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Chapter 1

Introduction

The recent areas of interest in differentiable dynamical systems include the following
two subjects:

(1) non-uniformly hyperbolic dynamical systems; and

(2) complex dynamical systems.

In this thesis, we will mainly concentrate on the non-uniformly hyperbolic
complex dynamics related to the above two subjects. We will study the Pesin
stable manifolds of holomorphic diffeomorphisms on complex manifolds and the
generalized complex Hénon mappings of C? from the dynamical point of view. We
begin to give a brief review of the Pesin stable manifold theory in Section 1.1,
1-dimensional complex dynamical systems in Section 1.2, 2-dimensional complex
dynamical systems in Section 1.3, and then give an outline of this thesis in Section

1.4.
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For the convenience, we first recall some basic definitions and notations which
will be used in the context.

The basic goal of the theory of dynamical systems is to understand the eventual
or asymptotic behavior of an iterate process. The set of periodic points and the
nonwandering point set are very important sets to such an iterate process. Let X
be a topological space, and f : X — X a continuous mapping. The forward orbit of
zo under f is defined as the set Orb*(z, f) :i={z € X : 2 = f*(2o),n =0,1,2,--},
where fY := identity mapping, f' := f and f" is the n-th iterate of f. If f is a
diffeomorphism, we define the backward orbit of ¢y, under f as the forward orbit of
zo under f~! and denote it by Orb~(z¢, f). A fized point of f is a point z such
that f(z) = z; a periodic point is a fixed point for an iterate of f; that is, there
exists a strictly positive integer n such that f*(z) = z. If © is a periodic point, the
positive integer m := min{n : f*(z) = z} is called the period of z. We denote by
P(f) the set of periodic points of f. The period set of f is the set of periods of all
periodic points of f. A point z of X is wandering if it has a neighborhood U such
that f*(U)NU = 0 for all positive integer k. A point z is nonwandering if the above
does not hold. We denote by Q(f) the set of nonwandering points of f.

Now we recall some definitions in differentiable dynamical systems. Let X := M
be a n-dimensional smooth Riemannian manifold, and f : M — M a diffeomor-
phism. The subset A C M is said to be f-invariant if f~'(A) = A. The tan-
gent mapping D f from the tangent bundle 7'M into itself is defined pointwisely as
Df; : T:M — Ty)M, and the mapping Df. is an isomorphism of the respective
linear spaces. A Riemannian metric on the manifold M defines an inner product
( and hence a norm) on each tangent space T, M. An f-invariant compact subset
A C M is said to be hyperbolic if for each point z € A there exists a pair of linear
subspaces E} and E¥ of the tangent space T, M, such that




(H1) T,M = E: @ EY, dim E? := s(z), dim E¥ := u(z), s(z) + u(z) = n, with
s(z) and u(z) depending continuously on z € A;

(H2) Df.(E;) = Ej,, and Df:(E;) = Ej);

(H3) there exist two constants ¢ > 0 and 0 < A < 1 such that

IDf2(s)ll < eA™{lus|| and  [|Df7"(wa)l| < eA” o

for v, € El,v, € E¥, and n > 0.

Note that the definition of hyperbolicity does not depend on the choice of Rie-
mannian metric of M.

If the whole manifold M is a hyperbolic set of f, then f is called an Anosov
diffeomorphism. If the nonwandering set (f) is a hyperbolic set of f, and the set
of periodic points P(f) is a dense subset of Q(f), then we say that f satisfies Aziom
A.

If zy is a fixed point of f, the set

Wi(zo, f) :={z € M : n]-'i»r-floo dist(f"(z),z0) = 0}
is called stable manifold of z¢, and the set
Wz, f) :={z € M : lim dist(f"(z),z0) =0}

is called unstable manifold of zo. Similarly, we can define stable manifold and
unstable manifold for periodic point and for compact f-invariant set.

Let zy, and yo be two fixed points of f, a point z is said to be a heteroclinic
point of Wy(zo, f) and Wy(yo, f) if € Wi(zo, f) N Wu(yo, f); a point z is said
to be a homoclinic point of zy if ¢ € Wy(zy, f) N Wyu(zo, f) — {zo}. We say that
two submanifolds M, and M, of M intersect transversally at the point z € M if
T.MeT, M =T.M.

Cr
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1.1 Pesin stable manifold theory

The earlier results on differentiable dynamical systems had been mostly geometric
and restricted to hyperbolic (Anosov, 1967) or Aziom-A systems (Smale, 1967). The
hyperbolic dynamical system theory stands today as a very solid and rather well
understood region of the large world of Dynamical Systems. The complement of the
hyperbolic systems in the world of dynamical systems, which was called the dark
realm of dynamics by Palis [Pa2], was much “bigger” than the dynamists thought
in the sixties. Palis gave an interesting pictorial view of how hyperbolicity stands

via its complement in the World of Dynamical Systems in the sixties and nineties:
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Pesin’s theory (Pesin, 1976-77) extended some of these geometric results in the
sixties to more interesting and complicated non-uniformly hyperbolic differentiable
dynamical systems (which contain uniformly hyperbolic ones as special cases), but
working now almost everywhere with respect to some ergodic measure.

Let M be a smooth compact Riemannian manifold, f a C?-diffeomorphism, and
@ an f-invariant probability measure. Pesin stable manifold theorem says that

for p-a.e. ¢ € M, the stable set

Wz, f)={ye M: H?—gp %log d(f*(y), f¥(z)) < 0}

is in fact an immersed Euclidean space.

Pesin theory is one of the most remarkable theories in the history of dynamics. It
has much to do with Lypunov exponent, Hausdorff dimension, entropy, ergodicity,
mixing, Smale horseshoe and chaotic phenomenon. It is a very interesting and
difficult subject, because it is heavily dependent on differential geometry, functional
analysis and ergodic theory.

The original contribution of Pesin ([P1], 1976 and [P2], 1977) has been extended
by many mathematicians, notably Katok ([Kal], 1980), Katok and Strelcyn ([KS],
1986), Ledrappier and Young ([LY], 1984), Mané ([Mé], 1983), Ruelle ([Rul},1979
and [Ru2], 1982) and Pugh and Shub ([PS], 1989). A clear treatment of the Pesin
stable manifold theory for diffeomorphisms on compact smooth Riemannian mani-

folds is given by Fathi-Herman-Yoccoz in [FHY].



1.2 1-dimensional complex dynamical systems

Recently there has been an increasing interest in complex dynamical systems. The
study of 1-dimensional complex dynamical systems, which originated in the 1920’s
with the work of two French mathematicians Fatou [Fa] and Julia [Ju], remained
undeveloped for almost fifty years. The important turning point is the observation
of Mandelbrot ([Ma] 1982) of the well known set which bears his name as well
as the very beautiful computer graphics images (cf. [PR] and [Ba]) that typically
accompany these dynamical systems. Let f : C — C be a rational mapping on the
Riemann sphere C. A decisive step made by Fatou and Julia is the decomposition of
the sphere into two invariant subsets: an open set on which the family of iteration
{f"} is a normal family in the sense of Montel, and a perfect set coinciding with
the closure of the set of repelling periodic points of f. The first set is called Fatou
set of f and denoted by F(f), the second one is called Julia set of f and denoted

by J(f)-

The Julia set of f has many nice properties. We list some of them as follows(see
[De] for the proofs):

I J(F) £ 0,

J2. J(f) = {2z € C: {f"} is not normal at z};

J3. J(f) = J(f™) for all integers m;

J4. flus) is topological mizing;

J5. J(f) is a perfect set,

J6. Every repelling periodic point of f admits homoclnic points. Moreover,
homoclinic points are dense in J(f);

J7. f is chaotic (in the sense of Devaney) on J(f).



Sullivan [Sul,2] has completed the description of the dynamics on the Fatou set
for rational mappings by using Teichmuler theory and the theory of Fuchsian and
Kleinian groups. Let the degree of the rational mapping f is at least 2, Sullivan
proved that every component ) of the Fatou set F(f) is eventually periodic, i.e.,
there exist two positive integers m and n, such that f™+"(Q) = f™(2). In other

words, there is no wandering domains for the Fatou set.

The simplest and interesting 1-dimensional complex dynamical systems should
be the quadratic polynomials
p(z) =2 +c

For this family of polynomials, the Mandelbrot set is defined as the subset of C

M :={ceC:J(p.) is connected }.
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Figure 1.2. First detailed picture of the Mandelbrot set for z — 22 — ¢(March 1980)
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The initial computer pictures of the Mandelbrot set M seemed to indicate that M
had more than one “main body” and that it might be disconnected (see Figure 1.2).
In fact, Douady and Hubbard [DH] proved that the Mandelbrot set is connected (see
Figure 1.3). It is still unknown, however, whether M is also locally connected.
Yoccoz gave some partial answer in [Yz].

Usually the Mandelbrot sets have self-similar structure and have non-integral

Hausdorff dimension, in other words, they are fractals (see Figure 1.3).
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Figure 1.3. The picture of the Mandelbrot set for z — 22 + ¢

There are several good surveys on one-dimensional complex dynamics, see for

examples [Br], [Bl], [Cn], [Ly], and [Mi].



1.3 2-dimensional complex dynamical systems
In 1969 and 1976, Hénon ([Hé1] and [Hé2]) introduced the mappings
H(z,y) = (y,y* +c—az) with a #0

of R? and he demonstrated numerically for certain values of the parameters H
appeared the existence of strange attractors. an attractor is defined as a compact
invariant set T' having a dense orbit and whose stable set W*(T') := {z € R? :
lim,—c dist(H"(z),I') = 0} has non-empty interior. We call an attractor strange
if it has a dense orbit with positive Lypunov exponent. This numerical result of
Hénon has finally established rigorously by Benedicks and Carleson ([BC], see also
[MV]) in 1991.

If we want to study the complex 2-dimensional dynamical systems, the formula
H(z,y) = (y,y¥* + c — az) can also be used to define a diffeomorphism of C? where
a,c € C. It is easy to see that the polynomial automorphisms are the simplest
nontrivial model for studying the 2-dimensional complex dynamical systems. In
1986, Hubbard and Oberste-Vorth ([Hu] and [HO]) began to study the complex
Hénon mappings of C? and introduced some important invariant sets which bear
some analogues to the Fatou and Julia sets of the one-dimensional case. They
defined that K+ := K+(H) is the closed set consisting of all points whose forward
orbit under H remains bounded, and K~ := K~(H) is the closed set consisting of
all points whose backward orbit under H remains bounded, and the intersection is
denoted by K(H) := K*(H)N K~ (H). Naturally, they also defined that J*(H) :=
O0K*(H), J7(H) := 0K~(H) and J(H) := J*(H)N J~(H). They showed in [H]
and [HO] that the topology of these sets are very complicated.

Friedland and Milnor [FM)] have classified the group G consisting of all complex

polynomial automorphisms on C? up to conjugation into two classes. The first

10
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class contains the affine mappings and the “elementary” mappings which have the

form h(z,y) = (z + p(y),y). The second class consists of the finite compositions

? U

of “generalized Hénon ” mappings. Each “generalized Hénon ” mapping g has the

form
9(z,y) = (v, p(y) + az),

where p(y) is a monic polynomial of degree at least 2 and a is a non-zero complex
number. Let we fix f to be a finite composition of “generalized Hénon” mappings.
The dynamical properties of the mappings in the first class are very simple, for
example, the topological entropy is zero and the period set is finite [FM]|. The
mappings in the second class are very interesting. These diffeomorphisms provide
examples of simple forms with very complicated dynamics and have been studied
intensively in recent years. Bedford and Smillie obtained a series results for f in the
second class. They proved in [BS2] that J*(f) us the closure of the stable manifold
We(p, f) and the J=(f) is the closure of the unstable manifold W*(p, f) for any
saddle periodic point p. This was conjectured by J. Hubbard. If f is hyperbolic
on J(f), Bedford and Smillie proved in [BS1] that f is topological mizing on J(f),
and that J*(f),J~(f),K*(f) and K~(f) are connected which was conjectured by
Friedland and Milnor in [FM]. In [BS3], they proved that f is ergodic with respect
to the equilibrium measure p (see Section 5.1 for the definition of x) and g is a
measure with mazimal entropy. Smillie proved in [Si] that the topological entropy
of f is logd where d is the degree of f. Fornaess and Sibony considered a class of

special complex Hénon mappings
9(z,w) = (22 + c + aw, az)

when 2% + ¢ has attractive cycle of order k and |a|] << 1. They proved in [FS]
that when k > 1 the boundary of the basin of attraction is not a topological man-

ifold and is of Lebesgue measure zero. They also studied the topological structure

11



of K*(g),J*(g), K(g) and J(g). Although we have mentioned some substantial
contributions above, the dynamics of f is still not well understood and significant

problems are still being made. One can find some interesting open problems in the

problem lists [Be] and [CFGK].

