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Local Kekulé distortion turns twisted bilayer graphene into topological Mott
insulators and superconductors

Andrea Blason1 and Michele Fabrizio1

1International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy

Magic-angle twisted bilayer graphene displays at different fillings of the four flat bands lying
around the charge neutrality point a wealth of notable phases that include magnetic Chern insulators,
whose magnetization is mostly of orbital nature, and contiguous superconducting domes. Such rich
phase diagram is here explained through the positive interplay of Coulomb repulsion and the electron
coupling to a twofold optical mode that corresponds to Kekulé distortions localized into the small
AA stacked regions of the moiré supercells. A static distortion stabilizes, at any integer filling of
the flat bands, valence-bond insulators that carry finite Chern number away from charge neutrality.
Similarly, a dynamic distortion that resonates between the two lattice vibrations leads to resonating-
valence-bond topological insulators with built-in chiral d-wave pairs that have finite Chern number
equal to the angular momentum, and thus are prone to turn superconducting upon doping away
from integer filling.

INTRODUCTION

Atomic relaxation in magic angle twisted bilayer
graphene (TBLG) is responsible [1–6] of the gap open-
ing between the four flat bands and all other upper and
lower ones. Moreover, scattering by acoustic phonons
has been invoked [7, 8] to explain the anomalous linear
in temperature resistivity of the normal metal phases [9],
and both acoustic [7, 10–13] and optical [14] modes have
been explored as possible mechanisms of the observed
superconductivity [15–20]. In spite of all that, the role
of lattice degrees of freedom in the insulating phases of
TBLG at integer fillings ν = ±n, n = 0, . . . , 3, of the
flat bands [16–28] has been mostly overlooked in favour
of Coulomb interaction [29–38], which struggles to ex-
plain superconductivity [13, 39–41], and, especially, the
anomalous quantum Hall effect and sizeable orbital mag-
netic moment [42, 43] recently measured at ν = ±2.

The major importance of the electron-phonon coupling
also emerged from Ref. [44] that theoretically uncovered
special, almost non dispersive, optical modes, later ob-
served by nano-Raman spectroscopy [46], which are so
strongly coupled with the electrons that atomic displace-
ments as small as 2mÅ are sufficient to open sizeable
gaps in the flat bands at all integer ν. Those phonons
derive from the 1360 cm−1 A1 and B1 TO modes of a
single-layer graphene at the K point, see Fig. 1b, su-
perimposed with a long wavelength modulation driven
by the van der Waals inter-layer interaction that makes
these modes exist throughout the whole reduced Bril-
louin zone (RBZ) of the moirè superlattice and be local-
ized into the AA stacked regions and the domain walls
separating the AB and BA stacked ones. Remarkably,
these special phonons have the same twofold accidental
degeneracy of the flat bands along the Γ → K → M
high-symmetry path in the RBZ that reflects the emerg-
ing Uv(1) valley symmetry [44, 47]. Because of that, the
Uv(1) symmetric electron-phonon coupling effectively re-
alises a Jahn-Teller model, which explains the efficacy of
a static distortion on lifting the accidental degeneracy.
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FIG. 1. Kekulé-like distortion that stabilises a non-
magnetic insulator at charge neutrality. Panel a:
Kekulé-like distortion that stabilises a non-magnetic insulator
at charge neutrality. Such distortion is driven by moiré opti-
cal modes at the Γ point with A1 and B1 symmetry, which
correspond to long-wavelength modulations of the single-layer
graphene A1 and B1 modes shown in panel b. The moiré op-
tical phonons, and thus the Kekulé distortion, mainly affect
the AA stacked regions and the domain walls (DW), both
shown in yellow in panel a, separating Bernal stacked AB
and BA regions, shown in red, the latter remaining almost
unaffected [44]. We emphasise that the lattice displacement
occurs at the zone center of the reduced Brillouin zone and
on the atomic scale of graphene, which distinguishes it from
the Kekulé state discussed in Ref. [45].

