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Abstract: We consider energies on a periodic set L of the form ∑i,j∈L aεij|ui − uj|, defined on spin functions
ui ∈ {0, 1}, and we suppose that the typical range of the interactions is Rε with Rε → +∞, i.e., if |i − j| ≤ Rε,
then aεij ≥ c > 0. In a discrete-to-continuum analysis, we prove that the overall behavior as ε → 0 of such
functionals is that of an interfacial energy. The proof is performed using a coarse-graining procedure which
associates to scaled functions defined on εL with equibounded energy a family of sets with equibounded
perimeter. This agrees with the case of equibounded Rε and can be seen as an extension of coerciveness
result for short-range interactions, but is different from that of other long-range interaction energies, whose
limit exits the class of surface energies. A computation of the limit energy is performed in the case L = ℤd.
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1 Introduction
In this paper, we give a contribution to the general problem of the asymptotic analysis of systems of lattice
interactions of the form

∑
i,j∈L

aεij|ui − uj|,

where L is a periodic lattice in ℝd, ε > 0 is a parameter tending to 0 and aεij are non-negative coefficients.
These functionals depend on (scalar) “spin functions” with ui ∈ {0, 1}, somehow related to ferromagnetic
energies in the terminology of statistical mechanics (where usually ui ∈ {−1, 1}).

We investigate coerciveness properties related to such energies in a discrete-to-continuumprocess,where
the values uεi are identified as the values uε(εi) of a function defined on εL. In this way, a continuum limit
of uε can be defined as a limit of their piecewise-constant interpolations, e.g., defined as uε(x) = uεi if the
point of minimum distance of εL from x is εi. Coerciveness is established by exhibiting scales sε such that if
uεi are such that

∑
i,j∈L

aεij|u
ε
i − u

ε
j | ≤ sε ,

then the interpolations uε are precompact in some topology and their limit points are in general non-trivial.
This can be expressed by proving that the domain of the Γ-limit of the scaled energies

1
sε
∑
i,j∈L

aεij|u
ε
i − u

ε
j |

in that topology is not trivial.
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The simplest case that has been previously treated [1, 16] is nearest-neighbor interactions; i.e., when aεij
are strictly positive only when i, j are nearest neighbors (n.n. for short) in the Delaunay triangulation of L
(e.g., |i − j| = 1 if L = ℤd). In this case, choosing sε = ε1−d gives that the scaled energies

∑
i,j∈L i,j n.n.

εd−1aεij|u
ε
i − u

ε
j |

can be directly seen as a (possibly anisotropic) perimeter of the sets {x : uε(x) = 1} defined through the
piecewise-constant interpolation of uε from the scaled lattice εL. Then the compactness properties of sets
of equibounded perimeter ensure the coerciveness in L1loc(ℝ

d) and the limits are characteristic functions.
Moreover, the Γ-limit of the energies can be described by an energy defined on sets of finite perimeter A,
which, in the simplest homogeneous case, takes the form

∫
∂A

φ(ν) dHd−1. (1.1)

The same scaling works for finite-range interactions, i.e., when aεij is 0 if |i − j| > R for some R, even though
the energies in that case must be interpreted as a non-local perimeter [14]. The finiteness of the range of the
interactions can be weakened to a decay condition that can be quantified as

sup{ ∑
j∈L\{i}

aεij|j − i| : i ∈ L, ε > 0} < +∞, (1.2)

even though the limit energies may have a non-local part if the “tails” of these series are not uniformly negli-
gible [2]. We note that such analysis is valid beyond pair potentials and generalizes to classes of many-point
interactions (see [12]).

If the decay assumptions (1.2) do not hold, then the “natural” scaling for the energies may be different
from the “surface scaling” εd−1, and wemight exit the class of interfacial energies. An extreme case is that of
“dense graphs”, which is better stated in a bounded domain, i.e., when considering energies

∑
i,j∈L∩ 1ε Q

aεij|ui − uj|,

with Q a cube in ℝd, and suppose that aεij ≥ c > 0 for (a positive percentage of) all interactions. In that
case, the scaling is sε = ε−2d, and the limit behavior is described by a more abstract limit functional called
a “graphon” energy [3, 5, 20, 21], which can be viewed as a relaxation of a double integral on (0, 1) of the
form

∫
(0,1)×(0,1)

W(x, y)|v(x) − v(y)| dx dy

defined on BV((0, 1); {0, 1}) after a complex and rather abstract relabeling procedure and identification of
functions defined on Q with functions defined on (0, 1) (see [9]). For sparse graphs (i.e., graphs which are
not dense according to the definition above) and interactions not satisfying decay conditions (1.2), the correct
scaling, the relative convergence and the form of the Γ-limit is a complex open problem. In [8], an example is
given of one-dimensional energies with range Rε = 1/√ε such that a non-trivial Γ-limit exists for sε = 1/√ε
with respect to the L∞-weak∗ convergence, but it is defined on all functions of bounded variation with values
in [0, 1] (and not only thosewith values in {0, 1}). In that example, a crucial issue is the topology of the graph
of the connections where aεij ̸= 0.

