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Abstract

T he advent of gravitational waves (GW) astronomy opens the possibility of probing experimentally the first
second of the universe. As a consequence, having a theoretical control over all the early universe events that

may have occurred and the putative GW signal that would have been produced at those events has become an urgent
matter. The main aim of this thesis is to study the dynamics of First Order Phase Transition (FOPT) with relativistic
bubble walls in correlation with the three following processes: GW emission, baryogenesis and production of Dark
Matter (DM). After recalling the basics of cosmology, of thermal field theory and of FOPTs in the early universe
in the first chapter, in the second chapter, we discuss at length the pressure on the domain wall of the bubble in
the ultra-relativistic limit. In so doing we identify and discuss in depth three contributions to this pressure: from
particles gaining a mass in the transition, from heavy states with mass up to

√
γwvtransTnuc emitted during the

transition, and from the emission of ultra-soft gauge bosons obtaining a mass in the transition. We subsequently
apply those results to find the full pressure in the case of a generic PT and in the case of the ElectroWeak Phase
Transition (EWPT). In a third chapter, we come back to the process of production of heavy states and we show that
those heavy states, once produced, can be stable and constitute a viable super-heavy DM candidate. We study the
relic abundance matching observations in the context of dark PT (by dark we mean a transition which is neither
EWPT neither QCDPT) and in the context of the EWPT. In the fourth chapter, we complete the study of the
production of heavy states by going to one-loop level. We show that if an imaginary phase is present in the Yukawa
matrix, CP-violation can occur in the process of production, opening a possible route for baryogenesis. As a proof
of principle, we then provide two different models realising baryogenesis via relativistic bubble walls. The first
model uses the breaking of the UL(1) lepton number during a dark PT at high scale to generate relativistic walls
and baryogenesis. The second model postulates a heavy extension of the standard model (SM) with new source
of CP and baryon number breaking and a strong EWPT with relativistic EW bubble wall to induce baryogenesis.
In all our models we left the phase transition sector as an unknown, only assuming that the wall would become
ultra-relativistic. In the last chapter, we provide a model of the EWPT augmented by a singlet scalar with Z2
symmetry which realises ultra-relativistic bubble walls, upon allowing some tuning in the parameters. With this
model in hand we revisit our scenarios of production of DM and baryogenesis and estimate the tuning within those
classes of models.
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Introduction

The early evolution of the universe is believed to be a very quiet era during which the hot plasma would have
closely followed thermal equilibrium stages. After inflation and the (possibly strongly out-of-equilibrium) stage of
reheating, the plasma in the universe would have quickly thermalised at a very high temperature. This stage is the
Hot Bang of the Big Bang theory. Reheating was followed by a period of cooling driven by the slow expansion
of the universe. Compared to this weak expansion, the strong couplings of the Standard Model (SM) enforced
equilibrium until very low temperatures. At temperature of the order of the hundred of GeV, the thermal effects
are not able any more to stabilise the Higgs potential and the Higgs acquires a VEV, breaking the EW symmetry.
Though this transition could in principle introduce strong departure from equilibrium, lattice computations suggest
that, for realistic masses of the Higgs, the transition was actually a smooth cross-over, only coming with very mild
departure from equilibrium. The situation is similar, at around hundreds of MeV, when the quark-gluon plasma
confines. Lattice simulations of the SM indicates that the QCD phase transition should be a smooth cross-over. As
a consequence, Standard Model of Particles physics (SM) combined with the Standard Model of Cosmology (SMC)
seem to pave the way to a very calm history for the early universe, like an ocean without any storm.

However, issues of the SM with SMC hints toward the necessity of strong departure from equilibrium in the
early universe. The first one, and arguably the strongest one, is the necessity for baryogenesis, which is realised only
if it is embedded in an event involving strong departure from thermal equilibrium. The very existence of matter
today, combined with the well-known third Sakharov condition seems thus to beg for a strongly out-of-equilibrium
event in the early universe.

Similar hints seem to come from the Dark Matter (DM) sector. As we will review, thermal freeze-out mechanism
with SM-like weak couplings is under increasing pressure by the non-detection of DM in multiple experiments.
Even if, of course, there are many ways out of this experimental exclusion, this observation motivated physicists to
explore deeper other mechanisms of production of DM, among which many display strong departures from thermal
equilibrium.

Finally, a third revolution motivated us to study in depth the out-of-equilibrium dynamics of the early universe:
the recent discovery of Gravitational Waves (GW) and the numerous projects for forthcoming GW observers,
which would cover a large range of frequencies and amplitudes. This opens a new avenue for the poetically
called Heavenly Laboratory of Kolb and Turner and opens up the possibility of soon discovering a Stochastic
Background of GW (SGWB) that would have been produced by some out-of-equilibrium event in the first second
of the universe. Even if there is no one-to-one correspondence between SGWB and out-of-equilibrium processes,
the two are however connected and many out-of-equilibrium processes have been studied in the context of SGWB
production. Conversely, the processes producing SGWB can often be also recycled as mechanism for baryogenesis
and non-thermal DM production.

One of those processes are the First-Order Phase Transitions (FOPTs), where two phases of a fluid (in the present
case the early universe plasma) are neatly separated by an interface and a release of latent heat occurs around the
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region of the interface. FOPTs and their dynamics will be the topic of this thesis. They have been correlated with
the large production of GW and the spectra emitted have been abundantly studied in the literature in the prospect
of future detection at observers like LISA. On the other hand, they constitute one of the leading candidates for
baryogenesis, production of InterGalactic Magnetic field, Production of Primordial Black Holes and production of
non-thermal DM. Their complicated dynamics with the hot plasma and the very different regimes of expansion of
the bubble walls make them a fertile ground for theoretical investigation. Thus, in the view of the importance of
the bubble wall velocity for several observables, like GW or baryogenesis, in Chapter 2, we study the dynamics
of the bubble wall expansion and the pressure exerted by the plasma. Specifically, we study in detail the regime
of ballistic expansion, the regime of expansion when the bubble wall managed to reach relativistic velocities and
plasma particles can be treated as collisionless classical particles all throughout the wall. We will discuss the three
dominant contributions to the pressure on the bubble wall expansion in this regime. In so doing, on the top of the
leading order effect, we will unveil the effect of heavy physics coupled to the light physics via a portal and show
that those heavy physics effects cannot in general be neglected. Since it was the source of a recent debate in the
literature, we will also discuss at length the scaling of the next-to-leading order contribution and show some avenues
for new investigation.

In Chapter 3, we restart from the same mechanism of production of heavy states discussed in Chapter 2 and
show that the heavy states produced during the expansion of the bubble wall can constitute all DM density observed.
We discuss the possible interplay with the unavoidable usual Freeze-Out (FO) mechanism and show that DM with
correct abundance but with masses in large excess with respect to Griest-Kamionkowski bound can be produced.
We find that dark PT with scale up to ∼ 108 GeV can induce the observed DM abundance. To conclude, we also
emphasize the positive correlation with strong GW signal.

In Chapter 4, we use the same mechanism of production of heavy states and take advantage of the fact that
those states are strongly out-of-equilibrium when produced, thus naturally satisfying the third Sakharov condition
for baryogenesis. In this chapter, we first compute the expected CP violation occurring at one-loop level and then
embed this raw production mechanism in two different models of baryogenesis with relativistic bubble walls. In
the first model, the breaking of the UL(1) lepton number during a dark PT at high scale generates relativistic walls
and induces baryogenesis. In the second model, we assume a heavy extension of the standard model (SM) with
new source of CP and baryon number violation and a strong EWPT with relativistic EW bubble wall. We show that
those two ingredients combined induce baryogenesis. We discuss the different constraints of each of those models
and finally emphasize their special detectability, namely via strong GW signal.

In the last chapter 5, we build a model of FOPTs with long supercooling and ultra-relativistic bubble walls. We
consider the simplest extension of the SM, the addition of a real singlet with a Z2 symmetry and focus on the 2-steps
PT, where the singlet obtains a VEV in a first PT and then relaxes to zero while the EW is broken in a second PT.
We emphasize that in this context, the second PT can be strongly supercooled and induce very relativistic bubble
walls. We then revisit the DM production mechanism of Chapter 3 and the baryogenesis second model of Chapter
4 in this context. We conclude that such a possibility requires some amount of fine-tuning.

Even if the study of this thesis is ultimately confined to a restricted area of FOPT with relativistic walls1, it is
worth keeping in mind the global picture and the goal of our investigation: learn about the dynamics of the early
universe, and in the end being able to draw conclusion about microscopic interaction and the SM!

1Because I am not omniscient!
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Chapter 1

Fundamentals

I n this first chapter we introduce the basic quantities, definitions and formalisms that we will use in the other
chapters of this thesis. The basic playground of this thesis is the early universe plasma and the associated

out-of-equilibrium processes. After a quick review of the thermal history of the universe and the thermodynamics
of it, we will introduce the basic tools to compute one loop-level potentials. However, the precise study of the early
universe, from its thermal evolution to its complex possible out-of-equilibrium processes require theoretical tools
beyond the ordinary 4D Quantum Field Theory. We thus also introduce the so-called Thermal Field Theory (TFT),
or Finite-Temperature Quantum Field Theory. After those preliminaries, we apply those tools to the special case of
FOPTs in the early universe and provide a quick review of the FOPT bubble dynamics. We finish by providing the
result of the state of the art of GW emitted by FOPT bubble. This introductory chapter is mostly a review and does
not contain anything new, as a consequence it can be safely skipped by the expert reader.
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1.1 Notations

Here and all throughout this thesis we will work in natural units and take the usual convention of setting

ℏ = c = kB = 1. (1.1)

Also, Table 1.4 contains most of the notations that we will keep fixed in this thesis. The other ones will be
defined on the spot.

1.2 Thermal history of the universe

In this section, we would like to give an account of some of the necessary quantities involved the early universe
computations as well as an overview of the standard thermal evolution of the universe, which demands rudiments
of statistical physics and gravity.

1.2.1 Expansion and symmetries of the universe

The most basic notion for the universe history is the expansion of the universe, discovered by Edwin Hubble in
1920’s via the redshift of distant galaxies. The famous linear dependence of the redshift z on the luminosity distance
dL2 takes the form

H0dL ≈ z, H0 ≈ 100h kms−1Mpc−1 (1.2)

where the reduced Hubble h ≈ 0.7 is still today the source of heated debates. This induces that the size of the
observable universe today is order H−1

0 ∼ 3000h−1 Mpc.

On the top of the expansion of the universe, a second critical concept for our understanding of the universe
is the cosmological principle: this means that the matter distribution at sufficiently large scales is isotropic and
homogeneous. The clearest proof for such homogeneity and isotropy (at least at the last scattering surface) is the
very high homogeneity of the CMB temperature, with δT/T ∼ 10−5. Surveys of bright matter (galaxies) also
support homogeneity for scales larger than around ∼ 100 Mpc, which means that any sphere of a radius of ∼ 100
Mpc would contain around the same mass3.

2Here, let me do some historical comment: there has been a ferocious resistance to the non-fixity of the universe, maybe the most famous
being the Einstein one, via the introduction of the Cosmological Constant. It is perhaps surprising that the notion of non-fixity was introduced
in Biology with Lamarck and Erasmus Darwin, around 1820’s, defended in philosophy by the historical dialectics of Hegel, around the same
time and introduced in the study of values by Nietzsche in the end of the 19th century. We could even wonder why historical thinking took
so long to become pregnant in one of the oldest field of intellectual inquiry: cosmology.

3Notice that, amusingly, before reaching the sacro-saint status of principle, the isotropy and homogeneity assumptions were merely
introduced for the sake of simplifying the equations.
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Quantity name Symbol
Higgs Doublet H
Physical Higgs degree of freedom h
Hubble constant H
Collision term in Boltzmann Eq. C
Velocity of the bubble wall vw
Internal number of dof of the particle i gi
Mixing angle between ψ and Ψ θψΨ
Heaviside Theta function Θ
Boost factor of the bubble wall to the plasma frame γw
reduced Planck mass Mpl
Mass of the Higgs in the true vacuum mh

Mass of the particle of higgsed side1 mh

mass of the particle in the symmetric side ms

Length of the bubble wall (in the wall frame) Lw
Cosmological Constant Λ
Reheating temperature after inflation TR
Reheating temperature after the PT Treh
Nucleation temperature Tnuc
Percolation temperature Tper
Typically scalar DM candidate ϕ
Typically light fermion χ or ψ
Typically heavy fermion N
Typically dark scalar having transition φ
Scalar singlet under the SM gauge group s
Difference of energy between the false and the true vacuum at zero T ∆V
Probability of interaction i → j P (i → j)
Plasma pressure on the bubble wall P
Pressure of a fluid p
Density of the particle i ni
Energy density ρ
Renormalisation scale µR
Stress-energy/Energy-momentum tensor Tµν
Distribution function of the particle i fi

Table 1.1: Important Notations that we will keep fixed throughout the thesis. Other definitions will be defined on
the spot.
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With those two concepts, we are ready to reconcile the master equation of GR, the Einstein equation, with the
cosmological evolution. The Einstein equation is given by

Rµν − 1
2Rgµν = −8πGNTµν + Λgµν (Einstein equation) (1.3)

where gµν is the metric and as a convention, we use a mostly minus metric for flat space (+,−,−,−). In Eq.(1.3),
Rµν is the curvature tensor of space-time, R is the Ricci scalar, GN the gravitation constant, Tµν the stress-energy
tensor of the matter in the universe and Λ is the Cosmological Constant. Imposing homogeneity and isotropy
notoriously restricts the number of degrees of freedom of the Einstein equation Eq.(1.3) to only one. This is the
"Friedmann-Robertson-Lemaitre-Walker metric”:

ds2 = dt2 − a2(t)
[

dr2

1 − kr2 + r2dθ2 + r2 sin2 θdϕ2
]

(FRLW metric) (1.4)

where k can be 0, 1,−1 and defines three types of geometries for the universe and the degree of freedom a
encapsulates the possibility of expansion or contraction of the universe.

The stress-energy tensor T νµ has to be diagonal by isotropy and homogeneity considerations:

T νµ = diag(ρ(t),−p(t),−p(t),−p(t)) (1.5)

and is only parametrized by the energy density ρ and the pressure p of the fluid in the universe. In the context
of a FRLW metric and using the diagonal stress-energy tensor Eq.(1.5), the Einstein Equation easily4 leads to the
so-called Friedmann equations for the expansion parameter a:(

ȧ

a

)2
= 8πGNρtot + Λ

3 − k

a2 (First Friedmann equations)

ä

a
= −4πGN

3 (ρtot + 3ptot) + Λ
3 (Second Friedmann equations), (1.6)

from which it becomes natural to define the Hubble constant, which is all but constant,

H ≡ ȧ

a
(Hubble constant). (1.7)

The physical content can be made clearer if we use the first equation to transform the second, and using an equation
of state of the form p = wρ. We obtain the relation driving the evolution of ρtot, assuming a constant equation of
state w:

ρ̇tot = −3H(ρtot + ptot) = −3Hρtot(1 + w). (1.8)

We can read the evolution of the Hubble expansion from the first equation in Eq.(1.6). Defining ρΛ = 3Λ
8πGN and

ρk = − k
8πGa2 , the Friedmann equations are often rewritten

H2 =
∑
i

8πGNρi
3 ⇒ H2

H2
0

= ΩR
0 a
−4 + Ωm

0 a
−3 + Ωk

0a
−2 + ΩΛ

0

H2 + Ḣ = −4πGNρtot
3 (1 + 3w) (1.9)

4More or less easily ...
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dominating component ρ(a) ∝ H2 ∝ a−n t ∝ am

Radiation n = 4 m = 1/2
Matter n = 3 m = 2/3
Kination n = 6 m = 1/3
Curvature n = 2 m = 1
Cosmological constant n = 0 a ∝ expHt

Table 1.2: Expansion of the universe for different type of fluid dominating the expansion.

where the index 0 means the value of the variable evaluated today and we have normalised a0 = 1. We have also
defined the ratio of the density over the critical density, the density when the universe is flat

Ωi ≡ ρi
ρc
, ρc ≡ 3H2

8πGN
. (1.10)

Remarkably enough, taking the conservation of the stress-energy tensor Tµν;ν = 0 gives the first law of thermo-
dynamics

d(ρa3) = −pd(a3) ⇒ d[a3(ρ+ p)] = a3dp (First law) (1.11)

which is turn leads to the energy density evolution

ρ̇ = −3H(1 + w)ρ (Energy density evolution) (1.12)

that we already obtained in Eq.(1.8). The solutions of 1.8 (if w does not depend on the time) are really simple:

ρ ∝ a−3(1+w) a ∝ t2/3(1+w) (Universe expansion regimes) (1.13)

Specially interesting cases are displayed in Table 1.2.

1.2.2 Thermal description of the early universe

Since we expect very mild departure from equilibrium in the early universe, a very good description of this early
plasma takes advantage of thermodynamic evolution tools. Let us begin by defining the density, energy density and
pressure of some component i of the early universe plasma:

ni = gi

∫
d3p

(2π)3 fi(p) (Number density) (1.14)

ρi = gi

∫
d3p

(2π)3E(p)fi(p) (Energy density) (1.15)

Pi = gi

∫
d3p

(2π)3
|p|2

3E(p)fi(p) (Pressure) (1.16)

where i designates some component of the fluid and gi is the number of degrees of freedom of i. In those expressions,
the equilibrium distribution function fi(p, T ) takes a specific form

f eq(p, T ) = 1
e(E−µ)/T ± 1

(1.17)
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where E =
√

p2 +m2 is the energy of the particle, m its mass and µ its chemical potential. The + (−) sign
holds for fermions (bosons). This distribution is valid if the component is at chemical and kinetic equilibrium at
temperature T . At this point, it is good to notice that the Hubble expansion sets a scale in the early universe. By
convention, we call in equilibrium a reaction which has a rate faster than the expansion rate H . Mathematically,
this rough condition is

Γint ≫ H (Equilibrium condition). (1.18)

Reactions that strongly violate this condition are frozen-out. This can be seen straightforwardly from the Boltzmann
equations, as we will do soon.

Let us dig a bit in the numenclature. If some particle changing interaction i + j ↔ m + n is in equilibrium
then the following relation among chemical potential holds

µi + µj = µm + µn. (1.19)

This is the chemical equilibrium. On the other hand, kinetic equilibrium refers to an equality of temperature between
two fluids, which is enforced if scattering interactions between the two fluids are in equilibrium. For example i, j
component will be in kinetic equilibrium if the reaction i+ j ↔ i+ j is in equilibrium. In this case, the two fluids
are characterized by the same temperature. Chemical equilibrium is typically a stronger requirement than kinetic
equilibrium. Now we can come back to the expression for the equilibrium distribution in Eq.(1.17): This form is
enforced if the species is in kinetic equilibrium with itself. That is to say if interaction redistributing energy, for
example i+ i ↔ i+ i are in equilibrium.

It is known that quantities in Eq.(1.21) have simple form in two particular limits. Let us first neglect the chemical
potential µ5. i) if mi ≫ Ti (non-relativistic particle)

ni = gi

(
miTi
2π

)3/2
e−mi/Ti (Number density)

ρi = mini (Energy density)
Pi = niTi (Pressure) (1.20)

and we observe that w ≡ P/ρ → 0 in this case: the particles go pressureless. On the other hand, ii) if mi ≪ Ti
(relativistic particle), the mass can be ignored overall and we have

ni = ci
giζ(3)
π2 T 3

i (Number density)

ρi = di
giπ

2

30 T 4
i (Energy density)

Pi = ρi
3 (Pressure) (1.21)

with ci = 1(3/4), di = 1(7/8) for bosons (fermions). We observe that the energy in non-relativistic sector is
exponentially smaller than in the relativistic sector, so we can safely neglect the non-relativistic sector when we will
compute the energy density6. From those results, we define the energy in the radiation sector

ρrad = π2

30g⋆T
4, g⋆ ≡

∑
i∈boson

gi

(
Ti
T

)4
+ 7

8
∑

j∈fermion
gj

(
Tj
T

)4
(1.22)

5Cases with large chemical potential are not expected to arise in the early universe, but for example in very dense medium like neutron
stars, so we ignore them for our purpose.

6A exception of great importance to this approximation is frozen-out DM, which we know cannot be neglected!
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where T is the temperature of the bath, and Ti is the temperature of the particle i. This permits to account for
difference of temperatures between two decoupled sectors. A simple computation provide the following result for
the Hubble and the time during radiation domination

H =
√
ρrad
3M2

pl
≈ 1.66g1/2

⋆
T 2

Mpl
(1.23)

t ≈ 0.3g−1/2
⋆

Mpl
T 2 ∼

(
T

MeV

)−2
s. (1.24)

and we emphasize thatMpl is the reduced Planck mass. We can now turn to the entropy density in the early universe.
One of the first important claims is: as long as local thermal equilibrium (LTE) is maintained, entropy per comoving
volume is constant. This law is exactly what makes the entropy density so useful for the early universe studies.

The second law of thermodynamic writes

TdS = d(ρV ) + pdV ⇒ dS = d[(ρ+ p)V ]
T

− V

T
dp (Second law) (1.25)

Using the permutation of derivatives in the previous expression gives

∂2S

∂T∂V
= ∂2S

∂V ∂T
⇒ dp = ρ+ p

T
dT (1.26)

and upon plugging in the second law

dS = d[(ρ+ p)V ]
T

− V (ρ+ p)dT
T 2 = d

[(ρ+ p)V
T

+ const
]
. (1.27)

This is a beautiful result, which means that (up to an additive constant)

S = a3 ρ+ p

T
(Entropy definition). (1.28)

Moreover, upon combining the first law in Eq.(1.11) and Eq. (1.26), we obtain that

dS = d(a3s) = 0. (1.29)

Using the definition of Eq.(1.28) and the expression of radiation density, we obtain that

s = 2π2

45 g⋆,ST
3, g⋆,S =

∑
i∈boson

gi

(
Ti
T

)3
+ 7

8
∑

j∈fermion
gj

(
Tj
T

)3
. (1.30)

This means that the quantity g⋆ST 3a3 is constant in the early universe evolution. So, as long as entropy is
conserved, the following relation holds

T ∝ g
−1/3
⋆ a−1. (1.31)

This will motivate the later definition of the baryon number, divided by the entropy,

nB
s

≡ nb − nb̄
s

(1.32)



8 CHAPTER 1. FUNDAMENTALS

Quantity name Symbol Expression
Hubble H H(T )2 = 1

3M2
pl

(
ρrad + ρvac)

Radiation density ρrad ρrad = π2

30 g⋆T
4

Relativistic entropic dof g⋆
∑
i∈B gi

(
Ti
Tγ

)4
+ 7

8
∑
j∈F gj

(
Tj
Tγ

)4

Entropy density s s = 2π2

45 g⋆ST
3

Relativistic entropic dof g⋆S
∑
i∈B gi

(
Ti
Tγ

)3
+ 7

8
∑
j∈F gj

(
Tj
Tγ

)3

Critical density ρc ρc ≡ 3H2
0

8πGN
Relative density YX YX ≡ nX

s
Energy fraction ΩX ΩX ≡ ρX

ρc

Table 1.3: Summary of the different quantities important in the thermodynamical description of the early universe
and their definitions that will be used in this thesis.

since it is a conserved quantity in equilibrium.

We already mentioned that kinetic equilibrium is enforced between two components if scatterings manage to
keep the same temperature for the two fluids. A nice example is provided by the neutrinos, which interact with the
thermal bath of electrons via eν ↔ eν, e+e− ↔ ν̄ν, .... Those interaction have a typical rate controlled by the weak
interaction GF :

Γνe ∼ G2
FT

5, (1.33)

which will typically fall below the Hubble expansion around T ∼ 1 MeV. At this point, T (of the photon bath)
and Tν of the neutrinos do not need to be the same anymore. As a consequence, when the electrons becomes
non-relativistic and decay, the entropy is transferred to the photons only, which are reheated with respect to the
neutrinos. In the photon bath, g⋆ jumps from 11/2 to 2 and we can apply Eq.(1.31) to the photon temperature. This
means that

T

Tν
=
(11

4

)1/3
≈ 1.4 (1.34)

At this point, it is instructive to consider the value of some of those quantities today

g0
⋆ = 2 + 7

8 × 2 × 3 ×
( 4

11

)4/3
≈ 3.36

g0
⋆,S = 2 + 7

8 × 2 × 3 ×
( 4

11

)
≈ 3.9

s0 ≈ 3000cm−3 n0
γ ≈ 400cm−3 (1.35)

Since we will discuss it at length in the chapter on DM production, we will not approach in this introduction the
slightly more involved phenomenon of freeze-out.
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1.2.3 Universe Highlights

Now, with all the theoretical tools that we have gathered, we are able to tell the expected history of the first second
of the universe. The list that we are going to present becomes more and more speculative as we go down, from the
very well understood BBN to the very speculative Peccei-Quinn symmetry breaking and inflation:

• T ∼ 10 − 0.1 MeV, t ∼ second-minutes: Big Bang Nucleosynthesis (BBN): The neutrons and the protons
combine in nuclei to form the light elements: D, He3, He4, Li7. This is a very well understood era of
cosmology and the predicted abundance of each species matches very well the prediction: large injection of
entropy after BBN would ruin this agreement. We will thus consider that BBN is then the final edge of our
playground and we will not dare to mess with it.

• T ∼ 0.5 MeV, t ∼ second: Decay of the electrons: The temperature falls below the mass of the electron
and annihilation of electron-positron into photons become favorable. The entropy is transferred to the photon
bath, which is reheated.

• T ∼ 1 MeV, t ∼ sec: Neutrino decoupling and production of the cosmic neutrino background: Weak
interactions are not able anymore to cope with the expansion of the universe and neutrinos interactions with
the photons-electrons bath are frozen.

• T ∼ 300 MeV, t ∼ 10−5 sec: QCD phase transition: When the temperature drops below around T ∼ 300
MeV, the plasma of quarks and gluons confine into hadrons and mesons. Massive up and down quarks and
tiny chemical potentials lead us to believe that this transition is a very smooth cross-over.

• T ∼ 10 − 100 GeV, t ∼ 10−8 − 10−10 sec: Thermal production of CDM: This is the moment of the
freeze-out of the (formerly?) preferred model of DM, the WIMP. When the temperature falls below the mass
of the WIMP, they start to annihilate. This annihilation leads to a decreasing of the rate of interactions, which
induces the freeze-out of DM, saving a final relic abundance.

• T ∼ 100 GeV, t ∼ 10−10 sec: Electroweak phase transition: When the temperature drops below around
T ∼ 100 GeV, thermal effects are not able to stabilise the potential of the Higgs anymore and electroweak
symmetry is broken. Lattice simulations have suggested that this transition, for realistic masses of the Higgs,
is also a smooth cross-over. It is also possible that EW symmetry has never been restored in the early universe,
like in the scenario of non-symmetry restoration.

• T ∼ 1012 − 1014 GeV, Peccei-Quinn phase transition: If the Peccei-Quinn postulated symmetry is really
the mechanism solving the strong QCD problem and if the Peccei-Quinn symmetry is restored in the early
universe, then it has to be broken at some temperature close to the axion decay constant fa, if we assume
vanilla axion models.

• ? Inflation. The universe undergoes a period of exponential inflation driven by the potential of some scalar
field. Specifically, the density perturbations are produced by quantum fluctuations in the scalar field. The
range of possible reheating temperature and scale for inflation is extremely large, and so we prefer not display
any. However, our belief in inflation is a very important piece of the puzzle for all the other fields of
research of cosmology: if we believe in inflation, diluting any primordial constituent, the thermal universe
becomes independent of the initial conditions. Therefore we need a dynamical solution to the questions of
baryogenesis, production of DM, ...
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Figure 1.1: Diagrams to be summed for the 1-loop CW potential. Image from [6].

As already emphazised, everything prior to BBN remains highly speculative and open to model-building. More
specifically, baryogenesis and DM production could almost happen any time in the time-line that we have proposed.
This speculative era will be the playground of this thesis.

1.3 Constructing the one-loop potential at zero tempera-
ture

A crucial building block for the understanding of the PT is the potential. Though PT can be triggered by tree-level
potentials only, it is known that one-loop effects can drastically modify the type of transition. In this section,
following[6], we review shortly how to build the one-loop potential, dubbed CW potential. Let us take the simple
example of a real scalar field ϕ, the most general renormalisable Lagrangian takes the form

L = 1
2 |∂µφ|2 − Vtree(φ), Vtree(φ) = 1

2m
2
φφ

2 + cφ3 + λ

4!φ
4. (1.36)

The c-term can be eliminated by simply imposing a symmetry under φ → −φ, a choice that we make for the
simplicity of the illustration. The condition λ > 0 is necessary for the stability of the potential at large values of
the field. On the other hand, the stability of the origin, at tree-level is controlled by the sign of the mass term: if
m2
φ > 0 the origin ⟨φ⟩ = 0 is stable and the theory has to be expanded around the origin, if the mass is tachyonic

m2
φ < 0, the origin becomes of maximum and the minimum of the theory becomes ⟨φ⟩ =

√
−6m2

φ

λ . This is the
so-called broken phase or higgsed phase (we will use both terminologies in the remainder of the thesis).

As we might have noticed, there is however a marginal possibility, which was studied by E.Weinberg and
S.Coleman: m2

φ = 0[7, 8]. In this case, at tree-level, the potential around the origin is very flat and it becomes
controlled by the loop corrections. The fastest way to compute the potential at 1-loop is to use the 1PI action.
Without reconstructing the full 1PI formalism, we can simply use the formula

V1−loop = −
∞∑
n=0

⟨φ⟩nΓ(n)(pi = 0) (1.37)

with Γ(n) the Fourier transform of the one-particle irreducible n-point green functions. In this specific case,
diagramatically, this formula corresponds to the sum over all 1PI with 2n (n integer) external legs displayed in the
Fig.1.4. This gives

V1−loop = i
∞∑
n=1

∫
d4p

(2π)4
1

2n

[ (λ⟨φ⟩2/2)
p2 −m2

φ + iϵ

]n
= − i

2

∫
d4p

(2π)4 log
[
1 − (λ⟨φ⟩2/2)

p2 −m2
φ + iϵ

]
(1.38)
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Upon Wick rotation and defining ip0
E = p0, we obtain

V1−loop = 1
2

∫
d4pE
(2π)4 log

[
p2
E +m2(⟨φ⟩)

]
, m2(⟨φ⟩) = m2

φ + λ⟨φ⟩2/2, (1.39)

where we have discarded an irrelevant constant. As the integral above is obviously divergent, we now need to
renormalise the theory by fixing the value of the coupling λ at some scale µR, which is the so-called renormalisation
scale. Using the dimensional regularisation with MS scheme, the final result is

VCW (φ) = m4(⟨φ⟩)
64π2

(
log

m2(⟨φ⟩)
µ2
R

− c

)
(Coleman-Weinberg (CW) potential) (1.40)

Here, c = 3/2 in MS. In the case of a pure CW potential (vanishing tree-level mass mφ = 0), it can easily be seen
that the minimum of that potential is given by φ = µRe

1/4 ̸= 0, away from the origin. let us again notice that the
full (often called effective) potential at one-loop is the sum of the tree-level and the 1-loop CW potential:

Veff(φ) = Vtree(φ) + VCW (φ). (1.41)

This result can be generalised to a theory containing fermions and gauge bosons or multiple scalars in a very
straightforward way. The CW potential for those different species is given by

Vi,CW (φ) = gi(−1)niM
4(⟨φ⟩)
64π2

(
log

M2(⟨φ⟩)
µ2
R

− ci

)
(1.42)

where ci = 3/2(5/6) for fermions and scalars (gauge bosons), ni = 1(0) for fermions (scalars and gauge bosons),
gi is the number of degrees of freedom of the species i and M is the mass of the species running in the loop. The
effective potential naturally becomes

Veff(φ) = Vtree(φ) +
∑
i

Vi,CW (φ). (1.43)

1.3.1 Hierarchy problem

As we have seen, at the quantum level, the potential of a field described by the model in Eq.(1.36).

L = 1
2 |∂µφ|2 − Vtree(φ), Vtree(φ) = 1

2m
2
φφ

2 + cφ3 + λ

4!φ
4. (1.44)

This has a typical scale at mφ that we put by hand at classical level. The point of the hierarchy problem is really
that this scale cannot resist once we add the loop corrections. Indeed assume that we couple the φ to some other
scalar ϕ via λϕφϕ2φ2, which is always allowed by symmetries, but that ϕ has a very large mass Mϕ ≫ mφ, the
very same computation than in the discussion above can by performed if we have ϕ running into the loops.

m2(⟨φ⟩) = m2
ϕ + λϕφ⟨φ⟩2/2. (1.45)

Upon plugging into the CW potential, a new quadratic term appears

λϕφM
2
ϕ⟨φ⟩2

64π2

(
log

M2
ϕ

µ2
R

− ci

)
∼
λϕφM

2
ϕ⟨φ⟩2

64π2 (1.46)
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which corrects the m2
φ by an amount λϕφM

2

32π2 . This justifies the statement that in QFT heavy scale physics attract
the scale of light physics.

Or course, since QFT cannot predict the value of observed masses, we can add a counterterm to kill the new
contribution from high physics: (we do not include all the factors, since this is quite irrelevant for the explanation)

m2
obs = m2

φ +
λϕφM

2
ϕ

32π2 + δm2 (1.47)

and fine tuning the δm2 such that m2
obs ∼ m2

φ. This issue generically advocated in twofold: first, if there is
a hierarchy between m2

φ and M2
ϕ , the cancellation between the second and the third term in Eq.(1.47) becomes

considerable, in the sense that we need to fix many decimals in the quantity δm2. Second, assume that such a fixing
has been done and scales have been separated, now the smallest change in the parameters of heavy physics would
ruin the tuning and destroy the separation of scale. We can say that there is a huge sensitivity of light physics to the
parameters of heavy physics.

This second point is really the crux of the issue: the principle of separation of scales says that description
of physics at some scale should not depends crucially on the tuning of parameters in a heavy sector. This is the
so-called hierarchy problem of QFT which in the SM concerns the Higgs bosons, if it is indeed a scalar field.

1.3.2 On-shell regularisation scheme

Above we used the dimensional regularisation scheme. Let us now present another very useful scheme of regulari-
sation. If we impose the following renormalisation condition,

dVeff
dφ

∣∣∣∣
φ=v

= 0, d2Veff
dφ2

∣∣∣∣
φ=v

= m2
φ . (1.48)

where v is the minimum in the tree-level potential. we can observe easily that the CW potential becomes

VCW =
∑
i

ni(−1)F

64π2

[
M4
i

(
log M

2
i

M2
i0

− 3
2

)
+ 2M2

iM
2
i0

]
. (1.49)

In this expression, Mi stand for the masses depending on the scalar fields values, Mi ≡ Mi(φ), and Mi0 are the
field values from the tree-level vev, Mi0 ≡ Mi(v), in the true vacuum of the theory.

Unfortunately, Eq.(1.42) cannot be used directly for contributions of the Goldstone bosons (if there are Goldstone
bosons involved in the problem), since their masses vanish in the true vacuum and the CW potential is IR divergent.
Let us specialize to the case of the Higgs sector, since this is a place where this issue becomes important. The
solution to this issue was suggested in Ref. [9] which emphasized that the physical Higgs mass is defined at p2 = m2

h

(mh being the Higgs mass) and the effective potential at p2 = 0 (see for details Ref. [9]). Thus it would be better
to use modified renormalization condition

d2Veff
dh2

∣∣∣∣
h=v

= m2
h − Σ

(
p2 = m2

h

)
+ Σ (0) , (1.50)

where the differences of self-energies are taking into account the running of self-energy from p2 = 0 to p2 = m2
h.

In this case the IR divergences in Σ(0) due to the virtual Goldstone bosons are cancelled against the IR divergences
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of Veff . In practice, at the end of this renormalization procedure, the contribution of the Goldstone bosons is given
by :

V GB
CW (h) =

∑
i=G

nG
64π2M

4
G(h)

[
log M

2
G

m2
h

− 3
2

]
. (1.51)

This scheme is particularly useful in the study of BSM potential because the loop-corrections are defined in
such a way that they do not modify the position of the true vacuum and the mass at the true vacuum, which are the
main observables. We will use this type of potentials in Chapter 5.

1.3.3 Renormalisation group improved potential and what are we resumming?

It is known that a powerful tool for improving the convergence of the series expansion is the RG improved potential.
In this section we shortly review this important result.

RG improvement for the four-point function If we come back to the computation of the one-loop on Fig.(1.4)
and using this time the cut-off regularisation scheme with cut-off Λ

Γ(4)
1−loop(pi = 0) = −λ+ λ2

32π2

∫ 1

0
dx

(
log Λ2

m2
φ − sx(1 − x) − 1

)
+ (s → u) + (s → t) (1.52)

where s, t, u are the usual Mandelstam variables. After this regularisation, the four-point function basically needs
to be renormalised. We define again a renormalisation scale µR such that

Γ(4)(s = t = u = −µ2
R) = −λ(µR). (1.53)

As a consequence, Eq.(1.52) becomes

Γ(4)(s, t, u) = −λ(µR) + λ(µR)2

32π2

∫ 1

0
dx log

m2
φ + µ2

Rx(1 − x)
m2
φ − sx(1 − x) + (s → u) + (s → t) (1.54)

In this context µR serves as a sliding scale that adapts to the typical energy s in the center of mass in such a way
that the log in Eq.(1.52) is never large. However, it is obviously an unphysical parameter and observable should ne
depend on it, so that we need to require dΓ(4)(s, t, u)/dµR = 0. This gives[

µR
∂

∂µR
+ βλ

∂

∂λ

]
Γ(4) = 0, βλ ≡ µR

dλ

dµR
(1.55)

and β takes the form

β = 3λ
16π2

∫ 1

0
dx

µ2
Rx(1 − x)

m2
φ + µ2

Rx(1 − x)
+ O(λ3)

β ≈


3λ

16π2 if µR ≫ mφ

3λ
16π2

(
µR
mφ

)2
if µR ≪ mφ

(1.56)
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with solutions

λ(µR) ≈


λ(µ0)

1− 3λ(µ0)
16π2 log µR

µ0

if µR ≫ mφ

constant if µR ≪ mφ

(1.57)

where we introduced µ0 as a reference scale. So, if we fix the reference scale at µ0 = mφ and evaluate the integral
at large energy s = −E2 with λ ≡ λ(mφ), the RG-improved four-point function is given by

Γ(4)
RG(E) = − λ

1 − 3λ
16π2 log E

m

(RG-improved 4-points function). (1.58)

From this expression, we can recover the non-RG improved by expanding the ratio

Γ(4)
non−RG(E) = −λ− 3λ2

16π2 log E
m

(non-RG-improved 4-points function). (1.59)

At this point, we could wonder: what did we gain in this procedure ? The claim is that the Eq.(1.58) resums all the
leading-logs (LL) terms that shows up at l-loops in λλl loglE/m. Before to go to show this claim, let us explain in
which context those logs can be dangerous: It is known that at l-loops, the potential is a polynomial of λn lognE/m,
with n < l+ 1.We see that for E ≫ m, the leading-log λl loglE/m is dominating at l-loops. Now, if the hierarchy
between E and m, E ≫ m becomes so large that logE/m starts to compete with the suppression λ/16π2, all
the terms λl

(16π2)l loglE/m becomes equally important. This threatens the perturbative series. However, after the
resummation, all those logs are under control and we expect much better convergence of the series.

RG improvement for the potential For the RG-improvement of the potential, the story goes essentially the same.
Let us remember that the quartic part of the potential is given by

V (φ, µR) = λ(µR)
4! φ4 + λ(µR)2

256π2

(
log λ(µR)φ2

µ2
R

− ci

)
(1.60)

with a possible scheme dependent ci. This constant is set to zero if we choose

V (φ = µR) ≡ λ(µR)µ4
R

4! (1.61)

and we obtain

V (φ, µR) = λ(µR)
4! ϕ4 + λ(µR)2

256π2 log λ(µR).ϕ2

µ2
R

(1.62)

Let us notice that this potential seems to have a zero at very small values of the field φ. This has to be unphysical.
At this point, we can notice a simple way to recover the expression of the β:

µR
dV

dµR
= 0, β = 3λ

16π2 (1.63)

(where we also used that the anomalous dimension of φ at 1-loop level is zero.)

We can now compute the RG-improved potential by setting µR = φ, which gets rid of the log and use the value
of the coupling after running from a reference scale φ0 to µ = φ. The potential becomes

V (φ) = λ(φ)φ4

4! (1.64)
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becomes free of unphysical minima. As a conclusion, to RG-improve our potentials in what follows, we will replace
all the constant couplings by running couplings with scales dictated by the problem at hand. A choice that we could
typically make is

λ → λ(µ), µ ≡
√
φ2 + T 2 (1.65)

in a thermal medium.

Though this is not the case in our toy model, if there is some physics that drives the couplings to zero, via the
RG evolution at some scale Λ, thus at this scale, the potential will become controlled by radiative effects. This
is typically the case if there are several scalars in the theory, see [10, 11, 12]. In this case, we can restart from
Eq.(1.64) and integrate the β equation from φ to φ0, taking β constant

β log φ

φ0
= λ(φ) − λ(φ0). (1.66)

Plugging λ(ϕ) in Eq.(1.64) and expressing the potential in terms of the minimum v, we obtain

V (ϕ) = β

4!

(
log φ

v
− 1

4

)
(1.67)

and we observe that the potential becomes controlled by the β function, so it becomes long and flat, and the mass
of the φ field becomes suppressed m2

φ ∼ βv2 in the true vacuum.

Resummation of the leading-logs: the proof Let us now go to the formal proof of our previous claim that the
RG-improvement would resum the leading logs at all orders in the loop expansion. It is enough to give the proof
for the four-point function.

At high energy, we can neglect the masses and the four-point function depends on λ and µR/E and we can
expand it

Γ(4) = −λ
∑
n=0

λncn(µR/E) (1.68)

with cn unknown functions of µR/E. Starting from c0 = 1 and the Callan-Symanzik equation(
µR

∂

∂µR
+ β

∂

∂λ
− 4γϕ

)
Γ(4) = 0 (1.69)

On the other hand, β and λ can itself be expanded

β = β0λ
2 + β1λ

3 + ..., γ = γ0λ+ γ1λ
2 (1.70)

with γ0 = 0. Now let us solve Eq.(1.69) order by order.

order 1 : µR ∂
∂µR

c1 = −β0 ⇒ c1 = −β0 log µR
E + C1

order 2 : µR ∂
∂µR

c2 = −2β0c1 − β1 + 4γ1 ⇒ c2 = β2
0 log2 µR

E − (4γ1 − β1 − 2β0C1) log µR
E + C2

order 3 : ... (1.71)
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Proceeding recursively, we see that the four-point function at n-loops is a polynomial of order n in logµR/E
the cn will have a βn0 logn µR/E. Resumming the leading logs now becomes very simple:

Γ(4)
LL = −λ

∑
n=0

(λβ0)n logn µR/E = − λ

1 − β0λ logµR/E
(1.72)

Plugging the value of β0, we recover the result in Eq.(1.58), closing the proof that the RG-improvement indeed
takes care of all the leading logs. This is a beautiful proof.

1.4 Thermal field theory

As we will make abundant use of thermal corrections in this thesis, in this section, we review the Thermal Field
Theory (TFT) formalism. We will base our exposition of the TFT on the books [13, 14, 15], the lecture notes[6]
and [16]. Thermal field theory permits the computation of field observables, like the vacuum expectation value
(VEV) of a field, in a thermal background. For our purpose, the interesting feature is that it allows us to compute
the potential of symmetry breaking field.

1.4.1 Basic formalism and basic properties

The essence of the Thermal Field Theory is to introduce a scale in the theory, the temperature of the plasma,
T and thus we define the radius of compactification β ≡ 1/T . The main result of TFT is that a 4D QFT at
finite-temperature T can be nicely recast into effective 3D QFT with time-dimension compactified on a circle of
circumference β = 1

T . We will elaborate on this claim in the next parts of this section. As TFT is designed to study
systems at equilibrium with fixed temperature T , volume V and chemical potential µ, we will work in the so-called
grand canonical ensemble, where the system under study is able to exchange particles and energy with the reservoir
and the thermodynamical variables are T, V, µi, i designating each of the species of the ensemble. The statistical
density matrix is given by

ρ̂ = e−(Ĥ−
∑

i
µiN̂i)/T (1.73)

where the sum is over all the species i in the ensemble, and the grand ensemble average of any operator Â is given
by

⟨A⟩T = Tr[ρ̂T Â]
Z

. (1.74)

In this context, the single most important quantity in thermodynamics and the portal to all the other quantities
is the partition function Z[T ], which writes

Z[T ] ≡ Tr[e−(Ĥ−
∑

i
µiN̂i)/T ] =

∑
a

∫
dϕa⟨ϕa|e−(Ĥ−

∑
i
µiN̂i)/T |ϕa⟩ (1.75)

where the sum runs over all the states. Ĥ is the Hamiltonian operator and N̂i the operator number of i particles. To
go from the first to the second equality we introduced a complete set of eigenstates, in the form 1 =

∑
a |ϕa⟩⟨ϕa|

and performed the trace.
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The other thermodynamical variables can be directly obtained from the partition function with the following
definitions

(Free energy) F ≡ −T lnZ, (Pressure) P ≡ T
∂ lnZ
∂V

,

(Number of particles i) Ni ≡ T
∂ lnZ
∂µi

, (Entropy) S ≡ ∂T lnZ
∂T

. (1.76)

As it is well-known, in the path integral formalism, the non-diagonal matrix element relating the state ϕa at
time t = 0 to ϕb at time t, ⟨ϕb|e−iĤt|ϕa⟩, can be cast in the form7

⟨ϕb|e−iĤt|ϕa⟩ =
∫

[dπ]
ϕ(x,t)=ϕb(x)∫
ϕ(x,0)=ϕa(x)

[dϕ] exp
[
i

t∫
0

dt

∫
d3x

(
π∂tϕ− H(ϕ, π)

)]
. (1.77)

From Eq.(1.75) and (1.77), we see that we can draw a relation between the partition function of the thermodynamical
formalism and the matrix element of a QFT, if we set a = b, integrate over ϕa and perform the changes:

H → H −
∑
i

µiNi (1.78)

t → −iβ = − i

T
. (1.79)

and use the usual formalism of 4D QFT path integral to compute the partition function with periodic boundary
condition set by 1/T . This justifies the usual saying that the TFT is equivalent to a QFT compactified on a circle of
circumference β = 1/T .

In an analogous way, the time evolution operator translates into

ϕ̂(x, t) = eiĤtϕ̂(x, 0)e−iĤt → eβĤ ϕ̂(x, 0)e−βĤ = ϕ̂(x, 1/T ) (1.80)

Due to the trace operation, the boundary conditions are such that ϕ(x, 0) = ϕ(x, 1/T ). The periodicity of the
operator can also be found in the thermal Green functions. As an example, let us define the following Green’s
function

GB(x,y; τ, 0) ≡ Z−1Tr{ρ̂Tτ [ϕ̂(x, τ)ϕ̂(y, 0)]} = ⟨Tτ [ϕ̂(x, τ)ϕ̂(y, 0)]⟩T , (1.81)

with Tτ the imaginary time ordering operator of the form

Tτ [ϕ̂(x, τ1)ϕ̂(y, τ2)] = θ(τ1 − τ2)ϕ̂(x, τ1)ϕ̂(y, τ2) − θ(τ2 − τ1)ϕ̂(y, τ2)ϕ̂(x, τ1). (1.82)

Then using the cyclic property of the trace and time evolution of the operator Eq. (1.80), we can easily see that

GB(x,y; τ, 1/T ) = GB(x,y; τ, 0). (1.83)

The main consequence of the this equality is to impose a periodicity condition on the field inside the brackets
ϕ(x, 0) = ϕ(x, β). Thus the periodicity of the fields and of the Green’s functions are consequences of the presence
of the trace. This induces a discretization of the energy: The so-called Matsubara modes

ωn = 2πnT (bosonic Matsubara modes) (1.84)

7We use round letters to denote the function related to the operator, denoted by a hat.
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for n being an integer. This result is very important and induces that for bosons, a soft mode with n = 0, ω0 = 0
exists. The modes with n > 0 are called hard modes. The presence of the soft modes for bosons will prove to have
a strong impact for the series expansion later on. In contrast, the fermions have anti-periodic boundary conditions
ψ(x, 0) = −ψ(x, β), which is reminiscent of the minus sign that fermions pick up when rotated by 2π and Green
functions also have

GF (x,y; τ, 1/T ) = −GF (x,y; τ, 0) (1.85)

and this induces that fermions have no soft modes, since the Matsubara modes are

ωn = (1 + 2n)πT (fermionic Matsubara modes). (1.86)

Overall, {
ϕ(x, β) = ϕ(x, 0), ωn = 2πnT, for bosons ,
ψ(x, β) = −ψ(x, 0), ωn = (2n+ 1)πT, for fermions.

(1.87)

Going to an interactive theory and switching on a coupling constant, we can expand the exponential in the path
integral in powers of the small coupling, if it is small enough, and apply the usual perturbation theory. Carefully
keeping track of the combinatorics, we obtain the following modification of the Feynman rules for the diagrams

1. We start as usual by drawing all the connected diagrams

2. To each line, we associate T
∑
n

∫ d3p
(2π)3 D0(ωn,p), with D0(ωn,p) the propagator at tree-level. For a boson

it is

D0(ωn,p) = 1
ω2
n + p2 +m2 (1.88)

3. Each vertex, gives the momentum conservation factor (2π)3 δωin,ωout
T δ(pin−pout) times a power of the coupling

to be determined by the specific model under consideration, −λ in the present case.

4. Determine the combinatorics of the specified diagram in similar way than in QFT.

5. At the end, we still have to add a factor β(2π)3δ(0).

This sets of rules permits to simply apply the reflexes of usual QFT for thermal backgrounds.

1.4.2 Mass corrections, thermal self-energy in Toy model

Now that we have adapted the usual weapons of vacuum QFT to the case of a hot and dense medium, we can repeat
the usual computations of QFT in this new setting. Let us thus resume our study of the φ4-theory of Eq.(1.36), again
neglecting the cubic term. In this section, let us go through a very basic, but useful and instructive computation,
and that will be useful in the future. Let us compute the finite temperature exact (dressed) propagator D(ωn,p),
which is defined in the position space by

D(x, τ1; y, τ2) = ⟨φ(x, τ1)φ(y, τ2)⟩T (1.89)
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Figure 1.2: Hard thermal loop: Diagrams contributing to the mass of the scalar field.

where the brackets denote thermal ensemble average. The undressed propagator can be straightforwardly obtained
from the path integral and is given by

D0(ωn,p) = 1
ω2
n + p2 +m2

φ

. (1.90)

Going to the Fourier space, we define the self-energy function Π(ωn,p) in the following way:

D(ωn,p) =
[
ω2
n + p2 +m2

φ + Π(ωn,p)
]−1 (1.91)

= (1 + D0Π)−1D0. (1.92)

Turning off the interaction would induce Π(ωn,p) = 0,D = D0. We would like now to compute the first order
correction to the self energy ∼ λ, that is to say the diagram in Fig. 1.2. Applying the Feynman rules recalled above,
we obtain

Π1−loop = 12λT
∑
n

∫
d3p

(2π)3
1

ω2
n + ω2 , ω =

√
p2 +m2

φ, (1.93)

and the sum is to be performed over Matsubara frequencies. At the end of the day, after regulating and performing the
integral and the sum, the result splits into two contributions: the first contribution is the usual vacuum contribution
to the mass Πvac

Πvac = 3λ
4π2

[
Λ2
c −m2

ϕ log Λ2
c

m2
ϕ

]
, (1.94)

which was already discussed in the context of the CW potential and induces the hierarchy problem. The second
contribution is a finite temperature dependent contribution of the form

ΠT = λT 2. (1.95)

This the Thermal Mass, or Debye Mass. At this point, an important comment is in order: we really can see that the
thermal screening only matters for the soft modes with n = 0, since higher modes comes with at least a contribution
∼ π2T 2, always much larger than ΠT ∼ λT 2. We conclude that for fermions, no screening enters, since they do
not have soft modes. We can conclude that only for the soft modes is the screening important.

