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A B S T R A C T

In this thesis we propose two (non standard) mathematical methods to deal with different aspects
of theoretical cosmology.

The first problem we face is the computation of Quasinormal Modes (QNMs) of oscillation of a
scalar field on a pure de Sitter (dS) background with an S-matrix like approach. In a QFT on de
Sitter background, one can study correlators between fields pushed to the future and past horizons
of a comoving observer. This is a neat probe of the physics in the observer’s causal diamond (known
as the static patch). We use this observable to give a generalization of the quasinormal spectrum in
interacting theories, and to connect it to the spectral density that appears in the Källén-Lehmann
expansion of dS correlators. We also introduce a finite-temperature effective field theory consisting
of free bulk fields coupled to a boundary. In matching it to the low frequency expansion of correla-
tors, we find positivity constraints on the EFT parameters following from unitarity. This first part is
based on reference [1].

The second problem is the computation of the Primordial Black Holes (PBHs) abundance in a
mathematical framework called Peak Theory. The method is independent on the specific inflationary
model that one considers and therefore is general. We compute the probability density distribution
of maxima for a scalar random field in the presence of local non-gaussianities. The physics outcome
of this analysis is the following. If we focus on maxima whose curvature is larger than a certain
threshold for gravitational collapse, our calculations illustrate how the fraction of the Universe’s
mass in the form of PBHs changes in the presence of local non-gaussianities. This second part is
based on reference [2].
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1
I N T R O D U C T I O N

Sometimes in physics, the use of a different mathematical method to solve a problem of which the
solution is already known leads to extensions and generalizations.

Some remarkable examples are Lagrangian and Hamiltonian formulations of classical mechanics.
They could appear as very sophisticated versions of the simple mechanics already explained by
Galilei and Newton’s Principia Mathematica. However the Hamiltonian and the Poisson Brackets
become basic tools of non relativistic quantum mechanics, or the Lagrangian in a relativistic theory.

Similarly, Quantum Mechanics made with these (now basic) instruments can be entirely reformu-
lated via the sophisticated Feynman’s path integral, that instead become a basic tool in Quantum
Field Theory.

Therefore to rewatch a solved problem from an higher perspective is not an unrewarded effort.
It is often heard that the only system that can always be solved in physics is the harmonic oscillator.

Everything else is found in perturbation theory around the quadratic potential, first approximation
of each point of minimum of a generic potential. This statement is ubiquitous in physics: from
classical mechanics to quantum mechanics, the harmonic oscillator is always an integrable problem.
In quantum field theory, the study of free fields passes through an infinity of decoupled harmonic
oscillators. And the term free theory goes hand in hand with another term: Gaussianity. These two
terms, distant at first sight, find their union in the path integral, where the free Lagrangian, that
is quadratic, is exponentiated. Schematically, the action for a free field Φ can be written using a
differential operator O:

Z = ∫ DΦe
i ∫ d4xΦOΦ (1.0.1)

This integral is a well known Gaussian integral and it is analitically computable.
Deviations from Gaussianity are difficult to deal with, as are problems other than the harmonic

oscillator. In this thesis, using non-standard mathematical approaches, an attempt is made to go
beyond Gaussianity in two different cosmologically inspired physical problems.

de sitter quasinormal modes In the first part of the thesis we will apply the study of
complex analitic properties of correlation functions to rederive the QNMs of oscillation of a free
scalar field on dS. This provides a straightforward generalization for interacting theories, where
instead there is not a standard definition of QNMs.

The usual approach to the problem is to consider the classical free field equations of motion on
the de Sitter background and to solve it with specific boundary conditions. If we work in spherical
symmetry this means to impose that the field is purely outgoing at the cosmological horizon and
regular at the origin. These conditions constraint the QNM spectrum to be discrete and complex.
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2 introduction

The alternative approach we follow, based on the study of analitic properties of the 2-point corre-
lation function, allows us to recover the same result that one finds with the usual approach based
on the solution of differential equations for the free theory. On the other side it makes possible to
generalize the concept of QNMs for interacting theories, where instead the standard approach does
not give a clear definition of modes of oscillation, being the interactive equations of motion non
linear.

primordial black holes In the second part of the thesis, we solve the (abstract) problem of
peak theory of a random field in presence of a local Non-Gaussianity.

In our context, this mathematical model will be useful to describe the density perturbation field
of the early universe as a random field with a generic statistics (so not necessarily Gaussian) and,
when the fluctuations overcome a certain threshold, a Black Hole is formed.

Despite the clear inspiration from inflationary physics, this mathematical problem is independent
on the specific model and switching from one model to another only changes the form and the size
of the Non-Gaussianity.



Part I

D E S I T T E R Q U A S I N O R M A L M O D E S
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Q U A S I N O R M A L M O D E S F R O M A N A LY T I C A L P R O P E RT I E S

An important characteristic of a spacetime with an horizon is the spectrum of exponents that con-
trol the relaxation of perturbations. At linear level, these exponents coincide with the (generically
complex) frequencies of the quasinormal modes [3]. But they can also be thought of as the poles of
the retarded Green’s function.

De Sitter spacetime has observer-dependent horizons, and is described within these horizons by
the metric

ds2 = −(1− r2)dt2 +
dr2

1− r2
+ r2dΩ2. (2.0.1)

It is therefore natural to explore the quasinormal-mode (QNM) spectrum of fields on dS [4]. One
motivation is that we believe there has been a long period of inflation in our past. This is a geometry
that is locally close to dS, and the above-mentioned exponents control the power-law decay of cos-
mological correlators. For instance, the infrared dynamics of light scalar fields in de Sitter provides
a rare example of a Markovian process whose decay exponents can be explicitly computed in terms
of the UV couplings [5].

An interesting feature of free field theories on dS background is the fact that the poles associ-
ated to the quasinormal modes are the only singularities of the retarded Green’s function, while
in asymptotically flat black hole spacetimes there are additional singularities (branch-points) corre-
sponding to the power-law tails [6]. One goal of this work is to explore the analytic structure of the
retarded function at the interacting level.

To this end, we find it convenient to consider in-out correlators obtained by pushing the operator
insertions to the future and past horizons (see figure 1). Operationally, this can be thought of as
a scattering experiment in the static patch, where the scattering states are prepared by a family of
accelerating observers at fixed r, in the limit r → 1. We will show in section 2.2 that the poles of the
retarded in-out correlators coincide with the well-known spectrum of quasinormal modes for free
scalar fields.

At the interacting level, we use the Källén-Lehmann representation for the 2-point correlators in
dS. That is, expand the interacting 2-point correlator in terms of correlators of free fields associated
to the unitary representations of dS isometry group [7]. Schematically

⟨ϕ(X)ϕ(Y)⟩ = ∑
∆

ρ(∆)Gf(X,Y;∆). (2.0.2)

We will see how the singularity structure of the retarded function (in ω) is inherited from that of
the spectral density ρ(∆). Explicit examples and perturbative arguments given in [8, 9] suggest that
ρ(∆) is generically a meromorphic function. This implies that the static patch retarded function too
will generically have a set of isolated poles as its singularities.
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6 quasinormal modes from analytical properties

Figure 1: The Penrose diagram of dS. We study in and out states in one static patch (shaded).

A priori, this sounds surprising.1 Correlators of interacting theories typically have a more intricate
singularity structure (e.g. loops usually introduce branch-cuts). The finiteness of volume in the
static patch does not seem to be a good explanation for the simplicity of its correlators. In fact, the
static patch Hamiltonian (i∂t) has a continuous spectrum, and one can find (rare) examples with a
continuous spectrum of decay exponents. We present one in section 2.4.

In section 2.5, we present an analogy that might be helpful in understanding why the spectrum
is generically discrete. There we see that the Rindler-space correlator is a meromorphic function of
Rindler frequency for a generic interacting theory on 2d Minkowski spacetime.

Apart from the simple analytic structure, the spectral density ρ(∆) was shown in [8, 9] to be non-
negative as a consequence of unitarity. It is often the case that the unitarity of the UV completion
constrains the low energy observables and the effective field theory that governs them [10]. In section
3, we will find a similar application. Indeed, the small ω expansion of in-out correlators of a free
theory can be reproduced by a boundary effective field theory (BEFT).As we will see, the emergence of
this BEFT is quite natural when using the tortoise coordinate x = arctanh r, with 0 ≤ x < ∞. Spherical
modes of the field are effectively free 2d fields except in the vicinity of 0 < x ∼ 1 (see figure 2). For
small ω this region can be collapsed to a one-dimensional boundary on which composite operators
are localized.

In section 3.2, we will discuss the condition under which a similar BEFT description is applicable
to interacting theories. Naturally, this BEFT has to be formulated at finite temperature, and in
matching it with (2.0.2) it is necessary to include dissipative terms. We will see that unitarity leads
to positivity constraints on the EFT coefficients. We will give a summary in section 4.

2.1 in-out correlators

When it is possible to define the scattering matrix, it is often a more convenient observable to
work with than the local correlation functions. It depends on fewer variables, for a fixed number of

1 We thank Victor Gorbenko for bringing this curious feature to our attention.



2.2 the free case 7

Veff

x10

Figure 2: The effective potential for the spherical harmonics of a free field consists of a mass term (blue) and a centrifugal
barrier (green). They decay exponentially toward the horizon x → ∞. When ω ≪ 1, the interaction region
(shaded) can be collapsed to a boundary with localized interactions.

external legs, and is invariant under field redefinition. For similar reasons, we consider static patch
correlators for operators that are pushed to its null boundaries, namely the past and future horizons.
In tortoise coordinate

x = arctanh r, (2.1.1)

the horizon is at x→∞, and the in and out fields are defined as

ϕout(u, r̂) = lim
t,x→∞
u=t−x

ϕ(t,x, r̂), (2.1.2)

ϕin(v, r̂) = lim−t,x→∞
v=t+x

ϕ(t,x, r̂). (2.1.3)

Some earlier works that motivate working with such in-out observables in the static patch include
[11–13].

To discuss quasinormal spectrum, we will focus on

Ĉ(ω,θ) ≡ ∫
∞

−∞
dueiωu

⟨[ϕout(u, r̂),ϕin(0, ẑ)]⟩ , (2.1.4)

where θ is the angle between the two versors r̂ and ẑ. In a free theory (2.1.4) is the Fourier transform
of the retarded Green’s function between two points approaching the past and future horizons.
Note that there is no translation symmetry x → x + ϵ. Therefore, even the two-point correlator is
nontrivial. In a free theory, the above commutator is independent of the choice of state, but encodes
the information about propagation of waves on the curved background. In an interacting theory,
Ĉ(ω,θ) depends on the state. For instance, the Hartle-Hawking state is a thermal state in the static
patch, and Ĉ(ω,θ) carries information about the interactions with the thermal excitations.

2.2 the free case

The exact dSd+1 correlation function of a free scalar field is [14]

Gf(ξ,∆) ≡ ⟨ϕ(X)ϕ(Y)⟩ =
Γ(∆)Γ(d−∆)

(4π)
d+1
2 Γ(d+1

2
)
2F1 (∆,d−∆;

d+ 1

2
;1−

1

ξ
) (2.2.1)
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where ∆ = d
2
+ i
√

m2 − d2

4
, and X and Y are the coordinates of a d + 2-Minkowski spacetime that

embeds dSd+1 as the hyperboloid with X ⋅X = Y ⋅ Y = 1. In terms of this Minkowski inner product

ξ =
2

1−X ⋅ Y
. (2.2.2)

When X and Y are timelike separated ξ < 0, and we are on the branch-cut of Gf. The two choices of
the branch correspond to the two different ordering of the fields. The commutator is the discontinu-
ity across this cut:

[ϕ(X),ϕ(Y)] = −Θ(−ξ)
2πi

(4π)
d+1
2 Γ(3−d

2
)
(−ξ)

d−1
2 (1−

1

ξ
)

1−d
2

2F1 (1−∆,1−d+∆;
3−d

2
;
1

ξ
) . (2.2.3)

For the particular in-out configuration of the last section,

ξ =
2

1− cosθ− 2eu
, (2.2.4)

and hence ξ < 0 corresponds to 2eu > 1 − cosθ. After changing the integration variable in (2.1.4) to
U = eu − 1−cosθ

2
, we find

Ĉ(ω,θ) =
−2πi

(4π)
d+1
2 Γ(3−d

2
)
∫

∞

0
dU(U+

1− cosθ
2

)

iω−1
U

1−d
2 (1+U)

1−d
2 2F1 (1−∆,1−d+∆;

3−d

2
;−U) .

(2.2.5)
As a function of ω, this integral is analytic in the upper half complex ω plane unless θ = 0. Its
singularities arise from the U → ∞ limit of the integral. Indeed, the asymptotic expansion of the
hypergeometric function is:

2F1(a,b; c;−x) ∼
Γ(b−a)Γ(c)

Γ(b)Γ(c−a)
x−a +

Γ(a−b)Γ(c)

Γ(a)Γ(c−b)
x−b as x→ +∞ (2.2.6)

Therefore the poles are located at

iω = ∆+n,

iω = d−∆+n, n ∈N.
(2.2.7)

The explicit answer for (2.2.5) is given in appendix A.1.
The frequencies (2.2.7) are precisely the quasinormal mode spectrum of a scalar field on de Sitter

[4]. In dS, the quasinormal modes are defined as eigensolutions of the linear field equations with
outgoing boundary condition at the cosmological horizon and regularity at the origin. They are
called quasinormal because with these boundary conditions the linear differential operator is not
Hermitian. Quasinormal modes characterize the decay of perturbations since their frequencies ap-
pear as the poles (in the lower half-plane) of the retarded Green’s function. By the Cauchy theorem
the response to a source J at t = 0 is [3]

ϕ(t, x⃗) = ∫ d3x ′∫
+∞

−∞
dω

2π
e−iωtGR(ω, x⃗; x⃗ ′)J(x⃗ ′) = ∑

QNMs
ane

−iωnt + tail. (2.2.8)



2.3 spectrum of interacting theories 9

The “tail” corresponds to non-exponential contributions (often power-law decays that eventually
dominate) and comes from additional singularities of the Green’s function. dS Green’s function is
special in that there are no other singularities except for the QNM poles, and hence there is no tail.
We see that Ĉ(ω,θ) has the same analytic structure.

2.3 spectrum of interacting theories

The description of the quasinormal modes as the eigensolutions of the wave equation with particular
boundary conditions is specific to free fields. However, we can still wonder about the analytic struc-
ture of the Green’s function, or Ĉ(ω,θ), in an interacting theory. The poles would still describe the
exponential decay of perturbations and hence they are the most natural generalization of the quasi-
normal spectrum to the interacting case. However, one might expect a more complicated singularity
structure (such as branch-points) to appear at the interacting level. We can use the Källén-Lehmann
representation for the 2-point correlators [8, 9]

⟨ϕ(X)ϕ(Y)⟩ = ∫

d
2
+i∞

d
2
−i∞

d∆

2πi
ρ(∆)Gf(ξ;∆) +⋯, (2.3.1)

to evaluate Ĉ(ω,θ). In the above expression, the integral runs over the unitary representations of
dS called the principal series. This is a redundant (but useful) presentation, since ∆ ∼ d −∆ and
ρ(∆) = ρ(d −∆). By analytic continuation to d + 1 sphere, one can show that ρ∗(∆) = ρ(∆∗). Per-
turbative computations suggest that ρ(∆) is generically meromorphic even in an interacting theory.
Dots account for other unitary representations, such as the complementary series. In perturbative
examples, those will form a discrete sum of Gf(ξ;∆) with real ∆.

We would like to connect the analytic structure of ρ(∆) to that of Ĉ(ω,θ), by a contour deforma-
tion from the path ∆ ∈ d

2
+ iR closing it to the right half plane in (2.3.1). For this purpose it is useful

to use the identity

Gf(ξ;∆) =
g(∆)ψ∆(ξ) + (∆→ d−∆)

2
(2.3.2)

where

g(∆) =
Γ(d

2
−∆)Γ(∆)

22∆+1πd/2+1
, ψ∆(ξ) = ξ

∆
2F1 (∆,∆−

d− 1

2
;2∆−d+ 1;ξ) . (2.3.3)

Using the symmetry ρ(∆) = ρ(d−∆), we can write (2.3.1) as

⟨ϕ(X)ϕ(Y)⟩ = ∫

d
2
+i∞

d
2
−i∞

d∆

2πi
ρ̃(∆)ψ∆(ξ), (2.3.4)

where
ρ̃(∆) ≡ ρ(∆)g(∆). (2.3.5)
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In appendix A.2, we show that the contour in (2.3.4) can be deformed to the right if ρ decays faster
than a d-dependent power of ∆.2 Assuming also that ρ̃(∆) is meromorphic, we find

⟨ϕ(X)ϕ(Y)⟩ = −∑
i

Res∆i
(ρ̃)ψ∆i

(ξ). (2.3.6)

Now the discontinuity of ψ∆ in the timelike region comes entirely from the factor ξ∆ in (2.3.3). The
anti-symmetrized correlator C(ξ,θ) = ⟨[ϕ(X),ϕ(Y)]⟩ has support only in this region:

C(ξ,θ) = −Θ(−ξ)∑
i

2i sin(π∆)Res∆i
(ρ̃)(−ξ)∆i

2F1 (∆i,∆i −
d− 1

2
;2∆i −d+ 1;ξ) , (2.3.7)

where Θ is the Heaviside function. As an example, we fix θ = π in (2.2.4) and Fourier transform
with respect to u to find Ĉ(ω,π) (except for θ = 0, at which ϕout is in the future lightcone of ϕin, the
singularity structure of Ĉ(ω,θ) is the same as Ĉ(ω,π)). A single term in the sum (2.3.6), after the
change of variable V = −ξ = 1/(eu − 1), gives

∫

∞

0
dV(1+V)iω−1V∆i−iω−1

2F1 (∆i,∆i −
d− 1

2
;2∆i −d+ 1;−V) . (2.3.8)

As a function of ω, the singularities of Ĉ(ω,π) arise from the V → 0 region of integration. These are
poles located at

QNM spectrum of interacting theories

iωn = ∆i +n, n ∈N. (2.3.9)

Given that Re (∆i) ≥ d/2, these poles are all in the lower half-plane as expected from causality.
Hence, if ρ̃ is meromorphic, for every pole ∆i, we have the full family of the poles corresponding to
the QNMs spectrum of a fictitious field with dimension ∆i (thought not d−∆i). The real analyticity
of ρ̃ implies the existence of another family with associated to ∆∗i . The overtones (frequencies with
n ≥ 1) can be thought of as arising from the descendants of a conformal primary operator with
dimension ∆i. Similarly, for every complementary series representations that appears in (2.3.1),
there will be the full set of associated QNMs.

2.4 a continuous spectrum

In [9], the in-in perturbation theory was analytically continued to one in Euclidean AdS. This auto-
matically results in a meromorphic ρ(∆), and a discrete sum over complementary series represen-
tations. Hence, if there is a counter-example, it must be non-perturbative. It is well known that for
light interacting scalar fields in dS, perturbation theory fails. Originally, this problem was solved by

2 This is the same contour deformation performed in [8], but instead of ξ → 0+ we are interested in the timelike configura-
tion ξ < 0, where there is no obvious exponential decay coming from ψ∆(ξ).
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switching to a stochastic description [15, 16]. This allows a reliable non-perturbative computation of
the relaxation exponents as the eigenvalues of the Fokker-Planck equation

∂tp(t,φ) =
1

8π
∂2φp(t,φ) +

1

3
∂φ(V

′
(φ)p(t,φ)) +⋯ (2.4.1)

where V(φ) is the scalar potential and dots include corrections that can be computed perturba-
tively (in slow-roll parameters such as V ′2/H2V ,V ′′/H2) [5, 17, 18]. The eigenvalue problem can be
mapped to a Schrödinger equation with an effective potential [16]

Veff(φ) =
1

2
(v ′2(φ) − v ′′(φ)), v(φ) ≡

4π2

3
V(φ). (2.4.2)

If we take v(φ) ∝ φ tanhφ, the effective potential approaches a constant as φ → ±∞ and hence the
spectrum of decay exponents will have a continuum above a gap. It follows that the corresponding
ρ(∆) is not meromorphic in this example. For an application of this model see [19].

2.5 discrete spectrum in rindler space

As a simpler example, we consider the retarded function in the Rindler wedge of 2d Minkowski
spacetime. We will see that generic interacting theories will have a discrete spectrum of singularities
in terms of the Rindler frequency. As before, we define the in and out fields by taking the fields to
the past and future Rindler horizons. The metric in the left Rindler wedge can be written as

ds2 = 4e−2x(−dt2 +dx2). (2.5.1)

The Minkowski coordinates are related to these by

X0
= 2e−x sinh t, X1

= −2e−x cosh t. (2.5.2)

The past and future horizons correspond to x→∞ and t→ ∓∞:

X0
= −X1

= et−x ≡ eu, future

X0
=X1
= −e−t−x ≡ e−v. past.

(2.5.3)

We define ϕin(v) and ϕout(u) as the fields pushed to the horizons and study

C(u) ≡ ⟨[ϕout(u),ϕin(0)]⟩ (2.5.4)

Note that the expectation values in (2.5.4) could be thought of as being computed in the thermal
state obtained after tracing out the complement of the Rindler wedge, or as Minkowski correlators.
We are interested in the analytic structure of the Fourier transform of C(u):3

Ĉ(ω) = ∫
+∞

−∞
dueiωuC(u). (2.5.5)

3 From the perspective of Minkowski coordinates, this transform is similar to going to rapidity space and Ĉ(ω) resem-
bles the celestial amplitudes. For two recent works on the analytic properties of such amplitudes see [Duary_2022,
Kapec_2023].
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Let us compute this in a theory with mass gap m and a density of states ρ(s) ≥ 0. The Källén-
Lehmann representation of the Minkowski Feynman correlator is

⟨T{ϕ(X)ϕ(0)}⟩ = ∫
R2
d2k∫

∞

0

ds

2π

ρ(s)

k2 + s+ iϵ
eik⋅X. (2.5.6)

The commutator (2.5.4) is the difference between the time-ordered and anti-time-ordered correlators,
which implies (after switching to k± = k0 ± k1)

Ĉ(ω) =
1

2
∫

∞

−∞
du∫ dk+dk−∫

∞

0
dsρ(s)δ(k+k− − s)eiωu−ik−eu−ik+ . (2.5.7)

It is straightforward to perform k+, then u and then k− integrals. For instance, the u integral can be
rewritten in terms of U ≡ eu as

∫

∞

0
dUUiω−1e−ik−U = Γ(iω)(ik−)−iω. (2.5.8)

The final result is
Ĉ(ω) =

1

2π
sinh(πω)Γ2(iω)∫

∞

0
dsρ(s)s−iω. (2.5.9)

In a free theory ρ(s) = δ(s −m2) and we see that Ĉ(ω) is meromorphic. In this case it has poles
in the upper half plane. Given that the fields are always timelike separated for any u, there is no
reason for the Fourier transform to be analytic in the upper-half-plane.4

In the interacting case, one expects additional singularities to arise in (2.5.9). Now ρ(s) is in
general a continuous function. For instance, it accounts for the multi-particle states that mix with
the single particle states via interactions. However, if the theory is gapped, i.e. ρ(s < m2) = 0, then
the additional singularities in (2.5.9) can only arise from the s→∞ limit of the integral. Generically,
ρ(s) behaves as a power (or a combination of powers) of s. This would again lead to a discrete set
of poles in ω.

In general the same thing does not apply to dS: if the spectral function is not meromorphic, then
in the deformation of the contour in the integral (2.3.1) one must take into account the contribution
coming from branchcuts, that result in integral of some discontinuities. Generically, this cannot be
represented as a discrete sum over pure exponentials.

4 In fact, the function decays fast enough in the upper-half ω plane that the inverse Fourier transform for both signs of u
can be computed by closing the integration contour on that side.



3
B O U N D A RY E F F E C T I V E F I E L D T H E O RY

A useful setup for studying low-frequency perturbations in a black hole geometry is the worldline
EFT [20]. The idea is that for long wavelength perturbations the neighborhood of a black hole can
be replaced by a worldline on a weakly curved geometry and with interactions localized on it.
This is an open system because waves can fall through the horizon. The effect can be taken into
account by introducing additional operators on the worldline that represent near horizon degrees
of freedom and are short-lived [20, 21]. One might expect a local dissipative EFT, formulated on the
Schwinger-Keldysh (SK) contour, to arise after integrating out these operators [22].

In this section, we ask if a similar idea can be applied to the low-frequency in-out observables in
dS static patch. The analog of the black hole region is now the region 0 < x ∼ 1. Since the size of Sd−1

factor reaches an O(1) constant as x → ∞, the appropriate EFT would be a collection of KK modes
propagating on a half-line, and with interactions localized at the boundary. The EFT is dissipative
because we are interested in a description of modes with ω ≪ 1 in a system at finite temperature
T = 1

2π
.

3.1 free theory

To motivate the idea, consider a massive free field and decompose it in terms of spherical harmonics

ϕ(t, r⃗) = ∑
l,m
ϕlm(t,x)Ylm(r̂). (3.1.1)

In a free theory, different ϕlm decouple. The action for the s-wave perturbations is

S00 =
1

2
∫ dt∫

∞

0
dx tanh2 x [ϕ̇2

00 −ϕ
′
00

2
−

m2

cosh2 x
ϕ2
00] . (3.1.2)

We expand ϕ00 in radial eigenmodes

ϕ00(t,x) = ∫
∞

0

dω

2π
ϕω(t)fω(x), (3.1.3)

where asymptotically
fω(x) ∼ e

iωx+iα(ω)
+ e−iωx−iα(ω), for x→∞, (3.1.4)

13



14 boundary effective field theory

and the phase shift is given by1

e2iα(ω) =
2−2iωΓ(iω)Γ(1

2
(∆+ − iω))Γ(12(∆− − iω))

Γ(−iω)Γ(1
2
(∆+ + iω))Γ(12(∆− + iω))

. (3.1.6)

Now every ϕω(t) is a harmonic oscillator with frequency ω and the Hartle-Hawking state corre-
sponds to a thermal state with T = 1/2π. The ladder operators, defined via:

ϕω(t) =
1
√
2ω
(aωe

−iωt
+a†

ωe
iωt) , (3.1.7)

satisfy

⟨a†
ωaω ′⟩ = 2πδ(ω−ω ′)

1

e2πω − 1
. (3.1.8)

The in-out correlator is given by

⟨ϕout
00 (u)ϕ

in
00(0)⟩ = C∫

dω

2π
e−iωu e2iα

2ω (1− e−2πω)
, (3.1.9)

where the integration contour runs from −∞ to +∞ and below the double pole at 0. Naively, one
gets a singular integral that goes through 0. This singularity is an artifact of the exchange of the
limit x→∞ and the integral. The contour deformation is the one that reproduces the correct result.

What suggests the possibility of an effective worldline theory that matches this result at low ω is
that at large x the action (3.1.2) reduces to that of a massless 2d field on a half-line. We can couple
this to a boundary by writing (we drop the 00 index to avoid clutter)

SBEFT = ∫ dt∫
∞

0
dx [

1

2
(ϕ̇2
−ϕ ′2) − δ(x)∑

n

cn (∂
n
t ϕ)

2
] . (3.1.10)

We now show that with an appropriate choice of cn this BEFT matches the expansion around ω = 0
of the full result. It is enough to match the low-ω expansion of the phase-shifts on the two sides.
The equation for the mode functions in the EFT reads

f ′′ω(x) +ω
2fω(x) = δ(x)fω(0)

∞
∑
n=0

cnω
2n. (3.1.11)

The correctly normalized solution is fω(x) = 2 cos(ωx+α) where

ω tanα = iω
1− e2iα

1+ e2iα
= −

∞
∑
n=0

cnω
2n. (3.1.12)

A unique choice of {cn} exists because the phase shift given in (3.1.6) is real for real ω and satisfies

e2iα(0) = −1, e2iα(−ω) = e−2iα(ω). (3.1.13)
1 For generic l the mode function is

ϕωl(t,x) ∝ e−iωt tanhl
x(coshx)−iω2F1 (

l+∆+ + iω
2

,
l+∆− + iω

2
;
d

2
+ l; tanh2

x) , (3.1.5)

being ∆± = d
2 ± i
√
m2 − (d2 )

2
.

For an application of the dS phase shift and its analogs on black hole backgrounds to the computation of the free field
partition function see [11, 13].
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3.2 interacting theory

It is natural to ask if the in-out correlators of an interacting theory can also be matched to a BEFT,
and what constraints unitarity imposes on the EFT parameters. Intuitively, this would be the case if
interactions turn off fast enough for x ≫ 1. Then for the low-frequency observables the interaction
region x ∼ 1 can be collapsed into a point at x = 0.

It would be interesting to find a classification of theories for which this is possible. We did
not succeed so far, but we do not expect the set to be empty either. It plausibly includes super-
renormalizable theories because of the large blue-shift toward the horizon. The example of last
section supports this expectation: We can think of the mass term as an interaction added to the free
massless theory. As we showed explicitly, the correlators of this theory match with a massless free
theory coupled to a boundary.

Given ρ(∆), a way to check the rapid fall-off of interactions is to inspect the projection of (2.3.1)
into the space of spherical harmonics

⟨[ϕout
lm(u),ϕ

in
lm(0)]⟩ = ∫

d
2
+i∞

d
2
−i∞

d∆

2πi
ρ(∆)Cf(u, l;∆). (3.2.1)

If the interactions turn off at large x, we would expect the LHS to be universal for u ≪ −1 because
an in-state that travels all the way to x ∼ 1 region and reflects back arrives to the future horizon at
u not much less than −1. We note that regardless of ∆, all free commutators Cf(u, l;∆) approach a
universal form in the limit u→ −∞:

Cf(u, l;∆) ∼ −
i

2
+O(eu), u≪ − log ∣∆∣. (3.2.2)

Therefore, if the integration over ∆ converges with a negative power of ∣∆∣, the interacting commu-
tator will approach the same universal behavior exponentially in u.2 Since nontrivial interactions
would ultimately leave their imprint in this observable, if the latter is universal for u ≪ −1, we
expect a boundary description to emerge at low frequency. Assuming this, we proceed to show that
unitarity (i.e. ρ(∆) > 0) constrains this BEFT.

First, we write (3.2.1) as

⟨[ϕout
lm(u),ϕ

in
lm(0)]⟩ = C∫

dω

4πω
e−iωu

S(ω), (3.2.3)

where the contour is the same as in (3.1.9) and

S(ω) ≡ ∫

d
2
+i∞

d
2
−i∞

d∆

2πi
ρ(∆)e2iα∆(ω,l). (3.2.4)

Above, to exchange the order of the ω and ∆ integrals, we assumed a sufficiently fast convergence
of the integral over ∆. More generally, one might need to perform a number of subtractions before

2 One advantage of S-matrix is its invariance under field redefinitions. This does not hold for static-patch in-out correlators
since, from a global perspective, they are just a particular configuration of local correlators. For instance, changing ϕ →
ϕ +ϕ2 in a free theory results in ρ(∆) = ρϕ(∆) + ρϕ2(∆) that given ρϕ2(∆) (see [8, 23]) does not satisfy the above
convergence requirement.
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being able to do so. Depending on l, the free phase shifts e2iα∆(ω,l) approach 1 or −1 as ω → 0. In
an interacting theory, ρ(∆) is supported on more than one ∆. Therefore, there has to be nonzero
absorption:

∣S(ω)∣ < ∣S(0)∣, interacting theory. (3.2.5)

Let us focus on the l = 0, d = 3 case and try to match the low ω behavior of S(ω) with a BEFT. In
an interacting theory, the boundary action will include interactions and not just quadratic operators.
Moreover, this effective theory includes the novel features of a finite temperature EFT, namely dis-
sipative terms that have to be formulated on the SK contour. Absorption is caused not only by the
production of the low-energy effective degrees of freedom, but also via interaction with the thermal
bath.