In this paper, we consider an intermediate case, i.e., when the decay condition described above does not
hold, and aεij ≥ c > 0 when |i − j| ≤ Rε with Rε ≫ 1 but the topology of the interactions within that range is
that of a “dense” graph. We further make the assumption εRε ≪ 1 so that the discrete-to-continuum pro-
cess makes sense. We note that this latter condition is not restrictive upon a redefinition of ε in terms of Rε,
e.g. taking R−1/2ε in the place of ε. We keep the dependence of our system on Rε and ε separate since these
parameters may be defined independently in applications. Under these conditions, we have

sε =
Rd+1
ε

εd−1
,
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and with this scaling, functions of equibounded energy interpolated on the lattice εL converge to a charac-
teristic function of a set of finite perimeter. Themain argument for obtaining this result is by coarse-graining.
Namely, we average the values of uε for interaction on cubes with side length of order Rε so that we can think
of those averages as labeled on εRεℤd. We prove first that those labels for which averages are not essentially
close to 0 and 1 are negligible; hence, we may regard such functions as spin functions defined on a cubic
lattice. Then we show that the arguments used for nearest-neighbor interactions of [1] can be adapted for
the interpolated functions of the averages. Once a limit set of finite perimeter is obtained, we can prove the
convergence of the interpolations of the original functions to the same set.

As an application of this scaling argument, we show that, for

aεij = a(
i − j
Rε
),

where a is a positive function with ∫ a(ξ)|ξ| dξ finite, the Γ-limit of the energies

Fε(u) =
εd−1

Rd+1
ε
∑

i,j∈ℤd
aεij|ui − uj|,

defined on the cubic lattice ofℝd, is given by an energy as in (1.1) with

φ(ν) = ∫
ℝd

a(ξ)|⟨ξ, ν⟩| dξ. (1.3)

In particular, if a is radially symmetric, then (1.1) is simply a multiple of the perimeter of A. It is interesting
to note that, in a sense, the case Rε → +∞ can be seen as a limit of the case of Rε finite, for which the Γ-
limit is of form (1.1) with the integrand φ(ν) given by a discretization of the integral in (1.3) (as seen in
[4, 11, 17] in a slightly different context). This convergence can be re-obtained using the results in [19], where
transportation maps are used to transform discrete energies in convolution functionals.

2 A Compactness Result
We denote by QR = [− R2 ,

R
2 )

d the (semi-open) coordinate cube centered in 0 and with side length R inℝd, by
BR the open ball centered in 0 and with side length R in ℝd, and by e1, . . . , ed the vectors of the canon-
ical basis of ℝd. Moreover, Hd−1 denotes the d − 1-dimensional Hausdorff measure and | ⋅ | the Lebesgue
d-dimensional measure.

Let L ⊂ ℝd be a discrete periodic set. We can suppose without loss of generality that it is periodic in the
coordinate directions with period 1; i.e., L + ei = L for all i ∈ {1, . . . , d}. The Voronoi cells of L are defined
as

Vi = {x ∈ ℝd : |x − i| < |x − j| for all j ∈ L, j ̸= i}.

By the periodicity of L, there exists a constant CL > 0 such that

1
CL
≤ |Vi| ≤ CL,

1
CL
≤ Hd−1(∂Vi) ≤ CL. (2.1)

Each spin function u : εL→ {0, 1} is identified with its piecewise-constant interpolation, which is the
L∞ function defined by

u(x) = u(εi) if x ∈ εVi; i.e., |x − εi| < |x − εj| for all j ∈ L, j ̸= i.

Note that, by (2.1), the L1 norm of such u is equivalent to εd#{i : ui ̸= 0}.
In this section,we prove coerciveness properties for energies Eε defined on spin functions u : εL→ {0, 1}

by

Eε(u) =
ε2d

ηd+1
∑

i,j∈L, i−j∈Qη/ε

|ui − uj|, (2.2)
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where we denote ui = u(εi), and η = ηε are such that

lim
ε→0

ηε = limε→0
ε
ηε
= 0. (2.3)

Lemma 1 (Compactness). Let uε be spin functions such that Eε(uε) is equibounded. Then, up to subsequences,
the corresponding piecewise-constant interpolations, still denoted by uε, converge in L1loc(ℝ

d) to u = χA, where
A is a set of finite perimeter.

