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Abstract: We consider energies on a periodic set £ of the form ¥, ;. ; af;|ui — u;l, defined on spin functions
u; € {0, 1}, and we suppose that the typical range of the interactions is R, with R, — +o0, i.e., if |i — j| < R,
then a‘l?l. > ¢ > 0. In a discrete-to-continuum analysis, we prove that the overall behavior as € — 0 of such
functionals is that of an interfacial energy. The proof is performed using a coarse-graining procedure which
associates to scaled functions defined on €£ with equibounded energy a family of sets with equibounded
perimeter. This agrees with the case of equibounded R, and can be seen as an extension of coerciveness
result for short-range interactions, but is different from that of other long-range interaction energies, whose
limit exits the class of surface energies. A computation of the limit energy is performed in the case £ = z4.
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1 Introduction

In this paper, we give a contribution to the general problem of the asymptotic analysis of systems of lattice
interactions of the form
Y aflui -y,

i,jeL
where £ is a periodic lattice in R?, & > 0 is a parameter tending to 0 and a‘fj are non-negative coefficients.
These functionals depend on (scalar) “spin functions” with u; € {0, 1}, somehow related to ferromagnetic
energies in the terminology of statistical mechanics (where usually u; € {-1, 1}).

We investigate coerciveness properties related to such energies in a discrete-to-continuum process, where
the values u{ are identified as the values u®(ei) of a function defined on ££. In this way, a continuum limit
of u® can be defined as a limit of their piecewise-constant interpolations, e.g., defined as u®(x) = uf if the
point of minimum distance of £ from x is €i. Coerciveness is established by exhibiting scales s, such that if
uf are such that

Z a‘fjlu‘iE - ufl < Sg,
ijel
then the interpolations u® are precompact in some topology and their limit points are in general non-trivial.
This can be expressed by proving that the domain of the I'-limit of the scaled energies

1 £ £ £
= 2 ajlui -]
€ jjel

in that topology is not trivial.
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The simplest case that has been previously treated [1, 16] is nearest-neighbor interactions; i.e., when afj
are strictly positive only when i, j are nearest neighbors (n.n. for short) in the Delaunay triangulation of £
(e.g., li —jl = 1if £ = Z%). In this case, choosing s, = £!~9 gives that the scaled energies

Z sd‘lafilu‘ig - uf]|
i,jeL i,jn.n.
can be directly seen as a (possibly anisotropic) perimeter of the sets {x : ué(x) = 1} defined through the
piecewise-constant interpolation of u¢ from the scaled lattice ¢£. Then the compactness properties of sets
of equibounded perimeter ensure the coerciveness in Llloc(IRd) and the limits are characteristic functions.

Moreover, the I'-limit of the energies can be described by an energy defined on sets of finite perimeter A,
which, in the simplest homogeneous case, takes the form

j Pv) i1, (1.1)
0A

The same scaling works for finite-range interactions, i.e., when af]. is 0if |i — j| > R for some R, even though
the energies in that case must be interpreted as a non-local perimeter [14]. The finiteness of the range of the
interactions can be weakened to a decay condition that can be quantified as

sup{ Z afjlj—il 1iel, £>0} < 400, (1.2)
jeL\fi}
even though the limit energies may have a non-local part if the “tails” of these series are not uniformly negli-
gible [2]. We note that such analysis is valid beyond pair potentials and generalizes to classes of many-point
interactions (see [12]).
If the decay assumptions (1.2) do not hold, then the “natural” scaling for the energies may be different
from the “surface scaling” €471, and we might exit the class of interfacial energies. An extreme case is that of
“dense graphs”, which is better stated in a bounded domain, i.e., when considering energies

z aglui - ujl,
ije£Lniq
with Q a cube in RY, and suppose that afj > ¢ > 0 for (a positive percentage of) all interactions. In that
case, the scaling is s, = 724 and the limit behavior is described by a more abstract limit functional called
a “graphon” energy [3, 5, 20, 21], which can be viewed as a relaxation of a double integral on (0, 1) of the
form
W(x, y)lv(x) - v(y)| dx dy
(0,1)x(0,1)

