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COMPACTNESS FOR A CLASS OF INTEGRAL FUNCTIONALS
WITH INTERACTING LOCAL AND NON-LOCAL TERMS

ANDREA BRAIDES AND GIANNI DAL MASO

ABSTRACT. We prove a compactness result with respect to I'-convergence for a class of
integral functionals which are expressed as a sum of a local and a non-local term. The
main feature is that, under our hypotheses, the local part of the I'-limit depends on the
interaction between the local and non-local terms of the converging subsequence. The
result is applied to concentration and homogenization problems.

1. INTRODUCTION

In this paper we study sequences of integral functionals of the form

By (u) = fmfk<x,y,u<x>,u<y>>dxdy " fﬂ gu(z, Vu(z)) dx (11)

defined on WHP(Q), where Q is an open bounded subset of R? with Lipschitz boundary
and 1 < p < 00. Our scope is to show that, under proper structure properties on f; and
gk, such sequences are precompact with respect to the I'-convergence in the weak topology
of WP(Q), and their I'-limit can be written in an integral form as

D(u) = J flz,y,u(x),u(y)) dedy + j g(z, Vu(x)) dx. (1.2)
QxQ Q

Our hypotheses (see Section 2.2]) allow for concentration of fj close to the diagonal
A = {(z,y) : x = y} (see Remark 2T]). As a result of this, while the non-local term

| rew o). u) dedy (13)
QxQ
of the I'-limit depends only on the sequence {fi}, the local term
f g(z, Vu(z)) dx (1.4)
Q

depends on the mutual interaction between the local part of ®; and its non-local part.
More precisely, the function ¢ is determined by the sequence {gi} and the part of the
sequence { f} that is concentrating on the diagonal.

Non-local functionals as in ([L3)), which appear naturally in the definition of fractional
Sobolev spaces, have been recently studied also in connection with variational models in
peridynamics [I1), [19], image processing [6l 12], and data analysis [I8, [20]. Semicontinuity
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and relaxation problems with respect to the weak topology of LP(£2) have also been studied
e.g. in [2, 13| 14} 17].

Sequences of non-local functionals as in (L3)) (that is, of the form (II)) with g5 = 0)
converging to local functionals (that is, of the form (I4])) have been considered by various
authors in different contexts. We refer to [4] for their use in the characterization of Sobolev
spaces by approximation (see also [10]), to [3, I5] for the analysis of limit problems in
peridynamics as the horizon tends to zero, and to [I] for a theory of convolution-type
energies.

In the present paper we consider general functionals ®j of the form (LI, and our
hypotheses ensure that the local terms involving g5 are always non-trivial and provide an
equi-coerciveness property in the weak topology of W1P(Q). This is the reason why we
may study the I'-limit in this topology.

Contrary to many of the papers quoted above, we allow for the possibility that a non-
local part is still present in the limit; that is, our hypotheses are not forcing to have f =0
in ®.

We focus on a general representation result as in ([2]) for the I'-limit ®, even when
no explicit formula for g is available. While there is an integral-representation theory for
I'-limits of sequences of local functionals of the form

J gk (z, Vu(zx)) dz,
Q

under general hypotheses this cannot be extended to functionals of the complete form
(LI). However in our case, we are able to separately examine the limit behaviour of the
functionals ‘far from the diagonal’ and ‘close to the diagonal’.

The off-diagonal part is fully described in terms of the weak* limits of the sequences of
integrands {fx(-,-,s,t)} (see Section B]). In this argument we use the fact that all integrals
are with respect to the Lebesgue measure. For the analysis of a case when the non-local
terms are of the form

f fol s u(a), uly))dus (2, ), (1.5)
QxQ

for suitable measures py on  x Q, we refer to [7].

The analysis of the part concentrating on the diagonal is much more delicate. We
introduce a parameter 6 > 0 and examine the part of the I'-limit concentrated on a J-
neighbourhood of the diagonal (Section M]). Using some technical estimates we prove that
such part, up to a controlled small error as 6 — 0, satisfies all hypotheses of the abstract
integral-representation theorem for local functionals (see Section [l). Finally, these results
lead to the desired integral representation (L2) (see Theorem [6.1]).

Our abstract compactness result is applied to the study of two prototypical problems
in which local and non-local parts interact. In both cases the limit is purely local. The
first one (Section [I]) regards the interaction between relaxation in the local part and
concentration on the diagonal in the non-local part of convolution type. We characterize
the limit energy density ¢ showing that concentrations and oscillations act at different
scales.
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The second example (Section [7.2)) regards the interaction between oscillation and concen-
tration. We consider periodically oscillating energies both in the local and non-local part,
with a period of the same scale as the concentration. In this case we have homogenization
and the limit ¢ is characterized by an asymptotic homogenization formula in which both
local and non-local terms are present.

2. SETTING OF THE PROBLEM

2.1. Notation. In the following d > 1 is the space dimension and € is a bounded open
subset of R? with Lipschitz boundary. The family of the open subsets of © is denoted by
A. The diagonal of Q x Q is denoted by

A= {(z,x): x € Q},
while
Asi={(z,y) 12,y Q: |z —y| <0}

denotes a d-neighbourhood of the diagonal. The notation M; (€2 x Q) stands for the space
of bounded Radon measures on Q x . The Lebesgue measure in R¥ is denoted by £* and
the m-dimensional Hausdorff measure (in any space dimension) is denoted by H™. The
restriction of a measure u to the set A is denoted by pL A, defined by ulL A(B) = u(Bn A)
for any Borel set B.

The characteristic function of the set A is denoted by 14. If A’ cc A, a cut-off function
between A’ and A is a function ¢ € CP(R?) such that ¢ = 1 on A’, » = 0 on RY\ A and
0<e<l

2.2. Hypotheses. We fix exponents 1 < p < ¢ < +00 and let p/, ¢’ denote the correspond-
ing dual exponents. If p < d then we also assume that ¢ < p*, where p* is the Sobolev
exponent of p.

We consider sequences of integrals of the type

O (u) = JQXQ ez, y,u(z),uly)) dedy + JQ gk (z, Vu(z)) dz (2.1)

defined on W1P?(Q).

2.2.1. Hypotheses on fr. The functions fr: Q x Q@ x R x R — [0, +00) are Borel functions
satisfying the following conditions.

1. Behaviour far from the diagonal A.
For all > 0 there exist k; € N, ¢5 > 0, a5 € L1(Q), B5 € L (Q) such that
0< fe(z,y,s,t) < cs(as(x) +[s|)(as(y) + [t]), (2.2)
(@, g, 51,) = frl(@, v, s2,0)] < eslas(y) + [E9) (Bs (@) + ([s1] v [s2)?")[s1 = s2f,  (2:3)
(@, g, s,t1) = ful@,ys s, t2)| < eslas(a) + 1519 (Bs(y) + ([ta] v [t [t —t2], (24)
for all k > ks, z,y € Q with |z — y| = 0, s,t, 81, 892,t1,t2 € R.
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2. Behaviour close to the diagonal A.
There exist Borel functions fi.: Q x Q x R — [0, +o0) and by, € L' (2 x Q) such that there
exist a constant ca and a € L'(Q) with o > 0 such that

ﬁ(w, y,-) is convex, (2.5)

iﬁc($7yv2(s - t)) < fk(il?,y,S,t) < ﬁ@($7yvs - t) + CA(O‘(:E) + |S|q)(04(y) + |t|q)7 (26)

~ br(x,y
Flayr) < 25D, 2.7)

forall ke N, z,y € Q, and s,t,7 € R. Moreover, we assume the technical hypothesis that
there exists a constant ¢, > 0 such that

f bp(z,y) dx < ¢ (2.8)
Q

for all y € Q and for all &. We will see that this requirement can be relaxed to an inte-
grability assumption on the function y — SQ b(z,y) dx. These properties can be required
symmetrically to the function z — {, by (z,y) dy.

