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Introduction

It is well known that mathematical models of many problems in Fracture Mechanics, Image Segmenta-
tion, Static Theory of Liquid Crystals and other applied sciences, involve the minimization of integral
functionals defined in spaces of discontinuous functions and consisting of a bulk term and of a surface
energy part concentrated along the (free) discontinuity zone (whence the name of “free-discontinuity
problems”). The appropriate space where a weak formulation leading to existence results can be done,
has been proved to be SBV, the space of special functions of bounded variation introduced by De
Giorgi and Ambrosio ([27]); in this setting such functionals take the form

/Qg(as,Vu)dx+/ go(m,[u],vﬁ)d’HN—l, (1)

where we denoted by Vu, Sy, [u] and v, the approximate gradient, the jump set, the jump of « and
the approximate normal vector to S, , respectively (we refer to Chapter 2 for the precise definitions).
A prototypical example is given by the Mumford-Shah functional

Fg o(u) = / |Vul? do + HVH(S,) + 8 (u —g)? dz, (2)
Q\S, Q\ Sy

where 5 > 0 and g € L*(Q). It was introduced in [44] in the framework of a variational approach to
Image Segmentation.

The existence theory for free discontinuity problems has been developed by Ambrosio in [6]; how-
ever, his results, which are based on compactness arguments, do not provide any information about the
behaviour of the solutions. Actually, one of the most relevant mathematical features of the Mumford-
Shah functional and of functionals like (1), is a deep lack of convexity, which causes non-uniqueness
of the solutions and makes the exhibition of explicit minimizers a very difficult task, even in terms
of numerical approximations. To overcome these difficulties, in the last years a lot of work has been
addressed to performing variational approximations (in the sense of De Giorgi’s I'-convergence) via
smooth functionals defined in Sobolev spaces, for which the numerical treatment is easier. In this way
one can also achieve the goal of defining a parabolic evolution model as limit of the gradient flows of
the approximating functionals.

The aim of this thesis is twofold. In the first part we attack the problem of finding explicit solutions,
confining our treatment, for simplicity, to the Mumford-Shah functional and to the homogeneous
version

Fo(u) = /Q Vuf? dz + HYI(S,), (3)

which occurs in the theory of interior regularity for minimizers of Fg,; in the second part we deal
with the variational approximation of general free-discontinuity problems.

1




2 Introduction

Let us start with the description of Part I. First of all, we recall that every minimizer must satisfy
suitable equilibrium conditions, which can be obtained by considering different types of variations:
according to the classical terminology, we will call them Euler-Lagrange equations. For example, it
is immediate to see that if u minimizes Fj 4, then it solves Au = B(u — g) in the complement of
S, , with homogeneous Neumann conditions along S,,. Concerning Fp, if S, is regular, the following
equilibrium conditions are satisfied (see [45]):

i) w is harmonic on Q\ Sy;
ii) the normal derivative of u vanishes on both sides of Sy;

iii) the mean curvature of 3, is equal to the difference of the squares of the tangential gradients of
u on both sides of S,.

Here and in the sequel, we will say that u is an extremal for Fy (or an Fp-extremal) if it satisfies
conditions i), ii) and iii) above. Due to the lack of convexity, the extremality conditions do not
imply minimality, not even local minimality, as elementary examples show. The theory of calibration
recently developed by Alberti, Bouchitté & Dal Maso in [2], provides us with a sufficient condition for
optimality. We will use this method to exhibit a wide class of non-trivial minimizers and to prove that,
in many situations, Euler-Lagrange equations imply the minimality in small domains (as it happens for
several classical problems of the Calculus of Variations). Before entering the discussion of our results,
we want to describe the basic idea of the calibration method, focusing our attention, for simplicity, on
the homogeneous functional Fp.

Given v in SBV(Q), let u* and u~ denote its limits on the two side of the discontinuity set Sy,
so that u™ > v, and let v, be the normal unit vector to S, pointing towards u™; the complete
graph of u, denoted by T, is the boundary of the subgraph of u, oriented by the inward normal
vr, . In other words, it consists of the union of the usual graph and of all “vertical” segments joining
(z,u"(z)) and (z,ut(z)), with z varying in S, (see Figure 1 below). Let u: Q(C RY) — R be an

N

Figure 1: The complete graph of u.

extremal for Fp; a vectorfield ¢ = (4%, ¢%) : @ x R = RY x R is a calibration for u in © with respect
to Fyp, if it satisfies the following conditions:
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(a) divg = 0 in the sense of distributions;
(b) |¢%(z, 2)|? < 4¢°(z,2) for 1 €Q, z € R;
(c) ¢%(z,u(z)) =2Vu(z) and ¢*(z,u(z)) = |Vu(:r)]2 for z € Q\ Sy;

ut(z)
(d) / ¢*(z,2)dz = vy (z) for z € Sy;
u~ ()

” ¢%(z,2)dz

t1

<1for z e, ty,t; € R.

(e)

The principle of calibrations says that the existence of such a ¢ implies that u is a Dirichlet-minimizer
of Fy in 2, which means that v minimizes F; among the functions in SBV(Q) with the same values
as u on 0f). Assuming that ¢ is regular enough, the proof of this fact is very simple and short. First
of all, given v € SBV (), consider the flux of ¢ through I',, which is given by

¢-vp, dHY = /Q [0 (z,v) - Vu(z) — ¢*(z,v)] dz +/ [/i ¢*(z, 2) dzj| vy (z) dHY " Ha)

Ty v
(4)
from (4), taking into account (e) and the inequality
4% (3,0) - Vo(z) - ¢*(z,0) < |Vol?,
which is true for every z € Q \ S, thanks to (b), we have
/¢wmﬂﬂgﬂw) Vv € SBV(Q). (5)
Note also that by (c), (d) and (4), it turns out
Fow) = [ ¢-vr, dHV. (6)

Tu

We are now in a position to conclude: indeed, for every function v which agrees with u on the
boundary of §2, by (5) and (6), we have

Fotw) = [ ¢vr ai” = [ ¢, an < Roo),
Tu Ty
where the second equality follows from the divergence theorem, since ¢ is divergence-free and I',, and
I'y have the same boundary.

Let us point out that in [2] the theory of calibration method has been developed for general
free-discontinuity problems. Concerning the non-homogeneous Mumford-Shah functional Fg 4, a cal-
ibration with respect to this functional will be a vectorfield satisfying all the conditions above except
(b) and (c), which have to be replaced by

(b) [¢%(z,2)]* <4[¢*(z,2) + B(z —u(z))?] for 2 €Q, z€R;
() ¢%(z,u(z)) =2Vu(z) and ¢*(z,u(z)) = |Vu(z)]* — Blg(z) — u(z))? for z € 2\ S,,.
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In [2], the authors provide easy and short proofs of some natural minimality results; in all their
applications they deal with minimizers presenting either a vanishing gradient or an empty discontinuity
set and such a simple structure allows quite simple constructions. In this thesis we will face the more
complicated problem of performing calibrations also for candidate functions with both non-vanishing
gradient and nonempty discontinuity set. We will consider only functions with regular discontinuity
set; however, some of our results can be extended also to the case when the singular set S, presents
a triple junction (see [37]), while it is completely open the problem of calibrating minimizers with a
cracktip. '

As a matter of fact, we do not know of any general recipe to find calibrations but each time we have
to restart and look for a particular construction working in the particular case under consideration.
However, in all the constructions we are going to perform, some common features are present that
we try now to describe. First of all they are made by blocks: we decompose the open set U (where
we want to define the calibration ¢) in a finite family of Lipschitz subsets (Ai)i=1,., and we take ¢
coinciding in A; with a suitable divergence-free vectorfield ¢;; of course, in order to guarantee that ¢
is globally divergence-free in the sense of distributions, the ¢;’s must satisfy a suitable transmission
condition along the interfaces. Our constructions present more or less the structure shown in the
following figure:

™

Figure 2: The structure of the calibration.

there are two thin slabs (A; and Ag) around the two “branches” of the regular part of graphu and
a block As in the “middle”; the other regions are simply transition regions where ¢ is taken purely
vertical. Each block plays a different role depending on his location. The slabs A; and Aj are the
core of the calibration and the definition of ¢y and ¢ the more delicate point, since it is here that we
have to exploit all the information contained in the equilibrium conditions satisfied by u; the block
As acts as a corrector: it annihilates the tangential component introduced in A; and A and injects
the missing normal component in order to fulfill condition (d). The proofs of our minimality results
usually proceed as follows: at the beginning we define the candidate calibration ¢ in such a way that
conditions (a), (b), (c¢) and (d) are automatically satisfied; we let the definition depend on some
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parameters and in the rest of the (very long and technical) proof we show that a careful choice of
them allows to achieve also condition (e). The scheme of that part of the proof is more or less the
following. Exploiting the geometrical structure of the vectorfield, we show that condition (e) is proved
if we verify that, for every z¢ € S, N U, the function

I (1) :=

ot
/ ¢" (w0 + tvy(z0),2) dz|  (we can think ¥ and u™ suitably extended beyond S,,)
u—

has a strict maximum for ¢ = 0; then, the Euler-Lagrange equations imply that I, (0) = O while
tuning the parameters leads to I/ (0) < 0, which gives the desired result.

Let us now describe in deeper details the content of the first part of the thesis.

In Chapter 2 (which contains the results of [26]), we prove that if u is an extremal for the homo-
geneous Mumford-Shah functional Fy on a two-dimensional domain, and if S, is a straight segment
connecting two boundary points, then, for every (Z1,Z2) € S, (under the additional technical as-
sumptions that Vu(Z,Z2) # 0 and 62 u(Z1,%2) # 0, where 9. denotes the tangential derivative),
there exists a neighbourhood U of (Z;,%2) such that u minimizes Fy in U with respect to its own
boundary values on dU (i.e. it is a Dirichlet-minimizer). In Section 2.2 we treat the special case of

1 ifz9 >0,
, = 7
u(er,22) {—m o <0 ()

and we give the first example of calibration for a discontinuous function which is not locally constant.
Although it is the simplest one, such a case involves most of the technical difficulties of the general
one. From the point of view of calibrations, the interaction between the (non-vanishing) gradient and
the (nonempty) discontinuity set is reflected in the fact that we have to guarantee simultaneously
conditions (c) and (d), which push in opposite directions. Indeed, condition (c) forces ¢* to be
tangential to .S, on the graph of u while (d) says that ¢* must be on the average orthogonal to S,
for z € Sy and t between u™(z) and u™(z); so we have, in some way, to “rotate” ¢® and this must
be done carefully, without compromising the other conditions. Fashioned upon this simple geometric
idea of “rotating” ¢®, our candidate calibration ¢, near the graph of u (i.e. in the blocks 4; and As
of Figure 2), takes the form
(A(z1,z2,2)2e1,1),

where A(z1,72,2) is a suitable orthogonal matrix which, in view of condition (c¢), must coincide with
the identity for z = u(z1,22) (see Figure 3 below). In treating general extremal functions w with
a rectilinear discontinuity set, we perform the change of variable (z1,z2) — (w(z1,z2),v(z1,22)),
where v is the harmonic conjugate of w; under this map, which is supposed to be conformal in a
neighbourhood of the point (Z;,%2) € S, (whence the technical assumption Vw(Z1,Z,) # 0), w is
tranformed into the function u of (7) so that we can “recycle” the construction above. Concerning
the definition of ¢ in A; and As, this procedure turns out to be equivalent to taking

¢ = (A(w,v,2)2Vw, [V’w{2) ,

where A is the matrix used for the function in (7).

In Chapter 3 (which contains the results of [39]) we deal with general Fy-extremals defined in two-
dimensional domains, whose discontinuity set can be now any analytic curve joining two boundary
points. The use of a new technique enables us to prove that the Dirichlet-minimality holds not only in
a neighbourhood of each point of S, but, actually, in a uniform neighbourhood of the whole S, (see
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~

Figure 3: Section of the set A; at z=constant.

Theorem 3.1.1). Let us underline that the analyticity assumption for S, does not seem too restrictive:
it has been proved that the regular part of the discontinuity set of a minimizer is of class C° and it
is a conjecture that it is analytic (see [9]).

The main novelty concerns the definition of ¢ in the blocks A; and Ay. We begin with the
following remark: if we fibrate a neighbourhood of the graph of u by the graphs of a family of
harmonic functions (v¢);er and we let ¢ be equal to

(2Vvy, [V |?)

on the graph of v;, then ¢ is divergence free (see Lemma 3.2.1). We perform such a construction
using the family
vy = U+ 1o,

where v is a suitable harmonic function with gradient orthogonal to Sy, which does the work of
injecting some of the normal component needed to fulfill condition (d). Note that this technique
resembles the classical method of the Weierstrass fields, where the proof of the minimality is achieved
by considering the gradient field of a family of extremals, foliating a neighbourhood of the graph of w.

We are also interested in a different type of minimality: in Theorem 3.1.1 we compare u with
competitors of the form u + w, where the perturbation w can be very large, but vanishes outside
a fixed small neighbourhood of S,; we wonder if a minimality property is preserved also when the
perturbation has L°-norm very small outside a (small) neighbourhood of S, but support possibly
coinciding with .

Accordingly, we say that u € SBV () is a local graph-minimizer in {2 if there exists a neighbour-
hood U of the complete graph of u such that Fy(u) < Fy(v), for every v € SBV(Q) with the same
values as » on 8Q and with complete graph contained in U (see the figure below).
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1]

Figure 4: v and w are admissible competitors for the graph-minimality.

In [2] it is proved that any harmonic function defined in ) is a local graph-minimizer whatever
is. If the function presents some discontinuities, it turns out that the graph-minimality may fail when
{2 is too large, even in the case of rectilinear discontinuities, as the counterexample given in Section
3.3 shows.

Therefore, we have to add some restrictions on the domain Q. To this aim, we introduce a suitable
notion of capacity which seems useful to describe the right interplay between S, and Q. Given an
open set A (with Lipschitz boundary) and a portion I' of A (with nonempty relative interior in
0A), we define

K(T,A) = inf{/ [Vol?dz : v e HY(A), /?ﬂd%l =1, and v =0 on 8A\F}.
A T

Note that if 4; C Ay, and 'y C Ty, then K (T'y, A1) > K(I'y, A2), which suggests that if K (I, A) is
very large, then A is thin in some sense. In Subsection 4.3.1 (see Theorem 3.1.4) we prove that given
an analytic curve I', there exists a positive constant C(I'), depending explicitly on the length and on
the curvature of T', such that if Q is '-admissible (that is I'NQ connects two points of dQ and Q\T
has two connected components €2; and Q3), and if u € SBV () is an extremal satisfying S, = T'NQ
and
izggK(P N2, Q) > CO) 110wt 2 rray + 1870 122 (e,

then u is a local graph-minimizer in €.

Remark that the condition above imposes a restriction on the size of Q depending on the behaviour
of u along Sy: if u has large or very oscillating tangential derivatives, we have to take £ quite small
to satisfy it. In the special case of a locally constant function u, such a condition is always fulfilled
and therefore u is a local graph-minimizer whatever Q) is, in agreement with a result proved in [2]. In
the final part of the chapter we investigate some properties of K(I',2) and we present an application
of Theorem 3.1.4.

In Chapter 4 (containing the results of [40]) we are interested in the minimizers of the non-
homogeneous Mumford-Shah functional Fp, (see (2)). We recall that in the context of Image Seg-
mentation, for N = 2, ¢ is the input grey level function, the function u which minimizes Fgq
represents a piecewise smooth approximation of ¢ (the processed image) and S, the set of relevant
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contours. It is intuitive that taking § very large forces the solution u to be close to g. This asser-
tion is made precise by the following simple computation: assuming for simplicity that g belongs to
SBV(Q) and satisfies

Fpelg) = -/Q\S Vg dz +H"1(Sy) = C < +o0, (8)
g

and letting ug be a minimum point of Fp 4, we have

Fpglug) _ Fpglg) _C

2 B,g\Ug 8,9

ug —g)? d < < -

Jywo=o) 8 5 B

that is ug — g in L?(Q) as B — +oo. This suggests that, in agreement with our expectations, if § is
large, ug is an “accurate” reconstruction of the original image g. Actually, T.J.Richardson in [48] has
proved also the convergence of the discontinuity sets in dimension two: more precisely, he has shown
that if g satisfies (8) and is of class C%! outside any neighbourhood of the singular set Sy, then

| Suy —+ Sy in the Hausdorfl metric and Hl(Suﬁ) — H(S,),

as 8 — +oo. In the main theorem of the chapter (see Theorem 4.3.2), using the calibration method,
we are able to prove that, under suitable assumptions on the regularity of £, g, and S, the following
stronger result holds true.

Suppose that T' is a closed hypersurface of class C%% contained in the N-dimensional domain 2
(satisfying in turn suitable regularity assumptions), and let g belong to WhHe(Q\T), with Sg =T
and infzer(gt(z) — g~ (x)) > 0 (where g™ and g~ denote the upper and the lower traces of g on
I'). Then, there exists Sy > 0, depending only on I, on the W .norm of g, and on the size of the
jump of g along T', such that, for 8 > By, Fj,, admits a unique absolute minimizer ug which satisfies
Sug =1 and

Oyug =0 on 9(Q\T); 9

{AuB =Pug—g) inQ\T
in other words Fj 4 not only approximates but, in fact, reconstructs the regular contours exactly, when
the fidelity parameter f is sufficiently large. Note that, differently from the previous chapters, we are
concerned now with global minimizers. We point out that the case of g equal to the characteristic
function of a regular set and the case of g regular in the whole Q2 have been already treated in [2]
and require a simpler construction. The starting point for the definition of the calibration is similar
to the one of Chapter 3: if we fibrate a neighbourhood of the graph of ug by the graphs of a family
of functions (v;)er all satisfying (9) and we let ¢ be equal to

2V, [Vl = Bve — 9)?)

on the graph of vy, then ¢ is divergence-free. But here there is a new difficulty due to the fact
that we are looking for a vectorfield defined in the whole ©: actually, we have to suitably modify the
construction above in order to make it working “globally”. Another technical difficulty originates from
the need of estimating how quickly the gradient of ug changes. Indeed suppose that (d) holds true;
then, if near I' the gradient suddenly becomes orthogonal to I' or abruptly increases its modulus,
it could happen that condition (f) is violated; this risk can be bypassed by carefully estimating the
L -norm of the Hessian matrix V2u5 with respect to B: this is what we do in Section 4.2 where,
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using some tools of sectorial operators theory and interpolation theory, we prove that for any positive
~ sufficiently small, there exists a constant K, independent of 3, such that the solution ug of (9)

satisfies 1
V2ugllco < KB igllwrce-

In order to perform such an estimate we need to assume that I' is of class C%e | for some o > 0 («
can be arbitrarily small), however, at least in dimension two, this regularity assumption is close to
optimal, since, by the Bonnet Regularity Theorem (see [11]), in a neighbourhood of any regular point,
the discontinuity set is of class Cb!, for every g € L®(Q).

In Subsection 4.3.2 we extend, for N = 2, Theorem 4.3.2 to the case when 2 has piecewise smooth
boundary (say a curvilinear polygon) and I' touches the boundary.

As an application of our results, we give in Section 4.4 a proof of the following fact: if ug is regular
enough outside a smooth singular set Sy, then the gradient flow u(z,t) of ug for the homogeneous
functional Fy keeps, at least for small times, the singular set of u(-,?) equal to Sy,, while u evolves
in Q\ Sy, according to the heat equation with Neumann boundary conditions on 9(Q \ Sy,). In
dimension one, this result was proved by Gobbino (see [29]), with a slightly different definition of
gradient flow.

Let us switch now to the second part of the thesis which concerns, as we said before, the vari-
ational approximation of free-discontinuity problems. When the volume part of the energy is given
by fQ |Vu|? dz, heuristic considerations suggest to use, as approximating functionals, energies of the
form

1
[ ravupas,

where f : [0, +00) — [0, +00) is quadratic near the origin and with finite limit at infinity. However, an
easy convexity argument shows that energies of this kind I'-converge to the zero functional. Various
methods have been developed to bypass this convexity constraint, most of them exploiting the De
Giorgi’s suggestion of replacing the functionals above with suitable non-local versions (see [16], [30],
[23]). The approach we consider in Chapter 5 (which contains the results of [41]) is based on singular
perturbations and consists in adding a “small” term depending on higher derivatives: the idea is
to impose a bound on the oscillations of minimizing sequences by penalizing abrupt changes of the
gradient. So we are led to consider energies of the form

L [ swamadarie) [ 19 o, (10)

where r(g) is a function which vanishes as ¢ — 07.
The first progress in this direction was made by Alicandro, Braides & Gelli in [4]: they showed
that the one dimensional functionals

1 1 1
s e [ as,
£ Jo 0

with f(t) = at? A B8, T-converge with respect to the L'-norm to the functional

1 .
a/ {u’iZdw+c(ﬁ)Z\/u+—u‘,
0 S
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where ¢(8) is a suitable constant depending on 3; later Alicandro & Gelli treated the N-dimensional
case (see [5]). We aim to extend the results above to general functionals of the form (10), where f is
still quadratic near the origin, but possibly unbounded. In fact we face the problem in a more general
framework, by investigating the asymptotic behaviour of

F(w) ::/QfE(IVu|)dx+(r(s))B/QHVQuHde, (11)

where (f:) is any family of positive non-decreasing functions with a convex or convex-concave shape
(i-e. there exists z > 0 such that f. is convex in [0,z.] and concave in [z¢,+0c0)); let us remark
that such a structure assumption is quite natural for this kind of problems (see, for example, [17],
(18], [31]). In the main theorem of the chapter (Theorem 5.1.2) we prove that the I'-limits of (11) are
related to the pointwise limits of f(¢) and of r(e)f:(t/r(g)): if for an infinitesimal subsequence (&)
we have

a) fe, — g pointwise,
b) 7(en) fe, (/r(en)) — b pointwise,
then (F;,) I'-converges to a functional F' defined on BV (Q) and taking the form

F(u) = /Qf(]Vul) dz +/S lu™ —u7) + C| D, (12)

where C (possibly equal to +co, meaning that F is finite only on SBV), f, and ¢ can be charac-
terized in terms of ¢ and b.

The “regularizing” effect due to the presence of the second derivatives in the approximating func-
tionals, determines a restriction on the regularity and on the growth of the jump-function ¢, which
turns out to satisfy the growth condition

Ci(vz—=1) < p(z) < Co(z+1) V220,

for suitable Cy, C5 > 0, whenever lim, ,o+ b(t)/t # 0; moreover, we always have ©(0) = 0. In
particular, the Mumford-Shah functional is not reachable by our procedure. However, since for
any positive, convex, and superlinear function ¢ and for any positive and concave function b with
lim; o+ b(t)/t = +o0, it is possible to construct a family (f;) and a rescaling function 7(g) such
that conditions a) and b) above are fulfilled, we see that a wide class of free-discontinuity functionals
with ¢ satisfying (5.1.57) can be approximated. Letting b vary among the possible choices, we may
conjecture to recover most of the admissible asymptotic behaviours as the following fact seems to
suggest: all the functions of the form ¢(t) = ¢t7, with ¢ > 0 and +y varying in [1/2,1] are reachable,
and for every v € [1/2,1) a function ¢ can be generated such that

lim f—(z—) = 400 and lim _‘f_(fl =0 Ve > 0.
z—+00 27 200 z’)’+6
As announced, in Section 5.2 we apply our theorem to prove that if f is quadratic near the origin,
sublinear, and concave at infinity, there exists a rescaling function r(g) (explicitly given in terms
of f) such that the family (10) I'-converges, up to passing to a subsequence, to a free-discontinuity
functional like (12). All the possible I'-limits of that family are classified. The rescaling r(e) is unique
up to asymptotic equivalence, in the sense that when we use functions with a different behaviour near
the origin, we obtain in the limit either F' = 0 or the functional « [ |Vu|? dz defined only on H!(Q).
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In a recent paper ([13]) Bouchitté, Dubs & Seppecher considered the one-dimensional functionals

lull2 e V4/ 2
= | ——————dz 4+ ep-1 d
F.(u) /]1 Gl T +e? . [u"|* dz

defined in W%2(I) and proved that they I'-converge to the functional F (defined in SBV(I)) given

by
F(u) —-/[u]de-{—k Z —u )°+PVO.

€Sy

When p < 2 their result is a particular case of ours (but it is proved by the use of different tech-
niques); on the contrary, the case p > 2 is not included in our treatment since the potential f (t)
becomes decreasing and degenerates at infinity; note that the use of a degenerate potential allows the
approximation of the Mumford-Shah functional (the case p > 4).

Let us also point out that our theorem applies to the study of the singular perturbations of the
rescaled Perona-Malik energy

i/log(1+zs[Vu[?)da::
€Ja

we will show that the right rescaling function is given by r(g) = Tog T and that the family

_i: /Q log(1 + £ Vaul2) daz—i—( ) / 1V%u)]? do

/\Vu}zdx—H:/ Vut —u= dHV
Q Sy

with ¢ > 0 explicitly computable (see Example 5.2.8). The Perona-Malik functional was introduced in
the context of Image Processing. Let us briefly recall the problem: if g is the input grey level function
representing the original image, the simplest way to smooth and denoise it is to apply a gaussian
convolution kernel; this procedure turns out to be equivalent to letting g evolve according to the heat
equation, i.e. to taking as processed image the solution u(z,t) of the heat diffusion equation

I'-converges to

%u =Au u(z,0) = g(z), (13)
computed at time ¢ (“¢” can be seen as a scale parameter: the greater it is, the smaller is the scale
at which the smoothing occurs).

The main drawback of this approach is that it produces an inconditional smoothing which cannot
distinguish between objects and contours, since also edges begin soon to diffuse! To overcome these
difficulties Perona and Malik proposed in [47] a model of selective smoothing where the contours are
preserved as much as possible: it consists in replacing (13) by the nonlinear equation

8 Vu
pr = div <m) u{z,0) = g(x), (14)

which is the gradient flow of the (Perona-Malik) functional [;,log(1+|Vu|?)dz. The underlying idea
is the following: where |Vu| is large, in particular, near the edges, the diffusion is low and the contour
is “kept”, while far from the edges, where the gradient is small, u diffuses as in the heat equation. Note
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that the simultaneous smoothing and edge detection effects of the equation strongly depend on the
particular structure of the function log(1 +¢?): the quadratic behaviour near the origin is responsible
of the denoising process while the concave and sublinear behaviour at infinity is responsible of the edge
detection. Our I'-convergence result says that there is an alternative procedure, based on minimizing
the (rescaled) energy instead of considering its gradient flow, which exploits the structure of log(1+t2)
generating again a smoothing and edge detection effect (in the final chapter of the thesis we will explain
a further way to produce such an effect starting from rescaled Perona-Malik energies).

Actually, the same considerations apply to all functions f satisfying our structure assumptions
and we can think the functionals [ f(|Vu|)dz as “generalized Perona-Malik energies” giving rise to
“generalized Perona-Malik equations” of the form

2 u=aiv (g(Vu)Ve)  u(z,0) = gle),

with g bounded and decreasing to 0 when |Vu] is large.
We want to mention, as a further application of our main result, the study of the asymptotic
behaviour of the family

éAf(sWu])dm—l—ﬁ/QIIV2U||2dx,

where f is non-decreasing, differentiable at the origin, with non-zero derivative, and concave at infinity:
the I'-limit turns out to be a functional defined in BV () and taking the form

| f’(O)Aqu}dm+/g o(u* — =) dHN T+ 7(0)| D), (15)

with ¢ explicitly characterized in terms of f. Again, as f varies among all the admissible potentials,
a wide class of jump-functions (satisfying (5.1.57)) can be generated (see Theorem 5.2.12 and Example
5.2.13). '

Some final remarks are in order. All the convergence results we mentioned above are completely
proved in the one-dimensional case; in N dimensions one can prove the following. Let (F,) be a
sequence of one-dimensional functionals converging to F* and denote by (FNY and FV their respective
N -dimensional versions; then we show that I'-lim, F¥ (u) = FV (u) if u satisfies

Jup —u st HYTYS,,) < +oo and FN(ug) = FN(u).

The class of such functions coincides with the whole space if FV is finite in BV so that in this case
the I'-convergence is completely proved; we believe that the same occurs when FY is defined in SBV
but, at the moment, such a technical result is not available, and, in fact, the representation of the
I'-limit is performed for functions with discontinuity set of finite HY~!_measure. Let us finally remark
that these difficulties arise in the proof of the I'-limsup inequality; on the other hand, the I'-liminf
inequality is completely proved as well as the equicoerciveness of the approximating functionals which
guarantees the convergence of minimizers.

In Chapter 6 (which contains the results of [42]) we deal again with the Perona-Malik functional,
but following a different approach, more suitable to numerical applications in Image Segmentation.
Considering that the structure of a digital image is simply a lattice of picture elements (the so-called
pizels) it is natural to use techniques based on finite differences. In this context, considering the
Gobbino’s paper [30] , Chambolle proposed in [20] a functional of the form

2 L, (lu(z +e€) —u(z)?

TeQNeZ? cez?

z+e£EQN
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where {1 is a two-dimensional domain, the function f:[0,40c) — [0, +00) is non-decreasing, contin-
uous and satisfies
o) =1 and fl4o00) =1,

while the convolution term p : Z? — [0, +0cc) is even and satisfies
pO)=0, > p(E)<+oo, p(€) >0 iflfl=1,and  p(&) = p(c"). (16)
£eZ?
Chambolle proved that the I'-limit is the anisotropic Mumford-Shah functional given by

2 1 -
cp/Q]Vu] daz+/ (v) i, (17)

u

where

=5 Y pE) md  2) =Y o)l -d

£ez? €7

( £ stands for 47 ). In our main theorem we prove that (17) is the I'-limit also of the following discrete
Perona-Malik functionals

Fw=e Y oo (14 el
ez’

e EeT? aelé| e2|¢?

T4efeQ

where a; = Elog% and p satisfies (16). Numerical experiments are in progress and the results will
appear in the final version of [42].

The results contained in Chapters 2 have been obtained in collaboration with G. Dal Maso and
M.G. Mora and are published in [26], while the results of Chapter 3, obtained in collaboration with
M.G. Mora, are published in [39]; the content of Chapters 4 and 5 corresponds to the papers [40] and
[41] respectively and finally, the results stated in Chapter 6 will appear soon in a joint paper with M.
Negri (see[42]).






Chapter 1

Preliminary results

In this chapter we fix the main notation and collect some preliminary results that we shall need in the
sequel. ‘

1.1 BV functions

1.1.1 Definitions and general properties

In this subsection we fix notations and we briefly recall basic definitions and properties from the theory
of BV functions: for a general treatment we refer to [9]. The Lebesgue measure and the (N — 1)-
dimensional Hausdorff measure of a set B C RY are denoted by £V (B) and #Y~1(B) respectively.
We will often write |B| instead of £V(B). Given a measure p we denote its total variation by |ul;
moreover 1| B denotes the restriction of the measure u to the set B given by (u|B)(4) = u(BnN A).

Let Q C RY be an open set, let u: Q@ — R be a measurable function, and let z € 2. We denote
by u(z) and u™(z), respectively, the upper and lower limit of u at z, defined by

. o HyEQ: |z -yl <p uly) >t}
v (z) = inf {t eR: pgrgl+ o = O} ,
u(z) := sup {t eR: pgrgl_l_ {yes: |z "‘;/)IN< Py uly) <t}| = O}.

If ut(z) = u™(z) € R, then the common value of ut(z) and w™(z) is called the approzimate limit
of u at the point z, and is denoted by ap-limy—,; u(y).

We say that u is a function of bounded variation in Q, and we write u € BV(Q), if u € L}(Q)
and its distributional derivative is a vector-valued measure Du with finite total variation |Dul|(€).
Given u € BV (Q), we denote by by J, the set where ut > w™ and by S, the essential discontinuity
set of u made up of those points = which are not Lebesgue points. It turns out that J, C Sy, and
HN=L(S, \ Jy,) = 0. For every z ¢ S, we denote by @(z) the approximate limit of v at z.

The complete graph of a function v € BV (Q) is the set

Pyi={(z,2) e A xR: v (z) <z <uT(z)}.
If w € BV(Q), then it can be proved that S, is countably (Y1 N — 1) rectifiable, i.e.

Su=NulJ K,
1eN

15
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where H¥-1(N) = 0, and each K; is a compact set contained in a C ! hypersurface; as a consequence
we have that for XV L-a.e. = € S, it is possible to define an approximate tangent plane T;(S,) and
therefore an approximate normal unit vector vy (z) which can be chosen in such a way that

. + -
Jim [ 00 N0
where BZ”(Z) (z) := {y € By(z) : (y — ) - vu(z) >0} (here and in the sequel, given z and y in RY,
we denote the scalar product of z and y by z -y). For every v € BV (), by the Radon-Nykodim
Theorem we can write Du = D% + DSy, where D%u is absolutely continuous and D*u is singular
with respect to the Lebesgue measure. We denote the density of D%y with respect to the Lebesgue
measure by Vu. Moreover, we denote the restriction of D°u to Sy by DJu, and the restriction of
D®u to Q\Sy by D. It turns out that Diy = (ut —u™ v HY 1Sy so that in particular

|DSu| = | D] + (ut = u")HY T[S

We will say that a set E is of finite perimeter in Q if xg (i.e. the characteristic function of E) is of
bounded variation in Q. We define 9* ENQ := Sy, N the reduced boundary of E in Q. Let us recall
now the Fleming-Rishel coarea formula. Let u be a Lipschitz function and let v belong to BV ().
Then for almost every t € R we have that {z € Q: u >t} is a set of finite perimeter in Q) and

+c0
/ku] dz::/ (/ 17dHN‘1> dt (1.1.1)
Q —co o* {u>t}NQ

We say that u is a special function of bounded variation, and we write u € SBV(Q), if u € BV ()
and D = 0. For each p > 1 the space of all functions v € SBV () such that

Vue IP(Q) and  HYTH(S,) < 400

is denoted by SBVP(f)). We consider also the larger space GBV (), which is composed by all
measurable functions u : Q — R whose truncations ug = (u A k) V (—k) belong to BV () for every
k > 0; finally we set

GSBV := {u € GBV(Q) : |Dus| =0 Vk > 0} = {u € L}(Q) : uy € SBV(Q) Vk >0},
and
GSBVP(Q) := {u € L}(Q) : ux € SBV?(Q) Vk > 0}.
Every u € GBV(Q) N L}, () has a countably (HN-1, N — 1) rectifiable discontinuity set Sy .

loc
We conclude this subsection by recalling a “slicing” result due to Ambrosio (see [7]) and a L'-

precompactness criterion by slicing proved in [3]. We introduce first some notation. Let ¢ € SV~ and
let TIe :={y € RY : y- ¢ =0} be the linear hyperplane orthogonal to £. Given E C RY we denote
by E¢ C Il the orthogonal projection of E on Il and for y € Il we set EY :={teR:y+t{cE}.
Finally for u: E — R we define ué’ : Egy — R by u’é(t) = u(y +t€).

Theorem 1.1.1 @) Let u € BV(Q). Then, for all { € SN=1 the function ug belongs to BV(Q?)
for HN"1-a.e. y € l¢. For such y we have
(ug)'(t) = V(y+1t)-&  forae t€Q,
Su‘g = (Su)gy
wltx) = uE(y+t6) or  w(tE) =uT(y+ ),
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according to the case vy, - & >0 or vy - €) < 0 (the case 1y, - &) = 0 being negligible). Moreover
we have

[ Doulan) ) = 10w 1),
3

for all open subset A C Q, and for all Borel functions g
| X sy ) = [ gl el
Il €5,y S

b) Conversely, if u € L' (Q) and for all ¢ € {e1,...,en} and for ae. y € e uf € BV(Q%’)
(SBV(QY)) and

|Duf Y1 (y) < +oo,
g

then v € BV (Q2) (SBV(Q)).

Given a family F of functions, for every ¢ € SV=! and y € II¢ we set Fy = {u . u € F}; moreover
we say that a family F” is d-close to F if F' is contained in a 6- nelghbourhood of F.

Lemma 1.1.2 Let F be a family of equiintegrable functions belonging to L'(A) and assume that
there exists a basis of unit vectors {&1,...,En} with the property that for every i =1,..,N, for every
0 >0, there exists a family Fs §-close to F such that (’f(g)gi is precompact in Ll(Agi) for HV =1 ae
y € Ag,. Then F is precompact in L'(A).

1.1.2 Semicontinuity and relaxation in BV and SBV

Let f:R — [0, 4o0] be convex. Then we define the recession function f of f by

£902) = tim 102

t—+co t

Let 8 : R — [0, +o0] be lower semicontinuous and such that there exists lim, o+ #(t)/t. Then we can
define the recession function 6° of 6 by

0°(z) = lim 6‘(732)'
t—0+ ¢

The functions f* and 6° turn out to be 1-homogeneous. For every g, h: R — [0, +00], we define
the inf-convolution of g and h as the function gAh given by

(gAh)(z) = inf{g(z) + h(z — z) : z € R}.

Finally we recall that given a function F' : X — RU+o00, where X is a topological space, we denote by
F the relazed functional of F, ie. the greatest lower semicontinuous (with respect to the X -topology)
functional which is less than F

The following relaxation result is proved in [12].
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Theorem 1.1.3 (Relaxation in BV ) Let f : [0, +c0) — [0, +o0) be a non-decreasing convez function
and let  : [0, +00) — [0,4+00) be a concave function. Let F : BV(2) — [0, +co] be defined by

- N-1 ity 2 oo
Flu) = /ﬂf(|Vu|)dx+/Sugo(u+—u ) dH fu € SBV?(Q)NL®(Q),

+00 otherwise.

(1.1.2)

Then the relazed functional of F with respect to the L' -metric is given on BV by
F(u) == /Q f(Vu)) dz +/ o1 (ut —uT)dHY T+ (FP() A 900(1)) | D¢ul,
Su

where f1:= fAQY and @1 := pAf®.

It is possible to prove that fA@® = [f A (¢° + f(0))]**, where h** denotes the convexification of A,
i.e. the greatest convex and lower semicontinuous function which is smaller than h and, analogously,
OAF® =sub[p A (f° + ©(0))] where subh denotes the subadditive envelope, i.e the greatest lower
semicontinuous and subadditive function which is smaller than h. Given two Borel functions ¢ :
10, +o00[— [0, +00) and f :[0,+oo] — [0, +00), we consider the functional F' defined by

u|) dz ut —u” N=1 if
) - /ﬂmv )d +/Su<,o( JaHN L ifu € GSBV(Q),

+co otherwise.

(1.1.3)

In [7] the following semicontinuity result is proved.

Theorem 1.1.4 (Ambrosio’s Semicontinuity Theorem) Let Q C RY be an open bounded set. Let
f : [0,400) =+ [0,+0c0) be a non-decreasing convez function such that f(1) = +oo and let ¢ :
10, +00] — [0, +00) be a non-decreasing subadditive function such that b0(1) = co. Then the functional
F defined in (1.1.3) is lower semicontinuous with respect to the L' convergence. a

1.1.3 A density result in SBV

In analogy with the strong density results of smooth functions in WP(Q), functions in SBV?(§)) can
be approximated in a “strong sense” by functions which have a “regular” jump set and are smooth
outside. This can be formally expressed as follows.

Let © be an open bounded subset in RY with Lipschitz boundary and denote by W(£2) the space
of all function w € SBV () enjoying the following properties:

i) HYH(Sw \ Sw) = 0;
ii) Sy, is the intersection of  with the union of a finite number of pairwise disjoint (N —1)-simplexes;
i) w € Whe(Q\ Sy) for every k € N.

Cortesani and Toader have proved in [24] the following density result.

Theorem 1.1.5 Let u € SBVP(Q)NL>®(Q). Then there exists a sequence (wj); in W(Q) such that
w; — u strongly in L(Q), Vw; — Vu strongly in LP(Q,RY), lim; [|wjlleo = |Ju]leo and

limsup ¢(wj,1u]7,uwj)d%N"1 < Plut,u", ) dHN L,
Jj—rco Swj Sy
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for every upper semicontinuous function ¢ : RxRx SN-1 [0, +00) such that ¢(a,b,v) = ¢(b, a, —v)
for every a, b € R and for every v e SVN-L.

7

Remark 1.1.6 Under the additional assumption that 1 < p < 2 the structure of the jump set of the
functions w; given by Theorem 1.1.5 can be further improved by using a capacitary argument. In
particular for NV = 2 and and p = 2, we can suppose that S’l; is made up of a finite family of pairwise
disjoint segments compactly contained in .

1.2 Euler-Lagrange equations for the Mumford-Shah functional and
regularity of the solutions

Let us consider the (non-homogeneous) Mumford-Shah functional
Fggo(u) = /Q |Vul? dz +HV-1(S,) + 6/9 lu — g)?dz, u € SBV(Q); (1.2.1)
when f =0 we will write
Fy(u) :=/Q]Vu|2dx+aHN'"1(Su), (1.2.2)

and we will call it the homogeneous Mumford-Shah functional.

Definition 1.2.1 We say that u € SBV(Q) is a Dirichlet minimizer of Fgg if Fgg(u) < +o0
and Fgo(u) < Fp(v) for any v € SBV(Q) with the same trace as u on 9. Analogously we
define Dirichlet minimizers for Fy. We say that u € SBV(Q) is an absolute minimizer of Fg, if
Fgg(u) < +oo and Fp (u) < Fpo(v) for any v € SBV(Q).

Definition 1.2.2 The deviation from minimality Dev(u, A) of a function u € SBV(Q) (satisfying
Fo(u) < +o00) in A open subset of Q is defined as the smallest )\ € [0, +0c0] such that

Fo(u) < Fo(v) + A,

for any v € SBV(Q) such that supp(u —v) CC A. Moreover, given ) € [0, +00) we will say that u
5 a A-quasi-minimizer of Fy if, for all balls B,(z) C 2, we have Dev(u, B,(z)) < Ap?Y. The class of
all A-quasi-minimizers will be denoted by M A(Q). Finally we will say that u is a quasi-minimizer of
Fy if there exists A € [0, 400) such that u € My(R).

Note that Dev(u,Q) = 0 means that u is a Dirichlet minimizer of Fy; moreover any Dirichlet mini-
mizer of Fp g is a A-quasi-minimizer of Fy with A = 48wy]| gll%, (wx denotes the measure of the unit
ball).

Thegrem 1.2.3 If u € SBV(Q) is a quasi-minimizer of Fo, there exists an HN™1-negligible set
2 C 5, N relatively closed in Q such that NS, \ S is a hypersurface of class CL1/4,

For a proof of the theorem see [9] (Theorem 8.1). In the following we focus our attention on the
necessary optimality conditions near the regular points of S,. So let u be a Dirichlet minimizer of .
Fp,g and let A C Q be an open subset such that S, N A is a graph i.e.

SuNA={(z(): z € D},
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for some open subset D C R¥~! and 4 : D — R. Denote At = {(z,t) € A: t > ¢Y(2)} and
A= = {(zt) € A: t <(2)}. By comparing u with v = u+ep, where ¢ is a smooth function
vanishing in a neighbourhood of 9A* \ S, from the minimality of u one obtain

[ (o Bl 9)oydo =0
A
the equation above says that u is a weak solution of the following problem

Au=B(u—g) in A%
_ 1.2.3
{Ouu =0 on AT N Sy. ( )

In particular, taking 8 = 0, we obtain that every minimizer of Fgy is harmonic in AT and A~.
Combining Theorem 1.2.3 with the regularity results for the solutions of problem (1.2.3), we can state
the following theorem.

Theorem 1.2.4 If u is a Dirichlet minimizer of Fp, and S NA is the graph of a function ¢ of
class CY7 (v < 1), then u has a CL° extension on each side of SuNA for some o <+ (we can take
c=vif N=2).

The Euler-Lagrange equation (1.2.3) has been obtained considering only variations of u and keeping
S, fixed. By considering also variations of S, we expect to obtain a transmission condition of u
along S, accounting for the interplay between the bulk and the surface part. Before writing such a
condition, let us recall the notion of mean curvature.

