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SUMMARY
Sampling behaviors have sensory consequences that can hinder perceptual stability. In olfaction, sniffing af-
fects early odor encoding, mimicking a sudden change in odor concentration. We examined how the inhala-
tion speed affects the representation of odor concentration in the main olfactory cortex. Neurons combine
the odor input with a global top-down signal preceding the sniff and a mechanosensory feedback generated
by the air passage through the nose during inhalation. Still, the population representation of concentration is
remarkably sniff invariant. This is because the mechanosensory and olfactory responses are uncorrelated
within and across neurons. Thus, faster odor inhalation and an increase in concentration change the cortical
activity pattern in distinct ways. This encoding strategy affords tolerance to potential concentration fluctua-
tions caused by varying inhalation speeds. Since mechanosensory reafferences are widespread across
sensory systems, the coding scheme described here may be a canonical strategy to mitigate the sensory
ambiguities caused by movements.
INTRODUCTION

A problem animals face as they explore the world is that their

own actions generate sensory stimuli that can be indistinguish-

able from those caused by external events. A consequence of

this ambiguity is that stimulus encoding becomes subject to

the moment-by-moment variability of sampling movements.1 In

olfaction, this problem arises whenever an animal changes

how fast it samples an odorant.2–5 In terrestrial vertebrates,

breathing through the nose provides the animal with repeated

snapshots of the olfactory world.6 Animals can compare these

sequential samples to analyze the olfactory scene, detecting

changes in odors and their concentration.7–9 However, when

an animal takes rapid breaths, the nasal airflow rate increases.

As a result, the concentration profile of an odor inside the nasal

cavity is thought to change, mimicking an increase in the envi-

ronmental odor concentration.2–4

Odorants are detected by receptors expressed by the olfac-

tory sensory neurons (OSNs). OSNs innervate the main olfactory

bulbs (OBs), which transform olfactory information and broad-

cast their output to higher brain centers through projection neu-

rons called mitral/tufted (MT) neurons. Consistent with the effect

of the nasal airflow on the number of molecules that reach the ol-

factory epithelium, sniffing alters odor responses at the early

stages of olfactory processing.10–12 Remarkably, faster sniffs in-
Cell Reports 43, 114013, A
This is an open access article under the CC BY-NC-ND
crease the magnitude and reduce the latency of the odor re-

sponses of the MT neurons as if the external concentration

had suddenly increased.4,5 Nevertheless, humans and rodents

can quickly learn to distinguish the concentration of odors

regardless of the inhalation speed.2,4,5 How these physiological

and behavioral results can be reconciled is a long-standing

question.

It has been proposed that an animal can discriminate an in-

crease in the environmental concentration from the effect of a

faster inhalation because the olfactory system may encode

how fast the animal is breathing.2–5 This hypothesis is supported

by the observation that nasal breathing entrains the activity of the

olfactory system even in the absence of odors11,13–19; moreover,

it has been demonstrated that the spiking activity of MT neurons

encodes the duration of an inhalation.5 Still, the origin and con-

tent of this information are unclear. Efferent copies of the inhala-

tion command could predict the airflow kinematics in the nasal

cavities; however, there is currently no evidence of motor inputs

to the olfactory system. Instead, since many olfactory receptors

respond to mechanical stimuli as well as to odorants,20,21 the in-

formation about the inhalation speed could be supplied by the air

passing through the nose during each inhalation. Notably, how-

ever, this latter possibility also highlights another potential prob-

lem arising with each inhalation. Because mechanosensory and

olfactory inputs have the same source, the airflow signal could
pril 23, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Sniffing causes unstable odor responses in the PCx

(A) Experimental setup for PCx recordings paired with odor delivering and inhalation monitoring.

(B) Recording sites. Top, example of coronal section indicating the placement of a Neuropixels probe in the anterior PCx (cyan). Bottom, reconstructed locations

of Neuropixels probes from all experiments (n = 22 mice). Scale bar: 1 mm.

(C) Types of inhalations. Left, PCA plot of inhalation waveforms sorted via Gaussian-mixture model-hierarchical clustering; inset, average slow (green) and fast

(purple) inhalation waveforms. Right, distribution of slow and fast inhalation lengths. Gray curve, length distribution before inhalation sorting.

(D) Example of simultaneous PCx activity and respiratory airflow rate. External flow sensor signal (top) and spiking raster plot (bottom). Shaded area, odor period

(5 s). Slow and fast inhalations are color coded in green and purple, respectively.

(E) PCA embedding of neural trajectories during individual respiratory cycles for an example mouse (time bin: 10 ms). The inhalation phase is color coded ac-

cording to the scheme in the inset plot on the top (inhalation onset, 0; offset, 1). Gray, exhalation.

(legend continued on next page)
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actually increase confusion and interfere with olfactory informa-

tion, further hindering the representation of odor concentration.

Thus, whether and how a non-olfactory signal could help distin-

guish the olfactory consequences of sniffing remain to be

determined.

Here, we set out to examine whether the speed of inhalation

affects the representation of odor concentration in a higher-or-

der area called the piriform cortex (PCx). The PCx represents

odors through a population code, in which the distributed activity

of ensembles of neurons affords downstream brain areas sys-

tematic information about odor identity and concentration.22–28

Recording the spiking activity of ensembles of neurons, we

observed that odor responses are primarily sensitive to the me-

chanical stimulation of the olfactory epithelium by inhaled air and

to a global top-down input that seems to precede sniffs. Theme-

chanosensory response to a quick breath can increase or

decrease relative to a regular inhalation, independent of how

the neuron responds to a concentration increase. As a result,

the mechanosensory response distinguishes the population rep-

resentation of an odor during a sniff without interfering with the

representation of the concentration of that odor, effectively

ensuring a sniff-invariant concentration code.

RESULTS

Sniffing causes unstable odor responses in the PCx
To determine the effects of inhalation speed on odor responses

in the PCx, we used Neuropixels 1.0 probes to record inhalation-

by-inhalation responses to different odor concentrations in

awake, head-fixed mice (Figures 1A and 1B). We monitored in-

halations through a flow sensor in front of the mouse naris. The

flow sensormeasured the airflow rate at the entrance of the nasal

cavity during each inhalation. Since the distribution of inhalation

durations appeared bimodal, we developed a semi-unsuper-

vised method that sorted inhalations into slow and fast depend-

ing on their airflow rate waveforms (Figure 1C; see STAR

Methods). Fast inhalations had shorter duration and steeper

changes in airflow rate than slow inhalations. We use ‘‘sniff’’

and ‘‘fast inhalation’’ interchangeably, regardless of whether

the origin was autonomic or volitional.29
(F) Same neural trajectories as in (E), color coded according to the inhalation spe

(G) Examples of odor responses during slow and fast inhalations. Raster plot (top

same odor and concentration.

(H) Scatterplot of odor-response amplitudes (average firing rate in 180 ms wind

centration; n = 750 odor-concentration responses) for all odor-responsive neuron

neurons, 6 mice). Gray dots, significant difference between the amplitudes of th

concentration; white dots, no statistical difference (p < 0.01, two-sided Wilcoxon

(I) Fraction of concentration responses changing with inhalation speed (red vertica

label for each concentration response.

(J) Absolute change in firing rate due to a 0.01%-to-0.1% change in odor concentr

odor pairs; only odor-responsive neurons; p < 0.0001, Wilcoxon signed-rank tes

indicate the median, 25th and 75th percentiles (box edges), and 1.5 times the in

(K) Examples of responses from one neuron to different odor concentrations and

green) and 0.1% (dark green) v/v averaged across all slow inhalations. Right, ras

inhalations of 0.01% v/v odor.

(L) CDI calculated using concentration responses within and across inhalation spe

Top, probability density function of the two distributions. Bottom, boxplots indic

terquartile range (whiskers) of the two distributions. See also Figure S1.
Our neural recordings sampled excitatory (semilunar and py-

ramidal) and inhibitory neurons from layers 2 and 3 of the anterior

PCx. We used two spike waveform features, i.e., asymmetry and

through-to-peak delay, as surrogate indicators for the different

neuron types in the PCx. The distributions of the waveform fea-

tures were comparable across experiments, and neither cross-

validated linear nor non-linear classifiers could discriminate an

experimental condition based on the spike waveforms of the

units recorded (see STARMethods). These results suggest a ho-

mogenous sampling of neural cell types across experimental

conditions.

Inhalations periodically activated most PCx neurons sequen-

tially, and faster sniffs appeared to enhance the activity of

some neurons while decreasing that of others (Figure 1D).

Hence, PCx activity encoded the phase and speed of each inha-

lation (Figures 1E and 1F; Figures S1A and S1B). Of the recorded

neurons, 31.1% reliably responded to at least one odor concen-

tration (205 of 660 neurons; six mice). Strikingly, how fast an an-

imal inhaled influenced the response amplitude during inhalation

in 72.2% of those neurons (148 of 205 neurons; Figures 1G–1I).

This proportion was a lower-bound estimate based on the re-

sponses to a panel of only five odors and two concentrations.

The impact of a faster inhalation was not uniform across odor re-

sponses: 37.3% of the odor responses increased with a rapid

inhalation, whereas 19.2% decreased in amplitude. This sniff-

driven variability in odor responses was already significant

during the first 70 ms of an inhalation (Figure S1C). Because

GABAergic neurons providing feedback inhibition tend to exhibit

narrower action potentials and faster activity,23 we used these

features to tentatively distinguish them from the other excitatory

and feedforward inhibitory neurons. After sorting neurons into

regular spiking (RS; putatively excitatory or feedforward inhibi-

tory) and fast spiking (FS; putatively feedback inhibitory), we

observed similar effects of the inhalation speed in both types

(Figure S1D).

On average, sniffs caused a response amplitude change

bigger than that caused by a 10-fold increase in odor concentra-

tion in the odor-responsive neurons (Figure 1J). Thus, changing

the inhalation speed generated a large amount of response

variability that could impair the discriminability of odor
ed. Green, slow inhalations; purple, fast inhalations.

