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Abstract. We prove a homogenization theorem for a class of quadratic convolution energies with
random coefficients. Under suitably stated hypotheses of ergodicity and stationarity we prove
that the Γ-limit of such energy is almost surely a deterministic quadratic Dirichlet-type integral
functional, whose integrand can be characterized through an asymptotic formula. The proof of this
characterization relies on results on the asymptotic behaviour of subadditive processes. The proof
of the limit theorem uses a blow-up technique common for local energies, that can be extended to
this ‘asymptotically-local’ case. As a particular application we derive a homogenization theorem
on random perforated domains.

Keywords. Homogenization, convolution functionals, random functionals, random perforated do-
mains, non-local energies

1 Introduction

In this paper we consider random energies of convolution type. Such energies may be interpreted
for example in the context of mathematical models in population dynamics where macroscopic
properties can be reduced to studying the evolution of the first-correlation functions describing the
population density u in the system [22, 16]. Our model energies are defined on L2-functions in a
reference domain D and are of the form

1

εd+2

∫

D×D

Bω
(x
ε
,
y

ε

)
a
(y − x

ε

)
(u(y)− u(x))2dy dx, (1)

or

1

εd+2

∫

(D∩εEω)×(D∩εEω)

a
(y − x

ε

)
(u(y)− u(x))2dy dx. (2)

1

http://arxiv.org/abs/1909.06832v1


Here a : Rd → R is a convolution kernel which describes the strength of the interaction at a given
distance and ε is a scaling parameter. In order that the limit of energies above be well-defined on
H1(Ω) we require that ∫

Rd

a(ξ)(1 + |ξ|2) dx < +∞. (3)

In (1) the strictly positive coefficient Bω represents the features of the environment, while in (2) Eω

is a random perforated domain giving the regions where interaction actually occurs, both depending
on the realization of a random variable. Note that functionals (2) can be also written as (1) with
the degenerate coefficient Bω(x, y) = χEω(x)χEω (y), where χE denotes the characteristic function
of E. Note that more in general we may consider oscillations on a different scale than ε; e.g. taking
coefficients Bω(x/δ, y/δ) with δ = δε, but the case when these two scales differ can be treated more
easily by a separation-of-scale argument.

The effect of the scaling parameter ε as ε → 0 is twofold, on one hand producing a local limit
model as the convolution kernel concentrates, and on the other hand ensuring a homogenization
effect through the oscillations provided by Bω. To illustrate the first issue, we may consider the
underlying energies (those with the perturbation Bω set to 1)

1

εd+2

∫

D×D

a
(y − x

ε

)
(u(y)− u(x))2dy dx. (4)

We note that if u ∈ C1(D) then u(y) − u(x) ≈ 〈∇u(x), y − x〉 and, using the change of variables
y = x+ εξ,

lim
ε→0

1

εd+2

∫

D×D

a
(y − x

ε

)
(〈∇u(x), y − x〉)2dy dx =

∫

D

∫

Rd

a(ξ)(〈∇u(x), ξ〉)2dξ dx, (5)

so that the quadratic functional
∫

D

〈A∇u,∇u〉 dx, with 〈Az, z〉 =
∫

Rd

a(ξ)(〈z, ξ〉)2dξ, (6)

gives an approximation of (4). Conversely, we may think of (4) as giving a more general form of
quadratic energies allowing for interactions between points at scale ε. In terms of Γ-convergence
this computation can be extended to a Γ-limit result and obtain the corresponding convergence of
minimum problems. To that end we will suppose that a : Rd → R satisfies

0 ≤ a(ξ) ≤ C
1

(1 + |ξ|)d+2+κ
. (7)

for some C, κ > 0 (which is a quantified version of (3)), and

a(ξ) ≥ c > 0 if |ξ| ≤ r0 (8)

for some r0 > 0 and c > 0.
In a Γ-convergence context energies (4) have been considered as an approximation of a Dirichlet-

type integral in phase-transition problems (see e.g. [1]) and more recently in connection with
minimal-cut problems in Data Science [19]. Limits of energies similar to (4), of the form

1

εd

∫

D×D

a
(y − x

ε

)∣∣∣u(y)− u(x)

y − x

∣∣∣
2

dy dx, (9)
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have also been studied by Bourgain et al. [5] as an alternative definition of the Lp-norm of the
gradient of a Sobolev function, while, in the context of Free-Discontinuity Problems, functionals of
the form

1

εd

∫

D×D

a
(y − x

ε

)
min

{∣∣∣u(y)− u(x)

y − x

∣∣∣
2

,
1

ε

}
dy dx, (10)

have been proved to provide an approximation of the Mumford-Shah functionals by Gobbino [20]
after a conjecture by De Giorgi. Furthermore, discrete counterparts of functionals (4); i.e., energies
of the form

1

εd+2

∑

i,j∈εL

aij(ui − uj)
2 (11)

where L is a d-dimensional lattice have been widely investigated (see e.g. [18, 2, 9, 13]) as a discrete
approximation of quadratic integral functionals. Such type of functionals or the corresponding
operators have been analyzed in different ways under various inhomogeneity and randomness as-
sumptions (see e.g. [21, 18, 4, 12, 3, 4, 19, 10]).

In our case, we will prove a general homogenization result, which, under proper stationarity and
ergodicity assumptions, will comprise both random coefficients and random perforated domains
as in (1), assuming that Bω satisfies 0 < λ1 ≤ Bω(x, y) ≤ λ2 < +∞, and (2) where Eω is a
random perforated domain consisting of a unique connected component. The limit behaviour of
these energies is described by their Γ-limit in the L2(D) topology as a standard elliptic integral, of
the form

Fhom(u) =

∫

D

〈Ahom∇u,∇u〉 dx. (12)

The matrix Ahom is characterized by an asymptotic formula obtained using a limit theorem for
subadditive processes. The choice of the L2(D) topology is justified by the coerciveness of the
convolution energies, which ensures the convergence of minimum problems.

