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Introduction

Molecular nanomagnets are gaining more and more importance in science and

technology for their electronic, chemical, and also biomedical applications.

The origin of this interest is in their behavior as single domain magnets. This

is due to their tiny dimensions that can range from few nanometers to hun-

dreds or also thousands of nanometers. In the case of electronic applications

for instance, one of the main challenges is to reduce the size of magnetic

storage media, while preventing the single memory units to interact with

each other. The most promising materials for this purpose are single domain

magnetic nanoparticles and molecular nanomagnets. Magnetic nanoparticles

supported by metallic surfaces are the subject of several experimental studies

[1, 2]. These structures also find application in catalysis and could be em-

ployed as electronic receptors, as magnetic storage media [3], or for quantum

computing [4].

While for most of the bulk systems the magnetic phenomena are well

understood, the mechanisms that control the magnetism in nanomagnets are

not yet clear with the same level of details. The goal of this thesis is to use

density functional theory (DFT) to investigate the structural, electronic, and

magnetic properties of low-dimensional systems and nanostructures, focus-

ing on the effects of magnetic anisotropy that are known to be crucial for

stabilizing magnetism in these systems.

Macroscopic ferromagnetic or ferrimagnetic materials are characterized

by the formation of magnetic domains separated by walls (see Fig. 1). The

number of domains in a solid and their thickness result from the balance be-

tween the external magnetostatic energy and the energy due to the presence

of the walls: the former tends to rise the number of domains, the latter to

reduce it.

1



2 Introduction

Figure 1: Magnetic domains

Below the Curie temperature and in the absence of external magnetic

fields, the total magnetization of a macroscopic magnet ranges from zero to

a maximum value, called remanence; above this temperature the material

becomes paramagnetic.

Figure 2: Co nanowire on a (997) Pt surface.

According to a theorem by Mermin and Wagner [5, 6], no finite temper-
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Figure 3: Hysteresis loop of the Mn12-complex.

ature transition can break a continuous symmetry in dimensions lower than

3. As a consequence nanowires (D = 1) and single domain particles (D =

0) cannot form stable magnetic ordered structures at any finite temperature.

However, under the so called blocking temperature, these systems may be

able to maintain a ferromagnetic order for a period that can be much longer

than the typical time for an experimental observation or for the functional

activity of a device. Magnetism in low dimensional systems is a kinetic effect

due to the stabilizing action of the magnetic anisotropy resulting from the

spin-orbit interaction. It is this phenomenon that allows the formation of

magnetic 1D systems, like the one reported in Fig. 2, consisting of a Co

nanowire supported by a (997)-Pt surface [7]. At a temperature of a few

Kelvins this wire forms stable series of atoms (15 on average) with magnetic

moments parallel to each other. An example of a 0D magnetic system is

the Mn12-complex [8] reported in Fig. 3. This nanomagnet presents an

easy magnetization axis below a blocking temperature of 3 K [9]. In the

same figure it is possible to see its measured hysteresis loop denoting its

ferromagnetic character.

The ferromagnetic behavior of some low dimensional systems can be

traced back to the magnetic anisotropy of materials, which is ultimately

due to the relativistic spin-orbit effect. By decreasing the dimension of a

system under the typical size of a magnetic domain, the material becomes

single domain. As its size continues to decrease within the single domain
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range, another critical threshold can be reached, at which remanence goes to

zero. When this happens, the system becomes superparamagnetic. At low

temperature, a single domain particle of volume V has a uniform magnetiza-

tion. The energy of the system reaches its minimum when the magnetization

lays along a specific direction called easy magnetization axis; the energy is

maximal when the magnetization lays parallel to the so called hard magne-

tization direction. The difference between these two energies is the magnetic

anisotropy energy (MAE). If V is small enough, or the temperature is high

enough, the thermal energy (KBT ) is sufficient to overcome the anisotropy

energy, and a single domain particle behaves like a superparamagnet. For

superparamagnetic particles, the net magnetic moment in zero field and at

finite temperature, averages to zero. In an applied field, there is a net statis-

tical alignment of magnetic moments. This is analogous to paramagnetism,

except now the magnetic moment is not that of a single atom, but of a single

domain particle containing many atoms. Hence, superparamagnets display a

much higher susceptibility than that of simple paramagnets. In response to

a change in applied field or temperature, an ensemble of superparamagnetic

particles will approach an equilibrium value of magnetization with a charac-

teristic relaxation time according to the Arrhenius formula which regulates

the thermal activation processes. In the specific case, this formula takes the

form first derived by Néel [10]:

1

τ
= f0 exp

[−KuV

kBT

]

. (1)

Here, f0 is the frequency factor (measured in sec−1); Ku is the anisotropy

constant and depends, at the microscopic scale, mostly on the spin-orbit

interaction; V is the particle volume and is proportional to the magnetic

moment of the particle; kB is the Boltzmann constant, and T is the absolute

temperature. The exponential nature of the relaxation time on V and T

makes it possible to define a blocking temperature, TB (at constant volume),

or blocking volume VB, (at constant temperature) at which the magnetization

goes from an unstable condition (τ � t) to a stable condition (τ � t);

t in this case indicates the experimental observation time. A difference in

temperature of few degrees can correspond to a change in relaxation time of

the order of 1016 sec. Therefore the blocking temperature in single-domain
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materials is analogous to the Curie temperature in macroscopic magnetic

systems. The concept of blocking temperature is extended to all magnetic

systems with a dimensionality smaller than two, as for example nanowires,

and in general to all the nanomagnets, which are in principle prevented to

be ferromagnetic but have a large relaxation time at low temperature.

The electronic structure of magnetic systems is most commonly studied

using DFT within the local spin density approximation (LSDA). In the LSDA

each molecular orbital is assumed to be fully spin-polarized. This approxima-

tion is sufficient for the majority of the structures, but it is not adequate to

study nanomagnets because of two limitations: i) the assumption of a fixed

magnetic polarization axis prevents the study of noncollinear magnetic con-

figurations, and ii) most of the standard calculations neglect the spin-orbit

term, which is essential to capture the magnetic anisotropy of nanomagnets.

Traditionally, many DFT studies of magnetism are performed by all-electron

calculations, often in conjunction with some shape approximation on the po-

tential, like for example the Korringa-Kohn-Rostoker (KKR) method [11, 12]

or the linear muffin-tin orbital with atomic-spheres approximation (LMTO-

ASA) [13]. These methods, however, are inaccurate and/or inefficient in the

calculation of the equilibrium atomic geometries on which magnetic proper-

ties depend very sensitively.

Plane-wave pseudo-potential methods are much more efficient than all-

electron ones to calculate the atomic forces and hence to determine the equi-

librium geometries. Modern pseudo-potential methods based on so called

ultrasoft pseudo-potential [14] are traditionally limited to non-relativistic

calculations that cannot capture magnetic anisotropy effects. The purpose

of this thesis is to develop a computational framework able to combine the

efficiency and accuracy of modern ultrasoft pseudopotentials with a fully

relativistic treatment of the electron spin, which is ultimately responsible

for the magnetic anisotropy effects that stabilize the magnetic structure of

nanomagnets.

The thesis is organized as follows. The basis of density functional theory

and its extension to magnetic systems is reviewed in the first chapter. The

second chapter describes the implementation of the fully relativistic ultra-

soft pseudopotential method whose predictive power is tested by calculating
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the spin-orbit splittings in the band structure of two bulk systems: Au-fcc

and Pt-fcc. In the third chapter the magnetic properties of several Co based

nanostructures are described as a function of their dimensionality, going from

2D to 0D systems. Finally, in the fourth chapter, the physical properties of

a novel class of molecular nanomagnets are discussed. Mathematical devel-

opments and details of some of the topics mentioned during the thesis are

reported separately as appendices.



Chapter 1

Density functional theory of

magnetism

This chapter provides a short overview of the concepts that are used to de-

scribe magnetism within DFT, including the generalizations necessary to

study noncollinear magnetic systems. As an example I present an application

to Fe5 clusters.

1.1 Density Functional Theory

In 1964 Hohenberg and Kohn published a ground-breaking article [15],

which lead to the development of what is known today as density functional

theory (DFT). They considered a system of interacting electrons in an ex-

ternal potential, V (r). While it is clear that V (r) determines, via the

Schrödinger equation, the ground state energy of the system, Hohenberg

and Kohn showed that there exists a functional F[n] such that the ground

state energy can be expressed as the minimum of the functional

EV [n] = F [n] +

∫

dr V (r)n(r), (1.1)

where n(r) is the charge-density, and F [n] does not depend on the system.

This fact makes it possible to describe, at least in principle, the ground state

properties of a system of interacting electrons in terms of the charge-density

only, rather than on the far more complicated many-particle wavefunction.

7
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One year later, Kohn and Sham [16] proposed a practical scheme to

perform such calculations. To this end, they introduced an auxiliary sys-

tem of non-interacting electrons for which the ground state charge-density

distribution can be expressed in terms of one-electron orbitals as:

n(r) =
occ.
∑

i

ψ∗
i (r)ψi(r), (1.2)

where the sum is over all the occupied states. In terms of the ψi’s the ground

state energy can be expressed as minimum of the auxiliary functional:

E[ψ, ψ∗, V ] =T [ψ, ψ∗] + EH [n(ψ, ψ∗)] + Exc[n(ψ, ψ∗)]+
∫

dr V (r)n(ψ(r), ψ∗(r)), (1.3)

where

T [ψ, ψ∗] = − h̄2

2m

occ.
∑

i

∫

dr ψ∗
i (r)∇2ψi(r), (1.4)

EH is the Hartree energy (essentially the classical Coulomb interaction of the

ground state charge density distribution), and Exc is the so called exchange-

correlation energy. Variation of this functional with respect to ψ∗
i leads to

the so called Kohn-Sham (KS) equation:

(

− h̄2

2m
∇2 + Vext(r) + VH(r) + Vxc(r)

)

ψi(r) = εiψi(r), (1.5)

where

VH(r) =
δEH

δn(r)
= e2

∫

dr′
n(r′)

|r − r′| , (1.6)

and

Vxc(r) =
δExc

δn(r)
. (1.7)

While this pioneering work made DFT-based calculations feasible in princi-

ple, one important problem remained: the development of good approxima-

tions for the exchange-correlation energy-functional. The most commonly

used form of this functional is the so-called local density approximation

(LDA) which consists in deriving the exchange-correlation functional from
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the properties of an homogeneous electron gas. In this approximation, one

writes

Exc =

∫

dr n(r)εxc(n(r)), (1.8)

where εxc(n) is the exchange-correlation energy per particle of a homogeneous

electron gas with density n(r). This quantity has been calculated accurately

using quantum Monte-Carlo techniques [17]. A considerable effort has been

put into the development of more precise approximations for this functional

(some important examples are reported in Refs. [18, 19]), and today this is

still a very active and challenging field of research.

1.2 The plane-wave pseudopotential method

The KS equation, Eq. (1.5), can be solved in practice by expanding the KS

orbitals in a finite set of basis functions. Among the various existing options,

we limit our discussion to the plane wave (PW) basis set: besides their con-

ceptual simplicity, PW’s have invaluable numerical advantages. Compared to

other basis sets, the PW’s allow to express the physical forces acting on the

ions as the Hellman-Feynman forces, without adding auxiliary terms. More-

over the size of the basis can be increased, and checked in a systematic, and

unbiased way valid for all the systems, by simply increasing the maximum

kinetic energy (energy cutoff). Finally PW’s allow for a simple calculation

of the matrix elements of the Hamiltonian.

Unfortunately PW’s cannot be straightforwardly used with Eq. (1.5) be-

cause of the fast oscillations of the core orbitals in the neighborhood of the

nuclei, requiring a large basis size to be described accurately. However, core

electrons are so tightly bound to the nuclei that their energy does not change

when chemical bounds are formed, so that they can be effectively considered

as passive spectators of chemical processes. The pseudopotential method

allows to simplify the Kohn-Sham equation by eliminating all the degrees

of freedom associated with the core electrons. This is done by mapping the

all-electron frozen-core problem onto an equivalent problem involving valence

electrons only. Formally, in the Hamiltonian, the nuclear potential is replaced

by a new pseudopotential in such a way that the lowest one-electron energies
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coincide with the valence ones obtained by an all-electron calculation. The

pseudopotential is split in a local radial potential, plus a non local contribu-

tion that depends on the angular momentum of the wavefunction to which it

is applied. If the non local contribution is non local only in the angular part,

the pseudopotential is said to be in a semi-local form, otherwise it is in fully

separable form. Calculations based on pseudopotentials have an accuracy

comparable with the all-electron calculations. The eigenfunctions obtained

by solving the KS equation with the pseudopotential method are called pseu-

dowavefunctions. In regions far enough from the nuclei of the atoms, the

corresponding pseudopotentials coincide with the nuclear all-electron po-

tentials. To be more precise, for each atom involved in the calculation, a

spherical core region of radius rc and centered on the nucleus of the atom is

defined such that, outside this region, the pseudopotential is equal to the all-

electron potential. Therefore, the pseudowavefunctions are proportional to

the wavefunctions obtained with an all-electron calculation outside the core

region, while inside they have a smooth shape compared to the all-electron

wavefunctions. To guarantee a good transferability of the pseudopotentials,

a stronger condition than the proportionality is required: the pseudowave-

functions must coincide with the all-electron wavefunctions outside the core

region. As a consequence, the pseudowavefunctions are orthonormal only if

the integral of their charge distribution inside the core region is equal to the

one obtained with an all-electron calculation. Pseudopotentials that undergo

to this constraint are called norm-conserving pseudopotentials. Further de-

tails on pseudopotentials can be found in Refs. [20, 21].

1.2.1 Ultrasoft pseudopotentials

In norm conserving pseudopotentials, the size of the PW’s basis set required

to properly describe the 2p, 3d, and 4f -orbitals is very large. The exam-

ple of the 2p orbitals of the isolated oxygen atom is reported in Fig. 1.1.

The only way to generate a smooth pseudowavefunction that coincides with

the all-electron wavefunction outside the core region, is to violate the con-

dition requiring the conservation of the norm inside this region. This is not

possible for norm-conserving pseudopotentials, therefore the calculations for
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Figure 1.1: Oxygen 2p radial all-electron wave function (solid line), corresponding

pseudowavefunctions for a norm-conserving pseudopotential (dotted line), and an

ultrasoft pseudopotential (dashed line).
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transition metal and rare earth atoms systems are computationally very de-

manding. In 1990 David Vanderbilt [14] found a method to overcome this

constraint. This is possible by generalizing the eigen-problem; an opera-

tor Ŝ is defined such that the pseudowavefunctions |φnk〉 obey the following

orthonormalization law:

〈φnk|Ŝ|φn′k〉 = δnn′ (1.9)

In this way, the pseudowavefunctions are not orthonormalized and the in-

tegral of the charge-density distribution of each single pseudowavefunction

inside the core region is different from the one obtained with an all-electron

calculation. Their shape can be chosen to be smoother than the one of the

norm-conserving pseudowavefunctions, as shown in the Figure 1.1.

The Hamiltonian problem is reformulated throughout the introduction of

the operator Ŝ:

Ĥ|φnk〉 = εnkŜ|φnk〉 (1.10)

The usual definition of the charge density cannot simply be applyed to the

ultrasoft pseudowavefunctions, since the total charge would not be conserved.

To correctly reproduce the Hartree and the exchange-correlation interactions

the valence charge-density is redefined in such a way to make up this charge

deficit. The mathematical details of this method can be found in Ref. [14].

Pseudopotentials obtained using this method are called ultrasoft.

