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Chapter 1

Introduction

Although the fundamental interactions responsible for the macroscopic properties of ma-
terials have been known for some time, our ability to use this knowledge in order to quan-
titatively map microscopic properties onto macroscopic observables is still very limited.
The goal of theoretical condensed matter physics is twofold : to understand microscopic
mechanisms - the interactions of electrons and ions - and how they relate to experimental
observables, and to quantitatively predict the properties of materials. Theory has had
many successes in explaining experimentally observed phenomena and some notable fail-
ures. Good examples are the explanation, more than forty years ago, of the phenomenon
of superconductivity in a wide class of materials as being the result of electron-phonon
coupling[1] and the more recent failure of theorists to fully explain higher temperature
superconductivity in a different class of materials despite intensive effort. The quanti-
tative prediction of macroscopic properties is extremely desirable as it would allow the
design of new materials which could be tailored to suit a specific purpose and it would also
allow one to gain knowledge about materials under conditions inaccessible to experiment.
However, despite very rapid progress in the field of materials modelling in the last thirty
years, it has not yet developed to the point where it can proceed without recourse to
empiricism or experimental verification.

The fundamental problem is that although we can state the principles by which elec-
trons and ions interact, the nature of these interactions and the large number of such
interactions present in real materials means that apart from extremely simple systems
such as the isolated hydrogen atom it is not possible to solve the relevant equations in
order to see how the macroscopic system behaves as a whole. It is necessary to use
computers to help solve the many-body problem, but unfortunately despite enormous
increases in computational power in the last three decades, it is simply not possible to
solve the equations exactly except in an extremely limited number of cases. In fact, one
can show that to solve exactly the Schrédinger equation in its standard form for even ten
electrons is beyond any conceivable computer.

A more practical goal therefore is to re-express the many-body problem in a way which
is easier to solve, by making reasonable approximations wherever possible. There are
many different approaches to this and the best approach to use depends on a wide range
of factors such as the material of interest, the conditions under which the material is to be
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studied, the computational resources available and the man-hours required to implement
the solution. Here the focus is on two of the most widely used approaches for atomistic
materials modelling, namely, the molecular dynamics technique and density functional
theory within the local or semilocal density approximations. Density functional theory
(DFT)[2, 3] , which is discussed in more detail in chapter 4, allows one to calculate the
ground-state probability density of a system of electrons in a given potential. As a result it
may be used to calculate the energy and forces of a system of atoms which is large enough
to approximate certain properties of the bulk material. Central to the application of this
method is the use of what is known as the local density approximation, or LDA, which has
produced very accurate results for a wide range of materials. The molecular dynamics
(MD) technique was historically a tool for exploring the statistical mechanical behaviour
of idealized systems. Given a known, or calculable interaction potential between a system
of atoms it evolves the atoms in time according to the forces via Newton’s equations
of motion. Since most atoms are large enough to be considered classical particles, this
allows one to model the behaviour of a system at arbitrary temperatures or pressures. The
necessity of repeatedly calculating the forces between atoms has meant that the majority
of molecular dynamics simulations have used very simplified phenomenological interaction
potentials and that these simulations are qualitative rather than quantitative in nature.

In 1985, in a landmark paper[4], Car and Parrinello married density functional theory
with molecular dynamics for the first time to allow the increased accuracy of the DFT
interaction potential and the finite temperature real-time system evolution of MD in the
same simulation. Now known simply as Car-Parrinello Molecular Dynamics (CPMD),
this method has become one of the most widely used techniques for the calculation of
dynamic and electronic properties of condensed matter with the original paper being cited
many thousands of times to date. Although this method represents a vast improvement
over the simplified potentials which existed beforehand, it is extremely computationally
expensive relative to these potentials and even with a modern parallel supercomputer one
is generally confined to system sizes of the order of one hundred atoms and simulation
times of only a few picoseconds. This is a major problem as it severely limits the range of
properties which one can calculate and the range of phenomena which can be simulated.
The larger the system size that is simulated the closer one gets to the dimensions observed
by experiment and to the human scale on which most materials are encountered. The
longer that one can run a real-time simulation, the closer one gets to experimental time
scales and to the human time scale of minutes, hours, days, and years on which materials
are generally used. In practice simulation can never even approach the relevant size and
timescales and it generally fails by many orders of magnitude in each case. However, the
error introduced in this way can be minimized by having as large and as long a simulation
as possible. For example, the larger and longer a simulation is the more precision one can
achieve in the calculation of thermodynamic observables such as pressure, temperature
or density. At present, the fact that CPMD and other DFT based MD techniques are so
limited by computational expense means that the precision with which many properties
are calculated is poor. On the other hand, simplified phenomenological potentials which
allow increases in size and time scale of three to five orders of magnitude, provide a very
poor description of interatomic interactions.



The practical goal of this thesis is to find a way in which the properties of bulk ionic
systems under conditions of low symmetry and high temperatures and pressures can be
predicted with accuracy and a reasonable degree of precision. The motivation for this
work is the desire to be able to quantitatively simulate systems of geophysical interest
such as the minerals that are found deep in the earth’s mantle which are mostly ionic
in nature. The extreme conditions of temperature and pressure make it very difficult for
the properties of such minerals to be constrained by direct measurement and up to now
the results of simulation have been of variable quality. Properties, such as the elastic
properties of some of the major constituents of the earth’s lower mantle[5, 6, 7], have
been simulated with state-of-the-art first-principles methods. Although such simulations
frequently have not been verified experimentally, it is likely that they are reasonably
accurate. The range of problems that can be tackled in a purely first-principles way is
very limited however. Other problems, a prime example being the melting behaviour
of oxides under pressure, have been tackled with a range of force-fields in a molecular
dynamics framework and the results have been extremely poor. An example, which
will be discussed in detail in chapter 6 is the melting line of MgO. There have been at
least five separate simulations of the pressure dependence of the melting temperature
published. Of these, all have disagreed with experimental measurements of the slope of
the zero-pressure melting curve by factors of between 2.5 and 8. There has also been little
agreement between different simulations, even between those using the same method of
calculating the slope. This level of disagreement clearly signifies problems with existing
force-fields.

In this thesis we tackle the general problem of simulating ionic systems such as oxides
under arbitrary thermodynamic conditions. Although we have a clear practical goal in
mind, we approach the problem in a very general way and most of the methodology that
is developed is applicable to almost any system for which accurate simulations of simple
ionic systems are required.

We begin, in chapter 2 by looking in detail at Car-Parrinello molecular dynamics as the
most widely used dynamical ab initio technique and discuss some theoretical issues which
have not previously been fully addressed. We show that the standard understanding of the
method is incomplete and we describe in a more rigorous way its theoretical underpinning.
Most importantly, our theoretical investigations show that contrary to popular belief, the
electronic orbitals do not take their ground-state values on average during a Car-Parrinello
simulation. This means that there are errors intrinsic to the method and we show how
these errors may be partially corrected for many systems, but particularly effectively for
simple ionic systems.

The computational expense involved in ab initio molecular dynamics means that for
most of the problems in which we are interested, an alternative solution is required. We
would like to find a compromise between accuracy and precision in our calculations so that
thermodynamic properties can be computed with more confidence than has been done in
the past. The approach that we take to finding this compromise is to look for force-fields
with functional forms which capture phenomenologically more of the dynamical electronic
effects which contribute to interionic forces and which are therefore capable of providing
more accuracy. The compromise lies in the fact that this capacity for improved accuracy
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is generally at the expense of computational efficiency. The improved accuracy is achieved
with a give functional form by using data from density functional theory simulations in a
general and well-controlled parametrization procedure.

The problem of finding a good functional form for ionic systems is discussed in detail
in chapter 3. Many force-fields over many years have been proposed for ionic systems but
none of these fully meet the criteria that we set. All are either too simple to be accurate,
too slow to be precise or too specific to be useful. We introduce a novel general force-field
for ionic systems which is physically well motivated but orders of magnitude faster than
CPMD.

In chapter 4 we build on previous work and describe how these force-fields are parametrized
using first-principles data. The resulting force-field is shown in chapters 5 and 6 to provide
thermodynamic and dynamic properties of an extremely high quality while still allowing
the simulation of much larger systems over much longer timescales than can possibly be
tackled within a fully first-principles approach. Our method is clearly shown to provide
precision far surpassing that of ab initio methods and an accuracy far surpassing that of
simple empirically-parametrized force-fields.

In chapter 6 this method is applied to the outstanding problem of the melting tem-
perature of MgO under pressure.



Chapter 2

Car-Parrinello Molecular Dynamics

In 1985, in a seminal paper [4], Roberto Car and Michele Parrinello showed how it was
possible to perform a molecular dynamics simulation whilst calculating the forces within
density functional theory. In other words, the electrons were treated explicitly in an
ab initio way in the calculation for the first time. The importance of this cannot be
overstated. Even apart from the fact that density functional theory can be much more
accurate than effective parameter-based force-fields, any MD simulation which does not
treat electrons explicitly requires one to make a choice a priori about the nature of the
system. We show in chapters 5 and 6 how it is possible to make very good effective force-
fields for ionic systems. However, if the bonding in the system changes due to changes in
pressure, temperature or phase, the accuracy of the force-field suffers. Moreover, we are
biasing the system from the start by the phenomenology that we include in the potential
form, and apart from the ingredients that we include, nothing else can play a role. Physics
and chemistry are full of surprises and many effects and structures occur due to delicate
balances between many different factors. It is simply not possible to predict with any
degree of certainty a prior: what effects may become important under a given set of
conditions.

Explicitly treating the electrons means that, in principle, one does not make assump-
tions about the bonding of the system and this allows surprises to occur. Spontaneous
changes in bonding can take place without loss of accuracy. This means that one can
simulate changes of phase with much more confidence. Ab initio molecular dynamics can
also allow one to model chemical reactions. This is something that effective force fields are
unable to do because, by definition, chemical reactions involve changes in the bonding and
when they occur it is the electrons which play the dominant role. Unless the dependence
of electrons on ionic positions is explicitly calculated, the reaction cannot be modeled.

The method of Car and Parrinello, in its original and most widely used form, works
within the Born-Oppenheimer approximation. This means that at any instant the state
of the electronic system can be well described by the electronic ground-state calculated
for the ionic positions at that instanti and that it responds instantaneously to changes
in ionic positions. For many systems this is an extremely good approximation given the
mass of the electron relative to that of the ions, which for hydrogen, the lightest element,
is approximately 1/1836. When the electronic ground-state is close to degenerate, which



6 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICS

frequently occurs, it can be said that the Born-Oppenheimer approximation breaks down.
However it should be valid before and after the occurrence of such degeneracies and the
time during which degeneracies are relevant is generally small.

The Car-Parrinello MD method started the field of ab initio molecular dynamics and
remains the most widely used method for coupling density functional theory with molec-
ular dynamics. It is not the only method however. A number of other techniques|8, 9, 10,
11] have been developed which are based on minimization of the electronic (Kohn-Sham
[3]) orbitals to their ground state at each time step. These techniques will be referred
to from now on as Born-Oppenheimer (BO) methods to distinguish them from the Car-
Parrinello (CP) method which does not put the orbitals to their ground state at each time
step, as we will see below.

Despite widespread application of the CP method to many areas of physics, chemistry
and biology and despite rapid development of many aspects of the methodology, no serious
testing of the accuracy of the method has ever been published to our knowledge. A number
of people [4, 12, 13], including the inventors of the method, have shown that it reproduces
ground-state forces and energies in simple systems, such as toy-models of crystalline silicon
or germanium, extremely well, but silicon and germanium are particularly easy systems
to treat with most electronic structure methods, and the ability to achieve high accuracy
for these systems is no guarantee that the method works well in other systems.

In this chapter, we begin by explaining the Car-Parrinello method in detail and some
of the reasons that it is generally believed to work. The understanding of the method
has evolved somewhat since its introduction and so no effort will be made to present
the definitive version of current understanding, rather some commonly held beliefs will
be presented. Next, some theoretical problems with the method will be explained and a
partial solution of these problems for inert ionic systems will be presented. We then test
the theoretical ideas that have been developed with the simple examples of silicon and
MgO, followed by a test of the method on one of the most frequently studied systems, i.e.
water, or in this case “heavy” ice

2.1 The Car-Parrinello Method

The Car-Parrinello method makes use of the following classical lagrangian :
Lep = Z M %Wz Z MIRI {wl} {RI}] (21)

to generate trajectories for the ionic and electronic degrees of freedom via the coupled set
of equations of motion

iy = PO R 22)
palts) = — E[{@éﬁjRI}] (2.3)

where M and R are the mass and position respectively of atom I, |¢);) are the Kohn-
Sham orbitals which are allowed to evolve as classical degrees of freedom with inertial
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parameters p;, and E[{¢;}, {R}] is the Kohn-Sham energy functional[3] evaluated for
the set of ionic positions {R;} and the set of orbitals {¢;}. The functional derivative of
the Kohn-Sham energy in equation 2.3 is implicitly restricted to variations of {¢;} that
preserve orthonormality.

The idea behind the method is that by putting the electrons to their ground state at a
fixed set of ionic positions and then allowing the ions to move according to equation 2.2,
the electronic orbitals should adiabatically follow the motion of the ions, performing
small oscillations about the electronic ground state. The electronic orbitals will have a
“fictitious” kinetic energy associated with their motion and the fictitious mass parameter
pi- If p; is small enough then the motion of the orbitals will be very fast relative to
the motion of the ions. It is generally thought that this motion consists of oscillations
about the ground state and so by choosing a small enough value for p; one can ensure
that the frequency spectra of the electronic orbitals and the ions are well separated from
one another if there exists an energy gap between the occupied and unoccupied Kohn-
Sham orbitals. This is because, within a harmonic approximation, the lowest frequency
of oscillation of the orbitals about the ground state may be written as[12]

1/2
_ [ 2(e — &)
Wwo = ( " ) (2.4)

where ¢; and ¢; are the eigenvalues of the highest occupied and the lowest unoccupied
orbitals respectively. In classical mechanics, systems which are well separated from one
another in frequency can be shown to remain energetically isolated from one another (see
ref.[12] and[14] and references therein). Therefore, it has been thought that by using a
small enough value for p;, one could isolate the electrons energetically from the ions. In
this way one could ensure that thermalization does not occur between electrons and ions
and so the electronic orbitals remain at a low temperature, which means that they remain
close to the electronic ground state.

This explanation of the method was originally proposed by Pastore et al. [12] and is
the standard way in which the method is explained (see, for example, the recent review
by Marx and Hiitter [13]). Although parts of this explanation are true , it ignores the fact
that, aswell as the high-frequency oscillations, the orbitals have a slow component to their
motion. If the ions are moving, the motion of the orbitals contains a component due to
the unavoidable response of the electronic orbitals to the ionic dynamics : as ions move,
the ground state changes. By definition this latter motion occurs on ionic timescales and
with ionic frequencies and so it may not be decoupled from the ionic motion. In fact, it
will be shown in this chapter that due to this aspect of the electronic motion the electrons
do not oscillate about the ground state but about an equilibrium which is displaced from
it. This means that there are systematic errors in the forces on the ions and in the total
stress on the system.
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2.2 Car-Parrinello Dynamics Compared to Born-Oppenheimer
Dynamics

We wish to compare CP dynamics to the exact BO dynamics. In other words, the dynam-
ics of the ions when the electronic orbitals remain at their ground state. For this purpose,
we decompose the CP orbitals as

i) = 1) + ;) (2.5)

where |¢£0)> are the ground state (BO) orbitals which are uniquely defined for given ionic
coordinates as those that minimize E[{«;}, {R;}] . This allows us to consider separately
the evolution of the instantaneous electronic ground state and the deviations of the CP
orbitals from that ground state.

At this point we note that in the past some testing of the CP method[15, 16] has relied
on demonstrating that the total electronic energy calculated with the CP method is very
close to that calculated when the electronic orbitals take their ground state values. This is
not a good criterion to use to validate the method. For molecular dynamics simulations,
the important quantites are the forces on the ions. For a given deviation of the CP
orbitals from the ground state |d¢;) the error in the force relative to the size of the force
is generally much bigger than the error in the energy relative to the size of the energy.
This can easily be seen by writing both of these quantities as Taylor expansions about
their ground state values

AE
= Z ( |0%)i) + <5¢z| ) + order(§17) (2.6)
6|wl {w,(O)} <wl| {wl(o)}
AF ! JF} JFe
- Flva (5 |0ti) + <5¢z| ) + order(5¢7) (2.7)
|wl {wZ(O)} <wl| {1/}1(0)}

The first term on the right hand side of equation 2.6 disappears because the derivative is
evaluated at the ground state. However the first term on the right hand side of equation 2.7
does not disappear. So, for a given deviation of the electronic orbitals from the ground
state the error in the force depends to first order on the {d¢;} but the error in the
energy only depends to second order on {§¢;}. This means that any error in the orbitals
has a much larger effect on the forces than it does on the energies. How much greater
the relative error in the forces is than the relative error in the energies depends on the
system, but, as will be discussed in section 2.4.3, it can be a few orders of magnitude.
When testing the method it is therefore important to see how well the forces reproduce
the Born-Oppenheimer forces.
We now write

2Ol
ZR, aRa (2.8)
and

(0) a8|w g 82|w )
= § :R § : 2.9
) - ! aRa 6R§8R? (2:9)

1,7
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A preliminary interesting observation now follows. If the electronic orbitals are at their
ground state values, i.e. [0t;) = |0) , then the right hand side of equation 2.3 vanishes
since {¢;} = {@DEO)}. However, the left hand side does not by virtue of equation 2.9. So the
CP orbitals cannot take their ground state values unless i vanishes too. As a consequence
of this, the ionic dynamics is affected by a bias dependent on p and, as we will see, to the
strength of the electron-ion interaction .

We now wish to explore the consequences that such a departure from the ground state
has on the instantaneous CP forces Fop. We therefore calculate how CP forces deviate
from the BO forces Fgp at a given point in phase space along the CP trajectory. We may
write, for the a-th cartesian component of the force on atom I:

OE[{Rr}; {¢i}]

~Fon = OR?
_ dE[{Rs};{i}] 3 <5E[{Rz}; {1hi}] 0i)
dR¢ . 8|h;) OR¢}
T ; i
(il OE[{R}; {¢i}]
s i 210
Substitution of equation 2.3 yields
o _ AE{R};{ti]] (Ol O]
—Fgp, = RS - zi:uz<<wz| R + oRe |1/)2>> (2.11)
Using the expansion
dE[{Rr}; {i}] _ L{E R Lo,
b TACCIE
OE{R}; { OE[{Rr};{vi
o (IR s SR ) )
i Z ) Z "}
= —Ffo, + 0+ order(5y;) (2.12)
we can write the error in the CP force as
N I T
AFF = By, — Fio, = Yom (il + Gl ) +orderoud) (219

)

Having established the connection, to first order in d1;, between the CP and the BO
forces, we assume adiabatic decoupling and look for contributions to this difference that
do not vanish when averaged over time scales longer than the typical timescales of the
high frequency part of the fictitious dynamics of the electrons (7.) but shorter than the
time scales of the ionic dynamics (7;). Only these contributions are expected to contribute
significantly to the ionic dynamics[12]. To this end we write

1695y = [09") + |63L7) (2.14)
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where we have s lit d¢); into a term which has a very high frequency relative to ionic
frequencies ((w ) and a term which varies on ionic timescales ((w ) We rewrite equa-
tion 2.3, using equation 2.5, as

o5 02[11)
+> ReRG— L 2.15
8R“ — T OR 0Ry (219

1) = |0 + |04 +ZRI

Since we are concerned with what happens on ionic timescales, i.e. averaged over the

high-frequency component of the ¢);, we may neglect the first term on the right-hand side.

Using equation 2.13 and equation 2.15 we may write the error in the force to first
order in dv); as

; 50 01" WL (o) | alv”)

AFF =23 R <w§2)+ R= L4 NTRIRY, L4t

' ; { ol ; ! oR; JXI; ! 3R}3R§ ORf — ORj
(2.16)

Any deviation dv; from the ground state depends on the fictitious mass p since p —

0 = % — 0 via equation 2.3. This means that if we are to consider only terms

which depend purely to linear order on p then the terms involving M}Z@) in equation 2.16
may be neglected.

To summarise : If we consider the dynamics of the electronic orbitals to consist of an
adiabatic response of the electronic orbitals to the ionic dynamics and an independent fast
oscillating part then, under the assumption that the timescales of the fast component are
much shorter than the shortest time period in the ionic system, i.e. assuming adiabatic
decoupling, the average error in the Car-Parrinello forces to first order in p and d1); is
given by (using equations 2.20 and 2.9)

2 ; aRa i aRa 8R}(8R§ '

This correction varies on ionic time scales and therefore does not necessarily average
out as the usual “fast” component does. However, its value depends on the electronic
mass. This implies that a simple way to ensure that its contribution in a CP simulation
is negligible consists of reducing systematically the electronic mass. Although a smaller
1 implies a smaller time step for the integration of the CP equations of motion, the time
step scales as At ~ p'/2, which means that reducing x by an order of magnitude brings
about a computational overhead of only a factor of three. A more quantitative discussion
is presented in sections IV and V.

We also notice that if the term proportional to RR in the r.hs. of equation 2.17
vanishes (e.g. by symmetry, see below), and the tensor in the term proportional to R is
constant, then the correction of equation 2.17 reduces to a rescaling of the atomic masses,
which is known to leave thermodynamics intact. This is discussed in more detail in the
next section.
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2.3 The Rigid Ion Approximation.

In order to gain insight into the scale of this problem with the CP forces we consider the
simple example of rigid ions. We assume that each electron is localised around an ion and
that there is no distortion of a particular ion’s charge distribution as it moves in the field
of the other ions. We can refer each wavefunction ; to a particular ion as follows

Yi(r) = ¢ (r — Ry) (2.18)

Where the electronic states are labelled by an ion index, I, and the index 7 labelling the
electronic state of the ion . The rigidity of the ionic charge distribution means that

8¢1n(1‘ - RI) _ _5¢1n (I‘ - RI) and 3¢1n(1' - RI)

= I 2.1

Equation 2.17 becomes

. 005 (r— R —
AFf = 22%%{3@* / Oiglt = R) 00nylr ~Ra)
n

ore orb

- 0¢1,(r = Rp) 0%¢p,(r — Ry)
B Y In In 1
+ RUR; / o P dr} (2.20)

The second term in equation 2.20 vanishes due to symmetry, at least assuming an atomic
charge density with spherical symmetry. The first term may be written in terms of E,{"
the quantum electronic kinetic energy of an electron in state n of atom I as

.y [ 065 (= Ry) 9pp (r — Ry) om, -
2Zun§)%{R?/ I"ara I"arﬂ ! dr} =3 R Z El" (2.21)
n

where m, is the (real) mass of an electron. Since the ions are rigid the quantum kinetic
energy associated with each one is a constant and equation 2.20 becomes

AF® = —AM;RS (2.22)

with

2m,
M; = 3h2z [y B} (2.23)

In this case the ionic positions and velocities are updated during a Car-Parrinello simu-
lation according to )
(M7 + AMp)RY = Fio, (2.24)

In other words, for systems where the rigid ion approximation is valid, the CP approx-
imation amounts simply to a rescaling of the ionic masses. Since the classical partition
function depends only on the interaction potential, the thermodynamics of the system as
calculated with a CP dynamics is identical to the thermodynamics of the BO system. The
definition of temperature will however be affected, because if the actual ionic dynamics in



12 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICS

CP is given by equation 2.24, then the real temperature at which the system equilibrates,
at least in the case of a microcanonical dynamics for the ions, is given by

kT = SLN IZ;(M, +AM)(0%)?) (2.25)

where (- - - ) signifies the average over time and N is the number of atoms. This differs from
the standard definition by the addition of a term proportional to AM;. The additional
term in equation 2.25 can be readily traced to the additional inertia caused by the rigid
dragging of the electronic orbitals. In fact, using equations 2.8 and 2.19, we can show
that this term coincides, within the rigid ion model, with the fictitious electronic kinetic
energy, when the contribution from the dynamics of the dv; is negligible i.e.