The plan of the paper is as follows. In Section 2 we define the general form of the random
functionals that we are going to consider. Section 3 is devoted to the statement and proof of a
compactness theorem. The proof of this result follows closely that of the compactness result for non-
linear convolution energies used to approximate Free-Discontinuity Problems obtained by Gobbino
[20, 6]; thanks to the quadratic growth conditions on the energies we can improve that result from
L1 to L2 compactness. In Section 4 we prove Poincaré and Poincaré-Wirtinger inequalities, which,
together with the compactness result, justify the application of the direct method of the Calculus of
Variations to minimum problems, and hence the asymptotic study of convolution energies in terms
of Γ-convergence. In Section 5 we use the stationarity and ergodicity properties of the energies to
prove the existence of an asymptotic homogenization formula giving a deterministic homogeneous
integrand using results on the asymptotic behaviour of almost-subadditive processes in [23]. The
formula is used in Section 6 to prove the homogenization theorem using an adaptation to (non-
local) homogenization problems of the blow-up technique of Fonseca and Müller [17, 14]. Finally,
in Section 7 we remark that the result can be applied to the homogenization of random perforated
domains.
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2 Setting of the problem

Let D be an open subset of Rd. For all ε > 0 and u ∈ L2(D) we will consider convolution-type
energies of the form

Fω
ε (u) =

1

εd+2

∫

D

∫

D

bω
(x
ε
,
y

ε

)
(u(y)− u(x))2 dy dx, (13)

where bω are stationary ergodic integrands satisfying

0 ≤ bω(x, y) ≤ C
1

(1 + |x− y|)d+2+κ
. (14)

More precisely, given a probability space (Ω,F ,P) with an ergodic dynamical system τx, we assume
that

bω(x, y) = b(τxω, τyω, x− y), (15)

where b(ω1, ω2, ξ) is a function define on Ω× Ω× R
d such that

0 ≤ b(ω1, ω2, ξ) ≤ C
1

(1 + |ξ|)d+2+κ
. (16)

In order to make the definition of a function b in (15) well defined we need additional assumptions on
b. One option is to assume that b(ω1, ω2, ξ) = b1(ω1)b2(ω2)a(ξ), where b1 and b2 are nonnegative
bounded random variables, and a(ξ) is a measurable function in R

d that satisfies estimate (7).
Another option is to assume that Ω is a topological space, the group τxω is continuous in x, and
the function b = b(ω1, ω2, ξ) is continuous in ω1 and ω2 and measurable in ξ and b(ω1, ω2, ξ) ≤ a(ξ)
with a as above. In both cases the definition of bω in (15) makes sense.

In order to obtain coerciveness properties which allow to include in our results both types of
models (1) and (2); i.e., with integrands

• bω(x, y) = Bω(x, y)a(x − y) with 0 < λ1 ≤ Bω(x, y) ≤ λ2 < +∞, or
• bω(x, y) = χ

Eω(x)χEω (y)a(x− y),
we will make the following abstract assumption.

Definition 2.1. We say that bω is a coercive energy function if there exist constants C and Ξ0

such that for all U open subsets of Rd, z ∈ R
d, Ξ ≥ Ξ0 and u ∈ L2(U) satisfying the boundary

condition
u(x) = 〈z, x〉 if dist(x, ∂U) < Ξ

there exists a function v ∈ L2(U) satisfying the boundary condition

v(x) = 〈z, x〉 if dist(x, ∂U) < Ξ/2

such that
∫

U×U

bω(x, y)(v(y) − v(x))2 dy dx ≤
∫

U×U

bω(x, y)(u(y)− u(x))2 dy dx, (17)

and
∫

{x,y∈U :|x−y|<1}

(v(y)− v(x))2 dy dx ≤ C

∫

U×U

bω(x, y)(v(y) − v(x))2 dy dx. (18)
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Remark 2.2. Note that if bω(x, y) ≥ C > 0 when |x − y| < 1 and we take u = v in the definition
above, or if bω(x, y) = χE(x)χE(y)a(x− y) with E a deterministic periodic perforated domain with
v a suitable extension of u in the perforation constructed in [15] then bω is coercive.

Remark 2.3 (coerciveness). The terminology in Definition 2.1 is justified by the Compactness
Theorem in Section 3, which ensures that if bω is a coercive energy function, then sequences bounded
in L2(D) and for which the energy on the left-hand side of (18) is equibounded admit L2

loc(D)
converging subsequences and their limit is in H1(D).

2.1 Notation

Unless otherwise stated C denotes a generic strictly positive constant independent of the parameters
of the problem taken into account.

QT = [−T/2, T/2]d denotes the d-dimensional coordinate cube centered in 0 and with side-
length T . If T = 1 then we write Q = Q1.

If x, y ∈ R
d then |y − x|1 =

∑d
j=1 |yj − xj |.

⌊t⌋ denotes the integer part of t ∈ R.
χA denotes the characteristic function of the set A.
For all t > 0 and D open subset of Rd we denote D(t) = {x ∈ D : dist(x, ∂D) > t}.
As a shorthand, the notation {P (ξ)} will stand for {ξ ∈ R

d : P (ξ) holds} if no confusion may
arise.

3 A compactness theorem

Let D be an open set with Lipschitz boundary. We show that families of functions that have
bounded energies of the type (4) is compact in L2

loc(D). To this end, for 0 < r ≤ σ, we define the
functional

F σ,r
ε (w) =

∫

D(σ)

∫

{|ξ|≤r}

(w(x + εξ)− w(x)

ε

)2
dξ dx, w ∈ L2(D).

In the case when D = R
d the L1

loc-compactness can be directly obtained by comparison with finite-
difference energies approximating the Mumford-Shah functional studied by Gobbino [20]. Here we
follow his proof, to deduce the L2

loc-compactness.

Theorem 3.1 (compactness theorem). Let D be an open set with Lipschitz boundary, and assume
that for a family {wε}ε>0, wε ∈ L2(D), the estimate

F kε,r
ε (wε) :=

∫

D(kε)

∫

{|ξ|≤r}

(wε(x+ εξ)− wε(x)

ε

)2
dξ dx ≤ C (19)

is satisfied with some k > 0 and r > 0. Assume moreover that the family {wε} is bounded in L2(D).
Then for any sequence εj such that εj > 0 and εj → 0, as j → ∞, and for any open subset D′

⋐ D
the set {wεj}j∈N is relatively compact in L2(D′) and every its limit point is in H1(D).

Before proving the theorem we prove some auxiliary results. We first introduce the local average
of a function u ∈ L2(D) by

◦

uδ =

∫

{|ξ|≤1}

u(x+ δξ)φ(ξ) dξ,

5



where φ is a symmetric non-negative C∞
0 function in R

d supported in the unit ball centered at the

origin,
∫
φ(ξ) dξ = 1. In our framework the function

◦

uδ is well defined in D(δ). The properties of
the local average operator are described in the following statement.