defined on BV((0, 1); {0, 1}) after a complex and rather abstract relabeling procedure and identification of
functions defined on Q with functions defined on (0, 1) (see [9]). For sparse graphs (i.e., graphs which are
not dense according to the definition above) and interactions not satisfying decay conditions (1.2), the correct
scaling, the relative convergence and the form of the I'-limit is a complex open problem. In [8], an example is
given of one-dimensional energies with range R, = 1/+/¢ such that a non-trivial I'-limit exists for s, = 1/+/¢
with respect to the L®-weak* convergence, but it is defined on all functions of bounded variation with values
in [0, 1] (and not only those with values in {0, 1}). In that example, a crucial issue is the topology of the graph
of the connections where afj #0.

In this paper, we consider an intermediate case, i.e., when the decay condition described above does not
hold, and a‘l?j > ¢ > 0 when [i —j| < R, with R, > 1 but the topology of the interactions within that range is
that of a “dense” graph. We further make the assumption eR. « 1 so that the discrete-to-continuum pro-
cess makes sense. We note that this latter condition is not restrictive upon a redefinition of € in terms of R,
e.g. taking R;l/ % in the place of . We keep the dependence of our system on R, and ¢ separate since these
parameters may be defined independently in applications. Under these conditions, we have

d+1
Se = 1;2__1,



DE GRUYTER A. Braides and M. Solci, Compactness by Coarse-Graining in Long-Range Lattice Systems =— 785

and with this scaling, functions of equibounded energy interpolated on the lattice £ converge to a charac-
teristic function of a set of finite perimeter. The main argument for obtaining this result is by coarse-graining.
Namely, we average the values of u¢ for interaction on cubes with side length of order R, so that we can think
of those averages as labeled on R, Z4. We prove first that those labels for which averages are not essentially
close to 0 and 1 are negligible; hence, we may regard such functions as spin functions defined on a cubic
lattice. Then we show that the arguments used for nearest-neighbor interactions of [1] can be adapted for
the interpolated functions of the averages. Once a limit set of finite perimeter is obtained, we can prove the
convergence of the interpolations of the original functions to the same set.
As an application of this scaling argument, we show that, for

£ _ i_j
ol

where a is a positive function with f a(é)|€] dé finite, the I'-limit of the energies

gd-1
Fe(u) = —1 Z a?j|ui - ujl,
£ ijezd

defined on the cubic lattice of R?, is given by an energy as in (1.1) with

o) = j a®\(&, v)| d&. (1.3)

R4

In particular, if a is radially symmetric, then (1.1) is simply a multiple of the perimeter of A. It is interesting
to note that, in a sense, the case R, — +o0o can be seen as a limit of the case of R, finite, for which the T-
limit is of form (1.1) with the integrand ¢(v) given by a discretization of the integral in (1.3) (as seen in
[4, 11, 17] in a slightly different context). This convergence can be re-obtained using the results in [19], where
transportation maps are used to transform discrete energies in convolution functionals.

2 A Compactness Result

We denote by Qg = [-£, £) the (semi-open) coordinate cube centered in 0 and with side length R in RY, by
Bg the open ball centered in 0 and with side length R in R4, and by e1, ..., eq the vectors of the canon-

ical basis of R?. Moreover, 74! denotes the d — 1-dimensional Hausdorff measure and |- | the Lebesgue
d-dimensional measure.

Let £ c RY be a discrete periodic set. We can suppose without loss of generality that it is periodic in the
coordinate directions with period 1;i.e., £L + e; = £ foralli € {1,..., d}. The Voronoi cells of £ are defined
as

Vi={xeRe:|x—1i|<|x—jlforallje L, j#i}.

