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An extension theorem from connected sets

and homogenization of non-local functionals

Andrea Braides∗, Valeria Chiadò Piat and Lorenza D’Elia†

Abstract. We study the asymptotic behaviour of convolution-type functionals defined
on general periodic domains by proving an extension theorem.

Keywords: homogenization, perforated domains, non-local functionals, extension oper-
ators

AMS Classifications. 49J45, 49J55, 74Q05, 35B27, 35B40, 45E10

1 Introduction

In this paper we consider energies of convolution-type whose prototypes are functionals
of the form

1

εd+p

∫

Ω×Ω

a

(
y − x

ε

)
|u(y)− u(x)|pdx dy, (1)

where a is a non-negative convolution kernel, p ∈ (1,+∞), ε is a scaling parameter and
Ω is a Lipschitz domain in R

d. The kernel a : Rd → [0,+∞[, describing the strength of
the interaction at a given distance, satisfies

∫

Rd

a(ξ)(1 + |ξ|p) dξ < +∞, (2)

and
a(ξ) ≥ c > 0, if |ξ| ≤ r0, (3)

for some r0 > 0 and c > 0.
Functionals of this form have been used as an approximation of the Lp-norm of the

gradient as ε → 0 and as such give an alternative way of defining Sobolev spaces (see
e.g. [2, 10]). In the case p = 2 perturbations of such energies (1) arise from models
in population dynamics where the macroscopic properties are reduced to studying the
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evolution of the first-correlation function describing the population density u in the system
[11], and recently they have also been used in problems in Data Science [12]. Furthermore
discrete versions of such energies have been extensively studied in a general setting (see
e.g. [3, 5] and related works).

A rather complete analysis of perturbations of functionals (1), more precisely, of func-
tionals that are dominated from below and above by functionals of type (1), is presented
in [4]. In this paper we consider another type of perturbation of (1) in the framework of
the so-called perforated domains, that cannot be reduced to the analysis in [4] since it is
‘degenerate’ on the complement of a periodic connected set.

In our analysis we consider a typical situation arising in the study of inhomogeneous
media with a periodic microstructure, when one sets the model in a domain obtained by
removing inclusions representing sites with which the system does not interact. Usually,
such a periodically perforated domain is obtained by intersecting Ω with a periodic open
subset Eδ = δE of Rd, where E is a periodic set with Lipschitz boundary and δ is the
(small) period of the microstructure. In the setting of energies (1) the relevant scale of the
period δ is of order ε. Indeed, in the other cases we have a multi-scale problem that can be
decomposed into two separate limit analyses that fall within known results corresponding
to letting first δ → 0 and then ε → 0, or the converse (see [8]). Hence, we will consider
energies whose prototypes are of the form

Fε(u) =
1

εd+p

∫

(Ω∩εE)×(Ω∩εE)

a

(
y − x

ε

)
|u(x)− u(y)|pdy dx, (4)

where Ω is a fixed domain in R
d.

In order to study the asymptotic analysis of such energies, it is necessary to prove that
sequences with equi-bounded energy (and equi-bounded Lp-norm) are precompact. For
the analog energy on Sobolev spaces

F Sob
ε (u) =

∫

Ω∩εE

|∇u|pdy dx.

this has been done in [1] through the construction of suitable extension operators Tε :
Lp(Ω∩ εE) → Lp(Ω) which, for each Ω′ compactly contained in Ω, provide an embedding
of W 1,p(Ω′) in W 1,p(Ω ∩ εE) uniformly for ε small enough (below a threshold explicitly
depending on the distance between Ω′ and ∂Ω). The compact embedding of W 1,p(Ω′) in
Lp(Ω′) then provides the desired compactness property. In our case, since the energies are
non-local, a more complex statement is necessary. After noting that by condition (3) it is
sufficient to prove compactness when a is the characteristic function of a ball centered in 0
and given radius r0, we prove the existence of extension operators Tε : L

p(Ω∩εE) → Lp(Ω)
with the property that R and C exists such that for each Ω′ compactly contained in Ω,

∫

Ω′×Ω′

χBR

(
y − x

ε

)
|Tεu(x)− Tεu(y)|pdy dx

≤ C

∫

(Ω∩εE)×(Ω∩εE)

χBr0

(
y − x

ε

)
|u(x)− u(y)|pdy dx, (5)
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for ε small enough, with C and R independent of ε (here Bρ denotes the ball of centre 0
and radius ρ and χA is the characteristic function of the set A). The precise statement of
this result is given in Theorem 2.2. It provides a uniform bound for energies of the type
(1) on Ω′ in terms of energies (4), which in turn allows to apply the compactness results
in [4] (see Section 2.2). Moreover, the asymptotic analysis of functionals (1) ensure that
limits of functions with equibounded energies are in W 1,p(Ω′) with a uniform bound and
hence they belong to W 1,p(Ω).

The case p = 2 in (4) and with compact perforations; i.e., with E of the form E =
R

d \ (K0 + Z
d), where K0 is a compact subset of Rd with Lipschitz boundary such that

(K0 + i)∩ (K0 + j) = ∅ if i, j ∈ Z
d and i 6= j, has been studied in [8], together with some

variants that allow to consider random perforations [9]. The main feature of our paper
is the proof of the extension theorem under the only assumption that the periodic set E
is connected and with Lipschitz boundary, and holds for any p > 1. The construction of
Tε is inspired by the arguments of [1], consisting in proving a local extension result on
cubes and then using a periodic partition of the unity. The non-locality of the energies
adds further technical difficulties to the possible non-connectedness or non-regularity of
the restriction of E to cubes, already present in the case of Sobolev functions, and forces
the introduction of the radius of interaction R in inequality (5).

As an application, we study the asymptotic behaviour of energies of the form

Hε(u) =
1

εd

∫

(Ω∩εE)2
h

(
x

ε
,
y

ε
,
u(y)− u(x)

ε

)
dx dy,

with u ∈ Lp(Ω;Rm), upon some structure hypotheses on h as those considered in [4], that
allow Hε to be compared with Fε. In Section 3 we obtain a homogenization theorem for
Hε as ε→ 0 proving that the Γ-limit of Hε is defined on W 1,p(Ω;Rm) and has a standard
local form ∫

Ω

hhom(Du)dx,

with hhom characterized by non-local homogenization formulas and of p-growth by (2) and
(3). The proof is obtained by a perturbation argument that allows to use homogenization
theorems proved in [4] for the corresponding energies defined on ‘solid’ domains, applied
to functionals of the form Hε + δFε. The Extension Theorem provides uniform estimates
that allow to invert the passage to the limit as ε → 0 and δ → 0. We note that a discrete
analog of this result can be found in [6], where the discrete setting allows easier extension
results from the discrete version of a perforated domain.

Before stating and proving the main result we gather some of the notation used in the
following.

Notation

• Q = (0, 1)d denotes the unit cube in R
d.

3



• χA denotes the characteristic function of the set A.

• ⌊t⌋ denotes the integer part of t ∈ R.

• Mm×d is the space of m× d real matrices.

• if Ξ ∈ Mm×d and x ∈ R
d then Ξx ∈ R

m is defined by the usual row-by-column
product.

• For any open set Ω ⊂ R
d and for any λ > 0, λΩ denotes the λ-homothetic set

λΩ := {λx : x ∈ Ω},

and Ω(λ) is the retracted set

Ω(λ) := {x ∈ Ω : dist(x, ∂Ω) > λ}. (6)

• For R > 0, DR denotes the set of points in R
d × R

d whose distance is less than R;
i.e.,

DR := {(x, y) ∈ R
d × R

d : |x− y| ≤ R}.

• Given an open set with finite Lebesgue measure |A| <∞, the mean value of u over
A is given by

uA =
1

|A|

∫

A

u(x) dx. (7)

• We say that a set E ⊂ R
d is periodic (more precisely, Q-periodic) if E + ei = E for

every i = 1, 2, · · · , d where (ei)
d
i=1 is the canonical basis of Rd.

2 The extension theorem

In this section, we prove the existence of an extension operator for non-local functionals
defined on general connected domains. The main result of the paper is Theorem 2.2, from
which we deduce a compactness result in Section 2.2. Before stating it, we recall the
definition of a set with Lipschitz boundary.