Of course realistic theories contain also fermions and gauge bosons, which also can receive or/and induce
thermal masses. Here, after this first illustrative computation, we list the relevant results[6]. In the SM[16], the
expressions of the thermal masses read

Higgs scalar: Πh(T ) = T 2
(3g2

16 + g′2

16 + λ

2 + y2
t

4

)
, (1.96)

Gauge bosons: ΠL
g (T ) = T 2diag

(11
6 g

2,
11
6 (g2 + g′2)

)
, ΠT

g (T ) = 0 , (1.97)

Fermions: Πf = 0 , (1.98)
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where ΠL
g (T ) denote the thermal mass of the longitudinal mode of the gauge bosons, while transverse modes

ΠT
g (T ) are protected by gauge invariance and thus do not receive a mass at leading order in perturbation theory, but

only at next-to-leading order. We will encounter those thermal masses in the case of the standard model augmented
of a singlet (which will only bring a mild corrections to Eq.(1.98)) in Chapter 5 where they play an important role.

To summarize: in the plasma there are then three different scales involved in the problem: i) a hard scale for
the n ̸= 0 scalars and all the fermions, πT , a soft scales, for the n = 0 scalars and longitudinal gauge bosons
(coupling)T and finally a ultra-soft scale, which would occur for transverse gauge bosons (coupling)2T . This last
scale is dangerously non-perturbative.

1.4.3 Thermal corrections to the potential

In section 1.3, we have seen how to compute the zero temperature one-loop potential. In the section, with the
purpose of describing a transition between two states - or two vacua - of a theory, we compute the potential - or,
equivalently, the free-energy - in the hot thermal plasma. Those corrections to the potential induced by thermal
correction have been introduced in Ref [17, 18].

As in section 1.3 we first focus on a pure scalar field, go through the computation explicitly and then quote the
result for the other species. Applying the Feynman rules at finite-temperature in Eq.1.4.1 and using the same tricks
than in section 1.3, we obtain

Vtot(ϕ) = T

2

∞∑
n=−∞

∫
d3p

(2π)3 log(ω2
n + ω2) (1.99)

and

ω2 = p2 +m2
φ(ϕ). (1.100)

The sum over the modes is divergent but does not depend on the VEV, so we can easily compute it by taking
the derivative of the expression in Eq.(1.99). So

f(ω) ≡
∞∑

n=−∞
log(ω2

n + ω2) ⇒ df

dω
=

∞∑
n=−∞

2ω
ω2
n + ω2 (1.101)

which has a known result

df

dω
= 2
T

[1
2 + e−ω/T

1 − e−ω/T

]
. (1.102)

We can now integrate this result with respect to ω and discard the constant piece (which does not depend on ω). We
obtain

f(ω) = 2
T

[
ω

2 + T log(1 − e−ω/T )
]
. (1.103)

Plugging back into Eq.(1.99), we obtain

Vtot(φ) =
∫

d3p

(2π)3

[
ω

2︸︷︷︸
zero-T contribution

+T log(1 − e−ω/T )︸ ︷︷ ︸
VT

]
. (1.104)
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Using the residue theorem, it is easy to show that the first piece in the integral of Eq.(1.104) reduces to the
zero-temperature potential of section 1.3. We can thus consider that we already treated this contribution.

The thermal part is usually written in the following way via defining a function JB:

VT (ϕ) = T 4

2π2JB(m2(φ)/T 2) (1.105)

A similar computation can be made for the fermion case and wield and extra minus sign:

JB/F (y2) =
∞∫

0

dx x2 log
[
1 ∓ exp (−

√
x2 + y2)

]
. (1.106)

However, expressions in Eq.(1.106) are expensive to solve exactly numerically and to save computation time, we
will use in the following chapters the approximate expansions of the function JB/F (y2) as given in Ref. [16]:

JB(y2) =


−π4

45 + π2

12y
2 − π

6 y
3 − y4

32 log
[

y2

16π2 exp[3/2 − 2γ]

]
, y2 ≪ 1 ,

−
∑m>3
n=1

1
n2 y

2K2(yn) , y2 ≫ 1 ,

JF (y2) =


7π4

360 − π2

24y
2 − y4

32 log
[

y2

π2 exp[3/2 − 2γ]

]
, y2 ≪ 1 ,

−
∑m>3
n=1

(−1)n

n2 y2K2(yn) , y2 ≫ 1 .
(1.107)

where γ ≈ 0.577 is the Euler constant, and K2(z) are the second-kind Bessel function. Expressions in Eq.(1.107)
are shown in very much detail in the book [15] and their convergence properties are studied. At this point we should
also emphasize the appearance of a non-analytical term in the boson expansion,

π

6 y
3. This term is really what

allows for thermally-induced FOPTs.

This suggests the following recipe to account for the thermal excitations due to the temperature and the density in
the early universe plasma: we have to supplement the zero-temperature potential discussed in the previous sections
with the thermal corrections of the form

VT (Mi(φ)) =
∑
i∈B

ni
2π2T

4JB

(
M2
i (φ)
T 2

)
−
∑
i∈F

ni
2π2T

4JF

(
M2
i (φ)
T 2

)
,

JB/F (y2) =
∞∫

0

dx x2 log
[
1 ∓ exp (−

√
x2 + y2)

]
, (1.108)

where VT is usually called the thermal potential. At this point, we could also mention that the thermal correction
to the mass that has been computed in subsection 1.4.2 could be now recovered by taking the high temperature
expansion in Eq.(1.107) and taking two derivatives of the potential.

Though nice and simple to implement, this thermal potential suffers from IR issues coming from the diagrams
displayed on Fig.1.3. The scaling of each of those diagrams can be evaluated using the Feynman rules for the
finite-temperature case and the simple following rule: A diagram with a (zero-temperature) superficial divergence
of d > 0 has a T d scaling while a diagram with d < 1 has a scaling T . This trivially tells us that the diagram a) in
Fig.1.3, the thermal mass, will scale as ∼ λT 2, which is verified.
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Figure 1.3: a) is the thermal correction to the mass, b) are the daisy diagrams, c) the lollipop and d) is the superdaisy
contribution. Image borrowed from [16].

Using similar prescription, we can compute similar scaling for each of the diagrams in Fig.1.3, always assuming
that the loop connecting to the external legs is soft, or n = 0 in terms of Matsubara modes. This gives

b): Daisies with n petals : ∼ λnT 2n−1

m2n−3
φ

c): Two loops lollipops : ∼ λ2T 2

d): Three loops superdaisies : ∼ λ3 T
4

m2
φ

(1.109)

Let us emphasize again that the mφ appearing in the denominator of those expression comes only in the case of a
soft boson in the first loop. A fermion loop would not produce this effect since even for n = 0, the denominator
receives a πT and thus fermion loops are never soft.

At this point, it is good to remember that the phase transition is triggered by the competition between tree-level
masses −m2

φ and the thermal correction λT 2. The transition will occur when they are of the same order of
magnitudem2

φ ∼ λT 2
PT. We can now evaluate the scaling of the diagrams in Eq.(1.110) at the moment of the phase

transition: T 2
PT = m2

ϕ/λ: we obtain

Daisies with n petals : ∼
λ1/2m2n−1

φ

m2n−3
φ

∼ λ1/2m2
φ

Two loops lollipops : ∼ λm2
φ

Three loops superdaisies : ∼ λm2
φ (1.110)

and we observe that though two loops lollipops and three loops superdaisies are under perturbative control, the
”daisy" diagrams have the same values at each order in the perturbation expansion n. This signals a serious
breakdown of the perturbative expansion. In the next subsection, we will show how this issue can be solved for
scalar and longitudinal modes of gauge bosons, but not for transverse modes.

1.4.4 Thermal potential and Daisy resummation

In the previous section, we saw the difficulties that the perturbative approach would encounter due to Daisy diagrams
having the same parametric dependence at all orders in the perturbative series, endangering the perturbativity. In
this section, to cure this issue and prove the Daisy resummation techniques, we follow the review [15]. The diagram
with n petals (hard-loops) attached to the soft loop gives (after careful counting, see page 45 of [15])

daisy n-loops = 6n(−1)n+1

n!

(
λ

4!

)n
[2(n− 1)][2(n− 2)]...[2]︸ ︷︷ ︸

2n−1(n−1)!

(
T 2

12

)n
︸ ︷︷ ︸
hard petals

T

∫
d3p

(2π)3

( 1
p2 +m2

φ

)n
︸ ︷︷ ︸

soft part

. (1.111)
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The difficult soft part of the integral can be solved by noticing a recursion law8:∫
d3p

(2π)3

( 1
p2 +m2

)
= −m

4π = − d

dm2

(
m3

6π

)
∫

d3p

(2π)3

( 1
p2 +m2

)2
= d

dm2

(
m

4π

)
= d

dm2
d

dm2

(
m3

6π

)
∫

d3p

(2π)3

( 1
p2 +m2

)n
= − 1

n− 1
d

dm2

∫
d3p

(2π)3

( 1
p2 +m2

)n−1
. (1.112)

At the end, we obtain ∫
d3p

(2π)3

( 1
p2 +m2

)n
= (−1)n

(n− 1)!

(
d

dm2

)n(m3

6π

)
. (1.113)

And combining Eq.(1.111) and (1.113), we obtain that the contribution to the potential of the n-loop Daisy
diagram is given by

daisy n-loops = −T

2
1
n!

(
λT 2

4!

)n( d

dm2
φ

)n(m3
φ

6π

)
. (1.114)

Armed with this result, we can now go to the sum over n and see the magic happen

δVdaisies = −
∑
n=0

T

2
1
n!

(
λT 2

4!

)n( d

dm2
φ

)n(m3
φ

6π

)
= − T

12π

(
m2
φ + λT 2

24

)3/2
= − T

12π

(
m2
φ + Π(T )

)3/2
(1.115)

Going back to the expression for the thermal mass of the scalar field, we observe that resumming the Daysies
amounts to shift the mass of the scalar field by the thermal mass.

m2
φ → m2

φ + Π(T ) (Daisy resummation). (1.116)

We can do so in the full thermal potential because, in the high T potential, the contribution at m2
φ, when shifted,

only brings a new field-independent that we can ignore and atm4
φ level, the contribution from the thermal potential

cancels with the contribution from the CW potential at zero temperature, so it is irrelevant. On the other hand, at
low T , this shift is irrelevant in any cases. However, we notice that thermal corrections are ”slowing down" the
convergence of the perturbation theory, since taking mφ → 0 in Eq.(1.115) produces at one loop λ3/2, instead of
the usual λ2 at higher order.

A similar type of procedure can be performed for the longitudinal parts of the gauge bosons, since they receive
a mass of the form m2

L,g ∼ g2T 2 (see page 79 section 5 of [15]). However, the transverse modes do not receive
a mass at this order. If we speculate that transverse modes are screened at next order m2

T,g ∼ g4T 2 and using the
gauge boson cousin of Eq.(1.115) and set the mass to zero, we obtain a term

∼ − T 4

12πg
6 (1.117)

at all order in the perturbation series. This is the infamous ”Linde Problem"[19] that plagues any thermal gauge
theory and threatens the perturbation theory. Transverse modes cannot be screened and daisy resummation fails, so

8It takes a bit of courage to convince oneself of that result...
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all the orders in perturbation theory are parametrically the same. This problem can be understood in an alternative
way, if we notice that, in thermal field theory, the real expansion parameter is not g2, but g2f(ω), where f is the
distribution function. We can thus see again that for the soft modes n = 0, the effective coupling is

(effective coupling) = g2f(ω0) = g2

eω0/T − 1
→ g2T

mT,g
→ 1 (1.118)

which is parametrically large. This is the source of the claim that transverse gauge bosons in thermal field theory
are strongly coupled.

To summarize, to account for higher loops due to the Daisy diagrams at finite temperature, we can follow the
so-called “Truncated-Full-Dressing" procedure [16]. Doing so, the full one-loop potential becomes

Veff(φ, T ) = Vtree +
∑
i

VCW (Mi(φ)2 + Πi) + VT (Mi(φ)2 + Πi) (1.119)

where Πi are the so-called “thermal masses", dependent on the VEV φ and the temperature for each degree of
freedom. This will be our way to build potentials in the models we will study later in this thesis. We, however, have
to keep in mind the dangerous limitation of the Linde problem.

As a final comment, let us also mention the limitation of the Daisy resummation and 4D perturbative approach.
In [20] it was shown that perturbative approach with daisy resummation was still very sensitive to the cut-off scale
chosen and small changes in the cut-off could induce orders of magnitude changes in the GW signal (because of
the strong dependence of the GW signal amplitude over the nucleation temperature). Alternative methods were
advocated in[20, 21, 22].

Now that we have gathered all the theoretical tools to address the complicated problem of PT in the early
universe, let us lay down the basics of nucleation and early dynamics of the FOPT.

1.5 Phase transitions in early universe and the fate of
symmetries

A very interesting feature of QFT is that it allows, even for very simple setting, a theory to exist in different phases,
and those phases will give very different phenomenologies in terms of particle physics. This comes from the fact
that to extract predictions from a QFT, we need to expand the theory in terms of fluctuations around the minimum of
the potential. A phase corresponds to one of the minima of the theory. As a consequence, we expect that expanding
around two different minima provides us with very different phenomenologies.

Moreover, the concept of symmetries, and the possibility of breaking it, plays a crucial role in physics. In
particular, the breaking of the EW symmetry via the introduction of four new scalar degrees of freedom, the Higgs
field, permitted to obtain consistent mass terms for the fermions of the SM, if one of those degrees of freedom gets
a non-vanishing VEV. This is the famous Higgs-Brout-Englert mechanism, which firmly established gauge theories
as strong candidates for the description of nature.

If this pictures seems very neat at low energies, we might wonder what occurs to the EW symmetry (or any
other broken symmetry) in the context of high energy. Even though, terrestrial experiments are naturally limited
in energies that can be reached, the energy scale of primordial plasma, which follows the inflation and reheating,
is naively expected to be several orders of magnitude larger, possibly reaching T ∼ 1014 GeV or above. In this
context, the question of the fate of the EW symmetry (or other) becomes a pressing question, as naive thermal
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field theory suggests the restoration of the symmetry. More quantitatively, the high temperature expansion of the
thermal potential produces a ∝ +T 2φ2, where φ is the symmetry breaking field (for example the Higgs h). For
high values of T , this term will stabilise the origin φ = 0 and restore the broken symmetry. If a symmetry is broken
at low temperature and restored at high temperature, the thermal evolution of the universe needs to undergo a phase
transition. In this section, we give an overview of the role that the phase transitions play in the early universe and the
putative consequences of such a transition and we focus on the special case of first order phase transition (FOPT).

1.5.1 What characterizes an early universe phase transition ?

As an illustrative purpose, let us study the case of a scalar field with a Coleman-Weinberg (CW) potential, like in
(1.43) and, on the top of it, we add the thermal corrections we have computed in Section 1.4. It is known that pure
CW potentials display a unique symmetry-breaking minimum v = µRe

1/4 as we discussed in section 1.3. This
scalar field obtains a finite VEV at zero temperature and breaks a symmetry. The full potential (augmented by
temperature corrections) of this very toy model is schematically given by

Veff(T, φ) = VCW(φ) + VT (φ, T ), (1.120)

and we illustrate a typical potential of this type on Fig.1.4 for several values of the temperature T . Satisfactorily,
we observe the suspected behaviour: the global minimum of the theory at large T is located at the origin, where
the symmetry group is maximal, and at low temperature the global minimum is located away from the origin, as
it becomes pure CW potential. This situation displays a very non-trivial coexistence of two minima at position
φsym = 0 and φh = v(T ) ̸= 0, separated by a barrier of potential. The barrier between the two minima is a special
feature coming from the non-analytic term in the thermal expansion ∼ −m3/2. This constitutes the special case
of first-order phase transition (FOPT). The rest of this thesis will only consider this possibility and study some of
its features. The Fig.1.4 shows two special values of the temperature: T ⋆, where the minimum in φh = v(T ) ̸= 0
forms for the first time and the critical temperature T crit, the temperature for which both minima have the same
energy:

V (φ = 0, T = T crit) = V (φ = v(T crit), T = T crit). (1.121)

For some range of lower temperatures, the symmetry breaking minimum will become energetically favorable
but separated to the origin by a barrier of potential. This means that the transition initially needs some input of
energy to proceed and to fall in the deeper minimum. It follows that the transition can be delayed and occur for
T < T crit, allowing for the remarkable phenomena of supercooling. Supercooling is well-known of condensed
matter physicists and also occurs in the everyday life, if we are bold enough to freeze pure water to below zero
temperatures. However, supercooling in systems of everyday life can be terminated by the injection of external
energy, which is not a possibility in the early universe. However, two types of effects can push the field above
the barrier of potential: thermal fluctuations, related to the classical dynamics of finite temperature system, and
quantum fluctuations, related to the intrinsic uncertainty in the position of the field (in field space). A fluctuation
occurring in some region of the plasma converts the plasma “in the old phase" (that is to say, the phase with the
scalar field located at the origin) into the “new phase" (the phase with the scalar close to the symmetry breaking
value). Minimisation of energy, as we will further discuss later on, imposes that such a region takes a spherical
shape: a bubble. Such bubble-nurturing fluctuations are both statistical in nature and thus the description of the
phase transition requires the computation of the probability per unit of volume of the appearance, said nucleation,
of such bubble. Before to go further and to engage in those computations, let us first say some few words on other
types of phase transitions, as for example the case where always only one minimum exists and the field will be
allowed to roll from the origin to the symmetry breaking minima. Such possibility is called a second order phase
transition.
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Figure 1.4: Left: Potential of the toy model with one scalar field as a function of the VEV for different values
of the temperature. We display the temperature T ⋆ where the symmetry breaking minimum appears and T crit is
the temperature where both minima have the same energy. Right: Typical bounce solution for different nucleation
temperature. We can observe that lower nucleation temperature provides thicker walls.

1.5.2 Nucleation of O3 and O4 bubbles

The nucleation of a bubble of new phase surrounded by the old phase is a complicated QFT problem that is still not
entirely solved. However, it was shown in [23, 24, 25] for the quantum[23] and the thermal[24, 25] fluctuations, that
the probability is controlled by the exponential of the bounce action. This bounce action corresponds physically to
an instanton solution of the path integral, the bounce profile, minimising the imaginary part of the action, which thus
gives the “most probable escape path", as was first introduced in [26]. Fluctuations around this extremal solution
provide the prefactor of the exponential and was estimated for the first time in [27]. A rough order of magnitude
estimate of the probability is just obtained by matching the prefactor dimensionnally with the scale in the theory.
The total probability per unit of volume of nucleation a bubble is thus given by

Γ(T ) ≃ Γ3(T ) + Γ4 = T 4
(
S3

2πT

)3/2
e−S3(T )/T + 1

R4
0

(
S4
2π

)
e−S4 , (1.122)

where S3, S4 are O(3, 4) bounce actions and R0 is the bubble radius at nucleation. The solution for the bounce can
be found numerically using the shooting method described for the 2D case in Appendix A.4 and some examples are
displayed on the right of Fig.1.4. Most of the physical situation studied in the early universe showed dominance of
the O3 over O4, though some very special cases might be dominated by quantum fluctuations.

1.5.3 Expansion of young bubbles

Now that the bubble has nucleated and that we know how to compute the probability of such an event, we would
like to make progress and investigate the fate of this tiny bubble. A first important question is: will it expand ?

Critical Radius To be able to obtain analytic results, we assume Thin wall, that is to say, the thickness of the wall
(the region over which the VEV of the symmetry breaking field interpolates from zero to its true vacuum value) is
much smaller than the radius of the bubble. With this assumption, we can write the Lagrangian[28, 29]

L = −4πσR2
√

1 − Ṙ2 + 4π
3 R3p (1.123)
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where R is the radius of the bubble and we clearly can observe the competition between the pressure p ≡
∆V − ∆Pplasma. We separated the pressure p into a driving force ∆V coming from the difference of vacuum
energy of each minima and a slowing force ∆Pplasma coming from the resistance of the plasma to the expansion of
the wall, being proportional to the volume of the bubble and the surface tension, being proportional to the surface
of the bubble. The surface tension is defined

σ ≡
∫

wall
dφ∂⊥φ =

∫
wall

dφ
√

2V (φ) (1.124)

which is a constant along the expansion. The derivation of (1.123) is reproduced in Appendix A.1 following the
lines of [29]. At the onset of the bubble, the pressure from the plasma can be neglected, as it is vanishing in the limit
of zero velocity, and we take for the moment p ≈ ∆Vpotential = ∆V . We will come back to the plasma pressure at
length in Chapter 2.

The previous Lagrangian expression can be recasted into a Hamiltonian making the usual Legendre transform

H = Ṙ
∂L
Ṙ

− L = 4πσR2 1√
1 − Ṙ2

− 4π
3 R3∆V. (1.125)

This defines a critical radius Rc, that we can compute by extremizing the energy

E = 4πγwσR2 − 4π
3 R3∆V, γw ≡ 1√

1 − Ṙ2
(1.126)

to obtain

Rc ≡ 2σ
∆V (1.127)

where we set the initial velocity to zero, and so γw,i = 1. A bubble nucleating with R0 < Rc would be unable
to resist the pressure of the surface tension and would collapse. Only when bubbles have R0 > Rc, they will be
able to start to expand. But looking back at the Lagrangian in Eq.(1.123) teaches us that nucleating a bubble with
R0 ≫ Rc is highly improbable, since we are far away from extremizing the Lagrangian. So the most probable
bubble that will eventually expand is the bubble with R0 = Rc.

Let us make another comment on the energy budget of the bubble: In the plasma frame, it is apparent from
Eq.(1.126) that the volumic release of energy is turned into increasing the velocity γw that we can already anticipate
to behave like γw ∝ R/R0.

Early Expansion We have seen that bubbles nucleated with in initial radius ofR0 ≳ Rc are energetically allowed
to expand. The subsequent evolution can be obtained from the Lagrangian (1.123) and applying the Euler-Lagrange
equations:

R̈+ 21 − Ṙ2

R
= ∆V

σ
(1 − Ṙ2)3/2 (1.128)

For a complete exposition of how to obtain those expressions in spherical coordinates, see [30]. The quantity Ṙ is
the velocity of the wall, which is often written as well vw. The equation in (1.128) can be rewritten in term of the
Lorentz factor γw

dγw
dR

+ 2γw
R

= ∆V
σ
. (1.129)
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Again, this expression neglects the backreaction from the plasma, so it is expected to be valid at the very early stage
of the expansion or when the release of energy from the transition is always stronger than the backreaction from the
plasma: the runaway regime. We can now solve (1.129) and, taking the boundary condition γw(R0) = 1, one finds
the following solution

γw = ∆V R
3σ + R2

0
R2 − ∆V R3

0
3σR2 ≈ 2R

3R0
+ R2

0
3R2 (1.130)

where we usedR0 ≈ Rc ≡ 2σ
∆V . In the case where we can neglect the pressure from the plasma, we can approximate

the energy stored in the wall by

Ewall = E0 + 4π
3 R(t)3∆V (t) (1.131)

with E0 = S3(φ = φin) the initial energy of the bubble. In this expression we took advantage of the fact that the
energy which is released by the transition goes into the bubble wall and we avoid having to compute the tension.
Here however, there is a subtlety: the value of the field at the center of the bubble at the moment of nucleation is
not the value of the field in the minimum, but at the escape point φr = φin which subsequently roll down with time
φ(t). Thus we define ∆V (t) = V (0) − V (φ(t, r = 0) and the initial radius is given by

R0 =
[ 3E0,V

4π∆(t = 0)

]1/3
(1.132)

To a rather good approximation, ∆V (t) = ∆V and E0,V is the initial contribution to the energy of the bubble.

At the end of the day, very nicely, the pressure and the surface tension factor out of the evolution of the Lorentz
factor and we can only keep in mind that

γw(R) ≈ 2R
3R0

(1.133)

from which we can simply read that the evolution of the boost factor follows the grows of the bubble ∝ R. The
bubble accelerates very strongly.

1.5.4 Energy budget and parameters of the phase transition

As we have seen, the early stage of the bubble expansion reflects the competition between the surface tension scaling
like the surface of the bubble and the injected energy, scaling like the volume of the bubble, leading to a simple
law γw ∝ R of expansion. As a consequence, as soon as the bubble expands enough, the surface tension can be
absolutely ignored with respect to the release of energy, and the dynamics is only controlled by the release of energy.
The expansion of the bubble converts the plasma from the old phase into the new phase and large amount of energy
is released in the plasma. At this point, if we want to be able to characterise the transition in terms of a possible
signal, like a GW signal, it becomes important to describe the transition with some simple parameters. Presenting
the parameters controlling the energy budget of the transition is the purpose of this section.
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Energy budget of the phase transition

Bubble nucleation is characterised by a critical temperature Tcrit, defined as the point when the two phases of
the system have vacua with the same energy. Below Tcrit phase transition becomes energetically possible. The
probability to find a specific point of the Universe to be in the false vacuum is given by [31, 32]:

Pf [T ] = exp[−I(T )] , I(T ) ≡ 4π
3

∫ Tc

T

dT1Γ(T1)v3
w

T 4
1H(T1)

[ ∫ T1

T

dT2
H(T2)

]3
. (1.134)

In Eq.(1.122) the strongest dependence on the temperature comes from the Γ(T ) ∝ exp (−S3/T ), so that the
quantity I(T ) is mostly controlled by the ratio Γ (T ) /H4 (T ) and an order one fraction of the volume of the
Universe will be in the true vacuum when Γ[T ] ∼ H4[T ]. The temperature that satisfy this condition is coined the
nucleation temperature Tnuc or, to phrase differently, the nucleation temperature Tnuc corresponds to the appearance
of roughly one bubble of true vacuum per Hubble volume. Tnuc can be obtained in the following way

Γ ∼ H4,

H(T )2 = 1
3M2

pl

(
ρrad + ρvac + ρwall

)
, ρwall ≈ 0, ρrad = π2g⋆

30 T 4, ρvac = ∆V

⇒ S3
Tnuc

= 3
2 log

(
S3

2πTnuc

)
+ 4 log

(
Tnuc

H(Tnuc)

)
. (1.135)

More precisely the temperature of the phase transition can be found by following the procedure outlined in [33]

I(Tper) ≳ 0.34, (1.136)

where the condition I(Tper) ∼ 0.34 implies that the false vacuum occupies less than Exp[−I(Tper)] ∼ 70% of the
total space of the universe. The reason of this choice comes from the following argument, due to [34], which shows
that ∼ 34% is the “minimal fraction of new phase such that bubbles can constitute an infinite connected cluster”.
Tper is dubbed the percolation temperature and this is the temperature at which the GW are typically emitted. If
the condition in Eq.(1.136) is not fulfilled, I(T ) < 0.34, then the bubbles do not percolate and the transition never
completes.

The energy released during the PT is traditionally quantified by the ratio between the energy stored in the
vacuum and in the plasma at the moment of the transition

α(T ) ≡
∆V (T ) − T

4
∂∆V
∂T

ρrad
≈ ∆V (T )

ρrad
(Strength parameter), (1.137)

which has to be evaluated at the percolation temperature. This is one of the important parameters of the energy
budget of the bubble. The α parameter, the latent heat of the transition normalized by the radiation energy of the
universe, is related to the amount of supercooling in the following sense: as the temperature decreases below the
critical temperature, the difference of depth between the true and the false vacua ∆V remains roughly constant,
while the relativistic energy gets redshifted by the expansion of the universe ρrad ∝ T 4 very fast. Then α ∝ 1/T 4

and a larger supercooling will induce a larger energy budget parameter α.

A second important parameter is the duration of the phase transition. The duration from the nucleation to the
percolation can be approximated by expanded the rate of nucleation at first order. This leads to the definition:

β̃ ≡ β

H
= −d(S3/T )

Hdt
= T

d

dT

(
S3
T

)
(Duration of the transition) (1.138)
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Parameter Symbol Expression
Nucleation temperature Tnuc Γ ∼ H4

Percolation temperature Tper I(Tper) ≳ 0.34
Reheating temperature Treh Treh ≈ (1 + α)1/4Tper

Strength of the transition α
∆V−T4

∂∆V
∂T

ρrad

Duration of the transition β T d
dT

(
S3
T

)
or (8π)1/3vw

H(Tper)R⋆
Velocity of the bubble wall vw Chapter 2

Table 1.4: Summary of the energy budget of PT necessary for the computation of the GW signal as well as PT
parameters.

The normalized speed of nucleation β̃ ∼ texpansion
ttransition

, with ttransition the typical time the transition takes to complete
and texpansion the Hubble time, measures how fast a bubble nucleates with respect to the expansion of the universe,
giving an estimated of the speed of completion of the transition.

However, the derivative of the function S3/T may be submitted to large uncertainties, due to the rapid change
with T , as a consequence, it has been suggested to make the change [35, 33, 36]

β̃ = T
d

dT

(
S3
T

)
→ (8π)1/3vw

H(Tper)R⋆
, (1.139)

where the radius at collision R⋆ can be obtained from

R⋆ ≡ (8π)1/3

β̃
≈
(∫ Tcrit

Tper

dT

T

Γ(T )
H(T )

(
Tper
T

)3
)−1/3

. (1.140)

We will come back to this issue in the Chapter 5 where we will see that we need a more robust definition of the
durations of the transition.

At last, the temperature at the end of the phase transition will control the redshift of the signal. Assuming that
the transition occurs in less than an Hubble time, we can apply conservation of energy arguments to obtain the
reheating temperature Treh:

(1 − ΩGW )
(
∆V + ρrad

∣∣
T=Tper

)
= ρrad

∣∣
T=Treh

⇒ Treh ≈ (1 + α)1/4Tper, (1.141)

where we neglected the energy lost in the GW signal.

We will see that this quantity will play a very important role in the remainder of this thesis.

1.5.5 First encounter with the regimes of expansion

So far we have met three (α, β, Treh) of the four parameters determining the GW signal emitted. The last one is the
velocity of the bubble wall vw. This parameter somehow splits into two different parameters: the absolute value of
vw and the regime of expansion at collision of the bubbles. Though it will be the main topic of the Chapter 2 let
us introduce here the different regimes of expansion of the bubble[31, 36, 37, 5] that we can encounter. We will of
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course abundantly come back on those issues later on, suffice it to say for now that the regime of expansion is fixed
by the competition between the release of energy ∆V which pushes for the expansion of the bubble and the friction
from the plasma P: there are two possibilities

1. Terminal velocity regime: The pressure growing with the acceleration of the wall, the plasma finally balances
the release of energy and the acceleration of the bubble terminates γw → γterminal

w . All the energy of the
transition is then redirected to the plasma.

2. Run-away regime: The pressure from the plasma never manages to catch up with the release of energy and
the bubble keeps accelerating until collision among the bubbles. In this case, the energy will be mainly stored
into the shear-stress at the wall and in the sound waves in the plasma.

We will see now that those two cases are expected to produce very different GW signal.

1.6 GW signal from FOPTs

We have already emphasized the fact that strong enough FOPTs would produce copious GW signals, under the form
of a homogeneous SGWB. This possible SGWB from FOPTs has been copiously studied in the past 10 years or so,
and still come with large uncertainties. Let us present the state of the art here, the final purpose being to be able to
constrain BSM physics from possible SGWB observers.

There are two crucial steps on constraining the BSM physics from gravitational observers. The first consists in
mapping the thermal description of some theory in terms of energy budget parameters. Schematically, it is

BSM parameters ⇒ (α, β, Treh, vw) . (1.142)

The second step consists in describing the power spectrum of the gravitational waves emitted in terms of the
phase transition parameters:

(α, β, Treh, vw) ⇒ GW spectrum . (1.143)

In this section, we review quickly the physics of the emission of gravitational waves during FOPT. We have
however to keep in mind that the study of the spectrum and magnitude of the GW induced by PT remains a very
active field and that none of the result we mention is definitive.

Our understanding of the GW signal from FOPT relies ultimately on scalar field and hydrodynamic simulations
and combination of them[46, 47, 48, 49, 50, 51], see also the reviews in [52, 53] and the LISA working group [54].
Three main contributions to the GW signal have been determined so far: a scalar field contribution, originating from
the collision of the bubbles, a sound waves contribution coming from sound waves propagating into the plasma, and
a turbulent contribution due to turbulent motion of the plasma when non-linearities kick in. Each of those sources
corresponds to a different stage in the phase transition. The scalar field contribution corresponds to the collision
of bubbles among each other and the merging of the shells, which is typically of short duration. The second stage,
which is much longer and possibly as long as an Hubble time, is the propagation of sound waves in the plasma and
corresponds to the sound waves contribution. Finally, in the last stage, non-linearities in the plasma kicks in and the
fluid shell develop shocks, this correspond to the turbulent contribution. Following the recommendations of [54],
we will ignore the turbulence contribution due to the large uncertainties and, in our computation of the spectrum,
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Figure 1.5: Prospect for observers in the near future. The signal-to-noise ratio and the sensitivity curves can be
build following the recommendations of [38, 39, 40, 41, 42, 43, 44, 45] for the observe LISA, LIGO, MAGIS, Big
Bang Observer, DECIGO, ET.

will focus only on the “sound waves" and “bubble collision" contributions. We already introduced the α parameter
giving an estimate of the energy available to the transition and the β parameter providing its duration. Before to
enter the physics of the different contributions, let us introduce a last important parameter controlling the signal:
the energy distribution between the motion of the wall and the excitation of the plasma. As we will see, this quantity
is inherently related to the regime of expansion of the bubble, that we introduced above.

From energy conservation consideration and to formalize this separation, we define two parameters

κwall, κfluid = 1 − κwall, (1.144)

where κwall is a measure of the ratio of energy going to the wall kinetic energy

κwall ≡ Ewall

Etotal
. (1.145)

Let us notice that even if the wall expands relativistically, κwall becomes vanishingly small as soon as the
terminal velocity is reached. This is because the portion of the energy stored in the wall starts to decrease as inverse
of the bubble radius. Then in the two regimes of expansion, the energy budget is distributed as a function of the
bubble wall expansion regime:

1. Terminal velocity
In this case only the sound waves are important and the energy will be distributed as follows:

κwall = 0, κfluid = 1. (1.146)

2. Runaway Regime
The release of energy is large enough to overcome all the source of friction and then the wall keeps accelerating
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until the collision. We will formalise more quantitatively this condition in Chapter 2. For the moment, it
is enough to say that the condition for runaway is that the release of energy overcome the pressure from the
plasma

∆V > ∆PLO. (1.147)

As a consequence, a fraction of the release of energy still goes to the plasma, via ∆PLO and we quantify this
fraction by introducing ∆PLO

ρrad
. In this case, the parameters introduced above become

κwall = 1 − α∞
α
, κfluid = 1 − κwall = α∞

α
, (1.148)

where

α∞ ≡ PLO

ρrad
(1.149)

In this situation, one can see that both sound waves as well as the bubble collisions are important for the
generation of the gravitational waves.

With all those quantities in hands, we can now go to the computation of GW spectra.

• Scalar field contribution: The first contribution is the so-called scalar field contribution. During the phase
transition, at the junction between the two phases, the VEV of the scalars involved in the transition smoothly
interpolates between the two phases. The gradient in those background fields induces shear stresses. It was
traditionally computed using the so-called “envelope approximation"[55, 49] in which the shear stresses are
assumed to be concentrated in a thin shell at the boundary of the bubble, accumulating energy from the kinetic
energy of the wall. This energy is then released when the bubbles collide under the form of gravitational
waves and the shear stresses dissipate. For this reason, one also often calls this contribution the “Bubble
Collision" contribution. The high frequency tail in the envelope approximation was found to be k−1 but in
later simulation found a steeper dependence [49, 56].

The scalar field contribution is expected to give a significant contribution, with respect to the sound waves
only for very relativistic bubbles. The most recent numerical computation of the spectrum generated by this
process can be approximated by [49]

dΩϕh
2

dln(f) = 4.7 × 10−8
(100
g⋆

)1/3
(HrehR⋆)2

(
κwallα

1 + α

)2
Swall(f, f̃ϕ) (1.150)

where g⋆ is the number of relativistic degrees of freedom, κwall is the fraction of kinetic energy stored in the
motion of the wall, Hreh is the Hubble constant evaluated at the reheating temperature and R⋆ is the size
of the bubble at the collision (which is computed from the β parameter). The numerical fit to the spectral
function reads

Swall(f, f̃) = (a+ b)cf̃ bfa(
bf̃

a+b
c + af

a+b
c
)c a = 3, b = 1.51, c = 2.18, (1.151)

with peak frequency

f̃ϕ = 16.5 × 10−5
(
Treh
100

)(
g⋆

100

)1/6( 3.2
2πR⋆

1
Hreh

)
Hz. (1.152)
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and the typical bubble radius can be estimated to be

R∗ = (8π)1/3vw
β

. (1.153)

as we already argued.

• Sound waves contribution: Another important mechanism of GW production comes from the sound waves
in the plasma. In this case the spectrum of the stochastic gravitational wave background can be estimated
following the recent recommendations in [48, 54]

dΩsw,0h
2

dln(f) =
{

0.678h2Fsw,0K
2(HrehR⋆/cs)Ω̃sw,0C(f/fp,0), if HrehR⋆

K1/2 > 1
0.678h2Fsw,0K

3/2(HrehR⋆/cs)2Ω̃sw,0C(f/fp,0), if HrehR⋆
K1/2 < 1

(1.154)

and the two regimes in the equation above correspond to the time scale of the shock formation being larger
or smaller than the corresponding Hubble time, τsh >,< 1

H . The sound wave production efficiency is given
by [57]

K ≈ 3
4
kswα

(1 + α) , κsw = κfluid × α

0.73 + 0.083√
α + α

(1.155)

where for the case of the runaway bubbles we have to substitute α → α∞. The factor Fsw,0 =
Ωγ,0

( gs0
gs⋆

)4/3 g⋆
g0

= 3.57 × 10−5(100
g⋆

)1/3 converts the signal emitted at the percolation temperature to the
signal we would observe today. Hreh andR⋆ are the Hubble constant and the size of the bubble at the collision
(with reheating temperature correction for the Hubble constant) and the spectral shape C(s) is a function
determined numerically

C(s) = s3
( 7

4 + 3s2

)7/2
(1.156)

with peak frequency

fp,0 ≈ 26 × 10−6
( 1
HrehR⋆

)(
zp
10

)(
Treh

100 GeV

)(
g⋆

100

)1/6
Hz, (1.157)

g⋆ indicates the number of relativistic degrees of freedom. Numerical simulations give zp ≈ 10 and
Ω̃sw,0 ≈ 10−2.

Before to finish, we need to add a word of caution on the runaway regime: Simulations of sound waves have
been only successfully performed for α ≲ 1, though the typical regime of runaway bubbles has α ≫ 1, as a
consequence, we should consider any extrapolation of the previous expressions with great care.

Those are the expressions that we are going to use in the remainder of this thesis. We can also see the
difference of behaviour between sound waves fuelled GW, fading as Ωsw ∼ f−4, much faster than the scalar field
component, fading as Ωϕ ∼ f−3/2, and this raises the hope that the runaway and the terminal velocity regimes can
be distinguished from the GW spectra. However, if all this story seemed grandiose and hopeful, a word of caution
is in order at this point: There is still huge uncertainties on the shape of the spectrum extracted from numerical
simulations, as we hope to illustrate in Table 1.5 where we gives the shape of the spectrum obtained by different
groups. As a consequence, this is still not certain that we can exactly distinguish between bubble collision and
sound waves GW signals. In the remainder of this thesis, though keeping in mind this funest caveat, we will bet
that we will be able to do so in the future.
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Reference and group IR tail UV tail
Envelope simulation[58] Ωϕ 3 1
Envelope simulation[59] Ωϕ 2.9r − 2.95 0.9 − 1
Envelope analytic[60, 61] Ωϕ 3 1
Bulk flow[59] Ωϕ 0.95 − 0.9r 2.9 − 2.1r
Lattice Simulation[49] Ωϕ 3 ∼ 1.5
Lattice Simulation[62] Ωϕ 0.68 − 1.56 1.35 − 2.25
Sound Shell model[63, 64] Ωϕ 9 4
Analytic[61] Ωsw 3 1
Hybrid simulation[65] Ωsw 3 3
Lattice Simulation[48] Ωsw 3 4

Table 1.5: Shape of the GW signals from some of the different groups working on WG from FOPT in the UV and
the IR. Results are shown under the form of (f/fp,0)n for the IR and (f/fp,0)−n for the UV tail. The suffix r means
that the result is specific to relativistic walls. The mismatch betweem numerical simulations and the current models
available (Sound shell and Bulk flow) motivates us to investigate further the analytic understanding of GW from
bubble collision.





Chapter 2

FOPT and Dynamics of the bubble wall

T he two earliest signals we have been able to thoroughly study today are the Cosmic Microwave Background
(CMB) fluctuations, whose the precise understanding through early universe evolution models offered an

impressive wealth of information, and Big Bang Nucleosynthesis (BBO) which provides very strong bounds on the
post-1 second evolution and content of the universe.

However, the first second of the universe still did not provide any observable signal and thus remains a fertile
playground for the model-builder. One of the few signals that we can expect to have escaped from the early hot
plasma and to exist around us today are the gravitational waves (GW) (another obvious signal of the dynamics of
the early universe, to be discussed in the next Chapters, are the over-abundance of matter over anti-matter and the
presence of dark matter). Many events of the early universe have been proposed as copious sources of GW1, namely
the inflation, the preheating, the cosmic strings and domain walls, and the first order phase transitions (FOPT). A
very important parameter in the computation of the GW signal emitted is the regime of expansion and the velocity
of the bubble wall. In this chapter, we will focus on this last possibility and discuss at length the dynamics of the
bubble wall.

As a strongly out-of-equilibrium process, the dynamics of the expansion and the computation of the velocity of
the wall are very involved problems and demand a heavy mathematical treatment. After exposing the hydrodynamical
description of the wall-plasma system and the different methods developed to deal with the problem of the velocity,
we specialize to one specific regime, the ballistic regime of relativistic bubbles, and we go on to compute the
different contributions to the pressure in this case. We discuss the numerous uncertainties.

Finally, in a last section, we will illustrate the usefulness of a precise computation of the pressure for the case of
the prediction of the spectrum of GW emitted by the transition. This chapter relies strongly on the findings in [1].
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2.1 Hydrodynamic description of the transition

The first way to classify the types of FOPT is to study the behaviour of the plasma around the bubble wall. Let
us clearly set the problem at hand. The bubble wall can be seen as an interface between two phases of the plasma
that we describe as a perfect fluid. In turn the perfect fluid is characterized by three quantities 1) a bulk velocity
v, 2) a temperature T and 3) pressure p. In principle, the bulk velocity is three-dimensional, but for the case of a
large bubble, the only relevant direction is the one along the direction of the wall, that we denote z in the remainder
of this thesis. As a consequence, v is to be understood as the velocity along this direction. The interface is a
sharp discontinuity between two perfect fluids that, from the point of view of hydrodynamics, we can consider as
infinitely thin. As a consequence, the set (T, v, p) does not need (and is not) to be the same on both sides of the
interface. The goal of the hydrodynamical description is to relate (T, v, p)h (h for higgsed, inside of the bubble)
with (T, v, p)s (s for symmetric, outside of the bubble) and the energy parameters of the transitions, that we have
introduced in Chapter 1. The unknowns are 1) the shape of the scalar condensate 2) the temperature inside Th,
and outside Ts 3) the plasma velocity inside vh and outside vs, 4) the pressures inside ph and outside ps. In this
section we will follow[69, 57]. Typically, the hydrodynamical approach leaves the velocity of the wall vw as a free
parameter, which has then to be obtained by other methods and approximations. We will treat the velocity issue in
the second part of this chapter.

Thermodynamics quantities We reserve the notation vw for the velocity of the wall and γw ≡ 1√
1−v2

w

for the
boost from the plasma frame to the wall frame (Though we will often call γw the velocity of the wall). We define
the thermodynamical quantities (w, s, ρ) in the following way

w ≡ T
∂p

∂T
, s ≡ ∂p

∂T
= Tw, ρ = w − p F = −p = VT (ϕ, T ) (2.1)

respectively for the enthalpy, the entropy density, the energy density and the Free Energy or pressure.

Energy-momentum tensor of the bubble-plasma system Another important quantity in the description of the
transition is the energy-momentum tensor, which permits to enforce the conservation of energy and momentum.
The two ingredients of the system are, on the one hand, the scalar field, with the energy-momentum tensor taking
the form

Tφµν ≡ ∂µφ∂νφ− gµν

[1
2∂µφ∂

µφ− V0

]
(Energy-momentum tensor of scalar field) (2.2)
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where V0 is the renormalised zero-temperature potential of the scalar field φ and, on the other hand, the plasma.
A first grasp on the hydrodynamics of the expanding bubbles can be obtained by assuming that the fluid is in Local
Thermal Equilibrium (LTE) and thus can be described as a perfect fluid:

T plasma
µν = wuµuν − gµνp, uµ = (1,v)√

1 − v2
= γ(1,v) (2.3)

where uµ, v being the spatial component of the fluid velocity. In our one-dimensional case, v becomes only v ≡ vz
along the bubble. γ ≡ 1√

1−v2 is the boost factor of the fluid motion frame and is not to be confused with the wall
boost factor γw. In the end the full energy-momentum tensor of the system is given by the sum of contributions
from the plasma and from the scalar field:

T tot
µν = T plasma

µν + Tφµν . (2.4)

Imposing the conservation of the total energy-momentum tensor, we obtain

∇µT
µν
tot ≈ ∂µT

µν
tot = 0 ⇒ ∂zT

zz
tot − ∂0T

0z
tot = ∂zT

z0
tot − ∂0T

00
tot = 0, (2.5)

where we neglected the universe expansion in the first equality, as the time-scale of the transition is much shorter than
the time-scale of the expansion. We can now go the wall frame and integrate the equations in (2.5) across the wall
(z direction), obtaining the equations ∆Tzz = ∆Tz0 = 0. Upon injecting the expressions of the energy-impulsion
tensor, this gives the two following important relations between the pressures, the fluid velocities and the energy
densities:2

wsv
2
sγ

2
s + ps = whv

2
hγ

2
h + ph, wsvsγ

2
s = whvhγ

2
h. (2.6)

We can now eliminate the enthalpy by substitution and factor out the velocities. We obtain

vsvh = ps − ph
ρs − ρh

,
vs
vh

= ρh + ps
ρs + ph

, (2.7)

which relates pressure and energy density, with the bulk velocity. To make further progress, we need a relation
between the pressure and the energy density, an equation of state. This is provided, in simple settings, by the bag
model.

Equation of state in the bag model Obtaining a relation between the pressure and the energy density in the
context of a PT, in general, is far from a trivial task. However, let us borrow some intuition from the case of the
perfect gas, where the pressure and the energy density can be expressed in terms of the temperature via simple
relations. Indeed, the free-energy can be expressed

F(φ, T ) = V0(φ) + T 4

2π2

∑
i

giJB/F (mi/T ) (2.8)

where the second term is the thermal potential and the first is the vacuum energy and the JB/F have been defined
in Eq.(1.107):

JB(mi/T ) =
∫ ∞

0
dyy2 log[1 − exp(−

√
x2 + y2)] →

{
−π4

45 if miT ≪ 1
exp[−mi/T ] if miT ≫ 1

(2.9)

JF (mi/T ) =
∫ ∞

0
dyy2 log[1 + exp(−

√
x2 + y2)] →

{
−π4

45
7
8 if miT ≪ 1

exp[−mi/T ] if miT ≫ 1
(2.10)

2We also use the fact that the term (∂zϕ)2 is zero when integrated across the wall and we hide ∆V inside of the pressure p = pplasma −V0.
We also remind that we are using a mostly minus metric.
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where we kept only the leading term, for the purpose of the explanation. Naively, this tells us that a state with low
mass will contribute to the energy of the plasma by ∝ T 4 and that a particle with a large mass will be suppressed
from the plasma and would not enter into the description of the transition. This naive picture will have to be refined
in the light of the further findings, but we can safely stick to it for the moment. Now recalling the definition of
the thermodynamical quantities in Eq.(2.1) and the fact that the pressure is directly related to the free energy, this
suggests to connect to the pressure and the energy to the temperature in the following way

ps = 1
3asT

4
s − ∆V, ph = 1

3ahT
4
h (2.11)

ρs = asT
4
s + ∆V, ρh = ahT

4
h (2.12)

a ≡ π2

30
∑

light i

[
gbi + 7

8g
f
i

]
(2.13)

where ∆V is the difference of potential between the false and the true vacua at zero temperature, defined to zero
in the higgsed vacuum, gi are the number of degrees of freedom. The first two equations define the so-called
bag equations of states and allow usually for unequal ah, as free parameters. In this scheme, the density of heavy
particles is Boltzmann suppressed and the species do not contribute in the potential and the pressure. To go beyond
the bag equation of states, see for example the model-independent approach in[70].

It is clear that one of the limitation of the bag equation of states is that it does not allow for the number of
degree of freedom to depend on the temperature, which might be the case in the realistic transitions. One of the
approximation is that the light and the heavy species are clearly separated at all the temperature characterising the
transition. This is typically the case of transition with barrier remaining in the zero temperature potential, leading
to strong transition.

There is also another important word of caution at this point: The bag equation will not be able to describe the
case of a runaway wall.

Velocity relation The relation between pressure, energy density, expressed in terms of the temperature, allows
to eliminate both the pressure and the density in Eq.(2.7). Under the bag equation of states approximation, the
relations in Eq.(2.7) become

vsvh = 1 − (1 − α)r
3 − 3(1 + α)r ,

vs
vh

= 3 + (1 − 3α)r
1 + 3(1 + α)r . (2.14)

α ≡ ∆V
asT 4

s

, r ≡ asT
4
s

ahT
4
h

(2.15)

The parameters α, which was already defined in Eq.(1.137), and r admits simple interpretations as, the strength of
the phase transition and the ratio of the radiative energy before and after the transition. The combination of those
two relations gives

vs(vh, α) = 1
1 + α

[(
vh
2 + 1

6vh

)
±

√√√√(vh
2 + 1

6vh

)2
+ α2 + 2

3α− 1
3

]
, (2.16)

and reveals a rich phenomenology of the phase transitions, parametrized by the strength parameter α. This relation
is very important and basically controls the types of FOPT that will occur. To see how it goes, we need now to
study exactly the hydrodynamical equations, as we will do in the next subsection.
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2.1.1 Hydrodynamic equations

In general, there is no guarantee that all the solutions that we can obtain from Eq.(2.16) indeed admit a hydrody-
namical solution. To check this, we need to go back to the conservation equations and to study the profiles of the
different physical quantities. Inserting the perfect fluid Ansatz inside of the conservation equation, and using again
the conservation of momentum, we obtain

∂µT
µν = uν∂µ(uµw) + wuµ∂µu

ν − ∂νp = 0. (2.17)

Projecting this equation along the flow uµ gives the continuity equation

∂µ(uµw) − uµ∂µp = 0, (2.18)

and projecting perpendicularly to the flow ūµ, ū2 = −1, ūµuµ = 0, gives the Euler equation

ūνuµw∂µu
ν − ūν∂νp = 0. (2.19)

As the problem does not contain intrinsic scale, the solution will only depend on the combination z
t . It then

proves very convenient to introduce ξ ≡ z
t , inducing that uµ∂µ = −γ

t (ξ − v)∂ξ and ūµ∂µ = γ
t (1 − vξ)∂ξ.

Introducing this variable, uµ = and ūµ = γ(v,v/v) into Eq.(2.18) and (2.19) become

(ξ − v)∂ξρ
w

= 2v
ξ

+ [1 − γ2v(ξ − v)]∂ξv (2.20)

(1 − vξ)∂ξp
w

= γ2(ξ − v)∂ξv (2.21)

The speed of sound in a plasma is defined as c2
s ≡ dp/dρ = dp

dT

/
dρ
dT , thus c2

s = ∂ξp
∂ξρ

, permits to relate the two

equations (2.20) and (2.21) in

v

ξ
= γ2

2 (1 − vξ)
[
µ2

c2
s

− 1
]
∂ξv, µ = ξ − v

1 − ξv
. (2.22)

To fix the solution of these equations, we need to impose proper boundary conditions, that is to say, i) vanishing
of the fluid velocity far inside and far outside of the bubble and ii) recovering the nucleation temperature far away
outside of the bubble.

2.1.2 The types of burning

Now we have all the elements needed to treat the problem of the type of burning. The topic of the type of burning
of a cosmological phase transition is an exciting subject since it has been shown to differ strongly from chemical
burning on earth[71] (against the previous suggestion[69]), where it can only be Jouguet type3.

