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Preface

This PhD Thesis comprises quite a vast collection of research activities aiming at addressing curious and unex-
plained questions, usually inspired by state-of-the-art experiments, in the field of nanotribology and rheology.
The thesis divides in three parts and several chapters, each of which focusing on specific themes.

Shortly, in the first part, rheology and nano-mechanics of gold nanocontacts, are explored. Friction and
mechanical properties of layered material are presented in part II. Lastly, the third part is a short miscellaneous
project on ring population statistics in an ice lattice model. Here, we briefly provide a preface introduction to
each part.

Part I: Nanomechanics
Down to the micrometre scale and below, solid metallic materials behave mechanically quite differently from
their macroscopic equivalents. when their size is lowered to the micrometre range and below. A higher surface-
to-volume ratio, making more surface free energy [1, 2] available for mechanical deformation, results in a
fundamentally different behaviour for submicro and nano-sized bodies and contacts. Experimentalists create
gold nanojunctions by stretching metallic wires down to the atomic level. They have been known to have
an intrinsic string tension, causing under certain conditions the atomic chains to braid up and form magic
nanowires when the thickness is very small [1, 2]. The additional fact that the ballistic electrical conductivity
of a nanocontact is naturally quantized, makes them the subject of extensive research [3, 4].

The motivation of this part of the thesis is provided by two interesting experiments. First[5], a tuning-
fork-based atomic force microscope (TF-AFM) measured the dynamical module of a few-atom thin (average
cross sections of N≈ 3 to 20 atoms) gold nanocontact. Their observation gave a surprisingly negative value
for stiffness. Second[6], a TEM image of thicker silver nanocontact (starting from N≈ 100 ) supported by
subsequent molecular dynamics simulations [7] demonstrated the plastic stretching and breaking mechanism
of such nanocontacts under lateral shearing. Our scope is, first to understand and explain the physics behind
these observations, and second to see if possible to come up with new suggestions and predictions for future
experiments to help us understand that how rheological properties like negative stiffness may affect the shearing
habit of mechanically oscillated solid metal-metal contacts. The baffling large amplitude rheological properties of
gold nanocontacts and its shearing consequences should apply, with different parameters, to other ductile metals
and in the long run to the dry friction of rough metal-metal mesoscopic and macroscopic contact interfaces.

• Understanding negative stiffness → Chapter 1

Negative stiffness in the recent experiments by Comtet et al.[5] on solid gold nano-junctions implied a strange
apparent liquefaction under oscillatory strain, completely unanticipated at ambient temperature. In this first
chapter, we theoretically demonstrate that even under significant oscillatory strains, realistically generated
nanocontacts truly maintain their crystalline structure. Even in rapid oscillatory cycles, tensile and compressive
slips of the "necking" and "bellying" types, respectively, do occur, but they recover reversibly. A feature that
is unique to nano-sized contacts.

We also show that, counter-intuitively, the residual stress remains tensile after both slips, driving the averaged
stiffness from positive to negative, thus superficially mimicking that of a liquid. However, unlike a liquid,
rheological softening occurs by stick-slip, predicting largely frequency independent stiffness with violent noise
in stress and conductance, properties compatible with experiments.

• How does negative stiffness affect shearing → Chapter 2

The way metal interfaces evolve during frictional sliding, and how that evolution can be externally influenced
are important questions, yet hard to assess experimentally because contacts are buried and generally inaccessible.
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Here we focus on an elementary constituent of a general metal-metal interface, namely an ultrathin individual
nanocontact.

In the preceding chapter, we have thus shown a significant rheological softening in mechanical stiffness, when
an oscillating tensile force, or torque is present. Here, we conduct realistic nonequilibrium molecular dynamics
simulations aimed at detecting to what extent such mechanical oscillations might influence the shearing habit
of gold nanocontacts at room temperature. It is found that the shearing evolution is indeed modified with a
clear rheological softening introduced by the oscillations. That friction softening however is not quite as strong
as, e.g., the thermolubric effect of temperature. Differences emerge for different types of oscillation, but the
discrete sudden stick-slip-like advancements connected with the underlying lattice do persist, at least at the
shearing velocities and oscillation frequency within simulation reach. The rheological softening that we address
is different and should not be mistaken with the usual thermolubricty. The relevance of these results for future
experiments will be discussed.

Part II: Layered materials
The study of friction in layered materials, is a emerging field within physics, bridging fundamental principles to
real-world applications. Experimental labs has almost always been the origin of important physical discoveries,
nevertheless understanding and interpreting the outcomes of experiments is equally a matter of importance.
Theoretical approaches such as the Prandtl-Tomlinson (PT) and the Frenkel-Kontorova (FK) model, together
with non-equilibrium molecular dynamic (NEMD) simulations are well-suited tools to provide insight into the
microscopic origins of friction, offering a deep understanding of the intimate mechanisms at play in materials
tribology. Although our interest remains fundamental and academic, such knowledge has direct impact for
the design and performance of engineering systems, from nanotechnology to macroscopic machinery, and con-
tributes to the development of advanced lubricants and coatings, enhancing energy efficiency and reducing wear
in mechanical systems.

Among layered materials, graphene is unique due to its exceptional mechanical and electrical properties. Its
ease of experimental manipulation permits precise fabrication, such as, clamping on sides, growing on easily
accessible SiC, and twisted bilayer graphene (TBG). Relative twist angle of two graphene layers, via interface
moiré pattern, leads not only to tunable friction, but also to exceptionally interesting electronic properties in
TBG, such as the emergence of flat bands at magic angles, offering fertile ground for fundamental research and
potential technological applications.
Friction of graphene itself –when used as a slider island or a substrate beneath an AFM tip–, depends on various
factors such as: contact area, temperature, sliding velocity, normal load, its commensuration rate with substrate
–e.g. twist angle, lattice mismatch–, and clamping and pre-straining layers, et.c.
From all above, we quickly review a few ideas from our colloquium [8] in the brief chapter 3 that are pertinent
to this thesis: velocity, temperature, and load dependence of friction. More in the second part of the thesis,
we will focus on friction, and other physical properties, of single and/or multi-layer graphene, mimicking two
distinct experimental setups, and one theoretical prediction:

• Supported and quasi freestanding graphene → Chapter 4

The research here, has been done in collaboration with the experimental group of prof. Elisa Riedo (NYU).
Their experiments [9] measure the hardly accessible interfacial transverse shear modulus of an atomic layer on a
substrate. By performing measurements on bulk graphite, and on epitaxial graphene films on SiC with different
stacking orders and twisting, as well as in the presence of intercalated hydrogen, we find that the interfacial
transverse shear modulus is critically controlled by the stacking order and the atomic layer-substrate interaction.
Importantly, we demonstrate that this modulus is a pivotal measurable property to control and predict sliding
friction in supported layered materials. The experiments demonstrate a reciprocal relationship between friction
force per unit contact area and interfacial shear modulus. Simple 1D sliding friction models that demonstrate
how the atomic layer-substrate interaction regulates the shear stiffness and, consequently, the friction dissipation
can be used to explain these results. This image fully explains the experimental friction results by taking into
account only the shear stiffness resulting from a specific layer-substrate interaction. Other effects, like puckering
or electron-phonon dissipation, are not required. These findings provide a method for regulating strain fields
and atomic sliding friction for use in band-structure engineering and photonics applications.
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• Free standing graphene but supported sides → Chapter 5

Rheological phenomena including indentation, twisting, and wrinkling in deposited and suspended graphene
are actively investigated to unravel the mechanical laws at the nanoscale. Most studies focused on isotropic
setups, while realistic graphene membranes are often subject to strongly anisotropic constraints, with impor-
tant consequences for the rheology, strain, indentation, and friction in engineering conditions. Graphene in
particular is recognized as the thinnest solid lubricant material and a large amount of work has been dedi-
cated to understand the fundamentals mechanisms of its effectiveness and to unravel parameters relevant to
its technological development. Here, experiments performed by our colleagues at University of Modena [10],
show how graphene’s frictional response to an external indenter is severely altered by conditions of anisotropic
suspension, specifically when freestanding graphene is clamped across a long and narrow groove. Results show
that the friction coefficient is significant when the tip is sliding parallel to the groove while becoming ultralow
in the orthogonal direction. The experimental data suggest that–rather unexpectedly–prestrain of the graphene
sheet as a result of clamping is negligible, the key to understand the underlying mechanism is provided by
simulations. The paramount mechanism is provided by the extra anisotropic strain induced from indentation
under anisotropic constraints, which in turn produces an anisotropic stiffening of the graphene.

• Completely free standing twisted bilayer graphene → Chapter 6

Twisted bilayer graphene (TBG), stands out for its exceptional electronic characteristics at the magic twist
angle. While most experimental bilayers are studied in deposited/encapsulated configurations, where the twist-
related moiré pattern has no mechanical impact, TBG can also exist in a freestanding form. Here, via simulations
and theoretical investigation, we show how, below a critical twist angle θc ∼ 3.7◦, freestanding TBG exhibits
an unexpected moiré (2× 1) buckling distortion at T = 0, leading to the unforeseen collapse of its macroscopic
bending rigidity. Moreover, its electronic properties reveal intriguing behavior, with eight narrow bands at the
magic twist angle remaining degenerate at zone boundaries, driven by effective single-valley physics. These
structural, critical, and electronic findings make freestanding TBG an especially captivating area of research.
Our findings in this chapter only offer an understanding of freestanding TBG itself, from mechanical and elec-
tronic point of view. Devoid of any external driving force, since studying friction for a freestanding buckled
structure is a delicate subject.

While our explicit focus has been on the prototypical case of graphene, many considered experimental
protocols and uncovered physical mechanisms (via modeling and simulations) illustrated in this thesis, can be
generalized to other 2D membrane-like layered materials as well.

Part III: Other Theoretical Problems
• Ring population statistics in an ice lattice model → Chapter 7

Ordinary ice has a proton-disordered phase which is kinetically metastable, unable to reach, spontaneously,
the ferroelectric (FE) ground state at low temperature where a residual Pauling entropy persists. Upon light
doping with KOH impurities at low temperature, each molecule nucleates the transition to FE ice with a pe-
culiar kinetic mechanism, recently addressed [11] in a lattice model where the so-called "ice rules" – no less
and no more than two hydrogens per oxygen – are enforced. The impurity-driven nucleation process involves
the transition of disordered proton rings into ordered rings, making the nucleation efficiency dependent upon
the probability distribution of various type of disordered rings. That distribution had been demonstrated by a
replica-exchange MC sampling, [11] but no theory had been provided.

We calculate the probability distribution of hexagonal 6-site rings in the disordered state of cubic and
hexagonal ice in the same lattice model. The mean-field distribution obtained is in significant agreement with
those, slightly different among them, obtained by Monte Carlo simulations. Results are discussed in connection
with the equilibrium and non-equilibrium transition from disorder to ferroelectric proton order.
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My contribution; disclaimer
Since this thesis comes as a collection of research papers, either published or draft, therefore all contributions
is referred to by ”We”. However I would like to clarify:

• I implemented and carried out the numerical simulations for chapters 1 and 2, and contributed to the
theoretical understandings;

• chapter 3 is a short introduction to our collaborative colloquium, to which I contributed by way of general
comprehension, discussions, and presenting information;

• I have not performed any of the experiments for this thesis, my contribution in chapters 4 and 5 remains
to only performing simulations and contributing to overall theoretical understanding of results;

• in chapter 6 my contribution falls mainly in the second section, electronic structure, and overall under-
standing of the results. Appendix A contains the home-made code (LTB+Symm) for this purpose;

• in chapter 7, my contribution is in the mean-field statistical counting.
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Chapter 1

Metallic Nanocontact Rheology

1.1 Introduction

The moment two bodies touch, however gently, they do that first through bridging nanoasperities with possible
formation of tiny solid junctions, necks, or nanowires, especially in metals. The ability of nanocontacts in
realistic room temperature and vibration-rich conditions to transmit, as it were, mechanical rigidity, represents
an issue which, even if delicate and important to basic physics, nanoengineering, and even everyday life, has
received insufficient attention. Building on historically important work [12] prototype metallic nanocontacts
[13, 14], formed and studied by break junctions, scanning tunneling microscopes (STMs) [15, 16], transmission
electron microscopes [17–20] or cold welding [21], have been investigated in past decades through conductance,
force measurements and simulations, mostly at low temperatures [13, 14, 22] or other non-standard conditions
[17–20]. Even if thermodynamically metastable against spontaneous thinning and eventual breaking [1, 2],
metal nanocontacts can be engineered and mechanically controlled to last long enough to be electrically and
magnetically characterized by gate and bias voltages. Their realistic room temperature rheology, however, is an
open chapter. Because of short lifetimes associated with nanometric structures and the facile changes they can
undergo at ordinary temperature, addressing their non-equilibrium rheological properties requires investigations
that go beyond the static and cryogenic conditions of most prototype studies.

In their pioneering experimental exploration of oscillatory stress-strain response of ultra-narrow gold nano-
junctions, Comtet et al. [5] showed that after the initial small strain (0-5%) elastic response, regular plastic
yield occurs first, as expected, around 6-7% strain. Recent work by Liu et al. [23] extended that work to
larger cross sections, confirming that with an initially crystalline atomic arrangement inside the nanojunctions,
their plastic yield is reasonably attributed to strain-driven slip planes as in macroscopic systems [13, 24, 25].
However, for larger oscillation amplitudes and atomically thin nanocontacts – with conductances g ≈ 3− 30g0
where g0 = 2e2/h – Ref [5] found a further dramatic softening suggestive of apparent liquefaction. The contact
effective stiffness with oscillation amplitude above ≈ 0.15 nm drifted from positive to negative, as would befit a
gradually melted nanojunction. How and why large dynamic strains – at room temperature but with mechanical
heating totally excluded – could usher in the liquefaction of metal nanoasperities is quite puzzling, requiring a
more fundamental understanding of their rheology. Besides the conceptual aspects, if indeed a strongly shaken
ordinary metal-metal contact were to consist of myriads of liquefied nanonecks rather than of solid junctions,
that would hardly be irrelevant to a host of technological issues.

We theoretically investigate here how, at room temperature, a mechanical perturbation such as a vibration,
commonplace in many technological applications, will affect and determine the detailed rheological behavior
of contacts including stiffness, dissipation and yielding under large time-dependent, e.g., oscillatory stresses
and strains. Straight theory is ill equipped to confront this puzzle, owing to both its violently non-equilibrium
nature, and its nanometer size scale. It is therefore fortunate that exactly these two features make it directly
amenable to non-equilibrium molecular dynamics (NEMD) simulation, which, as we will show, points to an
explanation which is different from liquefaction.

8
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Figure 1.1: Simulated rheology of an oscillating solid metal nanocontact. a Sketch of a gold nanojunction
under oscillatory strain, exerted through crystalline leads at room temperature. b Snapshots of a nanocontact (N ≈
9 atom cross section) of initial crystalline columnar shape (left) and quasi-equilibrium working shape obtained after
extended structural relaxation (right). Note the anvil-like tips formed on both sides of the effective nanojunction’s neck
reducing its effective length from h0 to d0. c Three-body angular distribution of inner core atoms of the relaxed junction
measured during ≈ 10 strained cycles at the largest oscillatory amplitude (0.22 nm). The main peaks confirm the survival
of fcc structure and coordination of the nanocontact core. The small structure around 147◦ (arrow) is a signature of the
(111) slips.

1.2 Results

We simulated gold nanocontacts suspended between two bulk-like crystalline leads (Fig. 1.1a) whose distance
is oscillated as h(t) = h0 + a0 exp (iωt), and read the force time evolution (Fig. 1.2) to analyse the mechanical
response of a family of nanometer radius model gold junctions, under increasing engineering strain amplitude
ϵ0 = a0/h0 (conveniently used, although different from true strain ϵt = a0/d0 where d0 < h0 is an effective
nanojunction length to be discussed later). All simulations were based on the well documented and reliable force
field of Ref.[26]. We focused on initially bulk-structure columnar junctions bridging between two large solid
leads, in our case h0 ≈ 2.75 nm apart. The initial junction transverse cross section ranged from Ni = 7− 40.

The first important step was to establish a realistic nanojunction shape and inner structure. Both are
generally unknown experimentally, and expected to evolve in the course of time [1, 2] with shape evolution routes
which depend experimentally on temperature and formation protocols [5, 15–17, 19, 20, 27], and theoretically
also on the precise form of interatomic interactions [14, 26, 28–31]. In experimental protocols such as that of Ref.
[5], the unknown nanojunction morphology is, through feedback-actuated preservation of a constant average
electronic conductance, periodically stabilized to a roughly constant average cross section area of its narrowest
neck. Our simulation protocol started with vigorous initial mechanical oscillations and thermal cycling that
transformed the initial idealized column into a modified, relaxed, and reproducible structure that did not further
evolve within our subsequent working time. That structure, now consisting of a shorter neck-like nanojunction
between spontaneously formed anvil-shaped “tips” survived quasi-stable at room temperature and under further
oscillations always comprising no less than 10-20 cycles, with amplitudes up to 0.3 nm. Thus no feedback
adjustment was required. The nanojunction retained a well defined minimal midpoint cross section (Fig. 1.1b,
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right) of area A ≈ Nπr20, where r0 ≈ 0.144 nm is the atomic radius and N ≈ 4 − 26 the atom number inside
that cross section – more precisely the number of (110) z-oriented atomic chains crossing that section. In this
relaxed configuration, the proper nanojunction length had shrunk from h0 ≈ 2.75 nm to a smaller value d0 ≈ 1
nm –now excluding the anvils. The relaxed anvil-nanojunction-anvil shape of the overall contact is not specific
to any chosen initial h0; it just took a shorter relaxation time to realize it for the smallest reasonable lead-lead
distance, which we therefore adopted.

The protocol proceeded by submitting the thus relaxed nanojunctions to oscillatory strains with frequencies
ω/2π spanning three decades 10 MHz-10 GHz. Values which, even if much larger, still as we shall see extrap-
olate naturally down to experimental frequencies such as 31 KHz (see Fig. 1.3). Preliminary to describing
the force results of the simulations, however, the inner atomic structure of the nanojunction and its core is a
crucial question to be ascertained. That structure could remain simply fcc crystalline in the first place. It could
be glassy – an appealing possibility because glasses are known to liquefy easily under oscillatory strains [32].
Or perhaps the thinnest nanonecks could even possess one of the helically incommensurate coaxial nanotube
structures discovered in TEM [17, 19] and theoretically explained [1] by “magic” string tension minima that arise
in the course of spontaneous thinning. Alas, all glassy and helical nanojunction structures which were tried
did not survive even for the very first few simulation steps. The latter hypotheses should therefore be discarded.

Direct inspection of both the non-oscillating and oscillating nanojunction interiors in the relaxed structure,
actually showed them to be approximately crystalline. The signature is provided by the first-neighbour three-
body angular correlation function ρ(θ) of the interior atoms in the central nanoneck portion, defined by carefully
excluding atoms in both the tip anvils and the outer nanojunction surface layer, the latter more mobile than
the rest. If the nanojunction interior atoms possessed fcc crystalline coordination, ρ(θ) should show three peaks
at 60◦, 90◦, and 120◦; if liquid or glassy, only 60◦ and 120◦; if magic, the pattern should be much more complex
owing to incommensurability [1]. The result, shown in Fig. 1.1c shows a clear 60◦, 90◦, 120◦ peak sequence,
confirming that the inner core of the simulated nanojunction is and remains close to fcc solid throughout, despite
room temperature and violent oscillatory shaking. In addition, the presence in the strongly shaken nanowire of
a shoulder around 147◦, signals ABC to ABA local sliding of (111) planes during the oscillation, to be discussed
below and reminiscent of the yielding patterns proposed in experiments [5, 23].

1.3 Reversible yielding

The structure evolution under oscillating strain showed up clearly in the simulation geometry, pictured in Fig.
1.1a, and in Additional Fig. 1.9. As tensile strain amplitude grew, the solid and largely crystalline nanojunction
first yielded with a necking local interplane ABC-ABA slip – also causing some thinning. The necking slip took
place once the tensile elongation exceeded ≈ 0.16 nm, which is close to l/(2

√
2) = 0.144 nm, half of gold’s

{110} spacing (the direction of oscillation), where l = 0.408 nm is the bulk lattice constant. With some
hysteresis, the necking however reversed on the way back, a fast stick-slip-like event made possible on the fly
by the subnanometer thickness and by room temperature. In the second half of the cycle, where compression
exceeded about the same magnitude in reverse, the nanojunction yielded backwards with an inverse necking,
which we dub "bellying", for it is accompanied by a noticeable nanojunction thickening. Again with some
hysteresis, bellying finally reversed in the last part of the cycle, the junction returning to its initial state. This
simulated behaviour, whose consequences will also be discussed and pictured later in Fig. 1.4, exemplifies how
reversible plastic deformation kinetics may emerge as a feature in nanocontacts of metals that are, at their
working temperature, sufficiently ductile and sufficiently thin. Similar events were earlier reported in the MD
simulations of the Au/Ni system by Landman et al. [33] using EAM potentials. Qualitatively analogous results
were also shown by Sutton and Pethica [34] using a Lennard–Jones pair potential. Even in the bulk crystal,
a large (110) uniaxial strain favors hcp relative to fcc, and the local sliding associated with the nanojunction
yielding transforms local ABC stacking to ABA. (see Additional Fig. 1.9)

1.4 Dynamical force and response function

The structural evolution described underpins the main dynamical output of nanojunctions which we extracted
from the oscillatory simulations, that is the instantaneous force F (t) between the leads. Typical NEMD force
time evolution at ω/2π = 50 MHz are presented in Fig. 1.2 for increasing oscillation amplitudes a0, for a
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Figure 1.2: Force time evolution under oscillating strain Time dependent force results for the N ≈ 9 nanojunction
of Fig. 1.1b with equilibrated shape, initial h0 ≈ 2.75 nm, relaxed neck length d0 ≈ 1 nm, average neck cross section
area A ≈ 0.6 nm2, oscillation frequency 50 MHz, T = 300 K. Blue dashed-dotted line: imposed lead-lead oscillating
amplitude a(t). Large grey dots: extracted instantaneous force between the leads. Black solid line: sinusoidal fit
F (t) = F0 + (Aσ0) exp (iωt+ iϕ) of the force. The fit parameter Aσ0 is the resulting force magnitude. Note the change
of rheological response with drastic increase of non-sinusoidal noise at and above a∗

0 ≈ 0.16 nm. Note also the prevalence
of tensile (positive) force for all strains (see text). The same plot for the largest size of N ≈ 26 is shown on Additional
Fig. 1.5

nanojunction with relaxed central cross section N ≈ 9, chosen as the clearest showcase among all cases studied
in the range N ≈ 4−26 (see Additional Fig. 1.5 for the largest thickness). At small amplitudes, the mechanical
response was essentially elastic – except for some residual fluctuations (possibly connected with the force field’s
weak fcc-hcp energy difference [35]) – characterized by a nearly sinusoidal force, and weak phase shift with
strain, and thus negligible dissipation. At mechanical yielding, which began rather sharply at a threshold am-
plitude a∗0 ≈ 0.16 nm, the force turned noisier (see Additional Fig. 1.7), with sudden jumps associated with the
structural interplanar sliding, either necking or bellying, taking place at one point in the nanojunction. From
the force, the (conventional) stress magnitude σ0 was obtained by fitting F (t) in the form F0+σ0A exp (iωt+ iϕ)
where F0 represents a background tensile force (string tension) between the leads at zero strain, ϕ the phase
shift between the imposed oscillatory strain and the force component of same frequency, and A the narrowest
cross section area of the relaxed strain-free nanojunction. The force fit (least squares, same frequency as the
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Figure 1.3: Complex dynamical response function. a Effective stiffness G′ and dissipation G′′ at three decades
of frequency 10 MHz-10 GHz for a N ≈ 9-atom cross section nanojunction. Similar results are obtained for different
sizes and frequencies (see Additional Fig. 1.6 for the largest size of N ≈ 26). b Experimental data for N = 11 at 31
KHz reproduced from [5]. Note the good overall agreement, parameter-free. For lower frequency data at 1 MHz close to
simulation limit, see Additional Fig. 1.12

forcing, amplitude and phase as parameters) is not an arbitrary choice, but a mandatory protocol required to
extract the same linear response function measured experimentally.

The extracted stress magnitude and phase lead to the complex dynamical rigidity G = G′ + iG′′ =
(σ0A/a0) exp (iϕ) where the average is taken over a sufficient number of cycles. The real part G′ is the effective
nanojunction stiffness (also called storage modulus), the imaginary part G′′ describes mechanical dissipation
(loss modulus). From force data obtained in a vast range of frequencies, nanocontact sizes and cross sections
we extracted the complex dynamical linear response function G, shown in Fig.1.3a. There is first, as expected,
an elastic response at small strains where the stiffness G′ is positive and large, and dissipation G′′ is, discarding
parasitic fluctuations near zero strain (attributable to an excessively small fcc-hcp energy difference, see caption
to Additional Fig. 1.6), negligible. As the oscillation amplitudes surpass the yielding magnitude, G′ drops
and eventually turns from positive to negative, corresponding to the force-strain phase reversal that is visible
in the raw data of Fig. 1.2. A corresponding rise of G′′ and a noise increase arose at yielding. The large
deviations of force from sinusoidal (detailed in Additional Fig. 1.7 and 1.8) are responsible for the noise and
underscore the inadequacy of linear response description at and after yielding. We nonetheless focus on the
linear response because, even if crude, it permits the simplest assessment of kinetics, as well as direct comparison
with experiments. The comparison we found with the experimental complex dynamical rigidity is, even if not
perfect, definitely convincing. As shown by Fig.1.3b [5] not only the drift of G′ from positive to negative and
the dissipation rise are recovered, but also quantitative values of stiffness and yielding strain are in the right
range, without adjustable parameters.

We next investigated the oscillation frequency dependence – the response under variable shear rate is a cru-
cial element providing a clear diagnostic of nanojunction rheology, with different outcomes between a yielding
solid and a liquid neck. Ranging from 10 MHz to 10 GHz, the simulated frequency dependence of G and its
characteristic change of behavior from rigid and elastic to yielding with apparently liquid-like was found in
simulations to be essentially nil,(see Fig.1.3a) suggesting that all important slip phenomena take place very
fast. This result is coherent with an energy barrier ∆ – estimated across a slip, be it compressive or tensile –
larger than kBT by at least an order of magnitude, see Additional Fig. 1.11. Similar to friction, the sharp slips
lead to a rheological nanojunction behaviour close to a sequence of nanoscale stick-slip frictional events, known
in turn to give rise to a logarithmically weak or negligible velocity dependence of the friction force [36]. The
stick-slip-like rheology of simulated solid nanojunctions and their frequency independent response over many

12



decades can in addition be extrapolated down to much lower oscillation frequencies – such as those used in
experiments, presently out of simulation reach – as follows. There must exist by elementary transition state
theory a crossover inverse rate, ωL/2π where ωL ∼ Ωexp−∆/kBT with Ω a mesoscopic attempt frequency
scale at which the relevant barrier ∆ is thermally overcome during a slip. The basically frequency-independent
stick-slip dissipation should persist for oscillation frequency above ωL/2π, and eventually cease below, crossing
over to so-called thermolubric viscous sliding, linear with frequency.[37, 38]

In the N ≈ 9 nanocontact the adiabatic energy jumps at slips suggest energy barriers of 0.2− 0.4 eV, while
Ω ≈ 13 MHz is estimated from real-time force fluctuations close to slips (Additional Fig. 1.11). That predicts
a thermolubric crossover frequency estimate ωL/2π ∼ 600 Hz for this size and temperature. That justifies
extrapolation of high frequency stick-slip behaviour to include experimental tuning fork frequencies like 31 KHz
[5], and makes a prediction that might be interesting to verify in future experiments. Our simulations and
experiment both show, for all amplitudes above the slip thresholds and up to the largest value, a basically
constant G′′ (Fig. 1.3). At a single frequency, that could, not unreasonably, be interpreted as evidence of
viscous response [5], i.e., G′′ ∼ ηωA/h0, where η is the viscosity and A the area, independent of amplitude.
As a function of the primary oscillation frequency, however, our predicted, nearly frequency independent G′′ is
very different from this viscous behaviour, at least so long as the frequency does not fall below the thermolubric
crossover.

Why there is actually no mechanically induced nanojunction melting in both experiment or simulation is a
point already discussed in Ref. [5], but worth re-examining here. Owing to our large oscillation frequencies, one
might suppose that melting could in principle occur the large power P provided by the oscillatory strain. In
simulation, that power can be evaluated, either as P = 1

τ

∫ τ

0
F (t)ḣ(t)dt where τ = 2π/ω is the period, or equiv-

alently as the amount of heat absorbed by the thermostat per unit time. For a nanocontact with a cross section
A ≈ 0.6 nm2, oscillating with frequency ω/2π = 50 MHz and amplitude a0 = 0.22 nm, one obtains a value of
P ≈ 1.6 × 10−11 W, which, if concentrated on a hypothetical isolated piece of gold of volume Ad0 ≈ 0.6 nm3,
would actually melt it in less than 3 cycles. In a nanojunction, heat is, however, conducted away through the
suspending tips to the two leads that are held at T = 300 K. Owing to the large electronic thermal conductance,
estimated via the Wiedemann-Franz relation (valid also in the ballistic regime, that should actually apply here
[39, 40]) essentially all heat escapes, leaving only a tiny residue and a temperature increase in the nanojunction
that is completely negligible [5]. In our case, simulations actually ignore electronic heat conduction, which in
gold is about 95% of the total, thus underestimating the rate of heat escape by a large factor. All the same, the
temperature rise in the simulated nanojunction remained negligible, safely below 15 K even at the largest strain
amplitudes. The conclusion that the nanojunction does not thermally melt stands therefore absolutely correct.
As a further step along that line, considering that a liquid nanoneck could thin down faster than a solid one,
we examined the lifetime of N ≈ 9 nanojunction when T was raised enough to make it locally liquid. Results
show (Additional Fig. 1.13) that actual liquid nanonecks at T > 500 K should spontaneously evolve and break
much faster than any of the experimental feedback and oscillation time scales.

