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Chapter 1Introdu
tionAlthough the fundamental intera
tions responsible for the ma
ros
opi
 properties of ma-terials have been known for some time, our ability to use this knowledge in order to quan-titatively map mi
ros
opi
 properties onto ma
ros
opi
 observables is still very limited.The goal of theoreti
al 
ondensed matter physi
s is twofold : to understand mi
ros
opi
me
hanisms - the intera
tions of ele
trons and ions - and how they relate to experimentalobservables, and to quantitatively predi
t the properties of materials. Theory has hadmany su

esses in explaining experimentally observed phenomena and some notable fail-ures. Good examples are the explanation, more than forty years ago, of the phenomenonof super
ondu
tivity in a wide 
lass of materials as being the result of ele
tron-phonon
oupling[1℄ and the more re
ent failure of theorists to fully explain higher temperaturesuper
ondu
tivity in a di�erent 
lass of materials despite intensive e�ort. The quanti-tative predi
tion of ma
ros
opi
 properties is extremely desirable as it would allow thedesign of new materials whi
h 
ould be tailored to suit a spe
i�
 purpose and it would alsoallow one to gain knowledge about materials under 
onditions ina

essible to experiment.However, despite very rapid progress in the �eld of materials modelling in the last thirtyyears, it has not yet developed to the point where it 
an pro
eed without re
ourse toempiri
ism or experimental veri�
ation.The fundamental problem is that although we 
an state the prin
iples by whi
h ele
-trons and ions intera
t, the nature of these intera
tions and the large number of su
hintera
tions present in real materials means that apart from extremely simple systemssu
h as the isolated hydrogen atom it is not possible to solve the relevant equations inorder to see how the ma
ros
opi
 system behaves as a whole. It is ne
essary to use
omputers to help solve the many-body problem, but unfortunately despite enormousin
reases in 
omputational power in the last three de
ades, it is simply not possible tosolve the equations exa
tly ex
ept in an extremely limited number of 
ases. In fa
t, one
an show that to solve exa
tly the S
hr�odinger equation in its standard form for even tenele
trons is beyond any 
on
eivable 
omputer.A more pra
ti
al goal therefore is to re-express the many-body problem in a way whi
his easier to solve, by making reasonable approximations wherever possible. There aremany di�erent approa
hes to this and the best approa
h to use depends on a wide rangeof fa
tors su
h as the material of interest, the 
onditions under whi
h the material is to be1



2 CHAPTER 1. INTRODUCTIONstudied, the 
omputational resour
es available and the man-hours required to implementthe solution. Here the fo
us is on two of the most widely used approa
hes for atomisti
materials modelling, namely, the mole
ular dynami
s te
hnique and density fun
tionaltheory within the lo
al or semilo
al density approximations. Density fun
tional theory(DFT)[2, 3℄ , whi
h is dis
ussed in more detail in 
hapter 4, allows one to 
al
ulate theground-state probability density of a system of ele
trons in a given potential. As a result itmay be used to 
al
ulate the energy and for
es of a system of atoms whi
h is large enoughto approximate 
ertain properties of the bulk material. Central to the appli
ation of thismethod is the use of what is known as the lo
al density approximation, or LDA, whi
h hasprodu
ed very a

urate results for a wide range of materials. The mole
ular dynami
s(MD) te
hnique was histori
ally a tool for exploring the statisti
al me
hani
al behaviourof idealized systems. Given a known, or 
al
ulable intera
tion potential between a systemof atoms it evolves the atoms in time a

ording to the for
es via Newton's equationsof motion. Sin
e most atoms are large enough to be 
onsidered 
lassi
al parti
les, thisallows one to model the behaviour of a system at arbitrary temperatures or pressures. Thene
essity of repeatedly 
al
ulating the for
es between atoms has meant that the majorityof mole
ular dynami
s simulations have used very simpli�ed phenomenologi
al intera
tionpotentials and that these simulations are qualitative rather than quantitative in nature.In 1985, in a landmark paper[4℄, Car and Parrinello married density fun
tional theorywith mole
ular dynami
s for the �rst time to allow the in
reased a

ura
y of the DFTintera
tion potential and the �nite temperature real-time system evolution of MD in thesame simulation. Now known simply as Car-Parrinello Mole
ular Dynami
s (CPMD),this method has be
ome one of the most widely used te
hniques for the 
al
ulation ofdynami
 and ele
troni
 properties of 
ondensed matter with the original paper being 
itedmany thousands of times to date. Although this method represents a vast improvementover the simpli�ed potentials whi
h existed beforehand, it is extremely 
omputationallyexpensive relative to these potentials and even with a modern parallel super
omputer oneis generally 
on�ned to system sizes of the order of one hundred atoms and simulationtimes of only a few pi
ose
onds. This is a major problem as it severely limits the range ofproperties whi
h one 
an 
al
ulate and the range of phenomena whi
h 
an be simulated.The larger the system size that is simulated the 
loser one gets to the dimensions observedby experiment and to the human s
ale on whi
h most materials are en
ountered. Thelonger that one 
an run a real-time simulation, the 
loser one gets to experimental times
ales and to the human time s
ale of minutes, hours, days, and years on whi
h materialsare generally used. In pra
ti
e simulation 
an never even approa
h the relevant size andtimes
ales and it generally fails by many orders of magnitude in ea
h 
ase. However, theerror introdu
ed in this way 
an be minimized by having as large and as long a simulationas possible. For example, the larger and longer a simulation is the more pre
ision one 
ana
hieve in the 
al
ulation of thermodynami
 observables su
h as pressure, temperatureor density. At present, the fa
t that CPMD and other DFT based MD te
hniques are solimited by 
omputational expense means that the pre
ision with whi
h many propertiesare 
al
ulated is poor. On the other hand, simpli�ed phenomenologi
al potentials whi
hallow in
reases in size and time s
ale of three to �ve orders of magnitude, provide a verypoor des
ription of interatomi
 intera
tions.



3The pra
ti
al goal of this thesis is to �nd a way in whi
h the properties of bulk ioni
systems under 
onditions of low symmetry and high temperatures and pressures 
an bepredi
ted with a

ura
y and a reasonable degree of pre
ision. The motivation for thiswork is the desire to be able to quantitatively simulate systems of geophysi
al interestsu
h as the minerals that are found deep in the earth's mantle whi
h are mostly ioni
in nature. The extreme 
onditions of temperature and pressure make it very diÆ
ult forthe properties of su
h minerals to be 
onstrained by dire
t measurement and up to nowthe results of simulation have been of variable quality. Properties, su
h as the elasti
properties of some of the major 
onstituents of the earth's lower mantle[5, 6, 7℄, havebeen simulated with state-of-the-art �rst-prin
iples methods. Although su
h simulationsfrequently have not been veri�ed experimentally, it is likely that they are reasonablya

urate. The range of problems that 
an be ta
kled in a purely �rst-prin
iples way isvery limited however. Other problems, a prime example being the melting behaviourof oxides under pressure, have been ta
kled with a range of for
e-�elds in a mole
ulardynami
s framework and the results have been extremely poor. An example, whi
hwill be dis
ussed in detail in 
hapter 6 is the melting line of MgO. There have been atleast �ve separate simulations of the pressure dependen
e of the melting temperaturepublished. Of these, all have disagreed with experimental measurements of the slope ofthe zero-pressure melting 
urve by fa
tors of between 2:5 and 8. There has also been littleagreement between di�erent simulations, even between those using the same method of
al
ulating the slope. This level of disagreement 
learly signi�es problems with existingfor
e-�elds.In this thesis we ta
kle the general problem of simulating ioni
 systems su
h as oxidesunder arbitrary thermodynami
 
onditions. Although we have a 
lear pra
ti
al goal inmind, we approa
h the problem in a very general way and most of the methodology thatis developed is appli
able to almost any system for whi
h a

urate simulations of simpleioni
 systems are required.We begin, in 
hapter 2 by looking in detail at Car-Parrinello mole
ular dynami
s as themost widely used dynami
al ab initio te
hnique and dis
uss some theoreti
al issues whi
hhave not previously been fully addressed. We show that the standard understanding of themethod is in
omplete and we des
ribe in a more rigorous way its theoreti
al underpinning.Most importantly, our theoreti
al investigations show that 
ontrary to popular belief, theele
troni
 orbitals do not take their ground-state values on average during a Car-Parrinellosimulation. This means that there are errors intrinsi
 to the method and we show howthese errors may be partially 
orre
ted for many systems, but parti
ularly e�e
tively forsimple ioni
 systems.The 
omputational expense involved in ab initio mole
ular dynami
s means that formost of the problems in whi
h we are interested, an alternative solution is required. Wewould like to �nd a 
ompromise between a

ura
y and pre
ision in our 
al
ulations so thatthermodynami
 properties 
an be 
omputed with more 
on�den
e than has been done inthe past. The approa
h that we take to �nding this 
ompromise is to look for for
e-�eldswith fun
tional forms whi
h 
apture phenomenologi
ally more of the dynami
al ele
troni
e�e
ts whi
h 
ontribute to interioni
 for
es and whi
h are therefore 
apable of providingmore a

ura
y. The 
ompromise lies in the fa
t that this 
apa
ity for improved a

ura
y



4 CHAPTER 1. INTRODUCTIONis generally at the expense of 
omputational eÆ
ien
y. The improved a

ura
y is a
hievedwith a give fun
tional form by using data from density fun
tional theory simulations in ageneral and well-
ontrolled parametrization pro
edure.The problem of �nding a good fun
tional form for ioni
 systems is dis
ussed in detailin 
hapter 3. Many for
e-�elds over many years have been proposed for ioni
 systems butnone of these fully meet the 
riteria that we set. All are either too simple to be a

urate,too slow to be pre
ise or too spe
i�
 to be useful. We introdu
e a novel general for
e-�eldfor ioni
 systems whi
h is physi
ally well motivated but orders of magnitude faster thanCPMD.In 
hapter 4 we build on previous work and des
ribe how these for
e-�elds are parametrizedusing �rst-prin
iples data. The resulting for
e-�eld is shown in 
hapters 5 and 6 to providethermodynami
 and dynami
 properties of an extremely high quality while still allowingthe simulation of mu
h larger systems over mu
h longer times
ales than 
an possibly beta
kled within a fully �rst-prin
iples approa
h. Our method is 
learly shown to providepre
ision far surpassing that of ab initio methods and an a

ura
y far surpassing that ofsimple empiri
ally-parametrized for
e-�elds.In 
hapter 6 this method is applied to the outstanding problem of the melting tem-perature of MgO under pressure.



Chapter 2Car-Parrinello Mole
ular Dynami
sIn 1985, in a seminal paper [4℄, Roberto Car and Mi
hele Parrinello showed how it waspossible to perform a mole
ular dynami
s simulation whilst 
al
ulating the for
es withindensity fun
tional theory. In other words, the ele
trons were treated expli
itly in anab initio way in the 
al
ulation for the �rst time. The importan
e of this 
annot beoverstated. Even apart from the fa
t that density fun
tional theory 
an be mu
h morea

urate than e�e
tive parameter-based for
e-�elds, any MD simulation whi
h does nottreat ele
trons expli
itly requires one to make a 
hoi
e a priori about the nature of thesystem. We show in 
hapters 5 and 6 how it is possible to make very good e�e
tive for
e-�elds for ioni
 systems. However, if the bonding in the system 
hanges due to 
hanges inpressure, temperature or phase, the a

ura
y of the for
e-�eld su�ers. Moreover, we arebiasing the system from the start by the phenomenology that we in
lude in the potentialform, and apart from the ingredients that we in
lude, nothing else 
an play a role. Physi
sand 
hemistry are full of surprises and many e�e
ts and stru
tures o

ur due to deli
atebalan
es between many di�erent fa
tors. It is simply not possible to predi
t with anydegree of 
ertainty a priori what e�e
ts may be
ome important under a given set of
onditions.Expli
itly treating the ele
trons means that, in prin
iple, one does not make assump-tions about the bonding of the system and this allows surprises to o

ur. Spontaneous
hanges in bonding 
an take pla
e without loss of a

ura
y. This means that one 
ansimulate 
hanges of phase with mu
h more 
on�den
e. Ab initio mole
ular dynami
s 
analso allow one to model 
hemi
al rea
tions. This is something that e�e
tive for
e �elds areunable to do be
ause, by de�nition, 
hemi
al rea
tions involve 
hanges in the bonding andwhen they o

ur it is the ele
trons whi
h play the dominant role. Unless the dependen
eof ele
trons on ioni
 positions is expli
itly 
al
ulated, the rea
tion 
annot be modeled.The method of Car and Parrinello, in its original and most widely used form, workswithin the Born-Oppenheimer approximation. This means that at any instant the stateof the ele
troni
 system 
an be well des
ribed by the ele
troni
 ground-state 
al
ulatedfor the ioni
 positions at that instanti and that it responds instantaneously to 
hangesin ioni
 positions. For many systems this is an extremely good approximation given themass of the ele
tron relative to that of the ions, whi
h for hydrogen, the lightest element,is approximately 1=1836. When the ele
troni
 ground-state is 
lose to degenerate, whi
h



6 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSfrequently o

urs, it 
an be said that the Born-Oppenheimer approximation breaks down.However it should be valid before and after the o

urren
e of su
h degenera
ies and thetime during whi
h degenera
ies are relevant is generally small.The Car-Parrinello MD method started the �eld of ab initio mole
ular dynami
s andremains the most widely used method for 
oupling density fun
tional theory with mole
-ular dynami
s. It is not the only method however. A number of other te
hniques[8, 9, 10,11℄ have been developed whi
h are based on minimization of the ele
troni
 (Kohn-Sham[3℄) orbitals to their ground state at ea
h time step. These te
hniques will be referredto from now on as Born-Oppenheimer (BO) methods to distinguish them from the Car-Parrinello (CP) method whi
h does not put the orbitals to their ground state at ea
h timestep, as we will see below.Despite widespread appli
ation of the CP method to many areas of physi
s, 
hemistryand biology and despite rapid development of many aspe
ts of the methodology, no serioustesting of the a

ura
y of the method has ever been published to our knowledge. A numberof people [4, 12, 13℄, in
luding the inventors of the method, have shown that it reprodu
esground-state for
es and energies in simple systems, su
h as toy-models of 
rystalline sili
onor germanium, extremely well, but sili
on and germanium are parti
ularly easy systemsto treat with most ele
troni
 stru
ture methods, and the ability to a
hieve high a

ura
yfor these systems is no guarantee that the method works well in other systems.In this 
hapter, we begin by explaining the Car-Parrinello method in detail and someof the reasons that it is generally believed to work. The understanding of the methodhas evolved somewhat sin
e its introdu
tion and so no e�ort will be made to presentthe de�nitive version of 
urrent understanding, rather some 
ommonly held beliefs willbe presented. Next, some theoreti
al problems with the method will be explained and apartial solution of these problems for inert ioni
 systems will be presented. We then testthe theoreti
al ideas that have been developed with the simple examples of sili
on andMgO, followed by a test of the method on one of the most frequently studied systems, i.e.water, or in this 
ase \heavy" i
e.2.1 The Car-Parrinello MethodThe Car-Parrinello method makes use of the following 
lassi
al lagrangian :LCP =Xi �ih _ ij _ ii+ 12XI MI _R2I � E[f ig; fRIg℄ (2.1)to generate traje
tories for the ioni
 and ele
troni
 degrees of freedom via the 
oupled setof equations of motion MI �R�I = ��E[f ig; fRIg℄�R�I = F �CPI (2.2)�ij � ii = �ÆE[f ig; fRIg℄Æh ij (2.3)where MI and RI are the mass and position respe
tively of atom I, j ii are the Kohn-Sham orbitals whi
h are allowed to evolve as 
lassi
al degrees of freedom with inertial



2.1. THE CAR-PARRINELLO METHOD 7parameters �i, and E[f ig; fRIg℄ is the Kohn-Sham energy fun
tional[3℄ evaluated forthe set of ioni
 positions fRIg and the set of orbitals f ig. The fun
tional derivative ofthe Kohn-Sham energy in equation 2.3 is impli
itly restri
ted to variations of f ig thatpreserve orthonormality.The idea behind the method is that by putting the ele
trons to their ground state at a�xed set of ioni
 positions and then allowing the ions to move a

ording to equation 2.2,the ele
troni
 orbitals should adiabati
ally follow the motion of the ions, performingsmall os
illations about the ele
troni
 ground state. The ele
troni
 orbitals will have a\�
titious" kineti
 energy asso
iated with their motion and the �
titious mass parameter�i. If �i is small enough then the motion of the orbitals will be very fast relative tothe motion of the ions. It is generally thought that this motion 
onsists of os
illationsabout the ground state and so by 
hoosing a small enough value for �i one 
an ensurethat the frequen
y spe
tra of the ele
troni
 orbitals and the ions are well separated fromone another if there exists an energy gap between the o

upied and uno

upied Kohn-Sham orbitals. This is be
ause, within a harmoni
 approximation, the lowest frequen
yof os
illation of the orbitals about the ground state may be written as[12℄
!0 =  2(�j � �i)�i !1=2 (2.4)

where �i and �j are the eigenvalues of the highest o

upied and the lowest uno

upiedorbitals respe
tively. In 
lassi
al me
hani
s, systems whi
h are well separated from oneanother in frequen
y 
an be shown to remain energeti
ally isolated from one another (seeref.[12℄ and[14℄ and referen
es therein). Therefore, it has been thought that by using asmall enough value for �i, one 
ould isolate the ele
trons energeti
ally from the ions. Inthis way one 
ould ensure that thermalization does not o

ur between ele
trons and ionsand so the ele
troni
 orbitals remain at a low temperature, whi
h means that they remain
lose to the ele
troni
 ground state.This explanation of the method was originally proposed by Pastore et al. [12℄ and isthe standard way in whi
h the method is explained (see, for example, the re
ent reviewby Marx and H�utter [13℄). Although parts of this explanation are true , it ignores the fa
tthat, aswell as the high-frequen
y os
illations, the orbitals have a slow 
omponent to theirmotion. If the ions are moving, the motion of the orbitals 
ontains a 
omponent due tothe unavoidable response of the ele
troni
 orbitals to the ioni
 dynami
s : as ions move,the ground state 
hanges. By de�nition this latter motion o

urs on ioni
 times
ales andwith ioni
 frequen
ies and so it may not be de
oupled from the ioni
 motion. In fa
t, itwill be shown in this 
hapter that due to this aspe
t of the ele
troni
 motion the ele
tronsdo not os
illate about the ground state but about an equilibrium whi
h is displa
ed fromit. This means that there are systemati
 errors in the for
es on the ions and in the totalstress on the system.



8 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICS2.2 Car-Parrinello Dynami
s Compared to Born-OppenheimerDynami
sWe wish to 
ompare CP dynami
s to the exa
t BO dynami
s. In other words, the dynam-i
s of the ions when the ele
troni
 orbitals remain at their ground state. For this purpose,we de
ompose the CP orbitals as j ii = j (0)i i+ jÆ ii (2.5)where j (0)i i are the ground state (BO) orbitals whi
h are uniquely de�ned for given ioni

oordinates as those that minimize E[f ig; fRIg℄ . This allows us to 
onsider separatelythe evolution of the instantaneous ele
troni
 ground state and the deviations of the CPorbitals from that ground state.At this point we note that in the past some testing of the CP method[15, 16℄ has reliedon demonstrating that the total ele
troni
 energy 
al
ulated with the CP method is very
lose to that 
al
ulated when the ele
troni
 orbitals take their ground state values. This isnot a good 
riterion to use to validate the method. For mole
ular dynami
s simulations,the important quantites are the for
es on the ions. For a given deviation of the CPorbitals from the ground state jÆ ii the error in the for
e relative to the size of the for
eis generally mu
h bigger than the error in the energy relative to the size of the energy.This 
an easily be seen by writing both of these quantities as Taylor expansions abouttheir ground state values�EE =Xi 1E� ÆEÆj ii�����f (0)i gjÆ ii+ hÆ ij ÆEÆh ij�����f (0)i g� + order(Æ 2i ) (2.6)�F �IF �I =Xi 1F �I � ÆF �IÆj ii�����f (0)i gjÆ ii+ hÆ ij ÆF �IÆh ij�����f (0)i g� + order(Æ 2i ) (2.7)The �rst term on the right hand side of equation 2.6 disappears be
ause the derivative isevaluated at the ground state. However the �rst term on the right hand side of equation 2.7does not disappear. So, for a given deviation of the ele
troni
 orbitals from the groundstate the error in the for
e depends to �rst order on the fÆ ig but the error in theenergy only depends to se
ond order on fÆ ig. This means that any error in the orbitalshas a mu
h larger e�e
t on the for
es than it does on the energies. How mu
h greaterthe relative error in the for
es is than the relative error in the energies depends on thesystem, but, as will be dis
ussed in se
tion 2.4.3, it 
an be a few orders of magnitude.When testing the method it is therefore important to see how well the for
es reprodu
ethe Born-Oppenheimer for
es.We now write j _ (0)i i =XI _R�I �j (0)i i�R�I (2.8)and j � (0)i i =XI �R�I �j (0)i i�R�I +XI;J _R�I _R�J �2j (0)i i�R�J�R�I (2.9)



2.2. CAR-PARRINELLO DYNAMICS COMPARED TO BORN-OPPENHEIMER DYNAMICS9A preliminary interesting observation now follows. If the ele
troni
 orbitals are at theirground state values, i.e. jÆ ii = j0i , then the right hand side of equation 2.3 vanishessin
e f ig = f (0)i g. However, the left hand side does not by virtue of equation 2.9. So theCP orbitals 
annot take their ground state values unless � vanishes too. As a 
onsequen
eof this, the ioni
 dynami
s is a�e
ted by a bias dependent on � and, as we will see, to thestrength of the ele
tron-ion intera
tion .We now wish to explore the 
onsequen
es that su
h a departure from the ground statehas on the instantaneous CP for
es FCP . We therefore 
al
ulate how CP for
es deviatefrom the BO for
es FBO at a given point in phase spa
e along the CP traje
tory. We maywrite, for the �-th 
artesian 
omponent of the for
e on atom I:�F �CPI = �E[fRIg; f ig℄�R�I= dE[fRIg; f ig℄dR�I �Xi �ÆE[fRIg; f ig℄Æj ii �j ii�R�I+ �h ij�R�I ÆE[fRIg; f ig℄Æh ij � (2.10)Substitution of equation 2.3 yields�F �CPI = dE[fRIg; f ig℄dR�I �Xi �i�h � ij�j ii�R�I + �h ij�R�I j � ii� (2.11)Using the expansion dE[fRIg; f ig℄dR�I = ddR�I �E[fRIg; f ig℄�����f (0)i g+Xi �ÆE[fRIg; f ig℄Æj ii �����f (0)i gjÆ ii + hÆ ijÆE[fRIg; f ig℄Æh ij �����f (0)i g� + order(Æ 2i )�= �F �BOI + 0 + order(Æ 2i ) (2.12)we 
an write the error in the CP for
e as�F �I = F �CPI � F �BOI =Xi �i�h � ij�j ii�R�I + �h ij�R�I j � ii�+ order(Æ 2i ) (2.13)Having established the 
onne
tion, to �rst order in Æ i, between the CP and the BOfor
es, we assume adiabati
 de
oupling and look for 
ontributions to this di�eren
e thatdo not vanish when averaged over time s
ales longer than the typi
al times
ales of thehigh frequen
y part of the �
titious dynami
s of the ele
trons (�e) but shorter than thetime s
ales of the ioni
 dynami
s (�i). Only these 
ontributions are expe
ted to 
ontributesigni�
antly to the ioni
 dynami
s[12℄. To this end we writejÆ ii = jÆ (1)i i+ jÆ (2)i i (2.14)



10 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSwhere we have split Æ i into a term whi
h has a very high frequen
y relative to ioni
frequen
ies (Æ (1)i ) and a term whi
h varies on ioni
 times
ales (Æ (2)i ) We rewrite equa-tion 2.3, using equation 2.5, asj � ii = jÆ � (1)i i+ jÆ � (2)i i+XI �R�I �j (0)i i�R�I +XI;J _R�I _R�J �2j (0)i i�R�J�R�I (2.15)Sin
e we are 
on
erned with what happens on ioni
 times
ales, i.e. averaged over thehigh-frequen
y 
omponent of the  i, we may negle
t the �rst term on the right-hand side.Using equation 2.13 and equation 2.15 we may write the error in the for
e to �rstorder in Æ i as�F �I = 2Xi �i<(�h � (2)i j+XJ �R�J �h (0)i j�R�J +XJ;K _R�J _R
K �2h (0)i j�R
K�R�J���j (0)i i�R�I + �j (2)i i�R�I �)(2.16)Any deviation Æ i from the ground state depends on the �
titious mass � sin
e � !0 =) ÆEÆh ij ! 0 via equation 2.3. This means that if we are to 
onsider only termswhi
h depend purely to linear order on � then the terms involving Æ (2)i in equation 2.16may be negle
ted.To summarise : If we 
onsider the dynami
s of the ele
troni
 orbitals to 
onsist of anadiabati
 response of the ele
troni
 orbitals to the ioni
 dynami
s and an independent fastos
illating part then, under the assumption that the times
ales of the fast 
omponent aremu
h shorter than the shortest time period in the ioni
 system, i.e. assuming adiabati
de
oupling, the average error in the Car-Parrinello for
es to �rst order in � and Æ i isgiven by (using equations 2.20 and 2.9)�F �I = 2Xi �i<�XJ �R�J �h (0)i j�R�I �j (0)i i�R�J +XJ;K _R�J _R
K �h (0)i j�R�I �2j (0)i i�R
K�R�J� (2.17)This 
orre
tion varies on ioni
 time s
ales and therefore does not ne
essarily averageout as the usual \fast" 
omponent does. However, its value depends on the ele
troni
mass. This implies that a simple way to ensure that its 
ontribution in a CP simulationis negligible 
onsists of redu
ing systemati
ally the ele
troni
 mass. Although a smaller� implies a smaller time step for the integration of the CP equations of motion, the timestep s
ales as �t � �1=2, whi
h means that redu
ing � by an order of magnitude bringsabout a 
omputational overhead of only a fa
tor of three. A more quantitative dis
ussionis presented in se
tions IV and V.We also noti
e that if the term proportional to _R _R in the r.h.s. of equation 2.17vanishes (e.g. by symmetry, see below), and the tensor in the term proportional to �R is
onstant, then the 
orre
tion of equation 2.17 redu
es to a res
aling of the atomi
 masses,whi
h is known to leave thermodynami
s inta
t. This is dis
ussed in more detail in thenext se
tion.