Definition 2.1. An open set E ⊂ R
n has Lipschitz boundary at x ∈ ∂E if ∂E is

locally the graph of a Lipschitz function, in the sense that there exist a coordinate system

(y1, . . . , yd), a Lipschitz function Φ of d − 1 variables, and an open rectangle Ux in the

y-coordinates, centred at x, such that E ∩ Ux = {y : yn < Φ(y1, . . . , yd−1)} and that ∂E
splits Ux into two connected sets, E ∩ Ux and Ux \ E. If this property holds for every

x ∈ ∂E with the same Lipschitz constant, we say that E has Lipschitz boundary.
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Theorem 2.2. Let E be a periodic open subset of Rd with Lipschitz boundary and let Ω
be a bounded open subset of Rd. Then, there exist R = R(E) > 0 and k0 > 0 such that for

all ε > 0 there exists a linear and continuous extension operator Tε : L
p(Ω∩εE) → Lp(Ω)

such that for all r > 0 and for all u ∈ Lp(Ω ∩ εE),
Tε(u) = u a.e. in Ω ∩ εE, (8)

∫

Ω(εk0)

|Tε(u)|p dx ≤ c1

∫

Ω∩εE

|u|p dx, (9)

∫

(Ω(εk0))2∩DεR

|Tε(u)(x)− Tε(u)(y)|p dx dy ≤ c2(r)

∫

(Ω∩εE)2∩Dεr

|u(x)− u(y)|p dx dy, (10)

where we use notation (6). The positive constants c1 and c2 depend on E and d and, in

addition, c2 depends also on r, but both are independent of ε.

The proof, which will be given in the next subsection, is quite technical and it is split
into several lemmas.

2.1 Technical lemmas and proof of the main result

In order to give an idea of the construction of the extension operator, we assume that
E ∩ 2Q is connected and has Lipschitz boundary. Under these assumptions, there exists
a linear and continuous operator Φ : Lp(E ∩ 2Q) → Lp(2Q) satisfying, in particular,
an estimate analogous to (10) (see Lemma 2.5). Then, we consider the family Φα of
the extension operator obtained by traslating Φ by an integer vector α ∈ Z

d. Finally,
thanks to a periodic partition of unity, the construction of a global extension operator
is achieved glueing together Φα (see Lemma 2.7). Now, the assumptions that E ∩ 2Q is
connected and has Lipschitz boundary in general are not satisfied (unless the complement
of E is a disjoint union of compact sets, which is the case studied in [8]), so that the first
step consists to overcome the lack of connectedness of E ∩ 2Q and the regularity of its
boundary. To this end, we state a slightly modified version of [1, Lemma 2.3], which is a
key tool for the construction of the extension operator. The proof remains analogous to
that of [1, Lemma 2.3] and is not repeated here.

Lemma 2.3. Let E be a connected open subset of Rd with Lipschitz boundary. Then,

there exists k ∈ N, k ≥ 4, such that 3Q∩E is contained in a single connected component

C of kQ ∩ E. Moreover, C has Lipschitz boundary at each point of ∂C ∩ 3Q.

We denote henceforth by C̃ the positive constant given by C̃ := 2
√
dk, where k is

defined as Lemma 2.3.
The next lemma is an easy consequence of the Hölder inequality.

Lemma 2.4. Let A be an open subset of R
d. Assume that A has finite and positive

Lebesgue measure |A| <∞. Then, for every u ∈ Lp(A), with 1 < p <∞,
∫

A

|uA − u(x)|pdx ≤ 1

|A|

∫

A×A

|u(x)− u(y)|pdxdy. (11)
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Proof. Denote by p′ the conjugate exponent of p. Thanks to Hölder’s inequality, we
deduce

∫

A

|uA − u(x)|pdx =
1

|A|p
∫

A

∣∣∣∣
∫

A

(u(y)− u(x))dy

∣∣∣∣
p

dx

≤ |A|p/p′

|A|p
∫

A

∫

A

|u(y)− u(x)|pdydx

=
1

|A|

∫

A×A

|u(y)− u(x)|pdxdy,

which concludes the proof.

The next lemma shows the existence of an extension operator Φ on general sets of Rd.
It is an adaptation of [1, Lemma 2.6].

Lemma 2.5. Let B, ω, ω′ be bounded open subsets of Rd. Assume that ∂B is Lipschitz-

continuous at each point of ∂B ∩ω and ω′ ⊂⊂ ω. Then, there exist a positive real number

R > 0 and a linear and continuous extension operator Φ : Lp(B) → Lp(ω′) such that, for

all u ∈ Lp(B),
Φ(u) = u a.e. in B ∩ ω′, (12)
∫

ω′

|Φ(u)|p dx ≤ c1

∫

B∩ω

|u|p dx, (13)

∫

(ω′×ω′)∩DR

|Φ(u)(x)− Φ(u)(y)|p dx dy ≤ c2

∫

(B∩ω)2
|u(x)− u(y)|p dx dy, (14)

where c1 and c2 are positive constant depending only on B, ω′, ω and p.

Proof. Since ∂B has Lipschitz boundary at each point of ∂B ∩ ω, there exist a neigh-
bourhood U of ∂B ∩ ω and a bi-lipschitz map R : U ∩ B → U \ B such that, for any
x1, x2 ∈ U ∩B,

1

2
|R(x1)−R(x2)| ≤ |x1 − x2| ≤ 2|R(x1)−R(x2)|.

For fixed t > 0 chosen below, we consider the set

At := {x ∈ ω \B : dist(x, ∂B) < t}. (15)

We may fix t > 0 small enough such that

At ∩ ω′ ⊂ U \B and R−1(At ∩ ω′) ⊂ B ∩ ω. (16)

Let ϕ be a C∞ function such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in B and ϕ ≡ 0 in {x ∈ R
d \ B :

dist(x, ∂B) ≥ t}. We define the operator Φ : Lp(B) → Lp(ω′) as follows

Φ(u)(x) :=





u(x), x ∈ B ∩ ω′,

ϕ(x)u(R−1(x)) + (1− ϕ(x))uB∩ω, x ∈ At ∩ ω′,

uB∩ω, x ∈ ω′ \ At,

(17)
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where uB∩ω denotes the mean value of the function u over B ∩ω (see (7)). It follows that
Φ(u) ∈ Lp(ω′) and Φ(u) = u a.e. in B ∩ ω′; i.e., condition (12) is satisfied.

We now show condition (13). To this end, note that ω′ can be written as

ω′ = (B ∩ ω′) ∪ (At ∩ ω′) ∪ (ω′ \ At).

This, combined with the Jensen inequality and the definition (17) of Φ, yields

∫

ω′

|Φ(u)(x)|pdx =

∫

B∩ω′

|Φ(u)(x)|pdx+
∫

At∩ω′

|Φ(u)(x)|pdx+
∫

ω′\At

|Φ(u)(x)|pdx

=

∫

B∩ω′

|u(x)|pdx+
∫

At∩ω′

|ϕ(x)u(R−1(x)) + (1− ϕ(x))uB∩ω|pdξ

+ |ω′ \ At||uB∩ω|p

≤
∫

B∩ω′

|u(x)|pdx+ 2p−1

∫

At∩ω′

|u(R−1(x))|pdx

+ |uB∩ω|p(2p−1|ω′ ∩ At|+ |ω′ \ At|). (18)

Since R is a bi-Lipschitz map, the Jacobian
∣∣∂R
∂x

(x)
∣∣ is a bounded function; i.e., there

exists a positive constant cR such that

∣∣∣∣
∂R
∂x

(x)

∣∣∣∣ ≤ cR, (19)

so that, thanks to the change of variables x′ = R−1(x) and properties (16), we have

∫

At∩ω′

|u(R−1(x))|pdx ≤ cR

∫

B∩ω

|u(x′)|pdx′.

This, along with (18), implies that

∫

ω′

|Φ(u)(x)|pdx ≤ (cR2
p−1 + 1)

∫

B∩ω′

|u(x)|pdx+ |uB∩ω|p(2p−1|ω′ ∩ At|+ |ω′ \ At|)

≤ c1

∫

B∩ω

|u(x)|pdx,

where c1 denotes a positive constant depending only on p, ω′, B and R. Hence, condition
(13) is proven.

To conclude the proof, it remains to check condition (14). Fix R < t. For (x, y) ∈
(ω′ × ω′) ∩ DR, it is enough to estimate the integral in the left-hand side of (14) by

7



examining separately the sets

S1 = ((B ∩ ω′)× (B ∩ ω′)) ∩DR,

S2 = ((B ∩ ω′)× (At ∩ ω′)) ∩DR,

S ′
2 = ((At ∩ ω′)× (B ∩ ω′) ∩DR,

S3 = ((At ∩ ω′)× (At ∩ ω′)) ∩DR,

S4 = ((At ∩ ω′)× (ω′ \ At)) ∩DR,

S ′
4 = ((ω′ \ At)× (At ∩ ω′)) ∩DR,

S5 = ((ω′ \ At)× (ω′ \ At)) ∩DR.

