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Foreword

Determining whether an additional local symmetry affects the universality class of a sta-

tistical model is an important issue in the theory of critical phenomena. A basic example

is provided by the RPN−1 model, in which N -component spin variables at each lattice site

interact through an Hamiltonian invariant under global O(N) rotations and local spin re-

versals. The local symmetry makes the difference with the usual O(N) model and amounts

to the head-tail symmetry characteristic of liquid crystals. In three dimensions, the weak

first order transition observed in numerical simulations of the ferromagnetic model is con-

sistent with the mean field scenario. On the other hand, in the two-dimensional case –

the one we focus on in this thesis – fluctuations are stronger and minimize the reliability

of mean field predictions, as illustrated by the phase transition of the three-state Potts

model, which becomes continuous on planar lattices. For the RPN−1 model, the absence

of spontaneous breaking of continuous symmetry in two dimensions generically suggests

that criticality is limited to zero temperature, and Monte Carlo studies for T → 0 showed

a fast growth of the correlation length which made particularly hard to reach the asymp-

totic limit and draw conclusions. On the other hand, the possibility of finite temperature

topological transitions similar to the Berezinskii-Kosterlitz-Thouless (BKT) one – which

should definitely occur for RP 1 ∼ O(2) – and mediated by ”disclination” defects has

also been debated in numerical studies. While two-dimensional criticality has allowed

for an impressive amount of exact solutions thanks to lattice integrability and conformal

field theory, models with local symmetries traditionally remained outside the range of

application of these methods. In this thesis, however, we show how the renormalization

group fixed points of the RPN−1 model and of its complex generalization, the CPN−1

model, can be accessed in an exact way. This is achieved in the scale invariant scattering

framework which, as we review in the introductory part of the thesis, implements in the

basis of particle excitations the infinite-dimensional conformal symmetry characteristic of

4



critical points in two dimensions and has provided in the last few years new results for

pure and disordered systems.

In the last part of the thesis, we will exploit the generality of the scale invariant

scattering method to progress with another long standing problem of two-dimensional

criticality, namely that of spin clusters in Potts correlated percolation. It has been known

for long time that the problem can be addressed considering two coupled Potts models,

but the need to consider the number of states of one of these models as a continuous

variable has severely limited the analytical or numerical study of the critical points. Also

here, the ability of the scattering method to enforce conformal invariance for the internal

symmetry characteristic of the universality class will allow us to obtain exact equations

for the critical points and to determine their solutions in the relevant limits.

The thesis is based on the results of the following papers:

• Gesualdo Delfino, Youness Diouane and Noel Lamsen,

Absence of nematic quasi-long-range order in two-dimensional liquid crystals with three

director components,

J. Phys. A: Math. Theor. 54 (2021) 03LT01

• Youness Diouane, Noel Lamsen and Gesualdo Delfino,

Critical points in the RPN−1 model,

J. Stat. Mech. (2021) 033214

• Youness Diouane, Noel Lamsen and Gesualdo Delfino,

Critical points in the CPN−1 model,

J. Stat. Mech. (2022) 023201

• Noel Lamsen, Youness Diouane and Gesualdo Delfino,

Critical points in coupled Potts models and correlated percolation,

arXiv:2208.14844
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Chapter 1

Background

In this introductory chapter we recall basic notions of critical phenomena and the role of

conformal symmetry in two dimensions. We then review scale invariant scattering theory

and its application to the O(N) and q-state Potts models.

1.1 Generalities of critical phenomena

Let us consider systems of equilibrium statistical mechanics [1] characterized by an Hamil-

tonian H. The expectation value of an observable O is the average over configurations

〈O〉 =
1

Z

∑
configurations

O e−H/T , (1.1)

with T the temperature and

Z =
∑

configurations

e−H/T (1.2)

the partition function. It is initially convenient to consider the degrees of freedom of a

system as “spin” variables si located at sites i of a regular lattice corresponding to a

discretization of the d-dimensional Euclidean space Rd; the sums in (1.1) and (1.2) then

correspond to sums over all spin configurations. Thoughtout this thesis we refer to systems

with short range interactions among the site variables. In addition, the interactions are

also homogeneous across the lattice, meaning that, for example, 〈si〉 is site-independent.

In the general case the site variable si has more than one component and carries a

representation of the symmetry group G that leaves invariant the Hamiltonian1. A well

1We will focus on critical systems and directly consider Hamiltonians invariant under the symmetry

6



known example is provided by the vector model with Hamiltonian

HO(N) = −J
∑
〈i,j〉

si · sj , (1.3)

where si is a N -component unit vector, the symmetry group G is the group O(N), and the

requirement of short distance interactions is implemented taking the sum over the nearest

neighbor pairs of sites 〈i, j〉. For N = 1, and then G = Z2, one obtains the Ising model.

The interaction is ferromagnetic for J > 0 and antiferromagnetic for J < 0. In this initial

presentation we will refer to ferromagnets and will comment on antiferromagnets when

relevant at a later stage.

Another very interesting generalization of the Ising model is offered by the q-state

Potts model [2, 3], which is defined by the Hamiltonian

HPotts = −J
∑
〈i,j〉

δsi,sj , (1.4)

where si = 1, 2, . . . , q. The Hamiltonian is left invariant by global permutations of the

q values of the site variables (which we will often call ”colors” in the following). As a

consequence the symmetry of the model corresponds to the group Sq of permutations of

q objects, and the Z2 symmetry which characterizes the Ising model is recovered when

q = 2.

Returning to the general discussion, the ”order parameter” 〈si〉 vanishes 2 when the

temperature T is large enough, and becomes nonzero when T is brought below a critical

value Tc. The latter is a phase transition point associated to the spontaneous breaking of

the symmetry G. Indeed, below Tc the order parameter can take different values related

by the symmetry. The phase transition is of the first order if the order parameter has a

discontinuity at Tc, and of the second order (or, more generally, continuous) otherwise.

The spin-spin correlation function decays as

〈sisj〉 − 〈si〉2 ∼ e−|i−j|/ξ (1.5)

when the distance |i− j| between the two sites becomes large. The characteristic scale ξ

introduced in this way is called correlation length. While it remains finite at a first order

transition, it diverges as

ξ ∼ |T − Tc|−ν , T → Tc (1.6)

group of the critical point.
2In the Potts model one takes 〈σα,i〉 = 〈δsi,α − 1

q 〉, α = 1, 2, . . . , q.
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when approaching a second order transition. This relation defines the correlation length

critical exponent ν. A key point of the theory of critical phenomena is that the divergence

of ξ at second order transition points leaves no characteristic scale at distances much larger

than lattice spacing, and leads to scale invariance at Tc.

More generally, thermodynamical observables show a scaling behavior close to criti-

cality; for the order parameter this reads

〈si〉 ∼ (Tc − T )β , T → T−c , (1.7)

a relation that defines the critical exponent β.

Importantly, the divergence of the correlation length as T → Tc allows a continuum

description of the region close to criticality, provided that one is interested in the prop-

erties of the system over scales much larger than the lattice spacing (see e.g. [4]). This

continuum description corresponds to a field theory, and the lattice variable si is replaced

by a spin field s(x), where x = (x1, . . . , xd) is a point in the Euclidean d-dimensional space

Rd. In a similar way the local spin-spin interaction
∑

j sisj, where the sum is taken over

neighbors of the site i, corresponds to an energy density field ε(x). The sums in (1.1) and

(1.2) are now taken over field configurations. In this continuum formulation, the Hamil-

tonian H continues to be invariant under the group G of internal symmetry, but also

acquires invariance under continuous spatial translations (corresponding to homogeneity

of the system) and under continuous rotations (corresponding to isotropy).

Scale invariance at critical points leads to a power law decay of correlation functions,

which for a field Φ(x) takes the form

〈Φ(x1)Φ(x2)〉 =
constant

|x1 − x2|2XΦ
. (1.8)

This defines the scaling dimension XΦ of Φ and implies that from the dimensional point

of view the field behaves as length−XΦ .

Let us denote by A = H/T the reduced Hamiltonian, or Euclidean action, which

characterizes a given theory. It is convenient to separate the near-critical action A into a

scale invariant part A∗ corresponding to Tc, plus a term taking into account the deviation

from Tc, so that we write

A = A∗ + τ

∫
ddx ε(x) , (1.9)

where τ ∼ T−Tc. The expression (1.1) shows that A is dimensionless, and then that τ has

the dimension of an inverse length to the power d−Xε; it then provides the dimensionful
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coupling that breaks scale invariance away from criticality. The fact that ξ is a length

gives ξ ∝ |τ |−1/(d−Xε) and, comparing with (1.6), the expression

ν = 1/(d−Xε) (1.10)

for the correlation length critical exponent.

We are now in the position to recall some main ideas and terminology of the renormal-

ization group (RG) that expresses the response of the system to a change of scale [4, 5].

Let Φ(x) be a field with given transformation properties under the action of the symme-

try group G. Then the field theory contains infinitely many fields with growing scaling

dimension and transforming in the same way (it is sufficient to think to the derivatives of

Φ(x)). In writing (1.9) we omitted the contribution of infinitely many G-invariant fields

with scaling dimensions larger than d. The couplings conjugated to such fields have the

dimension of a length to positive powers and become negligible for the description of the

large distance properties of our interest. In this sense such fields are called “irrelevant” in

the language of the RG. A scale invariant theory is called a RG fixed point. The action

in which irrelevant fields are omitted and which describes the large distance properties

is called the scaling action. It may contain more than one G-invariant field with scaling

dimension smaller than d (these fields are called “relevant”). This occurs when more than

one parameter needs to be tuned to reach the scale invariant point; such theories describe

“multicritical” behavior. In light of these considerations, the field that we denote ε(x) can

be more precisely defined as the most relevant (smallest scaling dimension) G-invariant

field; similarly, the spin field s(x) is the most relevant field with the symmetry prop-

erties of the order parameter. Some theories also possess fields with scaling dimension

equal to d (“marginal” fields). Marginality may be spoiled by logarithmic corrections in-

duced by interaction. Depending on the theory, these corrections will effectively produce

a ”marginally relevant” or a ”marginally irrelevant” field. If no logarithmic correction

occurs, the addition to a fixed point action of such a “truly marginal” field does not break

scale invariance and generates a line of fixed points.

In conclusion of this section we also notice that the order parameter scales as 〈s(x)〉 ∼
ξ−Xs ∼ |τ |νXs , and that comparison with (1.7) gives

β = νXs = Xs/(d−Xε) . (1.11)

Together with (1.10), this relation shows that the critical exponents are determined by

the scaling dimensions, which should then be regarded as the fundamental critical indices.
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1.2 The two-dimensional case

1.2.1 Conformal symmetry and minimal models

In this thesis we will be interested in critical systems in d = 2, and this is the case to

which we now turn. When writing the correlation function (1.8) we considered the basic

case in which the field Φ is a scalar, in the sense that it is invariant under spatial rotations.

More generally, in our discussion of the two-dimensional case it will be relevant for us to

consider fields Φ(x) with scaling dimension XΦ that transform as

Φ(0)→ e−isΦαΦ(0) (1.12)

under a rotation by an angle α centered in the origin; sΦ is called the ”Euclidean spin” of

the field. An important property of field theory, going under the name of operator product

expansion (OPE), is that products of fields can be expanded onto an infinite-dimensional

basis of fields [5]. In a scale invariant theory, the requirement that the result preserves

the dimensional and rotational properties implies for the OPE the form

Φi(x)Φj(0) =
∑
k

Ck
ij (zz̄)(Xk−Xi−Xj)/2(zz̄−1)(sk−si−sj)/2 Φk(0)

=
∑
k

Ck
ij z

∆k−∆i−∆j z̄∆̄k−∆̄i−∆̄j Φk(0) . (1.13)

Here we introduced the complex coordinates on the plane

z = x1 + ix2 , z̄ = x1 − ix2 , (1.14)

which transform under rotations as z → eiαz, z̄ → e−iαz̄, and the dimensions ∆Φ, ∆̄Φ

such that

XΦ = ∆Φ + ∆̄Φ , (1.15)

sΦ = ∆Φ − ∆̄Φ . (1.16)

The Ck
ij’s in (1.13) are called OPE coefficients, and we used the shortened notations

XΦi = Xi, ... . A relevant implication is that the final expression of (1.13) allows to treat a

field Φ(x) as the product of a z-dependent part with dimension ∆Φ, and a z̄-dependent part

with dimension ∆̄Φ. The OPE also allows to introduce the useful notion of mutual locality.

In ordinary physical cases one expects the correlation functions 〈· · ·Φi(x)Φj(0) · · · 〉 to be
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invariant if x is taken around the origin and brought to the original position, namely

under the continuation z → e2iπz, z̄ → e−2iπz̄. If this is the case, the fields Φi and Φj are

said to be mutually local. The OPE (1.13) shows that the condition is satisfied if

si + sj − sk ∈ Z (1.17)

for all k’s in the sum.

One of the important benefits of the field theoretical framework is that it allows to show

(see e.g. [6]) that scale invariant theories are actually invariant under the larger group

of conformal transformations, i.e. tranformations in which the change of scale, instead of

being global, varies smoothly with the coordinate. Due to this property, the scale invariant

field theories describing statistical systems at criticality actually correspond to conformal

field theories (CFTs). This circumstance has its most powerful implications in the two-

dimensional case of interest in this thesis, because in this case conformal transformations

correspond to variations δz = f(z), δz̄ = f̄(z̄), where f (resp. f̄) is any analytic function

of z (resp. z̄). It follows that in d = 2 the conformal group has the crucial peculiarity

of possessing infinitely many generators. These generators can be shown to correspond

[6, 7] to operators Ln which satisfy the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn,−m , (1.18)

where c is a fundamental parameter of the critical system which goes under the name of

”central charge”.

We now briefly recall some implications of the algebra (1.18) referring the reader to

[6, 7] for the derivations. In the first place the space of fields in critical theories splits

into families corresponding to lowest weight representations of the algebra. Considering

the z-dependent part (a similar structure holds for the z̄-dependent part), a family [φ]

contains a ”primary” field φ(z) with dimension (often referred to as conformal dimension)

∆φ, together with ”descendants” with dimension ∆φ + l; l = 1, 2, . . . is the ”level” of the

descendant. The derivatives of φ are examples of descendants. An important role is played

by the reducible representations of the algebra, namely representations [φ] containing

another representation [φ0] whose primary φ0 is a descendant of φ at a level l0. The

irreducible representation that one obtains factoring out [φ0] is said to be ”degenerate”

at level l0, and φ is said to be a degenerate primary. The construction can be shown to

lead to differential equations for multi-point correlation functions containing a degenerate

primary.
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It will be particularly relevant for our purposes to recall the characterization of the

space of CFTs with central charge c ≤ 1. For c < 1 it is convenient to introduce the

parameter p > 0 and write

c = 1− 6

p(p+ 1)
. (1.19)

Then the degenerate primaries can be written as Φm,n(z), with m and n positive integers,

and their dimension ∆m,n is determined by3

∆µ,ν =
[(p+ 1)µ− pν]2 − 1

4p(p+ 1)
. (1.20)

The OPE of two degenerate primary fields takes the form

Φm1,n1 · Φm2,n2 =

min(m1,m2)−1∑
k=0

min(n1,n2)−1∑
l=0

[
Φ|m1−m2|+1+2k,|n1−n2|+1+2l

]
, (1.21)

where we have suppressed the coordinate dependence, which is generally determined by

(1.13); the notation [Φ] in the r.h.s. indicates contribution from the whole family of fields.

As we saw, a field is the product of a z-dependent part and a z̄-dependent part, and (1.21)

separately applies to each of them. One can also consider fields Φµ,ν(z) with dimension

(1.20) and noninteger indices; they are nondegenerate and their OPE with degenerate

fields reads

Φm,n · Φµ,ν =
m−1∑
k=0

n−1∑
l=0

[Φµ−m+1+2k,ν−n+1+2l] . (1.22)

The critical points arising in ordinary spin systems satisfy ”reflection positivity”, a

property implying a spectrum of conformal dimension {∆i} without negative values, and

then ensuring that correlations decay with distance. For central charge c < 1 reflection

positivity turns out to be satisfied only by (1.19) with p = 3, 4, . . . [8]. For these values of c

the OPE (1.21) closes on a finite number of operator families originating from degenerate

primaries [7], giving rise to the so called reflection positive ”minimal models”. For these

theories the conformal dimensions ∆m,n of the primary fields are given by (1.20) with

m = 1, 2, . . . , p − 1, n = 1, 2, . . . , p. Notice that the number of primaries, and then the

number of families, grows with c. The fact that the central charge gives a measure of the

number of degrees of freedom is a general property of reflection positive CFTs [9].

Not surprisingly the minimal field content (p = 3, c = 1/2) corresponds to the Ising

critical point, with ∆1,1 = ∆2,3 = 0, ∆1,2 = ∆2,2 = 1/16 and ∆1,3 = ∆2,1 = 1/2

3In (1.20) we use indices µ, ν that are not necessarily integer, since this will be useful later.
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corresponding to the identity, the spin field and the energy density field, respectively.

These scalar fields have ∆ = ∆̄, and the scaling dimensions Xs = 1/8 and Xε = 1

determine through (1.10) and (1.11) the Ising critical exponents, in agreement with lattice

results [10, 11]. The Ising spectrum of conformal dimensions also allows to build the

fermions (i.e. fields with half-integer spin) ψ and ψ̄ with dimensions (∆, ∆̄) equal to

(1/2, 0) and (0, 1/2), respectively. Since dimension 0 corresponds to the identity, and does

not carry a coordinate dependence, we have4 ∂̄ψ = ∂ψ̄ = 0, which are the equations of

motion of free fermions. The fact that the two-dimensional Ising model (without external

field) corresponds to a free fermionic theory is known since the lattice results of [12].

For p > 3 minimal models generally correspond to multicritical points associated

to the spontaneous breaking of Z2 symmetry [13, 14]. In particular p = 4 gives the

tricritical Ising model, with tricriticality realized, for example, allowing also for vacant

sites. However, the values p = 5, 6 also allow a restriction to a smaller set of primaries

[15, 16, 17] corresponding to the critical (p = 5) and tricritical (p = 6) three-state Potts

model.

1.2.2 Gaussian model

In d = 2 the Gaussian model plays a special role that it does not possess in higher

dimensions. At criticality it corresponds to the theory of a free scalar field with action

A0 =
1

4π

∫
d2x (∇ϕ)2 . (1.23)

The fact that ϕ(x) is dimensionless leads to the logarithmic correlator

〈ϕ(x)ϕ(0)〉 = − ln |x| = −1

2
(ln z + ln z̄) , (1.24)

which is consistent with the equation of motion ∂∂̄ϕ = 0 and the decomposition

ϕ(x) = φ(z) + φ̄(z̄) . (1.25)

Instead of φ, which has 〈φ(z)φ(0)〉 ∝ ln z, proper scaling primary fields of the theory are

the exponentials

Vp(z) = e2ipφ(z) . (1.26)

4Our notation is ∂ = ∂z and ∂̄ = ∂̄z̄.
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Their dimension easily follows from free field methods (see [6]) and is given by

∆Vp ≡ ∆p = p2 . (1.27)

One also has V̄p̄(z̄) = e2ip̄φ̄(z̄), in such a way that the generic primary VpV̄p̄ has dimensions

(∆p,∆p̄). The Gaussian OPE has the form

Vp1 · Vp2 = [Vp1+p2 ] , (1.28)

and, together with (1.17) and (1.27), implies that two fields Vp1V̄p̄1 and Vp2V̄p̄2 are mutually

local if

2(p1p2 − p̄1p̄2) ∈ Z . (1.29)

The energy density field in this theory is generically written as ε = VbV̄b + V−bV̄−b ∝
cos 2bϕ, with ∆ε = ∆̄ε = b2, and physically interesting fields are local with respect to ε.

A field VpV̄p̄ satisfies this condition if ±2b(p− p̄) is an integer, i.e. if

p− p̄ =
m

2b
, m ∈ Z . (1.30)

When m = 1 we can build the complex fermion

Ψ = (ψ, ψ̄) =
(
V 1

4b
+ b

2
V̄− 1

4b
+ b

2
, V 1

4b
− b

2
V̄− 1

4b
− b

2

)
, (1.31)

with spin p2− p̄2 equal to 1/2 for ψ and to −1/2 for ψ̄. The decomposition Ψ = Ψ1 + iΨ2

defines two real fermions Ψi = (ψi, ψ̄i). When b2 = 1/2 we have ∂̄ψ = ∂ψ̄ = 0, which are

free fermionic equations of motion; it follows that for b2 = 1/2 the theory (1.23) can be

represented in terms of free fermions. On the other hand, for b2 6= 1/2 the fermions are

coupled by the four-fermion term, which can be shown to be truly marginal; it follows

that the action (1.23) with energy density field cos 2bϕ can be expressed as [18, 19]

A0 =

∫
d2x

[∑
i=1,2

(ψi∂̄ψi + ψ̄i∂ψ̄i) + g(b2)ψ1ψ̄1ψ2ψ̄2

]
, (1.32)

with g(1/2) = 0; the field cos 2bϕ corresponds to the fermionic mass term ψ1ψ̄1 + ψ2ψ̄2.