Proof. The idea of the proof is to subdivide the set of indices L into disjoint cubes of side length η
4ε . The

factor 4 is chosen so that if we consider i, j indices belonging to two neighboring cubes with this side length,
respectively, then i − j ∈ Qη/ε so that they interact in energy Eε. In such away, we can associate to each uε and
each such smaller cube the value 0 or 1 of the “majority phase” if suchmajority phase is sufficiently close to 0
and 1, respectively, while we prove that the remaining cubes can be neglected. In this way, we will construct
coarse-grained functions forwhich the energy Eε canbe viewedas a standardnearest-neighbor ferromagnetic
energy, and the compactness then follows by interpreting spin functions as sets of finite perimeter.

For any k ∈ ℤd, we set
Qε
k =

η
4ε k + Qη/(4ε).

For u : εL→ {0, 1}, we define

D(ε, k)(u) =
|#{i ∈ Qε

k ∩ L : ui = 1} − #{i ∈ Qε
k ∩ L : ui = 0}|

#(Qε
k ∩ L)

.

Note that D(ε, k)(u)measures how close the function u is to its majority phase; more precisely, D(ε, k)(u) = 1
if u is constant on Qε

k ∩ L, while D(ε, k)(u) = 0 if the values of u are equally distributed between 0 and 1 in
Qε
k ∩ L.
With fixed δ ∈ (0, 1), we defineBε(u) = {k ∈ ℤd : D(ε, k)(u) < 1 − δ}. The Qε

k corresponding to k ∈ B
ε(u)

will be considered as the cubes where u is not close to a phase 1 or 0. We will first show that such cubes are
negligible. Indeed, note that, thanks to the first inequality in (2.1), the number of pairs of indices i, j within
Qε
k are of order (

η
ε )

2d, and hence, there exists Cδ > 0 such that if k ∈ Bε(u), then the number of “interactions
within the cube” Qε

k is at least Cδ(
η
ε )

2d, namely, #{(i, j) : i, j ∈ Qε
k ∩ L, ui ̸= uj} ≥ Cδ(

η
ε )

2d.
Hence, if uε are as in the hypotheses of the lemma, that is, Fε(uε) ≤ c, we have #Bε(uε) ≤ c

Cδ η
1−d. We can

estimate the measures
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋃

k∈Bε(uε)
εQε

k
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= #Bε(uε)η

d

4d
≤

c
4dCδ

η, (2.4)

Hd−1(∂ ⋃
k∈Bε(uε)

εQε
k) = #B

ε(uε)2dη
d−1

4d−1
≤

2cd
4d−1Cδ

.

As for the indices such that D(ε, k)(u) ≥ 1 − δ, we subdivide them into the sets

Aε
1(u) = {k ∈ ℤ

d : D(ε, k)(u) ≥ 1 − δ, #{i ∈ Qε
k : ui = 1} > #{i ∈ Q

ε
k : ui = 0}},

Aε
0(u) = {k ∈ ℤ

d : D(ε, k)(u) ≥ 1 − δ, #{i ∈ Qε
k : ui = 1} < #{i ∈ Q

ε
k : ui = 0}}

and define
Kε
j (u) = ⋃

k∈Aε
j (u)

εQε
k for j = 0, 1.

In order to estimate the measure of the boundary of Kε
1(u), we estimate the number of cubes Qε

k with
k ∈ Aε

1(u) which have a side in common with a cube Qε
k󸀠 with k󸀠 ∈ Aε

0(u), parameterized on the set

Aε(u) := {k ∈ Aε
1(u) : k + ej ∈ A

ε
0(u) for some j = 1, . . . , d}.

To that end, note that if D(ε, k)(u) ≥ 1 − δ and k ∈ Aε
1(u), then

#{i ∈ Qε
k ∩ L : ui = 1} ≥ (1 −

δ
2)#{i ∈ Q

ε
k ∩ L}
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so that, again recalling the first inequality in (2.1), each site i ∈ Qε
k such that ui = 1 interacts with C󸀠δ(

η
ε )

d

and conversely for each site i ∈ Qε
k󸀠 such that ui = 0. Hence, the interacting pairs (i, j) ∈ Q

ε
k × Q

ε
k󸀠 are at least

C󸀠δ(
η
ε )

2d.
Hence,

Eε(u) ≥
ε2d

ηd+1
#Aε(u)C󸀠󸀠δ (

η
ε )

2d
= C󸀠󸀠δ #A

ε(u)ηd−1

so that
#Aε(u) ≤ 1

C󸀠󸀠δ
Eε(u)η1−d .

