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Chapter 1IntrodutionAlthough the fundamental interations responsible for the marosopi properties of ma-terials have been known for some time, our ability to use this knowledge in order to quan-titatively map mirosopi properties onto marosopi observables is still very limited.The goal of theoretial ondensed matter physis is twofold : to understand mirosopimehanisms - the interations of eletrons and ions - and how they relate to experimentalobservables, and to quantitatively predit the properties of materials. Theory has hadmany suesses in explaining experimentally observed phenomena and some notable fail-ures. Good examples are the explanation, more than forty years ago, of the phenomenonof superondutivity in a wide lass of materials as being the result of eletron-phononoupling[1℄ and the more reent failure of theorists to fully explain higher temperaturesuperondutivity in a di�erent lass of materials despite intensive e�ort. The quanti-tative predition of marosopi properties is extremely desirable as it would allow thedesign of new materials whih ould be tailored to suit a spei� purpose and it would alsoallow one to gain knowledge about materials under onditions inaessible to experiment.However, despite very rapid progress in the �eld of materials modelling in the last thirtyyears, it has not yet developed to the point where it an proeed without reourse toempiriism or experimental veri�ation.The fundamental problem is that although we an state the priniples by whih ele-trons and ions interat, the nature of these interations and the large number of suhinterations present in real materials means that apart from extremely simple systemssuh as the isolated hydrogen atom it is not possible to solve the relevant equations inorder to see how the marosopi system behaves as a whole. It is neessary to useomputers to help solve the many-body problem, but unfortunately despite enormousinreases in omputational power in the last three deades, it is simply not possible tosolve the equations exatly exept in an extremely limited number of ases. In fat, onean show that to solve exatly the Shr�odinger equation in its standard form for even teneletrons is beyond any oneivable omputer.A more pratial goal therefore is to re-express the many-body problem in a way whihis easier to solve, by making reasonable approximations wherever possible. There aremany di�erent approahes to this and the best approah to use depends on a wide rangeof fators suh as the material of interest, the onditions under whih the material is to be1



2 CHAPTER 1. INTRODUCTIONstudied, the omputational resoures available and the man-hours required to implementthe solution. Here the fous is on two of the most widely used approahes for atomistimaterials modelling, namely, the moleular dynamis tehnique and density funtionaltheory within the loal or semiloal density approximations. Density funtional theory(DFT)[2, 3℄ , whih is disussed in more detail in hapter 4, allows one to alulate theground-state probability density of a system of eletrons in a given potential. As a result itmay be used to alulate the energy and fores of a system of atoms whih is large enoughto approximate ertain properties of the bulk material. Central to the appliation of thismethod is the use of what is known as the loal density approximation, or LDA, whih hasprodued very aurate results for a wide range of materials. The moleular dynamis(MD) tehnique was historially a tool for exploring the statistial mehanial behaviourof idealized systems. Given a known, or alulable interation potential between a systemof atoms it evolves the atoms in time aording to the fores via Newton's equationsof motion. Sine most atoms are large enough to be onsidered lassial partiles, thisallows one to model the behaviour of a system at arbitrary temperatures or pressures. Theneessity of repeatedly alulating the fores between atoms has meant that the majorityof moleular dynamis simulations have used very simpli�ed phenomenologial interationpotentials and that these simulations are qualitative rather than quantitative in nature.In 1985, in a landmark paper[4℄, Car and Parrinello married density funtional theorywith moleular dynamis for the �rst time to allow the inreased auray of the DFTinteration potential and the �nite temperature real-time system evolution of MD in thesame simulation. Now known simply as Car-Parrinello Moleular Dynamis (CPMD),this method has beome one of the most widely used tehniques for the alulation ofdynami and eletroni properties of ondensed matter with the original paper being itedmany thousands of times to date. Although this method represents a vast improvementover the simpli�ed potentials whih existed beforehand, it is extremely omputationallyexpensive relative to these potentials and even with a modern parallel superomputer oneis generally on�ned to system sizes of the order of one hundred atoms and simulationtimes of only a few pioseonds. This is a major problem as it severely limits the range ofproperties whih one an alulate and the range of phenomena whih an be simulated.The larger the system size that is simulated the loser one gets to the dimensions observedby experiment and to the human sale on whih most materials are enountered. Thelonger that one an run a real-time simulation, the loser one gets to experimental timesales and to the human time sale of minutes, hours, days, and years on whih materialsare generally used. In pratie simulation an never even approah the relevant size andtimesales and it generally fails by many orders of magnitude in eah ase. However, theerror introdued in this way an be minimized by having as large and as long a simulationas possible. For example, the larger and longer a simulation is the more preision one anahieve in the alulation of thermodynami observables suh as pressure, temperatureor density. At present, the fat that CPMD and other DFT based MD tehniques are solimited by omputational expense means that the preision with whih many propertiesare alulated is poor. On the other hand, simpli�ed phenomenologial potentials whihallow inreases in size and time sale of three to �ve orders of magnitude, provide a verypoor desription of interatomi interations.



3The pratial goal of this thesis is to �nd a way in whih the properties of bulk ionisystems under onditions of low symmetry and high temperatures and pressures an bepredited with auray and a reasonable degree of preision. The motivation for thiswork is the desire to be able to quantitatively simulate systems of geophysial interestsuh as the minerals that are found deep in the earth's mantle whih are mostly ioniin nature. The extreme onditions of temperature and pressure make it very diÆult forthe properties of suh minerals to be onstrained by diret measurement and up to nowthe results of simulation have been of variable quality. Properties, suh as the elastiproperties of some of the major onstituents of the earth's lower mantle[5, 6, 7℄, havebeen simulated with state-of-the-art �rst-priniples methods. Although suh simulationsfrequently have not been veri�ed experimentally, it is likely that they are reasonablyaurate. The range of problems that an be takled in a purely �rst-priniples way isvery limited however. Other problems, a prime example being the melting behaviourof oxides under pressure, have been takled with a range of fore-�elds in a moleulardynamis framework and the results have been extremely poor. An example, whihwill be disussed in detail in hapter 6 is the melting line of MgO. There have been atleast �ve separate simulations of the pressure dependene of the melting temperaturepublished. Of these, all have disagreed with experimental measurements of the slope ofthe zero-pressure melting urve by fators of between 2:5 and 8. There has also been littleagreement between di�erent simulations, even between those using the same method ofalulating the slope. This level of disagreement learly signi�es problems with existingfore-�elds.In this thesis we takle the general problem of simulating ioni systems suh as oxidesunder arbitrary thermodynami onditions. Although we have a lear pratial goal inmind, we approah the problem in a very general way and most of the methodology thatis developed is appliable to almost any system for whih aurate simulations of simpleioni systems are required.We begin, in hapter 2 by looking in detail at Car-Parrinello moleular dynamis as themost widely used dynamial ab initio tehnique and disuss some theoretial issues whihhave not previously been fully addressed. We show that the standard understanding of themethod is inomplete and we desribe in a more rigorous way its theoretial underpinning.Most importantly, our theoretial investigations show that ontrary to popular belief, theeletroni orbitals do not take their ground-state values on average during a Car-Parrinellosimulation. This means that there are errors intrinsi to the method and we show howthese errors may be partially orreted for many systems, but partiularly e�etively forsimple ioni systems.The omputational expense involved in ab initio moleular dynamis means that formost of the problems in whih we are interested, an alternative solution is required. Wewould like to �nd a ompromise between auray and preision in our alulations so thatthermodynami properties an be omputed with more on�dene than has been done inthe past. The approah that we take to �nding this ompromise is to look for fore-�eldswith funtional forms whih apture phenomenologially more of the dynamial eletronie�ets whih ontribute to interioni fores and whih are therefore apable of providingmore auray. The ompromise lies in the fat that this apaity for improved auray



4 CHAPTER 1. INTRODUCTIONis generally at the expense of omputational eÆieny. The improved auray is ahievedwith a give funtional form by using data from density funtional theory simulations in ageneral and well-ontrolled parametrization proedure.The problem of �nding a good funtional form for ioni systems is disussed in detailin hapter 3. Many fore-�elds over many years have been proposed for ioni systems butnone of these fully meet the riteria that we set. All are either too simple to be aurate,too slow to be preise or too spei� to be useful. We introdue a novel general fore-�eldfor ioni systems whih is physially well motivated but orders of magnitude faster thanCPMD.In hapter 4 we build on previous work and desribe how these fore-�elds are parametrizedusing �rst-priniples data. The resulting fore-�eld is shown in hapters 5 and 6 to providethermodynami and dynami properties of an extremely high quality while still allowingthe simulation of muh larger systems over muh longer timesales than an possibly betakled within a fully �rst-priniples approah. Our method is learly shown to providepreision far surpassing that of ab initio methods and an auray far surpassing that ofsimple empirially-parametrized fore-�elds.In hapter 6 this method is applied to the outstanding problem of the melting tem-perature of MgO under pressure.



Chapter 2Car-Parrinello Moleular DynamisIn 1985, in a seminal paper [4℄, Roberto Car and Mihele Parrinello showed how it waspossible to perform a moleular dynamis simulation whilst alulating the fores withindensity funtional theory. In other words, the eletrons were treated expliitly in anab initio way in the alulation for the �rst time. The importane of this annot beoverstated. Even apart from the fat that density funtional theory an be muh moreaurate than e�etive parameter-based fore-�elds, any MD simulation whih does nottreat eletrons expliitly requires one to make a hoie a priori about the nature of thesystem. We show in hapters 5 and 6 how it is possible to make very good e�etive fore-�elds for ioni systems. However, if the bonding in the system hanges due to hanges inpressure, temperature or phase, the auray of the fore-�eld su�ers. Moreover, we arebiasing the system from the start by the phenomenology that we inlude in the potentialform, and apart from the ingredients that we inlude, nothing else an play a role. Physisand hemistry are full of surprises and many e�ets and strutures our due to deliatebalanes between many di�erent fators. It is simply not possible to predit with anydegree of ertainty a priori what e�ets may beome important under a given set ofonditions.Expliitly treating the eletrons means that, in priniple, one does not make assump-tions about the bonding of the system and this allows surprises to our. Spontaneoushanges in bonding an take plae without loss of auray. This means that one ansimulate hanges of phase with muh more on�dene. Ab initio moleular dynamis analso allow one to model hemial reations. This is something that e�etive fore �elds areunable to do beause, by de�nition, hemial reations involve hanges in the bonding andwhen they our it is the eletrons whih play the dominant role. Unless the dependeneof eletrons on ioni positions is expliitly alulated, the reation annot be modeled.The method of Car and Parrinello, in its original and most widely used form, workswithin the Born-Oppenheimer approximation. This means that at any instant the stateof the eletroni system an be well desribed by the eletroni ground-state alulatedfor the ioni positions at that instanti and that it responds instantaneously to hangesin ioni positions. For many systems this is an extremely good approximation given themass of the eletron relative to that of the ions, whih for hydrogen, the lightest element,is approximately 1=1836. When the eletroni ground-state is lose to degenerate, whih



6 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSfrequently ours, it an be said that the Born-Oppenheimer approximation breaks down.However it should be valid before and after the ourrene of suh degeneraies and thetime during whih degeneraies are relevant is generally small.The Car-Parrinello MD method started the �eld of ab initio moleular dynamis andremains the most widely used method for oupling density funtional theory with mole-ular dynamis. It is not the only method however. A number of other tehniques[8, 9, 10,11℄ have been developed whih are based on minimization of the eletroni (Kohn-Sham[3℄) orbitals to their ground state at eah time step. These tehniques will be referredto from now on as Born-Oppenheimer (BO) methods to distinguish them from the Car-Parrinello (CP) method whih does not put the orbitals to their ground state at eah timestep, as we will see below.Despite widespread appliation of the CP method to many areas of physis, hemistryand biology and despite rapid development of many aspets of the methodology, no serioustesting of the auray of the method has ever been published to our knowledge. A numberof people [4, 12, 13℄, inluding the inventors of the method, have shown that it reproduesground-state fores and energies in simple systems, suh as toy-models of rystalline silionor germanium, extremely well, but silion and germanium are partiularly easy systemsto treat with most eletroni struture methods, and the ability to ahieve high aurayfor these systems is no guarantee that the method works well in other systems.In this hapter, we begin by explaining the Car-Parrinello method in detail and someof the reasons that it is generally believed to work. The understanding of the methodhas evolved somewhat sine its introdution and so no e�ort will be made to presentthe de�nitive version of urrent understanding, rather some ommonly held beliefs willbe presented. Next, some theoretial problems with the method will be explained and apartial solution of these problems for inert ioni systems will be presented. We then testthe theoretial ideas that have been developed with the simple examples of silion andMgO, followed by a test of the method on one of the most frequently studied systems, i.e.water, or in this ase \heavy" ie.2.1 The Car-Parrinello MethodThe Car-Parrinello method makes use of the following lassial lagrangian :LCP =Xi �ih _ ij _ ii+ 12XI MI _R2I � E[f ig; fRIg℄ (2.1)to generate trajetories for the ioni and eletroni degrees of freedom via the oupled setof equations of motion MI �R�I = ��E[f ig; fRIg℄�R�I = F �CPI (2.2)�ij � ii = �ÆE[f ig; fRIg℄Æh ij (2.3)where MI and RI are the mass and position respetively of atom I, j ii are the Kohn-Sham orbitals whih are allowed to evolve as lassial degrees of freedom with inertial



2.1. THE CAR-PARRINELLO METHOD 7parameters �i, and E[f ig; fRIg℄ is the Kohn-Sham energy funtional[3℄ evaluated forthe set of ioni positions fRIg and the set of orbitals f ig. The funtional derivative ofthe Kohn-Sham energy in equation 2.3 is impliitly restrited to variations of f ig thatpreserve orthonormality.The idea behind the method is that by putting the eletrons to their ground state at a�xed set of ioni positions and then allowing the ions to move aording to equation 2.2,the eletroni orbitals should adiabatially follow the motion of the ions, performingsmall osillations about the eletroni ground state. The eletroni orbitals will have a\�titious" kineti energy assoiated with their motion and the �titious mass parameter�i. If �i is small enough then the motion of the orbitals will be very fast relative tothe motion of the ions. It is generally thought that this motion onsists of osillationsabout the ground state and so by hoosing a small enough value for �i one an ensurethat the frequeny spetra of the eletroni orbitals and the ions are well separated fromone another if there exists an energy gap between the oupied and unoupied Kohn-Sham orbitals. This is beause, within a harmoni approximation, the lowest frequenyof osillation of the orbitals about the ground state may be written as[12℄
!0 =  2(�j � �i)�i !1=2 (2.4)

where �i and �j are the eigenvalues of the highest oupied and the lowest unoupiedorbitals respetively. In lassial mehanis, systems whih are well separated from oneanother in frequeny an be shown to remain energetially isolated from one another (seeref.[12℄ and[14℄ and referenes therein). Therefore, it has been thought that by using asmall enough value for �i, one ould isolate the eletrons energetially from the ions. Inthis way one ould ensure that thermalization does not our between eletrons and ionsand so the eletroni orbitals remain at a low temperature, whih means that they remainlose to the eletroni ground state.This explanation of the method was originally proposed by Pastore et al. [12℄ and isthe standard way in whih the method is explained (see, for example, the reent reviewby Marx and H�utter [13℄). Although parts of this explanation are true , it ignores the fatthat, aswell as the high-frequeny osillations, the orbitals have a slow omponent to theirmotion. If the ions are moving, the motion of the orbitals ontains a omponent due tothe unavoidable response of the eletroni orbitals to the ioni dynamis : as ions move,the ground state hanges. By de�nition this latter motion ours on ioni timesales andwith ioni frequenies and so it may not be deoupled from the ioni motion. In fat, itwill be shown in this hapter that due to this aspet of the eletroni motion the eletronsdo not osillate about the ground state but about an equilibrium whih is displaed fromit. This means that there are systemati errors in the fores on the ions and in the totalstress on the system.



8 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICS2.2 Car-Parrinello Dynamis Compared to Born-OppenheimerDynamisWe wish to ompare CP dynamis to the exat BO dynamis. In other words, the dynam-is of the ions when the eletroni orbitals remain at their ground state. For this purpose,we deompose the CP orbitals as j ii = j (0)i i+ jÆ ii (2.5)where j (0)i i are the ground state (BO) orbitals whih are uniquely de�ned for given ionioordinates as those that minimize E[f ig; fRIg℄ . This allows us to onsider separatelythe evolution of the instantaneous eletroni ground state and the deviations of the CPorbitals from that ground state.At this point we note that in the past some testing of the CP method[15, 16℄ has reliedon demonstrating that the total eletroni energy alulated with the CP method is verylose to that alulated when the eletroni orbitals take their ground state values. This isnot a good riterion to use to validate the method. For moleular dynamis simulations,the important quantites are the fores on the ions. For a given deviation of the CPorbitals from the ground state jÆ ii the error in the fore relative to the size of the foreis generally muh bigger than the error in the energy relative to the size of the energy.This an easily be seen by writing both of these quantities as Taylor expansions abouttheir ground state values�EE =Xi 1E� ÆEÆj ii�����f (0)i gjÆ ii+ hÆ ij ÆEÆh ij�����f (0)i g� + order(Æ 2i ) (2.6)�F �IF �I =Xi 1F �I � ÆF �IÆj ii�����f (0)i gjÆ ii+ hÆ ij ÆF �IÆh ij�����f (0)i g� + order(Æ 2i ) (2.7)The �rst term on the right hand side of equation 2.6 disappears beause the derivative isevaluated at the ground state. However the �rst term on the right hand side of equation 2.7does not disappear. So, for a given deviation of the eletroni orbitals from the groundstate the error in the fore depends to �rst order on the fÆ ig but the error in theenergy only depends to seond order on fÆ ig. This means that any error in the orbitalshas a muh larger e�et on the fores than it does on the energies. How muh greaterthe relative error in the fores is than the relative error in the energies depends on thesystem, but, as will be disussed in setion 2.4.3, it an be a few orders of magnitude.When testing the method it is therefore important to see how well the fores reproduethe Born-Oppenheimer fores.We now write j _ (0)i i =XI _R�I �j (0)i i�R�I (2.8)and j � (0)i i =XI �R�I �j (0)i i�R�I +XI;J _R�I _R�J �2j (0)i i�R�J�R�I (2.9)



2.2. CAR-PARRINELLO DYNAMICS COMPARED TO BORN-OPPENHEIMER DYNAMICS9A preliminary interesting observation now follows. If the eletroni orbitals are at theirground state values, i.e. jÆ ii = j0i , then the right hand side of equation 2.3 vanishessine f ig = f (0)i g. However, the left hand side does not by virtue of equation 2.9. So theCP orbitals annot take their ground state values unless � vanishes too. As a onsequeneof this, the ioni dynamis is a�eted by a bias dependent on � and, as we will see, to thestrength of the eletron-ion interation .We now wish to explore the onsequenes that suh a departure from the ground statehas on the instantaneous CP fores FCP . We therefore alulate how CP fores deviatefrom the BO fores FBO at a given point in phase spae along the CP trajetory. We maywrite, for the �-th artesian omponent of the fore on atom I:�F �CPI = �E[fRIg; f ig℄�R�I= dE[fRIg; f ig℄dR�I �Xi �ÆE[fRIg; f ig℄Æj ii �j ii�R�I+ �h ij�R�I ÆE[fRIg; f ig℄Æh ij � (2.10)Substitution of equation 2.3 yields�F �CPI = dE[fRIg; f ig℄dR�I �Xi �i�h � ij�j ii�R�I + �h ij�R�I j � ii� (2.11)Using the expansion dE[fRIg; f ig℄dR�I = ddR�I �E[fRIg; f ig℄�����f (0)i g+Xi �ÆE[fRIg; f ig℄Æj ii �����f (0)i gjÆ ii + hÆ ijÆE[fRIg; f ig℄Æh ij �����f (0)i g� + order(Æ 2i )�= �F �BOI + 0 + order(Æ 2i ) (2.12)we an write the error in the CP fore as�F �I = F �CPI � F �BOI =Xi �i�h � ij�j ii�R�I + �h ij�R�I j � ii�+ order(Æ 2i ) (2.13)Having established the onnetion, to �rst order in Æ i, between the CP and the BOfores, we assume adiabati deoupling and look for ontributions to this di�erene thatdo not vanish when averaged over time sales longer than the typial timesales of thehigh frequeny part of the �titious dynamis of the eletrons (�e) but shorter than thetime sales of the ioni dynamis (�i). Only these ontributions are expeted to ontributesigni�antly to the ioni dynamis[12℄. To this end we writejÆ ii = jÆ (1)i i+ jÆ (2)i i (2.14)



10 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSwhere we have split Æ i into a term whih has a very high frequeny relative to ionifrequenies (Æ (1)i ) and a term whih varies on ioni timesales (Æ (2)i ) We rewrite equa-tion 2.3, using equation 2.5, asj � ii = jÆ � (1)i i+ jÆ � (2)i i+XI �R�I �j (0)i i�R�I +XI;J _R�I _R�J �2j (0)i i�R�J�R�I (2.15)Sine we are onerned with what happens on ioni timesales, i.e. averaged over thehigh-frequeny omponent of the  i, we may neglet the �rst term on the right-hand side.Using equation 2.13 and equation 2.15 we may write the error in the fore to �rstorder in Æ i as�F �I = 2Xi �i<(�h � (2)i j+XJ �R�J �h (0)i j�R�J +XJ;K _R�J _RK �2h (0)i j�RK�R�J���j (0)i i�R�I + �j (2)i i�R�I �)(2.16)Any deviation Æ i from the ground state depends on the �titious mass � sine � !0 =) ÆEÆh ij ! 0 via equation 2.3. This means that if we are to onsider only termswhih depend purely to linear order on � then the terms involving Æ (2)i in equation 2.16may be negleted.To summarise : If we onsider the dynamis of the eletroni orbitals to onsist of anadiabati response of the eletroni orbitals to the ioni dynamis and an independent fastosillating part then, under the assumption that the timesales of the fast omponent aremuh shorter than the shortest time period in the ioni system, i.e. assuming adiabatideoupling, the average error in the Car-Parrinello fores to �rst order in � and Æ i isgiven by (using equations 2.20 and 2.9)�F �I = 2Xi �i<�XJ �R�J �h (0)i j�R�I �j (0)i i�R�J +XJ;K _R�J _RK �h (0)i j�R�I �2j (0)i i�RK�R�J� (2.17)This orretion varies on ioni time sales and therefore does not neessarily averageout as the usual \fast" omponent does. However, its value depends on the eletronimass. This implies that a simple way to ensure that its ontribution in a CP simulationis negligible onsists of reduing systematially the eletroni mass. Although a smaller� implies a smaller time step for the integration of the CP equations of motion, the timestep sales as �t � �1=2, whih means that reduing � by an order of magnitude bringsabout a omputational overhead of only a fator of three. A more quantitative disussionis presented in setions IV and V.We also notie that if the term proportional to _R _R in the r.h.s. of equation 2.17vanishes (e.g. by symmetry, see below), and the tensor in the term proportional to �R isonstant, then the orretion of equation 2.17 redues to a resaling of the atomi masses,whih is known to leave thermodynamis intat. This is disussed in more detail in thenext setion.



