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Chapter 1

Introduction

This Thesis contains new results concerning the Cauchy problem of the following dispersive partial differ-
ential equations arising in fluid dynamics under space periodic boundary conditions:

1. The compressible Euler-Korteweg system in (1.0.2) on T¢;
2. The Quantum Hydrodynamics equations in (1.0.2) with K (p) = % on d-dimensional irrational tori;

3. The Gravity-Capillary water waves equations for bi-dimensional fluids with constant vorticity in
(1.0.3).

As we shall describe later, these three systems of equations can be written as dispersive Hamiltonian quasi-
linear PDEs of the form

T¢.=R%/272%, deN  (1.0.1)

O = Lu+Pu), u=u(tx), (tz)cl0,T]x T,
u(0,2) = ug(x) € H*(T?),

where £ is an unbounded linear operator with purely imaginary spectrum, P is a nonlinear function of a
complex unknown u and its derivatives (up to the same order of £), vanishing quadratically at v = 0, and

H (T = {u(@) = D e ful2i= Y fusPG)* < +oo}, () = max{1,]j]}

jeza jez

is the Sobolev space of regularity s.
In this Thesis we shall consider the following dynamical questions:

* Local well-posedness: Given an initial datum uy € H*(T%) (with s larger than some 5) determine if
there exists a positive time T}, > 0 and a unique local, classical solution u(t,z) € C([0, Tioc); H*(T%))
of (1.0.1);

* Long time existence: For any initial datum wug(x) satisfying ||ug||gs < € < 1 (with s larger than
some ) determine if the solution (¢, x) of (1.0.1) exists and remains small for a long time 7. > Tj,c,

improving the local well-posedness time of existence which, for small € > 0, is of size Tjoc ~ £ '

« Almost global existence: For any N € N prove that the time of existence is of order T, ~y ¢~V

taking s larger than some 5 depending on V.

The results of the present Thesis concern:
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1. Local well posedness of the compressible Euler-Korteweg system (1.0.2) on T¢;
2. Long time existence of the Quantum Hydrodynamics equations;

3. Almost global existence of Gravity-Capillary water waves equations with constant vorticity (1.0.3).

More precisely the main results of the present Thesis are the following:

1. Local well posedness of the Euler-Korteweg equations on T ([32], Chapter 2): We prove a local
well-posedness result for the compressible, irrotational Euler-Korteweg (EK) system

Op + div(pd) =0
Qi+ @ - Vi + Vy(p) = V(K(p)Ap+ $K'(p)|Vp[?) i@ =V, (1.0.2)
p(0,2) € H*(T9), $(0,z) € H*(T?)

where s > % + 2 (Theorem 1.1.1). This is the natural minimal regularity assumption for the quasi-
linear PDE (1.0.2).

2. Long time stability for Quantum Hydrodynamics (QHD) system ([74], Chapter 3): In case

K(p) = g k€ RT,

system (1.0.2) is studied in the context of Quantum Hydrodynamics. We consider (1.0.2) on irrational
d-dimensional torus "]I‘ff in (1.1.6) (d = 2,3) and we prove, for almost all v, the long time stability
Theorem 1.1.2 which states that if the initial datum ||po|| s + ||¢0|| s < € < 1 is small for a large
enough s >> 1, then the solution remains of size € up to a time

P 1
1. > ¢ L log_d_2 (1 + 51*d) > Toe ~ e L.

3. Almost global existence of gravity-capillary water waves equations with constant vorticity ([33],
Chapter 4): We prove the almost global in time existence Theorem 1.1.3 of small amplitude space
periodic solutions of the 1D gravity-capillary water waves equations with constant vorticity

om = G + ymme

1 (1.0.3)
O = —gn — 51/’323 +

1 (nete + G(n)¥)?
2 1+n2

KOy [Ll} + s + 78;1G(77)¢7
(1+n3)e

where G(n) := G(n,h) is the Dirichlet-Neumann operator with depth h (see (4.1.3)).

In particular we prove that for any value of gravity g > 0, vorticity v € R and depth h € (0,400
and any surface tension x > 0 belonging to a full measure set, for any N € N, any small initial data

0l v+ ol g < &
with s > 1 give rise to solutions 7(t),%(t) which remain of size ~ ¢ up to a time T, > ¢~ V~1,
namely

. —N—1
sup (0l 1 +0@) . .1 Se with T Ze "
te[~T., Tz By H A :

The main focus of this Thesis is the proof of the almost global in time existence theorem, Theorem 1.1.3,
which can be found in Chapter 4. In this introduction, we will place a greater emphasis on explaining this
result, examining related literature, and discussing the key concepts and techniques used in its proof.

In the next section we will provide the precise statement of the results.
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1.1 Main Results

In this section, we provide a detailed explanation of the results including comments on any new or notewor-
thy aspects.

1.1.1 Local well-posedness of the Euler-Korteweg equations on T¢

In [32] we consider an initially irrotational velocity field that, under the evolution of (1.0.2), remains irrota-
tional for all times. An irrotational vector field on T¢ can be written as (Helmholtz decomposition)

i=&t)+ Ve, &t)eR?, E(t):@jr)d/ ddx, (1.1.1)
Td

where ¢ : T? — R is a scalar potential. By the second equation in (1.0.2) and rot i = 0, we get

1 1 1
Hit) = ——— [ @ -Vide = —— [ —=V(i)dz=0 = &t) =20
) =~z |1 Viide = g [ =5 V(iP)da elt) = e(0)
is independent of time. The (EK) system (1.0.2) is Galilean invariant: if (p(¢,x), (¢, z)) solves (1.0.2) then
pe(t,z) = pa(t,x + ct), uxt,x) =u(t,x+ct)—¢

solve (1.0.2) as well. Thus, regarding the Euler-Korteweg system in a frame moving with a constant speed
¢(0), we may always consider in (1.1.1) that

i=Ve¢, ¢:T?—R.

The Euler-Korteweg equations (1.0.2) read, for irrotational fluids,

{6tp+div(,ov¢) =0 112)

d+ 5|VoI2 + g(p) = K(p)Ap+ 5K (p)|Vpl|>.

Our main contribution is the following local well posedness result for the solutions of (1.1.2) with initial
data (pg, ¢o) in Sobolev spaces H*(T?) under the natural mild regularity assumption s > 2 + (d/2).

Theorem 1.1.1. (Local existence on T%) Let s > 2 + % and fix sg € (%, s — 2|. For any initial data
(po,d0) € H*(T4,R) x H¥(T,R) with po(z) >0, VzeT?,
there exists T := T'(||(po, $0)||sg-+2, ming po(z)) > 0 and a unique solution (p,$) of (1.1.2) such that
(p,9) € CO([—T, T], H*(T% R) x HS(Td,R)> not <[—T,T],Hs_2(’]1‘d,R) x HS—Z(Td,R))

and p(t,z) > 0 for any t € [—=T,T|. Moreover, for |t| < T, the solution map (po,do) — (p(t,-), d(t,-)) is
locally defined and continuous in H*(T¢,R) x H*(T% R).

The proof of Theorem 1.1.1 is the content of Chapter 2 and is summarized in Section 1.2.1. Here are
some comments about it:
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» Regularity: The velocity field v = V¢ belongs to the Sobolev space H*~!(T¢;R%). In view of the
Sobolev embedding H?(T%R) < L>®(T%R), o > 4, the restriction s > 2 + ¢ is the minimal
Sobolev regularity which guarantees that the velocity field v is Lipschitz. The Lipschitz regularity of

v allows to define in classical way the fluid particles flow

{X(t,x) = o(t, X (t,2))

1.1.
X(0,7) =x € T (1.13)

* Hamiltonian structure: Equations (1.1.2) are the Hamiltonian system generated by the Hamiltonian
function

1 1
H(p,¢) = /T 3PIVel* + S K(p)[Vol* + Glp) dx (1.1.4)

where G(p) is a primitive of g(p), i.e. G'(p) = g(p); this means that equations (1.1.2) can be written

p\ . (V,H /0 1Id
(8= (). e (5 1), 015

where (V,H,V ,H) denote the L?-gradients of H (p, ¢). The Hamiltonian form, as given in equation
(1.1.5), plays a significant role in the local and long time behavior of system (1.1.2). Even though it is
not explicitly used, some crucial algebraic properties of the para-linearized system are consequences
of the Hamiltonian structure.

* Extended life span: We do not know if the local solutions provided by Theorem 1.1.1 are global in
time or not. In a forthcoming paper [103], we shall prove a set of long time existence results for the
(EK)-system in 1-space dimension, in the same spirit of Theorem 1.1.3- [33].

1.1.2 Long- time stability of QHD system

In [74] we consider the quantum hydrodynamics system on an irrational torus of dimension 2 or 3
Op = —mA¢ — div(pVe)

K
Ohp=—35Vo|* — glm+p) + ——Ap 5IVol,

&k (QHD)
m+p 2(m+ p)

wherem > 0, k > 0, the function g belongs to C*°(R;R) and g(m) = 0. The function p(t, ) is such
that p(t,x) +m > 0 and it has zero average in x. The space variable = belongs to the irrational torus

T¢ .= (R/2r1Z) x --- x (R/2m4Z),  d=2,3, (1.1.6)

with v = (v1,...,14) € [1,2]%. System (QHD) is a particular case of (1.0.2) when K (p) = % and
p ~ p+m. We assume the strong ellipticity condition

g'(m) > 0. (1.1.7)

We consider an initial condition (pg, o) having small size ¢ < 1 in the standard Sobolev space
H#(T%) with s > 1. Since the equation has a quadratic nonlinear term, the local existence theory
(which may be obtained in the spirit of [32, 72]) implies that the solution of (QHD) remains of size ¢
for times of magnitude O(¢~!). The aim of our work [74] is to prove that, for generic irrational tori,
the solution remains of size ¢ for longer times.
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For ¢ € H*(T¢) we define

1

¢ := ———
09 (2m)dvy -1y

/¢(x)dx, g :=id — M. (1.1.8)
Td

Our main result is the following.

Theorem 1.1.2. Let d = 2 or d = 3. There exists so = so(d) > 0 such that for almost all v € [1,2]¢,
forany s > so, m > 0, kK > 0 there exist C' > 0, g9 > 0 such that for any 0 < € < gg we have the
following. For any initial data (po, o) € H§(T2) x H*(T2) such that

llpoll g7+ ey + My ol =gy < e (1.1.9)
there exists a unique solution of (QHD) with (p(0),$(0)) = (po, Po) such that
(p(t),6(1)) € CO([0,12); H*(Ty) x H*(Ty)) (CH([0,12): H*2(T5) x H**(T})),

P S 1
S[UIT) : (HP(t7')HHS(Tg) + HH(J)_¢(t7')HHS(']I‘§)> < Ce, T.>¢ T dTlogmd72 (14em-2).
t€[0,7-
(1.1.10)

The proof of Theorem 1.1.2 is the content of Chapter 3 and is summarized in Section 1.2.2. Here are
some comments about it:

* Madelung transform: System (QHD) is equivalent via the so-called Madelung transformation

-
¥ = /mT pe 2R (1.1.11)

to the following semi-linear Hamiltonian Schrédinger equation
(B 1
o =i(506 = po(ve) . hi=2vr

* Linear frequencies: Thanks to (1.1.7), the linearized system near the equilibrium (p,¢) = (0,0) is a
superposition of infinitely many harmonic oscillators with frequencies

. 2, . L .
w(j) = \/4113 +mg'@)lj12, il =) adiel®, ac=vi, VieZ'\{0}. (1112
=1

* Normal form and quasi-resonances: The proof of Theorem 1.1.2 relies on Birkhoff normal form
ideas and absence of three wave resonances

w(j1) £ w(jo) £ w(jz) # 0 for almost every v € [1,2]%. (1.1.13)

The main obstacle to Birkhoff normal form are the presence of bad lower bounds of the three wave
interactions, namely

1

w(j1) tw(jo) tw(s)| = 1.1.14

ol30) £ i) 2wl 2 e (1.L1%
where pq := max{|ji|,|j2l, 73|}, ps = min{|j1],|72],|s3|} and some constant M (d) > 0. The
lower bound in (1.1.14) allows a loss of derivatives with respect to the highest index 1. This loss of
derivatives may be transformed in a loss of length of the lifespan following the ideas first introduced
by Delort [56] and Ionescu-Pusateri [87]. For this reason we do not obtain the ¢ 2 life span which
one expects from (1.1.13);
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« The square torus case: If we consider the system (QHD) with = belonging to a square torus T¢, then
the corresponding linear frequencies w(j) (in (1.1.12) with v; = -+ = ) satisfy a good separation
property and one can prove that an improved lower bound

w(in) £ - £ wlip)l 2 57y (1.1.15)
H3

holds for any p > 3, for almost every mass m > 0 and 3 := maxs{|ji|,...|jp|} is the third largest

index among {|j1|,...[jp|}. Having (1.1.15) one can prove an almost-global stability result as in
[15, 19] using also the Hamiltonian structure of the system.

* Recent new developments: We point out that our result has inspired recent new developments by
Bambusi-Feola-Montalto [18]. They have achieved an almost global in time existence result, with a
time of existence 1, ~ €~ for any r > 1, for several Schrodinger type equations, including equation

(QHD).

1.1.3 Almost global existence for Gravity-Capillary water waves equations with constant
vorticity

We consider the Euler equations of hydrodynamics for a 2-dimensional perfect, incompressible, inviscid
fluid with constant vorticity -, under the action of gravity and capillary forces at the free surface. The fluid
fills an ocean with depth h > 0 (eventually infinite) and with space periodic boundary conditions, namely it
occupies the time dependent region

Dy :={(z,y) e TxR : —h <y <n(tz)}. (1.1.16)
We refer to Appendix C for a rigorous derivation of the equation of motions and we describe here its main

aspects. In case of a fluid with constant vorticity v, — u, = v € R, we express the velocity field, (v) as

7Y
0

field, expressed as the gradient of a harmonic function @, called the generalized velocity potential:

i=(4)= (W) +ve

Denoting by v (t,z) the evaluation of the generalized velocity potential at the free interface 1 (t,x) :=
®(t,n(t,x)), one recovers ® by solving the elliptic problem

the sum of the Couette flow , which carries all the vorticity v of the fluid, and an irrotational vector

A®=0in D,, ®=1 at y=n(t,z), ®,=0 as y— —h. (1.1.17)

The third condition in (1.1.17) is the impermeability property of the bottom and means that fluid particles can
not cross the bottom. At the moving free surface y = n(t,x) we impose the so-called kinematic boundary
condition

v=mn +un, aty=n(tx). (1.1.18)

Another boundary condition is a balance law for the pressure at the free surface y = 7(¢,x) and means that
the difference between the internal pressure of the fluid and the atmospheric pressure is compensate by the
surface tension:

P=P—k - aty = n(t,x).
Vi+tnz ),
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The problem can be described by a closed system for the two time dependent functions 7(t,x), ¥ (t,x):

om = Gy + yme

2
o) = —gn — %wﬁ, 4L (122 + G(N)Y)

2 1+n2

(1.1.19)

N 1
+ KOy [(1%—77227)} + e + 0, " G(n)p,

N

where g > 0 is the acceleration due to gravity, k > 0 is the surface tension coefficient and G(7) is the
Dirichlet-Neumann operator

G = (= Puny + Py)ly—p(a) - (1.1.20)

The linearized Dirichlet-Neumann operator is given by the Fourier multiplier

D h— 1
Gy =4 P! oo where D := -0, (1.1.21)
Dtanh(hD) 0<h < +00 1

Since the variable (¢, x) is the trace at y = 7(t,x) of the potential ®(z,y), it is defined up to a constant.
As a consequence (1.1.19) depends only on ¢ — i fT 1dx. For this reason we consider v belonging to the
homogeneous Sobolev space

A (TyR) =T (TR ~vhy = 1 —gp=ceR.

Moreover the mass

/n(t,x)dx (1.1.22)
T

is constant along the evolution of (1.1.19) and is not restrictive to fix it to be zero. For this reason we
consider the variable 7(¢,z) in the Sobolev space of zero mean functions

Hy(T:R) = {n e (TR): [

n(t,z)dx = 0}. (1.1.23)
T

Our main contribution is the following:

Theorem 1.1.3. (Almost global in time gravity-capillary water waves with constant vorticity) For any
value of the gravity g > 0, depth h € (0,400] and vorticity v € R, there is a zero measure set K C (0,400)
such that, for any surface tension coefficient k € (0,4+00) \ I, for any N in Ny, there is so > 0 and, for
any s > sg, there are g > 0,c > 0,C > 0 such that, for any 0 < € < &g, any initial datum

(0 60) € Hy " (LR) x H'THTR) with ol oy +I1doll oy <,
0
system (1.1.19) has a unique classical solution (n,1)) in
C‘J([—Ta,Tg],HS%(T,R) X Hs’i(T,R)) with T, > ce N1, (1.1.24)
satisfying the initial condition 1=y = 1o,V |i=0 = Yo. Moreover
P (Il oy + 190 -g) < Ce (1.1.25)
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The proof of Theorem 1.1.3 is the content of Chapter 4 and is summarized in Section 1.2.3. Here are
some comments about it:

1. HAMILTONIAN AND TRANSLATION INVARIANT STRUCTURE: By [124, 50, 45, 115] the equations
(1.1.19) are the Hamiltonian system

) = Vi H,(n,9) (0 Id
8t <¢> N J’y (VZH:(Thw)) where ']'Y T (—Id ’)/8;1) (1126)

and
H,(n,%) := ;/Tr(wG(ﬁ)¢+gn2)dx+n/Tr\/1+n§dx+;/T(—¢x772+;773)dx. (1.1.27)

The L?-gradients (V, H,, V., H.,) in (1.1.26) belong to (a dense subspace of) L?(T) x L2(T).
Since the bottom of D,, in (1.1.16) is flat, the Hamiltonian vector field X, defined by the right hand
side of (1.1.19), is translation invariant, namely

X, orc=10X,, VseR, where  7c: f(x) — f(z+%) (1.1.28)

is the translation operator. Equivalently the Hamiltonian H, in (1.1.27) satisfies H, o 7. = H, for any
¢ € R. By Noether theorem it induces the momentum [.)(x)7, () dz as a prime integral.

2. COMPARISON WITH [27]. We discuss the relation between Theorem 1.1.3 and the result in Berti-Delort
[27]. Theorem 1.1.3 extends the result in [27] in two ways: (¢) the equations (1.1.19) may have a non zero
vorticity, whereas the water waves in [27] are irrotational, i.e. v = 0. (22) Also in the irrotational case
Theorem 1.1.3 is new since the almost global existence result in [27] holds for initial data (79, o) even in
x, whereas Theorem 1.1.3 applies to any (1,%0). We remark that, in the irrotational case, the subspace of
functions even in x -the so called standing waves- is invariant under evolution, whereas for v = 0 it is not
invariant under the flow of (1.1.19) and the approach of [27] can not be applied here.

3. PERIODIC SETTING VS R<. In a varieties of different scenarios, global in time results [76, 120, 85, 4, 77,
82, 86, 62] have been proved for irrotational water waves equations on R for sufficiently small, localized
in space and regular enough initial data, exploiting the dispersive effects of the linear flow. So far no global
existence is known for (1.1.19) in R2, not even for irrotational fluids. The breakthrough result [62] proves
global existence in R? if v = 0. The periodic setting is deeply different, as the linear waves oscillate without
decaying in time. The long time dynamics of the equations strongly depends on the presence of N-wave
resonant interactions and the Hamiltonian and reversible nature of the equations.

4. DISPERSION RELATION AND NON-RESONANT PARAMETERS. The water waves equations (1.1.19) may
be regarded as a quasi-linear complex PDE of the form

ou = —1Q(D)u + N (u,a), u(x)= \/%Zjez\{o}uj 6ij:z:7

where N is a quadratic non-linearity and (k) is the dispersion relation

Qj(/ﬁ:) = w]‘(:‘i)—l-gg,j), wj‘</€) = \/G(j)<g+l€j2+’)ZGj(,g)>, (1.1.29)

where G(£) = [£[tanh(h|{]|) (= |€] in infinite depth) is the symbol of the Dirichlet-Neumann operator G(0).
The linear frequencies §2;(x) actually depend on (x, g,h,). The restriction on such parameters in Theorem
1.1.3 arises to ensure the absence of [V-wave resonant interactions

QJI(I{):EZEQJN(H) 750 (1130)
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(with quantitative lower bounds, see (4.1.13)) among integer indices j1,...,jny Which are not super-action
preserving, cfr. Definition 4.7.4. In Theorem 1.1.3 we fix (g,h,~) and required x ¢ K, but other choices are
possible.

5. COMPARISON WITH THE APPROACH IN [58, 59] AND [27]. The Hamiltonian approach to para-
differential calculus in [58, 59] is developed for quasi-linear Klein-Gordon equations and can not be applied
to prove Theorem 1.1.3. Indeed for Klein-Gordon equations it is not required a reduction to z-independent
para-differential operators up to smoothing remainders, since the dispersion relation is asymptotically linear.
In this case, since the commutator between first order para-differential operators is still a first order para-
differential operator, it is possible to implement a Hamiltonian Birkhoff normal form reduction in degrees
of homogeneity, similarly to the semi-linear case. This approach can not be applied for (1.1.19) since its
dispersion relation (1.1.29) is super-linear. It is for this reason that we shall reduce in Proposition 4.7.2
the para-linearized water waves equations to z-independent symbols up to smoothing remainders. This was
done in [27] for v = 0 (in a different way) but breaking the Hamiltonian structure. Incidentally we mention
that the para-differential normal form in [27] is not a Birkhoff normal form: for standing waves it is not
needed to reduce the z-independent symbols to Birkhoff normal form to deduce that the actions |u,|? are
prime integrals. Summarizing, the proof of Theorem 1.1.3 demands

* a reduction of the water waves equations (1.1.19) to para-differential z-independent symbols up to
smoothing remainders, done in [27] for v = 0 (in a different way) losing the Hamiltonian structure,
and, additionally, reduce the x-independent symbols to super-action preserving Birkhoff normal form;

* preserve the Hamiltonian structure of the Birkhoff normal form, goal achieved in [58, 59] but only for
Klein-Gordon equations.

The resolution of these requirements is a main achievement of our work.

1.1.4 Historical background of water waves

The study of the time evolution of water waves is a classical question, and one of the major problems in
fluid dynamics. The very first attempt at a theory of water waves finds its origin in the Principia of Newton
in the second half of the seventeenth century, but another century is needed for the foundational works by
giants such as Euler, Laplace, Lagrange, Cauchy, Poisson, Bernoulli, and then by the British school with
Russel, Robinson, Green, Airy, Stokes among others. We refer to the historical overview in [48]. We will
now provide an overview of some recent and past findings.

Local Well-posedness. First results on the local existence of solutions to the initial value problem of the
pure gravity water waves equations within a Sobolev class can be traced back to the pioneering works
of Nalimov [104], Yosihara [122], and Craig [49], who studied the problem in one space dimension and
under smallness assumptions on the initial data. For large Cauchy data, local existence in infinite depth
has been proved by S. Wu in the breakthrough works [117] and [118] for 3D fluids. The similar question
for a variable bottom in any dimension has been solved by Lannes [92], see also [93]. The case of local
existence for the free surface incompressible Euler equation has been settled by Lindblad [95]. Arbitrary
bottoms have been considered by Alazard, Burq and Zuily [3] for rough initial data. Concerning the case of
positive x, local existence of solutions with data in Sobolev spaces is due to Beyer and Gunther [35], Ming-
Zhang [100], Coutand- Shkroller [46] and Shatah-Zeng [111, 112], for solutions of the incompressible free
boundary Euler equation. Ifrim and Tataru [84] studied local existence when the pure gravity fluid has
constant vorticity. The local existence problem with Cauchy data that are periodic in space, instead of lying
in a Sobolev space on R?, has been established in Ambrose-Masmoudi [7] for x > 0 in the case of infinite



14 CHAPTER 1. INTRODUCTION

depth, and by Schweizer [109] for finite depth, even with a non zero vorticity. Non-localized Cauchy data
lying in uniformly local spaces have been treated by Alazard, Burq and Zuily, in the case of arbitrary rough
bottoms [2, 3]. Thanks to all the contributions mentioned above, the local well-posedness theory is presently
well-understood in a variety of different scenarios.

Global in time existence results on R?. For initial data on the line which are sufficiently small, smooth
and decaying at infinity, global existence results have been proved exploiting the dispersive properties of
the flow. All the results we are aware of concern irrotational flows. The first contribution has been given
by S. Wu [119] for a two dimensional fluid of infinite depth, proving that the solutions of the water waves
equations with £ = 0 exist over a time interval of exponential length e“/¢ when the size ¢ of the initial data
goes to zero. For three dimensional fluids, global existence with small decaying data has been obtained
independently by Germain, Masmoudi and Shatah [76] and by S. Wu [120]. Global existence for small
data in one space dimension has been proved independently by Ionescu and Pusateri [85], Alazard and
Delort [4] and by Ifrim and Tataru [82], for infinite depth fluids. For the capillary-gravity irrotational water
waves equations global existence is known for three dimensional fluids in infinite depth by Deng, lonescu,
Pausader and Pusateri [62], the problem in 1D is still open. When the surface tension is positive, but the
gravity g vanishes, global solutions in infinite depth fluids have been proved to exist by Germain, Masmoudi
and Shatah [77] in dimension 2 and by Ionescu and Pusateri [86] in dimension 1.

Periodic and quasi-periodic solutions. For non-localized initial data, oscillation does not produce decay,
resulting in a lack of global in time existence results. Despite this, several global space periodic and quasi-
periodic solutions are known for water waves. One of the most well-known examples is the Stokes wave,
which is a one dimensional traveling steady periodic wave. There is a huge literature about Stokes waves
and we refer the interested reader to [44] for a more detailed explanation. Here we only mention that, after
the pioneering work of Stokes [114], the first rigorous construction of small amplitude space periodic steady
traveling waves goes back to the 1920’s with the papers of Nekrasov [105], Levi-Civita [94] and Struik [113]
for irrotational pure gravity waves. We also mention Zeidler [126] in which traveling waves are constructed
in presence of the effects of capillarity and Wahlén [115], Martin [97] for constant vorticity fluids. Another
class of solutions of water waves are known as periodic standing waves, which are periodic solutions that
are even in both space and time. These solutions were constructed by Plotnikov-Toland in [106] and Iooss-
Plotnikov-Toland in [88] for irrotational gravity waves and by Alazard-Baldi in [1] for irrotational gravity-
capillary waves. Finally, we mention that quasi-periodic solutions have been constructed for water waves in
[34, 14, 31, 69] using KAM techniques.

For the general Cauchy problem of water waves with periodic boundary conditions, as previously mentioned,
there are no dispersive effects that can be used to control the solutions for all times through decay over time.
Additionally, the quasi-linear nature of the equations prevents the use of semi-linear techniques. To study
the long time dynamics of water waves we implement normal form methods. Before discussing the general
principles of Birkhoff normal form method we briefly mention some recent findings about the long time
existence for water waves.

Long time existence of water waves. For initial data of size € we indicate below with 7T the corresponding
maximal time of existence and we outline different long time existence results proved in literature for space
periodic water waves, with or without capillarity and vorticity.

(i) T. > ce~!. The local well posedness theory for free boundary Euler equations has been developed
along several years in different scenarios in [104, 122, 49, 117, 118, 92, 2, 3, 35, 100, 109, 95, 46,
111, 112, 84, 7]. As a whole they prove the existence, for sufficiently nice initial data, of classical
smooth solutions on a small time interval. When specialized to initial data of size € in some Sobolev
space, imply a time of existence larger than ce~! (the non-linearity in (1.1.19) vanishes quadratically
at zero). We remark that other large initial data can lead to breakdown in finite time, see for example
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the papers [43, 47] on “splash” singularities.

