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Strongly correlated materials often undergo a
Mott metal-insulator transition, which is tipi-
cally first-order, as a function of control pa-
rameters like pressure[1]. Upon doping, rich
phase diagrams with competing instabilities are
found. Yet, the conceptual link between the
interaction-driven Mott transition and the finite-
doping behavior[2][3] lacks a clear connection
with the theory of critical phenomena. In a pro-
totypical case of a first-order Mott transition the
surface associated with the equation of state for
the homogeneous system is ”folded” so that in a
range of parameters stable metallic and insulat-
ing phases exist and are connected by an unsta-
ble metallic branch[4–6]. Here we show that tun-
ing the chemical potential the zero-temperature
equation of state gradually unfolds. Under gen-
eral conditions, we find that the Mott transition
evolves into a first-order transition between two
metals, associated to a phase separation region
ending in a quantum critical point (QCP) at fi-
nite doping. This scenario is here demonstrated
solving a simple multi-orbital Hubbard model rel-
evant for the Iron-based superconductors, but its
origin - the splitting of the atomic ground state
multiplet by a small energy scale, here Hund’s
coupling - is much more general. A strong anal-
ogy with cuprate superconductors is traced.

Mott physics, charge instabilities and quantum criti-
cality are recurrent leitmotifs in the field of strongly cor-
related materials. Their connection was explored early
on theoretically for the cuprate superconductors[7–10].
These are indeed doped Mott insulators and host both
a ”strange”, possibly quantum critical metal, and in-
commensurate charge-density wave phases[11]. More-
over charge instabilities occur in a variety of other corre-
lated systems like e.g. titanates[12] and transition-metal
dichalcogenides[13]. However despite the great interest
in this topic a clear physical picture of the conditions
leading to phase separation and quantum criticality in
doped Mott insulators is still missing.

In this work we broaden the perspective and show that
a phase separation zone ending in a QCP is an intrin-
sic features connected to the Mott transition. We ad-

dress this issue within a different framework, namely a
Hund’s metal which is realized in a doped multiorbital
Hubbard model. We can thus both build on the re-
cent understanding of Hund’s metals triggered by iron-
based superconductors[14–18] and attack the problem by
solving a simplified model using Dynamical Mean-Field
Theory (DMFT)[19] in a numerically exact way, ruling
out any ambiguity connected with the numerical solu-
tion. More specifically we use DMFT solved by Nu-
merical Renormalization Group (NRG) at zero temper-
ature to study a two-orbital Hubbard model with on-
site Coulomb repulsion U and Hund’s exchange coupling
J, which favours high-spin states on every atom[18] (see
Methods). Our study of this simple and paradigmatic
model shows that the generic first-order character of the
transition for J6=0[4, 20, 21], which implies two stable
solutions, can be linked directly to finite-doping instabil-
ities. We argue that these results are general to a wide
class of models where another energy scale besides the
Hubbard U is present.

We start from the half-filled system. In Fig. 1a we
show the zero-temperature quasiparticle weight Z, which
is a measure of the system’s metallicity (see Methods)
and whose vanishing signals the Mott transition. As a
function of the interaction strength U the metallic solu-
tion does not evolve continuously in the insulating one
though, as testified by the sharp change in the spectrum:
the gap opens abruptly beyond a threshold value labeled
Uc2, while the central peak - of which Z is the spectral
weight - disappears. Importantly, the insulating solution
with Z=0 exists not only for all larger values of U but
also for a range Uc1<U<Uc2 where the equation of state
of the system is then multi-valued. The actual transition
point Uc is where the energies of the two solutions cross.

A crucial feature is that the two stable solutions are
adiabatically connected[4–6] through a third, unstable
metallic branch joining the stable metallic branch in Uc2

to the stable insulating branch in Uc1. This implies that,
following by continuity the three solutions, the equation
of state is folded into a characteristic sigmoidal shape.

These features have substantial consequences for the
doped system, which corresponds to a finite chemical po-
tential µ (our model being half-filled for µ = 0). The two
solutions evolve differently with µ[3]. Indeed as shown
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Figure 1. Multiple solutions close to the Mott transition at T=0. a, Interaction-driven transition. We plot the
quasiparticle weight at T=0 and half-filling in the 2-orbital Hubbard model with density-density interaction and Hund’s
coupling J/U=0.25, calculated within Dynamical Mean-Field Theory (DMFT) solved by Numerical Renormalization Group
(NRG). The first-order character of the Mott transition is embodied by the sigmoidal shape of the curve in the range of
interaction strengths Uc1<U<Uc2 where two stable solutions - one metallic at finite Z (blue) and one insulating at Z=0 (red)
- coexist, and are connected by a third unstable metallic branch (light blue dashed line). Inset: change of spectral function
between the metallic and insulating stable solutions when passing Uc2 = 1.5D (where D is the half-bandwith of the non-
interacting system). b, Density-driven transition. We plot the density (measured as doping from half-filling) vs chemical
potential curves for several values of the interaction strength U/D. The Mott insulator is incompressible and is thus indicated
by the horizontal plateau at half-filling, while the doped solutions are metallic. The points are calculated within NRG-DMFT,
the dashed lines sketch the unstable branch connecting the two stable ones, as deduced from calculations within ED-DMFT
(see Supplementary Information). The adiabatic connection of the solutions implies the crossing of the energy between the two
stable branches at some µc(U) in the coexistence zone, and thus a discontinuous jump from one to the other (corresponding
to a Maxwell construction). The sigmoidal shape of the curves reported in both panels reflects the folding of the equation of
state surface, of which a 3D visualization as a function of both U and µ is given in panels b and c of Fig. 2.

in Fig. 1b they turn into coexisting stable solutions with
different densities n for the same value of µ. Yet they re-
tain their adiabatic connection, giving rise to a sigmoidal
shape for the n(µ) curve, which implies the existence of a
zone of phase separation. One can overall visualize (Fig.
2b and 2c) the equation of state as a surface in three
dimensions which is folded in a zone of the U-µ plane.