The form (1.32) of the action shows that the two-dimensional Gaussian model actually

corresponds to a line a fixed points parametrized by b2. Since at b2 = 1/2 we have two

free neutral fermions, namely two decoupled Ising models, the central charge is twice the

Ising one, namely c = 1. On the other hand, this value holds generically for the Gaussian
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model, since the interaction (g 6= 0) does not change the field content. The form (1.32) of

the theory gives a direct description of the critical properties of the Ashkin-Teller model

[20, 21], which corresponds to two Ising models coupled by energy-energy interaction.

The Ashkin-Teller model indeed possesses a critical line with continuously varying critical

exponents.

The fact that a same theory possesses a scalar (bosonic) description (1.23) and a

fermionic description (1.32) is a remarkable property of the two-dimensional case. It also

allows to unveil a symmetry that is not obvious in the representation (1.23). Indeed, the

fermionic property ψ2
i = ψ̄2

i = 0 allows to write ψ1ψ̄1ψ2ψ̄2 ∝ (
∑

i ψiψ̄i)
2. It follows that

the action (1.32) is left invariant by O(2) rotations of the vector (ψ1, ψ2); these are in turn

U(1) transformations for the complex fermion, and the integer m in (1.30) corresponds

to the U(1) charge. While for central charge c < 1 we only found discrete internal

symmetries, we see that the case c = 1 allows for the simplest continuous symmetry,

G = O(2) ∼ U(1). The Gaussian model then describes the critical properties of the

N = 2 vector model (1.3), also known as XY model. The components of the spin field

s(x) = (s1(x), s2(x)) are obtained picking up the scalar fields with m = ±1, namely

s± = s1 ± is2 = V±1/4bV̄∓1/4b , (1.33)

with ∆s± = 1/16b2. While continuous symmetries do not break spontaneously in two

dimensions [22, 23, 24], the XY model exhibits a different type of transition known as

Berezinskii-Kosterlitz-Thouless (BKT) transition [25, 26]. The order parameter 〈s(x)〉
vanishes at all temperatures, but a value TBKT separates a high temperature phase with

exponential decay of correlations from a low temperature phase (BKT phase) with power

law decay. The Gaussian model naturally accounts for this phenomenon once b2 is iden-

tified as a decreasing function of the temperature (see e.g. [4]). The transition is driven

by the O(2)-invariant (m = 0) field ε, which has Xε = 2b2. Then for b2 > b2(TBKT ) = 1

the field is irrelevant and scale invariance is preserved at large distances, thus explaining

the BKT phase. Since we know from (1.33) that ∆s = 1/16 at b2 = 1, we have

〈s(x) · s(0)〉T=TBKT ∼ |x|−1/4 . (1.34)

We will also be interested in the chiral (i.e. with ∆ = 0 or ∆̄ = 0) fields satisfying (1.30)

and having lowest charge m = ±1. They correspond to η± = V±1/2b and η̄± = V̄±1/2b,

where the nonzero conformal dimensions are given by

∆η± = ∆̄η̄± =
1

4b2
. (1.35)
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1.3 Scattering framework

1.3.1 Basic notions

In this thesis we will largely exploit the fact that a field theory describing the near-critical

properties of a statistical system also possesses a formulation in momentum space. In

this formulation the fundamendal degrees of freedom are the particle modes describing

the excitations with respect to the ground state. These particle modes describe collec-

tive excitations of the degrees of freedom in real space and should not be confused with

individual particles (atoms, molecules) of a fluid system. For our applications to critical

phenomena we are interested in field theories possessing translation and rotation invari-

ance (Euclidean field theories), and in d = 2 we denote by x = (x1, x2) a point in real

space. Performing the identification

x2 = it , (1.36)

an Euclidean field theory defines a quantum field theory with spatial coordinate x1 and

time coordinate t. The quantum theory has the same field content as the Euclidean theory,

and correlation functions in the two cases are related by the analytic continuation (1.36).

The particle modes correspond to excitations above a minimum energy (vacuum) state

|0〉. The spontaneous symmetry breaking of an internal symmetry G leads to several

degenerate vacua below Tc (see e.g. [27]). Through the continuation (1.36) rotation

invariance (isotropy) in Euclidean space is mapped onto relativistic invariance in space-

time. As a consequence the particle modes have the relativistic dispersion relation

E =
√
p2 +m2 , (1.37)

where E is the energy, p the momentum and m the mass. In our natural units the mass

has the dimension of an inverse length, and is related to the correlation length as

ξ ∝ 1/m . (1.38)

The S-matrix [27, 28] encodes the particle description of field theory. The elements of

this matrix are the probability amplitudes that a set of particles at t = −∞ evolves into

a set of particles at t = +∞ as a result of scattering. In general relativistic scattering

conserves total energy and momentum, but not the number of particles. For a given an

initial state, the sum of the transition probabilities over all possible final states has to be
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Figure 1.1: Scattering process associated to the amplitude that we denote Scdab(s). Time

runs upwards.

one, implying the unitarity of the S-matrix. A scattering process in which the number of

particles is preserved is said to be ”elastic”, and a two-particle elastic process is depicted

in figure 1.1. We consider particles with the same mass, and in d = 2 conservation of

energy and momentum implies that the momenta p1 and p2 are individually conserved. In

general the particles form multiplets carrying a representation of the group G of internal

symmetry, and the indices a, b, c, d in the figure label components of the multiplets.

Relativistic invariance requires that the scattering amplitude of figure 1.1 depends on

the only relativistic invariant that can be built out of the two energy-momenta, i.e. the

square of the center of mass energy

s = (E1 + E2)2 − (p1 + p2)2 . (1.39)

Denoting the amplitude by Scdab(s), it satisfies the relations

Scdab(s) = Sdcba(s) , (1.40)

Scdab(s) = Sabcd(s) , (1.41)

Scdab(s) = S āb̄c̄d̄(s) , (1.42)

expressing invariance under spatial inversion, time reversal and charge conjugation, re-

spectively. Let us also recall that the amplitude also satisfies the following analytic prop-

erties as a function of s, formally considered as a complex variable [28]. In the first place

the amplitude is an analytic function up to singularities possessing a physical meaning.

As a consequence of unitarity the minimal energy values (thresholds) s = (km)2 needed

to produce a final state with k ≥ 2 particles correspond to branch points of the amplitude.

Instead, a pole at s = m̃2 ∈ (0, 4m2) corresponds to a particle of mass m̃ appearing as a
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Figure 1.2: The figure illustrates the analytic structure of the scattering amplitude in the

complex s-plane. The unitarity branch cuts are those on the right and the crossing cuts

those on the left. Two poles are also shown.

bound state of the two scattering particles. The unitarity branch cuts are taken along the

positive real axis in the complex s-plane (figure 1.2), and the physical values of the am-

plitude are given by the limit towards the real axis from above (Scdab(s+ iε) with s ≥ 4m2,

ε→ 0+). These values lie on the first (called “physical”) sheet of the cut s-plane. Other

sheets are accessed through the branch cuts. When s does not exceed the first inelastic

threshold s1 the unitarity condition reads∑
e,f

Sefab (s+ iε)
[
Scdef (s+ iε)

]∗
= δacδbd , (2m)2 < s < s1 . (1.43)

Crossing symmetry is a further important property of relativistic scattering. It states

that the amplitude for the direct scattering channel (figure 1.1 with time running upwards)

is related by analytic continuation to the amplitude for the crossed scattering channel

(figure 1.1 with time running from left to right). When passing to the crossed channel,

the particles b and d, whose arrows point in the ’wrong’ direction, are replaced with

antiparticles b̄ and d̄, and their energy and momentum is reversed (E2, p2 → −E2,−p2,

corresponding to s→ 4m2 − s). It follows that the crossing relation takes the form

Scdab(s+ iε) = S b̄cd̄a(4m
2 − s− iε) , (1.44)

with s real. This relation implies that an amplitude acquires crossed channel branch cuts

running along the negative real axis, as well as crossing images of bound state poles.

These features are illustrated in figure 1.2. In addition, the property of ”real analyticity”

states that the values of the amplitude on opposite edges of a cut are related by complex

conjugation,

Scdab(s+ iε) =
[
Scdab(s− iε)

]∗
. (1.45)

We finally observe that the state created by the action of a field φ on the vacuum state

|0〉 can be expanded on the basis of multi-particle states. If this expansion includes the
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one-particle state |p〉, namely if

Fφ(p) ≡ 〈p|φ(0)|0〉 6= 0 , (1.46)

we say that φ creates the particle. Throughout this thesis we will adopt the usual nor-

malization condition 〈p1|p2〉 = 2πE1δ(p1− p2) for the states. Since rotations in Euclidean

space correspond to relativistic transformations in space-time under which (E, p) trans-

forms as a vector, E ± p has Euclidean spin ±1. It then follows from (1.12), (1.15) and

(1.16) that

Fφ(p) = aφ(E + p)∆φ(E − p)∆̄φ , (1.47)

with aφ a dimensionless number.

1.3.2 Specialization to criticality

Remarkable simplifications occurs in the scattering problem at a scale invariant point

in two dimensions [29]. Indeed, we have to take into account that infinite-dimensional

conformal symmetry implies that infinitely many quantities (instead than just energy

and momentum) have to be conserved in the time evolution. The consequence is that the

final state will be kinematically identical (same number of particles, same energies, same

momenta) to the initial one, a property that we call ”complete elasticity”. In addition,

since the correlation length ξ =∞, the particles are massless and the dispersion relation

(1.37) shows that their energy and momentum are related as p = E > 0 (right movers)

or p = −E < 0 (left movers). It then follows from (1.46) and (1.47) that at criticality

the particles are created by chiral fields η(z) (for right movers) and η̄(z̄) (for left movers),

namely fields with ∆̄η = 0 and ∆η̄ = 0. For the spin of these fields we have

sη = −sη̄ = ∆η = ∆̄η̄ . (1.48)

On the other hand, scale invariance implies that the theory does not possess dimensionful

parameters, with the consequence that the scattering amplitude S of a right-mover with

a left-mover cannot depend on the variable (1.39), which is the only relativistic invariant

in the process and is dimensionful. The interpretation of the energy-independence of

the amplitude is that the particles have no dynamical interaction, but this does not

imply S = 1. Indeed, we must recall that scattering in one spatial dimension involves

position exchange on the line, which in general produces a statistical factor. This can
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Figure 1.3: Pictorial illustration of equation (1.49).

be determined observing that, in absence of dynamical interaction, the scattering, i.e.

the passage from the initial to the final state, can also be realized by π-rotations (see

figure 1.3), and is then ruled by the Euclidean spin (1.48) of the fields that create the

particles. The scattering (statistical) amplitude [29]

S = e−iπ(sη−sη̄) = e−2iπ∆η . (1.49)

is then obtained recalling (1.12). We see that S is 1 for bosons (∆η integer) and −1 for

fermions (∆η half-integer), while generalized statistics will account for other values.

In this argument we considered the simplest case of a single particle species. More

generally, the particles carry indices and we have the amplitudes Scdab of the previous sub-

section, with the difference that they no longer depend on the center of mass energy. With

respect to the general analyticity structure of figure 1.2, complete elasticity eliminates all

branch points, apart from the elastic one at s = 4m2 and its crossing image at s = 0.

Hence, the limit m → 0 relevant for the present case does not involve any collapse of

infinitely many branch points on top of each other, and remains well defined. Since there

are no inelastic thresholds (s1 = ∞) and m = 0, the unitarity equation (1.43) holds for

any s, consistently with the s-independence of the amplitudes; it now becomes [29]∑
e,f

Sefab
[
Scdef
]∗

= δacδbd . (1.50)

On the other hand, (1.44) and (1.45) can be combined to obtain

Scdab =
[
S b̄cd̄a

]∗
. (1.51)

If there is a single particle species, (1.50) yields an amplitude S which is a phase, con-

sistently with (1.49). In presence of more species a phase satisfying (1.49) is obtained by

diagonalization of the scattering. We now illustrate this procedure through the examples

of the O(N) and q-state Potts models.
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1.4 O(N) model

1.4.1 Fixed point equations

For a first illustration of the use of the scale invariant scattering theory of section 1.3.2

we consider the vector model defined on the lattice by the Hamiltonian (1.3). The O(N)

symmetry is represented by a vector multiplet of massless particles which we denote by an

index a = 1, 2, . . . , N . We further denote by |ab〉 a state containing two particles a and b,

and we omit the specification of momenta since we have seen that scattering at criticality

does not depend on them. As the product of two vector representations, the initial state

|ab〉 possesses a tensorial structure which needs to be preserved by the scattering. We

then write the effect of the latter as

|ab〉 → δab S1

N∑
c=1

|cc〉+ S2 |ab〉+ S3 |ba〉 , (1.52)

where S1, S2 and S3 are annihilation, transmission and reflection amplitudes, respectively.

They are depicted in figure 1.4. In the present case the particles are self-conjugated (a = ā)

and the crossing symmetry relations (1.51) take the form

S1 = S∗3 ≡ ρ1e
iφ , (1.53)

S2 = S∗2 ≡ ρ2 , (1.54)

where we have introduced parametrizations in terms of ρ1 ≥ 0, and ρ2 and φ real. The

unitarity equations (1.50) then take the form [29]

ρ2
1 + ρ2

2 = 1 , (1.55)

ρ1ρ2 cosφ = 0 , (1.56)

Nρ2
1 + 2ρ1ρ2 cosφ+ 2ρ2

1 cos 2φ = 0 , (1.57)

corresponding respectively to the choices (c = a, d = b), (c = b, d = a), and (a = b, c = d).

It can be observed that in these equations N enters as a parameter that does not need to

be an integer. The possibility to continue the model to noninteger values of N is already

known on the lattice, as we recall in the next subsection. The solutions of the equations

(1.55)-(1.57) give the critical points (RG fixed points) of the O(N) model. They are listed

in table 1.1 and shown in figure 1.5. We now discuss their physical meaning.
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Figure 1.4: The scattering amplitudes S1, S2 and S3 of the O(N) model. Time runs

upwards.

Solution N ρ2 cosφ

P1± (−∞,∞) ±1 -

P2± [−2, 2] 0 ±1
2

√
2−N

P3± 2 ±
√

1− ρ2
1 0

Table 1.1: The solutions of the equations (1.55)-(1.57) correspond to the RG fixed points

with O(N) symmetry.

1.4.2 Nonintersecting loops

Let us begin our discussion with the solutions P2±, which are defined for N ∈ [−2, 2].

At N = 2 they coincide with the point S2 = 0 of the solution P3 which, as will be seen

in a moment, corresponds to a CFT with central charge c = 1. The fact that the central

charge increases with the number of degrees of freedom, and then with N , implies that

the CFTs corresponding to the solutions P2± have c ≤ 1. This means that we are in

the CFT subspace of section 1.2.1, where we have seen that a main role is played by the

degenerate primary fields with conformal dimensions (1.20). In particular, the energy

density field ε(x) is expected to be a degenerate field, and at N = 1 for one of the two

solutions P2± it should have the dimension ∆ε = 1/2 of the Ising model. This leads to

the identification5 ∆ε = ∆̄ε = ∆1,3.

We can use this result and the OPE (1.21) to idenfity the chiral field η which creates

the particles as the most relevant chiral field local with respect to ε. The result ∆η = ∆2,1

determine ∆η as a function of the parameter p entering (1.19). On the other hand, it

5We will see below that the alternative choice ∆2,1 corresponds to the q-state Potts model.

22



follows from (1.52) that the state
∑N

a=1 |aa〉 scatters into itself with the amplitude

S = NS1 + S2 + S3 , (1.58)

which for the solutions P2± is equal to −e3iφ. The requirement S = −1 for N = 1 (Ising

free fermion) selects P2−. As a consequence, for this solution we know ∆η as a function

of N , through (1.49), and as a function of p. Once we compare the two results we obtain

N = 2 cos
π

p
. (1.59)

The result ∆s = ∆̄s = ∆1/2,0 for the dimensions of the spin field can be obtained through

a slightly more general analysis [29] exploiting the OPE (1.22) with nondegenerate fields

yields.

The solution P2+ can be quickly identified [30] once we recall that adding the field Φ1,3

to the CFT with central charge (1.19) induces a RG flow to the fixed point with central

charge corresponding to p− 1 [9]. Since Φ1,3 = ε preserves O(N) symmetry, the infrared

line of fixed points obtained in this way corresponds to P2+ and has N = 2 cos π
p+1

.

Together with S = −e3iφ this relation leads to ∆η = ∆1,2, a result that differs from

∆2,1 for P2− for the interchange of the indices. This interchange is preserved by the

mutual locality analysis based on the OPEs (1.21) and (1.22), and gives ∆ε = ∆3,1 and

∆s = ∆0,1/2 for the solution P2+. We summarize in table 1.2 the results obtained in this

way for the critical lines P2±.

We also notice that the critical lines P2± have S2 = 0, and then correspond to particle

trajectories that do not intersect (recall figure 1.4). On the other hand, it is known (see

e.g. [4]) that the partition function of the O(N) model can be mapped onto that of a

loop gas,

Zloops =
∑
G

KnbNnl , (1.60)

where G are configurations of loops on the lattice, K is the coupling in the spin formu-

lation, nl is the number of loops, and nb is the number of edges occupied by the loops.

This loop formulation implements on the lattice the continuation to noninteger values of

N , and for N → 0 is known to describe the statistics of self-avoiding walks [31]. The

loop model is exactly solvable on the honeycomb lattice [32], on which the loops do not

intersect. The solution produces two critical lines defined in the interval N ∈ [−2, 2] and

coinciding at N = 2. Their critical exponents were shown in [33] to correspond to the
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Figure 1.5: Solutions of the fixed point equations (1.55)-(1.57) of the O(N) model. P2−

and P2+ are the critical lines for the dilute and dense regimes of nonintersecting loops,

P3+ corresponds to the BKT phase of the XY model, and for N > 2 P1+ gives the zero

temperature critical point.

conformal dimensions ∆s and ∆ε that we deduced above for the solutions P2±. The two

critical lines of the loop model are referred to as “dilute” and “dense” with reference to

the loop properties that they control. They correspond to the solutions P2− and P2+,

respectively. For the off-critical case the analogy between particle trajectories and loop

paths was observed in [34].

1.4.3 BKT phase at N = 2

We now notice that the solutions P3±, defined only for N = 2, can also be written in the

form

ρ1 = sinα , ρ2 = cosα , φ = −π
2
. (1.61)

The characteristic presence of the free parameter α perfectly matches the observation of

section 1.2.2 that O(2) symmetry actually allows for a line of RG fixed points with central

charge c = 1. We have seen that this fixed line corresponds to the Gaussian theory (1.23),

in which the energy density field ε(x) = cos 2bϕ(x), with conformal dimension ∆ε = b2,

introduces the parameter b2 providing the coordinate along the line. We also determined
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Solution N c ∆η ∆ε ∆s

P1− (−∞,∞) N
2

1
2

1
2

1
16

P1+ (−∞,∞) N − 1 0 1 0

P2− 2 cos π
p

1− 6
p(p+1)

∆2,1 ∆1,3 ∆ 1
2
,0

P2+ 2 cos π
p+1

1− 6
p(p+1)

∆1,2 ∆3,1 ∆0, 1
2

P3± 2 1 1
4b2

b2 1
16b2

Table 1.2: Conformal data (central charge c and conformal dimensions ∆) for the solutions

of table 1.1. ∆µ,ν is given by (1.20).

in (1.35) as a function of b2 the dimension of the chiral fields that create the particles. On

the other hand, for the solution (1.61) the scattering phase (1.58) takes the form S = e−iα,

in such a way that (1.49) yields the relation

α =
π

2b2
(1.62)

between the free parameter of the scattering theory and that of the Gaussian model. We

also notice that S takes the value −1 when b2 = 1/2, in full agreement with the fact

that at such a point the Gaussian model has the fermionic representation (1.32) with

g = 0. When b2 takes generic values, the particles a = 1, 2 of the scattering theory can

be identified with the two neutral fermions in (1.32). An additional piece of information

we possess is that the O(2) spin vector field has the bosonic representation (1.33) with

dimension ∆s = 1/16b2.

The solutions P3+ and P3− correspond to the two intervals α ∈ [0, π/2] and α ∈
[π/2, π], respectively. As seen in section 1.2.2, the BKT phase of the XY model cor-

responds to the portion of the line of fixed points where ε(x) is irrelevant, and then to

solution P3+. P3+ and P3− meet at the point α = π/2, which is also the meeting point

of the solutions P2±, as can be seen in figure 1.5. This is the BKT transition point, where

the field ε is marginal (∆ε = 1).

1.4.4 Zero temperature criticality for N > 2

The solutions P1+ and P1−, which are the only ones to be defined for any N , are purely

transmissive and correspond respectively to free bosons (S2 = 1) and free fermions (S2 =

−1). P1− corresponds to N neutral fermions, for a total central charge c = N/2 (a single
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neutral fermion (Ising) has c = 1/2), and is not relevant6 for the critical behavior of the

vector model (1.3) for generic N . For N = 2 this gives back the c = 1 theory (1.23) with

b2 = 1/2, or (1.32) with g = 0. As can be seen in figure (1.5), this is the contact point

between P1− and P3−. The conformal dimension ∆s = 1/16 that we give in table 1.2 for

P1− is that of the spin fields s1, . . . , sN of the N decoupled Ising copies. Notice that, at

the meeting point b2 = 1/2, P3− has instead ∆s = 1/8. The reason is that the XY spin

field (1.33) actually corresponds to s1s2 [29].