1.3 Extension to spin-polarized systems

In principle, the original Hohenberg-Kohn theorem also applies to systems

where the polarization of the electronic spins leads to a magnetization den-

sity m(r), since the magnetization is a functional m[n] of the ground state

charge-density, as well as any other ground state property. However the ap-

plication of DFT to the spin-polarized case using the charge-density as the

only functional variable would require a highly nonlocal functional for the

exchange-correlation energy [22]. In practice, one resorts to a different for-

mulation of DFT, which is also valid in the presence of an external magnetic

field Bext [23]. In this case, the energy of the system is a functional of the

ground state charge-density matrix, which can be expressed in terms of the
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charge-density, n(r), and of the spin magnetization, m(r). The advantage of

focusing on n(r) and m(r) rather than on the charge-density alone is that a

straightforward generalization of the local density approximation is possible

in this case.

A very common formulation for the exchange-correlation functional is the

local spin density approximation (LSDA). In this approximation the magne-

tization is aligned along one fixed direction, conventionally labeled as the

z axis. Therefore the x and y components of the magnetization are set to

zero and the exchange and correlation density energy can be expressed as a

function of the variables n(r) and mz(r):

n(r) = n↑(r) + n↓(r), (1.11)

and

mz(r) = n↑(r) − n↓(r), (1.12)

where:

nα(r) =

occ
∑

i

ψ∗
iα(r)ψiα(r), (1.13)

and α =↑, ↓. In this approach, one interpolates the energy density εxc(n)

in Eq. (1.8) between εP
xc(n), which is its value in a completely polarized

(magnetized) electron gas, and εU
xc(n) , the value for an unpolarized gas. For

computational convenience, the variable mz(r) is replaced by:

ζ =
mz

n
=

(n↑ − n↓)

(n↑ + n↓)
. (1.14)

One finally obtains:

εLSD
xc (n, ζ) = εU

xc(n) + f(ζ)[εP
xc(n) − εU

xc(n)], (1.15)

where f(ζ) is a smooth interpolating function with f(0) = 0 and f(1) = 1.

The large majority of current DFT calculations on magnetic materials are

based on this approximation. However, the study of nanomagnets requires a

method to treat noncollinear magnetic systems, that is described in the next

section, and the spin-orbit interaction must be included in the calculation,

since it is responsible for the magnetic anisotropy which stabilizes magnetism

in nanomagnets.
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1.4 Beyond collinear spin magnetism

In the most general case, the energy of the system is a functional of the ground

state charge-density n(r) and of the three components of the magnetization

density m(r).

In order to introduce the vector field m(r) in the formulation of DFT,

one has to generalize the notion of Kohn-Sham orbitals. In the non-magnetic

case, these orbitals are scalar functions. In the collinear magnetic case the

orbitals are bi-dimensional spinors, for which one of the two components is

zero, and is therefore not considered in the calculations. To describe a general

magnetization density using one-particle wavefunctions, one has to resort to

a representation with two-component spinors:

ψi(r) =

(

ψ↑i(r)

ψ↓i(r)

)

. (1.16)

In terms of these two-component spinors, the three components of the mag-

netization can be expressed as the expectation values of the Pauli matrices:

m(r) = µB

occ
∑

i

ψ+
i (r)σψi(r) = µB

occ
∑

i

2
∑

α,β=1

ψ∗
iα(r)σαβψiβ(r), (1.17)

where µB is the Bohr magneton, and

ψ+
i (r) =

(

ψ∗
↑i(r), ψ∗

↓i(r)
)

. (1.18)

The components of the vector σ are the Pauli matrices:

σx =

(

0 1

1 0

)

; σy =

(

0 i

−i 0

)

; σz =

(

1 0

0 −1

)

. (1.19)



1.4 Beyond collinear spin magnetism 15

The components of the magnetization in Eq. ( 1.17) read therefore:

mx(r) = µB

occ
∑

i

ψ+
i (r)σxψi(r) = µB

occ
∑

i

(

ψ∗
i↑(r)ψi↓(r) + ψ∗

i↓(r)ψi↑(r)
)

,

my(r) = µB

occ
∑

i

ψ+
i (r)σyψi(r) = iµB

occ
∑

i

(

ψ∗
i↑(r)ψi↓(r) − ψ∗

i↓(r)ψi↑(r)
)

,

mz(r) = µB

occ
∑

i

ψ+
i (r)σxψi(r) = µB

occ
∑

i

(

ψ∗
i↑(r)ψi↑(r) − ψ∗

i↓(r)ψi↓(r)
)

.

(1.20)

The charge-density becomes:

n(r) =
occ
∑

i

(

ψ+
i (r)ψi(r)

)

=
occ
∑

i

ψ∗
i↑(r)ψi↑(r) + ψ∗

i↓(r)ψi↓(r). (1.21)

As in the case of the usual Kohn-Sham wavefunctions, the spinors are con-

strained to be orthonormal:

〈ψi|ψj〉 =

∫

dr
(

ψ∗
i↑(r)ψj↑(r) + ψ∗

i↓(r)ψj↓(r)
)

= δij. (1.22)

The non-interacting kinetic energy reads:

T = − h̄2

2m

occ
∑

i

∫

dr
(

ψ∗
i↑(r)∇2ψi↑(r) + ψ∗

i↓(r)∇2ψi↓(r)
)

. (1.23)

Traditionally, the exchange-correlation functionals ε[n,m] are analyti-

cally written, in an approximated form, as functionals of n(r) and of the

norm of m(r), |m(r)|, where the ε[n, |m|] has the same expression than the

one of the LSDA functionals, where mz(r) is replaced by |m(r)|.
To derive the noncollinear KS equation one can make use of the variational

principle:

δεxc(n,m)

δψ∗
iα(r)

= Vxc(r)ψiα(r) +
∑

j=1,3

Bxc(r)

2
∑

β=1

σj,αβψi,β(r)
δmj

δψ∗
iα

, (1.24)

where Vxc(r) and Bxc(r) are respectively the exchange and correlation poten-

tial and the exchange and correlation magnetic field, defined as:

Vxc =
δεxc(n,m)

δn(r)
, (1.25)
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and

Bxc,j =
δεxc(n,m)

δmj(r)
. (1.26)

The noncollinear KS equation finally becomes:

(T + VION(r) + VH(r) + Vxc(r) + Bxc(r) · σ)ψi(r) = εiψi(r). (1.27)

The density and the three components of the magnetization are obtained

solving the KS equations following an iterative procedure (see Ref. [24]).

The LSDA equations are a special case of the noncollinear ones, which

applies when the magnetization is constrained to a unique direction in space.

In LSDA only the z component of the magnetic field is taken to be different

from 0, and the non diagonal terms of Eq. (1.27) vanish. This enables to

describe the KS eigenstates using one particle wavefunctions instead of the

bidimensional spinors, and to split Eq. (1.27) in two separate equations, one

applied to wavefunctions with spin up, and the other applied to wavefunctions

with spin down.

In 1988, Kübler and coworkers introduced a self-consistent method for

calculating the electronic and magnetic properties of RhMn3, PtMn3, and

other non-collinear systems [25]. In order to lift the constraint of collinearity,

they introduced atomic spheres around every atom. The direction of the

magnetization was then required to be constant inside every sphere, but spins

in different spheres were allowed to have different directions. The directions

of the magnetization for every atom were chosen so as to minimize the total

energy. Inside every atomic sphere the wavefunctions were then required

to be either spin-up or spin-down with respect to the given direction. The

approximations on the shape of the potential and of the magnetic field are

unnecessary limitations that were in fact overcome in the work of Nordström

and Singh [26], of Oda, Pasquarello, and Car [27], and of Bylander, and

Kleinman [28] who used a self consistent noncollinear calculation method.

This last method was used by Gebauer and Baroni [29] and applied to

frustrated systems like the δ-phase of oxygen under pressure. An example

of frustrated structure is reported in Fig. 1.2, illustrating three atoms in

a triangular geometrical configuration interacting antiferromagnetically with

each other. If the magnetic moments of this structure are constrained to lay
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Figure 1.2: Frustrated magnetic system: a) Collinear magnetic ground state b)

Noncollinear solution.

parallel to the z axis (like in (a)), only two of the three magnetic bonds can

be satisfied. The noncollinear magnetic solution enables to overcome this

problem and is displayed in (b). The study of the ground state properties

of magnetic frustrated structures [29] or of magnetic excitations [30, 31,

32, 33] at finite temperature are not the only cases in which the noncollinear

magnetism can be applied. Noncollinear spin arrangements may occur, for

example, in the γ-phase of Fe which exhibits a spin-spiral structure [34,

35]. More generally, noncollinear configurations occur more easily in low

symmetry or in disordered magnetic systems [36, 37], like small Fe clusters

[27, 38], whose atoms are in a lower symmetry environment than in the bulk

and are characterized by noncollinear spin arrangements.

1.4.1 A simple case study: iron clusters

As a preparation to the main goal of this thesis (i.e. the implementation

of a fully relativistic version of noncollinear LSDA for calculating magnetic

anisotropy) we performed a test calculation of the magnetic properties of a

Fe5 cluster using the methods of Ref. [39], as implemented by R. Gebauer

and A. Dal Corso in the plane-wave QUANTUM-ESPRESSO code.
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a b

Figure 1.3: Inter-atomic distances and magnetic moments in the Fe5 complex. In

(a) the results of Ref. [27]. In (b), our results.

Magnetic properties

The magnetic properties of Fe5 are reported and compared with those of

Table 1.1: Magnetic moments of the Fe atoms in the Fe5 cluster. Comparison with

the values reported in Ref. [27]. The magnetic moments of the apical (A) atoms

and of the basal (B) atoms are reported in the first and second line respectively.

This work Ref [27]

FeA (±1.72, 0.00, 2.24) (±1.34, 0.00, 2.35)

FeB (0.0, 0.00, 2.83) (0.0, 0.00, 2.72)

Ref. [27] in table 1.1 and in Fig. 1.3. The magnetic moment of the apical

and the basal atoms have almost the same absolute value, around 2.83 µB;

the difference is of the order of 0.01 µB. They are instead different in direc-

tion: the basal atoms have their magnetic moments directed along the z axis

(perpendicular to the base of the exahedron), while the magnetic moment of

the apical Fe atoms forms with the z axis an angle of 37◦. Ref. [27] has

similar results: 2.72 µB for the absolute value of the magnetic moments, and

the magnetic moments of the basal atoms is parallel to the z direction, while
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the apical atoms magnetic moments form an angle of 30◦ with the z axis.

Structural relaxation

The equilibrium atomic positions are shown in Fig. 1.3 and in table 1.2.

The distance between the apical atoms (FeA) and the basal atoms (FeB,

see Fig. 1.3) is smaller than the distance between the basal atoms. This is

in agreement with the previous works found in literature ( [27] and [40]).

Also in these works a Perdew-Zunger functional has been used to describe

the exchange-correlation interaction. All these results are summarized and

compared with the results of Ref. [27] in Fig. 1.3.

Table 1.2: Calculated inter-atomic distances in the Fe5 cluster and comparison

with Refs. [27] and [40]. FeA-FeB indicates the distance between the apical atoms

and the basal atoms while FeB -FeB indicates the distance between the basal atoms.

This work Ref [27] Ref [40]

FeA-FeB [a.u.] 4.25 4.26 4.18

FeB-FeB [a.u.] 4.39 4.43 4.46

Computational details

The LSDA exchange-correlation functional is parametrized according to the

formula given by Perdew and Zunger [18]. Periodic boundary conditions were

adopted and the clusters were described with a simple cubic unit supercell

having a lattice constant of 20 a.u., which is sufficient for the interactions be-

tween the periodic images to become negligible. An ultrasoft pseudopotential

for the Fe atoms generated according to the modified Rappe-Rabe-Kaxiras-

Joannopoulos scheme [41] with three Bessel functions was used. The spinor

wavefunctions were expanded in a set of plane waves with a cutoff energy

of 30 Ry. In the ultrasoft pseudopotential scheme [14] the density matrix

has a hard augmented component, for which a cutoff energy of 300 Ry was

used. The geometry optimization was initiated from the atomic configura-
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tion taken in a previous theoretical work [27]. The atomic coordinates were

relaxed using Hellman-Feynman forces. The magnetic moments of each atom

were estimated by integrating the magnetic density within non overlapping

spheres of radius 1.75 a.u. centered on the atoms.



Chapter 2

Spin-orbit interaction and

density functional theory

This chapter describes how the spin-orbit coupling can be included in elec-

tronic structure calculations based on plane waves and fully relativistic ultra-

soft pseudopotentials. As a test I will present an application to the electron

level splitting due to the spin-orbit in bulk Pt-fcc and Au-fcc.

2.1 Overview

The spin-orbit splitting of the electron energy levels is a relativistic effect

due to the coupling of the intrinsic magnetic moment of the electron (pro-

portional to its spin angular momentum) with the magnetic field induced

by its orbital motion around the nucleus (proportional to the orbital angular

momentum). In hydrogenic ions, spin-orbit splittings increase proportionally

to Z4, where Z is the nuclear charge. Simple qualitative arguments [42] show

that, in many electron atoms, the spin-orbit splittings increase proportion-

ally to ≈ Z2. More sophisticated estimations indicate that the Z dependence

slightly changes according to the angular momentum of the atomic orbital

considered [43]. As a consequence, in many-electron atoms, as the nuclear

charge increases, the spin-orbit coupling becomes more and more effective so

that, in heavy atoms, it is no more sufficient to deal with relativistic effects

at the scalar relativistic level [44]. In solids containing heavy atoms the

21
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energy band structures are more sensitive to the spin-orbit interaction.

The spin-orbit is proportional to the fine structure constant α = e2/h̄c.

The eigenfunction of a non degenerate eigenstate of a scalar relativistic

Hamiltonian are real, hence, treating the spin-orbit in perturbation theory,

the first perturbative term would be purely imaginary, which is impossible.

Hence, a non degenerate eigenstate, as well as the total energy of a system,

and therefore also the MAE, are second order in α. One electron energy

levels can instead be degenerate, and can therefore be first order in α.

In ab-initio calculations, spin-orbit effects can be explicitly included via

the relativistic generalization of the Kohn and Sham (KS) equations, derived

from relativistic density functional theory [45, 46]. The resulting equations

are one-particle Dirac-like equations with a self-consistent potential. Exam-

ples of this approach are given in Ref. [47, 48]. A major contribution of the

spin-orbit coupling to the valence-electron energies comes from the region

close to the nuclei and can therefore be effectively included in the pseudopo-

tentials (PPs). Relativistic effects up to order α2 can be included in elec-

tronic structure calculations by solving non-relativistic KS equations with

PPs tailored to reproduce the solutions of fully relativistic atomic Dirac-like

equations [49].

2.2 Introduction of spin-orbit in the ultrasoft

pseudopotential scheme

Relativistic PPs accounting for spin-orbit effects were introduced in semi-

local form by Kleinman [49] and by Bachelet, and Schlüter [50]. Applica-

tions to solids, based on perturbation theory, could predict the spin-orbit

splittings in the band structure of noble gas solids and simple semiconduc-

tors [51, 52]. In some cases the spin-orbit part of the PP has also been treated

self-consistently by fully diagonalizing the relativistic Hamiltonian [53, 54].

More recently, the spin-orbit coupling has been treated by norm conserving

PPs in fully separable form [55, 56], and spin-orbit split band structures of

simple semiconductors and of magnetic solids such as MnAs and MnSe have

been presented [57]. The ab-initio phonon dispersions of AuTe calculated
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including spin-orbit effects are also available [58].