Note that the other cases do not occur since the distance between the points is grater
than R. Indeed, take, for example, (x, y) ∈ (B ∩ ω′) × (At \ ω′). Due to definition of At

and since R < t, the distance |x− y| is greater than R.
Now, we evaluate the left-hand side of (14) on the set Si defined above. In view of the
definition (17) of Φ, we have

∫

S1

|Φ(u)(x)− Φ(u)(y)|p dxdy =
∫

S1

|u(x)− u(y)|p dxdy

≤
∫

(B∩ω)2
|u(x)− u(x)|p dxdy.

Here, we used the fact that S1 ⊂ (B ∩ ω′)2 ⊂ (B ∩ ω)2.
Due to definition (17) of Φ, an application of Jensen’s inequality yields

∫

S2

|Φ(u)(x)− Φ(u)(y)|pdxdy =

∫

S2

|u(x)− u(R−1(y)) + (1− ϕ(y))(u(R−1(y))− uB∩ω)|pdxdy

≤ 2p−1

∫

S2

|u(x)− u(R−1(y))|p dxdy

+ 2p−1

∫

S2

|1− ϕ(y)|p
∣∣u(R−1(y))− uB∩ω

∣∣p dxdy (20)

Using the change of variables y′ = R−1(y) and properties (16) and (19), the first integral
in the left-hand side of (20) can be estimates as

∫

S2

|u(x)− u(R−1(y))|p dxdy ≤
∫

B∩ω′

(∫

At∩ω′

|u(x)− u(R−1(y))|pdy
)
dx

≤ cR

∫

(B∩ω′)2
|u(x)− u(y′)|p dxdy′

≤ cR

∫

(B∩ω)2
|u(x)− u(y)|p dxdy. (21)
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By applying Lemma 2.4 and taking into account condition (19), the second integral in
the right-hand side of (20) can be estimated as

∫

S2

|1− ϕ(y)|p
∣∣u(R−1(y))− uB∩ω

∣∣p dxdy ≤ |B ∩ ω′|
∫

At∩ω′

∣∣u(R−1(y))− uB∩ω

∣∣p dy

≤ cR|B ∩ ω′|
∫

B∩ω

|u(y′)− uB∩ω|p dy′

≤ cR
|B ∩ ω′|
|B ∩ ω|

∫

(B∩ω)2
|u(x)− u(y)|p dxdy.

Combined with (20) and (21), this implies
∫

S2

|Φu(x)− Φu(y)|pdxdy ≤ c

∫

(B∩ω)2
|u(x)− u(y)|pdxdy,

where c is a positive constant depending on p, B, ω, ω′ and R. Similarly, we have that
∫

S′

2

|Φu(x)− Φu(y)|pdxdy ≤ c

∫

(B∩ω)2
|u(x)− u(y)|pdxdy.

Now, consider (x, y) ∈ S3. From the definition (17) of Φ, we have

Φu(x)− Φu(y) = F1(x, y) + F2(x, y), (22)

where F1(x, y) and F2(x, y) are given by

F1(x, x) := (u(R−1(x))− uB∩ω)(ϕ(x)− ϕ(y)),

F2(x, y) := ϕ(y)
(
u(R−1(x))− u(R−1(y))

)
.

Thanks to Lemma 2.4 and due to properties (16) and the estimate |ϕ(x)− ϕ(y)| ≤ 2, we
deduce that∫

S3

|F1(x, y)|p dxdy ≤ 2p
∫

(At∩ω′)2

∣∣u(R−1(x))− uB∩ω

∣∣p dxdy

= 2p|At ∩ ω′|
∫

(At∩ω′)

∣∣u(R−1(x))− uB∩ω

∣∣p dx

≤ 2p|At ∩ ω′|cR
∫

B∩ω

|u(x′)− uB∩ω|p dx′

≤ 2pcR
|At ∩ ω′|
|B ∩ ω|

∫

(B∩ω)2
|u(x′)− u(y)|p dx′dy. (23)

On the other hand, using the changes of variables x′ = R−1(x) and y′ = R−1(y), we get
∫

S3

|F2(x, y)|p dxdy ≤
∫

(At∩ω′)2

∣∣u(R−1(x))− u(R−1(y))
∣∣p dxdy

≤ c2R

∫

(B∩ω)2
|u(x′)− u(y′)|p dx′dy′. (24)

9



In view of (22), an application of Jensen’s inequality combined with (23) and (24) leads
to

∫

S3

|Φ(u)(x)− Φ(u)(y)|p dxdy ≤ 2p−1

(∫

S3

|F1(x, y)|p dxdy +
∫

S3

|F2(x, y)|p dxdy
)

≤ c

∫

(B∩ω)2
|u(x)− u(y)|p dxdy, (25)

where c denotes a positive constant depending only on p, B, ω, ω′ and R.
Take now (x, y) ∈ S4. Applying Lemma 2.4 and using the change of variables x′ = R−1(x),
from the definition (17) of Φ, we deduce that

∫

S4

|Φ(u)(x)− Φ(u)(y)|p dxdy = |ω′ \ At|
∫

At∩ω′

∣∣u(R−1(x))− uB∩ω

∣∣p dx

≤ cR|ω′ \At|
∫

B∩ω

|u(x′)− uB∩ω|p dx′

≤ cR
|ω′ \ At|
|B ∩ ω|

∫

(B∩ω)2
|u(x)− u(y)|p dxdy

Similarly, we also get
∫

S′

4

|Φ(u)(x)− Φ(u)(y)|p dxdy ≤ cR
|ω′ ∩At|
|B ∩ ω|

∫

(B∩ω)2
|u(x)− u(y)|p dxdy.

Now, take (x, y) ∈ S5. Hence, we have that Φ(x)−Φ(y) = 0 for a.e. x, y ∈ ω′\At. Finally,
gathering all the previous estimates, we conclude that

∫

(ω′×ω′)∩DR

|Φ(u)(x)− Φ(u)(y)|pdxdy =
5∑

i=1

∫

Si

|Φ(u)(x)− Φ(u)(y)|pdxdy

+

∫

S′

2
∪S′

4

|Φ(u)(x)− Φ(u)(y)|pdxdy

≤ c2

∫

(B∩ω)2
|u(x)− u(y)|pdxdy,

where c2 is a costant depending on p, ω′, ω and B. This shows (14) and concludes the
proof.

The reflection argument that we used to construct the operator Φ cannot be used to
prove the existence of a map Φ : Lp(B) → Lp(ω) since estimate (14) may not hold with
ω′ = ω, as showed in the following example.

Example 2.6. Let B be the ball in R
2 centered at 0 and of radius 1 and let ω be the set

of R2 defined by

ω := {(x, y) ∈ R
2 : x ∈ (−1, 2),−x+ 1 ≤ y ≤ −x+ 2}.
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We define u ∈ Lp(B) as

u(x) :=

{
1, x ∈ B \ ω,
0, x ∈ B ∩ ω.

If Φ(u) is the extension of u out of B by reflection, then we have

∫

ω2∩DR

|Φu(x)− Φu(y)|pdxdy > 0,

since u is not identically constant in the neighbourhood of the points (1, 0) and (0, 1), while
∫

(B∩ω)2∩DR

|u(x)− u(y)|pdxdy = 0,

so that the condition (14) is not satisfied.

Lemma 2.7. Let E be a periodic, connected open subset of Rd with Lipschitz boundary.

Let Ω,Ω′ be open subsets of Rd such that Ω′ ⊂⊂ Ω and dist(Ω′, ∂Ω) > C̃. Then there exist

R = R(E) > 0 and a linear and continuous operator

L : Lp(Ω ∩ E) → Lp(Ω′)

such that for all r > 0 and for all u ∈ Lp(Ω ∩ E),

Lu = u, a.e. in Ω′ ∩ E, (26)
∫

Ω′

|Lu|pdx ≤ c1

∫

Ω∩E

|u|pdx, (27)

∫

(Ω′×Ω′)∩DR

|Lu(x)− Lu(y)|pdxdy ≤ c2(r)

∫

(Ω∩E)2∩Dr

|u(x)− u(y)|pdxdy, (28)

where c1 and c2 are positive constants depending on E and d and, in addition, c2 depends

also on r. The constant R depends only on the set E.

Proof. In view of Lemma 2.3, there exists k ∈ N, k ≥ 4, such that 3Q ∩ E is contained
in a single connected component C of kQ ∩ E. Since C has Lipschitz boundary at each
point of C ∩ 3Q, we can apply Lemma 2.5 with B = C, ω′ = 2Q and ω = 3Q. Hence,
there exist R > 0 and a linear and continuous operator Φ : Lp(C) → Lp(2Q) defined by
(17) such that, for any u ∈ Lp(C),

Φ(u) = u a.e. in C ∩ 2Q, (29)
∫

2Q

|Φ(u)|pdx ≤ c1

∫

C∩3Q

|u|pdx, (30)

∫

(2Q×2Q)∩DR

|Φ(u)(x)− Φ(u)(y)|pdxdy ≤ c2

∫

(C∩3Q)×(C∩3Q)

|u(x)− u(y)|pdxdy, (31)
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where the positive constants c1 and c2 depend on C and 2Q.
Let (Qα

2 )α∈Zd be the open cover of Rd obtained by translating the cube 2Q by the vector
α ∈ Z

d. For every set Ω ⊂ R
d, for every α ∈ Z

d and for every real number h > 0, we use
the notation

Ωα
h := α + hΩ. (32)

For h = 1 we simply write Ωα = Ωα
1 , while, for α = 0, Ωh = Ω0

h. For every set A ⊆ R
d,

we define the set
I(A) := {α ∈ Z

d : Qα
2 ∩A 6= ∅}.

