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Growth of Sobolev norms in linear Schrodinger equations
as a dispersive phenomenon

A. Maspero*
November 15, 2022

Abstract

In this paper we consider linear, time dependent Schrédinger equations of the form
i) = Koy + V(t)y, where Ko is a strictly positive selfadjoint operator with discrete
spectrum and constant spectral gaps, and V() a smooth in time periodic potential. We
give sufficient conditions on V (¢) ensuring that Ko + V (¢) generates unbounded orbits. The
main condition is that the resonant average of V (¢), namely the average with respect to the
flow of Ky, has a nonempty absolutely continuous spectrum and fulfills a Mourre estimate.
These conditions are stable under perturbations. The proof combines pseudodifferential
normal form with dispersive estimates in the form of local energy decay.

We apply our abstract construction to the Harmonic oscillator on R and to the half-wave
equation on T; in each case, we provide large classes of potentials which are transporters.

1 Introduction
We consider the abstract linear Schrédinger equation
0 = Kot + V(£) (1.1)

on a scale of Hilbert spaces H"; here V(¢) is a smooth in time 27-periodic potential and Ky a
selfadjoint, strictly positive operator with compact resolvent, pure point spectrum and constant
spectral gaps. We prove some abstract results ensuring, Vr > 0, the existence of solutions ¥ (t)
whose H"-norms grow polynomially fast,

lv@llr = Cr (B)", VE>1,

whereas their H°-norms are constant for all times, ||1(t)||o = ||1(0)||o Vt. Here (t) := /1 + ¢2.
These solutions therefore exhibit weak turbulent behavior in the form of energy cascade towards
high frequencies.
We apply our abstract results to two models: the Harmonic oscillator on R and the half-wave
equation on T. In both cases we exhibit large classes of potentials V' (¢), bounded, smooth and
periodic in time, so that the Hamiltonian Ky + V(¢) generates unbounded orbits.

The phenomenon is purely perturbative: for V' = 0 each norm of each solution is constant
for all times. So the central question is the existence of potentials able to transport energy to
high-frequencies; we formalize this notion in the following definition:

*International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
Email: alberto.maspero@sissa.it



1 INTRODUCTION 2

Definition 1.1. We shall say that V(t) is a transporter if there exists a solution ¥ (t) € H",
r >0, of with unbounded growth of norm, i.e.

lim sup || (t)]], = oo.
t— o0
If this happens for every nonzero solution we shall say that V (t) is a universal transporter.

Starting with the pioneering work of Bourgain [9], in the last few years there have been
several efforts to construct both transporters [I8] 23] [62] and universal transporters [6] [50] for
different types of Schrodinger equations. All these papers provide explicit examples of potentials,
constructed ad hoc for the problem at hand.

The novelty of our result is that we identify sufficient, explicit and robust conditions ensuring
V(t) to be a transporter. Precisely, the resonant average of V (t), defined as

V) = o

2m
/ el KoV (5) e715K0 45 (1.2)
0

must have nontrivial absolutely continuous spectrum in an interval, over which it has to fulfill
a Mourre estimate — see below (actually we also require that both Ky and V(t) belong to
some abstract graded algebra of pseudodifferential operators, as in [5]).

Our main results prove that any V(¢) fulfilling these conditions is a transporter, and so is any
of its sufficiently small, bounded perturbations, see Theorem [I.§ and This shows a sort of
“stability of instability”, which we believe is a new phenomenon.

Another novelty of the paper is that the mechanism ensuring transport of energy at high
frequencies is a dispersive phenomenon in the energy space. Indeed, as we will show, equation
is well approximated by the equation i0;¢) = (V)4 which, under the previous assumptions
on (V), admits solutions dispersing in the energy space as

|Ky ke " VIPgllo S (t) F|KEdllo, VEER, (1.3)

where P, is a projector on the absolutely continuous spectral space of (V). In particular, the
Schrodinger flow of (V) forces energy to leave any compact set of the frequency space and
flow towards infinity, provoking energy cascade. This is the Fourier analogous of the classical
mechanism of transport of spatial mass to infinity for Schrodinger equations on euclidean spaces,
which goes back to the works of Rauch [55] and Jensen-Kato [42].

The fact that Mourre estimates imply dispersive estimates as above has origin from the work
of Sigal-Soffer in quantum scattering theory [59] and it has been extended by many authors (see
e.g. [60, 27, [43], 411, 291 [2]), see also the recent results [13], 12 [21].

Previous literature. As we already mentioned, the first result is due to Bourgain [9], who
constructed a transporter for the Schrodinger equation on the torus; in this case V (t) is a bounded
real analytic function. Delort [I8] constructs a transporter for the harmonic oscillator on R, which
is a time 27-periodic pseudodifferential operator of order zero. In [6] we proved that ax sin(t),
a > 0, is a universal transporter for the harmonic oscillator on R; in this case the potential is
an unbounded operator. In [50] we constructed universal transporters for the abstract equation
(1), and applied the result to the harmonic oscillator on R, the half-wave equation on T and
on a Zoll manifold; in all cases the universal transporters are time periodic pseudodifferential
operators of order 0. Recently Faou-Raphael [23] constructed a transporter for the harmonic
oscillator on R which is a time dependent function (and not a pseudodifferential operator), and
Thomann [62] has constructed a transporter for the harmonic oscillator on the Bargman-Fock
space. Liang, Zhao and Zhou [47] and Luo, Liang and Zhao [48] construct transporters for the
Harmonic oscillator which are the quantization of polynomial symbols of order at most 2 and are
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quasi-periodic in time. Recently, we have exploited the results of the present paper to contruct
generic transporters for the Harmonic oscillator on R [5I]. Finally we recall the long-time growth
result [35] for the semiclassical anharmonic oscillator on R.

Before closing this introduction, we mention that constructing solutions with unbounded or-
bits in nonlinear Schrodinger-like equations is a big challenge. After the seminal works by Kuksin
[45] [46], the breakthrough result by Colliander-Keel-Staffilani-Takaoka-Tao [14] constructed long
time unstable orbits for the nonlinear Schrédinger equation on T?. The methods of [I4] have
been refined and extended in [32] 33 36}, B, 30} 28]. However truly unbounded orbits have been
constructed only by Gérard-Grellier for the cubic Szegd equation on T [24] 25], Hani-Pausader-
Tzvetkov-Visciglia the cubic NLS on R x T? [34] and recently by Gérard-Lenzmann for the
Calogero-Moser derivative NLS [26].

Acknowledgments: We thank Matteo Gallone for helpful discussions on spectral theory and
Dario Bambusi and Didier Robert for useful suggestions during the preparation of this work.

1.1 The abstract result

We start with a Hilbert space H, endowed with the scalar product (-, -), and a reference operator
Ky, which we assume to be selfadjoint, positive, namely such that

(W Ko) > exol01? . Yo € D(K,?) , exy >0,

and with compact resolvent.

We define as usual a scale of Hilbert spaces by H" := D(K{;) (the domain of the operator Kf)
if r>0,and H" = (H~")" (the dual space) if 7 < 0. Finally we denote by H™>° = J,.p H" and
HT® =, g H'. We endow H" with the natural norm [[¢||,. := |[Kg1[lo, where || - [|o is the
norm of H% = H. Notice that for any m € R, H*>° is a dense linear subspace of H™ (this is a
consequence of the spectral decomposition of Kj).

Remark 1.2. By the very definition of H", the unperturbed flow e~ #%o preserves each norm,

e~ Eoq)||,. = ||v||, Vt € R. Consequently, every orbit of equation (1)) with V' (¢) = 0 is bounded.

Following [5], we introduce now a graded algebra A of operators which mimic some funda-
mental properties of different classes of pseudodifferential operators. For m € R let A4,, be a
linear subspace of (,.p L(H®, H*~™) and define A := J,,cgp Am. We notice that the space
Noer £(H?®, H?~™) is a Fréchet space equipped with the semi-norms: || Al s := | All £(zes 302 -m)-

We shall need to control the smoothing properties of the operators in the scale {H"}cg. If
A € A, then A is more and more smoothing if m — —oo and the opposite as m — +o00. We
will say that A is of order m if A € A,,.

Definition 1.3. We say that S € L(HT>,H™>°) is N-smoothing if Vx € R, it can be extended
to an operator in L(H", H"TN). When this is true for every N > 0, we say that S is a smoothing
operator.

We shall also use the following notations. For @ C R? and F a Fréchet space, we will denote
by C}*(2, F) the space of C™ maps f: Q> z — f(z) € F such that, for every seminorm || - ||;
of F, one has

sup |09 f(x)||l; < 400, YaeN? : |a|<m. (1.4)
e

If (L.1)) is true Vm, we say f € Cg°(£2, F). Similarly we denote by C*°(T, F) the space of smooth
maps from the torus T = R/(27Z) to the Fréchet space F. We denote by C2°(R? Rx) the set
of smooth functions with compact support from R? to R>q (hence non-negative). Given two
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operators A, B € L(H), we write A < B with the meaning (Ap, p) < (By, @) Vo € H.
The first set of assumptions concerns the properties of A,,:

Assumption I: Pseudodifferential algebra
(i) For each m € R, K" € A,,; in particular Ky is an operator of order one.

(ii) For each m € R, A, is a Fréchet space for a family of filtering semi-norms {p7"};>0 such
that the embedding A, — (,cg L(H®, H*™™) is continuou&ﬂ
If m’ < m then A,,, C A,, with a continuous embedding.

(iii) A is a graded algebra, i.e. Vm,n € R: if A € A, and B € A, then AB € A,,, and the
map (A, B) — AB is continuous from A,, X A, into A, 4n.

(iv) Ais a graded Lie-algebraf’]: if A € A, and B € A, then the commutator [A, B] € Ayn_1
and the map (A, B) — [A, B] is continuous from A,, x A,, into A,1pn_1.

(v) A is closed under perturbation by smoothing operators in the following sense: let A be a
linear map: H*T>° — H~°°. If there exists m € R such that for every N > 0 we have a
decomposition A = AN) 4 SNV with AN) € A,, and S®) is N-smoothing, then A € A,,.

(vi) If A € A,, then also the adjoint operator A* € A,,,. The duality here is defined by the scalar
product (-,-) of H = H". The adjoint A* is defined by (u, Av) = (A*u,v) for u,v € H>®
and extended by continuity.

It is well known that classes of pseudodifferential operators satisfy these properties, provided
one chooses for K a suitable operator of the right order (see e.g. [39]).
Remark 1.4. One has that VA€ A,,, VB € A,

Vm,s 3N s.t. ||Allm.s < CipN(4), (1.5)
VYm,n,j 3N s.t. p}"*"(AB) < Cy N (A) e (B)
VYm,n,j 3N s.t. p;?”"*l([A, B]) < C3 N (A) i (B) , (1.6)

for some positive constants C1(s,m), Ca(m,n,j), Cs(m,n,j).