) and PETH (bottom) for two neurons from the same mouse responding to the

ow and across slow or fast inhalations; five odors, 0.01% and 0.1% v/v con-

s (Benjamini-Hochberg adjusted p < 0.05, Wilcoxon signed-rank test; n = 205

e responses during fast and slow inhalations of an odor presented at a given

rank-sum test). The odor responses of (G) are indicated.

l line) and null distribution obtained by shuffling 1,000 times the inhalation speed

ation and a slow-to-fast switch in inhalation of the 0.01% odor (n = 477 neuron-

t). Top, probability density function of the two distributions. Bottom, boxplots

terquartile range (whiskers) of the two distributions.

inhalation speeds. Left, raster plot and PETHs of the responses to 0.01% (light

ter plot and PETHs of the responses to slow (light green) and fast (light purple)

eds (p < 0.0001, Wilcoxon signed-rank test). Same neuron-odor pairs as in (J).

ate the median, 25th and 75th percentiles (box edges), and 1.5 times the in-
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Figure 2. PCx neurons randomly mix olfactory and non-olfactory inputs during inhalations

(A) Examples of responses from two neurons with independent sensitivities to odor concentration and inhalation speed. For each neuron: left, raster plot and

PETHs of the responses to 0.01% (light green) and 0.1% (dark green) v/v averaged across all slow inhalations; right, raster plot and PETHs of the responses to

slow (light green) and fast (light purple) inhalations of 0.01% v/v odor.

(B) Schematic of the regularized GLM used to predict the odor response based on inhalation speed (slow and fast), odor concentration (0%, 0.01%, 0.1%, 1%

v/v), and their interaction.

(C) Top, distribution of the regularized regressor weights for inhalation speed, odor concentration, and their interaction (n = 928 neuron-odor pairs; 2 odors; 464

neurons; 4 mice). Bottom, boxplot of the absolute values of the regularized regressor weights indicating the median, 25th and 75th percentiles (box edges), and

the 95th percentile (whisker).

(D) Scatterplot of the concentration and inhalation speed regressor weights. Each data point is a neuron-odor pair (n = 928 neuron-odor pairs; 2 odors; 464

neurons; 4 mice). Neurons #27 and #357 of (A) and neuron #67 of Figure 1K are indicated. See also Figure S2.
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concentrations on an inhalation-by-inhalation basis. Figure 1K il-

lustrates this problem in an example PCx neuron. The raster plot

and the peri-event time histogram (PETH) in the left column show

the responses to two concentrations of the same odor during

slow breathing. This neuron generated more action potentials

when the odor was delivered at the highest of the two concentra-

tions. The right column shows the responses to the lowest con-

centration upon a slow or a fast inhalation. The response ampli-

tude to the low concentration during a rapid inhalation was

indistinguishable from that measured during a slow inhalation

of the more concentrated odor. To assess how varying the inha-

lation speed affected concentration encoding across all odor-

responsive neurons, we calculated a concentration-discrimina-

bility index for each neuron (CDI; see STAR Methods). The CDI

was computed using the odor responses during slow, fast, or

both types of inhalation. Combining responses from slow and

fast inhalations decreased the CDI compared with responses

observed during uniform inhalation speeds (Figure 1L). This

result indicates that varying the inhalation speed adds variability

to odor responses in PCx.
4 Cell Reports 43, 114013, April 23, 2024
PCx neurons randomly mix olfactory and non-olfactory
inputs during inhalations
Sniffing could alter odor responses by changing the odorant

deposition onto the olfactory epithelium. However, we found

odor responses that increased in amplitude with the concentra-

tion but decreased with the inhalation speed and others with the

opposite pattern (Figure 2A). These observations suggested that

odor responses also vary with the inhalation speed because of a

non-olfactory input. To assess the relationship between this non-

olfactory input and concentration encoding, we fitted a general-

ized linear model (GLM) to the odor responses of PCx neurons

recorded upon different odor concentrations and inhalation

speeds. The GLM included three factors: odor concentration

(0%, 0.01%, 0.1%, and 1% v/v), inhalation speed (slow or

fast), and the interaction between inhalation speed and concen-

tration (Figure 2B). The inhalation speed factor can be inter-

preted as a non-olfactory input that is combined with the odor

input. One way to interpret the multiplicative interaction between

inhalation speed and odor concentration is the potential effect of

the airflow rate on the concentration profile of the odorant in the
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nasal cavity.4 Other types of interaction cannot be excluded,

however. For example, sniffs could be associated with atten-

tional mechanisms that change the gain of the odor response;

the interaction weight should capture this effect. To identify the

factors that were more relevant for the odor responses of a

neuron, we regularized the GLM with an elastic net method.

This model explained 91.9% of the variance in the mean number

of spikes generated during the first 180 ms of odor inhalation

across all neurons.

The GLM analysis revealed that the interaction between inha-

lation speed and concentration response had a small effect on

the odor response amplitude during an inhalation (Figure 2C).

Instead, the non-olfactory input had amore significant additive

or subtractive effect (Figure 2C). Importantly, the sign of the

weight for the non-olfactory input and the odor concentration

factors could differ in the same neuron (Figure 2D). The non-ol-

factory input caused by a fast inhalation could increase or

decrease the odor response amplitude regardless of how the

neuron responded to a higher concentration of that odor. Conse-

quently, the combination of non-olfactory and olfactory sensitiv-

ities was heterogeneous across PCx neurons (Figure 2D). We

similarly found a heterogeneous distribution of non-olfactory

sensitivities in RS and FS neurons (Figures S2A and S2B). In

addition, different features of the spike waveform could not pre-

dict the single or joint olfactory and non-olfactory regressor co-

efficients of a neuron, suggesting that different cell types have

similar encoding properties for the olfactory and non-olfactory

inputs (Figure S2C). Finally, restricting the analysis to the early

70 ms of inhalation also gave similar results (Figure S2D). Thus,

the non-olfactory input appeared to be the leading cause of

the odor response variability observed at different inhalation

speeds.

Amechanosensory input signals the nasal airflow rate to
the PCx
Sniffing and blowing non-odorized air into the nostrils have been

shown to activate the PCx.16 Therefore, the inhalation speed

may affect the odor responses in PCx through an input origi-

nating in the nasal cavity. Interestingly, however, the results of

the GLM analysis suggested that a sniff could increase the

odor response of some neurons but also decrease it in others.

To investigate this observation further, we directly assessed

how the air passage through the nose affects the spiking activity

of PCx neurons.

We first performed a tracheostomy in anesthetized mice to

eliminate air passage through the nose during respiration (Fig-

ure 3A). This procedure interrupted the normal entrainment of

PCx activity to the breathing rhythm as expected (Figure S3A).

Then, we stimulated the nasal epithelium with 150-ms-long

airflow pulses of odorless air delivered at 1 Hz. We tested five

different airflow rates within the range of an awake mouse inha-

lation.11,19,30,31 We found that 57.1% of neurons displayed me-

chanosensory responses, meaning that they encoded the airflow

rate. The response latencies varied across neurons, like in nor-

mally breathing mice upon inhalation. The responses to the

airflow were not uniform across neurons. Some neurons

increased their response amplitude as the flow rate increased,

whereas others fired fewer action potentials (Figures 3B and
3C). Faster airflow also decreased the response latency without

significantly changing the sequential activation order across

neurons (Figure 3B; Figure S3B).

That these responses were not an artifact of the artificial stim-

ulation of the nasal cavity in an anesthetized mouse is suggested

by the finding of similar mechanosensory tuning curves in awake

and normally breathing mice (Figure 3D). For each mouse, we

divided the range of the peak airflow rates measured during all

inhalations into 10 bins. All bins had an equal number of inhala-

tions. Then, we measured the mean amplitude of the spiking

activity during the inhalations within each bin. This analysis re-

vealed that 78.3% of the PCx neurons (77.2% of the odor-

responsive neurons) encoded the peak inhalation airflow rate

with a monotonic change in spiking activity after the inhalation

(Figure 3E). Sorting the airflow tuning curves of all neurons based

on their slopes revealed a push-pull organization of the inhalation

speed responses again; that is, 36.7% of the neurons increased

the amplitude of their responses when the inhalation speed

increased, and another 41.7% decreased their responses

(Figure 3F).

What was the source of the mechanosensory input? During

each inhalation, OSNs can be excited by background odors or

pressure changes, and blocking OSNs’ responses disrupts the

typical synchronization between respiration and the local field

potential recorded in the OB.20 Thus, OSNs could provide me-

chanosensory information to the PCx. Nonetheless, our results

could not exclude the possibility that trigeminal sensation could

also provide nasal airflow information to the PCx. For example,

the trigeminal input may afford sensitivity to the airflow rate,

and the OSN input may only give a bulk activation indicating

the inhalation onset. Intriguingly, a branch of the trigeminal nerve

called the anterior ethmoidal nerve (AEN) innervates the olfactory

epithelium and theOB aswell.32 The fibers of the AEN respond to

chemical and mechanical stimulation.33 Therefore, the AEN af-

ferences could sense the airflow rate inside the nasal cavity

and broadcast this information to the PCx through the OBs. To

test this possibility, we sectioned the AEN (Figure S3C). In a sub-

set ofmice, we occluded the contralateral nostril to prevent infor-

mation leakage from the contralateral side. Severing the AEN left

intact the responses of PCx neurons to inhalations. The tuning

curves for the airflow rate after the neurectomy remained similar

to those of control mice (Figures S3D and S3E). These data indi-

cate that PCx neurons encode the inhalation airflow rate in the

nasal cavity through a mechanosensory input that most likely

arises from the OSNs.

A top-down input may supply behavioral state
information during a sniff
While the above results show that the PCx encodes the

airflow rate inside the nasal cavity, they do not eliminate the pos-

sibility that top-down inputs could also account for the activity

changes caused by faster sniffing in PCx. Sniffing characterizes

active exploration and arousal states.6,29 Therefore, top-down

and neuromodulatory inputs associated with those behavioral

states may affect the activity of PCx neurons during a sniff.

