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Introduction

History and motivation of RCD spaces

In the last decades there were several attempts to generalise Riemannian
manifolds with curvature bounds: the main reason is to �nd a set of struc-
tures which contains Riemannian manifolds with curvature bounded from one
side and is compact with respect to a reasonable convergence, the Gromov-
Hausdor� one, which is induced by a distance between metric spaces which
measures "how far two spaces are from being isomorphic".

The concept of metric space was enough to give a synthetic concept of
space with sectional curvature bounded from one side via Toponogov com-
parison theorem (see [BBI] and its references for an introduction about the
subject).

Theorem 0.0.1 (Toponogov). Let k ∈ R and let M be a complete, connected
Riemannian manifold. Then the following are equivalent:

i) the manifold has sectional curvature always greater than or equal to k;

ii) indicating with Mk the simply connected model space with constant sec-
tional curvature k, for every p ∈ M and γ : [0, 1] → M geodesic the
following holds: let p̃, γ̃0, γ̃1 ∈Mk be such that the three edges of the tri-
angle p̃γ̃0γ̃1 are equal to the ones of pγ0γ1. Then dM(p, γt) ≥ dMk(p̃, γ̃t)
for every t ∈ [0, 1].

Condition (ii) is purely metric and can be written in geodesic metric
spaces. We can de�ne then "metric spaces with sectional curvature bounded
from below by k" (also known as Alexandrov spaces and denoted by CBB(k))
as the spaces for which condition (ii) holds.

In trying to approach in a similar way manifolds with a lower bound on
the Ricci curvature with essential stability properties we note that working
with metric spaces is not enough: taking the limit (in the Gromov-Hausdor�
sense) of a sequence of manifolds with Ricci curvature greater than K seen
as metric spaces might fail to have Ricci curvature greater than K.
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6 Introduction

This �rst problem is solved taking metric measure spaces and considering
a variant of the Gromov-Hausdor� convergence (measured Gromov-Hausdor�
convergence) which takes into account the measures too.

The �rst generalization of manifolds with Ricci curvature bounded from
below is given by J. Cheeger and T. Colding in [CC96] (see also [CC97],
[CC00a], [CC00b] and [CN]), where they studied the theory of Ricci limits,
that are the measured Gromov-Hausdor� limits of sequences of Rimannian
manifolds with Ricci curvature uniformly bounded from below. This theory
has good stability properties, but it is based on an extrinsic argument: Ricci
limits can only be characterized (and studied) as limits of manifolds.

In searching an intrinsic approach, as the one used for spaces with bounds
on sectional curvature, ten years later, indipendently in the works [S06a] and
[S06b] by K.-T. Sturm and in [LV] by J. Lott and C. Villani, it was introduced
the concept of Curvature-Dimension condition CD(K,N), where K ∈ R is a
synthetic lower bound on the Ricci curvature and N ∈ [1,+∞] is an upper
bound on the dimension.

In the class of CD(K,N) spaces several properties of manifolds with Ricci
curvature bounded from below hold, for instance the Bishop-Gromov volume
comparison ([S06b]), the Brunn-Minkowski inequality ([S06b], [BaSt]), the
Bonnet-Myers theorem ([K]), the Laplacian comparison ([G15], [CaMo20]),
the Lévy-Gromov isoperimetric inequality ([CaMo17], [CMM]) and a weak
local (1,1)-Poincaré inequality ([R12b]), but it also contains non-Riemannian
Finsler manifolds. The de�nition of RCD(K,N) spaces, which stands for
Riemannian Curvature-Dimension condition, is given in [AGS14b] (for N =
+∞) and in [G15] (for N ∈ [1,+∞)) in order to exclude Finsler manifolds
and keep only CD(K,N) spaces with a "Riemannian structure": in addition
to the CD(K,N) condition, the RCD(K,N) condition requires that a sort of
tangent bundle (or equivalently a generalization of the Sobolev space W 1,2

on metric measure spaces) is a Hilbert space.
The de�nition of RCD(K,N) spaces allows to introduce second order

di�erential calculus and to prove other important results such as a weak
formulation of the Bochner inequality and some rigidity theorems such as
the Cheeger-Gromoll Spltting Theorem and the "volume cone implies metric
cone" principle (see [G13a], [G13b] and [DPG]).

The aim of this work is to study splitting-type theorems in more gener-
ality: more precisely, we prove that if there exists a function with "good"
Laplacian and Hessian then the space is isomorphic to the product of the
real line R with another space. We talk in detail about these theorems in
the next sections, where we describe, as �rst thing, the known results of this
type, and then the new general splitting principle we obtained in [GMa] and
a couple of applications.
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Splitting-type theorems

In this section we see some splitting-type theorems proved in the non-smooth
setting.

The �rst one is the Cheeger-Gromoll Splitting Theorem.
Its �rst version on 2-dimensional surfaces with non-negative curvature was

proved by S. Cohn-Vossen in [C-V], and about twenty years later Toponogov
proved a version of the Splitting Theorem for manifolds with positive sec-
tional curvature in [T]. Short after that A. D. Milka proved it in Alexandrov
spaces (see [Mil]).

In [CG] J. Cheeger and D. Gromoll proved it for manifolds with positive
Ricci curvature, then J. Cheeger and T. Colding proved in [CC96] an Almost
Splitting Theorem, which leads directly to the Splitting Theorem for Ricci
limit spaces.

The CD(0, N) class of metric measure spaces is too big, indeed it contains
every space of the form (Rd, d‖·‖,Ld) where d‖·‖ is a distance induced by a
norm ‖ · ‖. It is easy to see that if d = 2 and the norm ‖ · ‖ does not come
from a scalar product then the Splitting Theorem cannot hold.

Its proof in the RCD setting is due to N. Gigli and can be found in [G13a]
(see also [G13b]). We recall here its statement in RCD(0, N) spaces.

Theorem 0.0.2 (Splitting Theorem for RCD spaces). Let (X, d,m) be an
RCD(0, N) space containing a line, i.e. such that there exists a map γ̄ : R→
X such that

d(γ̄s, γ̄t) = |t− s|

for every t, s ∈ R.
Then (X, d,m) is isomorphic to the product of the Euclidean line with

the Lebesgue measure (R, dEucl,L1) and another space (X′, d′,m′) where the
product distance dEucl × d′ is de�ned by

dEucl × d′((t, x′), (s, y′))2 := d′(x′, y′)2 + |t− s|2

for every x′, y′ ∈ X′ and for every t, s ∈ R.
Moreover if N ≥ 2 then (X′, d′,m′) is an RCD(0, N − 1) space; otherwise,

if N ∈ [1, 2), the space X′ is just a point.

The idea of the proof is, as in the smooth setting, to take the Busemann
function b : X→ R de�ned as

b(x) := lim
t→+∞

t− d(x, γ̄t),



8 Introduction

where γ̄ is a �xed line in X. In a certain sense, the modulus of the di�erential
of b is m-almost everywhere equal to 1, moreover ∆b and Hess(b) are both
0.

Using these properties, it is proved that, denoting with Fl· the gradient
�ow of b, the map (x′, t) 7→ Flt(x

′) is a measure preserving isometry between
(X, d,m) and (R×X′, dEucl×d′,L1×m′), where X′ is a level set of b, d′ is the
distance induced on X′ and m′ is the measure on the level set X′ obtained
disintegrating m. The proof of the isomorphism is reached by proving that
the Sobolev spaces of X and the product space are isometric and passing to
the metric isomorphism thanks to the Sobolev-to-Lipschitz property.

The second rigidity theorem we recall is the "volume cone to metric cone"
principle: its proof in Ricci limit spaces is due to J. Cheeger and T. Colding
(see [CC96], they proved an "almost rigidity" result for this too, which we
do not recall here), while in the RCD setting it has been proved by G. De
Philippis and N. Gigli in [DPG].

Theorem 0.0.3 (From volume cone to metric cone). Let N ∈ [1,+∞) and
let (X, d,m) be an RCD(0, N) space with O ∈ X and R > r > 0 such that

m (BR(O)) =

(
R

r

)N
m (Br(O)) .

Then exactly one of the following holds:

i) the sphere SR
2
(O) contains only one point: in this case (X, d) is isomet-

ric to [0, diam(X)] ([0,+∞) if X is unbounded) with an isometry which
sends O in 0 and the measure m|BR(O) to Nm(BR(O))xN−1dx;

ii) the sphere SR
2
(O) contains exactly two points: in this case (X, d) is a

1-dimensional Riemannian manifold, possibly with boundary, moreover
there is a bijective local isometry (in the sense of distance-preserving
maps) from BR(O) to (−R,R) sending O to 0 and the measure m|BR(O)

to the measure 1
2
Nm(BR(O))|x|N−1dx, and such local isometry is an

isometry when restricted to B̄R
2
(O);

iii) the sphere SR
2
(O) contains more than two points: in this case N ≥ 2

and there exists an RCD(N−2, N−1) space (X′, d′,m′) with diam(X′) ≤
π such that the ball BR(O) is locally isometric to the ball BR(OY) of
the cone Y built over X′, and such local isometry is an isometry when
restricted to B̄R

2
(O).

The strategy to prove this theorem is similar to the one of the Splitting
Theorem, but it requires a more sophisticated calculus with a more precise
concept of Hessian.
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The Busemann function in this case is b(x) := 1
2
d(O, x)2. The modulus

of the di�erential of b is
√

2b, and its Laplacian is constantly equal to N on
BR(O). Moreover its Hessian is equal to the identity.

A variant of this result has been proved by N. Gigli and I. Y. Violo in
[GV].

Theorem 0.0.4 (From outer functional cone to outer metric cone). Let
(X, d,m) be an RCD(0, N) space with N ≥ 2 and let U be an open subset of
X with ∂U bounded. Suppose that there exists a positive b ∈ D(∆, U)∩C(Ū)
such that

-) ∆b = N holds m-a.e. in U ;

-) |D
√

2b|2 = 1 holds m-a.e. in U ;

-) b0 := lim supx→∂U b(x) < +∞;

-) {b > b0} 6= ∅.

Then the following holds:

i) there exists an RCD(N − 2, N − 1) space (X′, d′,m′) with diam(X′) ≤
π such that, denoting with (Y, dY,mY) the N-cone built over X′ with
vertex in OY, there exists a bijective measure preserving local isometry
S : {b > b0} → Y \Br(OY) with r :=

√
2b0;

ii) if diam(X′) = π then (X, d,m) is isomorphic to (Y, dY,mY), while if
diam(X′) < π then the local isometry S is an isometry between Y \
Br′(OY) and

{
b > 1

2
r2
Z

}
, where r′ :=

√
2b0

(
1− sin

(
(diam(X′)

2

))−1

;

iii) the function b has the following explicit form:

b(x) =
1

2
dY(OY, S(x))2 =

1

2
(d(x, ∂{b > b0}) +

√
2b0)2

for every x ∈ {b > b0}. In particular for every t > b0 the level set{
b > t2

2

}
is Lipschitz-path connected and isometric, with its induced

intrinsic metric, to (X′, d′).

The main di�erence between the proof of Theorem 0.0.3 and Theorem
0.0.4 is the use of the theory of Regular Lagrangian Flows to build the �ow
of the "gradient" of the Busemann function b.

A similar approach is used by C. Connell, X. Dai, J. Nuñéz-Zimbrón,
R. Perales, P. Suaréz-Serrato and G. Wei in [CD+] to prove the following
theorem.
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Theorem 0.0.5. Let (X, d,m) be an RCD(−(N − 1), N) space for a certain
N ∈ (1,+∞). Assume that there exists a function b ∈ D(∆loc) such that
|Db| = 1 m-a.e. and ∆b = N − 1, then (X, d,m) is isomorphic to a warped
product space R×w X′ with wd = exp and wm = expN−1, where (X′, d′,m′) is
an RCD(0, N) space.

Functions wd and wm a�ect respectively the distance and the measure we
take on the product space R×X′. In the next section and in Section 1.7 we
see precisely their role in de�ning warped product spaces.

General splitting principle and applications

We state now the main result of this work (see [GMa]) and a couple of
applications to spaces with positive spectrum of the Laplacian.

On a smooth manifold M, almost by de�nitions, the structure of warped
product emerges when one can �nd a function b : M→ R satisfying

|Db| ≡ 1,

∆b = ψm ◦ b,

Hess b = ψd ◦ b(Id− e1 ⊗ e1) where e1 := ∇b
|∇b| ,

(0.0.1)

for suitable functions ψm, ψd : M → R. In this case it is easy to see that
M ∼ R×w N where:

-) the smooth manifold N is given by N := b−1({0});

-) denoting with Pr(x) the point along the gradient �ow trajectory of
b de�ned by γ′t = ∇b(γt), γ0 = x such that Pr(x) ∈ N, the metric-
measure isomorphism sends x ∈ M to (b(x),Pr(x)) ∈ R× N;

-) the metric tensor on R×w N is given by dt2 +wd(t)(dx
′)2, where (dx′)2

is the metric on N and

wd(t) := exp
(∫ t

0

ψd(s) ds
)

;

-) the measure on R×w N is given by dL1(t)⊗wm(t)dvolN(x′), where volN
is the volume measure on N and

wm(t) := exp
(∫ t

0

ψm(s) ds
)
.
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As shown in the previous section, the strategies used to prove Theorems
0.0.2, 0.0.3, 0.0.4 and 0.0.5 are based on the same idea (with several non-
trivial technicalities):

-) in Theorem 0.0.2 the function b satis�es (0.0.1) with ψm = ψd = 0;

-) in Theorem 0.0.3 and Theorem 0.0.4 the map
√

2b satis�es (0.0.1) with
ψd = 1

t
and ψm = (N − 1)1

t
;

-) in Theorem 0.0.5 the function b satis�es (0.0.1) with ψm = N − 1 and
ψd = 1.

Our aim is then to prove that if there exists a function b which satis-
�es (0.0.1) for suitable ψd and ψm then the space splits, i.e. X is isomor-
phic as a metric measure space to the warped product R ×w X′ with warp-
ing functions wd and wm, and the measure preserving isometry is given by
x 7→ (b(x),Fl−b(x)(x)), where Fl is the (Regular Lagrangian) �ow of ∇b. In
this sense, our splitting principle can be seen as a general tool that allows to
translate the analytic information encoded in (0.0.1) into a geometric infor-
mation. The theorem can be roughly stated as follows.

Theorem 0.0.6. Let (X, d,m) be an RCD(K,N) space with K ∈ R, N ∈
[1,+∞) and supp(m) = X. Assume that there exists a function b : X → R
in H2,2

loc (X) ∩D(∆loc) which satis�es (0.0.1) for some ψd, ψm : R→ R locally
Lipschitz.

Then X is isomorphic as a metric measure space to a warped product
space R×w X′ for suitable warping functions wd, wm.

A main di�erence between our work and the previous similar results we
mentioned is that in studying how the gradient �ow of b acts on vector �elds
we have to (more) carefully distinguish between the component parallel to
∇b and the one orthogonal to it, since in the previous studies the speci�c
geometry of the problem provided some simpli�cations that are not present
here, see in particular Proposition 2.4.3.

In principle, one would like to obtain sharp informations about the RCD
property satis�ed by the quotient space X′. This, however, seems tricky to do
in our generality and our results in this direction are sub-optimal: we prove,
under quite general assumptions on the warping functions, that if the original
space is RCD(K,N), then so is the quotient one. In particular, and in line
with [CD+], we do not see an improving in the upper dimension bound. It
seems that to obtain this a more careful analysis of the Bochner inequality -
akin to that in [K] - on warped spaces is needed, but this is outside the scope
of this work.
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We conclude with two applications that in the smooth setting are due to
P. Li and J. Wang (see [LW01] and [LW02]): in those works they studied
complete manifolds with positive spectrum of the Laplacian, reaching two
splitting-type theorems depending on the number (and volume) of ends of
the space.

Roughly speaking, an end is a minimal unbounded connected component
of X \K for a certain compact K: for instance, RN with N ≥ 2 has only one
end, the line R has two ends, the space of lines on R2 passing through the
origin with rational angular coe�cient has in�nite ends.

While the volume of an end obviously depends on the compact K, its
�niteness does not: if an end has in�nite volume with respect to the compact
K then it has in�nite volume with respect to every compact K′ ⊃ K.

The �rst theorem, whose smooth version can be found in [LW01], is the
following. It states that if the �rst eigenvalue of the Laplacian is strictly
positive (more precisely greater or equal to N −2 with N ≥ 3) and the space
has more than one end with in�nite volume then the space splits.

Theorem 0.0.7. Let (X, d,m) be an RCD(−(N − 1), N) space with N ≥ 3
and supp(m) = X, and assume that the �rst eigenvalue of the Laplacian λ1

is ≥ N − 2. Then one of the following holds:

i) X has only one end with in�nite volume;

ii) X is isomorphic as metric measure space to a warped product space
R×wX′, where X′ is a compact RCD(−(N−1), N) space and the warping
functions are

wd(t) := cosh(t) and wm(t) := coshN−1(t).

Moreover, in this case λ1 = N − 2.

The idea of the proof of this theorem is similar to its smooth version, but,
as usually happens, translating the proof in a more general case produces
some technical di�culties. The main di�erences between the two cases are
the following:

-) to construct a non-constant bounded harmonic function on X (see Sec-
tion 3.3) we need the Gauss-Green formula in the non-smooth setting
(proved in [BPS]), and this requires a cautious work on sets with �nite
perimeter (see Theorem 3.3.6);

-) as in the smooth case the rigidity comes from an equality in the Bochner
inequality: in proving this Li and Wang use the fact that the Laplacian
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is the trace of the Hessian, and this is not true in a generic RCD(K,N)
space (as proved in [Han], this holds if and only if the dimension of the
space is equal to N); this problem is solved using a more general Kato-
type inequality and an improved version of the Bochner inequality;

-) another key point is that, given d|du| ‖ du, we have that locally |du| =
ϕ◦u: in the smooth case this is pretty simple to see, in the non-smooth
setting the proof is much more involved;

-) in proving that the quotient space X′ is RCD(K ′, N ′) our argument
does not provide the best constants K ′, N ′.

Let M be an N -dimensional Riemannian manifold with Ricci curvature
bounded from below by K < 0. Then Cheng's Theorem states that the �rst
eigenvalue of the Laplacian λ1 satis�es λ1 ≤ −(N−1)K

4
. The same estimate

holds in RCD(K,N) spaces, so the second theorem we are going to prove (see
[LW02] for its smooth version) studies the case in which λ1 is the maximum
admissible. Assuming that N > 3, from Theorem 0.0.7 it follows that X has
only one end with in�nite volume; the theorem states that if it has also (at
least) an end with �nite volume then the space splits.

Theorem 0.0.8. Let (X, d,m) be an RCD(−(N − 1), N) space with N > 3
and supp(m) = X, and assume that the �rst eigenvalue of the Laplacian λ1

is equal to (N−1)2

4
. Then one of the following holds:

i) X has only one end;

ii) X is isomorphic as metric measure space to a warped product space R×w
X′, where X′ is a compact RCD(0, N) space and the warping functions
are

wd(t) := et and wm(t) := e(N−1)t.

Its proof is pretty similar to the proof of Theorem 0.0.7. We note that in
this case we can, arguing as in [CD+], improve the bound on the curvature
of the quotient space (but still not improving the bound on the dimension).

Plan of the work

In Chapter 1 we recall the de�nitions of all the instruments we need in order
to prove the general splitting principle (Theorem 0.0.6) and their properties.

We start with some basic notations on metric measure spaces in Section
1.1. In Section 1.2 we see how to de�ne Sobolev spaces in metric measure
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spaces via test plans and the modulus of the distributional di�erential of
Sobolev functions, the so called minimal weak upper gradient. The aim of
Section 1.3 is to introduce a �rst order di�erential calculus on metric measure
spaces; to do that we rely on the concept of normed modules, using it to de�ne
the cotangent module (equipped with a di�erential operator) and its dual,
the tangent module (equipped with the gradient). We conclude this section
de�ning the divergence operator as the adjoint of the di�erential and the
Laplacian as the divergence of the gradient. In Section 1.4 we introduce the
concept of pullback of 1-forms and of speed of test plans.

In Section 1.5 we give various de�nitions of RCD condition on metric
measure spaces: one based on the di�erential calculus built in Sections 1.2
and 1.3, and others based on optimal transport (di�erent concepts of CD
condition), then we see how all these are related to each other. In Section
1.6 we see how the RCD condition allows us to de�ne a second order calculus
on metric measure spaces, i.e. the space W 2,2, the Hessian and the covariant
derivative.

Given that theory of di�erential calculus, we are ready to recall the two
main instruments that we are going to use in the proof of Theorem 0.0.6:
warped product spaces and Regular Lagrangian Flows. In Section 1.7 we
recall the de�nition of warped product spaces and see how the Sobolev space
of a product space behave with respect to the Sobolev spaces of the quo-
tient spaces. Then we see when the Sobolev-to-Lipschitz property passes to
the product. Section 1.8 contains the de�nition and the main properties of
Regular Lagrangian Flows.

In Chapter 2 we prove Theorem 0.0.6 and a result about the RCD condi-
tion of the quotient space X′.

In Section 2.1 we see how to construct a Busemann function b (a function
which satis�es (0.0.1)) starting with a regular enough function with a "good"
Hessian. This will be useful in the applications, since usually an equality in
the Bochner inequality gives a function with a "good" Hessian in that way.
In Section 2.2 we �x the assumptions and the notations that we are going
to use in the course of the proof. In Section 2.3 we study how the measure
changes if pushed forward with the �ow of ∇b and use it to deduce how
the disintegrated measure on the level sets of b behaves. In Section 2.4 we
see how the �ow of ∇b changes the distances. From this follows a relation
between the Sobolev space of X and the one of X′. Using the results of the last
two sections, in Section 2.5 we prove that the map T(x) := (b(x),Fl−b(x)(x))
is a measure preserving isometry, and we conclude with a (less general and
sub-optimal) result about the RCD condition of X′.

Chapter 3 contains two applications of the general splitting principle:
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Theorems 0.0.7 and 0.0.8.
We start with two more sections of preliminary facts: in Section 3.1 we

de�ne harmonic functions and a more general (but coherent with respect to
the one de�ned before) concept of Laplacian, and use it to state an improved
version of the Bochner inequality, while in Section 3.2 we recall brie�y the
theory of quasi-continuous functions and quasi-continuous vector �elds in
order to state a Gauss-Green formula in the non-smooth setting.

In Section 3.3 we de�ne ends and see how the volume of an end is related
with the existence of non-constant bounded harmonic functions on it. Using
this result we construct the two non-constant harmonic functions ("bounded"
assuming the hypotheses of Theorem 0.0.7 and "positive" assuming the hy-
potheses of Theorem 0.0.8) that will lead to the proofs of the two main
theorems.

In Section 3.4 we prove Theorem 0.0.7 starting, in Section 3.4.1 proving
that the bounded harmonic function u constructed in Section 3.3 satis�es
(0.0.1), then, in Section 3.4.2 we prove that its minimal weak upper gradient
is a composite function of u, and in Section 3.4.3 we conclude the proof using
Theorem 0.0.6.

Section 3.5 contains the proof of Theorem 0.0.8, which is pretty similar
to the one of Theorem 0.0.7, but in this case our result about the RCD
condition of the quotient space does not apply. However this precise case has
been studied in [CD+], so we recall brie�y their method in Section 3.5.2.
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Chapter 1

Preliminaries

In this chapter we recall the de�nitions, notations and known results we will
use along all the work, starting with di�erential calculus in metric measure
spaces and the de�nition of RCD space and concluding with some properties
of warped product spaces and Regular Lagrangian Flows.

1.1 Notation on metric measure spaces

As we will always work with metric measure spaces, the aim of this section
is to �x some basic notation on them.

We start considering a metric space (X, d).
A curve on X is an element of C([0, 1],X), and for a curve γ ∈ C([0, 1],X)

we will usually indicate with γt the point γ(t). The evaluation map et on the
set of curves is de�ned as follows.

De�nition 1.1.1 (Evaluation map). Let (X, d) be a metric space. For every
t ∈ [0, 1], we de�ne the map et : C([0, 1],X)→ X as et(γ) := γt.

We recall now the de�nitions of metric speed of a curve and absolutely
continuous curve.

De�nition 1.1.2 (Metric speed). Let (X, d) be a metric space. For every
γ ∈ C([0, 1],X) and for every t ∈ [0, 1] we de�ne the metric speed of γ at the
time t as

|γ̇t| :=

lim
h→0

d(γt+h, γt)

h
if such limit exists;

+∞ otherwise.

De�nition 1.1.3 (Absolutely continuous curve). Let (X, d) be a metric
space. We say that a curve γ is asbolutely continuous (AC) if there exists

17
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f ∈ L1([0, 1]) such that

d(γt, γs) ≤
∫ s

t

f(r) dr (1.1.1)

for every t, s ∈ [0, 1] with t < s.

It is possible to see that if γ is absolutely continuous then its metric
speed is �nite for a.e. t ∈ [0, 1] and it is an admissible function for (1.1.1).
Moreover, for every other f satisfying (1.1.1) it holds |γ̇t| ≤ f(t) for a.e.
t ∈ [0, 1].

Other key instruments are the kinetic energy of a curve and the concept
of geodesic curve.

De�nition 1.1.4 (Kinetic energy). We de�ne the operator kinetic energy
KE : C([0, 1],X)→ [0,+∞] as

KE(γ) :=


1

2

∫ 1

0

|γ̇t|2 dt if γ is absolutely continuous;

+∞ otherwise.

De�nition 1.1.5 (Geodesic curve). A geodesic is a curve γ which satis�es

1

2
d(γ0, γ1)2 = KE(γ),

or, equivalently,
d(γt, γs) = |s− t|d(γ0, γ1)

for every t, s ∈ [0, 1].
We indicate with Geo(X) the set of geodesics on X.

Let (X, dX) and (Y, dY) be metric spaces, we will indicate with LIP(X,Y)
the set of Lipschitz continuous functions (we omit Y if the codomain is R),
and for f ∈ LIP(X,Y) we will denote with Lip(f) its Lipschitz constant
and with lip(f)(x) its local Lipschitz constant at x, given by the following
de�nition.

De�nition 1.1.6 (Local Lipschitz constant). Let (X, dX) and (Y, dY) be met-
ric spaces and let f ∈ LIP(X,Y). The local Lipschitz constant of f is the
function lip(f) : X→ [0,+∞) de�ned as

lip(f)(x) :=

0 if x is an isolated point,

lim sup
y→x

dY(f(x), f(y))

dX(x, y)
otherwise.
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Moreover we de�ne the asymptotic Lipschitz constant lipa(f) : X→ [0,+∞)
as

lipa(f)(x) :=

0 if x is an isolated point,

lim sup
y,z→x

dY(f(z), f(y))

dX(z, y)
otherwise.

We will indicate with LIPloc(X,Y) the set of locally Lipschitz functions
and with LIPbs(X,Y) the set of Lipschitz functions with bounded support.

Let now (X,m) be a measure space.
We indicate with L0(m) the space of measurable functions on X modulo

m-a.e. equality.

De�nition 1.1.7 (Pushforward measure). Let (X,AX) and (Y,AY) be two
measurable spaces and let ϕ : X → Y be a measurable function. Given any
measure µ on (X,AX), we de�ne the pushforword measure ϕ∗µ on (Y,AY)
as

(ϕ∗µ)(B) := µ
(
ϕ−1(B)

)
for every B ∈ AY.

Remark 1.1.8. For every f ∈ L1(ϕ∗µ) it holds the change of variable for-
mula ∫

f d(ϕ∗µ) =

∫
f ◦ ϕ dµ. (1.1.2)

�

As we said, the "right" objects to generalize manifolds with Ricci curva-
ture bounded from below are metric measure spaces, which are complete and
measurable metric spaces equipped with a non-negative Borel measure �nite
on balls.

De�nition 1.1.9 (Metric measure space). A triple (X, d,m) is a metric mea-
sure space if

-) (X, d) is a complete and separable metric space;

-) m is a non-negative Borel measure on X which is �nite on balls.
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1.2 Sobolev space on metric measure spaces

From the end of the last century several notions of Sobolev space on metric
measure spaces has been introduced.

The �rst approach is due to P. Hajªasz in [Haj], who de�ned the Sobolev
space W 1,p(X) in the following way: f ∈ W 1,p(X) if f ∈ Lp(m) and there
exists g ∈ Lp(m) such that for m-a.e. x, y it holds

|f(x)− f(y)| ≤ d(x, y)(g(x) + g(y)).

The "module of the di�erential of f" is de�ned as the unique g with minimal
Lp-norm that satis�es the previous inequality. This de�nition is consistent
with the classical de�nition of Sobolev spaces in Rn, but that notion of dif-
ferential does not satisfy a locality property, i.e. it may depend not only on
the local behaviour of the function.

A di�erent approach is given by J. Cheeger in [C], who de�ned Sobolev
functions using the concept of upper gradients introduced in [HeKo]: a Borel
function g is an upper gradient of f provided that for every absolutely con-
tinuous curve γ : [0, 1] → X the curve f ◦ γ is absolutely continuous and
satis�es |(f ◦ γ)′t| ≤ g(γt)|γ̇t|.

Cheeger's strategy is then to de�ne an energy functional ECh : L2 →
[0,+∞] as

ECh(f) := inf lim inf
n→+∞

1

2

∫
g2
n dm,

where the in�mum is taken among all the sequences (gn)n∈N such that there
exists a sequence fn → f in L2(m) for which gn is an upper gradient of fn for
every n ∈ N. The Sobolev space W 1,2 is de�ned as the space of L2 functions
with �nite ECh energy.

Inspired by Cheeger's approach, in [AGS14a] is proposed a de�nition via
an "approximation with Lipschitz functions" argument: noticing that for a
Lipschitz function f the maps lip(f) and lipa(f) are upper gradients, one can
de�ne the energy functional E∗ : L2(m)→ [0,+∞] as

E∗(f) := inf lim inf
n→+∞

1

2

∫
lip2(f) dm,

where the in�mum is taken among all the sequences (fn)n∈N ⊂ LIP(X) such

that fn
L2(m)−−−→ f , then the Sobolev space W 1,2(X) as the space of L2(m)

functions with �nite energy E∗ (one can argue similarly with the asymptotic
Lipschitz constant lipa instead of lip in the de�nition of E∗).
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In [Sha] N. Shanmugalingam gave a notion of Sobolev space based on
how functions behave on (a good class of) curves. This approach relies on
the concept of 2-modulus of a family of curves.