The solution P1+ describes two different cases. On one hand, it corresponds to N

free bosons, i.e. the theory with action
∑N

j=1

∫
d2x(∇ϕj)2, with ∆ε = ∆ϕ2

j
= 0, and

c = N . On the other hand, and more interestingly, for N = 2 it also coincides with

the limit b2 → ∞ of P3+, which has c = 1. This is possible because, as we already

observed, scattering on the line mixes statistics and interaction, so that the two fermions

of the theory (1.32) can appear for b2 →∞ as two free bosons (S2 = 1). This subtle role

of interaction continues for N > 2, where the O(N) model is known to possess a zero

temperature critical point and scaling properties described by the nonlinear sigma model

(see e.g. [4])

ASM =
1

T

N∑
j=1

∫
d2x(∇ϕj)2 ,

N∑
j=1

ϕ2
j = 1 , (1.63)

in which interaction is introduced by the constraint on the length of the vector (ϕ1, . . . , ϕN).

This theory is ”asymptotically free”, meaning that for T → 0 the interaction amomg the

bosons vanishes (∆s = ∆ϕj = 0), while the energy density field is marginally relevant

(∆ε = 1, implying ν =∞ and exponentially diverging correlation length). The constraint

in (1.63) reduces the central charge by one unit, to c = N − 1. These results for c and

∆s agree with those for N = 2, b2 →∞. In order to idenfity ∆ε = 1, we have to observe

that for b2 > 1 at N = 2 the field cos 2bϕ is irrelevant, and that the most relevant O(2)-

invariant field is the marginal one that generates the line of critical points. The sigma

model interpretation of the solution P1+ is the one that we report in table 1.2, together

with the data discussed for the other solutions.

We conclude our discussion of the O(N) scattering solutions observing that the case

N = 1 allows some considerations that will be useful in the subsequent chapters. The

symmetry O(1) = Z2 is that of the Ising model, which in two dimensions has a critical

6It must be noticed that, due to the quadratic nature of the unitarity equations (1.50), solutions

differing for a change of sign of all amplitudes are always simultaneously present.
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Figure 1.6: Scattering amplitudes S0, S1, S2 and S3 for the Potts model, with different

letters denoting different colors. Time runs upwards.

point described by a free neutral fermion [6]. The corresponding amplitude S11
11 = −1 is of

course realized by P1− in the purely transmissive form S11
11 = S2. On the other hand, it is

also realized by P2− in the form S11
11 = S1 +S3, as required by the fact that also the Ising

partition function has a ”geometrical” representation in terms of self-avoiding loops. This

illustrates that a specific critical point may allow different diagrammatic realizations at

the scattering level. Clearly, this is due to the fact that at N = 1 there is a single particle

species, and transmission, reflection and annihilation are not physically distinguishable7.

At the same time, some geometrical observables in the Ising model need to be computed

in the limit N → 1 [35, 36], and in this case solution P2− provides the right analytic

continuation.

1.5 q-state Potts model

1.5.1 Fixed point equations

The q-state Potts model is defined on the lattice by the Hamiltonian (1.4) and is charac-

terized by invariance under global permutations of the q values (colors) of the site variable,

corresponding to the symmetry group Sq. As always, the first step for the implementation

of the scattering theory at criticality is the introduction of a particle basis that carries a

representation of the symmetry. For the symmety Sq this is obtained considering particles

that we denote Aαβ, with α, β = 1, 2, . . . , q, and α 6= β. In the case of the Potts ferromag-

net below critical temperature, such a particle basis corresponds to the kinks interpolating

between pairs of the q degenerate vacua [37]; on the lattice a related representation of the

symmetry was used in [38]. We will now see that this same basis allows to represent the

symmetry also at criticality [29, 39] (where there are no kinks due to the coalescence of

7In a relativistic scattering process only the initial and final states are observable [28].
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Figure 1.7: Configurations of the colors entering the unitarity equations (1.67)-(1.70), in

that order. The interpretation is that the amplitude for the lower scattering multiplies the

complex conjugate of the amplitude for the upper scattering; the sum over the internal

color ε is also implied.

the vacua) and beyond the ferromagnetic case [40].

Let us consider the trajectory of a particle Aαβ as a line separating a region of the two-

dimensional space-time characterized by the color α from a region characterized by the

color β. The permutational symmetry then allows for the four inequivalent amplitudes S0,

S1, S2 and S3 depicted in figure 1.6. With this way of labeling the particles the crossing

relations (1.51) become

S0 = S∗0 ≡ ρ0 , (1.64)

S1 = S∗2 ≡ ρeiφ , (1.65)

S3 = S∗3 ≡ ρ3 , (1.66)

where the parametrizations in terms of ρ ≥ 0, and ρ0, ρ3 and φ real have been introduced.

With this parametrizations the unitarity equations (1.50) take the form [29] (see also

figure 1.7)

(q − 3)ρ2
0 + ρ2 = 1 , (1.67)

(q − 4)ρ2
0 + 2ρ0ρ cosφ = 0 , (1.68)

(q − 2)ρ2 + ρ2
3 = 1 , (1.69)

(q − 3)ρ2 + 2ρρ3 cosφ = 0 . (1.70)

The solutions of these equations, which give the Potts RG fixed points [29, 40], are listed

in table 1.3 and will be discussed in the next subsections.

It must be observed that the equations (1.67)-(1.70) realize the analytic continuation

of the model to noninteger values of q. The fact that this continuation is possible is well
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known on the lattice, where the Potts partition function allows for the Fortuin-Kasteleyn

expansion [41]

Z ∝
∑
G

pNb(1− p)N̄bqNc , (1.71)

where G is a graph made of bonds placed on the edges of the lattice, Nb is the number of

bonds in G, N̄b is the number of edges without a bond, and Nc is the number of clusters

in G. A cluster corresponds to a set of connected bonds, but also to an isolated site. The

quantity

p = 1− e−J/T (1.72)

gives the relation with the coupling J of the spin representation. The Fortuin-Kasteleyn

expansion is important, in particular, because implies that the percolation problem [42]

can be studied as the limit q → 1 of the Potts model. Indeed, in such a limit the

weight pNb(1 − p)N̄b of a bond configuration corresponds to random bond occupation

with probability p. For q generic the reprentation (1.71) of the partition function defines

a problem of “correlated percolation” in which each cluster can take q colors. In the

following we will discuss the Potts model implying the continuation to q noninteger.

While for q integer only the scattering amplitudes of figure 1.6 involving a number of

colors not larger than q play a role, all of them participate to the analytic continuation

to q noninteger8.

1.5.2 Ferromagnetic criticality and tricriticality

The phase transition of the two-dimensional q-state Potts ferromagnet is of the second

order up to q = 4, and of the first order above this value [43]. This implies that the

ferromagnetic critical line corresponds to a solution of the fixed point equations (1.67)-

(1.70) having q = 4 as upper endpoint, namely to one of the solutions III± in table 1.3.

The fact that for the Ising model (q = 2) the only physical amplitude S3 = ρ3 must take

the free fermion value −1 uniquely identifies the solution III−.

On the other hand, the q = 4 Potts model is a particular case of the Ashkin-Teller

model9, which we already saw has central charge c = 1. It follows that the Potts ferro-

magnetic critical line falls into the subspace of CFTs with c ≤ 1 which we discussed in

8A detailed discussion of this point is given in [36].
9See [44, 45] for the scattering description of the Ashkin-Teller model, and [46] for that of the Potts

model along the first order transition as q → 4+.
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Solution q ρ0 ρ 2 cosφ ρ3

I 3 0, 2 cosφ 1 ∈ [−2, 2] 0

II± [−1, 3] 0 1 ±
√

3− q ±
√

3− q

III± [0, 4] ±1
√

4− q ±
√

4− q ±(3− q)

IV± [1
2
(7−

√
17), 3] ±

√
q−3

q2−5q+5

√
q−4

q2−5q+5
±
√

(3− q)(4− q) ±
√

q−3
q2−5q+5

V± [4, 1
2
(7 +

√
17)] ±

√
q−3

q2−5q+5

√
q−4

q2−5q+5
∓
√

(3− q)(4− q) ±
√

q−3
q2−5q+5

Table 1.3: Solutions of Eqs. (1.67)-(1.70). They give the RG fixed points with Sq permu-

tational symmetry.

section 1.2.1. The correspondence between CFT and scattering theory [29] then proceeds

through steps anologous to those discussed in section 1.4.2 for the O(N) case. One first

identifies ∆ε = ∆2,1 and then searches for the field η that creates the particles as the

most relevant chiral field local with respect to ε; this gives ∆η = ∆1,3, a function of the

parameter p entering (1.19). At this point we observe that it follows in general from the

amplitudes of figure 1.6 that the state
∑

γ 6=αAαγAγα scatters into itself with the amplitude

S = S3 + (q − 2)S2 , (1.73)

which takes the value S = e−4iφ for the solution III−. This gives ∆η as a function of q

through (1.49), and the comparison with the previous result in function of p provides us

with the relation
√
q = 2 cos

π

p+ 1
. (1.74)

The identification ∆s = ∆1/2,0 for the conformal dimension of the spin field for real

values of q can be done exploiting the OPE (1.22) involving nondegenerate fields [29]. We

report in table 1.4 these identifications of the central charge and conformal dimensions

for the critical Potts ferromagnet. They match those obtained in [33] from the lattice

determination of scaling dimensions [32].

We now recall the observation of section 1.2.1 that the critical points of the Potts

ferromagnet for q = 2, 3 correspond to the CFT minimal models with p = 3, 5, respectively,
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and that for the same values of q there are tricritical points that can be realized allowing

for vacant sites; they correspond to p = 4, 6, respectively. This pairing, for a given q, of

a critical point at p and and a tricritical point at p + 1 is actually known to extend to p

generic (also noninteger) [9]. It follows that, together with the critical line (1.74), there

is a tricritical line with
√
q = 2 cos

π

p
. (1.75)

Since the introduction of vacancies does not affect color permutational symmetry, also the

tricritical line must correspond to one of the scattering solutions in table 1.3. Critical and

tricritical lines meet [47] at the endpoint q = 4 (p =∞), and have conformal dimensions

related by index exchange (see [40]), namely ∆ε = ∆1,2, ∆s = ∆0,1/2 and ∆η = ∆3,1 on

the tricritical line. Inserting this value of ∆η in (1.73) and using (1.75) one obtains again

the result S = e−4iφ corresponding to III−; on the tricritical line, however, the sign of

sinφ is opposite to that for the critical line.

1.5.3 Antiferromagnets

The Potts model naturally offers us the occasion to enlarge our discussion to the case

of antiferromagnetic interactions. Since the antiferromagnetic interaction tends to anti-

align neighboring spins, it assigns an important role to the number of neighbors and to the

structure of the lattice. This means that, while for ferromagnets quantities like critical

exponents do not depend on the lattice structure (universality), antiferromagnenets have

to be analyzed case by case. The fixed point equations (1.67)-(1.70) were obtained relying

only on Sq symmetry, and this is common to ferromagnetic and antiferromagnetic Potts

models. As a consequence the solutions of table 1.3 must also account for criticality in

antiferromagnetic Potts models. What is presently known about the relations between

the solutions of table 1.3 and Potts antiferromagnets can be summarized as follows.

The solution I, which is defined only for q = 3, contains φ as free parameter. This

means that it describes a line of fixed points, and the simplest possibility is that it

corresponds to the Gaussian line with central charge c = 1 of section 1.2.2. A confirmation

comes from the fact that the q = 3 Potts antiferromagnet on the square lattice is known

to possess a T = 0 Gaussian critical point [43, 48, 49] with ∆ε = b2 = 3/4 [50]. Since we

know that ∆η = 1/4b2 on the Gaussian line, and (1.73) gives S = S2 = e−iφ for solution
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I, (1.49) gives the relation

φ =
π

2b2
(1.76)

between the scattering and the Gaussian parameters. The expectation [40] is that solution

I corresponds to critical points of q = 3 antiferromagnets on lattices whose structure

changes with b2. Quite remarkably a family of lattices (self-dual quadrangulations with

T = 0 criticality) realizing this phenomenon was recently found [51].

Hence, solution I corresponds to a family of different lattices for a fixed value of q. On

the other hand, an early result for Potts antiferromagnets was obtained for the simplest

lattice as a function of q. Indeed, Baxter showed that on the square lattice there is a second

order transition for q ∈ [0, 4] [52]. The critical temperature decreases as q increases, and

we saw a moment ago that it is zero at q = 3, implying that for q > 3 the transition no

longer corresponds to physical temperatures. Given its definition in the range q ∈ [0, 4],

the critical line has to corresponds to one of the scattering solutions of type III, and III−

is selected by the fact that for q = 2 the square lattice ferromagnet and antiferromagnet

can be mapped into. The square lattice critical line was found [53] (see also [54, 55, 40])

to have central charge10

c =
2(N − 1)

N + 2
, (1.77)

with N related to q as
√
q = 2 cos

π

(N + 2)
. (1.78)

The relations ∆ε = (N − 1)/N and ∆σ = N/8(N + 2) are also obtained. On the other

hand, using (1.49) with S = e−4iφ for solution III−, one finds ∆η = 2/(N + 2).

The latter identification shows that solution III− with sinφ > 0 describes both the tri-

critical ferromagnetic line and the square lattice antiferromagnetic line, something made

possible by the fact that the relation (1.49) allows for different values of ∆η in correspon-

dence of the same amplitude S. This illustrates how the solutions of table 1.3, although

rather limited in number, are able to account for the diversity of antiferromagnetic critical

behaviors.

Solution V of table 1.3 has to be noted for the fact that it sets to (7 +
√

17)/2 = 5.56..

the maximal value of q for which criticality with Sq symmetry can be realized in two

dimensions11, leaving room for a second order transition in a q = 5 antiferromagnet [40].

10It must be noted that this value of central charge is that of ZN ferromagnets [56].
11Quenched disorder brings this maximal value to infinity [57, 58], see [39] for the analytical derivation.
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√
q line c ∆ε ∆η ∆s

2 cos π
p+1

F critical 1− 6
p(p+1)

∆2,1 ∆1,3 ∆ 1
2
,0

2 cos π
p

F tricritical 1− 6
p(p+1)

∆1,2 ∆3,1 ∆0, 1
2

2 cos π
N+2

AF square lattice 2(N−1)
N+2

N−1
N

2
N+2

N
8(N+2)

Table 1.4: As discussed in the text, the scattering solution III− describes both Potts

ferromagnetic (F) and antiferromagnetic (AF) critical lines. Here c is the central charge,

while the conformal dimensions ∆µ,ν are given by (1.20).

Numerical evidence in favor of such a transition in the five-state Potts antiferromagnet on

the bisected hexagonal lattice was given in [59]. However, a more recent study concluded

in favor of an extremely weak first order transition [60], so that the search for a lattice

on which this transition can occur has to start over. Here we notice that the relation

S0 + S3 = S1 + S2 among the Potts amplitudes was obtained in [36] for fixed points

possessing an order-disorder duality12. Table 1.3 shows that only the solutions IV and

V do not satisfy this relation, thus indicating that they do not allow for order-disorder

duality. To conclude the survey of the solutions of table 1.3, we observe that solution

IV appears as a counterpart of V in a lower range of q, while II allows a conformal

identification [63] similar to that of the critical lines of section 1.4.2.

12Under this condition the relation extends away from criticality, without the need of integrability

[36]. In particular, it is displayed by the solution for the off-critical ferromagnet, which is integrable [37].

Obviously, the relation relies on Sq symmetry, even if spontaneously broken. See [61, 62] for the effects

on the spectrum of particle excitations of an explicit breaking of the symmetry induced by a magnetic

field.
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Chapter 2

Criticality in two-dimensional liquid

crystals and the RPN−1 model

The isotropic-nematic transition in liquid crystals is described by the Lebwohl-Lasher

model. In two dimensions, where its continuous symmetry cannot break spontaneously,

this model has been numerically investigated since decades to verify, in particular, the

conjecture of a topological transition leading to a nematic phase with quasi-long-range

order. We use scale invariant scattering theory to exactly determine the renormalization

group fixed points in the general case of N director components (RPN−1 model), which

yields the Lebwohl-Lasher model for N = 3. For N > 2 we show that quasi-long-range

order is absent and that criticality is restricted to zero temperature. For N = 2 the

fixed point equations yield the Berezinskii-Kosterlitz-Thouless transition required by the

correspondence RP 1 ∼ O(2).

2.1 Physical context

A liquid crystal cooled starting from its isotropic phase is generically expected to undergo

a transition to a nematic phase with orientational order [64]. The head-tail symmetry

of the elongated molecules distinguishes the isotropic-nematic (I-N) transition from the

O(3) ferromagnetic transition, and indeed in three dimensions the latter is second order

while the former is observed to be first order, although weakly so [64]. In two dimensions

(2D), on the other hand, the effect of fluctuations is stronger and the existence and

nature of an I-N transition have been the object of debate. The absence of spontaneous
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breaking of continuous symmetries [65] prevents a nematic phase with long range order,

but leaves room for a defect-mediated (topological) transition similar to the Berezinskii-

Kosterlitz-Thouless (BKT) one [66, 4]. In absence of analytical approaches, the matter

has been considered within experimental studies (see [67] for a recent review) and, more

specifically, through numerical simulations within the Lebwohl-Lasher (LL) lattice model

[1], which encodes head-tail symmetry and successfully accounts for the weak first order

transition in 3D [68]. The possibility in the 2D model of a topological transition driven

by ”disclination” defects [69, 70] and leading to a nematic phase with quasi-long-range

order (QLRO) received support by some numerical studies [71, 72, 73, 74], with others

concluding for the absence of a true transition [75, 76, 77, 78, 79]. The alternative scenario

of criticality limited to zero temperature has also been the subject of several numerical

studies [80, 81, 82, 83, 84, 85, 86], which tried to establish in the first place whether the

head-tail symmetry is able to affect the universality class. Conclusions, however, have

been made difficult by the very fast growth of the correlation length as the temperature

is lowered.

Here we study the problem of critical behavior in the 2D LL model within the scale

invariant scattering theory of section 1.3.2. Actually, we consider the more general case

of N director components (RPN−1 model), which yields the LL model for N = 3. We

show, in particular, that for N > 2 there is no QLRO, that criticality is limited to

zero temperature, and that the local symmetry affects critical behavior. The analysis is

performed for continuous values of N and allows to distinguish the range N < N∗ =

2.24421.. characterized by a rich pattern of fixed points from the range N > N∗ in which

the equations possess a single solution.

2.2 Preliminary remarks

As we saw in section 1.3.2, the special features of two-dimensional criticality are respon-

sible for a substantial simplification of the unitarity and crossing equations that generally

apply to relativistic scattering [28, 87]. Indeed, if we denote by µ = 1, 2, . . . , k the par-

ticle species1, by S the scattering operator, and by Sρσµν = 〈ρσ|S|µν〉 the amplitude for a

scattering process with particles µ and ν in the initial state and particles ρ and σ in the

1In this chapter we can limit our discussion to self-conjugated particles.
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Figure 2.1: Left: Pictorial representation of the scattering amplitude Sρσµν . Right: The

product of amplitudes entering the unitarity equations (1.50).

final state (figure 2.1), we have [29]

Sρσµν =
[
Sρνµσ
]∗

(2.1)

for crossing and ∑
λ,τ

Sλτµν [Sρσλτ ]∗ = δµρδνσ (2.2)

for unitarity. The relations

Sρσµν = Sµνρσ = Sσρνµ (2.3)

also hold and express invariance of the amplitudes under time reversal and spatial inver-

sion.

In our study of the RPN−1 model it will be relevant to have in mind the results we

discussed in section 1.4 for the vector model. It will also be convenient, in order to avoid

confusion about the role of the parameter N , to refer to an O(M) vector model defined

on the lattice by the Hamiltonian

H1 = −J
∑
〈i,j〉

si · sj , (2.4)

where si is a M -component unit vector. Then we know that the scattering amplitudes

are those of figure 1.4, parametrized as in (1.53), (1.54), and satisfying the equations

ρ2
1 + ρ2

2 = 1 , (2.5)

ρ1ρ2 cosφ = 0 , (2.6)

Mρ2
1 + 2ρ1ρ2 cosφ+ 2ρ2

1 cos 2φ = 0 . (2.7)

The solutions of these O(M) fixed point equations are those listed in table 2.1 and shown

in figure 2.2; their physical interpretation was discussed in detail in section 1.4.
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Figure 2.2: Solutions of the O(M) fixed point equations (2.5)-(2.7). The two branches

of II correspond to the critical lines for the dilute and dense phases of nonintersecting

loops, III accounts for the BKT transition of the XY model, and the upper branch of I

corresponds to the zero temperature critical point of the model for M > 2.