By the periodicity of £, there exists a constant C > 0 such that

1 1
— <|Vil<Cs, — <HYLOV) < Cy. (2.1)
C,c CL

Each spin function u: €£ — {0, 1} is identified with its piecewise-constant interpolation, which is the
L function defined by

u(x) = u(ei) ifxeeV;; ie., |x-cil<|x—¢gj| forallje L, j+i.

Note that, by (2.1), the L! norm of such u is equivalent to e?#{i : u; # 0}.
In this section, we prove coerciveness properties for energies E. defined on spin functionsu: €£ — {0, 1}
by
g2d
Ew=—= Y  |lui-ul, (2.2)

d+1 -
i,je L, i-jeQyye
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where we denote u; = u(ei), and n = n, are such that

€
li = lim — = 0. 2.

sl—r>l(1) e sl—I}(l) Ne ( 3)
Lemma 1 (Compactness). Let u® be spin functions such that E.(uf) is equibounded. Then, up to subsequences,
the corresponding piecewise-constant interpolations, still denoted by uf, converge in Llloc(]Rd) to u = xa, where
A is a set of finite perimeter.

Proof. The idea of the proof is to subdivide the set of indices £ into disjoint cubes of side length % The
factor 4 is chosen so that if we consider i, j indices belonging to two neighboring cubes with this side length,
respectively, theni - j € Q;/¢ so that they interact in energy E.. In such a way, we can associate to each u® and
each such smaller cube the value 0 or 1 of the “majority phase” if such majority phase is sufficiently close to 0
and 1, respectively, while we prove that the remaining cubes can be neglected. In this way, we will construct
coarse-grained functions for which the energy E, can be viewed as a standard nearest-neighbor ferromagnetic
energy, and the compactness then follows by interpreting spin functions as sets of finite perimeter.
For any k € Z4, we set

n
Q= 5k + Quicae-
Foru: e£ — {0, 1}, we define

lieQinL:ui=1}-#ieQinL:u =0}
#Qgn L) '

D(e, k)(u) =

Note that D(e, k)(u) measures how close the function u is to its majority phase; more precisely, D(¢, k)(u) = 1
if u is constant on Qi N £, while D(e, k)(u) = 0 if the values of u are equally distributed between 0 and 1 in
QynL.

With fixed 6 € (0, 1), we define B¢(u) = {k € Z4 : D(e, k)(u) < 1 — 6}. The Qi corresponding to k € Bf(u)
will be considered as the cubes where u is not close to a phase 1 or 0. We will first show that such cubes are
negligible. Indeed, note that, thanks to the first inequality in (2.1), the number of pairs of indices i, j within
Qi are of order (2)2‘1, and hence, there exists Cs > 0 such that if k € B¢(u), then the number of “interactions
within the cube” Qf is at least Cg(g)Zd, namely, #{(i,) : i,j € Qy N L, u; # uj} > Cg(g)z‘i.

Hence, if u® are as in the hypotheses of the lemma, that is, F¢(u¥) < ¢, we have #B%(uf) < C%nl‘d. We can
estimate the measures

| U eqf|- s L (2.4)
keBE(uf) 44 = 44Cs

- 2dn®'  2cd

d-1 —
% (a U eQi) = #B W) S < e

keBE(ut)

As for the indices such that D(e, k)(u) > 1 — 6, we subdivide them into the sets
ASw) ={k e 2% : D(e, k)(u) > 1 - 8, #{i € Q5 : uj = 1} > #{i € Qf : u; = O}},
Abu) = {k e Z%: D(e, k)(u) =1 -8, #{i € Q:ui=1} <#{i e Qf:u;=0}}

and define

Kw= []J €Q forj=0,1.
keﬂf(u)

In order to estimate the measure of the boundary of Kj(u), we estimate the number of cubes Q; with
k € A5 (u) which have a side in common with a cube Qj, with k" € Ag(u), parameterized on the set

Af(u) :={k e A{(w) : k+ej € Af(u) forsomej=1,...,d}.
To that end, note that if D(e, k)(u) > 1 - 6 and k € Af(u), then