Ty = Taum (2.26)
where o
Tor =Y il (2.27)
and )
Tan =5 > AM((v)?) (2.28)
I,a

In other words if the electronic orbitals move rigidly with the ions the actual inertia
of the ions in a CP simulation can be obtained by adding to the “bare” ionic inertia
the inertia carried by the electronic orbitals. This result has been pointed out previously
[17, 18] and ionic masses are commonly renormalized when dynamical quantities are being
investigated.

Figure 2.29 illustrates how, within the simplified rigid-ion model, the ionic inertia
depends on the kinetic energy of the electrons. For a given ionic velocity, the wavefunction
at a point in space has to change more quickly when it is highly localised (and therefore
with a high quantum kinetic energy) than when it is extended. To accelerate an ion one
also needs to increase the rate of change of the wavefunction localised on it. Since the
wavefunction carries an inertia (u) the effective inertia of the ion is greater than the bare
ionic mass. In more general (non-rigid-ion) situations, the collective movement of the ions
is affected by the requirement that the “heavy” electronic wavefunctions are rearranged
as the system evolves.

We now explore the consequences that such a modification of the ionic inertia has
on typical observables extracted from CP simulations. First, as already mentioned, the
correct definition of temperature in a microcanonical CP simulation is given by equa-
tion 2.25. Similarly, in a simulation where temperature is controlled, e.g. through a Nosé
thermostat[19], the quantity to be monitored corresponds to the instantaneous value of
the temperature defined in equation 2.25. Dynamical observables will also be affected by
the additional inertia, as already noted in the case of phonons extracted from CP-MD in
carbon systems [20, 21]. In the case of homogeneous systems (a single atomic species in
which all the atoms are in similar local chemical environments) all dynamical quantities
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Figure 2.1: The mechanism by which the effective ionic inertia is related to the quantum
kinetic energy of the localised electronic wavefunctions within the rigid-ion approximation:
For two ions of the same species which are moving with the same velocity v, the one
carrying the more localised electronic wavefunction (top) has a higher effective mass. The
more localised electronic wavefunction ¢ (x) has, on average, a greater slope di(x)/dx
(and hence kinetic energy ) than the more extended wavefunction (bottom) t,(z) . Since
for a given ionic velocity v a greater slope implies a greater rate of change with respect to
time (¢h; > tby ) , the localised wavefunction changes more per unit time than the extended
wavefunction. In order to increase the ion’s velocity one also needs to increase the rate
of change of the massive wavefunction localised on it. The total inertia associated with
this required change of the rate of change of the wavefunction is related to the quantum
kinetic energy via equation 2.23 and this quantity must be added to the bare ionic mass
in order to obtain its effective mass.

can be simply rescaled using the mass correction of equation 2.24. However, for hetero-
geneous systems the correction is not always trivial, as different mass corrections apply
to different atomic species due to different atomic kinetic energies. In practice, we found
that a convenient and more general way to express the mass correction of ion I is given

by 2meE}i"t“l
My = et (2.20)
where f; is a dimensionless constant which takes into account the relative contribution of
species I to the total quantum kinetic energy Fi°. The value of f; is generally found
variationally as that which minimizes the error in the forces.
Corrections should always be applied to the temperature and the pressure as calculated

using the bare ionic masses. These corrections must be calculated for each chemically
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distinct species individually. For temperature, the correction for species S is

AM,
AT, = °T, 2.30
T (2:30)
and the correction to the partial thermal pressure of species S is
AM,
AP! = Pt 2.31
=S (2:31)

Where Mj is the bare ionic mass of species S and P! is the thermal contribution to its
partial pressure. There is also a correction which must be applied to the internal pressure
due to the fact that the electronic orbitals are not at their ground state. This correction
to the internal stress is not trivial to derive since the potential energy of the system
depends, via the coupling between ions and orbitals, not only on the ionic positions, but
on all higher order derivatives of the ionic positions with respect to time. However, within
the rigid-ion approximation, if we only consider derivatives with respect to ionic positions,

using the virial theorem we may write the internal pressure as
o1
1 - — .
P' = q E, F;-R; (2.32)
and so the rigid ion correction becomes

AP ==Y ——F;-R; (2.33)
I

In practice, for a system under periodic boundary conditions, it is not possible to evaluate
this quantity. However, for a system with a single species, this becomes

api =AM pi (2.34)
M
In practice, in more general situations, in order to get an idea of the true stress of the
system, one should perform a large enough number of electronic minimizations to the
ground state and calculations of the stress at the ground state to get a good average of
the true internal pressure.

In the next section we demonstrate, with the use of several simple examples, the
validity of the theory developed in this section and the previous one. We show how masses,
and therefore dynamical quantities, may be corrected using the formulae presented above.
In section 2.5 we look at the more difficult case of water as an example of a system whose
dynamics and thermodynamics one cannot correct so easily.

2.4 Testing the Theory

2.4.1 Introduction

In order to test the theory put forward in the previous sections and to gain more insight
into its implications, we have performed CP simulations on pressurised magnesium oxide
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Table 2.1: Technical Details of the Simulations

# System Temperature | g E, | Eeu | At | >, ithi|ths) L
Kelvin a.u. | Ryd. | Ryd. | a.u. a.u.x10? a.u.
1 Si 330 270 | 1.0 | 12.0 | 5.0 4.36 20.42
2 Si 330 270 | 1.0 | 12.0 | 5.0 4.36 20.42
3 Si(liquid) 2000 270 | 1.0 | 12.0 | 10.0 4.35 19.8
4 MgO 2800 400 | 2.7 | 90.0 | 8.0 66.3 14.5
) Si 330 200 | 1.0 | 12.0 | 5.0 3.23 20.42
6 Si 330 800 | 1.0 | 12.0 | 10.0 12.92 20.42
7 | MgO (M rescaled) 2800 100 | 2.7 | 90.0 | 4.0 16.55 14.5
8 | MgO (Mp rescaled) 2800 400 | 2.7 | 90.0 | 8.0 66.4 14.5
9 MgO 2800 200 | 2.7 | 90.0 | 5.65 33.1 14.5
10 MgO 2800 100 | 2.7 | 90.0 | 4.0 16.55 14.5

and on silicon. Among the insulators (we restrict our analysis to insulators as adiabatic
decoupling is less obvious in metallic systems and this would complicate considerably our
analysis), MgO and Silicon are extremal cases: MgO is a highly ionic system with large
quantum kinetic energy associated with the strongly localised charge distribution; Silicon
on the other hand is a covalent system where electron states are much more delocalised.
Within our pseudopotential description of MgO [22], the 1s,2s and 2p states are frozen
into the core of Mg whereas only the 1s states are frozen into the core of O. Since there
is very nearly complete transfer of the two 3s electrons from Mg to O (inspection of
charge density contour plots reveal no evidence of any valence charge anywhere except
surrounding O sites) the electron quantum kinetic energy may to a first approximation
be attributed to electronic states localised on oxygen ions. This makes MgO an ideal
system to study within the rigid ion model since only the oxygen mass will be rescaled.
As mentioned in the previous section, additional problems arise if one deals with more
than one electron-carrying species as the quantum kinetic energy must be divided between
these species. The large quantum kinetic energy of MgO means that the error in the CP
forces should be large relative to many materials. The simulations of MgO were performed
at a high pressure (~ 900 kbar) as this enhanced its ionicity.

Silicon, on the other hand, is a covalent/metallic system with relatively low quantum
kinetic energy. As such it should be one of the systems most favourable to the Car-
Parrinello approximation but least favourable to description in terms of rigid ions.

2.4.2 Technical Details

In this section we present the result of ten different simulations. The technical details are
summarised in table 2.1.

All simulations were performed with a cubic simulation cell of side L (see table 2.1)
under periodic boundary conditions and with 64 atoms in the unit cell. We used a plane
wave basis set with an energy cut off for the wavefunctions of F.,;. The Brillouin zone was
sampled using only the I'—point. In each simulation we have used the mass precondition-
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ing scheme of Tassone et al.[23] and the parameters o and E, in table 2.1 are defined as
in Ref.[5]. With the use of a preconditioning scheme, whereby the electronic mass is scaled
with the kinetic energy of the plane wave, the time step can be increased by a factor of
2-3 with respect to the non-preconditioned case[23] . The use of a preconditioning scheme
worsens considerably the agreement of the CP forces with the BO ones. In particular, we
have checked that using the parameters p and E, that optimize the time step causes an
increase by about a factor of three in the correction term of equation 2.17. However, in
order to bring this error to its non-preconditioned value, a value of iy three times smaller
would be required, with a consequent reduction of the time step of only v/3. Considering
that the preconditioning scheme allows a 2-3 increase of the time step, a reduction of /3
still makes the preconditioning scheme marginally superior.

Liquid silicon is metallic and so, as suggested by Bléchl and Parrinello [15], two Nosé
thermostats were used to counteract the effects of energy transfer between the ions and
the |d1);) due to overlap of their frequency spectra.The values of the parameters used were
Q. = 21.3 a.u./atom,Ey;, o = 1.65 X 10~* a.u./atom and Qp = 244400 a.u.. These were
chosen for compatibility with those of Ref.[10] by taking into account the slight increase
in temperature and scaling accordingly.

In all of these simulations, with the exception of simulation 2, the system was first
allowed to evolve for at least 1 ps and this trajectory was discarded. For simulation 2, this
initial equilibration time was 0.5 ps. All results reported are taken from the continuations
of these equilibration trajectories.

In all simulations, the total quantum kinetic energy of the system, and hence the
average mass correction (see equation 2.29), varied during the simulation by less than
0.3%. Tt was therefore taken as a constant in further analysis.

The total energy of all the degrees of freedom (including the thermostats in simulation
3) was conserved in all simulations at least to within one part in 10°.

2.4.3 Results

In order to check the predictions of the theory developed in Sections II and III, we have
taken segments of CP trajectories and calculated the true BO forces along these segments
by putting the electronic orbitals to their ground state with a steepest descent method.
We look at the instantaneous error in the o' cartesian component of the CP force on
atom I relative to the root-mean-squared (r.m.s) BO force component, i.e :

AF/(t)

Y. Xs5(Fpo,)°
3NN,

SFo(t) = (2.35)

and the instantaneous relative error minus the relative error predicted by the rigid-ion
model :
AFR(t) + AMRY
[6Fla(t)]corr = L ( ) a L (236)
Y X55(Fpo,)?
3NN,
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where N, is the number of ionic configurations at which the error in the CP forces was
calculated and ), is the sum over all such configurations. The value of AM; in equa-
tion 2.36 is determined using the rigid-ion-model expression equation 2.29, and Ei° was
given its average value during the simulation. The scaling parameters which were found
to give best results for silicon and oxygen were fg; = 1.0 and fo = 1.92 respectively.

We also look at (0F}) and (0F})corr the r.m.s values of [0Ff] and [0Ff]qorr Over all
the ions, cartesian components and configurations tested.
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Figure 2.2: Simulation 1. (a) Distribution among all atoms I and all cartesian components
a of the percentage errors in the CP forces relative to the BO forces at the same ionic
positions, 100 x §Ff(t) (full line) and these errors when the forces have been partially
corrected according to a rigid-ion model, 100 X [§Ff(t)]corr (dashed line). (b) I'(¢) as
defined by equation 2.37 for the full error in the forces and those as partially corrected
according to the rigid-ion model (c) Fg,, ,Fép, and (F@p, — Fjp,) (multiplied by a factor
of 20 for visibility) for a typical force component. Dots indicate the points at which the
BO force was calculated (every 5 time steps).

Since the CP forces are affected by a “fast” component whose effect on the ionic
dynamics is believed to average out on the time scale of the ionic motion, we introduce
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the quantity T'(7), defined as

r(T):/OTgiNZ

I,a

T AFp(t)dt
T |AF(t)|dt

to

(2.37)

If we begin our comparison between CP and BO forces at some instant ¢, along the
trajectory then inspection of I'(7) gives a feeling for how large the fast component is. If
the errors in all the forces of the system oscillate rapidly with an average of zero then I'(7)
decreases very quickly from the value of one at 7 = 0 to zero at 7 ~ 7,. For systematic
errors I'(7) should decrease gradually from one to zero on a timescale of the order of the
period of 7;. In realistic cases I'(7) drops from one and levels off to a smaller value for
T ~ T, and then decreases gradually to zero for 7 exceeding 7;,. The value of I'(7) on
the plateau between 7, and 7; provides a measure of how much the errors calculated in
equations 2.35 and 2.36 are attributable to a systematic (i.e. “slow”) departure from the
BO surface.

We begin by looking at the forces in Silicon in both the solid at 330 K and the liquid
at 2000 K (simulations 1,2 and 3). Simulation 1 was preceded by a short run where the
temperature was set to about 1000 K. Electrons were then relaxed in their ground state
and the ionic velocities set to zero. This allows the electrons to smoothly accelerate with
the ions. A microcanonical simulation followed where the ionic temperature reached,
after a short equilibration, the value of 330 K. This procedure was followed in all the
simulations reported here, except where discussed. In solid Si at 330 K (Fig. 2.2 ) we find
that the standard deviation of the error in the Car-Parrinello forces is 0.94%. However,
most of this error can be attributed to a rigid dragging of the Si atomic orbitals. The
standard deviation of the error is in fact reduced to 0.24% after the rigid-ion correction
of equation 2.24 is subtracted. The ~ 30% drop of I'(¢) (corrected) shown in Fig. 2.2b
indicates that ~ 30% of the residual 0.24% error can be attributed to “fast” oscillations,
so that the overall average error introduced by the CP approximation, once corrected for
the rigid dragging and under the assumption that the fast component is not relevant, is
less than 0.2%.

As has been pointed out previously by Remler and Madden [24], it is important to
begin the dynamics with electrons and ions moving in a consistent way as we have done
here in all simulations except the one we now discuss (simulation 2) and in the case of
liquid Si (simulation 3). We found that the error in the forces increases substantially if the
simulation is not started from zero ionic velocities, a procedure that would otherwise have
the advantage of shortening considerably the time needed to reach thermal equilibrium.
Simulation 2 started from the end of simulation 1, but electrons have been put in the
ground state before restarting (ionic velocities and positions were instead kept unchanged).
Forces were tested after 0.5ps from the electron quenching.

The standard deviation of the error in forces is now 5.7% and the error in the forces as
corrected according to the rigid ion approximation at 5.68%, is not significantly improved.
However clearly from inspection of T'(¢) in Fig. 2.3b and the sample force component in
Fig. 2.3c most of this error can be attributed to the high frequency oscillations of the
electronic orbitals. If we assume that these oscillations do not influence the ionic dynamics,
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Figure 2.3: Simulation 2, Crystalline Si at 330K when the electrons receive a 'kick’ at the
beginning of the simulation. See caption of Fig. 1 for explanation. (F&p — F5p,) has not
been scaled for visibility.
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the error reduces to about 1.2% for the uncorrected forces and to less than 0.5% for the
corrected forces. The amplitudes of these oscillations are nevertheless significant and
may affect the thermodynamics in a way that is not easy to predict. These oscillations
clearly originate from the initial jerk experienced by the the electrons in their ground state
and survive for a long time due to the adiabatic decoupling. In the liquid (figure 2.4)
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Figure 2.4: Simulation 3, Liquid Si at 2000 K. See caption of Fig. 1 for explanation.
(Fép, — F5o,) has not been scaled for visibility.

the situation is considerably worse than in the crystal. The standard deviation of the
error in the forces is 3.4% which improves only to 3.1% with the rigid-ion correction.
There do not seem to be high frequency, high amplitude oscillations here despite the
simulation being started with finite ionic velocities. However, there are oscillations of a
lower frequency (although still quite high relative to ionic timescales) which are probably
due to the presence of the Nosé thermostat. It may be that the Nosé thermostat has
the effect of damping out the kinds of oscillations seen in Fig. 2.3 but the presence of
these other oscillations is hardly an improvement. This highlights the need for careful
choice of parameters for the Nosé thermostat, particularly the value of Ej;,o. The issue
of thermostatting the electronic orbitals will be discussed later in this section.
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Figure 2.5: Simulation 4. Forces on the oxygen ions in crystalline MgO at 2800 K. (a)
and (b) are as in Fig. 1(c) From top to bottom : the error in the CP forces (Fg¢p, — Fjp,),

the error in the CP forces as predicted by the rigid-ion model —AMqR¢(dotted line), the
difference between the true error in the CP forces and the predicted error (F&p, — Fgpo, +
AMoRY), the CP force Fép, and the BO force at the same ionic positions F, for a
typical force component. Dots indicate the points at which the BO force was calculated

(every time step).
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We now look at the forces in crystalline MgO with py = 400a.u (figure 2.5). The
relatively high quantum kinetic energy associated with states attached to the O ions
means that, according to equation 2.21, the errors in the forces are considerably larger
for the O ions than we have seen for Si. The errors in the CP forces have in fact a
standard deviation as large as 32% . However, when this is corrected as in equation 2.24
by attributing all the quantum kinetic energy to states rigidly following the O ions the
standard deviation of the error reduces to 4.8%. Furthermore, the corrected value of I'(¢)
indicates that about 80% of the error on the O forces cancels out after account is taken
for the high frequency oscillations, suggesting that a more appropriate estimate of the
error is ~ 0.4%. The amplitude of the fast oscillations is a cause for concern however and
since the simulation was begun at zero ionic velocity it is not clear how it may be reduced
further.
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Figure 2.6: Simulation 4. Dashed lines from top to bottom are : Mg temperature, O
temperature, T,; ,and 10 x (T,; — Tang, ). The full line is the Oxygen temperature when
it is calculated with a mass which is increased by Ap.

Temperature

We focus here only on MgO, as the effects of the electronic dragging are enhanced. Ac-
cording to the results of Section III, we should expect a difference between the naive
definition of temperature and the definition corrected by the electronic dragging, equa-
tion 2.25. In the case of MgO, as noted in the previous section, this correction affects only
the oxygen atoms, as only a minor amount of electronic charge is carried by the Mg?* ion.
In Fig.2.6 we show the behavior of the instantaneous values of the naive and corrected
temperatures. The corrected temperature exceeds the naive definition by about 500 K.
More interestingly, we report in Fig.2.6 also the contributions to the temperature of the



2.4. TESTING THE THEORY 23

two atomic species. It is clear that the naive definition would imply that the two species
are not at thermal equilibrium. On the other hand, use of the corrected definition for the
oxygen temperature brings the temperature of the two species in much better agreement,
supporting the conclusion, based on the rigid ion model, that thermodynamics can be
restored by a simple rescaling of the oxygen mass. The mass rescaling, as calculated with
equation 2.20 amounts to AMo ~ 7.5 atomic mass units (Mo = 16 atomic mass units).
We also report in Fig.2.6 the instantaneous value of the fictitious electronic kinetic en-
ergy, the Lh.s. of equation 2.26, and the difference between this quantity and the r.h.s.
of equation 2.26, which represents the contribution due to the rigid dragging of the elec-
tronic orbitals. The difference is very small, implying that residual contributions due, for
example, to the fast electronic oscillations are negligible in MgO compared to the slow
dragging of the orbitals.

Thermostatting the Electronic Orbitals

In simulating liquid silicon, which is metallic, we have used a standard technique for
maintaining a low fictitious kinetic energy of the electrons. This is to use two separate
thermostats in the simulation : one for the electronic orbitals and one for the ions. This
technique was first introduced by Blochl and Parrinello[15] and has very recently been
updated by Blochl [16]. In reference [15] the recommended temperature of the electronic
thermostat, Ejin,0, has been determined on the basis of the rigid ion model to be twice
the value of Tay (as defined by equation 2.28). The reasoning behind this is that the
electrons should be free to follow the ions and also have room to perform the high fre-
quency oscillations. In our simulation of liquid silicon we have used a value of Ejy,
compatible with reference [25] however we note that this is considerably smaller than the
value recommended in reference [15]. We have also done simulations using higher values
of Ekino and in all cases the errors in the forces have been greater. It is likely therefore
that by decreasing further Ej;,, we might improve further the forces however this has
not been attempted here.

It is important to note that for some systems, the choice of Ej;, ¢ is crucial and can-
not be based on the simple formula of reference [15]. This can be seen by inspection
of figure 2.7 which is a magnification of the lowermost curve in figure 2.6. This is a
plot of (T.; — Tan,) during the MgO simulation. One can clearly distinguish the high-
frequency oscillations of electronic orbitals from the ionic-timescale oscillations due to
deviations from the rigid-ion description. The amplitudes of the high frequency oscilla-
tions is, roughly, ~ 1 K. This is 3 orders of magnitude smaller than T}; and yet it results
in oscillations in the force which have an amplitude of ~ 7%. This suggests that choosing
the recommended value for this system would lead to very large errors in the forces, and
that in order to maintain the errors within a few percent requires a prediction of Ej;, o
which is correct to within ~ 0.1%. It is unlikely whether such precision is possible and
anyway for MgO the variations in Ej,o along the molecular dynamics trajectory was
found to be ~ 0.3%.

The updated form of the electronic thermostat recently proposed by Blochl is different
in that it never actually heats the electrons, but cools them down when they exceed the
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Figure 2.7: Simulation 4 - (T,; — Tan, ). Within the rigid-ion approximation, this is the
contribution to the electronic kinetic energy from the high-frequency oscillations. Even
though this is very small, the oscillations in the forces are very large as shown in figure 2.5.
Small deviations from the ground state can lead to large errors in the forces.

specified value. Similar problems should be expected for this system however, since for a
system in which T, is increasing, its value will frequently be close to the specified value,
or at least of the same order of magnitude.

Phonon Spectra

We have calculated the phonon densities of states of crystalline Si and MgO by fourier
transforming the velocity autocorrelation function. In all cases, the first picosecond of the
simulation was discarded and results obtained by averaging over at least one subsequent
picosecond. For silicon the velocity autocorrelation function was calculated on a time
domain of length 1.2ps and for MgO on a time domain of length 0.5ps.

In silicon (Fig. 2.8) the difference is reasonably small. According to the rigid ion model
the frequencies should be corrected using

Weorrected — WCP\/ 1+ A]\4/]\4 (238)

where wep is the frequency as extracted directly from the CP simulation. We find that
for silicon this overestimates by about a factor of two the amount of the correction. This
small discrepancy may be due to the length of simulation used for calculating the frequency
spectra or due to a breakdown of the rigid-ion description when gy = 800a.u.. It may
also be that neglecting the effect of the fast oscillations is not be completely appropriate
when the dragging contribution is small.
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Figure 2.8: Phonon density of states of crystalline Silicon for iy = 200 a.u. (simulation
5) and for po = 800 a.u (simulation 6).
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Figure 2.9: Phonon density of states of crystalline MgO for j9 = 100 a.u. and for py = 400
a.u. with rescaled (simulations 7 and 8) and unrescaled (simulations 10 and 4) oxygen
masses.