For the functions uε, we then obtain

#Aε(uε) ≤ c
C󸀠󸀠δ

η1−d

so that

Hd−1(∂Kε
1(u

ε)) ≤ 2d(Hd−1(∂ ⋃
k∈Aε(uε)

εQε
k) +H

d−1(∂ ⋃
k∈Bε(uε)

εQε
k))

≤ 2d(#Aε(uε)2dη
d−1

4d−1
+

2cd
4d−1Cδ
) ≤ C󸀠󸀠󸀠δ

where C󸀠󸀠󸀠δ is a positive constant depending only on d, c and δ. By the compactness of sets of equibounded
perimeter, this shows that the characteristic functions of the sets Kε

1(uε) are compact in L1loc(ℝ
d). The sym-

metric argument shows also that Kε
0(uε) are compact in L1loc(ℝ

d). Moreover, if we denote a limit of the sets
Kε
j (u

ε) by Kj, then we have
|ℝd \ (K0 ∪ K1)| = 0 (2.5)

by (2.4). We highlight the possible dependence of the sets obtained by this procedure on δ by renaming them
Kδ
1 and K

δ
0.

Note that if δ < δ󸀠, then Kδ󸀠
1 ⊂ K

δ
1 and Kδ󸀠

0 ⊂ K
δ
0. Since in both cases (2.5) holds, we must have Kδ󸀠

1 = K
δ
1

and Kδ󸀠
0 = K

δ
0 so that these sets are independent of δ and we may go back to denoting them by K1 and K0.

We can now prove the convergence of uε. Fixed δ < 1 as above, we write

uε = uεχKε
1(uε) + u

εχKε
0(uε) + u

εχℝd\(Kε
1(uε)∪K

ε
0(uε)).

By (2.4), the last term converges to 0 in L1(ℝd). As for the other two terms, we localize the convergence by
restricting to a cube QR. Note that, for k ∈ Aε

1(uε), we have

‖uε − 1‖L1(εQε
k) ≤ C(1 − δ)η

d

so that
‖uεχKε

1(uε)∩QR − χKε
1(uε)∩QR‖L1(ℝd) ≤ C(1 − δ)Rd ,

where C denotes a positive constant not depending on δ. Analogously, for k ∈ Aε
0(uε), we have

‖uε‖L1(εQε
k) ≤ C(1 − δ)η

d ,

and hence,
‖uεχKε

0(uε)∩QR‖L1(ℝd) ≤ C(1 − δ)Rd .

We then have, by the local convergence of Kε
j (u

ε),

lim sup
ε→0
‖uεχKε

1(uε)∩QR − χK1∩QR‖L1(ℝd)

≤ lim sup
ε→0
(‖uεχKε

1(uε)∩QR − χKε
1(uε)∩QR‖L1(ℝd) + ‖χKε

1(uε)∩QR − χK1∩QR‖L1(ℝd)) ≤ C(1 − δ)Rd

and
lim sup

ε→0
‖uεχKε

0(uε)∩QR‖L1(ℝd) ≤ C(1 − δ)Rd

so that, by the arbitrariness of δ, uε converge locally to χK1 .
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Remark 2. The proof of Lemma 1 works exactly in the same way if we suppose that “almost all” pairs of
indices of L within Qη/ε interact; namely, if in place of energy (2.2), we consider

Eε(u) =
ε2d

ηd+1
∑

i,j∈L: i−j∈Qη/ε

aεij|ui − uj|,

with the requirement that there exists c > 0 such that

lim
ε→0

#{(i, j) : i, j ∈ x + Qη/ε : aεij ≥ c}
#{(i, j) : i, j ∈ x + Qη/ε}

= 1 (2.6)

uniformly in x ∈ ℝd. Condition (2.6) is trivially satisfied by energies (2.2) for c = 1.
Note that condition (2.6) cannot be relaxed to “having a proportion” of pairs of indices of L within Qη/ε

interacting, however large this proportion may be below 1; i.e., it is not sufficient that

lim
ε→0

#{(i, j) : i, j ∈ x + Qη/ε : aεij ≥ c}
#{(i, j) : i, j ∈ x + Qη/ε}

≥ λ (2.7)

for any λ < 1. To check this, we may consider the following example: choose L = ℝd, fix N ∈ ℕ, and define

aεij =
{
{
{

1 if i − j ∈ Qη/ε and both i, j ∉ Nℤd ,
0 otherwise.