The responses to these inputs could be hard to distinguish in

normal conditions because they would likely be mixed with the

mechanosensory responses. Moreover, although our artificial
Cell Reports 43, 114013, April 23, 2024 5



Figure 3. A mechanosensory input signals the nasal airflow rate to the PCx

(A) Experimental setup for artificial airflow stimulation of the nasal cavity in anesthetized mice.

(B) PETHs of two example neurons responding to five different airflow rates.

(C) Left, raster map of airflow rate tuning curves (n = 144 airflow-tuned neurons of 252; 3 mice). Right, distribution of the slopes of the airflow tuning curves.

Shaded area, slopes significantly different from zero. Positive slope, 117 neurons; negative slope, 27 neurons (p < 0.01, t test).

(D) Experimental setup for PCx recordings paired with spontaneous breathing monitoring in awake mice in the absence of odors.

(E) PETHs of two example neurons responding to 10 different peak airflow rates.

(F) Left, raster map of the tuning curves for the peak airflow rate (n = 748 peak-rate-tuned neurons of 955; 10 mice). Right, distribution of the tuning curve slopes

like in (C). Positive slope, 350 neurons; negative slope, 398 neurons (p < 0.01, t test).See also Figure S3.
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ventilation experiments uncoupled the respiratory activity from

the mechanical stimulation of the nasal cavity, they also pre-

vented volitional sniffing because they were performed under

anesthesia. To isolate the possible effect of top-down inputs dur-

ing a sniff, we removed both OBs in a group of mice and re-

corded the activity of PCx neurons during wakefulness (Fig-

ure 4A). We examined the responses to the first fast sniff after

a sequence of at least five slow inhalations and to a regular

slow inhalation in the absence of odors.

In bulbectomized mice, PCx neurons were unresponsive to

odors (Figure S4A). Moreover, the population activity did not

encode the inhalation phase (Figure 4B; Figure S4B). These

results were consistent with a block of the peripheral inputs

to the PCx. Nonetheless, 15.7% of PCx neurons exhibited

increased spiking activity during fast sniffs compared with

normal inhalations (see example neuron in Figure 4C). For

comparison, this proportion was 29.7% in control mice. How-

ever, the sniff-induced activity in bulbectomized mice was

smaller in amplitude and more variable across sniffs than in

control mice (Figures 4D–4F). Correspondingly, while a linear

classifier could differentiate a sniff from a regular inhalation

based on PCx activity in both groups, its accuracy was

notably reduced post-bulbectomy (Figure 4G). Remarkably,

the sniff-induced activity observed in the bulbectomized
6 Cell Reports 43, 114013, April 23, 2024
mice seemed to start rising several tens of milliseconds before

the nominal onset of the sniff. Since responses to slow inha-

lations were absent in these neurons, this peri-sniff increase

in spiking activity could not be attributed to the previous

inhalation.

The increase in neural activity around the onset of a fast sniff

was not specific to the PCx. We found a similar peri-sniff signal

in the motor cortex (MCx). Here, a slow inhalation modulated

the activity of 5.8% of neurons (see STAR Methods). In contrast,

17.1%ofMCx neurons showed a significant peri-sniff increase in

spiking activity akin to that observed in PCx following bulbec-

tomy (Figures S4C–S4E). Together, these data suggest the hy-

pothesis that sniffs may be preceded by a global top-down

signal that may further affect odor responses in PCx.

Odor information and inhalation information are
independent
An important result of the GLM analysis was that odor and inha-

lation speed sensitivities appeared randomly distributed among

odor-responsive PCx neurons. This heterogeneity in sensitivity

raises the possibility that the representations of the two modal-

ities do not interfere at the population level (see STAR Methods

for a formal derivation in linear encoding systems). PCx repre-

sents the identity and concentration of a given odor with a



Figure 4. A top-down input may supply behavioral state information during a sniff

(A) Coronal section images in a representative control (top) and bulbectomized (bottom) mouse. Scale bar: 1 mm (insets: 500 mm).

(B) Example of simultaneous PCx activity and respiratory airflow rate in an awake mouse after a bulbectomy. External flow sensor signal (top) and spiking raster

plot (bottom). Shaded area, odor period (5 s).

(C) Spiking activity during slow and fast inhalations in an example neuron after a bulbectomy. Raster plot (top) and PETH (bottom) are shown. The responses to the

first sniff after at least five slow inhalations and to a slow inhalation are color coded in purple and green, respectively.

(D) Average PETHs of neurons preferring a sniff over a slow inhalation in mice with intact OBs (top; 284 of 955 neurons; 10 mice) and in bulbectomized mice

(bottom; 23 of 153 neurons; 4 mice). Shaded area, mean ± SEM. The bar below the PETH indicates when the sniff responses are significantly bigger than the

responses to a regular inhalation (Benjamini-Hochberg adjusted p < 0.05, one-sided t test).

(E) Difference between the amplitudes of the responses to the first sniff and a slow inhalation in control and bulbectomized mice (p = 0.0002; two-tailed t test with

unequal variances). Boxplots indicate the median, 25th and 75th percentiles (box edges), and 1.5 times the interquartile range (whiskers).

(F) Coefficient of variation of the response amplitude across first sniffs in control and bulbectomized mice (p < 0.0001; two-tailed t test). Boxplots indicate the

median, 25th and 75th percentiles (box edges), and 1.5 times the interquartile range (whiskers).

(G) Decoding accuracy of inhalation speed as a function of the neurons included in the analysis; classifiers used the activity of a pseudo-population of PCx

neurons in the control condition (black line) and after bulbectomy (blue line). See also Figure S4.
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specific pattern of activation of ensembles of neurons or, equiv-

alently, with population vectors.24,25,28,34,35 Figure 5A shows the

principal-component analysis (PCA) embedding of the pseudo-

population response vectors to three concentrations (0.01%,

0.1%, and 1% v/v) of an odor upon slow and fast inhalations

(see also Figure S5A for the inhalation-by-inhalation population

responses in individual mice and Figure S5B for a different

odor). Increases in concentration result in scaling the population

vector magnitude without changing vector direction, as already

observed in prior work.22,23 Since the sniff response of an

odor-responsive neuron weakly correlated with that of other

odor-responsive neurons, the direction of the population vector

response to an increase in inhalation speed did not overlap with

the direction of the concentration population response. In other
words, inhalation speed information did not affect the encoding

of the odor concentration.

To confirm this qualitative observation, we set out to decode

either the inhalation speed or the odor concentration from the

projections of the PCx responses on the first 15 PCs (Figure 5B;

Figures S5C and S5D). Linear decoders—namely, linear support

vector machine (lSVM) classifiers—could discriminate the inha-

lation speedwith high accuracy using the projection of neural ac-

tivity onto the first PC. In contrast, decoders could not classify an

odor concentration using only the activity explained by the first

PC.Moreover, decoders could not classify an odor identity using

only the activity explained by the first PC (Figure S5E), further

suggesting that the variance explained by the first PC does not

encode olfactory information. Conversely, linear classifiers
Cell Reports 43, 114013, April 23, 2024 7



Figure 5. Odor information and inhalation information are independent

(A) PCA embedding of pseudo-population responses (464 neurons, 4 mice) to three different concentrations of an example odor during slow (green) and fast

(purple) inhalations. Each dot is a response in a 180mswindow starting at inhalation onset. Empty dots represent inhalation responses in the absence of odors. A

random sample of all responses is shown.

(B) Decoding accuracy of inhalation speed (top) and odor concentration (bottom) using the projection of the pseudo-population odor responses in (A) on each of

the first 15 PCs. Mean ± SD is shown.

(C) Angle between vector pairs representing concentration changes (light gray) and vector pairs representing a concentration change and an inhalation speed

change (dark gray).

(D) Left, concentration decoding accuracy of cis- and trans-decoders using the pseudo-population response projections onto the second and third PCs. Right,

concentration decoding accuracy of cis- and trans-decoders using non-reduced population responses. Mean ± SD is shown.

(E) PCA embedding of concentration responses for three pseudo-populations with positive (left), negative (center), and no correlation (right) between inhalation

and concentration sensitivity. Insets: scatterplots of inhalation and concentration regression coefficients for all the neurons of the same pseudo-population used

in (A). Red, neurons with positive correlation; blue, neurons with negative correlation; black, neurons without correlation. An equal number of neurons was

randomly sampled from each sub-population (n = 143 neurons). A random sample of all responses is shown.

(F) Concentration decoding accuracy of cis- and trans-decoders using the three neural sub-populations in (E). Mean ± SD is shown.

(G) PCA embeddings of concentration responses using a pseudo-population with (left) and without (right) sniff-invariant neurons. Insets: scatterplots of the

inhalation and concentration regression coefficients for all the neurons of the same pseudo-population used in (A). The subset of neurons in the population

response vector is highlighted by color: black, sniff-invariant neurons; orange, mechanosensitive neurons. An equal number of neurons was randomly sampled

from each sub-population (n = 143 neurons). A random sample of all responses is shown.

(H) Concentration decoding accuracy of cis- and trans-decoders inhalation speed using sniff-invariant (black) and mechanosensitive (orange) neurons. Mean ±

SD is shown.

(I) Concentration decoding accuracy within and across inhalation speed over the time course of an inhalation (p > 0.05; two-way ANOVA). An equal number of

neurons was randomly sampled from each sub-population (n = 143 neurons). See also Figure S5.
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decoded the odor concentration and identity with high accuracy

when they used neural activity along the second and third PCs

(Figure 5B; Figures S5C and S5E). However, classifiers could

not discriminate the inhalation speed using the second and sub-

sequent PCs.

Importantly, we expected that how PCx encoded odor con-

centration would not depend on inhalation speed. To test this hy-

pothesis, we used linear discriminant analysis to find two direc-

tions in the population neural activity that best tell odor

concentrations apart during slow or fast breathing. We found

that, even though these two directions were different (as ex-

pected, given the high dimensionality of the population

response), they were more similar than the directions that tell

how fast a mouse breathes in apart from how concentrated the

odor is (Figure 5C).