(i1) T, > ce~2. Wu [119], Ionescu-Pusateri [85], Alazard-Delort [4] for pure gravity waves, and Ifrim-
Tataru [83], Ionescu-Pusateri [86] for k > 0, g = 0 and h = +o0, proved that small data of size
¢ (periodic or on the line) give rise to irrotational solutions defined on a time interval at least ce 2.
We quote [84] for k = 0, g > 0, infinite depth and constant vorticity, [80] for irrotational fluids, and
[79] in finite depth. All the previous results hold in absence of three wave interactions. Exploiting
the Hamiltonian nature of the water waves equations, Berti-Feola-Franzoi [28] proved a ce~2 lower
bound for the time of existence. The interesting fact is that in these cases three wave interactions may
occur, giving rise to the well known Wilton ripples in fluid mechanics literature. We finally mention
the e~ 3+ long time existence result [87] for periodic 2D gravity-capillary water waves.

(ii7) T- > ce—3. A time of existence larger than cz~3 has been recently proved for the pure gravity water
waves equations in deep water in Berti-Feola-Pusateri [29]. In this case four wave interactions may
occur, but the Hamiltonian Birkhoff normal form turns out to be completely integrable by the formal
computation in Zakharov-Dyachenko [125]. This result has been recently extended by S. Wu [121]
for a larger class of initial data, developing a novel approach in configuration space, and, even more
recently, by Deng-Ionescu-Pusateri [63] for waves with large period.

(iv) T. > cne ™ for any N. Berti-Delort [27] proved, for almost all the values of the surface tension
k € (0,400), an almost global existence result as in Theorem 4.1.1 for the solutions of (1.1.19) in
the case of zero vorticity v = 0 and for initial data (19, 1)o) even in x. The restriction on the capillary
parameter arises to imply the absence of N-wave interactions, for any N. In [31] we prove Theorem
1.1.3 which extends the result of Berti-Delort to general periodic initial data (not only even in x) and
for general constant vorticity v € R (not only v = 0).

1.1.5 Birkhoff normal form

In the last years several authors investigated whether there is a stable behavior of solutions of small am-
plitude for several dispersive equations with periodic boundary conditions. Except for very specific PDEs,
which are integrable, the most general and effective approach appears to be the Birkhoff normal form one.
Here we outline the main concepts and challenges involved in implementing this technique.

eljx

Notation: Let (Z) be a couple of complex functions. We expand u(x) using the Fourier basis Norda

u(z) =) ul , where u] :=u; = —— [ u(x)e x 1.
= 7o J J 2w Jr
and the function @(z) using the Fourier basis e\;;i: as
efijac o
u(x) = Zu;ﬁ, where u; = u;. (1.1.32)

JEZ
The aim is to study the long time dynamics of the Hamiltonian PDE

VeH(uT
o, <Z> = Xp(u) where Xp(u) ::(ilqu(&‘ul;)» (1.1.33)
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and, for simplicity’s sake, we assume that H is a real valued polynomial Hamiltonian function of the form

H(u,w) = HY(u, 1) + H® (u,7) + --- + HM (u,7) (1.1.34)
where:
e The quadratic Hamiltonian H (%) has the form
Dw,m) =Y Q>j)ua, (1.1.35)
jezd

with dispersion relation €) : Z — R;

eForeachp=3,.... M, H (?) js a p-homogeneous Hamiltonian of the form
®) (u.7) = T15-50p, 01, 4, Op -
HP (wu)= > H" Pl p=3,...M (1.1.36)
jl7"'7jP€Zd
o1, 0pE{L}
and H;?]Z" € C are complex coefficients satisfying, since H is real valued,
TP 0p _ p—Ole—0p
Hy i = Hj Gy (.1.37)

To control the solutions of (1.1.34) for small initial data ||u(0)||zs < e < 1 for long time, we want to prove
an a priori estimate of the form

()% o 0020 + / u(r) | N+ dr (1138)

which implies that
lu(t)||gs Sse, forany|t| <T.~e V.

As it will be clear in a moment, an estimate of the form (1.1.38) strongly depends on both the dispersion
relation €2(5) and on the perturbations H®) ,p =3,.... M

Birkhoff normal form for semi-linear PDEs was first developed in the foundational papers by Bambusi
[15], Bambusi-Grebért [19], Delort-Szeftel [60, 61] and Bambusi-Delort-Grebért-Szeftel [17]. Below we
describe some aspects of that theory in a simplified setting.
Translation invariant Hamiltonian: We assume that the Hamiltonian H is invariant by translation, namely

H(u(-+7),u(-+ 7)) = H(u,u) forany 7 € R.
This property leads to the following Fourier restriction: for each homogeneous component H ), one has

;‘11 3?#0 = ot +opjp=0. (1.1.39)
An immediate consequence of (1.1.39) is that, on the support of each homogeneous components H (P, one
has

max{|ji|,...,[Jp|} ~ maxa{|ji],...,|jpl} (1.1.40)
where maxa{|j1],...,|jp|} is the second largest number among {|j1],...,|jp|}-
Semi-linear Hamiltonian: We assume that the p-homogeneous Hamiltonian H®), p = 3,..., M, are semi-
linear, namely we require that its coefficients satisty, for some p,C' > 0

|H 7]p|<C’maX3{|‘71| Sldpl}t, forany ji,...,jp € Z,01,...,0p € {£} (1.1.41)
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where maxs{|j1],...,[jp|} is the third largest number among {|j1],...,|jp|}. We denote the space of p-
homogeneous semi-linear Hamiltonian functions as PS.

In view of the restrictions (1.1.39) and (1.1.40), one can prove that if H () is a semi-linear Hamiltonian
then an important consequence of (1.1.41) is that the Hamiltonian vector field X ;(,) (defined as in (1.1.33))
is bounded on Sobolev spaces and there is sg > 0 such that for any s > s one has

1X o (w, ) e S Nall al - (1.1.42)
Symplectic structure of the phase space: On the phase space we define the standard symplectic 2-form
Q. [ (“) , <”) } = / i(u(z)v(x) — a(z)o(z)de =1 (uv; — wyv;). (1.1.43)
u v Td =

The standard symplectic 2- form characterizes the Hamiltonian vector field Xz in (1.1.34), associated
to the Hamiltonian H, as

artun (0)] = [xuw. ()], xut = (o). anan

The symplectic 2-form induces the following Poisson bracket: given two Hamiltonian functions H and
G we define

{H,G} :=dH|[X¢) = Qc[Xu, Xc] = Z i(@iTjHaujG — Oy, FOz:H). (1.1.45)
jezd
A diffeomorphism ¢ : L? — L? is symplectic (or canonical) if
¢ Qe = Qc[do]-],do[]] = Qe. (1.1.46)

If ¢ is symplectic and u solves the Hamiltonian system (1.1.33) then the variable v = ¢~!(u) solves the
Hamiltonian system (see e.g. Lemma 4.3.15)

0 =Xg(v), H(v)=Hogp). (1.1.47)

In other words, a symplectic change of variable preserves the Hamiltonian structure of the equations.

Hamiltonian structure in Fourier coordinates: The Hamiltonian system (1.1.33) can be written in Fourier
coordinates as

Uj = —i(%].H(u,ﬂ)
= —iQ(j) — 10, H® (v, @) — - — 10, H™ (u, 7).

If H® is the quadratic Hamiltonian as in (1.1.36) and G (P) has the expansion

TR D DI A (1149
J1serfp€ZY
01,...,U:€{i}
then the Poisson bracket reads
{(H?,GP} = N i Q) +- + apQjp) I TP Y (1.1.49)
J1yeeerfip EZE

Ulu--'7ape{:|:}
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Moreover it is not difficult to prove that if G®) e 73]9 and F(@) ¢ 738 for some p,q > 3 then
{GW) F@)} ¢ 7329%72. (1.1.50)

The Birkhoff normal form reduction: The unperturbed system generated by the quadratic Hamiltonian
H® is made by infinitely many decoupled harmonic oscillators with frequencies given by the dispersion
relation j +— €(j). For this reason, since the quadratic Hamiltonian preserves all Sobolev norms and in
view of the semi-linear estimate (1.1.42) for the perturbation H =3 .= H®) 4 ... 4 HM) 3 small solution
u of (1.1.34) satisfies

d
Glulle = [ 1DF Xy () D ade 5. el (1151)

which leads to the energy estimate (1.1.38) with N = 1 and a control for small solutions up to the local
well-posedness time 7, ~ ¢~ 1.

The idea of Birkhoff normal form is to look for a change of variables that removes iteratively, when it is
possible, each term of homogeneity p = 3,..., M from the original Hamiltonian (1.1.34). At each step of
the iterative reduction it is performed a change of variable of the form v = ¢! (u) where ¢ = (¢G)|r=1 1s

the time one flow of the Hamiltonian vector field generated by a suitable Hamiltonian function GG, namely
i 05(0) = Xa o ¢5(v)
P& (v) = v.

In this way, being ¢ a symplectic change of variable (see e.g. Lemma 4.3.14) and in view of (1.1.47), it is
sufficient to compute the transformed Hamiltonian H = H o ¢. We first note that

(1.1.52)

%H 095 (v) = dH(¢6(v))[Xe (6(v)] = {H,G} 0 65 (v). (1.1.53)

Then the transformed Hamiltonian has the Taylor expansion
1
Ho¢p=H+{HG}+)_ HAcl‘g;[H], where Adg|-]:={-,G}, (1.1.54)
E>2

which is an expansion in increasing degree of homogeneity if the Hamiltonian GG has at least degree of
homogeneity 3 (see (1.1.50)).

We start from p = 3 and we generate the change of variable ¢ as above with a cubic Hamiltonian
G = G®) e PY to be determined. In view of (1.1.50) and (1.1.34) we deduce that

Hi=Hop=H?+H® +{H® g} + HZY, (1.1.55)

where H(Z% contains g-homogeneous Hamiltonian in 778 with ¢ > 4. Then we remove the Hamiltonian of
homogeneity 3 by solving the homological equation

H® 4+ {H® G} =0 (1.1.56)
which, written in Fourier coordinates, reads

—i[o1Q(j1) + 02Q2(j2) + UgQ(jg)]G;‘-ll”jU;’g:‘ = H;‘f;fj;’d (1.1.57)

We can solve the above equation if the following non-resonance conditions hold:

o1Q2(j1) + 022(j2) + 032(j3) # 0. (1.1.58)
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In this case

01,02,03
01,02,03 J1,42,33
J1,32,73 _1[019(]1) + UQQ(]Q) + 0—39(]3)]

Moreover, to guarantee that the coefficients in (1.1.59) define a semi-linear Hamiltonian G®) in Pg, it is
necessary to require a strong lower bound of the form
1

o1Q(j1) + 029(j2) + 03Q(j3)| 2 — for some 7 > 0. (1.1.60)
T10) - 2802) + O8I 2 s T el Ll

Then the change of variable v = ¢~!(u) transforms the original Hamiltonian system into another Hamil-
tonian system for the variable v with Hamiltonian

Hi(v) = H(v) + HEY (v). (1.1.61)

A consequence is that the variable v fulfills the improved energy estimate

d
vl Ss ol (1.1.62)

. . ~(>
To analyze a resonant case, we iterate the above procedure to remove the quartic part of H{—4) =

H YL) + H ?5) in (1.1.61). We look for a change of variable ¢9 as the time one flow of the Hamiltonian
vector field associated to a quartic Hamiltonian G (4) and the same computation as in (1.1.47) gives that the
new transformed Hamiltonian has the form

Hy=Hio¢y=H?+HY + {(H® cWy + FF. (1.1.63)

In this case, as it will be clear in a moment, it will never be possible to remove completely the quartic part
of the Hamiltonian and the homological equation reads

E[Yl) +{H® cW} = zW (1.1.64)

where Z() is the quartic resonant Hamiltonian normal form, defined as

ovoroncs UGG A0 o1Q0) +020() +03005s) +04Q0) = 0. o
J1,32,33:74 0 otherwise
We solve (1.1.64) by defining the Fourier entries of GW as
91,92,93:74 . . . . .
01,02,03,04 __ ,i[glQ(jl)+U2gjzl(;22)7f;;g)(j3)+049(j4)} if  o19Q(j1) + 02Q(j2) + 03Q2(j3) + 04Q(ja) # 0
J1.32,38.74 :
0 otherwise.
(1.1.66)
As for the cubic case, to prove that G is a quartic semi-linear Hamiltonian in PY we need the lower bound
1
o1Q(j1) + - +042(J4) #0 = [01Q2(j1) + -+ + 04Q(Ja Z - ; . (1.1.67)
() () loué2s) IR Saases Tl

With this choice the Hamiltonian H- 9 reads

Hy = H® 4 2® 4 f5) (1.1.68)
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and, in view of the quartic estimate (1.1.42) for the vector field X 75, the dynamics of the Hamiltonian
equation

is dictated from the resonant Hamiltonian H? + Z(4) up to a time of order ~ 7.

) <Z> = Xz, (w, W)

3

We shall deal with two different types of resonant Hamiltonians:

1. Integrable Hamiltonians: For any dispersion relations j — €2(j) the integrable monomials

Jw;l?|wk* = wiwjwywy (1.1.69)
are resonant. Indeed the corresponding divisors are
Q@) - Q0) + Q(k) — Q(k) = 0. (1.1.70)

If the resonant normal form Z(®) contains only integrable monomials then its dynamics can be com-
pletely integrated using that the actions

I(w) == |w|?, (€Z (1.1.71)
are constant of motion. Indeed one verifies that
{Iy(w), |w;|*|wg|*} =0, forany ¢,5,k € Z. (1.1.72)

As a consequence, if Z(4) contains only integrable monomials, every Sobolev norm is constant along
the flow of H®) 4+ z(4),

. Super-action preserving resonances: This type of resonances arise, for example, from the interac-

tion of two or more harmonic oscillators with the same frequencies of oscillation. Typical examples
which arise in one dimensional PDEs is when the dispersion relation is even, namely Q(j) = Q(—j).
In this case, in addition to the integrable monomial (1.1.69), there are other two types of resonant
monomials of the form

wiPwrm g, wiw_jwgw_y, jk€Z (1.1.73)
with the corresponding divisors
Q>5) = Q3G) +Qk) = Q(=k) =0, Q(j) — Q—j) + k) - Q(—k) = 0. (1.1.74)

This type of monomials do not preserve the actions functionals I,(w) in (1.1.72) but they preserve the
so-called super-actions, namely

Jn(w) := |wn)? + [w_n)?,  {Jn, |wjPwr@_x} = {Jn, w0 jwp@_g} = 0, (1.1.75)

forany n € N, j, k € Z. This means that the dynamics is not completely decoupled as in the integrable
case but there can be an exchange of energy between the n-th Fourier mode and the —n-th Fourier
mode. Nevertheless, by the conservation of the super-actions, the Sobolev norms

[wlFrs =Y (n)% T (w) (1.1.76)

neN
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remains constant along the flow of the truncated Hamiltonian H(?) 4+ Z(*) and, the solution w of the
complete system

w
O <w) = Xpy@ iz (W) + Xges (w), (1.1.77)

satisfies

d - (1.1.42)
&HwH%{S = /T DI Xz (w) |IDPwdz < | Xpes (w)|lmswlns S lwlfe.  (1.1.78)
In conclusion one can iterate the procedure if:
1. NON-RESONANCE CONDITION: For any p € N one has
o1Q2(j1) + - + 0pQ(gp) #0 (1.1.79)
except to the super-action preserving resonances p = 2¢ and

QG + -+ Q00 = Qea) = - = QUp) = 0, {linls--slde} = {ldesal- - l3p}. (1.1.80)

2. STRONG LOWER BOUND ON THE SMALL DENOMINATORS: In case (1.1.79) holds one has

1
maxs{[ji],...,[Jp|}

0192(j1) + -+ + 0pQ(p)| 2 (1.1.81)

3. SEMI-LINEAR PERTURBATION: If the Hamiltonian H (P) satisfies the semi-linear bound (1.1.41) and
(1.1.81) holds then the generators GP) defined as in (1.1.59), (1.1.66) satisfy (1.1.41) as well as each
term in the expansion (1.1.54). Another important property is that the semi-linear estimate (1.1.42)
for the generator X guarantees that the flow in (1.1.52) is well-defined in Sobolev spaces and one
has

16G:(0) || s ~s [|v] s (1.1.82)

which is the fundamental property which allows to deduce (1.1.38) by (1.1.78).

Normal form for semi-linear PDEs. Concerning semi-linear PDEs the long time existence problem has
been extensively studied in literature. In addition to the previously mentioned foundational works of Bam-
busi [15], Bambusi-Grebért [19], and Delort-Szeftel [60, 61], we mention Faou-Grebért [69] regarding
Birkhoff normal form theory for reversible PDEs and the paper [17] about long time existence of solutions
for the semi-linear Klein-Gordon equation on Zoll manifolds which contains all the ideas of the preced-
ing (and aforementioned) literature. The normal form for the completely resonant nonlinear Schrédinger
equation on a torus T¢ has been discussed by Procesi-Procesi in [107]. We quote also the paper [65] by
Faou-Gauckler-Lubich about the long time stability of plane waves for the cubic Schrodinger equation T¢,
and the paper by Maspero-Procesi [98] about the stability of small finite gap solutions for the same equa-
tion on T2. In Faou-Grebért [67] is considered the case of analytic initial data and proved sub-exponential
lower bounds for the stability time of the form 7, > e'°&(1/ 9" for b > 0 for a class of Schrodinger equa-
tions on T¢. In [38], Biasco-Massetti-Procesi have improved, in the 1-dimensional case, the results in [67]
using a different Diophantine non-resonance conditions on the linear frequencies. Recently, in [24, 25],
Bernier-Grébert developed Birkhoff normal form techniques in low regularity.

All of the previously mentioned papers deal with non-resonant semi-linear problems with a strong lower
bound for the small divisors (as in (1.1.81)). For problems with weak lower bounds for the small divisors
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(as in equation (1.1.14)), partial Birkhoff normal form results are obtained in [68, 23, 87, 56] using partition
of energy ideas that will be outlined in Section 1.2.2.

In the recent paper [18], Bambusi-Feola-Montalto prove an almost global in time existence and stability
for a large class of semi-linear Schrodinger type equations on irrational tori, even in the presence of a weak
lower bound for the small divisors.

In the case that the non linearity N'(u,u) = X ;>3 contains derivatives of u, if one would follow the
strategy used in the semi-linear case, one would end up with only formal results in the sense that the change
of coordinates would be unbounded. In this direction we quote the early paper concerning the pure-gravity
water waves equation by Craig-Worfolk [52].

Quasi-linear Hamiltonian PDEs: For quasi-linear Hamiltonian systems, as the water-waves system (1.1.19),
the semi-linear estimate (1.1.41) does not hold and has to be replaced by an estimate of the form

|H;‘11,77’]Zp’ < Cman{’jﬂ, KRR |jp|}“ma’x{|jl|a (R |]p|}m (1183)

for some loss of derivative m > 0. We shall say that H®) ¢ Pp" meaning that is a p-homogeneous
Hamiltonian with estimate (1.1.83). As a consequence the semi-linear approach leads only to a formal
results for the following reasons:

1. LACK OF TRIVIAL LOCAL WELL-POSEDNESS: The starting point of the Birkhoff normal form re-
duction is the estimate (1.1.51) which allows to construct the solutions at least locally in time. For
quasi-linear PDEs, and especially for water-waves, also the local well-posedness estimate (1.1.51) is
far to be trivial and typically requires to write the water waves system using coordinates which are not
standard Darboux coordinates;

2. FORMAL CHANGE OF VARIABLE: If the perturbation H (") that we want to remove is in Py for some
m > 0 then, in general, the generator G®) is in 7717,”/ for some m’ > m. Then the associated flow

7, which is in general not well-defined, is not a good change of variable in H*;
3. FORMAL TRANSFORMED HAMILTONIAN: If (51 is in Pyt and Gy isin P,'? then in general
{G1,G2} € P52 (1.1.84)

As a consequence the expansion (1.1.54) is only formal because it increases the order of unbounded-
ness.

Before discussing the literature regarding the Birkhoff normal form for quasi-linear PDEs, we quote
the paper by Yuan-Zhang [123] and the paper by Feola-Montalto [75] in the case where the non-linearity
contains derivatives of u of order strictly less than the order of the linearized operator (D).

Normal form for quasi-linear PDEs. The first rigorous long time existence result concerning quasi-linear
equations, has been obtained by Delort. In [57] Delort studied quasi-linear Hamiltonian perturbations of the
Klein-Gordon equation on the circle, and in [58] the same equation on higher dimensional spheres. Here
Delort introduces some classes of multi-linear maps which define para-differential operators (in the case of
Klein-Gordon equation operators of order 1) similar to the abstract definition of spectrally localized map in
Chapter 4 (Definition 4.2.71) but with the additional requirement to enjoy a symbolic calculus. We remark
that in such papers Delort deeply uses the fact that the Klein-Gordon equation has a linear dispersion law
(i.e. the operator (D) ~ |D| and the non-linear term has order 1). A new different approach, in the case
of super-linear dispersion law, is proposed in [27] for the irrotational water waves equations (1.1.19) with
v = 0 and then in [71] for quasi-linear Schrodinger equation. As we have already mentioned, in [27] is
exploited only the time reversibility of the system which gives the long time existence result in the invariant
subspace of standing waves. Finally in [33] we have developed a para-differential Hamiltonian Birkhoff
normal form approach to water waves with constant vorticity which we shall explain in Section 1.2.3.
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1.2 Strategy of the proofs

In this section we explain the main ideas of the proofs of Theorem 1.1.1, Theorem 1.1.2 and Theorem 1.1.3.

1.2.1 Theorem 1.1.1

The local solutions (p(t),¢(t)) of Theorem 1.1.1 are constructed via a classical quasi-linear iterative scheme
following the strategy first introduced by Kato [90]. We follow a para-differential approach which requires
essentially two ingredients:

i) The para-linearization of the system;
ii) An energy estimate for the para-linearized system which controls the Sobolev norm H*(T?).

To understand the idea behind the quasi-linear iterative scheme we compare it with more simple iterative
schemes.
The Picard scheme for Banach space ODEs: Consider first a Banach space ODE

Ou = f(u), u(0)ey (1.2.1)

where Y is a Banach space and f € CI(Y;Y). The solution of (1.2.1) is constructed by contraction
principle which corresponds to a Picard-type iterative scheme of the form

{“O = ul(0) (1.22)
Oty = f(un—1), un(0)=u(0), n>1.

The convergence of the scheme is provided using that, since f is bounded on bounded sets, for small
times, the norm of ||u,||y remains bounded and, since f is Lipschitz, the norm of the differences ||u,, —
un—1l||y converges exponentially to zero. A different scheme has to be applied if the vector field is un-
bounded.

The Picard scheme for semi-linear PDEs: Consider then a semi-linear PDE:

O = iAu+ f(u), wu(0) e H¥(T%C), (1.2.3)
d

where s > § and f € CY(H®; H®). In this case it is possible to use the boundedness of the linear flow
associated to Jyu = iAw and find the solution u by a contraction argument on the Duhamel formula

u(t) = eitAu(O) + /t ei(th)Af(u(T))dT (1.2.4)
0

which corresponds to the iterative scheme

{“O = u(0) (12.5)
Oy, = 1AuUp + f(up—1), unp(0) =u(0), n>1.

The new ingredient to achieve the convergence of (1.2.5) is the following energy equality for the linear
flow
itA
e g a0 = [Juo] - (1.2.6)
If the non-linearity f(u) contains derivatives of w, this scheme does not converge and the non-linear
term has to be treated in a non-perturbative way.
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Iterative scheme for quasi-linear systems: To deal with the quasi-linear system of PDEs (1.1.2) we para-
linearize it and we write it using complex coordinates (see Proposition 2.3.1) as

U =1A(U)U + f(U) (1.2.7)
where:

* The operator A(U) is a matrix of para-differential operators of the form
A(U) =Op™ —i(l+ar(Usz)) —ia_(U;x) JaK (m)|¢?
ia_(U;x) i(1+a+(U;z))

+Op™ <[_ib(U0;x) ¢ —ib(UO;x) : €D

for some functions a1 and a vector b (see (2.3.6), (2.3.8)) and where the para-differential Weyl quan-
tization is defined in Definition 2.2.2;

(1.2.8)

* f(U) is a semi-linear term, satisfying, for any so > % and s > sg + 2,

LF(@)lers < C(s: [Ulso+2) U] 115
1F(U) = FV)lls < ClUllsor2, VIlso42) U = Vs + CUIU s, IV T = Visgr2-

‘We construct the solutions as the limit of an iterative scheme of the form

_ _ [u(0)
{Uo =U(0) = [50)] (1.2.9)
0Un = iA(Un-1)Un + f(Un-1), Uy(0) =U(0), n>1,
where U,, = <un)
Un

For fixed sg > %, in order to control the approximate solutions along the iteration, we prove that any
solution of the linear problem
oV =1AU)V, V(0)=U(0), (1.2.10)

satisfies, for any s > so +2and U = (Z) € H*(T%C?) such that ||U||s, < r and ||U]|s,12 < O, the a
priori energy estimate

t
IV®I2 < CIVO)IE + C@/O IV (r)II2d7. (1.2.11)

The main difficulties which arise in proving (1.2.11) for (1.2.10) are not present in proving its semi-linear
analogue (1.2.6), indeed:

i) The semi-linear equation (1.2.5) is a scalar equation and the unbounded linear operator A is self-
adjoint which implies that the L? norm is preserved by its flow whereas the operator A(U) in (1.2.8) is not
diagonal and there are no apparent reasons to have conservation of L? norm;

i1) The operator A is constant coefficients, i.e. does not depend on z, which implies that its flow pre-
serves any Sobolev norms while the unbounded linear operator A(U) has variable coefficients and depends
on the point U.

The energy estimate (1.2.11) is the main ingredient to prove the local well-posedness Theorem 1.1.1
and, since it deeply relies on the para-differential form (1.2.7) of the system, we outline below the main
ideas behind para-differential calculus.
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Para-differential calculus: Para-differential calculus was first introduced by J.M. Bony [40]. A key ob-
servation of Bony is that para-differential operators naturally arise when one performs a spectral analysis
of nonlinear functionals. To explain this, consider the product of two functions with Fourier expansion
u(x) = ezd u;eV® and v(z) = > jend 0;€7"" which can be written as

w@p(@) = > Uj_pOpe’”

j,kezd
~ ~ ija ~ ~ ijux 1 —~ ~ ijx
= E Uj_pUke + E Uj—_LUge + — E Uj—_ Vg€
2w
li—k|<k l7l<|i—Fk]| |51~ —FI
=:Tyv + Tyu + R(u,v). (1.2.12)

The advantage of the above splitting is that the operator T, v is linear with respect to v and is supported
when the frequencies of v are much larger than the frequencies of u. As a consequence 7;,v has the same
regularity of v with estimate (see Lemma 4.2.12)

d
ITuwvllzs S lullzso ol s0> 5. (1.2.13)

Moreover the remainder R(u,v) is more regular than v and v with estimate
| R(w,v)| grs+o-so S |Jullms||v]|ge, s+ 0> 0. (1.2.14)

Inspired by formula (1.2.12) and to include also differential operators we define: given a symbol a(z,£) its
Weyl para-differential quantization as (see (2.2.12) for a more rigorous definition)

_ RN

P ()= Y a(i— kI ) ue
lj—k|<|j+k|

The main properties needed to prove (1.2.11) are:

* Boundedness (Theorem 2.2.12): If a(x,£) is a symbol of order m € R and sg > 0 then

10p™" (a(x, §))ull zre=—m S |alm,so,2a4+1) ull s

where the semi-norm [a/,, s, 2(441) is defined in (2.2.3) and, similarly to (1.2.13), involves only the
low norm H®° of the symbol a;

* Composition (Theorem 2.2.13): The composition of two para-differential operators is still a para-
differential operator (up to a smoothing remainder) whose symbol has the explicit asymptotic expan-
sion (2.2.87);

» Commutator: If a(x, &) is a symbol of order m € R and b(z, &) is a symbol of order m’ € R then the
commutator

[0p”" (a),0p"" (b)]
is still a para-differential operator whose symbol has order m + m’ — 1.