1.5 Intrinsic tensile stress

The agreement of simulated and experimental dynamic response leads us to address with some confidence
the question of how a sign change of G′ at large strains may arise as result of reversible yielding of a solid
nanojunction, and why. Reversibility of yielding is in itself not sufficient to account for that, and some additional
element must intervene to make the force jumps at necking and bellying large enough, with accumulation of
tensile stress, surprisingly even after compressive bellying. That element, theoretically predicted long ago
[1, 2] and recently demonstrated in Pt nanowires[27] is the intrinsically nonzero tensile force - a string tension
between the leads – even for a solid nanojunction. In our simulations, tension indeed appeared systematically
in all oscillation-free and oscillating nanocontact simulations, as shown by the positive mean force value in
Fig. 1.2. Following even the most careful structural relaxation, which canceled the lead-lead force, tensile
stress always resurrected immediately afterwards. The bridge-mediated attraction between two bulk-like leads
reflects the nanojunction’s intrinsic metastability against thinning and eventual breaking. Atoms in the bridge
would, if they could, gain free energy by migrating to the leads. Thinning and breaking, averted in experiments
by maintaining a constant average electrical current, have no time to occur in the metastable conditions of a
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simulation whose duration is much shorter: but the tensile force, transmitted as it were between the leads by the
outer nanojunction atoms, is their ubiquitous forerunner. The nonzero average tension force seen in simulations
confirm in fact that our rheological results reasonably represent quasi-equilibrium nanojunction conditions. Its
value is as it happens, quite easy to predict, ahead of simulations, as follows. Assume a cylindrical nanobridge,
solid as well as liquid, with Nt atoms, radius R, length L, and total Gibbs free energy H. The intrinsic lead-lead
force is [1]

Fi = (H − µNt)/L (1.1)

where µ is the bulk chemical potential (at T = 0, the cohesive energy) per atom. Considering separate sur-
face and bulk contributions to H, if the bulk could be considered a true solid, and if the nanocontact possessed
well defined facets, the free energy difference at the numerator could be written as the sum of the surface stress
contributions (γi+ai

dγi

dai
) where γi and ai are the surface free energy and crystal lattice spacing of the i-th facet.

If the bulk was liquid instead, that difference would be just the surface free energy γ. Neither prescription is
perfect for our nanocontacts, that are neither real and faceted true solid portions nor liquid necks. We can
nonetheless get a rough estimate by ignoring the difference, not large in gold, between surface free energy and
facet-averaged surface stress of the main facets, thus treating it as a liquid. That leads to an intrinsic tensile
force, or string tension Fi(R) = 2πγR that is just the total surface free energy 2πRLγ divided by length L.
In our solid simulated junctions this simple force estimate is immediately verified. For example in the N ≈ 9
nanojunction of Fig. 1.2, where A ≈ 0.6 nm2, whence R ≈ 0.44 nm we obtain, inserting gold’s surface energy
0.9 J/m2 of the force field[26], we obtain Fi = 2.5 nN, (4.17 nN using instead the experimental surface energy
1.5 J/m2) in parameter-free agreement with F0 ≈ 3.3± 1.0 nN of the simulation (the confidence interval is con-
nected with force fluctuations in Additional Fig. 1.7). Similarly, for the N ≈ 26 nanojunction, where A ≈ 1.7
nm2 we predict Fi = 4.2 nN, (7.08 nN using the experimental surface energy) and observe F0 ≈ 5.6 ± 2.2 nN.
This large intrinsic lead-lead attraction, capillary-like but present even across a largely solid nanojunction,[1, 2]
should not be forgotten, when interpreting experiments.

The intrinsic tension and its proportionality to radius R represents the second key element to understand the
full rheological response. Each time in the cycle the nanojunction undergoes reversible yielding, both necking
and bellying, the tensile force and stress undergoes a collapse. Starting from an initially large value which is
dictated by the intrinsic tension, down to nearly zero after the slip, whose effect is to cancel essentially the
whole force, as demonstrated in Fig. 1.4.

The effect of intrinsic stress on G′ can be further demonstrated analytically by e.g., assuming (e.g. for
very low frequency ω) a stress-strain behaviour σ(ϵ) that is a hysteresis-free single-valued zig-zag function (see
Additional Fig. 1.10)

σ(ϵ) = kϵ− jnΘ(ϵ− ϵn) + jbΘ(ϵb − ϵ) + σi (1.2)

where k is the elastic stiffness, jn (jb) are the necking (bellying) stress jumps, Θ is the Heaviside function, and
σi = Fi/A is the intrinsic stress at zero strain. The effective stiffness G′ (strictly real in this case) is the ratio
of the Fourier transforms σ(ω) and ϵ(ω)

G′ =
2i

ϵ0

ω

2π

∫ π/ω

−π/ω

σ[ϵ0 exp (iωt)] exp (−iωt)dt

= k − 2

πϵ0
[jn
√
1− (ϵn/ϵ0)2 + jb

√
1− (ϵb/ϵ0)2].

(1.3)

The last two terms show how the stress drops jn and jb – that are large because of the large intrinsic stress
– effectively act to reverse the sign of G′ when ϵ0 exceeds the yielding thresholds ϵn and |ϵb| (see Additional
Fig. 1.10).

1.6 Discussion

Summing up, we have found that the large-strain rheology of a ductile metal nanojunction, here exemplified by
room temperature gold, is dominated by two elements: reversible yielding, and a large size-dependent intrinsic
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Figure 1.4: Large amplitude force-strain characteristics. Simulation trajectories in the force-strain plane, for the
N ≈ 9 nanojunction at 50 MHz. Blue trajectories: half cycle with positive strain time derivative dϵ

dt
> 0; red trajectories:

negative strain time derivative dϵ
dt

< 0. Insets are snapshots frames showing the junction at rest (center), after necking
(right) and after bellying (left) Black line: schematic adiabatic zig-zag force-strain characteristics. The straight tract
near zero is (ignoring fluctuations) the elastic regime. Major yielding slips occurs at necking and bellying, which are the
results of forced tensile and compressive strain, respectively. Note the average tension force dominating the whole cycle,
surprisingly including the compressive portion, and the large jumps where the force falls near zero at both slips.

tensile stress, both already apparent in the raw simulation data of Fig. 1.2. The reversible yield slips occur
in a basically crystalline structure, as opposed to a conjectured strain-driven liquefaction. The size-dependent
tensile stress, predicted to exist in a metal nanojunction in quasi-equilibrium at finite temperature, even if close
to a solid inside, causes the stress jumps to be large. The two elements concur to change the sign of the effective
stiffness G′ from positive to negative, a reversal close to that seen in experiments. The dissipative response
G′′ at large oscillation amplitudes is predicted to behave as stick-slip friction, that is with weak or negligible
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frequency dependence. If the experimental tuning fork frequencies could hypothetically be extended to cover
higher values they should directly exclude, we believe, the dramatic linear growth expected for a liquid. If on the
other hand the oscillation frequency could hypothetically be lowered enough to reach ωL, or alternatively if ωL

could be raised enough by increasing temperature, then stick-slip should be found to cross over to thermolubric
sliding. A cartoon of the full response in the limit of vanishing ω, for example, is that portrayed in the zigzag
model of Additional Fig. 1.10, where G′ still switches from positive to negative, whereas dissipation vanishes,
G′′ = 0 . A predicted additional consequence of the reversible stick-slip rheology is a large anharmonicity and
associated force noise, also be accompanied by conductance noise. Clearly reported in experiments,[5] such a
large noise cannot be easily rationalized for a liquid neck.

Investigated here in the specific instance of gold, a very ductile metal at room temperature, the conditions
under which a vibration-induced nanojunction softening might occur in different metal contacts of technological
importance should be pursued in future studies. Fully developed intrinsic tension in generic nanocontacts might
be hampered by slower kinetics in either less ductile metals or ones with larger slip energy barriers (thus showing
up only at higher temperatures), where nonetheless the same conclusions about the non equilibrium dynamics
of nano and atomic contacts should apply. The mechanical and rheological behaviour under oscillatory strain
induced by vibrations of the specific case of gold junctions, expected to be technologically important in electrical
contacts [41, 42] – should be of high interest for gold-plated connectors and switches in industrial applications
[43, 44], for spacecrafts evolving in microgravity [45] and a multitude of other strongly vibrating contacts.
Potential applications beyond the case of gold could play a role in adhesion and friction of vibrating systems,
where negative stiffness could alter the mechanical stability, the friction, and the electronic performance of more
general metal nanocontacts. Our findings may have major impact in emerging industrial applications such a
direct printing of metallic wires at the nanoscale. Indeed the increased stability due to shear induced negative
stiffness can prevent mechanical instability of metallic wire and dewetting of surface at the nanoscale providing
a novel class of electronic devices.

1.7 Methods

The sub-microsecond simulations were carried out using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) open source code [46]. Following previous work by Park and Zimmermann [47], and
many other studies, we adopted the realistic embedded-atom method (EAM) gold force field by Foiles et al
[26]. The simulation setup consisted of 2042-2516 particles (N ≈ 9 − 26), with periodic boundary conditions
(PBC) in (x,y) plane and free boundary conditions along z axis (the strain axis). The two upper and lower
gold leads consist of two fcc rigidly stacked (110) lattice planes. Four thermostating planes consisting of 576
atoms are attached to the leads at each side, joining together with an initial 2.75 nm long column with various
thicknesses. The setup is thermally and mechanically relaxed, as shown Fig. 1.1b, finally evolving into a shorter
nanojunction subtended between two spontaneously formed anvil-shaped tips. An oscillatory z-displacement is
added to the lead-lead distance, causing the nanojunction to undergo a tensile and compressive deformation.
Non-equilibrium molecular dynamics (NEMD) simulation is carried out in the framework of Langevin approach
at room temperature. In order to minimize the possible influence of this simulating procedure, the thermostat
is applied just to the mobile atoms outside the physically relevant region defined by h0. Besides, we checked
that, within a significant range of values of the Langevin damping parameter, rheological response of the system
is reasonably independent of its specific choice. The vertical force between two leads are read directly from
simulations, the phase shift between force signal and the imposed oscillation is the concern of analysis in this
work.
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1.8 Additional notes

Here are some supplementary notes in case the reader wants to delve deeper into any particular section.

1.8.1 Robustness of results
Simulations have been performed on nanojunction of varying lateral size in order to investigate the validity of
the proposed approach. Almost identical rheological response versus increasing strain oscillations is observed
also in nanocontacts with larger mid-junction thickness (here, e.g., N ≈ 26). The evolution of the force-strain
phase differences with oscillating amplitude is shown in Fig. 1.5.

Figure 1.5: Force time evolution of a thicker nanojunction under oscillating strain Time dependent force
results (oscillation frequency 50 MHz , T=300 K) for a thicker (N ≈ 26) nanojunction, with initial h0 ≈ 2.75 nm, relaxed
neck length d0 ≈ 1 nm, and average neck cross section area A ≈ 1.7 nm2. Blue dashed-dotted line: imposed lead-lead
oscillating distance a(t). Large grey dots: extracted instantaneous force between the leads. Black solid line: sinusoidal
fit F (t) = F0+(Aσ0) exp (iωt+ iϕ)) of the force. Note how avalanche-like jumps (in red), occurring at the maxima of the
driving strain, gradually inverts the sinusoidal fit phase, moving from small (a) towards large (c) imposed amplitudes.
Once again, the prevalence of tensile (positive) force shows up for all strains.

In connection with what is already shown in main text for a thinner nanocontact, Fig. 1.6 displays the
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N ≈ 26 nanojunction force-strain characteristics and the corresponding complex dynamical linear response
function, in basic agreement with smaller sizes.

Figure 1.6: Rheology of the thicker (N ≈ 26) nanojunction at 50 MHz strain rate. (a) Large amplitude
simulation trajectories of a thick nanojunction in the force-strain plane. Blue trajectories: half cycle with positive strain
time derivative dϵ

dt
> 0; red trajectories: negative strain time derivative dϵ

dt
< 0. Black line: schematic (adiabatic) zig-zag

force-strain characteristics. At small amplitudes, the straight tract represents an essentially elastic regime, except for
some residual fluctuations possibly connected with the force field’s small (1.1 mev/atom) fcc-hcp energy difference [35].
Major yielding instabilities occurs at necking and bellying (a∗

0 ≈ 0.16 nm), which are the results of forced tensile and
compressive strain, respectively. As observed for the thinner nanocontact, the average tension force dominates the whole
cycle, including the compressive portion, causing the large jumps where the force falls near zero at the yielding strains.
(b) Effective stiffness G′ and dissipation G′′ of the complex dynamical linear response function G. Note how the overall
behaviour is frequency independent, one of the evidence for non-liquidity of the junction.

1.8.2 Force fluctuations, nonlinear noise spectrum
The simulated force between the two oscillating leads fluctuates very violently after yielding, and especially at
large strain frequencies, where the instantaneous force deviates from the sinusoidal linear response fit.

At all frequencies, and for both thin N ≈ 9 and thick N ≈ 26 nanojunctions (see Fig. 1.7), fluctuations
tend to rapidly increase toward yielding (a0 ≈ 0.165 nm), signaling the gross inadequacy of linear response
description beyond the elastic regime.
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Figure 1.7: Force fluctuations frequency dependence, extracted for different strain oscillation amplitudes
for N ≈ 9 (a) and N ≈ 26 (b) nanojunctions, respectively. For each parameters set, data is extracted over many
oscillation cycles, considering half width at half maximum of Gaussian distribution of the recorded force signal deviating
from its sinusoidal linear response fit.

In addition, we Fourier analyzed the lead-lead force

F (t) =
a0
2

+

∞∑
n=1

an cos (nω0t) + bn sin (nω0t) (1.4)

to obtain the noise spectrum in the two relevant regimes: a) small strain amplitude, where without slips the
nanojunction is basically elastic, with positive stiffness and b) large strain amplitude, where the nanojunction
deforms with reversible slips and stiffness is negative. As shown in Fig. 1.8 for the nanojunction of N ≈ 9 the
noise spectrum broadens dramatically in stick-slip regime (b), with large higher harmonic contents at ω = nω0

besides the fundamental at ω = ω0. The peak n values depend on the oscillation amplitude, reflecting the
changeable position of slips within the cycle.

Figure 1.8: Noise spectrum for N ≈ 9 at small amplitude a0 = 0.08 nm (a), frequency 50 MHz and large amplitude
a0 = 0.22 nm (b). The frequency scale shows n = ω/ω0. The |F (ω)| histograms show

√
a2
n + b2n, normalized so that

F (ω0) =1. Note the broad-spectrum noise generated by stick-slip at large amplitudes.

1.8.3 Nanocontact structural slips
Here, we show how the force drops, responsible for the zig-zag character in the force-strain trajectories (see Fig.
1.6), are caused by local structural slips. To explore this feature, we perform an oscillatory athermal (T = 0)
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simulation with strain amplitude 0.22nm, where layer ordering is easily detectable in the N ≈ 9 nanowire as
shown in Fig. 1.9a.

To verify the structural consequences of avalanche-like instabilities at each strain cycle, we successively
determine the angular distribution, now at room temperature, for the N ≈ 26 nanocontact – central atoms
only, excluding surface ones – at 50MHz. Fig. 1.9b reports the angular distribution of the nanojunction
structure right when it experiences the largest (0.22nm) tensile and compressive strain within the cycle. The
shoulder around 147◦ signals precisely ABC to ABA local sliding of (111) planes after necking. That same
feature is missing after the bellying avalanche, where a final fcc structure is restored under compression, a
regime where hcp structure is disfavored.

Figure 1.9: Nanocontact structural and interplanar sliding features. (a) Local structural slip during a 0.22nm
strain oscillation for the N ≈ 9 nanocontact, at zero temperature. (b) Angular distribution at maximum compres-
sive/tensile strain (0.22nm) of the thicker N ≈ 26 nanojunction at 300K. The dark arrow highlights the appearance of a
shoulder around 147◦ signaling the ABC to ABA interplanar local sliding after necking. Simulated frequency is 50MHz.

1.8.4 Zig-zag model
The simple toy model introduced in the main text and characterized by

σ(ϵ) = kϵ− jnΘ(ϵ(t)− ϵn) + jbΘ(ϵb − ϵ(t)) + σi

ϵ(t) = ϵ0 sinωt
(1.5)

where k is the elastic stiffness, and jn (jb) are the necking (bellying) jumps at yield strain ϵn (ϵb), and σi is the
intrinsic stress at zero strain, can help us to understand the role of vertical jumps in determining the values of
G′. As already mentioned, the effective stiffness can be calculated as ratio of the Fourier transforms

ϵ(ω) =
ω

2π

∫ π/ω

−π/ω

ϵ(t) exp (−iωt)dt =
ϵ0
2i

σ(ω) =
ω

2π

∫ π/ω

−π/ω

σ(ϵ(t)) exp (−iωt)dt

=
kϵ0
2i

− jn
πi

√
1− (ϵn/ϵ0)2 −

jb
πi

√
1− (ϵb/ϵ0)2 + 0

(1.6)

leading to the formula:

G′ =
σ(ω)

ϵ(ω)

∣∣∣∣
ω=ω0

= k − 2

πϵ0

[
jn
√

1− (ϵn/ϵ0)2 + jb
√
1− (ϵb/ϵ0)2

]
(1.7)

This is the exact equivalent of least square fitting protocol we employed to extract G′ from the MD simula-
tions.
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For several values of jn and jb – renamed simply j here –, Fig. 1.10 shows the zig-zag response of this toy
model, and the corresponding effective stiffness G′ calculated from Eq. (1.7). The stress jump amplitude j
plays a crucial role in determining G′ sign reversal. When the applied strain is still within the elastic regime,
the overall slope in Fig. 1.10a remains positive; at the yield slips however, both necking and bellying, the stress
drops to zero, turning negative the overall slope, and thus G′.

Figure 1.10: Zig-zag stress-strain model for parameters: j = jn = jb, ϵn = |ϵb| = 0.5, ϵ0 = 0.7,
σi = 0.5, and k = 1. (a) Model stress-amplitude characteristics, mimicking the avalanche-like slips in the simulated
nanojunctions. The overall slope highlighted by dashed lines represents a rough approximation of G′. (b) G′ calculated
using equation Eq. (1.7). Note how G′ turns negative for j = 1, the value making the stress jumps touch zero, as in
simulations. The model demonstrates how a large average tensile stress, imposes also a large value of stress jumps, j –as
the result of touching zero– necessarily for G′ to turn negative.

1.8.5 Energy barriers and attempt frequency
The regime adopted by each strain-induced slip of the nanojunction may be rationalized by standard transition
state theory, where the inverse rate

2πτ−1 = ωL = Ωexp−∆/kBT (1.8)

is controlled by an energy barrier ∆ and an attempt frequency Ω. While both quantities depend on specific
nanojunction and its conditions, we obtained an order of magnitude of the barriers from the total energy
evolution of the athermal nanocontact of Fig. 1.9a, and extract a rough value between 0.2 and 0.4 ev of
the energy jumps, proportional to the barriers (possibly slightly underestimated by the force field), associated
with single slips (Fig. 1.11a). We also ran a 300K non-oscillatory simulation of the nanocontact (N ≈ 9),
pre-strained by −0.12 nm, a regime where unbellying slip occur erratically and attempt oscillations are more
conspicuous. The analysis of Fig. 1.11b-c yields an estimated Ω ∼ 13.3 MHz for the attempt frequency of the
N=9 nanocontact. Assuming qualitatively therefore, a barrier of 10 kBT and an attempt frequency Ω as found
we obtain a crude crossover frequency estimate ωL ∼ 600 Hz.

1.8.6 Heat conductance
The heat conductivity of a metal such as gold is largely electronic. Thus the mechanical heat generated inside
the junction by oscillatory strain is basically conducted away by electrons at the Fermi surface. The heat
conductance in the bulk metal is related to electrical conductance through the Wiedemann-Franz relation. For
our nanojunctions, however, since their typical length is smaller than the electron’s mean-free-path –37.7 nm
for gold[48]–, electrical conductance is ballistic, and not diffusive as in bulk. It has been conclusively shown
that the Wiedemann-Franz relation holds also in ballistic nanochannels[39, 40], which for the nanojunction with
cross section N ≈ 9 at 300K for instance, gives:
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Figure 1.11: Analysis of the force noise and energy jumps near and following an "unbellying" slip. (a)
Evolution of total energy during an adiabatic strain oscillation at T=0 in the N = 9 junction. Two orange dashed
lines show a typical energy barrier of a single slip, e.g., bellying. The jumps provide an order of magnitude of the slip
energy barriers. (b) Raw force signal from simulation at T=300K (c) Fourier spectrum of force, showing weak attempt
frequency oscillations centered at ω = 13.3 MHz

κballistic = N × π2k2BT

3h
≈ 2.56× 10−9 WK−1 (1.9)

Using this value, we can estimate what would be the increase in temperature in an ideal nanojunction, in
presence of the ballistic electronic heat conductance. With a mechanical Joule power of 2 ev/cycle ∼ 1.6×10−11

W in the case of N ≈ 9 while oscillating with amplitude of 0.22 nm at frequency of 50 MHz, the expected
temperature increase would be

∆T =
1.6× 10−11

2.56× 10−9
≈ 0.006 K (1.10)

In our MD simulations the electronic conductance, responsible for about 95%[40] of total heat conductance
in a real gold nanojunction, is of course absent. Moreover, we only thermostat the two thin solid lead slabs
supporting the whole contact of length h0 (see Fig. 1). Unsurprisingly we observe a higher simulated temperature
rise of the interior nanocontact than that estimated above, but still below 15 K, thus unable to cause melting,
and altogether irrelevant.

1.8.7 Low frequency simulations
For a qualitative check and validation of our results, we lower the frequency down to 10 MHz and 1 MHz,
performing in the latter one oscillation cycle only. Less accurate as that result is, the response function extracted
and shown in Fig. 1.12 shows that the overall conclusions drawn in text remain valid. Specifically, the reversible
yield slips, the sign change of G’ with frequency independent G" at large amplitudes are confirmed.

1.8.8 High temperature nanocontact lifetime
The experimental time scale to control the contact size is many orders of magnitude larger than the life time of
a heated nanocontact. We conclude experimental nanocontacts are always solid.
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Figure 1.12: Complex dynamical linear response function G, for nanocontact N ≈ 9. (a) 10 cycles, 10 MHz
(b) 1 cycle, 1 MHz

Figure 1.13: Nanocontact lifetime of a N ≈ 9 nanocontact obtained as a function of temperature without
vertical oscillation, simulation duration is less than 1µ sec. Black dashed line and grey band are the time period
and experimental feedback time range used in Ref. [5]. Red dashed line: lifetime extrapolation at low temperatures.
Liquid nanonecks at T > 500 K break extremely fast, while already at 400 K the lifetime would be shorter than the
experimental feedback time.
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Chapter 2

Rheological Softening of Metal
Nanocontacts Sheared under Oscillatory
Strains

2.1 Introduction

In the past two decades, studies of dry friction and wear [49] have repeatedly shown how rapid load oscillations
may cause a strong increase of lubricity between inert solid interfaces that do not merge or cold weld. Theoretical
arguments [50–53] essentially based on idealized Prandtl-Tomlinson models qualitatively suggested how, under
these conditions, the externally imparted oscillations cause an easier disentanglement between facing asperities.
Here we are concerned with interfaces, such as those between ductile metals, where the local contact inevitably
involves merging and/or cold welding, thus forming narrow solid bridges in correspondence with facing asperities,
as discussed in classic literature [54–56].

At present, the detailed rheological evolution of such interfaces under shearing friction is insufficiently ex-
plored. For this situation, an "inert interface" type of model [50–53] is in principle inadequate, and a new
approach is called for.

Metal-metal nanocontacts, often crystalline, are reported in electron microscopy data, most commonly in
noble and near-noble metals [6, 18–20]. Experimental TEM images [6, 57] in oscillation-free sliding metal con-
tacts also demonstrate a high degree of crystallinity of the bridging contact. The formation and presence of
nanocontacts is also underlying the conductance of electrical metal contacts, whose overall Sharvin conduc-
tance might be roughly estimated as G ∼ NNcG0 where G0 = 2e2/h = 12.9 (kOhm)−1, for N widely spaced
nanocontacts in parallel, each of minimal cross section consisting of roughly Nc atoms. Generally, nanocontacts
interact with each other due to the combination of roughness and elasticity, as outlined in phenomenological
models (see [58, 59]). When the interface is forced to slide under applied shear stress, the sparsely distributed
nanocontacts are stochastically sheared, broken, and reformed with mechanical friction and wear.

The shearing of single metal nanocontacts has already received attention in literature. Sato et al.[6] studied
it experimentally in Ag. More recent non-equilibrium molecular dynamics simulation by Wang et al.[7] remark-
ably rationalized these results. Both studies showed that the shearing of a contact between two relatively large
size asperities proceeds by what one might call atomic stick-slip, as expected for sliding among two crystal
planes at the contact’s middle cross section. The shearing slips were seen to evolve from single atomic steps at
the beginning of shear, developing to multiple steps close to breaking. That evolution was also accompanied
by a gradual weakening of the average shear stress before breaking. No kind of oscillatory perturbation was
considered in these early studies; the large contact cross sections studied would anyway have left little room for
any rheological effects such as those we intend to pursue here for much narrower nanocontacts, such as those
recently studied experimentally[5] .

With that goal in mind, we pursued simulation studies of the shearing of a model thin gold nanocontact,
where one anticipates that an applied oscillation should have an effect. Underlying and motivating this study
is the recently discovered phenomenon of a seemingly liquid-like collapse of mechanical impedance as a result
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Figure 2.1: Shearing nanocontact with constant velocity of 0.02 m/s, no oscillations applied. Between 0.66 nm and 2.64
nm, in total four events of stick-slip, results in narrower contact with four extra 111 layers in between. Two additional
stick-slip events produce an umbilical braiding chain of gold atoms (4 atoms thick), owing to the inability to preserve
crystallinity. Black and blue frames show the same moment of shearing from two different perspective. Gray and almost
vertical shaded lines, show that 110 chains maintain their vertically after each slip. Detailed pictures of shearing with
oscillations are provided in Additional note 2.7.1.

of strong strain oscillations in gold nanocontact at room temperature[5]. That puzzling phenomenon was very
recently shown [60] not to involve melting, but rather to be due to a reversible stick-slip-like plastic evolution
of the solid and crystalline nanocontact, coupled with an ever-present string tension.[1, 2] Together, these are
the two elements that lead to the observed negative nanocontact stiffness – only apparently liquid-like , caused
by oscillations in a crystalline nanocontact.[60].

We simulated the transverse shearing of the ultra-thin gold nanocontact, first without, then with vertical
or rotational strain oscillations of fixed frequency and increasing magnitude, 2.1. Without oscillations, the
shearing proceeds by atomic steps, apparently stick-slip-like. Additional oscillations of increasing magnitude
do rheologically decrease the average yield shear stress. However, even at the largest oscillation magnitudes,
where the effective tensile stiffness G′ has become negative [60], the stick-slip-like shearing behaviour is never
completely eliminated. In agreement with that, the time-averaged frictional shear stress remains in most cases
poorly velocity-dependent, despite the rapid internal nanocontact evolution induced by oscillations.

As we shall describe in Section 2.2, the oscillation-softened nanocontacts indeed experience some reduction of
mean shearing friction, without actually losing the stick-slip like atomic steps. The nanocontacts still maintain,
despite strong imparted oscillations, their solid crystal structure during all phases of shearing.

Noise and fluctuations, mechanical, acoustical and electrical, also accompany and reflect the shearing process.
As shown in Section 2.3, the analysis of that noise is particularly interesting and revealing for a nanocontact
sheared in presence of rotational oscillations. Section 2.4 presents the dependence of shearing friction upon
velocity and temperature, which results in agreement with stick-slip expectations. Section 2.5 will show how
the complex dynamical response function (i.e., the conventional stiffness and damping) evolves during shearing.
Our final considerations, including prospectives for a proper "rheolubric" transition from stick-slip to smooth
shearing at sufficiently low velocities and oscillation frequencies, conclude the paper in Section 2.6.

2.2 Nanocontact shearing simulations

We conducted non-equilibrium molecular dynamics (NEMD) simulations including a standard Langevin ther-
mostating at room temperature. The simulation setup included approximately 2500 atoms (Fig. 2.1). The
upper and lower gold leads were composed of two FCC rigidly stacked (110) lattice planes. Four thermostated
planes, each consisting of 576 atoms, were attached to the leads on each side, connecting them with an initial
column-like nanocontact shape of approximately 2 nm in length. With the present choice of crystal orientation,
the column is made up of first-neighbour (110) atomic chains, a crystallographic choice that yields a nanocontact
particularly robust and resistant to thinning and breaking. After careful relaxation and annealing, surface atoms
migrated and the column turned into the more realistic long-lived shape of Fig. 2.1. The narrowest transverse
cross section of the relaxed nanocontact comprised Nc ∼ 26 atoms. Electrically, that would correspond to about
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Nc ballistic channels. Many such ultrathin nanocontacts could of course be similarly generated and studied. As
shown in previous work [60], their rheological behaviour is however essentially equivalent. We argue therefore
that studying just one should suffice to address their generic shearing behaviour.