2.3. THE RIGID ION APPROXIMATION. 112.3 The Rigid Ion Approximation.In order to gain insight into the s
ale of this problem with the CP for
es we 
onsider thesimple example of rigid ions. We assume that ea
h ele
tron is lo
alised around an ion andthat there is no distortion of a parti
ular ion's 
harge distribution as it moves in the �eldof the other ions. We 
an refer ea
h wavefun
tion  i to a parti
ular ion as follows i(r) = �I�(r�RI) (2.18)Where the ele
troni
 states are labelled by an ion index, I, and the index � labelling theele
troni
 state of the ion . The rigidity of the ioni
 
harge distribution means that��I�(r�RI)�RI = ���I�(r�RI)�r and ��I�(r�RI)�RJ = 0 8J 6= I (2.19)Equation 2.17 be
omes�F �I = 2X� ��<� �R�I Z ���I�(r�RI)�r� ��I�(r�RI)�r� dr+ _R�I _R
I Z ���I�(r�RI)�r� �2�I�(r�RI)�r
�r� dr� (2.20)The se
ond term in equation 2.20 vanishes due to symmetry, at least assuming an atomi

harge density with spheri
al symmetry. The �rst term may be written in terms of EI�kthe quantum ele
troni
 kineti
 energy of an ele
tron in state � of atom I as2X� ��<� �R�I Z ���I�(r�RI)�r� ��I�(r�RI)�r� dr� = �2me3�h2 �R�I X� ��EI�k (2.21)where me is the (real) mass of an ele
tron. Sin
e the ions are rigid the quantum kineti
energy asso
iated with ea
h one is a 
onstant and equation 2.20 be
omes�F �I = ��MI �R�I (2.22)with �MI = 2me3�h2 X� ��EI�k (2.23)In this 
ase the ioni
 positions and velo
ities are updated during a Car-Parrinello simu-lation a

ording to (MI +�MI) �R�I = F �BOI (2.24)In other words, for systems where the rigid ion approximation is valid, the CP approx-imation amounts simply to a res
aling of the ioni
 masses. Sin
e the 
lassi
al partitionfun
tion depends only on the intera
tion potential, the thermodynami
s of the system as
al
ulated with a CP dynami
s is identi
al to the thermodynami
s of the BO system. Thede�nition of temperature will however be a�e
ted, be
ause if the a
tual ioni
 dynami
s in



12 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSCP is given by equation 2.24, then the real temperature at whi
h the system equilibrates,at least in the 
ase of a mi
ro
anoni
al dynami
s for the ions, is given bykBT = 13N XI;� (MI +�MI)h(v�I )2i (2.25)where h� � � i signi�es the average over time and N is the number of atoms. This di�ers fromthe standard de�nition by the addition of a term proportional to �MI . The additionalterm in equation 2.25 
an be readily tra
ed to the additional inertia 
aused by the rigiddragging of the ele
troni
 orbitals. In fa
t, using equations 2.8 and 2.19, we 
an showthat this term 
oin
ides, within the rigid ion model, with the �
titious ele
troni
 kineti
energy, when the 
ontribution from the dynami
s of the Æ i is negligible i.e.Tel = T�M (2.26)where Tel =Xi �ih _ ij _ ii (2.27)and T�M = 12XI;� �MIh(v�I )2i (2.28)In other words if the ele
troni
 orbitals move rigidly with the ions the a
tual inertiaof the ions in a CP simulation 
an be obtained by adding to the \bare" ioni
 inertiathe inertia 
arried by the ele
troni
 orbitals. This result has been pointed out previously[17, 18℄ and ioni
 masses are 
ommonly renormalized when dynami
al quantities are beinginvestigated.Figure 2.29 illustrates how, within the simpli�ed rigid-ion model, the ioni
 inertiadepends on the kineti
 energy of the ele
trons. For a given ioni
 velo
ity, the wavefun
tionat a point in spa
e has to 
hange more qui
kly when it is highly lo
alised (and thereforewith a high quantum kineti
 energy) than when it is extended. To a

elerate an ion onealso needs to in
rease the rate of 
hange of the wavefun
tion lo
alised on it. Sin
e thewavefun
tion 
arries an inertia (�) the e�e
tive inertia of the ion is greater than the bareioni
 mass. In more general (non-rigid-ion) situations, the 
olle
tive movement of the ionsis a�e
ted by the requirement that the \heavy" ele
troni
 wavefun
tions are rearrangedas the system evolves.We now explore the 
onsequen
es that su
h a modi�
ation of the ioni
 inertia hason typi
al observables extra
ted from CP simulations. First, as already mentioned, the
orre
t de�nition of temperature in a mi
ro
anoni
al CP simulation is given by equa-tion 2.25. Similarly, in a simulation where temperature is 
ontrolled, e.g. through a Nos�ethermostat[19℄, the quantity to be monitored 
orresponds to the instantaneous value ofthe temperature de�ned in equation 2.25. Dynami
al observables will also be a�e
ted bythe additional inertia, as already noted in the 
ase of phonons extra
ted from CP-MD in
arbon systems [20, 21℄. In the 
ase of homogeneous systems (a single atomi
 spe
ies inwhi
h all the atoms are in similar lo
al 
hemi
al environments) all dynami
al quantities
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vFigure 2.1: The me
hanism by whi
h the e�e
tive ioni
 inertia is related to the quantumkineti
 energy of the lo
alised ele
troni
 wavefun
tions within the rigid-ion approximation:For two ions of the same spe
ies whi
h are moving with the same velo
ity v, the one
arrying the more lo
alised ele
troni
 wavefun
tion (top) has a higher e�e
tive mass. Themore lo
alised ele
troni
 wavefun
tion  1(x) has, on average, a greater slope d (x)=dx(and hen
e kineti
 energy ) than the more extended wavefun
tion (bottom)  2(x) . Sin
efor a given ioni
 velo
ity v a greater slope implies a greater rate of 
hange with respe
t totime ( _ 1 > _ 2 ) , the lo
alised wavefun
tion 
hanges more per unit time than the extendedwavefun
tion. In order to in
rease the ion's velo
ity one also needs to in
rease the rateof 
hange of the massive wavefun
tion lo
alised on it. The total inertia asso
iated withthis required 
hange of the rate of 
hange of the wavefun
tion is related to the quantumkineti
 energy via equation 2.23 and this quantity must be added to the bare ioni
 massin order to obtain its e�e
tive mass.
an be simply res
aled using the mass 
orre
tion of equation 2.24. However, for hetero-geneous systems the 
orre
tion is not always trivial, as di�erent mass 
orre
tions applyto di�erent atomi
 spe
ies due to di�erent atomi
 kineti
 energies. In pra
ti
e, we foundthat a 
onvenient and more general way to express the mass 
orre
tion of ion I is givenby �MI = fI 2meEtotalk3N�h2 (2.29)where fI is a dimensionless 
onstant whi
h takes into a

ount the relative 
ontribution ofspe
ies I to the total quantum kineti
 energy Etotalk . The value of fI is generally foundvariationally as that whi
h minimizes the error in the for
es.Corre
tions should always be applied to the temperature and the pressure as 
al
ulatedusing the bare ioni
 masses. These 
orre
tions must be 
al
ulated for ea
h 
hemi
ally
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t spe
ies individually. For temperature, the 
orre
tion for spe
ies S is�Ts = �MsMs Ts (2.30)and the 
orre
tion to the partial thermal pressure of spe
ies S is�P ts = �MsMs P ts (2.31)Where Ms is the bare ioni
 mass of spe
ies S and P ts is the thermal 
ontribution to itspartial pressure. There is also a 
orre
tion whi
h must be applied to the internal pressuredue to the fa
t that the ele
troni
 orbitals are not at their ground state. This 
orre
tionto the internal stress is not trivial to derive sin
e the potential energy of the systemdepends, via the 
oupling between ions and orbitals, not only on the ioni
 positions, buton all higher order derivatives of the ioni
 positions with respe
t to time. However, withinthe rigid-ion approximation, if we only 
onsider derivatives with respe
t to ioni
 positions,using the virial theorem we may write the internal pressure asP i = 1
XI FI �RI (2.32)and so the rigid ion 
orre
tion be
omes�P i = 1
XI �MM FI �RI (2.33)In pra
ti
e, for a system under periodi
 boundary 
onditions, it is not possible to evaluatethis quantity. However, for a system with a single spe
ies, this be
omes�P i = �MM P i (2.34)In pra
ti
e, in more general situations, in order to get an idea of the true stress of thesystem, one should perform a large enough number of ele
troni
 minimizations to theground state and 
al
ulations of the stress at the ground state to get a good average ofthe true internal pressure.In the next se
tion we demonstrate, with the use of several simple examples, thevalidity of the theory developed in this se
tion and the previous one. We show how masses,and therefore dynami
al quantities, may be 
orre
ted using the formulae presented above.In se
tion 2.5 we look at the more diÆ
ult 
ase of water as an example of a system whosedynami
s and thermodynami
s one 
annot 
orre
t so easily.2.4 Testing the Theory2.4.1 Introdu
tionIn order to test the theory put forward in the previous se
tions and to gain more insightinto its impli
ations, we have performed CP simulations on pressurised magnesium oxide
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Table 2.1: Te
hni
al Details of the Simulations# System Temperature �0 Ep E
ut �t Pi �ih _ ij _ ii LKelvin a.u. Ryd. Ryd. a.u. a.u.�104 a.u.1 Si 330 270 1.0 12.0 5.0 4.36 20.422 Si 330 270 1.0 12.0 5.0 4.36 20.423 Si(liquid) 2000 270 1.0 12.0 10.0 4.35 19.84 MgO 2800 400 2.7 90.0 8.0 66.3 14.55 Si 330 200 1.0 12.0 5.0 3.23 20.426 Si 330 800 1.0 12.0 10.0 12.92 20.427 MgO (MO res
aled) 2800 100 2.7 90.0 4.0 16.55 14.58 MgO (MO res
aled) 2800 400 2.7 90.0 8.0 66.4 14.59 MgO 2800 200 2.7 90.0 5.65 33.1 14.510 MgO 2800 100 2.7 90.0 4.0 16.55 14.5and on sili
on. Among the insulators (we restri
t our analysis to insulators as adiabati
de
oupling is less obvious in metalli
 systems and this would 
ompli
ate 
onsiderably ouranalysis), MgO and Sili
on are extremal 
ases: MgO is a highly ioni
 system with largequantum kineti
 energy asso
iated with the strongly lo
alised 
harge distribution; Sili
onon the other hand is a 
ovalent system where ele
tron states are mu
h more delo
alised.Within our pseudopotential des
ription of MgO [22℄, the 1s,2s and 2p states are frozeninto the 
ore of Mg whereas only the 1s states are frozen into the 
ore of O. Sin
e thereis very nearly 
omplete transfer of the two 3s ele
trons from Mg to O (inspe
tion of
harge density 
ontour plots reveal no eviden
e of any valen
e 
harge anywhere ex
eptsurrounding O sites) the ele
tron quantum kineti
 energy may to a �rst approximationbe attributed to ele
troni
 states lo
alised on oxygen ions. This makes MgO an idealsystem to study within the rigid ion model sin
e only the oxygen mass will be res
aled.As mentioned in the previous se
tion, additional problems arise if one deals with morethan one ele
tron-
arrying spe
ies as the quantum kineti
 energy must be divided betweenthese spe
ies. The large quantum kineti
 energy of MgO means that the error in the CPfor
es should be large relative to many materials. The simulations of MgO were performedat a high pressure (� 900 kbar) as this enhan
ed its ioni
ity.Sili
on, on the other hand, is a 
ovalent/metalli
 system with relatively low quantumkineti
 energy. As su
h it should be one of the systems most favourable to the Car-Parrinello approximation but least favourable to des
ription in terms of rigid ions.2.4.2 Te
hni
al DetailsIn this se
tion we present the result of ten di�erent simulations. The te
hni
al details aresummarised in table 2.1.All simulations were performed with a 
ubi
 simulation 
ell of side L (see table 2.1)under periodi
 boundary 
onditions and with 64 atoms in the unit 
ell. We used a planewave basis set with an energy 
ut o� for the wavefun
tions of E
ut. The Brillouin zone wassampled using only the ��point. In ea
h simulation we have used the mass pre
ondition-
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heme of Tassone et al.[23℄ and the parameters �0 and Ep in table 2.1 are de�ned asin Ref.[5℄. With the use of a pre
onditioning s
heme, whereby the ele
troni
 mass is s
aledwith the kineti
 energy of the plane wave, the time step 
an be in
reased by a fa
tor of2-3 with respe
t to the non-pre
onditioned 
ase[23℄ . The use of a pre
onditioning s
hemeworsens 
onsiderably the agreement of the CP for
es with the BO ones. In parti
ular, wehave 
he
ked that using the parameters �0 and Ep that optimize the time step 
auses anin
rease by about a fa
tor of three in the 
orre
tion term of equation 2.17. However, inorder to bring this error to its non-pre
onditioned value, a value of �0 three times smallerwould be required, with a 
onsequent redu
tion of the time step of only p3. Consideringthat the pre
onditioning s
heme allows a 2-3 in
rease of the time step, a redu
tion of p3still makes the pre
onditioning s
heme marginally superior.Liquid sili
on is metalli
 and so, as suggested by Bl�o
hl and Parrinello [15℄, two Nos�ethermostats were used to 
ountera
t the e�e
ts of energy transfer between the ions andthe jÆ ii due to overlap of their frequen
y spe
tra.The values of the parameters used wereQe = 21:3 a.u./atom,Ekin;0 = 1:65� 10�4 a.u./atom and QR = 244400 a.u.. These were
hosen for 
ompatibility with those of Ref.[10℄ by taking into a

ount the slight in
reasein temperature and s
aling a

ordingly.In all of these simulations, with the ex
eption of simulation 2, the system was �rstallowed to evolve for at least 1 ps and this traje
tory was dis
arded. For simulation 2, thisinitial equilibration time was 0:5 ps. All results reported are taken from the 
ontinuationsof these equilibration traje
tories.In all simulations, the total quantum kineti
 energy of the system, and hen
e theaverage mass 
orre
tion (see equation 2.29), varied during the simulation by less than0:3%. It was therefore taken as a 
onstant in further analysis.The total energy of all the degrees of freedom (in
luding the thermostats in simulation3) was 
onserved in all simulations at least to within one part in 105.2.4.3 ResultsIn order to 
he
k the predi
tions of the theory developed in Se
tions II and III, we havetaken segments of CP traje
tories and 
al
ulated the true BO for
es along these segmentsby putting the ele
troni
 orbitals to their ground state with a steepest des
ent method.We look at the instantaneous error in the �th 
artesian 
omponent of the CP for
e onatom I relative to the root-mean-squared (r.m.s) BO for
e 
omponent, i.e :ÆF �I (t) = �F �I (t)rP
PJ;�(F�BOJ )23NN
 (2.35)and the instantaneous relative error minus the relative error predi
ted by the rigid-ionmodel : [ÆF �I (t)℄
orr = �F �I (t) + �MI �R�IrP
PJ;�(F�BOJ )23NN
 (2.36)
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 is the number of ioni
 
on�gurations at whi
h the error in the CP for
es was
al
ulated and P
 is the sum over all su
h 
on�gurations. The value of �MI in equa-tion 2.36 is determined using the rigid-ion-model expression equation 2.29, and Etotalk wasgiven its average value during the simulation. The s
aling parameters whi
h were foundto give best results for sili
on and oxygen were fSi = 1:0 and fO = 1:92 respe
tively.We also look at hÆF �I i and hÆF �I i
orr the r.m.s values of [ÆF �I ℄ and [ÆF �I ℄
orr over allthe ions, 
artesian 
omponents and 
on�gurations tested.
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Figure 2.2: Simulation 1. (a) Distribution among all atoms I and all 
artesian 
omponents� of the per
entage errors in the CP for
es relative to the BO for
es at the same ioni
positions, 100 � ÆF �I (t) (full line) and these errors when the for
es have been partially
orre
ted a

ording to a rigid-ion model, 100 � [ÆF �I (t)℄
orr (dashed line). (b) �(t) asde�ned by equation 2.37 for the full error in the for
es and those as partially 
orre
teda

ording to the rigid-ion model (
) F �BOI ,F �CPI and (F �CPI �F �BOI ) (multiplied by a fa
torof 20 for visibility) for a typi
al for
e 
omponent. Dots indi
ate the points at whi
h theBO for
e was 
al
ulated (every 5 time steps).Sin
e the CP for
es are a�e
ted by a \fast" 
omponent whose e�e
t on the ioni
dynami
s is believed to average out on the time s
ale of the ioni
 motion, we introdu
e



18 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSthe quantity �(�), de�ned as�(�) = Z �0 13N XI;� ����� R t0+�t0 �F �I (t)dtR t0+�t0 j�F �I (t)jdt �����d� (2.37)If we begin our 
omparison between CP and BO for
es at some instant t0 along thetraje
tory then inspe
tion of �(�) gives a feeling for how large the fast 
omponent is. Ifthe errors in all the for
es of the system os
illate rapidly with an average of zero then �(�)de
reases very qui
kly from the value of one at � = 0 to zero at � � �e. For systemati
errors �(�) should de
rease gradually from one to zero on a times
ale of the order of theperiod of �i. In realisti
 
ases �(�) drops from one and levels o� to a smaller value for� � �e, and then de
reases gradually to zero for � ex
eeding �i. The value of �(�) onthe plateau between �e and �i provides a measure of how mu
h the errors 
al
ulated inequations 2.35 and 2.36 are attributable to a systemati
 (i.e. \slow") departure from theBO surfa
e.We begin by looking at the for
es in Sili
on in both the solid at 330 K and the liquidat 2000 K (simulations 1,2 and 3). Simulation 1 was pre
eded by a short run where thetemperature was set to about 1000 K. Ele
trons were then relaxed in their ground stateand the ioni
 velo
ities set to zero. This allows the ele
trons to smoothly a

elerate withthe ions. A mi
ro
anoni
al simulation followed where the ioni
 temperature rea
hed,after a short equilibration, the value of 330 K. This pro
edure was followed in all thesimulations reported here, ex
ept where dis
ussed. In solid Si at 330 K (Fig. 2.2 ) we �ndthat the standard deviation of the error in the Car-Parrinello for
es is 0:94%. However,most of this error 
an be attributed to a rigid dragging of the Si atomi
 orbitals. Thestandard deviation of the error is in fa
t redu
ed to 0:24% after the rigid-ion 
orre
tionof equation 2.24 is subtra
ted. The � 30% drop of �(t) (
orre
ted) shown in Fig. 2.2bindi
ates that � 30% of the residual 0:24% error 
an be attributed to \fast" os
illations,so that the overall average error introdu
ed by the CP approximation, on
e 
orre
ted forthe rigid dragging and under the assumption that the fast 
omponent is not relevant, isless than 0:2%.As has been pointed out previously by Remler and Madden [24℄, it is important tobegin the dynami
s with ele
trons and ions moving in a 
onsistent way as we have donehere in all simulations ex
ept the one we now dis
uss (simulation 2) and in the 
ase ofliquid Si (simulation 3). We found that the error in the for
es in
reases substantially if thesimulation is not started from zero ioni
 velo
ities, a pro
edure that would otherwise havethe advantage of shortening 
onsiderably the time needed to rea
h thermal equilibrium.Simulation 2 started from the end of simulation 1, but ele
trons have been put in theground state before restarting (ioni
 velo
ities and positions were instead kept un
hanged).For
es were tested after 0:5ps from the ele
tron quen
hing.The standard deviation of the error in for
es is now 5:7% and the error in the for
es as
orre
ted a

ording to the rigid ion approximation at 5:68%, is not signi�
antly improved.However 
learly from inspe
tion of �(t) in Fig. 2.3b and the sample for
e 
omponent inFig. 2.3
 most of this error 
an be attributed to the high frequen
y os
illations of theele
troni
 orbitals. If we assume that these os
illations do not in
uen
e the ioni
 dynami
s,
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Figure 2.3: Simulation 2, Crystalline Si at 330K when the ele
trons re
eive a 'ki
k' at thebeginning of the simulation. See 
aption of Fig. 1 for explanation. (F �CPI �F �BOI ) has notbeen s
aled for visibility.



20 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSthe error redu
es to about 1.2% for the un
orre
ted for
es and to less than 0.5% for the
orre
ted for
es. The amplitudes of these os
illations are nevertheless signi�
ant andmay a�e
t the thermodynami
s in a way that is not easy to predi
t. These os
illations
learly originate from the initial jerk experien
ed by the the ele
trons in their ground stateand survive for a long time due to the adiabati
 de
oupling. In the liquid (�gure 2.4)
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Figure 2.4: Simulation 3, Liquid Si at 2000 K. See 
aption of Fig. 1 for explanation.(F �CPI � F �BOI ) has not been s
aled for visibility.the situation is 
onsiderably worse than in the 
rystal. The standard deviation of theerror in the for
es is 3:4% whi
h improves only to 3:1% with the rigid-ion 
orre
tion.There do not seem to be high frequen
y, high amplitude os
illations here despite thesimulation being started with �nite ioni
 velo
ities. However, there are os
illations of alower frequen
y (although still quite high relative to ioni
 times
ales) whi
h are probablydue to the presen
e of the Nos�e thermostat. It may be that the Nos�e thermostat hasthe e�e
t of damping out the kinds of os
illations seen in Fig. 2.3 but the presen
e ofthese other os
illations is hardly an improvement. This highlights the need for 
areful
hoi
e of parameters for the Nos�e thermostat, parti
ularly the value of Ekin;0. The issueof thermostatting the ele
troni
 orbitals will be dis
ussed later in this se
tion.
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Figure 2.5: Simulation 4. For
es on the oxygen ions in 
rystalline MgO at 2800 K. (a)and (b) are as in Fig. 1(
) From top to bottom : the error in the CP for
es (F �CPI �F �BOI ),the error in the CP for
es as predi
ted by the rigid-ion model ��MO �R�I (dotted line), thedi�eren
e between the true error in the CP for
es and the predi
ted error (F �CPI �F �BOI +�MO �R�I ), the CP for
e F �CPI and the BO for
e at the same ioni
 positions F �BOI for atypi
al for
e 
omponent. Dots indi
ate the points at whi
h the BO for
e was 
al
ulated(every time step).



22 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSWe now look at the for
es in 
rystalline MgO with �0 = 400a.u (�gure 2.5). Therelatively high quantum kineti
 energy asso
iated with states atta
hed to the O ionsmeans that, a

ording to equation 2.21, the errors in the for
es are 
onsiderably largerfor the O ions than we have seen for Si. The errors in the CP for
es have in fa
t astandard deviation as large as 32% . However, when this is 
orre
ted as in equation 2.24by attributing all the quantum kineti
 energy to states rigidly following the O ions thestandard deviation of the error redu
es to 4:8%. Furthermore, the 
orre
ted value of �(t)indi
ates that about 80% of the error on the O for
es 
an
els out after a

ount is takenfor the high frequen
y os
illations, suggesting that a more appropriate estimate of theerror is � 0:4%. The amplitude of the fast os
illations is a 
ause for 
on
ern however andsin
e the simulation was begun at zero ioni
 velo
ity it is not 
lear how it may be redu
edfurther.
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Figure 2.6: Simulation 4. Dashed lines from top to bottom are : Mg temperature, Otemperature, Tel ,and 10� (Tel � T�MO). The full line is the Oxygen temperature whenit is 
al
ulated with a mass whi
h is in
reased by AO.TemperatureWe fo
us here only on MgO, as the e�e
ts of the ele
troni
 dragging are enhan
ed. A
-
ording to the results of Se
tion III, we should expe
t a di�eren
e between the naivede�nition of temperature and the de�nition 
orre
ted by the ele
troni
 dragging, equa-tion 2.25. In the 
ase of MgO, as noted in the previous se
tion, this 
orre
tion a�e
ts onlythe oxygen atoms, as only a minor amount of ele
troni
 
harge is 
arried by the Mg2+ ion.In Fig.2.6 we show the behavior of the instantaneous values of the naive and 
orre
tedtemperatures. The 
orre
ted temperature ex
eeds the naive de�nition by about 500 K.More interestingly, we report in Fig.2.6 also the 
ontributions to the temperature of the
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 spe
ies. It is 
lear that the naive de�nition would imply that the two spe
iesare not at thermal equilibrium. On the other hand, use of the 
orre
ted de�nition for theoxygen temperature brings the temperature of the two spe
ies in mu
h better agreement,supporting the 
on
lusion, based on the rigid ion model, that thermodynami
s 
an berestored by a simple res
aling of the oxygen mass. The mass res
aling, as 
al
ulated withequation 2.20 amounts to �MO � 7:5 atomi
 mass units (MO = 16 atomi
 mass units).We also report in Fig.2.6 the instantaneous value of the �
titious ele
troni
 kineti
 en-ergy, the l.h.s. of equation 2.26, and the di�eren
e between this quantity and the r.h.s.of equation 2.26, whi
h represents the 
ontribution due to the rigid dragging of the ele
-troni
 orbitals. The di�eren
e is very small, implying that residual 
ontributions due, forexample, to the fast ele
troni
 os
illations are negligible in MgO 
ompared to the slowdragging of the orbitals.Thermostatting the Ele
troni
 OrbitalsIn simulating liquid sili
on, whi
h is metalli
, we have used a standard te
hnique formaintaining a low �
titious kineti
 energy of the ele
trons. This is to use two separatethermostats in the simulation : one for the ele
troni
 orbitals and one for the ions. Thiste
hnique was �rst introdu
ed by Bl�o
hl and Parrinello[15℄ and has very re
ently beenupdated by Bl�o
hl [16℄. In referen
e [15℄ the re
ommended temperature of the ele
troni
thermostat, Ekin;0, has been determined on the basis of the rigid ion model to be twi
ethe value of T�M (as de�ned by equation 2.28). The reasoning behind this is that theele
trons should be free to follow the ions and also have room to perform the high fre-quen
y os
illations. In our simulation of liquid sili
on we have used a value of Ekin;0
ompatible with referen
e [25℄ however we note that this is 
onsiderably smaller than thevalue re
ommended in referen
e [15℄. We have also done simulations using higher valuesof Ekin;0 and in all 
ases the errors in the for
es have been greater. It is likely thereforethat by de
reasing further Ekin;0 we might improve further the for
es however this hasnot been attempted here.It is important to note that for some systems, the 
hoi
e of Ekin;0 is 
ru
ial and 
an-not be based on the simple formula of referen
e [15℄. This 
an be seen by inspe
tionof �gure 2.7 whi
h is a magni�
ation of the lowermost 
urve in �gure 2.6. This is aplot of (Tel � T�MO) during the MgO simulation. One 
an 
learly distinguish the high-frequen
y os
illations of ele
troni
 orbitals from the ioni
-times
ale os
illations due todeviations from the rigid-ion des
ription. The amplitudes of the high frequen
y os
illa-tions is, roughly, � 1 K. This is 3 orders of magnitude smaller than Tel and yet it resultsin os
illations in the for
e whi
h have an amplitude of � 7%. This suggests that 
hoosingthe re
ommended value for this system would lead to very large errors in the for
es, andthat in order to maintain the errors within a few per
ent requires a predi
tion of Ekin;0whi
h is 
orre
t to within � 0:1%. It is unlikely whether su
h pre
ision is possible andanyway for MgO the variations in Ekin;0 along the mole
ular dynami
s traje
tory wasfound to be � 0:3%.The updated form of the ele
troni
 thermostat re
ently proposed by Bl�o
hl is di�erentin that it never a
tually heats the ele
trons, but 
ools them down when they ex
eed the
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Figure 2.7: Simulation 4 - (Tel � T�MO). Within the rigid-ion approximation, this is the
ontribution to the ele
troni
 kineti
 energy from the high-frequen
y os
illations. Eventhough this is very small, the os
illations in the for
es are very large as shown in �gure 2.5.Small deviations from the ground state 
an lead to large errors in the for
es.spe
i�ed value. Similar problems should be expe
ted for this system however, sin
e for asystem in whi
h Tel is in
reasing, its value will frequently be 
lose to the spe
i�ed value,or at least of the same order of magnitude.Phonon Spe
traWe have 
al
ulated the phonon densities of states of 
rystalline Si and MgO by fouriertransforming the velo
ity auto
orrelation fun
tion. In all 
ases, the �rst pi
ose
ond of thesimulation was dis
arded and results obtained by averaging over at least one subsequentpi
ose
ond. For sili
on the velo
ity auto
orrelation fun
tion was 
al
ulated on a timedomain of length 1:2ps and for MgO on a time domain of length 0:5ps.In sili
on (Fig. 2.8) the di�eren
e is reasonably small. A

ording to the rigid ion modelthe frequen
ies should be 
orre
ted using!
orre
ted = !CPp1 + �M=M (2.38)where !CP is the frequen
y as extra
ted dire
tly from the CP simulation. We �nd thatfor sili
on this overestimates by about a fa
tor of two the amount of the 
orre
tion. Thissmall dis
repan
y may be due to the length of simulation used for 
al
ulating the frequen
yspe
tra or due to a breakdown of the rigid-ion des
ription when �0 = 800a:u:. It mayalso be that negle
ting the e�e
t of the fast os
illations is not be 
ompletely appropriatewhen the dragging 
ontribution is small.
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Figure 2.8: Phonon density of states of 
rystalline Sili
on for �0 = 200 a.u. (simulation5) and for �0 = 800 a.u (simulation 6).
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Figure 2.9: Phonon density of states of 
rystalline MgO for �0 = 100 a.u. and for �0 = 400a.u. with res
aled (simulations 7 and 8) and unres
aled (simulations 10 and 4) oxygenmasses.
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ted the di�eren
e is mu
h larger. We 
al
ulate the phonon spe
trafor �0 = 400a.u. and for �0 = 100a.u and �nd large di�eren
es between them (seeFig. 2.9) highlighting again how the dynami
s depends on the value of �. The fa
t thattwo spe
ies are involved 
ompli
ates matters as the mass 
orre
tion is di�erent for thetwo spe
ies (it a
tually vanishes for Mg). Therefore we should not expe
t simply a rigidshift of the frequen
ies. However, if the rigid-ion approximation is valid, one may 
on
eiveto res
ale the oxygen mass a priori in equation 2.2 as ~MO = MO � �MO, so that thea
tual CP dynami
s expressed in terms of the BO for
es, equation 2.24, be
omes identi
alto the BO dynami
s if the rigid ion approximation holds. We have done this for MgO,again for �0 = 400a.u. and �0 = 100a.u and we see that the results are mu
h improved.There are only small di�eren
es in the positions of the peaks and the overall shapes ofthe 
urves are very similar. We noti
e that with �0 = 100a.u. (and no mass 
orre
tion)frequen
ies are within 8% the 
orre
t ones. This implies that in order to obtain a phononspe
trum of MgO with a 4% a

ura
y in the peak positions (4% is the typi
al un
ertaintyof a pseudopotential DFT approa
h[26℄) the value of �0 should be about 50 a.u., whi
himplies a �t � 2:8 a.u., or about 1:5� 104 time steps per pi
ose
ond.Dependen
e of error on �
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Figure 2.10: S
aling of the standard deviation of the errors in the for
es on the oxygenions with �0 (Simulations 4,9 and 10). hÆF �I i
orr has been redu
ed to eliminate 
an
ellinghigh frequen
y os
illations by inspe
tion of �(t).We now try to address the question of how the error in the CP for
es depends onthe �
titious ele
tron mass. We do not know what the true �-dependen
e of the errorin equation 2.16 is. We have made the assumption in equation 2.17 that it is, to a�rst approximation, linear if one assumes that the os
illations in jÆ (1)i i have a smallamplitude. Fig. 2.10 shows hÆF �I i and hÆF �I i
orr for the oxygen ion for three di�erentvalues of �0 where hÆF �I i
orr has been s
aled to eliminate the 
ontribution of errors fromhigh frequen
y os
illations by inspe
tion of �(t).