26 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICS

In MgO, as expected the difference is much larger. We calculate the phonon spectra
for gy = 400a.u. and for gy = 100a.u and find large differences between them (see
Fig. 2.9) highlighting again how the dynamics depends on the value of u. The fact that
two species are involved complicates matters as the mass correction is different for the
two species (it actually vanishes for Mg). Therefore we should not expect simply a rigid
shift of the frequencies. However, if the rigid-ion approximation is valid, one may conceive
to rescale the oxygen mass a priori in equation 2.2 as Mo = Mo — AMp, so that the
actual CP dynamics expressed in terms of the BO forces, equation 2.24, becomes identical
to the BO dynamics if the rigid ion approximation holds. We have done this for MgO,
again for g = 400a.u. and po = 100a.u and we see that the results are much improved.
There are only small differences in the positions of the peaks and the overall shapes of
the curves are very similar. We notice that with o = 100a.u. (and no mass correction)
frequencies are within 8% the correct ones. This implies that in order to obtain a phonon
spectrum of MgO with a 4% accuracy in the peak positions (4% is the typical uncertainty
of a pseudopotential DFT approach[26]) the value of py should be about 50 a.u., which
implies a At ~ 2.8 a.u., or about 1.5 x 10* time steps per picosecond.
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Figure 2.10: Scaling of the standard deviation of the errors in the forces on the oxygen
ions with po (Simulations 4,9 and 10). (§Ff).orr has been reduced to eliminate cancelling
high frequency oscillations by inspection of T'(¢).

We now try to address the question of how the error in the CP forces depends on
the fictitious electron mass. We do not know what the true u-dependence of the error
in equation 2.16 is. We have made the assumption in equation 2.17 that it is, to a
first approximation, linear if one assumes that the oscillations in |5¢)§1)> have a small
amplitude. Fig. 2.10 shows (0Ff) and (0Ff).or for the oxygen ion for three different
values of py where (0Ff) .o has been scaled to eliminate the contribution of errors from
high frequency oscillations by inspection of I'(¢).
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The uncorrected error is dominated by the effect of the displacement of the equilibrium
positions of the orbitals from the ground state, this scales approximately linearly with
I, thereby vindicating our neglect of terms in equation 2.17 of higher than linear order
in p. The small error which remains after the rigid ion correction has been applied could
have contributions from many different sources including deviations from the rigid ion
description and contributions from higher order error terms. It is also of the order of the
fluctuations in Ef°*® during the simulation.

2.5 Water

So far in this chapter it has been shown that systematic errors are present in Car-Parrinello
simulations, the magnitude of which are proportional to the fictitious mass parameter.
The examples of Si and MgO examined were used mainly to verify that our derivation of
equations 2.17, 2.22 and 2.23 were correct and to show that for strongly ionic systems
such as MgO, the error in the dynamics can be corrected and that it does not seriously
alter the thermodynamics once properties such as the temperature and the pressure have
been corrected.

We now turn our attention to water. Water in all its phases has been one of the most
studied systems with the Car-Parrinello method [27, 28, 29, 30, 31, 32] and it looks likely
to continue to be so in the future due its obvious importance in nature and particularly
due to the fact that it forms the basis for all of biology. The ability of the Car-Parrinello
method to describe water well is therefore of great importance as much of the current
understanding of its microscopic properties has come from such simulations.

Water is a more difficult case to simulate with CPMD than either silicon or MgO and
is therefore a better test of the method. Unlike silicon it has a considerable quantum
kinetic energy and unlike MgO there is some subtlety to its bonding in the sense that
it cannot be considered a completely ionic system. There is a degree of covalency to
the intramolecular bonding and intermolecular interactions are dominated by hydrogen
bonds. Here we look at ice, or more specifically, at “heavy” ice, D,O because it is easier
to simulate and it is generally what has been simulated in the past. Protons are very
light and this can cause problems of energy transfer between ionic and electronic degrees
of freedom. The lower symmetry and higher temperature in water and the lower mass of
the proton relative to the deuteron means that errors should be, if anything, greater than
those observed here.

2.5.1 Details of the Simulation

We have used norm-conserving pseudopotentials to describe the oxygen[22] and hydrogen[33,
34] atoms respectively. We have used a plane-wave cutoff of 70 Ryd. and a gradient-
corrected exchange-correlation functional (BLYP)[35]. Only the I'-point was used to
sample the Brillouin zone. Simulations were performed on a 24 x 24 x 12 a.u. simu-
lation cell containing 32 D,O molecules.

By variationally minimizing the error in the Car-Parrinello forces relative to the ground



28 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICS

state forces with respect to the ionic masses in a preliminary simulation of liquid water,
we have obtained the rigid-ion mass corrections ( in a.u. ) for oxygen and deuterium of
6.7664 and 0.213pu respectively. We have later verified that these mass corrections are
optimal for ice also. We have rescaled the ionic masses a priori by subtracting these
corrections from them.

We have begun our simulations by doing a long simulation of ice at low temperature
(~ 100 K) using an ab initio parametrized polarizable effective potential of the same
form as that described for silica in chapter 5. This does not provide a very realistic
description of water but it was deemed preferable to randomizing the positions. In order
to minimize the errors due to high frequency oscillations of the orbitals, as discussed in
section 2.4.3, we then began the simulation with the electrons at their ground state and the
ions at zero velocity. We used a fictitious mass of © = 900 a.u. No mass-preconditioning
scheme was used. After half a picosecond, when the ions were at a temperature of ~ 120
K, a Nosé thermostat|[19] was attached to the ions and the temperature was increased
to approximately 250 K during half a picosecond of simulation. The system was then
equilibrated without a thermostat for approximately 3.5 picoseconds. The temperatures of
the oxygen and hydrogen subsystems were calculated independently using the corrections
given by equation 2.30 and according to this definition of temperature the subsystems
remained at different temperatures, indicating that the system was not well thermalized.
This can be seen in figure 2.5.1. It is worth noting that somebody unaware of the issue
of mass rescaling would, in this case, see a thermalized system. The simulation was
now continued, using the ionic and orbital velocities from the previous MD run, in two
separate MD runs : one using a value g = 100 a.u. and the other remaining with @ = 900
a.u (see figure 2.5.1). Changing the value of p during a simulation perturbs the orbital
dynamics only very slightly and has no significant lasting effect on the forces such as
are seen when more severe shocks take place (see section 2.4.3). For a system where the
rigid-ion approximation is valid, the fact that we have rescaled a priori the masses means
that the simulations at the different values of i should be identical.

It was found that after more than a further 2.5 ps the simulation with g = 900 a.u.
still showed no sign of thermalization. The deuterons remained at a low temperature
relative to the oxygen ions. In the simulation with g = 100 a.u., however, the system very
quickly showed signs of thermalization and the subsystems were at the same temperature
after 1.5 — 2 ps. Since we would like to compare the phonon spectra for the two different
values of ;1 and we would like to do this for reasonably well equilibrated systems, at the
same temperature, it was decided to continue both simulations from the end of this initial
2.4 ps run with g = 100 a.u. Both for x = 100 a.u. and p = 900 a.u., a further 5.5 ps
of simulation were carried out during which time the oxygen and deuterium subsystems
remained at the same temperatures in both simulations. We may speculate at this point
that the difficulty which the ¢ = 900 a.u. simulation has in thermalizing is due to the
presence of inertia between the oxygen and deuterium ions which impedes the motion of
the deuterons. The difference in temperature has to be due to the deuterons moving too
slowly relative to the oxygen ions. The bonding between them has a degree of covalency
and this covalent bond carries an inertia which one should not expect to be well accounted
for in the rigid-ion approximation. Therefore, the fact that when the covalent bond is
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Figure 2.11: Temperature of the oxygen and deuterium subsystems as a function of time
according to the correct definition of temperature in which the extra mass due to the
electronic orbitals is accounted for (top) and according to the naive definition (bottom)
in which the temperature is not corrected.

less “heavy” the deuterons can move faster suggests that this may be an effect due to the
orbital’s fictitious inertia.

Forces

After 1 ps of the u = 900 MD run, the forces were compared with the ground state forces.
The force on an individual oxygen or deuterium ion is dominated by the intra-molecular
force, the force due to the other two ions in the D,O molecule. Since the molecule remains
relatively rigid, it is more sensible to examine the more subtle inter-molecular forces which
are of primary concern to those studying the structure of water. In order to do this we
look at the sum of the forces on a molecule. In figure 2.5.1 we plot some sample forces
on DO molecules. It is clearly seen that there are very large differences between the CP
forces and the ground-state forces but that much of this difference can be corrected with
the rigid-ion correction. However, the error that remains still looks quite large and may
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Figure 2.12: Corrected temperatures of the oxygen and deuterium subsystems as a func-
tion of time for 4 = 100 a.u. (top) and g = 900 a.u. (bottom).

be a cause for concern. The error before correction amounts to ~ 45% of the root-mean-
square ground-state force component. After correction, this number reduces to 12.5%.

Although forces are very important in molecular dynamics, they are not generally
the quantity which are extracted from simulations and it is not obvious how, in general,
errors in forces map onto errors in thermodynamic quantities. In order to get a feel for
the scale of these errors we look at the forces along the same trajectory for the local
density approximation (LDA) [36, 37] and the Perdew-Burke-Ernzerhof(PBE) exchange-
correlation functionals. There has been much discussion in the literature about what
exchange-correlation functional one should use for water[29]. It is generally accepted
that the LDA performs very poorly for water and most people use generalized gradient
approximations which seem to give better results. Different gradient corrected functionals
have been shown to give quite different radial distribution functions for liquid water [29].
Figure 2.5.1 shows a comparison of the forces from BLYP, LDA and PBE functionals.
We found that the average difference between PBE and BLYP forces was ~ 7.8% and the
difference between LDA and BLYP forces was ~ 45%. It is also worth noting that, in
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Figure 2.13: Some sample forces on D,O molecules. The Car-Parrinello force is compared
to the ground state force and the Car-Parrinello force once corrected using the rigid-ion
correction.

general, although there are clear differences in the magnitude of the forces from LDA and
BLYP, for example, the time-derivative is generally quite similar for all the functionals
tested. This is not the case for the Car-Parrinello force, where the derivative of the force
differs quite strongly from the ground state force.

Finally, we have looked at the forces after very brief simulations in which velocity
rescaling was employed. Velocity scaling is commonly used for CP simulations and has
been used in the past to equilibrate liquid water[30]. However, it gives an equivalent
shock to the electronic degrees of freedom as beginning a simulation with ions at finite
velocities does. In this test, the velocity rescaling followed the initial 0.5 ps simulation at
120 K and the velocities were rescaled to bring the temperature to 220 K. Velocities were
adjusted only 4 times in total and then the system was equilibrated for 1 ps. We found,
once again, that there were large-amplitude oscillations in the forces with frequencies
typical of the electronic orbitals. These oscillations also appeared much less harmonic
than the oscillations which were seen in the cases of Si and MgO in section 2.4.3. The
magnitude of these oscillations highlights the fact that it is dangerous to perturb the
electronic system by changing abruptly the ionic velocities, particularly considering the
small ionic temperature change involved in this test.
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Figure 2.14: Some sample forces on DO molecules. The ground state forces along the
same trajectory as plotted in figure 2.5.1 using the three different exchange-correlation
functionals BLYP[35], LDA[37] and PBE[74]

Phonon Frequencies

For the two different values of ;1 we have calculated the phonon densities of states by
fourier transforming a velocity autocorrelation function which was calculated on a time
domain of length 1.45 ps by averaging over the final 5.5 ps of simulation. As with the
case of MgQ, if one does not rescale ionic masses, the differences in the phonon spectra
are extremely large. However here we are only concerned with errors which cannot be
corrected in this way. The results are shown in figure 2.5.1. Once again, these spectra
should be identical if the rigid-ion approximation is valid. The main features of the two
phonon spectra are similar, indicating that the rigid-ion approximation works very well
for the vibrational properties of ice. The p = 900 curve shows a slight increase (~ 1.5%)
in the frequency of the O-D bending mode and a corresponding decrease in the frequencies
of the O-D stretching modes. We do not have enough statistics to examine in detail the
translational and rotational modes of the molecule, but the main differences seem to be
in the intensities of the peaks with little, affect on the frequencies.

So, despite what seem like large errors in the forces, the vibrational properties of the
crystal are not greatly effected. The errors are similar in scale to the differences using
different gradient-corrected exchange-correlation functionals[31].



2.6. DISCUSSION 33

0015 L L L L L
— Ground state Force
0.01 f — Corrected Car-Parrinello Force *
0.005 - R
=3 0 C
2 ,
o)
o
(=] 1 L
L -0.005 + r
-0.015 - i
-0.02 w \ T T ‘ T ‘ \
0 1 2 3 4
Time [fs]

Figure 2.15: Some sample forces on O ions following scaling of ionic velocities. The Car-
Parrinello forces with the rigid-ion correction are compared to the ground-state forces.

2.6 Discussion

We have shown in section 2.2 how, for any finite value of the fictitious mass pu, the Car-
Parrinello method differs in principle from Born-Oppenheimer dynamics, even in the limit
of the electronic orbitals having a minimum kinetic energy. What this amounts to saying
is that in a Car-Parrinello simulation, electronic orbitals do not oscillate about their
ground state but about a different equilibrium. There is therefore a lower bound on the
error in the Car-Parrinello forces which is dependent on the fictitious mass u. Under the
assumption that high frequency electronic oscillations (i.e. the dynamics of the |0¢;)) are
small and independent of ionic motion, we have shown that Car-Parrinello simulations
amount to solving the equation of motion for the ions

MRy =Fgo, +2) R Z 2] "ol +ZR/3 2] 21”) (2.39)
rorRen T o IoR] R " 8R°‘ OR}.OR)

if one may neglect terms in p of higher than linear order.

For systems with a low quantum kinetic energy or small coupling between electrons
and ions, such as the example of silicon which we have discussed in section 2.4.3, the
resulting errors in the forces are extremely small and so neither the dynamics nor the
thermodynamics should be strongly affected. For strongly ionic systems such as MgO,
there are very large errors which are however mostly attributable to a rescaling of the
mass of the oxygen ion thereby preserving the thermodynamics. When corrected for
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Figure 2.16: The phonon densities of states of heavy ice for p = 100 a.u. and g = 900
a.u.. lTonic masses have been rescaled according to the rigid-ion approximation.

this effect the errors are slightly higher than those in crystalline Si but still quite small.
If we “measure” the departure of the CP dynamics from the BO dynamics in terms of
AM/M, with AM defined as in equation 2.24, then it appears that the elements where
the departure is expected to be larger are located in the upper right of the periodic
table, because they combine a low atomic mass with a large binding energy of the valence
electrons (and thus a large quantum kinetic energy). Transition metals may also be
strongly affected, because of the large number and strong localisation of the d-electrons.
However, the higher the localisation of the orbitals, the higher the chances that the
description of the electronic dynamics in terms of rigid orbitals is correct. The large
departure observed in the case of MgO suggests that a proper assessment of how much the
CP forces differ from the BO ones is mandatory in most systems. This can be achieved
by either calculating the BO forces for selected ionic configurations, or by performing
simulations for different (smaller) values of p, and checking how the results scale with
decreasing p. If the departure is large then it is likely that in many cases the CP forces
can be brought into good agreement with the BO ones by simply rescaling the ionic
masses. We have seen in section 2.5 that at low temperatures even systems which should
not be well described by the rigid-ion approximation, such as ice, the vibrational spectrum
can be quite well corrected using the rigid ion approximation. Under conditions of lower
symmetry or higher temperature this may no longer be the case.

Additional complications may arise when the dynamics lead to fundamental changes
in the electronic structure. The first and second derivatives of the electronic orbitals with
respect to the positions of the ions, which appear in equation 2.16, may become relevant
in regions of phase space where the electrons play a significant role. For example, if charge
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transfer between ions occurs, or if a substantial rearrangement of the electronic orbitals
takes place, as in a chemical reaction, then the simple method of rescaling the ionic masses
will no longer work. We have also neglected in our analysis higher order dependences of
the Car-Parrinello forces on the fictitious mass and it may be that in certain systems and
for large masses these terms of equation 2.16 become relevant. An important test which
should always be performed is to check results of CP simulations for a dependence on pu.

If one is to judge the quality of a CP simulation by the errors in the forces as we
have largely done here, then a question which needs to be addressed is to what extent
these errors manifest themselves as errors in the properties of interest in the simulation.
It is likely that random high frequency oscillations in the forces such as those due to the
dynamics of the d¢; have no discernible effect on the thermodynamics of the system if
such oscillations are small. The magnitude of the oscillations seen here in the case of
MgO and ice may be a cause for concern however. The apparent anharmonicity of these
oscillations in the case of water may also lead to problems.

All of the effects discussed in this chapter are dependent on the choice of the fictitious
mass parameter, x4, and by reducing this parameter all thermodynamic and dynamic prop-
erties of a simulation may be brought arbitrarily close to those in a Born-Oppenheimer
system. A reduction of ;1 has the drawback that the time step required to integrate the
equation of motion for the electronic orbitals is reduced thereby decreasing the computa-
tional efficiency of the method. However, the time step scales as At ~ p!'/2. This means
that reducing p by an order of magnitude increases the simulation time by only a factor
of three. By checking how the property of interest in a simulation scales with p one can
control the level of approximation with which it is calculated.

In the past it has been thought[12] that once the fictitious kinetic energy of the or-
bitals stayed small and reasonably constant in a simulation, the dynamics were essentially
independent of the electronic mass. For this reason, its value is frequently not reported in
articles along with other relevant technical details. We show here that the mass is an im-
portant parameter which has a significance which is at least comparable to, for example,
the choice of exchange-correlation functional.

There is a clear need, in light of our theoretical findings, to test the ability of Car-
Parrinello simulations to model chemical reactions, phase transitions and systems of low
symmetry. These are the kinds of systems which are most frequently simulated with
CPMD and they are also the systems in which a serious dependence of thermodynamic
properties on the fictitious mass would be most likely to occur.
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Chapter 3

Simple Models of Ionic Systems

3.1 Introduction

The problem of simulating ionic materials has a long history[38]. One of the oldest, and
still the most widely used interaction potential for such systems treats the ions as though
they are small rigid particles which are undistorted by their environment. This is the
Born-Mayer pair potential[39],

_ a4y —arsRyy Cr; D

U[J(R[J) = Rry + Bjje R?J R%] (31)
where Uy is the interaction energy of particles I and J which are a distance R;; apart.
qr and ¢; are charges on the ions and the first term on the right hand side is the elec-
trostatic energy of the point-like charges and is generally evaluated using the method of
Ewald summation[40]; the second term reflects the fact that an isolated electron distri-
bution tails off exponentially and so the repulsion between ions at short range due to the
Pauli exclusion principle can be approximated by a constant ( By; ) times an exponen-
tial overlap of ionic charge distributions ; the final two terms model the ion dispersion
interactions which are always attractive and which represent the correlated motions of
electrons on different ions which can be represented as a sum of dipole - induced dipole
( R%; term), dipole - induced quadrupole ( R%; term) and higher order terms which are
generally neglected. qr,ar;,Br;,Cry and Dy are all parameters of the model which may
be determined either by physical reasoning, empirical considerations or by fitting to data
obtained from ab initio calculations.

This potential form has the advantage that it has a pairwise form and it is quick and
easy to evaluate, so that large system sizes and long times may be simulated with relative
ease. However, it has been recognised for some time [41, 42] that this form does not
contain some of the physics relevant for many real ionic systems. Many systems contain
anions which have an appreciable size relative to interionic distances and which are not
rigid, in the sense that they become aspherically distorted and can change their size in
the condensed phase depending on their environment. A distorted ion is one with multi-
pole moments, the most important of which is the lowest order or dipole moment. The
induction, via electrostatic interactions, or short range Pauli exclusion-type interactions
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of dipole moments on ions can have a significant effect on the electrostatics of a system.
In particular, the oxide ion is known to be highly distortable and polarizable and many
attempts have been made to model this in the past.

3.1.1 The Shell Model

The Shell-Model[38, 43, 44, 45] is the oldest and most common method of incorporating
environmental effects. In this scheme a shell of charges is attached to the nucleus via a
harmonic (or indeed anharmonic) spring (see figure 3.1 ). In this way, the ion may become
polarized via a displacement of the shell of charge from being centered on the nucleus.
The induction of dipoles via short-range forces may be implemented by having these forces
act between shells (which can be thought of as representing the electrons) rather than
between nuclei. An extension of this model to allow for an isotropic breathing motion
of the shell has been introduced by Schroder [46]. A disadvantage of the shell model is
that it introduces extra degrees of freedom into the system and therefore can slow down
simulations. However it has been used with some success for many years, primarily to
include the important polarization effects which have the marked effect in ionic crystals
of reducing frequency differences between the transverse optical and longitudinal optical
phonon modes.

Electric field
—-x

Figure 3.1: An illustration of the shell model of ionic polarizability. A massless shell of
charge Y is connected by a spring of spring-constamt & to the massive ionic core which
carries a charge 7 — Y where Z is the net ionic charge.

The use of the Shell Model in the past has been to some extent due to the fact that
in its simplest and standard form it depends on only two parameters, the spring constant
and the shell charge. Until recently, all parameters needed to be determined empirically
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or from physical arguments and a simple relation exists between these parameters and the
dipole polarizability of the ion which may be determined experimentally. However, fre-
quently if one chose the parameter which best reproduced experimental quantities such as
densities or bulk moduli, it did not correspond well to its known physical interpretation.
Shell model parameters are also generally non-transferable between different chemically
related materials, or even between different phases of the same material. It has been
suggested [47] that the Shell Model representation of the effects of polarization and ex-
pansion/compression of the anion is overly restrictive in that it couples all these effects
in too simple a way so that they may be described by as few parameters as possible. Al-
though all these effects are clearly connected, their relationship is unlikely to be as simple
as it is represented in the Shell Model.

In a series of papers over several years many people, most prominently, Wilson, Mad-
den and coworkers have developed a new way of representing the many body effects in
ionic systems[47, 48, 49, 50, 51, 52, 53]. The current state of this research will be explained
in this chapter followed by a description of the approach that we have taken to the same
problem which differs in many important ways from previous approaches.

3.2 Many-body Interactions in Simple Ionic Systems

It has been shown[52] that an effective way of treating the interactions in simple ionic
systems is to divide them into the following independent sets of contributions :

1. Electrostatic effects. These include

e Interactions between the ionic point charges.

e Screening of these interactions by induced multipoles and local variations in
the degree of ionicity[53].

e Induction of multipoles through distortions of ionic charge distributions by
short-range interactions with neighbouring ions and the impact of these mul-
tipoles on the electrostatic field.

2. Short-Range repulsive interactions between ions. These are basically exponential in
form but may be affected by

e Spherical “breathing” or “compression” of the ions.

e Aspherical shape deformations of the ions.

3. Dispersion interactions which may also be damped at short range when ionic charge
densities overlap[54].

Clearly there is a degree of arbitrariness in this division and there is a clear overlap
between some of these effects. For example, the dipoles induced by short-range inter-
actions are physically the same thing as the aspherical distortions which are caused by
and impact on the short-range repulsive interactions. Nevertheless, as a practical scheme
this division has proved useful and Rowley et. al. have shown that in magnesium oxide,
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the phonon dispersion curves can be well reproduced by independently adding in these
effects[52]. More recently, Aguado et. al. have reparametrized the original model of
Rowley et al. using density functional theory calculations to produce a much improved
set of phonon dispersions[55].