It is believed that when the environment degrees of freedom have a short correlation time τ,
the long wavelength “hydro description” admits a local expansion controlled by τ [22]. For us τ
is related to the quasinormal decay time. We have seen that the spectrum is typically discrete and
τ ∼ H−1(= 1). This implies the existence of a local expansion for ω≪ 1

S(ω) = −
∞
∑
n=0

1

n!
sn(−iω)

n (3.2.6)

(the overall minus is for later convenience). Since this is a 2-point correlator, the coefficients sn
could be matched with a quadratic action. However, in addition to (3.1.10), we have to include the
dissipative terms to the action (dropping as before the 00 index of the s-wave)

S
(2)
diss. = −∫ dt∫

∞

0
dxδ(x)

∞
∑
n=0

bn∂
n
t ϕ−∂

n+1
t ϕ+, (3.2.7)

where in terms of the fields on the forward and backward part of the SK contour (respectively ϕR

and ϕL)

ϕ+ =
ϕL +ϕR

2
, ϕ− = ϕR −ϕL. (3.2.8)

Following the SK perturbation theory (see Appendix A.3), we compute the leading dissipative cor-
rection

S
EFT
(ω) = e2iα [1−

2b0

c20
ω2
+O(ω3

)] , (3.2.9)

where α is fixed by the conservative coefficients as in (3.1.12). Note that SEFT(0) = −1. This means
that matching is possible only if

∫

d
2
+i∞

d
2
−i∞

d∆

2πi
ρ(∆) = 1. (3.2.10)

Furthermore, in the presence of interactions (3.2.5) implies a postive friction term

b0 > 0. (3.2.11)

It is of course natural to have a friction rather than an anti-friction in an open system.
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There is an alternative way to find this bound and new ones on the higher derivative conservative
terms using the moments constraints. First, we expand the free phase shifts (3.1.6):

e2iα∆(ω,l=0)
= −

∞
∑
n=0

1

n!
sn(∆)(−iω)

n. (3.2.12)

For m2 > 2 (i.e. above the conformal mass), we have

sn(∆) > 0, s1(∆) = [s0(∆)]
2, s2(∆) ≥

2

3
[s0(∆)]

3. (3.2.13)

Substituting the expansion in (3.2.4),

S(ω) = −
∞
∑
n=0
[∫

d
2
+i∞

d
2
−i∞

d∆

2πi
ρ(∆)sn(∆)] (−iω)

n, (3.2.14)

we can write the coefficients as averages of over the following distribution:

∫

d
2
+i∞

d
2
−i∞

d∆

2πi
ρ(∆)sn(∆) = ∫

∞

0
ds0

d∆

ds0

ρ (∆(αn))

2πi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡ρ̂(s0)>0

sn(s0) ≡ ⟨sn⟩. (3.2.15)

On the other hand, these coefficients must match the EFT result (see Appendix A.3):

−S
EFT
(ω) = 1+

2

−c0
(−iω) +

2(b0 + 1)

c20
(−iω)2 +

2(1+ 2b0 +b
2
0 + c0c1)

−c30
(−iω)3 +O (ω4) , (3.2.16)

where c0 < 0 if ρ has support only for m2 > 2. The second relation in (3.2.13) and the fact that
⟨s20⟩ ≥ ⟨s0⟩

2 implies

1+b0

c20
≥
1

c20
(3.2.17)

therefore:

b0 ≥ 0. (3.2.18)

The third relation in (3.2.13) and ⟨s0⟩ ⟨s30⟩ ≥ ⟨s
2
0⟩

2
implies

c1 ≤
(1+b0)

2

−3c0
(3.2.19)

So far we did not include boundary interactions. Loops from those would lead to additional an-
alytic contributions to (3.2.16) starting from O(ω). Therefore, they are degenerate with the bn and
cn parameters, and our bounds should be interpreted as unambiguous constraints on the expan-
sion coefficients of S(ω) rather than coefficients in the Lagrangian. The scheme dependence of the
Lagrangian is, of course, a general fact.





4
C O N C L U S I O N S O F PA RT I

In this work, we used in-out correlators in dS static patch to give a generalization of the quasinor-
mal spectrum in interacting theories. We related this spectrum to the spectrum of dimensions that
appear in the Kälén-Lehmann spectral density ρ(∆) of the 2-point correlators. We have seen that the
quasinormal spectrum is generically (though not always) discrete, and the analytic structure of the
correlators is similar to the celestial amplitudes.

The downside of our approach is that the horizon correlators are not well-defined when gravity is
dynamical. In that context, it seems more natural to define the operator insertions with respect to the
worldline of a dS observer. On the other hand, the generalization of the quasinormal spectrum to the
interacting case might be relevant in computing the corrections to de Sitter entropy as thoroughly
discussed in [11].

We have also showed that at low frequencies, the in-out correlators can, under certain conditions,
be matched to a finite temperature boundary EFT. This BEFT can be thought of as the hydrody-
namic limit of the problem. It might be useful in understanding the structure of thermal EFTs and
dissipative hydrodynamics. In particular, it would be interesting to find similar positivity bounds
in them.

Finally, it would be interesting to explore the consequences of unitarity for the cosmological
correlation functions, and to find potentially observable consistency conditions. See [24] for an
earlier work in this direction.

19





Part II

P R I M O R D I A L B L A C K H O L E S





5
P R I M O R D I A L B L A C K H O L E S

5.1 physical motivation

The possibility that the totality of dark matter in the Universe consists of primordial black holes
(PBHs) still holds the stage even though almost half-a-century has passed after the pioneering
proposal of Hawking and Carr [25, 26]. This is especially true in the mass range 1018 ≲MPBH [g] ≲
1021 in which black holes are neither too light (otherwise they would have evaporated in the past
through Hawking radiation [27]) or too heavy (otherwise they would distort space-time in a way
that contradicts present bounds from lensing experiments [28, 29]).

PBHs could have formed in the very early Universe during the radiation dominated era.1 The key
ingredient that triggers the formation of a PBH is the presence of an over-fluctuation in the density
of the Universe which, if large enough, gravitationally collapses dragging down any matter within
its horizon, that is the parcel of space around any point reachable at the speed of light.

The theory of inflation provides an elegant mechanism that explains the origin of density per-
turbations in the Universe. In the inflationary picture, space-time fluctuates quantum mechanically
around a background that is expanding exponentially fast. After the end of inflation, these curva-
ture fluctuations are transferred to the radiation field, creating slightly overdense and under-dense
regions. It is, therefore, fascinating to ask whether the formation of PBHs fits in the inflationary
picture of structure formation.2 To answer this question, two (related) aspects need to be addressed.

i) The inflaton dynamics should give rise to a peak in the power spectrum of curvature pertur-
bations.3 This translates into a large variance for density perturbations that, in turn, enhances
the chance to create overdense regions above the threshold for gravitational collapse.

ii) The abundance of such collapsing regions should be large enough to explain the totality of
dark matter.

Here we focus on simple single-field inflationary models. It is known that in order to fulfil point i)
slow-roll conditions must be violated. The simplest option is to introduce, few e-folds before the end
of inflation, an approximate stationary inflection point in the inflaton potential (see refs. [35–37] for
the earliest proposal in this direction). When the inflaton, during its classical dynamics, crosses this
region (during the so-called “ultra slow-roll phase”), curvature perturbations, due to the presence of

1 It is also possible to have PBH formation during matter domination [30].
2 This is not the only option. The formation of PBHs may have been independent of inflationary physics; PBHs may

have been originated from topological defects formed during symmetry breaking phase transition, for instance from the
collapse of string loops [31–33].

3 An exception, where no amplification of the power spectrum is needed, are models where PBHs form from the collapse
of domain walls created during inflation [34].

23
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negative friction, get exponentially enhanced [38–42].4 Point ii) is more subtle. Due of their intrinsic
quantum-mechanical origin, the way in which quantum fluctuations lead to a classical pattern of
perturbations can be described only in a probabilistic sense. Consequently, the computation of the
abundance of collapsing regions requires informations about the statistical distribution of density
perturbations. Most of the time, for simplicity, the gaussian approximation is assumed. However,
the very same fact that slow-roll conditions are violated as a consequence of point i) suggests that
non-gaussianities may play a relevant role. Refs. [45, 46] indeed find that during an ultra slow-roll
phase sizable non-gaussianities of local type are generated. In the rest of this paper we will dub
these non-gaussianities “primordial” to distinguish them from non-gaussianities that arise from the
non-linear relation between curvature and density perturbations.

What is the impact of primordial non-gaussianities on the gaussian approximation when com-
puting the PBH abundance? Ref. [47] addressed this question in the context of threshold statistics.
The main result of ref. [47] is that the abundance of PBHs is exponentially sensitive to primordial
non-gaussianities 5. Based on this result, ref. [45] claims that, in the context of single-field inflation-
ary models which feature an approximate stationary inflection point, the gaussian approximation
is hardly trustable when computing the PBH abundance.

The goal of this work is to address the same question using a different computational strategy
inspired by peak theory [48]. More precisely, we associate regions where the overdensity field takes
values above the threshold for gravitational collapse with spiky local maxima of the curvature
perturbation field, and compute the number density of the latter using peak theory that we extend
to include local non-gaussianities.

Our main conclusion is that the impact of local non-gaussianities on the PBH abundance is far less
important compared to what previously thought. We confirm that in models for PBH production
(at least the class of models that we are going to consider), local non-gaussianities are sizeable
enough to invalid the use of the the gaussian approximation to estimate their abundance. However
we find that their impact is modest when translated in terms of the amplitude of curvature power
spectrum, namely it is enough to change it by a factor ≃ 2 or smaller to obtain the same PBH
abundance predicted by the gaussian calculation. This shift can be obtained by a small change of
the parameters of the inflationary model.

En route, we discuss the difference between threshold statistics and peak theory, and we explain
under which conditions (and why) peak theory gives a PBH abundance which is larger than the
one computed by means of threshold statistics.

The structure of this part is as follows.

4 Alternatively, a parametric amplification of curvature perturbations could be caused by resonance with oscillations in
the sound speed of their propagation [43]. Another possibility is that, after the inflationary phase, the inflaton begins to
oscillate near the minimum of the potential and fragments into oscillons which, in turn, lead to copious production of
PBHs [44].

5 More precisely this means that in the context of threshold statistics the PBH abundance is given by eq. (6.2.14), where Cn
are the nth normalized cumulants of the non-gaussian distribution.
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∗ In section 5.2 we introduce the problem and present our solution strategy. This section is
paired with appendix B where we explain in more detail the cosmological interpretation of all
quantities involved.

∗ In chapter 6 we discuss our main results and we explain the discrepancy with the previous
literature. This section is paired with appendix C-F where we collect all relevant technical
details.

∗ We conclude in chapter 7.

5.2 problem setup and solution strategy

Consider in position space

h(x⃗) = R(x⃗) +αR(x⃗)2 , (5.2.1)

where α is a constant, R(x⃗) is a gaussian scalar random field while h(x⃗) is non-gaussian because of
the presence of the non-linear term on the right-hand side. In this case, non-gaussianities are called
of local type because for a given x⃗ at which we evaluate h the amount of non-gaussianity is localized
at the same position. We briefly discuss in appendix B the physical interpretation of eq. (5.2.1) and
the limitations of this parametrization of non-gaussianities.

The first observation is that

∂ih(x⃗) = [∂iR(x⃗)][1+ 2αR(x⃗)] , (5.2.2)

meaning that stationary points of R are also stationary points of h (∂iR = 0 implies ∂ih = 0).
What is crucial, however, is that the nature (saddle points, maxima or minima) of these “shared”

stationary points depends on the sign of the factor 1 + 2αR. Consider the matrix of second deriva-
tives evaluated at a stationary point x⃗st (we will further indicate a minimum with x⃗m and a maxi-
mum with x⃗M). One finds the Hessian matrix hij(x⃗st) = [Rij(x⃗st)](1+ 2αRst).6

To fix ideas, consider the simple case of two spatial dimensions x⃗ = (x,y)T and the case in which
the stationary point x⃗m is a minimum of R.

Minima of R are identified by two conditions. The first one, Rxx(x⃗m)Ryy(x⃗m) −Rxy(x⃗m)
2 > 0

separates extrema from saddle points. The second one,Rxx(x⃗m) > 0 andRyy(x⃗m) > 0, separates min-
ima from maxima. Since we have hxx(x⃗m)hyy(x⃗m) − hxy(x⃗m)

2 = (1 + 2αRm)
2[Rxx(x⃗m)Ryy(x⃗m) −

Rxy(x⃗m)
2] it is obvious that the condition Rxx(x⃗m)Ryy(x⃗m) −Rxy(x⃗m)

2 > 0 is also satisfied by h.
On the contrary, since hxx(x⃗m) = (1 + 2αRm)Rxx(x⃗m) and hyy(x⃗m) = (1 + 2αRm)Ryy(x⃗m), it is

possible that a minimum of R becomes a maximum of h if 1+ 2αRm < 0. Viceversa, a maximum of
R can become a minimum of h.

The argument trivially generalizes to the more realistic case of three spatial dimensions.

6 We use the short-hand notation fk ≡ f(x⃗k), fi(x⃗k) ≡ ∂if(x⃗) evaluated at x⃗k and fij(x⃗k) ≡ ∂ijf(x⃗) evaluated at x⃗k for some
generic function f. The flat spatial Laplacian is ∇2f(x⃗) ≡ ∑i fii(x⃗).
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In peak theory, one computes the number density of maxima [48]. We are interested in the number
density of maxima of the non-gaussian variable h. As argued before, identifying this quantity with
the number density of maxima ofR (based on the observation that h andR have the same stationary
points) is not correct. Let us give a quantitative argument to support this claim. From the previous
discussion, it is clear that counting the maxima of Rmight be not enough. On the contrary, a simple
modification could be the following. One should

i) Count the maxima of R;

ii) Add the minima of R that, depending on the value of (1+ 2αRm), become maxima of h;

iii) Subtract the maxima of R that, depending on the value of (1+ 2αRM), become minima of h.

Ref. [49] assumes i). However, the two operations ii) and iii) do not balance between each others,
and a sizable correction to i) will be introduced if α is large enough. In fig. 3 we show how the
number density of maxima of the gaussian variable R changes (in percentage) as a function of α
when ii) and iii) are implemented. Schematically, we compute

∆nmax =
(# minima ofR→maxima ofh) − (# maxima ofR→minima ofh)

# maxima ofR
. (5.2.3)

We obtain fig. 3 using gaussian peak theory (implementing the results of ref. [48], see appendix C).
If we take α≪ 1, ii) and iii) do not alter the estimate of i). However, for sizable α ≳ 0.2 the change in
the number density of maxima of R becomes evident.

In situations of cosmological interest, the issue is further complicated by the fact that we are not
really interested in all maxima of h but only in those which are “spiky enough.” The reason is that
the quantity which is relevant is the density contrast δ(x⃗, t) (also dubbed overdensity field in the
following) whose relation with h(x⃗) (assuming radiation dominated epoch) reads [50]

δ(x⃗, t) = −
4

9
(
1

aH
)

2

e−2h(x⃗)[∇2h(x⃗) +
1

2
hi(x⃗)hi(x⃗)] , (5.2.4)

where the time dependence comes from the scale factor a = a(t) and the Hubble rate H = H(t)while
h does not depend on time because eq. (5.2.4) assumes perturbations to be on super-horizon scales.
Eq. (5.2.4) can be thought as a Poisson equation in which h plays the role of gravitational potential
while the density contrast can be written more precisely as δ(x⃗, t) ≡ δρ(x⃗, t)/ρb(t) where ρb(t) is
the average background radiation energy density and δρ(x⃗, t) = ρ(x⃗, t) − ρb(t) its perturbation. The
physics-case that is relevant for the present study is the one in which the density contrast has a
peak localized in some region of space that is high enough to trigger the gravitational collapse into
a black hole. If the number of these peaks above threshold is large enough, these black holes can be
part of dark matter. In the range 1018 ≲MPBH [g] ≲ 1021, a population of PBHs may account for the
totality of dark matter observed in the Universe today.

Consider a peak of the overdensity field, located at some spatial point y⃗pk.

δ(y⃗pk, t) = −
4

9
(
1

aH
)

2

e−2h(y⃗pk)[∇2h(y⃗pk) +
1

2
hi(y⃗pk)hi(y⃗pk)] ≈ −

4

9
(
1

aH
)

2

∇
2h(y⃗pk) , (5.2.5)
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Figure 3: Percentage increase in the number density of maxima of R when we ii) add the minima of R that become
maxima of h and iii) subtract the maxima of R that become minima of h (see eq. (5.2.3)). To make this
(illustrative) plot we set σ0 = 1 and γ = 3/4 (see appendix C for definitions).

where in the second step we linearized in h. We follow here the approach of refs. [51, 52] in which
the linear approximation was adopted. Since the peak amplitude of the overdensity must be larger
than some critical value δc, we deduce the condition

−∇
2h(y⃗pk) ≳

9

4
(aH)2δc , (5.2.6)

on the curvature of h at the peak of δ.
If we assume that local maxima of h coincide with peaks of δ (that is y⃗pk ≃ x⃗M), then the condition

in eq. (5.2.6) tells that only maxima of h which are “spiky enough” contribute to the formation of
black holes. Of course, the assumption that local maxima of h coincide with peaks of δ requires
some care. Ref. [53] argues, both analytically and numerically, that this assumption is well justified.
However, ref. [53] only considers the case in which h is gaussian, that is, h = R with α = 0 in our
case (but they include the presence of the non-linearities in eq. (5.2.5)). Since stationary points of R
are also stationary points of h, we tend to believe that the same conclusion holds true in the case
with α ≠ 0 but of course this is an important point that has to be checked explicitly.

All in all, the strategy we shall follow in the course of this work is the following.
First, we will compute the number density of maxima of the non-gaussian random field h that are

“spiky enough” according to the condition in eq. (5.2.6). This requires a generalization of the work
in ref. [48] such as to implement local non-gaussianities. Second, we will check that these maxima
are also peaks of the overdensity field. If this last point will turn out to be true, our computation
of the number density of “spiky enough” maxima of h will provide the abundance of peaks of the
overdensity field that are large enough to form black holes.





6
R E S U LT S A N D D I S C U S S I O N

We present in this section the main results of our analysis. In section 6.1 we discuss how primordial
non-gaussianities of local type alter the abundance of PBHs. In section 6.2 we compare with the
existing literature.

All technical details are collected in appendix B (where we discuss the origin of eq. (5.2.1) from
a cosmological viewpoint), appendix C (where we discuss the gaussian limit), appendixes D and E
(where we discuss how to construct the non-gaussian part and the approximations that are involved)
and appendix F (where we give formulas for computing cumulants of generic order).

6.1 the abundance of pbhs in the presence of primordial local non-gaussianities

The quantity of central interest is the fraction of the Universe’s mass in the form of PBHs at the time
of their formation. As customary in the literature, we indicate this quantity with β. The present-day
fractional abundance of dark matter in the form of PBHs is given by (for a review, see ref. [54])

ΩPBH

ΩDM
= O(1) × (

β

10−16
)[
g∗(tf)
106.75

]

−1/4
(
MPBH

1018 g
)

−1/2
, (6.1.1)

where g∗(tf) is the number of relativistic degrees of freedom at the time of black hole formation
(that we normalize and set to its standard model value). Eq. (6.1.1) is defined modulo an overallO(1)
factor whose precise value depends on the detail of the gravitational collapse that leads to black
hole formation. In this paper we consider MPBH ≃ 10

18 g; consequently, as an order-of-magnitude
estimate, β ≳ 10−16 is excluded since it would imply overclosure of the present-day Universe,ΩPBH >

ΩDM.
We find the following formula

fraction of the Universe’s mass in PBH in the presence of primordial local non-gaussianities

β ≈
1

4
√
2π(1−γ2)

⎡
⎢
⎢
⎢
⎢
⎣

∫

∞

− 1
2ασ0

dν̄ ∫
∞

xδ(ν̄)
dxe−ν̄

2/2 f(x)e
− (x−x∗)2

2(1−γ2)+

+∫

− 1
2ασ0

−∞
dν̄ ∫

xδ(ν̄)

−∞
dxe−ν̄

2/2 f(x)e
− (x−x∗)2

2(1−γ2) ]

(6.1.2)

that we derive in detail in appendix C (as far as the gaussian limit is concerned) and appendix D
(where we discuss how to construct the non-gaussian part and the approximations that are in-
volved).

In short:

29
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∗ The parameter α, already defined in eq. (5.2.1), indicates the presence of local non-gaussianities
(of quadratic type). The limit α → 0 reproduces the gaussian result. A more physical interpre-
tation of this parameter is given in appendix B. In concrete models of inflation which generate
a sizable abundance of dark matter in the form of PBHs (see, for instance, ref. [55]), we expect
α ∈ [0.24,0.61] [45, 46].

We derive our result based on peak theory. More precisely, we associate regions where the
overdensity field takes large values with spiky local maxima of the comoving curvature per-
turbation, and compute the number density of the latter using peak theory that we extend to
include local non-gaussianities. Within this approach, eq. (6.1.2) represents an original result.

∗ The spectral moments σ2j are defined by (see eq. (C.0.9) and discussion in appendix C)

σ2j ≡ ∫
dk

k
PR(k)k2j , (6.1.3)

where PR(k) is the dimensionless power spectrum of the gaussian random field R. The a-
dimensional parameter γ is defined as γ = σ21/σ2σ0 and takes values 0 < γ < 1. In this paper
we analyze two possible cases. In order to elucidate some intermediate results of our compu-
tational strategy, we use in appendix C a simple toy-model for the power spectrum given by
the log-normal function (see eq. (C.0.24) and related discussion)

PR(k) =
Ag
√
2πv

exp [−
log2
(k/k⋆)
2v2

] , (6.1.4)

since in this case the spectral moments can be computed analytically and they are given by σ2j =
Agk

2j
⋆ e2j

2v2
. The three parameters {k⋆,Ag,v} in eq. (6.1.4) control, respectively, the position of

the peak of the power spectrum, the peak amplitude of the power spectrum and its width.
However, we remark that in single-field inflationary models the value of α that defines the
amount of local non-gaussianities and the shape of the power spectrum are intimately related,
and in general one can not take α as a free parameter and fix the power spectrum to a specific
functional form like the one introduced in eq. (6.1.4). A more realistic example is the following.
Consider the power spectrum defined by the piecewise function

realistic power spectrum ∶ PR(k) = PR(k⋆) ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

( k
k1
)
n1

exp [− log2(k1/k⋆)
2v2 ] for k < k1

exp [− log2(k/k⋆)
2v2 ] for k1 ⩽ k ⩽ k2

( k
k2
)
n2

exp [− log2(k2/k⋆)
2v2 ] for k > k2

(6.1.5)

with two power-law behaviors for k ≪ k⋆ and k ≫ k⋆ that, for k ≈ k⋆, are connected by the
log-normal function in eq. (6.1.4). In this case, it is possible to show that the spectral index
of the fall-off of the power spectrum after the peak at k = k⋆ is related to α by the relation
n2 ≈ −4α that is twice the value of the Hubble parameter η after the end of the ultra slow-roll
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phase.1 In our numerical analysis, therefore, we use the realistic power spectrum in eq. (6.1.5)
with the condition n2 = −4α for fixed α. This provides the above-mentioned relation between
the amount of local non-gaussianities and the shape of the power spectrum. We remark that
this point is often overlooked in the literature. As a numerical check, we show in fig. 4 (left
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Figure 4: Power spectra for the model in ref. [55] (red, with label k−1.51), ref. [56] (blue, with label k−2.45) and ref. [57]
(green, with label k−0.88) computed numerically by solving the Mukhanov-Sasaki equation (left panel). The
slope of the power-law falloff after the peak is k2η0 where η0 is the value of the Hubble parameter η (whose
evolution, as function of the e-fold time N with Nin the beginning of the ultra slow-roll phase, is shown in the
right panel) after the end of the ultra slow-roll phase; η0, in turn, is related to the parameter α that controls
the size of local non-gaussianities via α = −η0/2 (see appendix B).

panel) the power spectra of comoving curvature perturbations computed numerically for three
inflationary models in which a ultra slow-roll phase takes place. All power spectra are well
described by the analytical ansatz in eq. (6.1.5). The slope of the power spectra after the peak
is related to the value of the Hubble parameter η (shown in the right panel of the same
figure) after the end of the ultra slow-roll phase which, in turn, controls the size of local
non-gaussianities (see caption and appendix B for more details).

As far as the values of the other parameters in eq. (6.1.5) are concerned, we use k⋆ = 1.5× 1014

Mpc−1, n1 = 3.4, k1 = k⋆/5, k2 = 3k⋆/2 and v = 0.7; the values of k1,2, v and n1 are motivated by
a fit of eq. (6.1.5) done with respect to the numerical power spectrum obtained in the context of

1 This can be understood as follows. The modes that constitute the fall-off of the power spectrum after the peak are those for
which the horizon-crossing condition k = aH happens after the end of the ultra slow-roll phase [55]; during this part of the
dynamics the power spectrum can be approximated by means of the conventional slow-roll relation PR(k) = H2/8π2ϵ
where the Hubble parameter ϵ evolves in time according to ϵ(N) ∝ e−2η0N where η0 (which is a negative number,
η0 < 0, see appendix B) is the value of the Hubble parameter η after the end of the ultra slow-roll phase. We neglect the
contribution coming from the time-evolution of H, which is sub-leading. This means that we have PR(k) ∝ e2η0N. From
k = aH we have dk/k = dN, and we can convert the e-fold time-dependence into a k-dependence, PR(k) ∝ k2η0 = k−4α

where we used that α = −η0/2 (see appendix B).
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the explicit models studied in ref. [55]. In particular, notice that the spectral index n1 describes
the growth of the power spectrum that leads to the formation of the peak; its value is related to
the value of the Hubble parameter η during the ultra slow-roll phase and the duration of the
latter. Semi-analytical arguments (see ref. [58]) suggest that n1 < 4.2 The value k⋆ = 1.5 × 1014

Mpc−1 is chosen because it implies MPBH ≃ 10
18 g (for which ΩPBH ≃ ΩDM is possible, see

ref. [46]). We consider the peak amplitude of the power spectrum PR(k⋆) as a free parameter.
The power spectra that we consider lead to a narrow PBHs mass function.

∗ The function f(x) is given in eq. (D.1.17) and the quantity x∗ in eq. (D.1.12). The function xδ(ν̄)
is defined by the relation (see eq. (D.1.14))

(1+ 2ασ0ν̄)xδ(ν̄) =
9(amHm)

2

4σ2
δc , (6.1.6)

where δc = O(1) is a threshold value above which a peak of the overdensity field collapses to
form a black hole. The left hand side of eq. (6.1.6) corresponds to the critical curvature of h in
eq. (5.2.6), see section D. Formally, eq. (6.1.6) depends on time via the comoving Hubble radius
1/aH. We evaluate eq. (6.1.6) at the time tm when curvature perturbations re-enter the horizon
and become causally connected (see refs. [51, 52] and appendix F of ref. [2]) 3. In eq. (6.1.6) we
use the short-hand notation amHm ≡ a(tm)H(tm).

∗ An important comment concerns the so-called smoothing procedure. Consider the case in
which one takes a very narrow power spectrum, like the toy-model introduced in eq. (6.1.4)
with a small value of v, say v = 0.1. In this case it is not strictly necessary to introduce a
smoothing procedure because the power spectrum is characterized by a well-defined scale in
momentum space, k = k⋆. The realistic case introduced in eq. (6.1.5), on the contrary, requires
more care. Although the power spectrum peaks at k = k⋆, the peak is broadened by the
relatively large value of v, and it also possesses a pronounced power-law tail at large k ≫ k⋆.
In this situation we can not blindly apply eq. (6.1.2) to compute the PBH abundance because
the spectral moment σ22 is formally ultraviolet-divergent unless the power spectrum decays
fast enough, which is however not the case in the realistic model.4 The solution to this issue
(discussed in appendix F of ref. [2]) is to smooth-out small scales by introducing an appropriate
cut-off. At the operative level, we use, instead of eq. (6.1.5), the power spectrum Pcut

R (k) ≡
PR(k) exp(−k2/k2cut) and we choose kcut such as to minimize the threshold value in the right-
hand side of eq. (6.1.6). Notice that this smoothing procedure is relevant for the determination
both of the threshold value and the spectral moments in eq. (6.1.3).

2 However, see ref. [59] for a special case (derived in the context of non-attractor inflation) in which the growth of the
power spectrum can be steeper, although for a limited range of k. A steeper growth can also be attained in multi-field
inflationary scenarios [60].

3 Notice however that eq. (5.2.4) is valid on super-horizon scales. This means that at horizon-crossing additional non linear
effects are present. Recently, these corrections have been considered in ref. [61].

4 Of course, any power spectrum generated by the inflationary dynamics has an intrinsic cut-off set by the smallest scale
(largest k) that exits the Hubble horizon before inflation ends. More precisely, therefore, with the words “ultraviolet-
divergent integral” we mean that σ22 is dominated by small scales.
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Physically, the fact that the power spectrum in eq. (6.1.5) does not possess a well-defined scale
means that the PBHs it generates will be characterized by a relatively broad mass distribution
(rather than sharply peaked at the value associated to k⋆). The cut-off procedure described
before selects the scale (and, therefore, the value of the mass MPBH) at which the abundance
of PBH will be the largest.

∗ We use the linear approximation in eq. (5.2.4).

We now discuss the implications of eq. (6.1.2). In the left panel of fig. 5 we show the fraction of
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Figure 5: Left panel: Fraction of the Universe’s mass in PBHs at the time of their formation computed with (solid
lines with colors) and without (dashed black line) non-gaussianities as a function of the peak amplitude of the
power spectrum PR(k⋆). We adopt the realistic model for the power spectrum introduced in eq. (6.1.5) and
the abundance is computed using eq. (6.1.2). We show the impact of non-gaussianities for different benchmark
values of α. In the hatched region we have β > 10−16 and the Universe is overclosed (see eq. (6.1.1) and related
discussion). Right panel: we consider two spatial dimensions, and compare the exact computation of β with
the approximation obtained including only the third-order cumulants. We also show the value of β obtained
by means of the exponential approximation in eq. (E.0.104); the latter gives an estimate of the abundance off
by many orders of magnitude compared with the actual result.

Universe’s mass in the form of PBH computed according to eq. (6.1.2) for increasing values of the
parameter α starting from the gaussian case with α = 0. What values of α are expected in concrete
models? In popular single-field models of inflation that generate a sizable abundance of dark matter
in the form of PBHs, we find α ≃ 0.38 (ref. [55]), α ≃ 0.37 (ref. [62]), α ≃ 0.30 (ref. [63]), α ≃ 0.22
(ref. [57]), α ≃ 0.61 (ref. [56]). The plot shows that including local non-gaussianities of primordial
origin makes the formation of PBHs easier, and the value of PR(k⋆) required to reproduce the
benchmark abundance β = 10−16 turns out to be smaller than the gaussian one. We find that the
rescaling of the peak amplitude implied by the presence of local non-gaussianities is modest, a
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factor a few in realistic models. Moreover, let us mention that it can be obtained at a price of
an even smaller retuning of the parameters of the inflationary models. Similar results have been
obtained in [46] for the calculation of the PBH abundance with threshold statistics.

In addition to the exact result presented in eq. (6.1.2), we also consider a “perturbative” approach
based on a power-series α-expansion around the gaussian distribution. To this end, we work in two
(instead of three) spatial dimensions. This simplifying assumption allows to perform most of the
computations in appendix C and appendix E analytically, and makes possible to visualize and check
numerically a number of intermediate results by means of simple two-dimensional plots.

Let us first clarify the exact meaning of the word “perturbative.” From a statistical viewpoint,
the α-expansion corresponds to an expansion in cumulants of the joint non-gaussian probability
distribution according to the schematic summarized in table 1 (see appendix C, appendix E and
appendix F for details). In the gaussian approximation, all cumulants Cn⩾3 vanish and the second-

Gaussian
O(α) O(α2) O(α3) O(α4) O(α5) . . .

α = 0

second-order cumulants C2 ✓ ✗ ✓ ✗ ✗ ✗ . . .

third-order cumulants C3 ✗ ✓ ✗ ✓ ✗ ✗ . . .

fourth-order cumulants C4 ✗ ✗ ✓ ✗ ✓ ✗ . . .

fifth-order cumulants C5 ✗ ✗ ✗ ✓ ✗ ✓ . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Table 1: We organize the cumulants Cn of the joint six-dimensional probability distribution
P(h,hx,hy,hxx,hxy,hyy) as a series expansion in α. In the case α = 0, only second-order cumu-
lants are non-vanishing (eqs. (E.0.77-E.0.80) with α = 0), and we reconstruct the gaussian limit. At order
O(α), the leading correction is given by third-order cumulants (eqs. (E.0.85-E.0.92)). At order O(α2),
we include corrections to the second-order cumulants (eqs. (E.0.77-E.0.80)) and the leading pieces in the
expression of fourth-order cumulants (eqs. (E.0.105-E.0.120)).

order ones correspond to the entries of the covariance matrix of the distribution. This result is valid
in the limit α → 0. If α ≠ 0, all cumulants Cn⩾3 are generated. However, the non-zero cumulants
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can be organized in terms of an α-expansion as shown in table 1 (see caption, and appendix E and
appendix F for details). Crudely speaking, we have

Cn⩾2 ∼ O(αn−2
) +O(αn

) . (6.1.7)

At order O(α), only the leading part of the third-order cumulants C3 appears.5 We can, therefore,
consider an expansion around the gaussian distribution including only the leading part of the third-
order cumulants C3. The rationale for this approximation is twofold.

i) If we compare the perturbative approach with the exact computation (downgraded in two spa-
tial dimensions) we can estimate the validity of the approximation in which only the leading
part of the third-order cumulant C3 is included.

This exercise is useful for the following reason. In the approach based on threshold statistics,
one usually computes, using the tools of cosmological perturbation theory, the cumulants in
the form of (the connected part of) correlators of the density perturbation field. In the presence
of ultra slow-roll, however, this computation is not simple (see refs. [45, 46]), and one typically
includes only the leading term in the so-called bispectrum (that is the three-point correlator).
This approximation precisely corresponds to the one in which only the leading part of the
third-order cumulant C3 is included (that is the one proportional to α in eq. (6.1.7)). In the
right panel of fig. 5 we show the comparison between the exact computation of β and the
approximation in which only the leading part of C3 is included; as mentioned before, we
work in two spatial dimensions and we fix α = 0.45. The comparison shows that truncating the
expansion at the first order in the non-gaussian corrections does not fully capture the impact
of non-gaussianities on β.