We want now to include spin-orbit effects in the ultrasoft pseudopoten-

tials (US-PPs) scheme [14]. US-PPs are employed extensively in large-scale

electronic structure calculations because they allow precise and efficient simu-

lations of systems containing localized 3d and 2p electrons, using plane-waves

basis sets. In this scheme, the orbitals are allowed to be as soft as possible

in the core regions but are subject to a generalized orthogonality constraint.

The full charge is recovered by adding an augmentation charge localized in

the core region to the square modulus of the orbitals. The implementation

of spin-orbit coupling in ultrasoft pseudopotential (US-PPs) formalism will

open the way to the study of nanomagnets, whose size is incompatible with

the use of standard norm-conserving PPs.

2.2.1 Non local part of the fully-relativistic pseudopo-

tentials

The radial components of the solutions of a fully relativistic atomic Dirac-like

equation depend on the total angular momentum j and on the orbital angu-

lar momentum l. On the contrary, the radial components of the solutions of

non relativistic (NR) or scalar relativistic (SR) [44] equations depend only

on l. For l > 0, the solutions of the SR equation are “j-averaged” over the

solutions of a fully relativistic equation, and the eigenvalues are not split by

the spin-orbit coupling. There is a well known algorithm for the generation of

US-PPs based on the solutions of NR or SR KS equations. The “j-averaged”

US-PPs are generated by requiring that the scattering properties of the PP

are exact at Nε values of the energy for each l (usually Nε ≥ 2). The coeffi-

cients of the resulting nonlocal PP form an l-dependent non-diagonal matrix

Dl
τ ;τ ′ of dimensions Nε × Nε (1 ≤ τ ≤ Nε). The symbol Di,j, with two com-

posite indexes i ≡ {τ, l,m} and j ≡ {τ ′, l′, m′}, often introduced in literature

indicates Dτ,l,m;τ ′l′,m′ = Dlτ ;τ ′

δl,l′δm,m′ , where m labels the projection of the

orbital angular momentum on a quantization axis (-l ≤ m ≤ l). The nonlocal

part of the PP is given by:

V PS =
∑

I

∑

τ,l,m

∑

τ ′,l′,m′

D
γ(I)
τ,l,m;τ ′,l′,m′ |βI

τ,lY
I
l,m〉〈Y I

l′,m′βI
τ ′,l′|, (2.1)
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where the sum over I runs over the atoms of the system and γ(I) identifies

the atom type. For each l , βI
τ,l are the Nε radial components of projector

functions calculated together with the nonlocal PP coefficients [14]. Y I
l,m are

the spherical harmonics, eigenfunctions of the one-electron orbital angular

momentum. The index I means that these functions are centered about the

atom I. V PS is usually spin-independent because PPs generated from spin-

unpolarized atomic configurations are often transferable enough to be used

in magnetic materials within the local spin density approximation (LSDA)

or the spin-dependent generalized gradient approximation (σ-GGA) [59, 60].

Even in fully unconstrained approaches to non-collinear magnetism [61, 62],

V PS is multiplied by the identity matrix in spin space before applying it to

two-component spinor-wavefunctions.

Spin-orbit coupling can be included in a PP by taking, as reference all-

electron wavefunctions, the large components of the solutions of a fully rela-

tivistic radial atomic Dirac-like equation [49]. For l > 0, there are solutions

for j = l + 1/2 and for j = l − 1/2. For l = 0, there are solutions only for

j = 1/2. Kleinman showed that, with a suitable potential, the NR KS equa-

tions can have solutions matching the large components of the solutions of

a Dirac-like equation up to order α2 [49]. An US-PP that accounts for spin-

orbit coupling can be constructed following the standard algorithm, requiring

that the scattering properties of the PP are exact at Nε values of the energy

for l and j. The coefficients of the nonlocal PP will form an l and j dependent

matrix Dl,j
τ ;τ ′ of dimension Nε x Nε. In analogy with the “j-averaged” US-

PPs, we introduce the notation Dτ,l,j,mj ;τ ′,l′,j′,m′

j
= Dl,j

τ ;τ ′δl,l′δj,j′δmj ,m′

j
where

(−j ≤ mj ≤ j) labels the projection of the one-electron total angular mo-

mentum on a fixed quantization axis. The non-local PP is a 2× 2 matrix of

operators acting on two-component spinor wavefunctions. The local poten-

tial can be chosen as in a “j-averaged” US-PP and the components of the

non-local part of the PP are:

V PS,σ,σ′

with s.o. =
∑

I

∑

τ,l,j,mj

∑

τ ′,l′,j′,m′

j

D
γ(I)
τ,l,j,mj ;τ ′,l′,j′,m′

j
|βI

τ,l,jỸ
σ,I
l,j,mj

〉〈Ỹ σ′,I
l′,j′,m′

j
βI

τ ′,l′,j′|,

(2.2)

where βI
τ,l,j are the Nε radial components of the projector functions obtained

together with the PPs coefficients for each l and j, and Ỹ σ,I
l,j,mj

are the spin-
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angle functions, eigenfunctions of the total angular momentum, and of the

square of the orbital and of the spin angular momenta. Fully separable norm-

conserving PPs including spin-orbit effects were introduced also in Refs [55]

and [56]. These PPs are special cases of Eq.(2.2), with Nε = 1.

For the implementation of Eq. (2.2) in an electronic structure code, it is

helpful to show that V PS,σ,σ′

withs.o. can be rewritten as Eq. (2.1) and hence it can

be applied to each component of a spinor wavefunction as a “j-averaged” US-

PP where the number of projector functions is twice as large for each l > 0,

and the PP’s coefficients are, in general, complex and depend on σ and σ ′.

In order to prove this result and to write an explicit expression for the PP’s

coefficients, we need to define a few quantities. We start by recalling that

for j = l + 1/2, the spin-angle functions Ỹl,j,mj
are:

Ỹl,j,mj
=

(

(

l+m+1
2l+1

)1/2
Yl,m

(

l−m
2l+1

)1/2
Yl,m+1

)

, (2.3)

where m = mj − 1/2, while for j = l − 1/2, the spin angle functions Ỹl,j,mj

are:

Ỹl,j,mj
=

(

(

l−m+1
2l+1

)1/2
Yl,m−1

−
(

l+m
2l+1

)1/2
Yl,m

)

, (2.4)

where m = mj + 1/2. In these two equations, the spherical harmonics have

the complex form as those in Eq. (2.1). However, Eq. (2.1) is invariant, in

form, for unitary transformations of the spherical harmonics: in particular,

it remains valid for both the real and the complex forms. To keep the same

generality in the final expressions, we introduce the (2l + 1) × (2l + 1) uni-

tary matrix U l
m,m′ which rotates the spherical harmonics at the same l and

transforms the real form of the spherical harmonics, Y ′
l,m, to the complex

form,

Yl,m =
l
∑

m′=−l

U l
m,m′Y ′

l,m′, (2.5)

The explicit expression of the U matrix elements is reported in appendix A

together with the Clebsch-Gordan coefficients ασ,l,j
mj

. By using these defini-

tions, each component of a spin-angle function can be written in a compact
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form as:

Ỹ σ
l,j,mj

= ασ,l,j
mj

l
∑

m′=−l

Uσ,l,j
mj ,m′Y

′
l,m′. (2.6)

The matrix elements of the nonlocal PP are therefore

V PS,σ,σ′

with s.o. =
∑

I

∑

τ,l,j,m

∑

τ ′,l′,j′,m′

D
γ(I),σ,σ′

τ,l,j,m;τ ′,l′,j′,m′|βI
τ,l,jY

′I
l,m〉〈Y I

l′,m′βI
τ ′,l′,j′|, (2.7)

where

D
γ(I),σ,σ′

τ,l,j,m;τ ′,l′,j′,m′ = D
γ(I),l,j
τ ;τ ′ fσ,σ′

l,j,m;l,j,m′ (2.8)

and fσ,σ′

l,j,m;l,j,m′ indicates the particular combination of Clebsch-Gordan coef-

ficients and Uσ,l,j
mj ,m matrix elements given by:

fσ,σ′

l,j,m;l,j,m′ =

j
∑

mj=−j

ασ,l,j
mj

Uσ,l,j
mj ,mα

σ′,l,j
mj

U∗σ′ ,l,j
mj ,m′ . (2.9)

The special symbols fσ,σ′

l,j,m;l,j,m′ have been introduced because the same com-

binations also appear in some of the expressions to follow. In Eq. (2.7),

−l ≤ m ≤ l and −l′ ≤ m′ ≤ l′ as in Eq. (2.1), so that each component

V PS,σ,σ′

sl,with s.o. can be applied to component of spinor wavefunction as V PS. Dif-

ferently from Eq. (2.1), in Eq. (2.7), the coefficients D
γ(I),σ,σ′

τ,l,j,m;τ ′,l,j,m′ are non-

diagonal in the indexes m, m′. This fact does not introduce any difficulty

because also the “screened” coefficients (see below) of a standard US-PP

are non-diagonal. Eq. (2.7) is valid for any combination of spherical har-

monics provided that the U matrix in Eq. 2.5 is explicitly retained in the

D
γ(I),σ,σ′

τ,l,j,m;τ ′,l′,j′,m′ coefficients, as in Eq. (2.7). Actually, the price to pay for

using the real form of the spherical harmonics is the introduction of complex

PP coefficients. It is well known that semi-local PPs written in terms of

spin-angle functions can be recast in terms of spherical harmonics [49, 50].

Fully separable norm-conserving PPs with spin-orbit can also been rewritten

in terms of spherical harmonics instead of spin-angle functions as shown in

Ref. [55] (see Eq. (9) of this reference). Our Eq. (2.7) is the generalization

of Eq. (9) of Ref. [55]. Moreover, our expression is valid for any unitary

transformation among spherical harmonics.
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2.2.2 Augmentation charge and orthogonality

When fully separable norm-conserving PPs are used, the description of spin-

orbit coupling within a scheme for unconstrained non-collinear magnetism

requires only the charge of the nonlocal PP coefficients described by Eq.

(2.8). In this case our approach is totally equivalent to that of Ref. [56].

In order to employ US-PPs, the following points have still to be described:

(i) the augmentation term in the charge and magnetization densities, (ii) the

generalized orthogonality constraint satisfied by the spinor wavefunctions and

(iii) the screening due to the charge-density augmentation, which are added

to the coefficients of the nonlocal PP in the KS equations.

i) Charge and magnetization densities: we calculate the magnetiza-

tion density by exploiting the similarity between the Projector augmented-

wave (PAW) method introduced by P. Blöchl [63] and the US-PP’s formal-

ism. When non-collinear magnetic interactions are accounted for, DFT can

be expressed in terms of a 2× 2 density matrix nσ,σ′

(r). The density matrix,

written in terms of the all-electron two-components spinor wavefunctions

|ψ̃AE
k,v 〉 is given by:

nσ,σ′

(r) =
∑

k,v

fk,v〈ψ̃σ,AE
k,v |r〉〈r|ψ̃σ′,AE

k,v 〉, (2.10)

where the sum is over a uniform mesh of k points in the Brillouin zone, and

on the all bands at each point, and fk,v are the occupation factors [64]. The

electron density is the trace of the density matrix n(r) =
∑

σ n
σ,σ(r), while

the magnetization density is: m(r) = µB

∑

σ,σ′ nσ,σ′

(r)σσ,σ′

, where σ are

the Pauli matrices defined in Eq. 1.19 and µB is the Bohr magneton. The

PAW formalism allows us to write the all-electron two-component spinor

wavefunctions in terms of the two-components pseudo spinor wavefunctions

|ψ̃PS
k,v 〉 and the all-electron and pseudo partial waves calculated in the isolated

atoms. Spinor partial waves must be used to account for spin-orbit coupling

and the linear transformation that maps valence pseudowavefunctions into

all-electron wavefunctions becomes:

|ψ̃σ,AE
k,v 〉 =|ψ̃σ,PS

k,v 〉 +
∑

I

∑

τ,l,j,mj

[

|φI,AE
τ,l,j Ỹ

σ,I
l,j,mj

〉 − |φI,PS
τ,l,j Ỹ

σ,I
l,j,mj

〉
]

×

∑

σ1

〈Ỹ σ1,I
l,j,mj

βI
τ,l,j|ψ̃σ1,PS

k,v 〉.
(2.11)
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Here φI,AE
τ,l,j (r) and φI,PS

τ,l,j (r) are the radial components of the all-electron and

pseudo partial waves, respectively. Inserting Eq. (2.11) into Eq. (2.10), we

obtain the density matrix as:

nσ,σ′

(r) =
∑

k,v

fk,v[〈ψ̃σ,PS
k,v |r〉〈r|ψ̃σ′,PS

k,v 〉+
∑

I

∑

τ,l,j,mj

∑

τ ′,l′,j′,m′

j

∑

σ1,σ2

〈ψ̃σ1,PS
k,v |βI

τ,l,jỸ
σ1,I
l,j,mj

〉×

(〈Ỹ σ,I
l,j,mj

φI,AE
τ,l,j |r〉〈r|φI,AE

τ ′,l′,j′Ỹ
σ′,I
l′,j′,m′

j
〉−

〈Ỹ σ,I
l,j,mj

φI,PS
τ,l,j |r〉〈r|φI,PS

τ ′,l′,j′Ỹ
σ′,I
l′,j′,m′

j
〉)×

〈Ỹ σ2,I
l′,j′,m′

j
βI

τ ′,l′,j′|ψ̃σ2,PS
k,v 〉].

(2.12)

We now use Eq. (2.6) for the component of the spin-angle functions and

introduce augmentation functions in close analogy with the “j-averaged”

US-PPs.