1.4 The outline of this thesis

In this thesis, we will combine the techniques of Pesin theory and the techniques of
powerful complex analysis theory to study the complex Pesin stable manifolds and
the dynamics of the complex polynomial automorphisms of C. In other words ,
we will study the intersection part of non-uniformly hyperbolic dynamical systems
and complex dynamical systems. Our results presented here mainly come from the
papers [Wu 1,2,3] and one joint paper with Verjovsky [VW]. In the following we give

an outline of this thesis.

Pesin stable manifold theory, in general, works only for compact smooth Rie-
mannian manifolds and smooth diffeomorphisms. At a regular point in the sense
of Pesin, the stable manifold passing through this point is an immersed smooth
submanifold. In Chapter 2, we will work on holomorphic diffeomorphisms f on
compact complex manifolds M. Of cause, we expect to get some stronger re-
sults under such stronger assumptions. By using Cauchy-Riemann condition of the
holomorphic diffeomorphisms f and the complez structure of the complex manifolds
M, we apply Pesin stable manifold theorem (note: we may consider the complex
manifold and the holomorphic diffeomorphism as a smooth Riemannian manifold
and a smooth diffeomorphism respectively. In this sense, we can apply Pesin the-

ory) to prove that the Pesin stable manifolds at the regular points in the sense of

12
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Pesin are actually immersed complex manifolds[Wu 1]. For proving above re-
sults, we first prove the complex Oseledec multiplicative ergodic theorem by using
the Cauchy-Riemann condition of f, and then prove that every tangent space of the

Pesin stable manifold is a complex linear space.

If we say that the “complex world” and the “real world” are in the different side
of a river, then the Cauchy-Riemann condition and the complex structure play the

role of a “bridge” which successfully links up the two “worlds”.

In Chapter 3, we obtain the same result as in Chapter 2 for typical non-compact
complex manifold C" [Wu 2|. Since the number of compact complex manifolds are
very limited and some important complex manifolds are not compact(e.g. C"), it
will be very interesting and useful to have a version of complex manifold theorem
for holomorphic diffeomorphisms on non-compact complex manifolds. We have not
tried to present such a complex manifold theorem in the greatest generality. For
the purpose of our applications in Chapter 5, we only consider the holomorphic
diffeomorphisms of C" and give a version of complex stable manifold theorem for
this case. Of course, we also need some kind of compactness condition. We mainly
study the holomorphic diffeomorphism f of C" with an f-invariant compact subset
K C C". In this case, we make use of the non-linear ergodic theorem obtained
by Ruelle [Rul] (instead of using Pesin stable manifold theorem in Chapter 2) and
the Cauchy-Riemann condition to prove the complex multiplicative ergodic theorem
and the complex stable manifold theorem. More precisely, for any f-invariant Borel
probability measure p supported on K, there is a Borel set I' C K such that p(I') =1
and for any p € I', the stable set

. 1
W*(p, f) = {2 € C" : lim sup 7 log | f*(z) — f*(p)| < 0} (1.1)
is actually an immersed complex manifold. This result will be used and extended

13



in Chapter 5 for generalized complex Hénon mappings of C?.

In Chapter 4, we study the stable manifolds of automorphisms F of C" at hy-
perbolic fixed points [Wu3] without using the Pesin theory. If F(0) = 0, we denote
Ay ++, A, the all eigenvalues of the tangent map DF(0). If A;,---, A, satisfy the
condition () (see Definition 4.2.1), we show that the stable manifold at point 0

W, (0,F)={z€C" :llim F'(z) = 0},

is an injectively immersed complex submanifold biholomorphically equivalent to
C" %, where F! = F o F'"!,F! = F and n — k is the cardinal number of the
eigenvalues of DF(0) whose absolute values are less than 1.

This result extends the well known classical result that the basin of attraction of

a sink is biholomorphic equivalent to C"(cf. [RR]).

In Chapter 5, we study the dynamical properties of complex polynomial auto-
morphisms of C2. In [Wu 1,2] [VW], we obtained some results related to heteroclinic
points and homoclinic points of saddle periodic points, introduced a new notation
S-Julia set as an analogue of the Julia set, and extended some beautiful results in
[BS 1,2,3] and [FS] under the hyperbolic condition to more general non-uniformly
hyperbolic cases.

We fix f to be a composition of finite generalized complex Hénon mappings.

Following [H], define
Kf={peC®:{f*(p):n=0,1,2,..} is bounded},

and JE=0K*, K =KtNK-and J=JtNJ".

Friedland and Milnor [FM] proved that K is an f-invariant compact subset of C2.

Bedford and Smillie [BS1,2,3] introduced an f-invariant Borel measure x on K and

14
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they proved that f is ergodic with respect to p. Using these properties and applying
Complex Stable Manifold Theorem obtained in Chapter 3, we prove (Theorem 5.2.1)
that for p-almost every p € K, the stable and unstable manifolds W*(p, f), W*(p, f)
are immersed complex manifolds and btholomorphically equivalent to C. Moreover,

we also show (Theorem 5.2.2) that for p-almost every p € K,
We(p,f) C J* and W¥(p,f) C J".

If p is a saddle periodic point (see 5.2 for definition), then we have an interesting
fact: the stable manifold W,(p, f) (resp. the unstable manifold W,(p, f)) at p defined
in [BS1,2,3] coincides with W*(p, f) (resp. W*(p, f)) (Theorem 5.2.4). Then the
above statement and Theorem 1 of [BS2] imply that the closure of W*(p, f) (resp.
W*¥(p, f)) is exactly J* (resp. J™).

Remark that some authors called W,(p, f) (resp. Wu(p, f)) the stable manifold
(resp. unstable manifold) of f at p, and called W*(p, f) (resp. W*(p, f)) the strong
stable manifold (resp. strong unstable manifold) of f at p. In this thesis, we only

use the different notations to distinguish them without giving different names.

In Sections 5.3, we prove that for any two saddle points p and q of f, W*(p, f)
and W*(q, f) have non-empty transversal intersections, and W?*(q, f) and W*(p, f)
have non-empty transversal intersections. In other words, W?*(p, f) and W*(q, f)
have transversal heteroclinic points and W*(q, f) and W*(p, f) have transversal het-
eroclinic points. An easy consequence of this result is that for any saddle periodic
point p of f, f admits transversal homoclinic points. This theorem is, in some sense,
an extension of a remarkable result of Katok [Ka2] from the real 2-dimensional case
to the complex 2-dimensional case. Thus by using complex variable method we

overcome the difficulties of studying a dynamical system in real dimension 4.

15



In Section 5.4, we try to find a good analogue of the Julia set for the complex
generalized Hénon mapping in C*. The notation of Hubbard and Oberste-Vorth (cf.
[BS1]) suggests J = J* N J~ as 2-dimensional analogue of the Julia set. Friedland
and Milnor [FM] proved that K is an f-invariant compact subset of C2. Bedford and
Smillie [BS1,2,3] introduced an f-invariant Borel measure p on K (see section 5.1 for
the definition of x) and proved that f is ergodic with respect to u. They suggest,
in [BS3], that the set J* = support(n) may better carry this analogy because it
contains a dense subset of the saddle periodic points ([BS3, Theorem 3.4]) and J~ is
a perfect set ([BS3, Remark following Theorem 2.5]). In Section 5.4, we introduce
another analogue, called S-Julia set, which seems to be a better candidate for 2-
dimensional Julia set. The closure of all periodic saddle points of f, denoted by
SJI(f) or simply by SJ, is called the S-Julia set of f in Chapter 5. As mentioned
in Corollary 5.4.2, J* C SJ C J. We prove that SJ has following properties which
are parallel to the ones of the Julia set J in one complex variable case:

SJ1. SJ(f) # 0 (Corollary 5.4.2);

SJ2. SJ(f) C {z € C*: {f"} is not normal at z} (Theorem 5.4.9);

SJ3. SJ(f) = SJI(f™) for all integers m (Corollary 5.4.2);

SJ4. flss(s) is topological mizing (Theorem 5.4.3);

SJ5. SJ(f) is a perfect set (Remark 5.4.5);

SJ6. Every saddle point of f admits transversal homoclinic points. Moreover,
the transversal homoclinic points are dense in SJ(f) (Theorems 5.4.4 and 5.4.11);

SJ7. f is chaotic (in the sense of Devaney) on SJ(f) (Theorem 5.4.7).

Some results in Chapter 5 were proved independently by Bedford, Lyubich &
Smillie in recent Stony Brook preprint no.8(1992).

16




Chapter 2

Complex Pesin stable manifold

theorem I: the compact case

2.1 Introduction

Pesin [P1,2] and Ruelle [R] established a remarkable stable manifold theorem for
C'*¢ diffeomorphisms f of compact Riemannian manifolds M as following: given

an f-invariant probability Borel measure u, then for y-a.e. p, the stable set at p
. 1 m m
We(p, f) = {g € M : limsup —log d(f™(q), f"()) < 0}

is an immersed Euclidean space.
The unstable set at p, denoted by W*(p, f), is defined analogously by using f~*

instead of f. So we will mainly concentrate on the stable sets.

17



In this chapter, we study the dynamical properties of holomorphic diffeomor-
phisms f on n-dimensional compact complex manifolds M. Of course, M and f can
be regarded as the Riemannian manifold and the diffeomorphism respectively if we
forget the complex structure of M. We will denote M® := M if we consider M as an
n-dimensional complex manifold, M? := M if we consider M as a 2n-dimensional
real manifold. If we consider M as a real manifold and f as a real analytic dif-
feomorphism, we can apply Pesin’s stable manifold theorem and obtain a family of
stable manifolds. The goal of this chapter is to prove that such stable manifolds are
actually immersed complez manifolds.

In Section 2.2, we first induce the Riemannian metric on M® from the Her-
mitian metric on M¢ by using the complex structure on M¢. Then Oseledec’s
multiplicative ergodic theorem works. Since our mapping f is holomorphic, by the
Cauchy-Riemann condition of f together with the condition of regularity of the point
in M®, we have Lemma 2.2.5 and Corollary 2.2.6. As a consequence of these results
and Oseledec multiplicative ergodic theorem, we obtain the complex multiplicative
ergodic theorem on complex manifolds (Theorem 2.2.8).

In Section 2.3, we first recall Pesin’s local stable manifold theorem in Theorem
2.3.1 and a nice property of local stable manifold in Theorem 2.3.2. This property
says that every point of the local stable manifold passing through a regular point is
forward regular. By this property, we can easily check that the conditions of Lemma
2.2.5 and Corollary 2.2.6 are satisfied. This implies that the tangent space at every
point of the local stable manifold is a complez linear space, thus the local stable
manifold is a complex submanifold of M€. The globalization of the local complex
stable manifold can be done in the standard way, see, for example, the proof of

global stable manifold theorem in [FHY].

18
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2.2 Complex multiplicative ergodic theorem I

2.2.1 Notations and some calculations

Let M be a compact complex manifold of complex dimension n, and f: M — M a
holomorphic diffeomorphism. For any point p € M, let (Up; 21, ..., 2,) be a complex
local coordinate system defined on a neighborhood U, of the point p, and let z; and
yr be the real and imaginary parts of z, respectively. If M is considered as a 2n-
dimensional analytic real manifold, then (Up; z1,...,Zn,Y1,...,¥Yn) is a real analytic
local coordinate system of M. For the sake of clearness, we denote M = M if we
consider M as a complex manifold, M® = M if we consider M as a real analytic

manifold.