#{ieaim:ui=1}z(1—g)#{ieoina}
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so that, again recalling the first inequality in (2.1), each site i € Q,i such that u; = 1 interacts with Cg(g)d
and conversely for each site i € Q}, such that u; = 0. Hence, the interacting pairs (i, j) € Q} x Qj, are at least

2d
Co(1)™
Hence,
E.(u) > ﬂ#Af(u)c” 1 2d—C”#A€(u) d-1
W= s\g) " n
so that

1
#A5(u) < FEg(u)nl‘d.
[

For the functions u¢, we then obtain
c 4
#AE(uS) < F 1-d

8
so that

TR ) < 2d(34 (0 [ eq)+3t (o | eq)))
ke A#(u#) keBE(uf)
2dn®tt  2cd ) e

< zd(#As(ué‘)W + 4d——1(;6 5

where C%’ "is a positive constant depending only on d, ¢ and 8. By the compactness of sets of equibounded
perimeter, this shows that the characteristic functions of the sets K{(u®) are compact in Ll (R?). The sym-

loc
metric argument shows also that K{(u®) are compact in Llloc(]Rd). Moreover, if we denote a limit of the sets
K5 (u®) by Kj, then we have

IRY\ (Ko UKy)| =0 (2.5)

by (2.4). We highlight the possible dependence of the sets obtained by this procedure on 6 by renaming them
) 8
K? and K.
Note that if § < §', then Kf' c K¢ and Kg' c K§. Since in both cases (2.5) holds, we must have K‘f’ =KS
and Kg' = Kg so that these sets are independent of § and we may go back to denoting them by K; and Kj.
We can now prove the convergence of u¢. Fixed § < 1 as above, we write

U = U XK ey + UK KRS ey + UEXle\(Ki(us)qu(us))-

By (2.4), the last term converges to 0 in L(IR9). As for the other two terms, we localize the convergence by
restricting to a cube Qg. Note that, for k € Aj(u®), we have

luf - 1l eqr) < €1 - 8)n?

so that
X ke ueynar — Xk @enellniray < C(1 - 8)RY,
where C denotes a positive constant not depending on §. Analogously, for k € A§(u¢), we have
lufllzreqs) < C(1 - 8)n?,
and hence,
lu®x ke ueynae Lt (mey < C(1 - 8)R.
We then have, by the local convergence of Kf (u®),
lim Sélpll UEXKE ue)nQr — XKunQr 21 (re)
E—

< lim sup(llu®x ke weyn@r = Xke@en@e Izt ey + XK e)nar = XKinQe Izt (me)) < C(1 - 8)R?
£—0

and
lim sup|uXxs unge i) < C(1 - &R?
E—

so that, by the arbitrariness of §, u® converge locally to yx, . O
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Remark 2. The proof of Lemma 1 works exactly in the same way if we suppose that “almost all” pairs of
indices of £ within Q. interact; namely, if in place of energy (2.2), we consider
£2d
Eew)= g5 Y aflui-wl,
i,jeL: i-j€Qyye

with the requirement that there exists ¢ > 0 such that
#{(1,]) 1 1,j e x+ Qe : a; = ¢}

lim B -1 2.6
£—0 #{(1,7) 1 1,j € x + Qype} (2.6)

uniformly in x € R?. Condition (2.6) is trivially satisfied by energies (2.2) for ¢ = 1.
Note that condition (2.6) cannot be relaxed to “having a proportion” of pairs of indices of £ within Q¢
interacting, however large this proportion may be below 1; i.e., it is not sufficient that
#H,j) i, jex+Que a2 c}

lim — I > 2.7
£—0 #(i,)) 1 1,j € x+ Qpye} 2.7)

for any A < 1. To check this, we may consider the following example: choose £ = RY, fix N € N, and define