On the other hand, at large doping (large µ) one
can expect that all the fingerprints of Mott physics are
washed away and a standard metal is recovered. This im-
plies a complete ”unfolding” of the equation of state at
some µ after which the system is single valued as a func-
tion of thermodynamic parameters (here U and µ). Since
the paramagnetic Mott insulator can only be realized at
integer filling, a possible outcome is that the threshold µ
corresponds to an infinitesimal doping. Our results show
instead a different scenario where the two stable solutions
survive at finite doping and they all have metallic charac-
ter. As a consequence, the equation of states unfolds at a
finite doping, leading to a finite-doping quantum critical
point.

Calculated n(µ) curves for several values of U are re-
ported in Fig. 1b. For all values Uc1<U<Uc2 (e.g. for
U/D=1.45 - yellow curve in the figure) the two stable
solutions existing at half-filling continue at finite µ: the
metallic solution is immediately doped while the insu-
lating solution remains pinned at half-filling for a finite

range of the chemical potential (corresponding to the gap
of the Mott insulator) and eventually becomes doped
too. However this doped Mott insulator is a different
metal from the continuation of the half-filled metal: both
are Fermi liquids (see Supplementary Information) but
the former has a much smaller quasiparticle weight, and
much lower coherence temperature[22].

As we mentioned above, the two stable branches are
connected through an unstable solution which implies
that the boundaries of the two branches are two spinodal
lines where the electronic compressibility κ = 1

n2
dn
dµ di-

verges. This also implies the crossing of the free-energies
of the two stable solutions at some value of the chem-
ical potential µc in the coexistence range, which then
corresponds to a Maxwell construction (see Fig. 2b
and 2c). This determines the first-order nature of the
density-driven Mott transition in a range of interactions
Uc1<U.Uc2, which follows from the first-order nature
of the interaction-driven transition and the continuity of
the equation of state. The spinodal lines and the approx-
imate phase separation zone are reported in Fig. 2a.

For U>Uc2 no metallic solution exists at half-filling
and the coexistence zone shifts to larger values of µ, and
is seen to shrink (blue curves in Fig. 1b). The Maxwell
construction jump will then eventually happen at a µc
where both branches are metallic. Therefore the discon-
tinuous Mott transition evolves in a discontinuous tran-
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Figure 2. Phase-diagram of the two-orbital Hubbard model and folding of the equation of state. a, Zero-
temperature phase diagram in the interaction strength-doping plane. The thick black line at half-filling is the Mott insulating
phase. The dashed black line signals its coexistence with a metal at half-filling. The density-driven Mott transition is first-order
for Uc1<U.Uc2, due to the first-order nature of the interaction-driven Mott transition, and is accompanied by a zone of phase
separation (in this zone, for any given value of U, the stable phase of the system is a mixture of the two homogeneous phases
located at the border of the zone for the same U, in proportions needed to obtain the system’s doping). For larger interaction
strengths the first-order transition is realized between two metals, whereas the density-driven Mott transition becomes second-
order. b, Illustration of the dependence of the quasiparticle weight Z as a surface plot, as a function of the position in the U-µ
plane. The golden line at µ = 0 corresponds to the interaction-driven Mott transition at half-filling (Fig. 1a). c, Corresponding
surface plot of the density (doping from half-filling). Curves are plotted corresponding roughly to those of Fig. 1b. The vertical
light blue surface corresponds to the Maxwell construction (and physically defines the zone of phase separation) and illustrates
the continuity, and common first-order nature, between the interaction-driven Mott transition, the density-driven one in the
range near Uc1 and Uc2, and the transition between two metals ending in a QCP. This whole scenario is entailed by the folding
of the equation of state surface as a multi-valued function on the U-µ plane (thin golden lines).

sition between two differently doped metals. In contrast,
for these (and all larger) values of U, the actual doping-
driven Mott metal-insulator transition becomes second
order.

Finally, we find that when U grows beyond a criti-
cal value UQCP the sigmoid straightens (red curve in
Fig. 1b), the unstable solution disappears and two stable
branches merge into one continuous stable solution. This
allows us to establish the existence of a Quantum Critical
Point (QCP) at finite doping, where the two spinodals of
the zero-temperature first-order transition merge. There,

dn
dµ , thus the electronic compressibility κ, diverges. For
U>UQCP we are left with a smooth crossover. However
the µ vs n curve retains an inflection point (black curve in
Fig. 1b), hence a maximum of the compressibility which
culminates in the divergence at the QCP.

This confirms and substantiates the scenario of Ref. 23
and 24, where in general a ”moustache”-shaped zone of
phase separation, delimited by a diverging compressibil-
ity and departing from the Mott transition point, crosses
the U-doping phase diagram of the Hund’s metals.

It was also shown earlier in Ref. [3] that the incom-
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Figure 3. Landay theory of the first-order Mott transition. a, Landau energy function calculated within Slave-Spin
mean field (SSMF), where the extrema indicate the stable (minima) and unstable (maxima) equilibrium solutions for the order

parameter mx/M =
√
Z (where M is the number of orbitals, here M=2, and Z is the quasiparticle weight) for various values of U

at half-filling (see Fig. 1a): below Uc1 (one minimum at large Z, corresponding to a metal), in the coexistence zone Uc1<U<Uc2

(two minima - one of which at Z=0, corresponding to the Mott insulator - and one maximum in between), and above Uc2
(one minimum in Z=0). b, Sketch of the main features of the atomic spectrum (see Fig. S7 in the Supplementary Information
for the complete spectrum) and hopping processes involved in the strong-coupling perturbation theory giving the fourth-order
correction to the ground-state energy e4, which determines the order of the interaction-driven Mott transition. In our model
at half-filling the spectrum is symmetric by respect to the half-filled sector (number of electrons N=M). The connected process
”a-b-b-a” is negative in sign and its denominator involves a small energy difference ∼ O(J) due to the visiting of an excited
state in the N=M sector, and thus dominates over the positive lower-order processes (back and forth on the ”a” arrows) whose
denominators are ∼ O(U). This entails a negative e4 and in turn a negative fourth order coefficient γ4 in the Landau energy
(see text), thus a first-order Mott transition.

pressible insulating solution emerging from a first-order
Mott transition generally crosses its energy again with
the coexisting metallic solution at some finite µ, imply-
ing a first-order density-driven Mott transition and phase
separation. We crucially modify and extend this picture
here with the continuity between the two solutions, which
implies the existence of spinodals limiting the coexistence
zone and the phase separation to a small range of U, and
with the unfolding of the continuous solution leading to
a QCP.