QI
τ,l,j,m;τ ′,l′,j′,m′(r) =

[

φI,AE
τ,l,j (r)φI,AE

τ ′,l′,j′(r) − φI,PS
τ,l,j (r)φI,PS

τ ′,l′,j′(r)
]

Y ′∗,I
l,m (Ω)Y ′I

l′,m′(Ω),

(2.13)

where (r,Ω) are the spherical coordinates of r − RI (RI is the position of

atom I). The density matrix becomes:

nσ,σ′

(r) =
∑

k,v

fk,v〈ψ̃σ,PS
k,v |r〉〈r|ψ̃σ′,PS

k,v 〉+
∑

I

∑

τ,l,j,mj

∑

τ ′,l′,j′,m′

j

QI
τ,l,j,m;τ ′,l′,j′,m′(r)ρ

I,σ,σ′

τ,l,j,m;τ ′,l′,j′,m′ ,
(2.14)

where:

ρI,σ,σ′

τ,l,j,m;τ ′,l′,j′,m′ =
∑

k,v

fk,v(
∑

σ1

∑

m1

fσ1,σ
l,j,m1;l,j,m

〈ψ̃σ1,PS
k,v |βI

τ,l,jY
′I
l,m1

〉×
∑

σ2

∑

m2

fσ′,σ2

l′,j′,m′;l′,j′,m2
〈Y ′I

l′,m2
βI

τ ′,l′,j′|ψ̃σ2,PS
k,v 〉). (2.15)
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Despite the apparent complexity, the calculation of these terms is as dif-

ficult as the standard calculation of the density matrix since Eq. (2.14) has

the same form of the “j-averaged” formula [14]. After the calculation of the

scalar products between two-component spinor wavefunctions and projector-

functions, the number of operations to make the sum over σ1 and m1 (or σ2

and m2), is negligible. The computational overhead is due only to the higher

number of projector functions.

ii) Generalized orthogonality constraint: the integral of the electron

charge-density has to be equal to the number of electrons. this condition is

fulfilled if the two-component spinor wavefunctions are subject to a general-

ized orthogonality constraint consistent with the augmentation term in the

density matrix. Using Eq. (2.14), we find that spinors must obey the gen-

eralized orthogonality constraint: 〈ψ̃PS
k,v |S|ψ̃PS

k,v′〉 = δv,v′ , where S is a 2 × 2

overlap matrix whose elements are given by:

Sσ,σ′

=
∑

I

∑

τ,l,j,m

∑

τ ′,l′,j′,m′

q
γ(I),σ,σ′

τ,l,j,m;τ ′,l′,j′,m′|βI
τ,l,jY

′I
l,m〉〈Y ′I

l′,m′|βI
τ ′,l′,j′|. (2.16)

Each element of S has the same form of the S matrix of a “j-averaged” US-

PP, with coefficients q
γ(I),σ,σ′

τ,l,j,m;τ ′,l′,j′,m′ that, in general, are complex and depend

on σ and σ′:

q
γ(I),σ,σ′

τ,l,j,m;τ ′,l′,j′,m′ =
∑

m1,m2

∑

σ1

q
γ(I)
τ,l,j,m1;τ ′,l′,j′,m2

fσ,σ1

l,j,m;l,j,m1
fσ1,σ′

l′,j′,m2;l′,j′,m′ . (2.17)

Here q
γ(I),σ,σ′

τ,l,j,m;τ ′,l′,j′,m′ =
∫

drQ
γ(I),σ,σ′

τ,l,j,m;τ ′,l′,j′,m′(r) are the integrals of the augmen-

tation functions, Eq. (2.13), while f σ,σ′

l,j,m;l,j,m′ are defined by Eq. (2.9).

iii) D coefficients of the nonlocal PP: The total energy is a func-

tional of the density matrix and can be written for two-component spinor

wavefunctions with the local US-PP given by Eq. (2.7). The minimization

of this energy functional with respect to the spinor wavefunctions yields the

KS equations. Since the augmentation terms in the density matrix depend

on the spinor wavefunctions, additional terms appear in KS equations. These

terms can be included in the nonlocal PP by screening the D coefficients [14].
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In analogy with “j-averaged” US-PPs, we get:

D̃I,σ,σ′

τ,l,j,m;τ ′,l′,j′,m′ =D
γ(I),σ,σ′

τ,l,j,m;τ ′,l′,j′,m′+
∑

m1,m2

∑

σ1,σ2

∑

α

Aσ1,σ2

α II,α
τ,l,j,m1;τ ′,l′,j′,m2

fσ,σ1

l,j,m;l,j,m1
fσ2,σ′

l′,j′,m2;l′,j′,m′ ,

(2.18)

where A is a four-component vector (1 ≤ α ≤ 4) of 2 × 2 matrix: A =

(1, σx, σy, σz) (1 is the 2 × 2 identity matrix, and σi are the Pauli matrices).

II,α
τ,l,j,m;τ ′,l′,j′,m′ =

∫

drQI
τ,l,j,m;τ ′,l′,j′,m′(r)Bα(r) are the integrals of the product

of the augmentation function with either the effective potential Veff or the

exchange and correlation magnetic field. The four component vector B is

defined as B = (Veff ,−µBBxc,x,−µBBxc,y,−µBBxc,z), where the effective

potential Veff is the sum of the local, Hartree and exchange and correlation

potentials, while the exchange and correlation magnetic field is the functional

derivative of the exchange and correlation energy Exc with respect to the

magnetization: Bxc,i = − δExc

δmi
. In summary, Eqs. (2.17) (2.18) (2.16) and

(2.15) show how to account for the spin-orbit coupling by a fully relativistic

US-PP. In the next section, I will present applications of this formalism to

the calculation of the structural and electronic properties of bulk fcc-Au and

of fcc-Pt.

2.3 Application to Au-fcc and Pt-fcc

For Fe, Co, and Ni cubic crystals [65], the magnetic anisotropy energy (MAE)

is of the order of the µeV per unitary cell. For the hexagonal Co lattice, the

MAE is of the order of 0.1 meV. 2D and 1D-systems are more sensitive to

the anisotropic effects because the charge-density has a sharp distribution in

some directions (where it goes to zero very soon), and a smooth distribution

in other directions (where it obeys to periodic conditions). In such magnetic

systems the MAE is usually of the order of some meV.

Nevertheless the fact that 3D-lattices are less sensitive to the anisotropic

effects than other systems does not mean that their electronic structure is

not affected by the spin-orbit term. This is more clear in the illustrative case

of the hydrogen atom: the system is perfectly isotropic and the MAE is zero,
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but the energy levels are split because of the spin-orbit interaction.

As discussed previously, the splitting of the bands are more evident in

solids composed of atoms with a large nuclear charge, like, for example, Au

and Pt. These are therefore suitable systems to verify if the fully relativistic

US-PPs applied within a DFT scheme based on two-component spinor wave-

functions can reproduce the band structures and the structural properties as

predicted by a fully relativistic four-component Dirac-like equation. I will

therefore focus on the structure and electronic properties of these two 3D

non magnetic systems.

2.3.1 Computational details

US-PPs for Au and Pt were generated according to the modified Rappe-Rabe-

Kaxiras-Joannopoulos scheme [41] with three Bessel functions. We used as

reference all-electron configuration 5d4
3/25d

4
5/26s

2
1/2 and 5d4

3/25d
6
5/26s

1
1/2 for Pt

and Au, respectively. The core radii (in a.u.) of our pseudopotentials are:

Pt 5d (2.1, 2.4), 6p1/2 (3.3), 6p3/2 (3.4). The potential of the s channel was

taken as local with rloc = 2.6. Au 5d (1.8, 2.4), 6p (3.3). The potential of

the s channel was taken as local with rloc = 2.7. Two values of the core

radii indicate a channel which was pseudized with the US scheme. In such

case, the first value is the norm conserving core radius and the second is

the ultrasoft one. The same core radii were taken for the j = l + 1/2 and

j = l− 1/2 channels when not explicitly specified. The same radii were used

also for the SR PPs.

The all-electron reference atomic radial wavefunctions were calculated by

solving a relativistic Dirac-like equation within the local density approxima-

tion (LDA) for the exchange and correlation energy and the Perdew and

Zunger [18] parametrization. The non linear core correction [66] (NLCC)

with rcore = 1.2 a.u. was used to obtain a non-magnetic ground state for

fcc-Pt. A kinetic energy cutoff of 30 Ry was used for the plane-waves expan-

sion of the pseudo-wavefunctions (250 Ry for the charge densities), a 8×8×8

Monkhorst-Pack mesh [67] of special points for the integration over the Bril-

liouin zone and the smearing approach of Ref. [64] for dealing with the

Fermi surface. The smearing parameter was 0.02 Ry for both Au and Pt.
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2.3.2 Structural and electronic properties

The values of the equilibrium lattice constants and bulk moduli calculated

with our US-PPs are reported in Tab. 2.1 and compared with the values

reported in the literature, with experiment and with results obtained by “j-

averaged” US-PPs constructed by starting from the solutions of a SR atomic

equation. First of all, we note that the introduction of spin-orbit coupling

does not change significantly the structural properties. The lattice constants

calculated with or without spin-orbit coupling differ by less than 0.02 a.u.,

while the Bulk moduli change by a few percent. We find very good agreement

with previous all-electron calculations, for the lattice constant of Au, whereas

the lattice constant of Pt is overestimated by about 0.5%. The bulk moduli

are correct within a few percent. These errors are within the accuracy of our

PPs.

Table 2.1: Theoretical lattice constant and bulk modulus of the systems studied in

this work compared with previous calculations and with experiments. SO indicates

a fully relativistic US-PP, while SR indicates a “j-averaged” US-PP.

fcc-Pt fcc-Au

a0 (a.u.) B0 (kbar) a0 (a.u.) B0 (kbar)

This work (SO) 7.40 2920 7.64 1981

This work (SR) 7.39 2953 7.65 1924

Ref. [68] 7.37 2970 7.637 1950

Ref. [48] 7.36 2950 7.638c 1975

Expt. 7.40a,7.414b 2830a 7.67a,7.707b 1730a

aRef. [69]
bRef. [70], used in Ref. [68]
c Obtained with NR exchange-correlation functional

In Figs. 2.1 and 2.2, the electronic band structures of fcc-Pt and fcc-Au

are reported along several symmetry lines of the Brillouin zone, calculated

at the experimental lattice constant extrapolated at zero temperature [69]:

a0 = 7.40 a.u. (Pt) and a0 = 7.67 a.u. (Au).
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Figure 2.1: fcc-Pt band structure calculated with scalar relativistic pseudopoten-

tials (dashed line) and with relativistic pseudopotential (continuous line).

Figs. 2.1 and 2.2 also show the comparison between fully relativistic and

scalar relativistic electronic band structures of fcc-Pt and fcc-Au calculated

at the experimental lattice constant. The largest energy splittings (around 1

eV) due to the spin-orbit coupling are at the Γ point. A deeper analysis of the

energy eigenvalues calculated at the Γ, X, W , L and K points is reported in

Tab. 2.2 where our results are compared with those calculated in Ref. [68] and

in Ref. [48]. In Ref. [68], the band structures are the eigenvalues of a relativis-

tic full-potential Dirac-like equation solved by the Korringa-Kohn-Rostoker

method, whereas Ref. [48] reports the eigenvalues of a Dirac-like equation

solved by an augmented plane wave (APW) method and assuming a spher-

ical symmetric crystal potential inside the APW spheres. Both calculations

were carried out within DFT in the LDA with two different parameteriza-

tions of the functional: the Hedin and Lundqvist [71] form in Ref. [68] and

the Vosko et al. [72] for in Ref. [48]. In Ref. [48], relativistic corrections to the



34 Spin-orbit interaction and density functional theory

fcc-Au
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Figure 2.2: fcc-Au band structure calculated with scalar relativistic pseudopo-

tentials (dashed line) and with relativistic pseudopotential (continuous line).

exchange and correlation energy were also introduced but the changes due

to these functionals were found to be small. The reference values reported in

Tab. 2.2 were extrapolated from Fig. 2 of Ref. [68] and from Figs. 1 and 3 of

Ref. [48]. We estimated and quoted two significant digits, but the errors in-

troduced by this procedure are of the order of 0.1 eV. In Ref. [68], the band

structure calculations are done at the room-temperature experimental lat-

tice constants, while we could not find the lattice constants used in Ref. [48].

In order to check our method against these data, we calculated the band

structures at three lattice constants: in addition to the zero-temperature

experimental lattice constants we considered also a0 = 7.414 a.u. (Pt) and

a0 = 7.707 a.u. (Au), the room-temperature experimental lattice constants

used in Ref. [68], and a0 = 7.36 a.u. (Pt) and a0 = 7.65 a.u. (Au) the

theoretical lattice constants found in Ref. [48].

For both Pt and Au, the lowest differences between our data and Ref. [68]
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Table 2.2: Energy eigenvalues (expressed in eV) of the occupied states calculated

at high-symmetry points of the Brillouin zone at the zero temperature experimental

lattice constant. The calculated eigenvalues are compared with results available in

literature, obtained by solving a four-component relativistic Dirac-like equation.

The Fermi energy is taken as zero. In parenthesis our eigenvalues calculated at

the lattice constant indicated in the first row.

Pt Pt[[48]] Pt[[68]] Au Au[[48]] Au[[68]]

a0 7.40 ? (7.36) 7.414 (7.414) 6.67 ? (6.65) 6.707 (6.707)

Γ -10.45 -10.56 (-10.63) -10.35 (-10.39) -10.18 -10.23 (-10.27) -9.95 (-10.01)

-4.38 -4.48 (-4.48) -4.24 (-4.35) -5.43 -5.41 (-5.49) -5.32 (-5.35)

-3.39 -3.47 (-3.49) -3.28 (-3.35) -4.23 -4.23 (-4.28) -4.14 (-4.14)

-1.53 -1.65 (-1.58) -1.48 (-1.52) -2.97 -3.04 (-3.01) -2.96 (-2.92)

X -7.28 -7.58 (-7.46) -7.10 (-7.22) -7.38 -7.53 (-7.46) -7.14 (-7.23)

-6.84 -6.99 (-7.01) -6.70 (-6.78) -7.08 -7.13 (-7.16) -6.95 (-6.94)

-0.25 -0.32 (-0.25) -0.20 (-0.25) -2.25 -2.24 (-2.26) -2.27 (-2.22)

0.06 0.05 (0.07) 0.04 (0.05) -2.02 -1.98 (-2.03) -2.07 (-2.01)

-0.99 -0.92 (-0.99) -1.03 (-0.98)

W -5.89 -6.19 (-6.04) -5.72 (-5.84) -6.32 -6.47 (-6.40) -6.16 (-6.21)

-4.93 -5.01 (-5.04) -4.83 (-4.89) -5.72 -5.81 (-5.78) -5.67 (-5.63)

-4.67 -4.80 (-4.79) -4.58 (-4.62) -5.16 -5.22 (-5.22) -5.08 (-5.05)

-1.95 -2.13 (-2.00) -1.87 (-1.93) -3.21 -3.30 (-3.25) -3.20 (-3.15)

-1.57 -1.58 (-1.58) -1.62 (-1.56)

L -7.54 -7.68 (-7.71) -7.44 (-7.48) -7.62 -7.66 (-7.71) -7.53 (-7.48)

-4.54 -4.69 (-4.64) -4.43 (-4.49) -5.55 -5.61 (-5.61) -5.52 (-5.46)

-3.52 -3.68 (-3.62) -3.45 (-3.49) -4.36 -4.42 (-4.42) -4.33 (-4.28)

-0.76 -0.85 (-0.83) -0.79 (-0.74) -2.30 -2.31 (-2.31) -2.37 (-2.27)

-0.33 -0.37 (-0.32) -0.30 (-0.33) -1.57 -1.58 (-1.59) -1.62 (-1.55)

-1.18 -1.25 (-1.23) -1.23 (-1.10)

K -6.47 -6.72 (-6.63) -6.40 (-6.42) -6.79 -6.86 (-6.86) -6.70 (-6.66)

-5.71 -5.87 (-5.85) -5.57 (-5.66) -6.18 -6.21 (-6.25) -6.11 (-6.07)

-3.10 -3.20 (-3.19) -3.00 (-3.08) -4.03 -4.09 (-4.08) -4.04 (-3.95)

-1.40 -1.60 (-1.43) -1.38 (-1.38) -2.96 -3.04 (-2.99) -3.00 (-2.92)

-0.10 -0.13 (-0.10) -0.10 (-0.10) -1.89 -1.91 (-1.91) -1.97 (-1.86)

are found at the room temperature experimental lattice constants, whereas

the lowest discrepancies with Ref. [48] are found at their theoretical lattice
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constant. In Au, a very good agreement between our calculations and the

fully relativistic results is found, only the highest occupied band at L is 0.13

eV above that of Ref. [68], all other bands having errors lower than 0.1 eV.

Also in Pt the agreement is quite good, almost always within 0.1 eV, with a

few exceptions: the maximum error with respect to Ref. [68] is of 0.12 eV for

the lowest band at X and W . The maximum error with respect to Ref. [48]

is 0.17 eV for the fourth band at K, while the lowest bands at X and W

differ by 0.12 and 0.15 eV, respectively.

In conclusion, it has been shown how to describe the spin-orbit coupling

by fully relativistic US-PPs and that, for fcc-Au and fcc-Pt, these PPs,

applied within a DFT scheme based on two-component spinor wavefunctions,

can reproduce the band structures and the structural properties as predicted

by a fully relativistic four-component Dirac-like equation.