Remark 1.5. Any A € A, with m < 0 is a compact operator on H.
Indeed write A = AK; ™ K§". Then AK;™ € Ay is a bounded operator on H (Assumption I (i)—
(iii)), whereas KJ' = (K;')™™ is compact on H, as K, ' is a compact operator by assumption.

The second set of assumptions concerns the operator Ky, its spectral structure and an Egorov-
like property, also well known for pseudo-differential operators.

Assumption II: Properties of K
(i) The operator Ky has purely discrete spectrum fulfilling

spec(Ko) C N+ A

for some \ > 0.

1A family of seminorms {W}”}jzo is called filtering if for any ji,j2 > O there exist £ > 0 and c1,c2 > 0 such
that the two inequalities 7" (A) < c1pp*(A) and o (A) < c2pp*(A) hold for any A € Ap,.

2This property will impose the choice of the semi-norms {p;” }j>1. We will see in the examples that the natural
choice (|| - ||m,s)s>0 has to be refined.
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(ii) For any m € R and A € A,,, the map defined on R by 7+ A(7) := el"%0 Ae~i75o helongs
to Cg°(R, A,,) and one has

V45 3N s.t. Su% 0" (A(T)) < Cyp(A)
TE

for some positive constant Cy(m, 7).

i2nKo _ ,i27A

Remark 1.6. Assumption II (i) guarantees that e As a consequence, for any

operator V, the map 7 — e "¥oVe~17Ko ig 2r-periodic.

The last set of assumptions concerns the resonant average (V') of the potential V() (see (1))
and its spectrum o((V')). Note that if V (¢) is selfadjoint Vt, so is (V).

Assumption IIT: Properties of the potential V (t)
The operator V- € C(T, Ay), V(t) selfadjoint V¢, and its resonant average (V) fulfills:

(i) There exists an interval Iy C R such that |o((V')) N Iy| > 0; here || denotes the Lebesgue
measure.

(ii) Mourre estimate over Iy: there exist a selfadjoint operator A € A; and a function gj, €
C®(R,R>o) with gz, =1 on Iy such that

g (V)il(V), Algr, (V) = 0.91,((V))* + K (1.7)

for some 6 > 0 and K a selfadjoint compact operator.

The operator gy, ((V')) above is defined via functional calculus, see Appendix
Following the literature, we shall say that (V) is conjugated to A over Iy.

Remark 1.7. By Mourre theory [53] (V) has, in the interval Iy, a nontrivial absolutely contin-
uous spectrum with finitely many eigenvalues of finite multiplicity and no singular continuous
spectrum. In general one cannot exclude the existence of embedded eigenvalues in the absolutely
continuous spectrumﬂ

We are ready to state our main results. The first one says that, under the set of assumptions
above, V() is a transporter in the sense of Definition

Theorem 1.8. Assume that A is a graded algebra as in Assumption 1, and that Ko and V (t) €
C>(T, Ag) satisfy Assumptions II and II1. Then V(t) is a transporter for the equation

10y = (Ko + V(1)9 . (1.8)

More precisely, for any r > 0 there exist a solution ¥ (t) of (1.8)) in H" and constants C,T > 0
such that

@l =2 C@t)", ve=T. (1.9)
3 For example consider H € £(L?(T)) given by
- 1 _ 11
(Hu)(z) := cos(x)u(z) + 6(1 — 51 cos(w))% /Tu(x)(l —§1 COS(l’)) dez, éd¢ (—5, 5) \ {0} .

H is selfadjoint, a 1-rank perturbation of the multiplication operator by cos(z), it has absolutely continuous

spectrum in the interval (—1,1), and ¢ is an embedded eigenvalue with eigenvector u(z) = 1. Moreover H is
conjugated to sin(z)% + BT" sin(x) over [—%, % .
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We also prove a stronger result: namely not only V(¢) is a transporter, but also any operator
sufficiently close to it (in the Ap-topology). Here the precise statement:

Theorem 1.9. With the same assumptions of Theorem (1.8, there exist ¢ > 0 and M € N such
that for any W € C=(T, Ay), W(t) selfadjoint Vt, fulfilling

sup py(W (1)) < e, (1.10)
teT

then V (t) + W (t) is a transporter for the equation
100 = (Ko + V() + W(t)v . (1.11)

More precisely, for any v > 0 there exist a solution ¥(t) in H" of (1.9) and constants C,T > 0
such that
W@l > Ct)", vt>T . (1.12)

Let us comment the above results.

1. The growth of Sobolev norms of Theorem is truly an energy cascade phenomenon;
indeed the H-norm of any solution of (1.8]) is preserved for all times, [|¢(t)|lo = []12(0)||o,
Vt € R. This is due to the selfadjointness of Ky + V() (the same is true for solutions of

[T9)).

2. Estimates (|1.8)), (1.9)) provide optimal lower bounds for the speed of growth of the Sobolev
norms. Indeed we proved [49] that, under the assumptions abov&ﬂ any solution of ([1.8)) or
(1.9) fulfills the upper bounds

¥r>0 3C.>0: [0l < Colt)" [ (0)]l-
Thus, Theorems construct unbounded solutions with optimal growth.

3. Theorem|[I.9|proves robustness of certain type of transporters under small pseudodifferential
perturbations. This shows a sort of “stability of instability”, which, up to our knowledge,
is new in this context.

4. Actually there are infinitely many distinct solutions undergoing growth of Sobolev norms.
Their initial data are constructed in a unique way starting from functions belonging to the
absolutely continuous spectral subspace of the operator (V). We describe such initial data

in Corollary

5. Energy cascade is a resonant phenomenon; here it happens because V (t) oscillates at fre-
quency w = 1 which resonates with the spectral gaps of Ky. In [5] we proved that if
V(t) = V(wt) is quasiperiodic in time with a frequency vector w € R™ fulfilling the non-
resonant condition

Iy, 7> 00 [0+w k> UC% Vi, ke Z x 2"\ {0}
(which is violated if V(¢) is 2m-periodic) then the Sobolev norms grow at most as (t)
Ve > 0. The (t)-speed of growth is also known for systems with increasing [54, 49| 5] or
shrinking [22] [52] spectral gaps and for Schrédinger equation on T¢ with bounded [10, 17, [§]
and even unbounded [7] potentials.

€

4 in particular the fact that [Ko,V(¢)] and [Ko, V (t) + W (¢)] are uniformly (in ¢) bounded operators on the
scale H"
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6. In concrete models one can typically prove that if V(¢) is sufficiently small in size and
oscillates in time with a strongly non resonant frequency w (typically belonging to some
Cantor set of large measure), then all solutions have uniformly in time bounded Sobolev
norms. Therefore the stability /instability of the system depends only on the resonance
property of the frequency w. We mention just the recent results [4} [6] which deal with the
harmonic oscillator (as we consider it in the applications) and refer to those papers for a
complete bibliography.

7. The most delicate assumption to verify is . In the applications, one can try to construct
an escape function for the principal symbol (v) of (V). This means to find a symbol a(z, &)
of order 1 and number A € R such that the Poisson bracket {(v),a} is strictly positive
around the energy level A:

Je>0: {{v)apzec i {(z,8): [(v)(x,§) Al <0}

Then symbolic calculus and sharp Garding inequality imply that (1.1)) holds in the interval
I=(\N—=06,A+0); see [I3] Section 6.2 for details.

Now we briefly describe the main ideas of the proof. The first step is to put system (1)) into
its resonant pseudodifferential normal form. This is the resonant variant of the normal form
developed in [5] for non-resonant systems (and essentially an abstract version of the normal form
of Delort [18]); it allows, VN € N, to conjugate equation to the equation

101 = ((V) +Tn + Ry (1)) ¢ (1.13)

where Ty is a time independent selfadjoint compact operator and Ry (t) is N-smoothing.
Then we analyze the dynamics of the truncated equation

0,0 = ((V)+Tn)o (1.14)

and prove that it has solutions with decaying negative Sobolev norms and so, by duality, growing
positive Sobolev norms. This is the core of the proof; after this step, it is not difficult to construct
a solution of the complete equation (1.1) exhibiting energy cascade, exploiting that Ry (t) is
regularizing. So let us concentrate on . The goal is to prove a dispersive estimate of the form
with (V') replaced by (V') + T. This is delicate because the absolutely continuous spectrum
of (V) (which exists by Assumption III (i)) could be completely destroyed by adding Tx: a
celebrated theorem by Weyl-von Neumann ensures that any selfadjoint operator (in a separable
Hilbert space) can be perturbed by a compact selfadjoint operator so that its spectrum becomes
pure point (see e.g. [44] pag. 525]). This is exactly the situation we want to avoid, as pure point
spectrum prevents dispersive estimates. To get around this, we exploit that Mourre estimates
are stable under pseudodifferential perturbations. This allows us to prove that (V') + Ty fulfills
Mourre estimates and thus a dispersive estimate as .

We also stress that fulfilling a Mourre estimate seems to be a quite general condition, and in
the applications we exhibit large classes of operators which are transporters. For example, for
the half wave equation we prove that any operator of the form cos(mt)v(z) with v € C*°(T,R)
and m € Z is a transporter provided the m-th Fourier coefficient of v(z) is not zero.

2 Proof of the abstract result

Clearly Theorem is stronger than Theoremand it includes it in the special case W (t) = 0,
so we shall only prove Theorem [I.9] The proof is divided in three steps; in the first one we put
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system in its resonant pseudodifferential normal form. In the second one we analyze the
dynamics of the effective Hamiltonian and prove the existence of solutions with decaying negative
Sobolev norms. The final step is to construct a solution of the complete equation exhibiting
growth of Sobolev norms.

2.1 Resonant pseudodifferential normal form

The goal of this section is to put system ((1.9) into its resonant pseudodifferential normal form
up to an arbitrary N-smoothing operator. In this first step we shall only require Assumptions I
and II. It is slightly more convenient to deal with the equation

100 = (Ko + (1)), VeC®(T,A,), meR, (2.1)
and then to specify the result for V(t) = V(¢)+ W (t) as in (1.9). We define the averaged operator

S 1

2m
V(t) = — / e EoV(t 4 s) e o ds . (2.2)
2T 0

We shall prove below that V() € C*(T, A,,), see Lemma

Proposition 2.1 (Resonant pseudodifferential normal form). Consider equation (2.1)) with V €
C>(T, Ao), V(t) selfadjoint Vt. There exists a sequence {X;(t)};>1 of selfadjoint (time-dependent)
operators in H with X; € C(T, A1—;) and fulfilling

¥r€R, 3¢,5,Cr; >0 engllells <500 < Crjllell,  VEER, (2.3)
such that the following holds true. For any N > 1, the change of variables
Y= e iXa(® . e_iXN(t)gp (2.4)
transforms into the equation
10 = (Ko + Z™M (1) + V(1)) o (2.5)
here VIN) € C(T, A_y) whereas Z(N) € C®(T, Ay), it is selfadjoint Vt, it fulfills
10, 2™ (t) = [Ko, 2™ (1)) (2.6)
and it has the expansion
ZMN@) =V +TM @), TN € C®(T, A_,) . (2.7)
Here VI (t) is the averaged operator defined in 23).