We suppose that there exist ba € LZ(A,H?L A) and b e L®(Q x Q) such that

brlL?® 5 bAHIL A + b (2.9)
weakly™ in M;(Q x ).

Remark 2.1 (concentration). Hypotheses (Z6)-(28) allow for concentration of f; on the
diagonal in a controlled way, which may occur when ba # 0. The prototypical example for
concentration is when

bk (‘Ta y)
fk ,Y,8,1) =
( ) |z —ylP
where ¢ € L'(R?) with ¢ > 0. We refer to Section [II] for the treatment of this particular

case for a specific choice of the local term.

s — t|P, and by(z,y) = k%p(k(z —y)),

Finally, in order to obtain that the local part of the functionals in the limit depend only
on the gradient, we will also require an asymptotic invariance by addition of a constant
close to the diagonal as follows.

3. Asymptotic invariance by addition of constants.
For every 7 € R there exist o, € L}(Q x Q) with a;, > 0 and a modulus of continuity
wy : [0, +00) — [0, 400) such that

‘fk(x,y, s+rt+r)— filz,y, S,t)‘ < ap(z,y) + wr(lx — y|) fe(z,y, s, t)
+ealofz) + [s|?)(aly) + [¢7) (2.10)

forall ke N, z,y € Q and s,t € R.
Note that this condition is trivially satisfied if fi(z,v,s,t) = fr(z,y,s — t).
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2.2.2. Hypotheses on g. The functions g: Q x R? — [0, +00) will be Borel functions
satisfying the following condition: there exist constants cg,c; > 0 and a € L*(Q) such that

colé < gr(z,§) < arl¢f + a(z) (2.11)
forall ke N, z € Q, £ e R

2.3. Localized functionals. In order to study the I'-limit of functionals ®; we introduce
a separate notation for the non-local and local parts of the functionals. Furthermore, in
order to apply representation techniques for I'-limits we consider the restriction of these
functionals to open subsets.

As for the nonlocal part, for all A, B € A and u € L9(2) we define
RluAB) = [ fuloy.uta).uty) dedy (212)
x B

Furthermore, in order to separately analyze the contributions of the nonlocal part close
and far from the diagonal, we set

Fi(u, A, B) i f Fel@sy, ule), uly)) dedy, (2.13)
(AXB)K\A(;
Fi(u, A, B) i f fo(a,y,ule), uly)) dedy. (2.14)
(AxB)\As
Note that -
Fi.(u, A, B) = F{(u, A, B) + F{(u, A, B) (2.15)

by definition.
For all Ae A and u e WP(Q) we set

Gi(u, A) = JA gk (x, Vu(x)) dz. (2.16)

We finally extend this notation to the complete functionals as follows. For all A, B € A
and u € W1P(Q) we define

O (u, A, B) := Fy(u, A, B) + Gi(u, A n B), (2.17)
@ (u, A, B) := F{(u, A, B) + Gy(u, A n B). (2.18)

Note that g
Oy (u, A, B) = F(u, A, B) + ®}(u, A, B) (2.19)

by 2.I5).

In order to determine a subsequence on which the I'-limit exists, we now fix a countable
dense subset D of A; that is such that if A,B € A and A cc B then there exists D € D
with A cc D cc B. By the compactness of I'-convergence there exists a subsequence of
indices k, not relabelled, and a functional ®: WP(Q) x D x D — [0, +0] such that for
every A, B € D we have

(-, A, B) I'-converges to ¢(-, A, B) (2.20)
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with respect to the weak topology of WP(Q). In the rest of the paper we consider this
fixed subsequence, from which we will extract further subsequences.
We furthermore define

(-, A, B) = I-liminf ®4(-, A, B), (2.21)
k—40

®"(-, A, B) = I'-limsup ®,(-, 4, B) (2.22)
k—+00

for all A, B € A. Note that ®'(-, A, B) = ®"(-, A, B) for all A, Be D by ([2.20).

3. OFF-DIAGONAL BEHAVIOUR

We now prove a compactness result for functionals E ,f (u, A, B) for the I'-convergence
with respect to the strong L%-convergence. We begin with a compactness result for the
integrands f.

Lemma 3.1. There exist a subsequence of fi., not relabelled, and a Borel function f: ) x
QxR xR — [0,+0) satisfying 2Z2)—24), such that for every § > 0 we have

fk('7'737t) _\f('7’737t) (31)
weakly in L*((Q x Q)\As) for every s,t € R.

Proof. By [22) and by Fubini’s theorem, for every s,¢ € R the functions fi(,-,s,t) are
bounded by a function in L' (£2x Q) independent of k. Therefore, using a diagonal argument
we can find a subsequence of fi, not relabelled, and a Borel function f: Q@ x 2 x Q x Q —
[0, +00) such that BI]) holds for every ¢ > 0 and for every s,t € Q. Passing to the limit
in (Z2)-(24) we have that f satisfies the same properties for every s,t € Q. We can
then extend f(z,y,-,-) by continuity to R x R for all z,y € Q with = # y. After defining
arbitrarily f for z =y, we obtain f: Q x Q2 x R x R — [0, +o0) satisfying (2.2)-(24). The
convergence in ([B.I]) for every s,t € R is obtained by approximation with s,t € Q. ]

We define

Fo(u, A, B) = f fz,y,u(z),u(y)) dedy (3.2)
(AxB)\As

for u e L9() and A, B € A. Note that u — F%(u, A, B) is continuous with respect to the
strong convergence in L4(2), since f satisfies (Z2)—(2Z4).

Theorem 3.2. Assume that fi, and f satisfy 22)-@4]) and BI). Let uk, v, u,v € LI(Q)
with up, — w and vy — v strongly in LY(Q). Then

lim fe(x,y, ur (@), vi(y)) dedy = f f(@,y,u(x),v(y)) dedy  (3.3)
k=40 J(AxB)\As (AxB)\As

for all A, B € A and every 6 > 0. In particular we have
lim F}(up, A, B) = F°(u, A, B). (3.4)
k—+00
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Proof. Let A, B € A be fixed, and let § > 0. We first consider ¢, simple functions,

N M
gpzZsilAi and ¢:th13j,
i=1

j=1
with {A;} and {B;} measurable partitions of Q and s;,t; € R. We claim that

lim fu(@,y, o(x), (y)) dedy = f @,y p(@), () dudy.  (3.5)

k—=+0 J(AxB)\As (AxB)\As
Indeed, setting A} := A; n A and B := B; n B we have

fk($7y7(p( ) d$dy _Zj $ Y5 Syt )d$dy7

J;AXB)\Ag (A} xBY) \A5

and similarly for f. The claim follows, since

lim fk<x7y78i7tj) dmdy = f f(xhyashtj) dxdy
k=400 J(ArxBi)\As (AIxB))\As

by B.1).

Now, in order to prove (B3], given £ > 0 we fix two simple functions ¢, such that
lu —@lra) <& and  |lv = YlLaq) <e,
and a constant C' such that

C6f (as(y) + |ve(y)|9) dy < C, Caf (as(z) + |e(x)|?) dz < C,
Q Q

q—1

(| Bsta) + (et v (o)) 1 de) * <.