Based on this result, we pose the attention on the fact that a similar conclusion is likely to
be valid also when computing correlators in cosmological perturbation theory. The local non-
gaussianity which is present at the level of the three-point correlator (computed, for instance,
in refs. [45, 46] and used in ref. [45] to estimate the impact of non-gaussianities on β) induces

5 More precisely, for each cumulant the expansion is controlled—considering for simplicity the log-normal power spectrum
in eq. (6.1.4)—by the dimensionless parameter αAg ≪ 1.
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corrections also at higher orders. In terms of (cosmological) Feynman diagrams, the situation
can be sketched as follows

third-order cumulant fourth-order cumulant from (cubic interactions)2 (6.1.8)

pure fourth-order cumulant

end of inflation

(6.1.9)

where the square of the third-order local interaction enters at the fourth-order (as well as at
higher ones).6 The comparison shown in the right panel of fig. 5 suggests that, without includ-
ing the contributions that third-order local interactions induce in higher-order cumulants, a
precise computation of β cannot be claimed.

In addition to this observation there is a second, and by far more problematic, issue that we
shall discuss next.

ii) When computing non-gaussian corrections in the form of a series expansion around the gaus-
sian distribution, some care must be taken. Seemingly harmless approximations, indeed, may
lead to erroneous conclusions. Consider the simplified case discussed before in which only
the leading part of the third-order cumulants C3 is included. A wrong approximation in the
evaluation of the non-gaussian probability distribution leads to the expression of the abun-
dance that we report in eq. (E.0.104). In this compact expression, the non-gaussian correction
exponentiates and alters the argument of the exponential function in the gaussian distribution.
If this approximation were true, the effect of non-gaussianities would be exponentially large.
For illustration, we add in the right panel of fig. 5 the value of β that one gets by means of
eq. (E.0.104). Clearly, eq. (E.0.104) overestimates the actual value of β by many orders of mag-
nitude. In appendix E we explain why this approximation is wrong and what is the correct
procedure to follow.

The reader may wonder why we are wasting time discussing a wrong result. The reason is that
it rings a bell. Previous studies on the impact of primordial non-gaussianities found, although
in a slightly different statistical context, that non-gaussian corrections alter exponentially the
gaussian value of β, analogously to what happens with eq. (E.0.104), an expression that we

6 Of course, higher-order correlators generated by pure higher-order interactions—for instance, a pure quartic interaction
in the violet vertex of the example above—could also be present but, as discussed in appendix B, we do not consider them
explicitly in this paper.
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just branded inaccurate. A closer look at this literature, therefore, is mandatory. This will be
the subject of the next section.

6.2 comparison with the literature

The impact of primordial non-gaussianities on the computation of PBH abundance was discussed
in ref. [47] in the context of the so-called threshold statistics. Ref. [47] finds that primordial non-
gaussianities may play a very relevant role because they alter the argument of the exponential
function that sets the value of the PBH abundance in the gaussian case. Ref. [45] applies the results of
ref. [47] to the case of single-field inflationary models which feature the presence of an approximate
stationary inflection point, and concludes that the gaussian approximation does not give the correct
estimate of the PBHs abundance precisely because the non-gaussian correction exponentiates and
drastically changes the gaussian result.

However, this conclusion clashes with our result. In fact, as we are going to show, the impact of
non-gaussianities on the PBH abundance is much smaller than what found in ref. [47]. To explain
the discrepancy, let us first re-derive the main result of ref. [47] in a simplified way.

In a nutshell, in the context of threshold statistics one computes, assuming a gaussian distribution,
the probability to find regions where the overdensity field δ takes values above a given threshold.
It is known that threshold statistics gives a smaller PBH abundance if compared with peak theory.
Let us briefly explain the origin of this difference even if this point is not crucial to understand the
discrepancy between our conclusions and ref. [47]. In this section we work directly with the density
contrast δ. Furthermore, we start considering the gaussian limit. The gaussian probability density
distribution of δ with variance σδ and spectral moments σ̄j (where σ̄0 = σδ) is given in the two cases
by the expressions

Pthreshold(δ) =
1

√
2πσδ

e−δ
2/2σ2

δ , (6.2.1)

Ppeak(δ) =
1

(2π)2σδR
3∗
{∫

∞

0
dx

f(x)
√
2π(1−γ2)

exp [−
(x− δγ/σδ)

2

2(1−γ2)
]}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡G(γ,δ)

e−δ
2/2σ2

δ ≡ (6.2.2)

≡
1

(2π)2σδR
3∗
∫

∞

0
dxPpeak(x,δ) , (6.2.3)

where the function f(x) is given explicitly in eq. (D.1.17). The two quantities 0 ⩽ γ ≡ σ̄21/σ̄2σδ < 1
and R∗ ≡

√
3σ̄1/σ̄2 are factors depending on the power spectrum of δ (notice in particular that γ is

the same defined below eq. (6.1.3) but now written in terms of the spectral moments of δ instead
of R). The variable x is defined by x ≡ −∇2δ/σ̄2. The two expressions are similar but there are two
differences. First, Ppeak(δ) has dimension of inverse spatial volume (because of the factor 1/R3∗). This
is because Ppeak(δ) is defined in peak theory as a number density of maxima. This implies that
the true comparison is between the a-dimensional quantities Pthreshold(δ) and R3∗Ppeak(δ). Second,
Ppeak(δ) contains an extra factor (the one in curly brackets) with respect to Pthreshold(δ). This factor
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arises because in peak theory one starts from the ten-dimensional gaussian joint probability density
distribution P(δ,δi,δij) of δ and its first (δi) and second (δij) spatial derivatives and imposes a num-
ber of conditions that select among the stationary points those that are maxima [48]. In threshold
statistics, on the contrary, one simply integrates out all spatial informations by reducing P(δ,δi,δij)
to the one-dimensional gaussian distribution in eq. (6.2.1). The crucial aspect is that the function
G(γ,δ) in eq. (6.2.3) depends on δ in a way which is proportional to the parameter γ. The latter
controls the degree of correlation between δ and x. When γ = 0, the two variables are completely
uncorrelated, and we find that G(0,δ) = (29−6

√
6)/10

√
10π. In this case, G(0,δ) does not depend on

δ: peak theory and threshold statistics give the same qualitative answer (in the sense that the only
δ-dependence is encoded in the gaussian exponential which is in common between the two). When
γ → 1, δ and x are strongly correlated. This fact deforms the shape of the probability density distri-
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Figure 6: Isocontours of constant probability density distribution Ppeak(x,δ) defined in eq. (6.2.3). We use ν ≡ δ/σδ
and we set (for illustrative purposes only) the threshold at νc = 3. The probability above the threshold is
obtained integrating Ppeak(x,δ) for x ∈ [0,∞) and ν ∈ [νc,∞). We show the case with γ = 0 (no correlation
between x and δ, left panel) and γ = 0.95 (strong correlation between x and δ, right panel).

bution of x and δ and gives more weight to the region in which δ crosses the threshold for collapse.
This is illustrated schematically in fig. 6 (using ν ≡ δ/σδ). In the case of strong correlation between
δ and x, therefore, it is well expected that after integrating above the threshold ν > νc peak theory
gives a result which is larger than threshold statistics.7 In threshold statistics, this information about
the correlation between δ and x is completely lost since δ is treated independently from the spatial
configuration. We remark that the difference between threshold statistics and peak theory is more
and more relevant as we approach the limit γ→ 1. As already pointed out, the value of γ is dictated
by the properties of the power spectrum (in this case, strictly speaking, the power spectrum of δ

7 Notice that, for the sake of simplicity, we are implicitly assuming in this example the same threshold value νc in the case
of peak theory and threshold statistics in order to highlight the main difference between the two statistical approaches.
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which is however related to the power spectrum of comoving curvature perturbations) with a very
peaked power spectrum that corresponds to the limit γ→ 1.

After this digression, we can back to the main point of this section. In the context of threshold
statistics, non-gaussianities are included in the form of a Gram–Charlier A series around the gaus-
sian ansatz [64]

PNG(δ) = PG(δ) [1+
∞
∑
n=3

1

n!2n/2
Bn(0,0,C3, . . . ,Cn)Hn (

ν
√
2
)] (6.2.4)

= PG(δ)[1+
C3

3!23/2
H3 (

ν
√
2
)+

C4

4!24/2
H4 (

ν
√
2
)+

C5

5!25/2
H5 (

ν
√
2
)+
(10C23 + C6)

6!26/2
H6 (

ν
√
2
)+ . . . ] ,

where PG(δ) = (1/
√
2πσδ) exp(−δ2/2σ2δ) is the gaussian probability density distribution of δ with

variance σδ (that is Pthreshold(δ) introduced in eq. (6.2.1)) and Hn are the physicists’ Hermite poly-
nomials.8 We define ν ≡ δ/σδ and we introduce the n-th complete exponential Bell polynomial
Bn(x1, . . . ,xn) = ∑n

k=1Bn,k(x1, . . . ,xn−k+1) with Bn,k the partial exponential Bell polynomials. We
indicate with Cn the nth normalized cumulant defined as the connected part of the n-point cor-
relator (evaluated at the same point) of the overdensity field normalized by the nth power of the
standard deviation

Cn ≡
⟨

n times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

δ(x⃗) . . . δ(x⃗)⟩conn

σnδ
. (6.2.6)

The explicit computation of eq. (6.2.6) in the presence of an ultra-slow roll phase is discussed, in the
context of cosmological perturbation theory, in ref. [46] (see also ref. [45]). Notice that the quantity
⟨δ(x⃗) . . . δ(x⃗)⟩ is dimensionless, and so is Cn. We now integrate PNG(δ) over some threshold δc =
νcσδ. We define the abundance β(νc) = ∫

∞
δc
dδPNG(δ). We find9

β(νc) =
1

2
Erfc(

νc
√
2
)+

1
√
2πνc

e−ν
2
c/2

∞
∑
n=3

√
2νc

n!2n/2
Bn(0,0,C3, . . . ,Cn)Hn−1 (

νc
√
2
) ≈ (6.2.8)

≈
1

√
2πνc

e−ν
2
c/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
gaussian approxβG(νc)

[1+
∞
∑
n=3

√
2νc

n!2n/2
Bn(0,0,C3, . . . ,Cn)Hn−1 (

νc
√
2
)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non gaussian correction

, (6.2.9)

where in the last step we use (1/2)Erfc(x/
√
2) ≈ (1/

√
2πx)e−x

2/2 for x≫ 1.

8 We remind that

dn

dxn
e
−x2
/2σ2

= (−1)
n

2n/2σn
e
−x2
/2σ2

Hn (
x√
2σ
) , with Hn(x) = (−1)nex

2 dn

dxn
e
−x2

, (6.2.5)

so that the reader can immediately recognize in eq. (6.2.4) the structure of a derivative expansion.
9 We use the property

1√
2πσ
∫
∞

δc

dδe
−δ2
/2σ2

Hn (
δ√
2σ
) = 1√

π
e
−ν2

c/2Hn−1 (
νc√
2
) . (6.2.7)
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We now adopt the approach suggested in ref. [47] and approximate

Hn (
νc
√
2
) = 2n/2νnc +O(ν

n−2
c ) , (6.2.10)

which seems justified since νc ≫ 1. In this case eq. (6.2.9) becomes10

β(νc) ≈
1

√
2πνc

exp(−
ν2c
2
+
∞
∑
n=3

Cnν
n
c

n!
) . (6.2.14)

We find, therefore, the main result of ref. [47]: The non-gaussian correction exponentiates, and
changes the argument of the exponential in the gaussian distribution.

10 The complete exponential Bell polynomial is defined by the exponential generating function [65]

exp
⎛
⎝
∞

∑
j=1

xjt
j

j!
⎞
⎠
=
∞

∑
n=0

Bn(x1, . . . ,xn)
tn

n!
, (6.2.11)

and the first few complete Bell polynomials are B0 = 1, B1(x1) = x1, B2(x1,x2) = x21 + x2, B3(x1,x2,x3) = x31 + 3x1x2 + x3.
In our case we have x1 = x2 = 0 and the previous definition takes the form

exp
⎛
⎝
∞

∑
j=3

xjt
j

j!
⎞
⎠
= 1+

∞

∑
n=3

Bn(0, 0,x3, . . . ,xn)
tn

n!
, (6.2.12)

which applies to our case with t = νc and xi⩾3 = Ci⩾3 since the application of eq. (6.2.10) to eq. (6.2.9) gives

β(νc) ≃
1√
2πνc

e
−ν2

c/2 [1+
∞

∑
n=3

Bn(0, 0,C3, . . . ,Cn)
νnc
n!
] . (6.2.13)

Notice that, compared to our result, ref. [47] finds an additional factor (−1)n in eq. (6.2.14) which, however, does not
appear in our computation.
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Consider the simplified case in which only the third-order normalized cumulant (a.k.a. skewness)
is non-vanishing, C3 ≠ 0 and Cn>3 = 0. This is the approximation studied in ref. [45] in which the
third-order cumulant is computed in the case of local non-gaussianities.11 We find

β(νc) ≈
1

√
2πνc

exp(−
ν2c
2
+
C3ν

3
c

6
) , with C3 ≠ 0 and Cn>3 = 0 . (6.2.16)

Ref. [47] and ref. [45] used the above equations to conclude that the gaussian estimate of the PBH
abundance is hardly trustable. This result is based on the approximation in eq. (6.2.10). However, as
we shall now discuss, the applicability of this approximation is not as straightforward as one may
think. Let us critically inspect the issue.

We define, for ease of reading, the quantity bn(νc) ≡ (
√
2νc/n!2n/2)Bn(0,0,C3, . . . ,Cn)Hn−1(νc/

√
2)

which enters in the non-gaussian correction in eq. (6.2.9). As a consequence of eq. (6.2.10), we have
(slashed terms are neglected if we apply the approximation in eq. (6.2.10))

b3 =
C3ν

3
c

6
(1−

�
�
�1

ν2c
) , (6.2.17)

b6 =
C23ν

6
c

72
(1−

�
�
�

��10

ν2c
+
15

ν4c
) , (6.2.18)

b9 =
C33ν

9
c

1296
(1−

�����������28

ν2c
+
210

ν4c
−
420

ν6c
+
105

ν8c
) , (6.2.19)

b12 = . . . (6.2.20)

and so on. We see, for instance, that we neglected the term −7C33ν
7
c/324 in eq. (6.2.19) but we kept

the term C3ν3c/6 in eq. (6.2.17). This is hardly justifiable given that νc ≫ 1 and we expect C3 ∼ O(1)

11 Notice, however, that assuming C3 ≠ 0 and Cn>3 = 0 is not fully consistent with the local non-gaussianities computed
in ref. [45]. Indeed, local non-gaussianities automatically generate non-vanishing cumulants of any order. This is evident
in our approach, in which α ≠ 0 generates a whole tower of non-zero cumulants. From a more mathematical viewpoint,
consider the following theorem. The sequence {µn,n = 0, 1, 2, . . .} corresponds to moments of a non-negative probability density
function if and only if the determinants

Dn+1 ≡ det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

µ0 µ1 µ2 ⋯ µn

µ1 µ2 µ3 ⋯ µn+1

µ2 µ3 µ4 ⋯ µn+2

⋮ ⋮ ⋮ ⋱ ⋮
µn µn+1 µn+2 ⋯ µ2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, n = 0, 1, 2, . . . , (6.2.15)

are all non-negative [66]. Consider the illustrative case with Cn = 0 for n ⩾ 4. We have µ0 = 1, µ1 = 0, µ2 = σ2δ, µ3 = ⟨δ3⟩
and µn = σnδ (n − 1)!! for n ⩾ 4 even (µn = 0 for n ⩾ 4 odd). The last condition simply means that cumulants of order
higher than three vanish (and the corresponding moments purely gaussian). The first determinant D3 > 0 already sets a
non-trivial condition on the skewness, that is −

√
2 < C3 <

√
2. However, there is more than this. It is indeed trivial to see

that higher-order conditions Dn > 0 for n > 3 impose increasingly strong bound on C3 so that only C3 = 0 is allowed if all
the infinite number of constraints are implemented. In other words, the theorem above implies that skewness alone can not
consistently parameterize a non-gaussian probability density function. This result resonates with what we discussed at point ii)
in section 6.1. Computing only the three-point correlator of the overdensity field does not fully describe non-gaussianities
but one should at least include the contributions that the three-point function generates at higher orders.



42 results and discussion

(see ref. [46] for a careful computation of C3). This is enough to question the validity of the result
based on eq. (6.2.10). Furthermore, from this simple comparison, we also see that the approximation
in eq. (6.2.10)—contrary to what naïvely expected—gets worse for larger νc.
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Figure 7: Left panel. Numerical comparison between i) the gaussian result βG(νc) defined in eq. (6.2.9), ii) the expo-
nential approximation in eq. (6.2.16) and iii) the exact expansion of β(νc) = βG(νc)[1+∑

nmax
n=3 bn(νc)] for

increasing values of nmax. We take C3 = 0.25 and we show our results as function of νc. Right panel. Same
as in the left panel but using the scaling in eq. (6.2.25) to draw β as function of PR(k⋆). We take δc = 1.2.

In particular, in this specific case, we can rewrite the sum (6.2.8) by using the recurrence property
of the Bell polynomials:

Bn+1 (x1, . . . ,xn+1) =
n

∑
k=0
(
n

k
)Bn−k (x1, . . . ,xn−k)xk+1. (6.2.21)

In our particular case xk+1 = C3 δk+1,3, therefore

B3(k+1)(0,0,C3,0, . . . ,0) =
1

2
(3k+ 1)(3k+ 2)C3B3k(0,0,C3,0, . . . ,0). (6.2.22)

This can be easily recasted in the form:

Bn (0,0,C3,0, . . . ,0) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

3 (C3
6
)
k (3k−1)!
(k−1)! , if n = 3k,

0, if n ≠ 3k.
(6.2.23)

Using this identity inside the eq. (6.2.8) we get:

β(νc) =
1

2
Erfc(

νc
√
2
)+

1
√
π
e−ν

2
c/2

∞
∑
k=1

1

k!
(
C3

12
√
2
)

k

H3k−1 (
νc
√
2
) . (6.2.24)
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To show more explicitly the error that one makes by taking the exponential approximation in
eq. (6.2.16) we plot in the left panel of fig. 7 the comparison between i) the gaussian result βG(νc)

defined in eq. (6.2.9), ii) the exponential approximation in eq. (6.2.16) and iii) the exact expansion
of β(νc) = βG(νc)[1 +∑

nmax
n=3 bn(νc)] for increasing values of nmax

12. We take C3 = 0.25 and we set
Cn>3 = 0. The approximation gives a wrong estimate of the actual magnitude of the non-gaussianities.
As expected, the exponential approximation diverges from the actual result for larger values of νc.

There is another point that is worth emphasizing. Taking C3 fixed and changing only νc, as
done in the left panel of fig. 7 is not fully consistent since both C3 and νc are functions of the
power spectrum PR. More explicitly, we have the scaling νc ∝ PR(k⋆)−1/2 and C3 ∝ PR(k⋆)1/2 (see
appendix B). This means that reducing PR(k⋆) to decrease C3 does not improve on the applicability
of the exponential approximation since νc, in turn, increases. To better visualize this point let us
consider the following benchmark scalings

σδ = 0.35 [
PR(k⋆)
0.05

]

1/2
, C3 = 0.8 [

PR(k⋆)
0.05

]

1/2
, (6.2.25)

and take δc = 1.2. We can now redo the comparison we did before but now as function of PR(k⋆).
The result is shown in the right panel of fig. 7. We conclude again that the exponential approxi-
mation overestimates the impact of local non-gaussianities on the PBH abundance by many orders
of magnitude compared with the actual result. Using the exponential approximation, one would
wrongly conclude that, in order to fit the reference value β ≃ 10−16, an order-of-magnitude decrease
in the peak amplitude of the power spectrum is needed compared to the gaussian result.

12 One can argue that the power series ∑∞k=1 zk

k! H3k−1(x) contained in eq. (6.2.24) is not convergent. Nevertheless it should
be regarded as an asymptotic series that gives a trustable value after an optimal truncation. Moreover it is Borel summable,

and its value can be computed numerically evalutating the Borel sum ∫
∞

0 e−t [∑∞k=1
(tz)k

(k!)2 H3k−1(x)]dt. This check has

been done and the value obtained agrees with the one got by the optimal truncation.
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C O N C L U S I O N S O F PA RT I I

We conclude summarizing the main results and novelties of our work.

○ We have studied the impact of primordial non-gaussianities of local type on the abundance of
PBHs. For this purpose we have focused on the maxima of the the comoving curvature per-
turbations. We have shown that those peaks “spiky enough”, i.e. with a curvature larger than
a certain threshold, are good proxies for the maxima of the density field which undergo grav-
itational collapse, and produce PBHs. Exploiting this observation, we have obtained that the
cosmological abundance of PBHs can be computed using eq. (6.1.2). Our calculations extend
the gaussian peak theory formalism [48] to include the effect of local non-gaussianities.

We have examined the consequences of our results for models of single-field inflation with
an ultra slow-roll phase. These scenarios have been investigated for the production of PBHs.
In this context, the impact of primordial non-gaussianities is not dramatic. In fact, the de-
sired PBH abundance can be obtained with an amplitude of the power spectrum of curvature
perturbations which is only a factor ≲ 2 smaller from the value inferred with the gaussian
approximation.

○ In parallel to the exact result presented in eq. (6.1.2), we have developed a computational strat-
egy that approximates the effect of primordial non-gaussianities in the form of an expansion in
cumulants around the gaussian result. In order to have full analytical control, we worked out
this part in two (instead of three) spatial dimensions. The presence of local non-gaussianities
affect cumulants at any order, and we have shown what is their structure. Furthermore, we
have shown that the only inclusion of third-order cumulants is not sufficient to fully capture
the effect of local non-gaussianities.

○ Previous works have studied primordial non-gaussianities in the context of threshold statistics,
finding that non-gaussianities exponentially affect the PBH abundance as given by eq. (6.2.14).
We have found that that result is not correct and largely overestimate the PBH abundance.

○ En route, we discuss the difference between threshold statistics and peak theory, and we ex-
plain under which conditions (and why) peak theory gives a PBH abundance which is larger
than the one computed by means of threshold statistics.
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Part III

A P P E N D I X





A
D E S I T T E R Q U A S I N O R M A L M O D E S

a.1 free commutator

Starting from eq. (2.2.5) and setting ∆ = d
2
+ iν:

Ĉ(ω,θ) =
2πi

(4π)
d+1
2 Γ (3−d

2
)
×

×M[v↦ (v+
1− cosθ

2
)

iω−1
2F1 (

1

2
− iν,

1

2
+ iν;

3−d

2
;−v)](

3−d

2
) ,

(A.1.1)

whereM[f](s) = ∫
∞
0 xs−1f(x)dx is the Mellin transform that can be analytically computed.

Ĉ(ω,θ) =
iΓ (d+1

2
− iω) Γ (1−d

2
+ iω)

2dπ
d−1
2 Γ (1− iω)

×

×
⎡
⎢
⎢
⎢
⎣

Γ (d
2
+ iν− iω) Γ (d

2
− iν− iω)

Γ (1
2
+ iν) Γ (1

2
− iν)

2F̃1 (
d

2
+ iν− iω,

d

2
− iν− iω,

d+ 1

2
− iω, sin2 θ

2
)+

−(sin2 θ

2
)

iω+ 1−d
2

2F̃1 (
1

2
+ iν,

1

2
− iν,

3−d

2
+ iω, sin2 θ

2
)

⎤
⎥
⎥
⎥
⎥
⎦

,

(A.1.2)

where 2F̃1 is the regularized hypergeometric function that has no singularities. From the expression
(A.1.2) it is straightforward the evaluation for θ = 0, π

2
,π, where we can use that:

2F̃1(a,b; c;0) =
1

Γ(c)
, (A.1.3)

2F̃1 (a,1−a; c;
1

2
) =

Γ (c
2
) Γ (c+1

2
)

Γ (c) Γ (c+a
2
) Γ (c−a+1

2
)

, (A.1.4)

2F̃1(a,b; c;1) =
Γ(c−a−b)

Γ(c−a)Γ(c−b)
, (A.1.5)

to show that:

Ĉ(ω,0) =
iΓ (1−d

2
+ iω) Γ (d

2
+ iν− iω) Γ (d

2
− iν− iω)

2dπ
d−1
2 Γ (1− iω) Γ (1

2
+ iν) Γ (1

2
− iν)

, (A.1.6)

Ĉ(ω,
π

2
) =

iΓ [1
2
(d
2
+ iν− iω)] Γ [1

2
(d
2
− iν− iω)]

22(1+iω)π
d
2 Γ (1− iω)

, (A.1.7)

Ĉ(ω,π) =
iΓ (d

2
+ iν− iω) Γ (d

2
− iν− iω)

2dπ
d−1
2 Γ (1− iω) Γ (d+1

2
− iω)

. (A.1.8)
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The poles are those in eq. (2.2.7). For θ = 0 there is an additional set of poles that extends to the
upper half plane:

ω = i(n+
1−d

2
) , n ∈N. (A.1.9)

For θ ≠ 0 microcausality condition ensure the analyticity in the upper half plane. Indeed the
condition [ϕ(X),ϕ(Y)] = 0 when (X − Y)2 > 0 means that the in-out commutator vanishes for
u < u0(θ) = log (sin2 θ

2
). If we anti-Fourier transform Ĉ(ω,θ) to have the commutator in the real

space:

C(u,θ) = ∫
+∞

−∞
dω

2π
e−iωuĈ(ω,θ), (A.1.10)

for θ = π, u0(π) = 0, then:

C(u,π) = ∫
+∞

−∞
dω

2π
e−iωuĈ(ω,π) = 0 for u < 0. (A.1.11)

If u < 0 we close the contour upwards and this means that Ĉ(ω,π) has to be analytic in the upper
half plane because of the residue theorem.

If θ ∈ (0,π):

C(u,θ) = ∫
R

dω

2π
e−iω(u−u0(θ))e−iωu0(θ)Ĉ(ω,θ) = 0 for u < u0(θ). (A.1.12)

Again, for u < u0(θ) we close the contour upwards and then the function ω ↦ e−iωu0(θ)Ĉ(ω,θ)
has to be analytic in the upper-half plane, but since ω ↦ e−iωu0(θ) is an entire function, therefore
ω↦ Ĉ(ω,θ) has to be analytic.

The only failure of this argument is for θ → 0, because u0(θ) → −∞ and so the microcausality
condition is not applicable, since the commutator can be non-vanishing ∀u ∈ R, that is why its
Fourier transform Ĉ(ω,θ) can have poles in the upper-half plane, as indeed happens e.g. in the free
case in eq. (A.1.6).

The analytic structures of Ĉ(ω,0) and Ĉ(ω,π) for the free theory are reported in figure 8.

a.2 closure of the contour

We want to show under which conditions the integral in eq. (2.3.4) can be computed via contour
deformation to use the residue theorem. It is sufficient to prove that the integral on the arc at infinity
vanishes. In terms of ν defined via ∆ = d

2
− iν, the condition is

∣ lim
R→∞

R∫
π

0
dθ ρ(

d

2
− iν)g(

d

2
− iν)ψd

2
−iν (ξ) ∣

ν=Reiθ

∣ = 0. (A.2.1)

We make a technical hypothesis on ρ that is:

∣νρ(
d

2
− iν)∣ ≲

RRRRRRRRRRR

Γ (3
2
− iν)

Γ (d
2
− iν)

RRRRRRRRRRR

as ∣ν∣ → ∞, (A.2.2)
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Figure 8: Complex plot of Arg [Ĉ(ω,θ)] vs ω. Left θ = 0 and right θ = π. The red crosses highlight the poles.

otherwise one can see that the (A.2.1) is not zero. This condition imposes d-dependent power-like
decay on ρ. The perturbative examples in d = 2,3 satisfy this requirement.

The hypergeometric function can be approximated via the saddle point approximation of its
integral representation:

∣2F1 (
d

2
− iν,

1

2
− iν;1− 2iν;ξ)∣ = (A.2.3)

=

RRRRRRRRRRR

Γ(1− 2iν)

Γ2 (1
2
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0
dx [x(1− x)]

− 1
2 (1− ξx)

−d
2 exp [−iν log
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1− ξx
]

RRRRRRRRRRR

∼ (A.2.4)

∼

RRRRRRRRRRRRR

a(ξ)
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Γ2 (1
2
− iν)

1
√
ν

1
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√
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−iν

RRRRRRRRRRRRR

(A.2.5)

One finds that, for ∣ν∣ → ∞:

∣g(
d

2
− iν)ψd

2
−iν(ξ)∣ ∼ A(ξ)

RRRRRRRRRRR

Γ (d
2
− iν)

Γ (1
2
− iν) sin(iπν)

RRRRRRRRRRR

∣ν∣−
1
2 eπReν

[c(ξ)]Imν (A.2.6)

where A(ξ) is a constant and:

c(ξ) =
−ξ

2− ξ+ 2
√
1− ξ

∈ (0,1), for ξ ∈ (−∞,0) (A.2.7)

We can observe that:

∣sin(iπν)∣ = ∣sinh(πν)∣ =

√
cosh (2πReν) − cos (2πImν)

2
≥ (A.2.8)

≥
1
√
2

√
1

2
e2πReν − 1 ∼

1

2
eπReν (A.2.9)
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Now we use the hypothesis (A.2.2) so that:

∣νρ(
d

2
− iν)g(

d

2
− iν)ψd

2
−iν(ξ)∣ ≲ A(ξ)∣ν∣

1/2
[c(ξ)]Imν (A.2.10)

where A(ξ) is another constant. Therefore:

R∫
π

0
dθ ∣ρ(

d

2
− iReiθ)g(

d

2
− iReiθ)ψd

2
−iReiθ(ξ)∣ ≲ Ã(ξ)

√
R∫

π

0
dθ [c(ξ)]R sinθ

= (A.2.11)

= πÃ(ξ)
√
R [I0 (R log c(ξ)) +L0 (R log c(ξ))] −−−→

R→∞
0 (A.2.12)

where In and Ln are respectively the modified Bessel function of the first kind and the modified
Struve function and Ã(ξ) is again a constant.

a.3 sk perturbation theory for the 2-point function

In the BEFT one can treat perturbatively both the conservative and non conservative interactions
with the SK formalism [67]. The exception is the ϕ2 operator which is relevant and must be treated
non-perturbatively. So as the free action we take

S0 = ∫
+∞

−∞
dt∫

∞

0
dx [

1

2
(ϕ̇2
−ϕ ′2) − δ(x)c0ϕ2

] . (A.3.1)

The presence of the “mass” produces the phase shift:

e2iα(ω) =
ω− ic0

ω+ ic0
(A.3.2)

Differently from the non perturbative approach followed in section (3), one can treat perturbatively
with the SK formalism also the conservative term. Indeed one can define the SK action starting from
the action (3.1.10) as:

SSK[ϕR,ϕL] = SBEFT[ϕR] − SBEFT[ϕL] (A.3.3)

The conservative term in SK language are all of the form ∂nt ϕ+∂nt ϕ−.
The insertion of a generic derivative operator inside the action of the form:

Sg[ϕ+,ϕ−] = −g∫
+∞

−∞
dt∂nt ϕ+(t,0)∂

m
t ϕ−(t,0) (A.3.4)

gives, at O(g), the following deformation of the commutator:1

δg ⟨[ϕ(X),ϕ(Y)]⟩ ≡ δg ⟪ϕ+(X)ϕ−(Y)⟫ = (A.3.5)

= −ig∫
R
dt∂nt ⟪ϕ+(t,0)ϕ−(Y)⟫0 ∂

m
t ⟪ϕ−(t,0)ϕ+(X)⟫0 , (A.3.6)

1 In what follows ⟪⋅⟫ means expected value in the SK formalism.
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where the subscript 0 means that those are computed in the free theory. The SK correlator are
connected with usual correlators as:

⟪ϕ+(tX,x)ϕ−(tY ,y)⟫0 = Θ(tX − tY) [ϕ(tX,x),ϕ(tY ,y)]0 ; (A.3.7)

⟪ϕ−(tX,x)ϕ−(tY ,y)⟫0 = 0; (A.3.8)

⟪ϕ+(tX,x)ϕ+(tY ,y)⟫0 =
1

2
⟨{ϕ(tX,x),ϕ(tY ,y)}⟩0; (A.3.9)

[ϕ(tX,x),ϕ(tY ,y)]0 = −
i

π
∫

+∞

−∞
dω

ω
cos (ωx+α(ω)) cos (ωy+α(ω)) sin [ω(tX − tY)] ; (A.3.10)

⟨{ϕ(tX,x),ϕ(tY ,y)}⟩0 =
2

π
∫

+∞

−∞
dω

ω (e2πω − 1)
cos (ωx+α(ω)) cos (ωy+α(ω)) cos [ω(tX − tY)] .