Solution M ρ1 ρ2 cosφ

I± (−∞,∞) 0 ±1 -

II± [−2, 2] 1 0 ±1
2

√
2−M

III± 2 [0, 1] ±
√

1− ρ2
1 0

Table 2.1: Solutions of equations (2.5)-(2.7), yielding the renormalization group fixed

points with O(M) symmetry.
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2.3 Fixed point equations of the RPN−1 model

The RPN−1 lattice model is defined by the Hamiltonian

H2 = −J
∑
〈i,j〉

(si · sj)2 , (2.8)

where si is a N -component unit vector located at site i. The difference with respect to

the Hamiltonian (1.3) is the square in the r.h.s., which makes (2.8) invariant under any

local reversal si → −si, thus ensuring head-tail symmetry. This means that si effectively

takes values on the unit hypersphere with opposite points identified, namely in the real

projective space the model is named after. The Lebwohl-Lasher case corresponds to

N = 3. The global and local symmetries of the model are represented through an order

parameter variable quadratic in the vector components sai , namely by the symmetric

tensor [64]

Qab
i = sai s

b
i −

1

N
δab . (2.9)

While
∑

a s
a
i s
a
i = 1 excludes the presence of an invariant linear in the order parameter

components, TrQab
i = 0 ensures that, upon diagonalization in generic dimension, the

order parameter 〈Qab
i 〉 vanishes in the isotropic phase. We denote by 〈· · · 〉 the average

over configurations weighted by e−H2/T .

The steps through which we implement scale invariant scattering for the two-dimensional

RPN−1 model at criticality parallel those seen in section 1.4 for the vector model. The

key difference is that, in the continuum limit, the order parameter field is now the sym-

metric tensor Qab(x), which creates particles that we label by µ = ab, with a and b going

from 1 to N . The scattering processes corresponding to these particles are those shown in

figure 2.3. Taking into account also the relations (1.40) and (1.41) in the massless limit,

the scattering matrix is expressed in terms of the amplitudes S1, . . . , S11 as

Sef,ghab,cd = S1 δ
(2)
(ab),(cd)δ

(2)
(ef),(gh) + S2 δ

(2)
(ab),(ef)δ

(2)
(cd),(gh) + S3 δ

(2)
(ab),(gh)δ

(2)
(cd),(ef)

+ S4 δ
(4)
(ab)(gh),(cd)(ef) + S5 δ

(4)
(ab)(ef),(cd)(gh) + S6 δ

(4)
(ab)(cd),(ef)(gh)

+ S7

[
δabδefδ

(2)
(cd),(gh) + δcdδghδ

(2)
(ab),(ef)

]
+ S8

[
δabδghδ

(2)
(cd),(ef) + δcdδefδ

(2)
(ab),(gh)

]
+ S9

[
δabδ

(3)
(cd),(ef),(gh) + δcdδ

(3)
(ab),(ef),(gh) + δefδ

(3)
(cd),(ab),(gh) + δghδ

(3)
(cd),(ef),(ab)

]
+ S10 δabδcdδefδgh + S11

[
δabδcdδ

2
(ef),(gh) + δefδghδ

(2)
(ab),(cd)

]
,

(2.10)
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Figure 2.3: Scattering amplitudes appearing in (2.10). Time runs upwards.

where we introduced the notations

δ
(2)
(ab),(cd) ≡ (δacδbd + δadδbc)/2 , (2.11)

δ
(3)
(ab),(cd),(ef) ≡ (δafδbdδce + δadδbfδce + δaeδbdδcf + δadδbeδcf

+ δafδbcδde + δacδbfδde + δaeδbcδdf + δacδbeδdf )/8 , (2.12)

δ
(4)
(ab)(cd),(ef)(gh) ≡ (δahδbfδcgδde + δafδbhδcgδde + δagδbfδchδde + δafδbgδchδde

+ δahδbeδc,gδdf + δa,eδbhδcgδdf + δagδbeδchδdf + δaeδbgδchδdf

+ δahδbfδceδdg + δafδbhδceδdg + δahδbeδcfδdg + δaeδbhδcfδdg

+ δagδbfδceδdh + δafδbgδceδdh + δagδbeδcfδdh + δaeδbgδcfδdh)/4 (2.13)

to take into account the different ways of contracting the particle indices for a given

process in figure 2.3. The fact that the indices of a particle aa can annihilate each other

gives rise to the amplitudes Si≥7.

Since the amplitudes Si≤3 satisfy the crossing equations (1.53) and (1.54), we keep for

them the same parametrization in terms of ρ1, ρ2 and φ. On the other hand, the crossing
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relations for the remaining amplitudes lead to the parametrizations

S4 = S∗6 ≡ ρ4e
iθ , (2.14)

S5 = S∗5 ≡ ρ5 , (2.15)

S7 = S∗7 ≡ ρ7 , (2.16)

S8 = S∗11 ≡ ρ8e
iψ , (2.17)

S9 = S∗9 ≡ ρ9 , (2.18)

S10 = S∗10 ≡ ρ10 . (2.19)

The unitarity equations (1.50) now take the explicit form

N∑
e,f,g,h=1

Sef,ghab,cd

[
Sa
′b′,c′d′

ef,gh

]∗
= δ

(2)
(ab),(a′b′)δ

(2)
(cd),(c′d′) , (2.20)

which takes into account the present way of indexing the particles. The different possible

choices of external indices (see table 2.2) then yield the equations

1 = ρ2
1 + ρ2

2 + 4ρ2
4, (2.21)

0 = 2ρ1ρ2 cosφ+ 4ρ2
4, (2.22)

0 = (MN + 1)ρ2
1 + 2ρ2

1 cos 2φ+ 2ρ1ρ2 cosφ+ 4ρ1ρ4 cos(φ+ θ) + 4(ρ2
4 + ρ2

5 + 2ρ4ρ5 cos θ)

+ 4(N + 1)(ρ1ρ4 cos(φ− θ) + ρ1ρ5 cosφ) + 2Nρ1ρ8 cos(φ+ ψ) + 8ρ4ρ8 cos(θ − ψ)

+ 8ρ4ρ8 cos(θ + ψ) + 8ρ5ρ8 cosψ +N2ρ2
8 + 4ρ1ρ9 cosφ+ 4Nρ8ρ9 cosψ + 2ρ2

9, (2.23)

0 = 2ρ2ρ5 + 2ρ1ρ4 cos(φ+ θ) + 2ρ2
4 cos 2θ + 2(N + 3)ρ4ρ5 cos θ + 4ρ4ρ9 cos θ

+ 2ρ5ρ9 + 1
4
Nρ2

9, (2.24)

0 = 2ρ1ρ5 cosφ+ 2ρ2ρ4 cos θ + 2ρ2
4 cos 2θ + 2ρ4ρ5 cos θ + (N + 2)(ρ2

4 + ρ2
5)

+ 4ρ4ρ9 cos θ + 2ρ5ρ9 + 1
4
Nρ2

9, (2.25)

0 = 2ρ1ρ4 cos(φ− θ) + 2ρ2ρ4 cos θ + 2ρ2
4, (2.26)

0 = 2ρ1ρ7 cosφ+ 2ρ2ρ8 cosψ + 2Nρ7ρ8 cosψ + 2ρ4ρ9 cos θ + 2ρ7ρ9 + 2ρ8ρ9 cosψ

+ 1
4
(N + 2)ρ2

9, (2.27)

0 = 2ρ1ρ8 cos(φ+ ψ) + 2ρ2ρ7 +N(ρ2
7 + ρ2

8) + 2ρ4ρ9 cos θ + 2ρ7ρ9 + 2ρ8ρ9 cosψ

+ 1
4
(N + 2)ρ2

9, (2.28)
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0 = 4ρ8ρ4e
iψ cos θ + 2e−2iθρ2

4 + 2e−iθρ5ρ4 + 4ρ7ρ4 cos θ + 2ρ9ρ4 cos θ +
1

2
e−iθNρ9ρ4

+
1

2
Nρ8ρ9e

iψ +

(
N

2
+ 1

)
ρ5ρ9 +

1

2
Nρ7ρ9 + 2ρ5ρ8e

iψ + ρ1ρ9 cosφ+ ρ2
9 + 2ρ5ρ7

+ ρ2ρ9, (2.29)

0 = 4ρ4ρ8 cos(θ − ψ) + (MN + 3) ρ2
8 +N2ρ2

10 + 2(N + 1)ρ8ρ9 cosψ + 6Nρ8ρ10 cosψ

+ 4Nρ7ρ10 + 8ρ7ρ8 cosψ + 4ρ2
8 cos 2ψ + 2ρ1ρ10 cosφ+ 2ρ2

7 + ρ2
9 + 2ρ2ρ10 + 4ρ9ρ10,

(2.30)

0 = 4ρ1ρ4e
−i(θ+φ) + 4ρ4ρ9e

−iθ + 16ρ4ρ10 cos θ + 2(MN + 1)ρ1ρ8e
−i(ψ+φ) + 4ρ1ρ8e

−i(φ−ψ)

+ 4ρ1ρ8 cos(φ− ψ) + 2N2ρ8ρ10e
iψ + 4

(
2 cos θ + e−iθN

)
ρ4ρ8e

−iψ +N
(
2 + 4e2iψ

)
ρ2

8

+ 4Nρ7ρ8e
iψ + 4(N + 1)ρ5ρ8e

−iψ + 2Nρ1ρ10e
−iφ + 2(N + 1)ρ1ρ9e

−iφ + 4Nρ9ρ10

+ 4
(
2 cosψ + eiψ

)
ρ8ρ9 + 4ρ2ρ8 cosψ + 4ρ1ρ7e

−iφ + 4ρ5ρ9 + 4ρ7ρ9 + 8ρ5ρ10

(2.31)

where MN is given by

MN ≡
1

2
N(N + 1)− 1 (2.32)

and coincides with the number of independent components of the order parameter variable

(2.9). In table 2.2 different latin letters correspond to different values from 1 to N ; we

checked that no new constraints arise from different choices.

At this stage we did not yet take into account the fact that the field Qab(x) that

creates the particles is traceless. We do this now defining T =
∑

a aa and requiring the

trace decoupling condition

S|(ab)T 〉 = S0|(ab)T 〉 , S0 = ±1 (2.33)

for any particle state |(ab)〉 = |ab〉+ |ba〉. In other words, we require that the trace mode

T is a noninteracting2 (and then decoupled) particle that can be discarded, thus yielding

the desired sector with TrQab = 0. The condition (2.33) gives the relations

S2 + S9 +NS7 − S0 = S1 + S9 +NS11 = S3 + S9 +NS8 =

4(S4 + S5 + S6) +NS9 = S7 + S8 + S11 +NS10 = 0 , (2.34)

2The sign factor S0 takes into account that the trace mode can decouple as a free boson or a free

fermion.
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Equation µ ν ρ σ

(2.21) ab cd ab cd

(2.22) ab cd cd ab

(2.23) ab ba cd dc

(2.24) ab bc cd da

(2.25) ab bc ad dc

(2.26) ab cd ac bd

(2.27) aa bc bc dd

(2.28) aa bc dd bc

(2.29) aa bc bd dc

(2.30) aa bb cc dd

(2.31) aa bb cd dc

Table 2.2: External indices used in (1.50) to obtain the equations (2.21)-(2.31).

which we use to express the amplitudes Si≥7 in terms of Si≤6, namely

ρ7 = − 1

N
(ρ2 − S0) +

4

N2
(2ρ4 cos θ + ρ5), (2.35)

ρ8 cosψ = − 1

N
ρ1 cosφ+

4

N2
(2ρ4 cos θ + ρ5), (2.36)

ρ8 sinψ =
1

N
ρ1 sinφ, (2.37)

ρ9 = − 4

N
(2ρ4 cos θ + ρ5), (2.38)

ρ10 =
1

N2

(
2ρ1 cosφ+ ρ2 − S0 −

12

N
(2ρ4 cos θ + ρ5)

)
. (2.39)

Upon substitution of these expressions in (2.21)-(2.31), the imaginary parts of (2.29) and

(2.31) vanish, while the real parts as well as the equations (2.27), (2.28) and (2.30) become

linear combinations of (2.21)-(2.26). The latter are the only remaining equations and can
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Solution N ρ1 ρ2 cosφ ρ4 ρ5 cos θ

A1± (−∞,∞) 0 ±1 − 0 0 −
A2± [−3, 2] 1 0 ±1

2

√
2−MN 0 0 −

A3 −3, 2
√

1− ρ2
2 [−1, 1] 0 0 0 −

B1 2
1−ρ2

2√
1+3ρ2

2

[−1, 1] − 2ρ2√
1+3ρ2

2

|ρ2|
√

1−ρ2
2

1+3ρ2
2

ρ2(1−ρ2
2)

1+3ρ2
2
−sgn(ρ2)

√
1−ρ2

2

1+3ρ2
2

B2± 2
√

1 + 2xρ2 − ρ2
2 α±(x) x√

1+2xρ2−ρ2
2

√
−xρ2

2
−x
2

x+2ρ2

2
√
−2xρ2

B3± 3 2
3

±1
3

∓1 1
3

±1
3

±1

Table 2.3: Analytic solutions of the equations (2.40)-(2.45). In the expression of B2±,

x ∈
[
− 1√

2
1√
2

]
is a free parameter, and α±(x) ≡ x

2x2−3±
√

2(x2−4)(2x2−1)

2(6x2+1)
.

be written in the form

1 = ρ2
1 + ρ2

2 + 4ρ2
4 , (2.40)

0 = 2ρ1ρ2 cosφ+ 4ρ2
4 , (2.41)

0 = MNρ
2
1 + 2ρ2

1 cos 2φ+ 2ρ1ρ2 cosφ+ 4

(
1− 2

N
+N

)
ρ1ρ4 cos(φ− θ)

+ 4

(
1− 2

N

)
ρ1ρ4 cos(φ+ θ) +

32

N2
ρ2

4 cos 2θ + 4

(
1− 2

N
+N

)
ρ1ρ5 cosφ

+ 8

(
1 +

8

N2

)
ρ4ρ5 cos θ + 4

(
1 +

8

N2

)
ρ2

4 + 4

(
1 +

4

N2

)
ρ2

5 , (2.42)

0 = 2ρ2ρ5 + 2ρ1ρ4 cos(φ+ θ)− 8

N
ρ2

4 + 2

(
1− 4

N

)
ρ2

4 cos 2θ

+ 2

(
3− 8

N
+N

)
ρ4ρ5 cos θ − 4

N
ρ2

5 , (2.43)

0 = 2ρ2ρ4 cos θ +

(
2− 8

N
+N

)
ρ2

4 + 2

(
1− 4

N

)
ρ2

4 cos 2θ + 2ρ1ρ5 cosφ

+ 2

(
1− 8

N

)
ρ4ρ5 cos θ +

(
2− 4

N
+N

)
ρ2

5 , (2.44)

0 = 2ρ1ρ4 cos(φ− θ) + 2ρ2ρ4 cos θ + 2ρ2
4 . (2.45)

The solutions of these equations yield the renormalization group fixed points of the RPN−1

model in two dimensions. Since the equations were obtained relying only on the symme-

tries of the Hamiltonian (2.8), their space of solutions contains the fixed points that arise

in the ferromagnetic case (J > 0) as well as in antiferromagnets (J < 0).
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2.4 Solutions

The solutions of the equations (2.40)-(2.45) that we could determine analytically are

listed in appendix 2.A and summarized in table 2.3. The remaining solutions, which we

determined numerically, are discussed in section 2.4.2 below.

Since for ρ4 = ρ5 = 0 the equations (2.40)-(2.45) reduce to (2.5)-(2.7) with M = MN ,

the RPN−1 model possesses, in particular, the FPs of the O(MN) model. Notice that, for

ρ4 = ρ5 = 0, equation (2.38) also implies ρ9 = 0. Hence, for this class of solutions we have

the vanishing of the amplidutes S4, S5, S6 and S9, namely of the amplitudes responsible

for mixing indices coming from different particles (see figure 2.3). This is why in the

following we refer to these solutions as nonmixing; they are all determined analytically.

On the other hand, not all solutions of equations (2.40)-(2.45) are nonmixing. We now

discuss the different solutions, starting from the case N = 2.

2.4.1 N = 2

The equations (2.40)-(2.45) with N = 2 admit the solutions A3, B1 and B2 of ap-

pendix 2.A and table 2.3. The common feature of these solutions is that they possess

a free parameter, so that each of them describes a line of fixed points at N = 2. The

presence of a continuum of fixed points at N = 2 is expected due to the topological corre-

spondence RP 1 ∼ O(2). The solution A3 directly corresponds to the O(2) solution P3 of

table 1.1, which we saw accounts for the BKT transition. We now see that the RP 1 fixed

point equations also allow for the realization of such a transition via the mixing solutions

B1 and B2. This results into several lines of fixed points meeting at the BKT transition

point (figure 2.4). A similar concurrence of lines of fixed points at the BKT transition

occurs in the Ashkin-Teller model, for which it was originally argued on perturbative

grounds [88] and has recently been shown exactly [89].

2.4.2 Other solutions for N < 3

Besides the N = 2 solutions of the previous subsection, the other solutions with N < 3 of

the fixed point equations (2.40)-(2.45) that we determined analytically are the solutions

A1 and A2 of table 2.3. These are nonmixing solutions corresponding to P1 and P2,

respectively, of the O(MN) case (see also appendix 2.B). The fact that MN is quadratic
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Figure 2.4: The N = 2 solutions A3, B1 and B2. They all meet at the BKT transition

point.
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Figure 2.5: The solutions of the fixed point equations (2.40)-(2.45) in the interval N ∈
(0, N∗), with N∗ = 2.24421.. indicated by the dashed vertical line. The dotted lines

correspond to numerical solutions, and the continuous ones to the analytic solutions of

table 2.3.

in N is responsible for the fact that solution A3 exists also at N = −3 (M−3 = M2 = 2),

and that A2 extends down to N = −3.
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Besides these analytic solutions, equations (2.40)-(2.45) admit for N < 3 solutions

that we determined numerically. All these numerical solutions are of the mixing type (ρ4

and/or ρ5 nonzero) and turn out to extend up to a maximal value N∗ = 2.24421.. . These

solutions do not possess free parameters for fixed N , and for N = 2 reduce to particular

cases of the solutions discussed in the previous subsection. The numerical solutions form

a rich pattern and are shown, together with the analytical ones, in figure 2.5 in the range

N ∈ (0, N∗).

Apart from the case N = 2, the fixed points for N < 3 only make sense from the point

of view of the analytical continuation in N . This is true also for N = 1, since the RP 0

model possesses no degrees of freedom. On the other hand, the fixed points obtained for

N → 1 can have a physical meaning, in the same way that those obtained for N → 0 in

the O(N) model are relevant for the critical behavior of self-avoiding walks.

2.4.3 N ≥ 3

The rich pattern of fixed points with N < 3 visible in figure 2.5 has to be contrasted with

the fact that solutions A1 and B3 of table 2.3 are the only ones existing for N ≥ 3. The

circumstance appears as a manifestation of the fact that continuous symmetries – integer

values of N > 1 in the present case – cannot break spontaneously in two dimensions [65],

thus confining criticality to zero temperature or to topological transitions. In the latter

respect, the fact that the RPN−1 fixed point solutions do not allow for free parameters

at fixed N > 2 excludes the presence in this range of BKT-like transitions yielding quasi-

long-range order. The possibility of such a transition driven by disclination defects had

been debated in numerical studies [75, 71, 72, 73, 76, 77, 78, 74, 79].

Solution A1 is the only one for N > 3. Its fermionic version A1− is not expected to

play a role for the RPN−1 Hamiltonian (2.8), so that we restrict our attention to A1+.

This solution corresponds to solution P1+ of table 1.1, which describes a zero temperature

fixed point in the O(MN) universality class. Hence, we see that the RPN−1 model allows

for criticality displaying enhanced symmetry O(MN). On the other hand, we have to

remember that the space of solutions in the scale invariant scattering framework contains

the fixed points for both ferromagnetic and antiferromagnetic interactions, and that a

single scattering solution can correspond to different fixed points (recall the discussion

of section 1.5 for the Potts model). Hence, solution A1+ describes a zero temperature
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fixed point, with the symmetry enhancement applying to the antiferromagnetic case3,

similarly to the Potts case of [40]. In any case, for N 6= 2 both the ferromagnetic and

antiferromagnetic universality classes differ from the O(N) universality class, since the

RPN−1 and O(N) order parameters have a different number of components.

These considerations are expected to apply for all N larger than 2. From this point

of view, the existence for N = 3 – and only for this value – of the additional solution B3

is at first sight not easy to interpret. As a matter of fact, it can be checked that solution

B3 is equivalent to solution A1, since it leads to the same scattering matrix (2.10). We

will discuss in more detail other examples of this identification mechanism in the next

chapter.

We finally mention that if, for N ≥ 2, the square in (2.8) is replaced by a power p, a

first order transition is known to arise when p becomes large enough [91, 92, 93, 94]. For

the RPN−1 Hamiltonian (2.8) a first order transition was deduced for N =∞ [95, 96] and

debated for the case of N large [97, 98, 99], while it was shown to be absent in numerical

simulations performed up to N = 40 [71]. Our results concern the fixed points of the

renormalization group, at which the correlation length diverges, and do not add to the

debate about the possibility of a first order transition at large N .