Since dist(Ω′, ∂Ω) > C̃ = 2
√
dk, for every α ∈ I(Ω′), we have that Qα

2k ⊂ Ω.
For any α ∈ I(Ω′), we define the extension operator Φα : Lp(Cα) → Lp(Qα

2 ) by translating
the operator Φ by the integer vector α. In other words, for any u ∈ Lp(Cα),

Φα(u) := (Φ(u ◦ πα)) ◦ π−α, (33)

where, for every α ∈ Z
d and for every real number h > 0, we use the notation

πα
h (x) := α + hx for x ∈ R

d. (34)

If h = 1, we write πα = πα
1 and if α = 0, we set πh = π0

h. For simplicity, for u ∈ Lp(Ω∩E)
we denote by uα the function

uα := Φα(u|Cα) ∈ Lp(Qα
2 ). (35)

From (17) and (33), the explicit expression of uα is given by

uα(x) :=






u|Cα (x), x ∈ (2Q ∩ C)α,
ϕ(x− α)u(R−1(x− α) + α) + (1− ϕ(x− α))u(3Q∩C)α, x ∈ (2Q ∩At)

α,

u(3Q∩C)α, x ∈ (2Q \ (C ∪At))
α,

where At is given by (15) with B = Cα, ω = 3Qα, and u(3Q∩C)α is the mean value of u|Cα

over (3Q ∩ C)α; i.e.,
u(3Q∩C)α :=

∫

(3Q∩C)α
u|Cα (x)dx.

We now define the global extension operator L : Lp(Ω ∩ E) → Lp(Ω′). To this end, let
(ψα)α∈Zd be a partition of unity associated to (Qα

2 )α∈Zd such that ψβ = ψα ◦πα−β, for any
α, β ∈ Z

d. Then, the map L : Lp(Ω ∩ E) → Lp(Ω′) is defined by

Lu :=
∑

α∈I(Ω′)

uαψα,

where uα is given by (35). Note that L is a linear and continuous operator from Lp(Ω∩E)
to Lp(Ω′) and that condition (26) is satisfied. Indeed, in view of (35) and due to (29), we
have

Lu(x) =
∑

α∈I(Ω′)

uα(x)ψα(x) =
∑

α∈I(Ω′)

u(x)ψα(x) = u(x)
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for a.e. x ∈ Ω′ ∩ E.
Now, we show condition (27). To this end, fix β ∈ I(Ω′) and note that, for any α ∈ I(Qβ

2 ),
we have Qα

k ⊂ Qβ
2k. Combined with estimate (30) and Jensen’s inequality, this implies

that, for any u ∈ Lp(Ω ∩ E),
∫

Qβ
2

|Lu|pdx ≤ Np−1
∑

α∈I(Qβ
2
)

∫

Qβ
2
∩Qα

2

|uα|pdx ≤ c1N
p−1

∑

α∈I(Qβ
2
)

∫

(C∩3Q)α
|u|pdx

≤ c1N
p−1

∑

α∈I(Qβ
2
)

∫

Qα
k
∩E

|u|pdx ≤ c1N
p

∫

Qβ

2k
∩E

|u|pdx,

where N denotes, henceforth, the cardinality of the set I(Qβ
2 ). Taking the sum over

β ∈ I(Ω′) in the previous inequality, we deduce that
∫

Ω′

|Lu|pdx ≤
∑

β∈I(Ω′)

∫

Qβ
2

|Lu|pdx

≤ c1N
p

∑

β∈I(Ω′)

∫

Qβ
2k

∩E

|u|pdx ≤ Np(2k)dc1

∫

Ω∩E

|u|pdx.

The factor (2k)d is due to the fact that each point x ∈ R
d is contained in at most (2k)d

cubes of the form (Qβ
2k)β∈Zd.

To conclude the proof, it remains to show condition (28). To this end, we state the
following estimate whose proof is given in Lemma 2.8 below: for all r > 0 there exists a
positive constant c = c(r) such that

∫

((C∩Q3)α)2
|u(x)− u(y)|pdxdy ≤ c(r)

∫

(Qα
k
∩E)2∩Dr

|u(x)− u(y)|pdxdy. (36)

Fix β ∈ Z
d. Since

Lu(x)− Lu(y) =
∑

α∈I(Qβ
2
)

(uα(x)− uα(y))ψα(x)−
∑

α∈I(Qβ
2
)

uα(y)(ψα(y)− ψα(x))

for a.e. x, y ∈ Qβ
2 , an application of Jensen’s inequality leads to

∫

(Qβ
2
)2∩DR

|Lu(x)− Lu(y)|pdxdy

≤ 2p−1

∫

(Qβ
2
)2∩DR

|
∑

α∈I(Qβ
2
)

(uα(x)− uα(y))ψα(x)|pdxdy

+ 2p−1

∫

(Qβ
2
)2∩DR

|
∑

α∈I(Qβ
2
)

uα(y)(ψα(y)− ψα(x))|pdxdy. (37)
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Due to Jensen’s inequality and in view of (31) and (36), the first integral is estimated as
follows

∫

(Qβ
2
)2∩DR

|
∑

α∈I(Qβ
2
)

(uα(x)− uα(y))ψα(x)|pdxdy

≤ Np−1
∑

α∈I(Qβ
2
)

∫

(Qβ
2
∩Qα

2
)2∩DR

|uα(x)− uα(y)|pdxdy

≤ Np−1
∑

α∈I(Qβ
2
)

∫

(Qα
2
×Qα

2
)∩DR

|uα(x)− uα(y)|pdxdy

≤ c2N
p−1

∑

α∈I(Qβ
2
)

∫

((Q3∩C)α)2
|u(x)− u(y)|pdxdy

≤ c2c(r)N
p−1

∑

α∈I(Qβ
2
)

∫

(Qα
k
∩E)2∩Dr

|u(x)− u(y)|pdxdy

≤ c2c(r)N
p

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(y)|pdxdy. (38)

We evaluate the second integral. Since supp(ψα) ⊂ Qα
2 for any α ∈ Z

d, we have that, for
any x, y ∈ Qβ

2 , ∑

α∈I(Qβ
2
)

(ψα(x)− ψα(y)) = 0,

which implies that

∑

α∈I(Qβ
2
)

uα(y)(ψα(y)− ψα(x)) =
∑

α∈I(Qβ
2
)

uα(y)(ψα(y)− ψα(x))− uβ(x)
∑

α∈I(Qβ
2
)

(ψα(y)− ψα(x))

=
∑

α∈I(Qβ
2
)

(uα(y)− uβ(x))(ψα(y)− ψα(x)),

for a.e. x, y ∈ Qβ
2 . Thanks to the Jensen inequality, we obtain that

∫

(Qβ
2
)2∩DR

|
∑

α∈I(Qβ
2
)

uα(x)(ψα(y)− ψα(x))|pdxdy

≤ Np−1
∑

α∈I(Qβ
2
)

∫

(Qβ
2
∩Qα

2
)2∩DR

|uα(y)− uβ(x)|p|ψα(y)− ψα(x)|pdxdy

≤ cNp−1
∑

α∈I(Qβ
2
)

∫

(Qβ
2
∩Qα

2
)2∩DR

|uα(y)− uβ(x)|pdxdy. (39)
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In order to estimate the integral on the right-hand side of (39), we perform computations
analogous to that of Lemma 2.5. The difference is that uα and uβ are extensions of u
which belong to two different translated cubes Qα

2 and Qβ
2 . Hence, we separately evaluate

the integral on the right-hand side of (39) on the following sets, which take into account
the fact that uα and uβ are the extension of u ∈ Lp(Ω′ ∩E) on different translated cubes,

Sα,β
1 = (Qα

2 ∩Qβ
2 ∩ C)2 ∩DR;

Sα,β
2 = (((2Q ∩ C)α ∩Qβ

2 )× (Qα
2 ∩ (2Q ∩ At)

β)) ∩DR;

Sα,β
3 = (((2Q ∩ At)

α ∩Qβ
2 )× (Qα

2 ∩ (2Q ∩ C)β)) ∩DR;

Sα,β
4 = (((2Q ∩ At)

α ∩Qβ
2 )× (Qα

2 ∩ (2Q ∩ At)
β)) ∩DR;

Sα,β
5 = (((2Q ∩ At)

α ∩Qβ
2 )× (Qα

2 ∩ (2Q \ (C ∪ At))
β)) ∩DR;

Sα,β
6 = (((2Q \ (C ∪ At))

α ∩Qβ
2 )× (Qα

2 ∩ (2Q ∩At)
β)) ∩DR;

Sα,β
7 = (((2Q \ (C ∪ At))

α ∩Qβ
2 )× (Qα

2 ∩ (2Q \ (C ∪At))
β)) ∩DR.