To minimize the possible influence of Langevin damping on the subsequent NEMD dynamics, the thermostat
was only applied to the mobile atoms well outside the physically relevant nanojunction region. Additionally we
verified that, within a significant range of values of the Langevin damping parameter, the rheological response of
the system was reasonably independent of the specific choice. The whole setup was thermally and mechanically
relaxed before the shearing simulations. Shearing was performed by moving the upper lead with a constant
velocity Vx = 0.02m/s along the (22̄1) direction (our x-axis), orthogonal to the initially vertical (110) nanocon-
tact axis. Shearing was also carried out at increasing velocities, from 0.02 to 0.2m/s. When it was accompanied
by oscillations (to be introduced below), either vertical or rotational, the frequency of oscillations was generally
set at 1 GHz. These large velocities and frequencies, forced as they are by current computational limits, are of
course generally higher than those expected from experiments. Our previous experience [60] however showed
that the rheological behaviour of gold nanocontacts at room temperature remained the same across many orders
of magnitude of these parameters. In particular, a loss of so-called necking-bellying jumps in favour of a smooth
rheological evolution of a nanocontact of this size is not expected until a very low oscillation frequency of order
600 Hz. A further point worth stressing here is that none of the rheological manoeuvres realized in the present
simulations, and a fortiori in experiments,[5] implies a rise of temperature. All heat produced by shearing and
by oscillations is effectively removed to the thermal bath, which stabilizes room temperature. Therefore no
change of friction should or could be attributable to a hypothetical onset of "thermolubricity"[61].

Figure 2.2: Instantaneous shear force for a nanocontact from simulation (black) for Au, and experiment (gray) for
Ag (re-plotted from Ref [6]). Note the stick-slip advancement mode for Au, and the average friction force for Ag, both
similar apart from a different force jump magnitudes. An important difference is the step length magnitude, variable in
the thick experimental Ag contact, but fixed and quantized in the much thinner simulated nanocontact. As explained
in text, the latter reflects the surprising atomic stick-slip of a generally oblique nanocontact, a feature lost in a thicker
contact.

The starting point: shearing without oscillations

In the first of set of shearing simulations,we applied a lateral constant velocity Vx = 0.02m/s to the upper lead,
without oscillations. The shear force evolution between the two leads shown in Fig. 2.2 (black) is read off the
simulation, showing the sawtooth profile typical of stick-slip advancing steps, through which the nanocontact
shearing takes place. As the shearing proceeded, the nanocontact gradually deformed into a narrower and
narrower oblique junction, thinning down and eventually breaking apart, see Fig. 2.1. The stick-slip-like jump
size, with constant magnitude close to 0.5 nm, is shown by the green bar in the force signal Fig. 2.3a.

Structural examination, detailed in Fig. 2.1 showed that each slip is due to a sudden shear-induced elonga-
tion. The nanocontact rearranges, by thinning down while adding at each slip one extra (111) plane, actually a
solid slice, to its length. Shearing slips are therefore entirely akin to the oscillation-induced necking jumps earlier
reported with vertical oscillations and no shear.[60]. That being ascertained, the partially sheared nanocontact
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becomes increasingly oblique at first sight by a continuous amount as the shearing proceeds. Thus the question
arises, if the nanojunction obliqueness grows continuosly, why do shearing slips strictly retain the atomic step
length prescribed by the two leads, as if the nanocontact remained vertical?

Although not visible in Fig. 2.1, the answer is structural (see Fig. 2.8a) and quite interesting. Oblique
and slanted as it is, the nanocontact always retains unbroken vertical (110) atomic chains that connect the two
leads. At the each slip, the sudden necking rearrangement, while increasing by one the number of (111) cross
section planes, stops precisely once at the earliest distance where unbroken (110) vertical atomic chains can
reform. And that is precisely the (22̄1) lattice spacing in both leads, that is 2

√
3R, where R = 0.148 nm is

gold’s atomic radius. The rationale behind this unsuspected shear slip quantization therefore appears to reflects
jumps between successive adhesion energy minima, which the surviving unbroken (110) chains realize between
the two leads after each slip.

It is instructive to compare this profile with the experimental shearing force profile, Fig. 2.2 (gray) measured
in the past for a much thicker silver nanocontact [6]. The experimental shearing force also exhibits stick-slip
steps. It has an overall nonmonotonic magnitude from initially small to maximum after a few slips, to a final
decline before breaking. That behaviour had already been described and understood by simulations [7]. We su-
perpose it here to our own nanocontact shearing simulation, so as to highlight similarities and differences. Even
if our cross section area is much smaller, the overall similarity is still remarkable, including atomic stick-slips
and force magnitudes, despite the two different metals, Au and Ag.

Figure 2.3: Horizontal and vertical forces of simulated shearing of the Au nanocontact of Fig.1. (a) No oscillations;
(b) Large vertical oscillation (a0 = 0.22nm); (c) Large twist oscillation (θ0 = 30 degrees) Blue lines are averages drawn
for better visibility. Green bars show the length of slips. Its value ≈ 0.5 nm reflects the Au lattice spacing a

√
3 in the

22̄1 sliding direction.

On the other hand, there are important differences. Our thin nanoconct shear slips are all atomic and,
as explained above, correspond to a single step in the (22̄1) direction. That differs from the evolution from
single to multiple slips of the thicker Ag contact, where no quantization is detectable. Another difference is
the magnitude of force jumps, which is much larger in the simulations. This very likely reflects vastly different
relaxation times and mechanical stiffnesses of experimental and simulation shearing setups. One advantage of
the stiff simulation setup we adopted is to emphasize direct access to noise, which is paramount in stick-slip
shearing. The shearing noise in our simulation was strong, both in the (horizontal) x-directed shearing force and
in the (vertical) z-directed force, see Fig. 2.3a. That is actually quite natural, for more than one reason. First,
the vertical string tension, established and steady during the sticking period, must undergo a jump at each slip,
while returning to a steadier, slightly smaller value at next sticking, when unbroken (110) chains reform, of
course less numerous. Another is the decreasing level of parallelism of the slipping layers to the x-direction of
shearing.
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Shearing with vertical oscillations

In the subsequent main set of simulations we applied an oscillatory z-displacement A(t) = a0 sinωt, symmet-
rically to both leads. Increasing oscillation magnitudes a0 were explored, reaching values up to a0 ∼ 0.22
nm where prior to shearing the nanocontact stiffness rheologically turned from positive to negative.[60]. The
nanojunction zone underwent an oscillating tensile/compressive deformation. For small amplitudes, that simply
added an oscillating noise on top of the signal of the previous case –see Additional note 2.7.2. At higher am-
plitudes a0 > 0.22 nm, deformations are known to develop necking and bellying jumps, which repeat reversibly
in each cycle of oscillation during shearing. The intrinsic string tension [1, 2], (thanks to which even a solid
nanocontact resists breaking at necking and heals at bellying), maintains in this condition a large average tensile
force. These are the two elements that drove the rheological softening of the contact prior to shearing. They
remain at work during shearing while, in the course of time, the nanocontact thins down while maintaining its
stick-slip advancing behaviour.

Fig. 2.3b shows the extreme case of a0 = 0.22nm vertical oscillation amplitude. The overall effect of
oscillatory necking/bellying [60] is to make the nanocontact cross section narrower after each slip. It survived in
spite of that, continuing to exert its string tension between the two leads. That kind of "live" behavior makes a
ductile metal contact really different from rigid unreactive models. Despite such a violent and large oscillation
amplitude at frequency of 1 GHz, stick-slip shearing still persisted (blue line in Fig. 2.3a), its characteristic
length (green bar) the same as the previous case of shearing without oscillation.

Shearing with rotational ("twist") oscillations

In a subsequent set of simulations, instead of vertical oscillations, we mutually rotated the two leads with an
oscillatory twist of the form θ(t) = θ0 sinωt while at the same time actuating the shearing without any other
perturbations. Because the stick-slip advancements reported in the two previous subsections were connected
with interplanar 2D lattice slidings, a reasonable expectation was that oscillatory twists might deeply alter
the shearing mode. The force profile of shearing with a torsional oscillation as large as θ0 = 30◦ is shown in
Fig. 2.3c. The shearing is visibly smoother. The nanocontact breaks earlier, confirming that twist oscillations
disturb shearing more effectively than oscillating strains. Yet, even in this more disruptive case, the average
frictional force is not much smaller. Importantly, and to some extent surprisingly, the stick-slip shearing habit
persisted with the same atomic step length (green bar) as in the two previous cases. In order to minimize
possible artifacts, we performed additional simulations adding an initial nonzero twist the the oscillatory one,
as shown in Section 2.5. Despite differences of details and noise, the stick-slip shearing habit was found to
persist even in that case. Only by pushing θ0 to values as large as 60◦ was it possible to recover a smooth
shearing habit.

Vertical force and string tension
In all shearing conditions, the stick-slip jumps of the friction force are systematically accompanied by even
stronger jumps of the lead-lead normal force. An important feature of vertical forces that the nanocontact
transmits, between the two leads ( Fig. 2.3), is its systematically positive average value. That just reflects
the natural string tension, which a ductile metal nanocontact will display in all finite temperature conditions,
rationalized as follows. In a hypothetical liquid junction, the total free energy, minimized by reduction of the
surface area, gives rise to capillary attraction between the two partner bodies. A solid crystalline nanocontact
does not possess bulk capillarity, yet the mere chemical potential difference felt by an atom between the junction
(an unfavoured site) and a bulk solid lead (a more favourable site) has consequences. The first is that atoms will
slowly but inevitably drift thermally from the junction to the leads, provoking thinning and eventual breaking.
The second is to create a thermodynamically based string tension between the leads qualitatively similar to that
of a liquid neck, despite the inner crystallinity of the nanocontact [1, 2]. At every horizontal slip, the vertical
force jumps in phase with the horizontal force, the nanocontact behaving as an oblique stretched spring. The
magnitude of vertical force jumps is almost a factor 2 larger than the shear counterparts. The vertical force
average – the underlying string tension – gradually drops as the shearing proceeds, clearly due to progressive
thinning of the nanocontact prior to breaking, shown by Fig 2.1.
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The vertical force traces of Fig. 2.3 complements the simultaneous information on the evolution under the
oscillatory perturbations by the horizontal force on the shearing process. The first element is the persistence
of vertical jumps approximately in phase with, and nearly twice as large than, the horizontal shear slips. As
the shearing proceeds, the progressive drop of the vertical force average with tensile oscillations, and even more
with twist oscillations, is stronger than without oscillations.

2.3 Shearing noise analysis

The previous Section presented the global picture of the rheological effect of oscillations on the shearing habit
of a thin nanocontact. More quantitative insights can be obtained by Fourier analysing both shear (horizontal)
and vertical force traces of Fig. 2.3. That also permits addressing the large mechanical noise which accompanies
the shearing.

Figure 2.4: Spectrum of Fourier transform associated to Fig. 2.3 for (a) non-oscillatory shearing contact (b) extreme
vertical oscillation (0.22nm) while shearing, (c) extreme rotational oscillation (30 degrees) while shearing. For better
visibility, the y-axis is scaled logarithmic and the spectrum is shifted by +1. Inset is zoom-in low frequency interval.
Green dot shows the stick-slip peak at ≈ 42 MHz, signaling the length-scale in Fig. 2.3. Note that the integer peaks are
coupled with the stick-slip frequency –see Additional note 2.7.3.

Fig. 2.4 shows the spectrum of Fourier transform of the force traces of Fig. 2.3. The initial shearing
without oscillations presents a single peak around ≈ 42 MHz (marked with green dot in the inset). That is the
washboard frequency of atomic stick-slips fw = Vx/λ, where Vx = 0.022m/s is the simulated sliding velocity
and λ ≈ 0.5 nm is the atomic stick-slip length along 22̄1 (marked with the green bar in Fig. 2.3). In the
shearing with oscillations, either vertical or rotational, a weaker washboard frequency peak survives, even in
extremely large oscillation amplitudes. Therefore the oscillations do not cause true rheolubricity in the shearing
of the nanocontact. This weakening marks nevertheless a rheological softening of the shearing habit. That is
due to the rapid oscillation-induced reversible plastic deformations, taking place while the slower shearing takes
place. These plastic deformations were found to consist of necking-bellying for tensile oscillations [60], while
they consist of interplanar angular locking-unlocking for rotational oscillations.
In both of these two cases –see Fig. 2.4b,c–, a high frequency noise appears in the form of higher harmonics of
the imparted oscillation (1 GHz in the case shown). The sinusoidal imposed oscillation elicits a strong non-linear
response. Qualitatively, we may associate the total number of peaks showing up to the number and intensity
of rearrangements that the nanocontact needs to undertake in order to preserve its crystalline structure after
each stick-slip events.

These nonlinear noise peaks offer a potential structural information insight. With rotational oscillations in
particular, different combinations of n-th harmonics, such as odd or even, appear and disappear based on the
relative crystalline orientation of the two leads. As shown in Fig. 2.4c, when upper and lower leads have the
same crystal orientation, Fourier shear force peaks possess only even harmonics. That is because the shearing
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slip generally takes place while the nanocontact is maximally twisted. The nanocontact spends the longest time
near that top dead point, where the originally straight (110) chains are subjected by twist to a very costly
"braiding". For vanishing average static twist Φ =0, there are two equivalent top dead points per rotational
oscillation cycle. The shear force time dependence can be crudely assimilated to

p(t) = | sin(ω0t) | (2.1)

As a result, Fourier shear force peaks only at twice of fundamental frequency ω0, even harmonics.

Figure 2.5: Fourier analysis of the force noise during shearing accompanied by a rotational oscillation (θ0 = 30◦), for
different crystal orientation, phase Φ of the two leads . Left, Φ =0, perfect alignment of the upper and lower leads (same
as in Fig. 2.4c), where only even harmonics appear. Middle, intermediate misalignment Φ= 10◦, where both odd and
even harmonics are nonzero. Right, large misalignment Φ= 20◦, where only odd harmonics appear.

The misalignment around a vertical axis of the upper lead crystal orientation with respect to the lower one,
brought an interesting change. Increasing misalignments Φ= 10◦ and 20◦ yielded, as shown in Fig. 2.5, a clear
evolution of noise spectral peaks. With Φ= 10◦, both odd and even harmonics were nonzero. By increasing the
misalignment to Φ= 20◦, even harmonics disappeared and only odd harmonics remained. The main effect of
the average misalignment Φ is to make the two top dead points, θ(t) = θ0±Φ, inequivalent. Since shearing slips
take place preferentially near maxima of |θ(t)|, there is an imbalance of probability in favour of the positive top
dead point versus the negative one. At the large misalignment Φ =20 degrees, the negative top dead point slip
probability drops to essentially zero. This interesting asymmetry, results in a kind of 50% duty cycle, with a
time dependence of the shear force closer to a ”rectified” form

p(t) = (1/2)(1 + sign[ sin(ω0t) ]) (2.2)

The Fourier transform of Eq.(1) has peaks precisely at (2n+ 1)ω0.

For more general parameters θ0 and ±Φ of the rotational oscillations, the inequivalent efficiency of the two
dead points directly reflects in the even-odd peak distribution of the noise Fourier transform. A distribution
which, on the other hand, is relatively independent of the oscillation frequency ω0. These results could be fur-
ther developed for possible applications such as discovering the crystal orientations of nanocontacts, a feature
usually only visible by TEM for unburied setups.

The present analysis is limited to mechanical noise, but the underlying structural phenomena suggest extrap-
olating mechanical noise to electrical current noise as well. As expected, and also shown by recent experiments
[62], tensile force and conductance jump simultaneously at each of the successive contact thinning events that
precede breaking. That is clearly explained by the drop in the nanocontact minimal cross section. The separate
smooth evolution of force and current between the jumps are less correlated, with conductance as stable as the
cross section, and pulling force building up to reach the thinning point.

2.4 Velocity and temperature dependence

We can now return to our initial motivation. Namely, discovering to what extent external mechanical oscil-
lations, tensile or angular, could transform, without extra help by temperature, the shearing habit of a thin
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Figure 2.6: Shear friction force as a function of velocity v0. Our lowest velocity (same in all cases in the main text)
was v0 = 0.022 m/s. Each line refers to a given temperature T and vertical oscillation amplitude a0.

nanocontact from stick-slip to viscous – a process we called "rheolubricity". The velocity dependence of fric-
tional shear, logarithmic for stick-slip, linear for viscous sliding, can provide the most direct diagnostic.[36] To
verify this further velocity hallmark, we ran additional simulations at a variety of speeds and temperatures.

The average frictional shearing stress, conventionally defined as the midpoint average of horizontal force
traces such as those of Fig. 2.2 and 2.3, was extracted and plotted versus velocity in Fig. 2.6 for various vertical
oscillation amplitudes and for increasing temperatures. Each line represents the velocity dependence of friction
at a given temperature and vertical oscillation amplitude av. The simulation thermostat always applied to
the leads and not to the nanocontact) ensures in all cases that the mechanical heat introduced by oscillations
and shear is completely completely conducted away. These further simulations were too limited in number to
be statistically accurate; the resulting uncertainty is represented as a shaded area comprising upper and lower
temperatures used. While that spread could not permit detailing a delicate logarithmic velocity dependence,
the overall behaviour is clearly and undoubtedly much weaker than linear, in agreement with the persistence of
stick-slip already reported in the previous sections. Results for twist oscillations, (not explored at this stage)
are also expected to be similar. In conclusion, coherently with the previous sections, the mechanical oscillations
do bring a noticeable amount of rheological softening of frictional shearing, but no proper rheolubricity at the
frequencies considered. As will be mentioned in Conclusions, that outcome might only change at extremely low
oscillation frequencies, outside of the range accessible to direct simulation.

2.5 Dynamical response function

In the course of shearing, a nanocontacts undergoes a structural evolution that rheologically affects its mechan-
ical properties. Our imposed oscillatory perturbation, p(t) = p0 sinωt, elicits dynamically a certain response,
in general not sinusoidal. Although not really a linear response, the (generally large) sinusoidal component
r(t) = r0 sin (ωt+ ϕ) can be used and is used[5] as a mechanical impedance – a dynamical response function.
For a vertical oscillation, p0 = a0, and r0 = f0, the latter is the best fit to the sinusoidal part of the vertical force
intensity. Note the response of interest (Fig. 2.3) is very noisy at room temperature which requires averaging
over several cycles in order to get a reliable fit (in our case, 10). The ratio G = G′ + iG′′ = (f0/a0) exp(iϕ) is
the complex dynamical response function, whose real and imaginary parts are technically referred to as storage
module (more commonly "stiffness"), and loss module.

In the rotational case, p0 = θ0, while r0 = τ0, the latter is the sinusoidal best fit to the torque intensity,
and the corresponding response function Gθ = G′

θ + iG′′
θ = (τ0/θ0) exp(iϕ). These are the complex dynamical

response whose evolution we wish to explore during the nanocontact shearing.

Results are shown in Fig. 2.7. All modules undergo dramatic up-down evolution in the course of shearing.
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Figure 2.7: Evolution of the complex dynamic vertical response G for shearing with vertical oscillation with amplitude
(a) a0 = 0.08nm (b) a0 = 0.22nm, and (c) complex dynamic rotational response for shearing under rotational oscillation
θ0 = 30◦. Green marks indicate the periodicity of slip, same as in Fig. 2.3, and 2.4. The green dashed line is matching
the extermums of dynamical module with almost middle of each stick-slip. The nanocontact is essentially elastic after
each slip. Blue curve, is showing the shearing force as function of displacement. Please note G (Gθ) is calculated with
vertical force (torque).

Opposite extrema of stiffness G′
θ and loss module approximately coincide with the mid point of the shear force

slips – the green dashed line.
For the rotational oscillation, stiffness remains always positive, independent of amplitude θ0, and it’s undu-

lation has its maximum stiffness almost at matching points along 22̄1 direction of AB layers ≈ 0.5 nm. However
for the vertical case, the story is different and depends on oscillation amplitude a0.

For small a0 = 0.08 nm (Fig. 2.7a), the stiffness G′, initially positive, follows a simultaneous occurrence
of stick-slip as shearing without oscillation or with rotational oscillation – see the force profile in Fig. 2.3 or
Fig. 2.7a,c. For large a0 = 0.22 nm, the stiffness G′, initially negative owing to the large tensile oscillation
[5, 60] undulates between positive and negative values as successive slips carry out the shearing. This response
is reversed by a phase π, relative to that of rotational or small vertical oscillation, whose both having initial
positive stiffness. It can be seen, from the shear force profile in Fig. 2.7 stick-slip is also shifted by half of it’s
usual periodicity 0.5/2 nm, or π. To understand the reason we have to look into the lattice structure. Shown in
Fig. 2.8a, the lattice periodicity along 22̄1 direction is 0.5 nm. However, projected from vertical direction 110,
it is also possible to have alternate match of A with B instead of AB.

This is an interesting consequence of negative stiffness 1. The contact is spending the long must of its resting
time, during oscillation at dead point of each cycle, whose owning to negative stiffness results in slanted layers
visible in direction 22̄1 Fig. 2.8 previously know as necking and bellying. This analogy results in the alternate
match of A with B as the minimum energy coordinates for the stick-slip to occur.

1To validate our understanding of negative stiffnessG′, extra simulations are performed with no shearing but two simultaneous
oscillation along vertical and orthogonal direction (y). See Additional note 2.7.4.
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Figure 2.8: (a) The lattice structure, green and red represent A and B layer in the 110 direction. In the case of negative
stiffness, A prefers to match with B and B with A, an alternation. (b) and (c) are showing the twinning moment occurring
reversibly at each cycle of vertical oscillation near the dead-points where the contact spend must of it’s time. This only
occurs when the vertical oscillation amplitude is large enough (here 0.22 nm) giving rise to negative stiffness [60]. This
particular layer arrangement shifts the stick-slip points by half the lead’s surface lattice spacing (1/2)a

√
3 = 0.25 nm,

thus altering solution of AB matching BA, while maintaining the verticality of 110 chains. Panels (b) bellying, and (c)
necking moments from two different angle.
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2.6 Discussion and conclusions

Underlying this work is the broad question, to what extent the rheological friction softening caused by imparted
oscillations might or might not resemble those of temperature. As is known from simple models, temperature
has a weakening effect on dry friction. In particular, the energy barriers that give rise to stick-slip can be
thermally overcome with a crossover to smooth sliding at high temperatures - a regime appropriately dubbed
thermolubric[37]. The oscillation-free shearing of a crystalline nanocontact does, as we have shown, proceed
by sudden advancement-induced rearrangements akin to stick-slips. It is thus natural to wonder whether, by
analogy, an additionally imparted mechanical oscillations might similarly drive a crossover to a hypothetical
rheolubric regime where sudden rearrangements and stick-slips could give way to smooth, liquid-like shearing.
We have presented arguments backed by realistic simulations showing that mechanically imparted high fre-
quency oscillations - either vertical, or rotational - while softening rheologically the frictional shear evolution of
an ultrathin gold nanocontact, do not suffice to produce rheolubricity, i.e., to turn the nature of the shearing
process from stick-slip to fully smooth and viscous. That failure goes hand in hand with the known persistence
of a crystalline structure in the oscillated nanocontact which opposes a smooth shearing shearing. Crystallinity
is unexpectedly robust also thanks to the pervasive string tension present in the nanocontct in all conditions.

The persistent stick-slip nature of shearing entrains a number of consequences. First, and unmistakable,
the velocity dependence of friction is much weaker than linear as would be expected for viscous sliding. Our
simulated velocity dependence is indeed compatible with the logarithmic dependence typical of stick-slip. Sec-
ond, there is a strong mechanical shear noise, with nonlinear mixing between the washboard and oscillation
frequencies. As an interesting side note, the predicted Fourier spectrum of shear noise with rotational oscilla-
tions may change from only even to only odd overtones depending on the relative crystalline orientation of the
two leads. That is an unanticipated result of potential value for structural diagnostic. Accompanying all the
above, during the stick-slip shearing the nanocontact complex dynamical modulus – stiffness and loss module –
jumps dramatically at each slip. As a result of planar alternation, their phase shifts by π in the case of negative
stiffness, experimentally an observable element.

A relevant question to be discussed before closing is the domain of validity of these results, based as they are
on simulations with relatively large shearing velocities and extremely large oscillation frequencies. What if these
velocities and frequencies were much lower? Thermodynamics actually demands that shearing at sufficiently
low velocity should necessarily reach the thermolubric regime, where stick-slip must disappear.[8, 37] Similarly,
oscillating a nanocontact at a sufficiently low frequency should wash out the necking-bellying phenomena, with
crossover to a smooth, nearly adiabatic evolution [60]. Simulations cannot approach these low frequency and
velocity regimes, but extrapolations are nonetheless possible as follows. Concerning frequency, it was estimated
in the past that the crossover oscillation frequency for a nanocontact such as that studied here should be around
600 Hz. Therefore, even for very modest oscillation frequencies, from kHz to MHz, the stick-slip scenario just
presented should still hold – of course with numerical modifications in case of different nanocontact sizes. Simi-
larly, by equating the washboard frequency ∼ Vx/a to the crossover frequency (600 Hz in our case) we estimate
a low velocity limit ≈ 300 nm/s, where stick-slip shearing should turn thermolubrically viscous. Nevertheless,
the nature of rheological softening, is different from that of thermolubric.

The above estimates suggest a speculative experimental proposal in conclusion of this work where rheol-
ubricity was sought and not found within the parameter ranges of our simulations. Suppose a nanocontact
shearing experiment was initially started at a velocity just above the crossover velocity, without oscillations.
The shearing would be stick-slip as described. If subsequently at that point the oscillations were turned on, the
regime should change, with a transition from stick-slip to viscous shearing. The same result could be obtained
at constant velocity by switching oscillations from above to below the crossover frequency. Rheolubricity seems
therefore attainable in future experiments.
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2.7 Additional notes

2.7.1 The evolution of breaking junction

Figure 2.9: Lattice structure evolution. (a) While shearing without oscillation, the same as identical to Fig. 2.1; (b)
with vertical oscillation a0=0.22 nm ; and (c) with rotational oscillation θ0 = 30 degrees. Black and blue frames show
the same moment of shearing from two different perspective. Shearing velocity V0 = 0.02 m/s; frequency of oscillation
in both vertical and rotational case set is 1 GHz

2.7.2 Small vertical oscillations
In Fig. 2.10 we show how the effect of small oscillations, 0.04 nm and 0.08 nm is building up a noise in the
original signal of shearing without vertical oscillation. This rheological noise is reducing the average friction
overall – see the orange line.

Figure 2.10: Shear force signal for (a) shearing without oscillation (b) with vertical oscillation of small amplitudes 0.04
nm (c) and 0.08 nm
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2.7.3 Coupling of washboard and oscillation spectra
It is interesting to analyse the fine frequency structure of our shearing force spectra. As the inset in Fig. 2.4
shows, the washboard frequency is that the of stick-slip peaks, ≈ 42 MHz. The external oscillation peaks are
at the higher frequency of 1 GHz. Owing to the strong nonlinearity of the system, and to the high shearing
velocity, 0.022m/s in our simulations, the two phenomena couple and interfere, and the two frequencies mix.
As a result, all oscillation-related peaks are split by the much smaller washboard frequency, as shown in Fig.
2.11. In experiments with much lower sliding velocities, the coupling should be reduced. If moreover much lower
oscillation frequencies could be used, the nanocontact rhelogical behaviour could evolve from necking/bellying
to adiabatic, whereby all high frequency peaks would disappear altogether. Based on an order of magnitude
calculation, the crossover frequency of the current nanocontact is estimated to be 600 Hz.

Figure 2.11: Frequency analysis of shearing force accompanied with large vertical oscillation of aV = 0.22nm, the
same case as in Fig. 2.4b. The zoom-up in the right, shows a hidden overcoupling feature, with separation of twice the
stick-slip frequency, ≈ 42 MHz. This feature should disappear in experiment, without eliminating the rearrangement
peaks.

2.7.4 Evolution of vertical G with lateral oscillation
This time, we run a series of simulations of the same contact oscillated laterally (y direction) and vertically (z),
but with no shearing. Results confirm our understanding of negative G′, turning its sign once it’s accompanied
with large lateral oscillation.

Figure 2.12: Vertical G as function of az, in the presence of lateral oscillation aL. Black line is the real part of
dynamical module, G′ and red is the imaginary part G′′
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Part II

Layered Materials
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Chapter 3

Colloquium: Sliding and Pinning in
Structurally Lubric 2D Material Interfaces

3.1 Introduction

Besides the electronic properties of graphene-like 2D materials that attract most of the attention [63–68], their
mechanical, tribological and rheological characterization must in parallel be physically understood and con-
trolled [69] for many reasons. A first, practical one is that mutual sliding of two juxtaposed 2D material layers
is known to be quite easy, owing to their weak interlayer van der Waals interaction. Beyond that, mutual
incommensurability of 2D materials interfaces can lead to ultra-low sliding friction, a property known as “su-
perlubricity” [70, 71]. That property makes it naturally attractive for energy saving and potentially for lifetime
increase. Good lubricity makes them promising for the application in micro/nano electromechanical systems,
e.g., micro/nano-generators and nano-oscillators [72–75]. Another one, more substantial, is that our current un-
derstanding of “superlubricity" is still too vague. On the whole, the friction’s connection to incommensurability
and rotation is as we shall see a source of surprises.