However, systematic theoretical studies of the lattice
contribution to the phase diagram of TBLG are lacking.
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Indeed, Ref. [44] describes a realistic frozen-phonon tight-
binding calculation that neglects Coulomb repulsion and
can only access states with broken Uv(1) and, eventu-
ally, broken spatial symmetries when the frozen-phonon
is not at the Γ point, but not the observed Chern insula-
tors with spontaneously broken time-reversal symmetry.
Filling this gap is actually the scope of this work. Specifi-
cally, upon integrating out phonons we obtain an effective
electron-electron attraction that can be assumed instan-
taneous since the flat-band width is a lot smaller than
the phonon frequency. We treat this interaction on an
equal footing with Coulomb repulsion, investigating their
mutual interplay and its effect on the phase diagram by
means of Hartree-Fock and projected BCS-wavefunctions
calculations.

Before discussing our findings, we believe worth plac-
ing them within the general context of correlation ef-
fects in graphene. We recall that interaction strength in
graphene is sizeable but yet not enough to stabilise a cor-
related insulator at charge neutrality [48]. An isotropic
strain above 8-10% that expands all C-C bonds has been
shown to stabilise [49] both an antiferromagnetic insula-
tor and a Kekulé valence-bond (KVB) one, with the lat-
ter lower in energy than the former. The Kekulé distor-
tion involves just the above mentioned A1 and B1 modes
of graphene, whose positive interplay with Coulomb re-
pulsion thus favours the KVB insulator instead of the
antiferromagnetic one expected from Coulomb repulsion
alone. In light of the vanishingly small Fermi velocity
at the Dirac cones in magic-angle TBLG, whose Bloch
waves are primarily localised into the AA stacked re-
gions just like the A1 and B1 moiré phonons, it is not un-
likely that also in this case those phonons cooperate with
Coulomb repulsion to stabilise a KVB insulator, with the
distortion discussed in Ref. [44] and shown schematically
in Fig. 1a.

That is precisely what we find within Hartree-Fock ap-
proximation. We hereafter denote such space-selective
Kekulé distortion at the zone-center of the moiré Bril-
louin zone a static Kekulé valence bond (S-KVB) dis-
tortion. The corresponding S-KVB insulator at charge
neutrality seeds the cascade of symmetry-breaking mean-
field insulating states at all other integer fillings.
Since the AA regions are quite far apart from each other,
as testified by the tiny dispersion of the A1 and B1 modes
in TBLG [44], it is well possible that a resonating rather
than static Kekulé valence bond (R-KVB) insulator is
stabilised, in which each AA region is instantaneously
distorted along A1 or B1 but dynamically the symmetry
is restored.
Since the electron-phonon coupling realises a Jahn-Teller
model, S-KVB and R-KVB correspond to static and
dynamic Jahn-Teller effect, respectively. Such R-KVB
state thus effectively realises a Jahn-Teller-Mott insula-
tor [50]. The close analogy with Anderson’s resonating
valence bond scenario [51] for cuprates also suggests that
the Jahn-Teller-Mott insulator is prone to become a su-
perconductor upon doping; a phonon mediated super-
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FIG. 2. Reciprocal lattice space. The two sublattices Qa,
blue dots, and Qb, red dots, of the reduced Brillouin zones,
in light cyan the first one, can be generated, e.g., through
Qa = q1 + G and Qb = −q1 + G, where G = nG1 + mG2

is any reciprocal lattice vector with G1 and G2 the primitive
ones. Also shown are the high symmetry points Γ, K1, K2

and M .

conductivity not hindered by Coulomb repulsion [51–53].
We will show that such superconductor is likely to have
chiral or nematic d-wave symmetry, in accordance with
the analysis of Ref. [14] where the same TO phonons of
graphene have been considered as driving mechanism of
superconductivity in TBLG.

MODEL HAMILTONIAN AND INTERACTION

We consider two AA stacked graphene layers, and ro-
tate around the perpendicular axis layer 1 by +θ/2 and
layer 2 by −θ/2, at magic angle θ = 1.08◦. We describe
the band structure through the Bistritzer-MacDonald
continuum model [47], using the conventions of Ref. [54].
Specifically, we define four component spinors in momen-

tum space Ψk,Qa,σ
and Ψk,Qb,σ

, two components corre-
sponding to sublattices A and B of a graphene layer,
and the other two to the valley index η = ±1, where
σ is the spin, k runs within the first RBZ, while Qa

and Qb identify the two sublattices in reciprocal space,

see Fig. 2. The operator Ψk,Qa,σ
is defined close to the

Dirac point K on layer 1 and −K on layer 2 for η = +1

and η = −1, respectively, while in Ψk,Qb,σ
the two layers

are interchanged. Moreover, the sublattice components
of the spinors with η = +1 and η = −1 are inverted [54].
We implicitly assume that the longest reciprocal lattice
vector kept in our calculation is still much smaller that
the distance 2|K| between the two valleys, so that the
chosen basis is not overcomplete.
With those definitions, the non-interacting Hamiltonian
can be written as