Chapter 3

Magnetism in low-dimensional

systems based on Cobalt

This chapter deals with 2D, 1D and 0D nanomagnets based on Co atoms.

The structural, electronic, and magnetic properties, as well as the magnetic

anisotropy energy, are calculated with the theoretical methods described in

the previous chapters. The magnetic properties are shown to be extremely

sensitive to the atomic geometries. The results are presented and compared

with previous theoretical works and with the experiments by following an order

of decreasing dimensionality.

In chapter 2 I have shown the importance of relativistic effects in the

band structure of heavy transition metal atoms (Au and Pt) by applying

the relativistic pseudopotential method. These systems are not magnetic

and therefore not concerned in magnetic anisotropy phenomena. But even

for other 3D systems that are magnetic, like for example Fe bcc, the MAE is

typically very small, of the order of the µeV [65], and therefore not accessible

by the present electronic structure calculations. The new method to compute

the MAE needs to be benchmarked on systems in which the MAE is larger,

like for example in low dimensional structures in which the MAE is of the

order of some meV.

37
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3.1 Methods for calculating the magnetic

anisotropy energy

Before proceeding to the description of low dimensional systems, it is worth

to give an overview of the methods currently used for the calculation of the

MAE and to compare them with our method.

3.1.1 The force theorem

Many of the previous theoretical works are based on DFT all-electron cal-

culations and the magnetic anisotropy is calculated on the basis of the force

theorem [73]. The force theorem relates small changes in the total energy to

changes in the eigenvalues upon variation of the angle between the direction

of the total magnetization and the easy magnetization axis. We remark that,

strictly speaking, this is not a “theorem” but an approximation, since it is

valid only in the assumption that the charge-density is not modified by the

changes in the magnetization direction. In this assumption, the change in

energy is determined by the external potential only, not by the Hartree and

exchange-correlation contributions. According to this theorem, the magneto-

crystalline anisotropy energy can be approximated as the difference in band

energies (the sum of the occupied eigenvalues) obtained with and without

the spin-orbit coupling using the same self-consistent scalar-relativistic po-

tential. Its usual “proof” takes advantage of the fact that the relativistic

correction to the total energy is second order with respect to the differences

in the charge and spin densities. The MAE is then given by the difference

between the highest and the smallest band energies, identified by sampling

systematically different directions of the total magnetization of a system.

In Ref. [74] the band energy of a Co nanowire on a (664) Pt surface is

computed for different directions of the magnetic moment of the Co atoms

and the applicability of the force theorem is checked for some configurations

by comparison with self-consistent calculations. An average deviation of 0.2

meV/atom between the two methods is estimated, corresponding to 10% of

the total MAE per unit cell.
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3.1.2 Self consistent methods

Our approach goes beyond the force theorem since the MAE is calculated

in terms of the self consistent total energy, not only in terms of the band

energy. Our calculations are performed by the ultrasoft fully relativistic

pseudopotential method described in the previous chapter. This method has

proved to be a reliable scheme enabling to include spin-orbit in the solution

of the KS equation. As stated previously, the spin-orbit term relates the

electrons spin to the potential, and therefore is crucial for the calculation of

the MAE. Ultrasoft fully relativistic pseudopotentials are therefore suitable

to calculate the MAE. Furthermore, since pseudopotentials provide accurate

predictions of the forces acting on the atoms, our method allows to study the

effect of geometry optimization on the MAE.

The ground state of a magnetic system with magnetization laying parallel

to the easy magnetization axis is evaluated selfconsistently. Even starting the

calculation from different initial conditions with total magnetization direction

different from that of the ground state, the system, during the calculation,

evolves in such a way as to redirect its magnetization parallel to the easy

magnetization axis. To evaluate the MAE, however, it is necessary to calcu-

late the total energy in a magnetic configuration different from that of the

ground state, in which the total magnetization lays parallel to the so called

hard magnetization direction. The total magnetization can be constrained

to lay along directions different from the equilibrium one. It is then possible

to calculate the total energy in these magnetic configurations, and compare

it with the ground state energy, obtaining in this way the MAE. During the

calculation, however, the absolute value of the atomic magnetic moments, as

well as their mutual directions, converge much faster than the total magne-

tization direction. The difference in energy between the configurations with

magnetization directed along the easy and hard axis can be relevant in some

systems, but our self consistent approach converges to the equilibrium con-

figuration with a large number of iterations, where the total energy and the

total magnetization direction change very slightly at each step. To calculate

the properties of the system out of its equilibrium configuration it is therefore

not necessary to constrain its total magnetization. It is sufficient to set the
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initial magnetization, and then to choose an energy convergency threshold

sufficiently small to guarantee an accurate prediction of the absolute value

of the atomic magnetic moments and their mutual direction, and sufficiently

large to prevent the total magnetization to change direction from the initial

condition. We therefore sample the total energy by varying the direction of

the total magnetization, but, for each direction, the calculation is performed

self consistently with the relativistic pseudopotentials. As a consequence our

results are free from the approximation typical of the force theorem [74].

Other minor differences with respect to other theoretical works are in

the inclusion of the spin-orbit interaction in the KS equation, and in the

treatment of the magnetic dipole-dipole interaction. In our approach the

spin-orbit contribution is accounted for in the nonlocal part of the pseudopo-

tentials of the atoms involved, while in some previous works the spin-orbit

interaction is taken into account by solving a Dirac-like KS-equation (fully

relativistic calculation [75, 74, 76, 77]), in others by adding the spin-orbit

term to the scalar relativistic Hamiltonian [78].

In some works [75, 79] the magnetic dipole-dipole energy is also added

to the energy band for the calculation of the MAE. We computed the Co

magnetic moments in the case of the unsupported Co monolayer and used

them to calculate the magnetic dipole-dipole energy following Ref. [80]. We

found a value of 0.08 meV, negligible with respect to the total MAE (2.0

meV). Therefore, since the magnetic dipole-dipole energy is more relevant in

monolayers than in nanowires and adatoms, this term can be safely neglected

in all the structures described in the following.

No relativistic effects are taken into account in the parameterizations of

the exchange-correlation functional [72].

3.2 2D: Monolayers

The reduction of the dimensionality of a magnetic system from 3 to 2 induces

a MAE increase of many orders of magnitude. Many recent studies focus on

magnetic 2D systems and on their magnetic properties. In particular some

works have been carried out on a Co monolayer deposited on a Au(111)

surface [81]. Therefore, before studying 0D and 1D systems, I will begin
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by analyzing two systems in which the dimensionality is reduced to 2: an

unsupported Co-monolayer and a Co-monolayer deposited on a Au(111) sur-

face. In the case of the unsupported Co-monolayer, there are no experimental

data available but theoretical studies have been carried out with the LMTO

method, and ASA approximation [78]. For the Au-supported Co-monolayer

instead our results can be compared with both theoretical methods [79] and

experimental data [81].

3.2.1 Unsupported Co monolayer

Surface supported Co monolayers have been studied in several experimental

works [81, 82]. The particular case of the Co monolayer on Au(111) surface

has been recently analyzed, as well as the effect of additional overlayers

on the MAE [81]. Our goal is to study first an isolated hexagonal Co

monolayer, so as to understand the role of the supporting surface on the

anisotropy of the system, sudied in the next section. Following Ref. [78],

we performed the calculation for different in-plane lattice constants. In Ref.

[78] the relativistic effects are taken into account by adding the spin-orbit

term to the KS equation, and the MAE is calculated by the force theorem.

According to our results and to Ref. [78], the easy magnetization axis is

always parallel to the plane of the monolayer. Moreover we find that rotating

the total magnetization in the monolayer plane results in energy changes

below 0.01 meV, and the values of both the magnetic moment and of the

total magnetization do not change upon rotation of the axis. The MAE and

the Co spin magnetic moment increase for larger in-plane lattice constants,

as reported in Table 3.1. Our results are in substantial good agreement with

previous studies [78, 79], in which the MAE is calculated in LSDA, and

considering the magnetic dipole-dipole energy contribution.

The Co spin magnetic moment calculated with the gradient-corrected

PBE functional, is 2.07 µB, 5% larger than the LDA value (1.93 µB). In

both cases it is smaller then the value for the free Co atom (3 µB). The

MAE calculated with a gradient-corrected PBE exchange-correlation func-

tional (0.67 meV) is also smaller than the LDA values (1.05 meV), but the

easy magnetization axis is always parallel to the plane of the monolayer.
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Table 3.1: MAE and Co spin magnetic moment computed with the relativistic

pseudopotential method compared with results of Ref. [78]. Calculations are per-

formed for different in-plane lattice constants: 4.74 a.u. (as in a (111) plane of

hcp Co), 4.92 a.u., 5.15 a.u. (as in a (111) plane of fcc Pd).

a0 [a.u.] MAE [meV ] µ0 [µB]

GGA LDA LDA (Ref. [78]) GGA LDA LDA (Ref. [78])

4.74 0.67 1.05 1.2 2.07 1.93 1.87

4.92 0.98 1.16 1.4 2.11 2.03 1.93

5.15 1.38 1.50 2.0 2.13 2.07 1.99

We deduce that, compared to LDA calculations, the PBE functional tends

to disfavor configurations with the magnetization direction parallel to the

monolayer.

3.2.2 Monolayer on the Au(111) surface

Several authors have discussed the peculiar magnetic properties of ultra-thin

Co films supported by Au and Pt (111) surfaces. In particular Engel et al.

[81] revealed that deposition of additional Ag, Cu, Au, or Pd layers increases

significantly the perpendicular anisotropy. Further works revealed that the

maximum increase of the MAE in the case of the Au(111) supported Co

monolayer (0.5 meV) [82] is reached when a single Au-overlayer is added. We

therefore restrict our study to this particular system displayed in Fig. 3.1.

Differently from the unsupported Co monolayer, the easy magnetization axis

is in this case perpendicular to the (111) plane and the experimental MAE is

0.6 meV [82]. From our theoretical calculations, performed on an unrelaxed

surface structure, corresponding to an ideal truncation of a fcc crystal, we

predict the same direction for the easy magnetization axis, but we obtain

a larger value for the MAE (1.89 meV, see Table 3.2). Other theoretical
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Figure 3.1: Co monolayer on a Au(111) surface with an Au-overlayer.

calculations performed on the unrelaxed structure in LDA approximation by

KKR method predict a MAE of 1.4 meV [79].

For the unrelaxed structure the distance between the atoms is the one

calculated in the Au-fcc bulk: 2.86 Å for LDA and 2.94 Å for GGA. We

have gone beyond these calculations by taking into account also the effect

of the atomic relaxation on the MAE. After the atomic relaxation the dis-

tance between the Au atoms remains the same, while the Co-Au distance

decreases to 2.60 Å (LDA) and 2.68 Å (GGA). Table 3.2 shows that, also
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Table 3.2: Au(111) supported Co monolayer: MAE and Co spin magnetic moment

before and after relaxation. The values reported in Ref. [79] and [82] are also

included

Exp [82] LDA Ref. [79] LDA GGA

unrelaxed unrelaxed relaxed unrelaxed relaxed

MAE [meV ] 0.6 1.4 1.95 1.89 3.45 4.00

µ [µB] 2.03 1.96 1.82 2.05 2.00

by considering the atomic relaxation, or performing calculations with a dif-

ferent functional (PBE), the theoretical values are sensitively larger than the

experimental ones. This overestimation can be possibly explained by tak-

ing into account the intermixing at the Au/Co interfaces and/or by surface

roughness effects. This argument is supported by previous first principles

calculations [83] carried out for FenCu(001) multilayers, where it is shown

that the MAE decreases when the symmetry of the surface is reduced.

The experimental Co magnetic moment is 2.03 µB. We predict a value of

1.96 µB in LDA, and 2.05 µB in GGA for the unrelaxed structure. Atomic

relaxation reduces the Co spin magnetic moment in both LDA and GGA

calculations, by 7% and 3 % respectively. The MAE is instead almost un-

changed in the LDA, while it increases with the relaxation from 3.45 meV

to 4.00 meV in the GGA case. The MAE values obtained with the GGA

functional (Table 3.2) highlights once again that, compared to LDA results,

the magnetization aligned perpendicularly to the monolayer plane is favored

by this functional, exactly like for the case of the unsupported Co monolayer.

Our value of the Co spin magnetic moment obtained with the GGA calcu-

lation (2.00 µB) is very close to the experimental one (2.03 µB) [82]. Both

the LDA and GGA theoretical calculations for the relaxed structures predict

Co spin magnetic moments that are 3% lower than those of the unrelaxed

structures.

In order to better analyze the role of the spin-orbit in the substrate and

its influence on the magnetic properties of monolayer, the fully relativis-
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tic pseudopotential method offers the possibility to perform calculations in

which some atoms are treated including relativistic effects, while others are

treated in the non relativistic limit. Since in this case the magnetization is

concentrated mainly on the Co atoms it is worth to verify if the computed

MAE changes when the Au atoms are described by a scalar relativistic pseu-

dopotential. It turns out that the relativistic description of the Au atoms is

essential to predict the correct magnetic properties of this system, since the

non relativistic description of the Au atoms modifies the direction of the easy

axis by 90◦. The easy axis lays parallel to the surface as in the unsupported

Co monolayer, and the MAE decreases to 0.80 meV. This indicates that

the MAE is not simply given by a change of the Co electron states induced

by the potential generated by the supporting Au surface. Au atoms play a

more complex and important role in the determination of the MAE. This is

a subtle effect since the magnetization induced on the Au atoms by the Co

monolayer, is almost zero: the Au atoms closest to the Co monolayer have

a magnetic moment smaller than 0.03 µB. This behavior deserves a deeper

analysis and systems like, for example, a Co monolayer supported by other

metal or by insulating surfaces should be considered.

Computational details

The results are obtained with energy cutoffs, for the wavefunctions and

for the charge-density, of 30 Ry and 300 Ry respectively, with 52 k points

(Monkhorst-Pack mesh (22,22,1)) for the integrations, and with a Methfessel-

Paxton smearing of 0.02 Ry. The vacuum distance between the periodic

images is of 20 a.u. along the direction perpendicular to the plane. All these

parameters deliver convergency in the Co spin magnetic moment and the

MAE below 0.05 µB and 0.02 meV respectively. The dependence of these

quantities on the k-point sampling is displayed in Fig. 3.2, where the vertical

line denotes the number of k points used in the calculations. All the other

convergency parameters have been tested in a similar way.
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Figure 3.2: Convergency of the MAE and of the Co spin magnetic moment of the

unsupported (left) and of the Au surface supported Co monolayer (right) with the

number of k points. The following Monkhorst-Pack mesh [67] have been used: 12

k points (9,9,1), 30 k points (16,16,1), 44 k points (20,20,1), 52 k points (22,22,1),

154 k points (40,40,1). The vertical black line indicates the number of k points

chosen for our calculations.

3.3 1D: Nanowires

In this section we focus on a 1-dimensional system consisting of a Co nanowire

supported by a flat terrace and by a stepped Pt(111) surface, for which the

existence of ferromagnetism has been demonstrated [84].

3.3.1 Experimental facts

It is not possible to experimentally realize a 1D structure by aligning Co

atoms on a flat surface, since the atoms deposited on the surface would tend

to aggregate forming clusters. It has been shown [7], however, that high-

density (5× 106cm−1) arrays of parallel monoatomic chains can be produced

by depositing Co below room temperature on a vicinal Pt (997) surface. The

STM images in Fig. 3.3 illustrate the regular step structure of the Pt(997)

surface and the regular monoatomic Co-wires obtained by decoration of the

steps. In the same figure a structural model of the Co-wires over the Pt-

surface is reported together with the direction of the easy magnetization

axis.
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Figure 3.3: STM images taken from [84] of Co nanowires over a (997) Pt-surface

(left), and structural model of the Co-wires on this stepped Pt-surface with indi-

cation of the easy axis direction.