2.3. THE RIGID ION APPROXIMATION. 112.3 The Rigid Ion Approximation.In order to gain insight into the sale of this problem with the CP fores we onsider thesimple example of rigid ions. We assume that eah eletron is loalised around an ion andthat there is no distortion of a partiular ion's harge distribution as it moves in the �eldof the other ions. We an refer eah wavefuntion  i to a partiular ion as follows i(r) = �I�(r�RI) (2.18)Where the eletroni states are labelled by an ion index, I, and the index � labelling theeletroni state of the ion . The rigidity of the ioni harge distribution means that��I�(r�RI)�RI = ���I�(r�RI)�r and ��I�(r�RI)�RJ = 0 8J 6= I (2.19)Equation 2.17 beomes�F �I = 2X� ��<� �R�I Z ���I�(r�RI)�r� ��I�(r�RI)�r� dr+ _R�I _RI Z ���I�(r�RI)�r� �2�I�(r�RI)�r�r� dr� (2.20)The seond term in equation 2.20 vanishes due to symmetry, at least assuming an atomiharge density with spherial symmetry. The �rst term may be written in terms of EI�kthe quantum eletroni kineti energy of an eletron in state � of atom I as2X� ��<� �R�I Z ���I�(r�RI)�r� ��I�(r�RI)�r� dr� = �2me3�h2 �R�I X� ��EI�k (2.21)where me is the (real) mass of an eletron. Sine the ions are rigid the quantum kinetienergy assoiated with eah one is a onstant and equation 2.20 beomes�F �I = ��MI �R�I (2.22)with �MI = 2me3�h2 X� ��EI�k (2.23)In this ase the ioni positions and veloities are updated during a Car-Parrinello simu-lation aording to (MI +�MI) �R�I = F �BOI (2.24)In other words, for systems where the rigid ion approximation is valid, the CP approx-imation amounts simply to a resaling of the ioni masses. Sine the lassial partitionfuntion depends only on the interation potential, the thermodynamis of the system asalulated with a CP dynamis is idential to the thermodynamis of the BO system. Thede�nition of temperature will however be a�eted, beause if the atual ioni dynamis in



12 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSCP is given by equation 2.24, then the real temperature at whih the system equilibrates,at least in the ase of a miroanonial dynamis for the ions, is given bykBT = 13N XI;� (MI +�MI)h(v�I )2i (2.25)where h� � � i signi�es the average over time and N is the number of atoms. This di�ers fromthe standard de�nition by the addition of a term proportional to �MI . The additionalterm in equation 2.25 an be readily traed to the additional inertia aused by the rigiddragging of the eletroni orbitals. In fat, using equations 2.8 and 2.19, we an showthat this term oinides, within the rigid ion model, with the �titious eletroni kinetienergy, when the ontribution from the dynamis of the Æ i is negligible i.e.Tel = T�M (2.26)where Tel =Xi �ih _ ij _ ii (2.27)and T�M = 12XI;� �MIh(v�I )2i (2.28)In other words if the eletroni orbitals move rigidly with the ions the atual inertiaof the ions in a CP simulation an be obtained by adding to the \bare" ioni inertiathe inertia arried by the eletroni orbitals. This result has been pointed out previously[17, 18℄ and ioni masses are ommonly renormalized when dynamial quantities are beinginvestigated.Figure 2.29 illustrates how, within the simpli�ed rigid-ion model, the ioni inertiadepends on the kineti energy of the eletrons. For a given ioni veloity, the wavefuntionat a point in spae has to hange more quikly when it is highly loalised (and thereforewith a high quantum kineti energy) than when it is extended. To aelerate an ion onealso needs to inrease the rate of hange of the wavefuntion loalised on it. Sine thewavefuntion arries an inertia (�) the e�etive inertia of the ion is greater than the bareioni mass. In more general (non-rigid-ion) situations, the olletive movement of the ionsis a�eted by the requirement that the \heavy" eletroni wavefuntions are rearrangedas the system evolves.We now explore the onsequenes that suh a modi�ation of the ioni inertia hason typial observables extrated from CP simulations. First, as already mentioned, theorret de�nition of temperature in a miroanonial CP simulation is given by equa-tion 2.25. Similarly, in a simulation where temperature is ontrolled, e.g. through a Nos�ethermostat[19℄, the quantity to be monitored orresponds to the instantaneous value ofthe temperature de�ned in equation 2.25. Dynamial observables will also be a�eted bythe additional inertia, as already noted in the ase of phonons extrated from CP-MD inarbon systems [20, 21℄. In the ase of homogeneous systems (a single atomi speies inwhih all the atoms are in similar loal hemial environments) all dynamial quantities
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vFigure 2.1: The mehanism by whih the e�etive ioni inertia is related to the quantumkineti energy of the loalised eletroni wavefuntions within the rigid-ion approximation:For two ions of the same speies whih are moving with the same veloity v, the onearrying the more loalised eletroni wavefuntion (top) has a higher e�etive mass. Themore loalised eletroni wavefuntion  1(x) has, on average, a greater slope d (x)=dx(and hene kineti energy ) than the more extended wavefuntion (bottom)  2(x) . Sinefor a given ioni veloity v a greater slope implies a greater rate of hange with respet totime ( _ 1 > _ 2 ) , the loalised wavefuntion hanges more per unit time than the extendedwavefuntion. In order to inrease the ion's veloity one also needs to inrease the rateof hange of the massive wavefuntion loalised on it. The total inertia assoiated withthis required hange of the rate of hange of the wavefuntion is related to the quantumkineti energy via equation 2.23 and this quantity must be added to the bare ioni massin order to obtain its e�etive mass.an be simply resaled using the mass orretion of equation 2.24. However, for hetero-geneous systems the orretion is not always trivial, as di�erent mass orretions applyto di�erent atomi speies due to di�erent atomi kineti energies. In pratie, we foundthat a onvenient and more general way to express the mass orretion of ion I is givenby �MI = fI 2meEtotalk3N�h2 (2.29)where fI is a dimensionless onstant whih takes into aount the relative ontribution ofspeies I to the total quantum kineti energy Etotalk . The value of fI is generally foundvariationally as that whih minimizes the error in the fores.Corretions should always be applied to the temperature and the pressure as alulatedusing the bare ioni masses. These orretions must be alulated for eah hemially



14 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSdistint speies individually. For temperature, the orretion for speies S is�Ts = �MsMs Ts (2.30)and the orretion to the partial thermal pressure of speies S is�P ts = �MsMs P ts (2.31)Where Ms is the bare ioni mass of speies S and P ts is the thermal ontribution to itspartial pressure. There is also a orretion whih must be applied to the internal pressuredue to the fat that the eletroni orbitals are not at their ground state. This orretionto the internal stress is not trivial to derive sine the potential energy of the systemdepends, via the oupling between ions and orbitals, not only on the ioni positions, buton all higher order derivatives of the ioni positions with respet to time. However, withinthe rigid-ion approximation, if we only onsider derivatives with respet to ioni positions,using the virial theorem we may write the internal pressure asP i = 1
XI FI �RI (2.32)and so the rigid ion orretion beomes�P i = 1
XI �MM FI �RI (2.33)In pratie, for a system under periodi boundary onditions, it is not possible to evaluatethis quantity. However, for a system with a single speies, this beomes�P i = �MM P i (2.34)In pratie, in more general situations, in order to get an idea of the true stress of thesystem, one should perform a large enough number of eletroni minimizations to theground state and alulations of the stress at the ground state to get a good average ofthe true internal pressure.In the next setion we demonstrate, with the use of several simple examples, thevalidity of the theory developed in this setion and the previous one. We show how masses,and therefore dynamial quantities, may be orreted using the formulae presented above.In setion 2.5 we look at the more diÆult ase of water as an example of a system whosedynamis and thermodynamis one annot orret so easily.2.4 Testing the Theory2.4.1 IntrodutionIn order to test the theory put forward in the previous setions and to gain more insightinto its impliations, we have performed CP simulations on pressurised magnesium oxide
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Table 2.1: Tehnial Details of the Simulations# System Temperature �0 Ep Eut �t Pi �ih _ ij _ ii LKelvin a.u. Ryd. Ryd. a.u. a.u.�104 a.u.1 Si 330 270 1.0 12.0 5.0 4.36 20.422 Si 330 270 1.0 12.0 5.0 4.36 20.423 Si(liquid) 2000 270 1.0 12.0 10.0 4.35 19.84 MgO 2800 400 2.7 90.0 8.0 66.3 14.55 Si 330 200 1.0 12.0 5.0 3.23 20.426 Si 330 800 1.0 12.0 10.0 12.92 20.427 MgO (MO resaled) 2800 100 2.7 90.0 4.0 16.55 14.58 MgO (MO resaled) 2800 400 2.7 90.0 8.0 66.4 14.59 MgO 2800 200 2.7 90.0 5.65 33.1 14.510 MgO 2800 100 2.7 90.0 4.0 16.55 14.5and on silion. Among the insulators (we restrit our analysis to insulators as adiabatideoupling is less obvious in metalli systems and this would ompliate onsiderably ouranalysis), MgO and Silion are extremal ases: MgO is a highly ioni system with largequantum kineti energy assoiated with the strongly loalised harge distribution; Silionon the other hand is a ovalent system where eletron states are muh more deloalised.Within our pseudopotential desription of MgO [22℄, the 1s,2s and 2p states are frozeninto the ore of Mg whereas only the 1s states are frozen into the ore of O. Sine thereis very nearly omplete transfer of the two 3s eletrons from Mg to O (inspetion ofharge density ontour plots reveal no evidene of any valene harge anywhere exeptsurrounding O sites) the eletron quantum kineti energy may to a �rst approximationbe attributed to eletroni states loalised on oxygen ions. This makes MgO an idealsystem to study within the rigid ion model sine only the oxygen mass will be resaled.As mentioned in the previous setion, additional problems arise if one deals with morethan one eletron-arrying speies as the quantum kineti energy must be divided betweenthese speies. The large quantum kineti energy of MgO means that the error in the CPfores should be large relative to many materials. The simulations of MgO were performedat a high pressure (� 900 kbar) as this enhaned its ioniity.Silion, on the other hand, is a ovalent/metalli system with relatively low quantumkineti energy. As suh it should be one of the systems most favourable to the Car-Parrinello approximation but least favourable to desription in terms of rigid ions.2.4.2 Tehnial DetailsIn this setion we present the result of ten di�erent simulations. The tehnial details aresummarised in table 2.1.All simulations were performed with a ubi simulation ell of side L (see table 2.1)under periodi boundary onditions and with 64 atoms in the unit ell. We used a planewave basis set with an energy ut o� for the wavefuntions of Eut. The Brillouin zone wassampled using only the ��point. In eah simulation we have used the mass preondition-



16 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSing sheme of Tassone et al.[23℄ and the parameters �0 and Ep in table 2.1 are de�ned asin Ref.[5℄. With the use of a preonditioning sheme, whereby the eletroni mass is saledwith the kineti energy of the plane wave, the time step an be inreased by a fator of2-3 with respet to the non-preonditioned ase[23℄ . The use of a preonditioning shemeworsens onsiderably the agreement of the CP fores with the BO ones. In partiular, wehave heked that using the parameters �0 and Ep that optimize the time step auses aninrease by about a fator of three in the orretion term of equation 2.17. However, inorder to bring this error to its non-preonditioned value, a value of �0 three times smallerwould be required, with a onsequent redution of the time step of only p3. Consideringthat the preonditioning sheme allows a 2-3 inrease of the time step, a redution of p3still makes the preonditioning sheme marginally superior.Liquid silion is metalli and so, as suggested by Bl�ohl and Parrinello [15℄, two Nos�ethermostats were used to ounterat the e�ets of energy transfer between the ions andthe jÆ ii due to overlap of their frequeny spetra.The values of the parameters used wereQe = 21:3 a.u./atom,Ekin;0 = 1:65� 10�4 a.u./atom and QR = 244400 a.u.. These werehosen for ompatibility with those of Ref.[10℄ by taking into aount the slight inreasein temperature and saling aordingly.In all of these simulations, with the exeption of simulation 2, the system was �rstallowed to evolve for at least 1 ps and this trajetory was disarded. For simulation 2, thisinitial equilibration time was 0:5 ps. All results reported are taken from the ontinuationsof these equilibration trajetories.In all simulations, the total quantum kineti energy of the system, and hene theaverage mass orretion (see equation 2.29), varied during the simulation by less than0:3%. It was therefore taken as a onstant in further analysis.The total energy of all the degrees of freedom (inluding the thermostats in simulation3) was onserved in all simulations at least to within one part in 105.2.4.3 ResultsIn order to hek the preditions of the theory developed in Setions II and III, we havetaken segments of CP trajetories and alulated the true BO fores along these segmentsby putting the eletroni orbitals to their ground state with a steepest desent method.We look at the instantaneous error in the �th artesian omponent of the CP fore onatom I relative to the root-mean-squared (r.m.s) BO fore omponent, i.e :ÆF �I (t) = �F �I (t)rPPJ;�(F�BOJ )23NN (2.35)and the instantaneous relative error minus the relative error predited by the rigid-ionmodel : [ÆF �I (t)℄orr = �F �I (t) + �MI �R�IrPPJ;�(F�BOJ )23NN (2.36)



2.4. TESTING THE THEORY 17where N is the number of ioni on�gurations at whih the error in the CP fores wasalulated and P is the sum over all suh on�gurations. The value of �MI in equa-tion 2.36 is determined using the rigid-ion-model expression equation 2.29, and Etotalk wasgiven its average value during the simulation. The saling parameters whih were foundto give best results for silion and oxygen were fSi = 1:0 and fO = 1:92 respetively.We also look at hÆF �I i and hÆF �I iorr the r.m.s values of [ÆF �I ℄ and [ÆF �I ℄orr over allthe ions, artesian omponents and on�gurations tested.
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Figure 2.2: Simulation 1. (a) Distribution among all atoms I and all artesian omponents� of the perentage errors in the CP fores relative to the BO fores at the same ionipositions, 100 � ÆF �I (t) (full line) and these errors when the fores have been partiallyorreted aording to a rigid-ion model, 100 � [ÆF �I (t)℄orr (dashed line). (b) �(t) asde�ned by equation 2.37 for the full error in the fores and those as partially orretedaording to the rigid-ion model () F �BOI ,F �CPI and (F �CPI �F �BOI ) (multiplied by a fatorof 20 for visibility) for a typial fore omponent. Dots indiate the points at whih theBO fore was alulated (every 5 time steps).Sine the CP fores are a�eted by a \fast" omponent whose e�et on the ionidynamis is believed to average out on the time sale of the ioni motion, we introdue



18 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSthe quantity �(�), de�ned as�(�) = Z �0 13N XI;� ����� R t0+�t0 �F �I (t)dtR t0+�t0 j�F �I (t)jdt �����d� (2.37)If we begin our omparison between CP and BO fores at some instant t0 along thetrajetory then inspetion of �(�) gives a feeling for how large the fast omponent is. Ifthe errors in all the fores of the system osillate rapidly with an average of zero then �(�)dereases very quikly from the value of one at � = 0 to zero at � � �e. For systematierrors �(�) should derease gradually from one to zero on a timesale of the order of theperiod of �i. In realisti ases �(�) drops from one and levels o� to a smaller value for� � �e, and then dereases gradually to zero for � exeeding �i. The value of �(�) onthe plateau between �e and �i provides a measure of how muh the errors alulated inequations 2.35 and 2.36 are attributable to a systemati (i.e. \slow") departure from theBO surfae.We begin by looking at the fores in Silion in both the solid at 330 K and the liquidat 2000 K (simulations 1,2 and 3). Simulation 1 was preeded by a short run where thetemperature was set to about 1000 K. Eletrons were then relaxed in their ground stateand the ioni veloities set to zero. This allows the eletrons to smoothly aelerate withthe ions. A miroanonial simulation followed where the ioni temperature reahed,after a short equilibration, the value of 330 K. This proedure was followed in all thesimulations reported here, exept where disussed. In solid Si at 330 K (Fig. 2.2 ) we �ndthat the standard deviation of the error in the Car-Parrinello fores is 0:94%. However,most of this error an be attributed to a rigid dragging of the Si atomi orbitals. Thestandard deviation of the error is in fat redued to 0:24% after the rigid-ion orretionof equation 2.24 is subtrated. The � 30% drop of �(t) (orreted) shown in Fig. 2.2bindiates that � 30% of the residual 0:24% error an be attributed to \fast" osillations,so that the overall average error introdued by the CP approximation, one orreted forthe rigid dragging and under the assumption that the fast omponent is not relevant, isless than 0:2%.As has been pointed out previously by Remler and Madden [24℄, it is important tobegin the dynamis with eletrons and ions moving in a onsistent way as we have donehere in all simulations exept the one we now disuss (simulation 2) and in the ase ofliquid Si (simulation 3). We found that the error in the fores inreases substantially if thesimulation is not started from zero ioni veloities, a proedure that would otherwise havethe advantage of shortening onsiderably the time needed to reah thermal equilibrium.Simulation 2 started from the end of simulation 1, but eletrons have been put in theground state before restarting (ioni veloities and positions were instead kept unhanged).Fores were tested after 0:5ps from the eletron quenhing.The standard deviation of the error in fores is now 5:7% and the error in the fores asorreted aording to the rigid ion approximation at 5:68%, is not signi�antly improved.However learly from inspetion of �(t) in Fig. 2.3b and the sample fore omponent inFig. 2.3 most of this error an be attributed to the high frequeny osillations of theeletroni orbitals. If we assume that these osillations do not inuene the ioni dynamis,
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Figure 2.3: Simulation 2, Crystalline Si at 330K when the eletrons reeive a 'kik' at thebeginning of the simulation. See aption of Fig. 1 for explanation. (F �CPI �F �BOI ) has notbeen saled for visibility.



20 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSthe error redues to about 1.2% for the unorreted fores and to less than 0.5% for theorreted fores. The amplitudes of these osillations are nevertheless signi�ant andmay a�et the thermodynamis in a way that is not easy to predit. These osillationslearly originate from the initial jerk experiened by the the eletrons in their ground stateand survive for a long time due to the adiabati deoupling. In the liquid (�gure 2.4)
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Figure 2.4: Simulation 3, Liquid Si at 2000 K. See aption of Fig. 1 for explanation.(F �CPI � F �BOI ) has not been saled for visibility.the situation is onsiderably worse than in the rystal. The standard deviation of theerror in the fores is 3:4% whih improves only to 3:1% with the rigid-ion orretion.There do not seem to be high frequeny, high amplitude osillations here despite thesimulation being started with �nite ioni veloities. However, there are osillations of alower frequeny (although still quite high relative to ioni timesales) whih are probablydue to the presene of the Nos�e thermostat. It may be that the Nos�e thermostat hasthe e�et of damping out the kinds of osillations seen in Fig. 2.3 but the presene ofthese other osillations is hardly an improvement. This highlights the need for arefulhoie of parameters for the Nos�e thermostat, partiularly the value of Ekin;0. The issueof thermostatting the eletroni orbitals will be disussed later in this setion.
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Figure 2.5: Simulation 4. Fores on the oxygen ions in rystalline MgO at 2800 K. (a)and (b) are as in Fig. 1() From top to bottom : the error in the CP fores (F �CPI �F �BOI ),the error in the CP fores as predited by the rigid-ion model ��MO �R�I (dotted line), thedi�erene between the true error in the CP fores and the predited error (F �CPI �F �BOI +�MO �R�I ), the CP fore F �CPI and the BO fore at the same ioni positions F �BOI for atypial fore omponent. Dots indiate the points at whih the BO fore was alulated(every time step).



22 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSWe now look at the fores in rystalline MgO with �0 = 400a.u (�gure 2.5). Therelatively high quantum kineti energy assoiated with states attahed to the O ionsmeans that, aording to equation 2.21, the errors in the fores are onsiderably largerfor the O ions than we have seen for Si. The errors in the CP fores have in fat astandard deviation as large as 32% . However, when this is orreted as in equation 2.24by attributing all the quantum kineti energy to states rigidly following the O ions thestandard deviation of the error redues to 4:8%. Furthermore, the orreted value of �(t)indiates that about 80% of the error on the O fores anels out after aount is takenfor the high frequeny osillations, suggesting that a more appropriate estimate of theerror is � 0:4%. The amplitude of the fast osillations is a ause for onern however andsine the simulation was begun at zero ioni veloity it is not lear how it may be reduedfurther.
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Figure 2.6: Simulation 4. Dashed lines from top to bottom are : Mg temperature, Otemperature, Tel ,and 10� (Tel � T�MO). The full line is the Oxygen temperature whenit is alulated with a mass whih is inreased by AO.TemperatureWe fous here only on MgO, as the e�ets of the eletroni dragging are enhaned. A-ording to the results of Setion III, we should expet a di�erene between the naivede�nition of temperature and the de�nition orreted by the eletroni dragging, equa-tion 2.25. In the ase of MgO, as noted in the previous setion, this orretion a�ets onlythe oxygen atoms, as only a minor amount of eletroni harge is arried by the Mg2+ ion.In Fig.2.6 we show the behavior of the instantaneous values of the naive and orretedtemperatures. The orreted temperature exeeds the naive de�nition by about 500 K.More interestingly, we report in Fig.2.6 also the ontributions to the temperature of the



2.4. TESTING THE THEORY 23two atomi speies. It is lear that the naive de�nition would imply that the two speiesare not at thermal equilibrium. On the other hand, use of the orreted de�nition for theoxygen temperature brings the temperature of the two speies in muh better agreement,supporting the onlusion, based on the rigid ion model, that thermodynamis an berestored by a simple resaling of the oxygen mass. The mass resaling, as alulated withequation 2.20 amounts to �MO � 7:5 atomi mass units (MO = 16 atomi mass units).We also report in Fig.2.6 the instantaneous value of the �titious eletroni kineti en-ergy, the l.h.s. of equation 2.26, and the di�erene between this quantity and the r.h.s.of equation 2.26, whih represents the ontribution due to the rigid dragging of the ele-troni orbitals. The di�erene is very small, implying that residual ontributions due, forexample, to the fast eletroni osillations are negligible in MgO ompared to the slowdragging of the orbitals.Thermostatting the Eletroni OrbitalsIn simulating liquid silion, whih is metalli, we have used a standard tehnique formaintaining a low �titious kineti energy of the eletrons. This is to use two separatethermostats in the simulation : one for the eletroni orbitals and one for the ions. Thistehnique was �rst introdued by Bl�ohl and Parrinello[15℄ and has very reently beenupdated by Bl�ohl [16℄. In referene [15℄ the reommended temperature of the eletronithermostat, Ekin;0, has been determined on the basis of the rigid ion model to be twiethe value of T�M (as de�ned by equation 2.28). The reasoning behind this is that theeletrons should be free to follow the ions and also have room to perform the high fre-queny osillations. In our simulation of liquid silion we have used a value of Ekin;0ompatible with referene [25℄ however we note that this is onsiderably smaller than thevalue reommended in referene [15℄. We have also done simulations using higher valuesof Ekin;0 and in all ases the errors in the fores have been greater. It is likely thereforethat by dereasing further Ekin;0 we might improve further the fores however this hasnot been attempted here.It is important to note that for some systems, the hoie of Ekin;0 is ruial and an-not be based on the simple formula of referene [15℄. This an be seen by inspetionof �gure 2.7 whih is a magni�ation of the lowermost urve in �gure 2.6. This is aplot of (Tel � T�MO) during the MgO simulation. One an learly distinguish the high-frequeny osillations of eletroni orbitals from the ioni-timesale osillations due todeviations from the rigid-ion desription. The amplitudes of the high frequeny osilla-tions is, roughly, � 1 K. This is 3 orders of magnitude smaller than Tel and yet it resultsin osillations in the fore whih have an amplitude of � 7%. This suggests that hoosingthe reommended value for this system would lead to very large errors in the fores, andthat in order to maintain the errors within a few perent requires a predition of Ekin;0whih is orret to within � 0:1%. It is unlikely whether suh preision is possible andanyway for MgO the variations in Ekin;0 along the moleular dynamis trajetory wasfound to be � 0:3%.The updated form of the eletroni thermostat reently proposed by Bl�ohl is di�erentin that it never atually heats the eletrons, but ools them down when they exeed the
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Figure 2.7: Simulation 4 - (Tel � T�MO). Within the rigid-ion approximation, this is theontribution to the eletroni kineti energy from the high-frequeny osillations. Eventhough this is very small, the osillations in the fores are very large as shown in �gure 2.5.Small deviations from the ground state an lead to large errors in the fores.spei�ed value. Similar problems should be expeted for this system however, sine for asystem in whih Tel is inreasing, its value will frequently be lose to the spei�ed value,or at least of the same order of magnitude.Phonon SpetraWe have alulated the phonon densities of states of rystalline Si and MgO by fouriertransforming the veloity autoorrelation funtion. In all ases, the �rst pioseond of thesimulation was disarded and results obtained by averaging over at least one subsequentpioseond. For silion the veloity autoorrelation funtion was alulated on a timedomain of length 1:2ps and for MgO on a time domain of length 0:5ps.In silion (Fig. 2.8) the di�erene is reasonably small. Aording to the rigid ion modelthe frequenies should be orreted using!orreted = !CPp1 + �M=M (2.38)where !CP is the frequeny as extrated diretly from the CP simulation. We �nd thatfor silion this overestimates by about a fator of two the amount of the orretion. Thissmall disrepany may be due to the length of simulation used for alulating the frequenyspetra or due to a breakdown of the rigid-ion desription when �0 = 800a:u:. It mayalso be that negleting the e�et of the fast osillations is not be ompletely appropriatewhen the dragging ontribution is small.
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Figure 2.8: Phonon density of states of rystalline Silion for �0 = 200 a.u. (simulation5) and for �0 = 800 a.u (simulation 6).
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Figure 2.9: Phonon density of states of rystalline MgO for �0 = 100 a.u. and for �0 = 400a.u. with resaled (simulations 7 and 8) and unresaled (simulations 10 and 4) oxygenmasses.



