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1 | INTRODUCTION

Nowadays, in many industrial settings, the simulation of complex systems requires a huge amount of computational
power. Problems involving high-fidelity simulations are usually large-scale, moreover the number of solutions required
increases with the number of parameters. In this context, we mention optimization tasks, inverse problems, optimal
control problems, and uncertainty quantification; they all suffer from the curse of dimensionality, that is, in this case, the
computational time grows exponentially with the dimension of the input parameter space. Data-driven reduced order
methods (ROMs)! have been developed to deal with such costly outer loop applications for parametric PDEs, but the
limit for high dimensional parameter spaces remains.

One approach to alleviate the curse of dimensionality is to identify and exploit some notion of low-dimensional struc-
ture of the model or objective function that maps the inputs to the outputs of interest. A possible linear input coordinate
transformation technique is the sliced inverse regression (SIR)* approach and its extensions.>” Sharing some character-
istics with SIR, there is the active subspaces (AS) property*$1! which, in the last years, has emerged as a powerful linear
data-driven technique to construct ridge approximations using gradients of the model function. AS has been success-
fully applied to quantify uncertainty in the numerical simulation of the HyShot II scramjet,'? and for sensitivity analysis
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of an integrated hydrologic model.'* Reduction in parameter space has been coupled with model order reduction tech-
niques’*® to enable more complex numerical studies without increasing the computational load. We mention the use of
AS in cardiovascular applications with POD-Galerkin,'” in nonlinear structural analysis,'8 in nautical and naval engineer-
ing,*22 coupled with POD with interpolation for structural and computational fluid dynamics (CFD) analysis,?*** and
with dynamic mode decomposition in Reference 25. Applications in automotive engineering within a multi-fidelity set-
ting can be found in Reference 26, for turbomachinery, see Reference 27, while for results in chemistry, see References 28
and 29. Advances in efficient global design optimization with surrogate modeling are presented in References 30 and
31 and applied to the shape design of the N + 2 Supersonic Passenger Jet. Applications to enhance optimization meth-
ods have been developed in References 32-35. AS has also been successfully used to reduce the memory consumption of
highly parameterized systems such as artificial neural networks.3637

Possible extensions and variants of the active subspaces property are the local active subspace method,*® the active
manifold method*® which reduces the problem to the analysis of a 1D manifold by traversing the level sets of the model
function at the expense of high online costs, the shared active subspace method,* the active subspaces property for
multivariate functions,'! and more recently an extension of AS to dynamical systems.*! Another method is nonlinear
level set learning (NLL)*? which exploits RevNets to reduce the input parameter space with a nonlinear transformation.

The search for low dimensional structures is also investigated in machine learning with manifold learning algorithms.
In this context, the active subspaces methodology can be seen as a supervised dimension reduction technique along with
kernel principal component analysis (KPCA)** and supervised kernel principal component analysis (SKPCA).** Other
methods in the context of kernel-based ROMs are.*#” In Reference 48, a nonlinear extension of the active subspaces
property based on random Fourier features**° is introduced and compared with machine learning manifold learning
algorithms for the construction of Gaussian process regressions (GPR).>!

From the preliminary work,* in the context of supervised dimension reduction algorithms in machine learning, we
develop the kernel-based active subspaces (KAS) method. The novelties of our contribution are the following:

« Regarding the AS theoretical background, we provide an upper bound of the ridge approximation error (2) for
vector-valued objective functions and for a wide collection of probability distributions (see Assumption 3).

« We extend kernel-based AS to vector-valued model functions and develop a detailed algorithmic procedure for the opti-
mization of the feature map. We also test different spectral measures (see Equation (20) for the definition), differently
from Reference 48 where only the Gaussian measure is employed.

« The application to several test problems of increasing complexity. In particular, we mainly test KAS on problems where
the active subspace is not present or the behavior is not linear, differently from Reference 48, where the comparison
is made with KPCA and its variants on datasets with linear trends in the reduced parameter space, apart from the
hyperparaboloid test case that we have also included among our toy problems.

« The KAS method is finally applied to a computational fluid dynamics problem and compared with the standard AS
technique. We study the evolution of fluid flow past a NACA 0012 airfoil in a duct composed by an initialization channel
and a chamber. The motion is modeled with the unsteady incompressible Navier-Stokes equations, and discretized
with the discontinuous Galerkin (DG) method.>? Physical and geometrical parameters are introduced and sensitivity
analysis of the lift and drag coefficients with respect to these parameters is provided.

The work is divided as follows: In Section 2, we briefly present the active subspaces property of a model function with
a focus on the construction of Gaussian process response surfaces. Then, Section 3 illustrates the novel method called
kernel-based active subspaces for both scalar and vector-valued model functions. Several tests to compare AS and KAS are
provided in Section 4 where we start from scalar functions with radial symmetry, we analyze an epidemiology model and
a vector-valued output generated from a stochastic elliptic PDE. A parametric CFD test case for the study of the flow past
a NACA airfoil using the DG method is presented in Section 5. Finally, we outline some perspectives and future studies
in Section 6.

2 | ACTIVE SUBSPACES FOR PARAMETER SPACE REDUCTION

Active subspaces (AS) approach proposed in Reference 8 and developed in Reference 9 is a technique for dimension
reduction in parameter space. In brief, AS are defined as the leading eigenspaces of the second moment matrix of the
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model function’s gradient (for scalar model functions) and constitutes a global sensitivity index.!! In the context of ridge
approximation, the choice of the active subspace corresponds to the minimizer of an upper bound of the mean square error
obtained through Poincaré-type inequalities.!! After performing dimension reduction in the parameter space through
AS, the method can be applied to reduce the computational costs of different parameter studies such as inverse problems,
optimization tasks and numerical integration. In this work we are going to focus on the construction of response surfaces
with Gaussian process regression.

Definition 1 (Hypothesis on input and output spaces). The quantities related to the input space are:

« m € N the dimension of the input space.
« (Q, F,P) the probability space.

X : (Q,F,P) —» R™, the absolutely continuous random vector representing the parameters.

« p: R™ - R, the probability density of X with support X c R™.
The quantities related to the output are:

« d € N the dimension of the output space.
« V = (R% Ry) the Euclidean space with metric Ry € M(d x d)" and norm

2 T
lIxl%, =% Ryx.

« f: & CcR™ - V, the quantity/function of interest, also called objective function in optimization tasks.

Let B(R™) be the Borel o-algebra of R™. We will consider the Hilbert space L2(R™, B(R™), p ; V), of the measurable
functions f : (R™, BR™), p) — (R4, Ry) such that

12 o= [ 1001, dptx < oo
X

and the Sobolev space H'(R™, B(R™), p ; V) of measurable functions f : (R, BR™), p) — (R¢, Ry) such that

11 o= WFIZ. + VAT = PN + 1 < oo, (€]

where V[ is the weak derivative of f, and || Vf||z2 =: |f|m.

We briefly recall how dimension reduction in parameter space is achieved in the construction of response surfaces.
The first step involves the approximation of the model function with ridge approximation. We will follow References 11
and 53 for a review of the method.