As a matter of fact, the model we solved realizes a
zero-temperature analog of the liquid-gas transition, the
role of temperature and pressure being played here by
the chemical potential and the interaction strength.

However this scenario holds only at finite Hund’s cou-
pling. At J=0 the transition becomes everywhere second
order at zero temperature, and no QCP is realized at fi-
nite doping, similarly to the single-band case[25]. The
key point allowing for the present scenario of phase sepa-
ration culminating in a QCP is thus the sigmoidal form of
the doping-vs-µ curve at T=0, which is ultimately caused
by the first-order character of the interaction-driven Mott
transition at half-filling. A natural question thus is: why
does the onset of Hund’s coupling cause this transition
to become first order? How general is the mechanism?

We can get this insight through the analysis of
the present model in the Slave-Spin Mean-Field ap-

proximation (SSMF - see Methods and Supplementary
Information)[26], which is similar to DMFT, but yields
simplified yet reliable physics, and here analytically
tractable. This method describes the system as a Fermi
liquid with quasiparticle weight Z computed from an aux-
iliary system of quantum spins on a lattice, where it is
proportional to the square of the x component of their to-
tal on-site magnetization, mx. The Mott transition maps
then onto a ferromagnetic-to-paramagnetic transition of
the auxiliary system where

√
Z ∝ mx plays the role of

the order parameter.

The structure of the competing solutions can be ana-
lyzed within a Landau theory, by coupling a fictitious ex-
ternal magnetic field hext conjugated to mx. The behav-
ior of the numerically calculated Landau energy function
(see Supplementary Information) Γ(mx) (Fig. 3a) clearly
illustrates the first order nature of the transition.

We can calculate Γ(mx) analytically in the vicinity of
a Mott insulator, that is around mx = 0, where Γ(mx) =
γ2m

2
x + γ4m

4
x + O(m6

x). In order to have the double-
minimum structure needed for a first-order transition γ4
has to be negative when γ2 goes from negative to positive
for increasing U (which then marks Uc1 in our case). We
do find that γ4 < 0 for every J<U in this model, and we
can attach a physical meaning to this result.

Indeed it can be easily shown (see Supplementary In-
formation) that γ4 has the same sign of the coefficient
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e4 in the perturbative expansion of the slave-spin ground
state energy E = e2h̃

2+e4h̃
4+O(h̃6), in terms of the field

(self-consistent + external) h̃ acting on each spin. In ab-
sence of the perturbation (h̃ = 0), the slave-spin Hamilto-
nian reproduces the local atomic spectrum (Fig. 3b). In
the half-filled sector (in which the electrons are N=M=2,
M being the number of orbitals) the states are split by
the Hund’s coupling J, while their distance with the sec-
tors with N=3 and N=1 is (U+J)/2. The perturbation
changes the occupation, so e4 is due to all the processes
involving four hops between neighboring sectors. These
processes can be connected (four consecutive jumps start-
ing from and ending in the ground state, but not going
through it otherwise - in Fig.3 these are indicated by the
arrows in the order ”a-b-b-a”), or disconnected (products
of lower-order processes - a roundtrip on the ”a” arrows),
weighted at the denominator by the energy distance of
each intermediate state from the ground state. The con-
nected contributions are always negative while the others
are positive at the fourth order. Now, in the present case
only the connected contributions can visit the excited
states in the N=2 sector, at distance J in energy from
the ground state, thus involving a small denominator.
Taking into account all the possible processes they turn
out to dominate on the disconnected contributions that
involve only the larger energy difference ∼ O(U). This
causes e4 and thus γ4 to be negative.

Hence the ultimate cause of a first-order Mott tran-
sition is a splitting of the atomic ground-state mul-
tiplet much smaller than the energy cost of charge
excitations[27]. We can also argue that essentially any
term breaking the SU(2M) symmetry leads to the same
picture, including, e.g. a Jahn-Teller distortion[28] or a
crystal field splitting.

The scenario linking a first-order Mott transition with
phase separation and quantum criticality naturally calls
for a connection with models for the cuprates. In that
context, phase separation appears ubiquitously in two-
dimensional strongly-correlated models[7, 8, 10]. In par-
ticular Cluster Dynamical Mean-Field Theory (CDMFT)
studies have shown an enhancement of the compressibil-
ity at finite temperature culminating with an instabil-
ity zone which marks the entrance into the pseudogap
phase[29]. This finite-doping instability causes a first-
order transition between two metals across a frontier
which can be tracked back to the Mott transition at half-
filling, in close analogy with the present analysis. We
can thus speculate that this zone ends in a QCP at a
critical value of the interaction[30] providing us with a
straightforward scenario that connects the indubitable
Mott physics with the very existence of a QCP.