26 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSIn MgO, as expeted the di�erene is muh larger. We alulate the phonon spetrafor �0 = 400a.u. and for �0 = 100a.u and �nd large di�erenes between them (seeFig. 2.9) highlighting again how the dynamis depends on the value of �. The fat thattwo speies are involved ompliates matters as the mass orretion is di�erent for thetwo speies (it atually vanishes for Mg). Therefore we should not expet simply a rigidshift of the frequenies. However, if the rigid-ion approximation is valid, one may oneiveto resale the oxygen mass a priori in equation 2.2 as ~MO = MO � �MO, so that theatual CP dynamis expressed in terms of the BO fores, equation 2.24, beomes identialto the BO dynamis if the rigid ion approximation holds. We have done this for MgO,again for �0 = 400a.u. and �0 = 100a.u and we see that the results are muh improved.There are only small di�erenes in the positions of the peaks and the overall shapes ofthe urves are very similar. We notie that with �0 = 100a.u. (and no mass orretion)frequenies are within 8% the orret ones. This implies that in order to obtain a phononspetrum of MgO with a 4% auray in the peak positions (4% is the typial unertaintyof a pseudopotential DFT approah[26℄) the value of �0 should be about 50 a.u., whihimplies a �t � 2:8 a.u., or about 1:5� 104 time steps per pioseond.Dependene of error on �
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Figure 2.10: Saling of the standard deviation of the errors in the fores on the oxygenions with �0 (Simulations 4,9 and 10). hÆF �I iorr has been redued to eliminate anellinghigh frequeny osillations by inspetion of �(t).We now try to address the question of how the error in the CP fores depends onthe �titious eletron mass. We do not know what the true �-dependene of the errorin equation 2.16 is. We have made the assumption in equation 2.17 that it is, to a�rst approximation, linear if one assumes that the osillations in jÆ (1)i i have a smallamplitude. Fig. 2.10 shows hÆF �I i and hÆF �I iorr for the oxygen ion for three di�erentvalues of �0 where hÆF �I iorr has been saled to eliminate the ontribution of errors fromhigh frequeny osillations by inspetion of �(t).



2.5. WATER 27The unorreted error is dominated by the e�et of the displaement of the equilibriumpositions of the orbitals from the ground state, this sales approximately linearly with�0, thereby vindiating our neglet of terms in equation 2.17 of higher than linear orderin �. The small error whih remains after the rigid ion orretion has been applied ouldhave ontributions from many di�erent soures inluding deviations from the rigid iondesription and ontributions from higher order error terms. It is also of the order of theutuations in Etotalk during the simulation.2.5 WaterSo far in this hapter it has been shown that systemati errors are present in Car-Parrinellosimulations, the magnitude of whih are proportional to the �titious mass parameter.The examples of Si and MgO examined were used mainly to verify that our derivation ofequations 2.17, 2.22 and 2.23 were orret and to show that for strongly ioni systemssuh as MgO, the error in the dynamis an be orreted and that it does not seriouslyalter the thermodynamis one properties suh as the temperature and the pressure havebeen orreted.We now turn our attention to water. Water in all its phases has been one of the moststudied systems with the Car-Parrinello method [27, 28, 29, 30, 31, 32℄ and it looks likelyto ontinue to be so in the future due its obvious importane in nature and partiularlydue to the fat that it forms the basis for all of biology. The ability of the Car-Parrinellomethod to desribe water well is therefore of great importane as muh of the urrentunderstanding of its mirosopi properties has ome from suh simulations.Water is a more diÆult ase to simulate with CPMD than either silion or MgO andis therefore a better test of the method. Unlike silion it has a onsiderable quantumkineti energy and unlike MgO there is some subtlety to its bonding in the sense thatit annot be onsidered a ompletely ioni system. There is a degree of ovaleny tothe intramoleular bonding and intermoleular interations are dominated by hydrogenbonds. Here we look at ie, or more spei�ally, at \heavy" ie, D2O beause it is easierto simulate and it is generally what has been simulated in the past. Protons are verylight and this an ause problems of energy transfer between ioni and eletroni degreesof freedom. The lower symmetry and higher temperature in water and the lower mass ofthe proton relative to the deuteron means that errors should be, if anything, greater thanthose observed here.2.5.1 Details of the SimulationWe have used norm-onserving pseudopotentials to desribe the oxygen[22℄ and hydrogen[33,34℄ atoms respetively. We have used a plane-wave uto� of 70 Ryd. and a gradient-orreted exhange-orrelation funtional (BLYP)[35℄. Only the �-point was used tosample the Brillouin zone. Simulations were performed on a 24 � 24 � 12 a.u. simu-lation ell ontaining 32 D2O moleules.By variationallyminimizing the error in the Car-Parrinello fores relative to the ground



28 CHAPTER 2. CAR-PARRINELLO MOLECULAR DYNAMICSstate fores with respet to the ioni masses in a preliminary simulation of liquid water,we have obtained the rigid-ion mass orretions ( in a.u. ) for oxygen and deuterium of6:766� and 0:213� respetively. We have later veri�ed that these mass orretions areoptimal for ie also. We have resaled the ioni masses a priori by subtrating theseorretions from them.We have begun our simulations by doing a long simulation of ie at low temperature(� 100 K) using an ab initio parametrized polarizable e�etive potential of the sameform as that desribed for silia in hapter 5. This does not provide a very realistidesription of water but it was deemed preferable to randomizing the positions. In orderto minimize the errors due to high frequeny osillations of the orbitals, as disussed insetion 2.4.3, we then began the simulation with the eletrons at their ground state and theions at zero veloity. We used a �titious mass of � = 900 a.u. No mass-preonditioningsheme was used. After half a pioseond, when the ions were at a temperature of � 120K, a Nos�e thermostat[19℄ was attahed to the ions and the temperature was inreasedto approximately 250 K during half a pioseond of simulation. The system was thenequilibrated without a thermostat for approximately 3:5 pioseonds. The temperatures ofthe oxygen and hydrogen subsystems were alulated independently using the orretionsgiven by equation 2.30 and aording to this de�nition of temperature the subsystemsremained at di�erent temperatures, indiating that the system was not well thermalized.This an be seen in �gure 2.5.1. It is worth noting that somebody unaware of the issueof mass resaling would, in this ase, see a thermalized system. The simulation wasnow ontinued, using the ioni and orbital veloities from the previous MD run, in twoseparate MD runs : one using a value � = 100 a.u. and the other remaining with � = 900a.u (see �gure 2.5.1). Changing the value of � during a simulation perturbs the orbitaldynamis only very slightly and has no signi�ant lasting e�et on the fores suh asare seen when more severe shoks take plae (see setion 2.4.3). For a system where therigid-ion approximation is valid, the fat that we have resaled a priori the masses meansthat the simulations at the di�erent values of � should be idential.It was found that after more than a further 2:5 ps the simulation with � = 900 a.u.still showed no sign of thermalization. The deuterons remained at a low temperaturerelative to the oxygen ions. In the simulation with � = 100 a.u., however, the system veryquikly showed signs of thermalization and the subsystems were at the same temperatureafter 1:5� 2 ps. Sine we would like to ompare the phonon spetra for the two di�erentvalues of � and we would like to do this for reasonably well equilibrated systems, at thesame temperature, it was deided to ontinue both simulations from the end of this initial2:4 ps run with � = 100 a.u. Both for � = 100 a.u. and � = 900 a.u., a further 5:5 psof simulation were arried out during whih time the oxygen and deuterium subsystemsremained at the same temperatures in both simulations. We may speulate at this pointthat the diÆulty whih the � = 900 a.u. simulation has in thermalizing is due to thepresene of inertia between the oxygen and deuterium ions whih impedes the motion ofthe deuterons. The di�erene in temperature has to be due to the deuterons moving tooslowly relative to the oxygen ions. The bonding between them has a degree of ovalenyand this ovalent bond arries an inertia whih one should not expet to be well aountedfor in the rigid-ion approximation. Therefore, the fat that when the ovalent bond is
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Figure 2.11: Temperature of the oxygen and deuterium subsystems as a funtion of timeaording to the orret de�nition of temperature in whih the extra mass due to theeletroni orbitals is aounted for (top) and aording to the nâ�ve de�nition (bottom)in whih the temperature is not orreted.less \heavy" the deuterons an move faster suggests that this may be an e�et due to theorbital's �titious inertia.ForesAfter 1 ps of the � = 900 MD run, the fores were ompared with the ground state fores.The fore on an individual oxygen or deuterium ion is dominated by the intra-moleularfore, the fore due to the other two ions in the D2O moleule. Sine the moleule remainsrelatively rigid, it is more sensible to examine the more subtle inter-moleular fores whihare of primary onern to those studying the struture of water. In order to do this welook at the sum of the fores on a moleule. In �gure 2.5.1 we plot some sample foreson D2O moleules. It is learly seen that there are very large di�erenes between the CPfores and the ground-state fores but that muh of this di�erene an be orreted withthe rigid-ion orretion. However, the error that remains still looks quite large and may
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Figure 2.12: Correted temperatures of the oxygen and deuterium subsystems as a fun-tion of time for � = 100 a.u. (top) and � = 900 a.u. (bottom).be a ause for onern. The error before orretion amounts to � 45% of the root-mean-square ground-state fore omponent. After orretion, this number redues to 12:5%.Although fores are very important in moleular dynamis, they are not generallythe quantity whih are extrated from simulations and it is not obvious how, in general,errors in fores map onto errors in thermodynami quantities. In order to get a feel forthe sale of these errors we look at the fores along the same trajetory for the loaldensity approximation (LDA) [36, 37℄ and the Perdew-Burke-Ernzerhof(PBE) exhange-orrelation funtionals. There has been muh disussion in the literature about whatexhange-orrelation funtional one should use for water[29℄. It is generally aeptedthat the LDA performs very poorly for water and most people use generalized gradientapproximations whih seem to give better results. Di�erent gradient orreted funtionalshave been shown to give quite di�erent radial distribution funtions for liquid water [29℄.Figure 2.5.1 shows a omparison of the fores from BLYP, LDA and PBE funtionals.We found that the average di�erene between PBE and BLYP fores was � 7:8% and thedi�erene between LDA and BLYP fores was � 45%. It is also worth noting that, in



2.5. WATER 31

0 5 10 15 20
Time [fs]

-0.006

-0.004

-0.002

0

0.002

Fo
rc

e[
a.

u]

0.002

0.004

0.006

0.008

0.01

Fo
rc

e[
a.

u]

Ground state force
Car-Parrinello force
Corrected Car-Parrinello force0.002

0.004

0.006

0.008

0.01

Fo
rc

e[
a.

u]

-0.008

-0.006

-0.004

-0.002

0

Fo
rc

e[
a.

u]

Figure 2.13: Some sample fores on D2O moleules. The Car-Parrinello fore is omparedto the ground state fore and the Car-Parrinello fore one orreted using the rigid-ionorretion.
general, although there are lear di�erenes in the magnitude of the fores from LDA andBLYP, for example, the time-derivative is generally quite similar for all the funtionalstested. This is not the ase for the Car-Parrinello fore, where the derivative of the foredi�ers quite strongly from the ground state fore.Finally, we have looked at the fores after very brief simulations in whih veloityresaling was employed. Veloity saling is ommonly used for CP simulations and hasbeen used in the past to equilibrate liquid water[30℄. However, it gives an equivalentshok to the eletroni degrees of freedom as beginning a simulation with ions at �niteveloities does. In this test, the veloity resaling followed the initial 0:5 ps simulation at120 K and the veloities were resaled to bring the temperature to 220 K. Veloities wereadjusted only 4 times in total and then the system was equilibrated for 1 ps. We found,one again, that there were large-amplitude osillations in the fores with frequeniestypial of the eletroni orbitals. These osillations also appeared muh less harmonithan the osillations whih were seen in the ases of Si and MgO in setion 2.4.3. Themagnitude of these osillations highlights the fat that it is dangerous to perturb theeletroni system by hanging abruptly the ioni veloities, partiularly onsidering thesmall ioni temperature hange involved in this test.
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Figure 2.14: Some sample fores on D2O moleules. The ground state fores along thesame trajetory as plotted in �gure 2.5.1 using the three di�erent exhange-orrelationfuntionals BLYP[35℄, LDA[37℄ and PBE[74℄Phonon FrequeniesFor the two di�erent values of � we have alulated the phonon densities of states byfourier transforming a veloity autoorrelation funtion whih was alulated on a timedomain of length 1:45 ps by averaging over the �nal 5:5 ps of simulation. As with thease of MgO, if one does not resale ioni masses, the di�erenes in the phonon spetraare extremely large. However here we are only onerned with errors whih annot beorreted in this way. The results are shown in �gure 2.5.1. One again, these spetrashould be idential if the rigid-ion approximation is valid. The main features of the twophonon spetra are similar, indiating that the rigid-ion approximation works very wellfor the vibrational properties of ie. The � = 900 urve shows a slight inrease (� 1:5%)in the frequeny of the O-D bending mode and a orresponding derease in the frequeniesof the O-D strething modes. We do not have enough statistis to examine in detail thetranslational and rotational modes of the moleule, but the main di�erenes seem to bein the intensities of the peaks with little, a�et on the frequenies.So, despite what seem like large errors in the fores, the vibrational properties of therystal are not greatly e�eted. The errors are similar in sale to the di�erenes usingdi�erent gradient-orreted exhange-orrelation funtionals[31℄.
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Figure 2.15: Some sample fores on O ions following saling of ioni veloities. The Car-Parrinello fores with the rigid-ion orretion are ompared to the ground-state fores.2.6 DisussionWe have shown in setion 2.2 how, for any �nite value of the �titious mass �, the Car-Parrinello method di�ers in priniple from Born-Oppenheimer dynamis, even in the limitof the eletroni orbitals having a minimum kineti energy. What this amounts to sayingis that in a Car-Parrinello simulation, eletroni orbitals do not osillate about theirground state but about a di�erent equilibrium. There is therefore a lower bound on theerror in the Car-Parrinello fores whih is dependent on the �titious mass �. Under theassumption that high frequeny eletroni osillations (i.e. the dynamis of the jÆ ii) aresmall and independent of ioni motion, we have shown that Car-Parrinello simulationsamount to solving the equation of motion for the ionsMI �R�I = F �BOI + 2Xi �i<�XJ �R�J �h (0)i j�R�I �j (0)i i�R�J +XJ;K _R�J _RK �h (0)i j�R�I �2j (0)i i�RK�R�J� (2.39)if one may neglet terms in � of higher than linear order.For systems with a low quantum kineti energy or small oupling between eletronsand ions, suh as the example of silion whih we have disussed in setion 2.4.3, theresulting errors in the fores are extremely small and so neither the dynamis nor thethermodynamis should be strongly a�eted. For strongly ioni systems suh as MgO,there are very large errors whih are however mostly attributable to a resaling of themass of the oxygen ion thereby preserving the thermodynamis. When orreted for
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Figure 2.16: The phonon densities of states of heavy ie for � = 100 a.u. and � = 900a.u.. Ioni masses have been resaled aording to the rigid-ion approximation.this e�et the errors are slightly higher than those in rystalline Si but still quite small.If we \measure" the departure of the CP dynamis from the BO dynamis in terms of�M=M , with �M de�ned as in equation 2.24, then it appears that the elements wherethe departure is expeted to be larger are loated in the upper right of the perioditable, beause they ombine a low atomi mass with a large binding energy of the valeneeletrons (and thus a large quantum kineti energy). Transition metals may also bestrongly a�eted, beause of the large number and strong loalisation of the d-eletrons.However, the higher the loalisation of the orbitals, the higher the hanes that thedesription of the eletroni dynamis in terms of rigid orbitals is orret. The largedeparture observed in the ase of MgO suggests that a proper assessment of how muh theCP fores di�er from the BO ones is mandatory in most systems. This an be ahievedby either alulating the BO fores for seleted ioni on�gurations, or by performingsimulations for di�erent (smaller) values of �, and heking how the results sale withdereasing �. If the departure is large then it is likely that in many ases the CP foresan be brought into good agreement with the BO ones by simply resaling the ionimasses. We have seen in setion 2.5 that at low temperatures even systems whih shouldnot be well desribed by the rigid-ion approximation, suh as ie, the vibrational spetruman be quite well orreted using the rigid ion approximation. Under onditions of lowersymmetry or higher temperature this may no longer be the ase.Additional ompliations may arise when the dynamis lead to fundamental hangesin the eletroni struture. The �rst and seond derivatives of the eletroni orbitals withrespet to the positions of the ions, whih appear in equation 2.16, may beome relevantin regions of phase spae where the eletrons play a signi�ant role. For example, if harge



2.6. DISCUSSION 35transfer between ions ours, or if a substantial rearrangement of the eletroni orbitalstakes plae, as in a hemial reation, then the simple method of resaling the ioni masseswill no longer work. We have also negleted in our analysis higher order dependenes ofthe Car-Parrinello fores on the �titious mass and it may be that in ertain systems andfor large masses these terms of equation 2.16 beome relevant. An important test whihshould always be performed is to hek results of CP simulations for a dependene on �.If one is to judge the quality of a CP simulation by the errors in the fores as wehave largely done here, then a question whih needs to be addressed is to what extentthese errors manifest themselves as errors in the properties of interest in the simulation.It is likely that random high frequeny osillations in the fores suh as those due to thedynamis of the Æ i have no disernible e�et on the thermodynamis of the system ifsuh osillations are small. The magnitude of the osillations seen here in the ase ofMgO and ie may be a ause for onern however. The apparent anharmoniity of theseosillations in the ase of water may also lead to problems.All of the e�ets disussed in this hapter are dependent on the hoie of the �titiousmass parameter, �, and by reduing this parameter all thermodynami and dynami prop-erties of a simulation may be brought arbitrarily lose to those in a Born-Oppenheimersystem. A redution of � has the drawbak that the time step required to integrate theequation of motion for the eletroni orbitals is redued thereby dereasing the omputa-tional eÆieny of the method. However, the time step sales as �t � �1=2. This meansthat reduing � by an order of magnitude inreases the simulation time by only a fatorof three. By heking how the property of interest in a simulation sales with � one anontrol the level of approximation with whih it is alulated.In the past it has been thought[12℄ that one the �titious kineti energy of the or-bitals stayed small and reasonably onstant in a simulation, the dynamis were essentiallyindependent of the eletroni mass. For this reason, its value is frequently not reported inartiles along with other relevant tehnial details. We show here that the mass is an im-portant parameter whih has a signi�ane whih is at least omparable to, for example,the hoie of exhange-orrelation funtional.There is a lear need, in light of our theoretial �ndings, to test the ability of Car-Parrinello simulations to model hemial reations, phase transitions and systems of lowsymmetry. These are the kinds of systems whih are most frequently simulated withCPMD and they are also the systems in whih a serious dependene of thermodynamiproperties on the �titious mass would be most likely to our.
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Chapter 3Simple Models of Ioni Systems
3.1 IntrodutionThe problem of simulating ioni materials has a long history[38℄. One of the oldest, andstill the most widely used interation potential for suh systems treats the ions as thoughthey are small rigid partiles whih are undistorted by their environment. This is theBorn-Mayer pair potential[39℄,UIJ(RIJ) = qIqJRIJ +BIJe��IJRIJ � CIJR6IJ � DIJR8IJ (3.1)where UIJ is the interation energy of partiles I and J whih are a distane RIJ apart.qI and qJ are harges on the ions and the �rst term on the right hand side is the ele-trostati energy of the point-like harges and is generally evaluated using the method ofEwald summation[40℄; the seond term reets the fat that an isolated eletron distri-bution tails o� exponentially and so the repulsion between ions at short range due to thePauli exlusion priniple an be approximated by a onstant ( BIJ ) times an exponen-tial overlap of ioni harge distributions ; the �nal two terms model the ion dispersioninterations whih are always attrative and whih represent the orrelated motions ofeletrons on di�erent ions whih an be represented as a sum of dipole - indued dipole( R6IJ term), dipole - indued quadrupole ( R8IJ term) and higher order terms whih aregenerally negleted. qI ,�IJ ,BIJ ,CIJ and DIJ are all parameters of the model whih maybe determined either by physial reasoning, empirial onsiderations or by �tting to dataobtained from ab initio alulations.This potential form has the advantage that it has a pairwise form and it is quik andeasy to evaluate, so that large system sizes and long times may be simulated with relativeease. However, it has been reognised for some time [41, 42℄ that this form does notontain some of the physis relevant for many real ioni systems. Many systems ontainanions whih have an appreiable size relative to interioni distanes and whih are notrigid, in the sense that they beome aspherially distorted and an hange their size inthe ondensed phase depending on their environment. A distorted ion is one with multi-pole moments, the most important of whih is the lowest order or dipole moment. Theindution, via eletrostati interations, or short range Pauli exlusion-type interations



38 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSof dipole moments on ions an have a signi�ant e�et on the eletrostatis of a system.In partiular, the oxide ion is known to be highly distortable and polarizable and manyattempts have been made to model this in the past.3.1.1 The Shell ModelThe Shell-Model[38, 43, 44, 45℄ is the oldest and most ommon method of inorporatingenvironmental e�ets. In this sheme a shell of harges is attahed to the nuleus via aharmoni (or indeed anharmoni) spring (see �gure 3.1 ). In this way, the ion may beomepolarized via a displaement of the shell of harge from being entered on the nuleus.The indution of dipoles via short-range fores may be implemented by having these foresat between shells (whih an be thought of as representing the eletrons) rather thanbetween nulei. An extension of this model to allow for an isotropi breathing motionof the shell has been introdued by Shr�oder [46℄. A disadvantage of the shell model isthat it introdues extra degrees of freedom into the system and therefore an slow downsimulations. However it has been used with some suess for many years, primarily toinlude the important polarization e�ets whih have the marked e�et in ioni rystalsof reduing frequeny di�erenes between the transverse optial and longitudinal optialphonon modes.
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Figure 3.1: An illustration of the shell model of ioni polarizability. A massless shell ofharge Y is onneted by a spring of spring-onstamt k to the massive ioni ore whiharries a harge Z � Y where Z is the net ioni harge.The use of the Shell Model in the past has been to some extent due to the fat thatin its simplest and standard form it depends on only two parameters, the spring onstantand the shell harge. Until reently, all parameters needed to be determined empirially



3.2. MANY-BODY INTERACTIONS IN SIMPLE IONIC SYSTEMS 39or from physial arguments and a simple relation exists between these parameters and thedipole polarizability of the ion whih may be determined experimentally. However, fre-quently if one hose the parameter whih best reprodued experimental quantities suh asdensities or bulk moduli, it did not orrespond well to its known physial interpretation.Shell model parameters are also generally non-transferable between di�erent hemiallyrelated materials, or even between di�erent phases of the same material. It has beensuggested [47℄ that the Shell Model representation of the e�ets of polarization and ex-pansion/ompression of the anion is overly restritive in that it ouples all these e�etsin too simple a way so that they may be desribed by as few parameters as possible. Al-though all these e�ets are learly onneted, their relationship is unlikely to be as simpleas it is represented in the Shell Model.In a series of papers over several years many people, most prominently, Wilson, Mad-den and oworkers have developed a new way of representing the many body e�ets inioni systems[47, 48, 49, 50, 51, 52, 53℄. The urrent state of this researh will be explainedin this hapter followed by a desription of the approah that we have taken to the sameproblem whih di�ers in many important ways from previous approahes.3.2 Many-body Interations in Simple Ioni SystemsIt has been shown[52℄ that an e�etive way of treating the interations in simple ionisystems is to divide them into the following independent sets of ontributions :1. Eletrostati e�ets. These inlude� Interations between the ioni point harges.� Sreening of these interations by indued multipoles and loal variations inthe degree of ioniity[53℄.� Indution of multipoles through distortions of ioni harge distributions byshort-range interations with neighbouring ions and the impat of these mul-tipoles on the eletrostati �eld.2. Short-Range repulsive interations between ions. These are basially exponential inform but may be a�eted by� Spherial \breathing" or \ompression" of the ions.� Aspherial shape deformations of the ions.3. Dispersion interations whih may also be damped at short range when ioni hargedensities overlap[54℄.Clearly there is a degree of arbitrariness in this division and there is a lear overlapbetween some of these e�ets. For example, the dipoles indued by short-range inter-ations are physially the same thing as the aspherial distortions whih are aused byand impat on the short-range repulsive interations. Nevertheless, as a pratial shemethis division has proved useful and Rowley et. al. have shown that in magnesium oxide,



