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Abstract
We give a new proof of the derived equivalence of a pair of varieties connected by the flop
of type C2 in the list of Kanemitsu (2018), which is originally due to Segal (Bull. Lond.
Math. Soc., 48 (3) 533–538, 2016). We also prove the derived equivalence of a pair of
varieties connected by the flop of type AG

4 in the same list. The latter proof follows that of
the derived equivalence of Calabi–Yau 3-folds in Grassmannians Gr(2, 5) and Gr(3, 5) by
Kapustka and Rampazzo (Commun. Num. Theor. Phys., 13 (4) 725–761 2019) closely.

Keywords Calabi–Yau manifolds · Flops and derived categories ·
Mutation of semiorthogonal decomposition
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1 Introduction

Let G be a semisimple Lie group and B a Borel subgroup of G. For distinct maximal
parabolic subgroups P and Q of G containing B, three homogeneous spaces G/P , G/Q,
and G/(P ∩ Q) form the following diagram:

F := G/(P ∩ Q)

�−

��������������
�+

��������������

P := G/P Q := G/Q

We write the hyperplane classes of P and Q as h and H respectively. By abuse of notation,
the pull-back to F of the hyperplane classes h and H will be denoted by the same symbol.
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The morphisms �− and �+ are projective morphisms whose relative O(1) are O(H) and
O(h) respectively. We consider the diagram

F
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��

��
��

�
� �
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��

��
��

P� �

ι−
��

V
ϕ−
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���
��

��
��

� Q� �

ι+
��

V−
φ−

���
��

��
��

� V+
φ+

����
��

��
��

V0

(1.1)

where

• V− is the total space of ((�−)∗O(h + H))∨ over P,
• V+ is the total space of((�+)∗O(h + H))∨ over Q,
• V is the total space of O(−h − H) over F,
• ι−, ι+, and ι are the zero-sections,
• ϕ− and ϕ+ are blow-ups of the zero sections, and
• φ− and φ+ are the affinizations which contract the zero sections.

If V− and V+ have the trivial canonical bundles, then one expects from [4, Conjecture 4.4]
or [16, Conjecture 1.2] that V− and V+ are derived-equivalent.

When G is the simple Lie group of type G2, Ueda [24] used sequence of mutations of
semiorthogonal decompositions of Db(V) obtained by applying Orlov’s theorem [20] to the
diagram Eq. 1.1 to prove the derived equivalence of V− and V+. This sequence of mutations
in turn follows that of Kuznetsov [18] closely.

In this paper, by using the same method, we give a new proof to the following theorem,
which is originally due to Segal [22], where the flop was attributed to Abuaf:

Theorem 1.1 Varieties connected by the flop of type C2 are derived-equivalent.

The term the flop of type C2 was introduced in [13], where simple K-equivalent maps in
dimension at most 8 were classified. There are several ways to prove Theorem 1.1. In [22],
Segal showed the derived equivalence by using tilting vector bundles. Hara [8] constructed
alternative tilting vector bundles and studied the relation between functors defined by him
and Segal.

The flop of type AG
2r−2 is also in the list of Kanemitsu [13]. It connects V− and V+ for

P = Gr(r − 1, 2r − 1) and Q = Gr(r, 2r − 1). Similarly, we prove the following theorem:

Theorem 1.2 Varieties connected by the flop of type AG
4 are derived-equivalent.

Although the proof of Theorem 1.2 is parallel to that of the derived equivalence of
Calabi–Yau complete intersections in P = Gr(2, 5) and Q = Gr(3, 5) defined by global
sections of the equivariant vector bundles dual to V− and V+ in [15, Theorem 5.7], we write
down a full detail for clarity. As explained in [24], the derived equivalence obtained in [15]
in turn follows from Theorem 1.2 using matrix factorizations.
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We also give a similar proof of derived equivalences for a Mukai flop and a standard flop.
For a Mukai flop, Kawamata [16] and Namikawa [19] independently showed the derived
equivalence by using the pull-back and the push-forward along the fiber product V−×V0V+.
Addington, Donovan, and Meachan [1] introduced a generalization of the functor of Kawa-
mata and Namikawa parametrized by an integer, and discovered that certain compositions
of these functors give the P-twist in the sense of Huybrechts and Thomas [11]. They also
considered the case of a standard flop, where the derived equivalence is originally proved
by Bondal and Orlov [5]. Our proof is obtained by proceeding the mutation performed in
[5] and [1] a little further in a straightforward way. Hara [7] also studied a Mukai flop in
terms of non-commutative crepant resolutions.