A similar approach, based on the concept of test plan instead of 2-moduli,
is given by L. Ambrosio, N. Gigli and G. Savaré in [AGS14a].

The approaches given by Cheeger, Shanmugalingam, Ambrosio, Gigli and
Savaré are consistent with the classical de�nition of Sobolev space in Rn,
and their de�nition of "modulus of the di�erential" are "local" (Proposition
1.2.11). Moreover, a consequence of a deep approximation result contained
in [AGS13] (which we recall at the end of this section, Theorem 1.2.16) is
the equivalence between these approaches.

All our work relies on the de�nition of Sobolev space via test plan, so
the aim of this section is to recall the basic de�nitions and �rst properties of
Sobolev functions in this sense.

We start recalling the de�nition of test plans, which are probability mea-
sures on the space of absolutely continuous curves that, in a certain sense,
does not overlap too much.

De�nition 1.2.1 (Test plan). Let (X, d,m) be a metric measure space. A
probability measure π ∈P(C([0, 1],X)) is said to be a test plan on X provided
the following two properties are satis�ed:

i) there exists a constant C > 0 such that (et)∗π ≤ Cm for every t ∈ [0, 1];

ii) it holds that
∫ 1

0

∫
|γ̇t|2dπ(γ) dt < +∞.

We are now ready to give the de�nition of weak upper gradient of a
function f via test plans, and with it the de�nition of Sobolev class S2(X),
which in the smooth setting is the class of functions with L2 weak derivative.

De�nition 1.2.2 (Weak upper gradient). Let (X, d,m) be a metric measure
space and let f : X→ R be a Borel function. Then we say that a non-negative
function G ∈ L2(m) is a weak upper gradient of f if for every test plan π on
X it holds ∫

|f(γ1)− f(γ0)| dπ(γ) ≤
∫ 1

0

∫
G(γt)|γ̇t| dπ(γ)dt.

De�nition 1.2.3 (Sobolev class). The Sobolev class S2(X) is de�ned as the
space of all Borel functions f : X→ R that admit a weak upper gradient.

An easy consequence of this de�nition and Fatou's Lemma is the lower
semicontinuity of weak upper gradients.
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Proposition 1.2.4. Let (fn)n ⊂ S2(X) and f : X → R Borel such that
fn(x) → f(x) for m-a.e. x ∈ X. For every n ∈ N let Gn be a weak upper
gradient of fn and assume that Gn ⇀ G weakly in L2(m) for some G ∈ L2(m).
Then f ∈ S2(X) and G is a weak upper gradient of f .

A consequence of Proposition 1.2.4 is that the set of weak upper gradients
of a function f ∈ S2(X) is closed and convex in L2(m), then there exists a
unique weak upper gradient with minimal L2(m)-norm.

De�nition 1.2.5 (Minimal weak upper gradient). Let f ∈ S2(X). Then the
unique weak upper gradient with minimal L2(m)-norm is called minimal weak
upper gradient of f and it is denoted by |Df | ∈ L2(m).

The minimal weak upper gradient of an S2 map f is the map that be-
haves like the modulus of the distributional di�erential of f . Note that the
structures we have at this moment are not enough to give a de�nition of
di�erential of f , in order to do so we need the theory of normed modules
that we will introduce in the next section, but the modulus of the di�erential
of functions is enough to de�ne the Sobolev space W 1,2(X).

De�nition 1.2.6 (Sobolev space). Let (X, d,m) be a metric measure space.
The Sobolev space W 1,2(X) is the set of L2(m) functions that admit a weak
upper gradient, i.e. W 1,2(X) := L2(m) ∩ S2(X).

For f ∈ W 1,2(X) we de�ne its W 1,2(X)-norm as

‖f‖W 1,2(X) :=
√
‖f‖2

L2(m) + ‖Df‖2
L2(m).

Remark 1.2.7. For every f ∈ LIPbs(X) it holds f ∈ S2(X) and

|Df | ≤ lip(f) ≤ lipa(f) ≤ Lip(f) m-a.e. in X. (1.2.1)

�

Remark 1.2.8. The Sobolev space W 1,2(X) with the norm ‖ · ‖W 1,2(X) is a
Banach space, but in general it is not a Hilbert space. For instance if X
is a smooth Finsler manifold then W 1,2(X) is Hilbert if and only if X is a
Riemannian manifold. �

The previous Remark motivates the de�nition of in�nitesimally Hilbertian
metric measure space.

De�nition 1.2.9 (In�nitesimal Hilbertianity). The metric measure space
(X, d,m) is said to be in�nitesimally Hilbertian if

(
W 1,2(X), ‖ · ‖W 1,2(X)

)
is a

Hilbert space.
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Remark 1.2.10. In all this work we heavily rely on the in�nitesimal Hilber-
tianity of the space since, as we said in the Introduction, it is the hypothesis
that allows to exclude Finsler manifolds and allows us to de�ne a second
order di�erential calculus on metric measure spaces. �

The minimal weak upper gradient obeys to some natural calculus rules
such as a locality property, the chain rule and the Leibniz rule.

Proposition 1.2.11 (Locality for the minimal weak upper gradient). Let
f, g ∈ S2(X). Then |Df | = |Dg| holds m-a.e. on {f = g}.

Proposition 1.2.12 (Chain rule for the minimal weak upper gradient). Let
f ∈ S2(X). If a Borel set N ⊂ R is L1-negligible then |Df | = 0 holds m-a.e.
on f−1(N).

Moreover, if ϕ ∈ LIP(R), then ϕ ◦ f ∈ S2(X) and

|D(ϕ ◦ f)| = |ϕ′| ◦ f |Df | (1.2.2)

holds m-a.e..

Proposition 1.2.13 (Leibniz rule for the minimal weak upper gradient).
Let f, g ∈ S2(X) ∩ L∞(m). Then fg ∈ S2(X) ∩ L∞(m) and the inequality

|D(fg)| ≤ |f ||Dg|+ |g||Df |

holds m-a.e. on X.

Thanks to Proposition 1.2.11, we can de�ne the local Sobolev class S2
loc(X)

and, with that, the local Sobolev space W 1,2
loc (X).

De�nition 1.2.14 (Local Sobolev class). Let (X, d,m) be a metric measure
space and let f : X → R be a Borel function. We say that f ∈ S2

loc(X)
provided that for every bounded Borel set B ⊂ X there exists a function
fB ∈ S2(X) such that fB = f holds m-a.e. in B.

For every f ∈ S2
loc(X) we de�ne its minimal weak upper gradient as the

function (unique up to m-negligible sets) |Df | such that for every bounded
Borel set B and every function fB ∈ S2(X) which coincides with f on B it
holds |Df | = |DfB|.

De�nition 1.2.15 (Local Sobolev space). Let (X, d,m) be a metric measure
space. The local Sobolev space W 1,2

loc (X) is de�ned as S2
loc(X) ∩ L2

loc(m).
Moreover, given U ⊂ X open, we de�neW 1,2

0 (U) as the closure inW 1,2(X)
of LIPbs(U).
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We conclude this section with the following approximation theorem: its
proof can be found in [AGS13] (see also [AGS14a]).

Theorem 1.2.16. Let (X, d,m) be a metric measure space. Then Lipschitz
functions on X are dense in energy inW 1,2(X), namely for every f ∈ W 1,2(X)
there exists a sequence (fn)n ⊂ LIP(X) ∩ L2(m) such that

fn
L2

−→ f, and lipa(fn)
L2

−→ |Df |. (1.2.3)

An easy consequence of (1.2.1) and (1.2.3) (and the minimality of the
minimal weak upper gradient) is that, given f and (fn)n as in Theorem
1.2.16, also the sequences (lip(fn))n and (|Dfn|)n converge in L2(m) to |Df |.

1.3 Normed modules and �rst order di�erential

calculus

In the previous section we recalled the de�nition of Sobolev space on a metric
measure space de�ning what the "modulus of the di�erential" of a function
is. In order to develop a tensor calculus on metric measure spaces we recall
now a de�nition of "tangent/cotangent bundle" in the non-smooth setting
given by N. Gigli in [G18b].

More precisely, it generalizes the concept of "space of L2 sections of a
normed vector bundle", and the idea, inspired by [W], is to consider moduli
over the commutative ring L∞(X) with a pointwise norm operator.

De�nition 1.3.1 (L2-normed L∞-module). Let (X, d,m) be a metric mea-
sure space. An L2(m)-normed L∞(m)-module is a quadruple (M , ‖·‖M , ·, |·|)
with the following properties:

i) (M , ‖ · ‖M ) is a Banach space;

ii) the multiplication by L∞(m) functions · : L∞(m) × M → M is a
bilinear map satisfying

f · (g · v) = (fg) · v for every f, g ∈ L∞(m) and v ∈M ,

1̂ · v = v for every v ∈M ,

where 1̂ is the function identically equal to 1 on X;

iii) the pointwise norm | · | : M → L2(m) satis�es

|v| ≥ 0 holds m-a.e. for every v ∈M ,

|f · v| = |f ||v| holds m-a.e. for every f ∈ L∞(m) and v ∈M ,

‖v‖M = ‖|v|‖L2(m) for every v ∈M .
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A variant of this de�nition which does not rely on integrability hypotheses
is the following.

De�nition 1.3.2 (L0-normed L0-module). An L0(m)-normed L0(m)-module
is a quadruple (M 0, τ, ·, | · |) with the following properties:

i) (M 0, τ) is a topological vector space;

ii) the multiplication by L0 functions · : L0(m)×M 0 →M 0 is a bilinear
map satisfying

f · (g · v) = (fg) · v, and 1̂ · v = v

for every f, g ∈ L0(m) and v ∈M 0, where 1̂ is the functions identically
equal to 1;

iii) the pointwise norm | · | : M 0 → L0(m) satis�es

|v| ≥ 0 m-a.e. for every v ∈M 0,

|f · v| = |f ||v| m-a.e. for every f ∈ L0(m) and v ∈M 0;

iv) the topology τ is induced by the map dM 0 : M 0×M 0 → [0,+∞) de�ned
by

dM 0(v, w) :=

∫
|v − w| ∧ 1 dm′

for some m′ ∈P(X) with m� m′ � m.

The concepts of L2-normed L∞-module and L0-normed L0-module are
strictly related, indeed they can be seen one as the restriction/completion of
the other thanks to the following propositions.

Proposition 1.3.3 (L2-restriction). Let M 0 be an L0-normed L0-module
and let M be de�ned as

M :=
{
v ∈M 0 : |v| ∈ L2(m)

}
.

Then M with the norm ‖ · ‖M := ‖| · |‖L2(m) and the product and pointwise
norm induced by the ones of M 0 is an L2-normed L∞-module.

Proposition 1.3.4 (L0-completion). Let M be an L2-normed L∞-module.
Then there exists a unique couple (M 0, ι) where M 0 is an L0-normed L0-
module and the map ι : M →M 0 is a linear operator with dense image that
preserves the pointwise norm.

Uniqueness is intended up to unique isomorphism .
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In a very natural way we de�ne Hilbert modules and dual normed mod-
ules.

De�nition 1.3.5 (Hilbert module). Let M be an L2-normed L∞-module.
We say that M is a Hilbert module if (M , ‖ · ‖M , ) is a Hilbert space, or,
equivalently, if the pointwise norm satis�es the parallelogram rule, i.e.

|v + w|2 + |v − w|2 = 2(|v|2 + |w|2)

holds m-a.e. for every v, w ∈M .

De�nition 1.3.6 (Dual normed module). Let M be an L2-normed L∞-
module. Its dual normed module M ∗ is de�ned as the set of linear and
continuous operators L : M → L1(m) such that L(fv) = fL(v) for every
v ∈M and f ∈ L∞(m) endowed with the operator norm

‖L‖∗ := sup
‖v‖M≤1

‖L(v)‖L1(m)

and the pointwise norm

|L|∗ := ess-sup
v∈M ,|v|≤1 m-a.e.

L(v).

It can be proved that the dual normed module just de�ned is an L2-
normed L∞-module.

Tangent and cotangent modules, that we will de�ne in the next section,
will be the dual one of the other. Moreover their Hilbertianity will be related
to the in�nitesimal Hilbertianity of the space.

1.3.1 Cotangent and tangent modules

Thanks to the next existence and uniqueness theorem we de�ne the cotangent
module and the di�erential operator on a generic metric measure space.

Theorem 1.3.7 (Cotangent Module). Let (X, d,m) be a metric measure
space. Then there exists a unique couple (L2(T ∗X), d), where L2(T ∗X) is an
L2-normed L∞-module and d : S2(X) → L2(T ∗X) is a linear operator, such
that the following conditions hold:

i) |df | = |Df | holds m-a.e. for every f ∈ S2(X);

ii) L2(T ∗X) is generated by {df : f ∈ S2(X)}.

We shall refer to L2(T ∗X) as cotangent module and to d as di�erential.
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We will indicate with L0(T ∗X) the L0-completion of L2(T ∗X).

The di�erential just de�ned inherits from the weak upper gradient similar
calculus rules.

Proposition 1.3.8 (Locality for the di�erential). Let f, g ∈ S2(X). Then
df = dg holds m-a.e. on {f = g}.

Proposition 1.3.9 (Chain rule for the di�erential). Let f ∈ S2(X). If a
Borel set N ⊂ R is L1-negligible then df = 0 holds m-a.e. on f−1(N).

Moreover, if ϕ ∈ LIP(R), then ϕ ◦ f ∈ S2(X) and d(ϕ ◦ f) = ϕ′ ◦ fdf .

Proposition 1.3.10 (Leibniz rule for the di�erential). Let f, g ∈ S2(X) ∩
L∞(m). Then fg ∈ S2(X) ∩ L∞(m) and d(fg) = fdg + gdf .

We de�ne now the tangent module, which will be the space of "vector
�elds", as the dual of the cotangent module (as in De�nition 1.3.6).

De�nition 1.3.11 (Tangent module). Let (X, d,m) be a metric measure
space. The tangent module L2(TX) of X is de�ned as the dual normed module
of L2(T ∗X). Its elements are called vector �elds.

Similarly to the de�nition of L0(T ∗X), we indicate with L0(TX) the L0-
completion of L2(TX).

In order to de�ne the gradient of a Sobolev function we need to assume
that the space is ini�nitesimally Hilbertian and combine the two following
results: the �rst is a Riesz representation theorem for normed modules, the
second is the anticipated relation between Hilbert modules and in�nitesimal
Hilbertianity.

Theorem 1.3.12 (Riesz). Let M be a Hilbert L2-normed L∞-module. Then
the map M →M ∗ which sends v to 〈·, v〉 is an isomorphism of modules.

Proposition 1.3.13 (In�nitesimal Hilbertianity). Let (X, d,m) be a metric
measure space. Then X is in�nitesimally Hilbertian if and only if L2(TX)
and L2(T ∗X) are Hilbert modules.

The gradient can then be de�ned, in in�nitesimally Hilbertian spaces, as
the dual of the di�erential.

De�nition 1.3.14 (Gradient). Let (X, d,m) be an in�nitesimally Hilbertian
metric measure space. Then we denote by ∇f ∈ L2(TX) the element cor-
responding to df ∈ L2(T ∗X) via the Riesz isomorphism. We call ∇f the
gradient of f .
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Remark 1.3.15. In�nitesimal Hilbertianity is not really necessary to de�ne
the gradient of a function, indeed given f ∈ S2(X) the gradient of f can
be de�ned as the set of vector �elds v such that df(v) = |df |2 = |v|2 holds
m-a.e.. Gradients de�ned like that obey to good calculus rules, but in general
they are not a singleton, and even if they are they may not depend linearly on
f . It can be proved that the space is in�nitesimally Hilbertian if and only if
for every f ∈ S2(X) the gradient of f is a singleton (whose element is denoted
by ∇f) and for every f, g ∈ W 1,2(X) the formula ∇(f + g) = ∇f +∇g holds
m-a.e. in X. In this case this gradient is equivalent to the one de�ned in
De�nition 1.3.14. �

From the calculus rules for the di�erential immediately follow the ones
for the gradient.

Proposition 1.3.16 (Chain rule for the gradient). Let X be an in�nitesi-
mally Hilbertian metric measure space and let f ∈ S2

loc(X) and ϕ ∈ LIPloc(R).
Then ∇(ϕ ◦ f) = ϕ′ ◦ f∇f .

Proposition 1.3.17 (Leibniz rule for the gradient). Let X be an in�nitesi-
mally Hilbertian metric measure space and let f, g ∈ S2

loc(X)∩L∞loc(m). Then
∇(fg) = f∇g + g∇f .

1.3.2 Divergence and Laplace operators

We de�ne the divergence operator as the adjoint of the di�erential.

De�nition 1.3.18 (Divergence). Let (X, d,m) be a metric measure space,
U ⊂ X open and v ∈ L0(TX). We say that v ∈ D(divloc, U) provided there is
f ∈ L2

loc(U) such that ∫
dg(v) dm = −

∫
fg dm

for every g ∈ W 1,2
0 (U).

In this case the function f , that is easily seen to be uniquely determined,
is denoted by div(v). In the case U = X we simply write v ∈ D(divloc).

The divergence operator just de�ned satis�es a locality property and a
Leibniz rule.

Proposition 1.3.19 (Locality for the divergence). Let v, w ∈ D(divloc, U)
and assume that v = w holds m-a.e. on an open set Ω ⊂ U . Then div(v) =
div(w) holds m-a.e. on Ω.
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Proposition 1.3.20 (Leibniz rule for the divergence). Let v ∈ D(divloc, U)
and f ∈ LIP(U) ∩ L∞(U). Then fv ∈ D(divloc, U) and

div(fv) = df(v) + fdiv(v)

holds m-a.e. in U .

The Laplacian operator can be de�ned as the divergence of the gradi-
ent. We note that, in order to de�ne the Laplace operator, in�nitesimal
Hilbertianity is a necessary condition.

De�nition 1.3.21 (Laplacian). Let (X, d,m) be in�nitesimally Hilbertian,
U ⊂ X open and f ∈ W 1,2

loc (X). We say that f ∈ D(∆loc, U) provided ∇f ∈
D(divloc, U), i.e. if there is h ∈ L2

loc(X) such that∫
〈∇f,∇ϕ〉 dm = −

∫
ϕh dm

for every ϕ ∈ W 1,2
0 (U).

In this case the function h is denoted by ∆f . In the case U = X we simply
write f ∈ D(∆loc).

The Laplacian operator obviously inherits the following calculus rules
from the ones of gradient and divergence.

Proposition 1.3.22 (Chain rule for the Laplacian). Let (X, d,m) be in-
�nitesimally Hilbertian and U ⊂ X open. For every f ∈ D(∆loc, U)∩LIP(U)
and ϕ ∈ C2(R) with ϕ′′ ∈ L∞(R) it holds ϕ ◦ f ∈ D(∆loc, U) and

∆(ϕ ◦ f) = ϕ′ ◦ f∆f + ϕ′′ ◦ f |∇f |2. (1.3.1)

Proposition 1.3.23 (Leibniz rule for the Laplacian). Let (X, d,m) be in-
�nitesimally Hilbertian and U ⊂ X open. Let f, g ∈ D(∆loc, U) ∩ LIP(U) ∩
L∞(U). Then fg ∈ D(∆loc, U) and

∆(fg) = f∆g + g∆f + 2〈∇f,∇g〉. (1.3.2)

Remark 1.3.24. In general the set D(∆loc) ∩ LIP(X) could contain only
constant functions. However this does not happen in the RCD setting thanks
to the Bakry-Émery inequality and the regularizing properties of the heat
�ow. For the details see for instance [AGS14b]. �
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1.4 Pullback of 1-forms and speed of a test plan

The aim of this section is to give a de�nition of speed of a test plan and a
chain rule for it.

All the proofs of this section (except where indicated otherwise) can be
found in [G18b] and [G18a].

We start de�ning maps of bounded compression, i.e. maps for which the
push-forward measure (De�nition 1.1.7) does not concentrate the mass too
much, and pullback modules with respect to maps of bounded compression.

De�nition 1.4.1 (Maps of bounded compression). Let (X,mX) and (Y,mY)
be measured spaces. We say that ϕ : Y → X is a map of bounded compression
if there exists C > 0 such that ϕ∗mY ≤ CmX.

The least such constant C is called compression constant and is denoted
by Comp(ϕ).

The pullback module is de�ned via the following existence and uniqueness
theorem.

Theorem 1.4.2 (Pullback module). Let (X, dX,mX) and (Y, dY,mY) be met-
ric measure spaces. Let M be an L2(mX)-normed L∞(mX)-module and let
ϕ : Y → X be a map of bounded compression. Then there exists a unique
couple (ϕ∗M , [ϕ∗·]) where ϕ∗M is an L2(mY)-normed L∞(mY)-module and
[ϕ∗·] : M → ϕ∗M is a linear and continuous operator such that

i) |[ϕ∗v]| = |v| ◦ ϕ holds mY -a.e. for every v ∈M ;

ii) the set {[ϕ∗v] : v ∈M } generates ϕ∗M .

We note that for every test plan π the evaluation map et has bounded
compression (by item (i) of De�nition 1.2.1), then Theorem 1.4.2 guarantees
the existence and uniqueness of the pullback module L2(TX). We de�ne the
speed of a test plan as follows.

Theorem 1.4.3 (Speed of a test plan). Let (X, d,m) be an in�nitesimally
Hilbertian metric measure space and let π be a test plan on X. Then for a.e.
t ∈ [0, 1] there exists a unique π′t ∈ e∗tL2(TX) such that for every f ∈ W 1,2(X)
it holds

L1(π)− lim
h→0

f ◦ et+h − f ◦ et
h

= [e∗tdf ](π′t).

Moreover |π′t|(γ) = |γ̇t| for (π × L1)-a.e. (γ, t).
We shall refer to π′t as speed of π at time t.
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In order to write a sort of chain rule for the speed of test plans we need
to restrict to Lipschitz maps of bounded compression and say what their
di�erential is.

De�nition 1.4.4 (Maps of bounded deformation). Given two metric mea-
sure spaces (X, dX,mX) and (Y, dY,mY), we say that ϕ : Y → X is a map of
bounded deformation if it is both Lipschitz continuous and of bounded com-
pression.

Theorem 1.4.5 (Pullback of 1-forms). Let (X, dX,mX) and (Y, dY,mY) be
metric measure spaces and ϕ : Y → X of bounded deformation. Then there
exists a unique linear and continuous operator ϕ∗ : L2(T ∗X)→ L2(T ∗Y) such
that

i) ϕ∗df = d(f ◦ ϕ) for every f ∈ S2(X);

ii) ϕ∗(gω) = g ◦ ϕ ϕ∗ω for every g ∈ L∞(mX) and ω ∈ L2(T ∗X).

Moreover
|ϕ∗ω| ≤ Lip(ϕ)|ω| ◦ ϕ

holds mY-a.e. for every ω ∈ L2(T ∗X).

Theorem 1.4.6 (Di�erential of maps of bounded deformation). Let X and
Y be metric measure spaces with X in�nitesimally Hilbertian, and ϕ : Y →
X of bounded deformation. Then there exists a unique L∞(mY)-linear and
continuous map dϕ : L2(TY)→ ϕ∗L2(TX) such that

[ϕ∗ω](dϕ(v)) = ϕ∗ω(v)

for every v ∈ L2(TY) and ω ∈ L2(T ∗X).
Moreover, for every v ∈ L2(TY) it holds mY-a.e. that

|dϕ(v)| ≤ Lip(ϕ)|v|.

In case ϕ is invertible with inverse of bounded compression we can express
the di�erential of ϕ as a function from L2(TY) to L2(TX) denoting with
dϕ(v) the map ω 7→ (ϕ∗ω(v)) ◦ ϕ−1. The precise statement is the following.

Proposition 1.4.7. Let (X, dX,mX) and (Y, dY,mY) be two metric measure
spaces and let ϕ : Y → X be an invertible map of bounded deformation and
assume that its inverse has bounded compression. Then there exists a unique
linear continuous operator dϕ : L2(TY)→ L2(TX) such that

ω(dϕ(v)) = (ϕ∗ω(v)) ◦ ϕ−1 holds mX-a.e.



32 Chapter 1. Preliminaries

for every v ∈ L2(TY) and ω ∈ L2(T ∗X).
Moreover

|dϕ(v)| ≤ Lip(ϕ)|v| ◦ ϕ−1 holds mX-a.e.

for every v ∈ L2(TY).

We conclude this section recalling the chain rule for speeds of test plans
(for its proof see [DPG, Proposition 3.28]).

With a slight abuse of notation we still denote with F : C([0, 1],Y) →
C([0, 1],X) the map such that (F (γ))t = F (γt) for every t ∈ [0, 1] and every
γ ∈ C([0, 1],Y). Given a test plan π on Y, assuming that F is of bounded
deformation, it is easy to see that F∗π is a test plan on X.

Let F : Y → X be of bounded deformation, invertible and with inverse
of deformation and let π be a test plan on Y. For every t ∈ [0, 1] the
di�erential dF : L2(TY) → L2(TX) de�ned in Proposition 1.4.7 naturally
induces a map e∗tL

2(TY) → e∗tL
2(TX), i.e. the unique linear and continuos

map, still denoted by dF , such that

dF (e∗tv) = e∗t (dF (v)) for every v ∈ L2(TY),

dF (gV ) = g ◦ FdF (V ) for every V ∈ e∗tL2(TY), g ∈ L∞(π).

Proposition 1.4.8 (Chain rule for speeds). Let F : X → Y be a map of
bounded deformation, invertible and with inverse with bounded deformation.
Then, for every test plan π on X we have

(F∗π)′t = (dF )(π′t), for a.e. t ∈ [0, 1].

1.5 RCD spaces

In this section we show the two main intrinsic approaches to de�ne the Rie-
mannian Curvature-Dimension condition:

-) via optimal transport and convexity of the entropy;

-) via di�erential calculus and Bochner inequality.

For the second approach, due to L. Ambrosio, N. Gigli and G. Savaré (see
[AGS15]) we already recalled all the needed notions in the previous sections.

De�nition 1.5.1 (RCD space via Bochner inequality). Let N ∈ [1,+∞) and
K ∈ R. We say that the metric measure space (X, d,m) is an RCD(K,N)
space if the following properties are satis�ed:
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-) the space (X, d,m) is in�nitesimally Hilbertian;

-) there exists a constant C > 0 such that m(Br(x)) ≤ eCr
2
for every

r > 0 and for every x ∈ X;

-) the Sobolev-to-Lipschitz property holds, i.e. every f ∈ W 1,2(X) with
|Df | ≤ C admits a C-Lipschitz representative;

-) for every f ∈ D(∆) such that ∆f ∈ W 1,2(X) and every g ∈ D(∆) ∩
L∞(m) such that g ≥ 0 and ∆g ∈ L∞(m) the weak Bochner inequality
holds, i.e.

1

2

∫
|Df |2∆g dm ≥

∫ [
(∆f)2

N
+ 〈∇f,∇∆f〉+K|Df |2

]
g dm.

(1.5.1)

The same de�nition can be extended to the case N = +∞ simply deleting
the term (∆f)2

N
in the right-hand-side of (1.5.1).

We talk about the �rst approach in the following section.

1.5.1 Wasserstein distance and CD conditions

In this section we recall some basic tools of optimal transport, use them to
give three de�nitions of curvature-dimension condition (CD/CD∗/CDe) and
see how they are related. They were introduced by K.-T. Sturm, J. Lott
and C. Villani (CD) in [S06a], [S06b], [LV], by K. Bacher and K.-T. Sturm
(CD∗) in [BaSt] and by M. Erbar, K. Kuwada and K.-T. Sturm (CDe) in
[EKS]. The "R" to obtain RCD spaces were added by L. Ambrosio, N. Gigli
and G. Savaré in [AGS14b] in the case N = +∞ and by N. Gigli in [G15]
for the �nite dimensional case, and it adds the requirement that the space is
in�nitesimally Hilbertian.

We start de�ning the space of measures with �nite second moment and
the Wasserstein distance on it.

De�nition 1.5.2 (Measure with �nite second moment). Let (X, d) be a com-
plete and separable metric space. We indicate with P2(X) the set of proba-
bility measures µ ∈P(X) such that∫

X

d2(x, y) dµ(y) < +∞

for some x ∈ X (it is easy to see that if it holds for a point x ∈ X then it
holds for every point). A measure µ ∈ P2(X) is said to have �nite second
moment.
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De�nition 1.5.3 (Wasserstein distance). Let µ, ν ∈P2(X). Denoting with
π1 and π2 the projections on the �rst and the second coordinate respectively,
π1(x, y) := x and π2(x, y) := y, we de�ne

W 2
2 (µ, ν) := inf

∫
d2(x, y) dπ(x, y), (1.5.2)

where the in�mum is taken among all π ∈ P(X2) such that π1
∗π = µ and

π2
∗π = ν.

It turns out that the in�mum in (1.5.2) is always attained, i.e. it is actually
a minimum.

Proposition 1.5.4 (Wasserstein space). The mapW2 : P2(X)×P2(X)→ R
is a distance and (P2(X),W2), called Wasserstein space, is complete and sep-
arable. Moreover, if (X, d) is geodesic then the Wasserstein space is geodesic
too.

The Ricci curvature bound from below by K comes from a convexity
property (depending on the bound K) of the Boltzmann-Shannon entropy
along Wasserstein geodesics.

De�nition 1.5.5 (Boltzmann-Shannon relative entropy). Let (X, d,m) be a
metric measure space such that there exist c1, c2 > 0 and x ∈ X for which

m(Br(x)) ≤ c1e
c2r for every r > 0. (1.5.3)

We de�ne the Boltzmann-Shannon entropy for every µ ∈P2(X) as

Entm(µ) :=

{∫
X
ρ log(ρ) dm if µ = ρm;

+∞ otherwise.
(1.5.4)

Remark 1.5.6. Condition (1.5.3) is satis�ed in every CD space, we introduce
this as further assumption here in order to give a good de�nition of entropy
for spaces with in�nite mass too. �

De�nition 1.5.7 (K-convexity). Let (X, d) be a metric space. We say that
a functional E : X→ R∪{+∞} is K-convex if for every x, y ∈ E−1(R) there
exists a geodesic γ connecting them such that

E(γt) ≤ (1− t)E(x) + tE(y)− 1

2
Kt(1− t)d2(x, y)

for every t ∈ [0, 1].
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In the smooth setting, as proved in [SvR] (see also [OV] and [CEMS] for
preliminary results), K-convexity of the relative entropy is equivalent to the
lower bound on the Ricci curvature.