A host of questions arise about the facile sliding of these incommensurate 2D crystalline interfaces, or al-
ternatively on their mechanical pinning against shear. The exceptional in-plane robustness coupled with great
out-of-plane membrane-like flexibility are brand new elements. Another one is the unusually important adhe-
sion between the very flat layers. These elements make 2D materials interfaces different from other frictional
systems [76] as 3D solids [56, 77–79], adsorbed layers and clusters [80–83], colloid monolayers [84–88], etc. For
nano to mesoscale, the size and temperature dependence of static friction of 2D material contacts, as well as
their comparison with that of (velocity-dependent) kinetic friction generally differs from classic macroscopic
laws in a way that is currently addressed case by case. The widespread concept in the sliding of crystalline in-
terfaces is structural lubricity between incommensurate faces [89–92], generally believed to imply superlubricity
[36, 71, 93–96]. It should be noted that this term is nowadays used with different meanings in physics and in
engineering.

Standard superlubricity [90], which is adopted in the colloquium as synonymous to structural superlu-
bricity [92], can be defined for infinite defect-free systems as an unpinned, free sliding state. That is a state
where the static friction Fs – the smallest force needed to initiate the sliding motion – is mathematically zero
even down to T = 0. In the real world of course everything has finite size, even without defects. The edges
destroy the slider’s perfect translational invariance, inevitably causing static friction. However, if the slider’s
bulk is structurally superlubric and defect-free, Fs scales as Aα with α ≤ 1. For α < 1 we shall refer to this
real-world cousin of structural superlubricity as structural lubricity . Despite the celebrated early detection
of superlubricity [97, 98] in structurally lubric twisted graphene flakes and graphite interfaces [71, 98–106] and
theoretical work [107–112], the community remains in need of a broadly applicable roadmap applicable to the
sliding of 2D layered materials.

Below is a list of some questions that seem currently open and/or debatable, which are discussed in the
colloquium:
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What is the origin of friction and how are static and kinetic friction related at 2D materials interfaces? What
kind of area, temperature, velocity and load dependence of interface sliding friction should one generally an-
ticipate? Specifically, different experiments report different scaling of friction with area Aα, with exponent α
ranging from 0 to 1. What is the origin of this dispersion? What role does the extreme 3D anisotropy of these
poorly extensible, yet very flexible and easily corrugated membranes play? Why is it that structurally lubric
2D material experimental sliders generally exhibit a logarithmic velocity dependence (the earmark of stick-slip)
[113–115], instead of a linear one (the earmark of smooth sliding)? Can temperature (or load) bring about a
change between high and low friction states?[61, 116] And what are numerically the actual friction coefficients
of the 2D materials interfaces? Is the differential friction coefficients, generally used for 2D materials, really
adequate?

I briefly revisit some concepts from our colloquium [8] in this chapter, with no conclusion, since they are
appropriate for the subsequent chapters.

3.2 Velocity and temperature

The stacking of a 2D material onto its substrate is a crucial information in order to understand its frictional
sliding behaviour. Incommensurate crystalline stackings are expected to be, when perfect and unbounded,
structurally superlubric. As was said above, in that state the static friction is zero, because lateral forces totally
cancel out. More often and practically, 2D crystalline interfaces are at best structurally lubric. In that state,
the incommensurate sliding layer is pinned to the substrate, due to edges or other impurities. In this case, three
regime for velocity dependence of friction are expected, namely stick-slip, thermolubric, and ballistic.

Figure 3.1: Three friction regimes of a pinned structurally lubric contact as a function of velocity: thermolubric,
stick-slip, and ballistic; sketch reproduced from [61].

Stick-slip generally implies a weak logarithmic velocity dependence, roughly Fk ∝ (ln v)γ with 2/3 < γ ≤ 1
[37, 113–115, 117–120]. The well-known qualitative reason for this weak dependence is that increasing velocity
just increases the frequency of stick-slips but basically not the average frictional force.

The two other regimes, thermolubric and ballistic, emerge.As sketched in Fig. 3.1, drawn after Ref. [61],
stick-slip friction turns viscous when velocity is either high or low enough, for two opposite reasons. At high
velocity, typically when the kinetic energy exceeds the largest energy barrier energy 1

2Mv2 > U0, barriers lose
their grip, and friction turns “ballistic" [121], a regime where friction rises linearly with velocity. Conversely,
at the low velocity limit and nonzero temperature, a nanoslider has ample time to thermally diffuse back and
forth across barriers. In that condition Einstein’s viscous drift regime applies – a regime also referred to as
“thermolubric" [61, 116].

In all the experiments in the following chapters 4 and 5, shearing and slider velocities are in the range of
µm/s, whereas achievable velocities in simulations are typically closer to m/s, that is six orders of magnitude
higher. Luckily we can still continue to use these simulations, as long as we understand the physics behind them
and their validity regime. In this case both experiment and simulations are in the same stick-slip window.
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Temperature dependence will also differ in these three regimes.
Medium and low speed stick-slip friction: In this regime, as temperature increases, friction is expected to

gently decrease by terms roughly like − lnT [37, 117, 120]. This behavior is attributed to thermal fluctuations
aiding in overcoming energy barriers, leading to a negative temperature dependence that corresponds to the
logarithmic velocity dependence of stick-slip [122, 123].

Ultra-low speed thermolubric and viscous friction: In this regime, friction decreases much faster than loga-
rithmic as temperature rises. Here, the externally forced drift is a weak perturbation of thermal random walk,
and frictional damping (ζ) follows Einstein’s relation ζ = kBT/D, where D is the diffusion coefficient. The
exponential growth of D ∝ exp (−W/kBT ) with temperature (Arrhenius-like behavior) overcomes the linear
growth of ζ with temperature.

High speed ballistic friction: In this regime, friction is predicted to grow linearly with temperature, as phonon
scattering of a fast slider –as exemplified e.g., in ref [121]– is enhanced by the growing dynamic corrugation of
the interface at higher temperatures.

3.3 Load

Historically, the load dependence of sliding friction is characterized by the friction coefficient µ = friction force
normal load ,

a key parameter in tribology dating back to da Vinci and Amontons [124, 125]. In rough interfaces, increased
friction with load is linked to larger contact area and enhanced role of interface corrugation. However, at the
nanoscale, the load-dependent behavior is system-specific and typically non-linear.

In the 2D layered material interfaces, friction does not show a linear relationship with the applied load.
Even at zero external load, a finite frictional force is present due to physical adhesion effects, such as van der
Waals attractions and electrostatic interactions, which make the pinning effect of edges and impurities felt, even
in structurally lubric interfaces. Such adhesional forces easily cancel each other at rough interfaces [126–129].
The adhesion pressure, indicated as Padh, plays a significant role in shaping the friction-load curve [130]. The
friction coefficient (µ), defined as the ratio of the frictional shear stress (τ = shear force

contaxt area ) to the total normal
pressure:

µ =
τ

Pext + |Padh|
(3.1)

provides a more appropriate measure of friction in nanoscale.

It is important to note that, in the following chapters 4 and 5, load is exerted by an external AFM tip.
Although the formula in (3.1) is meant for layered material rather than for a tip on substrate, the adhesion
Padh between substrate layers are negligible, and the friction coefficient there is independent of that.
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Chapter 4

Relation between Interfacial Shear and
Friction Force; Quasi-freestanding
Graphene

4.1 Introduction

Two-dimensional (2D) materials, such as graphene, are usually exfoliated onto or directly grown on a substrate,
which can change the 2D material’s chemical, electronic and mechanical properties [131, 132]. Furthermore,
intercalation of atoms between the substrate and 2D layers is a common methodology to tune the properties
of 2D films [133–136]. Interlayer and layer-substrate interactions are usually probed by investigations of their
electronic properties, for example, by using angle-resolved photoemission spectroscopy [133], or by studying
the strain with Raman spectroscopy [137, 138]. Recently, interlayer elasticity has been probed by atomic force
microscopy (AFM) and has shown a high sensitivity to the presence of intercalated water in graphene oxide
[134].

An important property of the interface between the substrate and 2D layer is the interfacial transverse (out-
of-plane) shear modulus [139], Gint , measured from the in-plane strain experienced by the top atomic layer when
a shear force, parallel to its surface, is applied to the atomic layer while the substrate experiences an opposing
force. This shear modulus, which is conceptually similar to the c44 elastic modulus in graphite [140, 141], is
critically related to the chemistry, order and structure of the interface [141], and it is of key importance to
understanding the strain-controlled electronic and optical properties [142], as well as the frictional behaviour,
of 2D materials [105]. It is also relevant for a broad spectrum of applications [143–147]. Unfortunately, there
are very few theoretical and experimental studies on the transverse shear modulus of 2D multilayers [148, 149],
and no reported measurement or calculation of the interfacial transverse shear modulus of a single atomic layer
on a substrate, to the best of our knowledge.

Here, we show how to measure and control the interfacial transverse shear modulus of one and two supported
atomic layers on a substrate (Fig. 4.1a,b). In particular, we investigate monolayer (1 L) and bilayer (2 L)
epitaxial graphene films grown on the Si face of SiC(0001) [150], where a typical buffer carbon layer (BfL) sits
in between graphene and SiC (Ref. [150]; for example, 1 L/BfL/SiC in Fig. 4.1c); in addition, we investigate 1 L
and 2 L quasi-free-standing epitaxial graphene films on H-terminated SiC(0001) (Refs. [151, 152] ; 1 L/H− SiC
in Fig. 4.1d), and twisted 10 L epitaxial graphene grown on the carbon face of SiC(0001) ( Ref. [153]; twisted
10 L/SiC in Fig. 4.1e). Finally, we compare the above samples with bulk highly oriented pyrolytic graphite
(HOPG) where the graphitic planes have an AB stacking order (Fig. 4.1f) with a small mosaic angle. The
experiments show that the interfacial shear modulus is critically controlled by the stacking order, the atomic
layer-substrate interfacial interaction and the substrate shear stiffness. Furthermore, we show that Gint , and
therefore the associated 2D layer interaction with the underlying substrate, is a key physical and measurable
property to control and predict sliding friction in supported 2D films, a topic that has produced a large amount
of fundamental yet somewhat controversial studies [99, 104, 131, 154–156]. In particular, for all the above-
described graphitic systems, we observe a reciprocal relationship between the friction force per unit contact area
and the interfacial transverse shear modulus. This reciprocal relationship also emerges from simulations using
the Prandtl-Tomlinson (PT) model. These findings are further rationalized by simplified one-dimensional (1D)
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Figure 4.1: Interfacial transverse shear modulus experiment. a,b, Scheme of the interfacial shear modulus experiments.
Initially, an AFM tip is brought into contact with a graphene layer sitting on a substrate (a). The AFM tip is then
oscillated in-plane while in contact with the graphene surface, causing rigid moving of the graphene atomic layer in
an elastic regime (no slipping; b). c, Scheme of one epitaxial graphene layer on the conventional graphene-like buffer
layer on SiC(0001). d, Scheme of one quasi-free-standing graphene layer on SiC(0001) after hydrogen intercalation. e,
Scheme of stacking between two graphene layers in the case of twisted 10 L/SiC(000).f, Scheme of AB stacking, the most
favourable stacking between two graphene layers.

simulations of a tip sliding over a Frenkel-Kontorova (FK) harmonic chain, which mimics the graphene layers,
in the presence of a sinusoidal ’substrate’ potential mimicking the graphene-substrate pinning. An increase in
the amplitude of the substrate potential is shown to be related to an increase in the interfacial transverse shear
stiffness. Accordingly, a larger interfacial shear stiffness and larger potential amplitude decrease the tip-induced
lateral deformation and associated dissipative events, resulting in lower friction-a mechanism that differs from
those proposed so far for 2D materials.
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4.2 Experimental data

Existing measurements

The interfacial shear modulus of different types of epitaxial graphene films and HOPG is investigated by experi-
mentalists by modulated nano-shear (MoNS) methods (Fig. 4.1a,b), which have been conceived from the modu-
lated nanoindentation (MoNI) method [134, 157–159]. MoNS experiments are performed on epitaxial graphene
films with different thicknesses, substrates and stacking orders, as well as on bulk HOPG. In particular, we
investigate four different types of epitaxial graphene films on the Si face of SiC, namely, monolayer and bilayer
epitaxial graphene films on the buffer carbon layer (for example, 1 L/BfL/SiC in Fig. 4.1c), and hydrogen-
intercalated monolayer and bilayer quasi-free-standing epitaxial graphene films (for example, 1 L/H − SiC in
Fig. 4.1d). We also investigate ten layers of twisted epitaxial graphene grown on the C face of SiC (Ref. [153];
twisted 10 L/SiC in Fig. 4.1e) and bulk HOPG. Fig. 4.2 shows the measured curves of lateral contact stiffness
versus normal load, klateral

cont (FN), for each sample, where the solid lines represent the mean values obtained
from multiple experiments in different sample regions and the shaded areas represent the standard deviation
obtained from these multiple experiments. The obtained values of Gint are averaged and summarized in Ta-
ble 4.1. The experiments reveal that Gint in epitaxial graphene grown on the Si face of SiC increases from
190MPa for 1 L/BfL/SiC graphene to 217MPa for 2 L/BfL/SiC graphene. First, we notice that the obtained
Gint values are close to the values of the transverse shear modulus ( c44 constant) of bulk turbographite, where
the layer stacking is random, that is, between 180 and 350MPa ( Refs. [141, 160] ), and also close to the values
of the interlayer shear modulus of non-supported multilayer graphene, about 400± 250MPa (Ref. [149]). This
observation suggests that the measured Gint is not related to extensive stretching of the covalent bonds within
the graphene layer, or to the associated, much stiffer in-plane shear modulus of graphene, about 0.5TPa ( Ref.
[161] ). Second, we observe the same Gint dependance on the number of layers in both non-intercalated and
H-intercalated graphene samples grown on the Si face of SiC. The interfacial shear moduli of 1 L/H− SiC and
2 L/H − SiC are 217MPa and 246MPa, respectively. The ratio between monolayer Gint and bilayer Gint is
equal to 0.88 for both non-intercalated and intercalated graphene, which corresponds to an increase of 14% for
2 L with respect to 1 L. This identical layer dependence of Gint suggests that the origin of this increase is the
same in both intercalated and non-intercalated graphene.

The interfacial shear modulus dependency on the stacking order is demonstrated in a study in the literature
[162], where the authors study the transverse shear modulus (c44) of graphitic systems using density functional
theory calculations. These calculations show that the transverse shear modulus increases when moving from a
random graphenegraphene stacking of the layers to a perfect AB stacking. In our experiments, where the tip
indentation is below 1, we measure Gint , which is the transverse shear modulus of the top atomic layer with
respect to the underneath material (or substrate). Therefore, based on the above density functional theory
simulations, we conclude that 2 L epitaxial graphene, which has perfect AB stacking, has a larger Gint than
1 L epitaxial graphene, which is sitting on a rough graphene-like layer with a mixture of sp2 and sp3 bonds
[163]. Indeed, several experiments in the literature [164–166] show that bilayer graphene grown on the Si face of
SiC has an AB stacking order. On the other hand, single-layer graphene on a buffer layer presents a mixture of
AB-like and AA-like stacking orders [167]. Furthermore, twisted 10 L/SiC graphene films grown on the C face
of SiC have a peculiar stacking sequence (Fig. 4.1e) where adjacent layers are rotated relative to each other,
with a 30◦(R30) or ±2.20◦ (R2±) rotation from the SiC bulk (1010) direction [153]. The MoNS measurements
show that Gint (1 L/BfL/SiC) < Gint ( twisted 10 L/SiC) < Gint (2 L/BfL/SiC). This result can be understood
in terms of the energy landscape of the stacking order. Larger values of Gint are found in 2 L/BfL/SiC because
the perfect AB Bernal stacking order is the most stable stacking, while twisted 10 L/SiC has a unique, highly
ordered stacking of non-Bernal rotated graphene planes that is less energetically favourable than AB stacking,
and finally 1 L/BfL/SiC has a disordered mixture of AB-like and AA-like stacking [167] that gives the lowest
Gint values, in agreement with the density functional theory simulations [141].

On the other hand, to understand the results of the H-intercalated samples, we consider the interaction of
the top layer with the underneath layer or substrate. In 2 L/H− SiC, the first graphene layer sits on top of a
H-terminated SiC surface [168], while the second layer is again forming an AB (Bernal) stacking structure with
the underlying first layer [169]. As discussed above, the stacking misorientation of 1 L graphene on H− SiC is
the origin of a decreased Gint compared to the ordered AB stacking of 2 L graphene on H−SiC. While stacking
order has a strong impact on the transverse shear modulus, other material properties are clearly important,
such as more broadly the strength of the interaction of the top 2D layer with the underlying layers or substrate,
and the in-plane shear stiffness of the 2D layer, which in this work is constant since we are considering only
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Figure 4.2: Interfacial shear modulus measurements. a-f, Contact stiffness ( klateral
cont

)
versus normal load (FN) ob-

tained from the MoNS measurements for 1 L/BfL/ SiC(0001)(a), 2 L/BfL/SiC(0001)(b), 1 L/H−SiC(0001)(c), 2 L/H−
SiC(0001)(d), twisted 10 L/SiC(000) (e) and HOPG (f). The solid lines represent the mean values obtained from mul-
tiple experiments in different sample regions, and the shaded areas represent the standard deviation for these multiple
experiments. The insets show the schematics of the respective crystal arrangement of the six samples.

graphene layers. Since the Raman spectra (not shown here) indicate that the graphene samples with and
without hydrogen intercalation present a similar structure and quality, we conclude that Gint changes because
of different graphene-substrate interfaces. In particular, the 30% increase in Gint after hydrogen intercalation
could be explained by ajamming effect due to the H atoms at the graphene-SiC interface, which could provide
a source of pinning that is more important than that of the buffer layer, and therefore hinder the shear of
the top atomic graphene layer. In the case of 2 L films on H-terminated SiC, the effect of the bottom layer’s
hindered shear propagates to the top layer, increasing the overall shear stiffness of 2 L/H − SiC compared to
2 L/BfL/SiC. The shear stiffness of the substrate is also of key importance. For example, in HOPG, the top
graphene layer sits on another graphene layer with AB stacking order in respect to the layer below. Therefore,
Gint of the very top layer is increased by the larger interfacial shear modulus of the underneath layer.

Measurements formulation

During a typical MoNS experiment, after a silicon AFM tip is brought into contact with a sample at a specific
initial normal load (FN = 10− 20nN) controlled by the AFM feedback loop, the cantilever holder is driven

Graphene Gint (MPa) µ
(
×10−2nN1/3

)
σ(MPa)

1L/BfL/SiC(0001) 190 2.3 23.3
2L/BfL/SiC(0001) 217 1.4 14.0
1L/H-SiC(0001) 217 1.4 14.2
2L/H-SiC(0001) 246 0.9 9.1

Twisted 10L/SiC(0001̄) 206 3.7 15.0
HOPG 441 0.7 2.8

Table 4.1: The values of the interfacial transverse shear modulus (Gint ), friction coefficient (µ) and friction force per
unit contact area (σ) for the different graphene samples
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by a lock-in amplifier to oscillate parallel to the graphene surface, with a sub-angstrom oscillation amplitude.
The sub-angstrom lateral oscillations are applied to the AFM tip holder via a piezoelectric stage at 2.213kHz
controlled by a lock-in amplifier while the tip is sticking in contact with the sample surface (no slip). The
variation in lateral force at each normal load is recorded during AFM tip retraction from the sample until
complete withdrawal from the surface is achieved, at a rate of 0.9nNs−1. Because of such small oscillation
amplitudes and the presence of adhesive forces, during the oscillation, the tip apex is always sticking to the
surface of the sample (no slipping), and it induces a lateral shear in the sample underneath in a purely elastic
regime, as shown in Fig. 4.1b. In this sticking regime, when static friction prevents the tip from sliding, the
force per unit displacement necessary to shear the top atomic layer in respect to the substrate is proportional
to the effective interfacial shear modulus [170], G∗

int, defined as

G∗
int =

(
2− vtip
Gtip

+
2− v

Gint

)−1

(4.1)

where vtip and v are the Poisson’s ratios of the AFM tip material and graphene sample, respectively, while Gtip
and Gint are the interfacial transverse shear moduli of the AFM tip material and graphene sample, respectively.
By measuring the lateral force (∆FL) experienced by the cantilever during the oscillation ∆x, while the tip
is sticking, in contact with the sample surface, it is possible to obtain the lateral stiffness of the tip-sample
contact, klatel

cont , following the equation [170]

∆FL

∆x
=

(
1

ktlever
+

1

klateral
cont

)−1

= klateral
total (4.2)

where ktlever is the torsional spring constant of the AFM cantilever
(
ktlever = 70.7 N m−1 ). Furthermore, G∗

int

is

klateral
cont = 8G∗

inta, (4.3)

where a is the tip-sample contact radius and G∗
int is defined in Eq. (4.1). Contact mechanics equations [170]

can then be used to calculate a from the normal load and the adhesion force Fadh :

a =

(
3Rtip

4E∗ (FN + Fadh)

)1/3

(4.4)

where Rtip is the tip radius and E∗ is the effective transverse Young’s modulus of the tip-sample contact [157–
159]. During the MoNS experiments, Fadh is directly measured from the klateral

cont versus load curves (Fig. 4.2)
as the lowest load at which the contact is lost [134], while E∗ is measured via MoNI for each sample.

The lateral contact stiffness is then measured at different decreasing loads, while retracting the tip from the
initial contact load (1020nN ), until complete detachment from the surface is achieved at FN = Fadh . The Gint
is then obtained by fitting the experimental klateral

cont (FN) curves with the following equation:

klateral
cont = 8

(
2− vtip
Gtip

+
2− v

Gint

)−1(
3Rtip

4E∗ (FN + Fadh)

)1/3

(4.5)

We perform MoNS experiments on multiple areas of the six sample surfaces, acquiring more than 60 curves
of klateral

cont versus FN for each sample (Fig. 4.2). The obtained interfacial transverse shear moduli Gint are
averaged and summarized in Table 4.1 and Fig. 4.3a.

Moreover, the friction coefficient µ for each graphene sample is obtained by fitting the respective friction
curve using the nonlinear equation [171]

FL = µ (FN + Fadh)
2/3 (4.6)

Here, Fadh is the adhesion force and µ is the friction force coefficient. More details about the friction experi-
mental set-up and results are in given in [9].
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4.3 Relationship between friction force and interfacial shear modulus

The frictional behaviour of 2D materials has been so far ascribed to the so-called puckering effect [99, 131],
electron-phonon coupling [104] and surface roughness [172], or to a combination of these factors. Based on
our results, we can discard mesoscale to nanoscale roughness as the main driving force. Indeed, experiments
measure similar values of surface roughness across all the samples (not shown here). Regarding the puckering
and electron-phonon coupling effects, while they certainly play a role, the results reported here clearly indicate
that the key parameter controlling friction in epitaxial graphene, and likely other supported 2D materials, is the
interfacial shear modulus and the 2D layer-substrate interaction. For example, while 2 L/BfL/SiC and 1 L/H-
SiC are different in many aspects (for example, different numbers of layers, different stacking order and different
interface with the substrate), for a balancing of effects, their interfacial shear modulus is similar, and indeed also
their friction per unit area, confirming the key importance of Gint in determining the frictional behaviour of the
2D system. Furthermore, the ratio between Gint of 2 L and Gint of 1 L is the same for both non-intercalated
and intercalated graphene samples, as it is the ratio between the corresponding friction coefficients. Finally, we
note that the number of layers does not fully explain the observed behaviour; indeed, the friction per unit area
in twisted 10 L/SiC has an intermediate value between that of 1 L and 2 L non-intercalated graphene films on
SiC, while HOPG (very large number of layers) has the lowest value of friction per unit area.

To investigate the relationship between friction and interfacial shear modulus, in Fig. 4.3 a we plot FF/A as a
function of Gint for all the experimentally investigated samples, and we fit the experimental data with different
analytical functions. Surprisingly, we find that a two-parameter reciprocal function fits all the experimental
data extremely well, with a statistical coefficient of determination, R2, equal to 0.989 (more details on the
published supplementary [9]). In particular, all the experimental data points fall on the following reciprocal
curve (Fig. 4.3a):

FF

A
=

α

Gint − β
(4.7)

where α and β are obtained from the fitting to the experimental data, and have the respective values of
864 ± 71MPa2 and 153 ± 4MPa. To investigate the origin of the relationship between Gint and FF/A, and to
find a physical interpretation of the experimentally observed reciprocal fitting function, in the next paragraph
we perform a series of simulations based on the PT model [38, 61, 173]. While the experiments show that Gint
and the associated interaction of the top 2D layer with the underlying substrate (for example, stacking order
and layer-substrate interfacial forces) are key elements controlling nanoscale friction in 2D materials, other
properties could have an important impact. For example, surface chemistry is clearly a key property affecting
the tribological properties of a material; therefore, if comparing different 2D materials (for example, graphene
versus BN ), the chemistry needs to be considered, as well as the intrinsic shear modulus of the 2D layer and
possible differences in puckering. However, when keeping the chemistry fixed (only graphitic samples were
measured) and varying other parameters such as substrate stiffness, substrate interaction, number of layers and
stacking order, we are able to demonstrate a general relationship between Gint and FF/A.

4.4 Friction force simulations

To investigate the physical origin of the relationship between Gint and FF/A and to find a physical interpretation
of the experimentally observed reciprocal fitting function, we develop simple friction models. In particular, to
simulate the friction force probed by a sliding AFM tip on a surface, we first use a Prandtl-Tomlinson model
(PT) [38, 61, 173], where a nano-tip is dragged by a spring over a corrugated energy landscape (Fig. 4.3b-d).
In the PT model, the total potential energy U(x, t) at position x and time t of the system is described by

U(x, t) =
1

2
klateral
total (x− vt)2 + Vtip-layer (x) (4.8)

Here the first term on the right-hand side represents the potential energy stored in the total lateral spring
constant of the cantilever-tip contact system, klateral

total ( Eq. (4.2)) when the tip is sliding with velocity v(
v = 1 m s−1

)
; more discussions about the velocity influence on the contact lateral stiffness can be found

in the literature [174]. The second term, Vtip-layer (x), is potential energy, which describes the energy barrier
that the tip has to overcome to slide over the periodic lattice of the sample surface. As discussed in Eq. (4.1)
through Eq. (4.3), the value of Gint is directly related to the value klateral

total .
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Figure 4.3: Friction force and interfacial shear modulus relationship. a, Experimentally measured friction force per
unit contact area as a function of the measured interfacial transverse shear modulus for the different samples. The red
solid curve represents the fitting curve described in Eq. (4.7), while the blue solid curve is a two-parameter exponential
decay fitting function. b, PT modelling of the friction force as a function of tip sliding distance. The dashed lines show
average values of friction force. The inset shows a cartoon of the PT model, where the tip slides on a fixed potential
representing the graphene-plus-substrate system. c, Average friction force as a function of the contact lateral stiffness
calculated from the PT model.d, PT potential energy (Eq. (4.8)) as a function of the AFM tip position, according to
the PT model. The solid curves represent potential energy at t = 0 s and the dashed curves show potential energy at
t = 0.5 s. The arrows indicate the future movement of the tip, while for k = 1 N/m the tip starts to slide, the same tip
for k = 2.1 N/m still has to overcome an energy barrier.e, PT simulations of friction force as a function of the interfacial
shear modulus, and fitting functions. The red solid line represents a two-parameter reciprocal function, while the blue
solid line represents a two-parameter exponential decay function.

The time evolution of the system, as sketched in the inset of Fig. 4b, with the total potential energy (Eq.
(4.8)) is obtained from the solution of the equation of motion [38, 173]

mẍ = −dU(x, t)

dx
−mηẋ (4.9)

where m is the mass (m = 501.40mcarbon, where mcarbon is the atomic mass of carbon), η is the damping
parameter

(
η = 1.88ps−1

)
[175], ẋ and ẍ are the first and the second time derivative of position, respectively. The

total potential is described by Eq. (4.8), where the Vtip-layer potential is described by the following equation:
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Vtip-layer (x) = V

[
1− cos

(
2π

a
x

)]
(4.10)

Here, V is the amplitude of the tip-layer potential. The friction force is calculated by

FF = klateral
total (X(t)− x(t)) (4.11)

where X(t) = vt is the coordinate of the pulling spring and x(t) is the tip coordinate. The steady-state
value can be calculated as a time average of the friction force. The numerical solution of Eq. (4.9) is obtained
using a Python code with a time step of 2.5ps.

To understand the experimental FF/A versus Gint curves of Fig. 4.3 a, we show PT simulations for systems
having different Gint values. The values of FF versus Gint obtained from the simulations are plotted in Fig.
4.3e, showing a trend very similar to the one found in the experiments (Fig. 4.3a). In particular, the simulated
curve can also be fitted very well with a two-parameter reciprocal function (R2 = 0.999). As in the experiments,
the PT model demonstrates that for higher Gint values, steady-state friction has lower values, due to a larger
amount of energy stored elastically during the sticking regime, and a smaller amount dissipated during slip.
This can be easily seen in Fig. 4.3d, where we show the potential energy of the system (U(x, t) in Eq. (4.8)),
represented by a corrugated parabola, as a function of the tip position, for two different values of Gint . The
curves indicate that when the tip starts sliding (slip event) on a sample with larger Gint (corresponding to
larger klateral

cont ), the same tip for the same position of the pulling spring (coordinate ’distance’ in Fig. 4.3b),
for a sample with lower Gint , still has an energy barrier to overcome before starting to slide. Consequently, the
friction is larger for smaller Gint .