Definition 1.2.5 Let M be a C2 (N — 1)-dimensional manifold, A an open set, {e1,..,en} the
canonical basis of RN , and v : M NA — SN-1 o 1 unit normal vector field. Then the mean
curvature vector Hys is defined by

Hj(z) := divMv(z)v(z) vz e ANM,

where

2

-1
divMu(z) = VM (z) - ek ‘ (1.2.4)
1

B
1l

VM denotes the tangential gradient, i.e. the projection of the gradient on the tangent plane Ty M ).
g p
The quantity Hy = divMy(z) is called scalar mean curvature associated with v.

Note that, differently from Hjps, the mean curvature vector does not depend on the orientation of v.
The following formula is straightforward consequence of the definition (1.2.4):

divMy(z) = divi(z) — Oy P(z) - v(2), (1.2.5)

where 7 is any C' extension of v.
If M is the graph of a C? function ¢ : D C RM-1 5 R and v is the upper normal given by

I/(I) — (—V'T,b,].)
NAESZUER
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then one can check that

TN
Hy = —d (\/’H—IVW) (1.2.6)

Also the following formula for N = 2 will be useful in the sequel: letting v C R? be a smooth curve, v
a (smooth) unit normal vector field to 7, and & — (z(£),y(§))) a parameterization of v by arc-length,
denoting by curv<y the scalar {mean) curvature of vy with respect to v, we have :

curvy(€) = — ((¢), H(6) - v(©); (1.2.7)
since the two vectors in (1.2.7) are parallel, it follows that
[curv v (&)1 = (£(6))® + (€))% (1.28)

We recall the following generalized divergence theorem.

Theorem 1.2.6 Let M C Q be a C? (N — 1)-dimensional manifold with no boundary in Q. Then
/M divMpduN 1 = /Mn-HM dHVt v e [CH)Y. (1.2.9)

If ¢: A\ S, — R is a function having continuous extensions on each side of S. N A, we denote by
¢t (respectively by ¢~ ) the upper (lower) trace of ¢ on S, N A from AT (from A™) and we set

[P =o¢T —¢.

Note that thanks to Theorem 1.2.4, if u is a minimizer and S, N A is the graph of C7 function,
then the traces of Vu on S, N A exist in a classical sense. We state now the announced transmission
condition satisfied by v on S,.

Theorem 1.2.7 Let u be a Dirichlet minimizer for Fg g, suppose that g is of class C' and that
Sy N A is the graph of a C*7 function. Then, for any n € [CL(Q)]Y, we have

/ [IVul2 + Blu—g)] " n-vdHN = :/ divSen dHN 1, (1.2.10)
SuNA SuNA

where v is the upper normal to S, N A.

Recalling (1.2.9), the theorem above says that if u is a Dirichlet minimizer, near the regular points of
S, we have that

Hs, = [|[Vu? +Bu—g)]° onS,NnA4 (1.2.11)

in a weak sense. In fact it is possible to prove that the function 7 such that graphy = S, N A is a
weak solution of

_div (%) = [[VuP + B — )] (1.2.12)
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in particular, if u is a Dirichlet minimizer of Fy (8 = 0), we have

. Vﬂl _ o1x
—div (W) = [|Vu?]”. (1.2.13)

Using (1.2.12), it is possible to prove that, as soon as we know that Sy, N A is of class C17, we may
obtain as much regularity as we want by assuming enough regularity on g.

Theorem 1.2.8 Let u be a Dirichlet minimizer of Fg 4 and let SuNA be the graph of a CY7 function
V. If g € CF9(A) for some k > 1, § < 1, there ezists o depending only on N, §, and ¢ such that 7
is of class CF™29 and w admits o C¥t29 extension on each side of S, N A. In particular for every
Dirichlet minimizer of Fy we have that Sy is of class C°° near its regular points.

The following conjecture is still an open problem.
Conjecture (De Giorgi). If u is a Dirichlet minimizer of Fy then Sy is analytic near its regular
points. We conclude the section with the following conjecture, stated for NV = 2 by Mumford & Shah
in [45].
Conjecture (Mumford-Shah) If u is a minimizer of Fg, then Sy is locally in 0 the union of
finitely many CY' embedded arcs.

In [45] it has been proved that if the conjecture is true then only two kind of singularities can
occur inside : either a curve ends at some point, the so-called cracktip, or three curves meet forming
equal angles of 27/3, the so-called triple junction.

1.3 The calibration method

In this section we state the theorem on calibrations in the form that we will need (which is a particular
case of the more general statement of [2]); for the sake of completeness we present also some simple
applications taken from [2].

First we introduce a more general notion of minimality that will be useful in the sequel. Let U be
an open subset of  x R with Lipschitz boundary whose closure can be written as

U:={(z,t) e A xR: 7(z) <t <m(z)}, (1.3.1)
where the functions 7, 7 : @ — [~00, +00] satisfy 71 < 7.

Definition 1.3.1 We say that a function v € SBV(Q) is an absolute U-minimizer of the Mumford-
Shah functional (1.2.1) if the complete graph of u is contained in U and Fg4(u) < Fp4(v) for all
v € SBV(Q) with complete graph contained in U, while u is a U-Dirichlet minimizer if we add
the requirements that Fp4(u) < 400 and that the competing functions v have in addition the same
boundary values as u.

Given U open subset of Q x R and satisfying (1.3.1), we shall consider the collection F(U) of all
bounded vector fields ¢ = (¢%,¢?) : U — RY xR with the following property: there exists a finite
family (U;)se; of pairwise disjoint and Lipschitz open subsets of U whose closures cover U, and a
family (¢;)ies of vector fields in Lip(U;, RY xR) such that ¢ agrees at any point with one of the ¢;.

A calibration in U (with respect to Fpq) for u € SBV (Q2) with complete graph contained in U is
a vector field ¢ € F(U) which satisfies the following properties:
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(a) divg =0 in U;, for every i € I;

(b) vou, ¢ = vou, ¢~ = voy, ¢ HY-a.ein OU; for every ¢ € I, where vy, (z,z) denotes the (unit)
normal vector at (z,z) to 9U;, while ¢* and ¢~ denote the two traces of ¢ on the two sides
of an;

T 2
(c) M < ¢7(x,2) + Bz — g(z))? for LV-a. e. z € Q and every z € [r1(z), 72()];
(d) ¢%(z,u(z)) = 2Vu(z). and ¢*(z,u(z)) = |Vu(z)> - B(g(z) — u(z))? for LV -a. e. =€ Q\ Iy;

ut(z) .
(e) / ¢*(z,2) dz = vy(z) for HV"'-ae. 2 € Sy, where v,(z) denotes the unit normal vector

at 93 to Sy, which points toward u*

<1 for HV"-ae. £ € Q and for every s, t € [11(z), 72(z)].

(z,2z)dz

If also the following condition is satisfied

(g) ¢°(z,2) - v(z) = 0 for HV-ae. (z,2) € (2 x R) N OV, where v(z) denotes the unit normal
vector at z to 90,

then ¢ is called an absolute calibration of u in U.

Remark 1.3.2 Note that conditions (a) and (b) can be grouped by simply saying that the vectofield
¢ is divergence-free in the sense of distributions. ‘

We are now in a position to state the fundamental theorem on which the calibration method is based.

Theorem 1.3.3 If there ezists a calibration ¢ for u in U, then wu is a U -Dirichlet minimizer of
Fg . If there exists an absolute calibration then u is an absolute U -minimizer.

Remark 1.3.4 Let us underline that the theorem is valid also for the case 8 = 0 i.e. for the
homogeneous Mumford-Shah functional Fp; of course a calibration with respect to Fy is a vectorfield
satisfying the conditions above with 8 = 0, so that conditions (a), (b), (e), (f) (and (g)) remain
unchanged, while (¢) and (d) become simply

m 2
M < ¢*(z,2) for LV -a. e. z € Q and every z € [11(z), T2()];

(¢)
(d)’ ¢%(z,u(z)) = 2Vu(z) and ¢*(z,u(z)) = |Vu(z)]? for LV -a. e. 2 € Q\ S,.

It is interesting to see directly that the existence of a calibration for u implies that v satisfies Euler-
Lagrange equations. Let A be an open set such that AN .S, is of class C? and A\ S, is made up of
two connected components AT and A~, and let g: A — R be of class C'. Suppose also that there
exists a calibration ¢ : AxR — RY xR for u, with respect to Fp ,. We want to prove that u satisfies
(1.2.3) and (1.2.11), by assuming for simplicity that ¢ is of class C*. So fix z € A and consider the

function )
|¢” (=, 2)|

¥(2) = ¢*(z,2) + Bz — g)° - 0




24 Chapter 1

conditions (c) and (d) imply that z = u(z) is a minimum point for 1. By differentiating we get,

3 1
0=(ule)) = 8:¢*(a,u)+26(u—g)~ 5¢"(z.v)  0:4°(z,u)
= —divy¢®(z,u) +26(u — g) — Vu - 8,¢%(z,u), (1.3.2)
where, in the last equality, we have used the fact that ¢ is divergence-free and condition (d). Since

¢*(z,u) = 2Vu (by (d)), it turns out that 2Au = divy¢®(z,u) + 0.¢%(z,u) - Vu; substituting in
(1.3.2), we get

Au = B(u—g). (1.3.3)

Denote by u® te restriction of u to A* ; by extension, we can suppose that u™ and u~ are defined
in the whole A and of class C?. Fix z¢ € S, N A and consider the function

2

1

t
/ (3, 7) dz
u~ (o)

x(t) =

conditions (e) and (f) imply that ¢ = u™(zp) is a minimum point of x. Therefore, by differentiating,
we have

ut(zo)
0= x'(u™(z)) =2 (/ ¢*(x, z) dz) - ¢% (2, u™ (20)) = dvu(zo) - VuF (z0) = 49y, 0™ (z0),

u- (:I‘o)

where, in the third equality we have used conditions (d) and (e); the same can be proved for v~ and
therefore, recalling (1.3.3), we have that u solves (1.2.3).
Consider now the function

ut(x)
V(z) = / ¢*(z,2z) dz
u ()
and note that again by (e) and (f) each point of S, N A is a maximum point for |¥|?. Fix zo € S,NA
and compute the derivative of [¥|? in the normal direction 1y, (zg) (to simplify the notation we will

write v instead of vy (zp)):
0=2T(zg) - 0,¥(zg) =2v - 0, ¥ (z0),

where we have used the fact that U(zg) = v (by (e)); using formula (1.2.5), we can go further and
write

0 = 8,¥(zo) - v = div¥(g) — divS* ¥ (zo) = div¥(zo) — Hs, (o), (1.3.4)

where the last equality follows from the fact that ¥|g, = v, and from Definition 1.2.5. Using condition
(d), we can finally compute

u™ (zo)
div¥(zg) = /_( ) divy ¢ (g, 2) dz + ¢%(zo, ut (z0)) VuT (z0) — ¢ (z0,u™ (20)) VU™ (z0)
ut(zo)
N ‘/~< ) 0.0 (20, 2) dz + 2(|Vu™ (z0)* — [Vu™ (z0)[*)

= (¢ (@0, u" (20)) — #*(w0,u” (20)) ) +2(IVu* (20)|” = [Vu™ (o) ?)

= [Vut (20)? + B(u (a0) — g(=0))? = (V™ (@0)l? + B(u™(a0) ~ g(20))?),
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which, by substitution in (1.3.4), gives (1.2.11).

We conclude the section by showing how the calibration method can be used to provide easy and
short proofs of some natural minimality results. All the examples we are going to describe are taken
from [2] and deal with minimizers presenting either a vanishing gradient or an empty discontinuity set;
the simple structure of such minimizers allows quite simple constructions. In the thesis we will face
the (more complicated) problem of constructing a calibration also for candidate functions presenting
both non-vanishing gradient and nonempty discontinuity set.

Example 1.3.5 (Harmonic function) Let u be a harmonic function on §; the u Dirichlet mini-
mizer of Fy if

oscu sup|Vu| <1 (1.3.5)
Q Q

where oscq u 1= supq u — infou. A calibration of u is given by

(2Vu(z), |[Vu(z)?) if L(u(z) +m) <z < 5(u(z) + M),
B(z,2) = (1.3.6)
(0,0) otherwise,

where m :=infou and M := supqu. (see [2] for the details). If (1.3.5) is not satisfied, u is still is a
Dirichlet U-Dirichlet minimizer of Fy, for '

U= {(:c,z) €EQxR:u(z) — E\Vu(a:)t‘l <z <u(z)+ %!Vu(a:)]"l} ;

and a calibration is given by ¢(z,z) := (2Vu(z), |Vu(z)|?).

Example 1.3.6 (Pure jump) Let N > 2 and let Q :=]0,a[ x V', where V is a bounded domain in
RY~! with Lipschitz boundary. Denoting the first coordinate of z by z1, let u(z) := 0 for 0 < 77 < c,
and u(z) :=h for ¢ < 21 < a, with 0 < ¢ < a and h > 0. Then u is a Dirichlet minimizer of Fy if
a < h%. A calibration is given by

2 1 1 1

Tev,) g pnszs—=(m+a),
a 2v/a 2\/a

¢(I’Z) = (¢m(wvz)7¢z(maz)) = (\/— G;) \/— \/—

(0,0) otherwise.
Example 1.3.7 (Triple junction) Let N :=2, let Q:= B(0,r) be the open ball with radius r > 0
centered at the origin, and let u be given, in polar coordinates, by u(p,8) := a for 0 < 6 < %—’/T,

u(p,0) := b for §7r <8< %ﬂ, and u(p, ) := ¢ for %’IT < 0 < 27, where a, b, and ¢ are distinct

constants. Thus S, is given by three line segments meeting at the origin with equal angles. If
2r < min{ja — b%, b~ ¢[?, |c — a)?}, (1.3.7)

then u is a Dirichlet minimizer of F;. To construct a calibration, it is not restrictive to assume
a<b=0<c. Wedenote ey := (£/3/2,-1/2), and X > 0 such that 1\21 + + <min{-a,c} (which



26 ' Chapter 1

is possible by (1.3.7)), and we define the calibration by

(A8+,)\2/4) if%(’l"“{‘ﬂ?'e_*.)ézg

>

(’I”—I—.’L"E_*_)—l—%’

p(z,2) =4 e, \?/4) i 3(-r+z-e)—5<2< %(—r%—:c ~e_),

Sl

L(0,0) otherwise.

Tf r is much larger than min{|a — b|%,|b — ¢[?, |c — a|?}, it is easy to construct a comparison function
v with the same boundary values as u and such that Fy(v) < Fp(u). This shows that in this case u
is not a Dirichlet minimizer.

We consider now the functional Fjg 4, with 8> 0.
In the next examples we construct a calibration for Fg, when the parameter 5 is large enough.

Example 1.3.8 (Smooth g and large ) Let Q be a bounded open set in RY with smooth
boundary, and let g € C2(Q). There exists a constant Sy > 0, depending on g and «, such that for
every 8 > By the solution u of the Neumann problem (see (1.2.3))

Au=pBu—-g) inQ,
oyu+0 on 01},

is the unique absolute minimizer of Fpg,. We are going to describe how to construct an absolute
calibration. To begin with, we fix a smooth function ¢ : R — [0,1], with compact support which
satisfies o(z) =1 for |z| < 3|lu — gllec. Then we set :

¢°(z,2) := 20(z — u(z)) Vu(z) .

In particular ¢ has vanishing normal component at the boundary of O xR, and ¢” = 2Vu on the
graph of u. We set

&% (z,u(z)) := |Vul> — Blu—g)* forallz € Q. (1.3.8)
We impose now that ¢ is divergence-free, which reduces to

0,¢0%(z,2) = —divg¢® = —200u+20 |Vul?
280 (u — g) + 26 |Vul? (1.3.9)

Tdentity (1.3.9) together with (1.3.8) determine ¢* everywhere. Using well-known estimates on the
solutions of the Neumann problem, it can be proven that ¢ is a calibration for 8 large enough. We
refer to [2] for the details.

Example 1.3.9 (Characteristic functions of regular sets) Let {2 be an open set in RY and let
F be a compact set contained in Q with boundary of class C?. Let g(z) := xg(z). Then, there
exists a constant By > 0, depending on E, such that for every § > fo the function u ;= g is the
unique minimizer of Fg,. We take a C* vectorfield v : Q@ — RY with compact support in Q such
that |v(z)| < 1 for every z € Q and v(z) is the outer unit normal to 9E for every z € OF. Then
we set ¢%(z,z) = o(2)v(z), where o is a fixed positive smooth function with integral equal to 1 and
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support contained in |0, 1[ . We are now forced to set ¢*(z,z) =0 for z = g(z) (see (d)) and in order
to have a divergence-free vectorfield we require 0,¢%(z,2z) = —o(z)divyr(z). These two conditions
determine ¢®(z,z) at every point (z,z). It is then easy to see that ¢ is an absolute calibration, for
[ large enough.

The example shows that, in agreement with our expectation, the contours of “regular” objects are
exactly reconstructed by the Mumford-Shah functional if the fidelity parameter 3 is large enough (see
the Introduction). We will generalize this example in Chapter 4.

1.4 TI'-convergence

We recall here the definition and the main properties of I'-convergence: for the general theory we
refer to [25].

Definition 1.4.1 Let (X,d) be a metric space and let Fy : X — RU{+o00} be a sequence of functions.
We set

h~—co0

I-liminf Fy(z) := inf{lim inf Fy(zp) : zp — m}
h—oc0

and ‘
I-limsup Fy(z) := inf {lim sup Fy(xy) © zp — :c} :

h—co h—yo0

We say that the sequence (Fp)pen T'-converges if

I-liminf Fj(z) = I"-lim sup F}(z) Vo e X.
h—ro0 h—ro0

The common value is called T-limit and is denoted by I'-limp_ o0 Fl.

Definition 1.4.2 We say that the maps F, : X — R U {+oo} are equicoercive if for every t € R
there exists a compact subset Ky C X such that

{zEX:Fh(a:)gt}QKt Vh € N.
The following theorem explains the variational meaning of this kind of convergence.

Theorem 1.4.3 Let (Fp)y be a sequence of equicoercive maps which T'-converges to F. Then, if
(zn)n 15 a sequence such that :

lim Fh(mh) = lim il’l_th,

h—oc0 h—oo X

then zp is precompact and any cluster point is a minimizer of F .

We finally recall that given F': X — RU{+co}, the relaxed functional F can be characterized as
the I'-limit of the constant sequence Fj, = F for every n € N.
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Chapter 2

Calibration of solutions with a
rectilinear discontinuity set

The following question arises naturally: given a function u € SB V(Q) which satisfies all Euler con-
ditions for the homogeneous Mumford-Shah functional Fy (see (1.2.2)), does it enjoy any minimality
property? In this chapter, using the calibration method, we give a first partial answer, in two dimen-
sions, considering the special case of extremals with a rectlinear discontinuity set. We present the first
examples of calibrations for discontinuous functions which are not locally constant.

2.1 Notations and preliminary results
Let Q be a bounded open subset of R? with Lipschitz boundary and set
Q={(zy) eR:y#0}, S={(zy)eQ:y=0}

Suppose that w is a Dirichlet-minimizer (according to Definition (1.2.1)) in Q and Sy, = S, then it
must satisfies the following conditions (recall (1.2.3) and (1.2.11) with g =0):

i) w is harmonic on Qo;
ii) the normal derivative of w vanishes on both sides of .5;
iii) the squares of the tangential gradients of w on the two sides of § are equal.

If Q) is a circle with centre on the z-axis, and w € C*(Qp) with fﬂo |Vw|?dzdy < -+co, then w
satisfies the Euler conditions (i), (ii), and (c¢) if and only if w has one of the following forms:

w(z,y) = u(z,y) if y > 0, (2.1.1)
’ ~u(z,y) +c  ify <O, -

or

w(z,y) = u(z,y) +co ify >0, (2.1.2)
’ u(z,y) ify <0, -

where u € C1(Q) is harmonic with normal derivative vanishing on S and ¢;, ¢p are real constants.
For our purposes, it is enough to consider the case ¢; = 0 in (2.1.1) and ¢z = 1 in (2.1.2). We are

31
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going to rewrite the definition of calibration, given in Section 1.3, using a slightly different notation,
more convenient for N = 2.
For every vectorfield ¢ : 2 x R — R? we define the maps ¢%, ¥, 0* : QxR = R by

o(z,y,2) = (" (2,9, 2), 0¥ (2,9, 2), ¢* (2, , 2)).

We shall consider the collection 7 (2 x R) of all bounded vectorfields ¢ : £ x R — R*xR with the
following property: there exists a finite family (U;);er of pairwise disjoint and Lipschitz open subsets
of O x R whose closures cover  x R, and a family (p;)ser of vectorfields in Lip(U;, R? xR) such that
© agrees at any point with one of the ¢;.

A calibration in @ x R (with respect to Fp) for w € SBV(Q) is a vectorfield ¢ € F(Q x R) which
satisfies the following properties:

(a) divep =0 in U;, for every i € I;

(b) vay, - 0T = vay, - ¢~ = vay, - p H2-a.e in AU; for every i € I, where vau, (z,y,2) denotes the
(unit) normal vector at (z,y,z) to OU;, while ¢ and ¢~ denote the two traces of ¢ on the
two sides of 9U;;

() (¥°(z,u,2))* + (¥¥(z,y,2))? < 4¢*(z,y,z) for almost every (z,y) in  and for every z € R;

(d) (0% ¢")(z,y,w(z,y)) = 2Vw(z,y) and p*(z,y,w(z,y)) = [Vw(z,y)[* for almost every (z,y) €

Qo;
wt(z,0) : w(z,0)

(e) ¢*(0,0,2)ds =0 and [~ p(e,0,2)dz =1 for Hi-almost every (2,0) €
w= (z,0) w=(z,0) ‘

t2 2 to 2
() </ 0¥ (z,y, 2) dz> + </ 0¥ (z,y,2) dz) <1 for H'-almost every (z,y) €  and for every

t1 31
t1,t2 € R.

2.2 A model case

In this section we consider in (2.1.1) and in (2.1.2) the particular function u(z,y) = z and we deal
with the minimality of the functions

if y > 0,
wz,y) =4 ° Y (2.2.1)
-z ify <0, ,
and
z+1 ify >0,
) = 2.2.2
w(z,y) {9: if y < 0. ( )

The aim of the study of these simpler cases (but we will see that they involve the main difficulties) is
to clarify the ideas of the general construction.
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Theorem 2.2.1 Let w:R? — R be the function defined by

(z,7) z ify >0,
w(z,y) = _
4 -z ify <O0.

Then every point (zq,%0) # (0,0) has an open neighbourhood U such that w is a Dirichlet minimizer
in U of the Mumford-Shah functional (1.2.2).

Proof. The result follows by Theorem 4.1 of [1] if yo # 0. We consider now the case yy = 0,
assuming for simplicity that zo > 0. We will construct a local calibration of w near (zg,0) and then
we will conclude thanks to Theorem 1.3.3. Let us fix € > 0 such that

g 1
O<E<16’ O<s<32 (2.2.3)
For 0 < 6 < € we consider the open rectangle

U:={(z,y) €ER? : |z — x| <&, |y| <}

and the following subsets of UXR (see Fig. 2.1)

A = {(z,y,2) eUxR:z—aly) <z<z+alyl

Ay = {(z,9,2) EUXR:b+r(N)y<z<b+r(Ny+h},

Ay = {(z,y,2) e UxR: —-h < z < h},

Ay = {(a, y,z)eUxR:~b+/§(/\)y—h<Z<~b+fi(>\)y}7
As = {(z,y,2) eUxXR:—z—a(-y) <z< —z+a(-y)}

where
a(y) 4e? — (e — y)?,

Tg — 3¢ A1 1—4¢

— =21 - A :

We will assume that

(2.2.4)

so that the sets Aj,..., A5 are pairwise disjoint.
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A,

zZ=X

N

~

NN\

Z=-X

Figure 2.1: Section of the sets Ai,... ,A4s at = constant.
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For every (z,y,2) € UXR, let us define the vector p(z,v, z) = (¢%, 0¥, v?)(z,y,2) € R® as follows:

| (V(e —Zy(;jrygz 2 Vi :;)(22 T 3” e 1) w2 € A
(O, A, 5;—) if (z,vy, z)‘ € Ao,
(F©),0,1) i (2,,2) € s,

<
(o, A é;) | i (2,4,2) € As,
(V (e J:j)(?6 : (yz) +2)2 /(e +2y(;:?z + o) 1) ) € A,
(0,0,1) otherwise,

where

a(y) £ —
h A VE+(E—y)? o . VE+(ety)?

Note that A; U As is an open neighbourhood of graphw N (UxR). The purpose of the definition
of ¢ in Ay and As (see Fig. 2.2) is to provide a divergence-free vectorfield satisfying condition (d)

Ay

X=Z

\\ @J///Z

y=—5

Figure 2.2: Section of the set A; at z = constant.
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of Section 2.1 and such that

W (z,0,2z) >0 for |z]| <=z,
WY (z,0,2) <0  for |z| > =.

These properties are crucial in order to obtain (e) and (f) simultaneously.
The rdle of Ay and Ay is to give the main contribution to the integral in (e). To explain this fact,
suppose, for a moment, that € = 0; in this case we would have A; = A5 = and

T
/ WY (z,0,2)dz = 1,
-z

so that the y-component of equality (e) would be satisfied.
The purpose of the definition of ¢ in As is to correct the z-component of ¢, in order to obtain

(£).

We shall prove that, for a suitable choice of §, the vectorfield ¢ is a calibration for w in the
rectangle U.
Note that for a given z € R we have

Oz 0" (2,9, 2) + Oy (z,y,2) =0 (2.2.5)

for every (z,y) such that (z,y,2) € Ay UAs. This implies ¢ is divergence free in A; U A5. Moreover
divg = 0 in the other sets A;, and the normal component of ¢ is continuous across dA;: the choice of
#()\) ensures that this property holds for A4, and dA4 (see Fig. 2.3). Therefore ¢ satisfies conditions

A T

A i i A
0 v g o

- .
- -
> >

F'y
\\
< %

>
AN
AN
~
N,

. /< /4/ )
/ /
77 / S
e //
7 //ﬂ /;/ i
YAV
74 /7/ " A
Y/
{7/ A A i
/ " N 3 A
A X N N A

Figure 2.3: Section of the set As at z = constant.
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(a) and (b), i.e. is divergence-free in the sense of distributions in U xR.
On the graph of w we have

(12,0,1) ify>0,
olz,y,w(z,y)) = (-2,0,1) ify<0

so condition (d) is satisfied. ,
Inequality (c) is clearly satisfied in all regions: the only non trivial case i A3, where we have,

using (2.2.3),

4(a(y) +ol-y) _ 8V3e

< 2.
To — 3€ ~ xg— 3¢

lf(W)| <

We now compute

/m ©¥(z,y,2) dz. (2.2.6)

—T

Let us fix y with |y| < d. Since ¢¥(z,y,2) depends on z — z, we have

z z+a(y)
/ ( )sﬁy(:v,y,Z) dz = / (€, y,z) dE. (2.2.7)
z—a(y Jz

Using (2.2.5) and applying the divergence theorem to the curvilinear triangle
T={(En€eR &>, 1<y, (e—n)*+(z-§)? < 4e?}

(see Fig. 2.4), we obtain

z+a(y) Yy
/ W&y, z)ds = [ ¢"(z,n,2)dn =2(y +e). (2.2.8)

—E

From (2.2.7) and (2.2.8), we get
T
/ ©¥(z,y,2)dz = 2(y +¢). (2.2.9)
z—a(y)
Similarly we can prove that

—z+a(~y)
/ oY (z,y,z)dz = 2(—y + €). (2.2.10)
—T
Using the definition of ¢ in As, Az, A4, we obtain
T
/ ©¥(z,y,2)dz = 1. (2.2.11)
-z
On the other hand, by the definition of f, we have immediately that
T
/ ¢*(z,y,2)dz = 0. (2.2.12)

—Z
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Figure 2.4: The curvilinear triangle 7.

From these equalities it follows in particular that condition (e) is satisfied on the jump set Sy, NU =

{(z,y) €U :y =0}.
Let us begin now the proof of (f). Let us fix (z,y) € U. For every ¢; <ty we set

2]

Int) = [ (%0 @ 0,2) de

t1

It is enough to consider the case —z — a(~—y) <t <tz <z — afy). We can write
I(tlv t2) = I(tla —.’L‘) =+ I(_:E) SC) =+ I(ma t2)7

I(ty,—z) = I(tiA(=z+a(-y)),—z) + ItV (-2 +a(-y)), -z + a(-y)),
I(z,t2) = I(z,t2V (z —ay) + Iz — a(y)t2 A (z = a(y)))-
Therefore
I(ty,te) = I(~z,2) + I(t1 A (=2 + a(-y)), =) + (2,12 V (z = a(y)))
+ ItV (=2 + a(-y), t2 A (z = a(y)) = I(—z + a(-y),z — a(y))- (2.2.13)
Let B be the ball of radius 4e centred at (0, —4¢). We want to prove that

I(z,t) € B (2.2.14)

for every ¢ with z — a(y) <t < =+ a(y). Let us denote the components of I(z,t) by a® and a¥.
Arguing as in the proof of (2.2.9), we get the identity

¥ =2 —y) -2/ (t—z)2+ (e —y)? <0. (2.2.15)
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As |p*| < 2, we have also
(@®)? <4t —2)? = (2 —y) —a¥)® ~4(e — )"
From these estimates it follows that
(a®)? + (a¥ + 4¢)? < 16€7,
which proves (2.2.14). In the same way we can prove that

I(t,~z) € B (2.2.16)

for every t with —z — a(~vy) <t < —z + a(-y).
If f(y) >0, we define

C = ([0,2hf (y)]x[0, 5 — 2]) U ({2hF (1)} x [0, 1 — de]);

if f(y) <0, we simply replace [0,2hf(y)] by [2hf(y),0]. From the definition of ¢ in Ag, Az, Ay, it
follows that

I(—z + a(-y),z — aly)) = (2hf(y),1 — 4e) (2.2.17)
and
I(s1,52) € C (2.2.18)
for —z 4+ a(-y) < 51 <so <z —aly). Let D:=C— (2hf(y),1 —4e), ie,
D = ([=2hf(y),0]x[~1 +4e, — 5 + 2¢]) U ({0} x[—1 + 4¢, 0]),

for f(y) > 0; the interval [~2hf(y),0] is replaced by [0,—~2hf(y)] when f(y) < 0. From (2.2.13),
(2.2.11), (2.2.12), (2.2.14), (2.2.16), (2.2.17) and (2.2.18) we obtain

I(t,t3) € (0,1) +2B + D. (2.2.19)

As f(0) =0, we can choose § so that (2.2.4) is satisfied and

2R ()] = = )l <e (2.2.20)

for |y| < &. It is then easy to see that, by (2.2.3), the set (0,1) + 2B + D is contained in the unit ball
centred at (0,0). So that (2.2.19) implies (f). i

Remark 2.2.2 The assumption (zg,%0) # (0,0) in Theorem 2.2.1 cannot be dropped. Indeed, there
is no neighbourhood U of (0,0) such that w is a Dirichlet minimizer of the Mumford-Shah functional
inU.

To see this fact, let 1 be a function defined on the square @ = (—1,1)x(—1,1) satisfying the
boundary condition 9 = w on 8Q and such that Sy = ((—1,-1/2) U (1/2,1))x{0}. For every ¢,
let 1. be the function defined on Q. = £Q by ¥:(z,y) = e¥(z/e,y/c). Note that ). satisfies the
boundary condition ¥, = w on 0Q,. Let us compute the Mumford-Shah functional for 7. on Q:

/ | Ve |2de dy + H (Sy.) = 52/ |Vy|2dz dy + €.
Q- Q
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Since
/ |Vw|?dz dy + H' (Sy) = 4 + 2,

we have

Voo Pdedy + H(Sy,) < | [Vwldzdy +H(Sy)
o P

&

for e sufficiently small.

The construction shown in the proof of Theorem 2.2.1 can be easily adapted to define a calibration
for the function w in (2.2.2).

Theorem 2.2.3 Let w:R? — R be the function defined by

(z,9) z+1 ify>0,
w(z,y) =
Y z if y <0.

Then every point (zo,10) € R? has an open neighbourhood U such that w is a Dirichlet minimizer in
U of the Mumford-Shah functional (1.2.2).

Proof. The result follows by Theorem 4.1 of [1] if yo # 0. We consider now the case 3y = 0; we
will construct a local calibration of w near (zg,0), using the same technique as in Theorem 2.2.1. We
give only the new definitions of the sets Ay,..., A5 and of the function ¢, and leave to the reader the
verification of the fact that this function is a calibration for suitable values of the involved parameters.

Let us fix € > 0 such that

1 1
— o 2
0<E<24, 0<5<32 (2.2.21)
For 0 < § < ¢ we consider the open rectangle
U= {(z,y) € R : |z — wo| <&, Jy| <0}

and the following subsets of U xR

A = {(z,y,2) eUxR:z+1—ay) <z<z+1+aly)},

Ay = {(z,y,2) € UxR:b+r(N)y+3h <z<b+r(A)y+4h},

As = {(z,y,2) € UxR: 39+ 3+ 2h < z < 79 + 3¢ + 3h},

Ay = {(z,y,2) €eUxR:b+r(N)y <z<b+r\)y+h},

As = {(z,y,2) e UxR:z —a(-y) <z<z+a(-y)},
where

a(y) = v/4e2 — (e — y)?,
1—6¢ A1 1—4e
= = -2 = A = :
h E k() 1 b:=xzo+ 3+ k(N 4, A o7
We will assume that
5o LB (2.2.22)

10[x(A)]”
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so that the sets Ay,...,As are pairwise disjoint. The family (Ui)ic; appearing in the definition of
F(Q x R) is given by the subsets A; and by the connected components of the complement in U x R
of U;A;. For every (z,y,2z) € UxR, let us define the vector ¢(z,y, z) € R® as follows:

2(e -y —2(z—z—1) ,
(V(a—wwzw—lﬁ’¢<s-y>2+(z—x«1>2’1> oy €A
(O) >‘7 %;) if (LU, Y, Z) € A27
(f(y)aoa 1) if (337'37’:3) € AB;
22 :
<07 >‘7 _4‘> if (l‘,y,Z) € A47
2(e +v) 2(z — ) 1 . Ned
<\/@+y)2+(z—m)27\/(s+y)2+(z—x)2’ > if (z,9,2) € 4s,
(0,0,1) otherwise,
where W -
2 e E—Yy A e+y
W= </ e o h VEreTwr f“)
for every |y| < 9. m]

2.3 The general case

In this section we denote by € a ball in R? centred at (0,0) and we consider as u in (2.1.1) and
in (2.1.2) a generic harmonic function with normal derivative vanishing on S. We add the technical
assumption that the first and second order tangential derivatives of u are not zero on S.

Theorem 2.3.1 Let u: Q — R be a harmonic function such that dyu(z,0) =0 for (z,0) € 2, and
let w: Q — R be the function defined by '
w(z,y) =
—u(z,y) fory <O0.
Assume that ug = u(0,0) # 0, 9;u(0,0) # 0, and 02,u(0,0) # 0. Then there ezists an open

neighbourhood U of (0,0) such that w is a Dirichlet minimizer in U of the Mumford-Shah functional
(1.2.2).

Proof. We may assume u(0,0) > 0 and 9;u(0,0) > 0. We shall give the proof only for
82 u(0,0) > 0, and we shall explain at the end the modification needed for 82,u(0,0) < 0. Let
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v : 8 = R be the harmonic conjugate of u that vanishes on y = 0, i.e., the function satisfying
83'0(337'9) = —ayu(ac,y), ay'lj(l', y) = azu(x,y), and ’U(.’L‘,O) =0.

Consider a small neighbourhood U of (0,0) such that the map ®(z,y) := (u(z,y),v(z,y)) is
invertible on U and dzu > 0 on U. We call ¥ the inverse function (u,v) — (£(u,v),n(u,v)), which is
defined in the neighbourhood V' := @(U) of (ug,0). Note that, if U is small enough, then n(u,v) =0
if and only if v = 0. Moreover,

DV = “ v = e , 2.3.1
v < Bun Bum ) al \ du 0,0 (2:3.1)
where, in the last formula, all functions are computed at (z,y) = ¥(u,v), and so 8,¢ = Oy, Oyé =
—0yn and 9yn(u,0) =0, 8,7(u,0) > 0. In particular, ¢ and 7 are harmonic, and

312m71(% 0) =0, 8371”](“: 0) =0. (2'3'2)

On U we will use the coordinate system (u,v) given by ®. By (2.3.1) the canonical basis of the
tangent space to U at a point (z,y) is given by

Vu Vv

Ty = W, Ty = Wé‘ (233)

For every (u,v) € V, let G(u,v) be the matrix associated with the first fundamental form of U in
the coordinate system (u,v), and let g(u,v) be its determinant. By (2.3.1) and (2.3.3),

9= ((0un)® + (8sm)?)* = Sl (2.3.4)
We set v(u,v) := /g(u,v).
The calibration ¢(z,y,2z) on UxR will be written as
olz,y,z) = T P R d(u(z,y),v(z,y),2). (2.3.5)
We will adopt the following representation for ¢ : VxR — R3:
d(u,v,z) = ¢"(u,v,2)7, + ¢"(u, v, 2)7 + ¢*(u,v, 2)e,, (2.3.6)

where e, is the third vector of the canonical basis of R, and 7,, 7, are computed at the point
U (u,v). We now reformulate the conditions of Section 2.1 in this new coordinate system. It is known
from Differential Geometry (see, e.g., [22, Proposition 3.5]) that, if X = X%z, + X7, is a vectorfield
on U, then the divergence of X is given by

1
divX = ?(au(ﬁ)(“) + 0y (72 X7)). (2.3.7)
Using (2.3.3), (2.3.4), (2.3.5), (2.3.6), and (2.3.7) it turns out that ¢ is a calibration if we can find a
Lipschitz decomposition (V;);er of V x R such that
(a) divg=01in V;, for every i € T;

(b) voy, - ot =vay, - ¢~ = vay. - ¢ H2-a.e in AV for every i € I, where vav; (u, v, z) denotes the
(unit) normal vector at (u,v,z) to dV;, while ¢T and ¢~ denote the two traces of ¢ on the
two sides of 0V;;
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() (p*(u,v,2))? + (@ (u,v,2))? < 4p*(u,v,z) for almost every (u,v) in V and for every z € R;
(d) (¢“(u,v,xu) = £2, ¢*(u,v, tu) =0, and ¢*(u,v,Zu) =1 , for almost every (u,v) € V;

(e) ¢"“(u,0,2)dz = 0 and ¢"(u,0,2) dz = v(u,0) for H'-almost every (u,0) € V;

—u —u

to 2 to 2
() ( ¢ (u, v, 2) dz) +< ¢"(u,v, 2) dz) < 72,(u,v) for almost every (u,v) € V and for every
t1

ty

t1,t € R
Given suitable parameters € > 0, h > 0, A > 0, that will be chosen later, and assuming
V = {(u,v) : Ju—ug| < 6v| <d}, (2.3.8)
with § < e, we consider the following subsets of V' xR
A = {(y,v,2) EVXR:iu—a(v) <z <u+al)},
Ay = {(u,v,2) € VXR:3h+ B(u,v) <z < 3h+ B(u,v) +1/A},
Az = {(y,v,2) e VXR:—h < z < h},
Ay = {(u,v,2) € VXR:=3h+ B(u,v) —1/A <z < =3h+ B(u,v)},
As = {(y,v,2) e VXR: —u—a(-v) <z < —u+ a(-v)},
where
4 a(v) == v/4e? — (e — v)?,
and B is a suitable smooth function satisfying S8(u,0) = 0, which will be defined later. It is easy to
see that, if ¢ and A are sufficiently small, while A is sufficiently large, then the sets A;,..., A5 are
pairwise disjoint, provided § is small enough. Moreover, since y(u,0) = d,n(u,0) > 0, by continuity
we may assume that
y(u,v) >128¢  and  Gyn(u,v) > 8¢ (2.3.9)

for every (u,v) € V.
For (u,v) € V and z € R the vector ¢(u,v,z) introduced in (2.3.5) is defined as follows:

( 2(e — 2z —
(e —v) Ty — (z —u) Ty + €2 in A,

VeE-u2+Gz—u? " -0+ (z-u)?

v Uu-—a

—Xo(u,v) e =Ty, + Ao (u,v) R Ty + pe, in Ao,
f(v)'ru +e; in As,
{
v u—a .
—Xo(u,v) TR Tu + Ao (u,v) TR Ty + pe, in Ag,
2(e +v) 2(z +u)

- Ty + Ty + €z in As,
VEtvZtzru? " e+t zru? °

& otherwise,
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where

a < ug — 110, w>0 (2.3.10)

f) = 21 a(v)___(g__i)_dt__ a(-v)___ie_ﬂl____dt

o(u,v) = Ly(a ++/(u—a)? +v%,0) — 2. (2.3.11)

We choose § as the solution of the Cauchy problem

Ao (u,v)(=v 0,8 + (u — a)d,B8) = (p — 1)/ (u — a)? +v?,
(2.3.12)

B(u,0) = 0.

Since the line v = 0 is not characteristic for the equation near (ug,0), there exists a unique solution
B € C®(V), provided V is small enough.

In the coordinate system (u,v) the definition of the field ¢ in A1, A3, and As is the same as the
definition of ¢ in the proof of Theorem 2.2.1. The crucial difference is in the definition on the sets As
and A4, where now we are forced to introduce two new parameters ¢ and u. Note that the definition
given in Theorem 2.2.1 can be regarded as the limiting case as a tends to +o0.

By direct computations it is easy to see that ¢ satisfies condition (a) on A; and As. Similarly,
the vectorfield

<—\/(u—a)2+v2’\/(7u~a)2+v2>

is divergence free; since (u—a)?+? is constant along the integral curves of this field, by construction
the same property holds for o, so that ¢ satisfies condition (a) in Az and Ay.

In Az, condition (a) is trivially satisfied.

Note that the normal component of ¢ is continuous across each 0A;: for the region As this
continuity is guaranteed by our choice of 8. This implies that also conditions (b) is fulfilled.

In order to satisfy condition (c), it is enough to take the parameter p such that

A;02(%11) <p
for every (u,v) € V', and require that
[f(v)] <2 (2.3.13)
Since
Flo)) < LA e (2.3.14)

inequality (2.3.13) is true if we impose
2e < h.

Looking at the definition of ¢ on A; and As, one can check that condition (d) is satisfied.
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Arguing as in the proof of (2.2.9), (2.2.10), (2.2.12) in Theorem 2.2.1, we find that for every
(u,v) e V
—uta(—v) h w
/ vt [ Puoddet [ gluvzde=o,
—u —h u—c(v)
~u+a(—v) h u
/ " (u,v, 2) dz +/ ¥ (u,v,2)dz +/ % (u,v,2) dz = 4e.
—u —h u—a(v)
Now, it is easy to see that

w v

3 ¢ (u,v,2)dz = —20(u,v) N CETEET (2.3.15)
v U—aq
3 B (u,v, z) dz = 4e + 20(u,v) TETLE = (2.3.16)
since for v = 0 we have 1
O’(’Ll,, 0) = 5’7(“: 0) - 2,
condition (e) is satisfied.
By continuity, if § is small enough, we have
v 7
¢"(u,v,2)dz > =v(u,v) (2.3.17)

8

—U

for every (u,v) € V.
From now on, we regard the pair (¢“, ¢”) as a vector in R*. To prove condition (f) we set

I o(u,v,s,t) := /t(qﬁu,qﬁ”)(u,v,z) dz

for every (u,v) € V, and for every s,t € R. We want to compare the behaviour of the functions [T of?
and 2; to this aim, we define the function

deo(u,v,5,1) = | I o(u,v,5,1)]% — v (u, ).
We have already shown (condition (e)) that
de o(u,0, —u,u) = 0. (2.3.18)

We start by proving that, if V' is sufficiently small, condition (f) holds for every (u,v) € V, for t;
close to —u and tz close to u. Using the definition of ¢(u,v,2) on A; and As, one can compute
explicitly d¢ o(u,v,s,t) for [s+u| < a(—v) and for [t—u| < a(v). By direct computations one obtains

Vst de o(u, 0, —u,u) =0 - (2.3.19)

for (u,0) € V.
We now want to compute the hessian matrix V2, d;, at the point (ug,0, —ug,ug). By (2.3.11)
and (2.3.4), after some easy computations, we get

02,0(1,0) = =~ B,7(u,0) =

2
o 02,1(u,0).