40 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSthe phonon dispersion urves an be well reprodued by independently adding in thesee�ets[52℄. More reently, Aguado et. al. have reparametrized the original model ofRowley et al. using density funtional theory alulations to produe a muh improvedset of phonon dispersions[55℄.We now disuss the model that they have used in detail.3.3 Eletrostati E�etsTo supplement the interations of point harges and following previous work[48, 50℄ Row-ley et al. allowed the indution of a dipoles and a quadrupoles on eah oxygen ion inMgO. They assumed that the degree of ioniity was �xed suh that the Mg atom lostexatly two eletrons to the O atom and they allowed for no loal hanges in ioniity.This latter assumption is supported by our density funtional theory alulations of MgO(see hapter 2 ) where we observe no signi�ant deviation from full ioniity. They havealso allowed for the indution of multipoles via short-range interations.3.3.1 Eletrostati PolarizationThe indution of multipoles ompliates the alulation of the eletrostati fores on-siderably sine not only does one have to alulate harge-dipole, dipole-dipole, harge-quadrupole, dipole-quadrupole and quadrupole-quadrupole interations for eah pair ofions, the orret values of the dipoles and quadrupoles on eah ion must �rst be alu-lated. This is not a trivial problem sine the multipoles on an ion are proportional to thederivatives of the eletrostati potential at the position of the ion. However, the eletro-stati potential is itself dependent on the multipoles. For example, for the ase of dipoleswe may write[56℄ pI = �IEI (3.2)EI = E0I +XIJ TIJ � pJ (3.3)where the dipole pI on ion I is proportional to the eletri �eld EI at the position of ionI. The onstant of proportionality is the salar polarizability. E0I is the \�xed" part of theeletri �eld due to harges, permanent dipoles and any other applied �eld.The eletri�eld in turn depends on all the dipoles via TIJ the dipole-dipole interation tensor. Tosolve this pair of equations amounts to solving a set of 3N�3N linear equations and evento do this iteratively would be far too omputationally expensive for most appliations.One solution, proposed originally by Sprik and Klein [48℄ and used in all the works byWilson, Madden and oworkers[50℄ is to treat the dipoles in an extended lagrangian shemeanalogous to the Car-Parrinello moleular dynamis sheme for the eletroni strutureproblem[4℄. In other words, a lagrangian is written in whih the dipole moments onthe ions are expressed as extra degrees of freedom of the system with a �titious massassoiated with them.L = 12XI MI _R2I +XI �I _p2I � U [fpIg; fRIg℄ (3.4)



3.3. ELECTROSTATIC EFFECTS 41MI and �I are the masses of atom I and the dipole on atom I respetively. Beginningwith the dipoles at their minimum energy values, the ioni system is evolved and just asin the eletroni ase the dipoles are expeted to remain lose to their minimum energyvalues (i.e : the values for whih �U�pI = 0 8 I ) if their �titious kineti energy is small. Itis thought that this may be ahieved either by hoosing a small enough �titious mass sothat due to adiabati deoupling there is only a small transfer of energy between dipolesand ions or in many ases by applying a thermostat to both the eletroni and ionisubsystems in the same way as was proposed by Bl�ohl and Parrinello for the eletroniase[15℄.In pratie, the dipoles are normally represented by two or more harges at �xeddistanes from the ion enter but with variable magnitudes and orientation. This isbeause it is easier to evaluate the Ewald sum for harges than it is for dipoles. Theinlusion of quadrupolar interations is ahieved in a similar manner but with six degreesof freedom in addition to the three dipolar degrees of freedom[57℄.
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Figure 3.2: An illustration of how short-range repulsive interations between ions an in-due e�etive multipoles. In this piture, the small ation \dents" the harge distributionof the muh larger ation and the resulting aspherial distribution has a dipole momentwhih is opposite to that indued eletrostatially by the ation.3.3.2 Polarization by Short-Range InterationsWilson and Madden found that the simple eletrostati polarization model had signi�antshortomings. The ions tended to beome over-polarized and partiularly in the melt,small anion-ation distanes resulted in very large indution fores whih overame theshort-range Pauli exlusion repulsion. In the real system at suh distanes, the ation



42 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSdistorts the anion and the resulting dipole is of opposite sign to the eletrostati dipolewhih would be indued if the ation and anion were isolated. This is illustrated in �gure3.2. Wilson and Madden found a onvenient way of representing this short-range indueddipole. They wrote the dipole indued on eah ion aspI = �IEI +XJ 6=I �IgIJ(RIJ)qjRIJR3ij (3.5)where gIJ(RIJ) = IJebIJRIJ nkXk=0 (bIJRIJ)kk! (3.6)and IJ and bIJ are negative and positive onstants respetively, and for dipoles nk tookthe value 4. A similar sheme was used for quadrupoles [57℄. The funtion gIJ(RIJ) was�rst introdued by Tang and Toennies as a damping funtion for dispersion e�ets (seesetion 3.5) and its use in this ontext was justi�ed by Wilson and Madden based on itsability to �t numerially the results of eletroni struture alulations[58℄ on distortedrystalline environments.3.4 Short-Range Repulsive InterationsThe use of the standard exponential repulsion term found in the Born-Mayer potentialrests on the assumptions that ions are spherial and of �xed size and that the repul-sion between them due to the Pauli exlusion priniple is proportional to the overlapbetween the ions whose harge distribution tails o� exponentially. Although this maybe an adequate approximation in rystals of high symmetry at low temperatures and agiven pressure , at higher temperatures or at a di�erent pressure or when a hange ofphase ours, it is likely that anions will readjust their size and shape to �ll the availablespae. In order to ope with this, and in an attempt to improve the ability of ioni mod-els to reprodue experimental equations of state and the relative energetis of di�erentrystal strutures, Wilson et al. have developed a ompressible ion model[47℄. Anotherstrong motivation was the fat that the Cauhy relation between the elasti onstants(C44 = C11)[59℄ is known to be violated in both MgO and CaO in the NaCl struture. ForMgO, the ratio C44=C12,extrapolated to 0K at zero pressure reahes 1:68 for MgO [60℄and 1:44 for CaO[61℄. This relation holds for entrosymmetri rystals under zero stressif the interations may be modelled in a simple pairwise way.Wilson et al. wrote the potential energy due to short-range repulsive interationsbetween anion and ation asV SR+�(fRIg; fÆ�Ig) = Vself(fÆ�Ig) + Vov(fRIg; fÆ�Ig) (3.7)where Vself is the sum of the hanges in the internal energies of the ions and Vov is thetotal potential energy due to interation between the ions, and Æ�I is the hange in theradius of the ion from its average value �0I . From eletroni struture alulations of the



3.4. SHORT-RANGE REPULSIVE INTERACTIONS 43perfet ubi rystal it was found that Vself ould be written asVself(fRIg; fÆ�Ig) =XI�� DIosh(�Æ�I) (3.8)and the standard exponential form was adopted for the interation energy :Vov(fRIg; fÆ�Ig) = XI��;J�+BIJe��IJ (RIJ�(�0I+Æ�I )) (3.9)At eah timestep, during a simulation, the fÆ�Ig were required to take values that min-imized V SR and this was ahieved, one again by using a Car-Parrinello-type extendedlagrangian approah with the fÆ�Ig as the variables with whih a �titious dynamis wasassoiated.Although this has been suessful in reproduing some low temperature propertiesof MgO and CaO suh as the rystal energies as a funtion of volume, the preditionof phonon frequenies with this model was found to be quite poor. This is beausethe distortion of the anions are in general not spherially symmetri if the rystal isdisordered. To aount for aspherial distortions of the anion, Rowley et al.[52℄ haveextended the previous ompressible-ion model. They allowed for the e�et of purelyspherial distortions on the anion-anion interations and the extended the ompressibleion model to allow for aspherial distortions to a�et the anion-ation intetration.The self energy Vself is extended to inlude distortions of the anions of dipolar andquadrupolar symmetryVself(fÆ�I��g; f�Ig; f�Ig) =XI [DIosh(�Æ�I) + (e�2j�I j2 � 1) + (e�2j�I j2 � 1)℄ (3.10)where �I is a set of three variables desribing the dipolar distortion of the oxide ion and�I is a set of �ve independent variables desribing the quadrupolar shape distortions.They only onsidered distortions to a�et the anion-ation interations so thatVov(fRIg; fÆ�Ig; f�Ig; f�Ig) = XI��;J�+B+�e��+��IJ+ XI��;J��B��e����(RIJ�Æ�I�Æ�J )+ XI�+;J�+B++e��++RIJ (3.11)where �IJ = RIJ � Æ�I � S�(1)��I � S��(2)���I (3.12)S�(1) = R�IJ=RIJ (3.13)S��(2) = 3R�IJR�IJ=(RIJ)2 � Æ�� (3.14)(3.15)



44 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSand summation of repeated greek indies is implied.One again, in this sheme, V SR = V self + V ov is minimized with respet to set ofall Æ�I ,��I , and ���I and these nine variables per anion are evolved as lassial degrees offreedom using a Car-Parrinello-like lagrangian.With this aspherial-ion model and inluding dispersion e�ets (to be disussed in thenext setion) and polarization e�ets, Rowley et al. managed to �nd parameters whihgave good phonon dispersion urves for MgO. Very reently Aguado et al. have used analmost idential model, but with many of the parameters found from DFT alulations, toprodue phonon dispersion urves and thermal expansion urves of a very high quality[55℄.Sine thermal expansion depends on the seond derivatives of the potential energy withrespet to the ioni positions, this is a good test of this model's representation of thepotential energy surfae of the rystal.3.5 Dispersion ForesDispersion fores arise from orrelated eletroni utuations between separated ions.These take the form of multipole-indued multipole fores the lowest order and mostimportant of whih is the dipole-indued dipole interation. A dipole produed by randomeletroni utuations in one ion an indue an opposing dipole in a neighbouring ion.This may result in their polarities utuating in synhronisation and these opposite dipolesattrat one another with a 1=R6 dependene. Dipole-indued quadrupole interations havea 1=R8 dependene and suessively higher order terms deay more rapidly. However,when ions beome loser and overlap these fores beome damped. Eletrons lose some oftheir freedom to utuate in this way as they beome part of the same harge distributionand the orrelations in their motion aquire a muh more ompliated form.Tang and Toennies [54℄ have found a simple funtional form for the rate at whihthis damping ours. This is given by equation 3.6. In the simulations of Aguado etal. and Rowley et al. they have inluded the two dispersion terms of lowest order withshort-range Tang-Toennies damping funtions g(6) and g(8) :Vdisp = �XIJ �g(6)IJ (RIJ)C(6)IJR6IJ + g(8)IJ (RIJ)C(8)IJR8IJ � (3.16)3.6 Disussion of Existing ApproahesSo far in this hapter, some of the existing approahes for modelling ioni systems andspei�ally simple oxides have been outlined. There are very lear indiations suh as theexperimental violation of the Cauhy relation (see setion 3.4) or the inability of pairwisepotentials to �t the DFT fores (to be disussed in hapter 5 ) that many-body fores areimportant to aurately desribe the interations in suh systems. Pair potentials havefailed to model the phonon dispersions or the thermal expansion in MgO , although it isdiÆult to tell where this is a fault of the potential form and where it is a fault of theparametrization whih in the past has been almost entirely empirial.



3.6. DISCUSSION OF EXISTING APPROACHES 45Muh emphasis has been given here to the system of many-body interations developedby Wilson, Madden and oworkers. The reason for this is that they have shown learlythat, at least for the rystalline simple oxides the potential form that they use provides agood desription of the ions' potential energy surfae. However, although it is lear thatthe full model that they use is suÆient to desribe the physis of MgO, it is not learwhether all the interations that they have inluded are neessary or, as they disuss inthe paper by Rowley et al.[52℄, whether or not the full model is overomplete. Althoughthey try to address these issues, the parametrization sheme that they use is empirialand eah ontribution is parametrized independently. As an be learly seen from theresults of hapter 6 and their subsequent paper [55℄ they did not take full advantage oftheir funtional form whih an only be done by �tting all parameters simultaneously.A serious problem with their method lies in the fat that they use the Car-Parrinelloextended lagrangian approah for all of their many-body interations. This means that toeah anion is assoiated eighteen additional degrees of freedom. These additional degreesof freedom are assoiated with the �ve groups of variables whih desribe eletrostatidipoles and quadrupoles, and ioni distortions of monopolar, dipolar and quadrupolarsymmetry. In order to make this work one needs to make sure that eah set of dynamialvariables remains energetially isolated from every other one. Or, at least, that all ofthem remain adiabatially deoupled from the ions insofar as this is possible. The timestep is determined by the fastest degree of freedom and in the paper by Aguado et al.the time step that they report using for rystalline MgO at 300K is approximately 1=20of a femtoseond. This is at least a fator of thirty smaller than the timestep that ouldnormally be used for this system and is presumably the timestep required for auraywithin this approah.Another possible problem with this method is that there may be e�ets, partiularlyin less symmetri phases than the NaCl struture, analogous to those that have beendisussed in hapter 2 for the eletroni problem. It an be shown (as was done for theeletroni orbitals in setion 2.2 ) that if the ions are moving, it is not possible for theextra dynamial variables to take their minimum energy values on average. In fat, theaverage error in the �th fore omponent on ion I, to �rst order in the deviations of the�titious degrees of freedom from their instantaneous average values and the �titiousmass, may be written as �F �I = Xi �i�XJ �R�J ��i�R�I ��i�R�J+ XJ;K _R�J _RK ��i�R�I �2�i�RK�R�J� (3.17)where Pi is the sum over all the �titious degrees of freedom �i. One again, the magni-tude of this error depends on the extent to whih the dynamial variables vary with ionipositions and it sales linearly with the �titious mass �i. It is not known how importantthis problem is in general. For the ase of the NaCl rystal struture at 300K, tests of theextended lagrangian approah to the dipole polarizable and the simple ompressible ionmodel have been published[50, 47℄ and the values of the �titious degrees of freedom are



46 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSto be in very good agreement with their minimum energy values. However, it is likely thatany problem that may exist would be less serious under these onditions of high symmetryand low temperature than, for example, in a liquid or during a phase transition.In the aspherial ion model, the anion is only allowed to distort with either dipolar orquadrupolar symmetry. It would be desirable to be able to inlude anion distortions ofarbitrary shape as they may beome relevant in low symmetry phases.
3.7 Our Approah to Modelling Ioni systemsIt was deided that for the reasons of omputational speed and auray outlined in theprevious setion it was best to try to avoid the use of any Car-Parrinello-like extendedlagrangian approah to modelling the many-body fores in ioni systems. Another om-pelling reason is that in the parametrization proess (see hapter 4) one does not havethe bene�t of a previous time step from whih to extrapolate or evolve the degrees offreedom. Sine parametrization is a omputationally expensive proess, it is importantto �nd a way whih is reasonably fast even when alulating the fore for the �rst time.It is unlikely that putting the eighteen degrees of freedom per anion to their potentialenergy minimum via steepest desent or any other method would be suÆiently fastfor parametrization purposes and, in fat, in the paper by Aguado et al. where theyparametrize their model by �tting the fores to those from DFT alulations they onlyparametrize the non-eletrostati parts of their model in this way. Sine the eletrostatisare the most important part, but also the most time-onsuming part of any simulation ofan ioni system one may speulate that the reason they did not �t the ioni harges andpolarizabilities was due to the omputational expense involved.Sine dipolar polarization is the most important eletroni sreening mehanism inmost simple ioni systems, we have deided to model this in our approah. However, wehave not inluded quadrupolar polarization whih in the paper of Rowley et al. was shownto have only a small e�et on the phonon spetrum of MgO and whih would inreasesigni�antly both the omputational expense of the model and the man-hours requiredto implement the model. We have negleted the e�et of harge transfer between ions, asdid Wilson,Madden and oworkers, on the basis that for the systems we are interested instudying, no evidene was initially found to suggest that this was an important e�et.We also would like to model the e�et that size and shape distortions of the anion hason the short-range interations.Sine we would like to avoid the use of an extended lagrangian approah, we have hadto �nd di�erent approahes to modelling polarization and anion-distortion. In setion3.7.1 we outline the approah that we have taken to the polarization problem and insetions 3.7.2 and 3.7.3 we desribe a new many-body potential for ioni systems whihattempts to model anion distortions in an analyti way.



3.7. OUR APPROACH TO MODELLING IONIC SYSTEMS 473.7.1 PolarizationAs previously disussed in setion 3.3.1, the diÆulty in treating dipole polarization isthat one must solve the 3N�3N linear system represented by equations 3.2 and 3.3. Theharge-dipole and the dipole-dipole interation terms deay as 1=R3 and 1=R5 respetively.Unfortunately, this deay is not suÆiently rapid for one to be able to trunate theinterations between partiles at a reasonably small interioni distane, and so, as withthe harge-harge interations, all the dipole terms must be alulated using an Ewaldsummation tehnique [40, 63, 64℄. The proedure that we have taken to this problemand that has been taken in the past [64, 65, 66℄ is to solve the system of equations in aself-onsistent way. In other words, starting with an initial guess for the dipole momentson eah ion we alulate the eletri �eld at the site of eah ion due to the ombinationof dipoles and harges. The new set of dipole moments is then easily alulated bymultiplying the eletri �eld on eah ion by its polarizability. When the root-mean-squarevalue of the di�erene between the omponents of the eletri �eld from suessive stepsin the self-onsisteny proedure is within a spei�ed tolerane, the system is deemed tobe at onvergene. It was found that during an MD simulation, a quantity whih tendedto vary muh more slowly than the dipole moment on eah ion was the ontribution of allthe dipoles in the system to the eletri �eld at eah ion's position. Therefore, the initialguess of the dipoles whih was used in the self-onsistent minimization was alulated froma guess of this quantity whih was extrapolated from three previous timesteps. We alsoinlude the short-range ontributions to the indued dipole moments using the funtionalform proposed by Madden and Wilson [50℄ and disussed in setion 3.3.2.The algorithm that we use for alulating all eletrostati ontributions to the totalenergy, fores and stress at time step n is as follows :1. Using the method of Ewald summation [40℄, the ontribution from the harges onthe ions to the total energy (Uqq), fores (F �qqI ) and stress (S��qq ) is alulated.2. The short-range indued dipole moment on eah ion is alulated as :psrI =XJ 6=I �IgIJ(RIJ)qjRIJR3ij (3.18)where gIJ(RIJ) is given by equation 3.6.3. The initial guess of the dipole ontribution to the eletri �eld on eah ion I isalulated to be1 EpguessI = 3Ep(n�1)I � 3Ep(n�2)I +Ep(n�3)I (3.19)where E(n�1)I is the eletri �eld at ion I alulated at the previous MD time step.For the �rst three time steps, of an MD simulation, or during parametrization, thevalue EguessI = 0 is hosen.1It was found that the period of the osillations in the dipole moment was generally large enoughthat the algorithm would almost ertainly be made more eÆient by extrapolating from more than threeprevious time steps, but this has not yet been implemented in the MD program.



48 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMS4. The self onsistent polarization yle begins and proeeds as follows where m is thenumber of the iteration step :(a) If m = 1 then the total eletri �eld on ion I isET = EpguessI + FqIqI (3.20)otherwise ET = �Ep(m�1)I + (1� �)Ep(m)I + FqIqI (3.21)where � is a parameter whih is optimised at the beginning for fast onvergene.� typially takes values of between 0:6 and 0:8.(b) The dipole moment on eah ion is alulated aspI = �IETI + psrI (3.22)() Using the urrent set of dipole moments fpIg, Ep(m)I is alulated for eah ionusing Ewald summation[64℄.(d) The quantity �(m) =sXI �2IN jEp(m)I � Ep(m�1)I j2 (3.23)is alulated where N is the number of polarizable ions.(e) If j�(m) � �(m�1)j < Æ , where Æ is a prede�ned onvergene riterion then goto step 5, otherwise return to step (i).The most eonomial value of Æ that an be used an vary from system tosystem and depends on the degree of energy onservation required but a valueof 10�6 was found to onserve energy to a very high preision in all the systemsstudied. During the parametrization proess, one does not need suh a lowtolerane for onvergene and so a value of Æ = 5 � 10�4 was used. With thisvalue, fores and stress were onverged to within � 0:3%.5. Using the onverged values of Ep(n)I , the dipole moments are realulated aspI = �I(Ep(n)I + FqIqI ) + psrI (3.24)and these are used to alulate the energy (Udq,Upp), fores (F �qpI ,F �ppI) and stress(S��qp ,S��pp ) due to harge-dipole and dipole-dipole interations using Ewald summation[64℄.6. The ontribution of the short-range indution of dipole moments to the energy (Usr), fores (F �srI ) and stress (S��sr ) is alulated[50, 52℄.7. All ontributions to the energy fores and stress are added together. For example,for the energy : U = Uqq + Udq + Udd + Usr (3.25)



3.7. OUR APPROACH TO MODELLING IONIC SYSTEMS 49Unfortunately, this self-onsistent minimization proedure is not guaranteed to on-verge. For example, if an anion and a ation ome very lose together the dipole on theanion an beome unphysially large. This an have a drasti e�et on the surroundingeletri �eld and the dipole �eld diverges. We have found that when suh a on�gura-tion ours onvergene, fails regardless of the initial guess EpguessI . Lukily, experienehas shown that the more physial the eletrostati and short-range dipole-indution pa-rameters we have, the less likely this dipole \explosion" is to our, but we have notmanaged to eliminate it ompletely. This is a big problem as when this happens, the MDsimulation is e�etively over. It is not possible to reover as, even if one ontinues withunonverged dipoles (e.g: those alulated simply from the harge ontribution to theeletri �eld), the kineti energy of the system inreases dramatially and onservation ofenergy is lost. This is only a problem for liquid systems and is muh more likely to ourat very high temperatures and pressures signi�antly di�erent from the pressure at whihthe model was parametrized. Its ourrene, if frequent, may indiate the need for a newparametrization of the potential.Similar problems have been reported for the Car-Parrinello approah [50℄.3.7.2 A Distortable Ion ModelIn this setion a general framework will be developed for the inlusion of environmentale�ets on the size and shape of an ion and the subsequent e�et of suh distortions on theshort-range interioni fores. In the next setion we will show how this general frameworkhas been implemented in pratie.We will be primarily onerned with the anion-ation interation. Of muh lesseronern, initially at least, is the anion-anion interation energy whih has been found toprovide only � 3% of the energetis of the perfet rystal[52, 47℄. Although, the sameannot be said with any degree of ertainty of more disordered phases, or systems ofdi�erent stoihiometry suh as SiO2, it is nonetheless the most obvious plae to startwhen onstruting a potential.We assume that a distortable ion ( suh as O2� ) has its shape and size \inuened"by all suÆiently lose neighbouring ions. Muh as in the sheme of Wilson, Maddenand oworkers[47, 52℄, an ion is desribed as a nuleus surrounded by a single membrane(representing the eletrons) the radius of whih is allowed to vary with the two polarangles (although in their ase, the radius only varied in ertain symmetri ways). Theinuene an ion J exerts on ion I an be loosely thought of as a restraining fore onthe ion's tendeny to expand and this restraint has a dependene on the polar angles(�; �) in the spherial oordinate system entered on I. We also assume that the inueneexerted at oordinates (�; �) is zero if the angle between the outward unit vetor at thoseoordinates `(�; �) and the vetor RJI = RJ �RI is greater than 90Æ.We write the total inuene on I at (�; �) due to all the other ions as�(1)I (�; �) =XJ 6=I fIJ(RIJ)`(�; �) � xJI�(`(�; �) � xJI) (3.26)



