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Scalar, vector, and tensor perturbations on the Kerr spacetime are governed by equations that can be
solved by separation of variables, but the same is not true in generic stationary and axisymmetric
geometries. This complicates the calculation of black-hole quasinormal mode frequencies in theories that
extend/modify general relativity, because one generally has to calculate the eigenvalue spectrum of a two-
dimensional partial differential equation (in the radial and angular variables) instead of an ordinary
differential equation (in the radial variable). In this work, we show that if the background geometry is close
to the Kerr one, the problem considerably simplifies. One can indeed compute the quasinormal mode
frequencies, at least at leading order in the deviation from Kerr, by solving an ordinary differential equation
subject to suitable boundary conditions. Although our method is general, in this paper we apply it to scalar
perturbations on top of a Kerr black hole with an anomalous quadrupole moment, or on top of a slowly
rotating Kerr background.

DOI: 10.1103/PhysRevD.108.024038

I. INTRODUCTION

Current and future measurements of gravitational
waves from mergers of binary black holes (BHs) provide
new ways to test the strong field and highly relativistic
regime of general relativity (GR) [1–4]. One promising
direction to probe the workings of gravity near BHs is to
study the emission of quasinormal modes (QNMs) in the
postmerger phase of these BH binaries [5–7]. If GR is the
correct underlying theory of gravity, then the QNM
spectrum of astrophysical BHs must be uniquely deter-
mined by their mass and spin [8–10]. More precisely,
the spectrum of a perturbed Schwarzschild BH can be
obtained by solving the Regge-Wheeler [11] (in the odd-
parity sector) or Zerilli [12] (in the even-parity sector)
equations. For a perturbed Kerr BH, one has instead to
solve the Teukolsky equation [13] (see also Ref. [14]).
One remarkable property of GR, which does not hold for

more general gravitational theories, is that the perturbation
equations for a rotating BH can be decoupled into a radial
and an angular part [13,14]. This separability property
considerably simplifies the calculation of QNMs relative
to situations in which the equations do not decouple—

e.g., BH perturbations beyond GR, or even neutron star
oscillations in GR.
One obvious approach to adopt is a forward one in

which QNMs are computed beyond GR on a theory-by-
theory basis. Specific theories that have been studied
(for spherical or slowly rotating BHs) include, e.g.,
dynamical Chern-Simons gravity [15–18], Einstein dila-
ton Gauss-Bonnet gravity [19–24], and Lorentz-violating
gravity [25]. There are also recent works aiming to
generalize the Teukolsky equation to more generic
theories and arbitrary rotation [26,27]. This theory-by-
theory approach being necessarily limited to a few case
studies, much effort has also been directed at developing
theory-agnostic approaches to these calculations—e.g.,
the parametrized QNM framework [28–32], the effective
field theory of QNMs [33,34], and modified perturbation
equations of parametrized BH metrics [35]. These cal-
culations, however, are also restricted (like those of the
aforementioned forward modeling approaches) to pertur-
bations over spherically symmetric or slowly rotating
BHs, and their applicability to realistic astrophysical BHs
is therefore limited. Recent theory-agnostic approaches
that go beyond spherical symmetry and/or the slow
rotation limit are intrinsically approximate, as they adopt
the eikonal limit [36–40], or simply attempt to describe*rajes.ghosh@iitgn.ac.in
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possible deviations from GR in the QNM spectrum
by decomposing the latter in powers of mass and
spin [41,42].
In this work, we outline an alternative approach that

allows for efficiently computing BH QNMs for background
geometries that do not yield separable perturbation equa-
tions, but which are perturbatively close to Kerr or
Schwarzschild. Note that a similar technique has also been
presented in Ref. [43], although it has been applied to
rotating BHs in higher-derivative gravity. We present the
technical details of the method in Sec. II. To showcase its
performance, we then consider the example of scalar
perturbations, which we solve (in Sec. III) for a slowly
rotating Kerr BH, and for a Schwarzschild/Kerr BH with an
anomalous quadrupole moment. We stress that the latter
case is highly nontrivial, as it does not yield separable
perturbation equations in general. Our conclusions are
finally presented in Sec. IV. Throughout this work, we
use units in which G ¼ c ¼ 1.

II. METHODOLOGY

As discussed above, the aim of this work is to devise a
general method to calculate the scalar QNMs of a sta-
tionary, axisymmetric BH spacetime given by

gμνðr; θÞ ¼ gð0Þμν ðr; θÞ þ ϵgð1Þμν ðr; θÞ; ð1Þ

where gð0Þμν refers to the Kerr metric, and its deviation away

from GR is described by the term gð1Þμν , where ϵ is a small

perturbation parameter. The only restriction on the term gð1Þμν

considered here is that it is consistent with axial symmetry.
In Boyer-Lindquist coordinates xμ ¼ ðt; r; θ;φÞ, the line
element of the Kerr metric is

gð0Þμν dxμdxν ¼ −
�
1 −

2Mr
ρ2

�
dt2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ sin2θ

�ðr2 þ a2Þ2 − Δa2sin2θ
ρ2

�
dφ2

−
4Mrasin2θ

ρ2
dtdφ; ð2Þ

where ρ2 ¼ r2 þ a2 cos2 θ, Δ ¼ r2 þ a2 − 2Mr, and M
and a are the mass and the spin of the BH, respectively.