2(u —a)
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Using this equality and the explicit expression of de o near (ug, 0, —ug, ug), we obtain
2 8e
afmds,a(u% 0, —ug,u0) = —(—T—_-—a—)-(ay?](w), 0) —4e) +

By (ug, 0) 82,1 (ug, 0) — 82, (v*) (ug, 0).

+
Ug — a

Since 1 and 7 do not depend on a and ¢, for every € satisfying (2.3.9) we can find a so close to ug
that '

82, de o (w0, 0, —uo, ug) < 0. (2.3.20)
Moreover, we easily obtain that
4
a??tdE,G.(UUJOa —’U,Q,Uo) a dE a.('U'Oa Uo,UO) =8 - ga’un(uD:O)’

4
Uug —

8t2vd5,a(u0a 0, —uo, uO) 8 ds a.('UO: —Uuo, UO) = o (aﬂl(uo, 0) - 45)7

a?tde,a(u()a 07 —Uo, 'U'O) =3
By the above expressions above, it follows that

agv dE @ at2v dE @
det (U’O)()a —"U,O,UO) =
2, den Ohdes
16 c1(e)

= gt O) (B, 0) = 40) + L + o),
U CL) up a

where c1(€), ca(e) are two constants depending only on ¢. Then, if € satisfies (2.3.9), a can be chosen
so close to ug that

2 [_)2 d
vy HE,a tv e, a
det (ug,0, —ug, ug) > 0. (2.3.21)
8t2vds,a 87%&‘16,@

At last, the determinant of the hessian matrix of dg o at (uo, 0, —uo, ug) is given by

1 - 32
_ a(avn(u070)> 8uv77(U070)(av77(U0a O) - 48)2:2— + 63(5)7

det v?}st dt-,a(u(), 0, —ug, ’U,o) =

where c3(e) is a constant depending only on €. Since, by (2.3.1),

0z5u(0,0)
(0:u(0,0))3”

given € satisfying (2.3.9), we can choose a so close to ug that

8121,1;77('“07 O) =

det V%St dé-’a(’u,o, 0, —ug, up) < 0. (2.3.22)

By (2.3.20), (2.3.21), and (2.3.22), we can conclude that, by a suitable choice of the parameters, the
hessian matrix of de, (with respect to v,s,t) at (ug,0, —uo,uo) is negative definite. This fact, with
(2.3.18) and (2.3.19), allows us to state the existence of a constant 7 > 0 such that

deo(u,v,8,t) <0 (2.3.23)
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for |s+ug| < 7, [t —uo| <7, (u,v) €V, v#0, provided V is sufficiently small. So, condition (f) is
satisfied for |¢; + up| < 7 and |t2 — ug| < 7. We can assume § < 7 < a(v) for every (u,v) € V.
From now on, since at this point the parameters €, a have been fixed, we simply write I instead
of I. . We now study the more general case [{; + u| < a(—v) and |ts — u| < a(v).
Let us set

mi(u,v) = max {|I(u,v,s,t)] : [s +u| < a(-v), |t —u| < av), [t —ug] >71}.

By the definition of Ay,...,As, for p = a(6) + 6 we have (¢, ¢") =0 on (Vx[ug — p,ug + p]) \ 4
and (Vx[—ug — p, —ug + p]) \ As. This implies that

my(u,v) = max {|[(u,v,s,t)| : |s+ug| <p, 7 < |t —ug| < p}

for (u,v) € V. The function ms, as supremum of a family of continuous functions, is lower semicon-
tinuous. Moreover, mj is also upper semicontinuous; indeed, suppose, by contradiction, that there
exist two sequences (u,), (v,) converging respectively to u, v, such that (m;(up,v,)) converges to
a limit [ > m1(u,v); then, there exist (s,), (t,) such that

]Sn +Un| < O‘(_Un)a ltﬂ - Un] < a('”n)a |tn - UOI > T, (2-3~24)

and my(un,vn) = |I(tn,Vn,sn,tn)|. Up to subsequences, we can assume that (s,), (¢,) converge
respectively to s, ¢t such that, by (2.3.24),

lst+ul <a(-v), |Jt-ul<a), [t-ulzT
hence, we have that
mi(u,v) > |I(u,v,s,t)] = lim |1 (U, Uny Sy tn)| = 1 > my(u,v),
n—oo

which is impossible. Therefore, mq is continuous.
Let B be the open ball of radius 4e centred at (0, —4¢). Arguing as in (2.2.14), we can prove that

I(u,v,u,t) € B (2.3.25)
whenever 0 < |t — u] < a(v). In the same way we can prove that
I{u,v,s,—u) € B (2.3.26)
for 0 < |s +u| < a(-v). We can write
I(u,v,s,t) = I(u,v,s, —u) + I(u,v,—u,u) + I{u,v,u,t). (2.3.27)

So, for |s +u| < a(-v), [t —u| < a(v), and |t —up| > 7, by (2.3.26), (2.3.15), (2.3.16), and (2.3.25),
we obtain that B
I(u,0,s,t) € (0,7(u,0)) + B+ B,

hence, by (2.3.9), I(u,0,s,t) belongs to the open ball of radius y(u,0) centred at (0,0), and so,
m1(u,0) < v(u,0). By continuity, if V is small enough,

m1 (u,v) < y(u,v) | (2.3.28)

for every (u,v) € V.
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Analogously, we define
ma(u,v) = max {|I(u,v,s,t)] : |s +u] < a(-v),|s +u| > 7|t —ul < afv),}.
Arguing as in the case of my, we can prove that, if V' is small enough,
ma(u,v) < y(u,v) (2.3.29)

for every (u,v) € V.

By (2.3.28), (2.3.29), and (2.3.23), we can conclude that I(u,v,t1,%2) belongs to the ball centred
at (0,0) with radius y(u,v), for |t; +u| < a(—v) and [t2 —u| < av). More precisely, let E(u,v) be
the intersection of this ball with the upper half plane bounded by the horizontal straight line passing
through the point (0, 3y(u,v)): by (2.3.27), (2.3.17), (2.3.25), (2.3.26), and (2.3.9), we deduce that

I(u,v,t1,t2) € E(u,v) (2.3.30)

for |t1 +u| < a(-v) and |tz — u| < av).
We can now conclude the proof of (f). It is enough to consider the case —u — a(—v) <t <ty <
u+ a(v). We can write

I(U,Q},tl,tg) = I(U,U,tl A (*—’U. + O!(—-’U)),tg \ (’LL - O{('l)))) =+
+I{u,v,t1 V (—u+ a(-v)),t2 A (u — a(v))) — (2.3.31)
—I(u,v, —u + a(-v),u — av)).

By (2.3.30), it follows that
I(u,v,t1 A (—u + a(=v)),t2 V (u — a(v))) € E(u,v). (2.3.32)
Let Ci(u,v) be the parallelogram having three consecutive vertices at the points

(—v,u —a)

CRIE),0,  00), o),

let Cy(u,v) be the segment with endpoints

-v,u—a
(2hf(v),0), (2hf(v),0) + 20 (u, v) \/h%ﬁ’
and let C'(u,v) = Ci(u,v) U Ca(u,v).
From the definition of ¢ in Ay, As, Ay, it follows that
I(u,v, —u + a(—v),u — a(v)) = (2hf(v),0) + 20(u, v) ((;"’f;): i)UQ (2.3.33)
and
I(u,v, s1,82) € C(u,v) (2.3.34)

for —u+ a(-v) <s1 <sy <u-—a(v). Let

(—v,u —a)
(u—a)2+02

D(u,v) := C(u,v) — (2hf(v),0) — 20(u,v)
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From (2.3.31), (2.3.32), (2.3.33), and (2.3.34) we obtain
I{u,v,t1,t3) € E(u,v) + D(u,v). (2.3.35)

As |v| <0 <106 <u—a by (2.3.10), the angle that the segment Cy(u,v) forms with the vertical is
less than arctan(1/10). Moreover, we may assume that the length 20 (u,v) of the segment Ch(u,v)
is less than 7(u,v); indeed, this is true for v = 0 and, by continuity, it remains true if § is small
-enough. By (2.3.9) and (2.3.14), we have also that |2hf(v)| < v(u,v)/16. Using these properties and
simple geometric considerations, it is possible to prove that E(u,v) 4+ D(u,v) is contained in the ball
with centre (0,0) and radius 7y(u,v). This concludes the proof of (f).
If 92,u(0,0) < 0, it is enough to change the definition of ¢ in the sets Ay and A4, as follows:
a—1u

v
Ao (u,v) R Tu + Ao (u,v) R Ty + pez,

where a > ug + 116 and

olu,v) := %fy(a —+/(a—u)?+v2,0) — 2.

Theorem 2.3.2 Let u: Q — R be a harmonic function such that dyu(z,0) =0 for (z,0) € Q, and
let w: — R be the function defined by

(z,y) = u(z,y) +1 fory>0,
YY) = u(z,y) fory < 0.

Assume that 9;u(0,0) # 0 and 62,u(0,0) # 0. Then there ezists an open neighbourhood U of (0,0)
such that w is a Dirichlet minimizer in U of the Mumford-Shah functional (1.2.2).

Proof. We will write the calibration ¢ as in (2.3.5) and we will adopt the representation (2.3.6)
for ¢. We will use the same technique as in Theorem 2.3.1. We give only the new definitions of
the sets Aj,..., As and of the function ¢ when 9,u(0,0) > 0 and 82,u(0,0) > 0, and leave to the
reader the verification of the fact that this function is a calibration for suitable values of the involved
parameters. The case 92,u(0,0) < 0 can be treated by the changes introduced at the end of Theorem
2.3.1.

Let ug := u(0,0). Given € >0, h >0, A > 0, and assuming

Vo= {(u,v) : |u—up| <4, |v] <d},

we consider the following subsets of V' xR

A1 = {{y,v,2) e VXxR:u+1—-av) <z<u+1+a()},

Ay = {(u,v,2) € VXR:5h + B(u,v) < z < 5h + B(u,v) + 1/A},
Az = {(uy,v,2) € VXR:2h < 2 < 4h},

Ay = {{u,v,2) e VXR: h+ (u,v) <z < h+ B(u,v) + 1/A},
As = {(u,v,2) e VxR:u—a(-v) <z <u+al(-v)},
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where
alv) = /4e? = (e — v)?,

and f is a suitable smooth function satisfying 8(u,0) = 0, which will be defined later. For (u,v) € V
and z € R the vector ¢(u,v,z) is defined as follows:

’ 2e —v) Ty — 2Az—u—1) Ty +e;, inA
Y/ e A e e

— Ao (u,v) o _2)2 — Tu + Mo (u,v) \/@i_g)z—_{_]ﬁ% + pe, in Ag,

fw)mu +e; . in Az,

—Xo(u,v) @ _2)2 — Ty + Ao (u,v) T ﬁ;)z = Uz’rv + pe, in Ay,
2(e +v) 2(z — u)

r)'rv ‘I“ez iIl AS,

St iz et +(z-u)

€y otherwise,

where a < ug — 1148, p > 0,

R Y e CLl) R ) N
f(v) .—-—E< i o e— dt + . R p— dt |,
o(u,v) = 3y(a + /(v —a)? +9%,0) — 2,

and £ is the solution of the Cauchy problem (2.3.12). a



Chapter 3

Calibration of solutions with a regular
discontinuity set

By means of a new technique in the construction of the calibration, we generalize the results of the
previous chapter to the case when the discontinuity set of the candidate u (defined in a two-dimensional
domain) is any analytic curve joining two boundary points.

3.1 Statement of the main results

Let Q be an open bounded subset of R* and let I' be a regular curve joining two boundary points
of Q. By (1.2.3) and (1.2.11) we have that u € SBV(f2), with S, =T, satisfies the Buler-Lagrange
conditions for the homogeneous Mumford-Shah functional Fy (defined in (1.2.2)) if

i) w is harmonic in Q\T" and v € HY(Q\T),

ii) u=0on T,
iii) [{Vumi = curvI at every point of I,
where Vu® denote the traces of Vu on I'. The main result of the chapter is stated in the following

theorem.

Theorem 3.1.1 Let T' be a simple analytic curve and let g be a (connected) open subset of R?
such that T'N Q connects two points of 8Qy. Let u be a function in HY Qo \T) with S, =T, with
different traces at every point of I', and satisfying the Euler conditions i), ii), and iii) in Qy. Then,
for every subarc T C T' compactly contained in Qq, there ezists a uniform open neighbourhood U of
I'" contained in Qo such that u is a Dirichlet-minimizer in U of the Mumford-Shah functional (1.2.2).

As we already said in the Introduction, we want investigate also a different kind of minimality, by
considering as competitors functions with complete graph (see Subsection 1.1.1) contained in a small
neighbourhood of the complete graph of the candidate u. Accordingly we give the following definition.

Definition 3.1.2 A function u € SBV(Q) is a local graph-minimizer in Q if there ezists a neigh-
bourhood U of the complete graph T'y of u such that

[ 1vutm )Pz dy + 3065, < [ 1Vst@p)asdy+ 3 (s,)
0 Q

o1
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for every v € SBV(Q) with the same trace as u on 9Q and whose complete graph T'y is contained in
U.

Given an open set A (with Lipschitz boundary) and a portion I' of A (with nonempty relative
interior in JA), we define

K(T,A) = inf{/ |Vo(z,y)|?dedy : v e H'(A), /UQd?{l =1, andv=0o0n C?A\I‘} . (3.11)
A ’ r

It is easy to see that in the problem above the infimum is attained; moreover, the notation is well
chosen since K(I', A) is a quantity depending only on T' and A, which describes a kind of “capacity”
of the prescribed portion of the boundary with respect to the whole open set. It is convenient to give
the following definition.

Definition 3.1.3 Given a simple analytic curve I', we say that an open set  is I'-admissible if it is
bounded, T NQ connects two points of 02, and Q\T has two connected components, with Lipschitz
boundaries.

We will prove the following theorem which gives a sufficient condition for the graph-minimality in
terms of K(I',Q) and of the geometrical properties of the curve, i.e. the length of I' denoted by ! (m,
and the L®-norm of curvI denoted by k(T').

Theorem 3.1.4 Let Qg, u, and ' = S, satisfy the same assumptions as in Theorem 8.1.1 and let
Q be a T-admissible open set compactly contained in Q. Denote by Q1 and Qg the two connected
components of Q\ ', by w; the restriction of u to €, and by Oru; ils tangential derivative on r.
There exists an absolute constant ¢ > 0 (independent of Qo, Q, I', and u) such that if

2
mini—; » K(C N Y, Q) ,

+ Q ’ Oru; , 1.
1+ 2T NQ)+ 2T N2kITNAQ) ” c;” ~uiller rng (3.1.2)

then u 1s a local gmph—minimz'zer on §.

3.2 Proof of Theorem 3.1.1

Lemma 3.2.1 Let U be an open subset of R? and I, J be two real intervals. Let u : UxJ — I be
a function of class C* such that

o u(:,-;8) is harmonic for every s € J;
e there ezists a C! function t: UxI — J such that u(z,y;t(z,y;2)) = 2.
Then, if we define in UXI the vectorfield
d(z,y,2) == (2Vu(z, y; Hz,y; 2)), [Vu(z, y; t(z, 5 2)) ),

where Vu(z,y;t(z,y;2)) denotes the gradient of u with respect to the variables (z,y) computed at
(z,y;t(z,y;2)), ¢ is divergence free in UxI.
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PROOF OF THE LEMMA. Let us compute the divergence of ¢:

divé(z,y,2) = 20u(z,y;t(z,y;2)) + 20sVu(z, y; t(z, y; 2)) - Vi(z,y; 2)
+20;t(z,y;2) Vu(z, y; t(z, y; 7)) - s Vu(z, y; t(z, y; 2)), (3.2.1)
where Au(z,y;¥(z,y;2)) denotes the laplacian of u with respect to (z,y) computed at (z,y; t(z,y; 2)),

and Vt(z,y;2) denotes the gradient of ¢ with respect to (z,y). By differentiating the identity verified
by the function ¢ first with respect to z and with respect to (z,v), we derive that i '

Osu(z,y; t(z,y; 2)) O:t(z,y;2) = 1, Vu(z,y;t(z,¥;2)) + Osu(z, y; t(z,y; 2)) Vi(z,y;2) = 0.
Using these identities and substituting in (3.2.1), we finally obtain
divg(z,y, z) = 28u(z, y; t(z, y; 2)) =0,

since by assumption v is harmonic with respect to (z,y). O

PrROOF OF THEOREM 3.1.1. Again the proof will be achieved by constructing a calibration.
Without loss of generality we can suppose that I' is connected. For the sake of notation, in the
sequel, we will write I" instead of I. Let

. {:c = z(s)
=y(s)

be a parameterization by the arc-length, where s varies in [0,{(T")]; we choose as orientation the
normal vectorfield v(s) = (—y(s),2(s)).

By Cauchy-Kowalevski Theorem (see [36]) there exist an open neighbourhood U of T’ contained
in 2y and a harmonic function ¢ defined on U such that

ET(s)) =s and 9,¢(T(s)) = 0.

We can suppose that U is simply connected. Let 1 : U — R? be the harmonic conjugate of &
that vanishes on I, i.e., the function satisfying d,n(z,y) = —9,¢(2,y), Oyn(z,y) = 0.6(z,y), and
n(T(s)) = 0.

Taking U smaller if needed, we can suppose that the map ®(z,y) := (£(z,9),n(z,y)) is invertible
on U. We call ¥ the inverse function (£,7n) — (Z(£,7),%5(£, 7)), which is defined in the open set
V := ®(U). Note that, if U is small enough, then (Z(¢,7),%(¢, 7)) belongs to ' if and only if 7 = 0.
Moreover,

Oed  Opi 1 856 Oym )
DU = 787 717 V= — : 3.2.2
< Oy Ony ) Ve ( € Gy (3:2.2)

where, in the last formula, all functions are computed at (z,y) = ¥(¢,7), and so
8% =0y  and  Oy& = — 0. (3.2.3)

In particular, £ and ¢ are harmonic.
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On U we will use the coordinate system (&,7n) given by ®. By (3.2.2) the canonical basis of the
tangent space to U at a point (z,y) is given by

_ V& __Vn
Twerr T

T¢ (3.2.4)

For every (£,7) € V, let G(¢,7) be the matrix associated with the first fundamental form of U in the
coordinate system (£,7), and let g(£,7) be its determinant. By (3.2.2) and (3.2.4),

9= ((0:3) + (8e7))? = WE(%W (3.2.5)

We set v(&,n) = /g(&,m).

From now on we will assume that V is symmetric with respect to {(¢,7) € ®(U) : n = 0}.
Note that we can write the function u in this new coordinate system as

u(€,n) = ui(€,m) i (Em) €V, n <0,
)1 ua(€,m) i (6,m) €V, n >0,

where we can suppose that u; and ug are defined in V (indeed, w; is a priori defined only on the
set {(&,n) € V : 7 < 0}, but it can be extended to V by reflection; an analogous argument applies to
ug), 0 < ui(€,0) <wug(€,0) for every (£,0) € V, and

1) OFcui(é,m) + Opyui(€,m) = 0 for 1= 1,2;
it) Fpu1(€,0) = Opua(€,0) = 0;
i) (Ocua(€,0))? = (Feur(€,0))? = curv ().

The calibration ¢(z,y,2z) on UxR will be written as

SR — B(E(z, 1), 1(2,9), ), (3.2.6)

Y2 (€(z, ), n(z,y))

where ¢ : VxR — R? can be represented by

B(€,m,2) = ¢°(&,m, 2)7e + 87(E, 1, 2) T + ¢ (§,m, 2)ez, (3.2.7)

where e, is the third vector of the canonical basis of R?, and 7¢, 7, are computed at the point ¥ (£, 7).
We now reformulate the conditions of the calibration in this new coordinate system. It is known from
Differential Geometry (see, e.g., [22, Proposition 3.5]) that, if X = X&7¢ + X7, is a vectorfield on
U, then the divergence of X is given by

1
7
Using (3.2.4), (3.2.5), (3.2.6), (3.2.7), (3.2.8), and arguing as in Section 2.3, it turns out that a

vectorfield ¢ € F(V x R) (see Section 1.3 or 2.1 for the definition of F(V x R)) is a calibration if,
for the associated Lipschitz decomposition (4;)ier of V x R, the following conditions are satisfied:

divX = = (8:(v*X%) + (v X7)). (3.2.8)

(a) divg =0 in A;, for every i € I;
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(b) vou, - T = vou, - ¢7 = vpa, - ¢ H2-ae in OA; for every i € I, where vgy,(£,n,2) denotes the
(unit) normal vector at (£,7,2) to OA;, while ¢+ and ¢~ denote the two traces of ¢ on the
two sides of 9A;;

(c) (¢°(6,m.2))* + (¢"(£,m,2))? < 447 (€, m, 2) for almost every (£,7) € V and every z € R;

(d) ¢ (&m,u(m) = 20¢u(g,n), ¢7(&mu(€,m) = 205u(E,n), and ¢*(¢,m,u(¢,n)) = (Beul€, m)” +
(Oqul§, 77)) for almost every (£,7) € V;

(e)/ ¢5(€,0,2)dz =0 and/ #"(€,0,2) dz = v(£,0) = 1 for H!-almost every (£,0) €

¢
() (/ gzﬁf({,n,z) dz) (/ ", m, 2z z) < 72(5,77) for H!-almost every (£,n) € V, and for
e\fery s,t € R.

Given suitable parameters € > 0 and A > 0, that will be chosen later, we consider the following
subsets of VxR

Ay {(¢,n,2) e VXR: z < wuy(€,n) — €},

Ay = {(6,m,2) EVXR:u(€,n) —e <z <ui(é,n) +e},
As = {(&n,z) e VXR:ui(&,n) +e <z < pf1(&n)},

Ay = {(&n,2) e VXR:B1(&,n) <z < Balé,n) +1/)},
As = {(&,m,2) EVXR: fo(é,n) +1/A < z < us(&,n) — e},
As = {(&n,2 )erR:uo(f n) —e<z<u(é,n) +e},
Ar = {(&,n,2) € VXR:z > ug(€,n) + €},

where f; and [y are suitable smooth function such that ui(&,0) < £1(€,0) = B2(£,0) < u2(£,0),
which will be defined later. It is clear that if £ is small enough and A is sufficiently large, then the
sets Aj,..., A7 are nonempty and disjoint, provided V is sufficiently small.

The vector ¢(£,n,2) introduced in (3.2.6) will be written as

$(&,m,2) = (87(¢,m, 2), 67 (€, 7, 2)),

where ¢ is the two-dimensional vector given by the pair (¢%,¢"). For (£,m) € V and z € R we
define ¢(&,n,2) as follows:

(0,w1(f,77)) in Z]_ UZ3)
(2V'U,1 - 2 V’Ul, Vul l’U V’Ul ) n AQ,
U1 1
(AU(€7 77) VU), /’L) in A47
(0, wa(&,m)) in As U Ay,
Uug — 2 U — 2 2
<2Vu2 -2 2 VUQ, VUQ ~ 2 VUQ > in As,
{ V9 V2
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where V denotes the gradient with respect to the variables (£,7), the functions v; are defined by

vi1(&,n) =€+ Mn, v2(§;n) =€ — Mn,

and M and p are positive parameters which will be fixed later, while

e2M? 2 2
wi(€,m) = m - (agui(ﬁ,ﬂ)) - (3nuz‘(§777)) ’ (3.2.9)
for i = 1,2, and for every (£,7) € V. We choose w as the solution of the Cauchy problem
Aw =0,
2e ¢
W(.0) = 77 || ) (Bea(s,0) + Dgua(s,0)) s (3210)

aﬂw(€7 O) = n(é)?

where n is a positive analytic function that will be chosen later in a suitable way (if V' is sufficiently
small, w is defined in V). To define o, we need some further explanations: we call p(¢,7) the solution
of the problem

0,
Byp(£,m) = %@(«s,n),m,
p(£,0) = ¢,

which is defined in V', provided V is small enough. By applying the Implicit Function Theorem, it is
easy to see that there exists a function ¢ defined in V (take V smaller, if needed) such that

pla(&,m),m) =& (3.2.12)

(3.2.11)

At last, we define

1

We choose f3;, for i = 1,2, as the solution of the Cauchy problem

{A"@, m)Bew (€, 1)3eBi(€,m) + Ao (€,m)0yw(€,myBi6,m) — p = —wil€,m), (3.2.13)

Bi(6.0) = 5(11(6,0) + ua(6,0)).

Since the line n = 0 is not characteristic, there exists a unique solution 8; € C*°(V'), provided V is
small enough.

The purpose of the definition of ¢ in As and Ag is to provide a divergence free vectorfield satisfying
condition (d) and such that

#"(£,0,2) >0 for u; < z < uy,
#"(£,0,2) <0 for z < wup and z > us.

These properties are crucial in order to obtain (e) and (f) simultaneously.

The role of Ay is to give the main contribution to the integral in (e). The idea of the construction
is to start from the gradient field of a harmonic function w whose normal derivative is positive on the
line n = 0, while the tangential derivative is chosen in order to annihilate the {-component of ¢, as
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required in (e). Then, we multiply the field by a function ¢ which is defined first on 1 = 0 in order
to make (e) true, and then in a neighbourhood of 7 = 0 by assuming o constant along the integral
curves of the gradient field, so that cVw remains divergence free.

The other sets A; are simply regions of transition, where the field is taken purely vertical.

Let us prove conditions (a) and (b). By Lemma 3.2.1 it follows that ¢ is divergence free in AU Ag,
noting that it is constructed starting from the family of harmonic functions u;(¢,n) — tv;(€,7).

In Ay condition (a) is true since, as remarked above, ¢ is the product of Vw with the function
o which, by construction, is constant along the integral curves of Vw. :

In the other sets, condition (a) is trivially satisfied.

Note that the normal component of ¢ is continuous across each 9A;: for the regions A,, Ag, and
for A4, this continuity is guaranteed by our choice of w; and f; respectively, so that also condition
(b) is satisfied.

Since

w;(§,0) = M? - (afui(fao))za

condition (c) is satisfied in A; U A3 and in As U A7 if we require that
M > sup{]aful(gao)l : (670) € V7 1= 172})

provided V is small enough.
Arguing in a similar way, if we impose that

/\2 4 2
L > sup {Z(l — 2eM)? (1 + (T:%W(aful(é,o) + afuz(f,o))2> 0 (£,0) € V} ;

condition (¢) holds in Ay, provided V is sufficiently small.
In the other cases, (c) is trivial.

Looking at the definition of ¢ on Ay and Ag, one can check that condition (d) is satisfied.
By direct computations we find that

U3 1
/ ¢€ dz = 2€8§u1 + 2635’1@ + A (,32 - p1 + X‘) Uag’w, (3.2.14)
3

U2 62 52 1
Y = A - — 2.
/ul ¢ dz 2e0puy + 2e0,uy + ]\JE o + M& iy + (52 61+ /\) oOpw, (3.2.15)

for every (&,n) € V.
By using (3.2.10) and the definition of o, we obtain

u2(£>0) ‘
[ 0,2 do =0 (3.2.16)
u1(§,0)
and
'U.g(f,o)
/ $"(£,0,2) dz =1, (3.2.17)
’11,1(6,0)

so condition (e) is satisfied.
The proof of condition (f) will be split in two steps: we first prove that condition (f) holds if s
and ¢ belong to a suitable neighbourhood of u1(¢,n) and ug(€,n) respectively, whose width is uniform
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with respect to (£,7) in V; then, by a quite simple continuity argument we show that condition (f)
is true if s or t are outside that neighbourhood.
For (¢{,m) € V and s5,t € R, we set

¢
Ins,0) = [ ¢¢,m,2) d=
S
and we denote by I¢ and I7 its components.

STEP 1. For a suitable choice of € and of the function n (see (3.2.10)) there exists 6 > 0 such
that condition (f) holds for |s —u1(£,n)| <4, |t —u2(&n)| < d, and (§,n) € V, provided V is small
enough.

To estimate the vector whose components are given by (3.2.14) and (3.2.15), we use suitable polar
coordinates. If V is small enough, for every (£,m) € V there exist p-n(&,n) > 0 and —7/2 <
Oc n(€,m) < /2 such that

If(&aﬂ:“l(&?ﬁ)a U2(§a77
In(fﬂ?;“l (5777)7 U2(f:77

In the notation above we have made explicit the dependence on the parameter £ and on the function
n which appears in the definition of w (see (3.2.10)).

In order to prove condition (f), we want to compare the behaviour of the functions p, , and «y for
In| small. We have already proved that p.,(&,0) = v(£,0) = 1; we start computing the first derivative
of v and of p., with respect to the variable 7.

) Pe,n(§7 77) Sin 08,7’&(5777)7 » (3218)

)
) = pen(§;m)cosb:n(é ). (3.2.19)

Claim 1. 9,(|Vay&(¥)P)(€,0) = ~2curvI(¢).
PROOF OF THE CLAIM. By (3.2.5) we obtain

1
Ivzyf(g’)P = (8553)2 + (0:9)
hence
On(|Vay€ (D)2 = —[(82) + (9¢9)°] (206 8,% + 20¢7 O2,7).- (3.2.20)

Using the fact that (9:%)? + (9¢§)? is equal to 1 at (£,0), and the equalities in (3.2.3), we finally get
On(| Vay (1)) (€, 0) = —~2(~0¢F 03 + B¢l Oge®) = —2curv T'(g),

where the last equality follows from (1.2.7): therefore the claim is proved.

Since v = (|Vay&(L)[2)%, one has that 8,y = —+(|Vayé(¥)[2) ™28, (|Vayé (L) [?); using the previ-
ous claim we can conclude that

00(1)(6,0) = 505 (Vg ())&, 0) = curv T(e).

Using the equality

2

pg,n(€7n) = (15(57777ul(é‘an)qu(g)n)))d + (I”?(é" 7]7“‘1(57 77):“2(5,77)))2 )
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we obtain

1 1
a77 (Ié(fanauth)) I§(§7 n7ulau2) + P a77 (In(fanauhuQ)) In(&aﬂ:“la“?)'

e,n €,n

an (Pe,n) = P

By (3.2.16) it follows that the first addend in the expression above is equal to zero at (€, 0), while by
(3.2.17) it turns out that I7(€,0,u1,us) = pen(&,0) = 1; therefore,

On(pen)(€,0) = 0y (I7(&,0,u1,u2)).. (3.2.21)
By (3.2.15) it follows that
2 2
€ 2 2
B (IM(&,m,u1, u2)) = 2602, u1 + 260, ug — an Mn)QM Tz MU)QM + M8y B2 — OpB1)cOpw +
+A(B2 = Br + 1/A)Op(0Opw). (3.2.22)

From (3.2.13) and the Euler condition iii), we have that

A(0pB2(&,0) = 9,81(£,0))0(€,0)0pw(€,0) = —wa(&,0) +wi(€,0)
(Ozu2(€,0))* = (Geua (€,0))°
= curvI'(¢), (3.2.23)

Il

while

On(00qw)(§,0) = =0 (00cw) (£, 0) = O¢(2e05u1 (€, 0) + 2e0u2)(€, 0),

where we have used the fact that oVw is divergence free and the definition of o and w. Putting this
last fact together with (3.2.22), (3.2.23), and the harmonicity of u;, we finally get

On(pe;n)(€,0) = curv I'(§) = Gp(7)(¢,0). (3.2.24)

Claim 2. 8,%,}([me§(lll)]2)(§,0) = 4[curv (€))%
PROOF OF THE CLAIM. By differentiating with respect to n the expression in (3.2.20) and by (3.2.3),
we obtain

02, (IVey (D)) = —2[(9:3)* + (8¢1)*] 21(02,8)* + 8¢F O + (05,5)° + ¢l B +
+8[(0e2)* + (0:1)%] 73 (87 agnsz + O agng)z
= —2[(0:2) + (0e0)?) 21(0%:0)” + (0 E)” — Oc Ofce® — Ol BeeTl] +
+8[(0¢2)% + (0e)?] % (—0cF O + 0cl) 03:3)*.

Note that | .
—0¢% Ogect — Ol Ol = (05el)” + (95e)” — 506 ((962)” + (360)°).

Using (1.2.7), (1.2.8), and the fact that (9¢Z)2 + (8¢§)? is equal to 1 at (£,0), we obtain the claim.
By using Claims 1 and 2, we can conclude that

2, (1)(E,0 = Zuw(w%-%[antivmyﬂ‘lf)f?)]z - %“W (D)2 Vet () } {@ )

= [curv (). (3.2.25)
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The second derivative of pe, with respect to 7 is given by

L [0 (1#(6mun,ma))]” o+ 03, (¥(6 m.m,0)) 156 m 100+

+ [y (I"(€,m, uz,u2))” + 85y (I7(E, 7y, u2)) In(&v"?:“l:“&)} -

1
O (0en)]?.
PE,n—[ 77(:0, )]

5‘1317 (pen) =

By the equalities (3.2.16), (3.2.17), and (3.2.21), the expression above computed at (£,0) reduces to

2
0% (pen) (€,0) = [377 (Ig(faﬁ,ul,uz)> ‘(E 0)} + 85 (17(€,m,u1,2))| g0y - (3.2.26)
By differentiating (3.2.14) and (3.2.22) with respect to 1, we obtain that
8, (If &, ul,u2)> (€,0) = [M(ByBa — 0B )Bw + 840 Bgw + a8, wl (e 0)» (3.2.27)
and
Oy (I"(&,m,u1,42)) (€,0) = %M‘”’ + N[0, 82(€,0) — 07,81(&, 0o (€, 0095w (€,0) +
+2A[a7762(§: O) - a77161 (57 0)]877(0’877711) (5) O) + 8727770-(§) 0)877“1(57 O) -+
+20,0(£,0)02,w (€, 0) + o (&, 0085, w(€,0), (3.2.28)

while, by using the equation (3.2.13),

(A(8Z,B2 — 02, B1)00nw]lg,0) =
= [anwl - 5nw2 - )\&7(8552 - aﬁﬁl)o_agw - >\077<0-87’w)(8m62 B 377/81)]](.5,0)

4
= [-——E—]\/I3 — /\85(6,7[32 - 6,,51)08571) -+ Aag(aag’w) (877,32 - anﬁl)]l@,o).

Since by (3.2.23) and by the definition of o we have that

ABa6a(6,0) - (€, 0)] = ST

and moreover,

0(670)8610(570) = _2E(a§u1(£? O) + a&“?(ga 0)),

we obtain that

P\(a?mﬁg - agnﬁﬂaanw + 2/\(87752 - 37,['31)(977 (O'an’w)]l(g’o) =

= —§M3 + 7 —2285M Ot ((Ogur — Beun) curvI’)(£,0).
By using the definition of o, we can write
Opo = —(1- 25M)ZQ((?) Onq,
€)%, 2, () (€
8727,70 = —(1-2eM) —2%1%—(8" )*+ 22(5) (8,9)? + :2(@)) agq



Calibration of solutions with a regular discontinuity set 61

In order to compute the derivatives of ¢, we differentiate the equality (3.2.12) with respect to n:

2
Oal(£,0) = —0p(&,0) = T (01 (6,0) + B (€, 0)),
01pa(€,0) = —20,p(€,0)9,q(¢,0) — 82,p(£,0)
(861”) 1
[ By 8&7 anwagnw] (5,0?.

By the definition of w, we obtain

n'(§) _n'(g)  4e?

Oal6,0) = 0 = ) T zenry e (6:0) + B (£,0))”

Finally, we have

2¢ /
2 w(f, O) = —8€2§w(§, 0) = —1—~:~28—M[n (8§u1 + 5'EUQ) + n(@éul + 825“‘2)“(6,0)’

nnnw(f’o) = “agganw(&o) :_n”(f)'

By substituting all information above in (3.2.27) and in (3.2.28), and by using (3.2.26), we finally
obtain that

B olpen)€0) = ()& 4 (5’ <( >)>

n(¢)
ooy [POY n'(€) n'(€)
©(5g) e (e5g) -0 (58) . e
where
ag(é) =1  uniformly in [0,1(T)],
he(€,7) — 272 uniformly on the compact sets of [0, [(I')] xR, (3:2:30)
as € — 0.

Claim 3. There exists € > 0 such that for every ¢ € (0,€), we can find an analytic function
n: [0,1(T)] — (0,+00) satisfying

2 n'
Bsn(ps,n - 7)(&£,0) = ——m and ln—((gl <N VE€0,(D)], (3.2.31)
where N := 1+ max{zl—%,k(l’)} and k(I") = |jcurv | oo -

PROOF OF THE CLAIM. Set 7 :=n//n; in order to prove the claim, by (3.2.29) and (3.2.25) we study
the Cauchy problem

7T2
{—ag(f)fr/ + he(€,7) — 72 — [curv (€))% = “fﬁﬁ(‘ﬂ’ (3.2.32)

7(0) =0,
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and we investigate for which values of ¢ it admits a solution defined in the whole interval [0,(I")],
with L% -norm less than N. As ¢ — 0, by (3.2.30) we obtain the limit problem ‘

2
2 2 T
'+ 72 — (curvl) 162(T)’ (3.2.33)
7(0) = 0.
By comparing with the solutions 7, and 7o of the Cauchy problems
2 2
2T 2 AT) = —
E R TYETiON 7 =0 = - gEry (3.2.34)
1 (0) =0, 72(0) =0,

one easily sees that the solution of (3.2.33) is defined in [0, 1 ()], with L -norm less than the maximum
between ||71)|oo and ||72l|eo, Which is, by explicit computation, less than max{n/(4(I")),k(T)}. By
the continuous dependence on the coefficients (see [34]), we can find € such that, for every e € 0,8),
the solution of (3.2.32) is defined in [0,I(T")] with L°°-norm less than N.

For every e € (0,%), we set
ne(£) = el =), (3.2.35)

where 7, is the solution of (3.2.32).

From now on we will simply write p. and 6. instead of pn. and O, .

We now want to estimate the angle 6¢(£,7) by a quantity which is independent of £. Since by
(3.2.14) and (3.2.15)

2e0:u1 + 2e0¢us + A (52 - 061+ %) Uagw

tanf: = 2e0pu1 + 2e0pus + Me2(e + Mn)~1 + Me?(e — Mn)=L+ A (,32 — B+ %) 00w’
we have
8,0.(6,0) = —-1—_225%(6@1 + Beun) (curVF — 2e(Bpur + afuf))ZEg) +(1- %M)Zi%,

and so, by Claim 3, if ¢ is sufficiently small,

10n0:(&,0)] < N veé e [0,1(T)]. (3.2.36)
Let A(n) be an arbitrary continuous function with

6(0)=0 and 0(0)=N; (3.2.37)
by (3.2.36), it follows that

16:(&,m)] < 6(n) signn | (3.2.38)

for every (€,m) €V, provided V is sufficiently small.
Given h > 0, we consider the vectors

b}ll(& 7 5) = (07 —'2(5 - u1(§, 77))87]’“'1 (5777) - h(S — U1 (5777))2) )
bg(g’ YR t) = (07 2(t - u2(€7 72))@;“2(5» 77) - h‘(t - Uz(faﬁ))Q)
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for (&,m7) € V and s,¢t € R. We denote by B(r) the open ball centred at (0, —r) with radius r.
Let us define 7%(¢,7, s,%) as the maximum radius r such that the set

(p<(&:m) sin6(n), pe (&, m) cos O(m)) + b (€,77, 8) + b5 (&,m, £) + B(r)
is contained in the ball centred at (0,0) with radius v(&, 7).

Claim 4. Setting

d:= -
T 14 1612(T)N2 /2’

(3.2.39)

where N is the constant introduced in the previous claim, there exists h > O such that for every
€ € (0,2) (see Claim 3), there exists § € (0,¢) so that, if V' is small enough,

. (3.2.40)

o R

inf{2r?(§,n,s,t) S(6m) eV, s —ui(én)] <6, |t —ua(én)| < 5} >

PROOF OF THE CLAIM. Let p2(£,7,s,t) > 0 and —7/2 < @?(g,n,s,t) < 7/2 be such that

(ps(f,n) sin 0(n), p (£, 1) cos 5(?7)) +BR(E, m, 8) + V(1) =

— . =h _ —h
= (ﬂ?(&n,s,t) sin @ (¢, 7, ,),2(€,7m, 5,t) cos 0, (&msw‘)) . (3.2.41)

To prove Claim 4, it is enough to show that, for every ¢ € (0,%), there exists § € (0,¢) with the
property that

d
2

F4

(1 - gCOS 5?(5,7778,75)) PE(€,m,8,1) < (1 - ) v(&n) (3.2.42)

for |s —ui(€,m)] <6, [t —u2(é,n)| <4, and (£,n7) € V with n # 0, provided V is sufficiently small.
Indeed, if (3.2.42) holds, it follows in particular that p2(£,7n,s,t) < v(&,7), and this inequality with
some easy geometric computations implies that

72(57 77) B (ﬁg(gan787t))2
v~ BE(E,m, 5, t) cos B (€, ,8)

2rl(&,n,5,1) =

at this point, it is easy to see that, if V is small enough, inequality (3.2.42) implies that 272(¢, 7, s,1) >
d/2, that is Claim 4. So let us prove (3.2.42).
We set

d —n _ d
fd)h(é-:'rh’s)t) = (1 - 5COS@E (fﬂ’h&ﬂ) p?(f,n,s,t) - (1 - 5) 7(5977)
and we note that f%"(¢,0,u1(€,0),us(€,0)) = 0. We will show that

L. VUStfd)h(§707u1(§a0)7u2(§70)) =0 if (5)0) € V?

2. V,?Stfd’h(é,O,ul(f,O),ug(ﬁ, 0)) is negative definite if (£,0) € V,
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where Vs " and Vnzst Foh denote respectively the gradient and the hessian matrix of f%" with
respect to the variables (n,s,t). Equality 1 follows by direct computations and by (3.2.24). Using
(3.2.41), the equality in (3.2.31), and (3.2.37), we obtain

§ d\ d
0%, £4(6.,0,1(6,0),42(6,0)) = ~ 5Ty (1 _ 5) + v

then by the definition of d,

2

872mfd,h(§aovul (570)77"2(570)) = _m <0. (3243)

Moreover we easily obtain that

8z‘§)‘tfd’h(€707ul(§70)7u2(§)0)) = agsfd’h(gaoaul (f,O),U;g(f,O)) = —2h <1 - g) )

. d
a;nfd’h(éz0)“’1(670)’“2(5’0)) = -2 (1 - §> 1;77“1(6 O)

> d\ .o
O F1(6,0,1(£,0),u2 (8, 0)) = 2 (1 - 5) Ony2(£,0),

aézsfd,h(ga O) U1 (57 0)7 U2 (57 0)) =0.
By the expressions, it follows that

7T2

62 fdh 82 fdh om0 ,
det ( 82 fh a:sfdh ) (£,0,u1(&,0),u2(§,0)) = h(2 “d)m = (2 = d)*[0,w (&, 0)],

sn

and that the determinant of the hessian matrix of f&* at (£,0,u1(€,0),u2(£,0)) is given by

2

et V7 f (6,0, 11 (6,0),u2(6, 0)) = ~WA(2 = d)? g + (2 = ) ([0 (€,0))° + (06, 0))°]
By the definition of d, if h satisfies

h> a2 - d) Z 105l Fos 5 (3.2.44)
then for every (£,0) € V' we have

fdh 82 fdh
d6t< ag fdh 8§sfdh > (6,0,’&1(5,0),1&2(5,0)) > 07 (3.2.45)

and

det V2, f2R(€,0,u1 (€, 0), u2(€,0)) < 0. (3.2.46)

By (3.2.43), (3.2.45), and (3.2.46), we can conclude that the hessian matrix of f%" is negative definite
at (£,0,u1(£,0),u2(£,0)): both (3.2.42) and Claim 4 are proved.
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Claim 5. For every r > 0 and h > 0, there exists € > 0 with the property that, if ¢ € (0,€), one
can find ¢ € (0,¢) such that

B(r) +b5(&,n, t),
B(r) +bk(¢,n, ),

I(fu 7, U2 (5) 77)7 t)
I(f? 7, 8, ’u'l(gv 77))

for every (£,m) € V and |t —ug(é,m)| <6, |s —u1(€,n)| <8, provided V is small enough.
PROOF OF THE CLAIM. By the definition of ¢ in 4g, we obtain that

€
€

I8(E,m,ua(€,m), ) = 2(t — ua(é, ) Dgua (€, m),
I7(E,m,un(6,m), ) = 20t — us (€, ) ByualE,m) — M(e = M)~ (¢ = ua(é, m))2.
To get the claim, we need to prove that
(2t — ug)Beus)® + (=M (e — M)~ (¢ — ug)? + h(t — ug)® +1)° < r2,
which is equivalent to
(2(t — u2)Oun)? + (=M (e — Mn) ™t + h)2 (t—wu2)* +2r (~M(e = Mn)™t + 1) (t — ug)? < 0.
The conclusion follows by remarking that, if V' is small enough, the left-hand side is less than

2Mr
€

<4(85U2)2 + 2hr — ) 6% + 0(52),

which is negative if ¢ is sufficiently small. The proof for u; is completely analogous.