As we have seen, the conservation equations of the stress-energy tensor permits to relate the velocities vh,s to
the pressures and the energy density on each sides of the wall. Then, imposing an equation of state relates the
energy densities, the pressures and the temperatures, allowing us to eliminate the pressures and the energy densities.
From Eq.(2.16), for some value of the velocity inside of the bubble vh, we always find two solutions, however, only
one of the two is physical (as often, when we solve a second order equation.) This leads to different types of bubble
wall expansion, depending on the regime of expansion of the bubble.

3A Jouguet burning is characterised by the fact that the plasma behind the wall moves at the speed of sound with respect to the wall.
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Figure 2.1: Example of detonation (Left Plot) and deflagration (Right Plot) from Eq.(2.16). We also observe on the
deflagration plot that the value α = 0.4 bring unphysical values. On general grounds, deflagration are only allowed
if α < 1/3.

Figure 2.2: Cartoon of the plasma departure from equilibrium in the case of the deflagrations, hybrid and the
detonations type of transition. Figure borrowed from [72].
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Detonations: vw = vs > vh, vw > cs When the velocity of the plasma (in the wall frame) outside of the bubble
is larger than the velocity inside, vs > vh, and the plasma hits the bubble wall at the wall velocity vs = vw, the
expansion is of detonation type. We have also r < 1

1+3α and the velocity relations are given on the Left of Fig.(2.1).
Since the plasma ”does not see the wall coming", the temperature on front of the bubble wall is the nucleation
temperature.

In principle, there are three types of detonations parametrized by the velocity inside of the bubble: i) the weak
detonations vh > cs, ii) the strong detonations vh < cs and finally iii) the Jouguet detonations vh = cs. We observe
that the transition has a limit of Jouguet detonation for all values of α. The limit vs = vh → 1 also exists if
r = 1

1+3α for all the values of α. As already shown by [71], strong detonations are not possible for cosmological
transitions. A pictorial representation of a detonation is provided on the right plot of Fig.2.2, borrowed from [72].
Solving the hydrodynamics equations for v(ξ) shows that inside of the bubble a rarefaction front with bulk velocity
forms.

An interesting question is: is it possible to have vh > vs in the context of a detonation ? For example if the wall
is runaway?

Deflagration: vs < vh = vw In the opposite case, when the wall expands slower than the speed of sound in the
plasma vw < cs, then the velocity behind the wall will be equal to the wall speed vh = vw and the velocity in
the front of the wall will be slower. This signals the formation of a shockwave in front of the wall. This type of
expansion is only allowed if α < 1/3, as we can observe on the left of Fig.(2.1). A pictorial representation of a
detonation is provided on the left plot of Fig.2.2, borrowed from [72]. Solving the hydrodynamics equations for
v(ξ) shows that outside of the bubble a shock front with bulk velocity forms. This shock is terminated in front of
the bubble by a discontinuity.

In the context of a deflagration, it is also well known that the phase front may have an instability if the propagation
is too slow[73, 74, 75, 76, 77].

Hybrid: vw > cs In the hybrid type, the expansion is faster than the speed of sound, but the wall still present a
shock front outside of the bubble. In this case, neither vs or vh can be identified with the wall velocity vw and we
have the coexistence of shock and a rarefaction wave behind the wall. This is illustrated on the middle panel of Fig
2.2.

Runaway So far, all what we discussed was valid for the steady state walls, where the release of energy due to the
scalar field is compensated with the pressure coming from the plasma. Now we would like to treat the case where
such a balance from the plasma does not occur and the wall accelerates until collision, we will come back to such
situations in the next section. At this step we would like to mention that the thermodynamics of runaway wall has
been studied in [78] and was found to be stable under very weak conditions.

In the case of runaway wall, the energy conservation takes a different form and going through the computation
is instructive. We go to the frame of the plasma in front of the wall. The main difference now is that the gradients
will not cancel as they did before.

We have to remind the definition of the surface tension σ(t) ≡
∫
dφ∂⊥φ(t). Now starting from the conservation

of the energy-momentum tensor and integrating along the wall, we obtain

∆T 00 − ∆T z0 − dσ

dt
= 0, ∆T 0z − ∆T zz − dσ

dt
= 0, (2.23)
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where as before we put the vacuum energy of the scalar field into the pressure and the energy density of the
symmetric side, ps = pplasma,s − ∆V, ρs = ρplasma,s + ∆V , with ∆V positive. We can add the two equations in
Eq.(2.23) to obtain

2dσ
dt

= ∆T 00 − ∆T zz (2.24)

We can observe that when the plasma is negligible ∆T 00 − ∆T zz → 2∆V , all the release of energy goes into
increasing the tension. Thus, we learn the following important statement: when the release of energy is not balanced
by the plasma friction, the release of energy goes into increasing the surface tension σ.

2.2 Velocity: Friction on the wall

A crucial quantity necessary for the computation of the emission of GW and electroweak baryogenesis production
is the velocity of the wall itself vw. However, in full generality, determining the dynamics of the wall is a very
involved problem, as we will see soon. This section deals with this important issue and draws a general picture of
different methods and regimes that have been considered in the literature. After a quick explanation of the problem
of the bubble velocity in Section 2.2.1 and the exposition of the methods assuming small perturbations of the plasma
in Section 2.2.2, in Section 2.3 will give a thorough presentation on the case of the ballistic regime, which is the
our main purpose.

2.2.1 The problem of the bubble wall velocity

As we have mentioned above velocity is the most difficult parameter to estimate. Initially thought to be fixed by
[69] Chapman-Jouguet condition. This condition leads most of the time to very supersonic walls. The use of
Chapman-Jouguet condition, in the case of cosmological phase transitions, was put in question in [71] where it was
shown that a large class of cosmological phase transition do not satisfy the Jouguet condition. Later analysis[79, 80]
proposed to apply the fluctuation-dissipation theorem to solve the problem. It was namely shown in [80] that the use
of the fluctuation-dissipation theorem (where the equilibrium computation of a retarded correlator is related to the
non-equilibrium response of a system to a perturbation) reduces to the simple picture of particles colliding on the
wall, as presented in Appendix A.2 and [78]. As a consequence, we shall not present nor discuss the computation
using the fluctuation-dissipation theorem in this thesis.

The system of equation Higgs-plasma The basic physics behind the friction of the plasma on the wall goes as
follows: A plasma at equilibrium can be described by the distribution function feq,i of each component. However,
the action of the scalar condensate hitting the plasma brings the system out-of-equilibrium and fi ̸= feq,i. At the
same time, the dynamics of the scalar condensate is itself coupled to the distribution function and is perturbed by
it. This is this loop-reaction which makes the solution of the entire system very challenging. Let us start by laying
down the equations in their most general form. The equation of motion respected by the Higgs VEV ϕ, computed
in [81], at leading order, reads

∇µ∇µφ+ ∂V0
∂φ

+
∑
i

dm2
i

dφ

∫
d3p

(2π)32Ei
fi(p, z) = 0 (EoM scalar condensate) (2.25)
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where the sum runs over all the light particles that couple to the wall and fi are the distribution function of the
species i. The last term on the LHS is actually the coupling between the condensate and the plasma particles. On
the other hand, the Boltzmann equations controlling the plasma distributions reads

∂tf + ż∂zf + ṗz∂pzfi(pz, z)︸ ︷︷ ︸
forces

= − C[f, φ]︸ ︷︷ ︸
collision

(Boltzmann equation) (2.26)

where the RHS term C[f, φ] designates the collision term, which describes the different interactions a particle can
undergo inside the wall. The dot designates a derivative with respect to time and z is the direction of the wall, that
we assume to be planar. It is common to rewrite the EoM of the condensate by separating the distribution function
in an equilibrium part feq and a departure from equilibrium part δf :

∇µ∇µφ+ ∂V0
∂φ

+
∑
i

dm2
i

dφ

∫
d3p

(2π)32Ei
f eq
i = −

∑
i

dm2
i

dφ

∫
d3p

(2π)32Ei
δfi, (2.27)

which can also be rewritten

∇µ∇µφ+ ∂Veff
∂φ︸ ︷︷ ︸

release of energy

= −
∑
i

dm2
i

dφ

∫
d3p

(2π)32Ei
δfi︸ ︷︷ ︸

friction

(2.28)

The combination of the zero temperature and the second term into the thermal potential is proven in [82, 6].4

The physics of the interaction between the wall and the plasma is contained in the system (2.26) and (2.28).
The Boltzmann equations in Eq.(2.26) contains one force term (last term on the LHS) which is proportional to the
change of momentum of the particle entering into the wall ṗz , which is controlled by the interaction with the wall.
This term will feed departure from equilibrium in the distribution function. On the other hand, the collision term
on the RHS contains the interactions of the plasma particles within the wall. Those interactions are a force pushing
to restore the equilibrium. Those distribution functions have then to be fed into the scalar field equation (2.28).

The physics of the scalar equation of motion is also quite transparent in Eq. (2.28). The first term on the LHS
contains the acceleration of the wall, the second term is the release of energy from the transition, which pushes the
acceleration, and the term on the RHS contains the departure from equilibrium, which constitutes a friction on the
wall. Thus naively, taking δfi → 0 should erase all the friction.

The coupled system of Eq.(2.26) and Eq.(2.28) is dauntingly difficult to solve in full generality. From this point
of view, it is clear that the difficulty of the problem mostly lies in the collision term, because it requires to track a

4A nice and simple explanation is also provided in [83]: We start from the relation between the free-energy and the pressure of a plasma

F = −1
3

∫
d3p

(2π)3
p2

E
feq(E) (2.29)

Now simple derivative of this expression provides

dm2

dφ

dF
dm2 = −1

3
dm2

dφ

∫
d3p

(2π)3
p2

E

d

dE

feq(E)
2E

= −1
3

dm2

dφ

∫
d3p

(2π)3 p
d

dp

feq(E)
2E

= dm2

dφ

∫
d3p

(2π)3
feq(E)

2E
(2.30)

where we used that d
dm2 = 1

2E
d
dE

and integrated by part in the last equality.
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large number of interactions within the wall itself. At this point, two scales can be considered: 1) the length of the
wall Lw and 2) the mean free path of a plasma particle entering the wall λmfp. This suggests two limits in which
our problem could largely simplify. If the wall is much longer than the mean free path of the particles, interactions
inside the wall could tend to thermalise the particles entering, and their distribution function should remain close to
equilibrium all along their way fi = fi,eq + δfi with δfi ≪ fi,eq, and the plasma is never far from Local Thermal
Equilibrium. In the opposite limit, when the mean free path is much longer than the wall, we can approximate
the collision term to be zero C[f, φ] → 0, largely simplifying our problem. This is the so-called semi-classical
approximation. Another attitude would be to give up on giving a microscopic description of the interactions and to
forget about the Boltzmann equations Eq.(2.26). We thus only restart from EoM of the condensate in Eq.(2.38) and
substitute f = feq + δf ,

−
∑
i

dm2
i

dϕ

∫
d3p

(2π)32Ei
δfi︸ ︷︷ ︸

friction

≡ K(ϕ) ∇µ∇µφ+ ∂Veff
∂φ︸ ︷︷ ︸

release of energy

= K(ϕ) (Pheno parametrization) (2.31)

Then we need to provide a phenomenological way to parametrize the κ. We will not take this direction and will
instead dig into the microscopic theory and extract some intuition for the velocity of the wall and the scaling of the
friction.

2.2.2 In the limit of small departure from equilibrium

The first approach to solve the problem of the velocity of the wall is to assume small departure from equilibrium,
which allows to expand into an equilibrium and a smaller perturbation part. In this context, we can approximation
the plasma as a fluid (fluid approximation: each part of the fluid is in thermal equilibrium, and thus we can define a
notion of temperature, entropy and chemical potential) We thus expect this description to hold for rather i) strong
couplings, as strong interactions will manage to efficiently bring the components of the plasma to equilibrium, and
ii) thick walls Lw, since we need the wall to be much longer than the mean free path and iii) slow walls, since fast
walls would be Lorentz contracted from the point of view of the plasma and become thin. Formally, the condition
writes:

Γ2→2 ≫ Lw
γwvw

(2.32)

where Γ2→2 is the typical rate of 2 → 2 interactions of the particles inside the wall. That the wall is indeed slow
will be an a posteriori check of the method. Those types of approaches can be separated in two families: 1) the
kinetic approach and 2) the exact LTE approach.

• The kinetic approach has been widely applied in the 90‘ to compute the expected velocity of the wall of
the EW transition (assuming some UV completion makes it FOPT). It was shown that solving Boltzmann
equations in front of the wall[84, 81, 85, 71] leads to subsonic velocities for the wall in the case of the SM
and MSSM, typically of order vSM,w ∼ 0.4 and vMSSM,w ∼ 0.01. This confirms a posteriori the assumption
of slow walls necessary to the applicability of the method. However, the approach in [84, 81] relies strongly
on the WKB approximation, which is valid if p2

z ≫ dpz
dz and badly breaks for infrared gauge bosons. Taking

analytically the infrared bosons into account provided the dominant contribution to the wall pressure [86] and
reduced strongly the velocity to vw ≲ 0.1. The regime of subsonic walls allows for a microscopic approach in
terms of particles diffusion. Despite being a rather hold topic, the kinetic approach remains a fertile ground
of investigation and debates, see [87, 88, 89] and [90, 91].
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• Another way is to assume exact local thermal equilibrium (LTE) all along the way. In this context, thermo-
dynamical reasonings and conservation of entropy should be applicable. This permits to ignore the equation
for the Higgs and to rely only on the conservations equations Eq.(2.5) for the fluid[92, 93, 94] and this will
fix the velocity of the wall in the limit of very strong interactions. Let us give a taste on how it works. Taking
the expectation value of the conservation equations, we obtain

−∂0⟨T p00⟩ + ∂z⟨T pz0⟩ − ∂0⟨T ϕ00⟩ + ∂z⟨T ϕz0⟩ = 0, (2.33)

−∂0⟨T p0z⟩ + ∂z⟨T pzz⟩ − ∂0⟨T ϕ0z⟩ + ∂z⟨T ϕzz⟩ = 0. (2.34)

Recalling that in the wall frame the time derivative vanishes, this becomes

∂z⟨T pz0⟩ + ∂z⟨T ϕz0⟩ = 0, (2.35)
∂z⟨T pzz⟩ + ∂z⟨T ϕzz⟩ = 0. (2.36)

Upon integration across the wall, the derivatives becomes the difference of the value on the symmetric and
higgsed sides. Moreover, we have to note that in the plasma frame ⟨T pzz⟩p = p and ⟨T p00⟩p = ρ, which,
upon going to the wall frame, give ⟨T pzz⟩w = (1 − γ2

w)(p + ρ) + p = (1 − γ2
w)sT + p and ⟨Tφzz⟩w = Vmin.

Subtracting on each side of the wall tells us that the change in the pressure is compensated by a change in the
quantity Ts,

∆PLTE = −(γ2
w − 1)∆(Ts). (2.37)

This result is satisfactory in the sense that it contains a sensible limit in the case of low velocity, as
vw → 0,∆PLTE → 0. However, in the literature, there is currently a debate about how to exactly compute
the change in Ts across the wall, see [94, 30].

2.3 Semi-classical approximation

We have exposed the studies relying on LTE and explained that the applicability of such methods necessitates strong
couplings and rather slow walls. Let us go now deeply in the opposite regime. In the case where the wall already
accelerated, the thickness of the wall, in the plasma frame, becomes Lwγ , and thus large enough velocities ensure that
Lw
γ < λmfp, allowing us to neglect the collision term in the Boltzmann equations. This regime is often dubbed the

semi-classical approximation or “free-particle approximation” [81, 95], or again the “ballistic”[92] approximation.
We will by using those terminologies interchangeably.

To see how this limit simplifies greatly the problem at hand, let us restart from the full equation of motion for
the Higgs condensate

∇µ∇µφ+ ∂V0
∂φ

+
∑
i

dm2
i

dφ

∫
d3p

(2π)32Ei
fi(p, z) = 0 (2.38)

coupled with the collision free-Boltzmann equations

∂tfi + ẋ∂xfi + ṗ∂pfi = −C[fi] → 0. (2.39)

We can decide to work in the wall or in the plasma frame, but we pick the first possibility, inducing ∂tf → 0,
ẋ = pz

E and ṗ = −∂zm2

2E . With a planar wall along the z direction, the equation in (2.39) reduces to(
pz
E
∂z − 1

2Ei
dm2

i

dz
∂pz

)
fi(p, z) = 0 (2.40)



48 CHAPTER 2. FOPT AND DYNAMICS OF THE BUBBLE WALL

which can be solved by knowing only the shape of the wall controlling m2
i (z). The term containing this mass acts

as a classical force pushing the distribution functions far away from equilibrium. Upon inspection, it appears that
the solution of this equation should depend on p⊥ and

√
p2
z +m2(z),

fi(p⊥,
√
p2
z +m2(z)). (2.41)

The expression in Eq.(2.38) hides a very intuitive way to solve for the terminal velocity, that we will illustrate now
and that will become our standard method for the rest of this section on semi-classical approximation. In section
1.5.3, we computed the evolution equation for the velocity γw but we neglected the plasma pressure. We can now
follow the same steps but correct this approximation. If we integrate (2.38) over dφ, from the false to the true
vacuum the first term on the LHS becomes, following a second time the steps of Appendix A.1, −4πσR2

√
1 − Ṙ2

while the second and third terms combine to give

(∆V0 − ∆P(R))4πR3(t)
3 . (2.42)

Then going through the Legendre transform like in section 1.5.3, the energy is given by

E = 4πσR2γw − (∆V0 − ∆P(γw))4πR3(t)
3 , (2.43)

which is turn permits to recover the equation for the velocity

dγw
dR

+ 2γw
R

= (∆V0 − ∆P(γw))
σ

. (2.44)

We can see that when the plasma pressure is very subdominant, the expansion is mostly controlled by the release
of energy, and the velocity γw basically scales like γw ∝ R, as was explained in 1.5.3, however, a terminal velocity
regime γterminal

w is reached when (∆V0 − ∆P(γterminal
w )) → 0 and the velocity saturates. In this context of the

ballistic approximation, this provides us with a very simple criterion for finding the terminal velocity:

∆V0 − ∆P(γw = γterminal
w ) = 0. (2.45)

This leaves us with the task of searching for ∆P(γw = γterminal
w ) in a systematic way. In the following subsection,

we will engage in the systematic study of the contributions to the pressure on the wall.

2.3.1 From particles involved in the transition

In this section, we sketch the computation of the pressure induced by particles involved in the transition, that is to
say for particles with phase-dependent masses

ms → mh > ms (2.46)

At this point, two limits would offer a simple solution: 1) the limit in which particles cannot enter the wall
because the mass gain is too large. This is typically the case of particles with momentum pz ∼ γwTnuc much
smaller than the final mass ms. In such context, all the particles are reflected and give a kick on the wall of
order ∆pz ∼ 2γwTnuc, inducing a final pressure scaling like P ∼ γ2

wT
4
nuc. Though such situation can have very

interesting phenomenological implications, we will focus on the 2) opposite regime, where pz ∼ γwTnuc is much
bigger than mh and we can argue that all the incoming particles enter the wall. This is the limit of large γw and the
transition regime between the two limits mentioned above is studied with more details in Appendix A.2.
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A first, and likely the most satisfactory, way to solve for the friction on the wall is to go back to the Boltzmann
and condensate equations and to solve them. The distribution function, in the wall frame will take the form

f(E, p, T ) = f

(
pµu

µ

T

)
= f

(
γw(E + vwpz)

T

)
, (2.47)

where we have assumed like in Fig.2.3 that the wall moves along the positive z direction with velocity vw and
uµ = γw(1, 0, 0,−vw). We impose to recover the equilibrium distribution function deep inside and deep outside
the bubble. The solution has to be of the type in Eq.(2.41). Shifting the integral p2

z → p2
z − m2(z) in such a way

that the z dependence disappears from the distribution function, the third term on the LHS of Eq.(2.38) becomes
(for each species with phase-dependent mass and assuming pz ≫ |p⊥|)

(Third term on LHS) ≈ dm2
i

dφ

∫
d3p

(2π)32
√
p2
z +m2(z)

f
F/B
i (p⊥,

√
p2
z +m2(z))

= dm2
i

dφ

∫
d3p

(2π)32
√
p2
z

f
F/B
i (p⊥,

√
p2
z)

= ci
dm2

i

dφ

T 2

24 (2.48)

where ci = 1(1/2) for bosons (fermions) and we used that dpzpz is invariant under the shift. In the second line, we
have made the shift p2

z → p2
z −m2 and in the third we have performed the integral. After integration along the wall,

the leading-order pressure (LO) on the wall is given by the simple velocity-independent expression

∆PLO,γ→∞(T ) =
∑
i

ci
T 2∆m2

i

24 (2.49)

where ∆m2
i ≡ m2

h,i − m2
s,i denotes the difference of squared mass across the wall and we added the subscript

Pγ→∞ to emphasize that this result is strictly valid in the large γw regime, where all the particles enter the wall.
This derivation was illuminating in the sense that it was directly solving the problem via the Boltzmann equations
and the equation of motion. The index LO is here to indicate that this contribution to the pressure occurs at leading
order in the couplings (hidden in the mass term).

Of course, the expression in Eq.(2.49) is only valid in the regime of very fast walls where all the particles enter
into the bubble and becomes less precise for lower velocities. For lower velocities, we have the three following
possibilities: a particle from outside can enter t+, a particle from inside can escape the bubble t− and a particle can
be reflected tr. Those three cases each bring a contribution to the pressure Pt−

z ,Ptr
z ,P

t+
z . The transition regime in

which a sizable amount of particles are reflected is exposed in A.2 and it is shown that

Pt−
z ≈ Ptr

z ≈ 0, Pt+
z ≈ 1

2Pγw→∞ for γwT = mh (2.50)

Pt−
z ≈ Ptr

z ≈ 0, Pt+
z ≈ 0.9 × Pγw→∞ for γwT = 10mh (2.51)

Let us make a few comments about this result. For simplicity, let us first assume that ms = 0 then it is obvious that
the value in Eq. 2.49 will be reached only for the γw factors satisfying

γw ≳
mh

T
, (2.52)



50 CHAPTER 2. FOPT AND DYNAMICS OF THE BUBBLE WALL

otherwise initial particles simply will not have enough momentum to pass through the wall (see more details in the
Appendix A.2 as well as [92] for analytical results). Now let us look at the scenario when the initial mass as well is
non-zero, ms ̸= 0. In this case the particle will contribute only if its mass is smaller than the temperature

ms ≲ T (2.53)

otherwise the contribution of this particle to the pressure will be exponentially suppressed by a Boltzmann factor
(see Appendix A.2).

Those consideration hints toward a nice interpretation for the pressure in Eq.(2.49): at leading order in the
couplings, the simple expression in Eq.(2.49) is an upper bound on the friction (even if we will see that other
contributions to the pressure can switch on for even larger values of γw). However, we can state the following
statement, that will be crucial for the rest of this thesis: if the release of energy is larger than the pressure in
Eq.(2.49), the wall will become eventually ultra-relativistic

∆V > ∆PLO,γ→∞ relativistic wall condition) . (2.54)

Though, the previous computation of the LO pressure for large velocities is probably the most satisfactory one,
it remains intuitively obscure. We would like to provide a more intuitive picture, following the lines of [78]. The
energy being conserved along the wall, we have

E =
√
p2
z + p2

⊥ +m2(z), dE

dz
= 0 (2.55)

Thus to compensate for the change in the mass, the momentum pz must be modified along the wall. Expanding for
large pz , the change of momentum of an incoming particle is given by

∆pz ≈ −∆m2

2E , (2.56)

for each of the incoming particles. We can interpret this change of momentum in the particle as a kick that is given
to the wall: for each particle entering, the wall receive a momentum −∆pz . Now, we have to sum over all the
incoming particles to obtain the full pressure from the plasma:

∆P ≈
∫

d3p

(2π)32Efincoming(E) × (−∆pz) (2.57)

and upon performing the integral, we recover Eq.(2.49). Notice that this observation was already apparent when
we emphasized that the solution of the Boltzmann equation should be of the form Eq.(2.41). This picture in terms
of incoming particles imposing a kick on the wall is particularly interesting and we would like to generalize it. This
is the task of the next subsection.

2.3.2 Master equation for friction

Suppose that we are looking at the effects coming from a particle A hitting the wall and producing a X final state
(which can perfectly be a multiparticle state) (see Fig .2.3), then the pressure will be given by

PA→X =
∫

pzd
3p

p0(2π)3 fA(p) ×
∑
X

∫
dPA→X(pzA −

∑
X

pzX), (2.58)
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v⃗

Figure 2.3: Cartoon of a bubble wall interpolating between the values of the VEV of the scalar field in the symmetric
and in the broken phase. The domain wall hitting the plasma in the symmetric phase induces a A → X transition.

where the first factor is just a flux of incoming particles and the second includes the differential probability of the
transition from A to X , dPA→X , as well as momentum transfer to the wall (pzA −

∑
X p

z
X). The expression in

Eq.(2.58) is the generalisation of the simple picture is terms of “kicks on the wall” from the previous section. The
probability of transition can be calculated as follows

dPA→X =
∏
i∈X

d3ki
(2π)32k0

i

⟨φ|T |X⟩⟨X|T |φ⟩, (2.59)

where φ is the wave-packet building the one-particle normalized state

|φ⟩ =
∫ d3k

(2π)32k0
φ(k)|k⟩, ⟨p|k⟩ = 2p0(2π)3δ3(p− k)∫ d3p

(2π)32p0
|φ(p)|2 = 1. (2.60)

Combining all of this and using the energy and transverse momentum conservation we arrive at the following
expression for the pressure from transition [96]

PA→X =
∫

d3p

(2π)32p0
fA(p)

∏
i∈X

∫
d3ki

(2π)32ki0
(2π)3δ2(p⊥ −

∑
i∈X

ki,⊥)δ(p0 −
∑
i∈X

k0
i )|M|2(pzA −

∑
i∈X

kzi ) (2.61)

where we have ignored the high density effects for the final particles, 1 ± fX → 1 and M is defined as follows

⟨p|Hint|k1...⟩ = (2π)3δ2(p⊥ −
∑
i∈X

ki,⊥)δ(p0 −
∑
i∈X

k0
i )M,

M =
∫
dzχp(z)

∏
i∈X

χi(z)V, (2.62)

where the χ’s are the wave functions of (incoming and outgoing) particles. Armed with this expression we can
proceed to the calculation of the friction effects.

Let us first review the Leading-Order (LO) effects i.e. when the initial and the final state contain one particle
(1 → 1 transition), that we already computed in the previous section. We will again be focusing on the very
relativistic bubble expansions and, in particular, on regimes where the WKB approximation is valid, which is when

pzLw ≫ 1, (2.63)
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where pz is the momentum of the incident particle. The WKB approximation is explained in Appendix A.5. Let
us suppose that the mass ms, in the symmetric phase, changes when passing through the wall to mh in the broken
phase, ms → mh. According to Eq.(2.60), the matrix element for this transition is equal to

⟨p|k⟩ = 2p0(2π)3δ3(p− k) ⇒ M1→1 = 2p0. (2.64)

Then the pressure for the relativistic particles is equal to:

P1→1 =
∫

d3p

(2π)3 f(p)(pzs − pzh) ≃
∫

d3p

(2π)3 f(p) × m2
2 −m2

1
2p0

=
∫

d3p

(2π)3 f × ∆m2

2p0
(2.65)

where we have expanded the momenta in m2
s,h/p

2
0 and defined ∆m2 ≡ m2

h − m2
s and where ps(ph) denotes the

momentum of the quasi-particle on the symmetric (broken) side of the bubble wall. Using that the quantity d3p
p0

is invariant under boost, this allows us to recover again Eq.(2.49). This is a confirmation that our expression in
Eq.(2.58) is indeed a correct generalisation (at least within our approximations).

2.3.3 Friction from heavy particles

The usual lore for the computation of the velocity wall is that, concerning the EWPT and the extension of the Higgs
sector, a strong friction can only occur from a rather light particle coupling strongly to the Higgs, which would
be seen in the Higgs decay rates in the colliders[90] and not from a heavy physics sector. Here we would like to
show that heavy d.o.f. that are normally decoupled from the Higgs at colliders energies can nonetheless contribute
largely to the friction on the wall, if the wall is relativistic.

In the context of very relativistic bubble, in the rest frame of the wall, the particles colliding it can reach
very high energies ∼ γwTnuc, much larger than the temperature of the transition ∼ Tnuc and symmetry breaking
parameter ∼ ⟨φ⟩. Then it becomes interesting whether new degrees of freedom absent in the low energy Lagrangian
describing the phase transition can play a role in the dynamics of the bubble acceleration. The simplest example
where this phenomena can occur is the following: let us consider the lagrangian of a massless fermion mixed with
another heavy vectorlike fermion

L = iψ̄∂ψ + iN̄∂N +MN̄N + Y φψ̄N (2.66)

ψ is the light fermion and N is the heavy fermion. In the regime M ≫ ⟨φ⟩ ∼ Tnuc, then at the temperature of the
transition, the species N can be ignored (they are Boltzmann suppressed and are not part of the plasma), so their
contribution to pressure naively should be zero. However let us now consider a process of ψ hitting the wall.

We suppose that the energy of the incident ψ particles is much larger than the mass of the heavy species N ;
E ≫ M ⇒ γwT ≫ M . Note that the mass eigenstates inside and outside of the bubble are different due to the
VEV of the ⟨φ⟩ and in particular there will be mixing between the ψ field and the heaviest mass eigenstate in the
broken phase. The mixing angle inside the bubble θψN is approximately given

sin θψN ∼
Ymixing⟨φ⟩

M
. (2.67)

From this mixing angle, we can deduce that, if the transition is satisfying the condition ∆pzLw ≪ 1, there will be
a probability of transition ψ → N of the form

P (ψ → N) ∼ sin θ2
ψN ∼

Y 2
mixing⟨φ⟩2

M2 . (2.68)
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Figure 2.4: Cartoon of the transition χ → N , from light to heavy upon hitting a very relativistic wall.

Using the terminology of the neutrino oscillation in matter [97] (see for review[98]), to find an unsuppressed
transition, we need to be in the regime of non-adiabaticity, ∆pzLw ≪ 1. In the opposite regime, ∆pzLw ≫ 1, the
adiabatic regime, the incoming ψ remains in the lightest eigenstate, so that the transition ψ → N will be strongly
suppressed5. Intuitively, we can understand that the change of the mixing parameter is slow enough for the system
to instantaneously adapt. We can estimate the pressure due to this mixing using the results above. We obtain

Pmixing ∼
∫

d3p

(2π)3 fp︸ ︷︷ ︸
Incident ψ density

P (ψ → N)︸ ︷︷ ︸
Probability of transition

× M2

2E︸︷︷︸
momentum transfer

≈ Y 2
mixing⟨φ⟩2

∫
d3p

(2π)32EfpΘ(E −M)Θ
(
E −M2Lw

)
≈

Y 2
mixing

48 ⟨φ⟩2T 2Θ(γwT −M)Θ(γwT −M2Lw) (2.69)

=
Y 2

mixing

48 ⟨φ⟩2T 2Θ(γwT −M2L),

where the Θ-functions have appeared in order to impose that the initial particle is energetic enough to produce the
heavy state and that the process is non-adiabatic. In the next section, we will derive more accurately the condition
of non-adiabaticity, by explicitly looking at the transitions with a finite wall width. Note that this new contribution
to the pressure is not suppressed by the large M mass and can be present even if M ≫ ⟨φ⟩.

Friction from mixing: more details

One can derive the expression for the friction force in Eq.(2.69) using the master equation (Eq.(2.62)) for the
pressure from ψ → N transitions. Indeed, in the the WKB approximation, the solutions for the wave functions are
given by

χ(z) ≃
√

kz,s
kz(z)

exp
(
i

∫ z

0
kz(z′)dz′

)
, (2.70)

5We thank the referee of JCAP for emphasizing this effect to us.
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where kz,s is the z component of the momenta on the symmetric side of the wall. As we have seen above in the
adiabaticity discussion, the wall width should play a role in the computation of the pressure effect. As an illustration,
let us consider the model of a linear wall ansatz

⟨φ⟩ =


0, z < 0

vφ
z
Lw
, 0 < z < Lw

vφ, z > Lw.

(2.71)

The consequences of different shapes of the wall is discussed in Appendix A.3 and lead to phenomenological similar
conclusions. In the notations of [96], the M matrix takes the form

M =
∞∫
−∞

dze
i
z∫

0
pψz (z′)dz′

e
−i

z∫
0
pNz (z′)dz′

V (z) ≈
∞∫
−∞

dzeip
ψ
z ze−ip

N
z zV (z) =

∞∫
−∞

dzei∆pzzV (z) (2.72)

where we defined ∆pz ≡ pψ,inz −pN,outz , the momentum exchange, and we safely neglected the change of momentum
m2
ψ

2E induced by the phase-transition induced mass mψ ∝ ⟨φ⟩, as it is largely subdominant with respect to the heavy
mass M . Energy and transverse momentum conservation dictates that pψ,Nz are different on the two sides of the
wall, leading to an effective non-zero ∆pz . Performing the integral, the matrix element splits into three different
pieces

M = Mbefore wall + Minside wall + Mafter wall (2.73)

= Vh
1 − ei∆pzLw

iLw∆p2
z

+ Vs
i∆pz

,

where the h, s subscripts denote the interactions and momenta inside and outside of the bubble. The process under
study is only possible on the broken side of the wall and thus Vs = 0, Vh ̸= 0. We obtain

|Vh|2 = 2Y 2⟨φ⟩2pψz ∆pz. (2.74)

On top of this there will be an effect due to the mass modification of ψ andN , however this effect will be subleading
and suppressed by additional powers of Y 2⟨φ⟩2/M2. Combining the expression for the matrix element Eq.(2.73)
with the expression for the vertex Eq.(2.74), the matrix element squared becomes

|M|2 ≈ V 2
h

∆p2
z

(sinα
α

)2
= 2⟨φ⟩2pψz

∆pz

(sinα
α

)2
Y 2, α = Lw∆pz

2 ≈ M2Lw
4E , (2.75)

with ∆pz = pψz −
√

(pψz )2 −M2. Plugging it in the master Eq.(2.62), we obtain the following estimate for the
mixing pressure6

Pmixing =
∫

d3p

(2π)3 fp ×
Y 2

mixing⟨φ⟩2

2
√
p2
z −M2 ×

(sinα
α

)2
. (2.76)

As
( sinα

α

)2 → 0 for α ≫ 1, we can see that the pressure is suppressed for α ≫ 1, so that the suppression regime is
given by

M2Lw
E

≫ 1 ⇒ E ≪ M2Lw ∼ M2

⟨φ⟩
, (2.77)

6The integral below is assumed to be taken for the values of pz > M , otherwise the process is forbidden.
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where we have assumed that the width of the wall Lw, in the wall frame scales like the inverse of the VEV. At this
point, it is good to make a comment on the estimate Lw ∼ 1/⟨φ⟩. Of course, estimating the length of the wall on
general grounds is a difficult task, but here we would like to clarify some points. First we have to notice that the
length of the wall cannot be possibly controlled by 1/Tnuc, as this is the case in the context of fluid approximation
methods that have found Lw ∼ 30/Tnuc[81], otherwise the limit of infinite cooling would lead to infinitely thick
walls, which is not physical. We can think of the thickness of the wall for long supercooling in the following way:
the bubble nucleates with a thick wall in a very diluted plasma. As it accelerates the bubble wall still “does not
feel" the plasma and so it is expanding virtually in vacuum. In this context, the wall relaxes to the shape controlled
by the zero-temperature potential, with a length Lw ∼ 1/⟨φ⟩.

Using the fact that the energy of the incident particles is approximately equal to ∼ γwT we obtain a necessary
constraint on the masses of the heavy particles which can be produced

γwTnuc ≳
M2

⟨φ⟩
, M ≲

√
γwTnuc⟨φ⟩ (2.78)

which exactly corresponds to the regime where the passage of the particle through the wall cannot be treated
adiabatically.

Finally, we would like to emphasize that the pressure from the mixing is not suppressed by the mass of the heavy
particles and in general can be present even if we treat our theory as an effective field theory (EFT) with heavy
degrees of freedom integrated out.

One can also ask what could be the maximal pressure from the mixing in this case. We can estimate it by using
unitarity arguments on the maximal value of the mixing coupling Y max

mixing ∼ 4π. So that, the maximal pressure from
mixing is

Pmax
mixing ≃ T 2

24 (16π2)⟨φ⟩2θ(γwTnuc −M2Lw). (2.79)

Importance of friction from heavy particles

One can wonder whether this friction from mixing can be phenomenologically important, since in any case we
are looking at the very relativistic bubble expansion velocities vw → 1. However, we have discussed in section
1.6 that relativistic bubbles in runaway regime have a substantial fraction of their energy stored in the wall kinetic
motion, while bubbles which have reached a terminal velocity have vanishingly small fraction of energy stored in
the wall and most of the energy released in the phase transition is transferred to the sound waves (plasma motion)
[33, 31, 57]. This different distribution of energy has important phenomenological consequences on the spectrum
of stochastic gravitational wave background since the bubble wall collisions signal Ωϕ and plasma motion signal
Ωsw lead to different shape of the spectrum. Namely, the most obvious difference is the fall of the signal at high
frequencies;

Ωsw,f→∞ ∝ f−4 (terminal velocity), Ωϕ,f→∞ ∝ f−3/2 (Runaway). (2.80)

In order to understand whether the friction from mixing can indeed prevent the runaway bubble case, let us
consider the following toy model ([99, 37]) described in the infrared region by the lagrangian

LIR = 1
2(∂µφ)2 + 1

2(∂µη)2 −
m2
φφ

2

2 −
m2
ηη

2

2 − λφ
4 φ4 − λη

4 η
4 − λφη

2 φ2η2 + iψ̄∂ψ. (2.81)
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We will assume that at high energies this lagrangian is UV completed to

LUV = 1
2(∂µφ)2 + 1

2(∂µη)2 −
m̃2
ϕφ

2

2 −
m̃2
ηη

2

2 − λ̃φ
4 φ4 − λ̃η

4 η
4 − λ̃φη

2 ϕ2η2

+iψ̄∂ψ + iN̄∂N −MN̄N − (Ymixingψ̄φN + h.c.), (2.82)

where all of the parameters m̃2
φ,η, λ̃φ,η,φη are the parameters of UV theory and m2, λ in the Eq.(2.81) are the

parameters of IR effective theory obtained by matching when integrating out the heavy fermionN . We also assume
as before that M is much larger than the characteristic the scale of the symmetry breaking of the IR lagrangian
M ≫ ⟨φ⟩,mφ,mη. This introduces the usual tuning into the model which is analogous of the Higgs boson
hierarchy problem in the presence of heavy new physics. However we will not bother about a solution to this
hierarchy problem and take Eq.(2.81) as a toy, very fine-tuned example to illustrate the mixing from the friction
effect.

Let us consider the potential for the scalar fields of the model, following the procedure already outlined in
Chapter 1. On the top of the tree-level potential, at one loop, the usual Coleman-Weinberg potential is generated
[8] for the fields φ, η (in MS scheme) (we are using the IR lagrangian of Eq.(2.81))

VCW =
∑
i=η,φ

m4
i

64π2

[
log m

2
i

µ2
R

− 3
2

]
, (2.83)

since there is no gauge bosons in our model. The thermal corrections can be taken into account by adding the
thermal potential VT defined as follows

VT =
∑
i=η,φ

T 4

2π2JB

(
m2
i

T 2

)
, JB(y2) ≡

∫ ∞
0

dxx2 log
[
1 − exp

(
−
√
x2 + y2)]. (2.84)

Higher loop corrections due to the daisy diagrams can be taken into account using the truncated full dressing
procedure[16]

V (φ, η, T ) = Vtree(φ, η) +
∑
i=η,φ

VCW (m2
i + Π2

i ) + VT (m2
i + Π2

i ). (2.85)

In the case of the model (2.81), the thermal mass corrections are given by

m2
φ + Π2

φ = m2
φ + 3λφφ2 + λφηη

2 + T 2
(
λφ
4 + λφη

12

)
, (2.86)

m2
η + Π2

η = m2
η + λφηφ

2 + 3ληη2 + T 2
(
λη
4 + λφη

12

)
. (2.87)

Generically we have to analyze the phase transition in the (φ, η) field space, however the discussion simplifies
if we put the coupling λφ = mφ = 0 . Indeed in this case, along the line η = 0, the tree-level potential is vanishing
and only the one loop potential will be controlling the phase transition. The tree-level η4-potential is stabilizing the
η-direction, thus it is obvious that the tunnelling must happen along η = 0 direction. The calculation becomes even
simpler if we setmη = 0 then the only mass parameter in this construction is the renormalization scale µR ≡ λφηw
which fixes the value of the VEV of the field ⟨φ⟩ ∼ w.

The transition from the false to the true vacuum, separated by the potential barrier, can be calculated using the
usual bounce action using the method outlined in section 1.5. We are prepared now to discuss the friction effects.
The bubble will have runaway behaviour if the LO friction of Eq.(2.49), which in our model is equal to

PLO ≃ T 2
nuc
24 λφη⟨φ⟩2Θ(γwTnuc − ⟨φ⟩

√
λφη) (2.88)
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Figure 2.5: Left- the potential difference and various contributions to the pressure as a function of the coupling
λφη. The scale of the symmetry breaking was fixed to bew = 105 GeV so that ⟨φ⟩ ∼ 105 GeV. Right- The maximal
mass of the heavy particle defined by the Eq.2.94 as a function of λφη. As a typical width of the wall, we considered
Lw ∼ 1/⟨φ⟩.

cannot overcome the potential difference, providing the driving force for the expansion of the bubble. In Eq.(2.88),
the Θ function comes from the condition we outlined in Eq.(2.52). This amounts to the condition

∆V > PLO (runaway condition). (2.89)

At the same time, as we have seen, there can be an additional friction induced by the mixing effect

Pmixing ≃ T 2
nuc
48 Y 2

mixing⟨φ⟩2Θ(γwTnuc −M2Lw), (2.90)

which can prevent the runaway behaviour. Now if the condition

PLO + Pmixing > ∆V > PLO (2.91)

is satisfied we are in the situation when the mixing pressure is preventing the bubbles from the otherwise runaway
motion. To analyse the Pmixing effects in our model we have deferred from performing the full parameter scan and
instead have fixed the symmetry breaking scale to be 105 GeV and the mixing coupling Ymixing =

√
2. Then the

region of the parameter space where the mixing effect is important is displayed on the Fig.2.5.

In order to find the upper bound on the masses of the states which can be produced in mixing we need to estimate
the maximum value of the Lorentz γmax factor that would have been reached if the bubbles kept accelerating till the
moment of the collision. It can be estimated from the ratio of initial and final radii of the bubble and is approximately
equal to, using Eq.(1.133) of Section 1.5 that we corrected for the energy lost in the LO pressure,

γmax ≃ 2R∗
3R0

(
1 − PLO

∆V

)
. (2.92)

The initial bubble radius and the bounce solution can be found numerically, while the final radius can be estimated
according to Eq.(1.138) and (1.139) by the derivative of the bounce action:

R∗ = (8π)1/3

β(Tnuc)
, β(T ) = HT

d

dT

(
S3
T

)
, (2.93)
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where H is the Hubble constant.

Then the friction from mixing can be generated only by the states satisfying

M < Mmax = min
[
γmaxTnuc,

√
γmax

Tnuc

Lw

]
. (2.94)

For a wall length Lw ∼ 1/⟨φ⟩, the condition simplifies to

M < Mmax =
√
γmaxTnuc⟨φ⟩. (2.95)

We report the value Mmax on the Fig.2.5. In our model, we can see that states as heavy as 1010 GeV, 105 times
heavier than the scale of the transition, can lead to non-vanishing friction effects. Generically, one can also estimate
Mmax as follows

Mmax =
√
γmaxTnuc⟨φ⟩ ∼

√
R∗
R0

Tnuc⟨φ⟩. (2.96)

The values of the initial and the final radii are very roughly equal to:

R0 ∼ 1
Tnuc

, R∗ ∼ (β̃H)−1 ∼
Mpl

β̃ × scale2 , (2.97)

where “scale” refers to the energy scale of the potential ∼ ⟨φ⟩. Combining all of this together we can find the
estimate for the maximal mass to be

Mmax ∼ Tnuc

(
Mpl

β̃ × scale

)1/2
. (2.98)

Of course this estimate is valid only for the theories where the bubbles are runaway without the friction from mixing.
In the next section however we will review the NLO effects from the gauge field which generically prevent bubbles
from infinite acceleration, so it was crucial for our point here that the model did not contain any gauge boson.

2.3.4 Next-to-leading order pressure from transition radiation effects

As we saw above, in the case of ultra-relativistic bubbles, the collisions of particles inside of the wall can be
neglected. As a consequence, the particles involved in transition do not have the time to thermalise and we can
approximate the distribution from the simple equation Eq.(2.39). This approximation becomes very precise as the
wall reaches very relativistic velocities and becomes thin in the plasma frame. This permitted us to compute a
simple formula for the pressure at leading order on relativistic walls in Eq.(2.49). We also noted that in this case
the pressure is independent on the vw. Initially, walls such that

∆V > ∆PLO (2.99)

were believed to enter inevitably the runaway regime: Apparently, no pressure could prevent it from accelerating
until the collision of different bubble walls. As a consequence, strong transition were expected to provide strong
GW signal via bubble collision mechanism, as we have explained in Section 1.6. In the context of relativistic walls,
we also discovered a new contribution which becomes important when the the wall becomes fast enough to produce
heavy particles. We could think that this is all about the pressure on relativistic walls, up to negligible NLO effects.
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Early computation: 1 → 2 splittings[96]

So now let us look deeper at 1 → 2 transitions, a cartoon of which is provided in Fig.2.6 (we closely follow the
discussion in [96]) . Again we will assume that we are in the regime where WKB approximation is valid i.e.
pzLw ≫ 1, where Lw is the width of the wall. The calculation of the A(p) → B(k(1))C(k(2)) splitting simplifies
in the limit when kz ≫ mB,C , k⊥ and in this case it becomes easy to find the solution for the free wave functions

χA,B,C(z) ≃
√

kz,s
kz(z)

exp
(
i

∫ z

0
kz(z′)dz′

)
. (2.100)

Using the following notation for the initial and final momenta

p = (p0, 0, 0,
√
p2

0 −m2
A(z))

kB = (p0(1 − x), 0, k⊥,
√
p2

0(1 − x)2 − k2
⊥ −m2

B(z))

kC = (p0x, 0,−k⊥,
√
p2

0x
2 − k2

⊥ −m2
C(z)), (2.101)

the product of three wave functions in 1 → 2 splitting is given by

χA(z)χ∗B(z)χ∗C(z) ∼ exp
[∫ z

0

(
m2
A(z)
2p0

− m2
B(z) + k2

⊥

2k(1)
0

− m2
C(z) + k2

⊥

2k(2)
0

)]
. (2.102)

Then the matrix element is equal to

M = Vs

∫ 0

−∞
exp

[
iz
As
p0

]
+ Vh

∫ ∞
0

exp
[
iz
Ah
p0

]
= 2ip0

(
Vh
Ah

− Vs
As

)
A = − k2

⊥
x(1 − x) +m2

A − m2
B

1 − x
− m2

C

x
, (2.103)

and at the end of the day we end up with

|M|2 = 4p2
0

∣∣∣∣ VhAh − Vs
As

∣∣∣∣2 . (2.104)

The reference [96] has studied various splitting effects and it was shown that only the production of the vector
particles gaining the mass during the phase transition can lead to the friction growing with the Lorentz factor γw.
Let us apply this formalism for the case of the QED-like theory. In other words let us consider the process ψ → V ψ,
where the fermion ψ splits into a vector boson V and the fermion. This process, which is obviously forbidden by
momentum conservation in the absence of the wall, can happen when the wall is present and the matrix element
becomes equal to

Vh = Vs =
√

2k⊥
x

|Mψ→V ψ|2 = 8p2
0k

2
⊥

x2

∣∣∣Ah−AsAhAs

∣∣∣2 = 8p2
0m

4
V

(k2
⊥+m2

V )2k2
⊥
. (2.105)

We are looking at ψ → ψV T at the production of the transversely polarized vector bosons andmV is the mass of the
gauge boson in the higgsed phase. In principle of course, a longitudinally polarized degree of freedom also exists
in the broken phase, however, the matching with the goldstone boson in the symmetric phase in not obvious and is
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still an open problem. We will thus ignore the possible pressure from emission of longitudinally polarized degree
of freedom. Focusing on the limit k⊥ ∼ mV ≪ k0 ∼ kz we recover the following expression for the pressure

Pψ→V ψ =
∫

d3p

8p2
0(2π)6 fψ

∫
dk

(2)
0

k
(2)
0

∫
d2k⊥|Mψ→V ψ|2k

2
⊥ +m2

V

2p0x
. (2.106)

Plugging in our expression for the matrix element we will get:

Pψ→V ψ =
∫

d3p

8p2
0(2π)6 fψ

∫
dk

(2)
0

k
(2)
0

∫
d2k⊥

8p2
0m

4
V

(k2
⊥ +m2

V )2k2
⊥

k2
⊥ +m2

V

p0x

=
∫

d3p

p0(2π)6 fψ

∫
dx

x2

∫
√

ΠV

d2k⊥
k2
⊥

m4
V

(k2
⊥ +m2

V )

=
∫

d3p

p0(2π)3 fψπm
2
V log(m2

V /(eT )2) ×
[∫

dx

x2 = p0
mV

]
=

∫
d3p

(2π)3p0
fψ

[
mV p0
8π2 log(m2

V /(eT )2)
]
. (2.107)

Let us make two important comments regarding this expression. First, we can see that in the wall frame the pressure
is proportional to ∆P ∝

∫
d3pfχ, however d3p is not invariant under the boost and in the plasma frame it will lead

to the additional γw factor found in [96]

∆PNLO ∝ γwT
3mV nψ

log(m2
V /(eT )2)
8π2 . (2.108)

Second, the other important point we would like to stress is that the minimal value of the transverse momenta is cut
in IR at the scale kmin

⊥ ∼
√

ΠV ∼ eT , (e is the gauge coupling). This might be a subtle point since we know that
the transverse gauge boson do not receive a thermal mass from our discussion on the potentials. In this case, the
effect is due to the screening of the long wavelength modes by the temperature effects which indeed exists as well
for transverse gauge bosons. So we can see that the pressure from 1 → 2 radiation is dominated by the emission
of the soft photons (gauge bosons), which provides the γw enhancement. The next subsections will be devoted to a
discussion of this effect and the different results in the literature.

Multi-bosons emission

In the previous subsections, we have seen that, in the relativistic approximation, 1 → 1 transition were saturating
at large γw but emission of soft gauge bosons in 1 → 2 actually produces a pressure scaling with the boost factor
γw. This leads us naturally to wonder about the possible scaling of multi-bosons emission 1 → N , question that
has been subject to some debates. This is the topic of this subsection.

Computation in [100]. Recently there has been a calculation of 1 → N transition[100]7 of the friction which
tried to take into account effects of the multiple soft emissions. In [100], the resulting friction pressure for the
fermions emitting soft vector bosons was found to scale as

P [100] ∼
∑
i

αiγ
2
wT

4 (2.109)

7We acknowledge J. Turner for discussion of the results of Ref. [100].
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Figure 2.6: Cartoon of the radiation transition from 1 → 2 splittings with emission of a soft bosons.

and the sum runs over the gauge couplings of the theory, including those that are not broken in the transition. Thus,
in the SM, there are the contributions from the electroweak sector and strong sector. The scaling γ2

w comes from
the interplay between γw originating from the incoming density n ∝ γwT

3 and the very large momentum exchange
∆pz ∝ γwT that is found in[100]. Intuitively, this results in surprising for several reasons:

• A first issue is that Eq.(2.109) does not have the correctmψ,mV → 0 limit (vanishing masses of the incoming
fermion and the outgoing vector boson). Indeed in the case when both mψ,mV = 0 the particles do not
interact with the wall and it becomes completely transparent. However the particles which do not interact with
the bubble wall cannot induce any friction so that on those grounds we would expect P friction|mψ ,mV→0 → 0.
This signals the inconsistency of the Eq.(2.109). On general grounds the inconsistency of Eq.(2.109) can be
seen directly by noting that there is no dependence on the order parameter differentiating two phases separated
by the bubble wall.

• A second issue is, as already mentioned, the resummation of [100] gives a γ2
w scaling pressure also for the

gauge bosons that do not acquire a mass in the transition, e.g. the gluons. As a consequence, in the SM,
the pressure on the electroweak wall would be dominated by the strong sector, that is to say, the emission of
massless gluons:

P [100] ∼ αsγ
2
wT

4. (2.110)

where αs is the strong coupling. This is highly counter-intuitive.