2.5. WATER 27The un
orre
ted error is dominated by the e�e
t of the displa
ement of the equilibriumpositions of the orbitals from the ground state, this s
ales approximately linearly with�0, thereby vindi
ating our negle
t of terms in equation 2.17 of higher than linear orderin �. The small error whi
h remains after the rigid ion 
orre
tion has been applied 
ouldhave 
ontributions from many di�erent sour
es in
luding deviations from the rigid iondes
ription and 
ontributions from higher order error terms. It is also of the order of the
u
tuations in Etotalk during the simulation.2.5 WaterSo far in this 
hapter it has been shown that systemati
 errors are present in Car-Parrinellosimulations, the magnitude of whi
h are proportional to the �
titious mass parameter.The examples of Si and MgO examined were used mainly to verify that our derivation ofequations 2.17, 2.22 and 2.23 were 
orre
t and to show that for strongly ioni
 systemssu
h as MgO, the error in the dynami
s 
an be 
orre
ted and that it does not seriouslyalter the thermodynami
s on
e properties su
h as the temperature and the pressure havebeen 
orre
ted.We now turn our attention to water. Water in all its phases has been one of the moststudied systems with the Car-Parrinello method [27, 28, 29, 30, 31, 32℄ and it looks likelyto 
ontinue to be so in the future due its obvious importan
e in nature and parti
ularlydue to the fa
t that it forms the basis for all of biology. The ability of the Car-Parrinellomethod to des
ribe water well is therefore of great importan
e as mu
h of the 
urrentunderstanding of its mi
ros
opi
 properties has 
ome from su
h simulations.Water is a more diÆ
ult 
ase to simulate with CPMD than either sili
on or MgO andis therefore a better test of the method. Unlike sili
on it has a 
onsiderable quantumkineti
 energy and unlike MgO there is some subtlety to its bonding in the sense thatit 
annot be 
onsidered a 
ompletely ioni
 system. There is a degree of 
ovalen
y tothe intramole
ular bonding and intermole
ular intera
tions are dominated by hydrogenbonds. Here we look at i
e, or more spe
i�
ally, at \heavy" i
e, D2O be
ause it is easierto simulate and it is generally what has been simulated in the past. Protons are verylight and this 
an 
ause problems of energy transfer between ioni
 and ele
troni
 degreesof freedom. The lower symmetry and higher temperature in water and the lower mass ofthe proton relative to the deuteron means that errors should be, if anything, greater thanthose observed here.2.5.1 Details of the SimulationWe have used norm-
onserving pseudopotentials to des
ribe the oxygen[22℄ and hydrogen[33,34℄ atoms respe
tively. We have used a plane-wave 
uto� of 70 Ryd. and a gradient-
orre
ted ex
hange-
orrelation fun
tional (BLYP)[35℄. Only the �-point was used tosample the Brillouin zone. Simulations were performed on a 24 � 24 � 12 a.u. simu-lation 
ell 
ontaining 32 D2O mole
ules.By variationallyminimizing the error in the Car-Parrinello for
es relative to the ground
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es with respe
t to the ioni
 masses in a preliminary simulation of liquid water,we have obtained the rigid-ion mass 
orre
tions ( in a.u. ) for oxygen and deuterium of6:766� and 0:213� respe
tively. We have later veri�ed that these mass 
orre
tions areoptimal for i
e also. We have res
aled the ioni
 masses a priori by subtra
ting these
orre
tions from them.We have begun our simulations by doing a long simulation of i
e at low temperature(� 100 K) using an ab initio parametrized polarizable e�e
tive potential of the sameform as that des
ribed for sili
a in 
hapter 5. This does not provide a very realisti
des
ription of water but it was deemed preferable to randomizing the positions. In orderto minimize the errors due to high frequen
y os
illations of the orbitals, as dis
ussed inse
tion 2.4.3, we then began the simulation with the ele
trons at their ground state and theions at zero velo
ity. We used a �
titious mass of � = 900 a.u. No mass-pre
onditionings
heme was used. After half a pi
ose
ond, when the ions were at a temperature of � 120K, a Nos�e thermostat[19℄ was atta
hed to the ions and the temperature was in
reasedto approximately 250 K during half a pi
ose
ond of simulation. The system was thenequilibrated without a thermostat for approximately 3:5 pi
ose
onds. The temperatures ofthe oxygen and hydrogen subsystems were 
al
ulated independently using the 
orre
tionsgiven by equation 2.30 and a

ording to this de�nition of temperature the subsystemsremained at di�erent temperatures, indi
ating that the system was not well thermalized.This 
an be seen in �gure 2.5.1. It is worth noting that somebody unaware of the issueof mass res
aling would, in this 
ase, see a thermalized system. The simulation wasnow 
ontinued, using the ioni
 and orbital velo
ities from the previous MD run, in twoseparate MD runs : one using a value � = 100 a.u. and the other remaining with � = 900a.u (see �gure 2.5.1). Changing the value of � during a simulation perturbs the orbitaldynami
s only very slightly and has no signi�
ant lasting e�e
t on the for
es su
h asare seen when more severe sho
ks take pla
e (see se
tion 2.4.3). For a system where therigid-ion approximation is valid, the fa
t that we have res
aled a priori the masses meansthat the simulations at the di�erent values of � should be identi
al.It was found that after more than a further 2:5 ps the simulation with � = 900 a.u.still showed no sign of thermalization. The deuterons remained at a low temperaturerelative to the oxygen ions. In the simulation with � = 100 a.u., however, the system veryqui
kly showed signs of thermalization and the subsystems were at the same temperatureafter 1:5� 2 ps. Sin
e we would like to 
ompare the phonon spe
tra for the two di�erentvalues of � and we would like to do this for reasonably well equilibrated systems, at thesame temperature, it was de
ided to 
ontinue both simulations from the end of this initial2:4 ps run with � = 100 a.u. Both for � = 100 a.u. and � = 900 a.u., a further 5:5 psof simulation were 
arried out during whi
h time the oxygen and deuterium subsystemsremained at the same temperatures in both simulations. We may spe
ulate at this pointthat the diÆ
ulty whi
h the � = 900 a.u. simulation has in thermalizing is due to thepresen
e of inertia between the oxygen and deuterium ions whi
h impedes the motion ofthe deuterons. The di�eren
e in temperature has to be due to the deuterons moving tooslowly relative to the oxygen ions. The bonding between them has a degree of 
ovalen
yand this 
ovalent bond 
arries an inertia whi
h one should not expe
t to be well a

ountedfor in the rigid-ion approximation. Therefore, the fa
t that when the 
ovalent bond is
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Figure 2.11: Temperature of the oxygen and deuterium subsystems as a fun
tion of timea

ording to the 
orre
t de�nition of temperature in whi
h the extra mass due to theele
troni
 orbitals is a

ounted for (top) and a

ording to the nâ�ve de�nition (bottom)in whi
h the temperature is not 
orre
ted.less \heavy" the deuterons 
an move faster suggests that this may be an e�e
t due to theorbital's �
titious inertia.For
esAfter 1 ps of the � = 900 MD run, the for
es were 
ompared with the ground state for
es.The for
e on an individual oxygen or deuterium ion is dominated by the intra-mole
ularfor
e, the for
e due to the other two ions in the D2O mole
ule. Sin
e the mole
ule remainsrelatively rigid, it is more sensible to examine the more subtle inter-mole
ular for
es whi
hare of primary 
on
ern to those studying the stru
ture of water. In order to do this welook at the sum of the for
es on a mole
ule. In �gure 2.5.1 we plot some sample for
eson D2O mole
ules. It is 
learly seen that there are very large di�eren
es between the CPfor
es and the ground-state for
es but that mu
h of this di�eren
e 
an be 
orre
ted withthe rigid-ion 
orre
tion. However, the error that remains still looks quite large and may
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Figure 2.12: Corre
ted temperatures of the oxygen and deuterium subsystems as a fun
-tion of time for � = 100 a.u. (top) and � = 900 a.u. (bottom).be a 
ause for 
on
ern. The error before 
orre
tion amounts to � 45% of the root-mean-square ground-state for
e 
omponent. After 
orre
tion, this number redu
es to 12:5%.Although for
es are very important in mole
ular dynami
s, they are not generallythe quantity whi
h are extra
ted from simulations and it is not obvious how, in general,errors in for
es map onto errors in thermodynami
 quantities. In order to get a feel forthe s
ale of these errors we look at the for
es along the same traje
tory for the lo
aldensity approximation (LDA) [36, 37℄ and the Perdew-Burke-Ernzerhof(PBE) ex
hange-
orrelation fun
tionals. There has been mu
h dis
ussion in the literature about whatex
hange-
orrelation fun
tional one should use for water[29℄. It is generally a

eptedthat the LDA performs very poorly for water and most people use generalized gradientapproximations whi
h seem to give better results. Di�erent gradient 
orre
ted fun
tionalshave been shown to give quite di�erent radial distribution fun
tions for liquid water [29℄.Figure 2.5.1 shows a 
omparison of the for
es from BLYP, LDA and PBE fun
tionals.We found that the average di�eren
e between PBE and BLYP for
es was � 7:8% and thedi�eren
e between LDA and BLYP for
es was � 45%. It is also worth noting that, in
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Figure 2.13: Some sample for
es on D2O mole
ules. The Car-Parrinello for
e is 
omparedto the ground state for
e and the Car-Parrinello for
e on
e 
orre
ted using the rigid-ion
orre
tion.
general, although there are 
lear di�eren
es in the magnitude of the for
es from LDA andBLYP, for example, the time-derivative is generally quite similar for all the fun
tionalstested. This is not the 
ase for the Car-Parrinello for
e, where the derivative of the for
edi�ers quite strongly from the ground state for
e.Finally, we have looked at the for
es after very brief simulations in whi
h velo
ityres
aling was employed. Velo
ity s
aling is 
ommonly used for CP simulations and hasbeen used in the past to equilibrate liquid water[30℄. However, it gives an equivalentsho
k to the ele
troni
 degrees of freedom as beginning a simulation with ions at �nitevelo
ities does. In this test, the velo
ity res
aling followed the initial 0:5 ps simulation at120 K and the velo
ities were res
aled to bring the temperature to 220 K. Velo
ities wereadjusted only 4 times in total and then the system was equilibrated for 1 ps. We found,on
e again, that there were large-amplitude os
illations in the for
es with frequen
iestypi
al of the ele
troni
 orbitals. These os
illations also appeared mu
h less harmoni
than the os
illations whi
h were seen in the 
ases of Si and MgO in se
tion 2.4.3. Themagnitude of these os
illations highlights the fa
t that it is dangerous to perturb theele
troni
 system by 
hanging abruptly the ioni
 velo
ities, parti
ularly 
onsidering thesmall ioni
 temperature 
hange involved in this test.
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Figure 2.14: Some sample for
es on D2O mole
ules. The ground state for
es along thesame traje
tory as plotted in �gure 2.5.1 using the three di�erent ex
hange-
orrelationfun
tionals BLYP[35℄, LDA[37℄ and PBE[74℄Phonon Frequen
iesFor the two di�erent values of � we have 
al
ulated the phonon densities of states byfourier transforming a velo
ity auto
orrelation fun
tion whi
h was 
al
ulated on a timedomain of length 1:45 ps by averaging over the �nal 5:5 ps of simulation. As with the
ase of MgO, if one does not res
ale ioni
 masses, the di�eren
es in the phonon spe
traare extremely large. However here we are only 
on
erned with errors whi
h 
annot be
orre
ted in this way. The results are shown in �gure 2.5.1. On
e again, these spe
trashould be identi
al if the rigid-ion approximation is valid. The main features of the twophonon spe
tra are similar, indi
ating that the rigid-ion approximation works very wellfor the vibrational properties of i
e. The � = 900 
urve shows a slight in
rease (� 1:5%)in the frequen
y of the O-D bending mode and a 
orresponding de
rease in the frequen
iesof the O-D stret
hing modes. We do not have enough statisti
s to examine in detail thetranslational and rotational modes of the mole
ule, but the main di�eren
es seem to bein the intensities of the peaks with little, a�e
t on the frequen
ies.So, despite what seem like large errors in the for
es, the vibrational properties of the
rystal are not greatly e�e
ted. The errors are similar in s
ale to the di�eren
es usingdi�erent gradient-
orre
ted ex
hange-
orrelation fun
tionals[31℄.
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Figure 2.15: Some sample for
es on O ions following s
aling of ioni
 velo
ities. The Car-Parrinello for
es with the rigid-ion 
orre
tion are 
ompared to the ground-state for
es.2.6 Dis
ussionWe have shown in se
tion 2.2 how, for any �nite value of the �
titious mass �, the Car-Parrinello method di�ers in prin
iple from Born-Oppenheimer dynami
s, even in the limitof the ele
troni
 orbitals having a minimum kineti
 energy. What this amounts to sayingis that in a Car-Parrinello simulation, ele
troni
 orbitals do not os
illate about theirground state but about a di�erent equilibrium. There is therefore a lower bound on theerror in the Car-Parrinello for
es whi
h is dependent on the �
titious mass �. Under theassumption that high frequen
y ele
troni
 os
illations (i.e. the dynami
s of the jÆ ii) aresmall and independent of ioni
 motion, we have shown that Car-Parrinello simulationsamount to solving the equation of motion for the ionsMI �R�I = F �BOI + 2Xi �i<�XJ �R�J �h (0)i j�R�I �j (0)i i�R�J +XJ;K _R�J _R
K �h (0)i j�R�I �2j (0)i i�R
K�R�J� (2.39)if one may negle
t terms in � of higher than linear order.For systems with a low quantum kineti
 energy or small 
oupling between ele
tronsand ions, su
h as the example of sili
on whi
h we have dis
ussed in se
tion 2.4.3, theresulting errors in the for
es are extremely small and so neither the dynami
s nor thethermodynami
s should be strongly a�e
ted. For strongly ioni
 systems su
h as MgO,there are very large errors whi
h are however mostly attributable to a res
aling of themass of the oxygen ion thereby preserving the thermodynami
s. When 
orre
ted for
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Figure 2.16: The phonon densities of states of heavy i
e for � = 100 a.u. and � = 900a.u.. Ioni
 masses have been res
aled a

ording to the rigid-ion approximation.this e�e
t the errors are slightly higher than those in 
rystalline Si but still quite small.If we \measure" the departure of the CP dynami
s from the BO dynami
s in terms of�M=M , with �M de�ned as in equation 2.24, then it appears that the elements wherethe departure is expe
ted to be larger are lo
ated in the upper right of the periodi
table, be
ause they 
ombine a low atomi
 mass with a large binding energy of the valen
eele
trons (and thus a large quantum kineti
 energy). Transition metals may also bestrongly a�e
ted, be
ause of the large number and strong lo
alisation of the d-ele
trons.However, the higher the lo
alisation of the orbitals, the higher the 
han
es that thedes
ription of the ele
troni
 dynami
s in terms of rigid orbitals is 
orre
t. The largedeparture observed in the 
ase of MgO suggests that a proper assessment of how mu
h theCP for
es di�er from the BO ones is mandatory in most systems. This 
an be a
hievedby either 
al
ulating the BO for
es for sele
ted ioni
 
on�gurations, or by performingsimulations for di�erent (smaller) values of �, and 
he
king how the results s
ale withde
reasing �. If the departure is large then it is likely that in many 
ases the CP for
es
an be brought into good agreement with the BO ones by simply res
aling the ioni
masses. We have seen in se
tion 2.5 that at low temperatures even systems whi
h shouldnot be well des
ribed by the rigid-ion approximation, su
h as i
e, the vibrational spe
trum
an be quite well 
orre
ted using the rigid ion approximation. Under 
onditions of lowersymmetry or higher temperature this may no longer be the 
ase.Additional 
ompli
ations may arise when the dynami
s lead to fundamental 
hangesin the ele
troni
 stru
ture. The �rst and se
ond derivatives of the ele
troni
 orbitals withrespe
t to the positions of the ions, whi
h appear in equation 2.16, may be
ome relevantin regions of phase spa
e where the ele
trons play a signi�
ant role. For example, if 
harge
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urs, or if a substantial rearrangement of the ele
troni
 orbitalstakes pla
e, as in a 
hemi
al rea
tion, then the simple method of res
aling the ioni
 masseswill no longer work. We have also negle
ted in our analysis higher order dependen
es ofthe Car-Parrinello for
es on the �
titious mass and it may be that in 
ertain systems andfor large masses these terms of equation 2.16 be
ome relevant. An important test whi
hshould always be performed is to 
he
k results of CP simulations for a dependen
e on �.If one is to judge the quality of a CP simulation by the errors in the for
es as wehave largely done here, then a question whi
h needs to be addressed is to what extentthese errors manifest themselves as errors in the properties of interest in the simulation.It is likely that random high frequen
y os
illations in the for
es su
h as those due to thedynami
s of the Æ i have no dis
ernible e�e
t on the thermodynami
s of the system ifsu
h os
illations are small. The magnitude of the os
illations seen here in the 
ase ofMgO and i
e may be a 
ause for 
on
ern however. The apparent anharmoni
ity of theseos
illations in the 
ase of water may also lead to problems.All of the e�e
ts dis
ussed in this 
hapter are dependent on the 
hoi
e of the �
titiousmass parameter, �, and by redu
ing this parameter all thermodynami
 and dynami
 prop-erties of a simulation may be brought arbitrarily 
lose to those in a Born-Oppenheimersystem. A redu
tion of � has the drawba
k that the time step required to integrate theequation of motion for the ele
troni
 orbitals is redu
ed thereby de
reasing the 
omputa-tional eÆ
ien
y of the method. However, the time step s
ales as �t � �1=2. This meansthat redu
ing � by an order of magnitude in
reases the simulation time by only a fa
torof three. By 
he
king how the property of interest in a simulation s
ales with � one 
an
ontrol the level of approximation with whi
h it is 
al
ulated.In the past it has been thought[12℄ that on
e the �
titious kineti
 energy of the or-bitals stayed small and reasonably 
onstant in a simulation, the dynami
s were essentiallyindependent of the ele
troni
 mass. For this reason, its value is frequently not reported inarti
les along with other relevant te
hni
al details. We show here that the mass is an im-portant parameter whi
h has a signi�
an
e whi
h is at least 
omparable to, for example,the 
hoi
e of ex
hange-
orrelation fun
tional.There is a 
lear need, in light of our theoreti
al �ndings, to test the ability of Car-Parrinello simulations to model 
hemi
al rea
tions, phase transitions and systems of lowsymmetry. These are the kinds of systems whi
h are most frequently simulated withCPMD and they are also the systems in whi
h a serious dependen
e of thermodynami
properties on the �
titious mass would be most likely to o

ur.
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Chapter 3Simple Models of Ioni
 Systems
3.1 Introdu
tionThe problem of simulating ioni
 materials has a long history[38℄. One of the oldest, andstill the most widely used intera
tion potential for su
h systems treats the ions as thoughthey are small rigid parti
les whi
h are undistorted by their environment. This is theBorn-Mayer pair potential[39℄,UIJ(RIJ) = qIqJRIJ +BIJe��IJRIJ � CIJR6IJ � DIJR8IJ (3.1)where UIJ is the intera
tion energy of parti
les I and J whi
h are a distan
e RIJ apart.qI and qJ are 
harges on the ions and the �rst term on the right hand side is the ele
-trostati
 energy of the point-like 
harges and is generally evaluated using the method ofEwald summation[40℄; the se
ond term re
e
ts the fa
t that an isolated ele
tron distri-bution tails o� exponentially and so the repulsion between ions at short range due to thePauli ex
lusion prin
iple 
an be approximated by a 
onstant ( BIJ ) times an exponen-tial overlap of ioni
 
harge distributions ; the �nal two terms model the ion dispersionintera
tions whi
h are always attra
tive and whi
h represent the 
orrelated motions ofele
trons on di�erent ions whi
h 
an be represented as a sum of dipole - indu
ed dipole( R6IJ term), dipole - indu
ed quadrupole ( R8IJ term) and higher order terms whi
h aregenerally negle
ted. qI ,�IJ ,BIJ ,CIJ and DIJ are all parameters of the model whi
h maybe determined either by physi
al reasoning, empiri
al 
onsiderations or by �tting to dataobtained from ab initio 
al
ulations.This potential form has the advantage that it has a pairwise form and it is qui
k andeasy to evaluate, so that large system sizes and long times may be simulated with relativeease. However, it has been re
ognised for some time [41, 42℄ that this form does not
ontain some of the physi
s relevant for many real ioni
 systems. Many systems 
ontainanions whi
h have an appre
iable size relative to interioni
 distan
es and whi
h are notrigid, in the sense that they be
ome aspheri
ally distorted and 
an 
hange their size inthe 
ondensed phase depending on their environment. A distorted ion is one with multi-pole moments, the most important of whi
h is the lowest order or dipole moment. Theindu
tion, via ele
trostati
 intera
tions, or short range Pauli ex
lusion-type intera
tions
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an have a signi�
ant e�e
t on the ele
trostati
s of a system.In parti
ular, the oxide ion is known to be highly distortable and polarizable and manyattempts have been made to model this in the past.3.1.1 The Shell ModelThe Shell-Model[38, 43, 44, 45℄ is the oldest and most 
ommon method of in
orporatingenvironmental e�e
ts. In this s
heme a shell of 
harges is atta
hed to the nu
leus via aharmoni
 (or indeed anharmoni
) spring (see �gure 3.1 ). In this way, the ion may be
omepolarized via a displa
ement of the shell of 
harge from being 
entered on the nu
leus.The indu
tion of dipoles via short-range for
es may be implemented by having these for
esa
t between shells (whi
h 
an be thought of as representing the ele
trons) rather thanbetween nu
lei. An extension of this model to allow for an isotropi
 breathing motionof the shell has been introdu
ed by S
hr�oder [46℄. A disadvantage of the shell model isthat it introdu
es extra degrees of freedom into the system and therefore 
an slow downsimulations. However it has been used with some su

ess for many years, primarily toin
lude the important polarization e�e
ts whi
h have the marked e�e
t in ioni
 
rystalsof redu
ing frequen
y di�eren
es between the transverse opti
al and longitudinal opti
alphonon modes.
k

Z−Y
Y

Electric field

Figure 3.1: An illustration of the shell model of ioni
 polarizability. A massless shell of
harge Y is 
onne
ted by a spring of spring-
onstamt k to the massive ioni
 
ore whi
h
arries a 
harge Z � Y where Z is the net ioni
 
harge.The use of the Shell Model in the past has been to some extent due to the fa
t thatin its simplest and standard form it depends on only two parameters, the spring 
onstantand the shell 
harge. Until re
ently, all parameters needed to be determined empiri
ally
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al arguments and a simple relation exists between these parameters and thedipole polarizability of the ion whi
h may be determined experimentally. However, fre-quently if one 
hose the parameter whi
h best reprodu
ed experimental quantities su
h asdensities or bulk moduli, it did not 
orrespond well to its known physi
al interpretation.Shell model parameters are also generally non-transferable between di�erent 
hemi
allyrelated materials, or even between di�erent phases of the same material. It has beensuggested [47℄ that the Shell Model representation of the e�e
ts of polarization and ex-pansion/
ompression of the anion is overly restri
tive in that it 
ouples all these e�e
tsin too simple a way so that they may be des
ribed by as few parameters as possible. Al-though all these e�e
ts are 
learly 
onne
ted, their relationship is unlikely to be as simpleas it is represented in the Shell Model.In a series of papers over several years many people, most prominently, Wilson, Mad-den and 
oworkers have developed a new way of representing the many body e�e
ts inioni
 systems[47, 48, 49, 50, 51, 52, 53℄. The 
urrent state of this resear
h will be explainedin this 
hapter followed by a des
ription of the approa
h that we have taken to the sameproblem whi
h di�ers in many important ways from previous approa
hes.3.2 Many-body Intera
tions in Simple Ioni
 SystemsIt has been shown[52℄ that an e�e
tive way of treating the intera
tions in simple ioni
systems is to divide them into the following independent sets of 
ontributions :1. Ele
trostati
 e�e
ts. These in
lude� Intera
tions between the ioni
 point 
harges.� S
reening of these intera
tions by indu
ed multipoles and lo
al variations inthe degree of ioni
ity[53℄.� Indu
tion of multipoles through distortions of ioni
 
harge distributions byshort-range intera
tions with neighbouring ions and the impa
t of these mul-tipoles on the ele
trostati
 �eld.2. Short-Range repulsive intera
tions between ions. These are basi
ally exponential inform but may be a�e
ted by� Spheri
al \breathing" or \
ompression" of the ions.� Aspheri
al shape deformations of the ions.3. Dispersion intera
tions whi
h may also be damped at short range when ioni
 
hargedensities overlap[54℄.Clearly there is a degree of arbitrariness in this division and there is a 
lear overlapbetween some of these e�e
ts. For example, the dipoles indu
ed by short-range inter-a
tions are physi
ally the same thing as the aspheri
al distortions whi
h are 
aused byand impa
t on the short-range repulsive intera
tions. Nevertheless, as a pra
ti
al s
hemethis division has proved useful and Rowley et. al. have shown that in magnesium oxide,
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urves 
an be well reprodu
ed by independently adding in thesee�e
ts[52℄. More re
ently, Aguado et. al. have reparametrized the original model ofRowley et al. using density fun
tional theory 
al
ulations to produ
e a mu
h improvedset of phonon dispersions[55℄.We now dis
uss the model that they have used in detail.3.3 Ele
trostati
 E�e
tsTo supplement the intera
tions of point 
harges and following previous work[48, 50℄ Row-ley et al. allowed the indu
tion of a dipoles and a quadrupoles on ea
h oxygen ion inMgO. They assumed that the degree of ioni
ity was �xed su
h that the Mg atom lostexa
tly two ele
trons to the O atom and they allowed for no lo
al 
hanges in ioni
ity.This latter assumption is supported by our density fun
tional theory 
al
ulations of MgO(see 
hapter 2 ) where we observe no signi�
ant deviation from full ioni
ity. They havealso allowed for the indu
tion of multipoles via short-range intera
tions.3.3.1 Ele
trostati
 PolarizationThe indu
tion of multipoles 
ompli
ates the 
al
ulation of the ele
trostati
 for
es 
on-siderably sin
e not only does one have to 
al
ulate 
harge-dipole, dipole-dipole, 
harge-quadrupole, dipole-quadrupole and quadrupole-quadrupole intera
tions for ea
h pair ofions, the 
orre
t values of the dipoles and quadrupoles on ea
h ion must �rst be 
al
u-lated. This is not a trivial problem sin
e the multipoles on an ion are proportional to thederivatives of the ele
trostati
 potential at the position of the ion. However, the ele
tro-stati
 potential is itself dependent on the multipoles. For example, for the 
ase of dipoleswe may write[56℄ pI = �IEI (3.2)EI = E0I +XIJ TIJ � pJ (3.3)where the dipole pI on ion I is proportional to the ele
tri
 �eld EI at the position of ionI. The 
onstant of proportionality is the s
alar polarizability. E0I is the \�xed" part of theele
tri
 �eld due to 
harges, permanent dipoles and any other applied �eld.The ele
tri
�eld in turn depends on all the dipoles via TIJ the dipole-dipole intera
tion tensor. Tosolve this pair of equations amounts to solving a set of 3N�3N linear equations and evento do this iteratively would be far too 
omputationally expensive for most appli
ations.One solution, proposed originally by Sprik and Klein [48℄ and used in all the works byWilson, Madden and 
oworkers[50℄ is to treat the dipoles in an extended lagrangian s
hemeanalogous to the Car-Parrinello mole
ular dynami
s s
heme for the ele
troni
 stru
tureproblem[4℄. In other words, a lagrangian is written in whi
h the dipole moments onthe ions are expressed as extra degrees of freedom of the system with a �
titious massasso
iated with them.L = 12XI MI _R2I +XI �I _p2I � U [fpIg; fRIg℄ (3.4)