Although this simple PT model rationalizes the experimental results, it fails to explain the origin of increased
stiffness. Therefore, we develop a Frenkel-Kontorova (FK) model with a repulsive tip on top of it, enabling us
to understand the rule of in-plane corrugation.

The epitaxial graphene is mimicked with one dimensional FK harmonic chain (k0), and a substrate is
described by rigid sinusoidal potential of amplitude U with the same spacing as the chain at rest. a0. The
internal potential of harmonic atomic chain is

Uint =
k0
2

∑
n

(xn+1 − xn − a0)
2 (4.12)

And the substrate potential with amplitude U and the same periodicity a0 is

Usub =
U

2

∑
n

[
1− cos

2πxn

a0

]
(4.13)

A point "tip" of mass M and coordinates (Xt, Z0) interacting with chain atoms xi through a purely repulsive
potential scaling as 1/R6

n , giving to a interacting potential with the chain as

Utip =
∑
n

ε

((Xt − xn)
2
+ Z2

t )
3

(4.14)

Where ε is the potential parameter, Xt and Zt are the coordinate of the tip. Note that xn is strictly one
dimensional and any vertical movement is not allowed for the harmonic chain.

The tip is dragged by a spring ( ktlever ) whose pulling velocity is gradually increased to reach a constant
steady state value v. Vertical movement of the tip Zt is allowed by a second hard spring (ktZ), while the chain
is constrained to one dimensional X motion only, as would befit a membrane whose adhesion to a substrate is
much larger that its corrugation barrier against sliding. The tip harmonic potential is

Ulever =
1

2
ktlever (Xt − vt)2 +

1

2
ktZ(Zt − Z0)

2 (4.15)

Where Z0 is the initial vertical coordinate of the tip.
Overall, the total potential energy of this system can be written as:

U(x, t) = Uint + Usub + Utip + Ulever (4.16)
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Figure 4.4: Friction force FK modelling. a, FK modelling of the friction forces as a function of tip sliding distance.
The inset shows a cartoon of the FK model, where the tip slides on top of a 1D chain of springs (representing the
graphene atoms), which moves on top of a fixed potential (representing the graphene-substrate interaction). The dashed
horizontal lines show average values of friction force. b, Commensurate FK model simulations showing how the increase
of the substrate periodic interaction potential amplitude (U) acts to increase the lateral contact stiffness, which is related
to Gint , in turn leading to a decrease of friction, similar to the experiments. The sliding simulation snapshots (blue
circle, right-moving tip; red dots, layer atoms; periodic potential not shown) illustrate how an underlying decrease of
tip-induced deformation size accompanies the frictional evolution.

Describing analytically the friction associated with this potential is, unlike the PT model, not an easy task.
Therefore, in this case we perform non-equilibrium molecular dynamics simulations with a home-made code.
Periodic boundary conditions are enforced, and the chain as a whole is long enough to prevent sliding – 120
atoms. Thus, all frictional deformation of chain atoms is localized: compressed in front of the tip and stretched
behind it. The dissipated energy is removed by a Langevin damping gamma. A stick-slip advancement is found
in all cases, but a particular choice of parameters is made so as to obtain a useful cartoon for the extraction of
interfacial shear stress.

The chain which is pinned against sliding by an amount controlled by the magnitude U of the layer-substrate
interfacial potential for three situations: weak U represents qualitatively 1 L/BfL/SiC; intermediate U repre-
sents twisted 10 L/SiC, 2 L/BfL/SiC and 1 L/H−SiC; and strong U represents sliding on HOPG. The resulting
friction force model evolution of Fig. 4.4a shows the initial elastic displacement with overall stiffness klateral

total ,
from which the contact lateral stiffness klateral

cont is extracted (Eq. (4.2)), followed by atomic stick-slip events.
Steady-state friction as interfacial shear stiffness, which in turn causes the decrease in friction, since fewer atoms
are displaced and fewer ’bonds’ with the graphene layer are broken (insets in Fig. 4.4b).

In this cartoon model, we demonstrated an example where a non-puckering substrate is able to compress
and expand both behind and ahead of a giant tip. Results shows that the origin of increasing stiffness that
causes the friction to decrease, is in the in-plane corrugation of the substrate.
Moreover we perform an additional set of simulations with a marginally different set of parameters that are
appropriate for a smaller regime of U . Here as a side note, we can define an effective stretching length as the
initial tip displacement in the following form, where the friction force approaches the steady state value

F (X = Leff )

< F >
≈ ln(2) (4.17)

The frictional force F (X) in Fig 4.5b depicts the model frictional evolution as a function of the driving
X, shown for a weakly corrugated substrate (small U) and a stronger corrugated one (large U). The stiffness
increase and the associated decrease of average friction plotted in Fig. 4.5 confirm the main points suggested
by experiments. Remarkably, there is an almost perfect coincidence of friction and effective stretching length
(Fig. 4.5d) elucidating how the corrugation-driven growth of interfacial shear stiffness, results in a nonlinear
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reduction of the effective shear length Leff which drops exactly like friction, controls the overall tribological
behaviour of this model.

Figure 4.5: MD friction force simulations second set of parameters. (a) Sketch of the 1D simulation model. Note
that a small chain portion behind the tip is stretched, another in front is compressed and, most importantly, both are
dislodged out of registry with the substrate. (b) Friction evolution as a function of the pulling spring coordinate. The
straight lines near the origin are the slopes dF/dX from which interfacial shear stiffness is extracted (see text), and are
not as close. The effective shear length Leff drops strongly for a stronger substrate, corresponding to the shrinking size
of the local deformation. (c) variation of steady state friction and shear stiffness for increasing substrate corrugation.
The reverse behavior of the two quantities is similar to experiment.(d) the effective length and friction behave identically
as the corrugation magnitude changes in this model.

4.5 Conclusions

By using the sub-angstrom resolution MoNS method, experiments measured the interfacial transverse shear
modulus of atomically thin epitaxial graphene layers on SiC, as well as bulk HOPG. We show that this modulus
is a key property of the interface between a single atomic layer and the underlying substrate, and is critically
controlled by the chemistry, stacking order and structure of the graphene-substrate interface, as well as the
shear modulus of the substrate. Importantly, we demonstrate that the interfacial shear modulus is a pivotal
measurable property to control and predict sliding friction in supported 2D films. Indeed, we observe a general
reciprocal relationship between the friction force per unit contact area and the interfacial shear modulus for all
the investigated graphitic structures, including twisted graphene and bulk HOPG. These results can be explained
by simple 1D sliding friction models, which show that the atomic layer-substrate interaction controls the shear
stiffness, and therefore the resulting friction dissipation. This picture explains in full the experimental friction
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results by considering only the shear stiffness originating from a given layer-substrate interaction, without the
need to invoke other effects, such as puckering, or electron-phonon dissipation. These results can be generalized
to other 2D materials and represent a way to control atomic sliding friction and to manipulate strain fields for
band-structure engineering and photonics applications.
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Chapter 5

Anisotropic Friction and Rheology of
Suspended Graphene

5.1 Introduction

The rheological and frictional behavior of pristine graphene has attracted much fundamental and technological
interest during the last decade. From the mesoscale down to the atomic level, a great research effort is underway
to unveil the physical mechanisms underpinning the indentation, twisting, wrinkling, and crumbling phenomena
[134, 176–182] of this extraordinary membrane. The exceptional hardness (Young’s modulus around 1TPa and
intrinsic in-plane strength of 130GPa [180]), the extreme ability to elastically sustain tensile strain up to at least
20% [183], and its large out-of-plane membrane-like flexibility make graphene the forefront prototype material
for the design of innovative systems and structures with controlled intrinsic properties [184]. Graphene has been
integrated into several hi-tech electronic devices such as organic light-emitting diodes [185, 186], strain sensors
[187–191], wearable devices [192–194], and micro- and nanoelectromechanical systems [195]. Understanding and
exploiting strain-induced effects in 2D layered materials in general is nowadays a fast-growing topic in both
fundamental and applied research, given that many of its intrinsic properties can be tuned by mechanical de-
formation. While the tunability of transport and optical properties under strain has been extensively addressed
[196–200], the microscopic tribological behavior as a function of the applied strain and boundary conditions has
received far less attention [201–203]. Graphene tends to conform to the morphology of the supporting surface
when deposited over a hosting substrate and the tribological response of the layered coating significantly de-
pends on the layer-substrate interaction [99, 204, 205]. At the same time, different experimental realizations of
supported graphene have highlighted the importance of 2D layer strain on the overall tribological and electronic
behavior [206–209]. To disentangle these effects and shed light on their origin, suspended graphene represents
an ideal system. Recently, free-standing graphene has been investigated by Zhang et al. [201], who found
a reduction of friction with increasing strain in a suspended and isotropically strained graphene sheet with
atomic force microscopy (AFM) measurements. Complementary atomistic simulations showed how this tensile
prestrain reduces the membrane flexibility thus decreasing the impact of the tip, hence reducing the friction.

Here we go beyond the isotropic setup in Ref. [201] and study the friction behavior of graphene suspended
and fixed at the edges of a long narrow groove. We observe with remarkable reproducibility that the frictional
dissipation of the graphene membrane measured by our sliding AFM tip turns anisotropic, with a differential
friction coefficient (COF) typically three times higher parallel to the groove axis compared to orthogonal axis.
This occurs with negligible prestrain in our system, as confirmed by Raman measurements. Molecular dynamics
(MD) simulations reveal that the sliding-friction anisotropy is ruled by the interplay between the tip-indenting
action and the boundary conditions. The strain-free, asymmetric suspension condition is responsible for the
anisotropic indentation pattern shape and rheology of the membrane, quantitatively explaining the observa-
tions. Our results rationalize the often-overlooked aspect of nonisotropic constraints in nanoscale systems, with
important implications for realistic engineering setups.
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Figure 5.1: AFM imaging and Raman characterization of single-layer CVD graphene anisotropically suspended. (a)
Three-dimensional topography image and (b) relative line profiles of CVD graphene deposited on a single groove. White
dashed line in (a) indicates the line profile in (b). Equilibrium configuration between graphene and underlying substrate
indicates a complete conformation and clamping on the flat crests enclosing the groove and a total suspension at the
center of the groove. (c) Raman spectra comparison of supported graphene (black) and suspended graphene (red). Note
the typical redshift of G and 2D peak positions on suspended graphene. (d) Correlation plot of Pos2D vs PosG peaks
showing data from supported graphene (gray) and data within the patterned area which include supported graphene on
the crest and suspended graphene (green and red, respectively). Lines represent the linear fit from supported graphene
(gray line, slope 0.94), graphene on crest (green line, slope 0.94), and from suspended graphene (red line, slope 1.13).
Neutrality point indicated by the black dot at position (1581.6 and 2676.9 cm−1) in the Pos2D versus PosG correlation
plot, and the additional axes to quantify strain and doping are taken from Ref. [209].

5.2 Experimental data

Sample characterization

The suspended graphene was obtained by depositing a commercial single-layer chemical vapor deposition (CVD)
graphene on a standard silicon dioxide-based calibration grating array.

Briefly, a commercial single-layer CVD graphene was deposited over the calibration grating by wet transfer
process. The calibration grating comprises a central patterned area and a surrounding flat region. The pattern
consists of long, parallel, and equally spaced grooves (crest-to-crest distance: 3 µm, valley width: 2 µm, step
height: 500 nm ). After transfer, the external flat region is fully covered by single-layer graphene that we refer
to as supported graphene in the following. On the contrary, the sample surface over patterned area displayed
regions where the graphene adhered to the substrate and regions where it hung fully suspended via clamping
on the top of the crests, see Fig. 5.1(a). AFM 3D topography and corresponding line profiles in Fig. 5.1(a-b)
reveal an excellent conformation of graphene sheet over the crests and the complete suspension in the region
between them. In particular, the AFM profiles before and after deposition [solid and dashed lines in Fig. 5.1(b),
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respectively] indicate that graphene tends to mechanically relax to a configuration where a small fraction adheres
to the sidewalls of the groove.

The graphene membrane was then characterized by Raman spectroscopy, a well-established method used to
quantify the purity, thickness, and strain of graphene films [209–212]. Fig. 5.1(c) presents the typical Raman
spectra obtained from analyzing both the supported graphene (black line) and suspended graphene (red line)
of the deposited graphitic film. The shape of the two prominent G and 2D peaks (both symmetric Lorentzian
line shape, and width WG = 12 cm−1 and W2D = 33 cm−1, respectively) indicates a high quality, single-
layer suspended graphene film [210–213]. The absence of the disorder-related D peak near 1350 cm−1 on the
suspended part and the weak intensity on the supported one indicate that CVD graphene film is composed of
large, defect-free single-crystal domains. The downward shift of both peaks positions in the suspended regions
with respect to the supported graphene is evident and indicative of the different extent of both deformation
and doping effects [210] in the two regions.

To disentangle doping and strain effects, we performed extensive Raman maps on graphene on the patterned
area and graphene supported on the surrounding flat silicon region. Each map comprised about 80 points where
we measured and fit Raman spectra to obtain G and 2D peak positions (PosG and Pos2D in the following).
We computed the Pos2D/PosG correlation shown in Fig. 5.1(d) following the protocol developed by Lee et
al.[209]. PosG and Pos2D are linearly correlated even within an ideal graphene sheet because of the ubiquitous
presence of doping and strain effects. The slope of the linear distribution is indicative of the relative importance
of either doping or strain effects. The solid blue lines in Fig. 5.1(d) represents the linear pure-strain axis with
slope 2.2 and the pure-doping axis with slope 0.7 , respectively [209]. The two axes cross at the neutrality
point marked by a black dot at position (1581.6 and 2676.9 cm−1

)
[209]. While on the doping line only positive

values are physically meaningful, the convention adopted for strain evaluation is to indicate as a negative value
the compressive strain that moves the peak towards higher frequencies and as a positive value the tensile
strain inducing shift in the opposite direction [214]. The gray dot and the related gray line represent data from
supported graphene while green and red data come from graphene over the patterned area. Data from supported
graphene (gray symbols) indicate only a very slight tensile strain as well as a hole-doping effect, consistent with
the literature for supported CVD graphene [211]. Raman spectra acquired from graphene within the pattern
split into two sets with different slopes (green and red symbols). The green dots show a trend compatible with
the reference signal (supported graphene) and, hence, they are attributed to the crest region, where graphene is
supported. Indeed, the fitted slope [green and gray lines in Fig. 5.1(d)] is 0.94 in both cases, a value consistent
with the literature [211]. By contrast, the red data are representative of suspended graphene: They group close
to the doping axis so that the extrapolation towards strain axis indicates a negligible prestrain. Indeed, the
linear fit yields a slope of 1.13 consistent with the value of 1.09 reported by Gajewski et al. [211] for suspended
graphene. Hence, our sample presents no prestrain, probably because the portion of membrane adhering to the
sidewall of the groove is small and its effect negligible.

Measurements

Following the structural results of the Raman spectroscopy analysis, the membrane rheology was proved by
friction force microscopy (FFM) (Fig. 5.2). FFM scans in two opposite directions were performed on a 1−µm2

area, corresponding to the central region suspended between two crests [blue square in Fig. 5.2(a)]. By tilting
the sample 90◦, the same area was first scanned in the direction orthogonal to the groove axis and then in the
one parallel to the groove axis, as indicated in the right side of Fig. 5.2(a) by black and red arrows, respectively.
The same area was analyzed in both directions with positioning accuracy of the order of 100 nm [215, 216].

Care has been taken to analyze regions free from preexisting extended wrinkles, which are clearly identifiable
due to the strong contrast they produce on the lateral force signal [217]. On the contrary, ripple effects on
graphene either of an intrinsic type or induced by tip or point defect [218] cannot be resolved since the induced
elastic deformations during FFM measurements are larger with respect to ripple corrugation.

The measured frictional dissipation F was found to depend strongly on the scanning direction: The friction
force recorded during scans parallel to the groove was typically three times that the orthogonal, at the same
load P [see Fig. 5.2(b)]. The orthogonal vs parallel friction increase was then measured at different loads,
from about 25 nN down to the negative pull-off force. Fig. 5.2(b) reports the typical friction vs load behavior
observed in several different spots on the membrane. The differential friction coefficient dF/dP (COF) was
evaluated for each friction vs load curve and used as a representative parameter of the membrane anisotropic
response. Fig. 5.2(c) summarizes the statistics of our multispot analysis, revealing a remarkably consistent
threefold increase from orthogonal to parallel scanning direction.
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Figure 5.2: Direction-dependent friction response of suspended CVD graphene. (a) Three-dimensional topography
reconstruction of freestanding CVD graphene over single groove and 2D zoom of the region analyzed by FFM (blue
square: 1 × 1µm2 ); the two scan directions are represented with double-headed arrows (black for the orthogonal and
red for the parallel, respectively). Scale bar corresponds to 150 nm. (b) Friction force as a function of load applied to
free-standing CVD graphene with groove axis oriented orthogonal (black) and parallel (red) to the fast scan direction;
circles represent experimental data with their error bars and continuous lines are the respective linear fit. (c) Boxplots
of COF for orthogonal (black) and parallel (red) scans; counting corresponds to 12 different regions for orthogonal scans
and to 19 for parallel scans, respectively.

In particular, we notice that along the orthogonal direction the extremely low COF values are in agreement
with those measured by Deng et al. on single-, bi-, and trilayer graphene suspended on micrometer-size circular
hole [219] and confirmed recently by Zhan [201]. These values approach that of thick graphite [220], suggesting
the absence of important elastic deformation effects. Comparison with graphene-supported systems is nontrivial
since the specific tribological behavior depends on the substrate on which the graphene is deposited [201, 221].
In general, the higher the adhesion towards the substrate the lower the out-of-plane deformation effect and the
lower the friction coefficient [104, 222]. Our results, summarized in Fig. 5.2(c), reveal that along the orthogonal
direction the membrane behaves like a graphene layer with minor load-induced out-of-plane deformations, while
along the parallel direction load-dependent deformation effects seem to become increasingly important.

The FFM scans were performed over hundreds of nanometers, providing the mesoscopic tribological response
arising from a nanoscale contact. Over this length scale the atomistic stick-slip events cannot be detected by
our equipment. Nevertheless, the atomistic nature of the dissipation can be indirectly assessed from the velocity
dependency of the COF. We found that halving and doubling the sliding velocity yielded the same COF. This
velocity independence of friction in both directions is the fingerprint of the stick-slip regime, whereas a viscous
dissipation would yield a linear dependence [223].
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5.3 Simulations

In order to understand the atomistic mechanism underlying the microscopic experimental measures, we consider
the minimalistic model sketched in Fig. 5.3(a), which retains the experimental features assumed to be at the
origin of the observed behavior. The stick-slip regime indicated by the experiments suggests that the funda-
mental dissipation mechanism should be captured by the Prandtl-Tomlinson (PT) model [224, 225], allowing for
the tip to be reduced to a point-like object [blue dot in Fig. 5.3(a)] sliding over a corrugated energy landscape.
The cantilever was modeled as a mass moving at constant velocity vdrag [red square in Fig. 5.3(a)], dragging
the tip via a spring of constant K (see a benchmark of the model parameters at Refs. [10, 46, 201, 226]).

Figure 5.3: (a) Model setup. Free-standing graphene membrane is clamped along the edges in the y direction at fixed
x coordinate, consistently with experimental orientation in Fig. 5.1(a). Clamping is realized by attaching a stiff spring
(Q = 1602 N/m) to each edge carbon atom in a 0.25− nm region. As reported in the top left corner, the zigzag edge is
clamped while the armchair one is free (Our results and conclusion is independent of the choice of orientation –see [10]
). Prandtl-Tomlinson tip (blue sphere) indents the membrane under a constant vertical load (along z ). Mimicking a
minimal AFM setup, the tip is attached to a moving stage (red cube), representing the massive cantilever, translating
at constant velocity vdrag. Side- (b) and top (c)-(e) views of the indentation profile. Purple region in (b) reports the
position projected on x and the black squares indicate the position of the clamps. Note that the axes in (b) are not in
scale, i.e., the deformation of the membrane is accentuated for visual aid. (c)-(e) Top view of the indentation profile for
increasing loads, as reported at the top of each plot: The tip (green cross) indents the center of the membrane and the
system is relaxed Color scale in (c)-(e) reports the vertical deformation of the membrane, as indicated by the color bar
at the bottom. Black bar at the sides indicates the position of the clamps, as in (a). Gray dashed lines in (c)-(e) mark
the reference x = 0, y = 0, as a guide to the eye. Height of each C atom of the membrane has been linearly interpolated
on a finer grid for clearer visualization.

Construction of the substrate in the PT model (i.e., the 2D membrane on which the tip slides) was key in
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this model, as it needed to capture the deformable nature of the suspended graphene sheet while at the same
time preserving the atomistic nature of the contact–a smooth membrane cannot yield a stick-slip dynamics
and a discrete graphene membrane without the mesoscopic clamping asymmetry cannot deform realistically
under the tip. To achieve a reasonable tradeoff between these two opposite requirements, we modeled the
experimental membrane as a classical graphene sheet where the Adaptive intermolecular reactive empirical
bond order (AIREBO) [226] potential describes intralayer interactions and Lennard-Jones (LJ) potential [201]
interactions between the tip and graphene. To reproduce the asymmetric geometry, the membrane was finite
in the x direction (orthogonal), and periodic in the y direction (parallel). To mimic the adhesion to the
groove’s crests, the membrane edges in the x direction were clamped with springs of constant Q = 1602 N/m
to the equilibrium position, marked by black straight line in Fig. 5.3(a). Hence, the simulated membrane
was suspended and the clamping springs provided the restoring force opposing the one exerted by the tip
upon loading and sliding. In Fig. 5.3(a) the clamped side is the zigzag edge while the periodic side is the
armchair edge. 1 The simulations were performed at zero temperature to obtain a clear signal and because the
stick-slip dynamics is regulated by the energy barrier, while temperature introduces thermolubricity without
qualitatively modifying the dynamics [224, 225]. As the tip in experiments moved orders of magnitude slower
than the relaxation time of the atomistic motion, a viscous damping was applied to all the atoms. The crucial
property we rely upon is the near independence of stick-slip friction upon velocity [223].

An external load P was applied to the model tip [as sketched in Fig. 5.3(b), which indents the membrane,
as shown in Fig. 5.3(c-e) for increasing loads. The indentation shape follows the asymmetric geometry. The
deformation is radial under the tip [green cross in Fig. 5.3(c-e)], but this symmetry is lost far away from it, in
particular nearing the edges: The membrane forms an elongated "valley" in the parallel direction [white regions
in Fig. 5.3(c-e)] and remains almost flat near the clamps [blue regions in Fig. 5.3(c-e)]. This characteristic
indentation shape becomes more evident as the load increases, as shown in going from Fig. 5.3(c) to Fig. 5.3(e).

For each indentation load, the tip can slide in the orthogonal and parallel directions. The sliding was
performed for a load from 0 to 2.24 nN. Note that the loads applied to a point-like tip do not relate directly to
the experimental one. One can estimate the relative pressure and membrane vs tip-size ratio between MD and
experiments. Taking the equilibrium tip-membrane distance according to the LJ potential R = 0.35 nm as tip
radius in MD and assuming a Hertzian contact area (see Refs. [227, 228]), at the maximum load P = 2.2 nN
the pressure was 12.8 GPa, much higher than experiments where the maximum estimated pressure was 28 MPa
at load 20 nN. At the same time, in the experiments the load was applied on an extended tip of radius
R = 15 nm, while the real contact area of the single asperity undergoing stick-slip is certainly smaller (and thus
pressure is higher) but difficult to estimate [229]. A more meaningful quantity to compare between simulations
and experiments is the ratio between the tip radius R and the membrane clamped length L. This ratio is
R/L = 0.011 in simulations and R/L = 0.01 in experiments, with a groove distance L = 1.5 µm. The two
values are comparatively close, suggesting that while the nominal pressure in the MD simulations is higher than
the experimental one, the dimensional ratio is correctly described by the model. This geometrical element is
crucial to address the anisotropy observed in experiments because the size relationship between the indenter
and the intended membrane sets the shape of the indentation pattern and the strain distribution.

5.4 Results

Force traces along the orthogonal and parallel directions for selected loads are reported in Fig. 5.4(a-b),
respectively. The atomistic stick-slip behavior is evident at all loads, owing to the damped, zero-temperature
dynamics of the MD simulations. As the cantilever started to translate, the tip climbed the corrugation energy
barrier; see the initial increase of all lines in Fig. 5.4(a-b). Once the cantilever restoring force overpowered
the barrier, the system depinned, causing the first drop in all lines in Fig. 5.4(a-b). This is the onset of static
friction. Afterwards, the tip moved by single-lattice slips, yielding the characteristic sawtooth force profile of
stick-slip dynamics shown in Fig. 5.4(a-b). The membrane deformation instantaneously follows the tip motion2:
There is an adiabatic separation between slow motion of the AFM tip and the fast relaxation of the membrane,
as in experiments.

After an initial transient, the kinetic friction was calculated as the average sliding force shown in Fig. 5.4(a-
b) as horizontal lines. The protocol to compute kinetic friction in this clamped system is described in detail

1We point out further effects of finite size, edge orientation, and full open-boundary conditions are discussed in [10] supplemental,
in dependent of our conclusion here.

2Shown in detail in supplemental [10]
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Figure 5.4: Simulated frictional response of the membrane perpendicular (a) and parallel (b) to the clamps. The y axis
reports the force on the cantilever while x reports the cantilever position. Each colored line corresponds to a load, as
reported in the legend in the bottom right. The friction traces are normalized by the elastic charging of the membrane
– more detail in the Supplemental[10]. Color-matching horizontal lines show the average friction force at each load after
the initial transient. Note that the average excludes the end of the simulation to limit the influence of the clamps in (a)
and of the free edge in (b). Panels (c), (d) show the tip-sliding direction and the evolution from the indentation profile
in Fig. 5.3(e) toward the end of the trajectory; color scale is the same as Fig. 5.3. Dashed horizontal and vertical gray
lines indicate x = 0 and y = 0 as a guide to the eye.

Sec. 5.7. From Fig. 5.4(a-b) one can already see that the friction in the orthogonal direction is smaller than
in the parallel one, as in experimental curves in Fig. 5.2(b). The force-load curves for the two directions are
obtained by plotting the average friction force, horizontal lines in Fig. 5.4(a-b), against the applied load P . Fig.
5.5(a) reports the average friction vs load for the orthogonal (blue line) and parallel (orange line). For small
loads (P = 0−0.5 nN), where the anisotropic mechanical constraint of the clamping is very modestly perceived,
the two curves behave similarly; as the load increases, however, the average force in the parallel direction keeps
rising, while in the orthogonal direction the growth slows down. This follows the experimental behavior in Fig.
5.2(b), where parallel force is higher while perpendicular is smaller. Even though the model force-load curves in
Fig. 5.5(a) showed a clear nonlinear trend, as reasonable for the system, the concept of differential COF helps
to establish a systematic comparison with experiment. Considering only the large-load limit [dashed lines in
Fig. 5.4(a)], we obtained COF⊥ = 0.013 and COF∥ = 0.023, yielding a ratio COF∥/COF⊥ = 1.7. We conclude
that this minimal model is able to reproduce fairly well the experimental finding COF∥ ≫ COF⊥.

Note that the COFs from MD simulations are higher than in experiments. This discrepancy can be linked to
the simulated system being an ideal crystal at zero temperature, providing an upper bound for the friction force
in the real system. At the same, the agreement between trends found in experiments and in MD simulations
are robust against variations of crystal orientation and boundary conditions2 (see also Ref. [230]). Hence, we
believe the physics underpinning the experimental results are well described by the theoretical model, while the
assumptions of the model result in a qualitative rather than quantitative agreement.

These "in silico frictional experiments" were crucial to understand the origin of this asymmetric rheological
response of suspended graphene in absence of prestrain. Fig. 5.5(b-c) report the model strain distribution in
the membrane as the bond-length deviation from equilibrium, ⟨δ⟩nn =

〈
l−l0
l0

〉
nn

, where l0 = 0.139 nm is the
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Figure 5.5: (a) Average friction vs load for the direction perpendicular (blue curve) and parallel (orange) to the clamp.
COF perpendicular and parallel to the clamps is defined as the slope of the light-blue and red-dashed lines, respectively.
(b), (c) Overall strain of each carbon atom as bond-length difference averaged over its nearest neighbors. (b) Final
snapshot of orthogonal dragging, and (c) for parallel dragging; both snapshots refer to load P = 2.24nN [black curves
in Fig. 5.4(a-b) and last point in (a)]. Green cross marks the tip position. Darker regions mark smaller strain, lighter
regions higher strain. White lines mark the isoline at the values reported on the color bar.

equilibrium C − C bond length in MD and the ⟨·⟩nn indicates the average over the nearest neighbors of each
carbon atom. While no prestrain is present in the membrane, the tip indentation stretches the membrane up to
δ ∼ 2% right below the tip as shown by the large yellow patch in Fig. 5.5(b-c). This tip-induced strain is larger
in the orthogonal direction, as the graphene needs to comply with both the tip pressure and the clamps pull
[see the brighter horizontal strip highlighted by the white contour lines in Fig. 5.5(b)]. Hence, the membrane
is stiffer in the transverse direction. On the other hand, in the parallel direction the tip-induced strain is lower
[see the black regions enclosed by the white contour lines in Fig. 5.5(c)]. When the tip was dragged along the
transverse direction, the stiff substrate was not deformed significantly by the pushing tip and the force needed
to slide was small. Conversely, when the tip was driven along the parallel direction the graphene membrane
deformed easily under the action of the sliding probe, resulting in a higher force opposing sliding and, thus, a
higher dissipation. As the load increases, the orthogonal direction becomes stiffer, enhancing this effect and
leading to the smaller coefficient of friction shown in Fig. 5.5(a).