Theorem 1.5.8. Let M be a smooth, connected and complete Riemannian
manifold and let K ∈ R. Then the following are equivalent:

i) for every x ∈ M and v ∈ TxM it holds Ricx(v, v) ≥ K|v|2;

ii) the relative entropy Entvol is K-convex on (P2(X),W2).

Property (ii) can be formulated in any metric measure space, and this
motivates the following de�nition.

De�nition 1.5.9 (CD(K,∞) condition). Let (X, d,m) be a metric measure
space and let K ∈ R. We say that X is a CD(K,∞) space if the Boltzmann-
Shannon relative entropy de�ned in (1.5.4) is K-convex on (P2(X),W2).

The de�nition of CD(K,N) spaces with �nite dimension boundN requires
more work. We recall three di�erent de�nitions of it and see the relations
between them.

To begin we de�ne the volume distortion coe�cients τ and the coe�cients
σ.

For every κ ∈ R and ϑ ≥ 0 we denote by sκ the solution of the Cauchy
problem

f ′′ + κf = 0, f(0) = 0 and f ′(0) = 1,

and can be written explicitly as

sκ(ϑ) :=


1√
κ

sin(
√
κϑ) if κ > 0,

ϑ if κ = 0,
1√
−κ sinh(

√
−κϑ) if κ < 0.

De�nition 1.5.10 (Volume distortion coe�cients). For t ∈ [0, 1], K ∈ R
and N ∈ (0,+∞) we de�ne

σ
(t)
K,N(ϑ) :=


sK/N (tϑ)

sK/N (ϑ)
if K

N
ϑ2 6= 0 and K

N
ϑ2 < π2,

t if K
N
ϑ2 = 0,

+∞ if K
N
ϑ2 ≥ π2

(1.5.5)

and for t ∈ [0, 1], K ∈ R and N ∈ (1,+∞)

τ
(t)
K,N(ϑ) := t

1
N

(
σ

(t)
K,N−1(ϑ)

)N−1
N
. (1.5.6)
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The CD(K,N) condition is a sort of convexity for the Rényi entropy
functional de�ned by

SN(µ|m) := −
∫

X

ρ−
1
N dµ,

where ρ is the density of the absolutely continuous part of µ with respect to
m.

For the de�nition of CD(K,N) space we will focus on optimal geodesic
plans, which are geodesics connecting µ and ν with respect to the Wasserstein
distance.

De�nition 1.5.11 (Optimal geodesic plan). Let µ, ν ∈P2(X) be such that
W2(µ, ν) < +∞. We say that π ∈ P(Geo(X)) is an optimal geodesic plan
between µ and ν if (e0)∗π = µ, (e1)∗π = ν and∫

d2(γ0, γ1) dπ =

∫ ∫ 1

0

|γ̇s|2 ds dπ(γ) = W 2
2 (µ, ν).

We indicate with OptGeo(µ, ν) the set of optimal geodesic plans connect-
ing µ and ν.

De�nition 1.5.12 (Curvature-Dimension condition). Let K ∈ R and N ∈
[1,∞). We say that a metric measure space (X, d,m) is CD(K,N) if for
every µ0, µ1 � m with bounded support there exists π optimal geodesic plan
between µ0 and µ1 such that, indicating with ρtm the absolutely continuous
part with respect to m of (et)∗π, it holds

−
∫
ρ

1− 1
N′

t dm ≤ −
∫
τ

(1−t)
K,N ′ (d(γ0, γ1))ρ

− 1
N′

0 (γ0)

+ τ
(t)
K,N ′(d(γ0, γ1))ρ

− 1
N′

1 (γ1) dπ(γ)

(1.5.7)

for every t ∈ [0, 1] and N ′ ≥ N .

The following consistency result can be found in [S06b].

Theorem 1.5.13. Let M be a complete connected Riemannian manifold with
Riemannian distance d and Riemannian volume m, and let K ∈ R, N ∈
[1,+∞). Then the following are equivalent:

i) the metric measure space (M, d,m) satis�es the CD(K,N) condition;

ii) for every x ∈ M and v ∈ TxM it holds Ricx(v, v) ≥ K|v|2 and M has
dimension at most N .
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In order to study a local-to-global property for the CD(K,N) condition,
K. Bacher and K.-T. Sturm in [BaSt] introduced a weaker notion of curvature-
dimension condition, the so called reduced curvature-dimension condition,
indicated with CD∗(K,N).

De�nition 1.5.14 (Reduced Curvature-Dimension condition). Let K ∈ R
and N ∈ (0,∞). We say that a metric measure space (X, d,m) is CD∗(K,N)
if for every µ0, µ1 � m with bounded support there exists π optimal geodesic
plan between µ0 and µ1 such that, indicating with ρtm the absolutely contin-
uous part with respect to m of (et)∗π, it holds

−
∫
ρ

1− 1
N′

t dm ≤ −
∫
σ

(1−t)
K,N ′ (d(γ0, γ1))ρ

− 1
N′

0 (γ0)

+ σ
(t)
K,N ′(d(γ0, γ1))ρ

− 1
N′

1 (γ1) dπ(γ)

(1.5.8)

for every t ∈ [0, 1] and N ′ ≥ N .

The only di�erence between the de�nition of CD spaces and CD∗ spaces
is that in (1.5.7) we used the coe�cients τK,N as weights and in (1.5.8) we
changed them with the coe�cients σK,N .

From De�nitions 1.5.12, 1.5.14 and 1.5.10 it follows easily that CD(0, N)
condition and CD∗(0, N) condition are equivalent, indeed

τ
(t)
0,N(ϑ) = σ

(t)
0,N(ϑ) = t.

From an easy computation we conclude that, for every K,ϑ ∈ R and
N ∈ (1,+∞) it holds

σ
(t)
K,N(ϑ) ≤ τ

(t)
K,N(ϑ), (1.5.9)

and if K > 0, de�ning K∗ := K N−1
N

, it holds

τ
(t)
K∗,N(ϑ) ≤ σ

(t)
K,N(ϑ). (1.5.10)

By De�nitions 1.5.12, 1.5.14 and inequality (1.5.9) we conclude easily
that

CD(K,N)⇒ CD∗(K,N),

and for K > 0, using (1.5.10), that

CD∗(K,N)⇒ CD(K∗, N).

We recall the de�nition of essentially non-branching space given in [RS].



38 Chapter 1. Preliminaries

De�nition 1.5.15 (Essentially non-branching space). A metric measure
space (X, d,m) is said essentially non-branching if for every µ, ν ∈ P2(X)
absolutely continuous with respect to the reference measure m any element of
OptGeo(µ, ν) is concentrated on a set of non-branching geodesics, i.e. given
π ∈ OptGeo(µ, ν) there exists Γ ⊂ C([0, 1],X) Borel such that π(Γ) = 1 and
if γ, η ∈ Γ coincide on the interval [0, t] for some t ∈ (0, 1] then γ ≡ η.

In [CaMi] F. Cavalletti and E. Milman proved that the CD(K,N) con-
dition is equivalent to the CD∗(K,N) condition for normalized essentially
non-branching spaces. A proof for spaces with in�nite mass is still missing.

The third notion of curvature-dimension condition we recall here is due
to M. Erbar, K. Kuwada and K.-T. Sturm (see [EKS]).

We indicate with P∗
2 (X, d,m) the set of probability measures on X with

�nite entropy, and with UN : P2(X)→ [0,+∞] the map

UN(µ) := exp

(
− 1

N
Entm(µ)

)
.

We de�ne CDe(K,N) spaces as the spaces for which the entropy satis�es
a (K,N)−convexity condition in the following way.

De�nition 1.5.16 (Entropic Curvature Dimension condition). Given K ∈ R
and N ∈ (0,+∞) we say that a metric measure space (X, d,m) satis�es the
entropic curvature-dimension condition CDe(K,N) if and only if for each
pair µ0, µ1 ∈ P∗2 (X, d,m) there exists a constant speed geodesic (µt)t∈[0,1] ⊂
P∗2 (X, d,m) connecting µ0 to µ1 such that for all t ∈ [0, 1] it holds

UN(µt) ≥ σ
(1−t)
K/N (W2(µ0, µ1))UN(µ0) + σ

(t)
K/N(W2(µ0, µ1))UN(µ1).

In [EKS] it is proven that for essentially non-branching metric measure
spaces the CD∗(K,N) condition and the CDe(K,N) condition are equivalent,
moreover, a major result from the same paper, is the equivalence between the
CDe condition and the weak formulation of the Bochner inequality (1.5.1).

Theorem 1.5.17. Let (X, d,m) be a metric measure space. The following
are equivalent:

i) the space (X, d,m) is RCD(K,N), i.e. it satis�es the conditions of Def-
inition 1.5.1;

ii) the space (X, d,m) is in�nitesimally Hilbertian and satis�es the entropic
curvature-dimension condition CDe(K,N).
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In [RS] T. Rajala and K.-T. Sturm proved that every in�nitesimally
Hilbertian CD(K,∞) space is essentially non-branching. From this we con-
clude that, at least for normalized spaces, if we de�ne RCD/RCD∗/RCDe

spaces as "CD/CD∗/CDe+in�nitesimal Hilbertianity" the three de�nitions
are equivalent. Given that, slightly abusing the notation, we will not distin-
guish between RCD, RCD∗ and RCDe conditions.

Remark 1.5.18. In [D] Q. Deng proved that RCD(K,N) spaces are non-
branching, i.e. if γ, η ∈ Geo(X) coincide on the interval [0, t] for some t ∈ (0, 1]
then γ ≡ η. �

As anticipated in the Introduction, an important result holding true in
every CD(K,N) spaces is the Bishop-Gromov inequality. Its proof can be
found in [S06b].

Theorem 1.5.19 (Bishop-Gromov Inequality). Let (X, d,m) be a CD(K,N)
metric measure space with K ∈ R and N ∈ (1,+∞). Fix p ∈ X and let
µ := d(·, p)∗m. Then µ = sL1 for some function s : [0, diam(X)]→ R+ such
that

r 7→ s(r)
(
s K
N−1

(r)
)1−N

is not increasing on [0, diam(X)]. (1.5.11)

Also, the following integrated version of the monotonicity holds:

R 7→ m(BR(p))
(∫ R

0

(
s K
N−1

(r)
)N−1

dr
)−1

is not increasing on [0, diam(X)].

(1.5.12)

The Bishop-Gromov inequality for volumes (1.5.12) estimates the ratio of
the volume of balls, then an easy consequence is that every CD(K,N) space
is uniformly locally doubling.

De�nition 1.5.20 (locally doubling space). We say that a metric measure
space (X, d,m) is locally doubling if for every x ∈ X there are an open set
U 3 x and constants C,R > 0 such that

m(B2r(y)) ≤ Cm(Br(y))

for every y ∈ U and r ∈ (0, R).
A space is said uniformly locally doubling if constants C and R do not

depend on x.



40 Chapter 1. Preliminaries

1.5.2 Convergence of (pointed) metric measure spaces
and stability

An important property of the class of CD(K,N) spaces is its stability. In lit-
erature several di�erent convergences of metric measure spaces (and pointed
metric measure spaces) have been studied in this direction, for instance:

-) in [S06a] and [S06b] Sturm de�ned a distance between normalized met-
ric measure spaces and proved that curvature-dimension bounds are
stable with respect to the convergence induced by that distance;

-) in [LV] Lott and Villani worked with proper pointed metric measure
spaces and pointed measured Gromov Hausdor� (pmGH) convergence
for CD(K,N) spaces (note that for N < +∞ a CD(K,N) space is
always proper, but this is not true for N = +∞) (see also [V]);

-) in [GMS] Gigli, Mondino and Savaré introduced the so called pointed
measured Gromov (pmG) convergence to prove the stability in case the
space has in�nite mass (and is not necessarily proper), so to cover also
the case CD(K,∞). Then they proved that for uniformely doubling
spaces pmG and pmGH convergences coincide.

We recall the needed de�nitions and the compactness result for pmGH
convergence of CD(K,N) spaces (see [GMS] for the proof of the stability the-
orem and for more details about the convergence of metric measure spaces).

De�nition 1.5.21 (Pointed metric measure space). A pointed metric mea-
sure space (X, d,m, x) is a quadruple where (X, d,m) is a metric measure
space (as in De�nition 1.1.9) and x is a �xed point of supp(m).

De�nition 1.5.22 (Pointed measured Gromov Hausdor� convergence). Let
((Xn, dn,mn, xn))n∈N be a sequence of pointed metric measure spaces. We say
that ((Xn, dn,mn, xn))n∈N converges in the pointed measured Gromov Haus-
dor� sense to (X∞, d∞,m∞, x∞) provided that there exist two sequences Rn ↑
+∞ and εn ↓ 0 and Borel maps fn : Xn → X∞ such that the following hold:

-) fn(xn) = x∞;

-) sup
x,y∈BRn (xn)

|dn(x, y)− d∞(fn(x), fn(y))| ≤ εn;

-) the εn-neighborhood of fn(BRn(xn)) contains BRn−εn(x∞);

-) for every ϕ ∈ Cbs(X∞) it holds

lim
n→∞

∫
ϕ ◦ fn dmn =

∫
ϕ dm∞.
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We denote this convergence with (Xn, dn,mn, xn)
pmGH−−−−→ (X∞, d∞,m∞, x∞).

Theorem 1.5.23. Let ((Xn, dn,mn, xn))n∈N be a sequence of pointed met-
ric measure spaces such that for every n ∈ N the space (Xn, dn,mn) is
CD(Kn, Nn) (resp. RCD(Kn, Nn)) for certain Kn ∈ R and Nn ∈ [1,+∞).
Moreover assume that Kn → K ∈ R, Nn → N ∈ [1,+∞) and

0 < lim inf
n→+∞

mn(B1(xn)) ≤ lim sup
n→+∞

mn(B1(xn)) < +∞.

Then ((Xn, dn,mn, xn))n∈N has a subsequence that converges to a CD(K,N)
(resp. RCD(K,N)) space (X∞, d∞,m∞, x∞).

1.6 Second order di�erential calculus

The goal of this section is to give the de�nition of Hessian and covariant
derivative in RCD spaces and see their calculus rules.

We start giving the de�nition of tensor product of Hilbert modules.
If H 0

1 and H 0
2 are the L0(m)-completions of two Hilbert modules H1

and H2, we indicate with H 0
1 ⊗Alg H 0

2 the space of formal �nite sums of
objects of the form v ⊗ w with v ∈ H 0

1 and w ∈ H 0
2 , with (v, w) 7→ v ⊗ w

being bilinear. On H 0
1 ⊗AlgH 0

2 we de�ne a "scalar product" in the following
way: for every v1, v2 ∈H 0

1 and w1, w2 ∈H 0
2 we de�ne

〈v1 ⊗ w1, v2 ⊗ w2〉 := 〈v1, v2〉〈w1, w2〉 ∈ L0(m),

then we extend it by linearity.
The scalar product just de�ned is symmetric and the following hold:

〈A,A〉 ≥ 0 m-a.e. for every A ∈H 0
1 ⊗Alg H 0

2 ;

〈A,A〉 = 0 m-a.e. on E if and only if χEA = 0;

f〈A,B〉 = 〈fA,B〉 m-a.e. for every A,B ∈H 0
1 ⊗Alg H 0

2 and f ∈ L0(m).

De�nition 1.6.1 (Hilbert-Schmidt norm). On H 0
1 ⊗Alg H 0

2 we de�ne the
Hilbert-Schmidt norm as

|A|HS :=
√
〈A,A〉.

De�nition 1.6.2. We de�ne the space H 0
1 ⊗ H 0

2 as the completion of
H 0

1 ⊗Alg H 0
2 with respect to the distance

d⊗(A,B) :=
∑
i∈N

1

2im(Ei)

∫
(|A−B|HS ∧ 1) dm,

where (Ei)i∈N is a Borel partition of X in sets of positive measure.
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De�nition 1.6.3 (Tensor product of Hilbert modules). The tensor product
H1 ⊗H2 is de�ned as the subset of H 0

1 ⊗H 0
2 with L2(m) Hilbert-Schmidt

norm.

We observe that the space H1 ⊗H2 endowed with the norm

‖A‖ :=

√∫
|A|2HS dm

is a Hilbert space. It easily follows that H1 ⊗H2 is a Hilbert module.
We introduce now the following notation.

De�nition 1.6.4. Let (X, d,m) be an RCD(K,∞) space. Then we de�ne

L2((T ∗)⊗2X) := L2(T ∗X)⊗ L2(T ∗X).

Given A ∈ L2((T ∗)⊗2X) we indicate with A(v, w) the function A(v ⊗ w) ∈
L0(m) for every v, w ∈ L2(TX).

Similarly, we de�ne L2(T⊗2X) := L2(TX)⊗ L2(TX).

We observe that L2((T ∗)⊗2X) can be seen as the dual of L2(T⊗2X) via
the duality map

(ω ⊗ η)(v ⊗ w) := ω(v)η(w)

for v, w ∈ L2(TX) and ω, η ∈ L2(T ∗X).

In order to de�ne the space W 2,2
loc (X) and the Hessian of a function we

recall the de�nition of test functions, which are the most regular functions
we can consider in the non-smooth setting, and they will be used instead of
the C∞c functions.

De�nition 1.6.5 (Local test functions). Let (X, d,m) be an RCD(K,∞)
space with K ∈ R. We de�ne the set of local test functions as

Testloc(X) :=
{
f ∈ LIPloc(X) ∩ L∞loc(X) ∩D(∆loc) : ∆f ∈ W 1,2

loc (X)
}
.

From the weak Bochner inequality (1.5.1) follows that for every function
f ∈ Testloc(X) it holds |Df | ∈ W 1,2

loc (X). A consequence of this fact is that
the set of local test functions is an algebra and it is dense in W 1,2

loc (X).
The following result provides the existence of good cut-o� functions (for

the construction see [MN], for similar results [AMS] or [GP20]).

Proposition 1.6.6 (Good cut-o� functions). Let K ∈ R, N ∈ (1,+∞)
and let X be an RCD(K,N) space. Then for every 0 < r < R < +∞,
every compact K ⊂ X and every open U ⊂ X such that diam(U) ≤ R and
d(P,U c) > r there exists a function η ∈ Testloc(X) such that
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i) 0 ≤ η ≤ 1 on X, supp(η) ⊂ U and η ≡ 1 in P ,

ii) r|Dη|+ r2|∆η| ≤ C, where C depends only on R,N,K.

We give now the de�nition of W 2,2
loc (X) and Hessian of a function f ∈

W 2,2
loc (X).

De�nition 1.6.7 (W 2,2
loc (X) space and Hessian). Let K ∈ R and let (X, d,m)

be an RCD(K,∞) space. For f ∈ W 1,2
loc (X) we say that f ∈ W 2,2

loc (X) if there
exists A ∈ L ((T ∗)⊗2X) such that

2

∫
ϕA(∇ψ1,∇ψ2) dm = −

∫
〈∇f,∇ψ1〉 div(ϕ∇ψ2) + 〈∇f,∇ψ2〉 div(ϕ∇ψ1)

+ ϕ〈∇f,∇〈∇ψ1,∇ψ2〉〉 dm

for every ψ1, ψ2 ∈ Testloc(X) and ϕ ∈ LIPbs(X).
Such tensor A is uniquely determined and it will be denoted by Hess(f).

Remark 1.6.8. This de�nition is justi�ed by the following formula on Rie-
mannian manifolds: let M be a Riemannian manifold, then for every functions
f, ψ1, ψ2 ∈ C∞(M) it holds

2 Hess(f)(ψ1, ψ2) = 〈∇〈∇f,∇ψ1〉,∇ψ2〉+ 〈∇〈∇f,∇ψ2〉,∇ψ1〉
− 〈∇〈∇ψ1,∇ψ2〉,∇f〉.

�

The existence of many W 2,2
loc functions is given by the following inclusion

result proved in [G18b].

Proposition 1.6.9. Let (X, d,m) be an RCD(K,∞) space with K ∈ R. Then
Testloc(X) ⊂ D(∆loc) ⊂ W 2,2

loc (X).

The set of local test functions is not dense in W 2,2
loc (X), then we de�ne the

space H2,2
loc (X) as the closure of Testloc(X) in W 2,2

loc (X).

De�nition 1.6.10 (The space H2,2
loc (X)). Let (X, d,m) be an RCD(K,∞)

space with K ∈ R. We de�ne the space H2,2
loc (X) ⊂ W 2,2

loc (X) as the collection
of all functions f ∈ W 2,2

loc (X) such that the following holds: for any U ⊂ X
open bounded there is a sequence (fn) ⊂ Testloc(X) such that

‖fn − f‖L2(U) + ‖|dfn − df |‖L2(U) + ‖|Hess fn − Hess f |HS‖L2(U) → 0

as n→∞, where here and in what follows we denote by | · |HS the pointwise
norm in L2

loc(T
⊗2X).
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We see now some calculus rules for the Hessian.

Proposition 1.6.11 (Leibniz rule for the Hessian). Let f, g ∈ W 2,2
loc (X) ∩

LIPloc(X) ∩ L∞loc(m). Then fg ∈ W 2,2
loc (X) and

Hess(fg) = f Hess(g) + gHess(f) + df ⊗ dg + dg ⊗ df

holds m-a.e. in X.

Proposition 1.6.12 (Chain rule for the Hessian). Let f, g ∈ W 2,2
loc (X) ∩

LIPloc(X) and let ϕ ∈ C2(R) such that ϕ′ and ϕ′′ are bounded and ϕ(0) = 0.
Then ϕ ◦ f ∈ W 2,2

loc (X) and the following formula holds m-a.e.:

Hess(ϕ ◦ f) = ϕ′ ◦ f Hess(f) + ϕ′′ ◦ fdf ⊗ df. (1.6.1)

Proposition 1.6.13 (Product rule for gradients). Let f, g ∈ H2,2
loc (X) ∩

LIPloc(X). Then 〈∇f,∇g〉 ∈ W 1,2
loc (X) and

d〈∇f,∇g〉 = Hess(f)(∇g, ·) + Hess(g)(∇f, ·) (1.6.2)

holds m-a.e. in X.

As we saw for the Hessian, thanks to an identity on Riemannian manifolds
we can de�ne the covariant derivative on RCD spaces. On M Riemannian
manifold, for every v vector �eld and ϕ, ψ ∈ C∞(M) it holds

〈∇∇ϕv,∇ψ〉 = 〈∇〈v,∇ψ〉,∇ϕ〉 − Hess(ψ)(v,∇ϕ).

We indicate with : the scalar product between two elements of L2(T⊗2X).

De�nition 1.6.14 (Covariant derivative). Let (X, d,m) be an RCD(K,∞)
space for a certain K ∈ R. The space W 1,2

C (TX) is the set of vector �elds
v ∈ L2(TX) for which there exists T ∈ L2(T⊗2X) such that for every ϕ, ψ, ξ ∈
Test(X) it holds∫

ξT : (∇ϕ⊗∇ψ) dm = −
∫
〈v,∇ψ〉 div(ξ∇ϕ) + ξHess(ψ)(v,∇ϕ) dm.

Such T , which is uniquely determined, is called covariant derivative of v and
denoted by ∇v.

Remark 1.6.15. The space W 1,2
C (TX) with the norm

‖v‖W 1,2
C (TX) :=

(
‖v‖2

L2(TX) + ‖∇v‖2
L2(T⊗2X)

) 1
2

is a separable Hilbert space. Moreover, denoting with ] the Riesz isomor-
phism between L2((T ∗)⊗2X) and L2(T⊗2X), for every f ∈ H2,2(X) ∩ LIP(X)
it holds ∇f ∈ W 1,2(TX) and ∇(∇f) = (Hess(f))]. �



1.7 Warped product spaces 45

The covariant derivative satis�es the following Leibniz rule.

Proposition 1.6.16 (Leibniz rule for the covariant derivative). Let X be an
RCD(K,∞) space. Let v ∈ W 1,2

C (TX) ∩ L∞(TX) and f ∈ W 1,2(X) ∩ L∞(m).
Then fv ∈ W 1,2

C (TX) and

∇(fv) = ∇f ⊗ v + f∇v.

We conclude this section recalling the de�nition of test vector �eld.

De�nition 1.6.17 (Test vector �eld). Let (X, d,m) be an RCD(K,∞) space
with K ∈ R. We de�ne the set of test vector �elds as

TestV(X) :=

{
n∑
i=1

gi∇fi : n ∈ N and fi, gi ∈ Test(X) for i = 1, ..., n

}
.

Similarly to test functions and W 2,2(X), it holds TestV(X) is contained
W 1,2
C (TX), but it is not dense in it. Then we indicate with H1,2

C (TX) the
closure of TestV(X) in W 1,2

C (TX).

1.7 Warped product spaces

As we saw in the Introduction, all rigidity theorems state that, under certain
hypotheses, the space is isomorphic to a warped product space R×w X′. In
this section we de�ne warped products of metric measure spaces and see how
the Sobolev spaces behave on them. All these results can be found in [GH].

De�nition 1.7.1 (Warped kinetic energy of curves). Let (X, dX) and (Y, dY)
be length spaces and let wd : Y → [0,+∞) be a continuous function. For
every curve γ := (γY, γX) with γY ∈ AC(Y) and γX ∈ AC(X) we de�ne its
wd-kinetic energy as

KEw[γ] :=

∫ 1

0

|γ̇Y
t |2 + w2

d(γ
Y
t )|γ̇X

t |2 dt.

In a natural way we de�ne the warped distance and the warped product
of metric spaces.

De�nition 1.7.2 (Warped product of metric spaces). Taken two length
spaces (X, dX) and (Y, dY), let wd : Y → [0,+∞) be a continuous func-
tion. For every points p, q ∈ X × Y we de�ne the pseudo-metric dw(p, q)
as

dw(p, q)2 := inf {KEw[γ]} ,
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where the in�mum is taken among the curve γ = (γY, γX) such that γY ∈
AC(Y), γX ∈ AC(X), γ0 = p and γ1 = q.

We denote with (Y×wX, dw) the completion of the quotient of Y×X with
respect to the equivalence relation induced by the pseudo-metric dw.

We indicate with π : Y × X→ Y ×w X the quotient map induced by dw.

De�nition 1.7.3 (Warped product of metric measure spaces). Assume that
(X, dX,mX) and (Y, dY,mY) are two complete, separable and length metric
spaces equipped with non-negative Radon measures, and let wm, wd : Y →
[0,∞) be continuous functions. Moreover, assume that at least one of the
following holds:

-) mX is a �nite measure;

-) wd is always positive.

The warped product space (Y×w X, dw,mw) is de�ned as the warped prod-
uct of metric spaces (Y×wX, dw) equipped with the Radon measure mw de�ned
as

mw := π∗ ((wmmY)×mX) .

Remark 1.7.4. The alternative conditions in De�nition 1.7.3 (mX �nite or
wd never 0) are needed to ensure that the measure mw is Radon. �

In all the work we indicate with (y, x) the elements of Y ×w X, omitting
the quotient map.

We introduce some notations and assumptions that we are going to use
along this section.

Assumption 1.7.5. Let (X, d,m) be a metric measure space and I ⊂ R
be a closed and possibly unbounded interval. Given wd, wm : I → [0,+∞)
continuous functions, assume that at least one of the alternative conditions
in De�nition 1.7.3 is satis�ed. Then we indicate with (Xw, dw,mw) the warped
product space I ×w X with warping functions wd and wm.

The �rst result we recall from [GH] is the characterization of the Sobolev
space on warped product spaces. It relates the Sobolev space of Xw with the
ones of the quotient spaces and tells us who the minimal weak upper gradient
of a Sobolev function in Xw is.

Theorem 1.7.6. Given Assumption 1.7.5, f ∈ W 1,2(Xw) if and only if the
following conditions hold:

i) for m-a.e. x ∈ X the map f (x) := f(·, x) is in W 1,2(R, dEucl, wmL1);
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ii) for L1-a.e. r ∈ R the map f (r) := f(r, ·) is in W 1,2(X, d,m);

iii) the identity

|Df |2Xw(r, x) = |Df (x)|2R(r) +
1

w2
d(r)
|Df (r)|2X(x) (1.7.1)

holds for mw-a.e. (r, x).

The proof of points (i) and (ii) is an easy consequence of Theorem 1.2.16
and Fubini's Theorem, while the proof of point (iii) follows from a nontrivial
comparison argument with the Cartesian product case (wm = wd = 1).

The second result we recall from [GH] studies the Sobolev-to-Lipschitz
property for warped product spaces.

In general it is not true that if X has the Sobolev-to-Lipschitz property
then the warped product space I ×w X has it too. For instance it is triv-
ial to observe that if wm is 0 on some interval J ⊂ I which disconnects I
then mw has disconnected support, and this violates the Sobolev-to-Lipschitz
property. Even assuming wm strictly positive it is not clear if the Sobolev-
to-Lipschitz property passes to the warped product space or not. In order to
prove the Sobolev-to-Lipschitz property for the warped product space then
Gigli and Han introduced a variant of the length property which takes into
account the measure.

De�nition 1.7.7 (Measured-length space). We say that a metric measure
space (X, d,m) is a measured-length space if there exists a Borel set A ⊂
X whose complement is m-negligible with the following property: for every
x0, x1 ∈ A there exists ε > 0 such that for every ε0, ε1 ∈ (0, ε] there is a test
plan πε0,ε1 such that

-) the map (0, ε]2 3 (ε0, ε1) 7→ πε0,ε1 is weakly Borel in the sense that for
any ϕ ∈ Cb(C([0, 1],X)) the map

(0, ε]2 3 (ε0, ε1) 7→
∫
ϕ dπε0,ε1

is Borel;

-) for every ε0, ε1 ∈ (0, ε] we have

(e0)∗π
ε0,ε1 =

1

m(Bε0(x0))
m|Bε0 (x0), (e1)∗π

ε0,ε1 =
1

m(Bε1(x1))
m|Bε1 (x1);
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-) we have

lim sup
ε0,ε1↓0

∫ ∫ 1

0

|γ̇t|2 dt dπε0,ε1(γ) ≤ d2(x0, x1).