For a standard flop, Segal [21] showed the derived equivalence by using the grade restric-
tion rule for variation of geometric invariant theory quotients (VGIT) originally introduced
by Hori, Herbst, and Page [10]. VGIT method was subsequently developed by Halpern-
Leistner [6] and Ballard, Favero, and Katzarkov [2]. It is an interesting problem to develop
this method further to prove the derived equivalence for the flop of type C2 and AG

4 , and a
Mukai flop.

Notations and conventions We work over an algebraically closed field k of characteristic
0 throughout this paper. All pull-back and push-forward are derived unless otherwise spec-
ified. The complexes underlying Ext•(−,−) and H•(−) will be denoted by hom(−,−) and
h(−) respectively.

2 Flop of Type C2

Let P and Q be the parabolic subgroups of the simple Lie group G of type C2 associated
with the crossed Dynkin diagrams and . The corresponding homogeneous spaces
are the projective space P = P(V ), the Lagrangian Grassmannian Q = LGr(V ), and the
isotropic flag variety F = PP

(
L ⊥

P /LP
) = PQ

(
SQ

)
. Here V is a 4-dimensional symplec-

tic vector space, L ⊥
P is the rank 3 vector bundle given as the symplectic orthogonal to the

tautological line bundle LP ∼= OP(−h) on P, and SQ is the tautological rank 2 bundle on
Q. Note that Q is also a quadric hypersurface in P

4. Tautological sequences on Q = LGr(V )

and F ∼= PQ
(
SQ

)
give

0 → SQ → OQ ⊗ V → S ∨
Q → 0 (2.1)

and

0 → OF(−h + H) → S ∨
F → OF(h) → 0, (2.2)

where SF := � ∗+SQ. We have

(�−)∗ (OF(H)) ∼=
((

L ⊥
P /LP

)
⊗ LP

)∨

and

(�+)∗ (OF(h)) ∼= S ∨
Q ,

whose determinants are given by OP(2h) and OQ(H) respectively. Since ωP ∼= OP(−4h),
ωQ ∼= OQ(−3H), and ωF ∼= OF(−2h − 2H), we have ωV− ∼= OV− , ωV+ ∼= OV+ , and
ωV ∼= OV(−h − H).
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Recall from [3] that

Db(P) = 〈OP(−2h),OP(−h),OP,OP(h)〉, (2.3)

and from [17] (cf. also [14]) that

Db(Q) = 〈OQ(−H),S ∨
Q (−H),OQ,OQ(H)〉.

Since ϕ± are blow-ups along the zero-sections, it follows from [20] that

Db(V) = 〈ι∗� ∗−Db(P),�−(Db(V−))〉 (2.4)

and

Db(V) = 〈ι∗� ∗+Db(Q),�+(Db(V+))〉, (2.5)

where

�− := ((−) ⊗ OV(H)) ◦ ϕ∗− : Db(V−) → Db(V)

and

�+ := ((−) ⊗ OV(h)) ◦ ϕ∗+ : Db(V+) → Db(V).

By abuse of notation, we use the same symbol for an object of Db(F) and its image in
Db(V) by the push-forward ι∗. Equations 2.3 and 2.4 give

Db(V) = 〈OF(−2h),OF(−h),OF,OF(h),�−(Db(V−))〉.
Since ωV ∼= OV(−h−H), by mutating the first term to the far right, and then �−(Db(V−))

one step to the right, we obtain

Db(V) = 〈OF(−h),OF,OF(h),OF(−h + H),�1(D
b(V−))〉,

where

�1 := R〈OF(−h+H)〉 ◦ �−.