3.3. ELECTROSTATIC EFFECTS 41MI and �I are the masses of atom I and the dipole on atom I respe
tively. Beginningwith the dipoles at their minimum energy values, the ioni
 system is evolved and just asin the ele
troni
 
ase the dipoles are expe
ted to remain 
lose to their minimum energyvalues (i.e : the values for whi
h �U�pI = 0 8 I ) if their �
titious kineti
 energy is small. Itis thought that this may be a
hieved either by 
hoosing a small enough �
titious mass sothat due to adiabati
 de
oupling there is only a small transfer of energy between dipolesand ions or in many 
ases by applying a thermostat to both the ele
troni
 and ioni
subsystems in the same way as was proposed by Bl�o
hl and Parrinello for the ele
troni

ase[15℄.In pra
ti
e, the dipoles are normally represented by two or more 
harges at �xeddistan
es from the ion 
enter but with variable magnitudes and orientation. This isbe
ause it is easier to evaluate the Ewald sum for 
harges than it is for dipoles. Thein
lusion of quadrupolar intera
tions is a
hieved in a similar manner but with six degreesof freedom in addition to the three dipolar degrees of freedom[57℄.
p

short−range
p

electrostatic

p
short−range

p
electrostatic
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Figure 3.2: An illustration of how short-range repulsive intera
tions between ions 
an in-du
e e�e
tive multipoles. In this pi
ture, the small 
ation \dents" the 
harge distributionof the mu
h larger 
ation and the resulting aspheri
al distribution has a dipole momentwhi
h is opposite to that indu
ed ele
trostati
ally by the 
ation.3.3.2 Polarization by Short-Range Intera
tionsWilson and Madden found that the simple ele
trostati
 polarization model had signi�
antshort
omings. The ions tended to be
ome over-polarized and parti
ularly in the melt,small anion-
ation distan
es resulted in very large indu
tion for
es whi
h over
ame theshort-range Pauli ex
lusion repulsion. In the real system at su
h distan
es, the 
ation



42 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSdistorts the anion and the resulting dipole is of opposite sign to the ele
trostati
 dipolewhi
h would be indu
ed if the 
ation and anion were isolated. This is illustrated in �gure3.2. Wilson and Madden found a 
onvenient way of representing this short-range indu
eddipole. They wrote the dipole indu
ed on ea
h ion aspI = �IEI +XJ 6=I �IgIJ(RIJ)qjRIJR3ij (3.5)where gIJ(RIJ) = 
IJebIJRIJ nkXk=0 (bIJRIJ)kk! (3.6)and 
IJ and bIJ are negative and positive 
onstants respe
tively, and for dipoles nk tookthe value 4. A similar s
heme was used for quadrupoles [57℄. The fun
tion gIJ(RIJ) was�rst introdu
ed by Tang and Toennies as a damping fun
tion for dispersion e�e
ts (seese
tion 3.5) and its use in this 
ontext was justi�ed by Wilson and Madden based on itsability to �t numeri
ally the results of ele
troni
 stru
ture 
al
ulations[58℄ on distorted
rystalline environments.3.4 Short-Range Repulsive Intera
tionsThe use of the standard exponential repulsion term found in the Born-Mayer potentialrests on the assumptions that ions are spheri
al and of �xed size and that the repul-sion between them due to the Pauli ex
lusion prin
iple is proportional to the overlapbetween the ions whose 
harge distribution tails o� exponentially. Although this maybe an adequate approximation in 
rystals of high symmetry at low temperatures and agiven pressure , at higher temperatures or at a di�erent pressure or when a 
hange ofphase o

urs, it is likely that anions will readjust their size and shape to �ll the availablespa
e. In order to 
ope with this, and in an attempt to improve the ability of ioni
 mod-els to reprodu
e experimental equations of state and the relative energeti
s of di�erent
rystal stru
tures, Wilson et al. have developed a 
ompressible ion model[47℄. Anotherstrong motivation was the fa
t that the Cau
hy relation between the elasti
 
onstants(C44 = C11)[59℄ is known to be violated in both MgO and CaO in the NaCl stru
ture. ForMgO, the ratio C44=C12,extrapolated to 0K at zero pressure rea
hes 1:68 for MgO [60℄and 1:44 for CaO[61℄. This relation holds for 
entrosymmetri
 
rystals under zero stressif the intera
tions may be modelled in a simple pairwise way.Wilson et al. wrote the potential energy due to short-range repulsive intera
tionsbetween anion and 
ation asV SR+�(fRIg; fÆ�Ig) = Vself(fÆ�Ig) + Vov(fRIg; fÆ�Ig) (3.7)where Vself is the sum of the 
hanges in the internal energies of the ions and Vov is thetotal potential energy due to intera
tion between the ions, and Æ�I is the 
hange in theradius of the ion from its average value �0I . From ele
troni
 stru
ture 
al
ulations of the
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t 
ubi
 
rystal it was found that Vself 
ould be written asVself(fRIg; fÆ�Ig) =XI�� DI
osh(�Æ�I) (3.8)and the standard exponential form was adopted for the intera
tion energy :Vov(fRIg; fÆ�Ig) = XI��;J�+BIJe��IJ (RIJ�(�0I+Æ�I )) (3.9)At ea
h timestep, during a simulation, the fÆ�Ig were required to take values that min-imized V SR and this was a
hieved, on
e again by using a Car-Parrinello-type extendedlagrangian approa
h with the fÆ�Ig as the variables with whi
h a �
titious dynami
s wasasso
iated.Although this has been su

essful in reprodu
ing some low temperature propertiesof MgO and CaO su
h as the 
rystal energies as a fun
tion of volume, the predi
tionof phonon frequen
ies with this model was found to be quite poor. This is be
ausethe distortion of the anions are in general not spheri
ally symmetri
 if the 
rystal isdisordered. To a

ount for aspheri
al distortions of the anion, Rowley et al.[52℄ haveextended the previous 
ompressible-ion model. They allowed for the e�e
t of purelyspheri
al distortions on the anion-anion intera
tions and the extended the 
ompressibleion model to allow for aspheri
al distortions to a�e
t the anion-
ation intetra
tion.The self energy Vself is extended to in
lude distortions of the anions of dipolar andquadrupolar symmetryVself(fÆ�I��g; f�Ig; f�Ig) =XI [DI
osh(�Æ�I) + (e�2j�I j2 � 1) + (e�2j�I j2 � 1)℄ (3.10)where �I is a set of three variables des
ribing the dipolar distortion of the oxide ion and�I is a set of �ve independent variables des
ribing the quadrupolar shape distortions.They only 
onsidered distortions to a�e
t the anion-
ation intera
tions so thatVov(fRIg; fÆ�Ig; f�Ig; f�Ig) = XI��;J�+B+�e��+��IJ+ XI��;J��B��e����(RIJ�Æ�I�Æ�J )+ XI�+;J�+B++e��++RIJ (3.11)where �IJ = RIJ � Æ�I � S�(1)��I � S��(2)���I (3.12)S�(1) = R�IJ=RIJ (3.13)S��(2) = 3R�IJR�IJ=(RIJ)2 � Æ�� (3.14)(3.15)



44 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSand summation of repeated greek indi
es is implied.On
e again, in this s
heme, V SR = V self + V ov is minimized with respe
t to set ofall Æ�I ,��I , and ���I and these nine variables per anion are evolved as 
lassi
al degrees offreedom using a Car-Parrinello-like lagrangian.With this aspheri
al-ion model and in
luding dispersion e�e
ts (to be dis
ussed in thenext se
tion) and polarization e�e
ts, Rowley et al. managed to �nd parameters whi
hgave good phonon dispersion 
urves for MgO. Very re
ently Aguado et al. have used analmost identi
al model, but with many of the parameters found from DFT 
al
ulations, toprodu
e phonon dispersion 
urves and thermal expansion 
urves of a very high quality[55℄.Sin
e thermal expansion depends on the se
ond derivatives of the potential energy withrespe
t to the ioni
 positions, this is a good test of this model's representation of thepotential energy surfa
e of the 
rystal.3.5 Dispersion For
esDispersion for
es arise from 
orrelated ele
troni
 
u
tuations between separated ions.These take the form of multipole-indu
ed multipole for
es the lowest order and mostimportant of whi
h is the dipole-indu
ed dipole intera
tion. A dipole produ
ed by randomele
troni
 
u
tuations in one ion 
an indu
e an opposing dipole in a neighbouring ion.This may result in their polarities 
u
tuating in syn
hronisation and these opposite dipolesattra
t one another with a 1=R6 dependen
e. Dipole-indu
ed quadrupole intera
tions havea 1=R8 dependen
e and su

essively higher order terms de
ay more rapidly. However,when ions be
ome 
loser and overlap these for
es be
ome damped. Ele
trons lose some oftheir freedom to 
u
tuate in this way as they be
ome part of the same 
harge distributionand the 
orrelations in their motion a
quire a mu
h more 
ompli
ated form.Tang and Toennies [54℄ have found a simple fun
tional form for the rate at whi
hthis damping o

urs. This is given by equation 3.6. In the simulations of Aguado etal. and Rowley et al. they have in
luded the two dispersion terms of lowest order withshort-range Tang-Toennies damping fun
tions g(6) and g(8) :Vdisp = �XIJ �g(6)IJ (RIJ)C(6)IJR6IJ + g(8)IJ (RIJ)C(8)IJR8IJ � (3.16)3.6 Dis
ussion of Existing Approa
hesSo far in this 
hapter, some of the existing approa
hes for modelling ioni
 systems andspe
i�
ally simple oxides have been outlined. There are very 
lear indi
ations su
h as theexperimental violation of the Cau
hy relation (see se
tion 3.4) or the inability of pairwisepotentials to �t the DFT for
es (to be dis
ussed in 
hapter 5 ) that many-body for
es areimportant to a

urately des
ribe the intera
tions in su
h systems. Pair potentials havefailed to model the phonon dispersions or the thermal expansion in MgO , although it isdiÆ
ult to tell where this is a fault of the potential form and where it is a fault of theparametrization whi
h in the past has been almost entirely empiri
al.
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h emphasis has been given here to the system of many-body intera
tions developedby Wilson, Madden and 
oworkers. The reason for this is that they have shown 
learlythat, at least for the 
rystalline simple oxides the potential form that they use provides agood des
ription of the ions' potential energy surfa
e. However, although it is 
lear thatthe full model that they use is suÆ
ient to des
ribe the physi
s of MgO, it is not 
learwhether all the intera
tions that they have in
luded are ne
essary or, as they dis
uss inthe paper by Rowley et al.[52℄, whether or not the full model is over
omplete. Althoughthey try to address these issues, the parametrization s
heme that they use is empiri
aland ea
h 
ontribution is parametrized independently. As 
an be 
learly seen from theresults of 
hapter 6 and their subsequent paper [55℄ they did not take full advantage oftheir fun
tional form whi
h 
an only be done by �tting all parameters simultaneously.A serious problem with their method lies in the fa
t that they use the Car-Parrinelloextended lagrangian approa
h for all of their many-body intera
tions. This means that toea
h anion is asso
iated eighteen additional degrees of freedom. These additional degreesof freedom are asso
iated with the �ve groups of variables whi
h des
ribe ele
trostati
dipoles and quadrupoles, and ioni
 distortions of monopolar, dipolar and quadrupolarsymmetry. In order to make this work one needs to make sure that ea
h set of dynami
alvariables remains energeti
ally isolated from every other one. Or, at least, that all ofthem remain adiabati
ally de
oupled from the ions insofar as this is possible. The timestep is determined by the fastest degree of freedom and in the paper by Aguado et al.the time step that they report using for 
rystalline MgO at 300K is approximately 1=20of a femtose
ond. This is at least a fa
tor of thirty smaller than the timestep that 
ouldnormally be used for this system and is presumably the timestep required for a

ura
ywithin this approa
h.Another possible problem with this method is that there may be e�e
ts, parti
ularlyin less symmetri
 phases than the NaCl stru
ture, analogous to those that have beendis
ussed in 
hapter 2 for the ele
troni
 problem. It 
an be shown (as was done for theele
troni
 orbitals in se
tion 2.2 ) that if the ions are moving, it is not possible for theextra dynami
al variables to take their minimum energy values on average. In fa
t, theaverage error in the �th for
e 
omponent on ion I, to �rst order in the deviations of the�
titious degrees of freedom from their instantaneous average values and the �
titiousmass, may be written as �F �I = Xi �i�XJ �R�J ��i�R�I ��i�R�J+ XJ;K _R�J _R
K ��i�R�I �2�i�R
K�R�J� (3.17)where Pi is the sum over all the �
titious degrees of freedom �i. On
e again, the magni-tude of this error depends on the extent to whi
h the dynami
al variables vary with ioni
positions and it s
ales linearly with the �
titious mass �i. It is not known how importantthis problem is in general. For the 
ase of the NaCl 
rystal stru
ture at 300K, tests of theextended lagrangian approa
h to the dipole polarizable and the simple 
ompressible ionmodel have been published[50, 47℄ and the values of the �
titious degrees of freedom are



46 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSto be in very good agreement with their minimum energy values. However, it is likely thatany problem that may exist would be less serious under these 
onditions of high symmetryand low temperature than, for example, in a liquid or during a phase transition.In the aspheri
al ion model, the anion is only allowed to distort with either dipolar orquadrupolar symmetry. It would be desirable to be able to in
lude anion distortions ofarbitrary shape as they may be
ome relevant in low symmetry phases.
3.7 Our Approa
h to Modelling Ioni
 systemsIt was de
ided that for the reasons of 
omputational speed and a

ura
y outlined in theprevious se
tion it was best to try to avoid the use of any Car-Parrinello-like extendedlagrangian approa
h to modelling the many-body for
es in ioni
 systems. Another 
om-pelling reason is that in the parametrization pro
ess (see 
hapter 4) one does not havethe bene�t of a previous time step from whi
h to extrapolate or evolve the degrees offreedom. Sin
e parametrization is a 
omputationally expensive pro
ess, it is importantto �nd a way whi
h is reasonably fast even when 
al
ulating the for
e for the �rst time.It is unlikely that putting the eighteen degrees of freedom per anion to their potentialenergy minimum via steepest des
ent or any other method would be suÆ
iently fastfor parametrization purposes and, in fa
t, in the paper by Aguado et al. where theyparametrize their model by �tting the for
es to those from DFT 
al
ulations they onlyparametrize the non-ele
trostati
 parts of their model in this way. Sin
e the ele
trostati
sare the most important part, but also the most time-
onsuming part of any simulation ofan ioni
 system one may spe
ulate that the reason they did not �t the ioni
 
harges andpolarizabilities was due to the 
omputational expense involved.Sin
e dipolar polarization is the most important ele
troni
 s
reening me
hanism inmost simple ioni
 systems, we have de
ided to model this in our approa
h. However, wehave not in
luded quadrupolar polarization whi
h in the paper of Rowley et al. was shownto have only a small e�e
t on the phonon spe
trum of MgO and whi
h would in
reasesigni�
antly both the 
omputational expense of the model and the man-hours requiredto implement the model. We have negle
ted the e�e
t of 
harge transfer between ions, asdid Wilson,Madden and 
oworkers, on the basis that for the systems we are interested instudying, no eviden
e was initially found to suggest that this was an important e�e
t.We also would like to model the e�e
t that size and shape distortions of the anion hason the short-range intera
tions.Sin
e we would like to avoid the use of an extended lagrangian approa
h, we have hadto �nd di�erent approa
hes to modelling polarization and anion-distortion. In se
tion3.7.1 we outline the approa
h that we have taken to the polarization problem and inse
tions 3.7.2 and 3.7.3 we des
ribe a new many-body potential for ioni
 systems whi
hattempts to model anion distortions in an analyti
 way.



3.7. OUR APPROACH TO MODELLING IONIC SYSTEMS 473.7.1 PolarizationAs previously dis
ussed in se
tion 3.3.1, the diÆ
ulty in treating dipole polarization isthat one must solve the 3N�3N linear system represented by equations 3.2 and 3.3. The
harge-dipole and the dipole-dipole intera
tion terms de
ay as 1=R3 and 1=R5 respe
tively.Unfortunately, this de
ay is not suÆ
iently rapid for one to be able to trun
ate theintera
tions between parti
les at a reasonably small interioni
 distan
e, and so, as withthe 
harge-
harge intera
tions, all the dipole terms must be 
al
ulated using an Ewaldsummation te
hnique [40, 63, 64℄. The pro
edure that we have taken to this problemand that has been taken in the past [64, 65, 66℄ is to solve the system of equations in aself-
onsistent way. In other words, starting with an initial guess for the dipole momentson ea
h ion we 
al
ulate the ele
tri
 �eld at the site of ea
h ion due to the 
ombinationof dipoles and 
harges. The new set of dipole moments is then easily 
al
ulated bymultiplying the ele
tri
 �eld on ea
h ion by its polarizability. When the root-mean-squarevalue of the di�eren
e between the 
omponents of the ele
tri
 �eld from su

essive stepsin the self-
onsisten
y pro
edure is within a spe
i�ed toleran
e, the system is deemed tobe at 
onvergen
e. It was found that during an MD simulation, a quantity whi
h tendedto vary mu
h more slowly than the dipole moment on ea
h ion was the 
ontribution of allthe dipoles in the system to the ele
tri
 �eld at ea
h ion's position. Therefore, the initialguess of the dipoles whi
h was used in the self-
onsistent minimization was 
al
ulated froma guess of this quantity whi
h was extrapolated from three previous timesteps. We alsoin
lude the short-range 
ontributions to the indu
ed dipole moments using the fun
tionalform proposed by Madden and Wilson [50℄ and dis
ussed in se
tion 3.3.2.The algorithm that we use for 
al
ulating all ele
trostati
 
ontributions to the totalenergy, for
es and stress at time step n is as follows :1. Using the method of Ewald summation [40℄, the 
ontribution from the 
harges onthe ions to the total energy (Uqq), for
es (F �qqI ) and stress (S��qq ) is 
al
ulated.2. The short-range indu
ed dipole moment on ea
h ion is 
al
ulated as :psrI =XJ 6=I �IgIJ(RIJ)qjRIJR3ij (3.18)where gIJ(RIJ) is given by equation 3.6.3. The initial guess of the dipole 
ontribution to the ele
tri
 �eld on ea
h ion I is
al
ulated to be1 EpguessI = 3Ep(n�1)I � 3Ep(n�2)I +Ep(n�3)I (3.19)where E(n�1)I is the ele
tri
 �eld at ion I 
al
ulated at the previous MD time step.For the �rst three time steps, of an MD simulation, or during parametrization, thevalue EguessI = 0 is 
hosen.1It was found that the period of the os
illations in the dipole moment was generally large enoughthat the algorithm would almost 
ertainly be made more eÆ
ient by extrapolating from more than threeprevious time steps, but this has not yet been implemented in the MD program.



48 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMS4. The self 
onsistent polarization 
y
le begins and pro
eeds as follows where m is thenumber of the iteration step :(a) If m = 1 then the total ele
tri
 �eld on ion I isET = EpguessI + FqIqI (3.20)otherwise ET = �Ep(m�1)I + (1� �)Ep(m)I + FqIqI (3.21)where � is a parameter whi
h is optimised at the beginning for fast 
onvergen
e.� typi
ally takes values of between 0:6 and 0:8.(b) The dipole moment on ea
h ion is 
al
ulated aspI = �IETI + psrI (3.22)(
) Using the 
urrent set of dipole moments fpIg, Ep(m)I is 
al
ulated for ea
h ionusing Ewald summation[64℄.(d) The quantity �(m) =sXI �2IN jEp(m)I � Ep(m�1)I j2 (3.23)is 
al
ulated where N is the number of polarizable ions.(e) If j�(m) � �(m�1)j < Æ , where Æ is a prede�ned 
onvergen
e 
riterion then goto step 5, otherwise return to step (i).The most e
onomi
al value of Æ that 
an be used 
an vary from system tosystem and depends on the degree of energy 
onservation required but a valueof 10�6 was found to 
onserve energy to a very high pre
ision in all the systemsstudied. During the parametrization pro
ess, one does not need su
h a lowtoleran
e for 
onvergen
e and so a value of Æ = 5 � 10�4 was used. With thisvalue, for
es and stress were 
onverged to within � 0:3%.5. Using the 
onverged values of Ep(n)I , the dipole moments are re
al
ulated aspI = �I(Ep(n)I + FqIqI ) + psrI (3.24)and these are used to 
al
ulate the energy (Udq,Upp), for
es (F �qpI ,F �ppI) and stress(S��qp ,S��pp ) due to 
harge-dipole and dipole-dipole intera
tions using Ewald summation[64℄.6. The 
ontribution of the short-range indu
tion of dipole moments to the energy (Usr), for
es (F �srI ) and stress (S��sr ) is 
al
ulated[50, 52℄.7. All 
ontributions to the energy for
es and stress are added together. For example,for the energy : U = Uqq + Udq + Udd + Usr (3.25)
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onsistent minimization pro
edure is not guaranteed to 
on-verge. For example, if an anion and a 
ation 
ome very 
lose together the dipole on theanion 
an be
ome unphysi
ally large. This 
an have a drasti
 e�e
t on the surroundingele
tri
 �eld and the dipole �eld diverges. We have found that when su
h a 
on�gura-tion o

urs 
onvergen
e, fails regardless of the initial guess EpguessI . Lu
kily, experien
ehas shown that the more physi
al the ele
trostati
 and short-range dipole-indu
tion pa-rameters we have, the less likely this dipole \explosion" is to o

ur, but we have notmanaged to eliminate it 
ompletely. This is a big problem as when this happens, the MDsimulation is e�e
tively over. It is not possible to re
over as, even if one 
ontinues withun
onverged dipoles (e.g: those 
al
ulated simply from the 
harge 
ontribution to theele
tri
 �eld), the kineti
 energy of the system in
reases dramati
ally and 
onservation ofenergy is lost. This is only a problem for liquid systems and is mu
h more likely to o

urat very high temperatures and pressures signi�
antly di�erent from the pressure at whi
hthe model was parametrized. Its o

urren
e, if frequent, may indi
ate the need for a newparametrization of the potential.Similar problems have been reported for the Car-Parrinello approa
h [50℄.3.7.2 A Distortable Ion ModelIn this se
tion a general framework will be developed for the in
lusion of environmentale�e
ts on the size and shape of an ion and the subsequent e�e
t of su
h distortions on theshort-range interioni
 for
es. In the next se
tion we will show how this general frameworkhas been implemented in pra
ti
e.We will be primarily 
on
erned with the anion-
ation intera
tion. Of mu
h lesser
on
ern, initially at least, is the anion-anion intera
tion energy whi
h has been found toprovide only � 3% of the energeti
s of the perfe
t 
rystal[52, 47℄. Although, the same
annot be said with any degree of 
ertainty of more disordered phases, or systems ofdi�erent stoi
hiometry su
h as SiO2, it is nonetheless the most obvious pla
e to startwhen 
onstru
ting a potential.We assume that a distortable ion ( su
h as O2� ) has its shape and size \in
uen
ed"by all suÆ
iently 
lose neighbouring ions. Mu
h as in the s
heme of Wilson, Maddenand 
oworkers[47, 52℄, an ion is des
ribed as a nu
leus surrounded by a single membrane(representing the ele
trons) the radius of whi
h is allowed to vary with the two polarangles (although in their 
ase, the radius only varied in 
ertain symmetri
 ways). Thein
uen
e an ion J exerts on ion I 
an be loosely thought of as a restraining for
e onthe ion's tenden
y to expand and this restraint has a dependen
e on the polar angles(�; �) in the spheri
al 
oordinate system 
entered on I. We also assume that the in
uen
eexerted at 
oordinates (�; �) is zero if the angle between the outward unit ve
tor at those
oordinates `(�; �) and the ve
tor RJI = RJ �RI is greater than 90Æ.We write the total in
uen
e on I at (�; �) due to all the other ions as�(1)I (�; �) =XJ 6=I fIJ(RIJ)`(�; �) � xJI�(`(�; �) � xJI) (3.26)



50 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSwhere xJI = RJIRJI and �(`(�; �) � xJI) = (1 if `(�; �) � xJI > 00 if `(�; �) � xJI < 0 (3.27)The subs
ripts on the s
alar fun
tion fIJ are to indi
ate that a di�erent fun
tion is usedfor every distin
t pair of ioni
 spe
ies.Apart from a multipli
ative 
onstant, the spheri
al average of �(1)I (�; �) is�(0)I =XJ 6=I fIJ(RIJ) (3.28)We write the angular dependent radius , �I(�; �) of an ion as�I(�; �) = �(0)I (�(0)) + �(1)I (�(0); �(1)I (�; �)) (3.29)In other words, the radius at (�; �) is written as a sum of an average value due to thein
uen
e of all the ions and deviations from that average. The distan
e between themembranes of ions I and J along their line of 
enters isLIJ = RIJ � �I(�JI ; �JI)� �J(�IJ ; �IJ) (3.30)where �JI and �JI are de�ned su
h that `(�JI ; �JI) = xJI and it will be 
onvenient to usethe notation �(1)IJ = �(1)I (�JI ; �JI) (3.31)�(1)IJ = �(1)I (�(0); �(1)I (�JI ; �JI)) (3.32)�IJ = �I(�JI ; �JI) (3.33)AIJK = �(xIJ � xIK) (3.34)We now de�ne the total energy of the system as a sum of pairwise intera
tions betweenmembranes. U = XI;J>I UIJ(LIJ)gIJ(RIJ) (3.35)where gIJ(R) takes the value 1 for R < Ra, 0 for R > Rb and de
ays smoothly from 1 to 0between Ra and Rb. This allows us to trun
ate the intera
tion at intermediate distan
es.The �th for
e 
omponent on ion K is then written asF �K = � XI;J>I gIJ �UIJ�LIJ�x�IJ(ÆIK � ÆJK)� ��IJ�R�K � ��JI�R�K�� XI;J>I UIJ �gIJ�RIJ x�IJ(ÆIK � ÆJK) (3.36)



3.7. OUR APPROACH TO MODELLING IONIC SYSTEMS 51

R

L

JI

IJ σ

σ

JI

IJ

I

J

θ l

φ

(θ,φ)

JIx

Figure 3.3: The distortable ion model. See text of se
tion 3.7.2.and ��IJ�R�K = ���(0)I��(0)I + ��(1)IJ��(0)I ���(0)I�R�K + ��(1)IJ��(1)IJ ��(1)IJ�R�K (3.37)��(0)I�R�K = XL(I) �fIL�RILx�IL(ÆIK � ÆLK) (3.38)��(1)IJ�R�K = XL(I) 1RLI (ÆLK � ÆIK)(Æ�� � x�LIx�LI)x�JIfLIAIJL+ XL(I) 1RJI (ÆJK � ÆIK)(Æ�� � x�JIx�JI)x�LIfLIAIJL+ XL(I) x�LIx�JI �fLIRLI x�LI(ÆLK � ÆIK)AIJL (3.39)
The notation PL(I) has been introdu
ed to indi
ate that the summation is over all ionsL whi
h are neighbours of I. This is ne
essary for pra
ti
al implementation due tothe trun
ation of intera
tions and to avoid summing over all the parti
les. Expanding