(A.3.11)

The non-conservative terms inside the BEFT action appear as in eq. (3.2.7). With these tools we can
compute the effect at linear level in the coupling of both the conservative and non-conservative
terms:

δc ⟨[ϕout(u),ϕin(0)]⟩ = −i
∞
∑
n=1

cn∫
+∞

−∞
dω

2π
ω2(n−1) cos2α(ω)e2iα(ω)−iωu (A.3.12)

δnc ⟨[ϕout(u),ϕin(0)]⟩ = −
∞
∑
n=0

bn∫
+∞

−∞
dω

2π
ω2n−1 cos2α(ω)e2iα(ω)−iωu (A.3.13)

This means, if we expand in powers of ω the EFT version of the function that appears in (3.2.3):

S
EFT
(ω) = −1−

2i

c0
ω+

2(b0 + 1)

c20
ω2
+O (ω3) . (A.3.14)

To achieve theO(ω3) term in the above expansion we need to include not only the conservative inter-
action at linear order −c1ϕ̇2(t,0), but also the dissipative interaction −b0 (ϕ−ϕ̇+) (t,0) at quadratic
level O(b20).

From the path integral formulation one can see that:

⟨[ϕ(X),ϕ(Y)]⟩ = ⟪ϕ+(X)ϕ−(Y)⟫ = (A.3.15)

= ⟪ϕ+(X)ϕ−(Y)⟫0 + i (⟪ϕ+(X)ϕ−(Y)Sint⟫0 − ⟪ϕ+(X)ϕ−(Y)⟫0⟪Sint⟫0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(b0)

+ (A.3.16)

−1
2
⟪ϕ+(X)ϕ−(Y)S2int⟫0 + ⟪ϕ+(X)ϕ−(Y)Sint⟫0 ⟪Sint⟫0 +

+⟪ϕ+(X)ϕ−(Y)⟫0 (
1
2
⟪S2int⟫0 − ⟪Sint⟫

2
0)+

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

O(b20) (A.3.17)

+O (b30) . (A.3.18)

For the specific case of Sint = −b0 ∫R dtϕ̇+(t,0)ϕ−(t,0), after the Wick’s contraction, we have that the
O(b20) term is:

δb2
0
⟨[ϕ(X),ϕ(Y)]⟩ = −b20∫

R2
dtdt ′ ⟪ϕ+(X)ϕ−(t,0)⟫0 ⟪ϕ̇+(t,0)ϕ−(t

′,0)⟫
0
⟪ϕ̇+(t ′,0)ϕ−(Y)⟫0 .

(A.3.19)
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So eventually we have that:

δb2
0
⟨[ϕout(u),ϕin(0)]⟩ = ∫

+∞

−∞
dω

2π
e−iωu

[
ib20
c30
ω2
+O (ω3)] , (A.3.20)

from which:

S
EFT
(ω) = −1−

2i

c0
ω+

2(b0 + 1)

c20
ω2
+
2i(1+ 2b0 +b

2
0 + c0c1)

c30
ω3
+O (ω4) . (A.3.21)

As a consistency check, setting b0 = 0 gives the expansion of the exact phase shift (3.1.12) up to
order ω3.

One might go beyond the quadratic action including a ϕ3 interaction. The leading contribution
in (A.3.21) is at O(ω), that is the same order at which dependence on c0 shows up.



B
S C A L A R P E RT U R B AT I O N S D U R I N G I N F L AT I O N I N T H E P R E S E N C E O F
U LT R A S L O W- R O L L

In this work we focus on single-field models of inflation. We indicate with ϕ the canonically nor-
malized inflaton field and with U = U(ϕ) its potential. The dynamics of ϕ can be obtained solving
the equation of motion

d2ϕ

dN2
+ 3
dϕ

dN
−
1

2
(
dϕ

dN
)

3

+ [3−
1

2
(
dϕ

dN
)

2

]
d logU
dϕ

= 0 , (B.0.1)

with slow-roll initial conditions; N indicates the number of e-folds defined by dN = Hdt, where
H ≡ ȧ/a is the Hubble rate, a the scale factor of the Friedmann-Lemaître-Robertson-Walker metric,
and t the cosmic time (with ˙≡ d/dt). We will also use in the following the conformal time τ defined
by means of dt/dτ = a or, equivalently, dN/dτ = aH (notice that, in the limit in which H is constant,
we have the relation τ = −1/aH; the conformal time, therefore, is negative, and late times towards
the end of inflation can be formally identify with the limit τ→ 0−).

Scalar fluctuations can be efficiently described in terms of the Mukhanov-Sasaki field variable
u(τ, x⃗) which is a gauge-invariant combination of both fluctuations of the inflaton field and scalar
fluctuations of the background Friedmann-Lemaître-Robertson-Walker geometry. The Mukhanov-
Sasaki field variable solves the differential equation (for a review, see ref. [68])

d2u

dτ2
= (∇

2
+
1

z

d2z

dτ2
)u , (B.0.2)

1

z

d2z

dτ2
= a2H2

[(1+ ϵ− η)(2− η) +
1

aH
(
dϵ

dτ
−
dη

dτ
)] , (B.0.3)

with z ≡ (1/H)(dϕ/dτ) and ∇2 the laplacian acting on spatial coordinates. The Hubble parameters
are defined by ϵ ≡ −Ḣ/H2 and η ≡ −Ḧ/2HḢ.

The field u can be quantized by defining the operator

û(τ, x⃗) = ∫
d3k

(2π)3
[uk(τ)ak⃗e

+ik⃗⋅x⃗
+u∗k(τ)a

†
k⃗
e−ik⃗⋅x⃗] , (B.0.4)

with the annihilation and creation operators that satisfy the commutation relations of bosonic fields

[ak⃗,ak⃗′] = [a
†
k⃗

,a†
k⃗′
] = 0 , [ak⃗,a†

k⃗′
] = (2π)3δ(3)(k⃗− k⃗′) , ak⃗∣0⟩ = 0 , (B.0.5)

where the last condition defines the vacuum. The equation of motion for each mode uk(τ) takes the
form of a Schrödinger equation

d2uk

dτ2
+(k2 −

1

z

d2z

dτ2
)uk = 0 , (B.0.6)
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which can be solved imposing Bunch-Davies initial conditions at some initial time when k ≫ aH.
This choice defines the initial vacuum state as the minimum energy eigenstate for an harmonic oscil-
lator with time-independent frequency in a space-time which is locally flat (because we are at length
scales much smaller than the de Sitter curvature radius). Quantization of scalar perturbations is eas-
ier in terms of the Mukhanov-Sasaki field variable u(τ, x⃗) since the quadratic action corresponding
to the equation of motion in eq. (B.0.2) is the action describing a canonically normalized free field
with an effective time-dependent mass. However, the dynamics of the modes uk in Fourier space is
more transparent if we introduce the so-called comoving curvature perturbationR = u/z; in analogy
with eq. (B.0.4), R can be promoted to a quantum operator

R̂(τ, x⃗) = ∫
d3k

(2π)3
[Rk(τ)ak⃗e

+ik⃗⋅x⃗
+R

∗
k(τ)a

†
k⃗
e−ik⃗⋅x⃗] , (B.0.7)

with Rk = uk/z that satisfies the time-evolution equation

d2Rk

dN2
+ (3+ ϵ− 2η)

dRk

dN
+

k2

a2H2
Rk = 0 , (B.0.8)

which is the differential equation of a damped harmonic oscillator.
In the canonical picture of slow-roll inflation (that is for small Hubble parameters ϵ,η ≪ 1),

eq. (B.0.8) can be solved in two complementary regimes divided by the so-called horizon-crossing
condition k = aH. At early times, when k ≫ aH (in such case the modes are called sub-horizon),
the last term dominates over the friction one, and the solution oscillates. As time passes by during
inflation, the comoving Hubble radius 1/aH shrinks, the horizon-crossing condition is met, and one
eventually enters in the regime characterized by k ≪ aH (in such case the modes are called super-
horizon); the last term in eq. (B.0.8) can be neglected and the latter admits the constant solution
dRk/dN = 0. In other words, after horizon crossing the mode Rk freezes to a constant value that it
maintains in time until the end of inflation (more precisely, until the mode re-enters the conformal
Hubble horizon after the end of inflation).

In the canonical picture of slow-roll inflation, after horizon crossing quantum fluctuations can
be regarded as classical, which motivates the description of cosmological perturbations in terms
of classical random fields [69]. We will give a more precise definition of random fields in ap-
pendix C. At the conceptual level, the previous statement implies that one has the schematic relation
limk/aH≪1 R̂(τ, x⃗) = R(x⃗) meaning that for super-horizon modes the quantum operator R̂ can be
interpreted as a classical random field R(x⃗); notice that the latter is time-independent because the
modes Rk are frozen in time. The previous relation can be formulated in a more precise form by
saying that vacuum expectation values on the quantum side are interpreted as statistical averages
on the classical side. Formally, in the classical picture we still have the Fourier decomposition

R(x⃗) = ∫
d3k

(2π)3
(Rkak⃗e

+ik⃗⋅x⃗
+R

∗
ka

†
k⃗
e−ik⃗⋅x⃗) , (B.0.9)
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but now creation and annihilation operators are no longer q-numbers but stochastic c-numbers
which are defined by the statistical averages

⟨ak⃗a
†
k⃗′
⟩ =

1

2
(2π)3δ(3)(k⃗− k⃗′) = ⟨a†

k⃗′
ak⃗⟩ , ⟨ak⃗ak⃗′⟩ = ⟨a

†
k⃗
a†
k⃗′
⟩ = 0 . (B.0.10)

Notice that ⟨ak⃗a
†
k⃗′
⟩ = ⟨a†

k⃗′
ak⃗⟩ is only valid for classical fluctuations, since it implies that the stochas-

tic parameters commute. Furthermore, the stochastic parameters ak⃗, a†
k⃗

have zero mean value (con-
sequently, ⟨R(x⃗)⟩ = 0) in order to match the fact that the quantum operator R̂(τ, x⃗) in eq. (B.0.7) has
zero vacuum expectation value.

The random field R(x⃗) is fully specified by the entire hierarchy of its correlation functions. The
simplest one is the two-point correlation function. The latter can be defined by introducing the idea
of power spectrum. The power spectrum ∆R(k) is defined by the Fourier transform of the two-point
correlation function

⟨R(x⃗)R(x⃗+ r⃗)⟩ = ∫
d3k

(2π)3
eik⃗⋅r⃗∆R(k) = ∫

∞

0
dk

sin(kr)
kr

k2

2π2
∆R(k) . (B.0.11)

The fact that ∆R(k) depends only on k ≡ ∣k⃗∣ and the explicit angular integrations that we performed
in eq. (B.0.11) are consequences of the assumptions of spatial homogeneity and isotropy (equiva-
lently, spatial homogeneity and isotropy imply that ⟨R(x⃗)R(x⃗ + r⃗)⟩ only depends on the relative
distance r ≡ ∣⃗r∣). The limit r → 0 in eq. (B.0.11) defines the variance σ20 of the comoving curvature
perturbation

σ20 ≡ ⟨R(x⃗)R(x⃗)⟩ = lim
r→0
⟨R(x⃗)R(x⃗+ r⃗)⟩ = ∫

∞

0

dk

k

k3

2π2
∆R(k) ≡ ∫

∞

0

dk

k
PR(k) , (B.0.12)

where we defined the dimensionless power spectrum PR(k) ≡ (k3/2π2)∆R(k). This equation gives
to the power spectrum an intuitive statistical meaning; PR(k) represents the contribution to the
variance of the field per unit logarithmic bin around the comoving wavenumber k. As stated above,
we can also compute eq. (B.0.12) by taking the vacuum expectation value of the quantum operator
R̂(τ, x⃗). We have (using eq. (B.0.5))

lim
k/aH≪1

⟨R̂(τ, x⃗)R̂(τ, x⃗)⟩ = lim
k/aH≪1

∫

∞

0

dk

k

k3

2π2
∣Rk(τ)∣

2
= ∫

∞

0

dk

k

k3

2π2
∣Rk∣

2 , (B.0.13)

where the last step means that we are considering a sufficiently late time (the limit limk/aH≪1,
for fixed k, represents a time-limit since aH depends on time) such that the mode with comoving
wavenumber k is frozen to its constant value after horizon crossing (and the time-dependence drops
in the last equality). Eq. (B.0.13) gives an operative definition of the power spectrum. For a given
model of inflation, we can solve eq. (B.0.8) (equivalently, eq. (B.0.6)) for each k and take a “late-time
limit” in the sense specified above (that is we evaluate Rk at some late time after it freezes to a
constant value). The power spectrum is given by PR(k) ≡ (k3/2π2)∣Rk∣

2 and fully specifies the
two-point correlator of the random field R(x⃗). Equivalently, eq. (B.0.13) can be derived from the
computation of ⟨R(x⃗)R(x⃗)⟩ by means of the decomposition given in eq. (B.0.9).
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To proceed further, we need to specify the structure of higher-order correlators. Under the as-
sumption that the random field R(x⃗) is gaussian, however, the power spectrum is enough to fully
reconstruct higher-order correlators. This is because the N-point correlation function either vanishes
(for odd N) or can be expressed in terms of the power spectrum as a consequence of the Isserlis’
theorem (for even N). The assumption that the statistics of the random field R(x⃗) is gaussian is
well-motivated in the context of the canonical picture of slow-roll inflation. This is because if one
tries to compute, on the quantum-side, the three-point correlator limk/aH≪1⟨R̂(τ, x⃗)R̂(τ, x⃗)R̂(τ, x⃗)⟩
the resulting expression turns out to be suppressed—compared to the two-point correlator—by ad-
ditional powers of the Hubble parameters ϵ and η [70]. This means that non-gaussianities are not
relevant during conventional slow-roll dynamics during which the Hubble parameters take O(≪ 1)
values (said differently, this means that any detection of sizable non-gaussianities at CMB scales
will rule out all single field slow-roll models of inflation).

However, we are interested in a situation which deviates from standard slow-roll dynamics. We
refer to ref. [55] for a detailed (both analytical and numerical) study, and we summarize here the
main points.

Standard slow-roll dynamics takes place at large field values. However, few e-folds before the
end of inflation (which ends at the absolute minimum of the potential located at the origin) the
inflaton field crosses an approximate stationary inflection point. The inflaton field almost stops but
it possesses just enough inertia to overcome the approximate stationary inflection point. During
this part of the dynamics the Hubble parameter η transits from η ≃ 0 (that is typical of slow-roll)
to a large positive value that is maintained for few e-folds until the field crosses the approximate
stationary inflection point. If η ≳ 3/2 (typically one has η ≳ 3), the friction term in eq. (B.0.8) becomes
negative. This part of the dynamics characterized by the presence of negative friction is dubbed ultra
slow-roll. During the negative friction phase, the modes Rk—more precisely, their modulus ∣Rk∣—
change exponentially fast, and can be either enhanced or suppressed depending on the specific
value of k.

After the end of ultra slow-roll, η transits to a phase during which it takes negative O(1) values.
The friction term in eq. (B.0.8) turns positive, and the modes Rk—after being enhanced or sup-
pressed by the negative friction phase—are now free to freeze to their final constant value. Since
PR(k) ≡ (k3/2π2)∣Rk∣

2, the negative friction phase that modifies exponentially ∣Rk∣ produces a
distinctive peak in the power spectrum of curvature perturbations.

This peculiar dynamics has important consequences as far as non-gaussianities are concerned.
Because of the presence of the negative friction phase, classicalization of the modes do not happens
after their horizon crossing but is delayed after the end of ultra slow-roll [71]. This means that the
three-point correlator ⟨R̂(τ, x⃗)R̂(τ, x⃗)R̂(τ, x⃗)⟩ has to be evaluated after the end of ultra slow-roll.
Crucially, after the end of ultra slow-roll η takes sizable negative O(1) values (while we expect
ϵ ≪ 1). Let us indicate this value with η0 (which is a negative number). This implies that non-
gaussianities are no longer negligible since the expected slow-roll suppression is not valid anymore.
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The explicit computation of the three-point correlator in Fourier space gives, for a triad of comoving
wavenumbers k1,k2,k3, the so-called local bispectrum [45]

BR(k1,k2,k3) ≈ −η0[∆R(k1)∆R(k2) +∆R(k1)∆R(k3) +∆R(k2)∆R(k3)] , (B.0.14)

where the three-point correlator is given by the Fourier transform

lim
end of USR

⟨R̂(τ, x⃗)R̂(τ, x⃗)R̂(τ, x⃗)⟩ = ∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
(2π)3δ(3) (k⃗1 + k⃗2 + k⃗3)BR(k1,k2,k3) ,

(B.0.15)

and where limend of USR indicates explicitly that the three-point correlator has to be evaluated at some
late time after the end of ultra slow-roll, when the modes Rk finally set to their final constant value
(so that the right-hand side of eq. (B.0.15) does not depend on time).

The analysis carried out in refs. [45] shows that non-gaussianities in the presence of ultra slow-
roll are expected to be non-negligible. Eqs. (B.0.14, B.0.15) represent the quantum side of the story,
and eq. (B.0.14) can be obtained by means of the so-called “in-in” formalism [70]. It is important
to understand the implications from the point of view of the random field R(x⃗). Consider the
non-gaussian random field RNG(x⃗) defined by

RNG(x⃗) ≡ RG(x⃗) +
(−η0)

2
[RG(x⃗)

2
− ⟨RG(x⃗)

2⟩] , (B.0.16)

where RG(x⃗) is a gaussian random field—with variance σ20 (see eq. (B.0.12))—which admits the
decomposition given in eq. (B.0.9); it is a simple exercise to show that the three-point correlator
⟨RNG(x⃗)RNG(x⃗)RNG(x⃗)⟩ has precisely the form given in eq. (B.0.15). Notice that in eq. (B.0.16) the
presence of the constant piece ⟨RG(x⃗)

2⟩ guarantees that the non-gaussian random field RNG(x⃗) has
zero mean. This property is physically motivated by the fact that the background solution is stable.

The physics-case sketched in this appendix motivates the non-gaussianities studied in this paper
which are of the form given in eq. (B.0.16). To avoid cluttering the notation, in the main part of
this work we indicate simply with R the gaussian random field RG in eq. (B.0.16) and with h the
non-gaussian one RNG. Furthermore, we set α ≡ (−η0)/2.

Before proceeding, an important comment is in order. As we have discussed, the structure of
the non-gaussian random field given in eq. (B.0.16) is motivated by the explicit computation of the
three-point correlator in eqs. (B.0.14, B.0.15) in the presence of ultra slow-roll. This computation is
based on the “in-in” formalism in which one expands the interaction Hamiltonian up to the cubic
order.

However, computing only the bispectrum is not the end of the story. In principle, one should
compute also the trispectrum (that is the connected part of the four-point correlator) and check that
its contribution does not alter the form of non-gaussianities derived including only cubic interac-
tions. Needless to say, the computation of the trispectrum is anything but simple, and we are not
aware of explicit results in the context of ultra slow-roll. From a more pragmatic phenomenological
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perspective, one possible way to proceed—widely used for the analysis of CMB non-Gaussianity,
see ref. [72]—is the following. Instead of eq. (B.0.16), one takes the more general ansatz

RNG(x⃗) ≡ RG(x⃗) + f2 [RG(x⃗)
2
− ⟨RG(x⃗)

2⟩] + f3RG(x⃗)
3 , (B.0.17)

where f2,3 are free coefficients that parametrize quadratic and cubic deviations from the gaussian
limit. Notice that eq. (B.0.17) generalizes eq. (B.0.16) in the sense that it introduces cubic corrections
but it preserves locality (in the sense that deviations from exact gaussianity at x⃗ are located at
the same spatial position). As discussed before, in the absence of an explicit computation there is
no guarantee that ultra slow-roll generates deviations from eq. (B.0.16) that have the form given
in eq. (B.0.17). Nevertheless, eq. (B.0.17) can be considered as a phenomenological parametrization
to study deviations from from eq. (B.0.16), as done for instance in ref. [73]. For this reason, in our
analysis we will try to set the formalism considering a generic deviation from gaussianity (but al-
ways assuming locality) even though we will present our results for the motivated case of quadratic
non-gaussianities given in eq. (B.0.16).

Finally, let us mention that a resummation of local non-gaussianities at all orders has been pre-
sented in ref. [74, 75].The analysis is based on an expansion of the inflaton potential around a local
maximum. It would be interesting to go beyond such approximation and extend this analysis for the
potentials studied here. Moreover it is also worth investigating the role of higher order contributions
leading to non-local non-gaussianities.



C
C L I F F S N O T E S O N G A U S S I A N P E A K T H E O RY

As a warm-up, consider the case of a n-dimensional scalar gaussian random field R(x⃗) that we
identify with the random field associated to curvature perturbations. Peak theory in the case of a
scalar gaussian random field is well-known [48]. However, in this appendix we will give a detailed
discussion. The reason is that in our approach there is an important conceptual difference compared
to the standard results of ref. [48]. Ref. [48] computes the number density of peaks of the overdensity
field working directly with δ(x⃗, t), and without any reference to curvature perturbations. In this
paper, on the contrary, we aim to compute the same quantity but starting from the distribution of
local maxima of the curvature perturbation. Following this alternative route, we will be able to find
(see appendix E) a generalization that accounts for the case in which local non-gaussianities in the
definition of R(x⃗) are present.

Let us start from basics. A n-dimensional scalar random field R(x⃗) is a set of random variables,
one for each point x⃗ in the n-dimensional real space, equipped with a probability distribution
p[R(x⃗1), . . . ,R(x⃗m)]dR(x⃗1) . . . dR(x⃗m) which measures the probability that the function R has
values in the range R(x⃗j) to R(x⃗j) +dR(x⃗j) for each of the j = 1, . . . ,m, with m an arbitrary integer
and x⃗1, . . . , x⃗m arbitrary points.1

We are interested in the behavior of the random field for a point in space that is stationary, and
we consider m = 1 with x⃗1 = x⃗st. We can expand around this point according to

R(x⃗) = R(x⃗st) +
1

2

n

∑
i,j=1
Rij(x⃗st)(x⃗− x⃗st)i(x⃗− x⃗st)j , (C.0.1)

from which we have

Ri(x⃗) =
n

∑
j=1
Rij(x⃗st)(x⃗− x⃗st)j . (C.0.2)

The goal is to obtain the number density of these stationary points in the n-dimensional space. Not
to violate the cosmological principle, we only want to consider random fields which are statistically
homogeneous and isotropic. Consequently, the specific value of x⃗st is irrelevant, and we can always
shift to x⃗st = 0⃗. Let us, therefore, drop the explicit dependence on x⃗st.

The quantity of central interest for the computation of the number density of stationary points
of R is the joint probability density distribution of the field R, its first and second derivatives. This
is intuitively obvious, since identifying maxima (or minima) implies a set of conditions on field
derivatives, and it is thus mandatory to know what is their probability distribution (derivatives of a
random field are also random variables themselves).

1 Notice that, as in ref. [48], all spatial separations and length scales are described in comoving coordinates in the cosmo-
logical background. This means that the number density that we shall compute at the end of this section in eq. (C.0.33)
must be understood as a comoving number density.
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Consider the realistic case with n = 3. We indicate with P(R,Ri,Rij)dRd
3Rid

6Rij the joint
probability distribution for the field being in the range R to R+ dR, the field gradient being in
the range Ri to Ri + dRi and the second derivative matrix elements being in the range Rij to
Rij + dRij, all at the same point in space. P(R,Ri,Rij) is the joint ten-dimensional probability
density distribution.

If the point is stationary, we can write the joint probability distribution as

P(R,Ri = 0,Rij) ∣det(Rij)∣dRd
3x⃗d6Rij. (C.0.3)

We setRi = 0 since the point is stationary, and we used eq. (C.0.1) to change variables in the gradient
volume element. We can, therefore, write the probability distribution to have a stationary point in a
volume d3x⃗ with the field being in the range R to R+dR as

nst(R)dRd
3x⃗ ≡ dRd3x⃗∫ P(R,Ri = 0,Rij) ∣det(Rij)∣d

6
Rij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡nst(R)

, (C.0.4)

where the integral is extended to the whole range of variability of the second derivatives since
we are considering generic stationary points. The probability distribution to have a maximum in a
volume d3x⃗ with the field being in the range R to R+dR is

nmax(R)dRd
3x⃗ ≡ dRd3x⃗∫

max
P(R,Ri = 0,Rij) ∣det(Rij)∣d

6
Rij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡nmax(R)

, (C.0.5)

where now the integral is subject to the conditions on the Hessian matrix that define a maximum. An
equivalent definition holds in the case of a minimum. The probability density distribution nmax(R)

represents the number density of local maxima (where “number density” is defined in a probabilistic
sense) with field value in the range R to R+dR.

In order to extract quantitative informations, we need to compute P(R,Ri,Rij), set Ri = 0, and
integrate. This strategy does not depend on the specific statistics of the random field.

The computation of P(R,Ri,Rij) drastically simplifies in the gaussian case. This is because the
joint probability distribution of a gaussian field and its derivatives is a multivariate normal distribu-
tion. Consider the simplified case with n = 2 in which we have more control on analytical formulas;2

we have six random variables that we collect in the column vector R ≡ (R,Rx,Ry,Rxx,Rxy,Ryy)
T.

We have

P(R,Ri,Rij) =
1

(2π)k/2
√

detC
exp [−

1

2
(R− ⟨R⟩)T(C−1)(R− ⟨R⟩)] , (C.0.6)

where k = 6 is the dimension of R, ⟨R⟩ is the column vector of the expectation values of R and C is
the covariance matrix defined by C ≡ ⟨(R− ⟨R⟩)(R− ⟨R⟩)T⟩ with elements

Cij = ⟨(R− ⟨R⟩)i(R− ⟨R⟩)j⟩ = ⟨RiRj⟩ − ⟨Ri⟩⟨Rj⟩ . (C.0.7)

2 The simplest possibility would be n = 1. However, the case n = 2 is the simplest setup in which a non-trivial discussion
about spatial isotropy is possible.
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From the computation of the covariance matrix one can fully reconstruct the joint probability distri-
bution.

We restrict the analysis to zero-mean random fields since this assumption is physically motivated
(see discussion in appendix B). From the explicit computation of the two-point correlators ⟨RiRj⟩,
one finds that the covariance matrix takes the form

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

R Rx Ry Rxx Rxy Ryy

R σ20 0 0 −σ21/2 0 −σ21/2

Rx 0 σ21/2 0 0 0 0

Ry 0 0 σ21/2 0 0 0

Rxx −σ21/2 0 0 3σ22/8 0 σ22/8

Rxy 0 0 0 0 σ22/8 0

Ryy −σ21/2 0 0 σ22/8 0 3σ22/8

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (C.0.8)

and we find thatRx,Ry andRxy are completely uncorrelated whileR,Rxx andRyy are correlated.
We introduce the spectral moments

σ2j ≡ ∫
dk

k
PR(k)k2j , (C.0.9)

where PR(k) is the dimensionless power spectrum of R. Notice that in two spatial dimensions
the dimensionless power spectrum of R is related to the power spectrum by means of PR(k) =
(k2/2π)∆R(k) with ∆R(k) = ∣Rk∣

2.
Consider, as an illustrative example, the computation of ⟨RxxRyy⟩. We use the explicit form of R

given in eq. (B.0.9). We find

⟨RxxRyy⟩ =

= ∫
d2k1

(2π)2
d2k2

(2π)2
⟨(−k21,xRk1

ak⃗1
eik⃗1⋅x⃗ − k21,xR

∗
k1
a†
k⃗1
e−ik⃗1⋅x⃗) (−k22,yRk2

ak⃗2
eik⃗2⋅x⃗ − k22,yR

∗
k2
a†
k⃗2
e−ik⃗2⋅x⃗)⟩

= ∫
d2k1

(2π)2
d2k2

(2π)2
k21,xk

2
2,y [e

i(k⃗1−k⃗2)⋅x⃗Rk1
R
∗
k2
⟨ak⃗1

a†
k⃗2
⟩ + e−i(k⃗1−k⃗2)⋅x⃗Rk2

R
∗
k1
⟨a†

k⃗1
ak⃗2
⟩]

= ∫
d2k

(2π)2
k2xk

2
y∣Rk∣

2
=
1

4π2
∫ dkdφk5 cos2φ sin2φ∆R(k) =

1

8
∫
dk

k
k4PR(k) ,

where in the last line we just introduced polar coordinates. All the entries in eq. (C.0.8) can be
computed in a similar way.

Interestingly, the pattern of zeros in eq. (C.0.8) and the relations among different non-zero entries—
obtained before by means of a direct computation—can be understood as a consequence of homo-
geneity and isotropy.

Homogeneity, that is translational invariance, implies that correlators do not depend on the spe-
cific spatial position at which they are computed. For instance, this means that the spatial derivative
of ⟨RR⟩ should vanish (this must be true for a generic correlator evaluated at a given spatial point);
from this condition, one finds ∂i(⟨RR⟩) = 0 ⇒ ⟨RRi⟩ = 0 so that R, Rx and Ry are uncorrelated.
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Similarly, from ∂x(⟨RxRx⟩) = 0 one gets ⟨RxRxx⟩ = 0 (with similar relations along other directions)
so that first and second derivatives are uncorrelated. On the contrary, from ∂x(⟨RRx⟩) = 0 it follows
that ⟨RRxx⟩ = −⟨RxRx⟩ as indeed obtained in eq. (C.0.8). Similarly, ⟨RRyy⟩ = −⟨RyRy⟩.

Isotropy, that is rotational invariance, implies that correlators do not depend on a particular direc-
tion in space. The simplest consequence of isotropy is that ⟨RxRx⟩ = ⟨RyRy⟩ and ⟨RxRy⟩ = 0. In or-
der to derive these two conditions, a very useful trick (that we shall use also in the non-gaussian com-
putation) is to introduce—instead of the two components x and y of the two-dimensional vector x⃗—
the complex conjugated variables z ≡ x+ iy and z∗ = x− iy from which we have ∂z = (∂x − i∂y)/2 and
∂z∗ = (∂x + i∂y)/2. If we now rotate the two-dimensional vector x⃗ (without changing its length) the
complex number z changes by a phase factor eiτ, that is z → eiτz (and z∗ → e−iτz∗). Consequently,
the derivatives with respect to z and z∗ change according to ∂z → e−iτ∂z and ∂z∗ → eiτ∂z∗ . If we now
consider the correlators ⟨RzRz⟩ and ⟨Rz∗Rz∗⟩ they rotate according to ⟨RzRz⟩ → e

−2iτ⟨RzRz⟩ and
⟨Rz∗Rz∗⟩ → e

2iτ⟨Rz∗Rz∗⟩. Because of isotropy of the two-dimensional space, ⟨RzRz⟩ and ⟨Rz∗Rz∗⟩

can not depend on τ and, therefore, they must vanish. Consequently, the system of equations

⟨RzRz⟩ =
1

4
(⟨RxRx⟩ − 2i⟨RxRy⟩ − ⟨RyRy⟩) = 0 , (C.0.10)

⟨Rz∗Rz∗⟩ =
1

4
(⟨RxRx⟩ + 2i⟨RxRy⟩ − ⟨RyRy⟩) = 0 , (C.0.11)

admits the solution ⟨RxRx⟩ = ⟨RyRy⟩ and ⟨RxRy⟩ = 0 which are precisely the relations we were
looking for. More in general, if we consider the rotation ∂z → e−iτ∂z and ∂z∗ → eiτ∂z∗ a generic
correlator will take a phase factor eiκτ where κ ≡ (# z∗ derivatives) − (# zderivatives). If κ ≠ 0, then
the correlator must be equal to zero as a consequence of isotropy. For instance, we have ⟨RzzRz∗⟩ = 0

(because κ = −1) but ⟨RzRz∗⟩ ≠ 0 (because κ = 0).
Combining homogeneity and isotropy validates the remaining entries in eq. (C.0.8). For instance,

from ∂y(⟨RRx⟩) = ⟨RxRy⟩ + ⟨RRxy⟩ = 0 (homogeneity) we find ⟨RRxy⟩ = 0 since isotropy implies
⟨RxRy⟩ = 0. As a final check, we consider the block of the second derivatives in eq. (C.0.8). From
the previous argument, isotropy implies that ⟨RzzRzz⟩ = 0 and ⟨Rzz∗Rzz⟩ = 0 (together with their
complex conjugated ⟨Rz∗z∗Rz∗z∗⟩ = 0 and ⟨Rzz∗Rz∗z∗⟩ = 0). These two relations imply ⟨RxxRxy⟩ =

⟨RyyRxy⟩ = 0 and ⟨RxxRxx⟩ = ⟨RxxRyy⟩ + 2⟨RxyRxy⟩. Both these relations are verified by the
entries in eq. (C.0.8). We can actually do more since it is possible to show that ⟨RxxRyy⟩ = ⟨RxyRxy⟩.
Let us write

⟨RxxRyy⟩ = ⟨∂xxR(x⃗)∂yyR(x⃗)⟩ = ⟨∂x1x1
R(x⃗1)∂y2y2

R(x⃗2)⟩∣x⃗1=x⃗2=x⃗
= ∂x1x1

∂y2y2
⟨R(x⃗1)R(x⃗2)⟩∣x⃗1=x⃗2=x⃗ = ∂x1

∂y2
⟨Rx1

(x⃗1)Ry2
(x⃗2)⟩∣x⃗1=x⃗2=x⃗ . (C.0.12)

where the first step is just a more explicit definition of ⟨RxxRyy⟩ while in the following ones we
consider two distinct point x⃗1 = (x1,y1) and x⃗2 = (x2,y2) that we later set equal again. Now the
point is that because of homogeneity of space the correlator ⟨Rx1

(x⃗1)Ry2
(x⃗2)⟩ depends only on the

distance ∣x⃗1 − x⃗2∣; we can, therefore, exchange 1 ↔ 2 obtaining ⟨Rx2
(x⃗2)Ry1

(x⃗1)⟩ without altering
the result. From eq. (C.0.12) this means that we have ⟨RxxRyy⟩ = ⟨RxyRxy⟩ as indeed verified in
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eq. (C.0.8). If we combine this result with the previous relation ⟨RxxRxx⟩ = ⟨RxxRyy⟩ + 2⟨RxyRxy⟩

we find ⟨RxxRxx⟩ = 3⟨RxyRxy⟩ which is again verified in eq. (C.0.8). Finally, we also note that the
condition ⟨RxxRyy⟩ = ⟨RxyRxy⟩ implies that ⟨Rzz∗Rzz∗⟩ = ⟨RzzRz∗z∗⟩. These kind of relations
based on homogeneity and isotropy will be useful later in the non-gaussian case.