. {1 if i —j € Qye and both i, j ¢ N7,
ai].—

0 otherwise.
Then (2.7) holds for A = (1 - %)2, but if we define
1 ifig¢ Nz4,
0 ifieNz4,
then u® converge weakly in Llloc(]Rd) to the constant 1 — % Since E.(u.) = 0, this shows that Lemma 1 does
not hold.
In this example, the subset NZ4 of Z4 can be considered as a “perforation” of the domain and can

be treated as such, considering convergence only of the restriction of the functions to 74\ N74 (see [10,
Section 3]). However, the situation can be more complicated if we take

1 ifi-je Qyeandbothi,j¢ NZ,
ce otherwise,

that can be regarded as representing a “high-contrast medium”, for which the effect of the “perforation”
cannot be neglected and for some values of ¢, may give a “double porosity” effect [10].

3 Homogenization of Long-Range Lattice Systems

Let a: R? — [0, +00) be such that a(¢)|¢] is Riemann integrable on bounded sets and such that

I ()8 d& < +oo,
IRd
and
a(é)>co iflél<rg (3.1)

for some cq, rg > 0.
Given €, 1 = n; satisfying (2.3), we define the coefficients
at. =af . = a(ﬂ)
n

fori,j € 4, and the energies
2d
€
Few=—= Y a jlui-yjl. 3.2)
i,jezd
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Definition 3. A family {u?} of functions u®: €4 — {0, 1} converges to a set A c R if the piecewise-constant

interpolations of u® converge to the characteristic function y, in Llloc(le Yase — O.

By hypothesis (3.1), we may apply the compactness lemma (Lemma 1), obtaining that the family {F,} is
coercive with respect to this convergence.

Proposition 4. Let {uf} be such that sup, F¢(u®) < +oo. Then, up to subsequences, there exists a set of finite
perimeter A such that u® converge to A in the sense of Definition 3.

This coerciveness property justifies the computation of the I'-limit of F, with respect to the convergence in
Definition 3. We use standard notation in the theory of sets of finite perimeter (see, e.g., [6, 22]).

Theorem 5 (Homogenization). The functionals defined in (3.2) T'-converge with respect to the convergence in
Definition 3 to the functional F defined on sets of finite perimeter by

F(A) = j Pa(v) d3a1,
0*A

where 0* A denotes the reduced boundary of A, v the outer normal to A and ¢ is given by

Pa(v) = j a(d|(& v)| dé.

R4

Proof. In order to better illustrate the proof in the general d-dimensional case, we first deal with the
one-dimensional case, in which we may highlight the coarse-graining procedure without the technical
complexities of the higher-order geometry. In this case, we may rewrite the energies as

2

3

Few == ) Y afluivg - uil.
1 {eZieZ

The relevant computation is that of the lower bound for the target A = [0, +00). Let u® converge to A. For each
&eZ\{0}andic€{1,...,|¢&}, we consider the function u? restricted to i + €£Z. By the Llloc convergence,

we may suppose that each such restriction changes value; i.e., there exists some k; ¢ € Z such that
ut(ei+ek; ) =0 and uf(ei+e(kis+1)8) = 1.

The set of ¢ and i for which this does not hold is negligible for ¢ — 0; the precise proof is directly given for
the d-dimensional functionals below. For each &, we then have

[
)
22 AU, eryg ~ Uikg] 2 Ifla(55>

i=1keZ
so that "
F> € e (€ .\|¢€
liminf F,(u®) > liminf *- |£|a<—$) — liminf —a<—5)|—{|,
£—0 ¢ -0 1?2 &ZZ n £—0 g"z n \n’/ln
the latter being a Riemann sum giving the integral I]R a(é)|¢] dé¢, which is F(A).

We now deal with the d-dimensional case. The proof of the lower bound follows the argument above,
but is more complex since we must take into account the direction of the interaction vectors &. We prove the
inequality by applying the blow-up technique (see [13, 18], and for instance [14, 15, 23] for the discrete
setting).

