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8.4 Slope of Rényi entropies in generic TBA-integrable models . . . . . . . . . 108

8.4.1 Free fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.4.2 Von Neumann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.4.3 Rule 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.4.4 XXZ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.5.1 Eq. (8.57) and the Quasiparticle Picture . . . . . . . . . . . . . . . 117

8.5.2 Finite Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.5.3 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 119



CONTENTS 5

8.A Fixed points as stationary density matrices . . . . . . . . . . . . . . . . . 120
8.B Partially decoupled form of (8.58) and (8.60) . . . . . . . . . . . . . . . . 121
8.C TBA equations for XXZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.D Details on the iTEBD simulations . . . . . . . . . . . . . . . . . . . . . . 124





Chapter 1

List of Publications

This thesis is based on the following publications:

[1] G. Lagnese, F. M. Surace, M. Kormos and P. Calabrese, Confinement in the spec-
trum of a Heisenberg–Ising spin ladder J. Stat. Mech. 093106 (2020),
Chapter 4.

[3] G. Lagnese, F. M. Surace, M. Kormos and P. Calabrese, Quenches and confinement
in a Heisenberg–Ising spin ladder J. Stat. Mech. 093106 (2022),
Chapter 4.

[2] G. Lagnese, F. M. Surace, M. Kormos and P. Calabrese, False vacuum decay in
quantum spin chains, Phys. Rev. B 104, L201106 (2021),
Chapter 5.

[4] G. Lagnese, P. Calabrese and L. Piroli, Entanglement dynamics of thermofield
double states in integrable models, J. Phys. A: Math. Theor to appear (2022) ,
Chapter 7.

[5] B. Bertini, K. Klobas, V. Alba, G. Lagnese, P. Calabrese, Growth of Rényi En-
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Chapter 2

Introduction

Collective phenomena and many-body dynamics are ubiquitous in nature: they are ob-
served and studied in many fields of research such as economics, social sciences, biology,
as well as several branches of physics. In this perspective, universality is a key concept
and a milestone of modern physics: in real systems close to criticality, many microscopic
details become irrelevant, while only a few crucial relevant features such as symmetries,
dimensionality, and the range of interactions govern the macroscopic (collective) be-
havior, as prescribed by renormalization group theory. In light of the aforementioned
considerations, much of the effort in the framework of statistical physics has been made
in the direction of describing continuous phase transitions of condensed matter systems
at equilibrium. Thanks to the idea of universality, it is possible to interpret experimen-
tal observations and describe the low-energy/long-range behaviour of those real systems
in terms of effective models with few parameters, both in quantum and classical set-
tings. Equilibrium Statistical Physics has now been a successful and mathematically
well-developed theory for long time. However, much less is known away from equilib-
rium.

The physics of strongly correlated one-dimensional quantum systems has been at-
tracting a lot of attention for diverse reasons. On the one hand, due to the emphasised
effect of strong correlation and interactions, low-dimensional systems are of particular
interest because fluctuation effects are relevant, therefore the mean field description fails.
On the other hand, a rich toolbox of analytical methods has been developed and exact
solutions exist for a subset of microscopic models, including both systems in the con-
tinuum such as the Gaudin-Yang model and the Lieb-Liniger gas and lattice models
such as the spin 1/2 XXZ and the Fermi-Hubbard chain. In addition, a revolution of
ultra-cold atoms based experimental setups [6] allowed for fine tuning of the interac-
tion strength through the Feshbach resonances as well as for the possibility of changing
the dimensionality with optical potentials. Such experimental breakthrough changed
completely the interplay between theory and experiments as it opened the possibility to
experimentally realize and simulate the physics of such models. Furthermore, the fact
that such cold atom systems are sufficiently weakly coupled to their environments allows
for the observation of essentially unitary non-equilibrium time evolution on long time
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10 CHAPTER 2. INTRODUCTION

scales. Given all the aforementioned motivations and the availability of experimental
controllable systems whose properties can be accurately described by simple models,
one-dimensional quantum systems became an extraordinary playground where to inves-
tigate quantum many-body physics, as they provide an unprecedented opportunity to
explore several new frontiers of condensed matter physics including the non-equilibrium
dynamics in closed interacting quantum systems. The importance of such developments
is two-fold. On the one hand, there are fundamental problems to be addressed and direct
simulations of simple models may help to solve them; they are related to the following
questions: Does the system reach a stationary state? Under which conditions? Can we
provide quantitative predictions for the time scales associated to relaxation? What is
the nature of the emerging stationary states? Is there an emerging universality in the
out-of-equilibrium time evolution? Many progresses have been made toward an answer
to such questions. The interested reader may consult the some of the existing reviews
on the subject [7, 8, 9, 10, 11]. On the other hand, establishing a general framewrok to
understand and predict non-equilibrium physics is crucial for the developing of future
quantum technologies: in order to perform quantum computation, real time manipula-
tions of interacting quantum systems is going to be required.

The research field of the non-equilibrium dynamics of one-dimensional many-body
quantum systems now covers a large portion of the statistical physics literature of the
last twenty years. Through the course of the present chapter a minimal set of tools
required to properly contextualize the material collected in the manuscript will be briefly
summarized. Sec. 2.1 introduces the quantum quench, the protocol used in this work
to bring the systems of interest away from equilibrium. In Sec. 2.2 we discuss about
the entanglement entropy, a key quantity when assessing non-equilibrium evolution of
isolated quantum systems, and we sketch the main features of its quench dynamics.
Sec. 2.3 reports a theoretical setting thanks to which, under proper assumptions, many
aspect of the entanglement dynamics are understood. Finally in Sec. 2.4 the organization
of the thesis is presented.

2.1 Quantum quenches

There are many suitable ways that could be employed in order to drive a system out
of equilibrium: it is possible to force energy or particles through an external reservoir
or apply a driving field. Another one is represented by the so called ramps [12, 13,
14], related to the Kibble-Zurek mechanism. Others are inhomogeneous settings [15].
Through the present thesis we are going to adopt a simple but fundamental approach,
which is now considered the archetypal protocol to drive a system out of equilibrium:
the quantum quench [16, 17]. The protocol is usually configured as follows: at time
t = 0 an isolated system is prepared in a pure state |ψ0⟩. Usually, it is the ground
state of a many-body Hamiltonian H0. A Hamiltonian parameter (i.e. magnetic field
or interaction strength) is then suddenly changed and the system is evolved for t >
0 as |ψ⟩ = e−iHt |ψ0⟩ with a Hamiltonian H that does not commute with H0. In
the following we are going to be focused on the case where the pre-quench and post-
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quench Hamiltonians are translationally invariant, which is called global quench. The
Hamiltonians are required to be short range. Due to the experimental feasibility of the
protocol, it turns out to be of fundamental relevance. Since H and H0 do not commute
the pre-quench state |ψ0⟩ acquires a non-vanishing overlap with an exponentially large
number of eigenstates of the post-quench Hamiltonian and a spatially uniform finite
energy density. In generic systems, during the subsequent time evolution the expectation
values of observables O relaxes to stationary values described by thermal ensembles as

⟨O⟩ = Tr
[
Oe−βH

]
,

where the parameter β is fixed through the expectation value of the energy on the initial
state. Eventually, other parameter are introduced if there are more conserved quanti-
ties such as particle number. The occurrence of such statistical ensembles in isolated
quantum systems is fundamentally different from the one found in Statistical Physics
textbooks. By definition of unitary evolution, a pure state stays pure. Conversely, the
emergence of thermal ensembles is usually understood in terms of a coupling between the
system and an external reservoir. To solve the apparent paradox the role of locality is
crucial: if we focus on a local, sufficiently small, portion of an isolated extended system
the latter can serve as its own thermal bath, and local relaxation should be possible.
The information about the initial state spreads along the system and it is not anymore
accessible through local measurements. The reader may find a comprehensive discus-
sion on quantum thermalization in [11]. Classes of non-thermalizing systems, deviating
from the aforementioned behavior, exist. These are many body localized systems [18] ,
quantum scarred systems [19] and systems exhibiting confinement [20, 21, 22]. However,
only the last class is of interest for the present manuscript. In the following we focus
on yet another scenario: the one represented by integrable theories. It should here be
stressed that even if we will be concerned by models where integrability has been broken,
still we will consider originally integrable models where a “perturbative” field has been
introduced driving them away from integrability. Thus, the integrable settings represent
the “null model” we assume in order to address our investigations. In integrable models
the dynamics is constrained by an infinite set of quasi-local conserved quantities and
observables do not relax to thermal ensembles. Nonetheless, local proprieties still ex-
hibit relaxation to stationary values predicted through the Generalized Gibbs Ensemble
[23]. In this case the quench dynamics may be understood in term of stable quasiparti-
cle excitations [16]: the initial state |ψ0⟩, which is higher in energy for the post-quench
Hamiltonian H, acts as a source of quasiparticles that travel ballistically at a certain
speed. Those emitted within a certain correlation length typical of the initial state (the
ground state of H0) are responsible of spreading quantum correlation throughout the
system. A typical light cone effect is detectable in the two-point correlation functions:
if v is a maximal speed of propagation, all connected correlators at time t vanish at a
distance greater than 2vt. Moreover, coherent quasiparticles arriving at the same point
from different sources cause exponential relaxation of local quantities such as the local
order parameter toward the ground state expectation value. Finally, the light cone ef-
fects are detected through the linear growth of the entanglement: Another quantity that
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is sensitive to quantum correlations and proved to encode distinctive nonequilibrium
features.

2.2 Quantum entanglement

The true nature of quantum entanglement, or the exhibition of nonclassical correlations
between separate systems, is elusive and susceptible to intense debate. Due to its non-
local connotations, it has been considered among the trademarks of quantum mechanics
from the early stages of the theory. Studying and characterizing the entanglement be-
came soon an interdisciplinary problem and brought together subjects such as quantum
mechanics, communication and information theory. It stimulated the emergence of new
research fields like quantum information, quantum computation and cryptography.

The attempt to quantify the degree of entanglement in systems with many degrees of
freedom has been at the center of quantum information science and statistical physics.
We previously mentioned how relaxation in the out-of-equilibrium dynamics is deeply
intertwined with the problem of the scrambling of local information. Entanglement mea-
sures, quantifying such information, possibly clarify how statistical ensembles emerge
from the unitary time evolution of pure states in isolated systems: it is widely accepted
that the stationary value of the entanglement of a large subsystem embedded in an
infinite system may be interpreted as its thermodynamic entropy [24]. Among all the
proposed possible good measures of entanglement [25, 26, 27] a popular one is the en-
tanglement entropy. It is defined as follows. We assume our system is prepared in a
pure state |ψ⟩ and we define the reduced density matrix of a subsystem A tracing away
the degrees of freedom of its complementary Ā as ρA = TrĀ ρ (where ρ is the density
matrix of the whole system |ψ⟩ ⟨ψ|). The entanglement entropy of the subsystem A is
then the Von Neumann entropy of its reduced density matrix ρA

S(ρA) = −TrA ρA log ρA . (2.1)

The characterization of its time evolution after a quench evoked an intense research
activity. Because of the functional form of Eq. 2.1 a straightforward connection with
the information theory is established as it of the same form as the Shannon entropy
developed for quantifying the information loss in transmitting a given message in a
communication channel [28]. Other conceptually valuable and experimentally relevant
measures of entanglement are the so called Rényi entropies, defined as

Sα(ρA) =
1

1− α
log TrA [ραA] . (2.2)

These are a family of seemingly minor variations of the entanglement entropy, which have
been shown to provide highly nontrivial universal information about the system [29], for
instance on its topological properties [30]. Arguably the most significant point of interest
of Rényi entropies, of integer order α ≥ 2, is that they are accessible in present-day
experiments [31, 32, 33, 34, 36, 37, 38, 39, 40]. The entanglement entropy in Eq. 2.1 is
recovered once the limit α → 1 has been taken. As it was briefly introduced in Sec. 2.1
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after a quantum quench in a clean quantum many-body system they generically display
a universal linear growth in time followed by saturation. In particular, the slope of
the growth carries crucial information on the nature of the system’s dynamics, and its
characterisation is a key objective of current research.

2.2.1 Entanglement quench dynamics

The linear growth of entanglement is arguably the most distinctive and pervasive phe-
nomenon observed in the context of quantum many-body dynamics: whenever a clean,
locally interacting many-body system is prepared in a low-entangled state and then let
to evolve, the entanglement between a compact region and its complement grows linearly
in time. The ubiquity of this phenomenon suggests that a universal underlying mecha-
nism is hidden behind the scenes. An astonishing outcome of recent research, however,
suggests that this is not the case. Two distinct mechanisms for entanglement growth
have been identified depending on the nature of the dynamics. The first account of
linear growth of entanglement has been given in the context of (1+1)-dimensional con-
formal field theory (CFT) [41], where it was explained assuming that the entanglement
is “spread” throughout the system by pairs of correlated quasiparticles produced by the
quench [41]. It was later realized that the quasiparticle picture holds beyond quenches in
CFT, and correctly describes the entanglement dynamics in one-dimensional (1D) sys-
tems with stable quasiparticle excitations [42]. This was first shown for non-interacting
spin-chains through a rigorous microscopic derivation [43]. More recently, it has been
extended to interacting integrable models [44, 45] (see also [46, 47, 48, 49, 50, 51, 52]
for generalizations), inhomogeneous settings [53, 54, 55, 56] and open quantum systems
[57, 58, 59, 60].

Contrary to the non-interacting case, the general validity of the quasiparticle picture
has not yet been rigorously proven. Still, a significant amount of numerical evidence
corroborating it has been collected in prototypical examples, including XXZ Heisen-
berg models [44, 45] and SU(3)-invariant spin chains displaying multiple quasiparticle
species [61]. In addition, it has been established analytically in certain quantum cel-
lular automata mimicking interacting quasiparticle dynamics [62, 63, 64]. For the sake
of completeness, it must be mentioned how a second account for the linear growth
of the entanglement was later developed. Indeed, an unexpected ballistic growth has
been observed in systems with no quasiparticles, for instance holographic conformal
field theories [65, 66], generic interacting systems [67, 68], and chaotic quantum cir-
cuits [69, 70, 71, 72]. The explanation was finally found through a “minimal membrane”
picture [73, 74]. In essence, the idea is that in chaotic systems the entanglement be-
tween two complementary regions is measured by the tension of the minimal space-time
surface that separates the two. Even though both quasiparticle and minimal-membrane
pictures explain the linear growth of entanglement, they predict qualitatively different
phenomenology when considering more complicated partitions of the system [66, 73, 46]
or for finite sizes [73, 70].Given the difficulty to compute the real-time dynamics in in-
teracting many-body systems, both the pictures represent remarkable results. However,
in the course of the present manuscript we will be concerned on the first one (the reader
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may find a thoroughly description of the minimal membrane picture in [74] ).

2.3 The quasiparticle picture

We remind the reader the quench setting introduced in Sec. 2.1: the system is ini-
tialized in a pure state |Ψ⟩, for instance the ground-state of a local Hamiltonian H0,
and left to evolve under a post-quench local Hamiltonian H (which is assumed to be
translation-invariant). The quasiparticle picture provides a very simple interpretation
(and quantitative description) of the post-quench entanglement dynamics, as we briefly
explain now (see the reviews [75, 76] for a comprehensive treatment).

As a starting point, one postulates that the homogeneous quench produces every-
where an extensive number of uncorrelated pairs of entangled quasiparticles with op-
posite momenta. After the quench, the quasiparticles spread through the system, and
cause distant regions to be entangled. At a given time t, the entanglement between two
regions, A and B, is proportional to the number of pairs with one quasiparticle in A
and the other in B. In CFT, the quasiparticles all propagate with the same velocity v,
leading to the very simple equation

Sℓ(t) = 4vtsΘ(ℓ− 2vt) + ℓsΘ(2vt− ℓ) , (2.3)

where Θ is the Heaviside theta function and ℓ the subsystem size. Here s is the
entanglement-entropy density carried by each pair of quasiparticles. Eq. (2.3) has been
derived assuming that the infinite-system size limit N → ∞ is taken first.

Recently, this picture has been generalized to the case of interacting integrable sys-
tems [44, 45]. As a defining feature, integrable models are characterized by the fact that
the entire spectrum of their Hamiltonian can be described in terms of stable quasipar-
ticles. In analogy with the non-interacting case, they can be parametrized by quasi-
momenta, or rapidities {λj}j , and display a non-trivial dispersion relation. The latter
has to be taken into account within the quasiparticle picture, implying that distinct
quasiparticles propagate with different velocities. This leads to a simple modification
of Eq. (2.3), where one sums over the contributions coming from quasiparticles with
different rapidities λ, namely [44]

Sℓ(t) =
∑
n

[
2t

∫
2|vn|t<ℓ

dλ|vn(λ)|sn(λ) + ℓ

∫
2|vn|t>ℓ

dλsn(λ)

]
. (2.4)

Here, v(λ) and s(λ) denote the velocity and density of entanglement entropy of the
quasiparticles with rapidity λ, respectively. We also introduced an additional index n,
which distinguishes between possible different types of quasiparticles or bound states
thereof.

It was argued in Ref. [44] that vn(λ) and sn(λ) can be related to the thermodynamic
properties of the stationary state emerging at large times after the quench, as described
by the Generalized Gibbs Ensemble (GGE) [77, 23]. In particular, vn(λ) was identi-
fied with the velocity of the elementary excitations, and sn(λ) with the corresponding
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thermodynamic, or Yang-Yang, entropy [78]. As a consequence, vn(λ) and sn(λ) can be
computed exactly (at least for simple initial states), and (2.4) gives us a fully quantitative
prediction with no free parameter to be fixed [44].

It should be stressed how an important assumption underlying Eq. (2.4) is that
the quench only produces pairs of quasiparticles. At the microscopic level, this can be
justified for a class of low-entangled integrable initial states [79, 80] (see also [81, 82]
for related discussions). However, in more general cases it is possible that the quench
also produces higher n-tuples of correlated quasiparticles. An explicit example in a non-
interacting model is reported in Ref. [83, 84, 85] , where the authors found fine-tuned
families of initial states for which the quench does not produce pairs but only higher
n-tuples of quasiparticles. In this case, the entanglement dynamics is still captured by
a semiclassical picture, but Eq. (2.4) has to be modified [83].

2.4 Organization of the thesis

In the present Chapter 2 the general framework in which the work here collected is
embedded has been introduced. We conclude with an outline of the thesis. The text is
divided into two parts:

Part. I concerns the out-of-equilibrium dynamics of low-dimensional systems with
confinement. More precisely, in Chapter 4 the modifications, both in the spectrum and
real-time quench dynamics, resulting from the presence of confinement in a spin ladder
are investigated. While in Chapter 5 the possible occurrence of the phenomenon of false
vacuum decay in spin models is investigated.

Part. II focuses on the quench dynamics of quantum entanglement in integrable
spin chains. More in detail, in Chapter 7 it is showed how the quasiparticle picture
introduced in Sec. 2.3 can be extended to characterize the non-equilibrium evolution of
the entanglement entropy in a different class of states: the Thermofield Double States
(TFD). In Chapter 8 an alternative methodology, allowing for predictions of the real-time
evolution of the Rényi entropies in integrable models, is developed.
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Confined dynamics in quantum
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Chapter 3

Overview

Confinement of elementary particles is renowned as a fundamental mechanism for our
understanding of fundamental interactions of nature. The prototypical example of such
a phenomenon is quark confinement in quantum chromodynamics (QCD) [86] which is
a ruling principle of strong interactions: quarks cannot be isolated at low-energy and
they are only found in composite particles called hadrons such as baryons and mesons.
Indeed, the mass of ordinary matter is in an overwhelming majority in the binding energy
of protons and neutrons rather than in the masses of truly elementary particles such as
quarks and electrons.

The idea behind the confinement of quarks in the high energy physics framework lies
in the fact that an effective linear potential between the quarks arises from the gauge
degrees of freedom: the large distance behavior of strong interaction mediated by the
gluons is described as a potential linearly increasing with the particle distance V (r) ≈ σr
(where σ is known as string tension); in contrast, when two particles with opposite
electrical charges are interacting, the Coulomb potential V (r) ≈ 1

r does not diverge for
large inter-particle distance. While in the Coulomb case it is possible to bring the inter-
particle distance to infinite, the attempt to separate two color charges ends in the creation
of another couple quark-antiquark (a process known as string breaking). Many aspects of
confinement in relevant gauge theories in high-energy physics still are poorly understood
and subject to intense investigations (the interested reader may find a detailed review in
[87]). The lack of analytical techniques, due to the intrinsic non-perturbative nature of
confinement, and the difficulty to perform numerical simulations of strong interactions on
classical devices, challenge our ability to understand confinement in the relevant gauge
theories (like QCD).

Recently, the possibility of using tools from quantum technologies for studying prob-
lems of strongly coupled quantum field theories has attracted a lot of interest [88, 89, 90,
91]. On the one hand, tensor-network approaches are promising candidates for study-
ing non-equilibrium properties that cannot be accessed with traditional Monte Carlo
simulations. These approaches have been successfully applied to 1 + 1 and 2 + 1 di-
mensional lattice gauge theories [92, 93, 94, 95, 96, 97, 98, 99] but they suffer from
limitations with dimensionality. Therefore, there has been an increasing interest in the
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toolbox of quantum simulators [100, 101, 102, 103, 104, 105, 106]. The hope is that
controllable quantum systems in table-top experiments will help us understand difficult
problems in quantum field theory, including, for example, confinement of the elemen-
tary excitations. In this context, one-dimensional quantum spin models represent the
ideal framework for benchmarking quantum simulators: they can host particle con-
finement [107, 108], a property that can be observed in the non-equilibrium dynamics
after a quantum quench [22, 109, 110]; it has also been suggested that their real-time
evolution can reveal interesting phenomena including collisions of particles and bubble
nucleation [111, 112, 113, 114, 115, 116]. Indeed, as we shall further discuss in the follow-
ing, a remarkable discovery is that a similar phenomenology is displayed in the ordered
phase of several condensed matter systems. Here the charged particles/anti-particles
are domain walls toggling between degenerate ground states and an effective long-range
potential emerges from the local interaction as a consequence of a symmetry-breaking
mechanism: one of the two ground states acquires a finite energy density with respect
to the other. Thus, pairs of domain wall states possess an energy proportional to the
number of frustrated degrees of freedom between them.

3.1 Confinement in condensed matter physics

As theoretically proposed in the late seventies [107, 108] and directly verified in the last
decade in a number of experiments with inelastic neutron scattering or other spectro-
scopic probes [117, 118, 119, 120, 121, 122, 123], confinement of excitations is a relevant
phenomenon also in condensed matter physics. Following the pioneering work by McCoy
and Wu [107], confinement has then been found and investigated with various analyti-
cal and numerical methods in thermal equilibrium in several quantum one-dimensional
models [124, 125, 126, 127, 128, 129, 130, 131, 132, 1, 133, 134].

To date, confinement has been found and studied in great detail in many one-
dimensional and quasi-one-dimensional magnetic insulators, with Ising-like [107, 108,
126, 128, 129] or Heisenberg-like [135, 136, 137, 138, 139, 140, 141, 142, 143, 144] inter-
actions. Remarkable was the very recent experimental observation of the peculiar eight-
particles E8-symmetric [145, 146] structure, predicted in [147], of the spectrum of the
quantum transverse Ising chain close to the quantum critical point with a perturbative
longitudinal field. Results achieved through neutron scattering and THz spectroscopy
experiments on CoNb2O6 and BaCo2V2O8. In all these cases, the spin-1/2 excitations
(kinks or spinons) not only form bound states with integer spin, as a consequence of an
(even weak) attractive interaction, but they cannot be observed as free particles at low
energy, exactly like quarks in high energy physics. In very recent times, it has been pro-
posed that many quantitative aspects of confinement (such as the masses of the bound
states) can be accessed very effectively following the non-equilibrium real time dynam-
ics [148, 22], a protocol that is routinely exploited in ultracold atoms and trapped ions
experiments. This observation started an intensive theoretical activity on the subject
[149, 150, 109, 151, 152, 153, 154, 155, 156, 157, 115, 111, 112, 158, 159, 2, 160] that lead
to direct experimental implementation of a quantum simulator with trapped ions [110],
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as well as several new theoretical and experimental ideas to understand lattice gauge
theories in real time [148, 161, 162, 163, 103, 104]. Also, it was very recently observed
on a IBM quantum computer [164] simulating a TFIM with external longitudinal field
(the same model employed in [22]).

The time evolution after a quantum quench is typically characterised by lightcone
spreading of correlators [16, 17] and by a linear growth of entanglement in time [41].
Remarkably, confinement of elementary excitations fundamentally alters this picture:
the light cone spreading and the growth of entanglement are highly suppressed [22].
Furthermore, while typically the order parameter decays exponentially [16], in a confining
scenario it oscillates with frequencies related to the masses of the mesons [22, 115].
Recent works showed that confinement may lead to the absence of thermalisation [152,
157], to the emergence of rare non-thermal states (scars) in the many-body spectrum
[149, 150], and to fracton dynamics [160] as well as to anomalously slow dynamics [153,
154]. All these works addressed the dynamics of spin chains.

3.1.1 Quantum Transverse Field Ising chain

Before we embark on the analysis of more complicated models, the main features of
confinement in condensed matter systems are reviewed through the Ising model with
transverse and longitudinal fields in his ferromagnetic phase. McCoy andWu studied this
problem for the first time in the classical two-dimensional Ising field theory [107]: they
showed how, in presence of an external symmetry breaking field, the two-point function
develops a sequence of imaginary poles in momentum space; those poles correspond to
the masses of the confined bound states. Now we focus on the quantum Ising chain, the
Hamiltonian of the model reads

H = −
∞∑

j=−∞

[
Jσzjσ

z
j+1 + hxσ

x
j + hzσ

z
j

]
, (3.1)

where σαj are the Pauli matrices acting on site j. Here is the external longitudinal field hz
that triggers the symmetry breaking mechanism, but first we select hz = 0. In this case
the model possess a Z2 symmetry associated with the global flipping of all the spins. The
model is exactly solved through a Jordan-Wigner mapping to free fermions. By tuning
J > 0 we select a ferromagnetic nearest-neighbour interaction. When the transverse field
is below the critical value |hx| < J we are in the ordered ferromagnetic phase and the
Hamiltonian in eq. 3.1 has two degenerate ground states |ψ+⟩ and |ψ−⟩ identified through
the non-vanishing expectation value of the local magnetization ⟨ψ±|σzj |ψ±⟩ = ±σ. The
fundamental excitations are freely propagating topologically charged domain walls called
kinks interpolating between the two ground states. When an even small longitudinal field
hz is introduced, the original Z2 symmetry is broken and the degeneracy between the
two ground states is lifted: the one with ⟨σzj ⟩ aligned to hz becomes the new ground
state while the other acquires a macroscopic energy difference with the first one; two-
kinks configurations pay an energy cost proportional to the extension of the anti-aligned
domain between them. Thus, similarly to quarks in QCD, kinks are not anymore allowed
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to propagate freely and they get confined into mesons, which are neutrally charged
particles with respect to the Z2 symmetry. As a consequence of the V-shaped confining
potential, the mass of each meson is embedded in the binding energy of the string
between the kinks; see fig 3.2 for a pictorial representation.

It should be now introduced how relevant information about the confined physics of
the model is unraveled by following the non-equilibrium real-time evolution of suitable
observables. There are three main concept we shall here illustrate:

• Suppression of the light cone spreading of correlators.

• Suppression of entanglement growth.

• Masses of the bound states are accessible through the so called quench spectroscopy

In Ref. [22] the quench protocol is applied preparing the system at t = 0 in the ground
state of Eq. 3.1 for certain values of the parameters hx ̸= 0 and hz = 0, then those
parameters are suddenly changed. In [22] the role of hx and hz are exchanged with
respect to the convetion adoped for Eq. 3.1. The ground state of the model is known to
be low-entangled and the quasiparticle picture applies: after the abrupt change of the
parameters pairs of kinks of opposite momenta are created and they propagate according
to their characteristic speed. This is visible in the two-point connected correlations
⟨σz1 , σz1+ℓ⟩c showed in Fig. 3.1 (a), hz = 0 case. In the same figure the effect of the light
cone suppression is detected, even for a small longitudinal field.