The ridge approximation problem can be stated in the following way:

Definition 2 (Ridge approximation). Let B(R™) be the Borel 5-algebra of R™. Givenr € N, r « d and a tolerance ¢ > 0,
find the profile h : (R™, B(R™), p) — V and the r-rank projection P, : R™ — R™ such that

Ep[IfX) — h(PX)lIz, 1 < €. ()

In particular, we are interested in the minimization problem

argmin Ep [IfX) - kP01, | 3

P.eM(mxm)

where h = E,[flo(P;)] is the conditional expectation of f under the distribution p given the c-algebra o(P,). The range of
the projector P,, R" ~ Im(P,) C R™, is the reduced parameter space. The kernel of the projector P,, R™™" ~ Im(P,) C R™,
is the inactive subspace. The existence of /1 is guaranteed by the Doob-Dynkin lemma.** The function / is proven to be the
optimal profile for each fixed P,, as a consequence of the definition of the conditional expectation of a random variable
with respect to a o-algebra.
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Dimension reduction is effective if the inequality (2) is satisfied for a specific tolerance. The choice of r is certainly of
central importance. The dimension of the reduced parameter space can be chosen a priori for a specific parameter study
(e.g., r-dimensional regression), it can be chosen in order to satisfy the inequality (2) or it is determined to guarantee a
good accuracy of the numerical method used to evaluate it.>>(Corollary3.10)

Dividing the left term of the inequality (2) with E, [|[f(X) -E, [f(X])szzv] we obtain the Relative Root Mean Square

Error (RRMSE) and since it is a normalized quantity, we will use it to make comparisons between different models

Ep I/ - hP I, |
RRMSE = : (4)
Ep [IFX) ~ ErlfCONIZ, |

We remark that P, is not unique. It can be shown that if & is the optimal profile, then P, is not uniquely defined and can
be chosen arbitrarily from the set {Q, : R™ — R™| ker Q, = ker P, }, see Proposition 2.2 in Reference 11.

The following lemma is the key ingredient in the proof of the existence of an active subspace. It is inherently linked
to probability Poincaré inequalities of the kind

/ IRGOIZ, dp(x) < ColX. p) / IVRGIP, dpo). s)
X X

for zero-mean functions in the Sobolev space h € H'(X), where Cp(X, p) is the Poincaré constant dependent on the
domain & and on the probability density functions (p.d.f.), p. We need to make the following assumption to prove the
next lemma and the next theorem.

Definition 3. The probability density function p : X — R belongs to one of the following classes:

1. Xisconvex and bounded,35,D>0: 0<6 < ||[pX)|lt1>x <D < 0 Vx € X.
2. p(x) ~ exp(—=V(x)) where V : R™ — (—c0, 0] ,V € C? is a-uniformly convex

u’Hess(V(x)u > aflul?, Vx,ue€R", (6)

where Hess(V(x)) is the Hessian of V(x).
3. p(x) ~ exp(—V(x)) where V is a convex function. In this case, we require also f Lipschitz continuous.

In particular, the uniform distribution belongs to the first class, the multivariate Gaussian distribution A (m, %) to
the second with @ = 1/(omax(X)) and the exponential and Laplace distributions to the third. A complete analysis of the
various cases is done in Reference 53.

Proposition 1. Let (Q, F, P) be a probability space, X : (Q,F,P) - R™ an absolutely continuous random vector with
probability density function p belonging to one of the classes from Assumption 3. Then the following inequality is satisfied

E, |(h = E,lhlo(P)1) 0P| < Co(Pr, p) B, [I0 = PDVAIZIo(P))] @)

for all scalar functions h € H(X) and for all r-rank orthogonal projectors, P,, where Cp(P,, p) is the Poincaré constant
depending on P, and on the p.d.f. p.

A summary of the values of the Poincaré constant in relationship with the choice of the probability density function
p is reported in Reference 53.

In the next theorem, the projection P, will depend on the output function f, so also the Poincaré constant Cp(P;, p)
will depend in fact on f.

We introduce the following notation for the matrix that substitutes the uncentered covariance matrix of the gradient
Vf in the case of the application of AS to scalar model functions™

H= / (Dxf (%)) Ry (p)(Dxf (%)) dp(x),
X
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where Dyf(x) € M(d X m) is the Jacobian matrix of f. The matrix Ry (p) depends on the class which p belongs to, see the
Appendix.

Theorem 1 (Existence of an active subspace). Under Hypothesis 1, let f € H*(R™, B(R™), p ; V) and let the p.d.f. p satisfy
Lemma 1 and Assumption 3. Then the solution P, of the ridge approximation problem 2 is the orthogonal projector to the
eigenspace of the first r-eigenvalues of H ordered by magnitude

r
Hv; = A, ViE{l,...,m}, Pr=2Vj®Uj,
=1

with r € N chosen such that

mo\ T

E, [Ilf - fz||§v] < C(Cp, 7) < D Ai> <eé, (8)
i=r+1

with C(Cp, t) a constant depending on t > 0 related to the choice of p and on the Poincaré constant from lemma 1, and

h= E,[f|o(P;)] is the conditional expectation of f given the o-algebra generated by the random variable P,oX.

Proof. This theorem summarizes the results from Propositions 2.5 and 2.6 of Reference 11, and from Lemmas 3.1, 4.2-4.4,
and Theorem 4.5 of Reference 53. The proof is expanded in the Appendix. n

The eigenspace span{vy, ... ,v,} C R™ is the active subspace and the remaining eigenvectors generate the inac-
tive subspace span{v,,1, ... ,v,} C R™. The condition f € L2(R™, B(R™), p ; V) is necessary for f to satisfy the error
bound (2).

For the explicit procedure to compute the active subspace given its dimension r, see Algorithm 1: from W; and W, we
define the approximations of the projector P, with P, = W, wil.

Algorithm 1. Active subspace computation

Require: gradients dataset dY = (dyi, ..., dym)T, dy; € M(d x m), that is dY is a 3-rank tensor
Require: symmetric positive definite metric matrix Ry € M(d X d)
Require: active subspace dimension r

1: Compute the uncentered covariance matrix with Monte Carlo:

M
D dyT), 1 RvdYTj, -, 2.

=1

g=L
M

2: Solve the eigenvalue problem:

FIVi=/1iVi ViE{l,...,m},
W=, V), W=V, Vi) > P 1= WY

3: return active eigenvectors W; = (v, ..., v,) and inactive eigenvectors W, = (Vy41, ..., Vi) with v; € R™, and ordered
eigenvalues (41, ..., Am)

2.1 | Response surfaces

The term response surface refers to the general procedure of finding the values of a model function f for new inputs
without directly computing it but exploiting regression or interpolation from a training set {x;, f(x;)}. The procedure for
constructing a Gaussian process response is reported in Algorithm 2, while in Algorithm 3, we show how to exploit it to
predict the model function at new input parameters.
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Algorithm 2. Response surface construction with Gaussian process regression over the active subspace

Require: normalized input dataset X = (x, ...,Xy)7, x; € R™

Require: output datasetY = (y1,...,ym)7, yi € R

Require: active eigenvectors W; = (vy,...,V,), v; € R™

Require: kernel k : R™ x R™ — R, with hyper-parameters 6 and the variance e of the Gaussian noise
1: Project the inputs in the active subspace: XW; = X € M(M X r).
2: Evaluate the Gram matrix: K;;(0) = k(X;,X;; 0), 1 <i,j <.
3: Tune the hyperparameters minimizing the negative log-likelihood:

6 = arg mein —logp(y|x, 0) % log |K(0) + oly| + %YT(K(H) +oly) Y,

4: return trained Gaussian process

Algorithm 3. Prediction phase using the Gaussian process response surface over the active subspace

Require: trained response surface y(x)
Require: active eigenvectors W; = (vy,...,V), v; € R™
Require: test samples x € R™
1: Map the test samples X onto the active subspace: X = W;Xx.
2. Evaluate the Gaussian process on % and return the prediction t ~ N (E[t], 62(¢)):

E[t] = k& X)KT'Y, o) = kX %) — k&, X)K kX, %).

