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Abstract

The present Thesis aims to deepen the understanding of the physics of strongly-correlated systems
along diverse directions with a common denominator, namely a focus on the physical role played by
the collective modes shaping quantum many-body correlations. This investigation has been mostly led
through the heuristic application of the Quantum Gutzwiller Approach, a recently developed theory of
the quantised excitations above the Gutzwiller approximation for strongly-interacting systems on a
lattice.

In the first place, the intertwining between quantum correlations and collective effects is explored
in the context of Bose-Hubbard models, intended both as simple yet highly non-trivial realisations
of complex many-body scenarios, and as controllable environments for the quantum simulation
of impurity problems. In particular, we are able to provide a comprehensive and semi-analytical
description of quantum fluctuations across the critical regimes induced by the proximity of a Mott
transition (Mottness), ranging from accurate predictions for the superfluid density and pair correlations
across quantum critical regimes to the Andreev-Bashkin effect in a two-component bosonic mixture.

As case studies for the effectiveness and flexibility of our approach, we give a detailed account of
the rich behaviours of a quantum impurity, either fixed or itinerant, immersed in a Bose-Hubbard
environment, showing that both the decoherence dynamics of spinful particle and the resulting
Bose polaron in the second case are extremely sensitive probes of the type of critical fluctuations
experienced by the surrounding system. Additionally, we extend our analysis of quantum fluctuations
to the Fermi-Hubbard model, where we uncover the interplay between low-energy quasiparticles and
bosonic elementary excitations in determining two-particle correlations.

A more complex physical scenario addressed in this Thesis is represented by driven-dissipative
interacting systems, which find a state-of-the-art technological implementation in circuit QED platforms,
among others. Inspired by the experimental interest in these systems as a potential toolbox for the
generation of exotic quantum states of light, we consider a strongly-correlated fluid of photons on a
lattice stabilised via incoherent drive and dissipation, and examine its collective fluctuations across
the out-of-equilibrium insulator-to-superfluid transition of the system. Specifically, establishing a
conceptual parallelism with our approach to fluctuations at equilibrium, we develop a linear-response
theory of the excitations on top of the Gutzwiller stationary state of the Lindblad dynamics, and
characterise their physical role in quantum observables and response functions. Taking advantage
of our formalism, we describe also dynamical instabilities and novel physical regimes arising in the
ultrastrong coupling limit of the superfluid phase. Among the most remarkable results, we bring to
light the paradoxical nature of the Mott-like insulating phase of the system, whose peculiar one-body
dynamical fluctuations are shown to echo the behaviour of a lasing state.

Encompassing diverse modern domains of many-body physics, our investigation goes in the
direction of solidifying the interpretation of collective modes as fundamental actors in correlation-
induced phenomena under a unified physical picture.
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Motivation and plan of the thesis

Ubiquitously present in the numerous fields of condensed matter physics, collective excitations are
abstract physical entities which do not incorporate individual particles, but involve a cooperative and
wave-like motion of many particles simultaneously. Ergo, the very concept of collective mode represents
the nucleus of the many-body problem, building on the general idea that describing the physics of
many interacting objects cannot overlook their mutual correlations, even when the latter are weak. In
the realm of quantum systems, typical examples of collective effects include modes of atomic vibrations
(phonons), magnetic oscillations (magnons), and composite electronic objects (excitons and Cooper
pairs). From an experimental perspective, understanding the dynamics of these modes has far-reaching
implications, since collective excitations give direct access to the intrinsic strength and space-time
character of quantum correlations. At the same time, collective behaviours lie at the origin of an
uncountable number of phenomena, being the mediators of dynamical instabilities, phase transitions,
and more elusive crossovers. Besides their fundamental relevance, harnessing collective excitations
appear to be also promising and flexible tools for future technological applications, especially in
relation to energy warehousing strategies and health sciences, as well as in the rapidly growing field
of quantum information and computing as regards data storage and signal processing protocols. In
the latter case, trailblazing goals include the engineering of novel devices where collective modes can
be efficiently generated, manipulated, and detected [2–4], similarly to what occurs in electronics and
photonics with more physically intuitive objects as electrons and photons, respectively.

In this Thesis, we take into consideration the collective modes problem in the rich landscape
of quantum many-body lattice systems and, in order to deal with the challenging complexity of
such scenarios, we propose novel methodologies to access quantum fluctuations with a minimal
computational effort based on a simple yet effective theory of collective excitations themselves. In doing
so, we will start from the seminal lesson of Bogoliubov on low-energy excitations of weakly-interacting
degenerate systems [5, 6] to propose a more general scheme designed for strong correlations. Primary
tool of this theoretical operation will be the so-called Gutzwiller approximation [7–11], which has
been proven to interpolate between diverse interaction regimes in a broad range of physical situations,
ranging from e.g. the description of quantum critical systems [12, 13] to time-dependent problems [14,
15] and dissipative processes [16, 17]. More specifically, in the same way as Bogoliubov’s theory takes
into account small fluctuations on top of a macroscopic coherent field describing the whole system,
our scheme aims at capturing (small) quantum fluctuations living above the Gutzwiller wave function,
which is assumed to be a sort of fictitious condensate of the effective bosonic degrees of freedom of the
system.

In addition to probing the footprint of different manifestations of strong correlations in the collective
behaviour of a many-body system, the common denominator of all the applications illustrated in this
Thesis is the special attention paid to the essential features of Mottness in the exemplary case of Hubbard
models, intended as a paradigm of the impact of strong interactions on the quantum-coherent character
of a lattice system. Indeed, aside from analysing in detail the spectral properties of Mott insulating
regimes, the present Thesis has the goal of addressing more fundamental questions concerning the
influence of Mott localisation on the elementary excitations of the surrounding quantum-degenerate
(superfluid) or metallic phases and, most importantly, on how collective effects mould actual quantum
observables of common interest. In this respect, we will illustrate that specific types of quantum
correlations, comprising i.e. the superfluid density in bosonic systems and dynamical correlations to
mention a few, can represent accurate probes of the structural changes of collective modes due to strong



correlations. Confirming long-standing physical intuitions [18], this will be shown to particularly apply
to the state of quantum impurities interacting with the excitations of correlated environments realised
in ultracold atomic gases, a scenario that naturally generalises the archetypal electron-phonon coupling
occurring in real materials. From a more fundamental point of view, we will also spot several curious
analogies between the collective modes of the bosonic and fermionic formulations of the Hubbard
model, implicitly suggesting the existence of a close relationship between the two manifestations
of Mottness. A consistent part of the Thesis will be also devoted to show how the introduction of
engineered dissipation mechanisms strongly modifies the Hubbard scenario at equilibrium in the
presence of strong correlations. The out-of-equilibrium competition between coherence and interactions
will be examined in the thriving context of driven-dissipative arrays of optical cavities, where the
problem of stabilising insulating phases of the Mott class is an experimental challenge that has attracted
an enormous attention in recent years [19–25]. Here, both the Mott state and its opponent (superfluid)
phase will be shown to have surprising collective properties, which in the former case translate into a
striking discrepancy with respect to the dynamical correlations of a standard Mott insulator.

The Thesis is organised in two distinct Parts, revolving around different but closely related research
directions inspired by the above motivations. Part I deals with the development of the Quantum
Gutzwiller Approach in the context of Hubbard models at equilibrium and, in the bosonic case, its
heuristic application to the study of modern impurity problems in a strongly-correlated environment.
Part II is dedicated to the physics of out-of-equilibrium quantum fluids of light and, in particular,
the collective dynamics of a driven-dissipative lattice of strongly-interacting photons. For the sake of
readability, each Part is divided into self-contained Chapters focusing on different yet linked topics and
whose comprehension does not require any specific reading order – with the exclusion of Chapter 1 of
Part I, introducing the reader to the Quantum Gutzwiller Approach framework. We also anticipate that
each Chapter opens with a prefacing Section and ends with a set of conclusive observations. Finally,
each Part is closed by a proper Conclusion, as we detail below. Given their volume, this organisation of
the Thesis contents has the purpose of giving particular emphasis to the original results discussed
herein.

Part I is organised as follows. We preface our discussion with an introduction to the Quantum
Gutzwiller Approach for lattice bosons in Chapter 1, illustrating its application to the single-band
Bose-Hubbard model. The method is shown to give accurate predictions for non-trivial quantum
correlations, ranging from the coherence function to the superfluid density and density fluctuations,
across the Mott-to-superfluid transition of the model. Also, the possibility of investigating non-linear
effects involving the collective modes of the system is explored. In Chapter 2, the Quantum Gutzwiller
Approach is generalised to the binary Bose-Hubbard model. In this case, particular importance is given
to the characterisation of different superfluid states and the estimation of density/spin correlations.
In Chapters 3 and 4, the predictive power of the method is employed to investigate the physics of
both static and mobile impurities immersed in the Bose-Hubbard model. In the former case, the
dephasing dynamics of the impurity is qualified from an open quantum system perspective, while the
spectral properties of the resulting polaronic quasiparticle are analysed in the latter. In both cases, a
detailed account of impurity physics across diverse strongly-interacting and quantum critical regimes
is provided. In Chapter 5 the Quantum Gutzwiller Approach is discussed in the framework of the
Fermi-Hubbard model in the paramagnetic sector. Besides uncovering the physical role of the collective
modes in different observables, the method is also shown to provide a physical understanding of the
interaction between such modes and the fermionic quasiparticles of the model. Concluding remarks
and future perspectives are finally considered in Chapter 6.

Part II has the following structure. In Chapter 1, we give a brief introduction to out-of-equilibrium
superfluids, with particular reference to their realisation in excitation-polariton condensates. A



thorough description of the physical properties of these systems is provided, highlighting in particular
those dynamical features which link with the driven-dissipative scenario discussed in Chapter 2. Here,
we analyse the collective excitations and Gaussian fluctuations of a strongly-interacting quantum
fluid of light realised via non-Markovian pumping and dissipation in a circuit QED configuration.
Starting from a Gutzwiller approximation for the non-equilibrium stationary state and the excitation
spectrum, we derive a unified picture of the insulating and superfluid phases made possible by our
driven-dissipative protocol, suggesting its potential in realising novel forms of quantum correlations
inaccessible at equilibrium. We conclude in Chapter 3 with a summary of the main results and
intriguing open questions, as well as an outlook to future investigations.
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This Chapter is a review of selected results of the following works and publications, integrated
by unpublished results.

▶ Fabio Caleffi, M. Capone, C. Menotti, I. Carusotto, and A. Recati, Quantum
fluctuations beyond the Gutzwiller approximation in the Bose-Hubbard model, Master’s
Degree Thesis (24 October 2018)

▶ Fabio Caleffi, M. Capone, C. Menotti, I. Carusotto, and A. Recati, Quantum
fluctuations beyond the Gutzwiller approximation in the Bose-Hubbard model, Physical
Review Research 2, 033276 (20 August 2020)

1.1 Introduction

The Hubbard model is one of the most celebrated models of quantum condensed
matter theory. In all probability, the main reason lies in widespread belief that its
two-dimensional fermionic version holds the key to understand how high-temperature
superconductivity emerges upon doping a Mott insulator [26, 27]. Its central feature is
the competition between the kinetic energy term, which favours delocalized states, and
the local Coulomb repulsion, which on the contrary favours localization [28, 29]. In the
two-dimensional fermionic model, this physics is however somewhat hidden by the
presence of other phases bridging between the Mott insulator, the superconducting and
the metallic states, including the celebrated pseudogap [30] and charge-ordered [31]
phases.

The archetypal competition between the kinetic and interaction energies finds a
particularly neat realisation in the bosonic version of the model, the so-called Bose-
Hubbard (BH) model [32], where it manifests itself as a direct quantum phase transition
between a superfluid and a Mott insulator. As a consequence of its paradigmatic
nature, this transition has attracted an enormous experimental interest in the last years,
fostering implementations with cold atoms trapped in optical lattices [33–40] and, more
recently, implementations with photons in the novel context of non-equilibrium phase
transitions [25, 41, 42], around which Part II of the Thesis will revolve.

On the theoretical side, a very popular approach to the BH model is based on the
Gutzwiller ansatz [11, 43]. While many important features of both the superfluid and
the insulating phases are accurately captured by the Gutzwiller wave function, its local,
site-factorized form typically makes physical quantities involving off-site quantum
correlations to be missed. In the weakly-interacting regime, a Bogoliubov approach
for the fluctuations around the mean-field Gross-Pitaevskii ground state of a dilute
Bose-Einstein Condensate (BEC) provides an accurate description of the equilibrium
state and of the excitations of the gas [40, 44], including quantum correlations between
particles [45]. In the strongly-interacting regime, however, mean-field theory and the
Bogoliubov approach based on it become clearly inadequate. The rich physics of the
strongly interacting BH model across the Mott-superfluid transition and specifically in
the insulating phase has been attacked through a number of different approaches, rang-

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033276
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033276
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ing from semi-analytical methods as RPA [46–48], Slave Boson (SB) representations [49,
50] and the time-dependent Gutzwiller approximation [51, 52] to numerical techniques
including Quantum Monte Carlo (QMC) methods [53–56], bosonic Dynamical Mean-
Field Theory (DMFT) [57–59] and Numerical Renormalization Group (NRG) [60, 61].
All these methods provide qualitatively concordant results on the phase diagram as
well as on the spectral properties of the model. The collective phonon excitations of
the Bogoliubov theory of dilute condensates are replaced by a multi-branch spectrum
of excitations [48, 51, 52, 62], containing in particular the gapless Goldstone mode
and a gapped (improperly refereed to as Higgs) mode on the superfluid side and the
particle/hole excitations in the insulating phase (see e.g. [52, 63, 64]).

In spite of these remarkable advances, a complete, easily tractable and physically
intuitive description of the collective excitations and their fingerprint on quantum
observables across the whole phase diagram of the model is still lacking. In particular,
the development of non-local correlations across the Mott-superfluid transition and the
proper characterization of the strongly-interacting superfluid state and of its excitation
modes remain challenging problems.

In this introductory Chapter, we combine the successful features of the Gutzwiller
and Bogoliubov approaches to develop a new strategy to systematically quantize
fluctuations on top of the time-dependent Gutzwiller ansatz, which will be termed
as the Quantum Gutzwiller Approach (QGA) in the rest of the Thesis. In spite of the
local nature of the Gutzwiller state – see Eq. (5.1) below –, its accurate description of
the excitations and, in particular, of their zero-point fluctuations allows to correctly
reproduce the non-local many-body correlations in the different phases, as well as
the different critical behaviours of the commensurate and incommensurate phase
transitions [32, 63]. Time-dependent Gutzwiller approaches addressing the linear-
response dynamics in the BH model [51] and in lattice Fermi systems [65] have been
recently developed. The advantage of our formalism is that it directly includes quantum
fluctuations of the collective modes and could naturally incorporate those effects beyond
linearised fluctuations that stem from interactions between the normal modes of the
system. This is essential to successfully tackle problems such as the finite lifetime
of quasiparticles via Beliaev-like non-linear interaction processes and the quantum
correlations between the products of their decay, a subject which will be touched in the
last Section of this Chapter.

The Chapter is organized as follows. Section 1.2 is devoted to the derivation of the
bosonic formulation of the QGA for the BH model. The original features of the method
are highlighted and its advantages and disadvantages are discussed in comparison to
other approaches. In Section 1.3, we present the predictions of the quantum Gutzwiller
method for observables in which local and non-local quantum correlations strongly
modify the standard mean-field picture, such as two-point correlation functions,
superfluid density and pair correlations. We conclude in Section 1.5 with an outlook
on possible extensions of the QGA formalism, laying the premises for the theoretical
applications discussed in the next Chapters.
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Gutzwiller
ansatz

1.2 Quantum Gutzwiller theory of the Bose-Hubbard model

1.2.1 Lagrangian formulation within the Gutzwiller ansatz

Let us consider the BH model on a d-dimensional square lattice with lattice spacing a,
governed by the Hamiltonian

ĤBH ≡ −J
∑
⟨r,s⟩

(
â†

r âs + H.c.
)

+ U

2

∑
r

n̂r (n̂r − 1) − µ
∑

r
n̂r , (1.1)

where J is the hopping energy, U the on-site interaction and µ the chemical potential,
while ⟨r, s⟩ labels all the pairs of nearest-neighboring sites. The annihilation and creation
operators of a bosonic particle at site r are âr and â†

r respectively, with n̂r ≡ â†
r âr

being the local density operator. In the remainder of the Thesis, we will resort to the
notation z = 2 d to conveniently indicate the coordination number of the square lattice;
additionally, we will impose natural physical units as ℏ = a = 1.

We introduce the bosonic Gutzwiller ansatz [11, 43, 51]

|ΨG⟩ ≡
⊗

r

∑
n

cn(r) |n, r⟩ , (1.2)

having the form of the most general site-factorised wave function, where the complex
amplitudes cn(r) are variational parameters with normalisation condition

∑
n |cn(r)|2 =

1. By the ansatz (1.2), we can reformulate the BH model in terms of the following
Lagrangian functional,

L[c, c∗] ≡ ⟨ΨG| i ∂t − ĤBH |ΨG⟩ (1.3)

= i

2
∑
r,n

[c∗
n(r) ċn(r) − c.c.] + J

∑
⟨r,s⟩

[ψ∗(r)ψ(s) + c.c.] −
∑
r,n

Hn |cn(r)|2 .

In the previous equation, the dot indicates the temporal derivative,

Hn ≡ U

2 n (n− 1) − µn (1.4)

gathers the on-site terms of the Gutzwiller energy functional, and

ψ(r) ≡ ⟨âr⟩ =
∑

n

√
n c∗

n−1(r) cn(r) (1.5)

is the mean-field order parameter. Within such formulation, the conjugate momenta
of the parameters cn(r) are given by their complex conjugates c∗

n(r) = ∂L/∂ċn(r).
The classical Euler-Lagrange equations associated to the Lagrangian (1.3) are a simple
instance of the so-called Time-Dependent Gutzwiller Equations (TDGE) for a bosonic
system, as derived e.g. in [46], and from which the excitation spectrum can be determined
via linear response theory [51]. In a uniform system, the stationary solutions are
homogeneous: in particular, the system is in a Mott Insulator (MI) state if ψ(r) = 0
and in a Superfluid (SF) state otherwise. Moreover, we recall here that the TDGE are
identical to the Gross-Pitaevskii Equation (GPE) of a weakly-interacting condensate
when U/J ≪ 1 and, at the same time, describe the dynamics of a perfect Mott state
(J = 0) exactly [51].
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Figure 1.1: (a) Mean-field Gutzwiller phase diagram around the ⟨n̂⟩ = 1 MI lobe. The black points refer to the MI and
SF spectra shown in panels (b)-(c), while the blue and red points indicate the CI and O(2) critical points respectively. (b)
Energy spectra of hole (solid line) and particle (dashed line) excitations in the MI phase for µ/U = 0.2 and 2 d J/U = 0.03.
(c) Goldstone mode (solid line) and Higgs mode (dashed line) energy dispersion in the strongly-correlated SF phase
for µ/U = 0.2 and 2 d J/U = 0.2. (d) Excitation spectrum at the CI critical point corresponding to µ/U = 0.2 and
2 d J/U = 0.13, see the blue dot in panel (a). (e) Excitation spectrum at the O(2)-invariant critical point, see the red dot in
panel (a). Both modes become gapless and display a linear dispersion at low momenta.

The spectrum of the collective modes of the system ωα,k for d = 2 is plotted in
Figure 1.1 in different regions of the phase diagram shown in panel (a). In the MI
phase [panel (b)], the two lowest excitation branches are the gapped particle and
hole excitations. In the SF phase [panel (c)], the lowest of them becomes the gapless
Goldstone mode of the broken U(1) symmetry. The other gapped excitation is often
referred to as the Higgs mode [52, 64, 66–68] and is related to pure fluctuations of the
amplitude of the order parameter in peculiar regions of the phase diagram [52].

The quantum phase transition from the MI to the SF phase can belong to two different
universality classes [32, 63] depending on whether the transition is crossed while
changing the density – the so-called Commensurate-Incommensurate (CI) transition
[blue point in panel (a)] – or it is crossed at a fixed and commensurate filling (at the tip)
– formally known as the O(2) transition [red point in panel (a)]. At the CI transition
points on the edge of the Mott lobes, only one mode becomes gapless (the Goldstone
branch in the SF), whereas the other mode is gapped and continuously connected to
the particle or hole branch of the MI depending on the chemical potential [panel (d)].
On the other hand, at the tip critical point both the modes become gapless [panel (e)].
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1.2.2 The quantum Gutzwiller theory

In order to go beyond the Gutzwiller ansatz reviewed in the previous Subsection,
it is natural to consider how quantum (and thermal) effects populate the excitation
modes of the system and to address how they affect the observable quantities. The
key idea of the QGA is to include quantum fluctuations by building a theory of the
many-body excitations starting from the Lagrangian (1.3) via canonical quantisation [69,
70], namely promoting the coordinates of the Gutzwiller problem and their conjugate
momenta to operators and imposing equal-time canonical commutation relations,[

ĉn(r), ĉ†
m(s)

]
= δn,m δr,s . (1.6)

In analogy with the number-conserving Bogoliubov approximation for dilute BEC’s [44,
71, 72], we expand the operators ĉn(r) around their ground state values c0

n, obtained by
minimising the energy ⟨ΨG| ĤBH |ΨG⟩, as

ĉn(r) = Â(r) c0
n + δĉn(r) . (1.7)

The normalisation operator Â(r) is a functional of δĉn(r) and δĉ†
n(r) whose purpose is

to restrict the action of the Gutzwiller operators to the physical subspace, in relation
with the original normalisation constraint

∑
n ĉ

†
n(r) ĉn(r) = 1̂. By restricting to local

fluctuations orthogonal to the ground state
∑

n δĉ
†
n(r) c0

n = 0, one has

Â(r) =
[
1 −

∑
n

δĉ†
n(r) δĉn(r)

]1/2

. (1.8)

In a homogeneous system, it is convenient to work in momentum space by writing

δĉn(r) ≡ 1√
V

∑
k∈BZ

eik·r δĈn(k) , (1.9)

where V is the lattice volume and the momentum sum runs over the first Brillouin
Zone (BZ). Inserting Eqs. (1.7) and (1.9) in ⟨ΨG| ĤBH |ΨG⟩ and keeping only terms up
to the quadratic order in the fluctuations, we obtain

ĤQGA = E0 + 1
2

∑
k

[
δĈ

†(k),−δĈ(−k)
]
L̂k

[
δĈ(k)
δĈ

†(−k)

]
, (1.10)

where E0 is the mean-field ground state energy (apart from a constant shift), the vector
δĈ(k) contains the components δĈn(k), and L̂k is a pseudo-Hermitian matrix 1 of the
form

L̂k =
(

Hk Kk
−K∗

k −H∗
k

)
(1.11)

where Hk and Kk are matrix blocks of size nmax × nmax, with nmax being the chosen
truncated size of the local Fock space. We observe that the minus sign in the second
row is a crucial consequence of Bose statistics. The matrix elements of the blocks of L̂k

1 The spectral properties of matrix operators of the same class of L̂k are discussed in depth in Appendix A.1.
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QGA
Hamiltonian

are given by

Hnm
k ≡ ε0

(
ψ∗

0
√
mδn+1,m + ψ0

√
n δn,m+1

)
+
[
U

2 n (n− 1) − µn− ω0

]
δn,m

+ εk
[√
n+ 1

√
m+ 1 c0

n+1

(
c0

m+1

)∗
+

√
n

√
mc0

n−1

(
c0

m−1

)∗]
, (1.12a)

Knm
k ≡ εk

(√
n+ 1

√
mc0

n+1 c
0
m−1 +

√
n

√
m+ 1 c0

n−1 c
0
m+1

)
, (1.12b)

where εk ≡ −z J + fk with

fk ≡ 4 J
d∑

i=1

sin
(
ki

2

)2
(1.13)

is defined as the energy of a free particle on a d-dimensional lattice. The ground state
energy

ω0 ≡ −2 z J |ψ0|2 +
∑

n

Hn

∣∣∣c0
n

∣∣∣2 (1.14)

is set by the classical stationary evolution of the c0
n’s at the mean-field level and, shifting

the diagonal elements of L̂k as a consequence of the normalisation operator Â(r), is
important to assure a gapless spectrum in the SF phase. A suitable Bogoliubov rotation
of the Gutzwiller operators,

δĈn(k) =
∑

α

uα,k,n b̂α,k +
∑

α

v∗
α,−k,n b̂

†
α,−k , (1.15)

recasts the quadratic form (1.10) into a diagonal form,

ĤQGA =
∑

α

∑
k
ωα,k b̂

†
α,kb̂α,k, (1.16)

where each b̂α,k (b̂†
α,k) corresponds to a different many-body excitation mode with

frequency ωα,k, labelled by its own momentum k and branch index α. Bosonic
commutation relations between the annihilation and creation operators b̂α,k and b̂†

α,k,[
b̂α,k, b̂

†
α′,k′

]
= δk,k′ δα,α′ , (1.17)

are enforced by choosing the usual Bogoliubov normalisation condition

u∗
α,k · uβ,k − v∗

α,−k · vβ,−k = δαβ , (1.18)

where the vectors uα,k (vα,k) gather the components uα,k,n (vα,k,n). As a direct
consequence of the spectral properties of L̂k

2, the fluctuation operators δĉn(r) and
δĉ†

n(r) satisfy quasi-bosonic commutation relations,[
δĉn(r), δĉ†

m(s)
]

=
[
δn,m − c0

n

(
c0

m

)∗]
δr,s . (1.19)

2 We refer the interested reader to Appendix A.2 for a detailed discussion of commutations relations
between the quantised modes within the QGA.
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Figure 1.2: Control parameter of the theory F as defined in Eq. (1.20) plotted as a function of 2 d J/U for different values of
the lattice filling and d = 3. Dashed and solid lines indicate whether the system is in a MI state (only for ⟨n̂⟩ = 1) or in the
SF phase, respectively.

The correction term on the right-hand side of Eq. (1.19) serves to remove those unphysical
Degrees of Freedom (DoF) that are introduced by the global gauge invariance of the
Gutzwiller ansatz (1.2), namely the arbitrariness of the phase of the local wave functions
cn(r) at each site r. Result (1.19) generalises to a strongly-interacting Bose system the
formalisation of quantum fluctuations within the celebrated Bogoliubov approach on
top of a condensate in a homogeneous weakly-interacting gas [71, 72].

Even though in the next Sections we will focus only on Gaussian fluctuations, the
inclusion of terms beyond second order in the δĉn’s arising from the quartic hopping
term in Eq. (1.3) does not pose any fundamental difficulty in principle. As in standard
Bogoliubov’s theory, higher-order terms are expected to describe interactions between
collective modes and the resulting decay processes (see e.g. Section III in [73] as a
reference). We will touch upon this problem in Section 1.4, where we will investigate
the lifetime of the amplitude (Higgs) mode in the strongly-correlated regime.

1.2.3 General remarks on the accuracy of the method

The accuracy of the QGA can be quantitatively estimated by looking at the magnitude
of quantum fluctuations around the Gutzwiller mean-field state, quantified by

F ≡ 1 −
〈
Â(r)2

〉
=
∑

n

〈
δc†

n(r) δcn(r)
〉
, (1.20)

which represents the small control parameter of our theory 3. As it is illustrated in
Figure 1.2, this quantity remains always very small throughout the phase diagram,
suggesting the overall reliability of the QGA: a small value of the magnitude of quantum
fluctuations is in fact a good indication that the non-linear terms that are not included

3 Within the standard Bogoliubov approach, the small parameter controlling the accuracy of the theory
has the physical meaning of the non-condensed fraction of the gas. Here, it is a mathematical object
indicating how much the local wave functions cn(r) appearing in the Gutzwiller ansatz vary under the
effect of quantum fluctuations.
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QGA
evaluation

protocol

in Eq. (1.10) are indeed “small” and can be neglected.
In particular, for commensurate density, the quantity F approaches zero both in

the deep MI (dashed line) and in the deep SF regime, that is in both the limits where
the Gutzwiller ansatz recovers exactly the ground state of the BH model. As expected,
its maximum is located at the transition point. For non-commensurate densities, F
tends to zero in the deep SF regime (where again the Gutzwiller ansatz recovers exactly
the ground state) and eventually increases in the strongly-interacting SF regime for
decreasing J/U → 0, where the hard-core points of the system are located. Note that
this limit does not correspond to a MI and mean-field theory is not able to fully capture
the ground state.

1.2.4 Calculation of the observables

In this Subsection, we summarise the protocol that we will use to compute physical
observables within the QGA. The evaluation of the expectation value for any observable〈
Ô
[
â†

r, âr
]〉

consists in applying the following four-step procedure.

1. Determine the expression O[cn, c
∗
n] = ⟨ΨG| Ô |ΨG⟩ in terms of the Gutzwiller

parameters cn(r) and c∗
n(r).

2. Create the operator Ô
[
ĉn, ĉ

†
n

]
by replacing the Gutzwiller parameters in O[cn, c

∗
n]

by the corresponding operators ĉn(r) and ĉ†
n(r) without modifying their ordering.

3. Expand the operator Ô
[
ĉn, ĉ

†
n

]
order by order in the fluctuations δĉn(r) and

δĉ†
n(r), taking into account the dependence of the operator Â(r) on fluctuations;

the contribution of Â(r) may be of fundamental importance when higher-order
correlations become relevant.

4. For the specific case of negligible interactions between the excitation modes,
invoke Wick’s theorem to compute the expectation value of products of operators
on Gaussian states – such as ground or thermal states obtained from ĤQGA.

It must be noted that, invoking the last step of the calculation protocol, the QGA is
able to estimate the impact of non-Gaussian vertices of the collective modes on quantum
observables within a Gaussian description of the BH system and therefore goes beyond
a standard theory of quadratic fluctuations around the mean-field predictions. Aside
from the study of static correlations that we examine in the present Chapter, we
anticipate that this feature of the QGA will be of crucial importance for enriching the
physical models of static and mobile impurities immersed in a BH environment, which
will be the subjects of Chapters 3-4 of Part I respectively.

In the following, we will systematically apply this protocol to compute predictions
for both local and non-local observables; for our purposes, expectation values are
intended to be evaluated on the Bogoliubov vacuum of the collective modes, defined
by b̂α,k |Ω⟩ = 0. Furthermore, the QGA results of this Chapter are always calculated on
a d = 3 lattice of V = 253 sites as a reasonable approximation of the thermodynamic
limit, unless otherwise specified.

1.2.5 Putting the method into perspective

Before proceeding with the presentation of the results of our theory for the single-band
BH model, it is worth shortly commenting on the relation of our theory with other
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competing methods.
Our approach owes much to the time-dependent Gutzwiller method outlined in [51],

where the cn(r) parameters are regarded as C-numbers and not as operators. In the
same way as the GPE can be used together with linear response theory to obtain
information on quantum fluctuations [74], the time-dependent Gutzwiller approach
would give the same results as our method for a number of properties for which only
quadratic fluctuations are important.

When only quadratic fluctuations above the saddle-point averages are considered,
our approach to the BH model has strong similarities also to including quantum
fluctuations by Slave Boson (SB) techniques, as done comprehensively e.g. in [49, 50, 75].
One important difference from this work is however the way in which the observables
are calculated: in particular, we never rely on the microscopic reconstruction of the
original Bose operators âr through the Gutzwiller fields ĉn(r) and, from the very
beginning, the dynamical variables of our approach are the unconstrained operators
δĉn(r) and δĉ†

n(r). It is also worth mentioning that to our knowledge there are no
SB calculations of the role of quantum fluctuations in the superfluid density and
general many-body correlation functions. Even though for such quantities we expect
the SB representation and our approach to give the same results, our method appears
technically easier and more transparent. Finally, the SB approach has been shown to
properly interpolate between strong coupling and Bogoliubov approaches in calculating
the entanglement entropy [50], a property accessible to our approach, but not to the
time-dependent Gutzwiller method.

In the next Section, we will show how the QGA can reproduce both local and
non-local correlations with very high accuracy and successfully compares to QMC
calculations. Moreover, the study of time-dependent problems appears to be a straight-
forward generalisation of our formalism. This is a crucial feature compared to QMC,
which can hardly describe dynamical properties. The latter processes can be instead
attacked by means of the bosonic implementation of DMFT [57–59]: while this theory
is very accurate for the study of local quantities, it is however poorly reliable for the
analysis of non-local correlations: in this respect, our quantum approach provides an
intuitive and flexible way for integrating the physical picture of more computationally
demanding precision methods.

We conclude the discussion by clarifying that the present QGA framework, being
based on the quantisation of fluctuations on top of a variational ansatz, is not expected to
provide a reliable qualitative description of low-dimensional phenomena, comprising
e.g. the universal jump of the superfluid density at the MI-to-SF transition and
Luttinger’s physics for d = 1 at zero temperature. As a matter of fact, we find that
the control parameter F increases significantly in this limit, especially around the
critical points of the system. Therefore, our calculations in the present and following
Chapters (including the fermionic extension of the theory in Chapter 5 of Part I) will
be restricted to higher dimensions d ≥ 2, where the QGA is expected to provide a
robust approximation of the ground state. Nevertheless, on the basis of the promising
results of Section 1.4 below and the significant improvement of similar methods by
clustering solutions [76–78], we believe that our point-zero formulation of the QGA
can be potentially improved to comprise a much broader range of physical problems,
encompassing special instances of quantum correlations in low dimensions.
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1.3 Quantum correlations across the MI-to-SF transition

After having introduced the QGA and its basics, in the present Section we apply
it to the calculation of some relevant correlation functions of the BH model: (i) the
coherence function; (ii) the current-current correlation function, from which we extract
the superfluid density; (iii) the density correlation function. In order to validate
the accuracy of the method, we compare our results with the predictions of QMC
calculations, when available, finding a striking quantitative agreement.

1.3.1 Coherence function

The single-particle correlation function, also referred to as coherence function, is defined
as

g(1)(r) ≡

〈
â†

r â0
〉

〈
â†

0 â0
〉 →

〈
ψ̂†(r) ψ̂(0)

〉
〈
ψ̂†(0) ψ̂(0)

〉 , (1.21)

where the last expression is the result of the quantisation protocol outlined in the
previous Section. The effective single-particle field reads

ψ̂(r) ≡
∑

n

√
n ĉ†

n−1(r) ĉn(r) . (1.22)

Expanding ĉn(r) and ĉ†
n(r) to the lowest order in the fluctuations, one obtains

ψ̂(r) ≈
∑

n

√
n
(
c0

n−1

)∗
c0

n +
∑

n

√
n
[(
c0

n−1

)∗
δĉn(r) + c0

n δĉ
†
n−1(r)

]
= ψ0 + 1√

V

∑
α>0

∑
k

(
Uα,k b̂α,k e

i k·r + V ∗
α,k b̂

†
α,k e

−i k·r
)
,

(1.23)

where ψ0 =
∑

n

√
n
(
c0

n−1
)∗
c0

n is the order parameter in the ground state and the
one-body particle (hole) amplitudes

Uα,k ≡
∑

n

√
n+ 1

[(
c0

n

)∗
uα,k,n+1 + c0

n+1 vα,k,n

]
, (1.24a)

Vα,k ≡
∑

n

√
n+ 1

[(
c0

n+1

)∗
uα,k,n + c0

n vα,k,n+1
]

(1.24b)

satisfy the Bogoliubov normalisation [52]∑
α

(∣∣Uα,k
∣∣2 −

∣∣Vα,k
∣∣2) = 1 . (1.25)

In this way, the Bose field (1.24) satisfies the usual canonical commutation relations[
ψ̂(r), ψ̂†(s)

]
= δr,s (1.26)
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Figure 1.3: (a) Coherence function g(1)(r) for µ/U =
√

2 − 1 and 2 d J/U = 2, 3, 5, 10 going deeper into the SF phase (from
bottom to top). Solid and dashed lines refer to the QGA and Bogoliubov predictions respectively. (a’) QGA predictions of
g(1)(r) for µ/U =

√
2 − 1 and 2 d J/U = 0.2, 0.4, 0.6, 0.8, 1.0 upon approaching the O(2) critical point (from top to bottom).

(b) Change of g(1)(r) in the MI phase for µ/U = 0.2 and increasing 2 d J/U = 0.002, 0.02, 0.04, 0.08, 0.11, 0.13, (2 d J/U)c

while reaching the transition point (2 d J/U)c from inside the MI lobe (purple to blue lines). (c) g(1)(r) in the MI phase for
µ/U = (µ/U)tip =

√
2 − 1 and increasing 2 d J/U = 0.02, 0.06, 0.12, 0.16, 0.17, (2 d J/U)tip moving towards the tip of the

MI lobe (dark brown to red to gold lines). Dashed lines in panels (b)-(c) are the QGA predictions, and the (exponential and
power-law) fits are displayed as solid black lines.

up to second order in the fluctuations. At the same level of approximation, the
normalised zero-temperature one-body coherence function has the expression

g(1)(r) ≈
|ψ0|2 + V −1∑

α,k
∣∣Vα,k

∣∣2 cos (k · r)
|ψ0|2 + V −1∑

α,k
∣∣Vα,k

∣∣2 . (1.27)

In Figure 1.3(a-c) we plot the results for g(1)(r) along the different lines at constant
chemical potential traced on the phase diagram shown in Figure 1.1(a).

In the deep SF phase [panel (a)], the spectral weight is saturated by the Goldstone
mode and our prediction for g(1)(r) reduces to the result for the weakly-interacting
gas (dashed lines). In the region 2 d J/U ≤ 1 [panel (a’)] of a strongly-interacting
superfluid, the contribution of other excitation modes [48] starts to become relevant
and the Bogoliubov approach (not shown) would give much higher asymptotic values.
In the MI phase [panels (b)-(c)], the QGA is able to capture an exponentially decreasing
coherence g(1)(r) ∼ exp (−r/ξ)/rν with a finite correlation length ξ. A non-vanishing
value of ξ provides a first drastic improvement with respect to the mean-field Gutzwiller
ansatz, whose factorised form cannot predict any off-site coherence, giving g(1)

MF(r) =
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Resolving
the

universality
classes of the

BH model

(
|⟨â⟩|2 / ⟨n̂⟩

)
(1 − δr,0) + δr,0.

Furthermore, the present quantum theory is also able to capture the different critical
behaviours of the MI-to-SF transition depending on whether this is approached at
integer or non-integer filling. Crossing the SF transition from the MI phase away from
the tip of the MI lobe, the correlation length ξ of the MI grows but remains bounded
[panel (b)]. As soon as one enters the SF phase, long-range order suddenly appears as
a non-vanishing long-distance coherence,

〈
â†

r→∞ â0
〉

̸= 0: such a quantity physically
corresponds to the condensate density |ψ0|2 and continuously grows from zero as one
enters the SF phase. On the other hand, when approaching the SF phase at the tip of the
MI lobe, the correlation length ξ diverges and a power-law decay for g(1)(r) is found
exactly at the critical point [panel (c)].

This remarkable difference is related to the distinct universality class of the MI-to-SF
transition at incommensurate or commensurate filling [63]. In all the critical points of
the CI transition, either the particle or the hole excitation becomes gapless, depending
on the chemical potential; since however the non-trivial short-distance coherence of the
MI is due to virtual pairs of particle-hole excitations, the exponential decay of g(1)(r) is
dominated by the gap of the particle (or hole) excitation which remains finite. Instead,
at the critical point of the O(2) transition, both the particle and hole modes become
gapless (before turning into the Goldstone and Higgs modes on the SF side), which
explains the divergent coherence length.

We can gain further insights into this physics by a semi-analytical estimation of
g(1)(r) on the MI side of the critical transition. In fact, in this regime we have access to
a closed expression for the one-body hole amplitude VH,k, whose modulus reads 4

∣∣VH,k
∣∣2 = 1

2

[
(2n0 + 1)U + εk
ωP,k + ωH,k

− 1
]

(1.28)

and makes the only non-vanishing contribution to g(1)(r) in the MI phase. Notably,
this expression is in excellent agreement with exact numerical calculations of the
quasiparticle residue of hole excitations based on NRG techniques [60, 61]. Without
loss of generality, let us consider again the d = 3 case and move to the continuum limit
of the momentum sum yielding the numerator of Eq. (1.27),

g
(1)
MI(r) ∝ 1

(2π)3

∫
d3k

∣∣VH,k
∣∣2 ei k·r . (1.29)

At large distances r = |r| ≫ 1, we can restrict the above integral below a low-momentum
cut-off λ ∼ a−1 set by the lattice spacing, hence

g
(1)
MI(r ≫ 1) ∝ 1

(2π)2

∫ λ

0
dk k2

∫ 1

−1
d cos (θ) [f1(k) + f2(k)] ei k r cos (θ)

= 1
(2π)2 i r

∫ λ

−λ
dk k v(k) ei k r ,

(1.30)

where k = |k|. The function v(k) derives from the low-momentum expansion of
∣∣VH,k

∣∣2

4 For additional details on exact results for quantum fluctuations in the MI phase, see Appendix B.3.
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and reads
v(k) = (2n0 + 1)U − z J − ∆

k2/mr + 2 ∆ , (1.31)

where m−1
r = m−1

P + m−1
H and ∆ = ∆P + ∆H are the reduced effective mass and

combined energy gap of particle and hole excitations, respectively. Allowing λ → ∞
compatibly with the continuum limit a → 0, we obtain the simple result

g
(1)
MI(r ≫ 1) ∝ [(2n0 + 1)U − z J − ∆]mr

4π
e−r/ξMI

r
, (1.32)

where ξMI = (2 ∆mr)−1/2 is defined as the coherence length in the MI regime. More
explicitly, one can show that

ξ−2
MI ≡ 4m∆2

(2n0 + 1)U − z J
, (1.33)

where m−1 = 2J is the bare mass on the lattice. At the O(2) critical point located
at Jc, the softening of both particle and hole modes leads to ∆ ∼

√
Jc − J → 0 and

ξMI ∼ ∆−1 → ∞, explaining the natural emergence of long-range order. By contrast,
at the CI transition ∆ is a non-vanishing quantity set by the lowest-lying gapped
excitation, giving a finite coherence length as expected. We remark here that the
previous calculation is conceptually robust in the case of the CI transition, whose upper
critical dimension is Duc = 2 and is therefore well described by our Gutzwiller-based
theory.

As a last comment, it is worth noticing that our result for the coherence function (1.27)
can be obtained within the time-dependent Gutzwiller formalism [51] as the response
function of the order parameter to an external particle-hole drive. This amounts to
determine the time-dependent Gutzwiller wave function resulting from applying as
a perturbation the single-particle operator â†

r, and extracting g(1)(r) from the linear
response function related to the variation of ⟨âr⟩ (see the detailed discussion in the
GPE framework of [74]). However, the QGA provides a simpler and more intuitive
calculation procedure, not only for the estimation of g(1)(r), but also for an arbitrary class
of correlations. First and foremost, the Bogoliubov amplitudes in (5.36) are calculated
once for all and can be used to calculate the expectation value for any combination
of one-body operators. This makes the calculation of quantities like the superfluid
density, that we will discuss in the following Subsection 1.3.2, a straightforward task,
which would otherwise require quite involved calculations using the time-dependent
Gutzwiller approach. Secondly, as we will show in the next Subsection 1.3.3, there are
quantities, like the density correlation function g(2)(r), for which the contribution of
the normalisation operator Â(r) is dominant, in particular close and in the MI phase:
while in the time-dependent Gutzwiller approach the inclusion of the effect of Â(r)
would be at least a technically cumbersome task, our theory is able to account for the
order-by-order expansion of the normalisation operator in a natural way.
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1.3.2 Superfluid density

The superfluid density ns is defined through the static limit of the transverse current
response function [79, 80] of the system, namely

2 J ns = lim
qi ̸=x→0

lim
ω→0

Λxx
J (qx = 0,qi ̸=x, ω) −

〈
K̂x(r)

〉
, (1.34)

where
K̂x(r) ≡ −J

[
ψ̂†(r + ex) ψ̂(r) + H.c.

]
(1.35)

is the local kinetic energy operator along a given direction x of the lattice, and

Λxx
J (q, ω) ≡ −i

∫ ∞

0
dt eiωt

〈[
Ĵx(q, t), Ĵx(−q, 0)

]〉
(1.36)

is the response function 5 related to the current operator

Ĵx(r) ≡ i J
[
ψ̂†(r + ex) ψ̂(r) − H.c.

]
. (1.37)

As a side note, it is interesting to observe that, in the absence of the lattice, the kinetic
energy term in Eq. (1.34) is replaced by the total density due to Galilean invariance [81,
82]. The kinetic energy (1.35), as well as the response function (1.36), can be calculated
by a systematic application of the protocol outlined in Subsection 1.2.4: the average
kinetic energy reads

〈
K̂x(r)

〉
= −2 J

ψ2
0 + 1

N

∑
α

∑
k

∣∣Vα,k
∣∣2 cos (kx)

 , (1.38)

while the first non-vanishing contribution to the static-uniform limit of the transverse
response function Λxx

J (q, ω) turns out to be the 4th-order correlation

lim
qi ̸=x→0

lim
ω→0

Λxx
J (qx = 0,qi ̸=x, ω) = −4 J2

∑
α,β

∑
k

∣∣Uα,k Vβ,k − Uβ,k Vα,k
∣∣2

ωα,k + ωβ,k
sin (kx)2 ,

(1.39)
where we have adopted the notation Λxx

J (0, 0) for brevity. Eq. (1.39) reveals the crucial
role played by the coupling between different collective modes in suppressing the
superfluid stiffness and creating a sort of normal component. The very same expression
indeed gives the collisionless drag between two Bose gases at zero temperature,
where the elementary excitations are the in-phase and out-of-phase modes of the
condensate, see in particular [82] and the detailed study of the superfluid properties
of the two-component BH model in Chapter 2 of Part I. For the sake of comparison,
it is worth reminding that the ground state mean-field Gutzwiller theory would give〈
K̂x

〉
= −2 J |ψ0|2 and a vanishing current response Λxx

J (q = 0, ω = 0) = 0. This
incorrectly leads to equal superfluid and condensate densities, ns = |ψ0|2.

The results of the QGA for the superfluid density are illustrated in Figure 1.4, where
the black thick line indicates the superfluid fraction fs = ns/ ⟨n̂⟩. This quantity tends
to unity in the deep SF and approaches zero at the critical point. Throughout the whole
5 We refer the interested reader to Appendix C.3 for additional details on the calculation of response

functions within the QGA.



1.3 Quantum correlations across the MI-to-SF transition 17

10−2 10−1 100 101

2 d J/U

0.0

0.2

0.4

0.6

0.8

1.0

MI SF

fs

ρc = |ψ0|2 /〈n̂〉
−〈K̂x〉/ (2J〈n̂〉)
|Λxx(0, 0)|
Bogoliubov

Figure 1.4: Superfluid fraction fs along the µ/U =
√

2 − 1 line crossing the tip of the ⟨n̂⟩ = 1 MI lobe. The orange-shaded
area indicates the MI region. Solid black line: QGA prediction. Blue dotted and light-pink dashed lines are the contributions
to fs from the kinetic energy K̂x and the current response Λxx

J (q = 0, ω = 0), respectively. Green dot-dashed line: result of
the standard Bogoliubov theory. Black dashed line: condensate fraction |ψ0|2 / ⟨n̂⟩.

SF region, it is always larger than the condensed fraction ρc (black dashed line), defined
as usual as the r → ∞ limit of the coherence function g(1)(r). In the MI region, the
superfluid fraction fs is exactly zero, as expected for a phase that does not exhibit
superfluidity.

Further information is obtained by isolating the two contributions appearing on
the right-hand side of Eq. (1.34). The current response Λxx

J (q = 0, ω = 0) defined in
Eq. (1.39) (light-pink dashed line) displays a non-monotonic behaviour as a function of
J/U : it tends to zero in the deep MI and SF phases, while it reaches its maximum at
the transition point. In the strongly-interacting SF regime, the Goldstone-Higgs vertex
almost saturates the sum in the current response and leads to a complete suppression
of ns. As expected, the kinetic energy Eq. (1.38) (see dotted blue line) has as expected a
monotonic behaviour, from zero at J = 0 to the weakly-interacting mean-field value
−2 J ⟨n̂⟩. In the MI phase, the vanishing ns results from the perfect cancellation of the
short-range virtual particle-hole correlations and the kinetic energy.

For completeness, in Figure 1.4 we also report the weakly-interacting Bogoliubov
prediction [83] (green dashed-dotted line), to which our result converges in the limit
2 d J/U ≫ 1. Since it takes into account only the gapless Goldstone mode, such
approach leads in particular to a zero current response Λxx

J (q = 0, ω = 0) = 0 and
thus an overestimated superfluid density.

1.3.3 Density fluctuations

We consider the normally-ordered equal-time density correlation function

g(2)(r) ≡

〈
â†

r â
†
0 â0 âr

〉
⟨n̂r⟩ ⟨n̂0⟩

. (1.40)
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Figure 1.5: Density-density correlation g(2)(r) as a function of 2 d J/U across the ⟨n̂⟩ = 1 commensurate MI-to-SF transition.
The orange (white) background identifies the MI (SF) region. (a) On-site correlation function g(2)(0); black solid line: QGA
result; black dashed line: mean-field Gutzwiller approach; green dot-dashed line: weakly-interacting Bogoliubov theory; red
dotted line: QMC simulation for a lattice size of 163 sites [84]; grey dashed line: strong-coupling perturbation theory [43].
(b) Nearest and next-to-nearest density correlations, g(2)(|r| = 1) and g(2)(|r| =

√
2
)
. Black solid line: QGA prediction;

grey dotted line: strong-coupling approximation; red dots: QMC calculation for a 53 lattice [43]. The QGA data have been
obtained for the same lattice sizes of the corresponding QMC simulations.

Applying the procedure outlined in Subsection 1.2.4, and since the ground state is
translational invariant, g(2)(r) reads

g(2)(r) =


[〈
D̂(0)

〉
−
〈
N̂(0)

〉]/〈
N̂(0)

〉2
, r = 0,〈

N̂(r) N̂(0)
〉/〈

N̂(0)
〉2

, r ̸= 0 ,
(1.41)

where the QGA density N̂(r) and the square density D̂(r) operators are defined as

N̂(r) ≡
∑

n

n ĉ†
n(r) ĉn(r) , (1.42)

D̂(r) ≡
∑

n

n2 ĉ†
n(r) ĉn(r) . (1.43)

The expectation values in Eq. (1.41) are evaluated by expanding the above operators up
to second-order in the δĉn’s, hence〈

D̂(0)
〉

= D0 +
∑

n

(
n2 −D0

) 〈
δĉ†

n(0) δĉn(0)
〉
, (1.44a)

〈
N̂(0)

〉
= n0 +

∑
n

(n− n0)
〈
δĉ†

n(0) δĉn(0)
〉
, (1.44b)

〈
N̂(r ̸= 0) N̂(0)

〉
= n2

0 + 1
N

∑
α

∑
k

∣∣Nα,k
∣∣2 cos (k · r)

+
∑
n,m

(n− n0) (m− n0)
〈
δĉ†

n(r) δĉn(r) δĉ†
m(0) δĉm(0)

〉
,

(1.44c)
where

Nα,k =
∑

n

n
[(
c0

n

)∗
uα,k,n + c0

n vα,k,n

]
(1.45)
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The QGA result (1.41) for the local density correlation g(2)(r = 0) is shown as a solid
black line in panel (a) of Figure 1.5. On the SF side, the antibunching g(2)(0) < 1 due
to the repulsive on-site interactions well matches the weakly-interacting Bogoliubov
prediction [83] in the deep SF (green dashed-dotted line) and increases, faster than
the Bogoliubov trend, when moving towards the MI-to-SF transition. On the MI
side, while the mean-field Gutzwiller theory (black dashed line) predicts a perfect
antibunching g(2)

MF(0) ∝ D0 − n0 = 0, the QGA result (1.41) is able to account for the
virtual excitation of doublon-holon pairs. This leads to g(2)(0) ∝ (J/U)2 at low 2 d J/U ,
in excellent agreement with strong-coupling perturbative calculations (gray dotted
line) [43]. Remarkably, close to and across the critical point, the QGA theory is in very
good agreement with low-temperature QMC predictions [84] (red dots). In order to
compare the results of the two different approaches, the hopping parameter for the
QMC data has been rescaled by a factor Jc/J

QMC
c in order to make the position of the

critical point in the two theories coincide. We highlight that no other semi-analytical
theory is currently available to describe the region close to and across the critical
point.

The role of quantum fluctuations and the accuracy of the method can be further
explored by looking at the off-site density correlations function for |r| = 1 and√

2. In panel (b) of Figure 1.5 we report the QGA predictions for g(2)(|r| = 1) and
g(2)

(
|r| =

√
2
)

along the ⟨n̂⟩ = 1 filling line across the tip of the MI lobe. These curves
are successfully compared to available QMC data (see [43] and references therein) and
to strong-coupling perturbation theory, which shows that our theory is accurate across
the whole phase transition and correctly interpolates between a strongly-interacting
MI phase and the weakly-interacting Bose gas.

1.4 Beyond Gaussian fluctuations: decay processes

Having demonstrated the predictive power of the QGA with respect to the physical role
of Gaussian quantum fluctuations, we dedicate this Section to explore the capability of
the method to describe non-linear many-body effects involving the collective excitations
of the system [1]. As a simple yet non-trivial application, we specialise our investigation
to the case of decay processes associated with three-body vertices of the excitations
found by diagonalising the QGA theory at the quadratic level. In particular, the
Hamiltonian terms responsible for these processes are given by combinations of two
creation operators b̂†

α,k and one annihilation operator b̂β,p.
Expanding the fluctuations operators δĉn(r) with the respect to the elementary

excitations, we can gather the three-body terms of interest into

Ĥ
(3)
QGA = 1√

V

∑
α,β,γ

∑
k,p

Hα,β,γ(k,p) b̂†
β,p b̂

†
γ,k−p b̂α,k , (1.46)

where the vertex Hα,β,γ(k,p) can be shown to couple single-mode spectral amplitudes
to two-body vertices of the collective modes 6. To lowest order in perturbation theory,
the decay rate of a given excitation (α,k) with respect to the momentum-conserving

6 For a complete expression of Hα,β,γ(k,p), we refer the reader to Appendix B.4
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decay process αk → βp + γk−p is provided by the Fermi Golden Rule (FGR)

Γα,β,γ(k) = 2π
V

∑
p

|Hα,β,γ(k,p)|2 δ
(
ωβ,p + ωγ,k−p − ωα,k

)
, (1.47)

where the δ-function imposes energy conservation. For instance, choosing α = β = γ

on the Goldstone branch only, we obtain the damping rate of the so-called Beliaev
decay process [85, 86].

In what follows, we examine the long-debated fate of the Higgs excitation and
its coupling with the Goldstone mode around the O(2) critical point of the MI-to-SF
transition. In particular, we consider the vertex relating a delocalised amplitude mode
(H) at k = 0 with two Goldstone modes (G), yielding

Γ = ΓH,G,G(0) = 1
(2π)d−1

∫
ddp |HH,G,G(0,p)|2 δ(2ωG,p − ωH,0) , (1.48)

where we have considered the continuum limit for simplicity and used ωG,p = ωG,−p
by inversion symmetry. Since in our formalism all quantities depend on momentum via
the free-particle dispersion εk

7, we can transform the momentum integral of Eq. (1.48)
into

Γ = 1
(2π)d−1

∫ 4 J

0
dε ρd(ε) |HH,G,G(0, ε)|2 δ(2ωG,ε − ωH,0) (1.49)

where the function ρd(x) mirrors the Density of States (DoS) of the free Bose gas in d
dimensions and is given by the integral

ρd(ε) ≡ 2d

∫
ddx δ(ε− 4 J |x|)

[
d∏

i=1

(
1 − x2

i

)−1/2
]

(1.50)

over the space [0, 1]d. Since around the O(2) transition both the Goldstone and Higgs
excitations are soft modes, the decay process is bound to take place at low energy;
therefore, for arbitrary dimensions we can perform a low-momentum approximation
(|x| ≪ 1) of ρd(ε), hence

ρd(ε) ≃ 2d Sd

(
ε

4 J

)d−1
[
1 +

(
ε

4 J

)2
]

(1.51)

where Sd is the hypersurface of the d-dimensional sphere. Finally, observing that the
Higgs gap reads ∆H = ωH,0 = 2ωG,ε = 2 cs ε/ (4 J) by energy conservation, we obtain
an approximate prediction for the Higgs decay rate given by

Γ ≃ 4Sd J

(2π)d−1 cs

(∆H
cs

)d−1 [
1 +

(∆H
2 cs

)2] ∣∣∣∣HH,G,G

(
0, 4 J ∆H

2 cs

)∣∣∣∣2 (1.52)

where cs indicates the sound velocity of the Goldstone mode.
Let us now suppose to reach the MI-to-SF criticality from the SF side of the transition

at constant chemical potential µ. In this case, the Higgs gap ∆H is found to scale as

∆H(J) ≃ A∆ (J − Jc)β∆ (1.53)

7 See Eqs. (1.12)-(1.13).
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Figure 1.6: Relative decay rate Γr of the Higgs mode upon approaching the O(2) critical point 2 d Jc/U ≈ 0.172 of the
⟨n̂⟩ = 1 MI lobe. The red, green and blue lines refer to d = 1, 2 and 3 dimensions respectively.
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with respect to the critical hopping Jc, with the critical exponent having the mean-field
value β∆ = 1/2 within the QGA. On the other hand, the sound velocity approaches

the finite value ctip
s =

[
(Jc U)2 n0 (n0 + 1)

]1/4
, where n0 is the filling of the nearby MI

lobe 8. Then, it is straightforward to see that the relative Higgs damping rate Γr = Γ/∆H
behaves as

Γr(J) ∼
∣∣∣∣HH,G,G

(
0, 4 J ∆H

2 cs

)∣∣∣∣2 ∆d−2
H ∼

∣∣∣∣HH,G,G

(
0, 4 J ∆H

2 cs

)∣∣∣∣2 (J − Jc)(d−2)β∆ .

(1.54)
In particular, if we make the hypothesis that |HH,G,G(0, ε)|2 ∼ εη at low energy,

Γr(J) ∼ (J − Jc)[(d−2)+η]β∆ , (1.55)

from which we deduce that the analytical behaviour of Γr has a clear algebraic
dependence on the dimensionality of the system, whereas the gap exponent β∆
works as a multiplicative factor only. Even more importantly, the only unknown (and
crucial) parameter is the vertex exponent η, which is a genuine prediction of the QGA
description.

A straightforward numerical calculation of |HH,G,G(0, ε)|2 close to the O(2) critical
point provides η = −1 exactly. Therefore, we utilise this information to determine the
Higgs mode damping and lifetime in proximity of the ⟨n̂⟩ = 1 MI lobe, for which we
report our numerical results in Figure 1.6. In accordance with Eq. (1.55), the relative
decay rate Γr diverges at the critical point for d = 1, 2, while it reaches a small finite
value for d ≥ 3. It follows that the Higgs mode ceases to be a long-lived excitation in
the low-dimensional regime as a consequence of its strong coupling with the Goldstone
branch, which hinders its experimental observability. Quite remarkably, these findings
are in excellent agreement with the analysis of [87] based on critical field theory

8 See Appendix B.2 for a thorough discussion on the behaviour of Goldstone sound velocity in proximity
of the BH critical points.
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arguments, albeit limited to large densities. Thus, we speculate that the QGA, although
based on a mean-field ansatz, could represent a powerful tool to study non-linear
effects beyond Gaussian correlations in synergy with more refined methods.

1.5 Summary and perspectives

In this opening Chapter, we have introduced a simple and powerful semi-analytical
tool to study the quantum many-body physics of interacting bosons on a lattice based
on the canonical quantisation of the fluctuations around the Gutzwiller ansatz. The
effectiveness of the method has been validated on the archetypal case of the BH
model. In spite of the locality of the underlying mean-field Gutzwiller state, the
proposed quantisation procedure is able to accurately capture very non-local physical
features, such as the superfluid stiffness of the SF phase, the different behaviours of
the correlation functions at the different critical points, and the spatial structure of
the virtual particle-hole pair excitations on top of the MI state. In particular, these last
predictions are in quantitative agreement with the few QMC results available in the
literature. In addition to its quantitative accuracy and computational simplicity, we
have seen that the QGA has the crucial advantage over other approaches of providing a
deep physical insight on the equilibrium state and the quantum dynamics of the system
in terms of collective effects. Last but not least, going beyond the quadratic expansion
around the mean-field level, we have also tested the potential of our formalism to
incorporate non-linear effects encoding the interactions between the collective modes
of the theory, so as to describe e.g. their temporal decay into entangled pairs via
multi-branch Beliaev decay processes [88].

Due to its flexibility, our formalism could be straightforwardly extended to treat
inhomogeneous configurations, more exotic hopping and interaction terms, and to
deal with more complex forms of the initial ansatz, such as a cluster Gutzwiller wave
function [89], which include short-range quantum correlations already in the zero-point
ground state. In the next Chapter, we will take a first step along this research direction
and generalise our analysis of quantum correlations to the richer scenario of the two-
component BH mixture. Furthermore, the application of our effective theory of collective
modes appears particularly promising in modelling those physical situations where
the precise structure of the many-body excitations strongly influence the properties of
the system. This is the case of physical phenomena involving a quantum impurity in
a correlated bosonic bath, which will be taken into consideration in Chapters 3 and
Chapters 4 of Part I.

Other important applications of our quantum model of many-body excitations
could include the investigation of finite temperature and/or time-dependent problems,
including non-equilibrium dynamics. Exciting long term perspectives comprise the
application of our theoretical framework to those driven-dissipative models that can be
currently realised in photonic systems [25, 41, 42]. In particular, Chapter 2 of Part II has
the scope of providing a theoretical primer in view of such future developments.
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This Chapter is based on a reworked version of the following publication, integrated by
original findings collected in Appendix D.

▶ V. E. Colussi, Fabio Caleffi, C. Menotti, and A. Recati, Quantum Gutzwiller approach
for the two-component Bose–Hubbard model, SciPost Physics 12, 111 (29 March 2022)

2.1 The more, the better

In order to benchmark the predictive power of the QGA in more complex bosonic
systems featuring strong correlations, we devote the present Chapter to generalise
our analysis of the single-band BH model to its multi-component implementation,
considering in particular two interacting atomic species. In the two-component BH
model, a much richer phase diagram emerges, including the additional possibility
of pair and counterflow superfluidity, supersolidity, charge-density quasiorder, and
peculiar magnetic states [90–95]. Such coupled superfluids can also undergo mutual
dissipationless transport with an induced entrainment or counterflow of one component
due to a non-zero superfluid velocity of the other. This phenomenon, better known
as superfluid drag, was first discussed by Andreev and Bashkin in the context of
three-fluid hydrodynamics [96], but is of universal relevance to systems ranging
from neutron-star matter [97–101] to multicomponent superconductors [102–104] and
ultracold atomic mixtures [81, 82, 94, 105–111]. Direct measurement of this effect has
however remained elusive, due in part to the low miscibility of superfluid 3He and 4He,
and recombination heating in strongly-interacting ultracold atomic mixtures. Recently,
the PSF and CFSF phase transitions of the two-component BH model have emerged as
promising candidates where the drag can saturate at its maximum value [109, 110]. Still,
a deeper understanding of the fundamental role played by quantum fluctuations is
needed to gain insight into the physics of such strongly-correlated quantum critical
regimes of Hubbard models at zero temperature.

In the following, we will study a homogeneous configuration of the binary BH model
on a square lattice in the presence of short-range intra and interspecies interactions,
which can be realised in optical lattices loaded with atoms of two different species or
internal states [112–114]. Although the derivations presented in this work are completely
general, our numerical findings are specific to two dimensions where existing QMC
results [109] make quantitative comparisons with our predictions for the drag possible,
and where there exists a strong motivating analogy between the fermionic version of
the problem and high-temperature superconductivity [115]. We first study the rich
phase diagram of the model for both repulsive and attractive interspecies interactions,
finding counterflow and paired superfluid phases in addition to the MI and SF phases
which carry over from single-component bosonic systems. We show how, also in
the case of mixtures, the QGA provides a straightforward way to calculate linear
response and correlation functions to a desired order in the quantum fluctuations.
This permits a systematic study of the role of quantum corrections, which we first
investigate by considering the linear response dynamics of the system to density and

https://scipost.org/10.21468/SciPostPhys.12.3.111
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spin perturbations. In this respect, we highlight the experimentally relevant signatures
of the onset of the PSF and CFSF phases in the dynamical structure factor. We then
focus on superfluid transport in quantum critical regimes, finding in particular a
large interspecies drag comparable in magnitude with the superfluid density in the
vicinity of the CFSF and PSF phases. Furthermore, we address the one and two-body
correlation functions, focusing on the strongly-interacting regime, where quantum
fluctuations play a crucial role. Specifically, we find that the PSF and CFSF transitions
behave as channel-selective MI transitions with respect to the spin and density degrees
of freedom, respectively.

2.2 Model and theoretical setting

In Subsection 2.2.1, we will analyse the binary BH model by using a suitable extension
of the C-number Gutzwiller ansatz. Subsequently, in Subsection 2.2.2, we will discuss
in depth the ground state and elementary excitations for both repulsive and attractive
interactions between the two components of the system. This exploration lays the
theoretical background of Subsection 2.3, where we will go beyond the mean-field
Gutzwiller ansatz by generalising the QGA introduced in Chapter 1 to Bose mixtures in
order to calculate genuine quantum correlations. Additionally, a general understanding
of the spectral structure of the binary BH mixture will serve as an insightful term of
comparison for the spectrum of bosonic excitations in the Fermi Hubbard model, which
will be among the subjects of Chapter 5.

2.2.1 Gutzwiller theory for bosonic mixtures

We start from the two-component BH model [33]

Ĥ2BH ≡
2∑

i=1
ĤBH,i + U12

∑
r
n̂1,r n̂2,r , (2.1)

where

ĤBH,i ≡ −Ji

∑
⟨r,s⟩

(
â†

i,r âi,s + H.c.
)

+ U

2

∑
r

n̂i,r (n̂i,r − 1) − µ
∑

i,r

n̂r , (2.2)

is the BH Hamiltonian governing each component, while U12 is the interspecies
interaction strength. For the purpose of our discussion, we examine only the Z2-
symmetric case where J1 = J2 = J , µi = µ2 = µ and U1 = U2 = U , keeping always
|U12/U | < 1 to avoid phase separation for repulsive species, as well as to prevent
the system from collapsing for attractive interactions [116]. The bosonic creation and
annihilation operators â†

i,r and âi,r create and destroy, respectively, a particle of species
i at the lattice site r, and are related to the corresponding local density operators
via n̂i,r = â†

i,r âi,r. We also define the total density and spin operators as given by
n̂d,r =

∑
i n̂i,r and n̂s,r = n̂1,r − n̂2,r, respectively. In the following, we will consider as

always a uniform square lattice of volume V 1.

1 In the present Chapter, the QGA results are obtained on a d = 2 lattice of V = 1282 sites in order to
minimise finite-size effects, unless otherwise specified.
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Counterflow
and pair
superfluids

The two-component Gutzwiller mean-field ansatz for the binary BH model (2.1)
is a straightforward generalisation of the ansatz introduced in Eq. (1.2). Specifically,
local Fock states are weighted by composite complex amplitudes cn1,n2(r) such that∑

n1,n2 |cn1,n2(r)|2 = 1. Consequently, the mean-field expectation value of the species-
resolved density is given by

ni(r) ≡ ⟨n̂i,r⟩ =
∞∑

n1,n2

(n1 δi,1 + n2 δi,2) |cn1,n2(r)|2 . (2.3)

In addition to the MI and SF phases in common with the one-component case, the
two-component Bose mixture exhibits also the possibility of Counterflow Superfluid
(CFSF) and Pair Superfluid (PSF) phases, see [91, 92, 95, 117]. To distinguish between
these phases, besides the one-body order parameters

ψ1(r) ≡ ⟨â1,r⟩ =
∞∑

n1,n2

√
n1 c

∗
n1−1,n2(r) cn1,n2(r) , (2.4a)

ψ2(r) ≡ ⟨â2,r⟩ =
∞∑

n1,n2

√
n2 c

∗
n1,n2−1(r) cn1,n2(r) , (2.4b)

which are non-zero only in the SF phase, we introduce the pair and antipair order
parameters

ψP(r) ≡ ⟨â1,r â2,r⟩ − ⟨â1,r⟩ ⟨â2,r⟩

=
∑

n1,n2

√
n1 n2 c

∗
n1−1,n2−1(r) cn1,n2(r) − ψ1(r)ψ2(r) , (2.5a)

ψC(r) ≡
〈
â1,r â

†
2,r

〉
− ⟨â1,r⟩

〈
â†

2,r

〉
=
∑

n1,n2

√
n1(n2 + 1) c∗

n1−1,n2+1(r) cn1,n2(r) − ψ1(r)ψ∗
2(r) ,

(2.5b)

which identify univocally the PSF and CFSF phases, respectively. Notice that, in
constructing the pair/antipair order parameters, disconnected contributions due to the
one-body order parameters have been explicitly removed to ensure that ψP/C(r) ̸= 0
reflects intrinsically off-diagonal (CFSF) or anomalous (PSF) local correlations between
the two species.

Generalising the procedure outlined in Chapter 1, we can readily build a Lagrangian
for the multi-component Gutzwiller ansatz,

L[c, c∗] =
∑

r

∑
n1,n2

{
i

2
[
c∗

n1,n2(r) ċn1,n2(r) − c.c.
]

−Hn1,n2 |cn1,n2(r)|2
}

+ J

2∑
i=1

∑
⟨r,s⟩

[ψ∗
i (r)ψi(s) + c.c.] , (2.6)

where

Hn1,n2 =
2∑

i=1

[
U

2 ni(ni − 1) − µni

]
+ U12 n1 n2 . (2.7)



26 2 Quantum Gutzwiller analysis of the two-component Bose-Hubbard model

The classical Euler-Lagrange equations of motion for the Gutzwiller amplitudes, with
the complex conjugate parameters c∗

n1,n2(r) = ∂L/∂ċn1,n2(r) playing again the role of
canonical momenta, are given by the two-component TDGE

i ċn1,n2(r) = Hn1,n2 cn1,n2 − J

d∑
i=1

√
n1 + 1 cn1+1,n2

∑
s=±1

ψ∗
1(r + s ei)

+
√
n1 cn1−1,n2(r)

∑
s=±1

ψ1(r + s ei) +
√
n2 + 1 cn1,n2+1(r)

∑
s=±1

ψ∗
2(r + s ei)

+
√
n2 cn1,n2−1(r)

∑
s=±1

ψ2(r + s ei)

 = Ĥ0 · cn1,n2 ,

(2.8)

where ei is the versor of the ith lattice direction and which were previously derived
in [118]. The above TDGE are straightforward extensions of their one-component
counterparts (cfr. [51]) with the additional contribution of the diagonal interspecies
coupling U12. In order to explore the possible ground states of the system, we search
first for the stationary solutions cn1,n2(r) = c0

n1,n2 e
−i ω0 t independent of the site index

r. The ground state energy is then given by

ω0 ≡ −2 z J
2∑

i=1

|ψ0,i|2 +
∑
n1,n2

Hn1,n2

∣∣∣c0
n1,n2

∣∣∣2 , (2.9)

where the “0” sub/superscript indicates quantities evaluated with respect to the ground
state Gutzwiller amplitudes c0

n1,n2 obtained by diagonalising the matrix Ĥ0 on the
right-hand side of Eq. (2.8). For instance, the expression of the mean-field total density
is simply given by

n0,d ≡
∞∑

n1,n2

(n1 + n2)
∣∣∣c0

n1,n2

∣∣∣2 . (2.10)

In order to study the linear response dynamics of the system around the ground
state, we consider small perturbations around the stationary solution of the form

cn1,n2(r) =
[
c0

n1,n2 + δcn1,n2(r, t)
]
e−i ω0 t, (2.11)

which can be expanded in terms of plane waves as

δcn1,n2(r, t) ≡
∑

k

[
u

k,n1,n2 e
i(k·r−ωk t) + v∗

k,n1,n2 e
−i(k·r−ωk t)

]
. (2.12)

Linearising the TDGE with respect to the amplitudes u
k,n1,n2 and v

k,n1,n2 , one obtains
the well-known Bogoliubov-de Gennes (BdG) eigenvalue equations

L̂k

(
uk
vk

)
= ωk

(
uk
vk

)
, L̂k ≡

(
Hk Kk

−Kk −Hk

)
, (2.13)

The positive eigenvalues ωk of the pseudo-Hermitian matrix L̂k are identified with
the multi-branch excitation spectrum of the system. The matrix blocks Hk and Kk are
akin to those describing quantum fluctuations above the one-component Gutzwiller
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state in Chapter 1,

H
ni,n

′
i

k ≡ (Hn1,n2 − ω0) δn1,n′
1
δn2,n′

2

+ ε0 ψ0,1

(√
n′

1 δn′
1,n1+1 +

√
n1 δn1,n′

1+1

)
δn2,n′

2
(2.14a)

+ ε0 ψ0,2

(√
n′

2 δn′
2,n2+1 +

√
n2 δn2,n′

2+1

)
δn1,n′

1

+ εk

(√
n1 + 1

√
n′

1 + 1 c0
n1+1,n2 c

0
n′

1+1,n′
2

+
√
n1

√
n′

1 c
0
n1−1,n2 c

0
n′

1−1,n′
2

)
+ εk

(√
n2 + 1

√
n′

2 + 1 c0
n1,n2+1 c

0
n′

1,n′
2+1 +

√
n2

√
n′

2 c
0
n1,n2−1 c

0
n′

1,n′
2−1

)
,

K
ni,n′

i

k ≡ εk

(√
n1 + 1

√
n′

1 c
0
n1+1,n2

c0
n′

1−1,n′
2

+
√
n1
√
n′

1 + 1 c0
n1−1,n2

c0
n′

1+1,n′
2

)
+ εk

(√
n2 + 1

√
n′

2 c
0
n1,n2+1 c

0
n′

1,n′
2−1 +

√
n2
√
n′

2 + 1 c0
n1,n2−1 c

0
n′

1,n′
2+1

)
.