Note that, as in Lemma 2.5, the other combinations do not occur since R is chosen such
that R < t.
Consider the case (x, y) ∈ Sα,β

1 . Since uα = uβ a.e. in Qα
2 ∩ Qβ

2 ∩ C and due to estimate
(36), we have

∫

Sα,β
1

|uα(x)− uβ(y)|pdxdy =
∫

Sα,β
1

|u(x)− u(y)|pdxdy

≤
∫

(2Q∩C)β×(2Q∩C)β
|u(x)− u(y)|pdxdy

≤
∫

((Q3∩C)β)2
|u(x)− u(y)|pdxdy

≤ c(r)

∫

(Qβ
k
∩E)2∩Dr

|u(x)− u(y)|pdxdy

≤ c(r)

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(y)|pdxdy.

Here, we have used the fact that Sα,β
1 ⊂ (2Q ∩ C)β × (2Q ∩ C)β.

Now, take (x, y) ∈ Sα,β
2 . Hence,

uα(x)− uβ(y) = u(x)− ϕ(y − β)u(R−1(y − β) + β)− (1− ϕ(y − β))u(3Q∩C)β

= [u(x)− u(3Q∩C)α ] + [u(3Q∩C)α − u(3Q∩C)β ]

ϕ(y − β)[u(R−1(y − β) + β)− u(3Q∩C)β ],
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which implies that

∫

Sα,β
2

|uα(x)− uβ(y)|pdxdy ≤ 3p−1|2Q ∩At|
∫

(2Q∩C)α
|u(x)− u(3Q∩C)α|pdx

+ 3p−1|2Q ∩ C||2Q ∩At||u(3Q∩C)α − u(3Q∩C)β |p

+ 3p−1|2Q ∩ C|
∫

(2Q∩At)β
|ϕ(y − β)|p|u(R−1(y − β) + β)− u(3Q∩C)β |pdy.

(40)

Taking Lemma 11 and estimate (36) into account, we immediately deduce that

∫

(2Q∩C)α
|u(x)− u(3Q∩C)α|pdx ≤

∫

(3Q∩C)α
|u(x)− u(3Q∩c)α|pdx

≤ 1

|3Q ∩ C|

∫

((Q3∩C)α)2
|u(x)− u(y)|pdxdy

≤ c(r)

|3Q ∩ C|

∫

(Qα
k
∩E)2∩Dr

|u(x)− u(y)|pdxdy

≤ c(r)

|3Q ∩ C|

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(y)|pdxdy. (41)

By (19), we already know that R has bounded Jacobian and R−1(2Q ∩ At) ⊂ (3Q ∩ C).
Then, in view of (36) and Lemma 11, it follows, after the changes of variables y′ = y − β
and then y′′ = R−1(y′) + β, that

∫

(2Q∩At)β
|ϕ(y − β)|p|u(R−1(y − β) + β)− u(3Q∩C)β ]|pdy

=

∫

2Q∩At

|ϕ(y′)|p|u(R−1(y′) + β)− u(3Q∩C)β ]|pdy′

≤ cR

∫

(3Q∩C)β
|u(y′′)− u(3Q∩C)β |pdy′′

≤ cR
|3Q ∩ C|

∫

((Q3∩C)β)2
|u(x)− u(y)|pdxdy

≤ cR
|3Q ∩ C|c(r)

∫

(Qβ

k
∩E)2∩Dr

|u(x)− u(y)|pdxdy

≤ c1
|3Q ∩ C|c(r)

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(y)|pdxdy. (42)
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In order to estimate the term |u(3Q∩C)α − u(3Q∩C)β |p, note that

|u(3Q∩C)α − u(3Q∩C)β |p =
1

|3Q ∩ C|p
∣∣∣∣
∫

(3Q∩C)α×(3Q∩C)β
u|Cα (x)− u|

Cβ
(y)dxdy

∣∣∣∣
p

≤ 1

|3Q ∩ C|p
∫

(3Q∩C)α×(3Q∩C)β
|u|Cα (x)− u|

Cβ
(y)|pdxdy. (43)

Since u|Cα = u|
Cβ

a.e. on Qα
3 ∩Qβ

3 ∩ C, the last integral can be estimated as follows

∫

(3Q∩C)α×(3Q∩C)β
|u|Cα (x)− u|

Cβ
(y)|pdxdy

=
1

|Qα
3 ∩Qβ

3 ∩ C|

∫

Qα
3
∩Qβ

3
∩C

∫

(3Q∩C)α×(3Q∩C)β
|u|Cα (x)− u(z) + u(z)− u|

Cβ
(y)|pdxdydz

≤ 2p−1|3Q ∩ C|
|Qα

3 ∩Qβ
3 ∩ C|

∫

(Qα
3
∩Qβ

3
∩C)×(3Q∩C)α

|u|Cα (x)− u(z)|pdxdz

+
2p−1|3Q ∩ C|
|Qα

3 ∩Qβ
3 ∩ C|

∫

(Qα
3
∩Qβ

3
∩C)×(3Q∩C)β

|u|
Cβ
(y)− u(z)|pdydz.

Since Qα
3 ∩Qβ

3 ∩ C is contained in (3Q ∩ C)α, an application of estimate (36) leads to

∫

(Qα
3
∩Qβ

3
∩C)×(3Q∩C)α

|u|Cα (x)− u(z)|pdxdz ≤
∫

((Q3∩C)α)2
|u(x)− u(z)|pdxdz

≤ c(r)

∫

(Qα
k
∩E)2∩Dr

|u(x)− u(z)|pdxdz

≤ c(r)

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(z)|pdxdz.

Similarly, we also deduce that

∫

(Qα
3
∩Qβ

3
∩C)×(3Q∩C)β

|u|
Cβ
(y)− u(z)|pdydz ≤ c(r)

∫

(Qβ
2k

∩E)2∩Dr

|u(y)− u(z)|pdydz.

Finally, from (43) we get

|u(3Q∩C)α −u(3Q∩C)β |p ≤
2pc(r)

|3Q ∩ C|p−1|Qα
3 ∩Qβ

3 ∩ C|

∫

(Qβ
2k

∩E)2∩Dr

|u(x)−u(y)|pdxdy. (44)

Gathering estimates (41), (42) and (44), from (40) we conclude that

∫

Sα,β
2

|uα(x)− uβ(y)|pdxdy ≤ c1(r)

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(y)|pdxdy,
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where c1(r) is a positive constant depending on p, E and r. The same arguments also
show that

∫

Sα,β
3

|uα(x)− uβ(y)|pdxdy ≤ c1(r)

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(y)|pdxdy.

Now consider (x, y) ∈ Sα,β
4 . We have that

uα(x)− uβ(y) = ϕ(x− α)[u(R−1(x− α) + α)− u(3Q∩C)α ] + (u(3Q∩C)α − u(3Q∩C)β)

ϕ(y − β)[u(R−1(y − β) + β)− u(3Q∩C)β ].

In view of inequalities (42) and (44), we obtain that

∫

Sα,β
4

|uα(x)− uβ(y)|dxdx ≤ 3p−1|2Q ∩ At|
∫

(2Q∩At)α
|ϕ(x− α)|p|u(R−1(x− α) + α)− u(3Q∩C)α|pdx

3p−1|2Q ∩ At|2|u(3Q∩C)α − u(3Q∩C)β |p

3p−1|2Q ∩ At|
∫

(2Q∩At)β
|ϕ(y − β)|p|u(R−1(y − β) + β)− u(3Q∩C)β |pdy

≤ c1(r)

∫

(Qβ

2k
∩E)2∩Dr

|u(x)− u(y)|pdxdy,

where c1 is a positive constant depending on p, E and r.
Now, consider (x, y) ∈ Sα,β

5 . Hence,

uα(x)− uβ(y) = ϕ(x− α)[u(R−1(x− α) + α)− u(3Q∩C)α ] + (u(3Q∩C)α − u(3Q∩C)β),

which, thanks to (42) and (44), implies that

∫

Sα,β
5

|uα(x)− uβ(y)|dxdx ≤ c(r)

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(y)|pdxdy.