Symmetrization of (1.2.10): In view of i) below (1.2.11), we first reduce (1.2.10) to a scalar hyperbolic
system. To do so we consider the matrix of functions associated to the principal order

—i(l+ar(Usz)) —ia_(U;x)

ia_(U;x) i(1+a,(Usz)) (1.2.15)
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and we note that its eigenvalues are +i\(U;x) where

AU;z) == /(1 + a1 (Usz))? —a_(U;x)2.
We diagonalize the matrix of functions in (1.2.15) with a symmetric matrix of the form

o [FWUsx) g(Usz) 2 9 1. = | TUiz) —g(U;x)
Fw) = [l fom): £of = T =[G T

and

L [il4ay) —ias C[-ix 0

As a consequence the system for the new variable

W =0p®" (F YV (1.2.17)
reads
9, = Op™" ([—i/\\/mK(m(zKI? —ib-¢ M\/m?ﬂg . 5DW (1.2.18)
up to semi-linear terms. Moreover one has
IWlls ~ IV || as. (1.2.19)

System (1.2.18) for W has the advantage of being diagonal (up to bounded perturbation) but, since its

principal order has not constant coefficients, it is necessary to define a modified energy to get (1.2.11).

The modified energy: In order to get (1.2.11) we define the modified energy
VIS0 :=(0p™™ (X*(Us2)[g]**) W, W)

S

5 . B 3 (1.2.20)
=(Op™™ (X*(U;2)[¢*°) Op™" (F~(U;2)) V,0p™" (F~(U;2)) V)
where we introduce the scalar product
(V,W) = 2Re/ o(@)@(x)de, V= H L W= m .
'ﬂ‘d v w
The modified energy is equivalent to the Sobolev norm of V' and W, i.e.
VIS0 ~r W~ VI (1.221)
and it satisfies
d
&HVH?U < C@HVHE;U' (1.2.22)

Remark 1.2.1. We consider solutions which are not small and we do not invert the operator Op”" (F _1)
in (1.2.18) and the operator Op®" (A?(U;z)|£[*7) in (1.2.20). As a consequence the equivalence of the
norms in (1.2.19) and (1.2.21) has to be intended as in (2.4.21) and it is obtained by means of a parametrix
and a Garding-type argument (see Lemma 2.4.5).
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Remark 1.2.2 (Weyl quantization). We use the para-differential calculus with Weyl quantization because,
thanks to its symmetries, it reveals easily some cancellations due to self-adjointness. The main algebraic
property of the Weyl quantization is:

Op®" (a)" = Op"" (a) (1.2.23)

for any symbol a (see Definition 2.2.1) and where Op®" (a)” is the adjoint of Op®" (a). Another remark-
able algebraic property which we exploit is formula (2.2.90) which states the following: given a symbol
three symbols a, b and ¢ of order respectively m, m’ and m” then

Op"" (a)Op”" (b)Op"" (c) = Op™" (abe + o(a,b,¢)) + R/ +m—2

where o(a,b,c) is a symbol of order m + m’ +m” — 1 and is anti-symmetric with respect to a and ¢, namely
o(a,b,c) = —o(c,b,a) whereas R, +m»—2 is an operator of order m + m/ +m” — 2.

1.2.2 Theorem 1.1.2

In general (1.1.2) is a system of quasi-linear equations. The case (QHD), i.e., system (1.1.2) with the
particular choice K (p) = %, reduces, for small solutions, to a semi-linear Schrodinger equation. This is a
consequence of the fact that the Madelung transform (introduced for the first time in the seminal work by
Madelung [96]) is well defined for small solutions. In other words one can introduce the new variable

Y=o+ pe®/" (1.2.24)
(see Section 3.2 for details), where i = 21k, one obtains the equation

h
0w =i(5 80~ Tol0?)w). (1225)

h
Since g(m) = 0, such equation has an equilibrium point at ¢ = /m. The study of the stability of small
solutions for (1.1.2) is equivalent to the study of the stability of the variable z := 1) — y/m. The equation for
z reads

RlD 2 ! !
D mge)).mile) g
where f is a smooth function having a zero of order 2 at z = 0, i.e., | f(2)| < |2|%, and | D|? is the Fourier
multiplier with symbol

8tZ = —1(

d

2= ail&l?, ai=v}, VEezd (1.2.26)
=1

The aim is to use a Birkhoff normal form/modified energy technique in order to reduce the size of the non-
linearity f(z). To do that, it is convenient to perform some preliminary reductions. First of all we want to

eliminate the term —i™Z /ﬁ(m) z. In other words we want to diagonalize the operator
o (HDE g dng o
= 1 BD2 4 loo e
7I0g (m) 2| ‘l/ + mg (m)

which is a matrix of Fourier multipliers with symbol

hy 12 17 1.7

o (zlilD 4 smg’(m) 3mg’ (m) . d

L(7) = ( Log/(a) DR + tng(m)) jez®. (1.2.28)
h 2101y T 3
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The matrix in (1.2.28) is diagonalizable for any j # 0 whereas for j = 0 it is not. For this reason it is
necessary to rewrite the equation in a system of coordinates which does not involve the zero mode.
Elimination of the zero mode. The degeneracy of the matrix £(0) in (1.2.28) is due to the symmetries of
the system. To clarify this point we note that, linearizing system (1.1.2) in (p, ¢) variable, we get a Fourier

multiplier with symbol
0 mlj|2
AGG) =1 ... (1.2.29)
—5j2—¢'(m) 0

which, for the zero mode, gives the non-diagonalizable matrix

A(0) -—( 0 0) (1.2.30)
= _ym o) 2.

On the other hand, thanks to conservation of the mass

d
4 |, @+ p)dz=0, (1.2.31)
TU

we can consider the variable p to have zero average. Moreover system (QHD) is invariant by the one

parameter family of transformations
P p
— , e R. 1.2.32
(6) (1) « (23

As a consequence we can consider (QHD) as a closed system for the variables (p, Hold)) which do not
include the zero mode.

Back to the Madelung variable 1) = mgi¢/ " in (1.2.24) we note that (1.2.31) induces the conserva-
tion of L? norm of )

d
gl =0, llgllz: =m (12.33)

and (1.2.32) implies that equation (1.2.25) for v is invariant under phase rotations
¥ — e, ceR. (1.2.34)

In Section 3.2.2 we shall use the invariance (1.2.34) as well as the L? norm preservation (1.2.33) to eliminate
the dynamics of the zero mode. In particular we find a new variable z in (3.2.19) whose Fourier mode # 0
describes the complete dynamics of (1.2.25). Since the linearized equation at z = 0 remains unchanged, we
diagonalize the matrix in (1.2.27).

Diagonalized system and dispersion law: After the diagonalization of the matrix in (1.2.27) we end up
with the diagonal, quadratic, Hamiltonian, semi-linear equation

dyw = —iw(D)w — 105K (w, W) — 105K (w,w) (1.2.35)

where:
e w(D) is the Fourier multiplier associated to the dispersion relation

h2
w(j) := \/4|j|§ +mg'(m)|j2, j€Z\{0}; (1.2.36)



1.2. STRATEGY OF THE PROOFS 29

o K (w,w) is a cubic real Hamiltonian of the form

K3 (w,m) = Z K?w}?wﬁwﬂqs, \IC?| S L (1.2.37)
Fe{-1,13%, je(2\{0})®
o1j1+02j2+0353=0
S(>4), . I
e [Cn~ "/ (w,w) is a real Hamiltonian such that
105K (w, @) |1 S wlle (1.2.38)

for any w € H? sufficiently small. At this point we are ready to define a suitable modified energy. Our
primary aim is to control the derivative of the H*-norm of the solution

d .
—No(w), No(w):= > |j|*w;] (1.2.39)
jez\{0}

for the longest time possible. Using the Hamiltonian structure of the equation, we write (1.2.39) as

d ~
—Na(w) = (N, K&} (w). (1.2.40)
We perturb the Sobolev energy by homogeneous functionals of degree 3 such that their time derivatives
cancel out the main contribution (i.e., the one coming from cubic terms) in (1.2.40), up to remainders of
higher order. Following normal form ideas, we define, given a tri-linear Hamiltonian

_ é,,01,, 02, 03
H(w) = > Hy wiwijw;l,

Fe{-1,1}3, je(z4\{0})?
o1j1to2j2+0353=0

the adjoint action associated to K(?) (w) := 3 jeza oy w () w; |2 and its (formal) inverse as

adyc H(w) :={K®, H}(w)

= Z i(o1w(j1) + oaw(j2) + Ugw(jg))H? wilww??
Fe{-1,1}3, 7e(z\{0})3
711+ o2 toss=0 (1.2.41)
1 "
ad ! H(w) := Z HE w0 w2’
K@ i i ; ; J 751 g2 s
{11 e (0} i(o1w(j1) + o2w(j2) + o3w(j3))
o1j1+02j2+0373=0
In this way, defining ~
Es(w) := adi f, {Ns, K&} (w), (1.2.42)
we get
d -
3 (Ns(w) + B3(w)) = {B3, K} (w). (1.2.43)

The right hand side of the above equality is a quartic Hamiltonian but there are small divisors problem which
leads to a loss of derivatives.
Quasi-resonances: The denominator

Tw(j1) £ w(jz) £w(js)
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in (1.2.41) can accumulate to zero and leads to a loss of derivatives. Therefore we need to impose some
lower bounds on the small divisors. Here we exploit the irrationality of the torus T¢. We prove indeed that
for almost any v € [1,2]¢, there exists v > 0 such that

| £ w(j1) £w(jz) w(is)] > (1.2.44)

i

pf log ™ (14 pi3) "
if £j; £ jo £ j3 = 0, we denoted by M (d) a positive constant depending on the dimension d and p; the i-st
largest integer among |71/, |j2| and |j3/|. It is nowadays well known, see for instance [15, 19], that the power
of us is not dangerous if we work in H® with s big enough. Unfortunately we have also a power of the
highest frequency p; which represents, in principle, a loss of derivatives. However, this loss of derivatives
may be transformed in a loss of length of the lifespan through partition of frequencies, as done for instance
in [56, 87, 68, 23], that we shall now explain.

Frequencies partition: First of all we note that, thanks to (1.2.38), the non trivial contribution to the
dynamics for times 7' < =2 comes only from the truncated system

dw = —iw(D)w — i8zK) (w,w). (1.2.45)

Then to fix ideas suppose that the sum in (1.2.37) is supported in [ji| > |j2| > |j3| and note that, if the
corresponding signs satisfy o109 = +, then the corresponding small divisor satisfies

w(i1) +w(i2) £w(is) 2 1. (1.2.46)

This suggest the splitting B N B
K:xgg) (w’w) — ]C(37+) (ij) + ]C(&‘)(w’@)’ (1.2.47)

where 3:+) (w,@) is the Hamiltonian obtained restricting the sum in (1.2.37) to the signs such that o059 =
+ and similarly X~) (w, ) is restricted when 0102 = —. Thanks to the strong non-resonance condition
(1.2.46), the Hamiltonian K(3’+)(w,@) can be easily removed by including in the modified energy E3 the
term

Ef (w) := adl, {N,, K&},

On the other hand the contribution to the H*® energy estimate coming from 161513’7)(10,@) can be easily

bounded by ~
(N, K} S llwllaso wl o [[w]| 7o (1.2.48)

for some sy > 0. To transform the gain of derivatives in the above estimate in an improved smallness, we
do a high-low frequencies decomposition of the Hamiltonian

cB=N\G _ (3, -N\G |
CGo) _ pBo) | G- (KN )7 = (K973 2l <N
oterwise.
In this way one has, for the high frequencies part, the improved bound
(Ve KE Y € N ol (1.249)

Thanks to (1.2.44) we reduce the low frequencies part by adding, in the modified energy, a low frequencies
term whose unboundedness is controlled in terms of NV

By = adih {No K} 1(B)F] S N4 2log™ (14 N) a1 [,
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Finally defining F3 = E; + E5 we get

d

3 (Ns(w) + By(w)) S N log™ (1 + N) [l + N7Hlw]z (1.2.50)

The long time result Theorem 1.1.2 is obtained by a classical bootstrap argument for the small Sobolev norm
1

|lw|| s S e and optimizing the above estimate taking N ~ ¢~ -1,

1.2.3 Theorem 1.1.3

The life span estimate (1.1.24) and the bound (1.1.25) for the solutions of (1.1.19) follow by an energy
estimate for ||(n,v)]|x= := HT]HHSJF_% + [[¥l .y of the form

t
1, ) (O %s Soon [1(m,8)(0)1 +/O 1(n, ) ()15 dr (1.2.51)

The fact that the right hand side of the above estimate contains the same norm || || xs of the left hand side
is non trivial at all because the equations (1.1.19) are quasi-linear. Also the presence of the exponent N is
highly not trivial because the non-linearity in (1.1.19) vanishes only quadratically at (n,%) = (0,0). This
will be a consequence of the Hamiltonian Birkhoff normal form reduction.

Wahlén coordinates and complex Hamiltonian form: As we already pointed out in (1.1.27), system
(1.1.19) is Hamiltonian but (7),) are not standard Darboux variables. However, following Wahlén [115],

we introduce new coordinates
(’Z) - <w - ;78_1”) : (1.2.52)
2¥x

which are standard Darboux variables, in the sense that, in these coordinates, the water waves system has

the form -
ny Vi,H,(n,( B 0 Id
o <C> =/ (VZH;/(H»CQ where J = <—Id 0> : (1.2.53)

Next, passing to the complex variable u, we get the system

Opu = —iQ(D)u — iVeHEN(U), J. = <? Bl> U:= (Z) (1.2.54)

where (D) is the Fourier multiplier whose symbol is the water waves dispersion relation in (1.1.29) and
HE)(U) = HO(U) + -+ + HNF)(U) + ... is the part of the real Hamiltonian H.,(n,¢) (written in
complex coordinate U) with homogeneity > 3. The energy estimate (1.2.51) will follow from the equivalent
complex energy estimate

t
w1 Fe Ssv w(0)][%. +/0 lu()| 3 dr, N =0 (1.2.55)

The fact that the right hand side in (1.2.55) contains the same norm || || ;. of the left hand side is non trivial
at all because the non-linear term .J.V ¢y H (=3) (U) contains derivatives being (1.2.54) a quasi-linear system.
Symmetrization of the system: The first step is to prove estimate (1.2.55) for N = 0, which is already not
trivial. We follow a scheme close to Alazard-Burg-Zuily [2]:

(1) We para-linearize the water-waves system (Lemma 4.5.1 and Lemma 4.5.3);

(74) We write it in complex variable;
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(7i7) We write the system using a complex version of the so-called good unknown of Alinhac (Lemma
4.6.4)
w = — O0p® (B)n; (1.2.56)

(1v) We symmetrize the para-differential vector field of positive order (Lemma 4.6.5).

This procedure slightly differs from the one in [2] (who first perform the good unknown of Alinhac change
of variables (1.2.56)) but we prefer to follow this order because after step (i¢) we obtain a system for the
complex variable u which is a complex Darboux variable (see (1.2.54)).

Summarizing Lemma 4.6.4 and Lemma 4.6.5 we find a transformation

v .
V- () — G, with [[o]l g ~ llull .

such that the variable V solves

OV = =DV + Op (i (Vit,z,) )V + Op™ (Ao(Vit,z, )V + R(V;O)V,  (1.257)

where a3 is a real symbol of order 3 and Ay(V;t,z,£) is a matrix of symbols of order 0, R(V;t) are
2

smoothing operators, we used the notation in (4.2.24) for diagonal para-differential matrices and (D) is
the diagonal matrix associated to the Fourier multiplier Q(D) (see (4.5.10)). Actually due to the fact that we
do not completely invert our transformations, the high homogeneity part of the symbols and the smoothing
remainder in the above equation remain expressed in terms of U but we skip to discuss this technical detail
as does not play an important role in the proof.

Proceeding in the same way as in Section 1.2.1 at this level of the proof one can prove an energy
estimate of the form (1.2.55) with N = 0. To improve the estimate (1.2.55) for arbitrary N > 1 we develop
a Hamiltonian normal form approach adapted to quasi-linear PDEs. As we will explain this requires several
additional ideas with respect to the classical normal form approach explained in Section 1.1.5.

A formal Birkhoff normal form approach: As we pointed out at the end of Section 1.1.5, for quasi-
linear systems the perturbative approach of the reduction in degree of homogeneity leads only to formal
results. We explain here again, using a different formalism with respect to Section 1.1.5, the difficulty that
one immediately encounters when using a direct Birkhoff normal form approach. We aim to eliminate the
quadratic terms present in the right-hand side of equation (1.2.57). Then expanding (1.2.57) in homogeneity
we write it as

OV = —iQD)WV + XO(V) 4 ... (1.2.58)

where X () (V') is a quadratic, unbounded vector field which we want to remove by means of a change of
variable. The general idea to do so is to look for a change of variable of the form

O FT(V) = GA(FT(V))

1.2.59
FWV)=v (1.29)

W=FV)=F V)=, {

where G(%) (V') is an appropriate quadratic vector field selected to cancel X @ (V') up to higher homogeneity
remainders. The new equation for W reads

oW =dy F(V)[-iQUD)V + XP (V) +...] (1.2.60)
— — QD)W (1.2.61)

+ XADW) +iQ(D)GP(V) + dyGP (V) [-i(D)] (1.2.62)

+dy GO XDV + ... (1.2.63)
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where in (1.2.62) we collect the quadratic parts and in (1.2.63) the terms in the vector field which are at least
cubic. To remove the quadratic part of the equation one imposes the homological equation

X)) +iD)GA (V) + dy G (V)[-i(D)] = 0 (12.64)

from which one finds G(®)(V') if three wave interactions are absent for the frequencies Q2; (k). We immedi-
ately note that

1. In general, if X(?)(V) is unbounded, the solution G®) (V') of (1.2.64) is unbounded and it is not clear
if the change of variable is well-defined;

2. The higher homogeneity terms, as dy G (V))[X (2 (V)], accumulate derivatives.

In conclusion a direct approach to Birkhoff normal form for water waves does not seem to be possible and
a preliminary reduction in decreasing para-differential degree has to be performed before the reduction in
degree of homogeneity.
Linearly Hamiltonian para-differential normal form: To overcome to the unboundedness of water-
waves, starting from the system (1.2.57) for the variable V', we perform in Section 4.6 several para-differential
change of variable which reduce iteratively the system in decreasing para-differential order. The system
will be reduced to an unbounded, non-linear Fourier multiplier up to a smoothing remainder. In particular
the final outcome of Section 4.6 is Proposition 4.6.1 where is provided a para-differential transformation
W = B(U;t)U such that W solves

W = OpBW (im% (U;t,g))W + R(UHW (1.2.65)

vec

where m3 (U;t,€) is a Fourier multiplier (i.e. independent of x) whose imaginary part has order 0 and
2

vanishes at order O(||U||V*1) and R(U;t) is a smoothing remainder.
Let us make some comment:

1. The linear map B(U;t), as para-differential operators, is a spectrally localized map see Definition
4.2.16.

2. A pseudo-differential version of our para-differential reduction has been developed for irrotational
gravity-capillary water waves to overcome small divisors problems. In particular in Alazard-Baldi [1]
it is used to prove the existence of periodic standing waves and in Berti-Montalto [34] for the existence
of quasi-periodic standing waves. For the first time, similar reduction is performed in a non-linear
context by Berti-Delort [27] for water-waves and then by Feola- Iandoli [70] for reversible quasi-
linear Schrodinger equations. The main difference is that in [27] and [70], the linear Hamiltonian
structure on the symbols (as defined in Definition 4.3.7) is not preserved, while our reduction method
maintains it. Even though it is only the starting point to recover the full non-linear Hamiltonian
structure, a more accurate analysis is required to preserve the linear Hamiltonian one, as compared to
[27], indeed:

(i) The para-linearization formula of the Dirichlet-Neumann operator in [27] contains non-explicit
symbols of negative order (see (4.5.17)) which a priori do not satisfy the linear Hamiltonian
structure in (4.3.10). Despite this, we recover the linear Hamiltonian structure in complex coor-
dinates at every degree of homogeneity in Lemma 4.5.5 thanks to the abstract Lemma 4.3.20;

(7i) The map B(U;t) is obtained by composing iteratively several para-differential transformations.
To preserve the linear Hamiltonian structure, each transformation has to be linearly symplec-
tic, for this reason we have to realize it as a U dependent linear flow G(U) of some linearly
Hamiltonian operator as we shall explain in the next paragraph;
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3. The liner map B(U;t) preserves only the linear Hamiltonian structure and the full non-linear Hamil-
tonian one is not preserved; as a consequence the equation (1.2.65) is not Hamiltonian;

To recover the full non-linear Hamiltonian structure we prove the abstract Theorem 4.4.1 and we apply
it to the linearly symplectic map B(U;t).

To fix ideas we illustrate in the next paragraph the way we proceed to preserve the Hamiltonian structure,
up to homogeneity NV, in a generic transformation step along the proof of Theorem 1.1.3.

Symplectic conjugation step up to homogeneity N. Consider a real-to-real system in para-differential
form

AU = X(U) = Op™" (A(U;t,x,6))[U] + RU;HU], U = m : (1.2.66)

where A(U;t,z,€) is a matrix of symbols and R(U;t) are p-smoothing operators, which admit a homoge-
neous expansion up to homogeneity N, whereas the terms with homogeneity > N are dealt, as in [27], as
time dependent symbols and remainders, see Section 4.2.1. This is quite convenient from a technical point
of view because it does not demand much information about the higher degree terms. Moreover this enables
to directly use the para-linearization of the Dirichlet-Neumann operator proved in [27]. System (1.2.66)
is Hamiltonian up to homogeneity N, namely the homogeneous components of the vector field X (U) of
degree < N + 1 have the Hamiltonian form

JVHU)  where J,= [? 01] (1.2.67)

is the Poisson tensor and H(U) is a real valued pluri-homogeneous Hamiltonian of degree < N + 2.
Moreover the para-differential operator Op®" (A(U)) in (1.2.66) is a linear Hamiltonian operator, up to ho-
mogeneity N, namely of the form Op®" (A(U)) = J.Op®" (B(U)) where B(U) is a symmetric operator
up to homogeneity N, see Definition 4.3.6.

In order to prove energy estimates for (1.2.66) we transform it under several changes of variables.
Actually we do not really perform changes of variables of the phase space, but we proceed in the time

dependent setting due to the high homogeneity terms. Let us discuss a typical transformation step. Let
G(U;t) := G™(U;t)|r=1 be the time 1-flow

0,G7(U;t) = J.Op™ (B(U;,t,2,£))G"(Ust), G°(Ust) =1d, (1.2.68)

generated by a linearly Hamiltonian operator .J. Op®" (B(U Tt x, € )) up to homogeneity N. The trans-
formation G(U;t) is invertible and bounded on H*(T) x H*(T) for any s € R and it admits a pluri-
homogeneous expansion G« (U), which is an unbounded operator if the generator J. Op"" (B) is un-
bounded, see Section 4.3.3. If U solves (1.2.66) then the variable

W= G(U;t)U (1.2.69)
solves a new system in para-differential form
HW = X (W) = Op™ (AL (W;t,2,6))[W] + Ry (W;t)[W] (12.70)

(actually the symbols and remainders of homogeneity > N in (1.2.70) are still expressed in terms of U,
but for simplicity we skip to discuss this issue here). In Section 4.6 we perform several transformations
of this kind, choosing suitable generators .J. Op®" (B ) (either bounded or unbounded) in order to obtain a
diagonal matrix A, with z-independent symbols.
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We remark that, with this procedure, since the time one flow map G(U;t) of the linear Hamiltonian
system (1.2.68) is only linearly symplectic up to homogeneity N, namely

G(U;t)  BG(Ust) = Be+ Exn(Ust),  Exn(Ust) = O([UIN*),

the new system (1.2.70) is not Hamiltonian anymore, not even its pluri-homogeneous components of degree
< N + 1. The new system (1.2.70) is only linearly symplectic, up to homogeneity N, see Lemma 4.3.15.
In order to obtain a new Hamiltonian system up to homogeneity N, we use the Darboux results of Section
4.4 to construct perturbatively a “symplectic corrector” of the transformation (1.2.69).

Let us say some words about the construction of the symplectic corrector. We remark that the per-
turbed symplectic tensor E< (V') induced by the non-symplectic transformation G< n(U) is not a smooth-
ing perturbation of the standard Poisson tensor E.. However, Lemmata 4.4.4 and 4.4.5 prove that, for any
pluri-homogeneous vector field X (V'), we have

E<n(V)[X(V)] = E.X(V)+ VW(V) 4+ smoothing vector fields + high homogeneity terms

where VW (V) is a scalar function. This algebraic structural property enables us to prove the Darboux Propo-
sition 4.4.7, thus Theorem 4.4.1, via a deformation argument a la Moser. We also remark that the operators
R<n(-) of Theorem 4.4.1 are smoothing for arbitrary o > 0, since they have 2 equivalent frequencies,
namely maxs(ni,...,npy1) ~ max(ni,...,np41) in (4.2.38), arising by applications of Lemma 4.2.21.
This property compensates the presence of unbounded operators in G<y (U).