([ @+ @l ) ) T <.
By 23) and (24]) we have

fk($7 Y, uk(ﬂj‘), Uk(y)) d$dy - fk($7 Y, 90($)7 Tz[)(y)) d$dy

J(A><B)\A(5
i,y wn(2), v4(9)) = (.9, (), ()| dedy

‘J(AXB)\AJ

<

j(A><B)\A6

)
(AxB)\A;

<o f (cs(w) + [ux(9)[7) dy f (Bs(x) + ((@)] v Jur(@))T) Jur(x) — ()] da
Q Q
s L(Oéa(x)Jr ()| )d:cjg( 5(0) + (@) v [oe@))T ) us(y) — ()| dy

< C?(Jluk — @l ra@) + ok — ¥l ra@)) < C*(luk — ulza) + vk — vllze) +2¢) . (3.6)

Filw,y, 0(@), 0n(0) — il 0(2), ()| dedy
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Similarly, we obtain

| tewu.ew)deay - | fee), vl)dedy| < 0222 3
(AxB)\Ag (AxB)\As

By B0)-B.7) and the arbitrariness of e, we obtain the claim (3.3)). O
Remark 3.3. Since

br(x,
0 fulesit) < PP 4 ea(ala) + s aly) + )
by ([Z4) and ([Z7), the weak convergence in (Z9) implies that
b(z,y
0< flz,y,s,1) < ﬁ\t — 8" + eala() + [s]7) (e(y) + [¢]7) (3-8)

for almost all z,y and all s, t.

Lemma 3.4. There exists C > 0 such that if A,B € A and 0 < § < dist(A u B,RN\Q)
then ,
f [u@) =uW)I” ) < C’5df V(@) de (3.9)
Asn(AxB) T —ylP Q
for all ue WhHP(Q).

Proof. By approximation it is sufficient to deal with the case u € C'(2). Then for every
(x,y) € As n (A x B), since the segment between z and y lies entirely in €2, we may write
1

) = uly) = | Vula+tly—a) - (s = )i,

which gives

— uly)P 1
[ul) = uly) P < L [Vu(x + t(y — z))|Pdt.

|z —ylP
Hence,
_ P 1
f Ju(z) = uly)I” dxdy < f f |\Vu(z + t(y — x)) P dedy dt
Asn(AxB) T —ylP 0 JAsn(AxB)

: 1
- rff |Vu(x+t(y—:n))|pdxdydt+f ff Vu(z + ty — 2))|P dy dz dt.
0 JBJBs(y) % A JB;s(2)

By the change of variables z = x + t(y — ) we can estimate the last two integrals from
above by

1
) il
—_— Vu(2)Pdzdydt + | — Vu(z)P dz dx dt
| = . o, [T i ), Ly T
< 2d—1f f |Vu(z)|pdzdy+2d_1j f |Vu(z)|pdzdm<5d2dwdj V()P dz,
B JB;(y) A JBs(x) Q

which proves the claim. O
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For all A, B € A we set
FAB) = | floy.u(o).uly) dedy (3.10)
AxB
for u e WHP(Q).
Proposition 3.5. For every u € W'P(Q) and A,B € A with A,B cc Q we have

F(u, A, B) < +00 and the functional u — F(u, A, B) is sequentially continuous with respect
to the weak convergence in W1P(€).

Proof. The finiteness of F'(u, A, B) follows from the boundedness of b, (8.8]), (8.9]), and the
Sobolev embedding theorem.

Let uy, be weakly converging to u in WP (). We claim that the energy on (A x B) n A
is small as 0 — 0, uniformly with respect to k. Indeed, by (B.8]) we have

j £ (@, 9, up(@), ui (y) dady
(AXB)(\A(;

up(x) —u p
< e [ PO gyt e [ (ao) + @) aly) + (o)) dody,
Ay |z —yl (AxB)AAs
so that, by (3.9),

lim supf [z, y, up(x), u,(y)) dedy
k—+00 J(AxB)nAj

< Clbledsup | [VuPdeea | (o) + ful@)(aly) + ful)]?) dody,
k JOQ (AxB)nAg
which proves the claim since (a(x) + |u(2)]?)(a(y) + |u(y)|?) € L}(A x B).
We can now conclude that F'(ug, A, B) tends to F'(u, A, B). This follows from the esti-

mate above, since the functional F%(-, A, B) defined in (3:2) is strongly continuous in L7(£)
and wuy converge strongly to u in L%((2). O

4. BEHAVIOUR ON THE DIAGONAL

Let D be the countable dense subset of A introduced at the end of Section By the
compactness of I'-convergence there exists a subsequence of indices k, not relabelled, and
a functional ®°: WHP(Q) x D x D — [0, +oo] such that for every 6 > 0, § € Q, and for
every A, B € D we have

®9(-, A, B) I'-converges to ®°(-, A, B) (4.1)
with respect to the weak topology of W1P(€).

We consider the functionals ®%, ®%: WHP(Q) x A x A — [0, +0] defined for all A, B € A
by

®5(-, A, B) = I-liminf (-, A, B), (4.2)
k—+0o0
®Y%(-, A, B) = I-limsup ® (-, A, B), (4.3)

k—+00
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where the [-limits are taken with respect to the weak topology of WP(Q). By (I we
have ®(u, A, B) = ®{(u, A, B) for all ue W'P(Q) and A, B € D.
For all u € WHP(Q) and A € A we define

s (u, A) := inf ®f(u, A, A) = lim ®f(u, A, A), (4.4)
6>0 5—0+

PN (u, A) := inf ®f(u, A, A) = lim ®f(u, A, A). (4.5)
>0 5—0+

Note that by (&I) we have @' (u, A) = &4 (u, A) for all u e WP(Q) and A € D.
Proposition 4.1. Let ®' and " be defined by 221)) and [222), respectively. Then

D' (u, A, A) = P (u, A) + F(u, A, A), ®"(u, A, A) = D\ (u, A) + F(u, A, A) (4.6)
for every u e WiP(Q) and A e A.

Proof. We have
i (u, A, A) = ) (u, A, A) + F (u, A, A)
for every u e WP (Q) and A € A. From (B.4]) we then deduce
O (u, A, A) = D(u, A, A) + FO(u, A, A),  ®"(u, A, A) = ®4(u, A, A) + F°(u, A, A).

Letting § — 0 we obtain (@) by the definition of &/, and ®’ and the integral form of
F(u, A, A). O

Proposition 4.2. For all A e A with A cc Q the functionals @5 (-, A) and P\ (-, A) are
sequentially weakly lower semicontinuous in WP (€2).