Methods

The model we analyze is the degenerate two-orbital Hubbard

model in the paramagnetic phase. The Hamiltonian reads:

Ĥ =
∑

i6=jmσ
tijd

†
imσdjmσ +

∑

i

Ĥi
int, (1)

where d†imσ creates an electron with spin σ in orbital m = 1, 2
on site i of the lattice, and

Ĥi
int = U

∑

m

ñim↑ñim↓ + U ′
∑

m 6=m′
ñim↑ñim′↓

+(U ′ − J)
∑

m<m′,σ

ñimσñim′σ (2)

is the on-site interaction. Here ñimσ = nimσ − 1/2 is a
particle-hole symmetric form of the density operators nimσ =
d†imσdimσ, U is the on-site intra-orbital Coulomb repulsion
and J the Hund’s exchange coupling. We take J/U = 0.25
and customarily we do not include the off-diagonal terms of
the interaction. Our analysis depends on the local many-
body physics and not on details of the bandstructure ob-
tained by diagonalizing the one-body part of the Hamil-
tonian Ĥ0 − µN̂ =

∑
kmσ(εk − µ)d†kmσdkmσ, where µ is

the chemical potential and N̂ =
∑
imσ nimσ is the opera-

tor counting the total number of particles in the system.
Thus we can choose without loss of generality a feature-
less bandstructure with semi-circular density of states (DOS)

D(ε) = 2
√

1− (ε/D)2/(πD) of half-bandwidth D (corre-
sponding e.g. to a Bethe lattice with infinite connectivity).
With this choice the model is half-filled (i.e. the electron
density n ≡∑

mσ〈nimσ〉 = 2) for µ = 0.
We study this lattice model at T=0 in proximity of half-

filling within Dynamical Mean-Field Theory[19], which yields
all the local observables and correlation functions, and in par-
ticular the local spectral function A(ω) and self-energy Σ(ω)
of the lattice model. We use several solvers of the DMFT
equations: our main results are traced using the Numeri-
cal Renormalization Group (NRG). In particular the quasi-
particle weight is calculated from the self-energy as Z =
1/(1−∂ReΣ(0)/∂ω). Results from other solvers, Exact Diago-
nalization (ED) and Continuous-Time Quantum MonteCarlo
(CTQMC) are discussed in the Supplementary Information
and validate mutually with those from NRG.

The Slave-Spin Mean Field approximation[26] describes the

system eqs. (1) and (2) at half-filling as one of non-interacting

fermions with bandwidth renormalized by the quasiparticle

weight Z. This factor is computed from an auxiliary system

of quantum spins on a lattice (one per orbital m and per

spin σ on each site) in the Weiss mean-field approach, and

is proportional to the square of the x component of their

total on-site magnetization mx:
√
Z ≡ 2〈Sxmσ〉. The lat-

ter is calculated with the slave-spin single-site Hamiltonian

Hs = hsc
∑
mσ S

x
mσ + Hint[S

z], where Hint[S
z] is the local

interaction (2) with the occupations expressed in the slave-

spin space (where a spin ”up” corresponds to an occupied

fermionic state and ”down” to an empty one, so that in the

Hamiltonian each ñmσ is replaced with the corresponding

Szmσ). The self-consistent Weiss field hsc = 8ε0〈Sxmσ〉 flips

these occupations embodying the effect of the original hop-

ping term, through ε0 =
∫ µ
−∞ dεD(ε)ε < 0 which is the bare

kinetic energy of the non-interacting fermions.
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S1. METHODS:DYNAMICAL MEAN-FIELD
THEORY

Dynamical mean-field theory (DMFT)1 allows to cal-
culate the local correlation functions of the lattice model
(eq. (1) of the Methods section) by solving a two-orbital
Anderson Impurity Model (AIM) with a suitable bath.

Indeed in this AIM, electrons (created by d†0mσ) of a two-
orbital impurity having the same local interaction (eq.
(2) of the Methods section) as the original lattice model,
hop with amplitude vl from and into a ”bath” of non-
interacting states of energy εl, so that its Hamiltonian
reads:

ĤAIM= Ĥint[0]− µ
∑

mσ

d†0mσd0mσ (S1)

+
∑

lmσ

vl(c
†
lmσd0mσ) +H.c.) +

∑

lmσ

εlc
†
lmσclmσ.

The bath is determined by asking that it respects
the implicit condition (here in a form specific to the

present case of semi-circular DOS) ∆(z) ≡ ∑
l
vl

2

z−εl =
D2

4 GR(z),∀m,σ, where GR(z) is the Fourier trans-
form continued in the plane of complex frequency z
of the impurity retarded Green function GR(t) =

−θ(t)〈{d0mσ(t), d†0mσ(0)}〉. This condition is enforced
through an iterative self-consistency cycle, and at con-
vergence of this cycle the impurity Green function and

self-energy Σ(z) = z + µ − ∑
l
vl

2

z−εl − GR(z)−1 coin-
cide with the analogous local functions of the lattice
model in the DMFT approximation. In particular the
local spectral function of the lattice model is given by
A(ω) = − 1

π ImGR(ω + i0+).
We solve the AIM with different methods, and in par-

ticular we address the zero-temperature properties of
the system with the Numerical Renormalization Group
(NRG)2 and Exact Diagonalization (ED)3, and the
finite-temperature ones with Continuous-Time Quantum
Monte Carlo (CTQMC)4,5, as impurity solvers. All these
methods have strengths and limitations, but the proxim-
ity of their results (Fig. S1) validates them mutually.

Indeed NRG yields the exact low-energy physics in the
limit of zero temperature, but describes the spectral fea-
tures of increasing energy with a decreasing accuracy.
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Figure S1. Quasiparticle weight Z of the 2-orbital Hubbard
model at half-filling, as a function of the interaction strength
(density-density interaction and J/U=0.25) calculated within
DMFT with the three impurity solvers we use in this arti-
cle: Numerical Renormalization Group (NRG), Exact Diago-
nalization (ED) and Continuous-Time Quantum Monte Carlo
(CTQMC). The three solvers describe a first-order Mott tran-
sition for Uc ∼ 1.5D (see main text).