In order to prove the proposition we start with some preliminary results. The first regards
the properties of the averaged operator V(t).

Lemma 2.2. Let V € C*(T, A,,), m € R, V(t) selfadjoint Vt. Then the following holds true.

(i) The averaged operator \7(15) in (2.1)) belongs to C(T, A,,), it is selfadjoint Vt, it commutes
with 10y — Ky, i.e. 10;V(t) = [Ko, V(t)] and

Vi, l>0 IMeN, C>0 st. supp™(9V(t) < Csup pi(V(1) .  (2.8)
teT teT
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(i) The resonant averaged operator (V), defined in , belongs to A, it is selfadjoint and
Vi>0 dIMEN, C>0 st. pl"((V)) < Csup pir(V(t)) - (2.9)
teT

(#ii) One has the chain of identities

V(0) = (V) = tEoV(t) e 50 = (V), WeR. (2.10)

Proof. (i) The properties V € C*(T, A,,) and V(t) selfadjoint ¢ follow from Assumption II and
the fact that V(t) is 2m-periodic in ¢ and selfadjoint Vt. Let us prove it commutes with i9; — Kj.
Using

05 (e¥FOV(t + s) e ¥50) = 50 (i[ Ko, V(t + 5)] + OV (t + 5)) e #K0

and the periodicity of s > el*Ko V(t + s) e71K0 (see Remark , we get
1
27

1 2 X . Y
" 2ni / elSKO [K07 V(t + S)} e*ISKO ds = 171 [Ko,V(t)]
1Jo

2m 2m
~ : : 1 : ;
OV (t) / OOV (t + s) e 0 ds = o~ / RPN (t + 5) e 0 ds
0 0

2mi

Estimate (2.2 for £ = 0 follows from Assumption II. For £ > 1 we use induction: assume (|2.2))
is true up to a certain £; using 9y TV (t) = —id[Ko, V(t)] = —i[Ko, 0 V(t)], we get Vj € N

PI(OFTIV(L) < P ([Ko, OV (1)]) < Cp™(OPV(L)) < Cpl (V(1))

using also the inductive assumption. This proves ([2.2).
(#i) Tt is clear that (V) is time independent, selfadjoint and in A,, by Assumption II. Estimate
(2.2)) follows from Assumption II.

~

(iii) Clearly V(0) = (V). Then, as the map 7 — e"%0 V(1) e~I7K0 i5 27r-periodic, one has ¥t € R

1 27 . .
7/ el Ko /(¢ 4 5) e DKo g5 — (V) |

it Ko \7 t —itKy —
e (t)e o7 ),

Finally, exploiting this last identity, one has <\7> =+ 027T eltko \7(t) e~ 1tKodt = (V) completing

the proof of (2.2]). O

The second preliminary result regards how to solve the homological equations which appear
during the normal form procedure. More precisely we look for a time periodic operator X (t)
solving the homological equation

0 X (1) +i[Ko, X (£)] = V(t) — V(1), (2.11)
where \7(15) is the averaged operator defined in ([2.1). This is done in the next lemma.

Lemma 2.3. Let V € C™(T, A,,), m € R, V(t) selfadjoint Vt. The homological equation (2.1)
has a solution X € C*°(T, A,,) and X (t) is selfadjoint Vt.

Proof. We look for a solution of (2.1) using the method of variation of constants. In particular
we take X (t) = e KoY (¢) 5o for some Y € C®(R, A,,) with Y (0) = 0 to be determined.

~

Then X solves provided 0;Y (t) = etFo (V(t) — V(t)) e~ 5o  giving

V() = /0 &0 (V(s) — U(s)) e~#5o ds,
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By Lemma and Assumption II, Y € C*°(R, A,,) and it is selfadjoint V¢. Therefore one gets
t
X(t) = / ele—t kKo (V(s) = V(s)) e 5= Ko g,
0

Again X € C*(R, A,,) and it is selfadjoint Vt. We show that ¢ — X (t) is 2m-periodic. Indeed,
using also Remark [T.6] we get

27
X(t+2m) — X(t) = e Ko / Ko (V(s) — V(s)) e #Fo ds Ko
0
— ame o (V) — (V)0 BD

proving the claim. O

We are ready to prove Proposition 2.1 During the proof we shall use some results proved
in [5] about the flow generated by pseudodifferential operators; we collect them, for the reader’s
convenience, in Appendix [A]

Proof of Proposition[2.1 The proof is inductive on N. Let us start with N = 1. We look for a
change of variables of the form 1 = e X1 (M where X (t) € C=(T, Ap) is selfadjoint V¢, to be
determined. By Lemma 1 solves ([2.1]) iff o fulfills the Schrédinger equation 10y = H ()
with

1
H*(t) — oiX1(t) (Ko + V(t)) e—iX1(t) ,/ eisX1(t) (3, X1 (1)) e—isX1(t) (g
0

Then a commutator expansion, see Lemma gives
H* (1) = Ko +i[X1(t), Ko] + V(t) — 0, X1 + VI (1)

with V(Y € C(T, A_,), selfadjoint V¢. By Lemma we choose X7 € C*°(T, Ap), selfadjoint
Vt, s.t.
i[Ko, X1 (8)] + 0: X1 (t) = V(¢) — V(1) ,

where \7(75) is the averaged operator in (2.1). With this choice we have
HT(t) =Ko+ ZM @) +VO (1), zMW(t) = V(1) .
By Lemma . ZW) € C®(T, Ap), it is selfad301nt Vt, it commutes with i0; — Ky. The map
e X1 fulfills ( . ) thanks to Lemma This concludes the first step.

The iterative step N — N+11is proved followmg the same lines, choosing X1 € C*°(T, A_N)
solving the homological equation

i[Ko, Xn41(0)] + 0, Xny1(t) = VI (1) — VIV (1)
and adding the remark that eiXN+1 ZW) et Xn+1_7(N) € 0°°(T, A_n_1). So one puts ZNV+ (¢) :=

ZWM)(t) FV) )(t). Note that vV e C>®(T,.A_y) and it commutes with i9; — Ky, so does Z(M).

O
It turns out that property (2.1) implies that e 0 Z(V)(¢)e~*Ko is time independent. A
consequence of this fact is the following corollary.
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Corollary 2.4. Consider equation (2.1)) with V € C=(T, Ag), V(t) selfadjoint Vt. Fix N € N
arbitrary. There exists a change of coordinates Uy (t) unitary in H and fulfilling

Vr>0 de¢,Cr>0: crllell < lUn®Eellr < Crllellr vt € R, (2.12)
such that 1(t) is a solution of if and only if ¢(t) == Un(t)Y(t) solves
10,6 = ((V) + Ty + Ry (1)) ;

here (V) is the resonant average of V (see ), Ty € A_y is time independent and selfadjoint
and Ry € C(T, A_n).

Proof. Fix N € N and apply Proposition to conjugate equation (2.1]) to the form (2.1f) via
the change of variables (2.1]). Then we gauge away K by the change of coordinates ¢ = e ™50 ¢,
getting _ _
10,0 = 0 (2N (1) + VIV (1)) e K0 g,

Define ' ‘ ' '

HN = eltKO Z(N)(t) 6—1tKo7 RN(t) = eltKo V(N)(t) e—ltKO.
The operator Ry € C=(T, A_y) by Assumption II since VIN) € C=(T, A_y).
Let us now prove that Hy is time independent. We know by Lemma [2.1] that Z(¥)(¢) commutes
with i0; — Ky; therefore

Oy (eitKO ZWN) (¢) e_itKO) = (tKo (i[Ko, ZM )] + 9,2 (t)) e"1tKo —

and therefore

Hy = etk0 20N (1) e=#50) o = 20 (0) &2 V(0) + 7 (0) & (v) + 7 (0).

So we put Ty := TW)(0); clearly it belongs to A_1, it is selfadjoint and time independent.
Finally we put Uy (t) := et XN ... X010 estimate (2.4)) follows from (2.1)) and Re-
mark O

Coming back to the original equation (1.9), we apply Corollary with V =V +W €
C>(T, Ay), getting the following result:

Corollary 2.5. With the same assumptions of Theorem[1.9, the following holds true. Fiz N € N
arbitrary. There exists a change of coordinates Uy (t), unitary in H and fulfilling (2.4]) such that

Y(t) is a solution of if and only if ¢(t) := Un()Y(t) solves
0,6 = (V) + (W) + T + Ry (1)) 6 (2.13)

where Ty € A_1 is selfadjoint and time independent whereas Ry € C(T, A_n).

2.2 Local energy decay estimates

In the previous section we have conjugated the original equation to the resonant equation
(2.5). In this section we consider the effective equation obtained removing Ry (t) from ,
namely

i0rp = Hn o, Hy :=(V)+ (W) + Ty, (2.14)
with Ty € A_; of Corollary 2.5] Note that Hy is selfadjoint by Lemma [2.2] and Corollary 2.5
Using Assumption III, we construct a solution of with polynomially in time growing Sobolev

norms. Actually we will prove the following slightly stronger result, namely the existence of a
solution with decaying negative Sobolev norms:
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Proposition 2.6 (Decay of negative Sobolev norms). With the same assumptions of Theorem
consider the operator Hy in (2.2). For any k € N, there exist a nontrivial solution o(t) € H*
of (2.2) and Vr € [0,k] a constant C, > 0 such that

le@l—r < Cr&" [l ,  VEER. (2.15)

Remark 2.7. As Hy is selfadjoint, the conservation of the H°-norm and duality give

leO)II5 = lle@IE < lle@llr le@®l-r,  VteR,
so that (2.6 implies the growth of positive Sobolev norms:
1 (o011
le@®llr = = ", vteR.
Cr ([ (0)]]r

The rest of the section is devoted to the proof of Proposition As we shall see, it follows
from a local energy decay estimate for the operator H, namely a dispersive estimate of the form

I{A)™F e Nt g (Hu) @llo < Cr(t) " I{A) g (Hn)pllo . VEER (2.16)

where A € Ay, J C I is an interval and g5 € C°(R,R>q) with g5 =1 on J.

