3.18), zcr(0) =
√

3/4 =

0.866. Solid line: numerical results; dashed line: analytical model. In the

numerical simulations ε = 0.01, N = 100, l = 10.

Let us fix z(0) and φ(0) = π and vary Λ. By using Eq.(3.16) we find the

following critical value for the nonlinearity:

Λc =
4ε(1 −

√

1 − z2(0))

Nz2(0)
(3.21)

When Λ < Λc, z oscillates around 0 and φ around π. For Λ = Λc, z asymp-

totically reaches 0 and φ reaches π. Above Λc, we have oscillations around a

value of 6= 0: this means that we are in a superfluid regime with the plane

wave passing through the defects. In this region of parameters, the phase

difference between the transmitted wave and the reflected one is on average

π. This system can be therefore used to tune this phase difference. There are

effectively two kind of these self-trapped π-states and they are separated by

the value Λf corresponding to fixed point (3.20). We find

Λf =
2ε/N

√

1 − z2(0)
. (3.22)
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When Λ < Λf , z oscillates around a value smaller than z(0). When Λ = Λf ,

we are on the fixed point and it is z(t) = z(0). When Λ > Λf , z oscillates

around a value greater than z(0). In all these three cases, the average value

of φ = π. We want to remark that

Λf

Λc

=
z2(0)

2
√

1 − z2(0)
(

1 −
√

1 − z2(0)
)

and therefore, since z never is greater than 1, is always Λf > Λc, as might.

In Figs.7-8 we plot the angular momentum and the phase φ for: Λ < Λc

(where < z >= 0), Λ = Λc (where for large times < z >→ 0), Λ < Λf

(where < z >< z(0)), Λ < Λf (where z(t) = z(0)) and Λ < Λf (where

< z >> z(0)). In all the cases < φ >= π and the numerical solutions of

Eq.(3.1) is compared with our analytical model.
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Λ=Λc

Λ=Λf

Λ=1.1Λf

Λ=0.95Λf

Figure 3.7: Normalized angular momentum as a function of time for Λ < Λc,

Λ = Λc, Λ < Λf , Λ = Λf , Λ > Λf . Λc and Λf are given respectively by

Eqs.(3.21) and (3.22). Solid line: numerical results; dashed line: analytical

model. In the numerical simulations ε = 0.01, N = 100, l = 10, φ(0) = π,

z(0) = 0.5.
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Figure 3.8: Phase vs. time for the cases of Fig.7.

3.2.1 The continuum limit

We briefly discuss the limits for recovering the CNLSE equation (in an

annular geometry) from the DNLSE Eq.(3.1). Writing

Λ =
2mg0

~2N
,

εn =
VnmL

2

~N2

and

t =
mL2

~N2τ
,

with Vn ≡ V (x = xn) the defect potential in xn, L the length of the annulus

and τ the dimensionless time entering in Eq.(3.1), the CNLSE is obtained in

the limit N → ∞. In particular, the critical value for the pendulum oscilla-

tions Eq.(3.15) becomes Λc = VnmL
2/~N3 → 0. Therefore, approaching the

continuous limit, the DNLSE pendulum regime collapses to a (strongly) self-

trapped state. This prevents the emission of phonons with opposite momen-

tum respect to the incident wave, whose energy will be eventually dissipated

on a much longer time scale, according to the Landau argument.
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3.3 Two and more defects

Let us consider the case of two isolated impurities

εn = ε1 δn,n̄1 + ε2 δn,n̄2. (3.23)

Proceeding as in the previous chapter and using the ansatz (3.5), we find the

following equations of motion for z and φ:







ż = −2ε1
N

√
1 − z2 sin φ− 2ε2

N

√
1 − z2 sin (φ+ ∆φ12)

φ̇ = Λz + 2ε1
N

z√
1−z2 cosφ+ 2ε2

N
z√

1−z2 cos (φ+ ∆φ12),
(3.24)

where ∆φ12 = 2k(n̄2 − n̄1). The effective Hamiltonian (3.11) becomes now

H =
Λz2

2
− 2ε1

N

√
1 − z2 cosφ− 2ε2

N

√
1 − z2 cos (φ+ ∆φ12). (3.25)

We see that the spatial distance between the two impurities enter in the

dynamics only through the relative phase ∆φ12 (mod 2π). Now the critical

value Λc, and therefore the transparency of the system to the impurities,

depends on this phase difference.

In the case ε1 = ε2 ≡ ε is easily seen that when ∆φ12 = π the system does

not feel the impurities and always the plane wave is transmitted. Similarly,

when ∆φ12 = 2π, defects add and the effective defect is given by εeff = 2ε.

In Fig.9 we consider the case of two equal impurities: we choose N = 40 sites

and l = 2, so that 2k = π/5 and ∆φ12 = (n̄2 − n̄1)π/5. When the distance

between the two impurities is 5 sites, then ∆φ12 and we have transparency

to the impurities. This can be numerically seen by fixing z(0), φ(0) and Λ

and varying the distance between the impurities, as in Fig.9. In Fig.10 we

plot the dynamical evolution of the angular momentum and phase for two

different distances of the impurities: the numerical solution is compared with
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the solution of Eqs.(3.24). We see that the phase has fast jumps, because

the Hamiltonian (3.25) describes two coupled non-rigid pendulum which are

frustrated from ∆φ12. Apart from the time intervals in which this jumps

occurs, the agreement is excellent.
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Figure 3.9: Normalized angular momentum vs. time for different distances (in

sites) of two equal impurities. The different distances are signed with colors

corresponding to the line under consideration. Since ∆φ12 = (n̄2 − n̄1)π/5,

when the distance is 5 sites the corresponding critical value for the transition

is Λc(∆φ12 = π) = 0 and the system does not feel the impurities. When

the distance is 10 sites, Λ(∆φ12 = 2π) = 8ε/N and the system does not

feel the effect of the impurities. The critical value for different ∆φ12 is given

by Eq.(3.26) and determine the transmission or not of the wave. Numerical

values: ε1 = ε2 = 0.005, N = 40, l = 2, Λ/Λc(∆φ12 = 2π) = 0.5, z(0) = 1,

φ(0) = 0.

The critical value Λc is determined in the following way. Let us suppose

for simplicity z(0) = 1 and φ(0) = 0: the conserved energy is H(0) = Λ/2.

In the instant in which z = 0 it is H(z = 0) ≡ h(φ)/N , where h(φ) =
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Figure 3.10: Normalized angular momentum (a) and phase (b) vs. time for

distances 1 and 11 sites: ∆φ12 differs by 2π and the numerical results are

almost equals, as explained in the text. The solid line correspond to the

numerical solution and the dashed line to the solution of Eqs.(3.24). In (c)

and (d) we plot L/L0 and φ/π for distances of 4 and 14. Since the critical

value of Λc is decreased, as predicted by Eq.(3.16), we obtain a self-trapped

solution, unlike of (a) and (b) where the same values are used with a different

distance between the impurities. Numerical values used in the simulations:

ε1 = ε2 = 0.005, N = 40, l = 2, Λ/Λc(∆φ12 = 2π) = 0.5, z(0) = 1, φ(0) = 0.

−2ε[cos φ + cos (φ+ ∆φ12)]. The function h has a maximum in φmax, which

is given by

tanφmax = − sin ∆φ12/(1 + cos ∆φ12) :

the critical value for which z asymptotically reaches 0 is given by

Λc =
2

N
h(φmax). (3.26)

We have a similar formula for the general case ε1 6= ε2. In Fig.11 we plot Λc

vs. ∆φ12 by choosing 2k = π/5 (i.e. ∆φ12 = π/5 when the two impurities

are in neighbour sites) and the comparison between the numerical values and
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the Eq.(3.26) is showed: the system is transparent (i.e. Λc = 0, i.e. the wave

always passes) when ∆φ12 = 2π, as the two-mode Eq.(3.25) predicts.

0.0 0.5 1.0 1.5 2.0
∆φ12/π

0.0

0.5

1.0

Λ c(∆
φ 12

)/Λ
c(o

)

Figure 3.11: Plot of the critical value Λc vs. the phase difference ∆φ12 as-

sociated to two equal impurities ε1 = ε2 ≡ ε. Numerical simulations (black

points) are done with N = 40 and l = 2, so ∆φ12 = ∆n π/5 with ∆n distance

between the two impurities. The dashed line is Eq.(3.26), ε = 0.005, z(0) = 1,

φ(0) = 0. The dashed line is Eq.(3.26) and in the plot Λ is normalized to the

critical value Λc(∆φ12 = 0), i.e. with ∆φ12 multiple of 2π.

The previous discussion can be generalized to the case of many impurities.

The effective Hamiltonian becomes:

H =
Λz2

2
− 2

N

√
1 − z2

∑

n

εn cos (φ+ 2kn). (3.27)

As an example, let us consider an extended, step-like barrier: εn =

constant for n̄1 ≤ n ≤ n̄2. Similarly to the case of two isolated impurities, we

can choose the length of the step in such a way that the system does not feel

the defects: e.g. with 2k = π/5, when the length of the barrier is 10 sites, the

sum of cosines in Eq.(3.27) vanishes and the system becomes transparent.

This is illustrated in Fig.12, where we consider the same initial conditions
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(z(0) = 1 and φ(0)) and different length L of the step: when this goes from

1 to 10, the system displays the “pendulum” transition to superfluidity.

0 10000 20000 30000
time

−1.0

−0.5

0.0

0.5

1.0

L/
L 0

10

1

2

3

4

56

7

Figure 3.12: Plot of the normalized angular momentum vs. time for different

lengths L of the step (εn = constant for n̄ ≤ n ≤ n̄ + L − 1). Numerical

values: N = 40, l = 2, z(0) = 1, φ(0) = 0. Λ is chosen 2ε/N , where ε = 0.01

is the sum of the impurities. Since 2k = π/5, when the length of the barrier

is 10, the system is transparent to the impurities.

In the last part of this chapter we apply Eq.(3.26) to consider two im-

portant cases: an extended (gaussian) barrier and a random distributions of

defects.

3.3.1 A gaussian barrier

In this subsection we consider a gaussian barrier with width σ centered

in the site n̄:

εn =
ε√
πσ

e−(n−n̄)2/σ2

. (3.28)

We choose the coefficient in order that by changing the sum with integrals,

which is correct for large N and for σ > 1, as Eq.(A.4) shows, we have

91



∑

n εn ≈
∫

dnεn = ε. As we discussed in section 3.1, the two-mode ansatz

(3.5) works if ε is smaller than the hopping term. Always substituting sums

with integrals, by using Eq.(3.26) we get

H ≈ Λz2

2
− 2εe−k

2σ2

N

√
1 − z2 cos (φ+ 2kn̄). (3.29)

This means that the effect of an extended barrier is equal to be a single

impurity with effective strength

εeff = εe−k
2σ2

. (3.30)

E.g, with initial values z(0) = 1 and φ(0) = 0, the critical value is obtained

from Eq.(3.15) and it is given by

Λc =
4εeff
N

. (3.31)

In Fig.13 we plot the normalized angular momentum for different values of

Λ: the critical value found is in reasonable agreement with Eq.(3.31) and the

agreement improves by increasing the number of the sites of the lattice.