Since DMFT connects the different energy scales a quan-
titative inaccuracy can be present in the final low-energy
results which are however qualitatively exact at zero tem-
perature. NRG calculations were performed using a mod-
ified version of the NRG Ljubljana code6 with quantum
numbers corresponding to (Q, Sz, Tz) which implements
a symmetry (U(1)charge×U(1)spin×O(2)orbital). The
Full Density Matrix algorithm7 was used with Λ=4.0,
8000 states kept in every NRG iteration, 8 values for
the z-interleaving parameter, and a log-normal broad-
ening of the spectral functions with broadening param-
eter 0.3. The self-energy was calculated with the so-
called Sigma-trick introduced in Ref. 8. The quasipar-
ticle weight is evaluated from the real-axis self-energy:
Z = (1− ∂ReΣ(0)/∂ω)−1.

ED is the diagonalization of the Hamiltonian of an
AIM with a discretized bath (where l = 1, . . . Nl), which
becomes exact in the limit Nl → ∞. In practice the
method is limited to small Nl by the exponential growth
of the Hilbert space to be diagonalized, and this trunca-
tion comes with a limit in the spectral resolution and a
systematic error. We use this method here to describe the
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zero-temperature physics in a numerically less expensive
framework than NRG.

At half-filling we can use Nl = 14 thanks to the Lanc-
zos/Arnoldi algorithm and the new parallel implementa-
tion EDIpack9. The self-consistency equation is enforced
on a grid of Matsubara frequencies ωn = Π(2n+1)/βgrid
with βgrid = 200/D, with a weight 1/ωn in the least-
square fit of the discretized variational form of ∆(ωn)
on the numerically obtained GR(ωn)D2/4. The quasi-
particle weight is evaluated from the Self-energy on the
Matsubara axis: Z = (1 − ImΣ(ω0)/ω0)−1. This allows
us to cross-validate with NRG the first-order nature of
the Mott transition at half-filling and the position of its
critical interaction strength.

Out of half-filling (and in particular in the Hund’s
metal regime) the Lanczos/Arnoldi algorithm fails (prob-
ably due to unresolved degeneracies in the eigenvalues)10

and we have to use the full diagonalization of the Hamil-
tonian matrix, which is limited to much smaller bath
sizes. We use then Nl = 6 and βgrid = 100/D.
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Figure S2. Temperature scaling of the critical interaction
strength for the Mott transition calculated within DMFT with
CTQMC as impurity solver. A linear scaling as a function of
the inverse temperature of the values obtained for βD=100,
200, 400, 600, 800 yields Uc/D=1.5351±0.0004.

CTQMC4 is numerically exact but limited to finite
temperature. Here we use the CT-HYB solver imple-
mented as part of the w2dynamics package5. Around
the critical value of the interaction strength, at least 100
DMFT iterations per data point were done regardless of
the temperature where in each of the 20 last iterations, a
minimum total number of measurement cycles of 300000
was used. The quasiparticle weight is determined as a
Z = (1− b)−1 where b is the linear coefficient of a poly-
nomial of degree 2 best-fitted to ImΣ(ωn) on the lowest
5 Matsubara frequencies. Here we use CTQMC mainly
to obtain low-temperature results that validate the NRG
and ED against their possible systematic inaccuracies.
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Figure S3. Two representative metallic solutions near the
phase separation zone, for U=1.6. The Fermi-liquid behaviour
of both is signaled by the saturation of the Kondo resonance
in the local spectral function (here plotted only at positive
frequencies in logarithmic scale) at the pinning value at low
frequencies.

Indeed in Fig. S2 the critical interaction strength for the
Mott transition is estimated at T=0 through temperature
scaling using runs at βD=100, 200, 400, 600, 800. It is
found that the exact value for the half-filled two-orbital
model with density-density interaction and J/U=0.25 is
Uc/D=1.5351±0.0004. Thus ED and NRG with the spec-
ifications above yield Uc/D=1.50, exact within an error
of 2÷3%. We note good agreement of our QMC results
for Uc with those of Steinbauer et al.11 in cases where
data for the same parameters were available for compar-
ison.

S2. NRG NUMERICAL EVIDENCE OF THE
FERMI-LIQUID NATURE OF THE METALLIC

SOLUTIONS

At T=0 single-site DMFT is bound to give a Fermi-
liquid solution in the single-band Hubbard model12 and
in the multi-band model with positive Hund’s coupling13,
if a metal is realized. It is indeed the case across the
whole phase diagram we have described in this work. In
the Hund’s metal phase however the Fermi-liquid coher-
ence temperature (the Kondo temperature of the AIM
solved in DMFT) is found to decrease exponentially fast
with decreasing doping14 so that in order to uncover it
the resolution of NRG has to be pushed to correspond-
ingly low energies. We illustrate this in Fig. S3, where we
show the spectral functions of two stable metallic solu-
tions near the phase separation zone, one on either side of
it, for the same interaction U/D=1.6. They have quite
different values of doping but approximately the same
value of the chemical potential, accordingly indeed to the
sigmoidal shape of the n(µ) curve (compare to Fig. 1b
of the main text). The common pinning value reached
below some (very different) typical frequency proves the
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common Fermi-liquid nature (with very different coher-
ence scales however11). This result connects with the
proposal of a spin-freezing quantum phase transition in
a three-orbital model15 associated with a sharp change
in the metallic properties across the frontier departing
from the half-filling Mott transition. The spin-freezing
phenomenon is however limited to finite temperatures,
and the spin-frozen phase is replaced by a Fermi liquid
at low T13,16. Our results show that a sharp change of
behaviour is already present at zero temperature within
the Fermi-liquid phase. This becomes the spin-freezing
coherence-incoherence crossover at finite temperatures
due to the very different coherence temperature of the
two metals. Moreover in this work we have shown that
the zero-temperature crossover becomes an actual first-
order transition near half-filling.

S3. COMPRESSIBILITY AT ZERO
TEMPERATURE: DMFT-ED

The relative agility of the ED solver for DMFT al-
lows us to trace a complete map of the compressibility
enhancement at T=0 in the present model. This is re-
ported in Fig. S4, where the color scale shows how even
beyond the quantum critical point (QCP - located here
at lower value of doping and U compared to the NRG
phase diagram, due to the approximate nature of the ED
solver - see the relative information in section S1) there is
a zone (shades of red) where the peak in the compressibil-
ity keeps marking the cross over associated to the Hund
metal frontier.