Proposition 3.2. Let δ and σ be positive numbers with δ < σ. Then we have

‖ ◦

uδ − u‖2L2(D(σ)) ≤ Cφδ
2F σ,1

δ (u). (20)

For any δ > 0 such that D′ ⊂ D(δ) the function
◦

uδ is smooth in D′ and satisfies the inequalities

‖ ◦

uδ‖L∞(D′) ≤ Cφδ
− d

2 ‖u‖L2(D), ‖∇ ◦

uδ‖L∞(D′) ≤ Cφδ
− d

2
−1‖u‖L2(D). (21)

Proof. For any u ∈ L2(D) by the Cauchy-Schwartz inequality we have

‖ ◦

uδ − u‖2L2(D(σ)) =

∫

D(σ)

∫

{|ξ|≤1}

∫

{|η|≤1}

(
u(x+ δξ)− u(x)

) (
u(x+ δη)− u(x)

)
φ(ξ)φ(η) dη dξ dx

≤ δ2
(∫

D(σ)

∫

{|ξ|≤1}

∫

{|η|≤1}

(u(x+ δξ)− u(x)

δ

)2
(φ(ξ))2dxdξdη

) 1
2

×

×
(∫

{|ξ|≤1}

∫

{|η|≤1}

(u(x+ δη)− u(x)

δ

)2
(φ(η))2dxdξdη

) 1
2

≤ Cφδ
2F σ,1

δ (u).

The estimates in (21) are standard.

Proposition 3.3. For any j ∈ N such that jε ≤ dist(D′, ∂D)− kε the following inequality holds:

F
(j+k)ε,1
jε (u) ≤ F kε,1

ε (u) (22)

for all u ∈ L2(D).

Proof. Representing u(x+ jεξ)−u(x) as (u(x+ jεξ)−u(x+(j− 1)εξ))+ (u(x+(j− 1)εξ)−u(x+
(j − 2)εξ)) + . . .+ (u(x+ εξ)− u(x)) we obtain

F
(j+k)ε,1
jε (u) ≤ j

∫

D((j+k)ε)

∫

{|ξ|≤1}

j∑

m=1

(
u(x+mεξ)− u(x+ (m− 1)εξ)

)2

(jε)2
dxdξ

≤ j2
∫

D(kε)

∫

{|ξ|≤1}

(
u(x+ εξ)− u(x)

)2

(jε)2
dxdξ = F kε,1

ε (u)

as desired.

Proof of Theorem 3.1. One may assume without loss of generality that r = 1. In order to prove
the compactness result, it suffices to show that, fixed D′, for each δ > 0 there exists a relatively
compact set Kδ in L2(D′) such that for any j ∈ N we have

‖wεj − hj‖L2(D′) ≤ δ (23)

6



for some hj ∈ Kδ.
We define Kδ as follows. If εj ≥ δ, we set hj = wεj ; otherwise,

hj =
◦

wεj ,δj =

∫

{|ξ|≤1}

wεj (x+ δjξ)φ(ξ) dξ,

where δj =
⌊

δ
εj

⌋
εj . Note that

1
2δ < δj ≤ δ for any j such that εj < δ. We finally set Kδ =

∞⋃
j=1

{hj}.
It is convenient to represent Kδ as a union Kδ = Kδ,1 ∪ Kδ,2 with

Kδ,1 =
⋃

{j : εj≥δ}

hj , Kδ,2 =
⋃

{j : εj<δ}

hj

Since εj tends to zero as j → ∞, the first set consists of a finite number of elements and thus is
compact. By (21) for any hj ∈ Kδ,2 we obtain

|hj(x)| ≤ C(δ), |∇hj(x)| ≤ C(δ) for all x ∈ D′.

Therefore, by the Arzelà-Ascoli theorem, the set Kδ,2 is relatively compact in C(D′). Consequently,
this set is also relatively compact in L2(D′). This yields the desired relative compactness of Kδ.

If εj ≥ δ then hj = wεj , and (23) holds. If εj < δ, then by (20) we get

‖wεj − hj‖ ≤ CφδjF
(δj+kεj)
δj ,1

(wεj ).

Combining this inequality with (22) and recalling that δj =
⌊

δ
εj

⌋
εj , we obtain

‖wεj − hj‖ ≤ CφδjF
kεj
εj ,1

(wεj ) ≤ Cδj ≤ Cδ;

here we have also used (19). The last inequality implies (23).
It remains to show that each limit point w is in H1(D). To that end we may use the ‘slicing

technique’ (see e.g. [6] Section 4.1, [7] Chapter 15 or [8] Section 3.4). This general method allows to
reduce the analysis to that of one-dimensional sections, and recover a lower bound by integrating
over all sections. It has already been applied in [20] to sequences of nonlinear functionals of the
form

1

εd+1

∫

D

∫

D

a
(y − x

ε

)
f
((u(y)− u(x))2

ε

)
dy dx (24)

in order to obtain compactness in spaces of functions with bounded variation. In our case we are
in a simplified situation with f equal the identity and we can improve the result to compactness in
H1(D).

In the one-dimensional case it is not restrictive to study functionals of the form

Gε(u) =

∫

(0,1)

∫

(−1,1)

(u(x+ εξ)− u(x)

ε

)2
dξ dx, (25)

and regard all functions as defined on R. With Fatou’s lemma in mind, in order to have a lower
bound it suffices to examine separately the functionals

Gξ
ε(u) =

∫

(0,1)

(u(x+ εξ)− u(x)

ε

)2
dx (26)

7



for fixed ξ ∈ (−1, 1).
For simplicity, we treat the case ξ ∈ (0, 1). We may suppose that uε → u in L2(R). Note that

for almost all t ∈ (0, 1) the piecewise-constant functions uε,ξ,t defined by

uε,ξ,t(x) = uε(εξt+ εξk) if εξk ≤ x < εξ(k + 1)

converge to u in L2(R), and we have

Gξ
ε(uε) ≥

⌊1/εξ⌋−1∑

k=1

∫ (k+1)εξ

kεξ

(uε(x+ εξ)− uε(x)

ε

)2
dt

=

⌊1/εξ⌋−1∑

k=1

∫ 1

0

εξ
(uε((k + 1)εξ + tεξ)− uε(kεξ + tεξ)

ε

)2
dt

= ξ2
∫

(0,1)

⌊1/εξ⌋−1∑

k=1

εξ
(uε,ξ,t((k + 1)εξ)− uε,ξ,t(kεξ)

εξ

)2
dt =

≥ ξ2
∫

(0,1)

∫

(δ,1−δ)

(u′
ε,ξ,t(x))

2 dx dt, (27)

eventually for all δ > 0 fixed, where we have identified the discrete function kεξ 7→ uε,ξ,t(kεξ)
defined on εξZ with its piecewise-affine interpolation. Note that for almost all t this functions still
converge to u. From (27) we deduce that u ∈ H1(δ, 1 − δ). By the arbitrariness of δ and the
uniformity of the bound on the L2-norm of u′ we deduce that u ∈ H1(0, 1). For more details on
this proof we refer to [6], where the nonlinear case is treated.

The deduction of the d-dimensional lower bound from the 1-dimensional one can be obtained by
repeating word for word the proof of [6] Theorem 5.19 with Gξ

ε in the place of F 1
ε in the notation

therein. This completes the proof of the compactness.

4 Poincaré inequalities

We first prove a Poincaré-Wirtinger inequality as follows.