The nonzero terms of gð1Þμν are unspecified functions
of r and θ.
We now study scalar perturbations Ψ on top of the

metric in Eq. (1), satisfying the Klein-Gordon equation
gμν∇μ∇νΨ ¼ 0. We will show that the assumption of small
deviations from GRmakes the perturbation equation inherit
the separability property of the Kerr case. We start by
expanding Ψ as [13,14,44]

Ψ ¼
Z

dω
X
l;m

ZlmðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p SlmðθÞe−iωtþimφ: ð3Þ

In the case ϵ ¼ 0, the radial and angular parts decouple and
satisfy

d2Zlm

dr2�
þ Vð0Þ

lmðrÞZlm ¼ 0; ð4Þ

1

sin θ
d
dθ

�
sin θ

dSlmðθÞ
dθ

�

þ
�
a2ω2cos2θ þ λlm −

m2

sin2θ

�
SlmðθÞ ¼ 0: ð5Þ

Here, r� is the tortoise coordinate defined by dr=dr� ¼
hðrÞ ¼ Δ=ðr2 þ a2Þ, λlm is a separation constant, and the
effective potential is given by [44]

Vð0Þ
lmðrÞ ¼

K2ðrÞ − λlmΔðrÞ
ðr2 þ a2Þ2 −

dGðrÞ
dr�

− G2ðrÞ; ð6Þ

where KðrÞ ¼ ðr2 þ a2Þω − am, and GðrÞ ¼ rΔðrÞ=
ðr2 þ a2Þ2. The solutions SlmðθÞ of the angular equation
are the scalar spheroidal harmonics [13,14]. They form a
complete basis for angular functions and satisfy the bi-
orthogonality relation with the adjoint-spheroidal harmon-
ics S̄lm defined in [45],Z

dθ sin θSlmðθÞS�l0m0 ðθÞ ¼ δll0δmm0 : ð7Þ

In the limit a → 0, they reduce to scalar spherical har-
monics, as SlmðθÞeimφ → Ylmðθ;φÞ.
In the general case ϵ ≠ 0, the Klein-Gordon equation

does not automatically separate, since it acquires additional
terms coupling the radial and angular functions. By
neglecting terms of second order in ϵ, the Klein-Gordon
equation becomes

Z
dω

X
l;m

e−iωtþimφSlmðθÞ
�
d2

dr2�
þ Vð0Þ

lmðrÞ
�
Zlm ¼ ϵJ ½Ψ�;

ð8Þ

where the source term is given by

J ½Ψ� ¼ −
hðrÞρ2

gð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ∂μ½gð0Þgμνð1Þ∂νΨþ gð1Þg
μν
ð0Þ∂νΨ�; ð9Þ

and we have used the notation
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ¼ gð0Þ þ ϵgð1Þ.
Inserting the ansatz given by Eq. (3) into the source term,
one gets the form

J ¼
Z

dω
X
l;m

e−iωtþimφJlmðr; θÞ; ð10Þ
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where the function Jlm takes the following form:

Jlm ¼ aðr; θÞZlmðrÞS0lmðθÞ þ bðr; θÞZ0
lmðrÞSlmðθÞ

þ clmðr; θÞZlmðrÞSlmðθÞ: ð11Þ

The explicit forms of the functions alm, blm, and clm are
given in Appendix A. To obtain this formula, we made use
of the fact that SðθÞ satisfies Eq. (5) to get rid of S00ðθÞ
terms, and that, neglecting OðϵÞ2 terms, d2Z=dr2� can be
eliminated with Eq. (4).1 Now, we can make use of the fact
that scalar spheroidal harmonics represent a complete basis
for angular functions, meaning that it is possible to perform
the following decomposition:

Jlmðr; θÞ ¼
X
l0

jll0mðrÞSl0mðθÞ: ð12Þ

By reintroducing this form back into Eq. (8), we have that
for each term in l, m, it reads

Slm

�
d2

dr2�
þ Vð0Þ

lm

�
Zlm ¼ ϵ

X
l0

jll0mðrÞSl0mðθÞ: ð13Þ

By multiplying both sides by the adjoint spheroidal
harmonic S�lm and using the orthonormality relation in
Eq. (7), one can completely decouple away the angular
contribution from the radial perturbation equation. As it
was singled out in Eq. (11) for Jlm, the coefficients jll0 ðrÞ
must also contain terms linear in Z and Z0, with all the
possible indices l0 selected by the projection of the
equation onto the spheroidal harmonics Slm. Hence, with-
out loss of generality, we have

jl0m ≡ jl0l0m ¼ αl0mðrÞZl0m þ βl0mðrÞ
dZl0m

dr�
; ð14Þ

where the exact forms of αl0m and βl0m depend on the case

of study and on the exact form of gð1Þμν . We can write the
radial perturbation equation as

d2Zlm

dr2�
þ Vð0Þ

lmðrÞZlm ¼ ϵjlm þ ϵ
X
l0≠l

jl0m: ð15Þ

One can further simplify the equation with the redefinition
Zlm → Zlm exp ½−ϵ=2 R drβlmðrÞ=hðrÞ� to get rid of the
dZlm=dr� term introduced via Eq. (14),2 yielding

d2Zlm

dr2�
þ VlmðrÞZlm ¼ ϵ

X
l0≠l

jl0m; ð16Þ

where the master potential is given by

VlmðrÞ ¼ Vð0Þ
lmðrÞ − ϵ

�
αlmðrÞ −

1

2
β0lmðrÞhðrÞ

�
: ð17Þ

Note that Eq. (16) still represents a coupled system
of equations between different l modes of the radial
eigenfunction Zlm. Finally, with the field redefinition,
ZlmðrÞ ¼ XlmðrÞ þ ϵUlmðrÞ, such that UlmðrÞ is chosen
to obey the differential equation

d2Ulm

dr2�
þ Vð0Þ

lmðrÞUlm ¼
X
l0≠l

jl0mðrÞ ≔ Tlmðr�Þ; ð18Þ

XlmðrÞ must satisfy the decoupled equation

d2Xlm

dr2�
þ VlmðrÞXlm ¼ 0; ð19Þ

with the QNM potential VlmðrÞ given in Eq. (17). This is
an eigenvalue equation, which can be solved for the QNM
frequencies ωlm by imposing ingoing boundary conditions
at the horizon and outgoing boundary conditions at infinity.
The QNMs obtained in this way are the main result of our
perturbative calculation.
As for UlmðrÞ, the differential equation (18) has known

coefficients, and the source Tlm is a functional of Zl0m
(with l0 ≠ l) and their derivatives, which are known (in
principle) by solving the background QNM equation given
by Eq. (4). Moreover, the frequency ω ¼ ωlm appearing

in Eq. (18) (through Vð0Þ
lm and Tlm) is also known. That

frequency can be obtained by solving either Eq. (4) or
Eq. (19) as an eigenvalue problem.3 One can solve Eq. (18)
by imposing that Ulm must satisfy ingoing boundary
conditions for r� → −∞ and outgoing ones for r� → ∞.
The solution can be explicitly found by using the “variation
of parameters” method [46]. For this purpose, let us

consider two linearly independent solutions Uð1Þ
lmðr�Þ and

Uð2Þ
lmðr�Þ of the homogeneous part of Eq. (18), going to zero

at the horizon/infinity, respectively—i.e.,

Uð1Þ
lmðr�Þ ∼ eiωlmr� for r� → −∞; ð20Þ

Uð1Þ
lmðr�Þ ∼ Aeiωlmr� þ Be−iωlmr� for r� → þ∞; ð21Þ

1It is also worth noticing that terms proportional to Z0ðrÞS0ðθÞ
never appear due to the choice of gð1Þμν being axisymmetric.