H0 =
∑
kσ

∑
Q,Q′

Ψ†k,Q,σ Ĥ
(0)
QQ′(k) Ψk,Q′,σ , (1)
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where Q = Qa ⊕Qb, and, in the zero-angle approxima-
tion [47],

Ĥ
(0)
QQ′(k) = δQ,Q′ vF τ3

(
k−Q

)
· σ+

+ τ0

3∑
i=1

(
δQ−Q′,qi + δQ′−Q,qi

)
T̂i(u0, u1) .

(2)

Hereafter, the Pauli matrices τa and σa, a = 0, 1, 2, 3,
act on the valley and sublattice indices, respectively, qi,
i = 1, 2, 3, are defined in Fig. 2, while

T̂1(u0, u1) = u0 σ0 + u1 σ1 ,

T̂j+1(u0, u1) = ei
2π
3 σ3 T̂j(u0, u1) e−i

2π
3 σ3 , j = 1, 2 .

(3)
Setting as unit length the moiré primitive lattice vector
for a twist angle of 1.08◦, we fix vF = 40 meV, u0 =
76.1 meV and u1 = 103.1 meV.
The charge density operators ρ`(q + G) of each layer
` = 1, 2 are diagonal in sublattice and valley indices, and
read, for q ∈ RBZ,

ρ`(q + G) =
∑
kQσ

Ψ†k,Q,σ ρ̂`(Q)σ0 Ψk+q,Q−G,σ ,

ρ̂`(Q) = δQ,Qa

τ0 − (−1)` τ3
2

+ δQ,Qb

τ0 + (−1)` τ3
2

,

(4)
and thus the Coulomb repulsion can be written as

HC =
1

2NΩc

∑
q,G

∑
``′

U``′(q + G) ρ†`(q + G) ρ`′(q + G) ,

(5)
with N the number of supercells, Ωc the area of each
supercell, U11(q) = U22(q) and U12(q) = U21(q) the
intra- and inter-layer Fourier transforms of the interac-
tion e2/r screened by the high-frequency dielectric con-
stant ε∞ = 9 of graphene, and by the presence of a dual
metal gate [32] assumed at distance 30 nm.
The non-retarded attraction mediated by A1 and B1

moiré phonons can be straightforwardly derived from
Ref. [55] and is

HP = − 1

2ω0N

∑
q

∑
a=1,2

L†a(q)La(q) , (6)

where ω0 ' 1360 cm−1 is the phonon frequency, neglect-
ing its very weak dispersion [44], and

La(q) =
∑
σk

∑
QQ′

Ψ†k,Q,σ τa L̂QQ′ Ψk+q,Q′,σ , (7)

with

L̂QQ′ = γ δQ,Q′ σ0 +

3∑
i=1

(
δQ−Q′,qi + δQ′−Q,qi

)
T̂i(g0, g1) .

(8)

T̂i(g0, g1) are the same as in Eq. (3) with u0 and u1 re-
placed by g0 and g1. We mention that, since sublat-
tices in valleys +1 and -1 are interchanged, g0 and g1

are the modulations induced by the phonons on the in-
tralayer hopping between opposite and equal sublattices,
respectively, while γ refers to the interlayer opposite sub-
lattice one. The results of realistic tight-binding calcu-
lations with frozen phonon displacement [44] are repro-
duced by the continuum model [55] fixing g1 ' g0/10 and
γ ' g0/2.5, allowing us to parametrise the strength of the
phonon-mediated attraction through the single coupling
constant g ≡ g20/ω0, with realistic value . 1 meV.
We remark that H0+HC is invariant under global charge
U(1), valley Uv(1) and separate spin SU(2) rotations in
each valley, thus a large U(2)×U(2) symmetry [32]. On
the contrary, the full Hamiltonian H0 +HC +HP is only
invariant under U(1)×Uv(1) times the global spin SU(2).
The following analysis takes into account just the latter
reduced symmetry.

