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Abstract
We prove that quadratic pair interactions for functions defined on planar Poisson
clouds and taking into account pairs of sites of distance up to a certain (large-enough)
threshold can be almost surely approximated by the multiple of the Dirichlet energy
by a deterministic constant. This is achieved by scaling the Poisson cloud and the
corresponding energies and computing a compact discrete-to-continuum limit. In order
to avoid the effect of exceptional regions of the Poisson cloud, with an accumulation
of sites or with ‘disconnected’ sites, a suitable ‘coarse-grained’ notion of convergence
of functions defined on scaled Poisson clouds must be given.
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1 Introduction

The object of this paper is an analysis of the asymptotic behavior of quadratic energies
on Poisson random sets. Loosely speaking such sets are characterized by the property
that the number of their points contained in a given set has a Poisson probability
distribution, and that the random variables related to disjoint sets are independent.
Even more loosely, on average the number of points contained in a set is proportional
to the Lebesgue measure of the set. We denote by η such a random set.

In order to define some almost-sure properties of η, we use a discrete-to-continuum
approach that has been fruitfully used to derive continuum theories from microscopic
interactions (see Alicandro and Cicalese 2004). A simple interpretation of this method
is as a finite-difference approximation. If η is a deterministic periodic locally finite
discrete set inRd , thenwe can consider real-valued functions u : η → R and quadratic
interaction potentials between points on η. The corresponding Dirichlet-type energy
is

∑

〈x,y〉
(u(x) − u(y))2, (1.1)

where 〈x, y〉 indicates summation over nearest-neighboring pairs (x, y) in η. We can
then introduce a small parameter ε and scale both the environment and the energies
accordingly; namely, considering u : ε η → R and

∑

〈x,y〉
εd−2(u(x) − u(y))2, (1.2)

now summing over nearest-neighboring pairs (x, y) in ε η. By letting ε → 0, we
obtain a limit continuum energy, of the form

ˆ
Rd

A∇u · ∇u dx, (1.3)
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where the matrix A carries information about the microstructure of the original set η.
Note that in order to perform this passage to the limit, we have to embed our energies
in a common environment identifying functions on η with suitable interpolations. The
limit is meant in the sense of �-convergence, which implies that minimum problems
for the limiting energies are approximations of the discrete ones and can also be
performed ‘locally’, by considering interactions only for x ∈ εη ∩U for a fixed open
set U .

In order to define analogs of (1.1) and (1.2) for the realization of aPoisson cloudηwe
face a choice regarding what to consider as ‘interacting sites’, whether nearest neigh-
bors in the sense of Voronoi cells or points ‘close’ in the sense of the ambient space.
For the random set η, these two choices are not equivalent since nearest-neighboring
points on η may be indeed arbitrarily distant in the ambient space, and conversely a
very small distance between points of η does not ensure that they are nearest neighbors
in η. We choose the second option, which also seems closer to applications; namely,
we introduce an interaction radius λ > 0 and consider the energies

Fε(u) =
∑

x,y∈Q∩εη,
|x−y|<ελ

εd−2(u(x) − u(y))2, (1.4)

defined for u : ε η ∩ Q → R, where Q is the unit coordinate cube centered in 0 (for
ease of notation we treat only this case, which anyhow, up to scaling and localization,
implies the result for any bounded Lipschitz open set in R

d ). Note that, if a �-limit
of such energies does exist then, thanks to the invariance properties by rotations of η,
it must be a multiple of the Dirichlet integral [i.e., A in (1.3) is equal to a multiple of
the identity matrix], which we expect to be almost surely deterministic.

The main issue in proving the convergence of Fε consists in providing a suit-
able notion of convergence for discrete functions uε to a continuum parameter u, for
which a compactness theorem can be proved under an assumption of boundedness of
the energies. While for periodic η, we can use piecewise-constant interpolations on
Voronoi cells (or, equivalently, piecewise-affine interpolations on the related Delau-
nay triangulation), for a Poisson point process we cannot control the behavior of such
interpolation due to the presence of arbitrarily large and arbitrarily small Voronoi cells.
Nevertheless, we can prove that the union of ‘regular’ Voronoi cells with suitably con-
trolled dimensions form an infinite connected set in which we find ‘paths’ of cells
such that also cells at distance λ are regular. This is done by exploiting a Bernoulli
site-percolation argument. In the planar case d = 2, the complement of this set of
Voronoi is composed of isolated sets with controlled dimensions, so that the ambient
space can be thought of as a “perforated domain”, in which we do not have a control of
the discrete functions only in isolated ‘holes’ of controlled size. This allows to define
a suitable convergence by choosing a subset Gε of εη composed of paths mentioned
above whose union Vε(Gε) has the geometry of a square grid (see Fig. 1) We thus
use these grids to define a suitable convergence notion: given a sequence of functions
uε : ε η → R, we say that u is the L2-limit of uε if
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Fig. 1 A representation of a
regular grid in Q with two
‘paths’ highlighted

ˆ
Vε(Gε)

|ûε − u|2 dx → 0; (1.5)

namely, if the L2-distance between the piecewise-constant extensions ûε of uε and u,
restricted to the Voronoi cells of the grid Gε vanishes as ε → 0. Regular grids allow
also to give a meaningful notion of boundary-value problems; in particular, we can
consider affine boundary condition as in the cell problems

m(ξ ; T Q)

:= inf

⎧
⎨

⎩
∑

x∈η∩(T Q)

∑

y∈η∩Bλ(x)

|v(x) − v(y)|2
∣∣∣∣∣∣

v : η → R

v(x) = ξ · x for all x ∈ η such that
dist(x, ∂(T Q)) ≤ 2λ

⎫
⎬

⎭ .

(1.6)

Using subadditive ergodic theorems, we then can prove that, if ξ 	= 0, the constant Ξ
given by

Ξ := lim
T→+∞

m(ξ ; T Q)

T 2|ξ |2

exists and is deterministic. Moreover, by the invariance properties of η it does not
depend on ξ . This allows to state and prove the main result of the paper, which is the
almost sure �-convergence in the planar case d = 2 of functionals (1.4) to

F(u) = Ξ

ˆ
Q
|∇u|2dx (1.7)

with respect to the convergence in (1.5), from which we can deduce the convergence
of the related Dirichlet boundary-value problems. Note that more in general we may
consider energies of the form
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Fa
ε (u) =

∑

x,y∈Q∩εη

εd−2a
( x − y

ε

)
(u(x) − u(y))2, (1.8)

with a positive and with compact support, recovering the case in (1.4) as a special
case when a(ξ) is the characteristic function of the ball centered in 0 and radius λ.
If a is radially symmetric the same limit result holds with obvious modifications in
the statements. We note moreover that, even though we treat quadratic energies, the
linearity of the corresponding Euler–Lagrange equations is never used, and we may
replace the power 2 by any power p > 1with the due changes, and replace the function
f (z, ξ) = a(z)|ξ |2 in (1.8) with a general f (x, ξ) positively p-homogeneous in ξ .
Such a general dependence would require some growth and decay assumptions for
which we refer to the recent book (Alicandro et al. 2023). For the sake of clarity of
exposition, here we limit our analysis to the quadratic case.

The convergence theorem can be comparedwith various results in the literature. Our
result is inspired by the recent paper Braides and Piatnitski (2022), where perimeter
energies on Poisson random sets are considered. In that context, a simpler compactness
result can be obtained with respect to the convergence is measure of sets, by using a
covering lemma that ensures that the energy cannot concentrate onnon-regularVoronoi
cells. In the present context, thiswould correspond to an extension theorem for Sobolev
functions from regular sets, which seems hard to obtain due to the random geometry
of clusters of non-regular Voronoi cells Furthermore, we can compare our approach
to that in Blanc et al. (2007) and Alicandro et al. (2011), where a notion of stochastic
lattice η is given for which energies of the form (1.8) can be considered. Differently
from Poisson random sets, stochastic lattices are more regular, in that all Voronoi cells
have controlled dimension and hence, are regular in the terminology above, a condition
that seems a considerable restriction in terms of applications. The regularity of the
lattice implies that functionals Fa

ε are coercive with respect to the L2 convergence of
piecewise-constant interpolations on Voronoi cells. Conversely, in general the limits
of functionals Fa

ε , which exist under ergodicity and stationarity assumptions, are not
isotropic even if a is radially symmetric, except for specially constructed examples
Ruf (2019). More general random distributions of sites have been considered within
problems in machine learning by Caroccia et al. (2020), Trillos and Slepcev (2016)
and Slepcev and Thorpe (2016) (see also the references therein). In their approach,
the convergence is given in terms of suitable interpolations of discrete functions using
optimal-transport techniques. The presence of non-regular Voronoi cells is mitigated
by considering kernels aε with increasing support as ε → 0, which also allow to
obtain isotropy in the limit (see also Braides and Solci 2020 for variational limits
using a coarse-graining approach). Energies (1.8) have a continuum approximation in
terms of a convolution double integral, for which random homogenization has been
considered in Braides and Piatnitski (2021) (see also Alicandro et al. 2023). We note
that the existence of regular paths can be proved in any dimension d ≥ 2, but if
d > 2, the geometry of regular grids can be thought as a set of “fibers” rather than
a perforated domain. We believe that the same asymptotic result holds but with an
even more complex argument. Finally, we mention, following a remark by D. Slepcev
in a private communication, that our results may also have practical implications for
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the study of the graph Laplacian. Namely, one can show that if one drops all of the
eigenmodes of the graph Laplacian on a low degree random geometric graph where
the eigenvector has large L∞ norm (in other words concentrates at few nodes) one
still recovers the continuum spectrum. Finally, we remark that even though our result
is two-dimensional due to technical issues, it is likely that the use of techniques used
for supercritical percolation clusters as in Braides and Piatnitski (2012) for interfacial
energies andmore recently inArmstrong andDario (2018) for elliptic problems (where
also quantitative homogenization is addressed) may lead to the solution also in higher
dimension. In particular, for energies on Poisson point clouds at a larger scale than just
nearest neighbors interactionwe refer to Caroccia (2022)where a general compactness
Theorem is addressed in d ≥ 2.

We briefly outline the plan of the paper. In Sect. 2, we introduce the necessary
definitions and notation for Poisson point clouds. This allows to give a definition of
Dirichlet energy on a Poisson cloud η and to prove some asymptotic properties as
the Poisson set is scaled by a small parameter η and correspondingly the energies Fε

as in (1.4). We introduce the notation for Voronoi cells and define grids of paths of
regular cells Gε,t depending on an additional parameter t > 0. This allows to define
the convergence of piecewise-constant functions uε on Voronoi cells to a continuum
function u as the successive convergence of averages of uε computed on Gε,t at the
“mesoscopic scale” t to piecewise-constant functions ut defined on a square grid and
then of such ut to a limit u as t → 0 (Definition 2.7). This is proved to be equivalent
to the L2 convergence on grids as in (1.5), and actually independent of the choice
of the family of grids. In Sect. 3, we state the main results of the paper. Theorem
3.1 states the pre-compactness the sense of the convergence above of sequences with
equi-bounded Dirichlet energy; Theorem 3.3 is an almost-sure homogenization result
characterizing the �-limit of Dirichlet energies as a deterministic quantity as in (1.7).
Section4 is devoted to the proof of the Compactness Theorem, based on the geometric
properties of the grids that allow the use of Poincaré inequalities. In Sect. 5, we prove
the Homogenization Theorem. The lower bound is obtained by using the Fonseca and
Müller blow-up method, which is possible thanks to the use of cut-off functions that
are locally constant close to non-regular Voronoi cells. The construction of recovery
sequences is also made possible thanks to these ‘regular’ cut-off functions. Finally,
Sect. 6 (the “Appendix”) contains the proof of the existence of regular grids.

2 Notation and Preliminaries

In this section, we introduce the main ingredients required to perform our analysis. For
the sake of simplicity, and since our analysis will take place in this context, we always
consider the ambient space dimension to be two-dimensional, even though some of
the definitions and results can be extended to general space dimension.
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2.1 General Notation

We let Q := (−1/2, 1/2)2 denote the unit coordinate square centered in 0. We will also
write Qr = r Q, Qr (x) = x + r Q. The same notation applies to Br (x), being B the
unit ball of R2. For a Radon measure ν ∈ M+(R2) and A ⊂ R

2, the space L2(A; ν)

is defined as the space of all measurable functions u : spt (ν) ∩ A → R such that

ˆ
A
|u(x)|2 dν(x) < +∞.

When ν = L2, the Lebesgue measure, we simply write L2(A). We denote by Bor(A)

the collection of all Borel subsets of A. The notation |E | stands for the Lebesgue
measure of E . For a set A and for t > 0, we define

(A)t := {x ∈ R
2 | dist(x, A) ≤ t}.

If no confusion arises, the notation {xi ∈ Xi }i∈I is used for a family xi indexed by I ,
such that xi ∈ Xi

2.2 Poisson Point Clouds

Some basic properties of the stationary stochastic point process called Poisson point
cloud are here recalled. A complete treatment of this subject can be found in Daley
and Jones (2003) and Schneider and Weil (20085). In order to formally introduce this
notion, we consider the family Ns of simple measures; i.e.,

Ns :=
⎧
⎨

⎩
∑

i∈I
δxi ∈ M+(R2)

∣∣∣∣∣∣
{xi }i∈I ∈ R

2, xi 	= x j for all i, j ∈ I , i 	= j and I a subset ofN

⎫
⎬

⎭

Here and in the sequel, δx is the Dirac delta at x . For any Borel set E ∈ Bor(R2) and
k ∈ N, we define the subset AE,k := {μ ∈ Ns | μ(E) = k} of Ns and consider the
σ -Algebra N generated by {AE,k | E ∈ Bor(R2), k ∈ N}.
Definition 2.1 A Poisson point process on R

2 with intensity γ is a random element η
on (Ns,N); that is, a map from a probability space (
,F,P) onto (Ns,N), such that

(1) P(η ∈ AE,k) = (γ |E |)k
k! e−γ |E |;

(2) denoted by η(B) : (
,F,P) → N the random variable induced by η when fixing
B, (namely η(B) := η(ω)(B) for ω ∈ 
) then, for any B1, . . . , Bm pairwise
disjoint Borel sets we have that η(B1), . . . , η(Bm) are independent.

For any Poisson point process η, we can observe that its probability distribution Pη

on (Ns,N) satisfies

P(η(A) = k) := Pη(AA,k) = P(η ∈ AA,k)
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:= P({ω ∈ 
 | η(ω) ∈ AA,k}) = (γ |A|)k
k! e−γ |A|.

We will often make use of the notation x ∈ η, or x ∈ η(ω) by meaning that x ∈
spt (η(ω)) for some realization ω ∈ 
. Accordingly, x ∈ ε η(ω) will stand for x ∈
ε spt (η(ω)).

Definition 2.1 implies (see Günter and Mathew 2017, Proposition 8.3) in particular
that the Poisson point process on R

2 with intensity γ is stationary: if we define
τxη(A) := η(A+x), then τxη is equal in distribution to η for any x ∈ R

d . This implies
in particular that P(η(R2) < +∞) = 0 (see Günter and Mathew 2017, Proposition
8.4). In the sequel, whenever we speak of a Poisson point process we always mean a
Poisson point process on R

2 with intensity γ .

2.3 Dirichlet Energy on Point Clouds

Let η be a Poisson point process. Without loss of generality, we fix the intensity to be
γ = 1 and we carry out our analysis on the unit square Q. This is not a restriction
since we may localize our energies on regular subsets of Q where the analysis applies
unchanged, while we can deal with arbitrary bounded regular open sets by rescaling
them to subsets of Q. We set

ηε(A) := η(ε−1A), spt (ηε) = ε spt (η).