The distributed representation of odor concentration is
sniff invariant
These results suggested that the cortical representation of odor

concentration could be sniff invariant. We thus trained an lSVM

to decode an odor concentration using a subset of slow or fast

inhalations; then, we tested the performance of the same

decoder using held-out inhalations with the same (cis-) or other

speed (trans-decoding). A decoder using PCx response projec-

tions on the second and third PCs exhibited similar cis- and

trans-decoding performances, suggesting that PCx has sniff-

invariant representations of odor concentration (Figure 5D;

Figures S5F and S5G). Next, we tested the linear decoders on

the untransformed PCx responses, thus removing the possibility

that the decoder could leverage the denoised representations

provided by PCA; this trans-decoder could still predict the

odor concentration, generalizing across inhalation speeds (Fig-

ure 5D; Figure S5F). We observed similar results when the de-

coders used spike counts summed over 70 or 180 ms windows

and spike counts for concatenated 10 ms or 10� bins over a res-

piratory cycle (Figures S5G and S5H).

How well the concentration information was preserved across

inhalation speeds was determined by how heterogeneous the

combination of inhalation speed and olfactory tuning was across

neurons. To confirm this, we performed PCA and decoding anal-

ysis on neural sub-populations with correlated sensitivity to non-

olfactory and olfactory inputs, thus removing the heterogeneous

distribution of non-olfactory and olfactory responses. PCA em-

beddings of the odor responses showed that representations of

odorconcentrationsbecomeambiguousacross inhalationspeeds

in these sub-populations (Figure 5E). Thus, a trans-decoder per-

formedat the chance level if it could use only the activity of a neural

population with correlated sensitivity for non-olfactory and olfac-

tory inputs (Figure 5F). Instead, using a population with uncorre-

lated selectivity disentangled the representations of inhalation

speed and odor concentration, thus allowing a trans-decoder to

distinguish odor concentrations across inhalation speeds

(Figures 5E and 5F).

Our dataset also included neurons that did not change their

odor responses with the inhalation speed. A downstream reader

could privilege the information from these sniff-invariant neurons

to obtain a stable readout of the odor concentration across inha-

lation speeds. We determined whether a population of neurons
insensitive to the inhalation speed could afford more sniff-

invariant information than the rest of the neural population. To

select the sniff-invariant neurons, we assessed the sensitivity

to the inhalation speed of each neuron in our dataset. To this

aim, we fitted the inhalation-by-inhalation odor responses with

a linear regression model with a concentration and an inhalation

speed regressor. Neuronswith an inhalation speed regressor co-

efficient within 0 ± 0.75 standard deviations were included in

the sniff-invariant population. In contrast, an equal number

of neurons with an inhalation speed regressor coefficient

beyond ±1.5 standard deviations from zero were included in a

population that we denoted as mechanosensitive (Figure 5G).

The two populations of sniff-insensitive and mechanosensitive

neurons had similar distributions of concentration regressor

coefficients (Figure S5I). We compared the classification

accuracies of linear trans-decoders using sniff-invariant andme-

chanosensitive populations. This analysis revealed that a popu-

lation of mechanosensitive neurons carries at least as much

sniff-invariant information as a population of only sniff-insensitive

neurons (Figure 5H).

We also examined the possibility that sniff-insensitive neurons

could provide more sniff-invariant information than mechanosen-

sitive neurons during the earliest part of an inhalation. To this aim,

we employed the cis- and trans-decoding approach in 20 consec-

utive time bins (10 ms/bin), tiling the first 200 ms of an inhalation.

Linear decoders using only mechanosensitive or sniff-insensitive

neurons performed similarly throughout this inhalation window

(Figure 5I). Together, these results confirm that sniff-invariant con-

centration information is distributed across the activity pattern of

the odor-responsive PCx neural population.

Airflow information affords tolerance to flow-dependent
concentration fluctuations
Our data indicated that adding amechanosensory response to ol-

factory responses does not significantly alter the representation of

odor concentration in PCx. In fact, adding the inhalation speed in-

formation teases apart the representations of the odor concentra-

tion under different inhalation speeds. Therefore, this coding strat-

egy may allow a linear decoder to distinguish an environmental

increase in concentration from one induced by a nasal airflow

change. This way, the decoder can learn that the two activity pat-

terns evoked by an odor upon slow and fast inhalations represent,

in fact, the same concentration (Figure 6A). To test the robustness

of this coding strategy, we simulated the responses of a popula-

tion of neurons with varying levels of inhalation speed-dependent

concentration change and mechanosensory input. To generate

the surrogate distribution of responses, we used the odor and

inhalation covariate weights obtained by fitting our recorded neu-

ral responses with a linear regression model. We simulated

different levels of interaction between airflow and odorant deposi-

tion by assuming that the inhalation-driven change in concentra-

tion (DIC) is proportional to the initial concentration and the inha-

lation speed, as per prior fluid dynamics modeling4 (see STAR

Methods). We varied DIC over a 2-fold range to approximate the

natural nasal airflow rate range.36 PCA embedding showed that

odor representations were ambiguous in this simulated popula-

tion when there was no inhalation input (Figure 6B); for example,

an increase in odor concentration could not be distinguished
Cell Reports 43, 114013, April 23, 2024 9



Figure 6. Airflow information affords tolerance to flow-dependent

concentration fluctuations

(A) Example of how adding an independent mechanosensory signal distin-

guishes the inhalation-induced concentration fluctuation from an inhalation-

independent change in concentration.

(B) Inferred effect of the mechanosensory input on the concentration repre-

sentation in the presence of an inhalation-driven alteration of the odor con-

centration. Left, PCA embedding of population concentration responseswith a

70% inhalation-driven concentration change (DIC) and without inhalation

input. Right, PCA embedding of population concentration responses with a

70% DIC and mechanosensory input.

(C) Concentration decoding accuracy for increasing levels of inhalation-

dependent DIC without (left) and with (right) mechanosensory input within

(black) or across (magenta) different inhalation speeds.
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from an increase in inhalation speed. Consistently, decoders

trained on the responses during slow and fast inhalations classi-

fied the odor concentration worse than decoders trained using

only one inhalation speed as the simulated influence of the airflow

on the concentration increased (Figure 6C). However, supple-

menting this population with mechanosensory responses was

sufficient to reduce ambiguity and retrieve the actual concentra-

tion for any DIC (Figures 6B and 6C).
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DISCUSSION

Our experiments indicate that the PCx encodes precise informa-

tion about inhalation dynamics through a signal generated by the

nasal air pressure or background odors. The airflow rate tuning

curves thatwemeasured showedapush-pull arrangement across

the population of PCx neurons, meaning that a faster inhalation

increased the response of some neurons while decreasing that

of others. Such a distribution of tuning curves is known to stabilize

the average firing rate and keep the information rate constant

across the full range of nasal airflow velocities experienced by

the mouse. Combined with a random sampling of odor,26,27,37

such a bidirectional organization expands the possible combina-

tions of sensitivities to the odor and inhalation inputs, warranting a

more robust tolerance to varying inhalation speeds in PCx.

The information provided by the airflow signal differentiates

concentration representations upon different inhalation speeds.

However, it cannot correct the concentration change caused by

varying the inhalation speed in and by itself. Although themecha-

nosensory feedback is the same regardless of which odor an an-

imal smells, the concentration change caused by a change in

inhalation speed is likely different for different scents. Indeed,

how much odorant crosses the olfactory mucosa depends

on the airflow velocity and the odorant’s air-water partition

coefficient.38,39 Thus, the correspondence between two repre-

sentations of the same environmental concentration upon two

inhalation speeds has to be learned from experience. In most in-

stances, the concentration of an odorous source (for example,

the octanal molecules in an orange peel) tends to be stable dur-

ing an olfactory experience. We hypothesize that the brain could

learn to generalize across inhalation speeds by taking advantage

of the temporal contiguity of an odorant source during consecu-

tive inhalations. A similar, unsupervised learning strategy might

work even in a more naturalistic scenario involving variable

odor plumes and odorant mixtures. Further work will be required

to investigate how the olfactory circuits exploit the spatiotem-

poral statistics of the olfactory environment and fully understand

the relationship between experience and tolerance to self-gener-

ated stimulus variability.

Our work illustrates a solution to the sensory disturbances

caused by movements. This solution does not rely on inhibitory

corollary discharges but leverages the computational benefits

of population codes. Such a coding strategy is so general that

it is likely to be used by other sensory systems. Indeed, the coex-

istence of independent motion and sensory signals is not a

unique feature of the olfactory system. Orthogonal dimensions

for encoding movements and sensory stimuli have been found

in other sensory cortices, such as the primary visual cortex

(V1).40–42 However, the function of these movement signals is a

matter of debate.43,44 In recent work, it was observed that V1

neurons independently encode the direction of a drifting visual

grating and a saccade. It was proposed that this encoding strat-

egy may ‘‘scramble’’ the image representation during the

saccade, thus suppressing the perception of the retinal image

drift caused by the saccade.45 Here, we observe that the mo-

tion-related signal does not destroy the olfactory information in

PCx. Rather, the sniff signal lawfully reconfigures the concentra-

tion representations according to the nasal airflow. Thus, a
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downstream area can learn an optimal decoding scheme that re-

trieves the true concentration, like with a conversion chart (see

the model in Figure 6A). The motion signals in V1 could have a

similar function. Interestingly, psychophysical experiments in

humans suggest that reafferent mechanosensory signals reduce

the perceived extent of the visual smear generated by passive

head and eye movements;46 notably, these observations also

offer a functional interpretation of the additive inputs that the

mouse V1 receives from the vestibular system.47–49 Mechano-

sensation is the analysis of movement; thus, embedding inde-

pendent mechanosensory reafferences into distributed sensory

codes could be a canonical neural design to parse and reject

the consequences of sensory organ movements on sensation.