Let us conclude the proof of the step. By Claim 4, we can find ~ > 0 such that (3.2.40) is satisfied
for € € (0,2). If we choose r such that 2r < d/4, by Claim 5 there exists £ > 0 such that for every
€ € (0,€) there is ¢ € (0,¢) so that

I(n, s,u1(€,m) + I(n,u2(&,m),t) € B(2r) + bl (&,m,8) + bE (¢, 7, 1) (3.2.47)

for every [s — ui(&,m)] < 0, |t —ua(é,n)] < 6, and (£,7) € V. If we take ¢ < min{£,&}, then by
Claim 4 we have that the set

B(2r) + (p=(£,m) sin 0(n), pe (€,n) cos B(n)) + bI(€,n, ) + bE(&,7m,1)

0) with radius v(£,7). Some easy geometric considerations show

is contained in the ball centred at (0,
0 (see (3.2.38)) implies that also the set

that the relation between 8, and

B(2r) + (p=(£,7) sin 0c(n), pe (€, 7) cos Oc(n)) + b(&,m, ) + bE(&,m, 1) (3.2.48)

is contained in the ball centred at (0,0) with radius (£, n), if the condition

b2 (¢,m, ) + B2 (E,m, )| < 2r

holds (to make this true, take § and V smaller if needed). Since

I(n737t) = 1(77; 37u1(£777)) +I(77,u1(§,77),u2(§,77)) +I(777u2(§777))t)7
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by (3.2.47), (3.2.18), and (3.2.19), it follows that I(n,s,t) belongs to the set (3.2.48), and then to the
ball centred at (0,0) with radius v(¢,7) for every |s—u1(§,n)| <0, [t —u2(§,n)| < §,and ({,7) € V.
This concludes the proof of Step 1.

STEP 2. If ¢ is sufficiently small and § € (0,¢), condition (f) holds for |s — ui(§,m)| > ¢ or
[t —u2(&,m)| > 6, and (&,n) € V, provided V is small enough.

Let us fix 6 € (0,¢) and set

ml(ﬁﬂ?) = maX{lI(ThS,t)l : Ul(fﬂ?) — & S S S t S U?(&Jl) +67 It - U2(§a77)| Z 6}

It is easy to see that the function m; is continuous. Let us prove that m(£,0) < v(£,0) = 1.
Fixed (570) ev, u1(§,0) —e<s<t< UZ(&)O) + ¢, with lt - u2(€70)| > 57 we can write

I(Oa S:t) = I(0937u1(§70)) + I(O,ul(f,O),m(f,O)) + I(Oau2(§7 O):t)' (3249)

Claim 6. For every r > 0 there exists € > 0 such that
1(0,u2(¢,0),t) € B(r),  1(0,5,u1(£,0)) € B(r)

for 0 < |s —u1(€,0)] <e, 0 < |t—ua(,0)] <e, and (£,0) € V.
PROOF OF THE CLAIM. See the similar proof of Claim 5 above.
By (3.2.49), (3.2.16), (3.2.17), and Claim 6, it follows that

I(0,s,t) € (0,1) + B(r) + B(r) = (0,1) + B(2r) (3.2.50)

for 0 < |s —uy(£,0)] <&, 6 <|t—ua(€,0)] <e. If r <1/4, theset (0,1) + B(2r) is contained in the
open ball centred at (0,0) with radius 1.

It remains to study the case |s —uj| > ¢ and the case |t —ua| > €. Let us consider the latter; the
former would be completely analogous. We can write

1(0,s,u1(€,0)) = I(0,8A (w1(&,0) +¢),u(§,0)) +1(0,sV (ur(¢,0) +€),u(§,0) +¢),
I(O,UQ(E,O),t) = I(Oau2(€a0)7u2(§70) - E) + I(Oau2(§70) - E)t)'

Therefore, by (3.2.49)

I(0757t) = I(Oau1(€>o)au2(§70)) + I(078 A (ul(f,O) + E),’ul(ﬁ,O)) +
-I-I(O,UQ(«S,O),Uz(f,O) - 5) + I(Oa sV (’U,l(g,O) + 6),7f) -
-I(Oaul (5)0) + 57“2(65 0) - E)' (3251)

If —2e(0¢u1(€,0) + Ogua(€,0)) > 0, we define
C = [0, —2e(8eu1(&,0) + deug(€,0))]x[0,1 — 2eM];

if —2e(8¢u1(€,0) + Gzuz(€,0)) < 0, we replace [0, —2e(0¢u1(€,0) + Ocua(§,0))] by [-2e(0eui(€,0) +
deug(€,0)),0]. From the definition of ¢ in Az U Ay U As, it follows that

1(0,u1(£,0) + &, u(€,0) — £) = (~2(Bua (€,0) + Beua(€, 0)), 1 — 2eM) (3.2.52)
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and
1(0,s,t) € C (3.2.53)

for vy (£,0) + e <5<t <ug(€,0) —e. Let D:=C — (—2e(0:u1(€,0) + Opua(€,0)),1 — 2eM). Since
IM(€,0,u2(€,0),us(€,0) — €) = ~Me, from (3.2.51), (3.2.16), (3.2.17), Claim 6, (3.2.52), and (3.2.53),
we obtain

I®,s,t) € [(0,1) + B(r) + B(r)]n{(z,y) ER?:y<l1—eM} +D
=1[(0,1) + B2r)]n{(z,y) € Ry < 1—eM} + D.

If r < 1/4 and if € is sufficiently small, the set [(0,1) +B@2r)]N{(z,y) eR2:y <1l —eM} + D is
contained in the open ball centred at (0,0) with radius 1 and this means that mq(&,0) < v(&,0).
Analogously we define

m2(£777) = ma’x{l](nasat)l : Ul(fﬂ?) —E S S S t S u2(£777) + €, IS “Ul(fﬂ?)! 2 5}

Arguing as in the case of m;, we can prove that mg is continuous and m3(£,0) < v(£,0). By
continuity, if V is small enough, m1(&,7n) < (&,n) and ma(€,n) < v(&,n), for every (£,m) € V': Step
2 is proved.

By Step 1 and Step 2, we conclude that, choosing ¢ sufficiently small and n = n. (see (3.2.35)),
condition (f) is true for uy(&,n) —e < s5,¢ < ug(&,n) + ¢ and in fact for every s,t € R, from the
definition of ¢ in A; and As. O

3.3 The graph-minimality

We start this section with a negative result: if the domain €2 is too large, the Euler conditions do
not guarantee the graph-minimality introduced in Definition 3.1.2, as the following counterexample
(suggested by Gianni Dal Maso) shows.

Proposition 3.3.1 Let R be the rectangle (1,1 + 4l)x(=I,1) and let

ulz,y) = ;
Y -z ify <O.

Then, w satisfies the Euler conditions for the Mumford-Shah functional in R, but it is not a local
graph-minimizer in R for [ large enough.

PROOF. The Euler conditions are obviously satisfied by v in R.
Let Rg be the rectangle (0,4)x (—1,0) and let w be any function in H*(Ry) such that w(z,0) = z
for z € (0,2), and w(z,y) =0 for (z,y) € 0Rg \ ((0,4)x{0}).
The idea is to perturb u by the rescaled function v(z,y) = lw(2, ¥). We define the perturbed
function
1 on Rl \Tsv
W(z,y) =< —z+n(z—-1) onT,
—ztnu(ay) on Ry,
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4]

Figure 3.1: the regions R;, R, and T;.

where 7 is a positive parameter and the rectangles R;, Ra, and the triangle T, are indicated in
Fig. 3.1. We want to show that, if we set ¢ := fRo |Vw(z,y)|?dz dy, for every [ > ¢ and for every &g,
no > 0 there exist € < gp and 7 < 7 such that

/]Vu(x,y)lemder%l(Su) >/]Vﬂ(z,y)]2dazd@/+?{l(5ﬁ).
R R

By definition, @ satisfies the boundary conditions. Since by the construction of v the function %
is continuous on the interface between T, and Rs, then

HU(S,) — HY(Sg) =20 — 2/ 12+ €2 = ——62—4-0(62). (3.3.1)
On the triangle T, we obtain
/ |Vu(z,y)|dz dy — / |Vii(z,y)|*dz dy = 2len — len?. (3.3.2)
T. T.

Finally, since we have that |Vi|? = 1 + n?|Vv|? — 21 ,v in Ry, taking into account the boundary
conditions of v, we get

/ Vulz,y)Pdzdy — [ |Vale,y)Pdedy = - / Vo, y)Pde dy
Ro Ro Roy

= ——12772/ |Vw(z,y)|?dz dy. (3.3.3)
Ry

In order to conclude, by (3.3.1), (3.3.2), and (3.3.3), we have to show that for |/ large we can choose
€ and n arbitrarily close to 0 such that

_El: — cl®n? + 2len — len® + o(e?) > 0.
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If we choose 1 = ¢/(cl), then the equality above reduces to

2 2
—€—+-E—+o(£2) >0,
[ c

which is true if [ > ¢. O

3.3.1 Proof of Theorem 3.1.4

From the definition of d and N (see (3.2.39) and Claim 3 in the proof of Theorem 3.1.1) it follows
that there is an absolute constant ¢ > 0 (independent of Qg, Q, I', and u) such that

(1 +12MEXD) > -l-dﬁ. (3.3.4)

The absolute constant ¢, which appears in (3.1.2), is defined by

_ 64
ci= max{c,;g}. (3.3.5)

Actually, to avoid problems of boundary regularity, we shall work not exactly in €, but in a little
bit larger set. Let Q' be a I'-admissible set such that Q CC Q' CC Qy, and

. 2
mmizng(I‘ﬂQ’,Q;) 9
5 8 14 ,
T+ RIN) +ECNO)RTN0) C;“ ruillemnay,

where (2 denote the connected components of '\ I". This is possible by (3.1.2) and by the continuity
properties of K.

The idea of the proof is to construct first a calibration ¢ in a cylinder with base an open neigh-
bourhood of I' N ', and then to extend ¢ in a tubular neighbourhood of graphu.

e Construction of the calibration around T.

We essentially recycle the construction of Theorem 3.1.1, but we need to slightly modify the definition
around the graph of u, in order to exploit condition (3.1.2) and get the extendibility.

To define the calibration ¢(z,y,2) we use the same notation and the coordinate system (¢,7) on
U (open neighbourhood of I' N ') introduced in the proof of Theorem 3.1.1. The vectorfield will be

written as

(2,9,2) = )
PY 2 = ez y), (2, 9))

o(&(z,y),n(z,9), 2), (3.3.6)

where ¢ can be represented by

B(&,n,2) = ¢5(E,m, 2)e + $7(E,m, 2) Ty + B (€7, 2)e,.
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As in the previous section, we can suppose without loss of generality that 0 < u; < wup. Given € >0
and A > 0, we consider the following subsets of V' xR

Ay = {(€m,2) € VxR uy(§m) —evi(§,m) <z <ua(n) +evi( )},
Ay = {(&m,2) € VxR :ug(€,n) +evi(§,n) <z <wi(é,n) + 2},

As {(&n,2) € VxR :ug(,m) +2e <z <fu(€,m)},

Ay = {(&m,2) e VXR: Bi(€,n) <z < Ba(f,n) +1/A},

A5 = {(&n,2) € VXR: Bo(é,m) +1/X <z <ug(§,m) — 2},

As = {(&m,2) € VxR :ug(€,m) — 26 <z <wug(§,n) —eva(§,m)},

A7z = {(&m,2) € VXR 1 ug(€,n) —eva(ém) < 2 <ua(é,n) +eva(ésm)},

where the functions v; are defined as
vi(€,n) =14 Mn, v2(§,n) :==1- Mn
with M positive parameter such that
2
c(L+P2TNQ) +PCNET N D 0wl pnay <M < min K(TNQ,Q), (337
]: b
Jj=1

while 81 and S, are the solutions of the Cauchy problems (3.2.13). Again, if € is small enough and A
is sufficiently large, the sets A;,... , A7 are nonempty and disjoint, provided V is sufficiently small.
The vector ¢(¢,n,z) introduced in (3.3.6) will be written as

$(&,m,2) = (6°"(€,m, 2), 6° (§,m, 2)),
where ¢¢7 is the two-dimensional vector given by the pair (9%, ¢"). We define ¢(¢,n,2) as follows:

2
<2Vu1 oM T2y, vy — vy, ) in Ay,
U1 V1
2
<2V(u1 +evy) — 2“Ltgi’Lf—ZV@1, V(ui +ev1) — £~1&;—’(—)—1—'7“'\71”)1 ) in Ag,
1 1
(0, wi(&,m)) in A3,
(Aa(é7n)vw7 ,LL) in A47
(Oa wQ(ga 77)) n A5,
2
(2V(u2 —euy) — 2Y2 T2 T2, [V (us - evg) — 22 2vi, > in A,
() V2
ug — 2 Uy — 2 2
<2Vu2 — 92 T Iy, Vg — ——Z Vg ) in Az,
U2 %)
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where V denotes the gradient with respect to the variables (¢,7), the functions 9; are defined by
1(&,m) == 2e + M'n, 2(&,m) »=2e — M'n

while

'Uz(éa )
Uz(€5 )

for i = 1,2, and for every (£,7) € V'; we take the constant p sufficiently large in order to get the
required inequality between the horizontal and the vertical components of the field, and M’ so large
that w; is positive in V', provided V' is small enough. We define w as the solution of the Cauchy
problem

wi(€,m) 1= <M+M’ ) — (Oeui(€,m))* = (Bpus(€,m))?

Aw =0,
W(E0) =~y [ ()@, 0) + Bcua(5,0)) s, (333)
aﬂw(§70) - n(€)7 ’

where n is a positive analytic function that must be chosen in a suitable way. We define

-
n(q(&,m))

where the function ¢ is constructed in the same way as in (3.2.12).

Let us prove that for a suitable choice of the involved parameters the vectorfield is a calibration
in a suitable neighbourhood U of I' N ©', which is equivalent to prove that ¢ satisfies (a), (b), (c),
(d), (e), and (f) of page 54. The proof of conditions (a), (b), (c), (d), and (e) is the same as in
Theorem 3.1.1. The proof of (f) is split again in two steps.

o(&,m) = (1-eM' —6°M),

STEP 1. For a suitable choice of & and of the function n (see (3.3.8)) there exists § > 0 such
that condition (f) holds for |s —u(&,7)] <6, |t — ua(é,n)| <4, and (£,1) € V, provided V is small
enough.

We essentially repeat the proof given in Theorem 3.1.1: Claims 1, 2, 3, and 4 are still valid with the
same proof (up to the obvious changes due to the different definition of ¢). Claim 5 must be modified
as follows.

Claim 5. For h = 8/2(T') 322 Hf)fquCl (rnev)» there exist 7 € (0,d/8) and d > 0 such that for every
6 € (0,0)

I(€,m,u2(&, ), t) € B(r) + b4 (£,n,1),
I(&,m, s,u1(€,m)) € B(r) + b} (&,n, 5),

provided V' is small enough, for every |t — ug(&,n)| <48, |s —u1(&,n)] < 6.
PROOF OF THE CLAIM. Using the definition of ¢ in A7, the claim is equivalent to prove

(2(t = u)Beua)® + (=M(1 = M)~  + h)? (¢ — ug)* + 2r (=M (1 — Mn)~! + R) (t — up)? < 0;
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note that for a; € (0,1) the left-hand side is less than

2
2r
(42 ”afquzcl(l—an/) -+ 2h7‘ - 1 T M) 52 -+ 0(52)7

=1 a1
provided V is small enough. To obtain the claim, it is sufficient to prove that

2
2 1
- > 10guillEn onan < T Mk (3.3.9)

=1

Since by (3.3.7), (3.3.4), and (3.3.5) we can write

2
16 + aq 64
w= (24 + 500 ) Y 0l ooy
i=1
with as > 0, the inequality (3.3.9) is equivalent to

9 1 64 , L 16+ay 1
2 1) = Oy 4+ 22
<< 1) 7(2l (Fﬂ )+ d 1-1—0,1’

which is true if a; is sufficiently small and r is sufficiently close to d/8. The proof for u; is completely
analogous.

To conclude the proof of the step, let r and h be as in Claim 5. If we choose ¢ < € and
§ < min{d,e}, by Claim 5 we have that

I(n, s,u1(&,m) + I(m,ug(€,m), 1) € B(2r) +bi(&,n,8) + b5(E,m, ) (3.3.10)

for every |s —ui(€,m)] <8, |t —u2(&,m)| < 6, and (§,n) € V; since h satisfies (3.2.44) and 2r < d/4,
we can apply Claim 4 to deduce that the set

B(2r) + (pe(&,m) sinB(n), pe(£,m) cos B(n)) + b€, m, s) + b5 (€,m, 1)

is contained in the ball centred at (0, 0) with radius y(£,7). Some easy geometric considerations show
that the relation between 6, and 6 (see (3.2.38)) implies that also the set

B(2r) + (0:(¢,7) sin 0.(n), pe (€, 7) cos e (n)) + bE(€,m, 8) + b5 (€, 1) (3.3.11)

is contained in the ball centred at (0,0) with radius v(&,7), if the condition

b2 (¢, 7, 8) + b8 (&, m,t)| < 2r

holds (to make this true, take § and V smaller if needed). Since

I(Tl» 57t) = I(77757u1 (5577)) + I(naul(gan)au2(§zn)) + I(U:U'Q(fv 77)7@7

by (3.2.47), it follows that I(n,s,t) belongs to the set (3.3.11), and then to the ball centred at (0,0)
with radius v(£,n) for every |s —ui(¢,n)| <8, [t —ua(é,m)| <4, and (§,n) € V. This concludes the
proof of Step L.
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STEP 2. If ¢ is sufficiently small and § € (0,¢), condition (f) holds for ls —u1(&,m)] > 6 or
[t —ua(§,n)| >4, and (£,n) € V, provided V is small enough.

By using condition (3.3.7), arguing as in the proof of Claim 5, we can prove the following claim.

Claim 6. There exist r < 1/4 and € > 0 such that
1{0,u2(£,0),t) € B(r),  1(0,5,u1(£,0)) € B(r)

for 0 <|s—wu1(&0)] <e, 0<|t—wuz(&,0)| <e, and (£,0) € V.

We can conclude the proof of Step 2 in the same way as in Theorem 3.1.1, with the minor changes
due to the different definition of the field.

By Step 1 and Step 2, we conclude that, choosing € sufficiently small and n in a suitable way,
condition (f) is true for ui(¢,7) —e < s,t < ug(€,n) +e. So, ¢ is a calibration.

o Construction of the calibration around the graph of u.

Now the matter is to extend the field in a tubular neighbourhood of the graph of u. From now on,
we reintroduce the Cartesian coordinates.

Let T'; be the curve n = (—=1)’k, where k£ > 0. If k is sufficiently small, for 1 = 1,2 the curve I}
connects two points of 9Q;, divides 2} (and then Q) in two connected components, and the normal
vector v; to I'; which points towards I' coincides with (=1)""'Vn/|[Vn|. Set U’ :=U N {(z,y) € Q'
In(z,y)] <k} and U”:=U'NQ. Since |Vnl|=1 on T, by (3.3.7) we can suppose that

M . ol T
T 7% e IVl Loo(ryy < min K(Is, 2\ UY). (3.3.12)

Chosen ¢ so small that (graphu)s N ((U” N Q1) x R) C 4; and (graphu)s N ((U" N Q) x R) C A7,
we define the vectorfield

(ﬁ(l‘,y, Z) = (@my(x-’ y,Z), (ﬁz(a’;,y’ Z)) e Rg)

as follows:
(o(z,y,2) in {(z,9,2) : (z,y) € U”, u1 ~ 6 < 2z < up + 6},
U — 2z U—z 2
J <2Vu -2 p; Vi, |Vu — ——Vi ) in (graphu)s N (Q; \ U") xR,
1 U1

u-—=z

(zvu — 22 205, |y =
L (2] U2

2
Vg ) in (graphu)s N (Q2 \ U")xR.

The function ¥; is the solution of the problem

M —_
. 2 2 3a/1 1o/ —
min {/Qg\Uf [Vu|*dz dy — -~ /1“2 IVnlv*dH* : v e HY(Q\ T, UIB(QQ\U’)\Fi = 1} . (3.3.13)
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Let us show that the problem (3.3.13) admits a solution. If {vn} is a minimizing sequence, then

M
sup/ . |Vog|*dz dy — T Mk/ |V v2 dH! < +co. (3.3.14)
QAU T

n

We have only to show that {v,} is bounded in HY(Q\T"). If we put U := v, — 1, by (3.1.1) for
every T € (0,1) we have

/_]anlzdwdy:/ | VT, dz dy
Q Q

N A
. 2

- (/ vﬁd’;#)/ V(—n || dzdy

r; QNTT (Jp, TadH!)?
> ([ o= 12ant) Koo\ T

T
> (1-7)K(T,%\T) / v2dH' + K (T3, 9\ T (1{) HY(T3), (3.3.15)

Ty

where we used Cauchy Inequality. By (3.3.12), we can choose 7 so small that

(1-71KI,4\T) > 1= MkHVnHLm(rm

and substituting (3.3.15) in (3.3.14), we obtain

sup/ v2 dH < 4o0.
T

n

Using again (3.3.14) and Poincaré Inequality, we conclude that {vn} is actually bounded in HY(Q\U").
The solution of (3.3.13) satisfies

At; =0 in Q;\ T,

0,0 = —L__|nlo; onT; (3.3.16)
V'Uz—l__z\/fk 7Vs i -0

B =1 on 8(QUN\ U\ Ty,

and so, in particular, belongs to C*°(§; \ U"). By a truncation argument, it is easy to see that 9; > 1,
so ¢ is well defined.

Since @ is a calibration in {(z,y,2) : (z,y) € U”, u(z,y) — 6 < z < ug(z,y) + 0}, it remains to
prove only that the field is globally divergence free in the sense of distributions and that conditions
(), (d) and (f) are verified in the regions (graphu)sN (©; \U")xR. First of all, note that by Lemma.
3.2.1 the field ¢ is divergence free in the regions (graphu)s N (€; \ U")xR, since it is constructed
starting from the family of harmonic functions u(z,y) — td;(z,y). To complete the proof, we need
to check that the normal components of the traces of ¢ and of the extension field are equal on the
surface of separation, i.e.,

u—z

O™y = <2Vu — 2 V'&i> - on I}, (3.3.17)

Vg
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where v; = (—1)"*1Vn/|Vn|. Using the definition of ¢, we obtain that

u—=z

o™ v = <(*1)i“5nu - I‘:’WM) Vl;

since Vu - v; = (—1)i+10nu[§777[, the equality (3.3.17) is equivalent to

M 1_ .

which is true by (3.3.16).
Conditions (c¢) and (d) are obviously satisfied, while condition (f) is true if we take ¢ satisfying

A~ -1
§ < sup{(él]Vul +2l—‘—7{0&!-> s zyy) e U \U", i = 1,2} .

)

Therefore, with this choice of §, the vectorfield ¢ is a calibration. a

3.3.2 Some properties of K(T, A)

In this subsection we investigate some qualitative properties of the quantity K (I, A) and we shall
compute it explicitly in a very particular case. Let us start by a very simple result.

Proposition 3.3.2 Let T be a simple analytic curve and I an eztension of T', whose endpoints do
not coincide with the endpoints of I'. If I‘gt are the two connected components of I's \ I (which are
well defined if § is sufficiently small), then

lim K(T,T5) = +oco.

§—0+

Proor. For convenience we set
WE(8) = {v € HHr): /de’Hl =1, v=0o0n 9(T§) \ r} .
I

Suppose by contradiction that there exists a sequence {d,} decreasing to 0 such that sup,, K(T, I‘;rn) =
¢ < +00; this implies the existence of a sequence {v,} such that

v € W (6,) and /+ |V (z,y)|?de dy < c
ry
for every integer n. From now on, we regard v, as a function belonging to H' (]_“ng) which vanishes
on 1"}'1 \ Ty . By Poincaré Inequality it follows immediately that {v,} is bounded in H Y(T'5), and so
admits a weakly convergent subsequence {vy, }. Let us call v the limit of the subsequence; since for
every k, vy, vanishes on I‘g‘l \I‘gF , then v must vanish a.e.; on the other hand, since fr v%k dH' =1,
Tk

by the compactness of the trace operator, we have that fr v2dH' = 1, and this is clearly impossible.
O

We remark that by Theorem 3.1.4 and Proposition 3.3.2, if Uy is a neighbourhood of I' and
u € SBV(Up) satisfies the Euler conditions in Uy with S, = T, then there exists a neighbourhood
U of T contained in Uy such that u is a local graph-minimizer in U. Actually, taking U smaller if
needed, by Theorem 3.1.1 we get also the Dirichlet minimality.
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Proposition 3.3.3 (Characterization of K(I',A).) Let A be an open set with Lipschitz boundary
and T' be a subset of OA with nonempty relative interior in 0A. The constant K(I', A) is the first
eigenvalue of the problem

Au=0 on A,
du=iu onT, (3.3.18)
u=20 on JA\T.

Moreover, it is the unique eigenvalue with a positive eigenfunction.

PrROOF. If u is a solution of (3.1.1), then it is harmonic and there exists a Lagrange multiplier A such
that

2/ Vu-Vgodxdyz)\/utpd%l Vo€ C®(A): o =00n dA\T, (3.3.19)
A r

which means, by Green Formula, that d,u = Au on I'. Using (3.3.19), one can easily see that K (T, A)
is in fact the minimal eigenvalue of (3.3.18) and that it has a positive eigenfunction (indeed, if u is
a solution also |u| is). Let u be a positive function belonging to the eigenspace of K(I', A) and v
another positive eigenfunction associated with the eigenvalue u; by Green Formula we have

/ vO,udH — / ubyvdH =0,
T IN

therefore
(K(T,A) — p) / wdH! =0.
r
Since both v and v are positive, from the last equality it follows that pu = K(I', A). 0

Proposition 3.3.4 If A= (0,a)x(0,b) and I = (0,a)x{0}, then
7

KT A = —————.
(L' 4) atanh(”—{b)

(3.3.20)

PRrROOF. The function
v(z,y) = sin (—ga:) sinh (g(b - y))

Vs
atanh (Z2)

a

coincides with K (T, 4). O

is positive and satisfies (3.3.18) with A = Then, by Proposition 3.3.3, this quantity

Proposition 3.3.5 Let g: [0,a0] — [0,+00) be a Lipschitz function and denote the graph of g by I'.
Given 0 < ay <ay < ag and b > 0, if we set I'(ay,as) = graphgi(ahaz) and

R(aflya27b) = {(xay) 1T € (a‘l)a2)7 ye (g(.fl?),g(.’l}) + b)}:
then
lim K (I'(a3,a2),R(a1,as,b)) = +oo uniformly with respect to b.

[ag—a1[—>0
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PROOF. The idea is to transform the region R(a1,asq,b) into the rectangle (0,a9 — a1)x(0,b) by a
suitable diffeornorphism in order to use (3.3.20).

Let ¢ : (0,a2 — a1)x(0,b) — R(a1,az2,b) be the map defined by ¥(z,y) = (z + a1,y + g(z + a1)).
Let v € HY(R(ay,as,b)) be such that v =0 on dR(a1,az,b) \ I'(a1,a2) and

/P( )v%ml _ /Daz—al V(3 (z,0))v/1 + (¢ (2))2 da = 1. (3.3.21)

If we call 9(z,y) := v((z,y)), then 5 € H((0,a2 — a1)x(0,b)), o = 0 on the boundary of the
rectangle except (0,as —a;)x{0}, and by (3.3.21) there exists A > 0 such that \? < /1 + [¢'||%, and

as—ay
)\2/ % (z,0) dz = 1.
0
Therefore, since Jy =1,

/ Vo(e,y)Pdzdy = / Yoz, y))Pde dy
R(al 7a27b) (0,(142_041))( (O,b)

> (1+Hg’1|oo+ng’llio)‘1/ \V(z,y)|>de dy
(0,a2—a1)x{0,b)
> A1+ g lloo + 9'1%) T K ((0,02 = 02)x{0}, (0, a2 — 01)x(0,))
> (14 |lg')I%) "% i ,
2(ay — a1) tanh (a;ﬁ)cu)

where the last inequality follows by the estimate on A and by (3.3.20). Since v is arbitrary, using the
fact that 0 < tanht <1 for every ¢ > 0, we obtain that

™

K (T(a1,02), R(a1,a2,0)) > (1+ l!g’llw)‘3/2m5

so far, the conclusion is clear. ' 0

We have already remarked (see Proposition 3.3.2) that the graph-minimality is guaranteed in small
neighbourhoods of the discontinuity set I'. As consequence of Proposition 3.3.5, we obtain that the
graph-minimality holds also in the open sets, which are narrow along the direction parallel to I' and
may be very large along the normal direction. This is made precise by the following corollary.

Corollary 3.3.6 Let g be a positive function, analytic on [0,a0] (i.e. g admits an analytic eztension
outside the interval), and denote the graph of g by I'. For every M > 0 there ezists h = h(M,I") such
that, if Q is T -admissible (see Definition 3.1.8) and 2 C (a1,a1 + h)xR with a1 € [0,a0 — h], and if
u s a function in SBV () with S, = ' NQ, with different traces at every point of I' N2, satisfying
the Buler conditions in Q, and S5, 0ruillcirno) < M (where u; is as above the restriction of u
to the connected component ; of Q\T'), then u is a local graph-minimizer in Q. (see Fig. 5.2)

Proor. By Proposition 3.3.5 there exists A > 0 such that

K(T'(a1,a2), R(a1,az2,b))
T+ 2(D) + E(O)R(D)

2
cM=,
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h

Figure 3.2: if the thickness of  is less than A, then u is a local graph-minimizer in 2.

for every ai,ay € [0,ap] with 0 < ag —a; < h and for every b > 0. If Q C (aj,a1 + h)xR we can
choose b > 0 so large that Q; C R(a1,a; + h,b) (assuming that Qi is the upper component). Then
by the monotonicity properties of K(T', A), it follows that

KTNQ,0)
1+ 2(T) + (D) &2 (D)

2
>cM? > CZ ”a'rungCl(FﬂQ)'

=1

Applying the same argument to 9, the conclusion follows from Theorem 3.1.4. O



Chapter 4

Global calibrations for the
non-homogeneous functional

In this chapter we are interested in the behaviour of global minimizers of the non-homogeneous
Mumford-Shah functional Fg, (defined in (1.2.1)) as 8 becomes large.

4.1 Preliminary Results

We give here some definitions and state some technical results that will be used in the sequel.
For fixed R > 0, we introduce the following class of sets:

Ur ={E C RY E open:Vp € 6E dp’,p":
p€0B(p',R)NdB(p",R), Bp,R) C E, B(p",R) C CE byo(410)
and
Up(Q) = {E € Uy : E C Q, dist(E,09) > R}. (4.1.2)

If E belongs to Ur and p € E, we denote the centers of the interior and exterior balls associated
with p by p’ and p” respectively; moreover, we call S% the class of all coordinate systems centred
at p such that the vector 5= (p" — p') coincides with the N-th vector of the coordinate basis. The

following proposition is proved in ([38])

Proposition 4.1.1 There ezists a constant p > 0 (depending only on R), such that for every E €
Ur(2) and for every py € OF, if we call C the cylinder {z e RV |z] < p}x]—R, R| ezpressed
with respect to a coordinate system belonging to SY, then OE N C is the subgraph of a function f
belonging to W2 ({z € RV~ : |z| < p}). Moreover, the W2 -norm of f is bounded by a constant
depending only on R (independent of py, of E and of the choice of the coordinate system in S5 ).

Remark 4.1.2 Note that if Q is bounded and of class C? then there exists R > 0 such that Q € Up.
For E C RY | we define the signed distance function
de(z) = dist(z, E) — dist(z,CE).

Now we are going to state some basic properties of that function; for a proof see, for example, [28].

79
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Lemma 4.1.3 i) Let © be a point of RY . Then dp(z) is differentiable at z if and only if there
exists o unique y € OE such that |dp(z)| = |z — y|. In this case, we have

dg(z)

and we can define the projection on 0 mg(z):=1y.

Vdg(z)

- ii) Let OF be a hypersurface of class C*, k > 2. Then, for every = € OF, there exists a neighbour-
hood V of = such that dg € C*(V) and mg € CcFHV).

Lemma 4.1.4 Let E C RY be an open set whose boundary is a hypersurface of class W2 . Then
for every z € 052, there ezists a neighbourhood V of x where mg 1is well defined and such that
dg € W2(V(z)). Moreover, denoting by Ay < -+ < \, the eigenvalues of Vidg and by ki(y) <
.- < kn_1(y) the principal curvatures of OF at m(y), we have

\ {0 ifi=1
i = kim1(y) iy
1+dE(y;ki—1(y) ifi>1

Lemma 4.1.5 Let E be an open set belonging to Ug, for some R > 0. Then the projection g s
well defined and of class WL in the (R/2)-neighbourhood of OF, and therefore dg is of class W™
in that neighbourhood. Moreover we have:

ldellwae < C and lrellwie < C,
where C is a positive constant depending only on R.

PROOF. The fact that 7 is well defined in the (R/ 2)-neighbourhood of F (denoted by (OE)r/2
) is an easy consequence of the definition of Ug: indeed let z be a point of (OF)r;; NCE and let
p € 8F such that dg(z) = |z — p|. We claim that such a p is unique. Indeed let B(p",R) C CE be
the exterior ball associated with p (see the definition (4.1.1)); since the vector p" — p is parallel to
7 —p (indeed both vectors are normal to OE at p), it is clear that B(z,dr(z))\{p} C B(p",R) CCE
and so p is the unique minimum point.

Concerning the smoothness, it is enough to prove that dg is of class W%, then we conclude by

the equality
re(z) =z — dg(z)Vdg(z).

Exploiting the definition of Ug in a way similar to the one we did above, we can easily see that, for
every € € (0,R/2),

(E)e € Up—¢ and dig), = dE — €, (4.1.3)

implying that 9((E).) isin turn of class W2, Soif z € (0E)g/2,then = € I((E);) for € = dg(z)- By
Lemma 4.1.4 there exists a neighbourhood V' of & where d(g), 13 of class W% and ||d(g), w2 < C,
with C depending only on R. Recalling (4.1.3), we are done. O

For the proof of the announced estimates on the norm of the solutions of (9), we will use some
technical results coming from sectorial operators theory and from interpolation theory.

First let us recall what a sectorial operator is.

Let X a complex Banach space and A: D(4) = X a closed linear operator with not necessarily
dense domain; call p(A4) the resolvent set of A and for A € p(A) denote by R(A,A) the resolvent
operator (M — A)~! belonging to L(X).
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Definition 4.1.6 A is said to be sectorial (in X ) if the following two conditions are satisfied:
i) there exist w € R and 6 € (§,n) such that

Spw = {N € C: |arg(A —w)| < 0} C p(A);

ii) there exists a positive constant M such that, for every A € Sy, , there holds

M
IR AlloE < m

We recall that D(A), endowed with the norm
lzllpay = llzllx + Azl x

is a Banach space continuously embedded in X .
Let Q be either RY or RY and let A: Q — R¥*Y be a matrix with coefficients belonging to

WL(Q) and uniformly elliptic, i.e., satisfying
A@)E- > NEP Vo eq, VEeRY,

where )¢ is a suitable positive constant; set

D(Ap) := {u € L>®(Q):ue ﬂ I/Vli’cp(Q), div(AVu) € L*(Q) and AVu-v =0 on 89}
p21
D(A1) = {u € D(Ap) : div(AVu) € WH®(Q) and AVu-v =0 on 09},
where v(z) denotes the outer unit normal vector at z to Q, and define the operators

Ao:D(Ao) — LOO(Q)

v~ fdiv(AVu), (4.1.4)

and

A1:D(A1) — Wl’oo(ﬂ)

u = fdiv(AVu), (4.1.5)

where f:Q — (0,+c0) is a positive function of class W satisfying:

fz)=A >0 VzeQ

The following fact is proved in [35] (see Theorem 3.1.6, page 77, Theorem 3.1.7, page 78, and 3.1.26,
page 103).

Theorem 4.1.7 The operators Ay and A; are sectorial in L®(Q) and WL (Q) respectively. In
particular there exist two positive constants fo and K, depending on the constants \g, A1, on W1 -
norm of A and f, such that the problem

(4.1.6)

fdiv(AVu) = B(u—g) in Q,
AVu-v =20 in 082,
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admits a unique solution u € D(A), for every B > Po and for every g € L®(Q) . Moreover u satisfies

[ulloo + 872 Vuulloo < Kllglleo; (4.1.7)

if g belongs to Wh®(Q) then the following estimate actually holds

- 4-H | Fdiv(AVe N1y
Nullpre + 872 fdiv(AVY) |0 +5011€%ﬁ v UHLP(B@O,_ﬁm) < Kllgllwres- (4.1.8)

Given a sectorial operator A : D(A) — X there is a natural way to construct a family of interme-
diate spaces between D(A) and X, by setting for 6 € (0,1)

D(A,0,00) = {3: € X: sup (t‘QHAR(t, A)I“L(X)) < +oo},
t>2wVv1

where w is the real number appearing in i) of Definition 4.1.6. Setting

[z]p(a,6,00) = SUP <t9HAR(t1A)$HL(X)>a (4.1.9)
t>2wV1

one sees that [z]p(4,0,00) 15 @ seminorm and D(A,6,c0) endowed with the norm
2l peas,00) = l1zllx + [2lD(4,0,00) (4.1.10)
is a Banach space. Moreover, for 0 < 6; < 02 <1,
Y C D(A4,603,00) C D(A,60;,00) C X,
with continuous embeddings. An important fact is stated in the following proposition
Proposition 4.1.8 (see Proposition 2.2.7, page 50 of [35])

Ag:D(A,0+1,00) = {z € D(A): Az € D(A,0,00)} — D(A,0,00)
z — Az,

is sectorial in D(A,6,00); moreover
IR(A, Ag)llL(n(a0,000) < B Al (4.1.11)

Next theorem gives a useful characterization of the intermediate spaces D(A,8,00) in the case of
elliptic operators.

Theorem 4.1.9 (see Theorem 8.1.80, page 108 of [35]) Let Aq be the operator defined in (4.1.4).
Then for every 6 € (0, %),
D(Ag, 8, 00) = C*(Q),

with equivalence of the respective norms. In particular there exists two constants Cy and Cy depending
only on the WhH® -norm of A and f and on the constants Ao and A1, such that

Cillgll (g 8,000 < N9l cozomy < C2llgll p(ag 0,00 (4.1.12)
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Let us recall now the definition of gradient flow for the homogeneous Mumford-Shah functional
(1.2.2) via minimizing movements (see for instance [21] or [8]). Let Q be a bounded open subset of
RY and consider an initial datum wy € L*>®(Q). For fixed § > 0 (which is the time discretization
parameter) we can define the ¢-approzimate evolution us(-) : [0,4+00) — SBV(Q) as the affine
interpolation of the discrete function

SN — SBV(Q)
01 Ug,is

where ug; is inductively defined as follows: uso = up and us; is a solution of

1
min /(vvxzdwr%“‘l(svwr—/ v —ugi_i|* de.
veSBV(Q) Jq 6 Ja

The existence of a solution of the problem above is guaranteed by the Ambrosio theorem (see [6]). We
call minimizing movement for Fy with initial datum ug, the set of all functions v : [0, +00) = SBV(Q)
such that, for a suitable subsequence 6, | 0, ug, (£) — v(¢) in L*(Q), for every ¢ > 0.

4.2 Technical Estimates

4.2.1 Estimates in smooth domains

Given a hypersurface I' of class C%® we can define

AQ(P) = sup IVTV<$) - vTV(@/)I

, (4.2.1)
z,yel Ix - yla

where v is a smooth unit normal vectorfield to I' and V., denotes the tangential gradient along I.

Lemma 4.2.1 Let Q be either RY or Rﬂ\_f and Ao be the operator defined in (4.1.4). Then for every
~v € (0, %) there exist two positive constants Ko and By, depending only on the constants of ellipticity
Ao, A1, on vy, and on the WH® -norm of the matriz A and of the function f, such that for every
B = Bo and for every g € CH1=7(Q) the solution u of (4.1.6) satisfies

B85 u = gllgo.rmy < Kollgllgon-rcay- (4.2.2)

Proor. Recall that u — g = AgR(B, Ag)g: in order to obtain the thesis we have to estimate the
quantity 5%“7|[A0R(ﬁ,Ao)gncm(ﬁ). By Theorems 4.1.7 and 4.1.9, by (4.1.9) and (4.1.10), there
exist Cp > 0, C1 > 0, and By > 0, depending only on Ay, A1, on 7, and on the Wh®.norm of A
and f, such that

A0 B(B, Ao)gllgonmy < CollAoR(B, Ao)gll g, 00)

= (HAOR(ﬂ,Ao)gl\ooJr sup t%HAOR(t,AO)AOR(@AO)QHoo)%Z@

t>2FoV1
and

sup 7 | Ao R(t, Ao)glleo < Cillgll o ay- (4.2.4)
2B0Vv1<t
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We observe that (4.1.7) implies the existence of two positive constants Sy and C, depending in turn
on Mg, A1 and on the W -norm of A and f, such that

IBR(B, Ao)lL(z=(a) < Co, (4.2.5)

for every B > fBy. Using (4.2.5) and (4.2.4), we can estimate

sup  B7t3 || AgR(4, Ag) AoR(B, Ao)glleo = (4.2.6)
260V1< A<t
= sup P73 ||AgR(B, Ao) Ao R(%, Ao)glico
2BoV1<A<t
BY* Tiza
— sup (—-) P (BR(B, Ao) — I AoR(E, Ao)glles
280v1<B<t\ b
< (Cy+1) sup 7 | AoR(E Ao)glloo
280V1<t
< (CQ+1)01]|g“CO,1~~/, (4.2.7)
and analogously
sup ﬂ%—ﬁ’t%HAoR(f,Ao)AoR(ﬁaAo)glloo < (Cy+ 1)Chlgllcon-- (4.2.8)

280V1<t<

Combining (4.2.7), (4.2.8), (4.2.3), and using again (4.2.4), we finally obtain

sup B2 77| AR(B, A g
ﬁz2ﬂ€v1ﬂ ” 0 (5 O)QHCD )

AN

Co( sup ﬁ%_WHAOR(ﬂaAO)QHoo
B>2B0V1

+ sup BT AoR(t, Ag) A R(B, A0>9”oo>

B,t>2B0V1
< Co(Cr+ G2+ 1)lgllcor-r

O

The following theorem provides the announced estimate on the Hessian VZ2u of the function u
which solves (9); we recall that (9Q')g denotes the R-neighbourhood of 99"

Theorem 4.2.2 Let Q C RY be a bounded domain of class CH*.

i) For every R > 0, we can find two positive constants Bo = [o(R) and K = K(R) with the
property that z'f_Q’ is a domain belonging to Ur(SY), then for every B > Po and for every
g € Wb (\ &) the solution u of

CBlu—g) O\
Au=Bu—g) inQ\ - (4.2.9)
du=0 on 8 (Q\ ),
satisfies
1 N _q 5
[Vulloo + 872 || Aullo + B2 sup ||V4ul = < Kllgllwiee- 4.2.10
| ”00 | ”OO mer\WI ILp (B(xo,-\}ﬁ)ﬁﬂ\ﬂ> ‘Wl ( )
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A similar conclusion holds for the solution of

{Au =pu—g) in,

dyu=20 on %Y. (4.2.11)

it) For every R > 0, for every A > 0, and for every v € (0, ) (with o € (0,1)), there ezist
two positive constants By = fo(R,A,v) and K = K(R,A,v) with the property that if Q isa
domain of class C*® belonging to Ug(), and A%(0Q) < A, then, for every B> By and for
every g € Whe (Q\ @), the solution u of (4.2.9) satisfies

1
IV2ull o 00y i)y < KB llgllwrr o

A similar conclusion holds for the solution of problem (4.2.11).