For λ > 0, a fixed parameter (the interaction radius) and for u ∈ L2(Q; ηε), for a
subset A ⊂ Q define

Fε(u; A) :=
∑

x∈ηε∩A

∑

y∈ηε∩Bλε(x)

|u(x) − u(y)|2,

Remark 2.2 The definition of Fε takes into account the values of u in a λε-
neighborhood of A. As a consequence, the energy Fε is subadditive on essentially
disjoint sets, namely

Fε(u; A ∪ B) ≤ Fε(u; A) + Fε(u; B) for allA, B ⊂ R
2, |A ∩ B| = 0.

Indeed, the energy of a function u on some open set A takes into account also the
contribution of all those points

BA := {y ∈ (R2\A) ∩ ηε | there existsx ∈ A ∩ ηε such that|x − y| ≤ λε}.

Note that Fε is not local, since we may not have Fε(u; A) = Fε(v; A) if u = v on A
due to the interaction around boundary points. However, if u = v on A, we can infer
that

Fε(u; A\(∂A)λε) = Fε(v; A\(∂A)λε).
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We now give some estimates on the asymptotic behavior of Fε and ηε by means of
a kind of (spatial) Mean Ergodic Theorem. We show that, almost surely, the average
number of points in some open set A, lying at a distance less than λε can be bounded
from above by the Lebesgue measure of A (the proof of Proposition 2.3 follow the
lines of the proof of Günter and Mathew 2017, Theorem 8.14).

Proposition 2.3 There exists a constantC, depending onλ only, such that the following
property holds almost surely:

lim sup
ε→0

∑

x∈ηε∩A

ε2ηε(Bλε(x)) ≤ C |A| (2.1)

for any A ⊆ Q with Lipschitz boundary.

Proof We consider a sequence {εn}n∈N such that εn → 0 and

1

C
≤ εn

εn+1
≤ C, (2.2)

where C > 1 is a fixed universal constant. For an open set A, we define the following
objects

I(A) := {J ∈ λZ2 | Qλ(J ) ∩ A 	= ∅},
Q(A) := {Qλ(J ) | J ∈ I(A)},
N (A) := #(I(A)),

and consider, for any J ∈ λZ2 the random variable X J := η(Qλ(J ))2. Note that

E(X J ) = e−λ2
+∞∑

k=1

k2
(λ)2k

k! = νλ < +∞.

Let R := (0, a) × (0, b) for a, b ∈ R. Then, we can relabel each square Qλ(J ) ∈
Q(ε−1

n R) in such a way that

1

N (ε−1
n R)

∑

J∈I(ε−1
n R)

η(Qλ(J ))2 = 1

N (ε−1
n R)

N (ε−1
n R)∑

k=1

X Jk .

If we now invoke the law of large numbers (see for instance Günter andMathew 2017,
Theorem B.11), we have that

lim
n→+∞

1

N
(
ε−1
n R

)
∑

J∈I (ε−1
n R)

η(Qλ(J ))2 = νλ = E(X J1)
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almost-surely. Since ε2nN (ε−1
n R) → |R|

λ2
and ηεn (Qλεn (εn J )) = η(Qλ(J )), we have

that

∑

J∈I(ε−1
n R)

ε2n ηεn

(
Qλεn (εn J )

)2 =
(
ε2nN

(
ε−1
n R

))

N
(
ε−1
n R

)
∑

J∈I(ε−1
n R)

η(Qλ(J ))2 → |R|
λ2

νλ

for almost all ω ∈ 
. Let now

με(R) :=
∑

J∈I(ε−1R)

ε2ηε(Qλε(εJ ))2, μn(R) := μεn (R),

R0 := {R = [0, p] × [0, q] | p, q ∈ Q, p, q,≤ 2}


0 :=

⎧
⎪⎨

⎪⎩
ω ∈ 


∣∣∣ μn(R) → |R|
λ2

νλ,
∑

J∈I(ε−1
n ∂R)

ε2nηεn (Qλεn (εn J ))2 → 0 for all R ∈ R0

⎫
⎪⎬

⎪⎭
.

Since R0 is a countable family of rectangles we have that P(
0) = 1. Let now
R := [p, p′] × [q, q ′] ⊂ Q with p, p′, q, q ′ ∈ Q and define

R1 := [0, p′] × [0, q], R2 := [0, p] × [0, q ′]
R3 := [0, p] × [0, q], R4 := [0, p′] × [0, q ′].

so that R = R4\(R1 ∪ R2), |R| = |R4| − |R1| − |R2| + |R3|. Moreover,

μn(R) := μn(R4) − μn(R1) − μn(R2) + μn(R3) + sn,

with

sn ≤ C
4∑

j=1

∑

J∈I(ε−1
n ∂R j )

ε2nηεn (Qλεn (εn J ))2.

Since sn → 0, we immediately have μn(R) → |R|
λ2

νλ. In particular, having defined

R := {[p, p′] × [q, q ′] ⊂ Q | p, p′, q, q ′ ∈ Q},

we have μn(R) → |R|
λ2

νλ for allω ∈ 
0 andR ∈ R.

Let R ∈ R, let ω ∈ 
0 be a realization and let {ε̃k = ε̃k(ω)}k∈N be a sequence
along which

lim sup
ε→0

∑

J∈I(ε−1R)

ε2η(ω)(Qλ(J ))2 = lim
k→+∞

∑

J∈I(ε̃−1
k R)

ε̃2kη(ω)(Qλ(J ))2.

Consider εnk ≤ ε̃k ≤ εnk−1. By (2.2), we can find R̃ ∈ R with |R̃| ≤ C |R| (for a
universal constantC) and such that ε̃−1

k R ⊂ ε−1
nk R̃ for all k ∈ N. Note thatI(ε̃−1

k R) ⊂
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I(ε−1
nk R̃) and thus,

∑

J∈I(ε̃−1
k R)

ε̃2kη(ω)(Qλ(J ))2 ≤
∑

J∈I(ε−1
nk R̃)

ε2nk−1η(ω)(Qλ(J ))2

≤ C
∑

J∈I(ε−1
nk R̃)

ε2nkη(ω)(Qλ(J ))2.

By taking the limit and exploiting that R̃ ∈ R, ω ∈ 
0, we achieve

lim sup
ε→0

∑

J∈I(ε−1R)

ε2η(ω)(Qλ(J ))2 ≤ C |R|,

where C depends on λ only. In particular, we have that

lim sup
ε→0

με(R) = lim sup
ε→0

∑

J∈I(ε−1R)

ε2η(Qλ(J ))2 ≤ C |R|

almost surely. For any open set A ⊂ Q and for any δ > 0, we can find a finite
covering of disjoint rectangles {Rk}NA

k=1 ⊂ R with
∑NA

k=1 |Rk | ≤ |A| + δ. Then, since
με is sub-additive on disjoint sets, we conclude that

με(A) ≤
NA∑

k=1

με(Rk) ⇒ lim sup
ε→0

με(A) ≤ C
NA∑

k=1

|Rk |

almost surely. Now, since

∑

x∈A∩ηε

ε2ηε(Bλε(x)) ≤ C
∑

J∈I(ε−1A)

ε2ηε(Qλε(εJ ))2 = Cμε(A)

for a universal constant independent of λ, n, ω we obtain the claim for all ω ∈ 
0,
which has probability 1. ��
Corollary 2.4 Fix λ > 0. There exists a constant C depending on λ only such that
almost surely it holds

lim sup
ε→0

Fε(u; A) ≤ C
ˆ
A
|∇u|2 dx (2.3)

lim
ε→0

ε2
∑

x∈ηε∩A

u(x)2ηε(Bλε(x)) ≤ C
ˆ
A
|u|2 dx (2.4)

for any u ∈ C1(Q) and for any A ⊂⊂ Q with Lipschitz boundary.
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Proof Fix A ⊂ Q. Let Qm := {Qm
i }i∈N be a division of Q in disjoint squares of size

1
m . Since u ∈ C1 for any fixed δ, we can find K ≥ 1 such that

∣∣∣∣∣ max
x∈Qm

i

{u(x)} − min
x∈Qm

i

{u(x)}
∣∣∣∣∣ ≤ δ for all Qm

i ∈ Qm such that Qm
i ∩ A 	= ∅

∣∣∣∣∣∣
sup

x∈(Qm
i )λεn

{|∇u(x)|} − inf
x∈(Qm

i )λεn

{|∇u(x)|}
∣∣∣∣∣∣
≤ δ for all Qm

i ∈ Qm such that Qm
i ∩ A 	= ∅

whenever m, n ≥ K . Moreover, (A)2/m ⊃⋃Qm
i ∩A 	=∅ Qm

i and

ˆ
(A)2/m

u(x)2 dx ≤
ˆ
A
u(x)2 dx + δ,

ˆ
(A)2/m

|∇u(x)|2 dx ≤
ˆ
A
|∇u(x)|2 dx + δ.

Then,

ε2
∑

x∈ηε∩A

ηε(Bλε(x))u(x)2 ≤
∑

Qm
i ∩A 	=∅

max
x∈Qm

i

{u(x)2}
∑

x∈ηε∩Qm
i

ε2ηε(Bλε(x)).

In particular, by invoking Proposition 2.3, almost surely we have

lim sup
ε→0

ε2
∑

x∈ηε∩A

ηε(Bλε(x))u(x)2

≤ C
∑

Qm
i ∩A 	=∅

max
x∈Qm

i

{u(x)2}|Qm
i | = C

∑

Qm
i ∩A 	=∅

ˆ
Qm
i

max
x∈Qm

i

{u(x)2} dx

≤ C
∑

Qm
i ∩A 	=∅

ˆ
Qm
i

(u(x)2 + δ2) dx = C
ˆ

(A)2/m

u(x)2 dx + Cδ2|Q|

≤ C
ˆ
A
u(x)2 dx + Cδ|Q|

for a constant that depends on λ only. Since δ is arbitrary, we get (2.4). Also,

Fε(u; A) =
∑

x∈ηε∩A

∑

y∈ηε∩Bλε(x)

|u(x) − u(y)|2

≤
∑

Qm
i ∩A 	=∅

∑

x∈ηε∩Qm
i

∑

y∈ηε∩Bλε(x)

|u(x) − u(y)|2

≤ λ2
∑

Qm
i ∩A 	=∅

sup
x∈(Qm

i )λε

|∇u(x)|2
∑

x∈ηε∩Qm
i

ε2ηε(Bλε(x)).
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Then, Proposition 2.3 almost surely yields

lim sup
ε→0

Fε(u; A) ≤ C
∑

Qm
i ∩A 	=∅

ˆ
Qm
i

sup
x∈(Qm

i )λε

{|∇u(x)|2} dx

≤ C
ˆ
A
|∇u(x)|2 dx + Cδ2|Q|

for a constant that depends on λ only. The arbitrariness of δ yields (2.3). ��

2.4 Voronoi Cells and Paths

We now consider η : 
 → Ns a Poisson point process. For a given realization ω, we
identify the Voronoi cell of x ∈ η as

C(x, η) := {y ∈ R
d | |y − x | ≤ |y − z| for all z ∈ η\{x}}.

Note that C(x, ηε) = εC
(
x
ε
, η
)
.

We say that x, y are nearest neighbors if C(x, η) shares a common edge with
C(y, η). In this case, we write 〈x, y〉. Given x ∈ R

2, we define

πη(x) := argmin{y ∈ η | |x − y|},

where, in case of multiple choices we consider the lexicographical order. We say that

p(x, y) := {xi1 , . . . , xiM }

is apath inη connecting x to y if xim ∈ η form = 1, . . . , M , xi1 = πη(x), xiM = πη(y)
and 〈xim , xim+1〉 for m = 1, . . . , M − 1. Moreover, we let �(p) := #(p) denote the
length of a path p. This notion induces a natural metric on η

τη(x, y) := min{�(p(x, y)) | p(x, y) is a path in η connecting x to y}.

We say that a sub-cluster S ⊂ η is connected if for every x, y ∈ S, there is a path
p(x, y) := {xi1 , . . . xiM ∈ S} connecting x to y.

2.5 Piecewise-Constant Extensions

Let q ⊆ ηε be a family of points in the point cloud. We define

Vε(q) :=
⋃

x∈q
C(x, ηε).
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For u : ηε ∩ Q → R, we define the piecewise-constant extension

û : Q → R, û(x) :=
∑

y∈ηε∩Q
u(y)1C(y,ηε)(x).

2.6 Geometric Structure of Poisson Point Processes

Now, we state and prove some statistical properties of Poisson point processes that we
find useful in the treatment of the Dirichlet energy on point clouds. For t ∈ R+ and a
Borel set A ⊂ R

2, we define

It (A) :=
{
J ∈ tZ2 : Qt (J ) ∩ A 	= ∅

}
,

Qt (A) :={Qt
J := Qt (J ), J ∈ It (A)},

kt (A) :=�#(It (A))�.

When it is clear from the context that A = Q, we sometimes write kt in place of kt (Q).
For J ∈ It (Q), we have J = t(i, j), i, j ∈ Z. Therefore, we set Qt

J = Qt
i, j ∈ Qt

the square placed on the i-th row and j-th column.
For i = 1, . . . , kt , j = 1, . . . , kt , we define the vertical and horizontal rectangles

as

Rh
i (t) :=

kt⋃

j=1

Qt
i, j , Rv

j (t) :=
kt⋃

i=1

Qt
i, j .

2.6.1 Selecting a Sub-cluster: Percolation Theory

For a Poisson point process η, we consider the sub-cluster

ηα(λ) :=
{
x ∈ η

∣∣∣ in(C(x, η)) > α, diam(C(x, η)) < α−1, η(Bλ(x)) ≤ α−1λ2
}

,

where the in-radius of a set in(A) is defined as

in(A) := sup{s > 0 | there existsBs(x) ⊂ A}.

Definition 2.5 Fix α and λ. Let ε, t > 0 be fixed. We say that a family of vertical and
horizontal paths

Gε,t =
{
him, v j

m, i, j ∈ {1, . . . , kt },m ∈ {1, . . . , Mε,t }
}

is a regular t-grid with ϒ bounds for ηε, if the following properties are satisfied

(a) all the paths are in εηα(λ);
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Fig. 2 A graphic visualization of Definition 2.5

(b) for any m = 1, . . . , Mε,t , him connects the two opposite sides of Rh
i (t) of size t

and is strictly contained in Rh
i (t);

(c) for any m = 1, . . . , Mε,t , v
j
m connects the two opposite sides of Rv

j (t) of size t
and is strictly contained in Rv

j (t);
(d) the following bounds hold for any i, j ∈ {1, . . . , kt }, m ∈ {1, . . . , Mε,t }:

t

ϒε
≤ �

(
him ∩ Qt

i, j

)
≤ ϒ t

ε
,

t

ϒε
≤ �

(
v j
m ∩ Qt

i, j

)
≤ ϒ t

ε
t

ϒε
≤ Mε,t ≤ ϒ t

ε
; (2.5)

(e) dist(him,hi
′
s ) ≥ 3λε and dist(v j

m, v j ′
s ) ≥ 3λε, for all i 	= i ′, j 	= j ′ ∈ {1, . . . , kt },

m, s ∈ {1, . . . , Mε,t } (with m 	= s for i = i ′ or j = j ′);
(f) If x ∈ (him)3λε ∩ ηε, (x ∈ (v j

m)3λε ∩ ηε) it holds ηε(Bλε(x)) ≤ 1
α
λ2;

(g) If x, y ∈ him , (x, y ∈ v j
m) neighboring points, then |x − y| ≤ λε;

For the family of (ε, t) regular grids with ϒ bounds, we use the notation Gt (ϒ; ηε).