Limitations of the study
We observed an increase in spiking activity around the onset of

rapid sniffs in bulbectomized mice, suggesting the influence of

top-down input on PCx activity. Although the possibility of resid-

ual peripheral input cannot be entirely ruled out, no clear evi-

dence of remaining glomeruli was found in postmortem histolog-

ical examination of bulbectomized mice. However, undetected

afferents during electrophysiological recording, subsequently

destroyed during sectioning, cannot be discounted. Despite

the absence of PCx responses to odors or inhalation phase en-

coding post-bulbectomy, the heightenedmechanosensory stim-

ulation from rapid sniffs may account for the observed response.

Notably, however, the response initiated before the sniff, arguing

against a reafferent origin. Moreover, we observed a similar peri-

sniff activity in a region devoid of OB inputs, such as the MCx,

suggesting a top-down origin of the input. Identifying the precise

source of the presumed top-down modulation driving the sniff

response remains a task for future investigations.

Our GLM analysis revealed heterogeneous tuning to odor con-

centration and inhalation speed among RS and FS neurons.

Moreover, the spike waveform of a unit could not predict the joint

encoding of the olfactory and inhalation-speed input. However,

the PCx’s vast neural diversity50 suggests that our neuron sort-

ing criteria, based on spike waveform features, may be overly

simplistic to discerning cell-type-specific tuning differences.

Future work could employ more granular classification methods,

such as molecular markers, to refine our understanding of the

role of inhalation signals in PCx odor processing.

We demonstrated that a linear decodermay leverage the infor-

mation about the inhalation speed to correct for the sniff-driven

concentration increase. Still, it remains speculative whether

mice employ such a compensatory mechanism. More generally,

we posited that variable inhalation speeds pose a challenge for

maintaining consistent olfactory representations. However,

such a stimulus modulation may be actually a feature that allows

the brain to form predictive models of the environment.44 By

changing the inhalation speed, an animal could be actively

testing these models against incoming sensory information to

enhance the accuracy of odor perception. Critically, our ana-

lyses show that all information is preserved in the PCx, which

would not be possible if an inhibitory input suppressed the sen-

sory consequences of sniffing. This way, an animal could use the

benefits of active sensing without incurring a deterioration of the

acquired information.
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Other
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d The code used in the current study is available online. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice
All experimental manipulations were performed according to Italian legislation (DL 26/214, EU 63/2010,Ministero Della Sanità, Roma)

and FELASA recommendations for the care and use of laboratory animals. Animal research protocols were reviewed and consented

to by the Italian Ministry of Health.

We used 6-9 weeks old C57BL/6J mice of both sexes (Jackson Laboratory, RRID:IMSR_JAX:000664). Mice were co-housed with

their littermates (2-4/cage) and maintained on a 12 hr/12 hr light/dark cycle at room temperature (20-22ºC), 40-60% humidity, with

food andwater ad libitum. Littermates were randomly assigned to experimental groups. Males and females were randomly assigned.

Four C57BL/6 mice were used for the two odors/three concentrations (0.01, 0.1, and 1% v./v.) experiments; two C57BL/6 mice were

used for the four odors/two concentrations (0.01 and 0.1% v./v.) experiment; four C57BL/6 mice were used for the odor identity ex-

periments; three C57BL/6 mice were used for the artificial inhalation experiment; four C57BL/6 mice were used for the bulbectomy

experiment; five C57BL/6 mice were used for the AEN neurectomy experiment. None of the mice was involved in other procedures.

No analysis of the influence of sex on the results of the present study was conducted because it was not relevant to the scope of the

study.

METHOD DETAILS

Surgical procedures
Animals were anesthetized with isoflurane (3% induction, 1.5% maintenance) and placed on a custom-made feedback-controlled

heating pad. Pre-operative analgesia was induced through intramuscular injection of a bolus (4ml/g) of carprofen (Rimadyl,

0.05%)/dexamethasone (0.01%) and scalp infiltration of a tetracaine solution (0.05%). Post-operative analgesia was provided

through carprofen diluted in the water bottle (Rimadyl, 134ml/100ml) following the procedure. Silicone-based eye ointment was

applied on the eyes to protect the corneas during the surgery.

Anesthetized mice were mounted in a stereotaxic frame. The scalp was shaved with shaving cream and cleaned with isopropyl

alcohol and iodopovidone. The skin and the periosteum from the lambdoid to the frontonasal sutures were removed, and muscles

were partially detached from the skull to expose the occipital bone and the parietal ridges. To increase adherence of the implant to the

skull, superficial grooves were drilled in the frontal, parietal, interparietal, and occipital bones. After leveling the skull yaw, pitch, and

roll to obtain a flat skull configuration, two small reference crosses were scored using a scalpel at bregma and at the entry point of the

Neuropixels probe (AP: 2.0/2.1 mm; ML: -2.0/-2.1 mm from bregma), and the incisions were filled with surgical ink and covered with

UV-curable acrylic (Optibond). Finally, a titanium headplate wasmounted onto the arm of the stereotaxicmanipulator and attached to

the skull with cyanoacrylate (Loctite 454) and dental cement (Paladur).

Two days before the recording mice were anesthetized again and placed in the stereotaxic manipulator. Two small craniotomies

were opened: one for probe insertion (AP: 2.0/2.1 mm; ML: -2.0/-2.1 mm from bregma) and the other over the contralateral posterior

parietal cortex for the ground electrode. The dura mater was not removed. Finally, the two craniotomies were filled with surgical sil-

icone (Kwik-Cast, WPI).

To probe PCx responses to the mechanical stimulation of the nasal cavity, we resorted to artificial ventilation. The electrophysio-

logical recordings were performed immediately after the surgical preparation. For this procedure, mice were kept anesthetized

throughout the surgical procedure and the recording with urethane (0.9 g/kg). Following a previously developedmethod37, we placed

a cannula into the nasopharynx via the upper part of the trachea to allow the artificial suction of air through the nasal cavity; another

cannula was placed in the lower end of the trachea to allow the natural gas exchange with the lungs.

Somatosensory deafferentation was obtained by sectioning the anterior ethmoidal nerve under isoflurane anesthesia before the

recording session. The ocular bulb was laterally retracted, the upper region behind the eye was infiltrated with tetracaine solution

(0.05%), and the nerve was cut by blunt dissection with fine forceps at the exit from the ethmoid foramen. The cut was verified

post-mortem by visual inspection.

Olfactory deafferentation was obtained by aspirating the OBs using a blunted needle attached to a vacuum system, while Ringer’s

solution was continuously applied to cleanse the craniotomy site and remove all olfactory nerves down to the cribriform plate. The

cavity was then filled with a sterile gelatin sponge (Gelfoam) and sealed with dental cement. Post-mortem verification of bulbectomy

completeness was conducted by visually examining coronal brain sections, with any subjects displaying identifiable glomeruli being

omitted from further analysis.

Habituation to the experimental rig
Mice were habituated to head-fixation and the experimental rig starting five days before the experiment. Three habituation sessions

of increasing duration (20, 40, and 60 min) were run over consecutive days. During the familiarization and the recording sessions, the

mouse sat inside a 3-D printed black plastic tube, leaving exposed only the head. A custom-made polyether ether ketone (PEEK)
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nose cone was positioned in front of the mouse, loosely fitting the mouse’s snout. The nose cone was used to record the breathing

signal and deliver the odorants during the experiments.

Stereotaxic probe insertion
All recordings were performed using Neuropixels 1.0 probes. The probewasmounted to a dovetail and affixed to a steel rod held by a

micromanipulator (Luigs and Neumann). Before insertion, the back of the probe was coatedwith a solution of DiI (Thermofisher) using

a paintbrush. Next, the silicone plug was removed from the craniotomies, and the probe was positioned above the recording site

craniotomy (AP: 2.0/2.1 mm; ML: -2.0/-2.1 mm from bregma). Next, the probe was advanced through the dura and the cortex at

approximately 5 mm/s until reaching the PCx (DV: 5.2/5.5 mm from bregma). The exact position depended on identifying a region

with high firing rates and breathing-coupled activity. Then, the probe was retracted by 100 mm to allow the brain tissue to settle

for 30 minutes before starting the recording. An Ag/AgCl electrode placed over the contralateral posterior parietal cortex was

used for grounding. After electrode insertion, craniotomies were coveredwith a drop of agar solution (1% in Ringer’s solution). Neuro-

pixels data were acquired and recorded at 30 kHz through a PIXe interface board connected to a PC.

Experimental signals
Four signals were acquired besides the neural data: (1) a breathing signal generated by a flow sensor (AWM3300V Honeywell)

plugged into the nose cone; (2) an odor signal generated by a photo-ionization detector (200B miniPID, Aurora Scientific) that

sampled the odorant inside the nose cone; (3) a TTL signaling the start of each odor trial and (4) a TTL signal generated by a

Bpod Analog Input module (Sanworks) at the start of each inhalation. To identify the onset of an inhalation online, the breathing signal

was fed into the Bpod Analog Input module, and a threshold was set at the breathing signal zero-crossing before the inhalation peak.

All signals were digitized and recorded at 30 kHz using an Intan RHD2000 board. Finally, to align the neural datawith the other signals,

a 1 Hz TTL clock signal (50% duty cycle) or a barcode was generated by an Arduino One board and recorded by the PIXe board and

the Intan board.

Odor delivery
Odorant stimuli were delivered using 5 seconds of odorant pulses. Odorants were delivered in 8 blocks (trials) for the two odors/three

concentrations experiments, 16 blocks for the four odors/two concentrations experiments, and 10 blocks for the ten odors/one con-

centration experiments. The order of the odorants was randomized within each block. The inter-stimulus interval was randomly

drawn from an exponential distribution (mean: 40 s, min-max: 30-50 s).

Odorants were delivered using a custom-made Arduino-controlled 13-valve olfactometer that delivers up to 12 odorants sepa-

rately. The 13th valve was used to deliver a blank stimulus (no odor) between odor presentations. A vacuum continuously exhausted

lingering odors. Odorants were contained in 15 ml vials partially filled with glass beads (Sigma-Aldrich). The headspace and the vol-

ume of odorant inside the vial were chosen to ensure that the amount of odor delivered within and across trials was steady as as-

sessed by PID measurements. Each vial was separately connected to an olfactometer valve through a 3 in.-long PTFE tubing. A

custom software controlled valve opening and closing, enabling switching between odor vials and a blank vial. At the beginning

of a trial, the opening of an odor valve was synchronized with the onset of inhalation, as detected by the Bpod Analog Input Module.