In conclusion, Theorem 4.4.1 provides a nonlinear map W + R<n (W)W, where R< (W) are pluri-
homogeneous p-smoothing operators (for arbitrary ¢ > 0) such that the pluri-homogeneous map

Dy(U) := (Id + R<n (")) o Gen (U)U
is symplectic up to homogeneity N, i.e.
[duDx (V) Ee [dyDn (V)] = Ee + Exn(U) (1.2.71)

where E, := J ! is the standard symplectic tensor and E- x(U) is an operator of homogeneity degree
> N + 1. As a consequence, since (1.2.66) is Hamiltonian up to homogeneity N, the variable

Z(t) :==DU(t);t) := W(t) + Ren(W(t)) = (Id + Ran () 0 G(U(1); 1)U (2)

satisfies a system which is Hamiltonian up to homogeneity N as well, and which has, since R<y(-) are
smoothing operators, the same para-differential form as in (1.2.70),

hZ = X+ (Z) = Op"" (A1 (Z3t,2,9))[Z] + Ry (Z;1)[Z]. (1.2.72)

This is the content of Theorem 4.7.1. Note that the matrix of symbols A (Z;t,x,£) in (1.2.72) is obtained
by substituting in A4 (W;t,z,¢) the relation W = Z—R<n(Z)+. .. obtained inverting Z = W+ R<n (W)
approximately up to homogeneity /N. This procedure is rigorously justified in Lemmata A.0.4 and A.0.5.
Hamiltonian Birkhoff normal form. We perform the Hamiltonian Birkhoff normal form reduction in
Section 4.7 for any value of the surface tension x outside the set C defined in Theorem B.0.1. We start from
the Hamiltonian (up to homogeneity V) equation of the form

0uZ =Opfad (im3 (Zost,€)) Zo + R(Zuit) Zo

3
2
= —iQ(D)Zy + J.VHE (Zy) + OpEYW (i(m%)>N(U;t,£))Zo + Ron(U;t) Zo

vec
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for the variable Zj obtained from W = B(U;t)U by applying the Darboux corrector (see Proposition 4.7.2).
We first iteratively reduce the p—homogeneous z-independent para-differential symbol to its super-action-
preserving component, via the linear flow generated by an unbounded Fourier multiplier, see (4.7.42). Since
such transformation is only linearly symplectic, we apply again Theorem 4.7.1 to recover a Hamiltonian
system up to homogeneity IV, see system (4.7.56). Finally we reduce the (p + 1)-homogeneous component
of the Hamiltonian smoothing vector field to its super-action preserving part, see (4.7.70). The key property
is that, a super-action preserving Hamiltonian, Poisson commutes with the super-actions functionals (see e.g
(1.1.75)). After N iterations, the final outcome is the Hamiltonian Birkhoff normal form system (4.7.21),
which has the form

8,7 = J.NHE®) (7)1 OpBY (—i(m%)> N(U;t,g)) Z + Ron(U;t)U (1.2.73)

where HS*)(Z) is a super-action preserving Hamiltonian (Definition 4.7.8) and the higher order homo-
geneity para-differential and smoothing terms admit energy estimates in Sobolev spaces (the imaginary part
of the symbol (ms )~ has order zero). Here are some comments:

2

* The super action preserving Hamiltonian contains only p-homogeneous monomials of even degree
p = 2/ of the form

ujl'”ujéﬂjul'”ﬂjw {’jlya'”v’jd}:{‘j€+1|7"'7|jp‘} (1'2'74)

* The monomials in (1.2.74) can be either of the form |u;,|?--|u;,|? (integrable monomials) or of the
more general form
Ujy **Uj, U—gy =~ U—j,, X integrable monomials. (1.2.75)

A non-integrable vector field correspondent to the monomial in (1.2.75) in general does not preserve
the Sobolev norm even if it is reversible, nevertheless if it is Hamiltonian, as we explained in Section
1.1.5, it preserves the super-actions

Jn(2) = |zn|® + |2a]?, forany n €N

and all Sobolev norms are constant along its flow. For this reason the approach in [27, 70] allows to
deal only with standing waves (which are not invariant under the flow of (1.1.19) with v # 0 );

* For irrotational fluids (v = 0), super-action preserving monomials are always resonant because the
dispersion relation reduce to (k) = w;(x) which is even with respect to j. On the other hand, when
~ # 0, the monomials in (1.2.75) can be either resonant or non-resonant: indeed the odd part of the
dispersion relation ’y@ allows (using also the momentum restriction induced by the invariance by
translation) to exclude non-integrable 4 and 6 waves interactions, see Remark 4.7.16. However there
are several super-action preserving monomials which are resonant for any value of v € R and for
infinite depth h = co:

ZnyZ—ny Zno Z—mg f—n3 Znz Z—ny Zngs N1+ N2 = N3 + ng. (1.2.76)
For this reason a Hamiltonian approach is necessary also in case v # 0.

Energy estimates: The Hamiltonian Birkhoff normal form equation 9;Z = .J.VH*?)(Z) obtained ne-
glecting the terms of homogeneity larger than N in (1.2.73) possesses the super—actions |z_,|? + |z,|?, for
any n € N, as prime integrals. Thus it preserves the Sobolev norms and the solutions of (1.2.73) with initial
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data of size ¢ have energy estimates up to times of order e~V ~1. In conclusion, since the Sobolev norms of
U in (1.2.54) and Z in (1.2.73) are equivalent, we deduce energy estimates for (1.2.54),

t
TN, So [T, + / U@ dr

valid up to times of order e~V ~!. A standard bootstrap argument concludes the proof of Theorem 1.1.3.






Chapter 2

Local well posedness of the Euler-Korteweg
system

In this chapter we prove the local well-posedness result outlined in Section 1.1.1. The chapter is self-
contained. Also Section 2.1 provides a self-contained introduction to the problem, including the statement
of the main result, and a review of relevant literature on the topic.

2.1 Introduction to Chapter 2

We consider the compressible Euler-Korteweg (EK) system

{8,5,0 +div(p) =0

P . , 2.1.1)
Ol + 1 - Vi +Vg(p) = V(K (p)Ap+ 5K'(p)[Vp|?),

which is a modification of the Euler equations for compressible fluids to include capillary effects, under
space periodic boundary conditions = € T¢ := (R/27Z)?. The scalar variable p(t,2) > 0 is the density of
the fluid and @(t,z) € R? is the time dependent velocity field. The functions K (p), g(p) are defined on R+,
smooth, and K (p) is positive.

The quasi-linear equations (2.1.1) appear in a variety of physical contexts modeling phase transitions
[64], water waves [41], quantum hydrodynamics where K (p) = x/p [10], see also [42].

Local well posedness results for the (EK)-system have been obtained in Benzoni-Gavage, Danchin and
Descombes [22] for initial data sufficiently localized in the space variable 2 € R?. Then, thanks to dispersive
estimates, global in time existence results have been obtained for small irrotational data by Audiard-Haspot
[13], assuming the sign condition ¢'(p) > 0. The case of quantum hydrodynamics corresponds to K (p) =
k/p and, in this case, the (EK)-system is formally equivalent, via Madelung transform, to a semi-linear
Schrodinger equation on R¢. Exploiting this fact, global in time weak solutions have been obtained by
Antonelli-Marcati [10, 11] also allowing p(¢,z) to become zero (see also the recent paper [12]).

In [32] we prove a local in time existence result for the solutions of (2.1.1), with space periodic boundary
conditions, under natural minimal regularity assumptions on the initial datum in Sobolev spaces, see Theo-
rem 2.1.1. Relying on this result, in a forthcoming paper [103], we shall prove a set of long time existence
results for the (EK)-system in 1-space dimension, in the same spirit of [27], [28].

We consider an initially irrotational velocity field that, under the evolution of (2.1.1), remains irrotational
for all times. An irrotational vector field on T% reads (Helmholtz decomposition)

@=¢t)+Vo, &t)eR, &t)= (27lr) y /T Jidz, (2.1.2)

39
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where ¢ : T? — R is a scalar potential. By the second equation in (2.1.1) and rot @ = 0, we get
Oclt) =~ g [ T Vido = g [ SVt =0 — et =)
C = = u - uar = ———5 — = u xr = & =C
! 27)? Jpa 2m) Jpa 2

is independent of time. Note that if the dimension d = 1, the average 5- fT (t,x)dx is an integral of
motion for (2.1.1), and thus any solution u(¢,z), = € T, of the (EK)-system (2.1.1) has the form (2.1.2) with
c(t) = ¢(0) independent of time, that is u(t,z) = ¢(0) + ¢, (¢, ).

The (EK) system (2.1.1) is Galilean invariant: if (p(¢,x),(t,x)) solves (2.1.1) then

pe(t,z) = pa(t,x + ct), uzt,x) =u(t,x+ct)—¢

solve (2.1.1) as well. Thus, regarding the Euler-Korteweg system in a frame moving with a constant speed
@(0), we may always consider in (2.1.2) that

=Vé, ¢:T? > R.
The Euler-Korteweg equations (2.1.1) read, for irrotational fluids,

{&p + div(pVe) =0

(2.1.3)
Bd + LVl + g(p) = K(p)Ap+ SK'(p)|Vp|?.

The main result of the present chapter proves local well posedness for the solutions of (2.1.3) with initial
data (po, ¢o) in Sobolev spaces

HY(T?) o= {u(@) = 32w fuf2 = Y ) < +o0}
jJEZA jEZA

where (j) := (d/2). Along the chapter,
H*(T%) may denote either the Sobolev space of real valued functions H*(T% R) or the complex valued
ones H*(T?,C).

Theorem 2.1.1. (Local existence on T%) Let s > 2 + % and fix sg € (g, s — 2|. For any initial data
(po,d0) € H*(T,R) x H¥(T%,R) with po(z) >0, VzeT?,
there exists T := T'(||(po, $0)||sg-+2, ming po(z)) > 0 and a unique solution (p,$) of (2.1.3) such that
(p,) € CO([—T, T], H*(T%R) x HS(Td,]R{)> Nt ([—T,T],HS*Q(TC[,R) x HS*%’]I‘%R))

and p(t,z) > 0 for any t € [—T,T|. Moreover, for |t| < T, the solution map (po,po) — (p(t,-),p(t,-)) is
locally defined and continuous in H*(T¢,R) x H*(T% R).

We remark that it is sufficient to prove the existence of a solution of (2.1.3) on [0,7'] because system
(2.1.3) is reversible: the Euler-Korteweg vector field X defined by (2.1.3) satisfies X o S = —S o X, where

S is the involution
s(P)=(" V(z) == p(~x) (2.1.4)
) I P =p . 1.

Thus, denoting by (p,®)(t,z) = Q(po,Po) the solution of (2.1.3) with initial datum (pg, ¢g) in the time
interval [0,7], we have that SQ~*(S(po, o)) solves (2.1.3) with the same initial datum but in the time
interval [—7,0].
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Let us make some comments about the phase space of system (2.1.3). Note that the average ﬁ de p(z)dx
is a prime integral of (2.1.3) (conservation of the mass), namely
1

W/po(x)dx:m, meR, (2.1.5)

remains constant along the solutions of (2.1.3). Note also that the vector field of (2.1.3) depends only on
¢ — ﬁ de ¢dz. As a consequence, the variables (p — m,¢) belong naturally to some Sobolev space

H{(T?) x H*(T¢), where Hg(T?) denotes the Sobolev space of functions with zero average

HS(T?) = {u e H*(T9) : / u(a)dz = 0}

Td

and H* (T?), s € R, the corresponding homogeneous Sobolev space, namely the quotient space obtained
by identifying all the H*(T?) functions which differ only by a constant. For simplicity of notation we
denote the equivalent class [u] := {u + ¢,c € R}, just by u. The homogeneous norm of u € H*(T%) is
[ull2 == 32 cza\ 0y luj]?[7]7*. We shall denote by || [|; either the Sobolev norm in H* or that one in the
homogeneous space H?, according to the context.

Let us make some comments about the proof. First, in view of (2.1.5), we rewrite system (2.1.3) in
terms of p ~+» m + p with p € Hi(T4), obtaining

(2.1.6)

{atp = —mA¢ — div(pV)
06 = —3IVel* — gm+ p) + K(m+ p)Ap + 3 K'(m+ p)|Vpl*.

Then Theorem 2.1.1 follows by the following result, that we are going to prove

Theorem 2.1.2. Let s > 2 + %, 0 < m < myandfix sg € (%l,s — 2]. For any initial data of the
form (m + po,po) with (po, o) € HE(TY) x H*(T4) and m; < m + po(z) < mg, Vo € T, there exists
T =T(||(po, ¢0)lsg+2, ming (m + po(x))) > 0 and a unique solution (m + p,d) of (2.1.6) such that

(p,8) € CO([O,T],HS(TC’,R) X HS(Td,R)> nol ([O,T],Hg_z('ﬂ‘d,R) x HS*Q(']I‘d,R))

and my < m+ p(t,x) < mg holds for any t € [0,T]. Moreover, for |t| < T, the solution map (po,¢o) —
(p(t,-),9(t,)) is locally defined and continuous in H§(T?) x H*(T9).

We consider system (2.1.6) as a system on the homogeneous space H* x H*, that is we study

{&ep = —mA¢ — div((Ily p) Vo) 2.1.7)

0 = —5Vol* — glm+gp) + K(m+ g p) Ap + 5 K’ (m + g p)[Vpl?

where Hé is the projector onto the Fourier modes of index # 0. For simplicity of notation we shall not
distinguish between systems (2.1.7) and (2.1.6). In Section 2.3, we para-linearize (2.1.6), i.e. (2.1.7), up to
bounded semi-linear terms (for which we do not need Bony para-linearization formula). Then, introducing a
suitable complex variable, we transform it into a quasi-linear type Schrodinger equation, see system (2.3.4),
defined in the phase space

.s u .S _
= {v= (1) verrmo), W= Wik =z e
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We use para-differential calculus in the Weyl quantization, because it is quite convenient to prove energy
estimates for this system. Since (2.3.4) is a quasi-linear system, in order to prove local well posedness
(Proposition 2.4.1) we follow the strategy, initiated by Kato [90], of constructing inductively a sequence of
linear problems whose solutions converge to the solution of the quasi-linear equation. Such a scheme has
been widely used, see e.g. [99, 2, 22, 72] and reference therein.

The equation (2.1.3) is a Hamiltonian PDE. We do not exploit explicitly this fact, but it is indeed re-
sponsible for the energy estimate of Proposition 2.4.4. The method of proof of Theorem 2.1.1 is similar to
the one in Feola-Tandoli [70] for Hamiltonian quasi-linear Schrodinger equations on T¢ (and Alazard-Burg-
Zuily [2] in the case of gravity-capillary water waves in R?). The main difference is that we aim to obtain
the minimal smoothness assumption s > 2 + (d/2). This requires to optimize several arguments, and, in
particular, to develop a sharp para-differential calculus for periodic functions that we report in the Appendix
in a self-contained way. Some other technical differences are in the use of the modified energy (Section
2.4.2), the mollifiers (2.4.17) which enables to prove energy estimates independent of ¢ for the regularized
system, the argument for the continuity of the flow in H*.

We now set some notation that will be used throughout the chapter. Since K : Ry — R is positive,
given 0 < m; < mo, there exist constants cx,Ck > 0 such that

cx < K(p) <Ck, Vp € (mp,mg). (2.1.9)
Since the velocity potential ¢ is defined up to a constant, we may assume in (2.1.6) that
g(m) = 0. (2.1.10)

From now on we fix s¢ so that

d
g <s0o<s-—2. 2.1.11)

The initial datum po(z) belongs to the open subset of H;°(T¢) defined by
Q:={pec H(T) : m <m+p(z) <m} 2.1.12)

and we shall prove that, locally in time, the solution of (2.1.6) stays in this set.
We write a < b with the meaning a < Cb for some constant C' > 0 which does not depend on relevant
quantities.

2.2 Para-differential calculus

We introduce the notions of para-differential calculus that we shall use for the proof of Theorem 2.1.1. As in
Theorem 2.1.1 we want to reach the minimal regularity assumption given by the energy method, in Section
2.2.1, we demonstrate the classic results of para-differential calculus with a specific focus on their optimality
in terms of regularity with respect to the variable x of the symbols. We shall prove only the results needed
for the proof of Theorem 2.1.1. For a more detailed understanding of para-differential calculus, we refer
readers to the book [99], which mostly inspired this present section.

It is worth noting that in Section 4.2, we will introduce a slightly modified version of para-differential
calculus specifically tailored for the purpose of proving Theorem 1.1.3. Indeed, Theorem 1.1.3 necessitates
careful monitoring of the multilinear expansion of the symbols with respect to the solution U, but it does
not require any particular attention to the threshold of regularity.
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2.2.1 Para-differential calculus in low regularity

The main results of this section are the continuity Theorem 2.2.12 and the composition Theorem 2.2.13,
which require mild regularity assumptions of the symbols in the space variable (they are deduced by the
sharper results proved in Theorems 2.2.10 and 2.2.11 in the Appendix). This is needed in order to prove the
local existence Theorem 2.1.1 with the natural minimal regularity on the initial datum (pg, ¢o) € H® x H*
with s > 2 + %.

Along the section 7 may denote either the Banach space L>°(T%), or the Sobolev spaces H*(T4),
or the Holder spaces TW°°(T9), introduced in Definition 2.2.6. Given a multi-index 8 € N& we define

1Bl :== B1+ ...+ Ba.

Definition 2.2.1. (Symbols with finite regularity)

Given m € R and a Banach space W € {L>(T%), H*(T4),We>(T4)}, we denote by T'}}. the space
of functions a : T x R — C, a(x,£), which are C> with respect to € and such that, for any B € N¢, there
exists a constant Cg > 0 such that

102 a(-,©)|,, < Cae)™ P, vgeR?. 2.2.1)

We denote by Y., the subclass of symbols a € 1"y, which are spectrally localized, that is

36 € (0,1): a(j,§) =0, V|j[ =), (222)
where @(j,€) = (2m)™¢ Jpa a(z,&)e ™V *dx, j € 79 are the Fourier coefficients of the function x
a(,§).
We endow 1"y, with the family of norms defined, for any n € Ny, by
al. ., := max sup —m Bl 9fq - . (2.2.3)
’ |m,ﬁ/,n |Bl<n cerd H<§> 3 ( g)HW

When W = H?, we also denote "' = I'}j. and |a

s = @l s e We denote by T @ My(C) the 2 x 2
a1

as

matrices A = < Z2> of symbols in I']" and | Al n = maxi—1,.. a{|@|m,» n}. Similarly we denote
4
by I'™ @ RY the d-dimensional vectors of symbols in T'"™.

Let us make some simple remarks:

e (i) given a function a(z) € # then a(x) € I'Y, and

[l = llully ,¥n € No. (2.2.4)
o (11) For any s¢ > %l and 0 < ¢’ < p, we have that
|,z S 1l oo S N0l weso n S 10l rsote,, ¥ € No. (2.2.5)

e (iii) If a € T}, then, for any o € N, we have G?a c F’;-Ia\ and

|a?a|m—|a\,7/,n 5 ‘a|m,”/ﬂ,n+|a\ s Vn € Np. (2.2.6)
o (i) If a € I'}j., resp. a € I'jjo.0, then 03a € '},  tesp. Oga € I'Y,,_ ) o for any multi-indices o

with |a| < ¢, and

|3‘;a|m75_‘a|7n S lalm,spn, resp. |8ga’|m,WQ*‘o‘|’°°,n S lalmweee n, Vn e Np. 2.2.7)
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o (v) If a,b € I} then ab € T} with |ablyim v m S |a|m, 7 N|blm? w7 n for any n € Ny. In particular, if
a,b € T with s > d/2 then ab € T"™+™ and

|ab|m+m’,s,n 5 |a‘m,s,n|b|m’,so,n + |a m,so,n‘b‘m/,s,n> Vn € Np. (2.2.8)

Let e € (0,1) and consider a C*, even cut-off function : R? — [0,1] such that

1 if|¢gl <11 (5)
e € = — . 22
x(§) {0 it 1] > 1.9, Xe(€) = x{ (2.2.9)
Given a symbol a in I'}), we define the regularized symbol
ay(,€) = Xe(gy(D)al,6) = D xe (é) a(j,€)e’. (2.2.10)
jezs

Note that a, is analytic in x (it is a trigonometric polynomial) and it is spectrally localized.
In order to define the Bony-Weyl quantization of a symbol a(z, &) we first remind the Weyl quantization

formula ]
Oop" (a)[u] := Z ( Za(j—k,k;—]>uk)em'x. (2.2.11)

jeZd  keZd

Definition 2.2.2. (Bony-Weyl quantization) Given a symbol a € 1), we define the Bony-Weyl para-
differential operator Op”" (a) = Op" (ay) that acts on a periodic function u as

(00" (@)fu]) (2) = > (3 @ (i - k#> )

JEZL  keZd
) ) 2.2.12
S olPo (REEL WEELS N E
. 2 )M\ Gy T
jEZE  keZd
If A = <Zl is a matrix of symbols in I'", then Oop?W (A) is defined as the matrix valued operator
3

(OPBW(al) OpBw(a2)>
Op”"(az) Op""(ay))’

Given a symbol a(¢) independent of z, then OpP”"W () is the Fourier multiplier operator

OpP"(a)u = a(D)u =" a(j)u;e’™.
jezd

Note that if Xg(%) # 0 then |k — j| < €(j + k) and therefore, for € € (0,1),

1—¢
1+e€

1
M <13 < 71K, ke 20 (2.2.13)
— €

This relation shows that the action of a para-differential operator does not spread much the Fourier support of
functions. In particular Op®W () sends a constant function into a constant function and therefore Op®W ()
sends homogenous spaces into homogenous spaces.

,forall j, k € VA

Remark 2.2.3. Actually, ifxe(glz%;:)) #0,e € (0,1/4), then |j| < |j + k| < 3|j
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2.2.2 Bony-Weyl calculus in periodic Holder spaces

In this section we develop in a self-contained manner para-differential calculus for space periodic symbols
a(x,&) which belong to the Banach scale of Holder spaces 1 ¢°°(T). The main results are the continuity
Theorem 2.2.10 and the composition Theorem 2.2.11, which require mild regularity assumptions of the
symbols in the space variable, and imply Theorems 2.2.12 and 2.2.13. We first provide some preliminary
technical results.

Technical lemmas. In the following we denote by 0,,,, m = 1,...,d the discrete derivative, defined for
functions f: Z% — C as

(Omf)(n) = f(n) — f(n— &), nez, (2.2.14)
where €,,, denotes the usual unit basis vector of N‘O’l with 0 components expect the m-th one. Given a multi-
index 3 € N, we set 0% f := 8161 ~--85df.

We shall use the Leibniz rule for finite differences in the following form: given k € N, m = 1,...,d,
there exist constants C}, 1, (binomial coefficients) such that
Om)(FO)(m) = > Cria (O )~ k2)(D29)(n). (2.2.15)
k1+ko=k

Moreover, when using discrete derivatives, the analogous of the integration by parts formula is given by the
Abel resummation formula:

Z 2B (z,n) 1 Z (0P (z,n), Vm=1,....d. (2.2.16)

elem z _ 1
nGZd neZd

Lemma 2.2.4. Let K : T¢ — C be a function satisfying, for constants A and B, the estimate
1

< Ad : d
[K(y)| S A”Bmin <1 i [A2sin L [(@+1) ) , VyeTe. (2.2.17)

Then
/ |K(y)|dy < B. (2.2.18)
']Td

Proof. If A < 1 the bound (2.2.18) follows trivially integrating the first inequality in (2.2.17). Then we
suppose A > 1. We split the integral in (2.2.18) as

Lkwiay= [ ikeias [ K@l 2.2.19)
TaN{|y|< %} TaN{|y|>%}
We bound the first integral using the first inequality in (2.2.17), getting
1
/ 1K (y)|dy < A?Bmeas (y e [-m7)d: |y < A) < B. (2.2.20)
Tn{lyl< %}

To bound the second integral in (2.2.19) we use that, for some ¢ > 0, maxi<,,<q ‘ sin 7’” ‘ > clyl,
Vy € [—m,], and therefore the second inequality in (2.2.17) implies

dy =4y dz

d

/ |K(y)|dy S A°B / Ty < B / WSJB. (2.2.21)
TaN{|y|> %} {yeR?: |y|> 4} {lz[>1}

The bounds (2.2.20)-(2.2.21) and (2.2.19) imply (2.2.18). ]
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The next lemma represents a Fourier multiplier operator acting on periodic functions as a convolution
integral on RY. The key step is the use of Poisson summation formula.

Lemma 2.2.5. Let x € S(R?Y). Then the Fourier multiplier xo(D) := x(07'D), 0 > 1, acting on a
periodic function u € L'(T? C) can represented by

xo(D)u = /Rd u(y)g(z — y)dy = /Rd u(z — y)e(y)dy (2.2.22)

where 19 (2) := 0%4(0z) and 1) denotes the anti-Fourier transform of x on R%.

Proof. For 6 > 1 we write

D 1 AN
x| = |u —/ u(y) hg(x — y)dy where ho(z) := X ) iz (2.2.23)
6 Td (27T)d : 9
jeZ4
Then the Fourier transform g (¢) = Jra 0410(02) e7#8dz = [pa1(y) “widy = o (5) =y (& d
0(§) = Jpa = Jra¥(y)e y=v(3)=xl(3)> and,
using Poisson summation formula, we write the periodic function hg(z) in (2.2.23) as
ho(2) = oz 3 ) = 3 vale +2m7)
jezd jezZd
Therefore the integral (2.2.23) is
D=3 [ atwyinle—y+2miay = 3 y)vo(e — y)dy
jezd d jezd [0,27] +27Tj
— [ uwte — )y = [ ule = pvatu)y
R Rd
proving (2.2.22). 0

We now give the definition and basic properties of the Holder spaces W °°(T1).

Definition 2.2.6. (Periodic Holder spaces) Given o € Ny, we denote by W2 (T?) the space of continuous
functions u : T — C, 2m-periodic in each variable (x1,...,x4), whose derivatives of order o are in L™,
equipped with the norm |[ullweee =37, <, 07 ul|L, o € N4 In case 0 > 0, o ¢ N, we denote | o] the
integer part of o, and we define W (T%) as the space of functions w in C'1¢J(T? C) whose derivatives of
order | o| are (0 — | 0|)-Holder-continuous, that is

[aau] ‘= sup |agéu($) B agu(y”
T sy lr—ylele

<400, V]a| = [el,

equipped with the norm

lullwese = > 105ullr + Y [05ul,

laf<[e] |lal=e]

For ¢ = 0 the norm || ||[we.c = || || zoe.
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The Holder spaces W2°°(T4) can be described by the Paley-Littlewood decomposition of a function.
Consider the locally finite partition on unity

L=x(©)+ Y 027", ¢(z) = x(2) — x(22), (2.2.24)

k>1

where x : R? — R is the cut-off function defined in (2.2.9). It induces the decomposition of a distribution
u € S'(T?) as

u= ZAku where  Ag = x(D), Ay, == @(27%D) = xot (D) — Xgr-1(D), k> 1. (2.2.25)
k>0

We also set

Sei= Y Aj=xu(D). (2.2.26)
0<j<k

The Paley-Littlewood theory of the Holder spaces W™ (T¢) follows as in R?, see e.g. [99], once we
represent the Fourier multipliers Ay, as integral convolution operators on R, by Lemma 2.2.5. In particular
the following smoothing estimates hold: for any o € Ng, 0>0,

105 Skull oo S 25019l g (2.2.27)
and, for any o > 0,
lu = xo(D)ullre S 07 |ullwes. (2.2.28)

In this way it results as in R? that the Holder norms || ||;0.c satisfy interpolation estimates. In particular
we shall use that, given p, g1, 02 > 0,

[uvllwee S lullweee|vllLoe + [Jull Lo [|v][wece

B (2.2.29)
[llyyece S Nullfyerce ulliyeee, 0= 001+ (1—8)os, 8 €(0,1).

Holder estimates of regularized symbols. In order to prove estimates of the regularized symbol a, de-
fined in (2.2.10) in Holder spaces (Lemma 2.2.8) we represent it as a convolution integral on R?, by Lemma
2.2.5,

ay(z,§) = /Rda(fr = 4,§) Ve (y) dy (2.2.30)

where 1y(z) = 6%)(6z) and 1 is the anti-Fourier transform of x.
In the proof of Lemma 2.2.8 we shall use the following estimate.