In the isolated Co atom seven electrons occupy the 3d orbitals and because

of the Hund’s rules the spin magnetization is 3 µB. The Hund’s rules can

be applied to localized atomic orbitals, but the interaction of the Co adatom

with its neighbors induces a delocalization of the d electrons, and therefore

its spin magnetic moment is expected to decrease both because of the interac-

tion with the substrate and with other Co atoms. This is confirmed by X-ray

magnetic circular dichroism (XMCD) measurements [84]. In a wire on the

stepped Pt surface, the spin magnetization per atom decreases to 2.08 µB, in

a Co-monolayer to 2.03 µB, and in a Co-hcp bulk to 1.57 µB. We note that

the spin magnetic moment is larger for lower dimensional structures, where

the number of nearest neighbors is smaller and the environment approaches

the one of an isolated Co atom. The measured hysteresis loops in the super-

paramagnetic and in the ferromagnetic regime for the case of the 1D Co wire
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Figure 3.4: Hysteresis loop taken from [84] of Co nanowires over a (997) Pt-

surface. In (a) the magnetization is measured in the superparamagnetic regime

(over the blocking temperature). In (b) the Co nanowires are below the blocking

temperature (TB = 15 ± 5K).

on the Pt (997) surface are displayed in Fig. 3.4. These measurements show

that the easy magnetization axis lays on the plane perpendicular to the wire

and its direction forms an angle of 43◦ with respect to the axis perpendicular

to the surface plane pointing toward the “rising versus” of the step. The

experimental value of the MAE (2.0± 0.2 meV) per Co atom is obtained by

fitting the data in Fig. 3.4 (a) with the formula giving the magnetization of

the nanowire in the superparamagnetic regime [84]. The inter-chain effects

between the wires are found to be negligible.

3.3.2 Theoretical results

Co nanowire on the flat (111) terrace
The relativistic pseudopotential technique was initially used to study the

magnetic properties of Co nanowires on a flat Pt(111) surface. This prelim-

inary analysis allowed to separate out the effect of the step from the one

of the surface in the magnetic properties of the Co wires. The system was

simulated by employing four layers of Pt for the surface, and the Co atoms
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were located in the positions that the Pt atoms would have in a Pt-fcc

bulk. Each supercell contains one Co atom and 16 Pt atoms. The dis-

tance between the wire and its nearest periodic images on the surface is 8.32

Å. The exchange-correlation energy was calculated using the LDA Perdew-

Zunger parametrization. The surface structure was also relaxed according

to Hellman-Feynman forces until the total energy per unit cell converged

to within 0.15 meV. A scalar relativistic pseudopotential was employed for

the geometrical optimization. In both cases the lattice constant is the one

theoretically calculated for the Pt-fcc bulk (7.414 a.u.). Figure 3.5 shows

the nanowire before and after the relaxation: the distance between the Co

atoms and the nearest Pt atoms, as well as the Co spin magnetic moment

decrease in the relaxation process by 22% and 8% respectively. In the unre-

unrelaxed relaxed

Figure 3.5: Co nanowire on Pt (111) surface with magnetic moments directed

along the easy magnetization axis calculated for the unrelaxed (left) and relaxed

(right) coordinates.

laxed structure the easy magnetization axis is perpendicular to the surface

while the relaxation of the atoms rotate the easy magnetization axis by 90◦,

so that it lays parallel to the wire (see Fig. 3.5). This important effect of the

relaxation can be rationalized as follows: in both cases the direction of hard
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Figure 3.6: Co nanowires on a Pt (111) surface before (top panel) and after

(bottom panel) atomic relaxation: total energy as a function of the Co magnetic

moment direction (θ and φ are defined in the inset).

magnetization is parallel to the surface and perpendicular to the wire. The

effect of the structural relaxation on the MAE is to disfavor the magnetiza-

tion direction perpendicular to the surface and to the wire (see Fig. 3.6); the

energy difference between this magnetic configuration and the one with mag-



3.3 1D: Nanowires 51

Figure 3.7: Difference between the charge distribution of Co nanowire on the

Pt (111)-surface and the one of isolated Co wire + Isolated Pt surface. Blue for

positive charge, red for negative charge.

netization parallel to the surface and perpendicular to the wire decreases by

2.6 meV. Concerning the magnetization anisotropy along the surface plane,

we notice that in both the relaxed and unrelaxed structures the magnetiza-

tion direction parallel to the wire is more stable and that the effect of the

relaxation is to reduce the gap between the configuration with magnetization

perpendicular to the wire and the one with magnetization parallel to it by

1.4 meV. These results are also displayed in Table 3.3 and compared with

previous works [85] carried out using the force theorem, embedded-cluster

technique and without relaxation of the atomic coordinates. We note that,

for the unrelaxed structure, the MAE calculated by the the force theorem is

larger than the one predicted by our self-consistent relativistic pseudopoten-

tial method.

We observed a charge transfer of 0.21 electrons from the Co-wire to the

Pt-surface (Fig. 3.7) both in the relaxed and in the unrelaxed structure. The

Löwdin charge analysis reported in Table 3.4 shows that the charge transfer
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Table 3.3: Pt(111) supported Co wire. Magnetic moment per Co atom and

magnetic anisotropy energy (in meV) expressed as the difference between the total

energies taken as a function of θ and φ (E(θ, φ)). θ and φ are defined in Fig. 3.6.

Ref. [85] unrelaxed relaxed

µ(Co) [µB] 2.11 2.12 1.95

E(90,90) - E(0,0) 3.3 2.86 0.28

E(90,0) - E(0,0) 1.5 0.48 -0.67

due to the interaction of the Co wire with the Pt surface results from the

rearrangement of s and p orbitals, and, most importantly, it induces a reduc-

tion of the polarization resulting from the d orbitals, as predicted previously

with qualitative argumentations.

Table 3.4: Calculated occupations of the valence orbitals of the Co atom in the

Pt(111) surface supported Co nano-wire. In the isolated atom the valence charge is

9 = 4s24p03d7. This calculation was performed using a scalar relativistic pseudopo-

tential. In parenthesis the spin polarization calculated as the difference between

spin up and down occupations.

unsupported Co wire/Pt(111) Co wire/Pt(111)

Co wire unrelaxed relaxed

4S 0.9313 (0.1146) 0.5324 (0.0378) 0.4803 (0.0223)

4P 0.4212 (0.0806) 0.6240 (0.0252) 0.6854 (0.0350)

3D 7.6097 (2.3066) 7.5976 (2.1800) 7.5840 (2.0859)

total charge 8.9622 (2.5018) 8.7539 (2.2429) 8.7497 (2.1433)

Co nanowire on a stepped (111) surface
The geometry of this structure and the coordination of the atoms of the

Co wire are completely different form the case of the nanowire on a flat

surface. Actually the effect of the step on the nanowire magnetic properties
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Figure 3.8: On the left panels, total energy of the Co nanowires on a Pt (331)

surface before and after relaxation plotted as a function of the Co magnetic moment

direction (θ and φ are defined in the figures on the right). On the right panels, the

same graphics obtained for a (664) structure by Blügel et al. in reference [74].

is to change the direction of easy magnetization axis by 90◦. Experimentally

[84] the easy axis is perpendicular to the wire and forms an angle of 43◦ with

the axis perpendicular to the (111) plane. The easy axis predicted by our

calculations and by Ref [74] forms an angle of around 45◦ with the direction

orthogonal to the (111) plane and our value of the MAE is of 1.5 meV, quite

close to the experimental measurements. The atomic relaxation of the Co

wire increases the angle of the easy axis to 85◦, worsening the agreement with

the experiment, while the MAE increases to 2.0 meV, in better agreement

with the experiment than the unrelaxed value. This is indeed unexpected,
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unrelaxed relaxed

Figure 3.9: Co nanowires on a Pt (331) surface before (left) after (right) atomic

coordinates relaxation.

but the same result is obtained for a different functional (PBE) and for a

different terrace length [74]. All these results are resumed in Fig. 3.8,

where the total energy calculated for different directions of the Co magnetic

moment is plotted and compared with the results of Ref. [74].

The overall conclusion here is that the direction of the easy axis is ex-

tremely sensitive to the relaxation effects and probably neither the LDA nor

the PBE functional are accurate enough to predict the relaxed atomic coor-

dinates with the necessary precision. In the unrelaxed structure, the distance

between nearest neighbors is 2.77 Å. In the relaxed structure the distances

of the Co atoms with the nearest Pt neighbors decrease of 0.2 Å(see Fig.

3.9), while one Pt atom (denoted by III in Fig. 3.9) relaxes outward by 0.2

Å. The spin magnetic moments of the Co atom and of its nearest neighbors

are similar to the ones calculated for the nanowire supported by the (111)

terrace (compare Figs. 3.10 and 3.5). The energy differences due to the

anisotropic effects are in any case very small and stretch the predictive power

of state-of-the-art DFT calculations to their limits. Given the importance of



3.3 1D: Nanowires 55

unrelaxed relaxed

Figure 3.10: Magnetic moments of Co nanowires on a Pt (331) surface before

(left) and after (right) atomic coordinates relaxation.

the atomic relaxation in this system, we relaxed the structure with relativis-

tic pseudopotentials starting from the atomic coordinates relaxed with the

scalar relativistic pseudopotentials. In chapter 2 it was shown that a per-

turbative treatment of spin-orbit interaction gives a contribution of second

order in the fine structure constant to the total energy. Being defined as

the derivatives of the total energy with respect to the ions coordinates, the

forces acting on the atoms are also second order in the fine structure con-

stant. Therefore the displacement of the atomic coordinates by relaxation

performed by relativistic pseudopotentials is expected to be very small. In-

deed the average displacement of the atomic coordinates is of the order of

0.003 a.u. per atom, and we did not observe any change neither in the MAE,

nor in the easy axis direction.

A symmetric geometry of the wires in the supercell slab has been consid-

ered so that the Co atoms of the wire on the top of the surface and the ones

in the symmetric portion of the opposite side of the slab (see Fig. 3.11) have

opposite magnetic moment in all the calculations. No differences in the mag-
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netic properties were observed by performing the same calculations with only

one Co wire per unit cell (without mirror symmetry along the z axis).The

spin magnetization induced on the Pt atoms by the Co wires decreases very

rapidly to zero with the distance from the Co atoms as described in Fig. 3.10.

Computational details

Figure 3.11: Co nanowires on a Pt (331) surface.

The vicinal surfaces are modeled as periodic arrays of step edges separated

by terraces. For example, a (x,x,x-2) surface consists of terraces with a width

of x full atomic rows and terminated by steps where the step-edge atoms and

the surface atoms of the lower terrace form a (111) facet. The calculations

were performed for a (331) surface employing the supercell displayed in Fig.

3.11. The cutoffs used for the charge and for the wavefunctions are 30 Ry,

and 300 Ry respectively. All the calculations have been performed by using

a k-point mesh (5,15,1) and a Methfessel-Paxton smearing of 0.0075 Ry to

compute the occupations of the states. These parameters provide an absolute

convergency in the total energy of 0.068 meV per supercell.
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3.4 0D: Adatoms

3.4.1 Experimental facts

The magnetic properties of a Co adatom deposited over a Pt(111) surface

have been experimentally measured [1]. Isolated adatoms can be obtained by

depositing minute amounts of Co (less than 0.030 monolayers (ML); 1ML =

1.5×1015atoms/cm2) at temperature T = 5.5 K, low enough to inhibit surface

diffusion. The adatom has a spin magnetic moment of 2.1 µB. The XMCD

measurements performed on this system under the action of a magnetic field

show that the easy magnetization axis is directed orthogonally to the Pt-

surface with a MAE of 9 ± 1 meV. This system is metastable, and must

be maintained at a very low temperature to prevent the clustering of Co.

Nevertheless it is also the simplest example of 0D surface supported system.

0D systems are studied also because of their possible implications in magnetic

storage devices, and a study on this simple structure could provide useful

informations also for technological applications.

3.4.2 Theoretical results

Among the structures studied in this chapter, this is the one with the largest

MAE. The fact that it is also the structure with largest Co spin magnetic

moment is probably one of the reasons of this high MAE. The spin magnetic

moment calculated for the Pt(111) supported Co adatom is 2.18 µB for the

unrelaxed structure and 2.03 µB for the relaxed one. The difference with the

experimental value is small in both cases (less than 0.08 µB). The relaxation

induces a reduction of 8 % of the Co spin magnetic moment and of 17 %

of the Co bouds with its nearest neighbors (see Fig. 3.12). Concerning the

Co spin magnetic moment, the value predicted by the force theorem [85]

for the unrelaxed structure, with the same LDA functional, is in agreement

with our results within 0.02 µB, as reported in Table 3.5. Similarly to the

nanowire case, the Co adatom induces a partial magnetization of the Pt

surface. Its nearest Pt neighbors have a spin magnetic moment of 0.20 µB.

The magnetization then, rapidly decreases so that the other Pt atoms have

a spin magnetic moment smaller then 0.06 µB.
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unrelaxed relaxed

Figure 3.12: Magnetic moments of Co adatom on a Pt (111) surface before (left)

and after (right) atomic coordinates relaxation.

Table 3.5: Magnetic moment per Co atom and magnetic anisotropy energy.

unrelaxed relaxed

exp [1] Ref. [85] LDA(PZ) LDA(PZ)

µ(Co) [µB] 2.1 2.21 2.18 2.03

MAE [meV] 9.0 5.9 9.2 4.8

The easy magnetization axis direction is correctly predicted to be per-

pendicular to the surface both by our calculations and by the calculations

performed in Ref. [85] with the force theorem. For the unrelaxed structure

we predict a MAE of 9.2 meV very close to the experimental value. We

notice that in this system, where the anisotropic effects are sensitively larger

than in the previously studied structures, the MAE value obtained by the

force theorem is 5.9 meV (3.1 meV less than our value). The atomic relax-

ation induces a MAE underestimation of 4.2 meV. Similarly to the case of
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the supported Co wire, this result is unexpected and could depend on sev-

eral factors, like for example a not enough accurate desciption of the atomic

forces because of the exchange-correlation functional used, or the fact that

our calculations do not consider the temperature effects.

The occupations of the valence orbitals of the Co atom are displayed in

Table 3.6. The total charge is 8.56 electrons (0.44 electrons less than in

the isolated atom configuration). Part of the charge is transferred to the Pt

surface. The charge distribution on the Co atomic orbitals is similar to the

one of the flat Pt (111) surface supported Co wire reported in Table 3.4.

Therefore the charge rearrangement of the 4s and 3p orbitals is mostly a

consequence of the interaction with the substrate, and only partially of the

interaction between the Co atoms in the nanowire case. Also in this case the

most important contribution to the magnetization of the system comes from

the the 3d orbitals. Compared to the isolated atom configuration, part of the

charge of 4s and 3p orbitals is transferred to 3d orbitals, and this induces a

decrease of the spin magnetization from 3 µB of the free Co atom to 2.1 µB

of the supported Co adatom.

Table 3.6: Calculated occupations of the valence orbitals of the Co adatom on

the Pt(111) surface. In the isolated Co the valence charge is 9 = 4s24p03d7. This

calculation was performed using a scalar relativistic pseudopotential.