(2.14b)

For later convenience, we notice that the dependence on k of the excitations is solely
determined by the variable

x ≡

1
d

d∑
j=1

sin
(
kj

2

)2
1/2

, (2.15)

which varies from 0 to 1 and scales as x ≈ |k| /
(
2

√
d
)

at small momenta.
We conclude this Subsection by introducing some useful definitions. Making

use of Eq. (2.12), the linear response dynamics of the one-body order parameter
ψi(r, t) = ψ0,i + δψi(r, t) can be expanded in plane waves as

δψi(r, t) ≡
∑

k

[
Ui,k e

i(k·r−ωk t) + V ∗
i,k e

−i(k·r−ωk t)
]
, (2.16)

where the particle-hole amplitudes

U1,k ≡
∑
n1,n2

√
n1
(
c0

n1−1,n2 uk,n1,n2 + c0
n1,n2 vk,n1−1,n2

)
, (2.17a)

V1,k ≡
∑
n1,n2

√
n1
(
c0

n1,n2 uk,n1−1,n2 + c0
n1−1,n2 vk,n1,n2

)
, (2.17b)

U2,k ≡
∑
n1,n2

√
n2
(
c0

n1,n2−1 uk,n1,n2 + c0
n1,n2 vk,n1,n2−1

)
, (2.17c)

V2,k ≡
∑
n1,n2

√
n2
(
c0

n1,n2 uk,n1,n2−1 + c0
n1,n2−1 vk,n1,n2

)
, (2.17d)

naturally emerge as generalisations of Eqs. (1.24) with reference to the one-component
Bose field. Along similar lines, linear fluctuations of the local density for each species
have the form

ni(r, t) = n0,i +
∑

k

[
Ni,k e

i(k·r−ωk t) + c.c.
]
, (2.18)
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where

Ni,k ≡
∑
n1,n2

(n1 δi,1 + n2 δi,2)
[(
c0

n1,n2

)∗
uk,n1,n2 + c0

n1,n2 vk,n1,n2

]
(2.19)

is the one-boson density fluctuation amplitude.
Taking inspiration from [52], in order to enrich our analysis of the elementary

excitations of the system, we introduce the function

Ci,α,k ≡
∣∣Ui,α,k

∣∣− ∣∣Vi,α,k
∣∣∣∣Ui,α,k

∣∣+ ∣∣Vi,α,k
∣∣ , (2.20)

whose zeros indicate excitation modes (α,k) matching the Particle-Hole Symmetry
(PHS) condition

∣∣Ui,α,k
∣∣ =

∣∣Vi,α,k
∣∣. We note that Ci,α,k is independent of species i due

to the fact that, as a consequence of Z2 symmetry, Ui,α,k and Vi,α,k can differ at most by
an overall phase between the two components. To quantify such phase differences, we
additionally define the function

Bα,k ≡
U1,α,k + V1,α,k
U2,α,k + V2,α,k

, (2.21)

which can assume either the value 1 or -1 only depending on whether the excitation
mode (α,k) has density or spin character, respectively.

In the following, we will use the above formal premises to analyse in the detail the
peculiar properties of the ground state and its excitations inside the MI and superfluid
(SF, CFSF and PSF) phases of the model, with particular attention to the structure of
the collective modes across the different quantum critical regimes.

2.2.2 Ground state and excitations

In this Subsection, we explore the phase diagram of the system for repulsive (U12 > 0)
and attractive (U12 < 0) interspecies interactions. Moreover, we perform a detailed
characterisation of the excitations of the system across the various quantum phase
transitions of the BH model. Looking ahead, the analysis of this Subsection will facilitate
an in-depth understanding of the response functions and quantum correlations in
terms of the spectral structure of the collective modes by means of the QGA, which is
the subject of the remainder of this Chapter.

We preface our discussion by anticipating that, in addition to the physics of the
single-species BH model and depending on the sign of the interspecies interaction U12,
CFSF and PSF phases are found to intrude between the MI regions, signalled respectively
by non-zero values of the pairing order parameters ψ0,C and ψ0,P. Moreover, these
quantities may be non-zero in the vicinity of the various phase transitions alongside a
finite one-body condensateψ0,i, which marks the entrance into the SF region. Ultimately,
the pair/antipair order parameters vanish in the limit 2 d J/U ≫ 1, where one-body
condensation is favoured as expected.

Repulsive interaction U12 > 0
(Mott Insulator) – In Figure 2.1(a)-(b), we show the ground state phase diagram for

two values of U12 > 0. In general, for strong enough U we find MI regions [light blue
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Figure 2.1: Ground state phase diagram for repulsive interspecies interactions (a) U12/U = 0.5 and (b) U12/U = 0.9. First
and second-order transition lines are indicated by dashed and solid lines respectively, separating the MI (CFSF) lobes,
identified by light blue (yellow) areas, from the SF region. The O(2) tip transitions are indicated by red dots, while the
dot-shaped illustrations depict the particle-hole antipairs coupling the two components in the CFSF phase. (c) behaviour
of the order parameters at the crossing of the second-order MI-to-SF transition for fixed n0,d = 2 and U12/U = 0.5. (d)
behaviour of the order parameters at the crossing of the first-order MI-to-SF transition for fixed n0,d = 2 and U12/U = 0.9.
(e) behaviour of the order parameters at the crossing of the second-order CFSF-to-SF transition for fixed n0,d = 1 and
U12/U = 0.9. The solid red lines in (a) and (b) correspond to the µ(U) lines along which the data in (c), (d), and (e) are
evaluated prior to the superfluid transition.

areas] at even total filling whose ground state is |n0,d/2, n0,d/2⟩ with energy

ω0 = U

4 n0,d (n0,d − 2) − µn0,d + U12
4 n2

0,d . (2.22)

Within the MI lobes, the excitation spectrum can be calculated analytically from
Eq. (2.13), with the result

ω±,k ≡ 1
2

√
U2 − 2 J(k)U(n0,d + 1) + J2(k) ±

[
J(k) − U(n0,d − 1)

2 − U12 + µ

]
,

(2.23)
which is a modification of the one-component result to include the mean-field interaction
energy between different species. This spectrum describes four dispersive branches in
total, a pair of degenerate particle (“+”) branches and a pair of degenerate hole (“−”)
branches 2.

The second-order phase transition boundary between the MI and SF phases is
2 On top of the doublon-holon excitations, Eq. (2.13) exhibits an infinity of non-zero, uncoupled diagonal
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determined by the onset of a finite one-body order parameterψ0,i and the disappearance
of the gap in the excitation spectrum (ωk=0 = 0). From Eq. (2.23), we find that this
occurs for

2 d
(
J

U

)MI

c
= (n0,d/2 − µ/U + U12/U)(µ/U − U12/U − n0, d/2 + 1)

1 + µ/U − U12/U
, (2.25)

which can be linked to the MI boundary of the one-component case via the mean-field
shift µ → µ− U12. The maximal value of 2 d (J/U)MI

c determines the locations of the
O(2) transitions at

2 d
(
J

U

)MI,tip

c
=
(√

n0,d

2 + 1 −
√
n0,d

2

)2
, (2.26)

in correspondence of the tip of the MI lobes. We note that the chemical potential of the
tip critical points is again shifted with respect to the one-component value and is given
by (

µ

U

)MI,tip

c
=
√
n0,d

2

(
n0,d

2 + 1
)

+ U12
U

− 1 . (2.27)

In Figure 2.2(a), we show how the band structure changes as the second-order
MI-to-SF transition is traversed through the edge of the lobe (namely, away from the
tip), specifically for n0,d = 2 at 2 d (J/U)MI

c ≈ 0.167 for U12/U = 0.5 and µ/U = 1. In
general, in the MI phase, if the chemical potential is set above (below) its value at the tip,
the first two bands are a pair of degenerate gapped particle (hole) bands of mixed spin
or density character, whereas the next two bands correspond to degenerate gapped
hole (particle) excitations. The doubly degenerate non-dispersive band ω0,2 is also
visible as a dotted horizontal line. At the transition point, the gap of the lowest pair of
degenerate particle (hole) bands vanish, while the hole (particle) bands remain gapped.
Additionally, the gapless modes are purely quadratic at low momenta, signalling the
characteristic vanishing of the speed of sound on the SF side of the transition, a feature
in common with the one-component case [51].

In Figure 2.2(b), we perform a similar analysis of the spectral features of the
second-order MI-to-SF transition when traversed through the tip critical point at
2 d (J/U)MI,tip

c ≈ 0.172 for U12/U = 0.5 and (µ/U)MI,tip
c ≈ 0.914. Most importantly,

we observe that at the tip transition the gaps of the doubly degenerate particle and
hole bands vanish simultaneously. Also, their dispersion becomes degenerate and
perfectly linear at low momenta, giving the typical sound excitations characterising a
O(2) criticality [51].

Once the SF phase takes over, both at the edge and at the tip transition, the excitation
bands which become gapless hybridise into spin and density modes [see Figure 2.2(c)].

elements which describe non-dispersive bands with energy

ωMI
n1,n2 ≡

2∑
i=1

[
U

2 ni(ni − 1) − µni

]
+ U12 n1 n2 − ω0 , (2.24)

where the occupation indices n1 and n2 must be chosen not to fall into the 4 × 4 block that yields
the dispersive bands (2.23). Therefore, Eq. (2.24) applies to non-negative integers n1 and n2 such that
neither (n1, n2) = (j, j ± 1) nor (j ± 1, j) with j ∈ N are satisfied. We note also that, as a consequence of
Z2 symmetry, these bands are doubly degenerate under the exchange of indices ωMI

n1,n2 = ωMI
n2,n1 for

n1 ̸= n2.
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Figure 2.2: Excitation spectra across the MI-to-SF second-order (a) edge transition at µ/U = 1 and (b) O(2) transition at
(µ/U)MI,tip

c ≈ 0.914, as well as (c) in the SF phase for µ/U = (µ/U)MI,tip
c , choosing U12/U = 0.5 at fixed n0,d = 2 in d = 2.

For the edge transition in panel (a), the chosen hopping energies are 2 d J/U = 0.12 (red lines) and 2 d (J/U)MI
c ≈ 0.167

(blue lines); for the O(2) transition in panel (b), the hopping energies 2 d J/U = 0.12 (red lines) and 2 d (J/U)MI,tip
c ≈ 0.172

(blue lines) are considered. The hopping energy in the SF phase in panel (c) is 2 d J/U = 0.18. The parentheses in panels
(a)-(b) refer to the degeneracy of the hybridised particle and hole bands, while the spin and density Goldstone modes are
indicated explicitly. The blue dotted horizontal lines correspond to the doubly degenerate non-dispersive band ω0,2.

Density and
spin
Goldstone
modes

These excitations correspond to the Goldstone modes that result from the breaking of
the two U(1) symmetries of the model: one for the density (oscillations of the global
phase of the binary condensate) and the other for the spin channel (oscillations of the
relative phase between the order parameters of different components). Their dispersion
relation approaches the Bogoliubov bands [51]

ωBog,d/s,k ≡
√
ϵ(k) [ϵ(k) + n0,d (U ± U12)] (2.28)

in the weakly-interacting limit 2 d J/U ≫ 1. Close to the transition, the first two gapped
branches, which also display individual density and spin character, are referred to as
the Higgs modes of the system, in analogy to the single-component BH model [32,
66, 67, 119]. The ω0,2 band becomes dispersive and hybridises into spin and density
excitations as well.

The transition between MI and SF phase can also be of the first order, as discussed
in [91, 117, 118, 120]. In this case, the one-body order parameters ψ0,i display a discon-
tinuity across the critical boundary, as shown in Figure 2.1(d). The behaviour of the
discontinuity at the first-order transition was studied in the mean-field Gutzwiller
analysis of [118], where it was found that: (i) the jump of the order parameter increases
with U12 and then rapidly goes to zero as the phase separation point U12/U ∼ 1 is
approached; (ii) the hopping window corresponding to the first-order transition widens
with increasing U12 starting from the tip and reaching J = 0 when approaching the
phase separation condition. Across the first-order critical point, the structure of the
excitation spectrum changes discontinuously between the different spectral features
discussed before, such that the modes in the MI and SF phases cannot be smoothly
connected.

(Counterflow Superfluid) – In Figure 2.1(a)-(b), the phase diagram displays also
CFSF phases [yellow areas] at odd total filling, characterised by a finite antipair order
parameter ψ0,C and whose size increases with larger U12. Within the CFSF lobes, one
finds that the Fock states |(n0,d + 1) /2, (n0,d − 1) /2⟩ and |(n0,d − 1) /2, (n0,d + 1) /2⟩
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Spectrum of
the CFSF

phase

are doubly degenerate with ground state energy

ω0 = U (n0,d − 1)2 + U12 n0,d (n0,d − 1) − µ (2n0,d − 1) . (2.29)

Comparing this energy with Eq. (2.22), we can identify the boundary between neigh-
bouring MI and CFSF lobes at J = 0, which is located at µ = U12 in the case of the
n0,d = 1 CFSF lobe and the n0,d = 2 MI lobe. In order to obtain the correct ground state,
we symmetrise the antipair state as [ | (n0,d + 1)/2, (n0,d − 1)/2 ⟩ + | (n0,d − 1)/2, (n0,d +
1)/2 ⟩ ]/

√
2, as predicted in [54, 91, 92, 94, 95, 119].

In the CFSF phase, particle and hole excitations involve the subset of states { | (n0,d +
1)/2 ± 1, (n0,d − 1)/2 ⟩ ; | (n0,d + 1)/2, (n0,d − 1)/2 ± 1 ⟩ }, which amount to three
particle-like excitations and one (three) hole-excitations for the CFSF phase for n0,d = 1
(n0,d ≥ 3). From these excitations, one can construct three (four) modes belonging to the
density channel, plus one (two) belonging to the spin channel. The general behaviour of
the excitation spectrum is such that a pair of particle and hole branches in the density
channel lower their energy while moving towards the boundary of the CFSF lobe, with
the particle (hole) excitation closing the gap if the transition in crossed above (below)
the tip chemical potential. Exactly at the tip, the lowest particle and hole excitations in
the density channel close the gap simultaneously. Remarkably, the distinction between
the edge and tip critical points in the density channel closely resembles the properties
of the MI-to-SF transition.

For the CFSF region with n0,d = 1, the excitation spectrum can be calculated
analytically from Eq. (2.13). In this case, the spin channel hosts only one particle branch,
decoupled from the rest of the spectrum and given by

ωCFSF,s,k = U − µ− J(k) . (2.30)

This corresponds to a free-particle dispersion, shifted by the mean-field local energy
U − µ. In the density sector, we extract two particle branches and one hole branch,
whose excitation energies are the solutions of the equation

J(k)
[
U U12 − (ωk ± µ)2

]
∓ (ωk ± µ)(U ∓ ωk − µ)(U12 ∓ ωk − µ) = 0 . (2.31)

Similarly to the spectrum of the MI phase, all the other excitations consist in an
infinite sequence of non-dispersive bands, the first two of which have energies ω0,1 =
ω1,0 = −µ− ω0 = 0. In particular, these branches correspond to (unphysical) cost-free
excitations reflecting the degeneracy of the antipair states forming the mean-field
ground state of the CFSF phase 3. In [118], these bands were found to acquire a
sound-like profile when higher-order hopping processes are included perturbatively
in CFSF phase. These contributions are however neglected in the TDGE (2.8), from
which instead we extract higher gapped excitation modes, absent in that work, whose
low-energy behaviour is strongly tied to the appearance of the SF phase and determines
the one-body correlations in the CFSF phase. We will address this last point more
explicitly in Section 2.3.

3 We note that the flat bands ω0,1 = ω1,0 describe (trivial) excitations within the antipair sector
{u0,1, u1,0, v0,1, v1,0} and therefore cannot describe the tunnelling of antipairs out of the ground
state. Indeed, the blind inclusion of such ghost collective modes into our description of quantum
fluctuations leads to violated completeness relations (see Appendix C.1).
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Figure 2.3: Excitation spectra across the CFSF-to-SF second-order for U12/U = 0.9 at fixed n0,d = 1 in d = 2 for: (a) the edge
transition at µ/U = 0.5; (b) the O(2) transition at (µ/U)CFSF,tip

c ≈ 0.391; (c) the SF phase for µ/U = (µ/U)CFSF,tip
c . For the

edge transition in panel (a), the chosen hopping energies are 2 d J/U = 0.1 (red lines) and 2 d (J/U)CFSF
c ≈ 0.154 (blue

lines); for the O(2) transition in panel (b), the hopping energies are 2 d J/U = 0.14 (red lines) and 2 d (J/U)CFSF,tip
c ≈ 0.162

(blue lines). The hopping energy in the SF phase in panel (c) is 2 d J/U = 0.172. The particle (hole) and spin (density)
characters of gapped excitations, as well as the physical nature of the Goldstone modes, are indicated explicitly by the labels
“p” (“h”) and “s” (“d”), respectively.

The second-order transition boundary between the CFSF and SF phases is deter-
mined from the closure of the smallest gap in the CFSF excitation spectrum. From
Eq. (2.31), we find that for n0,d = 1 the gap closing occurs at

2 d
(
J

U

)CFSF

c
= µ

U

(1 − µ/U) (µ/U − U12/U)
(µ/U)2 − U12/U

, (2.32)

whose maximal value gives the location of the tip of the CFSF lobe. As a reference, we
mention that for U12/U = 0.9 the location of the tip of the n0,d = 1 CFSF lobe shown
in Figure 2.1(b) is located at {(µ/U)CFSF,tip

c ≈ 0.391, 2 d (J/U)CFSF,tip
c ≈ 0.164}.

In Figure 2.3(a), we show how the excitation spectrum appears as the second-order
CFSF-to-SF transition for n0,d = 1 andU12/U = 0.9 is crossed through the edge point at
2 d (J/U)CFSF

c ≈ 0.154 at µ/U = 0.5. Above (below) the tip chemical potential, the gap
is closed by the lowest particle (hole) band in the density channel, while the other bands
remain gapped. More specifically, the particle band in the spin channel corresponding
to Eq. (2.30), which is the third in ascending order at x = 0, never participates in the
gap closure. In Figure 2.3(b), we consider the evolution of the band structure across the
tip transition at 2 d (J/U)CFSF,tip

c ≈ 0.162 for U12/U = 0.9 and (µ/U)CFSF,tip
c ≈ 0.391,

while holding n0,d = 1 fixed. Indeed, we observe that at the transition point the gaps
of the two lowest-energy bands in the density channel vanish, while the remaining
modes retain a finite gap. In the SF region, illustrated in Figure 2.3(c), the two lowest
bands in the density channel participate in the creation of the density Goldstone and
the density Higgs excitation, respectively. The spin Goldstone mode emerges from the
non-dispersive antipair bands ω0,1 = ω1,0 as discussed before.

Attractive interaction U12 < 0
(Mott Insulator) – In Figure 2.4(a)-(b), we show the ground state phase diagram

for two different values of U12 < 0. For attractive interactions, the MI lobes present
the same ground state and spectral properties as their repulsive counterparts, with
the spin/density character of the excitation modes being reversed. Furthermore, the
MI-to-SF criticality is found again to be of either the first or second order. However, at
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Figure 2.4: Ground state phase diagram for attractive interspecies interactions (a) U12/U = −0.4 and (b) U12/U = −0.7,
with the order of the transition lines and O(2) critical points within the MI lobes indicated as in Figure 2.1. The PSF phase is
identified by the purple horizontal lines, with total filling n0,d evaluated in the η → 0+ limit. The dot-shaped illustrations
depict the particle-particle pairs that develop between the two components of the gas in the PSF phase. (c) behaviour of the
order parameters along the PSF-to-SF transition line at the border between the vacuum (green-shaded area) and the n0,d = 2
MI lobes for U12/U = −0.7 and fixed n0,d ≈ 1.47. (d)-(e) Excitation spectrum and compressibility near the first-order
vacuum-to-SF transition for µ/U ≈ −1.01, 2 d J/U = 1, and U12/U = −0.6 with critical filling n0,d ≈ 0.239. The log-log
scale of the vertical axis of panel (e) reveals the quadratic power law of the density Goldstone mode at all momenta.

odds with the repulsive case, the first-order boundaries appear initially at small J/U
rather than close to the tip, as shown in Figure 2.4(b) for U12/U = −0.4, eventually
spanning the entire lobe boundary, as shown in Figure 2.4(b) already forU12/U = −0.7.
In addition, the boundary between the vacuum lobe [green area] and the SF phase
becomes also a first-order transition line. Along this boundary, the density Goldstone
mode acquires a purely quadratic dispersion ωd,k ∝ k2 at small momenta, as shown in
Figure 2.4(d), which indicates the vanishing of the sound velocity of density excitations
(cd → 0), while the spin sound velocity remains finite (cs > 0). Accordingly, the
compressibility ∂n0,d/∂µ diverges due to the discontinuity in the filling, as shown in
Figure 2.4(e). These behaviours indicate that the system collapses along the first-order
vacuum-to-SF transition boundary, presumably towards a droplet phase [121–123].
Along this line, the critical filling decreases for increasing 2 d J/U , vanishing eventually
in the deep SF regime (not shown), where the transition becomes again of second order.
As U12/U becomes more attractive, the first-order criticality extends towards larger
values of 2 d J/U .

(Pair Superfluid) – The MI lobes shown in Figure 2.4(a)-(b) are separated by sharp
transition lines [purple horizontal lines], extending towards increasingly large values
of 2 d J/U as U12 becomes more and more attractive. On these lines at the boundary
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Figure 2.5: Variation of (a) n0,d and ψ0,P and (b) α and β as functions of µ/U in the vicinity of the PSF line at (µ/U)PSF
c =

−0.35 for fixed 2 d J/U = 0.12 and U12/U = −0.7. Solid (dashed) lines correspond to the symmetry-breaking offset
η = 10−3(2 × 10−3).

between the n0,d = 2 j and n0,d = 2 (j + 1) MI lobes, one finds that the states with the
lowest eigenenergies |j + 1, j + 1⟩ and |j, j⟩ are degenerate, thus corresponding to a
PSF phase with a finite pair coherence ψ0,P ̸= 0. When imposed in the TDGE, such
degeneracy condition pinpoints the location of the PSF lines on a discrete set of critical
chemical potentials (µ/U)PSF

c through the equation

−U12 − 2 j (U + U12) + 2µPSF
c = 0 , (2.33)

valid for any non-negative integer j. Thus, in general the ground state is given by the
superposition α |j + 1, j + 1⟩ + β |j, j⟩, where the coefficients α and β are restricted to
lie on the unit circle |α|2 + |β|2 = 1. However, these coefficients are undetermined within
the usual Gutzwiller ansatz, as the individual states are inherently Z2-symmetric, in
contrast with the CFSF case.

The determination of α and β in the mean-field Gutzwiller theory requires the
introduction of an ad-hoc perturbative order parameter ψ0,i = η > 0 along the PSF line
mimicking the tunnelling of residual background fluctuations, such that ground states
with broken U(1) symmetry can be accessed. As we show in Figure 2.5(a), this turns out
to uniquely fix α [orange lines] and β [light blue lines] along the PSF lines described
by Eq. (2.33) regardless of the value of η, provided that η remains sufficiently small. In
particular, concerning the PSF line separating the vacuum region from the n0,d = 2 MI
lobe, we obtain α ≈ 0.858 and β ≈ 0.513, from which we derive n0,d ≈ 1.47. Similarly,
for the PSF line separating the n0,d = 2 and n0,d = 4 MI lobes, we find α ≈ 0.794 and
β ≈ 0.608, which gives n0,d ≈ 3.260 in the PSF phase. In this way, we reliably obtain a
PSF ground state with a well-defined value of the pair order parameter ψ0,P ̸= 0.

In the QMC study of [109], α and β were found to vary with µ at fixed U12 and J .
Analogously, the symmetry-breaking offset η makes the PSF phase line to develop a
finite width, as shown in Figure 2.5(b), where the variation of n0,d and ψ0,P is studied
for fixed µ/U . We find that n0,d [light blue lines] changes continuously between the
filling of the two neighbouring MI lobes, which is qualitatively consistent with the
QMC results of [109], with the major difference being the size of the transition width
in the chemical potential µ/U . Secondly, we also see that ψ0,P [orange lines] behaves
smoothly, vanishing identically as one enters the MI lobes and reaching a maximum in
between. This reveals that the PSF-to-MI transitions are of the second order within the
present approach. In general, the maximum of ψ0,P is found to occur for a value of µ/U
below the exact PSF line, becoming increasingly shifted for larger η. Also, the maximum
is located where α = β = 1/

√
2 [black solid line], which can be seen easily by matching
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Figure 2.6: Excitation spectra (a) along the PSF-to-SF second-order transition with n0,d ≈ 1.47 and (µ/U)PSF
c = −0.35 and

(b) in the SF phase for µ/U ≈ −0.35 and U12/U = −0.7 in d = 2. In panel (a), the hopping energies are 2 d J/U = 0.08
(red lines) and 2 d (J/U)PSF

c ≈ 0.131 (blue lines). In the SF phase, we consider 2 d J/U = 0.14. The parentheses refer to the
degeneracy of the hybridised quasiparticle bands.

Spectrum of
the PSF

phase

the results of the two panels of Figure 2.5. However, we observe that not only α and
β, but also n0,d and ψ0,P are invariant with respect to the choice of the value of η if
taken precisely along the PSF line (µ− µPSF

c = 0). Moreover, as a function of 2 d J/U ,
the width of the PSF region shrinks with decreasing 2 d J/U , collapsing onto the PSF
line in the strongly-interacting limit. Therefore, an infinitesimal symmetry-breaking
perturbation η → 0+ can be safely applied for practical purposes (cfr. [124]). In the
following, this limit will be assumed whenever the PSF phase is considered, in virtue
of its essential insensitivity to the choice of η.

Along the PSF line, Eq. (2.13) can be treated analytically to obtain the excitation
spectrum ωk. For the n0,d ≈ 1.47 PSF phase separating the vacuum from the n0,d = 2
MI lobe, one obtains the implicit equation

J2(k)
[(

8β4 − 8β2 + 1
)
µ2 +

(
1 − 2β2

)2
U2 + 2

(
4β4 − 2β2 − 1

)
µU − ω2

k

]
+2 J(k)

[
µU2 + 2β2 µ2 U − 2

(
β2 − 1

)
U ω2

k +
(
2β2 − 1

) (
µ2 − ω2

k

)
µ
]

+
(
µ2 − ω2

k

) [
(µ+ U)2 − ω2

k

]
= 0 , (2.34)

which describes two distinct gapped bands, both doubly degenerate and with a mixed
particle/hole characteristic Ci,α,k. In analogy with the CFSF phase, all the remaining
excitations have a flat dispersion; in particular, the zero-energy modes ω0,0 = ω1,1 = 0
describe cost-free density fluctuations due to the formation of local particle-hole pairs
within the PSF ground state predicted by Gutzwiller’s mean-field theory.

Once again, the second-order phase transition from the PSF and to the SF phases is
identified by the closure of the gap in the excitation spectrum. From Eq. (2.34), we find
that along the n0,d ≈ 1.47 PSF line the critical hopping strength is given by

2 d
(
J

U

)PSF

c
= µ

U

1 + µ/U

(2 − 2β2)µ/U − (1 + µ/U) (2αβ + 1) . (2.35)
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In Figure 2.6(a), we show how the excitation spectrum of the PSF phase of density
n0,d ≈ 1.47 evolves as the second-order transition point 2 d (J/U)PSF

c ≈ 0.131 is
reached for U12/U = −0.7 along the critical line at (µ/U)PSF

c = −0.35. At the PSF-to-
SF transition point, only the energy gap of the lowest quasiparticle branches vanishes,
such that the band structure appears reminiscent of the MI-to-SF and CFSF-to-SF
second-order tip transitions in Figure 2.2(b) and Figure 2.3(b) respectively, but with
only a gapless mode being degenerate. More distinctly, the O(2)-like nature of the
PSF-to-SF transition is suggested in Figure 2.6(b), where we observe that the gapless
quasiparticle bands split into the Goldstone and Higgs modes active in the spin channel,
while the density Goldstone mode emerges from the non-dispersive band ω0,0 = ω1,1.

It is important to remark that the flatness of the lowest spin bands ω0,1 and ω1,0
for CFSF and density bands ω0,0 and ω1,1 for PSF is an artefact resulting from the
mean-field approximation. A more careful treatment of non-local fluctuations would
alter these modes to produce linear Goldstone dispersions as a result of the broken
U(1) symmetry either in the spin or in the density channel, respectively.

2.3 Quantum correlations from the QGA

In this Section, we apply the QGA to calculate a range of experimentally relevant observ-
ables in two dimensions (d = 2): the density and spin structure factors (Subsection 2.3.1),
the current response functions and associated superfluid densities (Subsection 2.3.2),
the coherence function (Subsection 2.3.3), and local density and spin correlations
(Subsection 2.3.4).

As a straightforward continuation of the one-component case of Chapter 1, the
QGA for the two-component system relies on more structured equal-time commutation
relations between the conjugate fields of the theory,[

ĉn1,n2(r1), ĉ†
m1,m2(r2)

]
= δr1,r2 δn1,n2 δm1,m2 , (2.36)

as well as a different definition of the normalisation operator,

Â(r) =
[
1̂−

∑
n1,n2

δĉ†
n1,n2(r) δĉn1,n2(r)

]1/2

. (2.37)

We stress that, in the same way as the Gutzwiller variables cn1,n2(r) assign a weight
to each local configuration, the corresponding Gutzwiller operators cannot be de-
composed into single-species operators without overlooking a relevant fraction of the
interspecies correlations: this sharply contrasts with Bogoliubov’s theory [40, 125],
where the quantum fields of different species are always decoupled. It follows that
the two-component QGA can take into accurate account local pair correlations, while
quantisation allows for an approximate view on the non-local quantum correlations
missed by mean-field theory.

In the following discussion, we will provide directly the semi-analytical predictions
for the observables as provided by the QGA, while more involved and informative
derivations will be briefly sketched when appropriate. For simplicity, we will assume
again that the ground state of the system is the zero-temperature vacuum of the
collective modes. In order to make our discussion of the QGA results consistent,
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from now on we will calculate the lattice filling nd = ⟨n̂d⟩ corresponding to each
result by always including second-order local quantum corrections as detailed in
Appendix C.2.

2.3.1 Density and spin response functions

As a first application of the QGA, we investigate the role of quantum fluctuations
in the linear response dynamics of the two-component BH system to density/spin
probes. The density and spin response of an ultracold system reflects the underlying
correlations and collective modes of the system, and can be probed experimentally
using a variety of methods, e.g. Bragg scattering or periodic modulation of the lattice
depth [35, 38–40, 126, 127]. In the present case, the spin and density susceptibilities
represent important tools in differentiating between the CFSF and PSF transitions,
where density and spin DoF are expected to separate according to our diagnostics of
the collective excitations. In general terms, we consider the effect of an external field
applied at a fixed frequency ω. The local operator associated with the perturbation
is denoted by Ĝr, while we indicate by F̂r the local operator whose linear response
dynamics is under study.

Dynamical structure factors In a two-component system, the most interesting re-
sponse functions are the density and the spin or magnetisation response functions,
corresponding to Ĝr = F̂r = n̂1,r + n̂2,r and Ĝr = F̂r = n̂1,r − n̂2,r, respectively. Such
response functions are related to the density and spin structure factors of the system.
Let us start from the species-resolved density response function, i.e. Ĝr = F̂r = n̂i,r,
which, up to second-order in the quantum fluctuations, reads

χn̂i(q, ω) = 2
∑

α

|Ni,α,q|2 ωα,q

(ω + i 0+)2 − ω2
α,q

(2.38)

at zero temperature. The response functions for the total density and spin channels are
obtained by simple extensions of Eq. (2.38), namely

χn̂d
(q, ω) = 2

∑
α

|N1,α,q +N2,α,q|2 ωα,q

(ω + i 0+)2 − ω2
α,q

, (2.39)

and

χn̂s(q, ω) = 2
∑

α

|N1,α,q −N2,α,q|2 ωα,q

(ω + i 0+)2 − ω2
α,q

, (2.40)

respectively. At zero temperature, the imaginary part of the response functions
is proportional to the corresponding dynamical structure factors via the relation
SF̂ (q, ω) ≡ −Im

[
χF̂ (q, ω)/π

]
, going under the name of Fluctuation-Dissipation Theo-

rem (FDT) [128]. Useful information on and from the dynamical structure factors is
provided by their energy momenta, also known as sum rules,

mp

F̂
(q) ≡

∫ +∞

0
dω ωp SF̂ (q, ω) . (2.41)
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Figure 2.7: Normalised dynamical structure factors S̃F̂ (k, ω) = SF̂ (k, ω)/SF̂ (k) for (a)-(a′) the one-component density
channel F̂r = n̂1,r, (b)-(b′) the total density channel F̂r = n̂1,r + n̂2,r and (c)-(c′) the spin channel F̂r = n̂1,r − n̂2,r in the SF
phase in the vicinity of CFSF (a)-(c) and PSF (a′)-(c′) transitions for d = 2. For panels (a)-(c), the parameters are U12/U = 0.9,
µ/U = 0.391, 2 d J/U = 0.172 and nd = 1, see Figure 2.3(c). For (a′)-(c′) panels, the parameters are U12/U = −0.7,
µ/U ≈ −0.35, 2 d J/U = 0.14 and nd ≈ 1.47, see Figure 2.6(c).

In particular, m0
F̂

(q) = SF̂ (q) is the so-called static structure factor. Within our
approximation in Eqs. (2.38)-(2.40), the dynamical structure factors are simply given
by a sum of weighted Dirac delta functions, namely

Sn̂d
(q, ω) =

∑
α

|N1,α,q +N2,α,q|2 [δ(ω − ωα,q) − δ(ω + ωα,q)] , (2.42)

Sn̂s(q, ω) =
∑

α

|N1,α,q −N2,α,q|2 [δ(ω − ωα,q) − δ(ω + ωα,q)] , (2.43)

from which the sum rules are easily determined.
Contextually to [118], the normalised dynamical structure factors SF̂ (q, ω) =

SF̂ (q, ω)/SF̂ (q) (cfr. [40]) have been analysed in the SF regime for both repulsive and
attractive interspecies interactions, for which it was found that: (i) the low-momentum
part of the gapped modes does not respond significantly to any of the density-type
probes, in agreement with the single-component case [51, 119]; (ii) the density and spin
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Goldstone modes are strongly excited by the total density and spin probes, respectively;
(iii) the single-species density fluctuations are strongest on the lowest gapless branch.
In [118], the density response in the PSF and CFSF regimes were also considered,
although for an effective Hamiltonian including ad-hoc perturbative hopping processes
in the strongly-interacting limit of the model.

In Figure 2.7, we show our results for the normalised dynamical structure factors
in the immediate vicinity of the CFSF (a)-(c) and PSF (a′)-(c′) transitions, confirming
the qualitative picture of [118] and displaying detailed signatures of the pairing
phase transitions. These calculations have been performed for a total filling ⟨n̂d⟩ = 1,
including the second-order quantum corrections to the mean-field value n0,d. Starting
from panels (a)-(a′), we illustrate that single-species perturbations are sufficient for
testing the proximity of the antipaired and paired phases, as S̃F̂ (q, ω) receives a
dominant contribution from the lowest-lying Goldstone mode, while both the density
and spin Goldstone excitations are found to have approximately the same weight in the
deep SF region. More precisely, close to the CFSF (PSF) transition, the spin (density)
mode (which softens at the transition) dominates the system response and enhances the
amplitude of the structure factor at low energies for all momenta. Moving to the total
density channel, in panel (b) we see that, despite the CFSF phase being dominated by
spin fluctuations, the structure factor receives an increasing contribution by the density
Goldstone mode at low momenta as the critical point is approached; as expected,
the same mode controls entirely the total density response of the system close to the
PSF transition, depicted in panel (b′). The situation is reversed in the case of the spin
channel, considered in panels (c)-(c′): here, the projection of the structure factor over
the spin Goldstone mode acts as a marker of both the CFSF and the PSF transitions,
albeit on different momenta and energy ranges.

Static response and sum rules The energy moments of the dynamical structure
factors allow to obtain a number of important quantities and identities that characterise
the system. First of all, the uniform limit of the inverse-energy-weighted sum rule
m−1

F̂
(q) gives the static response of the system to the selected perturbation. Using the

QGA expressions in Eqs. (2.39)-(2.40), we obtain the relations

m−1
d (q) =

∑
α

(N1,α,q +N2,α,q)2

ωα,q
=

q→0

κ

2 , (2.44)

m−1
s (q) =

∑
α

(N1,α,q −N2,α,q)2

ωα,q
=

q→0

χ

2 (2.45)

for the compressibility κ and the spin susceptibility χ of the two-component BH
system, where the subscripts d and s are just shorthand notations for F̂ = Ĝ = n̂d/s. In
particular, we note that the former compressibility relation generalises the result of [51]
to mixtures.

Our results for the compressibility and the spin susceptibility are shown in Figure 2.8
in the vicinity of the CFSF transition [panel (a)] and the PSF transition [panel (b)].
Notably, we find that the spin susceptibility (compressibility) diverges near the CFSF
(PSF) transition. Close to the CFSF regime, this finding parallels the decreasing energy
cost to produce spin excitations (see Figure 2.3), which corresponds to an increase in
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Figure 2.8: Upper panels: dependence of the compressibility (blue diamonds) and susceptibility (red diamonds) in the
vicinity of the O(2) (a) CFSF and (b) PSF transitions. Lower panels: dependence of the density (blue circles) and spin (red
circles) sound velocities close to the same transitions. The data in (a) and (a′) correspond to fixed nd = 1 and U12/U = 0.9,
while the data in (b) and (b′) are derived for fixed nd ≈ 1.47 and U12/U = −0.7. The calculations are always performed for
d = 2.

the response of the system towards magnetic perturbations. On the other hand, in the
PSF regime, the divergence of the compressibility corresponds to the decreasing energy
of density excitations (see Figure 2.6), hence the increasing sensitivity of the system
to density fluctuations. Additionally, we find that the compressibility (susceptibility)
tends to vanish near the CFSF (PSF) transition due to the opening of a spectral gap in
the density (spin) channel.

The divergence of the static response functions – which would suggest an instability
of the system towards phase separation or collapse – is due to the lack of a proper
inclusion of pairing quantum correlations when describing the CFSF and the PSF
phases within the Gutzwiller representation: specifically, it is simply related to the
presence of a zero-energy flat dispersion relation for the residual density and the spin
modes, respectively. As shown in Figure 2.8(a’)-(b’), the appearance of such modes
reflects into the vanishing behaviour of the spin (density) sound velocities at the CFSF
(PSF) critical points.
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An explicit relationship between sound velocities and static response functions can
be directly uncovered by making use again of sum rules. Indeed, upon approaching
the CFSF (PSF) phase, the low-momentum response function is exhausted by the spin
(density) Goldstone mode, as shown in Figure 2.7. Thus, the sum rules satisfy the
general relation

mp
d/s(q → 0) ≃ ωp−k

d/s,q m
k
d/s ≃

(
cd/s |q|

)p−k
mk

d/s(q) , (2.46)

from which a number of identities can be derived. For instance, by considering p = 0
and k = −1, one can write

m0
d(q, ω) = |N1,d,q +N2,d,q|2 =

q→0

κ

2 cd |q| (2.47)

and
m0

s(q, ω) = |N1,s,q −N2,s,q|2 =
q→0

χ

2 cs |q| , (2.48)

which we have verified numerically and generalise the single-component identity
given in [51] relating the Goldstone mode structure factor to the compressibility
and the speed of sound excitations. The latter equations are moreover not inde-
pendent. In fact, within the present Bogoliubov-like approach, the p = 1 sum
rule (also referred to as f -sum rule in the literature) can be calculated exactly [40]:
m1

d/s(q) =
〈[
δn̂d/s(q),

[
Ĥ2BH, δn̂d/s(q)

]]〉
∝ q2 for |q| → 0. From this, using relation

m1
d/s(q) = ω2

d/s,q m
−1
d/s(q), we immediately infer that c2

d/s ∝ 1/κ (1/χ). Therefore, if
the sound dispersion flattens, the corresponding static response must diverge.

2.3.2 Current response and superfluid components

We now investigate the role of quantum fluctuations in the linear response of the
binary BH system to current probes. The response of an ultracold system to this class
of perturbations reflects its superfluid properties, which are expected to be remarkably
different in the CFSF and PSF phases due to a large collisionless superfluid drag
between the two components [109] as a consequence of strong pair correlations.

In this Subsection, we consider the transverse (i) intraspecies current response with
Ĝr = F̂r = ĵi and (ii) interspecies current response with F̂r = ĵ1 and Ĝr = ĵ2, evaluated
in the static limit ω = 0 along the x-directed links of the square lattice (without loss of
generality). Here, ĵi is the current operator referred to ith species taken in the uniform
limit q → 0, that is

ĵx
i,q→0 = 2 J lim

q→0

∑
k

sin
(
kx + qx

2

)
â†

i,k âi,k+q . (2.49)

Within the QGA formalism, the intra/interspecies current response functions are found
to be

χT
ĵi,ĵi

(q → 0, ω = 0) = −4 J2
∑
α,β

∑
k

∣∣Ui,α,k Vi,β,k − Ui,β,k Vi,α,k
∣∣2

ωα,k + ωβ,k
sin2(kx a)

(2.50)
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and

χT
ĵ1,ĵ2

(q → 0, ω = 0) = −4 J2
∑
α,β

∑
k

∏2
i=1

(
Ui,α,k Vi,β,k − Ui,β,k Vi,α,k

)
ωα,k + ωβ,k

sin2(kx a)

(2.51)
respectively. The above equations naturally generalise the findings of [82] provided
by the Bogoliubov approximation. In that case, one has only the density and spin
Goldstone modes given by Eq. (2.28) and consequently the current response functions
satisfy the relation χT

ĵ1,ĵ1
(q → 0, ω = 0) = −χT

ĵ1,ĵ2
(q → 0, ω = 0) exactly. Within the

QGA, due to the presence of additional excitation bands with a substantial spectral
weight for strong enough interactions, the very same equality is approximately fulfilled
in the deep SF phase only. Physically, the violation of the aforementioned identity
reflects the breaking of Galilean invariance (cfr. [82]), which allows for a non-zero
normal component of the gas contributing to superfluidity even at zero temperature,
as we will discuss in the following.

We proceed to introduce the relevant superfluid quantities in the two-species BH
model. For a homogeneous two-component superfluid system, the relations between
the mass current densitiesmi ji of each species and the velocities of the gas components
are governed by the two-fluid model originally formulated in [96] and read

m1 j1 = ρn,1 vn + ρs,1 v1 + ρ12 v2 , (2.52a)

m2 j2 = ρn,2 vn + ρs,2 v2 + ρ12 v1 , (2.52b)

where mi is the bare mass of the ith species of the system, ρs,i and vi are respectively
the superfluid (mass) densities and velocities for each component, ρ12 is the so-called
drag interaction and ρn,i are the normal (mass) densities of the system, which are
assumed to flow both at the same velocity vn. The physical role of the superfluid drag,
going under the name of Andreev-Bashkin (AB) effect, has a self-evident explanation:
a superflow in one component can be driven by the collisionless drag from the
superflow in the other component of the system, and vice versa. For a continuous
system, by Galilean invariance Eqs. (2.52) are supplemented by a close relationship
miNi/V = ρn,i + ρs,i + ρ12 between the normal part of the system and the superfluid
densities, such that at zero temperature, where ρn,i = 0, the whole volume density
of the system (N1 + N2)/V participates in the superfluid flow [129]. On a lattice,
the breaking of Galilean invariance requires the mass current densities to satisfy a
different transformation rule in the presence of a vector potential acting as a probe,
such that the density Ni/V is replaced by −Ki/ (2 J), where Ki =

〈
K̂i

〉
is the kinetic

energy density of the ith species along the direction of the phase twist induced by the
vector potential [82]. In particular, we recall that the local kinetic operator acting along
x-directed links of a square lattice is given by

K̂x
i (r) = −J

(
â†

i,r+ex
âi,r + H.c.

)
. (2.53)

Most importantly, we also remark that the normal component nn,i may not vanish at
zero temperature on a lattice. Therefore, recovering a result derived in [106], for the
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two-component BH model we obtain

−Kx
i

2J = nn,i + ns,i + n12 , (2.54)

where we have introduced the superfluid (normal) number densities as ns(n),i ≡
ρs(n),i/m and the drag n12 ≡ ρ12/m to facilitate a direct comparison with the lattice
filling. The average kinetic energy density Kx

i calculated within the QGA theory reads

Kx
i ≈ −2 J |ψ0,i|2 − 2 J

V

∑
α

∑
k

∣∣Vi,α,k
∣∣2 cos(kx a) . (2.55)

To quantify how the AB effect impacts on the effective mass of the gas components, we
define the dimensionless parameter ξ∗

i through the equations

nn,i + ns,i ≡ −ξ∗
i

Kx
i

2 J , (2.56a)

n12 ≡ −Kx
i

2 J (1 − ξ∗
i ) , (2.56b)

where ξ∗ = m/m∗ reflects the extent to which the bare massm ≡ (2 J)−1 on the lattice
is renormalised by the interaction between the superfluid flows. Explicitly, when ξ∗

i > 1
(ξ∗

i < 1) the renormalised effective mass is smaller (larger) than the bare mass. This
extends the concept of the renormalised effective mass discussed in [81, 96] to the
lattice, as Eq. (2.56b) is exactly analogous to Eq. (4) in the second work. We note that
in those works translational invariance ensures that the renormalised effective mass
remains always larger than the bare mass due to the guaranteed positivity of n12. On
a lattice, the inclusion of nn,i in Eq. (2.56a), which is trivially absent for a continuous
superfluid at zero temperature, adds additional complexity while ensuring that the
variation of ξ∗

i is due solely to the collisionless drag.
Having introduced the relevant superfluid components, we now resort to the

formal results of [82] to relate them to the current-current response functions of the
two-component BH model. In particular, one has

ns,i = m

V
χT

ĵi,ĵi
(q → 0, ω = 0) − Kx

i

2 J , (2.57)

n12 = m

V
χT

ĵ1,ĵ2
(q → 0, ω = 0) . (2.58)

A third relation provides a sum rule for the total normal fraction of the system
nn = nn,1 + nn,2 as the total transverse current response function, reading

nn = −m

V

[
χT

ĵ1,ĵ1
(q → 0, ω = 0) + χT

ĵ2,ĵ2
(q → 0, ω = 0) + 2χT

ĵ1,ĵ2
(q → 0, ω = 0)

]
.

(2.59)
From Eq. (2.59), we notice how, upon exchanging ĵ1 with ĵ2, opposite values of the
current response functions χT

ĵ1,ĵ1
(q → 0, ω = 0) = −χT

ĵ1,ĵ2
(q → 0, ω = 0) results in

nn = 0, as would be predicted by the Bogoliubov approximation, in clear contrast with
the correct physics of a strongly-interacting lattice system at zero temperature. It is
worth noting that all the previous relations have been historically derived through the
application of either scattering theory [106] or linear response formalism [82]; with a
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Figure 2.9: Collisionless drag versus the interspecies coupling strength U12/U for fixed nd ≈ 0.5 and 2 d J/U = 0.4 in d = 2.
Here, we compare the QGA prediction (orange solid line) with the Bogoliubov result from [82, 106] (light-blue dashed line)
and the QMC data (yellow dotted line) from [109] evaluated on a lattice of size V = 102. The hollow square and circle
symbols indicate the collapse point for the QGA and Bogoliubov results, respectively.

look to future developments, in Appendix D we propose a more modern approach
to the calculation of the superfluid properties of a strongly-correlated system which
exploits the power of diagrammatics and Ward identities.

It is worth mentioning that measuring the AB effect is a challenging task experi-
mentally; however, it has been recently proposed to draw on fast response dynamics to
directly access the entrainment in continuous systems [82, 130]. In light of our results,
we conjecture that the same proposal could be applied in the presence of a lattice.

Superfluid regime

In the deep SF regime, the current response functions and the average kinetic en-
ergy match their expressions given by the mean-field Gutzwiller theory, namely
χT

ĵi,ĵj
(q → 0, ω = 0) = 0 and Kx

0,i = −2 J |ψ0,i|2, respectively. As for the one-
component case, this leads to equal superfluid and condensate densities, namely
ns,i = |ψ0,i|2, as well as a vanishing drag n12 = 0 and a trivial renormalisation of the
effective mass ξ∗ ≈ 1.

At intermediate 2 d J/U , the superfluid drag was calculated using quantum Monte
Carlo (QMC) simulations in [109]. The comparison of the QGA results with the
Bogoliubov predictions (see [82, 106]) and the QMC data is shown in Figure 2.9, for a
hopping energy equal to 2 d J/U = 0.4 and a fixed total filling nd ≈ 0.5. We remark
here that the accuracy of our drag estimation hinges on the correct calculation of the
total filling, which must include second-order quantum corrections accounted for by
the QGA theory (see again Appendix C.2). For repulsive interactions, these corrections
are always less than ∼ 10% and therefore can be essentially neglected. By contrast,
for attractive interactions quantum corrections increase for larger |U12| and can be
as large as ∼ 25% due to the diverging compressibility near the collapse transition –
see panel (e) of Figure 2.4. We find that including the quantum corrections has the
effect of shifting the collapse transition towards a stronger attraction U12 compared to
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the critical point obtained by keeping the mean-field filling n0,i. This fact restricts the
calculation of the drag to well before the Bogoliubov prediction for the collapse point
(U12/U ≤ −1) [82, 110].

The QGA results of Figure 2.9 [orange solid line] are obtained on the same V = 102

lattice considered in the QMC calculations of [109] [yellow dotted line]. We find that in
general the drag increases for smaller lattice sizes, in contrast to the results of that work.
Furthermore, we also observe that the collapse point is shifted towards less attractive
U12 for smaller lattices. Additionally, we note that, regardless of the sign of U12, the
collisionless drag remains always positive in the SF regime, and consequently the
renormalised effective mass is larger than the bare one. Physically, this indicates that
the dressing effect of individual particle motions of one species due to the superfluid
flow of the other component has a particle (rather than hole) character.

On the whole, the QGA predictions underestimate the QMC results, but qualitatively
reproduce the asymmetry of the superfluid drag with respect toU12. On the other hand,
the Bogoliubov results [light-blue dashed line] are symmetric with respect toU12, do not
capture the first-order transition and lie well below the uncertainty window of the QMC
points. In this regard, the QGA can be viewed as a major improvement over the standard
Bogoliubov treatment of quantum fluctuations in the presence of strong correlations [82,
83, 106]. Indeed, it is well known that Bogoliubov’s theory underestimates the current
response functions, as it takes into account only the excitation vertices of the Goldstone
modes in Eqs. (2.50)-(2.51) and neglects the contribution of all the other collective
modes, which acquire a sizeable spectral weight away from the deep SF limit.

Phase transitions for U12 > 0

In this Subsection, we study the superfluid components across the various phase
transitions appearing for repulsive interspecies interactions. To that end, we begin by
discussing the first and second-order MI-to-SF transitions, passing to the second-order
CFSF-to-SF transition in the second place.

(Mott Insulator to Superfluid) – In Figure 2.10(a) and Figure 2.10(b), we show the QGA
results for the relevant transport quantities, which include the superfluid components,
the intraspecies current response, and the average kinetic energy across the second and
first-order MI-to-SF transitions of the n0,d = 2 lobes for U12/U = 0.5 and U12/U = 0.9,
respectively.

Qualitatively, the behaviour of the superfluid fraction exhibits a number of features
in common with the QGA results for the single-component BH model [131]. Specifically,
in the SF regime, the superfluid density ns,i [black solid line] remains always larger
than the condensate fraction [black dotted line] and approaches the total density of the
corresponding species in the deep SF limit. Furthermore, ns,i vanishes discontinuously
(continuously) at the first-order (second-order) critical point and is exactly zero in the
MI phase as in the single component case. Once again, this latter feature is ensured by
the exact cancellation between the current response function χT

ĵi,ĵi
[pink dashed line],

given by Eq. (2.50), and the contribution of zero-point fluctuations to the average kinetic
energy Kx

i [cyan dashed line] provided by Eq. (2.55). As expected, both the quantities
tend towards zero in the strongly-interacting limit 2 d J/U → 0. The collisionless drag
[gray solid line] remains always on the order of a few percent of ns,i, reaching the
maximal value close to the MI-to-SF critical point and vanishing entirely within the MI
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Figure 2.10: Transport quantities in two dimensions across the MI-to-SF second (left panel) and first (right panel) order
transitions at fixed µ/U = 1.4 and µ/U = 1 for U12/U = 0.5 and U12/U = 0.9, corresponding to the nd = 2 MI lobes in
Figure 2.1(a) and Figure 2.1(b), respectively. The one-component densities ni include the corrections of the second-order
quantum fluctuations. The tan-shaded area indicates the MI region. Thick black and grey lines indicate the QGA predictions
for the superfluid density ns,1 and the (vanishingly small) superfluid drag n12 respectively, while the black dashed and
dotted lines refer to the normal component nn,1 and condensate fraction |ψ0,1|2. Pink dotted and blue dashed lines are the
contributions to ns,1 from the average kinetic energy Kx

i and the intraspecies current response function χT
ĵi,ĵi

, respectively.
(Insets) Renormalisation of the effective mass across the MI-to-SF transitions due to the collisionless drag.

phase. Because the superfluid drag is small, the renormalisation of the effective mass is
also negligible and the normal components nn,i [black dashed line] are dominated by
the contribution of the intraspecies current response function χT

ĵi,ĵi
, as one can see by

comparing Eqs. (2.58)-(2.59).
It is now worth commenting on the relative weight of the various excitation vertices

that contribute the most to the results displayed in Figure 2.10. In the SF regime, the
spin-density Goldstone vertex makes the largest contribution to the expression of
χT

ĵi,ĵi
in Eq. (2.50), followed by smaller terms coming from the vertex between the

Goldstone and Higgs modes with density character. This is in strong contrast to the
single component case, where χT

ĵi,ĵi
is nearly saturated by the Goldstone-Higgs vertex,

being the Goldstone mode of the density type only. Similarly, the interspecies current
response χT

ĵ1,ĵ2
, and therefore the superfluid drag, is nearly saturated by the vertices

involving the Goldstone modes. On the other hand, the zero-point fluctuations in the
average kinetic energy Kx

i [cyan dashed line] are dominated by the contribution of the
spin Goldstone mode, in addition to the mean-field effect of the order parameter ψ0,i.

Inside the MI phase, the spectral summation of the intraspecies response χT
ĵi,ĵi

is
totally due to the vertices of the particle/hole excitations, while the average kinetic
energy Kx

i is dominated by the contribution of the lowest particle or hole bands,
depending on the chemical potential. As the MI-to-SF transition is crossed, these
excitations turn into the Goldstone modes, such that the spectral content ofKx

i changes
smoothly across the criticality. An analogous reasoning applies to χT

ĵi,ĵi
. On the other

hand, we note that, interestingly, the interspecies response χT
ĵ1,ĵ2

is not fully saturated
by the vertices involving only the first few particle/hole bands, requiring also the
contribution of higher-energy excitations in order to give a perfect cancellation of the
superfluid drag in the MI lobe.

(Counterflow Superfluid to Superfluid) – The QGA results for the superfluid compo-
nents, the intraspecies current response, and the average kinetic energy across the
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Figure 2.11: Transport quantities in two dimensions across the CFSF-to-SF second-order edge transition, traversed at fixed
chemical potential µ/U = 0.5 for U12/U = 0.9, corresponding to the nd = 1 CFSF lobe in Figure 2.1(b). The one-component
filling ni includes the corrections of the second-order quantum fluctuations. The tan-shaded area indicates the MI region.
Thick black and grey lines indicate the QGA predictions for the superfluid density ns,1 and the superfluid drag n12
respectively, while the black dashed and dotted lines refer to the normal component nn,1 and condensate fraction |ψ0,1|2.
Pink dotted and blue dashed lines are the contributions to ns,1 from the average kinetic energy Kx

i and the intraspecies
current response function χT

ĵi,ĵi
, respectively. (Inset) Renormalisation of the effective mass across the CFSF transition due to

the collisionless drag.

second-order CFSF-to-SF transition of the n0,d = 1 lobe for U12/U = 0.9 are shown in
Figure 2.11.

In the SF region close to the CFSF phase, the results are equivalent to the ones found
in proximity of the MI lobe discussed previously. In the CFSF regime, we find that the
superfluid drag reaches the negative saturation threshold n12/

√
ns,1 ns,2 = −100%,

a result that strongly recalls the QMC calculations in [109], performed in d = 2
as well. Notably, we also observe that in the CFSF phase, even though the drag is
saturated, the net superfluidity ns,1 + n12 = 0 vanishes. This mirrors the fact that
counterflow superfluidity occurs when particles and holes of different species flow
along counter-directed paths, such that equal and opposite current densities for each
component develop [91, 109]. Importantly, within the QGA formalism this perfect
balance is due solely to quantum fluctuations, as the mean-field Gutzwiller theory
trivially predicts ns,1 = n12 = 0. Qualitatively speaking, such finding agrees with the
statement in [118] that superfluidity in the CFSF phase arises through second-order
hopping processes not seised by mean-field theory; however, the ad-hoc introduction
of such processes performed in that work is not explicitly comprised in the O

(
J2)

contribution of quantum fluctuations to Eqs. (2.50)-(2.51), which is thus a genuine result
of the QGA quantum theory. The collisionless drag remains large and negative across
the CFSF-to-SF transition, so that the renormalised effective mass becomes significantly
less than its bare value, particularly at the critical point. We remark here that the onset
of a negative superfluid drag indicates that a travelling particle carries, in addition to
its own bare mass, holes of the other species resulting in a reduced effective mass. As
the deep SF regime is approached, the drag n12 changes sign leading to an increased
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Figure 2.12: Transport quantities in two dimensions across the PSF-to-SF phase transition along the (µ/U)PSF
c = −0.35

critical line, which separates the vacuum region from the nd = 2 MI lobe for U12/U = −0.7, see Figure 2.4(b). The
one-component filling ni include the corrections of the second-order quantum fluctuations. The tan-shaded area indicates the
MI region. Thick black and grey lines indicate the QGA predictions for the superfluid density ns,1 and the superfluid drag
n12 respectively, while the black dashed and dotted lines refer to the normal component nn,1 and condensate fraction |ψ0,1|2.
Pink dotted and blue dashed lines are the contributions to ns,1 from the average kinetic energy Kx

i and the intraspecies
current response function χT

ĵi,ĵi
, respectively. (Inset) Renormalisation of the effective mass across the PSF transition due to

the collisionless drag.

effective mass as observed before.
Further insights come from inspecting the relative weight of the various excitations

vertices that contribute to the quantities shown in Figure 2.11. In the CFSF regime,
the average kinetic energy Kx

i is almost saturated by the gapped hole mode with
the lowest energy. Correspondingly, both the intraspecies χT

ĵi,ĵi
and interspecies χT

ĵ1,ĵ2
current response functions are dominated by the all-to-all vertices of the lowest four
particle/hole bands. It is curious to observe that the spectral weight of these particle-
hole excitations is sufficient to obtain the −100% saturation of the superfluid drag,
even though low-energy antipair excitations are only described by the flat bands ω0,1,
which do not contribute to the physics of fluctuations in our theory. As the transition
point is crossed into the SF regime, Kx

i is saturated by the density Goldstone mode,
while the response functions χT

ĵi,ĵi
and χT

ĵ1,ĵ2
get a large contribution by the vertices

between the density Goldstone mode and the first gapped modes of the SF phase.

Phase transitions for U12 < 0

In this last Subsection, we study the superfluid components across the second-order
PSF-to-SF transition. The analysis of the MI-to-SF critical behaviour given in the previous
Subsection is found to remain valid also in the case U12 < 0, with the only difference
that the physical roles of the spin and density Goldstone modes are swapped.

(Pair Superfluid to Superfluid) – The QGA predictions for the transport quantities
across the second-order PSF-to-SF for U12/U = −0.7 with (µ/U)PSF

c = −0.35 and
n0,d ≈ 1.47 are presented in Figure 2.12.
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Spectral
composition

of the
superfluid

drag

In the PSF regime, we find that the superfluid drag fulfils the positive saturation
condition n12/

√
ns,1 ns,2 = +100%, which is again compatible with the QMC findings

in [109]. Unlike the CFSF phase, however, here the saturation of the drag results in a non-
zero net superfluidity ns,1 + n12 > 0. Physically speaking, this can be interpreted from
the point of view of pairs of particles of different species following co-directed paths
and resulting in pair superfluidity [109]. In analogy with the QGA description of the
CFSF phase, this result can be entirely ascribed to the quantum fluctuations successfully
captured by our theory. Indeed, the collisionless drag remains large and positive along
the whole PSF line and through the transition into the SF phase. Consequently, the
effective mass is strongly renormalised, so as to be significantly larger than the bare
mass, in particular at the transition point. We note that this increase of the effective
mass is much larger than in the SF and MI regimes due to the tendency of a travelling
particle to transport, in addition to its own mass, particles of the other species that
consequently enhance the dressing effect of the medium. We note that, as the system
approaches the deep SF regime, the drag remains positive but becomes increasingly
small.

We conclude by commenting again on the spectral decomposition of the various
quantities shown in Figure 2.12. On the verge of the PSF side of the transition, the
average kinetic energy Kx

i is strongly dominated by the lowest quasiparticle band
(with hybrid spin and density character). The same observation partially applies to
both the current response functions χT

ĵi,ĵi
and χT

ĵ1,ĵ2
, in which the coupling between

different quasiparticle bands plays a major role. As for the CFSF phase in Figure 2.11, it
is surprising to verify that these gapped quasiparticle modes are sufficient to reproduce
the superfluid drag saturation characteristic of the PSF phase, such that they can
be regarded as the only excitations responsible for the superfluid flow of particle
pairs. Once the critical point is reached and the SF phase develops, Kx

i gets a major
contribution from the spin Goldstone mode, while the current response functions are
saturated by the coupling of the same mode with the Higgs-like branches that occupy
the high-energy part of the spectrum.

2.3.3 Coherence function

To obtain a better understanding of the role of quantum fluctuations across the phase
diagram, we now turn our attention to the study of equal-time correlation functions,
which can also be probed experimentally using e.g. quantum gas microscopy [37, 132].
This class of observables is of particular interest in the present context of a multi-
component system, as the separation between density and spin DoF close and inside
the CFSF and PSF phases is expected to provide static correlations with a Janus-faced
profile, depending on which excitation channel is considered.

In analysing the single-particle coherence function, we restrict ourselves to the
investigation of intraspecies correlations, as the approximate description of the CFSF
and PSF phases within the Gutzwiller framework [118] is expected to miss non-local
coherence effects at low energy involving strongly-correlated pairs, in contrast with the
results for the current response functions studied in Subsection 2.3.2.
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Figure 2.13: One-body coherence function g(1)
i (r) for d = 2 and U12/U = 0.9 evaluated at fixed µ/U = 1.4 across the (a) MI

to (b) SF first-order transition.

The normalised single-particle coherence function for the ith species is defined as

g
(1)
i (r) ≡

〈
â†

i,r âi,0
〉

〈
â†

i,0 âi,0
〉 . (2.60)

The QGA quantisation scheme maps the microscopic operator âi,r into the effective Bose
field ψ̂i(r), which carries both a macroscopic contribution due to condensation and the
effect of short-range quantum correlations on the one-body coherence. Showing a close
resemblance to its twin within Bogoliubov’s theory, the first-order expansion of ψ̂i(r)
in terms of quantum fluctuations reads

ψ̂i(r) ≈ ψ0,i + 1√
V

∑
α

∑
k

[
Ui,α,k e

i k·r b̂α,k + V ∗
i,α,k e

−i k·r b̂†
α,k

]
, (2.61)

where the particle (hole) amplitudes Ui,α,k
(
Vi,α,k

)
have been introduced in Eqs. (1.24)

and saturate the generalised Bogoliubov normalisation condition∑
α

(∣∣Ui,α,k
∣∣2 −

∣∣Vi,α,k
∣∣2) = 1 , (2.62)

which encloses excitations with a finite energy only and holds throughout the phase
diagram. Applying our usual evaluation protocol to Eq. (2.60), the single-particle
coherence function can be recast into the form

g
(1)
i (r) =

〈
ψ̂†

i (r) ψ̂i(0)
〉

〈
ψ̂†

i (0) ψ̂i(0)
〉 ≈

|ψ0,i|2 + I−1∑
α

∑
k
∣∣Vi,α,k

∣∣2 cos(k · r)
|ψ0,i|2 + I−1∑

α

∑
k
∣∣Vi,α,k

∣∣2 , (2.63)

which is a straightforward generalisation of the one-component result in Eq. (1.27). In
the numerator of the right-hand side of Eq. (2.63), the first term reflects the long-range
order of the one-body density matrix in the SF phase, while the second term reproduces
the destructive interference of quantum fluctuations at finite distances, such that only
the condensate fraction |ψ0,i|2 survives in the r → ∞ limit (see the relevant discussion
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Figure 2.14: One-body coherence function g(1)(r) for d = 2 and U12/U = 0.9 evaluated at fixed µ/U = 0.5 (a-b) and
µ/U ≈ 0.39 (c-d) across the edge and O(2) CFSF-to-SF transitions, respectively. In panel (c), the approaching of the PSF-to-SF
transition from the PSF side is also shown for (µ/U)PSF

c = −0.35 and U12/U = −0.7.

in Section 2.2 of [124]).
We do not show here explicit results for the second-order MI-to-SF transition, as it

presents the very same features of the one-component criticality [131]. In particular,
the QGA drastically improves mean-field theory by predicting the onset of off-site
coherence in the strongly-interacting regime: in the MI phase, the one-body correlations
are generally suppressed exponentially as g(1)(r) ∼ exp(−r/ξ) with a finite coherence
length ξ, whereas in the SF phase g(1)(r) decays always as a power law. More generally,
in the deep SF limit (2 d J/U ≫ 1), the spectral sum in Eq. (2.63) is almost saturated by
the density and spin Goldstone modes only and the behaviour of a weakly-interacting
gas is recovered [83, 131]. As a strongly-correlated SF develops, the contribution of
other excitation modes to the quantum depletion becomes relevant and the Bogoliubov
predictions are naturally amended by the QGA.

In the two-component system, we find that the very same behaviour carries over
also to the first-order MI-to-SF transition, shown in Figure 2.13 and to the second-
order CFSF-to-SF transition, as well as the PSF-to-SF critical point, both illustrated in
Figure 2.14. In particular, in analogy with the physics of the MI-to-SF transition in the
one-component system [131], the QGA theory is able to capture the different critical
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behaviours of the CFSF-to-SF transition depending on whether this is approached
at integer or non-integer filling, namely across either the tip of the edge of the CFSF
lobes. Upon reaching the SF phase through the edge of the CFSF lobe [Figure 2.14(a),
from purple to green lines], the correlation length ξ grows monotonically but remains
bounded. As soon as one enters the SF phase, the long-range behaviour of g(1)

i (r)
changes abruptly into a power-law scaling [Figure 2.14(b)]. On the contrary, when
approaching the SF phase at the tip of the CFSF region, the correlation length ξ

diverges [Figure 2.14(c)] and a power-law dependence for g(1)
i (r) gradually sets in

[Figure 2.14(d)]. In panel (c), the evolution of g(1)
i (r) along the PSF critical line is also

shown, displaying an analogous behaviour.
As in the one-component case, this difference in the behaviour of g(1)

i (r) is due to
the different spectral properties of the collective excitations close to the edge/tip critical
points of the CFSF lobe. At the edge transition, either a particle or a hole excitation
out of the four dispersive branches becomes gapless. Since our description of the
short-distance coherence in the CFSF phase relies on virtual particle/hole excitations
via Eq. (2.63), the exponential decay of g(1)

i (r) is ruled by the gap of the particle (hole)
excitation that remains finite at the transition. On the contrary, at the tip critical point,
both the lowest-energy particle and hole modes become gapless (before turning into the
density and spin Goldstone modes on the SF side of the transition), giving a divergent
coherence length [63]. Therefore, we speculate that the critical field theory describing
the CFSF-to-SF boundary is connected to the same describing the universality classes
of the MI-to-SF transition, which we have extensively discussed in Chapter 1.

2.3.4 Density and spin correlations

In this Subsection, we address the local structure of equal-time two-body correlations
for both the density and spin channels, focusing on their behaviour across the quantum
phase transitions of the system as determined by second-order quantum fluctuations.

Crucially, the QGA treats local and non-local observables separately. Whereas non-
local two-body correlations G(2)

d/s(r ̸= 0) =
〈
n̂d/s(r ̸= 0) n̂d/s(0)

〉
are directly related

to the Fourier transform of the static structure factors Sd/s(q) (and then share the
pathologies discussed in Subsection 2.3.1), on-site fluctuations can be always computed
as expectation values of individual local operators, as shown explicitly in the following.
Ultimately, the QGA is built on a local approximation of the ground state, and therefore
we expect its predictions for local two-body fluctuations to be accurate even in the
vicinity of phases characterised by strong pairing correlations.

With these caveats in mind, we first consider the two-body correlation function for
an individual species

G
(2)
i (r = 0) ≡

〈
n̂2

i (0)
〉

−→
〈
D̂i(0)

〉
, (2.64)

where we have introduced the QGA square density operator

D̂i(r) ≡
∑
n1,n2

(
n2

1 δi,1 + n2
2 δi,2

)
ĉ†

n1,n2(r) ĉn1,n2(r) , (2.65)

which, importantly, is distinct from the square of the density operator N̂i(r). Expanding
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D̂i(0) up to second-order in the fluctuations and calculating its quantum average, we
obtain

G
(2)
i (0) = (1 − F )D0,i + 1

V

∑
α

∑
k

∑
n1,n2

(
n2

1 δi,1 + n2
2 δi,2

) ∣∣vα,k,n1,n2

∣∣2 , (2.66)

at zero temperature, which extends the result (1.44a) found for the one-component BH
model. Here, D0,i =

∑
n1,n2

(
n2

1 δi,1 + n2
2 δi,2

) ∣∣∣c0
n1,n2

∣∣∣2 is the mean-field value of the
square density, while

F =
〈
Â(0)2

〉
= 1
V

∑
α

∑
k

∑
n1,n2

∣∣vα,k,n1,n2

∣∣2 (2.67)

is the control parameter of the theory, see Subsection 1.2.3 of the previous Chapter.
Once more, we observe that the quantisation protocol corrects the mean-field value
of local observables in a two-fold way: on the one hand, the second term of Eq. (2.66)
makes a positive contribution due to quantum fluctuations; on the other hand, the
quantity F , quantifying the magnitude of quantum effects, renormalises the mean-field
value D0,i.