2.A Appendix. Analytic solutions

We give here the analytic solutions of the fixed point equations (2.40)-(2.45), using also

(2.35)-(2.39) to express the amplitudes Si>6.

• Solution A1a± is defined for N ∈ R and reads

ρ2 = S0 , ρ1 = ρ4 = ρ5 = 0,

ρ7 = ρ8 = ρ9 = ρ10 = 0.
(2.46)

• Solution A1b± is defined for N ∈ R and reads

ρ2 = −S0 , ρ1 = ρ4 = ρ5 = 0,

ρ7 =
2S0

N
, ρ8 = ρ9 = 0 , ρ10 = −ρ7

N
.

(2.47)

3In three dimensions the continuous symmetry can break spontaneously, and finite temperature criti-

cality in the O(5) universality class has been identified numerically for the RP 2 antiferromagnet on the

cubic lattice [90].
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• Solution A2± is defined for N ∈ [−3, 2] and reads

ρ1 = 1 , cosφ = (±)
1

2

√
2−MN , sinφ = (±)

1

2

√
2 +MN , ρ2 = ρ4 = ρ5 = 0,

ρ7 =
S0

N
, ρ8 =

1

|N |
, ψ = πu(N)− φ , ρ9 = 0 , ρ10 =

2

N2
ρ1 cosφ− 1

N
ρ7,

(2.48)

with u(N) =

1 , N ≥ 0

0 , otherwise.

Here and below, signs in parenthesis are both allowed.

• Solution A3± is defined for N = −3, 2 and reads

ρ1 =
√

1− ρ2
2 , φ = (±)

π

2
, ρ2 ∈ [−1, 1] , ρ4 = ρ5 = 0,

ρ7 =
S0

N
− ρ2

N
, ρ8 =

1

|N |
ρ1 , ψ = sgn(N)φ , ρ9 = 0 , ρ10 = −ρ7

N
.

(2.49)

• Solution B1± is defined for N = 2 and reads

ρ1 =
1− ρ2

2√
1 + 3ρ2

2

, cosφ = − 2ρ2√
1 + 3ρ2

2

, sinφ = ±
√

1− ρ2
2√

1 + 3ρ2
2

, ρ2 ∈ [−1, 1] ,

ρ4 cos θ = −ρ2(1− ρ2
2)

1 + 3ρ2
2

, ρ4 sin θ = − 2ρ2
2

1− ρ2
2

ρ1 sinφ , ρ5 = −1

2
ρ1 cosφ ,

ρ7 =
S0

2
− ρ2

2
− ρ5 , ρ8 =

1

2
ρ1| sinφ| , ψ = ±π

2
, ρ9 = 2ρ5 , ρ10 = −ρ7

2
.

(2.50)

• Solution B2± is defined for N = 2 and reads

x ∈
[
− 1√

2
, 1√

2

]
, y = (±)

√
1− (x− ρ2)2 , ρ2 = x

2x2 − 3±
√

2(x2 − 4)(2x2 − 1)

2(1 + 6x2)

u =
x+ 2ρ2

4
, v = −sgn(y)

√
−xρ2

2
−
(
x+ 2ρ2

4

)2

, ρ5 = −x
2
, (2.51)

ρ7 =
S0

2
+
ρ2

2
, p = ρ2 + ρ5 , q =

y

2
, ρ9 = −2ρ2 , ρ10 = −ρ7

2
− p ,

where x = ρ1 cosφ, y = ρ1 sinφ, u = ρ4 cos θ, v = ρ4 sin θ, p = ρ8 cosψ, q = ρ8 sinψ.
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Figure 2.6: Scattering processes of a vector particle multiplet (continuous lines) and a

scalar particle (dashed lines). Time runs upwards.

• Solution B3± is defined for N = 3 and reads

ρ1 =
2

3
, φ = π − θ = π − ψ =

π

2
± π

2
, ρ2 = ±1

3
, ρ4 =

1

3
, ρ5 = ρ2,

ρ7 =
S0

3
+ ρ2 , ρ8 = ρ1 , ρ9 = ∓4

3
, ρ10 =

ρ9 − ρ7

3
.

(2.52)

The results for the scattering parameters entering equation (2.40)-(2.45) are summa-

rized in table 2.3. We show in the next appendix that solutions (2.46) and (2.47) only

differ for the trace mode decoupling as a free boson or a free fermion; for this reason they

both appear as solution A1 in table 2.3.

2.B Appendix. Rewriting nonmixing solutions

In this appendix we show how the nonmixing (ρ4 = ρ5 = ρ9 = 0) solutions of the RPN−1

fixed point equations can be written as those of a system consisting of a O(MN) vector

and a scalar that are decoupled. The scattering amplitudes for such a system, in which

the vector and the scalar in general interact [89], are shown in figure 2.6 and take the

form

S ′1 = S ′∗3 ≡ ρ′1e
iφ′ , (2.53)

S ′2 = S ′∗2 ≡ ρ′2, (2.54)

S ′4 = S ′∗6 ≡ ρ′4e
iθ′ , (2.55)

S ′5 = S ′∗5 ≡ ρ′5, (2.56)

S ′7 = S ′∗7 ≡ ρ′7, (2.57)

where ρ′1 and ρ′4 are non negative, while ρ′2, ρ′5, ρ′7, φ′ and θ′ are real.
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For the purpose of the mapping, we reorganize the particles µ = ab of the RPN−1

model into the new basis

|Φµ〉 =



|Φ0〉 = 1
N

N∑
a=1

|aa〉

1√
2

(|ab〉+ |ba〉) , µ = (ab), a 6= b

1√
k(k+1)

(
k∑
j=1

|jj〉 − k|(k + 1)(k + 1)〉

)
, µ = kk, k = 1, . . . N − 1

(2.58)

with 〈Φµ|Φν〉 = δµν and the trace mode Φ0 playing the role of the scalar of the vector-scalar

system. Then, in the nonmixing case, the RPN−1 scattering matrix can be expressed as

Sρ,σµ,ν =
(
S ′1δµ,νδ

ρ,σ + S ′2δ
ρ
µδ

σ
ν + S ′3δ

σ
µδ

ρ
ν

)
δ̄0
µδ̄

0
ν δ̄
ρ
0 δ̄
σ
0 + S ′4(δµ,νδ

ρ
0δ
σ
0 + δ0

µδ
0
νδ
ρ,σ)

+ S ′5δ
0
µδ

0
νδ
ρ
0δ
σ
0 + S ′6(δσµδ

0
νδ
ρ
0 + δ0

µδ
σ
0 δ

ρ
ν) + S ′7(δρµδ

0
νδ
σ
0 + δ0

µδ
ρ
0δ
σ
ν ),

(2.59)

where δ̄νµ = 1− δνµ and

S ′1 = 〈ΦνΦν |S|ΦµΦµ〉 = S1, (2.60)

S ′2 = 〈ΦµΦν |S|ΦµΦν〉 = S2, (2.61)

S ′3 = 〈ΦνΦµ|S|ΦµΦν〉 = S3, (2.62)

S ′4 = 〈Φ0Φ0|S|ΦµΦµ〉 = 〈ΦνΦν |S|Φ0Φ0〉 = S1 +NS11, (2.63)

S ′5 = 〈Φ0Φ0|S|Φ0Φ0〉 = S1 + S2 + S3 + 2N(S7 + S8 + S11) +N2S10, (2.64)

S ′6 = 〈ΦµΦ0|S|Φ0Φµ〉 = 〈Φ0Φν |S|ΦνΦ0〉 = S3 +NS8, (2.65)

S ′7 = 〈Φ0Φµ|S|Φ0Φµ〉 = 〈ΦνΦ0|S|ΦνΦ0〉 = S2 +NS7. (2.66)

The condition (2.34) translate into the relations

S ′4 = S ′6 = 0 , S ′5 = S ′7 = S0, (2.67)

which express the decoupling between the vector and the scalar (see figure 2.6, recalling

that S0 = ±1). The explicit form of the RPN−1 nonmixing solutions in terms of the

vector-scalar amplitudes is given in table 2.4. Notice, in particular, that solutions A1a±

and A1b∓ only differ for the fermionic or bosonic nature of the decoupled scalar.
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Solution N ρ′1 ρ′2 cosφ′ ρ′4 cos θ′ ρ′5 ρ′7

A1a± R 0 S0 − 0 − S0 S0

A1b± R 0 −S0 − 0 − S0 S0

A2± [−2, 2] 1 0 (±)1
2

√
2−MN 0 − S0 S0

A3± 2
√

1− ρ2
2 [−1, 1] 0 0 − S0 S0

Table 2.4: Mapping between nonmixing RPN−1 solutions and decoupled vector-scalar

solutions. Signs in parenthesis are both allowed.
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Chapter 3

Critical points in the CPN−1 model

In this chapter we use scale invariant scattering theory to obtain the exact equations

determining the renormalization group fixed points of the two-dimensional CPN−1 model,

for N real. Also due to special degeneracies at N = 2 and 3, the space of solutions for

N ≥ 2 allows only for zero temperature criticality. For N < 2 the space of solutions

becomes larger, with the appearance of new branches of fixed points relevant for criticality

in gases of intersecting loops

3.1 Fixed point equations

We consider the basic lattice model with a continuous – U(1) – local symmetry, namely

the CPN−1 model realized in terms of complex N -component spin vectors at lattice sites.

In two dimensions, this model has been studied in the high energy context (since [100,

101, 102]) for the similarities – in particular asymptotic freedom – which it shares with

quantum chromodynamics, in statistical mechanics in relation with loop gases [103], and in

condensed matter in relation with quantum antiferromagnets (see e.g. [98]). The remarks

that we made in the previous chapter for RPN−1 concerning the continuous nature of the

symmetry, zero temperature criticality, the possibility of topological transitions, and the

absence of previous exact results, apply to CPN−1 as well. We then turn to the search

of critical points within the scattering framework of section 1.3.2. For this purpose,

we denote by µ = 1, 2, . . . k the particle species, by S the scattering operator, and by

Sρσµν = 〈ρσ|S|µν〉 the scattering amplitude for a process with particles µ and ν in the

initial state and particles ρ and σ in the final state (figure 2.1). Taking into account that
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in this chapter we will deal with particles that are not self-conjugated, the unitarity and

crossing equations take the form (2.2) and

Sρσµν =
[
Sρν̄µσ̄
]∗
, (3.1)

respectively, where we denote by µ̄ the antiparticle of µ. Invariance under charge conju-

gation, time reversal and spatial inversion provides the relations

Sρσµν = S ρ̄σ̄µ̄ν̄ = Sσρνµ = Sµνρσ . (3.2)

The CPN−1 lattice model is defined by the Hamiltonian

HCPN−1 = −J
∑
〈i,j〉

|si · s∗j |2, (3.3)

where sj is a N -component complex vector at site j satisfying sj ·s∗j = 1. The Hamiltonian

(3.3) is invariant under global U(N) transformations (sj → Usj, U ∈ U(N)) and site-

dependent U(1) transformations (sj → eiαjsj, αj ∈ R). These symmetries are represented

through the tensorial order parameter variable

Qab
i = sai (s

b
i)
∗ − 1

N
δab . (3.4)

The presence of an invariant linear in the order parameter components is excluded by the

constraint sj · s∗j = 1, which in turn makes Qab
i traceless.

In order to implement scale invariant scattering for the two-dimensional CPN−1 model

we first of all observe that in the continuum limit the order parameter field is the Hermitian

tensor Qab(x), which creates particles that we label by µ = ab, with a and b taking values

from 1 to N . A state containing a particle ab transforms under the U(N) symmetry as

|ab〉 −→ |a′b′〉 =
∑
a,b

Ua′,aU
∗
b′,b|ab〉 , (3.5)

so that a scattering amplitude Sef,ghab,cd = 〈ef, gh|S|ab, cd〉 with particles ab and cd in the

initial state and particles ef and gh in the final state transforms into

Se
′f ′,g′h′

a′b′,c′d′ =
∑
a,b,c,d

∑
e,f,g,h

Ua′,aU
∗
b′,bUc′,cU

∗
d′,dU

∗
e′,eUf ′,fU

∗
g′,gUh′,hS

ef,gh
ab,cd . (3.6)

Taking also into account the massless limit of the relations (1.40), (1.41) and (1.42), which

can now be written as

Sef,ghab,cd = Sfe,hgba,dc = Sgh,efcd,ab = Sab,cdef,gh , (3.7)
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Figure 3.1: Amplitudes entering (3.8). Time runs upwards

U(N)-invariance corresponds to

Sef,ghab,cd = S1 δa,dδb,cδe,hδf,g + S2 δa,eδb,fδc,gδd,h + S3 δa,gδb,hδc,eδd,f

+ S4 (δa,dδb,fδc,gδe,h + δb,cδa,eδd,hδf,g) + S5 (δb,cδa,gδd,fδe,h + δa,dδb,hδc,eδf,g)

+ S6 (δa,eδb,hδd,fδc,g + δb,fδa,gδc,eδd,h) + S7 (δa,bδe,fδc,gδd,h + δc,dδg,hδa,eδb,f )

+ S8 (δc,dδe,fδa,gδb,h + δa,bδg,hδc,eδd,f ) + S9

[
δe,f (δa,dδb,hδc,g + δb,cδa,gδd,h)

+ δc,d (δb,fδa,gδe,h + δa,eδb,hδf,g) δa,b (δd,fδc,gδe,h + δc,eδd,hδf,g)

+ δg,h (δa,dδb,fδc,e + δb,cδa,eδd,f )
]

+ S10 δa,bδc,dδe,fδg,h

+ S11 (δa,bδc,dδe,hδf,g + δe,fδg,hδa,dδb,c) ,

(3.8)

with amplitudes S1, . . . , S11 depicted in figure 3.1. In this figure each incoming or outgoing

particle has two terminals corresponding to its two indices, and a line connecting two

indices corresponds to a Kronecker delta identifying them.

Crossing symmetry (1.51) translates into

Sef,ghab,cd =
[
Sef,dcab,hg

]∗
. (3.9)

The crossing equations for the amplitudes Si≤3 preserve the form (1.53) and (1.54), and

we keep for these amplitudes the same parametrization in terms of ρ1, ρ2 and φ. The

crossing relations and the corresponding parametrizations for the remaining amplitudes
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are the ones given in equations

S4 = S∗6 ≡ ρ4e
iθ, (3.10)

S5 = S∗5 ≡ ρ5, (3.11)

S7 = S∗7 ≡ ρ7, (3.12)

S8 = S∗11 ≡ ρ8e
iψ, (3.13)

S9 = S∗9 ≡ ρ9, (3.14)

S10 = S∗10 ≡ ρ10 , (3.15)

The unitarity condition (1.50) can be written as

N∑
i,j=1

N∑
k,l=1

Sij,klab,cd

[
Sef,ghij,kl

]∗
= δa,eδb,fδc,gδd,h , (3.16)

and gives rise to the 11 independent equations

1 = ρ2
1 + ρ2

2 + 2ρ2
4, (3.17)

0 = 2ρ1ρ2 cosφ+ 2ρ2
4, (3.18)

0 = N2ρ2
1 + 2ρ2

1 cos 2φ+ 2ρ1ρ2 cosφ+ 4Nρ1ρ4 cos(θ − φ) + 4Nρ1ρ5 cosφ

+ 2ρ2
4 + 4ρ4ρ5 cos θ + 2ρ2

5 + 2Nρ1ρ8 cos(ψ + φ) + 8ρ1ρ9 cosφ+ 4ρ5ρ8 cosψ

+ 8ρ4ρ8 cos θ cosψ + 8Nρ8ρ9 cosψ +N2ρ2
8 + 8ρ2

9 (3.19)

0 = 2ρ1ρ5 cosφ+ 2ρ2ρ4 cos θ +Nρ2
4 +Nρ2

5 + 8ρ4ρ9 cos θ + 4ρ5ρ9 + 2Nρ2
9, (3.20)

0 = 2ρ1ρ4 cos(θ + φ) + 2ρ2ρ5 + 2Nρ4ρ5 cos θ + 8ρ4ρ9 cos θ + 4ρ5ρ9 + 2Nρ2
9, (3.21)

0 = 2ρ1ρ4 cos(θ − φ) + 2ρ2ρ4 cos θ, (3.22)

0 = 2ρ1ρ8 cos(ψ + φ) + 2ρ2ρ7 + 4ρ9(ρ4 cos θ + ρ7 + ρ8 cosψ) +N(ρ2
7 + ρ2

8 + 2ρ2
9), (3.23)
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Equation µ ν ρ σ

(3.17) ab cd ab cd

(3.18) ab cd cd ab

(3.19) ab ba cd dc

(3.20) ab bc ad dc

(3.21) ab bc dc ad

(3.22) ab cd ad cb

(3.23) aa cd bb cd

(3.24) aa cd cd bb

(3.25) aa cd bd cb

(3.26) aa bb dd cc

(3.27) aa bb cd dc

Table 3.1: External indices used in (1.50), (3.16) to obtain the unitarity equations (3.17)-

(3.27).

0 = 2ρ1ρ7 cosφ+ 2ρ2ρ8 cosψ + 4ρ9(ρ4 cos θ + ρ7 + ρ8 cosψ) + 2N(ρ7ρ8 cosψ + ρ2
9),

(3.24)

0 = 2ρ1ρ9 cosφ+ 2ρ2ρ9 + ρ2
4e
−2iθ + ρ4ρ5e

−iθ + 2ρ4ρ7 cos θ + 2ρ4ρ8e
iψ cos θ

+Nρ4ρ9e
−iθ + ρ5ρ7 + ρ5ρ8e

iψ +Nρ5ρ9 +Nρ7ρ9 +Nρ8ρ9e
iψ + 4ρ2

9, (3.25)

0 = 2ρ1ρ10 cosφ+ 2ρ2ρ10 + 4ρ4ρ8 cos(θ − ψ) + 8ρ7ρ8 cosψ + 4Nρ7ρ10 + 6Nρ8ρ10 cosψ

+ 2ρ2
7 + 4ρ2

8 cos 2ψ +
(
N2 + 2

)
ρ2

8 + 8Nρ8ρ9 cosψ + 8ρ2
9 + 8ρ9ρ10 +N2ρ2

10, (3.26)

0 = 2ρ1ρ4e
−i(θ+φ) + 4e−iθρ4ρ9 + 2e−iθρ4ρ10 + 2eiθρ4ρ10 +N2ρ8ρ10e

iψ +N2ρ1ρ8e
−i(ψ+φ)

+ 2Nρ4ρ8e
−i(θ+ψ) + 2Nρ2

8e
2iψ + 2Nρ5ρ8e

−iψ + 2Nρ7ρ8e
iψ + 4Nρ1ρ9e

−iφ

+Nρ1ρ10e
−iφ +Nρ2

8 + 4Nρ9ρ10 + ρ2ρ8e
−iψ + ρ2ρ8e

iψ + 4ρ8ρ9e
−iψ + 8ρ8ρ9e

iψ

+ ρ1ρ8e
i(φ−ψ) + 3ρ1ρ8e

i(ψ−φ) + 2ρ1ρ7e
−iφ + 4ρ5ρ9 + 4ρ7ρ9 + 2ρ5ρ10 . (3.27)

The choices of the indices yielding these equations are given in table 3.1, where the

notation ab implies a 6= b; we checked that no new constraints arise from different choices.