2To ensure that the boundary conditions at r� → �∞ for the
new functions Zlm are the same as for the old functions, one
needs to require that β go at least as 1=r2� as r� → �∞. This is
verified for the examples that we consider in the following, for
which βðrÞ ¼ 0, and therefore the transformation is not needed.

3The two estimates for ωlm would differ only by OðϵÞ, and
because Eq. (18) appears already at linear order in ϵ, this
difference only affects the equations at OðϵÞ2.
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Uð2Þ
lmðr�Þ ∼ e−iωlmr� for r� → ∞; ð22Þ

Uð2Þ
lmðr�Þ ∼ Ceiωlmr� þDe−iωlmr� for r� → −∞; ð23Þ

where A, B, C, and D are constant complex coefficients.
The absence of the first-derivative term dUlm=dr� in

Eq. (18) implies that the Wronskian ðdUð2Þ
lm=dr�ÞUð1Þ

lm −
ðdUð1Þ

lm=dr�ÞUð2Þ
lm is a constant W ≠ 0.4 Then, we can write

a solution as

Ulmðr�Þ ¼ Uð1Þ
lmðr�Þ

Z
r�;2

r�

Uð2Þ
lmðxÞ
W

TlmðxÞdx

þUð2Þ
lmðr�Þ

Z
r�

r�;1

Uð1Þ
lmðxÞ
W

TlmðxÞdx; ð24Þ

with r�;1 and r�;2 being constants. Note that from Eq. (14),
it follows that if the functions αl0m and βl0m remain finite
as r� → �∞, the source Tlm diverges at most as
expð�iωl0mr�Þ, with l0 ≠ l, for r� → �∞.5 Using the

behavior of Uð1;2Þ
lm given in Eqs. (20)–(23) and integrating

by parts, it therefore follows that for r� → �∞, one
has Ulm ∼ expð�iωl0mr�ÞA�, where A� depends linearly
on the asymptotic values of αl0m and βl0m as r� → �∞.
These behaviors are sensible, as they correspond to
outgoing/ingoing boundary conditions for the ðl0 ≠ l; mÞ
modes, which also appear in Eq. (16) due to the mode
mixing term on the right-hand side. Note, however, that
the explicit form of Ulmðr�Þ is not needed to solve for
the QNM spectrum from our master equation in Eq. (19),
but only if one wants to reconstruct the scalar eigen-
functions. For more details, we refer the reader to
Appendix B, where we provide more algebraic details
on our method.
Let us end this section with a brief summary of the

methodology presented above. Given any stationary, axi-
symmetric BH metric gμν [see Eq. (1)], perturbatively
connected to the Kerr BH metric, we are interested in
studying the scalar QNM modes of the spacetime. We start
by expanding the scalar field Ψ in scalar spheroidal
harmonics in Eq. (3), and we manipulate the Klein-
Gordon equation gμν∇μ∇νΨ ¼ 0 into an inhomogeneous

differential equation with a known source term, cf. Eqs. (8)
and (9). Then, the right-hand side of Eq. (8) can itself be
decomposed into spheroidal harmonics as described below
Eq. (9). This reduces the perturbation equation to Eq. (15),

with the potential Vð0Þ
lm matching that of the Kerr case

[cf. Eq. (6)]. Note that the right-hand side of Eq. (15)
depends on the various radial eigenfunctions Zl0m (with
l0 ¼ l;l� 1;l� 2;…) and their derivatives. Further
simplifications can be made by absorbing terms propor-
tional to Zlm and its derivative into a redefined potential
Vlm. Readers are referred to Eqs. (16) and (17) for more
details. However, the equation thus obtained still consti-
tutes a coupled system of differential equations, due to the
presence of couplings between various l modes [via the
source term on the right-hand side of Eq. (16)]. These
differential equations can be decoupled by introducing a
field redefinition, which leads to Eq. (19). The equation in
this final form can be used to compute the QNM frequen-
cies ω.

III. APPLICATION AND RESULTS

To illustrate the method outlined in Sec. II, let us

consider some examples where the ϵ ¼ 0 metric gð0Þμν is
that of either a Schwarzschild or a Kerr BH. For
Schwarzschild, we need to set a ¼ 0 and replace
eimϕSlmðθÞ → Ylmðθ;ϕÞ in the expressions derived above.

A. Slowly rotating Kerr BH

Let us consider the evolution of a scalar field Ψ in a

slowly rotating Kerr spacetime. In this case, gð0Þμν is a
Schwarzschild metric of mass M, and the deviation metric

gð1Þμν has only two nonzero components, gð1Þtϕ ¼ gð1Þϕt ¼
−2M2 sin2 θ=r, with the expansion parameter ϵ ¼ a=M.
The horizon remains at the same location as that of the
background Schwarzschild BH—i.e., at r ¼ 2M.
Therefore, the near horizon boundary condition also
remains unchanged. Using Eq. (9), we obtain the source
term as J ½Ψ� ¼ 4M2ωm

r2ðr−2MÞΨ, and the final QNM equation

takes the form

d2Zlm

dr2�
þ VlmðrÞZlm ¼ 0; ð25Þ

with the master potential

VlmðrÞ ¼ VSch
l ðrÞ − 4ϵM2ωm

r3
; ð26Þ

where

VSch
l ðrÞ ¼ ω2 −

lðlþ 1ÞfðrÞ
r2

−
2MfðrÞ

r3
ð27Þ

4Note that the Wronskian is not zero, as the two solutions are
linearly independent. Should one choose instead the two sol-
utions to satisfy ingoing/outgoing boundary conditions at the
horizon/infinity, the Wronskian would vanish [if ωlm is obtained
from Eq. (4)] or be ∼OðϵÞ [if ωlm is obtained from Eq. (19)]. This
explains why it is more convenient to choose a Uð1;2Þ

lm satisfying
Eqs. (20)–(23).