Theorem 4.1 (Poincaré-Wirtinger inequality). Let D be a Lipschitz bounded domain. For each
fixed r0 > 0 there exists a constant C > 0 such that for any v ∈ L2(D) we have

∫

D

(v(x) − vD)2 dx ≤ C

∫

D

∫

{ξ:|ξ|≤r0,x+εξ∈D}

(v(x+ εξ)− v(x)

ε

)2
dξ dx, (28)

and vD is the average of v over D. The constant C does not depend on ε.

Corollary 4.2. Let r0 > 0 be defined in (8). Let k > 0 and r > 0 be the same as in Theorem 7.2.
Then for any u ∈ L2(D) the following inequality holds:

∫

D(kε)∩εE

(
u(x)− u{D(kε)∩εE}

)2
dx ≤ CFε(u); (29)

here

u{D(kε)∩εE} =
1

|D(kε) ∩ εE|

∫

{D(kε)∩εE}

u(x) dx.

8



Proof of Theorem 4.1. We set

F 0
ε (r, v) =

∫

D

∫

{ξ:|ξ|≤r,x+εξ∈D}

(v(x + εξ)− v(x)

ε

)2
dξ dx

and

F 1(G1, G2, v) =

∫

G1

∫

G2

(
v(x) − v(y)

)2
dx dy.

In what follows the notation Dε is used for 1
εD.

We first consider the case when D is a cube, D = (−L
2 ,

L
2 )

d, and r is a sufficiently large number,

say r ≥ 3
√
d. We also assume that L/ε is an integer number.

Denote Sε = {j ∈ Z
d : j + [− 1

2 ,
1
2 ]

d} ∩ Dε 6= ∅. For any i ∈ Sε and j ∈ Sε construct a path
γ(i, j) = {jk}Nk=1 in Z

d such that j1 = i, jN = j, |jk − jk+1| = 1. The path is constructed in such a
way that it starts along the first coordinate direction until the first coordinate of jk coincides with
the first coordinate of j, then it follows the second coordinate direction and so on. We then have

i. the length of each path is not greater than dL
ε ,

ii. For each j ∈ Sε the total number of paths {γ(i, l) : i, l ∈ Sε} that pass through j is not

greater than
(
L
ε

)d+1
:

#
{
γ(i, l) : i, l ∈ Sε, j ∈ γ(i, l)

}
≤
(L
ε

)d+1

. (30)

For any j ∈ Sε denote Qj = εj + ε[− 1
2 ,

1
2 ]

d. For i and j in Sε the “interaction energy of the cubes
Qi and Qj” can be estimated as follows. We consider a path γ(i, j), denote the length of this path
by N and its elements by γ1, γ2, . . . , γN , and introduce the variables η2, . . . , ηN−1, ηk ∈ Q0. Then
we have

∫

εQi

∫

Qj

(u(x)− u(εξ)

ε

)2
dξdx

= εd−2

∫

Q0

∫

Q0

(u(εγ1 + εη1)− u(εγN + εηN ))2 dη1dηN

= εd−2

∫

Q0

. . .

∫

Q0

(u(εγ1 + εη1)− u(εγ2 + εη2) + u(εγ2 + εη2)− . . .

−u(εγN + εηN ))2 dη1dη2 . . . dηN

≤ Nεd−2
N−1∑

i−1

∫

Q0

∫

Q0

(u(εγi + εηi)− u(εγi+1 + εηi+1)
2dηidηi+1

≤ (Ld)εd−3
N−1∑

i=1

∫

Q0

∫

Q0

(u(εγi + εξ)− u(εγi+1 + εη)2dξdη

≤ (Ld)ε−3
N−1∑

i=1

∫

εQ0

∫

{ξ:x+εξ∈D,|ξ|<r}

(u(εγi + x)− u(εγi + x+ εξ)2dxdξ.
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Considering (30) we deduce from the last inequality that

∫

D

∫

D

(u(x) − u(y))2dx dy

=
∑

i, l∈Sε

εd+2

∫

εQi

∫

Ql

(u(x)− u(εξ)

ε

)2
dξdx

≤ (Ld)εd−1
(L
ε

)d+1 ∑

j∈Sε

∫

x∈εQ0

∫

{ξ:x+εξ∈D,|ξ|<r}

(u(εj + x)− u(εj + x+ εξ))2dxdξ

≤ Ld+2d

∫

x∈D

∫

{ξ:x+εξ∈D,|ξ|<r}

(u(x)− u(x+ εξ

ε

)2
dxdξ.

Since ∫

D

∫

D

(u(x)− u(y))2dx dy = 2

∫

D

(u(x) − uD)
2dx,

this yields the desires inequality in the case of a cubic domain.
The case of an arbitrary r > 0 and L > 0 can be reduced to the one just studied by standard

scaling arguments.
If D is a strongly star-shaped domain, then there exists a cube B and a Lipschitz isomorphism

J : D 7→ B such that |J(x) − J(y)| ≤ ℓ|x − y|,
∣∣∣∂J∂x
∣∣∣ ≤ ℓ,

∣∣∣
(

∂J
∂x

)−1∣∣∣ ≤ ℓ for some ℓ > 0. For an

arbitrary u ∈ L2(D) denote uJ(x) = u(J−1(x)) and uB,J =
∫
B
uJ(x)dx. Also, we set r1 = r/ℓ.

Since the desired inequality has been proved for cubic domains, we have

∫

D

∫

D

(u(x) − u(y))2 dx dy

=

∫

B

∫

B

(uJ(x)− uJ(y))
2
∣∣∣∂J

−1

∂x
(x)
∣∣∣
∣∣∣∂J

−1

∂x
(y)
∣∣∣ dx dy

≤ ℓ2
∫

B

∫

B

(uJ(x) − uJ(y))
2 dx dy

≤ Cε−dℓ2
∫

B

∫

{y∈B:|y−x|<εr1}

(uJ(x)− uJ(y)

ε

)2
dy dx

≤ Cε−dℓ2
∫

D

∫

{ξ:x+εξ∈D,|ξ|<r}

(u(x)− u(y)

ε

)2∣∣∣∂J
∂x

(x)
∣∣∣
∣∣∣∂J
∂x

(y)
∣∣∣ dy dx

≤ Cε−dℓ4
∫

D

∫

{ξ:x+εξ∈D,|ξ|<r}

(u(x)− u(y)

ε

)2
dy dx,

where the constant C depends only on the size of B, r1 and d.

It remains to consider an arbitrary bounded Lipschitz set D. Such a set can be represented as
a union of a finite number of strongly star shaped domains, we denote these domains D1, . . . , DN .