An intuitive picture of what we are observing is easily obtained in the semi-classical
limit hx → 0 and illustrated in Fig 5.1. The Hamiltonian is diagonal in the basis of
classical spin configurations: |ψ+⟩ and |ψ−⟩ appear as |. . . ↑↑↑↑ . . .⟩ and |. . . ↓↓↓↓ . . .⟩
while kinks are |. . . ↑↑↑↓↓↓ . . .⟩. Pairs of kinks produced after the quench propagate in
opposite directions until the confining potential halts their motion and pulls them back,
leading to oscillatory motion. Another relevant effect is found in the long-lived oscilla-
tions of the time evolution of local observables: a representation is showed Fig 3.1 (b)
for the expectation value of the local magnetization ⟨σx⟩, which is known to exponen-
tially decay to zero when hz = 0 [165]. The masses of the mesons are detected in the
power spectrum of such local observables, a technique now dubbed quench spectroscopy.
Finally, there is one more observable that is very sensitive to modification in the prop-
erties of the spectrum of the model: the entanglement entropy. In Fig 3.1 (c) the time
evolution of the bipartite Von Neuman entropy is presented for different values of the
longitudinal field and the dramatic slowdown of the entanglement growth is undeniable.

3.2 Outlook

The mechanism described above can be generalized to other ferromagnetic as well as
anti-ferromagnetic models. All the concepts introduced are going to be further ex-
amined in depth in Chap. 4. We are going to study and accurately characterize the
out-of-equilibrium dynamics of yet another system displaying confinement of elementary
excitations: the model is a Heisenberg-Ising spin ladder in which confinement is triggered
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Figure 3.1: In the figures the role of hx and hz is exchanged with respect to Eq. 3.1.
Panel (a): Time evolution of the connected correlator ⟨σz1 , σz1+ℓ⟩c after quenching hx =
0.5, hz = 0 to hz = 0.25 and hx = 0.025, 0.05. Panel (b): ⟨σx(t)⟩ after quenching from
hz = 0.5, hx = 0 to hz = 0.25 and hx = 0.1. Different numerical methods in comparison:
dots are iTEBD results, lines are exact diagonalisation results for L = 8, . . . , 14. Panel
(c): Time evolution for the bipartite Von Neuman entropy. Figure taken from [22].

by internal interactions rather than an external field. In a ladder geometry the compos-
ite excitations (mesons) have a richer variety than in purely one-dimensional systems.
As we shall see, this allows for more exotic non-equilibrium phenomena characterised by
different energy scales. A detailed study of the low energy sector of the model is going
to be performed. Thereafter, signatures of the specific velocities of the mesons of the
model are identified within the light-cone structure of two-point correlation functions.
Moreover, meson masses are measured from the real time analysis of the time evolution
of the order parameter.

In Chap. 5 it is going to be showed that the false vacuum decay is accessible to current
optical experiments. For instance in quantum analog simulators of spin chains with
confinement of the elementary excitations, which mimic the high energy phenomenology
but in one spatial dimension. We study the non-equilibrium dynamics of the false vacuum
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in a quantum Ising chain and in an XXZ ladder. The false vacuum is the metastable
state that arises in the ferromagnetic phase of the model when the symmetry is explicitly
broken by a longitudinal field. This state decays through the formation of “bubbles” of
true vacuum. Using iTEBD simulations, we are able to study the real-time evolution
in the thermodynamic limit and measure the decay rate of local observables. We find
that the numerical results agree with the theoretical prediction that the decay rate is
exponentially small in the inverse of the longitudinal field.
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Figure 3.2: Sketch of different mesons states emerging from pair of kinks confined in a
V-shaped potential.
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Figure 3.3: Pictorial representation of the real time dynamics of a meson in the semi-
classical limit: two counter-propagating domain walls bounce back and forth because of
the long range interaction provided by the longitudinal field. Figure taken from [22]



Chapter 4

Confinement in the spectrum of a
Heisemberg spin ladder

In this chapter we are interested in studying the dynamics of a confining spin ladder.
Fundamental results about confinement in condensed-matter systems have been achieved
through the experimental study of various compounds (i.e. KCuF3[166, 167, 168],
Sr2CuO3[169] or YbAs3 [170]) that can be modelled as one-dimensional systems with a
certain amount of inter-chain interaction. These studies on spin ladders were partially
motivated by Haldane’s prediction of a gap in the excitation spectrum for integer-S
antiferromagnets [171], as well as by the work of Shiba [172] who suggested that a
weak inter-chain coupling between two spin 1/2 Heisenberg chain can explain the oc-
currence of discrete lines in the Raman spectrum of CsCoCl3 and CsCoBr3 [173, 174].
Consequently, quasi one-dimensional spin ladders experienced an increasing research ac-
tivity and the occurrence of confinement in these models has been intensively studied
[135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 175, 176, 177, 178, 179, 180, 181], fi-
nally leading to remarkable observations through neutron scattering and high-resolution
terahertz spectroscopy [117, 118, 119, 120, 121, 122, 123]. An astonishing result is the
very recent experimental observation of the same E8 structure identified in the criti-
cal Ising chain in a quasi-one-dimensional antiferromagnet BaCo2V2O8 under transverse
field [182]. The model we will focus on is a spin ladder in its anti-ferromagnetic gapped
phase realised as two Heisenberg XXZ spin-(1/2) chains coupled via an Ising-like inter-
action along the longitudinal (easy axis) direction [128, 1]. Explicitly the Hamiltonian
reads

27
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H(∆||,∆⊥) =
J

2

L∑
j=1

[
σxj,1σ

x
j+1,1 + σyj,1σ

y
j+1,1 +∆||(σ

z
j,1σ

z
j+1,1 + 1)

]

+
J

2

L∑
j=1

[
σxj,2σ

x
j+1,2 + σyj,2σ

y
j+1,2 +∆||(σ

z
j,2σ

z
j+1,2 + 1)

]

+J∆⊥

L∑
j=1

σzj,2σ
z
j,1 .

(4.1)

Here σαj,k denotes the Pauli spin operators at the jth site of chain k ∈ {1, 2} and we
impose periodic boundary conditions, σαL+1,k = σα1,k. The parameter J sets the energy
scale, in the following we set it to J = 1. We focus on the regime ∆|| ∈ (1,+∞) for the
anisotropy parameter of the chains which corresponds to their gapped antiferromagnetic
phases. The last term couples the two spin chains with an Ising-like interchain interac-
tion. Without losing generality, we set ∆⊥ > 0, i.e. an antiferromagnetic coupling of
the chains. The sign of ∆⊥ can be reversed with a spin flip applied to one of the two
chains, without altering the spectrum.

The model is highly symmetric. The z component of the total magnetization on
each chain, Mk =

∑
j σ

z
j,k, is conserved, corresponding to two U(1) symmetries. In the

limiting case of zero inter-chain coupling (∆⊥ = 0) the physics of the model is reduced
to that of two independent XXZ anti-ferromagnetic spin chains and a Z2×Z2 symmetry

associated with the spin flip σ
y/z
j,k → −σy/zj,k of each chain is displayed. The coupling

∆⊥ ̸= 0 explicitly breaks this symmetry: the residual one is the global spin flip of both
chains (a single Z2). Moreover, there is an additional symmetry related to the swapping
of the chains σαj,1 ↔ σαj,2. Finally, due to translational invariance, the energy levels are
organized as eigenstates of the total momentum P .

One of the motivations to study the effects of confinement in antiferromagnetic lad-
ders lies in the fact that, in contrast to spin chains where confinement is triggered by a
symmetry-breaking field or long-range interactions, in a ladder geometry the confining
potential naturally emerges as the effect of the (even small) local interaction between
the chains, as can be easily seen in a mean field treatment [128, 137, 138, 139]. This
mechanism is reminiscent of quark confinement in chromodynamics, where the role of
the attractive potential is played by the gauge field, i.e. the mediator of strong inter-
actions. Similarly, in a ladder, the spins of one chain are additional degrees of freedom
which effectively mediate the interactions between the particles of the other chain. Con-
sequently, the external field is not required because the staggered magnetization of one
chain provides an effective staggered field for the other. There are various possible lad-
ders featuring confinement (e.g., those composed of Ising-like chains), but many of these
require an external magnetic field which imposes difficulties in prospective cold atomic
realizations (see however [183]). Here we focus instead on coupled Heisenberg-type spin
chains described by the Hamiltonian (5.8) in which no external field, either longitudinal
or transverse, makes an appearance, making them suitable for cold atom experiments.
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For example, the two chains in Eq. (5.8) can be mapped by a Jordan–Wigner transfor-
mation to spinless fermions coupled by a density-density interaction. This model can be
easily realized by freezing the spin degrees of freedom in real fermion gases, e.g. utilizing
the techniques of Ref. [184] for Ytterbium atoms. Alternatively, one can use the true
spin degrees of freedom and freeze the charge degree of freedom in spin 1/2 fermionic
condensates.

There is however a fundamental difference between confinement in ladders and chains
with an external field. Indeed, since for the ladders one symmetry is spontaneously
broken, there are (at least) two true ground states (vacua) and the neutral mesons with
respect to the confined charge can interpolate between the same vacuum or between
different ones. This feature leads to the existence of two types of neutral bound states
which we dub intrachain (‘Type 1’) and interchain (‘Type 2’) mesons interpolating,
respectively, between the same or different vacua. We stress that ‘Type 2’ interchain
mesons are not charged bound states that exist in some other theories and interpolate
between true and false vacua.

A recent work [179] studied the properties of bound states on an XXZ chain in the
anti-ferromagnetic region with the confining potential provided by an external staggered
field. This model can be interpreted as arising from a mean field treatment of the XXZ
ladder in (5.8), with the staggered field encoding the mean field effect of one chain on
the other [128, 137, 138, 139]. Although such a mean-field treatment is rather accurate
to capture an entire family of bound states, it completely misses another one. We go
beyond this approximation, and study the full system in the strong anisotropy regime.
As generally anticipated above, the main new theoretical insight is that beyond the
already known (intrachain) mesons that also appear in the mean field approach, we
identify another class of bound states that we dub interchain mesons.

The chapter is structured in the following way. In Section 4.1 we describe the el-
ementary excitations (intrachain and interchain mesons) and study their spectrum in
the strong anisotropy regime. In Section 4.2 we use a semiclassical approach to find a
more accurate estimate of the spectrum in the regime of moderate anisotropy. In Sec-
tion 4.3 we introduce an approximation to capture the spectrum of two-meson states.
In Section 4.4 we discuss the nature of the first excited states and find a transition as
a function of the anisotropy parameters. Afterwards, in Section 4.5 we introduce the
quench protocol and we study numerically its non-equilibrium dynamics. More precisely,
the effects of confinement in the model are displayed through the behaviour of the en-
tanglement entropy evolution in Subsection 4.5.1, through the spreading of two-point
correlation functions in Subsection 4.5.2, and in the oscillations of the order parameter
in Subsection 4.5.3. We give our conclusions in Section 4.6. In Appendix 4.A we report
some details about semiclassical quantization.

4.1 Elementary excitations in the strong anisotropy regime

Our goal here is to provide an accurate description of the spectrum of the Heisenberg-
Ising ladder Hamiltonian (5.8) in the regime with confining quasiparticles. To set clearly
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Figure 4.1: Spectrum of the Heisenberg-Ising ladder Hamiltonian (4.2) for ∆|| = 10 and
∆⊥ = 0.1 (red circles) compared with the XXZ-chain in a staggered field (blue symbols),
see Eq. (4.4). Both spectra are in the sector of zero magnetization. Top: Entire spectrum
of both Hamiltonians for L = 10. For large enough ∆||, the spectrum is organized in
bands with fixed number of particles (kinks). The ladder has many more states than
the corresponding chain. Bottom: Zooms of the two-particle and four-particle sectors
close to energy E ∼ 2 and E ∼ 4 respectively. For the two-particle sector and even
L, the spectra of the two models are in one-to-one correspondence (modulo a four-fold
degeneracy which is resolved at higher order in ϵ). This is no longer the case for the
four-particle sector (and for odd L in the two-particle sector).

the problem, we report the entire spectrum of the Hamiltonian in the sector of zero
magnetization for L = 10, calculated numerically by means of exact diagonalization.
We consider ∆|| = 10 and ∆⊥ = 0.1. The spectrum is organized in bands of fixed even
number of particles around the energies equal to this number (in units of ∆||). In the
figure, together with the spectrum of the ladder, we report the numerically calculated
spectrum of the XXZ spin-chain in a staggered field which is a mean field description
of the ladder. As can be seen clearly, the ladder has many more states than the cor-
responding chain, which is obvious as the Hilbert space of the ladder is exponentially
larger than that of the chain. In the bottom panels, we report zooms of the two-particle
and four-particle sectors. Inside each band, there is a fine structure given by states with
precise quantum numbers. Here, we are after an accurate characterization of this fine
structure and of the effects of confinement. A first observation that will have a very
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simple explanation later is that the two-particle spectrum of the ladder is in one-to-one
correspondence with that of the chain. This is true modulo a four-fold degeneracy that
is a consequence of the discrete symmetries of the Hamiltonian (4.2) (spin flip and chain
swap) and is lifted in higher perturbative order in ϵ = 1/∆||. We then notice that the
correspondence between the chain and the ladder is not valid for the four-particle sector,
where there are many more states that we will describe in the following. We stress that
the correspondence between the two-particle sectors in the ladder and in the chain does
not hold for odd L.

In order to understand the structure of the elementary excitations, it is instructive
to focus first on the parameter regime ∆|| ≫ 1. In this Ising limit it is useful to rescale
the Hamiltonian (5.8) by ∆|| [179], i.e.

HI(ϵ,∆⊥) =
∑
α=1,2

L∑
j=1

[
ϵ(σ+j,ασ

−
j+1,α + σ−j,ασ

+
j+1,α) +

1

2
(σzj,ασ

z
j+1,α + 1)

]

+ ϵ∆⊥

L∑
j=1

σzj,2σ
z
j,1 ,

(4.2)

where ϵ = 1/∆||. We study this Hamiltonian perturbatively in ϵ.
When ϵ = 0, the two chains are decoupled and the hopping terms are absent. The

Hamiltonian has four degenerate ground states given by the four possible combinations
of the Néel |Ψ1⟩ = | ↑↓↑↓ . . . ⟩ and anti-Néel |Ψ2⟩ = | ↓↑↓↑ . . . ⟩ states of the two chains
(here |↑⟩ is chosen with quantization axis in the z direction, i.e., σzj |↑⟩ = |↑⟩). In the units
of Eq. (4.2) all these ground states have exactly zero energy for ϵ = 0. The fundamental
excitations of each chain are kinks |Kαβ(j)⟩ interpolating between the two vacua |Ψα⟩
and |Ψβ⟩ (α, β ∈ {1, 2}, α ̸= β) at the bond between sites j and j + 1 (cf. Fig. 4.2).
Depending on the orientation of the neighbouring spins, each domain wall can carry spin
s = +1/2 (in the case ↑↑) or s = −1/2 (if ↓↓): note that the spin s and the parity of the
site ρ = jmod2 on the chain α ∈ {1, 2} are related by s = (−1)α(1/2−ρ). For 0 < ϵ≪ 1
and ∆⊥ = 0, the exactly known ground states of the chains are still almost Néel and
anti-Néel states, but their degeneracy is lifted for finite L yielding exponentially small
(in L) splittings. Similarly, the hopping term hybridizes the kink states and lifts their
extensive degeneracy. Moreover, in the ϵ→ 0 expansion the kinks are associated to the
dispersion relation

ω(p) = 1− 2ε cos 2p. (4.3)

Because each chain is in an anti-ferromagnetic phase with two degenerate ground
states, the ladder made of two decoupled spin chains has a four-fold degenerate ground
state manifold (|Ψ++⟩, |Ψ+−⟩ , |Ψ−+⟩, |Ψ−−⟩, where the shorthand stands for |Ψij⟩ =
|Ψi⟩1 ⊗ |Ψj⟩2 with i, j = ± and 1, 2 referring to the two chains) that is split by an
inter-chain coupling ∆⊥ ̸= 0. For ∆⊥ ≳ 0, |Ψ+−⟩ and |Ψ−+⟩ are the two degenerate
ground states, whereas |Ψ++⟩ and |Ψ−−⟩ acquire an extensive energy gap ∼ L∆⊥ on
top of the ground state (for ∆⊥ < 0 the opposite is true). In the thermodynamic
limit, the latter two become false vacua and together with all the formerly low lying
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excitations above them are pushed to the top of the spectrum. On the ladder a single
kink in one of the two chains toggles between a true and a false vacuum (illustrated in
grey and red, respectively, in Fig. 4.2). This implies that the nature of the low-lying
excitations change qualitatively when the coupling between the chains is turned on. The
low energy sector only bears states with an even number of kinks since there must be
a true vacuum both on the left and on the right of these states. Consequently, states
made with two kinks become the elementary excitations in the spectrum. The energy
acquired by the false vacuum between the two kinks induces an effective linear potential
between them: the two kinks are confined in excitations that we call mesons, following a
standard terminology in the literature. Because of the presence of two true vacua, we can
distinguish between two classes of mesons: ’Type 1’ intra-chain mesons are interpolating
between the same vacuum while ’Type 2’ inter-chain mesons are interpolating between
two different vacua (see Fig. 4.2 to grasp the idea with a graphical representation).

We now illustrate more clearly the difference between these two mesons in terms of the
symmetries of the model. For ∆⊥ = 0 the model has a Z2×Z2 symmetry associated with
the total spin flip along each chain. A kink on a given chain has a non-zero Z2 charge for
the spin-flip symmetry on that chain. When ∆⊥ is turned on, the symmetry is explicitly
broken and only one Z2 symmetry is left (i.e. the global spin-flip of both chains). A
charge Q can be assigned to the explicitly broken symmetry: this charge corresponds to
the parity of the total number of kinks. As a consequence of confinement, the low-energy
spectrum can harbour only neutral objects, while charged objects are pushed up in the
spectrum. Both ‘Type 1’ and ‘Type 2’ mesons are neutral with respect to this symmetry,
i.e. they have Q = 0. The remaining Z2 symmetry is spontaneously broken in the ground
state. Another charge q may be assigned to this different symmetry: ‘Type 1’ mesons
correspond to Q = 0 and q = 0 while ‘Type 2’ to Q = 0 and q = 1. Very importantly,
since this second symmetry is not explicitly broken, low-energy states do not need to
be neutral with respect to q. On the contrary, it is possible to have charged excitations
(‘Type 2’ mesons) which are the sort of composite kinks for the spontaneously broken
global spin-flip symmetry. While at first, this phenomenon can sound rather peculiar, it
is actually very similar to what happens for strong interactions: the mesons are neutral
particles for the color charge but they are not for the electrical charge, related to another
symmetry of nature.

In finite volume L, because of periodic boundary conditions, chains with an odd
number of sites can host an odd number of kinks while chains with an even number of sites
can host an even number of kinks. Namely, for L odd there are only q = 1 states while
for L even only q = 0 states (the opposite holds for anti-periodic boundary conditions).
Consequently, as long as ∆⊥ ≪ ∆||, the lowest energy states are ‘Type 1’ mesons if L is
even and ‘Type 2’ mesons if L is odd. In the following, we give a quantitative account of
their dispersion relation both for an infinite system and for a ladder of finite size. The
approach we exploit here is rather standard: we project the many-body Hilbert space
onto the 2-kink sector yielding an effective two-body Hamiltonian which can be treated
with elementary quantum mechanics techniques. As discussed above, the degeneracy
of the ground and excited states gets lifted at the first order in ϵ, thus the dispersion
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Figure 4.2: Schematic picture of the possible mesons in the ladder. In (a) and (b) we
have ‘Type 1’ intrachain mesons built from two kinks on the same chain. Instead, in (c)
and (d) we have ‘Type 2’ interchain mesons built from two kinks on the different chains.
‘Type 1’ mesons interpolate between the same kind of vacua, while ‘Type 2’ mesons
interpolate between vacua of different kind. The coupling ∆⊥ induces a linear potential
between the kinks, because the energy cost scales with the distance of the kinks equal to
the number of spins that have frustrated interchain links (shown in red). This distance
is even for kinks of opposite spins (a,c) and odd for kinks of the same spin (b,d).

relation of the low-energy meson excitations, which correspond to the low lying many-
body levels, can be well described by a first order perturbative analysis in ϵ restricted
to the two-kink sector.

4.1.1 ‘Type 1’ intrachain mesons

‘Type 1’ or intrachain mesons are formed by kinks on the same chain, as shown in Fig.
4.2. In the regime ∆⊥ ≪ ∆|| = ϵ−1, the interchain interaction can be studied in a
mean field fashion [128, 137, 138, 139], by focusing on one of the chains and treating the
spontaneous staggered magnetization σ̄ of the other chain as an effective external field:

ĤS(ϵ, h) =

L∑
j=1

[
ϵ
(
σ+j σ

−
j+1 + σ−j σ

+
j+1

)
+

1

2
(σzjσ

z
j+1 + 1)

]
+ ϵh

L∑
j=1

(−1)jσzj . (4.4)

where h = σ̄∆⊥. Here we assume that the other chain is in the approximate anti-Néel
state; the Néel case follows by the global spin flip symmetry. In the limit ∆|| ≫ 1, the
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staggered magnetization is σ̄ ≈ 1. The excitations of the infinite antiferromagnetic chain
(i.e. Hamiltonian (4.4) with L → ∞) and their confinement have been studied using
various approximations in Ref. [179]. Here we extend the analysis of this work to finite
chains. We introduce the projector P̂2 onto the 2-kink subspace spanned by the basis
|Kαβ(j1)Kβα(j2)⟩. The action of the projected Hamiltonian Ĥ2 = P̂2ĤSP̂2 on 2-kink
states is easily worked out as

Ĥ2(ϵ,∆⊥)|Kαβ(j1)Kβα(j2)⟩ =
[2 + (−1)αϵh(L− 2j)] |Kαβ(j1)Kβα(j2)⟩

+ϵ
{
[|Kαβ(j1 − 2)Kβα(j2)⟩+ |Kαβ(j1)Kβα(j2 + 2)⟩] (1− δj,L−1)(1− δj,L−2)

+ [|Kαβ(j1)Kβα(j2 − 2)⟩+ |Kαβ(j1 + 2)Kβα(j2)⟩] (1− δj,1)(1− δj,2)
}
,

(4.5)

where 1 ≤ j = j2 − j1 ≤ L − 1. The first line gives the effective potential, while the
second and third lines describe the hopping of the kinks by two sites. The Kronecker-
delta factors encode the hard-core nature of the kinks.

Exploiting translational invariance by 2 sites, we are looking for the energy eigen-
functions in the sector of total spin s in the form

|Ψn(s = ±1)⟩ =
L− 1+s

2∑
j1=

3−s
2

′
L−1∑
r=1

′
ψ(s)
n (r|P )eiP (j1+r/2)|K12(j1)K21(j1 + r)⟩ , (4.6a)

|Ψ(o)
n (s = 0)⟩ =

L−1∑
j1=1

′
L−2∑
r=2

′
ψ(o)
n (r|P )eiP (j1+r/2)|K12(j1)K21(j1 + r)⟩ , (4.6b)

|Ψ(e)
n (s = 0)⟩ =

L∑
j1=2

′
L−2∑
r=2

′
ψ(e)
n (r|P )eiP (j1+r/2)|K12(j1)K21(j1 + r)⟩ , (4.6c)

where the primed sums run over odd or even integers, and the momentum of the center
of mass P is quantized as P = k 2π/L, k = −

⌊
L
4

⌋
, . . . ,

⌊
L
4

⌋
. The limited range of the

momentum reflects the doubling of the unit cell due to the staggered background field.
The “o/e” superscripts refer to the odd and even sites on which the kinks are located.
The parity of the distance r is fixed by the spin of the kinks: r = 2, 4, . . . L − 2 if the
total spin is 0 and r = 1, 3, . . . L− 1 if the total spin is ±1 (see Fig. 4.2).

Using these expressions, the eigenvalue problem of Ĥ2 leads to the discrete Sturm–
Liouville equation

(2 + 2ϵ∆⊥ r)ψ
(a)
n (r) + 2ϵ cos(P )

[
ψ(a)
n (r + 2) + ψ(a)

n (r − 2)
]
= E(a)

n (P )ψ(a)
n (r), (4.7)

for all relative wave functions ψ
(a)
n (r|P ), a ∈ {+1,−1, o, e}. Here En are the excitation

energies with respect to the ground state energy EGS = −ϵ∆⊥L. The boundary conditions

are ψ
(±1)
n (−1) = ψ

(±1)
n (L + 1) = 0 and ψ

(o/e)
n (0) = ψ

(o/e)
n (L) = 0. The solutions can

be written down exploiting the recurrence relation satisfied by the Bessel functions of



4.1. ELEMENTARY EXCITATIONS IN THE STRONG ANISOTROPY REGIME 35

Figure 4.3: Low-lying part of the spectrum in the spin s = 0 sector of the ladder in
Eq. (4.2) (red circles) and of the staggered XXZ chain in Eq. (4.4) (blue dots) for L = 10,
∆|| = 100, and ∆⊥ = 0.1, 0.5, 1, 5. The numerical data have been obtained by exact
diagonalization. The dispersion relations of the mesons in the 2-kink approximation
(4.9) are shown in continuous lines, obtained by solving Eq. (4.7) numerically. The
internal quantum number n of each curve is in the legend on top of the plot. In the
strong anisotropy regime, and for even L, the ladder is equivalent to the staggered XXZ
chain in the two-kink sector.

the first Jν+1(z) + Jν−1(z) = 2ν/z Jν(z) and similarly for and the second kind Yν(z),
obtaining

ψ(a)
n (r|P ) = N (a)

n

[
J
ν
(a)
n (P )−r/2

(∆−1
⊥ cosP ) +A(a)

n Y
ν
(a)
n (P )−r/2

(∆−1
⊥ cosP )

]
, (4.8)

where N
(a)
n (P ) is the normalization and ν

(a)
n (P ) and A

(a)
n (P ) are determined by the

boundary conditions. These solutions are labeled by the integer n and their energy
eigenvalues are

E(a)
n (P ) = 2 + 4ϵ∆⊥ ν

(a)
n (P ) . (4.9)

We plot the energy levels En(P ) obtained by solving Eq. (4.7) (or equivalently Eq. (4.9))
for L = 10 in the case of total spin s = 0 in Fig. 4.3. These analytic predictions are
compared to the exact diagonalization results both for the ladder Hamiltonian (4.2)
and for the staggered chain Hamiltonian (4.4) for ∆|| = 100 and different values of the
interchain coupling ∆⊥. For these couplings, the low energy part of the ladder spectrum
matches perfectly the spectrum of the staggered XXZ chain. Moreover, both spectra are
well captured by the 2-kink approximation.
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Figure 4.4: Low-lying part of the spectrum in the spin s = 0 sector of the ladder in
Eq. (4.2) (red circles) and of the staggered XXZ chain in Eq. (4.4) (blue dots) obtained
by exact diagonalization for L = 10, ∆|| = 5, and ∆⊥ = 0.1, 0.5, 1, 5. The dispersion
relations of the mesons in the 2-kink approximation are shown in continuous lines, ob-
tained by solving Eq. (4.7) numerically. The internal quantum number n is in the legend
on top of the plot.

In Fig. 4.4 we explore the robustness of this effective description as we move away
from the strong anisotropic region by reporting a comparison with the numerical results
from exact diagonalization for a ladder of length L = 10 with ∆|| = 5. Even though the
quantitative agreement is worse for ∆|| = 5 than for ∆|| = 100, the effective two-kink
Hamiltonian still represents a good qualitative description of the low energy states as
long as the energy bands of different kink numbers are well separated. Indeed, the main
qualitative effect is that as ∆⊥ increases (at fixed ∆||), some high energy states, which
are not captured by the mean-field staggered XXZ chain, come down to low energy and
mix up (and at some point hybridize) with the part of the spectrum we are able to
describe. At a more quantitative level, even for the smallest values of ∆⊥ we observe
deviations that anyhow were expected. Indeed, as ∆|| is decreased, the fundamental
excitations interpolate between vacua that cannot be approximated by a Néel or an
anti-Néel state. Moreover, the nontrivial scattering properties of those excitations will
start to play a role. Both effects will be investigated in the next section.
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Figure 4.5: Low-lying part of the spectrum in the spin sector s = 0 of the ladder (4.2)
(red circles) for L = 9, ∆|| = 100, and ∆⊥ = 0.1, 0.5, 1, 5. The dispersion relations of the
mesons in the 2-kink approximation (4.14) are shown in continuous lines, obtained by
solving Eq. (4.11) numerically. The internal quantum number n is in the legend on top
of the plot. Notice many qualitative different features compared to the ladder of even
length in Fig. 4.3.