In the sequel, we will use the following fact.

Lemma 2.1 Given two vector bundles EF,FF on F, if h
(
E∨
F ⊗ FF(−h − H)

) � 0, then
we have homOV (EF,FF) � h

(
E∨
F ⊗ FF

)
.

Proof We have

homOV (EF,FF) � homOV ({EV(h + H) → EV} ,FF)

� h
({
E∨
F ⊗ FF → E∨

F ⊗ FF(−h − H)
})

� h
(
E∨
F ⊗ FF

)
.

Note that the canonical extension of OF(h) by OF(−h + H) associated with

homOV (OF(h),OF(−h + H)) � h (OF(−2h + H))

� h
(
(�+)∗OF(−2h) ⊗ OQ(H)

)

� h
(
OQ[−1])

� k[−1]
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is given by the short exact sequence Eq. 2.2. By mutating OF(−h + H) one step to the left,
OF(−h) to the far right, and then �1(D

b(V−)) one step to the right, we obtain

Db(V) = 〈OF,S ∨
F ,OF(h),OF(H), �2(D

b(V−))〉,
where

�2 := R〈OF(H)〉 ◦ �1.

One can easily see that OF(h) and OF(H) are orthogonal, so that

Db(V) = 〈OF,S ∨
F ,OF(H),OF(h),�2(D

b(V−))〉. (2.6)

By mutating �2(D
b(V−)) one step to the left, and then OF(h) to the far left, we obtain

Db(V) = 〈OF(−H),OF,S ∨
F ,OF(H),�3(D

b(V−))〉,
where

�3 := L〈OF(h)〉 ◦ �2.

We have

homOV

(
OF,S ∨

F
) � h

(
S ∨

F
) � V ∨,

and the dual of Eq. 2.1 shows that the kernel of the evaluation map OF ⊗ V ∨ → S ∨
F is

SF ∼= S ∨
F (−H). By mutating S ∨

F one step to the left, we obtain

Db(V) = 〈OF(−H),S ∨
F (−H),OF,OF(H),�3(D

b(V−))〉. (2.7)

By comparing Eq. 2.7 with Eq. 2.5, we obtain a derived equivalence

� := �!+ ◦ �3 : Db(V−)
∼−→ Db(V+),

where

�!+(−) := (ϕ+)∗ ◦ ((−) ⊗ OV(−h)) : Db(V) → Db(V+)

is the left adjoint functor of �+.

3 Flop of Type AG
4

Let P and Q be the parabolic subgroups of the simple Lie group G of type A4 associated
with the crossed Dynkin diagrams and . The corresponding homoge-
neous spaces are the Grassmannians P = Gr(2, V ), Q = Gr(3, V ), and the partial flag
variety F = PP

(∧2Q∨
P

) = PQ
(∧2SQ

)
. Here V is a 5-dimensional vector space, Q∨

P is the
dual of the universal quotient bundle on P, and SQ is the tautological rank 3 bundle on Q.
We have

(�−)∗ (OF(H)) ∼= ∧2QP

and

(�+)∗ (OF(h)) ∼= ∧2S ∨
Q ,

whose determinants are given by OP(2h) and OQ(2H) respectively. Since ωP ∼= OP(−5h),
ωQ ∼= OQ(−5H), and ωF ∼= OF(−3h − 3H), we have ωV− ∼= OV− , ωV+ ∼= OV+ and
ωV ∼= OV(−2h − 2H).

First, we adapt several lemmas in [15] to our situation. To distinguish vector bundles
which are obtained as a pull-back to F from P or Q, we put tilde on the pull-back from

Derived Equivalences for the Flops of Type C2 and AG
4 via Mutation of Semiorthogonal Decomposition 585



Q. By abuse of notation, we use the same symbol for an object of Db(F) and its image in
Db(V) by the push-forward ι∗.

Lemma 3.1 homOV

(
Q̃F,OF (h + aH)

)
� 0 for integers −4 ≤ a ≤ −2.