Define

o, 1,0 9 1, 9

(52)n = 3l il (e = 3o + i)
then clearly {(a—‘zk-)p : 1 < k < n}is a basis of the tangent space T,M° and
{(%)p, (a—ik-)p :1 <k < n}is a basis of the tangent space T, M* at point p.
For any given complex manifold MC, we can introduce a positive definite Her-
mitian metric (see [Ok]) on M. We fix now a positive definite Hermitian structure
Hc on M, .., for a complex local coordinate system (Up; 21, ..., 2,), the mapping

He: T,MC¢ x T,,JVIC — ( satisfies

(1) VA, A € C &1, é0,m € T,MC, Ho(Méi+Ma2,m) = M He(é1,m)+ A2 He (€2,7);
(ii) Vé,n € T,M®, Hc(€,m) = He(n, €);
(ii) V¢ € T,MC and ¢ # 0, Hc(€,€) > 0.
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The Hermitian metric is naturally given as:

€lla = He(§,€)-

For applying the multiplicative ergodic theorem in the real case, we will induce
the Riemannian metric on MF from the Hermitian structure Hc by using the com-
plex structure on M¢.

In the theory of complex manifold, the typical complex structure J, (p € M¢)
on T,MR is defined as a real linear endomorphism J, : T,M® — T,M*® satisfying

7] o) o) 0
J”(E:c_k) = 5 J”(a_y;) = G (1<k<n) (2.1)

Thus we can rewrite the basis of T, M# as {(5%),,,.],,(5‘2—&);, :1<k<n}.

Define a map v, : T,M¢ — T,MFE by

WISl + )50 = 3 loug + belyg)

where ag, b € R. Obviously 1, is an isomorphism.

The Hermitian structure H on the real vector space T,M" can be defined as
a map H : T,M? x T,M? — C such that: for any ¢,7 € T,MR, H(¢,q) =
He (v, '(6), %, (n)-

Define F : T,MR® x T,M® — R by F(¢,7) = L(H(&n) + H(E,n)). Because
¢ # 0 implies ¥, '(¢) # 0, then for ¢ # 0,

F(6,6) = 5(H(&,€) + HEH) = HEE) = Hod; (6, 4;'(€) 0. (22)

Thus F is a C™ Riemannian structure on M”?, and we can define a Riemannian

1€l = VF(&,€), for €€ T,M"

Clearly, for any ¢ € T,M", we have

norm:

195 (E)ller = lI€ll- (2.3)
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This implies that for every two points p,q € M,

du(p,q) = d(p,q)

where d(-,) is the induced distance on M€ by || ||x, d(-,) is the induced distance
on M by |||

For any given p € M, let (Uy; 21, ..., 2,) be a local coordinate system on U,, and
(Uf(p)s w1y -, Wn) & local coordinate system on Uy (,). If we decompose z; and wy into
their real and imaginary parts, i.e., zx = zx + iyx and wx = u + g (1 < k < n),

we can express f as

wk(z) = fk(zly veey zn) = uk(wla ey Tny Y1, "',yn) + i'vk(mh ey ny Y1, "'7yn)

for1 <k <n.

Throughout this section we denote

f(q) = (UI(Q)’ '",un(‘I)7v1(Q)7 -"7”n(Q))7 for g¢= (151, sy Tny Y1, "'ayn) € U,.

We first consider the real tangent map at point p € M:
D,f : T,M® — T,M%

which is a real linear map and for any 1 < a < n,

n 5uk B’uk 7]

(D,,f St awa 8uk Ozo 5vk)’
Our O (9vk 5,

pf) g( Yo Our aya 3vk)

Similarly, the complex tangent map at point p

D,f : T,M° — T,MC€
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T

is defined as a complex linear map such that for any 1 < a < n,

 8f; 0
(Dof)g,- 3za Z ‘ 024 Swy’

Since f is holomorphic, u; and vy satisfy the Cauchy-Riemann condition:

Buk 8’Uk Buk ka
_— == = < < n). .
G2, ~ 3y, O B2, (1<a,k<n) (2.4)

By (2.4), it is easy to check that:
= 0
45 (Dul )5 = (Dol 45 (Def) g = iDp ) (1S @ <)

Generally, for any v = Sp_; (ax + ibx) 5= -€T, Me,

(DY = ( pf)Zi:(akJribk)a%

= ¥, (DpfY(v). (2.5)

This gives the following lemma:

Lemma 2.2.1. For everyp € M,m € N and v € T,M°,
(Do f™oller = (D f™)b(w)II-
In particular,
0 = 0 = 0
my — = ™ _— || = my— < < .
1D f™ ) gl = (Do f™) 5 =1l = (Dp f )ay,,” (1<a<n)

Proof: From (2.3) and (2.5), we have ||(D,f)v|lxr = ||(Dpf)dp(v)]|. If we replace f
by £, then (D, f™)ollr = (DpF™(v)] Pasticularly,

0 3 0 zmy O
ICDp f™) gl = (Do f™ )l 5 )l = (Do ™) 51l
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Ar

Daf™ il = D Walizoll = [(DaF)

Since
D7)l = (D ™Yt

then we have

Dn™ 3t = N DR T 5ol = WD) (1 S < ).

a

We finish the proof of this lemma. O

2.2.2 Lyapunov exponents and regular points

We recall some definitions and notations from [P1]:

Definition 2.2.2. For any p € M% v € T,M", the number

x*(p, v) = lim sup — log [|(D,F™)u] (2.6)

m—+oc ™M

is called the upper Lyapunov ezponent of the tangent vector v at point p.

It can be shown ( see [Os]) that x* is measurable and satisfies the following

properties of the characteristic ezponents: for any point p € M vy, vy,v € T,M~,

I. —o < X+(P7U) < +o0, for v 75 0, and X+(p,0) = —00;
2. x*(p,av) = x*(p,v) for any a € R — {0};
3. xT(pyv1 + v2) < max{x"(p,n), x"(p,v2)}
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By using the above properties 1-3 of x ¥, it is easy to prove that the function x™*
defined on the tangent bundle T M” takes on at most 2n values other than —oo on

each tangent vector space T,M " and generates a filtration
Li(p) C Ly(p) C ... C Lygpy(p) = T,M" (2.7)

of every such space. Namely, there are real numbers

A(p) < A2(p) < .o < Ayp)(P) (2.8)

such that x*(p,v) = A;(p) for v € Lj(p)\ L;-1(p). The numbers Aj(p) are called the
j-th upper Lyapunov ezponent of f at point p and the number k;j(p) = dimL;(p) —
dimL;_,(p) is called the multiplicity of the j-th ezponent.

Remark 2.2.3. (see [P2] §3)
(1) Aj(p) and k;(p) don’t depend on the Riemannian metric;
(i1) s(p), kj(p), and L;(p) (1 < j < s(p)) depend measuradly on p;
(11t) The upper Lyapunov exponent x* is f-invariant, more precisely, for any

pE M"E,

Xi(F(P) = Ai(p), ki(F(9)) = ki(p), (Do f)Ls(p) = Li(F(p)).

In general, the limit of L log||(D, F™)v|| may not exist. Even if the limit existed
for all v € T,MR, the asymptotic behavior of D, f™ may have a pathology as
m — oo. Such a pathology is prevented by the condition of regularity ([P1,2])
which in particular guarantee the existence of the limit as m — oo for any non-
zero tangent vector v € T,MR. The Oseledec multiplicative theorem ([Os]) implies
that for any Borel probability f-invaxiant measure the set of regular points has full

measure.
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For completeness, we review the definitions of forward regularity, backward reg-
ularity and regularity. A point p € M® is said to be forward regular if there exist
real numbers A(p) < +++ < A,;)(p) and a decomposition of the tangent space at

p into T,M" = Ei(p) @ - - - ® E,(,)(p) such that for every non-zero tangent vector

RS Ej(P),
.1 e
Jim 1og (D, = Aste), (2.9)
and
lim ——log |Jac(D,f™)| = Z/\ ) dim E;(p). (2.10)

m—+00
A point p is said to be backward regular if (2.9) and (2.10) hold for m — —oo.
A point p is said to be regular if it is both forward regular and backward regular.
We will use the following property of forward (resp. backward) regular point
which can be found in [P1]:

Proposition 2.2.4. ([P1]) Letp bea forward (resp. backward) regular point, then

for each integer m € Z, the point f™ (p) is forward (resp. backward) regular.

2.2.3 Complex multiplicative ergodic theorem I

Definition 2.2.2 and Lemma 2.2.1 give the following lemma:
Lemma 2.2.5. For any forward regular point p € M, there are subspaces W;(p)
( =1,...,5(p)) of the tangent space T,M® such that

(Z) Lj(p) = ®i=1Wk(p) fO’l“j = 1,"':5(1’);
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i)
liril 1 log ||(D,f™ || = Aj(p) uniformly in v € W;(p);
m—+oo m
(iti) for any 1l < a <n,
.1 =\ 0 .1 Zmy O
Jim_ Slog (D)ol = Jim_ L log (D, ")l
Proof: (i) and (ii) follow from the formula (2.7) and (2.8). (iii) follows from Lemma
2.2.1. m

An easy consequence of this lemma is the following:

Corollary 2.2.6. For any forward regular point p € MR, the dimension of W;(p)
is even (j = 1,...,5(p)). Moreover, 2~ € W,(p) if and only if-g%: € W;(p).

Oz

Proof: By Lemma 2.2.5(iii), we have that

a—ia- € W;(p) if and only if —£: € W;(p).
Therefore the real dimension of W;(p) is even. o

Since
T,M" = Wi(p) @ ... ® W,()(p),
T,M® = ;Y (T,MR) =4 (Wi(p) © ... ® Wir)(p))
= [, (Wi(p))] @ - ® [, (Wi (p))]
Define

WE(p) = ¥, (W;(p)), (for 1<3 < s(p)),
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then
T,MC = W{(p) @ ... ® Wyi,(p)- (2.11)

By Lemma 2.2.1, Lemma 2.2.5 and Corollary 2.2.6, we can rewrite Lemma 2.2.5

in the complex version:

Lemma 2.2.7. For any forward regular point p € M€, there are subspaces WJ-C(p)
of the tangent space T,MC, such that
a
T,M° = &5)W7 (p);

(%)

1
lim _ —log [[(D, f™)olli = Ay(p) wniformly in v € WE(p).

m—+4oc m

Applying Oseledec multiplicative ergodic theorem (cf.[FHY] or [Os]), We have
the following

Theorem 2.2.8. (complex multiplicative ergodic theorem I) There ezists
a Borel Set B in the complez manifold M€ which has the following properties:

(i) Every point of B is regular;

(i) B is invariant under f and has measure 1 for every f-invariant probability
Borel measure on M€;

(i) For every p € B, there exists a splitting of the tangent space T,M¢ =
@;(L)ch(p) and real numbers A (p) < Xa2(p) < ... < Ay(p) such that, for any positive
definite Hermitian metric || - ||z on MC:

(a) Wf(p),/\j(p) and s(p) are Borel measurable functions of p, moreover
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=1

ch(f(P)) = Tpf(WjC(p)) and X;(p), s(p) are invariant under f;
(b) Vv € W]'C(P)’ v #0,

1 m
Jim_ —log (D™ wllu = Ay(e):

Proof: The only thing needed to be proved here is (iii), but this is an easy conse-

quence of Lemma 2.2.7 and the regularity of p. O

28

1l



2.3 Complex stable manifold theorem I

In this section, we will keep all the notations given in 2.2.

Let [A,p],A < p <0, be a compact interval in the real line R. Denote

Byu={p€ B:(p) & [\ ul,d =1,..,5(p)}

where B is the regular points set (see Theorem 2.2.8). Remark that By, is invariant

under f. For p € B, ,, we define

Es(p) = EB/\j(p)</\VVJ'(P) and E"(p) = EB;K«\J'(p)WJ'(P)-

We recall Pesin’s local stable manifold theorem:

Theorem 2.3.1. ([P1][FHY][Rul]) Given € > 0 and p €]e*, e[, then there exist:
A) two Borel functions 8. : By, —]0,00[ and 7, : By, — [1,00[;
B) Vp € By, a Lipschitz map:

o : B*(p, 6c(p)) = {v € E°(p)lllv]| < 8.(p)} — E*(p);

such that:

(i) W (p) = exp,[graphe,) is a submanifold in M® of class C®, where ezp, is the
exponential map from T,M to M;

(i) p € W(p);

(iii) T,Wi.(p) = E*(p);

(iv) Vy,z € W, (p),Ym > 0,d(f(y), f™(2)) < 7e(p)p™ d(y, 2).
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The following theorem is very useful in our case.