Next, we calculate the two-body correlation function between different species
G

(2)
12 (r = 0) = ⟨n̂1(r = 0) n̂2(0)⟩, which is given by

G
(2)
12 (0) =

〈
D̂12(0)

〉
, (2.68)

where we have defined the composite density operator

D̂12(r) ≡
∑

n1,n2

n1 n2 ĉ
†
n1,n2(r) ĉn1,n2(r) . (2.69)

We find the result

G
(2)
12 (0) = (1 − F )D0,12 + 1

V

∑
α

∑
k

∑
n1,n2

n1 n2
∣∣vα,k,n1,n2

∣∣2 , (2.70)

where D0,12 =
∑

n1,n2 n1 n2
∣∣∣c0

n1,n2

∣∣∣2 is the mean-field prediction.
Having outlined the form of single-species and pair local correlations, the on-site

two-body correlation functions for the total density and spin channels can be obtained
directly from

G
(2)
d/s(0) ≡

〈
[n̂1(0) ± n̂2(0)]2

〉
= G

(2)
1 (0) +G

(2)
2 (0) ± 2G(2)

12 (0) . (2.71)

For convenience, we analyse the normalised density and spin variances g(2)
d/s(0). Estimat-

ing the variances amounts to shifting G(2)
d/s(0) by n2

d/s =
〈
n̂d/s

〉2
; additionally, because

ns = 0 in our Z2-symmetric model, we always normalise the correlation functions by
the squared mean density n2

d = ⟨n̂d⟩2 to give

g
(2)
d/s(0) ≡

G
(2)
d/s(0) − n2

d/s

n2
d

. (2.72)
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Figure 2.15: Local density-density correlation g
(2)
d (r = 0) evaluated for d = 2 as a function of 2 d J/U across (a) the

first-order MI-to-SF edge transition (blue dotted lines) for U12/U = 0.9 and µ/U = 1.4 at fixed nd = 2, (b) the second-order
MI-to-SF edge transition (red solid line) for U12/U = 0.5 and µ/U = 1 at fixed nd = 2, (c) the second-order CFSF-to-SF
edge transition (purple dashed line) for U12/U = 0.9 and µ/U = 0.5 at fixed nd = 1, and (d) the second-order PSF-to-SF
transition (pink dashed-dotted line) for U12/U = −0.7 and (µ/U)PSF

c = −0.35 with nd = 1.47. The point located on each
curve indicates the location of the respective phase transition.

Our calculations for the density correlation g(2)
d (0) across the various phase transi-

tions of the model are shown in Figure 2.15. In the SF region, we observe the typical
antibunching g(2)

d (0) < 1 of local density fluctuations due to the on-site interaction U .
Moving towards the MI phase [panels (a)-(b)], the qualitative features of density corre-
lations are strongly reminiscent of the behaviour of a single-component BH model [131],
except for the first-order MI-to-SF transition, at which the antibunching factor shows a
discontinuity. In particular, in the MI region, where mean-field theory would predict
g

(2)
d (0) = 0, the QGA is able to account for the virtual excitation of doublon-holon

pairs, which leads to the scaling g(2)
i (0) ∝ (J/U)2 at low J , in excellent agreement

with perturbative calculations in the strongly-interacting limit [43, 118]. Remarkably,
we observe that the CFSF phase [panel (c)] shares the same properties of the MI state in
the density channel. This can be understood as a consequence of the similarity between
the spectral structure of the two phases. In the CFSF phase, density fluctuations build
on the lowest-lying, gapped particle/hole excitations, which have a strong density
character exactly as their counterparts in the MI phase. By contrast, g(2)

d (0) exhibits a
quite different behaviour across the PSF-to-SF transition. Instead of being suppressed,
sizeable density fluctuations survive in the whole PSF region and saturate to a finite
value at low J/U . This result clearly agrees with the physical scenario of the PSF phase
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Figure 2.16: Local spin-spin correlation g(2)
s (r = 0) evaluated for d = 2 as a function of 2 d J/U across the same phase

transitions as in Figure 2.15.
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[panel (d)], where the formation of local pairs is explicitly favoured, as opposed to the
CFSF state, in which particles belonging to different species repel each other. However,
we believe that the apparent independence of g(2)

d (0) on J/U is a by-product of the
inability of our theory to incorporate dispersive pair excitations in the PSF phase.

A complementary view on two-body correlations is provided by the spin fluctuations
g

(2)
s (0), which are reported in Figure 2.16 along the same transition paths of Figure 2.15.

Across the MI-to-SF transition [panels (a)-(b)], spin correlations mimic the behaviour
of density fluctuations, meaning that the Mott interactions freezes equally both the
density and spin DoF. This is not the case for the paired phases, where the density and
spin channels decouple. On the one hand, despite its Mott-like character in the density
channel, the CFSF phase [panel (c)] is characterised by a large g(2)

s (0), indicating that
counterflow superfluidity is linked to the creation of local magnetic moments with large
spin fluctuations, such as in a paramagnetic MI state [133, 134]. Notice that, however,
g

(2)
s (0) < 1 for finite values of J/U , signalling that the local moments possess a finite

stiffness due to the particle/hole excitations of the CFSF phase. On the other hand, we
find that g(2)

s (0) is strongly suppressed in the PSF phase [panel (d)], where the spin DoF
interact repulsively, in analogy again with the physics of the MI-to-SF transition [90].
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2.4 Digest of the results and outlook

In this Chapter, we have studied the properties of quantum fluctuations in the two-
component BH model at zero temperature, considering both repulsive and attractive
interspecies interactions. Expanding on the mean-field ground-state phase diagram
first reported in [118], we have analysed the band structure of the model in the whole
phase diagram with particular attention paid to its quantum phase transitions and
the limitations intrinsic to the local nature of the Gutzwiller ansatz for the many-body
wave function. In order to estimate actual quantum correlations, we have generalised to
bosonic mixtures the single-component QGA framework and further proved its ability
to provide a systematic and comprehensive description of both local and non-local
correlations across the phase diagram of the model and, in particular, across its quantum
critical regimes.

We have first illustrated that the formation of pair correlations can be directly
connected to the analytical behaviour of the compressibility and spin susceptibility,
which reflect the strength of critical fluctuations upon reaching the PSF and CFSF
transitions, respectively. Notably, by the application of spectral sum rules [40] together
with the FDT, we are able to relate the physical picture of the response functions to the
sound velocities of the Goldstone modes and the static structure factors of the SF state.
These results indicate that experimental probes of strongly-correlated paired phases
can yield plain information on the spectral properties of the system in the quantum
critical regimes.

Within the QGA, we have also studied the properties of superfluid transport, finding
an interspecies collisionless drag whose origin is solely due to quantum fluctuations.
In this respect, we have compared quantitatively our results to QMC predictions [109]
within the SF phase over a range of interspecies couplings, and studied the matrix
of superfluid components across the various phase transitions. In particular, we have
observed that the drag is saturated in the vicinity of the PSF and CFSF phases, where
strong pair correlations prevail over single-particle coherence. Moreover, we have
offered a clear interpretation of the superfluid components in terms of multi-mode
scattering processes involving the collective excitations of the system, including not
only the density and spin Goldstone modes, but also the Higgs modes and those higher
gapped excitations that emerge at strong interactions and whose physical meaning is
less understood in the literature.

Finally, we have shown that the QGA theory gives an accurate account of the role of
quantum fluctuations in equal-time few-body correlations in the whole phase diagram
of the system. In particular, we have demonstrated how the critical behaviours of the
one-body coherence function are analogous to those found for MI-to-SF transition
in the single-component BH model. Remarkably, at the two-body level, we have also
found that the CFSF/PSF phase transitions closely mirror the MI transition physics in
the density/spin channels, respectively. Throughout our analysis, we have highlighted
how quantum correlations closely link with the character of collective modes in distinct
interaction regimes.

The generalisation of our theory to multi-component Bose/Fermi mixtures and
different trapping geometries, where novel types of AB effects are predicted [111, 135],
poses intriguing problems for future research. Additionally, an improvement in the
description of non-local fluctuations, crucial for instance to introduce hopping-induced
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correlations into the paired phases, appears possible within a cluster extension of the
Gutzwiller theory (cfr. [14, 89, 136–142]). Such an extension is required, for example,
to describe long-range interactions or magnetic ordering in supersolid phases where
translational symmetry is spontaneously broken (cfr. [90, 143, 144]). Relaxing the Z2-
symmetry constraint also opens exciting questions on the imbalanced two-component
BH model, whose fermionic counterpart is currently the subject of intense interest in
the community of ultracold atoms (cfr. [145, 146]). From a more formal perspective, the
systematic way in which quantum fluctuations can be incorporated in the QGA theory
raises interesting curiosities about its diagrammatic representation in quantum field
theory. Conversely, such a connection might enable the translation of the comparatively
sizeable literature of diagrammatic techniques into the language of QGA theory to
diagnose possible issues in the method or introduce concepts already well-known in
that context (cfr. the seminal works [147, 148]).
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This Chapter is based on an adaptation of the following publication.

▶ Fabio Caleffi, M. Capone, I. de Vega, and A. Recati, Impurity dephasing in a
Bose–Hubbard model, New Journal of Physics 23, 033018 (15 March 2021)

3.1 Open systems in correlated environments

Understanding the dynamics of an open quantum system, i.e. a quantum system
coupled to its environment, is relevant in a variety of domains including condensed-
matter physics, quantum computing, quantum optics and ultracold gases [149–152].
When the open system and its environment are weakly coupled, it is often a good
approximation to describe the latter as a set of harmonic oscillators linearly coupled to
the system. This class of problems is well described by the so-called Caldeira-Leggett
model [153], when the open system is described in terms of continuous variables, or
by the spin-boson model, when it is a discrete system [154]. In any of these models,
the influence of the environment on the system depends only on a single-particle
spectral density, and this strongly simplifies the description of the system. The past
few decades have seen the development of a large variety of methods to describe the
open system dynamics in this context, including path integrals [155, 156], stochastic
Schrödinger equations [157, 158], hierarchical systems of equations [159, 160] or, when
computing the full dynamics of both the system and its environment, chain mapping
representations [161, 162] or quantum Monte Carlo techniques [163, 164]. However,
when the environment is strongly correlated or non-harmonic, the above picture
may no longer be accurate and more involved approaches are required to account
for the resulting non-Gaussian environment statistics. The state-of-the-art methods
to numerically study these systems are based on matrix product states [165–168];
nevertheless, due to the rapid entanglement growth, these methods become highly
inefficient beyond one-dimensional cases or when approaching to a critical regime.

The recent advances in locally manipulating ultracold gases in optical lattices has
made such a platform ideal for the study of impurities coupled to a non-trivial bath [167,
169–173] either per se or as quantum simulators of toy models for less clean systems. In
this Chapter, we analyse the pure dephasing dynamics of a two-level impurity whose
environment is represented by the single-band BH model studied in Chapter 1. This
problem has been recently analysed for a one-dimensional BH environment away from
its critical transition [167]. Here we take a leap forward by considering a 2D BH model
and characterising the impurity dynamics along the whole phase diagram, focusing on
the critical regions. In the following, we will reach our goal thanks to the use of QGA,
which allows us to include the relevant correlations of the bath – in particular the ones
responsible for non-Gaussian effects – without being computationally demanding.

One of the main findings of our study is the strong dependence of the dephasing
dynamics on the universality class of the MI-to-SF transition of the BH environment.
In particular, we show that: (1) when the quantum phase transition is due to particle
number change (CI critical point), the impurity dynamics is perfectly Markovian, being

https://iopscience.iop.org/article/10.1088/1367-2630/abe080
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the environment dynamics dominated by single particle processes, despite the strong
interactions; (2) on the other hand, when the transition occurs at fixed integer density at
the O(2) critical point, the spectrum of the bath contains multiple low-energy collective
modes. Their presence leads to a non-Markovian dephasing dynamics, strongly affected
by two-particle processes in the environment, which make the standard Gaussian
statistics fail. Most importantly – in close analogy with the findings of a related work on
one-dimensional quantum spin baths [174] – we find that both the short and long-time
behaviour of the dephasing dynamics are precise detectors of the type of universality
class of the transition.

3.2 Pure dephasing model within the QGA

3.2.1 Quantum impurity in a Bose-Hubbard bath

We consider a two-level static impurity coupled to a two-dimensional BH model,
hereafter referred to as the bath. The total Hamiltonian of the system can be written as
Ĥ ≡ ĤBH + Ĥimp + Ĥc with

Ĥimp ≡ ω0
2 (1 + σ̂z) ,

Ĥc ≡ g σ̂z n̂0 ,
(3.1)

where the impurity is assumed to be located at site 0 in correspondence of the centre of
a thermodynamically large BH lattice. Following the standard derivation of spin boson
models [149, 154, 175], the impurity can be modelled as a spinful particle governed by
the Hamiltonian Ĥimp with a resonant frequency ω0 and is coupled to the bath density
n̂0 via a local interaction Ĥc with strength g.

We assume that initially the state of the system is separable ρ(t = 0) = ρ0
BH ⊗ ρ0

imp,
where ρ0

BH is the zero-temperature ground state of the BH Hamiltonian ĤBH and ρ0
imp

is the initial state of the impurity. As usual in the study of open quantum systems, we
assume that the bath and the impurity are weakly coupled so that the bath state is not
too altered with respect to ρ0

BH during its time evolution. Under such approximation, it
is well-known that the impurity dynamics is fully characterised by the time correlation
function of the environment coupling operator, n̂0. Our goal is to estimate the latter
precisely by resorting to the QGA technology, which have been already proven to be a
surprisingly accurate estimator for static density correlations in Chapter 1.

3.2.2 Comprehensive review of the BH excitations within the QGA

Before proceeding, we briefly review in more detail the structure of the BH excitation
spectrum ωα,k along the phase diagram, focusing in particular on the quantum critical
regimes, since its knowledge gives important insights into the dephasing dynamics of
the spin impurity, as we will illustrate in Section 3.3. For convenience, in Figure 3.1 a
summary of the phase diagram of the BH system in the strongly-correlated regime and
of the excitation spectra in correspondence of peculiar points is shown.

In the MI incompressible phase, the two lowest excitation branches are the gapped
particle and hole excitations (not shown in Figure 3.1). As the SF phase is approached
along a CI transition line [blue dashed line, see panel (b)] one of the excitations
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Figure 3.1: Panel (a): mean-field phase diagram of the BH model around the MI lobe with integer filling ⟨n̂⟩ = 1. The blue
(red) dashed line marks the path crossing the incommensurate (commensurate) MI-to-SF transition point considered in this
work. The two panels (b) and (c) at the right-hand side depict the energy dispersion at the points (1)-(4) represented in the
phase diagram (a). Panel (b), represents points (1) and (2) near and within the critical point at the edge transition, in dashed
and solid lines respectively. For these two points, the Goldstone and Higgs modes are represented in blue and light-blue
lines respectively. Panel (c) represents points (3) and (4) near and at the critical point at the tip transition, again in dashed
and solid lines respectively. Goldstone and Higgs modes are now represented in red and orange lines respectively.

becomes gapless and transforms into the gapless Goldstone mode. The low-momentum
dispersion relation of the Goldstone mode becomes quadratic exactly at the transition
point [see point (2)], while is linear in the SF phase (collisionless sound mode) [see
point (1)]. Therefore, at the CI critical point the BH environment, although strongly-
interacting, behaves as an effective free Bose gas of quasiparticles with a renormalised
mass. On the other hand, crossing the transition at the fixed-density O(2) critical point
[see point (4) along the red dashed line] both the lowest-energy modes, comprising the
Higgs excitation, are gapless and, in sharp contrast with the CI critical region, have
a linear dispersion relation. In the SF phase, only one linear gapless mode is present
with a finite sound velocity [see point (3)], while the amplitude mode acquires a finite
energy gap.

The QGA method provides a recipe to express operators and observables of the
BH bath directly in terms of the excitations operators b̂α,k. In particular, the impurity
dynamics due to the weak coupling with the bath is fully qualified by the time dependent
density correlation function at the impurity position. Explicitly, the expression for the
QGA density operator N̂(0, t) in the interaction picture can be written up to second
order in the fluctuations as

N̂(0, t) ≈ n0 + δ1N̂(0, t) + δ2N̂(0, t) , (3.2)
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where n0 is the mean-field density, and we separate the one-particle

δ1N̂(0, t) ≡ 1√
V

∑
α

∑
k

Nα,k
(
e−i ωα,k t b̂α,k + ei ωα,k t b̂†

α,k

)
, (3.3)

from the two-particle

δ2N̂(0, t) ≡ 1
V

∑
α,β

∑
k,p

[
W ∗

α,k|β,p e
i(ωα,k+ωβ,p)t b̂†

α,k b̂
†
β,p + H.c.

+Uα,k|β,p e
i(ωα,k−ωβ,p)t b̂†

α,k b̂β,p + Vβ,p|α,k e
−i(ωα,k−ωβ,p)t b̂α,k b̂

†
β,p

]
(3.4)

contributions of the collective modes. The single-mode coefficient Nα,k was already
introduced in Eq. (1.45), while the two-mode coefficientsWα,k|β,p, Uα,k|β,p and Vα,k|β,p
have expressions

Wα,k|β,p ≡
∑

n

(n− n0)uα,k,n vβ,p,n , (3.5a)

Uα,k|β,p ≡
∑

n

(n− n0)u∗
α,k,n uβ,p,n , (3.5b)

Vα,k|β,p ≡
∑

n

(n− n0) v∗
α,k,n vβ,p,n . (3.5c)

Physically, these objects correspond to the spectral decomposition of the structure
factor of density correlations projected onto the multi-branch basis of the collective
modes.

It is worth noticing that the inclusion of two-particle processes due to δ2n̂ into the
bath description generalises the standard setting of the spin boson model [176], where
the impurity polarisation σ̂z couples only to linear contributions of the form (3.3) (see
e.g. [18]). Indeed, we underline that the two-mode contributions dominate the density
correlation functions in the MI phase and close to the MI-to-SF transition [131]. In the
following, we will show that the very same consideration applies also to the description
of the dephasing dynamics of an embedded impurity, with the only exception of the CI
transition point.

3.2.3 Non-Markovianity measure of pure dephasing

Having an effective quadratic model for the BH environment at our disposal – see
Eq. (1.10) –, the theoretical investigation of the pure dephasing dynamics becomes
tractable in the limit in which the presence of the impurity does not perturb significantly
the behaviour of the environment, i.e. when the bath-impurity coupling g is small
compared to all the other energy scales of the problem. For the purpose of this study,
we choose to work in such a weak coupling limit.

Using the time-convolutionless projection operator technique up to second order in
the coupling constant g [149], the evolution of the density matrix of the impurity can
be shown to obey a time-local master equation [177]

∂t ρimp = −i ω̃0
2 [σ̂z, ρimp] + g2

2 γ(t) (σ̂z ρimp σ̂z − ρimp) , (3.6)
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where ω̃0 = ω0 + g n0 is the impurity energy splitting renormalised by the mean local
density of the BH bath n0. As anticipated before, the dephasing rate γ(t) is completely
determined by the time-dependent correlations of the bath operator coupled to the
impurity – local density fluctuations in the present case –, namely

γ(t) ≡ Re
∫ t

0
dτ ⟨n̂0(τ) n̂0(0)⟩ , (3.7)

where we have defined the notation ⟨· · ·⟩ = Tr
{
· · · ρ0

BH
}
. We recall here that the

derivation of (3.6) does not require any assumption about the statistical properties of
the environment, so that in principle the rate (3.7) can account also for weak-coupling
effects of non-Gaussian correlations. Now, we highlight that the integrated rate

Γ(t) ≡
∫ t

0
dτ γ(τ) (3.8)

is key to understanding the dephasing dynamics, as it establishes a direct connection
between the decay rate γ(t) and the physical consequences of its non-Markovian
features.

In the framework of the open quantum system formalism, Breuer-Laine-Piilo (BLP)
have proposed a rigorous definition for non-Markovianity of a generic quantum
channel [178]. Indeed, for the dephasing model studied in this work, the BLP non-
Markovianity measure depends directly on the decoherence function Γ(t) via the
so-called Loschmidt Echo (LE) [179, 180]

L(t) ≡ exp
[
−2 g2 Γ(t)

]
, (3.9)

driving the off-diagonal evolution of the impurity state ρimp(t) 1. In particular, the
amount of non-Markovianity corresponds to the information back-flow [180–182]

B− ≡
∑

i, L(ti+1)>L(ti)

[√
L(ti+1) −

√
L(ti)

]
, (3.10)

where the sum is taken over the set of time intervals [ti, ti+1] in which the echo increases,
i.e. when γ(t) < 0. During these intervals, some of the previously lost information
regarding the initial state of the impurity is temporarily recovered. Conversely, the
Markovian character of the dynamics B+ is quantified by summing

√
L(ti+1) −

√
L(ti)

over the time intervals in which quantum information is lost. For the sake of clarity, we
point out that, for the special type of open quantum system that we consider here, all
non-Markovianity measures agree in distinguishing Markovian from non-Markovian
features during the decoherence dynamics [183, 184].

In the following Sections, we will describe how the non-Markovian character of
the dephasing process relates to strong correlations in the BH environment, focusing
on the role played by the universality classes of the MI-to-SF transition and on the
importance of including non-Gaussian correlations beyond a linear coupling between
the bath excitations and the impurity (two-particle contributions). In this regard, we
start our analysis by illustrating how the QGA provides semi-analytical expressions

1 See Appendix E.1 for an exhaustive definition of the BLP non-Markovianity measure, as well as its
calculation in the present pure dephasing model.
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for the dephasing rate γ(t) and the decoherence function Γ(t), with a clear distinction
between one-particle and non-Gaussian fluctuations.

3.2.4 QGA expressions of γ(t) and Γ(t) and short-time behaviour of the

Loschmidt echo L(t)

In this Subsection, we report for completeness the explicit expressions of the relevant
quantities introduced above within the QGA formalism. Inserting the expression of
the QGA density operator (3.2) into the definition of the dephasing rate γ(t), we
can distinguish two contributions γ(t) = γ1(t) + γ2(t). The first term is due to the
linear-order part of the density field (3.3),

γ1(t) = Re
∫ t

0
dτ
〈
δ1N̂(0, τ) δ1N̂(0, 0)

〉
= 1
V

∑
α

∑
k

∣∣Nα,k
∣∣2 sin

(
ωα,k t

)
ωα,k

, (3.11)

while the second contribution is generated by the two-particle density operator (3.4),
in particular

γ2(t) = Re
∫ t

0
dτ
〈
δ2N̂(0, τ) δ2N̂(0, 0)

〉
= 1
V 2

∑
α,β

∑
k,p

(∣∣∣Wα,k|β,p

∣∣∣2 +W ∗
α,k|β,pWβ,p|α,k

) sin
[(
ωα,k + ωβ,p

)
t
]

ωα,k + ωβ,p

(3.12)

at zero temperature. Analogously, the decoherence function is given by Γ(t) = Γ1(t) +
Γ2(t) with Γi(t) =

∫ t
0 dτ γi(τ), i = 1, 2. The off-diagonal elements of the impurity

density matrix will evolve according to the LE, which factorises into

L(t) = exp
[
−2 g2 Γ(t)

]
= exp

[
−2 g2 Γ1(t)

]
exp

[
−2 g2 Γ2(t)

]
. (3.13)

From Eqs. (3.11)-(3.12), we see that the expected short-time Gaussian behaviour
exp

[
−λ g2 t2

]
[185] of the LE is recovered with

λ ≡ 1
V

∑
α

∑
k

∣∣Nα,k
∣∣2 + 1

V 2

∑
α,β

∑
k,p

(∣∣∣Wα,k|β,p

∣∣∣2 +W ∗
α,k|β,pWβ,p|α,k

)
. (3.14)

In the following, we will show how both λ and the BLP non-Markovianity measure
are not only extremely sensitive to the phase transition points, but behave differently
depending on their universality class.

3.3 Numerical results

In the following, we present the numerical results obtained by computing the dephasing
functions (3.11)-(3.12) and the LE L(t). All the calculations have been performed on a
400 × 400 square lattice, made possible by the low numerical complexity of the QGA.
Moreover, we have imposed periodic boundary conditions so as to make the dephasing
dynamics independent of the specific position of the impurity in the BH environment
and avoid boundary effects. For brevity, hereafter we will refer to the CI transition as
edge transition, while the O(2) critical point will be indicated as tip transition.
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Figure 3.2: (a) Black solid line: dephasing rate γ(t) at 2 d J/U = 1 and µ/U = 0.8 in the deep SF phase. Red dashed and
blue solid lines: one-particle contributions of the Goldstone and Higgs modes respectively. The vertical black dashed line
highlights the time scale τG. (b) Red points: sampling of the spectral density J(ω) given by Eq. (3.15) for 2 d J/U = 1 and
µ/U = 0.8. Black solid line: ω2 fit of J(ω) at low ω. (c) Change of γ(t) while approaching the edge transition in the SF phase
at (2 d J/U)edge

c = 0.08, with decreasing 2 d J/U from bottom to top. Magnification of γ(t) at lower 2 d J/U is applied. (d)
Black solid line: γ(t) at 2 d J/U = 0.18 and µ/U =

√
2 − 1, close to the tip critical point (2 d J/U)tip

c ≈ 0.172 in the SF
phase. Black dashed-dotted line: fraction of γ(t) given by two-particle contributions involving the Goldstone and Higgs
modes. The colour code for the one-particle contributions is the same as in panel (a). Notice that the physical units of the
dephasing rate function γ(t) are the same of time, after restoring ℏ.

3.3.1 General features of dephasing in the superfluid phase

We start our analysis of the dephasing dynamics starting from the weakly-interacting
limit (deep SF phase) of the BH bath. In Figure 3.2(a), we report the behaviour of the
dephasing rate function γ(t) [black solid line] for 2 d J/U = 1. As expected, in this
regime the one-particle contribution from the gapless Goldstone mode [red dashed
line] saturates the time evolution of γ(t). The dephasing rate exhibits broad oscillations
around zero at short times, signalling the occurrence of non-Markovian effects, simply
due to the finite bandwidth of the model. Very small amplitude oscillations persist
for long times, leading to an essentially constant Γ(t) and therefore only to a partial
decoherence of the impurity density matrix.

For the sake of clarity, we argue a little bit on such a result, which can be better
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understood by expressing the dephasing rate γ(t) =
∫∞

0 dω J(ω) sin (ω t)/ω [186] in
terms of the one-particle spectral density

J(ω) ≡ 1
V

∑
α,k

∣∣Nα,k
∣∣2 δ(ω − ωα,k

)
. (3.15)

This quantity for 2 d J/U = 1 is shown in Figure 3.2(b). Being the Goldstone spectrum
gapless and linear at small momenta, the spectral density scales as J(ω) ∼ ωd at low
frequencies. Nevertheless, in contrast with the non-Markovianity criterion generally
adopted – obtained in [182] and fixing to d > 2 the necessary condition for memory
effects in gapless baths –, we observe that γ(t) can assume negative values in our d = 2
model. The reason is that usually an environment with infinite-bandwidth modes is
considered in the literature [182], resulting in a smooth cut-off of the spectral density.
The finite bandwidth of the BH model excitations implies a sharp frequency cut-off
of J(ω) corresponding to the Goldstone mode energy at the edge of the Brillouin
zone, ωG,π. Correspondingly, we observe that the oscillations of γ(t) occur on a time
scale τG = 2π/ωG,π [vertical dotted line in Figure 3.2(a)] set by the bandwidth of the
Goldstone excitation 2.

3.3.2 Dephasing dynamics at incommensurate filling

Broadening the discussion of the previous Subsection, we first analyse the quantitative
evolution of the dephasing rate γ(t) and of the LE L(t) as the BH bath becomes
strongly-interacting without entering the MI phase and, on the contrary, retaining a
superfluid character. Specifically, this corresponds to increasing the boson interaction
U at fixed non-commensurate density and reaching the so-called Hard-Core Superfluid
(HCSF) regime of the BH system. Strictly speaking, we recall here that the hard-core
states of the BH system are precisely approached in the J/U → 0 limit of the SF phase
and coincide with the extremal points of the CI transition line. For later utility, we also
mention that the quantum critical nature of the hard-core states is indeed signalled by
the vanishing sound velocity of the Goldstone mode and a diverging compressibility
of the BH system 3. Typical constant-density contours in the strongly-interacting SF
phase are shown in Figure 3.3.

Figure 3.4(a) shows the change in the dephasing rate γ(t) for decreasing hopping
energy 2 d J/U at fixed density ⟨n̂⟩ = 0.6 [see the solid black line in Figure 3.3]. We
observe that, upon approaching the hard-core limit J/U → 0 from the deep SF phase,
the order of magnitude of γ(t) increases significantly, while the time scale of the
dephasing dynamics slows down, in such a way that the profiles of γ(t) at different
values of 2 d J/U are related by a simple scaling relation. On the other hand, the
strongly-correlated SF regime still exhibits an evident non-Markovian character, as
recognisable also in the oscillating behaviour of the LE L(t), see Figure 3.4(b). Here, we
can appreciate how non-Markovianity and the overall magnitude of γ(t) compete in
controlling the amount of dephasing of the impurity. However, at very small J/U , the

2 We refer the reader to Appendix E.2 for an analytical derivation of the low-frequency scaling of J(ω) in
the deep SF phase, as well as for an extensive discussion on the difference between lattice and continuous
models at the level of the spectral density J(ω) and the dephasing function γ(t).

3 See Appendix B.2 for more detailed discussion of the essential features of the hard-core SF states in the
BH system.
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strong enhancement of the amplitude of γ(t) eventually wins over revival effects and
drives an almost complete dephasing of the impurity state in a short time interval.

These results find an intuitive explanation in the physical properties of the HCSF
state. For t ≪ 1/J , strong bath correlations prevent the density excitations generated
by the impurity from leaving a small neighbourhood of the impurity itself, therefore
leading to the large and positive density correlations observed in Figure 3.4(a). However,
being the phase still coherent in character, hopping process are favoured at larger
times and periodically flip the sign of γ(t) in analogy with what we observe in the
deep SF regime. Therefore, the total amount of dephasing depends on whether local
density correlations are sufficiently strong to overcome non-Markovian effects favoured
long-range coherence.

The dependence of the dephasing rate on the lattice filling can be understood by
looking at Figure 3.4(c)-(d), referring to a larger filling ⟨n̂⟩ = 0.8. In particular, we
notice that the oscillation amplitude of γ(t) and the speed of the dephasing process
decrease as the bath density is increased towards the integer value ⟨n̂⟩ = 1, a necessary
condition for crossing the MI-to-SF transition. In this regard, in the next Subsection we
will precisely show that the proximity of the MI phase is linked with the appearance of
strong non-Markovian features in the dephasing dynamics at integer bath filling. Finally,
we report the remarkable fact that, upon reaching the HCSF regime, the Goldstone
mode alone still provides the major contribution to γ(t), which is essentially given
by its Gaussian part γ1(t) (see the discussion of Subsection 3.2.4). This implies that a
one-particle description of the BH bath provides a good approximation of the dephasing
dynamics when the impurity is embedded in a strongly-interacting superfluid away
from the MI-to-SF criticality.

In Chapter 4, we will show that the peculiar Markovian features of the HCSF regime,
and similarly the edge critical region, can be ultimately ascribed to the exceptional
softening of the Goldstone mode in these regions, which makes the BH bath maximally
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Figure 3.4: (a) Dephasing rate γ(t) given by Eq. (3.11) at constant density ⟨n̂⟩ = 0.6 for decreasing 2 d J/U (from red to black
solid line) on approaching the HCSF regime of the SF phase. (b) Loschmidt echo L(t) corresponding to the dephasing rates in
panel (a). (c)-(d) Dephasing rate and Loschmidt echo for the same values of 2 d J/U at a larger, non-integer filling ⟨n̂⟩ = 0.8.

prone to density fluctuations. In particular, we will discuss how this key aspect reflects
into the coupling of a mobile impurity with the BH system and how its properties
closely relate to Markovian decoherence in that scenario.

3.3.3 Dephasing dynamics across the MI-to-SF transition

Moving away from the deep SF phase and approaching the MI-to-SF critical region,
the fate of the SF non-Markovian dynamics turns out to strongly depend on the type of
crossed critical point. In particular, crossing the edge transition [blue dashed line in
Figure 3.1] the amplitude of memory effects decreases with increasing interaction U/J
until the dynamics becomes purely Markovian on the MI boundary. On the contrary,
crossing the tip transition [red dashed line in Figure 3.1(a)], the non-Markovianity is
even more enhanced by quantum fluctuations with respect to the deep SF phase.

In panel (c) of Figure 3.2, we display the evolution of γ(t) for different values of
2 d J/U upon approaching the edge transition. We observe that, close to the critical
point (2 d J/U)edge

c = 0.08, γ(t) becomes strictly positive, and the dynamics slows
down significantly, when compared with the evolution in the deep SF regime shown in
panel (a). Therefore, at the edge critical point the dephasing rate reaches a constant value
γ(t) ∼ η at asymptotically large times. Hence, a transition from a non-Markovian to a
Markovian regime occurs and, exactly at the transition point, the LE acquires the typical
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exponential behaviour L(t) ∼ exp
(
−2 η g2 t

)
of a standard Lindblad dynamics.

The origin of such Markovian behaviour is due to the peculiar spectral properties of
the BH model on the edge of the MI lobe. In particular, as illustrated in Subsection 3.2.2:
(i) the Goldstone mode turns into an effective quasiparticle branch with quadratic
energy dispersion; (ii) the Higgs mode keeps a finite energy gap. It follows that the
strongly-correlated superfluid sitting close to the edge critical point can be described
as a dilute free-boson gas with an effective mass renormalised by the vicinity of the MI
phase [63, 131]. Indeed, it is easy to check that for a free Bose gas – irrespectively of the
presence of a lattice – the LE decays always exponentially 4 as L(t) ∼ e−β t for d = 2.
As in the deep SF case, the Goldstone one-particle contribution to γ(t) is the dominant
one, with the difference that the two-particle contributions are non-negligible in the
edge critical region. However, we find that such a contribution integrates to zero exactly
in the time integral of the decoherence function Γ(t) =

∫ t
0 dτ γ(τ). In this respect, the

irrelevance of non-Gaussian bath correlations can be seen as a natural consequence of
the effective one-particle description holding in proximity of the edge critical region.

The result is very different when approaching the commensurate transition at the
tip of the MI lobe, as shown in panel (d). The dynamics appears to be always non-
Markovian and the memory effects are amplified with respect to the deep SF regime.
The dephasing rate γ(t) gets a relevant contribution from the Higgs excitation and,
most importantly, from the two-particle couplings [black dot-dashed line]. Specifically,
the competition between the Goldstone and Higgs branches is evidently due to the
closing of the Higgs gap at the tip critical point. For the same reason, one gets a sizeable
contribution to the dynamics from two-particle vertex between the Goldstone and Higgs
modes, encoded in the structure factors WGol,k|Hig,p and WHig,p|Gol,k in the two-mode
part of the density operator (3.4). Decreasing further 2 d J/U towards the critical point,
non-Gaussian correlations eventually become the dominant contribution to γ(t), since
the order of magnitude of the one-particle weights Nα,k is totally suppressed on the
brink of the MI-to-SF transition [131].

In this respect, we want to stress that two-particle processes become the only
non-vanishing contributions to density correlations when the BH environment enters
the MI phase [131]. Therefore, the dephasing dynamics undergoes a substantial change
across the edge transition, where the one-particle picture is abruptly replaced by
non-Gaussian correlations, while at the tip transition the single-to-two particle transfer
of the spectral weight of the bath fluctuations appears to be a smoother crossover.

3.3.4 Short-time decoherence process and non-Markovianity features

A concise way to visualise the previous results is provided by inspecting the dephasing
dynamics from the point of view of the LE. Specifically, we focus our analysis on two
complementary features of the decoherence process, namely (i) the short-time behaviour
of the impurity decoherence L(t → 0) = exp

(
−λ g2 t2

)
and (ii) the estimation of the

information back-flow B−. More precisely, we renormalise the information back-flow
by the overall coherence loss as R = B−/B+, which provides a more informative
measure of non-Markovianity while changing the bath parameters [187].

Our numerical results for the short-time decoherence rate λ, given by the expres-

4 We refer again the reader to Appendix E.2 for the explicit expressions of γ(t) and L(t) of a free boson
gas on a lattice and on the continuum.
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sion (3.14), are reported in panel (a) of Figure 3.5. Reaching the MI-to-SF critical region
from the deep SF phase, the decoherence rate λ decreases as a consequence of the
stronger non-Markovianity introduced by interactions in the BH bath. Reducing further
the hopping energy, we observe that λ presents different behaviours depending on
the type of approached transition. At the edge critical points, the decoherence rate
quickly drops to a small value (decreasing by almost two orders of magnitude) upon
entering the MI phase, where we find that λ ∝ (J/U)2. The first derivative of λ with
respect to J/U presents a discontinuity at the critical point. Conversely, when crossing
the transition at the tip of the MI lobe, λ is a smooth function of the hopping energy.
We notice that the latter result nicely resembles what has been found for the impurity
decoherence process in a d = 1 interacting quantum spin bath [174], which has a critical
point of the same O(2) universality class. Therefore, as proved in the case of the static
properties [131], the QGA method is able to capture strong correlation effects also in
the present time-dependent scenario, beyond the one-dimensional case and without
strong numerical requirements.

The time-integrated dephasing dynamics, in the form of the non-Markovianity
measure R, is even more dramatically affected by the type of critical correlations
than short-time decoherence. Our numerical results for R across the edge and tip
transitions are reported in panel (b) of Figure 3.5 with the same colour code of panel
(a). In particular, for the calculation of R we have fixed g/U = 10−3 ≪ 2 d J/U, µ/U
coherently with the weak-coupling condition.

In the deep SF limit J/U ≫ 1, we find that both the information flows B± tend
to zero scaling as (J/U)−1, such that their ratio R is a constant. This indicates that,
when embedded in a weakly-interacting gas, the impurity dephases according to a
fixed fraction of lost information. When approaching the strongly-interacting regime,
the renormalised back-flow R reaches a maximal value well before the MI-to-SF
transition. This suggests that, away from the critical region, the primary effect of
stronger interactions is to increase the amount of information recovered by the impurity
during the dynamics. In the vicinity of the critical boundary, the non-Markovianity
measure R starts decreasing, and its behaviour depends on how the MI-to-SF is
crossed.

Close to the edge transition, R rapidly vanishes, being zero within a small window
of J/U in the SF region. This result perfectly mirrors the non-Markovian to Markovian
transition displayed in Figure 3.2(c) and the effective free-particle description of the
CI critical point. Subsequently, the quantity R show a discontinuous behaviour, when
entering the insulating phase. This result finds a straightforward interpretation in terms
of the particle/hole excitations of the MI phase [167]. Due to their incoherent character,
these modes excite doublon-holon pairs with a finite correlation length, so that density
fluctuations are localised in real space. Then, when particle/hole excitations couple
to the impurity, the information flowing to the BH environment remains localised in
a small neighbourhood of the impurity and is likely to be restored after a short time
due to another particle/hole excitation. As the amplitude of density fluctuations in
the MI phase increase with J/U , the absolute value of both the information flows B±
increases accordingly; on the other hand, the renormalised back-flow R decrease as a
consequence of the increasing BH correlation length, which prevent part of the lost
information from flowing back to the impurity. However, since at the edge transition
either the particle or the hole branch remains gapped, a finite correlation length still
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Figure 3.5: (a) Short-time decoherence rate λ as a function of the rescaled hopping energy 2 d J/U across the edge (blue
line) and tip (red line) transition points [see the phase diagram cuts in panel (a) of Figure 3.1]. (b) Normalised information
back-flow R = B−/B+ for the same parameters. In both panels, the CI and O(2) critical points are indicated by blue and red
dashed-dotted lines respectively.

controls the dynamics exactly at the critical point [63, 131], before diverging in the SF
phase. This discontinuous behaviour of the correlation length is at the roots of the finite
jump in R across the non-Markovian to Markovian transition.

The behaviour is different at the tip transition. As shown before, in this regime
critical fluctuations are mainly due to non-Gaussian correlations, whose main effect
is to amplify the oscillation amplitude of the dephasing rate γ(t). Therefore, the
amount of total information flowing both from and to the impurity grows accordingly.
Nevertheless, the renormalised backflow R still converges to zero at the critical point,
meaning that eventually the BH environment becomes effectively Markovian at the
critical point. It follows that, in contrast with the edge case,R is found to be a continuous
function of the hopping 2 d J/U across the tip transition, but with a very sharp and
non-monotonic profile [red line in Figure 3.5(b)].

3.4 Summary and take-home messages

In this Chapter, we have presented an exhaustive account of the non-Markovian effects
characterising the dephasing dynamics of an impurity embedded in a BH environment
undergoing the MI-to-SF transition. Our analysis addresses the impurity problem
beyond the standard formalism of open quantum systems. The two main new features
are the inclusion of the effects of strong correlations (as well as critical fluctuations) in
the environment and the extension of this physics beyond the one-dimensional case in
a flexible and numerically cheap way made possible by the QGA formalism. Thereby,
our method is, to the best of our knowledge, the first one that allows for an efficient
description of an open system that is coupled to an environment undergoing a critical
transition.

Strong signatures of deviation from a Markovian behaviour due to the spatial
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discreteness of the lattice setup, not explicitly discussed in previous works, have been
also highlighted in the interacting SF phase and related to key features of the spectral
density J(ω). This suggests the idea that the very same phenomenon could take
place in different lattice models whose dynamics is governed by common spectral
properties. Furthermore, we have observed that the amount of non-Markovianity of
the dephasing process is particularly large when approaching the tip critical region,
where two-particle effects become more relevant in the physical picture and thus the
environment differs more significantly from the standard spin-boson description. This
opens the path for further investigations into the role of strong non-Gaussian, e.g.
two-particle, correlations in relation to strong memory effects [188].

More importantly, we have found that, when the BH environment approaches the
MI-to-SF criticality, the dephasing dynamics is extremely sensitive to the universality
class of the transition. In this regard, we have shown that not only the deviation
from Markovianity, but also the short-time behaviour of the decoherence dynamics
carries strong signatures of the type of criticality approached by the environment. This
remarkable result agrees with similar findings concerning interacting quantum spin
baths [174], suggesting the existence of a more general rationale which goes beyond
the precise nature and the dimensionality of the bath. Finally, from an experimental
perspective, the sharp difference between the dephasing processes at the different
MI-to-SF transitions discussed in this work identifies the study of the decoherence
dynamics and, in particular, non-Markovianity measures of impurity dephasing as an
unambiguous probe of the type of critical behaviour experienced by the environment.

With these conclusions in mind, in the next Chapter we will show that the open
quantum system perspective of a static impurity in a complex environment has a
number of features in common with its opposite realisation at equilibrium, namely
the many-body physics of a mobile impurity. This will allow us to gain a deeper and
comprehensive view on the behaviour of quantum impurities in strongly-interacting
bosonic baths.
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This Chapter integrates the results of the paper:

▶ V. E. Colussi, Fabio Caleffi, C. Menotti, and A. Recati, Lattice polarons across the
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with original findings referring to the following future publication:

▶ V. E. Colussi, Fabio Caleffi, C. Menotti, and A. Recati, Properties of the polaron cloud
in a Bose-Hubbard lattice, In preparation (2022)

4.1 Polarons on a lattice: a brief introduction

Polarons, quasiparticles formed by a mobile impurity dressed by a cloud of excitations
of the bath in which they are immersed, are ubiquitous in physics. Important examples
include their emergence in quantum materials [189], superfluid helium [190], nuclear
matter [191], and ultracold atomic gases [192]. In particular, this last context is of
exceptional importance, as an ultracold atomic bath is usually quite clean with respect
to noise or disorder sources, while both its equation of state and the impurity-bath
coupling are highly tunable controllable [40, 193]. This has enabled recent pioneering
measurements of polaronic quasiparticle properties [194–197], and opened new exciting
perspectives for quantum simulation [198, 199]. Even more importantly, the possibility
of simulating Hubbard models through ultracold atoms in optical lattices [33, 132],
addressing e.g. the debated relationship between the doped Fermi-Hubbard model
and high-Tc superconductivity, has posed many open questions regarding the funda-
mental quasiparticle properties of polarons on lattices, particularly in quantum critical
regimes [115, 200–202].

Studies of impurities in quantum critical baths have already yielded valuable
physical insights from both a fundamental, into polaron properties resulting from
different universality classes of a phase transition, and a practical, into impurities
as probes of non-trivial quantum and thermal correlations in their environment,
point of view. These include the disappearance of the Bose polaron across the BEC
transition [203], and the discontinuity of the energy of a Fermi polaron across the
celebrated Berezinskii-Kosterlitz-Thouless transition [204]. For the particular case of
a BH bath, the dynamical behaviour of a fixed impurity has been unfolded in the
previous Chapter, and has been shown to reveal much information about the structure
of quantum correlations of the environment, in analogy with the phenomenology
of open quantum systems in spinful environments [205]. We stress once more that
quantum critical regimes as those characterising the BH system are always absent in
the continuum, where strong impurity-bath correlations cannot be separated from
quantum chemistry effects due to few-body physics [206–212].

Although the BH model can be extended straightforwardly to include impurities,
the fate of Bose polarons across the MI-to-SF transition have attracted much less
attention than their fermionic counterpart and remain largely unexplored. Previous

https://arxiv.org/abs/2205.09857
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studies have considered either a homogeneous bath [213, 214] or applications in the
deep MI and SF limits only, where the standard mean-field picture applies [215–217]. In
this respect, the development of the QGA offers a tempting occasion to systematically
include the impact of quantum fluctuations into the description of the Bose polaron.

In this Chapter, we study the fundamental quasiparticle properties of a lattice Bose
polaron throughout the whole phase diagram of the BH bath. Carrying over the QGA
modelling applied to the fixed impurity case, we will develop a powerful procedure for
expanding bath-impurity interactions in terms of elementary excitations to arbitrary
order, extending the celebrated Fröhlich model for polarons in crystals [218]. This
expansion includes both the many-band structure of the BH spectrum and non-linear
interactions, which will be essential to capturing the hallmarks of the MI-to-SF transition.
The spectral features of the Bose polaron will be determined within second-order
perturbation theory, with the aim of describing the non-obvious effects of strong
correlations of the environment at weak coupling.

4.2 Mobile impurity in a Bose-Hubbard environment

4.2.1 Lattice polaron model

We turn our attention to the complementary physical situation with respect to Chapter 3
and consider a mobile impurity coupled to a two-dimensional BH system loaded on
a uniform square lattice 1 of spatial volume V . The microscopic Hamiltonian is
Ĥ ≡ ĤBH + ĤI + ĤIB, where

ĤI ≡ −JI
∑
⟨r,s⟩

(
â†

I,r âI,s + H.c.
)

+ z JI
∑

r
â†

I,r âI,r , (4.1a)

ĤBH ≡ U12
∑

r
n̂r n̂I,r (4.1b)

are the Hamiltonian terms describing the impurity and the bath-impurity coupling,
respectively. Specifically, the chemical potential term in Eq. (4.1a) shifts the bare
energy of the impurity in order to endow it with the free-particle quadratic dispersion
ek ≡ 4 J

∑d
i=1 sin2(ki/2). Here, the bosonic operators âI,r (â†

I,r) and n̂I,r ≡ â†
I,r âI,r are

defined to be the creation (destruction) and local density operators of the impurity. For
simplicity, we assume that the bare mass of particles in the BH bath m−1 = 2J and
the impurity mass M−1 ≡ 2 JI are equal. In the same spirit of the impurity dephasing
analysis, only weak impurity-bath couplings U12 will be considered, such that the
impurity and bath energy scales are in general well-separated, provided the bath
remains energetically stable in the presence of the impurity. Under such conditions, the
back action of the impurity on the BH ground state can therefore be neglected.

4.2.2 The Bogoliubov-Fröhlich model

In this Subsection, we start analysing the polaron problem from the simplest case,
that is in the limit where the quantum depletion of the BEC forming in the SF regime

1 All the numerical results presented in this Chapter refer to a d = 2 lattice of V = 202 sites, unless
otherwise specified.
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is small compared to the lattice filling ⟨n̂⟩. In this case, the density of the cloud of
excitations surrounding the impurity is expected to be small relative to the density of
the surrounding BEC, justifying the usual Bogoliubov expansion in powers of the BEC
order parameter ψ0. Therefore, we can safely expand the Hamiltonian (4.1) up to linear
order in terms of BEC fluctuations (rather than in the density channel) to obtain the
Bogoliubov form of the Fröhlich Hamiltonian routinely used in the characterisation of
a mobile impurity in a weakly-interacting condensate (c.f. [219]).

Within the usual Bogoliubov approximation, one has just a single elementary
excitation, the Goldstone phonon mode, such that the bath-impurity interaction takes
the form [215]

ĤIB ≈ U12 |ψ0|2 + U12√
V

∑
k

Bk e
i k·r

(
b̂k + b̂†

−k

)
(4.2)

where
Bk ≡ ψ0

(
UBog,k + VBog,k

)
(4.3)

is the one-particle vertex function of the Goldstone mode, with the particle (hole)
amplitude Uk (Vk) given by

∣∣UBog,k
∣∣2 ≡ 1

2

[
z J + εk + |ψ0|2 U

ωk
+ 1

]
, (4.4a)

∣∣VBog,k
∣∣2 ≡ 1

2

[
z J + εk + |ψ0|2 U

ωk
− 1

]
. (4.4b)

Following the terminology of [219], we refer to the Hamiltonian (4.2) for the Bose
polaron coupling as the Bogoliubov-Frölich model.

The simple theoretical approach to quantum fluctuations reviewed above can be
generalised to include the interaction of the impurity with all the other excitations of
the background bath, e.g. the Higgs mode in the SF state and doublon-holon modes in
the MI regime. This simply amounts to replace the standard Bogoliubov expansion of
the Bose field operators with the QGA lowest-order projection of the Bose field,

δ1ψ̂(r) = 1√
V

∑
α

∑
k

[
Uα,k e

i k·r b̂α,k + Vα,k e
−i k·r b̂†

α,k

]
, (4.5)

which is nothing but a direct generalisation of the Bogoliubov expression to comprise the
additional excitation modes α that become relevant away from the weakly-interacting
limit. In what follows, we will refer to this extended representation as the QGA-
Bogoliubov-Frölich model of the BH polaron, specified by the multi-branch vertex
functions Bα,k = ψ0

(
Uα,k + Vα,k

)
weighting the coupling of the impurity with one-

particle condensate excitations across the phase diagram of the bath.

4.2.3 QGA representation of the polaron coupling

In order to fully characterise the properties of the coupling of the BH environment
with the mobile impurity across the the phase diagram shown in Figure 4.1(a), we
resort again to the QGA formalism as detailed in Chapter 3, but under a different
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perspective.
We open our discussion by reminding that the successful predictions of the

QGA theory made so far rely on its ability to essentially capture the physics of
quantum fluctuations across the diverse strongly-correlated regimes due to the MI-
to-SF quantum phase transition. In turn, this is related to the accurate description of
quantum correlations determined by both one- and two-body fluctuations involving
the collective modes of the system, whose relative weights vary significantly upon
reaching different critical regions. In the following, we will focus in particular on the
roles played by low-energy excitations (Goldstone and Higgs modes) in the polaron
features inside the critical SF regime and how they connect to the behaviour inside the
MI phase, characterised by doublon-holon excitations.

The polaron cloud is formed by the multi-branch spectrum of the BH excitations,
which are taken into account by expanding ĤIB in powers of the operators b̂α,k and
b̂†

α,k. In analogy with the decomposition of density correlations of Chapter 3, we find

ĤIB ≈ U12
∑

r
n̂I,r [n0 + δ1n̂(r) + δ2n̂(r) + . . . ] . (4.6)

The first term in parentheses gives the mean-field energy shift U12 n0, the second term

δ1n̂(r) = 1√
V

∑
α

∑
k

Nα,k
(
b̂α,k e

i k·r + b̂†
α,k e

−i k·r
)
, (4.7)

corresponds to a phonon-like coupling with the impurity. At this level, the resultant
Gutzwiller-Frölich model [18, 218] is already more general than any Bogoliubov
expansion on top of the SF state [83, 167, 215]: in fact, not only the latter is accurate in the
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deep SF regime only, but also relies solely on the excitations of the BEC, which detaches
from the microscopic density channel in the presence of strong interactions. Since
two-particle processes become relevant in the vicinity of the O(2) critical region [131,
220], the non-linear term should also be included,

δ2n̂(r) = 1
V

∑
α,β

∑
k,p

[
Wα,k|β,p

(
b̂†

α,k b̂
†
β,p e

−i(k+p)·r + H.c.
)

(4.8)

+Uα,k|β,p b̂
†
α,k b̂β,p e

i(p−k)·r + Vα,k|β,p b̂α,k b̂
†
β,p e

i(k−p)·r
]
,

yielding a beyond-Fröhlich model of the bath-impurity interaction. We anticipate here
that, at zero temperature, only contributions weighted by the structure factors Wα,k|β,p
affect the energetics of the polaron, as the other terms are associated with thermally
activated excitations. Nevertheless, the vertices Uα,k|β,p and Vα,k|β,p will be shown to
give a non-negligible contribution to the number of particles populating the polaron
cloud, as well as to mediate quantum correlations between the polaron and the bath.

4.3 Self-energy of the Bose polaron

Physically speaking, the polaron is composed of both the impurity and the surrounding
cloud of excited bath modes, producing the quasiparticle depicted in Figure 4.1(b). The
dressing properties of the impurity are quantified by the self-energy

Σ(k, ω) = G(0)(k, ω)−1 −G(k, ω)−1 , (4.9)

where G(0)(k, ω) and G(k, ω) are the bare and interacting impurity Green’s functions,
respectively. We calculate the self-energy diagrammatically via the Dyson series,
including all relevant zero-temperature diagrams up to second order in U12 shown in
Figure 4.2. To this level of approximation within the QGA, we find

Σ(k, ω) ≈ U12 ⟨n̂⟩ + Σ1P(k, ω) + Σ2P(k, ω) , (4.10)

where ⟨n̂⟩ = n0 + ⟨δ2n̂⟩ includes the QGA second-order quantum corrections to the
bath density, the one-particle (Gutzwiller-Fröhlich) contribution is

Σ1P(k, ω) ≡ U2
12
V

∑
α

∑
q

|Nα,q|2

ω − ωα,q − ek−q + i 0+ , (4.11)

and the two-particle (beyond-Fröhlich) contribution is

Σ2P(k, ω) ≡ U2
12

2V 2

∑
α,β

∑
q,q′

∣∣∣Wα,q|β,q′ +Wβ,q′|α,q

∣∣∣2
ω − ωα,q − ωβ,q′ − ek−q−q′ + i 0+ . (4.12)

Due to the vanishing of the one-particle vertices Nα,k [Figure 4.2(a)] in the incom-
pressible MI regime, we immediately notice the crucial role of direct Wα,k|β,k′ and
exchange Wβ,k′|α,k two-particle processes [Figure 4.2(b)] – such as the excitation of
particle-hole pairs – in the quantum critical regime. As we mentioned before, at zero
temperature these beyond-Fröhlich effects describe only the simultaneous emission or
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(a) (b)
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Figure 4.2: Diagrammatic representation of the interacting impurity Green’s function G(k, ω) at the Hartree-Fock level (up
to second order in U12) within the zero-temperature QGA. Panels (a)-(b) depict the one- and two-particle diagrams with
QGA vertex functions Nα,q and Wα,q|β,q′ , respectively. Full lines represent the bare impurity Green’s function G(0)(k, ω),
while dashed lines correspond to bare Green’s functions D(0)(k, ω) of the collective modes of the BH bath.

absorption of two excitations by the impurity. This is in sharp contrast with the case
of the Fermi polaron, where the equivalent processes are suppressed due to Fermi
statistics [221]. For the purpose of comparison, we also report the expression for the
polaron self-energy within the Fröhlich models discussed in Subsection 4.2.2,

Σ(k, ω) = U12 |ψ0|2 + U2
12
V

∑
α

∑
q

|Bα,q|2

ω − ωα,q − ek−q + i 0+ , (4.13)

where the summation is taken over the Goldstone mode only in the case of the
Bogoliubov-Frölich theory and over the entire BH multi-branch spectrum within the
QGA-Bogoliubov-Frölich model.

Before proceeding further, it is interesting to notice that, considering the QGA
prediction for the dynamical structure factor of the BH model

Sn(q, ω) =
∑

α

|Nα,q|2 δ(ω − ωα,q)

+ 1
2V

∑
α,β

∑
p

|Wα,β ; p,p+q +Wβ,α ; p+q,p|2 δ(ω − ωα,p − ωβ,p+q) ,
(4.14)

we can express our result for the polaron self-energy in the suggestive form

Σ(k, ω) = U2
12
V

∑
q

∫
dε Sn(q, ε)G(0)(k + q, ω − ε) . (4.15)

The above relation strongly reminds of a Bethe-Salpeter equation linking one-body
correlations (left-hand side) with two-body fluctuations (right-hand side) and is
evidently a natural consequence of the self-consistent character of our Hartree-Fock
calculation of Σ(k, ω).

The key properties of the lattice Bose polaron include its dispersion, stability, and
coherence, which have been the subjects of numerous experimental research efforts
on the continuum [196, 197, 203, 222–224] exploiting the powerful toolbox of RF
interferometry [225] combined with the manipulation of Feshbach resonances [193]. In
this work, we calculate the polaron dispersion by considering the self-energy on the
bare mass shell (ω = ek). This procedure goes under the name of Rayleigh-Schrödinger
perturbation theory [18] and, when tailored for the polaron problem, is known to provide
physically sound results when tailored to the polaron problem. In particular, this scheme
successfully compares to more involved approaches as e.g. the Brillouin (off-shell)
scheme, which require to calculate renormalised spectral properties self-consistently
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and have been argued to mix perturbative orders in an uncontrolled manner [226–228].
According to the on-shell approximation, the full polaron energy dispersion reads
Ek = ek + Re

[
Σ
(
k, ek + i 0+)], which can be expanded at low momentum as

Ek ≡ E0 + k2

2M∗
+O(k4) , (4.16)

where E0 is the uniform shift of the polaron energy, and M∗ is the polaron effective
mass. Both quantities can be inferred from Eq. (4.16) via the equations

E0 ≡ Re
[
Σ
(
0, i 0+

)]
(4.17)

and
M

M∗
≡ M

d

d∑
i=1

∂2Ek
∂k2

i

∣∣∣∣∣
k=0

, (4.18)

respectively. On the other hand, the coherence and stability of the polaron are deter-
mined by the (on-shell) momentum-dependent quasiparticle residue

Z−1
k ≡ 1 − ∂Re

[
Σ
(
k, ω + i 0+)]
∂ω

∣∣∣∣∣
ω=ek

(4.19)

and the decay rate
Γ(k) ≡ −2 Im

[
Σ
(
k, ek + i 0+

)]
. (4.20)

In particular, the quasiparticle residue measures the overlap between the polaron and
free impurity states, quantifying the renormalised spectral weight of the polaronic pole
of the Green’s function [18]. It follows that the polaron is a well-defined coherent mode
provided that Γ(k) ≪ Ek and Zk is finite.

We conclude this Section by noting that Eqs. (4.10) and (4.13) are invariant under a
sign change of U12, up to a possible overall shift due to the Hartree contribution, and
therefore we restrict ourselves to the case U12 > 0, producing results for U12/U = 0.2
without loss of generality at weak coupling. We also specify that we will work in units
of U when considering quantities having the dimensions of energy.

4.4 Polaron energetics across the MI-to-SF transition

4.4.1 QGA description of the polaronic spectrum

First and foremost, we study in detail how the spectral properties of the polaron depend
on the quantum critical behaviour of the bath. In particular, from Eqs. (4.17)-(4.18) we
obtain the semi-analytical predictions

E0 = U12 ⟨n̂⟩ − U2
12
V

∑
α

∑
q

|Nα,q|2

ωα,q + eq
− 1

2V

∑
α,β

∑
q,q′

∣∣∣Wα,q|β,q′ +Wβ,q′|α,q

∣∣∣2
ωα,q + ωβ,q′ + eq+q′

 ,
(4.21)
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and

M

M∗
= 1 − 1

d

U2
12
V

∑
α

∑
q

d∑
i=1

|Nα,q|2 Φ(q,0, ωα,q) (4.22)

− 1
2V

∑
α,β

∑
q,q′

d∑
i=1

∣∣∣Wα,q|β,q′ +Wβ,q′|α,q

∣∣∣2 Φ
(
q,q′, ωα,q + ωβ,q′

) ,
where we have defined the function

Φ(k,p, ω) = 2M−1 sin (ki + pi)2(
ω + ek+p

)3 + 1 − cos (qi + pi)(
ω + ek+p

)2 . (4.23)

Our results for E0 and M/M∗ are shown in Figure 4.3 both at fixed chemical potential
[(a)-(b)] and fixed filling [(a′)-(b′)] across the O(2) and CI transitions.

In general, starting from the deep SF regime and reducing the hopping J/U , the
dressing effect of the bath excitations leads to a heavier polaron with energy lower
than the Hartree shift U12 ⟨n̂⟩, which corresponds to the limiting value in both the deep
SF and MI regimes. In the former regime, the contribution of quantum fluctuations is
saturated by the excitation of the gapless Goldstone mode, whereas in the latter it is
solely due to the excitation of particle-hole pairs. However, as the strongly-correlated
regime is approached, we observe two distinct trends depending on the universality
class of the transition and the character of the underlying critical fluctuations.

Upon crossing the O(2) phase transition, either by fixing ⟨n̂⟩ = 1 or µ/U =
√

2 − 1,
we see from Figure 4.3 that both E0 and M/M∗ reach an absolute minimum on the SF
side and increase smoothly across the transition. Here, both the Goldstone and Higgs
branches make competing contributions to the polaron cloud at the one-particle level
due to the closing of the Higgs gap at the critical point. For the same reason, the beyond-
Fröhlich two-particle process involving the coupling of the Goldstone and Higgs modes,
encoded in the vertexWGold,q|Hig,q′ , makes also a significant contribution to the SF side
of the transition. These processes become the only non-vanishing contributions at the
critical point, leading to a smooth crossover towards the Mott polaron as a consequence
of the non-Gaussian statistics 2 of the bath [220]. In the MI lobe, the polaron cloud is
composed by doublon-holon pairs with fixed size set by (J/U)2, becoming increasingly
localised in a small neighbourhood of the impurity with emission and absorption
processes occurring on relatively short time scales [43, 131, 220].

The situation changes drastically when the MI boundary is crossed instead at the CI
transition for fixed chemical potential, as shown in Figure 4.3(a)-(b) [red dashed-dotted
line]. In this case, both E0 and M/M∗ are dominated by one-particle processes despite
strong interactions, in analogy with the physical mechanism behind pure dephasing in
the same region. Here, quantum fluctuations are predominantly due to the Goldstone
mode, as the Higgs mode retains a sizeable gap at the transition. On the SF side of
the CI point, the polaron properties are more strongly renormalised than at the O(2)

2 We redirect the reader to Subsection 3.2.3 and Section 3.3 for a more detailed discussion on the relation
between the order of quantum fluctuations due to the collective modes and the statistics of the BH bath.
In particular, we recall that the expression “non-Gaussian” refers here to the order of the non-linear
coupling of the impurity with the bath modes, made possible by the peculiar description of “Gaussian”
quantum fluctuations provided by the QGA.
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Figure 4.3: (a)-(b) Polaron spectral properties for fixed µ/U across the O(2) (black dashed) and CI (red dashed-dotted)
transitions, with the non-analytic nature of the latter highlighted in the inset. (a′)-(b′) Polaron spectral properties for fixed
⟨n̂⟩. The ⟨n̂⟩ = 1 line crosses O(2) critical point at 2 d J/U ≈ 0.172, while the non-integer lines approach the HCSF regime,
where the extremal point of the CI transition is located. The dots indicate the O(2) quantum critical points.

point, moving sharply towards their bare values on the MI side. At the CI point, the
bath behaves as an effective free Bose gas of quasiparticles with vanishing sound speed
and large compressibility 3, hence becoming softer to perturbations of the density than
at the O(2) point, where the sound speed reaches a finite value and the compressibility
vanishes continuously [51, 131]. Consequently, there is a stronger interplay between
density fluctuations of the bath and the impurity. The non-analyticity of the polaron
properties at the transition [inset Figure 4.3(b)] closely reflects the discontinuous
behaviour of the single-particle coherence length at the CI transition [63, 131] due to
the abrupt suppression of one-particle processes, with only two-particle processes
surviving the opening of the Mott gap.

Travelling instead along lines of non-integer filling [see Figure 4.1(a)], the bath enters
the regime of the HCSF state (J/U ≪ 1) at the upper/lower margins of the MI lobes
shown in Figure 4.3(a′)-(b′) [red and blue solid and dotted lines]. Here, as anticipated in
Chapter (3), the bath becomes strongly-interacting without entering the MI phase, with
the polaron cloud again dominated by one-particle excitations of the Goldstone mode,
having a vanishingly small sound velocity and hence an almost quadratic dispersion.
The behaviour of the HCSF as a Bose gas of strongly-renormalised quasiparticles entails
a diverging compressibility [43] and, correspondingly, a divergence in E0 and M/M∗
precisely at the hard-core point located at J/U → 0. As a side note, we observe that a

3 See Appendix B.2 for a detailed description of the behaviour of the Goldstone sound velocity in different
critical regimes of the BH model.
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Figure 4.4: Comparison between the results for the effective mass of the polaron across the O(2) transition according to
different models of the impurity-bath interaction for fixed ⟨n̂⟩ = 1. The location of the corresponding phase transitions are
indicated by vertical dotted lines.

non-monotonic behaviour is found as the filling nears an integer value [dotted lines
Figure 4.3(a′)-(b′)] in the strongly-correlated regime, due to the growing vicinity of the
phase transition.

4.4.2 Comparison with the predictions of Fröhlich models

In order to appreciate more the improvement provided by the QGA theory applied to the
Bose polaron, it is important to understand where the Fröhlich physical scenario suffices
and the different flavours of the Bogoliubov treatment discussed in Subsection 4.2.2
can be used.

In Figure 4.4, we show a comparison between the predictions of different models
of the bath-impurity interaction for the polaron effective mass M/M∗ across the O(2)
critical point. We immediately observe that all approaches agree in the deep SF limit,
where the effective mass reaches its bare value. Near the strongly-correlated regime of
the bath, the Bogoliubov-Frölich result [dot-dashed green line] starts deviating from its
Gutzwiller reformulation [dashed blue line], with the latter giving a heavier effective
mass as a consequence of including the contribution of a larger number of excitation
branches, which encode the effect of stronger interactions. However, we point out that
in general the QGA-Bogoliubov-Frölich theory tends to overestimate significantly the
weight of quantum fluctuations in the strongly-interacting SF phase, even if all the
excitations on top of the condensate are considered. Instead, in this regime both the
Gutzwiller-Frölich model [dot-dashed red line] and its beyond-Fröhlich generalisation
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[solid black line] predict a milder renormalisation of the effective mass. In particular,
the difference between these two curves reflects the increased contribution of two-body
processes in the quantum critical regime involving the Goldstone-Higgs vertex on the
SF side and doublon-holon excitations on the MI side. Our beyond-Fröhlich approach
is able to account for these processes, which yield the smooth evolution of M/M∗
across the O(2) transition. On the contrary, it is clear from Figure 4.4 that all Fröhlich
models provide instead a non-analytic behaviour at this point, with the effective mass
dropping trivially to its bare value as a consequence of the vanishing weight of one-body
vertices of the collective modes. While this non-analyticity is smeared by two-particle
processes across the O(2) transition, the line of CI transitions is still well described by
the Gutzwiller-Frölich model, which correctly captures the non-analytic behaviours of
the polaron properties across this special type of criticality.

These findings demonstrate that the QGA treatment of the microscopic bath-
impurity coupling is essential to the overall physical consistency and accuracy of the
predictions presented in this work. Ultimately, the Bogoliubov scheme is reliable only
in the deep superfluid regime, where the negligible depletion of the condensate justifies
the corresponding expansion.

4.5 Quasiparticle weight and polaron lifetime

The quantum critical nature of the bath can also strongly impact on the coherence
and stability of the polaron, jeopardising its experimental detection. The on-shell
quasiparticle residue and decay rate follow from Eqs. (4.19)-(4.20),

Z−1
k = 1 + U2

12
V

∑
α

∑
q

|Nα,q|2(
ek − ek−q − ωα,q

)2
+ 1

2V

∑
α,β

∑
q,q′

∣∣∣Wα,q|β,q′ +Wβ,q′|α,q

∣∣∣2(
ek − ek−q−q′ − ωα,q − ωα,q′

)2
 ,

(4.24)

Γk = 2π U2
12

V

∑
α

∑
q

|Nα,q|2 δ
(
ek − ek−q − ωα,q

)
(4.25)

+ 1
2V

∑
α,β

∑
q,q′

∣∣∣Wα,q|β,q′ +Wβ,q′|α,q

∣∣∣2 δ(ek − ek−q−q′ − ωα,q − ωβ,q′
) ,

with the latter having the form of a FGR with effective couplings set by the QGA one-
and two-particle vertices. In particular, the decay rate accounts for the zero-temperature
spontaneous emission of excitations from the polaron cloud, which is energetically
allowed provided that ek = ek−q + ωα,q and ek = ek−q−q′ + ωα,q + ωβ,q are satisfied
for some exchanged momenta q,q′. Moreover, it is easy to see that these events are
energetically favoured for lighter impurities due to the convexity of ek ∼ M−1. In
order to evaluate the δ-functions in Eq. (4.5) on a finite-sized lattice, we utilise their
Lorentzian representation, with a width equal to η = 10−2 chosen to produce results
compatibly with the numerical size of the square lattice under consideration. In general,
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a finer resolution of the δ-function (smaller η) implies the need of a larger lattice,
which considerably increases the computational cost, particularly to resolve the beyond-
Fröhlich effects. Additionally, we expect the energy conservation bounds in Eq. (4.5) to
be blurred on the lattice due to an approximated representation of the δ-function.

As a secondary detail, by making use of Eq. (4.14), we notice that the polaron decay
rate can also be written as

Γk = 2π U2
12

V

∑
q

∫
dε Sn(q, ε)A0

(
k, ε+ εk+q

)
, (4.26)

where A0(k, ε) = −Im
[
Σ
(
k, ε+ i 0+)] is the bare DoS of the impurity. This provides

us with a straightforward interpretation of Γk: it quantifies how much the dynamical
structure factor of the bath, that is the spectral weight of density excitations, and the
on-shell impurity states overlap in momentum-frequency space.

4.5.1 Low-energy contribution of the Goldstone mode to Γk

By simple analytic manipulations, we can identify precise bounds on the impurity
velocity for which the decay rate Γk gathers the contribution of soft Goldstone excitations
at the one-particle level. Considering the energy conservation identity ek −ek−q = ωα,q
and the limit of small |q|, we have

d∑
i=1

(∂ki
ek) qi =

d∑
i=1

vi
k qi = vk · q = cs |q| , (4.27)

where vi
k ≡ 2 JI sin (ki) is the ith component of the impurity velocity and cs is the

sound velocity of the Goldstone mode as always. Now, since cs > 0, the scalar product
vk · q should be positive in order to ensure energy conservation. In particular, calling
the angle between the vectors vk and q as θ, this results in |vk| |q| cos (θ) > 0, so
that −π/2 < θ < π/2 (modulo 2π). In the two-dimensional case, this means that at
least one component of the impurity velocity should have the same direction of the
corresponding component of q. Conversely, such a restriction on θ can be seen also
a bound on the possible exchange momentum q that the Goldstone mode can have.
The limiting value of the modulus of the impurity velocity can be obtained from the
solution of Eq. (4.27), reading

|vk| = − cs

cos (θ) −→ PI ≡

√√√√ d∑
i=1

sin (ki)2 = −M cs

cos (θ) (4.28)

where PI is defined to be the modulus of the impurity momentum. We highlight
that this result clearly establishes a sort of Landau criterion [40, 229, 230] for the
impurity velocity to generate low-energy sound excitations of the bath [231, 232]: in
particular no excitation can be emitted by the polaron in the so-called subsonic regime
PI < kc ≡ M cs. For instance, we observe that a completely delocalised polaron with
k = 0 cannot spontaneously decay into arbitrarily soft Goldstone modes. Remarkably,
we observe that this last result does not change at the CI transition and in the HC limit
of the system, where the Goldstone mode has a purely quadratic energy dispersion
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and the energy conservation rule at low momenta changes into

−1
2

d∑
i=1

(
∂2

ki
ek
)
q2

i = −1
2

d∑
i=1

(
z JI − ei

k

)
q2

i = G |q|2 , (4.29)

where ei
k ≡ 4 JI sin (ki/2)2 and G > 0 is the effective mass of Bose particles in the

bath. Indeed, Eq. (4.29) has no solution for k = 0, however energy conservation can be
fulfilled for moderately large values of |k|: for instance, if the impurity has momentum
k along all the spatial directions of the lattice, we obtain k = arccos [−G/ (d JI)].