RESULTS

Mean-field approximation

We perform an all-band Hartree-Fock calculation, thus
embracing the full complexity of the band structure and
the effects of remote bands on symmetry breaking states.
Moreover, we take into account the full momentum de-
pendence of the Fock term, which ensures robust numer-
ical results.
We start analysing the interplay between Coulomb inter-
action (5) and phonon-mediated attraction (6) at charge
neutrality, ν = 0, where there is consensus [32, 33, 36, 37]
that the Coulomb interaction alone stabilises an insula-
tor that has been denoted as Kramer inter-valley coher-
ent (K-IVC) state [32]. This is characterised by the order
parameter

∆K-IVC(ϕ) ∼ σ3
(

cosϕ τ1 + sinϕ τ2
)
, (9)

which breaks time-reversal symmetry, T ∼ τ1σ1K with
K the complex conjugation, and valley Uv(1) symmetry,
with generator τ3, but is invariant under T τ3. Moreover,
it breaks the C2x ∼ σ1 twofold rotation, while is invariant
under the generalised

C′2z(ϕ) ≡ e−iϕτ3 C2z ∼ e−iϕτ3/2 τ1 eiϕτ3/2 . (10)

We note that the order parameter (9) commutes with the
Chern number per spin σ3 [32]. Two electrons with given
σ3 may form a spin-triplet valley-singlet, or a spin-singlet
valley-triplet. Eq. (9) implies that Coulomb interaction
favours the latter, with valley polarisation τ in the xy-
plane, opposite for the two different Chern numbers [32].
The phonon-mediated attraction HP in Eq. (6), which
can be roughly written as −g

(
τ · τ − τ23

)
, still favours

a spin-singlet valley-triplet state. However, among the
three τ3 = −1, 0,+1 components, it lowers the energy of
the valley-triplet with τ3 = 0 for both σ3 = ±1, thus not
breaking any of the symmetries. This corresponds to a
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pseudo-rotation in the τ1 − τ2 plane: the Uv(1) symme-
try is instantaneously broken along a direction in that
plane but, on average, dynamically restored. Since these
pseudo-rotations describe alternating distortions either
along A1 or B1 modes, the state can be regarded as a res-
onating Kekulé valence bond. As such, it cannot be rep-
resented by a single Slater determinant, hence it is not ac-
cessible through the Hartree-Fock (HF). We can however
study by HF the static counterpart once we explicitly
break Uv(1) through a static distortion along any arbi-
trary combination of the A1 or B1 modes. That amounts
to searching for variational wavefunctions with a static
Kekulé distortion characterised by the two-component
order parameter

∆S-KVB(ϕ) ∼ σ0
(

cosϕ τ1 + sinϕ τ2
)
, (11)

which breaks Uv(1), while it is invariant under C2x, T ,
and the twofold rotation (10). We note that the Fock
term of the Coulomb interaction (5) may stabilise either
order parameters, although ∆K-IVC is favoured at charge
neutrality [32]. On the contrary, the phonon mediated at-
traction (6) only couples via the Hartree term to ∆S-KVB.
We thus expect that the cooperation between Coulomb
and phonon-mediated interactions may eventually make
∆S-KVB prevail over ∆K-IVC. This is indeed what we find
in our calculations. In Fig. 3a we show the HF energies
of the K-IVC and S-KVB variational states upon increas-
ing the coupling constant g of the attraction. At g = 0,
K-IVC is the global minimum and S-KVB a local one.
Increasing g, the energy of S-KVB lowers and eventually
crosses that of K-IVC. For realistic values of g, S-KVB
is the stable state, while K-IVC is only metastable. We
also took into consideration valley-polarized insulators,
which however remain always metastable since they are
only weakly coupled to the Fock term of HP , see Section
3 of Supplementary Material [56].
In Fig. 3b we show the HF band structure of the S-KVB
state at g = 0.3 meV, and indicate explicitly the symme-
try properties of the Bloch waves, noting that the space
group remains P622. The band structure describes an in-
sulator with a sizeable gap ∼ 30 meV separating the two
lower flat bands from the upper two. The Bloch waves of
the lower two bands transform like the irreducible repre-
sentations Γ1(1) + Γ2(1), M1(1) +M2(1) and K3(2), see
Fig. 3b, which hints [54] at a ‘fragile‘ topology, indeed
testified by the Wilson loops of the two lower flat bands,
see inset of Fig. 3b. In reality, since the S-KVB state
is adiabatically connected to the frozen-phonon insula-
tor of Ref. [44], which was shown to support edge states,
that topology is actually robust and implies that the two
lower flat bands do have finite and opposite Chern num-
bers C = ±2.
For integer fillings away from charge neutrality, the sole
Uv(1) symmetry-breaking static Kekulé distortion cannot
stabilise mean-field insulators, due to the T C2z protec-
tion of the Dirac cones. Therefore additional symmetries
must be broken. We can already anticipate how that
occurs by noticing that Jahn-Teller coupling is akin in-