Theorem 2.3.2. ([P1, Prop. 2.3.1] or [KS, p.40]) Letp € B and g € W, (p), then

q is forward regular, and

3(q) = s(p), Ai(q) = Aj(p); ki(q) = ki(p),J = 1, ..., 3(p)-

Lemma 2.3.3 Let p € B and g € W; _(p). Then
(i) ¢;1Tqﬁ7lf,c(p) is a complez vector space;
(i1) Wi (p) is actually a complez submanifold.

Proof: From Theorem 2.3.2, we know that ¢ is a forward regular point. Corollary
2.2.6 tells us that ;2 € T,Wj,(p) if and only if 2~ € T,W(p). This implies that
Y=1T,W;.(p) is a complex subspace of T,w¢. By proposition 2.1 in [Ok, p.371], we

know that ﬁ’/}zc(p) is actually an immersed complex manifold. a

In the following of this section , we simply denote the complex submanifold
Wise(p) by Wi (p). Cleasly, T,Wio(p) = (E°)(p) = ®xm<a W5 (p)-

Noting that W _(p) is the complex submanifold of M€, we can translate the
global stable manifold theorem [FHY theorem 17] into the following complex version:

Theorem 2.3.4. (complex stable manifold theorem I) Let p € B ( see The-
orem 2.2.8), then the set

We(p, £) = {a € MC : limsup —log dr(f™(p), /"(g)) < 0}

is an immersed complex manifold of dimension dim(E)*(p) and is also the image

of a C*® injective immersion of a real Euclidean space of dimension 2dim(E°)’(p),
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such that:
(i) dimW*(p, f) =dim(E)*(p), where (E“)’(p) = @x;(n)<o W (p);
(ii) T,W*(p, f) = (E€)*(p);
(i)
W2(p, f) = Umzo f (Wi (f™(P)));

where log p €]A;,(p), 0[ and Aj,(p) = max{};(p) < 0};
(iv)

W*(p, ) = {g € MC : imsup — log du(f™(p), "(2)) < Mo (p)}-

m—oco M

Proof: Using Lemma 2.3.3, we can get the complex version of Theorem 2.3.1. Then
the proof of statements (i),(ii),(iii),(iv) and that W*(p, f) is the injective immersion
of a real Euclidean space of dimension 2dim(E®)*(p) is same as the one of Theorem
17 in [FHY]. What we need proving now is that W*(p, f) is an immersed complex
manifold. By Theorem 2.3.2 and Proposition 2.2.4, it is easy to see that every point
q of W*(p, f) is forward regular. Then by a same argument as in the proof of Lemma

2.3.3, we can prove that W*(p, f) is actually an immersed complex manifold. a
Corollary 2.3.5. Letp € B and q € W*(p, f), then q is forward regular, and

s(q) = s(p), Aj(q) = Aj(p), k;j(q) = k;(p) for j = 1,...,5(p).

Proof: This corollary is an easy consequence of Proposition 2.2.4, Theorem 2.3.2

and Theorem 2.3.4(iii). |
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Chapter 3

Complex Pesin stable manifold

Theorem II: the C" caée

3.1 Introduction

In this chapter, we study the dynamical properties of the holomorphic diffeomor-
phisms f on C" with an f-invariant compact subset K of C". Of course, C" and f
may be regarded as R*" and the real analytic diffeomorphism f on R?" respectively,
if we forget the complex structure of C" as we did in Chapter 2. In Section 3.2, we
first fix some notations, then recall the Oseledec multiplicative ergodic theorem and
the nonlinear ergodic theorem from [Rul]. In Section 3.3, we make use of the er-
godic theorems of Section 3.2 and Cauchy-Riemann condition to prove the complex
multiplicative ergodic theorem(Theorem 3.3.3), the local complex stable manifold
theorem(Theorem 3.3.4), and the global complex stable manifold theorem(Theorem
3.3.5).
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3.2 Ergodic theorem for measurable maps

Let C" be the n-dimensional complex Euclidean space, and R" the n-dimensional
real Euclidean space. For the point of C" we shall use the notation z = (z,..., z,),
where z; = z;+1y; € C and z;,y; are real numbers. The absolute value of a complex

number z; will be denoted by |z;|, and for z € C", we define

lzle = ]zi? + o + |22

Define a real linear invertible map % : C* — R*" by

1/'(21, ] Z,,) = (231, vy Ty Y1y ey yn),

where z; = z;+1y; for 1 < j < n. For any point (z,y) = (Z1,-, Tny Y1, -+-»Yn) € R??,
we define the norm of (z,y) by

I(z,9)|r = \/|<131(2 +ot |za2 + y]? + o+ ynl

Obviously, we have

|z|lc = [¥(2)|r for all z € C". (3.1)

We recall a general version of the multiplicative ergodic theorem from [Rul}:

Theorem 3.2.1: Let (M,B,p) be a Borel probability space, 7 : M — M a Borel
measurable map with Borel measurable inverse preserving p, and T : M — GL(R™)

a Borel measurable map to the invertible real m x m matrices, such that

log* [|T(:)ll,log™ |IT~(-)Il € L'(M, p),
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where logt a = max{0,loga}.
Write:
Tk = T(r*1e) ... .. T(rz)-T(z) (3.2)
T% = T_l('r'k:i) ----- T Y (v %) - T (v 'a). (3.3)

Then there is T' € B such that 7T = T, p(T') = 1, and for each z € T, there is a

direct sum decomposition of R™ into linear subspaces
R™ = E(l)(:c) - R E(’(“‘"))(z)

and real numbers X1)(z) < -+ < A6E) (), where A()(z) is never —oo, such that
(a) s(z),AU)(z), and m\)(z) = dim E¥)(z) are T-invariant and measurable;
(t) 1

Jim —log [Trulp = A (z) if 0 #ueEW).

(c) T(:B)E(j)(z) = E(j)(rm) for1 <j < s(z);
(d) Ifu e R™, then the limit

.1 k
Jim_© log|[T¥ulg = x(z,u)
ezists and is finite. If A € R, the linear subspace
VA= {u € R™: x(2,u) < M}

s a measurable function of z € T.

Proof: See [Rul]. ]

If S € GL(C™), we define T = ¢ 0 Soy~!. T* and S* for k € Z are defined as
in (3.2)-(3.3). Then for any u € R*",

|Tiulr = o S; 0y~ (u)lr = [S5 0 %7 (u)lc
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Therefore we have the following remark:

Remark 3.2.2 (1) If S € GL(C"), then Theorem 3.2.1 is true provided that we
replace T by S, T* by §%, R™ by C", E¥)(z) by Eg)(:c), and |- |g by | - |¢c, where
EY(z) = ¢~ Y(EV(2)) for j =1, ..., s(x).

(2) Every Eg)(z) is a complex linear subspace of C". The reason is that

1S5 (2)|c = |S*(iz)|c for z € C™

Definition 3.2.3: The set I' in Theorem 3.2.1 is called the reqular set of T, /\(j)(:z)
(1 < j < s(z)) are called the Lypunov ezponents of T at z, and m')(z) is called the
multiplicity of AV (z).

In what follows we will denote by B(a) the open ball of radius a centered at 0, by
B(a) its closure, and by H(B(1),0; C",0) the space of diffecomorphisms holomorphic
in B(1) and continuous on B(1).

We recall a nonlinear ergodic theorem from [Rul] and we will use the notations

introduced in Remark 3.2.2:

Theorem 3.2.4: Let (M,B,p) be a probability space and 7 : M — M a measurable
map preserving p. Let ¢ — F, map M to H(B(1),0;C",0). We write

Ff=F 1 0---0F,0F,

and denote by S(z) the derivative of F, at 0. We assume that ¢ — S(z), || Fy||: are

measurable and that

| Yog* | Fxllip(da) < +oo. (3.4)
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Let [a,b],a < b, be a compact interval in R. Denote by Ty the subset of T' which
consists of the points z such that A9 (z) & [a,b] for 1 < j < s(z). Clearly, Ty, is
wnvariant under T.

There are then measurable functions B8 > a > 0,7 > 1 on I'y with the following
properties:

(a) If ¢ € Typ, A €]a,b|, the set
v) = {u € B(a(z)) : || F¥u|| < B(z)e* for all k> 0}

is a complez submanifold of B(a(z)), tangent at 0 to the complex linear subspace
Vi ={uel":x(ze,u) <A}
(5) If u,v € v, then

|Fyu — Fiv|| < v()|lu — v]|e™.

If p is ergodic, there exists 4' > v measurable on Ty, with the property:
(b’) If u,v € v, then

IFfu — Fioll < o(2)|lu — v]le™.

Proof: See [Rul]. a

Although in reference [Rul] it was not mentioned that E()(z) as actually com-
plex subspaces, this in fact is true by Remark 3.2.2. It is important that the proof
of above theorem in [Rul] needs this fact. This is why we gave the Remark 3.2.2
before Theorem 3.2.4.
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3.3 Ergodic theorem and stable manifold theo-

rem for holomorphic diffeomorphisms of C”

3.3.1 Notations

Let f : C* — C" be a holomorphic diffeomorphism described by a n-tuple f(z) =
(fi(2)y ...y fn(2)). If we decompose z; and f; into their real and imaginary parts, i.e.,
zj=zj+1y; and f; = u; + 1w, (1 < j < n), we can express f as

filz1y 00y 2n) = ©i(@1y ey Ty Y1y ooy Yn) F 305 ( 215 00y Tny Y1y ooy Yn)
for1 <j<n.

Throughout this section we denote

f(‘]) =tofo ¢_1(‘1) = (u1(g); -+ un(q),v1(g); -, ¥n(q))s

for ¢ = (Z1,-eeyZny Y1, - ¥n) € R*™.
Let p € C", we denote the Jacobian matrix of f at point p by

L) - Si(p)
Jp(f)= : :
p) - 2(p)

Similarly, we denote the Jacobian matrix of f at point ¢ € R*" by

Qui(g) -+ 2u(q) $5(q) -+ 52(q)
LFo| @ 20 20 -
F=

4 (q) 2u(q) $(q) S (q)

%a(q) s=(g) Sia(q) S (q)



Then the complex tangent map of f at point p € C",
D,f:C" - C",
is defined by
(D, f)z = Jp2T,

where AT stands for the transposed matrix of matrix A.

The real tangent map of f at point ¢ € R*™,
qu: R* RZn,

is defined by
(qu)(:c,y) = (Jqf)("”y)T'

As usual, we introduce the first-order linear partial differential operator

o 10 o, 0 _10 0
5zj B 2 6(1:]' By]- ’ 6E,~ B 2 B:cj 8y,- '
Since f is holomorphic, ux and vy satisfy the Cauchy-Riemann condition:

Our Ovr Ouy Ovy, .
_ st - = < < n). 3.
dz; Oy;’ Oy; Oz; (I<jk<n) (3.5)

By Cauchy-Riemann condition, it is easy to check that for any given point p €
C",q = "l}(p) € R2n’

$((Dpf)z) = (Dyf)(¥(z)) for all z€C".

This implies that

|(Dpf)zle = [(Daf)(¥(2))Ir for all z€C™ (3.6)

or

(Dof Y™ (2,9)lc = [(Dof)(,¥)r for all z,y€R" (3.7)
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This gives that

(Dof)(iz)le = |(Dpf)zle = [(Daf)($(2))lr for all z € C™ (3-8)

Since f* is also a holomorphic diffeomorphism,

(Do f*)(i2)lc = [(Dpf*)zle = |(DofF)(%(2))|r for all z e C™

— —~

But (f*) =1 o ffoyp = (¢ o foy~1)F = (f)*, we have the following lemma:

Lemma 3.3.1 Given any point p € C", then for allk € N and all z € C",

(Dpf)iz)le = [(Dpf*)zlc = (Do(F)*)(W(2))|r for all z € C™ (3.9)

Let K C C" be an f-invariant compact subset. For any f-invariant Borel prob-

ability measure px on K, we define
W(A) = p(AN K)
for any Borel set A in C". Clearly p is an f-invariant Borel probability measure on
c".
If we define T = ¥(K), p(B) = u(y(B)) for any Borel set B in R*", then & C R*"

is an f-invariant compact subset, and p is an f-invariant Borel probability measure

on R*" with p(Z) = 1.