Proof We have

homOV

(
Q̃F,OF (h + aH)

)
� h

(
Q̃∨

F (h + aH)
)

� 0,

where the first and the second isomorphisms follow from Lemma 2.1, Borel-Bott-Weil
theorem and [15, Lemma 5.1] respectively.

Similarly, one can deduce Lemmas 3.2 and 3.3 below from [15, Lemma 5.2,
Lemma 5.3] by checking that OF ((a − 1)H), E∨

F ⊗ E ′
F ((a − 1)h − 2H), and F̃∨

F ⊗
F̃ ′
F (−2h + (a − 1)H) are acyclic as an object of Db(F).

Lemma 3.2 homOV (OF,OF (h + aH)) � 0 for integers −3 ≤ a ≤ −1.

Lemma 3.3 Let EF, E ′
F be the pull-back to F of vector bundles E, E ′ on P, and

let F̃F, F̃ ′
F be the pull-back to F of vector bundles F ,F ′ on Q. Then we have

homOV

(
EF, E ′

F (ah − H)
) � 0 and homOV

(
F̃F, F̃ ′

F (−h + aH)
)

� 0 for all integers a.

The parallel result to the following lemma was tacitly used in [15].

Lemma 3.4 As an object of Db(V), OF, Q̃F,SF, and S ∨
F are left orthogonal to

S̃ ∨
F (h − 2H) , S̃ ∨

F (h − 2H) ,OF (2h − 2H), and QF respectively.

Lemma 3.5 below and the tautological sequence show that ROFQ̃
∨
F � S̃ ∨

F and
ROFSF � QF in Db(V).

Lemma 3.5 homOV

(
Q̃∨

F ,OF

)
� V and homOV

(
SF,OF

) � V .

Again, both Lemmas 3.4 and 3.5 follow from Lemma 2.1 and Borel-Bott-Weil theorem.
Lemma 3.6 below and the exact sequences

0 → OF(h − H) → QF → Q̃F → 0

and

0 → SF → S̃F → OF(h − H) → 0

obtained in [15] show that ROF(h−H)Q̃F � QF[1] and LOF(−h+H)S̃ ∨
F � S ∨

F in Db(V).

Lemma 3.6 homOV

(
Q̃F,OF(h − H)

)
� k[−1] and homOV

(
OF(−h + H), S̃ ∨

F

)
� k.

Proof We have

homOV

(
Q̃F,OF(h − H)

)
� h

(
Q̃∨

F (h − H)
)

� k[−1],
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where the isomorphisms follow from Lemma 2.1 and Borel-Bott-Weil theorem. Similarly,
we have

homOV

(
OF(−h + H), S̃ ∨

F

)
� h

(
S̃ ∨

F (h − H)
)

� k.

Recall from [17] (cf. also [14])

Db(P) = 〈SP(−2h),OP(−2h),SP(−h),OP(−h), · · · ,SP(2h),OP(2h)〉,
and

Db(Q) = 〈OQ,QQ,OQ(H),QQ(H), · · · ,OQ(4H),QQ(4H)〉. (3.1)

Since ϕ± are blow-ups along the zero-sections, it follows from [20] that

Db(V) = 〈ι∗� ∗−Db(P), ι∗� ∗−Db(P)(h + H),�−(Db(V−))〉 (3.2)

and

Db(V) = 〈ι∗� ∗+Db(Q), ι∗� ∗+Db(Q)(h + H), �+(Db(V+))〉, (3.3)

where

�− := ((−) ⊗ OV(2H)) ◦ ϕ∗− : Db(V−) → Db(V)

and

�+ := ((−) ⊗ OV(2h)) ◦ ϕ∗+ : Db(V+) → Db(V).