It is important to remark that now the critical value depends on the

momentum of the incident plane wave: when kσ >> 1, then Λc → 0. This

means that a wave plane with large momentum will always pass trough the

barrier, as expected. In Fig.14 we compare the critical value Λc numerically

found for different wave vectors k with the analytical prediction (3.31). The

agreement is good.

3.4 Random defects

All the predicted regimes discussed so far have been found in agreement

with full numerical analysis also in the case of a random distribution of de-
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Figure 3.13: Angular momentum vs. time for different values of Λ in the case

of a gaussian barrier with width σ = 3 and normalized to ε = 0.05. The

numerical critical value is 0.00228 and the value retrieved from Eq.(3.31)

is 0.00206. Numerical values in the simulations: N = 40, l = 2, z(0) = 1,

φ(0) = 0.

fects. In Fig.15 we plot L/L0 as a function of time for various Λ and a random

distribution of defects εn. The critical value Λc calculated from Eq.(3.26), as

well as the oscillations profiles, are compared with the numerical finding. As

in the case of a single impurity, shown in Fig.1, also for a random uniform

distribution of defects there is a critical transition of the average angular mo-

mentum. The excellent agreement between the numerical solution and the

solution of Eq.(3.27), and the robustness of the two-mode ansatz in presence

of an arbitrary distribution of defects, opens to the possibility of studying

the competition between disorder and nonlinearity in a new perspective. The

Eq.(3.27) is simple enough to offer analytical insights, and still it seems to

contain all the essential ingredients to investigate the details of the superfluid

- normal transition in DNLSE.
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Figure 3.14: Critical value of Λ as a function of the wave vector k of the

incident plane wave. Black circles: numerical results; dashed line: Eq.(3.31).

Numerical values in the simulations: N = 100, z(0) = 1, φ(0) = 0. The width

of the barrier is σ = 3 and the sum of the impurities is 0.05. We see that, if

we compare Fig.13, there is a better agreement between the numerical and

analytical results: this is due to the fact that we are using a large number of

sites and therefore the approximation in which Eq.(3.31) has been obtained

works better.
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Figure 3.15: Angular momentum vs. time with a random distribution of de-

fects for different values of Λ/Λc = 0.45, 0.90, 1.01, 10, 100, 1000 (correspond-

ing to (a), · · · , (f)) and z(0) = 1 and φ(0) = 0. The sum of the strengths of

the random impurities is 0.1 and the critical value Λc is given by Eq.(3.26).
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Part II

OSCILLATING CURRENTS

AND INTERNAL

COLLECTIVE MODES IN

TWO WEAKLY COUPLED

BOSE-EINSTEIN

CONDENSATES
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Chapter 4

The Josephson current-phase

relation in presence of

collective modes

4.1 Introduction

In this chapter we study the Josephson effect between two Zeeman states

of trapped bosonic gases. The equations which describes the dynamics are

the same of the tunneling between actual double wells: the case of multiple

wells (realized with an optical potential) has been considered in the previous

chapters, but neglecting the dynamics of the other degrees of freedom on the

traps.

The main goals of Chapters 4 and 5 are: 1) to investigate the effects of

the internal modes on the Josephson oscillations [83]; 2) to discuss a way

to physically realize a weak link between different hyperfine levels of a BEC
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and experimentally detect the Josephson oscillations between them; 3) to

present experimental results of the LENS group in Firenze on the internal

Josephson effect [24]. We remark that, to present date, Josephson oscillations

in a double well or between two different hyperfine levels have not been yet

observed. A discussion of the detection of Josephson oscillations in multiple

wells has been done in Chapters 1 and 2.

In section 4.2 we consider two different hyperfine levels coupled by a laser,

that induces a Josephson-like coupling between the states. The two compo-

nents feel different effective harmonic traps (with different harmonic trap-

curvatures and/or different positions of trap minima). Using two gaussian-

profile variational wavefunctions we determine dynamical equations coupling

the fractional number difference, the effective phase difference, and the rock-

ing and breathing motions of the BEC profiles. These equations, as already

mentioned, also describe one-component ground state BEC tunneling be-

tween actual double wells, considered previously in a fixed-position and rigid-

profile-case, but now with BEC center-of-mass motion and collective modes

included. The equations map onto the dynamics of a momentum-shortened

pendulum, as found in the previous work, but now with additional pendulum-

length stretching variables dependent on the profile deviations from equilib-

rium position and width. The five fixed point classifying five pendulum modes

of oscillation about average values of 0 or π found previously are preserved,

but the modes are enriched and modified. They are studied in section 4.3.

In particular, the macroscopic quantum self-trapping regime still remains,

in which the population imbalance between the two traps in maintained by

the interatomic interaction. For arbitrary initial conditions with different fre-
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quencies competing, in terms of pendulum coordinates there is a remarkable

tracing out of Lissajous-like trajectories to completely fill sharp sided figures

as rectangles. The different regimes of the quantum phase dynamics show up

in characteristic oscillations of the center-of-mass and density profiles, pro-

viding an experimental tool to detect and study the Josephson oscillations.

4.2 Josephson dynamics between hyperfine lev-

els

The quantum mechanical phase-coherence of Bose-Einstein condensates

(BEC) [32] reveals itself in interference fringes between overlapping freely-

falling condensates [84]; in states of quantized angular momentum of vor-

tices [85] and toroidal trap circulating flows [86]; and in Josephson-like tun-

neling oscillations between double-wells trap [35, 68, 87, 88]. Assuming a lin-

ear superposition of fixed-position and rigid-profile wavefunctions with time-

dependent coefficients, the tunneling oscillations are described by coupled

nonlinear equations for the time-dependent interwell phase difference φ(t)

and the fractional number imbalance η(t) [35]. The equations map onto the

dynamics of a momentum-shortened pendulum with five distinct oscillation

modes [89]. These include three types of π-states corresponding to inverted-

orientations of the momentum-shortened pendulum, with restricted phase

excursions about a time-averaged value < φ(t) >= π. Two of these ’π-states’

as well another running state correspond to nonzero pendulum angular mo-

mentum < η(t) >6= 0, with self-maintained number imbalance, or “macro-

scopic quantum self-trapping” (MQST). Dynamical transitions at the onset
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of MQST states through zero frequency dips are predicted, on varying pa-

rameters through critical values [35].

Another Josephson-like tunneling systems consist of two condensate com-

ponents, or BEC atoms in ground and excited states, in a single ellipsoidal

trap [90, 91]. Since the two types of atoms are in different hyperfine states,

they feel different effective trap potentials, with two different trap-minimum

positions [90] and/or trap curvatures [91]. A full numerical solutions of the

Gross-Pitaevskii equations (GPE) for the two species with strong overlap

between the wavefunctions yields a rocking oscillation of the centers of mass

(COM) of the wavefunctions, with varying well populations. It would be use-

ful to generalize the two-state-tunneling model to include the BEC-profile

COM and widths in order to make contact with previous works [35, 36] and

to see if the pendulum analog carries through in the changed physical regime.

Here we use two gaussian-profile variational wavefunctions with time-

varying positions and widths to obtain a reduced dynamical description of

the interplay between oscillations of two-species phase-difference, fractional

number difference and BEC-profile positions and widths (see also [92]). The

oscillations are understood in a pendulum analogy. The trap potentials are

harmonic, with species-dependent curvatures and positions of minima. The

generalized tunneling dynamics also formally applies to one-species BEC

cloud in actual double-well trap, with positions and widths that are free to os-

cillate. In the limit of rigid positions and widths, we recover the previous two-

state model whose mechanical analog is the momentum-shortened pendulum

with five distinct modes [35]. In the general case, with time-dependent posi-

tions and widths of the two condensates, we obtain an enriched momentum-
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shortened pendulum, with an additional “spring” stretching of the pendulum

and an effective phase difference, both related to the new degrees of free-

dom. The fixed points and the tunneling modes of the pendulum analog are

preserved, allowing for the classification and the understanding of the rich

dynamics. For general initial conditions, the rocking/breathing act as oscil-

lating torques and the trajectories of the pendulum trace out Lissajous-like

patterns that fill sharp sided figures. The various types of tunneling oscil-

lations affect the COM and centering coordinates that serve as a classical

diagnostic for the quantum phase state.

4.2.1 Two-species Gross-Pitaevskii equations

The condensates are different Zeeman levels of alkali atoms. They are in

harmonic trap: to fix the experimental numbers, we will refer to the exper-

iments by JILA at Boulder [90] and by LENS at Florence [91]. We denote

the two condensates of 87Rb atoms by |1 > and |2 >. For the LENS set-up

(L), it is |1 >= |F = 2, mF = 1 > and |2 >= |2, 2 >. In the JILA set-up

(J), it is |1 >= |1,−1 > and |2 >= |2, 1 >. The condensates |1 > and |2 >

have different magnetic momenta and feel different magnetic potentials V
(M)
j

(j = 1, 2) , which we write in the general ellipsoidal form







V
(M)
1 (~r) = 1

2
m[ω2

x1x
2 + ω2

y1y
2 + ω2

z1(z + z0)]
2

V
(M)
2 (~r) = 1

2
m[ω2

x2x
2 + ω2

y2y
2 + ω2

z2(z − z0)]
2

(4.1)

where m is the atomic mass. In (J) the frequencies of the two traps are

equals and in (L) are different. In both cases the system is cigar-shaped and

the motion of condensates is along the z-direction. The main difference is

that in (J) the distance between the minima of the trap potentials is smaller
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than the dimensions of the condensates, while is (L) is larger. This allows

the study of different physical situations. The experimental values of the

parameters are:

JILA LENS

ωx1 = ωy1 = ωx2 = ωy2 = 2π · 24Hz ωy2 = ωz2 =
√

2ωy1 =
√

2ωz1 = 2π · 130Hz

ωz1 = ωz2 = 2π · 65Hz ωx2 =
√

2ωx1 = 2π · 12.6Hz

z0 = 0.2µm z0 = 7.5µm

The two Zeeman states |1 > and |2 > are coupled by an e.m. field with

frequency ωext and strength characterized by Rabi frequency ΩR (see Fig.1a).