Remark 2.8. Actually estimate show the existence of infinitely many solutions of
with decaying negative Sobolev norms. In particular this happens to any solution with nontriv-
ial initial datum in the (infinite dimensional) set Ran E;(Hy), where E;(Hy) is the spectral
projection of Hpy corresponding to the interval J.

We will prove exploiting Sigal-Soffer minimal velocity estimates [60}, 27, 43| [41} 29, [2],
which are based on Mourre theory which now we recall.

Mourre theory. Let H be a selfadjoint operator on the Hilbert space #H, and denote by o(H)
its spectrum. We further denote by o4(H) its discrete spectrum, o.ss(H) its essential spectrum,
opp(H) its pure point spectrum, oq.(H) its absolutely continuous spectrum and o,.(H) its singular
spectrum; see e.g. [56] pag. 236 and 231 for their definitions. Furthermore we denote by Eq(H)
the spectral projection of H corresponding to the Borel set € and by m(Q2) := (Eq(H)p, ¢) the
spectral measure associated to ¢ € H.

Assume a selfadjoint operator A can be found such that D(A) NH is dense in H. We put

adQ(H) :=H,  ada(H):=[H,A],  adi(H):=[ady '(H),A], Vn>2. (2.17)
Consider the following properties:

(M1) For some N > 1, the operators adx(H) with n = 1,...,N, can all be extended to bounded
operators on H.

(M2) Mourre estimate: there exist an open interval I C R with compact closure and a function
g1 € C°(R,R>¢) with gy =1 on I such that

gr(H)i[H, Al g7(H) = 0gr(H)* + K (2.18)
for some 6 > 0 and K a selfadjoint compact operator on H.

If the estimate (2.2 holds true with K = 0 we shall say that H fulfills a strict Mourre estimate.
Mourre theorem [53] says the following:
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Theorem 2.9 (Mourre). Assume conditions (M1) — (M2) with N = 2. In the interval I, the
operator H can have only absolutely continuous spectrum and finitely many eigenvalues of finite
multiplicity. If K =0, there are no eigenvalues in the interval I, i.e. c(H)NI = o4.(H)N 1.

Remark 2.10. The version stated here of Mourre theorem is taken from [3, Lemma 5.6] and [I5]
Theorem 4.7 — 4.9], and it has slightly weaker assumptions compared to [53].

Remark 2.11. Mourre theorem guarantees that os.(H)NI = 0 and, in case K =0, o,,,(H)NI = 0.
However it does not guarantee that o(H)NI # 0; in our case we shall verify this property explicitly.

The key point is that if Hy fulfills a strict Mourre estimate (namely with K = 0) then one
can prove a local energy decay estimate like for the Schrédinger flow of Hy. This is a
quite general fact which follows exploiting minimal velocity estimates [4I] and we prove it for
completeness in Appendix [C}

So the next goal is to prove that Hy satisfies a strict Mourre estimate over a certain interval
J C Iy. During the proof we will use some standard results from functional calculus; we recall
them in Appendix [B] We shall also use the following lemma:

Lemma 2.12. Let H € L(H) be selfadjoint. If X € o4c(H), then ¥§ > 0 one has
A=, A+d]Nno(H)|>0.

Proof. By contradiction, assume that 399 > 0 such that |[A — dp, A+ dg] No(H)] = 0. As X €
0ac(H), there exists f € H such that Ep\_s, a15,](H)f # 0 and the spectral measure m; =
(E(H)f, f) is absolutely continuous. Then

0= mys([A = o, A+ 0o]) = (Epa—so at60] (H)f2 ) = 1 Br—s0 a460) (H)FI5 > 0
giving a contradiction. O
Lemma 2.13. There exist ¢g,M > 0 such that, provided W fulfills , the following holds true:
(i) There exists an interval I C Iy such that |I No(Hy)| > 0.

(i1) Hy fulfills a strict Mourre estimate over I: there exists a function gr € C°(R,R>q) with
suppgr C Iy, g1 =1 on I, and 6’ > 0 such that

gr(Hn)i[Hy, Al g1 (Hy) > 0/ g1 (Hy)? (2.19)

Here Iy is the interval and A is the operator of Assumption III.

Proof. During the proof we shall often use that for A, B, C € L(H) and selfadjoints
A<B = CAC<CBC, IAllzn) <a = —a<A<a. (2.20)

To shorten notation we shall put
HO = <V> .

By Assumption III, Hy fulfills a Mourre estimate over the interval Ij.
STEP 1: We claim there exists a subinterval I; C Iy such that:
e [; contains only absolutely continuous spectrum of Hg, namely

O'(Ho)ﬂll :O'ac(Ho)ﬂfl s ‘O'(Ho)mlﬂ >0; (221)
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o Hy fulfills over Iy a strict Mourre estimate: 3gr, € C°(R,R>¢), g5, =1 on Iy, supp g1, C Io,
such that

g1, (Ho)i[Ho, A] g1, (Ho) > gr, (Ho)? . (2.22)

To prove this claim, first apply Mourre theorem to Hy (note that (M1) and (M2) are verified
VYN € N by symbolic calculus and Assumption III), getting that o(Hp) N Iy contains only finitely
many eigenvalues with finite multiplicity and absolutely continuous spectrum. In particular
|opp(Ho) N Ip| = 0 and by Assumption III (7) it follows that |o4.(Ho) N Io| = |o(Ho) N Ip| > 0.
Now we show that, by shrinking enough the interval Iy, a strict Mourre estimate is true. So we
take Ao € Io N (04c(Ho) \ 0pp(Ho)) and a sufficiently small interval I7(8) := (Ag — &, Ao + ) C Io,
& > 0, which does not contain eigenvalues of Hy; this is possible as the eigenvalues of Hy in I
are finite. Moreover by Lemma lo(Ho) N I1(8)| > 0 for any 6 > 0. Now take § € (0,6) and
a function gs € C°(R,R>) with supp g5 C 11(6) and gs = 1 on Il(g). We claim that provided
§ € (0,6) is sufficiently small

lgs(Ho) K gs(Ho)llc(3) < g ; (2.23)

where 6 > 0 is the one of Assumption III. Indeed in [;(0) the spectrum of Hy is absolutely
continuous; this means that Vo € H, the vector ¢’ := E (3)(H0)(p belongs to the absolutely
continuous subspace of Hjy, namely its spectral measure m,s is absolutely continuous w.r.t.
the Lebesgue measure. Now, since for any ¢ € H one has by functional calculus gs(Hp) =
ga(Ho)Eh(g)(Ho), one has that

los(Ho)ell = las(Ho) By, iy (Fobll = [ gs(0)? dmyr(3) =0 as 50

by Lebesgue dominated convergence theorem. In particular gs(Hp) — 0 strongly as § — 0 and
then, being K compact, gs(Ho)K — 0 uniformly as § — 0 (see e.g. [I]). Therefore for § € (0,0)
sufficiently small (2.2]) holds true.

Using the assumption (1.1]), (2.2)) and (2.2)) we deduce that
. 0

95(Ho) g1,(Ho) i[Ho, A] g1,(Ho) gs(Ho) > 0gs(Ho) g1, (Ho)? gs(Ho) — 55
next apply ¢ s (Hyp) to the right and left of the previous inequality, use again (2.2)) and the identity
gIO(HO)g(;(HO)gg(HO) =9s (Hp) (which follows from gy, gs gs = g%), to get the strict Mourre
estimate (2.2)) where I := Il(%) and gr, := 93 fulfills g5, = 1 on Iy, suppgy, C Il(g). Clearly
I fulfills (2.2)).
STEP 2: Consider the selfadjoint operator

H<W> = Hy + <W> .

We claim there exists a subinterval Is C I; such that
e 5 contains only absolutely continuous spectrum of Hyyy, i.e.

CT(H(W))QIQ :O-ac(H<W>)m.[2 and ’0(H<W>)ﬂ.[2| >0; (224)
o Hy, fulfills over I5 the strict Mourre estimate

. 0
g, (Hwy) ilHwy, Al g1, (Howy) > 195 (H<W))2 (2.25)
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for any g7, € C°(R,R>) with supp gy, C I1, g1, =1 on Is.
To prove the claim, we exploit that (W) € A is a small bounded perturbation of Hy, fulfilling,

by (L.4), (2-2)
dMy € N, Cq > 0: W) 2y < ColW ], (2.26)

where we denoted

Wlas = sup (W (1)) .

First let us prove that o(H ) NI # (). Take again the same Ao € 0(Ho) NIy as in the previous
step. We claim that

dist ()\0, O'(H<W>)) < Cy [W]Mo- (2.27)
If Ao € o(Hwy) this is trivial. So assume that Ag belongs to the resolvent set of Hyyy. As
Xo € 0(Hp), by Weyl criterion 3(f)n>1 € H with ||f]lo = 1 such that ||(Ho — Ao)fnllo = 0 as
n — oo. Then Vn > 1

1
L= fallo = I(Hwy — o)~ (Huwy — Xo) fullo < a5t vor o (Hor)) | (Hwy — Xo) fullo
&2 ! Hy— ) ColW
= 0oty (10 = 20 fullo + ol

which proves (2.2]) passing to the limit n — co. Then, provided [W]ay, is sufficiently small, (2.2)
implies that dist(Xo,o(Hwy)) < §/8. From this we learn that (recall I; = (Ao — g, Ao+ %))

U(H<W>)ﬂf1 #0. (2.28)
Next we prove the Mourre estimate (2.2)); we shall work perturbatively from (2.2]). First
gr,(Ho) i[Hwy, Al g1, (Ho) = g1, (Ho) i[Ho, A} g1, (Ho) + g1, (Ho) i[(W), A] g1, (Ho);

we bound the first term in the right hand side above from below using ([2.2). Concerning the
second term, we use

dM,; € N, Ci>0: ||1[<W>,A]||£(’H) < [W]Ml (229)
(by (1.4)), (1.4), (2.2)) and the inequalities (2.2]) to bound it from above getting
91, (Ho) il(W), Al g1, (Ho) > —C1 [W], gr,(Ho)” .