We invite the reader to confront Definition 2.5 with the situation depicted in Fig. 2,
which has the only purpose of being illustrative. For any t > 0, we consider the
k2t ≈ 1/t2 squares covering Q. Then, we consider horizontal and vertical rectangles
made by union of these squares and labeled suitably (from left to right for the vertical,
and from bottom to top for the horizontal). We define a grid to be regular if inside
each rectangles we can find a certain number of paths of points with properties (a)–(g)
of Definition 2.5. These paths are further labeled inside each rectangles (from left to
right in the vertical rectangles, and from bottom to top in the horizontal rectangles).
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Fig. 2 depicts the sets Vε(v
j
m) and Vε(him) composed of the Voronoi cells of the points

of the path. Theorem 2.6 ensures the existence of such grids with uniform bounds, by
exploiting a Bernoulli site-percolation argument (see Sect. 6).

The following result ensures that we can find a universal constant ϒ such that
Gt (ϒ; ηε) 	= ∅ for a suitable choice of the parameters ε, t, α, λ. It comes as a re-
adaptation of a percolation result in Braides and Piatnitski (2022) coupled with a
technical geometric construction. We postpone the proof to “Appendix 6”.

Theorem 2.6 There exists α0, λ0 with the following properties. Provided

α ≤ α0, λ > max

{
2

α
, λ0

}
, (2.6)

we can find a constantϒ > 0, depending onα only, and, for any t ∈ R+ and for almost
all realizations ω, a constant ε0(ω, t) > 0, such that, if ε ≤ ε0, then Gt (ϒ; ηε) 	= ∅.
In order to lighten the notation, we now choose α, λ satisfying (2.6) and we consider
them to be fixed for the rest of the paper. We are covering Q with squares of size t and
in horizontal, and vertical rectangles given by union of squares from the subdivision.
We are considering the paths lying inside the rectangles and satisfying geometric
properties (a)–(g). In particular, we find sometimes convenient to work on Qtkt ⊃ Q,
which represent a slightly bigger square and can be divided in exactly k2t squares of
size t .

2.7 A Notion of Convergence for Functions on Poisson Point Clouds

For a fixed t , we introduce the set of simple function on Q as the space

Xt :=
{
w ∈ L2(Qtkt )

∣∣∣∣ w =
k2t∑

i, j=1

ci, j1Qt
i, j

}
. (2.7)

Fix now (ε, t) and consider a grid Gε,t ∈ Gt (ϒ; ηε). For every i, j = 1, . . . kt , we
denote by

(u)
Gε,t
i, j := 1

ηε

(
Gε,t ∩ Qt

i, j

)
∑

x∈Gε,t∩Qt
i, j

u(x), (2.8)

and we consider the operator TG : L1(Q; ηε) → Xt to be

T Gε,t (u)(x) :=
kt∑

i, j=1

(u)
Gε,t
i, j 1Qt

i, j
(x). (2.9)
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Definition 2.7 A sequence of functions uε : ηε ∩ Q → R, uε ∈ L2(Q; ηε) is said to
converge to u : Q → R, and we simply write uε → u, if there exists ϒ ∈ R+ such
that, for any t ∈ R and for any sequence of grids {Gε,t ∈ Gt (ϒ; ηε)}ε>0, it holds

T Gε,t (uε) −→ ut in L2(Qtkt ) as ε → 0,

where {ut ∈ Xt }t∈R+ satisfies

ut → u in L2(Q) as t → 0.

Remark 2.8 We note that in order to have a meaningful notion of convergence, it is
necessary to prove that the convergence is well defined; that is, it is independent of
the choice of the grids. This will be a consequence of Lemma 4.3. Also note that
this convergence implies (and, along sequences with equibounded energy, is in fact
equivalent to) the L2 convergence of the piecewise constant extension ûε restricted to
the (Voronoi cells of the) grids (see Propositions 4.4 and 4.5)

Remark 2.9 (Convergence up to subsequences) Note that with this notion of conver-
gence, a sequence uε converge to u up to subsequences if there exists {εn}n∈N such
that for any sequence of regular grids {{Gεn ,t }n∈N ∈ Gt (ϒ; ηεn )}t∈R+ it holds

TGεn ,t (uεn ) → ut as n → +∞ in L2(Qtkt ), ut −→ u as t → 0 in L2(Q).

3 TheMain Results

We have now introduced all the basic notation and we are thus ready to state our main
results, which regard the asymptotic behavior of Fε. The first one is a compactness
result.

Theorem 3.1 (Compactness theorem) Let U ⊃ Q be an open set and let λ0 > 0 be
given as in Theorem 2.6, if λ > λ0 the following holds. If {uε ∈ L2(U ; ηε)}ε>0 is a
sequence satisfying

sup
ε>0

⎧
⎨

⎩
∑

x∈ηε∩A

∑

y∈ηε∩Bλε(x)

|uε(x) − uε(y)|2 +
∑

x∈ηε∩Q
ε2u2ε(x)

⎫
⎬

⎭ < +∞, (3.1)

where Q ⊂ A ⊂ U is anyopen set strictly containing Q, then there exists u ∈ W 1,2(Q)

such that uε converge to u, up to subsequences, in the sense of Definition 2.7.

Remark 3.2 Note that in requiring to a sequence to have equibounded energy on Q we
need to take into account Remark 2.2 and the fact that the energy is carried also on
BQ. For this reason, we state the compactness Theorem in terms of uε ∈ L2(U ; ηε),
with a uniform bound for the energy assumed on a set A, provided Q ⊂ A ⊂ U . In
other words, we are asking to the functions uε to be defined on a slightly bigger open
set than just Q.
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With this compactness theorem in mind, that will be proved in Sect. 4, the following
� convergence result is then meaningful.

Theorem 3.3 (�-convergence) There exists a deterministic constant Ξ such that, for
almost all realizations ω, the energy Fε(·; Q) �-converges to

F(u; Q) = Ξ

ˆ
Q
|∇u(x)|2 dx

in the topology induced by the convergence of Definition 2.7. Namely

(lim inf) if uε → u in the sense of Definition 2.7 then

lim inf
ε→0

Fε(uε; Q) ≥ Ξ

ˆ
Q
|∇u(x)|2 dx;

(lim sup) for any u ∈ W 1,2(Q) there exists a sequence {uε ∈ L2(Q; ηε)}ε>0 such
that uε → u in the sense of Definition 2.7 and

lim sup
ε→0

Fε(uε; Q) ≤ Ξ

ˆ
Q
|∇u(x)|2 dx .

The constant Ξ is identified by the relation

Ξ := lim
T→+∞

m(ξ ; QT )

T 2|ξ |2 ,

where, for any open set A, m(·; A) denotes the cell problem

m(ξ ; A) := inf

⎧
⎨

⎩
∑

x∈η∩A

∑

y∈η∩Bλ(x)

|v(x) − v(y)|2
∣∣∣∣∣∣

v : η → R

v(x) = ξ · x for all x ∈ η such that
dist(x, ∂A) ≤ 2λ

⎫
⎬

⎭ .

(3.2)

This theorem will be proved in Sect. 5. More precisely, in Sect. 5.1 we will prove the
relation between � and cell problem (3.2), in Sect. 5.3 the lower bound and finally, in
Sect. 5.4 the upper bound.

4 Proof of the Compactness Theorem

This section is entirely devoted to the proof of the compactness Theorem 3.1. We first
need a few technical lemmas in order to guarantee that the convergence of Definition
2.7 is well defined and that any sequence with bounded energy is pre-compact.
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Fig. 3 The “skeleton" obtained in Lemma 4.1. The blue part is carrying less energy than the grid (in red). In
particular, this allows to link each y ∈ Qt

i, j to w ∈ Qt
i, j+1 on particular paths that follows ph

(i, j). Again,
for illustrative reason we are depicting the Voronoi cells of the point clouds

4.1 Preliminary Lemmas

For u ∈ L2(Q; ηε), we adopt the shorthand

Dεu(x) :=
∑

y∈ηε∩Bλε(x)

|u(y) − u(x)|2.

For any ε, t fixed, we set

Hor(i;Gε,t ) :=
{
hi1, . . . ,h

i
Mε,t

}

Ver( j;Gε,t ) :=
{
v j
1, . . . , v

j
Mε,t

}
.

Next lemma ensures that we can choose a “skeleton" of Gε,t connecting two neigh-
boring squares and carrying small energy (see Fig. 3). This lemma is stated and proved
for horizontal neighboring squares, but it holds also for vertical neighboring squares
with obvious changes in the proof. It will be used in the proof of Theorem 3.1 (in
particular, in the proof of Lemma 4.2).

Lemma 4.1 Fix ε > 0. Let t ∈ R+, Gε,t ∈ Gt (ϒ; ηε) and u ∈ L2(Q; ηε). For all
Qt

i, j , Q
t
i, j+1 (horizontal) neighboring squares, there exist two vertical paths and a

horizontal path

v̄ j ∈ Ver( j;Gε,t ), v̄ j+1 ∈ Ver( j + 1;Gε,t ), h̄i ∈ Hor(i;Gε,t )

such that, setting

phi, j :=
(
v̄ j ∩ Qt

i, j

)
∪
(
v̄ j+1 ∩ Qt

i, j+1

)
∪
(
h̄i ∩

(
Qt

i, j ∪ Qt
i, j+1

))
,
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we have

∑

x∈ph
(i, j)

Dεu(x) ≤ 2ϒε

t
Fε

(
u;
(
Qt

i, j ∪ Qt
i, j+1

))
.

Proof Since both horizontal and vertical paths are all disjoint, we have that

Mε,t∑

m=1

∑

x∈him∩
(
Qt
i, j∪Qt

i, j+1

)
Dεu(x) ≤ Fε

(
u;
(
Qt
i, j ∪ Qt

i, j+1

))
,

Mε,t∑

m=1

∑

x∈v j
m∩Qt

i, j

Dεu(x) +
Mε,t∑

m=1

∑

x∈v j+1
m ∩Qt

i, j+1

Dεu(x) ≤ Fε

(
u; Qt

i, j

)
+ Fε

(
u; Qt

i, j+1

)
.

In particular, there are three paths h̄i ∈ Hor(i;Gε,t ), v̄i ∈ Ver( j;Gε,t ), v̄ j+1 ∈
Ver( j + 1;Gε,t ) such that

∑

x∈h̄i∩(Qt
i, j∪Qt

i, j+1)

Dεu(x) ≤ 1

Mε,t
Fε

(
u; Qt

i, j ∪ Qt
i, j+1

)
,

∑

x∈v̄ j∩Qt
i, j

Dεu(x) +
∑

x∈v̄ j+1∩Qt
i, j+1

Dεu(x) ≤ 1

Mε,t

[
Fε

(
u; Qt

i, j

)
+ Fε

(
u; Qt

i, j+1

)]
.

Note that, by the properties of the grid we have 1
Mε,t

≤ ϒ ε
t . Therefore, we conclude.��

We now provide a lemma that allows to estimate the difference of TGε,t (uε), defined
as in (2.9), between neighboring squares of the squares partition Qt . Once again, we
limit ourselves to prove the statement for horizontal neighboring squares since the
vertical case follows in the same way up to changing the notation accordingly.

Lemma 4.2 There exists a constant C > 0 independent of ε and t such that for any
Gε,t ∈ Gt (ϒ; ηε) any u ∈ L2(Q; ηε) and any pair Qt

i, j , Q
t
i, j+1 of neighboring

squares there holds

∣∣∣(u)
Gε,t
i, j − (u)

Gε,t
i, j+1

∣∣∣
2 ≤ CFε

(
u; Qt

i, j ∪ Qt
i, j+1

)
.

Proof Let h̄i , v̄ j , v̄ j+1 be the paths given by Lemma 4.1. Let p := phi, j and let

(u)
p
i, j :=

1

ηn
(
p ∩ Qt

i, j

)
∑

x∈p∩Qt
i, j

u(x), (u)
p
i, j+1 :=

1

ηε

(
p ∩ Qt

i, j+1

)
∑

x∈p∩Qt
i, j+1

u(x).

We will make use of the above quantities (namely the average of the function u on the
skeleton p) to estimate (u)

Gε,t
i, j .
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For any x ∈ p ∩ Qt
i, j , we now build a family of paths Pi, j (x) which links x to all

points y ∈ Gε,t ∩ Qt
i, j . The construction will be such that we may control the number

of times a path path passes through a point y ∈ Gε,t∩Qt
i, j .We say that y ∈ Gε,t∩Qt

i, j
is a horizontal point if it belongs to some horizontal path h ∈ Hor(i;Gε,t ) and does
not belongs to any v ∈ Ver( j;Gε,t ). We say instead that it is vertical if the converse
happens. We say that it is nodal if it belongs to the intersection of horizontal and
vertical paths. We briefly describe the construction: if y is horizontal, say it belongs
to him the m-th horizontal path, then we consider the path starting from x , following
p until we meet him and then following him until we reach y. If instead y is vertical

and belongs to v j
l , we start from x , follow p until we meet v j

l and then, follow v j
l to

reach y. If it is nodal, we follow any of the two possibilities. This family of paths,
call it Pi, j (x), has the following property, which is crucial in what follows. For any
x ∈ p ∩ Qt

i, j , each point y ∈ (Gε,t ∩ Qt
i, j )\p belongs to not more than Ct

ε
paths

t ∈ Pi, j (x). Indeed, if y ∈ him , then it belongs only to the paths with initial points
in him , which do not exceed Ct/ε. Moreover, the length of each path does not exceed
Ct/ε as well.

We now divide the rest of the proof in two steps.
Step one: Comparison between (u)

p
i, j and (u)

Gε,t
i, j . For the sake of brevity set,

N j := ηε

(
p ∩ Qt

i, j

)
, N ′

j := ηε

(
Gε,t ∩ Qt

i, j

)
.

Then, by using Jensen’s inequality twice and property (g) of Definition 2.5 we have

∣∣∣(u)
Gε,t
i, j − (u)

p
i, j

∣∣∣
2 ≤ 1

N j N ′
j

∑

x∈p∩Qt
i, j

∑

y∈Gε,t∩Qt
i, j

|u(x) − u(y)|2

≤ C

N j N ′
j

∑

x∈p∩Qt
i, j

∑

t∈Pi, j (x)

�(t)
∑

y∈t
Dεu(y).