5These possible divergences are simply an artifact of working
in the frequency domain. Once the time dependence
expð−iωl0mtÞ is restored [cf. Eq. (4)], it becomes clear that
Tlm is finite at future null infinity and on the future event horizon.
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and fðrÞ ¼ 1–2M=r. This matches exactly the potential
given in Refs. [47,48]. One then needs to solve Eq. (25) to
get the QNM frequencies for slowly rotating Kerr BHs.

B. Schwarzschild quadrupole metric

Due to the celebrated “no-hair” theorem [9,10], a
vacuum BH solution of GR is characterized only by two
parameters—namely, the mass M and spin a. In other
words, all higher multipole moments [49,50] of the vacuum
BH solutions of GR are specified uniquely byM and a. As
a consequence of this theorem, other stationary, axisym-
metric and asymptotically flat vacuum GR solutions cannot
represent a regular spacetime on and outside the event
horizon. See, e.g., Ref. [51] for a specific example.
However, if there are modifications to GR, the no-hair
theorem can be violated and BHs can have extra hairs,
which will in turn change the relation of various multipole
moments (in particular, the quadrupole moment) with mass
M and spin a. Interestingly, such deviations from the
Schwarzschild/Kerr metric have already been considered
quite extensively in literature, and constraints on them from
various (existing or future) astrophysical observations have
been worked out (see, e.g., Refs. [40,52–59]).
Here, we perform the QNM analysis of a Schwarzschild

BH with an anomalous (i.e., non-GR) quadrupole moment.
For this purpose, let us first construct a BH metric that
resembles the static (nonrotating) Hartle-Thorne metric as
r → ∞ [60–62]. However, since the static Hartle-Thorne
metric represents the exterior vacuum spacetime of a
nonrotating star of mass M and dimensionless quadrupole
moment q ¼ ϵ, it cannot be extended to the location of the
event horizon in a regular manner. Instead, we will
construct the black hole metric to have a structure similar
to the Hartle-Thorne metric near spatial infinity (as
needed to identify a quadrupole moment) and a regular
Schwarzschild-like structure near the horizon.
The leading-order falloff of the metric components for

r → ∞ can be obtained from the Hartle-Thorne metric
given in Eq. (2.6) of Ref. [63], with the spin set to zero.
We are interested in studying the effect of the quadrupole
correction on the QNMs. Up to linear order in ϵ, the
nonzero covariant metric components are

gtt ¼ −fðrÞ½1þ ϵf1ðrÞP2ðcos θÞ�;
grr ¼ fðrÞ−1½1 − ϵf1ðrÞP2ðcos θÞ�;
gθθ ¼ ðsin θÞ−2gϕϕ ¼ r2½1 − ϵf1ðrÞP2ðcos θÞ�; ð28Þ

where f1ðrÞ¼2fðrÞðM=rÞ3, and P2ðcos θÞ is the Legendre
polynomial of second order. Our choice of f1ðrÞ ensures
that the metric components have asymptotically the right
leading falloff behavior proportional to the quadrupole
moment—namely, ϵ=r3 þOð1=r4Þ, obtained from the
functions F2ðr; θÞ and H2ðr; θÞ given in the Appendix
of Ref. [63], which is required to identify the presence of an

anomalous quadrupole moment ϵ. On the other hand, our
construction of the metric is such that the near-horizon
structure is regular and similar to the Schwarzschild case. In
particular, we have chosen the functions f1ðrÞ so that it
vanishes at the horizon. Note that by construction, the event
horizon location (and hence the corresponding boundary
condition) remains the same as in the Schwarzschild metric.
Because of the presence of the Legendre polynomial

P2ðcos θÞ in the metric, the source term J will contain
the product P2ðcos θÞYlmðθ;ϕÞ—i.e., a coupling
between various angular momentum components and
the quadrupole,

J ½Ψ� ¼ 4M3ω2

r3
P2ðcos θÞΨ: ð29Þ

As was shown in the Methodology section, we can
decompose the radial and the angular dependency in
terms of Yl0m0 ðθ;ϕÞ, by using recursively the relation [48]

cos θYlm ¼ Qlþ1mYlþ1m þQlmYl−1m; ð30Þ

where we define Qlm and two symbols that will appear
later as

Qlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −m2

4l2 − 1

s
; ð31Þ

Alm ¼ Q2
lm þQ2

lþ1m; Blm ¼ Ql−1mQlm: ð32Þ

Following the method prescribed in Sec. II, one finally
gets the master equation,

d2Zlm

dr2�
þ VlmðrÞZlm

¼ 3ϵω2f1ðrÞðBlþ2mZlþ2m þ BlmZl−2mÞ; ð33Þ

where dr� ¼ dr=ð1 − 2M=rÞ; the potential reads

Vlm ¼ VSch
l − ϵf1ðrÞω2ð3Alm − 1Þ; ð34Þ

with VSch
l being the effective potential for the

Schwarzschild BH defined in Eq. (27). Then, following
Sec. II (for more details, see Appendix B), we can reduce
the coupled system of equations to a single equation in the
form of Eq. (19). We have calculated the QNM frequen-
cies from this equation using two methods—namely, the
method of continued fraction [64,65] and a linear expan-
sion in ϵ along the lines of Refs. [28,31]. The two methods
agree well, as shown in Fig. 1. We have also checked the
validity of the decoupling technique that we used (see
Sec. II and Appendix B) by calculating QNM modes from
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Eq. (33)—i.e., without removing the right-hand side—
and these modes match well with the QNMs after
decoupling Eq. (33). The coupled system was solved
with the continued fraction code described in Ref. [31].
We computed numerically frequencies of the spectrum
for a given l and m by truncating the system at some
lmax. By comparing different lmax’s, one can study
the numerical convergence of the QNMs until they
achieve the desired accuracy. We found, for the cases
considered, that the difference between the modes found
with lmax ¼ lþ 2 and those with lmax ¼ lþ 4 was
smaller than the error in ϵ given by the linear approxi-
mation. In addition, we have compared different modes
of the Schwarzschild quadrupole BH with Schwarzschild
QNMs. In Fig. 1, we plot the relative differences
between the real and imaginary parts of these modes,
for l ¼ m ¼ 2 and as a function of the anomalous
quadrupole moment. As expected, the effect of ϵ on
the QNMs is always small, reflecting the fact that we are
in the linear approximation regime.
As another test, we will now discuss the “eikonal limit”