Lemma 2.2.7. Forany 3 € N&, u € L>®(T%), we have
107 X ety (D)ull oo S (€)™ Juf| o 2.2.31)

Proof. By (2.2.30) we have, for all 5 € N¢,

0 Xe(e)(D)u = /

[ u@=y) 0 eiey(y) dy. (2.2.32)

By the definition 1) (y) = (e(€))?4p(e(€)y) and Faa di Bruno formula, we have that

/Rd |0 et (W) dy S (€)1, vE e RY. (2.233)

Then (2.2.31) follows by (2.2.32) and (2.2.33). ]
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The next lemma provides estimates of the regularized symbol a, in terms of the symbol a.
Lemma 2.2.8. (Estimates on regularized symbols) Let m € R, N € N,

1. Ifa € I'l', m € R, then a,, defined in (2.2.10) belongs to X7’ and
|yl poe v S 10l ooy - (2.2.34)
2. Ifa el 020,50 > %, then a, belongs to FTL'LQ:Q and
|ax|m+Q’LOO7N S |a|m7Hso—Q,N. (2.2.35)
3. Ifa € I'jp.00, 0 > 0, then, for any B € N¢, Ogax - (8ga)x € ZZ:"BI_Q and
&) &)
|0 ax = (O x| 15— ppe v S 1l N3] - (2.2.36)
4. Ifa € TT 0, 0 > O, then, for any o € Nd with |a| > o, 0%a, = (0%a), € ETLT:‘O"_Q and
|8§ax|m+|a\—g,L°°,N S lalweeo v - (2.2.37)
5. Ifa € I'jo00, 0 >0, then, a — ay € FTOZQ and
la — ax|m—g,L°<>,N < |a\m7WQ,N7N . (2.2.38)
Proof. PROOF OF (2.2.34). Differentiating (2.2.10) for any 8 € N¢, we have

Hay(z,&) = > Cp 50 Xeiey(D) ().
B1+p2=0

Then (2.2.3) and (2.2.31) directly imply (2.2.34).
PROOF OF (2.2.35) By the Cauchy-Schwartz inequality
ny (), s,
() 2 e g

01| S v () e
nezd

2o \1/
<( %ﬁ(f)é@éﬁ,)l ol E)lro-o S (€™ al rro-e-

£)

The case N > 1 follows in the same way.

PROOF OF (2.2.36). First, for any £ € R?, we define k € N such that 251 < 2¢(§) < 2% Then, by the
properties of the cut-off function x in (2.2.9) and the projector Sy, in (2.2.26) we have

9 xe <<Z>> - (af;d%)) Sk, VneR:, v5eNd (2.2.39)

Differentiating (2.2.10) and using (2.2.39) we get

ay— (Da)y = Y. Cup0 X (D) Sk02a(-,€),
B1+B2=0,817#0
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and, using (2.2.31) and (2.2.27)

H(agax_ (a?a)x)(',E)HLoo S Z (&)~ \ﬂllQ-k@HGﬁg HWgoo
B1+4B2=03,81#0

S <§>m_|ﬁ| 2_kg|a|m,wg,oo,|5\ S <5>m_|ﬁ|_g |a|m7wg,oo,|,3|

because (¢) < 2¥. This proves (2.2.36) for N = 0. For N > 1 the estimate is similar.
PROOF OF (2.2.37). For any ¢ € RY, we define k¥ € N such that 2871 < 2¢(¢) < 2%, By (2.2.10) and
(2.2.39) with 3 = 0, we write ay(-,£) = Xc(g)(D)a(-,€) = Xe(e) (D)Ska(-,€), and then
(2.231)
107 ax ()l = [Ixe(ey (D)0 Ska(, )l S 107Skal-,€) || e
2.2.27) (€)~2"
< ok(lal—e) la(-,&)|wes < <§>|a\—eHa(.’§)ng,m < <§>m+|a|—9\almw@,oo,o

by (2.2.3). This proves (2.2.37) with N = 0. For N > 1 the estimate is similar.
PROQF OF (2.2.38).. For any (3 € Ng we write af(a —ay) = [8?@ - (Bga)x] + [(8?a)x - 8§ax] . The first
term is bounded, using (2.2.28) with § = (&), as

(@20 = (00a)y) (O] oo S (€N a(E)lwere S lalmwoe,g(€)™

The second term satisfies the same bound by (2.2.36). This proves (2.2.38). ]

Change of quantization. In order to prove the boundedness Theorem 2.2.10 and the composition Theo-
rem 2.2.11, it is convenient to pass from the Weyl quantization of a symbol a(z,§), defined in (2.2.11), to
the standard quantization which is defined, given a symbol b(z, &), as

= 3 (D00~ Rk w )T = 3 bl k) uge. (2.2.40)
jEZd kezd kezad

We have the change of quantization formula
~ . n
Op" (a) = Op(b) = b(n,&) :=a(n, &+ 5) . (2.2.41)

In the next lemma we estimate the norms of b in terms of those of a. We remind that 3%} denotes the set of
spectrally localized symbols, i.e. satisfying (2.2.2).

Lemma 2.2.9. (Change of quantization) Let o € X7, m € R. If 6 > 0 in (2.2.2) is small enough, then
(cfr. (2.2.41))
b.€) = D a(ng+5) e (2.2.42)

nezZd

is a symbol in X' satisfying

VN € Np. (2.2.43)

Proof. Since a satisfies (2.2.2) with § small enough, it follows that b satisfies (2.2.2). In order to prove
(2.2.43) we differentiate (2.2.42) obtaining that, for any 5 € Nd,

b(z,€) = 3 Pl (m.&+ 5 yere = 5 Pa(n,€ + 3)X (”)am

nezd nezd <£>
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for some € = €(d") > 0, where in the last equality we used that the sum is actually restricted over the indexes
for which |n| < §(£), 6’ € (0,1). Then we represent 85 b as the integral

0¢b(,€) = /TdK(wvy) dy, K(w.y):= (2717)(1

Z (8§a) (z—y, &+ g) Xe <<Z>> ey, (2.2.44)
nezd

We are going to estimate the L'-norm of K (z,-) using Lemma 2.2.4. First note that, since a € 20, We

have (£ + 5) ~ (&) on the support of 850,(71,5 + (n/2)), and then we bound (2.2.44) as

K@) S D alm,zoe, 5™ < Jaly, poe, g (€)™, (2.2.45)
[n| <7 (€)

uniformly in 2. Moreover, using Abel resummation formula (2.2.16) and the Leibniz rule (2.2.15) for finite
differences, we get, forany h = 1,...,d,

K(l'yy) = ;CM Z Ckl,kg Z al]zl (85/3@) (.T - y,f + g)all?xe <<§n>> ein-y.

(e =)™ e s

Then, using (2.2.3) and that ’é)ﬁxe(%ﬂ <€) 7F Vh =1,...,d, we estimate

(gym—(d+D-1d €y +m=18lal,, 1o g1+dr1

. |, 150 18| +d+1 13 .
[2sin(yp/2) T AT ln;&,@ [(€) 2sin(yn /2)| 1

K (z,y) S

(2.2.46)

uniformly in 2. In view of (2.2.45)-(2.2.46) we apply Lemma 2.2.4 with A = (¢) and B = (&)™ ¥l al,,, 1. |5/ +a11
obtaining

|0b(x,€)| < /T NE @ )ldy S €)™ aln Lo jsirarr, V(@) € T x RY,
that proves (2.2.43). O

Continuity. We now prove boundedness estimates in Sobolev spaces of operators with spectrally localized
symbols, requiring derivatives in £ of the symbol and no derivatives in x.

Theorem 2.2.10. (Continuity) Let a € X7 with m € R. Then Op(a) defined in (2.2.40) extends to a
bounded operator from H®* — H*™™, for any s € R, satisfying

10p(a) ully_p, S laly, 2o gy 1l (2.2.47)
Moreover, if a fulfills (2.2.2) with § > 0 small enough, then the operator OpW(a) defined in (2.2.11) satisfies
10DY (@)t S Nl e sy Nl (2.2.48)

Proof. We first recall the Littlewood-Paley characterization of the Sobolev norm

lull2 ~ > 2% Agulf3 (2.2.49)
k>0
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where Ay, are defined in (2.2.25). The norm || o = || || 2. We first prove (2.2.47).
Step 1: according to (2.2.24), we perform the Littlewood-Paley decomposition of Op(a),

Op(a)v = ZOp(ak)v, (2.2.50)
k>0
where
ag(z,€) = a(z,E)x(€),  ar(2,€) = a(z,&)p277), k> 1. (2.2.51)

In order to prove (2.2.47), it is sufficient to prove that
10p(ar) vy S |alm.zo.ar1 2™ |v]lg, Yk € No, Vo€ L2. (2.2.52)
Indeed, decomposing v in Paley-Littlewood packets as in (2.2.25),

v=>Y A, Ag=x(D),A;=¢(277D), (2.2.53)
j=0

which are almost orthogonal in L* (namely A, A; = 0 for any |j — k| > 3), using the fact that Op(ay)v =
Op(a) Ajv, and since the action of Op(ay) does not spread much the Fourier support of functions being a
spectrally localized, according to (2.2.13), we have

(2.2.50) 2 (2253),2250) 2
10p(a) ]2, “E” |3 Op(ar)e| FHEEV ST Op(an) A
k>0

lj—k|<3 s
2k( ) 2(2'2'52) 2 2k 2
S—m S
~ Z 2 [Op(ar) Ajolly < ‘a|m,L°°,d+1 Z 27 |Ajv5
li—k|<3 li—k|<3
k 2 (2.2.49)
S |a’?n,L°°,d+1 222 SHAWHO ~ 7 a ?n,Loo,dHHUHz-
k>0

Step 2: By (2.2.51) and (2.2.40) we write Op(ag) as the integral operator

(Op(ax)v)(z) = » Ki(z,x —y)v(y)dy (2.2.54)
with kernel 1
Kp(z,2) = ng el a(z,0) p(2770) . (2.2.55)

We shall deduce (2.2.52) by applying the Schur lemma: if

sup |K (2,2 —y)|dy =: C1 < 400, sup |K (2,2 —y)|dz =: Co < +00 (2.2.56)
xeTd JTd yeTd JTd

then Schur lemma guarantees that the integral operator (2.2.54) is bounded on L?(T¢) and
10 (ar)vllo < (C1C2)M2||v]lo- (2.2.57)
Let us prove (2.2.56) and estimate the constants C'y, C5. By (2.2.55) we have that

(2.2.3)
Ki(2,2)] S Y la(@,0)e@70) "< Jalmoeo Y (002750 < 2 gl pep. (2.2.58)
Lezd LeZ4
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Then, applying (d+1)-times Abel resummation formula (2.2.16) to (2.2.55), we obtain, forany h = 1,...,d,
1

Kk(a:,z) = (27T)d (eizh _11)d+1 Z eifzz ag+1(a(x’€)¢(2—k£))
Lez?

and we deduce, using (2.2.3), (2.2.15), |Ky(z,2)| < |2sin(z,/2)] 74" |a| 1o 411271 for any h =
1,...,d, thus

K (2,2)] S 25 a0 e g i (2k2]sin(ih/2)\)d+1 : (2.2.59)
By (2.2.58), (2.2.59) we apply Lemma 2.2.4 with A = 2¥ and B = 2km|a\m7Loo,d+1, deducing that
/Td \K, (7,2 — y)|dy = /Td K (7,2)|dz < 25 a0 g1 (2.2.60)
uniformly for 2 € T?. Similarly
/Td K, (v, — y)|da < 2" |alm, 1o a1 (2.2.61)

uniformly for y € Te. Finally (2.2.60), (2.2.61), (2.2.57) prove (2.2.52) completing the proof of (2.2.47).

PROOF OF (2.2.48). By Lemma 2.2.9 we have Op'" (a) = Op(b) for a spectrally localized symbol b € X7,
which fulfills estimate (2.2.43). Then (2.2.48) follows by (2.2.47). O

Composition of para-differential operators. We finally prove a composition result for para-differential
operators. The difference with respect to Theorem 6.1.1 and 6.1.4 in [99] is to have periodic symbols and
the use of the Weyl quantization.

We shall use that, in view of the interpolation inequality (2.2.29), if a € I'j};, o and b € F’V’},,Q,oo then
ab € an%,?o/ and, forany N € Ny, any 0 < g1 < a < < ggsuchthat o1 + 0o = a + 3

(bl sy oo N S @ wrense N 1Bl poo v 10 poo v [0l wrence n

(2.2.62)
||, wewoe N (bl wee N S [almweroe N bl wezee N+ |alm wez.0o N [bmr wreree -
Theorem 2.2.11. (Composition) Let a € I'};,, b € F%/MO with m,m’ € Rand o € (0,2]. Then
Op®" (a)Op”" (b) = Op®" (a#,b) + R™%(a,b) (2.2.63)
where the linear operator R=9(a,b): H = HSi(erm )ﬂ), Vs € R, satisfies
HR_Q(C%b)uHsf(erm’)Jrg 5 (‘a’m,WQvoo,N ‘b‘m’,L‘X’,N + ’a‘m,L‘x’,N ’b|m’,W9’°°,N> Hu”s (2264)

with N > 3d + 4.

Proof. We give the proof in the case ¢ € (1,2]. We first compute Op®" (a)Op®" (b). Recalling the
definition (2.2.12) we obtain

k414
2

~ /(. 4+ kN~
Op"" (a)Op™" (b)u = Op" (a,) Op" (by) = Zax (] —k, jT) by (k -/,
ikt

)ugeij'x.
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We now perform a Taylor expansion of @, ( J—k, %) in the second variable, around the point %. Writing
j+k=j+0+ (k—{), weobtain

(13 a5 (5 006105

+ Y (H>a/l(1—t)(‘)gaX(j—k,j+£+t(k_£))dt.
0

2 2
aeNg,|al=2

We expand analogously EX (k -/, kTM) around the point %. Writing k + ¢ = j + ¢ — (j — k), we obtain

(k-0 55) R0 5) - () a5

b () [a-na (oo DY

BENG,|B|=2

Moreover, recalling (2.2.87) and (2.2.11), we write Op®" (a#,b)u = Op" ((ab + %{a,b}),) u and, by
the previous expansions,

(opBW (a)Op®” (b) — OpBW (ab n %{a,b}))u - iRi(a,b)u

i=1
where
1
Ry (a,b)u := Op"v (axbx — (ab)y + 5({a><7bx} — ({a,b})x)>u (2.2.65)
~ k+ ¢ k—Oye [ g j+ 0+ t(k— ¢
Ry(a,b)u ::be<k—€,?>z <T> /O(l—t)(??ax(]—k,] 2( ))dtwe”z
7,k |a|=2
(2.2.66)
k—0\ . (. AN R A RPN 0+ t(k—j i
= () 1 ) () [ e D
Jokrt
(2.2.67)
s |+ ¢ k—j\8 ! itk —
Ry(a,b)u := CLX<] _]@]i)Z (Tj> /(1—t)6ggx<k—€,3+ +2( J)>dtugelj .
ikt 181=2 0
(2.2.68)

We show now that the operators R;(a,b), i = 1,...,4 fulfill estimate (2.2.64).

Estimate of R;(a,b). By exchanging the role of a and b it is enough to prove that the symbols agaxag by —

(6g‘a 09b)y, |a| < 1, belong to ETL”Q: ™'~ and then apply Theorem 2.2.10. The spectral localization property
follows because of the cut-off x and € small. As 93 commutes with the Fourier multiplier x(¢)(D) we have
that 93by = (03'b) and we write 9¢'ay 03b, — (O ad7b)y as

(08a)y [(85D)y — O5b] + [(Ofa)y — Ofa] O3b + [0 adgb — (88adyb), ] (2.2.69)
+ [0¢ay — (88a)y] (85D)y . (2.2.70)
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Consider first the term in (2.2.70). By Lemma 2.2.8, 9¢'ay — (0ga)y € e ! and (09b)y € T e
and by remark (v) after Definition 2.2.1, for any n € Ny,

H@gax (@E ) ] (aab)x} < ‘8?00( - (8?a)x‘m_|a|_Q,Loo,n|(agb)ﬂm’—s—la\,mc,n
(2.2.362(2.2.37)

~ |a‘m7WQ«°°,n+\o¢| |b|m/,L°°,n '

m~+m’—p,L>®° n

|al

Next consider the terms in (2.2.69). By remarks (i:¢), (iv) after Definition 2.2.1, we have 0“& S I‘WQ o C

rrolel  gap e pm

We—lal.or 02 We—laloo» SO We can apply Lemma 2.2.8, property (2.2.62) and (2.2.6) to obtain

‘(2'2'69)’m+m/7Q,L°‘37n S ‘a”m,WQ*|a\7°0’n+|a| ’b’m’,W\a\voo,N + ’a"m7L°°7n+|a| ’b’m/,W&OO’n
/S ‘a|m,WQv°°,n+1 |b‘m’,L°°,n+1 + ‘a‘m,L"O,nJrl ’b|m’,W~‘-”°°,n+1 (2271)
where to pass from the first to the second line we used the second interpolation inequality in (2.2.62). Alto-

gether we have proved that the symbol in (4.7.24) belongs to ETL"Q: ™'~ and its semi-norms are bounded by

(2.2.71). Then Theorem 2.2.10 proves that R (a,b) fulfills estimate (2.2.64).

Estimate of Ro(a,b). First we rewrite (2.2.66) as

Ra(a,b)u = iz (/1(1 —t) > fG - 60 dt)wew

gl 0 |ar|=2

where

Ji(n,0):= > Dby (k- zk“)agax(nw—k,HW)

kezd
g t
J §€ZD‘;I) (j,ﬁ—i— )Bgax<n j,@—i—n—g ])
jezd

and D, := 0y, /iand DY := D31 ---Dg‘g. Then, recalling (2.2.40),

1
Rofa.byu=1 [ (1= 3 Op(f)uat

=2

where

[ (,€) ZD% (5.6 +72 )aéax( j,g+";tj)ei“'$. (2.2.72)

We claim that ff*(x,€) is spectrally locahzed, namely
35 € (0,1): |n| <86, V(n,&) € suppfe. (2.2.73)
In fact on the support ofgx (j, &+ %) we have, for some 0" € (0,1),
jl <86, (2.2.74)
whereas, on the support of 8?/dx (n —5,E+ ";—tj) t €10,1],

(2.2.74)
In—j| <6(&) +(n)+6(5) < (6+68)(&) +d(n). (2.2.75)
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The estimates (2.2.74)-(2.2.75) then give |n| < |j]| + [n — j| < §(€) + (6 + 60")(E) + d(n), which implies
(2.2.73).
In order to apply Theorem 2.2.10 it remains to prove that, for any N > 3d + 4,

| [, 8) lmtm/— o100 d41 S |blmswece N |@m, Lo N, (2.2.76)

which implies, for any s € R, u € H?, ||Ra(a,b)ulls—m—mro S |blmweos n |a|m, poo v |ulls. Thus
Ry (a,b) satisfies the estimate (2.2.64).
In order to prove (2.2.76) note that, differentiating (2.2.72), for any 5 € N¢,

8Bft (.8) = Z 0515226 'Dgb <J §+ )anrﬁQ < —j,ﬁ-i-n—;tj)ei"'x
B1+p2=4

= Y. Cap / KV (2,y,2) dydz (2.2.77)
B1+pB2=p

where Cp, g, are binomial coefficients and

1 ] N+t i
th&(l,’y?z) — (27r)2d 2(8?1ngx) (ZL‘ — -y + %)860:4-62&)( (:U 2+ ])el(n z+jy)
n7j

2
(2.2.78)
By (2.2.73) and (2.2.74) the sum over n in (2.2.72) is restricted to indexes satisfying
] J n+tj
In| < (&), |j] < (&), and therefore (€ + 5) ~ (&€ + 5 )y~ (£).

We deduce that the sum in (2.2.78) is bounded by

; d '—|8]— +
| K72 (2, 2)| < (€)™ A= 00 DYby |15, 1+ ad—0,2,0 108 T2 ol gl 2%.0

(2.2.6),(2.2.37),(2.2.34)
<

(@2 e bl e 5 |alm, e 2411 (2.2.79)

recalling that || = 2. We also estimate Ktﬁ 1,62 (z,y,z) applying Abel resummation formula (2.2.16) in the
sum (2.2.78), in the index n and in the index j separately, obtaining, using (2.2.37), (2.2.34), (2.2.15) and
(2.2.6),

lf —
‘Kfl’m(%y,z)‘ S <f>2d+m+m 141 21b] W9’°°,2d+1+|/3\’a‘m,L‘”,Zd+3+|/5\

] yp, |~ (2d+1) _zp | —(2d+1) (2.2.80)
X 121;&()(5)28 n> , [(€)2sin— )

In view of (2.2.79)-(2.2.80) and |8| < d + 1, we apply Lemma 2.2.4 with d ~ 2d, choosing A = (£),
B — <£>m+m _lﬁ‘_Q |b|m/’WQ,oo72d+1+|B| |a,|m7Loo’2d+3+|B‘ and we Obtain

10 £2 (&)l S /2d \KP0P2 (2, 2) | dydz < (€)™ =01 |b)0 oo 3a42 |alm. Lo 3d14
T

proving (2.2.76).
The proof that R3(a,b) and R4(a,b) satisfy the estimate (2.2.64) follows similarly. O
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2.2.3 Para-differential calculus in Sobolev spaces

The Sobolev norms || || satisfy interpolation inequalities (see e.g. section 3.5 in [26]):
(1) forall s > sp > g, u,v € H?,

[wvlls < flullsollvlls + [lellsllvllso - (2.2.81)

(i) Forall 0 < s < sg,v e H% ue H%,

Juvlls S llullsol[v]ls - (22.82)
(iii) For all s1 < s2,0 € [0,1] and u € H*2,
lllgsy+(1-a15 < ull$, llullsy” (2.2.83)
(iv)Foralla < a < 3 <b,u,v € H,
lullallvlls < llullallvlle + llullollvlla- (2.2.84)

Para-differential operator act on Sobolev spaces, namely the following result holds true .

Theorem 2.2.12. (Continuity of Bony-Weyl operators) Let a € '], resp. a € I'[', with m € R. Then

. . SO,
Op®" (a) extends to a bounded operator H® — H*~™ for any s € R satisfying the estimate, for any
u € H3,

10p"" (@)ulls_p, S laly, 50 20a41) 1l (2.2.85)
Moreover, forany 0 > 0, s e R, u € HS(Td),
10D (@l -y S @b sy paasn, Nl 22:56)

Proof. Since Op®" (a) = Op" (a,), the estimate (2.2.85) follows by (2.2.48), (2.2.34) and || oo N S
lal,, so.v- Note that the condition on the Fourier support of a, in Theorem 2.2.10 is automatically satisfied
provided € in (2.2.9) is sufficiently small. To prove (2.2.86) we use also (2.2.35). ]

The second result of symbolic calculus that we shall use regards composition for Bony-Weyl para-
differential operators at the second order with mild smoothness assumptions for the symbols in the space

variable . Given symbols a € T'(, ,, b € FZTS; o Withm,m’ € Rand ¢ € (0,2] we define

b 0,1
b= 0€(0,1] (2.2.87)
ab+ 5{a,b}, o€ (1,2], where {a,b}:=Vea-V;b—Vza-Veb,

is the Poisson bracket between a(z,£) and b(z,£). By (2.2.6) and (2.2.8) we have that ab is a symbol in

Fsmoigﬂ and {a,b} is in F;’Zi’;ﬁ]l. The next result follows directly by Theorem 2.2.11 and (2.2.5).

Theorem 2.2.13. (Composition) Let a € T, ., b € TT,  withm,m’ € Rand o € (0,2]. Then

Op®”" (a)Op”" (b) = Op®" (a#,b) + R~ %(a,b) (2.2.88)

where the linear operator R~%(a,b): Hs — Hs—(mtm)te /s e R satisfies, for any u € H?,

IR0l sy o S (100 Pl ooy + 10l s v Bl oo ) el (22.89)

where N > 3d + 4.
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A useful corollary of Theorems 2.2.13 and 2.2.12 (using also (2.2.6)-(2.2.8)) is the following:

Corollary 2.2.14. Leta € T, b € T ), c € I™, withm,m/,m" € R. Then

Op®" (a) o Op”" (b) o Op"" (¢) = Op®" (abc) + Ri(a,b,c) + Ro(a,b,c), (2.2.90)

where .
Ri(a,b,c) := EOpBW({a, c}b + {b,cla + {a,b}c) (2.2.91)
satisfies Ry (a,b,c) = —Ri(c,b,a) and Ro(a,b,c) is a bounded operator He — Hs—(mim+m")+2 yg o

R, satisfying, for any u € H?,
||R0((I,b, C)||s—(m+m’+m”)+2 5 |a|m,80+2,N |b|m’,80+2,N |C|m”,50+2,N HUHS (2.2.92)
where N > 3d + 5.

We now provide the Bony-para-product decomposition for the product of Sobolev functions in the Bony-
Weyl quantization. Recall that Hé denotes the projector on the subspace H.

Lemma 2.2.15. (Bony para-product decomposition) Let w € H®, v € H" with s +r > 0. Then
wv = Op™" (u)v + Op™" (v)u + R(u,v) (2.2.93)
where the bi-linear operator R: H® x H" — H5T"~%0 is symmetric and satisfies the estimate

1R (u, )| S Nlull 1ol (2.2.54)

S+r—sg ~
Moreover R(u,v) = R(Ilg-u,IIgv) — uovg and then

L5 R(w,0) |50 S [ITgrulls [Tyl (2.2.95)

Proof. Introduce the function 6.(j, k) by

1= XE((? - :>> n X((zyk_@) 0.,k (2.2.96)

Note that |6.(7,k)| < 1. Let ¥ := {(j,k) € Z? x Z? : 6.(j, k) # 0} denote the support of §.. We claim
that
Gk ex = |jl <Cemin(|j — k|, [k]). (2.2.97)

Indeed, recalling the definition of the cut-off function x in (2.2.9), we first note that!
S = {000 {lj =kl = el + k), [k > (2 — )}

Thus, for any (j,k) € X,

1 1 11 1 1 11
| <=kl +zli+k <=4+ )li—kl, ll<3125—k+:k<(5+)Ik
gl < 5li |+2|J+|_<2+26>|J [ bl =512 +2||_<2+26>|

"For § sufficiently small, if |j — k| < §(j + k) and |k| < 6(2j — k) then (j,k) = (0,0).
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proving (2.2.97). Using (2.2.96) we decompose

U:Zﬂj,kxe(é )Uke +ZUkXE< ; >>aj k€1]x+ze j’ ’U,j k’l}kej
Jk

7.k
= 0p™" (u)v + Op®" (v)u + R(u,v) )

By (2.2.97), s + r > 0, and the Cauchy-Schwartz inequality, we get

IR0, sZ<J> R PR 0|
2
<Z 12U — k) [l ()" (6| S Nl o)

proving (2.2.94). Finally, since on the support of . we have or (j,k) = (0,0) or j — k # 0 and k # 0, we
deduce that

R(u,v0) = 0:(0,0)i0%0 + Y 0e(j, k)i 0 9™ = ~TigTo + R(Iy u, Mg v)
j—k=0,k#£0

and we deduce (2.2.95). ]

Composition estimates. We will use the following Moser estimates for composition of functions in
Sobolev spaces.

