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We investigate the critical behavior, both in space and time, of the wetting interface within the
coexistence region around the first-order phase transition of a fully-connected quantum Ising model
in slab geometry. For that, we employ the Lindblad master equation formalism in which temperature
is inherited by the coupling to a dissipative bath, rather than being a functional parameter as in
the conventional Cahn’s free energy. Lindblad’s approach gives not only access to the dissipative
dynamics and steady-state configuration of the quantum wetting interface throughout the whole
phase diagram but also shows that the wetting critical behavior can be successfully exploited to
characterize the phase diagram as an alternative to the direct evaluation of the free energies of the
competing phases.

I. INTRODUCTION

Wetting is an interfacial phenomenon that concerns
the ability of liquids to maintain contact with solid, or
liquid substrates. Specifically, the study of wetting fo-
cuses on understanding the relationship between bulk
phase transitions and surfaces. Indeed, a rich variety
of phase transitions occur when bulk and surface degrees
of freedom are coupled [1–11]. Clearly, this problem is
extremely vast and rich. Wetting phenomena have been
investigated in a variety of systems ranging from clas-
sical ones, such as in liquid-vapor phase transitions or
binary liquid mixtures of linear alkanes and methanol, to
polymeric mixtures, superfluid 4He on thin cesium sub-
strates, liquid 3He on superfluid 4He, dilute ultra-cold
gases undergoing Bose-Einstein condensation, and many
others [12–19].

In this study, we focus on the dynamics and the equi-
librium configuration of the wetting layer that can form
within the coexistence region accompanying a quantum
first-order phase transition [20–24]. Several attempts to
disclose the wetting phenomenon in the quantum realm
have relied on the quantum-classical mapping, i.e., on
the idea that the properties of d-dimensional quantum
systems at zero temperature across a phase transition
correspond to those of classical systems in higher dimen-
sions [25]. Adopting a simple fully connected quantum
spin Ising model, the authors of Ref. [24] observed that
the critical properties of wetting in the quantum case
indeed correspond to the classical ones in higher dimen-
sions, specifically d+1 in that mean-field model; however,
they found that the singular behavior of quantum fluctu-
ations is different from that of classical fluctuations at fi-
nite temperatures. Commonly, the wetting phenomenon,
even in the quantum regime (see, e.g., Ref. [26]), has been
described within the Landau-Ginzburg framework, as the
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Cahn’s free-energy functional [1]. There, temperature
simply enters as a parameter of the functional that con-
trols the relative depths of the two potential wells, whose
crossing defines the first-order bulk phase transition. In
this work, instead, we investigate whether the wetting
phenomenon can be accessed by the dissipative quantum
dynamics in the presence of a thermal bath; dynamics
that we approximated via a Lindblad equation (LE) of
motion for the density matrix of an exactly-solvable toy
model. In the Lindblad approach, the temperature is
provided by the bath, and thus it is not a parameter of
the system quantum Hamiltonian. We show that our ap-
proach is able to recover the conventional wetting critical
phenomenon for short-range interactions [3].

Specifically, in this article we consider a slab geome-
try constituted by L layers, which is a discrete version of
the model of Ref. [24]; each layer is modeled by a quan-
tum Ising model with N fully-connected sites. In the
thermodynamic limit, N → ∞, the mean-field approxi-
mation becomes exact, and the equilibrium state of the
single-layer system can be found by solving a set of self-
consistency equations. The single-layer model possesses
already a non-trivial phase diagram that, depending on
the form of the spin-spin interactions, can display first-
or second-order quantum and thermal phase transitions.
Thanks to its simplicity, such a model has been widely
employed in the past [27–29], for instance, to study the
relaxation dynamics towards equilibrium in the presence
of dissipation [30–32]. We define the single-layer Hamil-
tonian such that it may undergo a first-order phase tran-
sition, and set its parameters so that the single layer is
in the coexistence region. In addition, we couple each
layer to its nearest neighbor layers, as well as to a dis-
sipative bath by means of the Lindblad master equation
(LE) [33–35]. The LE is the most general Markovian,
time-local generator for a system density matrix; it is
among the most popular master equations, and it has
been employed in various and different contexts [36–41].

In order to study wetting, which is an inhomoge-
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neous phenomenon, we fix inhomogeneous boundary con-
ditions, i.e., the first (resp. last) layer is kept fixed in the
ordered (resp. disordered) phase of the coexisting region
of the phase diagram. Instead, we assume a Lindblad dis-
sipative dynamics for each layer in the bulk, with jump
operators defined through the instantaneous mean-field
Hamiltonian. This allows us to numerically investigate
arbitrarily large system sizes, and to explore the wet-
ting phenomenon without resorting to Cahn’s free en-
ergy functionals since the temperature of the system is
fixed by the bath. We show that, within our model
and the LE scheme, the wetting phenomenon sponta-
neously emerges during the quantum dissipative dynam-
ics; we are able to uncover details of the static and dy-
namic properties of the wetting interface as a function of
the Hamiltonian parameters and the bath temperature.
Our results are in agreement with the conventional wet-
ting critical phenomenon for short-range interactions [3].
Even though the mean-field nature of our model does
not allow studying corrugated configurations of the in-
terface [21], our analysis yields a novel result not pre-
dicted by Landau-Ginzburg approaches. Indeed, if one
unphysically discards longitudinal fluctuations in Cahn’s
free-energy functional, thus the contribution of capillary
waves, and only considers the dynamics of the interface
center of mass, the wetting critical phenomenon is not
accompanied by any critical behavior of the relaxation
time, as can be inferred by Refs. [4, 5]. Unlike in Cahn’s
approach, we show that the Lindblad dynamics of our toy
model does predict a critical relaxation that, however, in
real systems would be hidden by the slower relaxation
due to the critical capillary waves.

The mean-field model introduced in this paper consti-
tutes a promising tool to address the role of quantum
fluctuations on wetting phenomena and can be poten-
tially adapted to investigate other complex many-body
phenomena in quantum dissipative systems by changing,
for instance, the boundary conditions. Recently, appro-
priate variants of the toy model proposed in this paper
have been successfully applied to several contexts, from
the Mpemba effect to selective cooling [30, 31, 42].