Figure S4. Compressibility (color scale) as a function of den-
sity and interaction strength calculated by ED (Nl = 6 and
βgridD = 100 - see discussion in S1). The saturated yellow
marks a divergent/negative compressibility (phase separation
zone) where the shades of red signal an enhancement tracking
the cross-over from the normal (large doping/low U) to the
Hund metal.

S4. ADIABATIC CONTINUITY OF THE
SOLUTIONS OFF HALF-FILLING

In DMFT it is possible to follow the unstable branches
which connect the stable solutions coexisting for a given
value of U and µ17–20. At half-filling we have calculated,
with NRG as an impurity solver, the corresponding reen-
trant behaviour of the quasiparticle weight Z as a func-
tion of the interaction strength U/D at T=0, as displayed
in Fig. 1a of the main text.
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Figure S5. DMFT results with Exact Diagonalization as an
impurity solver with Nl=6 at T=0, showing the sigmoidal be-
haviour of the quasiparticle weight Z as a function of the inter-
action strenght U/D at half-filling (upper panel, see Fig. 1a of
the main text) and of the density as a function of the chemical
potential off half-filling (lower panel, see Fig. 1b of the main
text). These data illustrate the adiabatic connection of the
stable branches of coexisting solutions through unstable ones,
which holds everywhere in the phase diagram of the present
model solved with DMFT, enabling us to discuss it in terms
of the ”folding” of the equation of state surface. The results
in the lower panel are used to sketch the unstable branches in
Fig. 1b of the main text, where only the stable ones are data
calculated with NRG.

In this section we report the analogous results from
ED at T=0. We use here Nl=6, which ensures a semi-
quantitative agreement with the more exact NRG and
QMC calculations, but can be used both at and off half-
filling (see the corresponding discussion in section S1).
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In the upper panel of Fig. S5 the Z(U) plot shows indeed
a behaviour analogous to that of Fig. 1a of the main
text, only slightly shifted to lower values of U/D owing
to the aforementioned approximation. In the lower panel
we report the calculated density vs µ curves, showing
indeed the sigmoidal behaviour corresponding to Fig. 1b
of the main text.

In all these calculation a parameter α (α =U at
half-filling, α = µ off half-filling) is adjusted at ev-
ery DMFT iteration in order to search for a wanted
value of Z = Ztarget. The latter is indeed found to
monotonically decrease in all these curves, thus it labels
uniquely a point along the curves, unlike the physical
parameters as a function of which these curves are in-
deed multi-valued functions. We use, at iteration i+1,
α(i + 1) = α(i) + (Z(i) − Ztarget)χ(i) and the step is
χ(i) = (α(i)−α(i−1))/(Z(i)−Z(i−1)). While the sta-
ble solutions can be found also in the standard way by
fixing the physical parameters and using a suitable guess
(typically the previously converged solution on the same
branch) to start the iterative DMFT loop, a converged
solution in an unstable branch is reached only using this
protocol. We consider converged one such solution not
only when the calculated and the target Z differ by less
than a given low threshold, but also when the changes in
the variable α at each iteration |α(i)−α(i−1)| satisfy an
analogous criterion. Obviously also the usual DMFT cri-
terion of convergence is enforced, which requests that the
local Green functions (or equivalently the baths ∆ or the
self-energies) calculated at iterations i and i−1 (summed
in absolute value over the frequency grid) differ by less
then a given threshold. This requires typically a consid-
erably larger number of iterations compared to the stable
branches. This is also why we have studied in detail the
unstable branches off half-filling only with ED, and then
sketched the corresponding result on Fig. 1b of the main
text, where only the points on the stable branches are
actually calculated with NRG.

S5. METHODS:SLAVE-SPIN MEAN-FIELD
AND ITS PERTURBATIVE EXPANSION:

COEFFICIENTS IN THE LANDAU THEORY OF
THE MOTT TRANSITION

In the Slave-Spin Mean-Field (SSMF) method21,22 the
lattice system to be studied (eq. (1) of the main text)
is replaced by an analog in an enlarged Hilbert space,
where for each fermionic degree of freedom of the origi-
nal model there is a fermion with the same indices (here
called fimσ) and an accompanying ”slave” quantum spin-
1/2 of components Sx,y,zimσ .

An occupied local fermionic state of the original model
is represented by the state |1〉f |1〉S , and the correspond-
ing unoccupied state by |0〉f |0〉S , where |1〉S and |0〉S rep-
resent the states ”up” and ”down” of the z-axis projec-
tion of the slave spin Sz, respectively. These ”physical”

states are such that nfimσ = Szimσ + 1
2 , and this condition

distinguishes them from the ”unphysical” states |1〉f |0〉S
and |0〉f |1〉S , i.e. which do not represent any state of
the original system, and should be excluded from the av-
erages yielding the physical quantities. This cannot be
done rigorously and in practice averages are performed
on the whole enlarged Hilbert space and this condition is
enforced through Lagrange multipliers guaranteeing only

that 〈nfimσ〉 = 〈Szimσ〉+ 1
2 .

The Hamiltonian operator has then to be expressed
in the new Hilbert space. The hopping terms thus, be-
sides moving the fermions from one site to another also
flip the corresponding spins (through the S±mσ operators).
The density-density interaction instead can be expressed
only in terms of the slave-spins’ Szimσ z-components only.
Then the slave-spins and the fermions are mean-field de-
coupled and the lattice slave-spin Hamiltonian is further
treated in a Weiss single-site mean-field. In the end
the problem is approximated by Ĥ − µN = Ĥf + Ĥs,
a fermionic Hamiltonian of independent quasiparticles
Ĥf self-consistenly coupled to a collection of single-site
Hamiltonians with 2M (where M is the number of or-

bitals, here M=2) slave-spins interacting on-site Ĥs =∑
i Ĥ

i
s. These equations are solved numerically in an it-

erative fashion. Further details on the method can be
found in Ref. 22 and in the appendix A of Ref. 23.