Theorem 2.2.16. Let I C R be an open interval and F € C*(1;C) a smooth function. Let J C I be a
compact interval. For any function u,v € H S(’]I‘d,R), s > %, with values in J, we have

[E )]s < C(s, F,T) (1 + ulls) ,

|F(u) — F(0)]ls < Cls, F, ) (lu = vlls + (lulls + o]l ][w — o] ) (2.2.98)
P < C(s, . Dfulls it F(0) =0,

Proof. Take an extension F' € C°(R;C) such that FII = F. Then F(u) = F(u) for any v € H*(T%R)
with values in J, and apply the usual Moser estimate, see e.g. [60], replacing the Littlewood-Paley decom-
position on R with the one on T% in (2.2.25). O

2.3 Para-linearization of (EK)-system and complex form

In this section we para-linearize the Euler-Korteweg system (2.1.6) and write it in terms of the complex

variable
1 - —1/4 i n 1/4 . .
v (K)o () o eenoci 2D

The variable u € H*. We denote this change of coordinates in H*® x H* by

co— L <K?m>> (K’?m)i o (K’?m))‘l‘ i(Klgm))‘ll | (232)
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We also define the matrices

0 1 i 0 10
J = [_1 o}’ J::[O i], Id:= [0 J. (2.3.3)

Proposition 2.3.1. (Para-linearized Euler-Korteweg equations in complex coordinates) The (EK)-system
(2.1.6) can be written in terms of the complex variable U := g with u defined in (2.3.1), in the para-

linearized form
U = J|0p™ (Ax(U3,€) + Ay (U3,€))|U + R(U) (234)

where, for any function U € H5+2 such that

1/4
p(U) := L (KTm)) g (u+7) € Q (see (2.1.12)), (2.3.5)

(i) Ao (U;z,€) € F§0+2 ® Ms(C) is the matrix of symbols
o [1+a1(Usz)  a_(Ux)
Ag(Us,€) = /nK (m)|¢] [ VD 1) (2.3.6)

where at (U;x) € Fgo o are the §-independent functions

L (K(p+m)—K@m p
at (U;x) := 5 < K(m) + m> . (2.3.7)
(ii) Ay (Usx,€) € T} ) ® My(C) is the diagonal matrix of symbols
A((U;z,€) = b(U;Ox) & _b(qu) ' J . bU;z):=VeoeTl? , aR™ (2.3.8)

Moreover for any o > 0 there exists a non decreasing function C() : Ry — Ry (depending on K) such
that, for any U,V € H* with p(U),p(V) € Q, W € H°*? and j = 1,2, we have

10" (A5 (UNW o < CIU1so) W |2 (2.3.9)

HOPBW (A](U) - AJ( ))W”U < C(HUHSm HVHSO) HWHU-&-Q”U - VHSO (2-3-10)

where in (2.3.10) we denoted by C(-,-) := C(max{-,-}).
(iii) The vector field R(U) satisfies the following “semi-linear” estimates: for any o > sg > d/2 there

exists a non decreasing function C() : Ry — R (depending also on g, K) such that, for any U,V € Ho+2
such that p(U),p(V') € Q, we have

IRU)lle < C(IUllso42) 1Ullo, — [RU)]lo < C([Ullso) 1U]lo+2, (23.1D)
IRU) = R(V)llo < C(Ullsot2, [VIlsor2) I1U = Vo + CIUllo, [VIo) 1U = Visgr2  (2.3.12)
IRU) = R(V)lsy < CUIUlso+2, [Vlso+2) [IU = Vs (2.3.13)

where in (2.3.12) and (2.3.13) we denoted again by C(-,-) := C(max{-,-}).
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Proof. We first para-linearize the original equations (2.1.6), then we switch to complex coordinates.

Step 1: para-linearization of (2.1.6). We apply several times the para-product Lemma 4.2.12 and the

composition Theorem 2.2.13. In the following we denote by RP the remainder that comes from Lemma

4.2.12,and by B¢, p = 1,2, the remainder that comes from Theorem 2.2.13. We shall adopt the following

convention: given R%valued symbols a = (aj)j=1,..d» b = (bj)j=1,..q in some class I']" @ R?, we denote
d

RP(a,b) := Zj:l RP(aj,b;),

d d

R™%(a,b) :== > R °(aj,b;) and Op""(a)-Op™ (b):=) Op"" (a;)Op"" (b;).
j=1 Jj=1

We para-linearize the terms in the first line of (2.1.6). We have A¢ = —Op"" (|¢]*)¢ and div (pV¢) =
Vp - V¢ + pA¢p can be written as

pAp = —Op®" (p|¢]> + Vp-if) ¢

+Op”™ (Ag)p + RP(p,A¢) + R *(p,[¢]*)¢, (2.3.14)
Vp-Vé = Op”™ (Vp-i&)¢ + Op”" (V¢ -i&)p
+ RP(Vp,V¢) + R (Vp,i€)¢ + R (V,i&)p. (2.3.15)

Then we para-linearize the terms in the second line of (2.1.6). We have

LIV = 0p™ (Vo i€)o
+ SR (V6.V0) + R (Vo i6). (2.3.16)
Using (2.1.10) we regard the semi-linear term
gm+p) =gm+p) — g(m) =: R(p) (2.3.17)
directly as a remainder. Moreover, writing Ap = —Op"" (|£ |2) p, we get

K(u+ p)Ap = Op™ (K(m+ p))Ap + Op”" (Ap) K (m + p) + RP(Ap, K (m + p))
= —Op"™" (K(m+ p)|é]> + K'(m+ p)Vp-i€)p
+O0p™" (Ap)K (m+ p) + RP(Ap, K(m+p)) — R *(K(m+p),[¢[))p.  (2.3.18)

Finally, using for %|Vp|2 the expansion (2.3.16) for p instead of ¢, we obtain

1 1 1
S K (4 p)[Vpl* = S0p™ (K'(m+ p))[Vpl* + 50p™ (IVp|*) K'(m + p)

+ S R(V0P, K/t p)) = Op™ (K'(m+ p) V- i€) p +B(p)

where
1 1
R(p) := 5Op™ (V") K'(m + p) + S R (|Vpl*, K/ (m + p)) (2.3.19)
1
+ iOpBW (K'(m+ p))RP(Vp,Vp) (2.3.20)

+O0p™" (K'(m+ p)) R (Vp,i&)p+ R (K (m+ p),iVp - &)p. (2.3.21)
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Collecting all the above expansions and recalling the definition of the symplectic matrix J in (2.3.3), the
system (2.1.6) can be written in the para-linearized form

o (9 = Jop™ <[K(—mvy-))i’§ " (mvff;)iép]) <§,> + R(p, ) (2.3.22)

where we collected in R(p, ¢) all the terms in lines (2.3.14)—(2.3.21).
Step 2: complex coordinates. We now write system (2.3.22) in the complex coordinates U = C~* <g> .

Note that C~! conjugates the Poisson tensor .J to J defined in (2.3.3), i.e. C~'.J = JC* and therefore
system (2.3.22) is conjugated to

0, = IC*Op™ <[K(_mvj;’f)i‘§’2 quf §'|§f] ) CU + C'R(CU)). (2.323)

Using (2.3.2), system (2.3.23) reads as system (2.3.4)-(4.5.39) with R(U) := C"'R(CU).
We note also that estimates (2.3.9) and (2.3.10) for 5 = 2 follow by (2.2.85) and (2.2.98), whereas in
case j = 1 follow by (2.2.86) applied withm =1, p = 1.

Step 3: Estimate of the remainder R(U). We now prove (2.3.11)-(2.3.13). Since ||p||o, ||¢|ls ~ ||U||s for
any o € R by (2.3.2), the estimates (2.3.11)-(2.3.13) directly follow from those of R(p,¢) in (2.3.22). We
now estimate each term in (2.3.14)—(2.3.21). In the sequel o > s¢ > d/2.

ESTIMATE OF THE TERMS IN LINE (2.3.14). Applying first (2.2.85) with m = 0, and then (2.2.86) with
o = 2, we have

10" (Ad)plle < l[dllsor2llplle,  [10P™ (Ad)plle < [ llsollpllora- (2.3.24)

By (2.2.94), the smoothing remainder in line (2.3.14) satisfies the estimates

1B (p, Ad)lo S @llsor2llello,  1R7(p, Ad)llo S [l llsollollore (2.3.25)

and, by (2.2.89) with ¢ = 2, and the interpolation estimate (2.2.84),

IR2(p. [€1%)0ll0 S llpllsor2li@lls S N6llsollpllo+2 + ollso @ llo+2- (2.3.26)

By (2.3.24)-(2.3.26) and ||p||s,||®|lc ~ ||U]|s we deduce that the terms in line (2.3.14), written in function
of U, satisfy (2.3.11). Next we write

Op”" (Ad1)p1 — Op”" (A¢a)p2 = Op™" (Ag1)[p1 — p2] + Op™" (A1 — Ad2)p2
and, applying (2.2.85) with m = 0, and (2.2.86) with ¢ = 2 to Op"" (A¢; — Agp)p2, we get

O™ (A¢p1)p1 — Op®" (Ad2)p2llo S l|d1llso+2llor — p2llo + 01 — D2l so+2ll2]l0
O™ (Ag1)p1 — O™ (Ag2)palls < ld1llsor2llor — p2llo + o1 — d2llsollo2llo+2 -

Concerning the remainder RP(p,A¢p), we write RP(p1,A¢1) — RP(p2,A¢2) = RP(p1 — p2,A¢1) +
RP(pa, A2 — A¢1) and, applying (2.2.94), we get

(2.3.27)

| RP(p1,A¢1) — RP(p2, Ad2)llo S ll@1llsor2llpr — p2llo + [[o2lloll@1 — d2llso+2

(2.3.28)
| RP(p1,A¢1) — RP(p2, Ad2)lo S ll@1llso+2llpr — p2llo + [o2llos2llP1 — 2llso -
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Finally we write R~2(p1, |£]?) 1 — R™*(p2, [€[*)¢2 = R2(p1 — pa, [€]*) 61+ R 2 (p2, [€]%)[1 — ¢2]. Using
(2.2.89) we get

IR™2(p1,1€1*) 01 — R2(p2,1€))d2ll0 S ld1llollor — p2llsorz + 101 — d2llollpzllsore.  (23.29)

‘We also claim that

IR™2(p1. [€1%) 01 — R™%(p2, [€1*)2ll S o1 — p2llsolldnllosz + 161 — d2llollp2llsor2-  (2:3.30)

Indeed, we bound

IR (p1, |€17) 1 — B2 (p2, €17 2lle S 1R (p1 — p2, €)1 llo + 1o — ollsllp2llsor2

and, to control R=2(p1 — po, |€]?)¢1, we use that, by definition, it equals

Op™" (p1 — p2)Op™" (I€[*)d1 — O™ ((p1 — p2)|€*) 1 — OP™Y (V(p1 — p2) - €)1

and we estimate the first two terms using (2.2.86) with ¢ = 0 and the last term with o = 1, by ||R~2(p1 —

p2, €)1l S llpr = p2llsoll¢1llo+2. proving (2.3.30). By (2.3.27)-(2.3.30) and ||plo, [|¢lle ~ U], we
deduce that the terms in line (2.3.14), written in function of U, satisfy (2.3.12)-(2.3.13).

The estimates (2.3.11)-(2.3.13) for the terms in lines (2.3.15), (2.3.16), (2.3.18) and (2.3.17), follow by
similar arguments, using also (2.2.98).

ESTIMATES OF R(p) DEFINED IN (2.3.19)-(2.3.21).
Writing Op”" (|Vp[?) K'(m + p) = Op®" (|Vp|*) (K'(m + p) — K’(m)) (in the homogeneous spaces
HS), we have, by (2.2.85), the fact that p € Q, Theorem 2.2.16, (2.2.94), (2.2.82), (2.2.89) with p = 1,

IR(p)lls < C(llpllso+2) llollo-

Thus R(p), written as a function of U, satisfies (2.3.11). The estimates (2.3.12)-(2.3.13) follow by

[R(p1) = R(p2)llo < C(llp1llso+2s lo2llso+2) [0 — p2lle + C[lo1llos [l02llo) o1 — p2llsg+2 (2.3.31)
IR(p1) — R(p2)llso < C(llo1llsot2:lp2]lso+2) o1 — p2llso - (2.3.32)

PROOF OF (2.3.31). Defining w := V(p1 + p2), v := V(p1 — p2), then we have, by (2.2.81),

IVorl = 1Vp2llsg = 1w - vllsg < (lo1llso+1 + llp2llso1) lior = p2llso41 (2.3.33)
(2.2.82)
Vo1 = Vo2l llsg-1 = llw - vllso-1 S (lplsorr + lo2llso+1) llo1 = p2llso (2.3.34)

Let us prove (2.3.31) for the first term in (2.3.19). Remind that p1, ps are in Q. We have

10p™™ (IVp1*) K'(m + p1) — Op™™ (IVp2l*) K'(m + p2) |

< Op™" (w - v) (K'(m+ p1) |0 + [|10P™" (IVp2l*) [K' (m+ p1) — K'(m+ p2)] ||
(2.2.85)
S lw - vllso[[K (m+ p1) — K (m)[|o + [l p2ll2 41 1K' (m + p1) — K'(m+ p2) o

(2.2.84),(2.2.98),(2.3.33)
< o1l (1o llso+1 + lo2llso+ )21 = p2llso+1 + C(llp1llsot1: 11p2]lso+1) o1 — p2llo

+ llo2llsol2llso+2(llp1lle + llp2llo)llor = p2llso

(2.2.84)
< C(llprllos llp2llo) o1 = p2llsora + (o1 llsor2s o2llsor2) o1 — p2llo - (2.3.35)
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In the same way the second term in (2.3.19) is bounded by (2.3.35). Regarding the term in (2.3.20), using
that RP(-,-) is bi-linear and symmetric, we have
|Op™" (K'(m+ p1)) R*(Vp1,Vp1) — Op™" (K'(m+ p2)) RP(Vp2, Vp2) o
< 0p™ (K'(m+ p1) — K'(m+ p2)) R (Vp1, V1) | + 0D (K (m + p2)) R (1,0)
(2.2.85),(2.2.94) . ) )
S [o1llollpllsorel| K (m+ p1) = K'(m+ p2)llso + [[wllso+1l[v]lo—1[[ K" (m + p2)l]s

(2.2.98),(2.3.33)
C(llorllas llo2lla) 11 = p2lls + C(llorllso+2: lp2llso2) llor = p2lo- (2.3.36)

Also the terms in (2.3.21) are bounded by (2.3.35), proving that R(p) satisfies (2.3.31).
PROOF OF (2.3.32). Regarding the first term (2.3.19), we have

10D (IVp1?) K’ (m + p1) — Op®" (IVp2l*) K’ (m + p2) s,

< J0p™ (w - v)K'(m+ p1)lso + |0p™ (IVp2l?) [K'(m+ p1) — K'(m + p2)]ls0
(2.2.85),(2.2.86)
< [w - 0|l sg—1 1K (m+ p1)llso1 + [|p2]|Z, 41 1K' (m+ p1) — K'(m+ p2) s
(2.2.98),(2.3.34)
< Cllprllso+1s lo2llso+1) llor — p2llso - (2.3.37)

Similarly we deduce that the second term in (2.3.19) is bounded as in (2.3.37). Regarding the term in
(2.3.20), note that the bound (2.3.32) follows from (2.3.36) applied for 0 = sg. The estimate for last two
terms in (2.3.21) follows in the same way so we analyze the last one. First we have
RN (K (m+ p1),iVp1 - §)p1 — R™HEK (m+ pa),iVp2 - €)palls
< [RHE (m+ p1),Vp1-1&) — R7H (K (m+ p2),iVp2 - §)] pilso
+ RN (K (m+ p2), V2 - 1) (p1 — p2) s

I[RHK (m+ p1), V1 -i€) — R™HEK (m+ p2),iVp2 - &) pillso + C(llp2llsor2) lor — p2llso-
On the other hand, by definition, we have

[RH(K'(m+ p1),Vpr-i€) = RHK (m+ p2),iVpa - €)1 (2.3.38)
=[Op™™ (K'(m + p1))Op™™ (Vp1 - i) — Op™" (K'(m + p2)) Op™™ (V2 - i€)| 1
+ Op™™ (K'(m+ p1)Vp1 i€ — K'(m+ p2)Vpa - i€) p1
=0p™" (K'(m+ p1) — K'(m + p2))Op™" (Vp1 - i) p1
+0p™" (K'(m+ p2)) Op™™ (V(p1 — p2) - i) m
+ Op™" (V(K(m+ p1) — K(m+ p2)) - i) p1-
Then, applying first (2.2.85) to the first term and then (2.2.86) with o = 1, m = 1 and (2.2.98) to each term,

we deduce that the || ||5,-norm of (2.3.38) is bounded by C(||p1||sg+2: [|p2]ls0+2) |21 — p2]lso- Thus (2.3.32)
is proved. O

(2.2.89),(2.2.98)
<

2.4 Local existence

In this section we prove the existence of a local in time solution of system (2.3.4). Forany s € Rand T" > 0,
we denote LH?® := L°°([0,T],H?). For 6 > 0 we also introduce

Q(;::{pEHSO:m1+5§m+p(x)§m2—5}CQ 2.4.1)
where O is defined in (2.1.12).
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Proposition 2.4.1. (Local well-posedness in T%) For any s > % + 2, any initial datum Uy € H* with
p(Uy) € Qs for some § > 0, there exist T := T'(||U|sy+2,9) > 0and a unique solution U € C’O([O,T],Hs)ﬂ
ct ([O,T} , HS_Q) of (2.3.4) satisfying p(U) € Q, for any t € [0,T]. Moreover the solution depends contin-
uously with respect to the initial datum in HS.

Proposition 2.4.1 proves Theorem 2.1.2 and thus Theorem 2.1.1.
The first step is to prove the local well-posedness result of a linear in-homogeneous problem.

Proposition 2.4.2. (Linear local well-posedness) Let © > 1 > 0 and U be a function in ([0, 17, HSOH)Q
C*([0,T), H®°) satisfying

1l eszsore + 100 | poegrg <O, WUllpwgo <70 p(UM) € Q. VE€[0.T).  (242)

Let 0 > 0 and t — R(t) be a function in CO([0,T),H?). Then there exists a unique solution V &
C°([0,T],H°) N C1([0,T),H°~2) of the linear in-homogeneous system

0,V = JOp™ (Ag(U(t);2,6) + A1(U(t);2,€))V + R(t), V(0,2) = Vo(z) € H, (2.4.3)
satisfying, for some Cg = Cg ; > 0 and C, := C,., > 0, the estimate
IVl gz < Cre®®[Volls + Coe“® T R oo (2.4.4)

The following two sections are devoted to the proof of Proposition 2.4.2. The key step is the construction
of a modified energy which is controlled by the H?-norm, and whose time variation is bounded by the H°
norm of the solution, as done e.g. in [2]. In order to construct such modified energy, the first step is to
diagonalize the matrix JAs in (2.4.3).

2.4.1 Diagonalization at highest order

We diagonalize the matrix of symbols JAs(U;x,§). The eigenvalues of the matrix

l+a (Uiz) a_(Usx)
J a_(U;x) 1+ a+(U;x)} 2:4.5)
with a4 (U;x) defined in (2.3.7) are given by +i\(U;x) with
+pU))K(m+ p(U
AU;z) = /(1 +a. (Usz)? —a_(U;z)2 = \/(m o I?l)f{(l(nlgl p(0)) . (2.4.6)

These eigenvalues are purely imaginary because p(U) € Q (see (2.1.12)) and (2.1.9), which guarantees that
A(U; ) is real valued and fulfills

miCK moCk
in=4/—— < 1) < 4| ——— =! Amax- 4.
0 < Amin ‘/mK(m) _/\(U’x)_”mK(m) A 24.7)

A matrix which diagonalizes (2.4.5) is

fU;x) ¢g(U;x) 1+ay+ A —a_
F .= , [:= , §:i= .
(g(U;x) f(U;x)) \/(1+a++)\)2—a2_ ! \/(1+a++)\)2—a2_

(2.4.8)
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Note that F'(U;x) is well defined because

ot = (KD ) (2
> B8 Iiirf(r(nmﬂ( e mn}l(c(i) (2.4.9)

by (2.1.12) and (2.1.9). The matrix F(U;z) has det F'(U;x) = f2 — g* = 1 and its inverse is

B fU;z)  —g(Us;z)
F(U;z)" = (_g(U;x) i )>. (2.4.10)
We have that

F(U;2)"'] [1 :_T[](Ux)x) ) if([]x)w)} F(U;z) = INU; ). 2.4.11)

By (2.2.98) and (2.4.9) we deduce the following estimates: for any N € Ny, s > 0 and 0 > g,
lae (@)l [F @)l lg@)l, < (U ls)

o (2.4.12)
MU )€ |2s.0v < CN(IUlo) , [p(U) - Elrov < Cn([Ullo41) -
For any € > 0, consider the regularized matrix symbol
A2 (Us,€) = (As(Us2,€) + A1 (U3 2,€)) x(EAU3 2)[€]2), (24.13)

where x is the cut-off function in (2.2.9) and A(U;z) is the function defined in (2.4.6). In what follows
we will denote by x. := x(eA(U;x)|£|?). Note that, by (2.2.98), (2.4.7) and by the fact that the function
y ({)'a‘ag‘x(ey\ﬁ |2) is bounded together with its derivatives uniformly in ¢ € (0,1), ¢ € R and
Y € [Amin, Amax)> the symbol x. satisfies, for any N € Ng, o > d/2

IXel0,0, (JIU]ls), uniformlyine. (2.4.14)
The diagonalization (2.4.11) has the following operatorial consequence.

Lemma 2.4.3. We have
Op=" (F~1) JOp™™ (A%) Op=" (F) = JOp=" ( (VaK @AE? +b - €)x ) FU) (2415
where F(U) := F.(U): H° — H, Yo > 0, satisfies, uniformly in €,
IFW o < U sp42)[Wllo, YW € H. (2:4.16)
Proof. We have that

Op° (1) 309" (Ao )OD™ (1) =IVaR@ | 12|,

where

= Op”™ (/)Op™" (I€1(1 + a1 )xe) Op™™ (f) + Op™" (9)Op™" (I€1*(1 + a4 )x:) Op"" (9)
+O0p™" (£)Op™" (|¢[*a—x=) Op™™ (g9) + Op™" (9)Op™" ([¢*a—x=)Op"" (/)

By = Op™" (£)Op™" (€](1 + a1)x=)Op™ (9) + Op”" (9)Op™" (1€ (1 + a1 )x:) Op™™ (f)
+O0p”" (£)Op™" (I¢*a—x:)Op™™ (f) + Op"" (9)Op™" (|¢[*a—x:)Op"" (9).
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By Corollary 2.2.14 we obtain
Dy =Op™ ([(f* + ¢*)(1 +ay) + 2fga_] [£]*xe) + F1(U)
By = Op™™ ([(f* +¢%)a- +2fg(1 +a1)][€]*xe) + F2(U)

where Fi, Fs satisfy (2.4.16) by (2.2.92), (2.4.12), and (2.4.14) and since, by the definition of f and g in
(2.4.8) and X in (2.4.6), we have (f? + ¢?)(1 +a;) +2fga_ = Aand (2 + ¢g*)a_ +2fg(1 +a;) = 0.
Moreover

Op™™ (MU)[¢1xe) + F1(U),
Fo(U),

Op®" (F~1)JOp®™ (A1 x-)Op™" (F) =] { Di B ] :

-B, —-D;

where
Dy = Op™™ (f)Op”" (b - £x2)Op™" (f) — Op”" (9)Op”" (b - £x2)Op™" (9)
By = Op™™ (f)Op®" (b - £x:)Op”" (9) — Op®" (9)Op”" (b - Exe)OD™" (f).

Applying Theorem 2.2.13, (2.4.12), (2.4.14), using that f2 — g?> = 1 we obtain D; = Op®" (b- & x.) +
F1(U) and By = Fo(U) with F1,F; satisfying (2.4.16). O

2.4.2 Energy estimate for smoothed system

We first solve (2.4.3) in the case R(t) = 0 and V) € C>® = OJGRH(’. Consider the regularized Cauchy
problem ‘
0 Ve = JOp®" (A%(U(t);x,£))VE, VE(0) =TV, e C™, (2.4.17)

where A¢(U;x,€) is defined in (2.4.13). As the operator Op®" (A°(U;x,&)) is bounded for any € > 0,
and U (1) satisfies (2.4.2), the differential equation (2.4.17) has a unique solution V*(¢) which belongs to
C?([0,T],H°) for any 0 > 0. The important fact is that it admits the following e-independent energy
estimate.

Proposition 2.4.4. (Energy estimate) Let U satisfy (2.4.2). For any o > 0, there exist constants Cy.,Cg > 0
(depending also on o), such that for any £ > 0, the unique solution V¢ (t) of (2.4.17) fulfills
t
IVE@)IIZ < CrllVallz + Ce/ IVE(r)|zdr, vt e0,T). (2.4.18)
0

As a consequence, there are constants C,.,Cg independent of e, such that

IVE@®) s < Cre®®t|Volle, VEe[0,T]. (2.4.19)

In order to prove Proposition 2.4.4, we define, for any o > 0, the modified energy
IV[|Z. = (Op®Y (A (U;2)[£*7)Op™" (F~H(Us2))V,0p™ (F~'(U;2)) V), (2.4.20)

where we introduce the real scalar product

(VW) = 2Re /

Td

v(@)w(z)ds, V= m W = m .

w

Lemma 2.4.5. Fix o > 0, 7 > 0. There exists a constant C;. > 0 (depending also on o) such that for any
U e H* with ||U|,, < rand p(U) € Q we have

CVIE = IVIZ, < IVISw < ChlIVIG, vV e H. (2.4.21)
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Proof. We first prove the upper bound in (2.4.21). We note that, by (2.4.12), A° (U;2)[¢|** € T3 and
“1(U;z) € Y, @ M3(C) and, by Theorem 2.2.12 and (2.4.12) we have

IVIZ.0 < 10p™" (A (U32)[€*7) Op™™ (F~H(U;2)) V|0 | Op™ (F~H(U32))Vllo < Cr V12

In order to prove the lower bound, we fix § € (0,1) such that s — § > % and, due to (2.4.7), we have
P l= Fg@f& So, applying Theorem 2.2.13 and (2.4.12) with sg — J instead of sg and with o = J, we have

Op®" (x%) Op®" (F)Op®" (A?) Op™ (F~1) =1d + F9(U), (2.4.22)
where for any ¢’ € R there exists a constant C' > 0 such that
IF @) flor < Crorllflor—s, Vf € HT . (2:4.23)
Again, applying Theorem 2.2.13 with sg — J instead of sp and with o = §, we have also
Op™" (A% ) 0p™™ (J¢[*7) 0p™ (AF) = Op™ (A7[¢]7) + F=*(U), (2.4.24)
where for any ¢’ € R there exists a constant C. > 0 such that
|22 ) fllor—s015 < Crorllfllor, Vf € HT. (24.25)

By (2.4.22)—(2.4.25), Theorem 2.2.12 and (2.4.12) and using also that Op®" ()\%> is symmetric with re-
spect to (-, ), we have

IVI2 < 210p™ (A~F)Op™ (F)Op™ (A% )Op™ (F) V|2 + 2| F*(U)V |2
Cr (oo™ (» %)opBW DVIZ+1IVIE=s)
=cr(0pBW( £)op™ (J&P7)0p™ (A% ) 0™ (F~1)V, 00" (F)V) +||V[12_s)
Cr (V120 + (F7(@)0p™ (F~)V,0p™ (F~1)V) +[[V2_5)
<G (VI +IVIZs).