The paper is organized as follows. In Section II we
present the model Hamiltonian of the single-layer, fully
connected quantum Ising model and review its dissipa-
tive dynamics yielded by the Lindblad equation. In Sec-
tion III, we extend the formalism discussed in the former
Section to a multi-layer system in which multiple copies
of the single-layer system are connected one to the other
to form a slab of length L. Each bulk layer is coupled to a
dissipative bath while the states of the first and last lay-
ers are kept fixed. Section IV is devoted to the discussion
of the relaxation and equilibrium properties of the multi-
layer system. In particular, we analyze the behavior of
the layer-resolved equilibrium energy, order parameter,
and relaxation time. Finally, in Section V we summarize
our results and discuss possible future directions of our
work.

II. SINGLE-LAYER SYSTEM

In this Section, we briefly mention the properties of
the single layer when it is decoupled from all the others.
In particular, we discuss its phase diagram and show how
we construct the Lindblad jump operators to describe its
relaxation dynamics.

A. The quantum spin model for the single-layer
system

We model each layer as a quantum Ising model on an
N -site fully connected graph, described by the general
Hamiltonian [27–29]

H = −hx
∑
i

σxi −N
m∑
n=2

Jn

(
1

N

∑
i

σzi

)n
(1)

where m ≥ 2 is an integer number, σαi , with α = x, y, z,
are the Pauli matrices on site i = 1, . . . , N , hx is the
transverse magnetic field, and Jn are the n-spin exchange
constants. In the following, we concentrate on the case
J2 6= 0, J4 6= 0, and Jn 6=2,4 = 0, for which the model (1)
undergoes a first-order phase transition [24, 43]: increas-
ing either the temperature T or the transverse field hx,
the system goes from an ordered, ferromagnetic phase
(F) to a disordered, paramagnetic one (P).

In the following, we will express all energies in units of
J2 = J4 = 1. Thus, our single-layer system Hamiltonian
reads

H = −hx
∑
i

σxi −
1

N

(∑
i

σzi

)2

− 1

N3

(∑
i

σzi

)4

. (2)

The phase diagram of the model (2) has been already
studied in the past [24, 30, 43]; it is illustrated in Fig. 1.

Thanks to the full connectivity of Hamiltonian (2),
mean-field approximation becomes exact in the thermo-
dynamic limit N → ∞, as ensured by the vanishing of
the covariance

〈σαi σ
β
j 〉 − 〈σ

α
i 〉〈σ

β
j 〉 →

1

N
−−−−→
N→∞

0 . (3)

It follows that the equilibrium Boltzmann distribution is
given by

ρ −−−−→
N→∞

∏
i

ρi =
∏
i

e−βHi

Tr
(
e−βHi

) (4)

where ρi is a positive definite 4×4 matrix with unit trace,
and the single site Hamiltonian Hi reads

Hi = −hx σxi − hz(m)σzi , (5)

with

hz(m) = 2mz + 4m3
z. (6)
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FIG. 1. Phase diagram of the single-layer model (2). In the
region labeled as F, there is only a ferromagnetic free-energy
minimum, and the Z2 symmetry is broken. Conversely, in
region P there is only a paramagnetic minimum. FP and PF
regions present three distinct minima: two are ferromagnetic,
and one is paramagnetic. In FP, the ferromagnetic minima
are absolute minima; in PF, the paramagnetic minimum is the
absolute minimum. The F-P phase transition occurs along the
dashed line separating FP from PF, and it takes place when
the free energies cross. The solid lines between F and FP, and
between P and PF, are spinodal lines where an additional
metastable free energy minimum appears beside the stable
one. Color online.

m = (mx,my,mz) indicates the Bloch vector, with com-
ponents

mα :=
1

N

∑
i

〈σαi 〉. (7)

Notice that the Bloch vector verifies |m| ≤ 1, where
the equality is fulfilled only by pure states, and that
the single-site density matrix can be written as ρi =
1
2 (1 +m ·σi). Thanks to the exact validity of the mean-
field approximation, we can consider a single spin at a
time and drop the index i.

It is easy to show that, when the system is at equi-
librium with a bath at temperature T , its state is deter-
mined by a set of self-consistency equations:

m = tanhβh(m)
(

cos θ(m) , 0 , sin θ(m)
)

(8)

where

tan θ(m) =
hz(m)

hx
, (9)

h(m) =
√
h2x + hz(m)2 . (10)

B. Lindblad master equation for the single layer

The Lindblad master equation (LE) is the most general
Markovian master equation. It can be derived starting
from a microscopic Hamiltonian describing the interac-
tion between the system (S) and the bath (B)

H = HS +HB + αHint. (11)

HS and HB denote the system and the bath Hamiltonian,
respectively, Hint the interaction Hamiltonian, and α the
system-bath coupling strength. Under the Markov-Born
approximation, i.e., assuming a weak coupling between
the system and the bath, α� 1, and assuming that the
bath relaxation time is much smaller than the character-
istic timescales of the system, the system-bath density
matrix is factorized at any time as

ρS+B(t) ' ρS(t)⊗ ρB(0) , ∀ t. (12)

Tracing out the bath degrees of freedom, it is possible
to derive an effective equation of motion for the reduced
density matrix of the system only that, in the standard
Lindblad form, is given by

ρ̇S(t) = −i
[
HS , ρS(t)

]
+
∑
λ

[
γλ

(
2LλρS(t)L†λ − {L

†
λLλ, ρS(t)}

)
+ γ̄λ

(
2L†λρS(t)Lλ − {LλL†λ, ρS(t)}

)]
, (13)

with λ = 1, . . . , N2 − 1 where N is the dimension of the
Hilbert space of the system [34]. The first term on the
r.h.s. is the Liouvillian which describes the coherent evo-
lution of the system. The second and third lines consti-
tute the Lindbladian term which describes the incoherent
evolution due to the interaction between the system and
the bath. The Lλ’s are the so-called “jump operators”
that model the stochastic interaction between the system
and the bath. The coupling strength γλ and γ̄λ are pro-
portional to α2; their explicit form strongly depends on
the microscopic description of the environment through
the bath correlation functions. It is worth noticing that,
while the LE is in general a first-order linear differential
equation for the reduced density matrix, in the presence
of a mean-field model (as in this paper) the reduced den-
sity matrix becomes non-linear giving rise to a non-trivial
behavior.