Proof. We note that ®(-, A, A) and ®”(-, A, A) are weakly lower semicontinuous in W1?(Q)
as [-limits. Then the claim follows from Propositions and 411 O

Note that @\ (u, A) < @’y (u, B) and @4 (u, A) < ®A(u, B) if A < B. Since &/, (u, A) =
P’ (u, A) for all ue WHP(Q) and A € D, we can define ®o: WHP(Q) x A — [0, +o0] by

PA(u, A) := sup{®s(u,B) : Be A,B cc A} = sup{®A(u,B) : Be A,Bcc A}. (4.7)
Note that A — ®a(u, A) is inner regular; i.e.,
DA (u, A) = sup{®a(u,B): Be A,B cc A}. (4.8)
Moreover, by Proposition
PA(+, A) is sequentially weakly lower semicontinuous in W1P(Q) (4.9)
for every A € A.
Proposition 4.3. There exist ca > 0 such that for all u € WHP(Q) we have

B (u, A) < B4 (u, A) < L(a(x) + oo Vu(@)P) da (4.10)

for all Ae A.
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Proof. Let u € C'(Q), let A € A with A cc Q and £4%0A) = 0, and § > 0 with § <
dist(A, RN\Q). Then by Taylor’s formula there exists a modulus of continuity w such that

b
B A4) < | @Vue)l +a@)dr+ | M0 10 — ()P ddy
A (AxA)nAs 1T — Yl

ea f (a(x) + [u(@)]9)(a(y) + [u(y)[7) dzdy
(Ax A)As

N

j (c1|Vu(@)P + a(z)) dr + j br(x,y)|Vu(x) + w(9)P dedy
A (AxA)nAg

+CAJ (a(@) + |u(z)|)(a(y) + u(y)|?) dedy
(AxA)nAg

< j (c1|Vu(x)P + a(z)) dx + op—1 J b (z,y)|Vu(x)|P dedy
A (AxA)nAs

+CAJ (a(@) + |u(z)|)(a(y) + u(y)|?) dzdy
(AxA)nAg

+2P Lo £ A)wP (), (4.11)

where in the last inequality we have used the boundedness assumption (2.8]).
Letting £ — 400 we obtain

P (u, A) < f (c1|Vu(z)P + a(z)) dx + 2p_1f ba(x, y)|Vu(z) P dH(z,y)
A (AxA)nA

+2p_1f b(z,y)|Vu(z)|P dedy
(AxA)nAs

+6Af (a(z) + |u(x)]|)) (a(y) + |u(y)|?) dedy + 2p_1pr(5),
(AxA)nAg
while, letting 6 — 0, we get

BAwA) < [ @IVu@P +a@)do+ 27 | bale)[Vul@)P dH (o)
A (AxA)nA
which proves the claim e.g. with ca = ¢; + d2P~!|ba | under our hypotheses on v and A.
For a general u € W'P(Q) we fix v € VVO1 P(Q) such that v = v almost everywhere in
A, which is possible since we assume that A cc Q. Approximating v with functions in
CZ (), we conclude the proof by the lower semicontinuity of ®A(-, A). To remove the
hypothesis A cc Q we use the inner regularity given by (Z.S]). O

The following proposition will be used to relate the values ®'(u, A, B) and ®"(u, A, B)
to F'(u, A, B) + ®s(u, A n B) and F(u, A, B) + ®A (u, A n B), respectively. We use the
notation A, := {z € Q : dist(z, A) < n}.

Proposition 4.4. Let ®' and ®” be defined by (Z21) and Z22), respectively, let @'y and
P\ be defined by @A) and D), respectively, let F be defined in BI0), let A,B € A, let
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ue WHP(Q), and let n > 0. Then we have
F(u, A, B) + ®\(u,An B) < ®'(u, A, B)
F(u,A,B) + ®A(u, A n B) < ®"(u, A, B)
Proof. Let 0 < d < 1. Note that
(Ax B)nAs < ((A5 0 Bs) x (As 0 Bs)) n As < ((A; 0 By) x (A, 0 By)) N As.

F(u, A, B) + ®\(u, A, 0 By), (4.12)

<
< F(u, A, B) + PA(u, Ay 0 By).  (4.13)

Let uy, be a sequence in W1P(2) weakly converging to u. Then
&y (up, A, B) = F}(ug, A, B) + 0% (uz, A, B)
< F(ug, A, B) + ®)(up, Ay 0 By, Ay 0 By).
By (B4]) we then obtain
llilll}rlg & (up, A, B) < F°(u, A, B) + lliminf @) (up,, Ay N By, Ay 0 By),

— 400
and, by the arbitrariness of uy,
®'(u, A, B) < F(u, A, B) + ®4(u, A, n By, A, " By).

Taking the limit as § — 0 we then get the second inequality in ([I2]). As for the first
inequality in (£.I2), we observe that

Oy (up, A, B) = FP(up, A, B) + @3 (ug, A, B)
> F(up, A, B) + ®(ug, A B,An B),
and proceed as above. Similarly, we prove (4.13]). O

5. INTEGRAL REPRESENTATION OF THE TERM ON THE DIAGONAL

In this section we prove that the functional ® introduced in ([£7]) can be represented
as an integral; more precisely, we shall prove the following theorem.

Theorem 5.1. Let fi satisfy 22)-@2I0), let gr satisfy ZII), and let Pa be defined by
@D). Then there exists a Borel function g : Q x R* — [0, +m), convex in the second

variable, such that

Pa(u,A) = ng(az, Vu(z)) dzx (5.1)

for all u e WHP(Q) and A € A.

The proof of the theorem will be achieved after some technical results as follows. We
start with proving a subadditivity property.

Proposition 5.2. Let ue W'P(Q). Let A, B e A. Then we have
DA (u, AU B) < Pa(u, A) + Pa(u, B). (5.2)
By (™) the claim of Proposition (.2 is a consequence of the following lemma.
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Lemma 5.3. Let ue W'P(Q) and let A, A', B e A with A’ c= A. Then we have
DA (u, A" U B) < ®p(u, A) + ®'A(u, B). (5.3)

Lemma [5.3] will be a consequence of the following general result, which will be used to
join recovery sequences.

Lemma 5.4. Let u € WHYP(Q) and let vy and wy, be sequences weakly converging to u in
WLP(Q). Let A,A', A", B € A with A’ cc A” cc A. Then for all 0 > 0 there exist 55 > 0
and a sequence uy, converging to u in WYP(Q) such that uy = vy, on A, up = wy, on Q\A”",
and

lim sup ®9 (ug, A’ U B, A’ U B) < (1 +0) limsup(@i(vk,A,A) + 9 (wy, B, B)) +o (5.4)
k—+o0 k—+00

for every 0 < § < 9,.

Proof. Given m € N, let Ao, ..., An € A with A’ = Ag cc 4y cc Ay cc .- cc Ay, =
A" and let ¢; be a cut-off function between A;_; and A;. We define uj, = p;up, + (1—; )wg.
We now estimate F (ul, A’ U B, A’ U B). Note that for all i € {1,...,m}, after setting

Di = (A, v B) M Ai_l, Dé =B n (Ai\Ai—1)7 Dé = B\Az,

we can write A’ U B = Di U Dé U Dg; hence, we can split
3 3 ' '
(AU B)x (AuB) =] D] x D)
j=1¢=1

and separately examine the integrals on each of the sets on the right-hand side.
We have

f feydb@) @) dedy < | fuleny on(@), o(y)) dedy
(DiXDi)ﬁAg (Aifleifl)ﬂAg
< Jr(@,y, v (), vk (y)) dedy. (5.5)
(AxA)nAs

In the same way

f Fele,y, (@), uk(y)) dady = f Fel@, v, wi(@), wi(y)) dxdy
( ((B\A

Dix D) Ag ) (B\Ai))nAs

< Ju(@, y, we (), wi(y)) dedy. (5.6)
(BXB)K\A(;

In order to estimate the other pairs (j,£), it is convenient to note that

ul, (x) — uj(y) = @i(x)(vr(z) — ve(y)) + (1 — pi(z)) (we () — wi(y))
+pi(@)vr(y) + (1 — @i(x)wr(y) — wi(y)ve(y) — (1 — pi(y))wi(y)
= @i(x) (g () — v (y)) + (1 = pi(2)) (Wi () —wi(y)) + (wi(x) — i(y)) (v (y) — wi(y))-
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Note that by the convexity of fk we have

~

b3, ,2061(2) = ) (0 0) — wr()