5.5 Discussion

The computational results indicate that the anisotropic stiffening of the membrane induced by the clamping
during indentation, and not an anisotropic prestrain, which is absent in our case, is the mechanism underpinning
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the different frictional response in the orthogonal and parallel directions. This argument is further corroborated
by the experiments. Analyzing the effective piezoelongation as a function of the applied loads during the
acquisition of friction vs load images2, we can extract the tip-induced elastic deformations of graphene along
both the orthogonal and parallel directions of the groove. This analysis provided an estimate of the effective
elastic constant (Keff ) for the coupled graphene-cantilever system. The mechanics is that of two springs in
series: One is given by the flexural constant KN of the AFM cantilever; the other represents the elastic response
of the graphene membrane subject to normal load, whose constant is termed here KGr.

Figure 5.6: Elastic behavior of the graphene membrane along the orthogonal (black) and parallel (red) scan directions
(light and dark lines correspond to different membranes). Elastic constant of the graphene membrane is evaluated as
discussed. Data are normalized to the values evaluated at the membrane center (green triangle in the insets) and they
are shown as relative percentage variation. In the orthogonal direction the relative variation of KGr near the clamping
regions achieves 40% while along the parallel direction it is almost always contained within 10%. Reference values at the
center are membrane 1 (dark line) KGr = 0.455± 0.05( N/m); and membrane 2 (light line) KGr = 0.46± 0.15( N/m).

Figure 5.6 reports the variation of the graphene elasticity KGr as a function of the positions along the
orthogonal [Fig. 5.6(a)] and parallel direction [Fig. 5.6(b)] with respect to the value at the center of the path.
In the orthogonal direction, the relative variation of KGr near the clamping regions achieves 40%, while along
the parallel direction the variation is almost negligible (within 10% of the value at the center).

Hence, the intrinsic membrane elasticity as described by KGr strongly depends on the scan direction. In
particular, the orthogonal scan reveals a nonuniform response along the profile: The center region is softer while
the system gradually becomes effectively stiffer approaching the clamping constraints. On the contrary, in the
parallel scan direction, the response is essentially constant, as expected from the model. The behavior described
by the intrinsic membrane elasticity is consistent with computational results: The induced strain reported in
Fig. 5.5(b-c) indicates anisotropic membrane stiffness along the two sliding directions. Tip sliding along the
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orthogonal direction [Fig. 5.5(b)] moved toward higher strain regions near the clamps compared to the center:
The membrane became stiffer. Conversely, when the tip slid along the parallel direction [Fig. 5.5(c)] the strain
distribution just translated unchanged with the tip, yielding the same stiffness along the path.

5.6 Conclusions

The effect of in-plane strain on the frictional mechanics of free-standing 2D membranes has been addressed
only recently. Within the effort of understanding the nanorheology of 2D materials under strain, graphene
has been investigated in different conformations, from freely suspended on a circular hole to strained as the
hole gets pressurized. We found unexpected results on the asymmetric tribological response of a single-layer
CVD graphene freely suspended over a specially designed groove geometry. FFM measurements and friction
vs load analysis performed at the membrane center reveal a remarkably large anisotropy with respect to the
groove axis. A very low COF is measured by sliding transverse to the groove while an unexpected nearly
threefold increase is obtained when moving parallel. As the prestrain discussed in the literature is absent in
our system, a different mechanism is required to explain the observed anisotropy. Our MD model, corroborated
by subsequent measurements, suggests that deformation induced by indenting and sliding action of the tip is
anisotropic due to the asymmetric clamping conditions. This also reflects in anisotropic friction response of the
graphene membrane. Sliding orthogonally to grooves produces a larger strain, where the membrane stiffens and
the force needed to drive the tip drops. On the contrary, moving parallel to grooves the graphene membrane
deforms easily and a larger force is needed to slide. This mechanism is amplified with increasing load, which
results in an asymmetric dependence of friction vs load.

These experimental results complemented by numerical simulations demonstrate how strong adhesion (clamp-
ing) and decoupling (suspension) from the substrate can modulate the stiffness and the friction on these
membrane-like systems. Strongly anisotropic geometries, such as that investigated here, are likely to occur
in realistic systems. Hence, we believe that our results and analysis will be relevant to design and tune future
graphene-based systems such as nanomechanical devices and ultralow-friction coatings.

5.7 Additional note

Methods

Non-equilibrium molecular dynamics (NEMD) simulations are performed using LAMMPS [225]. The graphene
membrane is modeled using the AIREBO potential [46] and LJ for graphene-Si interaction ε = 0.0087 eV and
σ = 3.595 Å[201].

To mimic the suspended graphene, we clamp and hold both sides of graphene in the Xdirection with strong
springs of stiffness Kc = 1602.17 N/m. This large value is chosen as a compromise between vertical load and
size of the system, which is also close to Young’s modulus of graphene given its nanometric size. However, the
overall features of simulations remain independent of this choice; smaller values would intuitively reproduce the
same results for a smaller scale of vertical loads. Simulations with both open and periodic boundary conditions
(OBC and PBC ) along Y-direction are performed. To test the effect of the membrane crystalline orientation,
all measurements are done for both armchair and zigzag orientations of graphene.

The relaxed indentation configurations are obtained in three steps; first, imposing an initial constant vertical
load on the tip which allows preliminary shaping during N = 3000000 steps of MD simulation with the time
step dt = 1fs. Second, using CG minimisation with tolerance 10−16 eV on the energy allows fast readjustments
of the configurations. Third, a final MD run with N = 3000000 steps gives us realistic results, allowing for fine
readjustment. To simulate frictional measurements, the system is kept at zero temperature using a Langevin
thermostat with damping factor gamma = 0.05 ps. We performed more simulations for various values above
and below this value, and the results of this work are confirmed to be independent of a specific choice. The tip is
attached to a moving stage with constant velocity vdrag = 2.0 m/s with a spring of stiffness Kdrag ∼ 0.08 N/m.
The friction force is computed as F = Kdrag [vdragt− ri(t)] where ri(t) is the instantaneous position of the tip
along the direction i, which could be perpendicular ( x axis) or parallel ( y axis) to the clamps.

Finally, to confirm the consistency of results, the procedure is repeated back and forth many times to
regain the same hysteresis. To estimate the contact area of atomically-thin tip adopted in MD simulation
of the PT model, we adopt a simple Hertian model. The radius a of the contact area is expressed in terms
of the applied load P and mechanical properties of the tip by a =

(
3PR
4E∗

)
, where R is the curvature radius
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of the tip, here the LJ interaction R = 0.35 nm, and the effective Young modulus of the contact is given by
1/E∗ =

(
1− v21

)
/E1+

(
1− v22

)
/E2. The Young and Poisson modulus for graphene and silicon tip, respectively,

are taken from the Material Project [226, 227]: E1 = 371 GPa, v1 = 0.19, E2 = 151 GPa, v2 = 0.20.
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Chapter 6

Buckling, Bending, and Topological Bands
of Freestanding Twisted Bilayer Graphene

6.1 Introduction

Two-dimensional (2D) bilayers and multilayers with variable lattice mismatch and/or twist angles exhibit a host
of physical properties that also hold promise for applications [231–234]. With exceptional electronic properties at
the magic twist angle, twisted bilayers graphene (TBG) are prominent among them [63, 64, 235]. Experimental
bilayers are generally studied in deposited/encapsulated configurations, which preserve a flat geometry and the
twist-related moiré pattern plays no mechanical role. Yet, TBG may also be realized as freestanding [236, 237].
Below a critical twist angle θc, moiré related structural instabilities and a variety of “buckled" states were
suggested by pioneering freestanding simulations [208, 238, 239], but the actual nature and properties of the
true TBG buckled state remain unknown. We use here theory and simulation to show that the moiré buckled
state formed at low twist angle is quite different from expectations. Mechanically, it is accompanied by the
unanticipated collapse of the TBG macroscopic bending rigidity. Electronically, the magic twist angle narrow
bands, now doubled in number, are unexpectedly degenerate at zone boundaries, the vanishing Bragg scattering
symmetry motivated reflecting single valley physics.

6.2 Mechanical properties

Starting with molecular dynamics (MD) simulations, large size model TBGs with variable twist θ and variable
numbers Nmoire of moiré cells were constructed with periodic boundary conditions in the (x, y) plane. Based on
well-tested interatomic interactions and protocols (detailed in Section 6.5 ) we sought the zero stress equilibrium
T=0 structure versus θ. We found that, similar but not identical to suggestions [208, 238, 239], two regimes
emerge, separated by a structural phase transition at a critical θc ≈ 3.77◦. Above θc the two layers remain flat
and specular relative to the central plane (Fig. 6.1b). Below θc the layers jointly buckle giving rise to a “moiré
(2 × 1)" cell doubling along armchair direction x, leading to two inequivalent, z-antisymmetrical AA nodes,
AA1 (up) and AA2 (down) per cell, as in Fig. 6.1a. The magnitude of buckling is large. At the magic twist
angle θm ≈ 1.08◦ for example the zigzag z-corrugation is ≈ 10 (Fig. 6.1a,c). A competing (

√
3×

√
3) buckling

distortion, with one AA1 (100 % up) hexagonally surrounded by AA2 and AA3 (50 % down), was also found.
It led to a slightly lower energy gain, and its details are further discussed in Section 6.5.8– not discussed here.

The energy gain driving the buckling distortion at θ < θc is interlayer, with increased AB and BA, Bernal
stacked areas, relative to the flat, unbuckled state’s. That gain is balanced by an intralayer cost concentrated
at the AA nodes, now transformed into buckling “hinges" AA1 (up) and AA2 (down). As θ decreases, the 2D
density of AA nodes, thus of hinges, drops ∼ θ2, and so does the cost, eventually favoring buckling for θ ≤ θc.
The transition, simulated by maintaining zero external stress and zero temperature, was found to be continuous.
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6.2.1 Buckling order parameter
We define the T = 0 K buckling order parameter Q0 as the large-size average Fourier component of the (2× 1)
moiré corrugation

Q0 =
aGr

NxNyA

〈
Nat∑
n=1

zn exp

(
−2πi

lx
xn

)〉
(6.1)

where aGr is graphene’s lattice constant, lx =
√
3λ is the size of the buckled unit cell along the armchair

direction x (Fig. 6.1a,b), λ ∼ aGr/θ is the moiré lattice constant (Fig. 6.1a,b), xn and zn are coordinates of the
n-th atom (n = 1, 2, ...Nat), A =

√
3λ2 is the buckled unit cell area, and Nx, Ny are the number of cell replicas

along x and y. This Q0(θ) is proportional to the buckling induced bilayer thickness increase ⟨(zAA1 − zAA2)⟩
(inset of Fig. 6.1c). Simulation for a set of θ values (see Section 6.5.2) characterized by a sufficient numbers of
moiré cells Nmoire showed, at T = 0, a growth of Q0(θ < θc) (Fig. 6.1c) well approximated by a power-law rise
Q0(θ) ≈ 0.48Θ(θc − θ)(θc − θ)β , where Θ is Heaviside’s function, and β = 0.7(0) a critical exponent. Within
fitting uncertainty, reflected by the second decimal in brackets, this exponent differs from 1/2, that could be
expected for a classical T = 0 transition.

Figure 6.1: Visual models of small twist angle TBG structure at T = 0. Out-of-plane displacement of (a) optimal
free-standing (2× 1) buckled and (b) flat structures, magnified by factors 3 and 100 respectively, are sketched for twist
angle θm = 1.08◦, where the moiré size λ ≈ aGr/θm ≈ 13 nm. (c) Twist angle dependence of the optimal buckling order
parameter Q0 (red and blue, left axis) for Nx = Ny = 1, T = 0 K, and of the normalized soft phonon frequencies ω2/θ4

(right axis, green). Critical twist angle θc ≈ 3.77◦ marked by grey dashed line. Red and green lines are power law fits as
described in text. Inset shows the maximum out-of-plane corrugation ∆zmax.

As in other displacive phase transitions, the local free energy around equilibrium supports a soft buckling
phonon mode ωi (i = (+,−) refers to above or below θc), a mode which will also control critical fluctuations
at T > 0. Its frequency was extracted from oscillations around equilibrium of a (2 × 1) moiré cell by starting
the dynamics with Q = Q0 + δQ, with |δQ|/Q0 ≪ 1, while maintaining T = 0 and zero stress. Because the cell
area A(θ) varies as θ−2, it is convenient to further normalize the soft mode frequencies to constant area in the
form ω2/θ4. Power law fits near the singularity at θc yield (Fig. 6.1c), ω2

i /θ
4 ∼ ai|θ − θc|γi , with γ+ = 0.3(7),

γ− = 1.3(0), with a+ = 8.58 × 1020 s−2, a− = 3.24 × 1021 s−2. Note the strongly asymmetric, again unusual
exponents. We observe nevertheless that γ−/β ≈ 2 as in standard mean-field theory.

6.2.2 Bending stiffness collapse
Interestingly, the buckling amplitude Q0 and its soft mode frequency are not the only critical quantities at
θ → θc. We found an unexpected collapse in its macroscopic partner, the bilayer’s bending stiffness. Defined
for direction µ = (x, y) as Dµ = dF/d[(∂2h/∂µ2)2], where F is the Helmholtz free energy density, ∂2h/∂µ2 is
the µ-th component of the 2D Laplacian, and h the bilayer’s corrugation profile h(x, y) (Fig. 6.2). Controlling
the membrane’s deviations from planarity, Dµ determines the macroscopic flexural mode dispersion along µ,
ωµ(qµ) = (Dµ/ρ2D)

1/2q2µ, of an infinite membrane of 2D density ρ2D.
The freestanding TBG bending stiffness Dµ was extracted by starting simulations with a slight x-compression

(Fig. 6.2), i.e., Lµ = L0µ − δL, of the bilayer’s zero-pressure equilibrium size. Either the initial energy increase

δE, or the ensuing flexural oscillation ωµ yield Dµ = limδE→0
L4

µδE

π4Ah2 =
ρ2DL4

µω
2
µ

16π4 [240]. The resulting Dx is shown
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Figure 6.2: Freestanding TBG bending stiffness Dx/D0, normalized to the monolayer’s D0, from zero stress simulations
at T = 0. Note the critical collapse (red circles for θ > θc, blue squares for θ < θc). Dashed and dotted curves are
power-law fits near θc. Multiplicity of circles at same twist angle shows convergence for simulation cells with increasing
size Nmoire (the Nmoire dependence is weak for θ < θc). Inset: simulation protocol (see text).

in Fig. 6.2. For 6◦ < θ < 30◦, Dx is close to 2D0, where D0 = 1.44 eV is the bending stiffness of monolayer
graphene [241], the factor 2 reflecting free sliding between the two layers[242, 243]. At the opposite end θ = 0◦,
layers are instead locked in Bernal’s AB stacking. That pushes Dx up to DB ≈ 100 eV, now reflecting the large
in-plane stiffness of graphene [244, 245]. The novelty is that between these extremes, Dx drops below 2D0 when
θ ⪅ 6◦, critically collapsing at θc, and rising immediately below towards DB. Near θc the collapse is critical

Dx(θ) ∼ ci|θ − θc|ϵi (6.2)

with exponents ϵ+ = 0.2(2) and ϵ− = 1.4(4), and c+=2.4 eV and c− =7.5 eV, for θ > θc and θ < θc respectively.

6.2.3 A model to relate buckling to bending
Why does a macroscopic mechanical parameter like Dx(θ) drop critically at the microscopic buckling transition?
We developed an analytical “zigzag” model that explains it. As sketched in Fig. 6.3a the buckled structure can
roughly be modeled as a zigzag shape where flat (AB-commensurate) regions are separated by maximally bent
(AA-centered) hinges. The total length of the system along the buckling direction is Lx = Nxlx. Upon bending
along x both hinges and flats undergo deformation, and the free energy increase with bending angle Φ is
F (Φ) =

DfKly
2N(2Df ly+Klx)

Φ2 where Df is the bending stiffness of the flat pieces, K the angular stiffness of the
hinges, and ly the bilayer size perpendicular to the bending direction x. Defining an effective bending stiffness
F =

Deff ly
2Lx

Φ2, one obtains, using ly = λ,

Deff =
Df

1 + 2Df/
√
3K

. (6.3)

We can now assume Df = DB ≈ 100 eV of the flat pieces for θ < θc, dropping to Df = 2D0 = 2.88 eV for
θ > θc (Fig. 6.3b). The collapse of Dx(θ) at θc is controlled by that of the hinge stiffness K, connected to the
buckling frequency ω± by simple mechanics

K ∝ ρ2Dl
4
xω

2
±. (6.4)

Inserting ω± into Fig. 6.3b, theoretical and simulated bending stiffnesses agree fairly well, both in magnitude
and in critical scaling (details in Section 6.5.5). Thus the TBG bending stiffness collapse is a direct consequence
of that of the buckling modes ω±. In return, the buckling criticality must be influenced by the bending one.
The coexistence of these two coupled degrees of freedom, with important cross correlations, is likely to account
for the unusual exponents.

We come next to two important properties predicted for the freestanding TBG buckled state, namely tem-
perature behaviour, and the narrow band electronic structure at the magic twist angles.
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Figure 6.3: Zigzag model of bending stiffness Deff in a buckled bilayer. (a) Unbent and bent models; (b) bending stiffness
from real simulations of Fig. 6.2 (circles and squares) and from zizgag model, Eq. 6.3 (red dashed line). Assumed flat
piece stiffness Df (blue line) (more detail in Section 6.5.5).

6.2.4 Temperature effects
Finite temperature MD simulations show that at small twist angle the buckling persists up to high temperature.
Flexural fluctuations, abundant and not gapped, do not cancel the buckling order parameter, which survives up
to a remarkable ≈ 500 K at the magic twist angle (Fig. 6.4a). If bending could be ignored, this robust buckling
order should drop at some Tc with 3-state Potts universality, whose behaviour is critical as opposed to first order,
despite the presence of Landau 3rd order invariants [246] 1. Unfortunately, size limitations obscure the precise
high temperature buckling demise, replacing it with the smooth crossovers of Fig. 6.4a (see Section 6.5.4), equally
compatible with either continuous or discontinuous decays. We also extracted the temperature dependence of
bending stiffness (Fig. 6.4b). We do not deal with the long-wavelength anomaly of the freestanding bilayer as a
membrane [247], but simply extract the buckling-related evolution, as predicted for observation in microscopic
size samples. Contrary to the buckling robustness, bending stiffness changes dramatically with temperature.
The singularity near θc is quickly wiped out (Fig. 6.4b), the two layers eventually bending independently despite
the large buckling. Reflecting that, the flexural fluctuations of a TBG near θc should grow anomalously at low
temperature, when Dx is small, but not above.

Figure 6.4: Effect of temperature. (a) Buckling order parameter at high temperatures. The expected critical behaviour
is smoothened by small simulation size (three (2×1) cells at each θ). (b) Bending stiffness at T = 0 (gray, from Fig. 6.2),
100 K (blue) and 300 K (red). Note the extreme sensitivity to temperature.

1Under uniaxial stress or asymmetric boundary condition, such as sketched in Fig. 6.1a-b, that behavior might turn to Ising.
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6.3 Electronic structure

Near the magic twist angle θm = 1.08◦, the flat TBG has four ultra-narrow bands, whose physics has been at
the center of much attention [63, 235]. What will happen of these bands in the freestanding TBG, where the
buckling sets in? We should anticipate eight narrow bands, separated by zone boundary gaps caused by the
large (2× 1) distortion. We carried out tight-binding calculations at θm and compared buckled and unbuckled
TBG. The Hamiltonian, must be general enough to take into account the geometrical orientations of orbitals
for the buckled TBG.

6.3.1 Hamiltonian
The tight binding Hamiltonian is H =

∑
i,j −tij |i⟩⟨j| + H.c., where tij is the transfer integral between sites

i and j. Let Rj − Ri = (l,m, n)d be the distance vector between two orbital, and n̂i = (nl
i, n

m
i , nn

i ) be the
direction of orbital pi, then using the Slater-Koster[248] formula

tij =

l,m,n∑
k

nk
i

[
nk
j (k

2Vppσ + (1− k2)Vppπ) +

l,m,n∑
g ̸=k

ng
jgk(Vppσ − Vppπ)

]
(6.5)

where the out-of-plane (σ) and in-plane (π) hoppings are

Vppσ = V 0
ppσ exp

(
−d− d0

r0

)
, Vppπ = V 0

ppπ exp

(
−d− a0

r0

)
(6.6)

where V 0
ppπ = −2.7 eV and V 0

ppσ = 0.48 eV are are chosen to reproduce ab-initio curves in AA and AB stacked
bilayer graphene similar to previous works [249], d0 = 3.344 is the minimum distance between the two layers
in the AB stacked region, a0 = aGr/

√
3 ≈ 1.42 is the carbon-carbon bond length in the relaxed structure, and

r0 is the decay rate ≈ 0.184aGr.
In the particular case of unbuckled, flat bilayer n̂i ≈ n̂j ≈ (0, 0, 1) therefore Eq. (6.5) reduces to tij =

n2Vppσ + (1 − n2)Vppπ – see Fig. 6.5, where we show how the angle between two neighbouring local normals
changes when they are buckled.

Figure 6.5: Unlike the flat bilayer (left panel), where local normals deviate very little from vertical, the deviation is
much larger in the buckled state (right panel). The distribution of the included angle φ between two local normals n̂i

and n̂j (within the cutoff range Rij ≤ 4a0) is shown in the lower panel. The maximum φ for the buckled structure is
more than one order of magnitude larger than the unbuckled structure – similar to what we discovered for the tilt angle
ϕ.

6.3.2 Space group

The unit cell 2 of the (2× 1) buckled TBG together with the Wyckoff positions in the P21212 space group (no.
18) is shown in Fig. 6.6. We note that the 2a Wyckoff positions (red/blue circles) correspond to the AA stacked

2In order to be consistent with conventions of [63] (Cao, Nature, 2018) the x and y directions in the electronic section are
exchanged with respect to the structural part.
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P21212 (No. 18)
Wyckoff positions
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4 , 3

4 , z)2a: 

2b: ( 3
4 , 1

4 , z) ( 1
4 , 3

4 , − z)
4c: ( 3

4 , 1
8 , z) ( 3

4 , 3
8 , z)

( 1
4 , 5

8 , − z) ( 1
4 , 7

8 , − z)
4c: (0,0,z) ( 1

2 , 1
2 , z)

( 1
2 ,1, − z) (1, 1

2 , − z)
Figure 6.6: Unit cell and Wyckoff positions in the space group P21212. Note that the 2a positions corresponds to the
AA stacked regions, whereas the 4c positions in cyan to the Bernal stacked ones.

regions and the 4c positions (cyan circles) to the Bernal stacked ones. The 3f positions in the P622 space group
(no. 177) of the unbuckled TBG split into the 2b and 4c (yellow triangles and black circles, respectively) in
the space group of the buckled TBG. The non-symmorphic symmetry connects the two 2a positions, the two
2b ones, as well as the two sets with opposite z coordinates within the 4c Wyckoff positions (light cyan → dark
cyan, as well as dark gray → black).

6.3.3 Flat Bnads
In Fig. 6.7(a) we show the flat bands of the unbuckled bilayer folded into the reduced BZ of the 2× 1 buckled
one, labelling the Bloch waves at the high symmetry point with the irreps of the P21212 space group, (despite
the correct space group in this case being P622, no. 177).

Figure 6.7: Flat bands for the bilayer graphene with twist angle θ = 1.08◦. (a): flat bands of the unbuckled bilayer
folded into the (2× 1) reduced Brillouin Zone. The additional crossings of the unbuckled bands arise because the actual
space group is P622 (no. 177). (b): flat bands of the unbuckled bilayer in their natural (1 × 1) Brillouin Zone.

Shown in Fig. 6.8 are the 8 bands of the buckled state. The bands, almost a factor 2 wider, display important
novelties. First, unlike the unbuckled TBG (or even the non-optimal (1× 1) buckled state [208]) the Dirac zero
gap, formerly at point K, is now split into two close-by points K ± ky (see inset). Second, and striking, zone
boundary splittings at W and X points – expected because (2 × 1) buckling removes the C3z symmetry, and
Bragg scattering should in principle take place – do not occur. This anomaly calls for a full symmetry analysis.

In the next section, we identify the flat bands corresponding to a given valley, magnetic space group P212
′
12

′,
no. 18.19. These single-valley bands can be generated by the atomic limit of Wannier orbitals centered at the
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Figure 6.8: The eight narrow bands of the (2 × 1) buckled TBG at the twist angle θ = 1.08◦. Inset ∗ shows how the
gap closing point is now split into two, above and below (not shown) the point K where it lies in the flat TBG.

Wyckoff positions 4c of space group P212
′
12

′. Yet, this was not possible in the original unfolded band struc-
ture [249, 250]: and that was a clear symptom of non-trivial topological character of the unbuckled bilayer – a
property that should be independent of the arbitrary choice of unit cell and folding procedure. For that reason,
despite not having right tools to prove it, we conjecture that the bands of the buckled twisted bilayer graphene
are likely to be topological as well.

6.3.4 Symmetries

The buckled structure has, unlike the flat one, a non-symmorphic space group P21212 (no. 18) that includes
{
1 |

0
}
,
{
2010 | 0, 1/2, 0

}
,
{
2100 | 1/2, 0, 0

}
and

{
2001 | 1/2, 1/2, 0

}
, (in Seitz notation, with fractional translations)

which we shortly denote as E, C2y, C2x and C2z, respectively. The Bloch states of the 8 bands at the high
symmetry points transform as the irreducible representations (irreps) of the corresponding little groups.

E C2z C2y C2x

Γ1 1 1 1 1
Γ2 1 1 −1 −1
Γ3 1 −1 −1 1
Γ4 1 −1 1 −1

E C2z C2y C2x

W1 1 1 i i
W2 1 1 −i −i
W3 1 −1 −i i
W4 1 −1 i −i

E C2z C2y C2x

X1(2) 1 σ3 σ1 −iσ2

Y1(2) 1 σ3 −iσ2 σ1

Table 6.1: Character table and irreducible representations at the high-symmetry points in space group P21212.

In Table 6.1 we report the character table of the irreducible representations (irreps) at the high-symmetry
points in space group P21212, where σa, a = 1, 2, 3, are Pauli matrices that act in the space of two-dimensional
irreps. The eigenstates of the Hamiltonian that we calculate do transform as one of the irreps at the corre-
sponding high-symmetry points, see Fig. 6.8, supporting our identification of the space group.

In our reference frame only C2y commutes with the generator of U(1) valley symmetry, while C2x, and thus
C2z, exchange the valley index – as time-reversal symmetry T̂ also does. It follows that, e.g., at the Γ-point,
C2x and valley U(1) get promoted to SU(2). That enforces degeneracy between eigenstates with opposite
parity under C2x and same parity under C2y [249], making Γ1 degenerate with Γ4, and Γ2 with Γ3. The
interplay between valley U(1) and the non-symmorphic group’s fractional translations has further consequences
at zone boundary points W and X. Physical insight is obtained by switching to a single valley representation
where valley index is conserved [250]. This representation obeys the magnetic space group P212

′
12

′ (no. 18.19)
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generated by E, C2y, T̂ C2x and T̂ C2z. The four flat bands per valley can be generated by Wannier orbitals
centered at the Bernal stacked regions. Their centers correspond to the Wyckoff positions 4c in the magnetic
space group P212

′
12

′ [251–253], whose co-representation contains just the identity and thus allows a single irrep.
The single-valley elementary band representation is [251–253]: 2Γ1(+) ⊕ 2Γ2(−) and 2Y1(+) ⊕ 2Y2(−), where
(±) indicate the parity under C2y; X1X2(2) and W1W2(2), transforming under C2y, respectively, as σ3, the
third Pauli matrix, and iσ3 (see Table 6.1). Along the path X → W, ky ∈ 0 → π, the irreducible representation
remains twofold degenerate and transforms under C2y like eiky/2 σ3. This now yields double degeneracies within
a single valley. Bearing in mind that the two valleys must be further degenerate at all high-symmetry points and
paths that are invariant under C2x, one readily recovers the fourfold degeneracy at W. In fact all “accidental"
degeneracies of the band structure in Fig. 6.8 are explained in terms of single valley physics, enforced by non
symmorphycity.