The observations made above can be substantiated by explicitly calculating the
contribution of the Goldstone mode to the decay rate at low momenta. In particular,
we restrict again our analysis to the single-particle part

Γ(1,G)
k ≡ 2π U2

12
I

∑
q

|NG,q|2 δ
(
ek − ek−q − ωG,q

)
, (4.30)

which to a first approximation gives a good physical intuition of polaron decoherence
over the whole SF phase, in particular close to the CI transition and in the strongly-
interacting SF regime. In the limit of small |k| and |q|, the argument of the δ-function
in Eq. (4.30) can be greatly simplified and written as

ek − ek−q − ωG,q −−−−−→
k, q → 0

− q2

2M + |k| |q| cos (θ)
M

− cs |q| (4.31)

up to second-order in momentum. Therefore, in the thermodynamic limit we can
transform the momentum sum of Eq. (4.30) into the integral form

Γ(1,G)
k ≈


U2

12
2 π

∫ Λ

0
dq q

∫ 2 π

0
dθ |NG,q|2 δ

[
− q2

2 M + k q cos (θ)
M − cs q

]
d = 2 ,

U2
12

2 π

∫ Λ

0
dq q2

∫ 1

−1
d cos (θ) |NG,q|2 δ

[
− q2

2 M + k q cos (θ)
M − cs q

]
d = 3 ,

(4.32)
where for illustrative purposes we have considered the cases d = 2, 3 (while additional
care would be required for d = 1) and we have defined k = |k|. Λ is a suitably chosen
momentum cut-off which will have no influence on the final result, as the integration
of the δ-functions will be shown to fix the allowed values of q. For the sake of clarity,
we also stress that q = 0 is not enclosed in the integration domain, since it is excluded
from the excitation spectrum of the Goldstone mode as usual. In d = 2, we can first
perform the momentum integral of the δ-function, whose argument vanishes for
q(θ) = 2 [k cos (θ) − kc], apart from the avoided solution q = 0. On the other hand, in
d = 3, we can start from the angular integral. As a result, we obtain

Γ(1,G)
k ≈


U2

12 M
π

∫ 2 π
0 dθ

∣∣∣NG,q(θ)

∣∣∣2 θ[cos (θ) − kc
k

]
d = 2 ,

U2
12 M
2 π k

∫ Λ
0 dq q |NG,q|2 θ[2 (k − kc) − q] d = 3 .

(4.33)

Crucially, the theta functions appearing in the integrands above derive from the
constraints q > 0 (for d = 2) and |cos (θ)| ≤ 1 (for d = 3), combined with the identity

q
2 M − k cos (θ)

M + cs = 0 imposed by the δ-functions. In particular, we immediately notice
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that, as a consequence of cos (θ) ≤ 1 and q > 0, in both cases we must have k > kc

necessarily in order to have a finite result for Γ(1,G)
k . Thus, we naturally recover the

Landau criterion for the impurity velocity. Consequently, Eq. (4.33) yields the final
result

Γ(1,G)
k ≈ θ(k − kc)


4 U2

12 M γ
π

[√
k2 − k2

c − kc arccos
(

kc
k

)]
d = 2 ,

4 U2
12 M γ
3 π k (k − kc)3 d = 3 ,

(4.34)

where we have used the fact that |NG,q|2 ≈ γ q in the long-wavelength limit. Since
|NG,q|2 can be identified with the one-mode contribution to the static structure factor
of the BH system, we can resort to the use of spectral sum rules [40, 51] to write
γ = κ cs/2, where κ is the compressibility of the BH bath 4. For convenience, we recall
here that κ ∼ 1/J in the HCSF region and κ ∼ 1/U in the deep SF regime, respectively;
moreover, κ is finite on the SF side of the CI transition before jumping discontinuously
to zero in the MI phase, in stark contrast with the case of the O(2) transition where κ
tends smoothly to zero [51].

Importantly, we first observe that our approximation for the decay rate is predicted
to be an increasing function of momentum. If the impurity momentum is taken slightly
above the Landau threshold and cs is finite, we have

Γ(1,G)
k ≈

k→k+
c


4 U2

12 κ
3 π

√
2 kc (k − kc)3/2 d = 2 ,

2 U2
12 κ

3 π (k − kc)3 d = 3 ,
(4.35)

From Eq. (4.35), we deduce that in general Γ(1,G)
k ∼ (k − kc)3(d−1)/2 for d > 1. Inter-

estingly, we note that this behaviour mimics (but does not match) the momentum
scaling of the energy dissipated by a heavy impurity in a weakly-interacting BEC on
the continuum [229], reading (k − kc)d−1.

Now, we specify that the previous result is valid as long as k is of the same order
of (albeit larger than) q. Since also k − kc has to be a small quantity, we must hence
restrict ourselves to the case kc ≪ 1. This condition is always satisfied in proximity of
the CI transition and in the HCSF regime (where cs tends to zero), but can be reached
also in the deep SF region for a sufficiently small M . More in detail, taking the limit
cs → 0 in Eq. (4.34), we obtain

Γ(1,G)
k ≈ θ(k − kc)


2 U2

12 κ kc

π k d = 2 ,

2 U2
12 κ kc

3 π k2 d = 3 ,
(4.36)

which notably recovers the same momentum scaling as on the continuum [229]. It must
be noted that, for the choiceM = (2 J)−1 adopted in this Chapter, the Landau threshold
kc vanishes identically at the CI critical point (where M remains finite), while in the

4 See also Subsection 2.3.1 of Chapter 2 for a more explicit application of spectral sum rules to deduce the
relationship between the static structure factor, the compressibility and the sound velocity in a superfluid
state.
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HCSF regionkc converges to a finite valuekHC
c = (n0 + 1)

√
z (⟨n̂⟩ − n0) (n0 + 1 − ⟨n̂⟩),

where n0 is the integer filling of the lower MI lobe 5. Nevertheless, we expect that
Eq. (4.36) still provides a good rule of thumb for the decay rate in the HC limit, as we
will show in the following.

4.5.2 Analysis of the results

To gain an intuitive but also quantitative insight into the polaron decay, we first resort
to its approximate estimation via the single-particle contribution of the Goldstone
mode, as detailed in the previous Subsection. The significance of Eqs. (4.34)-(4.35) lies
in the fact that both κ and cs are strongly renormalized by the presence of the lattice:
in particular, when cs → 0 on the brink of the CI critical points and in the strongly-
interacting SF regime, the softening of sound excitations provide also slowly-moving
polarons (k → 0) with a finite lifetime and increases the number of scattering channels
giving a finite contribution to Γk. Also, the non-trivial interplay between κ and cs [51]
allows us to make qualitative predictions on the behaviour of Γk in those quantum
critical limits where the approximation (4.34) holds: on the one hand, approaching the
SF side of the CI point, where κ is finite and kc → 0, we expect Γk to reach a maximum
close to the transition, before dropping to negligible values in the MI phase; on the
other hand, in the HC limit where κ → ∞ and kc is finite, Γk ∝ κ is expected to diverge.
Due to the role of two-particle processes, the case of the O(2) critical point – where
both the Goldstone and Higgs modes become gapless – entails instead a completely
different picture which has to be investigated numerically.

Our results for Zk and Γk at fixed chemical potential are shown in Figure 4.5(a)-(b).
As the bath crosses the O(2) transition at fixedµ/U =

√
2−1, the polaron remains a well-

defined object (Zk ∼ 1, Γk ≪ Ek) at all momenta. In crossing the CI transition for fixed
µ/U = 0.8, both quantities behave sharply, with the non-analyticity shown in the inset
of Figure 4.5(b) being analogous to the one of the polaron properties associated with
Re[Σ(k, ω)] [inset Figure 4.3(b)]. At finite momenta, the polaron coherence and stability
are generally weaker, undergoing a mild renormalisation across the O(2) transition
while rapidly deteriorating at the CI points approaching the strongly-interacting limit
J/U → 0. As commented earlier, in this limit the Goldstone sound velocity cs tends to
vanish, and so does the Landau bound on the impurity momentum kc → 0: it follows
that spontaneous emission of soft modes becomes energetically allowed over a wider
range of impurity momenta.

In this regard, we turn now our attention to the the coherence and stability properties
of the polaron along lines at fixed density, shown in Figure 4.5(c)-(d). At integer filling,
the polaron remains well-defined at all momenta; on the other hand, for non-integer
filling, the bath enters the regime of the HCSF, which has been recently predicted to
spoil the coherence of static impurities over time [220]. In the same region, it has been
also predicted that a mobile impurity is subjected to a quantum Brownian motion
due to the essentially free-particle nature of the bath [233]. Indeed, we observe that
the polaronic dressing of the impurity becomes so strongly renormalised so as to be
orthogonal with the bare impurity state (Zk → 0), giving rise to a bosonic instance

5 We refer the interested reader to Appendix B.2 for a detailed derivation of the compressibility and sound
velocity behaviours in a proximity of the CI critical point and in the HC limit of the BH system within
the Gutzwiller approximation.
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Figure 4.5: Momentum dependence of the quasiparticle residue and decay rate of the polaron for: (a)-(b) fixed µ/U across
the O(2) (black) and CI (red) transitions; (c)-(d) fixed ⟨n̂⟩ at integer filling (black) across the O(2) transition and non-integer
fillings (blue, red), which suffer from an orthogonality catastrophe (Zk → 0) in the HC regime. Dots indicate quantum
critical points, with the non-analyticity of the decay rate across the CI transition shown in the inset of panel (c).
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hard-core

regime

of Anderson’s orthogonality catastrophe [234]. We recall that this effect occurs also
in the continuum for a mobile impurity immersed in an ideal Bose gas due to the
infinite compressibility of the bath and macroscopic polaron cloud that forms [207, 235,
236]. In the HC regime, we find also that Γk ≫ Ek, signalling the breakdown of the
quasiparticle description within the Rayleigh-Schrödinger scheme. This coincides with
the eventual acquisition of negative values of E0 in Figure 4.3(c) signalling also a fall in
the assumption that the back action of the impurity on the bath can be neglected, as the
environment becomes unstable to the presence of the impurity due to the diverging
compressibility.

For the sake of clarity, we note that our numerical predictions for Γk never vanish for
k = 0, apparently contradicting Eq. (4.5) and the following discussion. This spurious
effect has to be mainly attributed to the difficulty of numerically resolving the energy
balance of the scattering processes that contribute to Γk on a lattice, a task which is
affected by the intrinsic uncertainty of any δ-function representation. However, we
have chosen to report our numerical results as they still grasp the expected qualitative
features of the polaron decay rate, ranging from its dependence on momentum to its
enhancement in proximity of the CI critical points and inside the HCSF regime, in
accordance with the behaviour of Zk in the same regions. Also, we point out that the
numerical results for k ̸= 0 are well-converged for Γk ≳ η where η ∼ 1/V is the width
of the chosen δ-function resolution.
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wave
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4.6 Looking to new experimental scopes: landscape of the

polaron cloud

The polaron spectral features are not the only properties that can be experimentally
accessed in modern apparatuses for quantum simulations. Indeed, a number of
questions posed by the community revolve around the real-space profile of the polaron,
in terms of both the number of physical particles occupying the surrounding cloud
of virtual excitations and effective quantum correlations between the impurity and
the bath. It is important to underline that this investigation has the more general goal
of understanding how the polaron dressing cloud builds up and how correlations
are mediated by the collective modes, with relevant consequences on the many-body
physics of polaronic matter (bipolarons). The spectroscopic tools mentioned earlier
cannot be exploited to track the formation of quasiparticles and monitor the structure
of the polaron cloud. Conversely, dynamical probes such as many-body Ramsey
interferometry [237–239] and the use of coherent Rabi oscillations [240, 241] (although
the extension to the bosonic medium is currently lacking) are well suited to this purpose,
besides providing useful information on the quasiparticle residue [241, 242]. Moreover,
the advent of quantum gas microscopy makes the observation of the internal structure
of polaronic quasiparticles practically feasible, having successful applications to the
case of magnetic impurities [145, 243].

In the following, we will give a quantitative account of the polaron cloud features
by resorting to the Chevy ansatz

|Ψ(k)⟩ = 1√
Ωk

|k⟩ |Ω⟩ + U12√
V

∑
α

∑
q

N∗
α,−q

ek − ek+q − ωα,−q
|k + q⟩ |α,−q⟩ (4.37)

+U12
V

∑
α,β

∑
p,q

W ∗
α,β|p,−p−q

ek − ek+q − ωα,p − ωβ,−p−q
|k + q⟩ |α,p ; β,−p − q⟩


for the polaron wave function for a given impurity momentum k, which simply
amounts to calculating the impurity state up to lowest-order perturbation theory in
the QGA representation of the impurity-bath interaction (4.6). Here, |k⟩ denotes the
bare impurity state, |α,q⟩ and |α,q⟩ are single- and two-particle states of the bath
respectively and

Ωk = 1 + U2
12
V

∑
α

∑
q

|Nα,q|2(
ek − ek+q − ωα,q

)2
+ 1

2V

∑
α,β

∑
p,q

∣∣∣Wα,β|p,p+q +Wβ,α|p+q,p

∣∣∣2(
ek − ek+q − ωα,p − ωβ,p+q

)2
 = Z−1

k

(4.38)

is the wave function normalisation factor and coincides the inverse quasiparticle
residue of the polaron. Heuristic ansätze of the form have been proved to provide a
remarkably reliable description of polaron physics in both bosonic and fermionic baths,
embracing both certain strong-coupling regimes and a large class of beyond-Fröhlich
fluctuations.
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Figure 4.6: Average number of excitations of the BH bath forming the cloud of a polaron with momentum k = 0 across the
O(2) transition at fixed unit filling ⟨n̂⟩ = 1. Here, 2 d Jc/U =

(√
2 − 1

)2 ≈ 0.172 is the critical hopping energy at the tip of
the ⟨n̂⟩ = 1 MI lobe. The results of the beyond-Fröhlich QGA model (purple) are compared to those of the Gutzwiller-Frölich
model (yellow) and the Frölich theory within the Gutzwiller (red) and Bogoliubov (blue) approximations.

4.6.1 Number of bath excitations in the polaron cloud

The number of proper bath excitations can be estimated by introducing the total density
operator of collective modes as

N̂ph ≡
∑

α

∑
q
b̂†

α,q b̂α,q . (4.39)

The expectation value of this operator over the Chevy ansatz (4.37) yields the average
number of bath excitations contained in a polaron with momentum k, namely

Nph(k) ≡ ⟨Ψ(k)| n̂b |Ψ(k)⟩

= 1
Ωk

U2
12
V

∑
α

∑
q

|Nα,q|2(
ek − ek+q − ωα,q

)2
+ 1
V

∑
α,β

∑
p,q

∣∣∣Wα,β|p,p+q +Wβ,α|p+q,p

∣∣∣2(
ek − ek+q − ωα,p − ωβ,p+q

)2
 .

(4.40)

It is worth noting that, indicating the one- and two-particle contributions to the (inverse)
quasiparticle residue (4.38) as δZ−1

n,k with n = 1 and 2 respectively, we can rewrite
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nph(k) in the form
Nph(k) = Zk

∑
n

n δZ−1
n,k . (4.41)

The above alternative expression allows us to make analytical guesses on the behaviour
of Nph(k) in connection with special limiting values of the quasiparticle residue. The
simplest example is represented by MI phase, where we obtain

NMI
ph (k) = 2

[
1 + δZ−1

2,k

]−1
δZ−1

2,k ∼ (J/U)2 , (4.42)

a result confirming the expectation that only a small number of doublon-holon pairs
occupy the polaron cloud on average. The other physical situation that we can grasp
exactly is the HCSF regime, where δZ−1

1,k → ∞ is the dominant contribution so as to
give a vanishing quasiparticle residue and the orthogonality catastrophe. In this case,
we readily obtain

NHCSF
ph (k) ≈

[
1 + δZ−1

1,k

]−1
δZ−1

1,k → 1 . (4.43)

Interestingly, this result does not indicate that only one physical particle of the bath
participates in the polaron formation, but rather that a single Goldstone mode couples
to the impurity. In the next Subsection, we will show that such a long-range excitation
entails an infinite number of physical particles, making the polaron cloud extending
over the whole lattice and hindering the formation of a quasiparticle.

In Figure 4.6, we illustrate the behaviour of Nph(k = 0) for a uniformly delocalised
polaron across the O(2) transition of the BH bath at fixed unit filling ⟨n̂⟩ = 1. The pre-
diction of our beyond-Frölich model [purple line] echoes the result for the quasiparticle
weight Zk=0 in Figure 4.5(b), to which Nph(k = 0) is loosely related: in particular, the
number of excitations forming the polaron cloud tends smoothly to zero in both the
deep SF and MI limits, with a long-tailed decrease in the former case. The absolute
maximum of Nph(k = 0) is located in the strongly-correlated SF region close to the
critical point J = Jc, where two-particle processes of the collective modes start to
matter, connecting with the behaviour in the MI phase. Focusing our attention on the
critical SF regime, it is worth noticing how the QGA result compares with the ones of
Fröhlich models. On the one hand, the Gutzwiller-Frölich theory [yellow line] follows
the same qualitative behaviour of the QGA predictions, but fails to account for the
contribution of two-mode excitations of the bath; on the other hand, the Bogoliubov
models (hinging on the coupling between the impurity and the condensate channel)
[red and blue lines] overestimate the weight of quantum fluctuations in the polaron
cloud, similarly to the case of the effective mass addressed in Subsection 4.4.2.

4.6.2 How many particles is the polaron made of?

Following the arguments of [192, 244], the number of bath particles contained in the
impurity dressing cloud can be defined as the number of particles that must be added
to the medium in order to keep its chemical potential (i.e., the medium density far away
from the impurity) fixed when the impurity is injected into the system. In particular,
this quantity can be proved to be given by

∆N = −∂E0
∂µ

(4.44)
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at zero temperature. In what follows, we also consider a different estimation strategy
for the number of “excess particles” in the bath due to the presence of the impurity,
based on the Chevy ansatz (4.37), which remarkably agrees exactly with the result
of Eq. (4.44) to lowest order in the coupling U12 and well approximates higher-order
contributions.

We define the number of particles forming the polaron cloud by means of the
variation of the bath density with respect to the BH ground state decoupled from the
impurity, namely

∆N(k) = V [⟨Ψ(k)| n̂(r) |Ψ(k)⟩ − ⟨n̂(r)⟩0] , (4.45)

where the factor V takes care of the fact that the number of bath particles depleted
or attracted by the impurity is of order O

(
V −1). Moreover, the spatial dependence of

∆N(k) has been ignored because of the translational invariance of the system, being
the impurity momentum a good quantum number in the present context.

For consistency, we perform the calculation of ∆N(k; r) by expanding the bath
density operator in order to include two-particle processes involved in the beyond-
Fröhlich coupling with the impurity, n̂(r) → N̂(r) ≈ n0 + δ1n̂(r) + δ2n̂(r). It turns
out that the only non-vanishing contributions to ∆N(k) are those deriving from the
coupling between different n-particle sectors of the Chevy wave function mediated by
fluctuations in the bath operator n̂(r). In particular, up to quadratic order in U12 we
have

∆N(k) = −U12 κ+ U2
12
V

∑
α,β

∑
q

N∗
α,q Nβ,q

(
Uβ,q|α,q + Vβ,q|α,q

)
(ek − ek+q − ωα,q) (ek − ek+q − ωβ,q) (4.46)

+ 1
V

∑
α,β,γ

∑
p,q

(
W ∗

α,p|β,p+q +W ∗
β,p+q|β,p

) (
Wγ,p|β,p+q +Wβ,p+q|γ,p

) (
Uγ,p|α,p + Vγ,p|α,p

)
(ek − ek+q − ωα,p − ωβ,p+q) (ek − ek+q − ωγ,p − ωβ,p+q)

 ,

where κ is the QGA prediction for the compressibility of the BH system, that is:

κ = 2 lim
k→0

∑
α

∣∣Nα,k
∣∣2

ωα,k
+ 1
V

∑
α,β

∑
k

∣∣∣Wα,k|β,k +Wβ,k|α,k

∣∣∣2
ωα,k + ωβ,k

. (4.47)

It is worth pointing out that the result of Eq. (4.46) coincides exactly with the outcome
of diagrammatic perturbation theory at the Hartree-Fock level.

Interestingly, the compressibility term of ∆N(k), quantifying to which extent the
bath is prone to density perturbations, depends on the sign ofU12 and provides the mean-
field result ∆NMF = −U12/U in the weakly-interacting limit of the BH environment.
Moreover, recalling the leading order term to the polaron energy E0 ≈ U12 ⟨n̂⟩, we
observe that the thermodynamic definition of the number of dressing particles yields
∆N = −U12 ∂ ⟨n̂⟩ /∂µ = −U12 κ, which coincides with our result to lowest order in
perturbation theory. The remaining, sub-leading contributions represent a sizeable
effect of fluctuations in the critical SF phase and in the MI regime, as they strictly
depend on two-particle processes of the collective modes. In this regard, we notice
that ∆N(k) depends explicitly on the vertices Uγ,α|k,k + Vγ,α|k,k, which instead do
not play any role in the other polaron observables at zero temperature: this suggests
that the presence of the impurity leads to the creation of thermal-like excitations which
participate in the excess number of particles but not in the number of excitations in the
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Figure 4.7: Plots of the number of physical particles forming the polaron cloud for an impurity with momentum k = 0,
calculated as the number of excess particles in the bath due to the presence of the impurity, see Eq. (4.45). (a) ∆N ≡ ∆N(k = 0)
along constant-µ/U lines crossing the BH phase transitions of the ⟨n̂⟩ = 1 MI lobe. (b) The same quantity plotted along
constant-density lines approaching the O(2) critical point [red] and the upper (lower) hard-core point of the SF phase with
respect to the ⟨n̂⟩ = 1 MI lobe [yellow (blue)].

polaron cloud.
Our results for ∆N ≡ ∆N(k) in the representative case k = 0 are shown in

Figure 4.7. In panel (a), we illustrate how the number of excess particles changes upon
crossing the MI-to-SF transition at fixed chemical potential. In the deep SF regime, all
curves agree in giving the mean-field value ∆N(k = 0) ≈ −U12 κ ≈ −U12/U = 0.2,
due to the fact that the compressibility converges to U−1 in that limit. Decreasing the
hopping energy, we find that the behaviour of ∆N is an even sharper signature of the
type of approached critical point as compared to the polaron energy E0 and effective
mass M/M∗ in Figure 4.3.

We first notice that ∆N is negative everywhere in the SF region along the chosen
horizontal cuts of the phase diagram, suggesting that the polaron consists of a cloud of
holes around the impurity as a consequence of the repulsive interaction with the bath.
The O(2) critical point is crossed by the line at constant µ/U =

√
2 − 1 ≈ 0.4142: here,

we observe a smooth vanishing of ∆N , which then remain zero in the whole MI phase.
This fact can be readily explained in terms of the zero-temperature excitations of the
incompressible MI state: these are non-local pairs of doublon-holon excitations, which
therefore do not give a net contribution to ∆N . The situation on the SF side of the
transition is substantially different when crossing the CI critical points [red and blue
lines]: remarkably, ∆N undergoes a finite jump to zero exactly at the transition, which
therefore has the characteristics of a first-order criticality as seen from the polaron
dressing cloud. Importantly, this behaviour is mirrored by the discontinuous profile of
κ when doping the MI state to cross the CI transition (see Appendix B.2). Last but not
least, we point out that ∆N reaches an absolute minimum in the SF regime close to
the CI critical point, whose height increases as µ/U nears the hard-core points of the
system, corresponding to µ/U = 1 in Figure 4.7(a).

The behaviour of ∆N in the HCSF regime is the subject of panel (b) of Figure 4.7,
which illustrates how the trend obtained by fixing the density to a non-integer value
[yellow and blue lines] distances itself from the behaviour at constant unit filling [red
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Figure 4.8: Colour plot of the spectral amplitude Pk,1 ≡ |UGol,k + VGol,k| of the Goldstone mode for k → 0 in the strongly-
interacting regime of the BH model. Constant density contours are shown as dashed white lines. The dark purple arcs
along which Pk,1 = 0 are due to the PHS condition UGol,k = −VGol,k. The areas below the MI lobes enclosed by the arcs
correspond to the regimes of hole superfluidity.
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via the
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cloud

line] crossing the O(2) critical point. The former curves show that, upon approaching
of the orthogonality catastrophe in the strongly-interacting SF region, ∆N reaches
increasingly large values and eventually diverges at the hard-core point J/U → 0,
acting as a further unambiguous marker of the collapse of the polaron quasiparticle.
Even more interestingly, we notice that the low-J sign ∆N strictly depends on whether,
indicating as n0 the Mott filling closest to ⟨n̂⟩, we have n0 < ⟨n̂⟩ < n0 + 1/2 (∆N > 0)
or n0 − 1/2 < ⟨n̂⟩ < n0 (∆N < 0). Specifically, the numerical results reported in
Figure 4.7(b) refer to the case n0 = 1. In other words, the impurity behaves as an
accumulator of either particles or holes depending on the density of the strongly-
correlated SF phase sitting on top of the MI state.

The relevance of this result lies in the fact that the very same density ranges of
the HCSF state have been recently shown to correspond to regimes of particle and
hole superfluidity, respectively [52]. Physically speaking, this means that the sign of
the doping ∆n = ⟨n̂⟩ − n0 with respect to the MI filling determines the particle/hole
nature of the superfluidity carriers in a strongly-interacting BH system [43, 245, 246].
Hence, hole superfluidity appears to be a subtle manifestation of Mottness; indeed, in
the BH phase diagram the particle-to-hole SF crossover runs along arc-shaped contours
connecting the tips of the MI lobes to the lower hard-core points, which are solely
determined by the PHS of the Goldstone excitation at low momenta [see Figure 4.8].

Now, while particle superfluidity is a common feature of weakly-interacting con-
densates, the emergence of hole superfluidity is tied to the presence of a lattice in the
form of strong local correlations and is believed to play a crucial role in the physics of
high-temperature superconductors [247–249]. Yet, this appears also to be a challenging
property to detect experimentally, at least to the same extent as other elusive properties
as the superfluid drag, since it requires advanced techniques, as e.g. two-pulse Bragg
spectroscopy [250, 251] and ARPES-like methods [252–254], which give access to the
one-particle Green’s function of the system. We thus hypothesise that ∆N could serve
as a simpler, first-hand probe of the type of excitations involved in the superfluid
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transport in order to pinpoint the location particle/hole superfluid transition. In this
respect, a more in-depth analysis could include a systematic study of the relationship
between the change in sign of ∆N and the hole superfluidity boundaries identified in
Figure 4.8, which we leave as an open question for future studies.

4.6.3 Quantum correlations between the polaron and the bath

We introduce the impurity-bath density correlation function as given by

gIB(k; r) = V [⟨n̂(r) n̂I(0)⟩k − ⟨n̂(r)⟩k ⟨n̂I(0)⟩k] = V ⟨n̂(r) n̂I(0)⟩k −⟨n̂(r)⟩k , (4.48)

where ⟨·⟩k is a shorthand for the notation ⟨Ψ(k)| · |Ψ(k)⟩ and the factor V rescales the
final result so as to offset the infinitesimal value of the impurity density ⟨n̂I(0)⟩ = 1/V .
Here, we define the impurity density operator as

n̂I(r) = 1
V

∑
k,p

e−i(k−p)r ĉ†
k ĉp . (4.49)

Expanding again the bath density operator n̂B(r) up to second order in the fluctuations,
we obtain

gIB(k; r) = 1
Ωk

U12
V

2
∑

α

∑
q

|Nα,q|2

ek − ek+q − ωα,q
cos (q · r)

+ 1
V

∑
α,β

∑
p,q

∣∣∣Wα,p|β,p+q +Wβ,p+q|α,p

∣∣∣2
ek − ek+q − ωα,p − ωβ,p+q

cos (q · r)

 ,
(4.50)

where we have truncated the expression to first order in U12 for simplicity. In fact,
under our weak-coupling hypothesis, we expect the net effect of the presence of the
impurity to be either the bunching [gIB(k; r) > 0] or the antibunching [gIB(p; r) < 0]
depending in the first place on the sign of U12. However, the sign of gIB(p; r) could
also exhibit a non-trivial dependence on the impurity momentum k, which determines
the number of bath excitations scattering with the impurity.

Notably, we observe that gIB(p; r) can be calculated through the following convo-
lution integral

gIB(k; r) = 2U12
V

Zk
∑

q

∫
dε Sn(q, ε) Re

[
G0
(
k + q, ek − ε+ i 0+

)]
cos (q · r)

(4.51)
up to first order inU12, where we have directly used the identity Ω−1

k = Zk. Furthermore,
comparing the expression of gIB(k; r) with the impurity self-energy in Eq. (4.10), we
obtain the suggestive identity

gIB(k; 0) = 2Zk
U12

[
Re
[
Σ
(
k, ek + i 0+

)]
− ⟨n̂B⟩U12

]
, (4.52)

meaning that local impurity-bath correlations are given by the on-shell values of the
impurity self-energy in the perturbative regime. Now, reminding that the impurity
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energy is given by E0 = Re
[
Σ
(
0, i 0+)], we find

E0 = (U12/2)
[
Z−1

0 gIB(0; 0) + 2 ⟨n̂B⟩
]
. (4.53)

Then, if the polaron is energetically stable (E0 > 0) and U12 > 0, we deduce that
Z−1

0 gIB(0; 0) > −2 ⟨n̂B⟩ necessarily. At the same time, since E0 ≤ ⟨n̂B⟩U12, we
obtain gIB(0; 0) < 0. Overall, we conclude that local and uniform impurity-bath
correlations are bounded by the quasiparticle weight of the polaron according to
−2 ⟨n̂B⟩Z0 < gIB(0; 0) ≤ 0. Physically, the negativity of gIB(0; 0) reflects the anti-
bunching fluctuations due to the repulsive impurity-bath interaction. For instance,
in the deep SF and MI regimes, we predict vanishing correlations gIB(0; 0) → 0, as
Z0 → 1 and E0 → ⟨n̂B⟩U12 in those limits. On the other hand, in the HCSF regime,
where Z0 → 0 and E0 → −∞, gIB(0; 0) must be a negative number, presumably
diverging to −∞ and thus indicating a dynamical instability of the system.

An exhaustive overview of the QGA results for gIB(k = 0; r) in the case of a
uniformly delocalised polaron is shown in Figure 4.9, where we make again a distinction
between fixing the chemical potential [first row] and fixing the BH bath density [second
row] as different ways to reach the strongly-interacting regimes of the system. By and
large, we obtain that gIB(k = 0; r) is always an exponentially decaying function of the
lattice distance, whose features (like the antibunching factor and the correlation length)
are however highly sensitive to the bath correlations.

When reaching the O(2) transition at constant chemical potential µ/U ≈ 0.4142
[see Figure 4.9(a)], the decrease of the hopping energy J/U has the effect of quenching
impurity-bath correlations. In addition, we notice that, close to the critical point
2 d Jc/U ≈ 0.172, non-local correlations gIB(k = 0; r ̸= 0) change sign, signalling the
existence of critical bunching correlations between the impurity and the surrounding
bath particles. The same feature survives the quantum phase transition for J < Jc: here,
gIB(k = 0; r) dies out quickly as the deep MI regime is approached. It is interesting to
compare this result with the behaviour of ∆N [see Figure 4.7(a)]: notably, although
doublon-holon pairs excited by the impurity in the MI phase do not participate in the
number of particles forming the polaron, they still influence the shape of the polaron
cloud.

Our results suggest that the previous non-local features of gIB(k = 0; r) are related
to the strong interplay between the Goldstone-Higgs modes on one side and doublon-
holon modes on the other side of the tip of the MI lobe: in fact, these become barely
visible as the chemical potential is either lowered or increased with respect to the O(2)
critical point, as show in Figure 4.9(b). However, in contrast with the case of panel (a),
we observe that the values of gIB(k = 0; r) follow an evident non-monotonic behaviour
when moving from the SF to the MI phases across the CI critical point [panel (b)], in
which the critical point is located at 2 d Jc/U ≈ 0.024. As anticipated in the theoretical
discussion above, this behaviour is nothing but a consequence of the small quasiparticle
weight of the polaron close to the CI transition, which indeed is quite close to the HCSF
regime for the µ/U = 0.95 under consideration.

This latter case is explored in more detail in panels (c)-(d) for fixed ⟨n̂⟩ = 0.9 and
⟨n̂⟩ = 1.1 respectively, in parallel with the calculation of ∆N . Here, we notice that the
impurity-bath correlation function, after a first flattening with decreasing J/U , lowers
again towards increasingly negative values below the hopping threshold 2 d J/U ≈ 0.2.
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Figure 4.9: Impurity-bath density correlation function gIB(k = 0; r) calculated at constant chemical potential [first row] and
by fixing the lattice filling of the BH bath [second row] for different values of 2 d J/U in the strongly-correlated regime. The
lattice distance r has been taken along the x-directed links of a 2D square lattice.

Clearly, this energy scale marks the point where Mott physics have a prominent role
on quantum correlations and the onset of the HCSF regime. Reducing further the
hopping energy J/U , the antibunching of gIB(k = 0; r) becomes larger and larger, and
is eventually expected to diverge in the exact hard-core limit J/U → 0. At the same time,
we observe that the impurity-bath correlation length increases accordingly, compatibly
with the result that the polaron cloud starts accommodating a macroscopic number
of bath particles ∆N , see again panel (b) of Figure 4.7. Nonetheless, we notice that
the increasing negativity of gIB(k = 0; r) for ⟨n̂⟩ = 1.1 contrasts with the diverging,
positive value of ∆N for the same density: in fact, the latter result could be also
understood in terms of the onset of an effective attractive coupling between the impurity
and the bath components, which would lead in principle to gIB(k = 0; r) > 0 (bunching
effect). We believe that this discrepancy is due to the truncation of result (4.50) to lowest
order in the bare coupling U12 and that the inclusion of all the second-order terms
would correctly account for the attractive effect of quantum fluctuations embodied by
∆N .

For the sake of clarity, we conclude our discussion by underscoring that the previous
results should not be read as a faithful description of the polaron in the HCSF regime,
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as the breakdown of the quasiparticle picture in that limit is a good indication of the
fact that richer physics could emerge from more refined theoretical methods or, staying
on simpler grounds, even from a resummation of the self-energy diagrams. On the
other hand, the singular behaviours of ∆N(k) and gIB(k; 0) can still be seen as indices
of structural changes in the excitation spectrum of the bath.

4.7 Future developments

By blending standard diagrammatic techniques with the QGA theory, we have presented
a beyond-Fröhlich study of the physics of a mobile impurity embedded in a BH bath
throughout the entire phase diagram of the system. Crucially, we have shown how the
different universality classes of the MI-to-SF phase transition are strongly reflected in
the properties of the polaron via the cloud of collective modes that dress the impurity.
This finding highlights the experimental potential of polarons as versatile probes of
quantum correlations of a many-body environment. Moreover, we have provided both
quantitative and qualitative predictions about the behaviour of numerous observables
of utmost experimental interest, such as the number of bath particles composing
the polaron cloud and impurity-bath correlations. Among the notable results of our
analysis, we have shown that a clear-cut instance of orthogonality catastrophe occurs
in the strongly-interacting superfluid regime of the bath, reflecting its behaviour as a
highly compressible, effectively free Bose gas of quasiparticles. Importantly, within our
perturbative treatment the bosonic lattice polaron remains a well-defined quasiparticle
outside of this limit, which does not prohibit its experimental detection over large
portions of the quantum critical regime. Geneally speaking, our results demonstrate
how the richer phase diagram resulting from confining a many-body environment to a
lattice can fundamentally alter the quasiparticle properties of polarons.

The success of the approach implemented in this work raises exciting prospects
in view of investigating impurity physics on lattice systems of interest within the
larger context of quantum simulation [132, 199]. Furthermore, the fine modelling
of the impurity-bath interaction offered by the QGA could motivate the opening of
novel research lines in the relatively young field of lattice polarons [214, 255–263],
concerning in particular the study of bath-mediated interactions [264, 265] and few-
body correlations [266] within the broader framework of polaronic matter physics [200,
267–270].

From a broader perspective, the many conceptual links between the polaron physics
and the open dynamics of a static impurity offered by our methodology allow us to
envision a unified picture of quantum impurities in strongly-correlated lattice models.
In particular, we have realised that the idea of “observing the drop for probing the ocean”
is particularly suited to get accurate information on static and dynamical fluctuations
across distinct quantum critical regimes. In this respect, the representative examples
analysed in this Thesis are those cases in which the environment excitations soften in
the channel coupling with the impurity as a pure consequence of strong interactions
in the presence of a lattice. This manifests in a number of interconnected phenomena,
ranging from perfect Markovian decoherence to a breakdown of the quasiparticle
description, which could tie in with a dynamical instability of the system and be the
source of exciting new physical situations.
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This Chapter is based on a synopsis of the following work under development.

▶ Fabio Caleffi, and M. Capone, Slave boson fluctuations and collective modes from a
quantum Gutzwiller ansatz, In preparation (2022)

5.1 New handles for a time-honoured problem

Alongside the scientific effort of understanding the essence of the low-energy physics
of superfluids and purely bosonic systems in general, the long-standing exploration
of collective excitations in correlated electron systems finds it roots in the seminal
works of Hubbard [271, 272], Landau [273], and Pines [274–276]. In his study on the
celebrated model taking his name [271, 272], Hubbard identified the origin of the
so-called Hubbard bands, describing quite universally the high-energy spectrum of
strongly-interacting electrons, however without clarifying how delocalisation turns
the Mott state into a stable coherent phase with a well-defined Fermi surface. On
the other hand, starting from the reasonable assumption that weakly-interacting
electrons form a gas of quasiparticles with renormalised properties adiabatically
connected to the non-interacting system, Landau’s theory of the Fermi liquid [29,
273, 277] has proved successful to model the opposite limit of a robust metallic state
where electron interactions are regarded as a perturbation. Precisely within Landau’s
phenomenological framework, it was first shown by Pines and Bohm [274–276] that
collective excitations arising from dynamical fluctuations of the ground state are
signalled in the spectrum of response functions by a discrete number of peaks with
non-trivial dispersive trends depending on the nature of the phase under analysis.

Not differently from the still hazy relationship between Mottness and the structure
of quantum correlations in the strongly-interacting superfluid phases of BH models,
bridging between the Fermi liquid behaviour and Mott localisation remains a hard
problem for condensed matter physicists, as it usually requires expensive numerical
resources to be deeply investigated. Despite extremely valuable results have been
obtained thorough powerful techniques as DMFT [278] and the various implementations
of the QMC method, these approaches are either intrinsically affected by finite-
size effects [279] or neglect the possibly crucial role of non-local correlations. These
limitations become significant drawbacks especially in the presence of a finite doping,
where the formation of incommensurate magnetic phases and unconventional metallic
states [280–284], competing with and/or favouring the onset of high-temperature
superconductivity [285–287], makes the role of non-local effects and collective dynamics
even more substantial.

The purpose of this Chapter is to extend the QGA treatment of collective modes
employed in the previous Chapters in the context of BH models to the Fermi-Hubbard
system at equilibrium. Although the building blocks of the fermionic QGA theory are
expected to strongly resemble the Kotliar-Ruckenstein representation of SB fluctua-
tions [288–290], our approach provides a particularly insightful and flexible route to
the bosonic elementary excitations of the system and their physical interpretation, as
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well as to those quantum correlations (including non-local fluctuations) determined
from collective effects. Establishing an elegant connection with the spectral properties
of a bosonic optical lattice, the QGA scheme will be shown to reconcile the Fermi liquid
physics in the weakly-interacting regime with the development of strong correlations
in striking agreement with DMFT, tracking how the Mott transition occurs at the
level of both static and dynamical fluctuations. Our calculations will be carried out
in the paramagnetic phase in the absence of symmetry breaking: whereas neglecting
magnetic and charge ordering seems to constrain the range of validity of our results,
we recall here that incommensurate instabilities are always found to be suppressed
for temperatures of the same order of the bare hopping energy. Also, we clarify that,
in light of the enormous theoretical and experimental progress made in recent years
in the understanding of Hubbard physics (not limited to real materials), the main
purpose of our study is to illustrate a simple yet effective description of the physics of
collective modes in order to expose their non-obvious interplay in giving superficially
well-understood physics.

5.2 A quantum Gutzwiller theory for fermions

5.2.1 The fermionic Gutzwiller approximation in a nutshell

The introduction of the Gutzwiller ansatz as a variational wave function designed for
interacting fermions, as well as the evaluation scheme of approximate expectation values
based on it – the so-called Gutzwiller Approximation (GA) –, dates back originally to the
seminal works of M. Gutzwiller [7, 8], after which a sizeable number of papers has been
devoted to the in-depth study of the working principles of the approximation [291–293]
and its wide range of applications, see in particular [12, 294–298] as a non-exhaustive
list of works. In this Subsection, we follow [13, 299, 300] in order to illustrate the
fundamentals of the GA mean-field theory.

The time-dependent Gutzwiller wave function, defined as [299, 301]

|ΨG(t)⟩ =
⊗

i
P̂ (i, t) |Ψ0(t)⟩ , (5.1)

is a site-factorised ansatz resulting from the application of the local projector P̂ (i, t),
acting in the local Hilbert space of the system and depending on time-dependent
variational parameters, onto a suitable Slater determinant |Ψ0(t)⟩. For the sake of
simplicity, in the following we will not consider symmetry-broken states |Ψ0(t)⟩,
e.g. BCS-like wave functions, or operators P̂ (i, t) that violate either charge or spin
conservation, although the extension to those cases follows a similar, yet more complex
derivation [13, 293, 302, 303]. The most general projector P̂ (i, t) can be written as [299,
300, 304]

P̂ (i, t) ≡
∑
a,b

cab(i, t) |a, i⟩ ⟨b, i| , (5.2)

where a, b label the local Fock states built through the annihilation (creation) fermionic
operators ĉi,a(ĉ†

i,a), with a indicating both spin and orbital indices. The application
of P̂ (i, t) on |Ψ0(t)⟩ can be expressed in terms of the uncorrelated local probability
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distribution as
P 0

ab(i, t) ≡ ⟨a, i| Ψ0(t)⟩ ⟨Ψ0(t)| b, i⟩ , (5.3)

so that, for any expectation value ⟨ΨG(t)| Ô
[
ĉi,σ, ĉ

†
i,σ

]
|ΨG(t)⟩ of the operator Ô, the

result depends on the Gutzwiller variational matrix

P̂G(i, t) ≡ ĉ(i, t)
√
P̂ 0(i, t) . (5.4)

Specifically, the GA consists in requiring that expectation values of both local and
non-local operators are reproduced exactly in the limit of infinite dimensions d → ∞.
This match is made possible by imposing the following constraints on P̂G(i, t) at any
time [292, 299],

Tr
[
P̂ †

G(i, t) P̂G(i, t)
]

= 1 , (5.5a)

Tr
[
P̂ †

G(i, t) P̂G(i, t) ĉ†
i,a ĉi,b

]
= ⟨Ψ0(t)| ĉ†

i,a ĉi,b |Ψ0(t)⟩

≡ n0
ab(i, t) ,

(5.5b)

where the fermionic operators in the trace argument must be regarded in their matrix rep-
resentation with respect to the local Fock basis in Eq. (5.2). The second constraint (5.5b)
serves as a gauge-fixing condition for the Gutzwiller parameters cab(i, t) in order that
expectation values derived by the GA correctly retrieve the same physical content of
|Ψ0(t)⟩ for a non-interacting system, in close analogy with rotationally-invariant SB
theories (RISB) [305, 306].

A second important actor of the GA is the wave function renormalisation matrix
ψij(i, t), implicitly defined by the following set of equations:

⟨ΨG(t)| ĉi,a |ΨG(t)⟩ = ⟨Ψ0(t)| P̂ †(i, t) ĉi,a P̂ (i, t) |Ψ0(t)⟩

≡
∑

b

ψab(i, t) ⟨Ψ0(t)| ĉi,b |Ψ0(t)⟩ . (5.6)

Clearly, ψab(i, t) allows to rewrite the action of the annihilation operator ĉi,a on the
Gutzwiller wave function as a proper translation of the application of the same operator
on the uncorrelated state |Ψ0(t)⟩. Under the general assumption that the operators ĉi,a
act on the natural orbitals a that diagonalise the one-body density matrix of the system,
one can readily show that, as a consequence of the constraints (5.5), ψab(i, t) acquires
the simple expression [299, 300]

ψab(i, t) =
Tr
[
P̂ †

G(i, t) ĉi,a P̂G(i, t) ĉ†
i,b

]
√
n0

b(i, t)
[
1 − n0

b(i, t)
] , (5.7)

where, according to Eq. (5.5b), n0
b(i, t) is the local occupation of the orbital b. In the

next Sections, we will show that the renormalisation matrix ψab(i, t), being related to
the expectation value of hopping-type operators, has a crucial role in determining the
coherence properties of the model under study.
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5.2.2 Gutzwiller picture of the normal-phase Hubbard model

Let us put in action the GA toolkit and consider the case of the repulsive Fermi-Hubbard
(FH) model in its paramagnetic sector. The Hubbard Hamiltonian reads

Ĥ = −t
∑

σ

∑
⟨i,j⟩

(
ĉ†

i,σ ĉj,σ + H.c.
)

+ U
∑

i

n̂i,↑ n̂i,↓ − µ
∑

i

n̂i , (5.8)

where t is the hopping energy, U the on-site interaction between different spin species
σ and µ the chemical potential, while ⟨i, j⟩ labels all the pairs of nearest-neighboring
sites and n̂i,σ = ĉ†

i,σ ĉi,σ is the local density operator for the spin species σ. For later
purposes, we notice that the one-band Hamiltonian (5.8) is invariant under U(2) = U(1)
× SU(2) gauge transformations of the fermionic operators.

The local basis of the model consists of four states, which we choose to be, in order,
the empty configuration |0⟩, the singly-occupied spin states |↑⟩, |↓⟩ and the double occu-
pation state |2⟩. Accordingly, the most general charge and spin-conserving Gutzwiller
matrix has the diagonal representation

[
P̂G(i, t)

]
ab

= Ca(i, t) δab, where the spin is
solely projected along the z direction for simplicity, although a fully SU(2)-invariant
formulation poses no conceptual difficulties [307]. Indeed, full spin-rotation invariance
and the inclusion of both longitudinal and transverse spin fluctuations become impor-
tant in the presence of either magnetic ordering or inhomogeneous configurations [307],
whose study goes beyond the scope of this work. The requirement (5.5a) acts as a
normalisation condition for the Gutzwiller parameters,∑

a

|Ca(i, t)|2 = 1 . (5.9)

The simple structure of P̂G(i, t) leads to a substantial simplification in the structure
of the renormalisation matrix, which is diagonal with respect to the spin index and
reads [65]

ψσ(i, t) = Nσ(i, t)
[
C∗

0 (i, t)Cσ(i, t) + C∗
−σ(i, t)C2(i, t)

]
, (5.10)

where we have used the general expression (5.7) and defined

Nσ(i, t) ≡ 1√
n0

σ(i, t) [1 − n0
σ(i, t)]

, (5.11)

with the spin-resolved local density is consistently expressed in terms of the Gutzwiller
parameters as n0

σ(i, t) = |Cσ(i, t)|2 + |C2(i, t)|2 in accordance with Eq. (5.5b).
Since the constraints (5.5) can be proven to hold during the whole stationary

dynamics of the system once fixed at t = 0 [65, 300], we can reformulate the Fermi-
Hubbard problem in terms of a time-local Gutzwiller energy functional

E(t) ≡ ⟨ΨG(t)| Ĥ |ΨG(t)⟩ = ET (t) + Eloc(t) , (5.12)
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where we isolate a kinetic part

ET (t) ≡ −t
∑

σ

∑
⟨i,j⟩

[
⟨ΨG(t)| ĉ†

i,σ ĉ
†
j,σ |ΨG(t)⟩ + H.c.

]
= ⟨Ψ0(t)| ĤT (t) |Ψ0(t)⟩

(5.13)
and the energy contribution due to the on-site terms Ĥloc of the Hamiltonian (5.8),

Eloc(t) ≡
∑

i

Tr
[
P̂ †

G(i, t) Ĥloc(i) P̂G(i, t)
]

(5.14)

= U
∑

i

|C2(i, t)|2 − µ
∑

i

[
|C↑(i, t)|2 + |C↓(i, t)|2 + 2 |C2(i, t)|2

]
.

The operator

ĤT (t) ≡ −t
∑

σ

∑
⟨i,j⟩

[
ψ∗

σ(i, t)ψσ(j, t) ĉ†
i,σ ĉj,σ + H.c.

]
(5.15)

can be viewed as the Hamiltonian of the low-energy quasiparticles building the
uncorrelated state |Ψ0(t)⟩. It is now straightforward to introduce a Lagrangian functional
of the Gutzwiller DoF [13, 308] supplemented by the constraints (5.5), namely

L[C,C∗, |Ψ0⟩] ≡ ⟨ΨG| i ∂t − Ĥ |ΨG⟩

= i

2

∑
i

Tr
[
P̂ †

G(i, t) ∂tP̂G(i, t)
]

+ ⟨Ψ0(t)| Ψ̇0(t)
〉

− c.c.

− E(t)

+
∑

i

Λi
{

Tr
[
P̂ †

G(i, t) P̂G(i, t)
]

− 1
}

(5.16)

+
∑

σ

∑
i

mi,σ
{

Tr
[
P̂ †

G(i, t) P̂G(i, t) ĉ†
i,σ ĉi,σ

]
− ⟨Ψ0(t)| ĉ†

i,σ ĉi,σ |Ψ0(t)⟩
}

= i

2

∑
i,a

C∗
a(i)Ċa(i) + ⟨Ψ0(t)| Ψ̇0(t)

〉
− c.c.

− E(t) +
∑

i

Λi

∑
a

|Ca(i, t)|2 − 1


+
∑

σ

∑
i

mi,σ
[
|Cσ(i, t)|2 + |C2(i, t)|2 − ⟨Ψ0(t)| ĉ†

i,σ ĉi,σ |Ψ0(t)⟩
]
,

where the Lagrange multipliers Λi and mi,σ enforce the normalisation condition (5.5a)
and the gauge-fixing identities (5.5b), respectively. Within the Lagrangian picture (5.16),
the conjugate momenta of the Gutzwiller parameters Ca(i, t) are easily identified again
with their complex conjugatesC∗

a(i, t) = ∂L/∂Ċa(i, t). The corresponding saddle-point
equations,

i ∂tCa(i, t) = ∂E(t)
∂C∗

a(i, t) −
[
Λi + (δa,σ + δa,2)mi,σ

]
Ca(i, t) (5.17a)

i ∂t |Ψ0(t)⟩ = ĤT (t) |Ψ0(t)⟩ +
∑

σ

∑
i

mi,σ ĉ
†
i,σ ĉi,σ , (5.17b)

are a paradigmatic instance of the fermionic TDGE, which have been extensively
applied to a broad range of dynamical problems, from quantum quenches [296, 309]
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to transport phenomena [310]. We point out that, within the above GA scheme, the
variational parameters Ca(i, t) possess their own dynamics because of their one-to-one
correspondence with the conjugate fields C∗

a(i, t). This makes a crucial difference
with respect to previous time-dependent methods [301, 307, 311], where the dynamics
of Ca(i, t) is driven only by the evolution of the quasiparticle state |Ψ0⟩, and is of
great importance to the formal introduction of quantum fluctuations discussed in this
work.

We notice also that, whereas the Hubbard-U interaction is quartic in the fermionic
operators, the situation is reversed in the Lagrangian functional (5.16), where the
hopping part ET (t) acts instead as an effective interaction term. Nevertheless, as a
consequence of the constraints (5.5b) in common with SB approaches, the GA does not
entail a perturbative description of the weakly-interacting limit U/t ≪ 1; actually, in
Section 5.5 we will show that the predictions of our theory of Gaussian fluctuations
match exactly with both the non-interacting limit U/t → 0 and the deep MI regime
U/t → ∞ in a non-obvious way.

As a first step towards the development of the fermionic QGA framework, in the
following Subsection we will briefly review the stationary solution of Eqs. (5.17) for the
ground state of (5.8) in its normal phase.

5.2.3 Saddle-point stationary solution of the TDGE

The GA ground state of the paramagnetic Hubbard model is readily found by searching
for the lowest-energy stationary solution of Eq. (5.17a). Explicitly, assuming Ca(i, t) =
C0

a exp (−i ω t) withC0
a being site-independent for each flavour a, Eq. (5.17a) translates

into a set of four coupled equations in the form of a non-linear eigenvalue problem,∑
b

H
(0)
ab [C,C∗]Cb = ΛCa , (5.18)

to be self-consistently solved such that the constraints (5.5b) are always fulfilled [65]. In
more detail, the mean-field Hamiltonian matrix of the Gutzwiller parameters reads

H
(0)
ab [C,C∗] = [U δa,2 − (µ+m) (δa,↑ + δa,↓ + 2 δa,2)] δa,b − z T (m)

∑
σ

∂ |ψσ|2

∂C∗
a

(5.19)
where the spin index ofmσ can be dropped by paramagnetic symmetry. The calculation
of the hopping part of the mean-field Gutzwiller Hamiltonian Ĥ(0)[C,C∗] requires a
careful evaluation of the renormalisation matrix derivatives ∂ |ψσ|2 /∂C∗

a starting from
the general formula (5.7). Following the derivation of [65], we have

∂ψij(i)
∂C∗

a(i) = ∂Rij(i)
∂C∗

a(i)Nj(i) +
∑

l

Ril(i)Nl(i)Mlj(i)∂Slj(i)
∂C∗

a(i) , (5.20)

where we have defined

Rij(i) ≡ Tr
[
P̂ †

G(i) ĉi,i P̂G(i) ĉ†
i,j

]
, (5.21a)
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Mij(i) ≡ 1
2

[Ni(i)Nj(i)]2

Ni(i) +Nj(i)
[
1 − n0

i (i) − n0
j (i)

]
, (5.21b)

Sij(i) ≡ Tr
{
P̂ †

G(i) P̂G(i)
[
ĉi,i, ĉ

†
i,j

]}
. (5.21c)

Thus, when applied to the paramagnetic state, Eq. (5.20) leads to

∂ |ψσ|2

∂C∗
a

= 2Mσ |ψσ|2 daCa +Nσ [ψ∗
σ (Cσ δa,0 + C2 δa,−σ) + ψσ (C0 δa,σ + C−σ δa,2)] ,

(5.22)
where da ≡ δa,0 +δa,−σ −δa,σ −δa,2. The factor T (m) ≡ t ⟨Ψ0| ĉ†

i,σ ĉi+ex,σ |Ψ0⟩ descends
from the expectation value of the renormalised hopping operator ĤT (t) over |Ψ0(t)⟩.
According to Eqs. (5.15) and (5.17b), the uncorrelated state |Ψ0(t)⟩ describes a Fermi sea
formed by quasiparticles with an effective hopping teff = t |ψ|2 and energy dispersion
Ek = −2 teff

∑d
i=1 cos (ki) + m. Ergo, the quantity −T plays the role of effective

hopping energy for the Gutzwiller coordinates Ca(i) as a mean-field effect of the
fermionic subsystem.

As an illustrative example, we consider the half-filling case µ = U/2 at zero
temperature, which admits a clean analytical solution. In this case, m = 0 and

−T ≡ −t ⟨Ψ0| ĉ†
i,σ ĉi+ex,σ |Ψ0⟩ = 1

(2π)d z

∫
ddk θ(−Ek) εk = − 1

4 d

( 4
π

)d

t , (5.23)

where εk = −2 t
∑d

i=1 cos (ki) is the free-particle energy dispersion and the MI limit
ψσ → 0 has been taken after performing the momentum summation. Indeed, this
operation is well justified, since such a limit has the simple effect of shrinking the
spectral density of quasiparticles to a delta peak around the chemical potential with
infinitesimal support 1 – see Subsection 5.5.1. Correspondingly, the eigenproblem (5.18)
simplifies into

0 −2 z T −2 z T 0
−2 z T −U/2 0 −2 z T
−2 z T 0 −U/2 −2 z T

0 −2 z T −2 z T 0



C0
C↑
C↓
C2

 = ω


C0
C↑
C↓
C2

 . (5.24)

The lowest-energy eigenvalue of Eq. (5.24) has the simple expression

ω0 = −U

4

1 +

√
1 +

(16 z T ψ0
U

)2
 , (5.25)

where the mean-field quasiparticle weight ψ0 is spin-independent,

ψ0 =

√
1 −

(
U

Uc

)2
, (5.26)

1 Moreover, in Section 5.3 we will show that the effective hopping energy of the fermionic DoF does
not vanish due to their coupling with doublon-holon excitations of the MI, where strictly speaking
low-energy quasiparticles are replaced by spinons, which in turn are not expected contribute to the
one-particle coherence.
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Hamiltonian
of the QGA

bosonic
modes

and vanishes at the critical interaction Uc = 16 z T : this is the well-known critical point
of the Brinkman-Rice (BR) description of the Metal-Mott Transition (MIT) within the
GA [312]. The ground state Gutzwiller parameters are

(C0, C↑, C↓, C2) =
(

sin θ2 , cos θ2 , cos θ2 , sin
θ

2

)
, (5.27)

where θ ≡ arccos(U/Uc). While in the non-interacting limit all local configurations are
equally explored C0 = Cσ, C2 = 1/2 as expected, at the BR transition the GA predicts
perfect unit filling with C0 = C2 = 0 and C0 = C2 = 1/

√
2. Thus, the Gutzwiller

mean-field solution provides a trivial, site-localised depiction of the MI phase.
The full phase diagram of the paramagnetic sector of the system is shown in panel

(a) of Figure 5.1. For later convenience, the µ−U projection of the phase space has been
chosen in order to emphasise better the lobe-shaped region occupied by the MI state
[purple area] and how it connects to the metallic phase out of PHS [black solid line].
From an experimental point of view, the chemical potential µ is hardly tunable, while
doping the system is the most doable option. The situation is however reversed in our
theoretical study, as fixing the density partially hides the physics of collective modes
that we will discuss in the following.

5.2.4 Theory of the bosonic quantum fluctuations

In order to go beyond the GA saddle-point solution reviewed in the previous Subsections,
we can adopt a similar strategy as in Chapter 1 and build a simple quantum theory of
the bosonic DoF of the Gutzwiller ansatz. Once again, this corresponds to promoting
the dynamical variables Ca(i) and their conjugate momenta C∗

a(i) to quantum bosonic
fields and imposing equal-time commutation relations between them,[

Ĉa(i), Ĉ†
b (j)

]
= δi,j δa,b . (5.28)

As regards instead the fate of the quasiparticle state |Ψ0⟩, for the time being we neglect
those fluctuations arising from the interaction between the fermionic excitations and
the bosonic DoF Ĉa(i), the discussion of which is postponed to Section 5.3. Before
proceeding, we remark that, although the QGA workflow that we apply here has strong
similarities with the study of Gaussian fluctuations around SB mean-field theories,
it has the crucial advantage of providing a more transparent view on the collective
modes of the system, how they affect different observables and, ultimately, how they
relate to the properties of low-energy quasiparticles.

Retaining only a mean-field description of the quasiparticle Fermi sea |Ψ0⟩, the
Hamiltonian of the Gutzwiller fields Ĉa(i) is readily found to be

ĤB ≡ − T
∑

σ

∑
⟨i,j⟩

[
ψ̂†

σ(i) ψ̂σ(j) + H.c.
]

+ U
∑

i

Ĉ†
2(i) Ĉ2(i)

− (µ+m)
∑

i

[
Ĉ†

↑(i) Ĉ↑(i) + Ĉ†
↓(i) Ĉ↓(i) + 2 Ĉ†

2(i) Ĉ2(i)
]
,

(5.29)

where ψ̂σ(i) is the quantised counterpart of the renormalisation matrix (5.10) and the
physical significance of the quasiparticle hopping energy −T is now evident. It is worth
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observing that the quantum Gutzwiller Hamiltonian (5.29) strongly resembles the
Z2-symmetric binary BH model examined in Chapter 2, restricted to the hard-core
limit so as to mimic the Pauli blockade for particles having the same spin and with
the interspecies interaction mapping to U . In next Sections, we will show that the link
between the two models, far from being a mere artefact of the QGA, sheds a novel light
on the physical meaning of the collective modes of the FH system. Moreover, quantum
correlations that are known to develop in one model will serve as terms of comparison
for physical expectations in the other.

Considering the usual QGA partitioning of the bosonic operators,

Ĉa(i) = Â(i)C0
a + δĈa(i) , (5.30)

and assuming that the Hamiltonian (5.29) refers to a homogeneous system, it is
convenient to work in momentum space by writing

δĈa(j) ≡ 1√
V

∑
k∈BZ

eik·j δγ̂a(k) . (5.31)

where V is the lattice volume. Inserting Eq. (5.31) in ĤB and expanding the operators
up to quadratic order in the fluctuations, we obtain

Ĥ
(2)
B = E0 + 1

2

∑
k

[
δγ̂†(k),−δγ̂(−k)

]
L̂k

[
δγ̂(k)
δγ̂†(−k)

]
, (5.32)

where E0 coincides with the mean-field variational energy of the ground state (apart
from a constant shift). The calculation of the 4 × 4 blocks of the pseudo-Hermitian
matrix L̂k is provided by second-order derivatives of the energy functional (5.12)
with respect to the Gutzwiller parameters. Specifically, using the same notation as in
Chapter 1, we have

(Hk)ab ≡ [−ω0 − (µ+m) (δa,↑ + δa,↓) + U δa,2] δa,b

− z T ψ0
∑

σ

[(
∂2ψσ

∂C∗
a ∂Cb

)
0

+
(

∂2ψ∗
σ

∂C∗
a ∂Cb

)
0

]

− Tk

∑
σ

[(
∂ψ∗

σ

∂C∗
a

)
0

(
∂ψσ

∂Cb

)
0

+
(
∂ψ∗

σ

∂Cb

)
0

(
∂ψσ

∂C∗
a

)
0

]
,

(5.33a)

(Kk)ab ≡ − z T ψ0
∑

σ

[(
∂2ψσ

∂C∗
a ∂C

∗
b

)
0

+
(

∂2ψ∗
σ

∂C∗
a ∂C

∗
b

)
0

]

− Tk

∑
σ

[(
∂ψ∗

σ

∂C∗
a

)
0

(
∂ψσ

∂C∗
b

)
0

+ (a ↔ b)
]
,

(5.33b)

where the subscript 0 refers to the equilibrium value and Tk = (T/t) εk is the effective
free dispersion of the bosonic DoF. We highlight once more that the ground state energy
ω0, set by the saddle-point evolution of the Gutzwiller parameters C0

a , appears in the
diagonal elements of (1.12a) as a consequence of the normalisation operator Â(i) and,
shifting the diagonal elements of L̂k, assures a gapless spectrum for density and spin
excitations in the metallic phase. While the first-order derivatives of the renormalisation
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factor ψσ can be straightforwardly deduced from a generalisation of Eq. (5.20), the
calculation of the second-order derivatives in Eqs. (5.33) requires further analytical
manipulations [65], with the results(

∂ψij

∂C∗
a ∂Cb

)
0

(5.34a)

= ∂2Rij

∂C∗
a ∂Cb

Nj +
∑

l

(
Ril Mlj

∂2Slj

∂C∗
a ∂Cb

+ ∂Ril

∂C∗
a

Mlj
∂Slj

∂Cb
+ ∂Ril

∂Cb
Mlj

∂Slj

∂C∗
a

+Ril Elj

)
,

(
∂ψij

∂C∗
a ∂C

∗
b

)
0

=
∑

l

(
∂Ril

∂C∗
a

Mlj
∂Slj

∂C∗
b

+ ∂Ril

∂C∗
b

Mlj
∂Slj

∂C∗
a

+Ril Flj

)
, (5.34b)

where we have defined

Eij ≡ (NiNj)2

Ni +Nj

∑
l

[
∂Sil

∂C∗
a

∂Slj

∂Cb
+ (a ↔ b)∗

](1
4 +Mil Slj

NiNj +NiNl +Nj Nl

(NiNl Nj)2

)
,

(5.35a)

Fij ≡ (NiNj)2

Ni +Nj

∑
l

[
∂Sil

∂C∗
a

∂Slj

∂C∗
b

+ (a ↔ b)
](

1
4 +Mil Slj

NiNj +NiNl +Nj Nl

(NiNl Nj)2

)
,

(5.35b)
with substantial simplifications in the present case.

As in the case of the BH model, the diagonalisation of the Hamiltonian of Gaussian
bosonic fluctuations can be achieved by a suitable Bogoliubov rotation of the Gutzwiller
operators,

δγ̂c(k) =
∑

α

uα,k,c b̂α,k +
∑

α

v∗
α,−k,c b̂

†
α,−k , (5.36)

recasting the quadratic form (5.32) into the diagonal expression

Ĥ
(2)
B = E0 +

∑
α

∑
k
ωα,k b̂

†
α,kb̂α,k , (5.37)

which provides a quadratic model for the bosonic excitations of the system under a
mean-field decoupling the interaction with the fermionic quasiparticles.

In the same way as the Hamiltonian of the bosonic DoF ĤB has been constructed,
we can employ a similar quantisation strategy to improve the calculation of arbitrary
expectation values by the inclusion of operator-valued quantum fluctuations. In more
detail, the calculation of the expectation value of a generic observable

〈
Ô
[
ĉi,σ, ĉ

†
i,σ

]〉
overlaps significantly with the bosonic QGA protocol, except for the first step concerning
the conversion of an observable into the Gutzwiller DoF. In particular:

▶ if the observable is a one-particle correlator of the form Ô = ĉ†
i,σ(t) ĉj,σ(t′), one has

to take into account both the renormalisation fields ψσ(i, t) and the contribution
of the fermionic quasiparticles, in analogy with the calculation of the hopping
energy (5.13), hence O[Ca, C

∗
a ] = ψ∗

σ(i, t)ψσ(j, t′) ⟨Ψ0| ĉ†
i,σ(t) ĉj,σ(t′) |Ψ0⟩;

▶ for any other observable given by higher-order propagators such as charge or
spin correlations, only the expression of O[Ca, C

∗
a ] in terms of the Gutzwiller

parameters is needed, since Ô
[
ĉi,σ, ĉ

†
i,σ

]
can be always recast into the product of
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two-body local operators.
In Section 5.4, we apply the procedure outlined above to familiar quantities, such

as the Green’s function of the theory and equal-time correlations, as well as charge and
spin susceptibilities. Selected results for such quantities at zero temperature are then
presented extensively in Section 5.5.

As underlined in Chapter 1, the last step of the complete QGA evaluation protocol
outlined in Subsection 1.2.4 is at the roots of the most relevant feature of the QGA,
which is the introduction of non-trivial quantum correlations beyond the single-particle
sector of the collective modes. In fact, the order-by-order expansion of any operator in
terms of the quantum fluctuations δĈa(i) enables a systematic inclusion of multi-mode
vertices involving more than one excitation b̂α,k. Importantly, we find that two-mode
correlations are of key importance in controlling both local and non-local fluctuations,
also via the non-linearity introduced by the normalisation operator Â(i) in Eq. (5.30).
In this sense, the case of charge correlations offers an instructive example of the role
of non-quadratic fluctuations, see the derivation sketched in Subsection 5.4.2 and the
discussion of Subsection 5.5.2. Even more interestingly, our quantisation procedure
provides novel insights into the physical role of multi-mode correlations (and collective
effects in general) when the coupling between the bosonic modes and the fermionic
species is reintegrated into the theory. This crucial point is tackled in Section 5.3, where
we will discuss in detail how bosonic quantum fluctuations modify the attributes of
low-energy quasiparticles.

For the sake of clarity, we point out again that the inclusion of quadratic fluctuations
only does not produce any change in the phase diagram of the system, which retains
essentially its mean-field shape [see Figure 5.1(a)]. However, the addition of fluctuations
beyond second order in the δĈa’s appears as a well-posed problem and is supposed to
describe the back-action of fluctuations onto the stationary state: this would allow to
construct a fully self-consistent theory of quantum fluctuations with respect to the GA
constraints (5.5).

5.2.5 Bosonic excitation spectrum

Since the main focus of our study revolves around the properties of the collective
modes and how their spectral features mould quantum correlations, we dedicate this
Subsection to a preliminary discussion of the structure of the many-body excitation
spectrum of the normal-phase Hubbard model as determined by diagonalisation of
the bosonic Hamiltonian (5.37) in d = 2. As regards the metallic state, we report
the analytical expressions of the eigenenergies ωα,k for the half-filled lattice only, for
which we retrieve the findings of [65] complemented by some original observations.
As anticipated before, we notably find close analogies between the excitation spectrum
of fermionic collective excitations and the normal modes of the binary BH mixture
analysed in Chapter 2.

The metallic phase [panels (b)-(c) of Figure 5.1] is characterised by three different
excitation modes, two of which are acoustic excitations. One of the latter modes is the
so-called Landau’s zero sound [red solid lines] associated with density fluctuations
and displays the well-known dispersion relation predicted by Fermi liquid theory [29,
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Figure 5.1: (a) Phase diagram of the paramagnetic Hubbard model within Gutzwiller mean-field theory for d = 2. The
colour map refers to the value of the quasiparticle weight |ψ0|2, hence the MI lobe coincides with the dark purple region.
The white area corresponds to a completely filled lattice. Black solid line: points at PHS. Red solid line: phase diagram cut
at constant µ/t = 3 crossing the doping-driven MIT, taken as a reference for Figure 5.4-5.6. (b)-(c) Excitation spectrum
of the collective modes at half filling for U/t = 8 and U/t = 12.5 respectively, in the metallic phase. The MIT occurs at
U/t ≈ 12.97. Blue solid line: spin sound dispersion (5.39). Red solid line: Landau’s density mode (5.38). Green solid line:
Hubbard optical branch (5.40). (d) Energy spectrum of the MI at U/t = 18. Black solid line: dispersion relation of the
degenerate doublon-holon excitations in the PH-symmetric case. Pink solid (gray dashed) line: doublon (holon) excitation
branch for µ/t = 3, in absence of PHS.

Energy
spectrum of

the FH
collective

modes

301] at Particle-Hole Symmetry (PHS) [see the black solid line in Figure 5.1(a)],

ωd,k = Uc

4 (1 + u)
√
u (2 − u)︸ ︷︷ ︸√

z cd

√
1 − 16Tk/Uc , (5.38)

where we have introduced the rescaled interaction parameter u ≡ U/Uc. Formally
speaking, ωd,k can be interpreted as the Goldstone mode related to in-phase oscillations
of the quasiparticle weight spinor (ψ↑, ψ↓). It is worth highlighting that, in the PHS
case (5.38), the zero sound velocity cd increases monotonously with the interaction
u and reaches a finite value at the transition point u = 1 [see Figure 5.1(c)]; on the
contrary, cd converges to zero at any other point of the doping-driven MIT [see e.g. the
red solid line in Figure 5.1(a)].

The second acoustic mode of the metallic phase can be identified with longitudinal
spin fluctuations, as the corresponding eigenstates

(
us,k,a, vs,k,a

)
have non-zero com-

ponents in the single-spin sectors a =↑, ↓ only. Alongside density fluctuations, this
excitation is akin to the Goldstone mode associated with out-of-phase oscillations of
the quasiparticle weight spinor or, rephrased differently, the spontaneous breaking of
SU(2) invariance in the ground state of bosons. Differently from the Landau mode, the
bandwidth of the spin branch [blue solid lines]

ωs,k = Uc

4 (1 − u)
√
u (2 + u)

√
1 − 16Tk/Uc (5.39)

has a non-monotonic dependence with respect to u and always vanishes at the MIT,
compatibly the naive expectation that spin fluctuations in the paramagnetic MI have
zero energy cost due to the formation of local magnetic moments.

At half filling, a more clear-cut fingerprint of the MIT can be identified in the
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behaviour of the third excitation mode [green solid lines], having energy dispersion

ωh,k = Uc

2

√
1 − 16u2 Tk/Uc . (5.40)

This optical mode, which is generally deemed as the main responsible for the high-
energy features of the system [299, 313], is directly linked to the Hubbard-U interaction
and indeed acquires a non-zero bandwidth at finite u, while its excitation gap softens
when moving from weak to strong interactions. Upon approaching the MIT at PHS,
ωh,k becomes gapless and degenerate with the zero sound mode, suggesting that the
spectral weight of density excitations is progressively transferred to high-energy states.
In Figure 5.1(c) we observe that, for large enough U , the zero sound branch and the
Hubbard mode start becoming degenerate at large momenta and coincide exactly at
the critical point only. In Section 5.5.1, we are going to show that this gradual overlap
mechanism manifests explicitly in the structure of the different modal contributions to
the local DoS. In the most general case, upon reaching the MI boundary out of PHS,
ωh,k keeps a finite energy gap, such that the Hubbard mode (5.40) remains always
detached from the Landau branch (5.38).