At half-filling for the present degenerate, particle-hole
symmetric system the SSMF equations take the simple
form (the Lagrange multipliers vanish by symmetry, and
µ=0):

Ĥf =
∑

i 6=j,mσ
Ztijf

†
imσfjmσ, (S2)

where the renormalization factor

Z = 4〈Sximσ〉2, (S3)

is calculated through the single-site slave-spin Hamilto-
nian (dropping the site index i) and:

Ĥs = hsc
∑

mσ

Sxmσ +Hint (S4)

Hint =U
∑

m

Szm↑S
z
m↓ + U ′

∑

m 6=m′

Szm↑S
z
m′↓

+(U ′ − J)
∑

m<m′σ

SzmσS
z
m′σ (S5)

The self-consistent Weiss field reads:

hsc = 8〈Sxmσ〉ε0, (S6)

where

ε0 ≡
∑

j 6=i
tij〈f†imσfjmσ〉 =

∫ µ

−∞
dεD(ε)ε (S7)
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Figure S6. Upper panel: quasiparticle weight for the half-
filled 2-orbital Hubbard model with density-density inter-
action and J/U=0.25 calculated within SSMF. Three solu-
tions (one stable metallic, one stable insulating, connected
by an unstable metallic branch) indeed coexist in the range
Uc1 ≤U≤Uc2, analogously to the DMFT solution reported
in Fig. 1a of the main text. The interaction-driven Mott
transition is thus first-order, as implied by the crossing of the
energy of the two stable solutions at Uc, reported in the lower
panel.

is the kinetic energy of the non-interacting system. At
particle-hole symmetry (µ = 0, independently of U,
implying half-filling) this is a constant, and the self-
consistency has to be enforced only within the spin
Hamiltonian.

A vanishing Z indeed signals the Mott transition.
The SSMF result for the 2-band Hubbard model with
J/U=0.25 is shown in Fig. S6. The sigmoidal shape of
the Z vs U curve clearly signals the first-order nature of
the transition.

The expression for Z eq. (S3) shows that Mott tran-
sition in SSMF is described as the vanishing of the x-
component of the slave-spin on-site magnetization mx ≡
2M〈Sximσ〉. It is thus mapped onto a ferromagnetic-
paramagnetic transition of the auxiliary spin system, and√
Z ∼ mx plays the role of an order parameter.
Landau theory for the Mott transition. The stability

and competition between the solutions around this tran-
sition can be studied in the framework of a Landau the-
ory. A fictitious external magnetic field hext conjugated
to mx can be introduced through a linear term in the
Hamiltonian proportional to

∑
mσ S

x
mσ, turning eq. (S4)

into Ĥs = h̃
∑
mσ S

x
mσ +Hint, where h̃ ≡ hsc + hext.

The corresponding Gibbs free energy24 is Γ(mx) =
E(hext(mx)) − hext(mx)mx, where E(hext) = 〈Hs +

hext
∑
mσ S

x
mσ〉 is the energy of the ground state ob-

tained in presence of the field hext. In this mean-field
approximation Γ(mx) can then be viewed as a Landau
function25: ∂Γ

∂mx
= −hext so that the extrema of Γ(mx)

indicate the equilibrium solutions in absence of driving
field. In Fig. 3a of the main text it is illustrated how the
minima in Γ(mx) (calculated numerically for a range of
finite hext) describe the Mott transition and the charac-
teristic double-minimum structure of its first order nature
in the present system with nonzero J. Indeed in the prox-
imity of the Mott state (mx = 0) the Landau function
can be expanded:

Γ(mx) = γ2m
2
x + γ4m

4
x +O(m6

x). (S8)

In order to have the double-minimum structure needed
for a first-order transition, γ4 has to be negative when
γ2 changes sign from negative to positive for increasing
U (which then marks Uc1 in our case).

We can calculate these coefficients analytically using
standard perturbation theory. The implied relationship
between field and magnetization is

hext = − ∂Γ

∂mx
= −2γ2mx − 4γ4m

3
x +O(m5

x), (S9)

the coefficients of which can be estimated by explicitly
calculating mx(hext) in our model and inverting it.

Indeed we can compute the groundstate energy of Hs

up to the fourth order in the total field h̃ = hext + hsc

(the external field plus the self-consistent one hsc =
4ε0mx/M) felt by each slave-spin, through standard per-
turbation theory:

E = e2h̃
2 + e4h̃

4 +O(h̃6). (S10)

This implies mx = ∂E
∂h̃

= 2e2h̃ + 4e4h̃
3 + O(h̃5), which

can be inverted in h̃ = 1/(2e2)mx − 4e4/(2e2)4m3
x. Sub-

tracting the self-consistent field one finally gets:

hext = (1/(2e2)− 4ε0/M)mx − 4e4/(2e2)4m3
x. (S11)

Comparing eq. (S11) with eq. (S9) shows that γ4 has
the same sign of e4, which we can calculate.
Perturbative expansion of the Slave-Spin ground-state

energy. Let’s then solve the slave-spin equations in prox-
imity of the Mott insulator Z = 4〈Sxmσ〉 = 0, which im-

plies hsc = 0. In absence of field, for h̃ = 0, the spectrum
is that of eq (S5), illustrated in Fig. S7 (we recall that
we take U ′ = U − 2J).

For small h̃ we can apply perturbation theory, the op-
erator of the perturbation being V ≡ h̃

∑
mσ S

x
mσ, and

the nonvanishing terms of the second order and fourth
order corrections to the energy of the ground state |φ〉
read:

E
(2)
φ =

|Vφκ2
|2

Eφκ2

, (S12)

E
(4)
φ =

Vφκ4
Vκ4κ3

Vκ3κ2
Vκ2φ

Eφκ2Eφκ3Eφκ4

− E(2)
φ

|Vφκ4
|2

E2
φκ4

(S13)
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Figure S7. Spectrum of Hint eq. (S7), used in our pertur-
bative analysis. For compactness of notation, the slave-spin
states are here indicated with the ket of the physical state
they represent.

where we have defined Vµκ = 〈µ0|V |κ0〉 and Eµκ = E0
µ−

E0
κ (the superscript 0 indicates unperturbed states and

energies), and all the κi are meant summed on all the
states such that none of the Eφκi

vanishes.