52 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSequation 3.36 we getF �K = �XJ(K)UKJ �gKJRKJ x�KJ� XJ(K) �UKJ�LKJ gKJx�KJ+ XI(K) �fKI�RKI x�KIXJ(I) �UIJ�LIJ gIJ� �(0)I��(0)I + �(1)IJ��(0)I �+  XJ(K) �UKJ�LKJ gKJ� �(0)K��(0)K + �(1)KJ��(0)K �! XI(K) �fKI�RKI x�KI!� XI(K) fKIRKI XJ(I)(1) �UIJ�LIJ gIJ ��(1)IJ��(1)IJ x�IJAIJK+ XI(K) x�KIRKI fKIXJ(I) �UIJ�LIJ gIJ ��(1)IJ��(1)IJ x�KIx�IJAIJK+ XI(K) �UKI�LKI gKI ��(1)KI��(1)KI x�KI XJ(K) fJKRJKAKIJ� XI(K) �UKI�LKI gKI ��(1)KI��(1)KI XJ(K) fJKRJK x�KJx�KIx�KJAKIJ� XI(K) �UKI�LKI gKIRKI ��(1)IK��(1)IK XJ(I) x�IJfIJAIKJ+ XI(K) �UKI�LKI gKI ��(1)IK��(1)IK x�KIRKI XJ(I) x�KIx�IJfIJAIKJ+ XI(K) �UKI�LKI gKIRKI ��(1)KI��(1)KI XJ(K)x�KJfKJAKIJ� XI(K) �UKI�LKI gKIRKI ��(1)KI��(1)KI x�KI XJ(K) x�KIx�KJfKJAKIJ� XI(K) �fKI�RKI x�KIXJ(I) ��(1)IJ��(1)IJ �UIJ�LIJ gIJx�KIx�IJAIJK+ XI(K) �UKI�LKI gKI ��(1)KI��(1)KI XJ(K) x�KJx�KIx�KJ �fKJ�RKJAKIJ (3.40)In the derivation we have made the further assumptions that fIJ = fJI, UIJ = UJI andgIJ = gJI. This monstrous-looking equation a
tually has a very small 
omputational



3.7. OUR APPROACH TO MODELLING IONIC SYSTEMS 53overhead relative to that for the dipole polarization, provided that Rb is 
hosen to bereasonably small, and it s
ales with the number of distortable ions.3.7.3 Applying the ModelIn order to apply this model we 
learly need to �nd suitable expressions for the fun
tionsfIJ ,�(0)I , and �(1)IJ . We begin by making the same assumption that was made in theextended Lagrangian approa
h that the most important intera
tion is the anion-
ationintera
tion although this will be extended at a later stage to in
lude the anion-anionintera
tion in a limited way. For the moment we are 
on
erned with systems with twospe
ies su
h as MgO and we assume that the 
ation is small and rigid. For MgO it islikely that this is a very good assumption, given its degree of ioni
ity.In order to draw a 
orresponden
e with the 
ompressible ion model of Wilson et al.[47℄(see se
tion 3.4) we write the total energy of the system due to short-range repulsion asV SR = XI�� V selfI (�(0)I ) + XI��;J�+B+�e���+(RIJ��(0)I )+ XI;J��;J>IB��e����RIJ + XI;J�+;J>IB++e��++RIJ (3.41)The values of the anion radii at any time should be su
h that this repulsive energy isminimized. In other words �V SR��(0)I = 0 ; 8I (3.42)=) �V selfI��(0)I + ��+e��+�(0)I XJ�+ B+�e���+RIJ = 0 (3.43)To simplify the notation we write B0 = ��+B+� and �(�(0)I ) = �V self��(0)I .�(�(0)I )e���+�(0)I = �XJ�+ B0e���+RIJ (3.44)At this point we note that there has been mu
h dis
ussion about the form of the self-energy of 
ompressible ions. Although in the original paper by Wilson et al. the form usedwas that of a hyperboli
 
osine of the amount of 
ompression Æ�, in another work Matsuihas used a harmoni
 expression for this energy [67℄ and in an even more re
ent paper [68℄Marks et al. have argued that for the oxide ion one should treat the 2p6 shell and the s2shells separately with harmoni
 and exponential 
ompression energies respe
tively.However, the justi�
ation for all of these forms has been on the basis of quantum
hemi
al 
al
ulations of the perfe
t 
rystal. There is no reason to believe that this isa good basis for determining what the energy fun
tion should be in a distorted 
rystalor a melt and there does not seem to be strong physi
al reasoning behind any of theforms used. In fa
t, an examination of the 
al
ulated values of the self-energy in, for
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e [47℄ shows that for values of RIJ that one might expe
t to �nd at lowtemperatures and pressures, the 
al
ulated self-energy 
ould be reasonably well �t evenwith a straight line.For these reasons, as a preliminary test we have 
hosen an exponential form as thissimpli�es 
onsiderably the mathemati
s. �(�(0)I ) will also have an exponential form so wemay write AIe��I�(0)I e���+�(0)I = �XJ�+ B0e���+RIJ (3.45)By merging 
onstant terms to simplify the notation, this equation 
an be rewritten inthe form �(0)I (�(0)I ) = C1 + C2 ln(�(0)I ) (3.46)where we say that �(0)I =XJ C3e�C4RIJ (3.47)and C1,C2..et
 are 
onstants. By analogy with equation 3.28 we 
an say thatfIJ = C3e�C4RIJ (3.48)One is not 
on�ned to su
h simple forms for the self-energy but for many forms one 
annotwrite equation 3.44 in terms of �(0)I and one is for
ed to �nd �(0)I by an iterative pro
edure.This only has a very slight impa
t on the eÆ
ien
y of 
al
ulating the potential. Anotherform whi
h we have tried, and for whi
h this pro
edure is used isV selfI (�(0)I ) = �1�2 + �(0)I + �3(�4 + �(0)I )2 (3.49)where �1,�2..et
 are 
onstants. This form was 
hosen a

ording to the (admittedly, highlysimplisti
) physi
al reasoning that the internal fa
tors whi
h determine an ion's radius arethe ele
trostati
 energy whi
h varies like the inverse of a distan
e and the kineti
 energyof the ele
trons whi
h varies like the inverse of a distan
e squared.The above analysis has shown that the distortable-ion model presented is mathemat-i
ally equivalent to the 
ompressible-ion model of Wilson et al. if �(1)IJ = 0 in the limitthat the �
titious mass of the extended-lagrangian approa
h goes to zero.It is not possible to map our approa
h onto the aspheri
al-ion model. However, wetake a di�erent approa
h to aspheri
al distortions. Given the fun
tions fIJ and �(0)I as astarting point we may postulate a form for �(1)IJ . We assume that distorting an ion in anaspheri
al way is energeti
ally the same as distorting it spheri
ally. In other words, wesay that there is no energy penalty for deviating from spheri
ity. We therefore write�(1)IJ = C5 ln��(1)IJ�(0)I � (3.50)Sin
e we will be parametrizing this for
e by �tting to ab initio data, the minimizationroutine has the freedom either to make the 
onstant C5 very small or zero if this is not a
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tional form, or if aspheri
al distortions are really energeti
ally equivalentto spheri
al ones, it 
an make C2 = C5 in whi
h 
ase, the distortions of purely spheri
alsymmetry disappear and �IJ = C1 + C5 ln(�(1)IJ ) (3.51)Although all the above derivation has assumed that this potential is only to be usedfor modelling 
ation-anion intera
tions, the generality and freedom a�orded us by ourparametrization pro
edure (see 
hapter 4 ) means that we lose nothing by trying to applyit to the anion-anion intera
tion also. We have done this by �tting parameters for theanion-anion intera
tion and we have found that it does improve the ability of the modelto �t the ab initio for
es. A more sensible, but also more expensive way of ta
kling theanion-anion intera
tion would be to introdu
e a self-
onsistent pro
edure to minimize theangular dependent radii simultaneously.We also note that, as has been pointed out by Marks et al., di�erent ele
troni
 shellshave di�erent 
ompression 
hara
teristi
s. This 
ould be modelled within the presents
heme by having two or more su
h distortable ion potentials a
ting in parallel.
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Chapter 4Parametrizing E�e
tive Potentials
4.1 Introdu
tionEver sin
e the �rst mole
ular dynami
s simulations were performed one of the 
ru
ialissues has been the method of parametrization of the e�e
tive for
e-�eld used. Not onlydoes one need to represent, in terms of a reasonably simple fun
tional form, the relevantphysi
s at play, this fun
tional form needs to take parameters whi
h are realisti
 for thesystem under 
onsideration.In the past parameters have been 
hosen based on physi
al arguments, or empiri
allyso that the potential reprodu
ed known properties of the material, or a 
ombinationof the two. This resulted in potentials whi
h were qualitative at best. The generalpro
edure was to use physi
al or 
hemi
al arguments for as many parameters as possibleand to �t the remaining parameters so that experimental quantities su
h as the density,bulk modulus or diele
tri
 
onstant were reprodu
ed. The problem with this is thatthe number of parameters that 
an be determined from physi
al arguments is generallyvery small and in order to parametrize empiri
ally the number of physi
al quantitiesused should be large relative to the number of parameters required in order that theybe determined uniquely. Otherwise a set of parameters determined to reprodu
e, say,stru
tural properties might give awful results for dynami
al properties. Sin
e the numberof experimentally determined physi
al quantities that are available is generally quite small,and sin
e they are frequently properties whi
h are not 
ompletely trivial to 
al
ulate withthe potential, the number of parameters that one 
an �nd in this way is usually very small.This, in turn, 
auses the problem that one needs to use a fun
tional form for the potentialwhi
h is simple enough to 
ontain only a few parameters. Fun
tional forms whi
h aretoo simple 
annot generally des
ribe the for
es between the ions in an a

urate way. Formost systems this requires 
ompli
ated fun
tions whi
h 
apture phenomenologi
ally thebehaviour of the ele
trons. Su
h potentials for ioni
 systems are dis
ussed in detail in
hapter 3.Another problem with potentials whi
h have been used in the past is that they werefrequently parametrized using data relevant to a given set of thermodynami
 
onditions(e.g. pressure and temperature) or a given phase. One of the main advantages of MDsimulations is that they may be used for exploring new situations whi
h are diÆ
ult or57
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essible for experiment. This means that potentials were frequently used in 
ondi-tions di�erent from those under whi
h they were parametrized. Any 
hange in physi
al
onditions su
h as temperature, pressure, or phase results in 
hanges in the underlyingele
troni
 stru
ture of the system. If su
h 
hanges are large enough, the degree to whi
ha given potential 
an reprodu
e the interatomi
 intera
tions 
an be seriously diminished.A solution to all of these problems is to parametrize a potential using informationextra
ted from �rst-prin
iples 
al
ulations [69℄. From su
h 
al
ulations one 
an extra
ta wealth of information su
h as the for
e on ea
h atom, the stress on the system andthe energy di�eren
es between di�erent 
on�gurations. Sin
e a reasonably high degreeof a

ura
y may be a
hieved from density fun
tional theory 
al
ulations and sin
e DFT
al
ulations are e
onomi
al enough to allow one to treat large numbers of atoms ( �100 ) whi
h are representative of bulk systems when simulated under periodi
 boundary
onditions, they are the obvious 
hoi
e for performing the �rst-prin
iples 
al
ulation.One 
an, in prin
iple, perform ab initio 
al
ulations for any atomi
 
on�gurations at anydensity and so the for
e-�eld may be parametrized for the parti
ular physi
al 
onditionsthat one is interested in simulating.The other major advantage is that an arbitrarily large amount of information may beextra
ted and this allows one to use for
e-�elds whi
h are mu
h more 
ompli
ated andtherefore have many more parameters than traditional for
e-�elds. However, in order todo this it is ne
essary to use a 
areful, well-de�ned parametrization pro
edure so thatproblems do not o

ur due to there being too little ab initio data. The basi
 requirementthat must be ful�lled is that a potential whi
h is parametrized for use under a given set of
onditions should be able to des
ribe all suÆ
iently large systems under these 
onditionswith the same degree of a

ura
y.In this 
hapter the parametrization pro
edure, whi
h was originally developed byEr
olessi and Adams [69℄ and later developed further by Laio et al. [70℄, will be des
ribedalong with the details of the ab initio 
al
ulations that we have used for the oxides, SiO2and MgO.4.2 Parametrizing from Ab-Initio Data4.2.1 The For
e-Mat
hing MethodIn a mole
ular dynami
s simulation the important quantities are the for
es on ea
h atom,and if one is performing simulations at 
onstant pressure, the stress on the simulation 
ell.For this reason, and be
ause for
es are plentiful in number in an ab initio 
al
ulation,Er
olessi and Adams have introdu
ed the idea of �tting parameters to reprodu
e ab initiofor
es as well as possible. Laio et al. [70℄ were interested in simulating systems under highpressure and so have extended this slightly by trying to �t also the 
al
ulated stress. In thefollowing we also in
lude in the fun
tion to be optimized, the energy di�eren
es betweendi�erent 
on�gurations. Given a form for the interatomi
 for
e-�eld, whi
h depends on aset of parameters f�g, we minimize the fun
tion :�(f�g) = wf�F + ws�S + we�E (4.1)
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t to the parameters f�g where�F = qPn
k=1PNI=1P� jF �
l;I(f�g)� F �ai;I j2qPn
k=1PNI=1P�(F �ai;I)2�S = qPn
k=1P�;� jS��
l (f�g)� S��ai j23Bpn
�E = qPn
k;l((U 
lk � U 
ll )� (Uaik � Uail ))2qPn
k;l(Uaik � Uail )2Here F �
l;I is the ��th 
omponent of the for
e on atom I as 
al
ulated with thee�e
tive potential, F �ai;I is the for
e 
omponent as 
al
ulated ab initio, S��
l is the stresstensor 
omponent as 
al
ulated with the e�e
tive potential and S��ai is the stress tensor
omponent as 
al
ulated ab initio, B is the bulk modulus, U 
lk and Uaik are the potentialenergy of 
on�guration k as 
al
ulated with the for
e-�eld and ab initio respe
tively, n
 arethe number of atomi
 
on�gurations for whi
h ab initio 
al
ulations have been performed.The quantities wf ,ws and we were 
hosen to re
e
t the amount of available data for ea
hquantity, i.e : wf > ws > we. It was found that the �nal �t was quite insensitive to thevalues 
hosen as long as we was relatively small due to the fa
t that only one energy maybe extra
ted per 
on�guration.In order to be sure that the minimization pro
edure was meaningful n
 was requiredto be reasonable large. Its value depended on the system studied, the potential form usedand the number of atoms in the unit 
ell. For SiO2 we generally used a value of n
 = 5.For MgO, a fun
tional form with more parameters was used and there were fewer atomsin the unit 
ell and so it was found that a value of n
 = 10 was required. In ea
h 
aseat least another 5 
on�gurations were retained during ea
h �tting pro
edure in order totest that the �nal fun
tional form �t these 
on�gurations as well as it did those that wereused in the minimization of �(f�g).Minimization of �(f�g) with respe
t to f�g was performed using a 
ombination of\simulated annealing"[71℄ and \Powell minimization"[72℄. A basin in the surfa
e de�nedby �(f�g) in ��spa
e was initially found using simulated annealing and, on
e found,further minimization was performed using the method of Powell. Minimization in gen-eral, and parti
ularly simulated annealing, is a very 
omputationally expensive pro
ess.However simulated annealing is very useful for two reasons : 1. It is very stable; Powellminimization 
an break down if numeri
al errors (su
h as over
ow errors) o

ur due tounphysi
al values of the parameters; 2. In prin
iple it 
an always bring one to the globalminimum; In pra
ti
e however this depends on how mu
h 
omputer time one is willingto allo
ate it. These properties of the simulated annealing method makes it parti
ularlyuseful when �tting a potential for the �rst time. One does not need to start with reason-able or physi
al values of the parameters in order for it to 
onverge and this means thatone may parametrize exoti
 potentials for whi
h the parameters have no obvious physi
alinterpretation.



60 CHAPTER 4. PARAMETRIZING EFFECTIVE POTENTIALSThe freedom whi
h one is a�orded using the 
ombination of ab initio data and sim-ulated annealing is 
ru
ial. It simply would not be possible to parametrize a for
e �eldsu
h as the distorted-ion model introdu
ed in se
tion 3.7.2 without either one of theseassets.4.2.2 The Optimal Potential Method
C1
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Figure 4.1: Iterative pro
edure for 
onstru
ting the optimal potential at (P; T ).It is important when �tting to the ab initio 
on�gurations that one �ts to 
on�gu-rations whi
h are representative of the real system. This is parti
ularly important forliquids. The liquid should have a stru
ture whi
h is 
lose to that of the real liquid. How-ever, if one doesn't have a good potential to begin with, one 
an't 
onstru
t by meansof an MD simulation a good liquid. One solution is to generate 
on�gurations using abinitio mole
ular dynami
s. Our attempts to simulate liquid MgO with Car-Parrinello MDproved too diÆ
ult however due to large errors of the form des
ribed in 
hapter 2 forlevels of the �
titious mass whi
h allowed a reasonable equilibration time, i.e. �0 > 100a.u. For this reason we have used an adapted form of an iterative pro
edure for generat-ing the potential whi
h was �rst used by Laio et al.[70℄ (see �gure 4.1). Beginning withthe best potential available, the system of interest is thermalized with an MD simulation(typi
ally of � 20 ps) at the thermodynami
 
onditions (P; T ) for whi
h one would like to
reate the potential. On
e equilibrated, a number of well separated ( typi
ally by � 1 ps)atomi
 
on�gurations are generated. On these 
on�gurations, density fun
tional theory
al
ulations (see se
tion 4.3) of total energy, for
es and stress are performed and these areused to perform the parametrization. We will denote the ab initio data extra
ted duringstep i of the iterative pro
edure 
olle
tively as Ci Using the parameters obtained duringthe minimization at this step, a new equilibration is peformed (as a 
ontinuation of theprevious one) and new atomi
 
on�gurations extra
ted. On
e again, ab initio 
al
ula-



4.3. AB-INITIO CALCULATIONS 61tions are performed and a new set of parameters obtained. This 
y
le is stopped on
e the
urrent parameter set �ts the 
urrent (Ci) and the previous (Ci�1) ab initio data to thesame degree, i.e. �(f�gi;Ci) = �(f�gi;Ci�1).4.3 Ab-Initio Cal
ulationsAs mentioned previously, the ab initio 
al
ulations whi
h we perform are all done withindensity fun
tional theory[2, 3℄. In 1964 Hohenberg and Kohn [2℄ proved that all propertiesof an ele
troni
 system are uniquely de�ned by its ground state probability density. Sub-sequently, Kohn and Sham [3℄ turned this theorem into a pra
ti
al s
heme by re
astingthe many-body S
hr�odinger equation into a set of single parti
le S
hr�odinger equationsin whi
h ea
h parti
le sees an e�e
tive potential whi
h is a fun
tional of the probabilitydensity. Walter Kohn shared the Nobel Prize for 
hemistry in 1998 for his part in thedevelopment of this theory.Unfortunately, the Kohn-Sham e�e
tive potential is not known in general and so one
annot solve the equations exa
tly. Instead, various approximations to the unknown partof the potential ( whi
h is 
alled the ex
hange-
orrelation potential ) are used. Althoughthe ex
hange- 
orrelation potential V̂x
 is fully non-lo
al, the approximations to it are lo
alor semilo
al. The most 
ommonly used approximate fun
tional is 
alled the \lo
al densityapproximation" ( LDA ). This is a lo
al operator in whi
h the ex
hange-
orrelation po-tential at a point is 
hosen to be the same as that felt by an ele
tron in a uniform ele
trongas of the same density. The result for the uniform ele
tron gas was 
al
ulated numer-i
ally by Ceperley and Alder [36℄ and parametrized by Perdew and Zunger[37℄ amongothers. This approximation has been in
redibly su

essful 
onsidering its simpli
ity, andfor many systems it 
an produ
e results (su
h as stru
tural parameters, phonon frequen-
ies and elasti
 moduli) whi
h are in good agreement with experiment. The general
onsensus nowadays is that another 
lass of fun
tionals, so 
alled \generalized gradientapproximations" (GGA), whi
h depend not only on the density at a point but also on itsspatial derivative are superior in most situations, but parti
ularly for studying mole
ules.This empiri
al observation is supported by the fa
t that, of the 
onditions whi
h the truefun
tional is known to obey, more of them are satis�ed (by 
onstru
tion) by some of themore re
ent GGAs [73, 74℄ than the LDA.All our 
al
ulations are performed within the planewave pseudopotential method[75,76℄. In this method, ele
troni
 states of an atom whi
h are 
hanged negligibly by thepresen
e of other atoms due to the fa
t that they are very low in energy and are 
loseto the nu
leus, are 
onsidered frozen. Ele
trons whi
h do respond to the presen
e ofother atoms are then treated as though they see an e�e
tive non-lo
al potential, 
alled apseudopotential, due to the nu
leus surrounded by these unrea
tive ele
trons. The eigen-fun
tions of the Kohn-Sham hamiltonian of the system of pseudopotentials and ele
tronsare represented in a basis of plane waves. The planewave method relies on the use ofperiodi
 boundary 
onditions whereby the basi
 simulation 
ell is repeated periodi
allyin all dire
tions. Periodi
 boundary 
onditions are parti
ularly suitable for studying bulkmaterials as the in�nitely repeated periodi
 images 
an imitate the e�e
t of an in�nitely



62 CHAPTER 4. PARAMETRIZING EFFECTIVE POTENTIALSlarge system, provided that the elementary unit 
ell is suÆ
iently large.In prin
iple, density-fun
tional theory with the plane-wave pseudopotential method isan ab initio method in the sense that all one needs is the atomi
 number of the 
onstituentelements of a system in order to 
al
ulate the properties of the system. In pra
ti
e howeverthere is a very strong empiri
al element to it. The details of the 
al
ulation are notuniquely de�ned. Various 
hoi
es whi
h one may make during a 
al
ulation, su
h as themethod of 
reating the pseudopotential and the 
hoi
e of ex
hange-
orrelation fun
tional,
an have a strong impa
t on the properties 
al
ulated. For this reason, as it is mostfrequently used, it is a semi-empiri
al method, albeit a very good one. For a solid, it isgenerally applied with referen
e to su
h experimental data as volume, bulk modulus, orlatti
e parameters and if suitable agreement is not found, the underlying details of the
al
ulation are revised. The hope is, that by using a s
heme whi
h gives good agreementwith these experimental properties, one improves the 
han
es of this s
heme working wellfor other properties. This is never guaranteed but it is the best approa
h available withinthis method. For example, di�erent 
hoi
es of the Mg pseudopotential, whi
h were, byour estimation, all equally reasonable, led to equilibrium volumes of MgO whi
h variedby up to 10%. The s
heme that we have 
hosen was shown[6℄ to give good results andwas thoroughly tested. However, it was not formally more justi�able than any other. Itmay be that this is an extreme 
ase, however there is always some signi�
ant variationand parti
ularly in elasti
 properties su
h as the bulk modulus.4.3.1 Computational DetailsIn the 
reation of the e�e
tive for
e-�elds we have performed ab initio 
al
ulations fortwo di�erent materials, MgO and SiO2.For SiO2, the s
heme that we used was 
hosen for 
onvenien
e (the pseudopotentialsalready existed and the ex
hange-
orrelation fun
tional was already implemented in theplane wave program) rather than based on empiri
al 
onsiderations. Its empiri
al justi-�
ation lies in the ability of the resulting e�e
tive for
e-�eld to reprodu
e experimentalproperties of 
rystalline and liquid sili
a. This is dis
ussed in detail in 
hapter 5. Thepseudopotentials used for sili
a and oxygen were both of the form introdu
ed by Trouil-lier and Martins [22℄. Although in the 
al
ulations of sili
a we have used a rather oldgradient-dependent ex
hange-
orrelation fun
tional [77℄, in the atomi
 
al
ulations whi
hwere used to 
reate the pseudopotentials we have used di�erent fun
tionals for both oxy-gen and sili
on. For sili
on the fun
tional used was the LDA[36, 37℄ and for oxygenwe used a di�erent gradient-dependent fun
tional [35℄. The pra
ti
e of using di�erentfun
tionals in the atomi
 and bulk 
al
ulations is generally frowned upon, however froma formal mathemati
al or physi
al point of view we are not aware of any reason whyit is not as justi�ed as any other s
heme. Nevertheless, mixing fun
tionals in this way
an lead to 
onfusion and it needlessly 
ompli
ates the details of a 
al
ulation and so isnot advisable in general. In addition to this, our use of the planewave pseudopotentialmethod is purely as a means of parametrization and if there is a formal diÆ
ulty withmixing fun
tionals as we have done, it is highly unlikely that errors in
urred in this wayare greater than other errors asso
iated with our e�e
tive for
e-�elds.