of the QNM frequencies that we obtain. This is motivated
by the fact that the eikonal limit of the QNM equation in
Schwarzschild/Kerr BH spacetimes has an interesting
correspondence with the circular photon orbit. In particular,
one finds that in the eikonal limit, the real part of the
Schwarzschild/Kerr QNMs is proportional to the orbital
frequency of the circular photon orbit, and the imaginary
part is related to the Lyapunov exponent of the perturbed
motion near the circular photon orbit [66–71]. We want to
check whether such correspondence is present for the case
of the Schwarzschild quadrupole metric under consider-
ation. One expects this correspondence to hold for the
following reason: In the eikonal limit, we can write the

perturbation as Ψ ¼ A expðiSÞ, where S is a phase factor
that changes rapidly. Replacing this ansatz in the Klein-
Gordon equation, we get the Hamilton-Jacobi equation
gμν∂μS∂νS ¼ 0 for photons under the assumption of rapidly
varying phase. This implies the geodesic equation for
photons [72,73].
For this check, we focus on equatorial photon orbits.

Note that because of the equatorial symmetry of the metric,
initial conditions ðθ ¼ π=2; _θ ¼ 0Þ yield orbits confined in
the equatorial plane. A subtle point is that the eikonal
QNM equation takes the same form as the null geodesic
equation when both are expressed in terms of the same
tortoise coordinate. In our case, however, the QNM
equation contains the Schwarzschild tortoise coordinate
r�, which is different from the new tortoise coordinate r̄�
of the Schwarzschild quadrupole metric. On the equatorial
plane, these two coordinates are related by dr̄� ¼
dr�ð1þ ϵf1ðrÞ=2Þ. By using r�, the eikonal limit (obtained
for l ¼ m ≫ 1) of Eq. (33) is given by d2Xlm=
dr2� þ Veik

lmðrÞXlm ¼ 0, where

Veik
lmðrÞ ≃ ω2½1þ ϵf1ðrÞ� −

l2fðrÞ
r2

: ð35Þ

Here, we use the fact that Qlm → 0 in the eikonal limit.
When expressed in terms of the new tortoise coordinate r̄�,
the above equation generates a first-derivative term
dXlm=dr̄�, which can then be absorbed in a redefined
variable Xlm → X̃lm exp½−ϵ=4 R dr̄�fðrÞf01ðrÞ�. For more
details, see Eq. (C6) in Appendix C. Thus, the final eikonal-
limit QNM equation in the new r̄� coordinate becomes
d2X̃lm=dr̄2� þ Ṽeik

lmðrÞX̃lm ¼ 0, with the potential

Ṽeik
lm ≃ ½1 − ϵf1ðrÞ�Veik

lmðrÞ

≃ ω2 −
l2fðrÞ
r2

½1 − ϵf1ðrÞ�; ð36Þ

where Veik
lmðrÞ is given by Eq. (35). Now, the equatorial

potential for null orbits can instead be calculated as
VðrÞ ¼ E2 − L2fðrÞ½1 − ϵf1ðrÞ�=r2, with L and E being
the photon’s angular momentum and energy, respectively.
This potential thus matches the QNM potential in the
eikonal limit [see Eq. (36)], provided the energy E and the
angular momentum L of the photon are identified with
the eikonal QNM frequency ω and angular momentum
quantum number l.
The correspondence derived above between null geo-

desics and QNMs is nontrivial, but it is only valid for
l ≫ 1. One can also check whether the eikonal
approximation yields qualitatively correct results also for
moderate l. This would have implications for previous
results employing the eikonal approximation in that regime
(e.g., Refs. [36,40,74]). To this purpose, we have numeri-
cally computed the QNMs in the eikonal limit from the

FIG. 1. Relative difference (absolute value) between the
l ¼ m ¼ 2 scalar mode on top of a Schwarzschild BH with
quadrupolar correction ϵ and its GR correspondent. Solid
lines refer to the real part of the mode, dashed lines to the
imaginary part. We computed the modes with either a
continued fraction method (blue line) or a linear expansion
in ϵ (orange line).
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circular photon orbit’s frequency Ωp and its Lyapunov
exponent λp as

ωln ≈ lΩp − i

�
nþ 1

2

�
jλpj; ð37Þ

following standard procedures (see, e.g., Refs. [36,40]). As
expected, we find very good agreement with our results for
large l, but also the correct trend for moderate l.