LDA

tot charge 4S 4P 3D

8.5634 0.5040 0.5088 7.5506

spin up 5.4051 0.2690 0.2790 4.8571

spin down 3.1583 0.2350 0.2298 2.6935

polarization 2.2469 0.0340 0.0492 2.1636

The periodic cell has been chosen in such a way that the distance be-

tween the adatom and its nearest periodic images is 8.31 Å. The calculations

have been performed using a k-point mesh (5,5,1) and a Methfessel-Paxton

smearing of 0.0075 Ry. The total energy per unit cell is converged under 0.07

meV.
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Conclusions

With the Pt-supported Co adatom we finalize our discussion on Co based

low dimensional systems and we can draw some general conclusions regarding

all the structures considered in this chapter. For the majority of the systems

studied, our results are in agreement with the one obtained by the force theo-

rem, with the only exception of the the Co adatom, where, for the unrelaxed

structure we predict a MAE 3.3 meV larger than the one calculated with the

force theorem. One possible explanation is that the spin-orbit effects on the

charge and magnetization density distribution are more relevant in systems

with larger MAE, and therefore play a major role in the determination of

the MAE. But there is no evidence of that, and it would be worth to further

investigate on the reason of this mismatch.

A general conclusion is that the relaxation of the atoms induces a relevant

reduction of the spin magnetic moments. The MAE is also sensitive to the

atomic relaxation and in some cases, like the Pt(111) supported Co wire, it

can induce an easy magnetization axis rotation of 90◦. This extreme sensitiv-

ity of the magnetic properties on the atomic positions represents an obstacle

for theoretical calculations, since a great accuracy on the determination of

the atomic positions is required to correctly calculate the MAE. Further-

more, most of theoretical calculations are performed at zero temperature,

and the atomic displacements due to thermal oscillations could affect the

MAE value. In some structures the MAE calculated without relaxation are

in better agreement with the experimental results. In the case of the adatom,

for example, the theoretical value of the MAE calculated for the unrelaxed

structure is in perfect agreement with the experiments while the same calcu-

lation performed for the relaxed structure gives an under-estimation of the

MAE of 4 meV. It would be interesting in future theoretical works to verify if

the use of exchange and correlation functionals different from the ones used

in this work can improve the description of the relaxation of the atoms and

therefore the calculation of the MAE. An other interesting point could be to

include the effect of the temperature in the prediction of the relaxed coor-

dinates by phonon calculations or to use directly the coordinates measured

experimentally to perform MAE calculations. On the other hand, however,

this sensitivity open the way to the possibility to change the easy magnetiza-
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tion axis of a material by sligth modifications of structural geometries, with

possible applications in technology.

In all the structures studied, the spin magnetic moments have always been

predicted, but no orbital moments have been calculated. The orbital moment

is a quantity that can be experimentally measured, and a comparison with

theoretical values could give interesting informations also on the anisotropy

of a system. The calculation of orbital moments, and their effect on the MAE

should be done in future works.





Chapter 4

Molecular nanomagnets

In this chapter I will analyze a class of single molecular magnets, the Tb-Bis-

Phthalocyaninato molecules. I will start by studying the unsupported TbPc2

both in its neutral [TbPc2]
0 and charged forms [TbPc2]

−. The second part of

the chapter deals with the interaction of the neutral molecule with a support-

ing Cu(111) surface.

The properties of the magnetic nanostructures studied in chapter 3 are

interesting both for scientific and technological aspects. Examples of tech-

nological applications of nanomagnets are in quantum computing [4] and

information storage media [3], and rely on the capability to address each

individual molecular magnet in a two-dimensional array. One of the major

scientific and technological challenges is therefore the formation of a highly-

regular arrangement of nanomagnets. For this purpose Co adatoms are an

example of 0D systems that, even if they have a high MAE, would not form

a stable array since they would form clusters degrading the magnetic proper-

ties. Therefore the possible applications are limited by kinetic effects. This

can be prevented by limiting the Co diffusion over the surface, for exam-

ple by lowering the temperature. In addition low temperatures are required

since the typical blocking temperature of nanomagnets is of few K. with ev-

ident technological limitations, that are crucial for applications in which the

temperature can not be lowered under a given threshold. A more efficient

strategy consists in employing particular nanomagnets consisting of a mag-

63
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Fe8 complex (TB = 2 K) Mn12 complex (TB = 3 K)

Fe12 complex (TB = 3 K) Tb Double Decker (TB = 20 K)

Figure 4.1: Some popular nanomagnets with their Blocking temperatures re-

ported.

netic center and organic ligands that enable to separate the magnetic cen-

ters, thus preventing their clustering, and minimizing their mutual magnetic

interaction. Among the molecular nanomagnets, the Bis-Phthalocyaninato

molecules based on lanthanides have been identified as the ones with the

highest blocking temperature [86], even higher than the one of other pop-

ular nanomagnets, like Mn12 [9] and Fe8 [87] complexes having a TB ≈
3-4 K (see Fig. 4.1). In this class of molecules, the one which presents the

highest temperature is the Bis-Phthalocyaninato-Terbium single molecular

magnet (TbPc2, also called Tb-double-decker), with a TB of ≈ 20 K [86].

We studied this system in close collaboration with an experimental group at

the Max Plank Institut-für Festkörperforshung of Stuttgart, (L. Vitali, and
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K. Kern).

4.1 TbPc2: a single magnetization center nano-

magnet

Figure 4.2: Molecular structure of a metal Pc.

Bis-Phthalocyaninato molecules are formed by two coplanar Phthalocya-

nines (Pc) rotated by 45◦ with respect to one another and a transition metal

or a rare earth ion between them (in this case a Tb atom). In the pure

form of phthalocyanines, two of the four nitrogen atoms of the internal ring

of the molecule are saturated by two hydrogen atoms. However, in most of

the applications, the phthalocyanines are rarely in this pure form, but are

bound to other chemical compounds (see fig. 4.2). In many cases these com-

pounds are metal ions which can easily donate to the Pc molecule the two

electrons needed to saturate the molecule. The metal ion can be bound to

other phthalocyanines forming double or triple deckers and many other kinds

of structure. In the case studied in this work two Pc molecules are bound

together through a Tb ion forming a double-decker. Overall the ligand sys-

tem, formed by the pair of Pc molecules, needs therefore four electrons to

be saturated. But the Tb atom alone cannot completely saturate the ligand

system since this would require the formation of a Tb4+ ionic species that is

not stable. Only the Tb3+ is stable. As a result the TbPc2 molecule is ei-

ther neutral [TbPc2]
0, and therefore unsaturated, or charged [TbPc2]

− [88],

saturated by an extra-electron.



66 Molecular nanomagnets

Figure 4.3: STM images provided by Lucia Vitali of Max-Planck-Institut für

Festkörperforshung (Stuttgart, Germany). The images were taken in a completely

isolated chamber at 10 K (below the double-deckers blocking temperature).

The experimental study has been performed by depositing [TbPc2]
0 molecules

on a metallic Cu (111) surface. This operation can not be accomplished by

the traditional evaporation techniques, since the structure of the molecule

would be damaged during this process. The deposition has been therefore

carried out by an innovative technique called nanoimprinting. The most re-

cent STM image in Fig. 4.3 taken at 10 K demonstrates that the plane of

the molecules lays parallel to a Cu (111) surface. This was not clear when the

present calculations were performed and a vertical absorption geometry was

suggested, but it would be important to understand whether the supporting

metallic surface modifies the properties of the molecular magnet. We per-

formed a first analysis where we studied properties of the isolated molecule.

In a second step we considered the interaction of the TbPc2 molecule with

the Cu (111) surface.

I anticipate that the magnetic properties of TbPc2 are not always de-

termined by the metallic center only. In the [TbPc2]
− the ligand system is

completely saturated and does not contribute to the magnetization of the

molecule, while in the neutral double-decker the ligand system forms a sec-

ond spin system whose magnetization density is delocalized over the two

Pc molecules. I will start by describing the properties of the charged and

saturated unsupported nanomagnet.
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4.1.1 The unsupported [TbPc2]
− charged nanomagnet

Figure 4.4: Electron energy spectrum of the [TbPc2]
− molecule. In green the

eigenvalues associated to the Tb atom 4f orbitals. In red all the other molecular

orbitals.

In the [TbPc2]
− nanomagnet, the ligands are saturated and the magnetic

properties are controlled by the Tb center. The Tb ion has a formal 3+ ionic

charge: with respect to the atomic 6s2 4f 9 valence electron configuration,

three electrons are transferred to the Pc ligands, and the remaining 8 Tb

valence electrons are localized on the 4f orbitals, which are highly confined

near the nucleus. This is clear by analyzing the [TbPc2]
− spin resolved den-

sity of electronic states (DOS) corresponding to the self-consistent electronic

solution displayed in Fig. 4.4. Energies are referred to the Fermi level (black

vertical line) located in the middle between the highest occupied and the low-

est unoccupied levels. The spectrum shows that the eigenvalues associated to

the molecular orbitals of the ligand system form a gap of ≈1 eV around the

Fermi energy. The minority Tb 4f states, displayed in green in Fig. 4.4, lay

in this gap. The Löwdin charge population analysis shows that there are 8.01

and 0.38 electrons in the Tb 4f and 6s channels, respectively. The ligand

system is therefore completely saturated and the metal center is a Tb3+ ion.

The splitting of 4.5 eV between the spin up and spin down levels is very close

to the value of 4.62 eV calculated for an isolated Tb3+ ion ([Xe] 4f 8 electronic

configuration) obtained with both pseudopotential and all-electron methods

(see Table 4.1). The electronic structure of the Pc-complexated Tb ion is

therefore very close to the one of a free Tb3+ ion. The magnetic properties
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of the molecule reside in the Tb3+ ion only, characterized by the quantum

numbers S=3, L=3, and J=6. As a consequence, the molecule has total spin

magnetization 6 µB.

Table 4.1: Energy gap between Tb atom 4f↑ and 4f↓ in different chemical envi-

ronments. AE = all electron calculation. PS = pseudopotential calculation.

Tb+3 environment ∆E [eV]

Isolated Tb+3 (AE) 4.69

Isolated Tb+3 (PS) 4.62

Tb ion in [TbPc2]
− ≈ 4.5

Tb ion in [TbPc2]
0 ≈ 4.5

Isolated Tb0 (AE) 3.57

4.1.2 The neutral [TbPc2]
0 molecule
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Figure 4.5: Electron energy spectrum of the [TbPc2]
0 molecule (black line). Red

solid areas indicate the eigenvalues associated to the Tb atom 4f orbitals. Blue

solid areas indicate the eigenvalues of the two molecular orbitals responsible for

the magnetization of the ligands spin system.

The magnetic properties of the [TbPc2]
0 molecule are determined by two

independent spin systems, one strongly localized on the metallic center (Tb
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ion), the other delocalized over the two Pc ligands. The former is due to the

Tb3+ 4f electrons exactly like in the charged nanomagnet described above,

and, in the free-ion limit, would be characterized by the quantum numbers

S=3, L=3, and J=6. The latter is due to an unpaired electron (solid blue

area in Fig. 4.5) occupying one of the molecular orbitals delocalized over the

two Pc ligands and, in the limit of a free unsaturated [Pc2]
3− dimer would

be characterized by the quantum number S=1/2. Our calculation predict

that these two spin systems are very weakly coupled since two self consistent

electronic solutions are identified for the [TbPc2]
0 molecule, differing in the

parallel or anti-parallel configuration of the spins localized on the Tb ion

and delocalized over the Pc ligands. The energy difference between the two

solutions is below 10−5 eV. 1 The calculated magnetizations of the [TbPc2]
0

molecule in the two ground states are µs = 7µB and µs = 5µB, with the

corresponding Sz being 7/2 and 5/2. The difference between the two con-

figurations is given by the polarization of the unpaired electron delocalized

over the Pc2 dimer, as shown by the DOS of Fig. 4.5. Consequently, the

the ligand spin up states for the Sz = 7/2 solution become spin down in the

Sz = 5/2 solution, with the same one particle energies. On the contrary,

energy and polarization of the Tb-4f states (red areas in Fig. 4.5) in the

two electronic states is the same. As a result, molecular spin magnetization

differs only in the ligands region but not near the Tb center, as can be seen

in Fig. 4.6 where the spin polarized charge density distribution is displayed.

In some cases, only the anti-parallel configuration of the two spin-systems

has been observed [89]. This fact could indicate the presence of an antifer-

romagnetic interaction between them, while our calculations predict that the

two spin-systems do not interact magnetically with each other. More recent

experiments however carried out on other rare-earth double-decker systems

1The present DFT calculations describe collinear magnetism and, between the 2S+1

degenerate states allowed for a given S, have access only to the solutions which can be

represented by a singular Slater determinant. The accessible solutions have well defined

values of Sz and of spin magnetization µs, but only the state with maximum Sz is a pure

S state, the others being affected by spin contamination. Therefore we will identify the

different molecular spin states by Sz and µs.
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anti-parallel parallel

Figure 4.6: [TbPc2]
0: Spin polarized charge density distribution (red for spin up

and blue for spin down) reported for anti-parallel (left) and for parallel configura-

tions.

[90] indicate that the magnetic interaction between the two spin-systems de-

pends on the chemical environment of the molecule [90]. Actually when the

distance between the TbPc2 molecules is larger than 20 Å [90], the two

spin-systems are independent the one from the other, in agreement with our

calculations.

The charge of the LUMO state, responsible for the magnetization of the

ligand system, is delocalized on both the ligands (see Fig. 4.7). This is in

agreement with the most recent experimental observations [90]. We however

remark that it was previously proposed that the charge would be distributed

over only one of the two Pc ligands [89]. For this reason we deliberately

broke the symmetry of the molecule along the axis perpendicular to the Tb-

DD by applying a step-line external potential (see Fig. 4.8), which would

destabilize the symmetric solution therefore allowing the unpaired electron

to localize on one ligand only. Starting from this asymmetric electron solu-

tion and setting the potential to zero, the symmetric ground state described

above was recovered. This reinforces our conclusion that the charge-density

corresponding to the LUMO is distributed on both the ligands.

The charge distribution associated with the 4f Tb unoccupied orbitals

is instead localized in the center of the molecule while the one of the first
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Figure 4.7: Theoretical charge-densities of the LUMO state, the 4f unoccupied

states, and the first excited molecular states. The charge density is integrated over

the energy scale in the region inside the black circles in the energy spectra on the

right.

unoccupied molecular orbital (Fig. 4.7) is delocalized over the Pc ligands,

mostly on the Nitrogen and Carbon atoms of the internal part of the ph-

thalocyanines. In Fig. 4.9 a simulated STM image calculated for a bias

potential of 1.2 eV is compared with the experimental one taken for a bias

of 1.5 eV. The theoretical simulation allows to identify the four pairs of lobs

visible in the experimental image as the ones due to the outermost C atoms

of the external aromatic rings of the upper ligand.
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Figure 4.8: External step-potential applied to the Tb-DD molecule.

Figure 4.9: Theoretical STM simulated image calculated for a bias potential of

1.2 eV corresponding to the energy of the first excited molecular orbital (center),

compared with the experimental STM image with bias potential of 1.5 eV (right).

The magnetic properties were calculated by using scalar relativistic pseu-

dopotentials. The next step would be to estimate the MAE by applying the

relativistic pseudopotential method to this nanomagnet. This calculation is

complex not only because of the size of the system, but also because of the

difficulty in describing lanthanides atoms with pseudopotentials. The work

is therefore still in progress.