The measured-length property and the a.e. locally doubling property (a
variant of De�nition 1.5.20 requiring that the property described in De�nition
1.5.20 holds for every x ∈ B with B ⊂ X with m-negligible complement
instead that for every x ∈ X) both passes to the warped product space.
Notice also that in case wd and wm strictly positive (as we have in Chapters
2 and 3) the locally doubling property pass to the warped product space.

Proposition 1.7.8. Consider assumptions and notations as in Assumption
1.7.5, moreover assume that wm is striclty positive in the interior of I and
that X is a measured-length space. Then the warped product space I ×w X is
a measured-length space.

Proposition 1.7.9. Consider assumptions and notations as in Assumption
1.7.5, and assume that X is a.e. locally doubling. Then the warped product
space I ×w X is a.e. locally doubling.

We conclude this section seeing how the last two de�nitions are related
to the Sobolev-to-Lipschitz property.

Proposition 1.7.10. Let (X, d,m) be an a.e. locally doubling measured-
length space. Then it has the Sobolev-to-Lipschitz property.

In particular, the following theorem holds.

Theorem 1.7.11. Consider assumptions and notations as in Assumption
1.7.5, moreover assume that X is an a.e. locally doubling measured-length
space and that wm is strictly positive in the interior of I. Then the warped
product space I ×w X is an a.e. locally doubling measured-length space. In
particular, it has the Sobolev-to-Lipschitz property.

1.8 Regular Lagrangian Flows

As we stated in the Introduction, the strategy to prove rigidity theorems is
based on taking a "good" function and studying the �ow of its gradient. In
Section 1.3 we de�ned the gradient of a function and the space of vector �elds
thanks to the theory of normed modules. In this section we give the notion
of Regular Lagrangian Flow and some useful properties such as existence,
uniqueness and regularity. This theory is due to R. J. DiPerna and P.-
L. Lions (see [DPL]) in the Euclidean space (see also [A]) and generalized
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to the metric setting by L. Ambrosio and D. Trevisan in [AT14] (see also
[AT15]). We refer to [GR18] for a reformulation of the results in [AT14]
using di�erential calculus in RCD spaces.

As in the smooth setting, there are two approaches to this problem: La-
grangian and Eulerian.

The former studies the trajectories of particles: given vt time dependent
vector �eld, for x ∈ X we want to �nd a curve γ : [0, T ] → X that in some
sense satis�es {

γ′t = vt(γt),

γ0 = x.

The Eulerian approach studies how the mass changes in time in a �xed
point: as before, let vt be a time dependent vector �eld, then given a starting
measure µ̄, the push-forward measure with respect to the �ow µs := (Fl(vt)s )∗µ̄
must satisfy, in a weak sense, the continuity equation{

d
dt
µt + div(vtµt) = 0,

µ0 = µ̄.

In this section we recall the de�nitions of Regular Lagrangian Flow and
weak solution of the continuity equation in the non-smooth setting, we see
how the two approaches are related and we state an existence and uniqueness
theorem for the �ow of a regular enough vector �eld. We conclude recalling
a regularity theorem (from [BS20b]), which states that if a vector �eld has
bounded (symmetric) covariant derivative then its Regular Lagrangian Flow
admits a Lipschitz representative, and some properties of �ows of vector �elds
that do not depend on time.

In this section we assume that (X, d,m) is an RCD(K,∞) space for some
K ∈ R.

De�nition 1.8.1 (Solution of the continuity equation). Let µ : [0, T ] →
P(X) and v : [0, T ] → L0(TX) be Borel maps. We say that they solve the
continuity equation

d

dt
µt + div(vtµt) = 0 (1.8.1)

if the following conditions hold:

i) there exists C > 0 such that µt ≤ Cm for every t ∈ [0, T ];

ii) it holds ∫ T

0

∫
|vt|2 dµt dt < +∞;
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iii) for every f ∈ W 1,2(X) the map t 7→
∫
f dµt is absolutely continuous

and for a.e. t ∈ [0, T ] it holds

d

dt

∫
f dµt =

∫
df(vt) dµt.

Existence and uniqueness of solutions of the continuity equation in the
sense of De�nition 1.8.1 can be established under suitable regularity assump-
tion on the vector �eld vt. Among other things, a control on the covariant
derivative ∇vt is required.

Theorem 1.8.2 (Uniqueness of solutions of the continuity equation). Let
(vt) : [0, T ]→ L2(TX) be Borel and such that vt ∈ D(div) for every t ∈ [0, T ].
Moreover, assume that ‖|vt|‖L2(m) ∈ L1(0, T ), ‖ div(vt)‖L2(m) ∈ L1(0, T ),
‖ div(vt)

−‖L∞ ∈ L∞(0, T ), and ‖∇vt‖L2(T⊗2X) ∈ L1(0, T ). Moreover, let
µ̄ ∈P(X) be such that µ̄ ≤ Cm for a constant C > 0.

Then there exists a unique µ : [0, T ]→P(X) such that the couple (µ, v)
is a solution of the continuity equation (1.8.1) with µ0 = µ̄.

Passing now to the Lagrangian approach, we recall the de�nition of Reg-
ular Lagrangian Flow.

De�nition 1.8.3 (Regular Lagrangian Flow). Let (vt) : [0, T ]→ L2(TX) be
Borel. We say that a map Fl : [0, T ]× X→ X is a Regular Lagrangian Flow
associated to (vt) if the following are satis�ed:

i) there exists C > 0 such that

(Flt)∗m ≤ Cm for every t ∈ [0, T ]; (1.8.2)

ii) for m-a.e. x ∈ X the function [0, T ] 3 t → Flt(x) is continuous and
satis�es Fl0(x) = x;

iii) for every f ∈ Test(X) it holds that for m-a.e. x ∈ X the function
(0, T ) 3 t→ f ◦ Flt(x) is absolutely continuous and

d

dt
f ◦ Flt(x) = 〈∇f, vt〉 ◦ Flt(x) (1.8.3)

for a.e. t ∈ (0, T ).

Regualar Lagrangian Flows can be characterized via the following propo-
sition.
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Proposition 1.8.4. Let (vt) : [0, T ]→ L2(TX) be Borel and such that |vt| ∈
L∞([0, T ], L∞(X)). Moreover, let Fl : [0, T ]×X→ X be a Borel map satisfying
(i) and (ii) of De�nition 1.8.3. Then the following are equivalent:

i) Fl is a Regular Lagrangian Flow associated to (vt);

ii) for every f ∈ W 1,2(X) the map [0, T ] 3 t 7→ f ◦Flt ∈ L2(X) is Lipschitz
and

lim
h→0

f ◦ Flt+h − f ◦ Flt
h

= df(vt) ◦ Flt for a.e. t ∈ [0, T ], (1.8.4)

the limit being intended in L2(m);

iii) for every f ∈ W 1,2
loc (X) the map [0, T ] 3 t 7→ f◦Flt ∈ L2

loc(X) is Lipschitz
and for a.e. t ∈ [0, T ] formula (1.8.4) holds with the limit being intended
in L2

loc(m).

As mentioned before, existence and uniqueness of Regular Lagrangian
Flows are related to existence and uniqueness of solutions of the continuity
equation.

Theorem 1.8.5 (Existence and uniqueness of Regular Lagrangian Flows).
Let (vt) be as in Theorem 1.8.2. Then there exists a unique Regular La-
grangian Flow Flt associated to vt.

Uniqueness is intended as: if both Fl and F̃l are two such �ows, then for
m-a.e. x we have Flt(x) = F̃lt(x) for any t ∈ [0, T ].

Moreover, the following hold:

-) for m-a.e. x ∈ X the curve t 7→ Flt(x) is absolutely continuous and

ms(Fl·(x), t) = |vt| ◦ Ft(x) a.e. t ∈ [0, 1]; (1.8.5)

-) indicating with µt the unique solution of the continuity equation given
by Theorem 1.8.2, µt satis�es

µt = (Fl
(v)
t )∗µ̄.

We conclude recalling a regularity theorem about Regular Lagrangian
Flows. Its proof is due to E. Bruè and D. Semola and can be found in
[BS20b].

They introduced the notion of symmetric covariant derivative de�ned as
follows.
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De�nition 1.8.6 (Symmetric covariant derivative). The space W 1,2
C,s(TX) is

de�ned as the space of all vector �elds v ∈ L2(TX) for which there exists a
tensor S ∈ L2(T⊗2X) such that for every ϕ, ψ1, ψ2 ∈ Test(X) it holds

2

∫
ϕS(∇ψ1,∇ψ2) dm =

∫
−〈v,∇ψ1〉 div(ϕ∇ψ2)− 〈v,∇ψ2〉 div(ϕ∇ψ1)

+ div(ϕv)〈∇ψ1,∇ψ2〉〉 dm.

The tensor S is called symmetric covariant derivative of v and we denote it
with ∇symv. We endow the space W 1,2

C,s(TX) with the norm

‖v‖2
W 1,2
C,s(TX)

:= ‖v‖2
L2(TX) + ‖∇symv‖2

L2(T⊗2X).

As noted in [BS20b],W 1,2
C (TX) ⊂ W 1,2

C,s(TX) and the symmetric covariant
derivative of a vector �eld is the symmetric part of its covariant derivative
whenever the latter exists.

Let (vt) be a time dependent vector �eld such that for every t ∈ [0, T ] it
admits a symmetric covariant derivative. We de�ne

L(v) := sup
t∈[0,T ]

‖∇symvt‖L∞ .

Theorem 1.8.7. Let (X, d,m) be an RCD(K,N) space. Assume that (vt)
satis�es the hypotheses of Theorem 1.8.5 and assume that L(v) < +∞. Then
the Regular Lagrangian Flow Fl of (vt) admits a Lipschitz representative and
for every x, y ∈ X it holds

d(Flt(x),Flt(y)) ≤ eLtd(x, y).

Remark 1.8.8. In [BS20b] the authors assumed the space to be compact
in order to deduce Lipschitz regularity of the �ow. This was needed as they
were using the main result in [GT18] that, at that time, provided a necessary
second-order di�erentiation formula on �nite-dimensional and compact RCD
spaces. A subsequent improvement of this paper [GT21] established the
same second-order di�erentiation formula in the non-compact setting, thus
allowing Bruè-Semola's result to be extended to the non-compact setting.�

We consider now an autonomous vector �eld (vt), i.e. such that there
exists v ∈ L2(TX) which satis�es vt ≡ v for every t ∈ [0, T ].

Let v be as in Theorem 1.8.5. From Theorem 1.8.5 follows easily that Fl
can be extended uniquely to a map [0,+∞) × X → X such that for every
t, s ∈ [0,+∞) it holds the group property

Flt ◦ Fls = Flt+s m-a.e., (1.8.6)
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where, as in Theorem 1.8.5, uniqueness is to be intended up to a negligible
set of trajectories.

Assuming that div(v) ∈ L∞(m) (notice that before we only assumed
that its negative part was in L∞(m)) and denoting with Fl−v the Regular
Lagrangian Flow of −v, it holds (see for instance [GR18, Lemma 3.18]) that
Fl−vt ◦ Flt = Id for every t ∈ [0,+∞), then, de�ning Fl−t := Fl−vt for every
t ∈ [0,+∞) we can extend the �ow Fl on R × X and in this case the group
property (1.8.6) holds for every t, s ∈ R.

Moreover the following holds:

in (ii) and (iii) of Proposition 1.8.4 we can replace "Lipschitz"

with "C1" and formula 1.8.4 holds for every t.
(1.8.7)
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Chapter 2

A general splitting principle on

RCD spaces

In this chapter we present the main result of [GMa]: the general splitting
principle Theorem 0.0.6.

2.1 Producing a coordinate function

In the practice of studying rigidity properties of spaces with lower Ricci
bounds, one often �nds out a function u with somehow controlled gradient
and Laplacian and for which equality holds in the Bochner inequality, and
this in turn gives information about the structure of the Hessian of u. The
typical informations of u are the identities

|du| = ϕ ◦ u,
∆u = ξ ◦ u,

Hess(u) = ζ ◦ u |du| Id + ζ̃ ◦ u |du| e1 ⊗ e1,

where e1 = ∇u
|∇u| on |∇u| > 0, for suitable functions ϕ, ζ, ζ̃, ξ : R→ R.

As we shall see, when this occurs the space splits as warped product
R ×w X′ and the `R-coordinate' of the isomorphism is the post-composition
of u with a suitable function η : R→ R.

To have a better understanding of the warped product we will ultimately
obtain, it is convenient to identify right now who is such suitable post-
composition. This is the scope of the following lemma, whose proof only
relies in handling chain rules.

55
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Lemma 2.1.1 (Producing a coordinate function). Let K ∈ R, N ∈ [1,+∞)
and let (X, d,m) be a RCD(K,N) space. Assume that u ∈ H2,2

loc (X) satis�es

|du| = ϕ ◦ u m-a.e. (2.1.1)

for some ϕ : u(X) → (0,∞) in C1,1
loc . Put e1 := ∇u

|∇u| (this is m-a.e. well
de�ned as |∇u| > 0 m-a.e. as a consequence of our assumption on ϕ) and
assume that for some locally Lipschitz functions ζ, ζ̃ : u(X)→ R we have

Hessu = ζ ◦ u|du|Id + ζ̃ ◦ u|du|e1 ⊗ e1. (2.1.2)

Then
ϕ′ = ζ + ζ̃ , (2.1.3)

any function η : u(X)→ (0,∞) in C1,1
loc such that η′ = 1

ϕ
is invertible and the

function b := η ◦ u is in H2,2
loc (X) with

|db| = 1, (2.1.4a)

Hess b = ζ ◦ η−1 ◦ b
(
Id− e1 ⊗ e1

)
. (2.1.4b)

If moreover we have u ∈ D(∆loc) with ∆u = ξ ◦ u for some ξ : u(X) → R
Borel locally bounded, then b ∈ D(∆loc) with

∆b =
(
ξ
ϕ
− ϕ′

)
◦ η−1 ◦ b. (2.1.5)

Proof. Since u ∈ H2,2
loc (X) is with |du| ∈ L∞loc(X) (by (2.1.1)) we have that

|du| ∈ W 1,2
loc (X) (recall (1.6.2)), thus we can write

ϕ′ ◦ u du = d|du| = Hessu( du
|du|) = (ζ ◦ u+ ζ̃ ◦ u) du

and since |du| > 0 m-a.e., property (2.1.3) follows.
The fact that η is invertible follows directly from η′ = 1

ϕ
> 0 and the fact

that b ∈ H2,2
loc (X) from the chain rule noticing that:

-) if u ∈ Testloc(X) and ϕ ∈ C∞loc(u(X)), then ϕ ◦u ∈ Testloc(X) (by direct
computation);

-) formula (1.6.1) shows that if u is also locally Lipschitz, then the Hessian
of ϕ ◦ u is locally in L2.

Then (2.1.4a) follows from |db| = η′ ◦ u|du| = (η′ϕ) ◦ u and the choice of η.
For (2.1.4b) we use the chain rule for the Hessian (1.6.1) to compute

Hess b = η′ ◦ uHessu+ η′′ ◦ udu⊗ du

(by (2.1.1),(2.1.2)) = ζ ◦ u Id + ζ̃ ◦ ue1 ⊗ e1 − ϕ′ ◦ ue1 ⊗ e1

(by (2.1.3)) = ζ ◦ u
(
Id− e1 ⊗ e1

)
,

which is (2.1.4b). The last claim is also a direct consequence of the assump-
tions and of the chain rule for the Laplacian (1.3.1).
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2.2 Set up and statement of the splitting result

From now on we shall assume the following:

a) (X, d,m) is an RCD(K,N) space, K ∈ R, N <∞, with supp(m) = X.

b) b : X→ R is a function in H2,2
loc ∩D(∆loc) such that

|db| = 1, m-a.e. (2.2.1a)

∆b = ψm ◦ b, (2.2.1b)

Hess b = ψd ◦ b (Id− e1 ⊗ e1) where e1 := ∇b = ∇b
|∇b| , (2.2.1c)

for some ψm, ψd : R→ R locally Lipschitz. By (2.2.1a) and the Sobolev-
to-Lipschitz property, b has a 1-Lipschitz representative and we shall
always identify it with such representative.

These assumptions have the following rather direct consequences:

-) The Regular Lagrangian Flow Fl : R × X → X of ∇b is well de�ned.
Indeed, for η ∈ LIPbs(X) the vector �eld η∇b admits a Regular La-
grangian Flow thanks to the properties (2.2.1). Then taking into ac-
count the �nite speed of propagation of this �ow (from (2.2.1a) and
(1.8.5)) it is easy to see that taking η equal 1 on a ball of radius R and
then letting R ↑ ∞ and using the fact that div(∇b) = ∆b is bounded
on the level sets of b we can �nd the desired �ow (Flt).

-) Fl : R×X→ X has a continuous representative, still denoted by Fl, and
its Lipschitz constant on [−T, T ]×X is bounded for every T > 0. Such
Lipschitz regularity follows from the fact that the covariant derivative
of ∇b is bounded on b−1([−T, T ]), because of (2.2.1c), and Theorem
1.8.7.

-) The formula

b(Flt(x)) = b(x) + t (2.2.2)

holds for every t ∈ R, x ∈ X. Indeed, we know from (1.8.3) that for m-
a.e. x the function t 7→ b(Flt(x)) is inW 1,1

loc (R) (in fact locally absolutely
continuous, as b is Lipschitz) with derivative equal to |db|2(Flt(x)).
By integration and using (1.8.2) we see from (2.2.1a) that for given
t ∈ R the formula (2.2.2) holds for m-a.e. x. The claim follows by the
continuity of Fl and b.
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-) For any two x, y ∈ X with b(x) = b(y) there is a Lipschitz curve joining
them lying entirely on the same level set. Indeed, if γ is any Lipschitz
path connecting x any y, say a geodesic, then t 7→ Flb(x)−b(γt)(γt) is still
Lipschitz (by the above Lipschitz regularity) joins x and y and lies on
the same level set of x, y (by (2.2.2)).

We can now de�ne the metric measure space (X′, d′,m′) by putting X′ :=
b−1(0) and then de�ning

d′(x, y)2 := inf

∫ 1

0

|γ̇t|2 dt, (2.2.3)

the inf being taken among all continuous curves γ : [0, 1] → X′ ⊂ X joining
x and y and

m′ := c−1 Pr∗(m|b−1([0,1])
), for c :=

∫ 1

0

wm dL1, (2.2.4)

where Pr : X → X′ is de�ned as Pr(x) := Fl−b(x)(x), and wm is a positive
function that we will de�ne soon (see (2.2.9a) and (2.2.10), for now it is
enough that c is a positive constant). It is clear that d′ is a (�nite) distance
on X′ and, since clearly from the above Pr is locally Lipschitz, that it is
complete and induces the same topology on X′ as the one induced by d.
Then obviously m′ is a Borel measure and from (2.2.6) below it easily follows
that it is �nite on bounded sets (and thus Radon).

We also de�ne
T : X → R× X′,

x 7→ (b(x),Pr(x))
(2.2.5)

and notice that

T is locally Lipschitz, invertible, with locally Lipschitz inverse, (2.2.6)

where on R× X′ we are, for the moment, putting the distance

d+((t, x), (s, y)) := d′(x, y) + |t− s|.

Indeed, the local Lipschitz regularity of T is obvious. For the other inequality
notice that

d(x, y) ≤ d(Flb(x)(Pr(x)),Flb(x)(Pr(y))) + d(Flb(x)−b(y)(y), y) (2.2.7)

for every x, y ∈ X, and use that t 7→ Flt(y) is 1-Lipschitz (by (2.2.1a) and
(1.8.5)), that Flz : X′ → X is Lipschitz uniformly on z ∈ [−T, T ] for any
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T > 0 (by Theorem 1.8.7 applied to the vector �eld η ◦ b∇b with η smooth
cut-o� function with bounded support) and that d ≤ d′ on X′ (obviously
from the de�nition). Observe also that

the inverse of T is the map (t, x′) 7→ Flt(x
′) (2.2.8)

as it is easily seen from the de�nitions recalling also (2.2.2).

With this said, we now want to equip the set R×X′ with a warped product
structure. To this aim, let us introduce the locally absolutely continuous
functions wm, wd : R→ (0,+∞) de�ned by

(log(wm))′ = ψm, (2.2.9a)

(log(wd))
′ = ψd, (2.2.9b)

normalized in such a way that

wm(0) = wd(0) = 1. (2.2.10)

Then on R × X′ we de�ne the (Radon) warped product measure mw by the
formula ∫

f(t, x) dmw :=

∫ (∫
f(t, x) dm′(x)

)
wm(t) dL1(t) (2.2.11)

and the warped product distance dw as

dw
(
(t, x), (s, y)

)2
= inf

∫ 1

0

|η̇r|2 + w2
d(ηr)|γ̇r|2 dr, (2.2.12)

the inf being taken among all absolutely continuous curves γ : [0, 1]→ X′ and
η : [0, 1] → R joining x to y and t to s respectively. Since wd is continuous
and strictly positive, it is clear that dw is locally equivalent to (i.e. up to
multiplicative constants controls and is controlled by) the distance d+ used
above. In particular, it induces the product topology.

We can now state the main result of this chapter (which is, stated slightly
di�erently, Theorem 0.0.6).

Theorem 2.2.1. Under the assumptions (a, b) stated above, the following
holds.

The map T de�ned in (2.2.5) is a measure preserving isometry from X to
R×w X′, the latter being the space R×X′ equipped with the distance dw and
the measure mw.

The proof of this result will come as a result of the analysis in the following
sections, the conclusion being in Section 2.5.



60 Chapter 2. A general splitting principle on RCD spaces

2.3 Behaviour of the measure under the �ow

Let us de�ne the locally Lipschitz map R2 3 (t, z) 7→ Ψm,t(z) ∈ R as

Ψm,t(z) := wm(z−t)
wm(z)

. (2.3.1)

Then from (2.2.9a) we get

∂tΨm,t(z) = −ψm(z − t)Ψm,t(z), and Ψm,0 ≡ 1 (2.3.2)

and
∂tΨm + ∂zΨm + ψmΨm = 0. (2.3.3)

Lemma 2.3.1. With the same assumptions and notation of Section 2.2 and
for Ψm de�ned as in (2.3.1) we have

(Flt)∗m = Ψm,t ◦ bm ∀t ∈ R. (2.3.4)

Proof. Recalling the simple implication "T∗µ = ν implies T∗(ρµ) = ρ◦T−1ν",
and by the �nite speed of propagation of the �ow, to conclude it is su�cient
to prove that for any Lipschitz probability density ρ with bounded support
we have (Flt)∗(ρm) = ρtm, where ρt = (ρ ◦ Fl−t) (Ψm,t ◦ b).

By the uniqueness result for the continuity equation (that is central for
the theory of Regular Lagrangian Flows, see Section 1.8), this latter claim
will follow if we prove that (ρt) solves

∂tρt + div(ρt∇b) = 0 a.e. t.

Notice that (t, x) 7→ ρt(x) is Lipschitz, thus the computations that we
are going to perform are justi�ed. Now observe that letting h → 0 in
ρ◦Fl−t◦Fl−h−ρ◦Fl−t

h
we see that ∂t(ρ ◦ Fl−t) = −〈∇(ρ ◦ Fl−t),∇b〉, thus

∂tρt = −〈∇(ρ ◦ Fl−t),∇b〉 Ψm,t ◦ b + (ρ ◦ Fl−t)(∂tΨm,t) ◦ b.

On the other hand

div(ρt∇b) = 〈∇ρt,∇b〉+ ρt∆b

= 〈∇(ρ ◦ Fl−t),∇b〉Ψm,t ◦ b + (ρ ◦ Fl−t)(∂zΨm,t) ◦ b |db|2 + ρt∆b,

thus recalling (2.2.1) and adding up we conclude that

∂tρt + div(ρt∇b) = (ρ ◦ Fl−t)
(
∂tΨm,t + ∂zΨm,t + ψmΨm,t

)
◦ b

(2.3.3)
= 0,

as desired.
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For B ⊂ X′ Borel we de�ne B̂ ⊂ X as

B̂ := Fl−1
· (B) =

⋃
t∈R

Fl−1
t (B) = {Flt(B) : t ∈ R}. (2.3.5)

Clearly B̂ is Borel. Then we have the following.

Lemma 2.3.2. With the same assumptions and notation of Section 2.2 (re-
call in particular the de�nition (2.2.9a) and the normalization (2.2.10)) the
following holds.

Let B ⊂ X′ be Borel and put µ := b∗(m|B̂). Then

(trt)∗µ = Ψm,t µ, for every t ∈ R, (2.3.6)

where trt : R→ R is the translation map sending z to z + t and moreover

µ = m′(B)wm L1. (2.3.7)

Proof. If m′(B) = ∞ the conclusion follows from the de�nition of m′ and
(2.3.4), thus we assume m′(B) < ∞. By (2.3.4) and the invariance of B̂
under the �ow it follows immediately that (Flt)∗(m|B̂) = Ψm,t ◦ bm|B̂. Then
(2.3.6) follows from

(trt)∗µ = (trt)∗b∗(m|B̂)
(2.2.2)

= b∗(Flt)∗(m|B̂)

= b∗(Ψm,t ◦ bm|B̂)
∗
= Ψm,t b∗(m|B̂) = Ψm,tµ,

where the starred equality is justi�ed by∫
ϕ db∗(Ψm,t ◦ bm|B̂) =

∫
(ϕΨm,t) ◦ b dm|B̂ =

∫
ϕΨm,t db∗(m|B̂).

Averaging (2.3.6) in t we see that the left hand side becomes absolutely
continuous with respect to L1, thus showing that µ � L1, say µ = ρL1.
Then (2.3.6) becomes: for any t ∈ R we have ρ(z − t) = Ψm,t(z)ρ(z) for
L1-a.e. z. From this identity and ∂tΨm,t|t=0

= −ψm (that comes from (2.3.2))
it easily follows that the distributional derivative ρ′ of ρ satis�es ρ′ = ψmρ,
thus ensuring that ρ is a multiple of wm, say ρ = cwm.

To �nd the value of c notice that

b∗(m|B̂)([0, 1]) = m(B̂ ∩ b−1[0, 1])) = m′(B)

∫ 1

0

wm dL1

by de�nition of m′, and also that

b∗(m|B̂)([0, 1]) = µ([0, 1]) =

∫ 1

0

ρ dL1 = c

∫ 1

0

wm dL1.
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Let now B ⊂ X′ be Borel as before and with m′(B) <∞. De�ne B̂ as in
(2.3.5) and notice that since µ := b∗(m|B̂) is σ-�nite (in fact Radon), we can
disintegrate m|B̂ along the map b, as the standard proof (see e.g. [B, Section
10.6]) naturally carries over. Thus we obtain a weakly measurable family
z 7→ νz of probability measures on X such that νz is concentrated on b−1(z)
for µ-a.e. z (equivalently by Lemma 2.3.2 above: for L1-a.e. z) and so that∫

ϕ dm|B̂ =

∫∫
ϕ dνz dµ(z)

(2.3.7)
= m′(B)

∫ (∫
ϕ dνz

)
wm(z) dL1(z)

(2.3.8)
holds for every ϕ : X→ R+ Borel. Then we have:

Lemma 2.3.3. With the same assumptions and notation of Section 2.2 the
following holds.

Let B ⊂ X′ be Borel with m′(B) < ∞ and B̂ as in (2.3.5). Then the
disintegration {νz}z∈R of m|B̂ with respect to b satis�es: for any t ∈ R it
holds

(Flt)∗νz = νz+t µ-a.e. z. (2.3.9)

Proof. Fix t ∈ R. We shall prove that the family {(Flt)∗νz−t} is an admissible
disintegration of m|B̂ with respect to b: this is (equivalent to) the claim. For

µ-a.e. z we know that νz is concentrated on b−1(z), thus νz−t is concentrated
on b−1(z − t) and therefore, by (2.2.2), (Flt)∗νz−t is concentrated on b−1(z).
To conclude, with a density argument based also on (2.2.6) it is therefore
su�cient to prove that for any Borel functions g : X′ → R+ and h : R→ R+

we have∫
h ◦ b g ◦ Pr dm|B̂ =

∫ ∫
h ◦ b g ◦ Pr d(Flt)∗νz−t dµ(z). (2.3.10)

We start claiming that it holds∫
h(z)Ψm,t(z)

(∫
g◦Pr dνz−t

)
dµ(z) =

∫
h(z)Ψm,t(z)

(∫
g◦Pr dνz

)
dµ(z).

(2.3.11)
Since Pr ◦ Flt = Pr, we have on one hand∫

B̂

h ◦ b g ◦ Pr d(Flt)∗m =

∫
B̂

(Ψm,th) ◦ b g ◦ Pr dm

=

∫
Ψm,t(z)h(z)

(∫
g ◦ Pr dνz

)
dµ(z)
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and on the other∫
B̂

h ◦ b g ◦ Pr d(Flt)∗m =

∫
B̂

h ◦ b ◦ Flt g ◦ Pr dm

(by (2.2.2)) =

∫
h(z + t)

(∫
g ◦ Pr dνz

)
dµ(z)

=

∫
h(z)

(∫
g ◦ Pr dνz−t

)
d(trt)∗µ(z)

(by (2.3.6)) =

∫
Ψm,t(z)h(z)

(∫
g ◦ Pr dνz−t

)
dµ(z),

thus proving our claim (2.3.11). Now notice that replacing h with hΨm,t

(recall that Ψm,t > 0 everywhere) and using again that Pr ◦ Flt = Pr, from
(2.3.11) we get∫

h(z)
(∫

g ◦ Pr d((Flt)∗νz−t)
)

dµ(z) =

∫
h(z)

(∫
g ◦ Pr dνz

)
dµ(z).

To conclude we use again the fact that (Flt)∗νz−t and νz are both concentrated
on b−1(z) to deduce from the above that∫∫

h ◦ b g ◦ Pr d((Flt)∗νz−t) dµ(z) =

∫∫
h ◦ b g ◦ Pr dνz dµ(z)

=

∫
h ◦ b g ◦ Pr dm|B̂,

that is the desired (2.3.10).

Proposition 2.3.4. With the same assumptions and notation of Section 2.2
the following holds.