We first consider the case N = 2, we denote by B̃ a cube such that B̃ ⊂ D, |B̃ ∪D1| ≥ 1
2 |B̃|,

|B̃ ∪ D2| ≥ 1
2 |B̃|. Notice that |B̃ ∪ D1| = |B̃ ∪ D2| = 1

2 |B̃| if the interiors of D1 and D2 do not

intersect. In the rest of the proof the symbols B̃1 and B̃2 stand for B̃∪D1 and B̃∪D2, respectively.
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If we denote

uk =
1

|Dk|

∫

Dk

u(x) dx, k = 1, 2; u0,k =
1

|B̃k|

∫

B̃k

u(x) dx, k = 1, 2; u0 =
1

|B̃|

∫

B̃

u(x) dx

then

(u1 − u0,1)
2 =

( 1

|B̃1| |D1|

∫

B̃1

∫

D1

u(x) dx dy − 1

|B̃1| |D1|

∫

B̃1

∫

D1

u(y) dx dy
)2

≤ 1

|B̃1| |D1|

∫

B̃1

∫

D1

(u(x) − u(y))2 dx dy

≤ 1

|B̃1| |D1|

∫

D1

∫

D1

(u(x)− u(y))2 dx dy

≤ Cε−d

∫

D1

∫

{y∈D1:|y−x|<εr}

(u(x)− u(y)

ε

)2
dy dx

≤ Cε−d

∫

D

∫

{y∈D:|y−x|<εr}

(u(x)− u(y)

ε

)2
dy dx;

here we have used inequality (28) in D1 that holds because D1 is a strongly star shaped domain.
In the same way we prove that

(u0,1 − u0,2)
2 ≤ Cε−d

∫

D

∫

{y∈D:|y−x|<εr}

(u(x)− u(y)

ε

)2
dy dx,

and

(u0,2 − u2)
2 ≤ Cε−d

∫

D

∫

{y∈D:|y−x|<εr}

(u(x)− u(y)

ε

)2
dy dx.

Therefore,

(u1 − u2)
2 ≤ Cε−d

∫

D

∫

{y∈D:|y−x|<εr}

(u(x)− u(y)

ε

)2
dy dx.

Since uD ∈
(
u1, u2

)
, the last inequality yields

∫

D

(u(x)− uD)2 dx ≤
2∑

k=1

(
2

∫

Dk

(u(x) − uk)
2 dx + 2|Dk|(uk − uD)2

)

≤ 2

2∑

k=1

∫

Dk

(u(x)− uk)
2 dx+ 2|D|(u1 − u2)

2

≤ Cε−d

∫

D

∫

{y∈D:|y−x|<εr}

(u(x)− u(y)

ε

)2
dy dx.

The case N > 2 can be achieved by induction.

We next consider functions with given boundary data.
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Lemma 4.3 (Poincaré inequality). Let D be a bounded set and let u ∈ L2(D) be such that u = 0 on
a 2ε-neighbourhood of ∂D (and extended to 0 outside D). Then there exists a constant C depending
only on the diameter of D such that

∫

D

|u(x)|2 dx ≤ C
1

εd+2

∫

D

∫

{|ξ|≤ε}

(u(x+ ξ)− u(x))2dξdx . (31)

Proof. It suffices to treat the case d = 1 and D = (0, 1), the general case being recovered from this
one by considering one-dimensional stripes. For notational convenience we replace ε by 2ε, so that
our claim becomes that

∫ 1

0

|u(x)|2 dx ≤ C
1

ε3

∫ +∞

−∞

∫ x+2ε

x−2ε

(u(y)− u(x))2dy dx , (32)

keeping in mind that the first integral in the right-hand side is indeed restricted to (0, 1).
For all k ∈ N we note that, since

(x− 2ε, x+ 2ε) ⊃ (kε− ε, kε+ ε) if x ∈ (kε− ε, kε+ ε),

we have
∫ kε+ε

kε−ε

∫ x+2ε

x−2ε

(u(y)− u(x))2dy dx

≥
∫ kε+ε

kε−ε

∫ kε+ε

kε−ε

(u(y)− u(x))2dy dx

≥
∫ kε

kε−ε

∫ kε+ε

kε

(u(y)− u(x))2dy dx

= ε

∫ kε

kε−ε

|u(x)|2 dx− 2

∫ kε

kε−ε

u(x) dx

∫ kε+ε

kε

u(y)dy + ε

∫ kε+ε

kε

|u(y)|2dy

= ε
(∫ kε

kε−ε

|u(x)|2 dx− 2

√∫ kε

kε−ε

|u(x)|2 dx
√∫ kε+ε

kε

|u(y)|2dy +

∫ kε+ε

kε

|u(y)|2dy
)

= ε

(√∫ kε

kε−ε

|u(x)|2 dx −
√∫ kε+ε

kε

|u(y)|2dy
)2

. (33)

Note that for k = 0 this gives
∫ ε

0

|u(y)|2 dy ≤ 1

ε

∫ ε

−ε

∫ x+2ε

x−2ε

(u(y)− u(x))2dy dy

By a recursive argument from k = 0 we deduce that

∫ kε+ε

kε

|u(y)|2 dy ≤ 1

ε

(
k∑

j=0

√∫ jε+ε

jε−ε

∫ x+2ε

x−2ε

(u(y)− u(x))2dy dx

)2

≤ 1

ε2

k∑

j=0

∫ jε+ε

jε−ε

∫ x+2ε

x−2ε

(u(y)− u(x))2dy dx

≤ 2

ε2

∫ +∞

−∞

∫ x+2ε

x−2ε

(u(y)− u(x))2dy dx,
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where the factor 2 takes into account that the intervals (jε− ε, jε+ ε) overlap for consecutive values
of j. Noting that indeed the term with k = 0 is 0 by our assumptions on the values of u close to
the boundary, it suffices now to sum up the contribution over all k ∈ {1, . . . , ⌊1/ε⌋} to obtain

∫ 1

0

|u(y)|2 dy ≤ 2
⌊1/ε⌋
ε2

∫ +∞

−∞

∫ x+2ε

x−2ε

(u(y)− u(x))2dy dx,

which gives (32) with C = 2. Note that if the interval (0, 1) is substituted by any interval then we
can take C as twice the length of the interval.

5 Definition of the homogenized energy density

Let b be as in Section 2. For all K ∈ N we set

bωK(x, y) =

{
bω(x, y) if |x− y| < K

0 otherwise,
(34)

and, for z ∈ R
d, U open subset of Rd, and K ∈ N we define

Mω
K(z, U) = inf

{∫

U

∫

Rd

bωK(x, y)(v(x) − v(y))2dx dy : v(x) = 〈z, x〉 if dist(x, ∂U) < K
}
. (35)

Note that, using v(x) = 〈z, x〉 as a test function, we get

Mω
K(z, x+QR) ≤ CRd|z|2 (36)

for all x and R.