ProOOF. We will prove in details only ii). Fix p € 8. By Proposition 4.1.1 there exist two
positive constants n and M;, the former depending only on R while the latter also on A%(8Q), such
that the cylinder C7 := {z € RV™! : |z| < n}x]—R, R[ (expressed with respect to a coordinate
system belonging to S5, ), intersected with €' is the subgraph of a function [ belonging to C%%(9)
(5 :=C"N{z, = 0}) and satisfying

I fllcze < M. (4.2.12)
Let 0 € Co*(C™), 0<6<1and §=1 in 27107, such that
0,0 =0o0n 0Q' NC" and 10|l c2e < Mo, (4.2.13)

where M, depends only on R.
Set v = fu and note that v solves

Av=LFv-h) inQ'NC",
dv =0 on 9(2' NCM),

where h := fg + 87(Afu + 2VuV4); finally, denoting by v the map

CT = p(CM)
(wla"'ul'n—].)mn) a4 (-'1317---73771-1:1771“f(xla---axn—-l)):

and setting § :=v o4~ and h:=hoy™!, one sees that (recall that 5 and i have compact support
in $(C7))

Fdiv(AVD) = B(5 —h) i RY,

AVi-v =0 on O(RY),
where A and f are WL extensions to ]Rﬂ\_f of the matrix-valued function A := [D—ﬁ;%?%)—*} o7~ ! and

of the function f := [dett|o1)~! respectively , satisfying
HA”WLoo(M) = || Allw.eo ((cm)s HfHWlm(Ri’) = || fllwreo(w(cny)

and
A)e £ > -;-|g|2 vreRY, VeeRY,  f(z)> -;- vz € RY
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(since A(0) =TI and f(0) =1, by (4.2.12), we can choose 7 depending only on R such that the
property above holds true in ¥(C")).

The solution ¥ can be suitably decomposed as ¥ = U1 + U2 + U3 in the following way: set hi = 0g,
hy = 71VuVE, hs = B~1AGu, and h; = h; oyt (i =1,2,3) and choose ©; as the solution of

div(AV;) = B(5; — hi) in RY,
AV v =0 on J(RY),

for i =1,2,3.
Applying Lemma 4.2.1 we have, for i =1, 2,3,

855 — hillcon < Kollglleoa-, (4.2.14)

where Kj is a constant depending only on v and on the norm of A, therefore (by definition of A and
by (4.2.12)) only on v, R, and A. _
Estimate for ©;. ;From (4.2.14), (4.2.12), (4.2.13), and the definition of hy we deduce

l—' 7 7 —
B2 7|5y — hallgor < KoKi(llgllicoa-v + 6 Yullgoa-v),
where K; depends only on R, and therefore, since by (4.1.11) and (4.1.12), we have
lullgon— < Kallgllgoa-,

we obtain . .
Bz |5y — hallgor < KoK1Kzllgllcor-v,

where K depends only on R. Combining the above inequality with the well known Schauder estimate,
we finally obtain

19251 ]le0 < K|l Fdiv(AViy)||gon = Ksp3 18771 = hallgos < K3 KoK1 K287 gl gonr,

(4.2.15)
where K3 depends only on C'7-norm of A and f and therefore only on R and A.
Estimate for 3. Arguing exactly as in the previous point, we obtain
BY (|53 — hallcon < KoK187 | Vullgoi-r- (4.2.16)

By the Sobolev Embedding Theorem and by estimate (4.2.10) (with p = %) we have, for 8 > Gy and
for every z € Q\ O/,

2 1-2
[VU]COJ—W ((Q\W)ms(z,ﬁ-% ) < QollV UHL%(Q\WmB(z,ﬁ'%)) < Qo@18 2 ligllwrice, (4.2.17)
and
IVulloo < Qullgllwice, (4.2.18)

where Qg is the colnstant of Sobolev Embedding and depends only on v while @1 depends only on
R. If |z —y| > B2, then, by (4.2.18), we infer

Vu(z) = Vuly) _ g

1—
2| Vulloo < 2Q1877 |lgllwrco- (4.2.19)

|z -yt~
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Combining (4.2.17), (4.2.18), and (4.2.19), we get
IVullgoi—v < Qi(Qo+ 1B 7lgllwses,
and substitution in (4.2.16), together with Schauder’s Estimate, yields

IV%52lo0 < K| fdiv(AV2)lcon = K3B3 78|52 — hallgor < KsKoK1Q1(Qo+ 1)8™ 2 [|gllwrrce.
(4.2.20)

fstimate for 03. First we note that, by (4.1.11) and (4.1.12),
T3]l con < Kallhsligor,
with K4 depending only on R; so we can estimate

153 = Ballcon < llBsllcon + sl con
< (Ka+ Dllhsllgor < B7HEs + )M |ufl o < B (Ka+ 1) KaM]|gllp.co.
By Schauder’s Estimate we finally obtain,
IV?3]le0 < K3(Ky + 1) Kyllgllpco. (4.2.21)

By (4.2.12) and again (4.2.10) we have
V2|l peoo-10my < C <HV25HL00(R11) + Hﬁ”WLW(RﬁD
< o (||V251||Leo(nefg) + “V%QHLOO(M) + HVQ'DBHLDO(R{'Y) + HQHWLDO(M)) ;

where C' and C’ depend only on R. Using (4.2.15), (4.2.20), and (4.2.21), we finally deduce for
p=hV1

1
V20| oo (2-10m) < CC'C” (5%+VHQHW1M(R$) + HQHWLOO(M)) < 20C'C"B2 M [gllwr.co mivy,

where C" depends only on v, R, and A. Repeating all the above argument for every p € Q' we get

i1). .
The proof of statement i) can be done in a similar way: by localizing, straightening the boundary,
and using Theorem 4.1.7. O

4.2.2 Estimates in domains with angles

In the following 2 C R? will denote a curvilinear polygon which means that 99 is given by the union
of a finite number of simple connected curves 71,...,7; of class C* (up to their endpoints) meeting
at corners with different angles o; € (0,7) (j =1,...,k). Finally we will denote by S the set of the
vertices, i.e. the set of the singular points of 9.

Proposition 4.2.3 Let 2 be as above. Then there exists By > 0 and K > 0 such that for every
B > Po and for every g € L*®(Q), the solution u of

Au = Blu—g) mQ (4.2.29)
du=20 on 082,
satisfies

lulloo + 877 |Vaulloo < K]lglloo- (4.2.23)
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PROOF. The estimate is proved in [32] for the corresponding Dirichlet problem in a polygon, but
one easily sees that the same proof actually works also in our case: indeed the change of boundary
conditions does not affect the argument, and the main tool, which is a Calderon-Zygmund type
inequality, proved in [33], is actually available also for curvilinear polygon, as shown, for example, in
[45]. O

The following proposition is proved in [45].

Proposition 4.2.4 Let Q be as above. Then there exists K > 0 such that for every 8 >0 >0
and for every g € WH®(Q), the function u solution of (4.2.22), satisfies:

B2 [u — glloo < KlIVglloo- (4.2.24)

Proposition 4.2.5 Let Q0 be as above. Then there ezists a positive constant K such that for every
B >1 and for every g € WH2(Q), the solution u of (4.2.22) satisfies:

1Valloo < KlgllwiceBi. (4.2.25)

ProoF. Fix B > 1; by Proposition 4.2.3 there exists A9 > 0 independent of 8 such that, setting
gy = A“;/\“, for A > )¢ we have

194l < K lgals < KVA (12802 4 g ) = i (A5 Vit ). 4220

Now set Amin := Lo¥lee apq suppose that [|[Aulleo > Aollglleo. It follows that Amin > Ag (recall that

llufloo

llulloo < ||gllco): therefore, taking A = Amin in (4.2.26), we obtain

b
IVulleo < 2 | Aull &l

and therefore, by Proposition 4.2.4,

=

LY

L

IVulleo < 2K]lgll% (K631 Vgleo)” < K" gllwnce 8%,

where K" is independent of (5.

If |Aufeo < Aollglleo, then we simply use the Calderon-Zygmund type estimate proved in [45] (it
is crucial here the hypothesis that all the angles are less than =) to get the existence of a constant
C > 0, depending only on 2, such that

lullizs < Cllglleo < CllgllooB.

We conclude by applying the Sobolev Embedding Theorem. |

Proposition 4.2.6 Let Q and S be as above and let T’ be a simple connected curve in Q joining two
points =1 and zo belonging to 0N\ S. Suppose in addition that T' is of class C? up to z1 and 9
(actually it would be enough to take T' of class C? in two neighbourhoods Uy and U of z1 and z2
respectively, and of class C>%, for some a > 0, outside those neighbourhood). Let us call Q1 and
Qo the two connected components of Q\T'. Finally set d := dist(z1,S) Adist(z2,S). Then for every
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§<dand € (0, %) , there exist two positive constants By and K depending on 6, <y, and I", such
that, for every B > By and for every g € WH(Q;) (i =1,2), the solution u; of

;= Plu; — n §
Aui = flui =g) in (4.2.27)
Oyu; =0 on 08,
satisfies
_ .1- N . N
Vil e (o) + B~ G V204 o ()00 < Kllgllwreo. (4.2.28)

PROOF. The estimate can be performed by a localization procedure as for Theorem 4.2.2 and in fact
we have only to look at what happens in a neighbourhood of z; and z3. We will look only at z;
considered as a point of 99, the other cases being analogous.

First of all, as in [45], we can find a neighbourhood U = B(zy,7) N Q1 of z;, for a suitable
r < §, and a diffeomorphism which transforms U into a right angle, more precisely we can construct
a one-to-one map ® = (®1,®P5) : UNQ; — (U N Q) of class CB such that V&(0,0) = I and
O(U) = {w = (wy,wz) € R : w; >0, wp >0} NV, where V is a neighbourhood of the origin; we
can endow ® with the further property that if v is a function defined in U with normal derivative
vanishing on 0Q NT, then vo &~ has normal derivative vanishing on ®(8Q2NU) and vice-versa. It
follows, in particular, that ®,(z) has the following properties:

e Oy(z) =0 forevery z € I'NU;
e §,P9=0o0n 00NU.
Tt is easy to see that we can choose a positive convex function f such that
f(0) =0, f/(0) =0, and A(f o ®3) >0 on U := B(zy,7") NQy,
with 7' < r, if needed. Thus we see that f o @5 is a subsolution of

Au =0 in U’

u=20 onT'NT’
du=0 on dNNT’
u=fo®d, ondU\ (0QUT)

and therefore f o &3 < u in U'. By Theorem 5.1.3.1 of [33] (actually it is stated only for polygons,
but it can be extended to curvilinear polygons, by the continuity method used, for example, in [45])
and the Sobolev Embedding Theorem, u is in C?(U”), where U” = B(z1,r") N Q, with »/ < r'.
Therefore, since V(f o ®3)(z1) # 0, and so Vu(z1) # 0, we can say that the map ¥ := (v,u), where
v is the harmonic anticonjugate of u, is conformal in a neighbourhood U := B(zy,r") Ny, with
" < " it belongs to C2(U") and ¥(U") = {w = (w1,ws) € R? : wy > 0, wy > 0} NV, where
V is a neighbourhood of the origin. Now take a cut-off function & of class C3 such that §# = 1 on
B(zy, 7" /2)NQ1, 8(z) = 0 for |z| > (2/3)r™, and 8,0 = 0 on JQUITNTU™; note that vy := (fuy)oT?
solves

A(w)Avy = B(vy —h) in U(U")

Oyv1 =0 on {wy =0} U{wy =0} N T(U"),

where h := [g + 871 (AbBu +2VuVH)] o T and A := |[Vul|? o T~L
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Moreover we have that 8,4 = 0 on {w; = 0} ﬂ_\l_fLU"’ ), indeed, in view of the conformality of ¥,
this is equivalent to say that 8,|Vu|? =0 on 9QNU", which is true by the following computation

8| Vul|? = 8, (8,v)? = 20,ud%u =0,

where we used the fact that u € C?(U™) and d,u =0 on IQNU". As a consequence, the function

« Alwy,we)  ifwy > 0 and (wy,ws) € T(U)
B A(—wl,@UQ) if wy <0 and (—’LUl,’LUQ) & lI/(U/”)

turns out to be of class Ct up to the boundary; in particular it can be extended to a function, still
denoted by A, belonging to C(RZ) N WLHe°(R3). Now it is easy to check that, denoting by #; and
h the extensions by reflection of v; and h respectively,

A(w)A%, = B(5; —h) inRE
8,51 =0 on {wy = 0};
at this point we are in a position to apply the regularity theorems stated in Subsection 4.2.1, obtaining

the desired estimate for 9;. To complete the proof we can now proceed exactly as we did for Theorem
4.2.2. a

4.3 The main result

4.3.1 The regular case

Let © C¢ RY be a bounded open subset of class C1'' and let 3 C £ be an open set belonging to
Ur(Q) (see (4.1.2)). We set Qo := Q\ Qy, T':= 004, and, for every z € I', we denote the unit outer
normal to 9 at z by v(z).

Lemma 4.3.1 There exist two positive constants ¢ and By, depending only on R, such that, for every
B > Bo, we can find two functions z15: Q1 — R and 235 : 2 = R of class W2 with the following
properties:

z)% <zpg<linQ;, fori=1,2 and 205 = % in a neighbourhood of 08);
W) Azig < cfzip in Q;, for =1,2;

iii)z1 () = 22.5(z) = 1 and 0,21 5(7) = —By2z25(x) > /B for every z € T;
iv) IVzigllo < /B and V2210 < 8.

PROOF. Let us denote the signed distance function from ; by d and let 7 the projection on I' which,
by Lemma 4.1.5, is well defined in (F)%z_; we begin by constructing zz g. Let wpg : [0, +00) — (0, +c0)
be the solution of the following problem k

wy = 16fwg,
wp(0) = 1/2,
wy(R/2) =0,
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which can be explicitly computed and it is given by

"‘4\/-5§ 1 4/BE
wg(t) = L i = VBt 2 : . o e~ 4VPt (4.3.1)
2 64\/35‘ + 8—4\/375 2 64\/—'2- 4 o~ 4VBG
and let 6 : [0,4+0c0) — [0,1] be a C*° function such that
=1 in|0,R/4] 0=0 in[R/2,+00) and 10llc2 < cq, (4.3.2)

with cp depending only on R. We are now ready to define 235 : 2o = R as

2 5(z) = 0(d(z))((ws(d(z)) + 1/2) + (1 - 6(d(z)))1/2 if 0 < d(z) < R/2,
B 1/2 otherwise in 5.

First of all note that, as it is a convex combination of two functions with range contained in [1/2,1],
29 g itself has range in [1/2,1]. Using the expression in (4.3.1) it is easy to see that there exist Sy > 1
and ¢; > 1 depending only on R such that

wp(0) < —/B  Jwhl<ey/B in[0,R/2] and  |wi| <af in[0,R/2), (4.3.3)

for every 8 > Bo. From the first inequality we obtain immediately i) for z; g. Moreover, by (4.3.2)
and (4.3.3), we can estimate

[Vargl = [0(d)wp(d)Vd +0'Vdwg(d)l

< Jwpl 410 € e1/B+ o < /B,

with ¢ depending only on R. Finally, using again (4.3.2),(4.3.3), and Lemma 4.1.5, we have
V222,51 il V2| + |wp|8] + [wg| + |6"] + 16| V>d| + |¢'||wp]

< clc;g\/ﬁ—l- coc1/B + 1S + co + coca + coci/ B,

where all the constants depend only on R so that we can state the existence of ¢ > 0, still depending
only on R, such that

A

VARVAN

V228 <cB VB> Bo.
To conclude, we define z; g : 21 — R as follows:
0(—d(z))((wp(—d(z)) + 1/2) + (1 = 6(—d(2)))1/2 if 0 > d(z) > —R/2,
1/2 otherwise in £

z1 g(z) = {

and we can conclude as in the other case. OOur main result is given by the following theorem.

Theorem 4.3.2 Let Q C RY be a bounded open set of class Cb' and let 0, C Q be an open set
of class C** for some a € (0,1) and compactly contained in Q. Let R > 0 such that Q, € Ur(Q)
(see (4.1.2) and Remark 4.1.2)and set T' := 0Qy. Then for every function g belonging WhH*°(Q\ T,
discontinuous along T (i.e., Sy =T ) and such that g™ (z) — g~ (z) > S > 0 for every z € T, there
exists By > 0 depending on R, S, A*(T") (see (4.2.1)), and ||g|lwie, such that for B > By the
solution ug of

Aug = f(ug —g) in Q\T, (4.3.4)
dyug =0 on 0N UT,

is discontinuous along I' (Sy, =T') and it is the unique absolute minimizer of Fg, over SBV(Q2).
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PRrROOF. In the sequel we will denote the signed distance from ©; by d and the projection on I' by
7: by Lemma 4.1.5, the two functions are well defined in (I')z/y. Moreover, in that neighbourhood,
d and 7 are at least of class W2 and W1 respectively.

As announced in the Introduction, the proof will be performed by constructing a calibration ¢;
adopting the notation introduced in Section 1.3, the vectorfield ¢ will be written as

¢($7z) = (qu(m’z), ¢z($) Z)),

where ¢*(z, z) is a n-dimensional “horizontal” component, while ¢* is the (one dimensional) “vertical”
component.

e Preparation.

Without loss of generality we can suppose that ¢ coincides with the trace on I' of g from €, while
g~ is trace from €. First of all let us choose (', depending only on R, S, and |g|ly1.e and G
depending on R, such that, for 8 > g',

fu — oo < = and +/Bllug = glloo < Gllglwrco 1= 1,2: (4.3.5)

this is possible by virtue of Theorem 4.2.2.
As a second step, it is convenient to extend the restriction of ug to €; (¢ = 1,2) to a C*? function
u; g defined in the whole (2, in such a way that

3
u;p(z) = ug(z) for z € i, Nuigllwae < cllugllwaee, and uypg—uzp > ZS for every z € §,
(4.3.6)

where ¢ is a positive constant depending only on R: this operation can be performed in many ways,
for example, to construct ug s we can extend the restriction of ug to {3 in a neighbourhood of T
by a standard localization procedure and then we can make a convex combination through a cut-off
function with ug —(3/4)S (recall that by definition of S and by (4.3.5), we have ug —ug > (3/4)S on
I'); it is clear that all can be done in such a way that the constant ¢ depends only on the “«CLl_norm”
of T' and therefore only on R. We require also that

dyuip=0  on 0N.

By (4.2.10) and (4.3.6), we can state the existence of two positive constants K and 5" depending
only on R such that

Vi glloo < Kllgllpieo 1=1,2, (4.3.7)

for every 8 > f".
Let 8" > 0 satisfying

%W = max {4(K||g]lwr.)% 64/5 8, 8", Bo} + 1, (4.3.8)

where fy is the constant appearing in Lemma 4.3.1. Let 2z; g~ and 23 g~ be the two functions
constructed in Lemma 4.3.1 with A = " and define v;, v3 as follows

v ( ) z1,p8Mm (IL‘) if z € Q_l‘
r) =
! 2— Zg g (ZE) ifz e
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and —
zo, g () ifz ey
v2(z) = .
2 — Zl,ﬁm(w) if z € Q.
From the properties of z;5 (7 = 1,2), as stated in Lemma 4.3.1, it follows immediately that v; €
W?2(Q) and

IVvilloo < K10/ B, IV?0illee < K1B8" i=1,2 (4.3.9)

where K7 is a positive constant depending only on R. Note that Vvi(z) = —Vug(z) for every z € Q.
We remark also that, for x € I', by construction,
Vi (z) Vua(z)

Vui(z)] | [Vua(z)] v(z), (4.3.10)

where v(z) denotes the unit normal vector at z to I' (outer with respect to ;). We set

tOf

h(z) = %er% (4.3.11)

1 -
= ﬁlvvll

for every z € I'. Moreover, using (4.3.9) and 4i7) of Lemma 4.3.1, we can find a positive constant
D < R/2, depending only on R, S, and ||g|/jy1.0, such that

) 25 1
Voi(g)] _, 2561 ld(z)] < D,i=1,2. (4.3.12)

vi(z) 3243
Applying #4) of Lemma 4.3.1, we get

Veil@)] 2 5, B(r(o)

(S

[Voui(z)|Z > /" > max {8/5,1}  i=1,2, (4.3.13)

where the last inequality follows directly from (4.3.8).
Moreover, combining Lemma 4.3.1, (4.3.7), and (4.3.8), we deduce

1 1
4Vui5(2) — £170(0)] < 4K gllwree)? = £V/B < -1 (43.14)
and analogously
V() [ Vugglloo < == i=1,2 (43.15)
— VT 2 U = 1,4, 9.
\/i 1 7,8 |loo 4\/3-
for every z € I' and for every § > 8.
Let € € (0,1) be such that
1
6e|| Vi loo + 4€% | VVs]lo < ; fori=12andf> g (4.3.16)

by (4.3.7) and (4.3.9) (and the definition of 8"”") we see that € can be chosen depending only R, S
and ||glly1e . By (4.3.11), it follows, for every z € T,

A(R)?||Vuilleo > 4(R)?(=1)1 8,0 = 4 -

NN
vV
=
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therefore, by (4.3.16),
e < h(z) Vzel. (4.3.17)

Let v be a fixed constant belonging to (0, % A @): by applying 4i) of Theorem 4.2.2, we can find
two positive constants 5V and Ko depending only on R and A%(I') (and «) such that

1
HV%IILM( ) < K5 |gllyprice, (4.3.18)

)

for every 8 > 8.
We can define, for g > 0,

(o) | (@) =83 ld(@) ) Ve it lda)] < D
f . if |d(z)| > D,

where 7; is a fixed constant belonging to (v,3). It is easy to see that there exists 8 > 0 depending
on D (and therefore only on R, S, and ||g||lyy1.e ) such that hg is continuous (in fact Lipschitz) for
6>p".

Using (4.3.13), (4.3.11), (4.3.9), and Lemma 4.1.5, we have

[Vhglleo < C 1 (5 + 1)4 V205 lloo || V7l + BTN | Vd|le | < K3BET (4.3.19)
Blloo = \/§ 8 1{loo 0 oo | S A3 5 9.

where K3 is a positive constant depending on R, S, and ||g||y .o -
Finally we set

By = max{8",8",B",B%,1} (4.3.20)
and
Av;(z)
i = ; 4.3.2
Mz(x) ’Uz(l‘) ; ( 1)
notice that by (4.3.9) we get
11
pi(z) < Kl(ﬁ) < 2K [ for every z € Q . (4.3.22)
Vi\T

e Definition of the calibration.

From now on we will assume 8 > 8;. Let us consider the following sets
Ai = {(z,2) € Ax R: u;g(z) — hg(z) <z <wugg(z) + hglz)}, i=1,2. (4.3.23)

Since, by (4.3.6),u1,5(z) — ugg(z) > 25 everywhere, noting that hs < S/8 everywhere (by (4.3.13)
and (4.3.11)), we see that
dist(dr, o) > 5 for 2 1.
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The crucial point is in constructing the vectorfield around the graph of ug, i.e. in A; N (£; x R): here
we have to provide a divergence free vectorfield satisfying condition (d) of Section 1.3 and such that

¢*(z,2) vy 20 forz €T and ugp < z <uyg,
¢ (z,2) - vu, <0 forz €T, z<usgorz>uyg.

These properties are crucial in order to obtain (e) and (f) simultaneously.
The remaining work is a matter of finding a suitable extension which preserves all the properties

of calibrations.
We start by giving the global definition of the horizontal component ¢*:

- ; he\ . .
5 (5, 2) = 2Vu; g — 2% 'S; EVv; — %Lg— ((—l)z(z —ujg) — —5—3-) Vuig if (z,2) € A;,1=1,2,
0 otherwise in @ X R.
(4.3.24)
Concerning ¢*, we begin by defining it in 4; N (Q; x R):
2
i (z,2) = |Vug — ¢ " Zv0i| - Bz — )%+ (B~ wi)(upg — 2)* + Vi(z,2) ¥(z,2) € 4;N (% x R),
(4.3.25)
where p; is the function defined in (4.3.21) and
: 16 ; he\ "t
Ui(z,z) := / divg | — ((—l)l(t — ’U,iﬁ) — —9£> Vu;g| dt.
uig hg 2
Let us clarify that in the formulas above (-)* stands for () V 0.
For z € Q; and —hg < (=1)(z —ug) < %‘3—, the field ¢ reduces to
2
<2VU3 - ZUﬂUi szi, Vug — us i ZVvi —B(z—g)* + (B — 1) (ug — z)2> (4.3.26)
and so, by some easy computation and using the definition of ug and p;, we have
: ug — 2
divg(z,z) = 2| Aug— —Av; | = 28(z — g) — 2(8 — pi)(up — 2)
K
= 28(ug — g) - 2pilup — 2) — 2B(z — 9) — 2(8 - ) (s — 2) = 0.
For z € ; and %ﬁ < (=1)"(z — ug) < hg, ¢ is the sum of the field in (4.3.26) and
. hg\ T
(—']£ ((.‘1)1(z_—u[3)~—é> V'Ulﬁ, \I/Z(l’,z)> )
hg 2
which is clearly divergence free by the definition of ¥;. Eventually we have,
dngZS =0 in (Ql X R) N A;. (4327)

It is time now to extend the definition of ¢*. Before writing the explicit expression, we remark that
conditions (a) and (b) of Section 1.3 imply that such extension is essentially unique. More precisely,
if (Uj)j=1,....10 is the family of all connected components of (2 x R) \ (04; UJA; U (I' x R)), it easy
to see that ¢* is uniquely determined on (Q\T') xR = U}&lUj by (4.3.24), (4.3.25), and the two
following necessary conditions:
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o 0,¢° = —div;¢® in U; for j =1,...,10 (which ensures condition (a) of Section 1.3),

o ¢ vy, = ¢~ - voy; on OU; for every j =1,...,10, where ¢ and ¢~ denote the traces of ¢
on the two sides of dU;.

The only freedom is in the choice of ¢* on 9U; according to the condition

¢ vou, = ¢T - veu; = ¢ - vou; -

We are now ready to give the complete the definition of ¢%; for (z,z) € (21 x R) \ A7 we define
@*(z, z) as follows:

(¢%(z,ug + hg) - (=Vug — Vhg) + ¢*(z,us + hg) if z > ug + hg,
(]533(:13,’!1,5 — hﬁ) . (-Vug -+ th) -+ gbz(x,uB - hﬁ) if ug — hﬁ >z 2> U2 3 + hﬁ,

x1(z,z) + ¢Z(£C,u2,5 + hﬁ) + qu“(a:,uz,g + hﬁ) . (V'UQ”B -+ Vh,a) ifugg+hg>z2>uzp— hg,

\gbw(:zr,uz,ﬁ - hg) : (——V’ug’ﬁ + Vhﬁ) + (]52(:1:,7.1,2,5 - hﬁ) if U B — hﬁ >z,
(4.3.28)

where

us,a+hg
x1(z, 2) =/ div;¢*(z,t) dt.
We remark that in first and in the second line we used the definition of ¢* already given in (4.3.25),
in the third line we used the definition of ¢*(z,ug s + hg) given in the second one, and finally in the
last line we exploited the definition ¢*(z,uq s — hg) given in the previous one.

Analogously, for (z,z) € (23 x R) \ Ay we define ¢*(z,2) as follows:

(¢%(z,up — hg) - (~Vug + Vhg) + ¢*(z,ug — hg) if z < ug — hg,
¢*(z,ug + hg) - (——Vug — Vhg) + ¢*(z,ug + hg) ifug +hg <z < ug— hg,

Xa2(z,2) + ¢ (z,u1p — hg) + ¢%(z,ur,p — hg) - (Vurg — Vhg) ifuipg—hg <z <uppg+hg,

 $"(z,u1,8 + hg) - (—Vui g — Vhg) + ¢*(z,u1,8 + hg) if uy g+ hg < z,
(4.3.29)

where
uy,g—hg
x2(z,2) = / divy¢® (z,t) dt.
z

Finally we set
¢*(z,2) =0  on (I'NR)\ (A1 U 4g);

this concludes the definition of ¢ which, by construction (and recalling (4.3.27)), satisfies conditions
(a) and (b) of Section 1.3.
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Figure 4.1: A cross section of the sets A, and Aj: the vectorfield ¢ is purely vertical out of the
shaded regions.

o ¢° + Bz —g)% > |¢®|?/4 for almost every (z,2z) € Q@ x R with z # u(z).

We first prove the condition above in A; N (€; x R), and then in the remaining. For z € ©; and
~hg < (=1)i(z — ug) < "2, by (4.3.26), we have that

|2 z12
# 48— 98 =21 4 (8- (s — 2 > 121,

so condition (¢) of Section 1.3 is trivially satisfied, with strict inequality.

For z € §; and %‘i < (=1)*(z —ug) < hg, using the definition of ¢ we see that (c) is equivalent to

,M , (16)° 2
(1) = (8~ pi)(ug — 2)* + Vi(z,2) > 4(hﬁ)zlwﬂlz([- )
—%[ : } (VUﬁ - uﬁv;— ZV'UZ) VU5 =: (2), (4.3.30)
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where we wrote [---] instead of [(( )iz — ug) — ho ) ] by (4.3.17), (4.3.5), (4.3.7), and (4.3.19),

we have
Z 16 16
Tiia,z) > /’< 361 i Aug] - [Vug) | (—4~J)D<ﬂ
ug h’ﬁ ] g g hﬂ

16 165

> mgﬁwwm—n-wvww:<wWvamn+——W@Q
16 2 +7 165 +m

> 2282 /Ballgllnn — SKllglwron (= (Kllglwno + KsBEH7) + o rcypbon )

therefore, recalling that the all the constants appearing in the last expression depend only on R, S,
and ||g|ly1., there exists a positive constant C' depending on the same quantities such that

Ui(z,2) > —C’ﬂ%""”; (4.3.31)

recalling that |ug — 2| > 7’3 > £ we finally obtain

2

(1) > (B - ul)%— - C,B%“L”l for 3 large enough . (4.3.32)
Analogously exploiting (4.3.16), (4.3.17), (4.3.7), and (4.3.9), we discover that
(2) < Cy, (4.3.33)

where C7 depends on R, S, and [|g|/yy1.; combining (4.3.32), (4.3.33), and recalling (4.3.22), we
finally obtain that there exists by > (1 depending only on R, S, and |/g|ljy1.. such that (4.3.30)
holds true for 8 > bg.

Before proceeding let us observe that arguing as for estimate (4.3.33), we easily obtain

|67 (z,2)] < Co(IVuiglleo + | VUilleo) < Cs for every (z,z) € A;, (4.3.34)

where C3 depends only on R, S, and ||g|lyy1.. For (z,2) € (2; x R) N A4; (i # j), by the definition
of ¢* and, by (4.3.17), we have

[dive¢®| < Ca (IVu5,8]l00 + | V205 ll00 + |V allZe + VU515 + [V g

ool Vhglleo) ,  (4.3.35)

where Cy depend only on R, and S; by using (4.3.6), (4.3.7), (4.3.9), (4.3.18), (4.3.19), and recalling
that 1 > v, we deduce, from (4.3.35), that

il < SCe (Collglwnce B + Cs + Kafr + (Klglhnce)? + K261 + Kllgllw o K537 )
< OB, (4.3.36)

where Cg depends only on R, S, A*(T"), and ||g|lyyi.eo -
Using the definition (4.3.28) for (z,2) € (@1 x R) N Ay, we have

" (z,2) > x1 = 2/|¢"|(IVuz,gllo + [IVhglleo) + ¢ (z,up — hg), (4.3.37)
where, by (4.3.25),

& (z, ug — hﬁ) > ‘—,B(Uﬁ —hg — 9)2 + U (a:,uﬁ — hﬁ). (4.3.38)
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Therefore, for (z,2) € (Q; x R) N Az, combining (4.3.37) and (4.3.38), and using (4.3.7), (4.3.19),
(4.3.31), (4.3.34), and (4.3.36), we obtain

_ler

. 2P [(z = 9)* = (ug — hg — 9)°] = Ixil = 216" oo (Vg oo

le®l%
4

#*(z,2) + Bz — 9)?

+HIVuz glleo) + Yi(z,ug — hg)
Bl(7/16)25 — (3/16)25%] — C5B3 ™™

v

(C5)?

4 7
where we used also the fact that that |z —g| > |z —ug| — |ug — g| > §/2 — §/16 = (7/16)S and,
analogously, that |ug — hg — g| < S/16 4+ 5/8 = (3/16)S (see (4.3.5)); as 5 + 1 < 1, there exists
b; > 0 depending only on R, S, A%(I'), and [{glly1.c such that

12 .
#(2,2)+ Bz — o - - >0, (4.3.39)

—03(K35%+71 + Kllgllw1.ee) — o] Laati

for B > by and for (z,z) € (21 x R)NAy. Analogously we can prove the existence of a constant by > 0
depending on the same quantities such that (4.3.39) holds for § > by and for (z,2) € (N2 x R) N Ay.
Arguing exactly in the same way (in fact exploiting the same estimates), one can finally check that
there exists b3 > 0 depending on R, S, A%(T), and [|g|ly1.e , such that (4.3.39) is true for (z,z) €
(QxR)\ (A; UAy) and B > bs. If we call (3 := max{bo, by, b2, b3} we have that for § > (2 condition
(c) of Section 1.3 is satisfied for almost every (z,z) in £ x R with strict inequality if z # u(x).

e ¢(z,ug) = (2Vug, |Vug|? — Blug — 9)?) everywhere in Q\T'.
Condition (d) of Section 1.3 is trivially satisfied, as one can see directly from the definition of ¢.

Ul)ﬁ(l‘)
® / ¢%(z,t) dt = vy, = —v HV-1 ge onT.
uz,p(x)

By direct computation, for z € I', we have

/ul,ﬁ ¢*(z,2)dz = (hﬂ)Qm - (hg)QWI. (4.3.40)

. V2 V1
Using (4.3.10), (4.3.11), and the fact that v; =1 on I', we obtain

U8 1 Vg 1 Vuy
z,z)dz = +3 -z = -
/u #"(2,2) 3o 2]V

2.6
so that condition (e) of Section 1.3 is satisfied.

t2
¢°(xz,z) dz| < 1 for every t1, t2 € R and for every z € Q.

t1

Tt is convenient to introduce the following notation: for every z € Q and for every s, t € R, we set

t
I(z,[s,4]) = / #(z, 7) dz,
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where, with a slight abuse of notation, [s,?] stands for the interval [s A t,s V t] positively oriented if
s < 't, negatively oriented otherwise. We define

h(n(z)) — €
ﬁ%Jr’n ’

dg(m(z)) =

If |d(z)| > dg(m(z)), recalling that, by definition, hg(z) = & we have

u1,g+e (

!I([E,tl,tg)l S / 2”Vﬂ1ﬁ“w + lE—QHVumHoo (Ul’g - % - Z)+ -+ 4{u1,5 - Z[HVU1HOO> dz

1,4—€
uzpte 16 £ +
+/ (QHWz,ﬁHoo + 2l Vuzglioo (—uap = 5 +2)7 +4fugp — ZH'VU2”00> dz
u

2,87¢€

1
< 6el| Vg plloo + 4[| Vorloo + B¢ Vuz plleo + 4% Vs loo < 3

where the last inequality is due to (4.3.16), therefore condition (f) is satisfied.
Let us consider now the case of a point z where |d(z)| < dg(n(z)). For z € Q; UT we set

_ V'Ul . VUQ .
’V’Ull \V'UQV

(4.3.41)

n(z) =

note that n(z) = vy, (z) for every z € I'. Given any vector valued function ¢ : Q — RY | we call ¢t
and ¢l the vector valued functions such that ¢4(z) and £ll(z) are equal to the projections of &(z)
on the orthogonal space and on the space generated by n(z), respectively. We denote the open unit
sphere of RV centred at the origin by B and the open ball of RV centred at the point —rn(z) with
radius 7, by A(z,r). Finally, for z € Q and ¢t € R we introduce the following vector

bi(z,t) == (—1)"(2(t — uip) — 5i(w, 1)) (Vug g)!,

where j; is defined by

. 16 [ : +
jila, £) = E/ (Di(uip—2) - 22) " e
Ui’ﬂ

CLAIM 1. There exists a positive constant ¢y > 0, depending on R, S, A%(T), and ||glyyieo,
with the property that for every z € Q such that |d(z)| < dg(n(z)), for every ¢ € R such that
[t —uip(z)| < hg(z), and for B > ¢y, we have

(=1)" (2, [ug g, t]) + bz, t) € A(z,1/3). (4.3.42)

A straightforward computation gives

(—1)i+11($, [u; (), t])+b;(z,t) = 2(——1)”1V'u,¢75 (t—ui,g)-{-(—l)iji (z, t)Vui,g—I-(~1)i+1v—vﬁ(t—ui,5)2

+2(=1)"(t — uig) (Vus )l + (=1)" s (2, 1) (Vug )l =

= (~D*R(t — uig) — il ) (V) ~ L4 — )2

7

and so the claim is equivalent to prove that

_ 2|V

Vg

(t —uip)? < 0

(2 = Ji(2, 1)t = uig) ") [(Vui ) 1Pt — uip)? +
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as 0 < 2~ j;(z,1)(t —u;5)"" < 2 everywhere, it is sufficient to prove that

2 ]VU-P 2|Vu; |
—— R 2 4 1
(+) i= 4[(vum) [ i (4.3.43)
Since, by (4.3.11), hj i?f' % for z € T, we can estimate
L 11V,
() = 4(Vurg) - 1% <0 e, (4.3.44)
3

where the last inequality follows from (4.3.14). In the following we denote by 94 the differential
operator

g f (=) = V{(z) - V]d(z)],
defined for z € (I') & \ I'; noting that, by the estimates (4.3.9), we have

Oa1—

<G,

|V

<C I(’)ld!

where C depends only on R, S, and ||g|lyy1.e, and using (4.3.12), (4.3.16), (4.3.18), (4.3.6), and
(4.3.19), one sees that

in }2 2 IVU |
3 _ _al ! 3

v Vo,
81d|((*)) = 8(V’LL¢,5)J'~5‘M(VUZ',5)J"+ | lhﬁawhg-khga]d]

’L

< 8eKKafHH gl + Cr = SKafI 4 520+ C;

as 1 > v and since all the constants appearing in the last inequality depend only on R, S, A%(T"), and
llgllw1.e0 , it is clear that there exists ¢ > 0 depending on the same quantities such that d)4((x)) <
for z ¢ T such that |d(z)| < dg(w(z)) and for B > ¢y. Therefore, taking into account (4.3.44), (4.3. 43)
follows immediately: Claim 1 is proved. :

CLAIM 2. There exists a positive constant ¢;, depending only on R, S, A%(T), and |lg|lywi.e,
such that for every z € Q, t;, t2 € R, with |d(z)| < dg(n(z)), |t1 —u1g|l < hg, |t2 —ugp| < hg, and
for every 8 > c¢1, we have

I(z, [ug,8,u1,6]) — b1(z,t1) — ba(z,t2) = b(z, t1,t2)n(2), (4.3.45)

with b(z, t1,42) < 1.
First of all observe that for every = € Q I(z,uzg,u1,5) is a vector parallel to n(z), by (4.3.40); it
is also clear that

I(a, [uz,5, w,6]) = bule,t) = ba(t)| < |E(e, Tuag, )|+ | (Vurg)||(2hs + (2, hg)
+|(Vus,0)!| 285 + s, 19))
< (@, [z, ui]) |+ 4hs (| (Vur)!| + [(Tuz)!))
=: mp(z);

therefore it is sufficient to prove that mg(z) < 1 for |d(z)| < dg(n(z)), if B is large enough. Since
mp(z) = |I(z,uz,,u1,8)| =1 for every z € T, it will be enough to show that 0jgmpg(z) < 0 for z
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such that |d(z)] < dg(w(z)). We don’t enter all the details, indeed arguing as above, that is using
(4.3.7), (4.3.18), (4.3.9), and (4.3.19), one easily sees that the derivative of hg which is negative and

of the same order as 3N , dominates the other terms and so there exists a positive constant c¢; > 0
depending on R, S, A%(T'), and ||g|ly1., such that djgmp(z) <0 for 8> ¢;: Claim 2 is proved.
We set 3 = max{cp,c1} and we are going to prove that condition (f) of Section 1.3 is satisfied for
B > P3. We will check the condition only in Q7 x R: for {23 x R the argument would be analogous.
Let = € Q; and ¢y < t; two real numbers such that [t — ug g(z)| < hg(z) and |t1 — ug(z)| < hg(z);. -
first of all it is easy to see, by explicit computation, that

I(z, [t2, t1]) - n(z) > 0; (4.3.46)
recalling that, by Claim 1,
I(z, [ug, t1]) + bi(z, t1) € A(z,1/3) and I(z, [ta,uz g]) + ba(z,t) € A(z,1/3),
we have

I(z,[ta, t1]) = I(=,[ugp,ugl) — bi(z,t1) — ba(z, ta) + I(z, [t2, uzg]) + ba(z, t2)
+I(z,[ug, t1]) + bi(z, t1) € I(z,[ugp, upl) — bi(z,t1) — ba(z,t2) + 2A(z,1/3),

therefore, taking into account (4.3.46),
I(:E, [tg,tl]) € (I('L’, [’I,Lgvg, UﬂD - bl(I,tl) - bQ(CII, tg) + A(CE, 2/3)) n H+, (4.3.47)

where HV is the half-space {¢ € RY : £-n(z) > 0}. By elementary geometry it is easy to see that
(bn(z) + A(z,7)) N HT C B for b < 1 and for r € (0,1), and hence, invoking Claim 2, we get

I(z,[t1,t2]) € (I(z,[ugp,ugl) —bi(z,t1) — ba(z, t2) + A(z,2/3)) NHT
= (b(z, t1,t2)n(z) + A(z,2/3)) N HT C B. (4.3.48)

If (z,¢1) and (z,t9) belong to A; it is easy to see, by explicitly computing the integral, that

V| 25 25 1 25 1
halVus gl <1— e+ 22— =1,

v; 8
where the last inequality follows from (4.3.12), (4.3.15), and (4.3.11) (we recall that for g large enough
dg(m(z)) < D, for every z, being D the constant introduced in (4.3.12)).
We now consider the general case. Let z € Qy, t1, t2 € R with #; < t5; since ¢* vanishes out of
the regions A; and As, we have

[1(z, [t1,12])] < Bj(2) (4.3.49)

I(z,[t1,t2]) = I(z, [t1, t2] N [uog — hg,uzp + hgl) + I(z, [t1,t2] N [ug — hg,ug + hgl);

by (4.3.49), each integral in the expression above has modulus less than 1, so that if one of the two is
vanishing condition (f) is verified. If both are non-vanishing, then

[t1,t2] N [u2,5 — hg, ug + hg] = [51,52];

with |s1 —ugg| < hg and |sy —ug| < hg, so that, again taking into account the fact that ¢* vanishes
out of the regions A; and As,

(=, [ts, t2])| = |I(=, [t t2] N [uz,p — hp,up + hp))| = [[(z, [s1,82])] <1,
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where the last inequality follows from (4.3.48): condition (f) of Section 1.3 is proved.
Set B := max{f1, B, Bs}; since, by construction, ¢ has vanishing normal component on 92 x R,
we have that conditions of Section 1.3 are all satisfied for 8 > §: the theorem is proved. O

A similar result holds true also if T is made up of several connected components, as the following
theorem states: we omit the proof, since it is essentially the same as the previous one.