We write Oi,j := OF(ih+jH). Equations 3.1 and 3.3 give a semiorthogonal decomposition
of the form

Db(V) = 〈O0,0, Q̃0,0,O0,1, Q̃0,1,O0,2, Q̃0,2,O0,3, Q̃0,3,O0,4, Q̃0,4

O1,1, Q̃1,1,O1,2, Q̃1,2,O1,3, Q̃1,3,O1,4, Q̃1,4,O1,5, Q̃1,5,�+(Db(V+))〉.
Since ωV ∼= OV(−2h − 2H), by mutating the first five terms to the far right, and then
�+(Db(V+)) five steps to the right, we obtain

Db(V) = 〈Q̃0,2,O0,3, Q̃0,3,O0,4, Q̃0,4,O1,1, Q̃1,1,O1,2, Q̃1,2,O1,3

Q̃1,3,O1,4, Q̃1,4,O1,5, Q̃1,5,O2,2, Q̃2,2,O2,3, Q̃2,3,O2,4, �1(D
b(V+))〉,

where

�1 := R〈O2,2,Q̃2,2,O2,3,Q̃2,3,O2,4〉 ◦ �+.

One can easily see that O1,1 is orthogonal to O0,3, Q̃0,3, O0,4, and Q̃0,4 by Lemmas 3.1
and 3.2, so that

Db(V) = 〈Q̃0,2,O1,1,O0,3, Q̃0,3,O0,4, Q̃0,4, Q̃1,1,O1,2, Q̃1,2,O1,3

Q̃1,3,O2,2,O1,4, Q̃1,4,O1,5, Q̃1,5, Q̃2,2,O2,3, Q̃2,3,O2,4, �1(D
b(V+))〉.

By mutating Q̃0,2, Q̃1,3, Q̃1,1, and Q̃2,2 one step to the right, we obtain by Q̃1,1 ∼= Q̃∨
1,2,

Lemmas 3.5, and 3.6

Db(V) = 〈O1,1,Q0,2,O0,3, Q̃0,3,O0,4, Q̃0,4,O1,2, S̃
∨

1,2, Q̃1,2,O1,3

O2,2,Q1,3,O1,4, Q̃1,4,O1,5, Q̃1,5,O2,3, S̃
∨

2,3, Q̃2,3,O2,4,�1(D
b(V+))〉.

By mutating O1,2 and O2,3 four steps to the left, we obtain by Lemmas 3.1, 3.2, and 3.6

Db(V) = 〈O1,1,Q0,2,O1,2,O0,3,Q0,3,O0,4, Q̃0,4, S̃
∨

1,2, Q̃1,2,O1,3

O2,2,Q1,3,O2,3,O1,4,Q1,4,O1,5, Q̃1,5, S̃
∨

2,3, Q̃2,3,O2,4,�1(D
b(V+))〉.
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One can easily see that S̃ ∨
1,2 is orthogonal to O0,4 and Q̃0,4 by Lemmas 3.4, so that

Db(V) = 〈O1,1,Q0,2,O1,2,O0,3,Q0,3, S̃
∨

1,2,O0,4, Q̃0,4, Q̃1,2,O1,3

O2,2,Q1,3,O2,3,O1,4,Q1,4, S̃
∨

2,3,O1,5, Q̃1,5, Q̃2,3,O2,4,�1(D
b(V+))〉.

By mutating O0,3 and O1,4 two steps to the right, O1,3 and O2,4 three steps to the left, and
then O0,4 and O1,5 two steps to the right, we obtain by Lemmas 3.5 and 3.6

Db(V) = 〈O1,1,Q0,2,O1,2,S0,3,S
∨

1,2,O0,3,O1,3,S0,4,S
∨

1,3,O0,4

O2,2,Q1,3,O2,3,S1,4,S
∨

2,3,O1,4,O2,4,S1,5,S
∨

2,4,O1,5,�1(D
b(V+))〉.

By mutating O1,1 to the far right, and then �1(D
b(V+)) one step to the right, we obtain

Db(V) = 〈Q0,2,O1,2,S0,3,S
∨

1,2,O0,3,O1,3,S0,4,S
∨

1,3,O0,4,O2,2

Q1,3,O2,3,S1,4,S
∨

2,3,O1,4,O2,4,S1,5,S
∨

2,4,O1,5,O3,3,�2(D
b(V+))〉,

where

�2 := R〈O3,3〉 ◦ �1.