Using the properties of the exponential function, eq. (C.0.6) takes the form

P(R,Ri,Rij) = P(Rx)P(Ry)P(Rxy)P(R,Rxx,Ryy) , (C.0.13)

where

P(Rx) =
1

√
πσ21

exp(−
R2

x

σ21
) , P(Ry) =

1
√
πσ21

exp
⎛

⎝
−
R2

y

σ21

⎞

⎠
, P(Rxy) =

2
√
πσ22

exp
⎛

⎝
−
4R2

xy

σ22

⎞

⎠
,

(C.0.14)

and

P(R,Rxx,Ryy) =
1

(2π)3/2
√

detC̃
exp(−

1

2
R̃TC̃−1R̃) , C̃ ≡

⎛
⎜
⎜
⎜
⎜
⎝

R Rxx Ryy

R σ20 −σ21/2 −σ21/2

Rxx −σ21/2 3σ22/8 σ22/8

Ryy −σ21/2 σ22/8 3σ22/8

⎞
⎟
⎟
⎟
⎟
⎠

,

(C.0.15)

with R̃ ≡ (R,Rxx,Ryy)
T. As customary in the gaussian case, from the knowledge of the power

spectrum it is possible to fully reconstruct the statistics of the random field. From eq. (C.0.5) we get
the number density of maxima

nmax(R) =
1

πσ21
∫

max
dRxxdRxydRyy ∣RxxRyy −R

2
xy∣P(Rxy)P(R,Rxx,Ryy) , (C.0.16)

where we used P(Rx = 0) = P(Ry = 0) = 1/
√
πσ21. The integration region is defined by the conditions

max = {RxxRyy −R
2
xy > 0∧Rxx < 0∧Ryy < 0}.

The change of variables {Rxx,Ryy,Rxy} → {r, s,θ} defined by

r cosθ ≡
1

2
(Rxx −Ryy) , r sinθ ≡ Rxy , s ≡ −

1

2
(Rxx +Ryy) , (C.0.17)

turns out the be useful. The Jacobian of the transformation is J = 2r, and we have RxxRyy −R
2
xy =

s2 − r2. The condition s2 − r2 > 0 becomes −s < r < s with s > 0 since Rxx < 0 and Ryy < 0.
Furthermore, we restrict to r > 0 if 0 < θ < 2π. All in all, we have max = {0 < θ < 2π∧ s > 0∧ 0 < r < s}.

The parametrization in terms of {r, s,θ} is useful because we have

2s = −(Rxx +Ryy) = −∇
2
R . (C.0.18)
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This implies that any condition that restricts the value of the curvature −∇2R can be implemented
through s by imposing s > smin instead of s > 0. This is the case of eq. (5.2.6) with α = 0 (thus h = R),
which reads

smin

σ2
=
9

8

(amHm)
2

σ2
δc , (C.0.19)

Eq. (C.0.16) becomes

nmax(R, smin) =
8

π2σ21σ
2
2

√
σ22σ

2
0 −σ

4
1

∫

∞

smin

ds∫
s

0
dr r(s2 − r2) exp [−

(R2σ22 + 4s
2σ20 − 4sRσ

2
1)

2(σ20σ
2
2 −σ

4
1)

−
4r2

σ22
] ,

(C.0.20)

where, according to the previous argument, we set to smin the lower limit of integration over s and
define nmax(R, smin) such that nmax(R, smin = 0) = nmax(R). The integration over r gives

nmax(R, smin) = (C.0.21)

=
σ22

4π2σ21

√
σ22σ

2
0 −σ

4
1

∫

∞

smin

ds
⎛

⎝

4s2

σ22
+ e
− 4s2

σ2
2 − 1

⎞

⎠
exp{−

σ20σ
2
2

2(σ20σ
2
2 −σ

4
1)
[
4s2

σ22
−
4s

σ2
(
σ21
σ2σ0

)
R

σ0
+
R2

σ20
]}
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≡∫ ∞smin

dsn̄max(R,s)

,

where

n̄max(R, s) ≡
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4π2σ21

√
σ22σ

2
0 −σ

4
1
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⎝

4s2

σ22
+ e
− 4s2
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⎞
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exp{−

σ20σ
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σ22
−
4s
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(
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)
R

σ0
+
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]} ,

(C.0.22)

can be interpreted as the number density of maxima with field value in the range R to R+dR and
curvature −∇2R in the range 2s to 2(s+ds). We note that the argument of the exponential function
in n̄max(R, s) is invariant under the exchange R/σ0 ↔ 2s/σ2.

From the structure of the argument of the exponential function in n̄max(R, s), it is natural to
introduce the dimensionless parameter γ ≡ σ21/σ2σ0 which is completely determined, as we shall
explain in a moment, by the properties of the power spectrum. Furthermore, it is easy to see that
we have 0 < γ < 1. In turn, this condition implies σ22σ

2
0 −σ

4
1 > 0 so that the square root in eq. (C.0.22)

is always real valued. Let us verify the non-trivial condition σ22σ
2
0 − σ

4
1 > 0; from the definition in

eq. (C.0.9), we have

σ20σ
2
2 −σ

4
1 = [∫

dk

k
PR(k)] [∫

dk′

k′
PR(k′)k′4] − [∫

dk

k
PR(k)k2]

2

= (C.0.23)

= ∫
dk

k

dk′

k′
PR(k)PR(k′) (k′4 − k′2k2) .

To conclude that σ20σ
2
2 −σ

4
1 > 0, we only need to show that (k′4 −k′2k2) > 0 since the power spectrum

is positive definite and the integrals over k cover the positive real axis. In the first double-integral,
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we can change k↔ k′ without altering the result, and this means that we can also substitute k′4 →
(k4 + k′4)/2; if we do this transformation, the factor (k′4 − k′2k2) becomes (k′2 − k2)2/2 which is
always positive. This concludes the proof.

From eq. (C.0.22) we see that the value of γ controls the amount of correlation between R and s.
If we take γ = 0, the two variables are completely uncorrelated (because σ21 = 0). On the contrary,
γ = 1 corresponds to the case in which they are maximally correlated.

To proceed further, we assume the following analytical expression for the power spectrum

PR(k) =
Ag
√
2πv

exp [−
log2
(k/k⋆)
2v2

] . (C.0.24)

As far as the spectral moments in eq. (C.0.9) are concerned, we find the analytical result

σ2j = Agk
2j
⋆ e2j

2v2

, (C.0.25)

which implies σ20 = Ag and γ = e−2v
2
, where we see that 0 < γ < 1 as expected. The three parameters

{Ag,v,k⋆} fully specify our problem. The physical picture is the following.

○ The scale k⋆ represents the comoving wavenumber at which the power spectrum peaks. This
quantity is related to the mass of the black holes produced after the collapse of the regions
where the overdensity field is above threshold. We take k⋆ = O(1014)Mpc−1 corresponding to
MPBH = O(10

18) g.

○ The parameter v controls the broadness of the power spectrum and, in turn, the broadness of
the mass distribution of the black holes. The case v = 0.1, for instance, corresponds to a very
narrow power spectrum. This, in turn, will generate a very narrow mass distribution of black
holes.

○ The amplitude of the power spectrum Ag is related to the abundance of dark matter in the
present-day Universe in the form of black holes, and typical values are of order Ag/

√
2πv =

O(10−2). To fix ideas, to get PR(k⋆) = 10−2 one needs Ag = 2.5× 10−3 for v = 0.1.

Let us now pause for a moment to clarify the rationale of the computation that we are doing.
We are interested in regions of space where the field R has large curvature −∇2R since in this
case the overdensity field (which is proportional to −∇2R) takes large values. In eq. (C.0.22) we
can select regions with large curvature by implementing (as done in eq. (C.0.21)) a lower limit
of integration over s. However, eq. (C.0.22) always associates, by construction, regions with large
curvature (consequently, peaks of the overdensity field) with local maxima of R. This association
can be analytically justified as follows. Consider the Taylor expansion in eq. (C.0.1) which we rewrite
in two spatial dimensions taking a local maximum as stationary point of R

R(x⃗) = RM +
1

2

2

∑
i,j=1
Rij(x⃗M)(x⃗− x⃗M)i(x⃗− x⃗M)j . (C.0.26)
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This quadratic equation can be written in a canonical form (that is without cross terms) if we do a
coordinate transformation x⃗→ x⃗ ′ ≡ (x′,y′) such that the new axes are aligned along the eigenvectors
of the matrix Rij(x⃗M). We are free to do this rotation because of isotropy. In such case, eq. (C.0.26)
takes the form

R(x⃗ ′) = RM −
1

2
(λ1x

′2
+ λ2y

′2
) , (C.0.27)

where λi=1,2 > 0 are the (minus) eigenvalues of Rij(x⃗M). Notice that in eq. (C.0.27) we used homo-
geneity to shift the position of the maximum x⃗M to the origin of the new coordinate system. From
eq. (C.0.27) we see that an iso-density surface with constant Rx⃗′ ≡ R(x⃗

′) is an ellipse with canonical
equation

λ1

2(RM −Rx⃗′)
x′2 +

λ2

2(RM −Rx⃗′)
y′2 = 1 , ai ≡ [

2(RM −Rx⃗′)

λi
]

1/2
, (C.0.28)

and semi-axes ai=1,2. The key point is that the actual magnitude of the eigenvalues λi depends on
the steepness of the field R around the position of its maximum. This follows from eq. (C.0.27) if we
apply the Laplacian with respect to the coordinates x⃗ ′ since we find

λ1 + λ2 = −∇
2
R(x⃗ ′) . (C.0.29)

Suppose now that the point x⃗ ′ coincides with a peak of the overdensity field, y⃗pk. Using eq. (5.2.6),
we find

λ1 + λ2 = −∇
2
R(y⃗pk) ≳

9

4
(aH)2δc = 2σ2

9

8

(aH)2

σ2
δc

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≫1

Ô⇒
λi

σ2
≫ 1 . (C.0.30)

In eq. (C.0.30) we used the fact that we typically expect (aH)2/σ2 ≫ 1; we will comment in more de-
tail about this estimate at the end of this section. Notice that in eq. (C.0.30) we assumed that the two
eigenvalues λi have the same magnitude. This is because we have separately λ1 = −Rxx(y⃗pk) and
λ2 = −Ryy(y⃗pk), and the second derivatives Rxx ad Ryy have the same covariance (see eq. (C.0.8)).
We can now do the same expansion in eq. (C.0.26) but with respect to the first derivatives of R at
x⃗M. The stationary condition Ri(x⃗M) = 0 reads

Ri(x⃗) −
2

∑
j=1
Rij(x⃗M)(x⃗− x⃗M)j = 0 Ô⇒

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Rx(x⃗
′) + λ1x′ = 0

Ry(x⃗
′) + λ2y′ = 0

(C.0.31)

where in the last line we introduced, as done before, the eigenvalues λi=1,2. We identify again
the point x⃗ ′ with a peak of the overdensity field so that we can use the estimate in eq. (C.0.30).
Furthermore, x⃗ ′ represents now, by construction, the distance between the local maximum of R
and the peak of the overdensity field. We can estimate this distance by means of eq. (C.0.30) and
eq. (C.0.31). In eq. (C.0.31), Rx(x⃗

′) and Ry(x⃗
′) are not equal to zero (since we moved away from the
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local maximum of R) and their magnitude can be estimated (in a probabilistic sense) by means of
the covariance matrix. We have Rx(x⃗

′) ≈ Ry(x⃗
′) ≈ ⟨RxRx⟩

1/2 ≈ σ1. We find

∣x⃗ ′∣ ≈
σ1

σ2
(

1

λi/σ2
) ≪

σ1

σ2
=
e−3v

2

k⋆
. (C.0.32)

As we will see in a moment, we have that 1/k⋆ is typically of the order of the comoving horizon
length 1/aH at the time when the perturbations re-enter the horizon and become causally connected.
Therefore, we find ∣x⃗ ′∣ ≪ 1/aH. This means that high peaks of the overdensity field lie “close” (that
is within an Hubble radius) to local maxima of the curvature perturbation. We can validate the
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Figure 9: Numerical simulation of the random field R together with its first and second derivatives. At each point in
space (discretized in steps ∆x = 5 and ∆y = 5) we associate a vector of values {R,Rx,Ry,Rxx,Rxy,Ryy}

randomly generated from eq. (C.0.6). We use the power spectrum in eq. (C.0.24) to compute the correlation
matrix. We set v = 0.7, k⋆ = 1.5 × 1014 Mpc−1 and Ag = 2.5 × 10−3. Left panel. We show the density plot
of the random variable 2s/σ2 = −∇2R/σ2 which is related to the overdensity field. Right panel. Same as
in the left panel but zoomed in the region where the random variable −∇2R/σ2 has a pronounced peak. We
superimpose (blue arrows) a vector plot that keeps track of the gradient field {Rx,Ry}. The yellow star marks
the position of the local maximum of R that lies close to the peak of −∇2R/σ2.

analytical approximation by means of a numerical check. To this end, we use the full joint probability
density distribution in eq. (C.0.6) to generate a sample of random values that we distribute on a two-
dimensional grid (see caption of fig. 9). In other words, at each point on the spatial grid corresponds
a value of R = (R,Rx,Ry,Rxx,Rxy,Ryy)

T randomly generated from eq. (C.0.6). In the left panel
of fig. 9 we show the spatial distribution of the random variable 2s/σ2 = −∇2R/σ2. We focus on a
region in which −∇2R takes a large value (in units of σ2). In the left panel of fig. 9, we indicate this
region with a red contour. We zoom in this part of the plot in the right panel of fig. 9. The analytical
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argument explained before suggests that we should find a maximum close to the point where the
curvature field peaks. We look for this maximum numerically by looking at the behavior of the
gradient field {Rx,Ry} that we plot using blue arrows. We indeed find a local maximum that we
mark with a yellow star. We checked numerically that at the position of the yellow star where the
gradient field vanishes the conditions on the second derivatives that define a maximum are verified.
We note that at the position of the peak of the overdensity field the gradient field {Rx,Ry} does not
vanish but we find that its magnitude is of order O(1) (in units of σ1) as we argued in eq. (C.0.32).
Furthermore, we checked that the local maximum lies closer to the peak of −∇2R/σ2 for increasing
higher values of the latter.

This numerical result corroborates the validity of the analytical argument in eq. (C.0.32), and we
conclude, therefore, that eq. (C.0.22) is the right distribution to consider: we count the peaks of δ by
looking at the maxima of R with large curvature.

Next, we ask if there exists some relation between the curvature of a local maximum of R and the
value of R at the maximum.We can use the probability density distribution n̄max(R, s) defined in
eq. (C.0.22) to generate numerically, in position space, a sample of maxima by extracting randomly
the value of R and curvature 2s = −∇2R. We can then use eq. (5.2.5) to extract from the distribution
of s the distribution of the overdensity field (of course, with R instead of h since we are considering
here the gaussian case). The outcome of this exercise is shown in fig. 10, fig. 11 and fig. 12 (see
captions for details).

Let us consider the case in which we take v = 0.1. We remind that this choice corresponds to a
very narrow power spectrum. We have γ ≃ 0.98. As noticed before, in this case we expect a strong
correlation between R and s. This means that regions with large R/σ0 are likely to be also regions
with large 2s/σ2 (and, consequently, regions where the overdensity field peaks). This is evident in
fig. 10, fig. 11 and fig. 12 (left panel). In particular, in fig. 11 we see that maxima with large values of
R (left panel) maps precisely regions where the overdensity field δ peaks (right panel). As stated
before, this is a consequence of the fact that R and s (hence δ) are highly correlated. Furthermore,
in the left panel of fig. 12 the symmetry of the randomly generated points under the exchange
R/σ0 ↔ 2s/σ2 is evident.

It is instructive to consider what happens if we take a different value of v. Consider, for instance,
the case with v = 0.7. We have γ ≃ 0.37, and R and s are now much less correlated compared to the
case with v = 0.1. This is shown in the right panel of fig. 12 (see caption for details). For v = 0.7, spiky
maxima (that is maxima with large curvature) are seldom characterized also by a large value of R.
This means that if we aim at deriving a generic formula for the number density of spiky maxima
we can not restrict eq. (C.0.21) to special values of R.

Let us summarize our findings so far. We have that the number density of local maxima of R with
large curvature gives the number density of regions where the overdensity field peaks. Physically,
we are only interested in local maxima with large curvature irrespectively on their value of R. Since
there is no special relation—for generic values of v (hence γ)—between s and R, eq. (C.0.21) must
be integrated over the entire range of variability of R.
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Figure 10: Numerical simulation of maxima of R in two spatial dimensions. At each point (x,y) in space (discretized
in steps ∆x = 10 and ∆y = 10), we extract randomly from the density distribution n̄max(R, s) (defined in
eq. (C.0.22)) the value of R and s = −∇2R/2. The former are shown in the left panel. We remark that, by
construction, all point generated by means of n̄max(R, s) are maxima of R. As far as the values of s are
concerned, we plot on the right panel the corresponding values of δ = (8/9)(1/aH)2s. We use the power
spectrum in eq. (C.0.24), and we set v = 0.1, k⋆ = 1.5 × 1014 Mpc−1 and Ag = 2.5 × 10−3. Furthermore,
we take (k⋆/aH)2 ≃ 0.36 as suggested by numerical simulations (see appendix F of [2]). For illustrative
purposes, we set the threshold δc = 0.675 (which is significantly smaller compared to the value expected from
numerical simulation of gravitational collapse into black holes that is δc ≃ 1.19, see appendix F of [2]; we use
a smaller value of δc otherwise events over the threshold would be too rare to be simulated in our simplified
numerical analysis). Points in the simulation with δ > δc are marked with a black dot.

If we consider the case in which smin does not depend on R, we can integrate eq. (C.0.21) analyti-
cally. We find the number density

Nmax(smin) ≡ ∫
∞

−∞
dR∫

∞

smin

ds n̄max(R, s) =
σ22

2
√
2π3/2σ21

[
smin

σ2
exp(−

2s2min

σ22
)+

1

2

√
π

6
Erfc(

√
6smin

σ2
)] .

(C.0.33)

We can define the dimensionful quantity R∗ ≡
√
dσ1/σ2, where d is the number of spatial dimen-

sions. From eq. (C.0.25) we find

R∗ =
√
2σ1

σ2
=

√
2

k⋆
e−3v

2

. (C.0.34)
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Figure 11: Same as in fig. 10 but zoomed in the region delimited by dashed lines and displayed in the form of a tri-
dimensional density plot. We see that spiky maxima with large values of R (left panel) coincide with peaks
of δ (right panel).
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Figure 12: Left panel. Simulated points in figures. 10, 11 shown in the plane {R/σ0,−∇2R/2σ2}. The horizontal
dashed line corresponds to the threshold value δc (see caption of fig. 10). Points above threshold collapse into
black holes (marked with black dots here and in figures. 10, 11). This simulation corresponds to v = 0.1, and
we see that R/σ0 and −∇2R/2σ2 are strongly correlated. Right panel. Comparison between two numerical
simulations with v = 0.1 (green) and v = 0.7 (red). The two ellipses represent the 95% confidence regions.

In this simplified two-dimensional set-up, we can estimate the mass fraction of black holes by means
of the dimensionless quantity (for more details, see section D.2)

R2∗Nmax(smin) =
1

√
2π3/2

[
smin

σ2
exp(−

2s2min

σ22
)+

1

2

√
π

6
Erfc(

√
6smin

σ2
)] ≈

1
√
2π3/2

(
smin

σ2
) exp(−

2s2min

σ22
) ,

(C.0.35)
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where the last approximation is valid if smin/σ2 ≳ 1. The mass fraction is controlled by an exponential
decaying function with argument

smin

σ2
=
9

8

(aH)2

σ2
δc =

9e−4v
2

8A
1/2
g

(
aH

k⋆
)

2

δc . (C.0.36)

The value of smin/σ2, which is crucial for the determination of the correct order-of-magnitude of the
mass fraction, depends on the properties of the power spectrum via the factor e−4v

2
/A

1/2
g k2⋆ and the

details of the gravitational collapse that leads to black hole formation via the factor (aH)2δc. The
comoving horizon length 1/aH depends on time. The computation of the threshold for black hole
production introduces the time tm that is defined by the time when the curvature perturbations
cross the horizon and become causally connected. This is the time at which eq. (C.0.36) has to be
computed.3 The time tm defines implicitly, by means of the condition a(tm)H(tm)rm = 1, the length
scale rm. This length scale enters in the numerical evaluation of eq. (C.0.36), and one typically gets
(amHm/k⋆)2δc = O(1). A precise numerical evaluation of this factor is beyond the scope of this
thesis but it is discussed in appendix F of [2].

It is important to check the validity of eq. (C.0.35) against the standard result. In ref. [48], the num-
ber density of peaks of the overdensity field is controlled by the exponential function exp(−δ2c/2σ

2
δ)

where σ2δ refers to the variance of the overdensity field. By means of eq. (5.2.5) (linearized, and with
R instead of h), one finds σ2δ = (16/81)(1/aH)

4σ22. Consequently, exp(−δ2c/2σ
2
δ) matches precisely

the exponential function in eq. (C.0.35). This is another indication that computing the number den-
sity of peaks of the overdensity field via the number density of maxima of R that are spiky enough
leads to sensible results; importantly, this is in spite of the fact that we derived eq. (C.0.35) in two
spatial dimensions.

After this long and detailed discussion about the gaussian case, we are ready to move to the
more interesting situation in which local non-gaussianities are present. Actually, we are already in
the position to make an interesting comment. Suppose that we compute the analogue of eq. (C.0.22)
with local non-gaussianities with of course now h and −∇2h instead of R and −∇2R. It is crucial to
answer the same question that we asked in the gaussian case: is the number density of maxima of h
with large curvature −∇2h a good proxy for the number density of peaks of the overdensity field?
The same analytical argument discussed in eqs. (C.0.26-C.0.32) can be repeated with h and −∇2h

instead of R and −∇2R. The estimate of the eigenvalues λi=1,2 in eq. (C.0.30) remains the same.
In eq. (C.0.32), the only difference is that local non-gaussianities alter the entries of the covariance
matrix that we used to estimate the magnitude of the gradient field. However, we anticipate that

3 More precisely, the process of black hole formation involves three different times. First of all, the number density of
peaks that eventually form black holes has to be calculated at some initial time when perturbations are still super-
horizon. All the analysis done so far is based on this time (even though we do not specify it explicitly) since we are
considering comoving curvature perturbations which are constant (see appendix B). Second, we have the time tm when
the perturbations re-enter the horizon and become causally connected. Finally, we have the time tf at which black holes
form. In general tf ≠ tm, and from simulations of gravitational collapse in numerical relativity we have (tf/tm)1/2 ≃ 3 [52];
eq. (5.2.6) is usually evaluated at time tm while the factor (tf/tm)1/2 ≃ 3 can be included in the computation of the black
hole abundance (see, e.g., discussion in ref. [76]).
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we find (see eq. (E.0.76)) ⟨hxhx⟩ = ⟨hyhy⟩ = σ21(1 + 4α
2σ20)/2 and ⟨hxhy⟩ = 0; we conclude that the

non-gaussian correction in this case is negligible since we have α2σ20 = α
2Ag ≪ 1. Remember indeed

that the size of σ20 is controlled by the amplitude of the power spectrum which is σ20 = Ag ≪ 1. This
is particularly clear for the simple choice of PR in eq. (C.0.24) but remains true in general.

We conclude that the same argument discussed in eqs. (C.0.26-C.0.32) is valid also in the presence
of local non-gaussianities. In appendix D and appendix E we will, therefore, move to compute the
number density of maxima of h with curvature above the threshold for black hole production that
is needed to generalize eq. (C.0.35) to the case α ≠ 0. We consider two different approaches.

∗ In appendix D we come back to the formulation of the problem in three spatial dimensions.
We will derive an expression analogue to eq. (C.0.35) but valid in the case α ≠ 0 and three
spatial dimensions. We dub the result of appendix D “exact” because no approximations will
be used throughout the computation (apart from the linearization in eq. (5.2.5).

∗ In appendix E we follow a different route. We will consider an expansion in cumulants around
the gaussian probability density distribution. To make this approach more transparent from
the analytic point of view, we will work again in two spatial dimensions.



D
P E A K S TAT I S T I C S W I T H L O C A L N O N - G A U S S I A N I T I E S

d.1 number density of peaks

In appendix C we have shown that the number density of peaks of the overdensity field can be
approximated with good accuracy with the number density of maxima of the comoving density
perturbation which are spiky enough, i.e. with a Laplacian smaller than a threshold. The analysis
has been performed assuming two spatial dimensions, to a have a better control of the analytic ex-
pressions, and for ease of visualization of our simulations. Nevertheless, the same conclusion is also
valid in three dimensions, which is the case of physical interest that we are going to consider in this
section. We shall now use these results to compute the number density of peaks of the overdensity
field in presence of local non-gaussianities. Our starting point is the analogous of eq. (D.2.6) for the
non-gaussian random field h(x⃗). Furthermore, as explained above, we are interested into maxima
of h which are spiky enough. Explicitly, we have

npk(h)dhd
3x = dhd3x ∫

spiky max
d3hi d

6hij PNG(h,hi,hij)δ(3)(hi) ∣det(hij)∣ , (D.1.1)

where PNG(h,hi,hij) is the joint probability distribution function of the non-gaussian field h, the
field gradient hi and the second derivatives hij. The Dirac delta δ(3)(hi) enforces the condition
that the point is stationary. We will show in a moment how to restrict the integration volume to the
field configurations which represent spiky maxima of h. The comoving number density of peaks is
obtained integrating over all the heights of the peaks

Npk = ∫
∞

hmin

dhnpk(h) = ∫
spiky max

dhd3hi d
6hij PNG(h,hi,hij)δ(3)(hi) ∣det(hij)∣ . (D.1.2)

Notice that for α > 0, which is the case relevant for the PBH production (see appendix B), and from
the relation h(x⃗) = R(x⃗) +α (R(x⃗)2 −σ20) , one realizes that h(x⃗) attains a minimum hmin = −(1 +

4α2σ20)/4α for R = −1/2α. To proceed, it turns out to be useful to consider the gaussian variables R,
Ri and Rij instead of the non-gaussian fields h, hi and hij. The reason is that the joint probability
distribution function of the former variables, that we denote with P(R,Ri,Rij), is known and it has
a simple analytic expression, see appendix C for the explicit formula in the case of two dimensions.
Using the conservation of the probability in a differential volume PNG(h,hi,hij)dhd3hi d6hij =
P(R,Ri,Rij)dRd

3Ri d
6Rij, we can perform a change of variable and write

Npk = ∫
spiky max

dRd3Ri d
6
Rij P(R,Ri,Rij)δ

(3)
[hi (R,Ri,α)] ∣det [hij (R,Ri,Rij,α)]∣ . (D.1.3)

where the field gradient and the second derivatives of the non gaussian variables are written in
terms of the gaussian fields as

hi (R,Ri,α) = Ri (1+ 2αR) , hij (R,Ri,Rij,α) = Rij(1+ 2αR) + 2αRiRj . (D.1.4)

75
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As noticed in sec. 5.2, stationary points of R are also stationary points of h. Moreover, from the
expressions above, one can see that also the configuration (1 + 2αR) = 0 is a stationary point of h.
However, as mentioned above, it is a minimum of h (for α > 0), therefore we need to focus only on
the configurations with Ri = 0. This means that one can write eq. (D.1.3) as

Npk = ∫
spiky max

dRd6Rij P(R,Ri = 0,Rij) ∣det (hij (R,Ri = 0,Rij,α))∣
1

∣1+ 2αR∣
3

= ∫
spiky max

dRd6Rij P(R,Ri = 0,Rij) ∣det (Rij)∣ . (D.1.5)

In the equation above all the information about the non-gaussianities is confined in spiky max, i.e. in
the condition to impose on the integration volume in order to restrict on maxima of h spiky enough.
Let us see how these constraints can be implemented explicitly. The Hessian matrix, for Ri = 0, is

hij = Rij (1+ 2αR) . (D.1.6)

We should, therefore, select maxima (minima) of R for positive (negative) values of (1+ 2αR). The
calculation can be simplified aligning the coordinate axes along the eigenvectors of the matrix −Rij.
The corresponding eigenvalues are denoted as λi with i = 1,2,3 (the same strategy has been adopted
in appendix C in the case of two spatial dimensions). The three eigenvectors, and the three Euler
angles defining their orientation, can be used to parametrize the six independent random fields of
Rij. Let us also define the following variables

ν̄ = R/σ0 ,

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

σ2 x = −∇2R = λ1 + λ2 + λ3

σ2 y = (λ1 − λ3)/2

σ2 z = (λ1 − 2λ2 + λ3)/2

(D.1.7)

Changing variables and integrating over the Euler angles, from eq. (D.1.5) one obtains [48]

Npk = ∫
spiky max

n̄pk(ν̄,x,y, z)dν̄dxdydz with n̄pk(ν̄,x,y, z) = Ae−Q ∣F(x,y, z)∣ , (D.1.8)

and

A ≡

√
5

3

σ32
σ31

25

16π2
√
1−γ2

, (D.1.9)

Q ≡
ν̄2

2
+
(x− x∗)2

2(1−γ2)
+
5

2
(3y2 + z2) , (D.1.10)

F(x,y, z) ≡ y (y2 − z2) [(x+ z)2 − 9y2] (x− 2z) , (D.1.11)

x∗ ≡ γν̄ . (D.1.12)

We can divide the integration on ν̄ in two parts.

○ 1+ 2αR > 0.
This implies that maxima of R are also maxima of h, and that we are considering ν̄ > −1/2σ0α.
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One can choose an ordering for the eigenvalues of the matrix −Rij: λ1 ≥ λ2 ≥ λ3. Therefore, we
can select maxima of R requiring that λ3 > 0. Under these conditions, and using eqs. (D.1.7),
the domain of integration for the variables y and z reads:

∫

x/4

0
dy ∫

y

−y
dz+∫

x/2

x/4
dy ∫

y

3y−x
dz . (D.1.13)

Then, working within the linear approximation in eq. (5.2.5), eq. (5.2.6) implies that only spiky
maxima should be selected

x >
9(amHm)

2

4σ2

δc

1+ 2ασ0ν̄
≡ xδ(ν̄) . (D.1.14)

In the equation above, the horizon scale 1/aH has been evaluated at the time tm when the
curvature perturbations cross the horizon. Having specified the appropriate domain of inte-
gration for all the variables, we can now integrate eq. (D.1.8) and multiply by a factor 6 to take
into account all the possible orderings of the eigenvalues λi. We find

N
(I)
pk = ∫

∞

− 1
2ασ0

dν̄ ∫
∞

xδ(ν̄)
dx n̄pk(ν̄,x) , (D.1.15)

where

n̄pk(ν̄,x) =
e−ν̄

2/2

(2π)2R3∗
f(x)

e
− (x−x∗)2

2(1−γ2)
√
2π(1−γ2)

, (D.1.16)
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(D.1.17)

and we remind that R∗ ≡
√
3σ1/σ2.

○ 1+ 2αR < 0.
In this case minima of R are maxima of h. Proceeding analogously as before, we have:

N
(II)
pk = ∫

− 1
2ασ0

−∞
dν̄ ∫

xδ(ν̄)

−∞
dx n̄pk(ν̄,x) . (D.1.18)

The comoving number density of peaks of the overdensity field is approximated as the sum of
the two terms above: Npk = N

(I)
pk +N

(II)
pk . One can interpret these two contributions along the lines

exposed in section 5.2. The term N (II)pk counts then minima of R which are maxima of h. Instead

N
(I)
pk corresponds to maxima of R, and the restriction in the integration range of ν̄ (the lower limit)

is designed to subtract those maxima of R which are minima of h. Obviously, the gaussian result
is recovered for α → 0. In this limit we can compare with the standard expression in ref. [48]. Nu-
merically, and for the power spectra under consideration, we found that the two calculations agree
within a factor ≃ 2. As already mentioned in section C for the case of two spatial dimensions, this
confirms that peaks of the overdensity field are well approximated by peaks of the comoving den-
sity perturbation which are spiky enough. In section D.2 we will discuss how to translate Npk into
the primordial black hole abundance in eq. (6.1.2).
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d.2 from the number density to the abundance

The PBH abundance at the time tf of their formation is defined by

β =
1

ρb(tf)
∫

∞

νc

dνρPBH(ν) , (D.2.1)

and it simply corresponds to the ratio between the mass density in PBHs and the background energy
density at formation time, ρb(tf) = 3H2

f/8π. In eq. (D.2.1) we use ν ≡ δ/σδ = 2s/σ2. The parameter
ν controls the height of the overdensity peak that collapses into a PBH, and the integration in
eq. (D.2.1) tells us that only peaks above the threshold contribute to the PBH abundance (while
perturbations with ν < νc disperse into the expanding Universe). The mass density of PBHs takes
the form

ρPBH(ν) =MPBH(ν)n
phys
max (ν) , (D.2.2)

where MPBH(ν) is the PBH mass (usually calculated at horizon crossing time tm) and nphys
max (ν) is

the number density of peaks of height ν in the physical space at formation time. The latter is related
to the comoving number density of peaks nmax(ν) by the scaling (in three spatial dimensions)
n

phys
max (ν) = nmax(ν)/a

3
f . We consider for the moment the realistic case of three spatial dimensions.