The map T : X→ X′×wR (recall (2.2.5)) is measure preserving. In other
words and recalling (2.2.8), for any ϕ : X→ R+ Borel we have∫

ϕ dm =

∫ (∫
ϕ d(Flt)∗m

′
)
wm(t) dt

Proof. Letting B ⊂ X′ be arbitrary Borel with m′(B) <∞ and letting ϕ be
0 outside B̂, we see that to conclude it su�ces to prove that we can choose
νz := m′(B)−1(Flz)∗(m

′|B) in the disintegration formula (2.3.8).
To see this, observe that from Lemma 2.3.3 above and Fubini's theorem we

see that for a.e. z we have (Flt)∗νz = νz+t for a.e. t. Fix z̄ for which this holds
and for which νz̄ is concentrated on b−1(z̄) and then de�ne ν̄z := (Flz−z̄)∗νz̄
for any z. Then ν̄z = νz for a.e. z, and thus the ν̄z's are admissible in formula
(2.3.8).
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To conclude it is therefore enough to show that ν̄0 = m′(B)−1m′|B. To

see this, let C ⊂ B be Borel, de�ne Ĉ as in (2.3.5) and recall the de�nition
(2.2.4) of m′ to get

m′(C) =
(∫ 1

0

wm dL1
)−1

m(Ĉ ∩ b−1([0, 1]))

(2.3.8)
=

(∫ 1

0

wm dL1
)−1

m′(B)

∫ 1

0

ν̄t(Ĉ)wm(t) dL1(t) = m′(B)ν̄0(C),

having also used the de�nition of ν̄t in the last equality. The conclusion
follows by the arbitrariness of C ⊂ B.

2.4 Behaviour of the distance under the �ow

We shall work under the same assumptions and notation as in Section 2.2.
We start decomposing the tangent module L0(TX) into the submodules

V ‖, V ⊥ of vector �elds that are pointwise parallel/orthogonal to ∇b. Thus
we put

V ‖ := {v ∈ L0(TX) : v = f∇b for some f : X→ R},
V ⊥ := {v ∈ L0(TX) : 〈v,∇b〉 ≡ 0}.

Given an arbitrary vector �eld v ∈ L0(TX) it components v‖, v⊥ in V ‖, V ⊥

respectively are de�ned as (recall that |db| ≡ 1):

v‖ := 〈v,∇b〉∇b and v⊥ := v − v‖.

To better understand the structure of V ‖, V ⊥, it is convenient to introduce
the following two classes of functions:

G := {g ◦ Pr : g ∈ L∞ ∩W 1,2(X′) with bounded support},
H := {h ◦ b : h ∈ L∞ ∩W 1,2(R) with bounded support}.

Notice that both G and H are algebra of functions. We shall typically use
letters g, h for functions on X′,R respectively and ĝ, ĥ for g ◦Pr, h◦b respec-
tively. It is clear that ∇ĝ ∈ V ⊥ and ∇ĥ ∈ V ‖ and thus that

V ⊥ ⊃ sub-module of the tangent module generated by ∇ĝ with ĝ ∈ G,
V ‖ ⊃ sub-module of the tangent module generated by ∇ĥ with ĥ ∈ H.

(2.4.1)
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We shall prove in a moment that these inclusion are actually identities. To
see this, it is convenient to introduce the algebra A of functions on X as

A := {algebra of functions on X of the form
n∑
i=1

ĝiĥi, with n ∈ N}. (2.4.2)

We then have the following result:

Lemma 2.4.1. With the same assumptions and notation of Section 2.2 and
with the de�nitions just given, the following holds.

The algebra A is densely contained in W 1,2(X). Similarly, the algebra
of functions f : X′ × R → R such that f ◦ T ∈ A is densely contained in
W 1,2(X′ ×w R).

Proof. The second claim follows directly from [GH, Section 3]. Now recall
that, directly from the de�nition of Sobolev spaces, if T : (X1, d1,m1) →
(X2, d2,m2) is measure preserving and biLipschitz, then

L−1‖f‖W 1,2(X2) ≤ ‖f ◦ T‖W 1,2(X1) ≤ L‖f‖W 1,2(X2),

where L is the biLipschitz constant. Thus the conclusion would follow if we
knew that T was globally biLipschitz, as the measure preserving property
comes from Proposition 2.3.4.

In general, it might be that T is only locally biLipschitz, but this is
su�cient to conclude, as with a cut-o� argument we see that functions with
bounded support are dense in W 1,2 and we can approximate functions in
W 1,2(X×wR) with bounded support with functions as in the statement with
uniformly bounded support.

From this density result it follows that gradients of functions inA generate
the whole tangent module. Since for f =

∑
i ĝiĥi we have ∇f =

∑
i ĥi∇ĝi +

ĝi∇ĥi, it follows that the sub-module generated by gradients of functions in
G and H is the whole L0(TX). Hence (2.4.1) improves into

V ⊥ = sub-module of the tangent module generated by ∇ĝ with ĝ ∈ G,
V ‖ = sub-module of the tangent module generated by ∇ĥ with ĥ ∈ H.

(2.4.3)

In particular, we obtain:

v ∈ L0(TX) with 〈v,∇ĝ〉 = 0 for every ĝ ∈ G ⇒ v ∈ V ‖
(2.4.4)
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Let us now pick ϕ ∈ C2(R) with globally bounded second derivative,
put b̃ := ϕ ◦ b and notice that the Regular Lagrangian Flow (F̃lt) of ∇b̃ is
globally well de�ned (the uniform bound on ϕ′′ grants, among other things,
that |∇b̃| grows at most linearly, that in turn shows that F̃lt(x) does not go
to in�nity in �nite time). We claim that for some `reparametrization map'
rep : R2 → R locally Lipschitz we have

F̃lt(x) = Flrep(t,b(x))(x) for every t ∈ R, x ∈ X. (2.4.5)

Since T : X→ X′ × R is locally biLipschitz, this will follow if we show that

Pr ◦ F̃lt = Pr, on X, for every t ∈ R, (2.4.6a)

b(F̃lt(x)) = ft(b(x)), for every t ∈ R, x ∈ X, (2.4.6b)

for some locally Lipschitz function f : R2 → R.
As for the �ow (Flt) of ∇b, we have that for any t ∈ R the map F̃lt : X→

X is Lipschitz, with a control on the Lipschitz constant locally uniformly
bounded in t. For ĝ ∈ G we can compute ∂t(g ◦ F̃lt) = 〈∇ĝ,∇b̃〉 ◦ F̃lt =
ϕ′ ◦ b〈∇ĝ,∇b〉 ◦ F̃lt = 0, i.e. ĝ ◦ F̃lt = ĝ m-a.e.. Then the arbitrariness of ĝ
and a continuity argument give (2.4.6a).

To prove (2.4.6b) we start noticing that with the same continuity argu-
ments used to deduce (2.2.2), we see that for any x ∈ X the curve t 7→
b(F̃lt(x)) is C1 and satis�es

∂tb(F̃lt(x)) = ϕ′(b(F̃lt(x))) for every t ∈ R. (2.4.7)

In other words, the function gt(x) := b(F̃lt(x)) solves the Cauchy problem
∂tgt(x) = ϕ′(gt(x)) with g0(x) = b(x), hence its value at time t depends only
on t and b(x), as in (2.4.6b). The local Lipschitz regularity of f then follows
by standard ODE estimates (recall that ϕ is C2).

Also, F̃lt : X→ X has bounded compression. Since this map is invertible
with inverse F̃l−t that is also of bounded compression, it admits a di�erential
dF̃lt : L0(TX)→ L0(TX) (see Theorem 1.4.6) characterized by

〈dF̃lt(v), df〉 ◦ F̃lt = 〈v, d(f ◦ F̃lt)〉 for every v ∈ L0(TX), f ∈ W 1,2(X)
(2.4.8)

Arguing verbatim as for [DPG, Proposition 3.31] we obtain the following
result, whose proof we omit (see also [GV, Appendix A]).

Lemma 2.4.2. With the same assumptions and notation of Section 2.2 and
with b̃, (F̃lt) as just de�ned, the following holds.

Let v ∈ L2(TX) and put vs := dF̃ls(v). Then the map R 3 s 7→
1
2
|vs|2 ◦ F̃ls ∈ L1(X) is C1 and its derivative, intended as limit of the dif-

ference quotients both strongly in L1 and pointwise a.e., is given by

∂s(
1
2
|vs|2 ◦ F̃ls) = Hess b̃(vs, vs) ◦ F̃ls for every s ∈ R. (2.4.9)
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The special structure of the Hessian of b̃ allows for a more explicit compu-
tation of the above. Notice that the chain rule (1.6.1) grants that b̃ ∈ H2,2

loc (X)
with

Hess b̃ = (ψdϕ
′) ◦ b (Id− e1 ⊗ e1) + ϕ′′ ◦ b e1 ⊗ e1 (2.4.10)

Also, let us notice that

v ∈ V ⊥ ⇒ dF̃lt(v) ∈ V ⊥ for every t ∈ R, (2.4.11a)

v ∈ V ‖ ⇒ dF̃lt(v) ∈ V ‖ for every t ∈ R. (2.4.11b)

Indeed, for the �rst notice that

〈dF̃lt(v),∇b〉 ◦ F̃lt
(2.4.8)

= 〈v,∇(b ◦ F̃lt)〉
(2.4.6b)

= (∂xft) ◦ b 〈v,∇b〉 = 0

while for the second we pick ĝ ∈ G and compute

〈dF̃lt(v),∇ĝ〉 ◦ F̃lt
(2.4.8)

= 〈v,∇(ĝ ◦ F̃lt)〉
(2.4.6a)

= 〈v,∇ĝ〉 = 0,

thus the arbitrariness of ĝ and (2.4.4) give the claim.
We are now ready to state and prove the main result of this section.

Proposition 2.4.3. With the same assumptions and notation of Section 2.2
the following holds.

Let π be a test plan on X. Then for π-a.e. γ the curve Pr(γ) de�ned as
t 7→ Pr(γt) is absolutely continuous and

ms(Pr(γ), t) ≤ 1
wd(b(γt))

ms(γ, t) for a.e. t, (2.4.12)

where we are writing ms(γ, t) for the metric speed of the curve γ at the time
t.

Moreover, equality holds in (2.4.12) provided t 7→ b(γt) is constant for
π-a.e. γ i.e. if π is concentrated on curves lying on level sets of b.

Proof. We follow the line of thought used to prove [DPG, Proposition 3.23],
this time paying attention to the action of the �ow on the parallel and per-
pendicular directions.

Let ϕ(z) := −1
2
z2, v ∈ L2(TX) and let v‖, v⊥ ∈ L2(TX) be its components

in V ‖, V ⊥, respectively. Put vs := dF̃ls(v), v‖s := dF̃ls(v
‖) and v⊥s := dF̃ls(v

⊥).
Then by (2.4.9) and (2.4.10) it follows that

|v‖s | ◦ F̃ls = |v‖| e−s, (2.4.13a)

|v⊥s | ◦ F̃ls = |v⊥| exp
(∫ s

0

−(bψd ◦ b) ◦ F̃lr dr
)
. (2.4.13b)
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Formula (2.4.7) gives b ◦ F̃lr = e−rb, thus we have∫ s

0

−(bψd ◦ b) ◦ F̃lr dr =

∫ s

0

−be−rψd(be
−r) dr =

∫ b

be−s
−ψd(z) dz

= log
(wd(be−s)

wd(b)

)
and therefore

|vs| ◦ F̃ls =

√
|v‖s |2 ◦ F̃ls + |v⊥s |2 ◦ F̃ls ≤ |v|

(
e−s + wd(be−s)

wd(b)

)
(2.4.14)

Now the inequality (2.4.12) follows along the same lines used in [DPG,
Proposition 3.33]:

-) the test plan admits a derivative π′t as an element of a suitable pullback
of the tangent module satisfying |π′t|(γ) = ms(γ, t) for π-a.e. γ and a.e.
t (see Theorem 1.4.3);

-) the classical formula ∂t(F̃ls(γt)) = dF̃ls,γt(γ
′
t) admits a natural analogue

in this setting if one works with derivatives of test plans in place of
derivative of single curves (see Proposition 1.4.8);

-) coupling these two informations with (2.4.14) we see that for π-a.e. γ
we have

ms(F̃ls(γ), t) ≤ ms(γ, t)(e−s + wd(be−s)
wd(b)

) for a.e. t;

-) the conclusion (2.4.12) follows letting s → ∞ in the above, noticing
that F̃ls → Pr pointwise, recalling the normalization choice (2.2.10)
and using the lower semicontinuity of the metric speed.

For the equality case we argue along the following lines:

-) If the test plan π is concentrated on curves lying on level sets of b, then
its speed is orthogonal to ∇b (as in the proof of Proposition 3.4.6);

-) formula (2.4.13b) and the link between derivatives of test plans and
metric speed recalled before ensure that for π-a.e. γ we have

ms(F̃ls(γ), t) = ms(γ, t)wd(be−s)
wd(b)

for a.e. t; (2.4.15)

-) recall that from Theorem 1.8.7 if L := ‖|Hess b|HS‖L∞ < ∞, then we
have the bi-Lipschitz estimate

e−L|s|d(x, y) ≤ d(Fls(x),Fls(y)) ≤ eL|s|d(x, y) (2.4.16)
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valid for any x, y ∈ X and s ∈ R, for the �ow of ∇b; in our setting we
don't know if Hess b is bounded, but with a cut-o� argument based on
the fact that |Hess b|HS is bounded by a function of b, it is not hard
to see that (2.4.16) still holds for s ∈ [−1, 1] and x, y ∈ b−1([−1, 1]) for
some constant L;

-) we can assume that π is concentrated on curves lying on a bounded
set. Thus for s su�ciently big (F̃ls)∗π is concentrated on curves lying
in b−1([−1, 1]);

-) we use the identity Pr(x) = Fl−e−sb(x)(F̃ls(x)) and the previous item to
deduce that for all s su�ciently big the estimate

ms(Pr(γ), t)
(2.4.16)

≥ e−Le
−sb(γt)

ms(F̃ls(γ), t)

(2.4.15)
= e−Le

−sb(γt)

ms(γ, t)wd(be−s)
wd(b)

for a.e. t

holds for π-a.e. γ. Letting s ↑ ∞ and recalling again the normalization
(2.2.10) we get the equality in (2.4.12).

Corollary 2.4.4. With the same assumptions and notation of Section 2.2
the following holds.

Let g ∈ L2
loc(X

′) be Borel and put, as before, ĝ := g ◦ Pr. Then g ∈
W 1,2
loc (X′) if and only if ĝ ∈ W 1,2

loc (X) and in this case

|dĝ| = 1
wd◦b
|dg| ◦ Pr m-a.e.. (2.4.17)

Proof. It is clear from Proposition 2.3.4 that g ∈ L2
loc(X

′) if and only if
ĝ ∈ L2

loc(X). Now assume that g ∈ W 1,2
loc (X′) and let π be a test plan on X

concentrated on curves lying on some bounded set. Then, since Pr is locally
Lipschitz and by Proposition 2.3.4, we have that Pr∗π is a test plan on X′,
where with a little abuse of notation we are denoting by Pr the map sending
the curve γ to the curve t 7→ Pr(γt). Since g is Sobolev we have∫

|ĝ(γ1)− ĝ(γ0)| dπ(γ) =

∫
|g(η1)− g(η0)| dPr∗π(η)

≤
∫∫ 1

0

|dg|(ηt)|η̇t| dt dPr∗π(η)

(”η = Pr(γ)” + (2.4.12)) ≤
∫∫ 1

0

1
wd(b(γt))

|dg|(Pr(γt))|γ̇t| dt dπ(γ),
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thus proving, by the arbitrariness of π, that ĝ ∈ W 1,2
loc (X) and that inequality

≤ holds in (2.4.17).
Now assume that ĝ ∈ W 1,2

loc (X) and let π′ be a test plan on X′ concentrated
on curves lying on some bounded set. Fix T > 0, and consider the push
forward π of the plan π′ × ( 1

2T
L1|[−T,T ]

) via the map (x, t) 7→ Flt(x). Then

from Proposition 2.3.4, identity (2.2.2) and the fact that Fl : X′ × R→ X is
locally Lipschitz we see that π is a test plan on X concentrated on curves
lying on level sets of b, thus since ĝ is Sobolev we have∫
|g(η1)− g(η0)| dπ′(η) =

∫
|ĝ(γ1)− ĝ(γ0)| dπ(γ)

≤
∫∫ 1

0

|dĝ|(γt)|γ̇t| dt dπ(γ)

((2.4.12) + def. π) =

∫∫ 1

0

(
1

2T

∫ T

−T
wd(s)|dĝ|(Fls(ηt)) ds

)
|η̇t| dt dπ′(η).

Since π′ was arbitrary, we see that g is locally Sobolev with

|dg|(x′) ≤ 1
2T

∫ T

−T
wd(s)|dĝ|(Fls(x

′)) ds
∗
≤ |dg|(x′) m′-a.e. x′,

where the starred inequality comes from the already proven inequality ≤ in
(2.4.17). Thus the starred inequality must be an equality, and this forces the
equality in (2.4.17) to hold m-a.e. on b−1([−T, T ]). The conclusion follows
by the arbitrariness of T .

2.5 Isometry and RCD condition of the quotient

space

Lemma 2.5.1. With the same notation and assumptions as in Section 2.2
the following holds.

The warped product space R×w X′ has the Sobolev-to-Lipschitz property.

Proof. The arguments used in [DPG, Theorem 3.34] carry over. One �rst
proves that X′ is locally doubling (because X is and Pr is locally Lipschitz)
and has the measured length property, see De�nition 1.7.7 (this follows from
the fact that X has such property and the estimate (2.4.12)).

Then Theorem 1.7.11 applies.

The isomorphism between X and R ×w X′ is reached via duality with
Sobolev norms thanks to the following result (see [G13a, Proposition 4.20]
for its proof).
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Proposition 2.5.2 (Isomorphisms via duality with Sobolev norms). Let
(X1, d1,m1) and (X2, d2,m2) be two metric measure spaces with the Sobolev-
to-Lipschitz property and let T : X1 → X2 be a Borel map. Assume that
both m1 and m2 give �nite mass to bounded sets. Then the following are
equivalent:

i) up to a modi�cation on a m1-negligible set, T is an isomorphism of
metric measure spaces, i.e. T∗m1 = m2 and d2(T(x),T(y)) = d1(x, y)
for any x, y ∈ supp(m1);

ii) the following two are true:

ii-a) there exists a Borel m1-negligible set N ⊂ X1 and a Borel map
S : X2 → X1 such that S(T(x)) = x for every x ∈ X1 \ N ;

ii-b) the right composition with T produces a bijective isometry of the
Sobolev space W 1,2(X2) in W 1,2(X1), i.e. f ∈ W 1,2(X2) if and only
if f ◦T ∈ W 1,2(X1) and in this case ‖f‖W 1,2(X2) = ‖f ◦T‖W 1,2(X1).

Theorem 2.5.3. With the same notation and assumptions as in Section 2.2
the following holds.

The map T : X→ R×w X′ is a measure preserving isometry.

Proof. Since we already know that T is measure preserving (by Proposition
2.3.4) and both X and R ×w X′ have the Sobolev-to-Lipschitz property, ac-
cording to Proposition 2.5.2 it is su�cient to prove that f ∈ W 1,2(R×w X′)
if and only if f ◦ T ∈ W 1,2(X) and in this case

|df |R×wX′ ◦ T = |d(f ◦ T)|X m-a.e.. (2.5.1)

By a density argument based on Lemma 2.4.1, it su�ces to prove the above
for functions f such that f ◦ T ∈ A.

Corollary 2.4.4 and (1.7.1) ensure that (2.5.1) holds if f ◦ T ∈ G, while
(2.2.1a) give that (2.5.1) holds for f ◦T ∈ H (see also the arguments used in
[G13a, Section 6.2]). The conclusion now follows exactly as in [G13a, Section
6.2] (see also [DPG, Section 3.8]) using the fact that both X and R ×w X′

are in�nitesimally Hilbertian (X′ is so because of identity (2.4.17), then the
property carries to warped products by Theorem 1.7.6) and that functions
in G and H have orthogonal gradients. We omit the details.

Proposition 2.5.4. With the same notation and assumptions as in Section
2.2 the following holds.

Assume furthermore that for some z̄ ∈ R we have ψd ≤ 0 on (−∞, z̄] and
ψd ≥ 0 on [z̄,+∞) (thus in particular ψd(z̄) = 0). Then (X′, d′,m′) is an
RCD( 1

w2
d (z̄)

K,N) space.
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Proof. As already noticed, by Corollary 2.4.4 it easily follows that X′ is in-
�nitesimally Hilbertian, so we need only to prove the CD(K,N) condition.

For z ∈ R let X′z := b−1(z) and equip it with the distance d′z de�ned as

d′z(x, y)2 := inf

∫ 1

0

|γ̇t|2 dt,

the inf being taken among all absolutely continuous curves γ : [0, 1]→ X′z ⊂
X. We also equip X′z with the measure m′z := (Flz)∗m

′. Then using the
equality case in Proposition 2.4.3 and using the fact that X′ has the measured
length property (brie�y mentioned in the proof of Lemma 2.5.1 above) it is
not hard to see that Flz : X′ → X′z satis�es

d′z(Flz(x),Flz(y)) = wd(z)d′(x, y) ∀x, y ∈ X′.

Thus if we establish that X′z̄ is RCD(K,N), taking into account how the CD
condition scales with the distance (see [S06b, Proposition 1.4]) we conclude.
With this said, replacing b with b + z̄ we can assume that z̄ = 0 and then
the goal is to prove that X′ is RCD(K,N).

The key geometric property that allows us to conclude, and for which we
shall use the assumption on ψd, is the following:

Let µ0, µ1 ∈P(X) be � m and π so that W 2
2 (µ0, µ1) =

∫∫ 1

0

|γ̇t|2 dt dπ(γ).

Assume that supp(µi) ⊂ b−1([−T, T ]), i = 0, 1.

Then π is concentrated on curves lying on b−1([−T, T ]).
(2.5.2)

To see why this holds, let ϕ : R→ R be C2 with bounded second derivative,
convex, identically 0 on [−T, T ] and strictly positive elsewhere. Then the
Regular Lagrangian Flow (F̃lt) of ∇b̃ with b̃ = ϕ ◦ b is the identity on the
strip b−1([−T, T ]) and converges to the `projection on the boundary of such
strip' outside of it, namely de�ning PrT : X→ X as:

PrT (x) :=


x, if b(x) ∈ [−T, T ],
FlT−b(x)(x), if b(x) > T,
Fl−T−b(x)(x), if b(x) < −T,

we have F̃ls(x) → PrT (x) as s ↑ ∞ for any x ∈ X. Then arguing exactly as
for Proposition 2.4.3 we obtain that: for every test plan π we have that for
π-a.e. γ it holds

ms(PrT (γ), t) ≤ wd(b(PrT (γt)))
wd(b(γt))

ms(γ, t) for a.e. t. (2.5.3)
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Now recall that by (2.2.9b) we have log(wd(z2)
wd(z1)

) =
∫ z2
z1
ψd dL1 for every z1, z2 ∈

R, z1 < z2 and use the assumption on ψd (with z̄ = 0) to conclude from (2.5.3)
that for π-a.e. γ it holds

ms(PrT (γ), t) ≤ ms(γ, t) for a.e. t. (2.5.4)

It directly follows from this that the total kinetic energy of the test plan
KE(π) := 1

2

∫∫ 1

0
|γ̇t|2 dt dπ(γ) does not increase under the action of PrT . In

particular, this occurs for π as in (2.5.2), thus obtaining KE((PrT )∗π) ≤
1
2
W 2

2 (µ0, µ1). On the other hand, we know from [GRS] that for µ0, µ1 � m
there is exactly one plan π for which KE(π) ≤ 1

2
W 2

2 (µ0, µ1), thus we conclude
that (PrT )∗π = π, which is the claim (2.5.2).

A direct consequence of (2.5.2) and the very de�nition of CD(K,N) spaces
(see Section 1.5.1) is that the space (XT , dT ,mT ) given by XT := b−1([−T, T ])
with dT being the restriction of the distance and mT := 1∫ T

−T wm
m|b−1(−T,T )

is

CD(K,N) as a consequence of (X, d,m) being so (recall that a scaling of
the measure does not a�ect Curvature-Dimension bounds). Therefore by
the stability of the CD condition (see Theorem 1.5.23) to conclude it su�ces
to prove that for any �xed p ∈ X′ the spaces (XT , dT ,mT , p) converge to
(X′, d′,m′, p) as T ↓ 0 in the pointed-measured-Gromov-Hausdor� sense.

To see this, consider the map Pr : XT → X′ and notice that Pr(p) = p,
that Pr∗mT = m′ (by (2.2.4)) and that

|d(Pr(x),Pr(y))− d(x, y)| ≤ d(Pr(x), x) + d(Pr(y), y) ≤ 2T ∀x, y ∈ XT .

This su�ces to prove that (XT , dT ,mT , p) pmGH-converge to (X′, d,m′, p),
which therefore is a CD(K,N) space, so we are left to prove that d = d′ on
X′. To see this, notice that since (X′, d,m′) is CD(K,N) and supp(m′) = X′

(as direct consequence of the assumption supp(m) = X), we have that (X′, d)
is a geodesic space, i.e. given x, y ∈ X′ there is a curve γ : [0, 1] → X′ with∫ 1

0
|γ̇t|2 dt = d2(x, y). It follows by the very de�nition of d′ that d′ ≤ d, and

since the other inequality is trivially true, the proof is complete.
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Chapter 3

Applications to spaces with

positive spectrum

In this chapter, using the general strategy saw in Chapter 2, we prove The-
orems 0.0.7 and 0.0.8.

All we have to do is to construct functions with the properties required
in Lemma 2.1.1, use them to �nd the Busemann functions and conclude with
Theorem 2.2.1.

In order to �nd the required functions we will need other preliminary
de�nitions and results that we show in the next two sections.

3.1 Preliminaries: harmonic functions and

Bochner inequality

The construction of the Busemann functions we need is based on the strong
maximum principle for harmonic functions. In this section we recall the
de�nition of harmonic function and the statement of the maximum principles
in the non-smooth setting. Moreover we use the notion of measure valued
Laplacian to state an improved version of the Bochner inequality.

We start recalling the de�nition of measure valued Laplacian, a gener-
alization of the notion of Laplacian that we have seen in De�nition 1.3.21
given by Gigli in [G15].

De�nition 3.1.1 (Measure valued Laplacian). Let (X, d,m) be an in�nites-
imally Hilbertian space, U ⊂ X open and f ∈ W 1,2

loc (X). We shall say that
f ∈ D(∆loc, U) provided there exists a Radon functional µ such that∫

〈∇f,∇ϕ〉 dm = −
∫
ϕ dµ

75
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for every ϕ ∈ LIP(X) with support bounded and contained in U .
In this case the measure µ is denoted by ∆f . In case U = X we simply

write f ∈ D(∆loc).

Recall that a Radon functional is a linear functional L from the space
Cbs(X) of continuous functions on X with bounded support to R such that
for every K ⊂ X there is CK ≥ 0 such that

|L(f)| ≤ CK sup |f | for every f ∈ Cbs(X) with support in K.

Thus Radon functionals should be thought of (and we shall do so) as signed
measures that have �nite total variation on compact sets, but that in principle
might have both positive and negative parts of in�nite mass, see also the
discussion in [CaMo20], where it was observed that Radon functionals are
the correct object to use in place of the Radon measures used in [G15]. Notice
also that in the �eld of non-smooth analysis some authors use the term Radon
measure for what we are calling here Radon functionals, see for instance [AB,
Remark 2.12].

There are natural compatibility conditions between this notion of Lapla-
cian and the one in De�nition 1.3.21, in particular the following proposition
holds (see [G15, Chapter 4]).

Proposition 3.1.2. Let (X, d,m) be an in�nitesimally Hilbertian metric
measure space. Assume that f ∈ D(∆loc) and ∆f = gm for a certain
g ∈ L2

loc(X). Then f ∈ D(∆loc) with ∆f = g.

Moreover, as the Laplacian ∆, the measure valued Laplacian satis�es
natural calculus rules.

Proposition 3.1.3 (Leibniz rule for the measure valued Laplacian). Let
f ∈ D(∆loc, U) and let g ∈ LIPloc(X) ∩ D(∆loc, U). Then fg ∈ D(∆loc, U)
and it holds the following formula:

∆(fg) = f∆g + g∆f + 〈∇f,∇g〉m|U .

Proposition 3.1.4 (Chain rule for the measure valued Laplacian). Let f ∈
D(∆loc, U) ∩ LIPloc(X) and let ϕ ∈ C2(R). Then ϕ ◦ f ∈ D(∆loc, U) and it
holds the following formula:

∆(ϕ ◦ f) = ϕ′ ◦ f∆f + ϕ′′ ◦ f |∇f |2m|U . (3.1.1)

These concepts of Laplacian are linked to energy minimizers via Theorems
3.1.5 and 3.1.7 (see [G15], [GMo] and [GR19]).
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Theorem 3.1.5. Let (X, d,m) be a proper in�nitesimally Hilbertian met-
ric measure space, U ⊂ X open and f ∈ L2

loc(U). Then the following are
equivalent:

-) f ∈ D(∆loc, U) and ∆f = 0;

-) f ∈ D(∆loc, U) and ∆f = 0;

-) for any g ∈ W 1,2
0 (U) we have∫

U

|df |2 dm ≤
∫
U

|d(f + g)|2 dm. (3.1.2)

De�nition 3.1.6 (Harmonic function). Let (X, d,m) be a proper in�nites-
imally Hilbertian space, U ⊂ X be open and f ∈ L2

loc(U). We say that f
is harmonic if it satis�es any of the three equivalent conditions of Theorem
3.1.5.

In a similar way we can de�ne sub/super-harmonic functions. Indeed,
similarly to Theorem 3.1.5, the following holds.

Theorem 3.1.7. Let (X, d,m) be a proper in�nitesimally Hilbertian met-
ric measure space, U ⊂ X open and f ∈ L2

loc(U). Then the following are
equivalent:

-) f ∈ D(∆loc, U) and ∆f ≥ 0 (resp. ≤ 0);

-) (3.1.2) holds for every g negative (resp. positive) W 1,2
0 (U) function.