We now discuss the model that they have used in detail.

3.3 Electrostatic Effects

To supplement the interactions of point charges and following previous work[48, 50] Row-
ley et al. allowed the induction of a dipoles and a quadrupoles on each oxygen ion in
MgO. They assumed that the degree of ionicity was fixed such that the Mg atom lost
exactly two electrons to the O atom and they allowed for no local changes in ionicity.
This latter assumption is supported by our density functional theory calculations of MgO
(see chapter 2 ) where we observe no significant deviation from full ionicity. They have
also allowed for the induction of multipoles via short-range interactions.

3.3.1 Electrostatic Polarization

The induction of multipoles complicates the calculation of the electrostatic forces con-
siderably since not only does one have to calculate charge-dipole, dipole-dipole, charge-
quadrupole, dipole-quadrupole and quadrupole-quadrupole interactions for each pair of
ions, the correct values of the dipoles and quadrupoles on each ion must first be calcu-
lated. This is not a trivial problem since the multipoles on an ion are proportional to the
derivatives of the electrostatic potential at the position of the ion. However, the electro-
static potential is itself dependent on the multipoles. For example, for the case of dipoles
we may write[56]

p; = oE; (3.2)
E; = E{+) Ti-p, (3.3)

1J
where the dipole p; on ion [ is proportional to the electric field E; at the position of ion
I. The constant of proportionality is the scalar polarizability. E? is the “fixed” part of the
electric field due to charges, permanent dipoles and any other applied field.The electric
field in turn depends on all the dipoles via Tj; the dipole-dipole interaction tensor. To
solve this pair of equations amounts to solving a set of 3N x 3N linear equations and even
to do this iteratively would be far too computationally expensive for most applications.

One solution, proposed originally by Sprik and Klein [48] and used in all the works by
Wilson, Madden and coworkers[50] is to treat the dipoles in an extended lagrangian scheme
analogous to the Car-Parrinello molecular dynamics scheme for the electronic structure
problem[4]. In other words, a lagrangian is written in which the dipole moments on
the ions are expressed as extra degrees of freedom of the system with a fictitious mass
associated with them.

L= S MRS + 3 b~ Ulfp): (Ri)] (34)
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M; and p; are the masses of atom I and the dipole on atom I respectively. Beginning
with the dipoles at their minimum energy values, the ionic system is evolved and just as
in the electronic case the dipoles are expected to remain close to their minimum energy
values (i.e : the values for which g—g =0 VI) if their fictitious kinetic energy is small. It
is thought that this may be achieved either by choosing a small enough fictitious mass so
that due to adiabatic decoupling there is only a small transfer of energy between dipoles
and ions or in many cases by applying a thermostat to both the electronic and ionic
subsystems in the same way as was proposed by Blochl and Parrinello for the electronic
case[15].

In practice, the dipoles are normally represented by two or more charges at fixed
distances from the ion center but with variable magnitudes and orientation. This is
because it is easier to evaluate the Ewald sum for charges than it is for dipoles. The
inclusion of quadrupolar interactions is achieved in a similar manner but with six degrees
of freedom in addition to the three dipolar degrees of freedom[57].

short-range pelectrostatic
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Figure 3.2: An illustration of how short-range repulsive interactions between ions can in-
duce effective multipoles. In this picture, the small cation “dents” the charge distribution
of the much larger cation and the resulting aspherical distribution has a dipole moment
which is opposite to that induced electrostatically by the cation.

3.3.2 Polarization by Short-Range Interactions

Wilson and Madden found that the simple electrostatic polarization model had significant
shortcomings. The ions tended to become over-polarized and particularly in the melt,
small anion-cation distances resulted in very large induction forces which overcame the
short-range Pauli exclusion repulsion. In the real system at such distances, the cation
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distorts the anion and the resulting dipole is of opposite sign to the electrostatic dipole
which would be induced if the cation and anion were isolated. This is illustrated in figure
3.2. Wilson and Madden found a convenient way of representing this short-range induced
dipole. They wrote the dipole induced on each ion as

R
pr = a/E; + Z argrs(Rry) quglJ (3.5)
J#I ij
where
2 (brgRyg)®
917(Rry) = cpe®7 ™ Z (brsFirs)” ”k'U) (3.6)
k=0 )

and cr; and br; are negative and positive constants respectively, and for dipoles n; took
the value 4. A similar scheme was used for quadrupoles [57]. The function gr;(Rrs) was
first introduced by Tang and Toennies as a damping function for dispersion effects (see
section 3.5) and its use in this context was justified by Wilson and Madden based on its
ability to fit numerically the results of electronic structure calculations[58] on distorted
crystalline environments.

3.4 Short-Range Repulsive Interactions

The use of the standard exponential repulsion term found in the Born-Mayer potential
rests on the assumptions that ions are spherical and of fixed size and that the repul-
sion between them due to the Pauli exclusion principle is proportional to the overlap
between the ions whose charge distribution tails off exponentially. Although this may
be an adequate approximation in crystals of high symmetry at low temperatures and a
given pressure , at higher temperatures or at a different pressure or when a change of
phase occurs, it is likely that anions will readjust their size and shape to fill the available
space. In order to cope with this, and in an attempt to improve the ability of ionic mod-
els to reproduce experimental equations of state and the relative energetics of different
crystal structures, Wilson et al. have developed a compressible ion model[47]. Another
strong motivation was the fact that the Cauchy relation between the elastic constants
(Cyy = C11)[59] is known to be violated in both MgO and CaO in the NaCl structure. For
MgO, the ratio Cy4/Cia,extrapolated to 0K at zero pressure reaches 1.68 for MgO [60]
and 1.44 for CaO[61]. This relation holds for centrosymmetric crystals under zero stress
if the interactions may be modelled in a simple pairwise way.

Wilson et al. wrote the potential energy due to short-range repulsive interactions
between anion and cation as

VEE({Rr}i{dor}) = Vaar({d01}) + Vaw ({ R1}s {007}) (3.7)

where Vg is the sum of the changes in the internal energies of the ions and Vj, is the
total potential energy due to interaction between the ions, and do; is the change in the
radius of the ion from its average value ¢%. From electronic structure calculations of the
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perfect cubic crystal it was found that V¢ could be written as

Vear({Rr}; {do1}) = ZDICOSh(55UI) (3.8)

Te—

and the standard exponential form was adopted for the interaction energy :

Voel{Ri}; {do1}) = Z Byye o R =lojtoon) (3.9)

Te—,Je+

At each timestep, during a simulation, the {do;} were required to take values that min-
imized V°* and this was achieved, once again by using a Car-Parrinello-type extended
lagrangian approach with the {Jo;} as the variables with which a fictitious dynamics was
associated.

Although this has been successful in reproducing some low temperature properties
of MgO and CaO such as the crystal energies as a function of volume, the prediction
of phonon frequencies with this model was found to be quite poor. This is because
the distortion of the anions are in general not spherically symmetric if the crystal is
disordered. To account for aspherical distortions of the anion, Rowley et al.[52] have
extended the previous compressible-ion model. They allowed for the effect of purely
spherical distortions on the anion-anion interactions and the extended the compressible
ion model to allow for aspherical distortions to affect the anion-cation intetraction.

The self energy Viqr is extended to include distortions of the anions of dipolar and
quadrupolar symmetry

Vaar({00re }; {vryi {kr}) = Y _[Drcosh(Bdor) + (57" — 1) + (71" —1)]  (3.10)

where vy is a set of three variables describing the dipolar distortion of the oxide ion and
Ky is a set of five independent variables describing the quadrupolar shape distortions.
They only considered distortions to affect the anion-cation interactions so that

Voe{R1}; {001 )i {widi{mi}) = D Bye *+-ov

Te—, Jet

4 Z B e—a--(Riy—dor—doy)
Te—,Je—

+ Y Bigerorrfn (3.11)
Tet+,Jet

where
= Ry;— o7 — Siyvi — Sipks”
Pry 1J I LI (2)™I
Sty = Ri;/Ru

(3.12)

(3.13)

Sk = BRYR}/(Rpy)” =67 (3.14)
(3.15)
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and summation of repeated greek indices is implied.

Once again, in this scheme, VS® = Vslf 1 VoV ig minimized with respect to set of
all dor,vf, and m?"g and these nine variables per anion are evolved as classical degrees of
freedom using a Car-Parrinello-like lagrangian.

With this aspherical-ion model and including dispersion effects (to be discussed in the
next section) and polarization effects, Rowley et al. managed to find parameters which
gave good phonon dispersion curves for MgO. Very recently Aguado et al. have used an
almost identical model, but with many of the parameters found from DFT calculations, to
produce phonon dispersion curves and thermal expansion curves of a very high quality[55].
Since thermal expansion depends on the second derivatives of the potential energy with
respect to the ionic positions, this is a good test of this model’s representation of the
potential energy surface of the crystal.

3.5 Dispersion Forces

Dispersion forces arise from correlated electronic fluctuations between separated ions.
These take the form of multipole-induced multipole forces the lowest order and most
important of which is the dipole-induced dipole interaction. A dipole produced by random
electronic fluctuations in one ion can induce an opposing dipole in a neighbouring ion.
This may result in their polarities fluctuating in synchronisation and these opposite dipoles
attract one another with a 1/R% dependence. Dipole-induced quadrupole interactions have
a 1/R® dependence and successively higher order terms decay more rapidly. However,
when ions become closer and overlap these forces become damped. Electrons lose some of
their freedom to fluctuate in this way as they become part of the same charge distribution
and the correlations in their motion acquire a much more complicated form.

Tang and Toennies [54] have found a simple functional form for the rate at which
this damping occurs. This is given by equation 3.6. In the simulations of Aguado et
al. and Rowley et al. they have included the two dispersion terms of lowest order with
short-range Tang-Toennies damping functions ¢(® and ¢® :

6)
Vi = — > [0 (R1s) == + g5 (R1y) =22 ] (3.16)
IJ

3.6 Discussion of Existing Approaches

So far in this chapter, some of the existing approaches for modelling ionic systems and
specifically simple oxides have been outlined. There are very clear indications such as the
experimental violation of the Cauchy relation (see section 3.4) or the inability of pairwise
potentials to fit the DFT forces (to be discussed in chapter 5 ) that many-body forces are
important to accurately describe the interactions in such systems. Pair potentials have
failed to model the phonon dispersions or the thermal expansion in MgO , although it is
difficult to tell where this is a fault of the potential form and where it is a fault of the
parametrization which in the past has been almost entirely empirical.
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Much emphasis has been given here to the system of many-body interactions developed
by Wilson, Madden and coworkers. The reason for this is that they have shown clearly
that, at least for the crystalline simple oxides the potential form that they use provides a
good description of the ions’ potential energy surface. However, although it is clear that
the full model that they use is sufficient to describe the physics of MgQO, it is not clear
whether all the interactions that they have included are necessary or, as they discuss in
the paper by Rowley et al.[52], whether or not the full model is overcomplete. Although
they try to address these issues, the parametrization scheme that they use is empirical
and each contribution is parametrized independently. As can be clearly seen from the
results of chapter 6 and their subsequent paper [55] they did not take full advantage of
their functional form which can only be done by fitting all parameters simultaneously.

A serious problem with their method lies in the fact that they use the Car-Parrinello
extended lagrangian approach for all of their many-body interactions. This means that to
each anion is associated eighteen additional degrees of freedom. These additional degrees
of freedom are associated with the five groups of variables which describe electrostatic
dipoles and quadrupoles, and ionic distortions of monopolar, dipolar and quadrupolar
symmetry. In order to make this work one needs to make sure that each set of dynamical
variables remains energetically isolated from every other one. Or, at least, that all of
them remain adiabatically decoupled from the ions insofar as this is possible. The time
step is determined by the fastest degree of freedom and in the paper by Aguado et al.
the time step that they report using for crystalline MgO at 300K is approximately 1/20
of a femtosecond. This is at least a factor of thirty smaller than the timestep that could
normally be used for this system and is presumably the timestep required for accuracy
within this approach.

Another possible problem with this method is that there may be effects, particularly
in less symmetric phases than the NaCl structure, analogous to those that have been
discussed in chapter 2 for the electronic problem. It can be shown (as was done for the
electronic orbitals in section 2.2 ) that if the ions are moving, it is not possible for the
extra dynamical variables to take their minimum energy values on average. In fact, the
average error in the ath force component on ion I, to first order in the deviations of the
fictitious degrees of freedom from their instantaneous average values and the fictitious
mass, may be written as

w2 ON; ON:
a } : } : 8 Ni i

7 J
8oy O 0P }
+ RORy —-— (3.17)
JZ; " ORT OR} OR]

where ). is the sum over all the fictitious degrees of freedom 7;. Once again, the magni-
tude of this error depends on the extent to which the dynamical variables vary with ionic
positions and it scales linearly with the fictitious mass p;. It is not known how important
this problem is in general. For the case of the NaCl crystal structure at 300K, tests of the
extended lagrangian approach to the dipole polarizable and the simple compressible ion
model have been published[50, 47] and the values of the fictitious degrees of freedom are
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to be in very good agreement with their minimum energy values. However, it is likely that
any problem that may exist would be less serious under these conditions of high symmetry
and low temperature than, for example, in a liquid or during a phase transition.

In the aspherical ion model, the anion is only allowed to distort with either dipolar or
quadrupolar symmetry. It would be desirable to be able to include anion distortions of
arbitrary shape as they may become relevant in low symmetry phases.

3.7 Our Approach to Modelling Ionic systems

It was decided that for the reasons of computational speed and accuracy outlined in the
previous section it was best to try to avoid the use of any Car-Parrinello-like extended
lagrangian approach to modelling the many-body forces in ionic systems. Another com-
pelling reason is that in the parametrization process (see chapter 4) one does not have
the benefit of a previous time step from which to extrapolate or evolve the degrees of
freedom. Since parametrization is a computationally expensive process, it is important
to find a way which is reasonably fast even when calculating the force for the first time.
It is unlikely that putting the eighteen degrees of freedom per anion to their potential
energy minimum via steepest descent or any other method would be sufficiently fast
for parametrization purposes and, in fact, in the paper by Aguado et al. where they
parametrize their model by fitting the forces to those from DFT calculations they only
parametrize the non-electrostatic parts of their model in this way. Since the electrostatics
are the most important part, but also the most time-consuming part of any simulation of
an ionic system one may speculate that the reason they did not fit the ionic charges and
polarizabilities was due to the computational expense involved.

Since dipolar polarization is the most important electronic screening mechanism in
most simple ionic systems, we have decided to model this in our approach. However, we
have not included quadrupolar polarization which in the paper of Rowley et al. was shown
to have only a small effect on the phonon spectrum of MgO and which would increase
significantly both the computational expense of the model and the man-hours required
to implement the model. We have neglected the effect of charge transfer between ions, as
did Wilson,Madden and coworkers, on the basis that for the systems we are interested in
studying, no evidence was initially found to suggest that this was an important effect.

We also would like to model the effect that size and shape distortions of the anion has
on the short-range interactions.

Since we would like to avoid the use of an extended lagrangian approach, we have had
to find different approaches to modelling polarization and anion-distortion. In section
3.7.1 we outline the approach that we have taken to the polarization problem and in
sections 3.7.2 and 3.7.3 we describe a new many-body potential for ionic systems which
attempts to model anion distortions in an analytic way.
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3.7.1 Polarization

As previously discussed in section 3.3.1, the difficulty in treating dipole polarization is
that one must solve the 3/NV x 3N linear system represented by equations 3.2 and 3.3. The
charge-dipole and the dipole-dipole interaction terms decay as 1/R? and 1/ R® respectively.
Unfortunately, this decay is not sufficiently rapid for one to be able to truncate the
interactions between particles at a reasonably small interionic distance, and so, as with
the charge-charge interactions, all the dipole terms must be calculated using an Ewald
summation technique [40, 63, 64]. The procedure that we have taken to this problem
and that has been taken in the past [64, 65, 66] is to solve the system of equations in a
self-consistent way. In other words, starting with an initial guess for the dipole moments
on each ion we calculate the electric field at the site of each ion due to the combination
of dipoles and charges. The new set of dipole moments is then easily calculated by
multiplying the electric field on each ion by its polarizability. When the root-mean-square
value of the difference between the components of the electric field from successive steps
in the self-consistency procedure is within a specified tolerance, the system is deemed to
be at convergence. It was found that during an MD simulation, a quantity which tended
to vary much more slowly than the dipole moment on each ion was the contribution of all
the dipoles in the system to the electric field at each ion’s position. Therefore, the initial
guess of the dipoles which was used in the self-consistent minimization was calculated from
a guess of this quantity which was extrapolated from three previous timesteps. We also
include the short-range contributions to the induced dipole moments using the functional
form proposed by Madden and Wilson [50] and discussed in section 3.3.2.

The algorithm that we use for calculating all electrostatic contributions to the total
energy, forces and stress at time step n is as follows :

1. Using the method of Ewald summation [40], the contribution from the charges on
the ions to the total energy (Ugq), forces (F% ) and stress (S57) is calculated.

2. The short-range induced dipole moment on each ion is calculated as :

q;R1s
R},

P = Z argrs(Rry) (3.18)

T£I
where g;;(R;) is given by equation 3.6.

3. The initial guess of the dipole contribution to the electric field on each ion I is
calculated to be!
Epo = 3E," " — 3B,/ + Ep " (3.19)

where Eg"_l) is the electric field at ion I calculated at the previous MD time step.
For the first three time steps, of an MD simulation, or during parametrization, the
value E§"** = 0 is chosen.

Tt was found that the period of the oscillations in the dipole moment was generally large enough
that the algorithm would almost certainly be made more efficient by extrapolating from more than three
previous time steps, but this has not yet been implemented in the MD program.
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4. The self consistent polarization cycle begins and proceeds as follows where m is the
number of the iteration step :

(a) If m =1 then the total electric field on ion I is

F
Er = E,5* + (3.20)
qr
otherwise F
Er = E,\" " + (1 - B)E,\™ + f (3.21)
I

where (3 is a parameter which is optimised at the beginning for fast convergence.
B typically takes values of between 0.6 and 0.8.

(b) The dipole moment on each ion is calculated as
p; = arEr; + p7 (3.22)

(c) Using the current set of dipole moments {p;}, Epgm)

using Ewald summation|64].
(d) The quantity

is calculated for each ion

2
rm = \/ > B — By VP (3.23)
I

is calculated where N is the number of polarizable ions.

(e) If |IT(™) — Tm=D| < § | where § is a predefined convergence criterion then go
to step 5, otherwise return to step (i).

The most economical value of § that can be used can vary from system to
system and depends on the degree of energy conservation required but a value
of 1075 was found to conserve energy to a very high precision in all the systems
studied. During the parametrization process, one does not need such a low
tolerance for convergence and so a value of § = 5 x 10~ was used. With this
value, forces and stress were converged to within ~ 0.3%.

5. Using the converged values of Epgn), the dipole moments are recalculated as

n F
p; = o (Bl + ﬁ) +py (3.24)

and these are used to calculate the energy (Uqq,Upp), forces (Fy, ,Fy ) and stress

(525,555 due to charge-dipole and dipole-dipole interactions using Ewald summation|[64].

6. The contribution of the short-range induction of dipole moments to the energy (U,,)
, forces (F2) and stress (S27) is calculated[50, 52].

7. All contributions to the energy forces and stress are added together. For example,
for the energy :
U=U;+ Uiy +Us+ U, (3.25)
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Unfortunately, this self-consistent minimization procedure is not guaranteed to con-
verge. For example, if an anion and a cation come very close together the dipole on the
anion can become unphysically large. This can have a drastic effect on the surrounding
electric field and the dipole field diverges. We have found that when such a configura-
tion occurs convergence, fails regardless of the initial guess Ey5**. Luckily, experience
has shown that the more physical the electrostatic and short-range dipole-induction pa-
rameters we have, the less likely this dipole “explosion” is to occur, but we have not
managed to eliminate it completely. This is a big problem as when this happens, the MD
simulation is effectively over. It is not possible to recover as, even if one continues with
unconverged dipoles (e.g: those calculated simply from the charge contribution to the
electric field), the kinetic energy of the system increases dramatically and conservation of
energy is lost. This is only a problem for liquid systems and is much more likely to occur
at very high temperatures and pressures significantly different from the pressure at which
the model was parametrized. Its occurrence, if frequent, may indicate the need for a new
parametrization of the potential.

Similar problems have been reported for the Car-Parrinello approach [50].

3.7.2 A Distortable Ton Model

In this section a general framework will be developed for the inclusion of environmental
effects on the size and shape of an ion and the subsequent effect of such distortions on the
short-range interionic forces. In the next section we will show how this general framework
has been implemented in practice.

We will be primarily concerned with the anion-cation interaction. Of much lesser
concern, initially at least, is the anion-anion interaction energy which has been found to
provide only ~ 3% of the energetics of the perfect crystal[52, 47]. Although, the same
cannot be said with any degree of certainty of more disordered phases, or systems of
different stoichiometry such as SiOs,, it is nonetheless the most obvious place to start
when constructing a potential.

We assume that a distortable ion ( such as O*" ) has its shape and size “influenced”
by all sufficiently close neighbouring ions. Much as in the scheme of Wilson, Madden
and coworkers[47, 52|, an ion is described as a nucleus surrounded by a single membrane
(representing the electrons) the radius of which is allowed to vary with the two polar
angles (although in their case, the radius only varied in certain symmetric ways). The
influence an ion J exerts on ion I can be loosely thought of as a restraining force on
the ion’s tendency to expand and this restraint has a dependence on the polar angles
(0, ¢) in the spherical coordinate system centered on I. We also assume that the influence
exerted at coordinates (6, ¢) is zero if the angle between the outward unit vector at those
coordinates £(0, ¢) and the vector R;; = R; — Ry is greater than 90°.

We write the total influence on I at (6, ¢) due to all the other ions as

i (0,0) = Fri(Ri)(0,6) - x510(0(0, ) - x1) (3.26)

J#£I
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where x;7 = %—ﬁ and

1 if 6(9,¢)'XJ[>0

OO, p) - xs1) = {0 i 000, 6) X0 < 0 (3.27)

The subscripts on the scalar function f7; are to indicate that a different function is used
for every distinct pair of ionic species.
Apart from a multiplicative constant, the spherical average of p(ll)(ﬁ, }) is

= Z fri(Rry) (3.28)

J#£I

We write the angular dependent radius , o7(f, ¢) of an ion as

1(0,8) = 01" (09) + oM (0, pi" (8, ) (3.29)

In other words, the radius at (6, ¢) is written as a sum of an average value due to the
influence of all the ions and deviations from that average. The distance between the
membranes of ions I and J along their line of centers is

Liy= Ry — o101, 051) — 05015, 01) (3.30)

where 6;; and ¢;; are defined such that ¢(6;;, ¢;;1) = x5 and it will be convenient to use
the notation

p(IIJ) = P(Il) (011, ¢1) (3.31)
‘7}11) = UEI)(P( 7p(I (01, 01)) (3.32)
ory = o01(01,911) (3.33)
Ak = O(x1 - Xrk) (3.34)

We now define the total energy of the system as a sum of pairwise interactions between
membranes.