The PBH mass MPBH(ν) is proportional to the horizon mass at horizon-crossing time, MH(tm),
according to the relation [51]

MPBH(ν) = KMH(tm)(
σ̄0a

2H2

a2mH
2
m

)

γ̃

(ν−νc)
γ̃ . (D.2.3)

In this equation the horizon mass at horizon-crossing time is given by the equation MH(tm) =

1/2Hm while the factor (ν − νc)γ is the scaling law for critical collapse (extracted from numerical
simulation, and with γ̃ ≃ 0.36 in the case of radiation [77]) while K = O(1). In our notation, ν = 2s/σ2
and νc = 2smin/σ2. Notice that in eq. (D.2.3) we introduce, following ref. [51], the spectral moments
referred to the density perturbation

σ̄2j =
16

81

1

(aH)4
∫
dk

k
PR(k)k2j+4 . (D.2.4)

All in all, eq. (D.2.1) translates into

β =
4π

3
K(

σ̄0a
2H2

a2mH
2
m

)

γ̃

(
1

amHm
)

3 af

am
∫

∞

νc

dν(ν−νc)
γ̃nmax(ν) . (D.2.5)

We need to specify the peak number density and integrate. Let us consider first the gaussian case,
in which we have [48] 1

nmax(ν) =
1

4π2
(
γ

R∗
)
3

ν3 exp(−ν2/2) , with γ ≡
σ̄21
σ̄0σ̄2

, R∗ ≡
√
3σ̄1

σ̄2
. (D.2.6)

1 Notice that R∗ is now defined in terms of the spectral moments σ̄j, differently from what done in appendix C where we
have an analogous expression in terms of σj.
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We, therefore, have

β =
K

3π
(
σ̄0a

2H2

a2mH
2
m

)

γ̃

(
af

am
)(
γrm

R∗
)
3

ν4+γc ∫

∞

1
dx(x− 1)γ̃x3e−x

2ν2
c/2 . (D.2.7)

Ref. [51] computed the above integral by means of a saddle point approximation. We, instead, note
that it admits the following exact expression in terms of generalized hypergeometric functions

∫

∞

1
dx(x− 1)γ̃x3e−x
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c/2 =

2γ̃/2
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This result, in turn, allows us to extract the simple approximation

∫

∞

1
dx(x− 1)γ̃x3e−x

2ν2
c/2 ≈ e−ν

2
c/2ν−2(1+γ̃)c Γ(1+ γ̃) . (D.2.9)

which is valid for νc/γ̃≫ 1. We checked numerically that this approximation works exquisitely well
(at the % level for νc = 10 with increasing precision for larger thresholds). We find

β ≈
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β

Figure 13: Abundance β computed with (black solid line) and without (red dashed line) the pre-factor in the square
brackets in eq. 6.2.8.

The numerical value of β is controlled by the exponential function e−ν
2
c/2 while the pre-factor

inside the square brackets in eq. (D.2.10) is a dimensionless O(1) number whose exact value only
plays a sub-leading role in the determination of β. To corroborate this statement, in the figure 13

we compare (as function of the peak amplitude of the power spectrum) the abundance β computed
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with and without the pre-factor in the square brackets, and we show that the two computations
almost coincide.

The computation in eq. (D.2.10) shows that in order to estimate the value of β in a pragmatic way
we can just integrate the comoving number density of maxima of the overdensity field and make it
dimensionless

β ≈ 4π2R3∗ ∫
∞

νc

dνnmax(ν) . (D.2.11)

Eq. (D.2.11) gives a perfect approximation of eq. (D.2.10).
In presence of local non-gaussianities the abundance can be obtained following the same logic

that leads to eq. (D.2.5), but computing the number density of peaks as explained in sec. D, namely
identifying this quantity with the number density of spiky maxima of the comoving density pertur-
bations, the sum of eq. (D.1.15) and eq. (D.1.18). We obtain

β =
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3
K(

σ̄0a
2H2

a2mH
2
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amHm
)

3 af

am
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⎥
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⎥
⎦

,

(D.2.12)

where n̄max(ν̄,x) is defined in eqs. (D.1.16, D.1.17). Notice that ν̄ = R/σ0, while in eq. (D.2.3) we
have ν = δ/σδ. In the expression above we have written the latter quantity as ν = ν̃(ν̄,x) = x (1 +
2ασ0ν̄). Once again, we find that the abundance is well approximated by a simpler expression,
obtained by taking the number density of peaks, N (I)pk + N (II)pk (eqs. (D.1.15, D.1.18) ), and making it
dimensionless 2

β ≈ π2R3∗ [N
(I)
pk +N

(II)
pk ] . (D.2.13)

This equation reproduces eq. (6.1.2).
Having looked at the exact definition of β, let us now consider our simplified two-dimensional

model. We follow the rationale that led to eq. (D.2.11). The number density of maxima above thresh-
old of the overdensity field is given by Nmax(smin) (that is, for instance, eq. (C.0.33) in the gaussian
case) and, in two spatial dimensions, to make it dimensionless we need to multiply it times R2∗

β ≈ R2∗Nmax(smin) . (D.2.14)

2 In eqs. (D.2.13, D.2.14) R∗ is defined as in section C, i.e. R∗ ≡
√
dσ1/σ2.
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The idea is to derive the joint probability density distribution for the variables h, hx, hy, hxx,
hxy, hyy (considering again, for simplicity, the two-dimensional case). Once we get this probability
density distribution, we set hx = hy = 0 and we integrate over hxx, hxy and hyy in the domain
defining maxima. This strategy was simple to implement in the case of the gaussian variable R
because the joint probability density distribution was a multivariate normal distribution. The non-
gaussian case is more complicated.

In order to tackle the problem, we shall use the approach based on the characteristic function. In
full generality, for a set of N correlated random variables ξi the characteristic function is the Fourier
transform of their joint probability density distribution

χ(λ1, . . . ,λN) ≡ ∫ dξ1 . . . dξNP(ξ1, . . . ,ξN) exp [i(ξ1λ1 + ⋅ ⋅ ⋅ + ξNλN)] =

= ∫ dξ1 . . . dξNP(ξ1, . . . ,ξN) [1+ i(ξ1λ1 + ⋅ ⋅ ⋅ + ξNλN) +
i2

2!
(ξ1λ1 + ⋅ ⋅ ⋅ + ξNλN)

2
+ . . . ] =

= 1+ i∑
j

⟨ξj⟩λj +
i2

2!
∑
j1,j2

⟨ξj1ξj2⟩λj1λj2 +
i3

3!
∑

j1,j2,j3

⟨ξj1ξj2ξj3⟩λj1λj2λj3 + . . . (E.0.1)

where, after a Taylor expansion, we introduced the moments of the joint distribution by means of
the integrals

⟨ξj1 . . . ξjk⟩ = ∫ dξ1 . . . dξNP(ξ1, . . . ,ξN)ξj1 . . . ξjk . (E.0.2)

If we take the natural log of the characteristic function and Taylor expand, we define the cumulants

logχ(λ1, . . . ,λN) ≡ i∑
j

C1(ξj)λj +
i2

2!
∑
j1,j2

C2(ξj1 ,ξj2)λj1λj2 + . . . . (E.0.3)

The relation between moments and cumulants follows from the comparison of the two Taylor ex-
pansions. We find the well-known relations

C1(ξj) = ⟨ξj⟩ , (E.0.4)

C2(ξj1 ,ξj2) = ⟨ξj1ξj2⟩ − ⟨ξj1⟩⟨ξj2⟩ , (E.0.5)

C3(ξj1 ,ξj2 ,ξj3) = ⟨ξj1ξj2ξj3⟩ − ⟨ξj1⟩⟨ξj2ξj3⟩ − ⟨ξj2⟩⟨ξj1ξj3⟩ − ⟨ξj3⟩⟨ξj1ξj2⟩ + 2⟨ξj1⟩⟨ξj2⟩⟨ξj3⟩ ,
(E.0.6)

C4(ξj1 ,ξj2 ,ξj3 ,ξj4) = . . . (E.0.7)

81
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and so on. Working with cumulants instead of moments is more efficient. This is particularly true
in the gaussian case. For a set of correlated gaussian variables, all cumulants of order higher than
two vanish. In the gaussian case, eq. (E.0.3) gives

χ(λ1, . . . ,λN) = exp
⎡
⎢
⎢
⎢
⎢
⎣

i∑
j

⟨ξj⟩λj −
1

2
∑
j1,j2

C2(ξj1 ,ξj2)λj1λj2

⎤
⎥
⎥
⎥
⎥
⎦

, (E.0.8)

and the inverse Fourier transform that gives the probability density distribution reads

P(ξ1, . . . ,ξN) = ∫
dλ1

(2π)
. . .
dλN

(2π)
exp
⎡
⎢
⎢
⎢
⎢
⎣

i∑
j

(⟨ξj⟩ − ξj)λj −
1

2
∑
j1,j2

C2(ξj1 ,ξj2)λj1λj2

⎤
⎥
⎥
⎥
⎥
⎦

. (E.0.9)

If we complete the square inside the integrand and compute the resulting multivariate gaussian
integral, we find precisely eq. (C.0.6) where the second-order cumulants reconstruct the covariance
matrix elements in eq. (C.0.7). This was precisely the strategy that we followed in the previous
appendix: we computed the elements of the covariance matrix (that are the second-order cumulants)
and we (implicitly) performed an inverse Fourier transform to get back the probability density
distribution.

In the non-gaussian case, we can try to apply the same logic. First, we compute the cumulants;
second, we reconstruct the probability density distribution by means of an inverse Fourier trans-
form.

The computation of the cumulants require some mathematical tricks that we shall explain in the
following. In full generality, we need to compute the nth-order cumulant Cn(∂jh, . . . ,∂lh) where
each ∂jh represents a certain number of spatial derivatives (zero, one or two) acting on h. Remember
also that the random field h (and its derivatives) is computed at a specific spatial position (say, x⃗)
that will be later identified with a stationary point. We can write

Cn(∂jh, . . . ,∂lh) = Cn[∂jh(x⃗), . . . ,∂lh(x⃗)] =

= Cn[∂j1h(x⃗1), . . . ,∂lnh(x⃗n)]∣x⃗1=⋅⋅⋅=x⃗n=x⃗ = ∂j1 . . . ∂ln Cn[h(x⃗1), . . . ,h(x⃗n)]∣x⃗1=⋅⋅⋅=x⃗n=x⃗ . (E.0.10)

In the first step of eq. (E.0.10) we consider each ∂jkh to act at a different point x⃗k, and later we set
all points equal again (we already used a similar trick in eq. (C.0.12)). The advantage of this step
is that since now each derivative acts at a different spatial point, we can bring them outside the
cumulant (as done in the last step of eq. (E.0.10)). It is a very simple exercise to check explicitly
(for instance, by computing second-order cumulants of a gaussian variable with its derivatives) that
this procedure is completely legitimate. Using our notation h(x⃗n) = hn, the problem reduces to
the computation of Cn(h1, . . . ,hn) where now the random fields are evaluated at different spatial
points. After computing Cn(h1, . . . ,hn), we will take the spatial derivatives and finally set all points
equal according to the prescription in eq. (E.0.10).
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To compute Cn(h1, . . . ,hn), we consider the relation h = R+αR2. We write in general h = R+
fNL(R) where fNL(R) can be a generic non-linear function controlled by the parameter α. Let us
consider the term αR2 as a perturbation and expand in α. We have

Cn(h1, . . . ,hn) = Cn(R1, . . . ,Rn) +Cn[fNL(R1), . . . ,Rn] + ⋅ ⋅ ⋅ +Cn[R1, . . . , fNL(Rn)] (E.0.11)

+ {Cn[fNL(R1), fNL(R2), . . . ,Rn] + . . .} +O(α
3
) . (E.0.12)

This deconstruction makes clear the fact that we can compute the cumulants Cn(h1, . . . ,hn) based
on the cumulants computed for the gaussian random field R.

The problem is now the computation of Cn[fNL(R1), . . . ,Rn] where we remind that Rn = R(x⃗n).
In order to compute Cn[fNL(R1), . . . ,Rn], we need to work out an intermediate result. First,

remember the definition of random field that we gave at the beginning of appendix C: The scalar
random field R(x⃗) is a set of random variables, one for each point x⃗ in space, equipped with a joint
probability density distribution p(R1, . . . ,Rn). When the random field is gaussian, p(R1, . . . ,Rn)

is a multivariate Gaussian distribution and we can write

p(R1, . . . ,Rn) =
1

(2π)n/2
√

detσ
exp
⎡
⎢
⎢
⎢
⎢
⎣

−
1

2
∑
i,j
(σ−1)ijRiRj

⎤
⎥
⎥
⎥
⎥
⎦

, (E.0.13)

where σij = ⟨RiRj⟩ (as before, we consider zero-mean random field).
Consider now a new set of random variables {Y1, . . . ,Yn} related to the previous one via the

transformations Y1 = g1(R1, . . . ,Rn), . . . , Yn = gn(R1, . . . ,Rn) with inverse R1 = g
−1
1 (Y1, . . . ,Yn),

. . . , Rn = g
−1
n (Y1, . . . ,Yn). The joint probability density distribution for the transformed variables is

given by

pY(Y1, . . . ,Yn) = p[g−11 (Y1, . . . ,Yn), . . . ,g−1n (Y1, . . . ,Yn)] ∣detJ(Y1, . . . ,Yn)∣ , (E.0.14)

where the Jacobian matrix is

J(Y1, . . . ,Yn) ≡

⎛
⎜
⎜
⎜
⎜
⎝

∂R1

∂Y1 . . . ∂R1

∂Yn
⋮ ⋱ ⋮

∂Rn

∂Y1 . . . ∂Rn

∂Yn

⎞
⎟
⎟
⎟
⎟
⎠

, with
∂Rj

∂Yk
=

∂

∂Yk
[g−1j (Y1, . . . ,Yn)] . (E.0.15)

Eq. (E.0.14) is known as Jacobi’s multivariate theorem.
We note that in eq. (E.0.14) we can use the relation ∣detJ(Y1, . . . ,Yn)∣ = 1/ ∣detJ(R1, . . . ,Rn)∣

where J(R1, . . . ,Rn) is the Jacobian matrix of the inverse transformation with elements ∂Yj/∂Rk =

∂gj(R1, . . . ,Rn)/∂Rk. This implies that we can rewrite

pY(Y1, . . . ,Yn) = ∫ dR1 . . . dRnp(R1, . . . ,Rn)δ[Y1 − g1(R1, . . . ,Rn)] . . . δ[Yn − gn(R1, . . . ,Rn)] ,

(E.0.16)
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and eq. (E.0.14) follows from eq. (E.0.16) if one applies the transformation property of the multi-
dimensional delta function

δ[Y1 − g1(R1, . . . ,Rn)] . . . δ[Yn − gn(R1, . . . ,Rn)] =

=
δ[R1 − g

−1
1 (Y1, . . . ,Yn)] . . . δ[Rn − g

−1
n (Y1, . . . ,Yn)]

∣detJ(R1, . . . ,Rn)∣
, (E.0.17)

and integrates over Ri. Eq. (E.0.16) is a very useful formula. Consider the characteristic function of
pY(Y1, . . . ,Yn) defined by the Fourier transform

χY(λ1, . . . ,λn) = ∫ dY1 . . . dYnpY(Y1, . . . ,Yn) exp [i(Y1λ1 + ⋅ ⋅ ⋅ + Ynλn)] . (E.0.18)

Using eq. (E.0.16) and integrating over Yi thanks to the delta functions, we find

χY(λ1, . . . ,λn) = ∫ dR1 . . . dRne
i[g1(R1,...,Rn)λ1+⋅⋅⋅+gn(R1, ... ,Rn)λn] p(R1, . . . ,Rn) . (E.0.19)

From the definition of cumulants with respect to the characteristic function χY(λ1, . . . ,λn), we finally
find (see eq. (E.0.3))

Cn(Y1, . . . ,Yn) = (−i)n
∂

∂λ1
. . .

∂

∂λn
logχY(λ1, . . . ,λn)∣

λ1= ...=λn=0

= (−i)n
∂

∂λ1
. . .

∂

∂λn
log∫ dR1 . . . dRne

i[g1(R1,...,Rn)λ1+⋅⋅⋅+gn(R1,...,Rn)λn] p(R1, . . . ,Rn)∣
λ1= ...=λn=0

.

(E.0.20)

This is a generic formula that can be applied to our case.
Consider the linear order in α. From eq. (E.0.20), the cumulant Cn[fNL(R1), . . . ,Rn] is given by

Cn[fNL(R1), . . . ,Rn] = (E.0.21)

= (−i)n
∂

∂λ1
. . .

∂

∂λn
log∫ dR1 . . . dRne

i[fNL(R1)λ1+R2λ2+⋅⋅⋅+Rnλn] p(R1, . . . ,Rn)∣
λ1= ...=λn=0

.

A similar formula is applicable to all remaining first-order terms in eq. (E.0.11). Similarly, at order
O(α2) one needs to compute, for instance, cumulants like

Cn[fNL(R1), fNL(R2), . . . ,Rn] =

= (−i)n
∂

∂λ1
. . .

∂

∂λn
log∫ dR1 . . . dRne

i[fNL(R1)λ1+fNL(R2)λ2+⋅⋅⋅+Rnλn] p(R1, . . . ,Rn)∣
λ1= ...=λn=0

.

(E.0.22)

All we need to do is computing the integral and taking derivatives with respect to λi. The computa-
tion of the integrals is simplified by the fact that the variablesRi are gaussian with joint distribution
given by eq. (E.0.13).

Before proceeding, an important remark is in order. For the sake of simplicity, we derived eq. (E.0.14)
assuming that the functions Yi=1,...,n = gi=1,...,n(R1, . . . ,Rn) define one-to-one mappings. In this
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case, there exist unique inverse functions so that Ri=1,...,n = g
−1
i=1,...,n(Y1, . . . ,Yn). The case we are

interested in, however, is not exactly of this form. If we solve h = R+αR2 for R, we indeed find
R = (−1±

√
1+ 4αh)/2α which has two roots.

However, this is not an insurmountable problem since Jacobi’s multivariate theorem in eq. (E.0.14)
can be generalized to the case in which the system Yi=1,...,n = gi=1,...,n(R1, . . . ,Rn) admits at most
a countable number of roots. Let us indicate these q = 1, . . . ,Q roots in the form Rq,i=1,...,n =

g−1q,i=1,...,n(Y1, . . . ,Yn). Eq. (E.0.14) becomes

pY(Y1, . . . ,Yn) =
Q

∑
q=1

p[g−1q,1(Y1, . . . ,Yn), . . . ,g−1q,n(Y1, . . . ,Yn)] ∣detJq(Y1, . . . ,Yn)∣ , (E.0.23)

where now Jq(Y1, . . . ,Yn) is the Jacobian corresponding to the qth root

Jq(Y1, . . . ,Yn) ≡

⎛
⎜
⎜
⎜
⎜
⎝

∂Rq,1
∂Y1 . . .

∂Rq,1
∂Yn

⋮ ⋱ ⋮

∂Rq,n
∂Y1 . . .

∂Rq,n
∂Yn

⎞
⎟
⎟
⎟
⎟
⎠

, with
∂Rq,j

∂Yk
=

∂

∂Yk
[g−1q,j(Y1, . . . ,Yn)] . (E.0.24)

The multi-dimensional delta-function identity in eq. (E.0.17) changes accordingly, and the final result
in eq. (E.0.20) remains unaltered.

After this digression, we are ready to compute the integral in eq. (E.0.20). Instead of looking for a
generic expression, let us consider specific cases organized for increasing level of difficulty.

○ The simplest possibility is to truncate the analysis at the linear order in α, eq. (E.0.21). Consider
the integral in eq. (E.0.21) which we rewrite as

I(λ1, . . . ,λn) ≡ ∫ dR1e
ifNL(R1)λ1[∫ dR2 . . . dRne

i[R2λ2+ ...+Rnλn] p(R1, . . . ,Rn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡I′(R1,λ2,...,λn)

] . (E.0.25)

The key observation is that the integral inside the square brackets would precisely match the
definition of the characteristic function χ(λ1, . . . ,λn) of p(R1, . . . ,Rn) if it were completed by
an additional integration over R1 (see the definition in the first line of eq. (E.0.1)). In such case,
we could simply use (see eq. (E.0.8))

∫ dR1e
iλ1R1I

′
(R1,λ2, . . . ,λn) = χ(λ1, . . . ,λn) = exp [ −

1

2
∑
ij

σijλiλj] , (E.0.26)
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since {R1, . . . ,Rn} are gaussian. However, the fact that integration over R1 is missing im-
plies that the integral I ′(R1,λ2, . . . ,λn) is actually equal to the inverse Fourier transform of
χ(λ1, . . . ,λn) with respect to λ1. In formulas, eq. (E.0.25) becomes

I(λ1, . . . ,λn) = ∫ dR1e
ifNL(R1)λ1

∫
dλ1

(2π)
e−iλ1R1 exp [ −

1

2
∑
ij

σijλiλj] =

= ∫ dR1e
ifNL(R1)λ1 exp [ −

1

2
∑
ij⩾2

σijλiλj]∫
dλ1

(2π)
exp [ −

1

2
σ11λ

2
1 −(iR1 +∑

j⩾2
σ1jλj)λ1] =

= ∫ dR1e
ifNL(R1)λ1

1
√
2πσ11

exp [ −
1

2
∑
ij⩾2

σijλiλj +
1

2σ11
(iR1 +∑

j⩾2
σ1jλj)

2

] , (E.0.27)

where we just reorganized terms before integrating over λ1 in the last step. If we take the
natural log, we find

log[I(λ1, . . . ,λn)] = −
1

2
∑
ij⩾2

σijλiλj + log∫ dR1e
ifNL(R1)λ1

1
√
2πσ11

exp [
1

2σ11
(iR1 +∑

j⩾2
σ1jλj)

2

] .

(E.0.28)

According to eq. (E.0.21), we now need to compute derivatives with respect to λi=1, ... ,n and
finally set λi=1, ... ,n = 0. We find

Cn[fNL(R1), . . . ,Rn] =
1

√
2πσ11

(
n

∏
k=2

σ1k)∫ dR1fNL(R1)gn(R
n−1
1 )e−R

2
1/2σ11 , (E.0.29)

where gn(Rn−1
1 ) is a polynomial of order Rn−1

1 whose explicit expression is given by1

gn(R
n−1
1 ) = (−1)n−1eR

2
1/2σ11

dn−1

dRn−1
1

e−R
2
1/2σ11 . (E.0.31)

This result implies that we can just integrate by parts n− 1 times in eq. (E.0.29). We find

Cn[fNL(R1), . . . ,Rn] = (
n

∏
k=2

σ1k)
1

√
2πσ11

∫ dR1f
(n−1)
NL (R1)e

−R2
1/2σ11

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= ⟨f(n−1)NL (R1)⟩

. (E.0.32)

The leftover integral is nothing but the expectation value of f(n−1)NL (R1). All in all, we find
(remember that σij = ⟨RiRj⟩)

Cn[fNL(R1), . . . ,Rn] = ⟨f
(n−1)
NL (R1)⟩⟨R1R2⟩ . . . ⟨R1Rn⟩ (E.0.33)

1 We can notice that the gn polynomials are nothing but the Hermite polynomials, except for a pre-factor. In particular:

gn(Rn−1
1 ) = 1

(2σ11)n/2
Hn−1 (

R1√
2σ11

) (E.0.30)
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○ At order O(α2), consider eq. (E.0.22) and the integral

J (λ1, . . . ,λn) ≡ ∫ dR1dR2e
ifNL(R1)λ1+ifNL(R2)λ2[∫ dR3 . . . dRne

i[R3λ3+ ...+Rnλn] p(R1, . . . ,Rn)] .

(E.0.34)

The computation goes as before with the only difference that now we need to consider the
inverse Fourier transform of the characteristic function with respect to both λ1 and λ2. For the
natural log of J (λ1, . . . ,λn) we find

log[J (λ1, . . . ,λn)] = −
1

2
∑
ij⩾3

σijλiλj+ (E.0.35)

+ log∫ dR1dR2
eifNL(R1)λ1+ifNL(R2)λ2

2π
√
σ11σ22 −σ

2
12

exp [
1

2(σ11σ22 −σ
2
12)
(A2

1σ22 +A
2
2σ11 − 2A1A2σ12)] ,

where A1 ≡ iR1 + ∑j⩾3 σ1jλj and A2 ≡ iR2 + ∑j⩾3 σ2jλj. This equation is the analogue of
eq. (E.0.28) at order O(α2). As before, we need to to compute derivatives with respect to
λi=1, ... ,n and finally set λi=1, ... ,n = 0. Let us consider first the derivatives with respect to λ1
and λ2. We find

(−i)2
∂

∂λ2

∂

∂λ1
log[J (λ1, . . . ,λn)]∣

λ1=λ2=0
= (E.0.36)

1

2π
√
σ11σ22 −σ

2
12

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2π
√

det σ̃

∫ dR1dR2fNL(R1)fNL(R2) exp [
1

2(σ11σ22 −σ
2
12)
(A2

1σ22 +A
2
2σ11 − 2A1A2σ12)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(1/2)∑2
i,j=1(σ̃−1)ijAiAj

]

− [
1

√
2πσ11

∫ dR1fNL(R1)e
A2

1/2σ11][
1

√
2πσ22

∫ dR2fNL(R2)e
A2

2/2σ22] ,

where σ̃ is the two-by-two sub-matrix of σ formed by the first two rows and columns. Be-
fore proceeding, let us consider a simple example. If we are interested to the computation
of the second-order cumulant, these two derivatives are the only ones that we need to take.
Furthermore, in this case we have Aj=1,2 = iRj=1,2. We find the simple result

C2[fNL(R1), fNL(R2)] = ⟨fNL(R1)fNL(R2)⟩ − ⟨fNL(R1)⟩⟨fNL(R2)⟩ (E.0.37)

where the expectation values ⟨fNL(R1)⟩ and ⟨fNL(R2)⟩ are defined as in eq. (E.0.32) while
⟨fNL(R1)fNL(R2)⟩ is computed by means of the joint probability distribution of R1 and R2;
in formulas, we have

⟨fNL(R1)fNL(R2)⟩ =
1

2π
√

det σ̃
∫ dR1dR2fNL(R1)fNL(R2) exp [ −

1

2

2

∑
i,j=1
(σ̃−1)ijRiRj] .

(E.0.38)
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For n ⩾ 3, we need to compute in eq. (E.0.36) derivatives with respect to λi=3, ... ,n and finally
set λi=3, ... ,n = 0. These derivatives act on the exponential functions in the integrands of the two
terms on the right-hand side of eq. (E.0.36). Let us start from the second term; if we compute
the λ-derivatives on the exponential function, we find the following result

(−i)n−2
∂

∂λn
. . .

∂

∂λ3
(eA

2
1/2σ11eA

2
2/2σ22)∣

λ3= ... λn=0
= (E.0.39)

(−1)n−2(
n

∏
k=3

σ1k)(
dn−2

dRn−2
1

e−R
2
1/2σ11)e−R

2
2/2σ22 + (−1)n−2(

n

∏
k=3

σ2k)(
dn−2

dRn−2
2

e−R
2
2/2σ22)e−R

2
1/2σ11

+ (−1)n−2[
a+b=n−2
∑

a,b>0
(

n

∏
k=3+b

σ1k)(
n−a
∏
j=3

σ2j)(
da

dRa
1

e−R
2
1/2σ11)(

db

dRb
2

e−R
2
2/2σ22)+perms of (3, . . . ,n)] .

To fully understand the content of this equation, few comments are in order. Inside the square
brackets, the sum ∑a,b runs over all possible combinations of a > 0 and b > 0 such that
a + b = n − 2. For instance, if we take n = 4 we have only {a = 1,b = 1} while for n = 5 we
have two combinations, namely {a = 1,b = 2} and {a = 2,b = 1} (notice that if n = 3, there
are no combinations that are allowed, and the term in the square brackets does not contribute
to the third-order cumulant). Furthermore, after computing the sum over a and b, a further
sum over all permutations of the indices (3, . . . ,n) that give distinct results is required. Let
us clarify this point with an explicit example. Consider n = 4. The sum over {a = 1,b = 1}
gives (e−R

2
1/2σ11e−R

2
2/2σ22R1R2/σ11σ22)σ14σ23; we now need include the term with (3,4)

exchanged so that the final result is (e−R
2
1/2σ11e−R

2
2/2σ22R1R2/σ11σ22)(σ14σ23+σ13σ24). Only

permutations that give distinct results need to be included. For instance, take for n = 5 the
term proportional to σ14σ15σ23; in this case, the sum over permutations of (3,4,5) gives only
three distinct terms, σ14σ15σ23 → σ14σ15σ23 +σ13σ15σ24 +σ14σ13σ25 (instead of six—that is
the number of permutations of three objects—since the remaining three do not give distinct
results).

As far as the first term on the right-hand side of eq. (E.0.36) is concerned, we find

(−i)n−2
∂

∂λn
. . .

∂

∂λ3
[e

A2
1σ22+A

2
2σ11−2A1A2σ12

2(σ11σ22−σ
2
12
) ]∣

λ3= ... λn=0
= (E.0.40)

(−1)n−2(
n

∏
k=3

σ1k)[
dn−2

dRn−2
1

e
−R

2
1σ22+R

2
2σ11−2R1R2σ12

2(σ11σ22−σ
2
12
) ] + (−1)n−2(

n

∏
k=3

σ2k)[
dn−2

dRn−2
2

e
−R

2
1σ22+R

2
2σ11−2R1R2σ12

2(σ11σ22−σ
2
12
) ]

+ (−1)n−2{
a+b=n−2
∑

a,b>0
(

n

∏
k=3+b

σ1k)(
n−a
∏
j=3

σ2j)[
∂n−2

∂Ra
1∂R

b
2

e
−R

2
1σ22+R

2
2σ11−2R1R2σ12

2(σ11σ22−σ
2
12
) ] +perms of (3, . . . ,n)} ,

where the sum ∑a,b and the subsequent one over different permutations have the same mean-
ing explained before.

Eqs. (E.0.39, E.0.40) allow to compute the integrals in eq. (E.0.36) by means of n− 2 integration
by parts. We find the final result (for n ⩾ 3)
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Cn[fNL(R1), fNL(R2), . . . ,Rn] = (E.0.41)

[⟨f
(n−2)
NL (R1)fNL(R2)⟩ − ⟨f

(n−2)
NL (R1)⟩⟨fNL(R2)⟩] ⟨R1R3⟩ . . . ⟨R1Rn⟩ +

[⟨fNL(R1)f
(n−2)
NL (R2)⟩ − ⟨fNL(R1)⟩⟨f

(n−2)
NL (R2)⟩] ⟨R2R3⟩ . . . ⟨R2Rn⟩ +

{
a+b=n−2
∑

a,b>0
[⟨f
(a)
NL (R1)f

(b)
NL (R2)⟩ − ⟨f

(a)
NL (R1)⟩⟨f

(b)
NL (R2)⟩]

n

∏
k=3+b

⟨R1Rk⟩
n−a
∏
j=3
⟨R2Rj⟩+

+perms of (3, . . . ,n)}

which generalizes eq. (E.0.33) at order O(α2). We remark that eqs. (E.0.33, E.0.41) are com-
pletely generic and do not depend on the functional form of fNL(R).

○ One can in principle continue the computation and include higher-order α-corrections to the
cumulants. Needless to say, the corresponding expressions quickly become quite unwieldy
(even though the computation remains conceptually simple). One possible strategy is to in-
clude only O(α) corrections, and check that O(α2) terms remain sub-leading. In order for this
criterium to be satisfactory, one should correctly identify the expansion parameter. As we shall
see, in the case with no derivatives involved in eq. (E.0.10) the latter turns out to be α2σ20.