Theorem 4.3.3 Let Q as above and let Q1, ..., Q a family of open disjoint subsets belonging of class
C2e gnd let R > 0 such that Q; € Ur(Q) for i =1,...,k and dist(Q;,Q;) > R for every © # j. Set
[:=00,U---U0Qy. Then for every function g belonging Wh(Q\T), discontinuous along T' (i.e.
S, =T) and such that g™ (z) — g~ (z) > S >0 for every z € T, there exists By > 0 depending on R,
S, A*(I) (see (4.2.1)), and ||gllwr.e , such that for B > Bo the solution ug of (4.3.4) is discontinuous
along T' (Sy; =T) and 1t is the unique absolute minimizer of Fg, over SBV(Q).

Remark 4.3.4 We remark that refining a little the construction, it is possible to improve the result
of Theorem 4.3.2 as follows:

there exist 6* > 0 and By > 0 such that, for every B > By and for every g € Whe(Q\ ), with
lgllwiee < B and such that infr(gt —g~) > S, the solution ug of (4.3.4) is the unique absolute
minimizer of Fg o over SBV(Q).

The main difficulty comes from the fact that instead of (4.3.7) we have the weaker estimate

[Vuglleo < KB

Such a difficulty can be overcome replacing, in the construction above, v and vy by vi g and va g
defined as .
2y .p48* (ZE) fze
v1,6(z) = bef .
2 — 2y guer(z) iz €0

and

vy gla) = | 2eger (@) iz el
i’ 2 — 2 guse () iz €D,

where z) g+ and 2, g+ are the two functions constructed in Lemma 4.3.1 with X = ¢4 . One
can check that if §* is sufficiently small and ¢ sufficiently large, all the conditions of Section 1.3 are
still satisfied for S large enough. ‘

Remark 4.3.5 The results we have just proved remains true if we consider Dirichlet boundary con-
ditions instead of Neumann boundary conditions, i.e. if we take as candidate minimizer the solution
of the following problem

Aug = flug —g) inQ\T,
dyup =0 onT, (4.3.50)
u=g on 012,

where g is as in Theorem 4.3.2. If g is regular enough on 99, the solutions of (4.3.50) satisfy the same
estimate as the solutions of (4.3.4) and therefore, the same construction of Theorem 4.3.2 provides a
vectorfield ¢ which fulfill, for B large enough, all the conditions stated in Section 1.3 except (g), of
course; this means that for 8 large enough the solution of (4.3.50) is the unique minimizer of Fg,
with respect the given Dirichlet boundary conditions.
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4.3.2 The two-dimensional case

As stated in the Introduction, in dimension two we are able to treat the case of Q with piecewise
smooth boundary (curvilinear polygon) and of T' touching (orthogonally) 9.

Lemma 4.3.6 Let Q, S, and T" be as in Proposition 4.2.6 and denote by 1, Qo the two connected
components of @\ I'. Then for every 6 > 0 there exist two positive constants ¢ and By depending
on I and ¢ (and Q of course) such that, for B > By, we can find two functions 215 : 81 = R and
za: Qy = R of class W™ with the following properties:

)5 <zp<linQ, fori=1,2 and z,5 = % in Q\ (D);;

W) Az g < cBzipg in Q;, for =1,2;

i) z15(z) = z28(z) = 1 and Oyz1 8(z) = —0uza8(z) > /P for every z € T';
W) [[V2iglleo < cv/B and || V32 ]l00 < cf.

ProOF. Let us denote by z; and z5 the two intersection points of T' with 9. If we are able to find
a function d belonging to W2((T')e NQ) (for a suitable §' < dist(S,T")) such that d is vanishing on
I, positive in Q2N (T4, negative in Q1N () s, satisfying 8,d = 0 on 9QNTY and 8,d #0on I, we
are done: indeed we can proceed exactly as in Lemma 4.3.1 using d in place of d. We briefly describe
a possible construction: as in Proposition 4.2.6 we can find a neighbourhood U; of z; (i = 1,2) and a
CH! function vanishing on I'NUj;, positive in 2y N U;, negative in Q3 NU; and such that 8,9; =0
on 0NU; and 0,9; # 0 in TN U;. Now we can define d := 0111 + 0d + 02109, where 6,1, 05, and 65
are suitable positive cut-off functions such that 6, + 6, + 63 = 1, while d is the usual signed distance
function from T, positive in {2y and negative in Q; (it is well defined in ' if § is small enough). O

Theorem 4.3.7 Let Q, Q1, Oy, and T as in the previous Lemma and let g be a function in Wheo(Q\
'), discontinuous along T' (i.e. S, =T) and such that g*(z)— g~ (z) > S > 0 for every z € T'. Then
there exists By > 0 depending on T', S, and ||glly1.ec, such that for B > By the solution ug of (4.3.4)
is discontinuous along I' (Sy, =T ) and it is the unique absolute minimizer of Fg, over SBV(Q).

PROOF. As above, let us denote by S the set of the singular points of 9Q. If Q is regular (ie. S = 0)
we can recycle exactly the same construction of Theorem 4.3.2. If S # (), an additional difficulty is
due to the fact that we are not able to prove that ||Vugl|zeo(q) < C' with C independent of §. Since
we can perform such an estimate only in a neighbourhood of T which does not intersect S, the idea
will be to keep the construction of Theorem 4.3.2 in that neighbourhood and to suitably modify it
near the singular points in order to exploit estimate (4.2.25).

Denote by 71 and -y the two curvilinear edges of Q containing the intersection points of I' with
Of) and choose d > 0 so small that (T')s NS =0, ([)sNIN = (T)s N (71 Uva), and d and 7 are well
defined and smooth (according to Lemma 4.1.3) in that neighbourhood.

Let us choose 8’ > 0 and G > 0 such that, for 3 > f/,

S .
lug — gllzeo () < 6 and  +/Bllug — gllzeo@y < Gligllwreoqy i=1,2,: (4.3.51)

this is possible by virtue of Proposition 4.2.4.
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Again it is convenient to extend the restriction of ug to €; (i = 1,2) to a C™! function u;g
defined in the whole 2, in such a way that

. 3
u; g(z) = ug(z) in §, “'U,i’lgnw‘z,oo(g) < cllugllwzeo(rysna), and  uyg —ugg > ZS everywhere,
(4.3.52)
where ¢ is a positive constant independent of 8. We require also that

Ovuip =0 on 0f1.

By (4.2.28) and (4.3.52), and by (4.2.25), we can state the existence of two positive constants K and
B" depending only on I', such that

. L
1Vuigllro@umsne) < Kllgllwreo for =12,  and  |[Vugllreoq) < B1K|[gllwreo (o
(4.3.53)

for every 8 > (" (above and in the sequel, i denotes the complement of 7, i.e., 7 is such that
ii={1,2}).
Let " > 0 satisfying
1
g VP = max {4(Klgllwre)?,64/5%, 8, 8", B0} +1, (4.3.54)

where [y is the constant appearing in Lemma 4.3.6 and 27 gv, and let zp g be the two functions
constructed in Lemma 4.3.6 with A = /. We denote by v1, vs the functions defined as follows:

(z) 21,6 (z) ifz € Q-l_
milr) =
! 2 — z9 g (.’L‘) ifz ey

Zg’ﬂm(CE) ifze Q—Q—
va(z) = .
2 — 21“3/”(:13) if v € Oy,
and we choose 0 < D < ¢ in'such a way that
1 =5 [V 25 1 . .
()| > = 2 S < =1,2
IV’U’L(:C)I pty 2: h (7?(56’)) V4 — 1 32 \/g) lf ld(ﬂ?)l i D) 2 17 H
where
R(s) = —=|Vor@)| "} = —=|Vus(a)F  voerT (4.3.55)
z) = —|Vui(z = —|Vuy(z T . 3.
V2t Vol

Then we choose ¢ € (0,1) in such a way that
1 :
125“V’U~i,5||Loc(Qiu(I")6)mQ + 462||V?Ji”Loo(Q) < ) for i =1,2 and 8 > 8". (4.3.56)

Let v be a fixed constant belonging to (0,3 A a): by Proposition 4.2.6, we can find two positive
constants 'Y and Ko such that

V?ugll oo ((ry5n0) < K282 |lgllwee (o), (4.3.57)
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for every 8 > .
Now we can define, for § > 0,

hs(z) = {(h(w(g;)) - ,B%+71|d(:c)1> Ve if|d(z)] < 2
Fp(ld(=))) if |d(z)| > 2,

where v; is a fixed constant belonging to {v; %) and fg : [6,+00) = R is the continuous function
satisfying

D -1 , .| D
fs <§> e Jalt)=spi= (ﬁigK“gHWl’”(ﬂ)) fort > D  fpis affine in [E,D}.
(4.3.58)

It is easy to see that there exists ¥ > 0 such that hg is continuous (in fact Lipschitz) for § > 87.

Finally we introduce a new function #; g which is a modification of u; g in the region where we
cannot perform a uniform control of the L -norm of its gradient; such a function must satisfy, for
i=1,2:

Ui p(z) = ug(z) forze QU NQ and  G;8(z) =g(z) forz e\ (I)p, (4.3.59)

Niis]

Vi, g

Izeo(a) < clllVugllpeoqmypy V IIVGllzo())  and  [ldip — gllzeo(a) < llug — gllzeo (@),
(4.3.60)

where ¢ > 0 is independent of §: a possible construction is given by
i p(z) = 0 ((—1)'d(x)) uig + [1 = 0 ((-1)'d(2))] 9(2),

where 6 is a smooth positive function such that 6(¢) =1 for ¢ < D/2 and 6(¢t) =0 for t > D. Now
for B > pr:=max{p", 5", 5", 5"} we consider the sets

Ai={(z,2) € QxR d;5(z) — hg(z) < z < Ui p(z) + hg(z)}, i=1,2; (4.3.61)

setting
hg(z) = [1+ (2/D)(|d(z)| — D/2)"] hs(a),

we can define

i ~ hs\ T .
(3, 2) = 2Vu; g — 2“_'£;_ZVv,~ — 71{% <(—1)1(z —uig) — -Zﬁ) Vuig if (z,2) € A;,
0 otherwise,
and \
ug— 2 _
O pn@xr) = |Vus — ﬂ,uz Vvi| =Bz = g)* + (B — pi)(up — 2)* + T,

where the functions ¥; and pu; are defined exactly as in the proof of Theorem 4.3.2. At this point,
as in the proof of Theorem 4.3.2, the vertical component ¢* can be extended to the whole {2 x R in
order to satisfy conditions (a) and (b) of Section 1.3 (we do not rewrite the explicit expression). First

of all observe that in ((F) o N Q) x R the definition of ¢ is the same as in Theorem 4.3.2, then, we
2
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can state the existence of a constant S > 0 depending on I', S, and ||g|jyr1.0 such that ¢ satisfies
(2), (b), (c), (d), (), (£), and (g) of Section 1.3 in ((r)% N Q) x R.

From now on we focus our attention on what happens in (QZ \[T)o ) x R.

Concerning (d), we have only to check that for 4 large enough the graph of u; g belongs to A4;,
but this follows from the fact that, by (4.3.58), A; contains the sg-neighbourhood of the graph of

U; g, where sg is of order B4, and from the fact that, by (4.3.51) and (4.3.60), it holds

~ ~ _1
llugg — tiglloo < lltip — glleo + 1Tip — glle < CB72.

Concerning condition (c), it is clearly satisfied in A;, then it remains to check, for 5 large enough, the
inequality ¢*(z, z) + B(z — g)2 > 0 holds true outside A;. For z € (Qz \ (F)%> NT's such an estimate

can be performed using estimates (4.3.53), (4.3.57), (4.3.60) and arguing as in the proof of Theorem
4.3.2. Now let (z,z) belong to [(; \ (T')p) x R] \ A; and suppose also that 4y g(z) + hg(z) < z <
t1,5(z) — hg(z) (the other cases would be analogous); since ¢*(z,z) = ¢(z,4; g+ (—1)*hg) - (—Vi; g+
(=1)""'Vhg,1) and observing that ¢(z,4; s + (—1)*hg) reduces to

(2Vu5, !Vug‘z ~ Bz —g)* + Blug — 3)2) !
we obtain

—|Vug| Vi g — 2| Vug||Vhg| + Blug — 2)°
—|Vug| Vi g — 2| Vugl|Vhs| + Bsh;

¢*(z,2) + Bz — g)* >
>

in the last expression the positive term 65/23 , which behaves like ﬁ% (see the definition of sg) dominates

the negative ones, indeed these are either bounded or of the same order of |Vug| which is less or equal

to the order of ,8%, thanks to (4.3.53): therefore for [ large enough we get the desired inequality.
About condition (f) we first observe that if ¢;, o € R and = € ((I‘)D \ (I‘)g) N then we obtain

ta

¢*(z,2) dz| <

i1

i p+hg ) 3 +
L 2Vl + 81905l (1) = ) = ) s = 2l Vil dz}
Ui,g—hp

IA
NS

.
il
m

4 Vi glloce + 462 Viloo + %Ilvw,ﬂllw {(Ui,ﬂ —05,8)% + —f‘”

IA
E

ﬁ,
—

I 16 .
4 Vs glloce + 462 Vg l|oo + gnvui,ﬂuoo(ui,ﬁ —@5)% + SHVUz‘,ﬁHooE]

IN
‘Ml\)

M
[

12][ Vug gllooe + 4% Voo + C5F ]

NS

1

-,
Il

the fact that —;—glquiﬁHOO(uw —1; )% < CB~1 follows from estimates
(4.3.53), (4.3.51), (4.3.60), and the definition of sg]

———

IN
N —
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if B is large enough, thanks to (4.3.56).
If £ € Q;\ (T')p then we can estimate
2]

¢*(z,2) dz
i1
by (4.3.53) and the definition of sg. Also condition (f) is proved; since, by construction, ¢ has
vanishing normal component along 92 x R, the theorem is completely proved. O

—

< 28,@HVU1,5||00 + 285“vu2,,3”oo <z

no

Figure 4.2: An admissible discontinuity set I'.

Now we can state a theorem which is the analogous of Theorem 4.3.3.

Theorem 4.3.8 Let 2 as in Proposition 4.2.6 and I' =y, U--- Uy, where for every 7 =1,...,k ~;
is either a simple, connected, and closed curve of class C*% contained in Q or a connected curve with
the same regularity outside a neighbourhood of its endpoints (where it is supposed to be of class C°),
which meets orthogonally dQ in two regular points (see Fig. 4.2); suppose in addition that v;Ny; =0
if i # j. Then for every g € WhH®(Q\T') discontinuous along T’ and such that g% (z)—g~(z) > S > 0
for every x € T', there ezists By > 0 depending on I', S, and ||g|lyi.e, such that for 8 > By the
solution ug of (4.3.4) is discontinuous along T' (Su, = T') and it is the unique minimizer of Fp,
over SBV(Q).

Remark 4.3.9 Let I’ be as in Theorem 4.3.8 and let © be harmonic in 2\T', discontinuous along I"
with different traces at each point and with vanishing normal derivative on both sides of I'; then u is
a A-quasi-minimizer (according to Definition 1.2.2) of the homogeneous Mumford-Shah functional Fp,
for A sufficiently large. Indeed, by Remark 4.3.5, u minimizes Fg,,, for § large enough, with respect to
its own Dirichlet boundary conditions; this implies that u is a A-quasi-minimizer for A = 48wy ||ulco -

4.4 Gradient flow for the Mumford-Shah functional

In this section we are going to apply the previous results to the study of the gradient flow of the
Mumford-Shah functional by the method of minimizing movements (see Section 4.1) with an initial
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datum wug which is regular outside a regular discontinuity set I': we will show that, for an initial
interval of time, the discontinuity set does not move while the function evolves according to the heat
equation. Our main result is stated in the following theorem.

Theorem 4.4.1 Let 2 and T’ be either as in Theorem 4.5.8 or as in Theorem 4.8.8. Suppose that ug
is a function belonging to W>(Q\T), discontinuous along I', and such that uf (z) —ug (z) > S >0
for every z € T' and O,ug = 0 on OQUI'. Then there exists T > 0 such that the minimizing movement
for the Mumford-Shah functional is unique in [0,T) and it is given by the function u(z,t) satisfying

Su(-,t) =T Vit € {O,T],

and
Oru = Au in (Q\T) x [0,7],
dyu=0 on O(Q\T) x [0,T],
u(z,0) = uo(z) in Q\T.
PRrooF. For fixed § > 0, let vs(¢t) be the affine interpolation of the discrete function
vs: 6N — HY(Q\D)
vs(01) = vsg,

where vs; is inductively defined as follows:
V§,0 = U0,

vs; is the unique solution of (4.4.1)

1
min / |Vz[2 de + = / |z — U57i_1|2 dz.
z€HL(Q\D) Jo\r 6 Jayr

CramM 1. For every T > 0, we have that
Vs — U in L=([0,T]; L°(Q\I') as § — 0,
where v is the solution of
v = Av in (Q\T) x[0,77,
Ov =0 on 9(2\T) x [0,T7], (4.4.2)
v(z,0) = ug(z) in Q\T.
We will show that the functions (vs)s»o are equibounded in C%1([0,77;L°(2\ T')): since it is
well known that, for every T' > 0, vs — v in L®([0,T]; L?>(Q\T)) as § — 0 (see for example [8]), the

a priori estimate in the C%!-norm (via Ascoli-Arzeld Theorem) will give the thesis of Claim 1. First
of all we will show that

18% slloo < |AUGllee V6 >0, Vi €N. (4.4.3)

We first prove it for vs1: if € > |[Augljeo/fF, then v1 :=ug + € and vg := ug — € satisfy:

Avl <PBvr —uw) inQ\T Avy > Bvg —ug) in Q\T
Oyv1 =0 on 9(Q\T), | Qw2 =0 on (2 \T),
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that is v; and vy are a supersolution and a subsolution respectively of the problem solved by v; 5.

This implies that

Au
s — uolleo < 12Ul

B

which is equivalent to
| Av1 slloo < | AUl co-

By the same argument we can prove that
[Avislleo < AV glle VEi22

and so (4.4.3) follows by induction on 4.
By a standard truncation argument, one can prove also that

”’05,1‘“00 < HUO”oo Vo >0, Vi € N (444)

Then for s, t > 0, using Claim 1, we can estimate

t t
05 (2) = v5(5)lloo < / [1(vs)' (E)lloo d€ < / Sup [1AVs,illeo d€ < [|Auglles |t — si;

this, together with (4.4.4) concludes the proof of Claim 1.
As a consequence of (4.4.3), by the well-known Calderon-Zygmund estimates, we get the existence
of a constant C' such that

IVvislloo < CllAv;sllee < CllAuG|oo Vo >0, Vi eN (4.4.5)
It is well known (see, for example, [35]) that
v(t) — ug in L®(Q\T) as t — 07
therefore, by our assumption on ug, for every 0 < ¢ < § we can find 7, > 0 such that

Hellf“ vt (z,t) — v (=, t)] > ¢ Vvt € [0, Ty], (4.4.6)
€z

and therefore, by Claim 1, we can choose &y > 0 such that

Hellf“ lvi (¢, 7) — v5 (¢, z)] > —;— vt € [0, Te], V6 < dp. (4.4.7)
T

We recall now that, by Theorems 4.3.3 and 4.3.8, there exists § such that, for every function g €
W2°(Q\T) satisfying

. - c
IVglleo < ClliAugllos  inflg™(2) =97 (2)| > 3, (4.4.8)

where C is the constant appearing in (4.4.5), and for every 8 > 3, the function ug, solution of
(4.3.4), minimizes the functional Fg , over SBV(Q).

CramM 2. For every § < 6y A (B)~! the §-approximate evolution us(t) (see the end of Section 4.1
for the definition) coincides in the interval [0,7¢] with the function wvs(%).
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Clearly it is enough to show that

T
Vi = U§q fori:O,...,[—c},
) ’ 6
and this can be done by induction on 7: indeed for 7 = 0 the identity is trivial, and suppose it true
for 1 — 1 (for i < [%] ); this means in particular (by (4.4.5) and by (4.4.7)) that g = u;s;_; satisfies
(4.4.8) and so, being % > B, we have
Ua;z' =

U1 = V§.i-
F2Us,i—1 6,0

Claim 2 is proved and the thesis of the theorem is now evident. a







Part 11

Approximation of solutions






Chapter 5

Approximation via singular
perturbations

In the second part of the thesis we deal with the variational approximation of free-discontinuity
problems. The main goal of this chapter is to show that a wide class of singularly perturbed functionals
generates, as I'-limit, a functional related to a free-discontinuity problem and to provide a complete
description of all possible I'-limits.

5.1 The main convergence result in the one-dimensional case

Let fn : [0,+0c0) — [0,400) be a family of continuous non-decreasing functions and let 7, be an
infinitesimal sequence of positive real numbers. For any open bounded subset I R, we define

') dz + 3/ "Pdz if u e W22(]),
poy e | 0D a0 [Pds it e wra -
+00 otherwise in L!(I).

Moreover, given two functions b, g : [0, +c0) — [0, +00), we set

/]g(lu'l) dz+ 3 p(ut —um) ifue SBV(D),
Su

Fig(u) = (5.1.2)

+00 otherwise in L!(1),

where
7 n 99
©(z) := inf inf{/ b(Ju']) dz +/ W' dz - u e W22(0,n),
"7>0 0 0
u(0) =0, u(n) = 2,4/(0) = v/(n) = O} . (5.1.3)
If g is convex and b is convex or concave or convex-concave then we can finally define

/I ([ ds+ 3 1wt —um) + (9°(1) AB°(L)|D%u| ifu € BV(D),
, Sy

Fy,(u) == (5.1.4)

+00 otherwise in L!(I),

115
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where g 1= gAY = [g A (6% +g(0))]** and ¢1 := @Ag™® = sub (¢ Ag™) (g and b0 are the recession
functions of g and b respectively defined in Subsection 1.1.2).

Remark 5.1.1 Note that if g*°(1) = b(1) = +oco then Fy, = Fog(u).

Our main result is stated in the following theorem.

Theorem 5.1.2 Let f, and 7, be as above and satisfying in addition the following hypotheses:
i) there ezists a non-decreasing function g : [0, +00) — [0, +00) such that

Falt) = g(t) Vit € [0,+00); (5.1.5)

ii) there exists a non-decreasing and continuous function b: (0,+00) — (0,+00) such that

4
rofn (—) Sb(t) V> 0. (5.1.6)

Tn
Then o

I-limsup Fy, < Fpg(u),
n—00

with respect to the L'(I)-convergence, where Fy, are the functionals defined in (5.1.1) while Fog
denotes the L' -relazation of the functional Fy g introduced in (5.1.2). If in addition we assume

iii) one of the two following structure conditions holds true:

stl) fn is convez for every n € N;

st2) there exzists a sequence (z5) C (0,+00) such that n — +oo and fn is conver in [0, zp]
and concave in [Tn,+00),

then L
I- lim Fp, = Fp g = Fo g,

n—o0

where Fy, is the functional defined in (5.1.4). Finally, every sequence un such that supn(Fp(un) +
lunll1) < oo is strongly precompact in LP for every p = 1.

Remark 5.1.3 If ii3) holds then g is convex; concerning b, assumption st1) implies that it is in turn
convex while st2) implies that it is either concave or convex-concave. In all these cases the recession
function b0 is well defined. We finally point out that the equality m = Fy 4 stated in the last part
of the theorem is a consequence of Theorem 1.1.3 and of the equality ©® = b° which will be proved in
the sequel (see Lemma 5.1.6).

Remark 5.1.4 If st2) holds with lim sup,_,, £n™n = ¢ > 0, then
b(t) > g® (Nt =gt  Vte(0d] (5.1.7)

so that, in particular, 8°(1) > ¢*(1). Passing to a subsequence, if needed, we can suppose that
lim, T,7, = c; since the functions f, pointwise converge to g and becomes convex in larger and
larger intervals, we have

g¢'(t=) < liminf f;(t—) < limsup f,(t+) < ¢'(t+), (5.1.8)

n—00 n—0o
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for every ¢ > 0. Suppose that g*°(1) # 0, otherwise the statement is trivial and let 3, — +oco such
that ¢'(yx) — 9°°(1). For afixed k and ¢ € (0,1) there exists ny 5 such that z, > i, fu(t) > g9(ys)/2,
and f;,(t) > (1 — 6)g'(yx) for every m > ny 4 , so that, by convexity,

e

fa(t) 2 (gk) + (1 =0)g ()t ~—yr) V€ [y, za] VN > nyp. (5.1.9)

Fix t < ¢; then, by (5.1.9),

e () 2% 1= 09 ) (- yk)»,

n n

for every n > @, where @ > ny 5 is such that y, < t/rp, <z, for every n > 7. Passing to the limit in
n in the above inequality and taking into account (5.1.6) we obtain b(t) > (1 — §)g'(yx)t, from which
(5.1.7) follows letting k tend to infinity and then & tend to zero. With the same proof we see that
st1) implies that b(t) > g*(t) for every ¢t > 0.

Before giving the proof of the theorem we need to state and prove some preparatory lemmas.

Lemma 5.1.5 Suppose that b(t) = Mt for some M >0 and let @ be the function defined in (5.1.3).
Then @(z) = Mz for every z > 0.

PROOF. Fix z >0 and let (v,n) be an admissible pair for problem (5.1.3), then
n noo 7
/ Mlv'}dt+/ ]v"l‘dtz/ M| dt > Mz,
0 0 0

and therefore p(z) > Mz. Let us prove now the reverse inequality. To this aim we construct a
sequence of admissible pairs (v,,n,) by setting 7, := nz and

8(t) if t € [0,1)
un(t):=q2+L(t-1) ifte(l,nz-1)
z—ﬂﬁ—;—_t—) ift € [nz — 1,nz],

where ¢ is a function belonging to C?([0,1]) and satisfying #(0) = #'(0) =0, ¢(1) = ¢'(1) = 1. We
can now estimate

Nn Nn M 1 -9 1
olz) < / M|U;|dt+/ |v;;y2dt=2—/ ¢ di + M2 +21/ 16" dt
0 0 n Jo n nJo

= Mz+0<}->
n

and therefore, letting n — co, we obtain ¢p(z) < Mz. O

Lemma 5.1.6 Let b as in Remark 5.1.3. Then the function ¢ : [0, +00) — [0,4+00) defined in (5.1.3)
is continuous, non-decreasing, subadditive, and ¢°(1) = b°(1).

Proor. The first three properties are easy; let us prove only the last one. We begin with the case

b°(1) = +co0. (5.1.10)
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Claim. For every € > 0 there exists § > 0 with the following property: if z < ¢ and if (n,u) is an
admissible pasr for problem (5.1.3) satisfying

n m 5
/ b(]u'|)dz+/ W2 dz < (1+€)o(2), (5.1.11)
0 0

then |v/| < e in (0,7).
Suppose by contradiction the existence of € > 0 and of a sequence d, | 0 such that, for every
n € N, there exist z, < 6, and (1, u,) which satisfies

Tn n
[ sudo+ [ e < 0+ epten) (5.112)
0 0

and

lunllLeo0,) > €- (5.1.13)

Note that we can suppose 1, > 1 for every n (if needed u, can be extended outside the original interval
as the constant function z,); using Holder’s Inequality we can estimate, for every =,y € (0,7,)

Y Nn
h(a) ~ o)l < [ bl dt < VTl (/O |u;;|2dzs> <oV =4,
T

where C > 0 is independent of n; by the above estimate and by (5.1.13) we can state the existence
of an interval I, C (0,7,) such that |I,| > C’, with C' independent of n, and |uy,| > €/2 in I,. As
a consequence we deduce

/ (| ) dz—i—/ ! |2 dz>/ (|u;1)dxzb(-;-) o4

which is in contradiction with (5.1.12) since ¢(zn), by continuity, tends to 0. The claim is proved.
Given M > 0, thanks to (5.1.10), we can choose ¢ such that b(¢)/t > M for every ¢ € (0,¢]; if 6 > 0
is as in the above Claim, for 0 < z < § we can estimate

(S

(1+e)p(z) > /Onb([u’])cl:CJr/77 [u")? dz
Th(lW']), !
> /0 ] |u'| dz >M/ |u'|dz > Mz,

where (n,u) is an admissible pair satisfying (5.1.11); this concludes the proof when (5.1.10) holds.
Let us suppose now that

b°(1) = C < +co0. (5.1.14)

Fix ¢ > 0 and choose ¢, > 0 such that b(t) < (C + o)t for any t € (0,e,). Consider the sequence
of admissible pairs (n,,v,) constructed in the previous lemma; for n large we have vl lleo < €0 and

therefore
n Mn Mn Mn
/ b(lop]) dt+/ ]UZ[Q dt < (C-I—a)/ lv%]dt—%—/ Iv;{|2 dt
0 0 0 0

= (0+a)z+o(%>.

IN

o(2)
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Letting n — co and o — 0 we obtain

w(z) < Cz Yz > 0. (5.1.15)

Finally, arguing exactly as for the other case, we easily obtain lim inf,_,+ ©(z)/z > C, which concludes
the proof of the lemma. 0O

Lemma 5.1.7 Let (up)nen be a sequence of functions such that sup,, Fi,(up) < 400 and, for a fized
¢ >0, consider the sets Dy, := {z € I : |uj(z)| > ¢/rn}. Then there ezists 7 € N, depending on c,

such that 5 o )
sup,, Fr, (un
< _ e i

IDnI = < b(C) > Tna

for every integer n > 7.
ProOOF. We can estimate

c

Faw) 2 [ oz 25, (—) IDal 2 54D,

Tn

if n is large enough, thanks to (5.1.6). O

Lemma 5.1.8 Suppose that also iii) of Theorem 5.1.2 holds true and let (un) be such that
sup £, (un) < +oo.
n
Then

Tt oo < 2sup Fp(up) + 1, (5.1.16)
n

for n large enough. Moreover, if g # 0, there exists a positive constant C depending only on |I|, g,
and b such that

2
Varu, < C (supFn(un) + 1) , (5.1.17)
n

for n large enough.

PrOOF. Take ¢ = 1 and consider the sets D,, defined in the previous lemma; since they are open,
we can write Dn = |J;2,(ak,b5). Let y be a point of D, ; therefore there exists k& € N such that
y € (ak,bk). By Lemma (5.1.7) and using Holder’s Inequality, we have

@) < b+ [ )

1 anl_ 3 bﬁ 2 >
— 4+ === | ( un | dt
Tn (rn)§ (( ) Aﬁ | l

1

2 1
——sup Fj,(u,) = (2 sup Fr, (uy,) + 1) —

2 n n

Tn

W
[RIE

IN

IN
-+
N\
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so that (5.1.16) is proved. Concerning the second part of the Lemma, we first observe that, by a
translation argument, we can suppose that fn(0) = g(0) = 0 for every n € N. Let g be the last
point such that g(zg) = 0 and define

0 if z € [0, zo),
9(z —=z0) iz > 0;

it is easy to see that § is still convex, §*° = ¢°°, and, taking into account the fact that f, = ¢
uniformly on compact subsets of [0, +co) (the uniformity follows from the pointwise convergence and
from the monotonicity of fy),

V6 € (0,1), VK > 0, 3\ s.t. fn > (1 —4)g in [0, K], Vn > 7. (5.1.18)
Fix 7 > 0 such that §'(7) > g*®(1)/2; set k := 2sup, Fu(un) + 1 and let T be the first point such
that §'(z+)/2 > min{g*> 1)/3 b(1)/(3k)}. Since either 7 =0 or
gE-) g2 b)) ¢ @)
< < A
5 __mln{ T E T (5.1.19)

it is clear that 7 < §. So, by virtue of (5.1.18), (5.1.19), (5.1.8), and (5.1.6), we can find 7 such that
a) fn 2 §(z)/2 in [0,7 + 1],
b) fA((Z + 1)+) > min{g>(1)/3,b(1)/(3k)},

c) fn(k/rn)/(k/rn) = b(k)/(3K),

for every n > ; we define a(t) := §(%)/2 +min{g*°(1)/3,b(1)/(3k)}(t — 7). Exploiting the convexity
of §, we observe that, by (5.1.19) and a),

Na}i

o)< < r) moz+1] (5.1.20)

|

If st1) holds, that is if f, is convex, then, taking into account b) and (5.1.20), we also have
at) < fa@+ D)+ (@41 +)E-T-1) < folt)  VEZTAH1L
Suppose now that st2) holds; by replacing f, with

2o @)+ (rat)? i< T,
fal) = {fn(t) + (rpzn)? it > 2,

if needed, we can assume that f, is strictly convex in [0, z,] (recall that z, is the point appearing in
condition st2)). Arguing as above, we obtain

a(t) < fo(t) Vt € [T+ 1,20 ANK/Tp]- (5.1.21)

Let us denote by v, the first strictly positive point such that fn(ys) = | fnlk/rn)/(k/Tn)lyn; by the
strict convexity assumption we have that 0 < yp, < k/rn. If zp < yn < k/ry, we can first observe
that, by concavity,

£ > Polyn) = 2 (—’i) V€ (@ un), (5.1.22)
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where the last inequality is a consequence of the following one
r k r k )
k Tn k T

where we used again the concavity of f, in (zn,yn). Using (5.1.22) and c) we then have

a(t) < fn(zy) + min {ﬁ;}l, é?%} (t—zp) < folt) in [Zn, yn) (5.1.23)

and therefore

o) < fultm) + 20 (L) =) S 5a)  im by

Tn

If z, < yn = k/7, then either

k
li) 02 25 0k
T

or i
Falt) < o (—) t

In the first case (5.1.17) follows immediately; in the second case we observe that (5.1.22) and therefore
(5.1.23) are still true. Summarizing, we have proved that

at) < falt)  in [0,k/m], (5.1.24)

if z,, < yp; arguing in a similar way, we obtain the same estimate also if Yn < Ty . Using the definition
of a(t) and the fact that T < 7, from (5.1.24) we easily obtain

n{ T W <k + 250y e

from which, recalling the definition of & and (5.1.16), the inequality (5.1.17) immediately follows with

C = (6 +29%°(1)y|7])(min{g™(1)/3,b(1)/3}) .

O

Remark 5.1.9 Let us remark that if u,, — » in L! and sup,, Fr,(uy) < +0o then u, — u in LP for
every p > 1: indeed from (5.1.17) it easily follows that w, is equibounded in L®. As a consequence
we have that in one dimension the functionals F, T'-converge with respect to the L'-norm if and only
if they I'-converge with respect to the LP-norm, for every p > 1.

Lemma 5.1.10 Assume that also condition iii) of Theorem 5.1.2 holds and let (Un)nen C SBV(I)
be such that ryllupllec — 0 as n — co. Then there exists an increasing sequence (V3)ien of positive
convez functions enjoying the following properties:

i) %i(t) T g1 for every t >0 as i — co (we recall that gy is the function appearing in (5.1.4));

1) $°(1) = g°(1) = b°(1) A (1) for every i;
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i4i) passing to a subsequence, still denoted by (un)n, we have that for every i there exists ny such
that
Fallunl) = %i(lunl),

for every n > n;.

PROOF. We can assume that min{g>(1),0°(1)} # 0, otherwise the statement is trivial. We will
distinguish two cases.
Case 1: g (1) > b%(1).

Note that in this case, by Remark 5.1.4, we have that necessarily st2) holds true, with lim, z,7, =
0. We can suppose without loss of generality that f,(0) = g(0) = 0 for every n € N (otherwise
translate). We begin by assuming

g'(04) < b°(1), (5.1.25)

so that, letting Z be the last point such that ¢'(T—) < b°(1) < ¢'(z+) and setting 7 := sup{y > 0:
g(t) < (1)t vt € [0,y]}, we have T < . We make also the following assumption:

V6 € (0,1), VK >0, Insx s.t falt) > (1 —0)g(t) Vi€ [0, K] and Vn > ns k. (5.1.26)

It is clear that we can find &g € (0,1) such that for every 0 < ¢ < dp there holds (1 — §)g>® (1) > b°(1)
and Ts < 7, where T4 is the last point such that (1-0)g'(Zs—) < b0(1) < (1-6)¢'(Ts+). In particular,
for every § < dg, there exists z5 € [Ts,7) satisfying

(1-08)g' (zs) > b°(1). (5.1.27)
Let us choose now a sequence d,, increasing to 4+oo with the following properties:
a) dp > U}l and dn > z, for every n € N, where z, is the point appearing in assumption st2);
b) dprn — 0 so slowly that 7 fa(dn)/b(dnrs) — 1 (this is possible thanks to (5.1.6)).

Setting 8, := fn(dn)/dn, from b) it easily follows that lim,_eo §n = b°(1), so that, passing to a
subsequence if needed and denoting sp := Sp A b%(1), we have that s, is a non-decreasing sequence
converging to 5°(1). Finally, denoting by y the first strictly positive point such that f,(yn) = Sn¥n,
the convergence of s, to b°(1) and of f, to g implies yn — Y. Taking into account all this facts and
recalling (5.1.8), it is now evident that we can find 75 > 0 such that

*) fa(t) 2 (1 - 8)g(t), for every t € [0, 2s],

) fr(zs—) > 8°(1) > sn and 25 < yn,
for every n > Tis. At this point, for k£ > 7is we define the function ¢§ by induction in the following
way:

Yf =[(1 —8)g Askt]™ in [0,dx] and Y§ = 9F(dj) + sjp1(t — dy) in [dj, dja], for j = k.

Recalling that s, increases to b°(1) it is easily seen that Pk is convex with () (1) = b°(1) and
%‘ (1 —¥8)g A b2(1)t]** as k tends to infinity. Defining

£ o L) i1 € 0,24,
fa(t) = {fn(md) + sp(t — z5) otherwise,
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by *) and **), we have

P5() < falt) i [0,dyn]. (5.1.28)

Moreover it turns out

fa(t) < fat)  in[0,y,): (5.1.29)

actually, this is true in [0,2,] by **) and by convexity (since z, — +oo we have that Ty > Un
provided n is large enough). Exploiting the concave or convex-concave structure of fnin [yn,dp] it is
also easy to prove (see Figure 5.1 and the proof of the previous Lemma for the details of the argument)
that

Sa(t) Ssnt < folt)  in [yn, da). (5.1.30)

Combining (5.1.28), (5.1.29), and (5.1.30), we obtain that YF < fn in [0,d,] for every n > &k and S0,

(1-8)8 A

4
5
. v
Sut /s f ' ’
. i
,

," k
Y1) Vs

Y5 Uy 4 diss dy

Figure 5.1: The construction of ¥§ in the case g™ (1) > b9(1).

in particular, fn(luy|) > 9§ (juj|) almost everywhere for n > k. Finally, choosing a sequence d, J 0,
by diagonalization, from the family (wf;n) kn We can extract a subfamily (¢;); having all the required
properties. If g does not satisfy (5.1.26), we can proceed in the following way: let zy be the last point

where g vanishes and define
0 ifz e 0, zg],
gk (z) = { 0, 7]

g(zz-%) if z > zy;

It turns out that gi°(1) = ¢*(1), gx T g as k — oo, and g satisfies (5.1.26). Hence we can repeat
the construction above for every gz and conclude by diagonalization. If g does not satisfy (5.1.25),
then in particular g(t) > b%(1)t for every ¢ > 0 and therefore ¢, = b%(1)¢; moreover there exists 7 € N
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such that f.(0+) > (1 — 8)6%(1) for every n > 7. If (da) and (sn) are as above, for k > 7 we define
¢§ by induction in the following way:
i) = (1 — 6)syt in [0, dy]

and

. 4] . .
$5(t) = Y5 (diay) + (1 ~ i 1) Sktj+1(t = dpag) in [diyj, dgjen] for j > 0.

hY

Arguing as above, it is easy to see that from the family (¢§) ks we can extract by diagonalization a
subfamily satisfying all the requirements.

Case: b%(1) > ¢*°(1). Note that in this case g1 = g. As above it is not restrictive to suppose that
g(0) = f.(0) =0 for every n € N and that g satisfies (5.1.26). At first we choose a sequence dp, | 0
and, as above, a diverging sequence dy satisfying |lugllec < dp for every n € N and

lim G p2(1) > g™ (1).

n—0o0 n

Recalling (5.1.8) we can define for every i € N

ng,; = inf {j EN: >, folt) > (1= 6)g(t) in [0,di], fr(di=) > (1= &)g'(di—),

and fl‘éd—n)— > (1-d:)g'(di—), Vn = j} ’

n

and, for h > 1,

npg = inf {j > nn_r s falt) > (1= ipn)g(t) in [0,dign)y fa(dien—) > (1= 8ipn)g (disn—),

fn(dn)

and i

> (1 = di+n)g (dixn—), V1 2 j} :
We define the function 1); by induction on A in the following way:

o [ =800 e 0.d,
’l/)l(t) : {(1 _ 51)[g(dz) + g/(di—)(t - dl)] ifte (d'u dnl,i]7

and, for h > 1,

Pi(t) = 7/’k(dnh_i) +(1- Sirn)g (dign—)(t — d'nh,i) in (dnh,ﬂdnh—l-l,i};
clearly 9% = ¢*°(1) for every 4 and ; T g as @ = 0. Set, for every h > 0,
(]- - 6i+h)g(t) ifte [07 di+h]7
(1 = 6in)g(disn) + ' (dinn—)(t — ditn)] 11> dign.

First of all, taking into account the definition of nj; and exploiting the structure assumption on f,
exactly as we did before, one can prove that

birn(t) = {

bivn < fu VN Z Mg (5.1.31)
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moreover we have
Vi < Givn 0 [0,dny ] (5.1.32)
The last inequality is an immediate consequence of the foﬂpwing one
$i <(1=divn)g  in [0,diyn],

which can be proved easily by induction on A.
Take n > ng; and let A be such that Nhi <N < Npyy it combining (5.1.31) and (5.1.32) we finally
obtain that 1; < f, in [0,d,]. O

Lemma 5.1.11 Suppose that also (5.1.10) and condition iii) of Theorem 5.1.2 hold and let (up)pen C
W?22(I) be such that sup,, Fn(un) < +oo. Then, for every 6 > 0, there exists a sequence (vy)peny C
SBV(I) such that |lup —vpfli = 0, mallvhllee = 0 as n— oo, [v)| < |ul)| everywhere, and

Falun) > (1=68) > olvi(z) — vy (2)),

CL'ES'UW,
for n sufficiently large.