Similarly, if (x, y) ∈ Sα,β
6 , we have

∫

Sα,β
6

|uα(x)− uβ(y)|dxdx ≤ c(r)

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(y)|pdxdy.

If (x, y) ∈ Sα,β
7 , then (44) shows the desired inequality on Sα,β

7 . Finally, gathering all the
previous estimate on Sα,β

i , i = 1, . . . , 7 , from (39) it follows that

∫

(Qβ
2
)2∩DR

|
∑

α∈I(Qβ
2
)

uα(y)(ψα(x)− ψα(y))|pdxdy ≤ c2(r)

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(y)|pdxdy,
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where c2 denotes a positive constant depending on E, p and r. In view of (37), the
previous estimate combined with (38) leads us to

∫

(Qβ
2
×Qβ

2
)∩DR

|Lu(x)− Lu(y)|pdxdy ≤ c2(r)

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(y)|pdxdy,

with c2(r) being a positive constant depending on p, E and r. Finally, summing up over
β ∈ I(Ω′) in the last inequality, we conclude the

∫

(Ω′×Ω′)∩DR

|Lu(x)− Lu(y)|pdxdy ≤
∑

β∈I(Ω′)

∫

(Qβ
2
×Qβ

2
)∩DR

|Lu(x)− Lu(y)|pdxdy

≤ c2(r)
∑

β∈I(Ω′)

∫

(Qβ
2k

∩E)2∩Dr

|u(x)− u(y)|pdxdy

≤ (2k)2dc2(r)

∫

(Ω∩E)2∩Dr

|u(x)− u(y)|pdxdy,

where c2(r) denotes the positive constant depending on p, E and r and the factor (2k)2d

is due to the fact that each point (x, y) ∈ R
d ×R

d is contained in at most (2k)2d cubes of
the form (Qβ

2k ×Qβ
2k)β∈Zd . This concludes the proof.

The next result proves estimate (36).

Lemma 2.8. Let C be the connected component of kQ∩E, k ≥ 4, such that 3Q∩E ⊂ C
and C has Lipschitz boundary at each point of ∂C ∩ 3Q. For any r > 0 there exists a

constant c(r) > 0 such that the following inequality holds

∫

(3Q∩C)2
|u(x)− u(y)|pdxdy ≤ c(r)

∫

(kQ∩E)2∩Dr

|u(x)− u(y)|pdxdy. (45)

Proof. We adapt the proof of [8, Lemma 3.3].
Note that for any function u the integral on the right-hand side of (45) is an increasing
function of r. Hence, it is sufficient to prove (45) for r > 0 small enough. For fixed
r > 0, there exists r1 ∈

(
0, 1

3
r
)
and ν ∈ (0, 1] which depends on the Lipschitz constant of

∂C ∩ 3Q such that for any two points η′, η′′ ∈ 3Q∩C there exists a discrete path from η′

to η′′; i.e., a set of points
η0 = η′, η1, . . . , ηN , ηN+1 = η′′

such that

i) |ηj+1 − ηj| ≤ r1, for j = 0, 1, . . . , N ;

ii) for any j = 1, . . . , N the ball Bνr1(ηj) = {η ∈ R
d : |η − ηj | ≤ νr1} is contained in

kQ ∩ C;

iii) there exists N = N(r1) such that N ≤ N for all η′, η′′ ∈ 3Q ∩ C.
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Let ξj ∈ Bνr1(ηj), for j = 1, . . . , N . Hence, thanks to the Jensen inequality and the
condition ii) above, we deduce, for η′, η′′ ∈ 3Q ∩ C,
∫

(3Q∩C)∩Bνr1
(η′)×(3Q∩C)∩Bνr1

(η′′)

|u(ξ0)− u(ξN+1)|pdξ0dξN+1

= cd(νr1)
−dN

∫

Bνr1
(η1)

· · ·
∫

Bνr1
(ηN )

∫

(3Q∩C)∩Bνr1
(η′)×(3Q∩C)∩Bνr1

(η′′)

|u(ξ0)− u(ξ1) + u(ξ1)− . . .

− u(ξN) + u(ξN)− u(ξN+1)|pdξ0dξN+1dξN . . . dξ1

≤ (N + 1)p−1cd(νr1)
−dN

∫

(kQ∩E)∩Bνr1
(η0)

· · ·
∫

(kQ∩E)∩Bνr1
(ηN+1)

N+1∑

j=1

|u(ξj)− u(ξj−1)|pdξ0dξN+1 . . . dξ1

= c(N + 1)p−1
N+1∑

j=1

∫

(kQ∩E)∩Bνr1
(ηj )×(kQ∩E)∩Bνr1

(ηj−1)

|u(ξj)− u(ξj−1)|pdξjdξj−1. (46)

In view of assumption (i), for ξj−1 ∈ (kQ∩E)∩Bνr1(ηj−1) and ξj ∈ (kQ∩E)∩Bνr1(ηj),
we have

|ξj − ξj−1| ≤ |ξj − ηj |+ |ηj − ηj−1|+ |ηj−1 − ξj−1| ≤ 2νr1 + r1 ≤ r,

which implies that (kQ∩E)∩Bνr1(ηj)×(kQ∩E)∩Bνr1(ηj−1) is contained in (kQ∩E)2∩Dr.
In view of (46) and due to item (iii), we get

c(N + 1)p−1

N+1∑

j=1

∫

(kQ∩E)∩Bνr1
(ηj)×(kQ∩E)∩Bνr1

(ηj−1)

|u(ξj)− u(ξj−1)|pdξjdξj−1

≤ c(N + 1)p−1
N+1∑

j=1

∫

(kQ∩E)2∩Dr

|u(ξ)− u(η)|pdξdη

≤ c(N + 1)p
∫

(kQ∩E)2∩Dr

|u(ξ)− u(η)|pdξdη

≤ c(N + 1)p
∫

(kQ∩E)2∩Dr

|u(ξ)− u(η)|pdξdη.

This implies that
∫

(3Q∩C)∩Bνr1
(η′)×(3Q∩C)∩Bνr1

(η′′)

|u(ξ0)− u(ξN+1)|pdξ0dξN+1

≤ c(N + 1)p
∫

(kQ∩E)2∩Dr

|u(ξ)− u(η)|pdξdη.

Covering 3Q ∩ C with a finite number of balls of radius νr1 and summing up the last
inequality over all pairs of these balls gives the desired estimate (28).
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Now, we may prove Theorem 2.2.

Proof of Theorem 2.2. The proof follows the lines of that of Theorem 2.1 in [1].
Fix ε > 0 and set k0 = 2C̃. First, let us show that there exist R = R(E) > 0, independent
of ε, and a linear and continuous extension operator Lε : Lp(Ω ∩ εE) → Lp(Ω(εk0/2))
such that, for all r > 0 and for any u ∈ Lp(Ω ∩ εE),

Lε(u) = u a.e. in Ω(εk0/2) ∩ εE, (47)

∫

Ω(εk0/2)

|Lε(u)|pdx ≤ c1

∫

Ω∩εE

|u|pdx, (48)

∫

(Ω(εk0/2))2∩DεR

|Lε(u)(x)− Lε(u)(y)|pdxdy ≤ c2(r)

∫

(Ω∩εE)2∩Dεr

|u(x)− u(y)|pdxdy. (49)

To this end, note that for every u ∈ Lp(Ω∩εE), we have u◦πε ∈ Lp(ε−1Ω∩E), where we
use the notation (34) for the map πε. Moreover, dist(ε−1Ω(εk0/2), ∂(ε

−1Ω)) > k0 = 2C̃.
Hence, we can apply Lemma 2.7, so that there exist R = R(E) > 0, independent of ε,
and a linear and continuous operator L : Lp(ε−1Ω∩E) → Lp(ε−1Ω(εk0/2)) such that, for
all r > 0 and for all u ∈ Lp(ε−1Ω ∩ E),

L(u) = u, a.e. in ε−1Ω(εk0/2) ∩ E,
∫

ε−1Ω(εk0/2)

|L(u)|pdx ≤ c1

∫

ε−1Ω∩E

|u|pdx,

∫

(ε−1Ω(εk0/2))2∩DR

|L(u)(x)− L(u)(y)|pdxdy ≤ c2(r)

∫

(ε−1Ω∩E)2∩Dr

|u(x)− u(y)|pdxdy,

where the constants c1 and c2 are given by Lemma (2.7) and they are, in particular,
independent of ε. Hence, we set Lεu = (L(u ◦ πε)) ◦ π1/ε. Note that Lεu ∈ Lp(Ω(εk0/2))
and (47), (48), (49) are satisfied.
Now, we define the extension operator Tε : L

p(Ω∩ εE) → Lp(Ω) by Tε(u) := Lε(u) a.e. in
Ω(εk0) and extended by zero out of Ω(εk0). Hence, we have that Tε(u) ∈ Lp(Ω) and (8),
(9) and (10) follow directly from (47), (48) and (49) and this concludes the proof.