50 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSwhere xJI = RJIRJI and �(`(�; �) � xJI) = (1 if `(�; �) � xJI > 00 if `(�; �) � xJI < 0 (3.27)The subsripts on the salar funtion fIJ are to indiate that a di�erent funtion is usedfor every distint pair of ioni speies.Apart from a multipliative onstant, the spherial average of �(1)I (�; �) is�(0)I =XJ 6=I fIJ(RIJ) (3.28)We write the angular dependent radius , �I(�; �) of an ion as�I(�; �) = �(0)I (�(0)) + �(1)I (�(0); �(1)I (�; �)) (3.29)In other words, the radius at (�; �) is written as a sum of an average value due to theinuene of all the ions and deviations from that average. The distane between themembranes of ions I and J along their line of enters isLIJ = RIJ � �I(�JI ; �JI)� �J(�IJ ; �IJ) (3.30)where �JI and �JI are de�ned suh that `(�JI ; �JI) = xJI and it will be onvenient to usethe notation �(1)IJ = �(1)I (�JI ; �JI) (3.31)�(1)IJ = �(1)I (�(0); �(1)I (�JI ; �JI)) (3.32)�IJ = �I(�JI ; �JI) (3.33)AIJK = �(xIJ � xIK) (3.34)We now de�ne the total energy of the system as a sum of pairwise interations betweenmembranes. U = XI;J>I UIJ(LIJ)gIJ(RIJ) (3.35)where gIJ(R) takes the value 1 for R < Ra, 0 for R > Rb and deays smoothly from 1 to 0between Ra and Rb. This allows us to trunate the interation at intermediate distanes.The �th fore omponent on ion K is then written asF �K = � XI;J>I gIJ �UIJ�LIJ�x�IJ(ÆIK � ÆJK)� ��IJ�R�K � ��JI�R�K�� XI;J>I UIJ �gIJ�RIJ x�IJ(ÆIK � ÆJK) (3.36)
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Figure 3.3: The distortable ion model. See text of setion 3.7.2.and ��IJ�R�K = ���(0)I��(0)I + ��(1)IJ��(0)I ���(0)I�R�K + ��(1)IJ��(1)IJ ��(1)IJ�R�K (3.37)��(0)I�R�K = XL(I) �fIL�RILx�IL(ÆIK � ÆLK) (3.38)��(1)IJ�R�K = XL(I) 1RLI (ÆLK � ÆIK)(Æ�� � x�LIx�LI)x�JIfLIAIJL+ XL(I) 1RJI (ÆJK � ÆIK)(Æ�� � x�JIx�JI)x�LIfLIAIJL+ XL(I) x�LIx�JI �fLIRLI x�LI(ÆLK � ÆIK)AIJL (3.39)
The notation PL(I) has been introdued to indiate that the summation is over all ionsL whih are neighbours of I. This is neessary for pratial implementation due tothe trunation of interations and to avoid summing over all the partiles. Expanding



52 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSequation 3.36 we getF �K = �XJ(K)UKJ �gKJRKJ x�KJ� XJ(K) �UKJ�LKJ gKJx�KJ+ XI(K) �fKI�RKI x�KIXJ(I) �UIJ�LIJ gIJ� �(0)I��(0)I + �(1)IJ��(0)I �+  XJ(K) �UKJ�LKJ gKJ� �(0)K��(0)K + �(1)KJ��(0)K �! XI(K) �fKI�RKI x�KI!� XI(K) fKIRKI XJ(I)(1) �UIJ�LIJ gIJ ��(1)IJ��(1)IJ x�IJAIJK+ XI(K) x�KIRKI fKIXJ(I) �UIJ�LIJ gIJ ��(1)IJ��(1)IJ x�KIx�IJAIJK+ XI(K) �UKI�LKI gKI ��(1)KI��(1)KI x�KI XJ(K) fJKRJKAKIJ� XI(K) �UKI�LKI gKI ��(1)KI��(1)KI XJ(K) fJKRJK x�KJx�KIx�KJAKIJ� XI(K) �UKI�LKI gKIRKI ��(1)IK��(1)IK XJ(I) x�IJfIJAIKJ+ XI(K) �UKI�LKI gKI ��(1)IK��(1)IK x�KIRKI XJ(I) x�KIx�IJfIJAIKJ+ XI(K) �UKI�LKI gKIRKI ��(1)KI��(1)KI XJ(K)x�KJfKJAKIJ� XI(K) �UKI�LKI gKIRKI ��(1)KI��(1)KI x�KI XJ(K) x�KIx�KJfKJAKIJ� XI(K) �fKI�RKI x�KIXJ(I) ��(1)IJ��(1)IJ �UIJ�LIJ gIJx�KIx�IJAIJK+ XI(K) �UKI�LKI gKI ��(1)KI��(1)KI XJ(K) x�KJx�KIx�KJ �fKJ�RKJAKIJ (3.40)In the derivation we have made the further assumptions that fIJ = fJI, UIJ = UJI andgIJ = gJI. This monstrous-looking equation atually has a very small omputational



3.7. OUR APPROACH TO MODELLING IONIC SYSTEMS 53overhead relative to that for the dipole polarization, provided that Rb is hosen to bereasonably small, and it sales with the number of distortable ions.3.7.3 Applying the ModelIn order to apply this model we learly need to �nd suitable expressions for the funtionsfIJ ,�(0)I , and �(1)IJ . We begin by making the same assumption that was made in theextended Lagrangian approah that the most important interation is the anion-ationinteration although this will be extended at a later stage to inlude the anion-anioninteration in a limited way. For the moment we are onerned with systems with twospeies suh as MgO and we assume that the ation is small and rigid. For MgO it islikely that this is a very good assumption, given its degree of ioniity.In order to draw a orrespondene with the ompressible ion model of Wilson et al.[47℄(see setion 3.4) we write the total energy of the system due to short-range repulsion asV SR = XI�� V selfI (�(0)I ) + XI��;J�+B+�e���+(RIJ��(0)I )+ XI;J��;J>IB��e����RIJ + XI;J�+;J>IB++e��++RIJ (3.41)The values of the anion radii at any time should be suh that this repulsive energy isminimized. In other words �V SR��(0)I = 0 ; 8I (3.42)=) �V selfI��(0)I + ��+e��+�(0)I XJ�+ B+�e���+RIJ = 0 (3.43)To simplify the notation we write B0 = ��+B+� and �(�(0)I ) = �V self��(0)I .�(�(0)I )e���+�(0)I = �XJ�+ B0e���+RIJ (3.44)At this point we note that there has been muh disussion about the form of the self-energy of ompressible ions. Although in the original paper by Wilson et al. the form usedwas that of a hyperboli osine of the amount of ompression Æ�, in another work Matsuihas used a harmoni expression for this energy [67℄ and in an even more reent paper [68℄Marks et al. have argued that for the oxide ion one should treat the 2p6 shell and the s2shells separately with harmoni and exponential ompression energies respetively.However, the justi�ation for all of these forms has been on the basis of quantumhemial alulations of the perfet rystal. There is no reason to believe that this isa good basis for determining what the energy funtion should be in a distorted rystalor a melt and there does not seem to be strong physial reasoning behind any of theforms used. In fat, an examination of the alulated values of the self-energy in, for



54 CHAPTER 3. SIMPLE MODELS OF IONIC SYSTEMSexample, referene [47℄ shows that for values of RIJ that one might expet to �nd at lowtemperatures and pressures, the alulated self-energy ould be reasonably well �t evenwith a straight line.For these reasons, as a preliminary test we have hosen an exponential form as thissimpli�es onsiderably the mathematis. �(�(0)I ) will also have an exponential form so wemay write AIe��I�(0)I e���+�(0)I = �XJ�+ B0e���+RIJ (3.45)By merging onstant terms to simplify the notation, this equation an be rewritten inthe form �(0)I (�(0)I ) = C1 + C2 ln(�(0)I ) (3.46)where we say that �(0)I =XJ C3e�C4RIJ (3.47)and C1,C2..et are onstants. By analogy with equation 3.28 we an say thatfIJ = C3e�C4RIJ (3.48)One is not on�ned to suh simple forms for the self-energy but for many forms one annotwrite equation 3.44 in terms of �(0)I and one is fored to �nd �(0)I by an iterative proedure.This only has a very slight impat on the eÆieny of alulating the potential. Anotherform whih we have tried, and for whih this proedure is used isV selfI (�(0)I ) = �1�2 + �(0)I + �3(�4 + �(0)I )2 (3.49)where �1,�2..et are onstants. This form was hosen aording to the (admittedly, highlysimplisti) physial reasoning that the internal fators whih determine an ion's radius arethe eletrostati energy whih varies like the inverse of a distane and the kineti energyof the eletrons whih varies like the inverse of a distane squared.The above analysis has shown that the distortable-ion model presented is mathemat-ially equivalent to the ompressible-ion model of Wilson et al. if �(1)IJ = 0 in the limitthat the �titious mass of the extended-lagrangian approah goes to zero.It is not possible to map our approah onto the aspherial-ion model. However, wetake a di�erent approah to aspherial distortions. Given the funtions fIJ and �(0)I as astarting point we may postulate a form for �(1)IJ . We assume that distorting an ion in anaspherial way is energetially the same as distorting it spherially. In other words, wesay that there is no energy penalty for deviating from spheriity. We therefore write�(1)IJ = C5 ln��(1)IJ�(0)I � (3.50)Sine we will be parametrizing this fore by �tting to ab initio data, the minimizationroutine has the freedom either to make the onstant C5 very small or zero if this is not a



3.7. OUR APPROACH TO MODELLING IONIC SYSTEMS 55reasonable funtional form, or if aspherial distortions are really energetially equivalentto spherial ones, it an make C2 = C5 in whih ase, the distortions of purely spherialsymmetry disappear and �IJ = C1 + C5 ln(�(1)IJ ) (3.51)Although all the above derivation has assumed that this potential is only to be usedfor modelling ation-anion interations, the generality and freedom a�orded us by ourparametrization proedure (see hapter 4 ) means that we lose nothing by trying to applyit to the anion-anion interation also. We have done this by �tting parameters for theanion-anion interation and we have found that it does improve the ability of the modelto �t the ab initio fores. A more sensible, but also more expensive way of takling theanion-anion interation would be to introdue a self-onsistent proedure to minimize theangular dependent radii simultaneously.We also note that, as has been pointed out by Marks et al., di�erent eletroni shellshave di�erent ompression harateristis. This ould be modelled within the presentsheme by having two or more suh distortable ion potentials ating in parallel.
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Chapter 4Parametrizing E�etive Potentials
4.1 IntrodutionEver sine the �rst moleular dynamis simulations were performed one of the ruialissues has been the method of parametrization of the e�etive fore-�eld used. Not onlydoes one need to represent, in terms of a reasonably simple funtional form, the relevantphysis at play, this funtional form needs to take parameters whih are realisti for thesystem under onsideration.In the past parameters have been hosen based on physial arguments, or empiriallyso that the potential reprodued known properties of the material, or a ombinationof the two. This resulted in potentials whih were qualitative at best. The generalproedure was to use physial or hemial arguments for as many parameters as possibleand to �t the remaining parameters so that experimental quantities suh as the density,bulk modulus or dieletri onstant were reprodued. The problem with this is thatthe number of parameters that an be determined from physial arguments is generallyvery small and in order to parametrize empirially the number of physial quantitiesused should be large relative to the number of parameters required in order that theybe determined uniquely. Otherwise a set of parameters determined to reprodue, say,strutural properties might give awful results for dynamial properties. Sine the numberof experimentally determined physial quantities that are available is generally quite small,and sine they are frequently properties whih are not ompletely trivial to alulate withthe potential, the number of parameters that one an �nd in this way is usually very small.This, in turn, auses the problem that one needs to use a funtional form for the potentialwhih is simple enough to ontain only a few parameters. Funtional forms whih aretoo simple annot generally desribe the fores between the ions in an aurate way. Formost systems this requires ompliated funtions whih apture phenomenologially thebehaviour of the eletrons. Suh potentials for ioni systems are disussed in detail inhapter 3.Another problem with potentials whih have been used in the past is that they werefrequently parametrized using data relevant to a given set of thermodynami onditions(e.g. pressure and temperature) or a given phase. One of the main advantages of MDsimulations is that they may be used for exploring new situations whih are diÆult or57



58 CHAPTER 4. PARAMETRIZING EFFECTIVE POTENTIALSinaessible for experiment. This means that potentials were frequently used in ondi-tions di�erent from those under whih they were parametrized. Any hange in physialonditions suh as temperature, pressure, or phase results in hanges in the underlyingeletroni struture of the system. If suh hanges are large enough, the degree to whiha given potential an reprodue the interatomi interations an be seriously diminished.A solution to all of these problems is to parametrize a potential using informationextrated from �rst-priniples alulations [69℄. From suh alulations one an extrata wealth of information suh as the fore on eah atom, the stress on the system andthe energy di�erenes between di�erent on�gurations. Sine a reasonably high degreeof auray may be ahieved from density funtional theory alulations and sine DFTalulations are eonomial enough to allow one to treat large numbers of atoms ( �100 ) whih are representative of bulk systems when simulated under periodi boundaryonditions, they are the obvious hoie for performing the �rst-priniples alulation.One an, in priniple, perform ab initio alulations for any atomi on�gurations at anydensity and so the fore-�eld may be parametrized for the partiular physial onditionsthat one is interested in simulating.The other major advantage is that an arbitrarily large amount of information may beextrated and this allows one to use fore-�elds whih are muh more ompliated andtherefore have many more parameters than traditional fore-�elds. However, in order todo this it is neessary to use a areful, well-de�ned parametrization proedure so thatproblems do not our due to there being too little ab initio data. The basi requirementthat must be ful�lled is that a potential whih is parametrized for use under a given set ofonditions should be able to desribe all suÆiently large systems under these onditionswith the same degree of auray.In this hapter the parametrization proedure, whih was originally developed byErolessi and Adams [69℄ and later developed further by Laio et al. [70℄, will be desribedalong with the details of the ab initio alulations that we have used for the oxides, SiO2and MgO.4.2 Parametrizing from Ab-Initio Data4.2.1 The Fore-Mathing MethodIn a moleular dynamis simulation the important quantities are the fores on eah atom,and if one is performing simulations at onstant pressure, the stress on the simulation ell.For this reason, and beause fores are plentiful in number in an ab initio alulation,Erolessi and Adams have introdued the idea of �tting parameters to reprodue ab initiofores as well as possible. Laio et al. [70℄ were interested in simulating systems under highpressure and so have extended this slightly by trying to �t also the alulated stress. In thefollowing we also inlude in the funtion to be optimized, the energy di�erenes betweendi�erent on�gurations. Given a form for the interatomi fore-�eld, whih depends on aset of parameters f�g, we minimize the funtion :�(f�g) = wf�F + ws�S + we�E (4.1)



4.2. PARAMETRIZING FROM AB-INITIO DATA 59with respet to the parameters f�g where�F = qPnk=1PNI=1P� jF �l;I(f�g)� F �ai;I j2qPnk=1PNI=1P�(F �ai;I)2�S = qPnk=1P�;� jS��l (f�g)� S��ai j23Bpn�E = qPnk;l((U lk � U ll )� (Uaik � Uail ))2qPnk;l(Uaik � Uail )2Here F �l;I is the ��th omponent of the fore on atom I as alulated with thee�etive potential, F �ai;I is the fore omponent as alulated ab initio, S��l is the stresstensor omponent as alulated with the e�etive potential and S��ai is the stress tensoromponent as alulated ab initio, B is the bulk modulus, U lk and Uaik are the potentialenergy of on�guration k as alulated with the fore-�eld and ab initio respetively, n arethe number of atomi on�gurations for whih ab initio alulations have been performed.The quantities wf ,ws and we were hosen to reet the amount of available data for eahquantity, i.e : wf > ws > we. It was found that the �nal �t was quite insensitive to thevalues hosen as long as we was relatively small due to the fat that only one energy maybe extrated per on�guration.In order to be sure that the minimization proedure was meaningful n was requiredto be reasonable large. Its value depended on the system studied, the potential form usedand the number of atoms in the unit ell. For SiO2 we generally used a value of n = 5.For MgO, a funtional form with more parameters was used and there were fewer atomsin the unit ell and so it was found that a value of n = 10 was required. In eah aseat least another 5 on�gurations were retained during eah �tting proedure in order totest that the �nal funtional form �t these on�gurations as well as it did those that wereused in the minimization of �(f�g).Minimization of �(f�g) with respet to f�g was performed using a ombination of\simulated annealing"[71℄ and \Powell minimization"[72℄. A basin in the surfae de�nedby �(f�g) in ��spae was initially found using simulated annealing and, one found,further minimization was performed using the method of Powell. Minimization in gen-eral, and partiularly simulated annealing, is a very omputationally expensive proess.However simulated annealing is very useful for two reasons : 1. It is very stable; Powellminimization an break down if numerial errors (suh as overow errors) our due tounphysial values of the parameters; 2. In priniple it an always bring one to the globalminimum; In pratie however this depends on how muh omputer time one is willingto alloate it. These properties of the simulated annealing method makes it partiularlyuseful when �tting a potential for the �rst time. One does not need to start with reason-able or physial values of the parameters in order for it to onverge and this means thatone may parametrize exoti potentials for whih the parameters have no obvious physialinterpretation.



60 CHAPTER 4. PARAMETRIZING EFFECTIVE POTENTIALSThe freedom whih one is a�orded using the ombination of ab initio data and sim-ulated annealing is ruial. It simply would not be possible to parametrize a fore �eldsuh as the distorted-ion model introdued in setion 3.7.2 without either one of theseassets.4.2.2 The Optimal Potential Method
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Figure 4.1: Iterative proedure for onstruting the optimal potential at (P; T ).It is important when �tting to the ab initio on�gurations that one �ts to on�gu-rations whih are representative of the real system. This is partiularly important forliquids. The liquid should have a struture whih is lose to that of the real liquid. How-ever, if one doesn't have a good potential to begin with, one an't onstrut by meansof an MD simulation a good liquid. One solution is to generate on�gurations using abinitio moleular dynamis. Our attempts to simulate liquid MgO with Car-Parrinello MDproved too diÆult however due to large errors of the form desribed in hapter 2 forlevels of the �titious mass whih allowed a reasonable equilibration time, i.e. �0 > 100a.u. For this reason we have used an adapted form of an iterative proedure for generat-ing the potential whih was �rst used by Laio et al.[70℄ (see �gure 4.1). Beginning withthe best potential available, the system of interest is thermalized with an MD simulation(typially of � 20 ps) at the thermodynami onditions (P; T ) for whih one would like toreate the potential. One equilibrated, a number of well separated ( typially by � 1 ps)atomi on�gurations are generated. On these on�gurations, density funtional theoryalulations (see setion 4.3) of total energy, fores and stress are performed and these areused to perform the parametrization. We will denote the ab initio data extrated duringstep i of the iterative proedure olletively as Ci Using the parameters obtained duringthe minimization at this step, a new equilibration is peformed (as a ontinuation of theprevious one) and new atomi on�gurations extrated. One again, ab initio alula-



4.3. AB-INITIO CALCULATIONS 61tions are performed and a new set of parameters obtained. This yle is stopped one theurrent parameter set �ts the urrent (Ci) and the previous (Ci�1) ab initio data to thesame degree, i.e. �(f�gi;Ci) = �(f�gi;Ci�1).4.3 Ab-Initio CalulationsAs mentioned previously, the ab initio alulations whih we perform are all done withindensity funtional theory[2, 3℄. In 1964 Hohenberg and Kohn [2℄ proved that all propertiesof an eletroni system are uniquely de�ned by its ground state probability density. Sub-sequently, Kohn and Sham [3℄ turned this theorem into a pratial sheme by reastingthe many-body Shr�odinger equation into a set of single partile Shr�odinger equationsin whih eah partile sees an e�etive potential whih is a funtional of the probabilitydensity. Walter Kohn shared the Nobel Prize for hemistry in 1998 for his part in thedevelopment of this theory.Unfortunately, the Kohn-Sham e�etive potential is not known in general and so oneannot solve the equations exatly. Instead, various approximations to the unknown partof the potential ( whih is alled the exhange-orrelation potential ) are used. Althoughthe exhange- orrelation potential V̂x is fully non-loal, the approximations to it are loalor semiloal. The most ommonly used approximate funtional is alled the \loal densityapproximation" ( LDA ). This is a loal operator in whih the exhange-orrelation po-tential at a point is hosen to be the same as that felt by an eletron in a uniform eletrongas of the same density. The result for the uniform eletron gas was alulated numer-ially by Ceperley and Alder [36℄ and parametrized by Perdew and Zunger[37℄ amongothers. This approximation has been inredibly suessful onsidering its simpliity, andfor many systems it an produe results (suh as strutural parameters, phonon frequen-ies and elasti moduli) whih are in good agreement with experiment. The generalonsensus nowadays is that another lass of funtionals, so alled \generalized gradientapproximations" (GGA), whih depend not only on the density at a point but also on itsspatial derivative are superior in most situations, but partiularly for studying moleules.This empirial observation is supported by the fat that, of the onditions whih the truefuntional is known to obey, more of them are satis�ed (by onstrution) by some of themore reent GGAs [73, 74℄ than the LDA.All our alulations are performed within the planewave pseudopotential method[75,76℄. In this method, eletroni states of an atom whih are hanged negligibly by thepresene of other atoms due to the fat that they are very low in energy and are loseto the nuleus, are onsidered frozen. Eletrons whih do respond to the presene ofother atoms are then treated as though they see an e�etive non-loal potential, alled apseudopotential, due to the nuleus surrounded by these unreative eletrons. The eigen-funtions of the Kohn-Sham hamiltonian of the system of pseudopotentials and eletronsare represented in a basis of plane waves. The planewave method relies on the use ofperiodi boundary onditions whereby the basi simulation ell is repeated periodiallyin all diretions. Periodi boundary onditions are partiularly suitable for studying bulkmaterials as the in�nitely repeated periodi images an imitate the e�et of an in�nitely



62 CHAPTER 4. PARAMETRIZING EFFECTIVE POTENTIALSlarge system, provided that the elementary unit ell is suÆiently large.In priniple, density-funtional theory with the plane-wave pseudopotential method isan ab initio method in the sense that all one needs is the atomi number of the onstituentelements of a system in order to alulate the properties of the system. In pratie howeverthere is a very strong empirial element to it. The details of the alulation are notuniquely de�ned. Various hoies whih one may make during a alulation, suh as themethod of reating the pseudopotential and the hoie of exhange-orrelation funtional,an have a strong impat on the properties alulated. For this reason, as it is mostfrequently used, it is a semi-empirial method, albeit a very good one. For a solid, it isgenerally applied with referene to suh experimental data as volume, bulk modulus, orlattie parameters and if suitable agreement is not found, the underlying details of thealulation are revised. The hope is, that by using a sheme whih gives good agreementwith these experimental properties, one improves the hanes of this sheme working wellfor other properties. This is never guaranteed but it is the best approah available withinthis method. For example, di�erent hoies of the Mg pseudopotential, whih were, byour estimation, all equally reasonable, led to equilibrium volumes of MgO whih variedby up to 10%. The sheme that we have hosen was shown[6℄ to give good results andwas thoroughly tested. However, it was not formally more justi�able than any other. Itmay be that this is an extreme ase, however there is always some signi�ant variationand partiularly in elasti properties suh as the bulk modulus.4.3.1 Computational DetailsIn the reation of the e�etive fore-�elds we have performed ab initio alulations fortwo di�erent materials, MgO and SiO2.For SiO2, the sheme that we used was hosen for onveniene (the pseudopotentialsalready existed and the exhange-orrelation funtional was already implemented in theplane wave program) rather than based on empirial onsiderations. Its empirial justi-�ation lies in the ability of the resulting e�etive fore-�eld to reprodue experimentalproperties of rystalline and liquid silia. This is disussed in detail in hapter 5. Thepseudopotentials used for silia and oxygen were both of the form introdued by Trouil-lier and Martins [22℄. Although in the alulations of silia we have used a rather oldgradient-dependent exhange-orrelation funtional [77℄, in the atomi alulations whihwere used to reate the pseudopotentials we have used di�erent funtionals for both oxy-gen and silion. For silion the funtional used was the LDA[36, 37℄ and for oxygenwe used a di�erent gradient-dependent funtional [35℄. The pratie of using di�erentfuntionals in the atomi and bulk alulations is generally frowned upon, however froma formal mathematial or physial point of view we are not aware of any reason whyit is not as justi�ed as any other sheme. Nevertheless, mixing funtionals in this wayan lead to onfusion and it needlessly ompliates the details of a alulation and so isnot advisable in general. In addition to this, our use of the planewave pseudopotentialmethod is purely as a means of parametrization and if there is a formal diÆulty withmixing funtionals as we have done, it is highly unlikely that errors inurred in this wayare greater than other errors assoiated with our e�etive fore-�elds.