○ We can conclude this part with few checks of eqs. (E.0.33, E.0.41). For simplicity, let us consider
the case in which there are no derivatives in eq. (E.0.10).

n = 2

We compute C2(h1,h2). At order O(α), we have

C2(h1,h2) = C2(R1,R2) +C2[fNL(R1),R2] +C2[R1, fNL(R2)] (E.0.42)

= ⟨R1R2⟩ + ⟨f
(1)
NL (R1)⟩⟨R1R2⟩ + ⟨f

(1)
NL (R2)⟩⟨R1R2⟩ , (E.0.43)

where we use eq. (E.0.5) to rewrite the first term (which is the gaussian one) and eq. (E.0.33) to
rewrite the last two ones. Since we have fNL(R) = αR

2, we have ⟨f(1)NL (Ri=1,2)⟩ = 0 since we are
considering zero-mean random fields. This means that there are no corrections at order O(α).
We now move to consider corrections at order O(α2). We use eq. (E.0.37). At order O(α2), we
have

C2(h1,h2) = ⟨R1R2⟩ + ⟨fNL(R1)fNL(R2)⟩ − ⟨fNL(R1)⟩⟨fNL(R2)⟩ = (E.0.44)

= ⟨R1R2⟩ +α
2
⟨R

2
1R

2
2⟩ −α

2
⟨R

2
1⟩⟨R

2
2⟩ . (E.0.45)

We now set the two points equal (since we are not considering derivatives of cumulants, there
is no need of considering different spatial point). We have ⟨R2⟩ = σ20 and ⟨R4⟩ = 3σ40. In
conclusion, we find

C2(h,h) = σ20 (1+ 2α
2σ20) . (E.0.46)



90 peak theory with local non-gaussianities : a perturbative approach in 2d

This is an exact result since corrections of order O(α3) enter only at higher-orders. As a rule
of thumb, for a cumulant Cn of order n, only corrections up to order O(αn) are possible.
Eq. (E.0.46) shows that the correct expansion parameter is α2σ20. In realistic models of inflation
we expect α = O(1)while we have σ20 = Ag for the specific power spectrum in eq. (C.0.24). Since
one typically has Ag = O(10

−3), we expect α2σ20 ≪ 1. Let us also notice that in applications of
cosmological interest it is customary to use fNL(R) = α(R

2 − ⟨R2⟩) since in this way one has
a zero-mean non-gaussian field h, ⟨h⟩ = 0. It is simple to see that the constant shift in fNL(R)

that is implied by this particular choice does not affect the computation of cumulants of order
equal or higher than two. However, it does change the first order cumulant since C1(h) = ⟨h⟩

(see eq. (E.0.4)). The choice fNL(R) = α(R
2 − ⟨R2⟩), therefore, leads to C1(h) = 0.

n = 3

Consider now C3(h1,h2,h3). This cumulant vanishes in the gaussian limit. At order O(α), we
use eq. (E.0.33) and compute

C3(h1,h2,h3) = C3[fNL(R1),R2,R3] +C3[R1, fNL(R2),R3] +C3[R1,R2, fNL(R3)] (E.0.47)

= 2α (⟨R1R2⟩⟨R1R3⟩ + ⟨R2R1⟩⟨R2R3⟩ + ⟨R3R1⟩⟨R3R2⟩) . (E.0.48)

If we set all points equal, we find

C3(h,h,h) = 6ασ40 . (E.0.49)

We now move to consider the possible presence of a correction at order O(α2) that can be
computed by means of eq. (E.0.41). As already noticed, for n = 3 the sum ∑a,b does not
contribute to the final result. We are left with the two terms

[⟨f
(1)
NL (R1)fNL(R2)⟩ − ⟨f

(1)
NL (R1)⟩⟨fNL(R2)⟩] ⟨R1R3⟩+ (E.0.50)

+ [⟨fNL(R1)f
(1)
NL (R2)⟩ − ⟨fNL(R1)⟩⟨f

(1)
NL (R2)⟩] ⟨R2R3⟩ . (E.0.51)

If we set the three points equal and consider explicitly fNL(R) = αR
2, we find that eq. (E.0.50)

reduces to 4α2⟨R3⟩σ20 which is zero because ⟨R3⟩ = 0. Eq. (E.0.49), however, is not an exact
result since for n = 3 corrections of order O(α3) are possible. Mimicking eq. (E.0.46), we expect

C3(h,h,h) = 6ασ40[1+O(α
2σ20)] . (E.0.52)

The correction of order O(α3) can not be computed by means of eq. (E.0.41) but it is expected
to be sub-leading since we work under the assumption that α2σ20 ≪ 1.

n = 4

Consider the fourth-order cumulant C4(h1,h2,h3,h4). If we limit the analysis to quadratic
non-gaussianities as in fNL(R) = αR

2, it is clear that there are no corrections of order O(α)
since f(3)NL (R) = 0. The first non-trivial correction arises at order O(α2)

C4(h1,h2,h3,h4) = C4[fNL(R1), fNL(R2),R3,R4] + 5 combinations . (E.0.53)
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If we take eq. (E.0.41) it is simple to see that the first two terms on the right-hand side give
vanishing contribution. In the last line, we have one contribution corresponding to a = b = 1
that gives two terms since one has to sum 3↔ 4 exchange. We have

C4[fNL(R1), fNL(R2),R3,R4] = (E.0.54)

= [⟨f
(1)
NL (R1)f

(1)
NL (R2)⟩ − ⟨f

(1)
NL (R1)⟩⟨f

(1)
NL (R2)⟩] (⟨R1R4⟩⟨R2R3⟩ + 3↔ 4⟩) =

= 4α2
⟨R1R2⟩(⟨R1R4⟩⟨R2R3⟩ + ⟨R1R3⟩⟨R2R4⟩⟩) . (E.0.55)

If we set all points equal and multiply by six because of eq. (E.0.53), we find

C4(h,h,h,h) = 48α2σ60[1+O(α
2σ20)] , (E.0.56)

where we introduced again a sub-leading correction of order O(α4).

We can check the validity of eqs. (E.0.46, E.0.52, E.0.56) explicitly. The reason is that if we limit
the analysis—as done here—to random variables without derivatives, the computation of the
cumulants of h admits an exact analytical solution. We can indeed extract the probability
density distribution of the random variable h—at a given spatial point, that is what we need
in order to compare with eqs. (E.0.46, E.0.52, E.0.56)—by means of the Jacobi’s multivariate
theorem in eq. (E.0.23) using the fact thatR is a gaussian variable with zero mean and variance
σ20. We find

p(h) =
e−R

2
+/2σ2

0 + e−R
2
−/2σ2

0

√
2πσ0

√
1+ 4αh

, where R± =
−1±

√
1+ 4αh

2α
, (E.0.57)

with h ∈ [−1/4α,∞). By means of the Faà di Bruno’s formula, we find the generic nth-order
cumulant2

Cn(h, . . . ,h) = 2n−3σ20(ασ
2
0)

n−2
(n+ 4α2σ20)(n− 1)! , (E.0.58)

One can check that eqs. (E.0.46, E.0.52, E.0.56) are correctly reproduced in the appropriate lim-
its.

○ Since in the case with no derivatives the probability density distribution can be obtained
analytically (see eq. (E.0.57)), it is instructive to do the following exercise. First of all, let us
rewrite eq. (E.0.57) for the case with fNL(R) = α(R

2 − ⟨R2⟩) with ⟨R2⟩ = σ20. We find

p(h) =
e−R

2
+/2σ2

0 + e−R
2
−/2σ2

0

√
2πσ0

√
1+ 4α(h+ασ20)

, where R± =
−1±

√
1+ 4α(h+ασ20)

2α
. (E.0.59)

2 From the probability density distribution we compute the moments µn = ∫
∞

−1/4α dhh
n p(h). The explicit expression for

the nth cumulant in terms of the first n moments can be obtained by using Faà di Bruno’s formula for higher derivatives
of composite functions; explicitly, for n ⩾ 2, we have Cn = ∑n

k=1(−1)k−1(k − 1)!Bn,k(0,µ2, . . . ,µn−k+1), where Bn,k are
the incomplete Bell polynomials.
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In this case we have C1(h) = 0 while Cn(h, . . . ,h) ≡ Cn(h) are still given by eq. (E.0.58). We
can compute analytically the characteristic function logχ(λ) = ∑∞n=2(i

n/n!)Cn(h)λ
n. We find

χ(λ) = exp [ −
λ2σ20

2(1− 2iαλσ20)
− iαλσ20]

1
√
1− 2iαλσ20

, (E.0.60)

and one can check for consistency that p(h) in eq. (E.0.59) is given by the inverse Fourier
transform

p(h) =
1

2π
∫

∞

−∞
dλχ(λ)e−ihλ . (E.0.61)

Once we know p(h), we can compute the integral p̄(hc) ≡ ∫
∞
hc
dhp(h), which is the probability

to find h above the threshold hc. We find

p̄NG(hc) =
1

2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2−Erf
⎛
⎜
⎝

1+
√
1+ 4hcα+ 4α2σ20

2
√
2ασ0

⎞
⎟
⎠
−Erf

⎛
⎜
⎝

−1+
√
1+ 4hcα+ 4α2σ20

2
√
2ασ0

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (E.0.62)

with Erf(x) the error function. This simple case, therefore, can be solved exactly. This means
that we can use it as a playground to test the following approximation. Let us organize the
sum over cumulants in a power-series expansion in α. We have

∞
∑
n=2

in

n!
Cn(h)λ

n
= −
σ20λ

2

2
− iαλ3σ40 +α

2σ40(−λ
2
+ 2λ4σ20) +O(α

3
) , (E.0.63)

where the first term on the right-hand side corresponds to the quadratic cumulant that re-
produces the gaussian limit. We can truncate eq. (E.0.63) at some order in α, compute the
corresponding p̄(hc) and compare with eq. (E.0.62). At order α0, we find the gaussian result

p̄G(hc) =
1

2
Erf(

hc
√
2σ0
) ≈

1
√
2πvc

exp(−
v2c
2
) , (E.0.64)

where we define vc ≡ hc/σ0, and the last approximation corresponds to vc ≫ 1 which is the
limit that is relevant for our analysis. Consider now the order O(α). Let us write eq. (E.0.62)
at order O(α) as p̄α(hc) = ∫

∞
hc
dhpα(h) with

pα(h) =
1

2π
∫

∞

−∞
dλ exp [ −

σ20λ
2

2
− i(ασ0)λ

3σ30]e
−ihλ

=

=
1

2π
∫

∞

−∞
dλe−σ

2
0λ

2/2
[
∞
∑
m=0

(−iασ40)
m

m!
] λ3m e−ihλ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i3m ∂3me−ihλ

∂h3m

=

=
∞
∑
m=0

(−iασ40)
m

m!
i3m

∂3m

∂h3m
1

2π
∫

∞

−∞
dλe−σ

2
0λ

2/2 e−ihλ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

gaussian integral 1√
2πσ0

e
−h2/2σ2

0

≡
∞
∑
m=0

p
(m)
α (h) . (E.0.65)
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In practice, we can approximate p̄α(hc) as a sum of terms, p̄α(hc) = ∑∞m=0 p̄
(m)
α (hc) each

one of them defined by means of eq. (E.0.65), that is p̄(m)α (hc) = ∫
∞
hc
dhp

(m)
α (h). A similar

decomposition can be defined at higher orders in α. At order O(α), we find

p̄
(1)
α (hc) =

1
√
2πvc

exp(−
v2c
2
)(ασ0)v

3
c(1−

1

v2c
) , (E.0.66)

p̄
(2)
α (hc) =

1
√
2πvc

exp(−
v2c
2
)(ασ0)

2 v
6
c

2
(1−

10

v2c
+
15

v4c
) , (E.0.67)

p̄
(3)
α (hc) =

1
√
2πvc

exp(−
v2c
2
)(ασ0)

3 v
9
c

6
(1−

28

v2c
+
210

v4c
−
420

v6c
+
105

v8c
) (E.0.68)

p̄
(4)
α (hc) = . . .

Since vc ≫ 1, we are tempted to approximate (by neglecting all sub-leading terms in each of
the round brackets)

p̄
(m)
α (hc) =

1
√
2πvc

exp(−
v2c
2
)
(ασ0v

3
c)

m

m!
Ô⇒ p̄α(hc) =

1
√
2πvc

exp(−
v2c
2
+ασ0v

3
c) .

(E.0.69)

We are now in the position to compare i) the gaussian result in eq. (E.0.64), ii) the exact non-
gaussian result in eq. (E.0.62), iii) the order O(α) approximation p̄α(hc) = ∑

∞
m=0 p̄

(m)
α (hc)

obtained by truncating the series for increasing values of m and iv) the order O(α) approxi-
mation resummed as in eq. (E.0.69). This comparison is shown in the left panel of fig. 14.

We can now consider the order O(α2). We find

p̄
(1)
α2 (hc) =

1
√
2πvc

exp(−
v2c
2
)(ασ0)[v

3
c(1−

1

v2c
)+ 2v4cασ0(1−

5

2v2c
)] , (E.0.70)

p̄
(2)
α2 (hc) =

1
√
2πvc

exp(−
v2c
2
)(ασ0)

2
×

[
v6c
2
(1−

10

v2c
+
15

v4c
)+ 2ασ0v

7
c(1−

29

2v2c
+
42

v4c
−
27

2v6c
)+ 2(ασ0)

2v8c(1−
20

v2c
+
381

4v4c
−
363

4v6c
)] ,

(E.0.71)

p̄
(3)
α2 (hc) = . . .

We are again tempted to consider the limit vc ≫ 1 in which we keep only the leading term
inside the round brackets, meaning that we write

p̄
(1)
α2 (hc) =

1
√
2πvc

exp(−
v2c
2
)(ασ0)(v

3
c + 2v

4
cασ0) , (E.0.72)

p̄
(2)
α2 (hc) =

1
√
2πvc

exp(−
v2c
2
)(ασ0)

2
[
v6c
2
+ 2ασ0v

7
c + 2(ασ0)

2v8c] , (E.0.73)

p̄
(3)
α2 (hc) = . . .
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In this case, we find that the series p̄α2(hc) = ∑
∞
m=0 p̄

(m)
α2 (hc) can be resummed, and we get

the neat expression

p̄α2(hc) =
1

√
2πvc

exp [−
v2c
2
+ασ0v

3
c(1+ 2ασ0vc)] . (E.0.74)

We can do the same comparison we did before, and compare i) the gaussian result in eq. (E.0.64),
ii) the exact non-gaussian result in eq. (E.0.62), iii) the order O(α2) approximation p̄α2(hc) =

∑
∞
m=0 p̄

(m)
α2 (hc) obtained by truncating the series at increasing values of m and iv) the order

O(α2) approximation resummed as in eq. (E.0.74). This comparison is shown in the right panel
of fig. 14.
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Figure 14: Left panel. We compare at order O(α) the exact non-gaussian expression for p̄(hc) (defined below
eq. (E.0.61)) given in eq. (E.0.62) with: i) its gaussian limit (eq. (E.0.64)), ii) its power-series expansion
p̄α(hc) = ∑

∞

m=0 p̄
(m)
α (hc) for increasing values of m (green region) and iii) the resummed expression (la-

belled “exp approx”) given in eq. (E.0.69). For illustration, we take σ0 = 0.1 and α = 0.2. Right panel. Same
as in the left panel but at order O(α2).

The simplified setup studied in this exercise is conceptually different compared to the ac-
tual problem we are facing (since we are only considering here the non-gaussian random
field h without any information about its derivatives) but, as we shall discuss later, we will
use an approximation scheme very similar to the one adopted above. It is, therefore, in-
structive to draw some conclusions (this is particularly important in light of the fact that
in the case without derivatives we know the exact form of the probability density distribu-
tion). Consider first the O(α) approximation illustrated in the left panel of fig. 14. The sum
p̄α(hc) = ∑

∞
m=0 p̄

(m)
α (hc) (truncated at some finitem; in the plot we show the cases withm ⩽ 9)

already gives a good—even though not optimal—approximation of p̄NG(hc). On the contrary,
the resummed expression in eq. (E.0.69), more simple to handle, tends to overestimate the true
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result. Consider now the O(α2) approximation illustrated in the right panel of fig. 14. The
sum p̄α2(hc) = ∑

∞
m=0 p̄

(m)
α2 (hc) (truncated at some finite m; in the plot we show the cases

with m ⩽ 9) gives an excellent approximation of p̄NG(hc). On the contrary, it is evident that
the resummed expression in eq. (E.0.74) quickly diverges from the true result and can not be
trusted.

The reason why the exponential approximation deviates from the exact result can be identified
already at order O(α). Consider (in units of p̄G(hc)) the first term in eq. (E.0.66) that we kept
in our expansion, that is (ασ0)v3c, and compare it with one of the terms that we neglected in
eq. (E.0.68), for instance the fourth in the round brackets −70(ασ0)3v3c. These two terms have
the same power of vc but the latter is parametrically suppressed by (ασ0)2. It is true that we
expect (ασ0)2 ∼ 10−2 ≪ 1 but we also have an extra numerical factor −70 that partially compen-
sate the suppression. On similar ground, neglecting the term −(14/3)(ασ0)3v7c in eq. (E.0.68)
compared to the terms that we kept in eq. (E.0.66) and eq. (E.0.67) seems not justifiable.

We conclude that the exponential approximations in eq. (E.0.69) and eq. (E.0.74) can not be
considered as acceptably good proxies for the exact result since they may overestimate it by
many orders of magnitude. However, in order to have a good approximation of the exact result
it is more proper to decompose p̄α(hc) = ∑∞m=0 p̄

(m)
α (hc) (or even better at order O(α2)) and

sum over m up to some finite value according to the desired accuracy.

After this digression, we are finally ready to compute the non-gaussian cumulants for the random
variables h, hi, hij. For simplicity, we start again from the two-dimensional case, and we have
six random variables {h,hx,hy,hxx,hxy,hyy}. We consider the non-gaussian function fNL(R) =

α(R2 − ⟨R2⟩) since in this case we have C1(h) = ⟨h⟩ = 0. Furthermore, in order to fully exploit the
properties of homogeneity and isotropy (see discussion below eq. (C.0.9)), it is useful to change basis
to the complex conjugated random variables {h,hz,hz∗ ,hzz,hzz∗ ,hz∗z∗}.3

All first-order cumulants vanish. This is true for C1(h) = ⟨h⟩ = 0 as discussed before. As far as
the other first-order cumulants are concerned, we have for instance C1(hz) = ⟨hz⟩ = ∂z⟨h⟩ = 0 which
vanishes (even without imposing C1(h) = 0) because ⟨h⟩ does not depend, as a consequence of
homogeneity, on the specific spatial point at which it is computed. Similarly, we have C1 also for
the remaining random variables.

3 The following relations turn out to be useful. For a generic function f(x,y) ∶ R2 → R we have fz = (fx − ify)/2, fz∗ =
(fx + ify)/2 and

fzz∗ =
1

4
(fxx + fyy) , fzz =

1

4
(fxx − fyy − 2ifxy) , fz∗z∗ =

1

4
(fxx − fyy + 2ifxy) . (E.0.75)

The stationary point condition fx = fy = 0 becomes fz = 0 (hence fz∗ = 0). The condition fxxfyy − f2xy > 0 that separates
extrema from saddle points becomes f2zz∗ > fzzfz∗z∗ = ∣fzz∣2 that is fzz∗ < −∣fzz∣ ∨ fzz∗ > ∣fzz∣ (equivalently, ∣fzz∗ ∣ > ∣fzz∣).
Notice that fzz∗ is real. Maxima correspond to the condition fzz∗ < 0 while minima are identified by fzz∗ > 0.
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As far as the second-order cumulants are concerned, we find the following non-zero entries

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h hz hz∗ hzz hzz∗ hz∗z∗

h C2(h,h) 0 0 0 C2(h,hzz∗) 0

hz 0 0 C2(hz,hz∗) 0 0 0

hz∗ 0 C2(hz,hz∗) 0 0 0 0

hzz 0 0 0 0 0 C2(hzz,hz∗z∗)
hzz∗ C2(h,hzz∗) 0 0 0 C2(hzz∗ ,hzz∗) 0

hz∗z∗ 0 0 0 C2(hzz,hz∗z∗) 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(E.0.76)
with

C2(h,h) = σ20(1+ 2α
2σ20) , (E.0.77)

C2(hz,hz∗) =
σ21
4
(1+ 4α2σ20) , (E.0.78)

C2(h,hzz∗) = −
σ21
4
(1+ 4α2σ20) , (E.0.79)

C2(hzz,hz∗z∗) = C2(hzz∗ ,hzz∗) =
σ22
16
[1+ 4α2

(
2σ41
σ22
+σ20)] . (E.0.80)

At order O(α), all non-gaussian corrections vanish. We already computed C2(h,h) in eq. (E.0.46). It
is instructive to consider explicitly few more cases. The relevant equations are eq. (E.0.10), eq. (E.0.33),
eq. (E.0.37) and eq. (E.0.41).

Consider for instance the computation of C2(hz,hz∗). We have

C2(hz,hz∗)
eq. (E.0.10)
= ∂z1∂z∗2C2(h1,h2)∣

x⃗1=x⃗2

(E.0.81)

= ∂z1∂z∗2 {C2(R1,R2) +C2[fNL(R1),R2] +C2[R1, fNL(R2)] +C2[fNL(R1), fNL(R2)]}∣
x⃗1=x⃗2

= ∂z1∂z∗2
[⟨R1R2⟩ + ⟨f

(1)
NL (R1)⟩⟨R1R2⟩ + ⟨f

(1)
NL (R2)⟩⟨R1R2⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(α), eq. (E.0.33)

+⟨fNL(R1)fNL(R2)⟩ − ⟨fNL(R1)⟩⟨fNL(R2)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(α2), eq. (E.0.37)

]∣
x⃗1=x⃗2

= ⟨RzRz∗⟩ + 2⟨f
(1)
NL (R)⟩⟨RzRz∗⟩ +α

2∂z1∂z∗2⟨R
2
1R

2
2⟩∣x⃗1=x⃗2

(E.0.82)

= ⟨RzRz∗⟩ + 4α
2
⟨R

2
RzRz∗⟩ . (E.0.83)

Eq. (E.0.82) follows from the fact that the expectation values ⟨fNL(R)⟩ and ⟨f(1)NL (R)⟩ do not depend,
because of homogeneity, on the specific spatial point at which they are evaluated and, therefore,
their spatial derivatives vanish. Eq. (E.0.83) follows from the fact that ⟨f(1)NL (R)⟩ = 2α⟨R⟩ = 0; at order
O(α2), we moved the derivatives inside the statistical average and set x⃗1 = x⃗2. In eq. (E.0.83) we
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have ⟨RzRz∗⟩ = (⟨RxRx⟩ + ⟨RyRy⟩)/4 = σ
2
1/4 and ⟨R2RzRz∗⟩ = ⟨R

2(R2
x +R

2
y)⟩/4. This statistical

average can be computed by means of the multivariate normal distribution in eq. (C.0.13)

⟨R
2
(R

2
x +R

2
y)⟩ = ∫ dRdRxdRydRxxdRxydRyyR

2
(R

2
x +R

2
y)P(Rx)P(Ry)P(Rxy)P(R,Rxx,Ryy)

(E.0.84)

= ∫ dRxdRy(R
2
x +R

2
y)P(Rx)P(Ry)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=σ2

1

∫ dRxyP(Rxy)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

∫ dRR2
∫ dRxxdRyyP(R,Rxx,Ryy)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 1√
2πσ2

0

exp(−R2/2σ2
0
)

,

and, from the explicit computation of the integrals, we get ⟨R2(R2
x +R

2
y)⟩ = σ

2
0σ

2
1. All in all, we find

C2(hz,hz∗) = σ21(1 + 4α
2σ20)/4. All the remaining non-zero entries in eq. (E.0.76) can be derived in

the same way.
In eq. (E.0.76) the zero entries vanish as a consequence of isotropy. We can introduce again the

parameter κ ≡ (# z∗ derivatives inC2)− (# zderivatives inC2) and set to zero all cumulants with κ ≠ 0
since not invariant under spatial rotations. The reasoning that we followed in the gaussian case
for the computations of the two-point correlators (see discussion below eq. (C.0.9)) applies also in
the case of generic nth-order cumulants. This is because cumulants are functions of moments (see
eqs. (E.0.4-E.0.7)). Furthermore, the relation between C2(hz,hz∗) and C2(h,hzz∗) can be understood
as a consequence of homogeneity.

We now move to consider the third-order cumulants. Based on isotropy, we expect only a handful
of non-zero cumulants (that are those with κ = 0) that we list in table 2.

We already computed C3(h,h,h) = 6ασ40 in eq. (E.0.52). As far as the remaining cumulants are
concerned, we find

C3(h,hz,hz∗) = ασ20σ
2
1 , (E.0.85)

C3(h,h,hzz∗) = −2ασ20σ
2
1 , (E.0.86)

C3(h,hzz∗ ,hzz∗) =
α

8
(3σ41 + 2σ

2
0σ

2
2) , (E.0.87)

C3(h,hzz,hz∗z∗) =
α

4
σ20σ

2
2 , (E.0.88)

C3(hz,hz∗ ,hzz∗) = −
α

8
σ41 , (E.0.89)

C3(hz,hz,hz∗z∗) = C3(hz∗ ,hz∗ ,hzz) =
α

4
σ41 , (E.0.90)

C3(hzz∗ ,hzz∗ ,hzz∗) = −
3α

16
σ21σ

2
2 , (E.0.91)

C3(hzz,hz∗z∗ ,hzz∗) = −
α

16
σ21σ

2
2 . (E.0.92)
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No derivatives 2 derivatives 4 derivatives 6 derivatives

C3(h,h,h) C3(h,h,hzz∗) C3(h,hzz∗ ,hzz∗) C3(hzz∗ ,hzz∗ ,hzz∗)
×1 ×3 ×3 ×1

C3(h,hz,hz∗) C3(hz,hz∗ ,hzz∗) C3(hzz,hz∗z∗ ,hzz∗)
×6 ×6 ×6

C3(h,hzz,hz∗z∗)
×6

C3(hz,hz,hz∗z∗)
×3

C3(hz∗ ,hz∗,hzz)
×3

Table 2: Third-order cumulants for the random variables {h,hz,hz∗ ,hzz,hzz∗ ,hz∗z∗} that are non-zero based on
isotropy. For these cumulants, we have κ ≡ (# z∗ derivatives inC3) − (# zderivatives inC3) = 0. We gather
together in each column cumulants with the same number of spatial derivatives (cumulants without derivatives
in the first column, with two derivatives in the second, four in the third and so on). For each entry, the tiny
numbers in the second row indicate the multiplicity of the corresponding cumulant due to distinct permutations
of its arguments.

We find that corrections at order O(α2) vanish for all third-order cumulants listed before4. How-
ever, as already discussed in the case of eq. (E.0.52), eqs. (E.0.85-E.0.92) are not exact because we
expect the presence of O(α3) corrections we did not include. It is simple to check that proper-
ties of homogeneity are respected by the explicit expressions in eqs. (E.0.85-E.0.92). For instance,
from ∂z∗C3(hz,hz,hz∗) = 0 we find 2C3(hz,hz∗ ,hzz∗) = −C3(hz,hz,hz∗z∗) that is indeed veri-
fied by eq. (E.0.89) and eq. (E.0.90). Similarly, from ∂z∗C3(h,h,hz) = 0 we have C3(h,h,hzz∗) =
−2C3(h,hz,hz∗) that is indeed verified by eq. (E.0.85) and eq. (E.0.86).

After computing the cumulants at the desired order in α, we are finally ready to take the last step
in our computation. From the cumulants, we will reconstruct the characteristic function and, via an
inverse Fourier transform, the probability density distribution. Few technical remarks are in order

4 This happens because the O(α2) contribute to C3(h1,h2,h3) is:

∆C3(h1,h2,h3) = 2α2 [⟨R1R2⟩⟨R2
3(R1 +R2)⟩ + ⟨R2R3⟩⟨R2

1(R2 +R3)⟩ + ⟨R3R1⟩⟨R2
2(R3 +R1)⟩]

Thus, when we derive and then we set x⃗1 = x⃗2 = x⃗3, following the prescription (E.0.10) and we return to the {x,y} basis,
we see that all the terms have the form ⟨ξj1ξj2ξj3⟩, where ξjk ∈ {R,Rx,Ry,Rxx,Rxy,Ryy}. These are third order
moments of a gaussian multivariate distribution, which are vanishing.
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because it is crucial to properly identify the variables participating to the Fourier transforms. The
inverse Fourier transform of the first line in eq. (E.0.1) is given by

P(ξ1, . . . ,ξN) = ∫
dλ1

(2π)
. . .
dλN

(2π)
χ(λ1, . . . ,λN) exp [−i(ξ1λ1 + ⋅ ⋅ ⋅ + ξNλN)] . (E.0.93)

Both eq. (E.0.1) and eq. (E.0.93) are valid for real variables. The simplest identification, therefore,
would be {ξi=1,...,6} = {h,hx,hy,hxx,hxy,hyy}. However, we found more efficient to work with
{h,hz,hz∗ ,hzz,hzz∗ ,hz∗z∗} since properties like isotropy become more transparent. Among these
variables, h and hzz∗ are real while hz and hzz are complex (with conjugated variables given by
hz∗ and hz∗z∗ , respectively). In this case a suitable choice of real variables, therefore, is {ξi=1,...,6} =

{h, Rehz, Imhz, Rehzz,hzz∗ , Imhzz} with the obvious relations

Rehz = (hz +hz∗)/2 , Imhz = −i(hz −hz∗)/2 , Rehzz = (hzz +hz∗z∗)/2 , Imhzz = −i(hzz −hz∗z∗)/2 .
(E.0.94)

Consequently, we introduce their Fourier counterparts {λi=1,...,6} ≡ {λ,λRehz ,λImhz ,λRehzz ,λzz∗ ,λImhzz}

such that the characteristic function in eq. (E.0.1) is given by the integral

∫ dhdRehz dImhz dRehzz dhzz∗ dImhzz (E.0.95)

P(h,hz,hz∗ ,hzz,hzz∗ ,hz∗z∗) exp[i(hλ+RehzλRehz + ImhzλImhz + . . . )] .

Consider, for instance, the two terms RehzλRehz + ImhzλImhz in the argument of the exponential.
By means of eqs. (E.0.94) we can simply rewrite RehzλRehz + ImhzλImhz = hzλ

∗
z +hz∗λz if we define

λz ≡ (λRehz + iλImhz)/2. Notice that in this case we have λRehz = 2Reλz and λImhz = 2Imλz. We can,
therefore, use λz as the complex Fourier variable associated to hz∗ (and, correspondingly, its con-
jugated λ∗z associated to hz). Similarly, we introduce λzz ≡ (λRehzz + iλImhzz)/2, and the exponential
function in eq. (E.0.95) reads exp{i[hλ + hzz∗λzz∗ + (hzλ∗z + hzzλ∗zz + c.c.)]}. We are now in the po-
sition to consider explicitly the inverse Fourier transform of eq. (E.0.95). As integration variables,
instead of λRehz ,λImhz ,λRehzz ,λImhzz we use λz and λzz introduced before by means of the relations
λRehz = 2Reλz, λImhz = 2Imλz, λRehzz = 2Reλzz and λImhzz = 2Imλzz. We have

P(h,hz,hz∗ ,hzz,hzz∗ ,hz∗z∗) =∫
dλ

(2π)

dReλz
π

dImλz
π

dλzz∗

(2π)

dReλzz
π

dImλzz
π

(E.0.96)

χ(λ,λz,λzz,λzz∗) exp{−i [hλ+hzz∗λzz∗ + (hzλ∗z +hzzλ
∗
zz + c.c.)]} ,

with of course λz = Reλz + iImλz and λzz = Reλzz + iImλzz. The natural log of the characteristic
function logχ(λ,λz,λzz,λzz∗) is written, according to eq. (E.0.3), as a series expansion in terms of
the cumulants with respect to the Fourier variables {λ,λz,λzz,λzz∗} (remember that λz and λzz are
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complex variables while λ and λzz∗ are real). The first non-gaussian correction arises at order O(α)
and reads

logχ(λ,λz,λzz,λzz∗) = (E.0.97)

−
1

2
C2(h,h)λ2 −C2(hz,hz∗)∣λz∣2 −C2(h,hzz∗)λλzz∗ −C2(hzz,hz∗z∗)∣λzz∣2 −

1

2
C2(hzz∗ ,hzz∗)λ2zz∗

−
i

6
C3(h,h,h)λ3 −

i

2
C3(h,h,hzz∗)λ2λzz∗ − iC3(h,hz,hz∗)λ∣λz∣2 −

i

2
C3(h,hzz∗ ,hzz∗)λλ2zz∗

− iC3(h,hzz,hz∗z∗)λ∣λzz∣2 − iC3(hz,hz∗ ,hzz∗)∣λz∣2λzz∗ −
i

2
C3(hz,hz,hz∗z∗)(λ∗z)

2λzz

−
i

2
C3(hz∗ ,hz∗ ,hzz)λ2zλ

∗
zz −

i

6
C3(hzz∗ ,hzz∗ ,hzz∗)λ3zz∗ − iC3(hzz,hz∗z∗ ,hzz∗)∣λzz∣2λzz∗ ,

where the second-order cumulants given in eq. (E.0.76) are taken at order O(α) and, therefore,
coincide with their gaussian limit. Notice that each term in the series expansion enters with a
coefficient that counts its multiplicity (explicitly written in table 2). This follows from the fact that in
the last line in eq. (E.0.1) there are different terms that give the same contribution. The integration in
eq. (E.0.96) gives the probability density distribution P(h,hz,hz∗ ,hzz,hzz∗ ,hz∗z∗). After computing
P(h,hz,hz∗ ,hzz,hzz∗ ,hz∗z∗), it is also possible to reconstruct P(h,hx,hy,hxx,hxy,hyy) by means of
the Jacobi’s multivariate theorem in eq. (E.0.14) using the transformation in eq. (E.0.75).