2.2 Compactness

In this section we prove a compactness result which in particular implies the equi-coerciveness
of families of non-local functionals as those in the homogenization result in the next sec-
tion. The proof is based on the extension Theorem 2.2 and on the following compactness
result proved in [9] for the case p = 2 and in [4] for general p > 1.
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Theorem 2.9. Let Ω be an open set with Lipschitz boundary, and assume that for a

family {wε}ε>0, wε ∈ Lp(Ω), the estimate

∫

Ω(εk)

∫

DR

∣∣∣∣
wε(x+ ξ)− wε(x)

ε

∣∣∣∣
p

dξ dx ≤ c (50)

is satisfied with some k > 0 and R > 0. Assume moreover that the family {wε} is bounded

in Lp(Ω). Then for any sequence εj → 0 as j → +∞, and for any open subset Ω′ ⊂⊂ Ω
the set {wεj}j∈N is relatively compact in Lp(Ω′) and every its limit point is in W 1,p(Ω).

Corollary 2.10. Let uε be a family of functions in Lp(Ω ∩ εE) such that there exists

c > 0 and r > 0 such that ||uε||Lp(Ω∩εE) ≤ c and
∫

{|ξ|≤r}

∫

(Ω∩εE)ε(ξ)

∣∣∣
uε(x+ εξ)− uε(x)

ε

∣∣∣
p

dx dξ ≤ c, (51)

for all ε > 0, with (Ω∩εE)ε(ξ) = {x ∈ Ω∩εE : x+εξ ∈ Ω∩εE}. Then, for any sequence

εj → 0 as j → +∞, and for any open subset Ω′ ⊂⊂ Ω the set {Tεjuεj}j∈N is relatively

compact in Lp(Ω′) and every its limit point is in W 1,p(Ω).

Proof. Let uε be such that ||uε||Lp(Ω∩εE) ≤ c and (51) hold for every ε > 0. From Theorem
2.2, the extended functions Tεuε satisfy the estimates

∫

Ω(εk0)

|Tεuε|p dx ≤ c (52)

and

1

εd+p

∫

(Ω(εk0))2∩DεR

|Tεuε(y)− Tεuε(x)|p dy dx

≤ c(r)

∫

|ξ|≤r

∫

(Ω∩E)ε(ξ)

∣∣∣∣
uε(x+ εξ)− uε(x)

ε

∣∣∣∣
p

dx dξ ≤ c ,

for some R > 0 independent of ε. The latter, after the change of variables y = x+ εξ, is
equivalent to ∫

Ω(εk0)

∫

|ξ|≤R

∣∣∣∣
Tεuε(x+ εξ)− Tεuε(x)

ε

∣∣∣∣
p

dξ dx ≤ c, (53)

which corresponds to (50), for wε = Tεuε. Using Theorem 2.9 for wε = Tεuε and (52),
(53), we can conclude that for any sequence εj → 0 as j → +∞, and for any open subset
Ω′ ⊂⊂ Ω, Tεjuεj is relatively compact in Lp(Ω′) and every its limit point is in W 1,p(Ω).

Remark 2.11. The limit u in the previous corollary does not depend on the choice of
the extension. In fact, if ṽε is another extension of uε and v is its limit, then for any
Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω

∫

Ω′′∩εE

|u− v|p dx ≤ c

∫

Ω′

|u− ũε|p dx+ c

∫

Ω′

|ṽε − v|p dx
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Passing to the limit as ε→ 0, one gets

|(0, 1)d ∩ E|
∫

Ω′′

|u− v|p dx ≤ 0

and concludes that u = v, by the arbitrariness of Ω′′.

3 An application to homogenization

In this section we present an application of the Extension Theorem 2.2 to the homog-
enization of non-local functional. Specifically, we consider a periodic integrand h :
R

d × R
d × R

m → [0,+∞); i.e., a Borel function such that h(·, ξ, z) is [0, 1]d-periodic
for all ξ ∈ R

d and z ∈ R
m and satisfies the following growth conditions: there exist

positive constants c0, c1, r0 and non-negative function ψ : Rd → [0,+∞) such that

h(x, ξ, z) ≤ ψ(ξ)(|z|p + 1) (54)

h(x, ξ, z) ≥ c0(|z|p − 1) ∀|ξ| ≤ r0 (55)

with ∫

Rd

ψ(ξ)(|ξ|p + 1) dξ ≤ c1. (56)

Let Ω ⊂ R
d be an open set with Lipschitz boundary. For any ε > 0, we introduce the

non-local functional Hε : L
p(Ω;Rm) → [0,+∞] defined as

Hε(u) =

∫

Rd

∫

(Ω∩εE)ε(ξ)

h

(
x

ε
, ξ,

u(x+ εξ)− u(x)

ε

)
dx dξ, (57)

where for each set B, ε > 0 and ξ ∈ R
d, we use the notation

Bε(ξ) = {x ∈ B : x+ εξ ∈ B} (58)

Note that the integration in (57) is performed for x, ξ such that both x and x+ εξ belong
to the perforated domain Ω∩εE. Conditions (54)–(56) guarantee that functionals Hε are
estimated from above and below by functionals of the type (4).

Thanks to Corollary 2.10, our functionals Hε are equi-coercive with respect to the
Lp
loc(Ω)-convergence upon identifying functions with their extensions from the perforated

domain. More precisely, from each sequence {uε} with equi-bounded energy Hε(uε) we
can extract a subsequence such that the corresponding extensions converge in Lp

loc to
some limit u ∈ W 1,p(Ω). This is implied by Corollary 2.10 applied with r = r0 to each
component of the vector-valued functions uε, upon noting that (55) implies (51).
We now may state the homogenization result for the functional Hε with respect to the
Lp
loc(Ω;R

m) convergence.
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Theorem 3.1. The functionals Hε defined by (57) Γ-converge with respect to Lp
loc(Ω;R

m)-
convergence to the functional

Hhom(u) =






∫

Ω

hhom(Du(x)) dx if u ∈ W 1,p(Ω;Rm)

+∞ otherwise,

(59)

with hhom satisfying the asymptotic formula

hhom(Ξ) = lim
T→+∞

1

T d
inf

{∫

(0,T )d∩E

∫

(0,T )d∩E

h(x, y − x, v(y)− v(x)) dx dy :

v(x) = Ξx if dist(x, ∂(0, T )d) < k0

}
(60)

for all Ξ ∈ Mm×d. Furthermore, if h is convex in the third variable, the cell-problem

formula

hhom(Ξ) = inf
{∫

(0,1)d∩E

∫

E

h(x, y − x, v(y)− v(x)) dx dy : v(x)− Ξx is 1-periodic
}

(61)

holds.

Proof. In [4] this theorem is proved when E = R
d. We will prove Theorem 3.1 reducing

to that case by a perturbation argument. For every δ ≥ 0 we set

hδ(x, ξ, z) = χE(x)χE(x+ ξ) h(x, ξ, z) + δχBR0
(ξ)|z|p,

where R0 > 0 is fixed but arbitrary, and

Hδ
ε (u) =

∫

Rd

∫

Ωε(ξ)

hδ
(
x

ε
, ξ,

u(x+ εξ)− u(x)

ε

)
dx dξ

is defined for u ∈ Lp(Ω;Rm), where we use the notation in (58) for the set Ωε(ξ). Note
that Hδ

ε ≥ Hε, and for δ = 0 we have H0
ε = Hε. In the following, for any open set A and

δ ≥ 0, we also consider the ‘localized’ functionals

Hδ
ε (v, A) =

∫

Rd

∫

Aε(ξ)

h

(
x

ε
, ξ,

u(x+ εξ)− u(x)

ε

)
dx dξ,

where we use the notation in (58) for the set Aε(ξ). If δ = 0 we write Hε(v, A) in the
place of H0

ε (v, A).
The homogenization theorem in [4] ensures that for all δ > 0 there exists the Γ-limit

Hδ
hom(u) = Γ- lim

ε→0
Hδ

ε (u)
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with domain W 1,p(Ω;Rm), on which it is represented as

Hδ
hom(u) =

∫

Ω

hδhom(Du) dx.

The energy density hδhom satisfies

hδhom(Ξ) = lim
T→+∞

1

T d
inf

{∫

(0,T )d

∫

(0,T )d
hδ(x, y − x, v(y)− v(x)) dx dy :

v(x) = Ξx if dist(x, ∂(0, T )d) < r
}
,

for any fixed r > 0, and

c1(|Ξ|p − 1) ≤ hδhom(Ξ) ≤ c2(1 + |Ξ|p)

with c1, c2 independent of δ, for δ ∈ [0, 1]. Note that the independence of c1 from δ is an
immediate consequence of the Extension Theorem. Indeed, let uδε → Ξx be such that

hδhom(Ξ) = lim
ε→0

Hδ
ε (u

δ
ε, (0, 1)

d).