• A last issue that we would like to raise are the finite wall effect. Ref.[100] considered the case of the infinitely
sharp wall withLw → 0. However, finite wall effect, within the WKB approximation are expected to limit the
maximal unsuppressed momentum exchange. We have already shown that, using WKB phase, a exponentially
strong suppression appears when

∆pzLw > 1. (2.111)

This sets an effective upper bound on the momentum exchange of order

∆pz ≲
1
Lw

≪ γwT (2.112)

So the computation of Ref.[100] is explicitly deeply in the regime of suppression, the adiabatic regime.
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However, to go beyond those rough intuitions, we need to provide an exact computation for the multi-bosons
emission. This task was started in [1] by us, using the called photon equivalent approximation.

Equivalent photon approximation It is well-known that the effect of the soft and colinear photons can be taken
into account using the equivalent photon approximation [101, 102, 103, 104] (see for review [105, 106, 107]). We
believe that this picture offers an intuitive understanding of the pressure at NLO order and also makes quite easy
to generalise it to 1 → N by solving the DGLAP equations, as we will do. In other words, an initial fermion state
can be thought as a state made of photons and fermions with the photons distributed with the Weizsacker-Williams
parton distribution function

fγ(x) = e2

8π2 log m2
V

(eT )2

[
1 + (1 − x)2

x

]
, (2.113)

where the integral over the perpendicular momenta has already been performed and we are using the information
from Eq. (2.107) that the pressure is dominated by the k⊥ ≲ mV and the minimal value of transverse momenta is
of the scale ∼ eT 8. We also know that a photon with a phase-dependent mass going through the wall will lose pz
component of momenta of the order ∼ m2

V
2E . Then the pressure can be trivially estimated to be

Peq.γ
1→2 =

∫
d3p

(2π)3 fp︸ ︷︷ ︸
incident fermions

∫ 1

mV /p0
dxfγ(x) × m2

V

2p0x︸ ︷︷ ︸
momentum transfer

=
∫

d3p

(2π)3 fp ×
[
e2

8π2mV

]
log m2

V

e2T 2 (2.114)

which leads to the exactly same result as the expression in Eq.2.107. We have cut-off the integral in Eq.(2.114) at
mV /p0 because from the considerations in Eq.(2.52), we do not expect the gauge bosons less energy to be able to
enter the bubble, we will turn to those gauge bosons shortly. Intuitively the γw factor in the pressure comes from the
two following effects: both the photon distribution function as well as momentum transfer to the wall are enhanced
by the factor 1/x, which together allows to enhance the pressure by the additional factor p0/mV ∼ γw. One may
wonder what will be the effect of the particles which do not have enough energy to pass through the wall, since for
them the photon distribution function will be even larger, however, in that case the momentum transfer to the wall
will scale as p0x so that the pressure will scale as

Preflection
1→2 =

∫
d3p

(2π)3 fp

∫ xmax

xmin

dxfγ(x) × 2p0x

=
∫

d3p

(2π)3 fp ×
[
e2

2π2 (xmax − xmin)p0

]
log m2

V

e2T 2 (2.115)

xmin ∼ k⊥/p0 ∼ T/p0, xmax ∼ mV /p0 (2.116)

leading to the pressure from reflection

Preflection
1→2 ≃

∫
d3p

(2π)3 fp

[
e2

2π2mV log m2
V

e2T 2

]
. (2.117)

8One can also argue that k⊥ ≲ mV by noting that in the limit p0x, k⊥ ≫ mV four momentum is approximately conserved, which
should strongly suppress the splitting.
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We have again the friction effect growing with the Lorentz factor γw, however, note that our calculation becomes
questionable in this regime since we need p0xLw ≫ 1 in order to remain in the WKB validity range. Notice also
the factor of 4 between the reflection contribution in (2.117) and the transmission contribution in (2.114).

We can generalize the Eq.(2.114) for arbitrary splitting and the resulting pressure will be

PA→BC =
∫

d3p

(2π)3 fp

∫ 1

mB/p
dx
m2
B

2px
α

2π log m2
B

e2T 2PB←A(x) (2.118)

where B is the soft particle and PB←A(x) are Altarelli-Parisi [108] splitting functions. Then it is obvious that the
friction proportional to ∝ γw can appear only from the splitting when the splitting functions scale as 1/x for small
values of x. This is the case only when the soft final state is a vector boson, which confirms the results of [96].

The expression of the pressure in Eq.(2.118) was derived assuming single soft vector boson emission, and it
corresponds to the solution of the DGLAP equations [108, 109, 110] (or for a pedagogical review [111])

dfB(x,Q)
d logQ = α

π

∫ 1

x

dz

z
PB←A(z)fA

(
x

z
,Q

)
(2.119)

up to the order O(α2) starting with initial conditions at the scale Q = eT

fB(x, eT ) = 0, fA(x, eT ) = δ(x− 1) (2.120)

The multiple emissions can be taken into account by solving the system of the DGLAP equations, however these will
lead to only higher order in O(α log mV

eT ) corrections. We observe that in absence of very strong log-enhancement
log mV

eT ∼ O(1), any multiple emission will be suppressed by powers of the coupling α with respect to the
single-emission result.

Sudakov resummation A second step in the clarification of the controversy was taken in [112] where careful
Sudakov resummation[113] was carried out. Such a careful computation confirmed our previous expectation that
accounting for the multi-bosons emission should only bring a further mild log mV

gT enhancement. The final result is
given by[112]

∆Pmulti−NLO ≈
∑
C

[∑
AB νAgACABC

]
κζ(3)
π3 αγwmV (vEW ) log mV (vEW )

eTnuc
T 3

nuc (2.121)

where νA = 1(3/4) for A a boson (fermion), gA is the number of degrees of freedom of A, MV designates the
mass of a gauge boson, CABC is relevant to the coupling appearing in the vertex. This is the expression we will be
using in our future estimation of the pressure at NLO order.

Emission of massless vector bosons We have seen above that a very large pressure was predicted in [100],
mainly due to the emission of massless gluons. We then argued that such a result was unphysical and proposed an
alternative computation using the EPA[1] and Sudakov resummation in[112]. In this subsection, we would like to
present a calculation that actually shows that the emission of particle that do not acquire a tree-level mass from the
condensate actually contribute only a very small correction, following the lines of[112].

Let us consider the special case where the soft gauge boson remains massless but the particle that emits it has a
mass which is however phase-dependent, mA,h ≫ mA,s. In this context, considering a constant vertex, the WKB
wave functions give( 1

As
− 1
Ah

)2
=
( 1

−m2
A,h + k2

⊥+m2
A,h

1−x + k2
⊥+m2

C,h

x

− 1
k2

⊥
1−x + k2

⊥+m2
C,s

x

)2
(2.122)
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which gives the splitting probability after a simple computation

dPA→BC =
∑
bc

νAgACABB
dk2
⊥

k2
⊥
xdx

k4
⊥

(k2
⊥ + µ2)

x2m4
A,h

(k2
⊥ + µ2 + x2m2

A,h)2 . (2.123)

where we introduced a cut-off µ that should be taken around eT . This result, because it does not contain any
divergence when x → 0 already hints that massless gluons cannot produce a γw scaling pressure. Applying
Sudakov resummation techniques, Authors of [112] find that the exchange of momentum transferred to the wall is
order

∆pz ∼
m2
A,h

2EA
, (2.124)

that is to say, of the same order of magnitude than the LO exchange of momentum. This is again to be contrasted
with [100] which obtains, for the similar case, an exchange of momentum ∆pz ∝ EA.

Open questions about the NLO pressure

So far we have discussed the current state of the art of the NLO pressure in the semi-classical regime. In the
subsection, we would like to draw attention to some of the unclear aspects of the computation and the physics
associated. The purpose of this subsection is not to bring a final conclusion to those puzzles but to show that
investigation is still lively in the field. Here is a non-exhaustive list:

• The case of the longitudinal modes of the gauge bosons
We know that the point of the spontaneous symmetry breaking is to give a mass to the gauge bosons while
maintaining gauge invariance. As a massive vector boson has one more degree of freedom than a massless
one, the mechanism consists in assigning a degree of freedom, the longitudinal component, with polarisation
along the direction of propagation, coming from a scalar introduced in the theory (the Higgs). This raises the
question of the emission of those longitudinal modes during the bubble expansion.

The role of longitudinal modes of the wall relativistic wall pressure constitutes an open problem and a work
in progress. We will not comment on it anymore nor take them into account in our future estimates of the
velocities. We however hope that including them should not change drastically the result.

• Kadanoff-Baym formalism for the emission of gauge bosons The previous estimates have always considered
the emission of on-shell particles. It is however possible than plasma effects and off-shellness play an active
role in the emission of soft-gauge bosons. The most honest formalism to take into account quantum and
plasma effects is the Kadanoff-Baym formalism. This can become very relevant if off-shellness effects
becomes large. However, at the current stage, a computation of the friction pressure using the KB formalism
is still lacking in the literature, maybe due to the fact that such a computation is heavily involved.

• Saturation of the soft bosons
It was emphasized in [96] and later in [112] that the strong emission of gauges bosons peaked around
momentum of order p ∼ mV could lead to the onset of collective effects for the soft modes of the bosons.
Those collective effects are of concerns for two reasons: first they will lead to an effective mass for the low
momentum modes and secondly, they could lead to the breakdown of the perturbativity of the plasma, as
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large amount of particles with similar momentum are accumulating in the wall. Let us treat those two effects
separately:
Using the Ward identities, and considering, as a toy model, a SU(N) gauge theory we can estimate that high
density effects lead to a mass gap, for the gauge bosons, in the dispersion equation of the form[114]

m2
V,HDE ∼ 2Ng2

∫
d3p

(2π)32|p|
fV (p) (2.125)

where fV (p) is the density of soft bosons emitted, which is strongly peaked in the region p0 ∈ [0,mV ]. It is
roughly controlled by

fV (p) =
∑
i

gA

∫
d3pA
(2π)2 fA(pA)dPA→BC(mV,HDE)

d2k⊥dp0 ∼ γwT
3
nuc

k2
⊥xp0

( m2
V,h

k2
⊥ +m2

V,h

)2
(2.126)

where gA are the emitting degrees of freedom. We have already seen that the probability of emission of
a gauge boson dPA→BC(mV,HDE) has a strong dependence on the screening mass because the emission is
dominated by ultra-soft momentum. As noted by [96], this induces a cut-of in the integral over the emission

PA→BC ∝ g2
∫
mtot
V,s

(2.127)

where the total mass of the gluons of the broken SU(N) inside the wall

mtot
V,s =

√
m2
V,HDE + Π(T )︸ ︷︷ ︸

Thermal mass

≈ mV,HDE (2.128)

We now need to self-consistently solve for mV,HDE using Eq.(2.125) and (2.126), reminding that Eq.(2.127).
And we find that[112]

m3
V,HDE ≈ 2

3π5α
2NγwT

3
nuc

∑
ABC

gAνACABC , (2.129)

from which we observe that mV,HDE grows with γ1/3
w , and could eventually catch up on the mass on the

higgsed side mV,h. When this occurs, we need to go back to our early expression for the computation of the
probability of transition:

Pψ→V ψ =
∫

d3p

p0(2π)6 fψ

∫
mV,HDE/p0

dx

x2

∫
mV,HDE

d2k⊥
k2
⊥

m4
V,h

(k2
⊥ +m2

V,h)

≈
∫

d3p

p0(2π)6 fψ

∫
mV,HDE/p0

dx

x2

∫
mV,HDE

d2k⊥
k4
⊥
m4
V,h. (2.130)

However, the backreaction also concerns the HDE effect in Eq.(2.126)

fV (p) =
∑
i

gA

∫
d3pA
(2π)2 fA(pA)dPA→BC(mV,HDE)

d2k⊥dp0 (2.131)

which changes behaviour as well and backreacts on mV,HDE. Doing a similar computation than before, we
find m7

V,HDE ∝ γw. Collecting the terms in a similar and computing the pressure on the bubble with cut-off
given by mV,HDE, we obtain

mV,HDE > mV,h ⇒ P ∝ mV,HDEγw

(
mV,h

mV,HDE

)4
T 3 ∝ γ4/7. (2.132)
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Figure 2.7: Cartoon of the possible reflection of soft gauge boson on thermal plasma entering the bubble. Thanks
to Giulio Barni for sharing this nice cartoon!

sincemV,HDEγw

(
mV,h

mV,HDE

)4
∝ γ

3/7
w . It remains to determine when this saturationmV,HDE > mV,h becomes

a possibility. Saturation occurs when (here v is the scale of symmetry breaking)

mV,h ∼ α1/2v < mV,HDE ∼ α2/3Tnucγ
1/3
w,terminal ∼ α2/3Tnuc

∆V 1/3

v1/3α1/2Tnuc

Saturation possible if: ⇒ v4 <
∆V
α

(2.133)

which is the case of very strong release of energy, or very weakly coupled theories. [96] already noted that
even γ4/7

w is typically enough to prevent runaway walls. However, the arguments given here remain quite
hand-waving and would deserve further investigation.
The previous discussion was mostly relying on a perturbative computation. In the case of non-abelian gauge
theories, such a large density can induce the breaking of perturbative expansion, via the 3-bosons and 4-
bosons vertices. Though this is also an issue which is plagued with uncertainties, let us give a flavor of it.
The possible loss of perturbativity can be seen in the following way. In thermal field theory, the expansion
parameter is typically

(coupling)2fC(p) (2.134)

and perturbativity then requires that this quantity is much smaller than 1 for all p. This means that in the
phase space of volume m−3

V,h, a density of gauge bosons T 3
nucγw is accumulating. It is clear that

fC(mV ) ∼ nV
m3
V,h

∝ γw (2.135)

will become larger than the perturbativity bound 1
(coupling)2 . Despite the conclusions exposed here, the

saturation regime remains mostly unexplored and we do not know what is going on there.

• A thin surface of soft gauge bosons in front of the wall Finally, let us come to a last comment about
the dynamics of the emission of soft gauge bosons. We have seen that according to our previous results a
substantial fraction

∼ logmV,h/gT

log γwT/gT
(2.136)
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of the soft gauge bosons will not be able to enter the wall, as their momentum is very soft, see Eq.(2.117).
We could thus wonder what will happen to those reflected soft gauge bosons. The abundance of reflected
gauge bosons is approximated by

nref ∼ nAg
3 log mV,h

gTnuc
∝ γw (2.137)

After reflection, those gauge bosons will collide with the incoming dense plasma, as illustrated in Fig.(2.7).
What will happen at this moment ? As a first simplifying assumption, let us consider that the gauge bosons
are produced continuously by the wall, but are trapped by 2 → 2 scatterings in a layer of thickness ltrapped.
We can approximate the length of the trapped region ltrapped by :

ltrapped ∼
p2
z,c

α2T 3
nuc

≲
m2
V,h

α2T 3
nuc

(2.138)

where R is the radius of the bubble. If those gauge bosons are not able to enter the bubble, the density will
increase in a thin layer of thickness ltrapped, as

nsoft(R) ∝ R

ltrapped
nAg

3 log mV,h

gTnuc
, (2.139)

where R is the radius of the bubble. This will threaten again the perturbativity of the plasma. This regime as
well has to be studied in more depth. Again, what occurs to this thin layer is mostly unknown.

2.4 The friction theory in the SM and in dark PT

In this final section of this chapter, we would like to present some few applications of the full theory of bubble
friction in the relativistic regime that we developed above. We will also take the opportunity to summarize all the
effects exposed above. As a consequence, we can see this section as a general guideline on how to compute the
velocity in the semi-classical regime.

2.4.1 Dynamics of the bubble wall: Generic case

Let us now apply the theory developed above to the case of a dark transition triggered by the Higgs-like field φ
acquiring a VEV v. We focus on the regime with ultra-relativistic bubble wall expansion with γw ≫ 1. This regime
is favoured when the transition is strong enough to develop at least some amount of supercooling. The dynamics of
the bubble wall motion is controlled by the driving force due to the potential differences between the false and true
vacuum

∆V ≡ Vfalse − Vtrue , (2.140)

and the friction due to finite temperature effects. As we have seen, the calculation of the friction is generically a
very complicated problem, however for the ultra-relativistic bubble motion at leading order (LO - tree level) very
simple expressions have been obtained in section 2.3.1 for the pressure force from friction,

∆PLO ≃
∑
i

gici
∆M2

i

24 T 2
nuc , (2.141)
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where ∆M2
i is the change in the mass of the particle i during the PT, ci = 1 (1/2) for bosons (fermions) and

gi is the number of d.o.f of the incoming particle. Eq.(2.141) assumes that the masses of the particles outside
of the bubble are less than the temperature, otherwise the friction will have an additional Boltzmann suppression
∝ exp[−Mfalse/T ]. Secondly, the production of the heavy particles can also contribute to the friction at the same
order as we have computed in section 2.3.3:

∆Pmixing
LO ∝

∑
i

gici
v2T 2

nuc
24 Θ(γwTnuc −M2

heavy/v) . (2.142)

One can see that the friction (pressure from plasma on the bubble wall) becomes velocity independent so that
permanent accelerating (runaway) behavior of the bubble expansion becomes possible. However for theories where
the gauge bosons receive a mass during the phase transition, this is not the case and the effect with multiple gauge
boson emissions, leads to the additional contribution (NLO- Next to Leading order) to the pressure which scales as
we have discussed in section 2.3.4,

∆PNLO ∝
∑
a gag

3
gauge

16π2 γwT
3
nucv . (2.143)

At this point we can see that bubbles can end up in two different regimes :

1. Runaway regime: When the PT does not involve phase-dependent vectors, there is no NLO pressure and the
wall keeps accelerating until collision. The γw at collision is [37, 1]

γw,MAX ≃ 2R∗
3R0

(
1 − PLO + Pmixing

∆V

)
, R0 ∼ 1/Tnuc, R∗ ≈ (8π)1/3vw

β(Tnuc)
,

β(T ) = HT
d

dT

(
S3
T

)
∼ β̃H ∼ β̃v2

Mpl
⇒ γw,MAX ∼

MplTnuc

v2β̃
, (2.144)

where R⋆ is an estimate for the bubble size at collision and R0 is the bubble size at nucleation, β is the
inverse duration parameter of the transition.

2. Terminal velocity regime: Terminal velocity regime can arise for two reasons: i) we hit some high scale
physics with new states that induce a new pressure via mixing pressure. In this case, we have to search the
contribution such that

PLO + Pmixing = ∆V (2.145)

and the terminal velocity is given by the velocity needed to activate the heavy states:

γw,terminal ≈
M2

Heavy
vTnuc

. (2.146)

Or, ii) when the PT gives a mass to vectors, the pressure becomes dominated by the emission of ultra-soft
bosons and quickly wield a terminal velocity of the form

∆PNLO ≃ giggaugeγwT
3
nuc

v

16π2 , ∆V ∼ v4 (2.147)

∆V = ∆PNLO ⇒ γw,terminal ≈ Min
[
MplTnuc

v2β̃
,

16π2

gig3
gauge

(
v

Tnuc

)3]
,

where in the last step we have to take the minimal of the two values, since the bubble collision can happen
before the terminal velocity regime is reached.
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2.4.2 Dynamics of the bubble wall: EWPT case

A particularly relevant special case is the EWPT case, as it is very likely that this transition must have occurred in
the early universe. Though, lattice simulations of the pure SM indicates that the EWPT is a smooth cross-over, in
Chap.5 we will provide a realisation of the transition which is strongly first order and we will focus on the region
with relativistic walls. In this section, we would only like to lay down the formulas that will be later used.

Let us start with the LO friction. It is dominated by species gaining a large mass, the top, Z, and W and takes
the form:

∆PSM
LO ≈ T 2

nucv
2
EW

(
y2
t

8 + g2 + g′2

32 + g2

16

)
≈ 0.17T 2

nucv
2
EW . (2.148)

There is also a contribution to the LO friction from the singlet and Higgs scalars, however it depends on the
masses of these fields in the false vacuum and we find it subleading compared to the estimate in Eq. (2.148). These
contributions are smaller due to the number of d.o.f and possible Boltzmann suppression factors ∝ exp[−Mfalse/T ].
This gives a rough condition on the nucleation temperature for the transition to become ultra-relativistic

∆V > 0.17T 2
nucv

2
EW (relativistic wall condition). (2.149)

The computation of the NLO pressure from transitions A → BC, with soft C, in the case of the SM has
been carried out in [112] and in section 2.3.4, with the addition of higher order transitions, where the following
approximate expression has been derived:

∆PSM
NLO ≈

[ ∑
ABC

νAgAβCCABC

]
κζ(3)
π3 αMZ(vEW )γw log MZ(vEW )

gTnuc
T 3

nuc, (2.150)

where νa = 1(3/4) for a a boson (fermion), ga is the number of degrees of freedom ofA,MV designates the mass of
a gauge boson, CABC is relevant to the coupling appearing in the vertex,βc=Z0 = 1, and βc=W± = cos θW = MW

MZ
,

α = e2(vEW )
4π ∼ 1/128 is the electromagnetic fine structure constant, MV,i(vEW ) is the mass of the gauge boson

inside the bubble. The κ factor is introduced to account for the contributions of the both reflected and transmitted
bosons and is approximately equal to κ ∼ 4. The sum in the square brackets will be computed in section below and
is approximately equal to [ ∑

ABC

νAgAβCCABC

]
≈ 157, (2.151)

Since, we do not know heavy particles in the SM that could contribute via the mixing pressure, we do not take it
into account here. At this point we can compute the terminal wall velocity by balancing the pressure against the
driving force

∆V − ∆PSM
LO = ∆PSM

NLO(γw = γterminal
w ) (Terminal velocity criterion)

⇒ γterminal ∼ 3 ×
(∆V − PLO

(100 GeV)4

)(100GeV
Tnuc

)3 1
log MZ

gT

. (2.152)

Taking into account that ∆V−PLO
(100 GeV)4 ≲ O(1), we can see that the bubbles will become ultra-relativistic γterminal ≫ 1

if only Tnuc is significantly lower than the scale of the phase transition ∼ 100 GeV. This is an interesting result!
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The coefficient of NLO pressure Following closely[112], let us now report the value of the sum[ ∑
ABC

νAgAβCCABC

]
(2.153)

where νa = 1(3/4) for A a boson (fermion), βC ≡ MC
MZ

and CABC stands for the couplings appearing in the vertex.
Normalization of the CABC coefficient is the following:

for a chiral fermion coupled to the vector field the amplitude for the process ψ → ψAsoft is equal to

gψψ̄LAµψL ⇒ CψψA =
g2
ψ

4παem
. (2.154)

The relation Eq.2.154 is written only for one polarization of the vector field. Similarly for the scalar field

igϕ(ϕ∗∂µϕ− ∂µϕ
∗ϕ)Aµ ⇒ CϕϕA =

g2
ψ

4παem
, (2.155)

and the vector fields

gV 1V 2A3

(
V 1
µνV

2
µAν + V 2

µνAµV
1
ν +AµνV

1
µ V

2
ν

)
⇒ CV1V2A =

g2
V 1V 2A

4παem
, (2.156)

where in all of these formulas CABC coefficients are reported only for one polarization vector fields both in the
initial and the final states. Summing all of these contributions and taking care of the multiplicities of the initial and
final states we find [ ∑

ABC

νAgAβCCABC

]
= 4

(
7 + 14cw

s2
w

− 7 − 15s2
w

c2
w

)
≃ 157. (2.157)

For the interested reader we refer various individual contributions in the Table 1. If in the false vacuum the
Higgs doublet H is too heavy its contribution must be subtracted and the sum in Eq.2.157 reduces to[ ∑

ABC

νAgAβCCABC

]
No Higgs

≃ 145. (2.158)

At last we would like to emphasize that these results include only the transverse polarizations of the vector fields.
As we discussed in section 2.3.4, NLO effects of the longitudinal polarizations are not fully established and we omit
them here, however we believe that these cannot qualitatively modify the results.
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Process
∑
gaCabc β ν Result

ψ → W±ψ 24
s2
w

cw
3
4

18cw
s2
w

ψ → Zψ 4(3−6s2
w+8s4

w)
s2
wc

2
w

1 3
4

3(3−6s2
w+8s4

w)
s2
wc

2
w

H → WH 2
s2
w

cw 1 2cw
s2
w

H → ZH 1−2s2
W c2

W+c4
W+s4

W

2s2
W c2

W
1 1 1−2s2

W c2
W+c4

W+s4
W

2s2
W c2

W

A → WsoftW & W → WsoftA 8 cw 1 8cw

Z → WsoftW & W → WsoftZ
8c2
w

s2
w

cw 1 8c3
w

s2
w

W → ZsoftW
4c2
w

s2
w

1 1 4c2
w

s2
w

Total: 2
(

7+14cw
s2
w

− 7−15s2
w

c2
w

)
≃ 157

Table 2.1: Different contributions to the sum in Eq.(2.150).





Chapter 3

Production of Dark Matter via relativistic
bubble expansion

T he mystery of Dark Matter (DM) is one of the leading area of investigation in Cosmology and Particle physics
and has many subdivisions and sub-questions, from the construction and conception of new detectors, to the

non-linear evolution of DM in galactic halos. On the theoretical side, two of those sub-questions concern the nature
and the mechanism of production of DM in the early universe. Obviously, those two problems are related and some
specific mechanism is expected to work only with some specific sub-classes of DM candidates. Without trying
to be exhaustive, in this chapter, we will present some potential DM candidates and discuss associated production
mechanisms. We will see that thermal freeze-out with WIMPs is increasingly under pressure and so we will
search for non thermal production mechanism. Phase transitions offer an intriguing prospect for the non-thermal
production of DM and permits to broaden the range of masses of DM consistent with observation. In the previous
chapter, we presented how heavy states can be produced during the expansion of relativistic bubbles, in this chapter,
we study the exciting possibility that those produced states are stable and constitute the DM observed today. We
find that super-heavy DM candidate can be copiously produced in that way.
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3.1 The necessity of Dark Matter

Cosmological observations conspire to suggest the existence of a massive, undetected, dark component permeating
the universe: this is the Dark Matter (DM) phenomenon. This phenomenon has a very long history and a monumental
associated literature (see [115] for a condensed history of this adventure). In particular it is one of the very first
bridge between particle physics and cosmology, two initially separated fields that got closer and closer and finally
constituted the today called “astroparticle” field.

The implementation of more or less ad hoc hypothesis to explain a phenomenon that was not anticipated by
the theory has a long history in physics. We can for example think of the involved modifications of the Ptolemy
geocentric model or, much later, the bold hypothesis, proposed by Urbain Le Verrier and John Couch Adams in
1846, of the existence of a new planet, Neptune, to explain the anomalies in the trajectory of Uranus. Those
solutions, which imply to postulate a new body, particle, or player of any sort, to explain the observation while
keeping the theory intact, can be called a ontological solution.

On the other hand, reconciliation between observation and theory sometimes needed the drastic modification
of the theory. Two examples for which spectacular departure from previous theories was indeed necessary are
the anomalous precession of the perihelion of Mercury and the Ultravioled catastrophy of black bodies, leading
respectively to the two pillars of contemporary physics, General Relativity and Quantum Mechanics1. Such a
solution can be recast under the name of a legislative solution, since it requires a modification in the structure of
the laws followed by the bodies.

Those two types of solutions often coexist when some field of physics encounters a crisis. Le Verrier, who
himself discovered the anomalous precession of the Mercury perihelion and proposed the existence of Neptune,
proposed for a second time an ontological solution to the problem; he postulated the existence of a dark planet,
Vulcan. However, in did not go as well as with Neptune.

The hypothesis of non-observable matter in the sky is actually much older than the Zwicky’s hypothesis. One
early examples is the hypothesis by Arthur Ranyard in Knowledge, 1894, to explain the dark regions in the sky. He
argued that "dark structures" were absorbing the light on the line-of-sight, inducing dark regions in the sky. The
question was reassessed by Lord Kelvin in 19042, who, by modelling the distribution of stars as a gas of particles,
predicted the presence of a large amount of dark bodies. Poincaré 3 pushed the analysis further and used for the
first time the name of “dark matter”.

But it is indeed the Swiss-American astronomer Fritz Zwicky who is known today as the most fervent promoter
of DM. After the seminal work of Edwin Hubble and Milton Humason4 on the scattering velocities of galaxies in
the Coma clusters, he applied the virial theorem to determine the mass of the cluster and concluded, after several
approximations, that “dark matter is present in much greater amount than luminous matter” 5. Then [116] he

1The history is very famous and, to some extent I guess, mythical.
2https://archive.org/details/baltimorelecture00kelviala.
3Poincaré, H. (1906), L’ Astronomie , 158
4Hubble, E., and M. L. Humason (1931), Astrophys. J. 74, 43.
5Zwicky, F. (1933), Helvetica Physica Acta 6, 110.
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proposes some candidates for the excess of matter; “we must know how much dark matter is incorporated into
nebulae in form of cool and cold stars, macroscopic and microscopic solid bodies, and gases.”

On the side of galactic rotation curves, the discrepancies extend to much before the seminal publications by Vera
Rubin and Kent Ford, however, it is the turn of the 1970’ that brought all the material to the consensus. It is among
the radio-astronomers Freeman[117] and Rogstad and Shostak [118], that claims of missing matter emerged with
clarity. Some few years later, using optical rotation curves from 10 high luminosity galaxies, V.Rubin, Ford and
Thonnard[119] established the issue of the missing mass the most famously. The observed galactic rotation curve
of NGC 6503 is provided on the left panel of Fig.3.1, where we can observe the flat behaviour at large distance form
the center, in contrast with the velocity that would be predicted by

v(r) =

√
GNM(r)

r
(3.1)

whereM(r) is the mass enclosed in the radius r. A flat behaviour of v means that the mass increases with r linearly.

It was finally the understanding of the CMB and the Baryonic Acoustic Oscillations (BAO) that finished to
convince most of the cosmologists of the existence and the necessity of Dark Matter under the form of microscopic
particle (a fundamental excitation) or macroscopic object (for example primordial black holes). Indeed, observation
of the CMB peaks requires the existence of a gravitational driving for the oscillations of the baryon and photon
fluids. This gravitational driving is provided by the potential wells of clumped DM. Perhaps counterintuitively,
during radiation domination, adding more DM density would actually reduce the gravitational driving and thus the
height of the higher CMB peaks, which are resolved with a great accuracy, as seen in Fig.3.1. The reason goes as
follows: higher peaks started to oscillate earlier in the universe history, when the radiation dominated the energy
budget. However, the pressure of the photons tends to compensate the gravitational potential, which decay when
the photons compress. The photons then bounce back due to pressure and see no gravitational potential. Then the
peak is enhanced. This mechanism of suppression of the gravitational potential is however inefficient during matter
domination, and the peaks are suppressed. This is the case of lowest order peaks. The density of photons being
fixed by the thermal history and the average temperature of the CMB today, the density of DM can be extracted by
measuring the height of the higher order peaks6. As a conclusion, if DM was absent, lowest order peaks (oscillation
when DM domination) would be enhanced.

From CMB observation, the observed abundance of DM today is

ΩDM ≡ ρDM
ρc

≈ 0.1 (Density of DM today). (3.2)

This is our target value.

Many candidates for the nature of DM have been proposed, they are for example reviewed in [122]. In this thesis,
and in the following, we will be focusing on the case of rather heavy (multi-TeV) fundamental DM candidate and will
now review some of the usual mechanisms of early universe production of the observed abundance. Acknowledging
the existence of DM around the recombination time, we are naturally lead to believe in its existence at much earlier
time, in the first seconds of the universe. On the other hand, our strong belief in a very early period of inflation
washing away any initial abundance forces us to build a mechanism for the production of this DM abundance that
we observe today. Since injection of entropy is severely constrained by BBN we are lead to search this mechanism
in the first second of the universe, prior to BBN.

6See http://background.uchicago.edu/ whu/intermediate/driving.html for nice animations of the physics involved
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Figure 3.1: Left: Rotation curve of the galaxy NGC 6503 [120]. Right: CMB curve from [121]. CMB observation
is probably the most solid argument in favor of the presence of DM, even at very early times.

3.2 Mechanism of DM production

So, as soon as we pick up a candidate for DM, with a nature, some interaction with the SM (possibly vanishing)
and a typical mass scale, the question of its early universe production arises, accompanied by the requirement that
the produced abundance should match the redshifted abundance of DM today in Eq.(3.2). Though most of those
mechanisms rely on early universe dynamics, a great variety of possibilities already exists. In this section, we would
like to discuss the freeze-out (FO) in some details, as the results will be useful in the next sections.

The Freeze-Out One of the early cosmological mechanism to produce dark matter is the well-known freeze-out
mechanism[123, 124, 125, 126] (FO), which was put forward in the context of WIMP [127]. In a nutshell, this
mechanism assumes that the DM candidate of mass Mϕ, which can be fundamental or composite, is in thermal
equilibrium in the early universe and couples to the SM via some portal, e.g. the Higgs portal.

As a warm-up exercise, let us go through the famous computation of the final relic abundance of FO. We want
to compute the relic abundance

Ωϕh
2 ≡ ρϕ

ρc
, ρϕ = Mϕnϕ = MϕsYϕ (3.3)

where we defined the usual Yϕ = nϕ
s .

For concreteness and for the purpose of future use, we consider a real scalar DM candidate ϕ. The first
assumption that we need is that ϕ is firstly in thermal equilibrium with the SM via, for example, the Higgs portal
∝ ϕ2|H|2, inducing ϕϕ ↔ hh interactions. In this scenario, kinetic equilibrium is reached and the ϕ sector and
the SM sector share the same temperature TSM, that we will simply call now T . At T ≫ Mϕ, the abundance of
DM follows the radiation abundance nϕ ∝ T 3. However, when T ≪ Mϕ, ϕϕ → hh becomes favored with respect
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to the opposite reaction and the ϕ abundance starts to be exponentially depleted, nϕ ∝ (TMϕ)3/2e−Mϕ/T . At this
point we need to remember that the expansion of the universe sets a scale that can compete with the rate of the
interaction, and eventually overrules it. Thus, to precisely track the abundance of ϕ we need to solve the following
BE

ṅϕ + 3Hnϕ = C, C = −⟨σv⟩[n2
ϕ − (neq

ϕ )2] ⇒ Ẏϕ = −⟨σv⟩[Y 2
ϕ − (Y eq

ϕ )2], (3.4)

where the dot designates a derivative with respect to time and the brackets ⟨⟩ mean a thermal average of the form

⟨σijvij⟩ =
∫
d3pid3pjfifjσijvij∫
d3pid3pjfifj

(3.5)

and σij is the cross-section of the collision and vij is the relative velocity of the two particles colliding

vij =

√
(pi · pj)2 −M2

iM
2
j

EiEj
. (3.6)

From the Eq.(3.4), we see that a strong rate of interaction ∝ ⟨σv⟩neq
ϕ quickly suppresses any departure from the

equilibrium abundance neq
ϕ , so we can conclude that as long as the expansion of the universe can be neglected, the

interactions enforce chemical equilibrium. We can still further simplify it by introducing z = Mϕ

T , and assuming
radiation domination, we obtain

dYϕ
dz

= − zs⟨σv⟩
H(T = Mϕ) [Y 2

ϕ − (Y eq
ϕ )2]. (3.7)

This equation is a Riccati equation, which cannot be solved in a closed form. Solving this equation exactly requires
a numerical treatment. However, we can build a solid intuitive understanding by studying the freeze-out epoch, the
moment when the rate of the interaction drops below the expansion rate of the universe:

⟨σv⟩neq
ϕ (zFO) ∼ H(zFO) (Freeze-out epoch). (3.8)

Going back to Eq. (3.4), this is the epoch when the collision term becomes negligible with respect to the friction
term coming from the expansion. This induces a departure from equilibrium distributions nϕ ̸= neq

ϕ . At this point,
we should also mention that another possibility is that the interaction could freeze-out even before the temperature
drops below the mass of the DM. This would be typically the case of neutrino, or neutrino-like particles. We thus
end up with two possible regimes i) zFO ≪ 1 and ii) zFO ≫ 1. In the first case, the DM candidate abundance
freezes-out when the distribution is still relativistic nϕ ∝ T 3. This is the so-called Hot Dark Matter (HDM)
scenario, which is mostly ruled out by the formation of structures in the early universe[122]. In the second case,
on the other hand, the FO occurs when DM particles are non-relativistic, and produces Cold Dark Matter (CDM)7.
Solving (3.8) provides the following result

z
1/2
FO e

−zFO =
√

π2

90 g⋆
(2π)3/2

MplMϕgϕ⟨σv⟩ (FO epoch)

Yϕ(zFO) = gϕ
g⋆

45
2π2(2π)3/2 z

3/2
FO e

−zFO ⇒ Yϕ(zFO) =
√

45
8π2g⋆

zFO
MplMϕ⟨σv⟩ ≃ zFO

4πMplMϕ⟨σv⟩ (3.9)

with g⋆ is the number of relativistic degrees of freedom in the plasma and gϕ is the number of degrees of freedom
of the DM and we remind thatMpl is the reduced Planck mass. Solving the first equation typically gives zFO ≈ 20.

7Notice also the possibility of a middle ground under the name of Warm Dark Matter, which would be gravitini or some WIMPs.
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This is an important result and we call usually the freeze-out temperature TFO ≈ Mϕ/20. If we can consider that
⟨σv⟩ ∼ λ2

4πM2
ϕ

, we obtain

Ωtoday
CDM, FOh

2 ≈ 0.1
(0.03

λ

)2( Mϕ

100 GeV

)2
. (3.10)

or more generically

Ωtoday
CDM, FOh

2 ≈ 0.1
( ⟨σv⟩FO

3 × 10−26cm3s−1

)−1
(3.11)

This is the famous CDM abundance via FO. From this result we easily observe that a mass of order O(100) GeV
with a weak coupling order O(0.03) would reproduction the observed abundance of Ωtoday

DM, FOh
2 ≈ 0.1. This is

the WIMP miracle and has lead to the strong conviction that the DM had to lie within the range of exploration of
colliders, and maybe as a state of low energy supersymmetry.

However, today, many WIMP models have been excluded due to the bounds on the DM-nucleon scattering set by
the direct detection experiments[128, 129, 130, 131, 132]. See also[133] for a review on the status of WIMPS and
a good review on portal Higgs can be found in[134]. Moreover, vanilla FO mechanism comes with an embedded
bound on the possible mass of DM, which originates from unitarity considerations on the coupling governing the
scattering[135], the Griest-Kamionkowski (GK) bound of O(100) TeV. Starting from Eq.(3.10) and pushing the
coupling λ to its unitary limit λMAX ∼ 4π, the requirement to match the observed abundance imposes an upper
bound on the DM mass

Mϕ ≲ O(100) TeV (GK bound on thermally produced DM) (3.12)

Extrapolating the previous result in Eq.(3.12) means that any stable massive particle M ≫ 100 TeV that reaches
thermal equilibrium in the early universe would overclose the universe (assuming standard cosmology).

This bound as well as direct detection null results mentioned above seem to strongly constrain any fundamental
particle coupling via a 2 → 2 interaction, that reached thermal equilibrium in the standard early universe history.
A review of the domain of thermal DM is given in [136]. We will now see how relaxing each of those assumptions
can enlarge the spectrum of possibilities.

3.2.1 Modifying the Freeze-Out case

As we said, relaxing any of the four above hypothesis above would enlarge the spectrum of possibilities. Let us go
step by step:

• Abundance controlled by standard 2 → 2 interaction: we can first relax the form of the interaction of SM
and the DM. Many models along those lines have been proposed recently, let us provides some few examples.
We can introduce the possibility of catalyzed interaction via a catalyst[137]. In [138, 139] exponential
enhancement of the annihilation in the early universe was also obtained by the introduction of a new field χ
8. On the other hand, we can seclude the DM sector via the introduction of a mediator with a mass below the
DM mass mmed ≪ mDM[140] such that the production via FO is maintained, but detection prospect today

8They showed us that no one was safe from a pandemic, not even DM.
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is heavily suppressed, could also explain the null result at experiments. Another possibility is to have [126]
two nearly degenerate states, boosting the annihilation rate in the early universe. By extension, the possibility
of having many almost degenerate dark sector particles also permits to lift the mass of the DM[141] to a
tantalizing mass of 1014 GeV without violating GK bound.

• DM is a fundamental state: The FO abundance is also largely modified in the case of technicolor-like
theories, where we relax the assumption that DM is a fundamental state, and can relieve most of the bounds
coming from direct detection. Before confinement, the technifermions degrees of freedom interact directly
via renormalisable interactions with the SM degrees of freedom, fixing the relic abundance of DM. On the
other hand, if after the confinement, the technibaryons are neutral under the weak SM interactions and thus
only interact via non-renormalisable operators, the detectability today is very suppressed[142, 143]. In this
condition, the interaction arises from form factors. If the strong dynamics plays a role in the EW symmetry
breaking, then we are in the context of technicolor theories. In the case of technicolor models, the lightest
technibaryon can be possibly identified, if stable enough, with DM. Those models provide natural models of
decaying DM. However, the case of technicolor Dark Matter remains very difficult[144, 145]. On the other
hand, if the strong dynamics does not play a role in the breaking of the weak symmetry, then we relieve most
of the constraints from observation[146, 147].

• DM reached thermal equilibrium: Another possibility is to assume that DM never reached thermal equi-
librium with the SM. This can be realised if the coupling between the SM and the DM is extremely small
and DM abundance is created via slow out-of-equilibrium production: this is the freeze-in[148, 149] (FI) and
forbidden freeze-in[150] production mechanisms. This proposal has the virtue and drawback (depending on
personal tastes) that the dark matter candidate becomes very difficult to detect, since it is extremely feebly
coupled. In a similar way, DM can be also produced via the out-of-equilibrium decay of super-heavy particles
decay [151, 152]. This scenario permits to produce DM candidate that are much heavier than the one allowed
by the GK bound. Black holes have been as well proposed as efficient emitters of DM[153], and those DM
candidates could be very heavy[154].

• Standard cosmology: Finally, we could also relax the hypothesis of standard thermal history of the universe
with simple radiation domination until equivalence time. In the following, we will be considering such a
possibility, keeping in mind the exciting hope that discovery of DM could at the same time provide information
on the early universe dynamics. A very simple case is to assume that the universe is not radiation dominated
at the time of FO[155]. Another possibility is to consider the effect of phase transitions in the early universe
on the final DM abundance. In the context of second order phase transition, phase transitions offer a way to
fix the final relic abundance via the VEV flip-flop mechanism[156, 157, 158] and by modifying the stability
of DM candidate[159]. The PT could also change the properties of the DM[160] and modify its abundance.
Several proposals also take advantage of the possibility of an early First-Order Phase Transitions (FOPT)
occurring in the universe, with many different consequences on DM abundance[161]. Thermal inflation after
the end of FO due to a long supercooled FOPT would inevitable bring a dilution factor in the final abundance
of the form[162, 163, 164, 165] (Tnuc/Treh)3, allowing for a further suppression of the density and, according
to the GK bound, to heavier DM masses. Very massive DM can be also directly produced by the bubbles
colliding at very large velocities via non-thermal production mechanism[166, 167]. It was initially claimed
that particles as massive asM ∼ γwT [166] could be produced in this mechanism. This was later shown to be
too optimistic in [167] where only the vector and fermion DM candidates were considered as promising DM
candidate, if the collision between the bubbles is close to being elastic, that is to say, proceeding via multiple
bouncing of the bubble walls on each other. Since it is of importance for us, the production mechanism in
[167] is touched upon in Appendix A.6. More recently, the mechanism dubbed bubble filtering (BF)[168,
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169, 170] was proposed as another way to go around the GK bound and produce ultra-heavy DM candidate
with the observed abundance. Taking the DM as a fermion field χ and considering that it receives via the
transition a mass much larger than the nucleation temperature minside

χ ≫ Tnuc (“inside” meaning the mass
inside the bubble), then only an exponentially suppressed fraction of the thermal fermions χ will be able to
enter the bubble. Outside, the remaining part will be annihilated by thermal interactions.

Interestingly enough, similar production of heavy DM seems to be occurring in long supercooled confining
transition as well [171, 172, 173]. In this context, DM is a hadron of the strongly coupled Dark Sector and
the final DM abundance has been studied thoroughly in [174].

In this chapter, in the context of portal DM, we also relax the assumption of standard cosmology and assume
(model building for supercooled EWPT will be provided in Chapters 5) a FOPT with relativistic bubble walls. We
thus present a new mechanism of DM production, occurring via very strong FOPT with ultra-relativistic walls. In[1]
and in Chapter 2, we have showed that an ultra-relativistic wall, with Lorentz factor γw ≫ 1, sweeping through the
plasma can excite degrees of freedom of mass up to M ∼

√
γwvTnuc. We call this production mechanism Bubble

Expansion (BE) production and study it in detail, for the purpose of DM in this chapter.

Bubble Expansion, Bubble Collision and Bubble Filtering production mechanisms share the common feature
that they can proceed even with very massive DM candidate, thus possibly evading the direct detection experiments
(XENON1T ...). However, an irreducible prediction of such mechanisms, which uses very strong FOPT, is the
well-known large amount of gravitational waves emitted by the plasma motion and the bubble collision. As
a consequence, such mechanisms could be tested in future GW detectors like LISA, BBO, LIGO, offering an
alternative way to study DM production.

The remainder of this chapter is organised as follows: In Section 3.3 we discuss the set up we will use, the
production mechanism and the amount of relic produced after the passage of the wall and in Section 3.4, we present
first the maximal amount of DM abundance that can be produced via BE mechanism, and then discuss three ways
of accommodating the parameter space; 3.4.1, we discuss how inverse annihilation can modify the early relics
abundance, in Section 3.4.2 we discuss how some amount of supercooling modifies the relative FO and Bubble
Produced abundances and, finally, in Section 3.4.3, we discuss the case of very massive DM candidate in the absence
of FO relics. In Section 3.5, we specialize to the Electroweak Phase transition and discuss the allowed range of
parameter providing the observed relic abundance. In section 3.6, we study an alternative model where the DM
is not a scalar but a fermion. In Section 3.7, we expose the unavoidable signature expected by such mechanism.
Finally, in Section 3.8 we conclude.

3.3 Production of scalar DM in bubble wall expansion

In this first section we present the set-up that we will specialize to and present the production mechanism via the
bubble wall expansion.

3.3.1 Set-up with and Lagrangian

Let us introduce the Lagrangian for the minimal model which suffices for the illustration of the advertised effect

Lh = ∂µφ∂
µφ† − V (φ), (3.13)
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Figure 3.2: Cartoon of the production of DM mechanism in the wall frame for h → DM,DM in the case of the
EWPT. The same can be extrapolate to a generic DS case upon making the following change h → φ.

where φ is a complex scalar field obtaining a non-vanishing VEV via the phase transition and V (φ) is its potential.
We will not specify the form of V (φ) in this paper, but will assume that it leads to the first order phase transition in
the early universe. This field φ can be the physical Higgs φ → H, and thus the phase transition(PT) is the EWPT,
or a new Dark Higgs, and then the transition happens only in the Dark Sector (DS). On the top of it, we introduce
a DM candidate ϕ, that for simplicity we take to be only a single scalar field stabilized by a Z2 symmetry, with
Lagrangian of the form

Lϕ,φ = 1
2(∂µϕ)2 −

M2
ϕ

2 ϕ2 − λ

2ϕ
2|φ|2. (3.14)

We have assumed that DM candidate is coupled to the symmetry breaking sector via the portal coupling which
is the simplest and most natural non-gravitational connection between the symmetry breaking sector and the DM
candidate (for review on portal DM, see [175]). We will also assume λ > 0 in order to make sure the potential is
bounded from below.

We will be mostly interested in masses of the DM candidate ϕmuch larger than the mass scale in the φ potential,
Mϕ ≫ mφ, for example V (φ) = −m2

φ

2 |φ|2 + λφ
4 |φ|29. As a consequence, the abundance of ϕ in the plasma at

the moment of the transition is Boltzmann-suppressed and can be ignored in the dynamics of the transition. We
thus neglect the quartic part of ϕ potential in the discussion as well as the change of Mϕ due to the transition
∆M2

ϕ

M2
ϕ

= λv2
φ

M2
ϕ

≪ 1, with vφ the VEV of the φ field in the zero-temperature true vacuum, vφ ≡ ⟨φ⟩. The hierarchy

Mϕ ≫ mφ, vφ introduces the usual tuning of the scalar mass into the model if λM2
ϕ/(16π2) ≫ m2

φ, v
2
φ (similar to

the SM Higgs mass hierarchy problem), but in this paper we will not try to present a model where this hierarchy
can be obtained naturally. The study of such a hierarchy and the tuning involved will be the topic of the Chapter 5.

3.3.2 1 → 2 splittings

We now explicitly work out the expression for abundance produced, the probability of the 1 → 2 splitting,
considering the simple model of Eq.(3.13). Usual Poincaré invariance would of course forbid the transition 1 → 2.

9Of course, other types of potentials are allowed.
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However, in the presence of the bubble wall, Poincaré invariance is broken and this exotic transition can occur. We
will consider the process φ → ϕϕ, where φ is the field getting a VEV, the physical Higgs, and ϕ is the heavy field
that will be our DM candidate. This is illustrated in Fig.3.2. Assuming a bubble wall along the z direction, we
define the kinematics as

pφ = (p0, 0, 0,
√
p2

0 −m2
φ(z))

kϕ(1) = (p0(1 − x), 0, k⊥,
√
p2

0(1 − x)2 − k2
⊥ −M2

ϕ(z))

kϕ(2) = (p0x, 0,−k⊥,
√
p2

0x
2 − k2

⊥ −M2
ϕ(z)). (3.15)

In our set-up, Mϕ is (almost) independent on z, and only Mφ(z) is modified along the wall. Notice that now Mφ

is not the parameter in the potential, but the physical mass of the field φ. In the toy potential we provided above:
Mφ(z) = −m2

φ + 3λφv2
φ(z). Here we will also assume that the thermal corrections, especially the thermal mass,

can be neglected. This is the case for the Higgs boson with Tnuc ≲ mh even if the Higgs is interacting with the
plasma, and is neglected for ϕ since ϕ is heavy.

To estimate the probability of transition, we use the WKB method, valid as long as the incoming momentum
pφz is much larger than the length of the wall Lw,

pφz ∼ p0 ≫ L−1
w (WKB condition). (3.16)

In this limit, the wave function takes approximately the form

ϕ(z) ≃
√

kz,s
kz(z)

exp
(
i

∫ z

0
kz(z′)dz′

)
, (3.17)

and, using again the notations of [96], the M matrix writes

M =
∞∫
−∞

dze
i
z∫

0
pφz (z′)dz′

e−iq
ϕ
z ze−ik

ϕ
z zV (z)

≈
∞∫
−∞

dzeip
φ
z ze−iq

ϕ
z ze−ik

ϕ
z zV (z) ≡

∞∫
−∞

dzei∆pzzV (z), (3.18)

with pφz (z) =
√
p2

0 − k2
⊥ −M2

φ(z) ≈ p0 the momentum of the incoming φ particle and kϕz , qϕz the momentum of
the two ϕ outgoing particles. In the second line, we neglected M2

φ(z), as it is much smaller than M2
ϕ . We also

defined ∆pz ≡ pφz − qϕz − kϕz ≈ M2
ϕ+k2

⊥
2x(1−x)p0

, the momentum exchange.

To approximate the integral, we need to use some estimation for the shape of the wall. For the purpose of the
illustration, let us approximate it using a linear ansatz of the form

⟨φ⟩ =


0, z < 0

v z
Lw

0 ≤ z ≤ Lw
v z > Lw

⇒ V (z) =


Vs ≡ 0, z < 0

λv z
Lw

0 ≤ z ≤ Lw
Vh ≡ λv z > Lw

. (3.19)
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Consequences and changes for different shapes of the wall have been discussed in Appendix A.3. The integral in
Eq.(3.18) along the wall direction naturally splits into three parts

M =
0∫

−∞

dzei∆pzzV (z) +
Lw∫
0

dzei∆pzzV (z) +
∞∫

Lw

dzei∆pzzV (z)

= 0 + (1 − ei∆pzLw − i∆pzLwei∆pzLw) Vh
∆p2

zLw
+ Vh
i∆pz

(−ei∆pzLw + ei∞)

= Vh
1 − ei∆pzLw

Lw∆p2
z

. (3.20)

Putting together the relevant pieces and dropping the unphysical wave functions at infinity, we see that the final
matrix element squared is given by

|M|2 = V 2
h

∆p2
z

(sinα
α

)2
=
λ2v2

φ

∆p2
z

(sinα
α

)2
, α = Lw∆pz

2 . (3.21)

We can observe the appearance of the function
(

sinα
α

)2
that we already encountered and discussed in Chapter 2.