4.1.2 ‘Type 2’ interchain mesons

We now turn to the meson excitations that are formed by two kinks located on different
chains (see Fig. 4.2). On a ladder with periodic boundary condition, these states can
only exist for L odd, and they have no equivalent in a staggered XXZ chain.

We can follow steps very similar to those for intrachain mesons in the previous
subsection. We first project onto states having one kink on each leg of the ladder. The
main difference is that in this case there is no hard-core constraint for the kinks as they
can cross by passing above/below each other and hence their wave function is

|Ψn(s)⟩ =
L∑

j1=1

L−1∑
r=0

ϕn(r|P, s)eiP (j1+r/2)|K(j1)⟩1|K(j1 + r)⟩2 , (4.10)

where the subscripts 1, 2 label the legs of the ladder. The spins of the kinks should add up
to s. The center of mass momentum P is quantized as P = k 2π/L, k = −

⌊
L
2

⌋
, . . . ,

⌊
L
2

⌋
.

The equation for the relative wave function in all spin sectors turns out to be

(2 + 2ϵ∆⊥ℓs(r))ϕn(r) + 2ϵ cos(P ) [ϕn(r + 2) + ϕn(r − 2)] = En(P )ϕn(r), (4.11)
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with r = 0, 1, . . . L− 1. The function ℓs(r) is the length of the string between the kinks
and is defined as

ℓs=0(r) =

{
r if r even

L− r if r odd,
ℓs=±1(r) =

{
r if r odd

L− r if r even.
(4.12)

Note that swapping the chains corresponds to r ↔ L−r which also changes the parity of
r, thus the definitions (4.12) are consistent with this symmetry. The boundary conditions
are ϕn(−2) = ϕn(L−2), ϕn(2) = ϕn(L+2), and ϕn(−1) = ϕn(L−1), ϕn(1) = ϕn(L+1).
The solutions are given by

ϕ(±)
n (r|P, s) = (±)rN (±)

n (P, s)
[
J
ν
(±)
n (P,s)−ℓ(r)/2

(∆−1
⊥ cosP )+

+ A(±)
n (P, s)Y

ν
(±)
n (P,s)−ℓ(r)/2

(∆−1
⊥ cosP )

]
, (4.13)

where N
(±)
n (P, s) is the normalization, ν

(±)
n (P, s) and A

(±)
n (P, s) are fixed by the bound-

ary conditions which now relate the wave function at odd and even sites. Notice that the

four boundary conditions give only two independent equations. ϕ
(+)
n (r) are symmetric,

while ϕ
(−)
n (r) are anti-symmetric under the exchange r ↔ L− r. The energies are given

by
E(±)

n (P, s) = 2 + 4ϵ∆⊥ ν
(±)
n (P, s) . (4.14)

In Fig. 4.5 we compare the levels obtained from Eq. (4.14) with the results of exact
diagonalization of the ladder Hamiltonian for L = 9 in the spin sector s = 0 for ∆|| = 100
and different values of the interchain coupling ∆⊥. Similarly to the intrachain mesons,
the spectrum is very well captured by the effective 2-kink description. The figure also
demonstrates the richer structure of the ‘Type 2’ interchain mesons as they have about
twice as many internal excitations as the ‘Type 1’ intrachain mesons have.

In Fig. 4.6 the same comparison is shown for ∆|| = 5 and various values of ∆⊥. Anal-
ogously to the case of ‘Type 1’ mesons, the overall structure of the spectrum is captured
by the 2-kink approximation in the regions where the bands are well separated. The de-
viations of exact numerical results from the 2-kink approximation are more pronounced
than for ∆|| = 100, because the dressing of the fundamental excitations becomes relevant
for small ∆||.

We conclude this section by mentioning that bound states between two coupled 1+1
dimensional models have been observed also in conformal field theories [311], but in a
very different context that does not lead to confinement.

4.2 A semiclassical approach for finite ∆||

When approaching smaller values of the anisotropy parameter ∆|| at ∆⊥ = 0, the
ground state of the model and its fundamental excitations experience significant changes.
The doubly degenerate ground states |Ψ+⟩ and |Ψ−⟩ of both chains still have anti-
ferromagnetic order but with a smaller average staggered magnetization ±σ̄ . The latter
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Figure 4.6: Low-lying part of the spectrum in the spin sector s = 0 of the ladder (4.2)
(red circles) for L = 9, ∆|| = 5, and ∆⊥ = 0.1, 0.5, 1, 5. The dispersion relations of the
mesons in the 2-kink approximation (4.14) are shown as continuous lines, obtained by
solving Eq. (4.11) numerically. The internal quantum number n is in the legend on top
of the plot. The insets show the accuracy of our approximation in resolving the spectrum
on a more refined scale.

is exactly known from the Bethe ansatz solution of the XXZ spin chain and it is given
by

σ̄ =
∞∏
n=1

(
1− e−2nγ

1 + e−2nγ

)2

, ∆|| = cosh(γ) . (4.15)

As ∆|| decreases, the ground states with the above staggered magnetization are no longer
well approximated by a Néel or an anti-Néel state. The elementary excitations are still
topological quasiparticles that interpolate between the two vacua. Like their ∆|| → +∞
counterpart, they carry half-integer spin s = ±1/2. However, due to the properties of
the model, they are strongly interacting particles with non-trivial dispersion relation and
scattering phase. The low-energy sector of the spectrum of the model still is dominated
by the two kind of bound states so far described , however the illustration in Figure
4.2 is a faithful picture of the mesons only in the limit ∆|| → ∞. Nonetheless, it holds
qualitatively as long as we are in the gapped anti-ferromagnetic phase ∆|| > 1. In
this section we describe how these properties affect the ‘Type 1’ intrachain mesons. The
most pragmatic way to treat the presence of a non-vanishing ∆⊥ would be a perturbative
expansion in small ∆⊥ around the exact eigenstates at ∆⊥ = 0. The latter approach is
rather technical and involves a Bethe–Salpeter equation with a perturbative form factor
expansion. Although less rigorous, here we follow another, more heuristic approach
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whose main advantage is having a straightforward physical interpretation. Following
Ref. [130], the idea is to look for semi-classical bound states of the Hamiltonian

H(x1, x2, ϑ1, ϑ2) = ω(ϑ1) + ω(ϑ2) + f(|x2 − x1|) , (4.16)

where
f = 2ϵ∆⊥σ̄

2, (4.17)

is the “string tension” taking into account the average magnetization of both chains,
and we introduced the continuum coordinates x1, x2 ∈ R and their canonical conju-
gate momenta ϑ1, ϑ2. The function ω(ϑ) is the lattice dispersion relation of the kink
quasiparticle obtained by a Bethe Ansatz approach [185]

ω(ϑ) =
2ϵK(k)

π
sinh γ

√
1− k2 cos2 ϑ , (4.18)

where K(k) is the complete elliptic integral whose modulus k is related to the anisotropy
through the relation K(

√
1− k2)/K(k) = γ/π. The Hamiltonian (4.16) describes the

classical motion of two particles experiencing a long range interaction with kinetic en-
ergy given by the exact kinetic energy of a kink of the XXZ chain. After a canonical
transformation to center of mass and relative coordinates,

X =
x1 + x2

2
, x = x2 − x1 , (4.19)

Θ = ϑ1 + ϑ2 , ϑ =
ϑ2 − ϑ1

2
, (4.20)

the Hamiltonian reads
H(X,Θ;x, ϑ) = ε(ϑ|Θ) + f |x|, (4.21)

with ε(ϑ|Θ) = ω(Θ/2−ϑ)+ω(Θ/2+ϑ). In these new variables, the equations of motion
are

Ẋ =
∂ε

∂Θ
, Θ̇ = 0 , (4.22)

ẋ =
∂ε

∂ϑ
, ϑ̇ = −f sgn(x) . (4.23)

The total momentum Θ is an integral of motion as well as the energy

E = ε(ϑ|Θ) + f |x| . (4.24)

The bound state energies can be obtained via the Bohr–Sommerfeld quantization
condition which reads as∮

ϑdx = 2π(n+ δ) , n = 0, 1, 2, . . . , (4.25)

where the integral is taken over the closed path in the (ϑ, x) classical phase space,
and δ is a phase shift discussed below. In principle, the energies obtained from this
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Figure 4.7: Classical trajectories in phase space (x, θ) for the Bohr–Sommerfeld quan-
tization. The grey lines are the various trajectories at fixed energy. In infinite volume,
the trajectories are always like the red one depicted in (a). In finite volume L we have
a hard cutoff that deforms some trajectories as reported in (b).

equation become more and more accurate with increasing n. For simplicity, we restrict
the analysis to the case when ε(ϑ|Θ) has a single minimum at ϑ = 0 which holds for

Θ < Θc = arccos
(
1−

√
1−k2

1+
√
1−k2

)
[179]. The path is an arc in the x > 0 half plane (see Fig.

4.7-a) parameterized using Eqs. (4.24) and (4.23) starting from x(0) = 0+, ϑ(0) = ϑa :

x(t) =
E − ε(ϑ(t)|Θ)

f
, (4.26)

ϑ(t) = ϑa − ft , (4.27)

where ϑa satisfies E = ε(ϑa|Θ). The turning point is at

xmax =
E − ε(0|Θ)

f
, (4.28)

and is reached at time tmax = ϑa/f. After another tmax time elapses, the two kinks
scatter at x(2tmax) = 0 which abruptly flips the sign of ϑ, so the phase space path is
closed by a straight segment at x = 0 connecting −ϑa with ϑa. These phase space paths
are reported in Fig. 4.7-a. The left hand side of Eq. (4.25) reads∮

ϑdx = −
∫ ϑa

−ϑa

dϑϑ
dx(ϑ)

dϑ
= − 1

f

∫ ϑa

−ϑa

dϑϑẋ(ϑ)

=
1

f

∫ ϑa

−ϑa

dϑϑ
∂ε(ϑ|Θ)

∂ϑ
=

1

f

(
2Eϑa −

∫ ϑa

−ϑa

dϑε(ϑ|Θ)

)
,

(4.29)

where Eq. (4.23) was used to trade the time derivative for a derivative with respect to
−ϑ.
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Figure 4.8: Comparison of various approximations for the intrachain meson energies
at ∆|| = 5 in the sectors with spin s = 0 (right) and s = 1 (left), both with total
momentum P = 0. The exact diagonalization results are shown in red empty circles.
The full symbols correspond to the 2-kink approximation of Sec. 4.1.1 (“Bessel”), the
infinite volume semiclassical (“BS”) and the finite volume semiclassical (“BSL”) results
according to the color code shown in the legend.

The phase shift δ receives two kinds of contributions. First, at the regular turning
point there is a π/2 phase shift (δ = 1/4). Second, at x = 0 we have to take into account
the scattering phase shift of the particles. In the Ising regime ∆|| ≫ 1, the kinks behave
as free hard core particles, so their scattering phase shift is simply π. This is equivalent
to enforcing that the relative wave function vanish at the origin, and leads to δ = 1/2,
the same as for a particle suffering a hard reflection. Away from the Ising limit the
kinks have a nontrivial, momentum-dependent scattering phase shift ϕη(p1, p2) that can
be obtained via Bethe ansatz (see Appendix 4.A for its detailed expression). The index
η accounts for the spins of the kinks and will be dropped from now on to simplify the
notation. This phase needs to be added to the left hand side of Eq. (4.25), which leads
to

2E(ϑa)−
∫ ϑa

−ϑa

dq ε(ϑ|Θ) = 2πf

(
n+

3

4

)
+ f ϕ

(
Θ

2
− ϑa,

Θ

2
+ ϑa

)
. (4.30)

The procedure has to be modified in finite volume, when the maximum separation
xmax can become larger than the system size L. There are two possible cases depending
on the value of xmax. If xmax < L, then the energy levels are given by the solutions
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(a) (b)

Figure 4.9: Schematic pictures of 4-kink states for a ladder of even length: (a) a 4-
kink state composed of two intrachain mesons and (b) a 4-kink state composed of two
interchain mesons.

of Eq. (4.30), while for xmax > L the system does not reach the turning point but
experiences another scattering at x = L. The integration paths in phase-space are shown
for the two cases in Fig. 4.7-b.

Let us denote by ϑL the momentum right before the reflection at x = L. Then the
momentum ϑ jumps from ϑL to −ϑL so the arc in the phase space is chopped to have a
flat part at x = L. As a consequence, the new quantization equation reads

2fϑLL+ 2E(ϑa − ϑL)− 2

∫ ϑa

ϑL

dq ε(q|Θ)

= 2πf (n+ 1) + f ϕ

(
Θ

2
− ϑa,

Θ

2
+ ϑa

)
+ f ϕ

(
Θ

2
− ϑL,

Θ

2
+ ϑL

)
, (4.31)

together with the conditions ε(ϑa|Θ) = E and ε(ϑL|Θ) = E − fL.
We compare the predictions for the intrachain meson energies with spin s = 0 at

P = Θ = 0 (meson mass gaps) of the 2-kink effective equation (4.7) and those of the
semiclassical quantization (4.30), (4.31) with exact diagonalization data of the ladder at
∆|| = 5 in Fig. 4.8. The plot clearly shows that while the 2-kink approximation with
hard-core kinks breaks down, the (finite volume) semiclassical approximation yields an
excellent agreement with the exact diagonalization results. Thanks to the spin-dependent
phase shift, this approximation also predicts the energy splitting for the case s = 0,
which partially lifts the degeneracy of the spectrum (from four-fold to two-fold) in the
thermodynamic limit and cannot be captured with the first approach. Remarkably, even
though the semiclassical method is supposed to work well for high energy bound states
with large quantum numbers, it gives accurate results even for the lowest lying mesons.

4.3 Composite excitations

We recall that in the regime ∆|| ≫ 1 and ∆|| ≳ ∆⊥, the energy spectrum of the
Hamiltonian (5.8) is organized in bands of states with a given number of kinks, as
shown in Fig. 4.1. In the previous two sections, we developed an effective systematic
description for the low lying 2-kink states. Here, we introduce a more heuristic treatment
to grasp the nature of some of the higher excited states. We focus on the case of even L
and zero magnetization in both chains, i.e. M1 =M2 = 0.

The first class of states lying above the 2-kink ones are obviously the four-kink states.
For even L, the latter can either be a combination of two intrachain (Fig. 4.9-a) or of two
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interchain mesons (Fig. 4.9-b). Notice that for odd L we instead have only combinations
of one intrachain and one interchain meson, a situation that we do not describe here. In
the zeroth order approximation in which we neglect the interaction between mesons, the
energy levels of the four-kink states is just the sum of the dispersion relations obtained
in the preceding sections for the single mesons, i.e.

E(n1, n2, p, P ) =
1

2

[
En1

(
P

2
+ p

)
+ En2

(
P

2
− p

)
+ {n1 ↔ n2}

]
, (4.32)

where n1 and n2 collectively label the internal states of the mesons, p = (p1 − p2)/2 is
the relative momentum and P = p1 + p2 is the total momentum of the mesons. The
labels n1,2 are assigned from the less energetic to the most energetic internal states at
P = 0. Since we are treating the two mesons as non-interacting particles, we have some
strong constraints on the allowed values of the relative momentum p. First, the finite-
volume quantization of p is affected by the reduced effective volume where the kinks can
move freely due to the constraint that they cannot overlap. Accordingly, the relative
momentum is quantized as p = mπ/Leff with m integer. The effective available volume
is Leff = L− 2 for two interchain mesons (two kinks on each chain) and Leff = L− 4 for
two intrachain mesons (the four kinks are all on the same chain). Moreover, since they
cannot overlap, the states with p = 0 are forbidden. These two reasonable assumptions
will be justified also a posteriori by the correct description of the relevant part of the
energy spectrum.

The approximation of non-interacting mesons works for large enough ∆⊥ and in the
limit ∆|| ≫ 1. Indeed, when ∆⊥ becomes too small, the internal oscillations of each
meson become so wide that the 4-kink states cannot be interpreted as a composition
of separate mesons. Furthermore, this approximation is not expected to be effective for
large n1,2 because higher meson states have a more extended wave function (as it can be
immediately deduced by looking at the spreading of the Bessel functions with respect to
their index).

We compare the spectra of the ladder and of the staggered XXZ chain in Figs. 4.10
and 4.11. In the former figure we report all states in the energy interval E ∈ [4, 5] and
identify some smaller windows (indicated by large rectangles) that are analyzed in detail
in the latter figure. The first simple fact evident in both figures is that there are many
more 4-kink states in the ladder than in the chain, reflecting the presence of interchain
mesons which do not exist on the chain. Hence, for the 4-kink states, the mean-field
treatment does not predict much.

We present a more quantitative analysis in Fig. 4.11. Here we zoom in the regions
within the colored rectangles in Fig. 4.10. The spectrum in these windows is compared
with the energy levels computed with Eq. (4.32). Notice that the red rectangle appears
three times and the green one twice, where the green area is a further zoom of the red
one. We make this choice because we plot the dispersion relation with different quantum
numbers that cannot be put on the same graph in a clear manner. On top of each panel
we report the quantum numbers corresponding to the spin and the internal energy levels
of the mesons that are displayed in the plot.
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Figure 4.10: Spectrum of the ladder (red circles) and the staggered XXZ chain (blue
dots) for energies in the interval E ∈ [4, 5] where four-kink states lie for large ∆||. We
report data for the zero magnetization sector in both chains M1 = M2 = 0. We work
at ∆⊥ = 5, ∆|| = 100, and L = 10. The blue, red, and green rectangles are the regions
that are magnified in Fig. 4.11.

Despite the roughness of the approximation, it is remarkable that Eq. (4.32) captures
some features of the spectrum. For example, the four dispersions plotted in the frames
(b) and (c) very neatly describe families of states that are well separated from each other.
Also in panel (f), the intrachain states (that exist also for the staggered chain but with
different momentum quantization, as it is clear from the fact that they alternate) are well
captured by our approximation. Instead, resolving the states within the green frames in
Figs. 4.11 is beyond the purpose of our approximation. It is a dense region where the
separation of the states is comparable to higher perturbative orders in ϵ that are neglected
in our description. On the other hand, all the states that are sufficiently isolated in the
spectrum (on an energy scale of order ϵ), are well captured by this approximation. We
remark that while, in virtue of confinement, the single-meson bands described in Sec.
4.1 remain discrete and well separated in energy when L goes to infinity, the two-meson
bands become denser and fall in the continuum part of the spectrum.

4.4 A transition for the first excited states

We have already shown in Sec. 4.1 that, in the limit of large ∆|| and moderate ∆⊥, the
low-lying excitations of a ladder with even L in the sector of zero magnetization are well
captured by an effective model of a spin chain in staggered field; the lowest excitations
are intrachain (‘Type 1’) mesons, confined bound states of kinks. Decreasing the value
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Figure 4.11: Zooms of the marked areas in Fig. 4.10. The different symbols are the
numerical data. The frame colors (red, green, and blue) correspond to the colors of
the rectangles in Fig. 4.10. The green area is a further zoom of the red one. The
continuous lines correspond to the noninteracting two-meson approximation (4.32) for
interchain ‘Type 2’ (a,b,c,d,e) and intrachain ‘Type1’ (f) mesons. Each panel shows
these approximate energy levels for fixed values of the spins and internal labels of the
mesons corresponding to the quantum numbers reported above each panel. The different
lines correspond to different values of the relative momentum p reported in the legend
on top of the plot. Leff = L − 2 or Leff = L − 4 for interchain and intrachain mesons,
respectively.

of ∆||, we observe that the nature of the first excited states changes qualitatively. This
can be understood from a simple classical argument. The lowest lying intrachain meson
(Fig. 4.12-a) has energy Eintra ≃ 2+4∆⊥/∆||, while the least energetic interchain meson
(Fig. 4.12-b) has Einter ≃ 2. Despite being less energetic, we cannot find this interchain
excitation in the low-energy spectrum in the zero-magnetization sector, because, as
discussed in Sec. 4.1.2, a single meson of this type carries magnetizations s1,2 = ±1/2
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Figure 4.12: Schematic pictures of the lowest-lying (a) intrachain and (b) interchain
mesons. For ∆⊥ ≲ 2∆|| the intrachain meson (a) represents the first excited state. In
the regime ∆⊥ ≳ 2∆|| the low-energy sector is made of states with pairs of interchain
mesons (c).

on the two chains and it is only compatible with odd L. However, when ∆|| is sufficiently
small, the energy of the first intrachain meson becomes so large that it is comparable
with the energy 2Einter ≃ 4 of a two-meson state of ‘Type 2’ (Fig. 4.12-c). This happens
when 2Einter = Eintra, i.e. for ∆|| ∼ 2∆⊥.

We illustrate this transition in Fig. 4.13 for ∆|| = 100 and ∆|| = 5 by showing all
the numerically calculated zero-momentum eigenstates in the relevant energy range as
functions of ∆⊥, for ∆⊥ around ∆||/2. The blue dots represent the ‘Type 1’ intrachain
single meson states of the staggered XXZ chain. As expected, when ∆⊥ ≈ ∆||/2, the
two kinds of states become nearly degenerate. At this point, the single meson and the
2-meson states hybridize. As the interchain two-meson states are invariant under the
chain swap transformation, they only hybridize with intrachain meson states that are
also invariant under chain swapping.

The observed phenomenon is not a quantum phase transition as it does not concern
the ground state but the excited states. As a matter of fact, similar “transitions”
take place already for smaller ∆⊥ at higher energy levels involving states with more
kinks and mesons. Nonetheless, the change in the nature of the low-energy sector has
important physical consequences. It can be observed, for example, in the non-equilibrium
dynamics after a quantum quench, where the spreading of correlations is determined
by the quasiparticle excitations. While in the absence of confinement excitations can
propagate freely, in the presence of an attractive potential quasiparticles get confined
into mesons and hence the spreading of entanglement and correlations is suppressed.
This is what we expect when ∆|| ≳ 2∆⊥. Conversely, for ∆|| ≲ 2∆⊥, the low-energy
sector is a continuum of two-meson states: while kinks are still confined in mesons, the
spreading of correlation is not suppressed because the pairs of mesons are free to move
with opposite momenta. Therefore, in a quench a dramatic difference between the two
regimes is likely to emerge.
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Figure 4.13: Spectrum on the ladder (red circles) and on the staggered chain (blue dots)
around the level crossing near ∆|| ≈ 2∆⊥. The violet solid line shows the numerical
prediction for the first level of intrachain mesons computed using Eq. (4.7). The other
lines are extracted from Eq. (4.32) for two interchain mesons with s1 = s2 = 0 and
n1 = n2 = 0 like in Fig. 4.11-e. The corresponding quantum numbers are shown in the
legend.

4.5 Quench dynamics

In this section we report the results of numerical simulations for the time evolution
after a quench obtained by using the infinite volume Time Evolving Block Decimation
(iTEBD) algorithm [186]. The system is prepared in a product state of the two chains
with one chain in the Néel |Ψ1⟩ = | ↑↓↑↓ . . . ⟩ and the other in the anti-Néel state
|Ψ2⟩ = | ↓↑↓↑ . . . ⟩, i.e., in the ground state of the model in the limit ∆|| → ∞, ∆⊥ ≥ 0.
Thereafter, the quench is realised by letting the system evolve under the Hamiltonian
with finite ∆|| > 1 and ∆⊥ > 0 (i.e., by suddenly changing both the inter-chain and
intra-chain couplings). The real time evolution after the quench is performed with a
Trotter step δt = 10−2. The bond dimension χ is set to 512. We checked the stability
of the numerical simulations with respect to changes in χ and δt.

In the following, we investigate the effects of confinement (i.e., of a non-zero the
inter-chain coupling ∆⊥) on the evolution of the entanglement entropy, the one-point
function of the order parameter, and its equal time two-point correlation function. We
will take advantage of the results and the methodologies presented in previous part of
this chapter in order to interpret the dynamics.
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Figure 4.14: Time evolution of the half chain entanglement entropy (4.33) after a quench
from a state with one chain in the Néel state and the other in the anti-Néel state, i.e.
the ground state for ∆|| = ∞. The post-quench Hamiltonian has (a) ∆|| = 5 and (b)
∆|| = 10. The different shades of blue correspond to different values of ∆⊥, as shown
in the legend. Note that the linear growth for ∆⊥ = 0 is turned into an oscillatory
behaviour in the presence of confinement.

4.5.1 Entanglement entropy

Here we focus on the half chain entanglement entropy, measured through the von Neu-
mann entropy

S(t) = −Tr [ρh(t) log ρh(t)] , (4.33)

of the half chain reduced density matrix ρh obtained from the full density matrix ρ(t) =
|ψ(t)⟩ ⟨ψ(t)| by tracing out the degrees of freedom of the other half chain. The results
are shown in Fig. 4.14.

When the inter-chain coupling ∆⊥ is zero, the well-known linear growth of the half-
chain entanglement entropy is observed. This limiting case is essentially a standard
quench in the two independent XXZ chains in the anti-ferromagnetic region, whose
dynamics have been thoroughly studied in Refs. [44, 45]. For the sake of readability,
the main concepts that have been already discussed in Sec. 2.3 are here recalled. The
dynamics of an integrable model, due to the infinite number of conserved quantities,
may be understood in terms of quasiparticles complemented by the knowledge of the
stationary states from Bethe Ansatz. Here the quasiparticle picture [41] provides an
intuitive yet quantitative framework for quenches: the pre-quench state acts as a source
of pairs of quasiparticles with opposite momenta. The pair of particles are entangled
and, by traveling ballistically, they spread quantum correlations through the system.
In an interacting integrable model there are different quasiparticle species, each one
contributes to S(t) proportionally to the number of quasiparticles shared between the
two subsystems. Therefore, S(t) is the sum over the independent contributions of each
quasiparticle species. Since they travel ballistically, a pair of quasiparticles can spread
correlations over a distance that grows linearly in time, leading to a linear growth S(t) ∝
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t. We observe this linear behaviour in Fig. 4.14 (top lines) for two different post-quench
values of ∆||.

We remember that a linear entanglement growth is generically expected also in non-
integrable models, despite the lack of well defined quasiparticles (see for instance [68, 73]).
In the model we are studying, the presence of the inter-chain Ising coupling ∆⊥ does
break integrability. However, once the inter-chain coupling ∆⊥ is introduced, the growth
of the entanglement entropy is significantly slowed down with the appearance of large
oscillations that are stable within the observation time. The behaviour of the von Neu-
mann entropy showed in Fig. 4.14, similarly to the Ising case discussed in Sec. 3.1.1, can
be explained with the following argument. In contrast to kinks that can only appear in
pairs, the excitations produced in the quench for ∆⊥ ̸= 0 mainly consist of single mesons:
these mesons have zero momentum, and they contribute to entanglement through the
mechanism of Bloch oscillations resulting in the periodic variation of the size of the
meson (“breathing”). Correlations can only spread roughly up to the distance set by
the largest separation of the two kinks forming the meson. Therefore, the entanglement
entropy grows linearly only for a limited time (independent of system size) and then
bounce back oscillating. The frequencies of the oscillations are expected to correspond
to the meson masses and their differences (we do not report here the analysis of the
frequencies of these oscillations because it is identical to the one below in Fig. 4.17 for
the one-point function).

Above the two-particle threshold, a small fraction of mesons are expected to be
produced in pairs with non-zero and opposite momenta. These pairs of mesons can
propagate freely, leading eventually to a linear growth of entanglement entropy at long
times. However, the production of meson pairs is very small for the small quenches
we studied and its effect on the entanglement is too slow to be detected numerically.
However, as shown in Sec. 4.5.2, some effects of the production of pairs of mesons are
detectable in the time evolution of two-point correlations.