Then (2.7) holds for λ = (1 − 1
Nd )

2, but if we define

uεi =
{
{
{

1 if i ∉ Nℤd ,
0 if i ∈ Nℤd ,

then uε converge weakly in L1loc(ℝ
d) to the constant 1 − 1

Nd . Since Eε(uε) = 0, this shows that Lemma 1 does
not hold.

In this example, the subset Nℤd of ℤd can be considered as a “perforation” of the domain and can
be treated as such, considering convergence only of the restriction of the functions to ℤd \ Nℤd (see [10,
Section 3]). However, the situation can be more complicated if we take

aεij =
{
{
{

1 if i − j ∈ Qη/ε and both i, j ∉ Nℤ,
cε otherwise,

that can be regarded as representing a “high-contrast medium”, for which the effect of the “perforation”
cannot be neglected and for some values of cε may give a “double porosity” effect [10].

3 Homogenization of Long-Range Lattice Systems
Let a : ℝd → [0, +∞) be such that a(ξ)|ξ| is Riemann integrable on bounded sets and such that

∫
ℝd

a(ξ)|ξ| dξ < +∞,

and
a(ξ) ≥ c0 if |ξ| ≤ r0 (3.1)

for some c0, r0 > 0.
Given ε, η = ηε satisfying (2.3), we define the coefficients

aεij = a
ε
i−j = a(

ε(i − j)
η )

for i, j ∈ ℤd, and the energies

Fε(u) =
ε2d

ηd+1
∑

i,j∈ℤd
aεi−j|ui − uj|. (3.2)
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Definition 3. A family {uε} of functions uε : εℤd → {0, 1} converges to a set A ⊂ ℝd if the piecewise-constant
interpolations of uε converge to the characteristic function χA in L1loc(ℝ

d) as ε → 0.

By hypothesis (3.1), we may apply the compactness lemma (Lemma 1), obtaining that the family {Fε} is
coercive with respect to this convergence.

Proposition 4. Let {uε} be such that supε Fε(uε) < +∞. Then, up to subsequences, there exists a set of finite
perimeter A such that uε converge to A in the sense of Definition 3.

This coerciveness property justifies the computation of the Γ-limit of Fε with respect to the convergence in
Definition 3. We use standard notation in the theory of sets of finite perimeter (see, e.g., [6, 22]).

Theorem 5 (Homogenization). The functionals defined in (3.2) Γ-converge with respect to the convergence in
Definition 3 to the functional F defined on sets of finite perimeter by

F(A) = ∫
∂∗A

φa(ν) dHd−1,

where ∂∗A denotes the reduced boundary of A, ν the outer normal to A and φa is given by

φa(ν) = ∫
ℝd

a(ξ)|⟨ξ, ν⟩| dξ.

Proof. In order to better illustrate the proof in the general d-dimensional case, we first deal with the
one-dimensional case, in which we may highlight the coarse-graining procedure without the technical
complexities of the higher-order geometry. In this case, we may rewrite the energies as

Fε(u) =
ε2

η2
∑
ξ∈ℤ
∑
i∈ℤ

aεξ |ui+ξ − ui|.

The relevant computation is that of the lower bound for the target A = [0, +∞). Let uε converge to A. For each
ξ ∈ ℤ \ {0} and i ∈ {1, . . . , |ξ|}, we consider the function uε restricted to εi + εξℤ. By the L1loc convergence,
we may suppose that each such restriction changes value; i.e., there exists some ki,ξ ∈ ℤ such that

uε(εi + εki,ξ ξ) = 0 and uε(εi + ε(ki,ξ + 1)ξ) = 1.

The set of ξ and i for which this does not hold is negligible for ε → 0; the precise proof is directly given for
the d-dimensional functionals below. For each ξ , we then have

|ξ|
∑
i=1
∑
k∈ℤ

aεξ |u
ε
i+(k+1)ξ − u

ε
i+kξ | ≥ |ξ|a(

ε
η
ξ)

so that
lim inf
ε→0

Fε(uε) ≥ lim inf
ε→0

ε2

η2
∑
ξ∈ℤ
|ξ|a( εη

ξ) = lim inf
ε→0
∑
ξ∈ℤ

ε
η
a( εη

ξ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ε
η
ξ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

the latter being a Riemann sum giving the integral ∫ℝ a(ξ)|ξ| dξ , which is F(A).
We now deal with the d-dimensional case. The proof of the lower bound follows the argument above,

but is more complex since we must take into account the direction of the interaction vectors ξ . We prove the
inequality by applying the blow-up technique (see [13, 18], and for instance [14, 15, 23] for the discrete
setting).