4.3. AB-INITIO CALCULATIONS 63For MgO, we have used identi
al pseudopotentials to those that have previously beenused su

essfully to 
al
ulate its vibrational properties for a large range of pressures andtemperatures[6℄. We require our simulations to produ
e good quality for
es and this is amu
h more rigorous test of its ability than it would have been feasible for us to perform.The ex
hange-
orrelation fun
tional used in this 
ase was the LDA.An important parameter in any planewave 
al
ulation is the highest energy planewaveused in the expansion of the wavefun
tions. For SiO2 the value used was 130 Ryd. and forMgo the value used was 120 Ryd. These values are very large relative to most 
al
ulations,however we required a relatively pre
ise determination of the stress and this 
onvergesvery slowly with respe
t to this parameter.A unit 
ell 
ontaining 24 SiO2 units was used in the simulation of sili
a and a 
ell
ontaining 32 MgO units was used in the simulation of MgO. These sizes were deemedlarge enough to be a good representation of the bulk and , in any 
ase, it would not havebeen 
omputationally feasible to use 
ells whi
h were signi�
antly larger.The brillouin zone was sampled with only the �-point in ea
h 
ase.
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Chapter 5Sili
a
5.1 Introdu
tion : Why study sili
a ?Sili
on dioxide or sili
a is one of the most widely and intensively studied of all materials.There are many reasons for this. First of all, it is one of the most 
ommon materials innature, sili
ates making up more than 90% of the minerals in the earth's mantle and 
rust.It is a vital industrial material. An obvious example is that it makes up approximately75% of the 
omposition of the glass that is used for everything from window panes toopti
al �bres. It is also used extensively as an insulator in the semi
ondu
tor ele
troni
sindustry. These are only two of a vast range of uses.Sili
a has an extremely ri
h phase diagram with a large number of allotropi
 forms.The best known of these are quartz, 
ristobalite, tridymite, 
oesite, stishovite and of
ourse sili
a glass. All the low pressure 
rystal stru
tures of sili
a are 
omposed of 
orner-sharing SiO4 tetrahedra and even in the glass and the liquid almost all of the Si atomsare tetrahedrally 
oordinated. Sili
a is a main 
onstituent of most zeolites whi
h aremetastable mi
roporous 
rystalline solids whi
h are extensively mined and fabri
ated fortheir unique stru
tural properties. Their porosity makes them useful as mole
ular sievesin large s
ale industrial 
hemistry. Zeolites are also used as 
atalysts, the rea
tions takingpla
e in their large internal 
avities.Its abundan
e in the earth's mantle makes the response of sili
a to extreme 
ondi-tions of temperature and pressure of great importan
e to those 
onstru
ting geophysi
almodels of the earth's interior. Although it generally appears with other elements su
has Mg,Al,Fe,Na...et
 in the form of sili
ates, the �rst step in understanding sili
ates is tounderstand sili
a itself. Likewise, the �rst step in modelling su
h systems with 
omputersimulation is to su

essfully model sili
a. The behaviour of liquid sili
a and sili
ates asa fun
tion of pressure and temperature is of importan
e to those studying the formationand 
ooling of the earth.Sili
a is a prototype of strong network-forming glass formers. For this reason alonethere has been intense interest in studying the stru
tural and dynami
al properties of theliquid and the glass.Mole
ular dynami
s plays an important role in the study of sili
a in all its forms sin
e,in prin
iple, it allows one full a

ess to the mi
ros
opi
 stru
tural details. Experiment,65



66 CHAPTER 5. SILICAon the other hand, 
an only provide averaged quantities su
h as stru
ture fa
tors. Ex-periments have diÆ
ulties with extreme 
onditions of temperature and pressure but, atleast in prin
iple, MD is not as 
onstrained and so it is parti
ularly relevant for studiesat high temperature and pressure where there is little experimental data.5.2 Modelling Sili
aSili
a is quite a diÆ
ult oxide to model, at least 
ompared to the simpli
ity of MgO.It has traditionally been 
onsidered to be a 
ovalent system[78℄, and although there isalmost 
ertainly some 
ovalen
y present, it has been found that it is more appropriateto model it as an ioni
 system[79℄ and, more re
ently, that some of the e�e
ts previouslyattributed to 
ovalen
y[81, 82℄ 
ould, in fa
t, be explained using a polarizable ioni
 model[83℄. It is pre
isely the features of its bonding whi
h have 
aused 
onfusion in the past,i.e. the mix of ioni
ity and 
ovalen
y, whi
h makes it a parti
ularly 
hallenging system.Nevertheless, as dis
ussed in the introdu
tion, it is an extremely important system andso any improvement is worthwhile.For many systems experien
e has shown that it is easier to model the broad featuresof its potential energy surfa
e, whi
h play a dominant role in determining stru
ture, thanit is to model the �ne details, whi
h 
an strongly e�e
t dynami
s. For sili
a its ioni
itymakes it reasonable to suppose that these broad features are dominated by ele
trostati

onsiderations. The small degree of 
ovalen
y, on the other hand is probably more lo-
al in its e�e
ts and therefore of importan
e for dynami
s but of lesser importan
e fordetermining stru
ture. Here we would like to test our polarizable-ion potential and ourparametrization method by trying to 
reate a potential whi
h reprodu
es the stru
turalproperties of sili
a.There have been a large number of potentials proposed for sili
a in the past. Manyof these in
lude three-body angular dependent terms and so are intrinsi
ally biased infavour of a tetrahedral 
rystal stru
ture[80, 81, 82℄. These are of little use to us as weaspire to 
reating a potential whi
h is suitable for disordered aswell as 
rystalline phases.Demiralp et al. [84℄ have proposed a many-body potential for sili
a whi
h improves onthe predi
tion of the 
rystal stru
tures with respe
t to pair potentials. The many-body
hara
ter of this potential is a 
harge equilibrationmodel[53℄ whi
h allows for lo
al 
hangesin the degree of ioni
ity. Although it is very likely that the degree of ioni
ity 
hangeswith pressure, there is no eviden
e that we are aware of to suggest that this happensdynami
ally at a given pressure or temperature. The polarizability of the oxygen ion iswell established however[85, 86℄ and it may be that in
lusion of 
harge-transfer mimi
s toa 
ertain extent the e�e
ts of polarization. It is likely that in
lusion of 
harge-transfer isne
essary for transferability between polymorphs with di�erent sili
on 
oordination, forexample, for modelling the pressure indu
ed transition from 4-fold 
oordinated quartz to6-fold 
oordinated stishovite.The most 
ommonly used potentials for sili
a are all pair-potentials of the formUIJ(RIJ) = qIqJRIJ +BIJe��IJRIJ � CIJR6IJ (5.1)



5.2. MODELLING SILICA 67In other words, a Born-Mayer-like form but without the R�8 term. There have been anumber of parametrizations of this potential form for sili
a in the past[79, 87, 88℄. Mostre
ently, van Beest, van Santen and Kramer (BKS)[88℄ have �t the parameters to repro-du
e the energeti
s of small hydrogen-terminated sili
a 
lusters as well as the experimentalstru
tural parameters and elasti
 
onstants of quartz. The resulting potential has beenextensively applied to study a large range of dynami
 and thermodynami
 properties ofsili
a in many di�erent phases and under many di�erent thermodynami
 
onditions[89℄.A polarizable potential for sili
a has previously been proposed by Wilson et al.[85℄ andshown to be important for reprodu
ing the infrared absorption spe
trum of the amorphoussolid with respe
t to pair potentials of the BKS form. The model that they have used isdis
ussed in se
tion 3.3.1 and their parametrization was mainly empiri
al.As mentioned previously, we are primarily interested in improving the des
ription ofthe ele
trostati
s with respe
t to previous models and we therefore use a model similar tothat of Wilson et al. but with the well-de�ned and 
ontrolled parametrization pro
edurewhi
h is outlined in 
hapter 4. We use the polarizable potential des
ribed in se
tion 3.7.1with short-range dipoles indu
ed by the 
ation on the anion. The short-range repulsiveintera
tions are modelled with a pair potential of Morse-Stret
h form :Uij = qiqjrij +Dij[e
ij(1� rijr0ij ) � 2e 
ij2 (1� rijr0ij )℄ (5.2)where the intera
tion between an atom of type i and an atom of type j is de�ned by theparameters qi,qj,Dij,
ij,r0ij and the distan
e between them rij. This form was 
hosen overthe Born-Mayer form as it proved to be more transferable between di�erent phases.As we have dis
ussed in 
hapter 4, it is important to take into a

ount the e�e
t thattemperature and pressure have on the ele
troni
 stru
ture of any material and that itshould be veri�ed that potentials are suÆ
iently transferable when using them under newthermodynami
 
onditions or in a new phase. For sili
a we aspire to 
reating a potentialwhi
h 
an be used over the large range of allotropes whi
h are seen at low pressures (i.e.< 5 or 10 GPa.) and at temperatures up to those that are relevant for studying the liquidwith MD. The high vis
osity of sili
a liquid means that in order to observe substantialdi�usion on a MD times
ale, very high temperatures (3000� 4000 K) are required. It isnot obvious a priori that our potential form 
an stret
h a
ross this range of 
onditions.However, all the low-pressure polymorphs 
onsist of 
orner-sharing tetrahedra and theliquid and glass are known to be mostly 
omposed of networks of su
h tetrahedra. Inother words, the short-range order doesn't 
hange mu
h a
ross these phases. In order to�nd a system whi
h is not biased towards a parti
ular 
rystal stru
ture we have de
idedto parametrize the potential by �tting to ab initio data on the liquid at 3000 K. This wasdone using the pro
edure outlined in 
hapter 4 and the results will be dis
ussed in thenext se
tion.We will draw 
omparison with experiments, Car-Parrinello simulations of liquid sili
a[90℄ and one of the most 
ommonly used e�e
tive potentials for sili
a : the BKS potential[88℄. Another very 
ommonly used form is the potential of Tsuneyuki et al.[87℄ whi
h hasthe same form as BKS and was parametrized in a similar manner. Therefore most of theproblems with BKS whi
h we highlight here are equally appli
able to this potential.



68 CHAPTER 5. SILICA5.3 Results5.3.1 Fitting to Ab-Initio DataIn order to obtain a ben
hmark for the parametrization of the new potential, we �rst testedthe ability of the BKS potential to �t the ab initio data. The values of �F = 0:51,�S =0:0571 and �E = 0:82 (see se
tion 4.2.1 ) that we obtain for the BKS potential in theliquid at 3000K and zero pressure point to a rather poor a

ura
y of this potential, atleast at our working 
onditions for the �tting pro
edure. This is quite surprising if one
onsiders that the ability of the BKS potential to reprodu
e some stru
tural properties ofthe solid phases is good overall[91℄, and 
on�rms our suggestion that the simplest for
e�elds should be used with great 
aution at physi
al 
onditions that di�er from those wherethey have been parametrized or from those where they are known to provide a

urateresults. It is possible to substantially redu
e these errors by minimizing � (see equation4.1) with respe
t to the parameters of the Born-Mayer potential, i.e. by 
onstru
ting the\optimal" Born-Mayer potential for the liquid at 3000 K and zero pressure. However alarge number of su
h minimizations were attempted and although it was possible to redu
e�F and �S to values of about 0:3 and 0:015 respe
tively, the resulting potentials gaveunrealisti
 values for the stru
tural parameters and densities of the low pressure solidpolymorphs. For example, the equilibrium density of quartz at 300 K varied for su
hpotentials between values as low as 0:3 g 
m�3 and as high as 4:5 g 
m�3. A minorityof these potentials worked reasonably well for quartz but they did not ne
essarily workwell for the other polymorphs and 
hoosing these potentials out of the many 
reatedwould represent an empiri
al pro
edure. We would like to avoid empiri
ism as mu
h aspossible. It is 
lear from the poor �t to ab initio data and the fa
t that improving this�t disimproved stru
tural properties 
onsiderably, that the rigid ion model is too simpleto allow for an a

urate des
ription of sili
a at low pressure and for a temperature rangeen
ompassing both solid and liquid phases. It seems that more ingredients are requiredin the potential model in order to improve its ability to reprodu
e the ab initio for
es.We now look at the results of our parametrization of the polarizable model. We have
reated and tested only one parameter set for the polarizable potential and we report theresults of those tests here.The results of the �t of the polarizable model des
ribed in the previous se
tion werevery en
ouraging. The values of �F ,�S and �E for the �nal parameter set were0:16,0:014 and 0:18 respe
tively, indi
ating a dramati
 improvement over BKS, but alsoover the best (optimal) potential with the Born-Mayer form. The parameters are listedin Table 5.1. The fa
t that in
lusion of polarization both improves the ability of thepotential to �t the ab initio for
es and allows one to forego the empiri
ism of sele
tinga potential that reprodu
es experiment out of more than one 
reated, strongly suggeststhat polarization is a 
ru
ial ingredient in the bonding of sili
a.1�S has been 
omputed relative to a roughly estimated bulk modulus of B = 30GPa.
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Table 5.1: For
e �eld parameters (atomi
 units)qO qSi � b 
�1:38257 2:76514 8:89378 2:02989 �1:50435DO-O DSi-O DSi-Si2:4748� 10�4 1:9033� 10�3 �2:08460� 10�3
O-O 
Si-O 
Si-Si12:07092 11:15230 10:45517r0O-O r0Si-O r0Si-Si7:17005 4:63710 5:750385.3.2 Testing the PotentialIn order to 
he
k the reliability of our improved potential we 
ompare its thermodynami
and stru
tural properties with experiments[92℄ on the equation of state of liquid sili
a,and with available ab initio data[90, 86℄ on the mi
ros
opi
 stru
ture of the liquid. Exper-imental data on liquid sili
a is s
ar
e and so we have 
ompared with the Car-Parrinellosimulations of liquid sili
a performed by Trave et al. and Sarnthein et al.. Althoughthe 
onsiderations of 
hapter 2 mean that one 
annot guarantee these simulations to beof Born-Oppenheimer quality, we will 
ompare only with stru
tural properties and it isreasonable to expe
t that they are at least mu
h more reliable than pair-potentials. Fur-thermore, agreement between MD results using our potential and CPMD results wouldindi
ate a probability that both are in agreement with what would be obtained from BornOppenheimer MD. However, sin
e only short simulation times and small system sizes arepossible with CPMD, the thermodynami
 averages that 
an be extra
ted are poor. Thisis parti
ularly bad for liquid sili
a at low pressure as its vis
osity is so high that di�usionis negligible on an ab initio MD times
ale.Equation of StateThe poor ab initio statisti
s 
an 
learly be seen in �gure 5.1 where three di�erent typesof MD simulations (Car-Parrinello, BKS and our polarizable potential) are 
omparedwith experimental results. The ab initio data 
onsists of simulations from two di�erentstarting points. In one set of simulations (those at lower volumes), quartz was meltedat zero pressure and su

essively higher pressures were 
ontinuations of the simulationsat previous pressures. In the other set, the initial 
on�guration was taken from a wellequilibrated liquid simulation using our polarizable potential. The vis
osity of sili
a andsili
ates in general is known to de
rease dramati
ally with pressure [93, 94℄ and it 
an beseen that the dis
repan
y between the two sets of results de
reases at higher pressureswhere the liquid is better able to di�use. However, there are 
lear problems with the abinitio simulations and this highlights the need for a

urate e�e
tive potentials whi
h aree
onomi
al enough for large system sizes and long simulation times to be feasible.The experimental data is from experiments at � 1620 K whereas the ab initio simula-tions were at a temperature of � 3500K and the 
lassi
al MD simulations were at � 3100
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Figure 5.1: Pressure as a fun
tion of volume in liquid sili
a from 
lassi
al MD usingthe new polarizable potential 
ompared with results from the BKS potential, ab initiosimulations[90℄ and experiment[92℄.K. However, at zero pressure we have veri�ed that thermal expansion of the liquid is small(� 10�5K�1, 
onsistent with experimental estimates[95℄) and that taking a

ount of itwould in fa
t bring our zero pressure results into even better agreement with experiment.Volumes were obtained as averages along 
onstant-pressure[96℄ mole
ular dynami
s runsof at least 50 ps following 20 ps of equilibration and with simulation 
ells 
ontaining 576atoms. At lower pressures (< 3 GPa) where di�usion is slower, averages were obtainedalong runs of more than 100 ps. The overall agreement with experiment is rather good,and de�nitely better than any atomisti
 model proposed so far. The BKS model under-estimates systemati
ally the volume by � 13%, a likely 
onsequen
e of its inability toreprodu
e the ab initio stress. Our improved potential 
ompares with experiment evenbetter than the ab initio results, a likely 
onsequen
e of the poor thermodynami
 averag-ing in the ab initio simulations. It is also the 
ase that ab initio simulations tend to eithersystemati
ally overestimate ( in the 
ase of GGA) or systemati
ally underestimate (in the
ase of LDA) the volume[97℄ and that, probably fortuitously due to the mixture of thetwo fun
tionals that we have used, our potential predi
ts volumes that lie approximatelymidway between the two.Parti
ularly at low pressures, the large vis
osity of liquid sili
a means that even for ourrelatively large system size (576 atoms) obtaining a reliable statisti
al average of volumerequires at least 50 pi
ose
onds. For the abinitio system (72 atoms) a 
onsiderably longerrun would be required. However, in spite of our mu
h larger simulations, there is a kink in



5.3. RESULTS 71the equation of state at a pressure of between 0:5 and 0:75 GPa. It 
ould be that the systemis di�using so slowly at these low pressures that longer simulation times are required inorder to get an average of adequate pre
ision. Another possibility is that there is atransition between two di�erent liquid phases at low pressures and that the dis
ontinuityis at (or near) the point where the transition o

urs. However we have examined a largenumber of stru
tural features su
h as pair-
orrelation fun
tions and angular distributionsand have not identi�ed any �rst-order 
hange of stru
ture with pressure. This does notmean that su
h a 
hange doesn't o

ur however. Averaged quantities su
h as distributionfun
tions may be quite insensitive to su
h a transition. These simulations were extremelyexpensive, ea
h low pressure data point being the result of approximately 24 days of singlepro
essor 
omputer time and so it has not yet been feasible to redo or re�ne the simulationsto see if an entirely new liquid 
reated from fresh initial 
onditions would produ
e thesame results. Moreover the average over any 50 ps segment (after the equilibration time)gave results whi
h were very 
lose to the average over the full 100 ps. We have veri�edthat the system is di�using at these pressures but the di�usion is extremely slow andso we 
annot say with any degree of 
ertainty what is the 
ause of this anomaly in theequation of state.We have 
he
ked that simulations using a 72 atom simulation 
ell (the same size aswas used for the ab initio simulations) , gave results in almost perfe
t agreement withthose of a 512 atom 
ell. This indi
ates that �nite size e�e
ts are negligible. This may wellbe due to the e�e
tive \ele
troni
" s
reening of the long range ele
trostati
 intera
tionsbetween ions whi
h is present in our model in the form of dipoles.Stru
ture of the LiquidWe now fo
us on the mi
ros
opi
 stru
ture of liquid sili
a. Fig. 5.2 shows a 
omparisonof the sili
on-oxygen-sili
on angle distributions in the liquid. It has been pointed out [85℄that by 
ountera
ting the repulsion between sili
on atoms, the in
lusion of dipole e�e
ts
an shift the oxygen 
entered angle distribution towards lower angles. This is 
learlyseen in this 
omparison between the results of the BKS simulations and the ab initio andpolarizable potential simulations. The very 
lose 
orresponden
e between the ab initiodistribution and the polarizable potential distribution justi�es both our des
ription of theele
trostati
s in terms of dipoles and the in
lusion of short-range indu
ed dipoles whi
h
ontribute very signi�
antly to the dipole moment on ea
h ion and whi
h are thereforestrongly linked to the distribution of angles. The peak at around 90 degrees in thepolarizable and Car-Parrinello angle distributions is due to the presen
e of mi
ros
opi

on�gurations 
onsisting of rings 
ontaining two sili
on and two oxygen atoms. These donot appear in the BKS distribution, indi
ating that they are energeti
ally unfavourablewith this potential.Fig. 5.3.2 shows the proportions of N-fold 
oordinated sili
on atoms as a fun
tion ofpressure 
ompared to the results of Car-Parrinello simulations [90℄ and simulations usingthe BKS potential [99℄. Our results are in mu
h better qualititative agreement with theCP 
al
ulations than with the 
lassi
al BKS 
al
ulations despite the fa
t that simulationsare performed at high pressures where the parameter set may be
ome in
reasingly ina
-
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Figure 5.2: Distribution of oxygen-
entered angles in liquid sili
a as a fun
tion of pressurefrom Car-Parrinello MD [98℄, BKS MD and MD with our polarizable potential.Table 5.2: QuartzExperiment. (Ref. [100℄) New Potential BKSa [�A℄ 4.916 4.925 4.941
 [�A℄ 5.405 5.386 5.449� [g/
m�3℄ 2.646 2.665 2.598Si-O-Si 143.7 144.5 148.1
urate. This implies that the in
lusion of realisti
 physi
s into the potential improves itstransferability as well as its a

ura
y. Our results indi
ate that the tetrahedral stru
tureof the liquid is more stable at higher pressures than is predi
ted by the BKS potential.Sin
e di�usion is strongly linked to the presen
e of defe
ts su
h as 3-fold and 5-fold 
oor-dinated sili
on atoms, the ability of a potential to reprodu
e the 
orre
t distributions ofsu
h defe
ts is important if it is to properly des
ribe the di�usion me
hanism as a fun
tionof pressure.Crystal Stru
turesAs a �nal test of the potential we examine its ability to des
ribe the most important lowpressure polymorphs of sili
a. The various 
rystal parameters for at zero pressure and 300K for quartz, 
ristobalite and 
oesite are given in tables 5.2, 5.3 and 5.4 respe
tively.Stishovite, the stable form of sili
a at high pressure (above � 8 GPa) and whi
h
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Figure 5.3: Per
entage of N�fold 
oordinated sili
on atoms in liquid sili
a as a fun
tion ofpressure for the new potential 
ompared to CP simulations[90℄ and the BKS potential[99℄.
an also be stabilized at ambient 
onditions was also simulated. However, in this 
ase,although the system relaxed initially to very 
lose to the 
orre
t density (within 2%),it always 
ollapsed within several pi
ose
onds to lower density stru
tures. This wouldindi
ate that the energy barrier whi
h keeps stishovite metastable at low pressures ishugely underestimated with this potential. It is not surprising that the potential hasproblems des
ribing stishovite. Stishovite di�ers from all the other polymorphs 
onsideredin that the sili
on ions are sixfold 
oordinated. This inevitably means that there are lo
al
hanges in ele
troni
 stru
ture with respe
t to the tetrahedral stru
tures and therefore aloss of a

ura
y of our parameter set.The tetrahedral 
rystal stru
tures are all in very good agreement with experiment. InTable 5.3: CristobaliteExperiment. (Ref. [101℄) New Potential BKSa [�A℄ 4.957 4.936 4.920
 [�A℄ 6.890 6.847 6.602� [g/
m�3℄ 2.334 2.412 2.515Si-O-Si 146.8 144.0 143.9
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Table 5.4: CoesiteExperiment. (Ref. [102℄) New Potential BKSa [�A℄ 7.136 7.165 7.138b [�A℄ 7.174 7.162 7.271
 [�A℄ 12.369 12.377 12.493� 120.34 120.31 120.76� [g/
m�3℄ 2.921 2.933 2.864Si-O-Si 143.6 144.0 150.5fa
t the agreement is so good that it surpasses the agreement with previously publishedfully ab initio 
al
ulations[97, 103℄. As with the density of the liquid, this agreement isalmost 
ertainly fortuitous.5.4 Dis
ussionWe have demonstrated in this 
hapter how our in
lusion of polarization e�e
ts 
oupledwith our parametrization routine 
an produ
e a potential with extremely good stru
turalproperties. We have not yet extensively tested the dynami
al properties of this potential,however we have noted that the � to �-
ristobalite transition o

urs at too low a temper-ature (by about 35%) with our potential, and di�usion of the liquid seems to be faster ingeneral than di�usion with the BKS potential. This potential, is itself 
onsidered to havedi�usion whi
h is too fast based on extrapolations of low temperature data[104, 105℄. Itis not surprising if our potential does not des
ribe dynami
s well. We note that, par-ti
ularly if 
ovalen
y is present, the fun
tional form would seem to be ill-equipped todes
ribe shorter-range intera
tions. This 
an also be seen by the fa
t that we reprodu
eab initio for
es only to within 16% and yet our des
ription of the stru
tural propertiesof the 
rystalline allotropes is really ex
ellent. This would suggest that most of this 16%
an be attributed to short-range (non-ele
trostati
) for
es whi
h are important for a gooddes
ription of dynami
s.The many-body distortable-ion model outlined in se
tion 3.7.2 and the previousaspheri
al-ion model of Rowley et al.[52℄ are designed to improve dynami
s in simple ioni
systems where relatively minor distortions of anions o

ur. The distortion self-energy ofthe ions is not well resear
hed (see se
tion 3.7.3) and the idea that the for
e betweenions depends only on the distan
e between ele
tron 
louds along their line of 
enters isone of many gross over-simpli�
ations whi
h one should not expe
t to work for spatiallyextended and highly distorted 
harge distributions su
h as have been found in ele
troni
stru
ture 
al
ulations of sili
a (see [106℄ and referen
es therein). We have attempted toapply this model to sili
a and we see a small improvement of the �t to the for
es (to about14%). However, little time was spent in the parametrization pro
ess and we have not yettested this potential. Future work may yield a potential with whi
h dynami
al propertiesmay 
on�dently be modeled.



Chapter 6Magnesium Oxide
6.1 Introdu
tionMagnesium oxide is 
onsidered to be the simplest oxide for a number of reasons. It is anioni
 oxide with a 1 : 1 stoi
hiometry and it has a very simple stru
ture - the 
ubi
 NaClstru
ture (see �gure 6.1) - whi
h has been shown experimentally to be stable at pressuresup to at least 227 GPa[107℄. Beryllium oxide, the only group II oxide with fewer ele
tronsforms the less symmetri
 B4 (wurtzite) stru
ture. MgO is known to be extremely ioni
,with the Mg atom giving up two of its ele
trons almost entirely to the O atom and so toa good approximation, the O2� and Mg2+ ions both have 
losed n = 2 shells of ele
trons.

Figure 6.1: The stru
ture of MgO.75



76 CHAPTER 6. MAGNESIUM OXIDEThe simpli
ity of MgO makes it a natural starting point in attempts to understand ormodel oxides whi
h make up one of the most important groups of 
ompounds. Importantoxides in
lude water, a ne
essity for all known life, and the 
uprates, a 
lass of 
omplex
opper oxides in whi
h high-temperature super
ondu
tivity is found. Both of these ex-amples are the subje
ts of intense resear
h, but as we will see, even MgO a mu
h moresimple system, is not well understood. Although an understanding of MgO will 
learlynot automati
ally lead us to an understanding of other oxides, if we 
an't understand theele
troni
 stru
ture and the intera
tions between atoms in a system as simple as MgO,we 
annot expe
t to have mu
h su

ess with more diÆ
ult systems.MgO is an important 
omponent of the earth's lower mantle[108℄. It is estimatedthat it makes up approximately 20% of the lowermost part of the mantle, the othermost important 
ompounds being MgSiO3 and SiO2 (see 
hapter 5). The behaviour ofMgO under 
onditions of extreme pressure ( up to � 130 GPa) and temperature ( up to� 3000 K) is important for understanding deep Earth geophysi
s. On
e again, its relativesimpli
ity makes it the starting-point for experimental and theoreti
al te
hniques thatare used to probe the properties of deep mantle minerals, the vast majority of whi
h areoxides. The stability of MgO under pressure also means that it is frequently used as apressure 
alibration standard for high pressure and temperature experiments.MgO is also important industrially, primarily as a 
atalyst but it has a wide rangeof uses. It is an important 
omponent of glass, it is used as an ele
tri
al and thermalinsulator and it is used as an ingredient in the produ
tion of fertilizer among other things.For the reasons outlined, MgO has been the subje
t of intense theoreti
al and ex-perimental study and there is an enormous literature on it's properties and behaviourunder pressure and temperature. However, experimental diÆ
ulties at high pressures andtemperatures and problems with theoreti
al methods of simulating ioni
 systems, someof whi
h are dis
ussed in 
hapter 3, have meant that some properties are still a matterof debate. From a theoreti
al point of view, a large number of empiri
al, semi-empiri
aland ab initio te
hniques have been applied to MgO. Density fun
tional theory withinthe lo
al density approximation has shown itself to be very a

urate for the 
al
ulationof the stati
 and vibrational properties of 
rystalline MgO [6, 26, 5℄ and it is probablethat it is also very good for simulating the liquid. However, ab initio mole
ular dynami
shas proven diÆ
ult (see 
hapter 2) and at any rate what 
an be studied with ab initiotimes
ales and system sizes is very limited. Empiri
al and semi-empiri
al models havebeen disappointing for many properties, parti
ularly for dynami
al properties su
h asphonon frequen
ies[52, 109℄. The papers by Rowley et al.[52℄ and Aguado et al.[55℄ haveshown that e�e
tive potentials 
an model 
rystal dynami
s but a model whi
h is pra
ti
alfor simulations of reasonably large systems is still la
king.An important outstanding problem is the behaviour of the melting temperature as afun
tion of pressure. There have been a number of attempts to simulate the melting ofMgO in the past [112, 115, 113, 111, 114℄ . Some of the results are shown in �gure 6.2.The theoreti
al results show a di�eren
e of a fa
tor of between 2:5 and 7:3 in the slopedTmelting=dP , at zero pressure with respe
t to the results of diamond-anvil-
ell experiments[110℄. It has been suggested by a number of people that there is a systemati
 error in theexperiment, however the la
k of agreement between the di�erent theoreti
al approa
hes,
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Figure 6.2: The melting temperature of MgO as a fun
tion of pressure fromexperiment[110℄ and from simulations using the variational indu
ed breathing (VIB)model[111℄, the potential indu
ed breathing model[112℄, and the e�e
tive potentials ofVo
adlo and Pri
e [113℄ and Stra
han,Cagin and Goddard [114℄.and the inability of these approa
hes to des
ribe the phonon spe
trum of MgO means thatthe 
ase for repeating the experiment is not as strong as it might be. It would have veryimportant geophysi
al 
onsequen
es if, in fa
t, there was a problem with the experimentand MgO has a mu
h steeper melting slope[116℄.Between the Earth's lower mantle and its outer 
ore of molten iron there is a boundarylayer in whi
h seismi
 observations have indi
ated a drasti
 drop in sound velo
ities[117℄.An open question is whether this is due to a 
hange in 
hemi
al 
omposition or to melting.The magnitude of this velo
ity 
hange, espe
ially in the shear velo
ity, favours melting.If this is the 
ase then there will be a 
onstraint on the temperature at the 
ore-mantleboundary (whi
h is an important but not well-known quantity) from the solidus tem-perature of the mantle. It was found by experiments[110, 118℄ that the melting lines ofMgO and (Mg,Fe)SiO3-perovskite 
ross at about 50 GPa, so that at the pressure of the
ore-mantle boundary, the melting temperature of MgO is lower than that of (Mg,Fe)SiO3-perovskite. Previously it had been thought that the eute
ti
 
omposition of the mantlelay near the 
omposition of perovskite, the major 
omponent. Zerr and Boehler's resultsindi
ate that, in fa
t, the eute
ti
 
omposition is probably mu
h more MgO-ri
h. Thishas then been used to dedu
e new 
onstraints on the temperature of the 
ore-mantleboundary[116℄.If Zerr and Boehler's work turned out to be wrong, as theorists 
urrently suspe
t, one



78 CHAPTER 6. MAGNESIUM OXIDEof the most popular 
urrent models of the 
ore-mantle boundary and as a result of thetemperature pro�le throughout mu
h of the earth would have to be substantially revised.The aim of this 
hapter is twofold. First of all, MgO, will be used as a testing groundfor the polarizable and distortable-ion interatomi
 potentials whi
h we have dis
ussed in
hapter 3. We will use the parametrization s
heme of 
hapter 4 and show how we 
ana
hieve a marked improvement in a

ura
y over simpler for
e-�elds whilst still retainingthe ability to simulate mu
h larger systems than are possible with ab initio methods.Se
ondly, we ta
kle the problem of the melting slope of MgO using a 
ombination ofmole
ular dynami
s with our improved e�e
tive for
e-�eld and total energy 
al
ulationswithin density fun
tional theory.6.2 Testing Potentials for MgOIn this se
tion various di�erent fun
tional forms for the interatomi
 potential will betested. The 
riterion that we use to determine the quality of a fun
tional form is itsability to �t the ab initio data, as des
ribed in 
hapter 4. We will 
on�ne ourselves totesting the usefulness of three di�erent types of potential :1. A pairwise short-range intera
tion potential of the formUIJ(RIJ) = BIJe��IJRIJ � CIJR6IJ � EIJRNIJIJ (6.1)where BIJ ; �IJ ; CIJ ; EIJ ; NIJ are all parameters to be optimized.2. A polarizable-ion potential in
luding short-range polarization, as dis
ussed in se
-tion 3.7.1. Only the oxygen ion is 
onsidered polarizable.3. A distortable-ion potential, as dis
ussed in se
tions 3.7.2 and 3.7.3. The intera
tionenergy between ions I and J is given byUIJ(LIJ) = AIJe��IJLIJ + BIJe��IJLIJ (6.2)and the fun
tions fIJ ,�(0)I , and �(1)IJ are given the same forms as in equations 3.48, 3.46and 3.50 respe
tively, i.e. fIJ = C(1)IJ e�C(2)IJ RIJ (6.3)�(0)I (�(0)I ) = C(3)I ln(�(0)I ) (6.4)�(1)IJ = C(4)IJ ln��(1)IJ�(0)I � (6.5)where C1 from equation 3.50 has been merged into the pre-exponential fa
tors AIJand BIJ . The parameters to be optimized are AIJ , �IJ , BIJ , �IJ , C(1)IJ , C(2)IJ , C(3)I,C(4)IJ . The values Ra = 8:5 a.u and Rb = 10 a.u. were used in the de
ay fun
tiongIJ .