De�nition 3.1.8 (Sub/Super-harmonic function). Let (X, d,m) be a proper
in�nitesimally Hilbertian, U ⊂ X be open and f ∈ L2

loc(U). We say that f is
subharmonic (resp. superharmonic) if it satis�es any of the two equivalent
conditions of Theorem 3.1.7.

We state now the weak and strong maximum principle in the non-smooth
setting. For their proof see [BB] (see also [GR19] for a di�erent proof).

Theorem 3.1.9 (Weak maximum principle). Let K ∈ R and let (X, d,m)
be an RCD(K,∞) space. Let U be an open bounded subset of X and let
f ∈ W 1,2

loc (U) ∩ C(Ū) be subharmonic. Then

sup
U
f ≤ sup

∂U
f.
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Theorem 3.1.10 (Strong maximum principle). Let K ∈ R and N ∈ [1,+∞),
and let (X, d,m) be an RCD(K,N) space. Let U be an open and connected
subset of X and let f ∈ W 1,2

loc (U) ∩ C(Ū) be subharmonic and such that for
some x̄ ∈ U it holds

f (x̄) = max
x∈Ū

f(x).

Then f is constant.

In order to study the properties of speci�c harmonic functions we will rely
on the following regularity result for harmonic functions, that extend to the
RCD setting a classical gradient estimate due to Cheng and Yau (see [CY])
in the smooth setting. Its proof in the RCD setting can be found in [HKX].

Theorem 3.1.11 (Cheng-Yau type gradient estimate). Let (X, d,m) be an
RCD(K,N) metric measure space with K ≤ 0 and N ∈ [1,∞). Then there
exists a constant C depending only on N such that every positive harmonic
function u on any geodesic ball B2R ⊂ X satis�es

|du|
u
≤ C

1 +
√
−KR
R

in BR. (3.1.3)

We conclude this introductory section recalling (a suitable version of)
the Bochner inequality. In order to state it, we need to recall the concept of
essential dimension dim(X) of a �nite dimensional RCD space.

Theorem 3.1.12. Let X be an RCD(K,N) space with K ∈ R and N ∈
[1,+∞). Then there exists an integer dim(X) ∈ [1, N ] such that the tangent
module L0(TX) has constant dimension equal to dim(X).

The proof of this result is highly non-trivial, and ultimately coming from
[BS20a] (but see also [G13a], [MN], [DPR], [DPMR], [KM], [GP22], [GP21]).

We can now state the desired inequality.

Theorem 3.1.13 (Improved Bochner Inequality). Let X be an RCD(K,N)
space with K ∈ R and N ∈ [1,+∞). Then for any f ∈ Testloc(X) we have
|df |2 ∈ D(∆loc) and

∆
(
|df |2

2

)
≥
(
|Hess(f)|2HS +K|df |2 + 〈df, d∆f〉+ (∆f−tr Hess(f))2

N−dim(X)

)
m,

(3.1.4)

where (∆f−tr Hess(f))2

N−n is taken to be 0 in the case dim(X) = N .

This result was proved in [Han] (strongly based on the earlier [GKO],
[AGS14b], [EKS], [G18b]).
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3.2 Preliminaries: sets of �nite perimeter and

Gauss-Green formula

In this section we recall the statement of the Gauss-Green formula for RCD
spaces proved by E. Bruè, E. Pasqualetto and D. Semola in [BPS]. More
precisely, we give the de�nitions and results in [DGP] and [BPS] that allow
us to generalize in the non-smooth setting the formula∫

E

div(v) dx =

∫
∂E

v · ν dµ∂E, (3.2.1)

where E is a regular bounded subset of Rn, v is a C1 vector �eld on a
neighborhood of Ē, µ∂E is the (n− 1)-dimensional measure on ∂E and ν is
the outward normal vector �eld de�ned on ∂E.

With the structure we presented in the previous sections we are already
able to write the left hand side of (3.2.1).

To de�ne the measure on ∂E we recall the notion of perimeter of a set.

De�nition 3.2.1 (Perimeter and sets of �nite perimeter). Given a Borel set
E ⊂ X and an open set A ⊂ X we de�ne the perimeter Per(E,A) as

Per(E,A) := inf

{
lim inf
n→+∞

∫
A

|dun| dm : un ∈ LIPloc(A), un
L1
loc(A,m)
−−−−−→ χE

}
.

We say that E has �nite perimeter if Per(E) < +∞. In this case it can be
proved that the set function A 7→ Per(E,A) is the restriction to open sets of
a �nite and positive Borel measure Per(E, ·) on X de�ned by

Per(E,B) := inf {Per(E,A) : A open and A ⊃ B} .

The measure Per(E, ·) is usually denoted with |DχE|: this notation comes
from the fact that a set has �nite perimeter if and only if its characteristic
function χE has bounded variation, and in this case its total variation coin-
cides with the perimeter measure.

An important result about sets of �nite perimeter is the coarea formula
that is well known to be valid even in the metric setting (see [BPS], [BCM]
and references therein, starting from the original [Mir], where the �rst in-
stance of the coarea formula in the metric setting has been obtained).

Theorem 3.2.2 (Coarea formula). Let (X, d,m) be an RCD(K,N) metric
measure space with N < +∞ and let U ⊂ X open. Let u ∈ LIPloc(U) be
positive and such that u−1([a, b]) is compact in U for every [a, b] ⊂ (0, 1).
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Then {u < t} has �nite perimeter for a.e. t ∈ (0, 1), and for any f : U →
[−∞,+∞] Borel and in L1

loc(U, |∇u|m|U) it holds that∫
U

ϕ(u)f |du| dm =

∫
U

ϕ(t)

∫
fd Per({u < t}, ·) dt

for every ϕ : [0, 1]→ R Borel with supp(ϕ) ⊂ (0, 1).

The other instrument we need is the outward normal νE to a set E with
�nite perimeter. We note that the theory of L0-modules is not enough for
this, since vector �elds as we introduced them are de�ned only m-a.e..

3.2.1 Capacity and quasi-continuous functions

In this section we introduce the concept of capacity of a set, and thanks to
that we de�ne quasi-continuous functions. The results in this section are
classical (see for instance [EG]).

De�nition 3.2.3 (Capacity). Let X be a metric measure space and �x E ⊂
X. We indicate with FE the set ofW 1,2(X) functions f which satisfy f |U ≥ 1
for some U open neighborhood of E.

The capacity of E, Cap(E) ∈ [0,+∞] is de�ned as

Cap(E) :=

{
inf
f∈FE

‖f‖2
W 1,2(X) if FE 6= ∅;

+∞ if FE = ∅

Proposition 3.2.4. The capacity Cap is a submodular (for every E,F ⊂ X
it holds Cap(E ∪ F ) + Cap(E ∩ F ) ≤ Cap(E) + Cap(F )) outer measure on
X. Moreover it is bounded on bounded sets and for every Borel set E ⊂ X it
holds m(E) ≤ Cap(E).

Remark 3.2.5. Via Cavalieri's formula we can de�ne the integral with re-
spect to outer measures. In our case, for every function f : X → [0,+∞] we
de�ne ∫

f dCap :=

∫ +∞

0

µ({f > t}) dt. (3.2.2)

Since Cap is submodular then the integral de�ned in (3.2.2) is subadditive,
and this is used to prove that the function dCap below is a distance. �

De�nition 3.2.6 (The space L0(Cap)). We say that two Borel functions
f, g : X → R are equal Cap-a.e. if it holds Cap({f 6= g}) = 0, and we
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indicate with L0(Cap) the set of all equivalence classes of Borel functions up
to Cap-a.e. equality.

Moreover, let (Ak)k be an increasing sequence of open subsets of X with
�nite capacity such that for every bounded B ⊂ X there exists a k ∈ N such
that B ⊂ Ak. We de�ne the following distance on L0(Cap):

dCap(f, g) :=
∑
k∈N

1

2k(Cap(Ak) ∨ 1)

∫
Ak

|f − g| ∧ 1 dCap.

Proposition 3.2.7. The metric space (L0(Cap), dCap) is complete.

De�nition 3.2.8 (Quasi-continuous function). A function f : X→ R is said
to be quasi-continuous if for every ε > 0 there exists a Borel set E ⊂ X with
Cap(E) < ε such that the function f |X\E : X \ E → R is continuous.

Remark 3.2.9. By de�nitions easily follows that the set of quasi-continuous
functions (up to equality Cap-a.e.) is contained in L0(Cap). �

Theorem 3.2.10 (Quasi-continuous representative of Sobolev functions).
Let (X, d,m) be an in�nitesimally Hilbertian metric measure space. Then
there exists a unique continuous map QCR : W 1,2(X) → L0(Cap) such that
for every f ∈ W 1,2(X) the function QCR(f) is quasi-continuous and m-a.e.
it holds QCR(f) = f .

3.2.2 L0(Cap)-modules and quasi-continuous vector
�elds

In this section we de�ne the tangent L0(Cap)-module and see, similarly to
quasi-continuous functions, that Sobolev vector �elds have a quasi-continuous
representative. The proofs of the results in this section can be found in
[DGP].

Similarly to what we saw in De�nition 1.3.2, we de�ne L0(Cap)-normed
L0(Cap)-modules.

De�nition 3.2.11 (L0(Cap)-normed L0(Cap)-module). Let (X, d,m) be a
metric measure space. We say that a quadruple (M , τ, ·, | · |) is a L0(Cap)-
normed L0(Cap)-module over (X, d,m) if the following hold:

i) (M , τ) is a topological vector space;

ii) the bilinear map · : L0(Cap)×M →M satis�es

f · (g · v) = (fg) · v for every f, g ∈ L0(Cap) and v ∈M ,

1̂ · v = v for every v ∈M ,

where 1̂ is the function identically equal to 1 on X;
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iii) the pointwise norm | · | : M → L0(Cap) satis�es

|v| ≥ 0 for every v ∈M , equality if and only if v = 0,

|v + w| ≤ |v|+ |w| for every v, w ∈M ,

|f · v| = |f ||v| for every f ∈ L0(Cap) and v ∈M ,

where all equalities and inequalities are intended in the Cap-a.e. sense;

iv) taking (Ak)k as in De�nition 3.2.6, the distance dM on M de�ned as

dM (v, w) :=
∑
k∈N

1

2k(Cap(Ak) ∨ 1)

∫
Ak

|v − w| ∧ 1 dCap

for every v, w ∈M is complete and induces the topology τ .

De�nition 3.2.12 (Hilbert L0(Cap)-module). Let M be a L0(Cap)-normed
L0(Cap)-module. We say that it is a Hilbert module if the parallelogram rule

|v + w|2 + |v − w|2 = 2(|v|2 + |w|2)

holds Cap-a.e. in X for every v, w ∈M .

With the following theorem we de�ne the tangent L0(Cap)-module.

Theorem 3.2.13 (Tangent L0(Cap)-module). Let K ∈ R and let (X, d,m)
be an RCD(K,∞) space. Then there exists a unique couple (L0

Cap(TX), ∇̄)
where L0

Cap(TX) is an L0(Cap)-module over X and ∇̄ : Test(X)→ L0
Cap(TX)

is a linear operator satisfying the following properties:

i) for every f ∈ Test(X) the equality |∇̄f | = |QCR(|Df |)| holds Cap-a.e.
on X;

ii) the space{∑
n∈N

χEn∇̄fn : (fn)n∈N ⊂ Test(X) and (En)n∈N Borel partition of X

}

is dense in L0
Cap(TX).

Uniqueness is intended up to unique isomorphism.
The space L0

Cap(TX) is called tangent L0(Cap)-module, its elements are
the Cap-vector �elds, and the operator ∇̄ is called gradient.

Proposition 3.2.14. The tangent L0(Cap)-module L0
Cap(TX) is a Hilbert

module.
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We de�ne, similarly to what we did for test vector �elds and H1,2
C in

Section 1.6, test Cap-vector �elds and the set of quasi-continuous vector
�elds.

De�nition 3.2.15 (Test Cap-vector �elds). We de�ne the set of test Cap-
vector �elds TestV̄ ⊂ L0

Cap(TX) as

TestV̄(X) :=

{
n∑
i=0

QCR(gi)∇̄fi : n ∈ N, (fi)
n
i=0, (gi)

n
i=0 ⊂ Test(X)

}
.

De�nition 3.2.16 (Quasi-continuous Cap-vector �eld). The set of quasi-
continuous vector �elds QC(TX) is de�ned as the closure of TestV̄(X) in
L0

Cap(TX).

We conclude this section recalling the last result of [DGP], which prove
the existence of a (unique) quasi-continuous representative of H1,2

C (X) vector
�elds.

We indicate with P̄r the natural projection from L0
Cap(TX) to L0(TX),

i.e. the linear continuous operator such that

i) P̄r(∇̄f) = ∇f for every f ∈ Test(X);

ii) P̄r(gv) = Pr(g)P̄r(v) for every g ∈ L0(Cap) and v ∈ L0
Cap(TX), where

Pr is the natural projection from L0(Cap) to L0(m).

Theorem 3.2.17 (Quasi-continuous representative of Sobolev vector �elds).
Let (X, d,m) be an RCD(K,∞) space for some K ∈ R. Then there exists a
unique map ¯QCR : H1,2

C (TX) → QC(TX) such that P̄r ◦ ¯QCR : H1,2
C (TX) →

L0(TX) coincides with the inclusion H1,2
C (TX) ⊂ L0(TX).

Moreover ¯QCR is linear and for every v ∈ H1,2
C (TX) it holds | ¯QCR(v)| =

QCR(|v|).

3.2.3 Tangent module over ∂E and Gauss-Green for-
mula

In this section we recall the main results of [BPS, Chapter 2]: the existence
and uniqueness of a tangent module over the boundary of a set with �nite
perimeter and the Gauss-Green formula for RCD spaces.

In order to do that we observe that the following proposition holds.

Proposition 3.2.18. Let X be an RCD(K,N) metric measure space and let
E ⊂ X be of �nite perimeter. Then |DχE| � Cap.
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We will indicate with π|DχE | the projection of L0(Cap) on L0(|DχE|).

De�nition 3.2.19 (Trace operator over ∂E). We de�ne the trace operator
over the boundary of E as the function trE : W 1,2(X)→ L0(|DχE|) given by

trE := π|DχE | ◦ QCR .

Theorem 3.2.20 (Tangent module over ∂E). Let (X, d,m) be an RCD(K,N)
space and let E ⊂ X be a set of �nite perimeter. Then there exists a unique
couple (L2

E(TX), ∇̃) where L2
E(TX) is an L2(|DχE|)-normed L∞(|DχE|)-

module and ∇̃ : Test(X)→ L2
E(TX) is a linear operator such that

i) the equality |∇̃f | = trE(|∇f |) holds |DχE|-a.e. for every f ∈ Test(X);

ii) the set{
n∑
i=1

χEi∇̃fi : (Ei)
n
i=1 is a Borel partition of X, (fi)

n
i=1 ⊂ Test(X)

}

is dense in L2
E(TX).

Uniqueness is intended up to unique isomorphism.
The space L2

E(TX) is called tangent module over the boundary of the set
E and the operator ∇̃ is called gradient.

Similarly to how we de�ned the trace operator of functions over ∂E, we
de�ne the trace operator of vector �elds. To do that we indicate with π̄|DχE |
the projection of L0

Cap(TX) on L0
E(TX), the L0-completion of L2

E(TX).

De�nition 3.2.21 (Trace operator of vector �elds). We de�ne the trace
operator of vector �elds over ∂E as the function t̄rE : H1,2

C ∩ L∞(TX) →
L2
E(TX) de�ned by

t̄rE := π̄|DχE | ◦ ¯QCR .

Theorem 3.2.22 (Gauss-Green formula on RCD spaces). Let (X, d,m) be
an RCD(K,N) space and let E ⊂ X be a set of �nite perimeter such that
m(E) < +∞. Then there exists a unique vector �eld νE ∈ L2

E(TX) such that
|νE| = 1 holds Per(E, ·)-a.e. and∫

E

div(v) dm = −
∫
〈t̄rE(v), νE〉 d Per(E, ·) (3.2.3)

for every v ∈ H1,2
C (TX) ∩D(div) with |v| ∈ L∞(m).

A similar result for RCD(K,∞) space can be found in [BCM].
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3.3 Volume of the ends and harmonic functions

The concept of `end' borns in the smooth category of Riemannian manifolds,
but it can easily be adapted to metric spaces.

De�nition 3.3.1. Let (X, d) be a metric space and K ⊂ X compact. A set
E ⊂ X is called end of X with respect to K provided:

-) E is an unbounded connected component of X \K;

-) for any K ′ ⊃ K compact the set E \K ′ has only one unbounded con-
nected component.

Suppose that (X, d) is equipped with a Radon measure m ≥ 0. Then we say
that an end E has in�nite volume if m(E) = +∞.

Notice that if E is an end of X with respect to K and K ′ ⊃ K is compact,
then the only unbounded connected component E ′ of E \K ′ is an end with
respect to K ′. Also, in this case E has in�nite volume if and only if E ′ does.

Let E be an end of X with respect to K and let p ∈ K. We indicate
with E(R) := E ∩ BR(p) for every R > dist(E, p). Moreover we de�ne
∂E := ∂K ∩ Ē and ∂E(R) := ∂BR(p) ∩ E.

We indicate with VE(R) the volume of E(R) and with VE(∞) the volume
of the end E.

We conclude de�ning the �rst eigenvalue of the Laplacian λ1.

De�nition 3.3.2 (First eigenvalue of the Laplacian). Let (X, d,m) be a met-
ric measure space. We de�ne

λ1 := inf

{∫
X
|df |2 dm∫

X
|f |2 dm

: f ∈ W 1,2(X),

∫
f 2 dm 6= 0

}
.

Notice that the de�nition makes sense on arbitrary metric measure spaces,
regardless of the linearity of the Laplacian (but we shall only work on in-
�nitesimally Hilbertian spaces).

In this section, following the steps used by Li and Wang, we prove that,
assuming λ1 > 0, an end has in�nite volume if and only if there exists a
non-constant bounded harmonic function on it. In order to do this we begin
studying some decay estimates for a class of harmonic functions.

In [GV, Section B.1] the following result has been established, the point
being the continuity at ∂Kr (see also [BB]). Below for K ⊂ X and r > 0 we
put

Kr := {x : d(x,K) < r}.
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We consider such enlargements to gain su�cient regularity of the bound-
ary to be sure that the harmonic function given by the statement below is
continuous up to the boundary.

Theorem 3.3.3. Let (X, d,m) be an RCD(K,N) space with K ∈ R and
N ∈ [1,+∞), and �x K ⊂ X a bounded subset and r > 0. Let also B ⊂ X be
a ball containing Kr. Then there is f ∈ W 1,2

0 (B) ∩ C(B) with 0 ≤ f ≤ 1 on
B that is harmonic on B \Kr and equal to 1 in Kr.

In particular, let E be an end of X, say with respect to a compact set K.
Then

E is also an end with respect to the compact set K′ := K1. (3.3.1)

This means that for p ∈ K′ and R > 0 large enough we can apply the above
with B = BR(p) with R > 0 big enough to �nd fR ∈ W 1,2

0 (B) ∩ C(B) with
0 ≤ fR ≤ 1 on B that is harmonic on B \K′ and equal to 1 in K′.

Thanks to the maximum principle (see Theorems 3.1.9 and 3.1.10) the
functions fR generated above are pointwise increasing in R, thus we can
de�ne:

De�nition 3.3.4. The function fE : E\K′ → [0, 1] is de�ned as the pointwise
limit of the fR's described above.

It is easy to verify that fE depends only on E and K′, and not on the
particular p ∈ K′ chosen, and that it is harmonic. The dependence of this
function on K′ is omitted from the notation for brevity. Also, in what follows
we relabel E to be E \K′.

Our �rst goal is to prove some key decay estimates for the function fE.
In all the following for a �xed point p ∈ X we indicate with dp : X → R

the function d(·, p).

Lemma 3.3.5. Let (X, d,m) be an RCD(K,N) metric measure space and
E an end of it. Assume that λ1 > 0. Then for the harmonic function fE
given by De�nition 3.3.4 there exists a constant C = C(E,K, λ1) such that
for every R large enough the following estimates hold:∫

E(R+1)\E(R)

f 2
E dm ≤ Ce−2

√
λ1R, (3.3.2)∫

E(R+1)\E(R)

|∇fE|2 dm ≤ Ce−2
√
λ1R, (3.3.3)∫

E(R)

e2
√
λ1dp |∇fE|2 dm ≤ CR. (3.3.4)
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Proof. Let K ⊂ X be compact, put K′ := K1 and, as before, say that E
is an end with respect to K′. Also, let p ∈ X and R0 > 0 �xed so that
K′ ⊂ BR0(p). Recall that we put E(R) := E ∩ BR(p) and that the function
fR ∈ W 1,2

0 ∩ C(BR(p)) has been de�ned after Theorem 3.3.3.
Step 0. We claim that for every g ∈ LIPloc(X) be identically 0 on K′ and

for every R large enough it holds∫
E(R)

|∇(gfR)|2 dm =

∫
E(R)

|∇g|2f 2
R dm. (3.3.5)

Using the Leibniz and chain rules we compute∫
E(R)

|∇(gfR)|2 dm =

∫
E(R)

|∇g|2 f 2
R dm +

∫
E(R)

g2 |∇fR|2 dm

+

∫
E(R)

fR
〈
∇(g2),∇fR

〉
dm.

Now we notice that the integration by parts in∫
E(R)

fR
〈
∇(g2),∇fR

〉
dm = −

∫
E(R)

g2 div(fR∇fR) dm

= −
∫
E(R)

g2|∇fR|2 dm

is justi�ed by the fact that ∂(E(R)) ⊂ (∂K′)∪ (∂BR(p)) and the assumption
g ≡ 0 on K′ and fR ∈ W 1,2

0 (BR(p)). The claim (3.3.5) follows.
The same line of thought proves that∫

E

|∇(gfE)|2 dm =

∫
E

|∇g|2f 2
E dm (3.3.6)

if g is as above and moreover in W 1,2(X).
Step 1. Let ξ := exp(

√
λ1dp). We claim that for some C = C(E,K, λ1)

we have ∫
E

ξ2δf 2
E dm ≤ C

(1− δ)2
for every δ ∈ (0, 1). (3.3.7)

Let ϕ ∈ LIP∩Cb(X) be de�ned as ϕ := ϕ̂ ◦ dp, where

ϕ̂(z) :=


0 if z ≤ R0,
z−R0

R0
if z ∈ [R0, 2R0],

1 if z ≥ 2R0,
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and let R > 2R0. By (3.3.5) and the Cauchy-Schwarz inequality we have
that ∫

E(R)

∣∣∇(ϕξδfR)
∣∣2 dm =

∫
E(R)

|∇(ϕξδ)|2f 2
R dm

≤ (1 + ε)

∫
E(R)

ϕ2|∇ξδ|2f 2
R dm

+
(
1 + 1

ε

) ∫
E(R)

ξ2δ |∇ϕ|2 f 2
R dm

≤ (1 + ε)δ2λ1

∫
E(R)

ϕ2ξ2δf 2
R dm

+
(
1 + 1

ε

)
1
R2

0

∫
E(2R0)\E(R0)

ξ2δf 2
R dm.

By de�nition of λ1 we have λ1

∫
E(R)

ϕ2ξ2δf 2
R dm ≤

∫
E(R)
|∇(ϕξδfR)|2 dm

and thus

λ1

(
1− (1 + ε)δ2

) ∫
E(R)

ϕ2ξ2δf 2
R dm ≤ (1 + 1

ε
) 1
R2

0

∫
E(2R0)\E(R0)

ξ2δf 2
R dm,

and choosing ε = 1−δ
δ
, recalling that 0 ≤ fR ≤ 1 we obtain

λ1(1− δ)2

∫
E(R)

ϕ2ξ2δf 2
R dm ≤ 1

R2
0

∫
E(2R0)\E(R0)

ξ2δf 2
R dm ≤ C. (3.3.8)

Since ϕ is positive and identically equal to 1 on E(R) \E(2R0), we have
that∫

E(R)

ξ2δf 2
R dm =

∫
E(R)\E(2R0)

ξ2δf 2
R dm +

∫
E(2R0)

ξ2δf 2
R dm

≤
∫
E(R)

ϕ2ξ2δf 2
R dm + C

(3.3.8)

≤ C

(1− δ)2
+ C =

C

(1− δ)2

and letting R→∞ we get the claim (3.3.7).
Step 2. Put for simplicity

F (R) :=

∫
E(R)

ξ2f 2
E dm for every R ≥ R0. (3.3.9)

Let R0 < R1 < R. We claim that for any t ∈ (0, R−R1) it holds

2
√
λ1t

(R−R1)2 (F (R− t)− F (R1)) ≤ 2
√
λ1(R1−R0)+1
(R1−R0)2 (F (R1)− F (R0))

+ 1
(R−R1)2 (F (R)− F (R1)).

(3.3.10)
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To see this let ψ ∈ LIP(X) be de�ned as ψ := ψ̂ ◦ dp, where

ψ̂(z) :=


z−R0

R1−R0
if z ∈ [R0, R1],

R−z
R−R1

if z ∈ [R1, R],

0 otherwise.

By de�nition of λ1, (3.3.6) and the identity ∇ξ =
√
λ1ξ∇dp we get

λ1

∫
E

ψ2ξ2f 2
E dm ≤

∫
E

|∇ (ψξfE)|2 dm =

∫
E

|∇ (ψξ)|2 f 2
E dm

=

∫
E

|∇ψ|2 ξ2f 2
E dm + λ1

∫
E

ψ2ξ2f 2
E dm

+ 2
√
λ1

∫
E

ψξ2〈∇ψ,∇dp〉f 2
E dm,

that can be rewritten as

−2
√
λ1

∫
E

ψξ2〈∇ψ,∇dp〉f 2
E dm ≤

∫
E

|∇ψ|2 ξ2f 2
E dm.

Using the explicit expression of ψ, this can be further rewritten as

2
√
λ1

(R−R1)2

∫
E(R)\E(R1)

(R− dp)ξ
2f 2
E dm

≤ 2
√
λ1

(R1 −R0)2

∫
E(R1)\E(R0)

(dp −R0)︸ ︷︷ ︸
(≤R1−R0 on E(R1)\E(R0))

ξ2f 2
E dm

+
1

(R1 −R0)2

∫
E(R1)\E(R0)

ξ2f 2
E dm +

1

(R−R1)2

∫
E(R)\E(R1)

ξ2f 2
E dm

≤ Right Hand Side of (3.3.10).

Then to get (3.3.10) notice that for t ∈ (0, R − R1) we have t ≤ R − dp on
E(R− t) \ E(R1).

Step 3. We claim that there exists a constant C = C(E,K, λ1) > 0 such
that

F (R) ≤ CR for all R large enough and F as in (3.3.9). (3.3.11)

To see this pick t = 1, R1 = R0 + 1 and replace R with R + 1 in (3.3.10) to
get, after an easy manipulation, that

F (R)− F (R0 + 1) ≤ CR2 +
1

2
√
λ1

(F (R + 1)− F (R0 + 1))
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(observe that R0 depends only on E and K). By iteration we get

F (R)− F (R0 + 1) ≤ C
k∑
i=1

(R + i)2

2i−1
+ (2

√
λ1)−k

(
F (R + k)− F (R0 + 1)

)
≤ CR2 + (2

√
λ1)−k

(
F (R + k)− F (R0 + 1)

)
(3.3.12)

for every k ∈ N, k > 0.
Now notice that for any δ ∈ (0, 1) we have

F (R + k)− F (R0 + 1) ≤ e2
√
λ1(R+k)(1−δ)

∫
E(R+k)\E(R0+1)

ξ2δf 2
E dm

(3.3.7)

≤ Ce2
√
λ1(R+k)(1−δ)

(1− δ)2
,

thus picking δ so that 2
√
λ1(1−δ) < log(2

√
λ1), by letting k →∞ in (3.3.12)

we conclude that
F (R) ≤ CR2. (3.3.13)

To improve this, pick t = R
2
and R1 = R0 +1 in (3.3.10) to obtain, after little

manipulation, that

1
R

(
F (R

2
)− F (R0 + 1)

)
≤ C

(
1 + 1

R2 (F (R)− F (R0 + 1))
) (3.3.13)

≤ C

for every R large enough. This is (equivalent to) our claim (3.3.11).
Step 4. We claim that (3.3.2) holds. To see this, in (3.3.10) pick t = 2√

λ1
,

R + t in place of R and R − t in place of R1: with little manipulation we
deduce that

1

t2
(
F (R)− F (R− t)

)
≤ C

R

(
F (R− t)− F (R0)

)
︸ ︷︷ ︸

≤C by (3.3.11)

+
1

4t2
(
F (R + t)− F (R− t)

)︸ ︷︷ ︸
=(F (R+t)−F (R))+(F (R)−F (R−t))

and thus that F (R)−F (R− t) ≤ C + 1
3
(F (R+ t)−F (R)). Iterating we get

F (R)− F (R− t) ≤ C
k−1∑
i=0

1

3i
+

1

3k
(F (R + kt)− F (R + (k − 1)t))

for every k ∈ N, k > 0.
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Recalling (3.3.11) and letting k →∞ we conclude that F (R)−F (R−t) ≤
C for all R large enough (recall that here t = 2√

λ1
). The claim (3.3.2) easily

follows.
Step 5. We claim that (3.3.3) and (3.3.4) hold.
Let R > R0 + 1 and ζ ∈ LIPbs(X) be de�ned as ζ := ζ̂ ◦ dp, where

ζ̂(z) :=


z − (R− 1) if z ∈ [R− 1, R],

1 if z ∈ [R,R + 1],

R + 2− z if z ∈ [R + 1, R + 2],

0 otherwise.

Then using that fE is harmonic we get the standard estimate∫
E

ζ2|∇fE|2 dm = −2

∫
E

ζfE〈∇ζ,∇fE〉 dm

≤ 1

2

∫
E

ζ2|∇fE|2 dm + 2

∫
E

|∇ζ|2f 2
E dm

that gives
∫
E
ζ2|∇fE|2 dm ≤ 4

∫
E
|∇ζ|2f 2

E dm ≤ 4
∫
E(R+2)\E(R−1)

f 2
E dm. Thus∫

E(R+1)\E(R)

|∇fE|2 dm ≤
∫
E

ζ2|∇fE|2, dm

≤ 4

∫
E(R+2)\E(R−1)

f 2
E dm

(3.3.2)

≤ Ce−2
√
λ1R,

as desired. Then (3.3.4) is a direct consequence of (3.3.3).