We still need to take into account that the field Qab(x) that creates the particles is
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traceless. We do this requiring that the trace mode

T =
N∑
a=1

aa (3.28)

does not interact with the generic particle cd and can be discarded. This corresponds to

S|T cd〉 = S0|T cd〉 , S0 = ±1, (3.29)

where the sign factor S0 takes into account that the trace mode can decouple as a boson

or a fermion. The last equation translates into
∑

a S
ef,gh
aa,cd = S0δefδcgδdh and yields the

relations

S0 = ρ2 +Nρ7 + 2ρ9, (3.30)

0 = ρ1e
iφ +Nρ8e

−iψ + 2ρ9, (3.31)

0 = 2ρ4 cos θ + ρ5 +Nρ9, (3.32)

0 = ρ7 + 2ρ8 cosψ +Nρ10 . (3.33)

These can be used to express Si≥7 in terms of Si≤6 through

ρ7 = 1
N

(
S0 − ρ2 + 2

N

(
2ρ4 cos θ + ρ5

))
, (3.34)

ρ8 cosψ = 1
N

(
−ρ1 cosφ+ 2

N

(
2ρ4 cos θ + ρ5

))
, (3.35)

ρ8 sinψ = 1
N
ρ1 sinφ, (3.36)

ρ9 = − 1
N

(
2ρ4 cos θ + ρ5

)
, (3.37)

ρ10 = 1
N2

(
2ρ1 cosφ+ ρ2 − S0 − 6

N

(
2ρ4 cos θ + ρ5

))
. (3.38)

When substituting (3.34)-(3.38) in (3.17)-(3.27), the imaginary parts of (3.25) and (3.27)

vanish, while their real parts as well as (3.23), (3.24), (3.26) become linear combina-

tions of the first six equations. This reduces the unitarity equations (3.17)-(3.27) to six
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Solutions N ρ1 ρ2 cosφ ρ4 ρ5 cos θ

A1± R 0 ±1 − 0 0 −
A2± [−

√
3,
√

3] 1 0 ±1
2

√
3−N2 0 0 −

A3± ±
√

3
√

1− ρ2
2 [−1, 1] 0 0 0 −

B± 3 1
2

±1
2

∓1 1
2

ρ2 ±1

Table 3.2: Analytic solutions of the CPN−1 fixed point equations (3.39)-(3.44).

independent equations given by

1 = ρ2
1 + ρ2

2 + 2ρ2
4 , (3.39)

0 = 2ρ1ρ2 cosφ+ 2ρ2
4 , (3.40)

0 = (N2 − 1)ρ2
1 + 2ρ2

1 cos 2φ+ 2ρ1ρ2 cosφ+ 4
(
N − 1

N

)
ρ1 (ρ4 cos(θ − φ) + ρ5 cosφ)

− 4
N
ρ1ρ4 cos(θ + φ) + 8

N2ρ
2
4 cos 2θ + 2

(
1 + 4

N2

)
ρ4 (ρ4 + 2ρ5 cos θ)

+ 2
(
1 + 2

N2

)
ρ2

5 , (3.41)

0 = 2ρ1ρ5 cosφ+ 2ρ2ρ4 cos θ − 4
N
ρ2

4 cos 2θ +
(
N − 4

N

)
ρ2

4 − 8
N
ρ4ρ5 cos θ

+
(
N − 2

N

)
ρ2

5 , (3.42)

0 = 2ρ1ρ4 cos(θ + φ) + 2ρ2ρ5 − 4
N
ρ2

4 cos 2θ − 4
N
ρ2

4 + 2
(
N − 4

N

)
ρ4ρ5 cos θ − 2

N
ρ2

5 , (3.43)

0 = 2ρ1ρ4 cos(θ − φ) + 2ρ2ρ4 cos θ . (3.44)

The solutions of these equations, which we discuss in the next section, correspond to

the renormalization group fixed points with CPN−1 symmetry in two dimensions. As

in the previous chapter, since we derived the equations relying only on the symmetries

of the Hamiltonian (3.3), the space of solutions contains both the fixed points of the

ferromagnetic case (J > 0) and those of the antiferromagnetic case (J < 0).

3.2 Solutions

The solutions of the equations (3.39)-(3.44) that we determined analytically are listed in

appendix 3.A and summarized in table 3.2. The remaining solutions, which we dermined

numerically for N > 0, are shown in figure 3.2 together with the analytical ones. The

figure shows values of N up to 2, since it turns out that only the solutions A1 and B

exists beyond this value. Another visualization of the solutions is given in figure 3.3.
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We start the discussion of the solutions observing that when ρ4 = ρ5 = 0 equations

(3.39)-(3.44) reduce to the equations (1.55)-(1.57) of the O(M = N2 − 1) model1. As a

consequence, the CPN−1 model contains in particular the fixed points of the O(N2 − 1)

model. The solutions A1, A2 and A3 of table 2.3 as corresponding to the O(M = N2−1)

solutions P1, P2 and P3, respectively, of table 1.2. The fact that N2 − 1 = 2 when

N = ±
√

3 explains the domain of definition of solutions A2 and A3.

Since continuous symmetries do not break spontaneously in two dimensions [65], the

Hamiltonian (3.3) is expected to possess only a zero temperature fixed point for N ≥ 2.

For N > 3 we only have solution2 A1, which corresponds in particular to an O(N2 − 1)

zero temperature fixed point and to a symmetry enhancement. However, as we did in the

previous chapter for the RPN−1 case, we have to recall that the space of solutions contains

both ferromagnetic and antiferromagnetic fixed points, and that the a single solution can

correspond to different fixed points. Hence, solution A1 describes both the ferromagnetic

and the antiferromagnetic zero temperature fixed points, with symmetry enhancement

applying to the antiferromagnetic case3 (as for the Potts model [40]).

For N = 3 the situation is apparently complicated by the existence of solution B.

However, while solutions A1 and B clearly differ at the level of the amplitudes S1, . . . , S11,

it can be checked that they yield the same scattering matrix (3.8). Hence, through the

same mechanism we illustrated in the end of section 1.4 for the Ising model, the solutions

A1 and B of the CP 2 model are equivalent at N = 3. This is possible because for N < 4

the particle indices do not take enough different values to make physically distinguishable

all the terms entering the decomposition (3.8).

Having clarified what happens for N > 2, let us now consider N = 2. Figures 3.2 and

3.3 show that N = 2 is the value at which several pairs of solutions existing for N < 2

meet and terminate. The list of solutions at N = 2 is given in table 3.3 in appendix

3.A. Such a proliferation is at first sight problematic, since we already argued that for

N ≥ 2 the Hamiltonian (3.3) should possess only a zero temperature critical point. This

is also fully consistent with the fact that CP 1 corresponds to the Riemann sphere, and

1N2 − 1 is the number of independent real components of the order parameter variable (3.4).
2When discussing the Hamiltonian (3.3) we refer to the bosonic realization A1+ of the symmetry. The

fermionic realization A1− is not relevant for that Hamiltonian.
3In three dimensions, where the symmetry can break spontaneously, a finite temperature critical point

in the O(8) universality class has been observed in numerical simulations of the antiferromagnetic CP 2

model [104].
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Figure 3.2: Solutions of the CPN−1 fixed point equations (2.40)-(2.45).
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Figure 3.3: Solutions of the CPN−1 fixed point equations (2.40)-(2.45) in the parameter

subspace (ρ1 cosφ, ρ2).

then to O(3). We can then suspect that, by the same mechanism observed for solution

B at N = 3, the solutions of table 3.3 reconstruct the same scattering matrix (3.8) than

solution A1, and we checked that this is indeed the case. More specifically, solutions C3,

C4, C7, C8, D3 and D4 correspond to A1+, while C1, C2, C5, C6, D1 and D2 correspond

to A1−.

Let us now consider the solutions that we determined numerically, which extend up
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to N = 2, where they meet in pairs (see figures 3.2 and 3.3). Since the meeting points

at N = 2 are O(3) fixed points, and the O(M) model does not possess branches of fixed

points terminating at M = 3, we can anticipate that the CPN−1 branches terminating

at N = 2 correspond to new universality classes. We illustrate this fact considering the

U(N)-invariant two-particle state

|ψ〉 =
N∑

a,b=1

(
|ab, ba〉 − 1

N
|aa, bb〉

)
, (3.45)

which scatters into itself, i.e. satisfies S|ψ〉 = λ|ψ〉, with an amplitude λ which is a phase

by unitarity and is given by

λ = (N2 − 1)S1 + S2 + S3 + 2

(
N − 1

N

)
(S4 + S5)− 2

N
S6 . (3.46)

Such a phase is related to the conformal dimension ∆η of the chiral field that creates the

particles as [29, 105]

λ = e−2πi∆η . (3.47)

The values of ∆η obtained through (3.46) and (1.49) for the different solutions of the fixed

point equations (2.40)-(2.45) are shown in figure 3.4. Equation (1.49) defines ∆η modulo

integers4, and we plot the most relevant (in the renormalization group sense) interval

∆η ∈ (0, 1). The values 0 and 1/2 correspond to the O(N2 − 1) sigma model (solution

A1+) and to the fermionic realization (solution A1−), respectively5. The figure clearly

exhibits the collapse on the solution A1 of the additional solutions existing at N = 2, 3.

We also see that the numerical solutions at N < 2 correspond to values of ∆η – and then

to fixed points – different from those associated to A1, A2 and A3.

It appears from figure 3.2 that the numerical solutions have nonvanishing ρ2 and ρ4.

Hence, they correspond to intersecting particle trajectories (see figure 3.1) and should

describe criticality in gases of intersecting loops. Actually, the relevance of RPN−1 and

CPN−1 models for gases of intersecting loops was discussed in [103]. Here we are finding

the corresponding CPN−1 fixed points and showing that they exist up to N = 2.

We see that for N ≥ 2 there are only solutions with ρ4 = ρ5 = 0 (or equivalent to

them at N = 2, 3). When moving away from criticality, on the other hand, ρ4 and ρ5

4This corresponds to the fact that in conformal field theory, given a primary field with dimension

∆, there are descendants with dimension ∆ + n, n = 1, 2, . . . . In addition, the duplication of solutions

pointed out in footnote 6 causes ∆η to go into itself under shifts by half-integers.
5See [106] for details about ∆η in the O(M) model.
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Figure 3.4: The conformal dimension ∆η (modulo integers) for the different solutions of

the CPN−1 fixed point equations (2.40)-(2.45).

may6 in general develop nonvanishing values. This is expected for the ferromagnetic case,

thus making explicit away from criticality the difference with the O(N2 − 1) universality

class7.

3.3 Parallels with the RPN−1 model

We briefly point out similarities and differences between the above results for the CPN−1

model and those of the previous chapter for the RPN−1 model. The RPN−1 model differs

from CPN−1 for the fact that the spin variable si is real, leading to an order parameter

that is a traceless symmetric tensor. This allows a larger number of contractions between

pairs of particle indices, but there are still 11 amplitudes S1, . . . , S11 parametrized as in

(1.53), (1.54), (3.10)-(3.15). When ρ4 = ρ5 = 0, the fixed point equations reduce to those

of the O(MN) model, with MN = N(N + 1)/2− 1. As a consequence, there are solutions

A1, A2 and A3 that correspond to the solutions P1, P2 and P3, respectively, of table 1.1

with M = MN . A1 is the only solution for N > 2.24421.. . More precisely, at N = 3

there is an isolated solution B3, but is equivalent to A1 by the same mechanism discussed

in the previous section for solution B in CP 2. At N = 2, solution A3 goes along with

two additional solutions, B1 and B2, which also possess a free parameter and provide

6Not for N = 2, given that CP 1 ∼ O(3).
7In particular, contrary to the O(N2−1) model [107], the CPN−1 model is not expected to be exactly

solvable away from criticality [108, 109].
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Figure 3.5: ∆η (modulo integers) for the different RPN−1 solutions.

alternative realizations of the BKT phase in the RP 1 ∼ O(2) model. Finally, we showed

in figure 2.5 how for N < 2.24421.. there is a rich pattern of solutions that we determined

numerically.

We can again use (1.49) to determine the conformal dimension ∆η, taking into account

that (3.46) is now replaced by

(N−1)(N+2)
2

S1 + S2 + S3 + 2 (N−1)(N+2)
N

(S4 + S5) + 2N−2
N
S6 , (3.48)

in terms of the RPN−1 amplitudes Si. The result for the different solutions is shown

in figure 3.5. N = 2.24421.. is the threshold value below which the space of solutions

enlarges, a threshold that in CPN−1 occurs at N = 2. While in the previous section the

correspondence CP 1 ∼ O(3) allowed us to anticipate that all the ”threshold solutions”

should be equivalent to A1, a similar argument is absent at the RPN−1 threshold, and

indeed figure 3.5 illustrates that the solutions at N = 2.24421.. are not related to A1.

3.A Appendix. Analytic solutions

We list in this appendix the solutions of the fixed point equations (3.39)-(3.44) that we

determined analytically. With respect to table 3.2, we also use the equations (3.34)-(3.38)

to express the amplitudes Si≥7.

• Solution A1a± is defined for N ∈ R and reads

ρ2 = S0 , ρ1 = ρ4 = ρ5 = ρ8 = ρ7 = ρ9 = ρ10 = 0 . (3.49)
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• Solution A1b± is defined for N ∈ R and reads

ρ2 = −S0 , ρ1 = ρ4 = ρ5 = ρ8 = ρ9 = 0 ,

ρ7 =
2S0

N
, ρ10 = −ρ7

N
,

(3.50)

• Solution A2± is defined for N ∈ [−
√

3,
√

3] and reads8

ρ1 = 1 , ρ2 = ρ4 = ρ5 = ρ9 = 0 , cosφ = (±)
1

2

√
3−N2 ,

sinφ = (±)
1

2

√
1 +N2 , ρ7 =

S0

N
, ρ8 =

1

|N |
, cosψ = −sgn(N) cosφ,

sinψ = sgn(N) sinφ , ρ10 =
2 cosφ

N2
− S0

N2
.

(3.51)

• Solution A3± is defined for N = ±
√

3 and reads

ρ1 =
√

1− ρ2
2 , ρ2 ∈ [−1, 1] , ρ4 = ρ5 = ρ9 = 0 , φ = (±)

π

2
, ψ = ±φ,

ρ8 =
1

|N |

√
1− ρ2

2 , ρ7 =
S0 − ρ2

N
, ρ10 = −ρ7

N
.

(3.52)

• Solution B± is defined for N = 3 and reads

ρ1 = ρ4 = ρ8 =
1

2
, ρ2 = ρ5 = ρ9 = ±1

2
, φ =

π

2
± π

2
= θ + π = ψ + π,

ρ7 =
ρ2 + S0

3
, ρ10 = −ρ7

3
∓ 1

3
.

(3.53)

In the next appendix we show that solutions (3.49) and (3.50) differ only for the way

the trace mode decouples (as a free fermion or a free boson); this is why they both appear

in table 2.3 as solution A1. Table 3.3 gives the solutions at N = 2.

3.B Appendix. Mapping of nonmixing solutions

Equation (3.37) shows that the solutions with ρ4 = ρ5 = 0 also have ρ9 = 0, and then

S4 = S5 = S6 = S9 = 0. Figure 3.1 shows that the vanishing of these amplitudes

eliminates the mixing of indices coming from different particles, and for this reason we

refer to this type of solutions as ”nonmixing”. We now show how, through a change of

basis, these nonmixing solutions can all be expressed as those of a system consisting of an

8Signs enclosed in parenthesis are both allowed.
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Solution ρ1 cosφ ρ1 sinφ ρ4 cos θ ρ4 sin θ ρ2 ρ5

C1 1
32

(
−5− 3

√
17
)
− 1

16

√
1
2

(
95− 7

√
17
)

1
64

(
−23−

√
17
)

1
32

√
1
2

(
95− 7

√
17
)

1
8

(√
17− 1

)
1
32

(
5 + 3

√
17
)

C2 1
32

(
−5− 3

√
17
)

1
16

√
1
2

(
95− 7

√
17
)

1
64

(
−23−

√
17
)
− 1

32

√
1
2

(
95− 7

√
17
)

1
8

(√
17− 1

)
1
32

(
5 + 3

√
17
)

C3 1
32

(
5− 3

√
17
)
− 1

16

√
1
2

(
95 + 7

√
17
)

1
64

(
23−

√
17
)

1
32

√
1
2

(
95 + 7

√
17
)

1
8

(
1 +
√

17
)

1
32

(
3
√

17− 5
)

C4 1
32

(
5− 3

√
17
)

1
16

√
1
2

(
95 + 7

√
17
)

1
64

(
23−

√
17
)
− 1

32

√
1
2

(
95 + 7

√
17
)

1
8

(
1 +
√

17
)

1
32

(
3
√

17− 5
)

C5 1
32

(
3
√

17− 5
)
− 1

16

√
1
2

(
95 + 7

√
17
)

1
64

(√
17− 23

)
1
32

√
1
2

(
95 + 7

√
17
)

1
8

(
−1−

√
17
)

1
32

(
5− 3

√
17
)

C6 1
32

(
3
√

17− 5
)

1
16

√
1
2

(
95 + 7

√
17
)

1
64

(√
17− 23

)
− 1

32

√
1
2

(
95 + 7

√
17
)

1
8

(
−1−

√
17
)

1
32

(
5− 3

√
17
)

C7 1
32

(
5 + 3

√
17
)
− 1

16

√
1
2

(
95− 7

√
17
)

1
64

(
23 +

√
17
)

1
32

√
1
2

(
95− 7

√
17
)

1
8

(
1−
√

17
)

1
32

(
−5− 3

√
17
)

C8 1
32

(
5 + 3

√
17
)

1
16

√
1
2

(
95− 7

√
17
)

1
64

(
23 +

√
17
)
− 1

32

√
1
2

(
95− 7

√
17
)

1
8

(
1−
√

17
)

1
32

(
−5− 3

√
17
)

D1 −3
4

−
√

15
8

− 3
16

√
15

16
1
8

3
4

D2 −3
4

√
15
8

− 3
16

−
√

15
16

1
8

3
4

D3 3
4

−
√

15
8

3
16

√
15

16
−1

8
−3

4

D4 3
4

√
15
8

3
16

−
√

15
16

−1
8

−3
4

Table 3.3: Solutions of equations (2.40)-(2.45) at N = 2; we omit A1.

O(N2 − 1) vector and a scalar that are decoupled. The amplitudes for such a system, in

which the scalar and the vector in general interact [89], are shown in figure 3.6 and take

the form

S ′1 = S ′∗3 ≡ ρ′1e
iφ′ , (3.54)

S ′2 = S ′∗2 ≡ ρ′2, (3.55)

S ′4 = S ′∗6 ≡ ρ′4e
iθ′ , (3.56)

S ′5 = S ′∗5 ≡ ρ′5, (3.57)

S ′7 = S ′∗7 ≡ ρ′7 . (3.58)

The change of basis that we perform in the CPN−1 model is

|Φµ〉 =



|Φ0〉 = 1√
N

N∑
a=1

|aa〉 ,

1+i
2
|ab〉+ 1−i

2
|ba〉 , µ = ab , a 6= b ,

1√
k(k+1)

(
k∑
j=1

|jj〉 − k|(k + 1)(k + 1)〉

)
, µ = kk , k = 1, . . . , N − 1,

(3.59)

with 〈Φµ|Φν〉 = δµν , and the trace mode Φ0 being the scalar of the vector-scalar system.

The scattering matrix for the non-mixing case of the CPN−1 model can now be expressed
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S′
1 S′

2 S′
3 S′

4 S′
5 S′

6 S′
7

Figure 3.6: Scattering processes for a vector particle multiplet (continuous lines) and a

scalar particle (dashed lines).

as

Sρ,σµ,ν =
(
S ′1δµ,νδ

ρ,σ + S ′2δ
ρ
µδ

σ
ν + S ′3δ

σ
µδ

ρ
ν

)
δ̄0
µδ̄

0
ν δ̄
ρ
0 δ̄
σ
0 + S ′4(δµ,νδ

ρ
0δ
σ
0 δ̄

0
µδ̄

0
ν + δ0

µδ
0
νδ
ρ,σ δ̄ρ0 δ̄

σ
0 )

+ S ′5δ
0
µδ

0
νδ
ρ
0δ
σ
0 + S ′6(δσµδ

0
νδ
ρ
0 δ̄

0
µδ̄

σ
0 + δ0

µδ
σ
0 δ

ρ
ν δ̄

0
ν δ̄
ρ
0) + S ′7(δρµδ

0
νδ
σ
0 δ̄

0
µδ̄

ρ
0 + δ0

µδ
ρ
0δ
σ
ν δ̄

0
ν δ̄
σ
0 ) ,

(3.60)

where δ̄νµ ≡ 1− δνµ, and

S ′1 = 〈ΦνΦν |S|ΦµΦµ〉 = S1, (3.61)

S ′2 = 〈ΦµΦν |S|ΦµΦν〉 = S2, (3.62)

S ′3 = 〈ΦνΦµ|S|ΦµΦν〉 = S3, (3.63)

S ′4 = 〈Φ0Φ0|S|ΦµΦµ〉 = 〈ΦνΦν |S|Φ0Φ0〉 = S1 +NS11 (3.64)

S ′5 = 〈Φ0Φ0|S|Φ0Φ0〉 = S1 + S2 + S3 + 2N(S7 + S8) +N2S10 + 2NS11, (3.65)

S ′6 = 〈ΦµΦ0|S|Φ0Φµ〉 = 〈Φ0Φν |S|ΦνΦ0〉 = S3 +NS8, (3.66)

S ′7 = 〈Φ0Φµ|S|Φ0Φµ〉 = 〈ΦνΦ0|S|ΦνΦ0〉 = S2 +NS7 . (3.67)

Using the trace decoupling equations (3.34)-(3.38) the relations (3.61)-(3.67) reduce to

S ′1 = S1 , S
′
2 = S2 , S

′
3 = S3 , S

′
4 = S ′6 = 0 , S ′5 = S ′7 = S0 , (3.68)

which exhibit the decoupling between the vector and the scalar (recall that S0 = ±1).