By Lemmas 3.2, 3.3, and 3.4, we obtain

Db(V) = 〈Q0,2,O1,2,S
∨

1,2,O2,2,S0,3,O0,3,O1,3,S
∨

1,3,Q1,3,O2,3

S ∨
2,3,O3,3,S0,4,O0,4,S1,4,O1,4,O2,4,S

∨
2,4,S1,5,O1,5, �2(D

b(V+))〉.
By mutating �2(D

b(V+)) ten steps to the left, and then last ten terms to the far left, we
obtain

Db(V) = 〈S ∨
0,1,O1,1,S−2,2,O−2,2,S−1,2,O−1,2,O0,2,S

∨
0,2,S−1,3,O−1,3

Q0,2,O1,2,S
∨

1,2,O2,2,S0,3,O0,3,O1,3,S
∨

1,3,Q1,3,O2,3, �3(D
b(V+))〉,

where

�3 := L〈S ∨
2,3,O3,3,S0,4,O0,4,S1,4,O1,4,O2,4,S

∨
2,4,S1,5,O1,5〉 ◦ �2.

By Lemma 3.3, we obtain

Db(V) = 〈S ∨
0,1,O1,1,S−2,2,O−2,2,S−1,2,O−1,2,O0,2,S

∨
0,2,Q0,2,O1,2

S ∨
1,2,O2,2,S−1,3,O−1,3,S0,3,O0,3,O1,3,S

∨
1,3,Q1,3,O2,3, �3(D

b(V+))〉.
By mutating Q0,2 and Q1,3 two steps to the left, the first two terms to the far right, and then
�3(D

b(V+)) two steps to the right, we obtain by S ∨
0,0 � S1,0, Lemmas 3.4, and 3.6

Db(V) = 〈S−2,2,O−2,2,S−1,2,O−1,2,S0,2,O0,2,S1,2,O1,2,S2,2,O2,2

S−1,3,O−1,3,S0,3,O0,3,S1,3,O1,3,S2,3,O2,3,S3,3,O3,3,�4(D
b(V+))〉,(3.4)

where

�4 := R〈S ∨
2,3,O3,3〉 ◦ �3.

By comparing Eq. 3.4 with Eq. 3.2, we obtain a derived equivalence

� := �!− ◦ �4 : Db(V+)
∼−→ Db(V−),

where

�!−(−) := (ϕ−)∗ ◦ ((−) ⊗ OV(−2H)) : Db(V) → Db(V−)

H. Morimura588



is the left adjoint functor of �−.

4 Mukai Flop

For n ≥ 2, let P and Q be the maximal parabolic subgroups of the simple Lie group of type
An associated with the crossed Dynkin diagrams and . The corresponding
homogeneous spaces are the projective spaces P = PV, Q = PV ∨, and the partial flag
variety F = F (1, n; V ), where V is an (n + 1)-dimensional vector space. Since ωP ∼=
O(−(n + 1)h), ωQ ∼= O(−(n + 1)H), and ωF ∼= O(−nh − nH), we have ωV− ∼= OV− ,

ωV+ ∼= OV+ , and ωV ∼= O(−(n − 1)h − (n − 1)H).

Lemma 4.1 OF(−ih+ jH) andOF(−(i +1)h+ (j −1)H) are acyclic for 1 ≤ j ≤ n−1
and 1 ≤ i ≤ n − j .

Proof Since j − n ≤ −i ≤ −1 and j − n − 1 ≤ −i − 1 ≤ −2, the derived push-foward
of OF(−ih + jH) and OF(−(i + 1)h + (j − 1)H) vanish by [9, Exercise III.8.4] unless
i = n − 1 and j = 1, in which case the acyclicity of OF(−nh) is obvious.