We assume that the sequence {F¢(u¢)} is equibounded and that u® converge in Llloc(]Rd) to u = xa, where
A is a set of finite perimeter. Up to subsequences, we can assume that lim inf._,g F¢(u®) = limg_,o Fe(u®). We
define the localized energy on an open set U by

2d
&
£, _ £ £ _ €
Feu5U) = ——= > Y af jluf - ufl,
™" ieUjeza
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and define the measures . (U) = F.(uf; U); since the family {u.} is equibounded, we can assume that y, A u
up to subsequences. Now, let A = }4-1 L 9* A; the lower bound inequality follows if we show that, for #4-1-
a.a. x € 0*A, we have

d
d—’j(x) > pa(v),

where ‘;—’/{ denotes the Radon-Nikodym derivative of u with respect to the Hausdorff d — 1-dimensional mea-
sure A. By the Besicovitch derivation theorem, for H41.a.a. x € 9*A, we have

) i QY ()
00 A(Qp()°

where A is the measure H4"1 L 0* A, v is the normal vector to 0* A at x and Qg(x) is a cube centered in x with
side length g and a face orthogonal to v. We can fix x = 0 and denote Q,(0) by Qy. Hence, the lower bound
follows if we show that

lim lim mf Fg(u Q%) = @a(v). (3.3)

0—0 &—0

We may therefore assume that p = p. be such that g — 0 and the scaled functions u®( g i) interpolated on the
lattice gld converge to the characteristic function of the half space H” = {x : (x, v) < 0} on Q},. We define

A = {x € QL : u(x) # xm (x)}

so that |[A¢| — O.

If we define e
I, = {z ezd: E BEHE Q},},
then
. £,
Fo(uf; il ( (1+£))—u£(—l>l.
{EZ"I ielt;, e
We begin by estimating

(2 0) () ol 0) w20

With fixed a € (0, 1) foreach & € 74 satisfying

ielt),

ol =
2 v > , (3.4)
‘< 8l 1+a?
we define a
P""f:{ m,NQl:iy+——— 1},
VN € %
which is not empty by (3.4), and
R“’fz{xe01:x= +t&,y e PYs, — a }
viX=yHthy e =S A
(see Figure 1). Furthermore, we fix f with
a
> —. (3.5)
P V1+a?

Since we will restrict our arguments to sets P*¢ and R%¢ above with ¢ satisfying

(oo

we omit the dependence of the sets P%5 and R%¢ on v since the estimates we will obtain will be independent
onv.
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Sy}

fe—a—rn

Figure 1: The set R%%

As in the one-dimensional case, we consider the functions restricted to the discrete lines gi + g.{ Z. The
parameter a is introduced so as to estimate the number of sites of such discrete lines inside Q%. We then set

g/g = {1 ez®: Ql € R*¢ and u® is not constant in (21 +— é,’Z) R”"'{}.

Note that if i € BE/Q, then i+ k& ¢ Bg/g for all k with £ (l + k&) € R%¢ so that if we define the equivalence
relation i ~ i’ ifi — i’ € £Z, we may set
B - B2 -

#{i elf),: uf(g(i + g)) 4 uf(gi)} > #BYS.

We can estimate the number of “discrete lines” intersecting R%% as

a,¢ 2-d
#({IEZd IERQ{}/ >2 IR d|+—ca|§|(£>
e (§)° e e

getting

s ni(2) - caa(S)

where the last term is an error term accounting for the cubes intersecting the boundary of R%$.
Note that to every element of the complement of BS jo there correspond at least | ¢ T3 v)IJ points in
£ Zd N A¢ so that, for € sufficiently small, we get

#({zeld QleR“"(andu constantm(gw fZ)ﬂR“f}/)
< ('A)L@ . cma(%)“ - a|Ag|(§)1d|<fs, o cag(2)
0

with CJ, again a positive constant accounting for boundary cubes, and hence,

1-d 1-d 2-d
#BS;Ezvfdfl(P“’f)Ks,vn(E) —§|As|(§) |<€,v>|—(ca+c;)|£|(g) . 3.7)
By (3.6), we can estimate
d-1 1 d-1
3P > (1 - 2|<€ sieé - @ YIE <1_EJ/? 1) (3.8)