verted Hund’s rules [52, 53, 57] forcing lowest-spin config-
urations, and that the two occupied flat bands at charge
neutrality carry opposite Chern numbers, C = σ3 = ±1
per spin [32]. Therefore, if phonon contribution prevails
over Coulomb exchange, the Chern number degeneracy
is split in the first place by a symmetry-breaking term
∝ σ3, and only as a last resort spin degeneracy is lifted.
At even filling ν = ±2 this corresponds to spin rota-
tionally invariant topological insulators with spin-singlet
order parameter

∆ν=±2(ϕ) ∼ ∆S-KVB(ϕ) + σ3 , (12)

breaking time-reversal, C2x and C2y symmetries, thus
leaving just a P6 space group. Such topological state is
indeed stabilised in mean-field, see Section 3 of Supple-
mentary Material [56], and its Hartree-Fock band struc-
ture at ν = −2 is shown in Fig. 3c. As expected, the
occupied flat-band has a nonzero winding number of the
Wilson loop, suggestive of a topological Chern insulator
with Chern number C = ±2, consistent with emerging
experimental evidences of anomalous quantum Hall ef-
fect at ν = ±2 [42, 43].
At odd fillings ν = ±1,±3, forcing translational symme-
try implies that spin degeneracy is unavoidably broken
by splitting each band with given Chern number C into
two spin-polarised ones with Chern number C/2, which
Hartree-Fock indeed does, see Section 3 of Supplemen-
tary Material [56]. The band structures at ν = −1,−3
are shown in Fig. 3d-e, along with the Wilson loop of
the occupied flat bands pointing to a non-trivial topol-
ogy with C = ±1.
We emphasise that the above results, not in disagree-
ment with experimental evidences [18, 23, 27, 42, 43, 58–
64], depend on Kekulé coupling overruling Coulomb ex-
change [57]. This occurs at all integer fillings for g ∼
0.3 meV, see Section 3 of Supplementary Material [56].
In the opposite case, K-IVC state would be stable at
charge neutrality, and Coulomb exchange should presum-
ably realise conventional Hund’s rules, and, therefore, at
first lift spin-degeneracy to make high-spin states. That
would, e.g., lead to spin S = 1 non-topological insulators
at ν = ±2 [32, 33, 36, 56], contrary to the S = 0 topolog-
ical ones that we find; two rather distinct scenarios that
can be discriminated experimentally, as well as the two
different insulators predicted at charge neutrality. We
mention, for completeness, that there is actually a third
possibility we have not taken into account that the in-
sulators at integer ν 6= 0 break moiré translational sym-
metry [44], which might be stabilised under large enough
strain [65].
We finally remark that the above results survive a weak
C2z symmetry breaking potential in TBLG misaligned to
hBN, see Section 4 of Supplementary Material [56], but
do not in the case of almost perfect alignment [66], where
clear-cut experimental evidences of insulating states exist
only at ν = 0 and ν = 3 [20, 26, 67].
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FIG. 3. Hartree-Fock results. Panel a: Hartree-Fock energies of the K-IVC and S-KVB variational wavefunctions at charge
neutrality, ν = 0, characterised, respectively, by the order parameters Eq. (9) and Eq. (11), as function of the coupling constant
g of the phonon-mediated attraction. Panel b: Hartree-Fock band structure of the S-KVB state at g = 0.3 meV and ν = 0.
Solid lines represent valence bands whereas dashed lines conduction ones. Also shown are the symmetry properties of the Bloch
waves at the high-symmetry points. In the inset, we plot the Wilson loop of the lowest two flat bands. Panel c: Hartree-Fock
band structure of the S-KVB state described by the order parameter Eq. (12) at ν = −2 and g = 0.3 meV. In the inset, we
show the Wilson loop of the occupied flat band. Panel d-e: Hartree-Fock band structure of the S-KVB state described by the
order parameter Eq. (12), now spin polarized, at ν = −1,−3 and g = 0.3 meV. The blue and red bands correspond to majority
and minority spins, respectively. In the inset, the Wilson loops of the occupied bands are shown. The bands for ν = 1, 2, 3 are
obtained by a particle-hole transformation.