The LE is the most general dynamical Markovian map
that is trace preserving and completely positive (CPT or
Kraus map), i.e., it maps density matrices into density
matrices. In the following, as we are dealing with a mean-
field toy model and in order to remain as general as pos-
sible, we introduce the LE within the latter perspective
without restoring to any particular microscopic model for
the description of the bath (see Refs. [44, 45] for two re-
cent microscopic derivations of the LE; in contrast to the
quantum optical derivation [34], in Refs. [44, 45] the LE
is derived from a microscopic model without performing
the rotating-wave approximation so that this derivation
can be applied to any Markovian open quantum system).

In order to describe the system-bath interaction we in-
sert in Eq. (13) a complete set of jump operators acting
on the system degrees of freedom. In particular, we in-
troduce the energy-conserving, pure-dephasing operators

Lλ(m,m) = |m〉〈m|, (14)
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where |m〉 are the eigenstates of the system Hamiltonian
HS , and dissipative jump operators that produce transi-
tions between two different eigenstates

Lλ(m,n) = |m〉〈n|, En < Em. (15)

At this point, we only require that the Boltzmann distri-
bution is a stationary solution of Eq. (13), i.e., the bath
acts as a dissipative bath at fixed inverse temperature β.
It is easy to verify that this implies a detailed balance
condition on the system-bath coupling strength in the
form: γλ/γ̄λ = e−βελ with ελ = Em − En ≥ 0. Thanks
to the freedom left by such a condition, in the following
we set

γ̄λ = Γf
(
− βελ/2

)
(16)

with f(x) the Fermi-Dirac distribution function, and Γ
the overall system-bath coupling strength [46]. Let us
note that the pure dephasing operators Lλ(m,m) auto-
matically satisfy the detailed balance condition, as they
do not imply any energy transfer; thus, they do not spoil
the stationary solution given by the Boltzmann distribu-
tion. For this reason, we resort to the so-called “relax-
ation without pure dephasing” condition [47], assuming
γλ(m,m) = γ̄λ(m,m) = 0. Such a condition is satisfied in
a broad class of microscopic models (see Ref .[48] for a
detailed discussion) and allows us to compare the results
in this paper with previous results obtained on the same
system [30, 31].

Ref. [30] extensively discusses many possible ways in
which the Lindblad jump operators can be defined to cap-
ture the physics of the model (2). Here, we consider one
choice that, we will argue, allows us to correctly repro-
duce the dynamics of the wetting interface in the multi-
layer system (see Sec. IV), and recover the semiclassical
results of Ref. [24].

Starting from a factorized density matrix, the full con-
nectivity of the model (2) ensures that it remains factor-
ized at any time:

ρS(t) −−−−→
N→∞

∏
i

ρi(t) (17)

where ρi(t) describes the time evolution of the spin i,
coupled to a bath at temperature T and in the presence
of a time-dependent magnetic field given by Eqs. (5)-(6):

h(t) := h(m(t)) (18)

:=
(
hx , 0 , 2mz(t) + 4(mz(t))

3
)

(19)

with

m(t) =
1

N

∑
i

Tr
(
ρS(t)σi

)
, (20)

which is self-consistently determined by the system’s time
evolution. Notice that the mean-field nature of the model

is at the origin of the self-consistency of the dissipa-
tive dynamics. Hence, we can formally define a time-
dependent system Hamiltonian as

Ht := −h(t) · σ := −
∣∣h(t)

∣∣v3(t) · σ, (21)

which is just a two-level system Hamiltonian with a time-
dependent magnetic field. From Eq. (15), we can write
the instantaneous Lindblad jump operators

L(t) = |1〉〈0| =
(
v1(t)− iv2(t)

)
· σ/2

:= v−(t) · σ/2, (22)

and its Hermitian conjugate

L†(t) = |0〉〈1| := v+(t) · σ/2, (23)

where

v+(t) ∧ v−(t) = 2v3(t), (24)

v+(t) =
(
v−(t)

)∗
. (25)

The energy difference between the eigenvalues of the in-
stantaneous Hamiltonian is simply ε(t) = 2

∣∣h(t)
∣∣. Thus,

γ̄(t) and γ(t) depend on time.
In the case v3(t) = (0, 0, 1) = ẑ, Eqs. (22)–(23) re-

duce to σ∓ up to an arbitrary phase factor correspond-
ing to a free rotation on the x− y plane. In general, due
to the mean-field nature of the system Hamiltonian (2),
the magnetic field acting on the layer changes magnitude
and direction over time (see Eqs. (18)-(19)); the Lind-
blad jump operators change accordingly, following the
instantaneous magnetic field on each layer, and being the
lifter/lowerer operators of the Hamiltonian at each time.