Two streams of carbon-filtered air (F1 and F2) were independently routed to the nose cone at 1 l/min. The F1 stream consisted in

odor (F1O; 0.1 l/min) and carrier (F1C; 0.9 l/min) streamsmixed. Upon opening an odorant valve, the F1O flowwas routed through the

open vial to a PEEK manifold using a 3 in.-long PTFE tubing. Inside the manifold, the F1O flow from the open vial was mixed with the

F1C flow to obtain the F1 airflow. The outlet of themixing manifold was connected through a 0.5-in.-long PTFE tubing to a final three-

way valve (V1). The F2 stream was directly connected to a second three-way solenoid valve (V2). The V1 and V2 valve outlets

converged in a final 0.5 in. PTFE tubing connected to the nose cone. The F1 and F2 airflows reached the odor cone during odor-

ON and odor-OFF epochs, respectively. The V1 outlet was open during the odor-ON epoch, whereas the V2 outlet was open during

the odor-OFF epoch. At the beginning of a trial, the olfactometer opened the odor vial valve to load the tubing with odorized air up to

the final valve V1, which diverted the flow outside the nose cone. After 2 seconds, the onset of an inhalation triggered an ‘‘odor-ON’’

TTL that switched the outlet opening of the V1 and V2 valves such that only the odorized airflow F1 entered the nose cone. After 5

seconds from the odor-ON TTL, the odor vial valve closed. After 10 seconds from the closing of the odorant vial valve, the V1 and V2

valves were switched to the odor-OFF configuration.

The olfactometer was calibrated to generate the final odor concentration within � 200 ms from the opening of the final valve (Fig-

ure S6C). No attempt was made to remove a small pressure transient at the opening of the final valve.

The odor panel included two odors (alpha-pinene and eucalyptol) delivered at three concentrations (0.01, 0.1, and 1% v./v.), three

odors (limonene, p-cymene, and methyl butyrate) delivered at two concentrations (0.01 and 1% v./v.) and four odors (eugenol, dicy-

clohexyl disulfide, p-cymene, and methyl 2-furoate) delivered at a single concentration (0.01%). All odors were purchased from

Sigma-Aldrich. To determine the dilution of each odor, a calibration curve was generated. To this aim, the signal generated by a

photo-ionization detector (200B miniPID, Aurora) upon delivery of an odor at three dilutions (no dilution, 1:8, and 1:160 in mineral

oil, Sigma-Aldrich; 10 presentations per dilution) was recorded. Then, an exponential curve was fitted to the miniPID traces to obtain

the coefficient A for each dilution. Next, a second-order polynomial was fitted to the three A coefficients of each odor. Finally, the
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dilutions corresponding to 0.1%, 1%, and 10% v./v. of undiluted odor were extrapolated from the fitted polynomial. The carrier

airflow further diluted the odor concentration by 10 to reach the final concentration of 0,01, 0.1, and 1 % v./v.

Artificial mechanical stimulation
The cannula in the nasopharynx was attached to a computer-controlled solenoid valve, which was connected to a vacuum line. The

opening of the valve drew air inside the nasal cavity. The air was deodorized through a carbon filter before entering the nose cone.We

applied 150-ms pulses of suction at 750-ms intervals. We tested five flow rates that span the range of estimated nasal flow rates in

mice (50, 100, 150, 200, and 250 ml/min).

Histology
Mice were deeply anesthetized with 1 g/kg urethane injection and intracardially perfused with 1% phosphate buffer solution (PBS)

followed by 4%paraformaldehyde (PFA). The brain was dissected and immersed in 4%PFA for 24 h. Following fixation, the brain was

washed with PBS and sectioned coronally (80 mm) with a vibratome. Sections were counter-stained with DAPI, and images were ac-

quired with a fluorescence microscope at 10x magnification. The Allen CCF open-source toolbox52 was used to reconstruct the

probe location in 3D, and Brainrender53 was used to visualize the probe position.

Experimental design
No statistical methods were used to determine sample sizes. Sample sizes were chosen based on previous publications in the field.

Multiple independent samples were collected for each experiment. The number of samples is indicated in the paper. Data collection

and analyses were not performed blind to the experimental conditions. The inclusion and exclusion criteria for any data and subjects

and the statistical methods are indicated in the Quantification and Statistical Analysis section.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of the breathing signal
The breathing signal was bandpass filtered between 0.5 to 50Hz using the MATLAB FMAToolbox (http://fmatoolbox.sourceforge.net/)

and smoothedwith aGaussian kernel (standard deviation: 25ms). Inhalation peakswere identified as the local minima of the respiratory

signal. Inhalation peaks closer than 65ms from the next peak were discarded. Inhalation onset and offset were identified as the breath-

ing signal zero-crossings before and after the inhalation peak. Inhalation length was defined as the difference between the inhalation

offset and onset times. The breathing cycle was calculated as the difference between two consecutive inhalation onsets. The negative

inhalation slopewasdefinedas the slope of the line between the nearest twopoints before the inhalationpeak in the z-scored respiration

signal with a value equal to 10% and 90%of the inhalation peak amplitude. Similarly, the positive inhalation slope was calculated as the

slope of the line between the 90% to 10% of inhalation amplitude points in the z-scored respiration signal after the inhalation peak.

Inhalation clustering
Inhalation waveforms were isolated by extracting the breathing signal within a 100 ms-long window centered on the inhalation peak.

Each waveform was normalized by its 2-norm and considered as a point in a high-dimensional space. The dimensionality of the inha-

lation space was reduced by applying PCA using the ‘pca’ function in MATLAB (Mathworks�). The projection of the inhalation vector

onto the n-dimensional subspace spanned by the n first PCs (where n is the minimum number of PCs that explain at least 98% of total

variance) was calculated. The first PC captured most of the dynamics of an inhalation (Figure S6A). The inhalation vectors in the

n-dimensional space were clustered with a Gaussian Mixture Model using the ‘fitgmdist’ function in MATLAB (maximum number of it-

erations: 10,000, regularization value: 0.05, replicates: 15, full covariance matrix). The Calinski-Harabasz index was used to determine

the optimal number of clusters. The centroid vector for each cluster was defined as the mean vector of all inhalation vectors within the

cluster. To consolidate the GMM clustering, a Hierarchical Cluster (HC) dendrogramwas applied to the centroid vectors using the ‘link-

age’ function in MATLAB (distance metric: correlation). The HC dendrogram from an individual experiment usually resulted in two or

three clusters. Visual inspection of the dendrograms suggested that two clusters were similar and stemmed from the same branch;

thus, wemerged the two clusterswith the sameparent. Finally, we assigned the clusters to the ‘‘slow’’ and ‘‘fast’’ inhalation types based

on themean of the inhalation lengthswithin each cluster, with ‘‘fast’’ inhalation assigned to the class with smaller inhalation lengths. The

clustering algorithm was cross-validated on the inhalations from eight mice by fitting the GMM on a training set consisting of all the in-

halations from seven mice and then using the fitted model to predict the labels of the inhalations from the held-out mouse. The ground-

truth inhalation labels for the held-out mouse were obtained using the above clustering pipeline. This process was repeated for all

possible combinations of test and train sets, and the classification accuracies were finally averaged. This clustering pipeline classified

the inhalation label of held-out inhalations with 98% accuracy. The proportion of fast and slow inhalations is reported in Figure S6B.

Spike sorting and inclusion criteria
Spike waveforms were sorted using KiloSort3. All clusters weremanually curated using Phy (https://github.com/cortex-lab/phy). The

clusters were evaluated by examining their firing rate stability during the recording session, the median amplitude of the spike

(>50 mV), the auto-correlograms, and the cross-correlograms. The quality of the clusters included in the analyses was further
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evaluated by computing the inter-spike-interval (ISI) violation rate (threshold: <0.5; median: 0.01, Q1: 0, Q3: 0.04), the amplitude cut-

off (median: 0.0005, Q1: 0.0001, Q3: 0.0015), and the presence ratio (median: 1, Q1: 1, Q3: 1; see also Figures S6D–S6F). Single units

with a firing rate of less than 0.5 Hz were excluded from the subsequent analyses; this threshold was lowered to 0.1 Hz in the exper-

iments with tracheostomized mice because the urethane anesthesia reduced the baseline firing rate. Restricting the analyses to only

those units with an ISI violation rate < 0.02 gave similar results.

Single units were further classified as regular (RS) or fast-spiking (FS). Aweighted average of the contributing cluster templates was

computed for each unit, obtaining an average template waveform. Next, three features were extracted:

(1) The latency between the negative and the following (post-depolarization) positive peak of the average waveform;

(2) The asymmetry between the pre-depolarization (p1) and the post-depolarization (p2) peaks of the average waveform,

computed as
p2 -- p1

p2+p1

(3) The average firing rate of the unit across the whole recording.

Finally, a k-means clustering (with Squared Euclidean distance, 10,000 iterations, and 2,500 replicates) of the features was used to

partition the units recorded from each mouse into two categories. Units labeled as ‘RS’ had, on average, lower firing rates, larger

trough-to-peak latency, and smaller asymmetry compared to units labeled as ‘FS’.

The through-to-peak latency and the asymmetry index were also used to assess the homogeneity of cell-type sampling across the

experimental conditions. To this aim, we compared the distributions of thewaveform features across all experimental conditions (Fig-

ure S6G). Furthermore, a cross-validated Naive Bayes decoder and a linear support vector machine using these waveform features

were used to ascertain that the experimental condition could not be decoded from the spike waveforms of the units recorded during

that specific condition (Figure S6H).

Analysis of sniff-by-sniff responses
Inhalation and odor response were measured as the average spike count within a 70 or 180 ms window after the inhalation onset.