These estimates allow us to deduce the following important dichotomy
result. In proving it we shall use the main results shown in Section 3.2: the
Gauss-Green formula (Theorem 3.2.22) and the coarea formula (Theorem
3.2.2).

Theorem 3.3.6. Let (X, d,m) be an RCD(K,N) metric measure space and
let E be an end of X. Assume that λ1 > 0. Then exactly one of the following
holds:

i) there exists a bounded non-constant harmonic function on E and E has
exponential volume growth, more precisely

VE(R) ≥ C exp
(

2
√
λ1R

)
(3.3.14)

for every R large enough and some constant C > 0;
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ii) every bounded harmonic function on E is constant and E has exponen-
tial volume decay, more precisely

VE(∞)− VE(R) ≤ C exp
(
−2
√
λ1R

)
(3.3.15)

for every R large enough and some constant C > 0.

Proof.
Step 1. Assume that every bounded harmonic function on E is constant.
Then this is the case for the function fE given by De�nition 3.3.4. We have
then that fE is equal to 1 a.e. on E, and by (3.3.2) follows that

VE(R + 1)− VE(R) ≤ C exp
(
−2
√
λ1R

)
.

Summing up we obtain

VE(∞)− VE(R) ≤ C
+∞∑
i=0

exp
(
−2
√
λ1(R + i)

)
≤ C exp

(
−2
√
λ1R

)
.

Step 2. Assume now that there exists a bounded non-constant harmonic
function u on E. By translation and rescaling we can assume that u ≥ 0
on X, u ≥ 1 on K′ and u < 1 somewhere in E (recall (3.3.1)). Then by
the maximum principle and the construction of fE it follows that fE is not
constant as well.

Now notice that by the spherical version of the Bishop-Gromov inequality
we have that BR(p) has �nite perimeter for any R > 0. It follows that for
any R > R0 the set ER := E \ E(R) has �nite perimeter with Per(ER, ·)
being the restriction of Per(BR(p), ·) to E.

We claim that there is c > 0 such that∫
|∇fE| d Per(Er, ·) ≥ c for every r > R0, (3.3.16)

where here, with a slight abuse of notation, we are denoting by ∇fE ∈
L0(TX,Per(Er(·))) the trace of ∇fE ∈ W 1,2

C,loc(E) in the sense of De�nition
3.2.21.

Let us show how from (3.3.16) we can conclude. Denoting with P (r)
the perimeter Per(Er,X), by (3.3.16) and the Cauchy-Schwarz inequality we
immediately have 1

P (r)
≤ 1

c

∫
|∇fE|2 d Per(Er, ·) and therefore

1 ≤
∫ R+1

R

P (r) dr

∫ R+1

R

1

P (r)
dr

∗
≤ 1

c

(
VE(R + 1)− VE(R)

) ∫
E(R+1)\E(R)

|∇fE|2 dm

(by (3.3.3)) ≤ C
(
VE(R + 1)− VE(R)

)
e−2R

√
λ1 ,

(3.3.17)



3.3 Volume of the ends and harmonic functions 93

where in the starred inequality we used the coarea formula to deduce

VE(R + 1)− VE(R) = m(E(R + 1) \ E(R))

=

∫
E(R+1)\E(R)

|∇dp| dm =

∫ R+1

R

P (r) dr

and the fact that, if we call ∇̃fE ∈ L0
Cap(TX) the quasi-continuous represen-

tative of ∇fE ∈ W 1,2
C,loc(E) (set to 0 outside E, say) and trr∇fE the trace

of ∇fE in L0(TX,Per(Er, ·)), then, by de�nition, trr∇fE is the equivalence
class of ∇̃fE in in L0(TX,Per(Er, ·)) and thus we have | trr∇fE| = |∇̃fE|
Per(Er, ·)-a.e.. This and the trivial identity |∇̃fE| = |∇fE| m-a.e. justi�es
the computation above.

Since (3.3.17) is equivalent to the claim, we are left to prove (3.3.16).
Since fE is harmonic, putting F (r) :=

∫
〈∇fE, νE(r)〉 d Per(Er, ·) for brevity,

by the Gauss-Green formula we have that, for every r2 > r1 > R0 it holds

F (r2)− F (r1) =

∫
〈∇fE, νE(r2)\E(r1)〉 d Per(E(r2) \ E(r1), ·)

= −
∫
E(r2)\E(r1)

∆fE dm = 0,

thus r 7→ F (r) is constant on (R0,+∞) and since clearly

|F (r)| ≤
∫
|∇fE| d Per(Er, ·),

to get (3.3.16) it su�ces to prove that F (r) 6= 0 for some r > R0.
To see this, �x R̄ > R0 and notice that by the strong maximum prin-

ciple and the fact that fE is not constant, there must be a > 0 such that
sup∂ER̄ fE ≤ 1 − a. In particular, taking into account the continuity of fE
and the Sobolev-to-Lipschitz property it easily follows that there is b ∈ (0, a

2
)

such that ∫
E∩BR̄(p)∩{1−2b<fE<1−b}

|∇fE|2 dm > 0. (3.3.18)

Put ρ := ϕ ◦ fE where

ϕ(z) :=


1, if z ≤ 1− 2b,
0, if z ≥ 1− b,
a�ne and continuous on [1− 2b, 1− b].

and notice that we have∫
E(R̄)

div(ρ∇fE) dm =

∫
E(R̄)

〈∇ρ,∇fE〉 dm

= −1

b

∫
E∩BR̄(p)∩{1−2b<fE<1−b}

|∇fE|2 dm
(3.3.18)
< 0.
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We now claim that there is a �nite perimeter set Ẽ such that Ẽ∆E(R̄) ⊂
f−1
E ((1− b, 1)). Assuming we have such Ẽ, we conclude with

0 >

∫
E(R̄)

div(ρ∇fE) dm =

∫
Ẽ

div(ρ∇fE) dm

=

∫
ρ〈∇fE, νẼ〉 d Per(Ẽ, ·) = −F (R̄),

where in the last step we used the fact that ρ ≡ 1 on ∂ER̄ = ∂Ẽ∩f−1
E ((0, 1−

b]) and ρ ≡ 0 on ∂Ẽ \f−1
E ((0, 1− b]). It thus remains to show the existence of

such Ẽ. To see this, recall that balls have �nite perimeter (by the spherical
version of the Bishop-Gromov inequality (1.5.11)) and that ∂E is compact.
Then using the continuity of fE we can �nd r > 0 such that for any x ∈ ∂E
we have Br(x) ⊂ {fE ≥ 1 − b} and by compactness a �nite number of
points x1, . . . , xn such that ∂E ⊂ ∪iBr(xi). It is then clear that the set
Ẽ := E \ ∪iBr(xi) does the job.

As a direct consequence of the above result we obtain the following corol-
laries.

Corollary 3.3.7. Let (X, d,m) be an RCD(K,N) space with λ1 > 0 and with
at least two ends with in�nite volume.

Then there exists a bounded non-constant harmonic function on X.

Proof. Let E1, E2 be the two given ends with in�nite volume and consider the
associated functions fE1 , fE2 as in De�nition 3.3.4 (possibly enlarging R0 we
can take K′ := BR0(p)), which by Theorem 3.3.6 are bounded non-constant
and harmonic functions. Recall that fEi ≡ 1 on ∂Ei and ess inf fEi = 0 for
i = 1, 2.

Then �x R > R0 +1 and let Ci := {x ∈ BR(p) : d(x,Ei∩∂BR+1(p)) ≥ 1}.
Then a simple variant of Theorem 3.3.3 gives the existence of a function
fR ∈ (W 1,2

0 ∩C)(BR+2(p)) with values in [0, 1] that is harmonic in BR+2(p) \
(C1 ∪ C2) ⊃ BR(p), equal to 1 on C1 and equal to 0 on C2.

We claim that on BR ∩ E2 we have fR ≤ fE2 . To see this notice that
the boundary ∂(BR ∩ E2) is contained in the disjoint union of ∂E2 and C2

and by construction we have fE2 = 1 on ∂E2 and fR = 0 on C2. Since both
functions have values in [0, 1], are harmonic in BR ∩ E2 and continuous up
to the boundary of such set, by the maximum principle our claim follows.

Analogously we can prove that fR ≥ 1− fE1 on BR ∩ E1.
We now want to send R ↑ +∞ and �nd, possibly after passing to a

subsequence, a limit harmonic function on the whole X. This is possibile
thanks to the Lipschitz estimates (3.1.3), that grants that for some C(R) the
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Lipschitz constant of fR′ on BR/2(p) is bounded from above by C(R) for any
R′ > R. By Arzelá-Ascoli's theorem, this su�ces to �nd a limit function f
and it is then easy to see that this function is harmonic and bounded (in fact
with values in [0, 1]).

Also, a direct consequence of the construction and of the previous claims
is that f ≤ fE2 on E2 and f ≥ 1− fE1 on E1. If we knew that infEi fEi = 0
for i = 1, 2 the conclusion would directly follow, as inf f ≤ infE2 fE2 = 0 and
sup f ≥ supE1

1− fE1 = 1− infE1 fE1 = 1, proving that f is not constant.
Thus it remains to show that infE1 fE1 = 0 (the argument for E2, fE2

being analogous). Say not. Then by construction a := infE1 fE1 > 0. De�ne
the new function f̃E1 := 1 − 1−fE1

1−a and notice that it is still harmonic and
continuous on E1 with boundary value equal to 1 and that it is still positive.
Thus by the maximum principle the function f̃E1 bounds from above each of
the harmonic functions de�ned on BR(p)∩E1 that are used in the de�nition
of fE1 . It follows by the de�nition of fE1 that it would hold fE1 ≤ f̃E1 . This,
however, contradicts the de�nition of f̃E1 , as this ensures that f̃E1 < fE1 on
E1.

A similar argument allows us to �nd a non-constant positive harmonic
function on X in the case of one end with in�nite volume and one with �nite
volume.

Corollary 3.3.8. Let (X, d,m) be an RCD(K,N) space with λ1 > 0 and with
at least one end with in�nite volume and one end with �nite volume.

Then there exists a non-constant positive harmonic function on X.

Proof. Let E1 be an end with in�nite volume and E2 be an end with �nite
volume both with respect to a compact K ⊂ X, and �x p ∈ K. Taking R0 > 0
large enough we can assume, as before, K′ := BR0(p) ⊃ K1.

Let fE1 and fR be de�ned as in the proof of Corollary 3.3.7 (we note that
the de�nition of fR does not depend on the volume of the ends, so the same
argument holds in this case too): fE1 is de�ned as in De�nition 3.3.4, and
for R large enough fR ∈ (W 1,2

0 ∩C)(BR(p)) is harmonic in BR(p) identically
equal to 1 on ∂E2(R) and identically equal to 0 on ∂E1(R) and on every
other eventual end ∂Ei(R) with i > 2.

To be precise, we should modify BR(p) near its boundary as in the proof of
Corollary 3.3.7 to achieve the regularity needed to apply Theorem 3.3.3. We
omit these technical details here referring instead to the proof of Corollary
3.3.7.

We �x ε > 0 and take (∂E2)ε := {p ∈ X : d(p, ∂E2) ≤ ε}. Thanks to the
strong maximum principle, the compactness of (∂E2)ε and the continuity of
fR we have that cR := max

(∂E2)ε
fR > 0 for every R large enough. Moreover, by
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(3.1.3), the functions log(fR/cR) are locally equi-Lipschitz, and since they
are equibounded on (∂E2)ε (by the de�nition of cR) we conclude by Arzelà-
Ascoli's theorem that there exists a subsequence of (fR/cR)R that converges
uniformely on compact sets to a function u : X→ R.

The function u is clearly positive and harmonic. We observe that it is
also non-constant. Indeed, as in the proof of Corollary 3.3.7 it is easy to see
that u ≤ fE1 on E1, then infX u = 0, moreover, by the de�nition of cR we
conclude that u ≥ 1 on (∂E)ε.

We also note that on every other end Ei with i > 2, thanks to the
maximum principle, fR < cR, then u ≤ 1 on every end Ei with i > 2 (if the
space has more than two ends).

Corollaries 3.3.7 and 3.3.8 should be coupled with the following simple
and general result, stating that if λ1 > 0 (an assumption that is present in
Theorems 0.0.7 and 0.0.8), then the space has at least one end of in�nite
volume.

Proposition 3.3.9. Let (X, d,m) be a metric measure space with λ1 > 0.
Then X has at least one end with in�nite volume.

Proof. By the de�nition of λ1 it follows immediately that if m(X) <∞ then
λ1 = 0, this means that m(X) =∞.

Assume by contradiction that X has no ends with in�nite volume. Then
there exists a compact K which has positive volume and cuts the space in
ends with �nite volume. Let {Ei}i∈N be the set of the ends with respect to
K. Since m(Ei) <∞ for every i ∈ N then for every ε > 0 there exist a couple
of radii ri,ε, Ri,ε > ri,ε + 2 such that VEi(Ri,ε) − VEi(ri,ε) ≤ ε

2i
. Taking now

the function

fε(x) :=


1 for x ∈ K ∪ (

⋃
(Ei(ri,ε))) ,

d(x,p)−ri,ε
Ri,ε−ri,ε for x ∈ Ei(Ri,ε) \ Ei(ri,ε),

0 for x ∈ Ei \ Ei(Ri,ε),

we conclude that ∫
X
|∇fε|2 dm∫

X
|fε|2 dm

≤ ε

m(K)
−−→
ε→0

0.
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3.4 Rigidity theorem for spaces with positive

spectrum

We focus now on Theorem 0.0.7, which states that if a space with strictly
positive λ1 has two ends with in�nite volume then it splits (see De�nitions
3.3.2 and 3.3.1 for the de�nitions of λ1 and ends in metric measure spaces).
We recall here its precise statement.

Theorem 3.4.1. Let (X, d,m) be an RCD(−(N − 1), N) space with N ≥ 3
and supp(m) = X, and assume that the �rst eigenvalue of the Laplacian λ1

is ≥ N − 2. Then one of the following holds:

i) X has only one end with in�nite volume;

ii) X is isomorphic as metric measure space to a warped product space
R×wX′, where X′ is a compact RCD(−(N−1), N) space and the warping
functions are

wd(t) := cosh(t) and wm(t) := coshN−1(t).

Moreover, in this case λ1 = N − 2.

Given the statement of Theorem 3.4.1 and remembering the results of
Section 3.3, let us �x the following notations and assumptions that we will
use along all the proof of this result.

Assumption 3.4.2. (X, d,m) is an RCD(−(N − 1), N) space with N ≥ 3
and λ1 ≥ N −2. We also assume that supp(m) = X and that X has two ends
with in�nite volume.

Finally, we shall denote by u a �xed bounded and non-constant harmonic
function on X. The existence of such u is granted by Corollary 3.3.7.

3.4.1 Properties of the bounded harmonic function

We start with the following simple regularity statement.

Lemma 3.4.3. With the same assumptions and notation as in Assumption
3.4.2 the following holds.

The function u is in Testloc(X) and globally Lipschitz.

Proof. By the Cheng-Yau gradient estimate (3.1.3) and the fact that u is
bounded it follows that it is globally Lipschitz. This information together
with the fact that ∆u ≡ 0 su�ces to ensure that u ∈ Testloc(X).
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The rigidity result we are going to prove in this section is ultimately a
consequence, as customary, of the equality in the improved Bochner inequal-
ity (see inequality (3.1.4)). Before coming to that it is useful to recall the
following result, that in the RCD setting has been proved in [GV]. We pro-
vide anyway the complete proof because we shall be interested in the equality
case, that was not explicitly studied in [GV].

Lemma 3.4.4 (Generalized re�ned Kato inequality). Let (X, d,m) be an
RCD(K,N) space with K ∈ R and N ∈ [1,+∞). Then for any u ∈ H2,2

loc (X)
it holds

t+ dim(X)

t+ dim(X)− 1
|d|du||2 ≤ |Hess(u)|2HS +

(tr Hess(u))2

t
m-a.e. (3.4.1)

for every t > 0, where dim(X) ∈ N ∩ [1, N ] is the (constant) dimension of
L0(TX) (recall Theorem 3.1.12). Equality holds m-a.e. for a given t if and
only if

Hess(u) = α
(
Id− (t+ dim(X)) e1 ⊗ e1

)
, (3.4.2)

for some function α ∈ L2
loc(X), where e1 ∈ L0(TX) is a pointwise unitary

vector that is equal to ∇u
|∇u| on |∇u| > 0.

Proof. We indicate with n the dimension dim(X). Let A be a symmetric
n× n real matrix. We claim that for every t > 0 and every v ∈ Rn we have:

t+ n

t+ n− 1
|A · v|2 ≤ |v|2|A|2HS +

|v|2(trA)2

t
. (3.4.3)

Indeed, by the spectral theorem there is an orthonormal base e1, . . . , en of Rn

so that A is diagonalwith respect to such base, with diagonal entries α1, ..., αn.
We can also assume that |α1| ≥ |αi| for i = 2, ..., n. Then, applying twice
the Cauchy-Schwarz inequality we obtain

|v|2
(

(α1 + α2 + ...+ αn)2

t
+ α2

1 + α2
2 + ...+ α2

n

)
(1)

≥ |v|2
(

(α1 + α2 + ...+ αn)2

t
+

(α2 + α3 + ...+ αn)2

n− 1
+ α2

1

)
(2)

≥ |v|2
(

α2
1

t+ n− 1
+ α2

1

)
(3)

≥ t+ n

t+ n− 1
|A · v|2,

which is (3.4.3). Equality holds in (3.4.3) if and only if the inequalities above
are all equality. Equality in (1) holds if and only if α2 = · · · = αn =: α,
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equality in (2) if and only if α = α1(1 − (t + n)). Finally, equality in (3)
holds if and only if v is a multiple of e1. In other words, equality in (3.4.3)
holds if and only if

A = α(Id− (t+ n)e1 ⊗ e1).

We come to (3.4.1) and its equality case and start noticing that d|du| =
χ{|∇u|>0}Hessu( ∇u|∇u|) (for u ∈ Testloc(X) this follows from Proposition 1.6.13
and the chain rule - see also [DGP, Lemma 2.5], then the general case comes
by approximation). Now the conclusion follows picking a suitable point-
wise orthonormal base e1, . . . , edim(X) ∈ L0(TX) of L0(TX) that diagonalizes
Hessu.

Proposition 3.4.5. With the same assumptions and notation as in Assump-
tion 3.4.2 the following hold:

i) λ1 = N − 2;

ii) |du| is locally Lipschitz (i.e. it has a locally Lipschitz representative)
and strictly positive;

iii) Putting e1 := ∇u
|∇u| (this is well de�ned by item (ii)) we have

Hess(u) = α(Id−Ne1 ⊗ e1), (3.4.4)

for some α ∈ L2
loc(X);

iv) we have |du|
N−2
N−1 ∈ D(∆loc) with

∆(|du|
N−2
N−1 ) = −(N − 2)|du|

N−2
N−1 ; (3.4.5)

v) u is an open map, i.e. u(U) ⊂ R is open for any U ⊂ X open.

Proof. The required rigidity will follow by closely inspecting the proof of
[GV, Theorem 3.4]. Start noticing that since we know from Lemma 3.4.3
above that u ∈ Testloc(X), we can apply the improved Bochner inequality
3.1.4 (say N > dim(X); the case N = dim(X) follows along similar lines
recalling that in this case tr Hessu = ∆u = 0 and that the last addend in
the Bochner inequality below is 0 - see [Han]) recalling that ∆u = 0 to get

∆ |du|2
2
≥
(
|Hessu|2HS − (N − 1)|du|2 +

(tr Hessu)2

N − dim(X)

)
m.

Kato's inequality as in Lemma 3.4.1 with t = N − dim(X) can be written as

|Hessu|2HS =
N

N − 1
|d|du||2 − (tr Hessu)2

N − dim(X)
+ F, for some F ≥ 0 m-a.e.
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and the equality case reads as

F = 0 m-a.e. ⇒ identity (3.4.4) holds. (3.4.6)

We thus have

∆ |du|2
2
≥ ( N

N−1
|d|du||2 − (N − 1)|du|2 + F )m (3.4.7)

Now let us �x β, ε > 0 and put ϕ(z) := ϕβ,ε(z) := (z+ ε)β. Then (3.4.7) and
basic calculus rules (see also the proof of [GV, Theorem 3.4]) give

∆(ϕ(|du|2)) ≥
(
β(|du|2 + ε)β−1(2F − 2(N − 1)|du|2)

+ 2β|d|du||2
(

N
N−1

+ 2(β−1)|du|2
|du|2+ε

))
m.

Now pick β := N−2
2(N−1)

and let ε ↓ 0: the rightmost addend goes to 0 and

putting for brevity f := |∇u|
N−2
N−1 (and summing λ1fm to both sides) we are

left with

∆f + λ1fm ≥
(
(λ1 − (N − 2))f + N−2

2(N−1)
F |du|−

N
N−1

)
m ≥ 0 (3.4.8)

(notice that the passage to the limit is justi�ed also by the fact that f ∈
W 1,2
loc (X), as established in [GV, Theorem 3.4] - the proof of this follows from

the computations we are repeating here).
To deduce the desired rigidity from the above, start observing that for

any ϕ ∈ LIPbs(X) we have∫
ϕ2f d∆f =

∫
−ϕ2|df |2 − 2fϕ〈dϕ, df〉 dm =

∫
−|d(ϕf)|2 + f 2|dϕ|2 dm,

and thus using that λ1

∫
f 2ϕ2 dm ≤

∫
|d(ϕf)|2 dm we get∫

ϕ2f d(∆f + λ1fm) ≤
∫
f 2|dϕ|2 dm. (3.4.9)

Notice that (3.4.8) and the assumption λ1 ≥ N − 2 tell in particular that
∆f + λ1fm ≥ 0, then �x R > 0, let ϕ := (1−R−1d(·, BR(p)))+ in the above
then let R ↑ ∞ to get∫

f d(∆f + λ1fm) ≤ lim inf
R→+∞

1

R2

∫
B2R(p)\BR(p)

f 2 dm. (3.4.10)
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Let us prove that the right hand side is zero. Putting AR := B2R(p) \BR(p),
from Holder's inequality we get∫

AR

f 2 dm ≤
(∫

AR

|du|2e2
√
λ1dp dm

)N−2
N−1

·
(∫

AR

e−2(N−2)
√
λ1dp dm

) 1
N−1

(by (3.3.4)) ≤ CR
N−2
N−1

(∫ 2R

R

e−2(N−2)
√
λ1dps(dp) dm

) 1
N−1

(by (1.5.11)) ≤ CR
N−2
N−1

(∫ 2R

R

e(−2(N−2)
√
λ1+N−1)dp dm

) 1
N−1 ≤ CR,

where in the last inequality we used the fact that −2(N−2)
√
λ1 +N−1 ≤ 0,

that in turn follows from λ1 ≥ N − 2 and N ≥ 3.
Therefore from (3.4.10) we see that

∫
f d(∆f +λ1fm) ≤ 0 and thus from

(3.4.8) we conclude that

(λ1 − (N − 2))

∫
f 2 dm +

∫
|du|−

2
N−1F dm ≤ 0.

Since λ1 ≥ N − 2 and f is not identically 0 (as u is not constant), we deduce
that λ1 = N −2, i.e. item (i) holds. Also, since |du|−

2
N−1 ≥ LIP(u)−

2
N−1 > 0,

we see that F = 0 m-a.e., and thus by (3.4.6) item (iii) holds as well.
Now notice that we now know that

∆f = −(N − 2)fm (3.4.11)

and by the compatibility of the concepts of measure-valued and L2-valued
Laplacian (see Proposition 3.1.2), item (iv) follows. Moreover, we also deduce
that ∆f ≤ 0, hence f is superharmonic on any bounded open subset of X.
Since X is locally doubling and supports a local weak Poincaré inequality,
point (ii) follows from the weak Harnack inequality (see e.g. [BB, Chapter
8]) recalling, once again, that f is not identically 0. Even more, knowing
(3.4.11) and the Bochner inequality it is not hard to see that

∆ |df |2
2
≥ 〈df, d∆f〉 − (N − 1)|df |2 = −(2N − 3)|df |2,

thus the same arguments just expressed tell that |df | is locally bounded from
above, i.e. that f is locally Lipschitz (by the Sobolev-to-Lipschitz property).

Hence the same holds for |du| = f
N−1
N−2 .

It remains to prove that u is open. Fix x̄ ∈ X, let ξ : X → [0, 1] be
a Lipschitz cut-o� function with compact support identically 1 on B2(x̄).
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Let (Flt) be the Regular Lagrangian Flow of ξ∇u, that is easily seen to
exists as |ξ∇u| ∈ L∞, div(ξ∇u) = 〈∇ξ,∇u〉 ∈ L∞ and ξ∇u ∈ W 1,2

C (TX)
by Proposition 1.6.16. By the de�ning property (1.8.3) and the �nite speed
of propagation that follows from (1.8.5), we see that there is T > 0 such
that ∂tu(Flt(x)) = |du|2(Flt(x)) holds for m-a.e. x ∈ B1(x̄) and t ∈ [−T, T ].
For these x, t, recalling also item (ii), we see that ∂tu(Flt(x)) ≥ c for c :=
infB2(x̄) |du|r > 0. Fix x for which this holds for a.e. t ∈ [−T, T ] and use the
continuity of u to deduce that the image under u of {Flt(x) : t ∈ [−T, T ]}
contains [u(x)− Tc, u(x) + Tc]. Picking x su�ciently close to x̄ we conclude
that u(B1(x̄)) contains a neighbourhood of u(x) and repeating the argument
with Br(x̄), r � 1, in place of B1(x̄) we conclude.

3.4.2 |du| as a function of u

In this section we prove that the minimal weak upper gradient of u is of
the form ϕ ◦ u for a suitable smooth function ϕ. Notice that from (3.4.4) it
follows that

d|du| = Hessu( ∇u|du|) = α(1−N) du
|du| ,

i.e. d|du| = hdu for some function h. In the smooth category, this su�ces to
conclude that, locally, |du| is a function of u, a natural line of thought being:
let U be a small open set such that level sets of u are smooth-path-connected
in U (recall that |du| > 0), then pick x, y ∈ U with u(x) = u(y) and �nd a
smooth curve γ joining them, with values in U and with t 7→ u(γt) constant.
Then 0 = ∂tu(γt) = du(γ′t) and thus ∂t(|du|(γt)) = d|du|(γ′t) = h(γt)du(γ′t) =
0, proving that |du| is also constant along γ and thus that, on U , the value
of |du| depends solely on that of u.

We are going to prove an analogous statement in our setting: roughly
said, the underlying idea is the same just exposed, but the technicalities are
much more involved.

Proposition 3.4.6. Let (X, d,m) be an RCD(K,N) space and �x two func-
tions f, g ∈ LIPloc(X) such that dg = hdf for some h : X→ R.

Also, assume that f ∈ D(∆loc) ∩W 2,2
loc (X) is with 1

|df | , |∆f |, |Hess f |HS ∈
L∞loc(X).

Then for every x ∈ X there are a neighbourhood U and a Lipschitz func-
tion ϕ : R→ R such that g = ϕ ◦ f on U .

Proof. Fix x̄ ∈ X and let η : X → [0, 1] be Lipschitz, with bounded support
and identically 1 on B3(x̄). Then by direct computation we see that for the
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vector �eld v := η ∇f|∇f |2 we have

div(v) = η
∆f

|∇f |2
− 2η

〈∇|∇f |,∇f〉
|∇f |3

+
〈∇η,∇f〉
|∇f |2

∇v = η
Hess(f)

|∇f |2
− 2η

∇|∇f | ⊗ ∇f
|∇f |3

+
∇η ⊗∇f
|∇f |2

so that our assumptions on f and η grant that v has bounded divergence and
bounded covariant derivative. It follows from Theorem 1.8.7 that the Regular
Lagrangian Flow Fl : R × X → X of v is Lipschitz in space and time. By
de�nition of Regular Lagrangian Flow and of v the equation ∂t(f(Flt(x))) =
η(Flt(x)) holds for m-a.e. x and a.e. t, but thanks to the continuity of η, Fl
and f it is easy to see that in fact for any x ∈ X the map t 7→ f(Flt(x)) is
C1 with derivative equal to η(Flt(x)).

Now consider the map H : X × R × R → X de�ned as H(x, t, s) :=
Flt+s−f(x)(x). Then this is clearly Lipschitz. Also, let B ⊂ X be bounded
and I ⊂ R be a bounded interval. We claim that for some C > 0 we have

H∗(m|B × δt × L
1|I) ≤ Cm for every t ∈ I. (3.4.12)

Indeed, since f is Lipschitz there is T > 0 such that |t+ s− f(x)| ≤ T holds
for any (x, t, s) ∈ B × I × I. It follows that for any ϕ ∈ Cb(X) non-negative
it holds∫
ϕ dH∗(m|B × δt × L

1|I) =

∫
B

∫
I

ϕ(Flt+s−f(x)) ds dm(x)

≤
∫
B

∫ T

−T
ϕ(Flr) dr dm(x) ≤ 2TComp(Fl)

∫
ϕ dm,

thus proving our claim (3.4.12). Notice also that since |v| ∈ L∞, the estimate
(1.8.5) trivially ensures that

∃t̄ > 0 so that for any x ∈ B2(x̄) we have Flt(x) ∈ B3(x̄) for any t ∈ [−t̄, t̄].
(3.4.13)

Put r̄ := min{1
2
, t̄

8
(LIP(f |B3(x̄)

))−1}. We claim that

there is ϕ : R→ R such that g = ϕ ◦ f on Br̄(x̄) (3.4.14)

and argue by contradiction. If not, there are x0, x1 ∈ Br̄(x̄) with f(x0) =
f(x1) and g(x0) < g(x1). By continuity we can �nd neighbourhoods U0, U1 ⊂
Br̄(x̄) of x0, x1 respectively such that infU1 g > supU0

g. Then we can �nd
other neighbourhoods Vi ⊂ Ui of xi, i = 0, 1, and s̄ ∈ (0, t̄

2
) such that

Fls(x) ∈ Ui for every x ∈ Vi, s ∈ [−s̄, s̄], i = 0, 1.
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Let µi := m(Vi)
−1m|Vi , i = 0, 1 and let π be the only (by [GRS]) optimal

geodesic plan joining µ0 to µ1. Then [R12a] ensures that π is a test plan and
clearly it is concentrated on geodesics taking values in B2r̄(x̄) ⊂ B1(x̄). Also,
let G : C([0, 1],X)× R→ C([0, 1],X) be given by G(γ, s)t := H(γt, f(x0), s)
and put π̂ := G∗(π × ( 1

2s̄
L1|[−s̄,s̄])). From the fact that H is Lipschitz and

(3.4.12) it directly follows that π̂ is a test plan as well and the construction
also ensures that (ei)∗π̂ is concentrated on Vi, i = 0, 1.