U= Z U]J(L[J)g[J(R[J) (335)

LJ>T

where gr;(R) takes the value 1 for R < R,, 0 for R > R}, and decays smoothly from 1 to 0
between R, and R,. This allows us to truncate the interaction at intermediate distances.
The ath force component on ion K is then written as

Z OUU e (5 _5 )_aUIJ_anI
gIJ 1J\OTK JK 8R?( 8R?(

I1,J>1

0
Z U]Jazlj ZL'IJ 51[( 5JK) (336)
1,0>1 s
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Figure 3.3: The distortable ion model. See text of section 3.7.2.

and

dory _ <8a§0) N 60%)) 8p(10) 80}1} 8p(IlJ) (3.37)
ORj: opy  op" ) OR  opfl) O
op}” 9
3ga = mf%lxﬂ(fsm — 0K) (3.38)
K L(I) 1L
dpy) 1 5 8 5
= S (Bu — 1) (6% — A
ORS: % Ru( Lk = 01x)( )Ty fLrArL
1
+ Z R—(5"K — 01) (6% — & x5 )] frrArn
T
s 8 Oftr_,
+ Z‘TLI:UJIR—LI*TLI(5LK — 0rx) AL (3.39)
L(I)

The notation ), y has been introduced to indicate that the summation is over all ions
L which are neighbours of I. This is necessary for practical implementation due to
the truncation of interactions and to avoid summing over all the particles. Expanding
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equation 3.36 we get

0
Fg = —ZUKJ gKJfU?(J

8UKJ a
Il 9KIT K g

P ouU (0) (1)
4 Z fKI:va Z IJgU< o; n o;; )
I
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K) OBt J(I) OL1; aP(IO) aP(IO)
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- zK:aRKI KIZ U glefax’?JAUK

Uk 805?, 8 B 0fkJ
" ZaLKI 3PK) ZxKJ‘TKIxKJaR Akry (3.40)

In the derivation we have made the further assumptions that f;; = f;7, Ury = Ujr and
gr; = gyr- This monstrous-looking equation actually has a very small computational
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overhead relative to that for the dipole polarization, provided that R, is chosen to be
reasonably small, and it scales with the number of distortable ions.

3.7.3 Applying the Model

In order to apply this model we clearly need to find suitable expressions for the functions
fr J,O'§0), and O'}lj). We begin by making the same assumption that was made in the
extended Lagrangian approach that the most important interaction is the anion-cation
interaction although this will be extended at a later stage to include the anion-anion
interaction in a limited way. For the moment we are concerned with systems with two
species such as MgO and we assume that the cation is small and rigid. For MgO it is
likely that this is a very good assumption, given its degree of ionicity.

In order to draw a correspondence with the compressible ion model of Wilson et al.[47]
(see section 3.4) we write the total energy of the system due to short-range repulsion as

Z self Z B, +(Rry—0)

Te— Te—,Je+

+ Z B__e_aiiRIJ + Z B++6_a++RI‘I (341)

IJe—J>1 IJet+,J>1

The values of the anion radii at any time should be such that this repulsive energy is
minimized. In other words

oVSR
do;
8vself
= gy T o€ +of ZB _eo-+l = (3.43)
801 Je+
To simplify the notation we write B’ = o« B, and c(a§°)) = %‘;E;;f-
C(o\M)eo-+oi” = =Y B+ (3.44)

Je+

At this point we note that there has been much discussion about the form of the self-
energy of compressible ions. Although in the original paper by Wilson et al. the form used
was that of a hyperbolic cosine of the amount of compression do, in another work Matsui
has used a harmonic expression for this energy [67] and in an even more recent paper [68]
Marks et al. have argued that for the oxide ion one should treat the 2p°® shell and the s?
shells separately with harmonic and exponential compression energies respectively.

However, the justification for all of these forms has been on the basis of quantum
chemical calculations of the perfect crystal. There is no reason to believe that this is
a good basis for determining what the energy function should be in a distorted crystal
or a melt and there does not seem to be strong physical reasoning behind any of the
forms used. In fact, an examination of the calculated values of the self-energy in, for
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example, reference [47] shows that for values of R;; that one might expect to find at low
temperatures and pressures, the calculated self-energy could be reasonably well fit even
with a straight line.

For these reasons, as a preliminary test we have chosen an exponential form as this
simplifies considerably the mathematics. ( (050)) will also have an exponential form so we
may write

A16—5,g§0)€—a,+g§0) = — Z B'em-+H1 (3.45)
Je+

By merging constant terms to simplify the notation, this equation can be rewritten in
the form

o (o) = C1 + CyIn(p}") (3.46)
where we say that
P =" Cye i (3.47)
J

and C7,C5..etc are constants. By analogy with equation 3.28 we can say that
f1g = Cae™“et (3.48)

One is not confined to such simple forms for the self-energy but for many forms one cannot
write equation 3.44 in terms of 050) and one is forced to find 0}0) by an iterative procedure.
This only has a very slight impact on the efficiency of calculating the potential. Another
form which we have tried, and for which this procedure is used is
€1 €
Vlself(ago)) = e+ o© + : (0)\2
2 T 0; (ea+0;7)

(3.49)

where €;,€..etc are constants. This form was chosen according to the (admittedly, highly
simplistic) physical reasoning that the internal factors which determine an ion’s radius are
the electrostatic energy which varies like the inverse of a distance and the kinetic energy
of the electrons which varies like the inverse of a distance squared.

The above analysis has shown that the distortable-ion model presented is mathemat-
ically equivalent to the compressible-ion model of Wilson et al. if ag,) = 0 in the limit
that the fictitious mass of the extended-lagrangian approach goes to zero.

It is not possible to map our approach onto the aspherical-ion model. However, we
take a different approach to aspherical distortions. Given the functions f;; and a§0) as a

starting point we may postulate a form for 0}1}. We assume that distorting an ion in an
aspherical way is energetically the same as distorting it spherically. In other words, we
say that there is no energy penalty for deviating from sphericity. We therefore write

(0)

(1)
o) = Csln (%) (3.50)
I

Since we will be parametrizing this force by fitting to ab initio data, the minimization
routine has the freedom either to make the constant Cj very small or zero if this is not a
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reasonable functional form, or if aspherical distortions are really energetically equivalent
to spherical ones, it can make Cy = (5 in which case, the distortions of purely spherical
symmetry disappear and

o1 = Cy + CsIn(p})) (3.51)

Although all the above derivation has assumed that this potential is only to be used
for modelling cation-anion interactions, the generality and freedom afforded us by our
parametrization procedure (see chapter 4 ) means that we lose nothing by trying to apply
it to the anion-anion interaction also. We have done this by fitting parameters for the
anion-anion interaction and we have found that it does improve the ability of the model
to fit the ab initio forces. A more sensible, but also more expensive way of tackling the
anion-anion interaction would be to introduce a self-consistent procedure to minimize the
angular dependent radii simultaneously.

We also note that, as has been pointed out by Marks et al., different electronic shells
have different compression characteristics. This could be modelled within the present
scheme by having two or more such distortable ion potentials acting in parallel.
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Chapter 4

Parametrizing Effective Potentials

4.1 Introduction

Ever since the first molecular dynamics simulations were performed one of the crucial
issues has been the method of parametrization of the effective force-field used. Not only
does one need to represent, in terms of a reasonably simple functional form, the relevant
physics at play, this functional form needs to take parameters which are realistic for the
system under consideration.

In the past parameters have been chosen based on physical arguments, or empirically
so that the potential reproduced known properties of the material, or a combination
of the two. This resulted in potentials which were qualitative at best. The general
procedure was to use physical or chemical arguments for as many parameters as possible
and to fit the remaining parameters so that experimental quantities such as the density,
bulk modulus or dielectric constant were reproduced. The problem with this is that
the number of parameters that can be determined from physical arguments is generally
very small and in order to parametrize empirically the number of physical quantities
used should be large relative to the number of parameters required in order that they
be determined uniquely. Otherwise a set of parameters determined to reproduce, say,
structural properties might give awful results for dynamical properties. Since the number
of experimentally determined physical quantities that are available is generally quite small,
and since they are frequently properties which are not completely trivial to calculate with
the potential, the number of parameters that one can find in this way is usually very small.
This, in turn, causes the problem that one needs to use a functional form for the potential
which is simple enough to contain only a few parameters. Functional forms which are
too simple cannot generally describe the forces between the ions in an accurate way. For
most systems this requires complicated functions which capture phenomenologically the
behaviour of the electrons. Such potentials for ionic systems are discussed in detail in
chapter 3.

Another problem with potentials which have been used in the past is that they were
frequently parametrized using data relevant to a given set of thermodynamic conditions
(e.g. pressure and temperature) or a given phase. One of the main advantages of MD
simulations is that they may be used for exploring new situations which are difficult or
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inaccessible for experiment. This means that potentials were frequently used in condi-
tions different from those under which they were parametrized. Any change in physical
conditions such as temperature, pressure, or phase results in changes in the underlying
electronic structure of the system. If such changes are large enough, the degree to which
a given potential can reproduce the interatomic interactions can be seriously diminished.

A solution to all of these problems is to parametrize a potential using information
extracted from first-principles calculations [69]. From such calculations one can extract
a wealth of information such as the force on each atom, the stress on the system and
the energy differences between different configurations. Since a reasonably high degree
of accuracy may be achieved from density functional theory calculations and since DFT
calculations are economical enough to allow one to treat large numbers of atoms ( ~
100 ) which are representative of bulk systems when simulated under periodic boundary
conditions, they are the obvious choice for performing the first-principles calculation.
One can, in principle, perform ab initio calculations for any atomic configurations at any
density and so the force-field may be parametrized for the particular physical conditions
that one is interested in simulating.

The other major advantage is that an arbitrarily large amount of information may be
extracted and this allows one to use force-fields which are much more complicated and
therefore have many more parameters than traditional force-fields. However, in order to
do this it is necessary to use a careful, well-defined parametrization procedure so that
problems do not occur due to there being too little ab initio data. The basic requirement
that must be fulfilled is that a potential which is parametrized for use under a given set of
conditions should be able to describe all sufficiently large systems under these conditions
with the same degree of accuracy.

In this chapter the parametrization procedure, which was originally developed by
Ercolessi and Adams [69] and later developed further by Laio et al. [70], will be described
along with the details of the ab initio calculations that we have used for the oxides, SiO,
and MgO.

4.2 Parametrizing from Ab-Initio Data

4.2.1 The Force-Matching Method

In a molecular dynamics simulation the important quantities are the forces on each atom,
and if one is performing simulations at constant pressure, the stress on the simulation cell.
For this reason, and because forces are plentiful in number in an ab initio calculation,
Ercolessi and Adams have introduced the idea of fitting parameters to reproduce ab initio
forces as well as possible. Laio et al. [70] were interested in simulating systems under high
pressure and so have extended this slightly by trying to fit also the calculated stress. In the
following we also include in the function to be optimized, the energy differences between
different configurations. Given a form for the interatomic force-field, which depends on a
set of parameters {n}, we minimize the function :

I({n}) = wAF + w;AS + w. AE (4.1)
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with respect to the parameters {n} where
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Here Fj; is the a—th component of the force on atom I as calculated with the
effective potential, Fj ; is the force component as calculated ab initio, Sclﬁ is the stress

tensor component as calculated with the effective potential and Sg‘f is the stress tensor
component as calculated ab initio, B is the bulk modulus, Uf' and U# are the potential
energy of configuration k as calculated with the force-field and ab initio respectively, n. are
the number of atomic configurations for which ab initio calculations have been performed.
The quantities ws,w, and w, were chosen to reflect the amount of available data for each
quantity, i.e : wy > wy > w,. It was found that the final fit was quite insensitive to the
values chosen as long as w, was relatively small due to the fact that only one energy may
be extracted per configuration.

In order to be sure that the minimization procedure was meaningful n. was required
to be reasonable large. Its value depended on the system studied, the potential form used
and the number of atoms in the unit cell. For SiO, we generally used a value of n, = 5.
For MgO, a functional form with more parameters was used and there were fewer atoms
in the unit cell and so it was found that a value of n, = 10 was required. In each case
at least another 5 configurations were retained during each fitting procedure in order to
test that the final functional form fit these configurations as well as it did those that were
used in the minimization of T'({n}).

Minimization of I'({n}) with respect to {n} was performed using a combination of
“simulated annealing”[71] and “Powell minimization”[72]. A basin in the surface defined
by I'({n}) in n—space was initially found using simulated annealing and, once found,
further minimization was performed using the method of Powell. Minimization in gen-
eral, and particularly simulated annealing, is a very computationally expensive process.
However simulated annealing is very useful for two reasons : 1. It is very stable; Powell
minimization can break down if numerical errors (such as overflow errors) occur due to
unphysical values of the parameters; 2. In principle it can always bring one to the global
minimum; In practice however this depends on how much computer time one is willing
to allocate it. These properties of the simulated annealing method makes it particularly
useful when fitting a potential for the first time. One does not need to start with reason-
able or physical values of the parameters in order for it to converge and this means that
one may parametrize exotic potentials for which the parameters have no obvious physical
interpretation.
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The freedom which one is afforded using the combination of ab initio data and sim-
ulated annealing is crucial. It simply would not be possible to parametrize a force field
such as the distorted-ion model introduced in section 3.7.2 without either one of these
assets.

4.2.2 The Optimal Potential Method

Equilibrate at (P,T) and
extract new sample _

configurations.
Starting "o M N O A Ci |59 | Cin .
potential e ¢ U rn}: Ciy)
iy, o, = r(m; C)

Perform DFT calculation
and fit new parameters.

Figure 4.1: Tterative procedure for constructing the optimal potential at (P, T).

It is important when fitting to the ab initio configurations that one fits to configu-
rations which are representative of the real system. This is particularly important for
liquids. The liquid should have a structure which is close to that of the real liquid. How-
ever, if one doesn’t have a good potential to begin with, one can’t construct by means
of an MD simulation a good liquid. One solution is to generate configurations using ab
initio molecular dynamics. Our attempts to simulate liquid MgO with Car-Parrinello MD
proved too difficult however due to large errors of the form described in chapter 2 for
levels of the fictitious mass which allowed a reasonable equilibration time, i.e. py > 100
a.u. For this reason we have used an adapted form of an iterative procedure for generat-
ing the potential which was first used by Laio et al.[70] (see figure 4.1). Beginning with
the best potential available, the system of interest is thermalized with an MD simulation
(typically of ~ 20 ps) at the thermodynamic conditions (P, T") for which one would like to
create the potential. Once equilibrated, a number of well separated ( typically by ~ 1 ps)
atomic configurations are generated. On these configurations, density functional theory
calculations (see section 4.3) of total energy, forces and stress are performed and these are
used to perform the parametrization. We will denote the ab initio data extracted during
step ¢ of the iterative procedure collectively as C; Using the parameters obtained during
the minimization at this step, a new equilibration is peformed (as a continuation of the
previous one) and new atomic configurations extracted. Once again, ab initio calcula-
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tions are performed and a new set of parameters obtained. This cycle is stopped once the
current parameter set fits the current (C;) and the previous (Ci_1) ab initio data to the
same degree, i.e. D({n}i; Ci) = D({n}i; Ci_v).

4.3 Ab-Initio Calculations

As mentioned previously, the ab initio calculations which we perform are all done within
density functional theory[2, 3]. In 1964 Hohenberg and Kohn [2] proved that all properties
of an electronic system are uniquely defined by its ground state probability density. Sub-
sequently, Kohn and Sham [3] turned this theorem into a practical scheme by recasting
the many-body Schrédinger equation into a set of single particle Schrodinger equations
in which each particle sees an effective potential which is a functional of the probability
density. Walter Kohn shared the Nobel Prize for chemistry in 1998 for his part in the
development of this theory.

Unfortunately, the Kohn-Sham effective potential is not known in general and so one
cannot solve the equations exactly. Instead, various approximations to the unknown part
of the potential ( which is called the ezchange-correlation potential ) are used. Although
the exchange- correlation potential Vi is fully non-local, the approximations to it are local
or semilocal. The most commonly used approximate functional is called the “local density
approximation” ( LDA ). This is a local operator in which the exchange-correlation po-
tential at a point is chosen to be the same as that felt by an electron in a uniform electron
gas of the same density. The result for the uniform electron gas was calculated numer-
ically by Ceperley and Alder [36] and parametrized by Perdew and Zunger[37] among
others. This approximation has been incredibly successful considering its simplicity, and
for many systems it can produce results (such as structural parameters, phonon frequen-
cies and elastic moduli) which are in good agreement with experiment. The general
consensus nowadays is that another class of functionals, so called “generalized gradient
approximations” (GGA), which depend not only on the density at a point but also on its
spatial derivative are superior in most situations, but particularly for studying molecules.
This empirical observation is supported by the fact that, of the conditions which the true
functional is known to obey, more of them are satisfied (by construction) by some of the
more recent GGAs [73, 74] than the LDA.

All our calculations are performed within the planewave pseudopotential method[75,
76]. In this method, electronic states of an atom which are changed negligibly by the
presence of other atoms due to the fact that they are very low in energy and are close
to the nucleus, are considered frozen. Electrons which do respond to the presence of
other atoms are then treated as though they see an effective non-local potential, called a
pseudopotential, due to the nucleus surrounded by these unreactive electrons. The eigen-
functions of the Kohn-Sham hamiltonian of the system of pseudopotentials and electrons
are represented in a basis of plane waves. The planewave method relies on the use of
periodic boundary conditions whereby the basic simulation cell is repeated periodically
in all directions. Periodic boundary conditions are particularly suitable for studying bulk
materials as the infinitely repeated periodic images can imitate the effect of an infinitely
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large system, provided that the elementary unit cell is sufficiently large.

In principle, density-functional theory with the plane-wave pseudopotential method is
an ab initio method in the sense that all one needs is the atomic number of the constituent
elements of a system in order to calculate the properties of the system. In practice however
there is a very strong empirical element to it. The details of the calculation are not
uniquely defined. Various choices which one may make during a calculation, such as the
method of creating the pseudopotential and the choice of exchange-correlation functional,
can have a strong impact on the properties calculated. For this reason, as it is most
frequently used, it is a semi-empirical method, albeit a very good one. For a solid, it is
generally applied with reference to such experimental data as volume, bulk modulus, or
lattice parameters and if suitable agreement is not found, the underlying details of the
calculation are revised. The hope is, that by using a scheme which gives good agreement
with these experimental properties, one improves the chances of this scheme working well
for other properties. This is never guaranteed but it is the best approach available within
this method. For example, different choices of the Mg pseudopotential, which were, by
our estimation, all equally reasonable, led to equilibrium volumes of MgO which varied
by up to 10%. The scheme that we have chosen was shown[6] to give good results and
was thoroughly tested. However, it was not formally more justifiable than any other. It
may be that this is an extreme case, however there is always some significant variation
and particularly in elastic properties such as the bulk modulus.

4.3.1 Computational Details

In the creation of the effective force-fields we have performed ab initio calculations for
two different materials, MgO and SiO,.

For SiO,, the scheme that we used was chosen for convenience (the pseudopotentials
already existed and the exchange-correlation functional was already implemented in the
plane wave program) rather than based on empirical considerations. Its empirical justi-
fication lies in the ability of the resulting effective force-field to reproduce experimental
properties of crystalline and liquid silica. This is discussed in detail in chapter 5. The
pseudopotentials used for silica and oxygen were both of the form introduced by Trouil-
lier and Martins [22]. Although in the calculations of silica we have used a rather old
gradient-dependent exchange-correlation functional [77], in the atomic calculations which
were used to create the pseudopotentials we have used different functionals for both oxy-
gen and silicon. For silicon the functional used was the LDA[36, 37] and for oxygen
we used a different gradient-dependent functional [35]. The practice of using different
functionals in the atomic and bulk calculations is generally frowned upon, however from
a formal mathematical or physical point of view we are not aware of any reason why
it is not as justified as any other scheme. Nevertheless, mixing functionals in this way
can lead to confusion and it needlessly complicates the details of a calculation and so is
not advisable in general. In addition to this, our use of the planewave pseudopotential
method is purely as a means of parametrization and if there is a formal difficulty with
mixing functionals as we have done, it is highly unlikely that errors incurred in this way
are greater than other errors associated with our effective force-fields.
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For MgO, we have used identical pseudopotentials to those that have previously been
used successfully to calculate its vibrational properties for a large range of pressures and
temperatures[6]. We require our simulations to produce good quality forces and this is a
much more rigorous test of its ability than it would have been feasible for us to perform.
The exchange-correlation functional used in this case was the LDA.

An important parameter in any planewave calculation is the highest energy planewave
used in the expansion of the wavefunctions. For SiO, the value used was 130 Ryd. and for
Mgo the value used was 120 Ryd. These values are very large relative to most calculations,
however we required a relatively precise determination of the stress and this converges
very slowly with respect to this parameter.

A unit cell containing 24 SiO, units was used in the simulation of silica and a cell
containing 32 MgO units was used in the simulation of MgO. These sizes were deemed
large enough to be a good representation of the bulk and , in any case, it would not have
been computationally feasible to use cells which were significantly larger.

The brillouin zone was sampled with only the ['-point in each case.
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Chapter 5
Silica

5.1 Introduction : Why study silica ?

Silicon dioxide or silica is one of the most widely and intensively studied of all materials.
There are many reasons for this. First of all, it is one of the most common materials in
nature, silicates making up more than 90% of the minerals in the earth’s mantle and crust.
It is a vital industrial material. An obvious example is that it makes up approximately
75% of the composition of the glass that is used for everything from window panes to
optical fibres. It is also used extensively as an insulator in the semiconductor electronics
industry. These are only two of a vast range of uses.

Silica has an extremely rich phase diagram with a large number of allotropic forms.
The best known of these are quartz, cristobalite, tridymite, coesite, stishovite and of
course silica glass. All the low pressure crystal structures of silica are composed of corner-
sharing SiO, tetrahedra and even in the glass and the liquid almost all of the Si atoms
are tetrahedrally coordinated. Silica is a main constituent of most zeolites which are
metastable microporous crystalline solids which are extensively mined and fabricated for
their unique structural properties. Their porosity makes them useful as molecular sieves
in large scale industrial chemistry. Zeolites are also used as catalysts, the reactions taking
place in their large internal cavities.

Its abundance in the earth’s mantle makes the response of silica to extreme condi-
tions of temperature and pressure of great importance to those constructing geophysical
models of the earth’s interior. Although it generally appears with other elements such
as Mg,Al,Fe,Na...etc in the form of silicates, the first step in understanding silicates is to
understand silica itself. Likewise, the first step in modelling such systems with computer
simulation is to successfully model silica. The behaviour of liquid silica and silicates as
a function of pressure and temperature is of importance to those studying the formation
and cooling of the earth.

Silica is a prototype of strong network-forming glass formers. For this reason alone
there has been intense interest in studying the structural and dynamical properties of the
liquid and the glass.

Molecular dynamics plays an important role in the study of silica in all its forms since,
in principle, it allows one full access to the microscopic structural details. Experiment,
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on the other hand, can only provide averaged quantities such as structure factors. Ex-
periments have difficulties with extreme conditions of temperature and pressure but, at
least in principle, MD is not as constrained and so it is particularly relevant for studies
at high temperature and pressure where there is little experimental data.

5.2 Modelling Silica

Silica is quite a difficult oxide to model, at least compared to the simplicity of MgO.
It has traditionally been considered to be a covalent system[78], and although there is
almost certainly some covalency present, it has been found that it is more appropriate
to model it as an ionic system[79] and, more recently, that some of the effects previously
attributed to covalency[81, 82] could, in fact, be explained using a polarizable ionic model
[83]. It is precisely the features of its bonding which have caused confusion in the past,
i.e. the mix of ionicity and covalency, which makes it a particularly challenging system.
Nevertheless, as discussed in the introduction, it is an extremely important system and
so any improvement is worthwhile.