In view of (Z0) we also define

24(2) = (a(a) + [oe(@)]? + [wp(@)]9),
O mea [ aw)aly) dedy
(DixDi)nAs

Then, using [2.6), 7)), and (&.1]), we get
| ewue) ) dedy
(DixD})nAs

~

Te(z,y, 2(vi () — vk (y))) dedy

N

J‘(D; XDé)ﬁA(g

3|

_l’__

2 J(pixDj)nns
)

+_

2 J(pixDi)nas

DO | =

~

fr(z,y, 2(w () — w(y))) dedy

s
2 7 J(DixDi)nA;

N

fe(z,y, v (2), vk (y)) dzdy

+10A fi(@, y, wi(z), wi (y)) dedy

2 f(D;.xDz)mAg

+Cm | be(y)loe(y) — wk(y) P dady + rif(6),
(DixDi)nAs

where L,, is a common Lipschitz constant for all ¢; and C,, := 2P~ 1LF,.

e, 0) — k) < 5, 2000(0) = ) + 5Tl 20n(2) — wn(v)

(5.7)

Felw,y, 2005 (@) — 03 (1)) (v (y) — wi(y)))) ddy + 75 (5)

(5.10)

We now remark that there exists dp = dg(41 ..., Ay) > 0 such that for 0 < § < g for

all ¢ we have
(D% x DY) n As = (D x DY) n As = &,
and for all /€ {1,2,3} and i€ {2,...,m — 1}
(D} x DY) n As < (Dh x Dy) N Ag.

where Dy = (A"\A") n B.

(5.11)
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We then deduce that

}].[ fol@,y b (@), ud (1)) dady

=2 (=1 (Dz XDl)ﬁA(g

(%5[, (Ful, g, on (@), 0r () + ol wi (), wi () dedy
(Dix D,)nAg

/A
Mz

=1 2

won [ b)) — ) dedy + [ »M@%@MM@
(D5xDqy)nAs (DyxDy)nAs

3

= (o, 04(2), 0 (9) + Sy, (), wn () dady
(D2 XDz)ﬁAg

13, M%M%@—WWWM@+J 2(2)24(y) dady.

(DQXDQ)GA(S (D2XD2)F\A5

Similarly, for all j € {1,2,3} and i€ {2,...,m — 1}
(D;- x D) N As (Dy x Di) n As,

and the same estimate holds for

m—1 3 '
Z Zf( Fulz,y, ug(2), up(y)) d.

DixD})nAg

On the other hand, a well-known argument (see [9 Theorem 19.1]) gives the existence
of a constant ¢ independent of m, and a constant ¢,,, depending on m, such that

ZJ e Vi @) de < 2] (e Tou(e) + gula, Vun(a) do

2

+EL) a(x)dr + ¢ f |k (x) — wg(2)|P dz.

2 D2
We deduce that there exists i = i; € {2,...,m — 1} such that

3

[ Rk i) dedy
=1 J(DyxDy)NAs

+2j

xyma>%@»mw+f,%mv%m»m

7

DixDi)nAs



16 A. BRAIDES AND G. DAL MASO

2 3
< — —CAJ frlz,y,vp(x), vi(y)) dedy
(5o, @)
3
e | il g ), ) dady + | ()2 y) dody
(BXB)ﬁAg (DZXDZ)F\A(;
—i—EJ (gr(x, Vog(x)) + g (z, Vwg(2))) dz
D2
—i—EJ a(x)dr + <3Cmcb + Em> j log(x) — wg(x)]P dx), (5.12)
D, A"~B
where ¢, is the constant in (2.8]).
We fix m € N such that 5 951 20
arsertu ., (5.13)

m — 2
where

Cy e (L (0(2) + 2fu2)|?) dz)” + af o) dz,

D,

and define uy, := uz’“ and d, = dg(A4; ... A,,) such that (EII) holds.
Then, by (B.5]), (B6) and the analogous estimates for the terms involving gy, if 6 < d,

then (B.1I) gives
(I)i(u/wA/ v B, Alu B) < q>2(vk7A7A) + <I>2(wkaB7B)

N ko)) da

DixDi)nAg
+2j n$%%<><wmmWJ %@N%uwm (5.14)
DixDj)nAg g
Since vy, and wy, tend to w strongly in LP(D,) and in L9(D,) by Rellich’s theorem, we

have

k—+ow Jp

lim i (y) — wi(y)|P dy = 0
2

and, by (.8),

lim 2k () 2k (y) dedy + EJ a(x)dr < C,.
k—=+0 J(D,xD,)nAs D,

Passing to the limit as k¥ — +o0 in (5.14) and using (5.12)) we obtain (5.4]). Note that
this inequality is proved only for 6 < §, such that (G.1I]) holds. O

Proof of Lemma B3l Tt suffices to prove that for all ¢ > 0 there exists J, > 0 such that
P (u, A" UB, A UB)<(1+0)(P5(u, A, A) + ®5(u,B,B)) +o (5.15)

for every 0 < § < d,. To that end it suffices to apply Lemma [£.4] choosing recovery
sequences of ®§(u, A, A) and ®§(u, B, B) as vj, and wy, respectively. O
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Corollary 5.5. Let ue WP(Q) and Ae A. Then
Py (u, A) = DA (u, A) = Pa(u, A). (5.16)

Proof. Since by definition we have ®a (u, A) < @5 (u, A) < ®’A (u, A), we only have to prove
that

P (u, A) < Da(u, A). (5.17)
With fixed € > 0 let K be a compact subset of A such that
J (a(x) + 2| Vu(z)P)dx < e (5.18)
A\K

with co as in Proposition
We fix A', A” ¢ A with K ¢ A’ cc A” cc A. By Lemma[5.3], we have

DA (u, A) < PA(u, A”) + O\ (u, A\K) < Pa(u, A) +¢
by ([@I0) and (BI8). By the arbitrariness of € we obtain claim (G.17). O
We next prove a superadditivity property.
Proposition 5.6. Let ue W'P(Q). Let A,Be A with An B = . Then we have
Da(u, AU B) = Pa(u, A) + Pa(u, B). (5.19)

Proof. We fix A’, B € A with A’ cc A and B’ cc B, and let §y := dist(A’, B’). We claim
that
O (u, A', A') + ®y(u, B', B') < ®(u, A' U B, A’ U B') (5.20)

for all 0 < 6 < 6.
Note that for such § we have

(A" x A)nAs) U ((B'xB')nAs) = (A uB') x (A uB))nAs. (5.21)
If u;, — u is a sequence such that

Pi(u, A" U B' AU B) = llim inf ®9 (ug, A’ U B, A" U B'),

—+00
by (B21]) we have
O (up, A’ U B', A" U B') = ® (uy,, A', A) + &% (ug, B', B'),

so that (5.20) is proved by the definition of I'-liminf.
Taking the limit as § — 0 in (B.20]) we obtain

Ps (u, A") + D5 (u, B') < ®p(u, A" U B). (5.22)

The claim of the proposition eventually follows by the definition of ® A in (7). O
Proposition 5.7. Let ue W'P(Q), let A€ A, and let r € R. Then we have

Pa(u+71,A) = DPa(u, A). (5.23)
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Proof. It is enough to prove that

Dp(u+r,A) < Pa(u, A). (5.24)
With fixed A’ € A, with A’ cc A, and § > 0, let up — u weakly in W1P(Q) such that
P (u, A’ A") = likm sup @2 (uy, A', A"). (5.25)
—+00

By the definition of I'-limsup we have
D(u+r, A, A') < limsup D (uy, + r, A', A"). (5.26)

k—+00

By (2I8) we have
O (up, + 1, AVAY = Fl(up+1, A A + Grluy + 1, A)
< F,f(uk,A',A') + Gr(ug, A") + Ti
= O (up, A, A) 47, (5.27)
where, using (Z.10),

o= | ane) dedy + o O)Ff (. A4 4)
As

+%f (a(z) + |u(@)]?) () + [ur()|?) dedy.
(A'x A Ay

Since A" cc A we have up — w in LY(A’) by Rellich’s theorem. By (5.26) and (5.27) we
have

O (u+r A LAY < (1 +we(0)PF(u, A", A) + f ar(z,y) dedy
As

+CAJ (a(z) + [u(@)|)(a(y) + |[u(y)|?) dzdy.
(A’ A))nAg
Letting § — 0 we have
PA(u+ 1A < PR (u, A).
Taking the supremum as A’ cc A we obtain (5.24]) and conclude the proof. O
The next proposition states a locality property for ®a.