As the system undergoes the MIT [panel (d) of Figure 5.1], the QGA theory provides
a more accurate representation of the spectral properties of the MI as compared to the
shallow picture of the BR mean-field theory. The zero sound and Hubbard modes are
replaced by the (gapped) doublon and holon excitation branches

ωMI
P/H,k = U

2

√
1 − 16Tk/U ±

(
U

2 − µ

)
(5.41)

with quadratic dispersion at low k and vanishing bandwidth with increasing U/t.
Under the PHS condition µ = U/2, the doublon-holon bands (5.41) are degenerate
[black solid line] and become both gapless at the MIT; on the contrary, in the non-
symmetric case [violet and gray lines] the lowest-lying excitation has either particle or
hole character depending on the chemical potential and is the only branch becoming
gapless at the MIT. Interestingly and not surprisingly, we observe that these behaviours
strongly remind of the structure of the incoherent excitations characterising the bosonic
MI phases explored in the previous Chapters.

5.3 Effective boson-mediated interaction between the

quasiparticles

Up to this point, we have looked into how our method captures the proper collective
excitations of the system by constructing the Hamiltonian (5.29) of the quantised
fluctuations δĈa(i), while low-energy quasiparticles have been decoupled from the
bosonic modes and averaged out over the mean-field state |Ψ0⟩. In other words, we
have drawn two independent portraits for the bosonic and fermionic excitations of the
system, taking into account only their mutual feedback at the mean-field level. Hence,
it is natural to wonder (i) what is the net effect of reintroducing the coupling between
the bosonic and fermionic components and (ii) how the correlations between the latter
are modified by their own collective behaviour. The idea of mapping the FH system
into an effective model for quasiparticles coupled to auxiliary quantised modes is not
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new [296, 314–317] and has been mainly explored in the case of slave spin theories.
However, in what follows we will propose a simple treatment of the coupling between
fermions and bosonic excitations whose advantage is to make the role of collective
modes in building the quasiparticle interaction vertices emerge more clearly.

We start our analysis by adopting a similar quantisation strategy as in Subsec-
tion 5.2.4 and, omitting the chemical potential term m

∑
σ,i ĉ

†
i,σ ĉi,σ, rewriting the

Hamiltonian of quasiparticles (5.15) as

ĤF ≡ −t
∑

σ

∑
⟨i,j⟩

[
ψ̂†

σ(i) ψ̂σ(j) ĉ†
i,σ ĉj,σ + H.c.

]
, (5.42)

which describes a two-point coupling between fermions and bosonic modes involved
in hopping processes. Thanks to the QGA technology developed so far, we are now
able to re-express such interactions in terms of the proper excitations of the system by
expanding the operator ψ̂σ(i) with respect to quantum fluctuations.

To lowest order, the pair-hopping Hamiltonian (5.42) turns into

H
(1)
F = −

∑
σ

∑
i

∑
j(i)

{
teff ĉ

†
i,σ ĉj,σ + t ψ0

[
δ1ψ̂

†
σ(i) + δ1ψ̂σ(j)

]
ĉ†

i,σ ĉj,σ
}
, (5.43)

where j(i) labels the z nearest-neighboring sites of i. In the expression above, the object
δ1ψ̂σ(i) is a spinful variant of the QGA Bose field, not dissimilar to the operator (2.61)
in the case of the binary BH model. More precisely, we have

δ1ψ̂σ(i) ≡ 1√
V

∑
α,k

[
Uσ

α,k e
i k·i b̂α,k +

(
V σ

α,k

)∗
e−i k·i b̂†

α,k

]
, (5.44)

where we have introduced the spin-resolved particle (hole) amplitudes Uσ
α,k

(
V σ

α,k

)
,

the properties of which will be further explored in Subsection 5.4.1. Inserting the
expression (5.44) of the operator δ1ψ̂σ(i) into Eq. (5.43), we obtain a linear coupling of
the fermionic fields with the bosonic modes, hence we can integrate out the latter so
as to obtain an effective dynamical interaction between the quasiparticles mediated
by the single-boson propagator D(1)

α (k, ω) = −iTt−t′

〈
b̂α,k(t) b̂†

α,k(t′)
〉

. If we neglect
retardation effects and take the static limit

D(1)
α (k, ω) = 1

ω − ωα,k
≃ − 1

ωα,k
, (5.45)

we obtain a time-local Hamiltonian equipped with a long-range interaction,

Ĥ
(1)
F ≈ ψ2

0

∑
σ

∑
k

εk ĉ
†
kσ ĉkσ − ψ2

0
2V

∑
σ,σ′

∑
α

∑
k,k′,q

1
ωα,q

×
[(
Uσ

α,q U
σ′
α,q + V σ

α,q V
σ′

α,q

) (
εk εk′−q + εk′ εk+q

)
+
(
Uσ

α,q V
σ′

α,q + V σ
α,q U

σ′
α,q

) (
εk εk′ + εk′−q εk+q

)]
× ĉ†

kσ ĉ
†
k′σ′ ĉk′−qσ′ ĉk+qσ ,

(5.46)

where the symbol of complex conjugation for the bosonic particle (hole) amplitudes
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Figure 5.2: (a)-(b) Hartree and Fock terms of Σ(1)
F (k, ω) respectively, generated by one-boson exchange processes. For the

sake of simplicity, we reported only the Fock diagram with counterpropagating quasiparticle and bosonic propagators. (c)
Next-order Hartree term contributing to Σ(1)

F (k, ω), accounting for the two-boson exchange interaction. The symbol • in
panels (a)-(b) corresponds to the one-boson interaction vertex B1(k,q) ≡ ψ0 (Uα,q εk+q + Vα,q εk), while the symbol ‚ in
panel (c) stand for the two-boson Hartree vertex B2(k,p,q) = Uα,p−q Vβ,p+q εk+p+q.

has been omitted, as the latter are always real quantities in the present setting.
Since we aim at estimating only the mean impact of the one-boson effective

interaction (5.46) on the properties of quasiparticles, we proceed heuristically by
calculating the Hartree-Fock approximation of the corresponding self-energy Σ(1)

F (k, ω),
for which we obtain

Σ(1)
F (k, ω) ≃ 4 z T ψ2

0

∑
α

(Uα,0 + Vα,0)2

ωα,0
εk︸ ︷︷ ︸

Hartree

(5.47)

+ ψ2
0
V

∑
α

∑
q

1
ωα,q

[
(Uα,q Uα,q + Vα,q Vα,q)

(
ε2

k + ε2
k+q

)
+2 (Uα,q Vα,q + Vα,q Uα,q) εk εk+q

]
F
(
Ek+q

)
,

where F (ω) is the Fermi-Dirac distribution. Remarkably, we find numerically that
the Hartree diagram of Σ(1)

F (k, ω) is always much larger than the exchange term
[Figure 5.2(a-b)], as a consequence of the fact that bosonic vertices of the form(
Uσ

α,q

)n (
V σ

α,q

)m
/ωα,q are always peaked around q = 0 for each mode α, especially

on the brink of the MIT. It follows that the coupling between quasiparticles and bosonic
modes induces, for the most part, a uniform effect on the quasiparticle correlations
within the simplifications made so far. Also, the static approximation of the propa-
gator D(1)

α (q, ω) turns out to be a negligible bias for our calculation, as including a
fully dynamical interaction contributes only a marginal modification to the exchange
diagram of Σ(1)

F (k, ω). Therefore, these observations allow for a good approximation
of the quasiparticle self-energy through its Hartree term only,

Σ(1)
F (k, ω) ≃ 4 z T ψ2

0

∑
α

(Uα,0 + Vα,0)2

ωα,0
εk , (5.48)

where the spin index has been dropped for simplicity. The semi-analytical result (5.48)
conveys a very intuitive physical interpretation of the effective interaction (5.46). In
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renormalisa-

tion from
bosonic

fluctuations

fact, noticing that Σ(1)
F (k, ω) ∝ εk, this is responsible for a positive shift of the hopping

energy,
∆t1
t

= 4 z T ψ2
0

∑
α

(Uα,0 + Vα,0)2

ωα,0
> 0 , (5.49)

via the Dyson equationω−(1+∆t1/t) εk ≡ G−1
0 (k, ω)−Σ(1)

F (k, ω) for the quasiparticle
Green’s function. Loosely speaking, expression (5.49) is a signature of the fact that
bosonic fluctuations tend to strengthen the coherence of the quasiparticles at lowest
order.

As a matter of fact, we realise however that the previous derivation is meaningful
in the metallic phase only, as the self-energy Σ(1)

F (k, ω) ∝ ψ2
0 vanishes identically

in the MI, thus masking the fate of the boson-fermion coupling beyond the MIT.
This shortcoming has to be attributed to the reduced order of quantum correlations
encompassed by the Hamiltonian (5.43). As pointed out in Section 5.4.2, the regime of
strong interactions requires to take a deeper look into multi-mode bosonic correlations,
which are expected to overcome the weight of linear-order fluctuations for sufficiently
strong U/t. Analogously, we have to expand the quasiparticle Hamiltonian (5.42) to the
next order for improving our description of the residual fermionic correlations across
the MI region. Indeed, a number of recent works [134, 318, 319] have proposed that
the paramagnetic MI can be understood as a quantum spin liquid where the hopping
of spinons (the leftover fermionic DOF) is crucially determined by their coupling
to doublon-holon pairs, namely two-particle excitations. In the following, we will
give substantial support to this speculation by means of our analysis of higher-order
collective fluctuations.

Going beyond the first-order interaction (5.43), the second-order expansion of the
operator ψ̂†

σ(i) ψ̂σ(j) enriches the quasiparticle Hamiltonian with two-boson coupling
terms via two different contributions. The first one is given by substituting both the
renormalisation fields in the product ψ̂†

σ(i) ψ̂σ(j) by their first-order expansions as
δ1ψ̂

†
σ(i) δ1ψ̂σ(j). Inserting the expression of δ1ψ̂σ(i) given by Eq. (5.44), we obtain the

result

Ĥ
(2)
F = Ĥ

(1)
F

+ 1
V

∑
σ

∑
α,β

∑
k,p,q

εk+q
[
Uσ

α,k U
σ
β,p b̂

†
α,k b̂β,p + Uσ

α,k V
σ

β,pb̂
†
α,k b̂

†
β,−p (5.50)

+V σ
α,k U

σ
β,p b̂α,−k b̂β,p + V σ

α,k V
σ

β,p b̂α,−k b̂
†
β,−p

]
ĉ†

q,σ ĉk−p+q,σ .

The other contribution comes from expanding each operator ψ̂σ(i) up to quadratic
products of the fluctuations δĈ†

a(i) δĈb(i), resulting in

Ĥ
(2)
F ≡ −t ψ0

∑
σ

∑
⟨i,j⟩

{[
δ2ψ̂

†
σ(i) + δ2ψ̂σ(j)

]
ĉ†

i,σ ĉj,σ + H.c.
}
, (5.51)

where the notation δ2ψ̂σ(i) indicates the second-order expansion of ψ̂σ(i). Although
the right-hand side of Eq. (5.51) is of the same order of Eq. (5.50), we always find
that the expectation values comprising the operator δ2ψ̂σ(i) are appreciable only in
the strongly-interacting metallic phase and, however, negligible relative to averages
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incorporating the first-order expansion δ1ψ̂σ(i) [131]. Therefore, being the operator (5.51)
also proportional to the square root of the quasiparticle weight ψ0 – which is rather
small or zero for strong enough interactions –, we neglect its effect on the effective
boson-quasiparticle interaction.

Now, the integration of bosons in (5.50) yields two distinct terms. The lowest-order
one is simply given by the mean-field decoupling of the right-hand side of Ĥ(2)

F with
respect to the bosonic ground state and reads

Ĥ
(2,1)
F = 1

V

∑
σ

∑
α

∑
k,q

∣∣∣V σ
α,q

∣∣∣2 εk+q ĉ
†
k,σ ĉk,σ , (5.52)

at zero temperature. Using the fact that V σ
α,k is always an even function of k, it is

straightforward to verify that Ĥ(2,1)
F yields an additional positive shift of the hopping

energy,
∆t2,1 ≡ − 1

z V

∑
α

∑
q

|Vα,q|2 εq > 0 . (5.53)

In the second place, as our theory takes advantage of Wick’s theorem for splitting
higher-order correlators of the modes b̂α,k, the next-order term derives from integrating
out the quadratic moments of (5.50) at the price of calculating two-particle propagators
of the kindD(2) = −iTt−t′

〈
b̂α,k(t) b̂β,p(t) b̂†

γ,k′(t′) b̂†
δ,p′(t′)

〉
. In this way, neglecting the

frequency dependence of D(2) as before, we obtain a straightforward correction to the
effective time-local interaction (5.46),

Ĥ
(2)
F ≈ Ĥ

(1)
F + Ĥ

(2,1)
F

− 1
V 2

∑
σ,σ′

∑
α,β

∑
k,k′,p,q

1
ωα,p + ωβ,p−q

(
U2

α,p V
2

β,p−q εk+p εk′+p−q

+Uα,p Uβ,p−q Vα,p Vβ,p−q εk+p εk′−p
)
ĉ†

kσ ĉ
†
k′σ′ ĉk′−qσ′ ĉk+qσ .

(5.54)

Consistently with the physical arguments leading to Eq. (5.48), the two-boson Hartree
diagram generated by Ĥ

(2)
F [see Figure 5.2(c)] implies another simple renormalisation

of the quasiparticle energy dispersion, such that the full hopping shift due to boson-
mediated interactions becomes

∆tΣ
t

≡ ∆t1 + ∆t2,2
t

= 4 z T ψ2
0

∑
α

(Uα,0 + Vβ,0)2

ωα,0
+ 2T
z t2 V

∑
α,β,k

(
Uα,k Vβ,k + Uβ,k Vα,k

)2
ωα,k + ωβ,k

ε2
k > 0 .

(5.55)
Importantly and not accidentally, ∆tΣ turns out to be identical (apart from a constant)
to the static and uniform hopping susceptibility for the bosonic excitations of the system
(see Appendix C.3 a more detailed discussion).

Due to the inclusion of higher-order bosonic correlations, the overall hopping
renormalisation ∆t = ∆t2,1+∆tΣ is now generally finite even in the MI, where quantum
fluctuations are triggered by the hopping of the doublon-holon pairs described by our
theory. Moreover, we observe that order-by-order interaction channels have the global
effect of enhancing the coherence of the underlying quasiparticles. Interestingly, these
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results exhibit a remarkable agreement with those recent works proposing the doublon-
holon binding mechanism as an essential feature of the MIT [319, 320]. Also, within our
physical scenario, the onset of the MI phase is associated with a peculiar separation
between charge and magnetic degrees of freedom, with the latter replacing Fermi
quasiparticles in the form of gapless spin excitations whose renormalized dispersion
lifts the huge degeneracy of local moments (see again [134, 318]). Notably, our simple
treatment of collective modes recovers such non-trivial physics with an original focus
on the kind of correlations involved. Also, we point out that the identification of the
residual fermionic excitations in the MI region with spin fluctuations provides a natural
explanation for the finiteness of the hopping renormalisation ∆t in the absence of
Fermi quasiparticles. Actually, from the perspective of the one-body propagator (5.68),
the quasiparticle weight |ψ0|2 can be regarded as the only well-defined marker of a
Fermi liquid. A formal calculation of the feedback of ∆t on |ψ0|2 would require to solve
the TDGE self-consistently with respect to quantum fluctuations, a task that goes well
beyond the scope of this work.

5.4 Quantum fluctuations in relevant observables

In the previous Sections, we have developed a quantum theory of the bosonic collective
excitations on top of the Gutzwiller mean-field state and developed a consistent
procedure for systematically including quantum fluctuations into the computation
of a generic observable. In addition, we have explored the possibility of reincluding
the effect of the coupling between bosons and fermionic quasiparticles as an effective
interaction between the latter.

In the following, we will put these concepts into practice through the explicit
evaluation of both one- and two-body correlations of interest, in order to highlight the
ability of our method to deal with non-trivial quantum fluctuations. For illustrative
purposes, we limit our semi-analytical calculations to zero temperature only as done in
the previous Chapters.

5.4.1 Green’s function

The first example of quantum correlation that we can easily determine through our
quantum theory is the Green’s function

Gσσ′(i, j; t) ≡ −i
〈
Tt

[
ĉi,σ(t) ĉ†

j,σ′

]〉
G

= −i θ(t)
〈
ĉi,σ(t) ĉ†

j,σ′

〉
G

+ i θ(−t)
〈
ĉ†

j,σ′ ĉi,σ(t)
〉

G
,

(5.56)

where ⟨·⟩G labels the average over the Gutzwiller ansatz (5.1). Under the GA, Eq. (5.56)
becomes

Gσσ′(i, j; t) = − i θ(t)ψσ(i, t)ψ∗
σ′(j)

〈
ĉσ(i, t) ĉ†

σ′(j)
〉

0

+ i θ(−t)ψ∗
σ′(j)ψσ(i, t)

〈
ĉ†

σ′(j) ĉσ(i, t)
〉

0
,

(5.57)

where now the average symbol ⟨·⟩0 refers to the fermionic state |Ψ0⟩. After promoting
the renormalisation fields ψσ(i, t) to operators, expanding up to second-order in the
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fluctuations and averaging over the bosonic ground state, we obtain

Gσσ′(i, j; t) = − i θ(t)ψ0,σ ψ
∗
0,σ′

〈
ĉσ(i, t) ĉ†

σ′(j)
〉

0

+ i θ(−t)ψ∗
0,σ′ ψ0,σ

〈
ĉ†

σ′(j) ĉσ(i, t)
〉

0

− i θ(t)
〈
δ1ψ̂σ(i, t) δ1ψ̂

†
σ′(j)

〉〈
ĉσ(i, t) ĉ†

σ′(j)
〉

0

+ i θ(−t)
〈
δ1ψ̂

†
σ′(j) δ1ψ̂σ(i, t)

〉〈
ĉ†

σ′(j) ĉσ(i, t)
〉

0
.

(5.58)

where δ1ψ̂σ(i, t) is the very same Bose field operator defined in Eq. (5.44). Inspecting the
Hamiltonian (5.29), we clearly recognise that the operator (5.44) controls the one-body
coherence of the bosonic DoF hopping on the lattice as it occurs in the QGA description
of BH models: in fact, it annihilates (creates) a collective excitation (α,k) according
to the particle (hole) amplitudes Uσ

α,k (V σ
α,k). Specularly, we can physically identify

the object (5.44) with quantised fluctuations of the quasiparticle weight of fermionic
excitations. For completeness, we specify that the operator expansion (5.44) and the
spectral weights Uσ

α,k (V σ
α,k) follow directly from evaluating first-order derivatives of

the renormalisation matrix (5.10) with respect to fluctuations. More explicitly, we have

Uσ
γ,k ≡ Nσ

∑
a

[(
C0

a

)∗
uγ,k,a+σ + C0

a vγ,k,a−σ

]
+ ψ0Mσ

∑
a

da

[(
C0

a

)∗
uγ,k,a + C0

a vγ,k,a

]
,

(5.59a)

V σ
γ,k ≡ Nσ

∑
a

[(
C0

a

)∗
uγ,k,a−σ + C0

a vγ,k,a+σ

]
+ ψ0Mσ

∑
a

da

[
C0

a uγ,k,a +
(
C0

a

)∗
vγ,k,a

]
,

(5.59b)

where the notation a± σ stands for the local state a from which a particle with spin σ
has been added (removed).

Here we open a formal, yet insightful parenthesis on the particle statistics encoded
in the Bose field δ1ψ̂σ(i). For U/t ≫ 1, the bosonic particle-hole amplitudes are
numerically found to fulfil the sum rule∑

α

[
Uσ

α,k

(
Uσ′

α,k

)∗
−
(
V σ

α,k

)∗
V σ′

α,k

]
≈ 1 − ⟨n̂⟩ , (5.60)

where ⟨n̂⟩ is the lattice filling. Additionally, the very same equality is always valid at
PHS. Thus, we can readily show that the operator (5.44) satisfies the commutation
relation [

δ1ψ̂σ(i), δ1ψ̂
†
σ′(j)

]
≈ δi,j (1 − ⟨n̂⟩) (5.61)

in the same regime. It is interesting to notice that the above relation strongly resem-
bles the commutation rule [Ŝ−, Ŝ+] = −Ŝz between the lowering (Ŝ−) and raising
(Ŝ+) spin operators under the mapping Ŝz → ⟨n̂⟩ − 1. This analogy establishes an
intriguing connection between our QGA treatment of SB fluctuations and slave spin
representations [314, 316, 321], providing also a justification for the physically sound
description of the large-U physics offered by the latter. Indeed, in this limit δ1ψ̂σ(i)
mimics the behaviour of a hard-core boson field, reflecting the effective spin statistics
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Starting from Eq. (5.58), we first define the Green’s function of the bosonic DoF as

GB
σσ′(i, j; t) ≡ −i ψ0,σ ψ

∗
0,σ′ −i θ(t)

〈
δ1ψ̂σ(i, t) δ1ψ̂

†
σ′(j)

〉
−i θ(−t)

〈
δ1ψ̂

†
σ′(j) δ1ψ̂σ(i, t)

〉
.

(5.62)
Therefore, considering the Green’s function of the fermionic quasiparticles

G0(i, j; t) ≡ δσ,σ′

[
−i θ(t)

〈
ĉσ(i, t) ĉ†

σ(j)
〉

0
+ i θ(−t)

〈
ĉ†

σ(j) ĉσ(i, t)
〉

0

]
, (5.63)

it is easy to see that the full Green’s function of the theory (5.58) factorises into

Gσσ′(i, j; t) = i δσ,σ′ G0(i, j; t)GB
σσ(i, j; t) . (5.64)

Whereas the mean-field decoupling between fermionic and bosonic excitations leads to
a simple renormalisation of the quasiparticle Green’s function G0(i, j; t) in real space,
the momentum-frequency structure of Gσσ′(i, j; t) is less trivial and results from the
convolution between the Fourier transforms of the individual propagators (5.62)-(5.63),
namely

G0(k, ω) = 1
ω − Ek

(5.65)

and

GB
σσ′(k, ω) = −2π i V |ψ0|2 δ(ω) δk,0 +

∑
α

Uσ
α,k

(
Uσ′

α,k

)∗

ω − ωα,k
−

(
V σ

α,k

)∗
V σ′

α,k

ω + ωα,k

 .
(5.66)

At finite temperatures, the final result for the momentum-frequency resolution of the
Green’s function reads

Gσσ′(k, ω) = δσσ′

 |ψ0|2

ω − Ek
+ 1
V

∑
α

∑
p


∣∣∣Uσ

α,k−p

∣∣∣2 [B(ωα,k−p
)

+ F (−Ep)
]

ω − ωα,k−p − Ep

+

∣∣∣V σ
α,k−p

∣∣∣2 [B(ωα,k−p
)

+ F (Ep)
]

ω + ωα,k−p − Ep


 ,

(5.67)
where B(ω) is the Bose distribution. Taking the zero temperature limit, Eq. (5.62)
specialises into

Gσσ′(k, ω) =

δσ,σ′

 |ψ0|2

ω − Ek
+ 1
V

∑
α,p


∣∣∣Uσ

α,k−p

∣∣∣2 θ(p > kF )
ω − ωα,k−p − Ep

+

∣∣∣V σ
α,k−p

∣∣∣2 θ(p < kF )
ω + ωα,k−p − Ep


 ,

(5.68)

where kF indicates the Fermi surface momenta.
Eq. (5.68) is the first key result of the present Chapter. Despite its simplicity, the

structure of Gσσ′(k, ω) offers an intuitive visualisation of the elementary excitations
steering one-body correlations. We first observe that the physical meaning of the
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bosonic particle-hole amplitudes Uσ
α,k (V σ

α,k) is now self-explanatory: they tune the
spectral weights according to which the collective modes are excited in the particle (hole)
channel above (below) the Fermi sea. Furthermore, we note that the poles of Gσσ′(k, ω)
can be identified with a non-obvious combination between a quasiparticle excitation
Ep and the ensemble of bosonic modes ±ωα,k−p, resulting in an overall fermionic
mode dressed by bosonic excitations. On the other hand, in the MI Ep → 0 and
quantum correlations can be entirely described in terms of doublon-holon excitations
having energy spectra (5.41). We anticipate here that the semi-analytical transparency
of our result proves to be a powerful tool in pinpointing the contributions of different
excitations to the local DoS, as we will show in Subsection 5.5.1.

5.4.2 Equal-time charge correlations

In Subsection 5.2.4, we have argued that the QGA is particularly convenient for the
calculation of two-body propagators. In fact, the latter can be completely expressed
in terms of the Gutzwiller operators Ĉa(i) and the bosonic excitations of the system,
which are the main ingredients of our quantum theory. We illustrate now how this
advantageous feature of the QGA makes the calculation of equal-time correlations a
straightforward operation as in the case of BH models.

As a typical application to quantum fluctuations beyond the one-particle level, we
consider the normalised pair (or charge) correlation function

g(i) ≡ ⟨n̂(i) n̂(0)⟩ − ⟨n̂(i)⟩ ⟨n̂(0)⟩
⟨n̂(i)⟩ ⟨n̂(0)⟩ . (5.69)

Applying the usual quantisation procedure and exploiting translational invariance,
Eq. (5.69) assumes the form

g(i) =


〈
D̂(0)

〉/〈
N̂(0)

〉2
− 1 i = 0 ,〈

N̂(i) N̂(0)
〉/〈

N̂(0)
〉2

− 1 i ̸= 0 ,
(5.70)

where the QGA density N̂(i) and square density D̂(i) operators are now defined as

N̂(i) ≡
∑

a

na Ĉ
†
a(i) Ĉa(i) , (5.71a)

D̂(i) ≡
∑

a

n2
a Ĉ

†
a(i) Ĉa(i) , (5.71b)

respectively, where na indicates the number of particles in the local Fock state |a, i⟩. As
done in the previous Chapters, the expectation values of Eqs. (5.70) are evaluated by
expanding the operators (5.70) up to fourth order in the fluctuations δĈa(i), with special
care for the off-site correlator. As a final result, after defining the single-excitation

Nα,k ≡
∑

c

ncC
0
c

(
uα,k,c + vα,k,c

)
(5.72)

and two-excitation
Wα,k|β,p ≡

∑
c

(nc − n0)uα,k,c vβ,p,c (5.73)
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structure factors of the collective modes in the charge channel, we obtain closed-form
expressions for on-site

g(i = 0) =
D0 + 1/V

∑
α,k,c

(
n2

c −D0
) ∣∣vα,k,c

∣∣2[
n0 + 1/V

∑
α,k,c (nc − n0)

∣∣vα,k,c

∣∣2]2 − 1 , (5.74)

and non-local

g(i ̸= 0) =
1/V

∑
α,k
∣∣Nα,k

∣∣2 cos (k · i)[
n0 + 1/V

∑
α,k,c (nc − n0)

∣∣vα,k,c

∣∣2]2 +

+
1/V 2∑

α,β,k,p

∣∣∣Wα,k|β,p +Wβ,p|α,k

∣∣∣2 cos [(k + p) · i]

2
[
n0 + 1/V

∑
α,k,c (nc − n0)

∣∣vα,k,c

∣∣2]2 ,

(5.75)

charge correlations at zero temperature.
A few remarks on the above results are in order. As long as non-local charge correla-

tions (5.75) are concerned, our approach entails a clean separation of those fluctuations
due to individual collective modes from correlations due to two-mode vertices. This
outcome suggests a close relationship between non-local two-body correlations and the
excitation of multiple bosonic modes. On the contrary, within our theory multi-mode
processes do not participate superficially in local correlations, which however are
strongly affected by the non-linearity introduced by the normalisation operator Â(i),
which is believed to give the lowest-order feedback of quantum fluctuations onto the
mean-field predictions n0 and D0.

In Subsection 5.5.2, we will show that all the types of higher-order fluctuations
pointed out before share a common physical side, as they turn out to have a significant
weight close to and beyond the MIT. This is immediately evident in the case of non-local
correlations (5.75), as the single-mode structure factors (5.72) weighing linear-order
density fluctuations are known to vanish identically in the MI state [51, 131].

5.4.3 Charge and spin susceptibilities

Linear response theory within the GA framework [65, 308] addresses the calculation
of n-particle propagators by adding suitable perturbations to the Hamiltonian of the
system and determining the properties of RPA-type fluctuations for each kind of
response. By contrast, our approach is able to access many-body correlations directly
by means of its built-in quantum formalism, so that the spectral features of a given
response channel are calculated more efficiently and up to arbitrary orders in the
fluctuations. In this regard, we show below how the flexibility of our method applies
to the estimation of the proper susceptibilities of the system.

Charge and magnetic response functions in momentum-frequency space are for-
mally defined by

χc(q, ω) ≡ −i
∫
dt ei(ω+i 0+)t

∑
i

e−i q i
〈[
N̂(i, t), N̂(0, 0)

]〉
, (5.76)
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and
χs(q, ω) ≡ −i

∫
dt ei(ω+i 0+)t

∑
i

e−i q i
〈[
Ŝz(i, t), Ŝz(0, 0)

]〉
, (5.77)

respectively, where the infinitesimal frequency shift ω → ω + i 0+ regularises the
results at large negative times. Here we define the QGA spin operator as

Ŝz(i) ≡ 1
2
[
N̂↑(i) − N̂↓(i)

]
=
∑

a

sa Ĉ
†
a(i) Ĉa(i) , (5.78)

where
N̂σ(i) ≡

∑
a

na,σ Ĉ
†
a(i) Ĉa(i) (5.79)

is the spin-resolved density operator, with na,σ = δa,σ + δa,2 indicating the number of
particles with spin σ in the local state |a, i⟩, such that sa = (na,↑ − na,↓) /2. Operatively,
we proceed by unfolding the density and spin operators up to second order in the
quantised modes b̂α,k as usual and switching to the interaction picture

b̂α,k −→ b̂α,k(t) ≡ e−i ωα,k t b̂α,k . (5.80)

At zero temperature, the final expression of the charge susceptibility reads

χc(q, ω) = 2
∑

α

|Nα,q|2 ωα,q

(ω + i 0+)2 − ω2
α,q︸ ︷︷ ︸

χ
[1]
c (q,ω)

+ 2
V

∑
α,β,k

Wα,k|β,k+q
(
ωα,k + ωβ,k+q

)
(ω + i 0+)2 −

(
ωα,k + ωβ,k+q

)2︸ ︷︷ ︸
χ

[2]
c (q,ω)

,

(5.81)
where we have defined the two-mode spectral weights

Wα,k|β,p ≡
∣∣∣Wα,k|β,p

∣∣∣2 +Wα,k|β,pW
∗
β,p|α,k , (5.82)

attached to direct (W 2) and exchange (W · W ) scattering vertices between pairs
of collective modes in the charge channel. A similar result holds also for the spin
susceptibility χs(q, ω), which is calculated explicitly in Appendix C.3. Similarly to
the result for non-local pair correlations, we observe that the QGA provides a clear
visualisation of the single-mode

(
χ[1]

)
and two-mode

(
χ[2]

)
bosonic correlations

contributing to the susceptibilities. Moreover, since our approach accounts for the
full momentum-frequency structure of χc(s)(q, ω), we are also in the position of
characterising dynamical correlations with the minimum numerical effort, as well as
without any initial assumption on the dynamics of specific observables [301].

In the same spirit, we have at our disposal a simple way for estimating the reducible
vertex functions or two-particle self-energies, defined through the celebrated Bethe-
Salpeter equations

Γc(q, ω) = χ0(q, ω)−1 − χc(q, ω)−1 , (5.83a)

Γs(q, ω) = [χ0(q, ω)/4]−1 − χs(q, ω)−1 , (5.83b)

where χ0(q, ω) (χ0/4) denotes the charge (spin) susceptibility of the quasiparticles,
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given by the Lindhard function

χ0(q, ω) ≡ −2 i
V

∫
dν

2π

∑
k

G0(k + q, ν)G0(k, ν − ω)

= 2
V

∑
k

F (Ek) − F
(
Ek+q

)
ω + Ek − Ek+q

.

(5.84)

In view of benchmarking our predictions, we restrict ourselves to the analysis of static
response measures as the compressibility

κ = −χc(q → 0, ω = 0) (5.85)

and the uniform spin susceptibility

χ = −χs(q → 0, ω = 0) . (5.86)

According to Eq. (5.81), the collective modes linked to density or spin fluctuations
could be regarded as the main actors of the dynamical response of the system. This
physical scenario is however incomplete: indeed, a sizeable modification to the vertex
functions (5.83) comes into play when taking into account the quasiparticle hopping
renormalisation ∆t given by the coupling with the bosonic modes, as we discuss now
in depth.

5.4.4 Renormalisation of the response functions

In practical terms, the most evident consequence of the hopping renormalisation ∆t
is to induce a change in the density (spin) susceptibility of fermions: without loss of
generality, this can be rewritten as

χ′
0(k, ω) = χ0(k, ω)

1 − δΓ(k, ω)χ0(k, ω) , (5.87)

where we have defined the vertex shift δΓ(k, ω) produced by interactions. Accordingly,
making the substitution χ0(k, ω) → χ′

0(k, ω) into the Bethe-Salpeter equations, the
reducible vertex functions acquire a net shift

Γ′
c(s)(k, ω) = Γc(s)(k, ω) + δΓc(s)(k, ω)

= Γc(s)(k, ω) + δΓ(1)
c(s)(k, ω) + δΓ(2)

c(s)(k, ω) ,
(5.88)

where, for later convenience, we distinguish between the contributions due to first-order
δΓ(1)

c(s)(k, ω) and second-order δΓ(2)
c(s)(k, ω) quantum fluctuations. Notice that the above

equations allow the possibility that the coupling of fermions with the bosonic modes
generates an either repulsive or attractive channel for the quasiparticles depending on
the exchanged momentum (energy) k (ω).

Let us now unfold Eqs. (5.87)-(5.88) when applied to the computation of the
compressibility (5.85) and the magnetic response (5.86), which can be treated semi-
analytically. Recalling the definition of the quasiparticle susceptibility (5.84) and taking
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into account the hopping shift ∆t, we obtain

χ′
0(k → 0, ω = 0) = −A0

∣∣∣ψ2
0 + ∆t/t

∣∣∣−1
, (5.89)

where A0 is the value of the quasiparticle DoS at the chemical potential. From Eq. (5.87),
it follows that

δΓ(i)
c (k → 0, 0) = 1

4δΓ
(i)
s (k → 0, 0) =

∣∣ψ2
0 + ∆ti/t

∣∣− ψ2
0

A0
, (5.90)

where the index i = 1, 2 refers to the order of quantum fluctuations included. Finally, the
renormalised compressibility κ′ and spin susceptibility χ′ can be found by recalculating
χc(s)(k, ω) according to the Bethe-Salpeter equations (5.83) after either (i) replacing
χ0(k, ω) with the right-hand side of Eq. (5.89) or (ii) modifying the reducible vertex
functions according to Eq. (5.90). As a result, we obtain

κ′ = −
[
χ−1

0 (k → 0, 0) − Γ′
c(k → 0, 0)

]−1
=
[
ψ2

0/A0 + Γ′
c(k → 0, 0)

]−1
, (5.91a)

χ′ = −
[
4χ−1

0 (k → 0, 0) − Γ′
s(k → 0, 0)

]−1
=
[
4ψ2

0/A0 + Γ′
s(k → 0, 0)

]−1
.

(5.91b)
The significant deviations in κ and χ due to the boson-quasiparticle coupling are
discussed in detail in Secs. 5.5.3-5.5.4. We anticipate here that, as a remarkable outcome
of our simple Hartree-Fock calculations, the effective quasiparticle interaction (5.54)
brings about a finite spin susceptibility across the whole phase diagram of the model,
compatibly the prediction that the normal-phase Hubbard model cannot experience
magnetic ordering as it undergoes the Mott localisation [278]. It is important to
underline that our findings are a genuine product of the quantum formalism hereby
developed and cannot be accessed by linear response theory, which does not cover the
higher-order coupling channels inherently encoded in the effective interaction Ĥ

(2)
F .

5.5 Results for the 2D paramagnetic Hubbard model

We now proceed to present the numerical results obtained by the application of our
approach to the ground state of the Hubbard model (5.8) in its normal phase for a 2D
square lattice at zero temperature. All the numerical results reported hereafter have
been obtained for a 60 × 60 lattice in order to avoid possible finite size effects.

5.5.1 How collective modes shape the DoS

The DoS of the system Aσ(k, ω) can be derived straightforwardly from the Green’s
function through the well-known relation Aσ(k, ω) = −2 Im

[
Gσσ

(
k, ω + i 0+)]. From
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Figure 5.3: Local DoS Aσ(ω) of the paramagnetic Hubbard model for (a) U/t = 2, (b) U/t = 8, (c) U/t = 12, (d) U/t = 14
(MI) at PHS. The frequency integral of Aσ(ω) is normalised to 1 as usual. The MIT takes place at the mean-field critical point
Uc = 16 z T ≃ 12.97 t. The energy scale is fixed by the non-interacting half bandwidth D = z t. For panels from (a) to (c),
the DoS is split into the contributions of: fermionic quasiparticles (black dotted lines), Landau’s density mode (red solid
lines), spin sound mode (blue solid lines) and Hubbard optical mode (green solid lines). The overall DoS is highlighted by a
black solid line. In panel (d), the DoS of doublon (holon) excitations is identified by a violet (gray) solid line.

Eq. (5.68), at zero temperature we obtain

Aσ(k, ω) = |ψ0|2 δ(ω − Ek) + 1
V

∑
α

∑
p>kF

∣∣∣Uσ
α,k−p

∣∣∣2 δ(ω − ωα,k−p − Ep
)

+ 1
V

∑
α

∑
p<kF

∣∣∣V σ
α,k−p

∣∣∣2 δ(ω + ωα,k−p − Ep
)
.

(5.92)

As a by-product of the key result (5.68), Eq. (5.92) provides a transparent interpretation
of the spectral structure of the DoS, since we can distinguish unambiguously between
different contributions due to the fermionic quasiparticles and their coupling with the
collective modes of the system. In particular, this can serve the purpose of giving a
precise identity to the kind of excitations moulding the so-called Hubbard bands, as we
discuss in the following.

Figure 5.3 shows our numerical results for the (normalised) local DoS Aσ(ω) =
1/V

∑
k Aσ(k, ω) across the MIT at PHS (µ = U/2). For clarity, we decompose the total

DoS [solid black line] into the fraction due to the quasiparticles [black dotted line] and
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the contribution due to the bosonic modes [coloured solid lines].
For weak interactions [panel (a)], the DoS of quasiparticles starts losing spectral

weight in favour of low-energy energy states covered by the Landau mode [red solid
line] and spin excitations [blue solid line], whereas the weight of the Hubbard optical
mode [green solid line] is almost negligible. Moreover, we observe that the DoS tails
are mostly controlled by the zero sound mode and extend to energies beyond the
non-interacting bandwidth D = z t. It follows that the high-energy properties of the
weakly-interacting lattice can be essentially traced back to density fluctuations.

Moving to intermediate values of U/t [panel (b)], the structure of Aσ(ω) becomes
more complex. While charge excitations are pushed to higher energies but still contribute
to the population of low-energy states, a significant part of the spectral weight of
quasiparticles is already transferred to energy states accessed by the Hubbard optical
mode, whose spectral weight is non-zero exactly above the effective bandwidth
Deff = D |ψ0|2 subtending the quasiparticle DoS. Interestingly, both the excitations
contribute to the formation of the Hubbard bands, which now appear as well-formed
high-energy features. On the other hand, we observe that most part of the spectral
fraction due to spin fluctuations is always enclosed by the quasiparticle DoS, a feature
hinting at the Landau damping of spin excitations due to their strong coupling with
the quasiparticle/quasihole continuum predicted by Fermi liquid theory [73, 277].

On the brink of the MIT [panel (c)], the DoS is almost saturated by the Hubbard
bands, whose weight is now equally distributed to the density and Hubbard optical
modes. At low energies, the quasiparticle DoS and the Hubbard bands are connected
by a small pocket of states which are excited by the Landau mode only. Following the
discussion of Section 5.2.5, this peculiar separation of energy scales closely reflects the
progressive degeneracy of the zero sound and Hubbard branches, which at half filling
develops at high-energy first [see panel (c) of Figure 5.1] and, for increasing U/t, moves
towards ω = 0, until the MIT occurs. Also, we may be tempted to identify low-energy
density excitations as those states that bridge the gap between the quasiparticle DoS
and the Hubbard bands and are responsible for transferring spectral weight from one
to the others. It is worth mentioning that the threshold U/t ≃ 6 after which we observe
a first clear-cut separation between the quasiparticle peak and the Hubbard bands
tallies approximately with the same region where DMFT-NRG [322] and DΓA [323]
calculations spot the formation of a well-defined pseudogap of Aσ(ω) at intermediate
values of ω (upon a suitable rescaling of the MIT critical point with respect to the
Gutzwiller prediction for Uc).

Finally, once the system enters the MI [panel (d)], Aσ(ω) splits completely into the
two Hubbard bands corresponding to doublon and holon excitations, separated by a
finite gap U and extending over bandwidths proportional to t/U , as expected by the
well-known picture of DMFT calculations [278, 324].

5.5.2 Charge correlations

The QGA result for the local charge correlation g(0) given by Eq. (5.74) at PHS is shown
as a black solid line in the panel (a) of Figure 5.4. Our prediction well matches with
both the value g(0) = 1/2 of a non-interacting gas and the complete suppression of
density fluctuations for U/t ≫ 1 in the deep MI, where g(0) = 0. In the metallic phase,
the antibunching g(0) < 1/2 due to the repulsive on-site interaction decreases slower
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Figure 5.4: (a) On-site charge correlation g(0) as a function of U/t at PHS. The white (orange-shaded) area indicates the
metallic (MI) region. Black solid line: QGA. Black dashed line: mean-field GA. Red dots: DMFT metallic solution. Blue
squares: DMFT insulating solution. In order to compare our results with the DMFT data, the critical interaction of the latter
has been rescaled by a factor Uc/U

DMF T
c so as to make the position of the MIT point within the two approaches coincide.

(b) Non-local charge correlation function g(i) for |i| = 1 (solid line) and |i| =
√

2 (dotted line) as a function of U/t at PHS.

Charge
fluctuations

bench-
marked
against
DMFT

than the outcome of the mean-field GA [black dashed line] upon approaching the
MIT critical point. Indeed, while mean-field theory predicts a perfect antibunching
of g(0) at the MIT and beyond, the QGA result is able to account for the virtual
excitation of doublon-holon pairs contributing to density fluctuations. In this respect,
our method improves significantly the BR picture of the MIT [312] thanks to an accurate
representation of the spectral features of the MI. Remarkably, we find that both in the
weakly-interacting limit and for sufficiently strong U/t our prediction for local density
fluctuations perfectly coincides with both the metallic [red dots] and insulating [blue
squares] DMFT solutions, while close to the transition point our approach gives a
qualitatively different result. In particular, we find that g(0) slightly increases close
to the metallic side of the MIT, showing a non-analytic behaviour across the critical
point.

This peculiar behaviour finds a simple explanation in the spectral properties of the
collective modes characterising the PH-symmetric MIT. In fact, the critical softening
of the Hubbard mode (5.40) and its degeneracy with the zero sound excitation (5.38)
make this special point to host two different coherent modes with eigenvectors scaling
as
(
uα,k, vα,k

)
∼ |k|−1/2 at low k. This singularity propagates to the structure factors

of charge correlations in the expression of g(i) and is at the roots of the cusp-like
profile displayed in Figure 5.4. Therefore, the absence of gapped collective excitations
appears to be the factor behind the enhancement of density fluctuations, analogous to
critical opalescence [325], close to the PH-symmetric MIT. By contrast, approaching the
doping-driven MIT, the Hubbard mode (5.40) retains a finite gap and an incoherent
character. As a consequence, the corresponding spectral weights do not lose regularity
at low k and a monotonous, smooth decrease of g(0) occurs (not shown).

These findings underscore how local density fluctuations across the MIT are
controlled by the precise spectral properties of the non-local quantum fluctuations
accounted by our quantum theory. Nevertheless, we cannot exclude that our predictions,
having their origin in a mean-field state, could overestimate the amplitude of quantum
fluctuations for critically strong interactions and simply offer a qualitatively different
view on local fluctuations with respect to the DMFT scenario. Also, the non-analytic
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behaviour of g(0) across the MIT could be read as a marker of the substantial back
action that self-consistent fluctuations would have on the saddle-point solution around
the MIT.

On an equal footing, the predictive power of our method with respect to non-
local quantum fluctuations can be further explored by looking at off-site charge
correlations (5.75). In panel (b) of Figure 5.4 we report the results of the QGA calculations
of g(|i| = 1) [solid line] and g

(
|i| =

√
2
)

[dotted line] as functions of U/t at PHS, for
which we notice again the (inverted) peaked profile of density fluctuations at the
MIT point. These curves successfully reproduce the suppression of non-local charge
correlations for increasing U/t caused by the Mott localisation and still predict the
survival of zero-point fluctuations due to virtual doublon-holon pairs propagating in
the insulating phase. This significant outcome brings further support to our approach
as a simple but powerful tool for interpolating between weak and strong interactions
in the description of non-trivial quantum correlations.

5.5.3 Compressibility

Panel (a) of Figure 5.5 shows the behaviour of the compressibility as a function of
U/t at PHS. The QGA prediction of κ as derived directly from the bosonic response
function (5.85) [black dashed line] is a monotonous, decreasing function of U/t and
converges continuously to zero at the MIT, signalling the suppression of uniform density
fluctuations. While this result is well-known in the literature, the spectral decomposition
of Eq. (5.81) makes room for a simple anatomy of those excitations that contribute the
most to the compressibility. Differently from the equal-time correlations examined in
Subsection 5.5.2, we find that κ is dominated by the single-mode contribution χ[1]

c for
all values of U/t, while the two-mode part χ[2]

c is nearly negligible.
However, whereas multi-mode effects encased by the bare susceptibility χc(0, 0) are

unimportant, a significant contribution comes indirectly from the interaction of the
quasiparticles with the bosonic modes themselves, renormalising the charge vertex
function. In Figure 5.5(a), the black dotted line indicates the corrected compressibility κ′

taking into account only the single-boson part δΓ(1)
c (q, ω) of the charge vertex shift (5.90),

while the black solid line includes the full shift δΓc(q, ω) comprising two-boson
scattering processes. We observe that the main effect of boson-mediated interactions is
to suppress the compressibility in the metallic phase, suggesting that δΓ(1)

c (q, ω) acts
as an additional repulsive channel for the quasiparticles. Such suppression is maximal
in the regime of moderately strong U/t and, remarkably, is even more enhanced by the
two-boson correlations encoded in δΓ(2)

c (q, ω). Notice that, consistently with physical
expectations, the non-interacting limit of κ and the MI incompressibility are not touched
by its renormalisation κ′, which can be regarded as a non-perturbative effect with
respect to the interaction U/t.

The analogous results for the compressibility out of PHS are reported in Figure 5.5(b),
where κ is calculated along the constant chemical potential line µ/t = 3 crossing
the doping-driven MIT [for reference, see the red solid line in Figure 5.1(a)]. Here,
we still find a similar suppression of charge fluctuations induced by the boson-
quasiparticle coupling, with some qualitative differences: while the single-boson
channel renormalises κ at low U/t, two-boson couplings give a major correction in
the strongly-interacting regime. In addition, we observe that κ reaches a finite value



128 5 Collective modes and quantum correlations of the Fermi-Hubbard model

Figure 5.5: (a) Compressibility κ as a function of U/t at PHS. The white (orange-shaded) area identifies the metallic (MI)
region. Dashed line: QGA prediction as given by Eq. (5.81), omitting the charge vertex shift due to the boson-quasiparticle
coupling. Dotted line: correction of κ due to the lowest-order vertex shift δΓ(1)

c (q, ω). Solid line: correction due to the full
vertex shift δΓc(q, ω) = δΓ(1)

c (q, ω) + δΓ(2)
c (q, ω). (b) The analogous plot of κ across the doping-driven MIT at constant

chemical potential µ/t = 3. The red solid line is the density deviation from half filling.
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on the metallic side of the MIT, eventually jumping to zero for U > Uc, a feature that
evidently distinguish the doping-driven MIT from the PH-symmetric case.

This anomalous behaviour can be understood by inspecting the low-q structure of
the bare susceptibility χ[1]

c (q, ω), which is solely determined by the zero sound mode
(d,q). In the expression

κ = −χ[1]
c (q → 0, ω = 0) = 2 |Nd,q→0|2

ωd,q→0
, (5.93)

the density structure factor is found to scale linearly with momentum as |Nd,q→0|2 ∼
γ |q|, so that κ = 2 γ/cd. Now, the structure factor slope γ is always a vanishing
quantity at the MI boundary; on the other hand, the zero sound velocity cd is finite
only at the PH-symmetric MIT, while it goes to zero as fast as γ for all the other critical
points. Therefore, while at PHS the vanishing spectral weight of charge excitations is
not accompanied by a decrease in the sound velocity, the doped MI exhibits density
fluctuations whose velocity is as small as their spectral weight. Such mechanism justifies
the discontinuity of κ at the doping-driven MIT that we observe in Figure 5.5(b). It is
also interesting to notice that the finite jump of κ is mirrored by a discontinuity in the
first-order derivative of the lattice filling across the MIT [red solid line], meaning that
the dilute gas of either particles or holes doping the MI forms a compressible metallic
state. Notably, these observations make the physics of the doping-driven MIT quite
similar to that of the CI-type transitions in BH models: not surprisingly, this analogy is
an insightful result of the QGA mapping between the collective modes of the Fermi sea
and the density/spin excitations of the binary BH model, see Subsection 5.2.4.

5.5.4 Spin susceptibility

A similar analysis as for the compressibility predictions can be applied to the static-
uniform spin susceptibility (5.86), the numerical results of which are reported in
Figure 5.6 with the same colour code of Figure 5.5.

At PHS [panel (a)], the QGA estimation for χ based on the bare susceptibility
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Figure 5.6: (a) Static-uniform spin susceptibility χ as a function of U/t at PHS. The white (orange-shaded) area indicates
the metallic (MI) region. Dashed line: QGA prediction as given by Eq. (5.86), neglecting the spin vertex shift due to
the boson-quasiparticle coupling. Dotted line: correction of χ due to the lowest-order vertex shift δΓ(1)

s (q, ω). Solid line:
correction due to the full vertex shift δΓs(q, ω) = δΓ(1)

s (q, ω) + δΓ(2)
s (q, ω). Red solid line: fit of the curve U2/t3 against the

numerical data in the deep MI. (b) Vertex function of the spin channel Γs(q, ω) in the static-uniform limit at PHS. (c) Spin
susceptibility χ across the doping-driven MIT at constant chemical potential µ/t = 3. The line style code of panels (b)-(c) is
the same of panel (a).

of Eq. (5.86) is a monotonous, increasing function of U/t – the so-called Stoner
enhancement of the magnetic response – and diverges as 1/ (Uc − U) at the MIT point,
thus behaving as a footprint of the formation of local magnetic moments on the verge
of the insulating phase. This result is in qualitative agreement with popular GA +
RPA approximate schemes [29, 307]; however, whereas a critical divergence is known
to be a typical feature of the local spin susceptibility χs(ω) ≡ 1/V

∑
q χs(q, ω), the

static-uniform response χ is correctly predicted by DMFT to have a finite value across
the whole phase diagram of the paramagnetic Hubbard model [278].

Nonetheless, the apparent failure of our quantum theory in capturing the right
physics of χ through the baseline Eq. (5.86) is perfectly counterbalanced by considering
again the effect of the reducible vertex shift δΓs(q, ω), which in the present case takes
an even more crucial role.

In Figure 5.6(a), we observe that the single-boson vertex shift δΓ(1)
F (q, ω) not only

leads to an increase in the magnetic response for intermediate interactions, but also
eliminates the susceptibility divergence at the critical point. This outcome reproduces
recent calculations based on an improvement of linear response theory around the
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GA [65], but still contrasts with precision approaches as DMFT. In fact, the spin
susceptibility is still divergent in the MI, as the first-order quasiparticle self-energy
Σ(1)

F (q, ω) – responsible for the vertex renormalisation – decrease proportionally to
quasiparticle weight |ψ0|2, see Section 5.3. Then, we deduce that one-boson correlations,
although sufficient to regularise χ on the metallic side of the MIT, do not account for
all the relevant magnetic fluctuations at strong interactions.

This issue is solved by the higher-order contributions to the full spin vertex
shift δΓs(q, ω). Such correction ultimately yields the expected result: in the metallic
phase, two-boson scattering processes are responsible for a general decrease of the
magnetic response, which is then found to be continuous across the MIT and increases
monotonously for U > Uc. Most importantly, we obtain that χ scales according to a
power law U2/t3 – see the curve fitting [red solid line] in Figure 5.6(a). Such an energy
scale is not a coincidence, as it naturally emerges from the close relationship between
the quasiparticle self-energy ΣF(q, ω) and kinetic correlations of doublon-holon pairs
on top of the MI, whose excitation probability is exactly proportional to (t/U)2 as
suggested by strong-coupling perturbation theory.

The above considerations gain further insights from the inspection of the spin
vertex Γs(q → 0, ω = 0), reported in panel (b) of Figure 5.6. Here, we observe that the
bare vertex as given by Eq. (5.83b) is always negative in the metallic phase and zero
after the MIT, indicating that the effective interaction between magnetic DoF is at least
only attractive. As boson-quasiparticle interactions are admitted, the corrected vertex
Γ′

s(0, 0) undergoes a sign flip in the metallic region close to the MI boundary. Thereafter,
Γ′

s(0, 0) reaches its maximum at the MIT and is a non-vanishing, decreasing function
of U/t in the insulating phase, thus preventing the magnetic moments from behaving
independently and developing a diverging magnetic response. We can understand this
result by linking the attractive-to-repulsive transition of the effective spin coupling to
the activation of the so-called superexchange mechanism for U/t ≫ 1 – associated to
theU2/t3 scaling ofχ – and the onset of weak antiferromagnetic fluctuations, in striking
agreement with the predictions of DMFT [278]. Under this perspective, going beyond
a mean-field picture of the boson-fermion coupling correctly restores higher-order
hopping processes that lend a finite stiffness to spin excitations in the MI phase [134,
319]. As a last remark, we stress that the non-trivial behaviour of Γ′

s(0, 0) mirrors again
the non-perturbative character of the quantum correlations embraced by the QGA in
the strongly-interacting regime.

For the sake of completeness, in Figure 5.6(c) we show the U/t-dependence of
the spin susceptibility out of PHS for µ/t = 3. Interestingly, in correspondence of
the doping-driven MIT χ displays the same discontinuity feature characterising the
compressibility, in contrast again with the PH-symmetric case shown in Figure 5.6(a).
Despite this analogy, it is important to observe that, differently from the compressibility,
the continuity of the spin susceptibility across the MIT depends exclusively on the
multi-mode bosonic correlations carried by the vertex shift δΓs(q, ω) and cannot be
explained in terms of individual collective modes only.

We conclude this Subsection by noting that the stabilisation of low-energy spin
excitations in the MI as a mere effect of multi-boson fluctuations has a strong resemblance
to the emergence of a dispersionful spin (density) sound mode in the CFSF (PSF) phase
of the two-component BH model as a consequence of high-order hopping processes, a
problem that we addressed in Chapter 2. In the same way, we believe that the spin vertex
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renormalisation due to the doublon-holon binding should translate into a well-defined
spin wave branch of the MI phase in a refined formulation of the QGA.

5.5.5 Comparison with other approaches

In order to emphasise more the relevance of our results, it is worth commenting on
the relationship of the fermionic QGA theory with alternative methods addressing
the study of quantum correlations from the standpoint of the fundamental excitation
modes in strongly-correlated electron systems.

As mentioned earlier, our approach to fluctuations of the SB type has a number of
features in common with recently proposed methods [65, 308] relying on the application
of linear response theory to the TDGE equations (5.17); this scheme, particularly suited
for the calculation of response functions, is known to include fluctuations of the RPA
class [301, 307, 311] and is expected to give comparable results with our method for a
class of quantities in which only quadratic fluctuations are regarded. For instance, this
is the case of charge and magnetic susceptibilities truncated to the single-mode sector
of the bosonic modes, e.g. the χ[1] contribution to Eq. (5.81). However, since linear
response theory does not treat the δĈa’s as fully quantised excitations, RPA fluctuations
above the GA cannot account for higher-order quantum correlations governed by the
collective modes of the theory, which are pivotal for an accurate description of the
strongly-correlated regime. From a more general point of view, the quantum theory
proposed here provides a simpler and more intuitive route to the computation of
dynamical correlations, as the linear response formalism requires to recompute the
spectral properties of fluctuations for each desired perturbation channel [65, 307]. The
practical simplicity of our approach finds its clearest example in the calculation of the
Green’s function of the system, see Section 5.4.1.

Recalling the discussion of Subsection 1.2.5, as the mean-field GA is known to
be equivalent to the saddle-point solution of SB theories [288, 289, 292], we expect
our analysis to have strong similarities also to including quantum fluctuations within
slave particle methods [49, 314, 326, 327], as long as second-order fluctuations are
concerned. One important difference from these approaches, shared with the bosonic
formulation of the QGA, is however the way in which the observables are computed:
in particular, we never rely on the reconstruction of the original fermionic operators
ĉi,σ through the overall Gutzwiller coordinates Ĉa(i). In fact, from the very beginning,
the only dynamical variables of the theory are the fluctuation operators δĈa(i) and
δĈ†

a(i), which are not subjected to any constraint because of our convenient choice for
the normalisation operator Â. Strictly speaking, a fully self-consistent approach would
demand the extension of the gauge-fixing constraints (5.5b) to comprise the effect of
fluctuations, a task that we do not pursue here given the small quantum corrections
that we find for the lattice filling ⟨n̂⟩ (see Appendix C.2 for additional details).

We also underline that, to the best of our knowledge, there are no available slave
particle calculations that provide a quantitative understanding of the physics of
collective modes resembling our findings. In this respect, Gaussian expansions of SB
theories have seen only a few applications to the computation of arbitrary two-particle
correlations and quasiparticles vertices in general strongly-correlated systems [313,
328–330]. Finally, we remind here that the path integral formulation of SB theories
with respect to quantum fluctuations is known to be a highly elaborate task with
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respect to both the normal ordering of the bosonic operators and the continuum limit of
functional integrals [331, 332]. The complexity of such procedure has hindered practical
calculations of dynamical quantities within that formalism.

Concerning the predictive power of our method, we have shown how the QGA can
account accurately for both local and non-local correlations and successfully compares
to the results of DMFT [278]. The latter represents the state-of-the-art approach to the
study of strongly-correlated systems, as it is able to provide a robust quantitative view
on local quantum fluctuations and non-perturbative dynamical properties stemming
from strong correlations. On the other hand, DMFT and its cluster extensions [324,
333–335] are not guaranteed to correctly reproduce non-local effects, which usually
require ad-hoc improving schemes as e.g. diagrammatic extensions of the theory [336–
338]. From this perspective, the QGA theory is intended to be a complementary tool
with respect to the locally exact scenario of DMFT: in fact, it takes its fundamental
steps from including directly non-local fluctuations on top of a variational local
ansatz (5.1), at the price of an approximate description of quantum effects at all scales.
It must be also noted that the aforementioned approaches based on DMFT lean on
a self-consistent calculation of one-body correlation functions, which can be directly
probes by experimental protocols such as photoemission measurements. However,
other experimental techniques are centred around two-particle quantities such as
the charge and spin response functions, which are probed i.e. in neutron scattering
experiments. By and large, computing two-particle correlations is more challenging
because of the need to accurately including vertex corrections [278, 339], which are
indeed among the non-local objects accessible by the QGA. Furthermore, the minimal
numerical complexity of our method – which only requires the diagonalisation of the
Hamiltonian (5.32) and allows for large lattice sizes – makes our results competitive
with more accurate but computationally demanding techniques. In this regard, going
beyond the realm of equilibrium configurations, the study of time-dependent problems
(e.g., quantum quenches and relaxation dynamics) appears to be a straightforward
generalisation of our approach. This is as an advantageous feature as compared e.g. to
QMC methods, which can hardly treat dynamical processes for reasonably long times
sufficiently close to the thermodynamic limit.

5.6 Summary and prospects

In this Chapter, we have introduced a novel approach to the study of collective
modes and quantum correlations in strongly-correlated fermionic systems based on a
QGA-inspired representation of SB fluctuations. The theory has been benchmarked in
the simple yet non-trivial case of the paramagnetic Hubbard model: by virtue of its
flexibility, the QGA has been shown to account accurately for both local and non-local
correlations throughout the phase diagram of the model and across the MIT. Similarly
to its bosonic implementation, the method provides semi-analytical insights into the
role played by different collective excitations within a large class of observables, ranging
from the local DoS to non-local charge correlations. Most importantly, we have shown
how the predictions for charge and spin correlations benefit from the ability of our
approach to include higher-order correlations involving the bosonic modes of the
system. In particular, we have shown that the two-body coupling between spinons and
doublon-holon excitations yields an elegant rationale for the finite spin susceptibility
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of the paramagnetic MI.
Under an efficient implementation of the Gutzwiller approximation for more com-

plex fermionic configurations (see e.g. [340]), the generality of our approach paves
the way for exciting applications as, for example, the spectral properties of symmetry-
broken phases, the exploration of non-local correlations in Hund’s correlated metals, a
feasible description of bipartite entanglement in analogy with SB approaches [50] and
the impact of strong interactions on the excitations of topological insulators [341]. Addi-
tionally, our semi-analytical view on quantum correlations appears particularly suited
to exploring the realm of out-of-equilibrium phenomena (e.g., quantum quenches),
with a special eye to open questions regarding the relationship between quantum
fluctuations and the relaxation dynamics of quasiparticles [296, 309]. On the other
hand, the simple treatment of two-body correlations offered by the present method
could stimulate novel research lines within the recent investigation of non-perturbative
properties of strongly-correlated systems hinging on two-particle physics [323, 342–
345]. Furthermore, in the direction of improving the accuracy of short-range quantum
correlations, a cluster extension of the theory [14, 89, 136, 137, 140] appears to be
a doable task to be addressed in a future work. It is finally worth observing that
our Lagrangian-based approach towards quantum fluctuations can be generalised
to other correlated wave functions, provided that there exists a suitable analytical or
computational scheme to optimise the classical dynamics of the ansatz parameters.
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Going through a global overview of the solutions offered by the QGA to the
problems addressed in the previous Chapter, we can fully appreciate that the most
prominent virtue of the QGA consists in giving a transparent illustration of how the
collective modes assemble quantum correlations. The semi-analytical structure of the
method, in conjunction with its practical simplicity, make it a potentially valuable tool
for deriving original predictions or interpolating exact numerical/experimental data
in hardly accessible regimes, especially from the viewpoint of non-local correlations.
In this regard, we have collected several important insights and results, which we
summarise as follows. In the case of the one-component BH model, we have gained:

▶ a clear distinction between the different universality classes of the MI-to-SF
transition in the BH model from the point of view of non-local fluctuations;

▶ a semi-analytical prediction for the superfluid density of the BH model;
▶ a strikingly accurate estimation of two-particle correlations in quantum-critical

regime;
▶ a physically sound prediction for the Higgs mode lifetime at the O(2) transition.

Generalising our analysis to the binary BH mixture, we have successfully tested our
method on:

▶ capturing elusive non-local effects as the so-called superfluid drag;
▶ describing the spin-charge separation taking place at the pairing phase transitions

of the system, from the point of view of both response functions and static
correlations.

Concerning the application of our approach to bosonic impurity models, we have
shown that:

▶ both the dephasing dynamics of a static impurity and the spectral properties of a
Bose polaron are sharply sensitive probes of the different BH critical regimes;

▶ there is a close relation between strong correlations and rechoerence effects in
the dephasing dynamics;

▶ the Bose polaron experiences an orthogonality catastrophe in the strongly-
interacting SF phase appearing upon doping the MI state;

▶ the QGA provides possibly valuable predictions for the fundamental features of
the Bose polaron cloud.

Last but not least, extending the QGA to the analysis of collective modes in a FH
paramagnet, we have achieved:

▶ a thorough description of the excitation spectrum of the bosonic modes of the
system across the MIT;

▶ a transparent view on how elementary excitations are related to the behaviour of
the DoS and two-particle correlations;

▶ a simple yet effective theory of the coupling between bosonic modes and fermionic
quasiparticles, including its physical role in two-particle observables.

As mentioned at an early stage, we have all elements to believe that suitable
improvements of the QGA would significantly broaden its range of applicability and
strengthen its physical accuracy. In particular, our methodological outlook includes
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a suitable cluster extensions (which would allow for an exact description of short
range correlations e.g. in bipartite configurations) and providing the theory with a
self-consistent structure (linking quantum fluctuations with the saddle-point dynamics).
Additionally, the elasticity of the QGA theory could be further put under scrutiny along
a number of different directions. Aside from a systematic application to the analysis of
non-linear collective effects, intriguing questions regard also the relationship between
quantum fluctuations incorporated by the QGA and the physical information encoded
in diagrammatic representations of many-body correlators. This cross-examination of
the theory would probably reveal the reasons behind its quantitative success and, at the
same time, the missing ingredients behind its non-negligible drawbacks. On the same
footing, the idea of using the QGA as an efficient method for entanglement estimation
in high dimensions appears as an instructive objective to pursue. Last but not least, we
remind here that the fundamental postulate of the QGA is the quantisation of a set of
Lagrangian coordinates constructed via the variational principle. The generalisation of
a similar strategy to different ansätze for the many-body wave function, or even the
design of an alternative quantisation procedure are also stimulating topics that would
deserve a deeper exploration.

Turning our attention to the most outstanding problems in condensed matter physics,
the improvements and test-beds proposed above acquire even more importance if
we consider the amount of open questions left by the literature on the importance of
collective effects in the presence of increasingly complex interactions and controlled
dynamical phenomena, made possible by the high parametric tunability in ultracold
atomic physics and quantum simulation science. From interacting topological physics to
bipolaronic correlations, we speculate that the QGA could give a substantial contribution
to the understanding of the nature of quantum fluctuations in these scenarios.

Broadening further our perspective on the physical relevance of our results, through
the QGA we have made some steps towards a sort of unified picture of the bosonic
degrees of freedom of the Hubbard model, of their physical essence and, more generally,
of their relation to Mottness, while keeping in mind the inherent limitations of our
method. In particular, we have identified interesting parallelisms between the excitation
spectra of BH and FH models, in addition to giving a physical interpretation of
the fermionic MI state in light of the physics of strongly-interacting bosonic species.
Understanding the universal features of Mott physics and how it impacts on the
surrounding coherent phases, as well as on the behaviour of quantum impurities, is a
highly debated problem to which the QGA attempts to give a first (partial) answer in
terms of the elementary excitations as fundamental players.

The success of our approach to collective modes in many-body systems at equilib-
rium motivates us to consider its extension to complex instances of an open quantum
system. In the following Part of the Thesis, we will take advantage of modern imple-
mentations of many-body physics for quantum fluids of light to examine the fate of
Mott-type correlations in the presence of strong dissipative effects. In particular, we
will show how these elements, bringing the Hubbard physics out of the equilibrium
realm, enlarges the number of ingredients concurring to Mottness and, correspondingly,
contributes to the creation of a novel class of strongly-correlated states.
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Subsections 1.2.1 and 1.2.2 of the present Chapter take free inspiration from the following
publications:

▶ M. Wouters, I. Carusotto, Excitations in a nonequilibrium Bose-Einstein condensate of
exciton polaritons, Physical Review Letters 99, 140402 (3 October 2007)

▶ M. Wouters, I. Carusotto, Excitations and superfluidity in non-equilibrium Bose–Einstein
condensates of exciton–polaritons, Superlattices and Microstructures 43, 524-527
(2008)

Moreover, part of the contents of Subsections 1.2.2 and 1.2.3 is included in the following
work under construction.

▶ Fabio Caleffi, M. Capone, I. Carusotto, Phase diagram of a non-equilibrium Bose-
Einstein condensate of exciton-polaritons, Project under definition (2022)

1.1 Superfluids out of equilibrium and where to find them

From a historical perspective, by virtue of the seminal work of Bogoliubov [5, 346,
347], the discourse on collective modes in quantum many-body theory is strongly
entangled with the phenomenon of superfluidity, which can be regarded as the most
celebrated collective effect having its roots in the long-range behaviour of the excitation
spectrum. More importantly, superfluidity is one of the most fascinating manifestations
of macroscopic quantum coherence in interacting condensed matter systems and is
the key to a number of remarkable effects, ranging for example from the generation of
dissipationless flows around defects [348–352] to quantised circulations and persistent
currents [353–357]. First motivated by its discovery in liquid helium [358–360], the
physics of superfluid matter has been later extended to comprise the phenomena of
BEC [6] and the Bardeen-Cooper-Schrieffer (BCS) collective state of fermions [346,
361, 362], which is responsible for the superconductive behaviour of a wide class of
materials.

Macroscopic coherence and superfluidity are not restricted to systems close to
thermodynamic equilibrium, such as Bose liquids, superconductors and ultracold
atomic gases. It has also been recently observed in contexts quite far from equilibrium,
where the system is found in a steady state realised by a dynamical balance of drive and
loss processes. Within this broad research area, a prominent role in the study of non-
equilibrium superfluidity is played by semiconductor microcavities [363–366], which
have been also among the first condensed matter routes to the study of BEC physics
and quantum correlations in bosonic systems [367–370]. These systems allow for the
possibility of coupling light quanta with the bosonic collective modes of semiconducting
materials, also known as excitons: this leads to the formation of microcavity EP,
quasiparticles with hybrid light-matter features. Aside from the physically inspiring
feature of providing photons with an effective mass, the enormous interest attracted
by these physical entities is motivated by the possibility of manipulating many-body
interactions by changing the driving power of polaritons and the energy detuning

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.140402
https://www.sciencedirect.com/science/article/abs/pii/S0749603607002303
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between photons and excitons, as well as of accurately probing the matter component
of the steady state by measuring the properties of the emitted light. An additional
advantage of semiconductor microcavities is that they can host clean realisations of
BEC and superfluidity with relatively large critical temperatures [363], only limited
by the dipole interactions between excitons and photons in semiconductor devices
such as GaAs. Other materials, such as GaN, have been shown to allow for polariton
lasing at room temperature [371, 372], an outstanding result that has promoted
numerous technological efforts aiming at the creation of innovative stages for polariton
superfluidity and correlated bosonic physics in general. Quantum collective effects at
such high temperatures are believed to be suitable for actual device applications, e.g. in
quantum storage and computation, in addition to the transport of light-matter pulses
without destructive losses over macroscopic distances.

Even if many-body interactions are typically weak in EP systems, in some notable
cases they can lead to unexpected strong-correlation effects, see e.g. [373]. However,
several ways to boost polariton-polariton interactions have been proposed over the
last decade, see for example [374], motivated also by the lively interest stirred by the
first experimental observation of BEC in a semiconductor device [367]. In this regard,
condensation of EP’s in a flat-band system has been recently reported in [375] and
has opened a new line of research focusing on the interplay between frustration and
interaction out of equilibrium. More generally, the possibility of exploiting EP-inspired
systems governed by the effective GPE dynamics of light propagation in non-linear
media for quantum simulation purposes has been extensively addressed in [376–378].

In parallel with the progress in controlling light-matter interactions in semiconductor
structures to realise quantum fluids of light [41], the scientific community has also seen
great advances in the fields of quantum non-linear optics and cavity QED. This has
encouraged proposals to study many-body physics by the manipulation of strongly-
correlated photons. At first, theoretical and experimental setups based on arrays
of coupled resonators were considered, where trapped photons were assumed to
interact with either real or artificial atoms. Along this direction, pioneering studies
have suggested the realisation of quantum phase transitions of the Mott-superfluid
type qualifying the well-known Jaynes-Cummings-Hubbard (JCH) model under the
mean-field approximation [379–381]. These first works have been followed soon by
a number of studies investigating more specific features and simulations avenues,
including beyond-mean-field effects [382], strongly-interacting polaritons in photonic
crystals [383], propagation of photonic and atomic excitations [384], the design of spin
models [385–387], and fractional quantum Hall physics [388]. More recently, the out-of-
equilibrium phases of driven-dissipative BH models – realised via coherently-pumped
arrays of non-linear cavities – has gathered much interest, motivated by the prospect of
synthesising equilibrium-like quantum states, as well as by the occurrence of peculiar
bistability phenomena and modulational instabilities in the steady state [19, 22, 389,
390].