It is possible to check this procedure in the gaussian limit α → 0. In the gaussian limit only
the second-order cumulants survive (with α → 0 taken in the corresponding expressions given
in eq. (E.0.76)). The inverse Fourier transform in eq. (E.0.96) can be computed analytically in the
gaussian limit, and one gets P(R,Rz,Rz∗ ,Rzz,Rzz∗ ,Rz∗z∗)where we usedR instead of h since α→
0. The determinant of the Jacobian matrix is ∣detJ(R,Rx,Ry,Rxx,Rxy,Ryy)∣ = 1/64, and Jacobi’s
multivariate theorem gives precisely eq. (C.0.13). This is a non-trivial check that our procedure is
technically correct.

In the presence of local non-gaussianities, the computation of eq. (E.0.96) is much more com-
plicated because χ(λ,λz,λzz,λzz∗) in eq. (E.0.97) is an exponential function whose argument is a
polynomial of cubic order. A possible solution strategy is the following. Let us write eq. (E.0.96) in
the schematic form (we use for illustration a generic set of variables {λi=1,...,N} that in the actual
computation must be replaced with {λ,λz,λzz,λzz∗})

χ(λi) = exp[p2(λi) +p3(λi)] = exp[p2(λi)] exp[p3(λi)] = exp[p2(λi)]
∞
∑
m=0

1

m!
p3(λi)

m , (E.0.98)

where p2(λi) is the quadratic polynomial in {λi} that corresponds to the gaussian limit α → 0

while p3(λi) is the cubic polynomial that contains O(α) deviations. At a given order m in the
series expansion defined by eq. (E.0.98), the inverse Fourier integral in eq. (E.0.96) can be computed
analytically. This is because we can make use of the following identity (the sum over k is understood)

∫ dλ1 . . . λN(λ
n
i . . . λ

m
j ) exp[p2(λi)] exp(−iλkhk) =

= (i)n . . . (i)m
∂n

∂hni
. . .

∂m

∂hmj
∫ dλ1 . . . λN exp[p2(λi)] exp(−iλkhk) , (E.0.99)
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where the last integral is nothing but the gaussian integral that can be easily computed. We go along
with this strategy, that we summarize for ease of reading in the following.

i) For fixed m, we compute the probability density distribution in eq. (E.0.96) performing the
inverse Fourier transform by means of the trick in eq. (E.0.98) and eq. (E.0.99).

ii) We transform P(h,hz,hz∗ ,hzz,hzz∗ ,hz∗z∗) into P(h,hx,hy,hxx,hxy,hyy) by means of Jacobi’s
multivariate theorem (as illustrated before for the gaussian case).

iii) We set hx = hy = 0, and compute the number density of local maxima nmax(h) according to
the general definition in eq. (C.0.5) (with of course h instead of R, and working in two spatial
dimensions).

iv) We use the same change of variables proposed in eq. (C.0.17) (with again h instead of R),
and we integrate over θ, r, h and s in the domain defining maxima, as discussed in the
gaussian case; similarly, we implement the same lower bound of integration over s given by
the threshold condition for black hole formation in eq. (C.0.36). Notice that in the following
we will set the lower limit of integration over h to be hmin = −∞ despite the fact that we have
hmin = −(1 + 4α

2σ20)/4α for h = R+α(R2 − σ20) and R ∈ (−∞,+∞). Approximating hmin with
its gaussian value allows to obtain close analytical formulas. We shall justify the validity of
this approximation at the end of this section.

v) Finally, we define the mass fraction of black holes as in eq. (C.0.35).

We now illustrate the result of this procedure. Needless to say, the term with m = 0 reproduces the
gaussian result in eq. (C.0.35). The first correction is given by the term with m = 1. Let us introduce
for the sake of simplicity the notation β = βG +∑

∞
m=1β

(α,m)
NG with βG given by eq. (C.0.35). We find

β
(α,1)
NG = (

ασ21
σ2
)
2
√
2

π3/2
e−6s

2
min/σ2

2 [
s2min

σ22
+ e4s

2
min/σ2

2 (−
s2min

σ22
+ 4
s4min

σ42
)] . (E.0.100)

For m = 2, we find

β
(α,2)
NG = (

ασ21
σ2
)

2
e−6s

2
min/σ2

2

3π3/2
{2
√
3πe6s

2
min/σ2

2Erfc(
√
6smin

σ2
)+ 3

√
2
smin

σ2
[7− 40

s2min

σ22
+ 48

s4min

σ42

+ e4s
2
min/σ2

2(− 3+ 68
s2min

σ22
− 176

s4min

σ42
+ 64

s6min

σ62
)]} . (E.0.101)

For increasing values of m the corresponding expressions of β(m)NG become more lengthy and less
transparent, and we do not report them explicitly. On the contrary, we make use of the same ex-
pansion introduced in eq. (C.0.35) for smin/σ2 ≳ 1. Interestingly, in this limit we find that the generic
term β

(α,m)
NG can be written as

β
(α,m)
NG ≈ [(

s3min

σ32
)
ασ21
σ2
]

m
24m−1/2

π3/2m!
(
smin

σ2
)e−2s

2
min/σ2

2 , (E.0.102)
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and the sum ∑∞m=1β
(α,m)
NG admits the following analytical form

∞
∑
m=1

β
(α,m)
NG ≈

1
√
2π3/2

(
smin

σ2
)e−2s

2
min/σ2

2{− 1+ exp [16(
s3min

σ32
)
ασ21
σ2
]} . (E.0.103)

The sum β = βG +∑
∞
m=1β

(α,m)
NG gives

β ≈
1

√
2π3/2

(
smin

σ2
) exp [−

2s2min

σ22
+ 16(

s3min

σ32
)
ασ21
σ2
] . (E.0.104)

Notice that the structure of this equation is analogue to the one that we found in eq. (E.0.69).
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Figure 15: Left panel. We compare the gaussian approximation for β given in eq. (C.0.35) with i) its power-series
expansion β = βG +∑

∞

m=1β
(α,m)
NG computed at order O(α) for increasing values of m (green region, with

the thin solid green lines that label the case m = 1, . . . ,6) and ii) the resummed expression (labelled “exp
approx”) given in eq. (E.0.104). Right panel. Same as in the left panel but at order O(α2) and up to m = 4.
In both panels we consider the log-normal model for the power spectrum, and we use the benchmark values
v = 0.6 and PR(k⋆) = 5× 10−3. We take α = 0.2.

Before proceeding, let us come back to the issue of the lower limit of integration over h. As
anticipated, from the very same definition h = R + α(R2 − σ20) it follows that h > hmin = −(1 +

α2σ20)/4α. To be precise, therefore, this lower limit of integration should be implemented when
computing the non-gaussian contributions β(α,m)

NG . However, implementing the gaussian lower limit
of integration hmin = −∞ does not change qualitatively our results, and the reason is the following.
When computing β, we only focus on maxima with large curvature −∇2h/σ2 since they correspond
to peak of the overdensity field. The value of −∇2h/σ2 is positively correlated with the value of
h/σ0, and the amount of correlation is controlled by the parameter γ. This fact was illustrated in
appendix C in the gaussian case, and it remains valid also in the presence of non-gaussianities (for
the values of α that are relevant for our analysis). When γ → 1, the correlation is maximal and
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regions with large −∇2h/σ2 are also regions with positive h/σ0 ≳ 1. This means that regions where
h takes negative values are completely irrelevant for our purposes. In the cases that are relevant for
our analysis, we typically have γ ∼ 0.6; we checked numerically (using for simplicity the log-normal
power spectrum, and integrating numerically over s) that the value of β(α,m)

NG computed with the
proper lower bound of integration over h remain equal to those obtained with the gaussian limit
hmin → −∞. In order to see some deviation, one should consider the opposite limit γ → 0. In this
limit −∇2h/σ2 and h/σ0 are only weakly correlated and it is therefore possible to find regions with
large −∇2h/σ2 in which h takes negative values. In such situation, of course, implementing the
correct lower limit of integration over h becomes important. However, cases with γ → 0 fall outside
the class of models we are considering in this paper.

We compare in the left panel of fig. 15 the series β = βG +∑
mmax
m=1 β

(α,m)
NG , truncated at some finite

mmax, with the resummed expression in eq. (E.0.104). We show the cases mmax = 1, . . . ,6 and we use
the log-normal power spectrum in eq. (C.0.24) to compute the spectral parameters. The situation
is very similar to what already discussed in fig. 14, and we can exploit the knowledge that we
gained from that case to argue the following conclusions. The series β = βG +∑

mmax
m=1 β

(α,m)
NG shows a

convergence towards the order O(α) approximation (that is, we recall, the approximation in which
we only include the leading part of the third-order cumulants) of the exact non-gaussian result
while the exponential approximation overestimates the abundance.

We move to consider corrections at order O(α2). We already computed in eqs. (E.0.77-E.0.80) the
second-order cumulants at order O(α2). In addition, we need to compute the fourth-order cumu-
lants at orderO(α2). We computed in eq. (E.0.56) the simplest one without derivatives, C4(h,h,h,h) =
48α2σ60. The remaining non-zero cumulants are summarized in table 3. We find the following explicit
expressions

C4(h,h,h,hzz∗) = −18α2σ40σ
2
1 , (E.0.105)

C4(h,h,hz,hz∗) = 6α2σ40σ
2
1 , (E.0.106)

C4(h,h,hzz,hz∗z∗) =
3α2

2
σ40σ

2
2 , (E.0.107)

C4(h,h,hzz∗ ,hzz∗) =
α2

2
σ20(10σ

4
1 + 3σ

2
0σ

2
2) , (E.0.108)

C4(h,hz,hz∗ ,hzz∗) = −
3α2

2
σ20σ

4
1 , (E.0.109)

C4(h,hz,hz,hz∗z∗) = C4(h,hz∗ ,hz∗ ,hzz) = α2σ20σ
4
1 , (E.0.110)

C4(hz,hz,hz∗ ,hz∗) = 2α2σ20σ
4
1 , (E.0.111)

C4(hz,hz∗ ,hzz∗ ,hzz∗) =
α2

4
σ21(σ

4
1 +σ

2
0σ

2
2) , (E.0.112)

C4(hz,hz,hz∗z∗ ,hzz∗) = C4(hz∗ ,hz∗ ,hzz,hzz∗) = 0 , (E.0.113)

(E.0.114)
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No derivatives 2 derivatives 4 derivatives 6 derivatives 8 derivatives

C4(h,h,h,h) C4(h,h,h,hzz∗) C4(h,h,hzz,hz∗z∗) C4(hz,hz∗ ,hzz∗ ,hzz∗) C4(hzz,hzz,hz∗z∗ ,hz∗z∗)
×1 ×4 ×12 ×12 ×6

C4(h,h,hz,hz∗) C4(h,h,hzz∗ ,hzz∗) C4(hz,hz,hz∗z∗ ,hzz∗) C4(hzz∗ ,hzz∗ ,hzz∗ ,hzz∗)
×12 ×6 ×12 ×1

C4(h,hz,hz∗ ,hzz∗) C4(hz∗ ,hz∗ ,hzz,hzz∗) C4(hzz,hz∗z∗ ,hzz∗ ,hzz∗)
×24 ×12 ×12

C4(h,hz,hz,hz∗z∗) C4(h,hzz∗ ,hzz∗ ,hzz∗)
×12 ×4

C4(h,hz∗ ,hz∗ ,hzz) C4(h,hzz,hz∗z∗ ,hzz∗)
×12 ×24

C4(hz,hz,hz∗ ,hz∗) C4(hz,hz∗ ,hzz,hz∗z∗)
×6 ×24

Table 3: Fourth-order cumulants for the random variables {h,hz,hz∗ ,hzz,hzz∗ ,hz∗z∗} that are non-zero based on
isotropy. For these cumulants, we have κ ≡ (# z∗ derivatives inC4) − (# zderivatives inC4) = 0. As in table 2,
we gather together in each column cumulants with the same number of spatial derivatives (cumulants without
derivatives in the first column, with two derivatives in the second, four in the third and so on). For each entry,
the tiny numbers in the second row indicate the multiplicity of the corresponding cumulant due to distinct
permutations of its arguments.

C4(h,hzz∗ ,hzz∗ ,hzz∗) = −
3α2

4
σ21(σ

4
1 + 2σ

2
0σ

2
2) , (E.0.115)

C4(h,hzz,hz∗z∗ ,hzz∗) = −
α2

2
σ20σ

2
1σ

2
2 , (E.0.116)

C4(hz,hz∗ ,hzz,hz∗z∗) =
α2

4
σ21(σ

4
1 +σ

2
0σ

2
2) , (E.0.117)

C4(hzz,hzz,hz∗z∗ ,hz∗z∗) =
α2

8
σ20σ

4
2 , (E.0.118)

C4(hzz∗ ,hzz∗ ,hzz∗ ,hzz∗) =
3α2

16
σ22(3σ

4
1 +σ

2
0σ

2
2) , (E.0.119)

C4(hzz,hz∗z∗ ,hzz∗ ,hzz∗) =
α2

32
σ22(3σ

4
1 + 2σ

2
0σ

2
2) , (E.0.120)

that we derive as before using eq. (E.0.10) and eq. (E.0.41). Conceptually, the rest of the computation
follows again points i)-v) discussed below eq. (E.0.99). At the technical level, instead of eq. (E.0.98)
we now have

χ(λi) = exp[p2(λi) +p4(λi)] = exp[p2(λi)] exp[p4(λi)] = exp[p2(λi)]
∞
∑
m=0

1

m!
p4(λi)

m , (E.0.121)

where p4(λi) is the quartic polynomial that contains O(α) and O(α2) deviations. The computa-
tion of the abundance follows the same prescription discussed before, and we introduce the series
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expansion β = βG +∑
mmax
m=1 β

(α2,m)
NG with βG given by eq. (C.0.35) and β(α

2,m)
NG which corresponds to

the series in eq. (E.0.121) truncated at some m > 0. For instance, we find (with s̄min ≡ smin/σ2 and
γ = σ21/σ2σ0)

β
(α2,1)
NG = (E.0.122)

=

√
2ασ0s̄min

π3/2
e−2s̄

2
min [α(2+γ2)σ0 − 2γs̄min − 4α(5+ 8γ

2
)σ0s̄

2
min + 8γs̄

3
min + 16α(1+ 3γ

2
)σ0s̄

4
min] +O(e

−6s̄2min) .

The exact analytic expressions for β(α
2,m)

NG are quite lengthly and we do not report them here ex-

plicitly. The sum ∑∞m=1β
(α2,m)
NG admits an analytical expression only if we retain, in each one of

the β(α
2,m)

NG , the highest power of s̄min in the polynomial that multiplies the leading exponential
suppression. We find

β ≈
1

√
2π3/2

(
smin

σ2
) exp

⎧⎪⎪
⎨
⎪⎪⎩

−
2s2min

σ22
+ 16(

s3min

σ32
)
ασ21
σ2
+ 32(

s4min

σ42
)α2

⎡
⎢
⎢
⎢
⎢
⎣

3(
σ21
σ2
)

2

+σ20

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (E.0.123)

The structure of this expression is analogue to eq. (E.0.74). As shown in fig. 15, the exponential ap-
proximation contained in eqs. (E.0.104) and (E.0.123) gets worse for increasing smin/σ2 and diverges
from the actual result, overstimating the abundance. The failure of the exponential approximation
is analogue to the one discussed in section 6.2 in the context of threshold statistics.
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T O WA R D S A N E X A C T C O M P U TAT I O N

The generic n-th order cumulant can be exactly computed if we specify the explicit form of the
non-gaussianity. In our case fNL(R) = α(R

2 − ⟨R2⟩).
The translation only affects the first-order cumulant:

C1[R+α(R
2
− ⟨R

2
⟩)] = C1(R+αR

2
) −α⟨R2

⟩, (F.0.1)

Cn[R1 +α(R
2
1 − ⟨R

2
⟩), . . . ,Rn +α(R

2
n − ⟨R

2
⟩)] = Cn(R1 +αR

2
1, . . . ,Rn +αR

2
n), ∀n > 1. (F.0.2)

Therefore we can set, without loss of generality, fNL(R) = αR
2 in the computation of the cumulants

of order higher than one. The quadratic form of the non-linearity allows us to use the Gaussian
integral extended to the complex plane thanks to analytic continuation.

We know that, in general Cn(h1, . . . ,hn) is sum of a series of contributes of different orders of
which the last one must be O(αn) and it is represented by Cn(αR

2
1, . . . ,αR2

n).

f.1 cancellation of the contributes up to O(αn−2)

As a first step, we want to prove that Cn(αR
2
1, . . . ,αR2

k,Rk+1, . . . ,Rn) = 0 for k < n− 2. This implies
that Cn(h1, . . . ,hn) starts at order O(αn−2). Using eq. (E.0.20):

Cn(αR
2
1, . . . ,αR2

k,Rk+1, . . . ,Rn) = (F.1.1)

= (−i)n
∂

∂λ1
. . .

∂

∂λn
log∫ dR1 . . . dRne

i∑k
i=1 αR2

iλi+i∑n
i=k+1Riλip(R1, . . . ,Rn)∣

λ1= ...=λn=0
= (F.1.2)

= (−i)n
∂

∂λ1
. . .

∂

∂λn
log∫ dR1 . . . dRke

i∑k
i=1 αR2

iλi [∫ dRk+1 . . . dRne
i∑n

i=k+1Riλi p(R1, . . . ,Rn)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡I ′(R1,...,Rk,λk+1,...,λn)

RRRRRRRRRRRRRRRRRRRRRRRRλ=0

.

(F.1.3)

We know that

∫ dR1 . . . dRke
i∑k

i=1RiλiI
′
(R1, . . . ,Rk,λk+1, . . . ,λn) = χ(λ1, . . . ,λn) = e−

1
2 ∑n

i,j=1 σijλiλj , (F.1.4)

and so

I
′
(R1, . . . ,Rk,λk+1, . . . ,λn) = (F.1.5)

= ∫
dλ1

2π
. . .
dλk

2π
exp [ − i

k

∑
i=1
λiRi −

1

2
(

k

∑
i,j=1

σijλiλj + 2
k

∑
i=1

n

∑
j=k+1

σijλiλj +
n

∑
i,j=k+1

σijλiλj)] .
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Let us use the matrix notation, defining the following objects:

λ⃗ ≡ (λ1, . . . ,λk)T = (λi)ki=1, R⃗ ≡ (R1, . . . ,Rk)
T
= (Ri)

k
i=1, (F.1.6)

σ̂ ≡ (σij)
k
i,j=1, σ⃗j ≡ (σ1j, . . . ,σkj)T = (σij)ki=1 with j ∈ {k+ 1, . . . ,n} . (F.1.7)

In this way

I
′
(R⃗,λk+1, . . . ,λn) = e−

1
2 ∑n

i,j=k+1 σijλiλj
∫

dkλ

(2π)k
e
− 1

2
λ⃗Tσ̂λ⃗+λ⃗⋅(−iR⃗−∑n

j=k+1 λjσ⃗j) = (F.1.8)

=
1

√
(2π)k det σ̂

exp
⎡
⎢
⎢
⎢
⎢
⎣

1

2

⎛

⎝
iR⃗ +

n

∑
j=k+1

λjσ⃗j
⎞

⎠

T

σ̂−1 (iR⃗ +
n

∑
l=k+1

λlσ⃗l)−
1

2

n

∑
i,j=k+1

σijλiλj

⎤
⎥
⎥
⎥
⎥
⎦

.

Now, let us consider the integral

I(λ1, . . . ,λn) = ∫ dR1 . . . dRke
i∑k

i=1 αR2
iλiI

′
(R⃗,λk+1, . . . ,λn) ; (F.1.9)

we can write
k

∑
i=1
αR2

iλi =
k

∑
i,j=1

αRiλiδijRj = αR⃗
TΛR⃗ , (F.1.10)

where we defined the diagonal matrix Λ = diag(λ1, . . . ,λk). In this way, we have

I(λ1, . . . ,λn)

=
1

√
(2π)k det σ̂

∫ dkR exp
⎡
⎢
⎢
⎢
⎢
⎣

iαR⃗TΛR⃗ +
1

2

⎛

⎝
iR⃗ +

n

∑
j=k+1

λjσ⃗j
⎞

⎠

T

σ̂−1 (iR⃗ +
n

∑
l=k+1

λlσ⃗l)−
1

2

n

∑
i,j=k+1

σijλiλj

⎤
⎥
⎥
⎥
⎥
⎦

(F.1.11)

=
1

√
(2π)k det σ̂

e
1
2
(∑n

j=k+1 λjσ⃗jσ̂
−1∑n

l=k+1 λlσ⃗l−∑n
i,j=k+1 σijλiλj)

∫ dkRe−
1
2
R⃗T(σ̂−1−2iαΛ)R⃗+iR⃗Tσ̂−1∑n

j=k+1 λjσ⃗j

(F.1.12)

=
1

√
det (1− 2iασ̂Λ)

exp
⎧⎪⎪
⎨
⎪⎪⎩

−
1

2

n

∑
j=k+1

λjσ⃗
T
j σ̂
−1
[(1− 2iασ̂Λ)

−1
− 1]

n

∑
l=k+1

λlσ⃗l −
1

2

n

∑
i,j=k+1

σijλiλj

⎫⎪⎪
⎬
⎪⎪⎭

,

(F.1.13)

where we used that det(σ̂−1 − 2iαΛ) = det σ̂−1 det(1 − 2iασΛ) and σ̂T = σ̂ . Using the following
property of the determinant of a matrix:

det(1− 2iασ̂Λ) = exp[tr log(1− 2iασ̂Λ)] = exp [−tr
∞
∑
m=1

1

m
(2iασ̂Λ)m] , (F.1.14)

and also the geometric series

[(1− 2iασ̂Λ)−1 − 1] =
∞
∑
m=1
(2iασ̂Λ)m , (F.1.15)
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we find

I(λ1, . . . ,λn) = exp [
1

2
tr
∞
∑
m=1

1

m
(2iασ̂Λ)m −

1

2

n

∑
j=k+1

λjσ⃗
T
j σ̂
−1 ∞
∑
m=1
(2iασ̂Λ)m

n

∑
l=k+1

λlσ⃗l −
1

2

n

∑
i,j=k+1

σijλiλj] .

Thus, the cumulant is

Cn(αR
2
1, . . . ,αR2

k,Rk+1 . . . ,Rn) = (−i)
n ∂

∂λ1
. . .

∂

∂λn
logI(λ1, . . . ,λn)∣

λ=0
= (F.1.16)

= (−i)n
∂

∂λ1
. . .

∂

∂λn
[
1

2
tr
∞
∑
m=1

1

m
(2iασ̂Λ)m −

1

2

n

∑
j=k+1

λjσ⃗
T
j σ̂
−1 ∞
∑
m=1
(2iασ̂Λ)m

n

∑
l=k+1

λlσ⃗l −
1

2

n

∑
i,j=k+1

σijλiλj]∣
λ=0

.

A term is non zero only if it contains all the λi’s. For k < n the first term vanishes because it does
not contain the λi with i > k. Instead the last term is always vanishing for n > 2, because the number
of derivatives is higher than the number of λi’s present. So, until now

Cn(αR
2
1, . . . ,αR2

k,Rk+1, . . . ,Rn) = (−i)
n ∂

∂λ1
. . .

∂

∂λn

⎡
⎢
⎢
⎢
⎢
⎣

−
1

2

n

∑
j=k+1

λjσ⃗
T
j σ̂
−1 ∞
∑
m=1
(2iασ̂Λ)m

n

∑
l=k+1

λlσ⃗l

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRλ=0
.

(F.1.17)

Now, let us make the derivative with respect to λn

Cn(αR
2
1, . . . ,αR2

k,Rk+1 . . . ,Rn) =

= (−i)n
∂

∂λ1
. . .

∂

∂λn−1
(F.1.18)

[ −
1

2

n

∑
j=k+1

δjnσ⃗
T
j σ̂
−1 ∞
∑
m=1
(2iασ̂Λ)m

n

∑
l=k+1

λlσ⃗l −
1

2

n

∑
j=k+1

λjσ⃗
T
j σ̂
−1 ∞
∑
m=1
(2iασ̂Λ)m

n

∑
l=k+1

δlnσ⃗l]∣
λ=0

.

The two terms can be summed up, since σ̂−1 (σ̂Λ)m+1 = Λ(σ̂Λ)m and this matrix is symmetric:

[Λ(σ̂Λ)m]
T
= [(σ̂Λ)m]

T
ΛT
= [(σ̂Λ)m]

T
Λ = [(σ̂Λ)T]

m
Λ = (ΛTσ̂T)

m
Λ = (Λσ̂)mΛ = Λ(σ̂Λ)m ;

(F.1.19)

so, deriving with respect to λn−1

Cn(αR
2
1, . . . ,αR2

k,Rk+1 . . . ,Rn) = (−i)
n ∂

∂λ1
. . .

∂

∂λn−1
[ − σ⃗T

nΛ
∞
∑
m=1
(2iασ̂Λ)m−1

n

∑
l=k+1

λlσ⃗l]∣
λ=0

= (−i)n
∂

∂λ1
. . .

∂

∂λn−2
[ − σ⃗T

nΛ
∞
∑
m=1
(2iασ̂Λ)m−1σ⃗n−1]∣

λ=0
. (F.1.20)

It is clear that, if k < n− 2 there are still the derivatives ∂
∂λk+1

. . . ∂
∂λn−2

to apply, but no λk+1, . . . ,λn−2
to meet. Therefore:

Cn(αR
2
1, . . . ,αR2

k,Rk+1, . . . ,Rn) = 0, ∀k < n− 2 (F.1.21)

Now let us move to compute the only three orders left.
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f.2 computation of the O(αn−2)

For the leading part of the cumulant, it is enough to set k = n − 2 in the eq. (F.1.20) (let us consider
the case n > 2, so we can get rid of the last term that we canceled in eq. F.1.16):

Cn(αR
2
1, . . . ,αR2

n−2,Rn−1,Rn) = (−i)
n ∂

∂λ1
. . .

∂

∂λn−2
[ − σ⃗T

nΛ
∞
∑
m=1
(2iασ̂Λ)m−1σ⃗n−1]∣

λ=0
, (F.2.1)

where now Λ = diag (λ1, . . . λn−2).
The first observation we can do is that only the O(αn−2) matters in the sum over m. In fact, for

m < n − 2 the derivatives are too much and they annihilate the term. Instead, for m > n − 2 the
derivatives are not enough and when we put λ = 0 the term vanishes.

Cn(αR
2
1, . . . ,αR2

n−2,Rn−1,Rn) = (2α)
n−2 ∂

∂λ1
. . .

∂

∂λn−2
[σ⃗T

n−1Λ(σ̂Λ)
n−3σ⃗n]∣

λ=0
. (F.2.2)

Now we can see that:

σ⃗T
n−1 [Λ(σ̂Λ)

n−3] σ⃗n =
n−2
∑
i,j=1

σn−1,i
⎛

⎝

n−2
∑

i1,...,in−4=1
λiσii1λi1σi1i2λi2 . . . λin−4σin−4jλj

⎞

⎠
σjn . (F.2.3)

Of course, because of the presence of the derivatives, in the sum, only the terms with all the {λi}n−2i=1
different matters, i.e. we only keep the permutations of {1,2, . . . ,n− 2}. So, putting all together

Cn[αR
2
1, . . . ,αR2

n−2,Rn−1,Rn] =

= (2α)n−2
∂

∂λ1
. . .

∂

∂λn−2
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λ=0
=
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{i1,...,in−2}=

=perms{1,...,n−2}

σn−1,i1σi1i2 . . . σin−3in−2σin−2n . (F.2.4)

So, the formula for the O(αn−2) contribution to the n-th order cumulant is:

Cn(αR
2
1, . . . ,αR2

n−2,Rn−1,Rn) =

= (2α)n−2 ∑
{i1,...,in−2}=

=perms{1,...,n−2}

⟨Rn−1Ri1⟩⟨Ri1Ri2⟩ . . . ⟨Rin−3Rin−2⟩⟨Rin−2Rn⟩ (F.2.5)

For example, we can check this formula for n = 4

C4(αR
2
1,αR2

2,R3,R4) = (2α)
2

∑
{i,j}=perms{1,2}

⟨R3Ri⟩⟨RiRj⟩⟨RjR4⟩ (F.2.6)

= 4α2
(⟨R3R1⟩⟨R1R2⟩⟨R2R4⟩ + ⟨R3R2⟩⟨R2R1⟩⟨R1R4⟩) =

= 4α2
⟨R1R2⟩ (⟨R3R1⟩⟨R2R4⟩ + ⟨R3R2⟩⟨R1R4⟩) ,

that precisely matches the result obtained in eq. (E.0.55).
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f.3 computation of the O(αn−1)

For k = n− 1 we have:

I(λ1, . . . ,λn) =
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and so:
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. (F.3.4)

In the last step, everything vanishes since it remains a λn with no more derivatives with respect to
it and in the end we must set λ = 0, so there is no O(αn−1) contribution:

Cn(αR
2
1, . . . ,αR2

n−1,Rn) = 0 (F.3.5)

f.4 computation of the O(αn)

Now we have Λ = diag (λ1, . . . ,λn) and the trace part is the only term left, so:

I(λ1, . . . ,λn) =
1

√
(2π)n detσ

∫ dnR e−
1
2
R⃗T(σ−1−2iαΛ)R⃗

= exp [−
1

2
tr log (1− 2iασΛ)] , (F.4.1)

where now σ = (σij)
n

i,j=1 and Λ = diag (λ1, . . . ,λn). With the usual steps, knowing that only the
O(αn) matters:

Cn(αR
2
1, . . . ,αR2

n) = (−i)
n ∂

∂λ1
. . .

∂

∂λn
[
1

2
tr
∞
∑
m=0

1

m
(2iασΛ)m]∣

λ=0
=
2n−1αn

n

∂

∂λ1
. . .

∂

∂λn
tr(σΛ)n∣

λ=0
.

(F.4.2)

The trace is:

tr(σΛ)n =
n

∑
i1,...,in=1

λi1λi2 . . . λinσini1σi1i2 . . . σin−1in , (F.4.3)

and after the derivation only the permutations of {1,2, . . . ,n} survive, so:

Cn(αR
2
1, . . . ,αR2

n) =
2n−1αn

n
∑

{i1,...,in}=
=perms{1,...,n}

⟨RinRi1⟩ . . . ⟨Rin−1Rin⟩ (F.4.4)
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f.5 computation of the generic cumulant

Now that we have all the ingredients, we can compute the generic n-th order cumulant up to all
orders. First of all, let us focus on the O(αn−2) contribute:

C
O(αn−2)
n (h1, . . . ,hn) = (2α)n−2 ∑

{i,j}∈A
∑

{i1,...,in−2}=
=perms{1,...,n}∖{i,j}

⟨RiRi1⟩⟨Ri1Ri2⟩ . . . ⟨Rin−2Rj⟩ (F.5.1)

where A is the set in which all the non-ordered couples of numbers between {1, . . . ,n} are contained.
E.g. for n = 4, A = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}. From combinatorics we know that the
permutations of n − 2 different objects are (n − 2)!, while the cardinality of A is the number of
ways in which we can take 2 objects among n different objects without taking care of their order,
which is (n

2
) =

n(n−1)
2

. So, putting these 2 together, the total sum is composed of n!
2

elements. If we
compute also the exchanged couples, we double the sum, having n! elements, that is the cardinality
of perms{1, . . . ,n}. So we can put the two sums together dividing by 2:

C
O(αn−2)
n (h1, . . . ,hn) = 2n−3αn−2

∑
{i1,...,in}=

=perms{1,...,n}

⟨Ri1Ri2⟩⟨Ri2Ri3⟩ . . . ⟨Rin−1Rin⟩ (F.5.2)

Now, let us add also the O(αn) contribution, that we can write as

Cn(αR
2
1, . . . ,αR2

n) =
2n−1αn

n
∑

{i1,...,in}=
=perms{1,...,n}

⟨Ri1Ri2⟩ . . . ⟨RinRi1⟩ (F.5.3)

And so, summing the two

Cn(h1, . . . ,hn) = 2n−3αn−2
∑

{i1,...,in}=
=perms{1,...,n}

⟨Ri1Ri2⟩ . . . ⟨Rin−1Rin⟩ (1+
4α2

n
⟨Ri1Rin⟩) (F.5.4)

And we can easily see that, putting x⃗1 = ⋅ ⋅ ⋅ = x⃗n:

Cn(h, . . . ,h) = 2n−3αn−2n!⟨R2
⟩
n−1
(1+

4α2

n
⟨R

2
⟩
2
) = 2n−3(n− 1)!σ20 (ασ

2
0)

n−2
(n+ 4α2σ20) , (F.5.5)

and this result exactly reproduces the formula given in eq. (E.0.58).
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