This function goes to one for small α and is suppressed for large α. In Appendix A.3, we study this suppression for
different shapes of the wall and find quantitative differences. However, the common result is the quick suppression
for α > 1, we will consider it as a sharp cut-off in what follows and introduce a Heaviside function. With those
tools in hand, we can now compute the probability of 1 to 2 splitting. The expression for the probability of the
transition generically takes the form

Pφ→ϕ1ϕ2 = 1
2p0

∏
i∈1,2

∫
d3ki

(2π)32ki0
(2π)3δ2(p⊥ −

∑
i∈1,2

ki⊥)δ(p0 −
∑
i∈1,2

ki0)|M|2 (3.22)

and putting together Eq. (3.22), (3.21), using the kinematics (3.15) and the large velocity approximation ∆pz ≈
M2
ϕ+k2

⊥
2x(1−x)p0

, we obtain

Pφ→ϕϕ ≃
1∫

0

dx

16p2
0π

2x(1 − x)

∫
dk2
⊥

4p2
0λ

2v2
φx

2(1 − x)2

(k2
⊥ +M2

ϕ)2

(sinα
α

)2
Θ(p0 − 2Mϕ)

≃ λ2

4π2 v
2
φ

1∫
0

dxx(1 − x)
∫

dk2
⊥

(k2
⊥ +M2

ϕ)2 ×
(sinα

α

)2
Θ(p0 − 2Mϕ) (3.23)

≈ λ2

24π2
v2
φ

M2
ϕ

× Θ(γwTnuc −m2
ϕLw)Θ(γwTnuc − 2Mϕ).

where the Θ(γwTnuc − 2Mϕ) function appears from the trivial requirement that we need enough energy to produce
the two heavy states and Θ(γwTnuc − M2

ϕLw) comes from the behaviour of the function sinα/α, as we already
explained.

One can also estimate the typical energy of the produced ϕ in the bubble center frame:

Ēϕ ≈ 1
2

∫
dxx(1 − x)

[
((kϕ1 )0 + (kϕ2 )0)γw − ((kϕ1 )z + (kϕ2 )z)vwγw

]
∫
dxx(1 − x) ∼ 3

4
M2
ϕ

Tnuc
. (3.24)
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Here in the last approximation we have used that pφ0 ∼ γw(1 + vw)Tnuc and vw =
√

1 − γ−2
w .

At the end of the day, the probability of the transition writes

P (φ → ϕϕ) ≈
(
λvφ
Mϕ

)2 1
24π2 Θ(1 − ∆pzLw) Ēϕ ∼

M2
ϕ

Tnuc
(3.25)

Lw is the width of the wall which is approximately Lw ∼ 1/vφ (See again section 2.3.3 for a discussion of the

width of the wall in the runaway regime) and ∆pz ≡ pφz − pϕz,1 − pϕz,2 ≈ M2
ϕ

2pφz
is a difference of momenta between

final and initial state particles in the direction orthogonal to the wall. Ē is the average energy immediately after the
production.

3.3.3 Abundance inside of the bubble

As a consequence of the φ → ϕϕ transitions, inside of the bubble, a non-vanishing density of non-thermal ϕ
accumulates. We expect them to quickly thermalise via ϕφ ↔ ϕφ in the vast majority of the parameter space10.
Thus, this “Bubble Expansion (BE)” produced density of ϕ, in the wall rest frame, takes the following form

nBE
ϕ ≈ 2

γwvw

∫
d3p

(2π)3
pz
p0
P (φ → ϕϕ) × fφ(p, Tnuc)

≈
2λ2v2

φ

24π2M2
ϕγwvw

∫
d3p

(2π)3
pz
p0

× fφ(p, Tnuc)Θ(pz −M2
ϕ/vφ), (3.26)

vw =
√

1 − 1/γ2
w is the velocity of the wall, and fφ(p) is the equilibrium thermal distribution of φ outside of the

bubble. This writes fφ(p) = 1

e
γw(Eh−vwphz )

Tnuc −1
if the mass of φ is negligible, as the Higgs-like field should be at

equilibrium with SM. We will discuss the possibility a suppression if mφ > T in the next subsection.

Using Boltzmann distribution as a simplifying assumption, fφ(p) ≈ e−
γw(Eφ−vwp

φ
z )

Tnuc and Eφ =
√
p2
z + p2

⊥, we
can perform the integral in Eq. (3.26) and, in the limit of fast walls pz/p0, vw → 1, we obtain

nBE
ϕ = λ2

48π4γ3
w

×
v2
φT

2
nuc

M2
ϕ

(M2
ϕ/vφ

1 − vw
+ Tnuc(2 − vw)
γw(vw − 1)2

)
× e
−γw

M2
ϕ

vφ

1−vw
Tnuc . (3.27)

With γw(1 − vw) = γw −
√
γ2
w − 1 → 1

2γw , the density in the plasma frame, the expression becomes

nBE
ϕ = T 3

nuc
12π2

λ2v2
φ

π2M2
ϕ

e
−

M2
ϕ

2vφTnucγw + O(1/γw) (density produced) (3.28)

The exponential factor is a consequence of Θ(pz − M2
ϕ/vφ) in the the Eq.(3.26). We thus have three different

regimes.

10This might however not be always the case and this mechanism could thus produce heavy WDM. The author would like to thank Filippo
Sala and Iason Baldes for enlightening discussions on this issue. I think we can thus consider the question of the production of WDM via
this mechanism as an open issue
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• Non-adiabatic regime:

We can see that in the limit

γw >
M2
ϕ

2vφTnuc
(Non-adiabatic production) (3.29)

the exponential goes to one and the density becomes independent of the velocity of the wall vw. The step
function Θ(1 − ∆pzLw) ≃ Θ(pz −M2

ϕ/vφ) is an approximation of the transition function which depends on
the exact shape of the wall. It is important to note that in the regime ∆pzLw ≲ 1 the step function presents
a good approximation and the results are independent of the wall shape as expected from the Heisenberg
uncertainty principle.

• Adiabatic regime: However, if the inequality Eq.(3.29) is not satisfied and we are in the regime

Mϕ

Tnuc
< γw <

M2
ϕ

2vφTnuc
(Adiabatic production) (3.30)

then the wall shape effects start to become important. We discuss this wall suppression for the tanh and
gaussian walls in the Appendix A.3. We find that generically the deviations from the naive step function are
exponentially suppressed, so that expression in Eq.(3.27) can be used as an estimate in the transition regime
Eq.(3.30).

• No production regime: At last, for

γw <
Mϕ

Tnuc
(No production) (3.31)

the particle production gets additional suppression by the usual Boltzmann factor and makes it totally
negligible.

From now we will keep working with expression Eq. (3.26), keeping in mind possible departure from pure
exponential suppression behaviour.

The final number density of heavy non-thermal DM, in the unsuppressed (non-adiabatic) regime is of the form

nBE
ϕ ≈

λ2v2
φ

M2
ϕ

T 3
nuc

12π4 Θ(γwTnuc −M2
ϕ/vφ). (3.32)

Assuming no subsequent reprocessing (thermalisation, annihilation, dilution by inflation ...) of the relic abundance,
the nowadays abundance of Bubble Expansion (BE) produced DM is given by

Ωtoday
ϕ,BEh

2 =
Mϕn

BE
ϕ

ρc/h2
g⋆S0T

3
0

g⋆S(Treh)T 3
reh

≈ 6.3 × 108Mϕn
BE
ϕ

GeV
1

g⋆S(Treh)T 3
reh
. (3.33)

where T0 is the temperature today, ρc is the critical energy density and g⋆S0(g⋆S(Treh)) is the entropy number of
d.o.f. today (at the reheating temperature). As a consequence, plugging the expression Eq.(3.32), the final relic
abundance today writes

Ωtoday
ϕ,BEh

2 ≈ 5.4 × 105 ×
( 1
g⋆S(Treh)

)(
λ2vφ
Mϕ

)(
vφ

GeV

)(
Tnuc

Treh

)3
e
−

M2
ϕ

2vφTnucγw , (3.34)
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and we see that, in the non-adiabatic regime, the produced relic abundance is controlled by the quantities

Tnuc

Treh
,

vφ
GeV

, λ2 vφ
Mϕ

. (3.35)

So far we have shown that a bubble with Lorentz factor γw sweeping through the plasma can produce massive
states up to mass roughly M2

ϕ ≲ γwTnuc/Lw, where Lw ∼ 1/vφ is the width of the wall. As we have already
discussed at length in Chapter 2, the maximal value of the γw factor depends on the particle content of the theory
(particularly the presence of the gauge fields) which influences the largest DM mass which can be produced. Using
the simple criterion in Eq.(3.29), we can estimate this maximal mass by considering the two generic regimes of the
bubble expansion:

1. Runaway regime: According to this maximal boost factor found in Section 2.4.1 in Eq.(2.144), the maximal
mass MMAX

ϕ that can be produced, by the sweeping of the wall, scales like

MMAX
ϕ ∼ Tnuc

(
Mpl

vφ

)1/2

. (3.36)

We will study Dark Sectors of this type in Section 3.4.

2. Terminal velocity regime: Similar considerations from Eq.(2.147) give

MMAX
ϕ ∼ Min

Tnuc

(
Mpl

vφ

)1/2

, 4πvφ
(
vφ
Tnuc

) , (3.37)

where we assumed, as in the remainder of this chapter, that gig3
gauge ∼ O(1). Above this maximal mass, the

production of DM becomes exponentially suppressed according to e−
M2
ϕ

2vTnucγw , as we have seen in Eq.(3.28).
We will study a transition of this type in the context of EWPT in the Section 3.5 and later in Chapter 5.

The final relic abundance produced during BE has to compete with the relic abundance coming from FO, which
provides a final relic abundance roughly of the form shown in Eq.(3.10). Notice that this component exists if the
reheating temperature of the Universe after inflation is higher than Mϕ/2011 and if ϕ couples to the thermal bath
not too weakly so that ϕ is produced from the thermal scatterings. We will take into account the presence of FO
abundance in the next part, except in section 3.4.3, where we will remove this assumption.

The ratio of the nucleation temperature Tnuc over the reheating temperature Treh in Eq. (3.34), originates from
the fact that the heavy particles are actually produced at the nucleation temperature, but that the release of energy
reheat the plasma at Treh, providing the new initial condition for the evolution of the universe. Strong FOPT’s are
often accompanied by long supercooling and thermal inflation [176, 177], leading to the hierarchy between Tnuc
and Treh and strong suppression of the abundance. We will see that this new suppression factor can be useful in
the range of parameters where the final relic abundance is overproduced, as illustrated on Fig 3.3: in the region II,
where the BE abundance is dominant over FO, but both of them are too large to account for Ωtoday

obs and I, where FO
is not large enough. In this range, dilution related to thermal inflation can reduce the overproduced relic abundance
to Ωtoday

obs .

11Here, there is a caveat to take into account[151], where it was shown that even in this case, some abundance of ϕ is produced. We will
ignore this abundance in any case.
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3.3.4 About the mass of the scalar in the false vacuum

In this section, we would like to draw attention on a possible issue of our production mechanism. We will see soon
that for a successful DM production, a hierarchy between the reheating temperature and the nucleation temperature
(Tnuc/Treh) ≲ 0.1 is typically needed. However, in Eq.(3.26) we have taken the distribution function of φ to be
massless distribution, valid if the mass of the Higgs-like field is much smaller than the temperature. However, this
is not necessarily the case.

The relevant parameter for the discussion is the ratio√
d2V

dφ2

∣∣∣∣
fv

1
T

≡
mFalse
φ

T
, (3.38)

where fv denotes the position of the false vacuum and
√
d2V/dφ2

∣∣
fv is the mass of the φmFalse

φ in the false vacuum.
As soon as this quantity becomes larger than 1, we expect exponential suppression of the φ abundance

Ceff
ζ(3)T 3

nuc
π2 ≡

∫
d3p

(2π)3 fφ(p, Tnuc) ≈


ζ(3)T 3

nuc
π2 if mFalse

φ < T ,(
mFalse
φ Tnuc

2π

)3/2
e−m

False
φ /Tnuc if mFalse

φ > T .
(3.39)

We definedCeff to take into account the Boltzmann suppression. For the purpose of this chapter, we will setCeff = 1
and ignore this possible effect, but we have to keep in mind that Ceff should be computable if we have a model for
the transition. This will be done in Chapter 5 in the context of the EWPT.

3.4 Dark Sector PT production of DM

In the previous section, we have presented a new mechanism of DM production. However it is important whether this
mechanism can lead to the observed relic abundance. In order to consider the phenomenological relevance of our
mechanism we will use the toy model presented in Eq.(3.13), which can perfectly constitute a viable model of DM.
We consider the field φ as some scalar field experiencing the phase transition at some scale vφ. Let us look at the
nowadays relic abundance presented in Eq.(3.34). The results are presented on the Fig. 3.3 for vφ = 200 and 2×104

GeV and importantly, we set the dilution factor (Tnuc/Treh)3 to one, this factor will play an important role later on.
Generically we can define four regions as follows: in region I, the abundance is under-produced via FO, but largely
overproduced via BE. The region IV is the symmetric situation, where the BE is small but FO is very large. In
region II(III), both FO and BE are overproduced, but BE (FO) production dominates over FO (BE):

I : ΩBE > Ωobs, ΩFO < Ωobs

II : ΩBE > ΩFO, ΩFO > Ωobs

III : ΩBE < ΩFO, ΩBE > Ωobs

IV : ΩBE < Ωobs, ΩFO > Ωobs.

(3.40)

Very naively these equations indicate that none of the regions leads to a viable phenomenology and permit to match
the observed abundance. However we have not yet taken into account few possibilities on the initial conditions as
well as the evolution of ρϕ/s which can make some parts of those regions viable.
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Figure 3.3: The unprocessed final relic abundance coming from FO and BE process with Tnuc = Treh and v = 200
GeV. The blue shading gives the value of Ωtoday

BE . The red lines Ωtoday
BE,ϕ = Ωtoday

FO,ϕ, Ωtoday
BE,ϕ = Ωtoday

obs and Ωtoday
BE,ϕ = Ωtoday

obs
define 4 regions. In I, BE abundance is dominant and FO is not enough to account for the observation. In II, FO is
too large, but BE is still dominant. In III, both BE and FO are too large, but FO is dominant. Finally, in IV, FO is
dominant, and BE is not enough to account for Ωtoday

obs .

To be more precise, we will study three possibilities: i) in the regions where DM is overproduced via BE
expansion, annihilation processes can reduce the DM density back to the observed relic abundance, as this can be
for example the case in region I. We discuss this possibility in the Section 3.4.1. ii) as we already hinted above,
another process which can reduce the DM density is a brief period of inflation during the FOPT, which happens if
the nucleation temperature is significantly lower than the reheating temperature. This leads to the reduction of the
overall DM density and as a result opens up some parameter space, typically inside of region I and II of Fig. 3.3.
We discuss this effect in the section 3.4.2. iii) at last in the case that the thermal history begins with a reheating scale
below the FO temperature12, ϕ never reaches thermal equilibrium after the reheating and is (almost) not produced
via FO. We discuss this possibility in the Section 3.4.3.

3.4.1 Late time annihilation

In the previous Section 5.4, we showed that if a relativistic bubble goes through the plasma, it can produce DM
relics, possibly very over-abundant. On Fig. 3.3 we saw that, in region I, the FO contribution was not large enough
to account for the observed DM abundance, but that on the contrary, BE production was extremely large. As a
consequence we would like to track the evolution of the number of DM particles after the initial production. We
will see that, as long as the DM density produced is very large, the final density does not depend on the initial
density. Thus the physics of this part does not change even if ϕ is produced enormously from other dynamics e.g.

12This is the case that the inflaton coupling is so weak that the early produced ϕ is diluted due to the inflaton late-time decay, or the
inflation scale itself is low. Inflation scale can be comparable or even smaller than the weak scale in ALP inflation models [178, 179].
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inflaton/moduli decay.13 Due to this reason, in the following, we make a general discussion which is not specific to
the BE production unless otherwise stated. We assume for simplicity that the production happens instantaneously
during the radiation domination epoch at T [tini] = Treh, and assume that the density just after the production is
much larger than that for the observed DM abundance (which is the case of the region I of Fig. 3.3).

The annihilation cross-section for the process ϕϕ → φφ is well approximated as

⟨σϕϕvrel⟩ ∼ g4λ
2

16πM2
ϕ

(3.41)

when ϕ is non-relativistic. Here vrel is the relative velocity, and ⟨⟩ is the average over the distribution functions of
ϕ and φ. g4 counts the real degrees of freedom of φ normalized by the number of d.o.f. of the SM Higgs doublet,
4. For instance,

g4 = 1 and 1
4 (3.42)

for φ being the SM Higgs and a real singlet Dark Higgs, respectively. (In the real singlet Dark Higgs case we
should take Lscalar ⊃ −λϕ2|φ|2/4.) In calculating the average, we have assumed that just after the production, the
DM velocity vϕ (notice that dangerous confusion with notations, this is a velocity!) soon slows down due to the
scattering with the ambient plasma, and we further assume φ soon decays into the SM plasma. When φ is the SM
Higgs, the assumptions are easily satisfied. The mean-free path in the thermal environment is set by the inverse of
ΓMFP ∼ y2

q
λ2v2

E2
ϕ
Treh where yq is the quark-Higgs Yukawa coupling (This expression is valid in the broken phase. In

the case of symmetric phase, the scattering is with Higgs multiplet and the rate is larger.) Here Treh is comparable
or larger than the mass of the quark q. ΓMFP is easily larger than the Hubble parameter unlessEϕ is extremely large.
When the dominant annihilation product is a dark Higgs boson, we can still have a sub-dominant portal coupling
between the DM and the SM Higgs, via which the kinetic equilibrium can be easily reached. The typical velocity
of ϕ in the kinetic equilibrium is

vϕ ∼ vrel/2 ∼
√

2Treh
Mϕ

. (3.43)

Thus a simple criterion to assess the stability of DM relics is the competition between the expansion rate of the
universe,

H(T ) ≈ 1.66√
g⋆
T 2

Mpl
,

and the rate of annihilation Γann. A rough stability condition thus writes

Γann ∼ ⟨σϕϕvrel⟩nϕ < H (Stability condition).

If this condition is violated the annihilation gradually takes place even if Treh is below the FO temperature ∼ Mϕ/20,
as discussed in the Wino and Higgsino DM cases [180, 181].

To evaluate the final abundance after the annihilation, we can solve the integrated Boltzmann equation (by
assuming kinetic equilibrium as in the case of the WIMP):

ṅϕ[t] + 3Hnϕ[t] = −Γann(nϕ[t] − neq[t]2/nϕ[t]) (3.44)

neq ≃ (MϕT/(2π))3/2 exp (−Mϕ/T ) is the number density in the equilibrium, and the annihilation rate is given
by

Γann ≃ ⟨σϕϕvrel⟩nϕSeff (3.45)

13An extreme scenario may be even that ϕ is the inflaton which annihilates to reheat the Universe and becomes the DM. In this case, we
should pay careful attention to the parametric resonance.
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Figure 3.4: The evolution of the energy density of the Dark Higgs portal DM, with vφ = Treh = 100 GeV,
Mϕ = 1 TeV(5 TeV, 5 TeV), and λ ≃ 0.63(4.3, 0.1) with large initial number density in the left top (right top,
bottom) panel, which corresponds to late time FO (late time annihilation, satisfied stability condition).
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⟨⟩ being the thermal average and Seff is the Sommerfeld enhancement factor, i.e. the boost factor from the interacting
long-range force, as discussed in Appendix A.7. We assume the force potential between the ϕ pair distanced by r as

V (r) = −αmed
r

exp [−mmed/r] (3.46)

where αmed (mmed) is the messenger coupling (mass). For the Higgs-mediated force discussed in this section, we
have

mmed ≃ Mφ, αmed ≃
λv2

φ

2πM2
ϕ

.

The analytic approximation of the enhancement factor is given by[182, 183] (See also Refs [184, 185, 186, 187])

Seff = π

ϵv

sinh
(

2πϵv
π2ϵmed/6

)
cosh

(
2πϵv

π2ϵmed/6

)
− cos

(
2π
√

1
π2ϵmed/6 − ϵv2

(π2ϵmed/6)2

) , (3.47)

where ϵv = vϕ/(αmed) and ϵmed = mmed/(αmedMϕ). Specifically, we have Seff → παmed/vϕ

(1−e−παmed/vϕ )
withMφ → 0.

To solve numerically the Boltzmann equation, we set the initial condition of nϕ[tini] ≫ 0.2 eV × s/Mϕ, i.e.
much larger than the corresponding value of the observed DM number density. Here s is the entropy density. The
Boltzmann equation can be solved to give Fig.3.4 where we plot the time evolution of the number density with
nϕ[tini] ∼ 40 eV × s/Mϕ. Indeed, we find that even when initially there is too large number density, with large
enough coupling (and thus large annihilation rate), the number density decreases significantly within one Hubble
time. We obtain suppressed abundance in the end (right top panel). On the bottom (left top) panel we can see that
if the coupling is not very large this is not the case (if Mϕ < Treh/20, ϕ is thermalized soon and FO happens).

In Fig.3.5 with φ being the real singlet Dark Higgs-like, we represent the numerical result giving Ωϕh
2 =

ΩDMh
2 ≈ 0.1 [121] by taking vφ = Treh = 50, 100, 200, 400 GeV from top to bottom, with the initial condition

set as nϕ[tini] = 40 eV × s/M . We see that at lower mass range the predictions do not depend on Treh, which
represents that the FO takes over since Treh > TFO ∼ Mϕ/20. The FO prediction is displayed on Fig.3.5 (and 3.6)
by the dotted orange line. On the larger mass range, the late time annihilation becomes important and reduces the
abundance relevant to Treh.

In fact, we can explain the final number density, nϕ, in this region from the condition

⟨σϕϕvrel⟩nϕSeff [Treh] = CH[Treh]. (3.48)

This condition is similar to the freeze-out condition for the ordinary WIMP: the annihilation should end when the
rate becomes comparable to the Hubble expansion rate. We obtain

λ = λann ∼ 0.53(g4rSeff)−1/2√
C

(
g⋆(Treh)
103.5

)−1/4 ( Mϕ

2 TeV

)3/2 (100 GeV
Treh

)1/2
(3.49)

from the condition that the ϕ abundance composes an r fraction of the observed dark matter abundance, Ωϕ = rΩDM
(and we are now focusing on r = 1.) Notice again that to use Eq.(3.49) we have assumed TFO > Treh, otherwise
the DM is thermalized and then usual FO takes place after a certain redshift. From the numerical fit by solving the
Boltzmann equations, we obtain C = [0.1 − 1] depending on the initial condition. If the initial nϕ[tini] is larger C
becomes larger approaching to 1. In particular for our bubble wall scenario, we may have a very large nϕ(tini) and,
in this peculiar case, C is almost 1.
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Figure 3.5: The parameter region of the Dark Higgs portal DM with non-thermal over-production at vφ = Treh =
50 GeV, 100 GeV, 200 GeV, 400 GeV from left to right [Black line]. g4 = 1/4. We neglect the mass of the dark
Higgs boson. The orange dashed line indicates the FO prediction.

So far we have been agnostic regarding the coupling of the DM to the SM sectors. We just have assumed that
DM couples to the scalar field φ to which it annihilates into. However, to be in kinetic equilibrium, the DM should
somehow couple to the SM plasma. This leads to the possibility of detecting DM with direct and indirect detection
experiments. In particular, when φ is the SM Higgs boson, the coupling to nucleons is controlled by the coupling
λ. The case where φ → H is the SM Higgs multiplet is shown in Fig. 3.6, where the difference from Fig. 3.5 is
that we fixed v = 174 GeV, g4 = 1 and mh = 125 GeV. We adopt the bound XENON1T experiment [188] from
[175] (The Purple region above the purple solid line), which is extrapolated by us to multi-TeV range. The green
dashed and blue dotted lines represent the future reaches of the XENONnT [189] and DARWIN [190], respectively,
which are also adapted and extrapolated from [175]. The Cerenkov Telescope Array (CTA) reach (by assuming the
NFW distribution of DM) is adopted from [191] and also extrapolated by us. Consequently, the predicted parameter
region can be fully covered in the future direct detection and indirect detection experiments such as XENONnT,
DARWIN and CTA. Interestingly, since the predicted black lines are parallel to the direct detection reaches in the
late time annihilation region, Treh corresponds to the DM-Nucleon interaction rate. If the DM is detected in the
direct detection experiments, which implies the interaction rate is measured, we can tell the reheating temperature
assuming late time annihilation.

Here we notice that the contribution of the Sommerfeld enhancement may be as large as Seff − 1 = O(10%)
when the mass is large. Usually in the (SM) Higgs portal dark matter model, the Sommerfeld enhancement is
negligible due to the small Higgs-DM coupling, αmed ∝ (λvφMϕ

)2 suppressed by the heavy DM mass. In the late
annihilation scenario, since we need larger λ than conventional FO and smaller vϕ, we have larger Seff .

As a conclusion of this section, let us, finally, come back to the BE production. We have seen on Fig. 3.3 that
in the region of parameter with large coupling and DM mass in the TeV range, the FO is subdominant and BE is
largely over-produced, this was the region I of Fig. 3.3. This is exactly the setting we studied in this section and
the result displayed on Fig. 3.5 can be used for the dark sector PT. Also Fig.3.6 can be straightforwardly extended
to the EWPT, if we assume that some modification of the SM wield a strong enough EWPT. We will discuss this
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Figure 3.6: The parameter region of the SM Higgs portal dark matter with non-thermal over production for
Treh = 50 GeV, 100 GeV, 200 GeV from left to right [Black line]. vh = 174 GeV, mmed = 125 GeV, and g4 = 1.
The orange dashed line indicates the FO prediction. The purple region above the purple solid line may be excluded
by XENON1T experiment [188]. The green dashed and blue dotted lines represent the future reaches of the
XENONnT [189] and DARWIN [190], respectively. The lines are adopted from [175]. The Cerenkov Telescope
Array (CTA) reach (by assuming the NFW distribution of DM) is adopted from [191].

possibility further in Section 3.5.

3.4.2 Dilution by supercooling

In Section 3.4.1 we saw that even if the DM is over-produced by the wall, the relic abundance can be reduced by
the reaction ϕϕ → φφ. For the case of v ≈ 174 GeV, this opened up the range of values Mϕ ∈ [1, 10] TeV and
λ ∈ [0.3, 10], which is normally with too small abundance in usual FO. In this section, we would like to account for
a second effect, which is the dilution induced by some amount of supercooling. Indeed, if some low-scale thermal
inflation[176, 177] occurs due to the supercooling, a possibly large hierarchy between the reheating temperature
and the nucleation temperature can occur.

During the thermal inflation[192], the expansion factor scales likea ∝ eHt and the temperature likeTrad ∝ e−Ht,
the FO abundance is a non-relativistic fluid scaling like ΩFO ∝ T 3. As a consequence, the FO abundance receives
a further

(Tnuc
Treh

)3 suppression factor with respect to usual cosmology evolution. Summing both FO and BE
contributions the total relic abundance will be approximately given by (we are assuming Mϕ ≳ 20Treh)

Ωtoday
ϕ,tot h

2 ≈
(
Tnuc

Treh

)3
×
[

0.1 ×
(0.03

λ

)2( Mϕ

100 GeV

)2

︸ ︷︷ ︸
FO

+ 5 × 103 × λ2 vφ
Mϕ

(
vφ

GeV

)
︸ ︷︷ ︸

BE

]
. (3.50)

When BE contribution and FO contribution are small, the thermal production may become dominant, especially
with Treh ≳ 1/20Mϕ (see Eq. (3.44)). Assuming an instantaneous reheating after bubble collision and negligible
non-thermal production of ϕ via bubble collision [167], the additional contribution from thermal production takes
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the form

δΩtoday
ϕ,tot ∼ Mϕ

⟨σϕϕvrel⟩n2
eq

Hg⋆S(T )T 3

∣∣∣∣∣
T=C′Treh

× g⋆S0T
3
0

ρc
. (3.51)

This formula agrees well with the numerical simulation by taking C ′ ∼ 0.9 − 1. Since, around the TFO, this
contribution changes exponentially with temperature via neq, the range of C ′ may be slightly wider, which depends
on the detailed process of the bubble collision.

Let us also mention that, insisting on dominant BE production (second term of Eq.(3.50) larger than first term
and thermal production in Eq.(3.51)), perturbativity λ < 4π, maximal mass Eq.(3.36) and finally current bound on
the relativistic species at BBN, impose the following constraints on the broken symmetry VEV of the (Dark-)Higgs:

MeV ≲ vφ ≲ 108 GeV, (scale range). (3.52)

The upper bound is due to the quadratic dependence of the BE production on the VEV vφ while the lower bound
comes from stringent BBN bound on the number of relativistic species, which demands that our transition happens
before T ∼ 1 MeV.

On Fig. 3.7, we display the values of Mϕ and λ providing the observed amount of DM relics for the various
values of the reheating (Treh) and nucleation (Tnuc) temperatures for the fixed scale vφ = 2000 GeV. We have also
assumed that the bubble wall could reach runaway regime due to suppressed plasma pressure (no phase dependent
gauge fields), so that the upper bound for the DM mass in Eq.(3.36) becomes ∼ 108 GeV. These curves were
obtained by numerical solution of the Boltzmann equations but qualitatively we can understand the shape of the
isocontours as follows:

• Let us start with the top left plot on the Figure 3.7. The orange dashed line corresponds to the usual DM
freeze-out. As we can see, it is the case if the DM is lighter than roughly 20Treh and, in this case, the physics
of the phase transition plays no role in the final DM relic abundance and the relic abundance is really fixed
by a second freeze-out after the transition.

• For heavier masses the isocontours are given by the red dot-dashed triangles. The sides ΩBE,FO of the
triangles are fixed by Eq.(3.50) and correspond to the cases when either ΩBE or ΩFO dominates the total
relic abundance. The upper edge is controlled by the BE expansion and is more strongly coupled, the lower
edge is controlled by FO. The almost vertical side at M ∼ 20Treh is given by Eq.(3.51) and corresponds
to the thermal production of DM during reheating after bubble collision. Inside the triangle the DM is
under-produced and outside, it is over-produced.

• Let us move on to the other plots on the Fig. 3.7. Multiple triangles correspond to the different values of
supercooling. Finally the origin of the black line (continuation of the dashed orange line) can be traced back
to the discussion in Section 3.4.1. In this case the DM is produced by BE mechanism, however the large
coupling leads to an efficient annihilation and the final relic abundance is set by Eq.(3.49) .

3.4.3 Super-Heavy Dark Matter candidate

Another possibility to suppress the freeze-out (FO) density is to assume that the usual inflation reheating temperature
TR is too low and inflaton does not decay into the DM, so that ϕ is not produced by reheating and thermal scattering
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Figure 3.7: Values ofMϕ and λ providing the observed DM relic abundance today in the Dark Higgs portal model,
for values of supercooling Treh

Tnuc
= (101.5, 102), vφ = 2000 GeV, g4 = 1. Each plot corresponds to a different value

of the reheating temperature Treh = 2000, 500, 50 GeV. The Red lines correspond to contributions from FO and BE
providing the observed DM abundance and that do not undergo annihilation after the transition. The black line is
the result of DM annihilation, as in Section 3.4.1. Roughly whenMϕ < 20Treh, the DM comes back to equilibrium
after the transition and the final parameters compatible parameters are given by the orange dotted line. Let us also
emphasize that we assumed runaway regime bubble, with the maximal DM mass given by Eq.(3.36)
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process.14 At this point, we can completely decouple FO contribution and we are left only with the BE production,
so the region of parameter space with large masses Mϕ or small coupling λ opens up. This condition writes

TR ≪ TFO ≈ Mϕ

20 (No FO condition). (3.53)

where TR is really the highest temperature at the end of inflation and is not the reheating temperature after the
transition. There is again a word of caution about this interpretation of the reheating temperature as the highest
temperature after the inflation, see [151], we will ignore it. Going back to Eq.(3.50) and assuming Treh ≈ vφ, we
see that, in this scenario, the final relic abundance is now simply given by the BE contribution

Ωtoday
ϕ,tot h

2 ≈ 5 × 103 × λ2
(
vφ
Mϕ

)(
vφ

GeV

)(
Tnuc

vφ

)3
(3.54)

with four controlling parameters: vφ, Tnuc,Mϕ and λ. Assuming vanishing supercooling in order to compute the
maximal mass that can be produced, DM with mass as high as

Mϕ ≈ 5 × 104λ2
(
vφ

GeV

)2
GeV (3.55)

λ < 4π ⇒ Mϕ < MMAX
ϕ ≈ 5 × 106

(
vφ

GeV

)2
GeV

can provide the observed DM abundance, ΩBE = Ωobs. The second line was obtained by placing perturbativity
bounds on the coupling, λ < 4π. Let us emphasize that this maximal mass has nothing to do with the previously
computed maximal mass in Eqs.(3.36) and (3.37), where the production was suppressed by wall effects. In this
case, the maximal mass originates from the fact that even in the unsuppressed region, the production scales as
∝ 1

M2
ϕ

. Of course, those very large masses can only be activated by the transition if it does not contain gauge boson,
according to (3.36). As a consequence, this possibility most probably can not be realised in the context of EWPT,
as the wall quickly reaches a terminal velocity. Fixing vφ = 2 × 102 GeV, and considering vanishing supercooling,
the observed relic abundance is displayed, in the space (Mϕ, λ) on Fig.3.3 by the red line dubbed ΩBE = Ωobs.

3.5 BE production in EWPT

So far, with the exception of Fig.3.6, we have been general in our analysis and assumed that φ is a generic field
undergoing a very strong FOPT. Let us now specialize to the case of EWPT φ → H with vh ≈ 200 GeV and assume
that the transition is strong enough to induce a relativistic wall. In Chapter 5 we will provide a model for realising
such a EWPT, and revisit the DM production mechanism in this context. In this section, we would like to remain
general. During the SM-Higgs transition, gauge bosons W and Z receive a mass and thus contribute to the pressure
at NLO order. Thus the wall will inevitably reach a terminal velocity, which puts an upper bound on the maximal
DM mass MMAX

ϕ , above which the DM production starts to become exponentially suppressed. In Eq. (3.37), we
have seen that this maximal mass increases with the supercooling :

Mϕ < MMAX
ϕ ∼ (TeV) × Treh

Tnuc
. (3.56)

14We may also consider that ϕ couples to the SM plasma via other couplings than that for the BE production. Then the FO component
may be suppressed due to the large cross-section induced by the stronger couplings.



3.5. BE PRODUCTION IN EWPT 97

3.0 3.5 4.0 4.5 5.0 5.5 6.0
-3

-2

-1

0

1
Excluded by
XENON1T

Overproduced DM

Under-
produced DM

3.0 3.5 4.0 4.5 5.0 5.5 6.0
-3

-2

-1

0

1
Excluded by
XENON1T

Overproduced DM

Under-
produced DM

Figure 3.8: Left-Values of Mϕ and λ providing the observed DM abundance in the SM Higgs portal model for
Treh
Tnuc

= 15, v = 200 GeV, Treh = 50 GeV. The orange line gives the resulting FO prediction for thermal production
in the case Mϕ > 20Treh and the black line is the result of DM annihilation as computed in Section 3.4.1. The
Dotted green and blue lines are defined like in Fig.3.6, as the future sensitivities of XENONnT and DARWIN and
the violet region is already excluded by XENON1T. In the red-shaded region, DM is under-produced, outside, it is
over-produced. Right-Same plot with Treh

Tnuc
= 30.

As a consequence, we will study the ϕ relic abundance in the range

[MMIN
ϕ ,MMAX

ϕ ] = [TeV,MMAX
ϕ ] ∼ [TeV,

Treh

Tnuc
× TeV]. (3.57)

We set the lower boundMMIN
ϕ ∼ TeV, below which the usual FO takes over again after reheating if Treh ∼ 100 GeV,

and the sub-TeV WIMP Miracle is mostly excluded as mentioned in the introduction. We will also assume that
Tnuc ≳ ΛQCD, otherwise QCD effects can become important and may trigger themselves the phase transition
(see for example [193, 194]). As a consequence, we will assume that the longest supercooling will be roughly
∼ Treh

Tnuc
≲ 103. These assumptions confine the DM candidate mass to be in the range to TeV ≲ MMAX

ϕ ≲ 103

TeV, thus leaving us with a generous range of exploration. However this setting renders the scenario of Section
3.4.3, with very massive DM, difficult, so we will not consider it. In this Section, we will only consider the two
mechanisms of Section 3.4.1 and 3.4.2. The coupling λ in the Eq.(3.14) become the Higgs portal coupling and
leads to the direct detection possibilities. Plotting the isocontours in the (λ,Mϕ) space similarly to the Figure 3.7
we have checked the current bounds and future prospects for direct DM detection on the Fig.3.8. We can see that
parts of the parameter space where the annihilation of DM (Black line of 3.8) plays a role is already probed by
XENON1T experiment and parts of parameter space with BE production mechanism will be tested by the future
DARWIN and XENONnT experiments, at least partially. The red-shaded region displays the regions of parameter
space where the DM is under-produced, while outside of it, DM is over-produced and the observed DM abundance
corresponds to the red line boundary. It is instructive to compare these results with the results of the Fig.3.7 where
we have assumed that γw → ∞ ⇒ MMAX

ϕ → ∞. On left panel of Fig.3.8, for Treh
Tnuc

= 15 we can observe two
islands of under-production: one at low mass and low coupling, which is exactly the same as on the Fig.3.7 and the
one for the high masses and high couplings. In the later region the DM production from BE receives an additional

suppression of the form e
−

M2
ϕ

2vTnucγw , according with the Eq.(3.28). On the right panel we present a similar plot for
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Treh
Tnuc

= 30, however in this case two islands with and without exponentially suppressed DM production are joined.

Note that in our analysis we have included only the factor e−
M2
ϕ

2vTnucγw , mentioned in Eq.(3.27) when we enter
the regime of Eq. (3.30) and we have ignored further effects related to the exact wall shape see discussion in the in
Appendix A.3 and Eq.(3.30).

To summarize we can see that a very strong EWPT can lead to the production of a DM candidate up to 102 −103

TeV with relatively large interaction couplings, while remaining consistent with observation. We will come back
with more tools to this case in Chapter 5.

3.6 An alternative fermionic set-up

In this section, we would like to propose an alternative model, taking advantage of the production of fermions. We
have already emphasized in section 3.3.4 the fact that the mass that the scalar would acquire in false vacuum could
bring a crucial new factor Ceff . Though we did not consider this factor explicitly, in this section we construct a
model where the incoming particle is a massless fermion in the symmetric phase, so that Ceff ≡ 1 by definition.
The model consists of a vector-like neutral fermion N which is a singlet under SM and a couple of Z2 odd scalar ϕ
and fermion χ:

L = LSM + Y∗L̄φN +MN N̄N + YDM N̄χφ . (3.58)

Here, L is a light fermion and N a heavy fermion coupling to φ undergoing the PT, respectively. The production
mechanism works as follows: the heavy field N is produced during the phase transition of φ: L → N and it will
subsequently decay into N → χϕ,N → LH .

In this model, heavy N are produced via L → N with a probability

Ptree(L → N) ≈
Y 2
⋆ v

2
φ

M2
N

Θ(γwT nuc −M2
NLw) . (3.59)

As a consequence, unstable heavy N accumulate behind the wall with initial density given by

nBE
N ≈

Y 2
⋆ v

2
φ

M2
Nγwvw

∫
d3p

(2π)3
pz
p0

× fL(p, Tnuc)Θ(pz −M2
N/vφ) ,

≈
Y 2
⋆ v

2
φT

3
nuc

2π2M2
N

e
−

M2
N

2vφTnucγw + O(1/γw) , (3.60)

where vw =
√

1 − 1/γ2
w, we expanded for large γw and approximated the Fermi-Dirac distribution as a Boltzmann

distribution. Compared to the model with scalar fields, the density of the heavy fields inside the bubble will be
additionally enhanced by ∼ 16π2 factor since 1 → 1 transitions are more effective than 1 → 2. Let us assume that
Mϕ < Mχ so that ϕ is the DM candidate, then DM production will happen via the following chain of processes:

L →
via PT

N →
via decay

ϕχ → ϕϕ+ SM . (3.61)

However, the heavy N has two channels of decay: toward the heavy dark sector ϕ, χ and back to the light L. The
abundance of ϕ, χ after the transition is thus suppressed and given by

nχ ≈ nϕ ≈ Y 2
DMY

2
⋆

Y 2
DM + Y 2

⋆

v2
φT

3
nuc

2π2M2
N

e
−

M2
N

2vφTnucγw + O(1/γw) , (3.62)
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and the final relic abundance redshifted to today thus reads

Ωtoday
ϕ,BEh

2 ≈ 1.5 × 108 × Y 2
⋆ Y

2
DM

Y 2
⋆ + Y 2

DM

2Mϕ

MN

(
vEW
MN

)(
vEW

246GeV

)(
Tnuc

Treh

)3
e
−

M2
N

2vφTnucγw .

(3.63)

For the freeze-out process in the symmetric phase, we have: ϕϕ → LHLH by neglecting co-annihilation. The
cross-section is highly phase space suppressed (closing a loop for a 2 to 2 annihilation gives a similar scaling):
σϕϕ→(Lφ)∗Lφ ∼ M2

χ(YDMY∗)2

(16π2)24πM4
N
. The abundance by taking account the supercooling is

Ωtoday
ϕ,FOh

2 = 103
(
Tnuc

Treh

)3 M4
N/M

2
χ

(6TeV)2
10

(YDMY∗)4 . (3.64)

The total DM density today will be given by the sum of Eq.(3.63)-(3.64). Therefore, this scenario leads to the
over-production of DM unlessMϕ,Mχ ≲ 10 GeV (assuming the EWPT case, as discussed above, making the scale
of the transition higher could open some phase space). However, note that these equations are valid only for the
heavy DM candidates which do not go back to equilibrium after the phase transition. Otherwise, the final density
will be given by Eq.(3.64) only without

(
Tnuc/Treh

)3 and we are going back to the normal freeze-out scenario.

Let us now investigate the regime Mϕ ≃ Mχ, precisely |Mϕ −Mχ| ≲Mϕ/20, where the co-annihilation takes
place, which is concisely reviewed in Appendix A.7. In this case we have the channel ϕχ → HL̄ to decrease the
abundance of ϕ as well as χ. The cross-section is σϕχ→HL̄ ∼ (YDMY∗)2

4πM2
N

. Therefore, we have

Ωtoday
ϕ,FO,Coh

2 ∼ 0.1
(
Tnuc

Treh

)3
× M2

N

(10TeV)2
1

(YDMY∗)2 . (3.65)

Summing this estimate with the Ωtoday
ϕ,BEh

2 in Eq.(3.63) we find that it becomes possible to reproduce the observed
DM abundance. However we see that bubble expansion tends to overproduce the DM and the relic abundance in BE
can be reproduced if only the factor exp[−M2

N/(2vφTnucγw)] starts playing a role in suppressing DM relic density.
We will check this fact numerically in Chapter 5 for the EWPT.

3.7 Observable signatures

As already presented in the Introduction 1.6, it is well known that an unavoidable signature of strong FOPT’s,
with very relativistic wall, is a significant Stochastic Gravitational Waves Background (SGWB) signal, with peak
frequency controlled by the scale of the transition fpeak ∼ 10−3 Treh

GeV mHz. As an example, the EWPT signal is
expected to peak in the mHz range, which is the optimal range of sensitivity of the forthcoming LISA detector.
Then the constraint Eq.(3.52) turns into a constraint on the frequency of the signal

10−6 mHz ≲ fpeak ≲ 100 Hz (Frequency range) (3.66)

We can also more or less constrain the model parameters for a given reheating temperature or peak frequency.
In Fig. 3.9, we show Treh (and thus fpeak by assuming fpeak = 10−3 Treh

GeV ) vs the mass range. The parameter
region satisfies the constraints of correct DM abundance Eq. (3.50)≈ 0.1, the dominant BE production (second
term of (3.50) dominant, suppressed thermal production Treh < 1/20Mϕ), Eq. (3.36), perturbativity (λ < 4π), and
consistency conditions Treh ≥ Tnuc, vφ ≥ Treh. For the late time annihilation, we can read the relation for mass, λ,
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Figure 3.9: Reheating temperature vs the mass range of DM from BE production via a Dark PT. Also shown is an
approximate peak frequency in the upper axis.

and Treh from Figs. 3.5 and 3.6. These imply that the observation of the SGWB provides a probe of the parameter
range.

Using the results presented in 1.6, we observe that strong GW signals are obtained for: 1) large α, which is
the consequence of long supercooling and large latent heat, 2)small β, which are obtained for slow transitions
and thus large bubbles at collision, and 3)relativistic walls vw → 1. Thus, the same conditions necessary for the
BE production of Dark Matter will induce the strongest GW signal. In Fig.3.10, we present the signal induced
by four benchmark point, each representative of a specific regime: P1 (runaway α = 1, β = 100), P2 (runaway
α = 0.1, β = 1000), P3 (terminal velocity α = 1, β = 100), P4 (terminal velocity α = 0.1, β = 1000) with
Treh = vφ = 200 GeV. We also represent the GW signal with several Treh in the range corresponding to Fig. 3.9 by
fixing α = 1 and β = 100. As we expect the scaling α∞

α ∝
(Tnuc
vφ

)2, we set a suppressed α∞ = 0.001, due to quite
large supercooling that we considered in most of our scenarios.

We can see that generically BE mechanism for DM production leads to the stochastic gravitational wave signature
in the frequency range Eq.(3.66), which is well in the reach of the current and future experimental studies.

Interestingly enough, it has been also recently noticed that this mechanism, in the context of a non-gauged
transition could produce warm and hot dark matter with heavy mass[195] and several signatures were discussed.

3.8 Summary and outlook

In this chapter we have presented a novel mechanism of the DM production. We have shown that the ultra relativistic
expansion of the bubbles during the first order phase transition in the early universe can produce a significant amount
of the cold relics even if the mass of the DM candidate is much larger than the scale of the phase transition. This, as
a consequence, “brings back to life” components that, due to Boltzmann suppression, did not belong to the plasma
any more. We illustrate this mechanism on a simple renormalizable model where DM is a scalar coupled via portal
coupling to the field experiencing the phase transition. When the bubble wall reaches velocities γw >

M2
ϕ

v2
φ

the
exponential suppression of the heavy particle production disappears and BE mechanism can become very significant
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Figure 3.10: Left-GW signal with vφ = Treh = 200 GeV for four benchmark points in four different regimes: P1
(runaway α = 1, β = 100), P2 (runaway α = 0.1, β = 1000), P3 (terminal velocity α = 1, β = 100), P4 (terminal
velocity α = 0.1, β = 1000). We also took α∞ = 0.001. The signal-to-noise ratio and the sensitivity curves can
be build following the recommendations of[38, 39, 40, 41, 42, 43, 44, 45]. Right- The runaway GW signal with
fixed α = 1, β = 100 are shown with Treh = 10−2, 10, 104, 108 GeV corresponding to the parameter range given
in Fig. 3.9.

in large ranges of parameter space. Thus the produced DM density can be easily dominant. In the simple model
presented in the chapter both BE and FO contributions to the DM relic density were controlled by the same coupling,
however this does not have to be the case for more complicated models, where additional interactions can suppress
FO contribution further.

In the absence of FO produced relics, BE mechanism also provides the possibility of super-massive strongly
coupled DM candidate, which is a scenario similar to the baby-zillas of [167]. We showed that there are parameter
regions where the BE production dominates over the FO production and explains the observed amount of DM
in the universe. This opened up the range of Multi-TeV DM with large coupling, thus being more detectable at
direct detection (like forthcoming XENONnT and DARWIN) experiments and indirect detection (like the CTA)
experiments than the usual FO mechanism.

Our mechanism is also characterized by an unavoidable and possibly observable imprint in the SGWB, with
peak frequency controlled by the scale of the transition. The shape of the spectrum can then discriminate between
runaway or terminal velocity bubble wall behaviour. Let us also emphasize that if the DM belong to a totally
decoupled DS, SGWB signal is the only unavoidable imprint.

An interesting question is how to embed our production mechanism into a theoretically motivated model of
DM.





Chapter 4

Relativistic bubble wall Baryogenesis

I n the previous two chapters, we have seen that phase transition, when the wall becomes ultra-relativistic, could
activate heavy states in the plasma. In Chapter 2, we saw that those states, when produced, induce a new

contribution to the pressure on the wall and in Chapter 3, we saw that the heavy states produced could also fix the
DM abundance. In this chapter, we would like to go one step further and compute the production mechanism at
one-loop and prove that it can transform a imaginary phase in the Yukawa into a CP-violation in the production
abundances. With this in mind, we then embed the model with a L or B violation and build a mechanism of
baryogenesis with relativistic walls.
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4.1 Matter anti-matter asymmetry

The existence of anti-matter famously originates from the relativistic formulation of Quantum Mechanics by P.A.M
Dirac in 1928. In this framework, the description of the electron immediately induces the existence of a new degree
of freedom with same spin and mass but opposite charge: this is the positron or anti-electron. Only some few years
later, in 1932, Carl Andersen observed in a cloud chamber, tracks from cosmic rays of a particle with same mass
than the electron but opposite charge. He interpreted it as being the previously theorised positron.
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Today, the existence of anti-matter is not a source of discussions anymore and it is known that all the fermions
of the SM (with maybe the exception of the neutrinos) come with an anti-matter partner. At this point, we could
believe that the existence of this symmetric partner would be absolutely unproblematic from a theoretical and a
observational point of view. However, let us consider the origin of the universe and, for the concreteness (and also
naturalness), let us initially set an equal amount of matter and anti-matter. Then a channel of the form ff̄ → γγ
exists for all the fermions.

The intuition from freeze-out exposed in the previous chapter can be carried out in the same way to this channel.
When some fermion f become non-relativistic, Mf ≳ T , its equilibrium abundance starts to become suppressed
according to ∝ e−Mf/T until the reactions controlling the annihilation ff̄ → γγ cannot compete with the expansion
of the universe and go out-of-equilibrium. The abundance is then frozen-out. For the case of protons, we can
plug in Mf = mp and a typical cross-section σpp̄→γγ ∼ 1/m2

p and we obtain a relic abundance of the order
np/nγ ∼ 10−20. So there would be very small amount of matter and anti-matter (in equal amounts) left with
respect to the photons. Is it realistic ?

First of all, the absence of high-energy gamma rays from distant galaxies and that no “anti-galaxy" has ever
been observed[196] indicates that most likely, all the galaxies in the observable universe are made of matter, and
not anti-matter. Moreover, the ratio of protons over photons strongly controls the features of two of the very
important early universe processes: Big Bang nucleosynthesis (BBN) and Cosmic Microwave Background (CMB).
The BBN predictions are strongly dependent on the ratio nB/nγ at the time of BBN. If there are more photons,
the photo-dissociation is enhanced and the neutrons have more time to decay. The CMB also depends on this
ratio: as the the early universe photon fluid comes with an internal pressure while the fluid of baryons is essentially
pressureless, the relative abundance of baryons and photons controls the efficiency of baryon acoustic oscillations
and thus the high of the CMB peaks. Matching with observation totally rules out the naive possibility of frozen-out
matter and anti-matter, by roughly 10 orders of magnitude.

We thus have to change attitude. Let us now assume that in the initial conditions of the universe, there was a
slight mismatch between the amount of baryon and anti-baryon. The very efficient interactions would thus totally
annihilate the common part of matter and anti-matter, and leave only the initial difference. The over-abundance of
matter is commonly parametrized via the difference of matter and anti-matter densities, normalised by the entropy

YB ≡ nB − nB̄
s

∣∣∣∣
0

(4.1)

with nB, nB̄ and s respectively the number density of baryons, anti-baryons and the entropy density. The subscript
0 means “at present time”. As already mentioned, Planck data and evolution models of the early universe permit to
compute this ratio with high accuracy[197]

YB = (8.75 ± 0.23) × 10−11. (4.2)

Remarkably, the BBN data, though a bit less precise, points toward the same ballpark of values. This means roughly
that in the initial conditions of the universe there was 1010 + 1 baryons for 1010 anti-baryons.