These early proposals have laid the foundations of a novel research line of quantum
simulation science, built on the variety of physical phenomena taking place in hybrid
light-matter systems. To mention a few of such seminal works without trying to be
exhaustive, we refer the reader to studies exploring entanglement generation [387,
391–393], multi-component models and the emergence of solitonic behaviours [394,
395], the strong-coupling theory of the JCH model [396], and applications in quantum
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information processing [397]. With particular reference to the technological devel-
opments concerning cavity QED resonators, these have found their state-of-the-art
implementation in Circuit Quantum Electodynamics (C-QED) platforms [398], which
benefit from broadly-tunable coupling strengths and low decoherence rates. Other
technologies such as photonic crystal structures and open cavity configurations have
also been explored [399, 400]. More recently, it has been also proposed to couple
superconducting circuits with nitrogen-vacancy centres as a promising alternative in
the quantum simulation toolbox [401–403]. By and large, the possibility of efficiently
measuring correlation functions of photonic states, the integrability of the proposed
platforms with additional on-chip optical components, and the intriguing perspective of
operating even at room temperatures have made quantum simulation within the cavity
QED framework a quickly evolving and thriving field at the frontier of many-body
physics [404, 405].

Independently of the class of systems and devices where they are realised, proper-
ties which characterise driven-dissipative quantum gases are fundamentally different
compared to those of superfluids or more general coherent phases at thermal equilib-
rium, and thus offer the exciting opportunity to investigate unprecedented physical
phenomena, as well as brand-new types of quantum coherence and critical behaviours.
This second Part of the Thesis is aimed at providing a non-comprehensive theoretical
description of these properties in two distinct examples of quantum fluids of light. In
the present Chapter, we will restrict ourselves to the case of weak interactions and the
physics of EP superfluids, with special attention devoted to their collective excitations
in different dissipative regimes. In the next Chapter, we will take a leap towards the
realm of strong correlations and analyse quantum fluctuations in a driven-dissipative
C-QED system of hard-core bosons: here, the superfluid state shares the phase diagram
with a normal phase characterised by Mott-like correlations via a quantum phase
transition of the stationary state. Such an insulating regime will be shown to strongly
differ from the antibunched mixed state identified in [22] as a key consequence of the
non-Markovian pumping scheme adopted in our system. More in detail, we will also
discuss in detail which features of out-of-equilibrium superfluidity are affected by the
compresence of strong interactions and dissipations.

1.2 The case study of exciton-polariton condensates

1.2.1 Exciton-polariton coherence in a nutshell

The schematic picture of the experimental realisation of a EP condensate is sketched in
Figure 1.1. Upon injecting light at high energy, free-charge carriers are first generated
from the semiconductor material composing the microcavity. High-energy polaritons
are subsequently cooled down by phonon emission, which leads to the creation of an
incoherent gas of excitons in the quantum well [Figure 1.1(a)] whose energy accumulates
on top of the lower polariton branch (LP), also known as the bottleneck region [see the
orange points in Figure 1.1(b)]. This intermediate state acts as a reservoir for the EP
condensate: polariton-polariton collisions drive the scattering of polaritons from the
bottleneck region to the bottom of the LP branch. When the stimulated scattering rate
overcomes dissipative losses, the EP field becomes coherent and a fully-fledged BEC
appears.
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Figure 1.1: Panel (a): illustration of the semiconductor microcavity setting leading to a coupling between excitonic excitations
and photons insides a quantum well. Panel (b): sketch of the driving mechanism pumping the reservoir polaritons from the
bottleneck region (orange points) into the condensate mode (red ellipse) at the bottom of the LP band (solid green line). The
grey dashed lines indicate the excitonic and cavity photon bands, hybridising into the LP and the UP (upper polariton band,
blue solid line). Notice that the cavity photons are responsible for giving the effective mass of EP’s in the LP band.

In the following, we proceed to review a simple yet effective mean-field model
of the EP setting, which also illustrates some of the basic physical principles behind
the development of quantum coherence in a driven-dissipative system. In particular,
we highlight that such a theoretical formulation is inspired by the classical treatment
of laser operation [406], and closely resembles the theory of atomic lasers developed
in [407]. The main advantage of the model consists in the fact that it does not involve
the specifics of the microscopic physics of polaritons, and therefore can be used to
describe the out-of-equilibrium dynamics independently of details of the pumping
scheme. Only three assumptions are required to hold in order to provide the model
with physical consistency: i) a single state of the LP branch is macroscopically occupied,
so that it can be described by a classical field; ii) the state of the reservoir is fully
determined by the spatial polariton density nR(r, t). This second assumption requires
that relaxation processes are fast enough to ensure local equilibrium of the polariton
reservoir in the bottleneck region, and that quantum coherence forming between the
reservoir and the condensate decays on a sufficiently fast timescale compared to the EP
condensate lifetime.

1.2.2 Mean-field theory and elementary excitations

Under the assumptions outlined in the previous Subsection, the condensate dynamics
is to a first approximation described by a generalised GPE for the macroscopic EP
coherent field including amplification and loss terms,

i
∂ψ(r, t)
∂t

=
{

− ∇2

2mLP
+ i

2 [R(nR) − γ] + g |ψ(r, t)|2 + 2 g̃ nR(r, t)
}
ψ(r, t) (1.1)

where mLP is the effective mass of the LP branch, γ is the condensate loss rate and
g is the strength of the polariton-polariton interaction within the condensate. The
stimulated scattering of reservoir polaritons into the condensate mode is encoded in the
termR(nR), which is defined to be a monotonically growing function depending on the



1.2 The case study of exciton-polariton condensates 143

details of the driving mechanism, while the mean-field interaction experienced by the
condensate polaritons due to elastic collisions with the reservoir components is given
by the term 2 g̃ nR(r, t), where g̃ is generally different from g. For clarity, we emphasise
that the GPE (1.1) requires that density and phase fluctuations of the condensate field
are small. Strictly speaking, this regime is reached for pumping powers well above the
condensation threshold: in the following Subsection, we will see how the violation of
this assumption manifests in the dynamical behaviour of the system at the level of its
elementary excitations.

The dynamics of the condensate is coupled to the Boltzmann diffusion equation for
the density of reservoir polaritons, reading

i
∂nR(r, t)

∂t
= P − γR nR(r, t) −R(nR) |ψ(r, t)|2 +DR ∇2nR(r, t) . (1.2)

Polaritons are pumped in the reservoir with a continuous and uniform pumping rate
P , and relax according to the damping rate γR. The so-called hole-burning effect due
to the scattering of reservoir polaritons into the condensate is taken into account by
the term R(nR) |ψ(r, t)|2, which evidently establish the coupling between reservoir
polaritons and the condensate field; reservoir polaritons are also assumed to undergo
spatial diffusion in relation to a diffusion constant DR.

By inspection of Eqs. (1.1)-(1.2), the stationary state of the system can be easily found
by means of the ansatz

ψ(r, t) = ψ0 e
−i µ̃ t , (1.3a)

nR(r, t) = n0
R . (1.3b)

For small P , no condensate is present (ψ0 = 0) and the reservoir density is given by
n0

R = P/γR. This incoherent solution is dynamically stable as long as the effective
pumping of polaritons at the bottom of the LP branch is overcome by losses, namely
R
(
n0

R
)
< γ. The lasing threshold P = Pthr corresponds to the value of n0

R which
guarantees equilibrium between amplification and losses: when the pumping rate P
is further increased above the threshold, a condensate appears. Stationarity imposes
the net gain R

(
n0

R
)

− γ to vanish, a condition that fixes the reservoir density to the
equilibrium value n0

R = nthr
R . Correspondingly, the condensate density is given by

ρc = |ψ0|2 = (P − Pthr) /γ, while the parametric oscillation of the order parameter has
the frequency µ̃ = µ+ 2 g̃ nthr

R , with µ = g ρc being the usual mean-field shift of the
condensate chemical potential due to interactions.

The generality of the mean-field model of Eqs. (1.1)-1.2 has the crucial advantage of
taking into account the multi-mode nature of the spatially extended polariton field and
describing its coherent dynamics on the same footing: these features are essential to a
robust study of the elementary excitations of the condensate. In close analogy with
the linearisation of the TDGE in Eq. (2.12) of Chapter 2, the excitation spectrum of the
driven-dissipative EP system can be obtained by expanding Eqs. (1.1)-1.2 around the
stationary state solution in terms of linear fluctuations. Thanks to the translational
invariance of the system, fluctuations of the condensate field and reservoir density can
be decomposed as

ψ(r, t) = ψ0
[
u

k
ei(k·r−ω t) + v∗

k
e−i(k·r−ω t)

]
e−i µ t , (1.4a)
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n(r, t) = n0
R

[
w

k
ei(k·r−ω t) + c.c.

]
. (1.4b)

Substituting the above expansions into the equations of motion (1.1)-1.2 and keeping
terms up to linear order, we readily obtain the eigenvalue equation

L̂k

uk

v
k

w
k

 = ω

uk

v
k

w
k

 , (1.5)

where the generalised Bogoliubov matrix L̂k has the form

L̂k ≡

 fk + µ µ 2 γ µ
α γR

+ iβ γ
2

−µ −fk − µ −2 γ µ
α γR

+ iβ γ
2

−i α γR −i α γR −i (η γR +Dk)

 , (1.6)

and the standard Hartree-Fock value g̃ = 2 g has been considered. Here, α = Pthr
P − 1

is the relative deviation of the pumping rate from the lasing threshold, the coefficient
β = n0

R R
′(n0

R
)
/R
(
n0

R
)

characterises the dependence of the amplification rate R
(
n0

R
)

on the reservoir density, η = 1+αβ can be regarded as the effective pumping rate on the
condensate mode. Moreover, we have defined fk = (2mLP)−1 k2 as the free-particle
dispersion of polaritons andDk = DR k2. Quite remarkably, we note that the excitation
spectrum does not depend on the precise value of the scattering rate R

(
n0

R
)

of the
reservoir polaritons into the condensate mode, but only the relative pumping rate α
and the effective exponent β do matter via η, as we will discuss in more detail in the
following. The excitation spectrum can be straightforwardly determined by calculating
the solutions of the equation det

(
L̂k − ω 1

)
= 0, whose unfolded expression is

ω3 + i (η γR +Dk)
(
ω2 − ω2

Bog,k

)
−
[
ω2

Bog,k + (η − 1) γ γR
]
ω + 4 i γ µ fk = 0 . (1.7)

In the previous equation, ωBog,k is the usual Bogoliubov dispersion of the Goldstone
mode at equilibrium, reading

ωBog,k ≡
√
fk (fk + 2µ) (1.8)

with sound velocity

cs,Bog ≡
√

µ

mLP
(1.9)

in the long-wavelength limit.
Typical examples of the dispersion of the elementary excitations are shown in

Figure 1.2, where the momentum is rescaled by the healing length of the condensate ξ =
(2mLP µ)−1/2. As the onset of a BEC entails a spontaneous breaking of a U(1) symmetry,
the excitation spectrum always involves a Goldstone branch whose dispersion ωGol(k)
vanishes at low momenta. Physically, this mode can be understood as an arbitrarily
soft rotation of the condensate phase across the sample: one can readily verify that the
generator (1,−1, 0)T of global phase rotations is indeed an eigenvector of L̂k=0 with a
zero eigenvalue.

Let us analyse the different parametric cases in more detail, starting from the
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Figure 1.2: Selected examples of the energy spectrum of the collective modes of an EP condensate in a 2D quantum well.
The upper panels show the real part of the excitation energies, while the lower panels refer to the imaginary parts or
damping rates of the excitations. For all the panels, common parameters of the system are µ/γ = Pthr/γ = β = 1 and
DR/γ = 5 · 10−4. The healing length of the condensate is equal to ξ ≈ 14.02 for panels (b)-(b′) and ξ ≈ 6.97 otherwise.

physically most relevant regime γ ≪ γR where the reservoir state is able to follow
adiabatically the condensate dynamics. The dispersion for this case is shown in
Figure 1.2(a)-(a′): in stark contrast with the linear dispersion of the propagating sound
mode in equilibrium BEC’s [40], an unconventional feature of the Goldstone mode [red
solid line] in the present out-of-equilibrium context is its diffusive and non-propagating
behaviour at low |k|: specifically, the real part of the spectrum is dispersionless and
equal to zero, while the imaginary part behaves quadratically with momentum. This
fundamental result was among the first indications of the universal character of
the Goldstone diffusivity, which is indeed a generic fact in non-equilibrium phase
transitions, not only under a coherent drive as in pattern-forming systems [408, 409],
but also in the case of incoherent pumping. It is important to notice that such a diffusive
behaviour is not due to the spatial diffusion of reservoir polaritons, and would be
present even whenDR = 0. The valueDR/γ = 5·10−4 chosen to produce the numerical
results of Figure 1.2 has been suggested by experimental studies on CdTe quantum
well samples [410].

An analytical explanation of the diffusive behaviour can be straightforwardly
derived by adiabatically eliminating the dispersionless and strongly damped reservoir
mode – referred to as D-mode in the Figure 1.2(a)-(a′) –, whose imaginary energy is close
to ΓD(k) ≈ −η γR. Taking for simplicity DR = 0, the two branches of the condensate
excitations [red lines] turn out to have the approximate dispersion

ωGol(k) ≈ −iΓ2 ±

√
ω2

Bog,k − Γ2

4 . (1.10)

The non-equilibrium nature of the above excitations is quantified by the effective
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damping rate

Γ ≡ (η − 1) γ
η

, (1.11)

which interestingly vanishes in correspondence of the condensation threshold (η = 1)
and tends to the bare loss rate γ for high pumping intensities α ≫ 1. The upper branch
coincides with the Goldstone mode discussed before, while the lower branch with a
negative excitation energy is related to modulations of the condensate density. For low
|k| in the diffusive regime, the latter mode is damped with a finite rate given by Γ.
From Eq. (1.10), we immediately obtain a prediction for the width in momentum space
∆kdiff where the Goldstone real dispersion is flat, and phase excitations are diffusive.
In particular, we have

|∆kdiff ξ|2 ≈
√

1 + Γ2

4µ2 − 1 =

√
1 +

(
β γ2

2Pthr g η

)2
− 1 . (1.12)

Outside this region, the excitation modes (1.10) overlap with the standard Bogoliubov
dispersion of an equilibrium condensate. It is worth observing that, however, the
sound-like behaviour is observable provided that |∆kdiff | ≪ ξ−1, with ξ being the
healing length of the condensate. By a simple calculation, we find that this condition
corresponds to the requirement γ2/γR ≪ g n0

R η/β, meaning that the condensate
damping rate should not be comparable with the energy scale of the interaction with
the reservoir.

In the analysis of [411], it was first observed that the situation becomes more complex
when the condensate and reservoir decay rates have comparable magnitudes and the
reservoir cannot be adiabatically eliminated from the dynamical description of the
system. For moderate values of η, the most significant feature is the incommensurate
dynamical instability Im(ω) > 0 of the D-mode branch that is visible in Figure 1.2(b′):
this indicates that the homogeneous state is no longer dynamically stable, and a spatial
modulation has to appear in the density profile of the condensate. The origin of the
instability can be traced back to the repulsive interaction between the condensate and
the reservoir polaritons: a local depletion of the reservoir density nR(r, t) creates a
potential well which attracts the condensate polaritons, making the depletion in the
local reservoir density even larger. In particular, we find that this scenario is possible
only for γ/γR < 2 η, so that the effect of reservoir-condensate interactions is able to
overcome the tendency of density modulations to relax down as previously discussed.

Quite remarkably, the dynamical instability of the hybridised Goldstone mode
due to polariton interactions does not exhaust the physics of the EP condensate in
the anti-adiabatic regime: in fact, by exploring further the parameter space of the
system and studying the possible solutions of the eigenvalue equation (1.7), we find
that the interplay between pumping and losses can result in a wider range of physical
scenarios [see in particular panels (c)-(c′) and (d)-(d′) of Figure 1.2], which we will
discuss extensively in the following Subsection.

1.2.3 Phase diagram of the excitations

On the basis of the structure of the Goldstone mode in the long-wavelength limit, we
can construct a schematic phase diagram of EP condensates in terms of the dissipative
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Figure 1.3: Phase diagram based on the structure of the excitation spectrum of a EP condensate. Blue shaded area: stable and
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(
1 −

√
1 − γR/γ

)
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(
1 +

√
1 − γR/γ

)
: gap opening region.

Blue solid line, η = 2 γ/γR: stable and subdiffusive Goldstone mode. Green solid line, η → 1+: unstable and superdiffusive
Goldstone mode.

energy scales of the problem (the effective pumping η and the loss ratio γ/γR), shown
in Figure 1.3. The following discussion will be of great importance to establish a deeper
parallelism between the out-of-equilibrium excitations of a EP system and quantum
fluctuations of the driven-dissipative fluid of light that we will study in the next
Chapter.

The upper left corner of the phase diagram is entirely occupied by the regime of
the standard diffusive G-mode, a term by which we indicate the only excitation with
a non-trivial positive-energy dispersion in real space [solid red lines in the first row
of Figure 1.2]. Notably, we discover that this region comprises not only the adiabatic
limit γ/γR ≤ 1/2, but also those states that are stabilised at sufficiently large pumping
η when the loss ratio γ/γR is larger. Therefore, the G-mode can still have a diffusive
character when the effective pumping is strong enough to win over the anti-adiabaticity
of the loss dynamics, thus limiting the amount of phase/amplitude fluctuations in the
condensate. In general, by straightforward analytical manipulations of Eq. (1.7), we
find that the diffusive coefficient of the Goldstone mode has the expression

D = µ

mLP Γ

(
1 − 2 γ

η γR

)
=
[
Γ−1 − 2

(η − 1) γR

]
c2

s,Bog (1.13)

and is interestingly given by a renormalisation of the Bogoliubov sound velocity due to
the balance between effective pumping on the condensate mode and reservoir losses.

Richer situations arise when γ/γR > 1/2 and η ≲ 4 γ/γR − 1. Specifically, we
can identify a stability region for η > 2 γ/γR and an instability region otherwise,
where the imaginary part of the Goldstone dispersion becomes positive over a finite
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range of momenta (including the unstable configuration discussed in the previous
Subsection).

Let us first consider the case 1/2 < γ/γR < 1. Here, the stable diffusive G-mode
survives down to η = 2 γ/γR [blue dashed line], below which it becomes unstable
developing a negative diffusive coefficient, see Eq. (1.13). In particular, we notice that this
corresponds to Γ > (η − 1) γR/2, meaning that the effective lifetime of the condensate
mode is smaller than the one of reservoir polaritons. For γ/γR > 1, the dissipative
dynamics of the condensate and the polariton reservoir are more strongly related to
each other, such that the D-mode comes into play to determine the coherent excitations
of the system. Starting from the region of the diffusive G-mode and lowering η, phase
excitations hybridise with the dissipative mode and a stable form of the diffusive D-
mode takes the role of the Goldstone branch [blue shaded area between the red dashed
line and the blue solid line]. Most interestingly, the hybridisation in the excitation
spectrum preempts the opening of a gap in the G-mode dispersion [Figure 1.2(c)-
(c′)], which occurs in the effective pumping range 2 γ/γR

(
1 −

√
1 − γR/γ

)
< η <

2 γ/γR
(
1 +

√
1 − γR/γ

)
[orange shaded area between the red solid lines]. In particular,

the energy gap reads

∆gap = ±η

2

[4 (η − 1)
η2

γ

γR
− 1

]1/2
γR = ±

[ 4 Γ
η γR

− 1
]1/2

|Γgap(k = 0)|

= ±
[

2 Γ
|Γgap(k = 0)| − 1

]1/2

|Γgap(k = 0)| ,

(1.14)
where

Γgap(k = 0) = −iη γR
2 (1.15)

is the damping rate of the G-mode and amplitude branches at k = 0. In particular, it is
worth noting that the energy gap is set by the reservoir loss rate γR and vanishes for
Γ < |Γgap(k = 0)| /2, namely when the effective pumping on the condensate mode is at
least an order of magnitude slower than the dissipative dynamics of the reservoir. The
line η = 2 γ/γR separating stable and unstable regimes is the bisector of this area [blue
solid line]: this strongly supports the idea that the gap opening phenomenon is tightly
related to the appearance of the diffusive D-mode. Furthermore, we emphasise that an
energy gap in the long-wavelength limit could be interpreted in terms of relaxation
oscillations of the EP lasing state [412, 413]. Eventually, for sufficiently low η, the
excitation gap closes, such that the unstable D-mode described in [411] is recovered.

It is worth discussing in more detail what happens on the stability threshold
η = 2 γ/γR. Here, the diffusive coefficient D vanishes identically, providing the
Goldstone dispersion with a different power-law dependence on momentum. In
particular, it turns out that the Goldstone propagation is stable and subdiffusive with
ΓGol(k) ∼ −iDk4 [Figure 1.2(d)-(d′)]. The precise nature of this peculiar instance of
the Goldstone mode is once again determined by the loss ratio γ/γR: if 1/2 < γ/γR < 1,
it is the standard G-mode branch; for γ/γR > 1, this is replaced by the hybridised
D-mode. The subdiffusion coefficient D can be determined analytically with the result
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D = 1
Γ

(
1

4m2
LP

+
DR c

2
s,Bog

η γR

)
= 1

4m2
LP Γ

(
1 + 4DR µ

2

η γR

)
≈
(
4m2

LP Γ
)−1

, (1.16)

and mainly hinges on the lifetime of the condensate mode Γ−1.
Importantly, the line η = 2 γ/γR is not the only set of parameters for which the

Goldstone diffusivity breaks down into a different pattern of propagation. This is also
the case of the limit η → 1+ [green solid line], namely on top of the gain threshold in
the presence of an extremely dilute condensate. Here, the G-mode branch develops an
unstable superdiffusive behaviour ΓGol(k) ∼ i C |k|, whose dispersion is controlled by
the renormalised sound velocity

C2 =
( 2 γ
η γR

− 1
)
c2

s,Bog . (1.17)

More in detail, the superdiffusivity of the Goldstone mode is effective only on sufficiently
large spatial scales, namely

|ksuperdiff ξ|2 ≪ (η − 1) Γ γ
2
(

2 γ
γR

− 1
)
µ2

=
(
β γ2)2

2
(

2 γ
γR

− 1
)

(Pthr g)2 . (1.18)

However, such a critical type of instability is found to occur in the anti-adiabatic regime
γ/γR > 1/2 only. When η = 1 exactly, the sound velocity disappears proportionally to
the condensate order parameter, and we recover the on-threshold spectrum given by

ωthr
Gol/Amp = ±ωBog,k → fk , (1.19a)

ωthr
D = −i (γR +Dk) . (1.19b)

for the Goldstone/amplitude and D-mode branches respectively.
The overall structure of the excitation spectrum is closely reflected by the one-

body dynamical correlations of the EP condensate. For brevity, our results for these
quantities are examined in Appendix F.1, as they provide a particularly insightful basis
for comparison with quantum fluctuations in the driven-dissipative photonic lattice
that will be the subject of the next Chapter. In particular, most of the physics of EP
condensates introduced before will be shown to encompass also the phenomenology
of strongly-correlated superfluid regimes, whereas unprecedented properties and
manifestations of quantum coherence due to the compresence of dissipation and strong
interactions will require a more comprehensive analysis of quantum fluctuations out
of equilibrium.





Elementary excitations of a

driven-dissipatively stabilised

strongly-correlated photon fluid 2

The present Chapter is based on selected results discussed in the following upcoming
publication.

▶ Fabio Caleffi, M. Capone, and I. Carusotto, Collective excitations of a strongly-
correlated non-equilibrium photon fluid across the Mott/superfluid phase transition, In
preparation (2022)

2.1 Driven-dissipative photonic lattice: a paradigmatic model

We consider a d-dimensional array of optical cavities modelled by a BH Hamiltonian,

ĤBH ≡ −J
∑
⟨r,s⟩

â†
r âs +

∑
r

(
ωc â

†
r âr + U â†

r â
†
r âr âr

)
, (2.1)

where âr
(
â†

r
)

is the bosonic annihilation (creation) operator of a photon in the cavity
at site r, J tunnelling (or hopping) rate between the cavities, ωc is the natural frequency
of each cavity, and U is the energy scale of the Kerr non-linearity, which has the same
second-quantised form of a Hubbard interaction.

The first building block of the driven-dissipative dynamics of the BH array is given
by the Rabi coupling of each cavity with an external Two-Level Emitters (TLE), which
is pumped incoherently via a Markovian source with rate Γp. The Hamiltonian of the
TLE’s and their coupling with the cavities are ruled by

Ĥem ≡ ωat
∑

r
σ̂+

r σ̂
−
r + Ω

∑
r

(
â†

r σ̂
−
r + H.c.

)
, (2.2)

where σ̂±
r is the rising (lowering) operator in the pseudospin space of one TLE. We

emphasise here that the coupling with the two-level atoms makes a simple realisation
of a non-Markovian driving protocol for the photonic lattice [414]. Contextually, a
suitable extension of the same scheme has been shown to ideally provide a high-fidelity
stabilisation of the BH phase diagram [20], at least in the limit of low dimensions.

The dynamics of photon pumping and leakage processes, along with the unitary
evolution of the system, is described by the Lindblad equation for the full density
matrix of the system,

∂tρ̂ = −i
[
Ĥ, ρ̂

]
+ 1

2

∑
r

{
Γl D[âr; ρ̂] + γD

[
σ̂−

r ; ρ̂
]

+ Γp D
[
σ̂+

r ; ρ̂
]}

, (2.3)

where Ĥ ≡ ĤBH + Ĥem, and

D
[
Ô; ρ̂

]
≡ 2 Ô ρ̂ Ô† −

{
Ô† Ô, ρ̂

}
(2.4)

is the so-called dissipator associated with the operator Ô. Here, Γl denotes the radiative
loss rate of the cavities, while γ is the photon leakage rate of the TLE’s. A pictorial
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Figure 2.1: Schematic illustration of the driven-dissipative photonic system under study. Each cavity is subject to non-
Markovian pumping via the Rabi drive Ω involving a TLE, while the coupling with the environment produces incoherent
photon leakage at a rate Γl.

sketch of the model setting is provided in Figure 2.1.

2.2 Mean-field theory of the stationary state

2.2.1 Gutzwiller approximation of the Lindblad dynamics

Since we aim at encompassing a non-trivial description of the strongly-interacting
limit of the driven-dissipative photonic lattice, we take inspiration from our research
efforts at equilibrium and study the Non-Equilibrium Stationary State (NESS) of the
model within the Gutzwiller mean-field approximation [19, 22, 390], which consists in
a site-factorised ansatz for the density matrix,

ρ̂ =
⊗

r

∑
n,m

∑
σ,σ′

cn,m,σ,σ′(r) |n, σ⟩r
〈
m,σ′∣∣

r . (2.5)

Here, |n, σ⟩r denotes the global quantum state of a single cavity-TLE pair, with the former
occupied by n photons and the latter having the polarisation σ = ±1, and cn,m,σ,σ′(r)
is the corresponding density matrix coefficient. Clearly, cn,m,σ,σ′(r) factorises into the
usual Gutzwiller wave function weights as cn,m,σ,σ′(r) = c∗

m,σ′(r) cn,σ(r) whenever the
density matrix describes a pure BH state.

Inserting the ansatz (2.5) and adopting the vectorised representation of ρ̂ (also
known as Choi-Jamiolkowski isomorphism [415, 416]), the Lindblad equation turns
into a set of mutually coupled dynamical equations for the density matrix elements,

i ∂t c⃗(r) = L̂[⃗c(r)] · c⃗(r) . (2.6)

More precisely, the Eqs. (2.6) have the form of a set of generalised GPE’s which allow
to find an approximate solution to the non-equilibrium evolution of the system at
the price of introducing non-linearities in the dynamics. More precisely, the Lindblad
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superoperator L̂[⃗c(r)] has the expression

Ln′,m′,µ,µ′

n,m,σ,σ′ [⃗c(r)] ≡ −J

(√n′ + 1 δn,n′+1 δm,m′ δσ,µ δσ′,µ′ −
√
m′ δn,n′ δm,m′−1 δσ,µ δσ,µ

)∑
s(r)

ψ(s)

+
(√

n′ δn,n′−1 δm,m′ δσ,µ δσ′,µ′ −
√
m′ + 1 δn,n′ δm,m′+1 δσ,µ δσ′,µ′

)∑
s(r)

ψ∗(s)


+
{
ωc

(
n′ −m′)+ U

[
n′ (n′ − 1

)
−m′ (m′ − 1

)]
+ ω

µ− µ′

2

}
δn,n′ δm,m′ δσ,µ δσ′,µ′

+ Ω
(√

n′ + 1 δn,n′+1 δm,m′ δσ,−1 δσ,−µ δσ′,µ′ −
√
m′ δn,n′ δm,m′−1 δσ′,1 δσ,µ δσ′,−µ′ (2.7)

+
√
n′ δn,n′−1 δm,m′ δσ,1 δσ,−µ δσ′,µ′ −

√
m′ + 1 δn,n′ δm,m′+1 δσ′,−1 δσ,µ δσ′,−µ′

)
+ iΓl

[√
n′ m′ δn,n′−1 δm,m′−1 δσ,µ δσ′,µ′ − 1

2
(
n′ +m′) δn,n′ δm,m′ δσ,µ δσ′,µ′

]
+ i γ

(
δσ,−1 δσ′,−1 δn,n′ δm,m′ δσ,−µ δσ′,−µ′ − 2 + µ+ µ′

4 δn,n′ δm,m′ δσ,µ δσ′,µ′

)
+ iΓp

(
δσ,1 δσ′,1 δn,n′ δm,m′ δσ,−µ δσ′,−µ′ − 2 − µ− µ′

4 δn,n′ δm,m′ δσ,µ δσ′,µ′

)
,

where the notation s(r) labels the nearest-neighbouring sites of r and

ψ(r) ≡ Tr(ρ̂ âr) =
∑

n

∑
σ

√
n+ 1 cn+1,n,σ,σ(r) (2.8)

is the condensation order parameter. The mean-field NESS of the system is determined
by numerically propagating Eq. (2.7) in real time through a fourth-order Runge-Kutta
algorithm, until convergence to the homogeneous solution ρ̂0 = ρ̂(t → ∞) = c⃗0.

Besides the order parameter value, other local expectations values are straightfor-
wardly evaluated through the following formulas,

n(r) ≡ Tr(ρ̂ n̂r) =
∑

n

∑
σ

n cn,n,σ,σ(r) , (2.9)

∆n2(r) ≡ Tr
{
ρ̂ [n̂r − n(r)]2

}
=
∑

n

∑
σ

n2 cn,n,σ,σ(r) − n(r)2 , (2.10)

Sz(r) ≡ 1
2Tr(ρ̂ σ̂z

r) = 1
2
∑

n

∑
σ

σ cn,n,σ,σ(r) , (2.11)

S−(r) ≡ 1
2Tr

(
ρ̂ σ̂−

r
)

= 1
2
∑

n

cn,n,1,−1(r) , (2.12)

providing respectively the cavity density/filling, the photon density variance, the
pseudospin and order parameter of the emitter coupled to the cavity at site r. Moreover,
we can easily estimate the purity

P ≡ Tr
(
ρ̂2
)

=
∑
n,m

∑
σ,σ′

∣∣cn,m,σ,σ′
∣∣2 (2.13)

and the von-Neumann entropy

S ≡ −Tr[ρ̂ ln (ρ̂)] = −
∑

i

λi ln (λi) (2.14)
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of the NESS, where we have made the hypothesis of a uniform steady state under
our local approximation of ρ̂. In particular, we notice that the purity P is identical to
the Frobenius norm of the density matrix. In Eq. (2.14), the summation runs over the
eigenvalues of the density matrix λi.

We wish to emphasise that the ansatz (2.5) entails a non-perturbative description of
the local Rabi coupling in (2.2), namely it properly accounts for the local correlations
between the cavities and the TLE’s and therefore allows to capture the physics of the so-
called ultrastrong coupling limit Ω ≳

√
Γp Γl, also known as the C-QED regime. In this

Chapter, we consider the hard-core limit of our model (U/J → ∞), which represents
a simple yet prototypical scenario of the physics of strong photon correlations that
we want to address in this work. Moreover, we choose to set the TLE frequency to
ωat = ωc −z J (with z = 2 d), in order that the gain of photons is strongest at the bottom
of the cavity band (k = 0). This ensures that the spatially homogeneous condensate
underlying our mean-field calculation is not affected by spurious fragmentation effects
at finite k [417].

2.2.2 Phase diagram of the hard-core stationary state

Having outlined our mean-field approach to the driven-dissipative dynamics of ρ̂ and
the specific physical setting that we will address in the remainder of this Chapter,
we devote the present Subsection to analyse in detail the mean-field properties of
the out-of-equilibrium phase diagram of the system, with particular emphasis on the
quantum phase transition and crossovers between the different NESS configurations.
From now on, the pumping rate Γp will be set as the unit of energy for the sake of
simplicity.

In Figure 2.2(a), we show a projection of the hard-core phase diagram of the NESS in
the (J,Ω) space for Γl/Γp = 5 · 10−2 and γ/Γp = 10−3. Within our mean-field analysis,
the landscape of the possible states of the system consists of two phases, depending on
whether the U(1) symmetry of the BH lattice is broken or not. We first notice that the
symmetric state – which we anticipate to have an insulating character – occupies the
whole region below the so-called lasing threshold Γem/Γl = 1, where Γem ≡ 4 Ω2/Γp

is the effective emission rate of the TLE’s with respect to the BH lattice 1: in fact, a
necessary condition in order to have a significant population in the symmetry-broken
phase is that photon pumping overcomes the leakage rate Γl. For fixed Ω, the quantum
phase transition responsible for symmetry breaking occurs for a sufficiently large value
of z J ; in particular, the general trend is such that the symmetric state is more and more
robust against hopping processes, so that the critical point is shifted to larger values of
the hopping energy.

As regards the lobe-shaped region of the symmetry-broken state, we can distinguish
between two different regimes, namely above and below the tip of the lobe respectively.
In the following, we will further characterise the properties of the NESS phases
according to these two opposite situations, which we refer to as the weak-coupling
(Γem/Γl ∼ 1) [Figure 2.2(b)] and the strong-coupling (Γem/Γl ≳ 1) [Figure 2.2(c)]

1 Rigorously speaking, Γem = 4 Ω2/Γp is the effective pumping rate of the TLE’s in the perturbative limit
Ω ≪ Γp (see [20, 414] as applicable references), nevertheless such a quantity remarkably provides a
good rule of thumb for the same energy scale in the strong-coupling limit as well, see Eq. (2.18) and the
subsequent discussion.
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Figure 2.2: Panel (a): mean-field phase diagram of the NESS of the driven-dissipative hard-core photonic lattice for
Γl/Γp = 5 · 10−2 and γ/Γp = 10−3. The green line corresponds to the horizontal cut at Ω/Γp = 5 · 10−1 illustrated in
panel (c). The white point marks the position of the tip of the SFP lobe, while the white dashed lines enclose the region
of hole superfluidity. Panel (b): mean-field behaviour of the NESS observables across the I-to-SF transition at constant
Ω/Γp = Γl/Γp = 5 · 10−1 and γ/Γp = 10−3 in the weak-coupling regime. Panel (c): horizontal cut of the mean-field
phase diagram in panel (a) at constant Ω/Γp = 5 · 10−1 in the strong-coupling regime. Colour code of the lines in panels
(b)-(c): density [red]; density variance [orange]; photon order parameter [blue]; purity [black]; entropy [green]. The white
(orange-shaded) area indicates the SFP (IP) region, while the cyan-shaded stripe marks the values of z J for which a
dynamical instability due to the Goldstone mode appears (see Subsection 2.5.1).

Mott-like
state of
photons

regimes. More precisely, this distinction will be of particular importance to understand
the low-J properties of the superfluid phase.

Insulating phase & out-of-equilibrium quantum phase transition
We start our analysis by considering different horizontal cuts at constant Ω across the
phase diagram shown in Figure 2.2(a).

Below a critical value of the hopping Jc, the NESS is found in an Insulating Phase
(IP) with vanishing order parameter ψ0 = 0. More precisely, for a large enough Rabi
coupling Ω ≫

√
Γp Γl and J ≲ Jc [Figure 2.2(c)], the local density n0 [red solid line]

reaches a value close to 1, in such a way that the cavity array hosts an almost pure
Mott-like state [25, 414] as highlighted by the large purity [black solid line] of the NESS.
Correspondingly, the local density variance [orange solid line] and the entropy [green
solid line] are frozen in the same limit. It is important to notice that stabilisation of a
robust MI state is a peculiar result of the joint outcome of strong local interactions and
continuous pumping of photons.

Indeed, more general studies [414, 418] have shown that at J = 0 the driven-
dissipative dynamics ruled by the master equation (2.3) is always able to stabilise an
insulating NESS if the TLE frequency ωat is set to be resonant with the N → N + 1
transition of the Hubbard lattice, whereN is the total number of photons in the cavities.
The resulting weakly mixed state is dominated by the N + 1 photon state, while the
emitters are stuck in the excited σ = 1 state, thus forming an efficient reservoir for the
BH system. This situation requires a fine tuning of the parameters for a generic vale of
N ; however, the case N = 1 turns out to admit more relaxed constraints, namely

Γem
Γl

≫ 1 , (2.15a)

Γem Γ2
p

Γl U2 ≪ 1 , (2.15b)

Whereas the condition (2.15b) is always satisfied in our hard-core setting, the inequal-
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U(1)
symmetry

breaking by
incommen-
surability

ity (2.15a) clearly loosens in the weak-coupling regime Γem/Γl ∼ 1: here, the NESS
is an insulating mixed state at low density characterised by relatively large density
fluctuations and a sizeable entropy [see Figure 2.2(b)].

While the state at J = 0 is per se interesting, its structure undergoes a gradual
change by turning on the photon tunnelling J : this plays against the stabilisation of
a pure MI state and affects the effective pumping of photons into the cavities with
contrasting outcomes depending on Γem/Γl, as we discuss now in more detail.

Increasing the cavity bandwidth z J towards values comparable to Γp, lost photons
are repumped less efficiently. At strong coupling [Figure 2.2(c)], this leads to a substantial
decrease in both the local density n0 and the purity of the NESS, alongside an increase
of local density fluctuations and entropy generation. Notably, the situation changes
significantly at weak coupling [Figure 2.2(b)], where the onset of photon tunnelling
lowers density fluctuations and purifies the NESS. At the critical point Jc, the system
undergoes a second-order dynamical phase transition [419] to a Superfluid Phase (SFP),
developing a finite order parameter displaying limit cycles ψ0 = |ψ0| e−i ω0 t and with
modulus scaling as |ψ0| ∼

√
J − Jc [420].

We stress that, in the present context, the formation of a coherent delocalised
phase is not due to a competition between the hopping J and local interactions as
it happens usually in strongly-correlated systems: instead, it crucially results from
the incommensurability between the kinetic energy of photons propagating across
the lattice and the emission rate Γp. This effect translates into a smaller effective
pumping and a stronger competition between photon gain and losses as z J reaches
the critical point. In this respect, we point out that the I-to-SF transition occurs only for
a hole-dominated fluid, namely for n0 < 1/2, with the critical value of n0 decreasing
for increasing Γl. This fact is not only related to the inherent competition between
pumping and losses caused by the increase of J , but finds also an explanation in the
energy gained by the system through the formation of a condensate, as we will show
more explicitly in the next paragraph.

More quantitative insights on the energy scales involved in the development of
coherence inside the IP and in the breaking of U(1) symmetry can be obtained by an
exact derivation of the NESS density matrix c⃗0. Formally, this calculation amounts to
simply determine the unique eigenvector of L̂[⃗c(r)] with vanishing eigenvalue, which
corresponds to our mean-field approximation of the IP state. As a final result, we find
that the density matrix consists of five independent coefficients only, having expressions

(c0)0,1,1,−1 = z J Γl

Γp Ω + i
(Γp + Γl + γ) Γl

2 Γp Ω , (2.16a)

(c0)0,0,−1,−1 = γ

Γp
c0,0,1,1 + (Γl + γ) Γl

Γ2
p

, (2.16b)

(c0)0,0,1,1 = γ

Γp
+ Γp Γl

4 Ω2

(2 Ω
Γp

)2

+
(

1 + Γl + γ

Γp

)2

+
(

2 z J
Γp

)2
 , (2.16c)

(c0)1,1,−1,−1 = Γl + γ

Γp
, (2.16d)

(c0)1,1,1,1 = 1 , (2.16e)
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to be normalised by the trace Tr(ρ̂) =
∑

n

∑
σ (c0)n,n,σ,σ . Now, assuming to work in the

limit γ ≪ Γp, so that the TLE’s are most of the time in their excited state σ = 1, and
under the realistic condition Γl ≪ Γp, the order of magnitude of the critical value of
the photon bandwidth z Jc can be straightforwardly obtained by imposing

(c0)J=Jc
0,0,1,1

(c0)J=Jc
1,1,1,1

≃ 1 , (2.17)

namely that the probability of a cavity to be either occupied or empty is about the same.
From this condition, we get

z Jc

Γp
≃ 1

2

√
Γem
Γl

− 1 , (2.18)

which is in good agreement with the location of the I-to-SF boundary for a moderately
large Ω. Importantly, we note that the critical point exists as long as Γem/Γl ≥ 1, which
coincides exactly the lasing condition introduced before. Instructive information can be
also extracted from the off-diagonal element (c0)0,1,1,−1, which quantifies the degree of
quantum coherence in the IP. Comparing its (unnormalised) modulus at J = 0 with
the value at J = Jc, we find

∣∣∣(c0)J=0
0,1,1,−1

∣∣∣ = (Γp + Γl + γ) Γl

2 Γp Ω <
∣∣∣(c0)J=Jc

0,1,1,−1

∣∣∣ ≃
√

Γl

Γp
(2.19)

where the inequality holds compatibly with the usual hypothesis Γp ≫ Γl, γ and, not
surprisingly, when the lasing condition is fulfilled. Therefore, coherence in the IP state
develops upon increasing the hopping and is determined by the photon leakage rate Γl

only at the critical point, as we will also observe more explicitly in Subsection 2.5.1.
This result hints once more at the key role played by different dissipation mechanisms
in building coherence in the system, a feature that we will address more closely in the
following paragraph.

Superfluid phase
Inside the SFP, the local density n0 is still an overall decreasing function of J , which
therefore acts similarly to a chemical potential for the system. Indeed, we find that
the limit-cycle frequency shows only a little deviation from the mean-field hard-core
energy at equilibrium 2, that is ω0 ≈ z J (2n0 − 1) + ωc, meaning that the condensate
energy is lowered at large J by depleting photons [see Figure 2.3(a)]. Incidentally,
we notice that, in the case of the hard-core lattice, the mean-field shift of the energy
due to interactions is solely due to the hopping and reads ∆µ = 2 z J n0. Quite the
opposite, the condensate density ρc = |ψ0|2 is generally a non-monotonic function of J ,
depending on the gain ratio g ≡ Γem/Γp, see Figure 2.3(b). Interestingly, we notice that
a non-monotonic behaviour of the order parameter is a property in common with other
dissipative phase transitions, e.g. those appearing in spin chains [421, 422]. In these
systems, complexity in the mean-field properties of the order parameter is usually a
clue to the presence of subtle phenomena due to quantum fluctuations, not evident at
2 We direct the reader to Appendix F.2 for a review of the mean-field description of hard-core bosons on a

lattice.
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Figure 2.3: Panel (a): J-dependence of the relative deviation of the limit-cycle frequency of the SFP order parameter from
its equilibrium value ωeq = z J (2n0 − 1) + ωc for Ω/Γp = 5 · 10−1, Γl/Γp = 5 · 10−2 and γ/Γp = 10−3. The white
(orange-shaded) area indicates the SFP (IP) region. Panel (b): J-dependence of the order parameter of the SFP for different
constant values of Ω, ranging from the weak-coupling regime (light-blue line) to the strong-coupling limit (purple line),
corresponding to distinct horizontal cuts of the phase diagram shown in Figure 2.2(a). Panel (c): Ω-dependence of the order
parameter of the SFP for increasing constant values of J , corresponding to distinct vertical cuts of the same phase diagram.

Non-
monotonicity

of the
condensate

density

the level of the superficial NESS structure; in the next Sections, we will show that these
observations apply also to our specific case.

In the weak-coupling regime g ∼ 1 (namely, below the tip of the SFP lobe) [Fig-
ure 2.2(b)], ρc shows a maximum for J = Jm, after which it saturates n0 realising an
extremely pure and dilute condensate. Analogously ton0, both density fluctuations ∆n2

and the entropy S decrease monotonically, their maximum being located at the critical
point. This situation can be understood as follows. For J < Jm, where ∂ρc/∂n0 < 0,
local losses Γl start having a strong influence on the dissipative dynamics and favour
quantum coherence at the same time: since the condensate density increases despite
the photon leakage, the NESS can be classified as an instance of hole superfluid [43, 52].
For J > Jm, the large bandwidth z J overcomes the effect of all dissipative effects, so
that cavity photons form a dilute particle superfluid, which is also almost pure given the
narrowing of the pumping rate Γp as compared to J .

Interestingly, in the strong-coupling regime g ≳ 1 [Figure 2.2(c)], a second maximum
of ρc develops close to the critical point for Jc < J < Jm, mirrored by a sharp peak
in the NESS purity. In this hopping range, the Rabi coupling Ω is large enough to
pump photons in high-energy states overlapping with the would-be hard-core state
at equilibrium with 0 < ωc < z J . A notable signature of this physics is, besides a
marked entropy suppression, the particle character of the superfluid state in this region.
Furthermore, the maximal value of the condensate density is remarkably close to its
equilibrium value ρc = ∆n2/n0. In addition, we notice that the height of the intruding
maximum of ρc and the resulting degree of non-monotonicity appear to depend on
the gain ratio g: the stronger is the coupling with the TLE, the higher and wider is
the peak in the order parameter. For completeness, we highlight in advance that the
hopping region connecting the first maximum of ρc to the dilute limit [cyan-shaded
area in Figure 2.2(c)] is of particular importance, as it hides a dynamical instability of
low-energy excitations for Ω ∼ Γp, see the following Subsection 2.5.1.

For completeness, we point out that the J-dependence of ρc and all the other
mean-field quantities is quite similar to their Ω-dependence when crossing the SFP
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lobe at fixed J , as explicitly shown in Figure 2.3(c). Here, we observe that decreasing
Ω has the same effect of increasing J and, in particular, the “weak-coupling” type of
behaviour corresponds to small fixed values of J , sufficiently close to the tip of the SFP
lobe. This additional result confirms the physical picture of the hopping as a mechanism
opposing to pumping and viceversa and, most importantly, substantiate our diagnosis
of the SFP non-monotonic properties in terms of particle/hole superfluidity. In fact,
rigorously speaking, the precise character of the superfluid carriers is related to the
sign of s = sgn(∂ρc/∂n0) evaluated at fixed J [43, 423]. Nonetheless, in our system
we find that s does not change if calculated at fixed Ω for the same values of J , as
considered in the main discussion above. Putting these comments into perspective, we
remark that the knowledge of the particle/hole character of a superfluid state is of key
importance in order to address the problem of the stability of non-linear phenomena,
such as standing and propagating solitons [245, 246], that could be possibly realised in
our driven-dissipative setting [424–428].

2.3 Theory of Bogoliubov fluctuations

2.3.1 Collective modes

Taking advantage of the close analogy that we have identified between the Gutzwiller-
Lindblad equations (2.6) and the well-known GPE equation, we can take inspiration
from linear response methods at equilibrium [51, 52] – reviewed in Chapter 2 of Part I –
and consider small oscillations of the density around the NESS configuration of the
form

c⃗(r, t) = c⃗0(t) + δc⃗(r, t) = Û(t)
[
c⃗0 + u⃗k e

i(k·r−ωk t) + v⃗∗
k e

−i(k·r−ω∗
k t)] Û †(t) , (2.20)

where the unitary operator Û(t) ≡ exp [−i (n̂+ σ̂z/2)ω0 t] rotates the density matrix
in the reference frame of limit cycles (if present) and u⃗k (v⃗k) weighs a particle (hole)
excitation with energy ωk (−ω∗

k). We note that Eq. (2.20) is a direct generalisation
of the approach introduced in [19] to the case of incoherent pumping and naturally
incorporate those local correlations in the TLE-cavity unit of the system naturally
accounted by the Gutzwiller approximation. Linearising the equations of motion (2.6)
with respect to the δc⃗ ’s, one obtains a Bogoliubov-de Gennes system of equations,

L̂k

(
u⃗k
v⃗k

)
= ωk

(
u⃗k
v⃗k

)
, (2.21)

where the non-Hermitian superoperator L̂k ≡ diag
(
Âk,−Â∗

k

)
has a block-diagonal

structure because of the relation v⃗k = (u⃗k)T , due to the built-in Hermiticity of the
density matrix, resulting in the identity cn,m,σ,σ′(r, t) = c∗

m,n,σ′,σ(r, t). The matrix
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elements of the upper diagonal block of L̂k are given by:

An′,m′,µ,µ′

n,m,σ,σ′ (k) ≡ Ln′,m′,µ,µ′

n,m,σ,σ′ [⃗c0]

+ εk
[(√

n (c0)n−1,m,σ,σ′ −
√
m+ 1 (c0)n,m+1,σ,σ′

)√
n′ δn′−1,m′ δµ,µ′

+
(√

n+ 1 (c0)n+1,m,σ,σ′ −
√
m (c0)n,m−1,σ,σ′

)√
n′ + 1 δn′+1,m′ δµ,µ′

]
− ω0

(
n−m+ σ − σ′

2

)
δn,n′ δm,m′ δσ,µ δσ′,µ′ ,

(2.22)
where εk = −2 J

∑d
a=1 cos (ka) is again the free-particle dispersion on a lattice.

The eigenvalue equation (2.21) is among the main results of this Chapter and
provides the energy spectra of the proper many-body excitations ωα,k of the NESS,
in addition to information on their role in quantum observables as we will show
in the next Subsection. Notice that, as a byproduct of the global U(1) invariance of
the ansatz (2.5), there is a single zero-energy eigenmode ωα=0,k = 0 degenerate
with the NESS [44], namely

(
un,m,σ,σ′ , vn,m,σ,σ′

)
=
[
(c0)n,m,σ,σ′ , (c0)∗

n,m,σ,σ′

]
. Also, the

non-vanishing eigenvalues of L̂k can be grouped into anti-conjugate pairs, ωα,k =
±ω′

α,k + i ω′′
α,k, since Re

[
Tr
(
Âk
)]

= 0; indeed, this is intimately related to the fact that
the unitary evolution of the system traces back to the Hamiltonian commutator in
Eq. (2.3). However, a less intuitive relation holds between positive- and negative-energy
eigenvectors. It is important to observe that, within our notation (2.20), the NESS
is a stable state if Im

(
ωα,k

)
< 0 for each excitation mode (α,k): a violation of such

inequality indicates that the uniform NESS is dynamically unstable to a different
ordering of photons on the lattice.

2.3.2 Fluctuations of observables

One of the main advantages of our formalism concerns a quantitative estimation of
how active the NESS collective excitations are in different perturbation channels. This
analysis will prove useful to understand e.g. the particle/hole and phase/amplitude
characters of the low-energy collective modes across the phase diagram of the NESS.

As a first example, let us consider the density channel. Inserting the density matrix
expansion (2.20) into the expression of Eq. (2.9), we find that linear density fluctuations
due to the (α,k) excitation behave as

n(r) =
∑

n

∑
σ

n
[
(c0)n,n,σ,σ + uα,k,n,n,σ,σ e

i k·r + v∗
α,k,n,n,σ,σ e

−i k·r
]

= n0 +
(
Nα,k e

i k·r + c.c.
)
,

(2.23)

where we have introduced the density spectral weight

Nα,k ≡
∑

n

∑
σ

nuα,k,n,n,σ,σ . (2.24)
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Similarly, we can examine the fluctuations of the order parameter, given by

ψ(r) =
∑

n

∑
σ

√
n+ 1

[
(c0)n+1,n,σ,σ + uα,k,n+1,n,σ,σ e

i k·r + v∗
α,k,n+1,n,σ,σ e

−i k·r
]

= ψ0 + Uα,k e
i k·r + V ∗

α,k e
−i k·r , (2.25)

where
Uα,k ≡

∑
n

∑
σ

√
n+ 1uα,k,n+1,n,σ,σ (2.26)

and

Vα,k ≡
∑

n

∑
σ

√
n+ 1 vα,k,n+1,n,σ,σ =

∑
n

∑
σ

√
n+ 1uα,k,n,n+1,σ,σ (2.27)

are generalisations of the particle/hole amplitudes (2.17) of fluctuations in the one-
body bosonic field to the present non-equilibrium setting. We point out that, whereas
particle and hole fluctuations of the density matrix are related by simple transposition
v⃗k = (u⃗k)T , we cannot identify an obvious PHS condition for the excitations of the
photon field, since

∣∣Uα,k
∣∣ ̸=

∣∣Vα,k
∣∣ in principle. This is due to the fact that uα,k,n,m,σ,σ′ ̸=

u∗
α,k,m,n,σ′,σ in general, meaning that either particle or hole fluctuations of the density

matrix are not individually bound to be Hermitian.
Using Eq. (2.25), we can also estimate the spectral contribution of each excitation

mode to amplitude and phase perturbations of the order parameter. To lowest order,
upon writing the order parameter as ψ(r) = |ψ(r)| exp [i φ(r)], the former kind of
fluctuations reads

δ |ψ(r)| ≈ δ {|ψ(r)| cos [φ(r)]} = 1
2 δ [ψ(r) + c.c.] = 1

2
(
Uα,k + Vα,k

)
ei k·r + c.c. ,

(2.28)
while phase fluctuations are approximately captured by

δφ(r) ≈ δ {|ψ(r)| sin [φ(r)]}
|ψ(r)| = 1

2 i |ψ(r)|δ [ψ(r) − c.c.] ∝ 1
2 i
(
Uα,k − Vα,k

)
ei k·r + c.c.

(2.29)

2.4 Response functions and quantum correlations

2.4.1 Generalised linear response theory

Let us consider a generic perturbation in the momentum-frequency channel (k, ω)
represented by the operator F̂r,

ĤP(t) ≡
∑

r

[
Vk,ω e

i(k·r−ω t)F̂r + V ∗
k,ω e

−i(k·r−ω t)F̂ †
r

]
. (2.30)

Gaussian fluctuations induced by such perturbation can be evaluated by considering its
contribution at linear order to the dynamical equations of quantum fluctuations (2.21),
which simply generalise into

ω

(
u⃗k
v⃗k

)
= L̂k

(
u⃗k
v⃗k

)
+ Ŵk,ω

(
c⃗0

(c⃗0)∗

)
, (2.31)
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where Ŵk,ω ≡ diag(ŵk,−ŵ∗
k), with the matrix blocks ŵ1,k,ω ∼ Vk,ω and ŵ2,k,ω ∼ V ∗

k,ω

given by the Lindbladian terms corresponding the perturbation operators F̂r and F̂ †
r

respectively. By inverting Eq. (2.31), we obtain a convoluted extension of the original
Bogoliubov-de Gennes eigenvalue problem,(

u⃗k
v⃗k

)
=
(
ω 1̂− L̂k

)−1
(
ŵ1,k,ω 0

0 −ŵ2,k,ω

)(
c⃗0

(c⃗0)∗

)
. (2.32)

As a final step, we can make use of the spectral decomposition of L̂k and rewrite
Eq. (2.32) as(

u⃗k
v⃗k

)
=
∑

α

(
u⃗α,k
v⃗α,k

)
1

ω − ωα,k

(
x⃗α,k
y⃗α,k

)†(
ŵ1,k,ω 0

0 −ŵ2,k,ω

)(
c⃗0

(c⃗0)∗

)

= R̂ · Ω̂(ω) ·
[
R̂−1 · Ŵk,ω ·

(
c⃗0

(c⃗0)∗

)]
,

(2.33)

where
(
x⃗α,k, y⃗α,k

)
is the left eigenvector of L̂k associated with the excitation mode

(α,k), Ω̂αβ(ω) = δα,β/
(
ω − ωα,k

)
and the matrix R̂ gathers the right eigenvectors of

L̂k on its columns. After carrying out the calculation of the right-hand side of Eq. (2.33),
the linear response function for a given observable Ô(r, t) is directly provided by the
corresponding linear expansion in terms of the fluctuation amplitudes (uk, vk) as given
by the result of Eq. (2.33).

2.4.2 Density fluctuations from the Bragg response

As a first illustrative example, let us consider a Bragg perturbation

ĤBragg(t) ≡
∑

r
Vk,ω cos (k · r − ω t) n̂r . (2.34)

This Hamiltonian perturbation produces a modulation in the photon density according
to the identity δ⟨n̂r⟩ = ρk,ω e

i(k·r−ω t) + c.c., where ρk,ω = χn(k, ω)Vk,ω with χn(k, ω)
being defined as the density response function. In this case, Eq. (2.32) specialises into

(
u⃗k
v⃗k

)
= 1

2

∑
α

(
u⃗α,k
v⃗α,k

)
1

ω − ωα,k

(
x⃗α,k
y⃗α,k

)†
 N⃗0

−
(
N⃗0
)∗

Vk,ω , (2.35)

where (N0)n,m,σ,σ′ = (n−m) (c0)n,m,σ,σ′ . The density fluctuation amplitudeρk,ω ≡ Nk
is given by contracting the left-hand side of Eq. (2.35) by a tensor with elements
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n δn,n′ δm,m′ δn,m δσ,µ δσ′,µ′ δσ,σ′ in both the u⃗k and v⃗k sectors, hence

2 ρk,ω =
∑

α

Nα,k
ω − ωα,k

(
x⃗α,k
y⃗α,k

)†
 N⃗9

−
(
N⃗0
)∗

Vk,ω

=
∑

α

Nα,k
[
x⃗∗

α,k · N⃗0 − y⃗∗
α,k ·

(
N⃗0
)∗]

ω − ωα,k
Vk,ω

= 2
∑

α

Nα,k
(
x⃗∗

α,k · N⃗0
)

ω − ωα,k︸ ︷︷ ︸
χn(k,ω)

Vk,ω .

(2.36)

Therefore, we observe that the density spectral weight Nα,k sets directly the strength
of the dynamical density response of the system in the NESS. We remark that, since
the analytic continuation of χn(k, ω) can be identified with the two-particle Green’s
function of the system, a suitable manipulation of its Fourier transform provides the
lowest-order estimation of spatial and temporal density correlations, as we will discuss
in Subsection 2.4.5.

2.4.3 Normal and anomalous components of the Green’s function

A particularly insightful quantity is the response of cavity photons to an external
classical field. This probe can be modelled as a particle-hole perturbation (coherent
drive) on the BH lattice and has been also the focus of recent experimental efforts
targeting the dynamical properties of the driven-dissipative MI state [25]. The very
same object can be identified with the retarded Green’s function of the NESS, for
which our calculations give a simple semi-analytical result that we discuss in this
Subsection.

Similarly to the case of a density perturbation, we start our derivation by studying
the response of the photon field to a perturbation creating a particle (removing a hole)
with a given momentum in the NESS, namely

Ĥp(t) ≡ 1
2
∑

r

[
ηk,ω e

i(k·r−ω t) â†
r + η∗

k,ω e
−i(k·r−ω t) âr

]
, (2.37)

which breaks the U(1) symmetry of the model explicitly and therefore is coupled to
fluctuations of the order parameter ψ(r). The linear response equations corresponding
to the perturbation (2.37) have the form

(
u⃗k
v⃗k

)
= 1

2

∑
α

(
u⃗α,k
v⃗α,k

)
1

ω − ωα,k

(
x⃗α,k
y⃗α,k

)†
 P⃗0

−
(
Q⃗0
)∗

 ηk,ω , (2.38)

where we have defined the vectorised matrices

(P0)n,m,σ,σ′ =
√
n (c0)n−1,m,σ,σ′ −

√
m+ 1 (c0)n,m+1,σ,σ′ (2.39)

and
(Q0)n,m,σ,σ′ =

√
n+ 1 (c0)n+1,m,σ,σ′ −

√
m (c0)n,m−1,σ,σ′ . (2.40)
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Retarded
Green’s

function

Now, the previous expression allows us to calculate two different types of response
functions, either in the (i) particle or in the (ii) hole channel.

The first kind of response requires to determine the particle fluctuation amplitude
Uα,k defined in Eq. (2.26): this is given by contracting both the sides of Eq. (2.38) by an
operator with tensor components

√
n+ 1 δn+1,n′ δn,m′ δn,m+1 δσ,µ δσ′,µ′ δσ,σ′ in the u⃗k

sector and
√
n+ 1 δn,n′ δn+1,m′ δn,m−1 δσ,µ δσ′,µ′ δσ,σ′ in the v⃗k sector. As a result, we

obtain

2 Ψk,ω =
∑

α

Uα,k
ω − ωα,k

(
x⃗α,k
y⃗α,k

)†
 P⃗0

−
(
Q⃗0
)∗

 ηk,ω

=
∑

α

Uα,k
[
x⃗∗

α,k · P⃗0 − y⃗∗
α,k ·

(
Q⃗0
)∗]

ω − ωα,k
=

= 2
∑

α

Uα,k
(
x⃗∗

α,k · P⃗0
)

ω − ωα,k︸ ︷︷ ︸
GR(k,ω)

ηk,ω ,

(2.41)

where Ψk,ω is the order parameter variation. Physically speaking, the response of the
order parameter to the perturbation (2.37) in the particle channel can be interpreted
as the normal component of the retarded Green’s function of cavity photons [51, 74].
More explicitly, the explicit expression of our prediction for the Green’s function is

GR(k, ω) ≡
∑

α

Zα,k
ω − ωα,k

=
′∑
α

[
Zα,k

ω − ωα,k
+

Y ∗
α,k

ω + ω∗
α,k

]
, (2.42)

which has been written in a more symmetric form in the last equality. Here, we have
defined the quasiparticle

Zα,k ≡ Uα,k
(
x⃗∗

α,k · P⃗0
)

(2.43)

and quasihole
Yα,k ≡ Vα,k

(
y⃗∗

α,k · P⃗∗
0

)
(2.44)

weights, while the summation on the right-hand side of Eq. (2.42) is restricted to
excitations with positive real energy.

The second type of dynamical fluctuations which can be drawn out of Eq. (2.41)
encodes the response of the order parameter in the hole channel. This corresponds to
extracting the hole amplitude Vα,k from the right-hand side of Eq. (2.38) in the same
way as outlined above for the normal component. The final result of this procedure is
the retarded anomalous component of the Green’s function, having the expression

∆R(k, ω) ≡
∑

α

Zα,k
ω − ωα,k

=
′∑
α

[
Zα,k

ω − ωα,k
+

Y
∗
α,k

ω + ω∗
α,k

]
, (2.45)

where we have introduced the anomalous quasiparticle Zα,k =
(
Vα,k/Uα,k

)
Zα,k and

quasihole Y α,k =
(
Uα,k/Vα,k

)
Yα,k weights. As one could expect by physical intuition,

anomalous correlations play a major role in the SF phase of the NESS and, in analogy
with the case of EP condensates [429], can be exploited for directly probing the
excitation spectrum of the system, as we will discuss more in depth in the following
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DoS
negativity

Subsections 2.4.4 and 2.5.2.
Applying the concepts of Keldysh field theory [430], the simplest object provided

by the retarded Green’s function is the DoS of the NESS, reading

A(k, ω) ≡ − 1
π

Im[GR(k, ω)] = − 1
π

∑
α

ω′′
α,k Z

′
α,k +

(
ω − ω′

α,k

)
Z ′′

α,k(
ω − ω′

α,k

)2
+
(
ω′′

α,k

)2 (2.46)

where the symbols ′ and ′′ indicate real and imaginary parts respectively. It is worth
noticing that the DoS is not a plain sum of Lorentz distributions centred around the
poles of the Green’s function (as it would happen at equilibrium), but in principle could
get a finite contribution from the principal value of the propagator, which is an odd
function of ω with respect to ω′

α,k and therefore behaves as a sort of Fano resonance
of the collective mode. Indeed, this is due to the fact that the quasiparticle weight
Zα,k can generically acquire a complex value out of equilibrium, since it quantifies no
longer the overlap of a collective mode with a single-particle excitation of the NESS, but
depends on the spectral decomposition of the Lindbladian in a non-trivial way [431].
In particular, this is inherently connected to the fact that right and left eigenvectors
are not related by simple conjugation, meaning that the creation and destruction of
an elementary excitation on top of the stationary state are not inverse processes. For
the same reason, we anticipate here that also the sign of A(k, ω) could also display an
exceptional behaviour when the NESS is far from being an equilibrium configuration
of the system, as we will show in detail in the first part of Subsection 2.5.2. In this
respect, we notice that the local DoS A(ω) ≡ V −1∑

k A(k, ω) satisfies the sum rule∫
dω A(ω) = 1 − 2 ⟨n̂⟩ (2.47)

as a consequence of the commutation relation between hard-core bosonic operators.
This automatically implies that A(k, ω) < 0 for some values of (k, ω) at least for
n0 > 1/2.

2.4.4 Probing photonic states: transmittivity and reflectivity of the cavities

Along the same conceptual lines of the previous Subsection, an alternative quantum
description of the driving of a cavity photon mode by an incident coherent light beam
can be obtained by resorting to the so-called input-output theory [432, 433] for optical
cavities [434]. In particular, the Hamiltonian term describing the external driving of
a standard two-sided cavity by an incident field of amplitude Ein(r, t) is akin to the
perturbation of Eq. (2.37) and can be written in k-space as

Ĥdrive(t) ≡ i
∑

k

[
γf,k Ẽin(k, t) â†

k − γ∗
f,k Ẽ

∗
in(k, t) âk

]
, (2.48)

where Ẽin(k, t) is the Fourier transform of Ein(r, t) and γf,k is the transmission
amplitude of the front mirror of the cavity. In the following, we will also denote the
transmission amplitude of the back mirror by γb,k. We remark that these coefficients
are physically linked with the radiative damping Γl by the simple relation 2 Γl =∣∣γf,k

∣∣2 +
∣∣γb,k

∣∣2. For the sake of simplicity, we will assume that the cavity has a fully
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symmetric geometry such that the transmission amplitudes read
∣∣∣γf/b,k

∣∣∣ =
√

Γl and
are independent of momentum. We also recall here that γf/b,k can be usually extracted
from transmission and reflection measurements on the unloaded cavity.

The finite transmittivity of the front and the back mirrors of the cavity is responsible
for the re-emission of light with an amplitude proportional to the intra-cavity field
⟨âk⟩. By means of the boundary conditions set by the two cavity mirrors, in the linear-
response regime the reflected and transmitted fields can be related to the intra-cavity
field within the input-output framework as [41, 435]

ẼT(k, ω) = T (k, ω) Ẽin(k, ω) (2.49a)

ẼR(k, ω) = R(k, ω) Ẽin(k, ω) (2.49b)

respectively. In the above equations, we have introduced the transmittivity

T (k, ω) ≡ −i γf,k γ
∗
b,k GR(k, ω) (2.50)

and reflectivity

R(k, ω) ≡ 1 − i
∣∣γf,k

∣∣2GR(k, ω) = 1 +
(
γf,k
γb,k

)∗

T (k, ω) (2.51)

functions, which can be measured via well-established experimental tools and represent
the most direct access to the excitation spectra and one-body correlations of the photonic
state, as they are entirely determined by the retarded Green’s function GR(k, ω). For
later convenience, we can write the expression of the reflectivity modulus as

|R(k, ω)|2 =
[
1 − π

∣∣γf,k
∣∣2A(k, ω)

]2
+
∣∣γf,k

∣∣4 Re[GR(k, ω)]2 ≃ 1 − 2π
∣∣γf,k

∣∣2A(k, ω) ,
(2.52)

where in the last equality we have made the assumptions
∣∣γf,k

∣∣2A(k, ω) ≪ 1 and∣∣γf,k
∣∣2 Re[GR(k, ω)]2 ≪ A(k, ω), which we will also consider when analysing our

numerical results under proper conditions.
Importantly, it must be noted that the standard sum rule

|T (k, ω)|2 + |R(k, ω)|2 = 1 + 2
∣∣γf,k

∣∣2 {Γl |GR(k, ω)|2 + Im[GR(k, ω)]
} ?= 1 (2.53)

is fulfilled only if Γl |GR(k, ω)|2 = −Im[GR(k, ω)] = π A(k, ω). Whereas this condition
is satisfied in many common situations (e.g. a damped oscillator), it could be instead
largely violated in the presence of peculiar out-of-equilibrium effects, for instance
when the NESS is characterised by spontaneous energy emission. In Subsection (2.5.2),
we will show that this is not only the case of the SFP, where the k = 0 lasing state
naturally amplifies both T (k, ω) and R(k, ω), but remarkably also of the IP, for which
we uncover an anomalous behaviour of the response functions as a consequence of
the population inversion phenomenon. Indeed, since we know that A(k, ω) < 0 for
some specific values of (k, ω) across the whole IP, we obtain that |R(k, ω)|2 > 1 from
Eq. (2.52) and that Eq. (2.53) is always violated in this regime.

We conclude this Subsection by introducing a third useful response function of
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Figure 2.4: Pictorial sketch of the FWM measurement protocol. The coloured lines represent the collective excitations of
the SFP, see the subsequent Figure 2.6. The black arrows illustrate the scattering process from which the FWM signal is
generated: the system is perturbed at (k, ω) (lower green dot) and its response is probed at (−k,−ω).

interest in the SFP, going under the name of Four-Wave Mixing (FWM) signal, which has
been proven useful to attain a solid experimental evidence of the amplitude excitation
branch in EP condensates, given its rather weak luminescence in the transmittivity
channel [429]. The physical process underlying the measurement protocol of the FWM
response is sketched in Figure 2.4. Elementary excitations are created on top of the
condensate by injecting extra photons with a probe laser beam with a finite momentum
k and tuned at a frequency ω. The response of the system is then observed via the
coherent light emission at an opposite wave vector −k and energy 2ω0−ω: the existence
of a coherent coupling between the frequencies ω and 2ω0 − ω (located symmetrically
around the effective chemical potential ωc) and the momenta ±k from the fact that
the elementary excitations of the condensate consist of a coherent superposition of
plane waves at (k, ω) and (−k, 2ω0 − ω): this can be in turn interpreted as a clue of the
existence of anomalous correlations in the system. Indeed, it turns out that the FWM
signal is simply provided by the retarded anomalous propagator,

F (k, ω) ≡ −i γf,k γ
∗
b,k ∆R(k, ω) (2.54)

which has been shown to couple positive- and negative-energy modes of the system,
see Eq. (2.45) and the comments below.