By invoking property (d) and the properties of p, we can further deduce

∣∣∣(u)
Gε,t
i, j − (u)

p
i, j

∣∣∣
2 ≤ Ct

εN j N ′
j

∑

x∈p∩Qt
i, j

∑

y∈Gε,t∩Qt
i, j

Dεu(y)
∑

t∈Pi, j (x)

1t(y)

≤ Ct

εN j N ′
j

∑

x∈p∩Qt
i, j

∑

y∈(Gε,t∩Qt
i, j )\p

Dεu(y)
∑

t∈Pi, j (x)

1t(y)

+ Ct

εN j N ′
j

∑

x∈p∩Qt
i, j

∑

y∈p
Dεu(y)

∑

t∈Pi, j (x)

1t(y)

≤ Ct2

(ε)2N j N ′
j

∑

x∈p∩Qt
i, j

∑

y∈(Gε,t∩Qt
i, j )\p

Dεu(y)
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+ Ct3

(ε)3N j N ′
j

∑

x∈p∩Qt
i, j

∑

y∈p
Dεu(y)

≤ Ct2

ε2N ′
j
Fε

(
u; Qt

i, j

)+ Ct3

ε3N ′
j

ε

t
Fε

(
u; Qt

i, j ∪ Qt
i, j+1

)
,

where the last inequality follows from the particular choice of p given by Lemma 4.1.
Since the properties of the grid (property (d) of Definition 2.5) also imply that

N ′
j ≥

Ct2

ε2
,

we conclude that

∣∣∣(u)
Gε,t
i, j − (u)

p
i, j

∣∣∣
2 ≤ CFε

(
u; Qt

i, j ∪ Qt
i, j+1

)
. (4.1)

The same exact computation shows also that

∣∣∣(u)
Gε,t
i, j+1 − (u)

p
i, j+1

∣∣∣
2 ≤ CFε

(
u; Qt

i, j ∪ Qt
i, j+1

)
. (4.2)

Step two: Comparison between (u)
p
i, j+1 and (u)

p
i, j . For x ∈ p∩ Qt

i, j , let P′
j+1(x)

be the family of paths t on p which link each point of p∩ Qt
i, j+1 to x . By considering

one path for each y ∈ p∩Qt
i, j+1, we can buildP′

j+1(x) in away that each t ∈ P′
j+1(x)

contains not more than Ct/ε points. Moreover, each point z ∈ p is contained in at
most Ct/ε paths. With the notation introduced above, we then compute

∣∣∣(u)
p
i, j − (u)

p
i, j+1

∣∣∣
2 ≤ 1

N j N j+1

∑

x∈p∩Qt
i, j

∑

y∈p∩Qt
i, j+1

|u(x) − u(y)|2

≤ C

N j N j+1

∑

x∈p∩Qt
i, j

∑

t∈P′
j+1(x)

�(t)
∑

y∈t
Dεu(y)

≤ Ct

εN j N j+1

∑

x∈p∩Qt
i, j

∑

y∈p∩(Qt
i, j∪Qt

i, j+1)

Dεu(y)
∑

t∈P′
j+1(x)

1t(y)

≤ Ct2

ε2N j N j+1

∑

x∈p∩Qt
i, j

∑

y∈p∩(Qt
i, j∪Qt

i, j+1)

Dεu(y)

≤C
∑

x∈p∩Qt
i, j

ε

t
Fε

(
u; Qt

i, j ∪ Qt
i, j+1

)

≤CFε

(
u; Qt

i, j ∪ Qt
i, j+1

)
. (4.3)

Conclusion By means of Step one and Step two, in particular by collecting (4.1),
(4.2) and (4.3) and by means of a triangular inequality, we conclude. ��
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4.2 Properties of the Convergence for Sequences with Equibounded Energy

We now state and prove some useful properties of the convergence in Definition 2.7.
We start with the following lemma, which ensures that the limit of sequences with
equibounded energy, when it exists, is unique and does not depend on the choice of
the sequence of regular grids {Gε,t ∈ Gt (ϒ; ηε)}ε,t>0 when ε, t → 0.

Lemma 4.3 If {uε ∈ L2(Q; ηε)}ε>0 is a sequence of functions satisfying (3.1) and
{Gε,t ∈ Gt (ϒ; ηε)}ε,t>0, {Ḡε,t ∈ Gt (ϒ ′; ηε)}ε,t>0 (with possibly ϒ 	= ϒ ′) are two
sequences of regular grids such that

T Gε,t (uε)
ε→0−→ ut , T Ḡε,t (uε)

ε→0−→ ūt

, then

lim
t→0

ˆ
Q

∣∣ut (x) − ūt (x)
∣∣2 dx = 0.

Proof Fix Qt
i, j ∈ Qt and let p, p̄ be the union of paths given by Lemma 4.1 relative to

Qt
i, j (and one of its neighbors, say Qt

i, j+1 without loss of generality) and to the grid

Gε,t , Ḡε,t , respectively. Now, by construction we have that p ∩ Qt
i, j , p̄ ∩ Qt

i, j share
at least two points. In particular, for any x ∈ p∩ Qt

i, j we can still build a family P(x)

of paths that link each y ∈ p̄ ∩ Qt
i, j to x containing only points in p ∪ p̄ ∩ Qt

i, j . We
can also ensure that each t ∈ P(x) contains not more than Ct/ε points and that any
point in z ∈ p∪ p̄∩Qt

i, j is contained in at most Ct/ε paths inP(x). With the notation
introduced in the proof of Lemma 4.2, we now compute

∣∣∣(uε)
p
i, j − (uε)

p̄
i, j

∣∣∣
2 ≤ 1

N j N̄ j

∑

x∈p∩Qt
i, j

∑

y∈p̄∩Qt
i, j

|uε(x) − uε(y)|2

≤ 1

N j N̄ j

∑

x∈p∩Qt
i, j

∑

t∈P(x)

�(t)
∑

y∈t
Dεu(y)

≤ CFε

(
uε; Qt

i, j ∪ Qt
i, j+1

)
,

where we have used the properties of p, p̄ and of t ∈ P(x). Now, by recalling that
(4.1),(4.2) are in force, respectively, on Gε,t ,p and ¯Gε,t , p̄ by means of the same
arguments used to prove Step one of Lemma 4.2, with a triangular inequality, we
obtain

∣∣∣(uε)
Gε,t
i, j − (uε)

Ḡε,t
i, j

∣∣∣
2
≤ CFε

(
uε; Qt

i, j ∪ Qt
i, j+1

)
.
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If we sum up over all i, j and we observe that the energy of each square is counted at
most a finite number of time (independent of t, n), we reach

kt∑

i, j=1

∣∣∣(uε)
Gε,t
i, j − (uε)

Ḡε,t
i, j

∣∣∣
2
≤ CFε(uε; Qtkt ) ≤ CFε(uε; A).

By means of this last relation, we have

ˆ
Q

∣∣∣T Gε,t (uε)(x) − T Ḡε,t (uε)(x)
∣∣∣
2
dx = t2

kt∑

i, j=1

∣∣∣(uε)
Gε,t
i, j − (uε)

Ḡε,t
i, j

∣∣∣
2
≤ Ct2.

In particular, if TGε,t (uε)
ε−→ ut , T Ḡε,t (uε)

ε−→ ūt , then

ˆ
Q

∣∣ut (x) − ūt (x)
∣∣2 dx ≤ Ct2,

and we conclude. ��
Now, we proceed to state and prove Propositions 4.4 and 4.5, which will give us a

useful characterization of the convergence in Definition 2.7. We will make use of the
notion of piecewise-constant extension introduced in Sect. 2.5.

Proposition 4.4 (L2 convergenceon the grids) Let {uε ∈ L2(Q; ηε)}ε>0 bea sequence
satisfying (3.1) and assume that uε → u in the sense of Definition 2.7. Then,

lim
t→0

lim sup
ε→0

ˆ
Vε(Gε,t )∩Q

|ûε(x) − u(x)|2 dx = 0 (4.4)

for any sequence of regular grids {Gε,t ∈ Gt (ϒ; ηε)}ε,t>0.

Proof By means of similar computations as the ones used in the proof of Lemmas 4.2
and 4.3, we can infer also that for any x ∈ Gε,t ∩ Qt

i, j (adopting the same notation)

∣∣∣uε(x) − (uε)
p
i, j

∣∣∣
2 ≤ C

N j

∑

y∈p∩Qt
i, j

|uε(x) − uε(y)|2 ≤ C

N j

∑

t∈Pi, j (x)

∑

y∈t
Dεu(y)

≤ C

N j

∑

y∈Gε,t∩Qt
i, j

Dεuε(y)
∑

t∈Pi, j (x)

1t(y)

≤ Ct

N jε

∑

y∈Gε,t∩Qt
i, j\p

Dεuε(y) + Ct2

N jε2

∑

y∈p∩Qt
i, j

Dεuε(y)

≤ Ct

N jε

∑

y∈Gε,t∩Qt
i, j\p

Dεuε(y) + Ct

N jε
Fε

(
uε; Qt

i, j ∪ Qt
i, j+1

)
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≤CFε

(
uε; Qt

i, j ∪ Qt
i, j+1

)
(4.5)

for a constant independent of t, ε. In particular, by collecting (4.5) and (4.1) we have

∣∣∣uε(x) − (uε)
Gε,t
i, j

∣∣∣
2 ≤ CF(uε; Qt

i, j ∪ Qt
i, j+1

)
, (4.6)

which, summed up over x ∈ Gε,t and i, j ∈ {1, . . . , kt }, and taking into account
property (d) of Definition 2.5 (implying that #(Gε,t ∩ Qt

i, j ) ≤ Ct2/ε2 ), yields

ε2
∑

x∈Gε,t∩Q

∣∣∣uε(x) − T Gε,t (uε)(x)
∣∣∣
2 ≤ Ct2Fε(uε; A). (4.7)

In particular, if uε → u, and {ut ∈ Xt }t∈R+ denotes the sequence of intermediate
functions with respect to Gε,t , then

t2
∑

J∈It (Q)

∣∣(uε)
Gε,t
J − utJ

∣∣2 ε−→ 0

and thus

ε2
∑

x∈Gε,t∩Q
|uε(x) − ut (x)|2 ≤ ε2

∑

x∈Gε,t∩Q

∣∣∣uε(x) − T Gε,t (uε)(x)
∣∣∣
2

+ Ct2
∑

J∈It (Q)

∣∣∣(uε)
Gε,t
J − utJ

∣∣∣
2

≤ Ct2Fε(uε; A) + Ct2
∑

J∈It (Q)

∣∣∣(uε)
Gε,t
J − utJ

∣∣∣
2
.

We here switched to the more compact notation J = (i, j). This implies that

ˆ
Vε(Gε,t )∩Q

|ûε(x) − u(x)|2 dx

≤
(ˆ

Vε(Gε,t )∩Q
|ûε(x) − ut (x)|2 dx +

ˆ
Q
|ut (x) − u(x)|2 dx

)

≤ Ct2

⎛

⎝1+
∑

J∈It (Q)

∣∣∣(uε)
Gε,t
J − utJ

∣∣∣
2

⎞

⎠

+ C
ˆ
Q
|ut (x) − u(x)|2 dx

and then, also (4.4) holds for any sequence of regular grids {Gε,t ∈ Gt (ϒ; ηε)}ε,t>0.
��
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Proposition 4.5 Let εn, tn be two sequences. Set ηn := ηεn . Let {un ∈ L2(Q; ηn))}n∈N
be a sequence satisfying (3.1). If there exists a sequence of regular grids {Gn ∈
Gtn (ϒ; ηn)}n∈N such that

lim
n→+∞

ˆ
Vεn (Gn)∩Q

|ûn(x) − u(x)|2 dx = 0 (4.8)

then, up to subsequences, un → u in the sense of Definition 2.7.

Proof We first show that

lim
n→+∞

ˆ
Q
|T Gn (un(x)) − u(x)|2 dx = 0. (4.9)

Indeed, by means of the same computation as in the proof of Proposition 4.4 we can
achieve (4.7); that is,

ε2n

∑

x∈Gn∩Q
|un(x) − T Gn (un)(x)|2 ≤ Ct2nFεn (un; Q).

This implies that

lim
n→+∞

ˆ
Vεn (Gn)∩Q

|ûn(x) − T Gn (un)(x)|2 dx = 0,

which, together with hypothesis (4.8) implies (4.9).
We now fix t ∈ R and we provide a suitable rearrangement of Gn in order to

obtain a grid G̃n,t ∈ Gt (ϒ; ηn), provided n is large enough. We describe the con-
struction. Inside each Rh

i (t) we can find at least cn = �(t − 2tn )/tn� horizontal rectangles
Rh
i ′(tn), . . . R

h
i ′+cn

(tn) strictly contained in Rh
i (t) and each containing Mn disjoint hor-

izontal paths hi1, . . . ,h
i
Mn

from the grid Gn . Note that

t

2
≤ tncn ≤ 2t (4.10)

In particular, we relabel the paths of Gn as {him, m = 1, . . . , Mncn} ⊂ Rh
i (t) for each

horizontal rectangle accordingly. We repeat the same argument for vertical paths, and
we obtain a grid G̃n,t . Thanks to (4.10), we have that G̃n,t ∈ Gt (2ϒ, ηn).

Let now J ∈ It (Q) and consider

Itn
(
Qt

J

) := {J ′ ∈ Itn (Qt
J ) : Qtn

J ′ ⊂ Qt
J

}
, rn(J ) := #(In

(
Qt

J

)
.
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Note that, by construction, Gn agrees with G̃n,t on Qtn
J ′ for J

′ ∈ In(Qt
J ). Recalling

the notation

Ntn
J ′ := ηn

(
Gn ∩ Qtn

J ′
)

(un)
Gn
J ′ := 1

Ntn
J ′

∑

x∈Gn∩Qtn
J ′

un(x)

Nt
J := ηn

(
G̃n,t ∩ Qt

J

)

(un)
G̃n,t
J := 1

Nt
J

∑

x∈G̃n,t∩Qt
J

un(x)

we have

ˆ
Q
|TGn (un)(x) − T G̃n,t (un)(x)|2 dx =

∑

J∈It (Q)

ˆ
Qt (J )

∣∣∣(un)
G̃n,t
J − T Gn (un)(x)

∣∣∣
2
dx

≤ t2n
∑

J∈It (Q),
J ′∈In(Qt (J ))

∣∣∣(un)
G̃n,t
J − (un)

Gn
J ′
∣∣∣
2

(4.11)

+
∑

J∈It (Q),
J ′ /∈In(Qt (J ))

ˆ
Qt (J )∩Qtn (J ′)

∣∣∣(un)
G̃n,t
J − (un)

Gn
J ′
∣∣∣
2
dx . (4.12)

The term (4.11) is easily estimated by (4.6) and the fact that, by constructionGn = Gn,t

on Qtn (J
′) ⊂ Qt (J ):

t2n
∑

J∈It (Q),

J ′∈In(Qt
J )

∣∣∣(un)
G̃n,t
J − (un)

Gn
J ′
∣∣∣
2 ≤

∑

J∈It (Q),

J ′∈In(Qt
J )

t2n
N tn
J ′

∑

x∈Gn∩Qtn
J ′

∣∣∣un(x) − (un)
G̃n,t
J

∣∣∣
2

(4.6) ≤Ct2n
∑

J∈It (Q),

J ′∈In(Qt
J )

1

Ntn
J

∑

x∈Gn∩Qtn
J ′

F(un; Q2t
J

)

≤C
∑

J∈It (Q)

t2n rn(J )Fεn

(
un; Q2t

J

) ≤ Ct2Fεn (un; A).

To estimate (4.12), we observe that the set

En :=
⋃

J∈It (Q),
J ′ /∈In(Qt (J ))

(
Qt

J ∩ Qtn
J ′
)

has the property |En| ≈ Ctnt → 0 as n → +∞. Observe that, for any J ∈ It (Q) we
have [because of (3.1)]

∣∣∣∣(un)
G̃n,t
J

∣∣∣∣
2

≤ 1

ηn
(
G̃n,t ∩ Qt

J

)
∑

x∈G̃n,t∩Qt
J

|un(x)|2 ≤ C
ε2n

t2
∑

x∈G̃n,t∩Qt
J

|un(x)|2 < +∞.
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Therefore, we can find {εnm }m∈N such that (unm )
G̃nm ,t
J → wt

J . Up to a diagonal
extraction argument, we may find {εnm }m∈N such that

(unm )
G̃nm ,t
J → wt

J for any J ∈ {1, . . . , kt }2.

This means that we can find a subsequence {εnm }m∈N such that

T G̃nm ,t (unm )
m−→ wt in L2(Qtκt ).

Thence, up to subsequences,

∑

J∈It (Q),

J ′ /∈In(Qt
J )

ˆ
Qt

J∩Qtn
J ′

∣∣∣(un)
G̃n,t
J − (un)

Gn
J ′
∣∣∣
2
dx ≤

ˆ
En

|T G̃n,t (un) − T Gn (un)|2 dx

≤ C
ˆ
En

|wt − u|2 dx,

which vanishes since |En| → 0. In particular, we have

lim
m→+∞

∑

J∈It (Q),

J ′ /∈Inm (Qt
J )

ˆ
Qt

J∩Q
tnm
J ′

∣∣∣(unm )
G̃nm ,t
J − (unm )

Gnm
J ′
∣∣∣
2
dx = 0.

Being the limit independent of the chosen subsequence, we conclude that (regardless
of t)

lim
n→+∞

∑

J∈It (Q),
J ′ /∈In(Qt (J ))

ˆ
Qt

J∩Qtn
J ′

∣∣∣(un)
G̃n,t
J − (un)

Gn
J ′
∣∣∣
2
dx = 0.