Directly applying the simple Monte Carlo method with N samples, we get a reduced approximation of f as

N
(heoP)(X) = E, [[lo(P] ~ < Y BX+ (T = PIY) =3 he(PX), ©)

i=1

where we have made explicit the dependence of the optimal profile & on ¢, Y1, ... , Yy are independent and identically
distributed samples of Y ~ p, and P, is an approximation of P, obtained with the simple Monte Carlo method from H, see
Algorithm 1. An intermediate approximation error is obtained employing the Poincaré inequality and the central limit
theorem for the Monte Carlo approximation

Ep [(F00 = hen(PrX02] < € (14 N72) (s 4 ), 10)

where C; is a constant, and 4,41, ... , 4, are the eigenvalues of the inactive subspace of H.>> (Theorem 4.4)
In practice, h.x(P,X) is approximated with a regression or an interpolation such that a response surface % satisfying

E, [(fze,N(?rx) - Q?(P,X)z)] < C,6 is built, where C, is a constant, and § depends on the chosen method. An estimate for
the successive approximations

fX) % he(PX) % he n(PX) & By 5(PX), (11)
is given by
Ep [(f(X) — Z(P/X))*]

< CIA+NPR (20 + -+ A 4 Gigr + -+ + A2 4 Cad,

where dist(Im(P,), Im(P,)) < 7, and 4; are the eigenvalues of H.>> (Theorem 4.8)
In our numerical simulations, we will build the response surface % with Gaussian process regression (GPR).>!
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3 | KERNEL-BASED ACTIVE SUBSPACES EXTENSION

Keeping the notations of section 1, X : (Q,F,P) — R™ is the absolutely continuous random vector representing the
m-dimensional inputs with density p : X C R™ - R, and f : X ¢ R™ - (V,Ry) is the model function that we assume
to be continuously differentiable and Lipschitz continuous.

One drawback of sufficient dimension reduction with AS applied to ridge approximation is that if a clear linear trend
is missing, projecting the inputs as P, X represents a loss of accuracy on the approximation of the model f that may not be
compensated even by the choice of the optimal profile hoP, = E,[f|o(P;)]. In order to overcome this, nonlinear dimension
reduction to one-dimensional parameter space could be achieved discovering a curve in the space of parameters that
cuts transversely the level sets of f, this variation is presented in Reference 39 as active manifold. Another approach
could consist in finding a diffeomorphism ¢ that reshapes the level sets such that subsequently applying AS dimension
reduction to the new model function fo¢ = f could be more profitable:

XcR" —23 px)cR”
\lﬁ
v

Unfortunately constructing the active manifold or finding the right diffeomorphism ¢ could be a complicated matter.
If we renounce to have a backward map and we weaken the bond of the method with the model, we can consider an
immersion ¢ from the space of parameters X to an infinite-dimensional Hilbert space H obtaining

XcR" 2% px)cH
\lf”
v

This is a common procedure in machine learning in order to increase the number of features.’! Then AS is applied
to the new model function f 1 ¢p(X) C H - V with parameter space ¢(X) C H. A response surface can be built with
Algorithm 2 remembering to replace every occurrence of the inputs x with their images ¢(x). A synthetic scheme of the
procedure is represented in Figure 1.

Feature space

mapping

Active
subspace
X C R™
. . Vs

A"

Regression

f(z) =

Projection

& :
T >

Active variable W]Tqﬁ(a:)

FIGURE 1 [Illustration of the construction of a one-dimensional response surface with kernel-based active subspaces and Gaussian
process regression
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In practice, we consider a discretization of the infinite-dimensional Hilbert space R” ~ H with D > m. Dimension
reduction with AS results in the choice of a r-rank projection in the much broader set of r-rank projections in H.

Since for AS only the samples of the Jacobian matrix of the model function are employed, we can ignore the definition
of the new map f : ¢(X) c H — (V,Ry) and focus only on the computation of the Jacobian matrix of f with respect to
the new input variable z := ¢(x). The uncentered covariance matrix becomes

H= [(D)T(@)] Ry [(Df)(@)] du(z)
P(X)
= / (DT (6x)] Ry [(D)(@(x))] dLx(x),
X

where pu := ¢s(Lx) is the pushforward probability measure of Lx (the law of probability of X) with respect to the map ¢.
Simple Monte Carlo can be applied sampling from the distribution p in the input space X

H= / [(DHT(dx))] Ry [(D2f)(@(x))] dLx(x)
X

M
~ 1\%2 (DT (dx))] Ry [P (b)) -
i=1

The gradients of f with respect to the new input variable Z are computed from the known values Dyf with the chain rule.
The application of the chain rule to the composition of functions fo¢ : R™ — H — V is applicable if f is defined in
an open set U D ¢(X). If ¢ is nonsingular and also injective the new input space is a m-dimensional submanifold of H.
If ¢ is also smooth there exists a smooth extension off : ¢p(X) Cc H - V onto the whole domain H, see Proposition 1.36
from Reference 56.
If the Hilbert space H has finite dimension H ~ RP this procedure leaves us with an underdetermined linear system
to solve for D,f

D,f ($(x))D(x) = Dyf (x),
D,f(¢(x)) = Dxf (x)(Dp(x))", (12)

where T stands for the right Moore-Penrose inverse of the matrix D¢(x) with rank r, that is
(Dgx)" = VU,
with the usual notation for the singular value decomposition (SVD) of D¢ (x)

D¢p(x) = UzVT, (13)

and X' € M(r x r) equal to the diagonal matrix with the inverse of the singular values as diagonal elements. As anticipated
if f is smooth enough and ¢ is an embedding, so that D¢ has full rank, the previous system has an unique solution. The
most crucial part is the evaluation of the gradients Dyf(x) from the input output couples, when they are not available
analytically or from the adjoint method applied to PDEs models: different approaches are present in the literature, like
local polynomial regressions and Gaussian process regression on the whole domain to approximate the gradients; both
are available in the ATHENA package.>” For an estimate of the ridge approximation error due to inaccurate gradients, see
Reference 9.
Finally, we remark that in the AS method we approximate the random variable X as

PX =vi(vi-X)+ -+ V(v - X), (14)

with {v;} Cc R™ the active eigenvectors, whereas with KAS the reduced input space is contained in H
PX =wvi(vi - X)) + - - - + ViV, - p(X)), 1s)

with {v;} C H the active eigenvectors of KAS. In this case, the model is enriched by the nonlinear feature map ¢.
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Algorithm 4. Kernel-based active subspace computation

Require: gradients dataset dY = (dy,, ..., dym)T, dy; € M(d x m)
Require: symmetric positive definite metric matrix Ry € M(d X d)
Require: feature subspace dimension D
Require: feature map ¢ : R™ — RP
Require: active subspace dimension r

1: Evaluate gradients solving an overdetermined linear system:

vje{l,...,M}, dY[j,:, :1D$)" =dY[j,:,:] € M(d,D).

2. Compute the uncentered covariance matrix with Monte Carlo:

H= dYik, :, :1"RydY¥lk, :, :].

Mz

1
M=

3: Solve the eigenvalue problem: Av, = Av;, Vie{l,...,D}.
4: return active eigenvectors W, = (v1, ..., v,) and inactive eigenvectors W, = (V,41, ..., vp) with v; € RP, and ordered
eigenvalues (41, ..., Ap)

3.1 | Choice of the feature map

The choice for the map ¢ is linked to the theory of reproducing kernel Hilbert spaces (RKHS),>® and it is defined as

z=¢X)= \/% oy cos(Wx+b), (16)
cos(Wx+b) := %(COS(W[L :1-x+by), ... ,cos(W[D, :]-x+ bp))T, a7
D

where oy is an hyperparameter corresponding to the empirical variance of the model, W € M(D x m) is the projection
matrix whose rows are sampled from a probability distribution 4 on R™ and b € R is a bias term whose components are
sampled independently and uniformly in the interval [0, 27]. We remark that its Jacobian can be computed analytically as

. D
oz 2 .
o = \/porsin (;"Vikxk +bk> Wy, (18)

foralli e {1, ... ,m},and forallj € {1, ... ,D}.

We remark that in order to guarantee the correctness of the procedure for evaluating the gradients we have to prove
that the feature map is injective and nonsingular. In general, however, the feature map (16) cannot not be injective due
to the periodicity of the cosine but at least it is almost surely nonsingular if the dimension of the feature space is high
enough.

The feature map (16) is not the only effective immersion that provides a kernel-based extension of the active subspaces.
For example an alternative is the following composition of a linear map with a sigmoid

_c
1+ ae W2’

P(z) =

where C is a constant, « is an hyperparameter to be tuned, and W € M(D, m) is, as before, a matrix whose rows are
sampled from a probability distribution on R™.