Proposition 5.8. Let A€ A and u,v € WHP(Q) with u = v almost everywhere in A. Then
¢A(uv A) = q)A(Uv A)
Proof. Tt is sufficient to prove that ®a(u, A) < ®a(v, A). By the definition of ([T, we
need to prove that for every A’ € A with A’ cc A we have

Of(u, A, A" < B (v, A", A') (5.28)
for & > 0 small enough. With fixed A’ and A” with A’ cc A” cc A we set § =
dist(A’,RNA"). Let 0 < § < §y and let v, — v weakly in W1P(Q) be such that

(v, A', A") = lim sup B (vy,, A', A).

k—+00
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Let ¢ be a cut-off function between A” and A and define uy = pvi + (1 — ¢)u. Since u = v
almost everywhere in A we have that uj, — u weakly in W1P(Q). Using this test sequence
we obtain

Y (u, A, A") < limsup @2 (ug, A, A') = lim sup ¢ (vy,, A', A') = ®Y(v, A', A'),

k—+0o0 k—+00

where the first equality holds since u = v in A” and § < dg. O

Proof of Theorem 51 The functional ®A : WHP(Q) x A — [0, +00) is local (Proposition
BE8). For every u € WHP(€) the set function A — ® 4 (u, A) is increasing, inner regular (by
[#3)), subadditive (by Proposition[5.2)), and superadditive (by Proposition [5.6]). Therefore,
by the De Giorgi-Letta Measure Criterion it is the restriction to A of a Borel measure.

For every A € A the function v — ®a(u,A) is lower semicontinuous with respect
to the weak convergence in WHP(Q) (by ([@9)), and satisfies a p-growth condition from
above (by Proposition A.3]). Moreover, we have the invariance by addition of constants
Pa(u+r,A) = Pa(u, A) (by Proposition [.7]).

We finally note that (ZIT)) implies that ®a(u, A) = ¢o §, [Vu|P dz, which gives the lower
semicontinuity of ®a (-, A) also with respect to the strong LP(€2) convergence. We can then
apply the integral-representation result Theorem 20.1 in [9] and obtain the claim of the
theorem from the properties above. ]

6. GLOBAL REPRESENTATION

The following result shows in particular that the I'-limit of ® is equal to
| st ut) dady + | gl Vulw)) da.
QxQ Q

Theorem 6.1. Let u € W'P(Q), and let A, B € A with LY((A n dB) u (B n dA)) = 0.
Then

&' (u, A, B) = ®"(u, A, B) = F(u, A, B) + ®a(u, A n B); (6.1)
that is, the sequence @ (-, A, B) T'-converges to ®(-, A, B), where
O, AB) = | flpu@.u)ddy+ | gl Va@)ds  (62)
AxB AnB

for ue Wir(Q).

We note that the hypothesis LI((A n 0B) U (B n dA)) = 0 is always satisfied if A = B.
In particular it holds for A = B = , thus obtaining the representation (L2)) for the I-limit

of @y in (I).
Proof of Theorem We first note that for all v e WHP(Q), ke N, and § > 0 we have
O (v, A, B) = F{ (v, A, B) + (v, A, B)
(see (219)). Taking the I'-liminf at u and using the continuity Theorem B.2] we have
& (u, A, B) = FO(u, A, B) + ®(u, A, B) > F°(u, A, B) + ®(u, A~ B,An B),
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so that, letting § — 0 we have
®'(u, A, B) = F(u, A, B) + ®\(u,An B) > F(u, A, B) + ®a(u, A " B).
To obtain claim (6.1]) it is enough to prove the converse inequality
®"(u, A, B) < F(u, A, B) + ®a(u, A n B). (6.3)
To that end, we fix n > 0. We use the notation A, = {z € Q : dist(z, A) < n}, and set
Cy,=(AnDB,) u(BnA,).
For every 0 < § < n let u; be a sequence weakly converging to u in W1P(Q) such that

lim sup @ (ug, C,,Cy) = ®5(u, Gy, Cy). (6.4)
k—+0o0

Since we have

(AxB)nAsc (AnBy) x(BnA,) cCy,xCy,
we deduce that

Oy (up, A, B) = Fp(up, A, B) + &) (uy, A, B)

< F(ur, A, B) + f (up, Cry, Cy),
and then, by Theorem [3.2]
®"(u, A, B) < F*(u, A, B) + ®%(u, C,), Cy).
Taking the limit as § — 0 and using Corollary 5.5 we get
®"(u, A, B) < F(u, A, B) + ®a(u,Cy). (6.5)

We observe that C, \, (AnB)u(BnA) and that L4((AnB))u(BnA)\(AnB)) = 0 by our
hypothesis on the boundaries of A and B. Therefore, the integral representation Theorem
BIimplies that ®a(u,Cy) — ®a(u, A n B), and we obtain (6.3) thanks to (G.0]). O

Corollary 6.2. Let w e Wh*(Q) and let WP (Q) := {ue W(Q) : u—w e Wy P(Q)}. If
the hypotheses of Theorem [6.1] are satisfied and ®(u) := ®(u, 2, ), then

khT inf{®y(u) : u e WAP(Q)} = min{®(u) : ue WP(Q)}. (6.6)
— 400
Moreover, if uy is such that

Pp(ug) < inf{Px(u) :u—we Wol’p(Q)} +o(1)

as k — +o0 then, up to subsequences, uy converges weakly in WHP(Q) to a solution to the
minimum problem on the right-hand side of (8. Finally, if in addition ®(w) < ®(u) for
all ue WP (Q) then for all sequences e, > 0 with e, — 0 as k — +00, we have

klim inf{®g(u) : u e WP(Q),u(z) = w(x) if dist(x, 0Q) < e}
—+00

= min{®(u) : u € WP(Q)} = ®(w). (6.7)
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Proof. We define the functionals

. 17p 3 17p
Y () = Op(u) ifue Ww (Q) (1) = O(u) ifue Ww (Q)
+ otherwise, +0o0 otherwise.