Resonating valence bonds beyond mean field

Hartree-Fock is only able to describe static Kekulé dis-
tortions, and predicts tiny atomic displacement because
of the large phonon frequency compared to the narrow
insulating gaps that are opened. Since the A1 and B1

moiré optical phonon dispersions in momentum space
are negligible, around four orders of magnitude less than
the center-of-mass frequency [44], one can legitimately
regard those modes as collective vibrations of a single
moiré supercell [46] as it were a thousand-atom large
molecule. Therefore, also in light of the extremely nar-
row width of the flat bands, we cannot exclude that, in
reality, Kekulé valence bonds resonate, namely they oc-
curs without spontaneously breaking Uv(1). As we earlier
mentioned, that corresponds to the S-KVB distortion, see
Fig. 1, being replaced by a R-KVB one. If that were the
case, the above mean-field insulating phases should be
replaced by their dynamical counterparts, i.e., by Jahn-
Teller Mott insulators [50] in which the effectively in-
verted Hund’s rules and the Coulomb repulsion conspire
to halt electron motion and to freeze each moiré super-
cell in the state that maximises the local energy gain
with a number of electrons equal to the average one. In
the present case of magic-angle TBLG, a simple descrip-
tion of a Jahn-Teller Mott insulator runs into several

obstacles. First, each supercell contains an unmanage-
able large number of π-orbitals that prevents dealing with
Jahn-Teller effect as one would do in a simple molecule.
For that reason, we assume that focusing just on the flat-
bands already yields a reasonable physical description, in
that akin to dealing just with LUMO and HOMO in a
molecule. That raises another issue: the topological ob-
struction [29, 54, 68] prevents building localised Wannier
orbitals for the flat bands. To overcome such obstacle,
we note that the Jahn-Teller Mott insulator has built-in
pairing correlations [51–53]. With this in mind, we argue
that a reasonable description of that state can be gained
through a Gutzwiller projected BCS wavefunction [51]

|ν〉 = PG(ν) |BCS〉 , (13)

where |BCS〉 is the BCS wavefunction for the flat bands,
and PG(ν) the Gutzwiller projector onto the configura-
tions where each supercell is strictly occupied by 4 + ν
flat-band electrons. Since our goal is just to infer physi-
cal features of the resonating counterparts of the S-KVB
mean-field insulating states, we shall not attempt to op-
timise the ansatz wavefunction (13), which is anyhow
practically impossible, but assume that its properties are
simply inherited by the BCS wavefunction [69], hence
by the geminal pair-wavefunctions that are favoured by
the phonon-mediated attraction and Coulomb repulsion.
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FIG. 4. d-wave pair wavefunctions in momentum
space. Panels a-f : pair wavefunction components in mo-
mentum space of the two d-wave real eigenstates d1 and d2,
namely, ψ11

d1
(k) (a), ψ12

d1
(k) = ψ21

d1
(k) (b), ψ22

d1
(k) (c), ψ11

d2
(k)

(d), ψ12
d2

(k) = ψ21
d2

(k) (e), and ψ22
d2

(k) (f). These wavefunction

are almost odd under P, which implies ψ11
i (k) ' −ψ22

i (−k)
and ψ12

i (k) ' ψ12
i (−k). Panels g-h: probability distribu-

tion of the complex d1 + id2 combination, eigenstate of C3z

with eigenvalue e−i2π/3. The orthogonal combination d1−id2,
eigenstate of C3z with complex conjugate eigenvalue, has right
the same probability distribution.

For that, we first project HP (6) onto the eigenopera-

tors Ψk,σ,η,n and Ψ†k,σ,η,n of the flat bands, n = 1 the
lower and n = 2 the upper, for each valley η = ±1, as
previously done for the Coulomb interaction [30, 32, 36].
Next, we diagonalise the scattering amplitude in the zero-
momentum, τ3 = 0 and spin-singlet Cooper channel,
which is the most favourable one, see Section 5 of Sup-
plementary Material [56], and is spanned by the geminal
operators

∆†k,nm =
(

Ψ†k,↑,+1,nΨ†−k,↓,−1,m+Ψ†−k,↑,−1,mΨ†k,↓,+1,n

)
/
√

2 .