In turn, this yields a LE with time-dependent param-
eters, where the expectation value of the spin operator is
given by

ṁ(t) = Tr
(
ρ̇S(t)σ

)
= −2h(t) ∧m(t)

− γ(t)

2

[
4
(
v3(t) + m(t)

)
− v−(t)

(
v+(t) ·m(t)

)
− v+

(
v−(t) ·m(t)

)]
+
γ̄(t)

2

[
4
(
v3(t)−m(t)

)
+ v−(t)

(
v+(t) ·m(t)

)
+ v+(t)

(
v−(t) ·m(t)

)]
. (26)

It is worth noting that, in our approach, the instan-
taneous Lindblad operators and the corresponding cou-
pling strengths are functions of the density matrix itself
due to the mean-field approximation. To guarantee that
the Markovian approximation is fulfilled at any time t,
we require an instantaneous update of the Lindblad jump
operators. In Ref. [30], it has been shown that the Lind-
blad jump operators (22)–(23) are not able to capture the
long-time dynamics of the single-layer system, which re-
mains trapped at all times in the closest stationary state,
even if metastable. Indeed, in the presence of a first-order
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phase transition, the system can exhibit more than one
coexisting phase, whether stable or metastable. In the
single-layer system considered here, for a LE with dis-
sipative operators (22)–(23), each phase has a different
“basin of attraction” as a function of the initial condi-
tion, i.e., the system is attracted by one of the possible
minima depending on the basin of attraction to which the
initial condition belongs to. In this case, to describe the
full dynamics, both at short and long times, and the re-
laxation to the true equilibrium state, one needs to write
the master equation as a sum of competing terms, one
for each phase (either stable or metastable). In this way,
both supercooling and the Mpemba effect emerge during
the dissipative dynamics. Fortunately, we will not need
such a complicated master equation to describe the re-
laxation and equilibrium dynamics of the wetting layer,
as will become clear in the next Sections.

III. MULTI-LAYER SYSTEM

In this Section, we introduce the multi-layer model
for quantum wetting that we are going to investigate in
the following. We discuss how we introduce the inhomo-
geneities at the boundaries, and how we couple each layer
in the bulk to a bath in order to study the relaxation and
equilibrium dynamics of the wetting interface.

A. The quantum spin model for the multi-layer
system

Let us now consider a multi-layer system composed of
L layers, where each layer is modeled by the Hamiltonian
in Eq. (2), and it is coupled to its nearest neighbor layers
via quadratic and quartic terms:

HT =

L∑
`=1

H` −
L−1∑
`=1

{
J̃2
N

(∑
i∈`

σzi

)( ∑
i∈`+1

σzi

)

+
J̃4
N3

(∑
i∈`

σzi

)2( ∑
i∈`+1

σzi

)2}
, (27)

where H` is the Hamiltonian (2) for layer `. In the fol-

lowing, we set J̃2,4 = J2,4/2 = 1/2 so that the equi-
librium phase diagram of the homogeneous multi-layer
model (i.e., when all layers are in the same state) re-
duces to the one of the single-layer case in Fig. 1 with
the presence of a coexistence region where both the fer-
romagnetic, F, and paramagnetic, P, phases are minima
of the free energy.

In the thermodynamic limit, the mean-field single site

FIG. 2. Graphical representation of the model. We consider
a multi-layer system composed of L layers. The first and the
last layers are fixed: they are set to the ferromagnetic (F) and
paramagnetic (P) state, respectively. All the other layers are
coupled to a heat bath at temperature T , as schematized by
the springs. Color online.

Hamiltonian for layer `, dropping the site index, reads

H∗ ` = −hx σx` −
(
mz
` + 2mz

`
3
)
σz`

− 1/2
(
mz
`−1 +mz

`+1

)
σz`

−
(
mz
`−1

2 +mz
`+1

2
)
mz
` σ

z
` . (28)

We see that when the multi-layer system is in the ho-
mogeneous case, i.e., all the layers are in the same
state, Eq. (28) reduces to the single-layer Hamiltonian
of Eq. (5).

B. Lindblad master equation for the multi-layer
system

We wish to study the dynamics of the wetting layer
when the single layer is within the coexistence phase il-
lustrated in Fig. 1. Within the coexistence phase, the
single layer presents both stable and metastable phases.
In the FP region, the ferromagnetic minima are stable
(i.e., have a lower free-energy), and the paramagnetic is
metastable; viceversa in the PF region. To model the
presence of the wetting layer, we fix the first and the last
layers of the multi-layer system in the ferromagnetic (F)
and paramagnetic (P) phase, respectively. All other lay-
ers are coupled to a heat bath and are free to evolve in
time. The system is depicted in Fig. 2.

Following the same line of reasoning of Sec. II for the
case of a single layer, we can write the dissipative dy-
namics of the full system considering a time-dependent
magnetic field for each layer ` which is self-consistently
determined by the system dynamics. From Eq. (28), the
time-dependent magnetic field, accounting for both the



6

intra- and inter-layer interactions is

h`(t) :=
∣∣∣h`(m`(t),m`−1(t),m`+1(t)

)∣∣∣
v3
`

(
m`(t),m`−1(t),m`+1(t)

)
(29)

:=

[
hx , 0 , mz

` (t) + 2mz
` (t)

3

+ 1/2
(
mz
`−1(t) +mz

`+1(t)
)

+
(
mz
`−1(t)2 + (mz

`+1(t)2
)
mz
` (t)

]
. (30)

From Eq. (29), we can define the single-layer time-
dependent jump operators, similarly to Eqs. (22)–(23),
the only difference being that both the magnitude and
the direction of the time-dependent magnetic field h`(t)
vary between layers. In fact, for each layer `, we obtain a
LE for the expectation value of the magnetization similar
to Eq. (26), in which h(t),v3(t),v+(t),v−(t) depend on
m`(t),m`−1(t),m`+1(t). Notice that the presence of the
coupling between layers gives rise to a set of coupled first-
order non-linear differential equations that determine the
wetting dynamics. Our implementation of the numerical
solver for such a set of differential equations is provided
at Ref. [49].

IV. RESULTS

In this Section, we discuss the results of the relaxation
dynamics and equilibrium configuration of the multi-
layer quantum spin model described in Sec. III, where
inhomogeneities are introduced across the boundaries of
the system in the presence of a first-order phase transi-
tion. In the following, we always set T and hx within the
coexistence region of the single layer model (2). In order
to study interface phenomena, we consider a finite length
L, multi-layer system, as depicted in Fig. 2, with the first
and last layers, i.e., the boundaries, fixed in the F and P
state respectively. At equilibrium, we expect that when
T and hx are in the FP (PF) phase, the bulk of the sys-
tem lies in the F (P) phase while a small but finite region,
i.e. the wetting region, forms near the last (first) layer
of the slab. In the following, we discuss the energy cost
and thickness of the wetting region as a function of the
temperature and the magnetic field. Moreover, we dis-
cuss the dependence of the relaxation time on the bath
coupling strength.