Thence, by combining these estimates on (4.11) and (4.12) we achieve

lim
t→0

lim sup
n→+∞

ˆ
Q
|T G̃n,t (un) − T Gn (un)|2 dx = 0

which, combined with (4.9) implies that

lim
t→0

lim sup
n→+∞

ˆ
Q
|T G̃n,t (un)(x) − u(x)|2 dx = 0.

This implies that the limit of un is thence, up to subsequences, u in the sense of
Definition 2.7. ��
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Remark 4.6 Note that Propositions 4.4 and 4.5 imply also that the stronger convergence
on the piecewise-constant functions implies the convergence in the sense of Defini-
tion 2.7, provided the sequence has equibounded energy. Indeed if uε is a sequence
satisfying (3.1) and

lim
ε→0

ˆ
Vε(ηε)∩Q

|ûε(x) − u(x)|2 dx = 0,

then, in particular it converges when restricted to any sequence of regular grids, allow-
ing us to invoke Proposition 4.5 and thus to conclude that uε → u in the sense of
Definition 2.7. This has some useful consequence, as in the proof of the locality of the
convergence (Lemma 4.7) and the fact that we can diagonalize in the L2 convergence
(Lemma 4.8).

Lemma 4.7 Let uε → u in the sense of Definition 2.7 and satisfying (3.1). Let A ⊆ Q
and suppose that uε = w on A for some w ∈ C1(A) and for all ε > 0. Then, u = w

on A.

Proof Let {Gε,t ∈ Gt (ϒ, ηε)}ε,t>0 be a sequence of regular grids. Then, Proposition
4.4 gives

lim
t→0

lim sup
ε→0

ˆ
Vε(Gε,t )∩A

|ûε(x) − u(x)|2 dx = 0.

Moreover, since uε(x) = w(x) on ηε ∩ A and since |x − y| ≤ λε for x ∈ Gε,t ,
y ∈ C(x; ηε) (property (g) of Definition 2.5) and |C(x; ηε)| ≤ Cε2, we have

ˆ
Vε(Gε,t )∩A

|ûε(y) − w(y)|2 dy =
∑

x∈Gε,t∩A

ˆ
C(x;ηε)∩A

|w(x) − w(y)|2 dy

≤ C‖∇w‖2∞
∑

x∈ηε∩A

ε4 ≤ Cε2,

whereC depends on α, λ and |A|. Here, we have used Proposition 2.3. Then, for some
subsequence {εn, tn}n∈N and by means of a triangular inequality we have

lim
n→+∞

ˆ
Vεn (Gεn ,tn )∩A

|u(x) − w(x)|2 dx = 0.

Observe now that 1Vεn (Gεn ,tn )⇀ f weakly L2(A) and f (x) ≥ s0 > 0 due to the good
properties of the grids. Indeed

ˆ
Qr (y)

f (x) dx = lim
n→+∞ |Vεn (Gεn ,tn ) ∩ Qr (y)| ≥ lim

n→+∞αε2n#(Gεn ,tn ) ∩ Qr (y))
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and (due to Property (2.5) and to the fact that Qr (y) contains approximately r2

t2n
cubes

of size tn) we can estimate #(Gεn ,tn ∩ Qr (y)) ≥ t2n
2ϒ2ε2n

r2

t2n
. Thus,

ˆ
Qr (y)

f (x) dx = lim
n→+∞|Vεn (Gεn ,tn ) ∩ Qr (y)| ≥ lim

n→+∞αε2n#(Gεn ,tn ∩ Qr (y)) ≥ α

2ϒ2 r
2.

Thus, for all r and all y ∈ Q

s0 := α

2ϒ2 ≤
 
Qr (y)

f (x) dx ⇒ f ≥ s0 almost everywhere onQ.

In particular,

s0

ˆ
A
|u(x) − w(x)| dx = lim

n→+∞

ˆ
Vεn (Gεn ,tn )∩A

|u(x) − w(x)| dx = 0.

Being s0 > 0, we conclude u = w on A. ��

Lemma 4.8 Let {un,r ∈ L2(Q; ηεn ), r > εn > 0} be a sequence such that

(a) For any r > 0, un,r → ur as n goes to +∞ in the sense of Definition 2.7;
(b) {ur }r>0 ⊂ W 1,2(Q), ur → u as r goes to 0 in L2(Q) for some u ∈ W 1,2(Q);
(c) supr>εn>0{Fεn (un,r ; A)} < +∞ on some open set A ⊃ Q.

Then, there is a sequence rn >> εn such that rn → 0 and for which, up to subse-
quences, un,rn → u in the sense of Definition 2.7.

Proof By invoking Proposition 4.4, we have (up to a subsequence)

lim sup
n→+∞

ˆ
Vεn (Gn)∩Q

|ûn,r (x) − ur (x)|2 dx = 0.

Since also ur → u, we have

lim
r→0

lim sup
n→+∞

ˆ
Vεn (Gn)∩Q

|ûn,r (x) − u(x)|2 dx = 0.

Hence, we can select the sought sequence rn to satisfy

lim sup
n→+∞

ˆ
Vεn (Gn)∩Q

|ûn,rn (x) − u(x)|2 dx = 0.

Property (c) and Proposition 4.5 imply now that un,rn → u (up to subsequences) in
the sense of Definition 2.7. ��
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4.3 Proof of the Compactness Theorem

We are now ready to prove Theorem 3.1. We rely on the following Lemma 4.9, which
comes as a consequence of Alicandro and Cicalese (2004, Theorem 3.1). Recall that

It (Q) := {J = (i, j) ∈ tZ2 ∩ Q}.

If |J− J ′| = t , wewrite 〈J , J ′〉, meaning that the square Qt
J = Qt

i, j and Q
t
J ′ = Qt

i ′, j ′
are neighboring squares.

Lemma 4.9 Let {ut ∈ Xt }t∈R+ be a sequence of functions such that

sup
t∈R+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

J∈It (Q)

∑

J ′∈It (Q):
〈J ,J ′〉

|utJ − utJ ′ |2 + t2
∑

J∈It (Q)

|utJ |2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
< +∞.

Then, there exists a function u ∈ W 1,2(Q) and a subsequence {tl}l∈N such that the
piecewise-constant interpolation of utl converge to u in L2(Q).

Proof of Theorem 3.1 Let α, λ be fixed and ensuring the validity of Theorem 2.6 and
choose {Gε,t ∈ Gt (ϒ; ηε)}ε,t to be a sequence of regular grids. Then, by invoking
Lemma 4.2 and by summing up on i, j ∈ {1, . . . , kt }, we infer that

∑

J∈It (Q)

∑

J ′∈It (Q):
〈J ,J ′〉

∣∣∣(uε)
Gε,t
J − (uε)

Gε,t
J ′
∣∣∣
2 ≤ CFε(uε; A) < +∞, (4.13)

where we have adopted the shorthand (uε)
Gε,t
J = (uε)

Gε,t
i, j for J = (i, j). Moreover,

by Jensen’s inequality and the properties of the grid we have

t2
∑

J∈It (Q)

∣∣∣(uε)
Gε,t
J

∣∣∣
2 ≤ Cε2

∑

J∈It (Q)

∑

y∈Gε,t∩Qt
J

|uε(y)|2

≤ Cε2
∑

J∈It (Q)

∑

y∈ηε∩Qt
J

|uε(y)|2 ≤ Cε2
∑

y∈ηε∩Q
|uε(y)|2 < +∞.

(4.14)

Fix now a sequence {tl}∈N ∈ R+ going to zero and observe that, for any J ∈ Itl (Q),
we have

∣∣∣(uε)
Gε,tl
J

∣∣∣
2 ≤ 1

ηε(Gε,tl ∩ Qtl
J )

∑

x∈Gε,tl∩Q
tl
J

|uε(x)|2 ≤ ε2

t2l

∑

x∈Gε,tl∩Q
tl
J

|uε(x)|2 < +∞.
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Therefore, for such a fixed tl ∈ R+, we can find {εm}m∈N such that (uεm )
Gεm ,tl
J → utlJ .

Up to a diagonal extraction argument, we may find {εm}m∈N such that

(uεm )
Gεm ,tl
J → utlJ for any J ∈ {1, . . . , ktl }2, l ∈ N.

This means that we can find a sequence of functions {utl ∈ Xtl }l∈N and a subsequence
{εm}m∈N such that

T Gεm ,tl (uεm )
m−→ utl in L2(Q).

If we now invoke Lemma 4.9, combined with estimates (4.13) and (4.14), we can find
a subsequence of {tl}l∈N and a function u ∈ W 1,2(Q) such that, with a slight abuse of
notation, utl → u in L2(Q) along the subsequence. But then, by Proposition 4.4 we
have

lim
l→+∞ lim sup

m→+∞

ˆ
Vεm (Gεm ,tl )∩Q

|ûεm (x) − u(x)|2 dx = 0.

and by invoking Proposition 4.5 this means that there is a subsequence of {uεm }m∈N
converging to u in the sense of Definition 2.7. ��

5 Proof of the 0-Convergence Theorem 3.3

In this section, we prove Theorem 3.3. We state and prove some preliminary results,
subordinated to the identification of the constant Ξ and to the development of the
technical machinery required to present the proof.

5.1 The Cell Problem

We recall the notation for the boundary-value problem

m(ξ ; A) := inf

⎧
⎨

⎩
∑

x∈η∩A

∑

y∈η∩Bλ(x)

|v(x) − v(y)|2
∣∣∣∣

v : η → R

v(x) = ξ · x for all x ∈ ηsuch that
dist(x, ∂A) ≤ 2λ

⎫
⎬

⎭

The first thing we need is the following lemma on the asymptotic behavior of the “cell
problem”m(ξ ; QT )when the boundary values are fixed on a cube QT and T diverges.
This behavior turns out to be deterministic thanks to the ergodicity of the process.

Lemma 5.1 There exists a deterministic constant Ξ ∈ |R such that for any ξ ∈ R
2 it

holds

Ξ |ξ |2 := lim
T→+∞

m(ξ ; QT )

T 2

independently of the realization.
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Remark 5.2 In light of Lemma 5.1, the constant Ξ can be identified as

Ξ := lim
T→+∞

m(e1; QT )

T 2 .

The proof of Lemma 5.1 comes as a consequence of Proposition 5.3 below.
We denote by M(ϑ) a clockwise rotation of an angle ϑ around the origin.

Proposition 5.3 Almost surely the following holds. For all ξ ∈ R
2, the limit

f (ξ) := lim
T→+∞

m(ξ ; QT )

T 2

exists and is independent of the realization.Moreover, there exists a function g : R+ →
R+ such that

lim
R→+∞ g(R) = +∞

and such that, for any sequence yT with |yT | ≤ Tg(yT ) and any rotation M(ϑ) we
have

lim
T→+∞

m((ξ ;M(ϑ)QT (yT ))

T d
= lim

T→+∞
m(ξ ; QT )

T d
= f (ξ).

Proof Note that

m(ξ ; A ∪ B) ≤ m(ξ ; A) +m(ξ ; B)

whenever |A ∩ B| = 0. Invoking the uniform version of the sub-additive ergodic
theorem (Krengel and Pyke 1987, Theorem 1), we can achieve the existence of an f
such that for any R and any family of translations {yT }T∈N satisfying |yT | ≤ T R it
holds

f (ξ) = lim
T→+∞

m(ξ ;M(ϑ)QT (yT ))

T d
.

The existence of g as desired follows by a diagonal argument on R (see the proof of
Braides and Piatnitski (2021), Lemma 5.1 for details). ��
We now focus on proving Lemma 5.1. During the proof, we find it convenient to
explicit the dependence of F1 and m on η. In particular, if η′ is another Poisson point
process, we write

F1(v; A, η′) :=
∑

x∈η′∩A

∑

y∈η′∩Bλ(x)

|v(x) − v(y)|2,
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and

m(ξ ; A, η′) := inf

⎧
⎨

⎩F1(v; A, η′)

∣∣∣∣∣∣

v : η′ → R

v(x) = ξ · x for all x ∈ η′such that
dist(x, ∂A) ≤ 2λ

⎫
⎬

⎭ .

We also refer, whenever needed, to fη′(ξ) as the limit in T of m(ξ ;A,η′)
T 2 (which exists

because the argument in Proposition 5.3 applies to a generic Poisson point process
η′).

Proof of Lemma 5.1 We argue as follows. We prove the following two relations on f :

f (M(ϑ)ξ) = f (ξ) for allϑ ∈ [0, 2π) (5.1)

f (rξ) = r2 f (ξ) for all r ∈ R+. (5.2)

Equations (5.1) and (5.2) tells us that, setting Ξ := f (e1) then f (ξ) = Ξ |ξ |2. We
proceed then to the proof of (5.1) and (5.2) separately.

Step one: invariance by rotation. Observe that

F1(v; QT , η) =
∑

x∈η∩QT

∑

y∈η∩Bλ(x)

|v(x) − v(y)|2

=
∑

z∈M(ϑ)η∩(M(ϑ)QT )

∑

w∈M(ϑ)η∩Bλ(z)

|v(M(−ϑ)z) − v(M(−ϑ)w)|2

= F1(v(M(−ϑ)·), M(ϑ)QT , M(ϑ)η).

If v = ξ · x on (∂QT )2λ, then v(M(−ϑ)x) = ξ · (M(−ϑ)x) for x ∈ (∂(M(ϑ)QT ))2λ.
In particular,

m(M(−ϑ)ξ ;M(−ϑ)QT , η) = m(ξ ; QT , M(ϑ)η)

By dividing by T 2 and taking the limit, recalling that the limit exists (Proposition 5.3),
we get

fM(ϑ)η(ξ) = lim
T→+∞

m(ξ ; QT , M(ϑ)η)

T 2

= lim
T→+∞

m(M(−ϑ)ξ ;M(−ϑ)QT , η)

T 2 = fη(M(−ϑ)ξ). (5.3)

Noting that M(ϑ)η = η in distribution, we conclude that m(ξ ; Q, M(ϑ)η) =
m(ξ ; QT , η) in distribution. This equality in distribution implies that fη(ξ) =
fM(ϑ)η(ξ) in distribution. Since fη and fM(ϑ)η are independent of the realizations, as
stated in Proposition 5.3, we conclude that

fη(ξ) = fM(ϑ)η(ξ). (5.4)
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Thus, by combining (5.3), (5.4) we get (5.1).
Step two: positive homogeneity of degree two. Fix r ∈ R+ and observe that for

any v = rξ · x on x ∈ η ∩ (∂QT )2λ, then vr (x) := v(x)
r satisfies vr (x) = ξ · x on

x ∈ η ∩ (∂QT )2λ and

F1(v; QT , η) = r2F1(vr ; QT , η) ≥ r2m(ξ ; QT , η).

yielding

m(rξ ; QT , η) ≥ r2m(ξ ; QT , η).

Analogously if w = ξ · x on x ∈ η ∩ (∂QT )2λ, then wr (x) := rw(x) satisfies
wr = rξ · x on x ∈ η ∩ (∂QT )2λ and

r2F1(w; QT , η) = F1(wr ; QT , η) ≥ m(rξ ; QT , η)

yielding

r2m(ξ ; QT , η) ≥ m(rξ ; QT , η)

Thence

m(rξ ; QT , η) = r2m(ξ ; QT , η).