Lemma 5.1. For all K and z the limit

γK(z) = lim
R→+∞

Mω
K(z,QR)

Rd
(37)

exists almost surely, it is independent of ω, and K 7→ γK(z) is an increasing function. Moreover,
there exists an increasing function fK with

lim
R→+∞

fK(R) = +∞

such that

γK(z) = lim
R→+∞

Mω
K(z, xR +QR)

Rd
(38)

for all {xR} such that |xR| ≤ RfK(R).

Proof. Our arguments rely on a uniform version of the sub-additive ergodic theorem, see [23, The-

orem 1]. For any j ∈ Z
d,+ = {0, 1, 2, . . .}d we define Qj = j + 1̄

2 + Q, where 1̄
2 is the vector

(12 ,
1
2 , . . . ,

1
2 ). For any finite subset A of Zd,+ denote QA =

⋃
j∈A Qj , and ΦK(z,A) = Mω

K(z,QA).
From definition (35) for any non-intersecting finite sets A and B we have

ΦK(z,A ∪ B) ≤ ΦK(z,A) + ΦK(z,B).

13



Since bωK(x, y) is statistically homogeneous, the family {ΦK(z,A)} is stationary; that is, for any
j ∈ Z

d,+ and any finite collection A1, . . . ,AN the joint law of {ΦK(z,A1 + j), . . . ,ΦK(z,AN + j)}
is the same as the joint law of {ΦK(z,A1), . . . ,ΦK(z,AN)}. Then according to Theorem 1 in [23]
there exists γK(z) such that for any N > 0 we have

lim
R→∞

sup
{∣∣∣

Mω
K

(
z,R(x+Q)

)

Rd
− γK(z)

∣∣∣ : |x| ≤ N
}
= 0 (39)

almost surely. This implies (37); moreover, since bω > 0, K 7→ γK(z) is an increasing function.
Note that we can choose a (slowly growing) sequence N = Nω(R) such that (39) still holds,

which yields (38).

Definition 5.2 (homogenized energy function). We define

γ(z) = lim
K→+∞

γK(z) = sup
K>0

γK(z).

For z ∈ R
d, U open subset of Rd, and K ∈ N we set

M̃ω
K(z, U) = inf

{∫

U

∫

U

bω(x, y)(v(x) − v(y))2dx dy : v(x) = 〈z, x〉 if dist(x, ∂U) < K
}

(40)

Note that M̃ω
K(z, U) cannot be directly compared with Mω

K(z, U) as defined in (35) since on
one side bωK ≤ bω while the second integral is performed on U and not R

d. However, still using
v(x) = 〈z, x〉 as a test function, we get

M̃ω
K(z, x+QR) ≤ CRd|z|2 (41)

for all x and R.

Lemma 5.3. Let bω be coercive. For all K and z we have

γ(z) = lim
K→+∞

lim sup
R→+∞

M̃ω
K(z,QR)

Rd
= lim

K→+∞
lim inf
R→+∞

M̃ω
K(z,QR)

Rd
(42)

almost surely.

The proof of this lemma is based on the following proposition.

Proposition 5.4. If U is a cube in R
d and v ∈ L2(U) then we have

∫

{x,y∈U :|x−y|>K}

bω(x, y)(v(x) − v(y))2dx dy ≤ CK−κ

∫

{x,y∈U :|x−y|<1}

(v(x) − v(y))2dx dy , (43)

with C depending only on the bounds on bω and the dimension d.
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Proof of Proposition 5.4. Without loss of generality we may assume that the cube U is centered at
the origin; i.e., U = QT for some T > 0. Furthermore, we may suppose that T is integer, and cover
QT with the set of unit cubes Q(j) = Q + j, j ∈ Z

d ∩ U . If K > T , the statement trivially holds.
Otherwise, for any j′ and j′′ such that |j′ − j′′|1 = n with n ≥ K we consider a path (i.e., an array
of points in Z

d), j′ = j0, j1, . . . , jn = j′′, with |ji − ji+1|1 = 1, that has the following properties: in
the starting segment of this path j0, j1, . . . , jn1

only the first coordinate is changed until it is equal
to the first coordinate of j′′ (i.e., n1 = j′′1 − j′1, and ji+1 = ji +(1, 0, . . . , 0)). Then we proceed with
the second coordinate, and so on.

In order to estimate the contribution to the energy of the interaction between the cubes Q(j′)
and Q(j′′), with fixed n we first estimate the integral

∫

{(y0,yn)∈Q×Q}

(v(y0 + j0)− v(yn + jn))
2dy0dyn

=

∫

Q

. . .

∫

Q

( n−1∑

i=0

(
v(yi + ji)− v(yi+1 + ji+1)

))2
dy0dy1 . . . dyn

≤ n

∫

Q

∫

Q

n−1∑

i=0

(
v(x+ ji)− v(y + ji+1)

)2
dx dy .

Note that each pair of neighbouring points in U ∩ Z
d belongs to not more than nd paths as

described above for some pair j′, j′′ in U such that |j′ − j′′|1 = n. Taking this into account and
summing up over all j′, j′′ in U ∩ Z

d with |j′ − j′′|1 = n we obtain

∑

j′, j′′∈U∩Z
d

|j′−j′′|
1
=n

∫

Q×Q

(v(x + j′)− v(y + j′′))2dx dy ≤ nd+1

∫

(U×U)∩{|x−y|1≤2}

(v(x) − v(y))2dx dy.

Taking (16) into account, we have
∫

{(x,y)∈U×U :|x−y|>K}

bω(x, y)(v(x) − v(y))2dx dy

≤ C
T∑

n=K

nd+1

(1 + n)d+2+κ

∫

{(x,y)∈U×U :|x−y|1≤2}

(v(x) − v(y))2dx dy

≤ CK−κ

∫

{(x,y)∈U×U :|x−y|1≤2}

(v(x) − v(y))2dx dy.

The desired statement follows from the last inequality by a scaling argument.