Therefore we find

or o)l AL, () > (§ = CWlan ) . (o) (2.30)

By (2.2) we can take an open interval Iy C I; with
o(Huwy) NI #0 ; (2.31)

take also g7, € C°(R,R>¢) with suppgr, € I1 and g7, = 1 on Iy; remark that g, g1, = g1,.
Now we wish to replace g7, (Ho) by g1, (Hwy) in (2.2), thus getting the claimed estimate (2.2)).
So write

9. (Hwy ) i[Howy, Al gr, (Hiwy) = 91, (Hwy) 9r, (Howy) ilH (wy, Al g1, (Howy) 91, (Hwy)

= 91, (Hwy) 91, (Ho) i[Hwy, A] g1, (Ho) g1, (H(w)) (2.32)
+ g1 (Howy) (91, (Howy) = 91, (Ho)) il Howy Al g1, (o) (2.33)
+ g1, (o)) ilHawy, A (91, (Howy) = 91, (Ho)) ) 9. (Howy) (2.34)



2 PROOF OF THE ABSTRACT RESULT 16

Again we estimate (2.2]) from below and the other lines from above. First

(g - Cl[W]Ml> 91, (Hwy) 91, (Ho)® g1, (Hwy) - (2.35)

We still have to bound from below gr,(Hwy) g1, (Ho)? g1, (Hwy). To proceed we use that
gr, (Hawy) — g1, (Hp) is small in size, being bounded, via Lemma |B.6{and (2.2)), by

lgr, (Hiwy) = g1, (Ho)ll 2y < C W] - (2.36)
We deduce, using gy, g1, = g1,, estimates (2.2)) and (2.2)), the bound

9, (Huwy) 91, (Ho)? 9, (Howy) > (1= C[Wag,) 91, (Howny)? -

Thus we estimate line (2.2]) from below using (2.2)) and the previous estimate, concluding
0
" > (2 -y [W}M1> (1 - C[W]Mo) g1, (H<W>)2 (237)

Next consider lines ([2.2)), (2.2). We use the bound (see (2.2)))
H[H(VV)a A]”L',(HO) < O(l + [W]Ml) )

and to get
ED + ED = —C Wity (1 + Wlan,) 91, (Houn ) (2.38)
Putting together (2.2]) and (2.2]) we finally find
. 0
ara(Ha) ey, Al g () = (= COWar, + Wlas, + Wlasy WW1an) ) i, (o

Thus, provided (|1.9)) holds true for M sufficiently large and €y sufficiently small, the strict Mourre
estimate (2.2) follows. Mourre theorem implies that

o(Hywy) NIy = 0ac(Hpy) NIy .

Using (2.2) and Lemma we deduce that |o(Hwy) N 2| > 0, proving ([2.2) .
STEP 3: Finally consider the operator

HZHN:H0+<W>+TN:H<W>+TN .

We claim that, with the same interval Is of the previous step:
e one has

o(H) N L] >0 . (2.39)

e H fulfills a Mourre estimate over I, i.e.

g, (H) + K (2.40)

S

gi, (H) 1[H, A] 91, (H) Z

with K a compact operator.
We shall constantly use that any pseudodifferential operator of strictly negative order is a
compact operator on H (see Remark ; in particular Ty € A_1 is compact.
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By Weyl theorem 0cys(H) = 0css(Hwy) and therefore
U(H) NIy D O’eSS(H) NIy = Uess(H(W>) NIl = 0(H<W>) NIl ,

since o4(Hwy) NIz = 0 having H ) no eigenvalues in Ir. Then (2.2) follows by (2.2).
To prove ([2.2)) we work perturbatively from (2.2)). Again first we compute

91, (Howy) iH, Al g1, (Howy) = g, (Howy) ilHwy, Al gr, (Howy) +9r, (Howy ) T, Al g, (Howy) 5

we estimate the first term in the r.h.s. above by (2.2, whereas the second term is a compact
operator since [Ty, A] € A_;. We obtain

. 4 2
g1 (Hywy ) ilH, Al g1, (Howy) > 1922 (Huwy)™ + Ky (2.41)
with K7 a compact operator. Now we must replace gr, (Hw) with gz,(H). We write

+ (92.(H) — g1,(Hw)) i[H, Al g1, (Hwy) + 91, (H) i[H, A] (91, (H) — g1, (Hwy)) (2.43)

This time we use that gr,(H) — g, (Hw)) is a compact operator, see Lemma Thus

(2:2) 9 2 0
(2.2) > 1912(H<W>) +K1=Zgl2(H)2+K2

where K, K5 are compact operators. Similarly, using that i[H, A] € A is a bounded operator,
we deduce that (2.2) is a compact operator. Estimate follows.

FinaL STEP: By (2.2)), , the operator H fulfills Assumption III over the interval I5. Pro-
ceeding as in Step 1, we produce a subinterval I C I such that

[INno(H)| >0, INo(H)=1INog(H)
over which H fulfills the strict Mourre estimate (2.13)), concluding the proof of Lemma O

The previous result has proved the existence of an interval I over which Hy fulfills a strict
Mourre estimate. This implies that Hy fulfills dispersive estimates in the form of local energy
decay. In the literature there are various variants of this result, thus in Appendix [C] we state
and prove the one we apply here.

Corollary 2.14. Fiz k € N. For any interval J C I, any function g5 € C®(R,R>q) with
suppgy C I, g5y =1 on J, there exists a constant Cy, > 0 such that

I(A) = e g (Hy) ello < Cut) " I{A)  gs (Hn)pllo . VEER, VYoeHE.  (2.44)
Moreover J can be chosen so that |J No(Hy)| >0 and o(Hy)NJ = 04c(Hy) N J.

Proof. Apply Theorem noting that condition (M1) at page[12]is trivially satisfied ¥n € N as
ad’y (Hy) € Ay C L(H), whereas the whole point of Lemma was to verify (M2). This gives

estimate . The right hand side is finite for ¢ € H* by Lemma below, which ensures
that g;(Hy)e € H*. Finally note that, since |[I No(Hy)| > 0, it is certainly possible to choose
J C I so that [JNo(Hy)| > 0; as Hy fulfills a strict Mourre estimate over I, its spectrum in
this interval is absolutely continuous, so the same is true in J.

O
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Lemma 2.15. For any k € N, g;(Hy) extends to a bounded operator H*¥ — HF.

Proof. As K§ g;(Hy) Ko * = g7(Hy) — [9s(Hn), K¥]Ky ", it is clearly sufficient to show that
[97(Hn), KF]K5" is bounded on H. The adjoint formula gives

l97(Hy), Kb KGF chjad (97(HN)) K57

then it is enough to show that adjil(0 (95(Hn)) € L(H). As adi;o (Hpy) is a bounded operator Vj
(symbolic calculus), the result is an immediate application of Lemma O

We finally prove Proposition [2.6]
Proof of Proposition[2.6 First we show that for any k € N, there exists Cax > 0 such that
le™ ™ gy (Hn)pll -2t < Con ()" ** gy (Hn)gllor,  VEER, Vo e H™. (2.45)

This follows from Corollary with k ~ 2k. Indeed, as A € Aj, the operator (A)%F =
(1 4+ A%k € Ay, and therefore, by symbolic calculus, Kj2*(A)?* and (A)?**K;?* belong to
Ao C L(H). Then
le™™ % g5 (Hn )l 26 < 155" (A)* | oy IKA) 2 e g1 (HN)llo
< Carlt) 2 (4)* 95 (Hn)eello
< Oa(t) 2P0 K5 > Ml 2oy L9 (N )2k
—itHy

proving (2.2)). Then linear interpolation with the equality ||e
[0, 2k]

wollo = ll¢ollo Vt gives Vr €

le™ > gy (Hn)pll-r < Co(t) " lgs(Hn)ellr . VEER, YpeH.

Finally we show that this estimate is not trivial, namely 3p € H* with g;(Hy)¢ # 0. But since
|[JNo(Hy)| > 0and o(Hy) N J = 04c(Hy) N J, one has that g;(Hy)H # {0}, and by density
so is gy (Hn)H". O

2.3 Proof of Theorem [1.9]

We are ﬁnally in position of proving Theorem[I.9} Recall that in Corollary 2.5 we have conjugated
equation (1.9)) to (2.5) with a change of variables bounded H" — H" uniformly in time, whereas
in Prop051tlon - we have constructed a solution of the effective equation i0;¢ = Hy1 with
decaying negative Sobolev norms, therefore with growing positive Sobolev norms. The last step
is to construct a solution of the full equation with growing Sobolev norms. To achieve this,
we exploit that the perturbation Ry (t) is N-smoothing (Definition [L.3).

So to proceed we fix the parameters. First fix » > 0, then choose N, k € N such that

N>2+2 k>N-r (2.46)

Apply Corollary with such N, producing the operators T, Ry(t) and conjugating (1.9)) to
(2.5). By Proposition Jpg € H* such that o(t) := e N g, fulfills Vr € [0, k]:

le@)ll-= < Cen(®) " llwoll,  VEER. (2.47)
We look for an exact solution ¢(t) of (2.5) of the form ¢(t) = () + u(t), i.e. u(t) has to satisfy

iOpu = (HN + Ry (t))u+ Ry (t)p(t).
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Denoting by Un (t, s) the linear propagator of Hy + Ry (t), we choose

—+oo

u(t) = i / Un (b 5) Ry (s) o(s) ds.
t
We estimate the H" norm of u(t). As

stzp IMHN + Rn(t), Kolllzem)y < Cm <00, Vm € R,

Theorem 1.5 of [49] guarantees that the propagator Un(t,s) extends to a bounded operator
H" — H" fulfilling?]

Vr>0 3C,>0: NUN(t,8)l|conry < Cr(t—s)", Vi, seR.
This estimate, the smoothing property Ry (t): H"™N — H" and (2.3) with r := N —r € [0, k]

give

+o0 +oo
[u(®)]lr < C /<t — )" [[Rn(s) (s)|lrds < Cy / (t—s)" o)l - (v-r)ds

+o0

sawwwMT/@—w

t

1
(V7

ds < Crwv llpolln(t) ™" .

In particular the H" norm of u(t) decreases to 0 as t — oo. Then ¢(t) = ¢(t) + u(t) fulfills

2
(p T — s
|wwmz|ﬂwn—uwmzaﬂéku>—awwauwlzc@, Vit > T,

where we used ([2.3) with r = r and Remark
Finally we get a solution of the original equation (1.9) putting 1 (¢) = Uy (t)~1é(t), recall Propo-

sition The operator Uy (t) fulfills (2.4), thus ¢ (¢) has polynomially growing Sobolev norms
as (|1.9), concluding the proof of Theorem

We can also prove the existence of infinitely many solutions undergoing growth of Sobolev
norms.

Corollary 2.16. There are infinitely many distinct solutions of equation (1.9) with growing
Sobolev norms.