We assume that the sequence {Fε(uε)} is equibounded and that uε converge in L1loc(ℝ
d) to u = χA, where

A is a set of finite perimeter. Up to subsequences, we can assume that lim infε→0 Fε(uε) = limε→0 Fε(uε). We
define the localized energy on an open set U by

Fε(uε;U) =
ε2d

ηd+1
∑
i∈U
∑
j∈ℤd

aεi−j|u
ε
i − u

ε
j |,
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and define themeasures με(U) = Fε(uε;U); since the family {με} is equibounded, we can assume that με
∗
⇀ μ

up to subsequences. Now, let λ = Hd−1 ∂∗A; the lower bound inequality follows if we show that, forHd−1-
a.a. x ∈ ∂∗A, we have

dμ
dλ
(x) ≥ φa(ν),

where dμ
dλ denotes the Radon–Nikodym derivative of μ with respect to the Hausdorff d − 1-dimensional mea-

sure λ. By the Besicovitch derivation theorem, forHd−1-a.a. x ∈ ∂∗A, we have

dμ
dλ
(x) = lim

ϱ→0

μ(Qν
ϱ(x))

λ(Qν
ϱ(x))

,

where λ is the measureHd−1 ∂∗A, ν is the normal vector to ∂∗A at x and Qν
ϱ(x) is a cube centered in x with

side length ϱ and a face orthogonal to ν. We can fix x = 0 and denote Qν
ϱ(0) by Qν

ϱ. Hence, the lower bound
follows if we show that

lim
ϱ→0

lim inf
ε→0

1
ϱd−1

Fε(uε;Q
ϱ
ν ) ≥ φa(ν). (3.3)

Wemay therefore assume that ϱ = ϱε be such that ε
ϱ → 0 and the scaled functions uε( εϱ i) interpolated on the

lattice ε
ϱℤ

d converge to the characteristic function of the half space Hν = {x : ⟨x, ν⟩ < 0} on Q1
ν . We define

Aε := {x ∈ Q1
ν : uε(x) ̸= χHν (x)}

so that |Aε| → 0.
If we define

Iξε/ϱ = {i ∈ ℤd :
ε
ϱ
i, ε
ϱ
(i + ξ) ∈ Q1

ν},

then
Fε(uε;Q

ϱ
ν ) ≥

ε2d

ηd+1
∑
ξ∈ℤd

a( εη
ξ) ∑

i∈Iξε/ϱ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
uε( εϱ
(i + ξ)) − uε( εϱ

i)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

We begin by estimating

∑
i∈Iξε/ϱ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
uε( εϱ
(i + ξ)) − uε( εϱ

i)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= #{i ∈ Iξε/ϱ : uε(

ε
ϱ
(i + ξ)) ̸= uε( εϱ

i)}.

With fixed α ∈ (0, 1) for each ξ ∈ ℤd satisfying

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨
ξ
|ξ|

, ν⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥

α
√1 + α2

, (3.4)

we define
Pα,ξ = {y ∈ Πν ∩ Q1

ν : y ±
α

2|⟨ξ, ν⟩| ξ ∈ Q
1
ν},

which is not empty by (3.4), and

Rα,ξ = {x ∈ Q1
ν : x = y + tξ, y ∈ Pα,ξ , −

α
2|⟨ξ, ν⟩| ≤ t ≤

α
2|⟨ξ, ν⟩|}

(see Figure 1). Furthermore, we fix β with
β > α
√1 + α2

. (3.5)

Since we will restrict our arguments to sets Pα,ξ and Rα,ξ above with ξ satisfying

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨
ξ
|ξ|

, ν⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥ β, (3.6)

we omit the dependence of the sets Pα,ξ and Rα,ξ on ν since the estimates we will obtain will be independent
on ν.
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Figure 1: The set Rα,ξ

As in the one-dimensional case, we consider the functions restricted to the discrete lines ε
ϱ i +

ε
ϱ ξℤ. The

parameter α is introduced so as to estimate the number of sites of such discrete lines inside Q1
ν . We then set

Bα,ξ
ε/ϱ = {i ∈ ℤd :

ε
ϱ
i ∈ Rα,ξ and uε is not constant in ( εϱ i +

ε
ϱ
ξℤ) ∩ Rα,ξ}.