4.5.2 Light cones in the two-point function

In this section we investigate the effect of the inter-chain coupling ∆⊥ on the spread-
ing of two-point correlation functions. We focus on the equal time connected two-
point function of the local staggered magnetisation, i.e. Cs(ℓ) = ⟨(−1)ℓSz

i,αS
z
i+ℓ,α⟩c =

⟨(−1)ℓSz
i,αS

z
i+ℓ,α⟩ − ⟨(−1)iSz

i,α⟩2. Because of the Lieb–Robinson bound [187], there is a
maximal velocity of propagation vmax. Consequently, at time t all the connected corre-
lators vanish at distances ℓ ≥ vmaxt.

Let us start by considering ∆⊥ = 0. Like the other observables, the behaviour of two-
point connected correlators can be understood in terms of the quasiparticle description
of the XXZ chain, as introduced in Sec. 2.1: the quasiparticles travel ballistically with
velocities v(λ) < vmax, leading to the light cones observed in Fig. 4.15-(a),(f). The
velocity vmax is related to the maximum speed of excitations built on top of the stationary
state, see Ref. [188]. As pointed out in Sec. 3.1.1 for the Ising chain, in the presence
of confinement the quasiparticles (i.e. the kinks) cannot move anymore ballistically and
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Figure 4.15: Space-time plots of the time evolution of the single-chain connected stag-
gered two-point function Cs(ℓ) = ⟨(−1)ℓSz

i,1S
z
i+ℓ,1⟩c after a quench. The initial state

has one chain in a Néel state and the other in anti-Néel state. The final Hamiltonian
has ∆|| = 10 (top row) and ∆|| = 5 (bottom row) with ∆⊥ = 0, 0.1, 0.2, 0.3, 0.5. The
standard ballistic light cones for ∆⊥ = 0 (a,f) are strongly suppressed by turning on a
non zero ∆⊥.

they show a characteristic breathing shape with an amplitude of the oscillation related
to width of the zero-momentum meson. This transition from the ballistic growth to
the confined regime is reported in Fig. 4.15 showing clearly that when ∆⊥ ̸= 0, the
quasiparticles are confined into mesons. As a consequence the correlations are strongly
suppressed and they are considerably non-zero only in the region where the mesons
extend, see again Fig. 4.15.

Till now the form of the correlations does not show qualitative differences compared
to the confining Ising chain reported in Ref. [22]. In order to observe the effect of the
presence of different species of mesons, in Fig. 4.16 we re-plot some of the density plots
of Fig. 4.15 on a different scale (with respect to Fig. 4.15, being the figure symmetric,
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we consider the half plots with ℓ > 0). In this way we can appreciate the small signal
due to the production of pairs of mesons of opposite momenta: weak components of the
signal, previously hidden, become visible showing several light cones. The signal clearly
shows that these secondary light cones are a consequence of propagating mesons: as
these are heavier particles compared to the kinks, they move at a lower velocity. To
understand quantitatively their structure, we compare them with the maximal speed
of propagation of the different mesons and of the kinks. These velocities are extracted
with the help of the approximate techniques developed in the previous sections for the
derivation of the dispersion relations ωm, where m runs on the kind, spin and parity of
the meson. The maximal speed of propagation of the a given meson is then obtained

as v
(m)
max = max

(
dωm(p)

dp , p ∈ [−π/2, π/2]
)

(the derivative of the dispersion relations is

computed numerically with a proper discretisation of the center of mass momentum P ).
In the figure we report all the speeds of propagation of the lightest (i.e. fastest) meson
for each type (details in the caption). We compare them to the kink speed, expected to
describe the ∆⊥ = 0 case (and obtained from Eq. (4.18)).

Let us now finally discuss the results are shown in Fig. 4.16 for two values of the intra-
chain coupling ∆|| = 5, 10 and inter-chain coupling ∆⊥ = 0.2, 0.3, 0.5. Right after the
quench, the evolution of the light cone is always compatible with the one predicted from
the free kink dispersion relation. Once the two kinks are created with opposite momenta,
they do not immediately feel the confining potential and they experience an almost-free
initial propagation. Subsequently, they bounce back, and the signal deviates significantly
from the free slope. The main signal is associated to zero momentum intra-chain mesons
which corresponds to the breathing observed in Fig. 4.15. Indeed, similarly to kinks
in a single chain, inter-chain mesons are topological excitations and can be created by
local operations only in pairs. Outside of the first meson breathing zone, secondary light
cones develop which are visible on the scale of Fig. 4.16. In all the cases that are shown,
the first secondary cone (the darkest one in the figure) has a slope which is compatible
with the maximal speed of propagation associated intra-chain mesons. For this speed,
we report the derivation with the two approaches of Sec. 4.1.1 and 4.2 (red and yellow
curves) although the differences are very small and the numerical data (accessible in
the observation time) are unable to discriminate among the two. The other secondary
light cones (the one in lightest blue) are expected to be explained in terms of lighter
mesons. In particular, some signal from pairs of propagating inter-chain mesons are
also expected to be present. Though our results are not conclusive, in (c),(d),(e) and
(f) a weaker signal is deviating from the main secondary lightcone and it is roughly
compatible with the slopes we predicted for the inter-chain mesons.

4.5.3 Time evolution of the staggered magnetisation and masses of the
mesons

After the entanglement entropy and correlation functions, we turn to the study of 1-
point functions of the staggered magnetisation of a single chain ms = ⟨(−1)iSz

i,1⟩, which
is a local order parameter of the model in the anti-ferromagnetic region. The numerical



4.6. CONCLUSIONS 53

results are presented in Fig. 4.17 for the post-quench couplings ∆|| = 10 in (a),(b) and
(c); ∆|| = 5 in (d) (e) and (f). For ∆⊥ = 0 (i.e. quenching ∆|| in an XXZ chain),
the anti-ferromagnetic order is expected to relax exponentially [16, 17, 189], as showed
by the solid grey line in the (a) and (d) panels. For ∆⊥ ̸= 0, instead, the staggered
magnetisation is trapped in stable oscillations, exactly like the local magnetization in
the Ising chain in Fig. 3.1 (b) (see also [81, 82]). In the right hand side of Fig. 4.17,
(i.e. (b),(c),(e) and (f)), we show the results in the frequency domain after performing
a Fourier analysis of the signals obtained for ∆⊥ = 0.3, 0.5. The dominant oscillation
frequencies appear as well-defined peaks.

In order to show that the peaks correspond to the mass gaps of the mesons, we
display the results of two different approximations for the masses discussed in Sec. 4.1.1
and .4.2. We compare the numerical predictions with both BS and Bessel approaches.
To analyse the data we recall that the Hamiltonian in Eq. (5.8) preserves the parity of
the state and the total spin along each chain. Consequently, the post-quench state is
constrained to share those properties with the initial state. In our case, the latter has
one chain in Néel and the other in an anti-Néel state, so the relevant mesons must have
total spin s = 0 along each chain of the ladder and must have positive parity. In the right
hand side panels of Fig. 4.17 we report theoretical predictions for the s = 0 intra-chain
mesons. It is evident that the Bessel approach roughly captures the position of the peaks,
but quantitatively is a bit off. This is not surprising since the very same conclusion was
also drawn for the equilibrium data in Sec. 4.2. However, for those states for which
we found a solution of the BS quantisation condition, we have an an extremely precise
description of the peaks. Furthermore, the improvement of accuracy of the BS approach
compared to Bessel is more appreciable for ∆|| = 5 than for ∆|| = 10. This is explained
as the more the longitudinal coupling ∆|| is decreased the more the corrections due to
the non-trivial two-kink scattering, (and the precise form of their dispersion relation)
become relevant. We finally mention that a similar spectroscopy analysis can be done
also for the entanglement entropy, but the obtained results are completely equivalent to
those for the staggered magnetisation and so are not reported here.

4.6 Conclusions

In this chapter we performed two tasks: we systematically characterized the spectrum of
the Heisenberg-Ising ladder with Hamiltonian (5.8) as well as its quench dynamics in the
region of parameters presenting confinement, i.e. in the ordered antiferromagnetic phase
of the two chains for ∆|| > 1. Our first main result is that we find two kinds of quasi-
particle excitations, which we dub intrachain and interchain mesons, that correspond to
bound states of kinks within the same chain or between different ones, respectively. Very
importantly, intrachain mesons can be also obtained by means of a mean field treatment
mapping the Hamiltonian to a staggered chain. Interchain mesons are genuine features
of the ladder and they were not known by other means. They are expected to be a com-
mon characteristic of ladders with Ising-like rung interactions that lead to confinement.
In fact, their existence is a consequence of the spontaneous braking of one symmetry.
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Hence, there are two equivalent true vacua and neutral mesons can interpolate between
the same or different ones. One-particle intrachain (interchain) mesons are present only
when the total ladder has even (odd) length. Conversely, two-particle states of interchain
mesons are present also for even L. We quantitatively characterized the meson states.
First, in the limit of large ∆|| we find the one-particle meson dispersion by projecting
on the two-kink subspace. We release the condition of very large anisotropy exploiting
semiclassical quantization. We also describe the four-kink (two mesons) states in the
dilute approximation, i.e. treating the two mesons as non-interacting particles. Finally,
we point out an interesting transition for the first excited state in even length ladders.
At fixed ∆||, the first excited state is a one-particle intrachain meson state for small ∆⊥,
but as the latter is increased it crosses over to a two interchain meson state.

We then showed that the through spectroscopy of the order parameter evolution (and
also of the entanglement entropy not reported here) the masses of the s = 0 intra-chain
mesons can be accessed, see Fig. 4.17. A very remarkable finding is that while the
two-point function are strongly suppressed because of confinement (see Fig. 4.15), there
are feeble secondary light cones (see Fig. 4.16) in which the existence of all types of
mesons can be observed as a consequence of a very small production of pairs of mesons
with opposite momenta.

We finally discuss some lines of future research. A first question concerns the physics
of more than two coupled chains (e.g. three for a start). Are there new kinds of bound
states that can emerge from the enlarged local Hilbert space? It would be interesting
to investigate also the case of anisotropic Heisenberg-like (XXZ) interchain coupling
which is more relevant to experiments on spin-chain compounds. Another intriguing
question is whether confinement may also give rise to non-thermal states in the middle
of the many-body spectrum, in analogy to the recently introduced many-body scars
[19, 190], or incidentally, it is possible that the hybridisation with multiparticle states
could eventually allow the system to thermalise, but on extremely long times scales. It
would be very interesting to find even approximate methods to argue whether this is
the case. However, in this context, it might be necessary to go beyond the low-density
approximation, a goal which is very hard to achieve with standard techniques.

4.A Kink scattering phases

In this Appendix, we collect the exact expressions for the scattering phases which are
used in the semiclassical quantization equations in Sec. 4.2.

In the gapped antiferromagnetic phase of the XXZ chain, in the absence of ex-
ternal magnetic fields, the elementary excitations are spin-1/2 topological excitations,
|Kαβ(ϑ)⟩s interpolating between the two degenerate vacua α, β. Their momenta and z
spin component are labeled by ϑ and s, respectively. Their dispersion relation can be
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parameterized by the so-called rapidity variable λ ∈ [π/2, π/2] as [191]

ϑ(λ) =
π

2
− am(2Kλ/π, k) , (4.34a)

ω(λ) =
2K

π
sinh(γ)dn(2Kλ/π, k) , (4.34b)

where K = K(k) is the complete elliptic integral of modulus k with

K(
√
1− k2)

K(k)
=
γ

π
, (4.35)

and am(x, k) and dn(x, k) are the Jacobi amplitude and delta amplitude. The parame-
terization (4.34) is equivalent to the form (4.18) in the main text.

These particles are interacting which is manifested in their nontrivial scattering prop-
erties. In the total spin zero channel, corresponding to the scattering of a s = 1/2 and
a s = −1/2 particle, the scattering matrix is diagonalized by the combinations

|Kαβ(ϑ1)Kβα(ϑ2)⟩± =
1√
2

(
|Kαβ(ϑ1)Kβα(ϑ2)⟩ 1

2
,− 1

2
± |Kαβ(ϑ1)Kβα(ϑ2)⟩− 1

2
, 1
2

)
.

(4.36)
The scattering phases are defined as

|Kαβ(ϑ1)Kβα(ϑ2)⟩ss = w0(ϑ1, ϑ2)|Kαβ(ϑ2)Kβα(ϑ1)⟩ss , (4.37a)

|Kαβ(ϑ1)Kβα(ϑ2)⟩± = w±(ϑ1, ϑ2)|Kαβ(ϑ2)Kβα(ϑ1)⟩± . (4.37b)

They were obtained in Ref. [185] using Bethe ansatz with the result

w(ϑ1, ϑ2) = −eiϕη(ϑ1,ϑ2) , (4.38)

ϕη(ϑ1, ϑ2) = Φη(λ1 − λ2) , (4.39)

Φ0(λ) = −λ−
∞∑
n=1

e−nγ sin(2λn)

n cosh(nγ)
, (4.40)

Φ±(λ) = Φ0(λ) + χ±(λ) , (4.41)

χ+(λ) = −i ln
(
−sin[(λ− iγ)/2]

sin[(λ− iγ)/2]

)
, (4.42)

χ−(λ) = −i ln
(
cos[(λ− iγ)/2]

cos[(λ− iγ)/2]

)
(4.43)

with ϑk = ϑ(λk) as in Eq. (4.34a). The scattering phases ϕη(ϑ1, ϑ2) are the ones that
appear in Eqs. (4.30) and (4.31) with η chosen according to the the total spin of the
particles.
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Figure 4.16: Density plot for time evolution of the single-chain connected staggered two-
point function Cs(ℓ) = ⟨(−1)ℓSz

i,1S
z
i+ℓ,1⟩c after a quench. The initial state has one chain

in the Néel state and the other in the anti-Néel state. The post-quench Hamiltonian
has ∆|| = 10 with ∆⊥ = 0, 0.1, 0.5 in (a), (b) and (c) respectively and ∆|| = 5 with
∆⊥ = 0, 0.1, 0.5 in (d) , (e) and (f). The scale in the colour plot is tuned in such a way
that a weaker signal compared to Fig. 4.15 is visible. The straight lines correspond to the
maximal speed of propagation of the different particles. The red dotted line corresponds
to the kink propagation speed, obtained from Eq. (4.18). The other lines describe the
propagation of the two kinds of mesons. All yellow lines are BS predictions (Eq. 4.30)
while the red ones are Bessel (Eq. 4.7). In the Bessel approximation, all intra-chain
mesons have the same maximal speed (that is why we report a single curve). These are
resolved by the BS approach showing two lines, one for spin s = 0 and negative parity
the other for spin s = ±1. Inter-chain mesons are instead found only in the Bessel
approximation.
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Figure 4.17: Time evolution of the staggered magnetisation after a quench from a state
with one chain in a Néel state and the other in Anti-Néel state. The final Hamiltonian
has ∆|| = 10 (a) and ∆|| = 5 (d) with ∆⊥ = 0.5 (dotted) or ∆⊥ = 0.3 (dashed). The
light grey line is the quench to ∆⊥ = 0. (b) and (c) represent the Fourier analysis relative
to ∆|| = 10 for ∆⊥ = 0.5 and ∆⊥ = 0.3 respectively. Likewise, (e) and (f) show the
Fourier analysis relative to ∆|| = 5. In (b) (c) (e) and (f) the peaks are compared with
the prediction extracted from the semi-classical approximation (BS) (dot-dashed lines)
and the exact diagonalisation of the effective two-body Hamiltonian (Bessel) (straight
lines).





Chapter 5

False Vacuum Decay in spin
chains

The false vacuum decay has been a central theme in physics for half a century with
applications to cosmology and to the theory of fundamental interactions. This fascinating
phenomenon is even more intriguing when combined with the confinement of elementary
particles. Due to the astronomical time scales involved, the research has so far focused
on theoretical aspects of this decay. The possibility that our universe, as it cooled down,
may have settled into a metastable state (false vacuum) that may eventually decay was
proposed by Coleman in 1977 and has been since then one of the most popularized ideas
of physical cosmology [192, 193, 194, 195]. The decay would happen through bubble
nucleation, i.e. the formation of bubbles of true vacuum that rapidly expand: the
probability for this process to occur is extremely small, and studying this phenomenon
is notoriously challenging due to its intrinsic non-perturbative character.

In this chapter, we propose to study the decay of the false vacuum in quantum spin
models using simulations of real-time dynamics after a quantum quench.

5.1 False vacuum decay

To illustrate the phenomenon of false vacuum decay, we recall again the quantum Ising
chain in transverse and longitudinal fields, our prototypical model for confinement. For
the sake of readability, here the main points of the dissertation performed in Sec. 3.1.1
are renewed. The Hamiltonian of the model reads

H(hx, hz) = −
∑
i

(
σzi σ

z
i+1 + hxσ

x
i + hzσ

z
i

)
, (5.1)

where σαi are Pauli operators, and the amplitudes hx and hz are the transverse and
longitudinal field, respectively.

For hz = 0 the model has a Z2 symmetry that is spontaneously broken for |hx| < 1
(ferromagnetic phase). In this phase there are two ground states characterized by oppo-
site magnetizations ⟨σzi ⟩ = ±M , with M = (1− h2x)

1/8 [196]. The model is diagonalized
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Figure 5.1: Illustration of bubble formation (false vacuum is in blue, true vacuum in red).
The process that leads to the resonant bubble goes through O(ℓ̃) off-resonant states: a
small bubble is (virtually) created and expanded until it reaches the resonant size ℓ̃. As
a consequence, the matrix element that drives the false vacuum decay is exponentially
small in ℓ̃ ∝ h−1

z .

with a mapping to free fermions: the corresponding excitations in the ferromagnetic
phase are kinks that interpolate between domains with opposite magnetization [197].
The kinks can propagate freely and have dispersion relation

ω(θ) = 2
(
1− 2hx cos θ + h2x

)1/2
. (5.2)

For a longitudinal field hz ̸= 0, the Z2 symmetry is explicitly broken and the degen-
eracy between the two ground states is split by an extensive quantity ∼ 2hzMN , where
N is the number of sites in the chain: the state with magnetization aligned with the
external field (the true vacuum) is the ground state of the model, while the one with
opposite magnetization (the false vacuum) is a metastable state.

The false vacuum is at high energy, so it can resonantly decay into the continuum of
multi-meson states. While this decay is a very complicated process, the basic mechanism
can be understood as the formation of bubbles of true vacuum in the system. Creating
a bubble of size ℓ requires the energy given by the masses of the two kinks lowered by
2hzMℓ. When this energy becomes zero, the bubble is resonantly excited. This bubble
can then further decay through other resonant processes. However, for hz sufficiently
small, the phenomenon of bubble formation is very slow. This slowness can be under-
stood by the following simple heuristic argument. A resonant bubble of size ℓ̃ results
from the frequent creation of a small bubble (of size of order 1) that then should expand
until it reaches the resonant size ℓ̃ ≫ 1 (see Fig. 5.1). This expansion is a high-order
process in the perturbation theory in hz and, as a consequence, the matrix element for
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exciting the resonant bubble is exponentially small in ℓ̃ ∝ h−1
z .

The decay of the metastable false vacuum in the Ising chain has been studied in Ref.
[126], where the following expression of the decay rate per site was obtained 1:

γ =
π

9
hzM exp

(
− q

hz

)
(5.3)

with q = |f(−i lnhx)|/M and f(θ) = 2
∫ θ
0 ω(α) dα. Note that q and M only depend

on hx. This rate γ can be interpreted as the number of resonant bubbles that are cre-
ated per unit time divided by the number of sites. In agreement with the argument
explained above, the decay is non-perturbative in the longitudinal field, with an ex-
ponential dependence on h−1

z . While the exponential dependence in Eq.(5.3) is a well
established result coming from different rigorous computations, the prefactor originates
from approximated procedures and might be subject to future improvements.

We note that an analogous mechanism drives the phenomenon known as string break-
ing. String breaking is typically understood as the saturation of the effective interaction
between two static charges (or kinks, in this case) at large distance, due to the screen-
ing effects of other charges: in other words, the string that extends between the two
static charges is broken by the creation of dynamical charges. In the model we are
studying, the string corresponds to a false vacuum domain and the string breaking ef-
fect corresponds to the formation of a bubble in the domain. The dynamics of string
breaking has been studied in this model, in other spin chains, and lattice gauge theo-
ries [198, 162, 199, 163, 200, 201, 202, 203, 204, 205, 104, 161, 208, 152, 154, 151], and
similar expressions for the decay rate were found.

5.2 Quench protocol and methods

Our goal here is to show that a window of Hamiltonian parameters of the Ising spin
chain (hx, hz) exists such that the false vacuum decay can be observed through numer-
ical simulations of the non-equilibrium dynamics after a quantum quench. The quench
protocol is the following: i) we prepare the system in the ferromagnetic state with all
the spins in the σzi = 1 direction; ii) we evolve the system in imaginary time with the
Hamiltonian H(hx,−hz) using infinite volume time evolving block decimation (iTEBD)
until we achieve a good convergence to the ground state; iii) we quench −hz → hz and
evolve in real time. Using this protocol, we are able to prepare the false vacuum of
H(hx, hz) and study its evolution in real time using iTEBD. The state preparation ii) is
obtained using a Trotter step δt = 10−3, and the imaginary time evolution stops when
the relative change of the energy density is smaller than 10−16. The real time evolution
after the quench iii) is performed with a Trotter step δt = 10−2. The bond dimension
χ is set to 512. We checked the stability of the numerical simulations with respect to
changes in χ and δt.

1In Ref. [126], the rate γ contains an oscillatory term g(hz): we work here in the approximation
g(hz) ≃ 1, which is justified for hz sufficiently far from 1.
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We stress that in our quench protocol the false vacuum decay drives the system
toward a thermal state, that has a finite energy density with respect to the true vacuum.
Only in the limit hz → 0 this state tends to the true vacuum.

5.3 Time scales

Before embarking on the analysis of the numerical data, we should have a clear picture of
all the time scales entering in the quench dynamics of our model. Starting from the false
vacuum, the first process happening is the creation of off-resonant bubbles. During this
(relatively) short-time transient, say up to time τr, the system remains effectively frozen
in the false vacuum until the resonant bubbles start being produced. However, here
we are not interested in this transient but only in the growth of the resonant bubbles,
because this is the process that leads to the false vacuum decay described by the rate
(5.3). For the accurate measurement of this rate, we need a clear separation of this time
scale from the successive ones. Indeed, at very late time, when most of the false vacuum
decayed, since the system is at finite energy density, it starts thermalizing through the
propagating states that originate from the decay of the resonant bubbles: the late time
dynamics is governed by the thermal state corresponding to the energy of the pre-quench
state (only for very small hz this is close to zero temperature, i.e. the true vacuum). We
denote with τD the time scale for the onset of thermalization; unfortunately, we do not
know how to estimate τD, but its determination lies beyond the scope of this thesis. For
the sake of our numerical investigation, the prediction extracted from Eq.(5.3) must be
tested under the assumption of a clean separation of time scales, i.e. τr ≪ γ−1 ≪ τD.
For the Hamiltonian (5.1), such separation of time scales is guaranteed in the regime
hz ≪ 1 and hx not too close to 1. The requirement hz ≪ 1 is obvious, since as hz
grows all the above time scales τr, γ

−1, τD become of order one and there cannot be any
separation. Similarly, if hx gets too close to 1, the masses of the kinks become very small
and the whole dynamics become faster. In light of such considerations, even though the
hx → 1 case has been studied in [127] and an expression for the decay rate similar to
Eq. 5.3 was found (see [206] and [207] for a more comprehensive discussion), the analysis
of the hx → 1 case is left for future works. However, when the fields are reduced, the
time scale γ−1 soon becomes extremely large (which is the reason why false vacuum
decay is generically an elusive phenomenon, see also [158]). Thus the main difficulty
of the numerical analysis is to find a window of the Hamiltonian parameters such that
there is an optimal balance between a reasonable separation of times scales (to have a
time range in which Eq. (5.3) describes something) and its numerical accessibility. We
found that such balance is obtained for rather small hz (of the order of 10−2), but with
hx relatively large hx ∼ [0.7, 0.9]: a smaller hx makes the decay time (γ−1) too long and
a larger hz destroys completely the time-scale separation.
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5.4 Results

To estimate the decay rate, we analyze the following two observables

F (t) =
⟨σzi (t)⟩+ ⟨σzi (0)⟩

2⟨σzi (0)⟩
, (5.4)

G(t) = 1− ||ρ(t)− ρ(0)||1, (5.5)

where ρ(t) is the two-site density matrix at time t and ||ρ(t)−ρ(0)||1 is the trace distance
between the two density matrices. Both quantities can be easily computed in iTEBD,
and satisfy F (0) = G(0) = 1, while they vanish in the true vacuum. The time evolution
of F (t) is fully encoded in the magnetization and, consequently, is expected to decay
with a rate

γF ≃ γℓ̃ =
f(π)

18
exp

(
− q

hz

)
, (5.6)

where the factor ℓ̃ is fixed through the characteristic length associated to the resonant
bubble f(π)

2hzMπ (see Ref. [126]). Note that for small hz, this rate is much larger than γ,
so the time scale needed to observe the decay in our simulation is significantly reduced.

As an illustrative example for the determination of the decay rates of F and G,
in Fig. 5.2 we report their evolution at fixed hx = 0.8 and different values of hz on a
semi-log scale. It is evident that after a short transient, all the data show a distinct
exponential decay (linear behavior on semi-log scale).

For all the considered values of hx and hz, we performed an exponential fit O(t) =
AOe

−γOt, with O = F,G. The fit is done in a time range t0 < t < t1 and then we check
the stability of the fit for small variations of t0, t1. The resulting decay rates γF,G are
plotted in Fig. 5.3-a,b,c as functions of h−1

z again on semi-log scale. The exponential
dependence on 1/hz, expected from Eq. (5.6), is very clear in the data. We fitted these
rates with

γO = kOe
−qO/hz , O = F,G. (5.7)

In Fig. 5.3-d we report the obtained coefficients qF , qG: they are compatible with each
other and they both agree very well with the theoretical prediction q = |f(−i lnhx)|/M
in the full range of hx considered. The prefactors kF and kG in Eq. (5.7) turn out to
be different from what predicted by Eq. (5.6) (the data in Fig. 5.3-a,b,c are shifted
compared to the dashed line). However, this shift is not surprising at all because we
know that (i) the prefactor depends on the specific observable (e.g., compare Eqs. (5.3)
and (5.6)), (ii) we expect it to be more affected by the approximations done in the
derivation of Eq. (5.6).

5.5 XXZ ladder

To show the general validity of our analysis, we also consider a second model for confine-
ment. We recall here its Hamiltonian and its main features, which have been extensively
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Figure 5.2: False vacuum decay in the quantum Ising chain. The time evolution of F (t)
and G(t), in Eqs. (5.4) and (5.5), is shown for hx = 0.8 and different values of hz after
the quench −hz → hz. The dot-dashed lines are the exponential fits in the decay region
performed to extract the decay rates γF and γG.

addressed in in Chap. 4:

H(∆||,∆⊥) =
1

2

L∑
j=1

∑
α=1,2

[
σxj,ασ

x
j+1,α + σyj,ασ

y
j+1,α

+ ∆||σ
z
j,ασ

z
j+1,α

]
+∆⊥

L∑
j=1

σzj,2σ
z
j,1

(5.8)

i.e. two XXZ spin-1/2 chains coupled along the longitudinal direction through an
anisotropic Ising-like interaction. Compared to the Ising spin chain (5.1), the model
possesses two interesting features. The first is that in the absence of the confining in-
teraction (hz and ∆⊥), the Ising spin chain becomes a free model, while the decoupled
XXZ chains constitute an interacting (integrable) spin model. The second one is that
confinement is induced by the internal interaction between the chains, a built-in mecha-
nism, instead of an external field (and this is more similar to what happens for quarks).
We work in the gapped anti-ferromagnetic phase, i.e. ∆|| ∈ (1,+∞) where the model
for ∆⊥ = 0 has four degenerate antiferromagnetic ground states. The confining poten-
tial explicitly breaks the original Z2 × Z2 symmetry to a single Z2: the four degenerate
ground states at ∆⊥ = 0 are split in two doublets separated by an energy of the order
∆⊥L. The two lowest states (the true vacua) are now the stable ground states, while
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Figure 5.3: Decay rates in the quantum Ising chain. In panels (a),(b),(c) we show the
decay rates γF , γG, obtained from the fits of F (t), G(t) as in Fig. 5.2. The continuous
lines are the fits of the exponential dependence of the rates in 1/hz. The dashed line
represents the theoretical prediction (5.6). From the fits the coefficients qF and qG are
extrapolated and showed against the theoretical value qth = |f(−i lnhx)|/M (dashed
line) in panel (d).

the other two (the false vacua) are metastable states at high energy and can decay in
the continuum of the many-body spectrum.