Proof. We fix r > 0 and choose N,k as in (2.3). From the previous proof, it follows that any
initial data of the form

+oo
¥(0) := (Id + Ko)e , Kip = i/ Un(t,s)Ry(s)e N pds, t>0,
¢

with ¢ € Rangy(Hy) N HF, gives rise to a solution with growing Sobolev norms (see also
Remark 2.8). Here J is the interval of Corollary In particular, as |J No(Hy)| > 0 and
o(Hy)NJ = 04c.(Hy)NJ, the set Ran g;(Hy) has infinite dimension. Let us prove that Id + Ko

Sapply the theorem with 7 = 0 and note that in that paper we defined |4 = HKS/Qz/JHo, therefore the

estimate in that paper reads explicitly HKS/QUN (t,8)Yllo < Cr (t — s>r/2HKg/2¢”0
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is injective. Assume there are o # o € Rangy(Hy) NH* with (Id + Ko)p1 = (Id + Ko) 2.
Put u;(t) := Kyp;, j = 1,2; arguing as in the previous proof one has |lu;(t)||, — 0 as t — oo.
Then Uy (t) (e N, + u;(t)), j = 1,2, both solve and have the same initial datum, so
they are the same solution 9 (t) of equation . Then

lor = @2llo < Crllty" (B)e ™ (01 = @2) I < Cr(Ilur (@)l + Juz(t)ll) — 0

as t — oo. Hence 1 = o. O

3 Applications

In the following section we apply Theorem to the harmonic oscillator on R and the half-
wave equation on T. In both cases we construct transporters which are stable under small, time
periodic, pseudodifferential perturbations.

3.1 Harmonic oscillator on R

Consider the quantum harmonic oscillator
1
i0p) = 5(49; + 2% + V(t,z,D), x€R. (3.1)

Here Ky := % (—8% + 352) is the quantum Harmonic oscillator, the scale of Hilbert spaces is
defined as usual by H" = Dom (K};), and the base space (H?, (-, -)) is L?(R, C) with its standard
scalar product. The perturbation V is chosen as the Weyl quantization of a symbol belonging
to the following class:

Definition 3.1. A function f is a symbol of order p € R if f € C°(R,; xR, C) and Vo, 5 € Ny,
there exists Co, 5 > 0 such that

92 9 f (2, )| < Cap (1+1al” + 6P~ .
We will write f € S, ..

We endow S

[o, With the family of seminorms

02 9. f(x,€)
x g ) .
O (f) = Z sup gl jeNU{0}.
lojripl<i (@OR (1 + [z|2 + [§]2)" 2

Such seminorms turn Sf, into a Fréchet space. If a symbol f depends on additional parameters
(e.g. it is time dependent), we ask that all the seminorms are uniform w.r.t. such parameters.

To a symbol f € Sfwe associate the operator f(z, D) by standard Weyl quantization

(D)= 5 [ eemmer (S e) vt anas

Definition 3.2. We say that F' € A, if it is a pseudodifferential operator with symbol of class
S . i-e., if there exists f € S . and S smoothing (in the sense of Definition such that
F=f(z,D;)+S.

Remark 3.3. With our numerology, the symbol of the harmonic oscillator Kq is of order 1,
(2% 4+ €2) € S}, and not of order 2 as typically in the literature.
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As an application of the abstract theorems, we describe a class of operators which are trans-
porters. This class, which we call smooth Téplitz operators, is easily described in terms of their
matrix elements, which we now introduce. We denote by {e, }nen the Hermite basis, formed by
the (orthonormal) eigenvectors of the Harmonic oscillator Ky:

1
K("z) leallo =1, neN. (3:2)

To each operator H € L(H) we associate its matriz (Hppn)m,nen With respect to the Hermite
basis, whose elements are given by

Hin = (Hep, €p) Vm,n € N . (3.3)
Remark 3.4. If H is selfadjoint, so is its matrix (Huum)m nen, in particular Hy,, = Hypm,.

Definition 3.5 (Smooth Toplitz operators). A linear operator H € L(H) is said a Toplitz
operator if the entries of its matriz are constant along each diagonal, i.e.

Hiing = Hmony,  VMi,ni,mo,na € Nt my —ny =mag —ny . (3.4)

A Téplitz operator is said smooth if its matriz elements decay fast off diagonal, i.e. YN > 0,

ACy > 0 such that
Cn

(m—n)N "’
Ezxample 3.6. The shift operators S and its adjoint S* are defined on the Hermite functions
{en}nZI by

[Hmn| < VYm,n €N . (3.5)

0 ifn=1
Se,=e 11, neN, S*e, = . 3.6
T 5o
The action of S (and of S*) is extended on all H by linearity, giving S¢ = >, ., ¥neni1, where
we defined v, := (¢, e,,) for n > 1. Their matrices are given by B

0 0
1 0
1

1
(Smn>m7n€N = 0 ) (S:%n)m,nEN = 0 1 ’

from which it is clear that both S and S* are smooth To6plitz operators.

We prove in the following that any smooth T6plitz operator is actually a pseudodifferential
operator in Ay, see Lemma [3.10]

As an application of the abstract theorems, we show that any smooth T6plitz operator be-
comes a transporter for the Harmonic oscillator once it is multiplied by an appropriate scalar
time periodic function.

Theorem 3.7. Let V(x, D) be a selfadjoint and smooth Toplitz operator (see Definition .
Take m,n € N, m > n, such that the matriz element
Vi = <V($, D) enyem> 7é 0.
Then
V(t,z,D) = cos((m — n)t) V(z, D) (3.7

is a transporter for (3.1). More precisely, Vr > 0 there exist a solution ¥ (t) € H" of (3.1) and
constants C,T > 0 such that
lo@ll- = C{t)", vt>T.
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The theorem follows applying Theorem So we check that Assumptions I-III are fulfilled.
Regarding Assumption I, it is the usual Weyl calculus for symbols in Sf, , see e.g. [58]. Con-
cerning Assumption II, one has o(Ko) = {n — 3},en. Furthermore Egorov theorem for the
Harmonic oscillator [38] states that the map t — e!*foAe~1tKo € C°(T, A,) for any A € A, (use
also the periodicity of the flow of Kj). This can be seen e.g. by remarking that the symbol of
eltFope~itKo js g o ¢f . where a € Sf_is the symbol of A and ¢!, is the time ¢ flow of the
harmonic oscillator; explicitly

(a0 Phar) (x,€) = a(wcost + Esint, —zsint + £ cost) .

Verification of Assumption III. First we show that smooth To6plitz operators belong to Ajg.
We exploit Chodosh’s characterization [I1], which we now recall. Define the discrete difference
operator A on a function M: N x N — C by

(AM)(m,n) :=M(m+1,n+1)— M(m,n) ,
and its powers A7, v € N; by A applied ~-times.

Definition 3.8 (Symbol matrix). A function M : N x N — C will be said to be a symbol matrix
of order p if for any v € Ng, N € N, there exists Cy n > 0 such that

(14+m+ n)ﬂ—h\

[(ATM)(m,n)| < Gy~ (m —n)N )

Ym,n € N . (3.8)

The connection between pseudodifferential operators and symbol matrices is given by Cho-
dosh’s characterization:

Theorem 3.9 ([I1]). An operator H belongs to A, if and only if its matriz M) (m,n) := H,p
(as defined in (3.1)) is a symbol matriz of order p.

As a direct consequence we have the following result:
Lemma 3.10. Any smooth Téplitz operator is a pseudodifferential operator in Aj.

Proof. We use Theorem Let H be smooth Téplitz and put MM (m, n) := H,,,,. Then (3.8)
holds with p = v = 0 by (3.5). By (3.5) one has AM™ = 0; so ([3.8) holds also ¥y > 1. O

In particular V(¢,x, D) = cos((m — n)t)V(z, D) belongs to C*°(T, Ap), which is the first
required property of Assumption III.

Remark 3.11. The shift operators S, S*, defined in (3.6]), belong to Ay being smooth T6plitz.
Also their (integer) powers S¥, S** given for k € N by

0 ifn<k

Ske, = entk, VneN, S*ke, = ]
e ifn>k+1

are smooth To6plitz, so in Ajp.

Next we compute the resonant average of V (¢, z, D).

Lemma 3.12. Let V(t,z, D) as in (3.7). Its resonant average (V) (see (1)) is
1 _
<V>:§(vks’f+vks*’f) ., k=m-neN, (3.9)

where S € Ay is defined in (3.6) and Vi : =V :i= (Vep, en) € C.
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Proof. For ¢ € N, denote by IIyp := {p, ;) e; the projector on the Hermite function e,. Clearly
Ko, = I K0 = (=911, VeN.
From now on we simply write V = V(x, D). Using this identity and writing Id = 2421 I, we get

eiSK" VefisKo — E eis(j*e)HjVHK g e s(j=¢) <Veg,eJ>eJ .
G e>1 7,£>1

Now we compute, with k :=m —n € N,

1 [2r _ i 1 [2" o
(V) = —/ cos(ks) el*Eo v eTisKodg — Z (Veg,e;) (-, er) €; —/ cos(ks) eV ds
7,4>1
= IS Weneniten et 3 (v Vese) € = SV, SF 4 LV 7k
— 2 Z;ef+k‘ 7ef e€+k 2 ef7eefk y€r)€r—f = 2 k 2 k
£>1 £>k+1

where in the last line we used V_; = (Ves,er_1) = (Ver_i,e,) = V}. being V selfadjoint and
smooth Téplitz (see Remark [3.4)). O

Now define the selfadjoint operator

Y 1 Vi Vi 1
Tk(K0+§)S’“—TkS*’“(K +5) = Ko+ 3 )s*’c 1 kb gk (Ko+3).  (310)
which belongs to 4; by symbolic calculus as Ky € A; and S, S* € Ay (see Remark [3.11]).

The next lemma verifies Assumption III.

A 1 Vy,

Lemma 3.13. Assume that Vi, # 0. The following holds true:
(i) The spectrum of the operator Hy := (V) fulfills o(Hy) 2 [—|Vk|, |Vkl].

(i) For any interval Iy C [—|Vi|, [Vkl], any g1, € C°(R,R>¢) with g, = 1 over Iy and
supp g1, C [—|Vkl, |Vk|], there exist § > 0 and K compact operator such that

g1,(Ho) i[Ho, A] g1, (Ho) > 0 g1, (Ho)* + K .

Here A is defined in (3.1)).