Other choices involve the use of deep neural networks to learn the profile h and the projection function P, of the ridge
approximation problem.>
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Algorithm 5. Tuning the feature map with logarithmic grid-search

Require: normalized input dataset X = (x, ...,Xy)7, x; € R™
Require: output datasetY = (y1,...,ym)7, yi € R
Require: gradients dataset dY = (dyi, ..., dym)T, dy; € M(d x D)
Require: spd metric matrix Ry € M(d X d)
Require: feature subspace dimension D
Require: feature map ¢ : R™ — RP
Require: spectral density with hyperparameter a, y = p(a)
Require: active subspace dimension r
Require: tolerance for the tuning procedure tol = 0.8.

1: Create the grid G and set the variable BEST to 1.

2: fory € Gdo

3 Compute the feature map projection matrix W associated to y: W[i, :] sampled from u(y), Vi € {1, ...,D}.

4 Compute the uniformly sampled bias b: b[i] ~ U(0, 2x).
5 Compute score with n-fold cross validation:
6: fori=1tondo
7: Divide input, output, and gradients in train and test datasets.
8: Compute (W1, W3, (41, ..., Ap)) with KAS method in Algorithm 4 with inputs (dYiain, Ry, D, ¢, 7).
9: Build GPR response surface with inputs (Xiain, Yirain, W1, k) using Algorithm 2.
10: Predict the values Ties using Algorithm 3 with input Xies.
11: Evaluate the score as score[n] = RRMSE(Yiest, Ttest)-
12: if score[n] > tol then
13: Stop cross validation and pass to the next value of a.
14: end if
15: end for
16: if mean(score) < BEST then
17: Save W and b, and set BEST to mean(score).
18: end if
19: end for

20: return projection matrix W, and bias b

The tuning of the hyperparameters of the spectral measure consists in a global optimization problem where the dimen-
sion of the domain can vary between 1 and the dimension of the input space m. The object function to optimize is the
relative root mean square error (RRMSE)

Zil(ti - n)?

RRMSE(Ytest, Ttest) = —n
L —p)?

(19)

where Tiest = (£)icqu, ... N} are the predictions obtained from the response surface built with KAS and associated to the test
set, Yiest = (Vi)ie(1,... N} are the targets associated to the test set, and y is the mean value of the targets. We implemented a
logarithmic grid-search, see Algorithm 5, making use of the SciPy library.®® Another choice could be Bayesian stochastic
optimization implemented in the open-source library GPyOpt.5!

The tuning of the hyperparameters of the spectral measure chosen is the most computationally expensive part of
the procedure. We report the computational complexity of the algorithms introduced to have a better understanding of
the additional cost implied by the implementation of response surface design with KAS. Let us assume that the num-
ber of random Fourier features D, the number of input, output, and gradient samples M, and the dimension of the
parameter space m, are ordered in this manner D > M > m, as is usually the case, and that the quantity of interest
f is a scalar function. The cost of computing an active subspace is O(Mm?), that is the cost of the SVD of the gradi-
ents matrix dY used to get the active and inactive eigenvectors in Algorithm 1. The cost of the training of a response
surface with Gaussian process regression in Algorithm 2 depends on the cost of minimization of the log-likelihood:
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each evaluation of the log-likelihood involves the computation of the determinant and the inverse of the regularized
Gram matrix K(6) + o1y, that is O(M?). Finally, the cost for the evaluation of the kernel-based active subspace is asso-
ciated to the SVD of dY that is O(DM?) in Algorithm 4, and to the resolution of the overdetermined linear system to
obtain the gradients dY, that is M times O(Dm?) since it is related to the evaluation of the pseudo-inverse of D¢. So,
the computational complexity for the response surface design with AS and GPR is O(ngprM?), while for the response
surface design with KAS and GPR is O <ngrid.searchn <D%2 + %sz + nGPR%}», where ngpr is the maximum number
of steps of the optimization algorithm used to minimize the log-likelihood, ngid-search is the number of hyperparameter
instances y € G to try in Algorithm 5, and » is the number of batches in the n-fold cross validation procedure. In par-
ticular, for each grid search hyperparameter the main cost is associated to the GPR training since ngpr usually satisfy
Dn < ngprM, when the optimizer chosen is L-BFGS-B from SciPy,®® accounting also for the number of restarts of the
optimizer: in the numerical tests we performed the number of restarts of the training of the GPR is problem-dependent
but always less than 10. In general, the number ngig.scarcn depends on the chosen application, and the multiplicative
factor between the computational complexity of the response surface design procedure with KAS or AS is lower than
3ngrid-searchn-

3.2 | Random Fourier features

The motivation behind the choice for this map from Equation (16) comes from the theory on RKHS. The
infinite-dimensional Hilbert space (H, (-, -)) is assumed to be a RKHS with real shift-invariant kernel k : X x & — R with
k(0) = 1 and feature map ¢.

In order to get a discrete approximation of ¢ : X C R™ — H], random Fourier features are employed.**>° Bochner’s
theorem® guarantees the existence of a spectral probability measure y such that

k(x,y) = / Y dy(w). (20)

From this identity, we can get a discrete approximation of the scalar product (-, -) with Monte Carlo method, exploiting
the fact that the kernel is real

D

(¢X), p(y) = k(x,y) » ll)z cos(®; - X + by) cos(@; - y + b) = 2z, 1)
i=1

zZ= L(cos(col -X+by), ... ,cos(@p - X+ bp)), (22)

and from this relation we obtain the approximation ¢ ~ z. The sampled vectors {®; };=1, .. p are called random Fourier fea-
tures. The scalars {b;};=;, .. p are bias terms introduced since in the approximation we have excluded some trigonometric
terms from the following initial expression

D

%Zl (COS((Di . X) COS((OI' . y) —_ sin(a)i . X) Sin(a)l’ . y)) .

Random Fourier features are frequently used to approximate kernels. We consider only spectral probability measures
which have a probability density, usually named spectral density. In the approximation of the kernel with random Fourier
features, under some regularity conditions on the kernel, an explicit probabilistic bound depending on the dimension
of the feature space D can be proved.®? This technique is used to scale up kernel principal component analysis®*®* and
supervised kernel principal component analysis,* but in the case of kernel-based AS the resulting overdetermined linear
system employed to compute the Jacobian matrix of the new model function increases in dimension instead.

The most famous kernel is the squared exponential kernel also called Radial Basis Function kernel (RBF)

% — V2
krpr(X,y) = exp <_%> ; (23)
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where [ is the characteristic length-scale. The spectral density is Gaussian N'(0, 1/472[2):
S(w) = 2x)P/? exp(—27*Pw?). (24)

Thanks to Bochner’s theorem to every probability distribution that admits a probability density function corresponds
a stationary positive definite kernel. So having in mind the definition of the feature map ¢ from Equation (16), we can
choose any probability distribution for sampling the random projection matrix W € M(D X m) without focusing on the
corresponding kernel since it is not needed by the numerical procedure.

After the choice of the spectral measure the corresponding hyperparameters have to be tuned. This is linked to the
choice of the hypothesis models in machine learning and it is usually carried out for the hyperparameters of the employed
kernel. From the choice of the kernel and the corresponding hyperparameters, some regularity properties of the model
are implicitly assumed.>!

4 | BENCHMARK TEST PROBLEMS

In this section, we are going to present some benchmarks to prove the potential gain of KAS over standard linear AS, for
both scalar and vectorial model functions. In particular, we test KAS on radial symmetric functions, with 2-dimensional
and 8-dimensional parameter spaces, on the approximation of the reproduction number R, of the SEIR model, and finally
on a vectorial output function that is the solution of a Poisson problem.