Note that if i ∈ Bα,ξ
ε/ϱ, then i + kξ ∈ Bα,ξ

ε/ϱ for all k with ε
ϱ (i + kξ) ∈ R

α,ξ so that if we define the equivalence
relation i ∼ i󸀠 if i − i󸀠 ∈ ξℤ, we may set

B̃α,ξ
ε/ϱ = B

α,ξ
ε/ϱ/∼

getting
#{i ∈ Iξε/ϱ : uε(

ε
ϱ
(i + ξ)) ̸= uε( εϱ

i)} ≥ #B̃α,ξ
ε/ϱ .

We can estimate the number of “discrete lines” intersecting Rα,ξ as

#({i ∈ ℤd : εϱ i ∈ R
α,ξ}/∼) ≥

|Rα,ξ |

( εϱ )
d

1
α

ε
ϱ |⟨ξ,ν⟩|
− Cα|ξ|(

ε
ϱ)

2−d

≥ Hd−1(Pα,ξ )|⟨ξ, ν⟩|( εϱ)
1−d
− Cα|ξ|(

ε
ϱ)

2−d
,

where the last term is an error term accounting for the cubes intersecting the boundary of Rα,ξ .
Note that to every element of the complement of B̃α,ξ

ε/ϱ there correspond at least ⌊ α
ε
ϱ |⟨ξ,ν⟩|
⌋ points in

ε
ϱℤ

d ∩ Aε so that, for ε sufficiently small, we get

#({i ∈ ℤd : εϱ i ∈ R
α,ξ and uε constant in ( εϱ i +

ε
ϱ
ξℤ) ∩ Rα,ξ}/∼)

≤
|Aε|

( εϱ )
d

ε
ϱ |⟨ξ, ν⟩|

α
+ C󸀠α|ξ|(

ε
ϱ)

2−d
=
1
α
|Aε|(

ε
ϱ)

1−d
|⟨ξ, ν⟩| + C󸀠α|ξ|(

ε
ϱ)

2−d
,

with C󸀠α again a positive constant accounting for boundary cubes, and hence,

#B̃α,ξ
ε/ϱ ≥ Hd−1(Pα,ξ )|⟨ξ, ν⟩|( εϱ)

1−d
−
1
α
|Aε|(

ε
ϱ)

1−d
|⟨ξ, ν⟩| − (Cα + C󸀠α)|ξ|(

ε
ϱ)

2−d
. (3.7)

By (3.6), we can estimate

Hd−1(Pα,ξ ) ≥ (1 − α
2|⟨ξ, ν⟩| |ξ − ⟨ξ, ν⟩ν|)

d−1
≥ (1 − α2

√ 1
β2
− 1)

d−1
(3.8)

(see also Figure 1), and hence, upon fixing R > 0 and introducing the set

Ξνε(R, β) = {ξ ∈ ℤd : |ξ| ≤
η
ε
R,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨
ξ
|ξ|

, ν⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥ β},
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εξ

ηRC ηR

Σ̃
k

u
i
=0

u
i+ξ=1

A

Figure 2: Upper-bound construction

by (3.7) and (3.8), we have

1
ϱd−1

Fε(uε;Q
ϱ
ν ) ≥

1
ϱd−1

ε2d

ηd+1
∑

ξ∈Ξνε(R,β)
a( εη

ξ)Hd−1(Pα,ξ )|⟨ξ, ν⟩|( εϱ)
1−d

−
1

ϱd−1
ε2d

ηd+1
∑

ξ∈Ξνε(R,β)
a( εη

ξ)1α |Aε|(
ε
ϱ)

1−d
|⟨ξ, ν⟩|

− (Cα + C󸀠α)(
ε
ϱ)

2−d 1
ϱd−1

ε2d

ηd+1
∑

ξ∈Ξνε(R,β)
a( εη

ξ)|ξ|

≥ (1 − α2
√ 1
β2
− 1)

d−1
∑

ξ∈Ξνε(R,β)
(
ε
η)

d
a( εη

ξ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨
ε
η
ξ, ν⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−
1
α
|Aε| ∑

ξ∈Ξνε(R,β)
(
ε
η)

d
a( εη

ξ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨
ε
η
ξ, ν⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− (Cα + C󸀠α)
ε
ϱ ∑ξ∈Ξνε(R,β)

(
ε
η)

d
a( εη

ξ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ε
η
ξ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