The detuning is defined as δ = ωext − ω0, where ~ω0 is the energy splitting
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Figure 4.1: (a) Josephson coupling of the two Zeeman level |1 > and |2 >

through an e.m. field with frequency ωext and strength characterized by the

Rabi frequency ΩR. (b) Magnetic potentials in LENS setup [91]: position is in

units of zho =
√

~/mωz1 and energy in units of ~ωz1. (c) Magnetic potentials

in JILA setup [90]

between the two states (e.g., in (L) ~ω0 ≈ 2MHz). The system is described

in the rotating wave approximation by two coupled GPE (see App.C). Since
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the motion of the condensates is almost in the z-axis, we can, to a good

approximation, reduce the problem to 1D integrating over the transverse

directions. Expressing position in units of zho =
√

~/mωz1, time in units of

1/ωz1 and energy in units of ~ωz1, we obtain

i





ψ̇1

ψ̇2



 =





T + V1 + u11 | ψ1 |2 +u12 | ψ2 |2 −Ω0

−Ω0 T + V2 + u21 | ψ1 |2 +u22 | ψ2 |2









ψ1

ψ2





(4.2)

with T = −1
2
∂2

∂z2
, Ω0 = ΩR/2 and uij (normalized) scattering lengths (see

App.C). The total number of particles NT = N1 + N2 is conserved, with
∫

dz | ψVj |2= Nj. In (L) it is (Fig.1b)







V1 = 1
2
(z + z0)

2 + δ/2

V2 = 1
4
(z − z0)

2 − δ/2
(4.3)

and in (J) (Fig.1c)






V1 = 1
2
(z + z0)

2 + δ/2

V2 = 1
2
(z − z0)

2 − δ/2
(4.4)

The scattering lengths are almost degenerate: in (J) is a11 : a12 : a22 = 1.03 :

1.00 : 0.97 and in (L) a11 : a12 : a22 = 1.00 : 1.00 : 0.97. For this reason

let us put u11 = u12 = u22 = u (u12 = 0 refers to case of two non-ideal

non-interacting gases). With the notation

Ψ =





ψ1

ψ2



 ,

the effective Lagrangian is

L = i < Ψ†Ψ̇ > − < Ψ†ĤΨ > (4.5)
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where < · · · >=
∫

dz · · · and

Ĥ =





T + V1 + u
2

(

| ψ1 |2 + | ψ2 |2
)

−Ω0

−Ω0 T + V2 + u
2

(

| ψ1 |2 + | ψ2 |2
)



 .

To study the dynamics, we make a variational ansatz for the wavefunc-

tions by using a gaussian profile and we introduce the variational wavefunc-

tions ψVj (j = 1, 2) in the following way:

ψVj (z, t) = [2/παj(t)]
1/4
√

Nj(t) e
iφj(t) exp

{

− [z − zj(t)]
2

αj(t)

}

·

· exp
{

ipj(t) · [z − zj(t)] + i
δj(t)

2
· [z − zj(t)]

2
}

. (4.6)

The variational parameters are the number of particles Nj of the two conden-

sates (j = 1, 2), the phases φj, their centers zj along the z-axis, the squares

αj of their dispersions and their respective momenta pj (associated to zj)

and δj (associated to αj) . The wavefunctions ψVj are normalized in such way

that
∫

dz | ψVj |2= Nj. Let us introduce the fractional number difference

η =
N1 −N2

NT
: (4.7)

it is N1,2 = NT

2
(1 ± η).

Substituting (4.6) in (4.5), we find the Lagrangian (C.2). Using the Euler-

Lagrange equations, we can derive the equations of motion for the time-

dependent variational parameters. We observe that making a variational

ansatz for the full 3D case (variational parameters are the centers ~rj and

the the widths in the three directions) we found a simple generalization of

the equations in App.C.

4.2.2 Limiting cases

Equilibrium vales
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We consider in turn increasingly complex cases, starting with equilib-

rium. Here, all variational parameters are time independent: we will denote

the equilibrium values with a bar. We consider, for simplicity, the case of

symmetrical potential (J). We have, for the symmetry, equal number of par-

ticles (N̄1 = N̄2 = NT/2), equal widths (ᾱ1 = ᾱ2 ≡ ᾱ) and opposite centers

(z̄1 = −z̄2). Furthermore p1 = p2 = 0; for Ω0 > 0 it is φ1 = φ2 = 0 and for

Ω0 < 0 it is φ1 = π, φ2 = 0. The Lagrangian is L = −Ē and the energy per

particle is

Ē
NT

=
uNT

4
√
πᾱ

(1 + e−4z̄21/ᾱ) +
1

2ᾱ
+
ᾱ

8
+

1

2
(z̄1 + z0)

2 − Ω0e
−2z̄21/ᾱ

Minimizing Ē we find the variational ground state. For u = 0 and Ω = 0,

it is z̄1 = −z0. In Figs.2-3 we report the equilibrium values for z̄1 and ᾱ for

different values of Ω0 and uNT . As we expect, increasing uNT the equilibrium

distance between the two condensates increases for the repulsion; similarly,

increasing Ω0 the distance between the two condensates decreases.

Pure tunneling case

In the Lagrangian (C.2), the three main process are considered: tunneling

(particle exchange between condensates), rocking (the condensates move in

their trap potential) and breathing (the widths vary in the dynamics). As

we will show, for realistic values of experimental parameters these three kind

of motions interact strongly and the system shows rich dynamical behavior.

But, to clarify the significant physical limits, we pass to simpler case first, in

which only tunneling occurs. The condensates are supposed rigid and fixed

in their equilibrium positions: α1 = α2 = ᾱ, z1 = −z2 = z̄1, δ1 = δ2 = 0

and p1 = p2 = 0. This would happen with very large frequency trap ω. The
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Figure 4.2: Equilibrium value for the center of mass of condensate |1 > vs.

the mean field energy uNT for different values of the coupling Ω0 obtained

minimizing the energy (C.3) with the JILA values.

Lagrangian (C.2) simplify

L = −N1φ̇1−N2φ̇2−
u

2
√
πᾱ

(N2
1 +N2

2 +2N1N2e
−z̄2/ᾱ)+2Ω̄

√

N1N2 cosφ. (4.8)

where φ = φ2 − φ1, z̄ = z̄1 − z̄2 and Ω̄ = Ω0 e
−z̄2/2ᾱ, and the equations are

given by










η̇ = −2Ω̄
√

1 − η2 sin φ

φ̇ = 2Ω̄
[

η√
1−η2

cosφ+ Λη
]

+ ∆E
(4.9)

where Λ = uNT (1−e−z̄2/ᾱ)

2Ω̄
√
πᾱ

and, e.g. in (J), ∆E = 1
2
(z̄1 − z0)

2 − 1
2
(z̄2 + z0)

2 + δ:

with δ = 0 is ∆E = 0. Similar formulas for ∆E holds in (F). Furthermore

the parameter

Λ =
uNT (1 − e−z̄

2/ᾱ)

2Ω̄
√
πᾱ

(4.10)

governs the transitions between different dynamical regimes, as we now dis-

cuss.

The dynamical equations (4.9) for the phase and the current were first

obtained in [7] for the single-component (ground state) tunneling between
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Figure 4.3: Equilibrium value for the width of condensate |1 > vs. the mean

field energy uNT for different values of the coupling Ω0.

double-wells. The oscillations correspond to those of a pendulum of momen-

tum pφ (≡ η), tilt angle φ, and Hamiltonian H/2Ω̄ = 1
2
Λp2

φ −
√

1 − p2
φ cosφ.

The (unit-normalized) length of the pendulum
√

1 − p2
φ is reduced by the

momentum: ’faster’=’shorter’. The locus of the pendulum is traced out [7]

by its coordinates (X, Y ) = (
√

1 − p2
φ sinφ,−

√

1 − p2
φ cosφ). There are five

distinct types of oscillations (with characteristic small-amplitude frequencies

found by linearization) around fixed points φ∗, η∗ and with different time

average values < φ >, < η >. These are summarized as below and displayed

in Figs.4-5:

a) zero-state oscillations around φ∗ = 0, η∗ = 0, with time average values

< φ >t= 0, < η >t= 0 and
√

1 + Λ, as in Figs.4a-5a; the small oscillations

have (linearized) frequency ω0 = Ω̄
√

1 + Λ;

b) running-state rotations with < η >t 6= 0, < φ >t∼ t, as in Figs.4b-5b;

c) π-state oscillations around φ∗ = π, η∗ = 0, with < φ >t= π, < η >t= 0

and ω0 = Ω̄
√

1 − Λ (Λ < 1), as in Figs.4c-5c; the small oscillations have
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(linearized) frequency ω0 = Ω̄
√

1 − Λ (Λ < 1);

d) π-state rotations around φ∗ = π, η 6= 0, corresponding to π self-

trapping, as in Figs.4d-5d. (There are two different kinds of such self-trapped

π-states: < η >t< ηc and < η >t> ηc, with ηc.)
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(a) (b)

(c) (d)

Figure 4.4: Plot of the population imbalance η (solid line) and the phase

φ (dashed line) in the pure tunneling case for: (a) zero-state oscillations

(Ω0 = 5, η(0) = 0.5, φ(0) = 0); (b) self-trapped states (Ω0 = 0.2, η(0) = 0.5,

φ(0) = 0); (c) π-oscillations (Ω0 = 5, η(0) = 0.5, φ(0) = π); (d) π-rotations

(Ω0 = 0.85, η(0) = 0.85, φ(0) = 3). The value of the other parameters are

from [90]: NT = 23000 and z0 = 0.15.

We observe that, with Ω → ∞, then z̄i → 0, Ω̄ → −Ω0 and the tunneling

frequency ωT is given by ω2
T = 4Ω2

0 as we expected [35].

The non-zero average angular momentum ’rotation’ states b), d) in the

pendulum analogy correspond to a non-zero, self-maintained population im-

balance pφ ≡ η 6= 0: macroscopic quantum self-trapping (MQST) [7,8]. The

transition from non-MQST to MQST oscillations can be induced (for given

initial conditions) by varying Λ in such way that H(t = 0) > 2Ω̄: this defines
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Figure 4.5: Plots of the (unit normalized) pendulum coordinates (X, Y ) =

(
√

1 − η2 sin φ,−
√

1 − η2 cos φ) corresponding to cases (a),...,(d) of Fig.5.

a critical value Λc, depending upon the initial conditions such that for Λ > Λc

we have MQST.

Experimentally, we can vary Λ simply by varying the strength of the

coupling e.m. field. Fig.6 shows, for the JILA setup, the dependence of Λ

on Ω0. To have an idea of the experimental numbers, when η(0) = 1 and

φ(0) = 0, the critical value of Λ is Λc = 4: when Ω0 ≈ 300Hz it is Λ ≈ 0.01

and for Ω0 ≈ 20Hz it is Λ ≈ 10, allowing for the detection of the transition.

Rocking and breathing without tunneling

To understand the interplay between rocking and breathing, we consider

the Lagrangian (C.2) with Ω = 0. First, we consider the case of two non-

interacting non-ideal gases (u12 = 0 and u11 = u22 = u): each condensate

is then uncoupled to the other. In the equilibrium, the energy for particle

for condensate (e.g.) |1 > is Ē/N1 = uN1/2
√
πᾱ1 + 1/2ᾱ1 + ᾱ1/8, with

N1 = NT/2. In the case u11 = 0, minimizing Ē in respect to ᾱ1 gives ᾱ1 = 2,

as might: indeed the ground state is proportional to e−(z−z0)2/2z2ho. In the
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Figure 4.6: Plot of the parameter Λ vs. the inverse of the coupling Ω0: when

Λ is smaller (greater) than the critical value Λc, zero- (π-)states are found.

case u11 6= 0, it is ᾱ1 =
√

4 + u11NT

√

ᾱ1/π, from which we can see that ᾱ1

increases with u11NT .