In the standard picture of cosmology, this remains highly unsatisfactory. Indeed, it is believed that the first phase
of the universe history was a dramatic exponential expansion, the inflation, which should have diluted away any
initial conditions. This blindness to the initial conditions is at the same time a blessing and a curse: everything can
be explained in terms of dynamics, but we cannot rely on an initial over-abundance of matter. In the context of the
inflationary paradigm, we thus need a mechanism for the creation of an over-abundance of matter over anti-matter,
a mechanism of Baryogenesis, which has to occur before BBN, at around T ∼ 1 MeV.
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4.1.1 Sakharov conditions

The conditions for a successful over-abundance of matter over anti-matter were realised already more than 50 years
ago in the seminal paper by Sakharov [198]. For a successful baryogenesis scenario, the well-known Sakharov
requirements should be satisfied [198]; namely the violation of the baryon number, violation of C and CP
symmetries, and an out-of-equilibrium process. Let us go through those conditions and explain them more in detail.

• B violation: This condition is rather obvious since no baryon can be created in a reaction if i → f does not
change the baryon number of the initial and final states.

• C and CP violation: Let us now assume a B-violating interaction fi → fj . If C was conserved, the
interaction rates of fi → fj and f̄i → f̄j would be equal. Now the baryon number of fj is opposite to the
one of f̄j , and if the two reactions occur with the same rate, they would cancel each other. In a similar way,
if CP was conserved, then, due to the renowed CPT theorem, T would be conserved as well. This would
enforce the equality of the rates of

Γ[fi(r,p, s) → fj(r,p, s)] = Γ[fi(r,−p,−s) → fj(r,−p,−s)] (4.3)

We thus observe that after averaging over the phase space and the spin, the baryon number vanishes.

• Departure from the thermal equilibrium: This is maybe the less intuitive of the three Sakharov conditions.
The standard argument is to say that a perfectly equilibrated situation does not offer a direction to the time,
which makes the reversal with respect to time irrelevant, and by extension the CP-flipping as well irrelevant.
An elegant proof of this statement is given in the TASI lecture [199]. In this mathematical form, if the
equilibrium condition is enforced, the following is valid

⟨B⟩T = Tr[e−H/TB] = Tr[(CPT )(CPT )−1e−H/TB]
= Tr[e−H/T (CPT )−1B(CPT )] (4.4)

where the last step is valid because of the CPT theorem. On the other hand, B receives a minus sign upon
conjugation, so this is equal to −⟨B⟩T . So overall ⟨B⟩T = 0 and baryogenesis is impossible.
Let us however try to make this condition more precise. At this point, an important clarification is in order.
For concreteness, let us take a particle ψ: for this particle ψ, two types of equilibrium can be defined in a
plasma: the kinetic equilibrium and the chemical equilibrium: the former is related to the thermal distribution
of the gas of ψ and is enforced if the rate of elastic collision of ψ with the bath is in equilibrium (faster than
the Hubble expansion). In this case, the distribution function of the ψ particle is given by the standard result
of statistical physics, Fermi-Dirac if ψ is a fermion, Bose-Einstein of ψ is a boson, feq, possibly suppressed
by an overall constant. The second, the chemical equilibrium is related to the number of the χ particles
in the plasma, which is controlled by ψ number changing interactions. If the rates of ψ number changing
interactions are in equilibrium, the chemical equilibrium is enforced and the sum of the chemical potentials
of the particles in the initial state is equal to the sum of the chemical potential in the final state,

Γ(A+B ↔ C +D) ≫ H ⇒ µA + µB = µC + µD. (4.5)

It is typically easier to reach kinetic than chemical equilibrium. To be perfectly clear: baryogenesis requires
a departure from chemical equilibrium.

Though those conditions are not an absolute necessity for baryogenesis (mechanisms avoiding one of those
conditions can be manufactured, see[200] for a review), they provide a powerful guidance for model building. Those
three conditions set the game for the play: we need to imagine an early universe event that is out-of-equilibrium,
violate C and CP and B number, and finally occurs for temperature higher than ∼ 1 MeV.
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4.1.2 Sphalerons

Though conserved at the classical level, the baryon and lepton number conservations are violated at quantum level
by the anomalies[201].

∂µJ
µ
B = g2nf

32π2FF̃ , ∂µJ
µ
L = g2nf

32π2FF̃ (4.6)

where JµB(JµL) is the baryon (Lepton) current, nf = 3 is the number of families and F (F̃ ) is the SU(2) weak force
strength (its dual). We thus immediately see that B − L should be conserved, but it will not be the case of B + L.

Integrating the equation in Eq.(4.6), we see that the baryon number is connected to

B(t) −B(0) = nfQ(t), Q(t) =
∫
d3x

t∫
0

dt1
g2

32π2FF̃ (4.7)

Moreover, it can be shown that the so-called Chern-Simons number

NCS ≡
∫
d3x

g2

32π2FF̃ (4.8)

is a topological number and has to be an integer, and, via non-perturbative interactions, can have jumps of one unit.
Though exponentially suppressed by the mass of the gauge bosons and the small couplings at zero temperature and
then totally negligible, sphaleron rates are strongly enhanced by thermal effects. In a thermal environment [202]

Γspha ∼ 25α5
WT

4 (4.9)

Sphalerons are active, in thermal equilibrium for temperature in the crude range

TEWPT < Tspha ≲ 1012 GeV (4.10)

Also, in the case of leptogenesis, the asymmetry is first produced in the lepton sector, and is then transferred to
the baryon section via the sphalerons themselves, upon a multiplicative factor (see for example [203]). If we start
with some asymmetry ∆nL, we produce

∆nB = −28
79∆nL (4.11)

4.1.3 Theories

Based on those general requirements various models have been constructed (for reviews see for example [204, 205])
based on the different realizations of the Sakharov’s conditions. To see how broad is the landscape of baryogenesis,
let us present of some of the baryogenesis scenarios that have already been proposed.

As we already said, the inflation itself imposes the need for a baryogenesis mechanism, but as well could
be at the origin of it. This is the case in the context of a rotating condensate[206, 207, 208, 209] with baryon
violating interactions through the famous Affleck-Dine(AD) mechanism. More recent proposals use the QCD axion
as the rotating field[210, 211] and as been dubbed axiogenesis. Baryogenesis could also occur during the strongly
out-of-equilibrium first phase of reheating, the preheating[212]. Though they have been connected to the emission
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of GW[213], AD baryogenesis and baryogenesis in preheating would have likely occurred at very high energy and
would have left very elusive signals.

One of the leading candidate for baryogenesis is the out-of-equilibrium decay of heavy particles, that materializes
itself in the mechanisms of GUT baryogenesis[214] if we consider Grand-Unified theories and baryogenesis via
leptogenesis[215] (and [216] for a nice review), where the CP violation occurs in the leptonic sector and is transmitted
to the baryons via the sphalerons. Usually the Heavy neutrino is required to be Majorana, for the violation of the
lepton number to be present, however, models with Dirac neutrinos also exist, the Neutrino-genesis scenario[217,
218], where the lepton number is not violated. In the previous models, the decaying particles are produced thermally.
A third class of out-of-equilibrium decay is when the decaying particle is produced non thermally: the production
can happen during inflation [219, 220] or during preheating [221, 222].

A class of baryogenesis models that does not require departure from equilibrium is Spontaneous baryogene-
sis[223, 224], which can also be realised with the collapse of axion domain walls[225]: the main idea is that the
Sakharov conditions are needed only as long as we enforce the CPT theorem, which can be effectively violated in
the early universe.

Baryogenesis can also occur through neutrino oscillations[226, 227, 228], from black hole evaporation[229,
230, 231], or via asymmetric Freeze-out, where particle and anti-particle decouple at a slightly different temperature
and create baryon number[232].

An exciting possibility is that baryogenesis occurs at the same time than DM production, as in the scenarios
of cogenesis[233, 234, 235, 236] and Darkgenesis[237]. Those scenarios have the nice feature of addressing the
“coincidence problem”, of why the density of baryonic matter and dark matter are so similar 5Ωb ∼ ΩDM.

One of the most interesting possibility for the fulfillment of the out-of-equilibrium process requirement is a
scenario in which a phase transition occurs in the early history of the universe. Many baryogenesis mechanisms using
PT have been studied, here are some: Darkogenesis[238] where the PT occurs in a dark sector, baryogenesis via the
collision of runaway bubbles[239], liberating heavy states, EWBG with Yukawas varying during the EWPT[240,
241] which makes the transition strong and permits to strongly violate CP in the symmetric phase, baryogenesis
from confining EW phase transition[242], baryogenesis with ultra-relativistic walls[243], baryogenesis using a
Composite Higgs[244]. A very studied other possibility is the Cold Baryogenesis[245, 246], [247, 248, 249, 250,
251, 252] where the transition is again the EWPT but the mechanism is very different. In this case, the EWPT
is triggered by a fast tachyonic instability in the Higgs potential, coming from the coupling with another scalar
potential, for example a dilaton. This case, in which the Higgs mass squared turns negative abruptly due to the
rolling of the other field is called Higgs quenching. For example, we can have

∆L = Λ2 − σ2

2 H†H (4.12)

where σ is some rolling scalar field and Λ is some scale. When σ → Λ, two things occur: there is an explosive
production of Higgses, and there is a production of EW gauge textures. Those textures being unstable, they decay
via Chern-Simons number transitions. If CP violation comes only from the SM, it has been claimed that the baryon
asymmetry is strongly underproduced[253]. Another source of CP-violation often introduced is

∆L = H†H
M2 TrFF̃ . (4.13)

During the decay of textures, H†H will be time dependent, which will act as an effective chemical potential
(because effectively, in the lagrangian, there is a µBNCS term) for baryons and will feed baryon number.
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But, by far the most studied case is the Electroweak Baryogenesis (EWBG)[254, 255] (for reviews see e.g.[256]
and references therein). The usual tale for EWBG is: the universe starts, possibly after a period of inflation, with an
early hot, radiation-dominated, plasma where EW symmetry SU(2)L × U(1)Y is restored. During this evolution,
the relevant mass scale is the temperature of the plasma, which controls most of the dynamics and stabilizes the
electroweak interactions in the symmetric minimum. The universe expanding, the cooling of the plasma suppresses
the temperature corrections, until the symmetric vacuum becomes unstable. Assuming that the EWPT is first order,
the discontinuity between the symmetric and higgsed phases induces an out-of-equilibrium region in front of the
discontinuity, thus fulfilling one necessary Sakharov conditions.

As the bubble of new higgsed phase expand in the symmetric phase, plasma particles can enter or scatter back
on the wall. If the underlying theory contains CP violation, then the scattering off the wall happens in a CP violating
way, inducing a chiral asymmetry in front of the wall. As in the symmetric phase, sphalerons are very efficient,
they convert this chiral violating abundance in baryon asymmetry. The plasma is then swallowed by the expanding
bubble. The last condition for the successful baryogenesis is then that the sphalerons are inefficient inside of the
bubble, which imposes a condition on the strength of the transition. Thus, the condition for the sphalerons to
decouple after the EWPT is given by [257, 258]

vh(Tcrit)
Tcrit

≳ 1.1. (4.14)

where it has been assumed that Tnuc ≈ Treh ≈ Tcrit.

However in the standard model, lattice simulations have suggested that the EWPT is not of the first order[259].
As such the SM faces two major difficulties for EWBG: the lack of FOPT, due to heavy Higgs and the lack of CP
violation in the SM[260, 261, 262].

Various physically motivated extensions of the standard model could provide room for EWBG via a first order
EWPT [263, 264, 265, 266, 267] (see [256] for review) or via some other dark phase transitions, typically a
UL(1) breaking transition [268, 269] in the early universe. MSSM, providing many new source of CP-violation
and making the EWPT strongly first order via the light stop, was arguably the most attractive case. However, the
window allowing for EWBG requires a stop mass mt̃ ≲ 120 GeV[270]. Unfortunately Light Stop Scenario is now
excluded by the LHC searches[271]. On the other hand, EWBG maybe still has some allowed parameter space in
NMSSM[272] and in Split NMSSM [273]. However, strong constraints from EDM [274]

de
e
< 1.1 × 10−29cm (4.15)

[205] seems to definitively rule out those scenarios. According to the words of [196], EWBG is sleeping beauty
mode, waiting to be awaken by positive experimental data.

On the top of all the previous mechanisms, news proposals are reviewed in [275].

In this chapter we propose a new mechanism for the production of the baryon asymmetry during a FOPT, which
is only effective in the opposite regime than EWBG i.e. for the ultra-relativistic bubble wall expansions. The
idea will be based on the recent observation already presented in the previous chapters that, in the presence of a
very relativistic bubble expansion with Lorentz factor γw ≫ 1, particles with mass up to M ≲

√
γwTnuc × v can

be produced. The parameters Tnuc and v are the temperature of FOPT and the scale of the symmetry breaking
respectively. The process of the heavy states production during the FOPT is obviously out-of-equilibrium, so
that if it proceeds through a CP-violating process and baryon number is not preserved we can have a successful
baryogenesis scenarios1. We confirm the statements above by analyzing the CP-violating effects in the interference

1For other baryogenesis models with new heavy fields production during FOPT see [239].
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of tree and one-loop level processes. Then we construct explicit models where the baryogenesis is realized during
the strong FOPT, which can be either the EWPT itself, if it comes with the necessary new physics, or related to
some other symmetry breaking in the early universe.

We finally note that, interestingly, this class of models contrary to the “traditional” baryogenesis presented just
above needs ultra-relativistic bubble wall velocities and is generically accompanied with strong gravitational waves
signal.

4.2 Mechanism of CP-violation via bubble wall

In this section we go beyond the two previous chapters 2 and 3 where we presented the computation of the production
at tree-level. To compute the possible CP violation, we need to provide a one-loop computation of the production.
To do so, in a first subsection, we present a new formalism, then we revisit the tree-level computation. Finally, we
are in position of computing the one-loop production.

Method of calculation of the light → heavy transition

Before we proceed to the one loop calculation, let us present a generic method to compute the transition amplitudes2.
We will then apply it to recover Eq.(3.59) and later for the computations of the one loop corrections. In this section
we will omit the flavour indices which we will easily recover once the loop functions will be derived. We restart
from a Lagrangian like in Eq.(2.66):

Lfermion = iχ̄∂χ+ iN̄∂N +MN̄N + Y φχ̄N. (4.16)

Let us look at the correlation function ⟨0|T{χ̄(x1)N(x2)}|0⟩ and calculate it to first order in O
(
⟨φ⟩
M

)
which will

be our expansion parameter. We assume that the wall is located in x− y plane at z = 0. The correlation function
writes

⟨0|T{χ̄(x1)N(x2)}|0⟩ =
∫
d4xY ⟨φ(x)⟩Sχ(x1 − x)SN (x− x2) + O

(
Y ⟨φ⟩
M

)2
(4.17)

where we are expanding the correlation functions of the theory with ⟨φ⟩ ≠ 0 in terms of the correlation functions
Sχ,N of the unbroken ⟨φ⟩ = 0 theory. Then performing the Fourier transformation we will obtain∫

d4xd4kd4qeik(x1−x)+iq(x−x2)Sχ(k)SN (q)Y ⟨φ(x)⟩

=
∫
d4kd4qeikx1−iqx2Sχ(k)SN (q) ×

[
(2π)3δ(3)(k − q)

∫
dzeiz(kz−qz)Y ⟨φ(z)⟩

]
,

δ(3)(k − q) ≡ δ(1)(k0 − q0)δ(1)(kx − qx)δ(1)(ky − qy). (4.18)

Let us make a few comments regarding this expression. The propagatorsSχ,N have poles at, respectively p2 = 0,M2

and this, together with energy and (x − y)-momentum conservation, fixes the exchange of momentum ∆pz from
the plasma to the wall;

∆pz = qz − kz = −kz +
√
k2
z −M2 ≈ −M2

2kz
. (4.19)

2We are using slightly different derivation compared to the previous chapters
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Now we can use the LSZ reduction formula to relate the correlation function to the matrix element of the χ → N
transition and we find that

⟨N, q|χ, k⟩ =
[
(2π)3δ(3)(k − q)

∫
dze−iz∆pz⟨ϕ(z)⟩

]
× ūN (q)uχ(k)Y (4.20)

which coincides with the result found in previous chapters. Note that the last factor is exactly equal to the amplitude
of the transition χ(k) → N(q)φ(∆pz), Mχ(k)→N(q)φ(∆pz). Thus we can write

⟨N, q|χ, k⟩ =
[
(2π)3δ(3)(k − q)

∫
dze−iz∆pz⟨φ(z)⟩

]
Mχ(k)→N(q)φ(∆pz), (4.21)

where the piece between brackets is dependent on the exact shape of the wall and has been computed in Eq.A.3.
Of course on-shell φ cannot have the space-like momentum ∆pz but since it is a scalar we can still formally define
such an “amplitude”. These relations are the consequence of the following Ward identity which is satisfied if we are
looking at the effects with just one VEV ⟨φ⟩ insertion:

⟨O1(x1)...On(xn)φ(xn+1)⟩|⟨φ⟩=0 =
∫
dz

[
δ

δ⟨φ(z)⟩⟨O1(x1)...On(xn)⟩|⟨φ⟩≠0

]
Dφ(xn+1 − z), (4.22)

where Dφ is the propagator of the φ field. Then the application of the LSZ reduction together with energy and
transverse momentum conservation leads to the Eq.(4.21).

After this warm-up exercise we can proceed to the calculation of the one loop effects. We will focus again
only on the terms with just one VEV ⟨φ⟩ insertion and proceed in the same way as we have done for the tree-level
calculation in the previous chapters. Note that the Eq. (4.21) will remain true also at loop level if we are focusing
only on the effects with one VEV insertion. Indeed the momentum is not conserved only in the vertex with the ⟨φ⟩
insertion, however the energy and x− y momentum conservation still fixes the value of the loss of the z component
of momentum. At this point since φ is a scalar (no polarization vectors are needed) the matrix element is exactly
the same as for the process χ(k) → N(q)φ(∆pz) and can be calculated using the usual Lorentz invariant Feynman
diagram techniques.

4.2.1 CP-violation in production

So far we have been looking at χ → N transition. However if there are more than one species of χ,N then the
couplings Y become in general complex matrices, and, if it contains a physical phase, this can lead to CP-violating
processes. We also couple the heavy statesNi to the SM. In this context, the Lagrangian in Eq.(4.16) generalises to

L = iχ̄iPR∂χi + iN̄I∂NI −MIN̄INI − YiIφN̄IPRχi − yIα(HL̄α)PRNI + h.c. (4.23)

where H and Lα are the usual SM Higgs and fermions that we couple to the heavy NI , PR, PL are the chiral
projectors. We choose this assignment of chirality in agreement with our further toy models. In particular the
rates Γ(χi → NI) ̸= Γ(χ̄i → N̄I) and after the phase transition there could be an asymmetry in N, N̄ and χ, χ̄
populations. Let us calculate these asymmetries. It is known that at tree level no asymmetries can be generated
since both processes will be proportional to |YiI |2, so we need to consider one loop corrections to it, in particular it is
known that the imaginary part of the loop is the crucial ingredient for asymmetry generation. In general performing
such calculation in the presence of the bubble wall background is quite involved, however things simplify if the
bubble expansion is ultra-relativistic.
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Calculation of the light → heavy transition at 1-loop level

Let us now compute the asymmetries in the populations of the various particle immediately after the PT in the case
of the model in Eq.(4.23). First of all we need to know the CP violating effects in the χi → NI transition, which
will appear in the interference between the loop and tree level diagrams.

A(χi → NI)tree ∝ YiI (tree level)

A(χi → NI)1−loop ∝
∑
k,J

YiJY
∗
kJYkI × f

(χφ)
IJ +

∑
α,J

YiJy
∗
αJyαI × f

(HL)
IJ (one loop level) (4.24)

where the functions f (HL) and f (χϕ) refer to the loop diagrams with virtual χ, ϕ and HL respectively. As a
consequence, there will be the following asymmetries in NI populations immediately after the PT

ϵIi ≡ |Mi→I |2 − |Mī→Ī |2∑
i |Mi→I |2 + |Mī→Ī |2

(4.25)

=
2
∑
k,J Im(YiIY ∗iJYkJY ∗kI)Imf

(χφ)
IJ∑

i |YiI |2
+

2
∑
α,J Im(YiIY ∗iJyαJy∗αI)Imf

(HL)
IJ∑

i |YiI |2
, (4.26)

where ϵIi refers to asymmetry in NI particle population which are produced from the i initial flavour of χi. The
loop functions take the form

f
(HL)
IJ (x) ≡ 2

∫
d4p

(2π)4
PR/pPL(/pout +MJ)PL

(p2 + iϵ)((p− pout)2 + iϵ)(p2
out −M2

J + iϵ)
(4.27)

f
(χφ)
IJ (x) ≡

∫
d4p

(2π)4
PL/pPR(/pout +MJ)PL

(p2 + iϵ)((p− pout)2 + iϵ)(p2
out −M2

J + iϵ)
, (4.28)

where pin, pout are the initial (particle i) and final (particle I) state four momenta. p is the momentum running
into the loop. The factor of two in front of the f (HL)

IJ (x) function comes from the two contributions with a loop of
νL,H0 and e−L ,H+ (one loop involves the leptons and the charged Higgs, and one loop involve the neutrinos and
the neutral Higgs). This factor is absent in the case of f (χφ)

IJ (x) because we have only the loop of χ and φ. The
imaginary part of those loop functions take the form

Im[f (HL)
IJ (x)] = 1

16π

√
x

1 − x
, x = M2

J

M2
I

(4.29)

Im[f (χφ)
IJ (x)] = 1

32π
1

1 − x
. (4.30)

Summing over the flavours of χi we arrive at the following asymmetry in NI abundance3

ϵI ≡
∑
i

ϵIi =
2
∑
α,J,i Im(YiIY ∗iJyαJy∗αI)Imf

(HL)
IJ∑

i |YiI |2
. (4.31)

Note that the only diagrams contributing to the asymmetry are shown on the Fig.4.1 and these have virtual HL,
we observed that the net asymmetry from the loop involving χ and φ cancelled upon summation.

3The asymmetry can be equivalently obtained from the “tree-level” graph of the 1PI effective action by integrating out the fermions.
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N
J

N
I

h

l α
⟨ϕ⟩

Figure 4.1: The diagram contributing to the function f (HL). Only this diagram gives non zero asymmetry after
summing over the flavors.

So far we have shown that during the production we can create a difference in the abundances of NI and N̄I

inside the bubble. However since it was produced by 1 → 1 transitions exactly the same difference will be present
inside the bubble also for the abundances of χ̄i and χi. Using the “⟨φ⟩ ≠ 0” and “⟨φ⟩ = 0” subscribes for the
particle densities inside and outside the bubbles and taking into account that the number density of some particle
entering inside the bubble is n = ∆N

∆A∆t
∆t
∆z = J

vw
with entering flux J =

∫ pzd3p
p0(2π)3 fχ(p, Tnuc) we can conclude that,

in the plasma frame,

n
⟨φ⟩=0
NI

(Tnuc) ≃ 0, (Boltzmann suppressed) (4.32)

the initial abundance of the heavy states outside of the bubble is very suppressed, but inside the bubble a abundance
is building up

n
⟨φ⟩≠0
NI

≃ 1
γwvw

∫
d3p

(2π)3
pz
p0
Pχ→N (p) × fχ(p, Tnuc)

≃
∑
i

|YiI |2⟨φ⟩2

M2
I γwvw

∫
d3p

(2π)3
pz
p0

× f eq
χ (p, Tnuc)Θ(pz −M2

I /⟨φ⟩)

≃
∑
i

|YiI |2

π2γ3
w

× ⟨φ⟩2T 2
nuc

M2
I

(
M2
I /⟨φ⟩

1 − vw
+ Tnuc(2 − vw)
γw(vw − 1)2

)
× e
−γw

M2
I

⟨φ⟩
1−vw
Tnuc

=
∑
i

|YiI |2T 3
nuc⟨φ⟩2

π2M2
I

e
−

M2
I

2⟨φ⟩Tnucγw + O(1/γw)

≃
∑
i

θ2
iIn
⟨φ⟩=0
χi

(Tnuc). (4.33)

where vw =
√

1 − 1/γ2
w ≈ 1 − 1

2γ2
w

is the velocity of the wall. The integral is performed in the wall frame and the
γ−1
w factor in front takes care of the conversion to the plasma frame. In the second line we introduced the expression

for the probability of production obtained in Chapter 2 and assumed that, the transition being a detonation, the

density distribution of χ is the equilibrium distribution f eq
χ ≈ e−

γw(Eχ−vwp
χ
z )

Tnuc (using Boltzmann distribution as a

simplifying assumption) and Eχ =
√
p2
z + p2

⊥. In the third line we performed the phase space integral. In the
last approximation, we have taken the exponential to be unity since the wall is relativistic and γwTnuc ≫ MI , and
defined

θiI ≡ |YiI |⟨φ⟩
MI

. (4.34)
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NI N c
I χi χci ∆nNI

ϵ = 0, without CP-violation
Out 0 0 nχi nχi 0
In θ2

Iinχi θ2
Iinχi (1 − θ2

Ii)nχi (1 − θ2
Ii)nχi 0

ϵ ̸= 0, with CP-violation
Out 0 0 nχi nχi 0
In θ2

Ii(1 − ϵIi)nχi θ2
Ii(1 + ϵIi)nχi (1 − θ2

Ii(1 − ϵIi))nχi (1 − θ2
Ii(1 + ϵIi))nχi 2ϵIiθ2

Iinχi

Table 4.1: Densities and asymmetry, with and without CP-violation, inside and outside of the bubble. For clarity we
got rid of the temperature dependence, assuming that the density have to be evaluated at the nucleation temperature.

This means that some of the abundance of χi has been removed from the plasma and since we are focusing on
1 → 1 transitions, this gives : ∑

I

∆nNI = −
∑
i

∆nχi ⇒

∑
I

(∆nNI − ∆nN̄I ) = −
∑
i

(
∆nχi − ∆nχ̄i

)
, (4.35)

where ∆nN,χ are the differences in abundances of the particles in the broken and unbroken phases. As a consequence,
there will be also an asymmetry in the abundances of the light fields. Note that the asymmetry in the χ field will
be further diluted by the factor ∼ y2⟨φ⟩2

M2 due to the large symmetric thermal densities of the light fields during and
after the phase transition.

Resonant effects in production

It is known that the CP violation in Leptogenesis can be greatly enhanced in the case of nearly degenerate heavy
neutrinos, since the CP-violation is proportional to

ϵ ∝ 1
Mi −Mj

(4.36)

which grows without boundaries as Mi → Mj . It was however showed that such an enhancement is bounded by
the decay width of the heavy neutrinos[276, 277], controlled by ∼ y2MN

4π . For small couplings and very degenerate
spectrum this effect can induce an enhancement of the CP violation by many orders of magnitude, and bring the
scale of thermal leptogenesis as low as TeV scale.

Looking back at Eq. (4.64) which contains a similar degeneracy singularity, we could naively expect the same
type of mechanism for the enhancement of the CP violation. We have not studied further this possibility, as the field-
theoretic formalism becomes quickly involved. However, we can argue on dimensional level, that the enhancement
should not be as dramatic than in the thermal leptogenesis case, for the following reason: thermal leptogenesis takes
advantage of very small couplings, and thus on small decay width, allowing for large enhancement. As we have
seen, our mechanism favors strong coupling Y ∼ O(1), and thus large decay width ΓN ∼ MN

4π , thus mitigating
the maximal enhancement that we can hope for to around one order of magnitude, which would not dramatically
modify our conclusions. As a consequence, we do not proceed further in this direction.



114 CHAPTER 4. RELATIVISTIC BUBBLE WALL BARYOGENESIS

Figure 4.2: Mechanism at play in the phase transition-induced leptogenesis. In the diagrams the black dot denotes a
mixing between χ and N and so the insertion of a factor of θ, the white diamond is a χ mixing insertion. A thicker
arrow designates a larger flux (though it is exaggerated on the figure.)

4.3 Application of the mechanism for Baryogenesis

In the previous section we have shown that the wall, if it becomes relativistic enough, can produce states much heavier
than the reheating temperature and also that this production process can induce CP-violation via the interference of
tree-level and loop-level diagrams.

Now we will present some examples of applications of this new CP-violating source for the explanation of the
observed matter asymmetry. Of course, many other examples could take advantage of the configuration presented
in the previous section, so what we will present now serve as a proof of existence.4 For this reason, in the following
we will present two classes of models that take advantage of the mechanism presented above.

4.3.1 Phase-transition induced leptogenesis

Let us consider the following extension of the Lagrangian in Eq.4.23, where we have introduced φ -dependent
Majorana mass for the field χ and kept the rest of the interactions the same. We restrict to only one specie of the
Majorana fermion χ, since it is sufficient for the generation of CP phase. In this model, only two Dirac neutrinos

4It is also clear that the baryogenesis model can be built from CP-violating decay of the produced heavy particle due to the bubble
expansion. This is nothing but the non-thermal baryogenesis [219, 220, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288].



4.3. APPLICATION OF THE MECHANISM FOR BARYOGENESIS 115

I = 1, 2 are sufficient to have CP phases.

Lint =
∑
I

(
YI(φ†χ̄)PLNI + Y ⋆

I N̄IPR(φχ)
)

− V (φ) + 1
2λχφχ̄

cχ+
∑
I

MIN̄INI︸ ︷︷ ︸
Toy model of Dark Sector

(4.37)

+
∑
αI

yαI(HL̄α,SM )PRNI + h.c.︸ ︷︷ ︸
Connection to SM

,

The interactions in Eq.(4.37) respect UL(1) lepton number with the following charge assignments L(χ) =
−1, L(N) = 1 and L(φ) = 2. This symmetry is obviously broken after the phase transition by the VEV of
⟨φ⟩ field and the Majorana mass of the χ field mχ = λχ⟨φ⟩. Perturbativity bound imposes that λχ ≲

√
4π. The

generation of the baryon asymmetry proceeds as follows: during the bubble expansion we generate asymmetry in
N and χ, as they have been estimated in the section 4.2.1. Immediately after the transition, the asymmetry in χ is
washed out due to the lepton-number violating Majorana mass term, which constitutes the first source of asymmetry
for the system. Part of this asymmetry in N is passed to the SM lepton sector during the decay N → LH, which
constitutes a second source of asymmetry for the system, via the usual CP-violating decay. We will see that the
dominant contribution depends on the different couplings of the systems This asymmetry in return is passed to the
baryons by sphalerons, similarly to the original leptogenesis models [289]. The scheme of the construction is shown
on the Fig.4.2.

Estimating the baryon asymmetry

So far we have generated the asymmetry in N particle population, however we need to find what part of it will be
passed to SM lepton sector. This can be done by comparing the branching ratios ofN → HL andN → χφ decays

nL − nLc

s
≃ 1

s(Treh)
∑
iI

ϵIi
3ζ(3)|YiI |2T 3

nuc⟨φ⟩2

4π2M2
I

× Br(NI → HL)
Br(NI → HL) +Br(NI → χφ)

≃ 135ζ(3)gχ
8π4g⋆

∑
I

θ2
I

2
∑
α,J Im(YIY ∗J yαJy∗αI)Imf

(HL)
IJ

|YI |2
(
Tnuc
Treh

)3
×

∑
α |yαI |2∑

α |yαI |2 + |YI |2
(4.38)

where gχ is the number of degrees of freedom of χ particle. By assuming O(1) parameters in the potential
and dominant latent heat, Treh ∼ ⟨φ⟩. The factor θ2

I is the suppression due to the heavy field production and
(Tnuc/Treh)3 factor comes from the fact that nN is fixed by the nucleation temperature (see Eq.(4.33)) and s is at
the reheating temperature after the PT. The factor

∑
α
|yαI |2∑

α
|yαI |2+|YI |2

appears since a part of the asymmetry in N is
decaying back to φχ, thus washing out a part of the asymmetry.

Lepton asymmetry generation in decay Note that there is an additional effect contributing to the baryon
asymmetry generation. The decays of the heavy fields N are out of equilibrium and there is a CP phase in the
Yukawa interactions. Thus the rates

Γ(N → H̄L) ̸= Γ(N̄ → HL̄) (4.39)

induce a non-vanishing CP-violation in decay

ϵIdecay ≡ Γ(N I → H̄L) − Γ(N̄ I → HL̄)
Γ(N I → H̄L) + Γ(N̄ I → HL̄)

. (4.40)
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As a consequence, after the asymmetry induced by the production of heavy states, there will be an additional
asymmetry due to the decay. This will scale as :

nL − nLc

s

∣∣∣∣
decay

∼
∑
I

θ2
I

g⋆
ϵIdecay

(
Tnuc
Treh

)3
×

∑
α |yαI |2∑

α |yαI |2 + |YI |2
(4.41)

where the asymmetry in decay ϵI will be generated by the diagram similar to the one in Fig.4.1 with H, L in
the final state and φ, χ inside the loop. In the limit mχ,mφ ≪ MI (which is exactly where one VEV insertion
approximation used in the section 4.2 is motivated) the loop function for both production and decay will be exactly
the same up to the factor of 2 (particles running in the loop are EW singlets) compared to Eq.(4.31). However the
couplings will be complex conjugates so that

ϵIdecay = −
Im[YIY ∗J yαJy∗αI ]Im[f (HL)

IJ ]∑
α |yαI |2

. (4.42)

Combining both effects and taking into account sphaleron rates converting the lepton asymmetry to the baryon, we
obtain the following baryon asymmetry:

∆nB
s

≡ nB − nB̄
s

≃ −28
79 × 135ζ(3)gχ

8π4g∗
×
∑
I

θ2
I

∑
α,J

Im(YIY ∗J yαJy∗αI)Imf
(HL)
IJ

×
( 2

|YI |2
− 1∑

α |yαI |2
)(

Tnuc
Treh

)3 ∑
α |yαI |2∑

α |yαI |2 + |YI |2
(4.43)

The prefactor −28
79 comes from the sphalerons rates (see [203]). The observed asymmetry is given by ∆nB

s ∼
8.8 × 10−11. The quantities in Eq.(4.43) can be estimated in the following way; outside of the resonance regime
but for mild hierarchy between the masses of the heavy neutrinos M1 ≲ M2 ≲ M3, with order one couplings,
2Imf (HL)

IJ → 1
8π , g⋆ ∼ 100 and

∑
α |yαI |2 ≳ |YI |2 induces

∑
α
|yαI |2∑

α
|yαI |2+|YI |2

∼ 1. As a consequence, the production
of the observed asymmetry demands, in order of magnitude,

Max[θ2y2]
(
Tnuc
Treh

)3
∼ 10−6. (4.44)

with an O(1) CP phase and |YI | ∼ |YJ |.

Constraints on the model

Let us examine various bounds on the construction proposed. Let us start from neutrino masses. Indeed after the
PT, the Lagrangian (4.37) generates a dimension 5 operator of the see-saw form [290, 291, 292, 293, 294]

∑
I,α,β

θ2
I

yαIy
∗
βI(L̄cαH)(LβH)

mχ
(4.45)

which induces a mass for the active neutrinos (for the heaviest light neutrino)

Max[mν ] ∼ Max
[∑

I

|yαI |2θ2
I

]
v2
EW

mχ
. (4.46)
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Combining Eqs. (4.43), (4.46) with observed neutrino mass scale and the constraints Max[θ2
I ] ≳ 10−5, y ∼ O(1),

we obtain the following constraints

⇒ mχ ≳ 5 × 109GeV ⇒ ⟨φ⟩ ≳ 109GeV. (4.47)

Let us list additional conditions on this baryogenesis scenario which must be satisfied. First of all, the decay
processes of χ → HL, and χ → (HL)∗ have the same probability since χ is a Majorana fermion. Then we need
to make sure that, immediately after the reheating, processes involving χ do not erase the asymmetry stored in the
SM sector. Let us list these processes and their rates:

• χ production in HL collisions: Ideally we have to solve the Boltzmann equation for the density evolution,
which focusing only on this process will be given by:

szH(z)dYL,L
c

dz
= − YL,LcYH

Y eq
L,LcY

eq
H
γ(HL → χ) + Yχ

Y eq
χ
γ(χ → LH, (LcH)), (4.48)

where z ≡ mχ/T (not to be confused with the spatial direction z along the wall) and Yi ≡ ni/s and
γ(HL → χ) is the rate of the reaction HL → χ. However note that χ, χc decay quickly with the rate
∼ y2θ2mχ

4π ≫ H unless we consider the scales close to the Planck mass, this process induces that the density
Yχ is always kept close to equilibrium. Introducing the asymmetry density Y∆α ≡ YLα −YLcα and subtracting
for the matter anti-matter densities, we obtain

szH(z)dY∆α

dz
= −Y∆α

YLα
γ(HLα → χ) (4.49)

where γα[z] ≡ γ(HLα → χ) is given by[295]

γα[z] = gχT
3

2π2 z
2K1(z)Γα (4.50)

where the Bessel functions K1(z) satisfy the two limiting behaviours

zK1(z) =

1 z ≪ 1,√
πz
2 e
−z z ≫ 1.

(4.51)

So, for large values of z, we get

dY∆α

dz
≃ −0.42e−zz5/2

g
1/2
∗ gα

(
Mpl
mχ

)(
gχΓα
mχ

)
Y∆α , Γα ≈

∣∣∣∣∣∑
I

yαIθI

∣∣∣∣∣
2
mχ

8πgχ
. (4.52)

Solving this equation numerically we can find that Y∆α remains invariant for mχ/Treh ≳ 15 (for the scale
mχ ∼ 109 GeV), so that the wash out process can be safely ignored. The following approximate relation for
the minimal mχ/Treh to avoid wash out is valid

mχ

Treh
≳ log Mpl

mχ
− 9 (4.53)

where we took θI ∼ 10−2 as a typical value. Similarly to the process above there will be additional effects
which can lead to the wash-out of the lepton asymmetry like; HL → φχ. However the rate of this reaction
will be further suppressed by the phase space and it will be subleading compared to the HL → χ.
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• On top of these wash out effects there will be the “usual” processes from the LLHH operator HcL → HLc,
LL → HH and HH → LL which will violate the lepton number with rates

Γ(HcLα → HLcβ)(T ) = 2gβ
π4

∑
iI

θ4
iI

m2
χ

y2
iαy

2
iβ

nH
neq
H

1
neq
α
T 6 ≈ 4

1.2π2gα

∑
iI

θ4
iI

m2
χ

y2
iαy

2
iβT

3.

⇒ Γ(HcL → HLc) ≈ 2
1.2π2

(
mν

v2
EW

)2

T 3, (4.54)

(where we consider the heaviest light neutrinomν in our estimates) and may wash out the asymmetry created.
Requiring these processes to be slow, we arrive at the condition

Γ(HcL → HLc) < H(Treh) ⇒ Treh ≲ 5√
g⋆

v4
EW

Mplm2
ν

∼ 5 × 1012 GeV. (4.55)

where we took m2
ν ∼ 0.0025 eV2.

• During the symmetry breaking topological defects may be formed. For the cosmic strings ⟨φ⟩ ≲ 1014 GeV
is needed to evade the CMB bound [296]. If the UL(1) is explicitly broken by the potential of ϕ, domain
walls will form. Depending on the explicit breaking the domain wall or string network would be unstable and
decay. In this case the CMB bound is absent. Instead, the string-wall network emits gravitational waves and
may be tested in the future with VEV ≳ 1014 GeV and the axion mass range of 10−28 − 10−18 eV [297, 298].

• (Pseudo) Nambu-goldstone boson which may be identified as arg ϕ, exists in this scenario. If it acquires mass
via the explicit breaking of the UL(1) symmetry, the late-time coherent oscillation should not over-close the
Universe. This requirement sets an upper bound on the explicit breaking-term or the decay should happen
early enough. In the former case, we have a prediction on dark radiation corresponding to the effective
neutrino number of ∆Neff ∼ 0.03, since the light boson is easily thermalized around and after the PT. This
can be tested in the future. The consequences of such a majoron are discussed in [269].

In conclusion we can see that this construction can lead to the viable baryogenesis if there is a mild hierarchy
between the scales; MI > ⟨φ⟩ and mχ,MI > Treh. In particular we need MI/⟨φ⟩ ≳ 10 in order to remain in the
range of validity for our calculation from perturbation theory point of view and we need (mχ,MI)/Treh ≳ 15 to
suppress the wash-out. Correct reproduction of neutrino masses makes this mechanism operative in the range of
scales 109 < ⟨φ⟩ < 5 × 1012 GeV. We would like to emphasize that the discussion above assumed one mass scale
for all MI , and similarly all of the couplings Y, y are of the same scale. However this is not the case in general and
the discussion of such “flavour” effects can significantly modify the allowed scale of the transition.

Before going to the next model let us mention that there is no lepton number violation in the symmetric phase,
and in the broken phase χ is heavier than the plasma temperature. Thus the thermal leptogenesis does not happen
in the parameter range for this scenario.

For this model to work, we need the wall to become relativistic, so a minima, we need to fulfill the relativistic
condition ∆V > ∆P , which will be favored in the case of supercooling. In the other hand, the mild hierarchy in
Eq.(4.53) betweenmχ and the reheating temperature is easily achievable in the case of long and flat potentials where
the difference of energies between false and true vacua is smaller than the VEV:Treh ∼ (∆V/g∗)1/4≲O(10−1)⟨φ⟩ ∼
O(10−1)mχ, which can be achieved for example by simply taking small quartic coupling in the φ potential.
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Fortunately, both those situations, supercooling and suppressed reheating temperature, occur together typically
in models with approximate conformal symmetry [299, 242, 192, 5], and in the case of models containing heavy
fermions[300, 301]. As a consequence, from the model building point of view, there is no difficulty in writing a
potential realising our scenario.

To conclude this section, let us give a word on the reach of the mechanism. We have already seen in the previous
chapters that the rough maximal mass that we can produce the the BE mechanism is

MMAX ∼ Min

 4π
g

3/2
gauge

⟨φ⟩2

Tnuc
,
M

1/2
pl Tnuc

⟨φ⟩1/2

 (4.56)

(where an non-gauged theory amount to take ggauge → 0). If we assume Tnuc ∼ (0.1−0.01)⟨φ⟩, then (for ungauged
transition)

MMAX ∼ (0.3 − 0.1)
√
Mpl⟨φ⟩ (4.57)

which is really enough. Indeed, for an efficient production of heavy states we saw that we needed only 10−(2−3) ≲
θ ∼ ⟨φ⟩

M .

New hierarchy problem ?

In this very short section, we would like to address a possible problem that seems to occur in our model of PT
induced leptogenesis: the possibility of a new hierarchy problem. Indeed, in principle, no symmetry prevents us
from writing a portal between the Higgs and the new scalar field φ

λφH|H|2φ2. (4.58)

As our mechanism is confined to high scales vφ > 109 GeV, we could be worried that φ transition could induce
a large mass term in the Higgs sector ∼ λφHv

2
φ. This requires that λφH is tuned to be very small. This is indeed a

new hierarchy problem (though not of quantum origin).

We however believe that this new hierarchy problem remains a ill-defined issue as long as the usual hierarchy
problem of the Higgs (of quantum origin) has not found a proper solution.

Gravitational waves

In the scenario we presented in this section, GW signal can be produced via two mechanisms: i) the GW coming
from the dynamics of bubbles and their expansion in the plasma. This production mechanism is expected to be
very efficient since we require a strong PT. However, the frequency of the signal is controlled by the reheating
temperature, which will be bounded by Treh ≳ 108 −109 GeV. This would produced a signal at frequencies too high
to be observable by fore-coming observers (Though maybe at the limit of ET range). ii) GW will also be strongly
emitted by the cosmic strings produced during the breaking of UL(1). This was studied in the case of non-thermal
leptogenesis in [302], where it was shown that if vφ ≳ 1010 GeV, signal could be observable at DECIGO, BBO,
and possibly LISA.
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4.3.2 Alternative Phase-transition induced leptogenesis

So far, we presented one specific model of PT induced leptogenesis. Let us quickly mention some possible variations.

• The simplest modification we can take of the Eq.(4.37) is the consider the opposite chiralities;

Lint =
∑
iI

(
YiI(φχ̄i)PRNI + Y ⋆

iIN̄IPL(φ†χi)
)

− V (ϕ) +
∑
i

λχφχ̄
c
iχi +

∑
I

MIN̄INI︸ ︷︷ ︸
Toy model of Dark Sector

(4.59)

+
∑
αI

yαI(HL̄α,SM )PRNI + h.c.︸ ︷︷ ︸
Connection to SM

In this case the generation of CP asymmetry proceeds in the similar way to the discussion above but neutrino
masses are generated at one loop level. As a result parameter space with lower masses mχ by around two
orders of magnitude becomes accessible. We leave the thorough study of this case to further studies.

• So far, we only considered, for our baryogenesis mechanism, the production of fermions. Other variations
takes advantage of the production of heavy scalars[303] via the interaction

∆L = −λ

2φ
2|ϕ|2 (4.60)

which is very similar to the DM production mechanism introduced in Chapter 3. Here ϕ is charged under
QCD, such that they can decay to the quarks and produced baryon asymmetry via an usual out-of-equilibrium
decay. Also in this case, the scale of the mechanism is pushed to Treh ≳ 1010 GeV by wash-outs.

4.3.3 Low-energy baryogenesis via EW phase transition

In the previous section we have presented a model generating the baryon asymmetry during the phase transition at
the high scale. However we can wonder whether the mechanism proposed (in section 4.3.1) can be effective for
generation of the baryon asymmetry during the EWPT. The necessary ingredient for the mechanism is a strong first
order electroweak phase transition and various studies indicate that even a singlet scalar (see ref.[304, 305, 306,
307, 308, 309, 33]) or dimension six operator (see ref. [310, 311, 312, 9, 33]) extensions of SM can do the job.
In this chapter however we take an agnostic approach about the origin of such EW FOPT and just assume that it
has happened with nucleation and reheating temperature as an input parameters and present the detailed analysis of
such a model (the case of a singlet scalar) to Chapter 5. Below we present a prototype example for baryogenesis:

L = LSM +m2
η|η|2 +

∑
I=1,2

MIB̄IBI

+

 ∑
I=1,2

YI(B̄IH)PLQ+ yIη
∗B̄IPRχ+ κηcdu+ 1

2mχχ̄cχ+ h.c.

 . (4.61)

As before we do not write kinetic terms. The model contains a Majorana field χ and two vector-like B quarks with
the masses M1,2 ∼ mχ5. Notice here an important caveat with respect to our usual notations: χ is not light outside

5This is because we have a total of 2n + 1 complex phases and n + 2 fields, where n is the number of BI . So one B is not enough, but
two is.
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Figure 4.3: Mechanism at play in the low energy baryogenesis.

of the bubble, we should keep this point in mind. Here η is a scalar field which is in the fundamental representation
of QCD with electric charge Q(η) = 1/3, Q, u, d are the SM quark doublet and singlets respectively, we ignore
the flavour indices for now, H is the SM Higgs and we assume that the EW phase transition is of the first order
with relativistic enough bubbles. Note that the interaction LHχc is consistent with all the gauge symmetries of the
model, however we set it to zero in order to avoid proton decay. This can be attributed to some accidental discrete
symmetry. Let us also assume that only the third generations couples to the heavy vector like B quark, Q = (t, b)
in Eq.(4.61), then unlike the previous leptogenesis model, the asymmetry will be generated when the relativistic
SM b quarks are hitting the wall.

Let us look at the baryon number assignments of the various fields in our lagrangian: B(η) = 2/3, B(χ) = 1,
so that the mχ violates the baryon symmetry by two units. In this case, the story goes as follows: the sweeping of
the relativistic wall, via the collision of the b-quarks with bubbles, produces BI , Bc

I . Thus inside the bubble

nBI − nBcI = −θ2
I ϵIn

0
b

nb − nbc =
∑
I

θ2
I ϵIn

0
b (4.62)

where nb is the number density of the bottom-type quark, θI ≈ YIvEW
MI

is the mixing angle and ϵI is defined like in
Eq. (4.26) (in this case there is no i index since we coupled it only to the third generation of quarks). CP asymmetry
will be generated by the diagram represented on the Fig. 4.4 with χ, η fields running inside the loop. The loop
function generated by the diagram of Fig. 4.4 becomes

f IJB (x) =
∫

d4p

(2π)4
PR(/p+mχ)PL(/pout +MJ)PL

(p2 −m2
χ + iϵ)((p− pout)2 −m2

ϕ + iϵ)(p2
out −M2

J + iϵ)
(4.63)

after taking the imaginary part, we obtain

Im[f IJB (x)] = 1
32π

MIMJ

M2
I −M2

J

√
(M2

J −m2
η +m2

χ)2 − 4m2
χM

2
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J

(
M2
J +m2

χ −m2
η

)
(4.64)
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Figure 4.4: One loop diagram contributing to the b → B transition

Compared to Eq. (4.29) we have an additional 1/2 factor (at the massless limit of η, χ) because η, χ are SU(2)L
singlet now.

Similarly to our general discussion after the passage through the wall the following asymmetric abundances will
be generated ∑

I

(
nBI − nBcI

)
= −(nb − nbc). (4.65)

Let us see what will happen after BI decays. There are two decay channels that lead back to b quarks and thus can
erase the asymmetry, one which is direct back-decay to SM BI → bh (h is the CP even neutral component of the
Higgs doublet) and the other through χ, η, BI → χηc if kinematically allowed. The last channel will lead to the
following decay chain

BI → χηc → χdcuc. (4.66)

Let us look at the decays of the χ field. For concreteness we will assume the following ordering of the masses

MI > mχ > Mη. (4.67)

Then the Majorana fermion χ is not stable and decays

χ → bη, (4.68)

where χcbη interaction is generated after EWSB due to the mixing between vectorlike quarks and SM fields
once the Higgs boson develops the VEV. The η field later decays to two quarks. However the Majorana nature of
the field χ makes the decay to the CP conjugate final state open as well so that

χ → bη → bdu

χ → bcηc → bcdcuc, (4.69)

decays are allowed and both final states have the same probabilities. As a result there will be two decay chains of
B one leading to the generation of the baryon asymmetry and another to the wash-out

(i) wash-out : BI → χdcuc → (bdudcuc) Bc
I → χcdu → (bcdcucdu)

(ii) asymm. generation : BI → χcdcuc → (bcdcucdcuc) Bc
I → χdu → (bdudu)

(4.70)
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As a result the asymmetry between SM quarks and antiquarks will be given by

(nq − nqc) =
∑
I

(nBI − nBcI )
[(

−5
2 + 1

2

)
Br(BI → χηc) +Br(BI → bh)

]
+ (nb − nbc)

, = −3
∑
I

(nBI − nBcI )Br(BI → χηc), (4.71)

where we have used Br(BI → χηc) +Br(BI → bh) = 1 and Eq.(4.65) to derive the last relation. At last we have
to take into account CP violating decays of the B particles similarly to the discussion in Eq.(4.40):

ϵIdecay = Γ(BI → χηc) − Γ(BI,c → χcη)
Γ(BI,c → χηc) + Γ(BI,c → χcη) = −

4Im(YIY ∗J y∗IyJ)Im[f IJB ]|mη,χ→0

|yI |2
(4.72)

where the loop function is exactly equal to the one in Eq. (4.64) with zero masses of the particles inside the loop and
an extra factor of 2, since inside the loop will now circulate the EW doublet. Thus for the total baryon asymmetry
we obtain

∆nB
s

≈ 135ζ(3)
8π4

∑
I,J

θ2
I

|yI |2

|yI |2 + |YI |2
× gb
g⋆

(
Tnuc
Treh

)3

×Im(YIY ∗J y∗IyJ)
(

−2Im[f IJB ]
|YI |2

+
4Im[f IJB ]|mχ,η→0

|yI |2

)
. (4.73)

With 135ζ(3)
8π4 × |yI |2

|yI |2+|YI |2 × gb
g⋆

Im[Y2Y ∗
1 y

∗
2y1]

16π|YI |2 ∼ 10−(3−4) and gb = 6 being the degrees of freedom of b quark
and assuming yI = O(1) and |yI | ≫ |YI | ∼ |YJ |, recovering the observed baryon abundance ∆nB

s ∼ 8.8 × 10−11

requires, in order of magnitude,

⇒ θ2
I

(
Tnuc
Treh

)3
∼ 10−(6−7) . (4.74)

The decay chains described above are very fast compared to the Hubble scale so that we can treat them as
instantaneous. Indeed the

Γ(χ → ηb) ≈
∣∣∣∣∣∑
I

yIθI

∣∣∣∣∣
2
mχ(1 −m2

η/m
2
χ)

8πgχ
⇒ Γ(χ → ηb)

H(vEW ) ≃ 10−3Mpl
mχ

≫ 1, (4.75)

since in the range of interest θ ≲ 10−2. We conclude that decays are very fast. Thus, after this first phase of very
fast decays, that produces the baryon asymmetry in the quark sector, slow transitions mediated by the heavy states
can still wash out the asymmetry. Now, we check for which region of the parameter space it is not the case. The
various wash-out transitions include

• bη → χ
The decoupling of this transition provides the following condition, reminiscent of Eq.(4.52):

szH(z)d(Yb − Ybc)
dz

≃ −γχ→ηb

(
YbYη − YbcYηc

Y eq
b Y eq

η

)
(4.76)
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and assuming that the asymmetries in B and η are related as follows

Yb,bc = (1 ± ϵq)Y b
eq, Yη,ηc ≃ Y η

eq (4.77)

then, we arrive at the following equation

szH(z)d(ϵqYeq)
dz

≃ −γχ→ηbϵq, γχ→ηb = gχT
3

2π2 z
2K1(z)Γ(χ → ηb)

dϵq
dz

= −0.42e−zz5/2

g
1/2
∗ gq

(
Mpl
mχ

)(
gχΓ(χ → ηb)

mχ

)
ϵq (4.78)

where

Γ(χ → ηb) ≈
∣∣∣∣∣∑
I

yIθI

∣∣∣∣∣
2
mχ(1 −m2

η/m
2
χ)

8πgχ
. (4.79)

Then the process is decoupled for the temperatures of EW scale if mχ/Treh ≳ 30, which pushes us to the
limits of the maximal asymmetry which we can achieve in the mechanism. Indeed assuming Treh ∼ 100
GeV, we are required to have mχ ≳ 3 TeV and mB ≳ 3 TeV. Note that on top of the process above there will
be reactions ηb → ηcbc which will also lead to the wash out of the asymmetry. This process is suppressed by
the Boltzmann factor for η field abundance so that the condition to not erase the asymmetry becomes

mB,χ,η

Treh
≳ 30. (4.80)

• ddu ↔ dcdcuc

After integrating out all the new heavy fields the following baryon violating number operator, which violates
baryon number by two units, is obtained:

ddudcdcuc

M4
η

× 1
mχ

× θ2 ⇒ 1
4π5

( 1
16π2

)2 T 11
reh

M8
ηm

2
χ

θ4 ≲
T 2

reh
Mpl

. (4.81)

However, it can easily be seen that the rate of the baryon number violating processes mediated by it are much
slower than the Hubble expansion as well.