Table 3.4 gives the explicit form of the CPN−1 nonmixing solutions in terms of the vector-

scalar amplitudes. One sees, in particular, that solutions A1a± and A1b∓ only differ for

the nature of the decoupled scalar (fermionic or bosonic).
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Solution N2 − 1 ρ′1 ρ′2 cosφ′ ρ′4 ρ′5 ρ′7

A1a± R 0 S0 − 0 S0 S0

A1b± R 0 −S0 − 0 S0 S0

A2± [−2, 2] 1 0 (±)1
2

√
3−N2 0 S0 S0

A3± 2
√

1− ρ2
2 [−1, 1] 0 0 S0 S0

Table 3.4: Nonmixing solutions of the CPN−1 model in terms of the amplitudes of the

vector-scalar system. Signs in parenthesis are both allowed, and S0 = ±1.
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Chapter 4

Critical points in coupled Potts

models and correlated percolation

In this chapter, we use scale invariant scattering theory to exactly determine the renor-

malization group fixed points of a q-state Potts model coupled to an r-state Potts model

in two dimensions. For integer values of q and r the fixed point equations are very con-

straining and show in particular that scale invariance in coupled Potts ferromagnets is

limited to the Ashkin-Teller case (q = r = 2). Since our results extend to continuous

values of the number of states, we can access the limit r → 1 corresponding to correlated

percolation, and show that the critical properties of Potts spin clusters cannot in general

be obtained from those of Fortuin-Kasteleyn clusters by analytical continuation.

4.1 Spin vs Fortuin-Kasteleyn clusters

The idea that ferromagnetic transitions correspond to the percolation of clusters of like

spins has been present since the early days of the theory of critical phenomena [110] (see

[42] for a review). However, numerical studies for the three-dimensional Ising model [111]

showed that the natural clusters obtained drawing a link between nearest neighboring

spins with the same sign – we simply call them spin clusters – do not percolate at the

critical temperature Tc of the magnetic transition. The picture of the ferromagnetic tran-

sition as a percolative transition was rescued in [112], where it was observed that, in any

dimension, a different type of clusters – the Fortuin-Kasteleyn (FK) clusters [41] obtained

drawing the link between nearest neighboring like spins with a probability determined
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by the Ising coupling – do percolate at Tc. The FK clusters also satisfy the requirement

that their fractal dimension is determined by the scaling dimension of the magnetic order

parameter, and allow the coincidence of percolative and magnetic critical exponents.

A particularly interesting picture emerged in two dimensions, where it was shown that

also the Ising spin clusters percolate at Tc [113], with a new fractal dimension [114]. Hence

FK and spin clusters yield, at the same Ising temperature, two different universality classes

of correlated percolation, which in turn differ from basic (random) percolation in which

there is no interaction among lattice sites [42]. As random percolation is conveniently

brought in the framework of magnetic transitions through its mapping onto the limit

r → 1 of the r-state Potts model [41], Ising-correlated percolation can be described in

terms of coupled Ising and r-state Potts models, which amount to a dilute Potts model

in which the former Ising variables determine if sites are occupied or empty. It is always

understood that the auxiliary Potts variables are eventually eliminated by the limit r → 1.

The universality classes of FK and spin clusters in the Ising model were then identified

in [112] as corresponding to two different renormalization group (RG) fixed points of this

dilute r → 1 Potts model. The fact that the dilute Potts model displays, as r varies,

a critical and a tricritical branch [47, 115, 116] accomodates for the fixed point of FK

clusters on the former and for that of spin clusters on the latter, and led to an exact

identification of the fractal dimension of Ising spin clusters [117].

Much insight is usually gained extending to the q-state Potts model what has been

learned for Ising (q = 2). The generalization of the above RG picture to q-state Potts

correlated percolation was studied in [118]. Now the site variable takes q values, and spin

and FK clusters are obtained drawing a link between nearest neighboring sites with the

same value, with probability 1 for the former and interaction-dependent for the latter. In

[118] the q-state Potts model coupled to the auxiliary r-state Potts model was studied by

an approximated RG approach, in the relevant limit r → 1. Two fixed points were found

as a function of q and were associated to the universality classes of FK and spin clusters.

It was conjectured that the two branches coalesce and terminate at the value of q above

which the ordinary Potts transition becomes first order; in two dimensions this value is

known to be q = 4 [119, 43]. This conjecture, however, could never be checked, since the

approximate RG of [118] was unable to see a transition to a first order regime, and the

model cannot be numerically simulated in the limit r → 1. The conjecture was extended

in [120], where it was proposed that the two branches of fixed points of the coupled q-state
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and r-state Potts models can be related, for r → 1, to the critical and tricritical branches

of the q-state Potts model, which coalesce at q = 4 and are analytical continuation of

each other [115, 116]. The idea that the critical properties of spin clusters are related in

this way to those of FK clusters was used in [120] to propose an exact formula for the

fractal dimension of Potts spin clusters as a function of q. Given the good agreement of

this formula with numerical studies of spin clusters at1 q = 3 [120, 122], the conjecture

about analytic continuation was accepted.

The three-point connectivity (i.e. the probability that three points are in the same

cluster) of q-state Potts FK clusters at criticality was exactly determined in [35], and was

shown to agree with numerical simulations performed for random percolation (q → 1)

in [123] and for q generic in [124]. As the only exact analytical result for correlations in

critical clusters on the infinite plane after the critical exponents [115], this connectivity

formula also provided a new test for the conjectured analytic continuation for spin clusters.

Numerical determination for Potts spin clusters performed in [125] showed the failure of

the conjecture for this observable, a finding that reopened the question of the theoretical

understanding of spin clusters2.

Here we use scale invariant scattering to obtain the first exact determination of the RG

fixed points for a q-state Potts model coupled to an r-state Potts model in two dimensions.

Since our results are obtained for continuous values of q and r, we have in particular access

to the limit r → 1 relevant for Potts correlated percolation. The subtleties of this limit3

require that, for a complete description of critical spin clusters, the degrees of freedom

of the q-state sector and the auxiliary degrees of freedom of the (r = 1 + ε)-state sector

are simultaneously critical. We do not find any critical line in the coupled regime along

which this requirement is fulfilled with continuity in the whole interval q ∈ [2, 4]. One

implication is that the conjectured analytical continuation cannot hold in general, thus

explaining the failures observed in [125, 126]. On the other hand, it may happen, that

specific quantities can be evaluated directly at r = 1, where the number of r-state degrees

1Numerical studies of the Potts model at q = 4 are notoriously complicated by logarithmic corrections

to scaling [121].
2A similar failure of the analytic continuation was then observed in [126] from simulations for the

cluster number in geometries with corners, which for FK clusters can be related [127] to the Potts central

charge [33]. Tests of conformal invariance for critical Potts spin clusters have recently been performed in

[128].
3See [35] for an analytically exact illustration in the context or random percolation.
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of freedom is strictly zero and the discontinuities coming from this sector can be ignored.

This leaves open the possibility that the formula for the fractal dimension of spin clusters

conjectured in [120] – which up to now has been found in agreement with numerical

simulations (see also [125]) – is exact. We now turn to the derivation of the results.

4.2 Coupled q-state and r-state Potts models

4.2.1 Fixed point equations

We want to determine the RG fixed points associated to the symmetry Sq×Sr, which can

be realized coupling a q-state Potts model to an r-state Potts model, namely considering

the Hamiltonian

Hq,r = −J1

∑
〈i,j〉

δsi,1,sj,1 − J2

∑
〈i,j〉

δsi,2,sj,2 − J
∑
〈i,j〉

δsi,1sj,1δsi,2,sj,2 , (4.1)

where si,1 = 1, 2, . . . , q and si,2 = 1, 2, . . . , r are, respectively, the q-state and r-state color

variables at site i. Hence, the index 1 will refer to the q-state sector of the coupled model,

and index 2 to the r-state sector. Since our analysis will be performed directly in the

continuum limit and will only rely on symmetry, our results for the critical points will

cover all combinations of ferromagnetic and antiferromagnetic values of the couplings J1,

J2 and J .

The implementation of the scattering description follows the steps already seen in

section 1.5 for the basic Potts model. In the first place, there are particle excitations

associated to each sector. We denote them Aαkβk , where k = 1, 2 labels the two sectors,

α1, β1 = 1, . . . , q and α2, β2 = 1, . . . , r (α 6= β). Now the trajectory of a particle Aαkβk

separates a region of space-time characterized by the colors α1 in the q-state sector and

α2 in the r-state sector from a region in which sector k changes its color to βk, with the

color of the other sector remaining unchanged. It follows that the two-particle scattering

amplitudes inequivalent under color permutations are those4 depicted in figure 4.1. The

first four amplitudes involve only particles belonging to the same sector, so that we keep

for them the notation of section 1.5, up to the addition of the sector index k. On the

other hand, the remaining three amplitudes involve particles from both sectors and are

responsible for the coupling of the two Potts models.

4We also imply that the theory is invariant under time reversal and spatial reflection.
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αk βk

γk

δk

S0,k

αk βk

γk

γk

S1,k

αk αk

γk

δk

S2,k

αk αk

γk

γk

S3,k

α1, α2 α1, α2

β1, α2

α1, β2

S4

α1, α2 β1, β2

α1, β2

α1, β2

S5

α1, α2 β1, β2

β1, α2

α1, β2

S6

Figure 4.1: Scattering amplitudes for the coupled q-state and r-state Potts models. The

label αk refers to color α in the q-state model for k = 1, and in the r-state model for

k = 2.

The crossing symmetry equations (3.1) now become

S0,k = S∗0,k ≡ ρ0,k, (4.2)

S1,k = S∗2,k ≡ ρ1,ke
iφk , (4.3)

S3,k = S∗3,k ≡ ρ3,k, (4.4)

S4 = S∗5 ≡ ρ4e
iθ, (4.5)

S6 = S∗6 ≡ ρ6, (4.6)

with parametrizations in terms of ρ1,k and ρ4 nonnegative, and ρ0,k, ρ3,k, ρ6, φk and θ

real. The unitarity equations (2.2) then take the form

0 = (q − 4)ρ2
0,1 + 2ρ1,1ρ0,1 cosφ1, (4.7)

0 = (r − 4)ρ2
0,2 + 2ρ1,2ρ0,2 cosφ2, (4.8)

1 = (q − 3)ρ2
0,1 + ρ2

1,1, (4.9)

1 = (r − 3)ρ2
0,2 + ρ2

1,2, (4.10)

0 = (q − 3)ρ2
1,1 + 2ρ1,1ρ3,1 cosφ1 + (r − 1)ρ2

4, (4.11)

0 = (r − 3)ρ2
1,2 + 2ρ1,2ρ3,2 cosφ2 + (q − 1)ρ2

4, (4.12)

1 = (q − 2)ρ2
1,1 + ρ2

3,1 + (r − 1)ρ2
4, (4.13)

1 = (r − 2)ρ2
1,2 + ρ2

3,2 + (q − 1)ρ2
4, (4.14)
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0 = ρ4

[
ρ3,2e

iθ + ρ3,1e
−iθ + (q − 2)ρ1,1e

−i(θ+φ1) + (r − 2)ρ1,2e
i(θ+φ2)

]
, (4.15)

1 = ρ2
4 + ρ2

6, (4.16)

0 = 2ρ4ρ6 cos θ. (4.17)

Notice that ρ4 = 0 directly yields S4 = S5 = 0; in addition (4.16) implies S6 = ±1,

namely absence of scattering between particles from different sectors. It follows that

ρ4 = 0 corresponds to the case in which the two Potts models decouple, and indeed the

system (4.7)-(4.17) gives back5, for each sector, the equations of section 1.5.

4.2.2 Solutions

The solutions of equations (4.7)-(4.17) yield the RG fixed points with Sq × Sr symmetry.

It turns out that the space of solutions can be divided into three subspaces according to

the values taken by ρ4. The first subspace is that in which the q-state sector and the

r-state sector are decoupled (ρ4 = 0); in this case the solutions can be immediately traced

back to those we saw in section 1.5 for a single Potts model and do not need further

discussion. The second subspace is that in which ρ4 varies; we will refer to the solutions

in this subspace as solutions of type V. The third subspace is that of solutions with ρ4 = 1,

which we will call solutions of type S; clearly, in the S-type solutions the two sectors are

always strongly coupled. We will also use the notations

xk = ρ1,k cosφk , yk = ρ1,k sinφk , k = 1, 2 , (4.18)

while the notation (±) will indicate that both signs are allowed. As usual, given a solution

of the crossing and unitarity equations, another solution is obtained reversing the sign of

all amplitudes.

The Hamiltonian (4.1) and the equations (4.7)-(4.17) are invariant under the simulta-

neous exchanges

q ↔ r , sector index 1↔ sector index 2 . (4.19)

It follows that this exchange operation maps a solution of the fixed point equations into

another solution. Some solutions will be mapped into themselves and will be called

exchange-invariant solutions. In these invariant solutions the q-state sector and the r-state

sector play a symmetric role: they are both ferromagnetic, or both antiferromagnetic on

5Notice that the parameter ρ of section 1.5 is now called ρ1.
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Figure 4.2: Domains of definition in the q-r plane for the solutions V5, V14 and V20.

the same lattice. This is the case normally considered when referring to coupled Potts

models, and in this section we will list the exchange-invariant solutions. More generally

– for example for the application to correlated percolation of the next section – it is

relevant to know also the noninvariant solutions, which we then list in appendix 4.A. If a

noninvariant solution possesses a decoupling limit ρ4 → 0, the amplitudes obtained in the

limit for the q-state sector and for the r-state sector correspond to different solutions6 of

table 1.3.

Solutions with varying ρ4

We give here the solutions of type V invariant under the exchange operation (4.19). They

are denoted by V followed by a number distinguishing the different solutions. These

numbers come from a different selection process and are not presented in progressive

order.

A first group of solutions – V5, V14 and V20 – are defined in the ranges of q and r

shown in figure 4.2. They read

6This was not possible in the case of [39], where n identical Potts replicas were considered for the

purpose of studying quenched disorder (n→ 0).
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• V5

ρ0,1 = ρ3,1 = ±(r2 − 6r + 6)f(q, r), ρ0,2 = ρ3,2 = ±(q2 − 6q + 6)f(q, r)

x1 = −q − 4

2
ρ0,1, y1 = (±)

r − 2

2
g(q, r), x2 = −r − 4

2
ρ0,2, y2 = −q − 2

r − 2
y1

ρ4 =

√√√√ (q2−6q+6)2

q2−5q+5
(q − 3)− (r2−6r+6)2

r2−5r+5
(r − 3)

(r2−6r+6)2

r2−5r+5
(q − 1)− (q2−6q+6)2

q2−5q+5
(r − 1)

, θ = (±)
π

2
, ρ6 = (±)

√
1− ρ2

4,

f(q, r) =

√
4− q − r

(qr − q − r)[(q2 − 5q + 5)(r2 − 5r + 5)− qr + q + r − 1]
,

g(q, r) =

√
(qr − 2q − 2r + 6)[(q2 − 6q + 6)(r − 2) + (q − 2)(r2 − 6r + 6)]

(qr − q − r)[(q2 − 5q + 5)(r2 − 5r + 5)− qr + q + r − 1]
,

(4.20)

• V14

ρ0,1 = ρ0,2 = 0, ρ3,1 = 2x1, ρ3,2 = 2x2, x1 = ±r
2

√
4− q − r
q + r − qr

,

y1 = (±)
r − 2

2

√
q + r

q + r − qr
, y2 = −q − 2

r − 2
y1, x2 =

q

r
x1,

ρ4 =

√
q2 + r2 − 3(q + r) + qr

q + r − qr
, ρ6 = (±)

√
1− ρ2

4, θ = (±)
π

2
,

(4.21)

• V20

ρ0,1 = ± r2 − 4r + 2√
1− (q − 3)(q − 1)(r − 3)(r − 1)

, ρ0,2 =
q2 − 4q + 2

r2 − 4r + 2
ρ0,1,

x1 = −q − 4

2
ρ0,1, x2 = −r − 4

2
ρ0,2, ρ3,1 = −(q − 3)ρ0,1, ρ3,2 = −(r − 3)ρ0,2,

y1 = (±)
r − 2

2

√
4− (q − 2)2(r − 2)2

1− (q − 3)(q − 1)(r − 3)(r − 1)
, y2 = −q − 2

r − 2
y1,

ρ4 =

√√√√ (q2 − 4q + 2)2 − (r2 − 4r + 2)2

q−1
r−3

(r2 − 4r + 2)2 − r−1
q−3

(q2 − 4q + 2)2
, θ = (±)

π

2
, ρ6 = (±)

√
1− ρ2

4.

(4.22)

Then we have the solutions V1, V15, V21 and V33 with q = r. They all possess a free

parameter and correspond to lines of fixed points at fixed q = r (see figure 4.5). For V15,

V21 and V33 the free parameter is ρ4 itself (figure 4.3). The four solutions are

• V1 defined in the interval q = r ∈ (2, 3)

ρ0,1 = ρ3,1 = ρ0,2 = ρ3,2 = 0, ρ1,1 = ρ1,2 = 1, φ1 = −φ2 ∈ [0, 2π),

ρ4 =

√
3− q
q − 1

, θ = (±)
π

2
, ρ6 = (±)

√
2
q − 2

q − 1
,

(4.23)
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Figure 4.3: Ranges of variation of ρ4 for the q = r solutions V1, V15, V21 and V33.

• V15 defined in the interval q = r ∈ (−1, 3)

ρ0,1 = ρ0,2 = 0, ρ3,1 = ρ3,2 = 2x1, θ = (±)
π

2
, ρ6 = (±)

√
1− ρ2

4

x1 = x2 = ±1

2

√
3− q + (q − 1)ρ2

4, y1 = −y2 = (±)
√

1 + q + (q − 1)ρ2
4

0 < ρ4 <



√
1+q
1−q , −1 < q < 0,

1, 0 ≤ q ≤ 2,√
3−q
q−1

, 2 < q < 3,

(4.24)
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• V21 defined in the interval q = r ∈ (0, 4)

ρ0,1 = ρ0,2 = ±
√

1 +
q − 1

q − 3
ρ2

4, x1 = x2 = −q − 4

2
ρ0,1, θ = (±)

π

2
,

y1 = −y2 = (±)
1

2

√
q(4− q)− (q − 1)(q − 2)2

q − 3
ρ2

4, ρ3,1 = ρ3,2 = −(q − 3)ρ0,1,

ρ6 = (±)
√

1− ρ2
4, 0 < ρ4 <


√

q(q−3)(4−q)
(q−1)(q−2)2 , 0 < q ≤ q∗ and 3 < q < 4,

1, q∗ < q ≤ 2,√
3−q
q−1

, 2 < q < 3 ,

(4.25)

where q∗ ≈ 0.231 . . . is the real root of the polynomial q3 − 6q2 + 10q − 2.

• V33 defined in the interval q = r ∈ (q′, 3) ∪
(

4, 7+
√

17
2

)

ρ0,1 = ρ0,2 = ρ3,1 = ρ3,2 = ±

√
q − 3 + (q − 1)ρ2

4

q2 − 5q + 5
, x1 = x2 = −q − 4

2
ρ0,1,

y1 = −y2 = (±)
1

2

√
(4− q)(q2 − 7q + 8)− (q − 2)2(q − 1)ρ2

4

q2 − 5q + 5
, θ = (±)

π

2
,

ρ6 = (±)
√

1− ρ2
4, ρ4 ∈



(√
(4−q)(q2−7q+8)

(q−2)2(q−1)
, 1
)
, q′ < q < 7−

√
17

2
,

(0, 1) , 7−
√

17
2

< q < 2,(
0,
√

3−q
q−1

)
, 2 < q < 3,(

0,
√

(4−q)(q2−7q+8)
(q−2)2(q−1)

)
, 4 < q < 7+

√
17

2
,

(4.26)

where q′ ≈ 1.425 . . . is the real root of the polynomial q3 − 8q2 + 22q − 18.

Finally there are solutions defined only for isolated values of q and r. The first is

• V13 defined for r = q = 2

ρ0,1 = ρ0,2 = ρ3,1 = ρ3,2 = x1 = x2 = ±
√

1− ρ2
4, θ = (±)

π

2

y1 = (±)1, y2 = (±)1, ρ6 = (±)
√

1− ρ2
4, ρ4 ∈ (0, 1) ,

(4.27)

while the others correspond to less interesting (irrational) values of q and r and will not

be listed.
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Figure 4.4: Domains of definition in the q-r plane for the solutions S3, S6, and S8

Solutions with ρ4 = 1

When ρ4 = 1 (and then ρ6 = 0), it can be seen that (4.15) allows to express θ in the form

tan(θ + πj) =
(q − 2)ρ1,1 cosφ1 + ρ3,1 + (r − 2)ρ1,2 cosφ2 + ρ3,2

(q − 2)ρ1,1 sinφ1 + (r − 2)ρ1,2 sinφ2

, j = 0, 1 , (4.28)

with the condition

[(q − 2)ρ1,1 cosφ1 + ρ3,1]2 + (q − 2)2ρ2
1,1 sin2 φ1

= [(r − 2)ρ1,2 cosφ2 + ρ3,2]2 + (r − 2)2ρ2
1,2 sin2 φ2 .

(4.29)

If (q−2)ρ1,1 cosφ1+ρ3,1 = (q−2)ρ1,1 sinφ1 = (r−2)ρ1,2 cosφ2+ρ3,2 = (r−2)ρ1,2 sinφ2 = 0,

θ becomes a free parameter. We can solve for the remaining parameters, which satisfy

the equations

0 = (q − 4)ρ2
0,1 + 2ρ1,1ρ0,1 cosφ1, 0 = (r − 4)ρ2

0,2 + 2ρ1,2ρ0,2 cosφ2,

1 = (q − 3)ρ2
0,1 + ρ2

1,1, 1 = (r − 3)ρ2
0,2 + ρ2

1,2,

1− r = (q − 3)ρ2
1,1 + 2ρ1,1ρ3,1 cosφ1, 1− q = (r − 3)ρ2

1,2 + 2ρ1,2ρ3,2 cosφ2,

2− r = (q − 2)ρ2
1,1 + ρ2

3,1, 2− q = (r − 2)ρ2
1,2 + ρ2

3,2 .