Proof of Lemma 5.3. Denote

Mω

K(z, U) = inf
{∫

U

∫

U

bωK(x, y)(v(x) − v(y))2dx dy : v(x) = 〈z, x〉 if dist(x, ∂U) < K
}
. (44)

Then

0 ≤ Mω
K(z, U)−Mω

K(z, U) =

∫

U

∫

Rd\U

bωK(x, y)〈z, (x− y)〉2dx dy

≤ C|z|2K1−κHd−1(∂U). (45)
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Let u be a minimizer for Mω
2K(z, U) (which we may assume exists). Let v be given by Definition

2.1 with Ξ = 2K. We then have

M̃ω
K(z, U) ≤

∫

U

∫

U

bω(x, y)(v(x) − v(y))2dx dy

=

∫

U

∫

U

bω2K(x, y)(v(x) − v(y))2dx dy

+

∫

{x,y∈U :|x−y|>2K}

bω(x, y)(v(x) − v(y))2dx dy

≤ Mω

2K(z, U) + CK−κ

∫

{x,y∈U :|x−y|<1}

(v(x) − v(y))2dx dy

≤ Mω

2K(z, U) + CK−κ

∫

U×U

b(x, y)(v(x) − v(y))2dx dy

≤ Mω

2K(z, U) + CK−κ|z|2|U |
≤ Mω

2K(z, U) + CK−κ|z|2|U |+ C|z|2K1−κHd−1(∂U), (46)

Conversely, since Mω

K(z, U) ≤ M̃ω
K(z, U) we have

Mω
K(z, U) ≤ M̃ω

K(z, U) + C|z|2K1−κHd−1(∂U) (47)

Dividing by Rd, taking the upper limit in (46) and the lower limit in (47) with U = QR we
obtain

γK(z) = lim inf
R→+∞

Mω
K(z,QR)

Rd
≤ lim inf

R→+∞

M̃ω
K(z,QR)

Rd

≤ lim sup
R→+∞

M̃ω
K(z,QR)

Rd

≤ lim sup
R→+∞

Mω
2K(z,QR)

Rd
+ CK−κ|z|2

= γ2K(z) + CK−κ|z|2

Taking the limit as K → +∞ we obtain the claim.

6 Homogenization

We now state and prove a homogenization result with respect to the strong L2-convergence.

Theorem 6.1. Let D be an open set with Lipschitz boundary, and let Fω
ε be given by (13) on

L2(Ω). Then Fω
ε almost surely Γ-converge with respect to the L2-convergence to the functional

Fhom(u) =

∫

D

〈Ahom∇u,∇u〉 dx (48)

on H1(D), where Ahom is a symmetric matrix which satisfies

〈Ahomz, z〉 = γ(z). (49)
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The proof of this theorem will make use of a ‘convolution version’ of a classical lemma by De
Giorgi that allow to match the boundary values of a target function (see [15])

Proposition 6.2 (treatment of boundary values). Let A be a bounded open set with Lipschitz
boundary, let vη → v in L2(A) with v ∈ H1(A). For every δ > 0 there exist vδη converging to v in
L2(A) such that

vδη = v in A \A(δ), vδη = vη in A(2δ)

and
lim sup

η→0
(Fω

η (vδη)− Fω
η (vη)) ≤ o(1)

as δ → 0.

Proof of Theorem 6. By Remark 2.3 it suffices to describe the Γ-limit in H1(D).
We note that Fω

ε are quadratic functionals, so that also their Γ-limit is a quadratic functional
(see [7]). Then, if we prove that the Γ-limit exists and admits the representation

Fhom(u) =

∫

D

γ(∇u) dx, (50)

then also γ must be a quadratic form on R
d, from which the existence of a matrix Ahom satisfying

(49) follows.
We now prove (50), first showing a lower bound. We fix ω, u ∈ H1(D) and a sequence uε → u

with bounded Fε(uε). As in [15], we use a variation of the Fonseca-Müller blow-up technique [17].
We first define the measures on D given by

µε(A) =
1

εd+2

∫

A

∫

D

bω
(x
ε
,
y

ε

)
(uε(y)− uε(x))

2dξ dx.

Since µε(D) = Fε(uε), these measures are equibounded, and we may suppose that they converge
weakly∗ to some measure µ. We now fix an arbitrary Lebesgue point x0 for u and ∇u, and set
z = ∇u(x0). The lower-bound inequality is proved if we show that

dµ

dx
(x0) ≥ γ(z). (51)

Upon a translation argument it is not restrictive to suppose that x0 be a Lebesgue point of all
uε (upon passing to a subsequence), and that uε(x0) = u(x0) = 0. We note that for almost all
ρ > 0 we have µε(x0 +Qρ) → µ(x0 +Qρ). Since

dµ

dx
(0) = lim

ρ→0+

µ(x0 +Qρ)

ρd
,

and for almost all ρ > 0
µ(Qρ) = lim

ε→0
µε(x0 +Qρ)

we may choose (upon passing to a subsequence) ρ = ρε with 1 >> ρ >> ε such that

dµ

dx
(0) = lim

ε→0+

µε(x0 +Qρ)

ρd
.
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Note that we may choose ρε tending to zero “arbitrarily slow”; i.e., for all f with lim
ε→0

f(ε) = 0 we

may choose ρε with
ρε ≥ f(ε). (52)

Note moreover that

µε(x0 +Qρ) =
1

εd

∫

x0+Qρ

∫

D

bω
(x
ε
,
y

ε

)(uε(y)− uε(x)

ε

)2
dx dy

≥ 1

εd

∫

x0+Qρ

∫

x0+Qρ

bω
(x
ε
,
y

ε

)(uε(y)− uε(x)

ε

)2
dx dy.

We now change variables and set

vε(y) =
uε(x0 + ρy)

ρ
for y ∈ Q1 .

Note that, since u(ρy)
ρ converges to 〈z, y〉 as ρ → 0 as we have assumed that u(x0) = 0, and we also

have assumed that uε(x0) = 0, we may choose ρ = ρε above so that

vε → 〈z, y〉 in L2(Q1).

By Proposition 6.2 above, applied with v = 〈z, x〉, A = Q1 and η = ε/ρ, for all δ > 0 there
exists a sequence vδε such that vδε(y) = 〈z, y〉 on Q1 \Q1−δ and

1

εdρd

∫

Qρ

∫

Qρ

bω
(x
ε
,
y

ε

)(uε(x) − uε(y)

ε

)2
dx dy

≥ ρd

εd

∫

Q1

∫

Q1

bω
(x0

ε
+

x

ε/ρ
,
x0

ε
+

y

ε/ρ

)(vδε(x)− vδε(y)

ε/ρ

)2
dx dy + o(1)

as δ → 0 uniformly in ε.
If we set R = Rε = ρ/ε and change variables, we get

1

ρd
µε(x0 +Qρ) ≥

1

Rd

∫

x0
ε
+Q ρ

ε

∫

x0
ε
+Q ρ

ε

bω(x, y)(vR(x) − vR(y))
2 dx dy + o(1)

as δ → 0, where

vR(x) = vδε

( x
R

− x0

ρ

)
.