Smoothed peri-event time histograms (PETH) were obtained by convolving the spike-times series within an inhalation with a

Gaussian kernel (standard deviation: 10ms), then averaging across all inhalations of the same type and finally subtracting the average

firing rate across the odor-free epochs of the entire recording session. PETHs were aligned at the inhalation onset. Odorless-air in-

halations were defined as those occurring within the -13 to -4 seconds window before the delivery of an odor. This window was

considered sufficient to remove any lingering odor because the minimum time interval between two odor presentations was 30 sec-

onds, and a vacuum line constantly exhausted odorants from the nose mask. Sniff-by-sniff odor responses were measured in a time

window starting at the odor onset and lasting for 5 seconds. The first two trials of each odor-concentration stimulus were excluded to

avoid any bias due to the novelty of the stimulus.

To ascertain whether a neuron responded to an inhalation, the spikes within a window comprising the inhalation onset (from -300

to + 400ms) were binned using an adaptive binningmethod, guaranteeing at least five spikes per bin. Then, the spike counts in those

bins were compared against those generated by a homogenous Poisson process using a chi-square test. The constant rate of the

homogenous Poisson process was set to the mean firing rate of the recorded neuron. Responses to first sniffs were tested by

comparing the spike counts in a 180 ms window post-inhalation onset in the first sniff after at least five consecutive slow inhalations

against the spike counts in a 180mswindowpost-inhalation onset in the remaining slow inhalations. For all these analyses, only odor-

less inhalations were considered.

Concentration discrimination index
To measure how well a neuron could discriminate two concentrations, we first computed an area-under-the-receiver-operating-

curve (auROC) using the spike counts during the inhalation of 0.01 and 0.1% v./v. odorant. The CDI was computed as

abs(1 - 2*auROC). To generate the spike count distribution for each concentration, a random sample of inhalations was taken during

the presentation of that concentration; an equal sample size was used for the two concentrations. Next, three different CDI were

calculated based on a sample of slow inhalations, fast inhalations, and mixed slow and fast inhalations; 100 samples were drawn

for each set of inhalations, and an average CDI was calculated for slow, fast, and mixed inhalations.

Tuning curves
To obtain neural tuning curves during artificial stimulation of the nasal cavity, the average response for each airflow rate was calcu-

lated as the difference between the number of spikes fired by a neuron during the (0 500] and (-500 0] ms windowwhere 0 is the onset

of the air pulse.
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To obtain neural tuning curves during natural breathing, inhalations were sorted into ten quantile bins based on the amplitude of the

peak of airflow asmeasured by the flow sensor. This was done to ensure that each bin contained an equal number of inhalations. The

tuning curve was generated by using the average response to an odorless inhalation during the first 180 ms for each bin.

Tuning curves were z-scored, and their slopes were calculated by linearly regressing the neural response to the airflow rate.

Encoding models
A Poisson Generalized linear model (GLM) with regularization was employed to estimate the contribution of inhalation speed, odor

concentration, and their interaction with the sniff-by-sniff odor response of a neuron. The model aimed to predict the spike count ðyiÞ
of neuron i during a single inhalation (either first 180 ms or 70 ms) using the following equation:

yi � Poiss ðexpðai I + biC + giIC + y0iÞÞ
Here, the I term represents the inhalation speed (0 for slow and 1 for fast), and the C term represents the odor concentration (log-

arithm of the three concentrations 0.01, 0.1 and 1% v./v.). y0i is a baseline bias of the response. The GLMwas fitted using the glmnet

toolbox (https://hastie.su.domains/glmnet_matlab/) in MATLAB (Mathworks�) with elastic net regularization, where the

parameter alpha controlled elastic net penalty. A value of 0.95was used for alpha, which smoothly interpolates the gap between lasso

(alpha = 0) and ridge regression (alpha = 1). The optimal elastic net penalty value was selected using a 10-fold cross-validation

approach.

We used a linear regression model for the simulations shown in Figures 5E–5I and Figures 6B and 6C. In this case, the normalized

firing rate ri of neuron i during the first 180 ms of inhalation was modeled with the following equation:

z score ðriÞ = ai I + biC + r0i + h

Here, the I term represents the inhalation speed (0 for slow and 1 for fast), and theC term represents the odor concentration (varying

from 0 to 1 based on the logarithm of the concentration). The term r0 is a baseline bias, and h is a Gaussian noise term. To fit the

models, inhalations were randomly sampled from all inhalations to have an equal size for each combination of inhalation speed

and odor concentration term. The vector of the neural responses to the inhalations was z-scored and passed to the model with

the corresponding design matrix. The significance of the model’s coefficients was assessed using an ANOVA test. The random sam-

pling was repeated 100 times, and the coefficients of each term and their p-values were averaged across all re-samplings.

Prediction of encoding properties from waveforms
To assess if the encoding differences we detected across cells could be linked to cell type differences, we searched for statistical

dependencies between the a and b parameters and the spike waveform shape on a cell-by-cell basis. We built and tested predictive

models that attempted to predict the values of a, b and a and b jointly from the asymmetry index and the through-to-peak depth of the

waveforms (this analysis was conducted with scikit-learn). We considered three different models, each of which is well suited to cap-

ture very different types of patterns in data: a linear model with elastic-net regularization (95% ridge, 5% lasso), a K-nearest-neighbor

(KNN) regressor, and a set of bagged trees. We tested each model with 10-fold cross-validation (CV; with folds taken over the set of

cells). The shrinkage hyperparameter of the GLMwas selected by nested 10-fold cross-validation, meaning that for each training fold

in the outer CV loop, the value of the hyperparameter was selected by cross-validation on the training data only. The number of neigh-

bors to use in KNN was selected the same way. The set of bagged trees comprised 1000 decision trees, each grown on a bootstrap

replicate of the training data. The trees were grown until no splits could be performed without resulting in at least one leaf containing

fewer than 5 data points. We standardized the data before training the predictive models. We tested the performance of the models

separately at predicting a, predicting b, and predicting a and b jointly. This resulted in 3 models x 3 tests = 9 assessments. In none of

the 9 cases, the predictive model could extract a significant relationship (as measured by the cross-validated R2 of the regression)

between the spike waveform and the encoding parameters.

Pseudo-population response matrix
The pseudo-population response matrix was obtained by pooling all recorded neurons’ sniff-by-sniff spike count responses to the

inhalation events from all animals within the same experimental design. To create this matrix, an equal number of inhalation events for

each odor concentrationwere randomly drawn from all inhalation events of all mice. Half of these events were fast inhalations, and the

other half were slow inhalations. This allowed for an equal representation of both inhalation types in the sample. The same number of

inhalations was sampled for each concentration, and then all inhalations were pooled. The response of each neuron to each inhala-

tion in the selected sample was then vertically concatenated to obtain a population response vector during an inhalation. Finally, the

response vectors of all neurons were concatenated horizontally to create a pseudo-population response matrix.

PCA embeddings
To visualize the neural representation of odor concentrations across different inhalation speeds, PCA analysis was performed on the

response covariance matrices obtained from a neural pseudo-population or single mouse neural populations. Before applying PCA,

the neural responses of individual neuronswere z-scored. PCAwas also used to determine the projections onto the first 15 PCs of the
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sniff-by-sniff responses; these projections were separately used to decode inhalation speed in Figure 5B and Figures S5B and S5D

and odor concentration and identity in Figures 5B–5D and Figures S5B, and S5D–S5F.

Angle between encoding axes
The encoding direction for odor concentrations and inhalation speedwas determined using concentration-encoding unit vectors and

sampling-encoding unit vectors; these two vectors were defined as unit vectors in the sniff-by-sniff response space. Linear discrim-

inant analysis (LDA) was used to calculate the encoding vectors. Specifically, a pseudo-population responsematrix with correspond-

ing labels for each odor concentration and inhalation speed was used to fit the LDA model. This operation was performed using the

Python scikit-learn library57. The eigenvalue decomposition solver was used to fit the LDAmodel with a shrinkage parameter that was

automatically calculated by the Ledoit-Wolf lemma algorithm. The encoding vector was taken as the first column of the LDA transform

scaling matrix. For each inhalation speed, the concentration-encoding unit vector was obtained from the LDA fit by using a pseudo-

population response during a given inhalation speed and concentration using a different label for each concentration. Similarly, the

inhalation-encoding unit vector was obtained from the LDA fit using pseudo-population response during either inhalation speed, and

the type of inhalation speed was used as a label. Finally, the average angle between the concentration-encoding vectors for each

inhalation speed and the average angleQ between the concentration-encoding vectors and inhalation-encoding vectors were calcu-

lated and then transformed as:Q’ = 90 - |90 –Q|. This procedure was repeated 100 times with pseudo-population responsematrices

built using different randomly sampled neurons for each run.

Inhalation speed decoding
A linear support vector machine (lSVM) classifier was utilized for all classification analyses (inhalation speed, odor concentration,

odor identity, and generalization analysis). The lSVM was implemented using the MATLAB (Mathworks�) Neural Decoding Toolbox

(NDT)58 and libsvm (http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/) toolbox. A 10-fold cross-validation was performed for all models.

Before model fitting, the sniff-by-sniff neural responses in the training and test set were normalized by subtracting the means and

standard deviations calculated from the responses in the training set.

To decode the inhalation speed, a pseudo-population response matrix was generated using only the spike counts during 180 ms

windows for each inhalation of odorless air. Specifically, 400 random slow and fast inhalations were drawn, and the spike counts in

180 ms windows were used to build the response matrix of a pseudo-population or an individual mouse population. The decoding

accuracy for different numbers of neurons was determined by drawing random subsamples of neurons of different numerosity. This

resampling process was repeated 100 times for each number of neurons to obtain reliable estimates of decoding accuracy. Addi-

tionally, the entire classification process was repeated 100 times, randomizing the sampled inhalation events included in each

run. The reported accuracy for each number of neurons represents the mean of all resampling processes.