Lemma 4.2 homOV (OF(ih − jH),OF) � 0 for 1 ≤ j ≤ n − 1 and 1 ≤ i ≤ n − j .

Proof We have

homOV (OF(ih − jH),OF) � h ({OF(−ih + jH) → OF(−(i + 1)h + (j − 1)H)}) ,

which vanishes by Lemma 4.1.

Recall from [3] that

Db(P) = 〈OP,OP(h), · · · ,OP(nh)〉 (4.1)

and

Db(Q) = 〈OQ,OQ(H), · · · ,OQ(nH)〉. (4.2)

Since ϕ± are blow-ups along the zero-sections, it follows from [20] that

Db(V) = 〈ι∗� ∗−Db(P), · · · , ι∗� ∗−Db(P) ⊗ OV((n − 2)H),�−(Db(V−))〉 (4.3)

and

Db(V) = 〈ι∗� ∗+Db(Q), · · · , ι∗� ∗+Db(Q) ⊗ OV((n − 2)h),�+(Db(V+))〉, (4.4)

where

�− := ((−) ⊗ OV((n − 1)H)) ◦ ϕ∗− : Db(V−) → Db(V)

and

�+ := ((−) ⊗ OV((n − 1)h)) ◦ ϕ∗+ : Db(V+) → Db(V).

We write Oi,j := OF(ih+jH). Equations 4.1 and 4.3 give a semiorthogonal decomposition
of the form

Db(V) = 〈A0,�−(Db(V−))〉
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where A0 is given by

O0,0 O1,0 · · · On−2,0 On−1,0 On,0
O1,1 · · · On−2,1 On−1,1 On,1 On+1,1

. . .
...

...
...

...
. . .

On−2,n−2 On−1,n−2 On,n−2 On+1,n−2 · · · O2n−2,n−2.

(4.5)

Note from Lemma 4.2 that there are no morphisms from right to left in Eq. 4.5. Since
ωV ∼= O−(n−1),−(n−1), by mutating first

O0,0 O1,0 · · · On−2,0
O1,1 · · · On−2,1

. . .
...

On−2,n−2

to the far right, and then �−(Db(V−)) to the far right, we obtain

Db(V) = 〈A1, �1(D
b(V−))〉,

where

�1(D
b(V−)) := R〈On−1,n−1,··· ,O2n−3,2n−3〉 ◦ �−

and A1 is given by

On−1,0 On,0
On−1,1 On,1 On+1,1

...
...

...
. . .

On−1,n−2 On,n−2 On+1,n−2 · · · O2n−3,n−2 O2n−2,n−2
On−1,n−1 On,n−1 On+1,n−1 · · · O2n−3,n−1

On,n On+1,n · · · O2n−3,n

On+1,n+1 · · · O2n−3,n+1
. . .

...
O2n−3,2n−3.

By mutating �1(D
b(V−)) one step to the left, and then O2n−2,n−2 to the far left, we obtain

Db(V) = 〈A2, �2(D
b(V−))〉, (4.6)

where

�2(D
b(V−)) := LO2n−2,n−2 ◦ �1
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and A2 is given by

On−1,−1
On−1,0 On,0
On−1,1 On,1 On+1,1

...
...

...
. . .

On−1,n−2 On,n−2 On+1,n−2 · · · O2n−3,n−2
On−1,n−1 On,n−1 On+1,n−1 · · · O2n−3,n−1

On,n On+1,n · · · O2n−3,n

On+1,n+1 · · · O2n−3,n+1
. . .

...
O2n−3,2n−3.

By comparing Eq. 4.6 with Eqs. 4.2 and 4.4, we obtain a derived equivalence

� := (ϕ+)∗ ◦ ((−) ⊗ O−(2n−2),0) ◦ �2 : Db(V−)
∼−→ Db(V+).