For every fixed K > 0 we have that

vR(x) = 〈z, x〉 if dist
(
x, ∂

(x0

ε
+Q ρ

ε

))
< K

for ε small enough (and hence R large enough). Hence, we may use vR as a test function in the

definition on M̃ω
K(z,QR). We also note that suitably choosing f in (52) we have that xR = x0/ρ

satisfies |xR| ≤ RfK(R) in Lemma 5.1, so that we finally obtain

lim
ε→0

1

ρd
µε(x0 +Qρ) ≥ lim

R→+∞

Mω
K(z, xR +QR)

Rd
+ o(1) = γK(z) + o(1)
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as δ → 0. Hence we have

Γ- lim inf
ε→0

Fε(u) ≥
∫

U

γK(∇u) dx+ o(1)

By taking the supremum in K, using the Monotone Convergence Theorem, and by the arbitrariness
of δ we get the desired lower bound.

The proof of the upper bound is obtained by a standard density argument by piecewise-affine
functions (see also [15]) once it is shown for D a d-dimensional simplex S and u(x) = 〈z, x〉 a linear
function. We consider L large enough so that QL ⊃ D for some L > 0. We fix m ∈ N and subdivide
QL into md cubes Qm

i = xm
i +QL/m of side-length L/m and disjoint interiors. With fixed K ∈ N

we choose ui
ε ∈ L2(1εQ

m
i ) such that v(x) = 〈z, x〉 if dist(x, 1

ε∂Q
m
i ) < K and

∫

1
ε
Qm

i
× 1

ε
Qm

i

bω(x, y)(ui
ε(x)− ui

ε(y))
2dx dy ≤ Mω

K

(
z,

1

ε
xm
i +Q L

mε

)
+ 1

≤ Ld

mdεd
(γK(z) + o(1)) + 1 (53)

as ε → 0 and K → +∞.
We then define um

ε ∈ L2(Q) by setting

um
ε (x) = ε ui

ε

(x
ε

)
if x ∈ Qm

i .

We set
Im = {I : Qm

i ∩D 6= ∅},
and compute

Fω
ε (um

ε ) ≤
∑

i∈Im

1

εd+2

∫

Qm
i
×Qm

i

bω
(x
ε
,
y

ε

)
(um

ε (x) − um
ε (y))2dx dy

+
1

εd+2

∑

i6=j

∫

{x∈Qm
i
:dist(x,∂Qm

i
)<εK}

∫

{y∈Qm
i
:dist(x,∂Qm

i
)<εK}

bω
(x
ε
,
y

ε

)
|z|2|x− y|2 dx dy

+
1

εd+2

∫

{x,y∈QL:|x−y|>εK}

bω
(x
ε
,
y

ε

)
(um

ε (x)− um
ε (y))2dx dy

≤
∑

i∈Im

εd
∫

1
ε
Qm

i
× 1

ε
Qm

i

bω(x, y)(ui
ε(x)− ui

ε(y))
2dx dy + CKmε|z|2 + CK−η

≤
(
|U |+O

( 1

m

))
γK(z) + o(1) + CKmε|z|2 + CK−η.

Note that we have used assumption (14) to estimate the second term in the sum, and Proposition
5.4 with U = L

ε Q and the coerciveness of bω to estimate the third term in the sum.
We may now choose m = mε → +∞ such that

lim sup
ε→0

Fω
ε (um

ε ) ≤ LdγK(z) + o(1)

as K → +∞. Note that, since um
ε (x) = 〈z, x〉 if dist(x,⋃i ∂(Q

m
i )) < εK then um

ε → 〈z, x〉 in L2(D)
and we obtain an upper bound with γK(z) + o(1). Letting K → +∞ we finally have the desired
estimate.
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7 Random perforated domains

In this section we note that Theorem 6 can be applies to the homogenization on randomly perforated
domains.

First we define random sets in R
d. Let (Ω,F ,P) be a standard probability set, and assume that

τx, x ∈ R
d is a measure-preserving dynamical system on this probability space; that is, {τx}x∈Rd is

a group of measurable mappings τx : Ω 7→ Ω such that

• τx ◦ τy = τx+y, τ0 = Id,

• P(τxA) = P(A) for all x ∈ R
d and A ∈ F ,

• τ· : R
d×Ω 7→ Ω is a measurable map. We assume here that Rd×Ω is equipped with a product

σ-algebra B × F , where B is a Borel σ-algebra in R
d.

We also assume that {τx} is ergodic; that is, the measure of any set A ∈ F which is invariant with
respect to τx for all x ∈ R

d is equal to 0 or 1.

Definition 7.1 (random sets and random perforations). We say that Eω = {x ∈ R
d : χΩ1

(τxω) =
1} is a random set in R

d if Ω1 ∈ F is such that P(Ω1)P(Ω \ Ω1) > 0.. A random set Eω is called
a random perforated domain if it possesses the following properties:

1. Almost surely R
d \ Eω is a union of bounded open sets in R

d;

2. The diameters of these sets are uniformly bounded.

3. The distance between any two distinct sets is bounded from below by a positive constant.

4. The boundary of these sets are uniformly Lipschitz continuous; i.e., there exist constants L > 0
and ρ1, ρ2 > 0 such that for any point x ∈ ∂Eω there exists a set C which, up to translation
by x and rotation, is of the form (−ρ1, ρ1)

d−1 × (−ρ2, ρ2) such that C ∩ Eω is the sub-graph
of a L-Lipschitz function defined on (−ρ1, ρ1)

d−1.

We now assume that Eω is a random perforated domain, and we set

bω(x, y) = χ
Eω(x)χEω (y)a(x− y). (54)

The key observation is that such bω is coercive. This is implied by the following theorem in [15].

Theorem 7.2 (extension theorem). Let Eω be a random perforated domain that satisfies condition
(1)–(4) above. Let bω be defined by (54). Then there exists k > 0 and r > 0 such that almost surely
for all u ∈ L2(D ∩ εEω) there exists v ∈ L2(D) such that

v = u on D ∩ εEω, (55)

∫

D(kε)

∫

{|ξ|≤r}

(v(x+ εξ)− v(x)

ε

)2
dξ dx ≤ CFω

ε (u) (56)

and ∫

D(kε)

|v|2 dx ≤ C

∫

D∩εE

|u|2 dx. (57)
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Theorem 7.3 can be rephrased as follows.

Theorem 7.3. Let D be an open set with Lipschitz boundary, let Eω be a random perforated domain
as above, and let Fω

ε be given by

Fω
ε (u) =

1

εd+2

∫

(D∩εEω)×(D∩εEω)

a
(x− y

ε

)
(u(y)− u(x))2dy dx, (58)

Then Fω
ε almost surely Γ-converge with respect to the L2-convergence to the functional (48) on

H1(D), where Ahom is a symmetric matrix which satisfies

〈Ahomz, z〉 = lim
K→+∞

lim
R→+∞

1

Rd
inf
{∫

QR∩Eω

∫

Eω

a(x− y)(v(x) − v(y))2dx dy :

v(x) = 〈z, x〉 if dist(x, ∂QR) < K
}
. (59)
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