In analogy with the Ising model, we prepare the false vacuum as the ground state
at −∆⊥ and then we quench −∆⊥ → ∆⊥. For several values of the interactions ∆⊥
and ∆||, we extract the decay rates γF,G for F (t), G(t) (here F in Eq. (5.4) is built
with the staggered magnetization and G in Eq. (5.5) with the reduced density matrix
of two adjacent rungs). In Fig. 5.4, a) and b), we show the time evolution of G after the
quench for two values of ∆||. Even though we do not have analytic predictions for this
ladder, we expect that the underlying mechanism of the false vacuum decay is the same
so we can fit the decay rate with Eq. (5.7) with the replacement hz → ∆⊥. The test
of this scaling for γG is presented in Fig. 5.4 c) and d), showing a perfect agreement.
The quality of the fit for γF is very similar, although in Fig. 5.4 we only report the final
values for γF and not the data for F (t).

5.6 Conclusions

In chapter we provided robust numerical evidence that for two one-dimensional spin
models featuring confinement of elementary excitations it is possible to identify a range
of physical parameters such that the rate of false vacuum decay is accessible in measur-
able time scales. The quench protocol that we described here is amenable to quantum
simulation, for example with trapped ions or Rydberg atoms (both can simulate a sys-
tem with confinement). For the false vacuum preparation, the imaginary time evolution
used in the numerics can be replaced by an adiabatic preparation.

We conclude by briefly discussing how the the trapped-ion quench experiment of Ref.
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[110] (for the observation of domain wall confinement in real time) can be adjusted to
measure the false vacuum decay. In this experiment, the ion dynamics is well captured
by a long-range quantum Ising model in which the Z2 symmetry is spontaneously (and
not explicitly) broken. Hence, there are two degenerate real vacua and no false one.
In order to get a phenomenology similar to our setup it is sufficient to slightly tilt the
effective magnetic field (that in Ref. [110] is in the z direction) via a Rabi rotation, see
the review [209]. This tilting provides a small component of the magnetic field along the
x axis that breaks the degeneracy of the two vacua with a real and a false one. Then the
preparation of the system in the false vacuum and the following quench are done with
the very same techniques exploited already in Ref. [110]. Finally one- and two-point
functions of the spin can be measured, as already done in Ref. [110], giving access to
F (t) and G(t) in Eqs. (5.4) and (5.5).
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Figure 5.4: False vacuum decay for the XXZ ladder. Panels (a) and (b): Time evolution
of G in Eq. (5.5) after a quench ∆⊥ → −∆⊥ with ∆|| = 4 (a) and ∆|| = 3 (b)
with different values of ∆⊥. In (a) ∆⊥ = 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55 while ∆⊥ =
0.12, 0.14, 0.16, 0.18, 020, 0.22, 0.24 in (b). The arrows indicate the growing direction of
∆⊥. Panels (c) and (d): decay rates extracted from the fits in (a) and (b), respectively,
on semi-logarithmic scale. The continuous lines are fits of the decay rates performed
according to Eq. (5.7)
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Chapter 6

Overview

In Sec. 2.3 we introduced how the quasiparticle picture, originally developed in the CFT
framework, represents a powerful tool to capture the entanglement evolution after the
application of a quench protocol. This intuitive theoretical setting has then been ex-
tended to quantitatively characterise the dynamics of the standard measure of bipartite
entanglement — the von Neumann entanglement entropy or simply entanglement en-
tropy [210, 211, 29] – in many different kinds of systems with stable quasiparticles, such
as free [41, 43, 45] and interacting integrable models [44, 45] in a large variety of phys-
ical contexts. We remind how, within this picture, one postulates that a homogeneous
quench produces an extensive number of quasiparticle excitations, which are responsi-
ble for propagating the entanglement throughout the system. However, an important
assumption is that such quasiparticles are only produced in pairs, which is known to be
true for a class of low-entangled initial states. Though not obvious a priori, we show in
Chap 7 how the same approach is fruitfully adapted to describe the entanglement dy-
namics of Thermofield Double States in integrable spin chains and field theories. Indeed,
for a natural choice of the Hamiltonian eigenbasis, the TFD evolution may be interpreted
as a quantum quench from an initial state which is low-entangled in the real-space rep-
resentation and displays a simple quasiparticle structure. Based on a semi-classical
picture analogous to the one developed for standard quantum quenches and introduced
in Sec. 2.3, we conjecture a formula for the entanglement dynamics, which is valid for
both discrete and continuous integrable field theories, and expected to be exact in the
scaling limit of large space and time scales. We test our conjecture in two prototypical
examples of integrable spin chains, where numerical tests are possible. First, in the XY-
model, we compare our predictions with exact results obtained by mapping the system
to free fermions, finding excellent agreement. Second, we test our conjecture in the in-
teracting XXZ Heisenberg model, against numerical iTEBD calculations. For the latter,
we generally find good agreement, although, for some range of the system parameters
and within the accessible simulation times, some small discrepancies are visible, which
we attribute to finite-time effects.

The quasiparticle picture description of the entanglement growth has recently been
challenged by studies on the dynamics of Rényi entropies. Indeed, given the unques-
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tionable success of the quasiparticle picture in quantitatively capturing the evolution
of the entanglement entropy for integrable systems, it is very natural to assume that
the same picture also describes the evolution of Rényi entropies. Several basics facts
support this scenario: (i) it holds for free systems [41, 35, 43], (ii) there is no clear
qualitative difference between the numerically computed Rényi entropies and the en-
tanglement entropy [212, 213], (iii) in chaotic systems the membrane picture describes
both von Neumann and Rényi entropies [73, 74]. The extension of the quasiparticle
picture to describe Rényi entropies in the presence of interactions, however, proved to
be very challenging [212, 213, 214, 62]. In fact, Ref. [64] showed that no consistent quasi-
particle picture can describe the evolution of Rényi entropies in an integrable quantum
cellular automaton. A possible explanation of these findings is that, although the quasi-
particle picture describes the evolution of entanglement entropy also in the presence of
interactions, it fails to describe the growth of Rényi entropies. This would highlight a
very unexpected fundamental difference between the two quantities, which complements
the accounts of sub-linear growth of Rényi entropies in certain systems with diffusive
conservation laws [215, 216, 217].

Motivated by these thoughts, in Chap. 8 it is showed how the slope of the Rényi
entropies can be predicted by means of a spacetime duality transformation. In essence,
it is argued that the slope coincides with the stationary density of entropy of the model
obtained by exchanging the roles of space and time. Therefore, very surprisingly, the
slope of the entanglement is expressed as an equilibrium quantity. This observation is
exploited to find an explicit exact formula for the slope of Rényi entropies in all integrable
models treatable by thermodynamic Bethe ansatz and evolving from integrable initial
states. Interestingly, this formula can be understood in terms of a quasiparticle picture
only in the von Neumann limit.



Chapter 7

Entanglement dynamics of
thermofield double states in
integrable models

In this chapter are going to study the entanglement dynamics of thermofield double
(TFD) states in integrable spin chains and quantum field theories.

The thermofield double (TFD) state is defined on two identical copies (or replicas)
of a quantum many-body system or field theory, usually denoted by “left” and “right”,
and takes the form

|TFD⟩ = 1√
Zβ

∑
n

e−βEn/2 |En⟩L |En⟩R , (7.1)

where En and |En⟩ are the eigenvalues and eigenstates of the Hamiltonian H, β is the
inverse temperature, while Zβ is the canonical partition function. The dynamics is given
by evolving the left and right copies up to time tL and tR, respectively, i.e.

|TFD(tL, tR)⟩ =
1√
Zβ

∑
n

e−βEn/2e−iEn(tL+tR) |En⟩L |En⟩R . (7.2)

The TFD state plays a very important role in the context of the AdS/CFT correspon-
dence [218], as it was proposed to be dual to an eternal black hole [219, 220]. It provides
a controlled setup to investigate various aspects of black-hole physics, and to explore new
ideas inspired by quantum information theory, including questions related to quantum
scrambling and chaos [221, 222, 223] and quantum complexity [224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234].

The TFD state is also interesting and appears naturally in the study of non-relativistic
quantum many-body systems, since it provides a purification of the thermal Gibbs state.
For instance, it is at the basis of several efficient tensor-network algorithms to compute
thermal expectation values [235].

When tL = tR, the TFD dynamics can be thought of as a quantum quench [16,
17], where the system is initialized in the state (7.1) and subsequently evolved by the
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Hamiltonian

H = HL +HR = H ⊗ 1+ 1⊗H . (7.3)

Given a subsystem made of two identical regions in the left and right spaces, a natural
question pertains to the growth of the corresponding von Neumann entanglement en-
tropy. On the one hand, this quantity is of interest in the context of holography [236]
and has already been investigated in many works, see for instance [236, 237, 238, 239,
231, 232, 240]. On the other hand, when β = 0, it coincides with the entanglement
entropy of the evolution operator [241], which features in several recently-proposed
measures of quantum scrambling and chaos for non-relativistic many-body systems, see
e.g. [242, 243, 244, 245, 246, 247, 248].

In general, it is very challenging to compute the growth of the TFD entanglement
entropy after a quench: for short-range models, an exact calculation has been carried out
only for non-interacting bosonic quantum field theories [231]. Interestingly, the quasi-
particle picture we presented in Sec. 2.3 was recently tested to high precision against
exact calculations for the TFD entanglement dynamics in non-interacting bosonic the-
ories [231]. This result is nontrivial: if we interpret the TFD state as the initial state
for a quench problem in a two-replica space, it is not obvious, a priori, that the picture
developed for standard quenches should apply, as the setting is very different. Moti-
vated by the results of [231], here we address a very simple question: can we extend
the quasiparticle picture for the TFD entanglement dynamics to more general integrable
models? We stress that this question is interesting per se and goes beyond its possible
connections to holography, as it also applies, for instance, to non-conformal theories and
lattice models.

In order to tackle this problem, it is first important to realize that the definition
of the TFD state is not unique whenever the Hamiltonian displays spectral degeneracy:
different choices for the energy eigenbasis lead to states with distinct physical properties.
In this chapter, we will focus on one natural basis for which the TFD state is initially
low-entangled in the real space representation. This is a natural choice to make contact
with the standard theory of quantum quenches where initial states are typically assumed
to be low-entangled, which we remember represents a fundamental starting point for the
quasiparticle picture to be applied.

With this definition, we show that the TFD dynamics can be interpreted as a quench
where only pairs of quasiparticles are created, and conjecture a generalization of the
standard picture for the dynamics of bipartite entanglement entropy. We test our con-
jecture in two prototypical examples of integrable spin chains. First, in the XY-model,
we compare our predictions with exact results obtained by mapping the system to free
fermions. Second, in the interacting XXZ Heisenberg model, we test our conjecture
against numerical iTEBD calculations.

The rest of this work is organized as follows. In Sec. 7.1 we introduce the TFD state
and discuss the choice of the Hamiltonian eigenbasis of interest in this work. We then
review the quasiparticle picture for standard quenches, and present its generalization to
the case of the TFD dynamics. In Sec. 7.2 we study the case of non-interacting spin
chains focusing on the XY model. By mapping the system to free fermions, we obtain an
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exact result for the TFD entanglement evolution, which allows us to perform a strict test
of the quasiparticle picture. Next, Sec. 8.4.4 is devoted to the analysis of the interacting
XXZ Heisenberg chain, where we compare our analytic predictions against numerical
iTEBD calculations. Finally, we report our conclusions in Sec. 7.4.

7.1 The TFD state and the quasiparticle picture

7.1.1 The TFD state and the Hamiltonian eigenbasis

Let us begin by defining more precisely the quench protocol. For concreteness, we focus
on a 1D lattice model, with Hamiltonian H and associated Hilbert space

H = h1 ⊗ . . .⊗ hN , (7.4)

where hj ≃ Cd, while N is the system size. Following our introductory discussion, we
take two copies of the system, left (L) and right (R), so that the total Hilbert space is

K = HL ⊗ HR. In the following, we will also denote by h
L/R
j the left and right local

Hilbert spaces. We study the quench protocol in which the system is initialized in the
TFD state (7.1) and left to evolve according to the Hamiltonian (7.3), so that the state
at time t/2 after the quench is

|TFD(t)⟩ = 1√
Zβ

∑
n

e−βEn/2e−iEnt |En⟩L |En⟩R . (7.5)

In the case the model displays spectral degeneracy, the state (7.5) strongly depends
on the choice of the Hamiltonian eigenbasis, which we thus need to specify in order to
uniquely define the quench protocol. This choice is guided by the notion of locality that
we set in the two-replica space: Interpreting the doubled Hilbert space as a lattice with
local site kj = hLj ⊗ hRj , we require that the TFD state (7.1) is a low entangled state
in this lattice. This choice is very natural, and allows us to make direct contact with
the theory of quantum quenches, where initial states are typically assumed to be low
entangled.

Let us show that there always exists a Hamiltonian eigenbasis for which the TFD
state at β = 0 is a product state in the doubled lattice K. Denoting by {|α⟩j}dα=1 a basis

for hj , we introduce the following maximally entangled state between HL and HR

|I⟩ = 1√
dN

∑
{αn}

|α1, . . . , αN ⟩ ⊗ |α1, . . . , αN ⟩ ∈ K . (7.6)

Importantly, |I⟩ can be written as a product state in K, namely

|I⟩ =
N⊗
k=1

(
1√
d

d∑
α=1

|α⟩Lk ⊗ |α⟩Rk

)
. (7.7)
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For the models considered in this work, it is easy to check that one can choose a local
basis {|α⟩}dα=1 such that

⟨α1, . . . , αN |H|α1, . . . , αN ⟩ = ⟨α1, . . . , αN |H|α1, . . . , αN ⟩ , (7.8)

where (·) denotes complex conjugation (which is a basis-dependent operation). It follows
that there exists a Hamiltonian eigenbasis {|En⟩}n which satisfies

⟨α1, . . . , αN |En⟩ = ⟨α1, . . . , αN |En⟩ . (7.9)

Therefore, denoting byN the matrix which implements the change of basis from {|{αn}⟩}
to {|En⟩}, we obtain that ⟨{k}|N |{j}⟩ = ⟨{k}|N |{j}⟩, and so

NN T = NN † = 1 . (7.10)

Finally, using (7.10), it is a straightforward to show that

|TFD(0)⟩ = 1

dN/2

∑
n

|En⟩L |En⟩R = |I⟩ . (7.11)

Eq. (7.11) gives us the real-space representation of the infinite-temperature TFD state
considered in this work. We note that there is still an ambiguity in its definition, since it
depends on the choice of the basis of the local Hilbert space. However, different choices
are now related by local unitary transformations, which do not modify the bipartite
entanglement. The real-space representation of the finite-time and finite-temperature
TFD state is thus simply

|TFD(t)⟩ = exp

[
−i t

2
(HL ⊗ 1+ 1⊗HR)

]
exp

[
−β
4
(HL ⊗ 1+ 1⊗HR)

]
|I⟩ . (7.12)

We consider now a bipartition of the two-replica space into the region Aℓ and its
complement Ac

ℓ, where Aℓ contains the first ℓ sites of both the left and right lattices.
The associated Hilbert space is

KA = (hL1 ⊗ hR1 )⊗ (hL2 ⊗ hR2 )⊗ . . .⊗ (hLℓ ⊗ hRℓ ) . (7.13)

We will be interested in the dynamics of the entanglement between Aℓ and Ac
ℓ, which

can be quantified by the von Neumann entanglement entropy

SAℓ
(t) = −trρAℓ

(t) ln ρAℓ
(t) , (7.14)

where ρAℓ
(t) is the density matrix at time t reduced to the subsystem Aℓ, i.e.

ρAℓ
(t) = trAc

ℓ
|TFD(t)⟩⟨TFD(t)| . (7.15)

Note that, because of (7.12), SAℓ
(0) = 0 for β = 0.

We will formulate a conjecture for the von Neumann entanglement entropy (7.14) in
the scaling limit ℓ, t→ ∞, where the ratio ℓ/t is kept constant. Our conjecture is based
on the quasiparticle picture for standard quenches, which we briefly review in the next
subsection.
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7.1.2 The TFD quasiparticle content and entanglement dynamics: a
conjecture

From the introductory discussion we made in Sec. 2.3, it is not obvious that the standard
quasiparticle picture should apply to the TFD dynamics: while the spectrum of the two-
replica Hamiltonian (7.3) is still characterized in terms of stable quasiparticles, the TFD
state is a very complicated superposition of eigenstates, and one could wonder whether
higher n-tuples could contribute. Here we show that, for Bethe Ansatz solvable models,
the TFD state (7.12) admits a representation from which the assumption of pairs of
quasiparticles appears to be fully justified.

In the following discussion, we will consider an integrable spin chain (or field theory)
with periodic boundary conditions, whose eigenstates are parametrized by the sets of
quasiparticle rapidities {λj}. In addition, we will assume that the real-space represen-
tation of the eigenstates |E ({λj})⟩ is such that

⟨{j}|E ({λj})⟩ = ⟨{j}|E ({−λj})⟩ . (7.16)

This property can be verified at the level of the eigenfunctions in all integrable models
which will be considered in this work. In fact, this relation has a physical meaning:
provided that the Hamiltonian is real in the computational basis |{j}⟩, complex con-
jugation corresponds to time inversion, which has the effect of flipping the sign of the
quasiparticle momenta.

Since eigenstates with opposite sets of rapidities have the same energy, we can define
the new Hamiltonian eigenstates

|E+({λj})⟩ =
1√
2
|E ({λj})⟩+ |E ({−λj})⟩ , (7.17)

|E−({λj})⟩ =
i√
2
(|E ({λj})⟩ − |E ({−λj})⟩) . (7.18)

Now, the eigenbasis {|E±({λj})⟩} satisfies (7.9), and so

|I⟩ ∝
∑
α=±

∑
{λj}

|Eα({λj})⟩ ⊗ |Eα({λj})⟩ . (7.19)

Using (7.17), we finally obtain

|I⟩ = 1

dN/2

∑
{λj}

|E({λj})⟩ ⊗ |E({−λj})⟩ . (7.20)

The interpretation of |I⟩ in terms of quasiparticles is now clear: it is a superposition of
eigenstates, in which any quasiparticle moving in the first replica space with rapidity λj
is paired to one moving in the second replica space with opposite rapidity −λj .

Eq. (7.20) provides a basis for the application of the standard quasiparticle picture to
the TFD dynamics. Based on the latter, we conjecture that Eq. (2.4) describes exactly
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the TFD entanglement dynamics in the scaling limit of large t and ℓ, with the ratio t/ℓ
kept constant.

In order to give Eq. (2.4) predictive power, we need to specify the functions sn(λ) =
sTFD
(n) (λ) and vn(λ) = vTFD

(n) (λ). Following the logic of Refs. [44, 45], they are determined

by the stationary state (GGE) emerging at large times after a quench from the TFD
state. Since the latter is a purification of the Gibbs state, the expectation value of all
the local conserved quantities coincide with the thermal one, so that the GGE is simply
the Gibbs ensemble with inverse temperature β. Thus, we arrive at the identification
(dropping the index n)

vTFD(λ) = vβ(λ) , (7.21a)

sTFD(λ) = 2sβ(λ) , (7.21b)

where vβ(λ) and sβ(λ) are the thermal velocity of excitations and thermodynamic en-
tropy at inverse temperature β, respectively. The factor of 2 in Eq. (7.21b) follows
from the fact that the local dimension in the doubled space is the square of the original
one. The quasiparticle prediction consisting of Eqs. (2.4) and (8.57) first appeared in
Ref. [231], where it has been tested against analytic calculations in free scalar quantum
field theories.

We stress that the validity of the quasiparticle picture formulated above is a con-
jecture: as in the case of standard quenches [44, 45], it is highly non-trivial to derive
rigorously predictions in the scaling limit starting from the microscopic theory, even if
the explicit spectral decomposition of the initial state is known, cf. Eq. (7.20). Although
we expect that in the non-interacting case a rigorous derivation could be carried out by
generalizing Ref. [43], at the moment a proof in the presence of interactions appears
to be out of reach. In the next sections, we will provide strong evidence of its validity
by comparison against analytic and numerical calculations in concrete integrable spin
chains.

7.2 The XY model

We begin our analysis of the TFD entanglement dynamics by focusing on a prototypical
example of a non-interacting spin chain, the so-called XY model, whose Hamiltonian
reads

HXY (γ, h) = −1

2

N∑
j=1

[(
1 + γ

2

)
σxj σ

x
j+1 +

(
1− γ

2

)
σyj σ

y
j+1 + hσzj

]
, (7.22)

where σαj are the Pauli matrices, and periodic boundary conditions are assumed. This
model can be solved exactly by means a Jordan-Wigner (JW) transformation. Introduc-
ing the fermionic modes

cj =

(
j−1⊗
k=1

σzk

)
σ−j , c†j =

(
j−1⊗
k=1

σzk

)
σ+j , (7.23)
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the Hamiltonian (7.22) is mapped onto

H = −1

2

N−1∑
j=1

(
c†jcj+1 + c†j+1cj + γc†jc

†
j+1 + γcj+1cj

)
+ h

N∑
j=1

c†jcj −
hN

2

+
P

2

(
c†Nc1 + c†1cN + γc†Nc

†
1 + γc1cN

)
.

(7.24)

Here P =
∏N

j=1

(
1− 2c†jcj

)
is the parity operator, which determines periodic (antiperi-

odic) boundary conditions in the sector of odd (even) fermionic numbers. Since we will
be interested in the scaling limit of the entanglement of large subsystem sizes, we can ne-
glect boundary effects, and focus on the fermionic Hamiltonian with periodic boundary
conditions 1, i.e.

H = −1

2

N∑
j=1

(
c†jcj+1 + c†j+1cj + γc†jc

†
j+1 + γcj+1cj

)
+ h

N∑
j=1

c†jcj −
hN

2
. (7.25)

In order to obtain a mapping to free fermions in the TFD setting, one needs to
apply the JW transformation to both replicas independently. However, this procedure
leads to a subtlety which needs to be taken into account. Indeed, since operators in the
two spaces commute, applying the JW transformation to the two replicas independently
yields mixed commutation relations: by construction, given two operators obtained by
the JW transformation, they commute if they act on distinct replicas, and anti-commute
otherwise. On the other hand, in order to map the spin system onto a truly fermionic
one, all the transformed operators should anti-commute. Luckily, there is a simple way
to get around this problem, which consists in a redefinition of the fermionic operators.
Since this is a rather technical point, we discuss it in Appendix 7.A.

Crucially, the JW transformation maps the space of the first ℓ spins onto that of the
first ℓ fermions, for all ℓ < N . As a consequence, the bipartite entanglement entropy of
the original spin chain can be obtained from the corresponding fermionic system [249].
Putting all together, we are left with the problem of computing the bipartite TFD
entanglement dynamics for a quadratic fermionic Hamiltonian.

This problem is now analogous to that treated in Ref. [231], where quadratic bosonic
field theories were considered. There, the TFD entanglement dynamics was computed
exactly using that the TFD state is Gaussian, i.e. it satisfies Wick’s theorem. This
allows one to express its entanglement entropy in terms of the covariance matrix [249],
which, in turn, can be computed efficiently at any time. This logic can be followed
without modifications also for fermionic degrees of freedom. In the following, we carry
out this program explicitly for the model (7.25).

As a first step, we recall that the Hamiltonian (7.25) may be brought to a diagonal

1Alternatively, one could also consider the XY spin chain with open boundary conditions, so that no
boundary terms appear after applying the Jordan-Wigner transformation.
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Figure 7.1: Comparison between the exact entanglement dynamics and quasiparticle
predictions in the XY spin chain. The system parameters are γ = h = 0, while in both
plots the reverse temperature is β = 0, 2, 4, increasing from the top to the bottom. In
the left panel, the system size is fixed to L = 500, and different subsystem sizes are
considered. In the right panel, we fix the ratio ℓ/L, and explore the dependence on the
system size L. In both figures, we plot ∆Sℓ(t)/ℓ = [Sℓ(t)− Sℓ(0)]/ℓ, where Sℓ(0) is the
bipartite entanglement entropy in the initial state.
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form by combining the Fourier transform with the Bogoliubov rotation [250], yielding

H =
N−1∑
q=0

ε (kq)

{
b†qbq −

N

2

}
, (7.26)

where kq =
2π
N q, and

ε(α) ≡
√

(h− cosα)2 + γ2 sin2 α . (7.27)

Here bj = Uj,kck, where Uj,k is a suitably defined unitary matrix, whose explicit expres-
sion is given in Appendix 7.B. In this basis, the TFD (7.20) reads

|TFD(t, β)⟩ = 1

2N/2

∑
{qn}

exp

−it
∑
j

[ε(kqj )−
β

2
ε(kqj )]

 (bL†q1 b
R†
−q1) . . . (b

L†
qn b

R†
−qn) |0⟩ ,

(7.28)
where |0⟩ is the vacuum associated with the modes bj , i.e. bj |0⟩ = 0 for all bj . Note that
|TFD(0, 0)⟩ is a product state of Bell pairs, with the modes bLqk , b

R
q−k

being maximally
entangled.

The covariance matrix of (7.28) is block-diagonal, and thus very easy to compute, as
we detail in Appendix 7.B (similar calculations were performed in Ref. [232]). Specifi-
cally, introducing the Majorana modes

ψL
2k =

1√
2
(bL†k + bLk ) , ψL

2k+1 =
i√
2
(bL†k − bLk ) , (7.29)

ψR
2k =

1√
2
(bR†

−k + bR−k) , ψR
2k+1 =

i√
2
(bR†

−k − bR−k) , (7.30)

we obtain

⟨ψα
rjψ

β
sj ⟩= (7.31)

=


0 sin[2φ(kj)] sin[ε(kj)t] cos[2φ(kj)] sin[2φ(kj)] cos[ε(kj)t]

− sin[2φ(kj)] sin[ε(kj)t] 0 − sin[2φ(kj)] cos[ε(kj)t] cos[2φ(kj)]
− cos[2φ(kj)] sin[2φ(kj)] cos[ε(kj)t] 0 − sin[2φ(kj)] sin[ε(kj)t]

− sin[2φ(kj)] cos[ε(k)t] − cos[2φ(kj)] sin[2φ(kj)] sin[ε(kj)t] 0

 ,

(7.32)

with
φ(k) = arctan(e−βε(k)/2) , (7.33)

where α, β = L,R, rj , sj = 2j, 2j+1 and the Majorana modes are ordered as (ψL
2j , ψ

R
2j , ψ

L
2j+1, ψ

R
2j+1).

Finally, setting

χα
2k =

1√
2
(cα†k + cαk ) , χα

2k+1 =
i√
2
(cα†k − cαk ) , (7.34)
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Figure 7.2: Same as Fig. 7.1. The system parameters are γ = 0.5, h = 0, while in both
plots the reverse temperature is β = 0, 2, 4, increasing from the top to the bottom

and expressing the modes {cj} in terms of {bj}, we obtain the covariance matrix

Γα,β
j,k (t, β) = ⟨TFD(t, β)|χα

j χ
β
k |TFD(t, β)⟩ . (7.35)

Note that the definition of the left/right Majorana modes (7.29) involve opposite quasi-
momenta, which must be taken into account when expressing {cj} in terms of {bj} [cf.
Appendix 7.B for details].

The covariance matrix (7.35) now gives us direct access to the bipartite von Neumann
entanglement entropy Sℓ(t) [249]: denoting by Γℓ(t) the covariance matrix restricted to
the first ℓ sites, we have

Sℓ(t) = − tr

[
1 + iΓℓ(t)

2
ln

1 + iΓℓ(t)

2

]
. (7.36)

This formula can be evaluated in a numerically exact and efficient way for large system
sizes and times, and for arbitrary values of the Hamiltonian parameters (7.22). It thus
provides the possibility of a very stringent test for our analytic predictions.