A. Energy

Let us start by looking at the relaxation dynamics in
the T ' 0.07 (i.e., T ≈ 0) limit: the coexistence re-
gion extends from hx ' 2 to hx ' 2.83, and the criti-
cal magnetic field separating the FP and PF phases is
hc ' 2.63113. At t < 0, the system is prepared in its
equilibrium minimum, i.e., all the layers are in the F

FIG. 3. Layer-resolved time evolution of the energy for a
system of L = 50 layers for Γ = 0.2, in the FP phase (hx =
2.55, top panel), and in the PF phase (hx = 2.65, bottom
panel). In both cases, the first layer is constrained into the F
phase and the last layer into the P phase. The dot-dashed line
is the energy of the homogeneous F phase (εF), and the dashed
line is the energy of the homogeneous P phase (εP). Only
the layers closer to the corresponding metastable boundary
are explicitly shown as the energy of the layers in the bulk
overlaps with the energy of the stable minima, i.e. min[εF, εP].
The label ` of each layer is shown near each curve. Color
online.

(P) phase for hx lower (higher) than hc. The state of
each layer is specified by the Bloch vector mF (mP) self-
consistently determined by Eqs. (8)–(10). At t = 0 we
fix the first and last layers into the F and P phase, re-
spectively; at the same time, each layer in the bulk is
connected with its own bath (see Fig. 2). Suddenly, the
Bloch vector of each layer, m`, starts to evolve in time
while each layer exchanges energy with its neighbors and
with the bath in order to reach the new equilibrium con-
figuration that minimizes the energy of the multi-layer
system, compatibly with the inhomogeneity introduced
via the boundaries.

In Fig. 3 we plot the time evolution of the single-layer
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energy, defined as

ε` = −hxmx
` −

1

2
mz
`
2 − 1

2
mz
`
4

− 1

4

(
mz
`−1 +mz

`+1

)
mz
`

− 1

4

(
(mz

`−1)2 − (mz
`+1)2

)
mz
`
2, (31)

obtained numerically by integrating the nonlinear LE
given by Eqs. (26) and (29). We consider a bath cou-
pling strength Γ = 0.2 and magnetic field along x be-
low, hx = 2.55 (top panel), and above, hx = 2.65 (bot-
tom panel), the critical value hc. From now on, we re-
fer with εF (εP) to the single-layer energy of a homoge-
neous system with magnetization vector mF (mP), i.e.,
εF ≡ ε`(m` = mF ∀`) (εP ≡ ε`(m` = mP ∀`)).

Notice that the single-layer energy has an intra-layer
contribution plus an inter-layer term. At t = 0, when
the inhomogeneities at the boundaries are created, all the
layers deep in the bulk of the system have the same en-
ergy as in the stable homogeneous configuration. On the
contrary, a large energy contribution emerges from the
inter-layer term at the metastable boundary, due to the
discontinuity in the magnetization between the boundary
layer in the metastable phase (` = L for the FP case and
` = 1 for the PF one) and its neighboring layer (see the
brown curve in both panels of Fig. 3). In the early stage
of dynamics, in order to reduce the total energy, the order
parameters of the layers around the metastable bound-
ary start to rearrange assuming intermediate values be-
tween mF and mP in order to make the discontinuity
smoother. Doing so, while the intra-layer energy contri-
bution increases, the inter-layer energy of the boundary
drastically decreases driving the system, at large t, into
a new inhomogeneous equilibrium configuration with the
formation of a wetting interface.

At equilibrium, moving along the wetting interface,
from the metastable boundary towards the bulk, the
single-layer energy ε` is a non-monotonous function of
the distance from the boundary. Plotting the equilib-
rium values of ε` as a function of the magnetization mz

`
(see Fig. 3), we observe that the energy increases and
then decreases until it reaches the stable value min[εF, εP]
inside the bulk as if it were virtually climbing up the
(pseudo)potential barrier that separates the metastable
and stable phases at the boundaries. This interpreta-
tion becomes clearer if we refer to the energy that each
layer would have in the homogeneous case at fixed mz

` ,
which we plot in Fig. 4 (blue dots) together with the
equilibrium energies (red dots) of the layers forming the
wetting interface, same data of Fig. 3. We note that the
blue dots strictly follow the energy landscape, climbing
up the potential barrier that separates the metastable
minima from the stable one, while the red dots describe
a new energy landscape of the inhomogeneous system.

We emphasize that, with our choice of jump opera-
tors, albeit the single-layer system would remain forever
trapped in the metastable phase [30], we do not observe

FIG. 4. Black line: energy per layer, ε`, of the homogeneous
system as a function of the order parameter for hx = 2.55
(FP, left panel) and hx = 2.66 (PF, right panel). Blue dots:
energy per layer in a homogeneous system at fixed magnetiza-
tion mz

` . Red dots: equilibrium energy of the layers closer to
the metastable boundary in the presence of the wetting inter-
face (i.e., corresponding to the equilibrium values in Fig. 3).
The red dotted line is a guide for the eye, representing the
(pseudo)potential for the inhomogeneous system. Color on-
line.

the presence of any metastable phase in the multi-layer
system which always thermalizes to the same state. In-
deed, the profile of the wetting region results independent
of the initial state and the system-bath coupling strength
Γ. The robustness of the steady state has been tested for
different physical initial conditions and appears to be in-
dependent of them. For instance, if we initialize the bulk
layers in the metastable minimum, only the dissipation
dynamics and the total relaxation time are affected but
not the equilibrium configuration, which is always the
same state. The same happens if we start with an in-
homogeneous configuration where P and F regions alter-
nate. To further validate the absence of any metastable
state in the multi-layer model, we have explicitly checked,
for a three- and four-slab model, that the self-consistency
equations only admit a single solution.