Dividing by T and sending to T → +∞, still by Proposition 5.3 yields fη(rξ) =
r2 fη(ξ); that is, (5.2). ��

5.2 A Boundary-Value Fixing Argument

We now concentrate on a key ingredient of these types of results; that is, the possibil-
ity of modifying boundary values. Before proceeding, we introduce the notation by
referring to Fig. 4. We fix δ > 0, N > 0 and we divide (∂Q)δ ∩ Q (depicted in soft
grey on the left in Fig. 4) in N sectors Si of size δ/N (see one of them in dark grey
on the left). Given Gεn ,tn ∈ Gtn (ϒ; ηn) inside each sector, we can find ci1, . . . , c

i
Kn

disjoint “annuli” (one of them is depicted in red on the right) composed of portions of
paths from the grid and all contained in Si . Still the good properties of the grid allow
us to estimate Kn ≈ δ/εn . We consider this annuli labelled increasingly from the outer
one, and we call Q(cij ) the portion of the square bounded by the Voronoi cells of cij
and including them (on the right: the union of the region depicted in dark grey and all
the red regions). Clearly Q(cij ′) ⊂ Q(cij ) for j ′ ≥ j . We use this geometry to build
cut off functions hi that we will use to change the boundary data of a sequence of
functions un converging to u in the sense of Definition 2.7.
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Fig. 4 In the proof of Proposition 5.4, we refer to the notation depicted here

Proposition 5.4 Let U ⊂ Q, be an open set with Lipschitz boundary. Let {xn}n∈N be
a sequence of points and pick {Gεn ,tn ∈ Gtn (ϒ; εn(η − xn))}n∈N a sequence of grids
and a sequence of functions {un ∈ L2(Q; εn(η − xn))}n∈N such that

lim
n→+∞

ˆ
Vεn (Gεn ,tn )∩U

|ûn(x) − u(x)|2 dx = 0
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for some u ∈ C1(U ). Suppose that the sequence also satisfies

sup
n∈N

{Fn(un; A, εn(η − xn))} = ζ < +∞

for a supset A ⊃ Q. Then, for any δ > 0 there exists a sequence {vn}n∈N such that

vn = u on(εn(η − xn)) ∩ (∂U )δ ∩U ,

lim
n→+∞

ˆ
Vεn (Gεn ,tn )∩U

|v̂n(x) − u(x)|2 dx = 0

and

lim inf
n→+∞ Fn(vn;U , εn(η − xn) ≤ lim inf

n→+∞ Fn(un;U , εn(η − xn)) + CP(U )‖∇u‖2∞δ

(5.5)

where C = C(α, λ) depends on α and λ only and P(U ) denotes the perimeter of U.

Proof For the sake of simplicity we will prove the result only in the caseU = Q since
the general case results only in a heavier notation. So we assume U = Q and we fix
δ > 0 and N > 0. Consider

Si := Q1− (i−1)
N δ

\Q1− i
N δ

, i = 1, . . . , N .

For any fixed n > 0, if Gεn ,tn ∈ Gtn (ϒ; εn(η − xn)) is a regular grid, by joining the
paths of the grid suitably, as in the proof of Theorem 2.6 (see “Appendix”) for any Si
we can find (and eventually relabel) annuli ci1, . . . , c

i
Kn

where

δ

ϒεn
≤ Kn ≤ ϒδ

εn

for a ϒ uniform in n (see Fig. 4). We moreover observe, due to the properties of the
grid, that

dist
(
cij , c

i ′
j ′
) ≥ 3λεn for all i, j, i ′ j ′; (5.6)

dist
(
cij , ∂Si

) ≥ 3λεn for all i, j . (5.7)

Moreover, adopting the shorthand η̃n := εn(η − xn), we have

if x ∈ (cij )3λεn ∩ η̃n then η̃n(Bλεn (x)) ≤
1

α
λ2. (5.8)

Both properties (5.6) and (5.7) derive from property (e) of Definition 2.5 and from
the fact that cij is made of paths of Gεn ,tn . Property (5.8) is instead consequence of
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Fig. 5 The situation in the proof
of Proposition 5.4. The
difference hn(x) − hn(y) is
different from 0 only on pairs
(x, y) satisfying the relation
(5.10)

Property (f) of Definition 2.5. Let Q(cij ) denote the portion of the square bounded

by cij and containing the Voronoi cells of points in cij (we refer to Figs. 4 and 5). For
i = 1, . . . , N , we set

hin(x) :=
⎧
⎨

⎩

0 if x ∈ Q
(
ci1
)c

s
Kn

if x ∈ Q
(
cis
)\Q(cis−1

)

1 if x ∈ Q
(
cKn

)
.

(5.9)

Note that

N∑

i=1

∑

x∈Si∩η̃n

∑

y∈Bλεn (x)∩η̃n

(un(x) − un(y))
2 ≤ 2Fn(un; Q\Q1−δ, η̃n),

where the constant 2 arises since the interaction around ∂Si are counted twice when
summed up over i . We can thus pick i = 1, . . . , N for which it holds

∑

x∈Si∩η̃n

∑

y∈Bλεn (x)∩η̃n

(un(x) − un(y))
2 + (u(x) − u(y))2

≤ 2

N
(Fn(un; Q\Q1−δ, η̃n) + Fn(u; Q\Q1−δ, η̃n))

Then, we set hn = hin , c j = cij and

vn(x) := (1− hn(x))u(x) + hn(x)un(x).

Set also Gn := Gεn ,tn . We immediately conclude that

ε2n

∑

x∈Gn∩Q
(vn(x) − u(x))2 = ε2n

∑

x∈Gn∩Si
(un(x) − u(x))2hn(x)

2

≤ ε2n

∑

x∈Gn∩Q
(un(x) − u(x))2,
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giving vn → u. We also note that

vn(x) − vn(y) = (1− hn(y))(u(x) − u(y)) + hn(y)(un(x) − un(y))

+ (hn(x) − hn(y))(un(x) − u(x)).

Thanks to the structure of vn , we thus have

∑

x∈Q∩η̃n

∑

y∈Bλεn (x)∩η̃n

(vn(x) − vn(y))
2 ≤

∑

x∈(Q\Si )∩η̃n

∑

y∈Bλεn (x)∩η̃n

(vn(x) − vn(y))
2

+
∑

x∈Si∩η̃n

∑

y∈Bλεn (x)∩η̃n

(vn(x) − vn(y))
2

≤ Fn(un; Q, η̃n) + Fn(u; Q\Q1−δ, η̃n)

+
∑

x∈Si∩η̃n

∑

y∈Bλεn (x)∩η̃n

(vn(x) − vn(y))
2,

where the second inequality exploits property (5.7) and the fact that vn agrees with
u and un on a slightly bigger sets than the two connected components of Q\Si . The
choice of i now allows to estimate

∑

x∈Si∩η̃n

∑

y∈Bλεn (x)∩η̃n

(vn(x) − vn(y))
2

≤ C

N
(Fn(un; Q\Q1−δ, η̃n) + Fn(u; Q\Q1−δ, η̃n))

+ C
∑

x∈Si∩η̃n

(un(x) − u(x))2

∑

y∈Bλεn (x)∩η̃n

(hn(x) − hn(y))
2,

where C , here and in the rest of the proof, stands for a constant depending on α, λ

only and that may vary from line to line. We now exploit property (5.6): the annuli
paths lie at a certain distance between each other, and therefore, we have that

(hn(x) − hn(y))
21Bλεn (x)(y) ≤ C

ε2n

δ2
if x /∈ Q(c j ), y ∈ η̃n ∩ Q(c j ) for some j

and |x − y| ≤ λεn

(5.10)

(hn(x) − hn(y))
21Bλεn (x)(y) = 0 otherwise. (5.11)

In particular, we get

∑

x∈Si∩η̃n

(un(x) − u(x))2
∑

y∈Bλεn (x)∩η̃n

(hn(x) − hn(y))
2
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=
∑

(x,y)
satisfies(5.10)

(un(x) − u(x))2(hn(x) − hn(y))
2

≤C
ε2n

δ2

Kn∑

j=1

∑

x∈η̃n :
x∈Q(c j )c∩(c j )λεn

∑

y∈Bλεn (x)∩Q(c j )

(un(x) − u(x))2

≤C
ε2n

δ2

Kn∑

j=1

∑

x∈η̃n :
x∈Q(c j )c∩(c j )λεn

(un(x) − u(x))2,

where the last equality follows from property (5.8) of the annuli. For x ∈ η̃n∩Q(c j )c∩
(c j )λεn , let zx ∈ c j be such that |x − zx | ≤ λεn (see Fig. 5). Then,

∑

x∈η̃n :
x∈Q(c j )c∩(c j )λεn

(un(x) − u(x))2 ≤ C

⎛

⎜⎜⎜⎝
∑

x∈η̃n :
x∈Q(c j )c∩(c j )λεn

(un(x) − un(zx ))
2

+
∑

x∈η̃n :
x∈Q(c j )c∩(c j )λεn

(u(x) − u(zx ))
2

+
∑

x∈η̃n :
x∈Q(c j )c∩(c j )λεn

(un(zx ) − u(zx ))
2

⎞

⎟⎟⎟⎠

≤ C
∑

x∈c j

∑

y∈Bλεn (x)∩η̃n

(un(x) − un(y))
2 + (u(x) − u(y))2

+ C
∑

x∈c j
(un(x) − u(x))2,

where the last inequality follows from property (5.8) and the fact that |x − zx | ≤ λεn .
Thus, by summing up over j = 1, . . . , Kn we obtain

Kn∑

j=1

∑

x∈η̃n :
x∈Q(c j )c∩(c j )λεn

(un(x) − u(x))2 ≤ CFn(un; Q, η̃n) + CFn(u; Q, η̃n)

+ C
∑

x∈Gn

(un(x) − u(x))2
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Then, we conclude that

Fn(vn; Q, η̃n) ≤ Fn(un; Q, η̃n) + Fn(u; Q\Q1−δ, η̃n)

+ C

N
(Fn(un; Q\Q1−δ, η̃n) + Fn(u; Q\Q1−δ, η̃n))

+ C

δ2

⎡

⎣ε2nFn(un; Si , η̃n) + ε2nFn(u; Si , η̃n) + ε2n

∑

x∈Gn

(un(x) − u(x))2

⎤

⎦ ,

where the constant C is independent of n, N , δ. We now use Corollary 2.4 (by observ-
ing that η − xn has the same distribution than η) and consider the limit in n and
achieve

lim inf
n→+∞ Fn(vn; Q, η̃n) ≤ lim inf

n→+∞ Fn(un; Q, η̃n) + CP(Q)‖∇u‖2∞δ

+ C

N
(1+ P(Q)‖∇u‖2∞δ).

A further limit in N yields (5.5). ��
Proposition 5.5 (Blow-up) Let un → u, u ∈ W 1,2(Q) and pick x0 ∈ Q a Lebesgue
point of ∇u. Fix a sequence of regular grids {Gεn ,t ∈ Gt (ϒ; ηεn )}t∈R+ such that

lim
t→0

lim sup
n→+∞

ˆ
Gεn ,t∩Q

|un(x) − u(x)|2 dx = 0.

Then, for any ρ > 0 it holds

Gρ
εn ,t (x0) :=

Gεn ,t ∩ Qρ − x0
ρ

∈ Gt/ρ
(
ϒ; ηρ,x0

εn

)
,

where

ηρ,x0
εn

:= ηεn − x0
ρ

.

Moreover, for any δ > 0 we can choose two sequences tn, ρn → 0 such that

tn
ρn

→ 0,
εn

ρn
→ 0,

|x0|
ρn

≤ g

( |x0|
εn

)
, (5.12)

where g is the function given by Proposition 5.3. Finally, setting

Gn(x0) := Gεn ,tn ∩ Qρn − x0
ρn

,

we have

lim
n→+∞

ˆ
Vεn (Gn(x0))∩Q

|ûρn ,x0
n (x) − ∇u(x0) · (x − x0)|2 dx = 0, (5.13)
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where

uρ,x0
n (x) := un(x0 + ρx) − u(x0)

ρ
for x ∈ ηρ,x0

εn
∩ Q

Proof We start by proving that Gρ
εn ,t (x0) ∈ Gt/ρ

(
ϒ; ηρ,x0

εn

)
. Indeed, property (b) and

(c) follow immediately by construction. By scaling, we also get property (e), (f) and
(g) from their validity on Gεn ,t . Since Gεn ,t ∈ εnη

α(λ), we also obtain property (a):

Gρ
εn ,t (x0) ⊂

(
ηα(λ)−x0

εn

)
. Property (d) is immediate since, by replacing t with t/ρ and

εn with εn/ρ the bounds (2.5) given by ϒ are still in force.
The second part of the statement comes just from a diagonalization argument in

n, t, ρ and by exploiting that x0 is a Lebesgue point of ∇u. ��

5.3 Proof of the Lower Bound

We follow the blow-up method by Fonseca and Müller (1992) (see also Braides et al.
2008 for its adaptation to homogenization). Let uε → u in the sense of Definition 2.7.
Without loss of generality, we can assume that

lim inf
ε→0

Fε(uε; Q) < +∞.

Fix x0 ∈ Q a Lebesgue point of ∇u and u, and a subsequence εn → 0 achieving the
lim inf. Define

μn(A) := Fεn (uεn ; A).

Then, μn
∗
⇀ μ (up to a subsequence) for some measure μ, and un := uεn → u in the

sense of Definition 2.7. Moreover, u ∈ W 1,2(Q) due to Theorem 3.1. We would like
to show that

dμ

dL2 (x) ≥ Ξ |∇u(x)|2

for L2-almost every x ∈ Q. This would imply that

lim inf
ε→0

Fε(uε; Q) = lim
n→+∞Fεn (un; Q) ≥ Ξ

ˆ
Q
|∇u(x)|2 dx .

Note that

dμ

dL2 (x0) = lim
ρ→0

μ(Qρ(x0))

ρ2 = lim
ρ→0

lim
n→+∞

μn(Qρ(x0))

ρ2 .

Since un → u then, for any t ∈ R+ and any grid Gεn ,t there exists a ut ∈ Xt (cf
with (2.7)) such that TGεn ,t (un) → ut . With fixed δ, by invoking Proposition 5.5,
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we can find two subsequences ρn, tn such that (5.12) and (5.13) holds. By relabeling
ε̃n := εn/ρn , t̃n = tn/ρn , xn := x0/εn and by invoking Proposition 5.4, we can find
{vn ∈ L2(Q, ε̃n(η − xn))}n∈N such that

vn(x) = ∇u(x0) · (x − x0) on Q1\Q1−δ

and

lim inf
n→+∞ Fε̃n (vn; Q, ε̃n(η − xn)) ≤ lim inf

n→+∞ Fε̃n (u
ρn ,x0
n ; Q, ε̃n(η − xn)) + C |∇u(x0)|2δ.

Observe now that

dμ

dL2 (x) = lim
n→+∞

Fn(un; Qρn (x0); εnη)

ρ2
n

.

Moreover, the following holds

Fn(un; Qρn (x0), εnη) =
∑

x∈Qρn (x0)∩εnη

∑

y∈Bλεn (x)∩εnη

|un(x) − un(y)|2

=
∑

x∈Qρn∩(εnη−x0)

∑

y∈Bλεn (x)∩(εnη−x0)

|un(x0 + x) − un(x0 + y)|2

=
∑

x∈Q∩ εn
ρn

(η−xn )

∑

y∈B
λ

εn
ρn

(x)∩ εn
ρn

(η−xn )

|un(x0 + ρnx) − un(x0 + ρn y)|2

= ρ2n

∑

x∈Q∩ε̃n (η−xn )

∑

y∈Bλε̃n (x)∩ε̃n (η−xn )

∣∣∣uρn ,x0
n (x) − u

ρn ,x0
n (y)

∣∣∣
2

= ρ2nFε̃n (u
ρn ,x0
n ; Q, ε̃n(η − xn)).

In particular, we have

dμ

dL2 (x0) = lim
n→+∞

Fn(un; Qρn (x0), εnη)

ρ2
n

≥ −Cδ|ξ |2 + lim inf
n→+∞ Fε̃n (vn; Q, ε̃n(η − xn)),

and finally,

Fε̃n (vn; Q, ε̃n(η − xn)) =
∑

x∈Q∩ε̃n(η−xn)

∑

y∈Bλε̃n (x)∩ε̃n(η−xn)

|vn(x) − vn(y)|2

= ε̃2n

∑

x∈Q1/ε̃n (xn)∩η

∑

y∈Bλ(x)∩η

∣∣∣∣
vn (ε̃n(x − xn))

ε̃n
− vn(ε̃n(y − xn))

ε̃n

∣∣∣∣
2
.