2.4.5 A recipe for computing quantum correlation functions

For the purpose of estimating actual expectation values from the linear response
formalism developed in the previous Subsections, it is instructive to compare our
result for the retarded Green’s function (2.42) with its general Källén-Lehmann spectral
representation in terms of the eigenstates of the Lindblad superoperator [436, 437],

GR(k, ω) =
∑

α

⟨I| âk |rα⟩ ⟨lα| â†
k |ρ0⟩

ω − ωα,k
−

(
⟨I| â†

k |rα⟩ ⟨lα| âk |ρ0⟩
)∗

ω + ω∗
α,k

 =

=
∑

α

⟨I| âk |rα⟩ ⟨lα| â†
k |ρ0⟩ −

(
⟨I| â†

k |r̄α⟩
〈
l̄α
∣∣∣ âk |ρ0⟩

)∗

ω − ωα,k
,

(2.55)
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where |ρ0⟩ is the NESS eigenvector, |ρ0⟩ is the vectorised identity matrix (namely,
the left eigenvector associated with the NESS) and |r̄α⟩

(∣∣∣l̄α〉) is defined to be the
dual eigenvector of |rα⟩ (|lα⟩), in the sense that that their eigenvalues have opposite
real parts ωα,k = −ω∗

α,k for each k. Contrasting the expression of the quasiparticle
weight Zα,k with the numerator of the right-hand side of Eq. (2.55), we can readily
infer a one-to-one correspondence between the eigenstates of the Gutzwiller-Lindblad
superoperator of quantum fluctuations L̂k and the (approximate) k-projections of the
actual Lindbladian right/left eigenvectors, namely

(|rα⟩, |lα⟩)k −→
(
uα,k,n,m,σ,σ′ , xα,k,n,m,σ,σ′

)
,(

|r̄α⟩, |l̄α⟩
)

k
−→

(
v∗

α,k,n,m,σ,σ′ , y∗
α,k,n,m,σ,σ′

)
,

(2.56)

hence 〈
I
∣∣âk
∣∣rα
〉

=
(〈
I
∣∣â†

k
∣∣r̄α
〉)∗

= Uα,k ,〈
I
∣∣â†

k
∣∣rα
〉

=
(〈
I
∣∣âk
∣∣r̄α
〉)∗ = Vα,k ,〈

lα
∣∣âk
∣∣ρ0
〉

= x⃗∗
α,k · P⃗†

0,2 ,(〈
l̄α
∣∣âk
∣∣ρ0
〉)∗

= x⃗∗
α,k · P⃗0,2 ,〈

lα
∣∣â†

k
∣∣ρ0
〉

=
(〈
l̄α
∣∣â†

k
∣∣ρ0
〉)∗

= x⃗∗
α,k · P⃗0,1 ,

(2.57)

where we have introduced the matrices

(P0,1)n,m,σ,σ′ =
√
n (c0)n−1,m,σ,σ′ (2.58)

and
(P0,2)n,m,σ,σ′ =

√
m+ 1 (c0)n,m+1,σ,σ′ (2.59)

such that P⃗0 = P⃗0,1 − P⃗0,2.
Having a direct mapping relating Gaussian fluctuations around the NESS to single-

particle expectation values at our disposal, we are now in the position of calculating the
expression of any one-body correlation function within our Gutzwiller approximation.
In particular, in this study we consider the coherence function, having the general
representation [437]

g1(r, t) ≡ 1
V

∑
α

∑
k

〈
I
∣∣â†

k
∣∣rα
〉 〈
lα
∣∣âk
∣∣ρ0
〉
ei(k·r−ωα,k t) (2.60)

for t > 0, while complex conjugation of the same formula gives the behaviour of g1(r, t)
at negative times. Consequently, using Eqs. (2.57), our prediction for the coherence
function reads

g1(r, t) = 1
V

∑
α

∑
k

Vα,k
(
x⃗∗

α,k · P⃗†
0,2

)
ei(k·r−ωα,k t) , (2.61)

which is correctly controlled by the hole amplitude of the collective excitations as
expected from the expression of the retarded Green’s function (2.42). The very same
procedure can be applied to the calculation of the pair correlation function, whose
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Quasiparticle
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insulating
state

spectral decomposition for t > 0 is given by:

g2(r, t) ≡ 1
V

∑
α

∑
k

〈
I
∣∣n̂k
∣∣rα
〉 〈
lα
∣∣n̂k
∣∣ρ0
〉
ei(k·r−ωα,k t) (2.62)

which, translated into our linear-response language, has the form:

g2(r, t) = 1
V

∑
α

∑
k

Nα,k
(
x∗

α,k · C0
1

)
ei(k·r−ωα,k t) (2.63)

where we have defined (N0,1)n,m,σ,σ′ = n (c0)n,m,σ,σ′ .
For the sake of simplicity, in Subsection 2.5.3 we will restrict our discussion of

quantum correlations to the coherence function in the IP, that we present both as an
ideal probe of local fluctuations in this exotic phase and as a proof of the physical
consistency of the calculation recipe outlined above.

2.5 Making the theory work: numerics of quantum fluctuations

2.5.1 Excitation spectrum of elementary excitations

We now proceed to give a detailed account of the excitation spectrum of the NESS
across the I-to-SF transition, restricting ourselves to the most relevant modes at low
energy. The remaining excitations correspond to all the possible local excitations of
the system, with energies proportional to suitable combinations of ωc and ωat and
damping rates ω′′

α,k given by large fractional values of Γp.

Insulating phase The IP excitation spectrum [Figure 2.5] consists of two dispersive
branches ω±(k) = ± εph(k) − iΓph(k) [red solid/dotted lines] and a purely dissipative
local mode ωD = −iΓD [blue solid line], to which we will refer as the D-mode
consistently with the spectrum of EP systems discussed in the previous Chapter. The
former bands correspond to distinct quasiparticle (quasihole) excitations respectively(
U−,k = V+,k = 0

)
, while the latter excites density fluctuations only. Specifically, we

find
∣∣U+,k

∣∣ =
∣∣V−,k

∣∣ ≈
∣∣ND,k

∣∣ ≈ 1/
√

2.
Deep in the IP, the quasiparticle damping Γph(k) has a gapped, quadratic dispersion

[see Figure 2.5(a′)-(d′)] which extends up to the energy scale of the effective pumping
rate Γem, such that non-local excitations benefit from a longer lifetime due to hopping
fluctuations. As the hopping reaches the lasing threshold Jc, the damping of the
dissipative mode ΓD converges to the energy scale of cavity losses Γl, while the
Liouvillian gap Γph(0) vanishes proportionally to Jc−J as expected from quantum field
theory [430]: this substantiates the physical picture of long-lived quasiparticles/holes
as precursors of the non-equilibrium I-to-SF transition. The hopping has a dramatic
effect also on the quasiparticle energy dispersion, which is well fitted by εph(k) ≈
(1 − 2n0) εk + ωc and is characterised by a density-dependent bandwidth. Specifically,
when n0 > 1/2 at small J , εph(k) displays an inverted profile with minimal gap at
k = π [Figure 2.5(a)-(b)], while a standard quadratic dispersion is found for n0 < 1/2
at larger J [Figure 2.5(d)]. Eventually, εph(0) → ω0 at the transition point, which
therefore can be identified as an authentic finite-frequency criticality [408, 420].

These results find an intuitive explanation in the aforementioned commensurability
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Figure 2.5: Excitation spectrum of the collective modes of the IP for Ω/Γp = 5 · 10−1, Γl/Γp = 5 · 10−2 and γ/Γp = ·10−3.
Columns from left to right correspond to increasing values of the hopping J , in particular: (a)-(a′) z J/Γp = 0.5; (b)-(b′)
z J/Γp = 1.5; (c)-(c′) z J/Γp = 2; (d)-(d′) z J/Γp = 2.5. The I-to-SF critical point is located at z Jc/Γp ≈ 2.62. The upper
panels show the real part of the excitation energies ω′

α,k, while the lower panels display the imaginary part ω′′
α,k. Red solid

lines: quasiparticle branch. Red dashed lines: quasihole branch. Blue solid line: D-mode branch. The black solid line in the
lower panels highlights the stability threshold Im(ω) = 0.

effect due to the combination of strong interactions and dissipation. For n0 > 1/2,
photon pumping is efficient enough to prevent holes from moving around the hard-core
lattice by refilling them: thus, local particle-hole excitations are energetically favoured,
despite their shorter lifetime. By contrast, in the opposite case the IP becomes hole-
dominated and non-local fluctuations are more likely to be excited. Importantly, there
always exists a value of J for which n0 = 1/2, such that the band εph(k) is completely
flat, see Figure 2.5(c). Later on, we will show that this PHS point plays a special role in
the dynamical correlations of the IP.

Finally, we point out that the change in the energy scale of the D-mode ωD is also
a litmus paper of the link between the weakening of effective pumping due to J and
the development of coherence in the system: in fact, we see that ΓD ∼ Γem for J ≪ Γp

and monotonically reaches values of the order of Γl right before the I-to-SF transition
point.

Superfluid phase As the onset of the SFP corresponds to a spontaneous breaking of
U(1) symmetry, for J > Jc the quasiparticle mode ω+(k) is replaced by a Goldstone
branch ωG(k) whose energy vanishes in the long-wavelength limit [40, 408]. Physically,
this mode can be understood as a slow rotation of the photonic condensate phase across
the cavity array. Starting from this general premise, let us now analyse the spectral
properties of the different SFP regimes in more detail, starting from the low-hopping
region J ≲ Jm. From now on, for the sake of additionally comparing our results
with the excitation spectrum of EP condensates reviewed in the previous Chapter,
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the lattice momentum will be rescaled by the healing length of the SF state, reading
ξ = π/ [2 arcsin (n0)] to a first approximation 3.

For this case, a typical example of the excitation spectrum is shown in Figure 2.6(a)-
(a′). Differently from the linear dispersion of sound modes 4 in equilibrium superflu-
ids [83], the Goldstone mode [red solid line] shows here a diffusive and non-propagating
behaviour for small |k|: while the excitation energy flattens out to zero over a sphere
of momenta whose radius |∆kdiff | scales with Γl, the damping rate vanishes with a
quadratic dispersion. This finding is in broad agreement with previous works address-
ing the elementary excitations of out-of-equilibrium condensates [411, 438–440] and,
importantly, extends the domain of the Goldstone mode diffusivity to driven-dissipative
phase transitions driven by strong interactions. In addition to the Goldstone branch,
we find also the corresponding conjugate or ghost mode ωA(k) at negative energy [red
dotted line], which ensues from the quasihole mode of the IP and is connected with
damped fluctuations of the condensate density [411, 440], see also the dashed red line
in panel (B.1) of Figure 2.10. Additionally, we notice that the D-branch ωD(k) ∼ −iΓl

[blue solid line] starts acquiring a non-trivial dispersion and retains a strong density
character [see Figure 2.10(A.1)]. The relationship between the latter mode and the
Goldstone branch is pivotal to grasping the physics of the deep SFP, as we show in the
following.

For J ≲ Jm , there is a clear separation of energy scales between the Goldstone
damping ΓG(k) and ωD(k), reaching its maximum at constant Ω when the NESS
significantly overlaps with the hard-core state at equilibrium in the strong-coupling
regime g ≫ 1. Crucially, increasing the hopping reduces the damping gap between
the two branches. This is closely reflected by the behaviour of their relative phase
character

∣∣Uα,k − Vα,k
∣∣ [see panels (C.1)-(C.2) of Figure 2.10]: as J increases towards

Jm, part of the Goldstone spectral weight is gradually transferred to the D-mode,
starting from finite |k|. For later convenience, we highlight that the particle/hole
amplitudes of the excitation modes are all equal and satisfy

∣∣Uα,k
∣∣ =

∣∣Vα,k
∣∣ in the

diffusive window of the BZ: this means that the non-equilibrium superfluid state, in
spite of its non-trivial particle-hole character depending on J , is characterised by an
emergent PHS on long-range spatial scales. Such a symmetry is then gradually broken
by the Goldstone and ghost branches only as the momentum is increased, with the two
excitations acquiring predominantly a particle and a hole character, respectively. This
feature will be further addressed in the forthcoming Subsection 2.5.2 in relation to its
impact on the dynamical response function of the superfluid NESS.

The above situation breaks at the boundary between particle and hole superfluidity
J = Jm. In fact, this hopping value marks the point at which the diluteness of the
condensate here, the condensate diluteness stems from the fact that pumping and loss
processes occur on comparable effective time scales, such that the dissipative dynamics
of the TLE’s cannot be adiabatically separated from that of the BH lattice. Hence, as the
large photon bandwidth z J is compensated by a low density, the coherent dynamics of
the photon fluid in the limit J > Jm interweaves with low-energy dissipative processes,
which therefore take full part in phase diffusion across the whole system. Similarly

3 We refer the interested reader to Appendix F.2 for additional details on the derivation of the healing
length in the case of hard-core bosons within mean-field theory.

4 See again Appendix F.2 for a concise description of the Bogoliubov-Goldstone mode of hard-core bosons
on a lattice at equilibrium.
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Figure 2.6: Excitation spectrum of the collective modes of the SFP for Ω/Γp = 3 · 10−1, Γl/Γp = 5 · 10−2 and γ/Γp = ·10−3.
Columns from left to right correspond to increasing values of the hopping J , in particular: (a)-(a′) z J/Γp = 3; (b)-(b′)
z J/Γp = 5.5 ≈ z Jm/Γp; (c)-(c′) z J/Γp = 6. The upper panels show the real part of the excitation energies ω′

α,k, while
the lower panels display the imaginary part ω′′

α,k. Red solid lines: Goldstone branch (at low J only). Red dashed lines:
amplitude branch (at low J only). Blue solid line: D-mode/Goldstone branch (depending on the value of J , see the main text
discussion). The black solid line in the lower panels highlights the stability threshold Im(ω) = 0. The expression ω − ω0
indicates that the excitation energy is calculated with respect to the limit-cycle frequency ω0. The healing length of the
system is ξ ≈ 3.4, 4.7, 4.9 (units of lattice spacing) from left to right, respectively.

Comparison
with exciton-

polariton
condensates

to what happens in a EP condensate at low pumping intensity, this translates into a
cross-hybridisation of the D-mode ωD(k) with the Goldstone branch ΓG(k) at small
momenta, leaving the structure of the real energy spectrum unaltered. Interestingly, we
note that such a band crossing takes place also at the level of the fluctuation amplitudes,
see in particular the comparison between panels (A.2)-(A.3) and (B.2)-(B.3) of Figure 2.10.
More precisely, we notice that, upon increasing the hopping J , the D-mode gradually
loses its density character and acquires the same amplitude character of the ghost mode
in the diffusive regime just on the brink of the anti-adiabatic crossover. As a side note,
we point out that such a regime of our hard-core setting does not admit a simple GPE
description of the lasing state, which would involve a mean-field approximation of the
Rabi coupling resembling the semi-classical theory of atomic lasing [407, 441]. Indeed,
the key advantage of our Gutzwiller approach consists in fully incorporating local
fluctuations due to the strong interactions felt by photons despite their diluteness.

It is important to highlight that the TLE loss rate γ turns out to have little effect on
the spectral properties discussed previously: increasing γ/Γl has the simple outcome
of spoiling population inversion in the IP and shifting the lasing threshold Jc to
larger values, as one can derive from Eq. (2.17). It is instructive to compare this result
with what happens in a EP condensate when losses are faster than those of reservoir
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Figure 2.7: Spectral amplitudes of the collective modes of the SFP with respect to different excitation channels for the
same parameters of Figure 2.6. Columns from left to right correspond to increasing values of the hopping J , in particular:
(a)-(a′) z J/Γp = 3; (b)-(b′) z J/Γp = 5.5 ≈ z Jm/Γp; (c)-(c′) z J/Γp = 6. Rows from top to bottom: modulus of the density
fluctuation Nα,k and amplitude/phase fluctuation Uα,k ± Vα,k amplitudes for each collective mode.

Dynamical
instabilities
of the
Goldstone
mode

polaritons 5, set by the equivalent of γ: in that context, the Goldstone mode strongly
entangles with the dissipative channels as well, but the condensate is prone to a
dynamical instability due to the repulsive interaction with the reservoir [411, 442]. By
contrast, in the present case phase excitations are always stable and the Goldstone
hybridisation with dissipative processes always takes place for a sufficiently large
J , independently of the ratio γ/Γl. This suggests a different physical origin for our
instance of the Goldstone hybridisation: more precisely, we argue that the Rabi-type
coupling with the TLE’s, accurately accounted by our approach to fluctuations, is key
to a stable mixing of dissipation and coherent dynamics at large J . However, we report
that an incommensurate instability of the ωG/A(k) branches appears in the ultrastrong-
coupling regime g ≫ 1 for intermediate values of J [Figure 2.8] corresponding to the
cyan-shaded area in Figure 2.2(c). In particular, we find that the Goldstone energy at the
momentum for which the instability ΓG/A(k) is maximal scales linearly with the Rabi
coupling Ω, signalling that this is the mechanism responsible for pattern formation.
Once again, we interpret this feature as a direct consequence of the competition between
photon interactions and effective pumping: as long as J is sufficiently small to allow for
having a sizeable density in the system, the condensate will tend to arrange itself into
the most convenient pattern to accommodate fast injected photons. We speculate that
5 See Section 1.2.2 of the previous Chapter.
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Figure 2.8: Excitation spectrum of the SF state stabilised for Ω/Γp = 1, Γl/Γp = 5 ·10−2 and γ/Γp = ·10−3 with the hopping
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this modulational instability can be associated with the onset of strong short-range
correlations, in analogy with the physics of the one-dimensional system considered
in [389].

2.5.2 Density of states and dynamical response functions

Insulating phase

Density of states of the IP First-hand information on the behaviour of dynamical
correlations in the IP is provided by the DoS, which we calculate both in the full (k, ω)
space [Figure 2.9] and in its local projection A(ω) [Figure 2.10] for completeness.

Looking at the general features DoS for different values of J , we immediately notice
that, in striking contrast to equilibrium cases, A(k, ω) is neither a symmetric nor a
strictly positive function, as it receives a major contribution from the quasiparticle
branch ε+(k) only and assumes negative values (N-DoS) below a specific energy scaleω∗
[black horizontal lines in Figure 2.9]. Our results demonstrate that this phenomenology,
already observed in the presence of two-body losses and Markovian pumping [420, 431,
443], is pretty universal and extends to the strongly-interacting non-Markovian system
considered in the Thesis. Physically speaking, the N-DoS is a genuine non-equilibrium
signature of the pumping-induced population inversion taking place in the deep IP and
is also a manifestation of energy gain, a condition which is conventionally associated
with optical amplification [444, 445] but, at the same time, competes with the onset of
coherence in our system. From these observations, we draw a complex, Janus-faced
portrait of the IP state: not only it can allow for a positive gain with respect to light
emission despite the absence of long-range coherence – as we will discuss in a short
while –, but also it displays a non-equilibrium facet which is solely due to many-body
excitations and does not emerge at the level of the (almost pure) NESS. We conclude this
preliminary discussion by observing that the frequency scale ω∗ converges exactly to
the critical limit-cycle frequency ω0; this supports the interpretation of ω∗ as an effective
chemical potential for quasiparticles, since it separates positive- and negative-weight
states. We clarify here that ω∗ exhibits only a weak dependence on the hopping J
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Figure 2.9: Profile of the DoS of the IP in momentum-frequency space across the IP for constant Ω/Γp = 5 · 10−1,
Γl/Γp = 5 · 10−2, γ/Γp = 5 · 10−3 and the same hopping values considered in Figure 2.5, in particular: (a) z J/Γp = 0.5; (b)
z J/Γp = 1.5; (c) z J/Γp = 2; (d) z J/Γp = 2.5. The colour scale is normalised so as to make 0 correspond to the grey tone.

according to our Gutzwiller approach to Gaussian fluctuations, a subtle property that
conversely has been found by DMFT calculations [443] in diverse driven-dissipative
models.

Let us now describe in detail the behaviour of the DoS upon approaching the
I-to-SF transition, keeping an eye on Eq. (2.46) as a quantitative reference. In the
Mott-like regime at low J [Figure 2.9(a)], most part of A(k, ω) lies well below the
frequency scale ω∗ and has a dual profile depending on the momentum of quasiparticle
excitations. In particular, whereas the N-DoS reaches its minimal value at low momenta,
it covers a wider range of states at the border of the BZ, where it splits into two
peaks. This behaviour can be elegantly explained in terms of the crucial role played
by the quasiparticle weight Z+,k in the DoS expression (2.46). The real part of Z+,k,
associated with the Lorentzian component of A(k, ω), is negative and gives a leading
contribution for non-local quasiparticle states, which explains the well-visible peak
of the DoS at small momenta. By contrast, the imaginary part of Z+,k, which instead
weighs the odd resonance of quasiparticle modes, favours localised states and yields the
corresponding double-peaked profile of the DoS for |k| ≈ π. However, since we always
have |Z ′

+,k| > |Z ′′
+,k| at small J , the latter contribution is never sufficiently large to flip

the DoS sign in the Mott-like regime. Therefore, we realise that both the negativity of
Z ′

+,k and a significant imaginary component Z ′′
+,k strongly relate to the appearance of

population inversion and, more generally, hint at the strong non-equilibrium character
of the NESS. Summarising this physics at the level of the local DoS [Figure 2.10], A(ω)
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Figure 2.10: Profile of the local as a function of frequency across the IP for constant Ω/Γp = 5 · 10−1, Γl/Γp = 5 · 10−2,
γ/Γp = 5 · 10−3 and the same hopping values considered in Figure 2.9.

is a negative-valued distribution, with a bimodal structure paralleling the momentum
dependence of the underlying correlations.

As J increases [Figure 2.9(b)], population inversion is progressively lost: this
manifests into the quasiparticle band nearing the frequency threshold ω∗ starting from
non-local states at k = 0. In particular, as anticipated before, we notice that states
lying above ω∗ acquire a significant positive weight. Once again, we can quantitatively
understand this mechanism from the point of view of the quasiparticle weight. Moving
towards the PHS point at n0 = 1/2, both the components of Z+,k decrease in amplitude
towards comparable values and become flat in momentum. Thus, precisely at the
PHS point [see Figure 2.9(c)], the DoS has the shape of a Fano resonance around the
quasiparticle energy ω+,k ≈ ω∗, determined by the imaginary part of Z+,k [see also the
pink curve in Figure 2.10]. Increasing further J towards the I-to-SF transition, the real
part of the quasiparticle weight becomes large and positive for states for which ω > ω∗,
while the imaginary component remains a vanishingly small number and gives the
residual N-DoS below ω∗. Ultimately, the DoS becomes strictly non-negative exactly
before the critical point J = Jc [Figure 2.9(d)]. Here, the whole spectral weight has been
transferred above the effective chemical potential ω∗ [red curve in Figure 2.10]: then,
this frequency scale can be rigorously identified with the critical energy of delocalised
quasiparticle excitations, which are then free to condense.

Looking globally at our result, the fine features of the momentum-frequency
dependence of DoS upon approaching the I-to-SF critical point can be seen as a good
indication of the quantumness of the quantum phase transition characterising the current
driven-dissipative setting, in contrast to other out-of-equilibrium systems where the
order parameter noise encoded in GR(k, ω) is frequency-independent at low energy
and the critical behaviour of can be regarded as classical [430, 446]. In this sense, it
is clear that the energy-dependent gain of the incoherent non-Markovian pumping
scheme considered here is of crucial importance in giving dynamical correlations a
non-trivial energy-dependent structure.
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Figure 2.11: Transmittivity and reflectivity signals of optical cavities in the IP regime for the same parameters of Figure 2.5,
with increasing values of the hopping J from top to bottom. Left panels: contour plots of the transmittivity signal. Right
panels: reflectivity signals.
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One-body dynamical response of the IP By virtue of Eqs. (2.52)-(2.53), we immedi-
ately realise that the N-DoS phenomenon has a dramatic impact on the transmittivity
and reflectivity spectra. In the following, we will illustrate that these observables can be
regarded as the most clear-cut fingerprints of the exceptional properties of the normal
phase of the NESS.

In the deep IP regime [Figure 2.11(a)-(a′)], the transmittivity signal is always signifi-
cantly larger than the bare transmission amplitude τ = γf γ

∗
b = Γl in correspondence of

the quasiparticle branch, but never exceeds the threshold |T (k, ω)|2 = 1. The situation
is remarkably different in the reflectivity channel: here, the output signal displays a
positive gain with |R(k, ω)|2 > 1 and echoes the same out-of-equilibrium spectral
features of quasiparticle excitations described in the previous paragraphs. While this
result is a clear consequence of Eq. (2.52), it uncovers more explicitly the Janus-faced
nature of the IP. In fact, although behaving as an insulator from the point of view of the
excitation spectrum and lacking long-range coherence, its dynamical response strongly
resembles the one of a typical lasing state, with the fundamental difference that light
amplification occurs on a broad range of momenta and frequencies in the present case,
not restricted to the region of momenta where coherence eventually develops at the
I-to-SF transition.

As the hopping J is increased towards the PHS point at n0 = 1/2 and beyond, we
observe two qualitative trends coming into play [Figure 2.11(b)-(b′)]. Similarly to the
DoS, most of the contribution of the quasiparticle branch to response functions shifts
to lower and lower momenta; at the same time, the intensities of both |T (k, ω)|2 and
|R(k, ω)|2 change non-monotonically and reach values larger than 1 above a certain
value of J . Quantitatively, this behaviour is the consequence of a two-fold change
in the Green’s function of cavity photons. First, increasing J has the prime effect of
reducing the width Γ+(k) of the quasiparticle spectrum, thus sharpening the N-DoS
peak. In the second place, the modulus of Re[GR(k, ω)], which has a pole precisely
on the quasiparticle branch and quantifies nothing but the strength of perturbations
of the order parameter around ψ0 = 0, becomes uniformly larger with the hopping.
As a result, |T (k, ω)|2 and |R(k, ω)|2 get an increasing contribution from the natural
increase of the amplitude of quantum fluctuations due to the hopping.

Close to the point where n0 = 1/2 [Figure 2.11(c)-(c′)], population inversion has been
partially lost and the morphology of the |R(k, ω)|2 spectrum starts differing from that of
|T (k, ω)|2. In particular, while the latter develops a well-visible peak at the condensation
point (k = 0, ω∗), the former follows the usual behaviour of a Fano resonance around
the effective chemical potential ω∗: in particular, we find that the value of |R(k, ω)|2

is above (below) 1 for ω < ω∗ (ω > ω∗). Making the aforementioned approximation
|R(k, ω)|2 ≃ 1 − 2π

∣∣γf,k
∣∣2A(k, ω), we can readily link the Fano resonance to the sign

flip of the DoS across ω = ω∗.
In proximity of the I-to-SF critical point [Figure 2.11(d)-(d′)], most of the DoS acquires

a positive weight and covers only states above ω∗, while Re[GR(k, ω)] diverges at the
same frequency scale, marking the occurrence of condensation. This second effect is the
dominant one and manifests in the rapidly growing peaks of |T (k, ω)|2 and |R(k, ω)|2

at low momenta. The only remaining signature of the competition between the presence
of states with a positive but finite DoS and the development of coherence, affecting
respectively the first and second contributions to the right-hand side of Eq. (2.52), is a
residual dark resonance of |R(k, ω)|2 at higher energies, which eventually fades out on
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the brink of the I-to-SF transition.

Superfluid phase

Density of states of the SFP As for the case of the IP, we start our analysis of
dynamical correlations in the SFP by looking at the DoS. In Figure 2.12(b), we report
the typical form of A(k, ω) in the symmetry-broken phase, including the anti-adiabatic
limit of the model. On the whole, the DoS gets a non-negligible contribution from the
Goldstone branch only and exhibits a butterfly-shaped structure analogous to that of EP
condensates [see Figure F.1 in Appendix F.1], however with a crucial discrepancy with
respect to the latter systems. On the one hand, states at ω > 0 have a non-vanishing
and positive distribution in the range of diffusive momenta ∆kdiff , which is peaked
around (k = 0, ω = 0) because of condensation, such that it connects continuously to
the DoS of quasiparticle excitations of the critical IP [see Figure 2.9(d)]; on the other
hand, states belonging to the ghost branch at ω < 0 have a negative weight which
mirrors exactly A(k, ω > 0). More precisely, we note that this specular symmetry is
an indirect consequence of the PHS relating the Goldstone and amplitude excitations
at low momenta. This feature is explicitly shown in Figure 2.12(a), where we plot the
particle-hole character Cα,k of the SFP excitations, see the definition of Eq. (2.20). In
particular, we point out that all the collective modes are completely symmetric at low
momenta.

For the sake of clarity, we remark that the odd behaviour of the DoS around ω = 0
is a genuine product of the Goldstone diffusivity out of equilibrium and must not be
confused with the well-known DoS structure of positive/negative-norm modes in an
interacting bosonic system at equilibrium 6: in particular, we find that an essential
ingredient for the functional form of the DoS in the SFP is again the imaginary
component of the quasiparticle weight of the Goldstone mode Z ′′

Gol,k < 0, which is
negligible everywhere but in the sphere of diffusive momenta as expected. Hence, we
find that the DoS is well-approximated by the expression

A(k, ω) = − 1
π

Z ′′
Gol,k ω

ω2 +
(
ω′′

Gol,k

)2 , (2.64)

from which we can extract also a prediction for the local DoS at low frequency by
analytical integration. In d dimensions, we obtain

A(ω) = − 1
π

Ωd

(2π)d

Z ′′
Gol√
D

arctan
(√

DΛD

ω

)
, (2.65)

where we have assumed Z ′′
Gol,k ≈ Z ′′

Gol,D is the Goldstone diffusion coefficient and ΛD

is a momentum cut-off enclosing the diffusive regime where ω′′
Gol,k ≈ D k2. Notably,

the static limit of the local DoS reads A(ω → 0) ∼ Z ′′
Gol/

√
D and provides direct

information on the diffusion coefficient. We remind here that ω′′
Gol,k and Z ′′

Gol,k refer to
the hybridised D-mode becoming gapless in the anti-adiabatic regime of the SFP, see
Subsection 2.5.1.

6 See e.g. the QGA prediction for the Green’s function of the BH model in Eq. (B.28) of Appendix B.3.
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Figure 2.12: Panel (a): particle-hole character Cα,k of the collective modes of the SFP. Panel (b): typical profile of the DoS in
the SFP. Panels (c)-(e): behaviour of the transmittivity, reflectivity and FWM signals in the SFP, respectively. All the panels
refer to the representative case of the SF state at z J/Γp = 6 for Ω/Γp = 5 · 10−1, Γl/Γp = 5 · 10−2 and γ/Γp = 10−3, see
the excitation spectra in Figure 2.6(c)-(c′).

One-body dynamical response of the SFP The very same symmetry that governs
the DoS behaviour at low energy reflects in the response functions of the photon
field, whose profiles are shown in Figure 2.12(c)-(e) for the same value of J as the
DoS. Differently from the case of EP condensates, the signals of the upper and lower
branches have equally strong intensities in the transmittivity and the reflectivity spectra,
with a weak asymmetry appearing when the PHS of the excitations is increasingly
broken at large momenta. Thus, the inherent symmetry properties of the hard-core
NESS make the T (k, ω), R(k, ω) and F (k, ω) as equally sensitive probes of the low-
energy excitations of the superfluid state of the photon fluid. A secondary property
of the transmittivity spectrum is the appearance of a dark resonance for ω < 0 [see
Figure 2.12(c)], well below the signal of the ghost mode, which moves to larger energies
and acquires a broader dispersion as J increases. For this reason, we interpret this
feature as the effect of the destructive interference between the amplitude mode and the
Goldstone/D-mode branches at the level of the Green’s function, postponing a deeper
understanding of such finer aspects to a more detailed study of the SFP dynamical
behaviour.

It is interesting to notice that, however, neither of the one-body response functions
reveal unambiguously the occurrence of the dissipative Goldstone hybridisation
occurring at large J . Since the spectral contribution to density fluctuations of the D-
mode ωD(k) has been previously shown to drastically change across the anti-adiabatic
crossover [see the first row of Figure 2.7], we theorise that more general dynamical
observables probing two-body correlations of the SFP – better known as intensity
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Figure 2.13: Change in the dynamics of the coherence function behaviour across the IP for constant Ω/Γp = 5 · 10−1,
Γl/Γp = 5 · 10−2, γ/Γp = 5 · 10−3 and the same hopping values considered in Figure 2.5. From left to right: (a) z J/Γp = 0.5;
(b) z J/Γp = 1.5; (c) z J/Γp = 2; (d) z J/Γp = 2.5. Thin solid line: real part of g1(t). Thick solid line: modulus of g1(t).

A zoo of
correlations:
hole
dynamics in
the
insulating
state

correlations in the present quantum optical context – could be the ideal targets of
measurement protocols aimed at detecting the spectral properties of the hybridised
Goldstone mode. Since the Gutzwiller approximation is known to underestimate pair
correlations at the level of Gaussian fluctuations (a shortcoming cured by the QGA),
such a topic goes beyond the scope of the present work, and we leave it as an open
problem for future investigations.

2.5.3 Quantum correlations: local photon coherence in the insulating phase

The DoS profile and dynamical response functions are not the only one-body features
that distinguishes the IP from a strongly-correlated normal phase at equilibrium.
In this Subsection, we show that also the local coherence function g1(t) ≡ g1(0, t)
can provide accurate information on the quasiparticle/hole excitations of the IP and,
most interestingly, how quantum coherence develops in the system. It is important
to underline that, as per Eq. (2.61), a measurement of g1(t) probes the entity of local
hole excitations, which have been actually the target of recent theoretical works and
experiments in C-QED devices [25, 447, 448]. More in detail, we recall that Vα,k ̸= 0 for
the quasihole branch only in the IP: we therefore deduce that the excitations of such
regimes can be clearly distinguished not only in terms of their particle/hole characters,
but also depending on the type of quantum correlations that they elicit in the system.

In Figure 2.13, we show our predictions for the local coherence function in the IP
corresponding to the same values of J in Figure 2.5 and, as we now discuss, to three
different regimes of quasihole propagation. As a first detail, it must be noticed that
g1(t = 0) is exactly equal to the mean-field density of photons n0, a sum rule that
contributes to give physical consistency to our results.

At sufficiently low J with n0 > 1/2 [panel (a)], g1(t) is an oscillatory function with
damping time τ ∼ Γ−1

em ≈ Γ−1
ph (k) and whose period T is set by hopping fluctuations

of photons back and forth to their lattice positions. This common form of coherence
damping can be schematically understood as the excitation of a single unstable energy
state, namely the lowest-energy hole mode ω−(π) in the present scenario. As seen in
Subsection 2.5.1, increasing J [panel (b)] has the effect of spatially spreading quasihole
excitations: this leads to a flattening of ε−(k) as it gradually moves above the lasing
frequency ω∗. As a consequence, the amplitude of g1(t) displays a beating behaviour,
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due to the constructive interference of coherent oscillations at different momenta. On
the other hand, the long-time decay is substantially controlled by the Liouvillian gap
τ ∼ Γ−1

ph (0). Because of the compensation between J and n0 in fixing the bandwidth of
quasihole excitations, we find that this behaviour is the one dominating the IP until the
critical point J = Jc is reached [panel (d)]. A remarkably different case is represented by
the region in which n0 ≈ 1/2 [panel (c)]: here, all the quasihole modes have essentially
the same energy and spectral weight in the expression of g1(t). As regards the DoS, we
observe that this reflects into a power-law behaviourA(ω) ∼ (ω − ω∗)−ν for frequencies
above the lasing frequency ω∗, a clear signature of spectral accumulation [see the inset
of Figure 2.10]. Accordingly, the beating dynamics of g1(t) changes into the damped
power-law behaviour exp [Γph(0) t]/t1−ν , which well fits the thick black line in panel
(c). We conclude by mentioning that the decay time of coherent fluctuations τ ∼ Γ−1

ph (0)
eventually diverges with the closure of the Liouvillian gap at the I-to-SF transition, and
therefore could serve as an additional indicator of the onset of long-range order in
future experimental protocols, as prefigured as in [23, 419].

Interestingly, the results discussed above indicate that the IP can host a wide variety
of one-body dynamical correlations on long time scales, despite the absence of a source
of coherence (such as e.g. a condensate) and in the presence of strong dissipation
mechanisms. For this reason, the IP can be definitely regarded as an unconventional
normal state, with respect to both the excitation spectrum and observable quantum
correlations. We emphasise once more that a crucial ingredient of such anomalous
insulating physics resides in its out-of-equilibrium genesis, in turn made possible by
the engineering of strong photon interactions in a C-QED setting.

2.6 Overview of the results

Although in this Chapter we have proposed a straightforward scheme to gain informa-
tion on the NESS and excitation modes of a driven-dissipative fluid of light, our results
have turned out to be unexpectedly rich in new physics, most of which is due to the
dichotomy between the stationary state and its excitations that we have emphasised
throughout our discussion.

Looking at the phase space explored by the NESS, we have shown that the system
can be found either in an insulating or in a superfluid state, depending solely on
the competition between the incoherent pumping and the hopping energy of cavity
photons as a consequence of the presence of strong photon interactions. The two phases
are separated by a second-order quantum phase transition, which can be driven by
changing either the cavity hopping or the Rabi coupling between the cavities and the
TLE’s. Thanks to the flexibility of the Gutzwiller approximation, which embodies the
strong-coupling regime, we have remarkably found that the superfluid order parameter
is a non-monotonic function of the system parameters: explaining this feature in terms
of particle/hole superfluidity, we have hypothesised that the balance between unitary
and dissipative dynamics could be the key to stabilise novel types of superfluid states.
A salient feature of the mean-field picture of the NESS is also the possibility of realising
extremely pure states, the most interesting of which is the Mott-like phase forming at
low hopping.

Our analysis of quantum fluctuations reveals however that the “surface” properties
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of the NESS do not tell the whole story about the out-of-equilibrium physics of
the system. Part of this information is encoded in the excitation spectrum of the
collective modes: among the other results, we have found that the structure of the
diffusive Goldstone mode, a universal footprint of non-equilibrium superfluids, makes
the classification of the symmetry-broken states even more complex. In particular,
a cross-hybridisation between phase excitations of the condensate and dissipative
modes occurs in the dilute limit of the system, where there is no adiabatic separation
between the cavity dynamics and the TLE’s. Disclosing the quantum behaviour of the
insulating phase has instead required the introduction of additional tools, including
the calculation of linear response functions, in addition to designing a procedure to
predict the expression of actual expectation values based on Gaussian fluctuations. This
theoretical work has allowed us to appreciate what we termed the Janus-faced character
of the driven-dissipative insulator: this state, despite having a gapped spectrum and
exponentially decaying correlations, displays a striking dynamical response entirely
due to the energy gain necessary to the very existence of the insulating state. Specifically,
the transmittivity and reflectivity of the cavities in the insulating state have been shown
to exceed the gain threshold well before the quantum phase transition, implying the
remarkable fact that the cavity array can amplify an incident light probe without being
in a lasing state.

In summary, we have illustrated how our simple linear response theory of quan-
tum fluctuations based on the Gutzwiller approximation for the Lindblad dynamics
generalises the Bogoliubov treatment of out-of-equilibrium condensates to the study
of generic driven-dissipative photonic system on a lattice. Similarly to the QGA, the
efficacy of our approach hinges on a detailed diagnosis of the collective modes. Even
though our results are the product of a relatively strong approximation for non-local
fluctuations, they strongly hint at exciting new physics, potentially not limited to the
field of strongly-correlated light fluids, which certainly deserves a deeper inspection
by more accurate methods.
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In this second Part of the Thesis, we have introduced and provided the first many-
body solution to a paradigmatic model for a driven-dissipative fluid of light loaded
on a lattice of coupled optical cavities in the presence of non-Markovian pumping.
This peculiar system has been a fruitful occasion to tackle the problem of identifying
the relationship between the collective many-body excitations of a strongly-correlated
system and the intrinsic non-equilibrium features of its stationary state when dissipation
mechanisms are in action. Building on a Gutzwiller analysis of the excitation spectrum
and Gaussian fluctuations, particularly relevant results of our work are:

▶ a global understanding of the excitation spectrum of the steady state across the
insulator-to-superfluid transition of the system;

▶ a characterisation of the interplay between coherence and different dissipation
channels in determining the low-energy structure of the Goldstone mode of the
symmetry-broken phase;

▶ the uncovering of the paradoxical nature of the insulating state, which is shown
to support light amplification despite the absence of long-range coherence;

▶ a scheme for calculating actual quantum averages starting from our derivation of
C-valued fluctuations.

Thanks to the high tunability of our model, our findings pave the way for a more
general understanding of the spectral properties of the unprecedented quantum phases
hosted by lattice systems driven out of equilibrium and could find a direct experimental
validation through state-of-the-art C-QED engineering. Apart from being relevant for
the purpose of quantum-simulating equilibrium-lake phases, such a line of research
could be also an additional opportunity to cross-fertilise the languages of the condensed
matter and quantum optics communities, in order to answer those multidisciplinary
questions that currently arise from cutting-edge platforms of many-body physics,
ranging from trapped ions [449] to optical cavities [450] and superconducting circuits [3,
42, 398, 451] and novel polariton systems [452].

To this end, numerous extensions of the present work could be possibly studied in
the next future. These comprise the analysis of the whole phase diagram of the model
(beyond the hard-core limit) and hence the characterisation of additional gapped modes
in the SFP, a detailed study of the (potentially multiple) critical points of the I-to-SF
transition. From a methodological perspective, these and other future developments
could take into account improved versions of the Gutzwiller ansatz for the density
matrix (e.g. a cluster solution [15–17, 421, 453]) in order to give an identity to the
dynamical instabilities appearing in the SF state at strong coupling. In this regard, we
cannot also exclude that describing short-range correlations exactly could radically
change the phase diagram and expose other dynamical instabilities [421]. Turning
our attention to open questions of a wider scope, we believe that the prospect of
stabilising novel bosonic states which are hardly realisable at equilibrium (e.g. hole
superfluids) poses other intriguing subjects of discussion. Analogously, the application
of our method to more general driven-dissipative models (e.g. those proposed with the
aim of stabilising the whole BH phase diagram [20]) is also a doable task in the same
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spirit of our investigation.
Limiting ourselves to the specific case of systems under non-Markovian dissipation,

our study mainly focuses on dynamical response properties, which provides infor-
mation on how dissipation takes place in the system. While we are confident that our
observations would not be qualitatively affected by the inclusion of quantum effects
beyond linear response, the investigation of genuine quantum correlations appears to be
an exciting research perspective to pursue in order to scrutinize the relation between
actual quantum fluctuations and dissipation phenomena, with special attention paid to
the quantumness of the I-to-SF transition. Future studies might address these questions
in analogous driven-dissipative settings by means of the quantum trajectory tech-
nique [16, 454] specialised to the framework of the QGA theory in order to keep track
of the dynamical effects of collective modes. Furthermore, our approach can represent
a powerful tool for complementing the insights of powerful yet more demanding
precision methods as B-DMFT [443, 455].

Recalling the aforementioned cross-fertilisation of physical ideas, we conclude
this survey of final remarks with a comment on a most interesting feature of out-of-
equilibrium superfluidity which is not completely grasped by our approach, that is the
dissipative hybridisation of the Goldstone mode in the deep SFP. It is important to notice
that this manifestation of anti-adiabaticity establishes a direct connection between our
system and the so-called type-B lasers [456–459]: indeed, the working principle of
these devices is based on a small number of atomic emitters whose dynamics occurs
precisely on a timescale comparable to the leakage of cavity photons. In this scenario, it
has been proposed [413] that the lasing dynamics of photons could mediate an effective
interaction (time-evolving with the limit-cycle frequency) between the emitting centres,
leading to a novel kind of light-induced time crystal. For this reason, we expect that a
similar situation could take place in the dilute regime of our model. In this regard, we
also envisage that crucial information on this physics could come from the theoretical
and experimental analysis of those observables that could directly detect different
morphologies of the Goldstone mode, e.g. intensity fluctuations of the cavity field.
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A
Spectral properties of the pseudo-Hermitian operator L̂k

The present Appendix takes free inspiration from Secs. 6.1.3. and 6.1.4. of [44].

A.1 Spectral decomposition

Since L̂k is not a Hermitian operator, its eigenbasis is not orthogonal according to the Euclidean norm
(in contrast with the case of BCS theory for interacting fermions). In order to write L̂k in diagonal form,
the knowledge of the eigenvectors is then not sufficient a priori. One generally proceeds according to
the following theorem.

Theorem A.1.1 Let M̂ be a diagonalisable but not necessarily Hermitian operator. It follows that the diagonal
form of M̂ can be written as

M̂ =
∑

α

mα

∣∣∣mR
α

〉〈
mL

α

∣∣∣ (A.1)

where
∣∣∣mR

α

〉
is the right eigenvector of M̂ with eigenvalue mα,

M̂
∣∣∣mR

α

〉
= mα

∣∣∣mR
α

〉
(A.2)

and
〈
mL

α

∣∣∣ is the corresponding left eigenvector with the same eigenvalue, namely

〈
mL

α

∣∣∣ M̂ =
〈
mL

α

∣∣∣ mα , (A.3)

or equivalently
M̂ †

∣∣∣mL
α

〉
= m∗

α

∣∣∣mL
α

〉
. (A.4)∣∣∣mL

α

〉
is then called the adjoint eigenvector of

∣∣∣mR
α

〉
. The normalisation of the left and right eigenvectors is

such that
〈
mL

α

∣∣∣ mR
β

〉
= δα,β .

We apply the above proposition to L̂k. Picking Section 1.2.2 of Part I as a reference, the right eigenvectors
with eigenvalues ωα,k can be readily identified with

∣∣∣mR
α

〉
=
(
uα,k
vα,k

)
. (A.5)

Up to a normalisation factor Mα,k, the left eigenvector can be shown to read

∣∣∣mL
α

〉
= Mα,k

(
uα,k

−vα,k

)
. (A.6)
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The normalisation condition imposes that M∗
α,k

(
u∗

α,k · uα,k − v∗
α,k · vα,k

)
= 1, which is a simple

instance of the so-called Minkowski norm. If the quantity between round brackets matches the natural
Bogoliubov norms ±1, then the normalisation condition imposes Mα,k = ±1 respectively. More
generally, we can group the eigenvectors of L̂k into three families:

▶ the + family, such that
(
u∗

α,k · uα,k − v∗
α,k · uα,k

)
= 1, also known as positive-norm modes;

▶ the − family, such that
(
u∗

α,k · uα,k − v∗
α,k · vα,k

)
= −1, also known as negative-norm modes;

▶ the 0 family, such that
(
u∗

α,k · uα,k − v∗
α,k · vα,k

)
= 0.

From Theorem A.1.1 we realise that there is a duality between the eigenvectors of the + and −
family. Specifically, each positive-norm mode

(
uα,k, vα,k

)
with eigenvalue ωα,k can be paired with a

negative-norm mode having right eigenvector
(
v∗

α,k, u
∗
α,k

)
and eigenvalue −ω∗

α,k. It is important to
note that the denomination “+ family” refers to the sign of the eigenvector norm and not to the sign of
the eigenvalue.
The only member of the 0 family is the eigenvector

[
c0,
(
c0)∗], which represents a global phase rotation of

the ground state with vanishing energy. As a by-product, it is easy to see that
(
c0)∗·uα,k =

(
c0)∗·vα,k = 0,

which guarantees the orthogonality of quantum fluctuations with respect to the ground state.

A.2 Commutation relations

The commutation relations for the QGA fluctuation operators δĉn(r) can be identified a posteriori
once the right eigenvectors

(
uα,k, vα,k

)
of L̂k and the exact form of the Bogoliubov rotation (1.15) are

determined. Exploiting the fact that the operators b̂α,k, b̂†
α,k satisfy the Bose statistics, we obtain

[
δĉn(r), δĉ†

m(s)
]

= 1
V

∑
α,k

ei k·(r−s)
(
uα,k,n u

∗
α,k,m − v∗

α,−k,n vα,−k,m

)
. (A.7)

A well-known property of pseudo-Hermitian matrices of the same form as L̂k is the sum rule [44]∑
α

(
uα,k,n u

∗
α,k,m − v∗

α,−k,n vα,−k,m

)
= δn,m − c0

b

(
c0

m

)∗
, (A.8)

which formally follows from the fact that the ground state eigenvector
[
c0,
(
c0)∗], being a zero-energy

eigenvector of L̂k, can be always projected out of the spectral decomposition of the quadratic form (1.10)
when considering only excitations with finite positive energy. Inserting the expression (A.8) into
Eq. (A.7), we obtain the expected quasi-bosonic commutation relations (1.19).



B
Gutzwiller theory of the Bose-Hubbard model: exact results

The first three Sections of this Appendix are partially based on well-known results reported in [43, 51].

B.1 MI-to-SF critical boundary

The location of the quantum phase transition between the MI and SF phases can be determined from
the disappearance of the energy gap in the MI excitation spectrum, which corresponds to the condition
ωP,0 = 0 and/or ωH,0 = 0 depending on the chemical potential µ. In this way, we recover the critical
hopping value

2 d
(
J

U

)MI

c
= (n0 − µ/U) (1 − n0 + µ/U)

1 + µ/U
, (B.1)

where n0 is the filling of the MI lobe under consideration. The maximal value of the critical hopping
for each MI lobe, given by

2 d
(
J

U

)MI,tip

c
=
(√

n0 + 1 −
√
n0
)2

, (B.2)

corresponds to the tip of the Mott lobes, namely the O(2) transition points, having the chemical
potentials (

µ

U

)MI,tip

c
=
√
n0 (n0 + 1) − 1 . (B.3)

At the O(2) critical point, the Goldstone and Higgs branches have the gapless excitation energies

ωtip
Gol/Hig,k =

[√
n0 (n0 + 1) (z J + εk)U + 1

4 (z J + εk)2
]1/2

± εk
2 . (B.4)

For small |k|, the two branches are degenerate with the sound velocity

ctip
s = [n0 (n0 + 1)]1/4

√(
J

U

)MI,tip

c
U . (B.5)

B.2 Acoustic features of the Goldstone mode in the SF phase

B.2.1 Derivation of the Gutzwiller sound velocity equation

In order to work out the sound velocity cs of the Goldstone mode, we consider the diagonalisation
problem of the QGA Hamiltonian (1.10) and perform a low-k expansion of the Bogoliubov coefficients,
as well as of the corresponding excitation spectrum,

uα,k = u
(0)
α,k + u

(1)
α,k + u

(2)
α,k + . . . , (B.6a)
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vα,k = v
(0)
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(1)
α,k + v

(2)
α,k + . . . , (B.6b)

ωα,k = ω
(0)
α,k + ω

(1)
α,k + ω

(2)
α,k + . . . , (B.6c)

where the superscripts indicate the k orders. The zeroth-order contributions to the previous system of
equations satisfies the relation

ω
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α,k
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(0)
α,k
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0 −H∗
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)u(0)
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 , (B.7)

whose only lowest-energy solution in the SF phase is given by

u
(0)
Gol,k,n =

(
n+ ∂ω0

∂µ

)
c0

n , (B.8a)

v
(0)
Gol,k,n = −u(0)

Gol,k,n , (B.8b)

ω
(0)
Gol,k = 0 , (B.8c)

and therefore corresponds to the Goldstone excitation as expected. In turn, the first-order terms are
ruled by the equation
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Taking into account the identity∑
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the first-order solution can be written as

u
(1)
Gol,k,n = v

(1)
Gol,k,n = ω

(1)
Gol,k

∂c0
n

∂µ
(B.11)

Making use of the above results in the second-order equation
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(where we have ignored the complex conjugation symbols in the lower matrix block for simplicity),
multiplying both the sides of the equations by

(
u

(0)
α,k,−v

(0)
α,k

)
from the left side and observing that

u
(0)
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k − v
(0)
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we readily obtain ∑
n

(
u

(0)
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(0)
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) ∂c0
n

∂µ
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where κ is the mean-field predictions for the compressibility. Combining this result with Eq. (B.12), we
derive the general formula

cs =

√
2 J
κ

|ψ0| (B.15)

for the Goldstone sound velocity.

B.2.2 Behaviour of the sound-velocity in the BH strongly-correlated regimes

In the deep SF limit (J ≫ U), |ψ0| ≈
√

⟨n̂⟩MF and κ ≈ U−1. Thus, we recover the well-known
Bogoliubov expression for the sound velocity on a lattice, namely

cs,Bog =
√

2 J U ⟨n̂⟩MF . (B.16)

In the opposite limit (J ≪ U), the SF phase with fractional density n0 < ⟨n̂⟩ < n0 + 1 is confined in
the region between the MI lobes with filling n0 and n0 + 1. For J/U → 0, the chemical potential of the
system is evidently a linear function of the density, namely

µ(J→0) = µ−(J) + [µ+(J) − µ−(J)] (⟨n̂⟩MF − n0) , (B.17)

where µ±(J) is the parametric equation of the upper/lower MI boundary, respectively. Using Eq. (B.1),
we obtain

µ
(J→0)
± (J) = U n0 ± z J (n0 + 1) , (B.18)

from which we deduce that
κ(J→0) = [2 z J (n0 + 1)]−1 , (B.19)

implying that the compressibility diverges in the HCSF limit of the system, as expected. Now, using the
thermodynamic relation ∂EBH/∂ ⟨n̂⟩ = µ for the energy density EBH and the mean-field condition
EBH,± = U n0 (n0 ± 1) /2 holding at the MI boundary, we get

E
(J→0)
BH = U n0

(
⟨n̂⟩ − n0 + 1

2

)
− z J (n0 + 1) (⟨n̂⟩MF − n0) (n0 + 1 − ⟨n̂⟩MF ) . (B.20)

From the previous equation, we can easily extract the order parameter value in the strongly-interacting
SF regime by means of

∣∣∣ψ(J→0)
0

∣∣∣2 = −1
z

∂EBH
∂J

= (n0 + 1) (⟨n̂⟩MF − n0) (n0 + 1 − ⟨n̂⟩MF ) , (B.21)

from which we finally obtain the sound velocity

c(J→0)
s = −1

z

∂EBH
∂J

= 2 J (n0 + 1)
√
z (⟨n̂⟩MF − n0) (n0 + 1 − ⟨n̂⟩MF ) , (B.22)

which reaches its minimal value for half-integer densities ⟨n̂⟩MF = n0 + 1/2. This behaviour mirrors
qualitatively the one of hard-core bosons in 1D, where the sound velocity has the exact expression
cHC

s = 2J sin (π ⟨n̂⟩), see e.g. [460] and also the mean-field treatment of the case n0 = 0 in Section F.2
of the Appendix.

Upon approaching the MI boundary, cs goes to zero everywhere except for the O(2) critical points,
where it converges to the value of Eq. (B.5). This behaviour can be understood by considering the
critical properties of the order parameter |ψ0| and the compressibility κ. In fact, the latter quantity
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Figure B.1: Surface plot of the sound velocity as a function of the hopping energy 2 d J/U and the chemical potential in the
strongly-correlated regime of the BH model. The flat white regions correspond to the MI lobes of the phase diagram. The
figure has been taken and adapted from [51].

goes continuously to zero proportionally to the condensate density ρc = |ψ0|2 only at the tip of the MI
lobes, thus explaining the respective finite value of cs; on the other hand, κ reaches a finite value on
the brink of the CI transition points, hence the vanishing sound velocity of the SF formed by doping
the MI phase.

To conclude, in Figure B.1 we provide an illustrative summary of the sound velocity properties in
the strongly-interacting and quantum critical regimes discussed before.

B.3 Excitation spectrum and Green’s function in the MI phase

In the MI phase, the mean-field Gutzwiller parameters have the simple analytical form c0,MI
n = δn,n0

pinned at the MI filling n0. Consequently, the blocks of the pseudo-Hermitian L̂k of fluctuations
simplify into

Hnm
MI,k =

[
U

2 n (n− 1) − µn− ω0

]
δn,m+εk [n0 δn+1,n0 δm+1,n0 + (n0 + 1) δn−1,n0 δm−1,n0 ] , (B.23a)

Knm
MI,k = εk

√
n0 (n0 + 1) (δn+1,n0 δm−1,n0 + δn−1,n0 δm+1,n0) . (B.23b)

It follows that the QGA eigenvalue problem reduces to the diagonalisation of 2 × 2 matrices that
couple uα,k,n0+1 to vα,k,n0−1 and uα,k,n0−1 to vα,k,n0+1, respectively. The former pair of Bogoliubov
coefficients correspond to the particle branch of the MI phase, while the latter is related to the hole
branch. Overall, the excitation spectrum of these two modes is given the analytical formula

ωP/H,k = 1
2

√
U2 + 4 εk U

(
n0 + 1

2

)
+ ε2

k ±
[
U

(
n0 − 1

2

)
− µ+ εk

2

]
, (B.24)

which is good agreement with results obtained by applying the Hubbard-Stratonovich trans-
formation [64] and the Schwinger boson approach [47]. In particular, by writing Eq. (B.24) as
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ωP/H,k = ∆P/H +m−1
P/H k2/2, we can extract the particle/hole energy gaps

∆P/H,k = ωP/H,0 = 1
2

√
U2 − 4 z J U

(
n0 + 1

2

)
+ (z J)2 ±

[
U

(
n0 − 1

2

)
− µ− z J

2

]
, (B.25)

as well as their effective masses,

m

mP/H
= 1

2

[(2n0 + 1)U − z J

∆P + ∆H
± 1

]
. (B.26)

Besides particle/hole excitations, the other branches of the MI spectrum are dispersionless with
energies

ωMI,λ = U

2 [λ (λ− 1) − n0 (n0 − 1)] − µ (λ− n0) , (B.27)

where λ is a non-negative integer number different from n0 and n0 ±1. The eigenvectors of these modes
are given by uα,k,n = δn,λ to vα,k,n = 0, such that they do not contribute to quantum correlations in
the MI.

Analogously to the calculation of the Green’s function of the QGA bosonic fields in the FH model
– see Eqs. (5.62) and (5.66) –, our second-order prediction for the Green’s function of the BH model
reads

GBH(k, ω) = −2π i V |ψ0|2 δ(ω) δk,0 +
∑

α

[ ∣∣Uα,k
∣∣2

ω − ωα,k
−

∣∣Vα,k
∣∣2

ω + ωα,k

]
. (B.28)

In the MI phase, the Green’s function acquires the simple expression

GMI
BH(k, ω) =

∣∣UP,k
∣∣2

ω − ωP,k
−

∣∣VH,k
∣∣2

ω + ωH,k
, (B.29)

where we have used the fact that doublon (holon) modes are weighted by the particle (hole) fluctuation
amplitude only, since UH,k = 0 and VP,k = 0 identically. Therefore, we observe that the squared hole
amplitude

∣∣VH,k
∣∣2 can be interpreted as the quasiparticle residue of hole excitations, as we also mention

in Subsection 1.3.1 of Part I. The numerical results discussed throughout the main body of the Thesis
show that the QGA offers a particularly accurate description of the MI physics. In what follows, we
show that the reason for this success has to be attributed to the analytical structure of the self-energy
of the MI state as predicted by the QGA.

We start our discussion by the explicit calculation of the MI self-energy via the Dyson equation
ΣMI

BH(k, ω) =
[
G

(0)
BH(k, ω)

]−1
−
[
GMI

BH(k, ω)
]−1

, where
[
G

(0)
BH(k, ω)

]−1
= ω − εk is the non-interacting

Green’s function of bosons on the lattice, yielding the result

ΣMI
BH(k, ω) = ω − εk + µ+

ωP,k ωH,k +
(
ωP,k − ωH,k

)
ω − ω2

ZH,k
(
ωP,k + ωH,k

)
+ ωH,k + ω

, (B.30)

where we have renamed ZH,k ≡
∣∣VH,k

∣∣2 for the sake of simplicity and used the Bogoliubov identity∣∣UP,k
∣∣2 −

∣∣VH,k
∣∣2 = 1 valid in the MI phase. Let us first analyse the behaviour of ΣMI

BH(k, ω) at small
momenta and frequencies, that is when both the particle and hole gaps ∆P,∆H are finite. In particular,
we make a distinction between the so-called ω-limit (uniform limit q = 0 taken before ω → 0) and the
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q-limit (static limit ω = 0 taken before q → 0). In the former case, we obtain

ΣMI
BH(k = 0, ω → 0) ≃ ∆P ∆H

ZH,0 (∆P + ∆H) + ∆H
(B.31)

+
{

1 + ∆P − ∆H
ZH,0 (∆P + ∆H) + ∆H

− ∆P ∆H

[ZH,0 (∆P + ∆H) + ∆H]2

}
ω + O

(
ω2
)
,

revealing that the self-energy scales linearly at low frequency. In the q-limit case, we derive

ΣMI
BH(k → 0, ω = 0) ≃ ∆P ∆H

ZH,0 (∆P + ∆H) + ∆H
+ O

(
k4
)
. (B.32)

indicating that the MI self-energy has weak dependence on momentum at low energy, the leading-order
term being in powers of k4. More precisely, at lowest order we have

ΣMI
BH(k → 0, ω = 0) ≃ z

2

[(
J

U

)MI

c
− J

U

] [
1 − J

24 (1 + µ)

d∑
i=1

k4
i

]
+ O

(
k6
)

(B.33)

It is important to notice that the non-quadratic dependence on momentum of ΣMI
BH(k → 0, ω = 0)

predicted by the QGA can be read as a consequence of the fundamentally quasi-local nature of the MI
phase and is the reason behind the following relation relating the non-local quasiparticle weight of
hole excitations with the corresponding effective mass,

ZH,0 = m

ZH
. (B.34)

Additionally, we highlight that the quartic-order coefficient J/ [24 (1 + µ)] in (B.33) is always smaller
than about 10−3 in d = 3, decreases with 1/d as the dimensionality of the system is increased at
fixed z J and, evidently, vanishes in the large-filling limit µ → ∞. These observations provide further
quantitative support to the QGA as a reliable theory of quantum correlations in the MI regime. Finally,
we also notice that the overall factor in front of the lowest-order terms in Eq. (B.33) vanishes at the
MI-to-SF boundary, thus giving an almost dispersionless self-energy at the critical point just before the
onset of one-body coherence.

Rigorously speaking, the calculation of the quasiparticle residues and effective masses of particle/-
hole excitations requires the evaluation of the MI self-energy on the respective poles in momentum
space [18]. In particular, focusing again on the hole mode for illustrative purposes, we have

m

mH
=

1 − ∂ΣMI
BH(k, ω)
∂ω

∣∣∣∣∣
k=0, ω=∆H

−1 [
1 + 2m

∂ΣMI
BH
(
k, ωH,k

)
∂k2

∣∣∣∣∣
k=0

]

= ZH,0

[
1 + 2m

∂ΣMI
BH
(
k, ωH,k

)
∂k2

∣∣∣∣∣
k=0

]
,

(B.35)

where the last equality is the result of a straightforward calculation based on Eq. (B.30). Let us then
evaluate the second factor on the right-hand side of Eq. (B.35). The partial derivative of the MI
self-energy with respect to k2 evaluated at the holon pole ωH,k reads

∂ΣMI
BH(k, ωH(k))

∂k2 = − 1
2m + 1∣∣ZH,k

∣∣2 ∂

∂k2

[
k2

2m∗
H

+ O
(
k4
)]

. (B.36)
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Therefore, it is easy to observe that

∂ΣMI
BH
(
k, ωH,k

)
∂k2

∣∣∣∣∣
k=0

= 0 , (B.37)

exactly, hence Eq. (B.35) leads to the expected relation (B.34). In conclusion, the MI self-energy scales
with k4 also around the particle/hole poles of the Green’s function. In more detail, the corresponding
momentum derivative turns out to have the simple quadratic structure

∂ΣMI
BH
(
k, ωH,k

)
∂k2 ≃ 1

4
2 +mH/m

(2n0 + 1)U − z J

k2

2m2 + O
(
k4
)

(B.38)

at low momenta, displaying an analytic behaviour across the MI-to-SF transition.

B.4 Additional details on the derivation of non-Gaussian fluctuations

In this Appendix Section, we briefly sketch the construction of the third-order extension of the QGA
theory that we have applied to the special case of the decay processes of the collective modes in
Section 1.4 of Part I.

The third-order contributions of the quantised fluctuations to the QGA Hamiltonian of the BH
model descend from the expansion of both the hopping operator and the local terms. More explicitly,

Ĥ
(3)
QGA = Ĥ

(3)
1 + Ĥ

(3)
2 + Ĥ

(3)
3 =

= −J
∑
r,s(r)

[
δ1ψ̂

†(r) δ2ψ̂(s) + δ2ψ̂
†(r) δ1ψ̂(s)

]
− J
∑
r,s(r)

[
ψ∗

0(r) δ3ψ̂(s) + δ3ψ̂
†(r)ψ0(s)

]

− 1
2

∑
r

∑
n

Hn c
0
n δĉ

†
n(r)

∑
m

δĉ†
m(r) δĉm(r) + H.c.

 ,
(B.39)

where the third-order expansion of the Bose-field δ3 ψ̂(r) reads

δ3ψ̂(r) ≡ −1
2
∑

n

√
n c0

n δĉ
†
n−1(r)

∑
m

δĉ†
m(r) δĉm(r) − 1

2
∑
m

δĉ†
m(r) δĉm(r)

∑
n

√
n
(
c0

n−1

)∗
δĉn(r)

(B.40)
and the symbol s(r) labels the nearest-neighbouring sites around r, while the third line of Eq. (B.39) is
due to the expansion of the normalisation operator Â(r). Considering a homogeneous system and
playing with the Bogoliubov rotation of the Gutzwiller fluctuation operators ĉn(r), a lengthy but
straightforward calculation provides the following intermediate expression,

Ĥ
(3)
QGA = 1√

V

∑
k,p

∑
α

εk Uα,k b̂
†
α,k

∑
m

√
mδĉ†

m−1(p) δĉm(k + p)

+ εk Vα,k b̂α,−k

∑
m

√
mδĉ†

m−1(p) δĉm(k + p) (B.41)

+1
2

[
ψ0 (z J − 2 εk)

(
Uα,k + Vα,k

)
+ U

2
(
Nα,k −Dα,k

)]
b̂†

α,k

∑
m

δĉ†
m(p) δĉm(k + p)


+ h.c. ,
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where the spectral weight

Dα,k ≡
∑

n

n2
[(
c0

n

)∗
uα,k,n + c0

n vα,k,n

]
(B.42)

weighs linear-order quantum fluctuations in the double-density channel in the same way as Nα,k does
in the density channel, see Eq. (1.45). Let us then focus on those terms of Ĥ(3)

QGA that are responsible
for the decay processes involving the collective modes of the quadratic QGA theory. In particular, the
related vertices are given by combinations of two creation operators b̂†

α,k and one annihilation operator
b̂β,p. Therefore, isolating all the relevant contributions to Eq. (B.41) and performing the appropriate
algebra, we obtain the decay interaction Hamiltonian

Ĥ
(3)
QGA = 1

2
√
V

∑
α,β,γ

∑
k,p

{[
ψ0 (z J − 2 εk)

(
Uα,k + Vα,k

)
+ U

2
(
Nα,k −Dα,k

)]
Eβ,γ

p,k−p

+
[
ψ0
(
z J − 2 εk−p

) (
Uα,k−p + Vα,k−p

)
+ U

2
(
Nα,k−p −Dα,k−p

)]
F β,α

p,k

+
[
ψ0 (z J − 2 εp) (Uα,p + Vα,p) + U

2 (Nα,p −Dα,p)
]
Gα,γ

k,k−p (B.43)

+ 2
[
εk Uα,k E

β,γ
p,k−p + εk−p Uγ,k−p F

β,α
p,k + εp Uβ,pG

α,γ
k,k−p

+ εk Vα,k E
β,γ
p,k−p + εk−p Vγ,k−p

(
F

α,β
k,p

)∗
+ εp Vβ,p

(
G

γ,α
k−p,k

)∗]}
b̂†

β,p b̂
†
γ,k−p b̂α,k

≡ 1
2

√
V

∑
α,β,γ

∑
k,p

Hα,β,γ(k,p) b̂†
β,p b̂

†
γ,k−p b̂α,k ,

yielding the desired Hamiltonian operator of Eq. (1.46). For the sake of conciseness, in the previous
expression we have defined the following two-mode structure factors,

Eα,β
k,p ≡

∑
n

u∗
α,k,n v

∗
β,p,n , (B.44a)

Fα,β
k,p ≡

∑
n

u∗
α,k,n uβ,p,n , (B.44b)

Gα,β
k,p ≡

∑
n

vα,k,n v
∗
β,p,n , (B.44c)

Eα,β
k,p ≡

∑
n

√
nu∗

α,k,n v
∗
β,p,n−1 , (B.44d)

E
α,β
k,p ≡

∑
n

√
nu∗

α,k,n−1 v
∗
β,p,n , (B.44e)

F
α,β
k,p ≡

∑
n

√
nu∗

α,k,n−1 uβ,p,n , (B.44f)

G
α,β
k,p ≡

∑
n

√
n vα,k,n−1 v

∗
β,p,n . (B.44g)



C
Local quantum corrections and other specifics of the QGA

C.1 Assessing the method through sum rules and commutations

In studying how one-body correlations are captured by the QGA in the comprehensive case of the
two-component BH model, we have pointed out that the structure of the particle (hole) amplitudes
Ui,α,k

(
Vi,α,k

)
is strictly related to the bosonic statistics of the collective excitations, since

[
δ1ψ̂i(r), δ1ψ̂

†
i (s)

]
= 1
V

∑
k

ei k·(r−s)
∑

α

(∣∣Ui,α,k
∣∣2 −

∣∣Vi,α,k
∣∣2) = δr,s , (C.1)

where we have used the Bose field expansion (2.61) and the last equality is verified provided that∑
α

(∣∣Ui,α,k
∣∣2 −

∣∣Vi,α,k
∣∣2) = 1 . (C.2)

In practice, we find that the previous identity is numerically satisfied if a sufficiently large number
of excitation branches are included into the α-summation. In the following, we show that we can
apply similar arguments to the quantised pair/antipair fields defined in Eqs. (2.5a)-(2.5b) and utilise
sum rules given by commutation relations of the form (C.1) as benchmarks of the QGA description in
different quantum phases.

The quantised pair and antipair fields read

ψ̂P(r) ≡
∑
n1,n2

√
n1 n2 ĉ

†
n1−1,n2−1(r) ĉn1,n2(r) − ψ̂1(r) ψ̂2(r) (C.3)

and
ψ̂C(r) ≡

∑
n1,n2

√
n1(n2 + 1) ĉ†

n1−1,n2+1(r) ĉn1,n2(r) − ψ̂1(r) ψ̂†
2(r) (C.4)

respectively. Including first-order fluctuations only, the pairing fields can be expanded as

ψ̂P(r) ≈ ψ0,P + δ1ψ̂P(r) , (C.5a)

ψ̂C(r) ≈ ψ0,C + δ1ψ̂C(r), (C.5b)

where the mean-field quantities ψ0,P and ψ0,C are respectively the pair and antipair order parameters
given by Eqs. (2.5), while fluctuations are encoded in the operators

δ1ψ̂P(r) ≡
∑
n1,n2

√
n1 n2

[
c0

n1,n2 δĉ
†
n1−1,n2−1(r) +

(
c0

n1−1,n2−1

)∗
δĉn1,n2(r)

]
− ψ0,2 δ1ψ̂1(r) − ψ0,1 δ1ψ̂2(r) ,

(C.6a)
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δ1ψ̂C(r) ≡
∑
n1,n2

√
n1(n2 + 1)

[
c0

n1,n2 δĉ
†
n1−1,n2+1(r) +

(
c0

n1−1,n2+1

)∗
δĉn1,n2(r)

]
− ψ0,2 δ1ψ̂1(r) − ψ0,1 δ1ψ̂

†
2(r) .

(C.6b)

Recasting the δĉ’s into the basis of collective modes, we can rewrite the first-order expansions (C.6) in
the compact, suggestive form

δ1ψ̂P/C(r) = 1√
I

∑
α

∑
k

[
UP/C,α,k e

i k·r b̂α,k + V ∗
P/C,α,k e

−i k·r b̂†
α,k

]
− ψ0,2 δ1ψ̂1(r) − ψ0,1 δ1ψ̂

†
2(r) ,

(C.7)

where the two-body particle (hole) amplitudes UP/C,α,k

(
VP/C,α,k

)
are explicitly given by

UP,α,k ≡
∑
n1,n2

√
n1 n2

[(
c0

n1−1,n2−1

)∗
uα,k,n1,n2 + c0

n1,n2 vα,k,n1−1,n2−1
]
, (C.8a)

UC,α,k ≡
∑
n1,n2

√
n1(n2 + 1)

[(
c0

n1−1,n2+1

)∗
uα,k,n1,n2 + c0

n1,n2 vα,k,n1−1,n2+1
]
, (C.8b)

VP,α,k ≡
∑
n1,n2

√
n1 n2

[(
c0

n1,n2

)∗
uα,k,n1−1,n2−1 + c0

n1−1,n2−2 vα,k,n1,n2

]
, (C.8c)

VC,α,k ≡
∑
n1,n2

√
n1(n2 + 1)

[(
c0

n1,n2

)∗
uα,k,n1−1,n2+1 + c0

n1−1,n2+2 vα,k,n1,n2

]
, (C.8d)

in analogy with Eqs. (2.17). Recalling the above discussion on the completeness relation concerning
the one-body Bose fields (C.1), a natural question that arises from the decompositions in Eqs. (C.6) is
whether they reproduce the two-body canonical commutators[

â1,r â2,r, â
†
1,s â

†
2,s

]
= δr,s (1 + n̂d,r) , (C.9a)

[
â1,r â

†
2,r, â

†
1,s â2,s

]
= −δr,s n̂s,r , (C.9b)

where density n̂d,r and spin n̂s,r operators were defined in Section 2.2.1 of Part I. Inserting the QGA
expression of the pairing fields (C.7), the lowest-order estimation of the commutation rules (C.9) reads

[
δ1ψ̂P/C(r), δ1ψ̂

†
P/C(s)

]
= 1
V

∑
k

ei k·(r−s)
∑

α

(∣∣∣Uα,P/C,k

∣∣∣2 −
∣∣∣Vα,P/C,k

∣∣∣2) . (C.10)

Notably, we discover numerically that, due to the only approximate description of the excitation
spectrum of the CFSF and PSF phases, with particular reference to the flat bands describing antipairing
and pairing excitations in Figure 2.3 and Figure 2.6 respectively, the above canonical relations are not
satisfied on average in the strongly-interacting regime, namely[

δ1ψ̂P(r), δ1ψ̂
†
P(s)

]
̸= δr,s (1 + ⟨n̂d,r⟩) , (C.11)

and likewise for the antipair Bose field, while a perfect match is found towards the deep SF regime. We
speculate that the violation of the sum rules (C.9) is therefore due to the missing spectral contribution
of those low-energy modes which are not grasped by our basic QGA theory.
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Figure C.1: (a)-(d) Quantum corrections to the total density and the one-body order parameter of the binary BH model across
its quantum phase transitions. (a) First-order MI-to-SF transition for U12/U = 0.9 and nd = 2. (b) Second-order MI-to-SF
transition for U12/U = 0.5 and nd = 2. (c) CFSF-to-SF transition for U12/U = 0.9 and nd = 1. (d) PSF-to-SF transition
for U12/U = −0.7 and nd ≈ 1.47. (e) Quantum correction to the CFSF order parameter for fixed total density nd = 1 at
U12/U = 0.9 and along the µ/U = 0.5 line within the CFSF phase. (f) Quantum correction to the PSF order parameter for
fixed total density nd ≈ 1.47 at U12/U = −0.7 and along the (µ/U)PSF

c = −0.35 critical line within the PSF phase.