Eq. (8.57) has been derived assuming that the limit N → ∞ is taken first, i.e. for
ℓ/N → 0. On the other hand, when evaluating (7.36), finite-ℓ effects are visible even for
relatively large sizes. Therefore, in order to test the quasiparticle picture and following
Ref. [231], it is first convenient to adapt the formula (8.57) to a ring geometry where
the ratio ℓ/N is kept constant. This also allows us to explore the interesting revivals of
the entanglement dynamics. By the usual argument, counting the number of pairs with
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one quasiparticle in A and the other in Ac, and taking into account periodic boundary
conditions, we arrive at the formula

Sℓ(t)/ℓ =

∫ π

−π
dk


(N/ℓ)sTFD(k)frac

(
v(k)t
N

)
if N frac( vtN ) < ℓ ,

sTFD(k) if ℓ ≤ N frac(v(k)tN ) < N − ℓ ,

(N/ℓ)sTFD(k)
[
1− frac

(
v(k)t
N

)]
if N − ℓ < N frac

(
v(k)t
N

)
.

(7.37)
Since the system is non-interacting, the velocity and entropy contributions of the quasi-
particles are not “dressed”, and can be immediately read off from the diagonal form of
the Hamiltonian (7.26), yielding

vTFD(k) = ε′(k) (7.38)

sTFD(k) = 2

[
βε(k)

1 + eβωn
+ log(1 + e−βε(k)

]
, (7.39)

where ε(k) is given in (7.27), while the extra factor accounts for the doubling of the local
Hilbert space dimension.

We have evaluated Eqs. (7.36) and (7.37) for large systems sizes and different values
of the system parameters, and systematically compared the results. Examples of our
numerical data is given in Figs. 7.1 and 7.2. We find that, at short times and high tem-
peratures, the agreement is extremely good even for relatively small system sizes. As the
temperature is lowered and wider time intervals are considered, increasing system sizes
are needed in order to observe the same accuracy in the quasiparticle predictions. We also
see that the entanglement revivals are perfectly captured by the analytic formula (7.37).
In general, we have found excellent agreement between the exact entanglement dynamics
and the quasiparticle prediction, giving us very strong evidence for the validity of the
conjecture in the non-interacting case.

7.3 The XXZ Heisenberg spin chain

We move on to test our conjecture in genuinely interacting integrable systems and con-
sider the prototypical example of the XXZ Heisenberg model [251]

HXXZ =
1

4

N∑
j=1

[
σxj σ

x
j+1 + σyj σ

y
j+1 +∆

(
σzjσ

z
j+1 −

1

4

)]
, (7.40)

where σαj are Pauli matrices acting on the local space hj ≃ C2, while ∆ is the anisotropy
parameter.

Although the model is integrable, interactions make it notoriously hard to analyze
its out-of-equilibrium dynamics analytically [10]. For instance, it is not known how to
compute the evolution of any non-trivial physical quantity following a quantum quench
(with the only exception being the so-called Loschmidt echo [252, 253]). Accordingly, in
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order to obtain an exact description of the TFD dynamics, we need to rely on numerical
methods of general validity.

Since we are interested in the limit of large system sizes, we employ tensor-network
(TN) methods [235]. In order to do so, it is crucial that the infinite-temperature TFD
state is a product state in the real-space representation, [cf. Eq. (7.7)] and that, more
generally, it maintains low spatial entanglement at finite values of β. Indeed, this allows
us to represent it efficiently as a Matrix Product State (MPS) [254] with small bond
dimension, and apply standard algorithms for its time evolution.

Unfortunately, the linear growth of the bipartite entanglement entropy poses practi-
cal limitations on the time scales which can be simulated [235], and our numerical results
are often plagued by severe finite-time effects. For this reason, we limit ourselves to test
the quasiparticle prediction in a simple setting where the latter are easier to take into
account: we compute the growth of the TFD entanglement entropy for a bipartition of
an infinite spin chain. In order to simulate the system directly in the thermodynamic
limit we employ the iTEBD algorithm [186].

Importantly, while numerical calculations are performed for infinite systems, in the
iTEBD algorithm an approximation is made by introducing a finite bond dimension [235]
traditionally denoted by χ, which sets an effective cutoff for the maximum entanglement
values which can be simulated, and allows us to estimate the interval of validity of our
numerical computations.

From the point of view of the quasiparticle picture, Eq. (2.4) simplifies when consid-
ering half of an infinite system, since there is no saturation of entanglement. Specifically,
taking ℓ→ ∞ in (2.4), we obtain

S(t) = 2t
∑
n

∫
dλ|vn(λ)|sn(λ) , (7.41)

where the integral is over all the allowed quasimomenta. This equation is expected to
be exact in the limit t → ∞, and yields a prediction for the asymptotic rate of growth
dS(t)/dt of the bipartite entanglement entropy.

As before, in order to evaluate (7.41), one needs to specify the quasiparticle content
of the model, i.e. the types of possible quasiparticles, together with their velocity and
entropy contribution at thermal equilibrium. In the XXZ Heisenberg model, these data
can be obtained via the so-called Thermodynamic Bethe Ansatz [78]. Contrary to the
non-interacting case, they don’t have an elementary form and their structure depends
on the value of ∆. Therefore, in the following, we will consider separately the regimes
∆ > 1 and 0 < ∆ < 1 , and test the quasiparticle prediction in the two cases 2.

7.3.1 The regime ∆ > 1

The structure of the quasiparticles is particularly simple when ∆ > 1. In this case,
quasiparticles can form bound states of arbitrary numbers, and, in the thermodynamic

2Without loss of generality, we can assume ∆ > 0, since the case ∆ < 0 can be obtained by a unitary
similarity transformation, and simultaneously flipping the sign of the temperature [251].
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limit, the system is characterized by an infinite set of rapidity distribution functions
{ρn(λ)}∞n=1. Here λ ∈ [−π/2, π/2], while the integer n indicates the number of quasipar-
ticles in the bound states. The functions ρn(λ) can be thought of as a generalization of
the quasimomentum occupation numbers describing non-interacting quantum gases at
thermal equilibrium. Together with {ρn(λ)}, the state of the system is also characterized
by the set of hole distribution functions {ρhn(λ)}, giving information on the density of
vacant quasimomenta which could be occupied by the quasiparticles.

Due to interactions, the relation between {ρn(λ)} and {ρhn(λ)} is non-trivial, and
takes the form [78]

ρm(λ) + ρhm(λ) = am(λ)−
∞∑
n=1

[amn ∗ ρn] (λ) , (7.42)

where we defined

(f ∗ g)(λ) =
∫ π/2

−π/2
dµf(λ− µ)g(µ) (7.43)

and

amn(λ) = (1− δmn) a|m−n|(λ) + 2a|m−n|(λ) + . . .+ 2am+n−2(λ) + am+n(λ) ,(7.44)

an(λ) =
1

π

sinh(nη)

cosh(nη)− cos(2λ)
. (7.45)

with cosh(η) = ∆.
The solution to (7.42) is not unique, and an additional set of equations must be

provided in order to completely determine the quasiparticle distribution functions at
inverse temperature β. Introducing the function

ηn(λ) =
ρhn(λ)

ρn(λ)
, (7.46)

the latter take the form [78]

log ηn(λ) = −βπ sinh(η)an(λ) +
∞∑

m=1

[
anm ∗ log

(
1 + η−1

m

)]
(λ) . (7.47)

Eqs. (7.42) and (7.47) are a closed set of equations, and can be solved by standard
iterative methods. Clearly, in order to do so, one must truncate the infinite system,
keeping only a finite number nmax of equations (with the accuracy of the numerical
solution increasing with nmax). The functions ρn(λ) and ρhn(λ) obtained in this way
completely determine the thermal properties of the system. In particular, they allow
one to obtain the velocities of the quasiparticles vn(λ) as the solution to [188]

[ρhn(λ) + ρn(λ)]vn(λ) = −sinh η

2
a′m(λ)−

∞∑
n=1

[amn ∗ ρnvn] (λ) , (7.48)
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while sn(λ) is given by the so-called Yang-Yang entropy [78]

sn(λ) = [ρn(λ) + ρhn(λ)] ln[ρn(λ) + ρhn(λ)]− ρn(λ) ln ρn(λ)− ρhn(λ) ln ρ
h
n(λ) . (7.49)

We have solved numerically Eqs. (7.42), (7.47), and (7.48). Plugging the result for
vn(λ) and sn(λ) [obtained from (7.49)] into (7.41), we obtain the final quasiparticle
prediction for the late-time rate of growth of the bipartite entanglement entropy. A plot
for different values of β is displayed in Fig. 7.3.

In Fig. 7.4 we compare the quasiparticle prediction with our numerical iTEBD cal-
culations. In the first plot, we show dS(t)/dt as a function of time for ∆ = 1, 2, 3 at
β = 0, reporting data for two different bond dimensions (dashed and solid lines): the
time t0 at which the two curves start to deviate from one another gives us an estimate of
the maximum time interval for which our data are reliable. We can see that t0 decreases
with ∆, which is consistent with the fact that the entanglement entropy appears to grow
faster for larger ∆ at short times.

For all the values of the anisotropy, we see short-time oscillations whose amplitude
is large compared to the range of variation of dS(t)/dt displayed in Fig. 7.3. This short-
time regime is followed by a slow decaying behavior, suggesting large finite-time effects.
In the right panel of Fig. 7.4, we have plotted the difference between the quasiparticle
prediction at late times and dS(t)/dt, from which we clearly see a power law decay to
zero, finally confirming the validity of our analytic formula (7.41).

From Fig. 7.3, we see a very weak dependence of the asymptotic value of dS(t)/dt on
the inverse temperature β. On the other hand, the entanglement of the zero-time TFD
state increases with β, further limiting the time scales accessible to our simulations. For
this reason, we were not able to perform a meaningful test of the dependence on β for
∆ > 1.

7.3.2 The regime 0 < ∆ < 1

The quasiparticle content is significantly more complicated for ∆ < 1. Setting γ =
arccos(∆), simplifications occur when γ/π is a rational number. In this case, quasipar-
ticles can still form bound states, but containing at most a finite number Nb of them.
The value of Nb and the properties of the quasiparticles depend on the length of the
continued-fraction representation of γ/π [78]. In this section, we will restrict ourselves
to the case where the latter is at most two. Values of γ/π with longer continued-fraction
representations correspond to a more involved quasiparticle structure, and are only ex-
pected to lead to technical, rather than conceptual, complications. We will consider in
particular

γ =
π

1 + ν1
, (7.50)

with ν1 = 2, 3, . . ., where we have Nb = 1 + ν1, and also

γ =
π

ν1 +
1
ν2

, (7.51)
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Figure 7.3: Quasiparticle prediction for the asymptotic rate of growth r(∆) =
limt→∞ dS(t)/dt, as a function of ∆ > 1 and for different values of β = 0, 0.2, 0.4.
The curves are obtained by evaluating (7.41), after solving numerically Eqs. (7.42),
(7.47), (7.48), and using (7.49).
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Figure 7.4: Infinite-temperature TFD entanglement dynamics for β = 0 and ∆ > 1.
Left: Rate of entanglement growth for different value of ∆ as a function of time. Dashed
and solid lines correspond to iTEBD data obtained using bond dimension χ = 1024 and
χ = 2048, respectively. Straight dotted lines are the predictions from the quasiparticle
picture. Right: Difference between the iTEBD data and the asymptotic formula (7.41),
in log-log plot. The straight line is a linear fit. The plot clearly reveals a power-law
approach to zero, confirming the validity of the quasiparticle prediction.
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with ν1, ν2 ≥ 2. In this case, the maximum number of quasiparticles forming a bound
state is Nb = ν1 + ν2.

As before, we can characterize the system in the thermodynamic limit in terms of
the rapidity and hole distribution functions {ρn(λ)}, {ρhn(λ)}, where now n = 1, . . . Nb,
and λ ∈ (−∞,+∞). The relation between the two reads

aj(λ) = σj

[
ρj(λ) + ρhj (λ)

]
+

Nb∑
k=1

[ajk ∗ ρk](λ) , (7.52)

where

(f ∗ g)(λ) =
∫ ∞

−∞
dµf(λ− µ)g(µ) , (7.53)

and

ajk(λ) =
(
1− δnjnk

)
a
vjvk
|nj−nk|(λ) + 2a

vjvk
|nj−nk|+2(λ) + . . .+ 2a

vjvk
nj+nk−2(λ) + a

vjvk
nj+nk

(λ) ,

(7.54)

a
vj
nj (λ) =

vj
π

sin (γnj)

cosh(2λ)− vj cos (γnj)
, (7.55)

σj = sign (qj) . (7.56)

In Eqs. (7.54), (7.56), nj , vj and , qj depend on the length of the continued-fraction
representation of γ. In the case (7.50), we have{

nj = j, vj = 1, j = 1, 2 . . . , ν1 ,
nν1+1 = 1, vν1+1 = −1 ,

(7.57)

and {
qj = ν1 + 1− nj j = 1, 2 . . . , ν1 ,

qν1+1 = −1 .
(7.58)

In the case (7.51), instead, we have

nj =


j 1 ≤ j ≤ ν1 − 1 ,

1 + (j − ν1) ν1 ν1 ≤ j ≤ ν1 + ν2 − 1 ,

ν1 j = ν1 + ν2 ,

(7.59)

vj =


+1 1 ≤ j ≤ ν1 − 1 ,

−1 j = ν1

exp
(
iπ floor

[
(nj − 1) ν2

1+ν1 ,ν2

])
ν1 + 1 ≤ j ≤ ν1 + ν2 ,

(7.60)

where floor(x) is the floor function, and

qj =


1+ν1ν2

ν2
− j 1 ≤ j ≤ ν1 − 1 ,

1
ν2

(j − ν1)− 1 ν1 ≤ j ≤ ν1 + ν2 − 1 ,
1
ν2

j = ν1 + ν2 .

(7.61)
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Figure 7.5: Infinite-temperature TFD entanglement dynamics for β = 0 and 0 < ∆ < 1.
Solid lines correspond to iTEBD data obtained using bond dimension χ = 2048, while
straight dotted lines are the predictions from the quasiparticle picture.

Analogously to the case ∆ > 1, Eq. (7.52) has to be complemented with an addi-
tional set of equations to determine the thermal stationary state. For both cases (7.50)
and (7.51), it reads [78]

ln ηj(λ) = βej(λ) +

Nb∑
k=1

σk[ajk ∗ ln
(
1 + η−1

k

)
](λ) , (7.62)

where
ej(λ) = −π sin γavjnj (λ) , (7.63)

and ηn(λ) is defined in (7.46). Finally, from the knowledge of the thermal rapidity
and hole distribution functions, the entropy contribution is given by the Yang-Yang
entropy (7.49), while the velocity is obtained by solving the system

e′j(λ)

2π
= σjvj(λ)

[
ρj(λ) + ρhj (λ)

]
+

Nb∑
k=1

[ajk ∗ vkρk](λ) . (7.64)

We have solved numerically Eqs. (7.52), (7.62) and (7.64) by standard iterative methods,
after introducing a finite cutoff Λ in the space of rapidities.

In Fig. 7.5 we compare the prediction obtained using Eq. (7.41) with our numerical
iTEBD calculations. In general, we find that larger finite-time effects are visible, com-
pared to the case ∆ > 1. For 0.5 ≤ ∆ < 1, we see that dS(t)/dt appears to decrease
in time towards our asymptotic predictions, decaying more slowly as ∆ approaches 1.
Unfortunately, however, although the data are qualitatively consistent with our predic-
tion, the time scales which we can simulate do not allow us to make a more accurate
quantitative comparison.
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Figure 7.6: Finite-temperature TFD entanglement dynamics for ∆ = 0.5. Solid lines
correspond to iTEBD data obtained using bond dimension χ = 2048, while straight
dotted lines are the predictions from the quasiparticle picture.

The situation appears to be worse in the case ∆ < 0.5 shown in the left panel of
Fig. 7.5. Here we see large oscillations for the time scales which we can simulate. Perhaps
unsurprisingly, oscillations are larger as ∆ approaches zero, and, within the accessible
time scales, only for ∆ = 0.309 we are able to see hints of an eventual damping in
their amplitudes and the onset of a slowly decaying behavior, following this transient
short-time regime. In general, we interpret the visible discrepancies as a manifestation
of large finite-time effects, due to proximity to the non-interacting point ∆ = 0. From
Fig. 7.5, we also see that finite-time effects are less severe for ∆ = 0.5. For this value of
the anisotropy, we are able to test the dependence of the TFD entanglement entropy on
β. Our results are reported in Fig. 7.6, displaying a good quantitative agreement.

7.4 Conclusions

We have studied the entanglement dynamics of TFD states in interacting integrable
systems. We have shown that the TFD evolution may be interpreted as a quantum
quench from an initial state which is low-entangled in the real-space representation
and displays a simple quasiparticle structure. Based on these considerations, we have
generalized the quasiparticle picture developed for standard quenches and conjectured a
formula for the evolution of the von Neumann entanglement entropy, which is expected
to be exact in the scaling limit of large sizes and times.

In the case of integrable spin chains, where exact or efficient numerical calculations
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can be performed, we have tested our conjecture finding convincing agreement. More
generally, our formula applies to continuous quantum field theories, including, for in-
stance, the Lieb-Liniger gas or the relativistic sinh- and sine-Gordon models. Although
in these cases it would be difficult to simulate exactly the dynamics, the quasiparticle
structure of these models is well known, leading to a straightforward application of our
formulas.

As mentioned, the entanglement dynamics of the infinite-temperature TFD state
coincides with the operator-space entanglement entropy of the evolution operator [241,
255]. Therefore, as a byproduct of our work, we obtained an analytic expression for the
latter in generic interacting integrable systems. In this respect, it would be interesting
to understand whether a similar quasiparticle description could be obtained for other
entanglement-related properties of the evolution operator, such as the tripartite mutual
information [242], which characterizes the chaotic and scrambling behavior of the many-
body dynamics, the negativity [46, 240, 49] or the symmetry resolved entropies [50, 51].
We leave these questions for future work.

7.A The TFD state and the Jordan-Wigner transforma-
tion

In this section we provide more detail about the JW transformation in the TFD setting.
For concreteness, let us assume N even, and define the following left and right Majorana
operators

χ̃α
2j =

(
j−1⊗
k=1

σz,αk

)
σx,αj , χ̃α

2j+1 =

(
j−1⊗
k=1

σz,αk

)
σy,αj , (7.65)

where α = L,R. This definition corresponds to applying a JW transformation inde-
pendently on the two replica spaces. We note that the set {χ̃L

j , χ̃
R
j } does not satisfy a

fermionic algebra, but a mixed one, since

[χ̃L
j , χ̃

R
k ] = 0 , {χ̃α

j , χ̃
α
k} = δj,k . (7.66)

In order to obtain a truly fermionic algebra, we introduce

χL
k = iQLχ̃L

k , χR
k = QLχ̃R

k , (7.67)

where

QL =

2N∏
j=1

χ̃L
j . (7.68)

One can easily verify that {χα
j } satisfy fermionic anticommutation relations, namely

{χα
j , χ

β
k} = δj,kδα,β , (7.69)
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and that χα†
j = χα

j . Furthermore, since (QL)2 = 1, we have

s∏
j=1

χ̃α
mj

=
s∏

j=1

χα
mj
, (7.70)

for any integer s.

From Eq. (7.70), we see that we can reformulate the TFD dynamics in terms of the
fermionic operators χα

j . In order to show that the mapping is well defined, however, we
also need to make sure that the infinite-temperature state |I⟩ originally written in terms
of spin degrees of freedom, is transformed into a maximally entangled state |If ⟩, which
is a product state with respect to the fermionic degrees of freedom. To see this, we first
note that the state |I⟩ is completely determined by the set of relations

(OL ⊗ 1) |I⟩ = (1⊗OR,T ) |I⟩ , (7.71)

whereO is any operator and (·)T denotes transposition with respect to the computational
basis. By rewriting this equation in the Majorana basis we obtain

χL
2k |If ⟩ = −iχR

2k |If ⟩ , χL
2k+1 |If ⟩ = iχR

2k+1 |If ⟩ , (7.72)

i.e. |If ⟩ is a purification of the infinite-temperature state, which is also a product state
with respect to the fermionic degrees of freedom.

7.B Details on the TFD entanglement dynamics for quadratic
fermionic Hamiltonians

In this Appendix we provide further details about the calculation of the TFD entangle-
ment dynamics for the quadratic Hamiltonian (7.25).

We begin by reviewing the diagonalization of the Hamiltonian (7.25), which is stan-
dard and carried out in two steps. First, we take the Fourier transform of the fermionic
operators

cj =
eiπ/4√
N

N−1∑
q=0

ei
2π
N

qj c̃q, c̃q ≡
e−iπ/4

√
N

N∑
j=1

e−i 2π
N

qjcj . (7.73)

Next, we perform a Bogoliubov rotation(
c̃+q

c̃†−q

)
=

(
cosϑq sinϑq
− sinϑq cosϑq

)(
b+q

b†−q

)
,

(
b+q

b†−q

)
=

(
cosϑq − sinϑq
sinϑq cosϑq

)(
c̃+q

c̃†−q

)
,

(7.74)
where we defined

tan (2ϑq) =
γ sin

(
2π
N q
)

h− cos
(
2π
N q
) . (7.75)
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The Hamiltonian becomes diagonal in terms of the new modes

H =
N−1∑
q=0

ε

(
2π

N
q

){
b†qbq −

N

2

}
, (7.76)

where

ε(α) ≡
√

(h− cosα)2 + γ2 sin2 α . (7.77)

Concatenating the Fourier and Bogoliubov transformation, we may directly write
down the initial Majorana modes, defined in Eq. (7.34), in terms of the final ones,
defined in Eq. (7.29). We have

χj,1 =
1√
2
(cj + c†j) =

1√
2

N−1∑
q=0

[
1√
N
eiπ/4e2πqj/N c̃q +

1√
N
e−iπ/4e−2πqj/N c̃†q

]

=
1√
2N

N−1∑
q=0

[
cos(ϑq)

(
eiπ/4+2πqj/Nbq + e−iπ/4−2πqj/Nb†q

)
+ sin(ϑq)

(
eiπ/4+2πqj/Nb†−q + e−iπ/4−2πqj/Nb−q

)]
. (7.78)

For the second term in the sum, we may rewrite

N−1∑
q=0

[
sin(ϑq)

(
eiπ/4+2πqj/Nb†−q + e−iπ/4−2πqj/Nb−q

)]
=

=
N−1∑
q=0

[
− sin(ϑq)

(
eiπ/4−2πqj/Nb†q + e−iπ/4+2πqj/Nbq

)]
(7.79)

and so

χj,1 =
1√
2N

N−1∑
q=0

{
bq

[
cosϑqe

iπ/4+2πqij/N − sinϑqe
−iπ/4+2πqij/N

]
+

+ b†q

[
cosϑqe

−iπ/4−2πqij/N − sinϑqe
iπ/4−2πqij/N

]
=

1√
N

N−1∑
q=0

{
ψq,1

[
cosϑq cos

(
2πqj

N
+
π

4

)
− sinϑq cos

(
2πqj

N
− π

4

)]
+ ψq,2

[
− cosϑq sin

(
2πqj

N
+
π

4

)
+ sinϑq sin

(
2πqj

N
− π

4

)]}
.

(7.80)
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Analogously, we have

χj,2 =
i√
2N

N−1∑
q=0

{
bq

[
− sinϑqe

−iπ/4+2πqij/N − cosϑqe
iπ/4+2πqij/N

]
+ b†q

[
cosϑqe

−iπ/4−2πqij/N + sinϑqe
iπ/4−2πqij/N

]}
=

1√
N

N−1∑
q=0

{
ψq,1

[
sinϑq sin

(
2πqj

N
− π

4

)
+ cosϑq sin

(
2πqj

N
+
π

4

)]
+ ψq,2

[
sinϑq cos

(
2πqj

N
− π

4

)
+ cosϑq cos

(
2πqj

N
+
π

4

)]}
.

(7.81)

Let us now consider the two-replica Hilbert space and denote by ψ
L/R
j,α the left/right

Majorana fermions. We define the ordered vectors

ψ = (ψ1 . . . ψN ) , ψk = (ψL
k,1, ψ

R
k,1, ψ

L
k,2, ψ

R
k,2) , (7.82)

χ = (χ1 . . . χN ) , χk = (χL
k,1, χ

R
k,1, χ

L
k,2, χ

R
k,2) . (7.83)

We can rewrite

χj =
∑
k

Aj,kψk , (7.84)

where A = Ã/
√
N and

[Ãj,k]1,α =

[
cos(ϑq)c

+

(
2πqj

N

)
− sin(ϑq)c

−
(
2πqj

N

)
, 0,− cos(ϑq)s

+

(
2πqj

N

)
+ sin(ϑq)s

−
(
2πqj

N

)
, 0

]
[Ãj,k]2,α =

[
0, cos(ϑ−q)c

+

(
−2πqj

N

)
− sin(ϑ−q)c

−
(
−2πqj

N

)
, 0,− cos(ϑ−q)s

+

(
−2πqj

N

)
+ sin(ϑ−q)s

−
(
−2πqj

N

)]
[Ãj,k]3,α =

[
sin(ϑq)s

−
(
2πqj

N

)
+ cos(ϑq)s

+

(
2πqj

N

)
, 0, sin(ϑq)c

−
(
2πqj

N

)
+ cos(ϑq)c

+

(
2πqj

N

)
, 0

]
[Ãj,k]4,α =

[
0, sin(ϑ−q)s

−
(
−2πqj

N

)
+ cos(ϑ−q)s

+

(
−2πqj

N

)
, 0, sin(ϑ−q)c

−
(
−2πqj

N

)
+ cos(ϑ−q)c

+

(
−2πqj

N

)]
with

c±(x) = cos(x± π/4) , s±(x) = sin(x± π/4) . (7.85)

Now, the covariance matrix of a TFD state corresponding to the diagonal Hamilto-
nian (7.76) is immediate to compute. In the basis of the Majorana modes ψj , ordered
as in (7.82), it reads (a similar calculation was performed in Ref. [232])

Ω(t, β) =
⊕
k

Ωk(t, β) , (7.86)
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with

Ωk(t, β) = (7.87)
0 sin[2φ(k)] sin[ε(k)t] cos[2φ(k)] sin[2φ(k)] cos[ε(k)t]

− sin[2φ(k)] sin[ε(k)t] 0 − sin[2φ(k)] cos[ε(k)t] cos[2φ(k)]
− cos[2φ(k)] sin[2φ(k)] cos[ε(k)t] 0 − sin[2φ(k)] sin[ε(k)t]

− sin[2φ(k)] cos[ε(k)t] − cos[2φ(k)] sin[2φ(k)] sin[ε(k)t] 0

 ,

(7.88)

and
φ(k) = arctan(e−βε(k)/2) . (7.89)

Putting all together, we arrive at the following result for the covariance matrix of the
TFD state corresponding to the Hamiltonian (7.25):

Γ(t, β) = AΩ(t, β)AT . (7.90)



Chapter 8

Growth of Rényi Entropies in
Interacting Integrable Models and
the Breakdown of the
Quasiparticle Picture

In this chapter we investigate the dynamics of Rényi entropies in one-dimensional quan-
tum many-body systems using a radically different approach. Our main idea is to argue
that, if the roles of space and time are exchanged, the slope of a given Rényi entropy is
mapped to the density of the same entropy in an appropriate steady state. This essen-
tially means that the exchange of space and time — which we dub “spacetime swap” —
maps the calculation of a non-equilibrium quantity into that of an equilibrium one.

To demonstrate the validity of aforementioned correspondence under spacetime swap
we begin considering locally interacting systems in discrete space time: the so called
local quantum circuits. Indeed, as recently pointed out in Ref. [256], in these systems
the correspondence can be established rigorously using the spacetime duality method
introduced in Ref. [70] (see also [71, 64] for further developments). In particular, for dual-
unitary circuits [257], where the dynamics from a class of compatible initial states [70, 71]
are essentially invariant under the exchange of space and time, one has that the slope
of a given Rényi entropy coincides with the entropy density of the infinite-temperature
state — the stationary state of the space evolution.

Then we consider another class of systems where the dynamics are essentially invari-
ant under an appropriate spacetime swap: relativistic quantum field theories. In this
case we show that the correspondence holds in the free case. Assuming that it continues
to hold for interacting integrable quantum field theories [258, 259, 197] when evolving
from appropriate compatible initial states [260], we arrive at a formula for the slope of
Rényi entropies in all such systems.