Since |Aε| → 0 and

lim
ε→0
∑

ξ∈Ξνε(R,β)
(
ε
η)

d
a( εη

ξ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨
ε
η
ξ, ν⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= ∫
{|ξ|≤R,|⟨ξ/|ξ|,ν⟩|≥β}

a(ξ)|⟨ξ, ν⟩| dξ,

lim
ε→0
∑

ξ∈Ξνε(R,β)
(
ε
η)

d
a( εη

ξ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ε
η
ξ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= ∫
{|ξ|≤R,|⟨ξ/|ξ|,ν⟩|≥β}

a(ξ)|ξ| dξ,

we get

lim inf
ε→0

1
ϱd−1

Fε(uε;Q
ϱ
ν ) ≥ (1 −

α
2
√ 1
β2
− 1)

d−1
∫

{|ξ|≤R,|⟨ξ/|ξ|,ν⟩|≥β}

a(ξ)|⟨ξ, ν⟩| dξ.

Note that, by (3.5), we may let first α → 0 and then β → 0. We eventually obtain

lim inf
ε→0

1
ϱd−1

Fε(uε;Q
ϱ
ν ) ≥ ∫
{|ξ|≤R}

a(ξ)|⟨ξ, ν⟩| dξ,

which, by the arbitrariness of R, gives (3.3).
The upper bound is obtained by a density argument (see [7, Section 1.7]). Hence, it suffices to treat the

case of A polyhedral. In this case, it suffices to take (the interpolations) uεi = χA(εi) for i ∈ ℤd. Indeed, we
write ∂A as a union of N d − 1-dimensional polytopes Σk, and we denote by νk the outer normal to Σk and by
K the d − 2-dimensional skeleton of A.
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We note that there exists a constant C depending only on A such that, for any η, R > 0, after removing
the closed neighborhood K + BCηR from ∂A, we obtain a disjoint collection Σ̃1, . . . , Σ̃N with Σ̃k ⊂ Σk such that

(Σ̃k + BηR) ∩ (Σ̃k󸀠 + BηR) = 0 for any k ̸= k󸀠

(see Figure 2). Hence, for any ξ ∈ ℤd with |εξ| ≤ ηR, k ∈ {1, . . . , N}, and j ∈ ℤd such that the line εj + εξℝ
intersects Σ̃k, the values uεi change only once on the points of the discrete lines εj + εξℤ which lie in an ηR
neighborhood of Σ̃k. We note that, for lines intersecting Σk at a point of distance not larger than CηR from
K, such changes of value are at most N; then, repeating the counting argument used in the lower bound, we
obtain

lim sup
ε→0

ε2d

ηd+1
∑
ξ∈ℤd
|εξ|≤ηR

a( εη
ξ) ∑

i∈ℤd
|uεi+ξ − u

ε
i | ≤ lim sup

ε→0
(

N
∑
k=1

Hd−1(Σk)
εd

ηd
∑
ξ∈ℤd
|εξ|≤ηR

a( εη
ξ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨
ε
η
ξ, νk⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ O(ηR))

≤ lim sup
ε→0

N
∑
k=1

Hd−1(Σk) ∫
{|ξ|≤R}

a(ξ)|⟨ξ, νk⟩| dξ ≤ ∫
∂A

φa(ν) dHd−1.

Since also for |εξ| ≥ ηR the changes of value of uεi are at most N, we then get

lim sup
ε→0

ε2d

ηd+1
∑
ξ∈ℤd
|εξ|>ηR

a( εη
ξ) ∑

i∈ℤd
|uεi+ξ − u

ε
i | ≤ NH

d−1(∂A) ∫
{|ξ|>R}

a(ξ)|ξ| dξ.

Since this term vanishes as R → +∞, the upper bound follows.

Example 6. If a is radially symmetric, then we have

F(A) = σHd−1(∂∗A),

where σ is given by
σ = ∫
ℝd

a(ξ)|ξ1| dξ.

In particular, we may take a = χB1 the characteristic function of the unit ball inℝd. In this case, the limit of

Fε(u) =
ε2d

ηd+1
∑

i,j∈ℤd |i−j|<η/ε
|ui − uj|

is given by
σ = ∫

B1

|ξ1| dξ.

Remark 7 (Local Version). If Ω ⊂ ℝd is an open set with Lipschitz boundary, we may define

Fε(u) =
ε2d

ηd+1
∑

i,j∈ℤd∩ 1ε Ω
aεi−j|ui − uj|.

Then the Γ-limit is
F(A) = ∫

Ω∩∂∗A

φa(ν) dHd−1,

with minor modifications in the proof.
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