(14)
The diagonal basis corresponds to the pair creation op-
erators

∆†i =
∑
k

2∑
n,m=1

ψnmi (k) ∆†k,nm , (15)

with eigenvalues −g λi and normalised eigenvectors
ψnmi (k). The transformation rules of ψnmi (k) under the
symmetry transformations are thoroughly discussed in
the Section 5 of Supplementary Material [56]. Here we
just remark that the component of ψnmi (k) even under
inversion k→ −k corresponds to the spin-singlet, valley-
triplet with τ3 = 0, while the component odd under in-
version to the spin- and valley-singlet. Both components
have τ3 = 0 and therefore their mutual coupling is al-
lowed by Uv(1).

By construction, the lowest-energy pair-eigenstate is the
one with the largest λi. We find that the largest eigen-
value λs = 2.33 is non-degenerate and its eigenvector,
i.e., the pair wavefunction, transforms like the totally
symmetric irreducible representation of D6, which is alike
an s-wave Cooper pair. The next largest eigenvalue
λd = 1.79 is doubly degenerate, and the corresponding
pair wavefunctions transform like the two-dimensional ir-
reducible representation of D6 even under C2z, alike a
d-wave Cooper pair.
However, we have so far just considered the phonon-
mediated attraction that, unsurprisingly, favours the s-
wave pairing channel. That result may change taking
into account also the Coulomb repulsion HC in Eq. (5).
However, a proper treatment of HC would require in-
cluding all thousands π-bands, because the Coulomb re-
pulsion projected just onto the flat bands, i.e., without
the screening by all other bands, is unphysical. Since
that calculation is not feasible, we just compute the
difference ∆µ∗ of the Coulomb pseudo-potentials be-
tween d- and s-wave pairs, with the Coulomb repulsion
screened within RPA by all π-bands but the flat ones,
see Section 7 of Supplementary Material [56]. We find
∆µ∗ ' −0.49 meV, which implies that the d-wave chan-
nel is the lowest energy one for electron-phonon coupling
g . 0.88 meV in presence of the Coulomb repulsion [14].
Since the interplay of the phonon-mediated attraction
and Coulomb repulsion stabilizes the d-wave pairing, we
hereafter just focus on the latter. In the real repre-
sentation, one eigenstate ψnmd1 (k) ∼ x2 − y2, even un-
der C2x, and the other ψnmd2 (k) ∼ xy, odd under C2x,
see Fig. 4. In reality, since ψnndi (k) 6= ψnndi (−k), each
eigenstate has also a weak p-wave valley-singlet compo-
nent, px and −py the eigenstates d1 and d2, respectively.
Both d1 and d2 are (almost) odd under p-h symmetry,
as can be noticed in Fig. 4, which hints at a non-trivial
topological character [35, 70]. Indeed, the combinations

d± =
(
d1±i d2

)
/
√

2 ∼ Y2±2 do have finite Chern number
C = ±2, the same value of the angular momentum, see
Section 6 of Supplementary Material [56].

Therefore, under the above assumptions, and, at first
instance, neglecting the flat band dispersion, R-KVB in-
sulators can be stabilised at all integer fillings ν. These
are described by the projected BCS wavefunctions, see
Eq. (13),

|ν〉 ∝ PG(ν)
(

∆†d+

)N
2 n+

(
∆†d−

)N
2 n− |0〉 , (16)

where, by definition, the ‘vacuum’ |0〉 is the ground state
state at ν = −4 with all bands below the flat ones occu-
pied, and n± ≥ 0 are the numbers of d± pairs per unit
cell. The filling factor is simply ν = −4 + n+ + n−.
Whenever n+ 6= n−, the projected wavefunction (16)
breaks time-reversal symmetry, carries Chern number
C(n+, n−) = (n+ − n−), and has finite orbital magnetic
moment M = µB g∗ C(n+, n−) per supercell, with g∗ the
gyromagnetic ratio. Since the explicit calculation [71] of
the gyromagnetic ratio is unfeasible in our scheme, we
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～ Y2+2 (C = +2) ～ Y2-2 (C = -2)