• Sufficient velocity for production of BI
In the case of the EWPT, the gauge bosons play a role, so the maximal mass that we can produce will roughly
scale like

MMAX
ϕ ∼ Min

Tnuc

(
Mpl

vφ

)1/2

,
4πvφ

g3ntransition

(
vφ
Tnuc

) = 4πvφ
g3ntransition

(
vφ
Tnuc

)
, (4.82)

where g is the typical gauge coupling and ntransition is the number of transitions emitting soft gauge bosons
and which is order O(100). This is a rough estimate however, that we will strongly improve upon in Chapter
5. However, we will take Eq.(4.82) as indicative for now.

Experimental signatures

This low-energy model has the interesting consequence that it induces potential low-energy signatures. In this
section, we enumerate those possible signatures without assuming that Q, u, and d are the third generation quarks.
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Neutron oscillations The baryon number violating processes in the model will violate the baryon number only
by 2 units, so proton decay is not allowed but n − n̄ oscillations can be present[313]. Integrating out the heavy
states, we obtain the following operator

1
Λ5
nn̄

ucdcdcudd ≡ (
∑
κθIyI)2

M4
ηmχ

ucdcdcudd (4.83)

thus inducing a neutron mixing mass of the form

δmn̄−n ∼
Λ6
QCD

M4
ηmχ

(
∑

κθIyI)2. (4.84)

Current bounds on this mixing mass are of order δmn̄−n ≲ 10−33 GeV [314, 315, 316, 317, 318]. This is extremely
significant if the SM quarks in the Lagrangian are in first or second generation. If we take order 1 couplings and
θ2 ∼ 10−5, it places a bound on the typical mass scale of

Λnn̄ ≳ 106GeV (Mη,mχ) ≳ 105GeV (4.85)

This bound becomes weaker if the new particles couple only to the third generation. Then we have an additional
suppression factor (V 4

tdV
2
bu)1/5 ∼ 10−2. As a consequence, depending on the flavor of Q, u, d our scenario can be

tested in the future experiment [319, 320, 321, 322].

Flavor violation The model predicts new particles in the 1 − 103 TeV range coupled to the SM light quarks-
η field. So the question about low energy bounds naturally rises. However the FCNC are absent at tree level for
the η-diquark field [323]. The loop level effects can lead to strong constraints if ηdu coupling contains the light
generation quarks [323], but if du are only the third generation fields tR, bR the bounds are practically absent.

Bounds from EDMs If there is CP violation in the mixing between bottom quark and heavy bottom partners
then we expect an operator of the form

−ig3d̃q
2 Q̄σµνTAγ5QG

A
µν (4.86)

which is the chromo-electric dipole moment (see [324] for a review), where GAµν is the QCD field strength, with
coefficient scaling like

d̃q ∼ Im[y2
I ]
θ2
Imb

16π2
1

Λ2
EDM

(4.87)

where ΛEDM ∼ Mη ∼ mχ ∼ (1 − 100) TeV is the scale of the new physics that we are considering. Up-to-date
bounds [325, 326] are d̃b < 1.2 × 10−20cm ∼ 10−6GeV−1 , which include the nucleon EDM bound via the RG
effect. Taking typical values of the mixing angle θ2 ∼ 10−4, it can be seen that those bounds are not stringent.

Electron EDM is known to be one of the important test of the EW baryogenesis theories. In our model the
leading contribution appears at three loop level due to the Barr-Zee type [327] of diagram with b−B mixing. The
estimate of the dipole operator goes like

de
e

∼ me(yY e)2

(4π)6

( 1
Λ2
EDM

)
∼ 3 × 10−33 ×

(10TeV
ΛEDM

)2
cm (4.88)

which is several orders of magnitude below the current experimental bound [274] |de| < 1.1 × 10−29cm · e if
ΛEDM > 1 TeV.
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Gravitational waves One very robust prediction of such a scenario is the large amount of GW emitted at the
transition, with peak frequency fixed by the scale of the transition fpeak ∼ 10−3 Treh

GeV mHz (see [52] for review).
Such SGWB signal could be detected in future GW detectors such as LISA[328, 54], eLISA[329], LIGO[330, 331],
BBO[332, 333], DECIGO[334, 335, 336], ET[337, 45, 338], AION[339], AEDGE[340]. This array of observers
will be able to probe GW with frequencies in the window of mHz to kHz, which is the optimal scale for our
mechanism to take place.

Direct production in colliders An almost coupling- and flavor-independent bound is the LHC one. The heavy
quark can be produced via the strong or electro-magnetic interaction. From the recent squark or gluino bounds in
the LHC e.g.[341, 342], we expect a mass bound of ∼ 2 TeV on the lightest colored particle.

Parameter region

By combining all the previous bounds and by numerically solving the washout condition Eq.(4.79) we show the
parameter region of this scenario in Fig.4.5. Here the horizontal axis is the Tnuc which, in order to produce a
relativistic bubble wall, is favored to be smaller than Treh, which we took equal to 100 GeV. The vertical axis
denotes mη(< MI), which is the lightest diquark in this scenario. All the data points give the correct baryon
asymmetry ∆nB/s = 8.8 × 10−11, with all the couplings smaller than

√
2π. The green points satisfy the bound

on n− n̄ oscillation in Eq.(4.85). The red and blue points do not satisfy it, which implies a special flavor structure
for example that only b is coupled to the BSM particles. For both red and green points, both M1 and M2 satisfy the
relativistic wall in Eq.(4.82), which is denoted by the black solid line. For the blue points, the lighter of M1 and
M2 satisfies the condition. The horizontal dotted at 2 TeV is the typical bound on new colored particles. Therefore
our mechanism predicts light quarks, which may be searched for in the LHC and future colliders. Moreover, since
our data points include parameter space both consistent and inconsistent with the neutron-anti-neutron oscillation
bound, some points with BSM particles that also couple to the first two generation quarks can be tested in the future.
Note again that Tnuc ∼ O(0.1)Treh may be the consistent range for our scenario to work.

Alternative baryogenesis models

Let us here enumerate the possible change that we can make in the Lagrangian of Eq.(4.61)

• We can couple η instead of the right-handed to the left-handed ones via ηcQQ.

• We can also couple the opposite chirality to the the diquark with the coupling yηχPRB. In the case of the
coupling yηχPRB, on the top of the previous estimates, there will be an additional mb/MB suppression in
the χ decay and a similar m2

b/M
2
B is the n− n̄ oscillations.

• We may also replace Bi by an up-type-like quark, and assume that it mainly couples to the top quarks, this
effect is suppressed by a further Boltzmann factor. Then the Lagrangian is given as∑

i=1,2
Yi(ŪiH∗)Q+MBiŪiUi + λiUiχ

cη + κηcdd+ mχ

2 χ̄cχ+mη|η|2. (4.89)

Here dd denotes (d2d3 or d1d2). The FCNC constraint is stringent but there is a viable parameter region.
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Figure 4.5: mη (which is the lightest colored particle mass) vs Tnuc in the low energy baryogenesis. The green
points satisfy (4.85), while the red and blue points do not satisfy it and thus require a special flavor-structure. Both
(the lighter of)M1 andM2 are taken to satisfy the conditions from maximal wall velocity (4.82), which is shown by
the black solid line, in the appendix for green and red (blue) points. Here we fix ⟨H⟩ = Treh = 100 GeV to consider
the electroweak phase transition and fix ∆nB/s = 8.8 × 10−11. Other parameters are randomly chosen within the
perturbative unitarity range. Below the 2TeV (dotted line) may be disfavored by the null detection of new colored
particle in the LHC.
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Baryogenesis from non-EW FOPT

At last we note that, with a simple modification of the model in Eq.(4.61), the mechanism can be operative for
an arbitrary phase transition. Indeed let us assume that φ is the field experiencing the FOPT then the following
lagrangian :

Lϕ = LSM +
∑
I=1,2

ỸI(B̄Iφ)bR +MIB̄IBI + λIBIχ
cη + κηcdu+ mχ

2 χ̄cχ (4.90)

can induce the required baryon asymmetry. The phenomenology remains similar to the model of Eq.(4.61) however
the experimental constraints from n − n̄ oscillations and other low energy searches become even weaker. At the
limit, the only robust experimental signature of such a scenario is the GW background emitted if the VEV is not
extremely larger than the EW scale.6

4.4 Summary and outlook

In this chapter we have presented a novel mechanism for the generation of the baryon asymmetry during the early
universe evolution. We have first shown that the mechanism of production of the heavy particles from the relativistic
bubble expansion during the FOPT can lead to CP violating effects. This mechanism of particle production is out
of equilibrium, so that if baryon number violating interactions are present a baryon asymmetry can be generated.
We have constructed two viable baryogenesis models implementing this idea. The first scenario is the phase-
transition-induced leptogenesis, where the bubble wall should be composed by some new Higgs field charged under
the lepton number, and after the phase transition we are still in the symmetric phase of the EW interactions but in
the broken phase of the lepton number. Later EW spharelons transfer the lepton asymmetry to the baryon sector.
In this scenario, a net B − L asymmetry is generated since the Majorana term of the right-handed neutrino after
the PT violates the B − L symmetry. Neutrino mass observations make the mechanism viable if the scale of the
phase transition is between [109, 1013] GeV, which makes it borderline detectable for the future gravitational wave
experiments such as ET[337, 45, 338] if the signal comes from the phase transition. GW signal from the possible
cosmic strings accompanying the transition could improve this situation and induce detection at LIGO, DECIGO
and maybe LISA. The second scenario can happen during EW phase transition. In this case, new fields charged
under QCD with ≲ 100 TeV scale masses are needed to have enough baryon number production. In both cases
the baryon/lepton number violating interactions are coming from the Majorana masses of new heavy particles.
This leads to the Majorana neutrino masses in the first class of models and n − n̄ oscillations in the second class
of models. Another feature of this mechanism is that baryogenesis happens for the ultra-fast bubble expansions
thus generically strong stochastic gravitational wave signatures are expected. Moreover, in the case of the second
scenario, the frequency range is well within the reach of the current and future experiments. However, in our survey,
we did not study the possibility of flavor effects. A natural question is: can the flavor effects strongly modify our
picture ?

6For the values the VEV ⟨φ⟩ ≳ 1012 GeV, there is no need to suppress the interaction HLχ since the bounds from proton decay become
compatible with experiment.



Chapter 5

Relativistic bubble walls in the Electroweak
Phase Transition

T he previous chapters were dedicated to an exposition of a mechanism of production of heavy states during
the expansion of very relativistic bubbles and to the cosmological consequences: pressure on the wall,

production of heavy Dark Matter and Baryogenesis. In those settings we always left the transition scalar sector
physics unspecified. Now, in this last chapter, we come back to this issue and we use our experience from Chapter 2
to search for the relativistic bubble walls in the context of long supercooling. We focus on the simple case of a real
singlet extension of the electroweak sector and specialize to 2-steps PT, where we see that very strong supercooling
is indeed realisable. We quantify the region of parameter space where the EW bubble becomes ultra-relativistic
and deduce the maximal mass that can be produced via the bubble wall expansion mechanism. We then revisit our
previous models of Baryogenesis and DM production in this special context.
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Figure 5.1: As we increase the mass of the Higgs boson mh, the temperature of the FOPT increases, until the
correlation length diverges and the latent heat goes to zero at a critical mass around mh ≈ 80 GeV. From [53].
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The origin of Dark Matter (DM) and matter-antimatter asymmetry are one of the most important unresolved
puzzles of the early Universe cosmology. In the previous chapters 3 and 4, we have presented and investigated in
detail the novel mechanisms proposed in [3, 2, 303] for DM production1 and baryon asymmetry generation during
the first order phase transitions (FOPT) that were efficient for relativistic bubble walls. We each time studied this
mechanism in the context of a generic PT and for the EWPT, however, we delayed the study of the model allowing
for relativistic walls in EWPT. In this chapter, we fill this gap and we study in detail the ultra-relativistic regime
of EWPT. The main question is thus: can we even build a simple extension of the SM that features a FOPT with
long supercooling and then relativistic bubble walls? Long supercooling is known to occur typically for long, flat
and shallow potentials, as studied in [193, 11, 348, 31, 5], and it was shown that the bubble wall was typically
ultra-relativistic. However in the case of electroweak phase transition, the requirement of long supercooling leads
to very non-trivial constraints on the effective potential.

It is well-known that the description of the dynamics of the EW phase transition necessitates non-perturbative
tools[259, 349, 350, 351]. The transition is non-perturbative due to soft modes having momentum p ∼ g2T and
thus being non-perturbative, as explained for the Linde problem.

From those non-perturbative studies, it was found that: if the mass of the Higgs is larger than about ∼ 80
GeV, then the transition is expected to be a smooth cross-over. Around this critical point, the phases becomes

1Recently, there have been many classes of models where DM production and FOPT in the early universe have been related (see for
example Ref[343, 156, 157, 344, 160, 159, 162, 163, 164, 165, 173, 238, 345, 346, 347, 167, 168, 169, 170]).
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indistinguishable. This is analog to the case of water at the tri-critical point where the vapor and the liquid phase
cannot be distinguished anymore. Conversely, if we keep the same matter content, we can argue that the EWPT
becomes a strong FOPT if mh ≲ 35 Gev[352, 353]. This is however far below the measured mass of the Higgs
boson ∼ 125 GeV and it is considered today as settled that the EWPT in the SM is a cross-over, which rules out the
SM baryogenesis.

However, this is not the case for various Beyond Standard Model (BSM) frameworks where successful scenarios
of FOPT in EWPT and thus electroweak baryogenesis can be built (see for a recent review [256]). Many ideas
have been put forward in order to make naturally the EWPT first order, among other proposals: varying Yukawas
during the EWPT, raised in[354] and then studied in [355] was shown to produced FOPT for low scale flavons,
non-linearly realised EWPT can be FOPT [356, 357] in a tuned region due to a tree-level cubic term, and in the
2HDM[358] large room is still left for FOPT. More generic studies using a EFT for the SM + H6 have studied the
EWPT and shown that the transition would become FOPT in a significant part of the parameter space[359, 9, 33,
31] (specially if the cut-off is not too high Λ ∼ 500−800 GeV). In the MSSM, in the Light Stop Scenario the EWPT
can become FOPT[270], however, it is now excluded by the LHC searches[271] of stops. The EWPT can also
become strongly first order if it occurs at the same time than the confinement transition of the strong dynamics of a
composite Higgs, when the dynamics is nearly conformal[267, 360] and when it is controlled by nearly conformal
dynamics[361]. Finally, a particularly simple way to make the EWPT first order is to couple the Higgs to a new
scalar transforming as a singlet under the SM gauge groups. There have been numerous studies of phase transition
in this type of scenario [362, 363, 364, 365, 366, 367, 368, 369, 308, 370, 371]. The Lagrangian can be restricted
further by considering Z2 [372] or Z3 symmetries[373, 374]. Interestingly such a real singlet scalar field can appear
in composite Higgs models [375] (see also [244, 376] for studies pertaining to phase transition). However, most of
the above mentioned works did not analyze in detail the region of parameter space with relativistic bubbles since
slow bubble wall velocities are required [254, 255] for the usual electroweak baryogenesis.

In this chapter we analyze in detail the simplest extension of the SM that can lead to a FOPT: the real singlet
extension of SM with an approximate Z2 discrete symmetry and we focus on the parameter space which results
in very fast bubble expansions. if there is no mixing in the true vacuum and the singlet is heavy enough to forbid
exotic Higgs decay, this is the “nightmare scenario” of [377]. Anticipating the results of this paper we found that
the most promising scenario for relativistic bubbles is the case where the phase transition occurs in two steps: the
first transition is related to the Z2 symmetry breaking while keeping EW symmetry unbroken and in the second one
the Higgs field acquires its vacuum expectation value (vev) which comes together with Z2 symmetry restoration.

This will permit us to evaluate the region of parameter space where Baryogenesis via relativistic bubble walls of
Chapter 4 is viable and to put constraints on the mass scale of the dark sector responsible for CP and B violation.
Implications for non-thermal DM production from bubble wall plasma particle collisions of Chapter 3 will also be
considered. Our purpose is to show that even in this minimal setting, the ultra-relativistic region exists, and thus
we hope that it should exist as well in most of the possible models.

This chapter is organised as follows: in section 5.1, we review the singlet extension of the SM and write the
two field potential with thermal corrections. In section 5.2, we qualitatively discuss the different patterns of phase
transitions and argue that only a two-steps PT can yield ultra relativistic bubble wall motion. In section 5.3 we
present a numerical study of the two-step PT analyzing in detail the region with fast bubble motion. In section 5.4,
we draw the consequences of our previous results for the production of heavy DM and Baryogenesis and in section
5.5, we comment on the GW signal induced by such strong transitions. Finally, in section 5.6, we summarize and
conclude.
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5.1 Review of the singlet extension of the SM

Let us start by reviewing the effective potential of the SM with a real scalar field s.

5.1.1 Tree-level scalar potential

The tree-level scalar potential will be given by

V (H, s) = −m2
h

2 (H†H) + λ(H†H)2 − m2
s

4 s2 + λhs
2 s2(H†H) + λs

4 s
4 , (5.1)

where H is the SM Higgs doublet and mh ≈ 125 GeV is the physical mass of the Higgs. For simplicity, we will
impose Z2 symmetry on the potential to avoid the terms with odd powers of s field. As a result, when ⟨s⟩ = 0, we
avoid any scalar mixing terms which are constrained by the recent Higgs signal strength measurements [378]. The
Higgs doublet can be decomposed as usual

HT =
(
G+,

h+ iG0
√

2

)
, (5.2)

where h is the usual physical Higgs boson getting a vev which in the true minimum is given by vEW =
√
m2
h/2λ ≈

246 GeV if ⟨s⟩ ≡ vs = 0.

5.1.2 Coleman-Weinberg potential

For taking into account the loop-corrections, we will use the very handy on-shell renormalisation scheme presented
in sec 1.3.2, where

VCW (h, s) =
∑

i=Z,h,W,t

gi(−1)F

64π2

[
M4
i (h, s)

(
log M

2
i (h, s)
M2
i0

− 3
2

)
+ 2M2

i (h, s)M2
i0

]
. (5.3)

In this expression,Mi(h, s) stands for the masses depending on the Higgs and singlet fields values,Mi ≡ Mi(h, s),
and Mi0 are the field values from the tree-level VEV in the true minimum. The number of d.o.f, masses of various
particles and the scalar mass matrix as a functions of h, s are given by:

gW± = 6, gZ = 3, gG±,0 = 3, gt = −12 ,

M2
W±(h) = g2h2

4 , M2
Z(h) = g2 + g′2

4 h2, M2
G±,0(h) = −m2

h

2 + λh2, M2
t (h) = y2

t h
2

2

M2(h, s) =
(

3λh2 + λhs
2 s2 − m2

h
2 λhssh

λhssh 3λss2 + λhs
2 h2 − m2

s
2

)
. (5.4)

As a side remark, in the region where the Higgs h → 0 and s ∼ O(vEW ), there will be two scales involved in
the problem: the value of the singlet field s and the masses of the SM particles MW,Z,t(h → 0, s) → 0 ≪ s. This
type of two scale potential has been studied in the past [379], by using two different renormalisation scales. It was
concluded that resummation is needed when the log (Mi(0, s)/s)2 is large enough to cancel the loop suppression.
Although we have two largely separated scales, we have checked that for our region of the parameter space, such a
resummation is not necessary.

2We will see soon that, in a thermal context, Mi(0, s) is controlled by the scale of the temperature, creating a hierarchy log T
vEW

.
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5.1.3 Finite temperature potential

We now need to take into account the thermal effects in the early universe. We presented in section 1.4.3 how
to do so. On the top of it, to account for dangerously divergent higher loops due to the Daisy diagrams at finite
temperature, we rely again on the “Truncated-Full-Dressing” procedure [16] of section 1.4.4. Doing so, the full
one-loop potential becomes

V (h, s, T ) = Vtree(h, s) +
∑
i

[
VCW

(
M2
i (h, s) + Πi(h, T )

)
+ VT

(
M2
i (h, s) + Πi(h, T )

)]
, (5.5)

where Πi(T ) are the thermal masses of various degrees of freedom. In the real singlet extension of the SM we only
need to add the contribution of the singlet on the top of the expressions already presented in Eq.(1.98). This gives

Scalar: Πh(T ) = T 2
(3g2

16 + g′2

16 + λ

2 + y2
t

4 + λhs
24

)
, Πs(T ) = T 2

(
λhs
6 + λs

4

)
, (5.6)

Gauge: ΠL
g (T ) = T 2diag

(11
6 g

2,
11
6 (g2 + g′2)

)
, ΠT

g (T ) = 0 , (5.7)

where ΠL
g (T ) denotes the thermal mass of the longitudinal mode of the gauge bosons, while transverse modes

ΠT
g (T ) are protected by gauge invariance and thus do not receive a mass at leading order in perturbation theory.

5.2 Phase transition in the singlet extension

After the preparatory discussion in the previous sections 5.1, we can proceed to the analysis of the phase transition
in the model with the singlet field, Eq.(5.1). Our analysis will be focused on the region of parameter space with
relativistic bubble expansion, for other studies of phase transition in SM plus Z2 real singlet scalar, see for other
studies Refs. [380, 372, 377, 381].

In the Chapter 2, we have seen that the velocity of the bubble expansion is fixed by the balance between the
friction from the plasma and the driving force. At low temperatures the friction is suppressed (see Eq.(2.148) and
(2.150)) so that we expect the bubbles to become relativistic (large Lorentz γterminal

w factor).

Let us check whether low nucleation temperatures are feasible in the singlet extension. We will assume that
Z2 remains unbroken in the true vacuum in order to avoid the constraints from the Higgs-scalar mixing (see for
example [382]). Then in the model with Z2 odd singlet, the phase transition can occur in two ways: one-step
(⟨h⟩ = 0, ⟨s⟩ = 0) → (vEW , 0) and two-steps3 (⟨h⟩ = 0, ⟨s⟩ = 0) → (0, ⟨s⟩ ≠ 0) → (vEW , 0) [308, 377,
372], and each of these phase transitions can be first or second order. We review both of these scenarios of phase
transitions in order to understand in which case it is possible to obtain relativistic bubbles.

5.2.1 One-step phase transition:

This case has been largely studied in the literature [377, 372] and we will not provide a complete description of it.
In this scenario the singlet never gets a VEV, and all of its effect reduces to the additional contributions to the Higgs
potential from Coleman-Weinberg terms and thermal corrections. However it turns out that relativistic bubbles are

3We will see later that at temperatures T ≪ Tc the Coleman-Weinberg potential can shift a little bit the false vacuum position to (δvh, vs)
where δvh ≪ vs, vh.
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very unlikely for such phase transitions (see also results in [372]). In the limit when |ms| ≪ Tc we can show
analytically that this is indeed the case. Near the origin h → 0, the potential in h direction is dominated by the
∝ h2 terms

Vdominant(h → 0, s = 0, T ) = m2
eff(T )
2 h2 + . . . (5.8)

The effective mass m2
eff include the tree-level terms and the leading thermal contributions and is approximately

equal to

m2
eff(T ) ≃ −m2

h + T 2
(

m2
h

4v2
EW

+ y2
t

4 + g2 + g′2

16 + g2

8 + λhs
24

)
. (5.9)

The FOPT can happen only if m2
eff(T ) > 0 at the moment of the PT. Then assuming perturbative values of the

coupling λhs we can estimate the lowest temperature where the FOPT can occur to be Tmin
nuc ≳ 100 GeV. Comparing

this value with the discussion in the Chapter 2, section 2.4.2, and more specifically the expression

γterminal ∼ 3 ×
(∆V − PLO

(100 GeV)4

)(100GeV
Tnuc

)3 1
log MZ

gT

, (5.10)

we can see that the bubble wall velocities will always satisfy γw ≲ O(1). As mentioned before, we are interested
in the expansions with much larger γw factors, so that we do not discuss one step phase transition further.

5.2.2 Two step FOPT with relativistic bubbles

Two-steps realisations of the EWPT have already been studied in many works, see for example[307, 308, 383, 377,
384, 385, 372, 386]. The novelty of our study is that we will be focusing on the parameter space with relativistic
bubbles which was previously ignored. We organize the discussion as follows: In section 5.2.2, we show qualitative
results based on approximate treatment of the potential and then in the section 5.3 we present the exact numerical
results obtained with our code. The two step phase transition

(0, 0) → (0, ⟨s⟩) → (vEW , 0) , (5.11)

can happen if the m2
s parameter of Eq.(5.1) is positive. In this case it is convenient to parameterize the Lagrangian

in the following way

Vtree(h, s) = −m2
h

4 h2 + m2
h

8v2
EW

h4 − m2
s

4 s2 + λhs
4 s2h2 + m2

s

8v2
s

s4 . (5.12)

where vEW =
√
m2
h/2λ GeV and vs =

√
m2
s/2λs correspond to the local minima at (⟨h⟩ = vEW , ⟨s⟩ = 0) and

(⟨h⟩ = 0, ⟨s⟩ = vs) respectively. The origin of two-step PT can be intuitively understood from the following con-
siderations. For simplicity let us ignore the Coleman-Weinberg potential and restrict the discussion by considering
only the thermal masses. Then the potential will be given by

V (H, s) ≈ Vtree(H, s) + T 2

24

 ∑
bosons

niM
2
i (H, s) + 1

2
∑

fermions

nFM
2
F (H, s)

 ,

= Vtree(H, s)

+ T 2
[
h2
(
g′2

32 + 3g2

32 + m2
h

8v2
EW

+ y2
t

8 + λhs
48

)
+ s2

(
m2
s

16v2
s

+ λhs
12

)]
.

(5.13)
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From this expression we can clearly see that the temperatures when the minima with non zero vevs appear for the
Higgs and singlet fields can be different. Then it can happen that the Z2 breaking phase transition occurs before the
EW one. This means that there will be first a phase transition from (0, 0) → (0, vs). After this phase transition the
Universe keeps cooling down and the minimum with ⟨h⟩ ̸= 0 will be generated. Choosing the appropriate values
of masses and couplings we can make sure that the minimum with (vEW , 0) is the true minimum of the system.
The transition (0, vs) → (vEW , 0) will be of the first order if there is a potential barrier between the two minima.
One of the necessary condition in this case will be ∂2V/∂h2|s=vs,h→0 > 0, which using Eq.(5.13) we get

−m2
h

4 + λhsv
2
s

4 + T 2
(
g′2

32 + 3g2

32 + m2
h

8v2 + y2
t

8 + λhs
48

)
> 0 . (5.14)

From this discussion we can see that there are qualitatively two different cases depending on whether the potential
barrier between two minima remains or disappears at zero temperature, i.e. when m2

h ≷ λhsv
2
s . In the first case the

phase transition will necessarily happen before the “No Barrier"(NB) temperature

TNB =

√√√√ m2
h − λhsv2

s

g′2

8 + 3g2

8 + m2
h

2v2 + y2
t
2 + λhs

12

∼
vs

√
−λhs +

(mh
vs

)2
0.8 , (5.15)

which we define as the temperature when the barrier disappears. This is because the bounce action drops once the
potential barrier between two minima reduces.

From Eq.(5.14) we can see that the size of the potential barrier between the two minima is controlled by the
coupling λhs. Increasing this parameter will enhance the potential barrier and will lead to the reduction of TNB

so that (vs, 0) remains a local minimum even at zero temperature. At some point we expect the potential barrier
to become so large that the system will remain trapped in the false vacuum forever. From this discussion we can
expect that the lowest temperatures will be achieved at the boundary of the region where no PT can occur. The
lowest temperature will correspond to the (global) minimum of S3/T controlling the tunneling rate, as explained
later in section 5.3. If this minimum happens at temperatures much lower than Tcrit, then there will be super-cooling
(Tnuc ≪ Tcrit). Even though this discussion was made by considering only the thermal masses in the potential,
numerically we find that for the effective potential with truncated full dressing [16] the qualitative behaviour does
not change, and only explicit conditions for m2

h and T nuc
min are modified.

At last we always check whether the condition for the EWSB minimum to be the global minimum at zero
temperature is satisfied:

m2
sv

2
s < m2

hv
2
EW (EWSB is global minimum) , (5.16)

where the above equation is valid up to small loop-level corrections.

5.3 Numerical results

After the qualitative discussion, let us proceed to the numerical calculations. The bounce action for (0, vs) →
(vEW , 0) was computed using our own dedicated code (cross checked against FindBounce[387]) and we relegate
the details and methods of this calculation to Appendix A.4. We parameterize our model in terms of (ms, λhs, vs)
parameters (see Eq.(5.12)). Instead of analyzing all the possible values of ms, in this section we report the results
by fixing ms = 125 GeV on Fig 5.2 and ms = 150 GeV on Fig.5.8, that we report in section 5.3.3 (there is no
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particular reason for those values ofms). In the plane (see Fig.5.2) vs −λhs, we identify four regions with different
behaviours under the phase transition. The blue region shows a second order transition4 when there is no barrier
between the two separated vacuum. Next to it there is a light red region where the transition is of the first order. We
indicate separately (dark red) the region, where the transition is of the first order and the bubbles are relativistic. In
particular the boundary between the regions with relativistic and non-relativistic bubbles is defined by the criteria
of Eq.(2.149), i.e. when the LO pressure for relativistically expanding bubbles is less than the driving force. At
last, there is the “NO PT” region, where the system remains stuck in the false vacuum since the tunnelling rate is
too small.

The structure of the diagram (on the Fig.5.2 top−left panel) can be easily understood from the qualitative
discussion in the previous section. Indeed, keeping vs fixed, the size of the potential barrier is controlled by the
coupling λhs. Moving from left to right the size of the potential barrier increases and we are gradually moving from
the region of second order phase transition → FOPT → FOPT with relativistic bubbles → no PT region. Similarly
moving up (increasing vs for fixed values of λhs) also corresponds to the increase of the potential barrier as we
pass though the regions with different PT in the same order. On the upper axis we report the physical mass of the
singlet in the true vacuum Ms(vEW , 0) and exclude the constrained region where h → ss is kinematically allowed
(the gray meshed region).

Next we plot the values of Tnuc and γterminal
w as a function of (λhs, vs) (Fig.5.2). As discussed in the previous

section, the region with the smallest values of the nucleation temperature (thus the fastest bubbles) is located near
the “NO PT” region, i.e. where the system remains trapped in the false vacuum. The blue dot on the Tnuc plot
indicates the last point (up to 6 decimals of precision in λhs) we have found before the system enters the regime of
no phase transition (NO PT). In the bottom right we plot the Mmax =

√
γwTnucvEW quantity which indicates the

maximal energy in the c.o.m frame for the plasma particle−bubble wall collision, which corresponds to the largest
mass of the heavy particles we can produce (see discussion in sec 5.4.1).

In order to better understand the dependencies of Tnuc and γw on the parameters of the model, it is useful to
separate further the parameter space depending on whether the potential barrier disappears at zero temperature or
not. This is important since the bounce action in such cases has very different dependencies on the temperature.
See for example Fig.5.3, where we have plotted the S3/T for vs = 170,ms = 125 GeV for the various couplings
λhs. In the case when the potential barrier disappears at some temperature TNB the function S3/T drops to zero,
but if the barrier remains even at zero temperature S3/T has a global minimum for T ̸= 0 which will be controlling
the lowest nucleation temperature possible.

5.3.1 No potential barrier at zero temperature

Let us start by defining the region where there is no potential barrier at zero temperature. On Fig.5.2, we display the
curves where the barrier disappears for various values of the temperatures (TNB). For TNB = 0 case, approximate
curve can be obtained analytically by looking at the leading terms in the zero temperature CW potential

λhs ≲
m2
h

v2
s

− nty
4
t

32π2
v2
EW

v2
s

. (5.17)

The agreement between this equation and exact TNB = 0 curve is at the level of a few permille discrepancies.
To the right of TNB = 0 curve, the potential barrier between the two minima remains even at zero temperatures.
For the values vs ≳ 200 GeV, we find that the line TNB = 0 approximately coincides with the boundary of no

4More exactly it shows the region where out perturbative analysis should be inconclusive about the order of the transition.
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Figure 5.2: Top-Left: Scan of the parameter space in the plane λhs − vs for ms = 125 GeV. The four regions
are as follows: i) white - “NO PT”, the region where the transition never completes because the barrier remains
at zero temperature and the function S3/T never passes below the nucleation condition, ii) light and dark red are
the regions where the FOPT happens. Dark (light) red corresponds to the region with relativistic (non-relativistic)
bubble expansion. The boundary between two regions is given by Eq.(2.149) iv) blue - the phase transition is of the
second order. The gray meshed region is the one in which Ms(vEW , 0) < mh/2, that is constrained from collider
experiments. Top-Right and Bottom: the dependencies of Tnuc, γw, Mmax on the λhs coupling for ms = 125
GeV. The blue dot on the Top-Right plot designates the end of the curve, when the tuning becomes 10−6 and the
red dot signals the appearance of a barrier at zero temperature (all the points above the red dot have a barrier at
T = 0). For the last three plots we varied the λhs parameter with the steps of 10−6. The value of vs is encoded in
color according to the bottom-right plot.
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Figure 5.3: Left: S3/T function with vs = 170 GeV and ms = 125 GeV. We observe that the nucleation
temperature saturates around Tnuc ≈ 52 GeV. The horizontal gray line satisfy the nucleation condition S3/Tnuc =
3
2 log (S3/2πTnuc) + 4 log (Tnuc/H). Right: Zooming in on the region with lower nucleation temperatures.

phase transition region (where system remains stuck in the false vacuum) but obviously the boundary of “NO PT”
is always to the right of TNB = 0 curve. The size of the narrow strip between the two boundaries “NO PT” and
TNB = 0 is of the order 10−4 in λhs values. One can see it from the Tnuc panel of Fig.5.2 where we have indicated
the value of λhs when TNB = 0 by vertical thin line and red dot (for intersection) and the position of the blue dot
which is the last point where the transition is of the first order before we enter NO PT region. The boundaries of
this region were obtained by numerical calculations where we have scanned λhs parameter with a step 10−6. We
postpone the discussion of the FOPT in this narrow region to the next section 5.3.2.

In this section we restrict our discussion only to the region to the left of TNB = 0 curve. Then the phase
transition will be always completed before the universe cools down to TNB, i.e. TNB < Tnuc, which provides
a lower bound for the nucleation temperature. At the same time the velocity of the bubbles become largest for
the smallest possible values of the nucleation temperature. So that the fastest bubbles will be near the TNB = 0
curve. Looking at Fig.5.2 we can see that the largest γw (Lorentz boost factor) and lowest nucleation temperatures
happen for vs ≳ 200 GeV, where the TNB = 0 curve passes very close to the NO PT boundary. The shape of
the lines in Fig.5.2 clearly indicates the necessity of tuning in order to obtain low nucleation temperatures (large
γw). In particular for the values of vs ≳ 200 GeV we can see that the nucleation temperature drops by choosing
λhs close to the NB value (similarly γw becomes maximal see Fig.5.2). We can estimate this tuning by looking
at ∂ log λhs/∂ log Tnuc quantity (analogue of Giudice-Barbieri [388] measure of the tuning) as a function of Tnuc.
This result agrees with our expectation from the steepness of the curves in the Fig.5.4 and with the naive tuning
expectation which scales as ∼

(
Tnuc/mh

)2
5.

At last we would like to remind that the discussion in this section always assumed that the phase transition
completes before the potential barrier disappears. We have checked numerically that this is always the case. Indeed
the time of the phase transition is given approximately by the bubble radius at the moment of percolation [33, 389]

R⋆ ≃
(∫ Tcrit

Tper

dT

T

Γ(T )
H(T )

(
Tper
T

)3
)−1/3

. (5.18)

5This expression follows Eq.(5.14) if we require the cancellation between the terms independent of temperature.
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Figure 5.4: Tuning of the coupling λhs as a function of the nucleation temperature. The dashed green line
represents the naive tuning ∼ (Tnuc/mh)2. We observe that this naive estimation for the tuning is rather precise at
large nucleation temperature but can underestimate the tuning by one order of magnitude for very low nucleation
temperature.

This radius is related to the β ≡ − d
dt
S3
T = HT d

dT
S3
T parameter by an approximate relation [389]

β

H

∣∣∣∣
Tper

≃ (8π)1/3

R⋆H
, (5.19)

where we find R−1
⋆ ∼ βtypical ∼ (10 − 104)H. At this point the temperature drop during the bubble expansion will

scale as

∆T ∼ Tnuc(H∆t) ∼ TnucH

β
. (5.20)

Due to the large value of β/H we find numerically that this drop of the temperature is not enough for the barrier to
disappear or in other words

Tnuc − ∆T > TNB . (5.21)

Such behaviour can be understood from the following consideration: near TNB the bounce action drops very quickly
and as a consequence the tunneling becomes very efficient and typical bubble radiuses are much smaller than the
Hubble scale. This would lead to another prediction: the GW signal will be suppressed as well since it is controlled
by the (β/H) quantity Eq.(5.19). However, As we will see, even with this suppression the GW signal is efficient
enough to be detected in the future.

5.3.2 Tunneling with potential barrier at zero temperature

Let us proceed to the analysis of the case when the potential barrier does not disappear at zero temperature. The
parameter space with the lowest nucleation temperatures (fastest bubbles) will be located again near the “NO
PT” boundary. However in this case the nucleation temperature will be controlled by the local minima of the
S3/T function, see Fig.5.3. At least a minimum is expected since the potential at low temperature becomes fully
temperature independent and S3(T → 0) → const., so that S3/T necessarily starts to grow for T → 0.



140 CHAPTER 5. RELATIVISTIC BUBBLE WALLS IN THE ELECTROWEAK PHASE TRANSITION

Numerically (see Fig.5.2) for the value of ms = 125 GeV we find that for vs ≲ 180 GeV, the entire region
with the fast bubbles has a potential barrier at zero temperature. On Fig.5.3, we present the euclidean action for
vs = 170 GeV and ms = 125 GeV. Going back to Fig.5.2, we see that for those values the “NO PT” curve and the
“TNB = 0” curve are largely separated. This is not a surprise since in this region of parameter space the bounce
action S3/T ∼ O(102) is small enough to guarantee the successful tunneling even when the barrier remains at zero
temperature. In the range of λhs from 0.5 to 0.7, numerically we find that nucleation temperatures are ≳ 30 GeV,
and the corresponding maximal Lorentz factors for the velocities of the bubble expansion in the ranges of ≲ 30,
see Table 5.1. Interestingly we find that in this case the bubble radius R⋆ ∼ (8π)1/3vw

β are a little bit larger than the
ones discussed in the section 5.3.1, corresponding to a bit smaller values of β/H parameter.

Moreover, on Fig.5.5, we display the transition regime between transitions controlled by the global minimum
which is typical of cases with zero temperature barrier, but which still displays a disappearance of the barrier: see
the blue curve of Fig.5.5.

Finally, we could also wonder what happens at the upper boundary of the deep supercooling region, as we have
observed on Fig.5.2 a sharp decrease in the supercooling allowed around vs ≲ 200 GeV (for ms = 125 GeV). This
transition regime can be understood if we plot the explicit S3/T functions on Fig.5.5. Comparing the plot in Fig.5.5
with the one in Fig.5.6, we see that as we decrease vs, the full pattern of S3/T is shifted toward smaller values. At
some critical point around vs ≈ 200 GeV, the nucleation becomes controlled by the first minimum in the function
S3/T and not by the disappearance of the barrier. This largely suppresses the possibility for large supercooling.

Super fine-tuned region We finally comment on the parameter space with vs ≳ 200 GeV (again we are fixing
ms = 125 GeV), where the curves “NO PT” and “TNB = 0” almost superimpose (the region between red and
blue dots on the Tnuc panel of the Fig.5.2). There will be a very narrow strip between the curves “NO PT” and
“TNB = 0” regions, where the tunnelling will happen even though the barrier remains at zero temperature. We
find (see Fig.5.6) that the region corresponds to the variations of the λhs parameter of the order δλhs ∼ O(10−4),
i.e. two order of magnitude smaller than the full region with relativistic bubbles. In this very small region various
additional effects can start playing a role. For example let us look at the Fig.5.6 we can see that the bounce action
S3/T has a local maximum and a deeper (global) minimum with respect to the standard scenario. Such a behaviour
of the action is coming from the cancellations of various terms in the effective potential. For simplicity let us look
at T = 0 case. Then there is a region of parameter space where the potential has no local minimum at (0, vs), but
the effects of the −3M4

t (h)
8π2 log Mt(h)

Mt(vEW ) terms in Coleman-Weinberg contribution lead to the appearance of the local
minimum at (δvh, vs). On Fig.5.7 we plot the contributions of the various terms in the effective potential leading
to the appearance of this local minimum and the trajectory of the typical bounce solution in this case. As a result
the distance in the fields space between the two minima decreases and the tunneling becomes faster, which leads to
the appearance of the second (global) minimum in S3/T . This induces the possibility of very long supercooling.

Benchmark points

In Table 5.1 and 5.2, we give typical values of the nucleation temperature, the Lorentz factor γw, the β/H factor
for the three benchmarks values that we discussed vs = 170,ms = 125, vs = 205,ms = 125, and we indicate
if the barrier remains at zero temperature, applying the criterion in Eq.(5.21). We can see that the largest bubble
radius at the collision (smallest β) correspond to the case when S3/T is monotonic and very flat near the tunneling
temperature (c.f. the right panel of Fig. 5.6).
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Figure 5.5: On this plot we show the regime of transition. We observe that several points display a disappearance of
the barrier which is typical of the regime of no barrier at T = 0. However, the nucleation temperature is controlled
by the first minimum of S3/T , which is typical of the regime with a barrier at T = 0.

0.1 0.2 0.3 0.4 0.5

100

200

300

400

500

600

700

0.01 0.02 0.03 0.04

100

200

300

400

500

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

100

200

300

400

500

Figure 5.6: Left: Plot of S3(T )/T as a function of the temperature, for different values of λhs in the case where
ms = 125 GeV and vs = 220 GeV. As we increase the value of the coupling λhs, the disappearance of the potential
barrier happens later, allowing for longer supercooling, until it is large enough to remain even at zero temperature.
For the first four curves from the top, we observe a second drop in the function at very low temperature. This second
drop corresponds to the displacement on the false minimum that we describe in this section. Right: Same plot as
in the left panel, but with a lower value for vs. The pattern we found is the same, but lowering vs causes a lowering
of the curves and the displacement of the false minimum is less pronounced.
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Figure 5.7: Here is presented an explicit example of displacement of the false vacuum for {λhs, vs, T} =
{0.36784, 220 GeV, 3 GeV}. Left: we show the 2D potential where the blue line corresponds to the part of
the potential plotted in the right panel and the (purple) dot is the position of the displaced false minimum, in both
the plots. Red line indicates the bounce trajectory. Right: plot of the different contributions to the potential. We see
that a displaced minimum can be generated balancing the tree level and the CW potential of the top quark, for low
enough temperature, in such a way all the other particles, that are massless in the false vacuum, have a negligible
contribution. It can be shown that they cause, as the temperature increases, the shift of the local minimum towards
h = 0.

ms = 125 GeV, vs = 170 GeV
λhs

Treh
100GeV

Tnuc
100GeV

Tper
100GeV γw

β̃
H

= (8π)1/3

R⋆H
mFalse
H /GeV FM0

0.56 0.880 0.877 0.850 − 434 35.4 No
0.58 0.855 0.851 0.822 − 355 37.3 No
0.6 0.829 0.824 0.790 − 296 39.2 No
0.62 0.800 0.795 0.762 1.2 209 40.1 No
0.64 0.769 0.762 0.714 2.4 158 42.5 No
0.66 0.729 0.720 0.661 4 108 43.4 No
0.68 0.678 0.666 0.582 6.6 51 44.8 No
0.69 0.642 0.627 0.506 8.8 18 45.0 No
0.695 0.612 0.594 0.412 11 5 44.7 No
0.6997 0.566 0.542 0.237 15 1.4 43.8 No

Table 5.1: We report for Fig.5.3, ms = 125 GeV and vs = 170 GeV, reheating, nucleation and percolation
temperatures, respectively, for different values of λhs and γw reached by the expanding walls as well as the
parameter β̃/H computed using Eq.(5.19). We also show the effective Higgs mass in the false vacuum at the
nucleation temperature defined as (mFalse

H )2 = ∂2V
∂h2

∣∣
T=Tnuc

, relevant for DM production explained in section 5.4.2.
In the last column, FM0 concerns the displacement of the false minimum. No if it is at the (Higgs) origin, yes if it
moved. In this case, the minimum is always at the origin.
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ms = 125 GeV, vs = 205 GeV
λhs

Treh
100GeV

Tnuc
100GeV

Tper
100GeV γw

β̃
H

= (8π)1/3

R⋆H
mFalse
H /GeV FM0

0.397 0.577 0.564 0.544 4 371 19.1 No
0.405 0.530 0.512 0.488 8 268 19.1 No
0.4155 0.448 0.412 0.379 18 130 17.7 No
0.42 0.393 0.330 0.290 37 72 15.2 No
0.423 0.339 0.161 0.124 270 66 7.1 No
0.4234 0.335 0.107 0.095 805 109 3.9 No
0.424 0.335 0.051 0.051 5.7 · 103 3.3 · 103 0.7 No
0.4242 0.335 0.0337 0.0337 1.8 · 104 3.2 · 104 0.25 No
0.42424 0.335 0.028 0.0279 3.0 · 104 1.8 · 103 4.4 No
0.424266 0.335 0.018 0.017 1.0 · 105 99 6.2 Yes
0.424267 0.335 0.016 0.014 1.3 · 105 44 6.3 Yes

Table 5.2: Same as Table 5.1, but for Fig.5.6 and with vs = 205 GeV. We observe that the last two points display a
displacement of the false minimum.

ms = 150 GeV, vs = 175 GeV
λhs

Treh
100GeV

Tnuc
100GeV

Tper
100GeV γw

β̃
H

= (8π)1/3

R⋆H
mFalse
H /GeV FM0

0.53 0.616 0.608 0.592 − 580 17.4 No
0.54 0.581 0.570 0.552 3 420 17.8 No
0.56 0.492 0.470 0.444 9 228 17.7 No
0.58 0.329 0.141 0.130 348 160 4.7 No
0.582 0.327 0.051 0.0508 5.3 · 103 9.5 · 103 0.4 No
0.582262 0.327 0.025 0.0236 3.7 · 104 194 8.2 Yes
0.582264 0.327 0.024 0.0219 4.3 · 104 130 8.3 Yes
0.582266 0.327 0.021 0.017 5.7 · 104 24 8.5 Yes

Table 5.3: Same as Tables. 5.1 and 5.2, but with ms = 150 GeV and vs = 175 GeV.

5.3.3 ms = 150 GeV

Previously, we studied specifically the case where the parameterms = 125 GeV and we observed that for this value,
the region of deep supercooling displayed small masses of the singlet in the real vacuum, being on the verge of
detection due to exotic Higgs decays: h → ss at Ms ≲ 62 GeV. We also concluded in section 5.3 that this region
was closing around Ms ≈ 75 GeV. We could wonder if this conclusion would change if we modify the value of the
parameter ms, and if so in which direction. On Fig.5.8 we show similar plots than in Fig.5.2 and 5.4 for the case of
ms = 150 GeV. Thus, increase the value of ms pushes the deep supercooling region to Ms ≈ 90 GeV, at the price
of increasing the portal coupling λhs. However, we can observe on the last plot of Fig.5.8 that the typical tuning
remains roughly the same and that we can still trust our naive (Tnuc/mh)2 for an order-of-magnitude estimate of
the tuning.

On the other hand, we also observed that decreasing the parameter ms to ≈ 100 GeV was pushing all the deep
supercooling region inside Ms ≲ 62 GeV, which is thus strongly disfavored by colliders. We hope that this trend
can be extrapolated to larger values of ms, until we hit perturbativity bounds for λhs.

Finally, in Table 5.3, we provide the value of the velocity, reheating and nucleation temperature for ms = 150
GeV and vs = 175 GeV that will be used in Fig.5.10.
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Figure 5.8: Similar plots than in Fig.5.2 and Fig.5.4 for the value of ms = 150 GeV.
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Figure 5.9: Here is presented the same results found in Fig. 6 of Ref. [372]. It has to be noted that these results are
obtained with only the thermal potential and without Daisy resummation, i.e. without thermal masses. The relation
with our parameters is (λs, λhs) = (η, 2κ) and Ms(vEW , 0) = 300 GeV.