Let compare the frequencies of rocking and breathing, respectively ωR

and ωB. The equation for the center of mass z1 is given by z̈1 = −(z1 + z0),

i.e. ωR = 1. In scaled unit this means that the frequency of condensate

oscillations is equal to the trap frequency. We retrieve in our case that the

mean-field interactions in a single BEC, contained in u11, does not affect

the center of mass motion of the condensate, according exact results (see

e.g. [32]). For the breathing, denoting the deviations from equilibrium with

a tilde (α̃1 = α1 − ᾱ1), it is ¨̃α1 = −ω2
Bα̃1, with

ω2
B =

16

ᾱ2
1

+ 3
u11NT√
πᾱ

3/2
1

. (4.11)

With typical values, in (J) is ω2
B ≈ 5 − 10 (with Ω0 ranging from 10Hz

to 1 kHz). We observe also that with u11 = 0 we retrieve the known result

ωB = 2ωR.

To conclude, we consider the case in which the interspecies scattering
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length u12 = u is present. Let z̃ = z̃1 − z̃2 and α̃ = α̃1 − α̃2: linearizing we

find ¨̃z = −ω2
Rz̃ and ¨̃α = −ω2

Bα̃, with ω2
R = 1+(1/NT )(∂2EMF/∂z

2
1)eq and ωB

given by (4.11). We conclude that for experimental values the rocking and

breathing are both present and that the breathing frequency is ≈ 3 times

than the rocking frequency.

4.2.3 Exact relations

In the general case, we can use some important exact relations. From

the equations of motion we can show, as expected, that


































< ẑ >= N1z1 +N2z2 ≡ NTZCOM

< P̂ >= N1p1 +N2p2 ≡ PCOM
d
dt
< ẑ >= PCOM

d
dt
PCOM = − ∂

∂z1
< V1 > − ∂

∂z2
< V2 >

(4.12)

with < Vj >=< ψ∗
jVjψj >,< ẑ >=< Ψ†

V z ΨV > and< P̂ >=< Ψ†
V (−i ∂

∂z
) ΨV >.

We find for the JILA experimental setup

Z̈COM = −ZCOM − z0η. (4.13)

Notice that these classical position and momentum variables are not di-

rectly dependent on the quantum phase difference and its sinusoidal Joseph-

son variations, being dependent on number imbalance η. It turns out therefore

that π-states with < φ >6= 0 have their signature in characteristic variations

of the position variables, that serves as classical diagnostic of quantum states.

Furthermore, it has to be stressed that Eq.(4.13) is the analog with the

two coupled condensates of the cited exact result, valid for one single con-

densate, that the mean-field interactions does not enter in the equation of
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the center of mass. Now the two condensates are coupled by the two-body

interactions between the particles of |1 > and those of |2 > (proportional

to u12), and by the external e.m. field (proportional to Ω0). In agreement to

the previous result, only the latter term affects the COM dynamics: if z0=0,

despite the mean-field terms, the COM harmonically oscillates.

4.3 Internal collective modes versus Joseph-

son oscillations

In this section we discuss how the oscillation modes are modified by the

motion of condensates and how they are experimentally detectable. We also

study the interplay between the current-phase dynamics and the motion of

the center of mass. Indeed, while it is an hard job to measure the interwell

phase φ(t), the positions of the centers zi(t) and the population imbalance η

are pretty easy to measure and they gives ZCOM = 1
2
(z1 + z2) + η

2
(z1 − z2).

In such way the motion of the COM gives a clear signature of the various

oscillation modes.

Time-averaging the (4.13) we can easily see that the average value of

the imbalance η determine the average value of the COM position. Let <

η >t=
1
t

∫ t

0
dτη(τ): when < η >t= 0, as in zero-state oscillations, we have

< ZCOM >t vanishing. In the same way, when < η >t 6= 0, as in running

states, then < ZCOM >t 6= 0. In particular, varying the strength of the laser

Ω0 (or/and the distance z0 between the traps), we can go from the zero-

state oscillations regime (with < ZCOM >t= 0) to the MQST regime (with

< ZCOM >t 6= 0): measuring ZCOM we can detect the transition.
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We will consider as initial condition for the widths

α1(0) = α2(0) = ᾱ. (4.14)

From an experimental point of view, the initial condition (4.14) is very rea-

sonable, because from an experimental point of view it is quite simple to

move suddenly the magnetic traps, changing therefore the initial positions

and not the initial widths. However, we stress that with a sudden change of

trap frequency, the initial width could be different to the equilibrium ones.

Since the breathing frequency is greater than the rocking frequency (as

previously discussed), first we will study the case in which the condensate

can move, but they are rigid (ᾱ1 = ᾱ2 ≡ ᾱ). The effect of the breathing will

be also considered, but the qualitative results of the “tunneling+rocking”

case will hold.

The Lagrangian (C.2) is now

L = −N1ϕ̇1 −N2ϕ̇2 +N1p1ż1 +N2p2ż2 −
u

2
√
πᾱ

(N2
1 +N2

2 + 2N1N2e
−z2/ᾱ)+

−N1

2
p2

1 −
N2

2
p2

2 −
N1

2
(z1 + z0)

2 − N2

2
(z2 − z0)

2 + 2Ωeff

√

N1N2 cos φ̃. (4.15)

and the equations of motion for the relative population and the phase are











η̇ = −2Ωeff

√

1 − η2 sin φ̃

˙̃
φ = 2Ωeff

η√
1−η2

cos φ̃+ uNT (1−e−z2/ᾱ)√
πᾱ

η + ∆Eeff
(4.16)

where z = z1 − z2, p = p1 − p2, φ̃ = φ2 − φ1 + 1
2
z(p1 + p2) and the effective

Josephson coupling is

Ωeff (t) = Ω0 e
−z2/2ᾱ−ᾱp2/8. (4.17)

113



Furthermore ∆Eeff = 1
2
(zṖ−pŻ)+<V1>

N1
−<V2>

N2
+
p21
2
− p22

2
(with Z = z1+z2 and

P = p1 + p2). According the general result shown in the App.C, the effective

Josephson coupling does not depend on the center-of-mass variables.

The (4.16) have the standard form of the Josephson equations (4.9), but

now the Josephson coupling and the others parameters are time dependent

and they are connected to the dynamics of the whole system. Furthermore

we have the phase difference φ = φ2 − φ1 is substituted by the dynamical

phase φ̃ (in particular, in COM frame they are identical). For brevity, from

now we omit the tilde on φ.

We stress that the effective Josephson coupling (4.17) depends now also

on the relative distance between the two centers: in such way, using the

pendulum analogy, the normalized length of the pendulum is

√

1 − η2 e−z
2/2ᾱ−ᾱp2/8, (4.18)

where η is the momentum: the previous momentum-shortened pendulum is

enriched by an additional compression of the pendulum length with an an-

harmonic spring. The question arises on what happens to the five oscillation

modes: we will see it in the next sections.

The equations for the relative position z and the relative impulse p are











ż = p + ᾱΩeff
p cos φ√

1−η2
− z d

dt
log
√

1 − η2

ṗ = −ηṖ + 2uNT

ᾱ
√
πᾱ
ze−z

2/ᾱ(1 − η2) − (z − 2z0 + ηZ) − 4Ωeff

√

1 − η2 z
ᾱ

cosφ.

(4.19)

The linearization of Eqs. (4.16), (4.19) shows that there is a peculiar

decoupling of the relative motion dynamics from the population dynamics:

e.g. we linearize around η∗ = 0 and φ∗ = 0, π (with Ω0 > 0). Denoting with
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tildes the deviation from equilibrium values, we found

∆Eeff ≈ (z0 + z̄1)Z̃

where, we remember, Z = z1 + z2 and P = p1 + p2. To have the correct

linearized equation for ṗ we observe that d
dt

(Nipi) = − ∂E
∂zi

: using the fact that

(∂E/∂zi)eq = 0 we obtain finally







η̈ ≈ −ω2
Tη − 2Ω̄(z0 + z̄1)Z̃

¨̃Z = − 2(z0 + z̄1) − Z̃.
(4.20)

and

¨̃z ≈ −ω2
Rz̃ (4.21)

where ω2
T = 4Ω̄2(1 + Λ) and ω2

R = (1 + ᾱΩ̄)(4B/NT + 4C/NT + 1), with

B = (∂2EMF/∂z
2
1)eq and C = (∂2EJos/∂z2

1)eq. In the small oscillations regime

we have the relative position z decouples from the population dynamics.

Furthermore in the uNT → 0 limit (for which z̄1 = −z0) all the oscillation

modes decouples. This decoupling is the main reason for which the motions

of the condensates does not destroy the oscillation modes of the momentum-

shortened pendulum.

4.3.1 Zero-state oscillations

These oscillations around η = 0 and φ = 0 correspond to small values

of the control parameter (4.10): with the values given in [90], Ω0 has to take

e.g. the reasonable value of ∼ 500 Hz. To begin, we consider two types of

initial conditions: the centers displaced in such way that z1(0) + z2(0) = 0,

with η(0) = 0; and a deviation from the equilibrium population (η(0) 6= 0).
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In Fig.7, we consider the following initial conditions: (1) only displace-

ment of the centers from their equilibrium values (z1(0) = 4z̄1, z2(0) =

−z1(0), η(0) = 0); (2) only displacement of η from its equilibrium values

(z1(0) = z̄1, z2(0) = z̄2, η(0) = 0.5). In the case (1) the population does not

oscillate: since in the dynamics η = 0, from (4.13) follows that ZCOM har-

monically oscillates (Fig.7a). Then the pendulum length (4.18) oscillates in

this anharmonic way and the trajectory in the plane (X, Y ) is proportional

to Y -axis (Fig.7b). In the case (2), at contrary, η oscillates: also ZCOM , with

average vanishing (Fig.7c). The trajectory in the plane (X, Y ) is as in Figs.5,

and for the particular values considered, it is almost a line proportional to

X-axis (Fig7d).

The composition of these two motions results in a Lissajous figure. Choos-

ing both an initial deviation of η and a displacement of the centers (z1(0) =

4z̄1, z2(0) = −z1(0), η(0) = 0.5), we have < η >t= 0 and < ZCOM >t= 0

(Fig.8a). The trajectory in the (X, Y ) plane is in Fig.8b. The same structure

of the zero-state oscillations has been verified for other more irregular initial

conditions. In Fig.8 we plot also the case in which the two traps are sud-

denly displaced of a same amount. With z1(0) = 4z̄1, z2(0) = z1(0) + 2 | z̄1 |

and η(0) = 0 (Fig.8c) or η(0) = 0.5 (Fig.8d): in both cases < η >t= 0 and

< ZCOM >t= 0 and zero-state oscillations are found. Varying Ω0 and moving

the trap, we can directly detect the MQST transition (see below).