One-dimensional response surfaces are built following the algorithm described in Section 2.1. The tuning of the
hyperparameters of the feature map is carried out with a logarithmic grid-search and 5-fold cross validation for the
Ebola test case, while for the other cases we employed Bayesian stochastic optimization implemented in Reference 65
with 3-fold cross validation. The score function chosen is the relative root mean square error (RRMSE). The spectral
measure for each test case is chosen by brute force among the Laplace, Gaussian, Beta, and multivariate Gaussian
distributions. The number of Fourier features is not established based on a criterion but we have seen experimentally
that above a certain threshold the number of features is high enough to at least reproduce the accuracy of the AS
method. Since the most sensitive part to the final accuracy of the response surface is the tuning of the hyperparameters
of the spectral measures, we suggest to choose an affordable number of features between 1000 and 2000, and focus on
the tuning of said hyperparameters instead.-We remark that the number of samples employed is problem dependent:
some heuristics to determine it can be found in Reference 9, but the crucial point is that additional training samples
with respect to the ones used for the AS method are not needed for the novel KAS method. Moreover, the CPU time
for the hyperparameters tuning procedure is usually negligible with respect to the time required to obtain input-output
pairs from the numerical simulation of PDEs models: in our applications the tuning procedure’s computational time is
in the order of minutes (usually around 10-15 min for most testcases), while for the CFD application of Section 5 it is in
the order of days and for the stochastic elliptic partial differential equation of Section 4.3 it is in the order of hours. We
also remark that the tuning Algorithm 5, the GPR training restarts, and the choice of the spectral measure can be easily
parallelized.

For the radial symmetric and Ebola test cases, the inputs are sampled from a uniform distribution with problem
dependent ranges. For the stochastic elliptic partial differential case, the inputs are the coefficients of a Karhunen-Loéve
expansion and are sampled from a normal distribution. All the computations regarding AS and KAS are done using the
open source Python package called ATHENA.>’

4.1 | Radial symmetric functions
Radial symmetric functions represent a class of model functions for which AS is not able to unveil any low dimensional
behavior. In fact for these functions any rotation of the parameter space produce the same model representation. Instead

kernel-based AS is able to overcome this problem thanks to the mapping onto the feature space.
We present two benchmarks: an 8-dimensional hyperparaboloid defined as

fFLIFCRE SR, S0 = S, (25)
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TABLE 1 Performance results for AS and KAS methods
Case Dim N Spectral distribution Feature space dim RRMSE AS RRMSE KAS
Hyperparaboloid 8 500 N (0, ALy) 1000 0.98 +0.03 0.23 +0.02
Sine 2 800 Laplace(y, b) 1000 1.011 + 0.01 0.31 + 0.06
Ebola 8 800 Beta(a, §) 1000 0.46 + 0.31 0.31 +0.03
SPDE (31) 10 1000 N(0,%) 1500 0.611 + 0.001 0.515 + 0.013

Note: For each case, we report the parameter space dimension, the number of samples N used for the training, the chosen distribution, the dimension of the
feature space, and the RRMSE mean and standard deviation for AS and KAS. The best results are given in bold.

101 1014

]Uﬂ,

AS eigenvalues
KAS eigenvalues

107 1071

1 2 3 4 5 6 1 8 1 2 3 4 5 6 7 8 9 10
Index Index

FIGURE 2 Eigenvalues of the covariance matrix H € IR®® applied to the hyperparaboloid case for the AS procedure on the left, and
the first 10 eigenvalues of the covariance matrix H € R1990x190 for the KAS procedure applied to the same case on the right

and the surface of revolution in R3 with generatrix g(x) = sin(x?)

fi=3.3P cR >R, fx) =g(lxl) = sin(||x]*). (26)

The gradients are computed analytically.

For the hyperparaboloid we use Ny = 500 independent, uniformly distributed training samples in [—1, 1]8, while for
the sine case the training samples are N; = 800 in [—3, 3]%. In both cases, the test samples are 500. The feature space
has dimension 1000 for both the first and the second case. The spectral distribution chosen is the multivariate normal
with hyperparameter a uniform variance Aly, and a product of Laplace distributions with y and b as hyperparameters,
respectively. The tuning is carried out with 3-fold cross validation. The results are summarized in Table 1.

Looking at the eigenvalues of the uncentered covariance matrix of the gradients H for the hyperparaboloid case in
Figure 2, we can clearly see how the decay for AS is almost absent, while using KAS the decay after the first eigenvalue is
pronounced, suggesting the presence of a kernel-based active subspace of dimension 1.

The one-dimensional sufficient summary plots, which are f(x) against WlT x—in the AS case—or against WlT $p(x)—in
the KAS case, are shown in Figures 3 and 4, respectively. On the left panels, we present the Gaussian process response
surfaces obtained from the active subspaces reduction, while on the right panels the ones obtained with the kernel-based
AS extension. As we can see AS fails to properly reduce the parameter spaces, since there are no preferred directions
over which the model functions vary the most. The KAS approach, on the contrary, is able to unveil the corresponding
generatrices. This results in a reduction of the RMS by a factor of at least 3 (see Table 1).

4.2 | SEIR model for the spread of Ebola

In most engineering applications, the output of interest presents a monotonic behavior with respect to the parameters.
This means that, for example, the increment in the inputs produces a proportional response in the outputs. Rarely, the
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FIGURE 3 Comparison between the sufficiency summary plots obtained from the application of AS and KAS methods for the
hyperparaboloid model function with domain [-1, 1]%, defined in Equation (25). The left plot refers to AS, the right plot to KAS. With the blue
solid line, we depict the posterior mean of the GP, with the shadow area the 68% confidence intervals, and with the blue dots the testing points.
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FIGURE 4 Comparison between the sufficiency summary plots obtained from the application of AS and KAS methods for the surface
of revolution model function with domain [-3, 3]?, defined in Equation (26). The left plot refers to AS, the right plot to KAS. With the blue
solid line, we depict the posterior mean of the GP, with the shadow area the 68% confidence intervals, and with the blue dots the testing points.

model function has a radial symmetry, and in such cases the parameter space can be divided in subdomains, which are
analyzed separately. In this section, we are going to present a test case where there is no radial symmetry, showing that,
even in this case the kernel-based AS presents better performance with respect to AS.

For the Ebola test case,* the output of interest is the basic reproduction number Ry of the SEIR model, described in
Reference 66, which reads

ﬂl + /32/;71 + %W
Ry = —————, (27)
ntwy

with parameters distributed uniformly in Q c R8. The parameter space Q is an hypercube defined by the lower and upper
bounds summarized in Table 2.

We can compare the two one-dimensional response surfaces obtained with Gaussian process regression. The training
samples are Ny = 800, and we use 1000 features. As spectral measure we use again the multivariate Gaussian distribution
N (0, £) with hyperparameters the elements of the diagonal of the covariance matrix. The tuning is carried out with 5-fold
cross validation. Even in this case, the KAS approach results in smaller RMS with respect to the use of AS (around 60%
less), as reported in Table 1. In Figure 5, we report the comparison of the two approaches over an active subspace of
dimension 1.
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TABLE 2 Parameter ranges for the Ebola model
b B2 Bs P1 41 Y2 @ v
Lower bound 0.1 0.1 0.05 0.41 0.0276 0.081 0.25 0.0833
Upper bound 0.4 0.4 0.2 1 0.1702 0.21 0.5 0.7

Note: Data taken from Reference 66.
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FIGURE 5 Comparison between the sufficiency summary plots obtained from the application of AS and KAS methods for the R,
model function with domain Q, defined in Equation (27). The left plot refers to AS, the right plot to KAS. With the blue solid line, we depict
the posterior mean of the GP, with the shadow area the 68% confidence intervals, and with the blue dots the testing points.

4.3 | Elliptic partial differential equation with random coefficients

In our last benchmark, we apply the kernel-based AS to a vectorial model function, that is the solution of a Poisson
problem with heterogeneous diffusion coefficient. We refer to Reference 11 for an application, on the same problem, of
the AS approach.