Proof. (i) Let £(p) := Re(Vy e~'*¥). We shall prove that £(p) € o(Hy) Vp € R, from which the
claim follows. As Hj is selfadjoint, it is enough to construct a Weyl sequence for £(p), i.e. a
sequence (™), with ||| o =1 V¥n and ||[(Hy — £(p))y(™|o — 0 as n — co. We put

1 o
P = — Zelpéeg )
Vi

Then |[¢)(™]|o = 1 Vn and a direct computation shows that for n > k

1 V 1V ey
HO'(/)(n) _ Vi 1pk Z elpm em + 7f Z 6 em +— ;e—lpk Z elpm en .
m=k+1 \/ﬁ m=n—k+1

Thus one finds a constant Cy > 0 such that

C
|(Ho —£(p )) ||0<—k—>0 as n — oo,

NG
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proving that (™) is a Weyl sequence; by Weyl criterium £(p) € o(Hy).
(#4) First note that, by (3.1 and (3.6)), one has Vk € N

[S*, K| = —kS*, [S*F Ko| = kS**, [S*k Sk] =TI, (3.11)
SkS*™F —1d —T<,  S*™*S*=1d

where II< = 25:1 II, is the projector on the Hermite modes with index < k. Using (3.1) a
direct computation gives

. T2 1
i[Ho, A] = k(2|Vy|* — VRS?F — V.52 — |V, ]PTI<y) + 2|Vi|* (Ko + i)ngk
1
= 4k(|Vi|* — HY) +2|vk|2(K0+§ — k)< . (3.12)

Clearly K = 2|Vi[*(Ko + 1 — k)Il<y, is compact, being finite rank.
Next put f(A) = 4k(|Vi|? — \2?) getting Vo € H
(g1, (Ho) i[Ho, A] g1, (Ho), ¢) = (91,(Ho) [(Ho) g1, (Ho) @, ¢) + (g1, (Ho) K g1, (Ho), ) . (3.13)
Note that f is strictly positive in the interior of [—|V4|, [V&|]; we put
0 :=inf{f(\): X € suppgs,} > 0.

With this information we apply the spectral theorem and get

(g1, (Ho) f(Ho) g1, (Ho)ep, ) = / 91,(N)? F(A) dmy(A)

A€o (Hp)
20 [ o100 dmg(3) = Blgs, (Ha)ol
AEo(Hyp)
This estimate and (3.1]) proves that Hy fulfills a Mourre estimate over Ij. O

To conclude this section, we recall that in [50] it is proved that the pseudodifferential operator
V(t,x, D) := e tHo (§ 4 §%) eitKo (3.14)

is a universal transporter (see Definition [1.1). Using the abstract Theorem we prove its
stability under perturbations of class C*°(T, Ayp):

Theorem 3.14. Consider equation (3.1) with V (t,z, D) defined in (3.1). There exist eg,M > 0

such that VW € C*°(T, Ag) with sup, pg(W (t,z, D)) < €o, the operator V (t,z, D) + eW (t,z, D)
2 2

is a transporter. More precisely ¥r > 0 there exist a solution ¥(t) € H" of i0p = (781% +

V(t,x,D)+ W(t,z, D))1/) and constants C,T > 0 such that

v, >C@E)", Yt>T.

Proof. We verify Assumption III. Clearly V (¢, z, D) € C*°(T, Ap) and (V) = S+5*, so it has the
form (3.12) with £ =1 and V; = 2. Lemma implies that (V') fulfills a Mourre estimate. [
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Remark 3.15. Actually formula in case (V) = S + S* gives
i[(V), Al =4(4 — (V)?) , (3.15)
so (V) fulfills a strict Mourre estimate. Moreover implies that adf,(A) = 0 Vp > 2, and
using also , and the arguments in Appendix A of [50] we get that
eVl > (V) A%V, ) = B (GI(V), AD* . ) + O

Since 4— (V)2 is injectiveﬂ the flow e~ (V) has unbounded trajectories for any nontrivial initial
data. Hence the same holds for the solutions of i0yu = (Ho + V (¢, z, D))u and V (¢, z, D) in (3.1)

is a universal transporter.

3.2 Half-wave equation on T

The half-wave equation on T is given by
i0yp = |Dlp + V(t,x, D)y, xeT. (3.16)

Here |D| is the Fourier multiplier defined by

ij 1 iy
DIy =D il e, ;= %/Mx)e‘l”dx ,

JEZ

whereas V (¢, z, D) is a pseudodifferential operator of order 0. In this case Ky := |D| + 1, the
scale of Hilbert spaces defined as H" = Dom (K{j) coincides with standard Sobolev spaces on
the torus H'(T), and the base space (H°, (-,-)) is L?(T,C) with its standard scalar product. In
this setting we shall use pseudodifferential operators with periodic symbols, belonging to the
following class:

Definition 3.16. A function a(x,§) is a periodic symbol of order p € R if a € C*°(T, x R, C)
and for any o, € Ny, there exists a constant Cog > 0 such that

2 p a(:c,f)’ < Cop (€)%, Yz €T, VeeR.

We will write a € S§,.. We also put S;3° 1= (g Sper the class of smoothing symbols.

We endow Sf,,. with the family of seminorms

ol (a) == Z sup

laf+18]<j (BEETXR

o2 00alw, )| O, jEN,.

Such seminorms turn SJ,, into a Fréchet space. If a symbol a depends on additional parameters
(e.g. it is time dependent), we ask that all the seminorms are uniform w.r.t. such parameters.

To a symbol a € S8, we associate its quantization a(z, D) acting on a 27-periodic function

u(z) =3 uied” as

a(x, D)u := Op(a)[u] := Z a(z,j)ujei”.

JEZL

6it is unitarily equivalent, via the map e, ~ sin(ny) Vn € N, to the multiplication operator by 4sin(y)? on
the space L2,,(T) of L? odd functions on T
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Remark 3.17. Given a symbol a(§) independent of 2, then Op(a) is the Fourier multiplier operator
a(D)u = 3,z a(j) u; €%, If instead the symbol a(z) is independent of &, then Op(a) is the
multiplication operator Op(a)u = a(x)u.

Definition 3.18. We say that A € A, if A= Op(a) with a € Sf,,.

Ezample 3.19. The operator |D| € A; with symbol given by d(§) := |£|x(§) where x is an
even, positive smooth cut-off function satisfying x(£) = 0 for |¢]| < %, x(&) =1 for [£] > % and

dex(€) > 0 Ve € (1, 2).
Also the Fourier projectors I14+ and Il defined by

M= Zuj e, I u:= Z uj e’ Mou = g (3.17)

Jj=1 Jj<—1

are pseudodifferential operators. In particular IIy = Op (7+) € Ag and IIp = Op (7mg) € A_ oo,
where 74,7y are a smooth partition of unity, 74 (§) + 7—(§) + mo(§) = 1 V¢, fulfilling

1 if 1 ife< -4 1t
7r+<§>:{0 SIS w-<£>={0 s b ”0@):{0 e

'S

(SRS
ot
SN[V

(S

In this setting we prove that any multiplication operator, multiplied by an appropriate time
periodic function, becomes a transporter. Here the result.

Theorem 3.20. Let v € C*°(T,R). Choose j € Z\ {0} such that the Fourier coefficient v; # 0.
Then the selfadjoint operator
V(t,x) := cos(jt) v(z)

is a transporter. More precisely, Vr > 0 there exist a solution (t) € H" of i0yp = (|D|+V (¢, 2))¥
and constants C, T > 0 such that

o), >C@E)", Vt>T.

The theorem follows from Theorem [I.8] So first we put ourselves in the setting of the abstract
theorem and rewrite (3.2) as

1041 = Ko + V(t,2)0, V(t,x) := cos(jt)v(z) — 1 € Ag . (3.18)

Again we check Assumptions I-ITI. Regarding Assumption I, it is the usual pseudodifferential
calculus for periodic symbols, see e.g. [57].

Verification of Assumption II. One has o(Ky) = {n},en. To prove Assumption IT (i) we
use the identity e~ 50 A ¢itKo = ¢~ IIPIA 1Pl and Egorov theorem for |D|, see e.g. [61, Theorem
4.3.6]. Actually we need also the following version of Egorov theorem.

Lemma 3.21. Let a € Sf.,, p € R. Then
P 0p (a) P! = Op (a(e + 4,€) Ty + Op (alw — L,E) T + R(t)  (3.19)

where 1Ly are defined in (3.19)) and R(t) € C(T, A,_1).
If Op (a) is selfadjoint, so is eY1PlOp (a) e P! Wi,
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Proof. The classical Egorov theorem for the half-Laplacian |D| says that
¢*IP1Op (a) e Pl = Op (a o df(2,€)) + R(t)

where @4(x,€) is the time ¢ flow of the classical Hamiltonian d(¢) = [£]x(€) (the symbol of |D|)
and R(t) € C*(R,A,_1), see e.g. [61, Theorem 4.3.6].

We compute more explicitly a o ¢f(z,£). The Hamiltonian equations of d(£) and its flow ¢} are
given by

{j::@gd(i) =d'(¢) o4z, &) = (z +1d'(€), €) .

é = _8acd(€) =0 ’
Asd'(§) =1for € > 2 and &'(¢) = —1 for £ < — 2, we write

(a0 ) (z,&) =a(z+1,8) m(§) +alz — t,§) 7_(§) + a(z +1d'(§), ) m0(8) -

As mo € Sp5°, the operator Op (a(z +td’(£),&) mo(§)) € C(R, A_w). Moreover by symbolic
calculus

Op (a(z £1,8) m+(§)) = Op (a(x £1,§)) Mt + Re(t), R+(t) € CF(R, Apn) -

Formula follows with R(t) := R(t) + Ry(t) + R_(t) + Op (a(z + td'(§),&) mo(§)). We
claim that R(t) is periodic in time. This follows by difference since both !/l Op (a) e~ Pl and
Op (a(z £¢,£)) It are periodic in ¢ (recall that the symbol a(z,§) is periodic in z).

Finally as e**/P| are unitary, the claim on the selfadjointness of *!Pl Op (a) e~ *IP! follows. [

Verification of Assumption III. First we compute (V).

Lemma 3.22. The resonant average <‘~/> €Ay of V (defined in (3.2)) is given by

(V) =v(z) — 1+ R, v(z) := Re(v;e’") (3.20)
and R € A_y is selfadjoint.

Proof. First remark that, as e!t0 = eitlPleit|

1 27 A - X 1 27 . .
(V) —/ eIPIV (s) e #IPlds = 2—/ cos(js) e®Ply(z) e IPlds —1 . (3.21)
0 0

T or us
We compute e*IP! v(z) e~¥IP! with the aid of Lemma getting
e*IPly(z) e 1Pl = y(z + §) I, + v(z — ) TI_ + R(s), (3.22)
where R(s) € C(T,.A_,). Then, recalling that vj = U_; being v(z) real valued,
1 [ ~

. - - 1 27 1 27
o /. cos(js) e¥IPly(x) e 1Pl ds (,:Zi g/o cos(js) v(zos)dsIl, + g/o cos(js)R(s)ds

. 1 [2r ~
= Re (v;e®) (T4 +11_) + Py / cos(js)R(s)ds
0

™

=Re (v;e’") + R

where R := - 0277 cos(js)R(s)ds—Re (v;e*) Ty € A_. Together with (3.2)), this proves (3.22).