Concentration decoding
To classify odor concentration (0.01, 0.1, and 1% v./v.), a pseudo-population responsematrix or a single animal population response

matrix was built using the same number of inhalations for each odor-concentration pair to avoid any potential bias due to different

inhalation sample sizes. Next, for each odor, corresponding rows of this matrix or its PC projections were sorted and passed to the

classifier to decode the concentration in either the whole population response space or its PC projections space. This procedure was

repeated 100 timeswith pseudo-population responsematrices with different randomly sampled inhalations. The reported accuracies

are the mean and standard deviation across all resampling processes.

To investigate the geometry of the neural space, a generalization paradigmwas employed. To this end, a lSVM trained on data from

one inhalation speed was tested on data from the other inhalation speed (trans-decoder). The average accuracy of trans-decoders

was compared to that of cis-decoders that had been trained and tested instead on the odor responses during the same inhalation

speed.

To assess the importance of heterogeneous selectivity for mechanosensory and olfactory inputs for sniff-invariant odor represen-

tations, we first fit the sniff-by-sniff responses of individual neurons with a linear regressionmodel including a concentration (C = 0.01,

0.1, and 1%) and an inhalation speed (slow: I = 0; fast: I = 1) regressor. Then we selected a sub-pseudo-population with highly corre-

lated mechanosensory (a) and olfactory regressor coefficients (b). To this end, a sub-pseudo-population of neurons meeting the

following conditions were considered positively correlated: (|b| >= |a*tan(pi/12)|) and (|b| <= |a*tan(5*pi/12)|) with a and b having

the same sign. Finally, another subset of neurons with a and b having different signs was selected to build a sub-pseudo-population

with negatively correlated mechanosensory and concentration regressors. The union of these two sets was considered as the un-

correlated sub-pseudo-population. Then, an equal number of neurons was randomly sampled from these three sub-pseudo-popu-

lations, and their sniff-by-sniff odor responses were used by cis- and trans-decoders.

To decode odor concentration over time and phase bins, we used the following procedure:

Feature vectors generation

First, we generated time- and phase-binned vectors of neuronal activity after the inhalation onset as follows:

(1) Time-binned vectors of 180 ms: the firing rate traces of all neurons in an area were used, as defined in the above section

Decoding of the inhalation phase. Preprocessing. The traces were cropped from the onset of each inhalation in a 180 ms
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window and binned in 10-ms bins. Then, the traces of all neurons were concatenated to obtain, for every inhalation, an array

with size (n_timebins x n_neurons), with n_timebins = 18.

(2) One-bin time vectors: the time-binned arrays defined above were averaged over the time bins.

(3) Time-binned vectors cropped over a full inhalation cycle: the respiratory phasewas computed using the Hilbert transform. The

time window in which the respiratory phase increased by 2p was found for every inhalation. Then, the firing rate trace was

cropped in this window, padding it with zeros to account for the different durations of each inhalation period to a total of

500 ms (enough to accommodate > 99% of all inhalations). The arrays were then binned in 10-ms bins and concatenated

across neurons to a total of (n_timebins x n_neurons) for every inhalation, with n_timebins = 50.

(4) Phase-binned vectors: the respiratory phase was computed using the Hilbert transform. The time window in which the respi-

ratory phase increased by 2pwas found for every inhalation. The firing rate trace was cropped in this window and then binned

into 36 bins equally spaced in phase (in this case, no zero-padding was necessary). Next, the activity of all neurons was

concatenated to obtain an array with length (n_phasebins x n_neurons) for every inhalation, with n_phasebins = 36 and

zero-padding at the end to ensure array length consistency.

Odor concentration decoding

To decode odor concentration from the firing rates, we used an SVM classifier using a generalization procedure like the one

described above. First, inhalations were sampled 100 times with replacement for every animal to obtain a consistent number of

events for each combination (inhalation_type, concentration). Then, ten-fold validation was used for training and testing the classifier

for each extraction. Data were split into ten blocks, and the SVM trained over nine blocks and tested over the remaining one iterating

over all ten possible left-out blocks. The SVMmodel was trained using SVC from sklearn.svm, and its default parameters but for the

linearity of the kernel (kernel = linear, gamma = ’scale’, coef0 = 0.0, tol = 0.001, C = 1.0, epsilon = 0.1, shrinking = True; where ’scale’

gamma is 1/(n_features * X.var())). The source data was the ((n_bins x n_neurons), n_inhalations) array of concatenated firing rates

over time for each inhalation; the variable to predict was the (n_inhalations) array of concentrations presented during each inhalation.

For each iteration, the SVM was evaluated by computing the fraction of correct predictions. This number was then averaged across

all folds and samplings (1000 different classifications) to obtain the numbers reported in the figures. Finally, the analysis was repeated

separately for the two presented odors, and the results eventually merged.

Inhalation phase decoding
To predict the inhalation phase from neuronal activity, we employed Support Vector Regression (SVR) using the scikit-learn library57.

Preprocessing

First, the firing rate for every neuron was computed using a rolling gaussian window with sd = 20 ms (gaussian_filter() from scipy.nd-

image). The firing ratematrix and the respiration tracewere then downsampled to 10ms bins to speed up the following computations.

For every animal, the analysis was restricted to areas with at least 20 recorded neurons.

Inhalation phase

Analysis was restricted to the inhalation events defined and classified as described in the section Inhalation clustering. The inhalation

phase was a number in the interval [0, 1] where 0 and 1 corresponded to the beginning and the end of the inhalation event, and the

other values were linearly interpolated.

PCA decomposition

First, neuronal activity from all the neurons of each area was projected over principal components using the PCA class from sklearn.

decomposition. To focus on the most relevant components for the prediction, PCs up to a cumulative explained (relative) vari-

ance > 0.5 were included (at least two PCs were always selected). We note that the analysis results hold for different inclusion criteria

for the number of PCs.

Epochs definition

For the training and testing of the model, suitable non-overlapping epochs were created by concatenating inhalation periods for a

total duration of 30 s. Depending on the inhalation number and classification, this resulted in a variable number of epochs (between

2 and 4) for every experimental animal. For every animal, all permutations of pairs of those suitable epochs were used as test and

training datasets. Results were robust to different choices of epochs (i.e., more epochs with shorter windows).

SVR training

An SVR model was trained using SVR from sklearn.svm(), and its default parameters (kernel = ’rbf’, degree = 3, gamma = ’scale’,

coef0 = 0.0, tol = 0.001, C = 1.0, epsilon = 0.1, shrinking = True; where ’rbf’ kernel is the Radial Basis Function, and ’scale’ gamma

is 1 / (n_features * X.var())). The source data was the (n_components, timepoints) array of PC data; the variable to predict was the

(timepoints,) array of inhalation phase data. The shuffle distributions were calculated by randomizing the inhalation phase array

before prediction.

Evaluation

For every permutation of the epochs, the inhalation phase was predicted at every time point, and the performance of the model was

assessed by calculating the squared Pearson correlation between the ground truth and the predicted data and then averaged across

permutations.
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Simulation of sniff-induced concentration changes
We tested whether integrating odor-independent mechanosensory inputs in the PCx code offsets the odor concentration alteration

(DIC) inside the nasal cavity due to changes in inhalation speed. To this end, we compared odor concentration decoding using the

activity pattern of two simulated populations of neurons with or without mechanosensory inputs. We reasoned that theDIC should be

proportional to the external concentration and additive. Thus, we simulated the sniff-by-sniff responses of each neuron using the

following Poisson model:

Rj = Poiss
�
aj I + bj Cn

�
;with Cn = logðCe + k I CeÞ

Rj is the simulated neural response during a sniff. aj and bj are the mechanosensory and olfactory regressor coefficients previously

estimated using a linear regression model fitted to the actual responses of neuron j. I is equal to 0 for slow inhalations and 1 for fast

inhalations. Ce is the external odor concentration (0.01, 0.1, and 1%). k is a proportional factor that was parametrically changed in the

range between 0 and 1 to simulate different levels ofDIC; k = 0means that a slow-to-fast change in inhalation speed does not change

the odorant concentration (DIC = 0), whereas k = 1 means that a slow-to-fast change in inhalation speed increases the odor concen-

tration inside the naris by 100% of the external concentration (DIC = Ce). The population of neurons without mechanosensory inputs

was generated by setting a to 0. a was set to 0 to simulate the population of neurons without mechanosensory inputs.

Geometrical proof
Heterogeneous mixed selectivity of neural responses has an immediate connection with the orthogonality of population representa-

tions. This can be seen in a simple model, as follows. Consider a population code where the firing rate ri of cell i is

ri = r0 +ai I+ bi C+gi I C

where, as above, I is the inhalation speed, and C is the concentration. For a population of size N (1%i%N), we can also write this in

vector form as

r = r +a I+ b C+g I C

where r, a, b, and g are now vectors with N entries. Assume that the number N of neurons is large and that coding is heterogeneous

(that is, there is no special structure to the code), so that a, b, and g are random vectors in N dimensions. In this case, a can be thought

of as a scalar |a| controlling the overall intensity of tuning for inhalation speed in the population, times a random vector on the unit

sphere, and the same for b and g. The direction along which the population vector r encodes the concentration is

dr

dC
= b+g I

In other words, the concentration C is encoded in the direction b for slow inhalation (I=0) and the direction b + g for fast inhalation

(I=1). The cosine of the angle q between the two encoding directions is

cosðqÞ =
< b; b+g>

jbj$jb+gj =
jbj2+< b;g>

jbj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbj2+jgj2+2< b;g>

q

However, if b and g are high-dimensional and their direction is chosen at random, it can be assumed they are approximately

orthogonal, and <b,g> z0. Accordingly,

cosðqÞz jbj2

jbj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbj2+jgj2

q =
jbjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jbj2+jgj2
q

Therefore, the concentration encoding directions will tend towards orthogonality in the presence of strong interactions (when g>>

b, cos(q)=0) and will be parallel when interactions are absent or weak (when |g|=0, cos(q)=1).

Statistical tests
Sample sizes were not estimated in advance. Data groups were tested for normality using Kolmogorov-Smirnov test and then

compared using the appropriate test. For regression modeling, confidence intervals were computed over bootstraps (with replace-

ment) of the data. Statistical tests used, the value of n, and what n represents in each analysis can be found in the corresponding

figure legend.
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