We make now the intermediate claim:

π̂ is concentrated on curves along which f is constant. (3.4.15)

To see this, notice that π is concentrated on geodesics having endpoints in
Br̄(x̄) and thus that it is su�cient to prove that for any such geodesic γ, any
t ∈ [0, 1] and s ∈ [−s̄, s̄] we have

f(Flf(x0)+s−f(γ0)(γt)) = f(x0) + s.

Since r 7→ f(Flr(γt)) is C1 with derivative η(Flr(γt)), the claim follows if we
show that Flr(γt) ∈ B3(x̄) ⊂ {η = 1} for any |r| ≤ |f(x0) + s − f(γ0)|. To
see this, notice that γ takes values in B2r̄(x̄) ⊂ B2(x̄) and thus |f(γ0) + s−
f(γt)| ≤ s̄ + LIP(f |B3(x̄)

)d(γ0, γt) ≤ t̄ for any t ∈ [0, 1] and s ∈ [−s̄, s̄]. The
claim then follows from (3.4.13).

From (3.4.15) and the de�nition of speed of a test plan (see Theorem
1.4.3) we have that

0 = f ◦ es − f ◦ et =

∫ s

t

[e∗rdf ](π̂′r) dr π̂-a.e.

for every t, s ∈ [0, 1], t < s. By Fubini's theorem this implies that for
a.e. t ∈ [0, 1] the identity [e∗tdf ](π̂′t) = 0 holds π̂-a.e.. Now we can use
our assumption dg = hdf (noticing that |h| ∈ L∞loc(X) as a consequence of
|dg|, 1

|df | ∈ L
∞
loc(X)) to deduce that

g ◦ e1 − g ◦ e0 =

∫ 1

0

[e∗rdg](π̂′r) dr =

∫ 1

0

h ◦ er[e
∗
rdf ](π̂′r) dr = 0 π̂-a.e..

This latter identity, however, is in contradiction with the fact that∫
g ◦ e0 dπ̂ =

∫
g d(e0)∗π̂ ≤ sup

V0

g < inf
V1

g ≤
∫
g d(e1)∗π̂ =

∫
g ◦ e1 dπ̂,

thus proving the claim (3.4.14).
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Property (3.4.14) de�nes the real valued function ϕ on the connected -
being the continuous image of a connected - set I := f(Br̄(x̄)) ⊂ R. To
conclude the proof it is therefore enough to show that ϕ : I → R is locally
Lipschitz, with a control on the local Lipschitz constant independent on the
chosen neighbourhood.

Thus let x ∈ Br̄(x̄), put α := f(x) and notice that for |t| � 1 we have
Flt(x) ∈ Br̄(x̄) as well with - by the above discussion - f(Flt(x)) = α + t.
Conclude noticing that

|ϕ(α + t)− ϕ(α)| = |ϕ(f(Flt(x)))− ϕ(f(x))|
= |g(Flt(x))− g(x)| ≤ LIP(g|Br̄(x̄)

)‖v‖L∞ |t|,

where in the last inequality we used the fact that the speed of the curve
s 7→ Fls(x) is uniformly bounded by ‖v‖L∞ .

In general this last result cannot be globabilized. In our case, however,
this is possible thanks to the global properties of the function u we proved
in Section 3.4.1.

Proposition 3.4.7. With the same notation and assumptions as in Assump-
tion 3.4.2 the following holds.

There exists a function ϕ ∈ C∞loc(I) such that |du| = ϕ ◦ u, where I :=
u(X), and it satis�es

1
1−Nϕϕ

′′ = 1− 1
(1−N)2 (ϕ′)2. (3.4.16)

Proof. For x ∈ X let Ux and ϕx be the neighbourhood and the function given
by Proposition 3.4.6 above. By item (ii) in Proposition 3.4.5 we know that
ϕx is strictly positive. Now suppose for a moment that we already know that
ϕx is C

1,1
loc for every x ∈ X.

We know that |du| = ϕx ◦ u holds on Ux, thus the regularity of ϕx and
its positivity justify the chain rules

∆(|du|
N−2
N−1 ) = div(N−2

N−1
(ϕ
− 1
N−1

x ϕ′x) ◦ u∇u)

=
(
− N−2

(N−1)2 ϕ
N−2
N−1
x (ϕ′x)

2 + N−2
N−1

ϕ
1+N−2

N−1
x ϕ′′x

)
◦ u

having used also the fact that u is harmonic.

Since (3.4.5) can now be written as ∆(|du|
N−2
N−1 ) = −(N − 2)ϕ

N−2
N−1
x ◦ u we

conclude that ϕx satis�es (3.4.16). It then follows by standard bootstrapping
that ϕx is C∞loc, as in the statement.

The ODE (3.4.16) also gives, by ODE uniqueness, the desired rigidity, as
it is clear that any two solutions ϕx, ϕx′ de�ned on some intervals Ix, Ix′ ⊂
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(0, 1) that coincide in some non-trivial interval I ⊂ Ix ∩ Ix′ must coincide
on the whole Ix ∩ Ix′ and that the natural `glued' function de�ned on Ix ∪
Ix′ is still a solution. Thus �x x̄ ∈ X, let ϕ be the maximal solution of
(3.4.16) extending ϕx̄ and let A ⊂ X the set of those x's such that ϕx is the
restriction of ϕ to some subinterval of its domain of de�nition. Since Ux is a
neighbourhood of x and ϕx is de�ned on the open set u(Ux) (by item (v) in
Proposition 3.4.5), it is clear that A is both open and closed. Since it is not
empty and X is connected (being geodesic) we conclude that A = X.

We now prove that ϕx is C1,1
loc and to this aim we start claiming that

for η ∈ W 1,2(X) with support compact and contained in Ux the measure
µ := u∗(ηm) is absolutely continuous with respect to L1 with density that is
also absolutely continuous. Indeed, let ζ be a Lipschitz cut-o� function with
compact support and identically 1 on a neighbourhood of supp(η) and let
(Flt) be the Regular Lagrangian Flow of ζ∇u (whose existence and uniqueness
follow from |ζ∇u| ∈ L∞, div(ζ∇u) = 〈∇ζ,∇u〉 ∈ L∞ and ζ∇u ∈ W 1,2

C (TX)
by Proposition 1.6.16). Then by Proposition 1.8.4 we see that u◦Flt−u

t
→

|du|2 in L2(supp(η),m) as t → 0. Notice also that item (ii) in Proposition
3.4.5 yields that 1

|du|2 ∈ W 1,2
loc ∩ L∞loc(X) (for Sobolev regularity recall that

u ∈ H2,2
loc (X) and [G18b, Proposition 3.3.22]), thus the following computation

is justi�ed for any ξ ∈ C∞c (R):

−
∫
ξ′ dµ = −

∫
ξ′ ◦ u η dm = − lim

t→0

∫
ξ ◦ u ◦ Flt − ξ ◦ u

t

η

|du|2
dm

=

∫
ξ ◦ u 〈d

( η

|du|2
)
, du〉 dm =

∫
ξ dν,

where ν := u∗

(
〈d
(

η
|du|2

)
, du〉m

)
.

This proves that the distributional derivative of µ is a Radon measure, and
thus that µ � L1 with BV density. To prove that the density is absolutely
continuous it su�ces to prove that ν � L1. But this is obvious, as a direct
consequence of what just proved is that u∗m� L1.

We are now ready to show that ϕ = ϕx is C1,1
loc (u(Ux)). We know from

Proposition 3.4.6 that it is locally Lipschitz and that in Ux we have |du| =
ϕ◦u. Since we already recalled that |du| ∈ W 1,2

loc we see that d|du| = ϕ′◦u du.
Also, we know from (3.4.5) and the chain rule for the Laplacian that in Ux
we have ∆(|du|) = ψ ◦ u for some locally bounded function ψ, that we can
rewrite as div(ϕ′ ◦ u du) = ψ ◦ u. Now we take η ∈ Test(X) with support in
Ux and ξ ∈ C∞(R) and observe that∫

〈d(ξ ◦ u η), ϕ′ ◦ u du〉 dm = −
∫

(ψ ξ) ◦ u η dm = −
∫
ψ ξρ dL1,
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where ρ is the density of u∗(ηm). On the other hand we also have∫
〈d(ξ ◦ u η), ϕ′ ◦ u du〉 dm =

∫
(ξ′ϕ′) ◦ u |du|2η + (ϕ′ξ) ◦ u〈dη, du〉 dm

=

∫
ξ′ϕ′ρ1 + ξϕ′ρ2 dL1,

where ρ1, ρ2 are the densities of u∗(|du|2ηm) and u∗(〈dη, du〉m), respectively.
By the arbitrariness of ξ we proved that the distributional derivative of ϕ′ρ1

is equal to ϕ′ρ2 + ψρ ∈ L1
loc, and thus that ϕ′ρ1 is (more precisely: has a

representative that is) absolutely continuous. Since |du|2η is in W 1,2(X) and
has support in Ux, what previously proved shows that ρ1 is also absolutely
continuous.

We thus deduce that ϕ′ is locally absolutely continuous on {ρ1 > 0} =
u({η > 0}). Taking η = ηn for (ηn) such that of ∪n{ηn > 0} = Ux we
conclude.

3.4.3 Proof of Theorem 3.4.1

We are now ready to prove Theorem 3.4.1 combining the results of Chapter
2 and Sections 3.3, 3.4.1 and 3.4.2.

Proof of Theorem 3.4.1. Since λ1 ≥ N − 2 > 0, we know from Proposition
3.3.9 that X has at least one end of in�nite measure. Assume it has at least
two of these. Then Corollary 3.3.7 gives the existence of a non-constant
bounded harmonic function u on the whole X and then Proposition 3.4.7
that

|du| = ϕ ◦ u (3.4.17)

for a positive smooth function ϕ on u(X) that satis�es

1
1−Nϕϕ

′′ = 1− 1
(1−N)2 (ϕ′)2. (3.4.18)

Then Proposition 3.4.5 tells that |du| 6= 0 a.e., and that putting e1 := ∇u
|∇u|

we have

Hessu = ζ ◦ u|du|Id−Nζ ◦ u|du|e1 ⊗ e1 for ζ = ϕ′

1−N . (3.4.19)

We can therefore apply Lemma 2.1.1: let η be so that η′ = 1
ϕ
(η is de�ned

up to an additive constant: the value of such constant will be chosen in a
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moment) and de�ne the function b := η ◦ u. Then b ∈ H2,2
loc (X) with

|db| ≡ 1, (3.4.20)

Hess b = ψd ◦ b
(
Id− e1 ⊗ e1

)
, for ψd := ζ ◦ η−1 (3.4.21)

∆b = ψm ◦ b, for ψm := (N − 1)ζ ◦ η−1 = (N − 1)ψd.
(3.4.22)

To �nd explicitly ψd and ψm notice that

ζ ′ϕ
(3.4.19)

= ϕ′′ϕ
1−N

(3.4.18)
= 1− (ϕ′)1

(N−1)2

(3.4.19)
= 1− ζ2 (3.4.23)

and thus

ψ′d = (ζ ◦ η−1)′ = (ζ ′ 1
η′

) ◦ η−1 = (ζ ′ϕ) ◦ η−1 (3.4.23)
= 1− ζ2 ◦ η−1 = 1− ψ2

d

proving that ψd(z) = tanh(z+ c) for some c ∈ R. Since ψd ◦ η is equal to the
given function ζ, we see that replacing η with η̃ := η + α for α ∈ R means
replacing ψd with ψ̃d = ψd(· − α). Thus we can, and will, choose η so that
ψd = tanh.

It follows by the de�ning properties (2.2.9b), (2.2.10) that wd = cosh. By
(3.4.22) we also have ψm = (N − 1) tanh and thus wm = coshN−1.

Then Theorem 2.5.3 gives the required warped product structure, where
the �ber is the space X′ := b−1(0) equipped with the distance d′ and the
measurem′ de�ned in (2.2.3) and (2.2.4) respectively. Moreover, we can apply
Proposition 2.5.4 with z̄ = 0 to deduce that (X′, d′,m′) is RCD(−(N−1), N).

It remains to prove that X′ is compact. Say not. We are going to prove
that in this case X has at most one end, thus contradicting the assumption
made at the beginning of the proof.

Let K ⊂ X be compact and let K′ := Pr−1(Pr(K)) ∩ b−1(b(K)). Since
T(K′) = b(K) × Pr(K) ⊂ R ×w X′ we see that the `rectangle' K′ is also
compact. Let x0, x1 ∈ X \ K′. Then for i = 0, 1 either Pr(xi) /∈ Pr(K′) or
b(xi) /∈ b(K′) (or both). Say b(xi) /∈ b(K′) for i = 0, 1 and use the assumption
that X′ is not compact to �nd z ∈ X′ \ Pr(K′). Then the curve t 7→ Flt(z)
(here Fl is the �ow of∇b) does not meet K′ and, moreover, there are t0, t1 ∈ R
with b(Flti(z)) = b(xi), i = 0, 1. Recalling that the level sets of b are path
connected, we can �nd curves joining xi and Flti(z) lying entirely on level
sets. The assumption b(xi) /∈ b(K′) ensures that these curves do not meet
K′, thus the path obtained by gluing these curves and t 7→ Flt(z) produces a
curve from x0 to x1 that does not meet K′, showing that x0, x1 belong to the
same connected component of X\K′. Since an analogous construction can be
made if one, or both, of the xi's are with Pr(xi) /∈ Pr(K′), we see that X \K′

has only one connected component, providing the desired contradiction.
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3.5 Rigidity theorem for spaces with maximal

spectrum

By Cheng's Theorem the �rst eigenvalue of the Laplacian of an n-dimensional
Riemannian manifold with Ricci curvature bounded from below by −(n− 1)

is bounded from above by (n−1)2

4
. The same result holds in the non-smooth

setting: it is a consequence of the following result proved in metric measure
space by Sturm (see [S94, Theorem 5]).

Theorem 3.5.1. Let v∗(r) := infx∈X
m(Br(x))
B1(x)

. If there exists k ≥ 0 such that

lim inf
r→+∞

1

r
log(v∗(r)) ≤ k,

then λ1 ∈
[
0, k

2

4

]
.

Theorem 3.5.2. Let (X, d,m) be an RCD(K,N) with K < 0 and N ∈
(1,+∞). Then

λ1 ≤
−(N − 1)K

4
.

Proof. By the Bishop-Gromov inequality (1.5.12) we can estimate v∗(r) from

above with Cer
√
−(N−1)K . Theorem 3.5.1 concludes the proof.

Its proof easily follows combining the Bishop-Gromov inequality (1.5.12)
with the following theorem (see [S94, Theorem 5]).

Theorem 3.5.2 motivates the study of the case λ1 = (N−1)2

4
, i.e. the spaces

in which λ1 is the maximum admissible.

3.5.1 Isomorphism with the warped product

The proof of Theorem 0.0.8 is very similar to the one of Theorem 3.4.1 saw
in the previous section. We recall the precise statement of the theorem.

Theorem 3.5.3. Let (X, d,m) be an RCD(−(N − 1), N) space with N > 3
and supp(m) = X, and assume that the �rst eigenvalue of the Laplacian λ1

is equal to (N−1)2

4
. Then one of the following holds:

i) X has only one end;

ii) X is isomorphic as metric measure space to a warped product space R×w
X′, where X′ is a compact RCD(0, N) space and the warping functions
are

wd(t) := et and wm(t) := eNt.
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To begin we observe that λ1(X) > N − 2, then, by Theorem 3.4.1, the
space has only one end with in�nite volume. We �x then the following
assumptions.

Assumption 3.5.4. (X, d,m) is an RCD(−(N − 1), N) space with N > 3

and λ1 = (N−1)2

4
. We also assume that supp(m) = X and that X has at least

two ends.
Finally, we shall denote by u the positive and non-constant harmonic

function on X given by Corollary 3.3.8.

As we did in Proposition 3.4.5, we prove that the positive non-constant
harmonic function u satis�es the equality in the Bochner+Kato inequality
(3.4.7) with F = 0, and from this we deduce its Hessian.

As in the proof of Proposition 3.4.5, an inequality (the equivalent of
(3.4.8)) comes from the Bochner inequality, and the other follows by the
de�nition of λ1 and the estimates (3.3.14) and (3.3.15) (as in (3.4.10)). The
�rst inequality in this case has been studied by H.-C. Zhang and X.-P. Zhu
in [ZZ], where they proved a sharp estimate for the gradient of harmonic
functions.

Theorem 3.5.5 (Li-Yau gradient estimate). Let K ≤ 0 and N ∈ (1,+∞),
and let (X, d,m) be an RCD(K,N) metric measure space. Taking u positive
harmonic function on X it holds

|du| ≤
√
−K(N − 1)u.

Proposition 3.5.6 (Properties of the Busemann function). With the same
assumptions and notation as in Assumption 3.5.4 the following hold:

i) |du| = (N − 1)u holds m-a.e., in particular |du| is locally Lipschitz and
strictly positive;

ii) putting e1 := ∇u
|∇u| , which is well de�ned by the above, we have

Hess(u) = −(N − 1)u(Id−Ne1 ⊗ e1). (3.5.1)

Proof. Also in this case it is easy to see, as in Lemma 3.4.3, that u ∈
Testloc(X) (since here u is not globally bounded we do not have the global
Lipschitzianity in this case).

Starting with item (i), the inequality |du| ≤ (N−1)u is given by Theorem
3.5.5, so we only have to prove that the opposite inequality holds.

Let f :=
√
u. Then, by the chain rule for the Laplacian (3.1.1) it holds

∆f = −1

4
u−

3
2 |du|2m ≥ −(N − 1)2

4
fm, (3.5.2)
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which means that, as in the proof of Proposition 3.4.5, ∆f + λ1fm ≥ 0.
Moreover, repeating the same computations as in (3.4.9) we conclude that∫

ϕ2f d(∆f + λ1fm) ≤
∫
f 2|dϕ|2 dm. (3.5.3)

As in the proof of Proposition 3.4.5 the aim is to choose a sequence of
functions (ϕR) → 1̂ that sends the right hand side of (3.5.3) to 0. We start
noticing that we can ignore every end with �nite volume on which u ≤ 1
(so every end with �nite volume except for E2), since we can choose ϕR
similarly to what we did in the proof of Proposition 3.3.9 and see that their
contribution in the right hand side of (3.5.3) is negligible.

In the following, for brevity and simplicity of the notation, we assume
that the space has only the two ends E1 and E2 (noting that we can de�ne
ϕR independently on every end, so the argument above is enough to conclude
in presence of other ends with �nite volume).

Take ϕR de�ned as ϕR := (1−R−1d(·, BR(p)))+. Letting R ↑ +∞ we get∫
f d(∆f + λ1fm) ≤ lim inf

R→+∞

1

R2

∫
B2R(p)\BR(p)

f 2 dm. (3.5.4)

We prove that the right hand side is zero. More precisely, we claim that
there exists a constant C > 0 such that for every R > 0 large enough it holds∫

BR(p)

f 2 dm =

∫
BR(p)

u dm ≤ CR. (3.5.5)

On the end with in�nite volume E1 we have that∫
E1(R+1)\E1(R)

u dm ≤
(∫

E1(R+1)\E1(R)

u2 dm

) 1
2 √

VE1(R + 1)

(3.3.2) + (3.3.14) ≤ Ce−
N−1

2
Re

N−1
2
R = C,

and summing up on R ∫
E1(R)

f 2 dm ≤ CR. (3.5.6)

Focusing now on E2, we note that, by Theorem 3.5.5 and the Sobolev-to-
Lipschitz property it holds

u ≤ C + e(N−1)dp m-a.e.,
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then for every R large enough∫
E2(R+1)\E2(R)

u dm ≤
∫
E2(R+1)\E2(R)

C + e(N−1)dp dm

≤ (C + e(N−1)(R+1))(VE2(R + 1)− VE2(R))

≤ (C + e(N−1)(R+1))(VE2(∞)− VE2(R))

(3.3.15) ≤ C(C + e(N−1)(R+1))e−(N−1)R = C.

Summing up on R we obtain that∫
E2(R)

f 2 dm ≤ CR, (3.5.7)

and this, together with (3.5.6) concludes the proof of (3.5.5).
We conclude that ∆f = −λ1fm, then, since the equality holds in (3.5.2),

we have that
|du| = (N − 1)u. (3.5.8)

From an easy computation, we see that u satis�es an equality in the
Bochner+Kato inequality, i.e. (3.4.7) holds with F = 0: indeed, using the
chain rule for the Laplacian (3.1.1), ∆u ≡ 0 and (3.5.8) we have

∆ |du|2
2

=
(N − 1)2

2
∆(u2) = (N − 1)2|du|2m

and

( N
N−1
|d|du||2 − (N − 1)|du|2)m = (N(N − 1)|du|2 − (N − 1)|du|2)m

= (N − 1)2|du|2m.

Arguing as in the proof of Proposition 3.4.5 we conclude that the Hessian
of u is of the form α(Id−Ne1 ⊗ e1) for e1 := ∇u

|∇u| and

α =
〈d|du|, du〉
(1−N)|du|

= −(N − 1)u.

We observe that in this case we do not need to repeat the argument of
Section 3.4.2, since we already have that |du| = (N − 1)u, then we can
conclude the proof of the "splitting" in Theorem 3.5.3 arguing as in Section
3.4.3.
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Proposition 3.5.7. With the same assumptions and notation as in Assump-
tion 3.5.4 the following holds: the space X is isomorphic as metric measure
space to a warped product space R×wX′, where X′ is compact and the warping
functions are

wd(t) := et, and wm(t) := e(N−1)t.

Proof. The proof is identical to the one of Theorem 3.4.1 except for the
RCD condition for the quotient space X′ (we will talk about that in the next
section).

Fixing b := − log(u)
N−1

, from Proposition 3.5.6 follows that

|db| ≡ 1, (3.5.9)

Hess b = Id− e1 ⊗ e1, (3.5.10)

∆b = N − 1. (3.5.11)

De�ning wd and wm as in (2.2.9) and (2.2.10), we have that wd(t) = et and
wm = e(N−1)t.

From Theorem 2.2.1 follows that X is isomorphic to R×w X′ with X′ :=
b−1(0) and warping functions wd and wm. Moreover X′ is compact since, if
it was not then the space R×w X′ would have only one end (the argument is
identical to the one in the proof of Theorem 3.4.1).

3.5.2 RCD condition of the quotient space

In this case Theorem 2.5.4 cannot be applied, so we have to argue di�erently
to prove the RCD condition of the quotient space X′.

This case has been studied in [CD+], we recall brie�y their argument
since it is completely di�erent from ours in Theorem 2.5.4.

As seen in Section 2.5, the �rst three properties of De�nition 1.5.1 are
satis�ed in the space X′. We prove that the Bochner inequality (1.5.1) holds
too.

The �rst step to prove it is to study how the Laplacian of the warped
product space R ×w X′ behaves with respect to the Laplacian in X′. We
denote by ∆ the Laplacian in R×w X′ and by ∆ the Laplacian in X′.

Lemma 3.5.8. Let ρ ∈ C∞c (R) and f ∈ D(∆). Moreover assume that wm ∈
C1(R). Indicating with f, ρ : R ×w X′ → R the functions f(t, x′) := f(x′)
and ρ(t, x′) := ρ(t), it holds fρ ∈ D(∆) and ∆(fρ) ∈ W 1,2(R×w X′).

Moreover
∆(fρ) = ρw−2

d ∆f + (ρ′wm)′w−1
m f. (3.5.12)
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Remark 3.5.9. In (3.5.12) with a little abuse of notation we omitted the
right compositions with the projections π1(t, x′) := t and π2(t, x′) := x′. �

Proof. We indicate with Xw the warped product R ×w X′. By Theorem
1.7.6 follows easily that function fρ is in W 1,2(Xw) for every f, ρ as in the
assumptions.

Recalling nations (2.2.5) and (2.4.2), let Ã be the set of functions f :
Xw → R such that f ◦ T ∈ A, and similarly we de�ne G̃ and H̃. By Lemma
2.4.1 we have that Ã is dense in W 1,2(Xw).

Let ϕ ∈ Test(Xw) ∩ Ã given by ϕ =
∑n

i=1 aihigi, where ai ∈ R, hi ∈ H̃
and gi ∈ G̃.

Using the Leibniz rule and remembering the argument in Section 2.4, we
have that∫

〈∇(fρ),∇ϕ〉 dmw =
n∑
i=1

ai

∫ (
fgi〈∇ρ,∇hi〉+ ρhi〈∇f,∇gi〉

)
dmw.

Noting that, by Theorem 1.7.6 follows that

〈∇f,∇gi〉Xw = w−2
d 〈∇f,∇gi〉X′ and 〈∇ρ,∇hi〉Xw = ρ′h′i,

we conclude that

n∑
i=1

ai

∫
ρhi〈∇f,∇gi〉 dmw =

n∑
i=1

ai

∫
R
fgiw

−2
d wm

∫
X′
〈∇f,∇gi〉 dm′ dL1

= −
n∑
i=1

ai

∫
R
ρhiw

−2
d wm dL1

∫
X′
gi∆f, dm

′

and

n∑
i=1

ai

∫
fgi〈∇ρ,∇hi〉 dmw =

n∑
i=1

ai

∫
R
ρ′h′iwm dL1

∫
X′
fgi dm

′

= −
n∑
i=1

ai

∫
R
(ρ′wm)′hi dL1

∫
X′
fgi, dm

′.

Then for every ϕ ∈ Test(Xw) ∩ Ã it holds∫
〈∇(fρ),∇ϕ〉 dmw = −

∫
ϕ
(
ρw−2

d ∆f + f(w−1
m (ρ′wm)′

)
dmw, (3.5.13)

where, as in the previous remark, we omitted the right composition with the
projections.
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Since Test(Xw)∩ Ã is dense in W 1,2(Xw), we have that (3.5.13) holds for
every ϕ ∈ W 1,2(Xw), then we conclude that fρ ∈ D(∆) and

∆(fρ) = ρw−2
d ∆f + (ρ′wm)′w−1

m f.

Starting from the weak Bochner inequality (1.5.1) on the space R×w X′

and using (3.5.12) we can see that, in our case, the Bochner inequality holds
on X′.

Proposition 3.5.10. Assume that X′ and R ×w X′ are as in Proposition
3.5.7. Then for every f ∈ D(∆) such that ∆f ∈ W 1,2(X′) and all non-
negative g ∈ D(∆)∩L∞(X′) such that ∆g ∈ L∞(X′) the following is satis�ed:

1

2

∫
∆g|df |2X′ dm′ ≥

1

N

∫
g(∆f)2 dm′ +

∫
g〈∇∆f,∇f〉X′ dm′. (3.5.14)

Sketch of the proof. Let f ∈ D(∆) such that ∆f ∈ W 1,2(X′), and g ∈ D(∆)∩
L∞(X′) such that g ≥ 0 and ∆g ∈ L∞(X′).

Take ρ ∈ C∞c (R). Since f and g satisfy the hypotheses of Lemma 3.5.8,
we have that the following weak Bochner inequality holds for fρ and gρ:

1

2

∫
∆(gρ)|d(fρ)|2 dmw ≥

1

N

∫
gρ(∆(fρ))2 dmw

− (N − 1)

∫
gρ|d(fρ)|2 dmw

+

∫
gρ〈∇(∆(fρ)),∇(fρ)〉 dmw.

(3.5.15)

Using (3.5.12), (1.7.1) and the Leibniz rule all the terms of (3.5.15) can be
split in products of integrals on R and on X′. For instance:∫

∆(gρ)|d(fρ)|2 dmw =

∫
(ρw−2

d ∆g + (ρ′wm)′w−1
m g)

(ρ2w−2
d |df |

2
X′ + f 2(ρ′)2) dmw

=

∫
R
ρ3w−4

d wm dL1

∫
X′
|df |2X′∆g dm′

+

∫
R
ρ(ρ′)2w−2

d wm dL1

∫
X′
f 2∆g dm′

+

∫
R
ρ2w−2

d (ρ′wm)′ dL1

∫
X′
g|df |2X′ dm′

+

∫
R
(ρ′)2(ρ′wm)′ dL1

∫
X′
gf 2 dm′,

(3.5.16)
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and similarly for the other three terms of (3.5.15).
The idea to conclude is then to �nd a sequence of functions (ρn) such

that all the "unwanted terms" go to 0 as n→ +∞ leaving only (3.5.14).
Let ρ0 ∈ C∞c (R) be a cut-o� function which is identically 1 on [−1, 1] and

0 outside [−2, 2] and let ρn(t) := ρ0(t+n). Remembering that wd(t) = et and
wm(t) = e(N−1)t, we can observe that all the "real integrals" in (3.5.16) and in
the similar terms derived from (3.5.15) goes to 0 faster than

∫
ρ3w−4

d wm dL1:∫
ρ3w−4

d wm dL1 ≥
∫ −(n−1)

−(n+1)

e(N−5)s ds = Ce−(N−5)n,∫
R
ρ(ρ′)2w−2

d wm dL1 ≤ C

∫ −(n−2)

−(n+2)

e(N−3)s ds = Ce−(N−3)n,∫
R
ρ2w−2

d (ρ′wm)′ dL1 ≤ C

∫ −(n−2)

−(n+2)

e(N−3)s ds = Ce−(N−3)n,∫
R
(ρ′)2(ρ′wm)′ dL1 ≤ C

∫ −(n−2)

−(n+2)

e(N−1)s ds = Ce−(N−1)n,

and so on for the other terms. Dividing (3.5.15) by
∫
ρ3w−4

d wm dL1 and
sending n to +∞ we obtain (3.5.14).

Thanks to Proposition 3.5.10 we conclude that the space (X′, d′,m′) is
RCD(0, N), and this concludes the proof of Theorem 3.5.3.
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