We will prove the I'-convergence of ®}’ to ®*, for which it is sufficient to show that for
every u € WHP(Q) we have
(P-limsup @}) (u) < ®"(u), (6.8)

k—+o0

since the liminf inequality follows from the I'-convergence of ®; to ®. The convergence of
minima and minimizing sequences will then follow from the equi-coerciveness of ®}.
From the integral form of ®, the continuity properties of a (Proposition [B.5)), and the
continuity of ¢ in the second variable, we have that ®“ is strongly continuous in WP (Q).
Hence, it suffices to show (6.8)) holds for all u e W1 (Q) such that u — w € Wol’p(Q).
We now fix u € Wh*(Q) and ¢ > 0. We claim that there exits a compact subset K of
Q such that

lim sup @y (u, Q\K, Q\K) < 0. (6.9)
k—400

Indeed, by ([Z6)—(Z38) and (ZII), for every A € A we have
2
Dp(u, A, A) < f ((61 + ¢)Lip(u, Q)P + a(x)) dx + ca <J (a(x) + HuH%OO(Q)) d:z:) ,
A A

where Lip(u, ) is the Lipschitz constant for u on Q. This inequality proves the claim.

We fix K such that (69) holds. Let now vy be a recovery sequence for ®§(u, 2, ) and
let ug be given by LemmaBd with A = Q, K ¢ A’ cc Q, and B = Q\K, and w;, = u. We
then have

lim sup ®9 (ug, 2, Q) < (1 + 0) (P4 (u, Q, Q) + 0) + 0.
k—+00

On the other hand, by (B4 we have
lim F (ug, Q,9Q) = Fy(u, Q,9Q),

k—+00

so that, adding the two inequalities term by term, we obtain

lim sup @y (ug) < (1 + 0)(®(u) + o) + o,

k—+0o0
which gives

(P-limsup @) (u) < (1 + 0)(®(u) + 0) + 0,
k—+0o0
and hence (6.8]) follows by letting o — 0.
The last claim of the theorem can be proved likewise, choosing u = w in the application

of Lemma [5.4] above, and noting that the corresponding wy, satisfies uy = w on Q\A” for a
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suitable A” with A’ cc A” < Q. This implies that
limsup inf{®(u) : u e W'P(Q),u(x) = w(x) if dist(z, 0Q) < 1}

k—+00
< limsup @ (ug) < (1 + 0)(®(w) + 0) + 0,
k—+a0
and the claim letting o — 0. O

7. EXAMPLES

7.1. A separation of scales effect. We now consider a prototypical example showing
a limit local energy density in which two contributions appear, one originating from the
relaxation of a local integral and one produced by the concentration of a convolution
energy. In this case the two contributions are decoupled. The proof of this fact is obtained
by showing that recovery sequences can be constructed using two scales, on which different
optimization arguments are used.

Let ¢ € LY(R?) with ¢ > 0, ¢(2) = 0 if |2[ > 1, and §pa9¥(2)dz = 1. We also set
Ui(2) = kp(kz).

Let go: R? — [0, 4+00) be a continuous function, and suppose that constants 0 < ¢y < ¢;
and ag = 0 exist such that

colél” < go(§) < 1l + ao (7.1)
for all ¢ € R%.

Theorem 7.1. The functionals ® defined on W1P(Q) by
u(z) —u(y)|P
D (u) = gz —y)————

#lu) OxQ kl ) |z —ylP

I'-converge as k — +00, with respect to the weak topology of WP (), to the functional ®
defined by

dzxdy + L go(Vu(x)) dzx (7.2)

B(u) = fﬂ fo(Vu()) de + L 6 (Vu(x)) dz,

where g§* denotes the convex envelope of gy and fo: R? — [0, +00) is the convex function

defined by

_ 1§ - 2P
fO(g) - Rd 1/)(2;) |Z|p

Proof. We observe that @y, is of the form (2.1I), where

s —tP

fle.ys.0) = inle ) EmE and an€) = )

Note that the functions fj, trivially satisfy conditions 22))-(24]), while [Z3)-@7) hold
with fi(z,y,7) = Yp(x — y) QZ';,, and bg(z,y) = Yr(x — y). Hence, (2.8)) is satisfied with
¢y, = 1, and (29) holds with ba = 2742 and b = 0. Moreover, the functions g satisfy
hypotheses (Z.1T]).

dz. (7.3)
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To prove the I'-liminf inequality it is enough to show that

. |ug (@) — uk(y)[P
tmint [yt — DI ey > | p(Vuta) e (7.4
légl}rlcaﬁf fﬂ go(Vug(z)) de = fﬂ 90* (Vu(x)) dx (7.5)

for all uy weakly converging to u in W1HP(€).

Inequality (Z.5]) follows from the inequality gy > g5* and the weak lower semicontinuity
of the functional v — §g, g&* (Vo (z)) dz in WHP(Q). Inequality (ZZ) could be achieved by
using the computation of the related I'-limit with respect to the LP convergence in [4] [1J.
Here we can give a direct proof, which is considerably simpler since the functions u; weakly
converge in W1P(€). In this case, setting

Q, ={w e Q: dist (z,RAQ) > 1},

using the change of variables z = k(z — y), we can write

up(z) —u p
QxQ |z — y[?
_|_l _ p
>J J T/J(z)k‘p‘uk@ kz) we () dzdx
Q. JB1(0) |2

— fgk fBl(o) w(z)’ <L1 Vug(z + £2) dt) . ﬁ‘pdz dx

- JBl(O) vie) sz

Since for all z € B;(0) and for all Q' cc Q

1
<J Vug(z + £2) dt) . i‘pdm dz. (7.6)
0 ]

1
J Vug(z + §2)dt — Vu(z)
0
weakly in LP(€Y'; R?) with respect to the variable z, also using Fatou’s Lemma we obtain

liminff (2 f
k—+00 B1(0) () Qs

Z P
- fBl(O) V(=) fQ/’VU(m) ) m’ drdz = o fo(Vu(x)) dz.

(Ll Vug(z + £2) dt) . é—"pdx dz

Letting €’ tend to €2, from this inequality and ([.6]) we obtain (T4]).
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We now show the limsup inequality; that is, that for all u € WHP(Q) and 7 > 0 there
exist uy, weakly converging to u in W1P(€) such that

lim sup Yi(x —y) [us (@) = e y)l” dzdy < f fo(Vu(x)) dx + n, (7.7)
k—+0 Jaxq |z —ylP Q
lim supf go(Vug(z))dx < f 90 (Vu(x))dx + 1. (7.8)
k—+00 JQ Q

We start with the simplest case u(z) = £ - x. We note that
5O =int{ | anl6+ Vo) dy: ve CE (0.1
(0,1)¢

(see e.g. [Bl Section 6.2]). Given 1 > 0 we fix v € C*((0,1)?) such that

Jog 0 006+ T < 5O (79)
For every € > 0 we define u-(z) = £ - 2 + ev(£). Note that
timsup | go(Vuo()) de < (657(€) + m)£4) (7.10)
e—0 Q

(see e.g. [5 Section 2.1]), so that (Z8) holds with uj = u., for any sequence ¢, — 0. If
we choose ¢ << %, then such a sequence also satisfies (7). To check this, we introduce
a second parameter (; with
1
e << ( << T (7.11)
Using the Lipschitz continuity of v we infer that there exists a constant L such that

v(Z) —o(d)
’g |z =y

Therefore, for all o € (0,1), letting 7 = 1 — o, we can write

J T;Z)k(in _ y)‘uak(‘r) _U’Ek(y)| dxdy
QxQ

|z —y|P

< L.