What is really interesting is that such structure of oscillations holds both

for small and huge displacements from the equilibrium values. When the

centers and η are both heavily displaced, the combination of the two motion

always results in a Lissajous figure, but < η >t= 0 and < ZCOM >t= 0. The
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reason for which these highly nonlinear equations have this behavior is that,

when ZCOM >> z0η, then from (4.13) its motion is harmonic.
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z1
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Figure 4.7: (a) Plot of the centers positions z1, z2 and (dashed line) η. Initial

conditions: traps equally populated (η(0) = 0) and displacements of the

centers from their equilibrium values (z1(0) = 4z̄1, z2(0) = −z1(0)). (b) Plot

of the pendulum coordinates X, Y and same initial conditions as before.

(c) Plot of the center of mass ZCOM , population imbalance η and (dotted

line) geometrical center Z = z1 + z2. Initial conditions: only displacement

of η from its equilibrium values (z1(0) = z̄1, z2(0) = z̄2, η(0) = 0.5). (d)

Pendulum coordinates with initial conditions as in (c). In all cases we use

experimental values from [90]: Ω0 = 5, NT = 23000, z0 = 0.15, φ(0) = 0.

Before to conclude the discussion of 0-states, we remark that including

in the dynamics also the widths time-dependent (with the initial condition

(4.14)) does not modify the previous discussion: yet, the Figs.7-8 are practi-

cally the same.
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Figure 4.8: (a) Plot of the center of mass ZCOM , population imbalance η

and (dotted line) geometrical center Z = z1 + z2. Initial conditions: both

an initial deviation of η and a displacement of the centers (z1(0) = 4z̄1,

z2(0) = −z1(0), η(0) = 0.5). (b) Plot of the pendulum coordinates X, Y and

same initial conditions as before. (c) Plot of ZCOM and η when the two traps

are suddenly displaced of a same amount (z1(0) = 4z̄1, z2(0) = z1(0)+2 | z̄1 |)

and η(0) = 0. (d) Plot of ZCOM and η as in (c), but with η(0) = 0.5. The

other parameters are the same indicated in the caption of Fig.7.

4.3.2 Running states: Macroscopic Quantum Self-Trapping

Let vary Ω0 and/or the trap distance z0, in such way that the parameter

Λ, given by (4.10), is in the self-trapping region. In Fig.9 we consider the

case of z0 = 2 and Ω0 = 0.1. The MQST is characterized by < η >t 6= 0

and < φ >t∼ t; in the pendulum analog, this means that the pendulum

does complete oscillations. The classical signature, as previously discussed,

is given by < ZCOM >t 6= 0.

The numerical solution of the equations of motion shows that the MQST

is not destroyed by the internal modes. In Fig.9a we plot the time average <
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η >t and < ZCOM >t: both are not equal to 0. The corresponding behaviour

of the pendulum is illustrated in Fig.9b. We see that the trajectory is not

closed as in the pure case (i.e. without internal modes), but yet the pendulum

does full oscillations. and, correspondingly, the phase φ runs (Fig.9c). The

inclusion of time-dependent widths make the full oscillations of the pendulum

chaotic, but the self-trapped structure is preserved. In Fig.9d we plot the

pendulum coordinates in this case.
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Figure 4.9: (a) Plot of the time averages of the center of mass ZCOM and

population imbalance η. (b) Plot of the pendulum coordinates X, Y . (c)

Plot of phase φ. (d) Plot of the pendulum coordinates X, Y when the width

of the condensates is taken time-dependent (with initial value (4.14). In all

cases the initial conditions are η(0) = 0.5 and centers in their equilibrium

position (z1(0) = 4z̄1, z2(0) = −z1(0)). Furthermore, Ω0 = 0.1, NT = 23000,

z0 = 2.0, φ(0) = 0.
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4.3.3 π-state oscillations and rotations

In this subsection we discuss the π-state oscillations and rotations in

presence of the internal modes. In Fig.10a, we plot the population imbalance

and the phase for a π-state: we see that the motion of the center of mass

preserve this regime. If we plot the pendulum portrait for long time (until

t = 100 in Fig.10b), we see that the Lissajous trajectory fill a closed rectangle.

We also show in Fig.10c what happens if the initial condition for the centers

is not the equilibrium value which minimize the energy (C.3), but it is given

by the minimum of (C.3) with φ = π: we can see that the π-state is not longer

maintained. We remark that the initial condition φ(0) = π and the initial

equilibrium values for the centers and the widths of the condensates can be

in principle realized using phase-engineering techniques [93]. The effect of the

inclusion of the breathing mode is dramatic: in Fig.10d we plot the pendulum

portrait for long times (as in Fig.10b, until t = 100): for small times, there is

no difference, but after the pendulum goes down. However, the time window

in which the π-state can be detect in the full case is the order of ≈ 100ms,

which is a very reasonable time from an experimental point of view.

In conclusion we mention that the effect of the center of mass motion is

to destroy the π-rotations with the experimental numbers and that a possible

scenario in which the π-rotations can be detect is connected to a variation

of the scattering lengths (obtained with Feshbach resonances).

120



0 2 4
time

−1

1

3

5

−1 0 1X
0.84

0.86

Y

0 1 2 3
time

−1

1

3

5

7

9

−1 0 1X
−1

0

1

Y

φ

η η

φ

(a) (c)

(b) (d)

Figure 4.10: (a) Plot of the population imbalance η and the phase φ in a

π-state. (b) Pendulum portrait (until t = 100, scaled units). (c) Plot of η

and φ with initial position of centers given by energy minimization with

φ = π. (d) Pendulum coordinates X, Y until t = 100 when the width of the

condensates is taken time-dependent, with initial value (4.14). In all cases the

initial conditions are η(0) = 0.5, φ(0) = π and centers in their equilibrium

position (z1(0) = 4z̄1, z2(0) = −z1(0)); furthermore, Ω0 = 5, NT = 23000,

z0 = 0.15.
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Chapter 5

Experimental Observation of

the Internal Josephson Effect

5.1 Introduction

The manifestation of phase coherence on macroscopic scales is among

the most spectacular phenomena occurring in superfluids and superconduc-

tors [94]. According to quantum mechanics, only the relative phase between

two quantum systems is observable while the phase of a single one is not [95].

If a weak link is created between two quantum fluids, as a small perturba-

tion on the uncoupled systems, a particle current driven by the relative phase

oscillates through the junction, providing a non-destructive test of phase co-

herence. This is at the heart of the eponymous phenomenon predicted by

Josephson in the sixties [57], and verified experimentally, up to date, with

superconductors and superfluid Helium [56, 58, 59]. In this chapter we dis-

cuss the creation of a weak link between two hyperfine levels of 87Rb with

a non-resonant electromagnetic field and the observation of an oscillating
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Josephson current between them. The response above the critical condensa-

tion temperature of 87Rb thermal gases, driven by the same external field,

is different: we will show that the thermal oscillations damp quickly with

respect to those of the condensate. This evidence gives a clear signature of

the BEC’s macroscopic phase coherence.

While the Josephson effect was observed in superconducting systems soon

after its proposal [56], the search in neutral superfluids has always been prob-

lematic owing to the difficulty of creating weak links. Evidences of Josephson

oscillations across a micropore connecting two 3He-B baths were reported by

Avenel and Varoquoax [58] and their first direct observation has been re-

cently reported by Davis, Packard and collaborators [59]. The weak link was

provided by the spatial overlap of the two superfluid wavefunction tails inside

the micropore [96]. In the “internal” Josephson effect, on the other hand, the

states which are coupled differ by some intrinsic (spin) quantum number, and

are not necessarily separated spatially. An example is the longitudinal mag-

netic resonance in superfluid 3He−A [97]; in this case the relevant degree of

freedom is the hyperfine (nuclear spin) index of a Cooper pair. Oscillations

between two coupled 87Rb condensates trapped in different hyperfine levels

have been observed by the JILA group [85]. Josephson currents in an array

of weakly coupled condensates [8] has been described in Chapter 2.

The key point in experiments in which population oscillations between

two coupled levels are observed is to distinguish if they are Josephson or Rabi.

We want to remark that this is not a terminological problem: the condition to

have Josephson oscillations is the coherence of the two condensates and the

fact that each condensate is described by its own macroscopic wave function.
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The Rabi oscillations are instead single particle oscillations, in the sense that

each particle oscillate between the two coupled state independently from the

others. In other word, the Josephson effect regards with a non-destructive

manifestation of phase coherence on a (macroscopic) quantum fluid. The

idea is to couple two quantum fluids, and then inquire about their (if any)

well definite relative phase, but, and this is the crux, without perturbing the

two fluids. Of course, the words ”without perturbing” mean that the energy

scale of the coupling probe should be small as compared with the chemical

potential of both fluids. In the current literature it is common to talk, in

this case, of a weak link. From the historical point of view, the first weak

link achieved was a tunneling barrier between two superconducting systems.

Soon after, it was realized that tunneling was just one way among others to

create a weak link, and ”contact junctions” (with the two superconducting

systems sharing a small area) were implemented [56]. The creation of weak

links in Helium superfluid systems was technically more difficult, and has

been achieved only recently [59]. The junction was provided by a small hole

in a membrane which connected two reservoirs of superfluid He3 − B, the

diameter of the hole being of the same order of magnitude of the healing

length (∼ 100 nm). It is clear and well established, therefore, that tunneling

is a sufficient, but not a necessary condition to create a weak link, nor to

observe the Josephson effect.

The most important result presented here is the creation, for the first

time, of a weak link between two Bose-Einstein condensates, and the direct

observation of a Josephson current. The effective creation of a weak link

is shown: 1) by a perturbative calculation; 2) by a comparison with the
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oscillations of the thermal cloud, which quickly damp.

The Rabi effect (RE) is different from the Josephson effect (JE) for two

basic reasons. The RE regards the manifestation of coherence between inter-

nal states in the single atom dynamics, but does not require coherence among

several atoms (indeed it has been observed with thermal, non-condensate,

clouds). In this respect the RE is a manifestation of quantum effects on a

microscopic (atomic) scale. As expected, the quantum effects are washed out,

when reaching the macroscopic scale, by the incoherent collisions and well

known dephasing effects between atoms.

The collective coherence of the condensate, on the other hand, is expected

to be naturally robust due to the interatomic interaction (in other words,

due to the superfluid nature of the condensate emerging from the low energy

linear excitation spectrum [54]). Superfluidity is the consequence of phase

locking, which preserves the coherent dynamics on a much longer time scale

respect to a normal fluid. Therefore, the JE regards the manifestation of

quantum effects (the same quantum effects driving the Rabi single atom

dynamics) on macroscopic scales. In this section (see below) we include a

rigorous proof that we are indeed in the weak-coupling regime.