4.3. AB-INITIO CALCULATIONS 63For MgO, we have used idential pseudopotentials to those that have previously beenused suessfully to alulate its vibrational properties for a large range of pressures andtemperatures[6℄. We require our simulations to produe good quality fores and this is amuh more rigorous test of its ability than it would have been feasible for us to perform.The exhange-orrelation funtional used in this ase was the LDA.An important parameter in any planewave alulation is the highest energy planewaveused in the expansion of the wavefuntions. For SiO2 the value used was 130 Ryd. and forMgo the value used was 120 Ryd. These values are very large relative to most alulations,however we required a relatively preise determination of the stress and this onvergesvery slowly with respet to this parameter.A unit ell ontaining 24 SiO2 units was used in the simulation of silia and a ellontaining 32 MgO units was used in the simulation of MgO. These sizes were deemedlarge enough to be a good representation of the bulk and , in any ase, it would not havebeen omputationally feasible to use ells whih were signi�antly larger.The brillouin zone was sampled with only the �-point in eah ase.
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Chapter 5Silia
5.1 Introdution : Why study silia ?Silion dioxide or silia is one of the most widely and intensively studied of all materials.There are many reasons for this. First of all, it is one of the most ommon materials innature, siliates making up more than 90% of the minerals in the earth's mantle and rust.It is a vital industrial material. An obvious example is that it makes up approximately75% of the omposition of the glass that is used for everything from window panes tooptial �bres. It is also used extensively as an insulator in the semiondutor eletronisindustry. These are only two of a vast range of uses.Silia has an extremely rih phase diagram with a large number of allotropi forms.The best known of these are quartz, ristobalite, tridymite, oesite, stishovite and ofourse silia glass. All the low pressure rystal strutures of silia are omposed of orner-sharing SiO4 tetrahedra and even in the glass and the liquid almost all of the Si atomsare tetrahedrally oordinated. Silia is a main onstituent of most zeolites whih aremetastable miroporous rystalline solids whih are extensively mined and fabriated fortheir unique strutural properties. Their porosity makes them useful as moleular sievesin large sale industrial hemistry. Zeolites are also used as atalysts, the reations takingplae in their large internal avities.Its abundane in the earth's mantle makes the response of silia to extreme ondi-tions of temperature and pressure of great importane to those onstruting geophysialmodels of the earth's interior. Although it generally appears with other elements suhas Mg,Al,Fe,Na...et in the form of siliates, the �rst step in understanding siliates is tounderstand silia itself. Likewise, the �rst step in modelling suh systems with omputersimulation is to suessfully model silia. The behaviour of liquid silia and siliates asa funtion of pressure and temperature is of importane to those studying the formationand ooling of the earth.Silia is a prototype of strong network-forming glass formers. For this reason alonethere has been intense interest in studying the strutural and dynamial properties of theliquid and the glass.Moleular dynamis plays an important role in the study of silia in all its forms sine,in priniple, it allows one full aess to the mirosopi strutural details. Experiment,65



66 CHAPTER 5. SILICAon the other hand, an only provide averaged quantities suh as struture fators. Ex-periments have diÆulties with extreme onditions of temperature and pressure but, atleast in priniple, MD is not as onstrained and so it is partiularly relevant for studiesat high temperature and pressure where there is little experimental data.5.2 Modelling SiliaSilia is quite a diÆult oxide to model, at least ompared to the simpliity of MgO.It has traditionally been onsidered to be a ovalent system[78℄, and although there isalmost ertainly some ovaleny present, it has been found that it is more appropriateto model it as an ioni system[79℄ and, more reently, that some of the e�ets previouslyattributed to ovaleny[81, 82℄ ould, in fat, be explained using a polarizable ioni model[83℄. It is preisely the features of its bonding whih have aused onfusion in the past,i.e. the mix of ioniity and ovaleny, whih makes it a partiularly hallenging system.Nevertheless, as disussed in the introdution, it is an extremely important system andso any improvement is worthwhile.For many systems experiene has shown that it is easier to model the broad featuresof its potential energy surfae, whih play a dominant role in determining struture, thanit is to model the �ne details, whih an strongly e�et dynamis. For silia its ioniitymakes it reasonable to suppose that these broad features are dominated by eletrostationsiderations. The small degree of ovaleny, on the other hand is probably more lo-al in its e�ets and therefore of importane for dynamis but of lesser importane fordetermining struture. Here we would like to test our polarizable-ion potential and ourparametrization method by trying to reate a potential whih reprodues the struturalproperties of silia.There have been a large number of potentials proposed for silia in the past. Manyof these inlude three-body angular dependent terms and so are intrinsially biased infavour of a tetrahedral rystal struture[80, 81, 82℄. These are of little use to us as weaspire to reating a potential whih is suitable for disordered aswell as rystalline phases.Demiralp et al. [84℄ have proposed a many-body potential for silia whih improves onthe predition of the rystal strutures with respet to pair potentials. The many-bodyharater of this potential is a harge equilibrationmodel[53℄ whih allows for loal hangesin the degree of ioniity. Although it is very likely that the degree of ioniity hangeswith pressure, there is no evidene that we are aware of to suggest that this happensdynamially at a given pressure or temperature. The polarizability of the oxygen ion iswell established however[85, 86℄ and it may be that inlusion of harge-transfer mimis toa ertain extent the e�ets of polarization. It is likely that inlusion of harge-transfer isneessary for transferability between polymorphs with di�erent silion oordination, forexample, for modelling the pressure indued transition from 4-fold oordinated quartz to6-fold oordinated stishovite.The most ommonly used potentials for silia are all pair-potentials of the formUIJ(RIJ) = qIqJRIJ +BIJe��IJRIJ � CIJR6IJ (5.1)



5.2. MODELLING SILICA 67In other words, a Born-Mayer-like form but without the R�8 term. There have been anumber of parametrizations of this potential form for silia in the past[79, 87, 88℄. Mostreently, van Beest, van Santen and Kramer (BKS)[88℄ have �t the parameters to repro-due the energetis of small hydrogen-terminated silia lusters as well as the experimentalstrutural parameters and elasti onstants of quartz. The resulting potential has beenextensively applied to study a large range of dynami and thermodynami properties ofsilia in many di�erent phases and under many di�erent thermodynami onditions[89℄.A polarizable potential for silia has previously been proposed by Wilson et al.[85℄ andshown to be important for reproduing the infrared absorption spetrum of the amorphoussolid with respet to pair potentials of the BKS form. The model that they have used isdisussed in setion 3.3.1 and their parametrization was mainly empirial.As mentioned previously, we are primarily interested in improving the desription ofthe eletrostatis with respet to previous models and we therefore use a model similar tothat of Wilson et al. but with the well-de�ned and ontrolled parametrization proedurewhih is outlined in hapter 4. We use the polarizable potential desribed in setion 3.7.1with short-range dipoles indued by the ation on the anion. The short-range repulsiveinterations are modelled with a pair potential of Morse-Streth form :Uij = qiqjrij +Dij[eij(1� rijr0ij ) � 2e ij2 (1� rijr0ij )℄ (5.2)where the interation between an atom of type i and an atom of type j is de�ned by theparameters qi,qj,Dij,ij,r0ij and the distane between them rij. This form was hosen overthe Born-Mayer form as it proved to be more transferable between di�erent phases.As we have disussed in hapter 4, it is important to take into aount the e�et thattemperature and pressure have on the eletroni struture of any material and that itshould be veri�ed that potentials are suÆiently transferable when using them under newthermodynami onditions or in a new phase. For silia we aspire to reating a potentialwhih an be used over the large range of allotropes whih are seen at low pressures (i.e.< 5 or 10 GPa.) and at temperatures up to those that are relevant for studying the liquidwith MD. The high visosity of silia liquid means that in order to observe substantialdi�usion on a MD timesale, very high temperatures (3000� 4000 K) are required. It isnot obvious a priori that our potential form an streth aross this range of onditions.However, all the low-pressure polymorphs onsist of orner-sharing tetrahedra and theliquid and glass are known to be mostly omposed of networks of suh tetrahedra. Inother words, the short-range order doesn't hange muh aross these phases. In order to�nd a system whih is not biased towards a partiular rystal struture we have deidedto parametrize the potential by �tting to ab initio data on the liquid at 3000 K. This wasdone using the proedure outlined in hapter 4 and the results will be disussed in thenext setion.We will draw omparison with experiments, Car-Parrinello simulations of liquid silia[90℄ and one of the most ommonly used e�etive potentials for silia : the BKS potential[88℄. Another very ommonly used form is the potential of Tsuneyuki et al.[87℄ whih hasthe same form as BKS and was parametrized in a similar manner. Therefore most of theproblems with BKS whih we highlight here are equally appliable to this potential.



68 CHAPTER 5. SILICA5.3 Results5.3.1 Fitting to Ab-Initio DataIn order to obtain a benhmark for the parametrization of the new potential, we �rst testedthe ability of the BKS potential to �t the ab initio data. The values of �F = 0:51,�S =0:0571 and �E = 0:82 (see setion 4.2.1 ) that we obtain for the BKS potential in theliquid at 3000K and zero pressure point to a rather poor auray of this potential, atleast at our working onditions for the �tting proedure. This is quite surprising if oneonsiders that the ability of the BKS potential to reprodue some strutural properties ofthe solid phases is good overall[91℄, and on�rms our suggestion that the simplest fore�elds should be used with great aution at physial onditions that di�er from those wherethey have been parametrized or from those where they are known to provide aurateresults. It is possible to substantially redue these errors by minimizing � (see equation4.1) with respet to the parameters of the Born-Mayer potential, i.e. by onstruting the\optimal" Born-Mayer potential for the liquid at 3000 K and zero pressure. However alarge number of suh minimizations were attempted and although it was possible to redue�F and �S to values of about 0:3 and 0:015 respetively, the resulting potentials gaveunrealisti values for the strutural parameters and densities of the low pressure solidpolymorphs. For example, the equilibrium density of quartz at 300 K varied for suhpotentials between values as low as 0:3 g m�3 and as high as 4:5 g m�3. A minorityof these potentials worked reasonably well for quartz but they did not neessarily workwell for the other polymorphs and hoosing these potentials out of the many reatedwould represent an empirial proedure. We would like to avoid empiriism as muh aspossible. It is lear from the poor �t to ab initio data and the fat that improving this�t disimproved strutural properties onsiderably, that the rigid ion model is too simpleto allow for an aurate desription of silia at low pressure and for a temperature rangeenompassing both solid and liquid phases. It seems that more ingredients are requiredin the potential model in order to improve its ability to reprodue the ab initio fores.We now look at the results of our parametrization of the polarizable model. We havereated and tested only one parameter set for the polarizable potential and we report theresults of those tests here.The results of the �t of the polarizable model desribed in the previous setion werevery enouraging. The values of �F ,�S and �E for the �nal parameter set were0:16,0:014 and 0:18 respetively, indiating a dramati improvement over BKS, but alsoover the best (optimal) potential with the Born-Mayer form. The parameters are listedin Table 5.1. The fat that inlusion of polarization both improves the ability of thepotential to �t the ab initio fores and allows one to forego the empiriism of seletinga potential that reprodues experiment out of more than one reated, strongly suggeststhat polarization is a ruial ingredient in the bonding of silia.1�S has been omputed relative to a roughly estimated bulk modulus of B = 30GPa.
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Table 5.1: Fore �eld parameters (atomi units)qO qSi � b �1:38257 2:76514 8:89378 2:02989 �1:50435DO-O DSi-O DSi-Si2:4748� 10�4 1:9033� 10�3 �2:08460� 10�3O-O Si-O Si-Si12:07092 11:15230 10:45517r0O-O r0Si-O r0Si-Si7:17005 4:63710 5:750385.3.2 Testing the PotentialIn order to hek the reliability of our improved potential we ompare its thermodynamiand strutural properties with experiments[92℄ on the equation of state of liquid silia,and with available ab initio data[90, 86℄ on the mirosopi struture of the liquid. Exper-imental data on liquid silia is sare and so we have ompared with the Car-Parrinellosimulations of liquid silia performed by Trave et al. and Sarnthein et al.. Althoughthe onsiderations of hapter 2 mean that one annot guarantee these simulations to beof Born-Oppenheimer quality, we will ompare only with strutural properties and it isreasonable to expet that they are at least muh more reliable than pair-potentials. Fur-thermore, agreement between MD results using our potential and CPMD results wouldindiate a probability that both are in agreement with what would be obtained from BornOppenheimer MD. However, sine only short simulation times and small system sizes arepossible with CPMD, the thermodynami averages that an be extrated are poor. Thisis partiularly bad for liquid silia at low pressure as its visosity is so high that di�usionis negligible on an ab initio MD timesale.Equation of StateThe poor ab initio statistis an learly be seen in �gure 5.1 where three di�erent typesof MD simulations (Car-Parrinello, BKS and our polarizable potential) are omparedwith experimental results. The ab initio data onsists of simulations from two di�erentstarting points. In one set of simulations (those at lower volumes), quartz was meltedat zero pressure and suessively higher pressures were ontinuations of the simulationsat previous pressures. In the other set, the initial on�guration was taken from a wellequilibrated liquid simulation using our polarizable potential. The visosity of silia andsiliates in general is known to derease dramatially with pressure [93, 94℄ and it an beseen that the disrepany between the two sets of results dereases at higher pressureswhere the liquid is better able to di�use. However, there are lear problems with the abinitio simulations and this highlights the need for aurate e�etive potentials whih areeonomial enough for large system sizes and long simulation times to be feasible.The experimental data is from experiments at � 1620 K whereas the ab initio simula-tions were at a temperature of � 3500K and the lassial MD simulations were at � 3100
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Figure 5.1: Pressure as a funtion of volume in liquid silia from lassial MD usingthe new polarizable potential ompared with results from the BKS potential, ab initiosimulations[90℄ and experiment[92℄.K. However, at zero pressure we have veri�ed that thermal expansion of the liquid is small(� 10�5K�1, onsistent with experimental estimates[95℄) and that taking aount of itwould in fat bring our zero pressure results into even better agreement with experiment.Volumes were obtained as averages along onstant-pressure[96℄ moleular dynamis runsof at least 50 ps following 20 ps of equilibration and with simulation ells ontaining 576atoms. At lower pressures (< 3 GPa) where di�usion is slower, averages were obtainedalong runs of more than 100 ps. The overall agreement with experiment is rather good,and de�nitely better than any atomisti model proposed so far. The BKS model under-estimates systematially the volume by � 13%, a likely onsequene of its inability toreprodue the ab initio stress. Our improved potential ompares with experiment evenbetter than the ab initio results, a likely onsequene of the poor thermodynami averag-ing in the ab initio simulations. It is also the ase that ab initio simulations tend to eithersystematially overestimate ( in the ase of GGA) or systematially underestimate (in thease of LDA) the volume[97℄ and that, probably fortuitously due to the mixture of thetwo funtionals that we have used, our potential predits volumes that lie approximatelymidway between the two.Partiularly at low pressures, the large visosity of liquid silia means that even for ourrelatively large system size (576 atoms) obtaining a reliable statistial average of volumerequires at least 50 pioseonds. For the abinitio system (72 atoms) a onsiderably longerrun would be required. However, in spite of our muh larger simulations, there is a kink in



5.3. RESULTS 71the equation of state at a pressure of between 0:5 and 0:75 GPa. It ould be that the systemis di�using so slowly at these low pressures that longer simulation times are required inorder to get an average of adequate preision. Another possibility is that there is atransition between two di�erent liquid phases at low pressures and that the disontinuityis at (or near) the point where the transition ours. However we have examined a largenumber of strutural features suh as pair-orrelation funtions and angular distributionsand have not identi�ed any �rst-order hange of struture with pressure. This does notmean that suh a hange doesn't our however. Averaged quantities suh as distributionfuntions may be quite insensitive to suh a transition. These simulations were extremelyexpensive, eah low pressure data point being the result of approximately 24 days of singleproessor omputer time and so it has not yet been feasible to redo or re�ne the simulationsto see if an entirely new liquid reated from fresh initial onditions would produe thesame results. Moreover the average over any 50 ps segment (after the equilibration time)gave results whih were very lose to the average over the full 100 ps. We have veri�edthat the system is di�using at these pressures but the di�usion is extremely slow andso we annot say with any degree of ertainty what is the ause of this anomaly in theequation of state.We have heked that simulations using a 72 atom simulation ell (the same size aswas used for the ab initio simulations) , gave results in almost perfet agreement withthose of a 512 atom ell. This indiates that �nite size e�ets are negligible. This may wellbe due to the e�etive \eletroni" sreening of the long range eletrostati interationsbetween ions whih is present in our model in the form of dipoles.Struture of the LiquidWe now fous on the mirosopi struture of liquid silia. Fig. 5.2 shows a omparisonof the silion-oxygen-silion angle distributions in the liquid. It has been pointed out [85℄that by ounterating the repulsion between silion atoms, the inlusion of dipole e�etsan shift the oxygen entered angle distribution towards lower angles. This is learlyseen in this omparison between the results of the BKS simulations and the ab initio andpolarizable potential simulations. The very lose orrespondene between the ab initiodistribution and the polarizable potential distribution justi�es both our desription of theeletrostatis in terms of dipoles and the inlusion of short-range indued dipoles whihontribute very signi�antly to the dipole moment on eah ion and whih are thereforestrongly linked to the distribution of angles. The peak at around 90 degrees in thepolarizable and Car-Parrinello angle distributions is due to the presene of mirosopion�gurations onsisting of rings ontaining two silion and two oxygen atoms. These donot appear in the BKS distribution, indiating that they are energetially unfavourablewith this potential.Fig. 5.3.2 shows the proportions of N-fold oordinated silion atoms as a funtion ofpressure ompared to the results of Car-Parrinello simulations [90℄ and simulations usingthe BKS potential [99℄. Our results are in muh better qualititative agreement with theCP alulations than with the lassial BKS alulations despite the fat that simulationsare performed at high pressures where the parameter set may beome inreasingly ina-
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Figure 5.2: Distribution of oxygen-entered angles in liquid silia as a funtion of pressurefrom Car-Parrinello MD [98℄, BKS MD and MD with our polarizable potential.Table 5.2: QuartzExperiment. (Ref. [100℄) New Potential BKSa [�A℄ 4.916 4.925 4.941 [�A℄ 5.405 5.386 5.449� [g/m�3℄ 2.646 2.665 2.598Si-O-Si 143.7 144.5 148.1urate. This implies that the inlusion of realisti physis into the potential improves itstransferability as well as its auray. Our results indiate that the tetrahedral strutureof the liquid is more stable at higher pressures than is predited by the BKS potential.Sine di�usion is strongly linked to the presene of defets suh as 3-fold and 5-fold oor-dinated silion atoms, the ability of a potential to reprodue the orret distributions ofsuh defets is important if it is to properly desribe the di�usion mehanism as a funtionof pressure.Crystal StruturesAs a �nal test of the potential we examine its ability to desribe the most important lowpressure polymorphs of silia. The various rystal parameters for at zero pressure and 300K for quartz, ristobalite and oesite are given in tables 5.2, 5.3 and 5.4 respetively.Stishovite, the stable form of silia at high pressure (above � 8 GPa) and whih
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Figure 5.3: Perentage of N�fold oordinated silion atoms in liquid silia as a funtion ofpressure for the new potential ompared to CP simulations[90℄ and the BKS potential[99℄.an also be stabilized at ambient onditions was also simulated. However, in this ase,although the system relaxed initially to very lose to the orret density (within 2%),it always ollapsed within several pioseonds to lower density strutures. This wouldindiate that the energy barrier whih keeps stishovite metastable at low pressures ishugely underestimated with this potential. It is not surprising that the potential hasproblems desribing stishovite. Stishovite di�ers from all the other polymorphs onsideredin that the silion ions are sixfold oordinated. This inevitably means that there are loalhanges in eletroni struture with respet to the tetrahedral strutures and therefore aloss of auray of our parameter set.The tetrahedral rystal strutures are all in very good agreement with experiment. InTable 5.3: CristobaliteExperiment. (Ref. [101℄) New Potential BKSa [�A℄ 4.957 4.936 4.920 [�A℄ 6.890 6.847 6.602� [g/m�3℄ 2.334 2.412 2.515Si-O-Si 146.8 144.0 143.9
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Table 5.4: CoesiteExperiment. (Ref. [102℄) New Potential BKSa [�A℄ 7.136 7.165 7.138b [�A℄ 7.174 7.162 7.271 [�A℄ 12.369 12.377 12.493� 120.34 120.31 120.76� [g/m�3℄ 2.921 2.933 2.864Si-O-Si 143.6 144.0 150.5fat the agreement is so good that it surpasses the agreement with previously publishedfully ab initio alulations[97, 103℄. As with the density of the liquid, this agreement isalmost ertainly fortuitous.5.4 DisussionWe have demonstrated in this hapter how our inlusion of polarization e�ets oupledwith our parametrization routine an produe a potential with extremely good struturalproperties. We have not yet extensively tested the dynamial properties of this potential,however we have noted that the � to �-ristobalite transition ours at too low a temper-ature (by about 35%) with our potential, and di�usion of the liquid seems to be faster ingeneral than di�usion with the BKS potential. This potential, is itself onsidered to havedi�usion whih is too fast based on extrapolations of low temperature data[104, 105℄. Itis not surprising if our potential does not desribe dynamis well. We note that, par-tiularly if ovaleny is present, the funtional form would seem to be ill-equipped todesribe shorter-range interations. This an also be seen by the fat that we reprodueab initio fores only to within 16% and yet our desription of the strutural propertiesof the rystalline allotropes is really exellent. This would suggest that most of this 16%an be attributed to short-range (non-eletrostati) fores whih are important for a gooddesription of dynamis.The many-body distortable-ion model outlined in setion 3.7.2 and the previousaspherial-ion model of Rowley et al.[52℄ are designed to improve dynamis in simple ionisystems where relatively minor distortions of anions our. The distortion self-energy ofthe ions is not well researhed (see setion 3.7.3) and the idea that the fore betweenions depends only on the distane between eletron louds along their line of enters isone of many gross over-simpli�ations whih one should not expet to work for spatiallyextended and highly distorted harge distributions suh as have been found in eletronistruture alulations of silia (see [106℄ and referenes therein). We have attempted toapply this model to silia and we see a small improvement of the �t to the fores (to about14%). However, little time was spent in the parametrization proess and we have not yettested this potential. Future work may yield a potential with whih dynamial propertiesmay on�dently be modeled.



Chapter 6Magnesium Oxide
6.1 IntrodutionMagnesium oxide is onsidered to be the simplest oxide for a number of reasons. It is anioni oxide with a 1 : 1 stoihiometry and it has a very simple struture - the ubi NaClstruture (see �gure 6.1) - whih has been shown experimentally to be stable at pressuresup to at least 227 GPa[107℄. Beryllium oxide, the only group II oxide with fewer eletronsforms the less symmetri B4 (wurtzite) struture. MgO is known to be extremely ioni,with the Mg atom giving up two of its eletrons almost entirely to the O atom and so toa good approximation, the O2� and Mg2+ ions both have losed n = 2 shells of eletrons.