For many systems experience has shown that it is easier to model the broad features
of its potential energy surface, which play a dominant role in determining structure, than
it is to model the fine details, which can strongly effect dynamics. For silica its ionicity
makes it reasonable to suppose that these broad features are dominated by electrostatic
considerations. The small degree of covalency, on the other hand is probably more lo-
cal in its effects and therefore of importance for dynamics but of lesser importance for
determining structure. Here we would like to test our polarizable-ion potential and our
parametrization method by trying to create a potential which reproduces the structural
properties of silica.

There have been a large number of potentials proposed for silica in the past. Many
of these include three-body angular dependent terms and so are intrinsically biased in
favour of a tetrahedral crystal structure[80, 81, 82]. These are of little use to us as we
aspire to creating a potential which is suitable for disordered aswell as crystalline phases.
Demiralp et al. [84] have proposed a many-body potential for silica which improves on
the prediction of the crystal structures with respect to pair potentials. The many-body
character of this potential is a charge equilibration model[53] which allows for local changes
in the degree of ionicity. Although it is very likely that the degree of ionicity changes
with pressure, there is no evidence that we are aware of to suggest that this happens
dynamically at a given pressure or temperature. The polarizability of the oxygen ion is
well established however[85, 86] and it may be that inclusion of charge-transfer mimics to
a certain extent the effects of polarization. It is likely that inclusion of charge-transfer is
necessary for transferability between polymorphs with different silicon coordination, for
example, for modelling the pressure induced transition from 4-fold coordinated quartz to
6-fold coordinated stishovite.

The most commonly used potentials for silica are all pair-potentials of the form

Urs(Rry) = LA Brye T —
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In other words, a Born-Mayer-like form but without the R~8 term. There have been a
number of parametrizations of this potential form for silica in the past[79, 87, 88]. Most
recently, van Beest, van Santen and Kramer (BKS)[88] have fit the parameters to repro-
duce the energetics of small hydrogen-terminated silica clusters as well as the experimental
structural parameters and elastic constants of quartz. The resulting potential has been
extensively applied to study a large range of dynamic and thermodynamic properties of
silica in many different phases and under many different thermodynamic conditions[89].

A polarizable potential for silica has previously been proposed by Wilson et al.[85] and
shown to be important for reproducing the infrared absorption spectrum of the amorphous
solid with respect to pair potentials of the BKS form. The model that they have used is
discussed in section 3.3.1 and their parametrization was mainly empirical.

As mentioned previously, we are primarily interested in improving the description of
the electrostatics with respect to previous models and we therefore use a model similar to
that of Wilson et al. but with the well-defined and controlled parametrization procedure
which is outlined in chapter 4. We use the polarizable potential described in section 3.7.1
with short-range dipoles induced by the cation on the anion. The short-range repulsive

interactions are modelled with a pair potential of Morse-Stretch form :
i) wi(l-g) )
Ui' = 4 qj —+ DZ][G ! T?j — 2e ? T?j ] (52)
rij

where the interaction between an atom of type 72 and an atom of type j is defined by the
parameters qi,qj,Dij,*yij,r?j and the distance between them 7;;. This form was chosen over
the Born-Mayer form as it proved to be more transferable between different phases.

As we have discussed in chapter 4, it is important to take into account the effect that
temperature and pressure have on the electronic structure of any material and that it
should be verified that potentials are sufficiently transferable when using them under new
thermodynamic conditions or in a new phase. For silica we aspire to creating a potential
which can be used over the large range of allotropes which are seen at low pressures (i.e.
< 5or 10 GPa.) and at temperatures up to those that are relevant for studying the liquid
with MD. The high viscosity of silica liquid means that in order to observe substantial
diffusion on a MD timescale, very high temperatures (3000 — 4000 K) are required. It is
not obvious a priori that our potential form can stretch across this range of conditions.
However, all the low-pressure polymorphs consist of corner-sharing tetrahedra and the
liquid and glass are known to be mostly composed of networks of such tetrahedra. In
other words, the short-range order doesn’t change much across these phases. In order to
find a system which is not biased towards a particular crystal structure we have decided
to parametrize the potential by fitting to ab initio data on the liquid at 3000 K. This was
done using the procedure outlined in chapter 4 and the results will be discussed in the
next section.

We will draw comparison with experiments, Car-Parrinello simulations of liquid silica
[90] and one of the most commonly used effective potentials for silica : the BKS potential
[88]. Another very commonly used form is the potential of Tsuneyuki et al.[87] which has
the same form as BKS and was parametrized in a similar manner. Therefore most of the
problems with BKS which we highlight here are equally applicable to this potential.
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5.3 Results

5.3.1 Fitting to Ab-In:itio Data

In order to obtain a benchmark for the parametrization of the new potential, we first tested
the ability of the BKS potential to fit the ab initio data. The values of AF = 0.51,AS =
0.057" and AE = 0.82 (see section 4.2.1 ) that we obtain for the BKS potential in the
liquid at 3000K and zero pressure point to a rather poor accuracy of this potential, at
least at our working conditions for the fitting procedure. This is quite surprising if one
considers that the ability of the BKS potential to reproduce some structural properties of
the solid phases is good overall[91], and confirms our suggestion that the simplest force
fields should be used with great caution at physical conditions that differ from those where
they have been parametrized or from those where they are known to provide accurate
results. It is possible to substantially reduce these errors by minimizing I" (see equation
4.1) with respect to the parameters of the Born-Mayer potential, i.e. by constructing the
“optimal” Born-Mayer potential for the liquid at 3000 K and zero pressure. However a
large number of such minimizations were attempted and although it was possible to reduce
AF and AS to values of about 0.3 and 0.015 respectively, the resulting potentials gave
unrealistic values for the structural parameters and densities of the low pressure solid
polymorphs. For example, the equilibrium density of quartz at 300 K varied for such
potentials between values as low as 0.3 g cm ™ and as high as 4.5 g cm™. A minority
of these potentials worked reasonably well for quartz but they did not necessarily work
well for the other polymorphs and choosing these potentials out of the many created
would represent an empirical procedure. We would like to avoid empiricism as much as
possible. It is clear from the poor fit to ab initio data and the fact that improving this
fit disimproved structural properties considerably, that the rigid ion model is too simple
to allow for an accurate description of silica at low pressure and for a temperature range
encompassing both solid and liquid phases. It seems that more ingredients are required
in the potential model in order to improve its ability to reproduce the ab initio forces.

We now look at the results of our parametrization of the polarizable model. We have
created and tested only one parameter set for the polarizable potential and we report the
results of those tests here.

The results of the fit of the polarizable model described in the previous section were
very encouraging. The values of AF,AS and AFE for the final parameter set were
0.16,0.014 and 0.18 respectively, indicating a dramatic improvement over BKS, but also
over the best (optimal) potential with the Born-Mayer form. The parameters are listed
in Table 5.1. The fact that inclusion of polarization both improves the ability of the
potential to fit the ab initio forces and allows one to forego the empiricism of selecting
a potential that reproduces experiment out of more than one created, strongly suggests
that polarization is a crucial ingredient in the bonding of silica.

'AS has been computed relative to a roughly estimated bulk modulus of B = 30GPa.
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Table 5.1: Force field parameters (atomic units)

do gsi Q b c
—1.38257 | 2.76514 | 8.89378 | 2.02989 | —1.50435
Do o Ds; o Dg; s
2.4748 x 10~* | 1.9033 x 1073 | —2.08460 x 1073
Yo-o Vsi-o Vsi-si
12.07092 | 11.15230 | 10.45517

,',.0 TO ,',.0

O-0 Si-O Si-Si

7.17005 | 4.63710 | 5.75038

5.3.2 Testing the Potential

In order to check the reliability of our improved potential we compare its thermodynamic
and structural properties with experiments[92] on the equation of state of liquid silica,
and with available ab initio data[90, 86] on the microscopic structure of the liquid. Exper-
imental data on liquid silica is scarce and so we have compared with the Car-Parrinello
simulations of liquid silica performed by Trave et al. and Sarnthein et al.. Although
the considerations of chapter 2 mean that one cannot guarantee these simulations to be
of Born-Oppenheimer quality, we will compare only with structural properties and it is
reasonable to expect that they are at least much more reliable than pair-potentials. Fur-
thermore, agreement between MD results using our potential and CPMD results would
indicate a probability that both are in agreement with what would be obtained from Born
Oppenheimer MD. However, since only short simulation times and small system sizes are
possible with CPMD, the thermodynamic averages that can be extracted are poor. This
is particularly bad for liquid silica at low pressure as its viscosity is so high that diffusion
is negligible on an ab initio MD timescale.

Equation of State

The poor ab initio statistics can clearly be seen in figure 5.1 where three different types
of MD simulations (Car-Parrinello, BKS and our polarizable potential) are compared
with experimental results. The ab initio data consists of simulations from two different
starting points. In one set of simulations (those at lower volumes), quartz was melted
at zero pressure and successively higher pressures were continuations of the simulations
at previous pressures. In the other set, the initial configuration was taken from a well
equilibrated liquid simulation using our polarizable potential. The viscosity of silica and
silicates in general is known to decrease dramatically with pressure [93, 94] and it can be
seen that the discrepancy between the two sets of results decreases at higher pressures
where the liquid is better able to diffuse. However, there are clear problems with the ab
initio simulations and this highlights the need for accurate effective potentials which are
economical enough for large system sizes and long simulation times to be feasible.

The experimental data is from experiments at ~ 1620 K whereas the ab initio simula-
tions were at a temperature of ~ 3500K and the classical MD simulations were at ~ 3100
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Figure 5.1: Pressure as a function of volume in liquid silica from classical MD using
the new polarizable potential compared with results from the BKS potential, ab initio
simulations[90] and experiment[92].

K. However, at zero pressure we have verified that thermal expansion of the liquid is small
(~ 107K, consistent with experimental estimates[95]) and that taking account of it
would in fact bring our zero pressure results into even better agreement with experiment.
Volumes were obtained as averages along constant-pressure[96] molecular dynamics runs
of at least 50 ps following 20 ps of equilibration and with simulation cells containing 576
atoms. At lower pressures (< 3 GPa) where diffusion is slower, averages were obtained
along runs of more than 100 ps. The overall agreement with experiment is rather good,
and definitely better than any atomistic model proposed so far. The BKS model under-
estimates systematically the volume by ~ 13%, a likely consequence of its inability to
reproduce the ab initio stress. Our improved potential compares with experiment even
better than the ab initio results, a likely consequence of the poor thermodynamic averag-
ing in the ab initio simulations. It is also the case that ab initio simulations tend to either
systematically overestimate ( in the case of GGA) or systematically underestimate (in the
case of LDA) the volume[97] and that, probably fortuitously due to the mixture of the
two functionals that we have used, our potential predicts volumes that lie approximately
midway between the two.

Particularly at low pressures, the large viscosity of liquid silica means that even for our
relatively large system size (576 atoms) obtaining a reliable statistical average of volume
requires at least 50 picoseconds. For the abinitio system (72 atoms) a considerably longer
run would be required. However, in spite of our much larger simulations, there is a kink in
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the equation of state at a pressure of between 0.5 and 0.75 GPa. It could be that the system
is diffusing so slowly at these low pressures that longer simulation times are required in
order to get an average of adequate precision. Another possibility is that there is a
transition between two different liquid phases at low pressures and that the discontinuity
is at (or near) the point where the transition occurs. However we have examined a large
number of structural features such as pair-correlation functions and angular distributions
and have not identified any first-order change of structure with pressure. This does not
mean that such a change doesn’t occur however. Averaged quantities such as distribution
functions may be quite insensitive to such a transition. These simulations were extremely
expensive, each low pressure data point being the result of approximately 24 days of single
processor computer time and so it has not yet been feasible to redo or refine the simulations
to see if an entirely new liquid created from fresh initial conditions would produce the
same results. Moreover the average over any 50 ps segment (after the equilibration time)
gave results which were very close to the average over the full 100 ps. We have verified
that the system is diffusing at these pressures but the diffusion is extremely slow and
so we cannot say with any degree of certainty what is the cause of this anomaly in the
equation of state.

We have checked that simulations using a 72 atom simulation cell (the same size as
was used for the ab initio simulations) , gave results in almost perfect agreement with
those of a 512 atom cell. This indicates that finite size effects are negligible. This may well
be due to the effective “electronic” screening of the long range electrostatic interactions
between ions which is present in our model in the form of dipoles.

Structure of the Liquid

We now focus on the microscopic structure of liquid silica. Fig. 5.2 shows a comparison
of the silicon-oxygen-silicon angle distributions in the liquid. It has been pointed out [85]
that by counteracting the repulsion between silicon atoms, the inclusion of dipole effects
can shift the oxygen centered angle distribution towards lower angles. This is clearly
seen in this comparison between the results of the BKS simulations and the ab initio and
polarizable potential simulations. The very close correspondence between the ab initio
distribution and the polarizable potential distribution justifies both our description of the
electrostatics in terms of dipoles and the inclusion of short-range induced dipoles which
contribute very significantly to the dipole moment on each ion and which are therefore
strongly linked to the distribution of angles. The peak at around 90 degrees in the
polarizable and Car-Parrinello angle distributions is due to the presence of microscopic
configurations consisting of rings containing two silicon and two oxygen atoms. These do
not appear in the BKS distribution, indicating that they are energetically unfavourable
with this potential.

Fig. 5.3.2 shows the proportions of N-fold coordinated silicon atoms as a function of
pressure compared to the results of Car-Parrinello simulations [90] and simulations using
the BKS potential [99]. Our results are in much better qualititative agreement with the
CP calculations than with the classical BKS calculations despite the fact that simulations
are performed at high pressures where the parameter set may become increasingly inac-
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Figure 5.2: Distribution of oxygen-centered angles in liquid silica as a function of pressure
from Car-Parrinello MD [98], BKS MD and MD with our polarizable potential.

Table 5.2: Quartz

Experiment. (Ref. [100]) | New Potential | BKS

a 4] 1.916 1.925 4.941

¢ [4] 5.405 5.386 5.449

p lg/cm™3] 2.646 2.665 2.598
Si-O-Si 143.7 144.5 148.1

curate. This implies that the inclusion of realistic physics into the potential improves its
transferability as well as its accuracy. Our results indicate that the tetrahedral structure
of the liquid is more stable at higher pressures than is predicted by the BKS potential.
Since diffusion is strongly linked to the presence of defects such as 3-fold and 5-fold coor-
dinated silicon atoms, the ability of a potential to reproduce the correct distributions of
such defects is important if it is to properly describe the diffusion mechanism as a function
of pressure.

Crystal Structures

As a final test of the potential we examine its ability to describe the most important low

pressure polymorphs of silica. The various crystal parameters for at zero pressure and 300

K for quartz, cristobalite and coesite are given in tables 5.2, 5.3 and 5.4 respectively.
Stishovite, the stable form of silica at high pressure (above ~ 8 GPa) and which
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Figure 5.3: Percentage of N—fold coordinated silicon atoms in liquid silica as a function of
pressure for the new potential compared to CP simulations[90] and the BKS potential[99].

can also be stabilized at ambient conditions was also simulated. However, in this case,
although the system relaxed initially to very close to the correct density (within 2%),
it always collapsed within several picoseconds to lower density structures. This would
indicate that the energy barrier which keeps stishovite metastable at low pressures is
hugely underestimated with this potential. It is not surprising that the potential has
problems describing stishovite. Stishovite differs from all the other polymorphs considered
in that the silicon ions are sixfold coordinated. This inevitably means that there are local
changes in electronic structure with respect to the tetrahedral structures and therefore a
loss of accuracy of our parameter set.

The tetrahedral crystal structures are all in very good agreement with experiment. In

Table 5.3: Cristobalite
Experiment. (Ref. [101]) | New Potential | BKS

a [A] 1,957 1.936 1,920
¢ [4] 6.890 6.847 6.602
p lg/cm ™) 2.334 2412 2.515

Si-O-Si 146.8 144.0 143.9
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Table 5.4: Coesite

Experiment. (Ref. [102]) | New Potential | BKS

a [A] 7.136 7.165 7.138

b [A] 7.174 7.162 7.271

c [4] 12.369 12.377 12.493

8 120.34 120.31 120.76

p [g/cm 7] 2.921 2.933 2.864
Si-O-Si 143.6 144.0 150.5

fact the agreement is so good that it surpasses the agreement with previously published
fully ab initio calculations[97, 103]. As with the density of the liquid, this agreement is
almost certainly fortuitous.

5.4 Discussion

We have demonstrated in this chapter how our inclusion of polarization effects coupled
with our parametrization routine can produce a potential with extremely good structural
properties. We have not yet extensively tested the dynamical properties of this potential,
however we have noted that the o to S-cristobalite transition occurs at too low a temper-
ature (by about 35%) with our potential, and diffusion of the liquid seems to be faster in
general than diffusion with the BKS potential. This potential, is itself considered to have
diffusion which is too fast based on extrapolations of low temperature data[104, 105]. It
is not surprising if our potential does not describe dynamics well. We note that, par-
ticularly if covalency is present, the functional form would seem to be ill-equipped to
describe shorter-range interactions. This can also be seen by the fact that we reproduce
ab initio forces only to within 16% and yet our description of the structural properties
of the crystalline allotropes is really excellent. This would suggest that most of this 16%
can be attributed to short-range (non-electrostatic) forces which are important for a good
description of dynamics.

The many-body distortable-ion model outlined in section 3.7.2 and the previous
aspherical-ion model of Rowley et al.[52] are designed to improve dynamics in simple ionic
systems where relatively minor distortions of anions occur. The distortion self-energy of
the ions is not well researched (see section 3.7.3) and the idea that the force between
ions depends only on the distance between electron clouds along their line of centers is
one of many gross over-simplifications which one should not expect to work for spatially
extended and highly distorted charge distributions such as have been found in electronic
structure calculations of silica (see [106] and references therein). We have attempted to
apply this model to silica and we see a small improvement of the fit to the forces (to about
14%). However, little time was spent in the parametrization process and we have not yet
tested this potential. Future work may yield a potential with which dynamical properties
may confidently be modeled.



Chapter 6

Magnesium Oxide

6.1 Introduction

Magnesium oxide is considered to be the simplest oxide for a number of reasons. It is an
ionic oxide with a 1 : 1 stoichiometry and it has a very simple structure - the cubic NaCl
structure (see figure 6.1) - which has been shown experimentally to be stable at pressures
up to at least 227 GPa[107]. Beryllium oxide, the only group II oxide with fewer electrons
forms the less symmetric B4 (wurtzite) structure. MgO is known to be extremely ionic,
with the Mg atom giving up two of its electrons almost entirely to the O atom and so to
a good approximation, the O?~ and Mg?* ions both have closed n = 2 shells of electrons.
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Figure 6.1: The structure of MgO.
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The simplicity of MgO makes it a natural starting point in attempts to understand or
model oxides which make up one of the most important groups of compounds. Important
oxides include water, a necessity for all known life, and the cuprates, a class of complex
copper oxides in which high-temperature superconductivity is found. Both of these ex-
amples are the subjects of intense research, but as we will see, even MgO a much more
simple system, is not well understood. Although an understanding of MgO will clearly
not automatically lead us to an understanding of other oxides, if we can’t understand the
electronic structure and the interactions between atoms in a system as simple as MgQO,
we cannot expect to have much success with more difficult systems.

MgO is an important component of the earth’s lower mantle[108]. It is estimated
that it makes up approximately 20% of the lowermost part of the mantle, the other
most important compounds being MgSiO3 and SiOy (see chapter 5). The behaviour of
MgO under conditions of extreme pressure ( up to ~ 130 GPa) and temperature ( up to
~ 3000 K) is important for understanding deep Earth geophysics. Once again, its relative
simplicity makes it the starting-point for experimental and theoretical techniques that
are used to probe the properties of deep mantle minerals, the vast majority of which are
oxides. The stability of MgO under pressure also means that it is frequently used as a
pressure calibration standard for high pressure and temperature experiments.

MgO is also important industrially, primarily as a catalyst but it has a wide range
of uses. It is an important component of glass, it is used as an electrical and thermal
insulator and it is used as an ingredient in the production of fertilizer among other things.

For the reasons outlined, MgO has been the subject of intense theoretical and ex-
perimental study and there is an enormous literature on it’s properties and behaviour
under pressure and temperature. However, experimental difficulties at high pressures and
temperatures and problems with theoretical methods of simulating ionic systems, some
of which are discussed in chapter 3, have meant that some properties are still a matter
of debate. From a theoretical point of view, a large number of empirical, semi-empirical
and ab initio techniques have been applied to MgO. Density functional theory within
the local density approximation has shown itself to be very accurate for the calculation
of the static and vibrational properties of crystalline MgO [6, 26, 5] and it is probable
that it is also very good for simulating the liquid. However, ab initio molecular dynamics
has proven difficult (see chapter 2) and at any rate what can be studied with ab initio
timescales and system sizes is very limited. Empirical and semi-empirical models have
been disappointing for many properties, particularly for dynamical properties such as
phonon frequencies[52, 109]. The papers by Rowley et al.[52] and Aguado et al.[55] have
shown that effective potentials can model crystal dynamics but a model which is practical
for simulations of reasonably large systems is still lacking.

An important outstanding problem is the behaviour of the melting temperature as a
function of pressure. There have been a number of attempts to simulate the melting of
MgO in the past [112, 115, 113, 111, 114] . Some of the results are shown in figure 6.2.
The theoretical results show a difference of a factor of between 2.5 and 7.3 in the slope
AT melting/ AP, at zero pressure with respect to the results of diamond-anvil-cell experiments
[110]. It has been suggested by a number of people that there is a systematic error in the
experiment, however the lack of agreement between the different theoretical approaches,
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Figure 6.2: The melting temperature of MgO as a function of pressure from
experiment[110] and from simulations using the variational induced breathing (VIB)
model[111], the potential induced breathing model[112], and the effective potentials of
Vocadlo and Price [113] and Strachan,Cagin and Goddard [114].

and the inability of these approaches to describe the phonon spectrum of MgO means that
the case for repeating the experiment is not as strong as it might be. It would have very
important geophysical consequences if, in fact, there was a problem with the experiment
and MgO has a much steeper melting slope[116].

Between the Earth’s lower mantle and its outer core of molten iron there is a boundary
layer in which seismic observations have indicated a drastic drop in sound velocities[117].
An open question is whether this is due to a change in chemical composition or to melting.
The magnitude of this velocity change, especially in the shear velocity, favours melting.
If this is the case then there will be a constraint on the temperature at the core-mantle
boundary (which is an important but not well-known quantity) from the solidus tem-
perature of the mantle. It was found by experiments[110, 118] that the melting lines of
MgO and (Mg,Fe)SiOs-perovskite cross at about 50 GPa, so that at the pressure of the
core-mantle boundary, the melting temperature of MgO is lower than that of (Mg,Fe)SiO3-
perovskite. Previously it had been thought that the eutectic composition of the mantle
lay near the composition of perovskite, the major component. Zerr and Boehler’s results
indicate that, in fact, the eutectic composition is probably much more MgO-rich. This
has then been used to deduce new constraints on the temperature of the core-mantle
boundary[116].

If Zerr and Boehler’s work turned out to be wrong, as theorists currently suspect, one
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of the most popular current models of the core-mantle boundary and as a result of the
temperature profile throughout much of the earth would have to be substantially revised.