(see also Figure 1), and hence, upon fixing R > 0 and introducing the set

SR = {5 e 218 < TR 0| 2 ),
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Figure 2: Upper-bound construction

by (3.7) and (3.8), we have

Ff(“ Q) > 0%~ 11;251 E€EV(R,B) <%£)}Cd 1(Pa$)|<€ V>|( )Hi
(Ca+ c;)(g)“é%% &Egz(m a(%&)lﬂ
d- d
- (1- J 3 () a(E(Een)
twa 5 (5 a0l Ee)
d
RO
Since |A;] — O and
- EN A ENEe ) - VY| de,
ll_r’]r(l)‘feszz(R,/D('7) a<”£)|<n§ V>| {|£|<R,I<$L1,v>|>ﬁ} e
i 3 (S(Sd-  [ aona
§e€EL(R,B) {1§1<R,1(5/151,v) =B}

we get

T d-1
11m1nf — Fe(u®; QQ)><1——\/I%—1) J a(®)|(&,v)| d¢E.
{I¢1<R,[(&/1¢],v) =B}

Note that, by (3.5), we may let first & — 0 and then 8 — 0. We eventually obtain

-0

2Q9) > j a@|(& v)| dé,
{I¢I<R}

which, by the arbitrariness of R, gives (3.3).

The upper bound is obtained by a density argument (see [7, Section 1.7]). Hence, it suffices to treat the
case of A polyhedral. In this case, it suffices to take (the interpolations) uf =yxa(ei) forie 74, Indeed, we
write 0A as a union of N d — 1-dimensional polytopes Zi, and we denote by v, the outer normal to X; and by
K the d — 2-dimensional skeleton of A.
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We note that there exists a constant C depending only on A such that, for any 1, R > 0, after removing
the closed neighborhood K + By from 04, we obtain a disjoint collection £1, . . ., £y with £j ¢ Zi such that

(Zk +Byr) N (E + Byr) =0 forany k # k'

(see Figure 2). Hence, for any ¢ € 74 with leél<nR,kef{l,...,N},and j € 74 such that the line g+ eéR
intersects I, the values uf change only once on the points of the discrete lines j + ££Z which lie in an nR
neighborhood of ¥;. We note that, for lines intersecting j at a point of distance not larger than C nR from
K, such changes of value are at most N; then, repeating the counting argument used in the lower bound, we
obtain

. g2 € . e - € €
hmsupﬁ z a(—{) Z |ui+5 - uj| < limsup z H (Zk)—d Z a<—§)|<—£, vk>| + 0O(nR)
e-0 1] Lezd iezd €20 \j=1 n Lezd n n
leél<nR N leél<nR
<limsup ) H (%) j a()I(& viyl dE < j Pa(v) dHI1,
0 ket 1£1<R} oA

Since also for |€€] > nR the changes of value of uf are at most N, we then get

. g2 € _
timsup S Y a(S6) ¥l -l < N3el0a) [ a@lglas,
20 M e iez 16>R)
leél>nR
Since this term vanishes as R — +oo0, the upper bound follows. O

Example 6. If a is radially symmetric, then we have
F(A) = oHT (0% A),

where 0 is given by
o= [ a@iads.
R4
In particular, we may take a = y3, the characteristic function of the unit ball in R?. In this case, the limit of

gzd
Fe(w) = —5 Z lui - ujl
i,jezA |i-jl<n/e

is given by

o= [Igi1as.

B;
Remark 7 (Local Version). If Q ¢ R?is an open set with Lipschitz boundary, we may define

2d

€ €
2 qlui-yl
i,jezinla

Fe(u) =

Then the I'-limit is
F = | pawaset,
Qno+A

with minor modifications in the proof.
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