Note that Vφφ = 0 in this case because the eigen-
states of the unperturbed Hamiltonian Hint are eigen-
states of Szmσ, while the perturbation flips the spins (in-
deed Sxmσ = (S+

mσ + S−mσ)/2). Only neighbouring sec-
tors in Fig. S7 (i.e. sectors with only one particle more
or less) are connected through V , so the terms includ-
ing Vφκ3

Vκ3κ2
Vκ2φ (an odd number of ”hops” having to

start and end in the ground state) vanish as well. The
odd-order contributions are made of these terms and thus
vanish altogether, and hence E(h̃) = e2h̃

2+e4h̃
4+O(h̃6).

As motivated in the main article we are interested in
the sign of the fourth-order contribution of the ground
state energy, which determines the order of the Mott
transition. The key observation here is that in the case of
the ground state all the Eφκ < 0, and all numerators are
positive. Thus the first term in eq. (S13) (which we call
”connected” since it involves a chain of ”hops” starting
and ending in the ground state, without going through it
- or its degenerate manifold - otherwise) is negative, while
the second (a product of lower-order, ”disconnected”,
terms) is positive. Moreover only the connected term can
visit the lowest excited states in the same charge sector
(N=2) of the ground state (that is, spin excitations here),
which lie at energy distance J from it. The lowest order
terms (and thus the disconnected contributions involv-
ing them) only visit the states at distance U+J

2 ∼ O(U).
For small enough J then, the first term in eq. (S13) will

dominate over the second, since its terms have a smaller
denominator, and thus the sign of the whole fourth-order
contribution will be negative.

Performing all the summations we obtain:

E(h̃) = − 2

U(1 + j)
h̃2 − 2(7j2 − 9j + 8)

U3(1 + j)3(1− j)3j h̃
4, (S14)

where j = J/U . The numerator of the fourth order coeffi-
cient is definite positive so that the whole coefficient e4 is
negative as long as of J<U. This implies that γ4 < 0 and
the Mott transition is first-order in this model as long as
of J<U (that is, for all realistic situation in a material).
This analysis substantiates and rationalizes the empirical
rule of thumb proposed in Ref. 26, that ”the transition
tends to be first order if the lowest-lying excitations are
in the same charge sector as the atomic ground state”.

This is further confirmed in the analogous model with
Kanamori interaction16 where the splitting of the ground
state multiplet is 2J rather than J. There the connected
terms will decrease more quickly for increasing J, com-
pared to the present density-density case. Indeed numer-
ical results for the Kanamori case show that the first-
order jump at half-filling first increases for increasing J,
and then after a maximum it decreases until vanishing,
and the transition becomes second-order again22,27,28.

S6. 5-ORBITAL MODEL AND RELEVANCE
FOR THE IRON-BASED SUPERCONDUCTORS

An analogous phenomenology is displayed by Hubbard
models with more than 2 orbitals, as partly explored in
Ref. 23. Here we highlight the presence of the QCP
ending the phase separation zone. Indeed the µ vs den-
sity curves calculated within Kotliar-Ruckenstein Slave-
Boson Mean-Field (SBMF, which yield results similar,
and in certain cases identical to SSMF) for a 5-orbital
model are shown in Fig. S8. The phase separation zone,
like in the 2-orbital case is characterized by the sigmoidal
behaviour, with several coexisting solutions for a given
chemical potential in a range of values of U. We also
highlight how - like in the 2-orbital case - upon reducing
U towards Uc1 the two stable branches can also over-
lap in doping yielding a ”bi-stability” zone (indicated as
”two solutions” in Fig. 2a of the main text). The fur-
ther inflection of the curve due to the multiple solutions
at a given doping evolves in the coexistence of metallic
and insulating solutions at half-filling. This confirms in
the generic M-orbital case the result of the main article,
that the adiabatic connection of the solutions connects
the first-order nature of the Mott transition at half-filling
with the phase separation zone off-half-filling, ending in
a QCP at finite doping.
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6 R. Žitko and T. Pruschke, Phys. Rev. B 79, 085106 (2009).
7 A. Weichselbaum and J. von Delft, Phys. Rev. Lett. 99,

076402 (2007).
8 R. Bulla, A. C. Hewson, and T. Pruschke, Journal of

Physics: Condensed Matter 10, 8365 (1998).
9 A. Amaricci, L. Crippa, A. Scazzola, F. Petocchi,

G. Mazza, L. de Medici, and M. Capone, Computer

Physics Communications 273, 108261 (2022).
10 M. Chatzieleftheriou, Charge instabilities, Mott transi-

tion and transport in Hund metals, Ph.D. thesis (2021),
2021UPSLS056.

11 J. Steinbauer, L. de’ Medici, and S. Biermann, Phys. Rev.
B 100, 085104 (2019).

12 P. Nozières, Journal of Low Temperature Physics 17, 31
(1974).

13 L. de Leo, Non-Fermi liquid behavior in multi-orbital An-
derson impurity models and possible relevance for strongly
correlated lattice models, Ph.D. thesis, SISSA (2004).

14 K. M. Stadler, “A model study of strong correlations in
hund metals,” (2019).

15 P. Werner, E. Gull, M. Troyer, and A. J. Millis, Phys.
Rev. Lett. 101, 166405 (2008).

16 A. Georges, L. de’ Medici, and J. Mravlje, Annual Review
of Condensed Matter Physics 4, 137 (2013).

17 G. Moeller, V. Dobrosavljević, and A. E. Ruckenstein,
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