3.3.2 Complex multiplicative ergodic theorem II

Applying Theorem 3.2.1 with M = R*",7 = f,T(q) = Jqf, we have the following

version of the multiplicative ergodic theorem for f. Note that in this case, the
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conditions of Theorem 3.2.1 are all automatically satisfied.

Theorem 3.3.2: Then there is a Borel set T' in R*™ such that fT = I p(T) =1,

and for each q € T, there is a direct sum decomposition of R*™ into linear subspaces
R =E(q)®--- @ EF@)(q)

and real numbers A)(q) < - -+ < AL@)(g), where A(V(q) is never —oo, such that
(a) s(q),\9(q), and m)(q) = dim EVY)(q) are f-invariant and Borel measurable;
(b)
5 1 1 Fl A if &)
Jm log [Dyffulr = A%(q) i 0#ueEYq).

(c) (Daf)EV(q) = EV(f(q)) for 1 <j <m.

For any p € C",q = 9(p), define ¢(p) = s(q) and Eg)(p) =y 1E@(q) for 1<
J < s(q). Then we have

¢ =37'(R*") =E(p) @ - 9 E¢(p).

By (3.9), for any p € C*,q = 9(p), if 0 # ¥(u) € E¥(q),ie. 0 £ u € Eg)(p), we

have

Jim_ 3108 |(Dpf)(iw)le = lim Llog(Dpf)(wlle =A0(g),  (310)

This gives that
2z € EQ(p) iff iz e E¥(p).
or, equivalent
Eg)(p) is a complex linear subspace of C". (3.11)

Hence we obtain the following complex multiplicative ergodic theorem:
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Theorem 3.3.3 (complex multiplicative ergodic theorem II): If we denote
A =9y Y(T), then f(A) = A,p(A) = 1, and for each p € A, there is a direct sum

decomposition of C" into complex linear subspaces
C=E(p) @ B¢ (),

such that
(a) t(p), A9 (p), and mV)(p) = dim Eg)(p) are f-invariant and Borel measurable;

(b)

.1 - . j
Jim_ 2log [Dpffule =20(p) i 0#ueEL(p)

(c) (Dpf)E(p) = EV(f(p)) for 1 <j <m.

As usual, we call set A in Theorem 3.3.3 the regular set of f, the points in set A
the regular points of f.

3.3.3 Complex stable manifold theorem II

If we assume in Theorem 3.2.4 that M = C",7 = f, F, = 1/);&)) o f o1,, where the
map ¥, : C" — C" is defined by v¥,(z) = z + p, then the conditions of Theorem 3.2.4

are all satisfied and hence we have the following theorem for f:

Theorem 3.3.4: Let f,K,p and A as before, let [a,b],a < b, be a compact interval
in R, and let A,y be the subset of A which consists of the points p such that AU)(p) ¢
[a,b] forj =1,---,5(p). Then there exist Borel measurable functions 8 > a > 0,7 >
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1 on Aqp with the following properties:
(a) If p € Aap, A €]a, b], the set

Wl.(p, f) = {z € B(p,a(p)) : |f*(2) — f¥(p)| < B(p)e** for all k> 0}

is a complez submanifold of B(p, a(p)), tangent at 0 to V;} = {u € C" : x(p,u) < A};
(b) If z,2' € W (p, f), then

1F5(2) — F5(2)l < 7(p)lz — 2’|

If p is ergodic, there exists v/ > v Borel on Aqp with the property:
(6°) If z,2' € WP (p, f), then

[F5(2) = 7)) < 7' (p)l2 — 2'|e™.

Proof: Assume that in Theorem 3.2.4 that M = C", F, = ¢;(;) o f o 9, where
¥, : C" — C™ is defined by ¥,(z) = z + p, then

fo(0) = "/’f_(lp) o fo,(0) = f(p) — f(p) = 0.
Clearly f, € H(B(1),0;C",0), and
S(p) = DF,(0) = D(¥74) © f 0 ¥p(2))l:=0 = D(f(z + p) = f(p))|s=0 = f'(p)-

So S(p) is holomorphic (of cause measurable) and hence ||Fp||; is continuous (of

cause measurable) and bounded on the compact subset A. Thus

[ 1og* I flluu(dp) = [ log™ Il fyllin(dp) < +oc.
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We have now verified that all the conditions in Theorem 3.2.4 are satisfied. Note

that

Fj(z) = Fp-yo)o- o Fyp)o Fp(2)

(Yrugy © Fotprmi(p) 0+ 0 (Y 0 F O %s(m) © (¥ © f 0 ¥)(2)
Prugp) © F* 0 9p(2)

= Y, (f(z+p)

(= +p) - F*(p)-

Then we apply Theorem 3.2.4, it is easy to check that this theorem is true. O

Note that W (p, f) is a complex submanifold of C", we can easily globalize the
complex local stable manifold Wj_(p, f) to the global stable manifold W*(p, f) for
f:C" - C" in a usual way (cf. [FHY,theorem 17]). In fact, we could globalize the
local stable manifold by analytic continuation. The following theorem is a complex

version of global stable manifold theorem:

Theorem 3.3.5(complex stable manifold theorem II) Let p € A,p ( see
Theorem 3.3.4), then the set

Wip,f)={zeC" :lixknﬁsup -Ilélog IF%(2) - f*(p)| < 0}

is an immersed complez manifold of dimension dim V' and is also the image of a
C* injective immersion of a real Euclidean space of dimension 2dim V), such that:
(i) dimW*(p, f) = d&im V;}, where V; = @a,()<oE (p);
(1) The tangent space of W*(p, f) at p T,W*(p, f) = V;;
(i) W* (5, £) = Ursof (Wi £ (), £)), where  related to Wi, (f*(p), f) (see The-
orem 3.3.4) is in belongs to the open interval ]AU°) 0, here AUe)(p) = max{A)(p) <
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0};
() W*(p, f) = {z € C" : limsup,_,, 1 log | F*(2) — f*(p)| < X;(p)}-

Proof: The proof of the statements (i),(ii),(iii),(iv) and the statement that W*(p, f)
is the injective immersion of an real Euclidean space of dimension 2dim V is same
as the one of Theorem 17 in [FHY]|. What we need to prove now is that W*(p, f)
is an immersed complex manifold. But this is a easy consequence of Theorem 2.4,
(iii) and the statement that W*(p, f) is the injective immersion of an real Euclidean

space. ]
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Chapter 4

Stable manifolds of Aut(C") at
hyperbolic fixed points

4.1 Introduction

In this chapter, we study the stable manifolds of automorphisms F' of C" at hy-
perbolic fixed points. If F(0) = 0, we denote Aq,---, A, the all eigenvalues of the
tangent map DF(0). If A,---, A, satisfy the condition (*) (see Definition 4.2.1 in

section 4.2), we show that the stable manifold at point 0
W, (0,F)={z€C": [lim F'(z) = 0},

is an injectively immersed complex submanifold biholomorphically equivalent to
C"* where F! = Fo F'"\,F! = F and n — k is the cardinal number of the

eigenvalues of DF(0) whose absolute values are less than 1.
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Our result can be considered as an extension of the following classical result

related to the Fatou-Bieberbach domain.

Theorem 4.1.1(cf. [RR] for the proof) Suppose that F is an autornorphism of C"
and F(0) = 0. If all the eigenvalues A;,---,A, of DF(0) satisfy |A;| < 1, then the
stable manifold W,(0, F') s biholomorphically equivalent to C".

Note that in Theorem 4.1.1, the stable manifold is complex n-dimensional and
hence is actually a submanifold of C". If the hyperbolic fixed point is not a sink,
the stable manifold in general is only an immersed submanifold of C" according

to the stable manifold theory.

4.2 Stable manifold theorem of automorphisms

of C"

4.2.1 The statement of the main theorem

A map F of C" is said to be an automorphism of C" if it is a biholomorphic map from
C" onto C". The set of all automorphisms of C" forms a group under composition,
denoted by Aut(C"). If F € Aut(C"), we write DF(z) for the complex derivative
or tangent map of F' at z and write A;(z),---,An(2) for all eigenvalues of DF(z).

Definition 4.2.1 If F € Aut(C") and F(0) = 0, let A;,---, A, be the eigenvalues
of DF(0). We will denote by ! the vector (I;,---,l,) with nonnegative integer
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components, A will denote the product A} --- Al and |{| will denote the I; +---+1,.
We say that Aj,---, A, satisfy the condition () if there exist constants C > 0 and
v > 0 such that

A= N> op

for any 1 < s < mn, and for any [ with |I| > 2.

For an automorphism F of C",if F(p) = p and all the eigenvalues A;(p), - -, A.(p)
of DF(p) satisfy |A;(p)| < 1, Rosay and Rudin[RR] proved that the stable manifold
of F at point p

‘ W.(p) = {z € C": lim F'(z) = p}
is biholomorphically equivalent to C", that is, there exists a biholomorphic map
from W,(p) onto C".
In the next section, we will make use of Siegel linearization theorem to prove the

following theorem .

Theorem 4.2.2 Suppose that F' € Aut(C"), the point 0 is a hyperbolic fized point
of F, and that all eigenvalues Ay,---,A, of DF(0) satisfy condition (x), then the
stable manifold

W,(0,F)={z€C": fim F!(z) = 0}
s an injectively immersed complez submanifold and is biholomorphically equivalent
to C"F, where F!' = F o FI"1,F! = F and n — k is the cardinal number of the

eigenvalues A; with |A;| < 1.

Some similar results were obtained by Bedford and Smillie[BS1] and Wu[Wu2]
when F is the so-called “generalized Hénon” mapping of C?. But the techniques are

completely different from here.
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4.2.2 The proof of Theorem 4.2.2

For proving the theorem, we begin to study the lower triangular holomorphic maps
(see definition below). Suppose that the holomorphic map G = (g1, *+,9n): C" —
C" has the form

a(z) = Mz,
9:(z) = Xz + ha(21),
g(z) = Akze+ iz, 2k-0), (4.1)
gre+1(2) = Akprzesr + by (21,0 -, 20),
.,
| 92(2) = Anznt b2, 20m0).

where A; € C, h; is a holomorphic function of (z1,:-+,2i-1), hi(0) = 0 for i =
1,---,n. We call such maps lower triangular.

It is clear that the matrix representation of DG(0) is lower triangular, that
DG(0) is invertible if and only if A; # 0 for all ¢, and that G € Aut(C") if and only
if A; # 0 for all 4.

Lemma 4.2.3 Let G = (g1, -+,9.) be a lower triangular automorphism of C" and
have the form of (4.1). If [A1] > |A2] = -+ 2 |Ae] > 1> |Aega] 2> -+ 2 [An] > 0 for

some positive integer k with 1 < k < n, we set

C"=E 8 E
where
E,={z2=(21,"++,2n) € C" i zgy1 = -+ + = 2, = 0},
E2={z:(zl,"',zn)GC":zl:---=zk=0}.

48

(r



Then G'(z) = (ggl)(z),-- ,99(2)) — 0 as | tends to infinity, uniformly on compact
subsets of E,, and

Je-

=1

for every neighborhood V' of 0 in E,, i.e., W,(0,G) =

Proof: Let £ C E, be compact, then for each z € E, gj(l)(z) =0forj=1,.---,k

and all positive integers . In this case, we can rewrite (4.1) as following

'4

gj(z) =0 j:1727""k7

ng(z) = Akt1Zk+1,
$ grs2(2) = Akpezira + hipa(2e11), (4.2)
{ gn(z) = /\nzn+iln(zk+17"')zn—1)-

where hj(zer1,- 5 2j-1) = Bj(0,++,0, zkq1, -+, 2j1) for (k+2 < j < n).