We also mention that, if we start in the FP phase
and initialize the bulk with domain walls between F+,
i.e., mz

` > 0, and F−, i.e., mz
` < 0, regions, interfaces

emerge with mz
` switching from positive to negative pass-

ing through layers in the disordered phase mz
P. Such an

interface has exactly the same shape as the wetting in-
terface at the boundary between the P and F phases but
is now doubled around the central P layer. Although
these composite F± − P − F∓ domain walls have an en-
ergy cost, they can move inside the system and annihilate
with each other. This behavior is similar to the forma-
tion and propagation of solitons in trans-polyacetylene
chains [50]. Studying the dynamics of domain walls be-
tween two equivalent stable minima in the coexistence
region goes beyond the scope of this work and will be
discussed in a forthcoming publication. This effect does
not emerge in the PF phase where the F± − F∓ domain
walls are destroyed by the bath in favor of the stable
ordered phase P.
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FIG. 5. Layer-resolved equilibrium value of the order param-
eter in the FP (top panel) and PF (bottom panel) phase for
Γ = 0.2 and different values of the magnetic field along x,
hx. Only the eight nearest layers to the metastable boundary
are shown. Top panel: hx = 2.55 (blue circles), 2.6 (yellow
squares), 2.628 (green diamonds), 2.6295 (red triangles), 2.631
(purple inverted triangles). Bottom panel: hx = 2.632 (blue
circles), 2.635 (yellow squares), 2.64 (green diamonds), 2.7
(red triangles), 2.8 (purple inverted triangles). The dashed
lines correspond to the fit obtained through Eq. (34). Color
online.

B. Thickness

The wetting layer extent is expected to increase in size
as the critical magnetic field hc is approached. Indeed,
as h → hc, one has |εF − εP| → 0. It follows that, in
order to smooth out the discontinuity, the system prefers
to unpin more and more layers at the boundary from the
stable phase towards the metastable one. In fact, the
nearer we are to the critical magnetic field, the lower the
intra-layer energy contribution is, while the inter-layer
one becomes dominant.

In the PF phase (h > hc), we define the amplitude of
the wetting interface due to the F phase as

AF =

L∑
`=1

mz
`

mz
F

, (32)

while in the FP phase (h < hc) we define the wetting

amplitude due to the P phase as

AP =

L∑
`=1

(
1− mz

`

mz
F

)
= L−AF . (33)

By looking at the wetting surface shown in Fig. 5, we
observe that, even for |hc − hx| ≈ 10−4, only a small
finite number of layers around the metastable boundary
is involved, so that the equilibrium configuration is not
affected by the system length L, i.e. AF/P � L. Clearly,
in the caseAF/P ≈ L the system length must be increased
accordingly in order to avoid finite size effects. The data
in Fig. 5 can be fitted by a two-parameter function of the
form

f (α, β) =
tanh (βL− α)− tanh (β`− α)

tanh (βL− α)− tanh (β − α)
, (34)

similar two the solitons bond-alternation domain walls
in polyacetylene [50], or the non-equilibrium station-
ary state occupation number profile of an interacting
fermionic chain [51]. This behavior is substantially differ-
ent from the exponential decay expected for the second-
order phase transitions [52].

In the top panel of Fig. 6 we show the wetting ampli-
tude A as a function of the magnetic field hx for a sys-
tem at finite temperature T = 0.2. As already discussed,
the wetting interfaces increase approaching the critical
magnetic field and diverge at hx = hc, where the phase
transition between the FP and PF phases takes place. In
agreement with the continuum limit discussed in Ref.24,
we find that the wetting thickness diverges logarithmi-
cally as AF/P = aF/P − bF/P ln |hx − hc|, similarly as in
the classical case at the thermal phase transition [3]. In
the bottom panel of Fig. 6 we compare the wetting am-
plitude for different temperatures ranging from T = 0
to T = 2. The x-axis is rescaled with respect to the
corresponding hc(T ). The behavior of A is similar at all
temperatures: it presents a sharp peak in correspondence
of the critical value. Increasing T , we observe the forma-
tion of a “stepped structure”. Its origin can be attributed
to two main factors. First, our model is discrete; thus,
each step in the behavior of A(hx) signals that one more
layer has become part of the wetting interface. Second,
at high temperatures, upon increasing hx one approaches
the critical line in a non-perpendicular way, surfing in its
neighborhood, as can be seen from Fig. 1.

The results of Fig. 6 can be extended at any tempera-
ture and any magnetic field within the coexistence region
of the homogeneous system, see Fig. 1. In particular, the
discussions above remain valid by reinterpreting our re-
sults in terms of free energy rather than energy at zero
temperature [24]. In Fig. 7, we report the wetting am-
plitude for all the (T, hx) values corresponding to the co-
existence region of the single-layer phase diagram. Just
by looking at the divergence of the wetting amplitude A,
we are able to recover FP-PF critical line, as can be ob-
served by comparing Fig. 7 with the single-layer phase
diagram in Fig. 1.
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FIG. 6. Top panel: wetting amplitude A = min[AF,AP] of
the wetting region as a function of the transverse magnetic
field hx for T = 0.2 and Γ = 0.2 (blue curve). Logarithmic
fit f(hx) := a − b ln |hx − hc| with a = 0.75, b = 0.38 for
hx < hc, and a = 1, b = 0.43 for hx > hc (red dashed
curve). Bottom panel: wetting amplitude as a function of the
transverse magnetic field hx/hc(T ) for T = 0 (black dots),
T = 0.2 (blue curve), T = 1.5 (orange curve), T = 2 (green
curve). All the curves are rescaled with respect to hc (T ).
Color online.

FIG. 7. A = min[AF,AP] of the wetting layer as a function
of the magnetic field and temperature, for Γ = 0.2. Color
online.