The aim of this chapter is twofold. First of all, MgO, will be used as a testing ground
for the polarizable and distortable-ion interatomic potentials which we have discussed in
chapter 3. We will use the parametrization scheme of chapter 4 and show how we can
achieve a marked improvement in accuracy over simpler force-fields whilst still retaining
the ability to simulate much larger systems than are possible with ab initio methods.
Secondly, we tackle the problem of the melting slope of MgO using a combination of
molecular dynamics with our improved effective force-field and total energy calculations
within density functional theory.

6.2 Testing Potentials for MgO

In this section various different functional forms for the interatomic potential will be
tested. The criterion that we use to determine the quality of a functional form is its
ability to fit the ab initio data, as described in chapter 4. We will confine ourselves to
testing the usefulness of three different types of potential :

1. A pairwise short-range interaction potential of the form

_ CIJ EIJ
Urs(Riy) = Byyecrakis — 217
IJ( IJ) IJ R?J R?/‘JIJ

(6.1)

where By, ary, Cry, Ery, Ny are all parameters to be optimized.

2. A polarizable-ion potential including short-range polarization, as discussed in sec-
tion 3.7.1. Only the oxygen ion is considered polarizable.

3. A distortable-ion potential, as discussed in sections 3.7.2 and 3.7.3. The interaction
energy between ions I and .J is given by

Urs(Lry) = Apge ®7Lis 4 By Prolis (6.2)

and the functions f; J,a§0), and ag,) are given the same forms as in equations 3.48, 3.46

and 3.50 respectively, i.e.

fry = Cfeciitus (6.3)
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where C from equation 3.50 has been merged into the pre-exponential factors A;;
and Byy. The parameters to be optimized are A;y, ary, Bry, Brr, C’;l,), C’;ZJ), C’;g)
,C%). The values R, = 8.5 a.u and R, = 10 a.u. were used in the decay function

arj-
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Using a scheme which was slightly modified with respect to the one outlined in sec-
tion 4.2, five force-fields were constructed using five different parametrizations. In addition
to the ingredients mentioned, all five included the point charge-electrostatic potential with
the charge on an ion as a parameter. The potentials created were

A. A pair-potential : short-range pair potential, parametrized in the crystal at ambient
conditions.

B. A polarizable potential : short-range pair potential, with polarizable anions, parametrized
in the crystal at ambient conditions.

C. A distortable-ion potential : distortable-ion potential, parametrized in the crystal
at ambient conditions.

D. The full model : distortable-ion potential, with polarizable anions, parametrized in
the crystal at ambient conditions.

E. The full model : distortable-ion potential, with polarizable anions, parametrized in
the liquid at 3000 K.

Each of these potentials was tested by its ability to fit three different sets of ab initio data.
Using the full model, which consists of a distortable-ion potential with anion polarization
and point charges, three potentials have been created using the self-consistent procedure
of section 4.2. These three potentials were optimized at zero pressure for (i) the liquid at
3000 K (ii) the crystal at 2000 K and (iii) the crystal at 300 K respectively. Each of these
three potentials was used to create atomic configurations at the conditions for which it
was optimised. These configurations are considered to be as representative of the true
system as we have the ability to create.

The five potentials A to E were parametrized using the ab initio data at the correct
conditions and each potential was evaluated not only by the values of AF, AS, and AE
achieved during parametrization, but also by their ability to fit the ab initio data from the
other two sets of conditions. For example, potential A was parametrized at 300 K, and
then its ability to fit the ab initio data in the crystal at 2000 K and the liquid at 3000 K was
also tested. Due to the fact that for stress and energies it was not possible to parametrize
using an extremely large ab initio data set (we were limited by the computational cost of
optimisation to 10 configurations), the numbers quoted are the fit to 10 configurations at
the same conditions but which were not used in the minimization of I'({n}). In all cases
the error in the stress was evaluated relative to a pressure B = 140 GPa which is close to
the experimental bulk modulus at ambient conditions of 150 GPa.

The results are summarized in table 6.1. We cannot guarantee that we have found
the global minimum in each case during optimization as simulated annealing had to be
done at a rather rapid quench rate. The simulated annealing was followed by Powell
minimization[72]. In each case, the total minimization time was the same (10 days on a
single processor) and therefore more economical force-fields are likely to be better mini-
mized than less economical ones.

A number of things can clearly be seen from table 6.1. First of all, not surprisingly, the
distortable-ion model on its own is quite bad. This is probably because of the shortness of
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Table 6.1: The fit to the ab initio data for the different potential forms
300K crystal 2000K crystal 3000K Liquid
AF | AS | AE | AF | AS | AFE || AF | AS | AE
9.3 | 5.0 | 255 13.7] 3.3 | 15.5 || 25.1 | 4.8 | 52.4
6.9 | 5.2 | 238 90 | 6.2 | 178 ||17.5] 5.6 | 23.6
10.4 | 39.1 | 5.9 || 13.6 | 51.7 | 164.8 || 32.2 | 58.2 | 69.2
34 106 | 30 | 68 | 03] 98 ||17.1] 0.3 | 10.5
12.8 | 0.1 | 59.0 | 10.2 | 0.1 | 189 || 9.6 | 0.0 | 17.7

mo QW=

the range of its interactions. Ions further away from each other than 10 a.u. interact only
via the coulomb force between their charges. At 300 K, the full model is clearly better
than all other forms. It also transfers very well up to higher temperatures and to the
liquid. The pair-potential, although working quite well for the crystal, does not transfer
well to the liquid. The polarizable model yields results which are intermediate in quality
between the pair-potential and the full model. The results are a clear illustration of the
fact that by adding more physics into the form of an effective potential one can create
force-fields with, not only an improved ability to fit the ab initio data, but also a much
improved transferability between different phases and conditions.

The poor fit of potential E to the energy differences in the crystal at ambient conditions
is because the energy differences in the liquid and high temperature solid are much greater
than those at lower temperatures. The absolute value of the error in the energy differences
is the same at low temperature and high temperature but AF is the error relative to the
root-mean-squared value, which for the crystal is very small.

Phonon Frequencies

Having established that our inclusion of many-body effects has improved the potential
form with respect to the pair potential, at least according to the criterion that we have
adopted, we now look at its ability to model the vibrational spectrum of MgO. We note
once again that the DF'T scheme to which the potential was fit gives a very good descrip-
tion of phonon frequencies at ambient conditions [6]. In order to get some perspective
about the kind of accuracy that has been achieved in the past with other models we look at
the results of simulations using a “Variational Induced Breathing” (VIB) model[119, 109].
The reason for comparison with this model is that it is the most highly evolved of a class of
models of Gordon-Kim type [120]. In these models, the crystal charge density is modelled
as a superposition of ionic charge densities. The total energy and forces are then calculated
using Kohn-Sham theory [3]. Since the isolated O®~ ion is not stable, it must be stabilised
in some manner. In the VIB model this is done by surrounding the ion with a sphere of
+2 charge ( called a “Watson sphere”) , the radius of which is varied so as to minimize
the total energy of the crystal. This non-empirical model is useful for comparison because
models of this type have been extensively applied to MgO[119, 109, 121, 112, 111}, and
in particular to study the melting of MgO[112, 111, 121]. It is these theoretical melting
curves that we would like to improve upon in section 6.4. A comparison of the results of
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the VIB model with those of self-consistent DFT calculations is useful since it illustrates
the importance of aspherical distortions which, if the fully ionic picture is correct, is the
primary difference between them. As can be seen from the phonon dispersion curves
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Figure 6.3: The phonon dispersions of MgO as calculated with the variational-induced
breathing model[109] compared with experiment[62]

(figure 6.3) the level of agreement with experiment is quite poor for some of the phonon
modes. Since the self-consistent DF'T results are in very close agreement with experiment,
this highlights the inadequacy of models which do not allow for aspherical ionic distor-
tions. The most striking disagreement with experiment is in the longitudinal optical (LO)
phonons. LLO phonons induce a long-range electric field in the crystal which opposes the
motion of the ions and therefore raises the energy of the phonon mode. In the real crystal,
electrons screen out some of the effect of this electric field. The screening mechanism is
mainly that of ionic polarization but may also include contributions from charge transfer
between ions. Since this is not present in the VIB model, the electric field is too high and
the LO frequencies are correspondingly higher. It is precisely this effect which prompted
the development of the shell model and subsequent methods of treating ionic polarization.

We now turn to our model of interionic interactions to see how well it performs in
the calculation of the phonon frequencies. The method that we use to calculate the
phonon frequencies is derived from the fluctuation-dissipation theorem [122]. The phonon
frequencies are calculated from the positions of the peaks in the spectra of the spatial
Fourier components of longitudinal and transverse charge and mass current correlation
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functions, for wavevectors along the high-symmetry directions of the crystal[57].

N N
CLong Z Lk v! *Lk ! Z Lk v (O)efbk-rJ(U))» (66)
I=1 J=1
N N
CTrans (k) = Z £k x v ()e T D)) (3 (=X (0)ik x v (0)e T 0))) (6.7)
=1 J=1

where vI(t) is the velocity of ion I at time ¢ and X(t) is the charge of species I for the
optic modes and the mass of species I for the acoustic modes. k is a wavevector which is
commensurate with the size of the simulation cell.

We performed an MD simulation on a system of 512 atoms using the full-model,
optimised in the crystal at 300 K. The current correlation functions were calculated on a
time domain of length 2.9 ps which was averaged over a simulation of length 20 ps. The
phonon dispersions that we get are shown in figure 6.4. We get an extremely close fit to
both the experimental and the self-consistent DF'T data. The chief discrepancies are in the
optical modes which are systematically underestimated. The longitudical optical mode in
particular is underestimated near the zone center. Although we do not calculate the mode
frequences at T' = (0,0,0), as this would require an infinitely large simulation cell with
the method that we are using, it looks as though the LO-TO phonon splitting is slightly
underestimated. In our parametrization procedure we have used a small cell to perform
the ab initio calculations and so the long-range interactions which are important for
dispersion near the I'—point are not included. Our hope is that by modelling correctly the
electrostatics at shorter range, we get a potential which, when used in a larger simulation
cell, can accurately model the long range electrostatic interactions. This is not guaranteed
however and is likely to work only if we include all relevant screening mechanisms in our
functional form. The incorrect LO-TO phonon splitting suggests that our description of
the electrostatics is incomplete. This is not surprising since dipole polarization is only one
of many screening mechanisms. It may be that charge-transfer between ions is important.
However, a comparison with the results of reference[55] is suggestive of it being due to the
fact that we haven’t included the affects of higher-order multipoles. Our Car-Parrinello
simulations and static DFT calculations (see section 2.4) showed that there was very
close to a complete transfer of 2 electrons from the magnesium to the oxygen ions at
high pressure. However, the charge on the oxygen ion in this potential (and all other
potentials that we have fit) is ~ 1.5 - considerably less than this. Although the degree of
ionicity is certainly less at zero pressure where the LDA band gap is lowered by 20 — 30%
(to ~ 5 eV) it is unlikely to have reduced to this extent. Under the assumption that,
within our model, short-range interactions and electrostatics describe completely separate
aspects of the potential-energy surface (we do not know the extent to which this is true)
the minimization routine fits the charge and the polarizability so as to best approximate
the electrostatics of the crystal. The lack of higher order multipoles means that it must
choose a compromise between purely dipole screening, in which the polarizability o and
the charge ¢ take their “true” values, and uniform screening in which the charge is simply
reduced by a factor equal to the dielectric constant and the polarizability is zero. In
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Figure 6.4: The phonon dispersions of MgO as calculated with the full polarizable and
distortable-ion model parametrized in the crystal under ambient conditions compared
with experiment[62] and with the density functional perturbation theory results of Karki
et al.[6]

reference[55] they use formal ionic charges and include both quadrupoles and dipoles
and they get better agreement with experiment. Nevertheless, the description of the
electrostatics that we have is significantly better than any other effective potential that
we are aware of (including the non-empirical Gordon-Kim models), and quadrupoles would
add considerably to the computational expense of the model.

Density

We now look at the density as a function of pressure and temperature for this potential.
As can be seen from figure 6.5, the MD simulations are in excellent agreement with
experiment. The density as a function of pressure from the MD simulations are even
in slightly better agreement with experiment than the DFT scheme of Karki et al.[6],
particularly at high pressure. Although we have fit the stress so that it fits almost exactly
the stress from DFT calculations using the same pseudopotentials as Karki et al., our
DFT calculations are not identical. We sample the Brillouin zone in a different way and
we use a much higher plane wave cutoff. The cutoff used by Karki et al. is only barely
converged at zero pressure and so it is possible that their calculations disimprove under
pressure.
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Figure 6.5: The density of MgO as a function of a) pressure (at 300 K) and compared to
experiment[125] and density functional perturbation theory calculations [6]; b) tempera-
ture (at zero pressure) compared to experiment|[123, 124]. MD simulations used the full
model potential parametrized at ambient conditions and simulation cells containing 512
atoms.

6.3 The Distortable-Ion Model Revisited

As discussed in section 3.7.3, we do not impose the distortable-ion model on the system.
We have parametrized the force-field using simulated annealing which was begun at a
high temperature. This means that, although we have supplied a functional form which
is capable of including distortable-ion behaviour, the minimization routine is free to do
with this form whatever is best for reproducing ab initio forces. The options that are
open to the minimization routine are

e to disable all variable-radius functionality, and therefore to model the interionic
forces with a double exponential of the interionic distance R;;. It would be optimal
to do this if the way in which we model distortions is completely unphysical.

e to enable only the compressible-ion part of the model, i.e. that which is analogous
to the model of Wilson et al[47], thereby allowing only spherically symmetric anion
distortions. It would be optimal for it to do this if the way in which we model
aspherical distortions is unphysical but our description of spherical distortions is
reasonable.

e to enable only the asymmetric part of the model and to disable purely spherically-
symmetric distortions. This is optimal if our reasoning that aspherical distortions
are energetically equivalent to spherical ones is true and the form of the model is
reasonable.
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e to partially enable either or both types of distortions as the best compromise between
rigid-ion behaviour, breathing-ion behaviour and distortable-ion behaviour if all
three of the models fail to varying degrees and in different ways to reproduce the ab
initio potential energy surface.

The parametrization process is therefore itself a test of the distortable-ion model. We
now look at what, precisely this parametrization process has done by examining the radius
of an oxygen ion in the direction of a neighbouring magnesium ion for one of our potentials
(potential F which is discussed in detail in section 6.4). The test is performed in the crystal
at 3000K. The local radii of the anions consist of an arbitrary constant, which may be
merged into the constant coefficient of the exponential force between ions, and the true

variations of the radii due to changing environment. We look at the quantities o7; — 077 ,

ag,) —ag,), and 050) —050) for anion I and cation J where U—U,ag]) and 050) are averages over

a long trajectory. These quantities therefore are the non-constant parts of the different
contributions to the radius of ion I in the direction of J (Recall that o7, = U§O) + ag,)
where 0'50) includes only spherically-symmetric distortions and O'}l]) includes aspherical
distortions ).

The results are shown in figure 6.6 and the variation in the value of L;;, as defined by
equation 3.30, along the same trajectory is shown for comparison. As can be seen, the
local radius is dominated by the effect of the aspherical part of the distortable-ion model.
The spherical part makes a significantly smaller contribution. This clearly vindicates our
extension of the compressible-ion model to include aspherical distortions. The variation
in the radius is very small compared to the variation in L;; and so we look at what
contribution this makes to the forces between the ions. Looking at the forces in a pairwise
way is not entirely justified given the many-body nature of the potential, however it seems
natural to look at the quantities

AUrg(Lry)  OUrs(Rrgj—01j—041)

QY =100 x —2L1 e OR1s (6.8)
1J
and
AUry(Lry)  OUrs(Rrj—015—041)
2 oL 9R
Q) =100 x My (6.9)
0Ly

where F} ™% is the root mean-squared value (averaged over time) of the total force on anion
I (i.e. from all atoms and from both electrostatic and non-electrostatic contributions)
projected onto the line joining the centers of I and J. These quantities are plotted in
figure 6.7. QU is a way of looking at the impact of instantaneous variations of the
membrane radii on the total force on the ion. Q® is a way of looking at the impact of
instantaneous variations of the membrane radii on just the short-range part of the force
between ions I and .J. If the radius the ion is constant, then QY = Q® = 0.

It is difficult to know how one should best compare forces, or judge the impact of
individual contributions to the forces. However, inspection of these two quantities strongly
suggests that, with the parameters of the model chosen by the minimization routine, the
variation of the anion’s radius has a significant impact on dynamics.
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Figure 6.7: Q(IIJ) and Q%) (see equations 6.8 and 6.9)as a function of time along the same
trajectory shown in figure 6.6

So, the above discussion shows that the minimization routine finds it optimal to allow
fully aspherical distortions of the anions which impact significantly on the interatomic
forces. This, coupled with the overall ability of the model to fit ab initio data would
strongly suggest that the distortable-ion model works and is a valuable addition to the
force-field. However, it is very likely that it could be improved with research into the
various functional forms on which it depends.

6.4 The Melting Line of MgO

As mentioned in the introduction to this chapter, there is considerable debate about the
melting temperature of MgO as a function of pressure. In this section we attempt to
calculate the derivative of the melting temperature as a function of pressure using a com-
bination of classical MD simulations, ground-state DFT calculations and Car-Parrinello
MD simulations. The method that we use to find the zero-pressure slope is to use the

Clausius-Clapeyron equation
AL = ng (6.10)
dP AH
which relates the derivative of the coexistence curve between the solid and the liquid to
the change in enthalpy AH and volume AV between the phases. At zero pressure the
change in enthalpy is simply equal to the change in the internal energy AU. The failure
of previous theoretical models to agree with each other and with experiment makes it
important for us to eliminate as many sources of error as possible from our calculation.
Ideally we would like to eliminate all sources of uncertainty except for those inherent
in the DFT calculations, i.e. the uncertainty due to the use of approximations to the
exchange-correlation energy.
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Table 6.2: The fit to the LDA ab initio data for the liquid (F) and solid (G) potentials
used in the calculation of the melting slope.

3000K Crystal 3000K Liquid

AF | AS | AE | AF | AS | AE
9.6 | 0.1 | 10.8 || 10.4 | 0.2 | 10.2
6.2 | 0.3 | 10.6 || 44.0 | 2.3 | 54.0

Q=

Table 6.3: The fit to the PBE ab initio data for the liquid (F) and solid (G) potentials
used in the calculation of the melting slope.

3000K Crystal 3000K Liquid
AF | AS | AE | AF | AS | AE
10.6 | 1.3 | 12.0 || 10.8 | 0.9 | 12.2
6.6 | 1.6 | 11.2 || 45.0 | 1.5 | 56.1

Q

In order to calculate the melting slope we need to calculate the melting temperature
T, the volume at the melting temperature in the solid ( Vi ) and the liquid ( V] )
and the potential energy at the melting temperature in the solid ( U; ) and the liquid
( U; ). In order to maximise the accuracy of our MD simulations we parametrize two
separate potentials, one for the liquid at 3000 K (potential “F”) and one for the solid at
3000 K (potential “G”) . Each potential consists of a polarizable-ion part, point charge
electrostatics, and distortable-ion short-range interactions. The distortable-ion self-energy
in this case is given by equation 3.49. The values R, = 7.0 a.u. and R, = 8.0 were used
in the decay function g;;. The parameters of these potentials are given in appendix 77.
The ability of each of these potentials to fit ab initio data from the solid the liquid at
3000 K was tested. We have also performed calculations on the same configurations using
the state-of-the-art generalized-gradient approximation to exchange and correlation of
Perdew, Burke and Ernzerhoff (PBE)[74]. The results are summmarized in tables 6.2
and 6.3 It was found that the potential which was parametrized on the solid at 3000 K
could not be used at higher temperatures or in the liquid. The reason for this is that the
iterative procedure which was used to calculate 050) and 0}1}, due to the form of the self-
energy used, did not converge for this potential under these conditions. This is the reason
for the poor fit to the liquid ab initio data in table 6.2. There were no such problems for
the potential which was parametrized on the liquid. The solid potential is therefore used
mainly in order to test the functional form of potential which differs from that previously
used. It also is used to verify that experimental data on thermal expansivity does not
differ strongly at higher temperatures from extrapolation of low temperature behaviour.

We would like to test the ability of the potentials to reproduce experimentally known
properties of MgO. We begin by looking at the ability of the potential parametrized in the
solid to describe the phonon dispersion at ambient conditions. The results are shown in
figure 6.8. One should not expect results which are as good as those for a potential which
is parametrized at ambient conditions, and so the results are extremely good. There is
very good agreement with both experiment and the DFPT results of Karki et al.. As
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Figure 6.8: The phonon dispersions of MgO as calculated with the full polarizable and
distortable-ion model parametrized in the crystal under ambient conditions compared
with experiment[62] and with the density functional perturbation theory results of Karki
et al.[6]

before, the worst agreement is for the long-wavelength LLO phonons, and once again this
is probably due to our incomplete description of electronic screening. It may also be that
the very high symmetry of the relatively cold crystal makes polarization energetically
unfavourable, and so the polarizability appropriate for a hot crystal is larger. A too-large
polarizability, as discussed earler, should manifest itself in the phonon curves as a lowering
of the energy of the long-wavelength LO phonon modes. However, in general the results
seem even better than those of figure 6.4 and the ability of both potentials to reproduce ab
initio energy differences is very satisfying and suggests that the form of the distortable-ion
self-energy used may be better than a simple exponential.

As in the case of silica, there is little or no experimental data on liquid MgO and
so we compare the structure of the liquid with the structure obtained in Car-Parrinello
simulations. We would like to be as sure as possible that the liquid that we have created
has a reasonable structure. We have performed CPMD of liquid MgO (using a small
fictitious mass, oy = 100 a.u., and applying all the precautions and corrections described
in chapter 2). The Car-Parrinello simulations, once corrected according to the rigid-ion
approximation, still showed errors in the forces of ~ 12.5%. This is even higher than the
errors in the forces using our effective potential. Nevertheless, agreement between the
two approaches would indicate the probability that both are right. The Car-Parrinello
simulations were continued from a long classical simulation with potential F. Following
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Figure 6.9: The pair-correlation functions of liquid MgO at ~ 3100 K and zero pressure
as calculated with our effective potential and from a Car-Parrinello simulation.

2 picoseconds of equilibration with CPMD the pair-correlation functions were calculated
on a further 1.5 picosecond trajectory. This time is not sufficient to get accurate density
averages ( 2 different simulations at pressures of ~ 0 GPa and ~ 0.5 GPa both yielded
the same average density), however we can check that the structural features are the
same as were obtained with our effective potential. The high rate of diffusion should
mean that the liquid has had ample time to relax structurally. In figure 6.9 the Mg-O
pair-correlation functions for the Car-Parrinello and effective potential liquids at 3050 K
and the effective potential solid at 3100K are plotted. There is remarkable agreement
between the CPMD results and our classical simulations indicating that the liquid is well
reproduced The comparison with the solid pair-correlation function shows that there is
a substantial difference in structure between solid and liquid. We see a change in the
average coordination from 6 to ~ 5. This change in structure is consistent with what is
generally expected in ionic melts[126, 127] and it is consistent with a large volume change
between solid and liquid. Ubbelohde[126] has argued that the coordination and volume
change on melting is correlated with the polarizability of the anions. Compensating
electrostatic forces in the crystal are responsible for larger interionic distances than occur
in the melt. This can clearly be seen by the displacement inward of the first peak in the
Mg-O pair-correlation function in the melt as compared to the crystal (figure 6.9). It is
the strong attraction between anion and cation which is responsible for this. However,
a large ionic polarizability weakens this attraction due to screening leading to increased
Mg-O distances, a coordination number closer to six and a structure and hence volume
more similar to that in the solid. Cohen and Gong[112], found a coordination number
of around 4.5, and a volume difference AV/V; ~ 30% (Vi = volume in the solid at the
melting point), using the non-polarizable PIB model. Our model attributes a sizeable
polarizability (~ 14.3 a.u.) to the oxygen ion and we find AV/V; ~ 20%.