We define ||-||g to be the sup-norm over E. Since g,(cJ)rl( ) = Appr2k+1 and [ Aepq | < 1,

it follows that ||91(cl4).1||E — 0 as | — oo. Assume now that £+ 1 <7 < n and that
lim ||gf’llg =0 for k+1<j<i.
Since k;(0) = 0, it implies that
Jim ||A; (981190 le = 0.
By (4.2), we know that
g = Ngl + hi(glys -+, 92).
Therefore, Ve > 0, there exists a positive integer L, such that when [ > L,
g < Nillgl +€ on E.
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This gives that

. Oy <
lim sup [lg:" e < — bW

for all € > 0.

By induction on 2, we have
19z =0 as I =00 for j=k+1,---,n.

This gives W,(0,G) D E,. In the following, we will prove that W,(0,G) C E,.
Ifz= (217 o ,zn) € Ws(O, G), then

|gJ([)(z)|—>0 as | —-o00 for j=1,--+,n.

Since gil)(z) = Az and |A;| > 1, it follows that z; = 0 and gy)(z) = 0 for all
positive integers [.

Therefore g{'(z) = Al z;. A similar argument implies that 2z, = 0 and gz(,l)(z) =0
for all positive integers [ because |A;] > 1.

By induction, we prove that
z; =0 and gJ(-I)(z) =0

for j = 1,---,k and all positive integers [. Thus z € E,. We have now proved that
W,(0,G) = E,. This statement is obviously equivalent to the following one: given
any neighborhood V of 0 in E,,

This completes the proof. a
Let’s recall Siegel linearization theorem (cf.[Az] or [Ym]).
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Theorem 4.2.4 (Siegel’s Theorem) Assume that F € Aut(C") and the point 0
is a hyperbolic fized point of F. If the eigenvalues Ay,--+, A, of DF(0) satisfy the
condition (), then in some neighborhood of 0, F s biholomorphically equivalent to
the linear map DF(0)z. More precisely, there exists a biholomorphic map Hy defined
on a small neighborhood of an open ball B, = {z € C" : |z| < r} for somer > 0
such that: (i) Ho(0) = 0; (i) DHo(0) = I; and (i)

Hyo F(z) = DF(0)Ho(z) for z € B,. (4.3)

Remark 4.2.5: As stated in [Ar], it seems as if one needs the condition (*) in a
neighborhood of the origin, however the proof of the Siegel’s theorem in [Ar| depends
only on the condition () at the origin. A clear statement of this theorem can be
found in [Ym].

We can choose the coordinates such that the matrix representation of DF(0) is

lower triangular and has the form

A
az1 Az
A=
Qn1 Qp2 *+ An

with [Aq| > - 2> [Xe] > 1> |Aga| = oo 2 [An] > 0.
If we define G : C* — C" by G(z) = Az. Then clearly G € Aut(C").
It is easy to see that (4.3) is equivalent to the following

Ho(z) =G ' oHyo F(z) for z€ B,. (4.4)

51



By the Stable Manifold Theorem at hyperbolic fixed point (cf. [PM] or [Wu2])
and Siegel’s Theorem, it is easy to prove that there exists a 7o > 0 small enough
with 7o < 7, such that (i) V,, is a complex submanifold of C", where V, is the
connected component of W,(0, F)N B,, containing the origin; (ii) F(V;,) C V;,; and
(iii) Wo(0, F) = Upso F~!(V;,) is an injectively immersed complex submanifold. We
fix such a positive constant rq. If we set Uy = V,, and U, = F"(Ug) for [ > 1, then

U; C U4, for all nonnegative integers [.

Now we begin to extend Hy from Uy to the stable manifold W,(0, F').
By (4), we have

Hy(z) =G 'o Hyo F(z) for zeU,.
Note that F,G~! € Aut(C™) and H, is holomorphic on Uy, we define
Hi(z2) = G 'oHyo F(z) for z€ U,

then H; is holomorphic on U; and H;(z) = Hy(z) for z € Up.

Similarly, we define
Hy(2) =G 'oH,0F(z) for z€U,,

then H, is holomorphic on U, and Hy(z) = Hy(z) for z € U;.

By induction, we can define
Hi(2) = G 'oHoF(z) for z¢€ Uy,

such that Hiy, is holomorphic on Uy and Hiy1(2) = Hi(z) for z € U,.
If we define H : W,(0,F) — C" by

H(z) = H|(z) for z€U_,
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then H is well-defined and satisfies
(i) H is holomorphic on W,(0, F');
(i)
H(z) =G 'oHoF(z), for z¢€ W,(0,F),
or, equivalently,

HoF(z)=GoH(z) for z € W,(0,F). (4.5)

Proof of theorem 4.2.2: We are going to prove that H is our required biholomor-
phic map from W,(0, F') as an immersed complex submanifold onto E, (see Lemma
4.2.3 for the definition of E,).

If z;,2, € W,(0, F) and H(z,) = H(2;), then (4.5) implies H(F(21)) = H(F(22)).
Inductively, we have H(F'(z,)) = H(F!(2z)) for all nonnegative integers /. When !
is sufficiently large, both F!(z;) and F!(2;) are close to 0, but H is one-to-one in a
small neighborhood of 0. Thus F'(z,) = F!(z;). It implies that z; = 2z;. Therefore
H is injective.

By (4.5), we have

H'0oGo H(z) = F(z) for z¢€ W,(0,F).

Thus
H'oG o H(z) = Fi(z) for z€ W,(0,F).

Then
lim Fi(z) =0 iff lim G'(H(2)) =0
iff H(z) € E;. ( by Lemma 4.2.3)

So this implies that H(W,(0, F')) = E,. We have now proved that H is a biholomor-
phic map from W,(0, F') onto E,. a
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Chapter 5

Generalized complex Hénon

mappings

5.1 Introduction and notations

In this chapter, we will study the dynamical properties of complex polynomial au-

tomorphisms of CZ.

Let f be a polynomial automorphism of C? which consists of the finite compo-

sitions of “generalized Hénon” mappings (see [FM] for details), i.e.,

f=fio..0ofm,

where f; has the form
filz,y) = (v, p;(y) — a;2)
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for a monic polynomial pj(z) of degree at least 2 and a non-zero complex number
a;. For such an f, we define the degree of f by d(f) = [1’~, d(f;). The dynamical
properties of these polynomial automorphisms are nontrivial because the topological
entropy of f is positive, in fact Smillie [Si] proved that A(f) = log d, where d > 2 is
the degree of f.

Following [Hu] and [BS1], we define

K*:={peC®: {f*(p): n=0,1,2,..} is bounded},

and J* := OK* K := Kt N K~ and J := J* N J~. These interesting sets have
been studied by several authors (e.g., [FM], [BS1,2,3], [FS]).

Friedland and Milnor proved, Lemma 3.5 in [FM], that there exists a closed disk
D, = {z € C:|z| < k} (where & is a positive constant) such that the nonwandering

set Q(f) C Dy x Dy, and moreover
Qf) C K(f) C Dg x Dy.

Clearly, Q(f) and K(f) are f-invariant compact subsets of C®. So we can study the
dynamics of f on K.

Now we recall the definition of the equilibrium measure g of K from [BS1,3]. In
[BS1], Bedford and Smillie introduced the functions

1
G*(p,q) = Jim — log* [(f**(p,g)l-

The functions give the rate of escape of the orbit of (p,q) to infinity in forward
and backward time. It was shown in [BS1] that G* is continuous on C? and is a

pluriharmonic Green function of K*. The currents u* were defined in [BS3] as

1
+ _ c i
@ __27rddG
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[

where
dd° =2 Z ——ﬁ—dz' A dzi.
1$5ks2 0207

The equilibrium measure g of K then was defined as p = g+t A p~. It was proved
in [BS3] that (i) p is an f-invariant Borel measure on K and (ii) f is ergodic with
respect to .

It should be pointed out that the definition of stable/unstable manifolds given
in [BS1,2,3] and our definition of stable/unstable manifold are different. Following

[BS1,2,3], we set
W.(p,f) = {g € C*: lim d(#*(p), f*(2)) = 0}

Wa(p, f) ={g € C*: lim d(f*(p),f*(q)) = 0}.
Bedford and Smillie proved that if f is hyperbolic on J, then W,(p, f) and W,(p, f)
(Vp € J) are immersed complex manifolds biholomorphically equivalent to C. In
Section 5.2 we use the properties of u and apply Theorem 3.3.5 to prove several
more general results. In Theorem 5.2.1 , we prove that for p-a.e. p € K, the stable
manifold W?*(p, f) is an injectively immersed holomorphic copy of C. In Theorem
5.2.2, we show that for p-a.e. p € K, W*(p, f) C J* and W*(p, f) C J~. Moreover,
if p is a saddle point, then we have (Theorem 5.2.4) that W*(p, f) = W,(p, f) and

Wu(pa f) = Wu(paf)'

In Section 5.3, we study the heteroclinic points and homoclinic points of sad-
dle points. We prove that in Theorem 5.3.2 that for any two saddle points p and
q, W*(p, f) and W*"(q, f) have transversal heteroclinic points and W¥(p, f) and
W?(q, f) have transversal heteroclinic points. This implies that for any saddle point
p of f, f admits transversal homoclinic points. There are some interesting conse-

quences which are listed in Corollary 5.3.3.
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In Section 5.4, we introduce a new notation SJ(f) as an analogue of the Julia
set. SJ(f) is defined as the closure of the set of saddle points of f, and we call it
S-Julia set of f. We prove that SJ(f) bears most analogies with the Julia set of one
variable complex polynomial. For example, it is proved that SJ(f) is an invariant

perfect set, f|s;(s) is topological mixing and f is chaotic on SJ(f).
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5.2 Stable manifolds

Bedford and Smillie [BS1, Theorem 5.4] proved that if f is hyperbolic on J, then
for any point p € J, The stable manifold and unstable manifold at point p are
immersed holomorphic copies of C. In the following Theorem 5.2.1, we will drop
the condition of hyperbolicity and prove that for y-a.e. p € K, the same conclusion
holds. Here the measure p is the equilibrium measure on K which was defined in
Section 5.1. In other words, Theorem 5.2.1 contains the Bedford and Smillie’s result

as a special case.

Theorem 5.2.1 For p almost every p € K, the stable and unstable manifolds
We(p, ), W*(p, f) are immersed complez manifolds and biholomorphically equiva-
lent to C.

In order to prove above theorem, we need some well known results in ergodic
theory. Birkhoff Ergodic Theorem is the first major result in ergodic theory. It has
several versions. For our purpose, we recall one version of it for a measure-preserving
map of a o-finite measure space. A o-finite measure on a measurable space (X, B)
is a transformation m : B — R* U {co} such that

(i) m(0) =

(i) m(U2, Bx) = S e, m(Bg) whenever { B, } is a sequence of pairwise disjoint
members of B; and

(i) there exists a countable collection {A;}2 , of elements of B with m(4;) < oo

for all £ and URZ, 4x = X.

The probability measure provides an example of a o-finite measure.
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Theorem 5.A (Birkhoff ergodic theorem)(cf. [Wa, Theorem 1.14 & Remark])
(1) Suppose that (X,B,m) is o-finite, T : (X,B,m) — (X,B,m) is measure-

preserving and f € L'(m), then

1 k-1 .

= f(T’z)

m 7=0
converges a.e. to a function f* € L'(m). Also f*oT = f* a.e. and if m(X) < oo,
then [ f*dm = [ fdm.

(2) If T s ergodic, then f* is constant a.e. and so if m(X) < oo,

o1 .
fr= m(X)/fdm .

If (X,B,m) is a probability space and T' is ergodic we have that for any f € L'(m),
1 m—1

lim — ) f(T'z) = /fdm a.e.

m-—0Q
- m 3=0

Theorem 5.B(cf. [KS, Part III, Proposition 2.2]) Let (M, M, u) be a measure space
of finite measure, f : M — M a measurable measure preserving mapping, and G a

positive finite measurable function defined on M such that

G
tog™ Zed € L'(M,), where log™ a 1= minflog a,0}.