This result is nontrivial. In order to access the crit-
ical line that separates the two metastable phases in a
first-order phase transition, standard approaches require
solving self-consistent equations of the form of Eqs. (8)–
(10) and then comparing all the free energy minima at
a given value of the parameters (such as temperature
and magnetic field). This requires computing, as soon
as T 6= 0, the entropy of the system, which is often a
cumbersome task. In addition, standard LE approaches
are only able to recover the F-FP and PF-P critical lines,
while failing to recover the FP-PF transition line within
the coexistence region [30]. On the contrary, in the multi-
layer setup discussed in this paper, thanks to the inho-
mogeneities introduced by the boundary conditions, it
is possible to implement the standard self-consistent LE
approach to the full phase diagram. Within the LE ap-
proach, the only required ingredients are the instanta-
neous Hamiltonian eigenvectors that define the Lindblad
jump operators, see Eq. (26), at the given bath tempera-
ture, see Eq. (16). It follows that the full phase diagram
at any finite T can be easily derived.

Before moving on to the next Section, let us com-
pare the results obtained within the LE approach for the
multi-layer system with the results obtained within the
semiclassical analysis on a continuum semi-infinite slab,
see Eq. (35) in Ref. [24]. In Fig. 8, we plot, for differ-
ent values of hx, mz

`/m
z
F as a function of the layer in-

dex `, obtained within the LE approach (dots), together
with the same quantity computed within the continuum
limit formula [24] (dashed lines). We observe a remark-
able quantitative agreement between the results of the
two approaches as long as hx is not too close to hc. As
hx → hc, the wetting interface of the discrete model is
thicker than the continuum one (the leftmost in the top
panel, the rightmost in the bottom panel). Such dis-
agreement simply derives from the fact that the interface
width is controlled in the continuum limit by the stiffness
term, second-order expansion in the interlayer distance
of the coupling among layers, and that can well change
quantitatively the results, but not the critical behavior.

C. Time

In this Section, we discuss the behavior of the relax-
ation time τ as a function of the magnetic field hx for
different values of the bath coupling strength Γ and tem-
perature T . The relaxation time τ measures the time re-
quired by the system to reach thermal equilibrium. From
the practical point of view, we define τ in the following
way. For each layer, we compute the order parameter
mz(t) as a function of time. The order parameter of each
layer tends to a stationary value for t→∞. We define τ
as the time at which |mz(τ)−mz(τ

′)| < 10−10, ∀ τ ′ > τ .
In the top panel of Fig. 9, we show τ(hx/hc(T )) for

Γ = 0.9 and four different values of the bath temperature,
T = 0.0, 0.2, 1.5, 2.0. While we observe no dependence
of τ on T for T . 0.8, an asymmetric behavior between
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FIG. 8. Layer-resolved equilibrium value of the order param-
eter, normalized to the corresponding mz

F, in the FP (top
panel) and PF (bottom panel) phase, for Γ = 0.2 and differ-
ent values of the transverse magnetic field, hx. The markers
represent the discrete model, and the dashed lines the contin-
uum limit within the semiclassical approximation (see main
text). Only the eight nearest layers to the metastable bound-
ary are shown. Top panel: hx = 2.55 (blue circles), 2.6 (yel-
low squares), 2.628 (green diamonds), 2.6295 (red triangles),
2.631 (purple inverted triangles). Bottom panel: hx = 2.632
(blue circles), 2.635 (yellow squares), 2.64 (green diamonds),
2.7 (red triangles), 2.8 (purple inverted triangles). Color on-
line.

the ferromagnetic (hx < hc) and paramagnetic (hx > hc)
phases emerges and becomes more evident as the temper-
ature increases. Such a feature is due to the bending of
the critical line of the single-layer phase diagram shown
in Fig. 1. Indeed, at high temperatures upon changing
hx we do not cross the critical line in a perpendicular
way, but surf around it.

In the bottom panel of Fig. 9, we show τ(hx/hc) at
T = 0.2 and three different values of the bath strength
Γ. Far from hc, the relaxation time is independent of hx
and reaches a steady value that, as intuitively expected,
decreases for increasing bath strength Γ, i.e., a stronger
bath dissipates faster. At any Γ we observe a critical
slowing down: the relaxation time has a power-law di-
vergence approaching hc, τ ∼ |hx − hc|−α, with criti-
cal exponent α that is a function of the bath coupling

strength Γ, α (Γ). We find α(0.2) = 1.4, α(0.5) = 1.8,
and α(0.9) = 2.1, respectively. A similar dependence of
the critical exponent α on Γ has been already observed
in the literature (see for example Table II and Fig. 1 in
Ref. [53], and Table II in Ref. [54]) in the case of non-
dissipative baths. However, to the best of our knowledge,
not much is known about the dependence of the relax-
ation time on Γ within dissipative dynamics.

We observe that the above result escapes a Landau-
Ginzburg type of approach once longitudinal fluctuations
in Cahn’s free-energy functional are discarded. Indeed,
in the latter, when the wetting interface is assumed to be
infinitely stiff, the wetting critical phenomenon is not ac-
companied by a critical behavior of the relaxation time.
The reason is that the unbinding of the wetting interface
is not accompanied by the softening of a continuous spec-
trum of excitations if one neglects capillary waves [4, 5].
Such exclusion seems unrealistic in physical systems but
can be legitimately assumed in a model calculation as
ours. Unlike in Cahn’s approach, the Lindblad dynam-
ics of our toy model does predict a critical relaxation
time that unsurprisingly depends on the system-bath

coupling. However, since τ ∼
∣∣hx − hc∣∣−α, with α > 1,

the corresponding relaxation process decay faster than
that one provided by the critical behavior of the capil-
lary waves, and which is associated to a smaller expo-
nent, αcw = 1/2 for short-range interactions [24]. That
is comforting, since it entails a critical dynamics follow-
ing conventional hyperscaling in physical systems, even
in the presence of non-critical dissipative channels that
should always exist.