4.2 [TbPc2]
0 on the Cu(111) surface

All the calculations displayed above are carried out for an isolated nanomag-

net, and the interaction with the supporting surface is not considered.
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In this paragraph I will analyze the role of the Cu(111) surface and its

possible interaction with the molecule. A charge transfer from the surface

to the double-decker could drastically modify the magnetic properties of the

nanomagnet and could lead the double decker to the charged variant. There-

fore, we first investigated the likelihood for a charge transfer from the metal

to the molecule. This can be estimated by comparing the electron affinity of

the molecule with the work function of the surface.

The electron affinity of the double-decker was calculated as the difference

between the total energies of the neutral and the charged double-decker and

resulted to be 3.2 eV. The effect of the electric dipole-dipole interaction be-

tween the supercells for the [TbPc2]
− was included by using the Makov-Payne

method [91]. The work function was calculated as the difference between

the potential energy and the Fermi energy. Both our theoretical value (4.5

eV) and the experimental value (4.94 eV) [92] of the Cu(111) surface are

sensitively larger than the calculated TbPc2 electron affinity. Therefore the

energy necessary to extract one electron from the surface is not compensated

by the energy gained by charging the double-decker. This purely thermody-

namic argument let us conclude that the neutral molecule deposited on the

surface will not get charged.

Figure 4.10: Charge transfer from the surface to the molecule. In blue, the

electron charge accumulation; in red, the electron charge depletation.

To verify that the electronic properties of the [TbPc2]
0 are not perturbed
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by the presence of the Cu(111) surface one should perform a calculation with

the molecule absorbed on the surface. But this calculation is technically

very difficult since the description of the correct electronic structure of the

molecule requires a very small value of the smearing parameter (< 0.001 Ry)

which is incompatible with a correct description of the metal with a realistic

k-point sampling. We have then proceeded with two different approaches

representing the extreme cases of a molecule deposited on the metal surface

(treating correctly the metal surface, but smearing out the fine details of the

electronic structure of the molecule), and the case of a Cu cluster attached

to the DD molecule (treating correctly both systems, but being far from the

experimentally measured case). Preliminary STM images suggested an ab-

sorption geometry in which the double-decker would be oriented orthogonal

to the metal surface. The present calculations have therefore be performed

according to this initial experimental evidence (see Fig.4.10). The most re-

cent STM data however point to a different absorption geometry in which

the molecule is coplanar with the surface. Our previous analysis to evaluate

the possibility of a charge transfer from the substrate to the double-decker

is based on the calculation of the electron affinity of the molecule, and the

work function of the surface, and does not depends on the orientation of the

molecule. On the contrary the analysis of the perturbation of the electronic

properties of the [TbPc2]
0 could depend on the orientation of the double-

decker, since when the molecule is flat on the surface, the π states can be

involved in the molecule-surface interaction. We plan therefore in the future

to perform a theoretical simulation also for the case in which the double-

decker and the Cu(111) surface are coplanar.

As stated above, our analysis is carried out on a model-system which

does not reproduce exactly the experimental conditions. At this stage our

goal is to give a qualitative prediction of the charge transfer. In particular

we deliberately decrease the distance between the molecule and the surface

so that to facilitate any charge transfer. If this procedure does not results

in a sizable charge transfer to the molecule, we can safely conclude that the

double-decker remains neutral upon absorption of a Co metal surface. To this

end, the distance between the molecule and the surface has been reduced to

1.06 Å . I remark that on the basis of other calculations we estimated that
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a) ρDD+Cu(111)(z), ρDD(z), ρCu(111)(z)
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Figure 4.11: Charge densities projected along the z axis. All the quantities

are in a.u..

the equilibrium distance between the [TbPc2]
0 and the surface is larger than

2.0 Å.

Even with these conditions favoring the charge transfer, the charge analy-
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sis for the first approach shows that charge displacement is very small. The z-

projection of the charge densities ρDD+Cu(111)(z), ρDD(z), and ρCu(111)(z) are

displayed in Fig. 4.11 (a). The charge transfer, defined as ρDD+Cu(111)(z) −
ρDD(z)−ρCu(111)(z) and displayed in Fig. 4.11 (b) shows that only the atoms

located in an area of ≈ 4 Å around the interface are involved in the charge

transfer. The integrated charge difference (Fig. 4.11 (c)), shows that less

than 0.3 electrons are transferred from the molecule to the surface. This is

further clarified by the 3D plot of the charge difference displayed in Fig. 4.10

(isovalue 0.005).

The charge transfer has also been estimated with the Löwdin charge pop-

ulation analysis. The result is consistent with the previous discussion, since

overall 0.4 electrons are transfered from the molecule to the surface, involving

only the interfacials C, H, and Cu atoms.
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Figure 4.12: DOS of the double-decker in contact with the Cu cluster, and energy

spectrum of the isolated double-decker (right).

The same behavior has been observed using the second approach, where

the double-decker was put in contact with a cluster of Cu atoms in the same

local interfacing geometry described previously. In both calculations, the

molecule has a spin magnetization of 6 µB. The density of states displayed

in figure 4.12 shows that the presence of a metal cluster close to the DD

molecule does not modify the electronic structure of the molecule. Also in this

case, the calculated charge transfer estimated by Löwdin charge population

analysis is of 0.4 electrons. The electronic structure of the isolated DD is not

perturbed by the presence of the Cu atoms (see Fig. 4.12). All in all, the
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electronic structure of the molecule adsorbed on the Cu(111) surface should

not be very different from the one of the isolated molecule, and therefore the

TbPc2 behaves as a single molecular magnet. This result has to be confirmed

by a calculation performed with the molecule in a flat position over the Cu

surface.

4.3 Computational details

The DFT calculations were based on the PBE generalized gradient-corrected

[19] approximation for the exchange and correlation functional. The ions were

represented by ultrasoft pseudopotentials, while the molecular wavefunction

and the Fourier representation of charge-density were described with a plane-

wave basis set limited by kinetic cutoffs of 40 and 400 Ry, respectively. The

calculations were spin polarized.

We used ultrasoft pseudopotentials [14] to simulate the physical proper-

ties of the atoms of TbPc2. This was necessary especially to describe the 4f

Tb atom orbitals with a reasonable number of plane-waves. The isolated Tb

atom has a Xenon-core, 2 electrons occupying the 6s orbitals and 9 occupy-

ing the 4f ones. The 6s radial charge-density has its maximum at a large

distance from the nucleus. On the contrary the charge-density of 4f orbitals

has its maximum very close to the nucleus (0.56 a.u.). Therefore a norm-

conserving description of these orbitals would require a too large amount of

plane waves. Actually, as stated above, our calculations (in agreement with

the experimental observations) demonstrate that Tb gives to the ligands 3

electrons: 2 from the 6s orbitals and one from the 4f ones. Given the ex-

treme localization of the 4f orbitals, their ionization can perturb sensitively

the 5p and 5s eigenstates. This is why 5p and 5s channels were treated

as semi-cores. The Tb pseudopotential was tested on the TbAu dimer and

on the TbF3 [93, 94] molecular crystal. With respect to the experimental

value [95] the calculated TbAu bonding distance is over-estimated by 4%.

The TbF3 molecular crystal is particularly relevant, since the Terbium atom

is in a chemical environment very similar to the one present in the TbPc2.

It is 8 fold coordinated with 8 fluorine atoms, and has therefore charge +3.

Compared to the experimental measurements [96] the lattice constant is over-
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estimated by 2%. The computed spin magnetization is of 24 µB per cell, in

excellent agreement with the experiments [96].

unrelaxed relaxed

Figure 4.13: Equilibrium structure of the [TbPc2]
0.

The isolated gas-phase TbPc2 molecule was modeled with a tetragonal

supercell with dimensions of 20.10 Å in the Pc molecule plane and of 14.08

Å along the axis perpendicular to the molecular plane. The experimental

coordinates obtained from x-ray diffraction of the TbPc2 molecular crystal

[97] were fully relaxed according to the Hellmann-Feynman forces until the

total energy was converged to less than 0.0003 eV (as shown in Fig. 4.13).

The relaxation induces a slight modification of the bonding lengths (within

2%), but it induces a bending of the ligands, so that the external parts of the

phthalocyanines tend to increase their mutual distance. This is clear from

Fig. 4.13, and from Table 4.2 where the distances projected along the axis

perpendicular to the molecule of the outermost C atoms of different ligands

is reported, as well as the same distance of the internal N atoms. In the

relaxed configuration, the Tb-N bond lengths are between 2.44 Å and 2.46

Å (see Table 4.2), the z-projected distance between the inner N atoms and

the outer C atoms belonging to different Pc molecules were 2.88 Å and 5.02

Å , respectively.

The operation was repeated for the charged TbPc2
− molecule and the

inter-atomic distances are reported in Table 4.2.
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Table 4.2: N-Tb distances (Å) for the neutral and charged DD molecule, and

projected average distances between the N atoms and the outermost C atoms of

different ligands.

TbPc2 [TbPc2]
−

d N-Tb 2.465 2.490

d N-Tb 2.464 2.494

d N-Tb 2.444 2.477

d N-Tb 2.455 2.501

d N-Tb 2.455 2.486

d N-Tb 2.452 2.494

d N-Tb 2.460 2.483

d N-Tb 2.448 2.495

average N-Tb 2.455 2.490

average dz N-N 2.875 3.175

average dz C-C 5.021 4.176





Conclusions

We have implemented a new method to include relativistic effects in the

plane-wave ultrasoft pseudopotential scheme [98]. This allows for a combined

optimization of the geometric and magnetic structures of complex systems,

with an accuracy that had not been possible before. This method has been

tested with the calculation of spin-orbit effects on the band structure of

some simple noble metals. Spin-orbit effects are responsible for anisotropy

energies in magnetic and play a crucial role in the stabilization of magnetism

in nano-sized systems.

Our method has been applied to the study of the magnetic properties of

Co-based 2D, 1D, and 0D structures (overlayers, wires, and adatoms sup-

ported onto a non-magnetic substrate). Our main findings are that magnetic

effects, particularly the magnetic anistropy energy (MAE), are larger the

smaller the dimensionality of the system, and that they are very sensitive

to the local atomic environment of magnetic centers. In the case of a Co

nanowire supported on Pt(111), for example, atomic relaxation towards the

energy minimum induces a rotation of 90◦ of the easy magnetization axis. If

this sensitivity certainly limits the predictive power of available theoretical

and simulation methods, it also opens the way to tayloring the properties

of nanomagnets by varying external parameters, such as e.g. the temper-

ature, or by engineering the local environment of magnetic centers. The

dependence of the magnetic properties on the dimensionality suggests that

0D magnets are ideally suited to enhance the properties of magnetic devices.

The formation of highly regular arrangements of single molecular magnets

is to date a major scientific and technological challenge. For this purpose

magnetic adatoms deposited on a supporting surface would present practical

limitations since they tend to form clusters degrading the magnetic proper-

81
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ties. This can be prevented by limiting the diffusion of adatoms over the

surface, for example by lowering the temperature, with evident technological

disadvantages. A promising alternative would consist in employing organic

ligands to the magnetic centers apart, thus preventing their clustering. Lan-

thanide phtalocyanites are ideal candidate molecules for this purpose. In

fact we have started a collaboration with the experimental group of K. Kern

and L. Vitali at the Max Plank Institut-für Festkörperforshung in Stuttgart

to study the properties of terbium phtalocyanite molecules (TbPc2, which

consists of a single magnetic Tb center coordinated by two phthalocyanine

molecules) deposited on a Cu (111) surface.

The theoretical prediction of the absorption geometry is very difficult

in this case because of the size and complexity of the system. As a first

step we considered the case of an unsupported TbPc2 molecule in both its

charged [TbPc2]
− and neutral [TbPc2]

0 forms. Following an early suggestion

from the experimentalists we then continued our calculations assuming that

the molecules are bound perpendicularly to the supporting surface. These

calculations showed the interplay between the electronic and the magnetic

properties, and indicated that the magnetic properties of this molecule are

due to a magnetic moment strongly localized on the Tb+3 atom, plus another,

very weakly interacting, contribution delocalized over the two ligands. Later

experimental evidence seems to suggest that, contrary to what was originally

assumed, the molecules lay flat on the metal support. Some preliminary

calculations seem to indicate that the magnetic properties of the molecules

should be little affected by the interaction with the metal substrate, even

in this ‘flat’ adsorption geometry. We have not been able yet to produce

a reliable relativistic pseudopotential for Tb. For this reason, the study

of spin-orbit effects and of the magnetic anisotropy induced by them will

be the subject of future work. Another important methodological advance

which will be needed to better characterize the magnetic properties of nano-

structured magnetic systems and molecular nanomagnets is the ability to

calculate and analyze the orbital contribution to the magnetization. Work

along these lines is in progress.



Appendix: Coefficients for

relativistic ultrasoft

pseudopotentials

This appendix contains the explicit formulation of the U matrix elements and

of the Clebsh-Gordan coefficients introduced in the second chapter, and that

are necessary for relativistic ultrasoft pseudopotentials scheme.

The U matrix elements can be calculated from the definition of the real

form of the spherical harmonics for each m 6= 0:

Yl,|m|(Ω)cos =
1√
2
(Yl,|m|(Ω) + (−1)|m|(Yl,−|m|(Ω)), (1)

Yl,|m|(Ω)sin =
−i√

2
(Yl,|m|(Ω) − (−1)|m|(Yl,−|m|(Ω)). (2)

For m = 0, Yl,0(Ω)cos = Yl,0 while Yl,0(Ω)sin is not defined. Defining for

m ≥ 0, Y ′
l,m(Ω) = Yl,|m|(Ω)cos and, for m < 0, Y ′

l,m(Ω) = Yl,|m|(Ω)sin, the

unitary matrix U l
m,m′ reads:
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For j = l+1/2, where m = mj−1/2, we define a σ dependent (2j+1)×(2l+1)

matrix Uσ,l,j
mj ,m′ as follows:

U↑,l,j
mj ,m′ = U l

m,m′

U↓,l,j
mj ,m′ = U l

m+1,m′ (4)

We take U↑,l,j
mj ,m′ = 0 when m < −l, and U ↓,l,j

mj ,m′ = 0 when m + 1 > l. For

j = l − 1/2, where m = mj + 1/2, we take

U↑,l,j
mj ,m′ =U l

m−1,m′

U↓,l,j
mj ,m′ =U l

m,m′ (5)

Moreover, we call the Clebsch-Gordan coefficients ασ,l,j
mj

: for j = l + 1/2,

α↑,l,j
mj

=

(

l +m+ 1

2l + 1

)1/2

(6)

and

α↓,l,j
mj

=

(

l −m

2l + 1

)1/2

, (7)

where m = mj − 1/2. For j = l − 1/2,

α↑,l,j
mj

=

(

l −m + 1

2l + 1

)1/2

(8)

and

α↓,l,j
mj

= −
(

l +m

2l + 1

)1/2

, (9)
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[63] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

[64] M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).

[65] G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev.

B 41, 11919 (1990).

[66] S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).

[67] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

[68] S. Bei der Kellen and A. J. Freeman, Phys. Rev. B 54, 11187 (1996).

[69] A. Khein, D. J. Singh, and C. J. Umrigar, Phys. Rev. B 51, 4105 (1995).

[70] R. W. G. Wyckoff, Crystal structures, Vol. 1, published by Wiley, New

York (2nd ed.) 1 (1963).



BIBLIOGRAPHY 89

[71] L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).

[72] S. H. Vosko et al., Can. J. Phys. 58, 1200 (1980).

[73] M. Weinert, R. E. Watson, and J. W. Davenport, Phys. Rev. B 32, 2115

(1985).

[74] S. Baud, C. Ramseyer, G. Bihlmayer, and S. Blügel, Phys. Rev B 73,
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