𝛎 = -3, n+ = 1, n- = 0  
C = 1

𝛎 = -2, n+ = 2, n- = 0  
C = 2

𝛎 = 0, n+ = 2, n- = 2  
C = 0

𝛎 = -1, n+ = 2, n- = 1  
C = 1

FIG. 5. R-KVB insulators at integer ν ≤ 0. The two
spin-singlet, τ3 = 0 geminal operators: ∆†+ ∼ Y2+2 with
Chern number C = +2 is represented by the blue circle, while
∆†− ∼ Y2−2 with C = −2 by the red one. A pictorial represen-
tation of the resonating Kekulé valence bond insulators, dy-
namical counterparts of the static mean-field ones in Figs. 3,
is displayed for all negative integer fillings. For each case, we
draw two nearest neighbour moirè unit cells, each of which,
for odd ν, hosts one electron from the shared pair; a very
oversimplified picture of spin- and valley-liquid insulators.

rely on the experimental estimate of g∗ ∼ 3 [42], yielding
an orbital magnetic moment per pair of ∼ 6 Bohr mag-
netons.
The dynamical counterparts of the S-KVB mean-field in-
sulators Figs. 3b-e correspond to specific values of n+
and n−, see Fig. 5. However, due to the large value of g∗
it is well possible that pairs (n+, n−) with Chern num-
ber higher in absolute value than the mean-field solutions
could become stable in presence of a magnetic field, possi-
bly realising the peculiar Landau fan diagrams that have
been observed [27, 58–60, 62–64].
We note that, since at odd integer ν the R-KVB cannot
quench spin and valley degrees of freedom, the wave-
function (16) describes in that case spin- and valley-
liquid topological insulators, whereas Hartree-Fock pre-
dicts fully-polarised symmetry breaking ones. Nonethe-
less, that wavefunction still has finite orbital magneti-
sation, which, e.g., could be as large as 3µB per moirè
supercell at ν = 3, not in disagreement with recent ob-
servations [61]. Moreover, the sizeable orbital magnetic
moment implies the emergence of magnetic domains at
any integer filling ν 6= 0 rather than a uniform magnetic
polarisation. Since the orbital magnetic moment of each
pair is directly proportional to its Chern number, that
envisages the existence of domains with different Chern
numbers, as indeed observed experimentally [72]. We
further remark that R-KVB insulators are prone to turn
upon doping into superconductors [52, 53], in the present
case nodeless chiral d-wave ones that are still topologi-
cal [73], whose driving mechanism, we emphasise, is the

electron-phonon Kekulé coupling [74].
Since HF predicts time-reversal symmetry-breaking topo-
logical insulator at ν 6= 0, that suggests that the complex

pair operators ∆†± prevail over their real combinations.
That is presumably consequence of Coulomb exchange,
though we cannot exclude to be just a mean-field arte-
fact. Therefore, for completeness, let us briefly discuss

what would change if ∆†1 and ∆†2 were instead favoured.

In that case, we have simply to replace
(
∆†±, n±

)
with(

∆†1(2), n1(2)
)

in the wavefunction (16), which would thus

describe non-topological R-KVB insulators with a weak
nematic character due to the small p-wave component.
Moreover, the symmetry of the superconducting order
parameter stabilised upon doping would be now a real
combination of dx2−y2 , plus a small px component, and
dxy, plus a small −py component, implying nodes in the
Brillouin zone [75] and weak nematicity [39].

CONCLUSIONS

The surprisingly rich phase diagram of magic-angle
twisted bilayer graphene, which includes topological and
non-topological correlated insulators [18, 21, 23, 27, 58,
59, 61–64], sometimes competing with each other [60],
and superconducting domes [15, 18, 42, 43], is explained
by the constructive interplay of the Coulomb repulsion
and the effective attraction mediated by a rather pe-
culiar set of moiré optical phonons. The Kekulé-like
valence-bond state, only metastable in presence of just
the Coulomb repulsion, is stabilized by this interplay
and characterized by a distortion localised mostly into
the AA regions and along the domain walls separating
AB and BA Bernal Stacked regions of twisted bilayer
graphene. The presence of such particular Kekulé dis-
tortion could be determined by a combination of high
resolution STM and Chern number measurements [76].
The resulting physical scenario is in agreement with the
experimentally observed insulating states at all integer
fillings. Moreover, it naturally offers an explanation of
the observed superconductivity [74] and its proximity to
the insulating phases [52, 53].
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