(4.30)

Notice that the last two equations imply that no solution in this class exists if both q and

r are larger than 2.

We list here the exchange-invariant solutions, starting with

• S1 defined for q + r = 4

ρ0,1 = ρ0,2 = ρ3,1 = ρ3,2 = 0 , φ1, φ2 ∈ [0, 2π) , ρ1,1 = ρ1,2 = 1 . (4.31)
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The three solutions S3, S6 and S8 are instead defined for the values of q and r shown in

figure 4.4. They read

• S3

ρ0,1 = ρ3,1 = (±)

√
q + r − 4

q2 − 5q + 5
, ρ0,2 = ρ3,2 = (±)

√
q + r − 4

r2 − 5r + 5
,

x1 = −q − 4

2
ρ0,1, y1 = (±)

1

2

√
(4− q) (q2 − 7q + 8)− (q − 2)2(r − 1)

q2 − 5q + 5
,

x2 = −r − 4

2
ρ0,2, y2 = (±)

1

2

√
(4− r) (r2 − 7r + 8)− (r − 2)2(q − 1)

r2 − 5r + 5
,

(4.32)

• S6

ρ0,1 = ρ0,2 = 0, ρ3,1 = 2x1 , ρ3,2 = 2x2

x1 = (±)
1

2

√
4− q − r , x2 = (±)

1

2

√
4− q − r

y1 = (±)
1

2

√
q + r , y2 = (±)

1

2

√
q + r,

(4.33)

• S8

ρ0,1 = (±)

√
q + r − 4

q − 3
ρ0,2 = (±)

√
q + r − 4

r − 3

x1 = −q − 4

2
ρ0,1, ρ3,1 = −(q − 3)ρ0,1, x2 = −r − 4

2
ρ0,2, ρ3,2 = −(r − 3)ρ0,2

y1 = (±)
1

2

√
4− r(q − 2)2 − q(q − 4)2

q − 3
, y2 = (±)

1

2

√
4− q(r − 2)2 − r(r − 4)2

r − 3
.

(4.34)

Finally, we have solutions defined for isolated values of q and r. The first one is

• S9 defined for q = r = 2

ρ0,1 = ρ0,2 = ρ3,1 = ρ3,2 = 0 , φ1, φ2, θ ∈ [0, 2π) , ρ1,1 = ρ1,2 = 1 , (4.35)

while the others are defined for less interesting values of q and r (irrational or zero) and

will not be listed.

4.2.3 Some implications

We notice first of all that for q = r = 2 the Hamiltonian (4.1) becomes that of the

Ashkin-Teller model (two coupled Ising models) [20]. The Ashkin-Teller model allows for

lines of fixed points – along which the central charge is c = 1 and the critical exponents
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Figure 4.5: The solutions V1, V15, V21, and V33 in the parameter subspace (ρ1,1 sinφ1,

ρ4) along with the decoupled solutions I, II, III, IV and V, and the strongly coupled

solution S1, S3, S6, S8 for q = r. All the surfaces corresponding to the V-type solutions

meet along the black lines for 2 < q < 3.

vary continuously – identified perturbatively in [88, 129] and exactly in [130]. Also in our

present formulation we see that at q = r = 2 the solutions V15, V21, V33, V13, S1 and

S9 all possess a free parameter providing the coordinate along a critical line.

Excluding the Ashkin-Teller case, we also see that the only critical points correspond-

ing to coupled models with q and r integers larger than 1 are provided by solution V5 for

(q, r) = (2, 5) and solution V33 for q = r = 5. Both V5 and V33 appear to be related

to solution V of table 1.3 for a single Potts model. One implication is that for criticality

in coupled ferromagnets we are left with Ashkin-Teller only. As a particular case, these

results confirm the conclusion of theoretical and numerical studies [131, 132, 133, 134]

which found no fixed points in two coupled Potts ferromagnets with q = r = 3, 4, . . . .

The nontrivial phenomenon of a critical line with continuously varying exponents for

fixed symmetry provided by the Ashkin-Teller model is made possible by the fact that at

criticality this model renormalizes on the Gaussian model (free scalar boson), which in

two dimensions allows for a continuous spectrum of scaling dimensions [6]. The same free
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boson accounts for the line of fixed points of a single 3-state Potts model (solution I of

table 1.3) [40], and is expected to generate all lines of fixed points at fixed symmetry in

two dimensions. In particular, it should be contained in the field theories corresponding to

the q = r solutions V1, V15, V21 and V33, which span surfaces of fixed points as q varies

(figure 4.5), and then lines of fixed points for q fixed. Quite interestingly a solvable square

lattice realization of the q = r model originally obtained in [135] and further studied in

[136, 137] has been found in [138] to possess a continuous spectrum of critical exponents

associated to a free boson. This lattice solution terminates at q = 4 and has q = 3 as

a decoupling point; it should then be related to our solution V21. It can be seen also

from figure 4.5 that in the decoupling limit ρ4 → 0 the solution V21 gives solution III for

the two q-state models, and we saw in section 1.5 that solution III can describe both the

ferromagnet and the square lattice antiferromagnet (recall table 1.4). In [138] the lattice

solution results from the coupling of two antiferromagnets; on the other hand the central

charge proposed in [137, 138] gives at the decoupling point q = 3 the value 8/5, which is

that of two ferromagnets. This point will deserve further investigation.

4.3 Correlated percolation

We already saw in section 1.5 how the FK representation (1.71) relates the Potts model

to FK clusters. In order to make contact with spin clusters, correlated percolation in

the q-state Potts ferromagnet was studied in [118] considering the coupling to an r-state

Potts model realized by the Hamiltonian (4.1) with J2 = 0. The site variables of the

r-component are auxiliary and are eventually eliminated by the limit r → 1. They allow

a generalization of the FK expansion in which the clusters are made of connected bonds

placed with probability (1.72) between nearest neighbors with the same value of the q-

state Potts site variable. This comes from the fact that in (4.1) J is the coupling of the

auxiliary variables to the q-state Potts variables. The approximated RG analysis of [118]

gave two fixed points for the coupled (J 6= 0) model for r → 1. Both of them have J1 equal

to the critical value Jc of the q-state Potts ferromagnet, consistently with the expectation

for a fixed point of the r → 1 model. One of the fixed points, for J = Jc, was argued to be

repulsive and to correspond to the FK clusters. The other fixed point, for J = J∗ > Jc,

was argued to be attractive and to rule the critical behavior of spin clusters, which by

definition correspond to J = ∞ (p = 1). The lines spanned by the two fixed points as a
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function of q were conjectured in [118] to coalesce and terminate at q = 4, although this

could not actually be seen within the approximated RG method.

We are now in the position of discussing Potts correlated percolation in light of our

exact fixed point solutions. Observe first of all that for r = 1 the equations (4.7), (4.9),

(4.11) and (4.13) exactly reproduce the system (1.67)-(1.70) which determines the fixed

points of a decoupled q-state Potts model. This implies that, even in the coupled model

(ρ4 6= 0), for r → 1 the amplitudes of the q-state sector – namely the amplitudes Si,1,

i = 0, 1, 2, 3, involving only excitations in the q-state sector – coincide with one of the

solutions of table 1.3 for the decoupled q-state Potts model. This can indeed be checked

plugging r = 1 in the solutions of section 4.2.2. On the other hand, it must be taken

into account that, even for r → 1, the remaining amplitudes – involving excitations in

the auxiliary r-state sector – cannot be forgotten, since also the auxiliary degrees of

freedom will normally contribute to the results7. It follows that, taking into account

the full set of amplitudes that determine a fixed point solution, the range of q in which

the solution is defined for r → 1 is in general smaller than that given in table 1.3 for

the amplitudes of the q-state sector. This is due to the fact that in general the r-state

(auxiliary) degrees of freedom are not critical in the full range in which the q-state degrees

of freedom are critical. In particular, inspection of the solutions of section 4.2.2 and

appendix 4.A shows that in the r → 1 coupled model there is no critical line continuously

defined in the whole range q ∈ [2, 4]. This excludes, in particular, that spin clusters can be

fully described through some analytic continuation performed in this range, consistently

with the numerical findings of [125, 126]. The possibility remains, however, that analytic

continuation holds for some specific quantity that can be evaluated directly at r = 1,

where the number of auxiliary degrees of freedom is strictly zero8 and one can recover the

branches of solution III of table 1.3 in their full range of definition q ∈ [0, 4].

In light of our present results, it seems interesting to recall that different convergenge

patterns of spin clusters towards a fixed point were observed below and above q ≈ 2.5 in

the numerical simulations performed in [125], where the range q ∈ [1, 4] was scanned in

steps of 0.25. This can be compared with our finding that in the r → 1 coupled model

7This is immediately understood thinking to the basic example of random percolation as the limit

r → 1 of the r-state Potts model. In this case all the degrees of freedom are auxiliary, but nevertheless

determine all the percolative properties. Extensive illustrations in the scattering formalism for the off-

critical case are given in [139, 140, 141, 142, 143].
8We further illustrate this point in appendix 4.B.
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there is a discontinuity in the critical properties at q = 3, since solution S8 provides a

critical line in the range q ∈ [0, 3], and solution S̃5 provides a critical line in the range

q ∈ (3, 4]; here the tilde indicates the solution obtained from (4.43) under the exchanges

(4.19). As r → 1, both S8 and S̃5 tend to solution III of table 1.3 in the q-state sector

and in their respective domains of definition.

4.A Appendix. Exchange-noninvariant solutions

We list in this appendix the solutions of the fixed point equations (4.7)-(4.17) which

are noninvariant under the exchange operation (4.19). This operation maps each of the

solutions below into another solution, which we do not list.

We first have the following solutions with varying ρ4 and domains of definition shown

in figure 4.6:

• V2

ρ0,1 = ρ3,1 = 0, ρ0,2 = ρ3,2 = ±

√
(r − q)(r + q − 4)

(r − 1)(r2 − 5r + 5)
,

x1 = −(r2 − 6r + 6)

2(q − 2)
ρ0,2, x2 = −r − 4

2
ρ0,2, θ = (±)

π

2
,

y1 = −r − 2

q − 2
y2, ρ6 = (±)

√
q + r − 4

r − 1
, ρ4 =

√
3− q
r − 1

,

y2 = (±)
1

2

√
(q − 3)(q − 1)

r − 1
+

(q − 4)q − r + 5

r2 − 5r + 5
− r + 6,

(4.36)

• V6

ρ0,1 = ρ0,2 = ρ3,1 = 0, ρ3,2 = 2x2, θ = (±)
π

2
,

x1 =
r

q − 2
x2, x2 = ±1

2

√
(q − r)(q + r − 4)

r − 1
, ρ4 =

√
3− q
r − 1

,

y1 = −r − 2

q − 2
y2, y2 = (±)

1

2

√
r2 − (q − 2)2

r − 1
, ρ6 = (±)

√
r + q − 4

r − 1
,

(4.37)
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Figure 4.6: Domains of definition of the solutions V2, V6, V8, V10, V12 and V17.

• V8

ρ0,1 = ρ3,1 = 0, ρ0,2 = ±

√
(r − q)(q + r − 4)

(r − 1)(r − 3)
, ρ3,2 = −(r − 3)ρ0,2, θ = (±)

π

2
,

x1 = −r
2 − 4r + 2

2(q − 2)
ρ0,2, x2 = −r − 4

2
ρ0,2, ρ4 =

√
3− q
r − 1

, ρ6 = (±)

√
q + r − 4

r − 1
,

y1 = −r − 2

q − 2
y2, y2 = (±)

1

2

√
(q − 3)(q − 1)

(r − 3)(r − 1)
(r − 2)2 − r(r − 4),

(4.38)
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• V10

ρ0,1 = ρ3,1 = ±r

√
(q − r)(q + r − 4)

(q − 1)(q2 − 5q + 5)r2 + (q2 − 6q + 6)2(r − 1)
, ρ0,2 = 0,

x1 = −q − 4

2
ρ0,1, x2 = −q

2 − 6q + 6

2r
ρ0,1, ρ3,2 = 2x2, θ = (±)

π

2
,

y1 = (±)
r − 2

2

√
(q − 2)2r2 − (q2 − 6q + 6)2

(q − 1)(q2 − 5q + 5)r2 + (r − 1)(q2 − 6q + 6)2
, y2 = −q − 2

r − 2
y1,

ρ4 =

√
r2(3− r)(q2 − 5q + 5) + (3− q)(q2 − 6q + 6)2

r2(q − 1)(q2 − 5q + 5) + (r − 1)(q2 − 6q + 6)2
, ρ6 = (±)

√
1− ρ2

4,

(4.39)

• V12

ρ0,1 = ρ3,1 = ±(r2 − 4r + 2)α(q, r), ρ0,2 = ±(q2 − 6q + 6)α(q, r), θ = (±)
π

2
,

x1 = −q − 4

2
ρ0,1, x2 = −(r − 4)

2
ρ0,2, ρ3,2 = −(r − 3)ρ0,2, ρ6 = ±

√
1− ρ2

4,

y1 = (±)
r − 2

2
β(q, r), y2 = −q − 2

r − 2
y1, ρ4 =

√√√√(r2 − 4r + 2)2 − (q−3)(q2−6q+6)2

q2−5q+5

(q2−6q+6)2(r−1)
q2−5q+5

− (q−1)(r2−4r+2)2

r−3

,

α(q, r) =

√
(r − q)(q + r − 4)

(q2 − 6q + 6)2(r − 3)(r − 1)− (q − 1)(q2 − 5q + 5)(r2 − 4r + 2)2
,

β(q, r) =

√
(q2 − 6q + 6)2(r − 2)2 − (q − 2)2(r2 − 4r + 2)2

(q2 − 6q + 6)2(r − 3)(r − 1)− (q − 1)(q2 − 5q + 5)(r2 − 4r + 2)2
,

(4.40)

• V17

ρ0,1 = 0, ρ0,2 = q

√
(q − r)(4− q − r)

q2(r − 3)(r − 1) + (q − 1)(r2 − 4r + 2)2
, θ = (±)

π

2
,

x1 = −r
2 − 4r + 2

2q
ρ0,2, x2 = −r − 4

2
ρ0,2, ρ3,1 = 2x1, ρ3,2 = −(r − 3)ρ0,2,

y1 = (±)
r − 2

2

√
q2(r − 2)2 − (r2 − 4r + 2)2

q2(r − 3)(r − 1) + (q − 1)(r2 − 4r + 2)2
, y2 = −q − 2

r − 2
y1,

ρ4 =

√
(r − 3) [(3− q)q2 − (r2 − 4r + 2)2]

q2(r − 3)(r − 1) + (q − 1)(r2 − 4r + 2)2
, ρ6 = (±)

√
1− ρ2

4.

(4.41)

Then we have the following solutions with ρ4 = 1 and domains of definition shown in

figure 4.7:
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Figure 4.7: Domains of definition of the solutions S4, S5 and S7.

• S4

ρ0,1 = ρ3,1 = (±)

√
q + r − 4

q2 − 5q + 5
, x1 = −q − 4

2
ρ0,1,

y1 = (±)
1

2

√
(4− q) (q2 − 7q + 8)− (q − 2)2(r − 1)

q2 − 5q + 5
,

ρ0,2 = 0, ρ3,2 = 2x2 = (±)
√

4− q − r, y2 = (±)
1

2

√
q + r,

(4.42)

• S5

ρ0,1 = ρ3,1 = (±)

√
q + r − 4

q2 − 5q + 5
, ρ0,2 = (±)

√
q + r − 4

r − 3
, ρ3,2 = −(r − 3)ρ0,2,

x1 = −q − 4

2
ρ0,1, y1 = (±)

1

2

√
(4− q) (q2 − 7q + 8)− (q − 2)2(r − 1)

q2 − 5q + 5
,

x2 = −r − 4

2
ρ0,2, y2 = (±)

1

2

√
4− q(r − 2)2 − r(r − 4)2

r − 3
,

(4.43)

• S7

ρ0,1 = 0, ρ3,1 = 2x1 ρ0,2 = (±)

√
q + r − 4

r − 3
, ρ3,2 = −(r − 3)ρ0,2,

x1 = (±)
1

2

√
4− q − r, y1 = (±)

1

2

√
q + r,

x2 = −r − 4

2
ρ0,2, y2 = (±)

1

2

√
4− q(r − 2)2 − r(r − 4)2

r − 3
.

(4.44)

Finally there are solutions defined only for isolated values of q and r, of which we only

list those defined for nonzero integer values of q and r:
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• V7 defined for q = 3, r = 1

ρ0,1 = ρ0,2 = ρ3,1 = 0, x1 = x2 =
1

2
ρ3,2 = ± 1√

2

√
1− ρ2

4, θ = (±)
π

2
,

y1 = y2 = (±)
1√
2

√
1 + ρ2

4, ρ6 = (±)
√

1− ρ2
4, ρ4 ∈ (0, 1),

(4.45)

• V9 defined for q = 3, r = 1

ρ0,1 = ρ3,1 = 0, ρ0,2 = 2x1 =
2

3
x2 =

1

2
ρ3,2 = ±

√
1− ρ2

4, θ = (±)
π

2
,

y2 = y1 = (±)
1

2

√
3 + ρ2

4, ρ6 = (±)
√

1− ρ2
4, ρ4 ∈ (0, 1),

(4.46)

• V11 defined for q = r = 2

ρ0,1 = ρ3,1 = ρ3,2 = x1 = 2x2 = ±
√

1− ρ2
4, ρ0,2 = 0, θ = (±)

π

2
,

y1 = (±)1 , y2 = (±)
1

2

√
3 + ρ2

4 , ρ6 = (±)
√

1− ρ2
4 , ρ4 ∈ (0, 1),

(4.47)

• V22 defined for q = 3, r = 1

ρ0,1 = ρ0,2 = 2x1 =
2

3
x2 =

1

2
ρ3,2 = ±

√
1− ρ2

4, ρ3,1 = 0, θ = (±)
π

2
,

y1 = y2 = (±)
1

2

√
3 + ρ2

4, ρ6 = (±)
√

1− ρ2
4, ρ4 ∈ (0, 1).

(4.48)

4.B Appendix. Scattering eigenstates

Within the scattering description of the coupled q-state and r-state Potts models we

consider the states

ψk = Bk

q∑
γ1=1
γ1 6=α1

Aα1γ1Aγ1α1 + Ck

r∑
γ2=1
γ2 6=α2

Aα2γ2Aγ2α2 , k = 1, 2 , (4.49)

which scatter into themselves through the phases Φk given by

Φ1 =
1

2

[
(q − 2)S2,1 + (r − 2)S2,2 + S3,1 + S3,2

+

√(
(q − 2)S2,1 − (r − 2)S2,2 + S3,1 − S3,2

)2

+ 4(q − 1)(r − 1)S2
4

]
,

(4.50)

Φ2 =
1

2

[
(q − 2)S2,1 + (r − 2)S2,2 + S3,1 + S3,2

−
√(

(q − 2)S2,1 − (r − 2)S2,2 + S3,1 − S3,2

)2

+ 4(q − 1)(r − 1)S2
4

]
.

(4.51)
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The coefficients in (4.49) are given by

Bk = S3,2 + (r − 2)S2,2 − (r − 1)S4 − Φk ,

Ck = S3,1 + (q − 2)S2,1 − (q − 1)S4 − Φk .
(4.52)

In the decoupled case S4 = 0 the phases Φ1 and Φ2 reduce to (q − 2)S2,1 + S3,1 and

(r−2)S2,2 +S3,2, respectively, as they should (recall (1.73)). As a generalization of (1.49),

in the coupled case the relations

Φk = e−2πi∆ηk (4.53)

give the conformal dimensions ∆η1 and ∆η2 of the fields which create the particles in the

q-state sector and in the r-state sector, respectively.

Notice that in the limit r → 1 relevant for correlated percolation the phase Φ1 for the

q-state sector becomes

Φ1|r=1 = (q − 2)S2,1 + S3,1 , (4.54)

which is the value (1.73) for the decoupled q-state model. As a consequence (4.53) yields

for ∆η1|r=1 the value of the decoupled model, in spite of the fact that the coefficients

B1|r=1 = S3,2 − S2,2 − (q − 2)S2,1 − S3,1 , (4.55)

C1|r=1 = −(q − 1)S4 (4.56)

are both nonzero in the coupled case S4 6= 0. Hence, ∆η1 provides an example of a quantity

that can be evaluated directly at r = 1, where the degrees of freedom in the r-state sector

play no role, since their number is strictly zero. Other quantities, on the other hand, will

be determined by ratios in which both the numerator and the denominator vanish at r = 1.

The limit r → 1 exists, but is determined by evaluation at r = 1 + ε, where the auxiliary

r-state degrees of freedom are present and contribute. The three-point connectivity of

random percolation provides an exact illustration of this mechanism [35].
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