Finally we extend our result to all interacting integrable models treatable by ther-
modynamic Bethe ansatz (TBA) [261, 251, 262, 259, 263] and evolving from compatible

97
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initial states [79]. A significant physical insight of our result is that, as for the special
case of Ref. [64], the dynamics of Rényi entropies cannot be understood in terms of a
consistent quasiparticle picture.

The rest of this manuscript is laid out as follows. In Sec. 8.1 we define more pre-
cisely the setting considered and the quantities relevant for our analysis. In Sec. 8.2 we
demonstrate the correspondence of slopes and densities of Rényi entropies under space-
time swap in local quantum circuits, where the discreteness of spacetime allows for a
rigorous treatment. In Sec. 8.3 we discuss the case of relativistic quantum field theo-
ries. In particular, in Sec. 8.3.2 we present our exact formula for the slope of all Rényi
entropies in interacting integrable quantum field theories. In Sec. 8.4 we derive a di-
rect generalisation of this result to describe general TBA-integrable systems, and test it
against exact analytical and numerical results. Finally, Sec. 8.5 contains a discussion of
our results, in particular in relation with the quasiparticle picture, and our conclusions.
A number of technical points are relegated to the appendices.

8.1 Setting

In this work we consider a quantum many-body system prepared in a non-equilibrium
initial state, |Ψ0⟩, which is pure and has low entanglement. At time t = 0 we let the
system evolve under its own unitary dynamics, so that the state at time t > 0 is given
by

|Ψt⟩ = Ut |Ψ0⟩ , (8.1)

where U is the time-evolution operator. As a result of the unitary evolution the state
becomes increasingly more entangled as time advances [210]. The entanglement between
a finite region A and the rest of the system can be quantified computing the Rényi
entropies

S
(α)
A (t) =

1

1− α
ln [tr ραA(t)] , α ∈ R , (8.2)

where ρA(t) is the density matrix of the system reduced to the subsystem A. In the
limit α→ 1 the above expression is reduced to the von Neumann entanglement entropy

SA(t) = lim
α→1

S
(α)
A (t) = − tr [ρA(t) ln ρA(t)] . (8.3)

At times that are short compared to the subsystem size |A|, Rényi entropies are expected
to grow linearly (at least in the systems of interest here), while at sufficiently large
times they saturate to their “thermodynamic values”, i.e., they coincide with the Rényi
entropies of the stationary state describing the subsystem A. These two regimes can be
respectively characterised by the entanglement slope sα, and the stationary entanglement
density dα.

The density dα is defined as the density of Rényi-α entanglement entropy of a finite
subsystem of a thermodynamically large system in the t→ ∞ limit, i.e.,

dα = lim
|A|→∞

lim
t→∞

(
lim
L→∞

S
(α)
A

|A|

)
, (8.4)
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where |A| is the size of the subsystem A and L that of the total system. The final
|A| → ∞ limit is taken to remove the boundary effects and focus on the bulk physics of
the subsystem A.

The asymptotic slope sα, sometimes also referred to as “entanglement production
rate”, is defined as the ratio of the Rényi-α entanglement between a large subsystem
and the rest, and time

sα = lim
t→∞

lim
|A|→∞

(
lim
L→∞

S
(α)
A

2t

)
, (8.5)

where the factor of 2 accounts for the fact that the subsystem A has two edges through
which it develops correlations with its complement. In analogy with the density, we take
the t→ ∞ limit to remove finite-time effects.

Our main goal is to establish a formal connection between the slope and the density
based on a spacetime swap, i.e., an exchange of space and time.

8.2 Spacetime swap for local quantum circuits

A convenient setting for our analysis is that of local quantum circuits. These are models
in discrete space where the time evolution occurs in discrete steps through local updates.
The discreteness of time-evolution and the locality of interactions imply that these sys-
tems are closed under spacetime swap. Namely the “dual system” obtained exchanging
the roles of space and time in a quantum circuit is still a quantum circuit, although
the unitarity of the time evolution is generically not preserved [264]. This simple ob-
servation gives a tool to analyse several properties of quantum circuits by “evolution in
space” [265, 257, 70, 264, 266, 267]. In particular, as we now discuss, it can be used to
write explicit expressions for the entanglement slope that closely resemble those for the
density [70, 64, 268].

For the sake of clarity we consider brickwork circuits — i.e., circuits consisting of
two-site gates applied to first even and then odd pairs of neighbouring sites — but with
minor modifications the argument can be repeated for any discrete-spacetime model with
local unitary interactions.

More specifically we consider a chain of 2L sites, hosting qudits with d internal states,
and where the time evolution operator UL is written as the tensor product of L two-site
unitary gates U multiplied by the same product shifted by one site, i.e.,

UL = Π†
2LU

⊗LΠ2L · U⊗L, (8.6)

where Π2L represents a periodic shift by one site on a chain of 2L sites. At time t the
reduced density matrix of a subsystem A is given by

ρA = trĀΨtΨt = trĀ

(
UtΨ0Ψ0 U† t

)
, (8.7)

where we repeatedly apply the time-evolution operator U to the initial state, and then
trace over the rest of the system Ā. This can be represented graphically as a 2L × 4t
tensor network, see Fig. 8.1.
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ρA =

Wt WA,t 〈ML,t| |MR,t〉

L→ ∞

Figure 8.1: Diagrammatic representation of the reduced density matrix. The reduced
density matrix ρA is obtained by evolving an initial state in time and tracing over
the complement A of the subsystem A (graphically denoted by connecting the top and
bottom legs). Alternatively, we can understand it as a trace of a product of powers of
the space transfer matrix Wt and the transfer matrix WA,t (both shaded in grey), as
given by Eq. (8.8). In the limit L→ ∞, the section of the tensor network corresponding
to the rest of the system can be replaced by fixed-points ⟨ML,t| and |MR,t⟩ of the space
transfer matrix Wt (cf. Eq. (8.10)).



8.2. SPACETIME SWAP FOR LOCAL QUANTUM CIRCUITS 101

The same tensor network can be equivalently thought of as resulting from an evo-
lution in space. Indeed, rather than viewing gates as acting on the 2L sites arranged
horizontally and propagating upwards/downwards, one can imagine them acting on the
4t sites arranged vertically and propagating rightwards/leftwards. To this end we in-
troduce two different space transfer matrices playing the role of evolution operators in
space (cf. Fig. 8.1): Wt, that describes the space evolution in the complement of the
subsystem A, and WA,t, that acts both on 4t temporal sites and on the subsystem A.
Using these definitions, we can express the reduced density matrix ρA as the trace of a
large power of Wt multiplied by WA,t, i.e.,

ρA = tr
(
WL−|A|

t WA,t

)
. (8.8)

Due to the unitarity of the time-evolution (see, e.g., [71, 63, 269, 270, 271]) the transfer
matrix Wt has a single non-degenerate eigenvalue 1, while all the other eigenvalues are
0. The latter generically correspond to nontrivial Jordan blocks of size smaller or equal
to t. Therefore, when L is sufficiently larger than t, the matrix power

WL−|A|
t (8.9)

can be replaced with a projector on the fixed points |ML,t⟩ and |MR,t⟩, i.e., the left and
right eigenvectors corresponding to eigenvalue 1 [269, 270, 271]. Namely

lim
L→∞

ρA = ⟨ML,t|WA,t |MR,t⟩ , (8.10)

where we chose the normalisation such that

⟨ML,t |MR,t⟩ = 1 . (8.11)

Eq. (8.10) shows that the fixed points completely capture the effect of Ā on the finite
subsystem A (cf. Fig. 8.1). For this reason, and to stress their connection with the
Feynman-Vernon influence functional, Ref. [272] (see also [273, 274, 275, 276]) proposed
to dub them influence matrices.

The fixed points |ML,t⟩ and |MR,t⟩ can be thought of both as vectors in the space of
4t temporal sites, or as matrices ML,t, MR,t mapping from 2t temporal sites in the top
half to 2t sites in the bottom half 2 (see r.h.s. of Fig. 8.1 for an illustration). The latter
perspective makes fixed points convenient to access sα.

To demonstrate this we begin by observing that, for n integer, tr ρnA can be repre-
sented as n copies of conjugate pairs of the time-evolved initial state that are coupled in
a staggered fashion. In the section corresponding to A the pairs are connected, while in
A the conjugate copy of a pair is connected to the non-conjugate copy of the next pair
— see the left panel of Fig. 8.2 for a pictorial representation. This means that tr [ρnA(t)]
can be expressed in terms of products of n copies of the space transfer matrix Wt as

tr [ρnA(t)] = tr
[(
W⊗n

t

)|A|/2
η†2n
(
W∗

t
⊗n)|A|/2

η2n

]
, (8.12)

2By this definition, ⟨ML/R,t| correspond to M∗
L/R,t, and M†

L/R,t = ML/R,t.
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A A A

L→ ∞

A

M∗L,t

M∗L,t

M∗L,t

MR,t

MR,t

MR,t

|A| → ∞

M∗L,t
MT

R,t

M∗L,t
MT

R,t

M∗L,t
MT

R,t

M†L,t

MR,t

M†L,t

MR,t

M†L,t

MR,t

Figure 8.2: Schematic illustration of tr
[
ρ3A
]
. Green and red rectangles are condensed

representation of the green and red half of the time-evolution from Fig. 8.1. The white
connections on the left represent trace over the rest of the system, while the connections
on the right correspond to matrix products and then an overall trace. In the limit of
large L− | ∗ |A the left and right parts of A can be substituted by fixed points M∗

L,t and
MR,t connecting pairs of time-sheets. Analogously, when the subsystem size becomes

large, the section in the middle can be replaced with fixed points M †
L,t, and M

T
R,t. Note

the additional transpose of fixed points, which is the consequence of connecting the
opposite parity of pairs of neighbours. Thus we obtain the right-most diagram, which
corresponds precisely to the r.h.s. of Eq. (8.13).

where η2n represents a shift for one copy in the space of 2n replicas, and the complex
conjugate of the transfer matrix comes from the exchange of conjugate and non-conjugate
copies (cf. Fig. 8.2).

For L − |A| and |A| both much larger than t the powers of the transfer matrix can
again be replaced by the fixed points. In this way we obtain

lim
|A|→∞

lim
L→∞

tr [ρnA(t)] = tr
[
(M †

L,tMR,t)
n
]2
, (8.13)

which is schematically depicted on the r.h.s. of Fig. 8.2. Thus, we find the following
succinct expression for the slope (8.5)

sα =
1

1− α
lim
t→∞

1

t
ln tr

[
(M †

L,tMR,t)
α
]
, α ∈ R, (8.14)

where we analytically continued the matrix power.
On the other hand, the stationary entropy density (8.4) is expected to coincide with

the Rényi entropy of the reduced density matrix of the stationary state, i.e.,

dα =
1

1− α
lim

|A|→∞

1

|A| ln tr
[
ραst,A

]
. (8.15)

A comparison between the expressions (8.14) and (8.15) shows that the slope can be
written as a density of Rényi entropy as follows

sα =
1

1− α
lim
t→∞

1

t
ln tr

[
ρ̃αst,t

]
, (8.16)
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where we introduced the pseudo density matrix

ρ̃st,t =M †
L,tMR,t. (8.17)

To gain physical intuition on the meaning of ρ̃st,t let us begin considering ML,t and
MR,t. These matrices are by definition the fixed points, or stationary states, of the
space evolution (from left to right and right to left respectively). Moreover, as shown in
Appendix 8.A, they fulfil

MR,t = mR,tm
†
R,t , ML,t = mL,tm

†
L,t, (8.18)

implying that they are Hermitian and positive. This fact can be understood by recalling
that, although not unitary, the evolution in space is a hybrid quantum evolution [264],
i.e., it preserves positivity and Hermiticity.

Eq. (8.18) guarantees that ρ̃st,t has real, non-negative eigenvalues, and, moreover,
the normalisation condition (8.11) gives

tr ρ̃st,t = 1 . (8.19)

Combining all the above facts together we see that, even though ρ̃st,t is not Hermitian
and hence it cannot be interpreted as a proper quantum mechanical density matrix, it
has many properties of reduced density matrices.

We note that a correspondence similar to (8.16) between entanglement slope in the
original model and “steady-state entanglement” in the dual model has been recently
discovered in Ref. [256]. Here, however, we provided two significant advances. First, we
showed how to establish the correspondence for purely unitary evolution of the original
model, without introducing the edge decoherence considered in Ref. [256]. Second, we
provided a direct expression of ρ̃st,t in terms of the fixed points of the space transfer
matrix (or influence matrices).

In the special case when right and left fixed points coincide, ρ̃st,t is Hermitian, pos-
itive definite, normalised to one, and invariant under the space evolution. Therefore, it
is a stationary density matrix of the space evolution. This happens, for instance, for
dual-unitary quantum circuits [257] evolving from compatible — or solvable — initial
states [70, 71]. Indeed, these systems and states are designed in such a way that the evo-
lution in space is again a unitary brickwork quantum circuit, and, therefore, is equivalent
to the time evolution. In particular, we have [70, 71]

MR,t =ML,t =
12t

dt
, (8.20)

where 1x is the identity matrix acting on x qudits. Therefore, in this case the pseudo
density matrix coincides with the infinite temperature state, i.e.,

ρ̃st,t =
12t

d2t
. (8.21)
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Note that this is indeed the stationary state reached by the subsystem [0, t] of the time
lattice under space evolution. Thus, for dual-unitary circuits (8.16) is rewritten as

sα = d̃α, (8.22)

where d̃α in (8.16) is the stationary density of entropy in the dual model. For dual-
unitary circuits one can also repeat the above reasoning to compute the entanglement
growth between a subsystem of the time lattice and the rest. This gives

s̃α = dα . (8.23)

8.3 Spacetime swap in relativistic quantum field theories

Let us now change the setting and consider quantum field theories in 1+1 dimensions, i.e.,
generic quantum systems defined in a continuous spacetime. Since in these systems space
and time are both continuous they are again closed under spacetime swap. Therefore, we
expect that one can again establish a direct correspondence between slope and density
of Rényi entropies.

In 1+1 dimensional quantum field theories, however, it is more convenient to perform
a slight variation of the spacetime swap. Specifically, instead of directly exchanging space
and time here we consider the following analytic continuation

(t, x) 7→ (−ix, it), (8.24)

which corresponds to an exchange of space and time in the Euclidean formulation of the
theory [259]. In the string-theory literature the dual model obtained via the mapping
(8.24) is often referred to as the mirror model [277, 278, 263].

Our key observation is that if one considers a 1+1 dimensional relativistic invariant
quantum field theory, crossing symmetry implies that the mirror model coincides with
the original one in the bulk. Therefore, in this setting 1+1 dimensional relativistic
quantum field theories play a role similar to the dual-unitary circuits considered in the
previous section. This means that, assuming appropriate compatible initial states, one
should have

sα = id̃α, dα = −is̃α , (8.25)

where the quantities with the tilde denote the slope and density of Rényi entropy in the
mirror model. To be more concrete and gain some intuition we begin by proving (8.25)
for non-interacting, fermionic 1+1 dimensional quantum field theories.

8.3.1 Proof of (8.25) for free theories

Let us focus on a non-interacting quantum field theory of fermions in 1+1 dimensions.
We consider the quench problem with the system initially prepared in the Gaussian state

|Ψ0⟩ = exp

(∫
dθ

2π
K(µ)ψ†(−µ)ψ†(µ)

)
|0⟩ , (8.26)
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where ψ†(µ) is a creation operator for fermionic modes of rapidity µ, |0⟩ is the vacuum
state for fermions, and K(µ) is an odd function such that∫

dµ

2π
|K(µ)|2 <∞ . (8.27)

Since a state of the form (8.26) produces pairs of correlated quasiparticles, the asymptotic
slope (8.5) can be computed using the quasiparticle picture [41]

sα=
2m

1− α

∫ ∞

0

dµ

2π
sinhµ ln [(1− ϑ(µ))α+ϑ(µ)α] . (8.28)

Here

ϑ(µ) =
1

1 + |K(µ)|2 = ϑ(−µ), (8.29)

is the occupation, or filling function, of the free mode with rapidity µ and we used the
explicit form of the relativistic dispersion relation

ε(µ) = m coshµ, p(µ) = m sinhµ , (8.30)

where m is the mass of the fermions and we set the speed of light to one. Next, we
recall that for a stationary state described by a filling function ϑ(µ) the density of Renyi
entropy reads as

dα=
2m

1− α

∫ ∞

0

dµ

2π
coshµ ln [(1− ϑ(µ))α+ϑ(µ)α] . (8.31)

We then proceed by observing that at the level of rapidities the transformation (8.24)
becomes [263]

µ 7→ i
π

2
− µ, (8.32)

therefore in the mirror model the occupation corresponding to ϑ(µ) reads as

ϑ̃(µ) = ϑ(iπ2 − µ). (8.33)

Plugging this definition into the equation for the slope (8.28) we have

sα=
2m

1− α

∫ ∞

0

dµ

2π
sinhµ ln

[
(1−ϑ̃(iπ2−µ))α+ϑ̃(iπ2−µ)α

]
=

2im

1− α

∫
Γ

dµ

2π
coshµ ln

[
(1− ϑ̃(µ))α+ϑ̃(µ)α

]
, (8.34)

where Γ is the positively oriented contour parametrised by iπ2 − x with x ≤ 0. Com-
paring (8.34) with (8.31) we see that the former can be interpreted as the density of
entropy in the mirror model times i. We note that in the mirror model the integration
is performed over Γ to keep ϑ̃(x) well defined and rapidly decaying.

Analogously, substituting the definition (8.33) into the expression for the density (8.31)
we see that the density of entropy in the original model can be interpreted as −i times
the slope of the mirror model

dα=
−2im

1− α

∫
Γ

dµ

2π
sinhµ ln

[
(1− ϑ̃(µ))α+ϑ̃(µ)α

]
. (8.35)
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8.3.2 Slope of Rényi entropies in interacting integrable theories

Our next step is to use the correspondence (8.25) to find a prediction for the slope
in the presence of interactions. To this end, a convenient setting to consider is that
of massive integrable quantum field theories with a single species of excitations. We
consider integrable quantum systems because for these systems the stationary density can
be computed exactly using the quench action approach [212], while we focus on theories
with a single species of particle excitations for simplicity. Note that for this family of
integrable quantum field theories, a similar argument based on the mapping (8.24) has
been employed in Ref. [279] to compute the expectation values of currents in stationary
states.

In integrable quantum field theories the scattering is elastic and completely fac-
torised. Therefore, it is fully determined by the two-particle scattering matrix S(µ).
This is a meromorphic function of the rapidity in the physical strip S = {0 ≤ Imµ ≤ π},
fulfilling unitarity, crossing symmetry, and real analyticity

S(µ)S(−µ) = 1, µ ∈ S, (8.36)

S(µ) = S(iπ − µ), µ ∈ S, (8.37)

S(µ)∗ = S(−µ), µ ∈ R, (8.38)

S(iµ)∗ = S(iµ), µ ∈ [0, π]. (8.39)

A powerful method to describe the thermodynamics of interacting integrable theories is
provided by the thermodynamic Bethe ansatz (TBA) [259]. In essence, with this method
one describes stationary macrostates specifying the density of particle excitations that
they contain. This is possible because in these systems particle excitations are stable
and hence their densities are conserved.

In particular, we can again describe macrostates using the filling function ϑ(µ),
which describes the fraction of available states that are occupied by the particles. Now,
however, the density of available states, denoted by ρt(µ), is not a simple Jacobian as in
the non-interacting case. Because of the interactions it depends on the filling function
through the following integral equation [259]

ρt(µ) =
m

2π
cosh(µ) +

∫
dµ′

2π
T (µ− µ′)ρt(µ

′)ϑ(µ′). (8.40)

Here we introduced the scattering kernel T (µ), which is given by the logarithmic deriva-
tive of the scattering matrix

T (µ) = −i d
dµ

lnS(µ) . (8.41)

Since we are considering theories evolving from non-equilibrium initial states, the mirror
model will have a nontrivial boundary in space. Here we are interested in the case
where this boundary does not break the integrability of the theory, so that we can use
the result of Ref. [212] for the density of Rényi entropy, therefore, we have to consider
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initial states generating integrable boundary conditions. These states are well known
in the context of quantum integrability, and they are typically referred to as integrable
boundary states [260]. Note that integrable boundary states need regularisation to be
considered as initial states of quench problems [280, 281, 282, 284, 285]. This is essentially
due to the fact that they give non-zero weight to configurations involving particles with
infinite energy.

A regularised integrable boundary state can be thought of as the generalisation of
(8.26). It is obtained by replacing ψ†(µ) with the operators creating the stable excita-
tions [258] and requiring K(µ) to satisfy

K(µ) = S(2µ)K(−µ), (8.42)

instead of being odd. The filling function corresponding to such a state is then obtained
as the solution to the following integral equation [280, 282]

ln
ϑ(µ)

1−ϑ(µ) =ln |K(µ)|2−
∫
dµ′

2π
T (µ′ − µ) ln

[
1−ϑ(µ′)

]
. (8.43)

Note that (8.38) and (8.42) imply that ϑ(µ) is even.
Having introduced the necessary formalism we are finally in a position to write

an expression for sα. Our starting point is the exact expression for dα in interacting
integrable models derived in Ref. [212]. Specialising it to the case at hand we can
express it as

dα=
2m

1− α

∫ ∞

0

dµ

2π
coshµ ln

[
(1− ϑ(µ))α+

ϑ(µ)α

xα(µ)

]
, (8.44)

where the auxiliary function xα(µ) is the solution to the following integral equation

lnxα(λ) =

∫ ∞

0
dµ (T (µ− λ) + T (µ+ λ))

× ln

[
(1− ϑ(µ))α+

ϑ(µ)α

xα(µ)

]
.

(8.45)

Proceeding as in the free case by substituting the definition (8.33) of ϑ̃(µ) in (8.44) we
find

dα=
−2i

1− α

∫
Γ

dµ

2π
sinhµ ln

[
(1− ϑ̃(µ))α+

ϑ̃(µ)α

ỹα(µ)

]
, (8.46)

where we defined
ỹα(λ) = xα(i

π
2 − λ). (8.47)

The latter fulfils the following integral equation

ln ỹα(λ) =

∫
Γ
dµ (T (µ− λ)− T (µ+ λ))

× ln

[
(1− ϑ̃(µ))α+

ϑ̃(µ)α

ỹα(µ)

]
.

(8.48)
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Where we used that, because of the crossing symmetry (8.37) of the scattering matrix,
the kernel satisfies the following relation,

T (iπ + µ) = −T (µ) . (8.49)

Using then the correspondence (8.25) and rewriting everything for the original model we
finally find

sα=
2

1− α

∫ ∞

0

dµ

2π
sinhµ ln

[
(1− ϑ(µ))α+

ϑ(µ)α

yα(µ)

]
(8.50)

with

ln yα(λ) =

∫ ∞

0
dµ (T (µ− λ)− T (µ+ λ)) (8.51)

× ln

[
(1− ϑ(µ))α+

ϑ(µ)α

yα(µ)

]
.

This concludes our derivation of sα for interacting integrable quantum field theories with
diagonal scattering.

8.4 Slope of Rényi entropies in generic TBA-integrable
models

The argument leading to Eq. (8.50) can be applied to a much larger class of TBA-solvable
models. An immediate generalisation is obtained by considering integrable quantum
field theories with non-diagonal scattering as the sine-Gordon field theory. Indeed, since
integrable boundary states also exist for these systems [260], one can directly repeat the
treatment of the previous section.

In fact, the existence of integrable boundary states is not limited to field theories.
Also in algebraic-Bethe-ansatz-integrable lattice systems there exist initial states for
which the system obtained by exchanging space and time is integrable [286, 79, 287, 288,
80]. This applies most directly to integrable systems with a discrete time evolution [315].
In these systems the time evolution is generated by an integrable transfer matrix and, by
taking appropriate initial states [286, 79, 287, 288, 80], one can ensure integrability of the
(boundary) transfer matrix in space [289]. The case of lattice systems with continuous
time evolution can then be recovered by taking the Trotter limit [252, 253],i.e., sending
the discrete time-step ∆t to zero, while keeping fixed the real time t = N ·∆t with N
being the number of steps.

In light of these facts here we argue that Eq. (8.50) can be extended to all TBA-
integrable systems by a simple generalisation of the TBA description. In particular we
have to account for the following modifications.

(i) Generic integrable models feature multiple species of quasiparticles [262, 259]. This
means that in general quasiparticles are no longer specified only by their rapidity
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λ ∈ R but one also needs to introduce a discrete species index n ∈ N. Effectively,
this means that we have to make the replacement

λ 7→ (λ, n), (8.52)

in the arguments of all functions. Naturally, this also means that when integrating
over the rapidity, also the sum over all the possible particle species has to be
performed ∫

dµ f(µ) 7→
∑
m

∫
dµ fm(µ), (8.53)

where we followed the standard convention of reporting the species index in the
subscript. Note also that the integration and summation boundaries depend on the
specific model. Finally, to describe scattering among particles of different species,
the scattering kernel needs to be generalised,

T (λ− µ) 7→ Tnm(λ, µ). (8.54)

To keep track of rapidity and species index we employ the following compact
notation

(λ, n) ≡ λ,∑
m

∫
dµ fm(µ) ≡

∫
dµ f(µ),

Tnm(λ, µ) ≡ T (λ,µ).

(8.55)

(ii) In generic TBA integrable systems the dispersion relation does not necessarily
coincide with the relativistic one, therefore we make the replacement

coshλ 7→ ε(λ), sinhλ 7→ p(λ) . (8.56)

Here the parametrisation is chosen such that ε′(λ) = ε′n(λ), is always positive for
λ > 0.

Taking into account the modifications (i) and (ii), Eq. (8.50) is rewritten as

sα=
2

1− α

∫
+
dµ

ε′(µ)

2π
ln

[
(1− ϑ(µ))α+

ϑ(µ)α

yα(µ)

]
, (8.57)

where we introduced the auxiliary function

ln yα(λ) =

∫
+
dµ (T (µ,λ)− T (µ,−λ))

× ln

[
(1− ϑ(µ))α+

ϑ(µ)α

yα(µ)

]
.

(8.58)

Here (·)′ denotes a derivative with respect to the real rapidity µ and the subscript +
indicates that the integral range is restricted to positive rapidities. To express (8.57)
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we implicitly used that, apart from fine tuned cases, integrable initial states produce
reflection symmetric rapidity distributions [260, 79, 287, 288, 80].

Once again (8.57) closely parallels the expression for the density of Rényi entropy in
the post quench stationary state described by the rapidity distribution ϑ(µ). Indeed,
for a reflection-symmetric ϑ(µ) we have [212]

dα=
2

1− α

∫
+
dµ

|p′(µ)|
2π

ln

[
(1− ϑ(µ))α+

ϑ(µ)α

xα(µ)

]
, (8.59)

with

lnxα(λ) =

∫
+
dµ (T (µ,λ) + T (µ,−λ))

× ln

[
(1− ϑ(µ))α+

ϑ(µ)α

xα(µ)

]
.

(8.60)

In what follows we present strong evidence for the validity of (8.57) by providing four
nontrivial consistency checks. In particular, in Sec. 8.4.1 we show that Eq. (8.57) reduces
to the exact free-fermion result [212] when the interaction kernel vanishes. Next, in
Sec. 8.4.2 we prove that in the limit α → 1 the expression recovers the quasiparticle
prediction [44] for the slope of the von Neumann entanglement entropy. In Sec. 8.4.3 we
show that (8.57) agrees with the exact result of Refs. [62, 64] for a specific interacting
integrable model treatable by TBA, i.e., the cellular automaton Rule 54 [290]. Finally,
in Sec. 8.4.4 we compare Eq. (8.57) with exact numerical results for the XXZ spin-1/2
chain.

Before that, however, we rewrite the expression (8.57) in an equivalent form, which
is more convenient for parts of the upcoming analysis. To this end, we introduce two
quantities that are very convenient in the TBA analysis of integrable systems, namely
total density ρt(λ) and dressed velocity v(λ). The former is the direct generalisation of
the density of available states introduced in Sec. 8.3.2 and is defined as the solution to
the following integral equation

ρt(λ) =
|p′(λ)|
2π

−
∫
dµT (λ,µ)ϑ(µ)ρt(µ) . (8.61)

The latter is the velocity of quasiparticle excitations in the state described by ϑ(µ) and
is determined by

v(λ)ρt(λ) =
ε′(λ)

2π
−
∫
dµT (λ,µ)ϑ(µ)v(µ)ρt(µ) . (8.62)

This quantity plays a crucial role in the quench dynamics, which was first observed in
Ref. [188].