Figure 6.1: The struture of MgO.75



76 CHAPTER 6. MAGNESIUM OXIDEThe simpliity of MgO makes it a natural starting point in attempts to understand ormodel oxides whih make up one of the most important groups of ompounds. Importantoxides inlude water, a neessity for all known life, and the uprates, a lass of omplexopper oxides in whih high-temperature superondutivity is found. Both of these ex-amples are the subjets of intense researh, but as we will see, even MgO a muh moresimple system, is not well understood. Although an understanding of MgO will learlynot automatially lead us to an understanding of other oxides, if we an't understand theeletroni struture and the interations between atoms in a system as simple as MgO,we annot expet to have muh suess with more diÆult systems.MgO is an important omponent of the earth's lower mantle[108℄. It is estimatedthat it makes up approximately 20% of the lowermost part of the mantle, the othermost important ompounds being MgSiO3 and SiO2 (see hapter 5). The behaviour ofMgO under onditions of extreme pressure ( up to � 130 GPa) and temperature ( up to� 3000 K) is important for understanding deep Earth geophysis. One again, its relativesimpliity makes it the starting-point for experimental and theoretial tehniques thatare used to probe the properties of deep mantle minerals, the vast majority of whih areoxides. The stability of MgO under pressure also means that it is frequently used as apressure alibration standard for high pressure and temperature experiments.MgO is also important industrially, primarily as a atalyst but it has a wide rangeof uses. It is an important omponent of glass, it is used as an eletrial and thermalinsulator and it is used as an ingredient in the prodution of fertilizer among other things.For the reasons outlined, MgO has been the subjet of intense theoretial and ex-perimental study and there is an enormous literature on it's properties and behaviourunder pressure and temperature. However, experimental diÆulties at high pressures andtemperatures and problems with theoretial methods of simulating ioni systems, someof whih are disussed in hapter 3, have meant that some properties are still a matterof debate. From a theoretial point of view, a large number of empirial, semi-empirialand ab initio tehniques have been applied to MgO. Density funtional theory withinthe loal density approximation has shown itself to be very aurate for the alulationof the stati and vibrational properties of rystalline MgO [6, 26, 5℄ and it is probablethat it is also very good for simulating the liquid. However, ab initio moleular dynamishas proven diÆult (see hapter 2) and at any rate what an be studied with ab initiotimesales and system sizes is very limited. Empirial and semi-empirial models havebeen disappointing for many properties, partiularly for dynamial properties suh asphonon frequenies[52, 109℄. The papers by Rowley et al.[52℄ and Aguado et al.[55℄ haveshown that e�etive potentials an model rystal dynamis but a model whih is pratialfor simulations of reasonably large systems is still laking.An important outstanding problem is the behaviour of the melting temperature as afuntion of pressure. There have been a number of attempts to simulate the melting ofMgO in the past [112, 115, 113, 111, 114℄ . Some of the results are shown in �gure 6.2.The theoretial results show a di�erene of a fator of between 2:5 and 7:3 in the slopedTmelting=dP , at zero pressure with respet to the results of diamond-anvil-ell experiments[110℄. It has been suggested by a number of people that there is a systemati error in theexperiment, however the lak of agreement between the di�erent theoretial approahes,
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Figure 6.2: The melting temperature of MgO as a funtion of pressure fromexperiment[110℄ and from simulations using the variational indued breathing (VIB)model[111℄, the potential indued breathing model[112℄, and the e�etive potentials ofVoadlo and Prie [113℄ and Strahan,Cagin and Goddard [114℄.and the inability of these approahes to desribe the phonon spetrum of MgO means thatthe ase for repeating the experiment is not as strong as it might be. It would have veryimportant geophysial onsequenes if, in fat, there was a problem with the experimentand MgO has a muh steeper melting slope[116℄.Between the Earth's lower mantle and its outer ore of molten iron there is a boundarylayer in whih seismi observations have indiated a drasti drop in sound veloities[117℄.An open question is whether this is due to a hange in hemial omposition or to melting.The magnitude of this veloity hange, espeially in the shear veloity, favours melting.If this is the ase then there will be a onstraint on the temperature at the ore-mantleboundary (whih is an important but not well-known quantity) from the solidus tem-perature of the mantle. It was found by experiments[110, 118℄ that the melting lines ofMgO and (Mg,Fe)SiO3-perovskite ross at about 50 GPa, so that at the pressure of theore-mantle boundary, the melting temperature of MgO is lower than that of (Mg,Fe)SiO3-perovskite. Previously it had been thought that the euteti omposition of the mantlelay near the omposition of perovskite, the major omponent. Zerr and Boehler's resultsindiate that, in fat, the euteti omposition is probably muh more MgO-rih. Thishas then been used to dedue new onstraints on the temperature of the ore-mantleboundary[116℄.If Zerr and Boehler's work turned out to be wrong, as theorists urrently suspet, one



78 CHAPTER 6. MAGNESIUM OXIDEof the most popular urrent models of the ore-mantle boundary and as a result of thetemperature pro�le throughout muh of the earth would have to be substantially revised.The aim of this hapter is twofold. First of all, MgO, will be used as a testing groundfor the polarizable and distortable-ion interatomi potentials whih we have disussed inhapter 3. We will use the parametrization sheme of hapter 4 and show how we anahieve a marked improvement in auray over simpler fore-�elds whilst still retainingthe ability to simulate muh larger systems than are possible with ab initio methods.Seondly, we takle the problem of the melting slope of MgO using a ombination ofmoleular dynamis with our improved e�etive fore-�eld and total energy alulationswithin density funtional theory.6.2 Testing Potentials for MgOIn this setion various di�erent funtional forms for the interatomi potential will betested. The riterion that we use to determine the quality of a funtional form is itsability to �t the ab initio data, as desribed in hapter 4. We will on�ne ourselves totesting the usefulness of three di�erent types of potential :1. A pairwise short-range interation potential of the formUIJ(RIJ) = BIJe��IJRIJ � CIJR6IJ � EIJRNIJIJ (6.1)where BIJ ; �IJ ; CIJ ; EIJ ; NIJ are all parameters to be optimized.2. A polarizable-ion potential inluding short-range polarization, as disussed in se-tion 3.7.1. Only the oxygen ion is onsidered polarizable.3. A distortable-ion potential, as disussed in setions 3.7.2 and 3.7.3. The interationenergy between ions I and J is given byUIJ(LIJ) = AIJe��IJLIJ + BIJe��IJLIJ (6.2)and the funtions fIJ ,�(0)I , and �(1)IJ are given the same forms as in equations 3.48, 3.46and 3.50 respetively, i.e. fIJ = C(1)IJ e�C(2)IJ RIJ (6.3)�(0)I (�(0)I ) = C(3)I ln(�(0)I ) (6.4)�(1)IJ = C(4)IJ ln��(1)IJ�(0)I � (6.5)where C1 from equation 3.50 has been merged into the pre-exponential fators AIJand BIJ . The parameters to be optimized are AIJ , �IJ , BIJ , �IJ , C(1)IJ , C(2)IJ , C(3)I,C(4)IJ . The values Ra = 8:5 a.u and Rb = 10 a.u. were used in the deay funtiongIJ .



6.2. TESTING POTENTIALS FOR MGO 79Using a sheme whih was slightly modi�ed with respet to the one outlined in se-tion 4.2, �ve fore-�elds were onstruted using �ve di�erent parametrizations. In additionto the ingredients mentioned, all �ve inluded the point harge-eletrostati potential withthe harge on an ion as a parameter. The potentials reated wereA. A pair-potential : short-range pair potential, parametrized in the rystal at ambientonditions.B. A polarizable potential : short-range pair potential, with polarizable anions, parametrizedin the rystal at ambient onditions.C. A distortable-ion potential : distortable-ion potential, parametrized in the rystalat ambient onditions.D. The full model : distortable-ion potential, with polarizable anions, parametrized inthe rystal at ambient onditions.E. The full model : distortable-ion potential, with polarizable anions, parametrized inthe liquid at 3000 K.Eah of these potentials was tested by its ability to �t three di�erent sets of ab initio data.Using the full model, whih onsists of a distortable-ion potential with anion polarizationand point harges, three potentials have been reated using the self-onsistent proedureof setion 4.2. These three potentials were optimized at zero pressure for (i) the liquid at3000 K (ii) the rystal at 2000 K and (iii) the rystal at 300 K respetively. Eah of thesethree potentials was used to reate atomi on�gurations at the onditions for whih itwas optimised. These on�gurations are onsidered to be as representative of the truesystem as we have the ability to reate.The �ve potentials A to E were parametrized using the ab initio data at the orretonditions and eah potential was evaluated not only by the values of �F , �S, and �Eahieved during parametrization, but also by their ability to �t the ab initio data from theother two sets of onditions. For example, potential A was parametrized at 300 K, andthen its ability to �t the ab initio data in the rystal at 2000 K and the liquid at 3000 K wasalso tested. Due to the fat that for stress and energies it was not possible to parametrizeusing an extremely large ab initio data set (we were limited by the omputational ost ofoptimisation to 10 on�gurations), the numbers quoted are the �t to 10 on�gurations atthe same onditions but whih were not used in the minimization of �(f�g). In all asesthe error in the stress was evaluated relative to a pressure B = 140 GPa whih is lose tothe experimental bulk modulus at ambient onditions of 150 GPa.The results are summarized in table 6.1. We annot guarantee that we have foundthe global minimum in eah ase during optimization as simulated annealing had to bedone at a rather rapid quenh rate. The simulated annealing was followed by Powellminimization[72℄. In eah ase, the total minimization time was the same (10 days on asingle proessor) and therefore more eonomial fore-�elds are likely to be better mini-mized than less eonomial ones.A number of things an learly be seen from table 6.1. First of all, not surprisingly, thedistortable-ion model on its own is quite bad. This is probably beause of the shortness of



80 CHAPTER 6. MAGNESIUM OXIDE
Table 6.1: The �t to the ab initio data for the di�erent potential forms300K rystal 2000K rystal 3000K Liquid�F �S �E �F �S �E �F �S �EA 9.3 5.0 25.5 13.7 3.3 15.5 25.1 4.8 52.4B 6.9 5.2 23.8 9.0 6.2 17.8 17.5 5.6 23.6C 10.4 39.1 5.9 13.6 51.7 164.8 32.2 58.2 69.2D 3.4 0.6 3.0 6.8 0.3 9.8 17.1 0.3 10.5E 12.8 0.1 59.0 10.2 0.1 18.9 9.6 0.0 17.7the range of its interations. Ions further away from eah other than 10 a.u. interat onlyvia the oulomb fore between their harges. At 300 K, the full model is learly betterthan all other forms. It also transfers very well up to higher temperatures and to theliquid. The pair-potential, although working quite well for the rystal, does not transferwell to the liquid. The polarizable model yields results whih are intermediate in qualitybetween the pair-potential and the full model. The results are a lear illustration of thefat that by adding more physis into the form of an e�etive potential one an reatefore-�elds with, not only an improved ability to �t the ab initio data, but also a muhimproved transferability between di�erent phases and onditions.The poor �t of potential E to the energy di�erenes in the rystal at ambient onditionsis beause the energy di�erenes in the liquid and high temperature solid are muh greaterthan those at lower temperatures. The absolute value of the error in the energy di�erenesis the same at low temperature and high temperature but �E is the error relative to theroot-mean-squared value, whih for the rystal is very small.Phonon FrequeniesHaving established that our inlusion of many-body e�ets has improved the potentialform with respet to the pair potential, at least aording to the riterion that we haveadopted, we now look at its ability to model the vibrational spetrum of MgO. We noteone again that the DFT sheme to whih the potential was �t gives a very good desrip-tion of phonon frequenies at ambient onditions [6℄. In order to get some perspetiveabout the kind of auray that has been ahieved in the past with other models we look atthe results of simulations using a \Variational Indued Breathing" (VIB) model[119, 109℄.The reason for omparison with this model is that it is the most highly evolved of a lass ofmodels of Gordon-Kim type [120℄. In these models, the rystal harge density is modelledas a superposition of ioni harge densities. The total energy and fores are then alulatedusing Kohn-Sham theory [3℄. Sine the isolated O2� ion is not stable, it must be stabilisedin some manner. In the VIB model this is done by surrounding the ion with a sphere of+2 harge ( alled a \Watson sphere") , the radius of whih is varied so as to minimizethe total energy of the rystal. This non-empirial model is useful for omparison beausemodels of this type have been extensively applied to MgO[119, 109, 121, 112, 111℄, andin partiular to study the melting of MgO[112, 111, 121℄. It is these theoretial meltingurves that we would like to improve upon in setion 6.4. A omparison of the results of



6.2. TESTING POTENTIALS FOR MGO 81the VIB model with those of self-onsistent DFT alulations is useful sine it illustratesthe importane of aspherial distortions whih, if the fully ioni piture is orret, is theprimary di�erene between them. As an be seen from the phonon dispersion urves

0

200

400

600

800

1000

1200

ω
  
[c

m
-1

]

0 0.2 0.4 0.6 0.8 1
[0,0,γ]

1 0.8 0.6 0.4 0.2 0
[0,γ,γ]

VIB model

Experiment

0

200

400

600

800

1000

1200

ω
  [cm

-1]

0 0.25 0.5
[γ,γ,γ]Figure 6.3: The phonon dispersions of MgO as alulated with the variational-induedbreathing model[109℄ ompared with experiment[62℄(�gure 6.3) the level of agreement with experiment is quite poor for some of the phononmodes. Sine the self-onsistent DFT results are in very lose agreement with experiment,this highlights the inadequay of models whih do not allow for aspherial ioni distor-tions. The most striking disagreement with experiment is in the longitudinal optial (LO)phonons. LO phonons indue a long-range eletri �eld in the rystal whih opposes themotion of the ions and therefore raises the energy of the phonon mode. In the real rystal,eletrons sreen out some of the e�et of this eletri �eld. The sreening mehanism ismainly that of ioni polarization but may also inlude ontributions from harge transferbetween ions. Sine this is not present in the VIB model, the eletri �eld is too high andthe LO frequenies are orrespondingly higher. It is preisely this e�et whih promptedthe development of the shell model and subsequent methods of treating ioni polarization.We now turn to our model of interioni interations to see how well it performs inthe alulation of the phonon frequenies. The method that we use to alulate thephonon frequenies is derived from the utuation-dissipation theorem [122℄. The phononfrequenies are alulated from the positions of the peaks in the spetra of the spatialFourier omponents of longitudinal and transverse harge and mass urrent orrelation



82 CHAPTER 6. MAGNESIUM OXIDEfuntions, for wavevetors along the high-symmetry diretions of the rystal[57℄.CLong(k; t) = h( NXI=1(�XI(t)�k � vI(t)e��k�rI(t)))( NXJ=1(�XJ(0)�k � vJ(0)e��k�rJ(0)))i (6.6)CTrans(k; t) = h( NXI=1(�XI(t)�k� vI(t)e��k�rI(t)))( NXJ=1(�XJ(0)�k� vJ(0)e��k�rJ(0)))i (6.7)where vI(t) is the veloity of ion I at time t and XI(t) is the harge of speies I for theopti modes and the mass of speies I for the aousti modes. k is a wavevetor whih isommensurate with the size of the simulation ell.We performed an MD simulation on a system of 512 atoms using the full-model,optimised in the rystal at 300 K. The urrent orrelation funtions were alulated on atime domain of length 2:9 ps whih was averaged over a simulation of length 20 ps. Thephonon dispersions that we get are shown in �gure 6.4. We get an extremely lose �t toboth the experimental and the self-onsistent DFT data. The hief disrepanies are in theoptial modes whih are systematially underestimated. The longitudial optial mode inpartiular is underestimated near the zone enter. Although we do not alulate the modefrequenes at � = (0; 0; 0), as this would require an in�nitely large simulation ell withthe method that we are using, it looks as though the LO-TO phonon splitting is slightlyunderestimated. In our parametrization proedure we have used a small ell to performthe ab initio alulations and so the long-range interations whih are important fordispersion near the ��point are not inluded. Our hope is that by modelling orretly theeletrostatis at shorter range, we get a potential whih, when used in a larger simulationell, an aurately model the long range eletrostati interations. This is not guaranteedhowever and is likely to work only if we inlude all relevant sreening mehanisms in ourfuntional form. The inorret LO-TO phonon splitting suggests that our desription ofthe eletrostatis is inomplete. This is not surprising sine dipole polarization is only oneof many sreening mehanisms. It may be that harge-transfer between ions is important.However, a omparison with the results of referene[55℄ is suggestive of it being due to thefat that we haven't inluded the a�ets of higher-order multipoles. Our Car-Parrinellosimulations and stati DFT alulations (see setion 2.4) showed that there was verylose to a omplete transfer of 2 eletrons from the magnesium to the oxygen ions athigh pressure. However, the harge on the oxygen ion in this potential (and all otherpotentials that we have �t) is � 1:5 - onsiderably less than this. Although the degree ofioniity is ertainly less at zero pressure where the LDA band gap is lowered by 20� 30%(to � 5 eV) it is unlikely to have redued to this extent. Under the assumption that,within our model, short-range interations and eletrostatis desribe ompletely separateaspets of the potential-energy surfae (we do not know the extent to whih this is true)the minimization routine �ts the harge and the polarizability so as to best approximatethe eletrostatis of the rystal. The lak of higher order multipoles means that it musthoose a ompromise between purely dipole sreening, in whih the polarizability � andthe harge q take their \true" values, and uniform sreening in whih the harge is simplyredued by a fator equal to the dieletri onstant and the polarizability is zero. In
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6.3. THE DISTORTABLE-ION MODEL REVISITED 85� to partially enable either or both types of distortions as the best ompromise betweenrigid-ion behaviour, breathing-ion behaviour and distortable-ion behaviour if allthree of the models fail to varying degrees and in di�erent ways to reprodue the abinitio potential energy surfae.The parametrization proess is therefore itself a test of the distortable-ion model. Wenow look at what, preisely this parametrization proess has done by examining the radiusof an oxygen ion in the diretion of a neighbouring magnesium ion for one of our potentials(potential F whih is disussed in detail in setion 6.4). The test is performed in the rystalat 3000K. The loal radii of the anions onsist of an arbitrary onstant, whih may bemerged into the onstant oeÆient of the exponential fore between ions, and the truevariations of the radii due to hanging environment. We look at the quantities �IJ ��IJ ,�(1)IJ ��(1)IJ , and �(0)I ��(0)I for anion I and ation J where �IJ ,�(1)IJ and �(0)I are averages overa long trajetory. These quantities therefore are the non-onstant parts of the di�erentontributions to the radius of ion I in the diretion of J (Reall that �IJ = �(0)I + �(1)IJwhere �(0)I inludes only spherially-symmetri distortions and �(1)IJ inludes aspherialdistortions ).The results are shown in �gure 6.6 and the variation in the value of LIJ , as de�ned byequation 3.30, along the same trajetory is shown for omparison. As an be seen, theloal radius is dominated by the e�et of the aspherial part of the distortable-ion model.The spherial part makes a signi�antly smaller ontribution. This learly vindiates ourextension of the ompressible-ion model to inlude aspherial distortions. The variationin the radius is very small ompared to the variation in LIJ and so we look at whatontribution this makes to the fores between the ions. Looking at the fores in a pairwiseway is not entirely justi�ed given the many-body nature of the potential, however it seemsnatural to look at the quantitiesQ(1)IJ = 100� �UIJ (LIJ )�LIJ � �UIJ(RIJ��IJ��JI)�RIJF r.m.s.IJ (6.8)and Q(2)IJ = 100� �UIJ (LIJ )�LIJ � �UIJ(RIJ��IJ��JI)�RIJ�UIJ(LIJ )�LIJ (6.9)where F r.m.s.IJ is the root mean-squared value (averaged over time) of the total fore on anionI (i.e. from all atoms and from both eletrostati and non-eletrostati ontributions)projeted onto the line joining the enters of I and J . These quantities are plotted in�gure 6.7. Q(1) is a way of looking at the impat of instantaneous variations of themembrane radii on the total fore on the ion. Q(2) is a way of looking at the impat ofinstantaneous variations of the membrane radii on just the short-range part of the forebetween ions I and J . If the radius the ion is onstant, then Q(1) = Q(2) = 0.It is diÆult to know how one should best ompare fores, or judge the impat ofindividual ontributions to the fores. However, inspetion of these two quantities stronglysuggests that, with the parameters of the model hosen by the minimization routine, thevariation of the anion's radius has a signi�ant impat on dynamis.
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Figure 6.6: a) LIJ�LIJ as a funtion of time, where LIJ � 4:66 a.u. is the average over thetrajetory of LIJ , the inter-membrane distane (see setion 3.7.2). b) �IJ��IJ ,�(1)IJ ��(1)IJ ,and �(0)I � �(0)I . I and J are neighbouring anion and ation respetively.
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Figure 6.7: Q(1)IJ and Q(2)IJ (see equations 6.8 and 6.9)as a funtion of time along the sametrajetory shown in �gure 6.6So, the above disussion shows that the minimization routine �nds it optimal to allowfully aspherial distortions of the anions whih impat signi�antly on the interatomifores. This, oupled with the overall ability of the model to �t ab initio data wouldstrongly suggest that the distortable-ion model works and is a valuable addition to thefore-�eld. However, it is very likely that it ould be improved with researh into thevarious funtional forms on whih it depends.6.4 The Melting Line of MgOAs mentioned in the introdution to this hapter, there is onsiderable debate about themelting temperature of MgO as a funtion of pressure. In this setion we attempt toalulate the derivative of the melting temperature as a funtion of pressure using a om-bination of lassial MD simulations, ground-state DFT alulations and Car-ParrinelloMD simulations. The method that we use to �nd the zero-pressure slope is to use theClausius-Clapeyron equation dTmdP = Tm�V�H (6.10)whih relates the derivative of the oexistene urve between the solid and the liquid tothe hange in enthalpy �H and volume �V between the phases. At zero pressure thehange in enthalpy is simply equal to the hange in the internal energy �U . The failureof previous theoretial models to agree with eah other and with experiment makes itimportant for us to eliminate as many soures of error as possible from our alulation.Ideally we would like to eliminate all soures of unertainty exept for those inherentin the DFT alulations, i.e. the unertainty due to the use of approximations to theexhange-orrelation energy.
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Table 6.2: The �t to the LDA ab initio data for the liquid (F) and solid (G) potentialsused in the alulation of the melting slope.3000K Crystal 3000K Liquid�F �S �E �F �S �EF 9.6 0.1 10.8 10.4 0.2 10.2G 6.2 0.3 10.6 44.0 2.3 54.0Table 6.3: The �t to the PBE ab initio data for the liquid (F) and solid (G) potentialsused in the alulation of the melting slope.3000K Crystal 3000K Liquid�F �S �E �F �S �EF 10.6 1.3 12.0 10.8 0.9 12.2G 6.6 1.6 11.2 45.0 1.5 56.1In order to alulate the melting slope we need to alulate the melting temperatureTm, the volume at the melting temperature in the solid ( Vs ) and the liquid ( Vl )and the potential energy at the melting temperature in the solid ( Us ) and the liquid( Ul ). In order to maximise the auray of our MD simulations we parametrize twoseparate potentials, one for the liquid at 3000 K (potential \F") and one for the solid at3000 K (potential \G") . Eah potential onsists of a polarizable-ion part, point hargeeletrostatis, and distortable-ion short-range interations. The distortable-ion self-energyin this ase is given by equation 3.49. The values Ra = 7:0 a.u. and Rb = 8:0 were usedin the deay funtion gIJ . The parameters of these potentials are given in appendix ??.The ability of eah of these potentials to �t ab initio data from the solid the liquid at3000 K was tested. We have also performed alulations on the same on�gurations usingthe state-of-the-art generalized-gradient approximation to exhange and orrelation ofPerdew, Burke and Ernzerho� (PBE)[74℄. The results are summmarized in tables 6.2and 6.3 It was found that the potential whih was parametrized on the solid at 3000 Kould not be used at higher temperatures or in the liquid. The reason for this is that theiterative proedure whih was used to alulate �(0)I and �(1)IJ , due to the form of the self-energy used, did not onverge for this potential under these onditions. This is the reasonfor the poor �t to the liquid ab initio data in table 6.2. There were no suh problems forthe potential whih was parametrized on the liquid. The solid potential is therefore usedmainly in order to test the funtional form of potential whih di�ers from that previouslyused. It also is used to verify that experimental data on thermal expansivity does notdi�er strongly at higher temperatures from extrapolation of low temperature behaviour.We would like to test the ability of the potentials to reprodue experimentally knownproperties of MgO. We begin by looking at the ability of the potential parametrized in thesolid to desribe the phonon dispersion at ambient onditions. The results are shown in�gure 6.8. One should not expet results whih are as good as those for a potential whihis parametrized at ambient onditions, and so the results are extremely good. There isvery good agreement with both experiment and the DFPT results of Karki et al.. As
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Figure 6.9: The pair-orrelation funtions of liquid MgO at � 3100 K and zero pressureas alulated with our e�etive potential and from a Car-Parrinello simulation.2 pioseonds of equilibration with CPMD the pair-orrelation funtions were alulatedon a further 1:5 pioseond trajetory. This time is not suÆient to get aurate densityaverages ( 2 di�erent simulations at pressures of � 0 GPa and � 0:5 GPa both yieldedthe same average density), however we an hek that the strutural features are thesame as were obtained with our e�etive potential. The high rate of di�usion shouldmean that the liquid has had ample time to relax struturally. In �gure 6.9 the Mg-Opair-orrelation funtions for the Car-Parrinello and e�etive potential liquids at 3050 Kand the e�etive potential solid at 3100K are plotted. There is remarkable agreementbetween the CPMD results and our lassial simulations indiating that the liquid is wellreprodued The omparison with the solid pair-orrelation funtion shows that there isa substantial di�erene in struture between solid and liquid. We see a hange in theaverage oordination from 6 to � 5. This hange in struture is onsistent with what isgenerally expeted in ioni melts[126, 127℄ and it is onsistent with a large volume hangebetween solid and liquid. Ubbelohde[126℄ has argued that the oordination and volumehange on melting is orrelated with the polarizability of the anions. Compensatingeletrostati fores in the rystal are responsible for larger interioni distanes than ourin the melt. This an learly be seen by the displaement inward of the �rst peak in theMg-O pair-orrelation funtion in the melt as ompared to the rystal (�gure 6.9). It isthe strong attration between anion and ation whih is responsible for this. However,a large ioni polarizability weakens this attration due to sreening leading to inreasedMg-O distanes, a oordination number loser to six and a struture and hene volumemore similar to that in the solid. Cohen and Gong[112℄, found a oordination numberof around 4:5, and a volume di�erene �V=Vs � 30% (Vs = volume in the solid at themelting point), using the non-polarizable PIB model. Our model attributes a sizeablepolarizability (� 14:3 a.u.) to the oxygen ion and we �nd �V=Vs � 20%.Melting TemperatureWe �rst try to alulate the zero pressure melting temperature Tm. The method that weuse to do this is the \2-phase" method [128, 129, 115℄. Solid and liquid on�gurations