We consider the following stochastic Poisson problem on the square x = (x,y) € Q :=[0,1]*:

-V.(xVu)=1, X € Q,

u=0, X e 0Qtop U 0€bottom> (28)
u=10y(1 —-y), X € 0t
n-Vu= 0, X e ()Qrighh

with homogeneous Neumann boundary condition on the right side of the domain, that is 0€jgh, Neumann boundary
conditions on the left side of the domain, that is 0Q, and Dirichlet boundary conditions on the remaining part of 9Q.
The diffusion coefficient « : (@, 4, P) X Q — R, where A is a o-algebra, is such that log(x) is a Gaussian random field,
with covariance function C(x,y) defined by

Ix —ylI?

Iz ) , VX,yEQ, (29)

C(x,y) = exp <—

where f =0.03 is the correlation length. This random field is approximated with the truncated Karhunen-Loéve
decomposition

K (s, X) ~ exp <2Xi(s)yiy/i(x)> , V(,X) e QXQ, (30)

i=0

where (X;)ic1,....m are independent standard normal distributed random variables, and (y;, ¥;)ic1. ... 4 are the eigenpairs of
the Karhunen-Loéve decomposition of the zero-mean random field «.

85U8017 SUOWILLOD @A 181D 3|cedl[dde 8Ly Aq peusenob afe sejole YO ‘8sN JO S3|nJ o} Akeid18U1IUO /8|1 UO (SUOIPLOD-PUR-SLLBY/LI0D A8 | 1M ARIq 1 BU1|UO//SdNL) SUORIPUOD pUe SWie | 8u1 89S *[2202/TT/LT] uo AriqiTauluo A|IM ‘seLriqi] sexs L JO Aisienun Aq 660.3WU/Z00T OT/10p/L00 A3 [1m AIq 1 Bul|uoy/Sdny Woiy pepeojumod ‘€z ‘2202 ‘L020.60T



ROMOR ET AL. 6015
WILEY
0.5 Mean ° 054 —— Mean ®
e Test e Test
Confidence . Confidence °

-4 3 2 0 1 2 3 4 -20 —10 0 10 2
Active variable W x Active variable W ¢(x)

FIGURE 6 Comparison between the sufficiency summary plots obtained from the application of AS and KAS methods for the
stochastic PDE model, defined in Equations (28) and (31). The left plot refers to AS, the right plot to KAS. With the blue solid line, we depict
the posterior mean of the GP, with the shadow area the 68% confidence intervals, and with the blue dots the testing points.

In our simulation, the domain Q is discretized with a triangular unstructured mesh 7" with 3194 triangles. The param-
eter space has dimension m = 10. The simulations are carried out with the finite element method (FEM) with polynomial
order one, and for each simulation the parameters (X;);=1. ....» are sampled from a standard normal distribution. The solu-
tion u is evaluated at d = 1668 degrees of freedom, thus (V, Ry) =~ (R4, S + M) where the metric Ry is approximated with
the sum of the stiffness matrix S € R¢ x R¢ and the mass matrix M € R¢ x R, This sum is a discretization of the norm
of the Sobolev space H'(€2). The number of features used in the KAS procedure is D = 1500, the number of different
independent simulations is M = 1000.

Three outputs of interest are considered. The first target function f : R™ — R is the mean value of the solution at the
right boundary 0€igh:, which reads

1
X) = —— ds, 31
J&) |0Qrign¢| /ag uis) ds (31)

Tight

and it is used to tune the feature map minimizing the RRMSE of the Gaussian process regression, as described in
Algorithm 5. A summary of the results for the first output is reported in Table 1. The plots of the regression are reported
in Figure 6. Even in this case both from a qualitative and a quantitative point of view, the kernel-based approach achieves
the best results.

The second output we consider is the solution function

fiR"™ > (V,Ry) = (R%S), fX)=ueR% (32)

This output can be employed as a surrogate model to predict the solution u given the parameters X that define the diffusion
coefficient instead of carrying out the numerical simulation. The surrogate model should be constructed over the span of
the modes identified by the chosen reduction strategy, after projecting the data. AS and KAS modes are distinguished but
can detect some common regions of interest as shown in Table 3.

The third output is the evaluation of the solution at a specific degree of freedom with index i, that is

fiR" SR, fX)=weR, (33)

in this case the dimension of the input space is m = 100. Since we use a Lagrangian basis in the finite element formu-
lation and the polynomial order is 1, the node of the mesh associated to the chosen degree of freedom has coordinates
[0.27,0.427] € Q. Qualitatively we can see from Table 3 that the AS modes locate features in the domain which are
relatively more regular with respect to the KAS modes. To obtain this result, we increased the dimension of the
input space, otherwise not even the AS modes could locate properly the position in the domain Q of the degree of
freedom.
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In the second and third case the diffusion coefficient is given by

D
K(X) = exp <2vj[i]zif,-(x)> . VX EQxQ, (34)

i=1
wherev; € RP,j € {1, ... , D}, is the jth active eigenvector from the KAS procedure and the functions Y=y, ..., ¥p)

are defined by

¥ = (), (3%)

where ¢ is the feature map defined in Equation (16) with the projection matrix W and bias b, and ¥ := (y1yq, .. , Ym¥ p)-
The gradients of the three outputs of interest considered are evaluated with the adjoint method.

5 | ACFD PARAMETRIC APPLICATION OF KAS SOLVED
WITH THE DG METHOD

We want to test the kernel-based extension of the active subspaces in a CFD context. The lift and drag coefficients of a
NACA 0012 airfoil are considered as model functions. Numerical simulations are carried out with different input param-
eters for quantities that describe the geometry and the physical conditions of the problem. The evolution of the model
is protracted until a periodic regime is reached. Once the simulation data have been collected, sensitivity analysis is per-
formed searching for an active subspace and response surfaces with GPR are then built from the application of AS and
KAS techniques.

The fluid motion is modeled through the unsteady incompressible Navier-Stokes equations approximated through
the Chorin-Temam operator-splitting method implemented in HopeFOAM.%” HopeFOAM is an extension of Open-
FOAM,®*%° an open source software for the solution of complex fluid flows problems, to variable higher order element
method and it adopts a DG method, based on the formulation proposed by Hesthaven and Warburton.>?

The DG method is a high-order method, which has appealing features such as the low artificial viscosity and a conver-
gence rate which is optimal also on unstructured grids, commonly used in industrial frameworks. In addition to this, DG
is naturally suited for the solution of problems described by conservative governing equations (Navier-Stokes equations,
Maxwell’s equations, and so on) and for parallel computing. All these properties are due to the fact that, differently from
formulations based on standard finite elements, no continuity is imposed on the cell boundaries and neighboring ele-
ments only exchange a common flux. The major drawback of DG is its high computational cost with respect to continuous
Galerkin methods, due to the need of evaluating fluxes during each time step and the presence of extra degree of freedoms
in correspondence of the elemental edges.

Nowadays, efforts are aimed at applying the DG in problems which involve deformable domains’ and at improving
the computational efficiency of the DG adopting techniques based on hybridization methods, matrix-free implementa-
tions, and massive parallelization.”"”?

5.1 | Domain and mesh description

The domain Q of the fluid dynamic simulation is a two-dimensional duct with a sudden area expansion and a NACA 0012
airfoil is placed in the largest section. The inflow 0Q; is placed at the beginning of the narrowest part of the duct, and
here the fluid velocity is set constant along all the inlet boundary. The outlet is placed on the right-hand side and it is
denoted with Q. We refer with 0Qy := 0Q \ {0Qo U 0Q;} to the boundaries of the airfoil and to the walls of the duct,
where no slip boundary conditions are applied. The horizontal lengths of the sections of the channels are 0.6 and 1.35 m,
respectively. The vertical length of the duct after the area expansion is 0.4 m, while the width of the first one depends on
two distinct parameters. The airfoil has a chord-length equal to 0.1 m but its position with respect to the duct and its angle
of attack are described by geometric parameters. Further details about the geometric parameterization of the geometry
are provided in the following section. A proper triangulation is designed with the aid of the gmsh” tool and the domain
is discretized with 4445 unstructured elements.
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The evaluation of adimensional magnitudes, commonly used for characterizing the fluid flow field, requires the
definition of some reference magnitudes. For the problem at hand, we consider the equivalent diameter of the chan-
nel in correspondence of the inlet as the reference lengthscale, while the reference velocity is the one imposed at
the inlet.