The second important result is that the condensate oscillation mode per-

sists on a much longer time scale respect to the non-condensate mode. The

words ”much longer”, of course, are not synonymous, in our experimental

system, of ”several orders of magnitude”. This because the thermal cloud

is very dilute, and the thermal atoms are weakly interacting; yet, there is a

clear difference on the relaxation time scale, that it is possible to read as a

clear signature of phase coherence.
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5.2 A weak link with two atomic species

In this section we briefly discuss the experimental setup realized at the

LENS and we show that the system realizes a weak link. A single condensate

in the Zeeman state |F = 2, mF = 2 >≡ |2 > is created first. Subsequently,

we apply a first strong (and, therefore, very short) radiofrequency field to

create, out of it, a second condensate in the Zeeman state |F = 2, mF =

1 >≡ |1 >. Both (equally populated) condensates are fully overlapped in

space. This gives our initial (t = 0) configuration.

Having different magnetic momenta, the atoms of the two species feel

different trapping potentials V2 = 1
2
mω2{x2 + l2(y2 + z2)} + mgz and V1 =

1
4
mω2{x2 + l2(y2 + z2)} +mgz. Therefore, they begin to separate from each

other, each one following its own potential. In Fig.1 we report these potentials

along the z-direction, in which the motion of the condensates effectively

occurs: the center of two potentials are separated by approximately 15 µm

(which is a large amount respect to the width of the condensates, 4.3µm).

While the condensate |1 > begins to move, we turn on an external rf field

~ΩRe
iωrf t with detuning δ = ωrf − ω0 (ω0 ≈ 2π · 2MHz is the energy shift

between the two states) in order to create the weak link. In ≈ 500µs the two

condensates would get completely separated, but in the typical time scale of

our experiment (≈ 100µs), they are still almost completely overlapped and

the motion of |1 > is basically ballistic.

In order to see the Josephson oscillations, an experimental value of ΩR of,

at least, 0.5kHz is necessary. Since the scattering lengths are almost degener-

ate, the effective mean-field contribution to the chemical potential difference

is of the order of 50Hz, which is completely negligible in the dynamics.
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Figure 5.1: Potentials (in unity of ~ω) felt by the two condensates along the

z-axis, in which the motion effectively occurs. Initially, the two condensates

are completely overlapped; the complete oscillations of the condensate |1 >

around its center have a period of order 10 ms. In the typical time scale

of the experiment (≈ 100µs), |1 > moves at most of 0.02 µs and the two

condensates remain essentially overlapped.

The order parameters ψj(~r, t) for the condensate j (j = 1, 2) obey, in the

rotating wave approximation, a set of two-coupled Gross-Pitaevskii equa-

tions:

i~





ψ̇2

ψ̇1



 =





Ĥ2 − ~δ/2 ~ΩR/2

~ΩR/2 Ĥ1 + ~δ/2









ψ2

ψ1



 . (5.1)

If we neglect the mean-field term in the dynamics, as previously discussed,

the Hamiltonians of the uncoupled systems (i.e., without the external e.m.

field) are Ĥ2 = − ~2

2m
∇2 + V2 and Ĥ1 = − ~2

2m
∇2 + V1.

The Eq.(5.1) can be written in the form

i~





ψ̇2

ψ̇1



 = (Ĥ0 + Ŵe.m.)





ψ2

ψ1



 (5.2)
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where

Ĥ0 =





Ĥ2 0

0 Ĥ1



 (5.3)

is the Hamiltonian of the uncoupled systems.

At t = 0, we turn on the coupling e.m. field:

Ŵe.m. =
~δ

2





−1 ΩR/δ

ΩR/δ 1



 . (5.4)

It is possible to see that we have a ”weak link” (i.e. a small perturbation

on the uncoupled systems) when the ratio ΩR/2δ is small. Indeed, a basis for

Ĥ0 is given by










ψ2n

0



 ,





0

ψ1m











with Ĥ2ψ2n = E2nψ2n and Ĥ1ψ1m = E1mψ1m. Applying the standard first

order perturbation theory, we see that the correction to, for instance, the

wavefunctions





ψ2n

0



 is given by





0
∑

m
1
2

ΩR

∫

d~rψ2mψ1n

E2m−E1n+δ
ψ2m



 (5.5)

from which we can see the standard first order perturbation theory correctly

applies when ΩR/2δ << 1: in this condition, the external rf field is a weak

link. We note that, with δ ≈ 70kHz, when the denominator is very small the

numerator also vanishes. Similarly, this is valid also for the dynamics.
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5.3 Macroscopic quantum oscillations between

weakly linked Bose-Einstein condensates

In the previous section we showed that coupling with a far-detuned e.m.

field two different levels we create a weak link between them. This weak link

has been realized at LENS and the Josephson oscillations observed. In this

section we discuss in detail this experiment and we present the data obtained.

The experiment goes as follows: a dilute gas of 87Rb atoms is trapped and

cooled below the critical temperature for Bose-Einstein condensation [32],

Tc ' 130 nK, with a combination of laser and evaporative cooling. The atoms

are confined by dc magnetic fields generated by a set of four coils, arranged

so as to create an axially symmetric harmonic potential [91]. We prepare the

Bose-Einstein condensate initially in the |F = 2, mF = 2 >≡ |2 > Zeeman

state. A first resonant rf field is applied to transfer half of the condensate

population into the |F = 2, mF = 1 >≡ |1 > state (there is a small transfer

of population into the other three accessible Zeeman levels that can be ne-

glected in the dynamics of the system). The two condensates, having different

magnetic momenta, experience the different trapping potentials V2 and V1,

whose centers z2 and z1 are separated by approximately 15 µm (while the

width of the condensates is ≈ 4.3 µm). At the end of the first pulse, the two

condensates are equally populated and completely overlapped (their position

is given by z2). Now, a new rf far-detuned field is applied: the relative pop-

ulation between the two levels oscillates and its time evolution is recorded

by a series of destructive measurements. During the far-detuned pulse, the

condensates begin to separate: |1 > goes towards the center of its potential,
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z1, initially following a ballistic motion; in the typical time scale of the ex-

periment it moves apart along the vertical z-axis at most by 0.02 µm. The

two condensates then remain essentially overlapped and with no change in

shape.

In the far-detuned regime (δ � ΩR), the external field is a weak link.

Therefore, the condensates dynamics can be described in the two-mode ap-

proximation [35, 36, 90, 98] and the two wavefunctions can be parameterized

(in the center of mass frame) as ψj(~r; t) =
√

Nj(t)e
iφj(t) Φ(~r)e

i
~
pj(t)·z (j = 1, 2,

∫

d~r|ψj|2 = Nj, pj is the condensate momentum and Φ(~r) the |2, 2 > wave-

function at t = 0). The temporal evolution of Φ(~r) can be neglected. The

equations of motion for the particle number Nj and its conjugate momentum

φj, can be retrieved from the two coupled Gross-Pitaevskii equations de-

scribing the system and discussed in the previous section. The current-phase

dynamics is given by:







I(t) = Ic(t)
√

1 − η2(t) sinφ(t)

∂
∂t
φ = −∆µ(φ, η)

(5.6)

with η = N2−N1

N2+N1
, Ic(t) = ΩR

∫

d~rΦ(~r)Φ(~r)eip(t)z/~, p = p1 − p2 and, in the

far-detuned case, the chemical potential difference ∆µ = µ1 − µ2 ' δ. We

remark that the atomic current I = ∂
∂t
η depends on the relative average

phase φ(t) = φ1(t) − φ2(t). In the strong-coupling limit (δ < ΩR), the two-

mode approximation breaks down, and hence Eqs.(5.6) cannot be retrieved.

We observe that the scattering lengths of the two condensates are almost

degenerate, and that the mean-field term in Eqs.(5.6) is of the order of 50

Hz so it can be neglected.

Eqs.(5.6) are generalized Josephson equations, similar to those govern-
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ing a voltage-driven superconducting junction [56]. Here, however, the crit-

ical current Ic(t) depends explicitly on time due to the dynamical phase,

e
i
~
p(t)z , accumulated by the two condensates. The spin dynamics can be de-

coupled from the much slower spatial dynamics so, to a good approximation,

p ' −mgt/2. This gives a decreasing critical current Ic(t) ≈ ΩR e−t
2/Γ2

with a relaxation time Γ ' 132µs. A further departure from the standard

Josephson current relation is given by the term
√

1 − η2 [35, 36], absent in

superconducting systems where η ≈ 0 [56] due to the presence of external

circuits which suppress charge imbalances. In Fig.2a the time evolution of

the fractional relative population observed experimentally is compared with

the solution of the Josephson Eqs.(5.6).

In order to highlight the macroscopic quantum nature of the conden-

sate oscillations, we show that those of a non-condensate (thermal) atomic

cloud, driven by the same external rf field, die out on a much shorter time

scale. The difference between the two relaxation times is a manifestation of

the BEC long-range order respect to the microscopic coherence length of the

non-condensate cloud. Indeed, the relaxation of the condensate oscillation is

purely dynamical (due to the different trapping potentials felt by the two

Zeeman states), while the decay of the thermal gas is mainly due to a strong

dephasing. In our experiment, a thermal atomic cloud is initially trapped in

the Zeeman level |2 >, at a temperature T ' 3 Tc. In first approximation,

the gas is very dilute and can be seen as a swarm of non-interacting par-

ticles. After the first π/2 pulse, the far-detuned rf field is applied, and the

atomic population recorded. The oscillations die out in ∼ 40µs (see Fig.2b),

which should be compared with the ∼ 200µs in which the condensate os-
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cillations disappear. If we describe the thermal cloud by the density matrix

ρ =
∑

α ρ
(α) =

∑

α |ψ(α) >< ψ(α)|, where α runs over the number of parti-

cles and < ψ(α)| =
(

∑

n a
(α)∗
n e−ip1z/~ < ϕn| ,

∑

m b
(α)∗
m e−ip2z/~ < ϕm|

)

. the

dynamical evolution of the density matrix is given by






iȧ
(α)
n = (εn − δ

2
)a

(α)
n + 1

2

∑

m Ωnm(t)b
(α)
m

iḃ
(α)
n = (εn − δ

2
)b

(α)
n + 1

2

∑

m Ω∗
mn(t)a

(α)
m

(5.7)

The transfer matrix elements are calculated as overlap integrals of the two-

species wave-functions Ωnm(t) = ΩR

∫

d~rϕn(~r)ϕm(~r)eip(t)z/~. The orthogo-

nality of the wavefunctions is gradually lost so, after a transient time, the

diagonal and non-diagonal matrix elements become comparable, allowing for

an incoherent exchange between states of different quantum numbers and,

therefore, leading to a strong dephasing of the thermal oscillations. From our

simulations Ωn,n ∼ Ωn,n±1 at t ∼ 30 µs.