PROOF. By Lemma 5.1.8 there exists K > 0 such that

rlluplleo < K; (5.1.33)
for every 0 < s < K we define
t
wn(8) == sup |rnfn <—~> - b(t)l. (5.1.34)
tels, K] Tn

Recalling that if a family of monotone functions pointwise converges to a continuous function, then
the convergence is actually uniform on compact subsets, by (5.1.6) we have that w, — 0 pointwise.
As a first step we choose a sequence (c,), of positive real numbers converging to 0 so slowly that:

a) Tns —+ 0 as n — o0;
(cn)?
b) lim <) _ g

n—oo b(cy)

We set Dy == {z € I : |uy| > cp/rn} = Upe; IE, where (IF) is the collection of the connected
components of Dy ; we also denote I¥ = (af,bf). Arguing as in Lemma 5.1.8 and taking into account
condition b), we obtain

|Dn| < (W) - (5.1.35)

for n large enough. For every n € N we define

- o un(x) ifxEI\Dn:
i) = {unwﬁ) if 7 € (az, br);
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clearly @, € L(I) N SBV(I). Moreover we set Wy := Un — Un; since wj, = up, and wy = u, on Dy,
we have

NOW / Fallwh]) do + () / fw!|? ds;

summing over k and setting Z,(z) := wn(rpz) we therefore obtain

> ([, s s [ )
s(frERE) = LREE)] «)
%3( /Ik fn (—l%l) dy+/k IZ”IQdy) (5.1.36)

Fn(um Dn) =

i

By (5.1.33) we have

cn <z < K in Dy /7n; (5.1.37)

moreover, we can prove that for every ¢ > 0, there exists @ such that rpfp (;’i—) > (1 —6)b(¢t) for
every t € [cn, K] and for every n > 7 and thus, by (5.1.37),

Tnfn (%") 2 ,(1 — )b (127,1,1) in Dp/rn. (5.1.38)

Indeed, by condition b), for every § > 0 we can find 7 such that wn(cn) < 0b(cn) for every n > 7, so
that, recalling (5.1.34),

Tnfn <;—> > b(t) — wn(cn) > b(t) — db(cn) > (1 —06)b(t) Vit € [cn, K],

where we used the monotonicity of b. Let us define the functions z, as

Zn () if £ € (I\ Dn)/rn,
w(®) =) 50 - 7, (&) (z- %) i z/rm.
By (5.1.36) and (5.1.38), by using the fact that |z;,| < |Z;| everywhere and the monotonicity of b, we
have
Fa(un, D) 2 (1-6)) (/ AEA) dy+/k ,~~,2dy)
k ™ T
> 1-9Y ( [ D du+ [, lz;:l%zy)
k T Tn
> (1—5)Z¢< (i )D (1-¢ Z¢ (B5) — v (bF)) = (%), (5.1.39)
k n
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where v (z) := up(z) — 2,(z/ry). Using the definition of z,, it is easy to check that

. (m):{un(x) ifz eI\ D,
" (a5) + up(af)(z —a) if z € (ak,bE)

and to see that (¥x) = (1 — §) ZzESvn (v (z) — vy, (z)), which, combined with (5.1.39), gives the
thesis of the lemma, once we have shown that

lon —uplli =0 as n — oo. (5.1.40)

If t € I¥, by Hélder’s Inequality, we have

/Ivn(s —ulh [ds</ / lun (2)| dz
(/ ! |2dz> /Z(s—ag)%ds

TL

- 3( |2dz) - ab)t,

[Un(t) — un(2)]

IA

IA

therefore, integrating on IZ,

/[vn — uy ()| dt < —%(/ |u! ~2dz) _rkl%;

using (5.1.35), we can conclude

ol

1
4 2
lun —vnll1 < “g (/ ]u "?dz) }IA!
1 3
4 ( 3/ 12 )2 k5|
< (ra)® [ 1l dz i
15(r)% \ 0 b, %
4(Supn F?’L(’U'n))% ]D [% < 4(\/5)5(Supn Fn(un))3 Tn .
niT = )
15(rn) 2 15 (blea))?
recalling condition a) and (5.1.10), we finally get (5.1.40). ]

Lemma 5.1.12 Let g : [0,00) — [0,00) be a convez superlinear function and let u € SBV(I) be
such that [; g(|u'|)dz + H°(Sy) < 4oo. Then there emists a sequence (u,) € SBV(I) such that
Sup C Su, un € W22(I\'S,), ul(t£) =0 on Sy, un — u in L®(I), uF(t) — u*(t) on Sy, and
Jr9(lunl) dz — f;g(ju']) dz.

Proor. Let I = (a,b) and Sy = {z1,...,zy} with z; < z;41 and set zg = a and zy,.1 = b. We
can construct a family (gx) of strictly convex and superlinear functions belonging to C?([0, +o0)) and
satisfying

k(1)

! _ i RN
9x(0) =0, gk + 9, and  lim_ ) I
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For every k € N and for every i € {0,...,N} let ui‘ ; be the solution of the minimum problem

min{/gk(lvll) dz +j/]v —ufdz:ve Wl’l(mi,mi+1)} ;
I 1

note that the existence of such a solution is guaranteed by the convexity and the superlinearity of gi;

moreover uf ; is a classical solution to the Euler equation A} (w')w” = j(w — u) with the Neumann

conditions w’(:z:z) = w'(zi+1) = 0, where hy is the function in C?*(R) obtained by reflection of

gr. Therefore, taking into account the regularity and strict convexity assumptions on gy and the

fact that u € C([z;,ziy1]), we get uf’j € C?([z;,zi41]), so that, denoting by u;“ the function in

SBV(I) which coincides with ui‘ ; on (zi,z541), we clearly have that the family (uf) ; satisfies all the
required conditions except for the last one. Indeed, by construction, we know only [; gx(| (u;?)’ ) dz L

[7 95 ([u']) dz, but recalling that [, gx(|u']) dz LA [; 9(Ju']) dz, the desired approximating sequence can
be obtained by diagonalization. a

We finally state a Lemma which will be useful in the sequel.

Lemma 5.1.13 Denote by A(Q) the family of all open subsets of Q and let v : A(Q) — [0, +00) be
o superadditive set-function. Let )\ be a positive measure on Q and let (;); a family of positive Borel
functions such that v(A) > [, ¥idX for all A€ A(Q) and for all i € N. Then v(A) > [, sup; i dX,
for all A€ A(Q).

PROOF. See Proposition 1.16 of [14]. O

PROOF OF THEOREM 5.1.2: the case b%(1) = +o0.
e ['-limsup Inequality

Let us set for notational convenience F”' := I'-limsup,, F,. We first remark that it is enough to show
that F"(u) < [;g(jv/)) dz + Xg, @(u™ —u7) for every u € SBV(I) with HO(S,) < +oo, indeed,
once we have this inequality, the thesis follows from the semicontinuity of F” and the fact that ?b,g
coincides with the relaxed functional of

/g(|u'|) dz + Z:go(u+ —u”) ifu € SBV(I) and H(S,) < +oo.
H{u) := /1 S,

+00 otherwise

Claim 1. Let u € SBV(I) such that H%(S,) < 400, u € W2*(I\ 8,), F(u) < +o0, and v'(t£) =0
for every t € S,. Then

"(u ! ut —u7).
F()s/lg<|u|>dx+/§\juso< )

Since the construction is local, we may assume that S, = {¢} and u(t+) = v*(%).
Fix 6 > 0 and choose an admissible pair (7,v) for problem (5.1.3) (with z = u*(f) — u™ (%))
satisfying:

/n b(|v']) dz + /n W2 dz < p(ut(E) — u™(E) + 6.
0 0
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We define the recovery sequence in the following way:

u(z) ifz<t

t - - -
> +u(t) ifze(tt+ryn)
Tn

w(z —rpn) +ut (@) iz >T4+ .

Clearly 1, — u in L'. We can now compute

T4
Fn(un) = Fn(un,f\(f,f—l—rnn))+/{+ nfn (-1—

Tn

2

tran g r—1
+ 3/ v < ) dz
Sl S s
Iy K I'UII K 12
0 n 0

1
(*)n

Since

n

e () s s in et il 20h ran () g () b,

by the Dominated Convergence Theorem and the fact that

lim Tnfn <M> dr = lim {z € I: [v'(z)] # 0}rnfn(0) =0,
0 J{zel: v ()]0} T'n oo

we have . .
lim sup (%), g/ b(|[v']) dz +/ [v"|?dz  as n — oco;
0 0

n—eco

moreover, again by the Dominated Convergence Theorem, we easily see that
lm Fy(uny I\ (5,7 + ram)) = /g(lu’])dm.
n—oco I

From (5.1.41), we therefore obtain

limsup Fy, (un) < /Ig(lu’l)dach/Onb(lv’])dz+/0n v |2 da:

n—0oo
< [ owhds+ ot @ - @) +5
I
By the arbitrariness of ¢, Claim 1 is proved. By a standard density argument based on the use of
Lemma 5.1.12 we recover the same inequality for every u € SBV (I) with #°(S,) < 4+oc0 and this

concludes the proof of the I'-lim sup inequality, as we remarked above.

e ['-liminf Inequality
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We are supposing that the structure condition 72t ;) holds so that g is convex and b is convex or concave
or convex-concave; the functional F} ; is then well defined and, by Theorem 1.1.3, coincides with Fog g
We distinguish two cases.
Case 1: g®°(1) = +o0 i.e. g is superlinear.

Note that in this case Fj,(u) is finite only if v € SBV(I) and for such u we have

u) = W) dz ut —u).
F () /Igu )d +§so< )

Let u, — u in L' and such that sup,, Fy,(u,) < 400, let (vg)n be the sequence constructed in Lemma
5.1.11 and (¢;); the associated family of convex superlinear functions according to Lemma 5.1.10. For
§ and p € (0,1), and for every open subset J C I, by Lemmas 5.1.11 and 5.1.10, we have, for n
sufficiently large,

Falunsd) = (1=9) [ falltda 0 [ [ Bt as + @ o) [ |u;;12dx]
(1= 0) [l dz 80— 3 otk =2, (5.1.42)

TESy

v

Therefore, by the Ambrosio Semicontinuity Theorem (recall also Lemma 5.1.6), we obtain that u €
SBV(I) and

lim inf Fy, (up, J) > (1 = 0) /J@bi(lu'])cll:-HS(l —u) Z out —u") Vi,

n—>00
iBESu

letting 7 T co and p | 0, we obtain

(P-lim inf F,) (u, J) > 1—5)/ (W' dz+5 Y o

n—co
l’ESu

= / KO(z)dX ¥ open J C I, V6 € (0,1), (5.1.43)
J

where we have set A := g(|u/|)L! + o(ut — u")H® and A := (1—4) (1 - xs,) + 0xs, . Let on bea
dense sequence in (0,1); since sup; h% = 1, from (5.1.43) we finally deduce

(T-liminf Fy,)(u) > /Suph5 dr = / (ju']) dz + Z

00 €S,
z

where we applied Lemma 5.1.13 (with v := (I-liminfy, 00 F)(u, ) ).

Case 2: g™(1) < +oo. Let v, be as above: according to Lemma 5.1.10, construct a family (1;); of
convex functions such that ¢ (1) = g>°(1) for every i € N, ¢; T g as i = oo, and 9;(|vy|) < fa(lvp))
for every ¢ and for n sufficiently large. Therefore, by using Lemma 5.1.11, we can write

Fo(tun,I) = Fp(un,Dn) + Fy(un, I\ Dp)

(1-9) ( / il do + Y so(v;{—v;)) - /D il do;  (5.1.44)

IES-un

v
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using the inequality ¥;(¢) < g(0) + ¢g*°(1)t, true for every ¢ > 0, and recalling (5.1.35) and the fact
that lim, b(c,)/cn = 400, we can estimate

[, s = (2) 1Dul < (s0) + g2 ) (2208 Tnla)) o _ o

"n

hence, invoking the Relaxation Theorem 1.1.3, from (5.1.44), we get

—r 00

lim inf B, (un) > (1 - 0) (/I Gl dz + 3 (pAg™) (ut — u”) + gm(l)[pcm) .
Sy

Letting ¢ T +co and ¢ | 0 we complete the proof of the I'-lim inf inequality.
Concerning the last part of the theorem, we first observe that, thanks to (5.1.17) the approximating
functionals are equicoercive: the conclusion then follows from Remark 5.1.9. o

To treat the case

we need first the following lemma.

Lemma 5.1.14 Let b be satisfy (5.1.14), and, for every 6 > 0, let ¢ : (0,00) — (0,00) be the
function defined by

7 1 '
@ (2) := inf inf{/ b(|u|) dz +/ [ |2 da: w e W0, ),
n>0 0 0 :

Then the following properties hold true:
i) lims_,o+ 0% (2) = (2), uniformly in [k, +o0), for every k > 0;
ii) for every € € (0,1), there exists § such that ¢°(2) > (1 — €)p(z) for every § <3 and for every
z>0.
PROOF. Fix k > 0 and let ¢ € C*([0,1]) be such that ¢(0) = ¢'(0) = 0 and ¢(1) = (1) = 1.
Moreover choose 0 < ¢ < k such that

1
/01 b(5|¢’{)d$+62/0 16" dz < Z, (5.1.45)

for every § < 4. Fix now 6 € (0,68) and for a given z > k set 2/ := z — 2§ and take (v,n), admissible
pair for the minimum problem defining ¢(2') such that

/077 b([v'|) dz + /077 "2 dz < (') + -;— < o(z) + 3 (5.1.46)

We now define 7 :=n+2 and ¥ € W2(0,7) by

5 —66(1 1) ift eo,1),
O(t):==quv(t—1)+0d iftel,n+1),
z2—=0+0¢(t—n—1) iften+1,7.
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It is clear that (7,7) is an admissible pair for the minimum problem defining ©%(z), so that we have

7 7l
/ b(|%']) dz + / 0" |? dx
0 0

= 2(/01 b(8|¢'|) dz + 6° /Oligb"ﬁda;) —I—/Dnb(|'u’|)d:n+/0n |v"|? da

< (z) +¢, ‘ (5.1.47)

0’ (2)

IN

where the last inequality follows from (5.1.45) and (5.1.46). Let now (v,7n) be an admissible pair for
©(z) satisfying

7 7 2 g €
/ b(]v'])d:n+/ W*dz < (z)+—2—. (5.1.48)
0 0
We now define 7 :=n+2 and 7 by
5o(t) ift€[0,1),
(t) =< wv(t—1)+0 ifte[l,n+1),

z+20—d0p(n—t) iften+1,7).

As above, we have

I

o(2) MvH®§A%W%M+A”MWw

. ! ! 2 ! 112 1:) K / 771)112
- 2(/0 b(5)¢>])d:n+6/0|¢] d +/0 b(lvi)d:z:+/0| 2 dz

< @(2) +e,

thanks to (5.1.45) and (5.1.48); recalling (5.1.47), 4) is proved.
For the last part we suppose by contradiction that there exist £ € (0,1), a sequence dn | 0, and
sequence T, such that

0O (z5) < (1= €)o(zn), (5.1.49)
for every n € N. Testing with the pair (v(t) := 0t,z/d), we easily obtain
W0 (2) < ?%6—)—2' <C'2 Vi<l  (5.1.50)

Taking into account i) we see that (5.1.49) and (5.1.50) imply
Zp — 0 and @ () = 0. (5.1.51)

Let (vp,nn) be an admissible pair for the minimum problem defining % (z,,) such that
N Tn
[" oo+ [ bR de <o) + (67 @) (5.1.52)
0 0
arguing as in the proof of Lemma 5.1.6 we deduce that |lvp,llcc — 0. Choose o > 0 such that

b(t) > (1 - —Z—) Ct Vt<o (5.1.53)
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and let @ be such that ||v/]|cc < o for every n > 7. Then, using (5.1.52), (5.1.53), (5.1.50), (5.1.51)
and recalling that ¢(z) < Cz for every z > 0 (see (5.1.15)), we estimate

Tin £
Pran) 2 [ bl de = (6 ) 2 (1 5) Can (O
3 3
2> (1 - zl‘f':) Czpn 2 (1 - ZE> o(zn),
for n large enough, a contradiction with (5.1.49). |

We are now in a position to conclude the proof of Theorem 5.1.2.
PROOF OF THEOREM 5.1.2: the case b°(1) < +o0.

The I'-limsup inequality can be proved as in the other case. So suppose that the structure
condition 11) appearing in the statement of the theorem holds so that Fj ; is well defined and coincides
with F 4. We may also suppose that g # 0, otherwise the I'-liminf inequality is trivial. Let e, — 0
and u., — v in L' and such that 3lim,_e0 Fr, (te,) < +00. Choose now an infinitesimal sequence
¢, with the same properties as in the proof of Lemma 5.1.11; set

oo co
D, = {:1: el: |u, |> ——C-n——*} = U(aﬁ,b’;) = U I;
k=1

r(en) e

and define

oo (3) = {usn(x) ifzelI\ Dy

Ue, (af) iz € (af, bF)

Finally set we, = ue, — ve, and z., (z) := we,(r(en)z). For fixed § € (0,1), with exactly the same
arguments of Lemma 5.1.11, we obtain

a-aX ([ sbaet [l P
It/ (r(en)) I3/ (r(en))

Fen(ustn) >
k
n n
> (1—5)Zi2ginf{/ b([z'])d:c+/ |2 dz .z € W>2(0,n),
1 0 0
k

2(0) = 0, 2(n) = we, (B)], 2(0) = £/() = }

= (1-8)Y o (jwe, (BE))) = (1=0) > o (v, —vz), (5.1.54)

k Svep

for n large enough, where ¢° is the function defined in Lemma 5.1.14 (with § = ¢, ). Using i) of
Lemma 5.1.14, from (5.1.54) we deduce

an (Ustn) > (1 - 5)2 Z ‘P('U;; - 'Ue—n)v
Sue,,
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for n large enough. Combining the estimate above with Lemma 5.1.10, we therefore obtain (passing
to a subsequence, if needed),

Fep(ue,) > (1-4)? o il ) dz + > e(vf —vz)
n S

Vep

= (1-4)? /i gi(lol Nde+ > plod, —v2) |, (5.1.55)
Sue,,

where, according to Lemma 5.1.10, 1; is convex, ¥°(1) = g®(1) Ab8%(1) and v; T g1 as i — oo.
Since, by Lemma 5.1.8, we have sup,, Varv,, < sup, Varue, < +oo, Rellich’s Theorem implies that
Ve, 1 precompact in L' and since v, — u in measure (recall that |D,| — 0), we get v,, — v in
L'. Applying Theorem 1.1.3 (recall that 5°(1) = ¢9(1), by virtue of Lemma 5.1.6), from (5.1.55) we
deduce

lmint 7., (ue,) > (1 - ) ( [ Dz + P (et =) + (0(0) A b°<1>>»D°ui> ;
Su

=00

letting ¢ T +o0 and 6 } 0 we finally obtain the desired I'-lim inf inequality. O

Remark 5.1.15 Looking carefully at the proof we see that the structure assumption 444) of Theorem
5.1.2 can be slightly weakened without changing the result; more precisely it is sufficient to suppose
that there exists a family (gﬁ)nk of positive continuous non-decreasing functions enjoying the following
properties:

i) fn > gk for very n, k € N;
ii) for every k € N the family (gk), satisfies either st1) or st2);
iii) gk(t) = g*(t) for every t > 0 and rngl(t/rn) — b*(t) for every t > 0, as n — oo, with ¢* and

b* satisfying
@ty and (%)°(1) +8°(1) as k — oo.

Indeed call Gﬁ the functional associated with gﬁ; then, for every k£ € N, by Theorem 5.1.2 we have

[-liminf 7, > T- lim GE = Fy g,

n—0o0

where Fyr v T Fpy as k — oo.

We want now to show that if g : [0, +00) — [0, +00) is any superlinear non-decreasing convex function
and b : [0,+00) — [0,+00) is an arbitrary concave function with #°(1) = +oo, then Fj, can be
reached by functionals of the form (5.1.1).

Theorem 5.1.16 Let g : [0,+00) — [0,+0c0) be non-decreasing, convez, and superlinear (g™ (1) =
+00) and let b: [0,+00) — [0,+00) be non-decreasing and concave with b(0) =0 and b°(1) = +o0.
Then there ezists a family (f.) of positive, continuous, and non-decreasing functions such that the
functionals

F /fe([u'])d:c+63/|u"i2da: if u € W22(I);
g = I I

+00 otherwise in L*(I),
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I'-converge with respect to the L*-metric to Fyg, as € =07

The theorem is an immediate consequence of Theorem 5.1.2 and of the following proposition which is
proved in [31] (see Lemmas 6.6 and 6.7).

Proposition 5.1.17 Let g and b be as in the previous theorem. Then the functions f. defined by

fe(t) = mm {g(s) -+ %b(s(t —3)):s¢€ [O,t]} ,

are continuous, non-decreasing and satisfy the following properties:
i) fe(t) — g(t) for every t > 0;
ii) ef(t/e) — b(t) for every t > 0;

i1) setting z. :=sup{z > 0: f.(z) = g(z)}, there holds that f. = g in [0,2.] and f. is concave in
[Te, +00); moreover z, — +00 as € — 0.

We conclude this subsection with some considerations on the asymptotic behaviour of the function ¢
defined in (5.1.3).

3 2+

Proposition 5.1.18 ) Let b(t) = ct? with ¢ >0 and p € [0,1). Then ¢(z) = m(p)cT™r 27+ , where

S

_3

m(p) := min Kl—f—pf{% + (1%]3) %J (/01 fu”}%t)ﬁ (/01 [v’lpdt) .

v e W?(0,1), v(0) =0, v(1) =1, v/(0) = /(1) =0 5. (5.1.56)

i) Let b : [0, 4+00) — [0,+00) be concave with b°(1) % 0. Then the function ¢ defined in (5.1.3)
satisfies the growth condition

Civz—1)<p(z) < Coz+1) V220, (5.1.57)
for suitable Cy, Cy > 0.

i1) For every v € [1/2,1) there ezists a concave Junction b satisfying the hypotheses of Theorem
5.1.16 such that the associated ¢ satisfies

im 2% oo and im 2@y veso (5.1.58)

z-r+oo 27 z—+oo ZY+E

PROOF. i): For notational convenience we set

Snz = {u € W>2(0,7) : u(0) =0, u(n) =z, u'(0) =u'(n) =0};
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then, noting that for every v € Sy, Wwe can write v() = w(-/n) with w € S1,, we can use the
definition of ¢ to compute

¢(z) = inf inf (/ v/ |Pdt+/ |v”|2dt>
N vESy,x
U £\ 2

= inf mf( w' —) clt—!—/ — w" (*—)‘ clt)

UJGSlz 0 77 77

(cnl p/ lw'|P ds-l--—/ |lw'|? ds)
1_.p ’14:17 1 ZE—P

= inf ( ) (————) (/ !w"l2 ds) (/ |w"pds>

wESY, . 3 0

=n N5/ = /o =

— ( ) 7 (1——5‘3> : (/ Iw"12d3> i (/ |w'1pd5> a2

wES1,1 3 0 0

3
= m(p)cTrzis

= inf Inf
wESlz yi

ﬁl

Tt is clear also from the computations above that there exists an optimal pair (n,v) for the problem
defining ¢: let v be a solution of problem (5.1.56), then, setting

— {C?(—;%p—)}ﬁ (%)ﬁ A% and w(t) =z (%) , (5.1.59)

we have that (n,w) is an optimal pair.
i3): Under our assumptions there exists C > 0 such that b(t) < C(1 +1t) for every t > 0. Take
(n,v) such that v € Sy, v is non-decreasing and

7
On+/ W2 dz = m(0)C¥4/Z -
0

this is possible thanks to the previous point. Then
7 n
z) < C/ [v'| dz + Cn +/ WP dz = Cz +m(0)C¥/*z < C'(1+ 2).
0 0

Concerning the other inequality, since, under our hypotheses, there exist o, § > 0 such that b(t) >
at A B, it will be enough to prove the following claim.
Claim. Let b(t) = ot A 8 with a, § > 0. Then

lim ——i(——z)—— =
=0 m(0) B4z

First of all, since b(¢) < 8, by comparison and by the previous point we immediately obtain

() < m(0)8¥*/z. (5.1.60)

Let z, T +oo and let (7, 2,) be an admissible pair for ©(z,) such that v, is non-decreasing and

Tn Mn
/ (ajvl,| A B) dz + / lun"? dz < p(zn) + 1. (5.1.61)
0 0
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Let o, € (0,1) be such that f{zEI:]v’ 1<g/a} 1Vl dz = 0n2,; since, by (5.1.60) and (5.1.61),

m(o))163/4\/—2;+ 1> / n(alvfmf AB)dz > / Q'UH dz = aopzn,

7
0 {zel: vy |<B/a}

it follows that o, — 0. Consider the sets D,, := {zel:|v|>pB/a)= U2, I¥, where (%), is the
collection of the connected components of D,,. We denote also IF := (o, b5). Let @ € C?([0,1]) be
such that @(0) = @'(0) =0, ®(1) =1, and (1) = 8/a and, for every t € [1,1 + |D,]|] set

k in(t)—1
in(t) :—min{k: Zu,{;zt—l} () =t—-1- Y |H].

j=1 j=1
We can now define the new sequence of admissible pairs (finyn) by fn = |Dp| + 2 and %, (t) =
fot ;,(s) ds, where
d'(s) if s € [0, 1],
Ty = S (a4 (e)) i s € [1,7, — 1),
(7, — 5) if's € [fn — 1, 7).

Note that ¥, is constructed by gluing together the pieces of v, defined on the sets I%; since vl (ak) =
v'(bE) = B/a for every k, we have Up € W22(0,%y,). Therefore o, € Siinzn With 2, := (1 — 0,)z, + 2
and, since by construction

7 1 1
/ (alv{ll/\ﬂ)daz+/ ]un”;%:ﬁﬁﬁﬁ ﬂ;{izdczz—2</ [<I>’|d:c+/ l@”}Qd:z:),
Dy Dy : 0 0 0

recalling (5.1.61) and 4) we can estimate

i 2 ' / ' "2
o(zp)+1 > ﬂnn-{—/(; {vn]“d$w2</o )@ldx+/o |D"] cla:)
. . K ~112 ! / ! "2
> Tl}I;%glﬂl’lfn (ﬁn—}—/o || d:c)—Q(/O |@]d$+/0 |2 da;)
= m(0)B¥* /(1= op)zn +2 2 (/lfé'[dx+/1|i>”[2dx),
0 0

whence, taking into account that o, — 0,

L ¢(z)
S\t S
e O
which combined with (5.1.60), gives the thesis of the claim.
i1): For simplicity we treat in details only the case v = 1/2. We take b(t) := 1+ log(1 + t) for
t>0 and 5(0) = 0. Fix p € (0,1) and take (n,w) with w € Sp,- and satisfying

1,

n 7 o .
/ |w'? dz +/ lw" | de = m(p)zﬁ and 7 < c(p)z?:f? :
0 0

this is possible by virtue of i) (see (5.1.59)). Then, since b(t)

IN

1+ tP we have

A‘:’
|

¢(z) < (m(p) + c(p))z+>; (5.1.62)
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since as p varies in (0,1) the exponent (2 —p)/(4—p) varies in (1/2,1), from (5.1.62) we deduce that

. p(z)  _
z»lgxi—loo 2(1/2)+5 =0 ve > 0.

Now take two positive sequences (o) and (Bn) with Bn — +oo such that b(t) > bp(t) = ant A Bn,
for every t > 0 and for every n € N. Calling ¢, the function associated with by, by the claim proved
above, we have e

: . f (Z) : T ’I"L( ) 3/4
f I 2> RS m(0
1zllll 11001 \/.. 21111100 \/E ( ) n o

for every n € N; letting n — oo we eventually complete the proof of (5.1.58). If v is any number in
(1/2,1), take b(t) = t?log(1 +t), where p is such that v = (2 — p)/(4 — p), and argue as above. U

5.2 Some applications

In this subsection we are going to apply the results of the previous one to study the singular pertur-
bations of the one-dimensional functionals of the form

Gelw) = 1 [ S 1) da,

where g > 1. More precisely, given a positive function p(e) such that lim._,o+ p(e) =0, we set

é / FEVl]) da + (p(e))? / WP dz i u e WD),
I I
+00 otherwise in L*(I),

Fe(u) = (5.2.1)

and we aim to classify all the possible I'-limits generated by the family (F.) depending on the asymp-
totic behaviour of the “rescaling” function p. Let us begin with the case ¢ > 1. Let f :[0,400) —
[0, +00) be non-decreasing, continuous, and satisfying the following properties:

H1) f is concave in (z1,+00) for some 1 > 0;

H2) lim -fl?:a>0,withq>1;

z—0t T

z
H3) lim f(=z) = 0.
r—4+o0 T
We will show that there exists a unique (up to asymptotic equivalence) rescaling function r(e) which
generates non-trivial (i.e. non-zero) “free-discontinuity” functionals. Setting h(z) := f(z)/z, such a
rescaling function is defined as:

El/q
r(e) = et (5.2.2)

where ¢ is the exponent appearing in H2) while ¢’ denotes its Lebesgue conjugate exponent satisfying
1/q+1/¢ =1.
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Remark 5.2.1 Note that, for ¢ small enough, r is well defined, indeed, being f concave at infinity
and sublinear, A becomes decreasing for = large enough. Moreover

lim Yon lim A7 (/&) = +co
n—oo T(sn) n—00

since h [0 as z — +o0o.

Our main result is the following theorem.

Theorem 5.2.2 Let I C R be a bounded interval and let f:[0,400) = [0, +c0) be a non-decreasing
continuous function satisfying hypotheses H1), H2), and H3) and p(c) be a positive function such that
lim,_,o+ p(e) = 0. Finally let (e4)nen be an infinitesimal sequence such that

. /a
f (5
PEn) 090 and 3 lim —(*7"(—@2

n-—co T(En) n—-+00 ¥ (i,(i:;)

=:b(t) V>0 (5.2.3)

If b°(1) = 4co then the functionals F, (defined in (5.2.1)) T'-converge with respect to the L' -metric
to

a | |[u]%dx @ (ut(z) — u (2 ifue SBV(I),
o 1wl +x:;3uso (w* (@) ~u~(s) ifueSBV() .

400 otherwise in L'(I);
where (@ is defined by (5.1.3) with b (t) := ab(t/a) instead of b(t).
Conversely, if b°(1) = C' < +o0, then D-limp oo Fe,, = F with F given by
/g(]u'[) dz+ > o (ut(z) —u(2)) + C|D%| ifue BV (I),
I
F(u) = €5 (5.2.5)
+oo if v € LY(I)\ BV(I),

where g := (azi A Cz)** while o9 is as above. Moreover, in both cases, every sequence w, such that
supy, (Fn(un) + llunll1) < +co is strongly precompact in LP for every p > 1.

An easy consequence of the theorem is the fact that, up to asymptotic equivalence, the function r
defined in (5.2.2) is the unique nontrivial rescaling function; this is made precise by the following
Corollary whose easy proof is left to the reader (see [4]).

Corollary 5.2.3 Let I, f, and r be as in Theorem 5.1.2. Let (en)neN and (ap)nen be two sequences
converging to 0 and, for every n, set

o et o+ @ [t ipuewee,
nJI 1
+o0 otherwise in L*(I).

Fp(u) =

If limy, oo an /T (en) = 0, then ['-limy, o0 Fr, = 0 with respect to the L1 -metric; if limp o0 an /7(en) =
+00, then the functionals F, T -converge to

) a/jlu']qd:ﬂ if ue Wha(r),

+00 otherwise in L(I).
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Remark 5.2.4 Since f is concave for z large, from the previous remark and from the definition

(5.2.3), it follows that b(-) is in turn concave. Moreover, again by the sublinearity and the concavity
assumption we get the existence of zp > T1 such that

fla+b) < fla)+f(b)  Va,b>z2; (5.2.6)
if f is unbounded, we deduce
: flez) . F((t1+ Dz
bt) < limsup ey S EEIPT ()
< 13‘1?;135;1;5 (_[E]_:%Ji@ =[t]+ 1, (5.2.7)

where [t] denotes the integer part of ; if f is bounded we get trivially b(t) = 1. Finally, since
b(1) = 1, taking into account the concavity it turns out that b(t) > 0 for any ¢ > 0.

PROOF OF THEOREM 5.2.2. Setting 7, := p(en) and fn(t) == E%f (s,ll/qt> , by H2) we get immediately

1/
that f,(t) — at? for every t > 0; moreover, using the identity f ") = rlen) | which follows easily
y 3 ’[‘(En) En

from the definition of r (see (5.2.2)), for ¢ > 0 it turns out

Enl/q T(En) .
L\ _ plen) r(en) 5711/q r(en), | _ p(en) ! (T(En) P(En)t) n—qo 1Y\ _ )
i (50) = e (r(m p(snf) e p(zm) (2) =000, 629

where we used (5.2.3). By the first part of Theorem 5.1.2 we therefore obtain the I'-limsup inequality.
Concerning the other inequality, by Theorem 5.1.2 and Remark 5.1.15, it will be proved if for every
§> 0 we are able to construct a family of functions (f9) such that fr > f3, £¢ satisfies the structure
condition st2) and finally

t
Fo(t) = (1= 8)at? ¥t >0 and ot (7) — b (1) Yt > 0. (5.2.9)
n
Tt is also clear that if we exhibit a function f § yerifying
a) f 2/,
§
b) tim - = (1 - §)a,
t—0+ 4
)
9 Am T = b

d) there exists T such that #9 is convex in [0,Z] and concave in [z, +00),

then the family f3(t) == == F9(e/%4) -enjoys all the required conditions. Therefore it remains only to
construct such a f%. By assumption we know that there exist ' < o such that f(¢) > (1 —d)at?
for every t € [0,2'] and f is concave in [z",400). Define a(t) = (1 - 5)a(i,2qt, g := [min{(l -
§atd, a(t)}]™, and finally

g(t) ift <z,
F@E) +g(@") = f&") ift>a";
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1t is easy to see that f9 satisfies all conditions a),..., d) (see Figure 5.2). Finally the equicoerciveness

of the family (£,) follows again from Theorem 5.1.2. O
; s
a(1-8)x %/
E aft) ': f5

Figure 5.2: The construction of f9.

An easy consequence of Theorem 5.2.2 is the following compactness result.

Theorem 5.2.5 Let I, f, and r as above and consider the Jamily of functionals F, defined in (5.2.1)
with p(e) satisfying 0 < liminf, 4+ f—% < limsup,_,q+ % < +oo. Then, for every infinitesimal
sequence (e,)n , there ezist a subsequence, still denoted by (€n)n and a concave, non-decreasing function
b such that 3 -lim, F, = F with respect to the L -convergence, where F is either as in (5.2.4) or

as in (5.2.5).

PrOOF. It is sufficient to extract a subsequence such that (5.2.3) holds and then to apply Theorem
5.2.2. The existence of such a subsequence is an easy consequence of Helly’s Theorem. O

Proposition 5.2.6 Let f be a function satisfying the hypotheses H1), H2), and H3) of Theorem 5.2.2
and let us suppose in addition that

3 lim 1%)

Jm S =) vi>o (5.2.10)

Let F. the functional defined in (5.2.1), with p satisfying limE_,o.l.fn—’% = a > 0, where r is the
rescaling function defined in (5.2.2). If (1) = 400, then I-lim, o+ Fy = F with respect to the
L -metric, with F given by

(- o4
/!u'lqdfc +m(y)a > (wt - W) ifue SBV(I)
F(U) = 4 zES‘u.
+co in LY(I) \ SBV (1),
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where v = logb(e) and m(y) is the constant defined in (5.1.56). If b°(1) < +oo the family F
I"-converges to the functional F given by

ﬁ@mwnm+¢wm ifue BV (D)

F(u) :=
+0o0 in LY(I)\ BV (1),

where go = (az? Az)*.

PROOF. From Theorem 5.2.2, it is clear that I'-lim._,o+ F. = F where F is the functional defined
either in (5.2.4) or in (5.2.5). It remains only to prove that

0 (2) = m(y)a =7 257 Vz > 0, (5.2.11)
if (5.2.3) hold true, or
o (z) =z Vz > 0, (5.2.12)

otherwise. First of all note that from (5.2.10) it follows immediately that b(st) = b(s)b(t) for t, s >0
and therefore b(t) = 7 for ¢t > 0, with v = log b(e); by remark 5.2.4 (and in particular by (5.2.7)), we
have that v € [0,1]. If v < 1, (5.2.11) follows from Proposition 5.1.18 since @) (t)ab(t/a) = a*~ 7.
If v = 1, then by Lemma 5.1.5, we get (5.2.12). a

Let us see now some examples. We will use the following notation: given two functions 71 and 72

we will write r; ~ ry if they are asymptotically equivalent, that is if lim._,o+ ;—i—% =1.

Example 5.2.7 Let v belong to [0,1) and set f(z) = iffg—z_q; using the definitions (see (5.2.2) and
(5.2.3)), it is easy to see that r(e) = £2-27 and b(t) =7, and therefore, setting
jf Oduw2
Fo(u) =< J11+ g%llu'rz—v
+00 , otherwise in L!(I),

d:z:-i—a?’g?fg—j//IU'lP dz if ue W»2(I),
I

by Proposition 5.2.6, we have that the functionals F, I'-converge to

— ) 24
a/lu’|2 dz + 'rn(y)aa(‘ll—v7 z (ut — u“)if’; if u e SBV(I)
FY(u) := I o€ 5, (5.2.13)

+o0 in L'(I)\ SBV(I),

as € — 07, with respect to the L*-metric, so that we recover the result of Dubs, Bouchitté & Seppecher
(see [13]). Note that as -y varies in [0,1), the exponent Z—J_r% varies in [5,1). Moreover, note that

m(0) can be easily computed and it is equal to 24/3/2 4+ 1/2/3 (see [4]).

Example 5.2.8 Let f(z) := (1+27)log(l + az?) with v € [0,1). We show now that

2__«
1 £2-27

re) = (1—9) 7 ———— (5.2.14)
(log 2) ™
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Indeed, with the same notations of Theorem 5.1.2, we have

1 1
=5 - 1 —
tim (e UE)T _y, vE (o)™ (losg) ™7 (1-9
+ 2= g+ AL e P Vi = v ’
e—+0 £2-27 -0 (\/E) £ 2y y yh T—5

where we performed the change of variable y=h"1(E).
We finally observe that b(t) = limg_, o0 %(g)—) =17 for all ¢ > 0; therefore, setting

’
> @+ et og(t + calu ) do
I 3
V() = T\
Fl(u) = ¢ + (5‘1“7(1 - 7)8 1) /I“,’l2d$ ifu e W»(I),
log = I
oo otherwise in L(I),

by (5.2.14) and by Proposition 5.2.6 we obtain that the sequence Fy T'-converges, as ¢ — 0T, to the
functional F7 defined in (5.2.13). In particular, taking v = 0, we prove that the singular perturbations
of the rescaled Perona-Malik functionals

3
E r "2 ac m2 o 2.2
Fo(u) = E/Ilog(l+soz’ul ) dx + (10g%> /I[u [“dz ifu e W22(I),

+oo otherwise in L(I),

I'-converge to F?, as announced in the Introduction.

Remark 5.2.9 Let f; and f2 be two functions satisfying the hypotheses of Theorem 5.1.2 and let
r1 and 72 be the rescaling functions associated with J1 and f, respectively according to (5.2.2) and,
for e >0 and ¢ = 1,2 denote by F;. the functional

é/[fi(\/au'[)dm—l—(ri(s))g/l[u”lem itu € W22(1),

Fie(u) =
+00 otherwise in L1(I).

)

Suppose in addition that
f1(z)log™ (z)

dm =1 (5.2.15)

then, for every infinitesimal sequence (£,)pn, [-limp, o Fle, = F < T-lim, o e = F;in
other words, functions asymptotically differing by a logarithmic factor generate the same I'-limits. To
prove this fact we pass to a subsequence such that

N (tr_‘”l(Z)) 2 (trz(Z:))
3 im ———2L = pi(¢) VE> 0 and 3 lim ———L = hy(2) Vit >0,
n—+-4-o0o f ( VEn ) n-—»+00 f ( VEn )
T\ rien) 2 \r2(en)

and we observe that, by virtue of (5.2.15), we have b; = by; we conclude by applying Theorem 5.2.2.
Note that the results of Example 5.2.8 can be derived from Examples 5.2.7, using the present remark.
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Example 5.2.10 Let fo(z) := (—1—;5)91—0%—*——' then, by easy computations, the rescaling function r

e+x) !
defined in (5.2.2) satisfies r(e) = VE  Moreover b(t) = limgz_; 40 fT((%l =t for every t > 0; therefore,

setting

3
L[ e e+ VE) [lids ituewi,
€Jr1 eve I

oo » otherwise in L*(I),

Faﬁ(u) =

by Proposition 5.2.6 we obtain that the family F. I'-converges, with respect to0 L'-metric, to

Fo /Iga(lu'l) dz + |D*u| ifu e BV(D)
’ oo in L1(1)\ BV (1),

where go = (az® A z)**. Note that go(z) T2 as a — +00, and therefore

I- lim (T- lim F,e) =TI- lim F, =G,

a—>+co e—0F a—r+00

with G given by

|Du| ifu e BV(I),
G(u) = T
+oo otherwise in L' (I).

Remark 5.2.11 The hypothesis H3) is in some sense necessarys; indeed suppose that f is an increasing
function satisfying H1), H2), and limz—+co ﬁfl — C' > 0. Then it is easy to see that the functionals

! u|)de, i !
oo L [ 1R s, e CtD,

+00 otherwise in L'(I),

G

I'-converge in the L!-topology, to the functional
a/lu']qdﬂs, if u e WHa(I),
G(u) = T
+00 otherwise in L'(I),
as £ — 0T . To prove this fact, we first observe that, for every § € (0,1), we can find z such that
flz) > (1 -8)az? Vz€(0,11) and  f(z) >cz Vo>, (5.2.16)

for some ¢ > 0.
Let u, — u in LY(I) and such that sup, Ge(ue) = K < +oo and set

A, = {z eT: Velu(z) <}

then, for every €, we have, by (5.2.16),

K> G(u:) 2 1——504/ u'Eqda:—l-—c—-/ ur| dz
> Ge(ue) 2 (1-9) Asll \/gI\AJI
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which implies

lim / lul] dz = 0. (5.2.17)
I\A.

e—0+

Let T such that u.(Z) — u(Z); taking into account (5.2.17), it is easy to see that the functions

ve(2) = u(z) +/x (u;(s) v <—%>> A %ds

still converge to u. Therefore we can estimate
K > Ge(ug) > Ge(ve) > (1— ) / [l )9 de,
I
which implies u € W4(I) and

lim inf G¢ (u,) > lim inf(1 — 5)04/ lvg]?dz > (1 - 6)04/]14']‘1 dz;
e—0+ e—=0+ I T

since ¢ is arbitrary, we recover the I'-lim inf inequality. Concerning the I'-lim sup inequality, if u is

smooth we can take u, = u for every € as a recovery sequence; for a general u the conclusion follows

from a standard density argument.

Let us see what happens when in (5.2.1) the function f has a finite strictly positive derivative at the
origin so that ¢ = 1.

Theorem 5.2.12 Let f : [0,4+00) — [0, +00) be continuous, non-decreasing , differentiable in 0 with
f'(0) >0, and concave in (z, +00) for a suitable z1 > 0. Then the family

Fo= é/If(""“")d”JJfg/IIu”Fdw ifu e w22(I),

+00 otherwise in L(I),

I'-converges with respect to the L'-norm to the Sfunctional

! " d ut — oy , cul i
Flu) = f(o)/zl'“"d +§s0( )+ f(0)[D%| ifu e BV(I),

+00 otherwise in L'(I),

where @ s the function defined in (5.1.3) with b = f. Moreover every sequence u. such that
sup (Fe(ue) + lluell1) < +oo is strongly precompact in LP for every p > 1.