C.2 Quantum corrections to local observables

Although in the main body of the Thesis we devote most of our attention to the study of non-local
quantum correlations in different forms, the QGA allows also for a simple estimation of quantum
corrections to local observables, which have been extensively explored in Sections 1.3.3, 2.3.4 and
Subsections 5.4.2, 5.5.2 of Part I in the case of charge and/or spin correlations within the BH and FH
models, respectively. In this Appendix Section, we give a more detailed account of quantum corrections
to the local density and the order parameters of the BH models addressed in the present Thesis, with
particular emphasis on the critical regimes. A similar formal discussion applies to the case of the FH
model, for which we always find small quantum corrections to the lattice filling, and therefore we do
not explicitly discuss here.

Let us consider again the case of the two-component BH model as an illustrative example. By
expanding the local Gutzwiller operators up to second order in the fluctuations, we find that their
average can be always written as the sum of two terms as〈

N̂i(r)
〉

= n0,i +
〈
δ2N̂i(r)

〉
, (C.12a)

〈
D̂i(r)

〉
= D0,i +

〈
δ2D̂i(r)

〉
, (C.12b)

〈
ψ̂i(r)

〉
= ψ0,i +

〈
δ2ψ̂i(r)

〉
, (C.12c)

〈
ψ̂P(r)

〉
= ψ0,P +

〈
δ2ψ̂P(r)

〉
, (C.12d)

〈
ψ̂C(r)

〉
= ψ0,C +

〈
δ2ψ̂C(r)

〉
. (C.12e)
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The second-order corrections appearing on the right-hand side of Eqs. (C.12) are given by〈
δ2N̂i(r)

〉
= −F n0,i +

∑
n1,n2

(n1 δi,1 + n2 δi,2) ⟨δĉ†
n1,n2(r) δĉn1,n2(r)⟩ , (C.13a)

〈
δ2D̂i(r)

〉
= −F d0,i +

∑
n1,n2

(
n2

1 δi,1 + n2
2 δi,2

)
⟨δĉ†

n1,n2(r) δĉn1,n2(r)⟩ , (C.13b)

〈
δ2ψ̂1(r)

〉
= −F ψ0,1 +

∑
n1,n2

√
n1 ⟨δĉ†

n1−1,n2(r) δĉn1,n2(r)⟩ , (C.13c)

〈
δ2ψ̂2(r)

〉
= −F ψ0,2 +

∑
n1,n2

√
n2 ⟨δĉ†

n1,n2−1(r) δĉn1,n2(r)⟩ , (C.13d)

〈
δ2ψ̂P(r)

〉
c

= − F ψ0,P +
∑
n1,n2

√
n1 n2 ⟨δĉ†

n1−1,n2−1(r) δĉn1,n2(r)⟩

−
[
ψ0,2 ⟨δ2ψ̂1(r)⟩ + ψ0,1 ⟨δ2ψ̂2(r)⟩

]
,

(C.13e)

〈
δ2ψ̂C(r)

〉
c

= − F ψ0,C +
∑
n1,n2

√
n1(n2 + 1) ⟨δĉ†

n1−1,n2+1(r) δĉn1,n2(r)⟩

−
[
ψ∗

0,2 ⟨δ2ψ̂1(r)⟩ + ψ0,1 ⟨δ2ψ̂
†
2(r)⟩

]
,

(C.13f)

where F is the control parameter of the QGA theory (see Subsection 1.2.3 of Part I) and the symbol ⟨·⟩c

on the left hand-side of Eqs. (C.13e)-(C.13f) emphasises that one-body correlations are subtracted on
the right-hand side so that only genuine pairing/antipairing quantum fluctuations are retained, in
accordance with Eqs. (2.5). At zero temperature, the expectation values of Eqs. (C.13) can be evaluated
straightforwardly by a generalisation of the following two examples,

〈
δ2N̂i(r)

〉
= −F n0,i + 1

V

∑
α

∑
k

∑
n1,n2

(n1 δi,1 + n2 δi,2)
∣∣vα,k,n1,n2

∣∣2 , (C.14)

〈
δ2ψ̂i(r)

〉
= −F ψ0,i + 1

V

∑
α

∑
k

∑
n1,n2

(
δi,1

√
n1 vα,k,n1−1,n2 + δi,2

√
n2 vα,k,n1,n2−1

)
vα,k,n1,n2 . (C.15)

from which we obtain self-contained expressions for the one-species filling and the one-body order
parameter corrected by quantum fluctuations,

〈
N̂i(r)

〉
= (1 − F )n0,i + 1

V

∑
α

∑
k

∑
n1,n2

(n1 δi,1 + n2 δi,2)
∣∣vα,k,n1,n2

∣∣2 , (C.16)

〈
ψ̂1(r)

〉
= (1 − F )ψ0,1 + 1

V

∑
α

∑
k

∑
n1,n2

√
n1 vα,k,n1−1,n2 vα,k,n1,n2 . (C.17)

It is interesting to observe that, within the QGA formalism, quantum-corrected local observables
are always given by the sum of two distinct terms, one given by quantum fluctuations only and the
other, proportional to the mean-field average, deriving exclusively from the normalisation operator via
the expectation value

〈
Â2(r)

〉
defining the control parameter F . This result makes more explicit the

physical role of Â(r), which accounts for the feedback of quantum fluctuations onto the Gutzwiller
ground state. Along these lines, we also remark that this contribution is of key importance in giving
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accurate predictions for the local density and spin correlations presented in Subsection 2.3.4 of Part
I.

The relative quantum corrections to the total density and the one-body order parameters for the
two-component BH model are shown in Figure C.1(a)-(d) for fixed total filling nd. In the deep CFSF, PSF
and MI phases, quantum fluctuations are always small. This remains true also near the transition points,
whereas the corrections grow in correspondence of the phase separation or collapse point |U12/U | ∼ 1.
It is worth noticing that, in Figure C.1(a)-(d), the corrections to the one-body order parameters appear
to diverge on the brink of the phase transitions. We expect that the self-consistent inclusion of these
effects into the phase diagram description would shift the CFSF, PSF and MI boundaries towards
larger hopping energies in agreement with the results of quantum Monte Carlo simulations [54,
131]. Additionally, the quantum corrections to the CFSF and PSF order parameters are shown in
Figure C.1(e)-(f) for fixed nd and across the respective phase transitions to the SF regime. In the deep
CFSF and PSF phases, these corrections are small, which indicates that the effect of fluctuations in
these phases within the QGA picture is minimal. The corrections remain of the order of O

(
10−1) across

the transitions and then monotonically increase in the weakly-interacting limit J/U ≫ 1. However, we
note that the amplitude of relative quantum corrections is amplified by the fact that both ψ0,C and
ψ0,P decrease rapidly in the deep SF regime – see panels (c) of Figure 2.1 and Figure 2.4 in the main
body of the Thesis as terms of comparison.

C.3 Details on the calculation of response functions

This Appendix Section is devoted to a detailed review of the linear response formalism (c.f. [70])
applied to the QGA quantum theory, with particular reference to the binary BH system and the FH
model studied in Chapters 2 and 5 of Part I respectively. For this purpose, we derive the relevant
expressions for the density, spin and current response functions; in particular, the latter objects are the
basic quantities from which the superfluid components of the BH model are calculated in Section 2.3.2
of Part I.

C.3.1 Linear response formalism

Let us suppose that a Hermitian, time-dependent perturbation is applied to the Hamiltonian of the
system at time t = 0,

Ĥ(t) ≡ Ĥ0 + θ(t) Ĝ(t) , (C.18)

and define
∣∣∣ψN

n

〉
as the nth eigenstate of Ĥ0 with a total number of particles equal to N . For

t < 0, the system is in the many-body ground state
∣∣∣ψN

0

〉
, then its time-evolved state is given by

|ψ(t)⟩ = Û(t)
∣∣∣ψN

0

〉
, where Û(t) is the evolution operator with boundary condition Û(0) = 1. Assuming

that the energy scale of the perturbation Ĝ(t) is sufficiently small with respect to those of Ĥ0, Û(t)
can be approximated by the Born approximation of the solution to the equation i ∂tÛ(t) = Ĥ(t) Û(t),
namely

Û(t) ≈ e−i Ĥ0 t − i

∫ t

0
dτ e−i Ĥ0(t−τ) Ĝ(τ) e−i Ĥ0 τ . (C.19)

Now, we wish to calculate the time evolution of some observable
〈
F̂ (t)

〉
, which we determine within

the Heisenberg picture via the relation F̂ (t) = ei Ĥ0 t F̂ e−i Ĥ0 t. Evaluating
〈
F̂ (t)

〉
using Eq. (C.19), we
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find 〈
F̂ (t)

〉
=
〈
ψN

0

∣∣∣Û †(t) F̂ Û(t)
∣∣∣ψN

0

〉
≈
〈
F̂
〉

eq
− i

∫ t

0
dτ
〈
ψN

0

∣∣∣[Ĝ(τ), F̂ (t− τ)
]∣∣∣ψN

0

〉
, (C.20)

where the “eq” subscript indicates the equilibrium expectation value. The kernel of the above integral
is known as the time-domain response function

χF̂ ,Ĝ(t) = −iθ(t)
〈
ψN

0

∣∣∣[F̂ (t), Ĝ(0)
]∣∣∣ψN

0

〉
. (C.21)

In frequency space, we have

χF̂ ,Ĝ(ω) = lim
ε→0+

∫ ∞

−∞
dt e−η t ei ω t χF̂ ,Ĝ(t) , (C.22)

where the infinitesimal regularisation parameter η → 0+ ensures that at t = −∞ the system is
governed by the unperturbed Hamiltonian Ĥ0. Written in terms of the perturbation operator and the
probed observable, we obtain the general expression

χF̂ ,Ĝ(ω) = −i lim
ε→0+

∫ ∞

0
dt e−ε t ei ω t

〈[
F̂ (t), Ĝ(0)

]〉
. (C.23)

In the following Subsections, we proceed to specialise Eq. (C.23) to the insightful cases of the density
and current response functions of the two-component BH model under the QGA quantum theory, see
Subsections 2.3.1 and 2.3.2 of Part I. We additionally devote some space to sketch the derivation of the
spin susceptibility of the FH model, discussed in Subsection 5.4.3 of Part I.

C.3.2 Density and spin response functions

As a standard yet relevant case of study, we are interested in the linear response of the q-component of
the density operator

n̂i,q =
∑

k

â†
i,k−q âi,k (C.24)

for the ith species under the same type of density perturbation. Therefore, we set F̂ = Ĝ = δn̂i,q with
δn̂i,q = n̂i,q − ⟨n̂i,q⟩eq, where the equilibrium contribution vanishes in a uniform system but at q = 0.
The density-density response function is given by rephrasing Eq. (C.23) into

χn̂i(q, ω) = −i lim
ε→0+

∫ ∞

0
dt e−ε t ei ω t ⟨[δn̂i,q(t), δn̂i,−q(0)]⟩ . (C.25)

In order to evaluate this object within the QGA formalism, we apply the usual quantisation procedure
to the expectation value in Eq. (C.25), which is mapped into

⟨[δρ̂i,q(t), δρ̂i,−q(0)]⟩ −→
∑

r
e−i q·r

[〈[
δ1N̂i(r, t), δ1N̂i(0, 0)

]〉
+
〈[
δ2N̂i(r, t), δ2N̂i(0, 0)

]〉]
,

(C.26)
by expanding the Gutzwiller density operator N̂i(r, t) up to second order in the fluctuations. Here,
δ1N̂i(r, t) and δ2N̂i(r, t) are respectively the first- and second-order expansions of the QGA density
operator in terms of the collective modes operators, see e.g. Eqs. (3.3)-(3.4), whose time dependence is
controlled by the interaction picture of the QGA Hamiltonian. Therefore, evaluating the commutator
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in Eq. (C.26), we readily obtain

χn̂i(q, ω) = 2
∑

α

|Ni,α,q|2 ωα,q

(ω + i 0+)2 − ω2
α,q

+ 1
V

∑
α,β

∑
k

∣∣∣Wi; α,k|β,k+q +Wi; β,k+q|α,k

∣∣∣2 (ωα,k + ωβ,k+q
)

(ω + i 0+)2 −
(
ωα,k + ωβ,k+q

)2 ,

(C.27)
where the two-mode structure factorsWi; α,k|β,p introduced in Eq. (3.5a) have been suitably generalised
to the multi-component case.

The response function for the total density can be derived by simply summing the individual
spectral weight appearing in Eq. (C.27) over the bosonic/spin species, depending on the system under
consideration. This leads to the results of Eqs. (2.39) and (5.81). A similar procedure applies to the
calculation of the spin susceptibility, for which we now outline the main derivation steps in the case
of the FH model for the sake of completeness. The QGA spin operator defined in Eq. (5.78) can be
expanded up to second-order in the operators of the collective modes as

Ŝz(i) ≈ s0 + 1√
V

∑
α,k

Sα,k
(
b̂α,k + b̂†

α,k

)

+ 1
V

∑
α,β,k,p

[
Uα,k|β,p e

−i(k−p)·i b̂†
α,k b̂β,p + V α,k|β,p e

i(k−p)·i b̂α,k b̂
†
β,p

+
(
Wα,k|β,p e

−i(k+p)·i b̂†
α,k b̂

†
β,p + h.c.

)]
,

(C.28)

where the mean-field magnetisation s0 vanishes in the paramagnetic sector of the system, and we have
defined the one-mode

Sα,k ≡
∑

n

sc

[(
C0

a

)∗
uα,k,c + C0

a vβ,p,c

]
(C.29)

and two-mode
Wα,k|β,p ≡

∑
n

(sc − s0)uα,k,c vβ,p,c , (C.30a)

Uα,k|β,p ≡
∑

c

(sc − s0)u∗
α,k,c uβ,p,c , (C.30b)

V α,k|β,p ≡
∑

c

(sc − s0) v∗
α,k,c vβ,p,c , (C.30c)

fluctuation amplitudes in the spin channel. Therefore, in analogy with the charge susceptibility (5.81),
for the magnetic response function we readily obtain

χs(q, ω) = 2
∑

α

S2
α,q ωα,q

(ω + i 0+)2 − ω2
α,q︸ ︷︷ ︸

χ
[1]
s (q,ω)

+ 2
V

∑
α,β

∑
k

Wα,k|β,k+q
(
ωα,k + ωβ,k+q

)
(ω + i 0+)2 −

(
ωα,k + ωβ,k+q

)2︸ ︷︷ ︸
χ

[2]
s (q,ω)

, (C.31)

where
Wα,k|β,p ≡ W

2
α,k|β,p +Wα,k|β,pW

∗
β,p|α,k . (C.32)
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C.3.3 Current response functions

Current operator As a starting ground, we determine the species-resolved local current operators by
resorting to the continuity equation, which is given by

∇r ĵi,r = −∂n̂i,r
∂t

= i
[
n̂i,r, Ĥ2BH

]
. (C.33)

where the operator ∇r has to be regarded in its lattice definition. Inserting the BH Hamiltonian (2.1)
on the right-hand side of Eq. (C.33), one finds

ĵi,r = i J

d∑
j=1

(
â†

i,r+ej
âi,r − h.c.

)
ej . (C.34)

For later convenience, we introduce the current operator acting along a specific direction of the square
lattice, for instance the x-directed links, for which we have

ĵi,r|x = i J
(
â†

i,r+ex
âi,r − h.c.

)
. (C.35)

In momentum space, the unidirectional current operator Eq. (C.35) transforms into

ĵi,q|x = i J
∑

k

[
e−i kx a − ei(kx+qx)

]
â†

i,k âi,k+q , (C.36)

which in the uniform limit q → 0 becomes

ĵi,q→0|x = 2 J
∑

k

sin(kx) â†
i,k âi,k . (C.37)

The uniform current operator derived above is the fundamental object by which we estimate the
relevant current response functions in the following.

Intraspecies response First, we consider the case where both the probe and the response operators
correspond to the same current species ĵi,q. Let us take the momentum vector q to lie on the y-directed
axis, then the longitudinal and transverse components of the current operator are given by ĵi,q|y and
ĵi,q|x, respectively. Here, we consider only the q-limit (ω = 0 followed by q → 0) of the transverse
response function [79, 80], which represents the paramagnetic contribution to the individual superfluid
components discussed in Subsection 2.3.2 of Part I. More explicitly, we have

χT
ĵi,ĵi

(qx = 0, qy → 0, ω = 0) = −i lim
ε→0+

∫ ∞

0
dt e−ε t

〈[
ĵi,q→0|x(t), ĵi,q→0|x(0)

]〉
. (C.38)

The QGA quantisation of the uniform current operator ĵi,q→0(t)|x is found to be

Ĵi,q→0|x = 2 J
∑
α,β

∑
k

[
U∗

i,α,k b̂
†
α,k + Vi,α,k b̂α,−k

] [
Ui,β,k b̂β,k + V ∗

i,β,k b̂
†
β,−k

]
sin(kx a) , (C.39)

in which remarkably the presence of the condensate plays no role as the bare current vertex sin(kx a)
vanishes at k = 0. Next, on the right-hand side of Eq. (C.38) we insert a resolution of the identity
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operator in terms of the complete basis of the excited states of the system in order to obtain

χT
ĵi,ĵi

(qx = 0, qy → 0, ω = 0) = −i lim
ε→0+

∫ ∞

0
dt e−ε t

∑
N,n>0

[〈
ψN

0

∣∣∣Ĵi|x(t)
∣∣∣ψN

n

〉〈
ψN

n

∣∣∣Ĵi|x(0)
∣∣∣ψN

0

〉
− c.c.

]
.

(C.40)
Therefore, we immediately recognise that only expectation values of the kind

〈
ψN

0

∣∣∣ b̂α,k b̂β,p

∣∣∣ψN+2
n

〉
and

〈
ψN

0

∣∣∣ b̂α,k b̂β,p

∣∣∣ψN+2
n

〉
provide a finite result. More precisely, the second-order expansion of

Ĵi,q→0(t)|x generating such contributions can be written in the symmetric form

∑
α,β

∑
k
Ui,α,k Vi,β,k sin(kx a) b̂α,k b̂β,k = 1

2
∑
α,β

∑
k

[
Ui,α,k Vi,α,k − Ui,β,k Vi,α,k

]
sin(kx a) b̂α,k b̂β,k ,

(C.41)
where we have used the fact that the particle (hole) amplitudes Ui,α,k

(
Vi,α,k

)
are even functions of

momentum in our system. Plugging the right-hand side of Eq. (C.41) back into the linear response
function (C.40) and computing the time integral, we find

χT
ĵi,ĵi

(qx = 0, qy → 0, ω = 0) = −4 J2 22

4

∑
α,β

∑
k

∣∣Ui,α,k Vi,β,k − Ui,β,k Vi,α,k
∣∣2

ωα,k + ωβ,k
sin2(kx a) . (C.42)

In the above equation, although the numerical factors cancel each other, we have chosen to write them
explicitly in order to emphasise their origin. The factor of 1/4 arises from the symmetrisation of the
current operator in Eq. (C.41); one factor of 2 descends from the inner product

〈
ψN

0

∣∣∣ b̂α,k b̂β,p

∣∣∣ψN+2
n

〉
(appearing twice), while the other factor of 2 comes from the complex conjugate term in Eq. (C.40).

Interspecies response Now, we consider the case in which the probe observable is the current of
one particle species while we measure the linear response of the current of the other species, in the
transverse direction and in the q-limit as before. This corresponds to the off-diagonal response function

(C.43)

The calculation of χT
ĵ1,ĵ2

(qx = 0, qy → 0, ω = 0) can be performed analogously to the intraspecies case
by considering the current operator (C.39) for both the particle flavours. The final result is

χT
ĵ1,ĵ2

(qx = 0, qy → 0, ω = 0) = −4 J2
∑
α,β

∑
k

∏2
i=1

(
Ui,α,k Vi,β,k − Ui,β,k Vi,α,k

)
ωα,k + ωβ,k

sin2(kx a) ,

(C.44)
where we have neglected the conjugation of the particle (hole) amplitudes Ui,α,k

(
Vi,α,k

)
for simplicity,

as they turn out to be always real in the present case.
It is instructive to briefly comment on how Eq. (C.44) fundamentally differs from the equiv-

alent result of [82] within the Bogoliubov approximation. In the first place, the expression of
χT

ĵ1,ĵ2
(qx = 0, qy → 0, ω = 0) in that work contains an additional factor of 1/2. This is due to the

fact that the particle (hole) amplitudes Ui,α,k
(
Vi,α,k

)
for the spin and density Goldstone modes are

each normalised to one in [82], whereas in the present case the normalisation of quantum fluctuations
is given by the sum over all the excitation branches of the spectrum (see the relative discussion in
the Appendix Section C.1), which typically takes more than two branches to saturate numerically.
Furthermore, the two results differ by a minus sign. When only the Goldstone branches are considered
in the QGA, one finds that the U ’s and V ’s for the density Goldstone mode differ by a minus sign
between the two species, whereas they are identical for the spin mode. This leads to an overall
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minus sign when only these two branches are considered in Eq. (C.44). However, we notice that the
normalisation condition is far from being saturated if limited to the Goldstone modes, so a good
agreement with the Bogoliubov result is expected only in the weakly-interacting regime of the model.
These remarks resolve the apparent discrepancies between the Bogoliubov and QGA predictions.



D
A diagrammatic route to the Andreev-Bashkin effect

D.1 Ward identities in absence of anomalous correlations

Our starting point is the most generic diagrammatic formulation of Ward identities [18, 461], which
basically link one-body correlations with the two-body channel by means of conservation rules. The
Ward relations can be written in three different forms, depending on whether two-particle correlations
are expressed in terms of either (1) the two-leg vertex functions or (2) the four-leg (ir)reducible vertices.
The latter form is the one which we will focus on, as it establishes a more intuitive connection between
response functions and the one-body self-energy.

In the present Appendix, we choose for simplicity to restrict ourselves to the case of a multi-
component system in absence of anomalous correlations. This assumption excludes automatically
those superfluid/superconducting states that exhibit anomalous pairing correlations, such as the
SF and PSF phases explored in Chapters 1 and 2 of Part I, whereas off-diagonal normal correlations
are fully encompassed by the description. An extension of the theory comprising the contribution of
anomalous correlations (modifying the zoo of vertex functions) has been initiated in several past works
(see e.g. [462–464] as representatives), which however never gave a global answer to the problem of
characterising quantum correlations contributing to the superfluid components of a strongly-correlated
system. Nevertheless, our calculations limited to normal phases will show that questioning the
relevance of anomalous correlations in interacting quantum fluids unveils their close relationship with
the phenomenon of superfluidity, hinting that the latter does not necessarily depend on the existence
of condensation in the system.

Let us consider a multi-component system on a lattice and a scalar observable with momentum-
space operator

ρ̂(q) ≡
∑
a,b

∑
k
λ0

k,k+q,a,b â
†
k,a âk+q,b (D.1)

associated with the generalised current operator

Ĵ(q) ≡
∑
a,b

∑
k

λk,k+q,a,b â
†
k,a âk+q,b . (D.2)

Introducing the two-leg vertex functions [18], the Ward identities read

− ωΛ0
ab(k, ε; k + q, ε+ ω; q, ω) + q · Λab(k, ε; k + q, ε+ ω; q, ω)

=
∑

c

[
λ0

k,k+q,c,bG
−1
ac (k, ε) − λ0

k,k+q,a,cG
−1
cb (k + q, ε+ ω)

]
.

(D.3)

where Λ0
ab(k, ε; k + q, ε+ ω; q, ω) and Λab(k, ε; k + q, ε+ ω; q, ω) are the vertex functions for the

scalar and current channels respectively, whileGab(k, ε) is the Green’s function matrix. Introducing the
(ir)reducible vertex functions Γα,β;γ,δ(k, ε; p + q, ν + ω; p, ν; k + q, ε+ ω)

(
Γ0), Eq. (D.3) translates
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Figure D.1: Compact diagrammatic representation of a generic response function in absence of anomalous correlations.
The first diagram corresponds to the dressed bubble diagram χ�Γαβ(q, ω), while the second gathers two-particle correlations
given by the reducible vertex Γ.

into [18]

± i

V

∑
p

∑
γ,δ

∫
dν

2πΓ0
a,γ;δ,b(k, ε; p + q, ν + ω; p, ν; k + q, ε+ ω)

×
∑

c

[
λ0

p,p+q,δ,cGcγ(p + q, ν + ω) − λ0
p,p+q,c,γ Gδc(p, ν)

]
=
∑

c

[
λ0

k,k+q,a,c Σcb(k + q, ε+ ω) − λ0
k,k+q,c,b Σac(k, ε)

]
,

(D.4)

or equivalently

± i

V

∑
p

∑
γ,δ

∫
dν

2πΓa,γ;δ,b(k, ε; p + q, ν + ω; p, ν; k + q, ε+ ω)

×
∑

c,d

Gδc(p, ν)Gdγ(p + q, ν + ω)
[
−ω λ0

p,p+q,c,d + q · λp,p+q,c,d

]
=
∑

c

[
λ0

k,k+q,a,c Σcb(k + q, ε+ ω) − λ0
k,k+q,c,b Σac(k, ε)

]
,

(D.5)

where Σab(k, ε) is the self-energy matrix and the ± sign holds for bosonic (fermionic) species.

D.1.1 Application to the density-current channel

Let us now focus specifically on the density-current channel. In this case, we have

λ0
k,p,a,b = δa,b (D.6)

and
λx

k,p,a,b = i Jab

(
e−i kx − ei px

)
, (D.7)

where Jab is the hopping matrix relating different species and x stands for a generic lattice dimension.
Making the hypothesis that the hopping is diagonal in the orbital subspace (namely, it does not involve
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interspecies exchanges by e.g. Raman transitions), we obtain that Eq. (D.5) specialises into

± i

V

∑
p

∑
γ,δ

∫
dν

2πΓa,γ;δ,b(k, ε; p + q, ν + ω; p, ν; k + q, ε+ ω)

×
∑

c

Gδc(p, ν)Gcγ(p + q, ν + ω) [−ω + q · λp,p+q,c,c]

= Σab(k + q, ε+ ω) − Σab(k, ε) .

(D.8)

For later convenience, we also introduce the general diagrammatic expressions of the intraspecies

χαα(q, ω) = ± i

V

∑
k

∫
dν

2πλk,k+q,α,α λk+q,k,α,αGαα(k, ν)Gαα(k + q, ν + ω)

− 1
V 2

∑
k,p

∑
β,γ,δ,ζ

∫
dν dε

(2π)2λk,k+q,α,α λp+q,p,α,αGαβ(k + q, ε+ ω)Gζα(k, ε)

× Γβ,γ;δ,ζ(k + q, ε+ ω; p, ν; p + q, ν + ω; k, ε)Gαγ(p, ν)Gδα(p + q, ν + ω)

(D.9)

and interspecies

χαα′(q, ω) = ± i

V

∑
k

∫
dν

2πλk,k+q,α,α λk+q,k,α′,α′ Gα′α(k, ν)Gαα′(k + q, ν + ω)

− 1
V 2

∑
k,p

∑
β,γ,δ,ζ

∫
dν dε

(2π)2λk,k+q,α,α λp+q,p,α′,α′ Gαβ(k + q, ε+ ω)Gζα(k, ε)

× Γβ,γ;δ,ζ(k + q, ε+ ω; p, ν; p + q, ν + ω; k, ε)Gα′γ(p, ν)Gδα′(p + q, ν + ω)

(D.10)

response functions, where we have omitted the superscripts of the bare vertices λ for simplicity.
At this point, we split our analysis into two analytical routes, namely the ω-limit (taking q = 0) and

the q-limit (with ω = 0) of Eq. (D.8). The former calculation will provide us with insightful information
on non-local and dynamical density correlations, while the latter limit will lead to a straightforward
calculation of the superfluid density components.

D.2 ω-limit

By a suitable manipulation of Eq. (D.8) and making use of Eqs. (D.9)-(D.10), we derive the following
equation for the density response functions,

− ω
∑

β

[
χ0

αβ(q = 0,−ω) − χ�Γ,0
αβ (q = 0,−ω)

]

= ± i

V

∑
k

∑
a,b

∫
dε

2πGαa(k, ε+ ω)Gbα(k, ε) [Σab(k, ε+ ω) − Σab(k, ε)] ,
(D.11)

where χ0
αβ(q, ω) denotes the density response matrix and χ�Γ,0

αβ (q, ω) stands for the first terms on the
right-hand side of Eqs. (D.9)-(D.10), namely the dressed bubble diagram of the response functions
(without vertex corrections). The right-hand side of Eq. (D.11) can be decrypted by resorting to the
Dyson equation Σ̂(k, ω) = Ĝ−1

0 (k, ω) − Ĝ−1(k, ω), with Ĝ0(k, ω) being the non-interacting Green’s
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function matrix. It follows that

− ω
∑

β

[
χ0

αβ(q = 0,−ω) − χ�Γ,0
αβ (q = 0,−ω)

]

= ± i

V

∑
k

∑
c

∫
dε

2π [ωGαc(k, ε+ ω)Gcα(k, ε) +Gαα(k, ε+ ω) −Gαα(k, ε)] .
(D.12)

The previous equation can be further simplified by (i) observing that the last two terms on the
right-hand side cancel each other when integrated over the frequency domain, (ii) in addition to
considering the following identity,

χ�Γ,0
αβ (q = 0, ω) = ± i

V

∑
k

∫
dε

2πGαβ(k, ε+ ω)Gβα(k, ε) . (D.13)

As a result, we obtain∑
β

χ0
αβ(q = 0, ω) =

∑
β

χ�Γ,0
αβ (q = 0, ω) −

∑
β

χ�Γ,0
αβ (q = 0,−ω) . (D.14)

Physically speaking, Eq. (D.14) states that the uniform limit of the overall density response of species
α is an odd function of frequency and, notably, implicitly independent of vertex corrections and
can be expressed in terms of dressed bubble diagrams only. However, we emphasise that implicit
independence does not imply the absolute irrelevance of vertex correlations, as we know that the
self-energy explicitly depends on them through the celebrated Bethe-Salpeter equations [18, 461]. We
additionally notice that the static limit of Eq. (D.14) yields∑

β

χ0
αβ(q = 0, ω → 0) = 0 , (D.15)

indicating that the total contribution of diagonal and off-diagonal correlations in the density channel
offset each other.

In order to have a grasp of the connection between the QGA theory of quantised fluctuations and our
diagrammatic analysis of density fluctuations, let us consider the QGA prediction for the intraspecies
Green’s function of a bosonic system, whose non-degenerate part (excluding the contribution of a
condensate) reads

Gαα(k, ε) =
∑

i

[
Pα,i,k

ε− ωi(k) −
Hα,i,k

ε+ ωi(k)

]
, (D.16)

where ωi(k) denotes the i-th elementary excitation of the system, with particle and hole weights
given by Pi,k ≡

∣∣Uα,i,k
∣∣2 and Hi,k ≡

∣∣Vα,i,k
∣∣2 respectively. Supposing that the dressed bubble diagram

has vanishing off-diagonal components χ�Γ,0
αβ (q = 0, ω) = 0 (as e.g. in the MI phase of the binary BH

model), from Eq. (D.14) we readily obtain

−
∑

β

[
χ0

αβ(q = 0,−ω) − δα,β χ�
Γ,0
αβ (q = 0,−ω)

]
= χ�Γ,0

αα (q = 0, ω)

= 2
V

∑
k

∑
i,j

(
Hα,i,k Hα,j,k

ωj(k) − ωi(k)
ω2 − [ωj(k) − ωi(k)]2

+Hα,i,k Pα,j,k
ωj(k) + ωi(k)

ω2 − [ωj(k) + ωi(k)]2

)
.

(D.17)
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at zero temperature. Therefore, we find the remarkable fact that the QGA generally involves finite vertex
corrections to the non-local density response function. Moreover, Eq. (D.17) give a clear interpretation
of vertex corrections in terms of scattering processes between multiple collective modes, in accordance
with the semi-analytical intuitions discussed in the main body of the Thesis. It is worth emphasising
however that this result should be handled gingerly. We know that the QGA is not a self-consistent
theory, as it does not entail a closed-form relation between the one- and two-particle sectors of quantum
correlations. For this reason, the calculation made above has to be intended as a possible way to
estimate the amount of vertex corrections that the QGA is able to account for, as well as to find a
qualitative relationship between response functions and one-body features.

D.3 Superfluid drag from the q-limit

Taking the q-limit of the Ward identities provides a relation between the static current response
functions χx

αβ(−q, ω = 0) and the self-energy matrix. Analogously to the case of the ω-limit, we can
rewrite such a relation as

qx

∑
β

[
χx

αβ(−q, ω = 0) − χ�Γ,x
αβ (−q, ω = 0)

]

= ± i

V

∑
k

∑
c ̸=α

∫
dε

2πλ
x
k+q,k,α,α

{[
εc,k − εc,k+q

]
Gαc(k + q, ε)Gcα(k, ε)

+Gαα(k + q, ε) −Gαα(k, ε)} ,

(D.18)

where εα,k is the free-particle dispersion of species α. Taking the uniform limit q → 0, we immediately
realise that

qx χ�
Γ,x
αβ (q → 0, ω = 0)

= ∓ i

V
lim
q→0

∑
k

∑
c ̸=α

∫
dε

2πλ
x
k+q,k,α,α

[
εc,k − εc,k+q

]
Gαc(k + q, ε)Gcα(k, ε) . (D.19)

Hence, after integrating by parts the remaining terms on the right-hand side of Eq. (D.18) and observing
that the kinetic energy density of species α is exactly given by

Kα,x = ∓ i

V

∑
k

∫
dω

2π
(
∇k λ

x
k,k,α,α

)
Gαα(k, ω) , (D.20)

we can easily recast Eq. (D.18) into the suggestive form∑
β

χx
αβ(q → 0, ω = 0) = Kα,x . (D.21)

Recalling Eq. (2.59) in the Thesis, we can formally identify the left-hand side of Eq. (D.21) with the
normal component of species α, namely

ρn,α = −Kα,x . (D.22)

The previous relation is the main result of our derivation, as it uniquely determines the super-
fluid components of a generic system without anomalous correlations. In particular, recovering
the definition of superfluid density ρs,α and indicating the total superfluid drag of species α with
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ρd,α ≡
∑

β ̸=α χ
x
αβ(q → 0, ω = 0) according to Eqs. (2.57)-(2.58) in the Thesis, we obtain

ρd,α = Kα,x − χx
αβ(q → 0, ω = 0) = −ρs,α . (D.23)

The physical meaning of this last equation is evident: in presence of any type of normal correlations only,
the superfluid density of the system is 100% saturated by the superfluid drag. This highly non-trivial
result perfectly describes our results for CFSF phase of the binary BH model (see the discussion of
Subsection 2.3.2 of Part I) and, less importantly, the MI regime. More generally, our result shows that
the superfluid flow of a given species cannot be driven by the drag only, since this can be finite only
in the presence of a finite superfluid density of the same species. However, this conclusion does not
exclude exotic situations in which ρd,α = 0 but χx

αβ(q → 0, ω = 0) ̸= 0 for some β ̸= α, a condition
that has been addressed only recently and goes under the name of Borromean superfluidity [111].



E
Pure dephasing theory and non-Markovianity

E.1 Breuer-Laine-Piilo non-Markovianity measure

The definition of the Breuer-Laine-Piilo (BLP) measure [178] derives from considering non-Markovian
those systems in which a back-flow of information from the environment to the open system
occurs during the dynamics. This information recovery is formally identified by an increase in the
distinguishability of pairs of evolving quantum states of the system.

In detail, a system is non-Markovian if there is a pair of system initial states ρ(1)
S (0) and ρ(2)

S (0),
such that for certain times t > 0 their distinguishability grows, namely

σ
[
ρ

(1)
S (0), ρ(2)

S (0); t
]

≡ d

dt
D
[
ρ

(1)
S (t), ρ(2)

S (t)
]
> 0 , (E.1)

where σ
[
ρ

(1)
S , ρ

(2)
S ; t

]
is called the information flux at time t and

D
[
ρ

(1)
S (t), ρ(2)

S (t)
]

≡ 1
2

∣∣∣∣∣∣ρ(1)
S (t) − ρ

(2)
S (t)

∣∣∣∣∣∣
1

≡ 1
2Tr

{√[
ρ

(1)
S (t) − ρ

(2)
S (t)

]† [
ρ

(1)
S (t) − ρ

(2)
S (t)

]}
(E.2)

is defined to be the distinguishability of ρ(1)
S and ρ(2)

S . Since density matrices are Hermitian, we have
that

D
[
ρ

(1)
S (t), ρ(2)

S (t)
]

= 1
2Tr

{√[
ρ

(1)
S (t) − ρ

(2)
S (t)

]2}
= 1

2
∑

i

|λi| , (E.3)

where λi are the eigenvalues of the matrix ρ
(1)
S − ρ

(2)
S . The physical interpretation of the trace

distance (E.2) is that it is related to the maximum probability of distinguishing between two quantum
states. In an open quantum system, this probability in general tends to decrease in time, as the system
information is lost to the environment, except when the dynamics is non-Markovian. In this case, the
system regains part of the previously lost information. According to the BLP criterion, the amount of
non-Markovianity of a quantum process Λ can be quantified through the measure

B−(Λ) ≡ maxρ1,2(0)

∫
σ>0

dt σ
[
ρ

(1)
S (0), ρ(2)

S (0); t
]
, (E.4)

which reflects the maximum amount of information that can flow back to the system for a given
process. As proven in [465], for all finite-dimensional quantum systems the evaluation of (E.4) can be
optimised by considering initial states ρ(1)

S (0) and ρ(2)
S (0) that are orthogonal and lie on the boundary

of the subset of physical states.
In the case of the two-level impurity undergoing pure dephasing studied in this paper, the open system
dynamics is driven by the master equation (3.6), which allows for a simple rewriting in the vector
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representation of the density matrix,

d

dt


ρ11
ρ12
ρ21
ρ22

 =


0 0 0 0
0 −g2γ(t) 0 0
0 0 −g2γ(t) 0
0 0 0 0



ρ11
ρ12
ρ21
ρ22

 , (E.5)

where we have defined ρij = TrS{ρS(t) |i⟩ ⟨j|}, with |i⟩ = |1⟩ , |2⟩ standing for the two possible states
of the impurity, and neglected the unitary evolution terms set by the renormalised transition frequency
ω̃0. The analytical integration of (E.5) yields

ρS(t) = ϕt[ρS(0)] =
(

ρ11(0) ρ12(0)
√
L(t)

ρ21(0)
√
L(t) ρ22(0)

)
, (E.6)

where ϕt is the dynamical map of the system density matrix associated to the pure dephasing dynamics.
The function

L(t) = exp

−2 g2

t∫
0

dτ γ(τ)

 (E.7)

coincides with the so-called Loschmidt echo [180], defined as L(t) = |⟨ψ(t)| ψ0(t)⟩|2, where |ψ0(t)⟩ is
the bath ground state evolved according to its own Hamiltonian, while |ψ(t)⟩ is the time-evolved bath
state in presence of the open system. Indeed, the off-diagonal matrix elements of the system density
matrix ρS are given by

√
L(t) exactly.

Choosing two initial states that are orthogonal and lie on the Bloch sphere of the two-level system

ρ
(1)
S (0) = 1

2

(
1 1
1 1

)
ρ

(2)
S (0) = 1

2

(
1 −1

−1 1

)
, (E.8)

we find that the trace distance (E.2) reads

D
[
ρ

(1)
S , ρ

(2)
S

]
= 1

2

∣∣∣∣∣∣ρ(1)
S (t) − ρ

(2)
S (t)

∣∣∣∣∣∣
1

=
∣∣∣∣∣
∣∣∣∣∣
(

0
√
L(t)√

L(t) 0

)∣∣∣∣∣
∣∣∣∣∣
1

=
√
L(t) . (E.9)

Therefore, we obtain that the distinguishability rate is given by

σ
[
ρ

(1)
S , ρ

(2)
S ; t

]
=
dD
[
ρ

(1)
S , ρ

(2)
S

]
dt

= −g2 γ(t)
√
L(t) (E.10)

and σ
[
ρ

(1)
S , ρ

(2)
S ; t

]
> 0 for some t when the dephasing rate γ(t) is negative, leading to non-Markovian

dynamics. Finally, it is straightforward to deduce that the non-Markovianity measure (E.4) is provided
by the values of the Loschmidt echo L(t) at the boundaries of those time intervals [ti, ti+1] over which
γ(t) < 0, namely

B− =
∫
σ>0

dt σ
[
ρ

(1)
S (0), ρ(2)

S (0); t
]

= −g2
∫
γ<0

dt γ(t)
√
L(t) =

∑
i

[√
L(ti+1) −

√
L(ti)

]
(E.11)

by the definition of L(t). On an equal footing, we can also quantify the amount of information that
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flows from the open system to the environment by defining a Markovianity measure

B+ =
∫
σ<0

dt σ
[
ρ

(1)
S (0), ρ(2)

S (0); t
]

= −g2
∫
γ>0

dt γ(t)
√
L(t) , (E.12)

which takes into account time periods for which γ(t) > 0.

E.2 Dephasing dynamics in free and weakly-interacting bosonic baths

The free boson spectrum on the continuum is the Galilean quadratic dispersion relation

ε0,k = k2

2m , (E.13)

so that the spectral function of density correlations scales as

J0(ω) ∼
∫
ddk δ

(
ω − ε0,k

)
∼ ω(d−2)/2 (E.14)

at small frequencies in d dimensions. It follows that the dephasing rate and decoherence function
behave as

γ0(t) =
∫

dω
J0(ω) sin (ω t)

ω
∼ t(2−d)/2 (E.15)

and
Γ0(t) =

∫
dω

J0(ω) [1 − cos (ω t)]
ω2 ∼ t(4−d)/2 (E.16)

respectively at large times, suggesting that free bosons lead to total dephasing exp [−Γ0(t → ∞)] = 0
if d < 4. Indeed, the asymptotic behaviour of the dephasing rate γ0(t) ∼ const. in d = 2 resembles
the Markovian behaviour that we observe at the edge transition described in Figure 3.2(c), where an
effective free-particle description of the superfluid phase holds [63, 131]. A similar result applies to the
case of lattice free bosons, for which the spatial discretisation introduces only a small, fast-oscillating
modulation of γ0(t).

As regards the case of a weakly-interacting gas either on the continuum or on a lattice, within
the Bogoliubov approximation the single-particle spectral amplitude of density fluctuations reads
NBog,k = √

ρ0 (uk + vk), where ρ0 is the condensate density and uk (vk) is the particle (hole) excitation
amplitude of the Goldstone mode. Since

∣∣NBog,k
∣∣2 ∼ |k| at small momenta, we obtain that the

low-energy behaviour of the spectral density is controlled by the spatial dimension only,

JBog(ω) =
∫
ddk

∣∣NBog,k
∣∣2 δ(ω − ωBog,k

)
∼ ωd , (E.17)

apart from subdominant corrections depending on the concavity of the Goldstone spectrum ωBog,k.
Eq. (E.17) leads to

γBog(t) =
∫

dω
JBog(ω) sin (ω t)

ω
∼ t−d (E.18)

and
ΓBog(t) =

∫
dω

JBog(ω) [1 − cos (ω t)]
ω2 ∼ t1−d (E.19)

for large times. Therefore, a weakly-interacting bath induces only a partial dephasing of the impurity
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Figure E.1: (a) Dephasing rate γ(t) for a 1D bath of lattice free bosons (solid line) and weakly-interacting bosons on the
continuum (dashed line). Notice the

√
t growth for free particles and the t−1 decay for weak interactions. (b) The same

quantities calculated for d = 2. Notice the constant-value asymptotics of γ(t) in presence of free bosons and the t−2 decay
for weak interactions.

state, namely exp [−ΓBog(t → ∞)] ̸= 0, at least for d > 1.
Most importantly, the frequency dependence of JBog(ω) on the continuum assures that non-

Markovian effects do not occur in any dimension. For instance, for a d = 1 gas we find

J1D,cont.
Bog (ω) =

√
2mρ0

√√√√√√(ρ0 U)2 + ω2 − ρ0 U

(ρ0 U)2 + ω2
∼
√
mρ0
U

ω for ω → 0 (E.20)

which is a monotonous smooth function of ω. On the other hand, for weakly-interacting bosons loaded
on a one-dimensional lattice, the spectral density

J1D,latt.
Bog (ω) =

√
1
J
ρ0

√√√√√√(ρ0 U)2 + ω2 − ρ0 U

(ρ0 U)2 + ω2
1√

1 − 1
4 J

[√
(ρ0 U)2 + ω2 − ρ0 U

]
∼
√

ρ0
2 J U ω for ω → 0

(E.21)

presents a van Hove singularity where the dispersion relation of the Goldstone mode reaches a
stationary point, namely at the boundary of the Brillouin zone k = π, where ω =

√
2 J (2 J + 2 ρ0 U).

This change in the high-energy structure of JBog(ω) is a genuine effect of the absence of full Galilean
invariance due to spatial discreteness inherent to the lattice: in fact, the lattice setting introduces an
additional energy scale fixed by the bandwidth of the Goldstone excitation, approximately proportional
to the hopping energy J in the weakly-interacting limit J/U ≫ 1. Consequently, passing from the
continuum to the lattice, in the superfluid phase the dephasing function γ(t) acquires an oscillating
behaviour whose period is set by the hopping time scale, as we observe e.g. in the 2D result shown
in Figure 3.2(a). On the other hand, the amplitude of the oscillations of γ(t) at large times is always
controlled by the power-law decay (E.18) seen on the continuum.

Table E.1 summarises the previous discussion and reports the expressions of J(ω) and γ(t) for
the most relevant cases and limits. For the sake of completeness, Figure E.1 reports the behaviour of
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the dephasing rate γ(t) for a bath of free (weakly-interacting) bosons loaded on a square lattice (on
the continuum), to be compared with our results for the critical SF phase of the BH bath at the edge
transition. Finally, Table E.2 displays the long-time behaviour of the decoherence function Γ(t) and of
the Loschmidt echo L(t) for the same reference cases.

Table E.1: In the case of free bosons loaded on a 1D lattice, the dephasing rate behaves as γ0(t) =
t [sin (2 J t) J1(2 J t) + cos (2 J t) J0(2 J t)] ∼

√
t on a coarse-grained time scale (i.e. for t ≫ 1/J), modu-

lated by small oscillations due to the lattice discretisation [see Figure E.1(a)]. Here, Jα(z) denotes the Bessel
function of order α. Therefore, in the long-time limit, the pure dephasing dynamics in a free-boson environment
is insensitive to the spatial discretisation due to the lattice. We report the same dynamical behaviour for d > 1.

Bosonic

state

J(ω) γ(t) = dΓ(t)/dt

Continuum
free ω(d−2)/2 t(2−d)/2 for 0 < d < 4

Lattice
free (1D)

[
ω
J

(
1 − ω

4 J

)]−1/2
t [sin (2 J t) J1(2 J t) + cos (2 J t) J0(2 J t)]

Lattice
free ω(d−2)/2 for ω ≪ J t(2−d)/2 for 0 < d < 4

Continuum
weakly-
interacting

[
(ρ0 U)2 + ω2

]−1/2
[√

(ρ0 U)2 + ω2 − ρ0 U

]d/2
t−d for t ≫ m

Lattice
weakly-
interacting
(1D)

√√
(ρ0 U)2+ω2−ρ0 U

(ρ0 U)2+ω2
1{

1− 1
4 J

[√
(ρ0 U)2+ω2−ρ0 U

]}1/2 t−1 for t ≫ 1/J

Lattice
weakly-
interacting

[
(ρ0 U)2 + ω2

]−1/2
[√

(ρ0 U)2 + ω2 − ρ0 U

]d/2
t−d for t ≫ 1/J
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Table E.2

Bosonic

state

Γ(t) L(t)

Continuum
free t(4−d)/2 for 0 < d < 4 exp

[
−β t(4−d)/2] for 0 < d < 4

Lattice
free (1D) t3/2 exp

(
−β t3/2)

Lattice
free t(4−d)/2 for 0 < d < 4 exp

[
−β t(4−d)/2] for 0 < d < 4

Continuum
weakly-
interacting

ln (t) for d = 1
t1−d for d > 1

for t ≫ m
t−α with α > 0 for d = 1
exp

(
−β t1−d

)
for d > 1

for t ≫ m

Lattice
weakly-
interacting
(1D)

ln (t) for t ≫ 1/J t−α with α > 0 for t ≫ 1/J

Lattice
weakly-
interacting

t1−d for t ≫ 1/J exp
[
−β t1−d

]
for t ≫ 1/J
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Driven-dissipative photonic systems: addenda

F.1 Exciton-polariton condensates: one-body dynamical correlations

The first section of the Appendix is dedicated to a brief discussion of the DoS and one-body dynamical
response of the out-of-equilibrium EP condensates reviewed in Chapter 1 of Part II. Their calculation
does not involve more effort than the derivation of response functions in the case of the driven-
dissipative photonic lattice, detailed in Section 2.4 of Part II. More precisely, the one-body dynamical
correlations of the system can be entirely extracted from the retarded Green’s function of the EP steady
state: the normal propagator is found to be

GR(k, ω) =
∑

α

x∗
α,k uα,k

ω − ωα,k
, (F.1)

where xα,k is the first component of the left eigenvector
(
xα,k, yα,k, zα,k

)T of the generalised Bogoliubov
matrix L̂k associated with the collective mode (α,k), while the anomalous one reads

GR(k, ω) =
∑

α

y∗
α,k uα,k

ω − ωα,k
. (F.2)

F.1.1 Density of states

Typical profiles of the DoS of the EP steady state are shown in Figure F.1, limited to the cases where the
system is dynamically stable. When the Goldstone mode coincides with the diffusive G-branch [first
panel from the left], the DoS has the same bimodal structure exhibited by the driven-dissipative hard-
core lattice [see Figure 2.12(b) in the main body of the Thesis], with the only qualitative discrepancy
being the asymmetry between the weights of positive- and negative-energy states in the present case.
This is due to the fact that, differently from the excitations of the hard-core gas, the collective modes
of a weakly-interacting condensate have a predominantly particle nature. The sign flip of the DoS at
the frequency ω = ω0 is again a consequence of the imaginary part of the quasiparticle residue of
the Goldstone mode Im

(
x∗

α,k uα,k
)

. Interestingly, while the DoS profile does not change appreciably
with the appearance of the hybridised Goldstone mode in the driven-dissipative hard-core lattice,
the situation is quite different in a EP condensate when the lowest-lying excitation is the diffusive
D-mode [central panel]. Here, the out-of-equilibrium character of the system is more evident, since
negative-energy states acquire a positive spectral weight for large momenta. Also, the DoS acquires
an elongated shape along the momentum axis and its width decreases significantly, in agreement
with the essentially flat energy dispersion of the D-mode [see panel (c) in Figure 1.2 in the main body
of the Thesis]. Both these effects are brought to their extremal instance when the Goldstone mode
has a subdiffusive behaviour in the long-wavelength limit [last panel from left]: in this case, the DoS
is strictly positive and perfectly symmetric around ω = ω0, with a sharp profile extending over a
relatively wide range of momenta.
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Figure F.1: Colour plots of the density of states of a EP condensate for the same parameters of Figure 1.2 in the main
body of the Thesis. In particular, common parameters of the system for all the panels are µ/γ = Pthr/γ = β = 1 and
DR/γ = 5 · 10−4. The healing length of the condensate is ξ ≈ 6.97. Panels from left to right refer to the case of (i) the
standard diffusive G-mode, (ii) the stable diffusive D-mode, (iii) the subdiffusive G/D-mode.

Figure F.2: Colour plots of the transmittivity (first column), reflectivity (second column) and FWM (third column) response
of a EP condensate for the same parameters of Figure 1.2 in the main body of the Thesis. In particular, common parameters
of the system for all the panels are µ/γ = Pthr/γ = β = 1 and DR/γ = 5 · 10−4. The healing length of the condensate
is ξ ≈ 6.97. As in Figure F.1, panels from left to right refer to the case of (i) the standard diffusive G-mode, (ii) the stable
diffusive D-mode, (iii) the subdiffusive G/D-mode.
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F.1.2 Response functions

The symmetry considerations made for the DoS apply also to the one-body response functions, which
we display in Figure F.2. When the Goldstone mode is the standard diffusive G-mode [first row], we
recover the transmittivity and reflectivity spectra extensively studied in [429]. In particular, we observe
that both the signals are particularly sensitive to the Goldstone branch at positive energies, while the
dispersion of the amplitude/ghost mode is barely visible. On the other hand, the FWM response is
able to resolve both the excitation branches, as expected. It is worth noticing also the dark resonance
present in the transmittivity signal, which strongly resembles the one found in the analogous response
of the driven-dissipative hard-core lattice, see panel (a) of Figure 2.12 in the main body of the Thesis.
Once more, the structure of one-body correlations undergoes a drastic change when the Goldstone
mode hybridises with the D-mode branch. Whether the latter excitation is diffusive or subdiffusive,
the response functions exhibit a sharp peak at ω = ω0 with a flat dispersion at low momentum. A
more curious hallmark of the Goldstone hybridisation is the presence of a dark resonance in the FWM
spectrum, right at the energy scale of the reservoir loss rate γR. Interestingly, this feature does not
have a counterpart in the anomalous response of the strongly-interacting photon gas, see panel (d) of
Figure 2.12.

F.2 Mean-field theory and collective excitations of the hard-core Bose gas

F.2.1 Holstein-Primakoff mapping

In the hard-core limit U/J → ∞, the BH model (2.1) can be recast into the Hamiltonian of a XXZ
model through the Holstein-Primakoff mapping of hard-core bosons to spin operators τ̂ i

r. In particular,
under the identifications âr → τ̂−

r and n̂r → (τ̂ z
r + 1) /2, we obtain

ĤBH = −J
∑
⟨r,s⟩

τ̂+
r τ̂−

s + Ū

4
∑
⟨r,s⟩

τ̂ z
r τ̂

z
s + 2ωc + z Ū

4
∑

r
(τ̂ z

r + 1) , (F.3)

where we have also included a nearest-neighbour interaction term with energy scale Ū for the sake
of generality. More in detail, this is exactly the non-local repulsive coupling that emerges from
second-order perturbation theory on top of the hard-core and MI states of the model when one
considers a very large but finite value of the Hubbard energy U : in this case, Ū ∝ t2/U . The equations
of motion of the spin operators can be readily found via the Heisenberg equation, yielding

i ˙̂τ z
r = −2 J

∑
s(r)

(
τ̂+

r τ̂−
s − h.c.

)
, (F.4)

i ˙̂τ−
r = J τ̂ z

r
∑
s(r)

τ̂−
s + Ū

2 τ̂−
r
∑
s(r)

τ̂ z
s + 2ωc + z Ū

2 τ̂−
r . (F.5)

F.2.2 Mean-field theory

Within the mean-field approximation, we consider the average values of the operators appearing in
Eqs. (F.4)-(F.5) and decouple those fields that act on different sites. Renaming ⟨τ̂ z

r ⟩ → 2n(r) − 1 and
⟨τ̂−

r ⟩ → ψ(r) (which stands for the photonic order parameter), we have

i ṅ(r) = −J
∑
s(r)

[ψ∗(r)ψ(s) − c.c.] , (F.6)
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i ψ̇(r) = 2J n(r)
∑
s(r)

ψ(s) + Ū ψ(r)
∑
s(r)

n(s) − J
∑
s(r)

ψ(s) + ωc ψ(r) , (F.7)

which can be regarded as the GPE’s for the hard-core regime. Let us now assume that the stationary
state of the system is provided by a uniform ansatz for the density n(r) = n0 and for the order
parameter ψ(r) = ψ0 e

−i ω t. Therefore, we are left with only one equation,

ω ψ0 = z J (2n0 − 1)ψ0 + z Ū n0 ψ0 + ωc ψ0 , (F.8)

providing the oscillation frequency of the order parameter,

ω = z J (2n0 − 1) + z Ū n0 + ωc , (F.9)

which can be also regarded as the effective chemical potential of a quantum degenerate gas [40].
In particular, we point out that the mean-field energy shift due to hard-core interactions reads
∆µ = z

(
2 J + Ū

)
n0. Notice also that a special property of the hard-core regime is the coupling

between the density and the order parameter fields. A noteworthy consequence of this fact is the exact
relation |ψ(r)|2 = n(r) [1 − n(r)] valid within mean-field theory at equilibrium, meaning that the
order parameter modulus is the geometric average of the particle and hole densities. Moreover, this
suggests that the hard-core state is inherently particle-hole symmetric [52, 131] (at least at the mean-field
level).

Taking advantage of the identity |ψ0|2 = n0 (1 − n0), we can calculate the optimal value of n0
through the minimisation of the mean-field energy

EBH/V = −z J |ψ0|2 + z Ū n2
0

2 + ωc n0 , (F.10)

where V is the lattice volume. In particular, we obtain

n0 = z J − ωc

z
(
2 J + Ū

) , (F.11)

so that

|ψ0|2 =
(z J − ωc)

[
z
(
J + Ū

)
+ ωc

]
z2
(
2 J + Ū

)2 . (F.12)

From the mean-field energy shift ∆µ we can also derive the healing length of the system. This can be
obtained by calculating the momentum for which the single-particle kinetic energy matches ∆µ [40],
namely

εk(ξ) = ∆µ . (F.13)

Considering momenta lying on the diagonals of the square lattice for simplicity, we have

2 z J sin
(
π

2 ξ

)2
= ∆µ , (F.14)

whose solution can be readily shown to be

ξ = π

2 arcsin
(√
n0
) (F.15)



F.2 Mean-field theory and collective excitations of the hard-core Bose gas 225

and depends on the lattice filling only. It is instructive to compare our result for the healing length of
the hard-core gas with the one of a weakly-interacting condensate, reading

ξ = π

2 arcsin
(√

ρc U
2 z J

) , (F.16)

which is controlled by the ratio J/U , as well as by the condensate density ρc = |ψ0|2. On the continuum,
Eq. (F.16) transforms into

ξ =
√

z

4mρc U
. (F.17)

F.2.3 Collective excitations at equilibrium

The elementary excitations on top of the mean-field hard-core state determined before can be accessed
by considering small-amplitude fluctuations around the condensate order parameter and the density
as follows,

n(r) = n0
[
1 + wk e

i(k·r−ωk t) + w∗
k e

−i(k·r−ωk t)
]
, (F.18)

ψ(r) = ψ0
[
1 + uk e

i(k·r−ωk t) + v∗
k e

−i(k·r−ωk t)
]
e−i ω t . (F.19)

Inserting the linearised fields (F.18)-(F.19) into the GPE’s (F.6)-(F.7), we obtain the eigenvalue equation

(1 − 2n0) εk + z Ū n0 + ωc 0
[
2 z J + Ū(k)

]
n0

0 (2n0 − 1) εk − z Ū n0 − ωc −
[
2 z J + Ū(k)

]
n0

(1 − n0) [z J + εk] − (1 − n0) [z J + εk] 0

uk
vk
wk

 = ωk

uk
vk
wk

 ,

(F.20)
where we have defined Ū(k) = 2 Ū

∑d
a=1 cos (ka). The eigenvalues ωk provide the energy spectrum of

the collective modes of the hard-core state, the most relevant of which is the Goldstone branch

ωHC
Gol(k) =

√√√√√√
(
z Ū + 2ωc

)2

z2
(
2 J + Ū

)2 [z J + εk]2 + 2 |ψ0|2
[
2 z J + Ū(k)

]
[z J + εk] , (F.21)

which is an acoustic excitation with sound velocity [466]

cHC
s =

√
2 z J

(
2 J + Ū

)
|ψ0| =

√
2 z J

(
2 J + Ū

)
n0 (1 − n0) =

√√√√√2 J (z J − ωc)
[
z
(
J + Ū

)
+ ωc

]
z
(
2 J + Ū

) .

(F.22)
To conclude, we notice that the sound velocity becomes imaginary (signalling a dynamical instability
of the ground state) for ωc < −z

(
J + Ū

)
and ωc > z J .
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Notation and Physical Constants

b̂α,k Annihilation operator of the collective mode α with momentum k

ℏ Planck constant

c.c. complex conjugate

H.c. Hermitian conjugate

µ Chemical potential

ωα,k Excitation energy of the collective mode α with momentum k

ωBog,k Excitation energy of the Bogoliubov-Goldstone mode with momentum k

a Lattice spacing

ci Speed of sound of the mode i

fs Superfluid fraction

i Imaginary unit

m Bare particle mass on a lattice

ns Superfluid density

U Bare value of the Hubbard interaction energy

V Lattice volume

z Lattice coordination number (z = 2 d)



Greek Letters with Pronunciations

Character Name Character Pronounciation

α, A alpha AL-fuh ν, N nu NEW
β, B beta BAY-tuh ξ, Ξ xi KSIGH
γ, Γ gamma GAM-muh o, O omicron OM-uh-CRON
δ, ∆ delta DEL-tuh π, Π pi PIE
ϵ, E epsilon EP-suh-lon ρ, R rho ROW
ζ , Z zeta ZAY-tuh σ, Σ sigma SIG-muh
η, H eta AY-tuh τ , T tau TOW (as in “cow”)
θ, Θ theta THAY-tuh υ, Υ upsilon OOP-suh-LON
ι, I iota eye-OH-tuh ϕ, Φ phi FEE, or FI (as in “hi”)
κ, K kappa KAP-uh χ, X chi KI (as in “hi”)
λ, Λ lambda LAM-duh ψ, Ψ psi SIGH, or PSIGH
µ, M mu MEW ω, Ω omega oh-MAY-guh



Acronyms and Special Terms

AB

Andreev-Bashkin. 43

BdG

Bogoliubov-de Gennes. 26
BEC

Bose-Einstein Condensate. 3
BH

Bose-Hubbard. 3
BLP

Breuer-Laine-Piilo. 63
BR

Brinkman-Rice. 106
BZ

Brillouin Zone. 7

CFSF

Counterflow Superfluid. 25
CI

Commensurate-Incommensurate. 6
C-QED

Circuit Quantum Electodynamics. 141

DMFT

Dynamical Mean-Field Theory. 4
DoF

Degrees of Freedom. 9
DoS

Density of States. 20

FDT

Fluctuation-Dissipation Theorem. 38
FGR

Fermi Golden Rule. 20
FH

Fermi-Hubbard. 102
FWM

Four-Wave Mixing. 167

GA

Gutzwiller Approximation. 100
GPE

Gross-Pitaevskii Equation. 5

HCSF

Hard-Core Superfluid. 66



IP

Insulating Phase. 155

LE

Loschmidt Echo. 63

MI

Mott Insulator. 5
MIT

Metal-Mott Transition. 106

NESS

Non-Equilibrium Stationary State. 152
NRG

Numerical Renormalization Group. 4

PHS

Particle-Hole Symmetry. 28, 110
PSF

Pair Superfluid. 25

QGA

Quantum Gutzwiller Approach. 4
QMC

Quantum Monte Carlo. 4

SB

Slave Boson. 4, 11
SF

Superfluid. 5
SFP

Superfluid Phase. 156

TDGE

Time-Dependent Gutzwiller Equations. 5
TLE

Two-Level Emitters. 151



List of Figures

1.1 Mean-field Gutzwiller phase diagram and collective modes of the Bose-Hubbard model. 6
1.2 Control parameter of the QGA theory in the Bose-Hubbard model. . . . . . . . . . . . . 9
1.3 QGA prediction for the coherence function in the Bose-Hubbard model. . . . . . . . . . 13
1.4 QGA result for the superfluid fraction in the Bose-Hubbard model. . . . . . . . . . . . . 17
1.5 Density correlations in the Bose-Hubbard model as predicted by the QGA compared with

the results of QMC calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 QGA estimation of the damping rate of th Higgs mode close to the O(2) critical point. . . 21

2.1 Mean-field Gutzwiller phase diagram of the binary Bose-Hubbard mixture for repulsive
interspecies interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Excitation spectrum of the binary Bose-Hubbard mixture across the MI-to-SF transition for
repulsive interspecies interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Excitation spectrum of the binary Bose-Hubbard mixture across the CFSF-to-SF transition. 33
2.4 Mean-field Gutzwiller phase diagram of the binary Bose-Hubbard mixture for attractive

interspecies interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Detailed study of the physical parameters of the PSF region. . . . . . . . . . . . . . . . . 35
2.6 Excitation spectrum of the binary Bose-Hubbard mixture across the PSF-to-SF transition. 36
2.7 Dynamical structure factor of the binary Bose-Hubbard mixture in quantum critical regimes. 39
2.8 Behaviours of the compressibility and the sound velocity in the binary Bose-Hubbard

mixture in proximity of different critical points. . . . . . . . . . . . . . . . . . . . . . . . 41
2.9 Comparison between the QGA, Bogoliubov and QMC predictions for the superfluid drag of

the binary Bose-Hubbard mixture in the SF phase. . . . . . . . . . . . . . . . . . . . . . . 45
2.10 Prediction of the QGA for the superfluid drag of the binary Bose-Hubbard mixture across

the MI-to-SF transition for repulsive interspecies interactions. . . . . . . . . . . . . . . . 47
2.11 Prediction of the QGA for the superfluid drag of the binary Bose-Hubbard mixture across

the CFSF-to-SF transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.12 Prediction of the QGA for the superfluid drag of the binary Bose-Hubbard mixture across

the PSF-to-SF transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.13 QGA results for the one-body coherence function in the binary Bose-Hubbard mixture

across the MI-to-SF transition for repulsive interspecies interactions. . . . . . . . . . . . . 51
2.14 QGA results for the one-body coherence function in the binary Bose-Hubbard mixture

across the CFSF-to-SF and PSF-to-SF transitions. . . . . . . . . . . . . . . . . . . . . . . . 52
2.15 QGA estimation of local density correlations in the binary Bose-Hubbard mixture across

the different quantum phase transitions of the system. . . . . . . . . . . . . . . . . . . . . 55
2.16 QGA estimation of local spin correlations in the binary Bose-Hubbard mixture across the

different quantum phase transitions of the system. . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Review of the mean-field Gutzwiller phase diagram and critical excitation spectrum of the
Bose-Hubbard model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Dephasing rate function of pure dephasing in a Bose-Hubbard environment calculated in
the SF phase and close to the critical points of the system. . . . . . . . . . . . . . . . . . . 65



3.3 Constant-density lines in the mean-field Gutzwiller phase diagram of the Bose-Hubbard
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Dephasing rate function of pure dephasing in a Bose-Hubbard environment at fixed density
in the strongly-interacting SF regime of the system. . . . . . . . . . . . . . . . . . . . . . 68

3.5 Short-time decoherence rate and information backflow of pure dephasing in a Bose-Hubbard
environment across the different critical points of the system. . . . . . . . . . . . . . . . . 71

4.1 Comprehensive snapshot of the mean-field Gutzwiller phase diagram and sketch of the
lattice polaron in a Bose-Hubbard bath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Diagrammatic representation of the diagrams forming the second-order self-energy of the
lattice polaron according to the QGA in a Bose-Hubbard bath. . . . . . . . . . . . . . . . 78

4.3 QGA predictions for the energy and effective mass of the lattice polaron a Bose-Hubbard
bath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Comparison between the predictions of the QGA and various Frölich-type models for the
effective mass of the lattice polaron in a Bose-Hubbard bath. . . . . . . . . . . . . . . . . 82

4.5 QGA results for the quasiparticle residue and decay rate of the lattice polaron in a Bose-
Hubbard bath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Number of collective excitations forming the lattice polaron cloud in a Bose-Hubbard bath,
as given by the QGA calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 QGA results for the number of physical bosons forming the lattice polaron cloud in a
Bose-Hubbard bath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.8 Hole superfluidity and particle-hole symmetry of the Goldstone mode in the strongly-
correlated regime of the Bose-Hubbard model. . . . . . . . . . . . . . . . . . . . . . . . . 94

4.9 Behaviour of the impurity-bath correlation function for different regimes of a Bose-Hubbard
bath as predicted by the QGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Mean-field Gutzwiller phase diagram and collective modes of the Fermi-Hubbard model. 110
5.2 Hartree-Fock terms of the quasiparticle self-energy due to the effective boson-fermion

coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 QGA predictions and spectral decomposition for the local density of states of the Fermi-

Hubbard model across the MIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4 Charge correlations in the Fermi-Hubbard model as predicted by the QGA in comparison

with DMFT calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5 QGA results for the compressibility of the Fermi-Hubbard model across both the particle-

hole symmetric and doping-driven MIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6 QGA study of the spin susceptibility of the Fermi-Hubbard model across both the particle-

hole symmetric and doping-driven MIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

1.1 Pictorial sketch of the physical setting of exciton-polariton condensates. . . . . . . . . . . 142
1.2 Excitation spectrum of exciton-polariton condensates in diverse regimes. . . . . . . . . . 145
1.3 Phase diagram of exciton-polariton condensates. . . . . . . . . . . . . . . . . . . . . . . . 147

2.1 Pictorial sketch of the driven-dissipative Bose-Hubbard lattice of photons under considera-
tion in the Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

2.2 Mean-field phase diagram of the driven-dissipative hard-core photonic lattice and hopping
dependence of the mean-field observables across the I-to-SF transition. . . . . . . . . . . 155



2.3 Limit-cycle frequency and study of the non-monotonicity of the order parameter of the SFP. 158
2.4 Sketch of the four-wave mixing detection protocol. . . . . . . . . . . . . . . . . . . . . . . 167
2.5 Excitation spectrum of the collective modes in the IP. . . . . . . . . . . . . . . . . . . . . 170
2.6 Excitation spectrum of the collective modes in the SFP. . . . . . . . . . . . . . . . . . . . 172
2.7 Fluctuation amplitudes of the collective modes of the SFP with respect to different excitation

channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2.8 Dynamical instability of the Goldstone mode in the ultrastrong-coupling regime. . . . . 174
2.9 Profile of the density of states of the IP in momentum-frequency space. . . . . . . . . . . 175
2.10 Behaviours the local density of states of the IP in frequency space. . . . . . . . . . . . . . 176
2.11 Transmittivity and reflectivity of in-cavity photons in the IP. . . . . . . . . . . . . . . . . 177
2.12 Density of states and one-body dynamical response of the SFP. . . . . . . . . . . . . . . . 180
2.13 Behaviours of the coherence function in the IP. . . . . . . . . . . . . . . . . . . . . . . . . 181

B.1 Surface plot of the sound velocity in the strongly-interacting regime of the Bose-Hubbard
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

C.1 Quantum corrections to local observables of the binary Bose-Hubbard mixture as given by
the QGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

D.1 General diagrammatic representation of a response function in a quantum many-body
system without anomalous correlations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

E.1 Dephasing rate function within a bath of free bosons on a lattice and a weakly-interacting
gas on the continuum for d = 1, 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

F.1 Profiles of the density of states of a exciton-polariton condensate in momentum-frequency
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

F.2 Transmittivity, reflectivity and FWM spectra of an exciton-polariton condensate in different
regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222