5.3.4 Matching with former results

We would also like to compare our result with previous studies. Though we focused mostly on a more weakly
coupled part of the parameter space, we would like to compare our findings with the ones in the Ref.[372] and argue
that we observed only small changes, due to the inclusion of loop-corrections and Daisy resummation. On Fig.5.9
we make a reproduction of the scan of the Fig.6 of [372] using our potential and emphasize the close similarities.
The relations between the parameters κ, η and the couplings in the Eq.(5.1) is as follows

κ[372] = λhs
2 , η[372] = λs. (5.22)

5.3.5 Z2-Domain wall collapse

Our main discussion was focused on the two step phase transition (0, 0) → (0, vs) → (vEW , 0) where the first
phase transition is Z2 breaking. Obviously during such a phase transition domain walls will be formed which can
drastically modify the cosmology of the system. We can avoid the stable domain walls if we assume some small
Z2 breaking, however in this case the question rises about the timescale for the stability of the domain walls. This
is particularly important since recently it was shown [390] that for singlet extension of the SM the domain walls
(if still present) will become seeds for the secondary phase transition (0, vs) → (vEW , 0) and will dominate the
probability of tunneling of the phase transition. We will follow closely the discussion in the section 5.2.2 using only
the tree level potential and the thermal corrections to the masses. Then the Z2 breaking phase transition will occur
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at the temperatures

TZ2 ≃ vs

 12
3 + 4λhs v

2
s

m2
s

1/2

≃ 200 − 300 GeV, (5.23)

which is the temperature of the domain wall formation. The domain wall mediated transition will happen at the
temperature Tw which is found to be order one different from TZ2 . The exact mechanism of the transition depends
on the values of the couplings and can proceed either with the classical rolling or 2D bounces localized on the
domain wall. The temperature when the classical rolling can start is reported in Ref.[390] and is equal to

T rolling
w ≃ TZ2


4m2

h +m2
s

(
1 −

√
1 + 8v2

sλhs
m2
s

)
8Πh(TZ2) +m2

s

(
1 −

√
1 + 8v2

sλhs
m2
s

)


1/2

. (5.24)

The nucleation temperature (T 2D
w ) of 2D bounces should be found numerically (Ref.[390]) however it will be

obviously smaller than Tcrit (of (0, vs) → (vEW , 0) phase transition). At this point we can safely ignore the seeded
phase transition effects if all of the domain walls annihilate in the interval of temperatures

[Tw, TZ2 ] , Tw < Tcrit, (5.25)

where T∗ is the temperature when the seeded phase transition will be completed and it is obviously less than Tcrit
of EW phase transition. Let us estimate how strong should be the bias ∆V between the potential energies of the
two minima of Z2 potential so that all of the walls can disappear. For these estimates it is sufficient to assume that
there is order one difference between Tw and TZ2 , which is generically the case. We define a little bias between the
two Z2 related minima along the s direction: ϵ. The critical radius (above which) areas with true vacuum will start
to expand is roughly

Rc ∼ σDW
ϵ

, (5.26)

where σ is surface energy density of the domain wall, not to be confused with the tension of the bubble wall that
we already discussed. So the domain walls will exist on the time scale of

∆tw ∼ Rc
u

∼ σDW
uϵ

, (5.27)

where u is velocity of the domain wall motion. The change of the temperature before the domain wall annihilation
will be roughly

∆T ∼ TH∆tw. (5.28)

So that if ∆twH ≪ 1 ⇒ ∆T ≪ T the wall annihilation happens almost instantaneously. Assuming σDW ∼ T 3
crit

and H ∼ T 2
crit
Mp

we get

ϵ

T 4
crit

≫ Tcrit
uMpl

. (5.29)

Balancing the pressure against the friction forces ϵ ∼ uT 4
crit we can estimate the velocity and then the condition for

the quick wall annihilation becomes

ϵ

T 4
crit

≫
√
Tcrit
Mpl

∼ 10−8, (5.30)

which is not restrictive at all.
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5.4 Revisiting the production of DM and Baryogenesis

One of the motivation for the study of a model of EWPT with relativistic bubbles is the relation between relativistic
expansion and the out-of-equilibrium production of heavy states presented in the previous chapters, when the field
undergoing the PT (here the Higgs) is coupled to some heavy dark sector at typical mass MN . In this section, we
remind the principle of the production mechanism and we study the scenario of the production of Dark Matter[2]
and Baryogenesis[3], that were previously agnostic about the EWPT realisation.

First of all, the strong FOPT involves a supercooling represented by a dilution factor,

D ≡ gsym
⋆s (Tnuc)
g⋆s(Treh)

(
Tnuc
Treh

)3
, (5.31)

with g⋆s(T ) (gsym
⋆s (T )) being the number of relativistic degrees of freedom of the entropy in the broken (symmetric)

phase. This means that with D ≪ 1, any type of dark matter production or Baryogenesis mechanism that happens
much earlier than the PT should provide values denser than the conventional estimation by a factor of 1/D (see for
example [165, 174]). For instance, the WIMP cross section should be σ ∼ D

10−3 10−29cm3/s to produce a correct
dark matter abundance. This is the case when freeze-out happens at temperatures much higher than the reheating.

5.4.1 Production of heavy states during ultra-relativistic expansion

The results in Sec. (2.150) on the terminal velocity in the SM allow us to compute the maximal mass of the particles
which can be produced during the electroweak FOPT in the singlet extension. Indeed saturating the step function
in the above equation and assuming the Lw ∼ 1/vEW we get approximately:

MMAX ≈ 400 GeV
log1/2 MZ

gTnuc

(∆V − ∆PLO
(100 GeV)4

)1/2 (100GeV
Tnuc

)
. (5.32)

Numerical results for the maximal mass MMAX are reported in Fig.5.2. We can see that the maximal mass we can
produce is roughly ∼ 10 TeV scale.

We would like to note that our results can be easily applied for the mass gain mechanism of the heavy state
production [303], where a particle which is massless outside of the bubble, acquires a mass M ∼ yvEW . Indeed in
this case the maximal mass will beMmass gain ≃ γwT (This is the condition for the particle to enter the bubble), and
can be read off from the bottom right plot of the Fig.5.2 by noting that it will scale as Mmass gain ∼ M2

MAX/vEW .
Since the mass of the heavy field comes from the vev of the Higgs, it will additionally be bounded by the unitarity
considerations, y ≲

√
4π to be below ≲ 2 TeV.

5.4.2 Dark Matter production

In this section we will apply the results for the velocity of the bubble expansion for DM model building and to the
several models that we already presented in Chapter 3: we will start by presented the vanilla model of 3, then we
will propose a new case specific to the singlet model, where it is the singlet itself which is coupled to DM and
produces it, finally, we will also discuss the case of fermionic DM, like presented in section 3.6.
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Figure 5.10: Left: DM abundance in the parameter space λϕh −Mϕ for different values of λhs by fixing vs = 205
GeV and ms = 125 GeV (that fixes the values of Tnuc, Treh and γterminal

w ). The solid lines represent correct DM
abundance, while underproduced inside and overproduced outside. The lower part of each contour is dominated by
freeze-out and the upper part via bubble expansion. The connecting vertical line (independent of the portal) comes
from thermal production after the reheating of the transition. The magenta shaded region is excluded by XENON1T
while the dotted green and blue lines are projected limits from XENONnT and DARWIN respectively. Right: same
plot for vs = 175 GeV and ms = 150 GeV. As expected, increasing the tuning from red to magenta increases the
amplitude of the curve. The values used are extracted from Table 5.3.

Scalar DM coupled via the Higgs portal

In this first section, we present the DM abundance produced in the vanilla model with DM-Higgs portal presented in
Chapter 3 Eq.(3.14). In this context, the Ceff discussed in section 3.3.4 is always one, as we have checked. Instead
of making a scan of the parameter space, we will just focus on a few representative benchmark points.

Forms = 125, vs = 205 GeV, we show in Fig.5.10 the isocontours reproducing the correct relic density for three
reference values of λhs (corresponding nucleation temperatures can be found in the Table 5.1). Firstly, Ceff ≃ 1
for all three reference points. For λhs = 0.424 the upper red curve corresponds to the case when DM production
is dominated by the BE (bubble expansion) and the lower curve by FO. The steepness of the upper red curve
(BE) comes from the fact that we are in the region of parameter space where exp

[
−M2

ϕ/(2γwvEWTnuc)
]

≪ 1,
leading to a very strong sensitivity on Mϕ mass. Physically this means that the model generically predicts large
overproduction of DM in BE process unless the Boltzmann suppression exp

[
−M2

ϕ/(2γwvEWTnuc)
]

is playing
a role. For the other two reference points λhs = 0.4242, 0.42424 we can see that there is an additional part of
parameter space for the DM masses Mϕ ∼ 1 − 4 TeV, which corresponds to the region without the Boltzmann
suppression exp

[
−M2

ϕ/(2γwvEWTnuc)
]

∼ 1. This is related to larger values of MMAX ∼
√
γwvEWTnuc and

smaller values of the nucleation temperature, reducing the excess of the DM abundance. On the right panel of
Fig.5.10, we report similar plots for vs = 175,ms = 150 GeV.

Singlet portal DM

In this section we mention an alternative possibility of coupling the DM (ϕ) to the singlet field s via “singlet portal”

∆L ⊃ λsϕ
2 ϕ2s2 + 1

2M
2
ϕϕ

2 , P (s → ϕ2) ≈
(
λsϕvs
Mϕ

)2 1
24π2 Θ(γwTnuc −M2

ϕL
s
w) , (5.33)
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Figure 5.11: DM production for the singlet portal model. In this context, the Boltzmann suppression ∼ e−ms/Tnuc

plays a strong role and allows for bubble expansion produced DM with much higher nucleation temperature
Tnuc ∼ 15 GeV.

where the width of the singlet wall is similar to the length of the Higgs wall Lw. Interestingly even though
FOPT is from (0, vs) → (vEW , 0), the singlet scattering of the wall can lead to the production of the ϕ field.
Phenomenology of DM production is very similar to the Higgs portal case discussed in the previous section, with
one main difference: in the false vacuum, the mass of the singlet is not small and the factor Ceff introduced in
the Eq.(3.39) plays an important role. The results are shown in Fig.5.11. For example, if we compare the curves
for λhs = 0.424,ms = 125, vs = 205 in Fig.5.11 and in Fig.5.10, we can see that, for the Higgs portal DM, the
isocontour has the same shape, but with the larger values of DM Mϕ masses. As shown in Eq.(3.33), this is due to
the proportionality between the DM relic abundance produced during the bubble expansion with ∝ Ceff/Mϕ.

Singlet portal with additional field A slight modification of this scenario is to further introduce a light scalar s̃.
Then we can have,

L = LSM − λ̃s̃sϕ2 −
M2
ϕ

2 ϕ2, (5.34)

where again ϕ is the DM. We assume that s̃ is in the thermal bath before the PT. Then due to the field change of s in
the bubble wall, the momentum conservation violating process s̃ → ϕϕ can occur (h → ϕϕ may also occur if there
is the h2ϕ2 term.) In this model s → s̃+ SM particles happen via the DM loop.

Fermion-mediated Dark Matter

In this subsection, we take back the model presented in section 3.6 and study it in the context of the singlet
extension. We already argued that it seems very difficult to reproduce the observed DM abundance if we are not in
the co-annihilation regime, because otherwise the DM would be largely overproduced, so we will not consider this
case any more.

However, in the co-annihilation regime, where the interaction rate is boosted, we find that it becomes possible
to reproduce the observed DM abundance. Results are displayed on the Fig. 5.12 for vs = 205,ms = 125 GeV and



150 CHAPTER 5. RELATIVISTIC BUBBLE WALLS IN THE ELECTROWEAK PHASE TRANSITION

3.0 3.5 4.0 4.5 5.0 5.5 6.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Overproduced DM

Under-
produced DM

Figure 5.12: DM production in the fermionic portal model. We fix MDM = MN/5, and YDM = 3. Only the
co-annihilation regime where |Mϕ −Mχ| ≲Mϕ/20 appears to be viable and shown by dashed lines.

MDM = MN/5, and YDM = 3. However, even in this case, we see that bubble expansion tends to overproduce the
DM and the relic abundance in BE can be reproduced if only the factor exp[−M2

N/(2vEWTnucγw)] starts playing
a role in suppressing DM relic density (left boundary of Fig.5.12 is almost vertical).

singlet DM ?

Finally, before closing this section, we comment about the possibility of considering the singlet s itself, in the limit
of very precise Z2, as DM. After the phase transition T ∼ 40 GeV, the singlet is in thermal equilibrium and we can
apply straightforwardly the freeze-out expression:

Ωtoday
s, FOh

2 ≈ 0.1
(0.06
λhs

)2(Ms(vEW , 0)
100 GeV

)2
. (5.35)

From this estimate of the FO abundance for s and recalling that we considered λhs ∼ 0.3 − 0.6 andMs(vEW , 0) ∼
100 GeV, we conclude that the abundance of s produced in this fashion, today, is underproduced by one or two
orders of magnitude to fit the observed amount of DM Ωtoday

s, FOh
2 ≈ 0.1. Even in this underproduced case, there are

severe bounds from the direct detection experiments except for the resonant region, where (5.35) is over-estimated.
However, as we will discuss in the Appendix. 5.3.5, we will have a Z2 explicit breaking which makes s decay much
before today.

5.4.3 Baryogenesis mechanism

In Chapter 4 we proposed a model of baryogenesis relying on EW relativistic bubbles. At the time, we kept the
discussion generic and did not provide a model for the EW sector. In this Chapter, we studied such a model in detail
and so we would like to revisit our former model. In Chapter 4 we argued that the absence of strong wash-out leads
to the following conditions

MB,χ,η ≳ 30Treh ∼ 1 TeV , (suppressed wash-out) (5.36)
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as well as experimental signatures (direct production in colliders, flavor violation, neutron oscillations) pushed the
heavy particles to be

MB,χ,η ≳ 2 × 103 GeV . (5.37)

In the context of singlet extension with Z2 that we studied, this opens up the range

MB,χ,η ∈ [2, 10] TeV , (5.38)

where the Baryogenesis mechanism proposed is operative.

5.4.4 Impact of the heavy sector on the phase transition and the tuning

The models we are considering by construction have new heavy fields coupled to the Higgs boson. These will lead
to the finite corrections to the scalar parameters of the form (assuming a Yukawa type connection Y BHb)

δm2
h ∼ −8gNM2

NY
2

64π2

(
log M2

N

v2
EW

− 3
2

)
, δλ ∼ 4gN

Y 4

64π2

(
log M2

N

v2
EW

− 3
2

)
, (5.39)

where gN is the number of heavy degrees of freedom and MN is the typical mass of the heavy sector. One can
wonder how these corrections can effect the tuning of the Higgs potential. However note that in our model the
Higgs mass hierarchy problem is not addressed and generically we expect the size of m2

h to be of the order of the
cut off scale (Mpl in SM). So the corrections in Eq.(5.39) do not make the tuning worse.

In case the Higgs hierarchy problem is solved at the scale of the heavy fields in Eq.4.61 the tuning in the Higgs
potential will be roughly,

tuning ∼ m2
h

∆Heavy physicsm2
h

∼ 8π2m2
h

Y 2M2
N

(Hierarchy problem solved) (5.40)

We can combine this estimate with a tuning for low nucleation temperatures (see discussion in section 5.3.1) which
are necessary for the heavy field production and the tuning estimate becomes:

tuning ∼ m2
h

∆Heavy physicsm2
h

T 2
nuc
m2
h

∼ T 2
nuc

∆Heavy physicsm2
h

∼ 8π2T 2
nuc

Y 2M2
N

. (Hierarchy problem solved) (5.41)

Using the estimates of the maximal values of γw and the maximal mass of heavy particles which can be produced
during the bubble-plasma collisions (see Eq.(2.152) and Eq.(3.59)) we get the following estimate for the maximal
tuning in the model by taking back Eq.(5.32), saturating the bound and taking Y ∼ 1

tuningMAX ∼
(

Tnuc
20GeV

)4
, (5.42)

where we remind the reader that this estimate is valid only if the Higgs hierarchy problem is solved at the heavy
fields scale.
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5.5 Gravitational waves emitted

It is well known that strong gravitational waves background will be emitted, with peak frequency around the mHz
if the EWPT happens to be strongly first order. This is the optimal range of sensitivity of the forthcoming LISA
detector [328, 54] and also GW detectors such as eLISA[329], LIGO[330, 331], BBO[332, 333], DECIGO[334,
335, 336], ET[337, 45, 338], AION[339], AEDGE[340].

As we have seen in sections 5.4.3-5.4.2, for the baryogenesis and DM production we need relativistic walls with
relatively low nucleation temperature ≲ 10 GeV. In this context, α ≫ 1 and κsw → 1. The peak frequency and the
signal amplitude are only function of the size of the bubbles at collision, which are reported in Table 5.2 and 5.3.
We can observe that in this range β/H spans the value between [50, 104], with a preference for lower values. Going
back to section 1.6, emitted amplitude and frequencies will be of the order

Ωpeak
plasmah

2 ∈ [5 × 10−7, 2 × 10−9], fpeak ∈ [10−4, 0.03] Hz (5.43)

where we set zp = 10, g⋆ = 100. This range of frequencies and amplitude are largely in the expected sensitivity
of the coming observer LISA[329, 54], as expected for this class of models[31]. We thus conclude that strong GW
signal in the LISA with spectrum controlled by the plasma sound waves is a generic prediction of baryogenesis and
DM production with relativistic bubble walls. This is in sharp opposition with the general expectation that usual
EWBG demands slow walls, and thus suppressed signals.

As a final comment, it should however be noticed that the current simulations do not directly provide a solution
for the regime of large α, and we only have an extrapolation of the numerical result. Thus, the conclusion above
should be taken with a grain of salt.

5.6 Summary and outlook

In this study we have presented an explicit realization of the baryogenesis and DM production during electroweak
phase transition with ultra-relativistic bubble expansion. The work is based on the proposals in [1, 2, 3, 303] where
new heavy particles are produced in plasma−bubble wall collisions. We have shown that the model with SM
extended by a real singlet with a Z2 symmetry can indeed lead to ultra-relativistic bubbles, where the Lorentz factor
γw can reach the values ∼ 10(5−6). Such fast bubbles can appear if the symmetry breaking occurs in two steps: first
discrete Z2 is spontaneously broken and in the second step electroweak symmetry breaking is accompanied by Z2

restoration (0, 0) SOPT−−−−→ (0, vs)
FOPT−−−−→ (vEW , 0). We find that there exists a region of parameter space where the

nucleation temperature can become as low as 1−2 GeV and the collision of the bubble wall with the plasma particles
can lead to the non-thermal heavy particle production with the masses up to ∼ 10 TeV. Interestingly we find that
the mechanism is most efficient for relatively low masses of the singlet field Ms(vEW , 0) ∼ 70 − 100 GeV, close
to the region excluded by the Higgs invisible decays. Subsequently, this region of parameter space will be probed
by HL-LHC ([377, 391]) in the singlet production mediated by off-shell Higgs boson. By noting the slight Z2
breaking, s, if produced, can decay into bb̄ in collider experiments. Depending on the size of the breaking displaced
vertices of bb̄may be probed. We find the typical bubble radius parameter of the order ofR⋆ ∼ (10−4 − 10−1)H−1

so that stochastic gravitational background signal becomes observable at GW experiments like LISA[329, 54].

The model necessarily requires tuning ∝ (Tnuc/mh)2 which numerically turns out to be of the order of
10−4 − 10−2 (using Giudice-Barbieri measure) for successful baryogenesis and DM production mechanism. In
spite of this we believe it can provide a useful guidance for more appealing models where these hierarchies can
appear naturally.
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In general we hope that more realistic realisation of the ultra-relativistic EWPT would follow the lines of
this study, for example in nearly conformal completion of the EWPT and composite Higgs. The case of near
conformality offers a natural realisation of the supercooling, as we already argued for example [5], though our
model was not realistic, and the physical conformality is expected to occur when strongly coupled dynamics. Due
to this expectation, it becomes interesting to know if our mechanisms of DM production and baryogenesis can be
lifted to strongly coupled UV completion. We leave this difficult question to further studies.
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Appendix

A.1 The membrane action

In Chapter 1, we used an effective Lagrangian for the description of the early bubble expansion, in Eq.(1.123). Since
this Lagrangian is not immediately obvious, we would like to reproduce the derivation of the membrane action in
the thin wall limit, following the lines of [29]. The action takes the form

S =
∫
d4x

(1
2(∂µϕ)2 − V (ϕ)

)
. (A.1)

In the context of a spherical bubble, we can introduce the radial variable r2 = x2 + y2 + z2. Then the derivative
∂rϕ is only non-vanishing in the vicinity of the region interpolating between the two vacua, that we call the wall.
The wall is by definition this region of strong gradient. The action of the membrane simplifies to

S = 4π
∫
dtdrr2

(1
2((∂tϕ)2 − (∂rϕ)2) − V (ϕ)

)
. (A.2)

As already emphasized, gradients are only strong in the direct vicinity of the wall. We can thus separate the integral
into two contributions: the region of the wall, containing gradients, and the rest of the space, where only the
potential matters and the integral over the radius can be easily performed:

S = 4π
∫

wall
dtdrr2

(1
2((∂tϕ)2 − (∂rϕ)2) − V (ϕ)

)
− 4πR3

3

∫
dt∆V. (A.3)

To make further progress, let us change the basis from (et, er) into (e⊥, e||) defined in the following way

e⊥ ≡ 1√
1 − Ṙ2

(−Ṙet + er), e|| ≡
1√

1 − Ṙ2
(et + Ṙer). (A.4)

Now noticing that the wall can be approximated by a function of ϕ(r − Ṙt), with slow variation of its shape, we
can expect that

eµ⊥∂µϕ ≫ eµ||∂µϕ ⇒ ∂µ∂µϕ ≈ ∂2
⊥ϕ (A.5)
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Plugging this in the equation of motion, neglecting all forms of friction, and integrating over ϕ gives∫ ϕt

ϕf

dϕ
dV

dϕ
=
∫ 0

∞
dr
dϕ

dr
∂2
⊥ϕ. (A.6)

In the thin wall limit, the gradient are concentrated within a very thin shell, and the integral is simple

2V (ϕ) = (∂⊥ϕ)2, (A.7)

where V (ϕ) is defined as zero in the true vacuum and is positive outside the bubble. We can now finish our
computation

4π
∫

wall
dtdrr2

(1
2((∂tϕ)2 − (∂rϕ)2) − V (ϕ)

)
= 4π

∫
wall

dtdrr2
(

− 1
2(∂⊥ϕ)2 − V (ϕ)

)
= 4π

∫
dtR2(t)

∫
wall

dr

(
− (∂⊥ϕ)2

)
. (A.8)

Now since

∂r

∂ϕ
≈
√

1 − Ṙ2

∂⊥ϕ
. (A.9)

We obtain

−4π
∫
dtR2(t)

√
1 − Ṙ2

∫
wall

dϕ(∂⊥ϕ)2 1
∂⊥ϕ

= −4π
∫
dtR2(t)

√
1 − Ṙ2

∫
wall

dϕ
√

2V (ϕ)

= −4π
∫
dtR2(t)

√
1 − Ṙ2σ, (A.10)

with σ being the tension of the wall defined by

σ ≡
∫

wall
dϕ∂⊥ϕ =

∫
wall

dϕ
√

2V (ϕ). (A.11)

Collecting all the terms, the action becomes

S =
∫
dt

(
4πR2(t)σ − 4π

3 R3(t)
∫
dt∆V

)
. (A.12)

A.2 Transition pressure

In this appendix we will review, for the sake of completeness, the pressure from transition of the particles through
the wall. We will focus on the limit γw ≫ 1 and will always assume that the mean free path of the particles is
larger than the wall width, exactly as we did in the main text. In this case we can treat particles quasi-classically
and consider only individual interactions with the wall. This discussion is not new and was already presented in the
papers [95, 80] and recently reviewed in [92](where the analytical results for the pressure have been reported). The
particle, in front of the wall, will follow the usual thermal distribution, which in the frame of the wall becomes

f(E, p, T ) = f

(
pµu

µ

T

)
= f

(
γw(E + vwpz)

T

)
, (A.13)
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where we have assumed like in Fig.2.3 that the wall moves along the positive z direction with velocity vw and
uµ = γw(1, 0, 0,−vw). We will assume that the particle is incident on the wall with mass ms and on the other side
it has mass mh. The pressure on the wall is originating from the following three processes (we follow closely the
notations of [95]).

• Reflection from the wall: when the incident particle does not have enough momentum or energy to pass
through the wall:

∆Pref = 2
4π2

∫ mh

ms
dE

∫ 0

−
√
E2−m2

s

dpz

[
p2
zf

(
γw(E + vwpz)

T

)]
+ 2

4π2

∫ ∞
mh

dE

∫ 0

−
√
m2
h
−m2

s

dpz

[
p2
zf

(
γw(E + vwpz)

T

)]
(A.14)

in this case the momentum transfer to the wall is ∆pz = 2pz .

• Transition through the wall: the pressure is generated due to the change of momenta of the particle with
∆pz = pz +

√
p2
z − (m2

h −m2
s):

∆Pt+ = 1
4π2

∫ ∞
mh

dE

∫ −√
m2
h
−m2

s

−
√
E2−m2

s

dpz

[
pz(pz +

√
p2
z − (m2

h −m2
s))f

(
γw(E + vwpz)

T

)]
(A.15)

• Transition in the opposite direction: with ∆pz =
√
p2
z +m2

h −m2
s − pz:

∆Pt− = 1
4π2

∫ ∞
mh

dE

∫ √
E2−m2

h

0
dpz

[
pz
(√

p2
z +m2

h −m2
s − pz

)
f

(
γw(E + vwpz)

T

)]
(A.16)

Let us start by considering the transition pressure Eq.(A.15). Introducing the new variables

Y ≡ γw(E + vwpz)
T

, k ≡ −pz
T
, (A.17)

the expression for the pressure becomes:

∆Pt+ = T 4

4π2γw

∫ ∞
√
m2

2−m2
s/T

dkk

(
k −

√
k2 − (m2

h −m2
s)/T 2

)∫ ∞
γw(

√
k2+m2

s/T
2−vwk)

f(Y )dY

= −T 2(m2
h −m2

s)
8π2γw

∫ ∞
√
m2
h
−m2

s/T
dk

∫ ∞
γw(

√
k2+m2

s/T
2−vwk)

f(Y )dY, (A.18)

where we have expanded the momentum difference (k −
√
k2 − (m2

h −m2
s)/T 2) in the large k limit. We can see

that the integral is non-vanishing if the lower limit of the second integral is small{
γw(

√
k2 +mh

1/T
2 − vwk)

}
∼ k

2γw
+ m2

s

2T 2
γw
k

≲ O(1) ⇒ ms ≲ T. (A.19)
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Figure A.1: Illustration of the forward transmission pressure, the reflection pressure, the total pressure and the LO
order approximation. mh

T = 10, 2 respectively on the Left and the Right.

Otherwise the pressure effects will be strongly suppressed by the Boltzmann factor exp[−ms
T ], which is obvious,

since the energy of the massive particle is always larger than its mass. On top of this, looking at the lower limit of
the k integration, we can conclude that

Y ≲ 1 ⇒
√
m2
h −m2

s ≲ γwT, (A.20)

which is just the necessary condition for the particle to pass through the wall. Combining these two conditions we
observe that this contribution to the friction is efficient if only

mh < γwT, ms < T. (A.21)

Performing the integration we will obtain for the friction

∆Pt+|γwT/mh→∞ = m2
h −m2

s

24 T 2. (A.22)

Using a similar analysis we can argue that the reflection pressure and the transmission from the opposite side are
vanishingly small in γw → ∞ limit. Indeed setting ms → 0 for simplicity and using the same variable redefinition
as in Eq. (A.18) we will get

∆Pref = I1 + I2

I1 = 2
4π2

∫ m2

0
dE

∫ 0

−
√
E2−m2

s

dpz

[
p2
zf

(
γw(E + vwpz)

T

)]

= T 4

2π2γw

∫ mh/T

0
dkk2

∫ γw(mh/T−k)

k
2γw

dY f(Y ) ∝ γ−1
w → 0

I2 = T 4

2π2γw

∫ mh/T

0
dkk2

∫ ∞
γw(mh/T−vwk)

f(Y )dY ∝ γ−2
w → 0. (A.23)

At last the pressure from the transition in the opposite direction ∆Pt− is always suppressed since the argument of
the distribution function is always larger than one ∼ γwmh

T ≫ 1 . We confirm these estimates using our numerical
calculation illustrated on the Figure A.1, where we plotted the various contributions to the total pressure. For the
various contributions to the pressure the following approximate relations are true in the mass range mh

T ∼ 1 − 10:

Pref
z ≈ Pt+

z ≈ 0.4 × Pγ→∞ for γwT = mh (A.24)
Pt−
z ≈ Pref

z ≈ 0, Pt+
z ≈ 0.9 × Pγ→∞ for γwT = 10mh. (A.25)
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A.3 Consequences of the shape of the wall

In the main text, we have often assumed that the wall is linear. This provided us with a suppression factor
( sinα

α

)2.
However given a wall shape, naively, we would expect to have different types of suppression. The wall shape
depends on the Higgs potential and on the specific interactions between the wall and the plasma. Here let us assume
two types of wall shapes and let explicitly calculate the suppression factor from Eq.(3.18). To this end, we use first
a tanh wall shape

Vtanh(z) = v

2

[
tanh

(
z

Lw

)
+ 1

]
, (A.26)

and second a gaussian wall shape

Vgaussian(z) = v√
2πLw

∫ z

−∞
dz′ exp

(
− z′2

2L2
w

)
(A.27)

to perform the integral. Here, v is the VEV inside the bubble and Lw is the length of the wall.
In general, we can perform the integral by using partial integration of

M = −
∫ ∞
−∞

dzV ′(z)exp (i∆pzz)
i∆pz

. (A.28)

For the tanh (z/Lw) case, V ′tanh(z) = v/(2Lw cosh2 (z/Lw)). By noting that z integral becomes the summation
of residues at poles z = πiLw/2, 3πiLw/2, · · · for ∆pz > 0 or z = −πiLw/2,−3πiLw/2, · · · for ∆pz < 0, we
obtain

Mtanh = sign[∆pz]πivLw
∞∑
n=0

e−Lw|∆pz |(n+1/2)π = πivLw

2 sinh
(
Lw∆pzπ

2

) . (A.29)

One finds that this solution has the same behavior at ∆pz ≲ 1/Lw than in the linear case but the suppression is
rather exponential, ∝ e−Lw∆|pz | when Lw|∆pz| ≳ 1. This implies that the linear approximation is good when
Lw|∆pz| ≲ 1 but may not be good enough when Lw|∆pz| ≳ 1.

In the case of Eq. (A.27) similarly we obtain,

Mgaussian = − v√
2πi∆pzLw

∫ ∞
−∞

dz exp
(

− z2

2L2
w

+ i∆pzz
)

= vi

∆pz
exp

(
−L2

w∆p2
z

2

)
(A.30)

where we have dropped the surface term. Again we have the same form as the linear approximation with ∆pz ≲ 1/Lw
but the suppression factor is again exponential in the regime ∆pz ≳ 1/Lw. This motivates our former approximation
that we set by hand the probability of production to zero in the regime ∆pz ≳ 1/Lw.

A.4 The bounce in one and two dimensions

In Chapter 5 we studied numerically the phase transition from the minimum (0, vs) (or in the vicinity of it) to
(vEW , 0), so a two-fields bounce transition. The bounce computation can be done using existing codes for example
FindBounce or CosmoTransition. However we have found that in the regime of long supercooling where the
potential around the false vacuum is very flat and, the existing codes are often not stable and lead to numerical
errors. Thus we have developed our own code (more stable for the flat potentials), following the procedure described
in [266], while cross-checking the available values with FindBounce.
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A.4.1 Computation of the bounce profile in one dimension

In this Appendix, we briefly review the standard computation of the bounce action with only one field. In order
to compute the vacuum tunneling probability from the false vacuum to the true one in d dimensions, we need to
minimize the Euclidean action given by

SE =
∫
ddx

[1
2(∂µϕ)2 + V [ϕ]

]
. (A.31)

It is known that the field configurations leading to the minimal action are the ones that exhibit an O(d) spherical
symmetry, then the so-called bounce solution is the solution of the following Cauchy problem

d2ϕ

dr2 + d− 1
r

dϕ

dr
= dV [ϕ]

dϕ
, lim

r→∞
ϕ(r) = 0, dϕ

dr

∣∣∣∣
r=0

= 0, (A.32)

where we have chosen the false minimum to be at ϕ = 0. If we interpret the parameter r as a time and ϕ as a position,
this problem becomes formally equivalent to the evolution of a mechanical ball in a potential −V [ϕ] undergoing a
friction d−1

r
dϕ
dr , released with vanishing velocity and stopping its evolution for r → ∞ at ϕ = 0. It is well known

that this problem can be solved by applying numerically an overshoot/undershoot method on the position of the
released point. Releasing the ball too close to the true vacuum would induce an overshoot configuration (the ball
would continue after crossing ϕ = 0), we would thus shift the release point toward the false vacuum, while releasing
it too far would end up in an undershoot configuration (the ball would never reach ϕ = 0 and starts oscillate around
the minimum of −V [ϕ]) and we correct it by shifting the release point farther from the false vacuum. Iterating
between those two situations, we are able to find the correct release point and obtain the bounce solution.

It is well known that the case of a PT triggered by temperature fluctuation at temperature T is formally equivalent
to imposing a periodicity T−1 in the imaginary time tE , as we already discussed in Chapter 1. This imposes the
following constraint on the field

ϕ[tE ,x] = ϕ[tE + T−1,x] (A.33)

and the computation of thermally induced phase transition thus amounts to take d = 3 in the above equations.

A.4.2 Bounce action in two dimensions and path deformation

The problem complexifies when the transition involves many fields. Here there is no straightforward intuition for
the path followed by the fields in field space during the tunneling. One can think that a straight line, connecting the
two minima, could be a reasonable guess, but it turns out that it cannot be considered as a good approximation of
the euclidean action in many cases1. Here we thus describe the algorithm [267] to find the right path in field space.
In a multi-field case, ϕ becoming a vector in the field space, the Eq.(A.32) becomes

d2ϕ

dr2 + d− 1
r

dϕ

dr
= ∇V [ϕ], lim

r→∞
ϕ(r) = 0, dϕ

dr

∣∣∣∣
r=0

= 0. (A.34)

Since in this case an overshoot/undershoot procedure cannot be easily applied, the idea is to reduce the problem to
one dimensional tunneling. In order to do so we start guessing the path, ϕg(x), where x is now to be understood as

1Let us emphasize that in the region of the parameter space we studied in Chapter 5, the straight line between the false and the true
vacuum gives an Euclidean action which is often wrong by orders of magnitudes! Since the path is often very far from the straight line we
cannot dispense from the effort of studying the exact 2D path in field space.
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Figure A.2: On the left, the potential, along the path, experienced by the field x and the corresponding escape point
x⋆. On the right the potential, along the path, projected on the h direction.

the parameter that measure the distance along the path, i.e. the so-called curvilinear abscissa. For the present case,
if we parametrize the path in the field space as (h(t), s(t)) = (t, f(t)) ≡ (h, s(h)) it is defined as

x(h) =
∫ h

hfm

√
1 +

(
ds(h′)
dh′

)2
dh′, (A.35)

where hfm is the value of the Higgs field in the false minimum. With this choice of field coordinate to parametrize
the path, the condition

∣∣dϕ(x)
dx

∣∣2 = 1 is satisfied, and the Euclidean equation of motion in Eq. (A.34) can be rewritten
along the parallel and the perpendicular direction

d2x

dr2 + d− 1
r

dx

dr
= ∂xV [ϕg(x)],

d2ϕg(x)
dx2

(
dx

dr

)2
= ∇⊥V [ϕg(x)]. (A.36)

Here, we have been able to separate the dynamics along the parallel and perpendicular direction in such a way that
the first equation defines a new undershoot/overshoot problem, that we solve to obtain the value of the escape point,
ϕ0(x⋆), and the Euclidean action corresponding to the potential along the path considered ϕg, as in Fig.A.2. On
the other hand, the second equation can be seen as a condition that the bounce solution has to satisfy and can be
thought as a force field acting on the path, defined as following

N ≡ d2ϕg(x)
dx2

(
dx

dr

)2
− ∇⊥V [ϕg(x)]. (A.37)

The right path will be the one where N is vanishing. The algorithm proceeds iteratively: first we guess a path, the
straight line connecting the two minima, then we find the bounce solution along this path, we compute the normal
force and deform the guessed path according to it. In practice, to define the path at the step n, ϕn, we need to solve
for the bounce profile for the path at ϕn−1, extract the escape point x⋆,n−1, that is (h(x⋆,n−1), s(x⋆,n−1)) in field
space, we then discretize the path in the interval x ∈ [0, x⋆,n−1], creating a series (ϕn−1)j , for j = 1, ..., N and a
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Figure A.3: Left: iterative procedure for the correct path, starting from the straight line connecting the two minima
and then modified according to the field N. Right: bounce profile of the fields (black for h(r) and red for s(r)) on
the correct path.

series of values for the normal force (Nn−1)j . We then shift each point of the discretized path by

(ϕn)j = (ϕn−1)j + ρ(Nn−1)j j = 1, . . . , N. (A.38)

In the end, we fit a path ϕn along the shifted points from (ϕn−1)j . The procedure of deformation of the path will
produce a series of paths ϕi[x], over which we compute the Euclidean action according to Eq.(A.31) at each step of
the deformation, like in Fig.A.3. The algorithm stops when the difference in the bounce action, S3, between two
successive iterations is below some imposed precision. At a definite temperature T , we start by identifying the two
minima, the false and the true ones

(⟨h⟩, ⟨s⟩)fm = (v(T ), vs(T )) → (vEW , 0), (A.39)

and will keep the false minimum fixed during the whole procedure of deformation. Generally, especially when
we have a sizable amount of supercooling, the escape point is just behind the barrier, so the escape point
(v⋆(Tn), vs,⋆(Tn)) will be different from the, zero-temperature, EWSB vacuum, but when the tunneling hap-
pens the system will classically roll down towards the global minimum, as we can see from Fig.A.3. We do not
track the evolution of the fields profile after the tunneling.

A.5 WKB approximation

In many of our chapters, we have made abundant use of the WKB approximation for the quantum plane waves of
particles, specially during their interaction with the bubble wall, that we considered as a background field. In this
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appendix, we quickly expose the WKB2 approximation. Developed in the early times of quantum mechanics, the
WKB approximation is a method to approximate the plane waves which assumes slowly varying potentials.

Let us start from the Schrödinger equation in one dimension

d2ψ(x)
dx2 + k2(x)ψ(x) = 0 (A.40)

where

k(x) =
(2m
ℏ2 (E − V (x))

)1/2
if E > V (x) (A.41)

k(x) = i

(2m
ℏ2 (V (x) − E)

)1/2
if E < V (x) (A.42)

The solutions of this equation for peculiar functions k(x) is well known. However there is no generic solutions in
the case of arbitrary k(x). If we restart from the simplest case, where k(x) = C, thus we can easily see that one
solution is given by well-known plane wave

ψ(x) = Neikx (A.43)

Now, if the potential, so k varies slowly, it becomes tempting to try to modify Eq.(A.43) by a simple

ψ(x) = Ne
i
x∫
x0

k(t)dt
(A.44)

with k(t) from Eq.(A.42) and the requirement of normalisation imposes

χ(z) ≃
√

kz,s
kz(z)

exp
(
i

∫ z

0
kz(z′)dz′

)
, (A.45)

Plugging this ansatz into the Schrödinger equation (A.40) already provides the condition of validity of such an
approximation

d2ψ(x)
dx2 + k2(x)ψ(x) = ik′(x)ψ(x) (A.46)

which approximates (A.40) if

|k′| ≪ k2 (A.47)

Applied to the problem of the phase transition, in which the Lorentz symmetry is broken along the direction of
the wall, the WKB approximation demands that the states on both sides of the wall match one to one and that the
plane waves smoothly interpolate from one side of the wall to the other one.

2The name of the WKB method comes from three physicists Wentzel, Kramers, and Brillouin that independently developed it in 1926
for the purpose of solving the Schrödinger equation. Though a mathematician, Harold Jeffreys, had already developed a similar method in
1923 for solving ODE, his name seems to have been forgotten.
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A.6 Dark Matter and baryogenesis via the collision of run-
away bubbles

The main purpose of this thesis was to expose and to study the cosmological consequences of particles produced
in the collision of the wall with the plasma, that we showed could be very heavy. In [167], authors proposed
a mechanism of production of non-thermal DM, possibly much more massive than the scale of the transition
MDM ≫ v, taking advantage of the collision of relativistic bubbles. This possibility was already hinted in [166]
and can be easily understood from the fact that ultra-relativistic bubbles carry a typical energy γwTnuc that is released
at the collision of bubbles, possibly materializing in the form of heavy non-thermal states.

In the context of ultra-relativistic bubble wall collisions, two extremal dynamics have been analysed; elastic and
inelastic wall collisions. In the first case, the walls bounce on each other multiple times, re-establishing after each
collision a new region of symmetric phase in between the walls and releasing a fraction of the stored energy under
the form of scalar waves and quanta. This scenario occurs when the effective potential of the symmetry breaking
field has two nearly degenerate minima at collision instance, and the field can easily jump from one vacuum to the
other. In the case of inelastic collision, the two minima are far apart and the field can not escape the broken phase.
Thus all the energy is released after one collision. As a consequence, for efficient production, all the energy of the
transition needs to be concentrated in the bubble wall, which is only satisfied in the regime of runaway. This rules
out the EWPT as a possible model for bubble collision production, but a dark FOPT with runaway walls could make
the job, this is what we will consider here.

Authors of [167] have studied Scalar, Fermion and Vector DM candidates in the case of elastic and inelastic
collisions and have found vastly different DM production abundances. We focus on the case of scalar DM candidate
with portal coupling similar to the one we used in Chapter 3,

Lscalar portal = λ

2 |φ|2ϕ2, (A.48)

where φ undergoes a transition.

Using this portal, let us review the result of [167].

Analytical estimates in the scalar portal case

Let us provide some rough analytical estimates, first in the simpler case of elastic collision and then in the case of
inelastic collisions. For simplicity we remain in the case of the scalar coupling of Eq.(A.48) (which is the model we
have studied) and show that the BC production is always negligible in both the case of elastic and inelastic collision
with respect to BE production.

Elastic case We want to compute ρDM for a particle emitted with mass MDM. In order to obtain an analytically
tractable expression, let us simplify the formulas of [167]. We obtain that the energy density of DM produced after
the collision is roughly given by

ρDM ≈
103v4

φ

4π2R⋆

λ2

8π

∞∫
M2

DM

dχ

χ2

√
χ− 4M2

DM ≈
103v4

φ

4π2R⋆

λ2

8π
1

MDM
, (Produced energy density) (A.49)
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with χ ≡ E2 − p2
z the invariant mass. If we plug R−1

⋆ ∼ βH ∼ 10β v2
φ

Mpl
for the radius at collision and we use

reasonable values for γw and Lw, which is any case only appear in a log Eq.(A.49) becomes

ΩDM,elastic ≈ 6 × 109 λ2

g⋆(vφ)β
(
vφ
Treh

)3( T 2
reh

MplMDM

)(
vφ

GeV

)
. (A.50)

In order of magnitude we should have Treh ∼ vφ and g⋆(vφ) ∼ 100, so

ΩDM,elastic ≈ 6 × 107λ2β

(
v2
φ

MplMDM

)(
vφ

GeV

)
. (A.51)

Comparing this expression with Eq.(3.34) shows that BE mechanism is always largely dominating if the scale of the
transition is not to close to the Planck scale and the supercooling is not too drastic. The condition for BE domination
is roughly

104βvφ
Mpl

<

(
Tnuc
Treh

)3
(BE domination condition) (A.52)

Inelastic case Let us now treat the inelastic case. To provide an analytical estimate, we separate into two regimes:
MDM ≪ mφ and MDM ≫ mφ. Formulas simplify to

ρDM ≈
103v4

φ

4π2R⋆

λ2

8π

∞∫
M2

DM

dχ

χ2
m4
φ

(χ−m2
h)2

√
χ− 4M2

DM (Produced energy density). (A.53)

For the sake of simplicity and because this is the regime of interest, we only treat the large mass MDM ≫ mφ. We
obtain

ρDM ≈
103v4

φ

4π2R⋆

λ2

8π
1

MDM

(
mφ

MDM

)4
for MDM ≫ mφ (A.54)

⇒ ΩDM,inelastic(MDM ≫ mφ) ∼ ΩDM,elastic(MDM)
(
mφ

MDM

)4

which consequently provides a even stronger suppression with respect to Eq.(A.49), so we conclude that the
abundance from inelastic collision can be neglected generically.

Fermion and Vector cases. On the other hand, Fermions and Vectors via the couplings

Lfermion portal = λfφf̄f︸ ︷︷ ︸
yukawa coupling

+ λf
Λ |φ|2f̄f︸ ︷︷ ︸

fermionic portal

, (A.55)

Lvector portal = λV φMDMVµV
µ︸ ︷︷ ︸

Direct coupling

+λV |φ|2VµV µ︸ ︷︷ ︸
effective coupling

, (A.56)

are usually copiously produced, even for MDM ≫ mφ, excepted in the case of the vector effective coupling; which
is very suppressed. Let us note as well that the production of fermions, though large, depends on the UV completion
in the case of the fermionic portal. However, is was subsequently claimed in[239] that even this production of
fermions and vectors is not allowed due to perturbativity and unitarity argument.
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A.6.1 Baryogenesis via bubble collision

Later on, a model a baryogenesis taking advantage of the same type of bubble collision production was pro-
posed[239]. However, this model contained gauge bosons that could acquire a mass via the transition and thus
excluding runaway.

However, the production of dark fermions necessary for baryogenesis was very efficient and scaling like
Yproduced ∝ γw. As a consequence, though the production is suppressed by the Planck mass, it is however boosted
by the strong γw dependence. We do not exclude that such a mechanism could also produce significant baryon
number even in our models, assuming that the transition is elastic enough, which is not per se certain.

A.7 Freeze-out in the co-annihilation regime and Sommer-
feld enhancement

In chapter 3, we presented the computation of the freeze-out in the most standard case. However, it has been noticed
long time ago that the standard computation can fail in several specific cases[126]. We encounter such a case of
nearly degenerate particles in section 3.6 of chapter 3 and we found out that Sommerfeld enhancement could be
large in our models, due to large couplings. In this Appendix, for the purpose of completeness, we explain shortly
those effects.

Sommerfeld enhancement Let us present the physics of the Sommerfeld enhancement. The Sommerfeld en-
hancement[182] is really an effect of non-relativistic quantum mechanics that can be understood from basic intuition:
consider for example a positron and an electron. When they pass by, there is a probability of annihilation, which
is encapsulated in the cross-section. Now, if we consider the electric attraction between the two particles, the
cross-section is enhanced. This is really all of it. The “Sommerfeld enhancement” thus account for the effects of
potential in the cross-sections.

Another interesting analogy is the case of a particle falling on a star of mass M and radius R. If we neglect the
gravitation, the cross-section for the particle to end up on the star is really just σ0 = πR2, the surface of the star.
However, when we switch on the gravity, the particle can be sucked onto the star via the interaction, this gives

σ = σ0

(
1 +

v2
escape
v2

initial

)
, vescape = 2GNM

R
(A.57)

where we see that if the initial velocity is small, then enhancement can be significant.

Let us go now to the quantum case, and work in the non-relativistic limit, since we have seen that the Sommerfeld
enhancement is really efficient for low velocities. We consider ϕ the DM candidate and φ a mediator, with coupling
strength λ. The wave function of the reduced two-body system is (v being the velocity of the particle ϕ)

ψ′′(r)
mϕ

+ V (r)ψ(r) = −mϕv
2ψ(r) (A.58)

and has a potential, in the non-relativistic limit, controlled by the mass of the mediator “med”,

V = − λ2

4πre
−mmedr. (A.59)
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It is shown that the Sommerfeld enhancement is given by[182, 183]

S ≡ |ψ(∞)/ψ(0)|2. (A.60)

We can now rewrite the equation in Eq.(A.58) with

α = λ2

4π , ϵv = v

α
, ϵmed = mmed

mϕα

⇒ ψ′′(r) +
(
ϵ2v + eϵmedr

r

)
ψ(r) = 0 (A.61)

We can easily solve in the limit of long range interactions, when mmed → 0 and we obtain

S = π/ϵv
1 − e−π/ϵv

(Case of long-range potential) (A.62)

When the mass of the mediator is not zero anymore, the expression becomes more complicated, but an analytic
approximation of the enhancement factor is given by[182, 183] (See also Refs [184, 185, 186, 187])

Seff = π

ϵv

sinh
(

2πϵv
π2ϵmed/6

)
cosh

(
2πϵv

π2ϵmed/6

)
− cos

(
2π
√

1
π2ϵmed/6 − ϵv2

(π2ϵmed/6)2

) , (A.63)

where ϵv = v/(αmed) and ϵmed = mmed/(αmedMϕ). Specifically, we recover our result when mmed → 0.
Seff → παmed/vϕ

(1−e−παmed/vϕ )
. In the context of this thesis, in Chapter 3 and 5 the mediator will be the production scalar

undergoing a transition, the Higgs or the φ itself.

Co-annihilation regime Let us now present the case of freeze-out via co-annihilation, since in this case, the final
abundance does not follow the usual FO abundance that we worked out in the text. The case of co-annihilation has
been discussed with great details in [126] and the purpose of this section is not to reproduce their result, but to
apply it to the special case discussed in section 3.6 and to answer the question: when can we apply the naive FO
formula that we have been using? Our set-up was:

L = LSM + Y∗L̄φN +MN N̄N + YDMN̄χϕ . (A.64)

where we are interested in the channel ϕχ → φL and ϕ is taken to be the DM candidate. The Boltzmann equations
reads

ṅϕ + 3Hnϕ = −⟨σχϕv⟩[nχnϕ − neq
χ n

eq
ϕ ]. (A.65)

Here the fact that the mass of χ does not equal the mass of ϕ brings a crucial difference. Intuitively, what
happens if Mχ ≫ Mϕ is that χ will be quickly depleted via other efficient channels for example χφ → ϕL, and no
abundance will be left for the interaction χϕ → φL. The whole process of FO will then be controlled by the heavy
mass of χ and FO will occur around T ∼ Mχ/20, leaving most of the ϕ abundance intact. The ratio of the final
abundance will scale like

nϕ
nχ

∼ e(Mχ−Mϕ)/TFO (A.66)

where we see that those two abundances are similar if

(Mχ −Mϕ)/Mχ < 1/20 (A.67)





Summary and outlook

In this thesis, we studied the dynamics of first order phase transition with ultra-relativistic bubble walls in the context
of production GW, production of DM and baryogenesis and we proposed physically motivated models realising
ultra-relativistic bubble walls. In chapter 2 we discussed the friction on the wall in the relativistic regime. More
specifically, we unveiled a new mechanism of pressure due to the production of heavy states in the collision of
the plasma with the wall. We gave a first very simple model where this new pressure could change the regime
from a “runaway wall” to a “terminal velocity wall” and we saw that this region could be sizable. We also
discussed the friction from soft gauge bosons and confirmed the previous computation suggesting a γw scaling for
this contribution to the pressure. We gave arguments that multi-gauge bosons emission should only produced a
subleading log correction. This was further confirmed in [112]. However, we emphasized that this mechanism of
production of soft bosons remains very obscure, as the copious emission of bosons with almost the same momentum
seems to threaten perturbativity.

In chapter 3, we used the mechanism of production of heavy states to set the observed abundance of DM. We
however found that the bubble wall tends to strongly overproduce DM and overclose the universe. As a consequence,
we discussed three scenario that permit to reduce this initially strongly overproduced abundance: early annihilation,
strong supercooling or very large mass. We discuss the intrication with the more usual FO mechanism and we
found that at equal mass, the DM produced via bubble wall expansion is typically more strongly coupled, raising
prospects of detection. We did not exhaust the possibility since the recent [195] found that this mechanism could
be used to set non-thermal Hot and heavy dark matter with observed abundance.

In chapter 4, we went one step further and computed the one-loop correction to the production reaction. We
proved that this loop can interfere with the tree-level diagram to induce CP-violation if there is an imaginary phase in
the Yukawa matrices controlling the production and the connection to the SM. We then proposed two models taking
advantage of such a mechanism to set the observed abundance of matter: in the first model, the baryon number is
produced in the breaking of the lepton number phase transition, that we assume to be strongly first order. We find a
large window where this mechanism can be realised while avoiding the subsequent wash-outs. In a second model,
we completed the SM with a dark sector coupling strongly to the third generation of quarks and being produced
during the EWPT phase transition. A cascade through the dark sector containing B violation then set the baryon
number. The dark sector having to be rather low scale, TeV to tens of TeV, this model is highly detectable in n− n̄
oscillations experiments and produced strong gravitational waves in the range of forthcoming LISA observer. Also
on this side, further investigations of this baryogenesis are needed and have been performed for example in [303],
where the production of a heavy scalar is used to set the baryon abundance.

In the final chapter 5, we use a well known scalar singlet extension of the SM inducing strongly first order EWPT.
We find that bubbles become deeply relativistic only if the transition occurs in two-steps, first via breaking the Z2
symmetry associated with the singlet, and then in a second step, restoring the Z2 but breaking the EW symmetry.
We found that in a tuned region, the nucleation temperature could become as low as 1 GeV. In this context, we
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found that the mass of the singlet in the true vacuum had to be close to the kinematic boundary allowing h → ss
transitions. We quantified this tuning and revisited our models of production of DM and baryogenesis.

A question that remains open at the end of this thesis is the possibility of a similar mechanism in the context of
confinement/deconfinement phase transition, which bring more naturally deep supercooling.
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