These one-electron degeneracies, and the ways they might be broken by interactions, represent an interesting
question for freestanding TBG experiments, where topology should also play a role. Since narrow bands do
admit an elementary representation, the arguments used in the unbuckled case to diagnose a fragile topology
[250] do not strictly apply here. The unexpected similarity of buckled bands to the (2× 1) BZ folded unbuckled
ones (Figures 6.7 and 6.8), nonetheless suggests that the topological properties remain similar. Thus [249,
254] the interplay between Coulomb repulsion and electron-phonon coupling to Kekulé modes should split the
degeneracies and open the gaps that are absent at the one electron level, stabilising topological insulators in
(2× 1) buckled TBG, giving rise to novel fractional fillings absent in the flat state

6.4 Summary

In summary, several important phenomena are predicted to occur once freestanding TBG will be realized. First,
a zigzag buckled state should set in with a critical behavior as a function of twist angle θ → θc ≈ 3.7◦. At
θ ≈ 1◦ the normals to the bilayer should deviate from ẑ by a sizeable ∼ ±3◦ (Section 6.5.7), experimentally
observable. Second, the macroscopic bending stiffness, a crucial mechanical parameter for a membrane, should
collapse at the buckling transition, giving rise to gigantic flexural fluctuations already at very low temperatures.
Third, the buckling distortion should survive up to relatively high temperatures, whereas the bending stiffness
anomaly will on the contrary dwindle upon heating. Fourth, narrow electronic bands are predicted for the
buckled magic TBG displaying unexpected single-valley degeneracies, to be broken by interactions, with the
possibility of doubling the number of quantized fillings upon gating. That should offer a richer playground for
topological features and insulating states than for flat TBG. Other properties including kinetic and tribological
behaviour will be addressed in follow-up work. Similar buckling phenomena could take place in freestanding
bilayers of other 2D materials, now being pursued.
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6.5 Additional notes

Here are some supplementary notes in case the reader wants to delve deeper into any particular section.

6.5.1 Simulation details
Twisted bilayer graphene (TBG) with periodic boundary conditions (PBC) along x and y directions are con-
structed for a discrete set of twist angles θ ranging from 1.08◦ to 30◦ chosen for supercells of reasonable sizes
[255]. For the freestanding systems, no additional constraints are imposed along the out-of-plane (i.e., z) direc-
tion. To describe supported systems, z-direction springs with spring constant kz are tethered to each carbon
atoms to mimic the constraints from the substrate. The interlayer and intralayer interaction is described by the
registry-dependent Kolmogorov-Crespi potential with local normals [256, 257] and REBO force field respectively
[226]. All simulations are performed with open-source code LAMMPS [46, 258].

Structural optimization.

During the optimization, the simulation box adaptively changes size, so that the in-plane stress is fixed to zero,
pxx = pyy = 0. The FIRE algorithm [259] is used to minimize energy during structural optimization (together
with conjugate gradient algorithms with several loops to optimize the box size). Minimization stopped when
the largest single atom force |Fi| < 10−6 eV/. Unless otherwise specified, all structural optimization used this
convergence criterion.

Bending simulation.

A compression protocol [242, 243] is used to extract the bending stiffness of TBG. As shown in Fig. 6.2,
by compressing the simulation box (along x direction), the out-of-plane corrugation appears with height h (in
bending simulations, kz = 0). The compression strain ε = (L0−L)/L0 in our bending simulations is chosen to be
ε ≲ 0.1%, thus the ratio between the bending corrugation height (h ∼ L0

√
ε/π) and the length h/L0 ≪ 1. Since

the free energy of the system increases during the compression-induced bending, the system will spontaneously
oscillate after the release of the boundary constraints. From that we obtain the flexural oscillation frequency
and thus the bending stiffness. In order to achieve free oscillations, the Nosé-Hoover thermostat and barostat
are applied to the whole system during the simulation [260] with T → 0 K and pxx = pyy = 0. The flexural
frequencies are checked to be independent of the damping coefficient used.

6.5.2 Buckling order parameter at variable twist angle
As in main text, we start at finite temperature with the same order parameter definition Q∗ for the (2 × 1)
buckling distortion in the form:

Q∗ =
aGr

2LxLy

〈∣∣∣∣∣
N∑

n=1

zn exp

(
−2πi

lx
xn

)∣∣∣∣∣
〉

(6.7)

where Lx = Nxlx and Ly = Nyly is the size of the box, lx × ly defines the size of one (2× 1) moiré cell, Nx and
Ny are the number of replicas along x and y directions. For the smallest simulation box (Nx = Ny = 1) and at
T = 0 where the modulus is redundant, Eq. (6.7) coincides with Fig.1 in maintext. At nonzero temperatures,
two problems arise with this definition of order parameter, a quantity that should represent the Bragg scattering
magnitude produced by the symmetry breaking buckling distortion and nothing else. The first problem is that
the coordinate difference of two separate TBG layer centers-of-mass exhibits a noticeable (x, y) random walk,
permitted by the superlubric nature of their incommensurate contact, and by the finite supercell size. The
larger the size, and the lower the temperature, the smaller this artifact. Because it gives rise to complex values
of Q, we can eliminate it by taking the complex modulus as is done in Q∗.

The second problem is that temperature causes fluctuations with (2× 1) periodicities, along with all other
wavelengths, even in absence of distortions. This unwanted additional term had better be subtracted for the
order parameter to yield correctly the distortion magnitude, representing the (2×1) Bragg reflection magnitude
of a hypothetical scatterer. This correction will be discussed and eliminated in subsequent Section 6.5.3.
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Figure 6.9: Fitting of the out-of-plane corrugation ∆zmax and order parameters Q0 of the buckling systems as a function
of twist angle θ, at T = 0 K. The critical angle is θc = 3.77◦. Parameters used here are T = 0 K, Nx = 3 and Ny = 1.

From its definition, it is apparent that there is a positive correlation between the order parameter Q0 and
the maximum out-of-plane deformation ∆zmax = max (z) − min (z). For systems at T = 0 K, we could use
either parameter to represent the out-of-plane buckling magnitude. As shown in Fig. 6.9, for buckled structures
(θ < θc), both ∆zmax and Q0 are well fit by power laws, with an exponent ≈ 0.7(0). For θ > θc, the order
parameters is zero – no buckling.

6.5.3 Temperature corrected order parameter
As mentioned above, the order parameter definition needs to be corrected in the case of finite temperature.

A straight thermal fluctuation term R(T ) with buckling-unrelated (2 × 1) periodicity is to be subtracted
from Q∗:

Q = Q∗ −R (6.8)

where R should be the nonzero (2 × 1) Fourier amplitude due to ordinary thermal fluctuations, if the TBG
remained hypothetically unbuckled. As an approximation to that, we extrapolate to T ≤ Tc the (2× 1) Fourier
amplitude evaluated at T ≳ Tc, where the distortion has disappeared

R(T ≲ Tc) = Q∗(T ≳ Tc) (6.9)

This thermal fluctuation with k = 2π/lx further depends on the size of the bilayer and of course on temperature
[261], R(T ) ∝ lx

√
T , so that finally

R(T ) ∝ θ−1
√
T (6.10)

The thermal (2 × 1) background R is extracted at θ = 3.89◦, and its temperature dependence, needed for
the extrapolation, is further verified at T > Tc, where buckling is absent. As shown in Fig. 6.10, the scaling
given by Eq. (6.10) is reasonable.

A direct comparison of the original Q∗ and the correct Q is shown in Fig. 6.11.

6.5.4 Unbuckling temperature Tc

With the corrected parameter Q, we can estimate the unbuckling temperature Tc. First, it is generally seen
that flexural fluctuations, large already at relatively low temperatures, play very little role and the buckling
order parameter Q remains close to Q0 so long as (T ≪ Tc) . At very high temperatures (T ≫ Tc) conversely,
buckling disappears, and Q =0.

The actual transition between the two regimes, ideally sharp at infinite size, (and presumably with order
parameter exponent β either 1/8 if Ising, or 1/9 if 3-state Potts) is artificially smoothed into a soft crossover
at our small simulation sizes. A size-smoothed Heaviside step function (approximated as a sigmoid) S(T − Tc)
is used to crudely account for this behaviour Q(T ) = QtS, where Qt = Qt(T ) is the (unknown) true order
parameter and S(T − Tc) = {1 + exp[(T − Tc)/Tf ]}−1, with Tf a parameter characterizing the finite-size
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Figure 6.10: Verification of Eq. (6.10). (a) The simulated order parameter Q∗ scales as T 1/2. (b) The simulated order
parameter Q∗ scales as θ−1. Except for temperature, parameter used here are same as those in Fig. 6.9.

Figure 6.11: (a) Uncorrected order parameter Q∗ for different twist angles. The solid line fit is based on a smoothed
Heaviside step function (see text). (b) Corrected order parameter Q (thermal background term subtracted). Parameters
used here are Nx = 3 and Ny = 1.

smoothing. We found that a good fit of the finite size crossover of Fig. 6.11b can already be obtained by crudely
setting Qt(T ) = Q0 (a choice compatible with a first order transition, but of course not proving it), with the
transition temperature Tc as the only parameter. Values of Tc for different twist angles are shown, along with
the fitting parameter Tf in Table 6.2.

As shown in Fig. 6.11b, fits based on this crude trial (solid lines) agree well with the MD simulations (color-
matched points). The unbuckling transition temperature Tc so obtained for magic twist TBG (see Fig. 6.11b
and Table 6.2) is as high as ≈ 500 K – one should by all means be able to observe this buckled structure at
room temperature.

6.5.5 Zigzag model details
Here we give details about the zigzag model and discuss its applicability to understand the bending stiffness of
TBG and the scaling exponents.

Effective bending stiffness

The model is illustrated in Fig. 6.12a – a simplified zigzag out-of-plane mechanical structure. When this model
structure is bent (Fig. 6.12b), the hinge angles deform. The model (Fig. 6.12c) consists of flat (AB-like)
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twist angle θ (◦) 1.08 1.89 2.28 3.15 3.89
Tc (K) 541 283 254 65.2 0
Tf (K) 83.8 46.9 40.8 24.0 \

Table 6.2: Estimated unbuckling temperature Tc and finite size fitting parameter Tf for different twist angles.

regions and hinge (AA-like) regions. The total length of the system (along the bending direction) is Lx, where
Lx = Nxlx.

Figure 6.12: Schematic diagram of the hinge model for the buckling structure.

When the model is bent (Fig. 6.12d), both hinge and the flat regions undergo the bending deformations, the
relative free energy increase of the system is

F (Φ) =
DfKlxlyΦ

2

2Lx(2Df ly +Klx)
(6.11)

where Df is the bending stiffness of the flat region, K is the angular stiffness of hinges, and Φ is the total bending
angle. Compared to the bending energy expressed by the effective bending stiffness of the whole system,

E =
Deff lyΦ

2

2Lx
(6.12)

one gets the effective bending stiffness for the zigzag buckled model:

Deff =
Df

1 + 2Df/
√
3K

(6.13)

where we used lx =
√
3λ and ly = λ. The bending stiffness of the flat region Df is approximated by:

Df =

{
DB ≈ 100 eV, (θ < θc)

2D0 = 2.88 eV, (θ > θc)
(6.14)

To estimate the bending stiffness from Eq. (6.13), the only undetermined parameter is the hinge stiffness K.

Hinge stiffness K

Here we provide simulation details that reveal the magnitude and θ-dependence of the hinge stiffness K. Since
the stiffness is proportional to the square of buckling frequency, K ∝ ρ2Dl

4ω2
±, one can firstly extract the

θ-dependence of the buckling frequency ω(θ).
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Figure 6.13: (a) Dependence of the buckling frequency ω upon the twist angle θ. (b)Twist angle dependence of the
“normalized” buckling frequency, ω2/θ4 (red). The dashed lines are power-law fits given by Eq. (6.16).

For θ < θc, the buckling frequency can be extracted by small oscillations around equilibrium once the
dynamics is started with Q0+δQ (with δQ/Q0 ≪ 1). For θ > θc, where the static buckling vanishes (Q0 = 0), the
buckling frequency can still be extracted by injecting a small initial amplitude buckling distortion (∆zmax ≪ d0)
and then tracking the damped oscillations as the TBG evolves towards its unbuckled ground state . Note that
the frequency of the soft mode so injected, whose eigenvector has the wavelength of the (2 × 1) buckling unit
cell (i.e., 2 moirés), does not change as Nmoire increases. As shown in Fig. 6.13, the buckling frequency ω → 0
as θ → θc.

The stiffness K can be expressed as

K = c
ρ2D
16π4

(
√
3aGr)

4ω
2

θ4

(
180

π

)4

(6.15)

where c is a prefactor of O(1). The last term is introduced so as to express the twist angle θ in degrees rather
than radians. The twist dependence of K clearly reflects that of ω2/θ4. By fitting the simulation results (red
circles in Fig. 6.13b), we get:

ω2

θ4
=

{
3.24× 1021(θc − θ)1.30 s−2, (θ < θc)

8.58× 1020(θ − θc)
0.37 s−2, (θ > θc)

(6.16)

With the twist angle dependence of K thus obtained, the predictions of the zigzag model are: (a) For θ → θc,
the buckling structure is infinitely soft (K → 0), and it follows that Deff → 0. This agrees with the bending
stiffness collapse discovered in bending simulations. (b) On the low θ side θ < θc, with Df ≈ 100 eV ≫ K, the
effective bending stiffness Deff ∼ K. According to Fig. 6.13b, K (and thus Deff) increases as the twist angle
decreases from θc, with an exponent γ− = 1.30 – close to the bending simulation exponent ϵ− = 1.44. (c) On
the large θ side θ > θc with Df ≈ 2D0 = 2.88 eV ≪ K, the effective bending stiffness Deff ∼ 2D0. According
to Fig. 6.15b, Deff decreases as the twist angle decreases approaching θc, with an exponent ϵ+ = 0.2 – not too
far from the soft mode exponent γ+ = 0.3(7).

To fully address the magnitude of K and compare theory and bending simulations, we need to specify the
value of parameter c in Eq. 6.15. To achieve this, we performed additional “elongation” simulations. The
elongation simulations are constructed with quasi-static protocol – stretching the size of the simulation box
along x direction by δlx = 0.002 (δlx ≪ lx) in each step and performing the structural optimization. The total
elongation is ∆lx = δlx ×Nstep, where Nstep is the number of stretching steps.

The elongation simulation is sketched in Fig. 6.14, where l0 is the size of the (2 × 1) unbuckled structure
(along x), lx and H are the size and corrugation height of the buckled structure, l′x and H ′ are the size and
corrugation height during the elongation simulation, ∆lx is the elongation, α is the equilibrium angle of each
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Figure 6.14: (a) Model for elongation zigzag model, where black and red represent the equilibrium and elongated
structure. (b) The quarter part of the model.

hinge and δ is the increase of the angle. These parameters are related by

H = l0/2 cos(α/2)

lx = l0 sin(α/2)

H ′ = l0/2 cos(α/2 + δ/2)

l′x = l0 sin(α/2 + δ/2)

∆lx = l′x − lx

(6.17)

where δ ≪ α and α+δ ≤ π. From the elongation simulation, one can extract the tensile stiffness (of the buckled
structure) A by fitting the energy increase ∆E = 1

2A∆l2x. Considering that the flat region can be regarded as
a rigid body, this ∆E is mainly contributed by the increase of the hinge energy 2× 1

2Kδ2, where the prefactor
2 represents two hinges in a (2 × 1) moiré unitcell. Substituting the relationship δ = ∆lx/H (which can be
derived from Eqs. 6.17 above) into ∆E and equating them, we finally have the hinge stiffness K = AH2/2. The
value of A and K from elongation simulations is listed in Table S2. Comparing the value of K in Table S2 with
Eq. 6.15 and 6.16, we find that c ≈ 1.75 gives the best match.

twist angle θ (◦) 2.87 3.15 3.48 3.67
A (N/m) 39.12 41.36 47.66 46.13
H (Å) 2.958 2.272 1.323 0.6135
K (eV) 10.69 6.67 2.61 0.543

Table 6.3: hinge stiffness of several buckled structures.

6.5.6 Bending stiffness at finite temperature
At finite temperature, flexural fluctuations immediately grow for our very large supercells, where the out-of-
plane deformation of the buckling structure is heavily influenced by the thermal noise. Thus, it is difficult to
use either the oscillation frequency method or the energy method to extract bending stiffness. We introduced
an alternative method that is more effective at higher temperatures (T ≳ Tc), where all soft buckling phonon
modes are largely populated. Since we wish to extract the flexural phonon dispersion (thus the bending stiffness)
from MD simulations, we turn to the power spectral density (PSD) method [262]. The PSD method projects
the velocity of each carbon atom to graphene phonon modes:

P (k⃗, ω) =
1

4πτN

∑
α

∑
l

ml

∣∣∣∣∣
∫ τ

0

N∑
n=1

u̇lαR⃗n
(t) exp

(
ik⃗ · R⃗n − iωt

)
dt

∣∣∣∣∣
2

(6.18)

where τ is the simulation time, N is the total number of the primitive cell, ulαR⃗n
(t) is the displacement of carbon

atom in the α direction (α = x, y, z) of atom l (with mass ml) inside primitive cell R⃗n. Here l and n is the atom
index inside one graphene primitive cell (l = 1, 2) and the index of the primitive cell (n = 1, 2, ..., N) respectively.
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In this way, the distribution of kinetic energy in each mode can be directly displayed, yielding the dispersion
relation of the system. The dispersion relation of the flexural mode ω ∝ k2, and the bending stiffness of the
system can be obtained by fitting the prefactor

D =
ρ2Dω

2

k4
(6.19)

where ρ2D is the mass of the bilayer per unit area. Several typical results of log10[P (k, ω)] (maxima used to
identify the flexural mode) and the corresponding fit extracting the effective bending stiffness D are shown in
Fig. 6.15.

Figure 6.15: Power spectral density of the upper layer of a twisted graphene bilayer at finite temperature. (a, b) Room
temperature results for θ = 2.28◦ and θ = 3.48◦. (c, d) T = 100 K results for θ = 2.28◦ and θ = 3.48◦. Here the
frequency is f = ω/2π. The spectrum for the lower layer is same as the upper layer.

For low temperature T ≪ Tc, the buckling order parameter Q ≈ Q0, thus we expect that the bending
stiffness of the system is dominated by the “hinge” stiffness K, and the value of D should be similar to T = 0
cases.
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6.5.7 Tilt angle

Normal vector of the buckled (2× 1) bilayer deviates locally from ⃗̂z, mainly due to tilt angle of flat AB and BA
regions.

Figure 6.16: (a) Schematic diagram of the local normal n⃗i and the tilt angle ϕ. Probability distribution of ϕ for the
magic angle (b) unbuckled and (c) buckled structures.

The tilt angle of i-th atom is defined as:

ϕi = arcsin(
n⃗i · e⃗x
|n⃗i|

) (6.20)

where n⃗i is the local normal vector (Fig 6.16a, with A, B and C the nearest neighbors of the central carbon
atom). Take θm = 1.08◦ TBG (T = 0) as an example, the distribution of ϕ for supported-flat structure and
freestanding-buckling structure are shown in Fig. 6.16b and c respectively. The maximum and the most probable
tilt angles of the buckling structure (ϕmax ≈ 5◦ and ϕpeak ≈ 3◦) are more than an order of magnitude larger
than the flat structure’s (ϕmax ≈ 0.2◦). In addition, the distribution is also different, single peak for the flat
structure, split peaks for buckled structure. Experiments detecting the tilt angle of the surface should easily
capture the buckled structure when present.

6.5.8
√
3×

√
3 Buckling

Besides the 2×1 buckling described in main text, energy minimization in larger simulation cells and zero planar
stress found an alternative

√
3×

√
3 buckled structure at only slightly higher total energy.

To convey a feeling for the relative difference, at θ = 3.15 degrees for example, the total energy per atom
Etot/Nat is E(

√
3×

√
3)

i = −7.418088 eV for
√
3×

√
3 buckling, against E(2×1)

i = −7.418090 eV for 2× 1 buckling
and Eflat

i = −7.418076 eV for no buckling. These differences are not as imperceptible as they seem, once scaled
with the large supercell size, and more importantly against the modest buckled-unbuckled entropy difference,
resulting for example in an unbuckling temperature estimated to be as large as 65 K for the (2× 1) bilayer at
this twist angle (Table 6.2).

It might of course happen that, owing to contingent factors such as imperfect structure caused by ill-fitting
of

√
3×

√
3 buckling inside the rectangular simulation box, force field inaccuracy, different entropies of the two

phases at finite temperature, etc., the balance could be reversed, with
√
3×

√
3 slightly more stable than 2× 1.

Even then, the former would remain an isolated possibility, whereas most uniaxial perturbations, intentional or
accidental, would generally stabilize the latter. For this additional reason we concentrated on the 2×1 buckling.

The detailed geometry of the two buckled structures at the same twist angle is shown in Fig. 6.17. In the√
3×

√
3 distortion, where C3z symmetry is fully restored, the up-down symmetry is broken, with a triangular

AA1 superlattice strongly raised out of plane, and a complementary honeycomb superlattice comprising two
weakly lowered AA2 and AA3 per cell (Fig. 6.17b). Further below we will show in Fig. 6.18, for completeness,
the 12 electronic bands of the

√
3×

√
3 buckled structure, of course different from those of 2× 1.
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Figure 6.17: The 2×1 and
√
3×

√
3 buckling structures for θ = 3.15◦. The moiré primitive cell is highlighted by the black

rhombus; the corresponding 2-moiré and 3-moiré cells and simulation boxes are shown with green rectangle/rhombus.
The corrugation height and the potential energy Ei per atom are listed at the bottom.

Figure 6.18: Flat bands for the
√
3 ×

√
3 buckled bilayer with twist angle θ = 1.08◦. Note the double folding of the

Dirac cone at Γ. Beware of the 90 degrees rotated convention compared with that of (2× 1) bands of other figures.
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6.5.9 Limiting behavior near zero twist angle
Our study yields quantitative predictions for the buckling magnitude and the bending stiffness of the graphene
bilayer down to twist angle θ = 0.655◦ where simulations proved feasible. The behavior at smaller twists, from
0.655◦ to θ = 0, is beyond reach of simulations owing to the diverging size λ/a ∼ θ−1 of the moiré cell. In the
lack of a specific theory, the small twist angle limit remains unknown. Nonetheless, it is instructive to see if
small angle extrapolations of existing results might authorize reasonable conjectures about the possible limiting
behaviour. We focus specifically on the buckling order parameter Q0 – proportional to the moiré z-corrugation
magnitude ∆zmax (inset of Fig 1c)– and on the tilt angle |ϕ| = tan−1 (∆zmax/(

√
3λ/2)) inside each moiré cell.

The evolution of both quantities down to 0.655◦ is shown in Fig. 6.19 and 6.20 respectively.

Figure 6.19: Growth of the (2 × 1) order parameter Q0 for decreasing twist angle θ from T=0 simulations down to
0.655◦. The dashed line has the slope -1 expected for linear growth with moiré size λ ∼ aθ−1. Extrapolation below
0.655◦ suggests a less than linear growth as θ → 0.

Figure 6.20: Tilt angle |ϕ| = tan−1 (∆zmax/(
√
3λ/2)) of Bernal flat domains between positive and negative buckling

lines (red and blue in Fig. 6.1a, see also Section 6.5.7). The extrapolation (red dashed line) is compatible with ϕ = 0 at
θ = 0 (and of course at θ = θc = 3.77). The black dashed line marks the buckling-unbuckling transition at θc = 3.77◦.

Under the assumption, not unreasonable and yet not proven, that all quantities are already approaching
at our smallest simulated twist angles their asymptotic behaviour towards θ → 0, then the relative buckling
corrugation magnitude will grow indefinitely, albeit less than linearly with θ−1 (Fig. 6.19). Because of that, the
tilt angle |ϕ| will tend to zero in the limit (Fig. 6.20) where therefore the bilayer will be essentially flat despite
the buckling. In accord with that, the total energy will in the limit also coincide with that of the completely
flat unbuckled θ = 0 state. The latter unbuckled state would nonetheless represent a singular point, from which
buckling would set in non analytically at infinitesimal twist θ.

Alternatively, we cannot exclude that a new unanticipated regime could set in at even smaller twists than
those investigated, with a possible asymptotic demise of the buckling order parameter. That would represent an
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analytically smooth limit joining the buckled bilayer at nonzero twist to the flat unbuckled state in the θ → 0
limit.

More work will therefore be necessary to ascertain the actual behaviour in this limit.

6.5.10 LTB+Symm code
For this work, we developed the LTB+Symm code (Large-scale Tight Binding and Symmetry validation). LTB+Symm
is a useful tool to perform tight binding calculations with non-planar geometries in large-sized unit cells,
thanks to its MPI implementation. LTB+Symm is an object-oriented, open-source Python3 software; its stream-
lined, geometry-agnostic implementation allows to easily implement ad-hoc solutions to capture system-specific
features. A novel aspect of LTB+Symm is its ability to validate and label irreps at high-symmetry points
of the Brillouin zone (once the right space group is defined). LTB+Symm is publicly accessible on GitHub:
https://github.com/khsrali/LTB-Symm For more details and exmaple of this code, please see Appendix A.
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Part III

Other Theoretical Problems
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Chapter 7

Ring Population Statistics in an Ice
Lattice Model

7.1 Introduction

In the high temperature, proton-disordered state of an ideal ice lattice, where Bernal-Fowler’s “ice rule” con-
straint – two and only two hydrogens per oxygen – is strictly obeyed, all permitted configurations have equal
probability. Predicting the ice properties in this limit is then just a matter of counting. Pauling[263] used
this fact to evaluate the entropy to be ln(3/2) = 0.405 per site, a mean-field estimate which, even if only an
approximation to the actual value (very close for cubic and hexagonal lattices) of about 0.410, [264–266] still
stands as a monumental achievement. The simplest conceptual improvement was perhaps the consideration
[267] of the correlations introduced by closed N -member rings in the lattice, whose number is Ntot = 1 + 3N ,
yielding an extra entropy N−1 ln(1 + 1/3N ). Restricting to the smallest, N = 6, each site participates in 12
hexagonal rings, for both Ih and Ic 3D ice lattices. Each such six-member ring is one of a total Ntot permitted
realizations, whose presence however only adds to Pauling’s entropy a small extra piece 1/(6 × 36) = 0.00023
[267]. More complex correlations and the infinite variety of larger rings of course improve the entropy estimates
much further, as described by an immense literature, mathematically rooted in combinatorics and graph theory
[265, 268–270].

The hexagonal 6-member ice rings, their nature and abundance in the ideal disordered state, nevertheless re-
tain a special interest for their own sake, as the carriers of the shortest range correlations forced by the ice rules,
in ice as well as in water[271]. Therefore it is of further interest to investigate in detail their population statistics.

7.2 Mean-field ring populations

In Ic and Ih perfect ice lattices the ("chair") rings occur in one of eight topological types, in turn belonging to
one among four different order parameter values: 0,1,2,3 to be defined soon. This note presents a mean-field
evaluation of the probability for any of these ring types to occur in the ideal 3D proton disordered cubic or
hexagonal ice. While all elements for doing that are contained or implicit in past work[267, 268, 270], an explicit
result remains of immediate use and interest. Firstly, because it allows to rationalize high temperature ring
populations previously encountered in ab initio water simulations [271] and in Monte Carlo simulations of a
cubic ice lattice model such as Ref. [11] – whose notation we shall adopt here. Secondly, because they shed
indirect light on the anomalous string nucleation process that was recently predicted in that work, a process
now candidate for possible observation.

In the lattice model, a binary variable ϕij = ±1, with the "arrow" property ϕji = −ϕij , is attached to each
(hydrogen) bond between two neighboring (oxygen) sites (ij) on a diamond lattice. The Ntot = 730 hexagonal
ring configurations are generated by all possible sequences of six consecutive bond signs ϕij = ±1 permitted by
the ices rules. The quantity

S = 3− |1
2
Σijϕij | = 0, 1, 2, 3 (7.1)
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defines the order parameter, or family, to which each of these rings, a hexagon where each bond ϕji is either
+ or −, belongs. We will conventionally assume the sign of ϕij is attributed to the left vertex i, while running
clockwise along the ring (see Fig. 7.1). In other words, ϕji = +1 when the H atom (the "arrow head") lies close
to site j)

Figure 7.1: Hexagonal ring, here shown for type 3, order parameter S = 2. The probability of this particular ring in
proton disordered ice is 192/730. That for all other rings is obtained from Eqs. (7.3-7.4)

To facilitate elementary enumeration and classification of rings, two elements are expedient. One is symme-
try, the other is the ice rule. The first can be dealt with exactly. The second is treated within mean-field.

Symmetry first. Rotational C6 symmetry of the hexagon demands that each configuration generates another
five by applying 60 degree rotations. That gives a rotational multiplicity factor R, ranging case by case from 6
to 1. Sign inversion symmetry, in addition, turns a ring configuration into another equally valid by exchanging
pluses and minuses –that is, turning all arrows around. That gives an inversion multiplicity factor I, that can
be either 2 or 1, again case by case.

Second, the ice rule, which controls the multiplicity of the six hexagon vertices. Outside the hexagon,
vertices are connected by paths in the ice lattice, giving rise to correlations among them. In the mean-field
approximation, which we adopt, these correlations are ignored and each vertex is independent. It is therefore
easy to determine six multiplicity factors Fi, i = 1, 2. . . 6, one per vertex. A vertex i across which the bond
variable or arrow does not change sign, that is where ϕjiϕik = +1, entails two possibilities, corresponding to the
remaining bond arrow entering that site i to be placed on either of the two off-ring bonds. The vertex factor
taking care of that is thus Fi = 2 reflecting these two possibilities. Alternatively, a vertex i where the bond
variable flips sign, that is where both arrows point either in or out, ϕjiϕik = −1, can occur only once because
the two remaining off-ring bonds from site i can only be opposite, whence Fi = 1.