5.2 | Parameter space description

We chose seven heterogeneous parameters for the model: two physical, and five geometrical which describe the width
of the channel and the position of the airfoil. In Table 4, the ranges for the geometrical and physical parameters of the
simulation are reported. U is the first component of the initial velocity, v is the kinematic viscosity, xo and y, are the
horizontal and vertical components of the translation of the airfoil with respect to its reference position (see Figure 7), a is
the angle of the counterclockwise rotation and the center of rotation is located right in the middle of the airfoil, y* and y~
are the module of the vertical displacements of the upper and lower side of the initial conduct from a prescribed position.

In Figure 7, the different configurations of the domain for the minimum and maximum values of the parameters «,
Xo, Yo, and the minimum opening of the channel are reported.

We have considered only the counterclockwise rotation of the airfoil for symmetrical reasons. The range of the
Reynolds number varies from 400 to 2000, still under the regime of laminar flow.

5.3 | Governing equations

The CFD problem is modeled through the incompressible Navier-Stokes and the open source solver HopeFOAM®’ has
been employed for solving this set of equations.>

TABLE 4 Parameter ranges for the NACA problem

v U Xo Yo a y* y
Lower bound 0.00036 0.5 —-0.099 —-0.035 0 —-0.02 —-0.02
Upper bound 0.00060 2 0.099 0.035 0.0698 0.02 0.02

FIGURE 7 Domain configuration for minimum and maximum values of some geometric parameters. The maximum angle of attack a,
the ranges for the horizontal translation x,, the ranges for the vertical translation y,, and the minimum opening of the channel which
depends on the parameters y* and y~ are represented in Table 4.
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Let Q c R? be the two-dimensional domain introduced in Section 5.1, and let us consider the incompressible
Navier-Stokes equations. Omitting the dependence on (x, t) € Q X R* in the first two equations for the sake of compact-
ness, the governing equations are

Jdu+-Vyu=-Vp+vAu, X € Q,
V-u=0, xeQ,
) ux,0)=uy, px,0)=0, X € Q, (36)
ux,f)=uy, n-Vpxt)=0, X € 09,
ux, ) =0, n-Vpxt) =0, X € 0Qy,
n-vuix,t) =0, pxt)=1, X € 0Qp,

where p is the scalar pressure field, u = (u,v) is the velocity field, v is the viscosity constant and u, is the initial velocity.
In conservative form, the previous equations can be rewritten as

ou+V-F =-Vp+vAu, 37)
V-u=0,
with the flux F given by
u? uv
F =[F,F;] = N (38)
uv v

From now on, in order to have a more compact notation, the advection term is written as A'(w) = V - F(u).

For each timestep, the procedure is broken into three stages accordingly to the algorithm proposed by Chorin and
adapted for a DG framework by Hesthaven and Warburton:* the solution of the advection dominated conservation law
component, the pressure correction weak divergence-free velocity projection, and the viscosity update. The nonlinear
advection term is treated explicitly in time through a second order Adams-Bashforth method,’* while the diffusion term
implicitly. The Chorin algorithm is reported in Algorithm 6.

In order to recover the DG formulation, the equations introduced by the Chorin method are projected onto the solu-
tion space by introducing a proper set of test functions and then the variables are approximated over each element as
a linear combination of local shape functions. The DG does not impose the continuity of the solution between neigh-
boring elements and therefore it requires the adoption of methods for the evaluation of the flux exchange between

Algorithm 6. Chorin algorithm

Require: state variables u and p at t = 0, mesh, and boundary conditions
1: while ¢ < tgp, do
2 Update state variables u"*~! = u”, u"* = u"*!,
3 Find a guess value for the velocity @ by solving:

yoll — apu” — alu"‘l

= —foN (@) - LN (")

At
4 Find the pressure at n + 1 solving: —Ap"*! = —:—“[V Q.
5: Find the intermediate velocity @ solving: yo % =Vprtl.
6: Find the velocity at the n + 1 time instant solving: yo (“:t‘“) = vAu™t,

7: Update ¢".
8: end while
9: return state variables u and p at t = ffpy
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neighboring elements. In the present work, the convective fluxes are treated accordingly to the Lax-Friedrichs scheme,
while the viscous ones are solved through the interior penalty method.”>"¢

The aerodynamic quantities we are interested in are the lift and drag coefficients in the incompressible case computed
from the quantities u, p, v, A, and uy with a contour integral along the airfoil I as

f= ?{pn—v(Vu+VuT)nds. (39)
T

The vector n is the outward normal along the airfoil surface. The circulation in I" is affected by both the pressure and
stress distributions around the airfoil. The projection of the force along the horizontal and vertical directions gives the
drag and lift coefficients, respectively

-e;
cp=18 (40)
Eluoleref
e
CL = 1f—2’ (41)
> 1o 2 Are

where the reference area Ay is the chord of the airfoil times a length of 1 m. For the aerodynamic analysis of the fluid
flow past an airfoil, see Reference 77.

5.4 | Numerical results

In this section, a brief review of the procedure and some details about the numerical method and the computational
domain will be presented along the results obtained. For what concerns the DG the polynomial order chosen is 3. The
total number of degrees of freedom is 133,350. Small variations on the mesh are present in each of the 285 simulations
due to the different configurations of the domain. Each simulation is carried out until a periodic behavior is reached and
for this reason the final times range between 3.5 and 5 s, depending on the specific configuration. The integration time
intervals are variable and they are updated at the end of each step in order to satisfy the CFL condition. The seven physical
and geometrical parameters of the simulation are sampled uniformly from the intervals in Table 4. In total, we consider
a dataset of 285 samples.

With the purpose of qualitatively visualizing the results, four different simulations are reported in Figure 8 for the
module of the velocity field and the scalar pressure field, respectively, both evaluated at the last time instant. These sim-
ulations were chosen from the 285 collected in order to show significant differences in the evolution of the fluid flow.
In Table 5, the corresponding parameters are reported. Depending on the position of the airfoil and the other physical
parameters, different fluid flow patterns can be qualitatively observed.

Thelift (C;) and drag (Cp) coefficients are evaluated when stationary or periodic regimes are reached, starting from the
values of pressure and viscous stresses evaluated on the nodes close to the airfoil. After this sensitivity analysis is carried
out. First the AS method is applied. The gradients necessary for the application of the AS method are obtained from the
Gaussian process regression of the model functions C; and Cp on the whole parameters’ domain. The eigenvalues of the
uncentered covariance matrix for the lift and drag coefficients suggest the presence of a one-dimensional active subspace
in both cases.

The plots of the first active eigenvector components are useful as sensitivity measures, see Figure 9. The greater the
absolute value of a component is, the greater is its influence on the model function. We observe that the lift coefficient is
influenced mainly by the vertical position of the airfoil and the angle of attack, while the drag coefficient depends mainly
on the initial velocity, and secondarily on the viscosity and on the angle of attack.

As one could expect from physical considerations, the angle of attack affects both drag and lift coefficients, while
the viscosity, which governs the wall stresses, is relevant for the evaluation of the Cp. The vertical position of the air-
foil with respect to the symmetric axis of the section of the duct after the area expansion also greatly affects both
coefficients, and this is mainly due to the fact that the fluid flow conditions change drastically between the core,
where the speed is higher, and the one close to the wall of the duct, where the speed tends to zero. On the other
hand, the horizontal translation has almost no impact on the results, given the regularity of the fluid flow along the
x-axis for the considered range of xy. Moreover, the nonsymmetric behavior of the upper and lower parameters which
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Velocity magnitude case 1 Re = 1621 Velocity magnitude case 2 Re = 496
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FIGURE 8 Module of the velocity fields (on the left) and pressure fields (on the right) evaluated at the last time instant of four
different simulations. The corresponding parameters are reported in Table 5.