6.4. THE MELTING LINE OF MGO 91whih have been pre-equilibrated at the desired temperature and pressure are \stuk to-gether"1 to form a superell in whih there is a solid-liquid interfae. If the temperatureis higher than the melting temperature, the solid portion should begin to melt and theinterfae moves so as to inrease the amount of liquid. If the temperature is lower thanthe melting temperature, the liquid at the interfae begins to rystallize and the solidportion inreases. Crystallization generates latent heat whih raises the temperature ofthe simulation ell. Melting, on the other hand, absorbs latent heat thereby lowering thetemperature of the simulation ell. At temperatures muh higher than Tm, the systemmelts ompletely and at temperatures muh lower than Tm the system rystallizes om-pletely (see �gure 6.10). In priniple it is possible to braket Tm in this way and this hasbeen the approah of Belonoshko and Dubrovinsky in their alulation of the melting lineof MgO. However, we have found that, within quite a large range of starting temperatures(between � 2800 K and � 3300 K), the temperature performs large utuations about Tmin whih the system is by turns rystallizing and melting. If full rystallization or meltingdoes not our these osillations an persist for a long time and therefore in order to geta rough idea of the melting temperature, following an initial equilibration period we haveaveraged the temperature over these osillations. The average temperature depends onthe relative sizes of the solid and liquid portions of the oexistene ell via the spei�heat apaities of the solid and the liquid. This means that di�erent simulations givedi�erent average temperatures depending on the initial onditions of the simulation. Itis also true that, if equilibrium between solid and liquid ours suh that either phase isunder-represented, �nite-size e�ets may play a role. In order to get a rough estimate ofTm, we have performed a number of di�erent 2-phase simulations and disarded those inwhih only a small fration of the ell was either solid or liquid.Simulations were performed at onstant pressure[96℄ and were begun from on�gu-rations that were already very lose (within � 0:5 GPa) to zero pressure. Clearly, oneannot use two di�erent potentials in the same simulation and so, due to the onvergeneproblem of the solid-parametrized potential, we have performed the two-phase simulationswith the liquid potential. A simulation ell ontaining 1024 atoms was used. Previousinvestigations[115, 113℄ have onluded that for systems of more than a few hundredatoms, the �nite size e�ets are negligible.Simulations whih were initially at 2800 K and 3300 K transformed ompletely intorystal and melt respetively. In �ve further simulations, solid and liquid were observedto oexist for a long time. Following 20 ps of equilibration the temperature was averagedover a further 15 ps for eah simulation. Averages of 2974 K, 2984 K, 3025 K, 3038 Kand 3042 K were found for these simulations giving an overall average of 3013 K.There is some ontroversy regarding the melting temperature at zero pressure withvalues of Tm ranging from about 3000 K to about 3250 K[110, 130℄. Zerr and Boehler [110℄measured the temperature to be 3040�100 K whih is lose to previous measurements[131,132℄, and in exellent agreement with all of our average temperatures. However, reentwork[130℄ suggests that the orret value may be 3250� 20 K. Even an error of � 250 K1This involves performing a few steps of steepest-desent minimization on the atoms very lose tothe interfae between solid and liquid in order to prevent large inreases in the kineti energy and/ornon-onvergent polarization due to unphysial ioni separations.
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a)

b)
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Figure 6.10: The 2-phase melting proedure. a) The simulation ell at the beginningontaining 512 atoms of rystalline MgO and 512 atoms of liquid MgO periodially re-peated; b) T > Tm. The liquid portion has grown at the expense of the solid portion.The interfaes are not as lear as in a) but the enter of the ell still shows signs of order,indiating rystallinity while liquid makes up a large portion of the ell on either side; )T < Tm, some of the liquid portion has rystallized. The edges of the ell are still learlyliquid but muh of the ell looks relatively ordered.



6.4. THE MELTING LINE OF MGO 93in our alulated melting temperature is good onsidering the level of agreement whihan generally be obtained using ab initio methods[25℄. Sine we are primarily interestedin the melting slope dTm=dP , and sine a 10% level of auray would still vastly improveon the urrent unertainty of the slope, we have hosen a value Tm � 3100 K at whih toalulate the energy di�erenes and the volume.Volume and Energy Di�erenesIn order to alulate the volumes in the liquid and solid, we �rst would like to test thatour potentials reprodue the experimental temperature and pressure dependene of thevolume in the solid. Sine our ab initio simulations will be done in ells ontaining 64atoms, we also hek that �nite size e�ets are not too great. The onvergene problemfor the solid potential that was mentioned previously has meant that at 3100 K it wasnot possible to run for a long time. Eventually onvergene failed and the simulation hadto be abandoned. This was only a problem in the solid at temperatures very lose to themelting temperature. For this reason, we have not sueeded in running a simulation nearTm for long enough to get a ompletely reliable average of the density. We have thereforeheked the volume at this temperature using the liquid potential.The temperature dependene of density is a property whih is quite a hallenge fore�etive potentials beause thermal expansion depends on the seond derivatives of thepotential energy with respet to ioni positions. In �gure 6.11 we plot the equilibriumvolume as a funtion of temperature for system sizes of 512, 216 and 64 atoms. Theresults are in exellent agreement with experiment. What is most striking is the fatthat the �nite size e�ets are very small. We �nd similar results for the silia potentialin hapter 5. It has been shown in other simulations[55, 67℄ that �nite size e�ets forioni systems an be onsiderable. It may be that beause we treat the polarization in arealisti way (by �tting to ab initio data) the long range eletrostati e�ets are e�etivelysreened. This is an important quality of our potentials sine they are signi�antly slowerto evaluate than pair-potentials and the fat that one an use smaller systems for manyappliations alleviates some of this burden.Figure 6.12 shows the equation of state for the 512 atom system ompared to experi-ment and to the DFT results of Karki et al.[6℄. One again, the results at low pressuresare in exellent agreement with experiment. At higher pressures ( > 20� 30 GPa. ) theagreement is not as good as was found in �gure 6.5 due to the lower radial uto� for thedeay funtion, however sine we are interested in the melting slope at low pressure, thisis of little onsequene.We now alulate the volume in the liquid and the solid at zero pressure for temper-atures near the melting temperature Tm. The liquid potential was used to alulate thepressure at onstant volume for a range of densities (near the zero pressure equilibriumvolume) and temperatures (near Tm ) using simulation ells ontaining 512 atoms. Fromthese we extrated the volume as a funtion of temperature at zero pressure. For thesolid, onstant pressure simulations were performed in order to extrat the equilibriumdensities. The results are shown in �gure 6.13. It an be seen that the volume di�ereneis not strongly dependent on temperature and that the use of the liquid potential in the
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Figure 6.11: The density as a funtion of temperature ompared to experiment[123, 124℄for the solid potential with di�erent simulation ell sizes and for the liquid potential.Open symbols indiate that simulations were too short to guarantee reliable averages ofthe density.
solid is probably justi�ed given the level of agreement with the unonverged data pointsfrom the solid potential relative to the di�erene in volume between solid and liquid. Thevariation of the volume hange �V with temperature is quite small ( the di�erene be-tween 2950 K and 3250 K is about 7:2%) and the di�erene between the (unonverged)results from the solid potential is very small (� 2:6%).We have extrated the average potential energy in the liquid and the solid from thesame simulations in whih we obtained the densities. The results are shown in �gure 6.4.The energy di�erene between solid and liquid, like the density di�erene, has a negligibletemperature dependene.The melting slope that we get from these simulations is primarily dependent on thehoie of the melting temperature Tm used in equation 6.10 and this dependene is shownin �gure 6.15. We get a slope of between 145 K GPa�1 and 170 K GPa�1 depending onthe value of Tm. If we stik to the value of Tm that we have estimated in our 2-phasesimulations, the slope is 149:3 K GPa�1. This di�ers by more than a fator of 4 from theexperimental slope of Zerr and Boehler[110℄ . It is also greater than some of the morereent theoretially determined slopes. For example, Cohen and Weitz found a value of� 114 K GPa�1[111℄ and Strahanet al a value of � 88 K GPa�1[114℄.
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Figure 6.12: The equation of state of the solid-parametrized potential ompared toexperiment[133, 125℄ and to density funtional perturbation theory[6℄6.4.1 Correting the melting slope with ab initio alulationsThe ability of our fore-�eld to �t ab initio data suggests that the slope that we haveobtained should be very lose to the \true" LDA result. However, we would like to hekthat this is the ase and orret any errors in the slope to bring it loser to the LDA value.We onsider possible errors in the energy di�erenes and volume di�erenes separately.Using our e�etive potential, long simulations of the solid and the liquid were performedat 3070 K. From eah of these simulations 20 well-separated snapshots were extrated andDFT total energy alulations performed on these on�gurations.A soure of error whih it is not possible for us to ontrol is the error inherent in theuse of an approximate exhange-orrelation funtional. Although there is no lear trendfor bulk systems as regards whih approximate exhange-orrelation funtional gives thebest strutural properties, it has been suggested on a number of oasions[97, 25, 134℄that generalized gradient approximations improve upon total energies with respet to theLDA and that it is possible that for this reason GGAs an signi�antly improve meltingtemperatures alulated with DFT[25, 134℄. A omparison of properties alulated withdi�erent exhange-orrelation funtional give a hint as to the magnitude of the error dueto the use of approximate exhange-orrelation funtionals. For these reasons, aswellas performing total energy alulations using the LDA, we have performed total energyalulations with the GGA funtional of Perdew, Burke and Ezrenho�[74℄.
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Figure 6.13: The equilibrium volume of the solid and the liquid at zero pressure asa funtion of temperature. The unonverged values from simulations using the solid-parametrized potential are inluded for omparison. The dashed lines are a �t to thedata and their slightly di�erent slopes aount for the range of �V indiated.
2900 3000 3100 3200 3300

Temperature [Kelvin]

-0.79

-0.78

-0.77

-0.76

-0.75

E
ne

rg
y 

[a
.u

./ 
M

gO
]

Solid

Liquid
∆ U = 0.0256 a.u.

Figure 6.14: The average energy at zero pressure of the solid and the liquid as a funtionof temperature from our MD simulations. The dashed lines are regression lines the slopesof whih di�er by only � 1%.Correting Volume Di�erenesA possible soure of error in our alulated melting slope is that both the solid andthe liquid were found to be extremely ompressible at temperatures lose to the meltingtemperature. For example, at 3100 K, for our e�etive potential, the liquid ompresses byabout 0:12 gm�3 per GPa of applied pressure whereas the solid ompresses by only about0:047 gm�3 per GPa. Our potential reprodues the LDA stress of the liquid and solidwithin about 0:3 GPa and 0:15 GPa respetively, on average. For the GGA these numbersare 1:3 GPa for the liquid and 1:8 GPa for the solid. The potential does not systematiallyunderestimate or overestimate the internal pressure with respet to the LDA however. Wehave looked at the average internal pressure on the 20 liquid on�gurations and the 20solid on�gurations with the e�etive potential and with LDA and GGA. The results areshown in table 6.4. From this table it is lear that, with respet to the LDA, the errors inthe volume are very small, both for the solid and for the liquid. The e�et of these smalldi�erenes in pressure is a hange in the melting slope of about � 0:5% and so may be
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Figure 6.15: The alulated slope of the melting urve as a funtion of the zero pressuremelting temperature Tm. A �t to the alulated points gives the line y = 0:08831x �116:782.Table 6.4: The average internal pressure (in GPa) on the sample solid and liquid on�g-urations evaluated with LDA, GGA and the e�etive (liquid-parametrized) potential.LDA Potential GGASolid -2.84 -2.90 0.26Liquid -3.30 -3.29 -1.17negleted.A point of some onern onsidering the high ompressibility of both solid and liquidat temperatures near the melting temperature is that the extent to whih the potentialunderestimates the pressure relative to the GGA is di�erent in the solid than in the liquid.This indiates that there may be a di�erene in the GGA �V with respet to the one wehave alulated with the LDA. However, in order to do a proper omparison we wouldneed to �nd �V with a GGA-optimized potential beause it is possible that some ofthe stress di�erenes is attributable to atomi on�gurations whih were reated with anLDA-optimized potential and whih are therefore unnatural within a GGA desription.The total hange in volume with respet to the LDA also depends on the thermal stressand the ompressibility both of whih are di�erent in the solid and the liquid. All of thesefators mean that it is very diÆult for us to estimate what �V is for the PBE funtional.A rude estimate (whih is most likely to be an overestimate due to the alulation ofstress on LDA onifgurations) may be obtained using the pressure di�erenes of table 6.4and the ompressibilities of the e�etive potential. This gives �VPBE = 52:3 at 3100 K,an inrease of � 37%.We onlude that a very important soure of error with our method of alulating themelting slope is related to the ability of approximate exhange-orrelation funtionals topredit volumes and solid-liquid volume di�erenes to a high auray. Although we anget volume di�erenes whih are pratially idential to those that would be obtained abinitio with the funtional used in the potential �t, di�erent funtionals may give di�erentvolume di�erenes.



98 CHAPTER 6. MAGNESIUM OXIDECorreting Energy Di�erenesIn testing our potential we found errors in energy di�erenes (within a given phase) of 10to 12% (see tables 6.2 and 6.3). Here we look at the error in the energy di�erene betweenphases relative to the LDA and the GGA using our e�etive potential.
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Figure 6.16: The average energy at zero pressure of the solid and the liquid as a funtionof temperature from our MD simulations, and these energies one orreted using a)LDA DFT alulations and b) GGA DFT alulations. The rosses show the averageenergy (alulated with the e�etive potential) in the 20 on�gurations on whih ab initioalulations were performed.The average di�erene between the ab initio energy and the energy from the lassialpotential (�U = Ua.i. � Ul ) were alulated for both the solid (�SU ) and the liquid(�LU).The energy as a funtion of temperature was orreted using the ab initio data by addingthe quantity �SU � 12(�SU +�LU) to the energies of the solid and the quantity �LU � 12(�SU +�LU) to the energies of the liquid. The results for the LDA and the GGA are given in�gures 6.4.1 and 6.4.1 respetively. The fat that we have added the same orretion atall temperatures is justi�ed by the observation that the temperature dependene of theenergies is very weak.Although the LDA makes a signi�ant di�erene (� 17%) to the energy di�erenebetween solid and liquid (�U), the GGA gives almost preisely the same result (within3%) as our e�etive potential.The fat that the average of the energy over the on�gurations on whih the DFTalulations were performed is very lose to the average energy from the MD simulationsat the same temperature ( 3070K ) is very important. Not only does it suggest that the



6.5. DISCUSSION 99number of on�gurations used is suÆient to obtain meaningful orretions to �U , it alsomeans that the �nite-size e�ets are small sine the ell size in these on�gurations wasonly 64 atoms.Correting TmWe an orret, to �rst order, the errors in the melting temperature alulated with ourpotential using the following relationship[135℄�TmTm = hUail � U epl iep � hUais � U eps iephU epl iep � hU eps iep (6.11)where the supersripts 'ai' and 'ep' indiate that a quantity has been alulated ab ini-tio or with our e�etive potential, respetively and h� � � iep indiates an average over atrajetory generated with the e�etive potential. The orretions an be extrated fromthe alulations that we have already performed and whih are plotted in �gure 6.4.1.The LDA melting temperature is � 17% larger at T LDAm = 3531 K and the GGA meltingtemperature is 2:7% larger at TPBEm = 3095 K.The Melting SlopeWe now look at the melting slope as orreted using the DFT alulations and as alu-lated with our e�etive potential (EP). We hoose the intermediate value Tm = 3100K atwhih to alulate the slopes sine Tm is overestimated with the LDA and sine all ourem ab initio alulations have been performed at lose to this temperature. We getmLDA = 133:86 K GPa�1 (6.12)mPBE = 209:53 K GPa�1 (6.13)mEP = 156:87 K GPa�1 (6.14)These slopes are plotted in �gure 6.17. If we alulate what the melting slope in theLDA approximation should be, using the orreted value of T LDAm = 3531 K, we getmLDA = 168:3 K GPa�1, in loser agreement with the PBE result. However, it is not atall ertain that the volumes as a funtion of pressure in the solid and the liquid an beextrapolated linearly as we have done, or whether energy di�erenes remain onstant upto suh a high temperature. Even with this orretion there is still a large di�erene inthe values of mLDA and mPBE and this shows the level of unertainty in our alulationswhih is attributable to the exhange-orrelation funtional. However even this level ofunertainty annot explain the huge disrepany between our results and experiment.6.5 DisussionIn this hapter we have applied the distortable-ion potential introdued in hapter 3 toMgO and learly demonstrated its ability to aurately reprodue the ab initio poten-tial energy surfae. We have then applied this model to the long-standing ontroversysurrounding the pressure dependene of the MgO melting temperature.
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Figure 6.17: The melting temperature of MgO as a funtion of pressure fromexperiment[110℄ and from simulations using the variational indued breathing (VIB)model[111℄, the potential indued breathing model[112℄, and the e�etive potentials ofVoadlo and Prie [113℄ and Strahan,Cagin and Goddard [114℄. The melting slopes thatwe obtain at Tm = 3100 K, from our ombination of lassial MD and DFT alulationsare also shown.We �nd a melting slope that di�ers very strongly from the experimental slope. How-ever, we have basially eliminated all our errors exept for those inherent in the ab initioalulations, i.e. those due to the use of approximate exhange-orrelation funtionals.The errors due to the approximate exhange-orrelation funtionals is very large and il-lustrates the large impat this quantity an have on a alulation. However, while wehave shown that di�erent funtionals give di�erent melting slopes (by up to 40 or 50%),our theoretial results di�er with experiment by a fator of between � 4 and � 6. It isunlikely that this disagreement is simply due to the exhange-orrelation funtional.The melting slope depends on the volume hange between solid and liquid and theenergy di�erene between solid and liquid. We have obtained very good agreement withlower temperature data on the volume of the solid as a funtion of temperature and sois is unlikely that we are substantially underestimating the volume in the solid at highertemperatures. There is no experimental data to ompare with in the liquid, howeverour results ompare very well with Car-Parrinello simulations and with what is generallyexpeted from an ioni system of this type. The hange in volume that we see is, ifanything, small ompared to similar ompounds (suh as LiF) and ompared to someprevious simulations of MgO[111℄.It is also unlikely,that there is a large error in our alulation of total energies. Sine



6.5. DISCUSSION 101LDA and PBE both gave similar results (within � 15%), this would probably requirethat the struture of the liquid is not representative of the true system. However, thepair-orrelation funtions that we alulate are in very good agreement with those fromCPMD and so this senario is unlikely.The disrepany may be due to an error in the experiment. This possibility has beensuggested previously[111, 115, 127℄. It may also be that the exhange-orrelation fun-tionals that we have used are inapable of modelling some exoti feature of the eletronistruture of liquid MgO. This is very unlikely given the ability of DFT to desribe prop-erties of the solid[6℄ and the quality of DFT alulations in general.The most likely senario is that the slope of the melting urve is initially very steep,but that it attens out very quikly, perhaps due to a liquid struture whih hangesrapidly under pressure to being muh more similar to the solid. Pair-orrelation funtionshave been alulated at high pressure[115℄ and qualitatively similar di�erenes betweenliquid and solid as we have seen here were found. However, the potential used in thesealulations was quite rude and did not inlude the e�et of polarization. Polarizationhas the tendeny to redue strutural hanges between solid and liquid[126℄.The disrepany with experiment remains a mystery and suggests that a repeat ofthe experiment may be in order. Our future theoretial work will investigate the meltingtemperature at higher pressures in order to hek if the disrepany is due to a rapidlydereasing slope at low pressures.
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Chapter 7Disussion and ConlusionsIn this thesis an attempt has been made to �nd a way in whih thermodynami propertiesof ioni systems an be predited with a reasonable degree of auray from moleulardynamis simulations. We use the ombination of e�etive parameter-based fore-�eldsand ab initio simulations. The high quality of the results that we have obtained forstrutural and thermodynami properties of silia and MgO suggest that one a suitablefuntional form for a fore-�eld is available, the use of ab initio parametrization an greatlyimprove the ability of the fore-�eld to reprodue experimental data.We use a slightly modi�ed form of a previously proposed ab initio parametrizationproess[69, 70℄ whih has the advantage that one an make very spei� and non-trivialstatements about potentials reated : It an be said that for any atomi on�gurationreated with the potential under spei�ed thermodynami onditions, the fores are, onaverage, within X% of those alulated ab initio1, the stress omponents within Y%, andthe energy-di�erenes between on�gurations within Z%.However, our experiene with the BKS [88℄ fore-�eld for silia (see hapter 5) hasshown us that unless the funtional form is physially appropriate for the system athand this method of parametrization fails to improve upon the ability of the potential toreprodue experimental data. The form of the potential is ruial to the suess of themethod. For ioni systems eletrostatis dominate the interioni fores, and by inludingioni polarization one an greatly improve the ability of the fore-�eld to model struturalproperties.Energetis and dynamis are more diÆult to model. Although the positions of min-ima in the potential energy surfae seem to be mainly determined by eletrostatis, theenergy barriers between minima and the details of the surfae that ontribute to dynamisalso depend strongly on other fators. We have desribed in hapter 3 the various ap-proahes that have been taken in the past to modelling suh e�ets as anion \breathing"and distortion. These involve translating this ompliated quantum-mehanial eletronibehaviour into a simpli�ed phenomenologial piture. This phenomenologial approah isneessary in order to formulate fore-�elds whih are eonomial and apable of approxi-mating interations between ions.1For a spei�ed ab-initio alulation. Pseudopotentials, basis sets, sampling tehniques and exhange-orrelation funtionals must all be spei�ed. 103



104 CHAPTER 7. DISCUSSION AND CONCLUSIONSFor MgO we have aspired to modelling features of the ions' potential energy surfaewhih govern dynamis and energetis and been quite suessful if one is to judge by suhquantities as phonon dispersion relations and thermal expansion. A fore-�eld has beenproposed whih is mathematially equivalent yet superior from a omputational point ofview to a ommonly used method of modelling anion breathing e�ets[47℄. This model hasbeen extended to inlude aspherial distortions in a way whih seems plausible assumingthe e�etiveness of the ompressible-ion model. This \distortable-ion" model dependson a number of onstituent funtions. We have postulated forms for these funtions inorder to perform the preliminary testing of the model. We have not researhed theseforms in any detail. This is an important endeavour if this potential is to be used in thefuture. Our tests have shown that the model is indeed an improvement over simple pairpotentials despite the lak of researh into its onstituent funtions, indiating that furtherimprovement ould be ahieved by investigating the optimal form of these funtions.In order to be able to on�dently model dynamis suh as di�usion or temperature-indued soft-mode phase transitions it is vital to have a potential whih aurately re-produes energy barriers. Within our parametrization proedure, whih, due to the sheerquantity of data involved, is mainly foussed on fores, it is diÆult to see how this maybe ahieved exept by making the funtional form more realisti. The distortable-ionpotential presented is one quite general framework within whih this may be ahieved. Itis attrative due to the generality of its form, its non-reliane on an extended Lagrangianformalism and its omputational speed. It is also easy to envisage extensions to the modelsuh as the inlusion of a self-onsistent proedure for the loal radii, �IJ , or an extensionbeyond the dependene of fores only on the distane between ions along their line ofenters. However further testing is neessary.A very important open question remains if one is to use the parametrization shemeof hapter 4 or judge the value of a fore-�eld on the basis of its ability to reproduefores in an averaged way as we have done thoughout this thesis : How do errors in thefores manifest themselves in thermodynami properties ? It is very unlikely that there isa general answer to this question. It is also very unlikely that the only thing that mattersis the average error in the fore on an ion. Small, rare and subtle fores may have theability to make qualitative di�erenes to a system. We have not takled this problem andit is ertainly one that needs attention.It has learly been shown in this thesis that one an ahieve high auray in manyquantities with e�etive fore-�elds. We have applied the method proposed to study animportant outstanding problem in geophysis : the melting line of MgO. In this asewe demonstrate how aurate fore-�elds and ab initio methods an be used together toredue the unertainty to lose to that inherent in the ab initio method.
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