Since vn(x) = ∇u(x0) · (x − x0) for x ∈ (Q\Q1−δ) ∩ ε̃n(η − xn), we get

vn (ε̃n(x − xn))

ε̃n
− ρn + 1

εn
∇u(x0) · x0 = ∇u(x0) · x

123



80 Page 44 of 57 Journal of Nonlinear Science (2023) 33 :80

for any x ∈ (Q1/ε̃n (xn)\Q1/ε̃n(1−δ)(xn)
)∩ η. In particular, by adding and subtracting

the constant ρn+1
εn

∇u(x0) · x0, we have

Fε̃n (vn; Q, ε̃n(η − xn)) ≥ ε̃2nm(∇u(x0) · x; Q1/ε̃n (xn)) ≥ ε̃2nm(∇u(x0) · x; Q1/ε̃n (xn)).

Considering Tn = 1
ε̃n

and observing that

|xn| = |x0|
ρn ε̃n

≤ Tn
|x0|
ρn

≤ Tngδ(|xn|),

we conclude that

lim
n→+∞ ε̃2nm(∇u(x0) · x; Q1/ε̃n (xn)) = lim

n→+∞
m(∇u(x0) · x; QTn (xn))

Tn
= f (∇u(x0)) = Ξ |∇u(x0)|2

by Proposition 5.3. Hence,

dμ

dL2 (x0) ≥ −Cδ|∇u(x0)|2 + Ξ |∇u(x0)|2.

By considering the limit as δ → 0, we get

dμ

dL2 (x0) ≥ Ξ |∇u(x0)|2,

as desired. ��

5.4 Proof of the Upper Bound

We prove the statement in several steps, in order to clarify the diagonalization process
that we use. The strategy will be to approximate a generic function u ∈ W 1,2(Q) with
a sequence of functions {vk}k∈N which are piecewise affine on simplexes and then,
show how to recover the energy of each vk . Then, we will exploit a diagonalization
procedure (bymeans of Lemma 4.8). The recovery sequence for piecewise-affinemaps
is constructed in Step two below. The major technical point consists in handling the
interaction at the common boundary between two simplexes S, S′. To deal with this
issue we build, for a generic simplex S and for an affine function v on S, an almost
recovery sequence, which agrees with v in an internal neighborhood of ∂S. This is
done in the Step one below.

Step one: We prove that for any triangle S ⊆ Q, for u(x) = ξ · x on S ⊆ Q and
for any fixed δ > 0 there exists a sequence {uεn ,δ ∈ L2(S; ηn)}n∈N such that

un,δ → ξ · x in the sense of Definition 2.7 (5.14)

un,δ = ξ · x on (∂S)δ ∩ S. (5.15)
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Fig. 6 construction of recovery sequences on a triangular domain

lim
n→+∞Fεn (uεn,δ ; S\(∂S)λεn ) ≤ Ξ |S||ξ |2 + Cδ (5.16)

with C depending on S and |ξ | only.
The construction is illustrated in Fig. 6: we fix δ > 0, m ∈ N and we pick a grid of

squares of size 1/m. For a square Q1/m(J ) that intersect in a non-trivial way (∂S)δ∩ S
we define uε,m,δ = ξ · x on Q1/m(J ) ∩ S. If instead Q1/m(J ) is well contained in S,
we consider uε,m,δ to agree with the quasi minimum vε of the cell problem m on a
the subsquare Q(1−δ)/m(J ) and uε,m,δ = ξ · x on Q1/m(J )\Q(1−δ)/m(J ). In this way,
uε,m,δ = ξ · x on Aδ

m and this construction ensures convergence and the lim sup upper
bound for the function u(x) = ξ · x on S.

We now formalize this argument. Fix δ > 0, m ∈ N and introduce the sub-class of
indexes

I1,m(S) := {J ∈ (1/mZ2) ∩ Q | Q1/m(J ) ⊂ S, Q1/m(J ) ∩ (∂S)δ = ∅}
I2,m(S) := {J ∈ (1/mZ2) ∩ Q | Q1/m(J ) ∩ (∂S)δ ∩ S 	= ∅}.

For J ∈ I1,m(S) consider uJ
ε ∈ L2(1/εQ (1− δ)/m(J ); η) such that

uJ
ε,m,δ(x) = ξ · x for all x ∈ η ∩ 1/εQ (1− δ)/m(J ) : dist(x, ∂(1/εQ (1− δ)/m(J )) ≤ 2λ

and

∑

x∈η∩1/εQ (1− δ)/m(J )

∑

y∈η∩Bλ(x)

|uJ
ε,m,δ(x) − uJ

ε,m,δ(y)|2 ≤ m(ξ ; 1/εQ (1− δ)/m(J )) + 1.

For J ∈ I2,m(S) consider just

uJ
ε,m,δ(x) := ξ · x for all x ∈ η ∩ (1/εQ1/m(J ) ∩ 1/εS).
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In particular, setting

v J
ε,m,δ(x) :=

{
εuJ

ε,m,δ(x/ε) for x ∈ ηε ∩ Q (1− δ)/m(J ) ∩ S;
ξ · x for x ∈ ηε ∩ [Q1/m(J )\Q (1− δ)/m(J )] ∩ S,

(5.17)

we see that, for J ∈ I1,m(S), we have

v J
ε,m,δ(x) =ξ · x for all x ∈ ηε ∩ Q1/m(J ) : dist(x, ∂Q1/m(J )) ≤ 2λε + δ

m

and, by applying Corollary 2.4,

∑

z∈ηε∩Q1/m(J )

∑

y∈ηε∩Bλε(z)

|v Jε,m,δ(z) − v Jε,m,δ (y) |2 ≤ ε2m(ξ ; 1/εQ(1− δ)/m(J )) + ε2 + C |ξ |2 δ

m2 ,

while v J
ε,m,δ(x) = ξ · x for all x ∈ ηε ∩ Q1/m(J )∩ S if J ∈ I2,m(S). Hence, we define

vε,m,δ(x) :=
∑

J∈I1,m (S)∪I2,m (S)

1Q1/m(J )∩S(x)v J
ε,m,δ(x).

In this way, by applying again Corollary 2.4

Fε(vε,m,δ; S\(∂S)λε)

≤
∑

J∈I1,m (S)

Fε(vε,m,δ; Q1/m(J )) +
∑

J∈I2,m (S)

Fε(vε,m,δ; Q1/m(J )\(∂S)λε)

≤ C
∑

J∈I2,m (S)

|ξ |2|Q1/m(J ) ∩ S| +
∑

J∈I1,m (S)

Fε(vε,m,δ; Q1/m(J ))

≤ CP(S)|ξ |2δ +
∑

J∈I1,m (S)

Fε(vε,m,δ; Q1/m(J ))

≤ CP(S)|ξ |2δ +
∑

J∈I1,m (S)

(
ε2m(ξ ; 1/εQ (1− δ)/m(J )) + ε2 + C |ξ |2 δ

m2

)
.

The existence of the limit of m(·; QT ) given by Lemma 5.1 yields the existence of ε0
such that, for all ε < ε0 we have also

ε2m(ξ ; 1/εQ (1− δ)/m(J ) ≤ Ξ |ξ |2|Q (1− δ)/m(J )| + 1

m3 for all J ∈ I1,m(S).

Therefore,

Fε(vε,m,δ; S\(∂S)λεn )

≤ CP(S)|ξ |2δ +
∑

J∈I1,m (S)

(
ε2m(ξ ; 1/εQ (1− δ)/m(J )) + ε2 + C |ξ |2 δ

m2

)
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≤ Ξ |ξ |2
∑

J∈I1,m (S)

|Q (1− δ)/m(J )| +
(

1

m3 + ε2
)
#(I1,m(S)) + C |ξ |2δ

≤ Ξ

ˆ
S
|ξ |2 +

(
1

m
+ ε2m2

)
|S| + C |ξ |2δ. (5.18)

Moreover,

sup
1/m>ε>0

{Fε(vε,m,δ; S)} < +∞.

Thanks to the compactness Theorem 3.1, we can thus conclude that vεn ,m,δ → um,δ

in the sense of Definition 2.7. Observe also that vεn ,m,δ(x) = ξ · x for all x ∈ Aδ
m ,

where

Aδ
m :=

⋃

J∈I1,m (Q)

{
x ∈ S dist(x, ∂Q1/m(J )) ≤ δ/m

} ∪
⎛

⎝
⋃

J∈I2,m (S)

Q1/m(J ) ∩ S

⎞

⎠ .

This in particular implies that um,δ = ξ · x on Aδ
m . Since um,δ ∈ W 1,2(S) and

Ξ

ˆ
S
|∇um,δ|2 dx ≤ lim inf

n→+∞ Fεn (vεn ,m,δ; S) < Ξ |S|ξ |2 + C

(
1

m
+ δ

)

we also have that, up to sub-sequences um,δ → ξ · x in L2(S). Hence, by applying
Lemma 4.8 we can find mn = mεn → +∞, with εn mn → 0 and for which un,δ :=
vεn ,mn ,δ → ξ · x and also (5.16) and (5.15) hold.

Step two: we prove the existence of a recovery sequence for the piecewise-affine
function

v =
∑

S∈S
vS(x),

with S a finite family of essentially disjoint triangles partitioning Q and vS(x) =
vS′(x) for x ∈ ∂S ∩ ∂S′. Note that, being each vS affine it can be represented as
vS(x) = ξS · x + bS on S. Fix δ > 0 and for any S ∈ S let {uSn,δ ∈ L2(S; ηn)}n∈N be
the functions constructed in Step one and satisfying (5.16), (5.15), and (5.14) relatively
to ξS . Set

vn,δ(x) :=
∑

S∈S
1S(x)

(
uSn,δ(x) + bS

)
.

We have that vn,δ → v in the sense of Definition 2.7. Moreover,

Fεn (vn,δ; Q) ≤
∑

S∈S
Fε(vε,δ; S\(S)λεn ) +

∑

S∈S
Fεn (vn,δ; (S)λεn ).
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Then, we just observe that

∑

S∈S
Fεn (vn,δ; (S)λεn ) =

∑

S∈S

∑

x∈ηn∩(S)λεn

∑

y∈ηn∩Bλεn (x)

|vε,δ(x) − vε,δ(y)|2.

Recall that, by construction we have that, for x ∈ S, vn,δ(x) = v(x) on (S)λεn and,
since it is continuous and piecewise affine, it is in particular a Lipschitz map. Then,
we have

∑

S∈S
Fεn (vn,δ; (S)λεn ) =

∑

S∈S

∑

x∈ηn∩(S)λεn

∑

y∈ηn∩Bλεn (x)

|vn,δ(x) − vn,δ(y)|2

≤ C
∑

S∈S

∑

x∈ηn∩(S)λεn

∑

y∈ηn∩Bλεn (x)

|x − y|2

≤ C
∑

S∈S

∑

x∈ηn∩(S)δ

ηn(Bλεn (x))ε
2
n

≤ C
∑

S∈S
P(S)δ,

where in the last inequality we have used Proposition 2.3. Thus,

lim sup
n→+∞

Fεn (vn,δ(x); Q) ≤
∑

S∈S
Ξ |S||ξ |2 + Cδ = Ξ

ˆ
Q
|∇v|2 dx + Cδ.

By now diagonalizing along δ, with the aid of Lemma 4.8, we find un → v such that

lim sup
n→+∞

Fεn (vn,δ(x); Q) ≤ Ξ

ˆ
Q
|∇v|2 dx .

Step three: we prove the existence of a recovery sequence for a generic u ∈
W 1,2(Q). We just observe that for any u ∈ W 1,2(Q) we can find a sequence of
piecewise-affine functions {vk}k∈N with the structure as in Step two such that vk → u
in L2 and

ˆ
Q
|∇vk |2 dx →

ˆ
Q
|∇u|2 dx .

The construction developed in Step two, for each k, and a further application of the
diagonalizing procedure (Lemma 4.8) conclude the existence of the desired sequence.

��
We finally state the following property of convergence of Dirichlet boundary-value

problems as an example of application of the convergence theorem. Analogous results
can be shown for mixed-type boundary value problems, or for purely Neumann prob-
lems, possibly adding some non-trivial continuous term as is usual in �-convergence.
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Corollary 5.6 (convergence of boundary-value problems) Let U ⊂⊂ Q and let u ∈
C1(Q). Then, the solutions of the minimum problems

min{Fε(v;U ) : v = u on Q\U }

converge to the solution of

min
{
Ξ

ˆ
U
|∇v|2 dx : v = u on ∂U

}
,

together with the minimal values.

Proof By the compactness ofminimizing sequences and the property of convergenceof
minimumproblems for�-converging energies, it is sufficient to show that the boundary
condition is compatible with �-convergence, which follows from Proposition 5.4.
Indeed, we can first apply that result with fixed δ > 0 to a sequence {εn} and the
related recovery sequence uεn for u, obtaining a sequence uεn ,δ with uεn ,δ = u on a
δ-neighborhood of ∂U and then, use a diagonal argument giving δn = δεn . ��

Remark 5.7 Note that we can also directly define the boundary values of the discrete
energies on a δ-neighborhood of ∂U . In that case, the argument above proves the
convergence of solutions of the problems

min{Fε(u;U ) : u = φ if dist (x, ∂U ) < δ}

to the solutions of the continuum problem as ε → 0 first and then, δ → 0.
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Appendix

6.1 Existence of Regular Grids

We here focus on proving Theorem 2.6. Let

Rv
T ,δ(x0) :=

[
x0 − T δ

2
, x0 + T δ

2

]
×
[
x0 − T

2
, x0 + T

2

]
,

Rh
T ,δ(x0) :=

[
x0 − T

2
, x0 + T

2

]
×
[
x0 − T δ

2
, x0 + T δ

2

]
.

Definition 6.1 Let {X j } j∈Z2 be a sequence of i.i.d random variable such that

X j =
{
1 with probability p
0 with probability 1− p.

(6.1)

We say that { ji }Mi=1 is an open path for the realization ω if X ji (ω) = 1 for all i =
1, . . . , M and ji , ji+1 are neighboring squares.

We recall the following percolation property from Kesten (1982).

Theorem 6.2 (Property of Bernoulli site percolation) There exists a probability pcr
such that for p ≥ pcr the following holds. Let C be a compact set, for any δ > 0 there
exists Kδ such that for almost allω ∈ 
wecanfind T0(ω) > 0 forwhichany rectangles
Rv
T ,δ(x0), R

h
T ,δ(x0) with T > T0 and x0 ∈ TC contains at least KδT disjoint, open

paths that connects the two opposite sides of Rv
T ,δ(x0), R

h
T ,δ(x0), respectively, in the

horizontal and in the vertical direction.

For the sake of brevity, we introduce the following notation confined to this section. For
Rh
T ,δ(x0), R

v
T ,δ(x0), we denote by hT1 (x0), . . . ,hTM (x0) and by vT1 (x0), . . . , vTM (x0),

the families of horizontal (and, respectively, vertical) disjoint paths connecting the two
opposite sides of Rh

T ,δ(x0) (and Rv
T ,δ(x0), respectively).

Proposition 6.3 Let C ⊂ R
2 be a compact set. There exists Kδ, ϒδ, α0, λ0 such that,

provided

α < α0 λ > max
{ 2

α
, λ0

}
,

for almost all ω ∈ 
 we can find T0(ω,C) > 0 for which any rectangles
Rv
T ,δ(x0), R

h
T ,δ(x0) with T > T0 and x0 ∈ TC contains at least KδT disjoint paths

hT1 (x0), . . . ,hTKδT
(x0), satisfying the following properties.