PROOF. Take an infinitesimal sequence (¢,) and consider the family of functions f, := (1/e,)f(en-):
we clearly have that f,(t) — f/(0)t for every ¢t > 0 and ¢, In(t/en) = f(t) for every ¢ > 0 and
every n € N, so that (f,) verifies (5.1.5) and (5.1.6) with g = f(0)t and b = f. Now construct
a sequence of functions (f*) such that f > f* for every k, (f¥)'(0) 1 f'(0) as k — oo, and fE s
linear in [0,yx] and concave in [y, +00) for a suitable Yx >0 (it is clear that under our assumptions
such a construction is possible); then, setting TR@) = (1/en) f k(ent), we have that the family (f5), x
satisfies the weaker structure assumption introduced in Remark 5.1.15. At this point we can conclude
by applying Theorem 5.1.2. g

The following example is in the spirit of Theorem 5.1.17.
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Example 5.2.13 Given a convex non-decreasing positive function g and a concave positive function
b satisfying b°(1) = g®(1) = C € (0,+0c0), we have that the family

/I{g(\u’t) A (%b(EW’!)H(O))} d$+€3/IIU"\2da: if u € W2(I),

+00 otherwise

F. =

T'-converges to the functional Fj 4 defined in (5.1.4) which, under our assumptions, takes the form
/g(lu'l) ds+ 3 ol —u7) +CID% we BV(D),
I <.

where ¢ is the function associated with b according to (5.1.3). It is enough to apply Theorem 5.1.2
to the family fe := g(t) A (2b(et) + g(0)), after noting that

B0 9 A () +00) o) snd  efe () = b) A0 =500

5.3 The N-dimensional case

In the section we aim to extend the results of the previous ones to the N -dimensional case. Let us
fix first some notations: for u € W22(Q2), we denote its hessian matrix by V2u and, given a square
matrix A we consider the norm defined by

|| Al := sup AE-€-
lel=1

Tt is convenient to introduce the following definition.

Definition 5.3.1 Given X C L*(Q) we say that the sequence of functionals Fn : X — RU {400}
steadily T-converges in X to F : X — RU {+00} (and we will write I'"°-limp—c0 F, = F or, ~

shortly, Fp - F) if, for every p > 1, Folxnre(n) T-converges to Flxnarr(n) with respect to the LP-
convergence. Equivalently we have that I -limy,— 00 Fn = F' if and only if the two following conditions
are satisfied:

i) for every (un)n C X such that up — U € X in L', we have

lim inf Fy, (un) > F(u);

n—o0
i) for every u € X N LP(R), there ezists a sequence (up)n C X NLP(Q) such that

Up — u in LP and lim sup Fp(up) < F(u).
TL—+00

We will also say that G 1is the steady relaxed functional of F if G is the I'°-limit of the constant
sequence F, = F.

We underline that, thanks to Remark 5.1.9, in the one-dimensional case we have in fact proved the
steady I'-convergence in the whole LY(I) of the functionals F,. The main result of the section is the
following theorem.
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Theorem 5.3.2 Let Q C RN be an open bounded set with Lipschitz boundary and let f,, rn satisfy
hypotheses i), i), and iii) of Theorem 5.1.2. For every n € N, consider the following N -dimensional
version of the functional F, defined in (5.1.1): '

3 2,112 . 2,2
o | 507ehde+ 0 [ 1950 ds yue weee),
+00 otherwise in L1 ().

FN (5.3.1)

n

Then
D-liminf Y > EN (5.3.2)

n—co b.g>

with respect to the L' -convergence, where Fb{i] is the N -dimensional version of Fy 4 given by

—u (z N-1 oo 0 cyl g
FY (u) = /le(IVul)da:—!—/Su p1(uT(z) —u™ (@) dHV 4 (9%°(1) A (1)) DCu| if u € GBV(Q),
e otherwise.

Suppose now that, for every n, f, satisfies the following additional growth conditions:

grl) there exists C, Cy >0 and g > 1 such that f,(t) < C(1 +17) and Cot? < g(t) < C(1+19) for
every t > 0,

gr2) for every a >0 there ezists c(c) > 0 such that f,(at) < c(a) frn(t) for every t >0,

where C, Cy, q, and c(c) are independent of n. Then the sequence FN T°-converges in GSBVY
to Fg}; Moreover if g*(1) Ab%(1) < 400, actually we have that T'° -lim,,_,q, FN = Fb’]\g in the whole

LY(Q).

Remark 5.3.3 Note that, for technical reasons, when (1) A %(1) = 4o in the N-dimensional
case we are able to represent the I'-limit only on GSBVY(Q); to complete the result one would have
to show that every u € GSBV(Q) can be approximated in L! by a sequence u; € GSBVI(Q) such
that Fb{\; (uj) — Fb]g(u) (see the introduction). '

Remark 5.3.4 Note that if g satisfies both gr1) and gr2), also the family f, constructed in Propo-
sition 5.1.17 verifies the same growth conditions.

PROOF. Let us prove (5.3.2). The inequality will be proved by means of the so called slicing method,
which relies on the use of Theorem 1.1.1.

Let us suppose for simplicity that g>(1) A 8°(1) = +co; the other case can be treated in an
analogous way. First of all we observe that, for ¢ € S"! for v ¢ W22(Q), and for A € A(Q) we
have, by Fubini’s Theorem and by the monotonicity of f,,

FN(u,A) = / / (FallVuly +)]) + (ra) [V 2uly + 1€)]2) dt dHV (1)
1 J A

v

L] (50620 + Pl ) aeari
£ %

= /IZ[s Fn(ug7AZ§/) d%N.‘l(y%
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where, II¢ is the hyperplane orthogonal to £ while A{ and uf are the one-dimensional sections defined

in Subsection 1.1.1. Let u, — u in L'(A) be such that sup, EN < +oo and note that, for every
¢ € S and for almost every y € Aé’, (un)g € WQ’Q(Ag) and (un)? — (u)g in Ll(Ag), hence,

recalling that, by our assumptions, Fy(-, Ag) AN Fy (-, A:g) and using Fatou’s Lemma,

n—CQ n—00

liminf FY (un, 4) > / lim inf F ((un)¥, AY) dH " (y)
" 3

Vv

/ /yg(\(uz)’l)Jr ST ()t - @) ) | HY ). (5:3.3)

e \ /Ag (Su)¥nAY

From (5.3.3), by virtue of Theorem 1.1.1, we get u € GSBV () and

I-liminf FY (u, A) 2a/g(|Vu-§1)d:E+/ o(ut —uT)|vy - € dHY ! =/7,b5(a:) N, (5.3.4)
A SuNA A

n—rod

where we have set
A= LV + o(ut —uT)HY TS,

and
e = g(|Vu - DA = xs,) + v - Elxsu

since (5.3.4) holds true for every ¢ and for every A € A(Q), choosing a sequence (&;)ien dense in
S™=1 and by applying Lemma 5.1.13 (with v(-) := I-liminfp 00 EN(u,-)), we finally obtain

I-lim inf 7Y (u) 2/5111)1/)& dA:/g(IVuDda:+/ ga(u+—u_)d’HN_1,
Q i Q

n—oQ 7 ”

as desired.

Concerning the I'-limsup inequality, we adapt the proof given in [5]. In the sequel we will assume
that grl) and gr2) hold true. For every p > 1 we denote by Gy : LP(Q) x A(Q) — [0,+00] the
following functional Co

Gp(u, A) := inf{limsup Fy' (un, A) : un — u in LP(A)};
n—od

our thesis is then equivalent to prove that Gp(u, Q) < Fb],vg(u, Q) for every u € GSBV(Q) N LP(9).
It is clear that

Gp, (u, A) < Gy, (u, 4), (5.3.5)

for every 1 < p; < pa, for every u € LP*((2), and for every A € A(2).

STEP 1. Let IT be an affine hyperplane, and denote by II™ and I~ the two open half-spaces whose
union gives RV \ I and by v the unit normal vector to II which points towards IIT. Then, for every
A€ A(Q) and for every z € R,

Gy(zxn+, A) < p(l2))HNHIIN A) = Fy(exm+,4)  ¥p 2 1.

First of all, since
}ina’HN_l({m c A:d(z) =t}) =HVNHIIN A),
—
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for ¢ € (0,1), we can choose 7 > 0 such that
sup HY T {z € A:d(z) =¢}) < (1+ AN Y1 A). (5.3.6)
te(ﬁnﬂ?)

Let up, — ZX(0,+c0) be the one-dimensional recovery sequence constructed in the previous section
which satisfies |[un|jo < |2], up = ZX(0,400) I R\ (—=7,7), and

Um P (un, (—=1,n)) = Fog(2x(0,400), (—1,0)) = 0(l2]); (5.3.7)

I— 00

we recall also that, for a suitable K > 0,
rallunlleo < K. (5.3.8)

We define, for every z € Q, v,(z) := un(d(z)), where d is the signed distance function from 1T,
positive in IT™ and negative in TI~ . Clearly v, € W22(Q) and v, — zxm+ in LP(Q) for every p > 1,
moreover, using co-area formula (see (1.1.1)), (5.3.6), and (5.3.8) , we can estimate

FN(u,, A) = / oW (d)]) dz + (ry)3 / un () Vd ® Vd + u!,(d)V2d||? dz
AN(I), AN(II)y,

n
n(Jul (8)]) dHN 1 gt
< / n /{ sy 0D

! 3 u!! 2 el 272 N-1
L[ RO + e ORIV e a

n
< Fn(un, (=0, )H Y {z € A: d(z) =t}) dt

-n

+ce K7 || V2| oo /n HY M {z e A: dg) =1})dt
-n

< (A He)+)HTTHIIN A Fy(un, (=1,m)) + ce(1 + 6)HY LI N AV2Knrn || V2] oo,

where we denoted by (IT); the n-neighbourhood of II. From the last inequality, taking into account
(5.3.7), we deduce
limsup Y (vn, A) < (14 £)(1 + 6)HY LI 1 A)p(|2]):

n—oo
since § and e are arbitrary, STEP 1 is proved.
STEP 2. Let u = Zle ziXE; with E; closed polyhedra such that E; N Ej=10 for i # j. Then

Gp(ua A) < Fb],\;(ua A),

for all A € A(Q) and for every p > 1.

The proof is based on a standard partition of unity argument, we refer to Proposition 2.6 of [5] for
the details.
STEP 3. Let A', A, B € A(I) such that 4’ cC A and let ¢ be a cut-off function between A’ and
A. Then there exists a positive constant C' > 0 such that, for every u, v € W%2(Q) N L4(R), we have

EV(¢u+ (1 — ¢)v, A’ UB) < EN(u, A) + EN (v, B)
+ C(F) (u, ) + FY (v, 8)) + ClIVelIEllu = ]|?, a5y + CLY(S)
+Cra) > (IVelZ [ Vu ~ VU”LZ(S) + “v2¢”00”’u’_7]”%2(8))7 (5.3.9)
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where S := (A\ A)NB.
Using the monotonicity of f, we can estimate

FN(¢u + (1 — ¢)v, AU B)

< FN(u,A)+FY(v,B) + /S £ (= v)Ve| + 9|Vl + (1 = @) Vo)) da
£y () /S (T 4PV — Vol + u— o2V ) + V20 — V20|[?) do
< FN(u,A)+FY(v,B) + /S (o (31 = v) V@) + Fa(361V0]) + F2(3(1 — )| Vo)) de

+C1(rn)° /S(IVWIVU — Vol? + [u— o2 I3 + V2l + [V20)?) do =: (+);
using gr2) we can continue our estimate
(+) < FEY(u,A)+F)(v,B) +(Ch +c(3)(FN (u, ) + FY (v, 9)) +/fn(3|(u—v)v¢i)dﬂ?
S
+Our)® [[(VOPIT = ol +u = ol 1701 o
recalling grl), from the last inequality we easily get (5.3.9).

STEP 4. Let 4, A, B, and S be as in STEP 3 and p > ¢. Then for every u, v € LP(Q) and for
every K € N there exists a cut-off function $x between A and A’ such that

C K1 C
Gyl + (1= g, A UB) < (1+ 5 ) (Gl 4) + oo, B)) + O gl = vl + £ (5),
(5.3.10)
where d := dist(4’,Q\ 4).
Pirst of all choose Un, vn € W22(Q) such that u, — u, vn = v in LP(Q) and
Gp(u, 4) = lim FN(up,4)  and  Gyp(u,B) = lim FN(v,, B).
For j € {0,1,...,K} we consider the set
AJK = {m € A: dist(z,4") < j%};
for any j € {0,1,...,K — 1} we choose a cut-off function gij between A}K and Aﬁl such that
K
IV lloo < 23 (5.3.11)

finally we set S'jK = (AjKJrl \Zf{) N B. By using (5.3.9) and (5.3.11), we get
EY (@5 un + (1= ¢ )vn, A'UB)
K1
< FY(un, A) + FY (v, B) + C(EY (un, SJ) + FY (vn, 7)) +C—d;t!u-v||qm(5;<)

+C(rn P (IVHE 12 Vun = VonlZa(sxy + V25 N5 llun — UTLHQLZ(st))-
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Passing to a subsequence, if needed, it follows that there exists Jrx €{0,1,..., K — 1} such that

K-1
1
Fg"(¢§§<un+(1~¢§;)vn,A’UB) < EZF,?(gbfunJr(l— Vun, A'U B)
7=0

-1
< (1 " %) (F2 (un, 4) + B (0, B) + Oty = 0,8,
+££N(S) + C(K) (rn)S(HVun'— V”nHjQ:?(S) + llun — Un”%:'(s)), (5.3.12)

K
for every n € N. Recall that by Nirenberg inequality (see [46]), there exists M > 0 such that for all
u € W22(S)
1 2
IVullzas) < MAIVull g lull s, + lullzzs),
therefore from the equiboundedness of
(llun — Un“Lg(S) + (rn)? VP — vzvnH%Z(s))n

we get
(T’n)SHVUn - VUnHizw) —0 as n — oo.

Thus (5.3.10) follows letting n tend to -+oco in (5.3.12).
STEP 5. For every u € GSBVI(Q) N L°°(2) we have

Gp(u,Q) < /Qg([Vul) dz —l—/S out —u)duN ! Vp > 1. (5.3.13)

We start with u € W(Q) (see Subsection 1.1.3) and, for every h € N, we consider the sets
1
B = (Su)1nNQ = {ZL‘ € dist(z, S,) < E} ;

by the regularity assumptions on S, we have that £V (Br) = O(1/h) and therefore, setting
1
1
o= ([ oup)’
By,

1
lim — [Vu|dz = 0. (5.3.14)
h—oo pp Jp,

we have

By a standard argument based on the use of coarea formula (1.1.1) (see for example [15]) it is possible
to find a sequence uy satisfying the hypotheses of STEP 2 such that

1
lu = unllzeo () < one HY"H(Su, N BR)\ Su) < o /B [Vuldz + O(1). (5.3.15)
h

We are going to apply STEP 4 with A = By, A’ = Bop, B = Q\ Bsy,, obtaining for every K € N the
existence of a cut-off function qzﬁf}( such that

h h c c Kl q
Goltheun+(1 = ¢ D) < (14 £ ) (6ol @\Fu) + Gylun, B) + 05 o e,
+%£N(Bh) | (5.3.16)

< (1 + %) (Gp(u, 2\ Su) + Gp(un, By)) + (C’Kq‘lh‘-’p,i + %) LY (By),
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where p > q. By STEP 2 we have
Gp(un, Br) < / pluf —uy) dHY
uhmBh

< / plut —u™) dHY T+ p(2llulloo) 1Y TH(Suy N Br) \ Su)

u

+ / (o(ut — ) — ot —u)) dHY

u

using (5.3.15) and (5.3.14) and noting that, by the Dominated Convergence Theorem

lim (p(uf —up) = put —u7) dHN -t =0,

h—oo Jg,

we therefore obtain

lim sup Gy (up, Br) < / p(ut —u)dH (5.3.17)
Sy

h—+co

Moreover, taking as approximating sequence un = U for every n € N, we discover that

G, 0\5.) < [ a1l ds; (5.3.18)

combining (5.3.17) and (5.3.18), letting h — +oo in (5.3.16), and taking into account the lower
semicontinuity of G, we finally get (5.3.13), for p > ¢ and therefore for every p > 1, by virtue of
(5.3.5). For a general u € GSBV4(Q) N L*°(£) we conclude by a standard density argument based
on Theorem 1.1.5.

We are now in a position to conclude the proof of the Theorem. Take u € GSBV(Q) N LP(S)
and set ug := (—k V u) A k; then by (5.3.13), and the Monotone Convergence Theorem we have

Gp(u,Q) < liminfGp(uk, Q)

k—ro0

lim /g([Vukl)da:—F/ ga(u;:—u;)d’HN‘l
k—oo J S.

IN

u

= /g(qu])dx+/ put —u)dHY L
Q S

uw

So if g (1) AB%(1) = +oo then we are done; if it is not the case, then the conclusion follows by the
fact that, thanks to Theorem 1.1.3 and an easy truncation argument, szyg coincides with the steady
relaxed functional (see Definition 5.3.1) of

H(u) = /Qg(!VuDdOZ-&-/S w(ut _ ) dHNY ifu e GSBVI(Q),

u

“+oo ifue LYQ)\ GSBVIQ).

The two following corollaries are an immediate consequence of Theorems 5.3.2, 5.2.2, 5.2.12.
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Corollary 5.3.5 Let Q C RN be an open bounded set with Lipschitz boundary and let f, r, p as in
Theorem 5.2.2. Let (e,)y be an infinitesimal sequence such that (5.2.3) holds. If B%(1) = +co then
the functionals :

o | a6 [ IV e w2,
FN(U) _ &n Jq Q

+co ‘ otherwise in L'(Q).
I'*-converge in GSBVI(Q) to

u

0o otherwise in L*(Q),

where o\ is as in Theorem 5.2.2; conversely, if B°(1) = C then the sequence EN I'S -converges in
LY (9) to

u

FN(’LL) — /QQ(|Vu|) dz +/ W(a) (u+(x) —u"(z)) dHN-1 +C|D%| ifue GBV(Q),
oo if ue L'(Q)\ GBV (1),
with (p(a) still given by (5.1.3) and g = (az? A Cz)** .

Corollary 5.3.6 Let O ¢ RY be an open bounded set with Lipschitz boundary and let f be as in
Theorem 5.2.12. Then the family

E FelVul)dz + & [ ||V3ul?ds  if u e W22 Q),
N
Fhi=<q¢€/qg Q
+00 otherwise in L'(1),

I'? -converges in LY(Q) to the functional

©

FN( ) f’(O)/ |Vul|dzx —}—/ plut —uT)dHN 1 f(0)|Du| ifue BV (),
u) 1= Q

+00 otherwise in L'(Q),
where ¢ is the function defined in (5.1.3) with b= f.

To conclude the N-dimensional analysis it remains to prove the equicoerciveness of the approximating
functionals: this is done in the following proposition.

Proposition 5.8.7 Under the same hypotheses of Theorem 5.3.2, let (un)n C LY(Q) be equiintegrable
and such that
sup Y (ug) < M < +oo;
n

then (un)n is strongly precompact in LY(2). Suppose in addition that EN Beimn LY(Q); then, for
every g € LP(Q) (p > 1) and B > 0, the solutions u, of

min {F,]LV(U) +,8/Q lv—gPdz:ve WQ’Q(Q)}



154 Chapter 5

converge, up to subsequences, in the LP(Q)-norm to a solution of

min {G(v) +5/ lv—glPdz:ve Ll(Q)} :
Q
PROOF. As at the beginning of the proof of Theorem 5.3.2, we fix £ € S*! and we get

M2 EY ) 2 [ o) Y0, | (5.3.19)

where gn(y) = Fn((un)g, Qg) Using the equiintegrability assumption, for fixed § > 0, we find 05 >0
such that

£V(B) < o5 = / lunlds <6 VneN (5.3.20)
B
Choose k > 0 such that

set Ay = {y € Q¢ : gn(y) > k} and denote by P: the orthogonal projection on ;. We now define
the new sequence v, in the following way

o (1) = un(z) if Pe(z) € Qe \ Ank
" ' 0 otherwise.

Note that |un — vnllpi@) = f{mEQ:Pg(Z‘)GAn ) |un| dz; since by Chebicev Inequality, (5.3.19), and
(5.3.21) ’

LNz € Q: Pe(z) € Ani})

IN

HY (A p)diam(€)

diam(Q) < o3,

¢ 100 oy <

recalling (5.3.20) we finally obtain [un — vallz(n) < J.

Moreover Fn((vn)g,ﬂg) < gn(y)(1 = x4, () < k and therefore, by the one-dimensional results,
(vn)g is precompact in Ll(Qg) for every y € ¢. Since the construction can be repeated for every

§ >0 and for every £ € S™!, the thesis follows by applying Lemma 1.1.2.
Concerning the second part, we first observe that

sup (FZX () +6 [ I = oF da:) < sup Fo(O)10] + /Q GPds <400 (5.322)

and therefore, by the first part of the theorem, there exist u € L(Q) and a subsequence, still denoted
by un, such that u, — u in L'. Note that by (5.3.22) supy, [|unllLs < 400 which implies that u, — u

weakly in L. Since EY 5 G, there exists v, — v in LP such that EN(v,) = G(u) and therefore,
by exploiting the minimality of un,,

G(u)+ﬁ/niu-gipdx < liminf (F,f’(un)w/ﬂmn—gwdm)

n-—00

< timoup (FY () +5 | o = g

n—00

IN

i (£ +5 | o — g o) = G+ 5 [ u - g do

n—od



Approximation via singular perturbations 155

whence,

Gw)+6 [ ju-gPds = Jim (Ftun) + 8 [ s = gl as)

Nn—+co

> G(u)+limsupf [ |u, — g de
Q

n—roQ

> Glu) + liminfﬁ/ lun — gP dz > G(u) +5/ ju — gl dz.
Q 0

Nn—r 00

We deduce [, |up — g|P dz — Jo lu—glP dz and since u, —g — u — g weakly in LP, we conclude that
Up = u in LP. The minimality of u follows now from the properties of I'-convergence. a

We conclude the section by remarking that all the examples contained in Section 5.2 can be
generalized to the N-dimensional case by means of Theorem 5.3.2. In particular let us underline the
following ones.

Example 5.3.8 (Perona-Malik Energy) By Example 5.2.8 and by Theorem 5.3.2 we obtain that the
functionals

ag

3
FN () = -i—/ﬂlog(l—l—ea]Vu[2)dfc+ <1ogg-) /an%u?dx if u € W22(Q),

+00 otherwise in L1(9),

I'*-converge, as € — 07, to
PV () oz/ |Vul? dz —l—m(O)a%/ Vut —u=dHV ! ifue GSBV(Q)
U) = Q u
400 in L1(Q) \ GSBV(Q),
in GSBV2(0).

Example 5.3.9 Let b and g be as in Example 5.2.13 (and suppose for simplicity ¢(0) = 0); then the
family

g

PN /Q<9(Wul) AéME!VU])) da;+53/n|yv2u||2dz it u e W22(Q),
oo otherwise

I'*-converges in L'(Q) to the functional

/ 9(|Vu|) dz +/ pu™ —uT)dH " + O|D%| ifu e GBV(Q),
Q

u

400 otherwise,

where ¢ is the function associated with b according to (5.1.3).






Chapter 6

Approximation via discrete
Perona-Malik energies

In the main result of the chapter we show that, in the context of finite-differences discretization,
a suitable rescaling of the Perona-Malik energy provides a new approximation of the (anisotropic)
Mumford-Shah functional. Related numerical experiments are in progress.

6.1 Notations and statement of the main result

Given a vector 7 € R? we set

72 :={sT+trt: (s,t) € 2%},
where 7+ is othogonal to 7 and has the same modulus; if y € R? and A is an open subset of R2 , wWe
denote

ll((y -+ ZE) N A) = {v (y + 23) N A — R such that Z lu(z)] < +oo};
zE(Y+Z2)NA

in the following every function v € [} (y+2Z2)n A) will be identified with the function & € L(A)
which takes the constant value v(z) in the square z + C, if ¢ € (y+Z2) N A, where

Cri={st+trt: st €0, 1)}, (6.1.1)

and zero otherwise. So, having in mind this identification, given a sequence v, € [} ((ye + Z2)N A)
and a function v € L'(4), we will often write, with a slight abuse of notation, v. — v in L1(A4)
instead of 4. — v in L'(A). Given a vector 7 we will denote 7 1= -

Let £ C R? be a bounded open domain with Lipschitz boundary and for every ¢ > 0 consider the
following functional

52 Z Z ~—1————IOg (1 +a6lfl IU($+E€) _U($)|2> p({) ifue 11(52209),

2EONET? acl¢] e2[¢[?

£cz?

T+efef)
+00 otherwise in L(Q),

(6.1.2)

Fo(u) =

157
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where a. =elog 1 and p: 7.2 — [0, +c0) satisfies

ST ple) <+oo  and  p(€) =p(eh) V€ (6.1.3)
fez?

In this chapter we will prove the following theorem.

Theorem 6.1.1 The functionals F; I'-converge (as € — 0) with respect to the L'-norm to the
anisotropic Mumford-Shah functional F' given by

u

2 % Lodifu

+00 otherwise in L1(Q),
where
e Y G B OED WG (6.1.4)
£cz? gez?

Moreover, every sequence (ug) satisfying sup(Fe(ue) + luelloo) < +oo is strongly precompact in
LP(Q), for every p > 1.

The proof of the theorem will be split in the next sections.

6.2 Estimate from below of the T'-limit for N =1

In this section we study the one-dimensional version of the functionals defined above. Given a bounded
open subset I C R we define
I ={zcINeZ: z+eel},

and, for every u: I NeZ — R, we define

Felu,I) == ai Z log (1 + aEIU(sc +e€)— U(CC)‘Q) |

2
£
€ zel.

where, as above, a, = elog%. As usual we will identify every function w : I NeZ — R (briefly
u € NI NeZ)) with the piecewise constant function u of LY(I) given by

u(o) = {u (c[2]) itelz] el

0 otherwise.
Our aim is to prove the following proposition

Proposition 6.2.1 Let u; € I*(INeZ) such that ue — u in LY(I) as € — 0T and sup, Fe(ue) < +00.
Then u € SBV (I) and

lim inf Fe (ue, I) > /)u’lQ dz + H(S,).
I

e—0t

We postpone the proof of the proposition after proving some useful lemmas.
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Lemma 6.2.2 Let p(e) > 0 be such that lim, o+ p(e) =0 and

1 1
lim <p(s) log - log log E) = 400,

e—~0+
and set c; := P) | Then the following properties hold true:

a) lim ¢, =0-
)E—>O+ ’

loge
15 =0;

€

b) li
) eh0 log

. c 1
¢) lim =log= = +o0;
e—0t € €

1
d) lim c.log= =0
)E_io+050g5 0;

log <1+a5§)
e) lim —>— "/

=1.
e—0+ log %

PROOF. Properties a), ), ¢), and d) follow immediately. Let us check only e). Recalling the definition
of a., we have

2 12
log (1 + aé—;) log (1 + 10%1)

lim —— % = lim i
e—0+ log z e—0+ log z
log 1¢2
log ( ——) loglog 2 = 21
= lim —— L = Jim (14 228c, 2l
g0+ log = e—0+ log = log -
where the second equality follows from ¢ ) while the last from b ). 0

Lemma 6.2.3 Let u, € IY(I NeZ) be such that sup, Fe(ue) < K < +oo and let ¢, be as in the
previous lemma. Set b? = \/c. log-i— and consider the following sets:

[ue(z +¢) — ue ()] be
e g r}

DE::{:I}EIE:

Then
lim H%(D,)e. = 0.

e—0+

PROOF. By our assumptions and recalling the definition of a,, we have

— 2 2
.K> _6_ z lOg 1+a6]u(x+6)9 U(CU)‘ —>_ 10g(1_f;b6)%0(D5)
Ge g* log =
z€D, €

so that, substituting the expression of b2, if € is small enough, from d) of Lemma 6.2.2 we get

celog i , celogl , 1
HO(DE)CE <K 2 SK'———=t==K'y/c. log —.
log(l-fq/calog%) v/ €

¢ log é
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Again d) implies now the thesis. o

Lemma 6.2.4 Let v, € SBV(I) such that lim o+ |v!]loor/@e = 0. Then, for every 6 > 0 there
exists € > 0 such that

1 log(1 + ac|vl?) dz > (1-9) / |vL|? de,
Ge JI I

for every € <E.

PRrOOF. Fix § > 0 and note that there exists Ts > 0 such that

T
2) > (1 — 6)act? t =21,
log(l -+ Cbst ) = (]. )CLE V € {07 ,————-CLE )

by the assumptions, if ¢ is small enough we have ||v!]jeo < Ts/+/ae and therefore

L [ og(t + achliP)ds > (1 —5)/1U;|2 dz.
I

g J1

We are now in a position to prove Proposition 6.2.1.

PROOF OF PROPOSITION 6.2.1. Let b and c. be as in Lemma 6.2.3 and set

b —
Be(ue) == {cc €I : \/;_ < ue(@ +€2 ue (@)l < 965} = {zl,22,... a0},
&

where z} < 22 < -+ < z* and m, = #O(B,). Now we want to replace the sequence ue with a new
one ., still converging to u, such that B, (@) is empty and Fe(fe) < Folue). We set v = u. and
for k=1,...,me — 1 we define, by induction,

vE (1) for t < o5+,
vf+1(t) =
ok (t) — E(alth) = of(ak)] for t 2 2zt

and finally we set @ := v (see Figure 6.1).
First of all, using the fact that for every & > 0, and for every i =1,... ,me we get

/I o d < i (ah) — oM ] = () — uelad | < e ),
then we can estimate

/mE Culdr <y / i = oM do < 3 eal] < HO(Be(ue)eelT) < HODe)eelT1-
I =171 i=1

Therefore, by Lemma 6.2.3, we get e — u in LY(I). Moreover, by construction, we clearly have that
Felfie) < Fe(ue). We set

L= {m el ue (z + €) — ue(z)] < be } and  I'i= {m €L ue(z + €) — ue(z)| > C_e}
3 Vae € 3
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1.6 7 T T T T T T
14 -
® us e

1.2 O uZ L .
1k .

0.8 + @ _

0.6 ~ B -

- R - S

0.4 B .

0.2 B -
B

Figure 6.1: The construction of ..

and we call w, the function belonging to SBV(I) defined by

(4 ([2]) + U (¢ [2] +¢) — e (e [2]) (- [Z]) itelz)en,

£

we(#) = 4, (e [2]) ife[Z] € Il or e [2] + ed(eZ N 1),

0 otherwise.

Roughly speaking w. coincides with the affine interpolation of 7, in the intervals (y,y + &) with
y € I while takes the constant value i (y) in the intervals (y,y + €) with y € I it is clear that

we > win ' Vaclullo <be 0 and S, =I!+e. (6.2.1)

Now we can estimate

Ug — G (z)|? € te (T — g (z)]?
Feltie, 1) > iZflog(l-kaal (x+22 (=)l )-I-E;Zlog<1+agl ( +522 ()!)
zE€Id

ccelé1
1 2 ozt £ <

> log(1 + acfwi|?) dz + H°(I}) —log [ 1 + a. 5 ). (6.2.2)
Qe J1 Qe €

Fix ¢ € (0,1); recalling (6.2.1) and the definition of a., by Lemma 6.2.4 and by e) of Lemma 6.2.2,
from (6.2.2) we deduce the existence of # such that

Fe(te, I) > (1~ 6) ( / lw;|2dz+H°(Swa)) ;
I
by the Ambrosio Semicontinuity Theorem we therefore obtain that w € SBV(I) and

lim inf 7 (ue, I) > liminf 7, (4, I) > (1 — J) </[u'|2 dz 4 ’HO(Su)) )
e—0+ I :

e—0t
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which concludes the proof of the proposition since § is arbitrary. |
We conclude this section with a remark that will be useful in the sequel.

Remark 6.2.5 Fix t € R and for u € [}(¢ZNI) define

.7:;(’11,,[) = é—:— Z log <1 +aE}U(I +E) - U(x)l?) ,

2
3
€ zelt

where
It = {zelnelt+Z): z+e€ell

then we have that Proposition 6.2.1 is still valid with F¢ instead of F. (without changes in the proof).

6.3 FEstimate from below of the [-limit for N =2

Lemma 6.3.1 Let u, € 1*(eZ?) be such that ue — u in LY(R?). Forvy, £ € Z?, let vé",g € ll(a(y+Z§))
be defined as V! (z) := uc(z) for every z € e(y +7Z3). Then vl = u in LY (R?).

PROOF. We call Q¢ the unit cell of the lattice 73, ie.
Qe = CenZ?={r",... Y, (6.3.1)

where C¢ is the set defined in ('6.1.1). For j =1,...,k we set ul(z) = uc(z — 7). Since

lul(z) — u(z)|dz < /IR2 lue (z = erd) —u(z — erd)| dz + /H‘%? lu(z — er?) — u(z)| dx

= /R? |ue () —u(:z:)\dsc—i—/IRZ \u(z—eﬂ) — u(z)|dz,

R’_’

we have that u) — u in L*(I) as € — 0T, for every j € {1,...,k}; therefore, up to passing to a
subsequence, we can suppose that

e there exists N C R? with £2(IN) =0 such that uwl — u pointwise in R2 \ N for j =1,....,k;
e |ul| < g’ almost everywhere where ¢/ is a L' function, for j =1,... k.
Since for every z € R2 \ N there exists j € {1, ...k} such that v} (z) = ul(z), we get vl = u

pointwise in R?* \ N; moreover ]vg§| < g1 + ... + g and therefore, by the Dominated Convergence

Theorem, v ¢ uin I As the same argument can be repeated for every subsequence, the lemma
is proved. O

We will need also the following lemma.

Lemma 6.3.2 Let Q¢ the unit cell of the lattice Zg as defined in (6.3.1). Then H°(Q¢) = 112,

PROOF. We refer to Figure 6.2. We associate every point = € Q¢ with the square z+0, 1] % [0,1].
The area of the shaded region, which is the union of such squares, coincides with the cardinality of
Qg and it is clear from the Figure that it is equal to the area of the set Cg (defined in (6.1.1)). O
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Figure 6.2: The set Qe .

Before starting the proof of the I'-liminf inequality it is convenient to rewrite the functional Fy in
a suitable way. After observing that

YEQ,

we can write, for every u € ['(eZ2 N Q),

ulr — U 2
Flu)=e >~ 3 aell«fl log (1 +aEI§J’ ( +:§{é]2 (=) ) p(€) = Z plE) D G (u),
cez?

TEQNEZ? £ez? YEQ:
z+efe)
(6.3.2)
where
1 lu(z + ¢) —U(m)P)
sci=et DL s (L add T
xEE(y+Z§)DQ
z+ele

Let u, — u such that sup, Fe(ue) < 4+oo0. Taking u. and v equal to zero outside (eZ%N ) and
respectively, we can suppose that u, € 1MeZ?), u e LYR?), and u. — u in LY(R?). If we are able to
prove that

. 1 . .
u € GSBV(Q) and ligéEng»§(u5) > EP— (/Q [Vu - €2 d +/Su [ - g[d?—[l) : (6.3.3)
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for every & € Z2 and every y € Q¢, then, by (6.3.2), Lemma 6.3.2, (6.1.3) and (6.1.4), we have

liminf Fy(ue) 2 Zp(f) lim inf G ¢ (ue)

e—=0F fen? VEQ: e—0F
> — Vu P d vy - €| dH?
> 5ezzzmam = ([ 1vw-a ot [ | fawt)
= Vu - €2 dz v - €| dH
3 e ( / Vu- Pt [ )
= / O(|Vu - &P + |Vu - €117 da:-i—/ p(&)|vy - €| dH?
eZZ Su €72
= ¢, /Q |Vul? dz + /S B(vy) dH . (6.3.4)

Following the notation introduced in Subsection 1.1.1, we denote the hyperplane orthogonal to & by
Tl and Q the projection of Q on II;. For every w € T, we set = {teR:w +t€ € Q} and,

given a function, we define f¢’ (t) = flw+ t€). We also define Og¢ := ¢ N eZ? (see Figure 6.3) and
for every z € R?

Te= {y€m+EZ£:y+£§EQ}.

®
¢
@----

3
@---mmmm
®--

=
~

Figure 6.3: The sets Il¢ and Og¢.
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Note that we can write

9 R__l_ o !Us(m +€€) — ua(w)IQ
G = 2 35 s (1 e P el

wEOD, ¢ Oggfy

. __1__ 5lfl a 'us(fr + &) — us(m)lg
= @ > oelel > ooje] o8 <1+ ¢l 2P )

ié wEOE,g O’ewgn-:"y

_ 17 [eg etle o) = @P\ ] L
= @ /QE [aslil Z log (1+aelfl RIEE dM'(w), (6.3.5)

wtey
05,5

where v/ . is the sequence defined in Lemma. 6.3.1. Set 7 := elél, wy = v ¢s 2 :=y/|€] and observe
that
n

=1. 6.3.6
B e (6.3.6)

Fix § € (0,1); by (6.3.5), by Fatou’s Lemma, and by (6.3.6), we obtain

. T ee(m+e) — v (2)
hmlnng,g(ug) > 131]5/9 lim inf E}lféll OZ log <1+a5]f’w £ ;I§|2 i )Jd%l(w)
p ‘

+ + -
e—0 ¢ e—0 Qg otey

r w? (z +né) — wY 2
Lol 15 g (H 5%! ne( n«f)o Y (@) ” 03 ()
n

Z
€17 Ja, o+ o o
7,§
1 . . t 1
e /Q lin inf Fo((Vouh e, 08 ) ar' (w),
3

where ¢ := z- £ and F} is the functional defined in Remark 6.2.5. Since (wzf)g’ — uf for H'-ae.
w € Ilg, as n — 0 (thanks to Lemma 6.3.1), by Proposition 6.2.1 and Remark 6.2.5 we deduce

e—0t

1
liminf GY  (u.) > ~—2/ / 51w )2 dt + HO(S,) | 3t (),
’ [€1% Jog \Jap ¢
from which (6.3.3) follows by letting 0 T 1 and by applying Theorem 1.1.1.

6.4 Estimate from above of the I'-limit

Thanks to a standard approximation argument based on the use of Theorem 1.1.5, it will be enough to
prove the I'-limsup inequality for a function u € W(Q) whose discontinuity set consists of the union
of a finite family {Si,..., Sy} of disjoint segments compactly contained in 2 (see Remark 1.1.6). Let
én — 0 and set, for every u € L'(Q), F”'(u) := I'-lim SUPp 00 Fe, (1) ; We aim to prove that

F'"(u) < F(u). (6.4.1)
We begin by assuming that
SiNenZ®=0  VneN, Vie{l,.,k} (6.4.2)
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As for the proof of the I'-liminf inequality, the thesis is achieved once we have shown that for a suitable
sequence (up) converging to u, we have

hTrLri)solipG e(un) < 75 e </ Wu-élzder/Su\vu-él d%1> vE e 22 y € Qg (6.4.3)

To simplify the notation we will prove (6.4.3) only for y = 0. In the sequel, given z1 and zp in
R?, we denote by [r1,z2] the segment joining the two points. Let us define the following sets:

Ay = {mEenZéﬂQ: z + € € €, [a:,m+€n£]ﬂ5j=®for]—1,...,k},

and .
B! = {wEEnZE: [a:,:z?—i—anﬁ]ﬂsj;é@} j=1,..,k.

Clearly for n large enough, BiNB: =0 if i # j. Note now that we can write

Y 2 __i__ a ]un(w +ené) — un(w)P
Cenilin) = %zga%wﬁﬁ<l+ el e )

k 1 Un (T + En€) — Un(z)|?
+ZE%ZG 7 |un ( ené) (2)] )
=1 pi °©

log (1 + ac, |€]

exlél
: [0, ¢(@ + ent) = 08 (@)

IR / e, €] o (1 + ony €= 2¢)2 s > X(An-+enCe)
i
In)l

o Jun (2 + €nf) — un(2)?

l’flo Z n1§‘ Z lOlj (1 + asnifl E?ﬁlng >’
i
n,2

where vog is the sequence defined in Lemma 6.3.1, while C¢ is the set defined in (6.1.1). It is
immediate to see that

X(An+enCe) 7 XQ\Su- (6.4.4)

Take z € 2\ Sy and let y, € EHZ% be such that z € y, + enCe; by Lagrange’s Theorem it turns out
that

00, ¢ (z +end) — 0 (@) _ [uyn + £n€) — ulyn)|’
%mmﬁ+%m 2P —-%mm@+%m )
- y§| tog (1+ ae, €]|Vu(én) -€7)
§|VM&%Q?

where &, € [Yn,Yn + n€] and therefore & — . Taking into account the continuity of Vu and
recalling (6.4.4), we deduce that

limsup In1 < l-f% /Q |Vu(z) - £ da. (6.4.5)

n—00
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Moreover, for every z € BI, we have

Enl¢] [un (T + £,£) — U ()]? En . S
oo l€] log <1 + ae, [¢] e2[¢2 | ) < o, log (1 + ae, 2 ) — 1, (6.4.6)

where the last limit follows from the definition of ac,. Denote by l¢(S;) the length of the projection
of S; on Ilg; using the fact that le(S5) = ij vy - EdHY | we easily obtain (see Figure 6.4 below)

#°(B}) < %%) +1< ;1’{]/5’ vy EdMH + 1 (6.4.7)

therefore from (6.4.6) and (6.4.7) we get

n—so0 SR

k k
1 ; 1 . 1 .
limsuply,, < — limsu E enlé|HO(BI S——E /u -§d7-ll*——/ vy - EdH1,

which, combined with (6.4.5), gives (6.4.3) and therefore (6.4.1).

] I
AT

Figure 6.4: The projection of Sj on IIg.

If (6.4.2) is not true we can argue in the following way. We first observe that it is possible to find a
sequence (73) C R? such that 7, — 0 and Sy + 7y, satisfy (6.4.2) for every k. Let ug(z) := u(z — 73,),
then wy — w, S, = S, + 7, satisfies (6.4.2), and F(uy) — F(u); using he previous step and the
semicontinuity of F” we have

F"(u) < liminf 7" (u) < lim Fug) = F(u),
k—ro0 k—o0

which concludes the proof. 0

6.5 Compactness

In this section we prove the equicoerciveness of the approximating functionals F.. We will use the
Ll—precompactness criterion by slicing introduced by Alberti, Bouchitté & Seppecher (see Lemma
1.1.2).
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Proposition 6.5.1 Let (uc) be a sequence of equibounded functions such that sup, Fe(ue) < M <
+o0; then (ug) is strongly precompact in LP (Q), for every p = 1.

PrOOF. Clearly it is enough to prove the precompactness in LY. Let {ej, ez} be the canonical basis
in R2. Since for £ = e; (for i = 1,2) the function vi’,g defined in Lemma 6.3.1 coincides with ue,
from (6.3.5) we have

M > sup F(ug) > sup GSM > sup/ Fe ((us);"i, Qé”l) dH} (w) = sup fe(w) dH (w),  (6.5.1)
€ € e JQ, € JQe,;

where

Folw) = o ()2, 08).
Fix 6§ € (0,1) and choose k& > 0 so large that

M —S_EPL——”]:E“E? diam(Q) < &; (6.5.2)

setting A’;i = {w € Qe; ¢ few) > k}, by Chebychev Inequality and (6.5.1), we can estimate

Ak < Towp [ few) () < - (653
£ JQ

Let z.s be such that ze s(z) = 0 if the projeétion of z on ., belongs to Af;?ﬂ- and 7z 5(z) = ue(2)
otherwise. We clearly have

12,6 = uellzr < sup e ool AZ 4| diam(€) < 9,

where the last inequality follows from (6.5.3) and (6.5.2). Moreover F. ((2575)1” Q}Z) < fe(w)(1 =

e’
xak ) <k for every w € Qe, and therefore ((2e,5)%), by the one dimensional result, is precompact in
LY Q) for every w € Qe,. Thus we have constructed a sequence which is ¢ -closed to (u¢) and such
that the one-dimensional sections in the e;-direction are precompact, for i = 1,2. The thesis follows

from Lemma 1.1.2. O
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