Now we use (2.2.83) and the asymmetric Young inequality to get, for any € > 0,

2(c+2)-4 _ 2(042) 9 2(c+2) 9
IIVHUJ < V7 7 Ve 7™ <ea |[VIIZy + €273 V]|
2(c+2) .
we choose € so small so that €223 C,. = L and we get ||V [|2 < 2C, (||VH§U + [[V'||%,). This proves the
lower bound in (2.4.21). ]

Proof of Proposition 2.4.4. The time derivative of the modified energy (2.4.20) along a solution V¢(¢) of
(2.4.17) is
d —1\yre —1\1/e
pr IVEIZ 1y = (O™ (B:(AT)[E[*7) Op™Y (F~1) V=, 0p™ (F1)VF) (2.4.26)
+2(0p™" (A7[£]*7) Op®" (0, F ) Ve, 0p™Y (F~1)VF) (2.4.27)
+2(0p®" (A7|€[*7) Op™™ (F~ 1), Ve, 0p™" (F~1)VE). (2.4.28)
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By Theorem 2.2.12 and using that Vo > 0, N € Ny,

0N DIE |y, oo e [F T ), < N T, 18T1,)

507
and the assumption (2.4.2), there exists a constant Cg > 0 (depending also on o) such that
(2.4.26) + (2.4.27) < Co||VE|?. (2.4.29)
We now estimate (2.4.28). By Theorem 2.2.13 with o = 2 and (2.4.2) we have
Op™" (F)Op™™ (F~ 1) =1d + F*(U), Op®" (F~1)Op™" (F)=1d+ F-*(U), (2.4.30)
where 2(U ) are bounded operators from H? to H” 2, Vo' € R, satisfying
|FL2 (U)W ||gri0 < Cop W], YW e H . (2.4.31)
Thus, denoting V¢ := Op®" (F~1)V%, by (2.4.30), we have
Op®W (F)VE = Ve + FL2(U)VE. (2.4.32)
Recalling (2.4.17) we have
(2.4.28) = 2(Op™" (\7[¢]*7) Op®" (F~1)JOp®Y (A%)VE, VE)
43 9(0pPY (A7[¢[27) Op™ (F~1)JOp™ (4%)Op™ (F)V*, V)
— 2(0p™" (X7I€[*7) Op™Y (F~1)JOp™Y (A%) F2Ve, V)
and by Lemma 2.4.3 we get

(2.4.28) “E(I[0p™ (A7[¢27),0pPW (/mK (m)Al¢)>x:) [V, V) (2.4.33)
+ (J[Op®™ (A71€1%7),0p"Y (b - £ xe) | VE, VE) (2.4.34)
+2(0p®" (A\71¢|%7) FVE, V) (2.4.35)
— 2(0p™" (A7[¢[*7) Op™™ (F~1)JOp™™ (A°)F Ve, Ve) (2.4.36)

where in line (2.4.35) the operator F(U) is the bounded remainder of Lemma 2.4.3. We estimate each
contribution. First we consider line (2.4.33). Using Theorem 2.2.13 with ¢ = 2, the principal symbol of the

commutator is
iTHATIEPT, VK m)AEPx (eAE) } =0,
and, using (2.4.14), (2.4.12) and assumption (2.4.2), we get
(2.4.33)] < CL|IVE|2 < Col|VE2. (2.4.37)

Similarly, using Theorem 2.2.13 with o = 1, Theorem 2.2.12, (2.4.12) and estimates (2.4.31) and (2.4.16),
we obtain
(2.4.34)] +](2.4.35)] + [(2.4.36)| < Co|[VE|2. (2.4.38)

In conclusion, by (2.4.29), (2.4.37), (2.4.38), we deduce the bound %Hvs(t)ugw) < Col[VE(t)||?, that
gives, for any ¢ € [0,T]

t
IVEBIzuw < IVOIZ0e + C@/O IVE()lIZ dr

(2.4.21) ) t )
< CT||VE(0)||U+C@/ |VE(r)|zdr. (2.4.39)
0
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Since V4 (t) solves (2.4.17), by Theorem 2.2.12, (2.4.12), (2.4.14) there exists a constant Cg > 0 (indepen-
dent on ¢) such that ||3;V(¢)||25 < Col|VE(t)||3 < Col|VE(t)||2 and therefore

t
IVE@®122 < IVEO)122 + C@/O IVe(n)lzdr, vt e(0,1]. (2.4.40)

We finally deduce (2.4.18) by (2.4.39), the lower bound in (2.4.21) and (2.4.40). The estimate (2.4.19)
follows by Gronwall inequality. O

Proof of Proposition 2.4.2. By Proposition 2.4.4, Ascoli-Arzela theorem ensures that, for any o > 0, V*
converges up to subsequence to a limit V in C''([0,7],H?), as ¢ — 0 that solves (2.4.3) with R(t) = 0,
initial datum Vp € C, and satisfies |V (t)||, < C,e“®!||Vp||,, for any o > 0. The case Vy € H7
follows by a classical approximation argument with smooth initial data. This shows that the propagator of
JOp™Y (A2(U(t);2,8) + A1 (U(t);x,€)) is, for any o > 0, a well defined bounded linear operator

O(t): H° — H, Vo O(t)Vp := V(t), Vt € [0,T], satisfying ||®(t)Volls < Cre®||Vollo -

In the in-homogeneous case R # 0, the solutions of (2.4.3) is given by the Duhamel formula V'(t) =
D(t)Vo + () fot ®~(7)R(7)dr, and the estimate (2.4.4) follows.

2.4.3 Iterative scheme

In order to prove that the nonlinear system (2.3.4) has a local in time solution we consider the sequence of
linear Cauchy problems

P . U1 = —=J/nK (m) AU, P U, = JOp®Y (A(Uy_1;2,€))Up + R(Upn_1)
1 .= n =
U1(0) = Up, Un(0) = Up,

forn > 2, where A := Ao+ Ay, cfr. (2.3.6), (4.5.39). The strategy is to prove that the sequence of solutions
U,, of the approximated problems P,, converges to a solution U of system (2.3.4).

Lemma 2.4.6. Let Uy € H s > 2+ %, such that p(Uy) € Qs for some § > 0 (recall (2.3.5) and (2.4.1))
and define 1 := 2||Uy||s,. Then there exists a time T := T(||Up||so+2,0) > 0 such that, for any n € N:

(50),.: The problem P, admits a unique solution U,, € C°([0,T],H?*) N C*([0,T]),H*~2).
(S1),: Foranyt € [0,T], p(Un(t)) belongs to Q.
2

(S2),,: There exists a constant C, > 1 (depending also on s) such that, defining © := 4C,||Up||s,+2 and

M :=AC,||Up||s, for any 1 < m < n one has
1Unll peogrso <75 (2.4.41)
”Um”L%OHSO-&-Q < @7 HatUmHL%OHSO < 0767 (2442)
Ul pgopzs < M, N0 Ul pooyge2 < Cr M. (2.4.43)

(S3): For1 < m < none has

HU1||L%°HSO =r/2, U — UmfIHL%OHSo <271, om > 2.
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Proof. We prove the statement by induction on n € N. Given r > 0, we define
C, :=max{1,C ¢, Crsp+2, Crs, 2C(r)},

where C. , is the constant in Proposition 2.4.2 (where we stress that it depends also on ¢) and C(-) is the
function in (2.3.9) and (2.3.11). In the following we shall denote by C'g all the constants depending on O,
which can vary from line to line.

Proof of (S0);: The problem P; admits a unique global solution which preserves the Sobolev norms.

Proof of (S1);: We have p(Uy) € Qs. In addition
lp(UL(#) = U)o (ray S I1UL(E) = Uollse S TllUollso+2 < 6/2

for T := T'(||Up||so+2,6) > 0 sufficiently small, which implies p(Uy(t)) € Q%, forany t € [0,7].
Proof of (S2); and (53);: The flow of P; is an isometry and M > ||Up||s, © > ||Up||so+2-

Suppose that (50),,—1—(53),—1 hold true. We prove (50),—(53)s,.
Proof of (50),,: We apply Proposition 2.4.2 witho = s, U ~ U,,—1 and R(t) := R(Up—1(t)). By (S1)p—1
and (52),_1, the function U,,_; satisfies assumption (2.4.2) with © ~» (1 + C,.)©. In addition R(U,,—1(t))
belongs to C°([0, 7], H?) thanks to (2.3.12) and U,,_; € C°([0,T]; H?). Thus Proposition 2.4.2 with o = s
implies (S0),,. In particular U,, satisfies the estimate (2.4.4).
Proof of (52),: We first prove (2.4.42). The estimate (2.4.4) with 0 = sy + 2, the bound (2.3.11) of
R(Up—1(t)) and (2.4.42) at the step n — 1, imply

[Unllsitrose < e [Unllags2 + TCoe%T0). (2444
As © = 4C,||Up||sg+2, we take T' > 0 small such that
CoT <1, TCge®T <1/4, (2.4.45)

which, by (2.4.44), gives ||U,|| LeoTIs0+2 < O. This proves the first estimate of (2.4.42). Regarding the
control of 9,U,,, we use the equation P, the second estimate in (2.3.11) and (2.3.9) with ¢ = s to obtain

10:Un ()50 < C(1Un-1)lls0) 1Un () |s0+2 + C(IUn-1()[50) 1Un-1() |s0+2 < C+O  (2.4.46)

which proves the second estimate of (2.4.42).
Next we prove (2.4.43). Applying estimate (2.4.4) with o = s, we have

”UnHL%oHs < CTeC@THUOHS +TC®€C@TM <M

for M = 4C,||Uy||s and since T' > 0 is chosen as in (2.4.45). The estimate for ||0,U,||,_, is similar to
(2.4.46), and we omit it. Estimate (2.4.41) is a consequence of (53),,, which we prove below.
Proof of (S1),,: We use estimate (2.4.46) to get

T
”p(Un(t) - UO)HLOO(’JTd) < CHUn(t) - UOHSO < C/o HatUn(t)HSO dt <CC,TO < 5/2

provided that T' < 6/(2C'C,.©). This shows that p(U,,(t)) € Q.
2
Proof of (53),,: Define V,, := U,, — Uy, if n > 2 and V; := Uj. Note that V,,, n > 2, solves

OV, = JOP"Y (A(Up—1))Vi + fn, Va(0) =0, (2.4.47)
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where A := Ay + A; and
fn :=J0p"V (A(Up-1) — A(Up—2))Up-1 + R(Up—1) — R(Up—2), forn > 2,
f2 1= JOp"Y (A(U1) = VK (w)[¢[*) Ur + R(UY).
Applying estimates (2.3.13), (2.3.10), (2.3.11) and (2.4.42) we obtain, for n > 2,
| frullse < CollVa-1llsy, ¥t e€[0,T]. (2.4.48)

We apply Proposition 2.4.2 to (2.4.47) with ¢ = sg. Thus by (2.4.4) and (2.4.48) we get
1
Ce Ce
||VnHL39HSo < Cee OTTan”L%OHSO < Coe OTTHVn—lnL%OHSo < §HVH—1HL§9HSO

provided Coe®eTT < % The proof of Lemma 2.4.6 is complete. O
Corollary 2.4.7. With the same assumptions of Lemma 2.4.6, for any sq + 2 < s < s:

(i) (Up)n>1 is a Cauchy sequence in C°([0,T), H* )YNC ([0, T),H* ~2) with T = T(||Up||sy+2,9) given
by Lemma 2.4.6. It converges to the unique solution U (t) of (2.3.4) with initial datum Uy, U (t) is in
CO([0,T],H*) N C*([0,T),H* ~2). Moreover p(U(t)) € Q, Vt € [0,T).

(ii) Foranyt € [0,T], U(t) € H® and ||U(t)||, < 4C,||Uo||, where C, is the constant of (52).,.

Proof. (i) If s’ = sq it is the content of (S3),,. For s’ € (sg,s), we use interpolation estimate (2.2.83),
(2.4.43) and (S3),, to get, forn > 2,

1Un = Untllgeies < U = Unallgegan 1Un = Un-all g, < 27"Cur

where 6 € (0, 1) is chosen so that s’ = 8sg+(1—6)s. Thus (U, ),>1 is a Cauchy sequence in C°([0, 7], H*');
we denote by U(t) € C°([0,T], HS/) its limit. Similarly using that 9;U,, solves P,,, one proves that 9,;U,, is
a Cauchy sequence in C°([0, 7], H* ~2) that converges to ;U in C°([0,7],H* ~2). In order to prove that
U (t) solves (2.3.4), it is enough to show that

R(U,Un—1,Un) := JOp™ (A(Un—1))Uy, — JOP™ (A(U)U + R(Up—1) — R(U)

converges to 0 in L%OHS/*Q. This holds true because by estimates (2.2.85), (2.3.10), (2.3.12), (52),,, and
the fact that U (t) € C°([0,T],H*'), we have

HR(U7 Un—lyUn)HL%oILIs’—z S C'M (HU - Un—lHL%oHs’ + HU - Un—lHL%oHsOJ& + HU - U’VIHL%OHS’>

which converges to 0 as n — oo. . _
Let us now prove the uniqueness. Suppose that Vi, Vo € C([0, 7], H* )NC* ([0, T], H*'~2) are solutions
of (2.3.4) with initial datum Uy. Then W := V; — V5 solves

oW = JOp™" (A(Vi))W +R(t), W(0)=0,

where R(t) := JOp®" (A(V1) — A(V2))Va+ R(V1) — R(V2). Applying Proposition 2.4.2 with 0 = s¢ and
O, r defined by

© = s (Vi e + 10V o)+ 7= max [V g
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together with estimates (2.3.13) and (2.3.10) we have, for any ¢ € [0,7],
HWHL?QHSO < C@eC@ttHRHL?OHSO < C@ecettHWHLtOOHSO .

Therefore, provided ¢ is so small that Cge®®'t < 1, we get Vi(7) = Va(r) V7 € [0,t]. As (2.3.4) is
autonomous, actually one has Vi (t) = Vz(t) for all ¢ € [0,7]. This proves the uniqueness.
Finally, as p(Uy,(t)) € Qs and U, (t) — U(t) in H*, then p(U(t)) € Qs C Q.

2 2

(i1) Since ||Uy(t)||s < 4C||Uo||, and Uy (t) — U(t) in H*' then ||U(t)||s < 4C, || Uo| - O

LetlINU := < Z ujed Z wje I ) We need below the following technical lemma.
1<]jIEN I<|jI<N

Lemma 2.4.8. Let Uy € H s > 2+ %, with p(Uy) € Qs for some 6 > 0. Then there exists a time
T :=T(|Uo|lsys2,0) > 0 and Ny > 0 such that for any N > Ny:

(i) system (2.3.4) with initial datum I x Uy has a unique solution Uy € C°([0,T], H*2).

(ii) Let U be the unique solution of (2.3.4) with initial datuni Uy defined in the time interval [0,T] (which
exists by Corollary 2.4.7). Then there is T < min{T,T}, depending on ||Uy||s, independent of N,
such that

U = Unll e < SCIT01,) (100 = U]l + N*0#2%). (2.449)

In particular Uy — U in C°([0,T],H?) when N — oc.

Proof. Clearly IIyUy € C™. Moreover, as ||p(Uy — InUo)l| oo (ray — O when N — oo, one has
p(IInUy) € Qs provided N > Ny is sufficiently large. So we can apply Corollary 2.4.7 and obtain a
2

time 7' > 0, independent on N, and a unique solution Uy € C°([0,T], H**?) of (2.3.4) with initial datum
IIxUy. Moreover, by item (i7) of that corollary, setting = 2||TIyUp||

S0’

HUNHL%OHS < 4CTHHNUOHS < C(HUOHSQ) HU0H87 (2.4.50)
IIUNIIL%OHM < AC TN Uollsy2 < C(||Uoll,,) N?[|Uolls - (2.4.51)

This proves item (7). In the following let 7' < min{T’,T’}.

Let us prove (ii). Let © := [|U|| pooypsor2 + |0:U|| oogyso and 7 := [|U|| joogyso- The function Wi (t) :=
T T T

U(t) — Un(t) satisfies |Wn (t)||, < [U@)|s+ |Un()]ls < C(||Uoll4), Yt € [0,7T7], by Corollary 2.4.7-(ii).

Moreover, Wy solves

s

oWy = JOpBW (A(U))WN + R(t), WN<O) =Uy —InUy

where R(t) := JOp"" (A(U) — A(Un))Un + R(U) — R(Uy). Applying Proposition 2.4.2 with o = sg
and estimates (2.3.10), (2.3.13), (2.4.50) one obtains

Wl g0 < CreoT U — TnTolls, + TCeeC@TC(HUoHsO+2)IIWNHL%oHsO,

which, provided 7T is so small that 7' C’@@C@TC(HUOH so+2) < & (eventually shrinking it), gives

HWNHL?HSO < CTHU[) — HNUOHS() < CTNS()*SHUQHS. (2.4.52)
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Similarly one estimates ||Wy (t)]| ;.. getting
HWNHLQOHS
T

< Cre®eT || Uy — TInUo|s + Coe“ Te(||Uols) (IIWNHL?HSO UN I pgogzsss + HWNHL%oHs)

(2.451),(2.4.52) iy .
< Cre“eT||Uy — TInUp||s + Coe“®TTC(||Uol|s) (N0 5+ + HWNHL%oHs)

from which (2.4.49) follows provided 7" (depending on ||Up||) is sufficiently small. O

Proof of Proposition 2.4.1: Given an initial datum Uy € H?® with p(Uy) € Q, choose § > 0 so small
that p(Up) € Qs. Then Corollary 2.4.7 gives us a time T' = T'(||Up||,, 2,9) > 0 and a unique solution
U e C°0,7],H%) N C([0,T),H*2), Vsg + 2 < s’ < s, of (2.3.4) with initial datum Up. Now take an
open neighborhood 2/ € H* of Uy such that V'V € U one has p(V) € Q% and ||V, < 2||Up||,. Then there

exists T € (0,7 such that the flow map of (2.3.4),
QU—-HN{UeH : p(U) € Qs}, Uy QUp) :=U(t),
4

is well defined for any ¢ € [0, 7], it satisfies the group property

QT =QtoQ7, VYt t+7€0,T], (2.4.53)
and [|Q*(Uy)||, < C(||Uoll,) for all Uy € U, t € [0,T]. For simplicity of notation in the sequel we denote
by T a time, independent of N, smaller than T.
Continuity of ¢t — U(t): We show that U € C°([0,T],H®). By (2.4.53), it is enough to prove that
t — U(t) is continuous in a neighborhood of ¢ = 0. This follows by Lemma 2.4.8, as U is the uniform limit
of continuous functions.
Continuity of the flow map: We shall follow the method by [39, 22]. Let U} — Uy € H* and pick § >0
such that p(UJ), p(Uy), p(IINUY), p(IInUy) € Qs, for any n > ng, N > Ny sufficiently large. Denote
by U™, U € C°([0,T],H?) the solutions of (2.3.4) with initial data U, respectively Uy, and Uy (t) :=
QUIINUp), UR(t) := QYIINUF). Note that these solutions are well defined in F* up to a common time
T" € (0,T], depending on ||Up||s, thanks to Lemma 2.4.8. By triangular inequality we have, by (2.4.49), for
any n > ng, N > No,

10" = Ullpsegre < U™ = Ul psoses + 108 = Unll soze + 10N = Ul g (2454)
< ([ Uoll,) (A = Tx) UG ls + [[(1d = ) Uolls + N*0F27%) + [UR = U || oy
< ¢([[Uoll,) (Il(1d = TIx)Tolls + N*0+277) + (| Tol| ) 1UG = Tolls + UK — Unl| ooy -
For any € > 0, since s > sg + 2, there exists N, € N (independent of n) such that
C(1Uoll,) (I(1d = T, )Uol|s + N2°¥27%) < /2. (2.4.55)

Consider now the term ||UR, — UNHL%OHS‘ As TINUp, TIyUF € C, the solutions U (t), U%(t) belong
actually to H*t2. By interpolation and by item (i) of Corollary 2.4.7 applied with s ~» s + 2 one has, for
s+2=0s0+(1—-6)(s+2),

IUR. = Un.llgerre < SN Uollst, ITNUG ls42) 1UR, = UNe [0

< C(NZ|[Uolls) TR, = UN. 1} oo - (2.4.56)
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Arguing in the same way of the proof of (2.4.52) one obtains
IUR. = Ul zogaeo < C(I00 N so42) M. (UG = Uo)lls - (2.4.57)

By (2.4.54)-(2.4.57), we have imsup,, . [[U" = Ul| eogse < &, Ve € (0,1). 0



Chapter 3

Long-time stability of QHD

In this chapter we prove the long-time result outlined in Section 1.1.2. In Section 3.1 we provide an intro-
duction to the problem, the statement of the main result already described in Section 1.1.2 as well as a more
detailed literature.

3.1 Introduction to Chapter 3

We consider the quantum hydrodynamic system on an irrational torus of dimension 2 or 3
Op = —mA¢ — div(pVe)

K K
Ohd = —1|Ve|* — gm+ p) + mAP - WWP\?,

(QHD)

where m > 0, k > 0, the function g belongs to C*°(R.;RR) and g(m) = 0. The function p(t,x) is such that
p(t,x) +m > 0 and it has zero average in z. The space variable = belongs to the irrational torus

T¢ .= (R/271Z) x --- x (R/2m4Z),  d=2,3, (3.1.1)
with v = (v1,...,v4) € [1,2]% We assume the strong ellipticity condition
g (m) > 0. (3.1.2)

We shall consider an initial condition (pg, ) having small size ¢ < 1 in the standard Sobolev space
H*(T%) with s > 1. Since the equation has a quadratic nonlinear term, the local existence theory (which
may be obtained in the spirit of [32, 72]) implies that the solution of (QHD) remains of size ¢ for times of
magnitude O(c~!). The aim of the present chapter is to prove that, for generic irrational tori, the solution
remains of size € for longer times.

For ¢ € H*(T%) we define

_Vd/d¢(x)dx, Iy :=id — . (3.1.3)
v g

Our main result is the following.

Theorem 3.1.1. Let d = 2 or d = 3. There exists so = so(d) € R such that for almost all v € [1,2]%, for
any s > sg, m > 0, k > 0 there exist C' > 0, g > 0 such that for any 0 < € < g9 we have the following.
For any initial data (po,¢o) € Hg(T2) x H*(T) such that

llooll s (ray + ”HéQbOHHS(Tg) <e, (3.1.4)

75
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there exists a unique solution of (QHD) with (p(0),¢(0)) = (po, o) such that

(p(1), (1)) € CO([0,T2); H*(Tyy) x H*(Ty)) (| C'(10,72); H*~2(T5) x H**(T)),

T S 1 (3.1.5)
S[gll:; : (”P(t,')HHs(ﬂrg) + \\H3¢(t,')||Hs(1rg)) < Ck¢, T.>¢e ' d-Tlogd72 (14e14).
t€|0,1:

Derivation from Euler-Korteweg system. The (QHD) is derived from the compressible Euler-Korteweg
system'

(EK)

Ol +a@ - Vi + Vy(p) = V(K(p)Ap+ 5K (p)|Vpl*)

where the function p(t,2) > 0 is the density of the fluid and @(t,z) € R? is the time dependent velocity
field; we assume that K (p), g(p) € C>°(R4;R) and that K (p) > 0. In particular, in (QHD), we assumed

K(p)=", reR,. (3.1.6)
We look for solutions i which stay irrotational for all times, i.e.,

1

where ¢ : T? — R is a scalar potential. By the second equation in (EK) and using that roti = 0 we deduce

1

/g.vadx:o = &t =&0).
Td

The system (EK) is Galilean invariant, i.e., if (p(¢,z),u(t,x)) solves (EK) then also
pe(t,z) = p(t,x + ct), Ug(t,x) == U(t,x + ct) — ¢,

solves (EK). Then we can always assume that 7 = V¢ for some scalar potential ¢ : T¢ — R. The system
(EK) reads

Op + div(pVe) =0 3.18)
00+ 3|Vl + g(p) = K(p)Ap + 5K (p)|Vol*. h
Notice that the average
1
— = R 1
(27T)dV1'--Vd/Tgp($)dx me R, (3.1.9)

is a constant of motion of (3.1.8). Notice also that the vector field of (3.1.8) depends only on Hégf) (see
(3.1.3)). In view of (3.1.9) we rewrite p ~» m + p where p is a function with zero average. Then, the system
(3.1.8) (recall also (3.1.6)) becomes (QHD).

Phase space and notation. In this chapter we work with functions belonging to the Sobolev space

S 1 i7-x -\ 2s
H¥(T%) = {u(x) = G > we T )y = 0w < oof, (3110)
jezs JEZL

'Some authors prefer to write the second equation in terms of the current density .J := pii, see for instance [9].
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where (j) := \/1+ |j|? for j € Z¢ with Z¢ := (Z/v1) x --- x (Z/vg). The natural phase space for
(QHD) is HE(T%) x H*(T%) where H"(T%) := H®(T%)/. is the homogeneous Sobolev space obtained
by the equivalence relation 11 (z) ~ 19(x) if and only if ¥ () — 12(x) = c is a constant; H§(T2) is the
subspace of H*(T¢) of functions with zero average. Despite this fact we prefer to work with a couple of
variable (p,¢) € H§(T) x H*(T¢) but at the end we control only the norm | I || s (7ay Which in fact is
the relevant quantity for (QHD). To lighten the notation we shall write || - || 75 to denote || - || g7s(74)-

In the following we will use the notation A < B to denote A < C'B where C' is a positive constant
depending on parameters fixed once for all, for instance d and s. We will emphasize by writing <, when
the constant C' depends on some other parameter q.

Ideas of the proof. The general (EK) is a system of quasi-linear equations. The case (QHD), i.e., the
system (EK) with the particular choice (3.1.6), reduces, for small solutions, to a semi-linear equation, more
precisely to a nonlinear Schrodinger equation. This is a consequence of the fact that the Madelung transform
(introduced for the first time in the seminal work by Madelung [96]) is well defined for small solutions. In
other words one can introduce the new variable ¢ := \/m + pel®/" (see Section 3.2 for details), where
h = 2,/k, obtaining the equation

o =5 A0~ a(lP)y).

Since g(m) = 0, such an equation has an equilibrium point at ¢» = y/m. The study of the stability of small
solutions for (QHD) is equivalent to the study of the stability of the variable z = 1) — y/m. The equation for
the variable z reads WD ng'(a) n/(n)

L+ gh )z —i gh z+ f(2),
where f is a smooth function having a zero of order 2 at z = 0, i.e.,
multiplier with symbol

Otz == —i(

f(2)| < || and | D|? is the Fourier

d
2= ail&il?, aii=17, VEeZd (3.1.11)
=1

The aim is to use a Birkhoff normal form/modified energy technique in order to reduce the size of the non-
linearity f(z). To do that, it is convenient to perform some preliminary reductions. First of all we want to

eliminate the addendum —i”'g%—@f. In other words we want to diagonalize the matrix
(YD + tng@)  ing(m)
L= L, B3 1 (3.1.12)
Ing/(m) LD+ ing/(m)

To achieve the diagonalization of this matrix it is necessary to rewrite the equation in a system of coordinates
which does not involve the zero mode. We perform this reduction in Section 3.2.2: we use the gauge
invariance of the equation as well as the L? norm preservation to eliminate the dynamics of the zero mode.
This idea has been introduced for the first time in [65]. After the diagonalization of the matrix in (3.1.12)
we end up with a diagonal, quadratic, semi-linear equation with dispersion law

) h2 . )
w(j) :== \/41313 +mg’(m) 5|2, (3.1.13)

where j is a vector in Z¢ \ {0}. At this point we are ready to define a suitable modified energy. Our primary
aim is to control the derivative of the H*-norm of the solution

d.
@IIZ(t)H]%s, (3.1.14)
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where Z is the variable of the diagonalized system, for the longest time possible. Using the equation, such
a quantity may be rewritten as the sum of tri-linear expressions in z. We perturb the Sobolev energy by ex-
pressions homogeneous of degree at least 3 such that their time derivatives cancel out the main contribution
(i.e., the one coming from cubic terms) in (3.1.14), up to remainders of higher order. In trying to do this
small dividers appear, i.e. denominators of the form

Fw(ji) £ w(jz) Tw(js).
It is fundamental that the perturbations we define is bounded by some power of ||Z|| 7=, with the same s in
(3.1.14), otherwise we obtain an estimate with loss of derivatives. Therefore we need to impose some lower
bounds on the small dividers. Here it enters in the game the irrationality of the torus v. We prove indeed
that for almost any v € [1,2]%, there exists v > 0 such that

| £ w(j1) £ w(jo) £ w(js)| > 7

— M(d)’
p log ™ (14 pi2) '@

if £71 + jo + j3 = 0, we denoted by M (d) a positive constant depending on the dimension d and p; the i-st
largest integer among |j1/,|j2| and |j3|. It is nowadays well known, see for instance Section 1.1.5, that the
power of 3 is not dangerous if we work in H® with s big enough. Unfortunately we have also a power of the
highest frequency p; which represents, in principle, a loss of derivatives. However, this loss of derivatives
may be transformed in a loss of length of the lifespan through partition of frequencies, as done for instance
in [56, 87, 68, 23].