(a.1) hTi (x0), vTj (x0) are paths in ηα(λ) ∩ QT for all i, j ;

(b.1) for any m = 1, . . . , KδT , hTm connects the two opposite sides of Rh
T ,δ(x0) and

is strictly contained in Rh
T ,δ(x0);
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(c.1) for any m = 1, . . . , KδT , vTm connects the two opposite sides of Rv
T ,δ(x0) and

is strictly contained in Rv
T ,δ(x0);

(d.1) the following bounds hold for any m ∈ {1, . . . , KδT };
T

ϒδ

≤ �
(
hTm ∩ Rh

T ,δ(x0)
) ≤ ϒδT

T

ϒδ

≤ �
(
vTm ∩ Rv

T ,δ(x0)
) ≤ ϒδT (6.2)

(e.1) dist(hTi (x0),hTj (x0)) ≥ 3λ, dist(vTi (x0), vTj (x0)) ≥ 3λ for all i, j =
1, . . . , KδT , i 	= j ;

(f.1) If x ∈ (hTj (x0))3λ ∩ η, then η(Bλ(x)) ≤ α−1λ2;

(g.1) If x, y ∈ hTi (x0), (x, y ∈ hTj (x0)) satisfies 〈x, y〉, then |x − y| ≤ λ;

Proof Fix � ∈ N and consider the division of R2 in the grid

I := {i ∈ �λZ2 | Q�λ(i) ∩ QT 	= ∅}
Q := {Q�λ(i) | i ∈ I }

and, for any Qλ�(i) ∈ Q consider the refinement

J (i) := { j ∈ λZ2 | Qλ( j) ∩ Q�λ(i) 	= ∅}
Q′(i) := {Qλ( j) | j ∈ J (i)}
N ′(i) := #(J ′(i)) = �2.

For any i ∈ I , we introduce the following events 

α,λ
i of all the realizations ω with

the following properties

(I) 1 ≤ η(Qλ( j)) ≤ α−1

8 λ2 for all j ∈ J (i);
(II) dist(x, y) ≥ 2α for all x, y ∈ Q�λ(i) ∩ η;
(III) dist(x, ∂Q�λ(i)) ≥ 2α for all x ∈ Q�λ(i) ∩ η.

We also define

ξ
α,λ
i (ω) := 1



α,λ
i

(ω).

Observe that the probability of the set of realizations satisfying properties (II) and (III)
tends to 1 if α → 0 (we refer to the same argument as in the proof of Braides and
Piatnitski 2022, Lemma 4.1). Moreover,

P

(
1 ≤ η(Qλ( j)) ≤ α−1λ2

8

)
= e−λ2

� α−1
8 λ2�∑

m=1

λ2m

m! =: pλ(α).

In particular, setting

Aα,λ
i :=

{
ω ∈ 
 | 1 ≤ η(Qλ( j)) ≤ α−1

8
λ2 for all j ∈ I (i)

}
,
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we have that P(Aα,λ
i ) = pλ(α)�

2
.

If α → 0, we have pλ(α) → 1 − e−λ2 . In particular, for any choice of � > 1,
γ > 0 we can find α0(�), λ0(�) > 0 such that

P
(
ξ

α,λ
i = 1

) = p(α, λ) > 1− γ for allα < α0, λ > λ0

Thus, for a suitably small α and big λ we can invoke Theorem 6.2 and find a Kδ inde-
pendent of the realization and T0 = T0(ω,C) such that, for any Rv

T ,δ(x0), R
h
T ,δ(x0)

(note that this is uniform as x0/T ∈ C) contains at least KδT disjoint paths (connecting
the two opposite sides of Rv

T ,δ(x0), R
h
T ,δ(x0) vertically and horizontally, respectively)

of neighboring squares fromQ.We now define the Voronoi paths as follows. Consider,
for instance {i j }Nj=1 to be the first (from the bottom) horizontal path in Rh

T ,δ(x0) and
let s1, . . . , sN be the segment joining the centers of neighboring squares (for instance
(sm joins the centers of Q�λ(im), Q�λ(im+1). We set

hT1 (x0) := {x ∈ η : (C(x; η) ∩ s jm ) 	= ∅ for some m = 1, . . . , N }.

We define all the other horizontal paths accordingly, as well as the vertical paths. We
refer to hT1 (x0) without loss of generality in proving the properties. By arguing as in
the proof of Lemma (Braides and Piatnitski 2022, Lemma 4.1), we can derive also
that

diam(C(x; η)) ≤ 1

α
, I (C(x; η)) > α.

Moreover, by choosing λ > max {2/α, λ0}, we can guarantee additionally that

hT1 (x0) ⊂
N⋃

j=1

⋃

m∈J (i j ):
Qλ(m)∩s j 	=∅

Qλ(m)

In particular, if x ∈ hT1 (x0), then x ∈ Qλ(m) ⊂⊂ Q�λ(i j ) for some m ∈ J (i j )
intersecting s j . In particular, Bλ(x) is contained in the union of the eight squareswhose
boundary intersects in a non-trivial way the boundary of Qλ(m) and this union, call it
O , is still contained in Q�λ(i j ) and made by at most 8 of such squares. Therefore,

η(Bλ(x)) ≤ η(O) ≤ α−1λ2.

This implies that hT1 (x0) is a path on ηα(λ) and we get property (a.1). Properties
(b.1) and (c.1) are immediate from Bernoulli site percolation. Also, property (e.1) is
a consequence of the fact that any path is contained in a square around the segment
joining the centers and thus, the distance between two paths is at least 3λ. By the same
principle, if � was chosen big enough from the very beginning (say bigger than 10)
whenever x ∈ (hT1 (x0))3λ, then it belongs to a square of size λ contained in Q�λ(i j )
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and the same estimate applies on η(Bλ(x)), achieving property (f.1). If instead x, y
are neighboring points in a path, then |x − y| ≤ 2

α
< λ yielding property (g.1).

It remains to show property (d). Due to the fact that diam(C(x; η)) ≥ α−1, we have

�
(
hTm ∩ Rh

T ,δ

)
≥ αT

for any m = 1, . . . , KδT . Fix L > 0 and consider

I (L) := {m = 1, . . . KδT | �
(
hTm ∩ Rh

T ,δ

)
> LT }.

Then, since the paths are disjoint, we have

⋃

m∈I (L)

V(hTm
) ⊂ Rh

T ,δ(x0),
∣∣∣
⋃

m∈I (L)

V(hTm
)∣∣∣ ≤ T 2δ, #(I (L)) ≤ T δ

Lα2π
.

If we now choose L = Lδ large enough, we can ensure that

KδT − T
δ

Lα2π
= K ′

δT

with K ′
δ < Kδ . Then, up to discarding the paths labeled by I (L) (which do not affect

properties (a)–(g) ) we can reduce ourselves to K ′
δT paths satisfying also property (d)

with ϒδ = max{Lδ, α
−1}. ��

Observe that the above proposition is not sufficient to conclude the validity of Theorem
2.6 yet, since a straight application of Proposition 6.3 on Rh

T ,t (x) (that would be
required to get the horizontal and vertical paths connecting the opposite side of Q)
would yield the constants given by property (d) of Proposition 6.3 dependent of t .
We instead require a uniform geometry. Moreover, we need to localize the estimate
given by property (d) of Proposition 6.3 to each square Qt

i, j . Therefore, an additional
construction is required.

The following corollary comes as an application of Proposition 6.3.

Corollary 6.4 There exists ϒ,α0, λ0 such that, for any fixed t > 0 and provided α, λ

satisfies

α < α0 λ > max
{ 2

α
, λ0

}
,

then for almost all ω ∈ 
 we can find ε0(ω, t) > 0 for which, if ε < ε0 any rectangles
Rh
t,1/2(x), R

v
t,1/2(x) with x ∈ Qtkt contains disjoint horizontal paths h

x
1 , . . . ,h

x
Mε,t

,
(and, respectively, vertical paths vx1 , . . . , v

x
Mε,t

) satisfying the following properties.

(a.2) all the paths are in εηα(λ);
(b.2) for any m = 1, . . . , Mε,t , hxm connects the two opposite sides of Rh

t,1/2(x) of size

t and is strictly contained in Rh
t,1/2(x);
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(c.2) for any m = 1, . . . , Mε,t , vxm connects the two opposite sides of Rv
t,1/2(x) of size

t and is strictly contained in Rv
t,1/2(x);

(d.2) the following bounds hold

t

ϒε
≤ �
(
hxm ∩ Rh

t,1/2(x),
) ≤ ϒ t

ε
,

t

ϒε
≤ �
(
vxm ∩ Rv

t,1/2(x),
) ≤ ϒ t

ε
, Mε,t ≥ t

ϒε
(6.3)

(e.2) dist(hxm,hx
′

s ) ≥ 3λε and dist(v j
m, v j ′

s ) ≥ 3λε for all i, i ′, j, j ′ ∈ {1, . . . , kt },
m, s ∈ {1, . . . , Mε,t } (with m 	= s for i = i ′ or j = j ′);

(f.2) If y ∈ (hxm)3λε ∩ ηε, (y ∈ (vxm)3λε ∩ ηε), it holds ηε(Bλε(y)) ≤ 1
α
λ2;

(g.2) If z, y ∈ hxm, (z, y ∈ vxm) neighboring points, then |z − y| ≤ λε;

Proof By invoking Proposition 6.3, (applied with t/ε in place of T ) for almost all
realizations, we can find K = K1/2, ϒ

′ = ϒ1/2, α0, λ0 such that, provided α, λ

satisfies (2.6) then for almost all realizations ω we can find ε0 = ε0(ω, t) for which
any Rh

t/ε,1/2(x0), R
v
t/ε,1/2(x0), (provided x0 ∈ Qkt t/ε) contains at least K t/ε disjoint paths

satisfying properties (a)–(g) of Proposition 6.3. In particular, by scaling back to ηε =
εη we have that, for any x ∈ Qtkt , ε < ε0 we can find hx1 , . . . ,h

x
K t/ε

∈ εηα(λ)

disjoint horizontal (and, respectively, vertical) paths contained in Rh
t,1/3(x) (R

v
t,1/2(x))

such that properties (a.2)–(g.2) of Corollary 6.4 are implied by Properties (a.1)–(g.1)
of Proposition 6.3 by considering ϒ = max{K−1, ϒ ′}. ��
We can now finally prove Theorem 2.6. Let us briefly explain how we will proceed.
We will consider rectangles Rh

t,1/2(x) whose edge proportion is fixed and for which
Corollary 6.4 ensures the existence of the sought paths. These paths are not long enough
to join the opposite sides of Rh

i , R
v
j , but the geometry of the paths is independent of

t, ε (since it depends only on the edge proportion 1/2). Thence, we will perform a
construction that will allow us to exploit such rectangles to build a grid on the whole
square Qtkt without affecting the constants and all the other properties. We introduce
some definitions in order to clarify the construction. We focus on vertical paths, since
the construction will be performed in just one direction (the other following in the
same way).

Definition 6.5 Let R be a rectangle and h, v be a horizontal and vertical path in R
connecting opposite sides of R in the respective directions. Let x ∈ η ∩ R. We adopt
the following terminology:

– We say that a point x lies below h in R (and we write x �R h) if any path in η∩ R
that links x to the top of R intersects h;

– We say that a point x lies above h in R (and we write x �R h) if any path in η∩ R
that links x to the bottom of R intersects h;

– We say that a point x lies on the left of v in R (and we write x �R v) if any path
in η ∩ R that links x to the right of R intersects v;

– We say that a point x lies on the right of v in R (and we write x �R v) if any path
in η ∩ R that links x to the left of R intersects v;
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Fig. 7 The notation adopted in
the proof of Theorem 2.6. Here
are depicted the sets Vε(vij ), and
Vε(h j ) for i = 1, 2
j = 1, . . . , M

Proof of Theorem 2.6 Letϒ,α0, λ0 be given by Corollary 6.4. Fix α, λ satisfying (2.6),
let t > 0. Then, for almost all realizations we can find ε0 such that, if ε < ε0,
the existence of paths in Rh

t,1/2(x), R
v
t,1/2(x) is guaranteed for x ∈ Qtkt , according to

Corollary 6.4.We set the notation with the aid of Fig. 7. Consider, for instance, the first
square Qt

1,1 on the bottom-left corner corner. Consider the three rectangles depicted
in Fig. 7 with edges proportion of 1/2, namely the vertical one on the bottom left
Rv
bl ⊂ Qt

1,1, the horizontal one on the top Rh
top ⊂ Qt

1,1 and the vertical one on the

top right Rv
tr intersecting Rh

top and the adjacent square Q
t
2,1. Each of them contains at

least Mε,t ≥ ϒ t
ε

paths satisfying properties (a.2)–(g.2) of Corollary 6.4 relatively to
their own rectangle. Now, we label these paths from the

h1, . . . hM ∈ Rh
top, v11, . . . v

1
M ∈ Rv

bl , v21, . . . v
2
M ∈ Rv

tr ,

with the shorthand M = Mε,t . Now, the strategy is to join them and then, refine the
family in a way that all the properties (a)–(g) are ensured.

Consider a generic v1j . Let R = Rv
bl∩Rh

top, R̃ = Rv
tr∩Rh

top.We define the following
path (see for instance Fig. 8).

p j :=
{
x ∈ v1j : x �R hM− j

} ∪ {y ∈ hM− j : v1j  R y  R̃ v2j
} ∪ {x ∈ v2j : x �R̃ hM− j

}

Note that p j is a path which has the same starting point than v1j and the same ending

point of v2j . Moreover, with this definition we note that

dist(p j ,p j+1) > 3λε.
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Fig. 8 The paths p j in the box R built in the proof of Theorem 2.6. Again, we are depicting the Voronoi
cells of the paths Vε(·)

Indeed, suppose that for some (y j , y j+1) ∈ p j × p j+1 we have

|y j − y j+1| ≤ 3λε.

Then, one of the following is necessarily in force

(I) y j ∈ hM− j and y j+1 ∈ v1j+1;

(II) y j ∈ hM− j and y j+1 ∈ v2j+1;

(III) y j ∈ v1j and y j ∈ hM− j−1;

(IV) y j ∈ v2j and y j ∈ hM− j−1.

The other possibilities are ruled out by the fact that

dist
(
v1j , v

1
j+1

)
> 3λε, dist

(
v2j , v

2
j+1

)
> 3λε, dist

(
hM− j ,h1M− j−1

)
> 3λε.

Now, case (I) cannot be attained since it would imply y j+1 �R hM− j−1 and thus,
hM− j would get too close to hM− j−1. Analogously for case (II), since we would have
y j  R̃ v2j and thus, v2j would get close to v2j+1. The other cases follow the same line.
In particular, none of them can be achieved and thus, we must get that

dist(p j ,p j+1) > 3λε.

By applying this construction, we can prolong v1j a bit outside Q
t
1,1. If we shift this

construction and we repeat it, we can extend each path further until we reach Qt
kt ,1

.
In this way, we are able to obtain a family of Mε,t paths in each rectangle Rv

j (t).
By exploiting the same argument, with the required modification we also obtain the
horizontal paths. This produces a family of vertical and horizontal paths Gε,t which
satisfies properties (a), (b), (c), (f) and (g) (from the validity of properties (a.2), (b.2),
(c.2), (f.2) and (g.2) of Corollary 6.4). Property (e) instead follows by the previous
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argument and the care adopted to junction the paths. It remains to show that they also
meet the requests of property (d). Up to discarding some paths (operation that never
affects the other properties), we can ensure that Mε,t ≤ ϒ t

ε
. Moreover, each vim∩Qt

i, j
(as well as the vertical ones) is the junction of a finite number (independent of t, ε) of
paths of length satisfying (6.3). Therefore, up to increase a bit ϒ (but independently
of t, ε) we can guarantee that property (d) is in force. This concludes the proof. ��
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