5 Standard Flop

For n ≥ 1, let P and Q be the maximal parabolic subgroups of the semisimple Lie group
G = SL(V ) × SL(V ∨) associated with the crossed Dynkin diagram ⊕
and ⊕ . The corresponding homogeneous spaces are the projective spaces
P = PV , Q = PV ∨, and their product F = PV × PV ∨. Since ωP ∼= O(−(n + 1)h),
ωQ ∼= O(−(n + 1)H), and ωF ∼= O(−(n + 1)h − (n + 1)H), we have ωV− ∼= OV− ,
ωV+ ∼= OV+ , and ωV ∼= O(−nh − nH).

Lemma 5.1 homOV (OF(ih − jH),OF) � 0 for 1 ≤ j ≤ n − 1 and 1 ≤ i ≤ n − j .

Proof We have

homOV (OF(ih − jH),OF) � h ({OF(−ih + jH) → OF(−(i + 1)h + (j − 1)H)}) ,

which vanishes for 1 ≤ i ≤ n − j ≤ n − 1.

It follows from [20] that

Db(V) = 〈ι∗� ∗−Db(P), · · · , ι∗� ∗−Db(P) ⊗ O((n − 1)(h + H)),�−(Db(V−))〉 (5.1)

and

Db(V) = 〈ι∗� ∗+Db(Q), · · · , ι∗� ∗+Db(Q) ⊗ O((n − 1)(h + H)),�+(Db(V+))〉, (5.2)

where

�− := (−) ⊗ OV(n(h + H)) ◦ ϕ∗− : Db(V−) → Db(V)

and

�+ := (−) ⊗ OV(n(h + H)) ◦ ϕ∗+ : Db(V+) → Db(V).

We write Oi,j := OF(ih+jH). Equations 4.1 and 5.1 give a semiorthogonal decomposition
of the form

Db(V) = 〈A0,�−(Db(V−))〉
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where A0 is given by

O0,0 O1,0 · · · On−2,0 On−1,0 On,0
O1,1 · · · On−2,1 On−1,1 On,1 On+1,1

. . .
...

...
...

...
. . .

On−2,n−2 On−1,n−2 On,n−2 On+1,n−2 · · · O2n−2,n−2
On−1,n−1 On,n−1 On+1,n−1 · · · O2n−2,n−1 O2n−1,n−1.

(5.3)

Note from Lemma 5.1 that there are no morphisms from right to left in Eq. 5.3. Since
ωV ∼= OV(−nh − nH), by mutating first

O0,0 O1,0 · · · On−2,0
O1,1 · · · On−2,1

. . .
...

On−2,n−2

to the far right, and then �−(Db(V−)) to the far right, we obtain

Db(V) = 〈A1, �1(D
b(V−))〉,

where

�1(D
b(V−)) := R〈On,n,··· ,O2n−2,2n−2〉 ◦ �−

and A1 is given by

On−1,0 On,0
On−1,1 On,1 On+1,1

...
...

...
. . .

On−1,n−1 On,n−1 On+1,n−1 · · · O2n−2,n−1 O2n−1,n−1
On,n On+1,n · · · O2n−2,n

On+1,n+1 · · · O2n−2,n+1
. . .

...
O2n−2,2n−2.

By mutating �1(D
b(V−)) one step to the left, and then O2n−1,n−1 to the far left, we obtain

Db(V) = 〈A2, �2(D
b(V−))〉, (5.4)

where

�2(D
b(V−)) := LO2n−1,n−1 ◦ �1

and A2 is given by

On−1,−1
On−1,0 On,0
On−1,1 On,1 On+1,1

...
...

...
. . .

On−1,n−1 On,n−1 On+1,n−1 · · · O2n−2,n−1
On,n On+1,n · · · O2n−2,n

On+1,n+1 · · · O2n−2,n+1
. . .

...
O2n−2,2n−2.
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By comparing Eq. 5.4 with Eqs. 4.2 and 5.2, we obtain a derived equivalence

� := (ϕ+)∗ ◦ ((−) ⊗ O−(2n−1),0) ◦ �2 : Db(V−)
∼−→ Db(V+).

Remark 1 The way of presenting our proof in Section 4 and 5 is called chess game by some
authors [12, 23].
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