C. Kerr quadrupole metric

In the same spirit of the static quadrupole metric
construction of the previous section, we may design a
rotating BH metric with Kerr-like structure near the event
horizon at rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, and the same leading

asymptotic structure as that of the metric given in
Eqs. (2.13)–(2.16) of Ref. [63] at r ≫ rþ, which is nothing
but the Hartle-Thorne metric that represents the exterior
vacuum spacetime of a rotating axisymmetric and sta-
tionary body of mass M, spin a, and quadrupole moment
q [60,61]. The perturbative parameter in this metric is
ϵ ¼ q − ða=MÞ2, where q is the dimensionless quadrupole
moment of the BH, which is not uniquely specified by mass
and spin, unlike Kerr. Note that by construction, the event
horizon location remains same as in a Kerr spacetime.
The nonzero metric components of the metric, up to

OðϵÞ, are therefore

gtt ¼ gKerrtt ½1þ ϵf2ðrÞP2ðcos θÞ�;
grr ¼ gKerrrr ½1 − ϵf2ðrÞP2ðcos θÞ�;
gθθ ¼ gKerrθθ ½1 − ϵf2ðrÞP2ðcos θÞ�;
gϕϕ ¼ gKerrϕϕ ½1 − ϵf2ðrÞP2ðcos θÞ�;
gtϕ ¼ gKerrtϕ ; ð38Þ

where f2ðrÞ ¼ 2FðrÞðM=rÞ3 with FðrÞ ¼ ΔðrÞ=r2. Note
that in the limit a → 0, we obtain the Schwarzschild-
quadrupole metric given by Eq. (28). Let us now study the
effect of the anomalous quadrupole moment on the QNM
spectrum, at leading (linear) order in ϵ.
To get the source term J ½Ψ�, one can directly follow the

general prescription given in Sec. II. However, for sim-
plicity, we make one more approximation and expand the
source term in the product aω. Such expansion, while linear
in ϵ, is valid unless the spin is not close to the extremal Kerr
limit. In this way, we can express the spheroidal harmonics
SlmðθÞ as a combination of generalized Legendre poly-
nomials PlmðθÞ as follows:

SlmðθÞ ¼
X∞
n¼0

ðaωÞ2n
XN
k¼−2n

KðNÞ
lkmPlþkmðθÞ; ð39Þ

where the coefficients KðNÞ
lkm can be easily found within the

Black Hole Perturbation Toolkit [75]. Under this approxi-
mation, one gets the following perturbation equation:

d2Zlm

dr2�
þ VlmðrÞZlm ¼ ϵ

X
l0≠l

jl0m þ ϵOðaNωNÞ: ð40Þ

The term
P

l0≠l jl0m contains Zl0m and their derivatives
with l0 ¼ fl� 2;…;l� Ng. Then, following Sec. II (for
more details, see Appendix B), we can reduce the above
coupled system to the decoupled equation given by
Eq. (19), which for the case N ¼ 2 yields the potential

Vlm ¼ Vð0Þ
lmðrÞ þ 3ϵa2ω4f1ðrÞðKð1Þ

l2mBlþ2m þ Kð1Þ
l−2mBlmÞ

− ϵf2ðrÞða2 þ r2Þ−2f3ðrÞ þ ϵOða3ω3Þ; ð41Þ

where Vð0Þ
lm is given in Eq. (6) and

f3ðrÞ¼ r½ω2r3−2maωMþa2ω2ðrþ2MÞ�ð3Alm−1Þ
þa2ω2ΔðrÞ½ð3Alm−1ÞAlmþ3ðBm

lþ2Þ2þ3ðBlmÞ2�:
ð42Þ

Note that ff1; f2; Alm; Blm; Klmg are defined in Secs. III B
and III C.
The results of our QNM analysis are shown in Figs. 2

and 3. The relative difference between the l ¼ m ¼ 2
scalar QNMmodes between the Kerr-quadrupole BH and a
Kerr BH of the same mass and spin is shown in Fig. 2 as a
function of the anomalous quadrupole moments ϵ for
different values of spin a. Though the relative differences
in both real and imaginary parts of QNM modes increase
for larger values of a and ϵ, they always remain small,
reflecting the fact that we are working under the linear

FIG. 2. Relative difference between the l ¼ m ¼ 2 scalar mode
on top of a Kerr BH with anomalous quadrupole moment ϵ and
its GR correspondent, for different values of the spin a. Solid
lines refer to the real part of the mode, and dashed lines to the
imaginary part. We computed the modes with the continued
fraction method.
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approximation. In Fig. 3, the solid lines compare the QNM
modes for the potential given in Eq. (41), where the
approximation of the source term was truncated at
N ¼ 1, with those where terms up to N ¼ 2 in the aω
expansion were included, whereas the dashed lines show
the absolute difference between truncation at N ¼ 4 and
N ¼ 2. Note that the size jΔωj of the relative difference
between the l ¼ m ¼ 2 mode obtained considering the
quadratic and quartic expansions in aω of Eq. (42) is
smaller than the same obtained using the linear and
quadratic expansions for any fixed values of ða; ϵÞ. It
should be clear from Fig. 3 that the expansion in the spin
presented here is made under a different form than in the
pure slow-rotation expansion [47,76,77].
In general, it is nontrivial to demonstrate the explicit

correspondence between QNMs and the unstable photon
orbit in the eikonal limit for arbitrary spacetimes, as we did
in the previous section for the Schwarzschild quadrupole
case. The correspondence for the Kerr-Newman BH has
been demonstrated recently [78]. In order to test our
analytic framework for the Kerr quadrupole case, we
numerically computed the QNMs in the eikonal limit via
Eq. (37), as we did for the Schwarzschild quadrupole
metric, and compared them to our results. Again, we found
very good agreement for large l, as expected, but also the
correct trend for moderate l.

IV. CONCLUSIONS

In this work, we outlined a procedure that allows one to
compute BH QNMs in cases where the separability of the
perturbation equations is not achievable exactly, but the
background spacetime’s deviation from the Kerr solutions
is small. The underlying idea, which has also been used in
the case of rotating BHs in higher-derivative gravity in

Ref. [43], is to rewrite the perturbation equations in an
approximate fashion by making use of the spheroidal
harmonics basis. While the resulting system of equations
shows couplings between radial functions with different
quantum numbers, as a result of the deviations from Kerr,
we find that the system can be diagonalized (i.e.,
decoupled) via a suitable redefinition of the radial
functions. As implicit in our perturbative treatment, we
find that the corrections to the QNM spectrum of Kerr/
Schwarzschild BHs are small, which allows for mapping
our results into the parametrized QNM framework of
Refs. [28,29,31].
The consistency of our method has been checked in

several ways. We verified that when applied to a slowly
rotating Kerr BH, one obtains the known analytic result for
the (scalar) perturbation equation. We also quantified the
accuracy of the QNM frequencies when computed at
different orders when expanding the spheroidal harmonics
into spherical harmonics, and we found good agreement.
Furthermore, we computed the QNM frequencies with a
continued fraction method, and we verified that the results
agree with the linear order of the parametrized QNM
framework of Refs. [28,29,31]. Finally, we also used the
eikonal approximation relating the orbital frequency at the
photon ring and its Lyapunov exponent to the QNMs.
We have found very good agreement for large l, and the
correct trend also for moderate l.
In this paper, we have focused on scalar perturbations on

top of non-Kerr/non-Schwarzschild metrics as a nontrivial
toy problem. The extension to the full gravitational case
requires one to choose a specific theory of gravity, compute
the background metric, and then derive the set of perturba-
tion equations. We will tackle this extension in future work.
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GHOSH, FRANCHINI, VÖLKEL, and BARAUSSE PHYS. REV. D 108, 024038 (2023)