We observe that, if the two trapping potentials were the same, all di-

agonal matrix elements in Eqs.(5.7) would be equal to Ωnn = ΩR, while

the off-diagonal terms would vanish Ωnm = 0. Therefore the thermal cloud

would exhibit undamped Rabi oscillations [99], indistinguishable from the

condensate Josephson oscillations. In Fig.2b we show the time evolution of

the relative population of the two thermal clouds, which is in fairly good

agreement with our predictions.

The theoretical and experimental results here reported allow us to con-

clude that 1) the far-detuned rf field behaves like a superfluid weak link, 2)

the current-phase dynamics is governed by generalized Josephson equations,

3) the persistence of condensate oscillations for times much longer than those

of the thermal cloud yields a clear signature of the macroscopic quantum co-

herence in Bose-Einstein condensates.
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Our experimental set-up would also enable one to study the analogous

of several phenomena present in superconducting and superfluid Josephson

junctions [55], as well as to address problems in the foundation of quantum

mechanics, like the possibility to define a phase standard [95]. This might be

investigated populating all the Zeeman sublevels, thus creating an array of

Josephson junctions, whose relative phases can be properly manipulated by

tuning the external rf field. Furthermore, the comparison between the con-

densate and normal components of an atomic gas opens a new experimental

way to testing theories of decoherence and dephasing mechanisms [54,98,100]

by studying the Josephson dynamics of a condensate embedded in a thermal

bath.
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Figure 5.2: a) Time evolution of the fractional relative population of the two

condensates, η = (N2 − N1)/(N2 + N1). The experimental data (dots) are

compared with the theoretical prediction (solid line) as described in the text.

ΩR = 2π × (13 ± 2)kHz and δ = 2π × (80 ± 10)kHz. At the end of the

second pulse the trap is turned off, and the population of both condensates

is destructively measured with laser imaging techniques. The frequency of

the oscillations is ν = 88 kHz, and the relaxation time is Γ ' 130 µs. b)

Time evolution of the fractional relative population of the thermal clouds η =

(N2−N1)/(N2+N1). The temperature is T ' 0.4 µK ' 3Tc. The parameters

are the same as in Fig.2a. The theoretical frequency of the oscillations is

ν = 88 kHz, as for the condensate oscillations, while the relaxation time

is Γ ' 15 µs, which has to be compared with the value (130µs) for the

condensate.
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Appendix A

Variational dynamics of arrays

of Bose-Einstein condensates

A.1 Lagrangian

The wave packet dynamical evolution for a BEC in an optical lattice

can be obtained by a variational principle from the Lagrangian

L =
∞
∑

n=−∞
iψ̇nψ

∗
n −H, (A.1)

with the equations of motion for the variational parameters qi(t) = ξ, α, p, δ

given by

d

dt

∂L
∂q̇i

=
∂L
∂qi

. (A.2)

Substituting the variational ansatz (1.13) ψnV (t) =
√
k · exp

{

− (n−ξ)2
α

+

ip(n− ξ) + i δ
2
(n− ξ)2

}

in (A.1), we obtain

L = k

∞
∑

n=−∞
e−(2n2+2n−4nξ+2ξ2−2ξ+1)/α cos [δ(n+ 1/2 − ξ) + p]+

135



+k

∞
∑

n=−∞

{

− δ̇

2
(n− ξ)2 + δξ̇(n− ξ) − ṗ(n− ξ) + pξ̇

}

e−2(n−ξ)2/α+

−k
∞
∑

n=−∞
Ene

−2(n−ξ)2/α − Λ

2
k2

∞
∑

n=−∞
e−4(n−ξ)2/α. (A.3)

With α not too small (α > 1), we can replace the sums over n with integrals:

to evaluate the error committed, we recall that [101]

∞
∑

n=−∞
e−

(n−ξ)2

α

/ ∞
∫

−∞

e−
(n−ξ)2

α dn = 1 +O(e−π
2α). (A.4)

In this limit the normalization factor becomes k =
√

2/πα. We finally get

L = pξ̇ − αδ̇

8
− Λ

2
√
πα

+ cos p · e−η − V (α, ξ) (A.5)

where V = k
∞
∫

−∞
dnEne

− 2(n−ξ)2

α and η = 1
2α

+ αδ2

8
. Also it is possible to show

explicitly that ImL = 0, as might. Using the Euler-Lagrange equations (A.2),

Eqs.(1.14) and (1.15) are obtained.

A.2 Phase diagrams for the horizontal array

In this case, the on-site energies En, as well as V (ξ, α), are constant.

The momentum is, therefore, conserved: p(t) = p(t = 0) ≡ p0. We will

consider the case Λ > 0, in order to make contact with the experiments done

with 87Rb, as discussed in chapter 1. The phase diagrams for the collective

coordinates which describe the boson wave packet can be determined from

the Eq.(1.14)- (1.18) in the following way [34]. Let us suppose cos p0 > 0 (i.e.

a positive effective mass) and initial values α0 and δ0 = 0. The initial value

of the Hamiltonian is given by H0 = Λ/2
√
πα0 − cos p0 · e−1/2α0 . Since the

136



Hamiltonian (1.18) is a conserved quantity, we have H0 = Λ/2
√
πα− cos p0 ·

e−1/2α−αδ2/8: therefore

Λ

2
√
πα

−H0 > 0. (A.6)

The trajectories in the α− δ plane are given by

δ2 = −
8α log

(Λ/2
√
πα−H0

cos p0

)

+ 4

α2
(A.7)

From (A.6), we can see that when H0 > 0, the width α0 has to remain

finite and that α < αmax, where the maximum value of the width is

αmax =
Λ2

4πH2
0

. (A.8)

Using Eqs.(A.7), we can see that δ → ∞ for t → ∞; therefore for large t

ξ̇ ≈ sin p0e
−1/2αmax−αmaxδ2/8 → 0 and 1/m∗ ≈ cos p0e

−1/2αmax−αmaxδ2/8 → 0.

The center of the BEC wave packet stops and the effective mass goes to

infinity: there is an energy transfer from the kinetic energy to the internal

modes, since δ is the momentum associated to the width α.

When H0 < 0, on the other hand, we have for t → ∞ that α → ∞ and

δ2 ≈ −8 log (−H0/ cos p0)/α → 0. The center of mass does not stop since

ξ̇ ≈ −H0/ tan p0 6= 0 and the effective mass is given by 1/m∗ ≈ −H0 > 0.

This regime is a diffusive one, with an asymptotic complete spreading of the

wave function.

The transition between these two regimes is given by H0 = 0: the critical

value for the nonlinearity is

Λc = 2 cos p0

√
πα0 e

−1/2α0 . (A.9)

For large times, when Λ > Λc, α → αmax and ξ̇ → 0 (self-trapping); for

Λ < Λc, α → ∞ and ξ̇ → const (diffusion). In Fig.A1 we plot the critical
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value vs. the initial width: we observe that the greater the initial width, the

greater is the critical value of the nonlinearity in order to have self-trapping

and localization. Furthermore, we observe that using Eqs.(A.8) we get

αmax
α0

=

(

Λ

Λ − Λc

)2

: (A.10)

from which we can see that at Λc the width goes to ∞. Moreover, from (A.10)

we can argue that αmax > α0. This is illustrated in Fig.2, where we plot the

trajectories in the space α− δ for different values of Λ. In Fig.3 we plot the

inverse of the effective mass (1.21): it is seen that for Λ > Λc, 1/m∗ → 0.

0 5 10
α0

0

5

10

Λ  

diffusion

self−trapping

Figure A.1: Plot of the critical value Λc vs. the initial wave packet width α0

in the case cos p0 > 0 (p0 = π/4).

The phase diagram, as we discussed, is richer in the case cos p0 < 0 (i.e.

when the effective mass is negative). Indeed, for cos p0 > 0 the Eqs.(1.15) do

not admit fixed points α̇ = 0 and δ̇ = 0; while, with cos p0 < 0, Eqs.(1.15)

have the stationary solution α(t) = α0 and δ(t) = 0 when the nonlinear

coefficient is equal to

Λsol = 2 | cos p0 |
√

π

α0
e−1/2α0 . (A.11)
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Figure A.2: Trajectories in the space α−δ for different values of Λ in the case

cos p0 > 0. The initial values of the width and the momentum are respectively

α0 = 5 and p0 = π/4: the critical value is Λc = 5.072. Beginning from the

bottom of the figure it is Λ = 0, 2.5,Λc(dashed line), 7.5, 10, 20.

For Λ = Λsol the center of mass moves with constant velocity ξ̇ = sin p0 e
−1/2α0

and the gaussian shape does not change with time - a bright soliton. The

soliton solution is a maximum of the energy (1.18): indeed, if we fix Λ,

from (∂H/∂α)δ=0 = 0 we find the corresponding width αsol of the station-

ary solution. The relation, between Λ and αsol is given by Λ = 2 | cos p0 |
√

π
αsol

e−1/2αsol . Using this relation it is possible to show that (∂2H/∂α2)δ=0,α=αsol
=

− cos p0e
−1/2αsol(1 − αsol)/4α

4
sol < 0 for α = αsol (we recall that the approxi-

mation (A.4) requires α greater than 1).

Furthermore, proceeding as in the case cos p0 > 0, we observe that H0 =

Λ/2
√
πα0 + | cos p0 | e−1/2α0 > 0 and Λ/2

√
πα = H0− | cos p0 | e−η. There-

fore, for H0 >| cos p0 |, the width α has to remain finite. For H0 <| cos p0 |,

α → ∞, δ2 ≈ −8 log (H0/ | cos p0 |)/α → 0 and ξ̇ → −H0/ tan p0 6= 0. The
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Figure A.3: Inverse of the effective mass vs. time for different values of Λ

(α0 = 5 and p0 = π/4 as in Fig.2): from the top of the figure it is Λ =

0, 2.5,Λc(dashed line), 7.5, 10.

transition occurs at

Λc = 2 | cos p0 |
√
πα0 (1 − e−1/2α0). (A.12)

We observe that for α0 > 1, Λsol > Λc.

For Λ > Λc we have α(t) finite: but, while in the case cos p0 > 0, we

have α → αmax > α0 and δ → ∞, now the situation is different. For Λc <

Λ < Λsol, we have α(t), δ(t) and the effective mass (1.21) oscillating with

time: the trajectories in the α− δ plane are closed and α oscillates between

the initial value α0 and a value αmaxosc > α0. When Λ approach to Λsol, the

area enclosed in the trajectories shrinks to 0 at the stationary point. In this

region Λc < Λ < Λsol, ξ̇ oscillates around a constant value: we have a breather

solution, with the center of mass traveling with a nearly constant velocity

and with an oscillating width. The breather region extends until the value

Λbreath: for Λsol < Λ < Λbreath, α oscillates between the initial value α0 and

a value αminosc < α0. Both the values αmax,minosc are roots (together with α0) of
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the Eq.(A.7). The condition for which Eq.(A.7) does not have another root

αminosc < α0 (apart from α0) gives Λbreath.