Applying Corollary 2.10 with Ω = (0, 1)d, we deduce that Tεu
δ
ε converge to Ξx locally

in (0, 1)d (in particular the convergence is strong e.g. in (1
4
, 3
4
)d). Hence, using (55), the

Extension Theorem, and the liminf inequality of the Γ-limit (see e.g. [7]) we have

lim
ε→0

Hδ
ε (u

δ
ε, (0, 1)

d) ≥ lim inf
ε→0

Hε(u
δ
ε, (0, 1)

d)

≥ c0 lim inf
ε→0

( 1

εp+d

∫

((0,1)d∩εE)2∩Dr0

|uδε(x)− uδε(y)|pdxdy − 1
)

≥ c0
c2(r0)

lim inf
ε→0

( 1

εp+d

∫

(( 1
4
, 3
4
)d)2∩DR

|Tεuδε(x)− Tεu
δ
ε(y)|pdxdy − 1

)

≥ c0
c2(r0)

min
{ 1

2d
cR, 1

}
(|Ξ|p − 1),

where in the last inequality we have used that

Γ- lim
ε→0

1

εp+d

∫

(( 1
4
, 3
4
)d)2∩DR

|v(x)− v(y)|pdxdy = cR

∫

( 1
4
, 3
4
)d
|∇v|pdx,

where cR =
∫
{|ξ|≤R}

|ξ1|pdξ (see [4]).

Since hδhom is increasing with δ, we may define

h0(Ξ) = inf
δ>0

hδhom(Ξ) = lim
δ→0+

hδhom(Ξ),
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and deduce (here we use the usual notation for the upper Γ-limit) that
∫

Ω

h0(Du) dx ≥ Γ- lim sup
ε→0

Hε(u) . (62)

If u ∈ W 1,p(Ω;Rm) and uε → u with supεHε(uε) < +∞ then for all fixed Ω′ compactly
contained in Ω, if R0 < R, upon identifying uε with its extension given by the Extension
Theorem, we obtain that,

∫

{|ξ|≤R0}

∫

(Ω′)ε(ξ)

∣∣∣∣
uε(x+ εξ)− uε(x)

ε

∣∣∣∣
p

dx dξ ≤ c,

so that
lim inf
ε→0

Hε(uε) ≥ lim inf
ε→0

Hε(uε,Ω
′) ≥ lim inf

ε→0
Hδ

ε (uε,Ω
′)− δc.

From this inequality we obtain (in terms of the lower Γ-limit)

Γ- lim inf
ε→0

Hε(u) ≥
∫

Ω

h0(Du)dx

by the arbitrariness of δ and Ω′ ⊂⊂ Ω. Hence, recalling (62), we have proved that

Γ- lim
ε→0

Hε(u) =

∫

Ω

h0(Du)dx,

and in particular that the Γ-limit exists as ε → 0 (no subsequence is involved) and it can
be represented as an integral functional with a homogeneous integrand. Note moreover
that the lower-semicontinuity of the Γ-limit implies that h0 is quasiconvex (see [7]).

We now prove that h0 coincides with hhom given by the asymptotic formula. First,
note that

h0(Ξ) ≥ lim sup
T→+∞

1

T d
inf

{∫

(0,T )d∩E

∫

(0,T )d∩E

h(x, y − x, v(y)− v(x)) dx dy :

v(x) = Ξx if dist(x, ∂(0, T )d) < r
}
. (63)

If we take r = k0, we obtain a lower bound for h0.
To prove the opposite inequality, for any diverging sequence {Tj} we can consider

(almost-)minimizers vj of the problems in (63) with r = k0 and T = Tj. By Lemma 2.7

(applied componentwise) with Ω = (0, T )d and Ω′ = (k0
2
, Tj− k0

2
)d, recalling that k0 = 2C̃,

we can consider ṽj = L(vj) ∈ Lp((k0
2
, Tj − k0

2
)d;Rm) with ṽj = vj on Ω = (0, T )d ∩ E and

∫

(
k0
2
,Tj−

k0
2
)d∩DR

|ṽj(ξ)− ṽj(η)|pdξdη

≤ c2(r0)

∫

(0,Tj)d∩E)2∩Dr0

|vj(ξ)− vj(η)|pdξdη ≤ c T d
j (1 + |Ξ|p)
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for some c > 0 independent of j. Upon choosing a larger k0 > 2 we may suppose that
⌊k0

2
⌋ + 1 < k0 so that we may consider wj ∈ Lp((0, Tj − n)d;Rm), where n = 2⌊k0

2
⌋ + 2,

defined by

wj(x) = L(vj)
(
x+

(
⌊k0
2
⌋+ 1

)
(1, . . . , 1)

)
−

(
⌊k0
2
⌋+ 1

)
Ξ(1, . . . , 1).

Having set εj = Tj − n we can consider the scaled functions

uj(x) = εjwj

( x
εj

)
.

By the boundedness of the energies above and noting that there exists c > 0 such that
wj(x) = Ξx if x ∈ E and dist(x, ∂(0, Tj−n)d) < c, upon extracting a subsequence, we may
suppose that uj → u and u ∈ Ξx+W 1,p

0 ((0, 1)d;Rm). We may then use the quasiconvexity
inequality for h0 to obtain

h0(Ξ) ≤
∫

(0,1)d
h0(Du)dx

≤ lim inf
j

Hδ
εj
(uj, (0, 1)

d)

≤ lim inf
j

Hεj(uj, (0, 1)
d) + cδ

≤ lim inf
j

1

(Tj − n)d
H1(wj, (0, Tj − n)d) + cδ

≤ lim inf
j

1

(Tj − n)d
H1(vj , (0, Tj)

d) + cδ

= lim inf
j

1

(Tj − n)d
inf

{∫

(0,Tj)d∩E

∫

(0,Tj)d∩E

h(x, y − x, v(y)− v(x)) dx dy :

v(x) = Ξx if dist(x, ∂(0, Tj)
d) < k0

}
+ cδ

= lim inf
j

1

T d
j

inf
{∫

(0,Tj)d∩E

∫

(0,Tj)d∩E

h(x, y − x, v(y)− v(x)) dx dy :

v(x) = Ξx if dist(x, ∂(0, Tj)
d) < k0

}
+ cδ.

By the arbitrariness of δ and of the sequence Tj we obtain the desired upper bound for
h0, which, together with (63), proves the asymptotic formula.

In the convex case, again by the homogenization results in [4], we may repeat the
arguments used to get (63) to obtain the lower bound for h0

h0(Ξ) ≥ inf
{∫

(0,1)d∩E

∫

E

h(x, y − x, v(y)− v(x)) dx dy : v(x)− Ξx is 1-periodic
}
. (64)

Note that this implies that the right-hand side is bounded from above by c2(1 + |Ξ|p).
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Now, let v be an (almost) minimizing function for (64), and set vε(x) = εv(x
ε
). After

applying Theorem 2.2 to any set Ω compactly containing (0, 1)d to possibly redefine vε
outside εE, we can suppose that vε converge in Lp((0, 1)d;Rm) to Ξx and that

1

εp+d

∫

((0,1)d×(0,1)d)∩DεR0

|vε(x)− vε(y)|p dx dy ≤ c(1 + |Ξ|p).

We then estimate

hδhom(Ξ) ≤ lim inf
ε→0

Hδ
ε (vε)

≤
∫

(0,1)d∩E

∫

E

h(x, y − x, v(y)− v(x)) dx dy + cδ(1 + |Ξ|p).

Taking the limit as δ → 0, we obtain the converse inequality of (64), and conclude the
proof.

Remark 3.2. The function hhom obtained in the asymptotic formula (60) also satisfies

hhom(Ξ) = lim
T→+∞

1

T d
inf

{∫

(0,T )d∩E

∫

(0,T )d∩E

h(x, y − x, v(y)− v(x)) dx dy :

v(x)− Ξx is (0, T )d − periodic
}
.

Remark 3.3. An example is given by the convolution functional

Fε(u) =
1

εd+p

∫

(Ω∩Eε)×(Ω∩Eε)

a

(
y − x

ε

)
|u(x)− u(y)|p dy dx.

Since the integrand function h(x, ξ, z) = a(ξ)|z|p is convex in z, then Theorem 3.1 and
(61) ensure that the integrand of the Γ-limit (59) of Fε is given by

inf

{∫

(0,1)d∩E

∫

E−{x}

a(ξ)|v(x+ ξ)− v(x)|p dξ dx : v(x)− Ξx is 1−periodic

}
.
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