TABLE 5 Parameters associated to the simulations plotted in Figure 8

# v U Xo Yo a y* y-

1 0.000405 1.99 —0.096 -0.00207 0.00282 0.00784 0.0188
2 0.000541 0.763 —0.084 0.00279 0.0260 —0.0108 0.0195
3 0.000406 0.533 —0.0503 -0.0327 0.0604 -0.0193 0.0068
4 0.000430 1.11 —0.0897 —0.0279 0.0278 —0.00624 0.0197

determine the opening of the channel is due to the nonsymmetric choice of the range considered for the angle of
attack.

The KAS method was applied with 1500 features. In order to compare the AS and KAS methods 5-fold cross validation
was implemented. The score of cross validation is the RRMSE defined in Equation (19).

The GPR for the two methods are shown in Figure 10 for the lift coefficient, and in Figure 11 for the drag coefficient.
They were obtained as a single step of 5-fold cross validation with one fifth of the 285 samples used as test set. The
spectral distribution of the feature map is the Gaussian distribution for the lift, and the Beta for the drag, respectively.
The RRMSE mean and standard deviation from 5-fold cross validation, are reported for different active dimensions in
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FIGURE 9 Components of the first active eigenvector for the lift coefficient (on the left), and for the drag coefficient (on the right).
Values near 0 suggest little sensitivity for the target function.
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FIGURE 10 Comparison between the sufficiency summary plots obtained from the application of AS and KAS methods for the lift
coefficient Cy, defined in Equation (41). The left plot refers to AS, the right plot to KAS. With the blue solid line, we depict the posterior mean
of the GP, with the shadow area the c68% confidence intervals, and with the blue dots the testing points.
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FIGURE 11 Comparison between the sufficiency summary plots obtained from the application of AS and KAS methods for the drag
coefficient Cp defined in Equation (40). The left plot refers to AS, the right plot to KAS. With the blue solid line, we depict the posterior mean
of the GP, with the shadow area the c68% confidence intervals, and with the blue dots the testing points.
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TABLE 6 Summary of the results for AS and KAS procedures

Method Dim Feature space dim Lift spectral distribution RRMSElift Drag spectral distribution RRMSE drag

AS 1 - - 0.37 + 0.09 - 0.268 + 0.032
KAS 1 1500 N(0, ALy) 0.344 + 0.048  Beta(a, f) 0.218 + 0.045
AS 2 - - 0.384 +0.073 - 0.183 + 0.027
KAS 2 1500 N (0, ALy) 0.328 +0.071 Beta(a, f) 0.17 + 0.02

Note: The best results are given in bold.

Table 6. The feature map from Equation (16) was adopted. The hyperparameters of the spectral distributions were tuned
with logarithmic grid-search with 5-fold cross validation as described in Algorithm 5.

Regarding the drag coefficient, the relative gain using the KAS method reaches the 19.2% on average when employing
the Beta spectral measure for the definition of the feature map. The relative gain of the one dimensional response surface
built with GPR from the KAS method is 7% on average for the lift coefficient. This result could be due to the higher noise in
the evaluation of the Cy. In this case, the relative gain increases when the dimension of the response surface increases to
2 with a gain of 14.6%. A slight reduction of the AS RRMSE relative to the drag coefficient is ascertained when increasing
the dimension of the response surface.

6 | CONCLUSIONS AND PERSPECTIVES

In this work, we presented a new nonlinear extension of the active subspaces property that introduces KAS. The method
exploits random Fourier features to find active subspaces on high-dimensional feature spaces. We tested the new
method over five different benchmarks of increasing complexity, and we provided pseudo-codes for every aspects of
the proposed kernel-extension. The tested model functions range from scalar to vector-valued. We also provide a CFD
application discretized by the DG method. We compared the kernel-based active subspaces to the standard linear active
subspaces and we observed in all the cases an increment of the accuracy of the Gaussian response surfaces built over
the reduced parameter spaces. The most interesting results regard the possibility to apply the KAS method when an
active subspace does not exist. This was shown for radial symmetric model functions.

Future developments will involve the study of more efficient procedures for tuning the hyperparameters of the
spectral distribution. Other possible advances could be done finding an effective back-mapping from the targets to the
actual parameters in the full original space. This could promote the implementation of optimization algorithms or other
parameter studies enhanced by the kernel-based active subspaces extension.
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ENDNOTES

*Some authors refer to the active subspaces method, we prefer to employ the term active subspaces property, as suggested by Constantine.
In this work with M(m X n), we denote the set of real matrices with m rows and n columns.
#The dataset was taken from https://github.com/paulcon/as-data-sets.
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APPENDIX. PROOF DETAILS

In this section, we provide an expanded version of the proof of Theorem 1.

Proof of Theorem 1: Existence of an active subspace. The proof is remodeled from References 11 and 53, and it is developed
in five steps:

1. Since Ry € M(d, d) is symmetric positive definite there exists a basis of eigenvectors (w;)ic1, ... 4} and a corresponding

set of positive eigenvalues (f;)ic(1, ... ¢y such that

d
Ry = Zﬁi w; @ w;. (A1)

i=1

2. Let us define the ridge approximation error as

e = If — BoP, 12 e o) = Ep [IIEC0 = hP I, | (A2)

Then we can decompose the error analysis for each component employing the spectral decomposition (A1)

Ep [leGOII3, | = Ep [tr((Rve(X) ® e(X)]
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Bi Ep [tr((w; @ wie(X)) @ e(X))]

Bi Ep [(W; - (X)) tr(w; @ e(X))]

Il
M= 1M 1=

]
—_

B Ep [(w; - e(X))*] . (A3)

so we can define ¢;(X) = w; - e(X) = fi(X) — hi(P(X)), Vi € {1, ... ,d} and treat each component separately.
3. The next step involves the application of Lemma 1 to the scalar functions f;(X) — h;(P-(X)), Vi € {1, ... ,d}

Ep [(i(X) — hi(P,(X)))*] = Ep [Ep [(i(X) — Li(P,(X))*|o(Py)]]
< Ep [Cplp, P-X)Ep [IIT - PHVAEX)I510(Py)]]

< Ep[Colp. PLX))|» Ep [l — PDYVE)IZ] 7. (Ad)

where we used the Holder inequality with indexes (p, q) = (o0, 1) when p belongs to the first and second classes of

Assumption 3, and (p, q) = (% 1+ T> when p belongs to the third class.

Then we can bound Ep [(Cp, P,(X))] » with a constant C(Cp(p, Pr(X))) which depends on the class of p (see Lemmas 3.1,
4.2-4.4 and Theorem 4.5 of Reference 53) as follows

1

Ep[Colp. PX)] 7 Ep[I0 ~ PPV
< C(Cp(p, P(X))) tr (]Ep [0 = POVAE)(VAE) (T - Py)] ; )

= C(Cp(p, Pr(X))) tr((I = PHEp [VAEN(VAXD'] (T - P, (A5)

4. The spectral decomposition (A1) is employed again and the covariance matrix H is introduced in the last equation

Ep [l |
d
< 3 i CColp, PoX0) tr({ = PHEp (V) W) @ (VECK) W] (T = P

i=1

d

= C(Cp(p, P(X))) tr((I - P}) Ep l(Vf(X»T <Zﬂ? w; ® wl-> Vf(X>] (I —Py))s
i=1

= C(Cylp, PX))) tr((I = PT) Ep [(VEX) Ry (p)VEX)] (I - P,))

= C(Cylp. P(X))) tr((I ~ PT) H(I - P,)):. (A6)

where Ry (p) is the original metric matrix if p belongs to the first or second class of Assumption 3 and is equal to

d
Zﬂilﬂ Wi @ Wi, (A7)

i=1

if p belongs to the third class.
5. Finally the bound in the statement of the theorem is recovered solving the following minimization problem with
classical model reduction arguments employing SVD

P, = arg mintr((I — PHH(I — P,)). (A8)
P,eO(m,m)
[ ]
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