Melting Temperature

We first try to calculate the zero pressure melting temperature 7},,. The method that we
use to do this is the “2-phase” method [128, 129, 115]. Solid and liquid configurations



6.4. THE MELTING LINE OF MGO 91

which have been pre-equilibrated at the desired temperature and pressure are “stuck to-
gether”! to form a supercell in which there is a solid-liquid interface. If the temperature
is higher than the melting temperature, the solid portion should begin to melt and the
interface moves so as to increase the amount of liquid. If the temperature is lower than
the melting temperature, the liquid at the interface begins to crystallize and the solid
portion increases. Crystallization generates latent heat which raises the temperature of
the simulation cell. Melting, on the other hand, absorbs latent heat thereby lowering the
temperature of the simulation cell. At temperatures much higher than 7,,, the system
melts completely and at temperatures much lower than 7}, the system crystallizes com-
pletely (see figure 6.10). In principle it is possible to bracket T}, in this way and this has
been the approach of Belonoshko and Dubrovinsky in their calculation of the melting line
of MgO. However, we have found that, within quite a large range of starting temperatures
(between ~ 2800 K and ~ 3300 K), the temperature performs large fluctuations about T,
in which the system is by turns crystallizing and melting. If full crystallization or melting
does not occur these oscillations can persist for a long time and therefore in order to get
a rough idea of the melting temperature, following an initial equilibration period we have
averaged the temperature over these oscillations. The average temperature depends on
the relative sizes of the solid and liquid portions of the coexistence cell via the specific
heat capacities of the solid and the liquid. This means that different simulations give
different average temperatures depending on the initial conditions of the simulation. It
is also true that, if equilibrium between solid and liquid occurs such that either phase is
under-represented, finite-size effects may play a role. In order to get a rough estimate of
T,,, we have performed a number of different 2-phase simulations and discarded those in
which only a small fraction of the cell was either solid or liquid.

Simulations were performed at constant pressure[96] and were begun from configu-
rations that were already very close (within ~ 0.5 GPa) to zero pressure. Clearly, one
cannot use two different potentials in the same simulation and so, due to the convergence
problem of the solid-parametrized potential, we have performed the two-phase simulations
with the liquid potential. A simulation cell containing 1024 atoms was used. Previous
investigations[115, 113] have concluded that for systems of more than a few hundred
atoms, the finite size effects are negligible.

Simulations which were initially at 2800 K and 3300 K transformed completely into
crystal and melt respectively. In five further simulations, solid and liquid were observed
to coexist for a long time. Following 20 ps of equilibration the temperature was averaged
over a further 15 ps for each simulation. Averages of 2974 K, 2984 K, 3025 K, 3038 K
and 3042 K were found for these simulations giving an overall average of 3013 K.

There is some controversy regarding the melting temperature at zero pressure with
values of T, ranging from about 3000 K to about 3250 K[110, 130]. Zerr and Boehler [110]
measured the temperature to be 30404100 K which is close to previous measurements[131,
132], and in excellent agreement with all of our average temperatures. However, recent
work[130] suggests that the correct value may be 3250 4 20 K. Even an error of ~ 250 K

! This involves performing a few steps of steepest-descent minimization on the atoms very close to
the interface between solid and liquid in order to prevent large increases in the kinetic energy and/or
non-convergent polarization due to unphysical ionic separations.
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Figure 6.10: The 2-phase melting procedure. a) The simulation cell at the beginning
containing 512 atoms of crystalline MgO and 512 atoms of liquid MgO periodically re-
peated; b) T' > T,,. The liquid portion has grown at the expense of the solid portion.
The interfaces are not as clear as in a) but the center of the cell still shows signs of order,
indicating crystallinity while liquid makes up a large portion of the cell on either side; c)
T < T,,, some of the liquid portion has crystallized. The edges of the cell are still clearly
liquid but much of the cell looks relatively ordered.
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in our calculated melting temperature is good considering the level of agreement which
can generally be obtained using ab initio methods[25]. Since we are primarily interested
in the melting slope dT,,/dP, and since a 10% level of accuracy would still vastly improve
on the current uncertainty of the slope, we have chosen a value T, ~ 3100 K at which to
calculate the energy differences and the volume.

Volume and Energy Differences

In order to calculate the volumes in the liquid and solid, we first would like to test that
our potentials reproduce the experimental temperature and pressure dependence of the
volume in the solid. Since our ab initio simulations will be done in cells containing 64
atoms, we also check that finite size effects are not too great. The convergence problem
for the solid potential that was mentioned previously has meant that at 3100 K it was
not possible to run for a long time. Eventually convergence failed and the simulation had
to be abandoned. This was only a problem in the solid at temperatures very close to the
melting temperature. For this reason, we have not succeeded in running a simulation near
T,, for long enough to get a completely reliable average of the density. We have therefore
checked the volume at this temperature using the liquid potential.

The temperature dependence of density is a property which is quite a challenge for
effective potentials because thermal expansion depends on the second derivatives of the
potential energy with respect to ionic positions. In figure 6.11 we plot the equilibrium
volume as a function of temperature for system sizes of 512, 216 and 64 atoms. The
results are in excellent agreement with experiment. What is most striking is the fact
that the finite size effects are very small. We find similar results for the silica potential
in chapter 5. It has been shown in other simulations[55, 67] that finite size effects for
ionic systems can be considerable. It may be that because we treat the polarization in a
realistic way (by fitting to ab initio data) the long range electrostatic effects are effectively
screened. This is an important quality of our potentials since they are significantly slower
to evaluate than pair-potentials and the fact that one can use smaller systems for many
applications alleviates some of this burden.

Figure 6.12 shows the equation of state for the 512 atom system compared to experi-
ment and to the DFT results of Karki et al.[6]. Once again, the results at low pressures
are in excellent agreement with experiment. At higher pressures ( > 20 — 30 GPa. ) the
agreement is not as good as was found in figure 6.5 due to the lower radial cutoff for the
decay function, however since we are interested in the melting slope at low pressure, this
is of little consequence.

We now calculate the volume in the liquid and the solid at zero pressure for temper-
atures near the melting temperature 7;,,. The liquid potential was used to calculate the
pressure at constant volume for a range of densities (near the zero pressure equilibrium
volume) and temperatures (near T}, ) using simulation cells containing 512 atoms. From
these we extracted the volume as a function of temperature at zero pressure. For the
solid, constant pressure simulations were performed in order to extract the equilibrium
densities. The results are shown in figure 6.13. It can be seen that the volume difference
is not strongly dependent on temperature and that the use of the liquid potential in the
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Figure 6.11: The density as a function of temperature compared to experiment[123, 124]
for the solid potential with different simulation cell sizes and for the liquid potential.
Open symbols indicate that simulations were too short to guarantee reliable averages of
the density.

solid is probably justified given the level of agreement with the unconverged data points
from the solid potential relative to the difference in volume between solid and liquid. The
variation of the volume change AV with temperature is quite small ( the difference be-
tween 2950 K and 3250 K is about 7.2%) and the difference between the (unconverged)
results from the solid potential is very small (~ 2.6%).

We have extracted the average potential energy in the liquid and the solid from the
same simulations in which we obtained the densities. The results are shown in figure 6.4.
The energy difference between solid and liquid, like the density difference, has a negligible
temperature dependence.

The melting slope that we get from these simulations is primarily dependent on the
choice of the melting temperature 7T, used in equation 6.10 and this dependence is shown
in figure 6.15. We get a slope of between 145 K GPa~! and 170 K GPa~! depending on
the value of T},,. If we stick to the value of T}, that we have estimated in our 2-phase
simulations, the slope is 149.3 K GPa!. This differs by more than a factor of 4 from the
experimental slope of Zerr and Boehler[110] . It is also greater than some of the more
recent theoretically determined slopes. For example, Cohen and Weitz found a value of
~ 114 K GPa~'[111] and Strachanet al a value of ~ 88 K GPa~'[114].
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Figure 6.12: The equation of state of the solid-parametrized potential compared to
experiment[133, 125] and to density functional perturbation theory|[6]

6.4.1 Correcting the melting slope with ab initio calculations

The ability of our force-field to fit ab initio data suggests that the slope that we have
obtained should be very close to the “true” LD A result. However, we would like to check
that this is the case and correct any errors in the slope to bring it closer to the LDA value.
We consider possible errors in the energy differences and volume differences separately.
Using our effective potential, long simulations of the solid and the liquid were performed
at 3070 K. From each of these simulations 20 well-separated snapshots were extracted and
DFT total energy calculations performed on these configurations.

A source of error which it is not possible for us to control is the error inherent in the
use of an approximate exchange-correlation functional. Although there is no clear trend
for bulk systems as regards which approximate exchange-correlation functional gives the
best structural properties, it has been suggested on a number of occasions[97, 25, 134]
that generalized gradient approximations improve upon total energies with respect to the
LDA and that it is possible that for this reason GGAs can significantly improve melting
temperatures calculated with DFT[25, 134]. A comparison of properties calculated with
different exchange-correlation functional give a hint as to the magnitude of the error due
to the use of approximate exchange-correlation functionals. For these reasons, aswell
as performing total energy calculations using the LDA, we have performed total energy
calculations with the GGA functional of Perdew, Burke and Ezrenhoff[74].
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Figure 6.14: The average energy at zero pressure of the solid and the liquid as a function
of temperature from our MD simulations. The dashed lines are regression lines the slopes
of which differ by only ~ 1%.

Correcting Volume Differences

A possible source of error in our calculated melting slope is that both the solid and
the liquid were found to be extremely compressible at temperatures close to the melting
temperature. For example, at 3100 K, for our effective potential, the liquid compresses by
about 0.12 gem 3 per GPa of applied pressure whereas the solid compresses by only about
0.047 gem 3 per GPa. Our potential reproduces the LDA stress of the liquid and solid
within about 0.3 GPa and 0.15 GPa respectively, on average. For the GGA these numbers
are 1.3 GPa for the liquid and 1.8 GPa for the solid. The potential does not systematically
underestimate or overestimate the internal pressure with respect to the LDA however. We
have looked at the average internal pressure on the 20 liquid configurations and the 20
solid configurations with the effective potential and with LDA and GGA. The results are
shown in table 6.4. From this table it is clear that, with respect to the LDA, the errors in
the volume are very small, both for the solid and for the liquid. The effect of these small
differences in pressure is a change in the melting slope of about ~ 0.5% and so may be



6.4. THE MELTING LINE OF MGO 97

180
g -
G 170 e L
£ e
3 -
X, 160 - =
© _-®
53 .«”
@ ] - r
2 150 .
T -
= 140 —+- -
‘ ‘ ‘ ‘ ‘ ‘ ‘
2900 3000 3100 3200 3300

Melting temperature [Kelvin]

Figure 6.15: The calculated slope of the melting curve as a function of the zero pressure
melting temperature 7,,. A fit to the calculated points gives the line y = 0.08831x —
116.782.

Table 6.4: The average internal pressure (in GPa) on the sample solid and liquid config-
urations evaluated with LDA, GGA and the effective (liquid-parametrized) potential.

LDA | Potential | GGA
Solid | -2.84 -2.90 0.26
Liquid | -3.30 -3.29 -1.17

neglected.

A point of some concern considering the high compressibility of both solid and liquid
at temperatures near the melting temperature is that the extent to which the potential
underestimates the pressure relative to the GGA is different in the solid than in the liquid.
This indicates that there may be a difference in the GGA AV with respect to the one we
have calculated with the LDA. However, in order to do a proper comparison we would
need to find AV with a GGA-optimized potential because it is possible that some of
the stress differences is attributable to atomic configurations which were created with an
LDA-optimized potential and which are therefore unnatural within a GGA description.
The total change in volume with respect to the LDA also depends on the thermal stress
and the compressibility both of which are different in the solid and the liquid. All of these
factors mean that it is very difficult for us to estimate what AV is for the PBE functional.
A crude estimate (which is most likely to be an overestimate due to the calculation of
stress on LDA conifgurations) may be obtained using the pressure differences of table 6.4
and the compressibilities of the effective potential. This gives AVppr = 52.3 at 3100 K,
an increase of ~ 37%.

We conclude that a very important source of error with our method of calculating the
melting slope is related to the ability of approximate exchange-correlation functionals to
predict volumes and solid-liquid volume differences to a high accuracy. Although we can
get volume differences which are practically identical to those that would be obtained ab
initio with the functional used in the potential fit, different functionals may give different
volume differences.
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Correcting Energy Differences

In testing our potential we found errors in energy differences (within a given phase) of 10
to 12% (see tables 6.2 and 6.3). Here we look at the error in the energy difference between
phases relative to the LDA and the GGA using our effective potential.
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Figure 6.16: The average energy at zero pressure of the solid and the liquid as a function
of temperature from our MD simulations, and these energies once corrected using a)
LDA DFT calculations and b) GGA DFT calculations. The crosses show the average
energy (calculated with the effective potential) in the 20 configurations on which ab initio
calculations were performed.

The average difference between the ab initio energy and the energy from the classical
potential (A = U,; — U, ) were calculated for both the solid (Af;) and the liquid(AL).
The energy as a function of temperature was corrected using the ab initio data by adding
the quantity A7 — (A +Af) to the energies of the solid and the quantity Aj, — 2(A7 +
AL) to the energies of the liquid. The results for the LDA and the GGA are given in
figures 6.4.1 and 6.4.1 respectively. The fact that we have added the same correction at
all temperatures is justified by the observation that the temperature dependence of the
energies is very weak.

Although the LDA makes a significant difference (~ 17%) to the energy difference
between solid and liquid (AU), the GGA gives almost precisely the same result (within
3%) as our effective potential.

The fact that the average of the energy over the configurations on which the DFT
calculations were performed is very close to the average energy from the MD simulations
at the same temperature ( 3070K ) is very important. Not only does it suggest that the
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number of configurations used is sufficient to obtain meaningful corrections to AU, it also
means that the finite-size effects are small since the cell size in these configurations was
only 64 atoms.

Correcting T,

We can correct, to first order, the errors in the melting temperature calculated with our
potential using the following relationship[135]

ATm _ <Ulai — Ulep>6p - <U;u B U§p>8p (6 11)

T <Ulep>ep o < Sep>ep .
where the superscripts ’ai’ and ’ep’ indicate that a quantity has been calculated ab ini-
tio or with our effective potential, respectively and (---)., indicates an average over a
trajectory generated with the effective potential. The corrections can be extracted from
the calculations that we have already performed and which are plotted in figure 6.4.1.
The LDA melting temperature is ~ 17% larger at T-P4 = 3531 K and the GGA melting
temperature is 2.7% larger at TLPE = 3095 K.

The Melting Slope

We now look at the melting slope as corrected using the DFT calculations and as calcu-
lated with our effective potential (EP). We choose the intermediate value 7, = 3100K at
which to calculate the slopes since T, is overestimated with the LDA and since all our
em ab initio calculations have been performed at close to this temperature. We get

mrpa = 133.86 K GPa ' (6.12)
mpgg = 209.53 K GPa™" (6.13)
mpp = 156.87 K GPa ™! (6.14)

These slopes are plotted in figure 6.17. If we calculate what the melting slope in the
LDA approximation should be, using the corrected value of TLPA = 3531 K, we get
mipa — 168.3 K GPa_l, in closer agreement with the PBE result. However, it is not at
all certain that the volumes as a function of pressure in the solid and the liquid can be
extrapolated linearly as we have done, or whether energy differences remain constant up
to such a high temperature. Even with this correction there is still a large difference in
the values of mypa and mppr and this shows the level of uncertainty in our calculations
which is attributable to the exchange-correlation functional. However even this level of
uncertainty cannot explain the huge discrepancy between our results and experiment.

6.5 Discussion

In this chapter we have applied the distortable-ion potential introduced in chapter 3 to
MgO and clearly demonstrated its ability to accurately reproduce the ab initio poten-
tial energy surface. We have then applied this model to the long-standing controversy
surrounding the pressure dependence of the MgO melting temperature.
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Figure 6.17: The melting temperature of MgO as a function of pressure from
experiment[110] and from simulations using the variational induced breathing (VIB)
model[111], the potential induced breathing model[112], and the effective potentials of
Vocadlo and Price [113] and Strachan,Cagin and Goddard [114]. The melting slopes that
we obtain at T, = 3100 K, from our combination of classical MD and DF'T calculations
are also shown.

We find a melting slope that differs very strongly from the experimental slope. How-
ever, we have basically eliminated all our errors except for those inherent in the ab initio
calculations, i.e. those due to the use of approximate exchange-correlation functionals.
The errors due to the approximate exchange-correlation functionals is very large and il-
lustrates the large impact this quantity can have on a calculation. However, while we
have shown that different functionals give different melting slopes (by up to 40 or 50%),
our theoretical results differ with experiment by a factor of between ~ 4 and ~ 6. It is
unlikely that this disagreement is simply due to the exchange-correlation functional.

The melting slope depends on the volume change between solid and liquid and the
energy difference between solid and liquid. We have obtained very good agreement with
lower temperature data on the volume of the solid as a function of temperature and so
is is unlikely that we are substantially underestimating the volume in the solid at higher
temperatures. There is no experimental data to compare with in the liquid, however
our results compare very well with Car-Parrinello simulations and with what is generally
expected from an ionic system of this type. The change in volume that we see is, if
anything, small compared to similar compounds (such as LiF) and compared to some
previous simulations of MgO[111].

It is also unlikely,that there is a large error in our calculation of total energies. Since
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LDA and PBE both gave similar results (within ~ 15%), this would probably require
that the structure of the liquid is not representative of the true system. However, the
pair-correlation functions that we calculate are in very good agreement with those from
CPMD and so this scenario is unlikely.

The discrepancy may be due to an error in the experiment. This possibility has been
suggested previously[111, 115, 127]. It may also be that the exchange-correlation func-
tionals that we have used are incapable of modelling some exotic feature of the electronic
structure of liquid MgO. This is very unlikely given the ability of DFT to describe prop-
erties of the solid[6] and the quality of DFT calculations in general.

The most likely scenario is that the slope of the melting curve is initially very steep,
but that it flattens out very quickly, perhaps due to a liquid structure which changes
rapidly under pressure to being much more similar to the solid. Pair-correlation functions
have been calculated at high pressure[115] and qualitatively similar differences between
liquid and solid as we have seen here were found. However, the potential used in these
calculations was quite crude and did not include the effect of polarization. Polarization
has the tendency to reduce structural changes between solid and liquid[126].

The discrepancy with experiment remains a mystery and suggests that a repeat of
the experiment may be in order. Our future theoretical work will investigate the melting
temperature at higher pressures in order to check if the discrepancy is due to a rapidly
decreasing slope at low pressures.
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Chapter 7

Discussion and Conclusions

In this thesis an attempt has been made to find a way in which thermodynamic properties
of ionic systems can be predicted with a reasonable degree of accuracy from molecular
dynamics simulations. We use the combination of effective parameter-based force-fields
and ab initio simulations. The high quality of the results that we have obtained for
structural and thermodynamic properties of silica and MgO suggest that once a suitable
functional form for a force-field is available, the use of ab initio parametrization can greatly
improve the ability of the force-field to reproduce experimental data.

We use a slightly modified form of a previously proposed ab initio parametrization
process[69, 70] which has the advantage that one can make very specific and non-trivial
statements about potentials created : It can be said that for any atomic configuration
created with the potential under specified thermodynamic conditions, the forces are, on
average, within X% of those calculated ab initio', the stress components within Y%, and
the energy-differences between configurations within Z%.

However, our experience with the BKS [88] force-field for silica (see chapter 5) has
shown us that unless the functional form is physically appropriate for the system at
hand this method of parametrization fails to improve upon the ability of the potential to
reproduce experimental data. The form of the potential is crucial to the success of the
method. For ionic systems electrostatics dominate the interionic forces, and by including
ionic polarization one can greatly improve the ability of the force-field to model structural
properties.

Energetics and dynamics are more difficult to model. Although the positions of min-
ima in the potential energy surface seem to be mainly determined by electrostatics, the
energy barriers between minima and the details of the surface that contribute to dynamics
also depend strongly on other factors. We have described in chapter 3 the various ap-
proaches that have been taken in the past to modelling such effects as anion “breathing”
and distortion. These involve translating this complicated quantum-mechanical electronic
behaviour into a simplified phenomenological picture. This phenomenological approach is
necessary in order to formulate force-fields which are economical and capable of approxi-
mating interactions between ions.

'For a specified ab-initio calculation. Pseudopotentials, basis sets, sampling techniques and exchange-
correlation functionals must all be specified.
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For MgO we have aspired to modelling features of the ions’ potential energy surface
which govern dynamics and energetics and been quite successful if one is to judge by such
quantities as phonon dispersion relations and thermal expansion. A force-field has been
proposed which is mathematically equivalent yet superior from a computational point of
view to a commonly used method of modelling anion breathing effects[47]. This model has
been extended to include aspherical distortions in a way which seems plausible assuming
the effectiveness of the compressible-ion model. This “distortable-ion” model depends
on a number of constituent functions. We have postulated forms for these functions in
order to perform the preliminary testing of the model. We have not researched these
forms in any detail. This is an important endeavour if this potential is to be used in the
future. Our tests have shown that the model is indeed an improvement over simple pair
potentials despite the lack of research into its constituent functions, indicating that further
improvement could be achieved by investigating the optimal form of these functions.

In order to be able to confidently model dynamics such as diffusion or temperature-
induced soft-mode phase transitions it is vital to have a potential which accurately re-
produces energy barriers. Within our parametrization procedure, which, due to the sheer
quantity of data involved, is mainly focussed on forces, it is difficult to see how this may
be achieved except by making the functional form more realistic. The distortable-ion
potential presented is one quite general framework within which this may be achieved. It
is attractive due to the generality of its form, its non-reliance on an extended Lagrangian
formalism and its computational speed. It is also easy to envisage extensions to the model
such as the inclusion of a self-consistent procedure for the local radii, o, or an extension
beyond the dependence of forces only on the distance between ions along their line of
centers. However further testing is necessary.

A very important open question remains if one is to use the parametrization scheme
of chapter 4 or judge the value of a force-field on the basis of its ability to reproduce
forces in an averaged way as we have done thoughout this thesis : How do errors in the
forces manifest themselves in thermodynamic properties 7 It is very unlikely that there is
a general answer to this question. It is also very unlikely that the only thing that matters
is the average error in the force on an ion. Small, rare and subtle forces may have the
ability to make qualitative differences to a system. We have not tackled this problem and
it is certainly one that needs attention.

It has clearly been shown in this thesis that one can achieve high accuracy in many
quantities with effective force-fields. We have applied the method proposed to study an
important outstanding problem in geophysics : the melting line of MgO. In this case
we demonstrate how accurate force-fields and ab initio methods can be used together to
reduce the uncertainty to close to that inherent in the ab initio method.
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