6.2. TESTING POTENTIALS FOR MGO 79Using a s
heme whi
h was slightly modi�ed with respe
t to the one outlined in se
-tion 4.2, �ve for
e-�elds were 
onstru
ted using �ve di�erent parametrizations. In additionto the ingredients mentioned, all �ve in
luded the point 
harge-ele
trostati
 potential withthe 
harge on an ion as a parameter. The potentials 
reated wereA. A pair-potential : short-range pair potential, parametrized in the 
rystal at ambient
onditions.B. A polarizable potential : short-range pair potential, with polarizable anions, parametrizedin the 
rystal at ambient 
onditions.C. A distortable-ion potential : distortable-ion potential, parametrized in the 
rystalat ambient 
onditions.D. The full model : distortable-ion potential, with polarizable anions, parametrized inthe 
rystal at ambient 
onditions.E. The full model : distortable-ion potential, with polarizable anions, parametrized inthe liquid at 3000 K.Ea
h of these potentials was tested by its ability to �t three di�erent sets of ab initio data.Using the full model, whi
h 
onsists of a distortable-ion potential with anion polarizationand point 
harges, three potentials have been 
reated using the self-
onsistent pro
edureof se
tion 4.2. These three potentials were optimized at zero pressure for (i) the liquid at3000 K (ii) the 
rystal at 2000 K and (iii) the 
rystal at 300 K respe
tively. Ea
h of thesethree potentials was used to 
reate atomi
 
on�gurations at the 
onditions for whi
h itwas optimised. These 
on�gurations are 
onsidered to be as representative of the truesystem as we have the ability to 
reate.The �ve potentials A to E were parametrized using the ab initio data at the 
orre
t
onditions and ea
h potential was evaluated not only by the values of �F , �S, and �Ea
hieved during parametrization, but also by their ability to �t the ab initio data from theother two sets of 
onditions. For example, potential A was parametrized at 300 K, andthen its ability to �t the ab initio data in the 
rystal at 2000 K and the liquid at 3000 K wasalso tested. Due to the fa
t that for stress and energies it was not possible to parametrizeusing an extremely large ab initio data set (we were limited by the 
omputational 
ost ofoptimisation to 10 
on�gurations), the numbers quoted are the �t to 10 
on�gurations atthe same 
onditions but whi
h were not used in the minimization of �(f�g). In all 
asesthe error in the stress was evaluated relative to a pressure B = 140 GPa whi
h is 
lose tothe experimental bulk modulus at ambient 
onditions of 150 GPa.The results are summarized in table 6.1. We 
annot guarantee that we have foundthe global minimum in ea
h 
ase during optimization as simulated annealing had to bedone at a rather rapid quen
h rate. The simulated annealing was followed by Powellminimization[72℄. In ea
h 
ase, the total minimization time was the same (10 days on asingle pro
essor) and therefore more e
onomi
al for
e-�elds are likely to be better mini-mized than less e
onomi
al ones.A number of things 
an 
learly be seen from table 6.1. First of all, not surprisingly, thedistortable-ion model on its own is quite bad. This is probably be
ause of the shortness of
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Table 6.1: The �t to the ab initio data for the di�erent potential forms300K 
rystal 2000K 
rystal 3000K Liquid�F �S �E �F �S �E �F �S �EA 9.3 5.0 25.5 13.7 3.3 15.5 25.1 4.8 52.4B 6.9 5.2 23.8 9.0 6.2 17.8 17.5 5.6 23.6C 10.4 39.1 5.9 13.6 51.7 164.8 32.2 58.2 69.2D 3.4 0.6 3.0 6.8 0.3 9.8 17.1 0.3 10.5E 12.8 0.1 59.0 10.2 0.1 18.9 9.6 0.0 17.7the range of its intera
tions. Ions further away from ea
h other than 10 a.u. intera
t onlyvia the 
oulomb for
e between their 
harges. At 300 K, the full model is 
learly betterthan all other forms. It also transfers very well up to higher temperatures and to theliquid. The pair-potential, although working quite well for the 
rystal, does not transferwell to the liquid. The polarizable model yields results whi
h are intermediate in qualitybetween the pair-potential and the full model. The results are a 
lear illustration of thefa
t that by adding more physi
s into the form of an e�e
tive potential one 
an 
reatefor
e-�elds with, not only an improved ability to �t the ab initio data, but also a mu
himproved transferability between di�erent phases and 
onditions.The poor �t of potential E to the energy di�eren
es in the 
rystal at ambient 
onditionsis be
ause the energy di�eren
es in the liquid and high temperature solid are mu
h greaterthan those at lower temperatures. The absolute value of the error in the energy di�eren
esis the same at low temperature and high temperature but �E is the error relative to theroot-mean-squared value, whi
h for the 
rystal is very small.Phonon Frequen
iesHaving established that our in
lusion of many-body e�e
ts has improved the potentialform with respe
t to the pair potential, at least a

ording to the 
riterion that we haveadopted, we now look at its ability to model the vibrational spe
trum of MgO. We noteon
e again that the DFT s
heme to whi
h the potential was �t gives a very good des
rip-tion of phonon frequen
ies at ambient 
onditions [6℄. In order to get some perspe
tiveabout the kind of a

ura
y that has been a
hieved in the past with other models we look atthe results of simulations using a \Variational Indu
ed Breathing" (VIB) model[119, 109℄.The reason for 
omparison with this model is that it is the most highly evolved of a 
lass ofmodels of Gordon-Kim type [120℄. In these models, the 
rystal 
harge density is modelledas a superposition of ioni
 
harge densities. The total energy and for
es are then 
al
ulatedusing Kohn-Sham theory [3℄. Sin
e the isolated O2� ion is not stable, it must be stabilisedin some manner. In the VIB model this is done by surrounding the ion with a sphere of+2 
harge ( 
alled a \Watson sphere") , the radius of whi
h is varied so as to minimizethe total energy of the 
rystal. This non-empiri
al model is useful for 
omparison be
ausemodels of this type have been extensively applied to MgO[119, 109, 121, 112, 111℄, andin parti
ular to study the melting of MgO[112, 111, 121℄. It is these theoreti
al melting
urves that we would like to improve upon in se
tion 6.4. A 
omparison of the results of



6.2. TESTING POTENTIALS FOR MGO 81the VIB model with those of self-
onsistent DFT 
al
ulations is useful sin
e it illustratesthe importan
e of aspheri
al distortions whi
h, if the fully ioni
 pi
ture is 
orre
t, is theprimary di�eren
e between them. As 
an be seen from the phonon dispersion 
urves
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[γ,γ,γ]Figure 6.3: The phonon dispersions of MgO as 
al
ulated with the variational-indu
edbreathing model[109℄ 
ompared with experiment[62℄(�gure 6.3) the level of agreement with experiment is quite poor for some of the phononmodes. Sin
e the self-
onsistent DFT results are in very 
lose agreement with experiment,this highlights the inadequa
y of models whi
h do not allow for aspheri
al ioni
 distor-tions. The most striking disagreement with experiment is in the longitudinal opti
al (LO)phonons. LO phonons indu
e a long-range ele
tri
 �eld in the 
rystal whi
h opposes themotion of the ions and therefore raises the energy of the phonon mode. In the real 
rystal,ele
trons s
reen out some of the e�e
t of this ele
tri
 �eld. The s
reening me
hanism ismainly that of ioni
 polarization but may also in
lude 
ontributions from 
harge transferbetween ions. Sin
e this is not present in the VIB model, the ele
tri
 �eld is too high andthe LO frequen
ies are 
orrespondingly higher. It is pre
isely this e�e
t whi
h promptedthe development of the shell model and subsequent methods of treating ioni
 polarization.We now turn to our model of interioni
 intera
tions to see how well it performs inthe 
al
ulation of the phonon frequen
ies. The method that we use to 
al
ulate thephonon frequen
ies is derived from the 
u
tuation-dissipation theorem [122℄. The phononfrequen
ies are 
al
ulated from the positions of the peaks in the spe
tra of the spatialFourier 
omponents of longitudinal and transverse 
harge and mass 
urrent 
orrelation
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tions, for waveve
tors along the high-symmetry dire
tions of the 
rystal[57℄.CLong(k; t) = h( NXI=1(�XI(t)�k � vI(t)e��k�rI(t)))( NXJ=1(�XJ(0)�k � vJ(0)e��k�rJ(0)))i (6.6)CTrans(k; t) = h( NXI=1(�XI(t)�k� vI(t)e��k�rI(t)))( NXJ=1(�XJ(0)�k� vJ(0)e��k�rJ(0)))i (6.7)where vI(t) is the velo
ity of ion I at time t and XI(t) is the 
harge of spe
ies I for theopti
 modes and the mass of spe
ies I for the a
ousti
 modes. k is a waveve
tor whi
h is
ommensurate with the size of the simulation 
ell.We performed an MD simulation on a system of 512 atoms using the full-model,optimised in the 
rystal at 300 K. The 
urrent 
orrelation fun
tions were 
al
ulated on atime domain of length 2:9 ps whi
h was averaged over a simulation of length 20 ps. Thephonon dispersions that we get are shown in �gure 6.4. We get an extremely 
lose �t toboth the experimental and the self-
onsistent DFT data. The 
hief dis
repan
ies are in theopti
al modes whi
h are systemati
ally underestimated. The longitudi
al opti
al mode inparti
ular is underestimated near the zone 
enter. Although we do not 
al
ulate the modefrequen
es at � = (0; 0; 0), as this would require an in�nitely large simulation 
ell withthe method that we are using, it looks as though the LO-TO phonon splitting is slightlyunderestimated. In our parametrization pro
edure we have used a small 
ell to performthe ab initio 
al
ulations and so the long-range intera
tions whi
h are important fordispersion near the ��point are not in
luded. Our hope is that by modelling 
orre
tly theele
trostati
s at shorter range, we get a potential whi
h, when used in a larger simulation
ell, 
an a

urately model the long range ele
trostati
 intera
tions. This is not guaranteedhowever and is likely to work only if we in
lude all relevant s
reening me
hanisms in ourfun
tional form. The in
orre
t LO-TO phonon splitting suggests that our des
ription ofthe ele
trostati
s is in
omplete. This is not surprising sin
e dipole polarization is only oneof many s
reening me
hanisms. It may be that 
harge-transfer between ions is important.However, a 
omparison with the results of referen
e[55℄ is suggestive of it being due to thefa
t that we haven't in
luded the a�e
ts of higher-order multipoles. Our Car-Parrinellosimulations and stati
 DFT 
al
ulations (see se
tion 2.4) showed that there was very
lose to a 
omplete transfer of 2 ele
trons from the magnesium to the oxygen ions athigh pressure. However, the 
harge on the oxygen ion in this potential (and all otherpotentials that we have �t) is � 1:5 - 
onsiderably less than this. Although the degree ofioni
ity is 
ertainly less at zero pressure where the LDA band gap is lowered by 20� 30%(to � 5 eV) it is unlikely to have redu
ed to this extent. Under the assumption that,within our model, short-range intera
tions and ele
trostati
s des
ribe 
ompletely separateaspe
ts of the potential-energy surfa
e (we do not know the extent to whi
h this is true)the minimization routine �ts the 
harge and the polarizability so as to best approximatethe ele
trostati
s of the 
rystal. The la
k of higher order multipoles means that it must
hoose a 
ompromise between purely dipole s
reening, in whi
h the polarizability � andthe 
harge q take their \true" values, and uniform s
reening in whi
h the 
harge is simplyredu
ed by a fa
tor equal to the diele
tri
 
onstant and the polarizability is zero. In
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[γ,γ,γ]Figure 6.4: The phonon dispersions of MgO as 
al
ulated with the full polarizable anddistortable-ion model parametrized in the 
rystal under ambient 
onditions 
omparedwith experiment[62℄ and with the density fun
tional perturbation theory results of Karkiet al.[6℄referen
e[55℄ they use formal ioni
 
harges and in
lude both quadrupoles and dipolesand they get better agreement with experiment. Nevertheless, the des
ription of theele
trostati
s that we have is signi�
antly better than any other e�e
tive potential thatwe are aware of (in
luding the non-empiri
al Gordon-Kimmodels), and quadrupoles wouldadd 
onsiderably to the 
omputational expense of the model.DensityWe now look at the density as a fun
tion of pressure and temperature for this potential.As 
an be seen from �gure 6.5, the MD simulations are in ex
ellent agreement withexperiment. The density as a fun
tion of pressure from the MD simulations are evenin slightly better agreement with experiment than the DFT s
heme of Karki et al.[6℄,parti
ularly at high pressure. Although we have �t the stress so that it �ts almost exa
tlythe stress from DFT 
al
ulations using the same pseudopotentials as Karki et al., ourDFT 
al
ulations are not identi
al. We sample the Brillouin zone in a di�erent way andwe use a mu
h higher plane wave 
uto�. The 
uto� used by Karki et al. is only barely
onverged at zero pressure and so it is possible that their 
al
ulations disimprove underpressure.
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Figure 6.5: The density of MgO as a fun
tion of a) pressure (at 300 K) and 
ompared toexperiment[125℄ and density fun
tional perturbation theory 
al
ulations [6℄; b) tempera-ture (at zero pressure) 
ompared to experiment[123, 124℄. MD simulations used the fullmodel potential parametrized at ambient 
onditions and simulation 
ells 
ontaining 512atoms.6.3 The Distortable-Ion Model RevisitedAs dis
ussed in se
tion 3.7.3, we do not impose the distortable-ion model on the system.We have parametrized the for
e-�eld using simulated annealing whi
h was begun at ahigh temperature. This means that, although we have supplied a fun
tional form whi
his 
apable of in
luding distortable-ion behaviour, the minimization routine is free to dowith this form whatever is best for reprodu
ing ab initio for
es. The options that areopen to the minimization routine are� to disable all variable-radius fun
tionality, and therefore to model the interioni
for
es with a double exponential of the interioni
 distan
e RIJ . It would be optimalto do this if the way in whi
h we model distortions is 
ompletely unphysi
al.� to enable only the 
ompressible-ion part of the model, i.e. that whi
h is analogousto the model of Wilson et al[47℄, thereby allowing only spheri
ally symmetri
 aniondistortions. It would be optimal for it to do this if the way in whi
h we modelaspheri
al distortions is unphysi
al but our des
ription of spheri
al distortions isreasonable.� to enable only the asymmetri
 part of the model and to disable purely spheri
ally-symmetri
 distortions. This is optimal if our reasoning that aspheri
al distortionsare energeti
ally equivalent to spheri
al ones is true and the form of the model isreasonable.



6.3. THE DISTORTABLE-ION MODEL REVISITED 85� to partially enable either or both types of distortions as the best 
ompromise betweenrigid-ion behaviour, breathing-ion behaviour and distortable-ion behaviour if allthree of the models fail to varying degrees and in di�erent ways to reprodu
e the abinitio potential energy surfa
e.The parametrization pro
ess is therefore itself a test of the distortable-ion model. Wenow look at what, pre
isely this parametrization pro
ess has done by examining the radiusof an oxygen ion in the dire
tion of a neighbouring magnesium ion for one of our potentials(potential F whi
h is dis
ussed in detail in se
tion 6.4). The test is performed in the 
rystalat 3000K. The lo
al radii of the anions 
onsist of an arbitrary 
onstant, whi
h may bemerged into the 
onstant 
oeÆ
ient of the exponential for
e between ions, and the truevariations of the radii due to 
hanging environment. We look at the quantities �IJ ��IJ ,�(1)IJ ��(1)IJ , and �(0)I ��(0)I for anion I and 
ation J where �IJ ,�(1)IJ and �(0)I are averages overa long traje
tory. These quantities therefore are the non-
onstant parts of the di�erent
ontributions to the radius of ion I in the dire
tion of J (Re
all that �IJ = �(0)I + �(1)IJwhere �(0)I in
ludes only spheri
ally-symmetri
 distortions and �(1)IJ in
ludes aspheri
aldistortions ).The results are shown in �gure 6.6 and the variation in the value of LIJ , as de�ned byequation 3.30, along the same traje
tory is shown for 
omparison. As 
an be seen, thelo
al radius is dominated by the e�e
t of the aspheri
al part of the distortable-ion model.The spheri
al part makes a signi�
antly smaller 
ontribution. This 
learly vindi
ates ourextension of the 
ompressible-ion model to in
lude aspheri
al distortions. The variationin the radius is very small 
ompared to the variation in LIJ and so we look at what
ontribution this makes to the for
es between the ions. Looking at the for
es in a pairwiseway is not entirely justi�ed given the many-body nature of the potential, however it seemsnatural to look at the quantitiesQ(1)IJ = 100� �UIJ (LIJ )�LIJ � �UIJ(RIJ��IJ��JI)�RIJF r.m.s.IJ (6.8)and Q(2)IJ = 100� �UIJ (LIJ )�LIJ � �UIJ(RIJ��IJ��JI)�RIJ�UIJ(LIJ )�LIJ (6.9)where F r.m.s.IJ is the root mean-squared value (averaged over time) of the total for
e on anionI (i.e. from all atoms and from both ele
trostati
 and non-ele
trostati
 
ontributions)proje
ted onto the line joining the 
enters of I and J . These quantities are plotted in�gure 6.7. Q(1) is a way of looking at the impa
t of instantaneous variations of themembrane radii on the total for
e on the ion. Q(2) is a way of looking at the impa
t ofinstantaneous variations of the membrane radii on just the short-range part of the for
ebetween ions I and J . If the radius the ion is 
onstant, then Q(1) = Q(2) = 0.It is diÆ
ult to know how one should best 
ompare for
es, or judge the impa
t ofindividual 
ontributions to the for
es. However, inspe
tion of these two quantities stronglysuggests that, with the parameters of the model 
hosen by the minimization routine, thevariation of the anion's radius has a signi�
ant impa
t on dynami
s.
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Figure 6.6: a) LIJ�LIJ as a fun
tion of time, where LIJ � 4:66 a.u. is the average over thetraje
tory of LIJ , the inter-membrane distan
e (see se
tion 3.7.2). b) �IJ��IJ ,�(1)IJ ��(1)IJ ,and �(0)I � �(0)I . I and J are neighbouring anion and 
ation respe
tively.
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Figure 6.7: Q(1)IJ and Q(2)IJ (see equations 6.8 and 6.9)as a fun
tion of time along the sametraje
tory shown in �gure 6.6So, the above dis
ussion shows that the minimization routine �nds it optimal to allowfully aspheri
al distortions of the anions whi
h impa
t signi�
antly on the interatomi
for
es. This, 
oupled with the overall ability of the model to �t ab initio data wouldstrongly suggest that the distortable-ion model works and is a valuable addition to thefor
e-�eld. However, it is very likely that it 
ould be improved with resear
h into thevarious fun
tional forms on whi
h it depends.6.4 The Melting Line of MgOAs mentioned in the introdu
tion to this 
hapter, there is 
onsiderable debate about themelting temperature of MgO as a fun
tion of pressure. In this se
tion we attempt to
al
ulate the derivative of the melting temperature as a fun
tion of pressure using a 
om-bination of 
lassi
al MD simulations, ground-state DFT 
al
ulations and Car-ParrinelloMD simulations. The method that we use to �nd the zero-pressure slope is to use theClausius-Clapeyron equation dTmdP = Tm�V�H (6.10)whi
h relates the derivative of the 
oexisten
e 
urve between the solid and the liquid tothe 
hange in enthalpy �H and volume �V between the phases. At zero pressure the
hange in enthalpy is simply equal to the 
hange in the internal energy �U . The failureof previous theoreti
al models to agree with ea
h other and with experiment makes itimportant for us to eliminate as many sour
es of error as possible from our 
al
ulation.Ideally we would like to eliminate all sour
es of un
ertainty ex
ept for those inherentin the DFT 
al
ulations, i.e. the un
ertainty due to the use of approximations to theex
hange-
orrelation energy.
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Table 6.2: The �t to the LDA ab initio data for the liquid (F) and solid (G) potentialsused in the 
al
ulation of the melting slope.3000K Crystal 3000K Liquid�F �S �E �F �S �EF 9.6 0.1 10.8 10.4 0.2 10.2G 6.2 0.3 10.6 44.0 2.3 54.0Table 6.3: The �t to the PBE ab initio data for the liquid (F) and solid (G) potentialsused in the 
al
ulation of the melting slope.3000K Crystal 3000K Liquid�F �S �E �F �S �EF 10.6 1.3 12.0 10.8 0.9 12.2G 6.6 1.6 11.2 45.0 1.5 56.1In order to 
al
ulate the melting slope we need to 
al
ulate the melting temperatureTm, the volume at the melting temperature in the solid ( Vs ) and the liquid ( Vl )and the potential energy at the melting temperature in the solid ( Us ) and the liquid( Ul ). In order to maximise the a

ura
y of our MD simulations we parametrize twoseparate potentials, one for the liquid at 3000 K (potential \F") and one for the solid at3000 K (potential \G") . Ea
h potential 
onsists of a polarizable-ion part, point 
hargeele
trostati
s, and distortable-ion short-range intera
tions. The distortable-ion self-energyin this 
ase is given by equation 3.49. The values Ra = 7:0 a.u. and Rb = 8:0 were usedin the de
ay fun
tion gIJ . The parameters of these potentials are given in appendix ??.The ability of ea
h of these potentials to �t ab initio data from the solid the liquid at3000 K was tested. We have also performed 
al
ulations on the same 
on�gurations usingthe state-of-the-art generalized-gradient approximation to ex
hange and 
orrelation ofPerdew, Burke and Ernzerho� (PBE)[74℄. The results are summmarized in tables 6.2and 6.3 It was found that the potential whi
h was parametrized on the solid at 3000 K
ould not be used at higher temperatures or in the liquid. The reason for this is that theiterative pro
edure whi
h was used to 
al
ulate �(0)I and �(1)IJ , due to the form of the self-energy used, did not 
onverge for this potential under these 
onditions. This is the reasonfor the poor �t to the liquid ab initio data in table 6.2. There were no su
h problems forthe potential whi
h was parametrized on the liquid. The solid potential is therefore usedmainly in order to test the fun
tional form of potential whi
h di�ers from that previouslyused. It also is used to verify that experimental data on thermal expansivity does notdi�er strongly at higher temperatures from extrapolation of low temperature behaviour.We would like to test the ability of the potentials to reprodu
e experimentally knownproperties of MgO. We begin by looking at the ability of the potential parametrized in thesolid to des
ribe the phonon dispersion at ambient 
onditions. The results are shown in�gure 6.8. One should not expe
t results whi
h are as good as those for a potential whi
his parametrized at ambient 
onditions, and so the results are extremely good. There isvery good agreement with both experiment and the DFPT results of Karki et al.. As
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[γ,γ,γ]Figure 6.8: The phonon dispersions of MgO as 
al
ulated with the full polarizable anddistortable-ion model parametrized in the 
rystal under ambient 
onditions 
omparedwith experiment[62℄ and with the density fun
tional perturbation theory results of Karkiet al.[6℄before, the worst agreement is for the long-wavelength LO phonons, and on
e again thisis probably due to our in
omplete des
ription of ele
troni
 s
reening. It may also be thatthe very high symmetry of the relatively 
old 
rystal makes polarization energeti
allyunfavourable, and so the polarizability appropriate for a hot 
rystal is larger. A too-largepolarizability, as dis
ussed earler, should manifest itself in the phonon 
urves as a loweringof the energy of the long-wavelength LO phonon modes. However, in general the resultsseem even better than those of �gure 6.4 and the ability of both potentials to reprodu
e abinitio energy di�eren
es is very satisfying and suggests that the form of the distortable-ionself-energy used may be better than a simple exponential.As in the 
ase of sili
a, there is little or no experimental data on liquid MgO andso we 
ompare the stru
ture of the liquid with the stru
ture obtained in Car-Parrinellosimulations. We would like to be as sure as possible that the liquid that we have 
reatedhas a reasonable stru
ture. We have performed CPMD of liquid MgO (using a small�
titious mass, �0 = 100 a.u., and applying all the pre
autions and 
orre
tions des
ribedin 
hapter 2). The Car-Parrinello simulations, on
e 
orre
ted a

ording to the rigid-ionapproximation, still showed errors in the for
es of � 12:5%. This is even higher than theerrors in the for
es using our e�e
tive potential. Nevertheless, agreement between thetwo approa
hes would indi
ate the probability that both are right. The Car-Parrinellosimulations were 
ontinued from a long 
lassi
al simulation with potential F. Following
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Figure 6.9: The pair-
orrelation fun
tions of liquid MgO at � 3100 K and zero pressureas 
al
ulated with our e�e
tive potential and from a Car-Parrinello simulation.2 pi
ose
onds of equilibration with CPMD the pair-
orrelation fun
tions were 
al
ulatedon a further 1:5 pi
ose
ond traje
tory. This time is not suÆ
ient to get a

urate densityaverages ( 2 di�erent simulations at pressures of � 0 GPa and � 0:5 GPa both yieldedthe same average density), however we 
an 
he
k that the stru
tural features are thesame as were obtained with our e�e
tive potential. The high rate of di�usion shouldmean that the liquid has had ample time to relax stru
turally. In �gure 6.9 the Mg-Opair-
orrelation fun
tions for the Car-Parrinello and e�e
tive potential liquids at 3050 Kand the e�e
tive potential solid at 3100K are plotted. There is remarkable agreementbetween the CPMD results and our 
lassi
al simulations indi
ating that the liquid is wellreprodu
ed The 
omparison with the solid pair-
orrelation fun
tion shows that there isa substantial di�eren
e in stru
ture between solid and liquid. We see a 
hange in theaverage 
oordination from 6 to � 5. This 
hange in stru
ture is 
onsistent with what isgenerally expe
ted in ioni
 melts[126, 127℄ and it is 
onsistent with a large volume 
hangebetween solid and liquid. Ubbelohde[126℄ has argued that the 
oordination and volume
hange on melting is 
orrelated with the polarizability of the anions. Compensatingele
trostati
 for
es in the 
rystal are responsible for larger interioni
 distan
es than o