G
Then
lim llog G(ffz) =0 p almost everywhere,
n-o00 q
and

Gof
dy = 0.
/Mlog g =0
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Proof of Theorem 5.2.1: Let A; < A; be the Lyapunov exponents of p. Since
the entropy h,(f) > 0 (see [FM] or [Si]) and h,(f) is less than or equal to the sum
of positive Lyapunov exponents, then A, > 0. Since h,(f~') = h,(f) > 0, then
-1 > 0,i.e., Ay < 0. Thus

lim  log | D, 5 (v)]| = M < 0 (5.1)

holds for all 0 % v € T,W*(p, f) and for p-a.e. p € K.

By Theorem 3.3.5, we know that for p-a.e. p € K, W*(p, f) is an immersed
complex manifold which is diffeomorphic to R?. This implies that for p-a.e. p € K,
W*(p, f) is biholomorphically equivalent to either C or complex unit disk D.

Set S = {p € K : W*(p, f) is biholomorphically equivalent to D}. Clearly
f71(S) = S. Since f is ergodic with respect to p, u(S) =0 or u(S5) = 1.

Assume that u(S) = 1, i.e.,, W*(p, f) is biholomorphically equivalent to D for
p-a.e. p € K. In the following, we want to derive a contradiction.

For any p € S, W*(p, f) is biholomorphically equivalent to D, so we can define
the Poincare-Bergman metric, denoted by || - ||p, on T,W*(p, f).

By Theorem 3.3.3, we can assume that RS C S is the set of regular points in S
with p(RS) = 1.

For p € RS and every non-zero tangent vector v € T,W*(p, f), define

BN 12 5 PO
Flo) o T = G = o

Note that (i) F and G are independent of v because W?(p, f) is one-dimensional
and (ii) the Poincare-Bergman metric coincides with the Kobayashi pseudodistance
in our case. So by the distance-decreasing property of Kobayashi pseudodistance

for holomorphic mappings, we have

IDpf(0)llp = lvllp
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for any non-zero tangent vector v € T,W?(p, f). Thus a simple calculation gives

F(p) = G(f(p)) — G(p)- (5.2)

Note that any probability Borel measure is o-finite and p is f-invariant, so Birkhoff
ergodic theorem (see Theorem 5.A(1)) is true when applied to the function F(p).
Then the limit %ngé F(f7(p)) exists for p almost every p € K as k tends to +oc.
Moreover, Since f is ergodic, then by Theorem 5.A(2) and (5.2), we have

) 1 k-1 )
lim =3 F(fi(p)) = /de - /(Go f—G)u, g ae peKk. (5.3)
k—oo k j=0
It is easy to check that G and f satisfy the condition in Theorem 5.B, then we
have
/(G o f—G)dp = 0. (5.4)
(5.3) and (5.4) imply that
1 k-1 .
Im 2 Y F(F(p) = [(Gof-G)u=0, pae pek.  (55)
7=0
But
R 1. |1 Dpf ()l
lim — Y F(f’ = lim Zlog 2L 20
Lm - ;} (Fp)) = Jim 2log ==

.1
= Jlim —log||Dpf*(v)Il - log [lv]]
.1
~ Jim T log|D, £4(0)]
= A <0, pae p€eK.
Hence this contradicts (5.5). This shows that for py-a.e. p € K, the stable

manifold W*(p, f) is equivalent to C. By a similar argument, W¥(p, f) is biholo-
morphically equivalent to C for p-a.e. p € K. a
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Bedford and Smillie in [BS2] proved that for every saddle periodic point p, the
stable/unstable manifold at p was contained in J*/J~. Here we have a similar but

more general result.

Theorem 5.2.2 For p almost every p € K,

W*(p,f) CJ* and W*(p,f) CJ".

Proof: Let p € K be a regular point. Thus {f*(p)}}2% C K is obviously bounded.
This implies that W?*(p, f) C K*. Given q € W*(p, f), we assume that ¢ ¢ J*, i.e.,
ge W (p, f)\J*t Cc K*\J* =intK*. By Lemma 3.4 in [BS1], {f*} is a normal
family on intK™*. It follows that the sequence of the norms of Jacobian matrices
{1, 5N} is bounded. Let A; < 0 < A; be the Lyapunov exponents defined in
the proof of Theorem 5.2.1. Since ¢ € W*(p, f), there are positive integer ko large
enough, constant C > 0, and A with A; < A < 0 such that

|f*(q) — fA(p)l < CeM*  for k> ko
Hence there exists a constant C’ > 0, such that
“Jf"(q)f - Jfk(p)f” _<_ C'e’\k for k 2 ko. (56)

By (5.6), we can apply the perturbation theorem (cf. Theorem 4.1 in [Rul], note
that this theorem is proved in [Rul] for real case, but it is easy to get the complex
version, the arguments are same as what we did in Theorem 3.3.4) to the Jacobian

matrix of f and obtain
.1 k
Jlim 2108 2] = % > 0.

Since A; > 0, the sequence {||(J,7*)||}2, is unbounded, a contradiction. o
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We say p € C? is a saddle periodic point if (i) p is a periodic point with period
m; and (ii) one of the eigenvalues is strictly large that 1 in absolute value, and the

other is strictly less than 1 in absolute value. We recall a theorem in [BS2]:
Theorem 5.2.3([BS2, Theorem 1]) Let p be a saddle periodic point of f.Then

Jt=W,(p,f) and J~ = W,(p,f).

If p is a saddle periodic point, we will show that Wy(p, f) (resp. W.(p, f))
coincide with W*(p, f) (zresp. W*(p, f)).

We need the following property of stable/unstable manifold at a saddle periodic

point.
Theorem 5.2.4 Let p be a saddle periodic point of f, Then

Ws(pa f)1 Wu(pa f)a W,(P, f) and Wu(P: f)
are biholomorphically equivalent to C.

Proof: In Theorem 5.4 of [BS1], Bedford and Smillie proved that W,(p, f) and
Wu(p, ) (Vp € J) are biholomorphically equivalent to C if J is a hyperbolic set of
f. If we replace J by the orbit of p, then f is hyperbolic on the orbit of p. Then
Bedford and Smillie’s argument applies also to our case.This gives that W(p, f)
and W, (p, f) are biholomorphically equivalent to C. Note that every saddle periodic
point is regular and by Theorem 5.2.1, W*(p, f) and W¥(p, f) are immersed complex
manifolds and biholomorphically equivalent to C. So, the proof is finished. O

As a consequence of Theorem 5.2.3 and Theorem 5.2.4, we conclude the following

interesting result:
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Corollary 5.2.5 Let p be a saddle periodic point of f. Then

W?(p, f) = Wi(p, f) and W*(p,f) = Wu(p, f).

Hence

J*=W:(p,f) and J” = W(p, f).

Proof: We prove this theorem only for the case W?(p, f), the proof for the case
W(p, f) is similar. From Theorem 5.2.4 we know that W,(p, f) and W*(p, f) are

biholomorphically equivalent to C. So there exist two biholomorphisms
hi : W(p,f) = C and hy: Wy(p, f) — C.

Clearly W*(p, f) C W(p, f). Assume that W*(p, f) # W,(p, f), then ho(W*(p, f)) #
C and is simply connected. The simply connectedness of hy(W?*(p, f)) is due to the
fact that W*(p, f) is an immersed complex manifold and biholomorphically equiva-

lent to complex plane C. But
hio by’ : ho(W(p, f)) = C

is still a biholomorphism. This contradicts the Riemannian Mapping Theorem (cf.

F[BG]). We finish the proof. a

Remark 5.2.6: From [BS3] we know that there are infinitely many saddle periodic

points. For any two different saddle periodic points p and g, we have

W(p, f) CJ* = W*(q,f) = W*(q,f) ~ W*(g, f). (5.7)

But both W*(p, f) and W?*(q, f) are biholomorphically equivalent to complex
plane C. The formula (5.7) tells us that the stable manifolds at saddle points are

very intricate from the geometrical point of view.
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5.3 Transversal heteroclinic and homoclinic points

We first recall the definition of saddle points:

Definition 5.3.1. We say p € C? is a saddle point of f, if (i) p is a periodic point
with period m; and (ii) one of the eigenvalues of Df™(p) is strictly large than 1 in

absolute value, and the other is strictly less than 1 in absolute value.

By Theorem 5.2.1, the stable/unstable manifold at saddle point p is actually an

injectively immersed 1-dimensional complex submanifold in C?.

The following theorem is the main theorem of this section:

Theorem 5.3.2. Let p,q be two different saddle points of f, then there exist z,y
such that W*(p, f) intersects W*(q, f) at = transversally, and W*(p, f) intersects
W*(q, f) aty transversally. Consequently, both p and q admat transversal homoclinic

ponts.

Before proving this theorem, we list some easy consequences whose proofs are

standard (cf. [Del).

Corollary 5.3.3. (i) Every saddle point of f admits a transversal homoclinic point.
(i) There exists an f-invariant hyperbolic set T' such that f|r is topologically con-
Jugate to a topologz'cﬁl Markov chain and the topological entropy of f|r is positive.

(i1) There exists a positive integer N such that the period set of all the periodic

points of fN equals to the set of all positive integers.

Note that Corollary 5.3.3(iii) gives a partial answer of a conjecture of Friedland
and Milnor[FM, p.97] that there must ezist periodic points of all sufficiently large

periods.
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In order to prove Theorem 5.3.2, we collect some results from [BS1,Theorem 5.4},
[BS2, Theorem 1] and Theorem 5.2.1 and Corollary 5.2.5 (see [Wu2, Theorem 3.4

and Corollary 3.5]) and restate them as the following theorem.

Theorem 5.3.4. Let p be a saddle point of f, then
(i) W*(p, f) and W"(p, f) are injectively immersed complez manifolds biholomor-
phically equivalent to C.

(1) Wo(p,f) = J* and W¥(p,f) = J~.

By Theorem 5.3.4(i), for any saddle point p, we may assume that

¢:C_’Ws(paf)

is a biholomorphic diffeomorphism from C onto W*(p, f) (here W*(p, f) is considered
as an injectively immersed complex manifold). If g is another saddle point of f, then

by Theorem 5.3.4(ii), we have
We(p, f) = J* = W*(q, f).
Then there exist ¢t; € C with lim;_, |¢j| = 0o, such that

lim ¢(t;) = q.

j—»oo

Using these notations, we will prove the following lemma:

Lemma 5.3.5. For any real positive number a, there ezist a sequence of positive

numbers {r;} such that
|6(t) — 8(t;)] <@ for all te€ B(t),r;),
and there ezists T; € OB(t;,r;) with
|6(T)) — ¢(t;)| = a,
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where B(t;,7;) is the ball centered at t; with radius r; and 0B(t;,r;) stands for the
boundary of the ball B(t;,r;).

Proof: For a fixed j, we consider the real valued function m;j : [0,00) — [0,00)

defined by
m;(r) = max |¢(t) — §(t;)|.

teB(tj,r)

Claim: (i) m(-) is continuous and strictly increasing;
(i) max,c5; - [6(t) — 6(2;) = maxecon(;,r) [6(t) — é(t;)];

(ii1) Bm,_eo mj(r) = oo.

Proof of claim: (i) is obvious from the definition of m(-).
(i)Since 8(t) — (t;) = (61(8) — di(;),a(t) — da(t;)) : Bltsor) — C* is holo-
morphic on B(t;,r), the Maximum Modulus Theorem(cf. [Co]) implies that

max |¢(¢) — ¢(t;)] = max max{|¢1(t) = bi(t;)l, [42(t) — a2(t;)I}

teB(t;,r) teB(t;r)
= te‘,rarg?;f,r)max{lsﬁl(t) — &1(t5)1, da2(t) — ¢a(t;)[}
= mex |p(t) — B(25)|-

This proves (ii).
Using the Maximum Modulus Theorem again, we then have that the function
m(-) is in fact strictly increasing, consequently r; is unique for fixed j.

(iii) Theorem 5.3.4(i) and Liouville’s theorem (cf. [Co]) imply that
lim m(r) = oo,

r—00

otherwise ¢ would be a constant map which is impossible.

The claim guarantees that this lemma is true. o

Since lim ;. ¢(t;) = q, we have
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Lemma 5.3.6 For any € with 0 < € < , there exists a positive integer Ny such that
|6(t)—gl<a+e for all te€ B(tj,r;) with 7> Ny,

and

lim [¢(T;) gl = a.