As a consequence of the dependence of α on Γ, re-
laxation time curves for different Γ intersect with each
other for some value of the magnetic field hx. It fol-
lows that for each value of hx we can define an optimal
dissipation strength Γ that maximizes the system-bath
energy exchange rate. Such a dissipative optimal work-
ing point, represented by a minimum of τ(Γ), as shown
in Fig. 10 for four different values of the magnetic field,
is similar to the non-equilibrium optimal working point
that emerges in the non-equilibrium stationary state of
systems coupled with two baths [51, 55, 56]. Indeed,
when a system is coupled to two different baths that in-
duce a particle/energy flow, one observes a change in the
monotonicity of the non-equilibrium stationary current
as a function of the applied bias, which represents the
optimal performance of the bath.

The existence of an optimal working point is a conse-
quence of the presence, in dissipative dynamics, of two
timescales: an intrinsic timescale induced by the Hamil-
tonian of the system which in our case is related to hx,
and a dissipative timescale set by the bath strength Γ.
As long as Γ � hx, increasing Γ increases energy ex-
change and tends to make relaxation faster, i.e., reduces
τ . When the two timescales are comparable, we observe
the presence of an optimal working point, where the sys-
tem and the bath are in resonance and the energy transfer
is maximum. Finally, for some Γ . hx, the bath becomes
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FIG. 9. Top panel: relaxation time to reach the equilibrium
configuration for a system initialized in the F phase, if h < hc,
and P phase, if h > hc, as a function of hx, for Γ = 0.9,
and T = 0 (black dots), T = 0.2 (blue/lower), T = 1.5 (or-
ange/middle), T = 2 (green/upper). Bottom panel: as in the
top panel, for T = 0.2, and Γ = 0.1 (blue/upper), 0.2 (yel-
low/middle), and 0.5 (green/lower). The first layer is con-
strained into the F phase and the last layer into the P phase.
Inset: relaxation time for a second-order phase transition,
where the critical magnetic field is hc = 2. Color online.

too strong: the bath dynamics tends to temporarily trap
the system into a steady state with respect to the in-
stantaneous h(t), which is typically not the final steady
state, thus relaxation becomes slower for increasing Γ.
From Fig. 10 we also notice that, upon moving towards
the critical line, the optimal working point moves to lower
values of the coupling Γ. Moreover, we note that, albeit
in our discussion we made use of values of the coupling Γ
of the order of 10−1 for better plot rendering, the same
behavior is observed for lower values of the coupling, i.e.,
in the weak-coupling regime where the LE is, in general,
more physically sound.

We verified the existence of an optimal working point
also in a single-layer system with second-order phase
transition like the one described by Eq. (1) for Jn = 0,
∀n 6= 2 (see also Ref. [30]) as shown in the inset of Fig. 9.
In such a way, we support the idea that the presence of
the optimal working point is not a consequence of the in-

FIG. 10. Relaxation time to reach the equilibrium configura-
tion for a system initialized in the F phase, if h < hc, and P
phase, if h > hc, as a function of Γ for T = 0.2 and differ-
ent values of the magnetic field in the proximity of hc. The
marks represent the optimal working points (minima of the
curve) for hx = 2.60 (blue square), 2.62 (yellow rhombus),
2.62 (green triangle), and 2.66 (red circle). The first layer
is constrained into the F phase and the last layer into the P
phase. Color online.

homogeneities induced by the fixed boundary condition
but, rather, an intrinsic property of the self-consistent
dissipative dynamics.

We would like to emphasize that the model investi-
gated here constitutes a simplified toy model for quantum
wetting. Therefore, we do not yet aim to actively control
τ(Γ) in experimental applications. Nevertheless, we do
not exclude the possibility that this might be probed in
experiments, involving, e.g., ultracold atoms [57, 58], by
tuning the system-bath interaction α (see Eq. (11)).

The results shown in Fig. 9 can be extended to the
full phase diagrams as done for the wetting amplitude A
suggesting that also the relaxation time can be used to
extract, numerically or experimentally, the critical line in
the coexistence region.

V. CONCLUSIONS

We have investigated the main static and dynamic fea-
tures of the wetting interface within the coexistence re-
gion of a first-order transition, both quantum and ther-
mal, when at the surface the metastable phase is favored
over the stable one present in the interior of the bulk.
For that, we have considered a prototypical mean-field
model that displays a first-order phase transition both
at zero and finite temperature, a fully-connected quan-
tum Ising model with two and four spin exchange in slab
geometry. Our work offers a new perspective on an old
topic, which is potentially wide though hindered by the
simple mean-field toy model that we investigate. Such a
new viewpoint could help to explore open questions on
the quantum wetting transition and its critical proper-
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ties [59, 60]. Indeed, instead of using a time-dependent
Cahn’s free-energy functional, as usually done in the lit-
erature, we have simulated the dynamics through the
Lindblad master equation, where the temperature is di-
rectly inherited by the coupling to a dissipative bath. In
this way, we were able to study the wetting phenomenon
at any temperature and Hamiltonian parameters. In par-
ticular, we have reproduced the known critical behavior
of the wetting interface length as the first-order transi-
tion is approached [3]; also, we have identified a critical
behavior of the relaxation time with bath-dependent ex-
ponents and the emergence in the parameter space of a
dissipative optimal working point where the relaxation
time is minimum.

Our analysis suggests a way to characterize the phase
diagram alternative to the direct comparison between
the free energies of the coexisting phases: our approach
exploits the critical behavior in space and time of the
wetting interface upon approaching the phase transition.
The reliability of our approach in recovering physically
sound results, combined with its simplicity and versatil-
ity, could make it a precious tool to investigate both equi-
librium and non-equilibrium phase transitions in open
quantum systems, paving the way to search for novel
phases or phase transitions arising in spin models [61, 62]

or junctions of interacting fermionic systems [63–69].

Moreover, to the best of our knowledge, detailed stud-
ies on the behavior of the relaxation time of the quantum
wetting interface within dissipative dynamics have not
been performed so far. In the future, it would be inter-
esting to investigate the universal/non-universal behavior
of the α critical exponent in both first- and second-order
phase transitions, starting from simpler models without
fixed boundary conditions. In addition, it would be de-
sirable to find a microscopic (system+bath) Hamiltonian
that gives rise to a Markovian master equation similar to
the one employed in this work.
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