Inserting Eqs. (8.61) and (8.62) into Eqs. (8.59), and (8.57), we obtain the following
equivalent expressions for density

dα =
2

1− α

∫
+
dµ ρt(µ) ln

[
(1− ϑ(µ))α+

ϑ(µ)α

xα(µ)

]
+

2

1− α

∫
+
dµ ρ(µ) lnxα(µ),

(8.63)
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and slope

sα=
2

1− α

∫
+
dµ ρt(µ)v(µ) ln

[
(1− ϑ(µ))α+

ϑ(µ)α

yα(µ)

]
+

2

1− α

∫
+
dµ ρ(µ)v(µ)ln yα(µ).

(8.64)

8.4.1 Free fermions

Our first check concerns free-fermionic systems. In this case, the absence of interactions
permits ab initio calculations [41, 35, 43, 308], which prove the validity of quasiparticle
picture also for Rényi-α entropies. Therefore we expect to recover the quasiparticle
result in the limit of the vanishing interaction kernel.

Indeed, for T (λ,µ) = 0, Eq. (8.58) gives

y(µ) = 1, ∀µ , (8.65)

and thus (8.57) becomes

sα=
2

1− α

∫
+
dµ

ε′(µ)

2π
ln [(1− ϑ(µ))α+ ϑ(µ)α], (8.66)

which is precisely the quasiparticle-picture result [212].

8.4.2 Von Neumann

To recover the prediction for the von-Neumann entanglement entropy we consider the
limit α→ 1 of the expressions (8.64), and (8.58). We begin by noting that

y1(µ) = 1, (8.67)

which follows from the observation that in the α→ 1 limit the function y1(µ) = 1 solves
Eq. (8.58), combined with the standard TBA assumption of uniqueness of solutions.
Evaluating the limit α→ 1 in Eq. (8.64) we then have

lim
α→1

sα =2

∫
+
dµ v(µ)s(µ). (8.68)

Here we used that the terms containing ∂αyα(µ) cancel, and introduced s(µ) for the
density of the Yang-Yang entropy,

s(µ)=−ρt(µ)[(1−ϑ(µ))ln(1−ϑ(µ))+ϑ(µ) lnϑ(µ)]. (8.69)

As promised, (8.68) recovers the quasiparticle prediction [44] for the slope of the von
Neumann entanglement entropy.
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Figure 8.3: Schematic representation of time evolution of Rule 54. In each time-step
the three-site gates U are applied either to even (Ue

L) or odd (Uo
L) triplets of sites. Note

that gates that overlap on at most one site commute.

8.4.3 Rule 54

Our next consistency check involves what is so far the only known exact result for the
slope of Rényi entropies in an interacting integrable system: the result of Refs. [62,
64] for the Rule 54 cellular automaton. The model was introduced in Ref. [290], and
has recently been identified as one of the simplest examples of interacting integrable
systems [291], allowing for the exact description of many non-equilibrium properties,
both in the classical [292, 293, 294, 295, 296, 297, 298], and the quantum realm [299,
300, 301, 302, 303, 304, 62, 63, 64, 305].

Rule 54 can be understood as a quantum circuit consisting of 3-site local deterministic
gates U with the following matrix elements,

U
s′1s

′
2s

′
3

s1s2s3 = δs′1,s1δs′2,χ(s1,s2,s3)δs′3,s3 , (8.70)

where we introduced the binary function χ : Z×3
2 → Z2

χ(s1, s2, s3) ≡ s1 + s2 + s3 + s1s3 (mod 2). (8.71)

Time-evolution is given in two distinct time-steps

UL = Uo
LUe

L, (8.72)

which involve the gates U applied at odd or even triplets of sites (see Fig. 8.3 for an
illustration)

Ue
L =

L∏
j=0

Π−2j
2L UΠ2j

2L, Uo
L = Π−1

2LU
eΠ2L. (8.73)

We recall that Π2L is a periodic shift for one site on the chain of 2L sites. The gate
U deterministically changes only the middle site depending on the state of the sites on
both edges. Therefore all the local operators applied at the same step commute, and the
dynamics is indeed one of a local quantum circuit, albeit with a slightly nonstandard
geometry (cf. Fig. 8.3). This allows us to use the ideas from Sec. 8.2 to formally
express the slope sα. Moreover, as demonstrated in Refs. [62, 64], the solvability of the
model allows for an exact calculation of the fixed points (cf. Sec. 8.2), and hence of the
entanglement slope, for a family of solvable initial states.

More concretely, for a quench from the state

|Ψ0⟩ =
([

1
0

]
⊗
[√

1− ϑ

eiφ
√
ϑ

])⊗L

(8.74)
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with φ ∈ [0, 2π] and ϑ ∈ [0, 1], the asymptotic slope of the Rényi-α entropy reads as

sα =
2

1− α
ln

[
(1− ϑ)α +

ϑα

y

]
, (8.75)

where y is the only real and positive solution to the following equation

ln y = 2 ln

[
(1− ϑ)α +

ϑα

y

]
. (8.76)

To compare the above exact expression with Eq. (8.57) we need to recall some facts
about the TBA description of the model [302, 291], and a quench from the state (8.74) [64].

(i) The TBA description of states relevant for this quench problem involve only two
species of particles, left and right movers, labelled by n = ±1.

(ii) The derivate of the dispersion relation p′n(λ), ε
′
n(λ), and the scattering kernel

Tnm(λ, µ) are independent of the rapidities λ, µ ∈ [−π, π] and read as

p′n(λ) = n, ε′n(λ) = 1,

Tnm(λ, µ) =
nm

2π
.

(8.77)

(iii) The stationary state that the system approaches after the quench from (8.74)
corresponds to filling functions equal to the parameter ϑ of the initial state

ϑn(λ) = ϑ. (8.78)

Rewriting Eqs. (8.57) and (8.58) with these properties in mind, we find precisely
Eqs. (8.75) and (8.76).

8.4.4 XXZ model

Finally, let us consider the anisotropic spin-1/2 Heisenberg chain given by the Hamilto-
nian

H =
J

4

L∑
j=1

[
σxj σ

x
j+1 + σyj σ

y
j+1 +∆(σzjσ

z
j+1 − 1)

]
, (8.79)

where σx,y,zj are Pauli matrices acting at site j and ∆ is the anisotropy parameter, while
the boundary conditions are assumed to be periodic. For the initial states of the quench
protocol we consider the Néel state |ΨN⟩, and the Majumdar-Ghosh state |ΨMG⟩, defined
as

|ΨN⟩ =
1√
2

(
|↑↓⟩⊗L/2 + |↓↑⟩⊗L/2

)
, (8.80)

|ΨMG⟩ =
1√
2

(
|↑↓⟩ − |↓↑⟩

)⊗L/2
. (8.81)
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Figure 8.4: Numerical results for instantaneous Rényi slope sα(t) after the quench from
the Néel state (8.80). The dashed lines represent the numerical data, with different
colors distinguishing between different values of α, while horizontal solid lines denote
the analytical predictions for sα. Each panel corresponds to a different value of the
anisotropy parameter: (a) ∆ = 2, (b) ∆ = 3, (c) ∆ = 4, and (d) ∆ = 6.
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Since these states are integrable [79], we expect our result to apply. Moreover, we
can efficiently characterise the late-time stationary state using the quench-action ap-
proach [306, 307]. Therefore, we are able to explicitly evaluate the prediction given by
Eqs. (8.64) and (8.58) (see Appendix 8.C for additional details), and compare it with nu-
merical data obtained through the infinite time-evolving block decimation (iTEBD) [235]
method. See Appendix 8.D for the details on the implementation.

In particular, we evaluate the Rényi entanglement entropies between the two halves
of an infinite chain, and then express the instantaneous Rényi slope sα(t), defined as the

time-derivative of the Rényi entropy S
(α)
half(t)

sα(t) =
dS

(α)
half(t)

dt
. (8.82)

Since the subsystem in question is half-infinite, we expect our prediction to coincide with
the instantaneous slope in the t→ ∞ limit,

lim
t→∞

sα(t) = sα. (8.83)

This limit, however, cannot be accessed numerically because the linear growth of en-
tanglement after the quench implies exponential growth of computational complexity to
simulate the dynamics. Therefore, we have to compare the prediction with finite-time
data. We consider the regime ∆ ≥ 1. In particular, since it is well known that for the
initial states (8.80) and (8.81) the entanglement slope increases when approaching ∆ = 1
from above (see, e.g., Refs. [44, 45]), we restrict ourself to ∆ > 1.

The numerical results for the quench from the Néel state, and a range of different
values of ∆, is shown in Fig. 8.4. We observe that the data exhibit complicated non-
universal dynamics at short times, and then start approaching the asymptotic value.
For all values of ∆ and α, the agreement between the finite-time dynamics and the
asymptotic prediction are extremely good, considering the fact that the accessible times
are relatively short. Note that the seemingly larger deviations seen at ∆ = 2 are due
to long-wavelength damped oscillations (observed generically in integrable systems, see,
e.g., Refs. [43, 44]). Similarly, in Fig. 8.5 we test the prediction with the data for the
quench from the Majumdar-Ghosh state. The numerics again matches the asymptotic
slope very well.

8.5 Discussion

In this paper we investigated the growth of entanglement after quantum quenches in
quantum many-body systems by characterising the evolution of the Rényi entropies of a
compact subsystem. In the cases of interest here these quantities exhibit a linear growth
in time followed by saturation to their “thermodynamic value”, i.e., their value in the
steady state. We showed that one can generically express the initial slope of a given
Rényi entropy as the density of entropy in a particular state of the dual system, i.e., the
system obtained swapping the roles of space and time, cf. Eq. (8.16). The latter state is
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Figure 8.5: Dynamics of the instantaneous Rényi slope sα(t) after the quench from the
Majumdar-Ghosh state (8.81). The dashed lines represent the numerical data, and solid
lines denote the analytical predictions for the asymptotic slope sα. Different colours
distinguish between different α, while the value of the anisotropy parameter is ∆ = 3 in
the panel (a), and ∆ = 4 in (b).

directly expressed in terms of the fixed points of the space transfer matrix [269, 270, 271]
— also known as influence matrices [272] —, which characterise the evolution of local
observables in the thermodynamic limit.

In cases where the dual system can be interpreted as an isolated quantum many-
body system — for example for dual-unitary quantum circuits [257] — the slope of
a Rényi entropy is given by the density of entropy in the stationary state of the dual
system. Crucially, because of crossing symmetry, this is the case also for relativistic
quantum field theories, provided that the direct swap of space and time is replaced by
an appropriate analytic continuation.

We used this observation to find a closed-form expression for the slope of Rényi
entropies in integrable relativistic quantum field theories, going beyond what is currently
achievable by known approaches such as form factor expansions [308, 155, 316, 317].
Moreover, we argued that this expression can be directly extended to all TBA integrable
models. The most general form of our formula is reported in Eq. (8.57). To support the
validity of Eq. (8.57) we showed that it reproduces the only known results for the slopes
of Rényi entropies in an interacting integrable system [64], the quasiparticle picture
prediction in the von Neumann limit [44], and it reduces to the correct non-interacting
limit [43, 35]. We also provided stringent numerical checks for several quenches in the
XXZ spin-1/2 chain.

Our results have two significant merits. First, with Eq. (8.16) we provided a direct
relation between growth of entanglement in a given isolated quantum many-body system
and the spatial scaling of stationary entanglement in its dual. This complements an
analogous relation discovered in Ref. [256], for systems with edge decoherence. Second,
with Eq. (8.57) we solved the long standing open problem of computing the growth
of Rényi entropies in interacting integrable models. In the following two subsections
we discuss two further aspects of the latter result. Specifically, in Sec. 8.5.1 we show
that it cannot be interpreted in terms of a physically meaningful quasiparticle picture,
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while in Sec. 8.5.2 we discuss its extension to describe the full time-evolution of the
entanglement of a finite subsystem, i.e., beyond the initial growth regime. Finally in
Sec. 8.5.3 we discuss some future directions stemming from our work.

8.5.1 Eq. (8.57) and the Quasiparticle Picture

Here we generalise an argument presented in Ref. [64] for the case of Rule 54, to argue
that the expressions (8.63) and (8.64) cannot be interpreted in terms of a physically
meaningful quasiparticle picture. To explain our reasoning, let us begin by briefly re-
calling the essential ingredients of the latter.

The quasiparticle picture is based on two basic postulates [41]: (i) the initial state
|Ψ0⟩ produces pairs of correlated (or entangled) quasiparticles — objects propagating as
free classical particles — at every point in space; (ii) at any time t ≥ 0, the entanglement
between a given subsystem A and its complement Ā is proportional to the number of
correlated pairs shared between the two.

Admitting that, in general, quasiparticles can come in multiple species — labelled
by a positive integer n — and have a nontrivial dispersion relation — parametrised by
a rapidity µ — the two postulates above lead to the following evolution equation for a
given Rényi entropy

S
(α)
A,qp(t) =

∫
+
dµ min(2vqp(µ)t, |A|)sα(µ) . (8.84)

Here we adopted the shorthand notation of Eqs. (8.55) and (8.58), and used that, for
solvable initial states, the correlated pairs are formed by quasiparticles of the same
species and opposite rapidity [44]. Moreover, we denoted by

vqp(µ) = vn,qp(µ), (8.85)

the velocity of the quasiparticles of species n and rapidity µ, and by

sα(µ) = sn,α(µ), (8.86)

the contribution to the Rényi entropy of a pair of quasiparticles of species n and rapidities
±µ.

To make Eq. (8.84) truly predictive one needs to specify vqp(µ) and sα(µ). In
particular, Ref. [44] showed that one can describe the dynamics of von-Neumann entropy
by making the two following assumptions: (i) s1(µ) is the density of entanglement
entropy (cf. (8.69)); (ii) vqp(µ) is given by velocity of excitations on the thermodynamic
macrostate describing the stationary value of local observables after the quench. The
latter is fixed by Eqs. (8.61) and (8.62), where ϑ(µ) is the filling function of the relevant
stationary state.

Here we do not use these assumptions and, for the moment, we compare (8.84) to
(8.63) and (8.64) leaving vqp(µ) and sα(µ) unspecified. In particular, we consider an
initial state producing a filling function of the form

ϑn(µ) = δn,n̄

{
ϑ µ ∈ [µ̄− δ, µ̄+ δ],

0 otherwise,
(8.87)
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with ϑ ≤ 1 and δ ≪ 1. In this case, we see that the three equations are compatible for
all n̄ and µ̄ only if

vqp(µ) =
ε′(µ)

|p′(µ)|

ln

[
(1− ϑ(µ))α+

ϑ(µ)α

yα(µ)

]
ln

[
(1− ϑ(µ))α+

ϑ(µ)α

xα(µ)

]. (8.88)

The crucial observation at this point is that the right hand side of (8.88) depends non-
trivially on α. Therefore, one needs to allow for an α-dependent quasiparticle velocity
vqp(µ). At first sight this might seem enough to exclude the applicability of any quasi-
particle picture. Indeed it is natural to require that the properties of quasiparticles have
to be fixed by initial state and dynamics and cannot depend on the specific observable
(e.g. on α). Here, however, we allow for more flexibility: since Rényi entropies have a
non-linear dependence on the state of the system, their stationary values are described
by an α-dependent macrostate with filling function [212]

ϑα(µ) =
ϑ(µ)α

xα(µ)(1− ϑ(µ))α + ϑ(µ)α
, (8.89)

where ϑ(µ) is the filling function (8.87). One can then wonder whether the velocity of
excitations on the α-dependent macrostate — obtained by solving Eqs. (8.61) and (8.62)
with ϑ(µ) — coincides with (8.88). However, this is the case only in the limit α→ 1.

Since the velocity on the r.h.s. of (8.88) cannot be interpreted as the velocity of the
excitations on a physically meaningful macrostate, we conclude that the quasiparticle
picture does not describe the dynamics of Rényi entropies, at least at the quantitative
level.

8.5.2 Finite Subsystems

One of the benefits of the quasiparticle picture is that, just using the few assumptions
recalled in the previous subsection, one can quantitatively determine the evolution of
entanglement in a wealth of different settings. Essentially, the dynamics of entanglement
becomes a problem of one-dimensional kinematics: knowledge of velocities and entangle-
ment contributions of each species of quasiparticles is enough to immediately determine
the whole dynamics of the entanglement of a finite subsystem (cf. (8.84)). The break-
down of the quasiparticle picture for α ̸= 1 completely changes the game. Determining

the full curve S
(α)
A (t) becomes a highly non-trivial task for interacting integrable systems

and our results for slope and density do not seem sufficient to achieve it. Here we present
some evidence suggesting that, in fact, they might be enough.

To this end we make two minimal assumptions: (i) Each “mode” with quantum
number µ evolves independently; (ii) For each mode the entanglement grows with fixed
slope 2sα(µ) until it abruptly saturates to dα(µ)|A| (the factor of 2 comes from the
fact that the subsystem has two edges). A way to justify the assumption of abrupt
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Figure 8.6: Tensor network simulations of the entanglement dynamics for Rule 54. We
consider an open system of L = 50 sites and we focus on the subsystem A made of the
first ℓ sites, with ℓ = 3, . . . 10. We fix the bond dimension equal to 4096. The dashed line
is the exact prediction for sαt (note the absence of the factor of 2 w.r.t. Eq. (8.90) due to
the choice of different boundary conditions), while the dotted-dashed one the asymptotic
thermodynamic entropy dαℓ. Our conjecture (8.90) corresponds to the joining of the two
straight lines. The entanglement velocity that rescales the time is vα = sα/dα.

saturation is to argue that modes behave as a chaotic systems following the membrane
picture [73, 74].

The two assumptions above lead to the following evolution equation for a given Rényi
entropy

S
(α)
A,conj(t) =

∫
+
dµ min(2sα(µ)t, dα(µ)|A|) , (8.90)

which we conjecture apply at the leading order for large t and |A|.
Testing (8.90) numerically in a standard interacting integrable model, such as the

XXZ spin chain, is very hard (see the simulations for α = 1 in Ref. [44]): one cannot
typically access its regime of validity in a sufficiently controlled manner to wash off all
sub-leading corrections. However, it is instructive to test it for Rule 54. Indeed, since
in that model there is a single mode for all α’s, we can directly verify Assumption (ii),
without worrying about the subtle effects of the integration over µ. Our numerical
results based on tensor network simulations are reported in Fig. 8.6. We can clearly see
that as ℓ increases the data approach our conjecture quite neatly, although we cannot
exclude a different crossover close to the saturation point.

8.5.3 Future Perspectives

The results presented in this paper generate many significant questions for future re-
search. Here we discuss a number of them.

A direct question concerns the possibility of devising generalisations of our approach
to treat other relevant quantities or describe more general settings. For instance, a recent
point of interest in the research on quantum many-body dynamics is to understand how
the entanglement is split among different symmetry sectors, with symmetry resolved
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entropies directly measured in experiments [40]. While the quasiparticle picture has
been shown to hold for free systems [50, 51], no result is available in the interacting case.
An immediate question is then whether one can use the the recently obtained explicit
results for equilibrium states [318] to generalise our approach and access the the full
dynamics of symmetry resolved Rényi entropies. At the same time, it is also interesting
to wonder whether our approach can be extended to inhomogeneous settings. Indeed,
in this case the late-time quasi-stationary regime is still characterised using integrability
via the framework of generalised hydrodynamics (GHD) [279, 283], and an appropriate
modification of the quasiparticle picture correctly characterises the time evolution of the
von-Neumann entanglement entropy [83, 54].

A second set of questions, instead, stems from our findings on the inapplicability
of the quasiparticle picture to describe Rényi entropies in interacting integrable models.
Indeed, as touched upon in the introduction, the fact that the entanglement is propagated
by quasiparticles — rather than behaving as a membrane in the spacetime — has direct
consequences on its phenomenology. These are revealed, for instance, in the qualitative
behaviour of the bipartite entanglement between a disjoint region and the rest of the
system [66, 73, 83, 46], or in a system of finite size [73, 83, 48]. Recent studies, however,
suggest that this might be the case also concerning multipartite entanglement, which is
conveniently characterised by the entanglement negativity and the higher moments of
the partial transpose of the reduced density matrix [319, 320, 321, 322, 323]. Using on
the quasiparticle picture, Ref. [46] argued that, after a quantum quench, the logarithmic
negativity coincides with half of the Rényi mutual information with α = 1/2 — a similar
statement holds for the higher moments [49]. On the other hand, Ref. [268] has recently
shown that in general this relation holds only in the early time regime. Therefore, it
is interesting to wonder what happens for interacting integrable systems beyond this
regime.

Finally, we mention that our formula (8.57) for the slope of Rényi entropies in all
TBA-integrable models has not been rigorously proven here, even though the arguments
we provided leave little doubts on its validity. Nevertheless, the correspondence that
we established between slope in the original model and steady state entropy in the dual
model provides an ideal starting point for such a rigorous proof. A direct question for
future research is then to devise such a rigorous proof — for instance using the framework
of algebraic Bethe ansatz. Besides the major interest that such a proof would have per
se, it would also lead to a rigorous validation of the quasiparticle conjecture in the replica
limit α→ 1 — a problem that has been open since 2005 [41].

8.A Fixed points as stationary density matrices

The fact that the matrices ML/R,t exhibit the Cholesky decomposition (8.18) follows
directly from the explicit form of the fixed points. In particular, the fixed points of the
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circuit shown in Fig. 8.1 take the following form (see, e.g., [270, 63])

mR,t

|MR,t⟩ = ,

mT
L,t

⟨ML,t| = . (8.91)

Here we introduced the operators mR,t and m
T
L,t (in grey), which map from left to right.

Recalling now that the corresponding matrices MR/L,t act on the 2t horizontal legs at
the top, and map them to the 2t legs at the bottom, we can immediately express them
in terms of mR,t, m

T
L,t as

MR,t = mR,tm
†
R,t, ML,t = mL,tm

†
L,t. (8.92)

Note that we only considered the case with the initial state in the product form. With
minor modifications, however, the argument can be repeated also for the initial state
in the form of a MPS, as long as the MPS transfer matrix has a unique dominant
eigenvector.

8.B Partially decoupled form of (8.58) and (8.60)

In systems with multiple types of particle species, Eqs. (8.58) and (8.60) involve both
an integral over rapidities, and an infinite sum over the particle species. However, using
standard TBA manipulations [262] the equations can be put in an equivalent form,
referred to as the decoupled form, so that each particle species n is only coupled to n+1,
and n− 1, which makes the set of equations simpler to solve.

For simplicity we restrict the discussion to the systems with the even kernel that is
in the difference form,

Tnm(λ, µ) = Tnm(λ− µ) = Tnm(µ− λ), (8.93)

but a similar manipulation could be done more generally. In this case, the integral
equations (8.60) and (8.58) can be succinctly expressed as

lnxn(λ)=
∑
m

(
Tnm ∗ ln

[
(1− ϑm)α+

ϑαm
xm

])
(λ), (8.94)

ln yn(λ)=
∑
m

(
Tnm ∗ sgn(·) ln

[
(1− ϑm)α+

ϑαm

y
sgn(·)
m

])
(λ),
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where we introduced the shorthand notation ∗ for the convolution,

(f ∗ g)(λ) =
∫
dµf(λ− µ)g(µ), (8.95)

and sgn(·) is the sign function,

sgn(x) =


1, x > 0,

0, x = 0,

−1, x < 0.

(8.96)

Note that we dropped the explicit dependence on α from xα,n and yα,n to ease the
notation.

A necessary ingredient for the decoupled form is the existence of the function s(λ)
that satisfies the following set of equations,

T1m(λ) = s ∗ T2,m(λ) + δ2,ms(λ)

Tnm(λ) = s ∗ (Tn−1,m + Tn+1,m)(λ)

+ (δn−1,m + δn+1,m)s(λ), n ≥ 2 .

(8.97)

Combining this with (8.94), we finally obtain the following equivalent form of (8.60),
and (8.58),

lnx1(λ) = s ∗ ln [(1− ϑ2)
αx2 + ϑα2 ] (λ),

lnxn(λ) = s ∗ ln
[
(1− ϑn−1)

αxn−1 + ϑαn−1

]
(λ)

+ s ∗ ln
[
(1− ϑn+1)

αxn+1 + ϑαn+1

]
(λ),

ln y1(λ) = s ∗ sgn(·) ln
[
(1− ϑ2)

αy
sgn(·)
2 + ϑα2

]
(λ),

ln yn(λ) = s ∗ sgn(·) ln
[
(1− ϑn−1)

αy
sgn(·)
n−1 + ϑαn−1

]
(λ)

+ s ∗ sgn(·) ln
[
(1− ϑn+1)

αy
sgn(·)
n+1 + ϑαn+1

]
(λ).

(8.98)

8.C TBA equations for XXZ

Here we summarise the relevant details of the TBA description of the XXZ model in the
∆ > 1 regime [262]. It is convenient to parametrise ∆ as

∆ = cosh(η), η > 0, (8.99)

and express physically relevant quantities (such as energy and momentum) in terms of
η rather than ∆.

The elementary excitations (magnons) can form infinitely many different bound
states, while their rapidity is constrained to |λ| ≤ π/2, therefore the integral over
λ = (λ, n) should be understood as∫

dλ =
∞∑
n=1

∫ π
2

−π
2

dλ, (8.100)
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and in particular integrals over positive rapidities are meant as∫
+
dλ =

∞∑
n=1

∫ π
2

0
dλ. (8.101)

Derivatives of bare energy ε′n(λ) and momentum p′n(λ) read as

1

2π
ε′n(λ) =

1

π

sin(2λ) sinh(η) sinh(nη)(
cosh(nη)− cos(2λ)

)2 ,
1

2π
p′n(λ) =

1

π

sinh(nη)

cosh(nη)− cos(2λ)
,

(8.102)

while the kernel takes a difference form, T (λ,µ) = Tnm(λ− µ), and is given by

Tnn(λ) =
1

2π

n∑
k=1

p′2k(λ),

Tnm(λ) =
1

2π

n+m−|n−m|
2∑

k=0

p′|n−m|+2k(λ), m ̸= n.

(8.103)

The last ingredient needed for the evaluation of the predictions is the filling function
ϑn(λ). This is obtained as [314, 307]

ϑn(λ) =
1

1 + ηn(λ)
, (8.104)

where ηn(λ) is the solution to the following integral equation

ln ηn(λ) = gn(λ)

+
∞∑

m=1

π
2∫

− π
2

dµTnm(µ− λ) ln(1 +
1

ηm(µ)
).

(8.105)

Here, gn(λ) encodes the information about the initial state. For all integrable initial
states the values of gn(λ) for n > 1 are expressed in terms of g1(λ) as

gn(λ) =

n∑
k=1

g1

(
λ+ iη

n+ 1− 2k

2

)
, (8.106)

while g1(λ) for the two cases considered here reads as

g
(MG)
1 (λ) = − ln

(
sinh4(λ) cot2(λ)

sin(2λ+ iη) sin(2λ− iη)

)
,

g
(Néel)
1 (λ) =

tan
(
λ+ iη

2

)
tan

(
λ− iη

2

)
4 sin2(2λ)

.

(8.107)
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8.D Details on the iTEBD simulations

To perform the simulations we first build the Matrix Product State (MPS) representation
for the initial state. Both the Néel state and the Majumdar-Ghosh state (cf. (8.80)
and (8.81)) admit a MPS representation with small bond dimension. Then we perform
the dynamics by applying a second order Trotter decomposition of the time-evolution
operator. We verified that a Trotter step δt = 0.05 is sufficient to ensure time-converged
results. Due to the linear growth of entanglement the bond dimension of the MPS
representing the time-evolved state increases exponentially with time. For this reason,
at each step of the evolution we perform a truncation of the MPS using singular value
decomposition keeping the largest χmax singular values. To monitor the loss of precision,
we perform iTEBD simulations with increasing bond dimension χmax up to χmax = 8192
for ∆ = 2, and χmax = 4096 for other values of ∆. We then compare the data with two
consecutive values of χmax and only keep the data for which the two simulations agree.
This allows us to reach times of the order t ≲ 15.
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