Finally R is selfadjoint by difference, since both (V) and v(z) — 1 are selfadjoint operators. [J
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Define the selfadjoint operator

A:=wu(x) % + % w(x) , w(r) = Im(v;e’™) (3.23)

belonging to A;. The next lemma verifies Assumption III.

Lemma 3.23. Assume that v; # 0. The following holds true:

(i) The operator Hy := (V') has spectrum o(Hy) 2 [—|v;| — 1, |vj| — 1] =: I.

(ii) For any interval Iy C I, any gr, € C°(R,R>q) with g5, = 1 over Iy and supp gy, C I,
there exist @ > 0 and a compact operator K such that

g1, (Ho) i[Ho, A] g1, (Ho) > 0 g1, (Ho)> + K .

Here A is defined in (3.2)).

Proof. During the proof we shall use that any operator in .4_; is compact. Moreover we shall
simply denote any compact operator by K, which can change from line to line.

(i) By Lemma Hj is a compact perturbation of the multiplication operator by v(z) — 1,
whose spectrum coincides with I. Then by Weyl’s theorem

0(Ho) 2 0ess(Ho) = Oess(v(z) —=1) =1 .
(ii) First notice that, as v(z) = Re(v;€?) and w(z) = Im(v;e%), one has the identities
v(2)? +w(2)? = v, v(2) = —ju(z). (3.24)
Next we compute
i[Ho, Al = i[v(z) — 1+ R, A] = —2u(x)v/(z) +i[R, A]
B2 2 (jui[2 = v(2)2) + K = 25 (jo; 2 = (Ho +1— R)?) + K
=2j(jv;]? = (Ho + 1)%) + K.
Putting f(A) := 2j(|v;|> = (A +1)?), we get Vo € H
(91,(Ho) i[Ho, A] g1,(Ho), ¢) = (g1, (Ho) f(Ho) g1,(Ho)p, @) + (Ke, ). (3.25)
Now we notice that f()\) is positive in the interior of I; so we put
O:=inf{f(A): A€suppgr}>0.
With this information we apply the spectral theorem, getting, as in the previous section,
(91, (Ho) f(Ho) g1, (Ho)p, ) = 0 / 91,(N)? dme(X) = 0llgr, (Ho)llg -
A€l

This together with (3.2)) establishes the Mourre estimate over Ij. O
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A Flows of pseudodifferential operators

In this appendix we collect some known results about the flow generated by pseudodifferential
operators belonging to the algebra A. The setting is the same as [5] and we refer to that paper
for the proofs. The first result describes how a Schrodinger equation is changed under a change
of variables induced by the flow of a pseudodifferential operator, see Lemma 3.1 of [5]:

Lemma A.1. Let H(t) be a time dependent selfadjoint operator, and X (t) be a selfadjoint family
of operators. Assume that ¢(t) = e "X p(t) then

where

1
H+(t) = eiX(t) H(t) efiX(t) 7/ 6isX(t) (8tX(t)) efisX(t) ds .
0

The next property we shall need is the Lie expansion of /X A e™X in operators of decreasing

order, see Lemma 3.2 of [5]:

Lemma A.2. Let X € A, with p <1 be a symmetric operator. Let A € A, with m € R. Then
el™X Ae X 45 selfadjoint and for any M > 1 we havtﬂ

M
T adi(A)+ Ru(r, X, A), VreR, (A1)

it 0!
=0

elTX Ae—lTX _

where Ry (1, X, A) € Ay (M41)(1—p) -
In particular ad’ (A) € A _o1—p) and e™X Ae7 X € A, VT € R.

The last result concerns boundedness properties of the operator e ~i7%, see Lemma 3.3 of [5]:

Lemma A.3. Assume that X (t) is a family of selfadjoint operators in Ay s.t.
supp}(X(t)) <oo, Vji>1.
teR

Then e~ "X extends to an operator in L(H") Vr € R, and moreover there exist c,.,Cy > 0 s.t.

erllglle < e Oy, < Collglle ,  VEER, Vre[o,1].

B Functional calculus

In this section we collect some known results about functional calculus of selfadjoint operators
which are used thorough the paper. We begin recalling Helffer-Sjostrand formula [37], following
the presentation of [16].

Definition B.1. A function f € C®(R,C) will be said to belong to the class SP, p € R, if
Vm € Ny, 3C,, > 0 such that

dam -
’dxmf(m) < Cop(z)P™™, VzeR.
7in [5] we have defined adx (A) = i[X, A] rather than (2.2); so we formulate the next result with the current
notation
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As usual we set the seminorms

d™f(z)

S @yt meN, .
X

O (f) =Y sup
0<j<m z€R

Given f € S?, we define its almost analytic extension as follows: for any N € N, put

fnv:R? = C, In(@,y) = (Zf(i)( )(E') ) T(<~’”y>>

£=0
where 7 € C™(R,R>) is a cut-off function fulfilling 7(s) = 1 for |s| < 1 and 7(s) = 0 for |s| > 2.
It is well known [I6] that the choice of N and of the cut-off function 7 are by no means critical,

and even other choices of fy are possible (see e.g. [19]). The following properties are true [16]:
let f € SP with p < 0, then

Inle =1, supp fv C {z+iy : =z esuppf, |yl <2(z)} ,

B Of» Ofn  .Of;

e <cner e, e (i)

/ 6fNE(Z) |Im(z)\_p_1d2/\dz§Cpr\H_Q(f), Vp=0,...,N, (B.1)
R2

where z = x + iy and dz A dz is the Lebesgue measure on C.
Given H a selfadjoint operator and f € S?, p < 0, the Helffer-Sjostrand formula defines f(H) as

F(H) = i /R afgg(z) (z—H)"ldz Adz = —% /]R afgg(z) (z — H) ldzdy . (B.2)

Theorem B.2 ([16]). Let f € S°, g € S* with p,u <0 and H a selfadjoint operator. Then

(i) The operator f(H) is independent of N and of the cut-off function 7.

(i) The integral in is norm convergent and || f(H)|lz¢0) < || fllpee-
(iii) F(H) g(H) = (£g)(H).

(iv) f(H) = f(H)".

(v) If f € C° has support disjoint from o(H), then f(H) =0

(vi) If 2 ¢ R and f,(z) :== (z —2)~! for allz € R, then f, € S™ and f,(H) = (z — H)~L.

Remark B.3. Given f € SP, p < 0 and H selfadjoint, the operator f(H) defined via Helffer-
Sjostrand formula coincides with the classical definition given by the spectral theorem, namely

=/JMMMM
R

where dFE()) is the spectral resolution of H. For a proof, see e.g. [20], Theorem 8.1.
Next we recall expansion formulas for commutators. We start from the basic identities

n

adj(PQ) = Z( ) adi F(P)adk(Q),  [P,A"] = Zc,”ad PYA" 7 (B.3)

k=0

For the next lemma see e.g. [I9, Lemma C.3.1] or [40, Appendix BJ.
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Lemma B.4 (Commutator expansion formula). Let k € N and A, B selfadjoint operators with

ladi (B) | cay < 00,  V1<j<k.

Let f € 5P with p < 0, then one has the right and left commutator expansions

k—1

Lo

=Y /(A ada(B) + Ru(f,A.B) (B.4)
‘7:
k . ~
Z ad] B) fY(A) + Ri.(f,A,B) (B.5)
j=1
where the operators Ry, Ry, fulfill
IRk(f, A B)lcarys  [1Be(f,A Bl < Cn 9hyo(f) ladA(B)llzcaay - (B.6)
Lemma B.5. Let k € N and A, H selfadjoint operators such that
ladp(H)|l gy <00,  V1<j<k. (B.7)
Let g € SP with p < 0. Then
lada(g(H)ll ey <00 V1<j<k.
Proof. Take N > k and use Helffer-Sjostrand formula to write
add (g(H)) = i/ 9w (2) ad ((z—H)"") dz A de. (B.8)
A 2 R2 62 A
As ada((z —H)™') = (z = H)"'ada(H) (z — H)~*, by induction one gets for j =1,...,k
adj (( Z > g, z=H)Thady (H) (z—H) tadi2 (H) - - (z—H) " adj (H) (z—H) !
l=1 k1+--+kp=3
kp,.ookp>1
Using (B.5)) and the estimate [|(z — H) ™| z(3) < [Im (2)]7', V2 € C\R, one has for j =1,... .k
j d -1
lad ((z = H) ™) llcpn <Y Cellm (2)["7', VzeC\R.
=1
Inserting this estimate into and using we bound for any j =1,...,k
, Agn( —0-1
lladz (gs (M)l 2oy S Z/ ’ i (2)] “lazadz < p‘]’\,+2(g) <00 .
(=
O

Lemma B.6. Let g € C°(R,R). Let H,B € L(H) be selfadjoint. Then 3C > 0 such that
lg(H+B) —g(H)llz) < ClIBllzn) -

If B is compact on H, so is g(H+ B) — g(H).
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Proof. Take N > 1. Using Helffer-Sjostrand formula and the resolvent identity we obtain

g(H+B)—g(H)=;7T/R2a§gZ@(z—(H+B))‘1B(z—H)—1dzAdz.

—1 _
Then use |[(z = (H+B)) |z, [(z = H) " lzp < Im(z)] "for € C\R and [B).
If B is compact then (z — (H + B))f1 B (2 —H)™! is a compact operator for any 2 € C\R. [

C Local energy decay estimates

In this section we prove a local energy decay estimate starting from Mourre estimate. The result
is essentially known but we could not find in the literature a statement exactly as the one we
use in the paper, so we include here a proof, which follows closely the one of Lemma 4.1 of [29].
In this part we do not require pseudodifferential properties of the operators. We shall assume
conditions (M1) and (M2) at page

Theorem C.1 (Local energy decay estimate). Fiz k € N and assume (M1)—(M2) with N > 4k+2
and K = 0. Then for any interval J C I, any function g5 € CP(R,Rx>) withsuppgy C I, g5 =1
on J, there exists C > 0 such that

A" ™™ g (H)9llo < CLO)TFI(A)* gs(H)ello, VEER, (C.1)
for any ¥ such that the r.h.s. is finite.

Proof. Take x(£) := (1 — tanh¢). Put n(¢) := ﬁsh& and note that

X == [ < Cun(©), VEER, VmeN. (C2)
Next we set for a € R, s > 1 and ¢ := § (with 6 of (M2) )
1
Apsi=— (A —a— 19t)
s

and define via functional calculus the operator