The determination of Λbreath goes as follows. When Λsol < Λ < Λbreath, the

point (α = αminosc < α0, δ = 0) is determined by using the energy conservation:

H0 =
Λ

2
√

παminosc

− cos p0 · e−1/2αmin
osc

(this equation is satisfied, of course, also by α0). With the position αminosc ≡

xα0, with x < 1, we can find

Λ

Λsol

=
α0

√
x

1 −√
x
·
(

1 − e(x−1)/2α0x
)

(A.13)

From this it is possible to see that when x→ 1, then Λ → Λsol, as expected.

Moreover, with α0 < 1, the value of Λ/Λsol from Eq.(A.13) is never greater

than 1: this means that above Λsol there are not anymore breather solution. In

the more interesting case α0 > 1, the maximum value of the rhs of Eq.(A.13)

gives Λbreath/Λsol. This value is always greater than 1, it depends on α0 and

not on p0. The full phase diagram for cos p0 < 0, including Λc, Λsol and Λbreath

is reported in Fig.4.

For Λ > Λbreath, moreover, α → αmin < α0, δ → ∞ and ξ̇ → 0, with a

self-trapping of the wave-packet. The value of αmin is given by

αmin = α0

(

Λ

Λ + Λ̃

)2

. (A.14)

where Λ̃ = 2
√
πα0 | cos p0 | e−1/2α0 . Eq.(A.14) is the generalization of the

relation (A.10) to the case of cos p0 < 0 and it shows that for Λ → ∞ it is

αmin → α0: a large nonlinearity forbids any spreading of the wave packet. In

Fig.5 we plot the α − δ trajectories for different values of Λ: in the inset of

Fig.5 we illustrate the transition at Λbreath. In Fig.6 we plot the behaviour of

the effective mass.

141



0 5 10
α0

0

1

2

Λ

self−trapping

breathing

diffusion

Figure A.4: Phase diagram in the case cos p0 < 0 (p0 = 3π/4). The dashed

line is the solitonic solution and the two solid line are, beginning from the

bottom of the figure, Λc and Λbreath: Λc < Λ < Λbreath defines the breather

region.
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Figure A.5: Trajectories in the space α − δ for different values of Λ in

the case cos p0 < 0. The initial values of the width and the momentum

are respectively α0 = 5 and p0 = 3π/4: the critical values for the dif-

ferent transitions are Λc = 0.534, Λsol = 1.014 and Λbreath = 1.397. For

Λc < Λ < Λbreath the trajectories are closed. Beginning from the bottom

of the figure it is Λ = 0, 0.25,Λc(dashed line), 0.8, 0.85, 0.95,Λsol (black

circle), 1.1, 1.2, 1.3,Λbreath(dot-dashed line), 2, 5. In the inset we show the

phase trajectories α − δ near Λbreath: the different values from the left are

Λ = 1.35, 1.37, 1.39,Λbreath(dot-dashed line), 1.4, 1.41.
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Figure A.6: Inverse of the effective mass vs. time for different values of Λ

(α0 = 5 and p0 = 3π/4 as in Fig.5): from the bottom of the figure it is Λ =

Λc(dashed line), 0.95,Λsol (dotted line),1.35,Λbreath(dot-dashed line), 1.5. For

Λ < Λc, the effective mass goes to a constant value, for Λc < Λ < Λbreath

it oscillates and for Λ > Λbreath goes to 0 (furthermore for Λ = Λsol it is

constant).
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Appendix B

Variational estimate of the

coefficients of the discrete

nonlinear Schrödinger equation

In this Appendix we report a variational calculation of the coefficients K,

U and εn of the DNLSE: we remember that K = −
∫

d~r
[

~2

2m
~∇Φn · ~∇Φn+1 +

ΦnVextΦn+1

]

, U = g0NT

∫

d~rΦ4
n and εn =

∫

d~r
[

~2

2m
(~∇Φn)

2 +VextΦ
2
n

]

with the

external potential given by Eq.(2.4). We use the variational ansatz given in

section 1.4:

Φn(~r) = Ce−(x−xn)2/2σ2
xe−y

2/2σ2
ye−z

2/2σ2
z (B.1)

with C normalization factor, xn = nλ/2 center of the n-th well along the

optical trap and σx,y,z widths to determine We will take σx = σy ≡ R from

the experimental data: R ≈ 5.6µm. As we discussed in the main text, we

are neglecting the site-dependence the width and we take rather an average
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value. From
∫

d~rΦ2
n = 1 we get C = (π3/2R2σx)

−1/2. Since

∫

d~rΦ2
n ·

1

2
m[ω2

xx
2 + ω2

r(y
2 + z2)] =

1

2
mω2

x(x
2
n +

σ2
x

2
) +

1

2
mω2

rR
2,

neglecting constant terms in the energy, the formula (2.9) is obtained. Fur-

thermore we get

U =
g0NT

(2π)3/2R2σx
(B.2)

and

K = −e−λ2/16σ2
x

{

~
2

2mR2
+

~
2

2mσ4
x

(σ2
x

2
− λ2

16

)

+
V0

2
(1 + e−4π2σ2

x/λ
2

)

}

. (B.3)

Now we have to determine the σx: for simplicity, let us introduce the

adimensional quantities

α =
V0

ER

(ER energy recoil) and

x =
σx
λ
.

The conserved energy of the GPE is

E[Ψ] =

∫

d~r
[ ~

2

2m
(~∇Ψ)2 + Vext | Ψ |2 +

g0

2
| Ψ |4

]]

:

when we use the tight-binding approximation, Ψ(~r, t) =
√
NT

∑

j ψj(t)Φj(~r),

the energy in the i-th well is

E[ψiΦi]/NT ≈
∫

d~r
[ ~

2

2m
(~∇ψiΦi)

2 + Vext | ψi |2 Φ2
i +

g0NT

2
| ψi |4 Φ4

i

]]

:

by using | ψi |2≈ Ni

NT
, where Ni is the average value of particle per site, we

get an expression for the energy in the i-th well given by

E[σx] ≈ Ni
~

2

4mσ2
x

+N2
i

g0

2(2π)3/2R2σx
+Ni

V0k
2σ2

x

2
+Ni

mσ2
x

4
(ω2

x + 2ω2
r).
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From ∂E
∂σx

= 0 we get σx: using the numerical values, we see that there is a

very weak dependence on the mean field term, and therefore to number of

particles in each site. Furthermore the laser term ∝ V0 is much greater of the

“harmonic” term ∝ (ω2
x + 2ω2

r). Finally we obtain

x4 ≈ ~
2

2mV0k2λ4
=

1

(kλ)4α

from which

x ≈ 1

2π
α−1/4.

We see that the variational width depends on the strength of the laser: finally

it is

K/ER ≈ 1

4π2x4

(

1

16
− x2

2

)

e−1/16x2 − α

2
(1 + e−4π2x2

)e−1/16x2

and

U =
g0NT

(2π)3/2R2λx
.
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Appendix C

Effective Lagrangian for the

Josephson oscillations in

presence of the internal modes

The system of two Zeeman level coupled by an e.m field is described, in

the rotating-wave approximation, by two coupled GPE: being ψ1,2(~r, t) the

order parameters of the two condensates, they read

i





ψ̇1

ψ̇2



 =

=





−1
2
∇2 + V1 + λ11 | ψ1 |2 +λ12 | ψ2 |2 −Ω0

−Ω0 −1
2
∇2 + V2 + λ21 | ψ1 |2 +λ22 | ψ2 |2









ψ1

ψ2





(C.1)

with Ω0 = ΩR/2, λij = 4πaij/zsho and aij scattering length between the

species i and j (furthermore g12 = g21). The position in expressed in units

of zsho =
√

~/mωz1, time in units of 1/ωz1 and energy in units of ~ωz1. The
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total number of particles is conserved:
∫

d~r(| ψ1 |2 + | ψ2 |2) = NT . When

the motion is almost one-dimensional along the z-axis, we can substitute to

a good approximation ψj(~r, t) ≈ ψ(z, t)Xj(x)Yj(y) in the previous (scaled)

GPE. In such way we find Eq.(4.2) with uij = λij
∫

dxX2
iX

2
j

∫

dyY 2
i Y

2
j .

Substituting (4.6) in (4.5) we find the effective Lagrangian

L = −N1φ̇1 −N2φ̇2 +N1p1ż1 +N2p2ż2 −
1

8
N1α1δ̇1 −

1

8
N2α2δ̇2 − E (C.2)

The explicit expressions for the different parts of the energy

E = EMF + Ekin + Epot + EJos (C.3)

are: the kinetical energy

Ekin =
N1

2

(

p2
1 +

1

α1

+
α1δ

2
1

4

)

+
N2

2

(

p2
2 +

1

α2

+
α2δ

2
2

4

)

,

the potential energy (written for (J) e.g.)

Epot =< V1 > + < V2 >=
N1

2

[

α1

4
+(z1 + z0)

2 + δ

]

+
N2

2

[

α2

4
+(z2− z0)2− δ

]

(where < Vj >=
∫

dzVj | ψj |), the mean-field energy

EMF =
uN2

1

2
√
πα1

+
uN2

2

2
√
πα2

+

√

2

π

uN1N2√
α1 + α2

e−2(z1−z2)2/(α1+α2)

and the Josephson energy, proportional to
∫

dz(ψV ∗
1 ψV2 + ψV1 ψ

V ∗
2 ),

EJos = 2Ωeff

√

N1N2 cos φ̃

where φ̃ = φ1 − φ2 − p1z1 + p2z2 + δ1z
2
1/2 − δ2z

2
2/2 + 1

2
arctanP

A + ρ
4D is the

effective dynamical phase difference, where A = 1/α1 +1/α2, P = 1
2
(δ1− δ2),

B = −2(z1/α1 + z2/α2), Q = p1 − p2 − δ1z1 + δ2z2, ξ = A(B2 −Q2)+ 2BPQ,
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ρ = P(B2−Q2)−2ABQ and D = A2+P2. Using these notations the effective

Josephson coupling is given by

Ωeff =
√

2Ω0[α1α2D]−1/4 e−z
2
1/α1−z22/α2+ξ/4D :

after some algebraic manipulations, the coupling can be cast in the form

Ωeff =
√

2Ω0[α1α2D]−1/4exp
{

− z2

D
[ 1

α1α2

( 1

α1
+

1

α2

)

+
1

4

( δ2
1

α2
+
δ2
2

α1

)]}

·

· exp
{ zp

2D
( δ1
α2

+
δ2
α1

)

− p2

4D
( 1

α1
+

1

α2

)}

(C.4)

where z = z1 − z2 and p = p1 − p2. The Eq.(C.4) shows that the effective

Josephson coupling depends only on the relative position z, and not on the

center-of-mass variables. The main consequence of this is that, to leading

order, the population oscillations decouple from the COM dynamics.

The equations of motion can be written by the Euler-Lagrange equations

d
dt
∂L
∂q̇

= ∂L
∂q

, with q = Nj, φj, zj, pj, αj, δj.
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