024038-8



Note added.—Recently, a preprint where the method is
applied to the study of gravitational perturbations in higher-
derivative gravity appeared [79].

APPENDIX A: THE SOURCE TERM

In this appendix, we provide the explicit forms of the
coefficients a, b, and clm appearing in Eq. (11). The

modification to the metric gð1Þμν is chosen to be the most
general stationary and axisymmetric configuration (not
necessarily circular) [80]. We have

aðr; θÞ ¼ ∂θ

�
v2 − u

a2r2sin2θ
ρ2Δ

�
þ 2ftθ; ðA1Þ

bðr; θÞ ¼ Δ∂r
�
v1 − u

a2r2sin2θ
ρ2Δ

�
þ 2ftr; ðA2Þ

cl;mðr; θÞ ¼ rωw10

�
K
Δ
þ rω

�
þ a2ω2w02cos2θ

−
4MaruF
ρ2Δ

½mðρ2 − rÞ þ arωsin2θ�

þm2w23

sin2θ
þ w12λlm þ ∂rftr

þ amw13

2Mrω − am
Δ

þ 1

sin θ
∂θðsin θftθÞ;

ðA3Þ

where we define

uðr; θÞ ¼ 1

2
ðftt − 2ftφ þ fφφÞ; ðA4Þ

v0ðr; θÞ ¼
1

2
ð−ftt þ frr þ fθθ þ fφφÞ; ðA5Þ

v1ðr; θÞ ¼
1

2
ðftt − frr þ fθθ þ fφφÞ; ðA6Þ

v2ðr; θÞ ¼
1

2
ðftt þ frr − fθθ þ fφφÞ; ðA7Þ

v3ðr; θÞ ¼
1

2
ðftt þ frr þ fθθ − fφφÞ; ðA8Þ

and wij ¼ vi − vj. The functions are defined as

fttðr; θÞ ¼ gð1Þtt =g
ð0Þ
tt ; frrðr; θÞ ¼ gð1Þrr =g

ð0Þ
rr ; ðA9Þ

fθθðr; θÞ ¼ gð1Þθθ =g
ð0Þ
θθ ; fφφðr; θÞ ¼ gð1Þφφ=g

ð0Þ
φφ; ðA10Þ

ftφðr; θÞ ¼ gð1Þtφ =g
ð0Þ
tφ ; ftrðr; θÞ ¼ ΔFgð1Þtr ; ðA11Þ

ftθðr; θÞ ¼ Fgð1Þtθ ; F ¼ i

�
ωþ rK

ρ2Δ

�
: ðA12Þ

APPENDIX B: DECOUPLING THE WAVE
EQUATION

In Sec. II, we have discussed a general method to
decouple a system of coupled QNM equations of the form
given in Eq. (16). Thus, one may directly use this method to
deal with the QNM equations as given by Eqs. (33) and (40).
However, in this appendix, we will use a slight variation

of the method presented in Sec. II, in order to show that our
results reduce to those of Ref. [48] for some limiting cases.
For this purpose, consider a system of coupled wave
equations of the form

d2Zlm

dr2�
þ VlmðrÞZlm ¼ ϵ

h
fð1ÞlmðrÞZlþ2;m þ fð2ÞlmðrÞZl−2;m

i
:

ðB1Þ

Note that the right-hand side is a special case of the more
general situation shown in Eq. (16). Now, let us assume that

the ratio ðfð1Þlm=f
ð2Þ
lmÞ is r-independent, which is the case for

Eq. (33). This motivates us to introduce a field redefinition,
Xlmðr�Þ ¼ Zlmðr�Þ þ ϵZ̃lmðr�Þ=nðrÞ þ ϵUlmðr�Þ, where
r� is the background tortoise coordinate defined by
dr=dr� ¼ hðrÞ and Z̃lm ¼ clmZlþ2;m − dlmZl−2;m. We
want to choose the r-independent coefficients ðclm; dlmÞ
and the function Ulm in such a way that Xlm satisfies the
standard wave equation in decoupled form when Oðϵ2Þ
quantities are neglected; see Eq. (19). One such choice is
given by

clm ¼ fð1ÞlmðrÞnðrÞ
Vð0Þ
lþ2;m − Vð0Þ

lm

; dlm ¼ fð2ÞlmðrÞnðrÞ
Vð0Þ
lm − Vð0Þ

l−2;m

; ðB2Þ

d2Ulm

dr2�
þ Vð0Þ

lmðrÞUlm

¼ ∂r�

�
n0ðrÞhðrÞ
n2ðrÞ

�
Z̃lm þ 2n0ðrÞhðrÞ

n2ðrÞ
dZ̃lm

dr�
; ðB3Þ

where Z̃lm on the right-hand side of the above equation

must be considered as Z̃lmðϵ ¼ 0Þ and Vð0Þ
lm is the

Schwarzschild (Kerr) QNM potential given in Eq. (27)
[Eq. (6)]. To check our result, one can readily see that the
choice nðrÞ ¼ 1 and Ulm ¼ 0 agrees with the case pre-
sented in Ref. [48] for massless scalar perturbations of a
slowly rotating Kerr BH.
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A few comments are in order here. First, we
should choose nðrÞ in such a way that ðclm; dlmÞ are