urin the melt. This 
an 
learly be seen by the displa
ement inward of the �rst peak in theMg-O pair-
orrelation fun
tion in the melt as 
ompared to the 
rystal (�gure 6.9). It isthe strong attra
tion between anion and 
ation whi
h is responsible for this. However,a large ioni
 polarizability weakens this attra
tion due to s
reening leading to in
reasedMg-O distan
es, a 
oordination number 
loser to six and a stru
ture and hen
e volumemore similar to that in the solid. Cohen and Gong[112℄, found a 
oordination numberof around 4:5, and a volume di�eren
e �V=Vs � 30% (Vs = volume in the solid at themelting point), using the non-polarizable PIB model. Our model attributes a sizeablepolarizability (� 14:3 a.u.) to the oxygen ion and we �nd �V=Vs � 20%.Melting TemperatureWe �rst try to 
al
ulate the zero pressure melting temperature Tm. The method that weuse to do this is the \2-phase" method [128, 129, 115℄. Solid and liquid 
on�gurations
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h have been pre-equilibrated at the desired temperature and pressure are \stu
k to-gether"1 to form a super
ell in whi
h there is a solid-liquid interfa
e. If the temperatureis higher than the melting temperature, the solid portion should begin to melt and theinterfa
e moves so as to in
rease the amount of liquid. If the temperature is lower thanthe melting temperature, the liquid at the interfa
e begins to 
rystallize and the solidportion in
reases. Crystallization generates latent heat whi
h raises the temperature ofthe simulation 
ell. Melting, on the other hand, absorbs latent heat thereby lowering thetemperature of the simulation 
ell. At temperatures mu
h higher than Tm, the systemmelts 
ompletely and at temperatures mu
h lower than Tm the system 
rystallizes 
om-pletely (see �gure 6.10). In prin
iple it is possible to bra
ket Tm in this way and this hasbeen the approa
h of Belonoshko and Dubrovinsky in their 
al
ulation of the melting lineof MgO. However, we have found that, within quite a large range of starting temperatures(between � 2800 K and � 3300 K), the temperature performs large 
u
tuations about Tmin whi
h the system is by turns 
rystallizing and melting. If full 
rystallization or meltingdoes not o

ur these os
illations 
an persist for a long time and therefore in order to geta rough idea of the melting temperature, following an initial equilibration period we haveaveraged the temperature over these os
illations. The average temperature depends onthe relative sizes of the solid and liquid portions of the 
oexisten
e 
ell via the spe
i�
heat 
apa
ities of the solid and the liquid. This means that di�erent simulations givedi�erent average temperatures depending on the initial 
onditions of the simulation. Itis also true that, if equilibrium between solid and liquid o

urs su
h that either phase isunder-represented, �nite-size e�e
ts may play a role. In order to get a rough estimate ofTm, we have performed a number of di�erent 2-phase simulations and dis
arded those inwhi
h only a small fra
tion of the 
ell was either solid or liquid.Simulations were performed at 
onstant pressure[96℄ and were begun from 
on�gu-rations that were already very 
lose (within � 0:5 GPa) to zero pressure. Clearly, one
annot use two di�erent potentials in the same simulation and so, due to the 
onvergen
eproblem of the solid-parametrized potential, we have performed the two-phase simulationswith the liquid potential. A simulation 
ell 
ontaining 1024 atoms was used. Previousinvestigations[115, 113℄ have 
on
luded that for systems of more than a few hundredatoms, the �nite size e�e
ts are negligible.Simulations whi
h were initially at 2800 K and 3300 K transformed 
ompletely into
rystal and melt respe
tively. In �ve further simulations, solid and liquid were observedto 
oexist for a long time. Following 20 ps of equilibration the temperature was averagedover a further 15 ps for ea
h simulation. Averages of 2974 K, 2984 K, 3025 K, 3038 Kand 3042 K were found for these simulations giving an overall average of 3013 K.There is some 
ontroversy regarding the melting temperature at zero pressure withvalues of Tm ranging from about 3000 K to about 3250 K[110, 130℄. Zerr and Boehler [110℄measured the temperature to be 3040�100 K whi
h is 
lose to previous measurements[131,132℄, and in ex
ellent agreement with all of our average temperatures. However, re
entwork[130℄ suggests that the 
orre
t value may be 3250� 20 K. Even an error of � 250 K1This involves performing a few steps of steepest-des
ent minimization on the atoms very 
lose tothe interfa
e between solid and liquid in order to prevent large in
reases in the kineti
 energy and/ornon-
onvergent polarization due to unphysi
al ioni
 separations.
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a)

b)

c)

Figure 6.10: The 2-phase melting pro
edure. a) The simulation 
ell at the beginning
ontaining 512 atoms of 
rystalline MgO and 512 atoms of liquid MgO periodi
ally re-peated; b) T > Tm. The liquid portion has grown at the expense of the solid portion.The interfa
es are not as 
lear as in a) but the 
enter of the 
ell still shows signs of order,indi
ating 
rystallinity while liquid makes up a large portion of the 
ell on either side; 
)T < Tm, some of the liquid portion has 
rystallized. The edges of the 
ell are still 
learlyliquid but mu
h of the 
ell looks relatively ordered.
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al
ulated melting temperature is good 
onsidering the level of agreement whi
h
an generally be obtained using ab initio methods[25℄. Sin
e we are primarily interestedin the melting slope dTm=dP , and sin
e a 10% level of a

ura
y would still vastly improveon the 
urrent un
ertainty of the slope, we have 
hosen a value Tm � 3100 K at whi
h to
al
ulate the energy di�eren
es and the volume.Volume and Energy Di�eren
esIn order to 
al
ulate the volumes in the liquid and solid, we �rst would like to test thatour potentials reprodu
e the experimental temperature and pressure dependen
e of thevolume in the solid. Sin
e our ab initio simulations will be done in 
ells 
ontaining 64atoms, we also 
he
k that �nite size e�e
ts are not too great. The 
onvergen
e problemfor the solid potential that was mentioned previously has meant that at 3100 K it wasnot possible to run for a long time. Eventually 
onvergen
e failed and the simulation hadto be abandoned. This was only a problem in the solid at temperatures very 
lose to themelting temperature. For this reason, we have not su

eeded in running a simulation nearTm for long enough to get a 
ompletely reliable average of the density. We have therefore
he
ked the volume at this temperature using the liquid potential.The temperature dependen
e of density is a property whi
h is quite a 
hallenge fore�e
tive potentials be
ause thermal expansion depends on the se
ond derivatives of thepotential energy with respe
t to ioni
 positions. In �gure 6.11 we plot the equilibriumvolume as a fun
tion of temperature for system sizes of 512, 216 and 64 atoms. Theresults are in ex
ellent agreement with experiment. What is most striking is the fa
tthat the �nite size e�e
ts are very small. We �nd similar results for the sili
a potentialin 
hapter 5. It has been shown in other simulations[55, 67℄ that �nite size e�e
ts forioni
 systems 
an be 
onsiderable. It may be that be
ause we treat the polarization in arealisti
 way (by �tting to ab initio data) the long range ele
trostati
 e�e
ts are e�e
tivelys
reened. This is an important quality of our potentials sin
e they are signi�
antly slowerto evaluate than pair-potentials and the fa
t that one 
an use smaller systems for manyappli
ations alleviates some of this burden.Figure 6.12 shows the equation of state for the 512 atom system 
ompared to experi-ment and to the DFT results of Karki et al.[6℄. On
e again, the results at low pressuresare in ex
ellent agreement with experiment. At higher pressures ( > 20� 30 GPa. ) theagreement is not as good as was found in �gure 6.5 due to the lower radial 
uto� for thede
ay fun
tion, however sin
e we are interested in the melting slope at low pressure, thisis of little 
onsequen
e.We now 
al
ulate the volume in the liquid and the solid at zero pressure for temper-atures near the melting temperature Tm. The liquid potential was used to 
al
ulate thepressure at 
onstant volume for a range of densities (near the zero pressure equilibriumvolume) and temperatures (near Tm ) using simulation 
ells 
ontaining 512 atoms. Fromthese we extra
ted the volume as a fun
tion of temperature at zero pressure. For thesolid, 
onstant pressure simulations were performed in order to extra
t the equilibriumdensities. The results are shown in �gure 6.13. It 
an be seen that the volume di�eren
eis not strongly dependent on temperature and that the use of the liquid potential in the
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Figure 6.11: The density as a fun
tion of temperature 
ompared to experiment[123, 124℄for the solid potential with di�erent simulation 
ell sizes and for the liquid potential.Open symbols indi
ate that simulations were too short to guarantee reliable averages ofthe density.
solid is probably justi�ed given the level of agreement with the un
onverged data pointsfrom the solid potential relative to the di�eren
e in volume between solid and liquid. Thevariation of the volume 
hange �V with temperature is quite small ( the di�eren
e be-tween 2950 K and 3250 K is about 7:2%) and the di�eren
e between the (un
onverged)results from the solid potential is very small (� 2:6%).We have extra
ted the average potential energy in the liquid and the solid from thesame simulations in whi
h we obtained the densities. The results are shown in �gure 6.4.The energy di�eren
e between solid and liquid, like the density di�eren
e, has a negligibletemperature dependen
e.The melting slope that we get from these simulations is primarily dependent on the
hoi
e of the melting temperature Tm used in equation 6.10 and this dependen
e is shownin �gure 6.15. We get a slope of between 145 K GPa�1 and 170 K GPa�1 depending onthe value of Tm. If we sti
k to the value of Tm that we have estimated in our 2-phasesimulations, the slope is 149:3 K GPa�1. This di�ers by more than a fa
tor of 4 from theexperimental slope of Zerr and Boehler[110℄ . It is also greater than some of the morere
ent theoreti
ally determined slopes. For example, Cohen and Weitz found a value of� 114 K GPa�1[111℄ and Stra
hanet al a value of � 88 K GPa�1[114℄.
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Figure 6.12: The equation of state of the solid-parametrized potential 
ompared toexperiment[133, 125℄ and to density fun
tional perturbation theory[6℄6.4.1 Corre
ting the melting slope with ab initio 
al
ulationsThe ability of our for
e-�eld to �t ab initio data suggests that the slope that we haveobtained should be very 
lose to the \true" LDA result. However, we would like to 
he
kthat this is the 
ase and 
orre
t any errors in the slope to bring it 
loser to the LDA value.We 
onsider possible errors in the energy di�eren
es and volume di�eren
es separately.Using our e�e
tive potential, long simulations of the solid and the liquid were performedat 3070 K. From ea
h of these simulations 20 well-separated snapshots were extra
ted andDFT total energy 
al
ulations performed on these 
on�gurations.A sour
e of error whi
h it is not possible for us to 
ontrol is the error inherent in theuse of an approximate ex
hange-
orrelation fun
tional. Although there is no 
lear trendfor bulk systems as regards whi
h approximate ex
hange-
orrelation fun
tional gives thebest stru
tural properties, it has been suggested on a number of o

asions[97, 25, 134℄that generalized gradient approximations improve upon total energies with respe
t to theLDA and that it is possible that for this reason GGAs 
an signi�
antly improve meltingtemperatures 
al
ulated with DFT[25, 134℄. A 
omparison of properties 
al
ulated withdi�erent ex
hange-
orrelation fun
tional give a hint as to the magnitude of the error dueto the use of approximate ex
hange-
orrelation fun
tionals. For these reasons, aswellas performing total energy 
al
ulations using the LDA, we have performed total energy
al
ulations with the GGA fun
tional of Perdew, Burke and Ezrenho�[74℄.
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Figure 6.13: The equilibrium volume of the solid and the liquid at zero pressure asa fun
tion of temperature. The un
onverged values from simulations using the solid-parametrized potential are in
luded for 
omparison. The dashed lines are a �t to thedata and their slightly di�erent slopes a

ount for the range of �V indi
ated.
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Figure 6.14: The average energy at zero pressure of the solid and the liquid as a fun
tionof temperature from our MD simulations. The dashed lines are regression lines the slopesof whi
h di�er by only � 1%.Corre
ting Volume Di�eren
esA possible sour
e of error in our 
al
ulated melting slope is that both the solid andthe liquid were found to be extremely 
ompressible at temperatures 
lose to the meltingtemperature. For example, at 3100 K, for our e�e
tive potential, the liquid 
ompresses byabout 0:12 g
m�3 per GPa of applied pressure whereas the solid 
ompresses by only about0:047 g
m�3 per GPa. Our potential reprodu
es the LDA stress of the liquid and solidwithin about 0:3 GPa and 0:15 GPa respe
tively, on average. For the GGA these numbersare 1:3 GPa for the liquid and 1:8 GPa for the solid. The potential does not systemati
allyunderestimate or overestimate the internal pressure with respe
t to the LDA however. Wehave looked at the average internal pressure on the 20 liquid 
on�gurations and the 20solid 
on�gurations with the e�e
tive potential and with LDA and GGA. The results areshown in table 6.4. From this table it is 
lear that, with respe
t to the LDA, the errors inthe volume are very small, both for the solid and for the liquid. The e�e
t of these smalldi�eren
es in pressure is a 
hange in the melting slope of about � 0:5% and so may be
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Figure 6.15: The 
al
ulated slope of the melting 
urve as a fun
tion of the zero pressuremelting temperature Tm. A �t to the 
al
ulated points gives the line y = 0:08831x �116:782.Table 6.4: The average internal pressure (in GPa) on the sample solid and liquid 
on�g-urations evaluated with LDA, GGA and the e�e
tive (liquid-parametrized) potential.LDA Potential GGASolid -2.84 -2.90 0.26Liquid -3.30 -3.29 -1.17negle
ted.A point of some 
on
ern 
onsidering the high 
ompressibility of both solid and liquidat temperatures near the melting temperature is that the extent to whi
h the potentialunderestimates the pressure relative to the GGA is di�erent in the solid than in the liquid.This indi
ates that there may be a di�eren
e in the GGA �V with respe
t to the one wehave 
al
ulated with the LDA. However, in order to do a proper 
omparison we wouldneed to �nd �V with a GGA-optimized potential be
ause it is possible that some ofthe stress di�eren
es is attributable to atomi
 
on�gurations whi
h were 
reated with anLDA-optimized potential and whi
h are therefore unnatural within a GGA des
ription.The total 
hange in volume with respe
t to the LDA also depends on the thermal stressand the 
ompressibility both of whi
h are di�erent in the solid and the liquid. All of thesefa
tors mean that it is very diÆ
ult for us to estimate what �V is for the PBE fun
tional.A 
rude estimate (whi
h is most likely to be an overestimate due to the 
al
ulation ofstress on LDA 
onifgurations) may be obtained using the pressure di�eren
es of table 6.4and the 
ompressibilities of the e�e
tive potential. This gives �VPBE = 52:3 at 3100 K,an in
rease of � 37%.We 
on
lude that a very important sour
e of error with our method of 
al
ulating themelting slope is related to the ability of approximate ex
hange-
orrelation fun
tionals topredi
t volumes and solid-liquid volume di�eren
es to a high a

ura
y. Although we 
anget volume di�eren
es whi
h are pra
ti
ally identi
al to those that would be obtained abinitio with the fun
tional used in the potential �t, di�erent fun
tionals may give di�erentvolume di�eren
es.
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ting Energy Di�eren
esIn testing our potential we found errors in energy di�eren
es (within a given phase) of 10to 12% (see tables 6.2 and 6.3). Here we look at the error in the energy di�eren
e betweenphases relative to the LDA and the GGA using our e�e
tive potential.
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Figure 6.16: The average energy at zero pressure of the solid and the liquid as a fun
tionof temperature from our MD simulations, and these energies on
e 
orre
ted using a)LDA DFT 
al
ulations and b) GGA DFT 
al
ulations. The 
rosses show the averageenergy (
al
ulated with the e�e
tive potential) in the 20 
on�gurations on whi
h ab initio
al
ulations were performed.The average di�eren
e between the ab initio energy and the energy from the 
lassi
alpotential (�U = Ua.i. � U
l ) were 
al
ulated for both the solid (�SU ) and the liquid(�LU).The energy as a fun
tion of temperature was 
orre
ted using the ab initio data by addingthe quantity �SU � 12(�SU +�LU) to the energies of the solid and the quantity �LU � 12(�SU +�LU) to the energies of the liquid. The results for the LDA and the GGA are given in�gures 6.4.1 and 6.4.1 respe
tively. The fa
t that we have added the same 
orre
tion atall temperatures is justi�ed by the observation that the temperature dependen
e of theenergies is very weak.Although the LDA makes a signi�
ant di�eren
e (� 17%) to the energy di�eren
ebetween solid and liquid (�U), the GGA gives almost pre
isely the same result (within3%) as our e�e
tive potential.The fa
t that the average of the energy over the 
on�gurations on whi
h the DFT
al
ulations were performed is very 
lose to the average energy from the MD simulationsat the same temperature ( 3070K ) is very important. Not only does it suggest that the
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on�gurations used is suÆ
ient to obtain meaningful 
orre
tions to �U , it alsomeans that the �nite-size e�e
ts are small sin
e the 
ell size in these 
on�gurations wasonly 64 atoms.Corre
ting TmWe 
an 
orre
t, to �rst order, the errors in the melting temperature 
al
ulated with ourpotential using the following relationship[135℄�TmTm = hUail � U epl iep � hUais � U eps iephU epl iep � hU eps iep (6.11)where the supers
ripts 'ai' and 'ep' indi
ate that a quantity has been 
al
ulated ab ini-tio or with our e�e
tive potential, respe
tively and h� � � iep indi
ates an average over atraje
tory generated with the e�e
tive potential. The 
orre
tions 
an be extra
ted fromthe 
al
ulations that we have already performed and whi
h are plotted in �gure 6.4.1.The LDA melting temperature is � 17% larger at T LDAm = 3531 K and the GGA meltingtemperature is 2:7% larger at TPBEm = 3095 K.The Melting SlopeWe now look at the melting slope as 
orre
ted using the DFT 
al
ulations and as 
al
u-lated with our e�e
tive potential (EP). We 
hoose the intermediate value Tm = 3100K atwhi
h to 
al
ulate the slopes sin
e Tm is overestimated with the LDA and sin
e all ourem ab initio 
al
ulations have been performed at 
lose to this temperature. We getmLDA = 133:86 K GPa�1 (6.12)mPBE = 209:53 K GPa�1 (6.13)mEP = 156:87 K GPa�1 (6.14)These slopes are plotted in �gure 6.17. If we 
al
ulate what the melting slope in theLDA approximation should be, using the 
orre
ted value of T LDAm = 3531 K, we getmLDA = 168:3 K GPa�1, in 
loser agreement with the PBE result. However, it is not atall 
ertain that the volumes as a fun
tion of pressure in the solid and the liquid 
an beextrapolated linearly as we have done, or whether energy di�eren
es remain 
onstant upto su
h a high temperature. Even with this 
orre
tion there is still a large di�eren
e inthe values of mLDA and mPBE and this shows the level of un
ertainty in our 
al
ulationswhi
h is attributable to the ex
hange-
orrelation fun
tional. However even this level ofun
ertainty 
annot explain the huge dis
repan
y between our results and experiment.6.5 Dis
ussionIn this 
hapter we have applied the distortable-ion potential introdu
ed in 
hapter 3 toMgO and 
learly demonstrated its ability to a

urately reprodu
e the ab initio poten-tial energy surfa
e. We have then applied this model to the long-standing 
ontroversysurrounding the pressure dependen
e of the MgO melting temperature.
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Figure 6.17: The melting temperature of MgO as a fun
tion of pressure fromexperiment[110℄ and from simulations using the variational indu
ed breathing (VIB)model[111℄, the potential indu
ed breathing model[112℄, and the e�e
tive potentials ofVo
adlo and Pri
e [113℄ and Stra
han,Cagin and Goddard [114℄. The melting slopes thatwe obtain at Tm = 3100 K, from our 
ombination of 
lassi
al MD and DFT 
al
ulationsare also shown.We �nd a melting slope that di�ers very strongly from the experimental slope. How-ever, we have basi
ally eliminated all our errors ex
ept for those inherent in the ab initio
al
ulations, i.e. those due to the use of approximate ex
hange-
orrelation fun
tionals.The errors due to the approximate ex
hange-
orrelation fun
tionals is very large and il-lustrates the large impa
t this quantity 
an have on a 
al
ulation. However, while wehave shown that di�erent fun
tionals give di�erent melting slopes (by up to 40 or 50%),our theoreti
al results di�er with experiment by a fa
tor of between � 4 and � 6. It isunlikely that this disagreement is simply due to the ex
hange-
orrelation fun
tional.The melting slope depends on the volume 
hange between solid and liquid and theenergy di�eren
e between solid and liquid. We have obtained very good agreement withlower temperature data on the volume of the solid as a fun
tion of temperature and sois is unlikely that we are substantially underestimating the volume in the solid at highertemperatures. There is no experimental data to 
ompare with in the liquid, howeverour results 
ompare very well with Car-Parrinello simulations and with what is generallyexpe
ted from an ioni
 system of this type. The 
hange in volume that we see is, ifanything, small 
ompared to similar 
ompounds (su
h as LiF) and 
ompared to someprevious simulations of MgO[111℄.It is also unlikely,that there is a large error in our 
al
ulation of total energies. Sin
e



6.5. DISCUSSION 101LDA and PBE both gave similar results (within � 15%), this would probably requirethat the stru
ture of the liquid is not representative of the true system. However, thepair-
orrelation fun
tions that we 
al
ulate are in very good agreement with those fromCPMD and so this s
enario is unlikely.The dis
repan
y may be due to an error in the experiment. This possibility has beensuggested previously[111, 115, 127℄. It may also be that the ex
hange-
orrelation fun
-tionals that we have used are in
apable of modelling some exoti
 feature of the ele
troni
stru
ture of liquid MgO. This is very unlikely given the ability of DFT to des
ribe prop-erties of the solid[6℄ and the quality of DFT 
al
ulations in general.The most likely s
enario is that the slope of the melting 
urve is initially very steep,but that it 
attens out very qui
kly, perhaps due to a liquid stru
ture whi
h 
hangesrapidly under pressure to being mu
h more similar to the solid. Pair-
orrelation fun
tionshave been 
al
ulated at high pressure[115℄ and qualitatively similar di�eren
es betweenliquid and solid as we have seen here were found. However, the potential used in these
al
ulations was quite 
rude and did not in
lude the e�e
t of polarization. Polarizationhas the tenden
y to redu
e stru
tural 
hanges between solid and liquid[126℄.The dis
repan
y with experiment remains a mystery and suggests that a repeat ofthe experiment may be in order. Our future theoreti
al work will investigate the meltingtemperature at higher pressures in order to 
he
k if the dis
repan
y is due to a rapidlyde
reasing slope at low pressures.
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Chapter 7Dis
ussion and Con
lusionsIn this thesis an attempt has been made to �nd a way in whi
h thermodynami
 propertiesof ioni
 systems 
an be predi
ted with a reasonable degree of a

ura
y from mole
ulardynami
s simulations. We use the 
ombination of e�e
tive parameter-based for
e-�eldsand ab initio simulations. The high quality of the results that we have obtained forstru
tural and thermodynami
 properties of sili
a and MgO suggest that on
e a suitablefun
tional form for a for
e-�eld is available, the use of ab initio parametrization 
an greatlyimprove the ability of the for
e-�eld to reprodu
e experimental data.We use a slightly modi�ed form of a previously proposed ab initio parametrizationpro
ess[69, 70℄ whi
h has the advantage that one 
an make very spe
i�
 and non-trivialstatements about potentials 
reated : It 
an be said that for any atomi
 
on�guration
reated with the potential under spe
i�ed thermodynami
 
onditions, the for
es are, onaverage, within X% of those 
al
ulated ab initio1, the stress 
omponents within Y%, andthe energy-di�eren
es between 
on�gurations within Z%.However, our experien
e with the BKS [88℄ for
e-�eld for sili
a (see 
hapter 5) hasshown us that unless the fun
tional form is physi
ally appropriate for the system athand this method of parametrization fails to improve upon the ability of the potential toreprodu
e experimental data. The form of the potential is 
ru
ial to the su

ess of themethod. For ioni
 systems ele
trostati
s dominate the interioni
 for
es, and by in
ludingioni
 polarization one 
an greatly improve the ability of the for
e-�eld to model stru
turalproperties.Energeti
s and dynami
s are more diÆ
ult to model. Although the positions of min-ima in the potential energy surfa
e seem to be mainly determined by ele
trostati
s, theenergy barriers between minima and the details of the surfa
e that 
ontribute to dynami
salso depend strongly on other fa
tors. We have des
ribed in 
hapter 3 the various ap-proa
hes that have been taken in the past to modelling su
h e�e
ts as anion \breathing"and distortion. These involve translating this 
ompli
ated quantum-me
hani
al ele
troni
behaviour into a simpli�ed phenomenologi
al pi
ture. This phenomenologi
al approa
h isne
essary in order to formulate for
e-�elds whi
h are e
onomi
al and 
apable of approxi-mating intera
tions between ions.1For a spe
i�ed ab-initio 
al
ulation. Pseudopotentials, basis sets, sampling te
hniques and ex
hange-
orrelation fun
tionals must all be spe
i�ed. 103



104 CHAPTER 7. DISCUSSION AND CONCLUSIONSFor MgO we have aspired to modelling features of the ions' potential energy surfa
ewhi
h govern dynami
s and energeti
s and been quite su

essful if one is to judge by su
hquantities as phonon dispersion relations and thermal expansion. A for
e-�eld has beenproposed whi
h is mathemati
ally equivalent yet superior from a 
omputational point ofview to a 
ommonly used method of modelling anion breathing e�e
ts[47℄. This model hasbeen extended to in
lude aspheri
al distortions in a way whi
h seems plausible assumingthe e�e
tiveness of the 
ompressible-ion model. This \distortable-ion" model dependson a number of 
onstituent fun
tions. We have postulated forms for these fun
tions inorder to perform the preliminary testing of the model. We have not resear
hed theseforms in any detail. This is an important endeavour if this potential is to be used in thefuture. Our tests have shown that the model is indeed an improvement over simple pairpotentials despite the la
k of resear
h into its 
onstituent fun
tions, indi
ating that furtherimprovement 
ould be a
hieved by investigating the optimal form of these fun
tions.In order to be able to 
on�dently model dynami
s su
h as di�usion or temperature-indu
ed soft-mode phase transitions it is vital to have a potential whi
h a

urately re-produ
es energy barriers. Within our parametrization pro
edure, whi
h, due to the sheerquantity of data involved, is mainly fo
ussed on for
es, it is diÆ
ult to see how this maybe a
hieved ex
ept by making the fun
tional form more realisti
. The distortable-ionpotential presented is one quite general framework within whi
h this may be a
hieved. Itis attra
tive due to the generality of its form, its non-relian
e on an extended Lagrangianformalism and its 
omputational speed. It is also easy to envisage extensions to the modelsu
h as the in
lusion of a self-
onsistent pro
edure for the lo
al radii, �IJ , or an extensionbeyond the dependen
e of for
es only on the distan
e between ions along their line of
enters. However further testing is ne
essary.A very important open question remains if one is to use the parametrization s
hemeof 
hapter 4 or judge the value of a for
e-�eld on the basis of its ability to reprodu
efor
es in an averaged way as we have done thoughout this thesis : How do errors in thefor
es manifest themselves in thermodynami
 properties ? It is very unlikely that there isa general answer to this question. It is also very unlikely that the only thing that mattersis the average error in the for
e on an ion. Small, rare and subtle for
es may have theability to make qualitative di�eren
es to a system. We have not ta
kled this problem andit is 
ertainly one that needs attention.It has 
learly been shown in this thesis that one 
an a
hieve high a

ura
y in manyquantities with e�e
tive for
e-�elds. We have applied the method proposed to study animportant outstanding problem in geophysi
s : the melting line of MgO. In this 
asewe demonstrate how a

urate for
e-�elds and ab initio methods 
an be used together toredu
e the un
ertainty to 
lose to that inherent in the ab initio method.
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