-I-Ek

\fc—

_ v(E£) —v(£
:J ¢k($—y)’£- Ty + &k (8") (8") pd:z:dy
QxQ |z —y| \x— \
1 2p€p [v]|5
U (x — y)LP daedy + Yr(r —y — (& - k dxdy
A<kk( ) (Qxﬂk)gA< )<U‘” 1‘ |a:—y| T G )
p pd p2pHUHp 2
<L) | v+ o velle 7 dd—i—p e (pdia)2.
By, (0) o B1(0 G

Letting k — +00 and using ((Z.I1]), we obtain

. e, () — e, (y)|P 1 f d
limsu T — dedy < —— LY(Q
1H+oop Qwak( y) |z —y|P VS Qfo(i) )
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which proves (7)) by letting o — 1.
If u is a piecewise-affine function in R?, then w is Lipschitz continuous and there exist a
finite number of open simplexes §2; such that Q < [ J ; 2; up to a null set, such that

u(x) =& -« + ¢; for every x € Q.

We then choose ¢, << % as above and define
2
0k = U{skz +(0,e5)% 1 i € Z, dist (i, RAQ,) > E}’

and for all j set

() u(z) + Ek?]j(%) if x € Qé“
ug(z) =
g u(x) if x e Qj\Q;?,

where v; is defined as in (Z9) with §; in the place of £&. We can then repeat the previous
computations in order to prove (7.7)) and (Z.8]). The proof of the latter is simply obtained
arguing as above in the sets Qé“ and using the Lipschitz continuity of w in the remaining
part of €.

As for (1), we subdivide Q x Q in sets of the form Q; x Q;. If i = j the computation is
exactly the same as in the first part of the proof since therein only the Lipschitz constant
of v; and its L® norm are used. If ¢ # j the energy is estimated as

_ P
Yp(z — y)M dxdy < Lpﬁd({:n e Q; : dist(z, R\Q;) < 21 P(2)dz,
QiXQj |‘T - y|p Bl(o)
which is infinitesimal as k — +o0.
Finally, a standard argument using the density of piecewise-affine functions in W1?(Q)
allows us to conclude the limsup inequality. ]

7.2. Interaction with homogenization. We now consider an example of concentration
of the non-local term in the presence of an underlying periodic geometry. We suppose
that both in the local and non-local terms have an oscillating behaviour, with a periodic
dependence of the energy densities on the space variables. If the corresponding period and
the scale of concentration are the same, optimal sequences show an interaction between
oscillation and concentration, leading to a combined homogenization of the local and non-
local terms. The resulting formula for the limit integrand generalizes both the classical
homogenization formula for integral functionals [9] 5] and that for convolution-type energies

[, 18]

Let fo : R? x R x RY x R — [0, +o0) be a Carathéodory function with the following
properties.

(Periodicity) For all z € R? and 7 € R we have

f0<$+€j,y+€j,2,7) :fO(xayazaT) (712)

for all j € {1,...,d}, where e; are the vectors of the canonical orthonormal basis of R,
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(Growth) There exist 9 as in Section [[Iland Cy, Cy > 0 such that

Cow(Z)%éfo(w,y,z,T) Crp(z) (7.13)

=[P

for all z,y,z € R? and 7 € R.

Let go : R x R — [0, +0) be a Carathéodory function with the following properties.
(Periodicity) For all z, ¢ € R? we have

go(z + €;,&) = go(,§) (7.14)
for all j e {1,...,d}.
(Growth) There exist ¢, c; > 0 and ag = 0 such that

colél” < go(z, &) < alé’ + ao (7.15)
for all z,y,2z € R? and 7 € R

Theorem 7.2. The functionals ®. defined on W1P(2) by
1 xy x—y ulx)—u(y) x
q)E(u) - _J‘Qfo(](_’_’ ) - )d$dy+ ng(E,VU($)) dx

ed ee’ €

I'-converge as ¢ — 0, with respect to the weak convergence in WP(Q), to the functional
Dpom defined by

Brom (1) = L ghom(Vu(z)) da,

where grom : R — [0, +00) is given by the formula

(€)= timzgmin{ [ folovw —pu(@) —u)dedy + | o, Tu) de

T—+w0 Qr
u(z) — ¢ ze W&”’(QT)}, (7.16)
where Qr = (0,T)%.

Proof. To prove the theorem we fix an infinitesimal sequence of parameters €, > 0 and
show that the corresponding ®., I'-converge to ®yom.
In order to apply the results of the previous sections, we define

fk($7y73,t) df <_ - Y S_t) (717)

ek €k €k Ek

for all z,y € R? and s,t € R. Note that fj tr1v1ally satisfies (2.2)—(24) and ([2I0)), while
(@5) (D) are satisfied taking fi(z,y,7) = l"; o7 \T|5” where

1
bk(gj)y) - €g¢< cr

=

gk (2, &) = go(;—kf) (7.18)

We also define
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for all z, ¢ € RY. Note that gy satisfies hypothesis [I1) with a(z) = ao.
By [2I2) and ([2I6]) the functionals ®; defined in (217 satisfy

Oy (u, A, A) = ifAXAf()(i Yy x_y,u(x)_u@))dxdy—l—Lgo(%,Vu(az)) dz (7.19)

d ) M
€L €k €k Ek &k

for all A e A.

First note that the function f in Lemma [B1]is identically 0. Hence, by Theorem
there exist a subsequence (still denoted by ¢j) and a function g satisfying conditions (ZITI)
such that for all A € A the sequence ®(-, A, A) I'-converges to the functional G(-, A) given
by

Glu, A) — J oz, V) da. (7.20)
A
Thanks to the Urysohn property of I'-convergence, is it sufficient to show that g(z,£) =
Ghom (€) for almost all z and all £ € R?,

Note that, using the same argument as in [I, Proposition 6.1] we obtain that g(z,¢)
is independent of z; that is, g(z,§) = g(§). Since G(-, A) is lower semicontinuous with
respect to the weak convergence in W1P() the function g is convex, so that g(§) <
SQ 9(¢ + Vu(x))dz for all u with u(z) — & -x € Wol’p(Q) and @ := (0,1)¢. Since it is not
restrictive to suppose that Q —  we can write

9(¢) = min{G(u,Q) : u(x) —&-x € Wol’p(Q)}.
By Corollary we then have
9(€) = Tim inf{®y(u,Q, Q) : u(z) — & x € Wy™(Q)}. (7.21)

Let T}, = é By a change of variables and setting U(z) = éu(skx) we have

1 T r—vy ulzx)—u
L «ﬂg, g() @»M@
€k QxQ €L €Lk Ek Ek
1
k YQr, XQm,
and )
T
go{ —, Vu(z)) de = —f go(x, VU (z)) dx,
L Qk ) T Jor
so that we obtain
inf{®(u,Q,Q) : u(z) — & -z € WP (Q)}
1 .
= amin{ | oo (o) — u) dedy + | gl Vu(a)) de
Ty Qry, XQmy, Qmy,
we WH(Qr,), u(@) — € x e WP (Qr) |-

From this equality and (Z2I]) we obtain the claim if we prove that this limit is independent
of &p.
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By (6.7) and the change of variables above we also have
g(§) = klim inf{®x(u, Q, Q) : u(z) — & -z if dist(z, Q) < ex}
—+00

1 .
= o[ e - pute) ~ ) dedy + | (o Va(o) do
k Qry, XQmy, Qmy,

we W'P(Qn,),ulw) = € - if dist(z,0Qr,) < 1}, (7.22)

The existence of the limit

lim % min{fQTXQT folz,y,x — y,u(z) —u(y)) dedy + f g(z,Vu(z))dz :

T—+0 T
we WY (Qr),u(z) = € - if dist(z, 0Qr) < 1} (7.23)

is proved in [I Proposition 6.2] when gy is not present and the function f therein is
given by f(z,z,7) = fo(z,z—z,2,7). The same arguments can be used in the general case
considered here. This shows that also the limit in (716 exists and concludes the proof. [J
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