r-independent. Given that the ratio ðfð1Þlm=f
ð2Þ
lmÞ is

r-independent, that is only possible if the ratio

ðVð0Þ
lþ2;m − Vð0Þ

lmÞ=ðVð0Þ
lm − Vð0Þ

l−2;mÞ is also r-independent.
In fact, this is the case for the Schwarzschild metric
with an anomalous quadrupole moment which we con-
sidered in this paper; see Eq. (33). In that case, it is easy
to see that nðrÞ ¼ r, dlm ¼ −3M3ω2Bm

l =ð2l − 1Þ, and
clm ¼ dlþ2;m represent a valid solution. In contrast, if at

least one of the ratios ðfð1Þlm=f
ð2Þ
lmÞ and ðVð0Þ

lþ2;m − Vð0Þ
lmÞ=

ðVð0Þ
lm − Vð0Þ

l−2;mÞ depends on r, the coefficients of Zlþ2;m

and Zl−2;m in the field redefinition cannot both be set
proportional to n−1ðrÞ.
After finding ðnðrÞ; clm; dlmÞ, we can substitute their

values in the differential equation for Ulm given in
Eq. (B2), where both the source and the frequencies
appearing in the potential are in principle known.
Therefore, we can always solve for Ulm, cf. Eq. (24)
and related discussion. As a result, the final equation takes
the form given in Eq. (19), which can be solved to find the
QNM frequencies ω.
One can use the above method repeatedly for decoupling

an equation with higher-order mode couplings too, where
the l mode is coupled to fl − l;…;l − 2;l − 1;lþ 1;
lþ 2;…;lþ lgmodes—see, for example, Eq. (40) in the
Kerr-quadrupole case discussed in Sec. III C. By symmetry,
it is easy to see that higher multipole perturbations (such as
quadrupole, octupole, and so on) of the background BH
metric may give rise to such couplings. Therefore, from a
phenomenological point of view, one may directly start

with a potential Vlm ¼ Vð0Þ
lm þP

i ϵiV
ið1Þ
lm in Eq. (19),

where the background Vð0Þ
lm has been perturbed by con-

tributions Við1Þ
lm coming from various higher multipoles.

This motivates the work presented in Ref. [31]. It is not
hard to concoct a similar method for decoupling an
equation with a source term containing derivatives of
Zl0m as well.

APPENDIX C: WAVE EQUATION
IN TERMS OF r̄�

In this appendix, we want to address one more issue that
may arise. In Eq. (19), the derivatives are with respect to
the Kerr/Schwarzschild tortoise coordinate r�, which may
differ from the tortoise coordinate r̄� of the metric given
by Eq. (1). However, if the horizon location remains the
same, we may still choose to work with the old tortoise
coordinate, as the near-horizon (ingoing) boundary con-
dition remains unaltered [44,48]. However, for a general
scenario where this is not the case, we have to tackle the
problem of incorporating the QNM boundary conditions
properly.

For this purpose, let us assume that the new and old
tortoise coordinates are related by dr̄� ¼ dr�½1þ ϵgðrÞ�,
where g depends on the radial coordinate only. Note that
one can always put the function g in such a form by
writing the metric in coordinates in which the radial
coordinate is constant on the horizon. Using this relation,
we can express the derivatives in Eq. (19) with respect to r̄�,
to get

d2Xlm

dr̄2�
þ ϵhðrÞg0ðrÞ dXlm

dr̄�
þ VlmðrÞð1 − 2ϵgðrÞÞXlm

þOðϵ2Þ ¼ 0; ðC1Þ

where dr=dr� ¼ hðrÞ. We can omit the first-derivative
term on the left-hand side by a field redefinition, Xlm →
X̃lm exp½−ϵ=2 R dr̄�hðrÞg0ðrÞ�. Then, the final master equa-
tion becomes d2X̃lm=dr̄2� þ ṼlmðrÞX̃lm ¼ 0, with the rede-
fined potential as

ṼlmðrÞ¼VlmðrÞ½1−2ϵgðrÞ�−1

2
ϵhðrÞd½hðrÞg

0ðrÞ�
dr

: ðC2Þ

As a demonstration of the method above, let us discuss
a suggestive example, where we consider the effect
of a small charge on the Schwarzschild scalar QNMs. In
other words, the spacetime is Reissner-Nordström (RN)
with a small charge jQj ≪ M, and the location of the
horizon is different from Schwarzschild. We will consider
ϵ ¼ Q2 as our perturbative parameter. In this case,
gðrÞ ¼ −½r2fðrÞ�−1 and hðrÞ ¼ fðrÞ. Then, Eq. (17) gives
the potential6

VlðrÞ ¼ VSch
l ðrÞ − ϵ

2M2 þ 2r4ω2 − r2fðrÞðl2 þ l − 1Þ
r6fðrÞ :

ðC3Þ

Therefore, using Eq. (C2), the master QNM equation
becomes

d2X̃lm

dr̄2�
þ ṼlðrÞX̃lm ¼ 0; ðC4Þ

where the master potential is

ṼlðrÞ ¼ VSch
l ðrÞ − ϵ

6M þ ðlþ 2Þðl − 1Þr
r5

; ðC5Þ

6Since for the case of a RN BH, the function gðrÞ and the
ϵ-dependent term in VlðrÞ given by Eq. (C3) diverge at r ¼ 2M,
our perturbative analysis is not strictly valid near r ¼ 2M.
However, following our analysis, one gets the correct (and
regular) result at the end; see Eq. (C5).
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which can be verified by a direct calculation of the QNM
equation for a RN spacetime.
Another interesting conclusion follows directly from

Eq. (C2). Note that in the eikonal limit (l ¼ m ≫ 1),
the last term (which is l-independent) on the right-hand
side of Eq. (C2) can be neglected, and the eikonal potential
takes a very simplified form:

Ṽeik
lmðrÞ ≃ Veik

lmðrÞ½1 − 2ϵgðrÞ�; ðC6Þ

where Veik
lmðrÞ is the eikonal limit of the potential VlmðrÞ

given in Eq. (17). We will use this equation in Sec. III B
[see Eq. (36)] to derive the eikonal QNM potential in the
Schwarzschild quadrupole case.
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