Proof of theorem 5.3.2: We begin by making a renormalization of the sequence
of disks {B(t;,r;)}. From now on, we fix the positive constant a. Denote B :=

B(0,1) ¢ C and B; := B(tj,r;) C C. Define ¢; : B — B; by
hi(t) = rje®it +t;

where «; is the argument of the vector Tj —t;. Then T; = t; + rje’. Clearly
¥;(1) = T; and 9; can be considered as a biholomorphic map from B onto B;. The
notation B stands for the closure of the unit ball B. The notation H(B,C?) will
stand for the set of holomorphic mappings from a neighborhood of B into C? with
the topology of uniform convergence.

Denote g; := ¢ 0 ¢;, then by Lemma 5.3.6 {g;} is a bounded sequence of biholo-
morphic maps on B. Using the coordinates of W?*(p) given by ¢ and by Montel’s
theorem (cf. [GR]), there exist a subsequence {ji}, such that

i 2 9€ H(—Ba Cz) and g;,, - g, € H(—E’CZ),
where the convergence means the uniform convergence.

By Hurwitz’s theorem (cf. [Co]), g is a nonsingular holomorphic map or g is

identically equal to a constant. But the later case is precluded by the condition

l9(1) — 9(0)} = |g(1) — g/ = a > 0.
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This implies that g(B) is a simply connected complex submanifold containing the
point q.

Let E°(q) and E*(q) be the complex tangent space of W?(q) and W*(q) at point
q respectively. Since g is a saddle point , E*(g) must intersect E*(q) transversally
at q.

(i) If ¢'(0) € E¥(q), then g(B) intersects W*(q) transversally at g. This implies
that g;, (B) intersects W*(q) transversally, i.e., ¢( B;, ) intersects W*(q) transversally
provided k is large enough. This shows that W*(p) N W*(q) # 0. But p # g, this is
a contradiction.

(ii) If ¢'(0) € E*(q). The same argument as in case (i) implies that W*(q) inter-
sects W?(p) transversally. In fact, ¢(B;,) intersects W*(q) transversally, provided k
is large enough.

(i) If ¢’(0) = ases + ayey,as,a, € C* and 0 # e, € E°(q),0 # e, € E¥(g), then
the same arguments as in case (i) imply that W*(p) N W*(q) # 0 (see Figure 1).
This is impossible by the definition of stable manifold.

Therefore only case (ii) is possible.

This finishes the proof of theorem 5.3.2. a
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5.4 S-Julia set

In this section, we will give a definition of S-Julia set for f which is similar to the
definition of the Julia set of one variable complex polynomials. we will prove that
‘the S-Julia set of f bears most analogies with the Julia set. The S-Julia set seems
to be a better candidate for the analogue of the Julia set in the case of two complex

variable polynomials.

Definition 5.4.1 Let f be a finite composition of “generalized” Hénon mappings.
The S-Julia set of f, denoted by SJ(f) or simply by SJ, is the closure of the set of
all saddle points of f.

Corollary 5.4.2. (i) SJ(f") = SJ(f), for all integers n, and f~1(SJ(f)) = SJ(f).
(i) J* C ST C J.

Proof: (i) is obvious by Definition 5.4.1.

(ii) By Theorem 5.3.2, for any saddle point p we have

pE W (p, f)NW¥(p, f) SWs(p, f)NWu(p, ) =J"NJ™ = .

Since J is a closed set, this implies that J contains the closure of the set of all saddle
points, i.e., J 2 SJ.

By [BS3, Theorem 3.4], J* contains a dense subset of the saddle points, then
J* C SJ by Definition 5.4.1. g

Before stating our main results of this section, we recall some well-known results

which we will use in the following proofs.
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A-lemma. Let f be a C' diffeomorphism with p as a hyperbolic periodic point, and
let D* be a u-disk in W*(p, f). Let D be u-disk meeting W*(p, f) transversely at

some point . Then Un>of™(D) contains u- disks arbitrarily C' close to D*.

Smale Homoclinic Theorem. Let f be a C' diffeomorphism with a hyperbolic
periodic point p having a transversal homoclinic point ©. Then there is an integer
n > 0 such that f™ has a closed invariant set A containing = and p so that f"|,
is topologically equivalent to the 2-symbol shift automorphism. Moreover, A is a
hyperbolic set for f* and the homoclinic point x is in the closure of the hyperbolic
periodic points of f.

A-lemma can be found in [Pal], [PM] or [Ne| and Smale Homoclinic Theorem
can be found in [Sa] or [Ne].

Theorem 5.4.3. f is topological mixing on SJ(f), i.e., for any two non-empty
open sets U,V C SJ(f), there exists a positive integer N such that f*(U)NV # 0

for any positive integer n > N.
Before proving this theorem, we first present following key lemma.
Lemma 5.4.4. Let p,q be two different saddle points of f. Then for any neighbor-

hoods U of p, V of q, there exists a positive integer N such that

AUNSI(NN(VNSI(f)#0 for all n> N. (5.8)

Proof: By Theorem 5.3.2, there exist two points z,y such that W?*(p, f) inter-
sects W¥(q, f) at point z transversally, and W*(p, f) intersects W?(q, f) at point y
transversally. Then the A-lemma implies that the point y is the limit of a sequence

transversal homoclinic points {y,} of point g, see Figure 5.1.
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According to the Smale Homoclinic Theorem, for each y,, there exists an integer
ng > 0 such that f™ has a closed hyperbolic f™-invariant set I', containing ¢
and y, so that f™|r, is topologically equivalent to the shift automorphism (Z,, ).
Consequently, y, is in the closure of the hyperbolic periodic points of f in I',,.

LA

LA

W)

Figure 5.1

We begin to prove that y, is actually in the closure of saddle points in I',. Since
Yn is a transversal homoclinic point of ¢ and T, is f™-invariant, f"*(y,) — ¢ as
k — oo and f™!(y,) € T, for all integer [. The definition of hyperbolic set tells us
that the splitting of the tangent space, T.C* = E*(z)® E¥(z), depends continuously
upon z € I',, in particular, the dimension of the vsta.ble tangent subspace at z,
denoted by s(z) := dimE*(z), depends continuously upon z € T, (cf. [Kal]). Of

course also, u(z) := dimE¥(z) is continuous on z € I',. This means that

s(f**(yn)) = 5(g) = 1 and u(f"*(ya)) = u(q) = 1 (5.9)
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provided k is large enough. But s(f(z)) = s(z) and u(f(z)) = u(z), so (5.9) implies
that
$(yn) = u(ya) = 1. (5.10)

Since y, is an accumulation point of a sequence of hyperbolic periodic points,

say {pni}{2;,in I'y, the same argument as above shows that

o(pnd) = () =1 and  u(pas) = u(yn) =1 (5.11)

provided ! is large enough. Hence y, is an accumulation point of a sequence of saddle
points, i.e.,

yn € SI(F). (5.12)

Consequently, the point y = lim,_ ¥n is also an accumulation point of a se-

quence of saddle points of f,i.e.,

y e SJ(f). (5.13)

For any neighborhoods U of p, V of g, it is clear that there exists an integer

ni > 0 such that
fM(y) eV and f"(y) €U for all n>mn,. (5.14)
Then for all integer & > 0, we have
frRy) e PrRU) NV (5.15)

The facts that y € SJ(f) and f~Y(SJ(f)) = SJ(f) together with (5.15) imply
that
rUnSIHHNVNSI(f)#0 for all n > 2n4. (5.16)

This finishes the proof of this lemma. O
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Remark 5.4.5. In fact, the proof of Lemma 5.4.4 also shows that any saddle point
is accumulated by a sequence of pairwise different saddle points. Hence SJ(f) has a

very nice property which is similar to one of the Julia set in the case of one complex

variable: SJ(f) is a perfect set.

Proof of Theorem 5.4.3 Given any two non-empty open set 4,B C SJ(f).
Since both A and B contain infinitely many saddle points, we may choose small
non-empty open sets 4, C A, By C B such that 4, N B; = 0 and there exist a
saddle point p € A;, another saddle point ¢ € B;. By Lemma 5.4.4, there exists a
positive integer N such that

ff(A1))NB; #0 for all » > N.

This implies that
ff(A)NB#0 for all n> N.

Hence f is topological mixing on SJ(f). O

There are a series of interesting consequences of Theorem 5.3.2 and Theorem
5.4.3. We list some of them below. First, we recall the definition of chaos in the

sense of Devaney (cf. [De]).

Definition 5.4.6. Let X be a metric space, a mapping F : X — X is said to be
chaotic in the sense of Devaney on X if

(a) F has sensitive dependence on initial conditions, i.e., there exists § > 0 such
that, for any « € X and any neighborhood U of z, there exists y € U and an integer
n > 0 such that [F"(z) — F*(y)| > §;

(b) F is topologically transitive, i.e., for any two non-empty open sets U,V C X
there exists some positive integer m such that F™(U)NV # 0;

(c) Periodic points of F' are dense in X.
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Theorem 5.4.7. f is chaotic on SJ(f) in the sense of Devaney.

Proof: As topological mixing implies topological transitive, the conditions (b) and
(c) of chaos for the map f|s; are satisfied by Theorem 5.4.3 and Definition 5.4.1.
What we need to prove now is that f|s; has sensitive dependence on initial condi-
tions.

Since SJ is compact and infinite, we may assume that
0 < R= max |p—q| < oo.
Jmax |p —q|

We take § = % in the Definition 5.4.6. For any given p € SJ and any given

neighborhood U of p, we divide the proof into the following two cases.

(i) If pis a saddle point, then there exists another saddle point g such that [p—g| > %.
By Theorem 5.3.2, there exists a transversal heteroclinic point y of W*(p, f) and
W2(q, f). Then

lim f*(y)=q and lim f7"(y) =gq. (5.17)

This implies that there is a positive integer NV such that f~"(y) € U. Let the period

of p is m, then
: ml ml( p~N : mi-N R
fm [f™(p) = (@) = bm lp = W = lp—al > 5. (5.18)
Obviously, there exists a positive integer L large enough such that

1F™E(p) — FRE(FN ()] > 156'

(ii): If p is not a saddle point, then there exist infinitely many saddle points in U.
Suppose that
|f*(p) — f*(2)] < § for any z€U. (5.19)

We will derive a contradiction below.
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For any y,y’ € U and for any positive integer k, we have
1F5) = £ 2 IF*(y) = FF @ = IF5) = o)l 2 1f*(y) — F* ()] - &
Hence by (14), we have
If*(y) — F* ()| < 252—? for any y,y’ € U and all integer k. (5.20)

If we choose y a saddle point, then a similar argument as in the first case and

(5.18) imply a contradiction to (5.20). O

Let us recall the definition of a normal family.

Definition 5.4.8: Let {F,} be a family of holomorphic mappings defined on an
open set U C C™ into C*. The family is called a normal family if every sequence of
the family {F,} has a subsequence with either
(1) converges uniformly on every compact subset of U, or
(i) converges uniformly to oo on U.

The family {F,} is called not normal at point zo € U if the family fails to be a

normal family in every neighborhood of z,.

Theorem 5.4.9. The family of iterates { f*} is not normal at any point zo € SJ(f).

Proof: Without loss of generality, we may assume that 2, is a fixed saddle point
because any point in SJ is accumulated by a sequence of saddle points. Assume
that {f"} is a normal family on a neighborhood U of zy. Since f™(zy) = 2z for
any integer n, it follows that f"(z) does not converge to oo on U. Thus there is a
subsequence {f"} which converges uniformly to a holomorphic mapping F on U.

Hence |D f"i(z)| — |DF(z)| as § — oo. Assume that Df(2o) has the form

A 0
with |A;|>1 and [X] < 1.
0 A
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Then D f"(z) has the form

P
0 AN )

Clearly |Df™(20)| — oco. This contradiction establishes the result. O

Theorem 5.4.10. The topological entropy of f|s;(y) is log d, where d is the degree
of f.

Proof: By [BS3, Corollary 4.5], hiop(fls+) = hiop(f|s) = logd. This equality to-
gether with Corollary 5.4.2(ii) imply the conclusion of this theorem. O

Theorem 5.4.11. Both the homoclinic points and the heteroclinic points of f are
dense in SJ(f).

Proof: This is a direct consequence of the proof of Theorem 5.3.2. O
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