By identifying these factors for every ring type, the overall multiplicity of that type is the product

M = R I F, where F = Π6
i=1 Fi (7.2)

In this way it is now possible to enumerate each of the eight hexagonal ring types 1, 2,. . . 8 (note that,
as explained above, the hexagon is run clockwise and bond signs are attributed to the left vertex, the arrow
starting with H close to the O site, as in Fig. 7.1) :
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1 : (+ + ++++); M1 = 1× 2× 26 =128 (7.3a)

2 : (+ + +++−); M2 = 6× 2× 24 =192 (7.3b)

3 : (+ + ++−−); M3 = 6× 2× 24 =192 (7.3c)

4 : (+−++−+); M4 = 3× 2× 22 =24 (7.3d)

5 : (+−+++−); M5 = 6× 2× 22 =48 (7.3e)

6 : (+ + +−−−); M6 = 6× 1× 24 =96 (7.3f)
7 : (+−+−+−); M7 = 1× 2× 1 =2 (7.3g)

8 : (+ +−−+−); M8 = 6× 2× 22 =48 (7.3h)

where the total number of configurations is correctly
∑8

i=1 Mi = Ntot = 1+36 = 730. The eight ring types can
be further grouped according to their order parameter S defined in Eq. (7.1), yielding the theoretical abundance
NS of rings with order parameter S in any state of the ice lattice model, including the maximally disordered
ones, which we are interested in. Rings of type 1 and 2 possess S = 0 and S = 1 respectively, whereas types
3,4,5 share the same order parameter S = 2, those of type 6,7,8 share the same S = 3. Therefore the ring
probability P (S) = N(S)/Ntot for each order parameter S = 0, 1, 2, 3 is

P0 =
N(S = 0)

Ntot
=

M1

Ntot
=

128

730
= 0.1753 (7.4a)

P1 =
N(S = 1)

Ntot
=

M2

Ntot
=

192

730
= 0.2630 (7.4b)

P2 =
N(S = 2)

Ntot
=

M3 +M4 +M5

Ntot
=

264

730
= 0.3616 (7.4c)

P3 =
N(S = 3)

Ntot
=

M6 +M7 +M8

Ntot
=

146

730
= 0.2000 (7.4d)

7.3 Comparison with Monte Carlo results

While direct measurements of these population probabilities are not available – and real ice is notoriously far
from a perfect lattice –, this result can first be compared with that obtained in ab initio water simulations
such as Ref [271] where P0 is 0.165, only 5% different. More detailed and instructive comparisons can be made
with populations AS = 12PS of hexagonal ring type S numerically obtained in the Monte Carlo ice model
simulation which we carried out extending those of Ref. [11] to achieve high accuracy, extrapolating to the high
temperature and infinite cell size limits.

Table 7.1 summarizes our results, showing an overall agreement of the mean-field populations with accurate
MC results that is remarkable, within about 1% in all cases. Interesting is the dependence on cluster and on
lattice types of the deviation between mean-field and MC values. The mean-field population S0 is essentially
exact, indicating that for this type of cluster, where all arrows coherently concatenate, the inter-vertex correla-
tions are close to zero. That is confirmed also by the coincidence of S0 values in Ih and Ic lattices. In all other
cases, where deviations from mean-field are detectable, they are accompanied by differences between Ih and Ic
– different lattices implying different vertex-vertex correlations.
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S 0 1 2 3
Mean-field 2.104 3.156 4.340 2.400

MC Ih 2.104± 0.001 3.191± 0.002 4.321± 0.003 2.388± 0.002
MC Ic 2.103± 0.001 3.182± 0.003 4.347± 0.002 2.3670± 0.0002

Table 7.1: Population AS = 12PS of the 12 hexagonal rings threading each oxygen site, distributed among the four
order parameters S values in the perfectly disordered state of Ic and Ih ice lattice model. Mean-field values are compared
with Monte Carlo data, from simulations extending those of Ref. [11] to high temperature and large size extrapolations
for diamond and hexagonal diamond oxygen lattices respectively. Error bars are conservative estimates of method-related
errors. The corresponding populations of the T = 0 ordered (ferroelectric) state are A0 = 0, A1 = 0, A2 = 0, A3 = 12 in
the cubic lattice Ic; for the hexagonal lattice Ih they are A0 = 0, A1 = 6, A2 = 0, A3 = 6 in case of Cmc21 symmetry ,
A0 = 0, A1 = 6, A2 = 6, A3 = 0 for Pna21 symmetry, and A0 = 0, A1 = 0, A2 = 6, A3 = 6 for P1 symmetry (see e.g.,
Ref. [272])

7.4 Discussion

These results shed some additional and interesting light on the proton disorder-order transformation in ice
models. Following Ref. [11] and references therein, we focus on the cubic lattice Ic, where the ordered state is
fully ferroelectrically polarized.

First, consider thermal equilibrium. Although impeded kinetically, the equilibrium phase transition between
high temperature proton disorder and ferroelectric proton order below Tc – a value determined by the dipolar
interaction J , is thermodynamically unharmed by the ice rules. In the ideally perfect ordered and ferroelectric
state of ice all 12 rings have S = 3. More precisely, they all are of a smaller subset of S = 3, precisely the
"+z-polarized" subclass of M6 rings, a type which includes also ±x,±y and −z orientations, as defined in Eq.
(7.3f). Because there are 12 rings per site, the initial population of that ring type in the disordered state is
12(1/6)M6/Ntot = 12(16/730) = 0.263, quite small. The gap from this value to 12 in the ordered, fully polarized
low-temperature state underlies and clarifies, in parallel to and beyond the mere entropy jump, the strong first
order character of the disorder-order transition that was found by Monte Carlo.

Second, non-equilibrium, and the predicted anomalous string-like nucleation of ferroelectric order inside
proton disordered low temperature ice. The ring distribution should play a role in the transformation kinetics.
The disordered Pauling state, preserved by the ice rules as a metastable but infinitely long-lived state even at
low temperatures, begins to transform to a partially ordered and ferroelectric state once an ice rule-breaking
defect or impurity modeling, e.g., KOH doping, is inserted in the lattice. Simulations found that the impurity-
nucleated transformation does not occur through the usual three dimensional cluster typical of regular first
order transitions but rather, in the ice-rule conserving lattice, by a string of flipped bond signs, resembling
a domino-like cascade of correspondingly flipped H-bonds. In its run, the propagating string head – a mimic
of the mobile hydroxyl ion – overturns the order parameter of the rings it runs through, from their generally
disordered varieties S = 0, 1, 2, 3 to S3 rings with increased +z polarization, like the fully "z-polarized" subset
of rings of the (+ + + − −−) M6 variety. In essence, the string propagates, through complex trial-and-error
moves including multiple passes, eventually transforming a chain of (−) bonds to a chain of (+) bonds left
behind. In doing that, the polarized rings are preferentially installed where they did not exist. Concurrently,
the dipole-dipole interaction J acts to select a preferential z-alignment of these overturned rings, so that they line
up ferroelectrically. While the lower energy of the ordered state provides the thermodynamical force pushing
meandering strings to proceed onwards and to transform more and more rings from disorder to order, they
do encounter a large population of unsuitably configured rings. The complex trial-and error labor involved
represents a factor that in this ice model slows down the Monte Carlo string progress, causing it to meander
in search, as it were, of the best path. That appears to be, in essence, the reason why, in the Monte Carlo
evolution of the doped ice model, ferroelectric order grows only partly and sluggishly once the disordered state
is transformed away [11], a behaviour whose effects are also reminiscent of those observed in ice in real time
[273]. Aware as one should be that the chemical and physical reality of real ice is substantially more complex
[274–277] than the present cartoon lattice model, the topological elements and the importance of disordered
ring population which the model demonstrates still retain a suggestive importance, particularly if the string-like
nucleation of order which was previously suggested should be experimentally confirmed.
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Appendix A: LTB-Symm Tight Binding
and Symmetry Analysis Code

Introduction

Tight binding is a model used to describe the behavior of electrons in a solid, particularly in insulators and
semiconductors. It is based on the assumption that the electrons in a solid are strongly bound to the atoms but
can jump between atoms with some relatively small probability. In other words, the electrons are localised on
the atomic lattice site and weakly hop between sites. This model is particularly useful to study the electronic
properties of materials with a large size unit cell, where more sophisticated Density Functional Theory (DFT)
methods become too expensive in terms of computation time.

Solving a tight binding model, always narrows down to diagonalizing the Hamiltonian. Resulting in eigen-
values and eigenvectors problem. The former produces the band structure of the solid, and the latter represent
the probability amplitudes for the electrons to be found at each site in the crystal lattice, also reflecting the
topological properties. Explict examples of such Hamiltonians are presented in the example section. The sym-
metry of eigenvectors, tells us how the electronic states of a crystal are is distributed in real space. By studying
topology, we analyse how symmetry evolves across momentum space. The concepts and tools of group theory,
allows us to systematically analyse the symmetries of the crystal lattice and their impact on the electronic
structure. Namely spatial and time-reversal symmetries.

Most researchers in the field of twistronics, prefer to have a framework that not only diagonalises tight binding
Hamiltonians, but also allows them to implement and investigate more topological and symmetry properties of
the eigenvectors.

Installation

Requirements LTB-Symm is written in Python. To function properly “Python 3.8+“ is required.
Operating system LTB-Symm has been developed and tested on both **Linux** and **MacOS**. In

both of these operating systems, installation process is similar. Although on **MacOS** there is an extra
pre-step, i.e. make sure you have “pip“ installed by typing the command below in your terminal:
python -m ensurepip

In principle it should be possible to install the code on **Windows** machines, but we have not tested it,
yet. Again you can install “pip“ by executing the following command in “cmd“:
> curl https :// bootstrap.pypa.io/get -pip.py -o get -pip.py
> python get -pip.py

Install through pip You can simply install with:
pip install ltb -symm

If you have it already install, you may use option :code:‘–upgrade‘ to have the latest version.
If installation failed, please make sure all dependencies correctly installed. That includes;

numpy scipy matplotlib mpi4py tqdm primme

Required versions: NumPy 1.19.5+, Scipy 1.10.0+, Primme 3.2
Note you need a working MPI implementation for “mpi4py“ to succesfully function.
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Source code LTB-Symm is publicly available at GitHub under GNU General Public License v3.0 : https://github.com/khsrali/LTB-
Symm

How to run Simply write an input file (see examples) and run using you python interpreter:
For example:

python input.py

Or alternatively if you want to use MPI feature, for instance on a HPC with 32 core each node:
mpirun --map -by ppr :32: node python input.py

Example 1: Band structure of TBG

Here we demonstrate how to calculate band structre for magic angle twisted bilayer graphene (TBG).
First import ltbsymm and other libraries if you need, in this case also numpy:

import ltbsymm as ls
import numpy as np

Create an object of TightBinding class:
mytb = ls.TB()

Next, load the coordinate file. 1.08_1AA.data is an example of relaxed structure using LAMMPS.
mytb.set_configuration(’1.08 _1AA.data’, r_cut = 5.7, local_normal=True)

r_cut used to detect neighbors within a circular range around each individual cites. local_normal=True
clarifies whether to calculate the local normal vector, pointing out from surface locally (True) or use (0,0,1) as
vertical normal to all sites (False). The former option is needed in case your structure is not flat, and out of
plain deformations affects how orbitals interacts, see Slater-Koster[248]. The latter is suitable (and faster) for
flat geometries with negligible corrugation.

Depending on size of your system, you may want to save this initial configuration! This will help you to
save time for next runs with the same data file and setting.
mytb.save(configuration =True)

The heart of any band structure calculation is the Hamiltonian. In LTB-Symm you are completely free to
define the Hamiltonian of your TB model! Define your it as you like, using features that are already developed.
In the case of TBG we define the Hamiltonian – see our paper– as:

Hij =
Vppσ

2

[(
dij · n̂i

| dij |

)2

+

(
dij · n̂i

| dij |

)2
]
+ Vppπ

[
1− 1

2

((
dij · n̂j

| dij |

)2

+

(
dij · n̂j

| dij |

)2
)]

(7.5)

Where Vppσ and Vppπ are defined as

Vppσ = V 0
ppσ exp

(
−| dij | −d0

r0

)
, Vppπ = V 0

ppπ exp

(
−| dij | −a0

r0

)
(7.6)

This Hamiltonian translates into the following Python function:

# Define Hamiltonian and fix the parameters of the Hamiltonian that are the same for all pairs
def H_ij(v_ij , ez_i , ez_j , a0 = 1.42039011 , d0 = 3.344, V0_sigam = +0.48, V0_pi = -2.7, r0 =

0.184* 1.42039011 * np.sqrt (3) ):
"""

Args:
d0: float

Distance between two layers. Notice d0 <= than minimum interlayer distance ,
otherwise you are exponentially increasing interaction!

a0: float
Equilibrium distance between two neghibouring cites.

V0_sigam: float
Slater -Koster parameters

V0_pi: float
Slater -Koster parameters
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r0: float
Decay rate of the exponential

"""

dd = np.linalg.norm(v_ij)
V_sigam = V0_sigam * np.exp(-(dd-d0) / r0 )
V_pi = V0_pi * np.exp(-(dd-a0) / r0 )

tilt_1 = np.power(np.dot(v_ij , ez_i)/ dd, 2)
tilt_2 = np.power(np.dot(v_ij , ez_j)/ dd, 2)
t_ij = V_sigam * (tilt_1+tilt_2)/2 + V_pi * (1- (tilt_1 + tilt_2)/2)

return t_ij

Now that the Hamiltonian is defined, it is time to define the reciprocal space, i.e. the right Brillouin zone for
our system. In the simple case of TBG, LTB-Symm is able to detect mini brillouin zone (MBZ) automatically.

# Define MBZ and set K-points
mytb.MBZ()
mytb.set_Kpoints ([’K1’,’Gamma’,’M2’, ’K2’] , N=32)

We may define a specific path inside the MBZ set_Kpoints(), with total N=32 K-points which will be
automatically distributed along the segments.

Now the physics is set, and electronic bands are ready to calculate.

# For twisted bilayer graphene sigma=np.abs(V0_pi -V0_sigam)/2 . An approximate value where
flat bands are located

mytb.calculate_bands(H_ij , n_eigns = 4, sigma=np.abs ( -2.7 -0.48)/2, solver=’primme ’,
return_eigenvectors = False)

It is always a good idea to save the calculation!
mytb.save(bands=True)

You could run this code in parallel using MPI. For example on 4 cores, this calculation should take only
around 200 seconds

$ mpirun -n 4 python input_calculate.py

Before plotting, let us see if there are any flatbands

# Detect if there are any flatbands
mytb.detect_flat_bands ()

Then you realize there are 4 flat bands, but are not centered around zero. This could happen, simply because
the approximate value of sigma that is used in mytb.calculate_bands() has no knowledge of Fermi level. This
can be easily fixed simply by recentering flat bands around a given K-point (in this case K1, where Dirac cone
is centered):

# Set Fermi level by shifting E=0 to the avergage energies of flat bands at point e.g. ’K1’
mytb.shift_2_zero(’K1’, np.array ([0,1,2,3]))

Finally, you can plot and save the band structure.

# Plot bands and modify figure as you like
plot = mytb.plotter_bands(color_ =’C0’)
plot.set_ylim ([ -10 ,15])
plt.savefig(’out_1 .08 _1AA/’+’Bands_ ’+ ".png", dpi =150)

plt.show()

Result are shown in Fig. 7.2a. For denser a calculation we could set N=1000 in set_Kpoints(), that requires
a longer calculation Fig. 7.2b.

Alternatively you could close the session and load previously calculate bands:
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Figure 7.2: Band structutre of magic angle TBG in 1AA unitcell. (left) A fast calculation with N =32, only 200
Seconds. (right) denser calculation with N=1000

mytb = ls.TB()
mytb.load(’out_1 .08 _1AA’, bands=’bands_.npz’, configuration=’configuration_.npz’)
plot = mytb.plotter_bands(color_ =’C0’)

Warning: In case of using *mpirun*, it is better to assign only one core for plotting functions:

import numpy as np
import ltbsymm as ls
import matplotlib.pyplot as plt
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank ()

if rank == 0:
mytb = ls.TB()
mytb.load(’out_1 .08 _1AA’, bands=’bands_.npz’, configuration=’configuration_.npz’)
plot = mytb.plotter_bands(color_ =’C0’)
plt.show()

MPI.Finalize ()

Example 2: Symmetry operations and wavevector parity

This example shows how to investigate the parity of wavevectors under various symmetry operations at any
given point of the Brillouin zone. Symmetry is useful to understand the topological properties of band structure.

As an example, here, we consider two unit cells of twisted bilayer graphene at the magic angle 1.08 degrees.
At the time of writing this example, the project is under active development. “symmetry“ module is only fully
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developed for the rectangular lattice.
First let’s calculate eigenvectors at high symmetry points, like in the previous example:

import sys
import numpy as np
import ltbsymm as ls
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank ()

# Start a TB object and set/load configuration
mytb = ls.TB()
mytb.set_configuration(’1.08 _2AA.data’, r_cut = 5.7, local_normal=True , nl_method=’RS’)
mytb.save(configuration =True)

# Define Hamiltonian and fix the parameters of the Hamiltonian that are the same for all pairs
def H_ij(v_ij , ez_i , ez_j , a0 = 1.42039011 , d0 = 3.344, V0_sigam = +0.48, V0_pi = -2.7, r0 =

0.184* 1.42039011 * np.sqrt (3) ):
"""

Args:
d0: float

Distance between two layers. Notice d0 <= than minimum interlayer distance ,
otherwise you are exponentially increasing interaction!

a0: float
Equilibrium distance between two neghibouring cites.

V0_sigam: float
Slater -Koster parameters

V0_pi: float
Slater -Koster parameters

r0: float
Decay rate of the exponential

"""
#print(v_ij , ez_i , ez_j)
dd = np.linalg.norm(v_ij)
V_sigam = V0_sigam * np.exp(-(dd-d0) / r0 )
V_pi = V0_pi * np.exp(-(dd-a0) / r0 )

tilt_1 = np.power(np.dot(v_ij , ez_i)/ dd, 2)
tilt_2 = np.power(np.dot(v_ij , ez_j)/ dd, 2)
t_ij = V_sigam * (tilt_1+tilt_2)/2 + V_pi * (1- (tilt_1 + tilt_2)/2)

return t_ij

# Define MBZ and set K-points
mytb.MBZ()
mytb.set_Kpoints ([’X’,’Gamma ’,’Y’, ’W’], N=0, saveH=True)

# For twisted bilayer graphene sigma=np.abs(V0_pi -V0_sigam)/2 . An approximate value that flat
bands are located

mytb.calculate_bands(H_ij , n_eigns = 8, sigma=np.abs ( -2.7 -0.48)/2, solver=’primme ’, tbt=’type2
’, return_eigenvectors = True)

mytb.save(bands=True)

MPI.Finalize ()

For detailed explanation of the above function see Example 1.
Once a band structure calculation is done, you can always save using

mytb.save(bands=True , configuration=True)

This is very convenient, for later application or symmetry analysis you can simply load:
mytb.load(’out_1 .08 _2AA’, bands=’bands_.npz’, configuration=’configuration_.npz’)

91



There is no need to re-calculate from beginning.

Having wave vectors, we can proceed to create a Symm object from our TB model.

if rank == 0:

sm = ls.Symm(mytb)

sm.build_map(’C2z’,[’-X+1/2*Rx’,’-Y+1/2*Ry’,’Z’], atol =0.3, plot = True)
sm.build_map(’C2y’,[’-X’,’Y+1/2*Ry’,’-Z’], atol =0.3)
sm.build_map(’C2x’,[’X+1/2* Rx’,’-Y’,’-Z’], atol =0.3)

You may define all symmetry operations of the space group. Note that the Symm object can also handle
non-symmorphic operations. build_map() simply verifies if the suggest symmetry exists in real space, and if
so, and how does it map with existing orbital indices.

The second argument of build_map() should be arithmetic math operations in following order: [operation
for X, operation for Y, operation for Z] The Arithmetic symbols and namespaces below are acceptable:

+, -, /, *, X, Y, Z, Rx, Ry , and Rz.

Rx, Ry, and Rz are lattice vectors along their directions. X, Y, and Z are coordinates of cites inside unitcell.
In our example 1/2*Rx applies a non-symmorphic translation in the x direction.
Next, build (N*N) matrices for the verified symmetry operations.

# Make the operation Matrix at a given point of receiprocal space
sm.make_Cmat(’C2x’, ’Gamma ’)
sm.make_Cmat(’C2y’, ’Gamma ’)
sm.make_Cmat(’C2z’, ’Gamma ’)

And we can simply check (up to the false tolerance error set by “ftol“) if they make sense, by taking the
square

# Check operations square and how they commute
sm.check_square(’C2x’, ’Gamma’, ftol = 30)
sm.check_square(’C2y’, ’Gamma’, ftol = 30)
sm.check_square(’C2z’, ’Gamma’, ftol = 30)

We may need to know how the symmetry operations commute, or anti-commute !

sm.check_commute(’C2x’, ’C2y’, ’Gamma’, ftol =30)
sm.check_commute(’C2z’, ’C2y’, ’Gamma’, ftol =30)
sm.check_commute(’C2x’, ’C2z’, ’Gamma’, ftol =30)

In this case results like this:

C2x @ C2x = identity at Gamma
C2y @ C2y = identity at Gamma
C2z @ C2z = identity at Gamma
[C2x , C2y] do commute at Gamma
[C2z , C2y] do commute at Gamma
[C2x , C2z] do commute at Gamma

We are inerested in symmetry operation on wave vectors associated with flat bands, therefore first we detect
if there are any flat bands:

mytb.detect_flat_bands ()

Results in:
8 flat bands detected

Now we can check if (flat) wave vectors respect the symmetries that we defined:
sm.vector_diag(’Gamma’, name1=’C2x’, subSize = 4, skip_diag = True)
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Which results in:

======================
** vector_diag at Gamma **
======================

Subspace 1.0 with energies:
0.005687156959874318
0.005675662193339814
-0.0003969110247522556
-0.00041691802874066486
<psi| C2z |psi >
[[ -0.8+0.j , 0.5 -0.2j,-0. +0.j ,-0. +0.j ],
[ 0.5+0.2j, 0.8+0.j , 0. -0.j ,-0. +0.j ],
[-0. -0.j , 0. +0.j , 0.9+0.j , 0.3-0.j ],
[-0. -0.j ,-0. -0.j , 0.3+0.j ,-0.9+0.j ]]

<psi| C2y |psi >
[[ 1.+0.j, 0.-0.j, 0.-0.j, -0.+0.j],
[ 0.+0.j, 1.+0.j, 0.-0.j, -0.+0.j],
[ 0.+0.j, 0.+0.j, -1.+0.j, -0.+0.j],
[-0.-0.j,-0.-0.j,-0.-0.j, -1.+0.j]]

<psi| C2x |psi >
[[ -0.8+0.j , 0.5 -0.2j, 0. -0.j ,-0. +0.j ],
[ 0.5+0.2j, 0.8+0.j , 0. -0.j , 0. -0.j ],
[ 0. +0.j , 0. +0.j ,-0.9+0.j ,-0.3+0.j ],
[-0. -0.j , 0. +0.j ,-0.3-0.j , 0.9+0.j ]]

Subspace 2.0 with energies:
-0.003000614802293855
-0.003018659755200659
-0.0035570670624436307
-0.0036018736346046243
<psi| C2z |psi >
[[ -0.5+0.j , -0.1+0.9j, 0. +0.j ,-0. +0.j ],
[-0.1 -0.9j, 0.5+0.j ,-0. +0.j ,-0. -0.j ],
[ 0. -0.j ,-0. -0.j , 0.5+0.j , -0.3+0.8j],
[-0. -0.j ,-0. +0.j ,-0.3-0.8j,-0.5-0.j ]]

<psi| C2y |psi >
[[ -1.+0.j, 0.-0.j, 0.+0.j, -0.+0.j],
[ 0.+0.j, -1.+0.j, -0.+0.j,-0.-0.j],
[ 0.-0.j,-0.-0.j, 1.+0.j, -0.+0.j],
[-0.-0.j, -0.+0.j,-0.-0.j, 1.+0.j]]

<psi| C2x |psi >
[[ 0.5+0.j , 0.1 -0.9j,-0. -0.j ,-0. +0.j ],
[ 0.1+0.9j, -0.5+0.j , 0. -0.j ,-0. -0.j ],
[-0. +0.j , 0. +0.j , 0.5+0.j ,-0.3+0.8j],
[-0. -0.j ,-0. +0.j ,-0.3-0.8j, -0.5+0.j ]]

As you can see there are offdiagonal terms in ‘C2x‘ and ‘C2z‘ space, which don’t allow us to read pari-
ties. Unfortunately, there is no guarantee that “LANCZOS“ wave vectors would be diagonal in this subspace,
especially in the case of degenerate vectors.

Hopefully, we perform successive diagonalisations to take care of subspaces of degenerate eigenvalues

# Diagonalize wave vectors respect to a given symmetry
sm.vector_diag(’Gamma’, name1=’C2z’, name2= ’C2x’, subSize = 4, rtol =0.1, skip_diag = False)

======================
** vector_diag at Gamma **
======================

Diagonalizing flat bands subspace 1.0 with energies:
0.005687156959874318
0.005675662193339814
-0.0003969110247522556
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-0.00041691802874066486
<psi| C2z |psi >
[[ -0.8+0.j , 0.5 -0.2j,-0. +0.j ,-0. +0.j ],
[ 0.5+0.2j, 0.8+0.j , 0. -0.j ,-0. +0.j ],
[-0. -0.j , 0. +0.j , 0.9+0.j , 0.3-0.j ],
[-0. -0.j ,-0. -0.j , 0.3+0.j ,-0.9+0.j ]]

Diagonalizing respect to C2z
eignvalues: [-1.-0.j, 1.+0.j, 1.+0.j,-1.-0.j]

Second off -diagonalizing respect to C2x
upper_block is
[[ -1.+0.j, 0.-0.j],
[ 0.+0.j, 1.+0.j]]

eignvalues: [-1.-0.j, 1.-0.j]
lower_block is
[[ -1.+0.j, -0.+0.j],
[-0.-0.j, 1.+0.j]]

eignvalues: [-1.-0.j, 1.+0.j]

Final check if diagonalized respect to C2z
[[ -1.+0.j, -0.+0.j, 0.+0.j, 0.-0.j],
[-0.-0.j, 1.+0.j, -0.+0.j, 0.+0.j],
[ 0.-0.j,-0.-0.j, 1.+0.j, -0.+0.j],
[ 0.+0.j,-0.-0.j,-0.-0.j, -1.+0.j]]

Final check if diagonalized respect to C2y
[[ 1.+0.j, 0.-0.j, 0.-0.j, -0.+0.j],
[ 0.+0.j, 1.+0.j, -0.+0.j, 0.-0.j],
[ 0.+0.j,-0.-0.j, -1.+0.j, -0.+0.j],
[-0.-0.j, 0.+0.j,-0.-0.j, -1.+0.j]]

Final check if diagonalized respect to C2x
[[ -1.+0.j, 0.+0.j, -0.+0.j, 0.-0.j],
[ 0.+0.j, 1.+0.j, -0.+0.j, 0.-0.j],
[-0.-0.j,-0.-0.j, -1.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]]

Diagonalizing flat bands subspace 2.0 with energies:
-0.003000614802293855
-0.003018659755200659
-0.0035570670624436307
-0.0036018736346046243
<psi| C2z |psi >
[[ -0.5+0.j , -0.1+0.9j, 0. +0.j ,-0. +0.j ],
[-0.1 -0.9j, 0.5+0.j ,-0. +0.j ,-0. -0.j ],
[ 0. -0.j ,-0. -0.j , 0.5+0.j , -0.3+0.8j],
[-0. -0.j ,-0. +0.j ,-0.3-0.8j,-0.5-0.j ]]

Diagonalizing respect to C2z
eignvalues: [-1.-0.j, -1.+0.j, 1.+0.j, 1.-0.j]

Second off -diagonalizing respect to C2x
upper_block is
[[ 1.+0.j, -0.+0.j],
[-0.-0.j, -1.+0.j]]

eignvalues: [ 1.+0.j, -1.+0.j]
lower_block is
[[ -1.+0.j, -0.+0.j],
[-0.-0.j, 1.+0.j]]

eignvalues: [ -1.+0.j, 1.-0.j]

Final check if diagonalized respect to C2z
[[ -1.+0.j, 0.-0.j, 0.-0.j,-0.-0.j],
[ 0.+0.j, -1.+0.j, -0.+0.j, -0.+0.j],
[ 0.+0.j, 0.-0.j, 1.+0.j, 0.-0.j],
[ -0.+0.j,-0.-0.j, 0.+0.j, 1.+0.j]]

Final check if diagonalized respect to C2y
[[ -1.+0.j, 0.-0.j, -0.+0.j, 0.+0.j],
[ 0.+0.j, 1.+0.j, 0.-0.j, 0.+0.j],
[-0.-0.j, 0.+0.j, -1.+0.j, -0.+0.j],
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[ 0.-0.j, 0.-0.j,-0.-0.j, 1.+0.j]]

Final check if diagonalized respect to C2x
[[ 1.+0.j, 0.-0.j, -0.+0.j, 0.+0.j],
[ 0.+0.j, -1.+0.j, -0.+0.j, 0.+0.j],
[-0.-0.j,-0.-0.j, -1.+0.j, 0.+0.j],
[ 0.-0.j, 0.-0.j, 0.-0.j, 1.+0.j]]

They are successfully diagonalized. So we can read the parities.
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