Some comments. As already mentioned, an estimate on small divisors involving only powers of p3 is not
dangerous. We may obtain such an estimate when the equation is considered on the squared torus T¢, using
as a parameter the mass m. In this case, indeed, one can obtain better estimates by following the proof in
[65]. This is a consequence of the fact that the set of differences of eigenvalues is discrete. This is not
the case of irrational tori with fixed mass, where the set of eigenvalues is not discrete. Having estimates
involving only p3 one could actually prove an almost-global stability. More precisely one can prove, for
instance, that there exists a zero Lebesgue measure set N C [1,400), such that if m is in [1,4+00) \ NV, then
for any V > 1 if the initial condition is sufficiently regular (w.r.t. N) and of size ¢ sufficiently small (w.r.t.
N) then the solution stays of size ¢ for a time of order e V. The proof follows the lines of classical papers
such as [15, 19, 17] by using the Hamiltonian structure of the equation. More precisely, the system (QHD)

can be written in the form dsH (p,d)

where O denotes the L2-gradient and H (p, ¢) is the Hamiltonian function

o) =3 | @eplvorao+ [ (5

§m+p
where G'(p) = g(p).

We do not know if the solution of (QHD) are globally defined. There are positive answers in the case
that the equation is posed on the Euclidean space R¢ with d > 3, see for instance [13] for strong global solu-
tions arising from small initial data (the local well posedness was previously analyzed by Benzoni Gavage,
Danchin and Descombes [22]). Exploiting the Madelung transformation Antonelli-Marcati [10] proved the
existence of global in time weak solutions of finite energy. Here the dispersive character of the equation is
taken into account. An overview of recent results, a discussion of the Madelung transform including vac-
uum regions can be found in Antonelli-Hientzsch-Marcati-Zheng [12] see also [9] and reference therein. It is
worth mentioning also the scattering result for the Gross—Pitaevskii equation [78]. Since we are considering
the equation on a compact manifold, the dispersive estimates are not available.

\Vp\2+G(m+p))d:c (3.1.16)
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3.2 From (QHD) to nonlinear Schrodinger

3.2.1 Madelung transform

For A € R, we define the change of variable (Madelung transform)

b= My(p,¢) = Vot pe™?, ¢ = My(p,¢) :== Vm+ pe 7. (M)
Notice that the inverse map has the form
I 1y, oy L —i(y — )
m+p:/\/lp1(w’¢) = w|2’ ¢:M¢1(¢’1p) = Xarctan <1/1+¢> . (3.2.1)

In the following lemma we provide a well-posedness result for the Madelung transform.

Lemma 3.2.1. Define
— =K, h:=-=2Vk. (3.2.2)

The following holds.
(i) Let s > % and

1 1
6:=_|lpllm; + ﬁHHéWHg o :=1lpo.

There is C = C(s) > 1 such that, if C(s)d < 1, then the function v in (M) satisfies

[ — vme || s < 2v/md. (32.3)
(ii) Define

&' = inf [|v — vme'? || g .

o€T

There is C' = C'(s) > 1 such that, if C'(s)d'(y/m) =t < 1, then the functions p,

1, 1,
— s < 8——=0 . 2.
eIl <8720 (324)

Proof. The bound (3.2.3) follows by (M) and classical estimates on composition operators on Sobolev
spaces (see for instance [102]). Let us check the (3.2.4). By the first of (3.2.1), for any o € T, we have

1
=lpllas +
m

ol <lVm(pe™ — va)llas + IVa@e — vm)|la; + |(ve™ — vm) (e — va)llgy  (3.2.5)
p . 1 .
Sm(%Hw — Ve || s + (ﬁuw — Ve ||z )?) . (3.2.6)

Therefore, by the arbitrariness of o and using that (1/m) 16’ < 1, one deduces

1 1
~lpllms <3—2=0".
m m

=

Moreover we note that

1 = BY + D)y < 2jﬁuw — Vala;.
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Then by the second in (3.2.1), (3.2.2), composition estimates on Sobolev spaces and the smallness condition
(vm)~'0’ < 1, one deduces, for any o € T such that (y/m)~*||¢) — v/me'? || s < 1, that

1 iy —9)
— ||y || s + 2|y arctan | s
Vi ’ S
= 2”1’[&arctan(_ (1/}6. —jbé ))H s
@Deflo + 1/)610 v
< 2l = Ve .
Therefore the (3.2.4) follows. ]

We now rewrite equation (QHD) in the variable (1,1)).

Lemma 3.2.2. Let (p,$) € HS(T%) x H*(TZ) be a solution of (QHD) defined over a time interval [0,T),
T > 0, such that

1 1
sup (G n(ts)l; + ﬁ”ﬂéeﬁ(t-)HHs) <e (3.2.7)

t€(0,T)
for some € > 0 small enough. Then the function 1 defined in (M) solves

Onp = —i( — 4P + 19(|¢ 1))
$(0) = /m+ p(0)el*©.

Remark 3.2.3. We remark that the assumption of Lemma 3.2.2 can be verified in the same spirit of the local
well-posedness results in [72] and [32].

(3.2.8)

Proof of Lemma 3.2.2. The smallness condition (3.2.7) implies that the function ) is well-defined and sat-
isfies a bound like (3.2.3). We first note

V= (5 — *Vp+1)\\/rﬁ V)e?, (3.2.9)
1 1 1 1
QAQ\ Y® = S nT Vo' + St p) Vol (3.2.10)

Moreover, using (QHD), (3.2.2), (M) and that
div(pVe) = Vp Vo + pA¢,

we get
8t¢:i€i)\¢( Ap  |Vpl +ivm+pA¢_\/m+p>\|V¢|2+in~V¢>
AINBEP  8Am+ p)? 2 2 2ym+p (3.2.11)
—iAg([¢*)y
On the other hand, by (3.2.9), we have
: : Ap [Vp|? iIA\Vp- Vo
At = ie*? — ~ +idy/m+ pAd — N2ym + p| Vo[> + " 3.2.12
80 =16 (5~ s gt TR A NIV SEEZE). G212
Therefore, by (3.2.11), (3.2.12), we deduce
i 1
athﬁAw—iAg(yW)w, where =1, (3.2.13)

which is the (3.2.8). ]
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Notice that the (3.2.8) is an Hamiltonian equation of the form

O = —05H (W), H(Y) = /T (grwﬁ + %G(W))das, (3.2.14)

v

where % = (ORew + 101y )/2 and the function G is a primitive of g. The Poisson bracket is
{#H,G} := —i/Td Oy HOFG — O;HOyGdz . (3.2.15)

3.2.2 Elimination of the zero mode
In the following it would be convenient to rescale the space variables z € T¢ ~~ v -z with z € T¢ and work

with functions belonging to the Sobolev space H*(T¢) := H*(T¢), i.e., the Sobolev space in (3.1.10) with
v =(1,...,1). By using the notation 1) = (2%)_% > jend ;€% we introduce the set of variables

_ 0 T
{wo ae a € [0,+00),0 € (3.2.16)

Yy =z A0,

which are the polar coordinates for j = 0 and a phase translation for j # 0. Rewriting (3.2.14) in Fourier
coordinates one has

10 = O 1Y), ezt (3.2.17)
where H is defined in (3.2.14). We define also the zero mean variable
z = (27T)_g Z zje (3.2.18)
JEZN{0}
By (3.2.16) and (3.2.18) one has
Y= (a+ 2)€eY, (3.2.19)

and it is easy to prove that the quantity
2 2
mi= Y [P =a”+ )|zl
jEZ4 J#0
is a constant of motion for (3.2.8). Using (3.2.16), one can completely recover the real variable « in terms
of {Zj }jGZd\{O} as

o= m—Z\zj\z. (3.2.20)

Note also that the (p, ¢) variables in (3.2.1) do not depend on the angular variable 6 defined above. This
implies that system (QHD) is completely described by the complex variable z. On the other hand, using

O H(we ) = OpH (b, )e?,
one obtains

iath + &gezj — 9H (a + 2,00+ E) . (3221)

{iata + 0o = o (g(|a + 2]?) (o + 2))
%,
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Taking the real part of the first equation in (3.2.21) we obtain
0 = —HO ( g(|la+ z*)Re (o + z)> = i@a}[(a,z,z), (3.2.22)
where (recall (3.1.11))
(a,2,%) / |D|?z-zdz + / G(la+ 2% (3.2.23)

By (3.2.22), (3.2.21) and using that
%H(a +z,a+7%) = 857:[(@,7:,2),
one obtains . L
@gz%ﬁ@wszi%Hw%a:@ﬁﬂza,j#& (3.2.24)
where

Ka(z,7) == ﬁ(a,275)|a:\/:m'

We resume the above discussion in the following lemma.

Lemma 3.2.4. The following holds.
(7) Let s > § and

1 1
(5 = — s — 1_[L s 0 =11 .
el +\/E” 0 llae 09

There is C = C(s) > 1 such that, if C(s)d < 1, then the function z in (3.2.18) satisfies
2]l e < 2v/md . (3.2.25)
(i) Define
§ = ||zl gs -
There is C' = C'(s) > 1 such that, if C'(s)6'(y/m) =t < 1, then the functions p,

1 1 1
- o 4+ ——||IITE ol gs < 16—6". 3.2.26
mWMH-+V%H 0 bllas < Ta ( )

(ii1) Let (p,¢) € HF(TL) x H*(TZ) be a solution of (QHD) defined over a time interval [0,T), T > 0,
such that

1 1
sup (ot e+ 7T o0, ) < &

tel0, T
for some € > O small enough. Then the function z € Hg(Tff) defined in (3.2.18) solves (3.2.24).

Proof. We note that

(3.23)
Izl s = gl < v — wf’ﬁm@ < 2y/md, (3.2.27)
which proves (3.2.25). In order to prove (3.2.26) we note that

nf [ — Vi e < 1 — Ve s = o= Va+ 2]

m| + [|z||gs <28,

g\wwm—

so that the (3.2.26) follows by (3.2.4). The point (7ii) follows by (3.2.21) and (3.2.22). ]
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Remark 3.2.5. Using (3.2.1) and (3.2.19) one can study the system (QHD) near the equilibrium point
(p,®) = (0,0) by studying the complex Hamiltonian system

10pz = 0:Ku(2,%2) (3.2.28)

near the equilibrium z = 0. Note also that the natural phase-space for (3.2.28) is the complex Sobolev space
Hj (T%;C), s € R, of complex Sobolev functions with zero mean.

3.2.3 Taylor expansion of the Hamiltonian

In order to study the stability of z = 0 for (3.2.28) it is useful to expand K, at z = 0. We have

Kn(z,2) = / |D|%z - zda:+h/ ( /m—Z\zj\Q—i-z‘)
Jj#0

N1 (3.2.29)
4G (m
= (2m)? ;L)-i-/C zz—i—Z/CTzz—l—R()( Z),
r=3
where, in view of the identity G'(m) = g(m) = 0, the quadratic Hamiltonian has the form
1 h ! 1
K2 (z2,7) = / \D|§z-zdx+g(m)m/ ~(z+7%)%dx (3.2.30)
2 Td 2 h Td 2
forany r = 3,--- ,N — 1, ICI(Q)(z,E) is an homogeneous multi-linear Hamiltonian function of degree r of
the form
K (2,7) = > (Ko g2t 257, |(KE)ogl i 1,
o&{-L1}", FE@ZN\{o})"
i=10iJi=0
and
1Xpon (e Ss 125", Yz € Bi(H(T4C)). (3.2.31)
The vector field of the Hamiltonian in (3.2.29) has the form (recall (3.1.15))
2 / / N— . .
-] - (a2 ) S [ ] [
mg' (m 7 mg' (m = : r 3
Z i0, IC — o) AL mel) ]|z — | 10.Ku i0,R
(3.2.32)
Let us now introduce the 2 X 2 matrix of operators
co ! < A(D,m) —;mg'<m>>
" V2w(D)A(D,m) \—3m¢'(m) A(D,m) )’
with
A(D,m) := w(D) + §| D[ + smg’ (m),
and where w(D) is the Fourier multiplier with symbol
. n? .
w(ij) =\ Ll + mg' (@)L13 (3.2.33)
Notice that, by using (C.0.13), the matrix C is bounded, invertible and symplectic, with estimates
/
mg' (m
IC 2 wrg, mgxmg) < 1+ VEB, Bi= k( ). (3.2.34)
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Consider the change of variables

m =C7 ﬂ . (3.2.35)

w 2 Jpa (3.2.36)
w = w w
3 (0 7Y — 1 (3) (Z4) (2 ) = (r) ()
KO (w,w) =KD (c M) KED (w,m) = ;nm (c H )+ BN (c H)
Therefore system (3.2.32) becomes
dyw = —iw(D)w — 10K (w,w) — 105K (w,w) . (3.2.37)

3.3 Small divisors

As explained in the introduction we shall study the long time behavior of solutions of (3.2.37) by means
of Birkhoff normal form approach. Therefore we have to provide suitable non resonance conditions among
linear frequencies of oscillations w(j) in (3.2.33). This is actually the aim of this section.

Leta = (ai,...,aq) = (V3,...,v3) € (1,4)%,d =2,3.1f j € Z¢\ {0} we define

d
12 = akii- (3.3.1)
k=1
We consider the dispersion relation
w(7) = VKI5l + mg' (m) 52 (33.2)

we note that w(j) = \/E(Mg + g — %2# + O(%)) for any j big enough with respect to 5 := mg’k(m).

Throughout this section we assume, without loss of generality, |j1]a > |j2]a > |j3]a > 0, for any j; in

Z%, moreover, in order to lighten the notation, we adopt the convention w; := w(j;) for any i = 1,2,3. The
main result is the following.

Proposition 3.3.1 (Measure estimates). There exists a full Lebesgue measure set A C (1,4)? such that for
any a € U there exists v > 0 such that the following holds true. If o1j1 + 02j2 + 03j3 = 0, 0; € {£1} we
have the estimate

ol i —

, — ifo109 = —1

kié ‘0’3&]3 —l— UQWQ + O-lwl} zd |j1|d_110gd+1 (1+‘J1|2)|]3|1\/l(d> ’ f 172 . (3.3‘3)
1, ifoio0 =1

a Ji € 7% and where M (d) is a constant depending only on d.

for any |jila > |j2la > |73

The proof of this proposition is divided in several steps and it is postponed to the end of the section. The
main ingredient is the following standard proposition which follows the lines of [23]. Here we give weak
lower bounds of the small divisors, these estimates will be improved later.
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Proposition 3.3.2. Consider I and .J two bounded intervals of Rt \ {0}; r > 2 and j1,...,j, € Z% such
that j; # %31, ifi # k, n1,...n, € Z\ {0} and h : J*1 — R measurable. Then for any vy > 0 we have

'
_ ; : 1. 2
i (0,0) € Tx 412 h(o) + > i flinldy ) + PliklZ | 7} Srsrn 73 (1) i)
k=1
with (1,0) = (1,by,...,bg_1) € R? and where i is the Lebesgue measure.

Remark 3.3.3. We shall apply this general proposition only in the case » = 3, however we preferred to
write it in general for possible future applications.

Proof of Prop. 3.3.2. For simplicity in the proof we assume |j1|(1 ) > ... > |Jji|(1,6)- Since by assumption
we have j; # ji for any i # k then one could easily prove that for any n > 0 (later it will be chosen in
function of ) we have

w(PyR) <mu(I97%), Byt = {b e I il — linlts | < -

We define P, = U#kPi’k, and

B, = {(pb) e Tx 7" |n(o) + kzlnkwmm) +plikl? ) <7}

then we have

1(By) < u(By N By) + p(By N (F)%)

ik

< p(1)a(Py) + p(7*) sup u({p € 1+ [h(o) + D ney linly ) + Blinl? | < 7)
beP, k=1

<o (D (T2 + p(J4h sup u({p €1:|h(b)+> nk\/\jklé,b) +pliklfy )| < v}) :
i#k
b P, k=1

We have to estimate from above the measure of the last set. We define the function

g(p) = h(0) + > ny, \/’jk|?17b) + Pl )
k=1

For any ¢ > 1 we have

d - . . 1_ .
dT)gg(P) =0 mkliklam @+ klfie)2 5 o= ]G =)
k=1 =1

Therefore we can write the system of equations

Cl_laég(p) (P + |j1|%1,b))0 cee (P + ‘jr|%17b))0 n1|j1|(1,b) (P + ‘]l ’%171,))_1/2

C?%Q(P) (P + |j1|%1,b))1_r e (P + |j7"‘?17b))1_r nr‘jr|(1,b) (P + |j7“‘%17b))_1/2
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We denote by V' the Vandermonde matrix above. We have that V' is invertible since

1 1 "ji‘%l,b) - |jk”%1,b)‘
[det(V)| = [ | > 11 —5 =
\<idher P 15l ) Cp+ [k [?) 1) 1<izier @ T 1ilp) @+ 1kl )

| | Ui 1
> > T

~Y . ~ n N R 5
1<k<r (p+ ‘jk‘%l,b))Q (- (et

where in the penultimate passage we have used that b ¢ P, and |ji|(15) < |jk|(1p) if 7 > k. Therefore we
have

1
. 1
max|c,Jg(p)| Zr |det(V )\max nelgel 1,0) (P + Lel) (1)

1/2
r |j1| (1,) > n

Zrn 1 ()% (Ge)d 7 (A (A

At this point we are ready to use Lemma 7 in appendix A of the paper [108], we obtain

. VPRV
“<{P €1:[h(b) + ;\/Uk’é,b) +plik[fy )| < 7}) < (M)

771”

r

Summarizing we obtained

1
T

IR .
#(By) Stgdrm 10" (G0 (G
we may optimize by choosing 7 = 3 ((j1)2--- (jr)Q)% and we obtain the thesis. O

As a consequence of the preceding proposition we have the following.

Corollary 3.3.4. Let r > 1, consider jy,...,j, € Z% such that ji, # j; ifi # k and ny,...,ny, € Z \ {0}.
For any v > 0 we have

p({ac @) S no/HHE T ag @R < 7)) Sarm (
i=1

Proof. We write

1

JRECABRIAES

%\I\J

2=

an\/k‘ﬁﬁ"‘mg (m)|Jil ) \falz:nl\/jZ 1,b) ‘jl (1,b)
=1

where we have set

~ mg'(m) 22 g
Bi= =, b.—(al,...,al). (3.3.4)

The map (ai,...,aq) — (a%’b) is invertible onto its image, which is contained in (3,1) x (£,4)%" 1. The
determinant of its inverse is bounded by a constant depending only on d. Therefore the result follows by

applying Prop. 3.3.2 and the change of coordinates (aj,...,a) — (a%vb)' O

Owing to the corollary above we may reduce in the following to the study of the small dividers when
we have 2 frequencies much larger then the other.
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Lemma 3.3.5. Consider A := Vk|j; 2 — k| ja|2 — w3 and 3 defined in (3.3.4). If there existsi € {1,...,d}
such that

: p
jsily )1+ Tl = 2|Ju + Jo.il s (3.3.5)
then for any v > 0 we have
p({ae (9?14 <7}) < <
f|jlz +]2 z|

Proof. We give a lower bound for the derivative of the function A with respect to the parameter a;.
5 . . . B . . . 1. .
00, Al > \/E[U&i(.?l,i + jo.i)| _]?%,i 1+ 7‘].3‘2] > \/Eifj?),z'”ﬂl,z‘ + jo,i| > \/%5131,7; + Jo.il-
a

Therefore a; — A is a diffeomorphism and applying this change of variable we get the thesis. O

Proposition 3.3.6. There exists a set of full Lebesgue measure A3 C (1,4)¢ such that for any a in 3 there
exists v > 0 such that

\/E*y
L+ [1]2) s

‘Uwg +(.U2—w1‘ > TG 110gd+

forany o € +1, for any j1,j2, j3 in Z% satisfying |j1]a > |72|a > |j3|ar the momentum condition o j3 + jo —

j1 = 0and -

300,8) = min d VIIE AP g0 yaie (o ymny IR ya by
J1, 2d ’ 452 ) 263 10g(1+ ‘jl‘)d"'l J31
(3.3.6)

where ( is defined in (3.3.4).

Proof. We suppose o = 1, we set A := w; — wy — w3 and

Vky

(I3l | og™ ™ (1 + |jal))

L(y) =

From the first condition in (3.3.6) we deduce that 3/|j1|? < 1, therefore, by Taylor expanding the (3.3.2),
we obtain S 1
A:\/E( 2 — | 2+6—7|71.|"‘_.|‘72|‘"‘+R)—w : (3.3.7)
T :
We define A := v/k|j1|2 — V/k|j2|? — w3 and the following good sets

3

where |R| < %‘
G, :={ae (1,4 |A] > L(v),Yj,j3 € 2%, Gy:={a€ (1,4)":|A| > 3L(y),Yj1.js € Z%}.

We claim that, thanks to (3.3.6), we have the inclusion QN7 C G,. First of all we have

A] > o+ VB2 — VR — VEL a2y (3.3.8)

1Bl
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From the momentum condition j; — jo = j3 and the ordering |j1]|a > |j2|a > |j3]a We have that |j1|s <
2|j2]a», which implies

|73]

1lz = lg2la Dok akdzk(irk + Jok) < 2\J3\a!,71!a <5 |73
I3’

17127212 711217212 = ul2lgel2 T ldlaldel2

< 32 (3.3.9)

where we used | - | < |- |a < 4] - |. Therefore from (3.3.6), more precisely from

( ja]*e )diz > sl
log(1 + [j1])4+1 ’

T yaie
(152

we deduce that iy )
B |!71‘|a2_‘|]22|a <L
8 ’jl ’a|.72 |a
Analogously one proves that vk |R| < L. We have eventually proved that g} C G using (3.3.8).
We define the bad sets B, == ((1,4)*\ Gy) D B, := ((1,4)%\ G,) and we prove that the Lebesgue
measure of ﬁwlg’7 equals to zero, this implies the thesis.
We want to apply Lemma 3.3.5 with 4 ~» L. We know that there exists ¢ € {1,...,d} such that
d|j14] > |j1]|- We claim that, thanks to (3.3.6), we satisfy condition (3.3.5) for the same index i. Let us
suppose by contradiction that

> i1l — 5ldsal > % — 2lds.l,

|l3,ily/1 + ﬁ > Slj1 + Joil = 512414 — Jan
from which we obtain |j1| < 2d|j3|\/1 + (/|j3]2. Taking the squares we get

|j3]?
732

J1]? < 4d?[js)* + 4d*B

which, recalling that | - | < |- [ < 4] - |, contradicts (3.3.6).
Therefore, by using Lemma 3.3.5, we have

w(B,) = u({a e (1,49 Bjuds € 2% 5 1] < VErlis |~ log L1 ) ' })

1 g
<y - T Ty S
js,ze;d s |#+1 424 |11 gl log (|71 )9+

This implies that meas(N,B,) = 0, hence we can set A3 = U, G, O
We are now in position to prove Prop. 3.3.1.

Proof of Prop. 3.3.1. The case o109 = 1 is trivial, we give the proof if 0109 = —1. From Prop. 3.3.6
we know that there exists a full Lebesgue measure set 23 and v > 0 such that the statement is proven if
|73] < J(41,7)- Let us now assume |j3| > J(j1,7). Let us define

By U {ae ) o+ e < VR
J1,j3€Z% |33|

where 4 will be chosen in function of v and M (d) big enough w.r.t. d.
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1 1
Let us set p := (ﬂ —d—1)75 5 suppose for the moment (v/48%) @2 < (y/28) %1, From
l73] > J(j1,5) (see (3.3.6)) and Corollary 3.3.4 with r = 3, we have

1
s 16— logP (1 + |
WB) St Y sl Sa sty Y St Slal

1.ja€Zd |73 ) \Jl

If the exponent M (d) (and hence p) is chosen large enough we get the summability in the r.h.s. of the
1
1nequahty above. We now choose /647 = 4™, we eventually obtain p(By) S ™ If (7/ 4ﬂ2) 2 >

(7 / 263) T one can reason similarly. The wanted set of full Lebesgue measure is therefore obtained by
choosing 2 := A3 N (Uy>0855). O

3.4 Energy estimates

In this section we construct a modified energy for the Hamiltonian Izm in (3.2.36). We first need some
convenient notation.

Definition 3.4.1. If j € (Z9)" for some r > k then pu;,(j) denotes the k* largest number among |41, . .., |jr|
(multiplicities being taken into account).

Definition 3.4.2 (Formal Hamiltonians). We denote by L the set of Hamiltonian having homogeneity 3 and
such that they may be written in the form

o= (01,09,03)

Gg('(U) = Z (G3) w w]2 w]B ’ (GB)U’j < (C’ ] = (j17j27j3)

oie{—1,1}, ji€Z\{0}
o1j1+02j2+0353=0

(3.4.1)

with symmetric coefficients (G3)q.; (i.e. for any p € &3 one has (G3)oj = (G3)gop,jop) and where we
denoted

wi =wj;, if o=+, wi =w;, if oc=—.

The Hamiltonian in (3.2.36) has the form (see (3.2.33))

Ko =K@ +KP+KEY,  KP= Y w(wmw;, (3.4.2)
jezi\{0}

where /%5,3) is a tri-linear Hamiltonian in £3 with coefficients satisfying
(K)egl S1, Voe{-1+1}%, je (@9’ \{0}, (343)

i (=4)

and where K~/ satisfies for any s > d/2

||X,gl§124)(w)||Hs <s ||wH?qu, if |lwllgs <1. (3.4.4)
The main result of this section is the following.

Proposition 3.4.3. Let 2 and M given by Proposition 3.3.1. Consider a € 1. For any N > 1 and any
s > 30, for some 59 = 50(M) > 0, there exist g Ss 5 log_d_l(l + N) and a tri-linear function E3 in the
class Ls such that the following holds:
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o the coefficients (I3),. j satisfies
|(Es)a] o N21og™ (1 + N)ps ()" () (3:4.5)

foro e {=1,1}%, j € (Z%)* \ {0},
e for any w in the ball of radius ey of Hi(T%;C) one has

N, + B Ka}l S0 NP 21og™ 1 (14 N) ][4 + N7 ][ (3.4.6)
where Ny is defined as
Ny(w) = [[wllzs = > (5)*[wjl?, (3.4.7)
jezd

and ICy, in (3.4.2).

In subsection 3.4.1 we study some properties of the Hamiltonians in £3 of Def. 3.4.2. Then in subsection
3.4.2 we give the proof of Proposition 3.4.3. Finally, in subsection 3.4.3, we conclude the proof of the main
theorem.

3.4.1 Tri-linear Hamiltonians

We now recall some properties of tri-linear Hamiltonians introduced in Definition 3.4.2. We first give some
further definitions.

Definition 3.4.4. Let N € R with N > 1.
(i) If G5 € L3 then G;N denotes the element of L3 defined by

SNy . (G3)o,j, if p2(j) > N,
(G537 )a,; -—{ 0. olse (3.4.8)

We set G;N = G3 — G;N.
(17) We define G:(;rl) € L3 by

(Ggfl))gvj = (G3)s,;, when 3Ji,p=1,2,3, s.t.
p(5) = lil, p2(d) = ljpl and oiop = +1.
We define Gg_l) =Gy — G:(,,H).

@

Consider the quadratic Hamiltonian K in (3.4.2). Given a tri-linear Hamiltonian (G3 in L3 we define

the adjoint action
adlzg) Gg = {IC,?),G;;}

(see (3.2.15)) as the Hamiltonian in £3 with coefficients

3
® (adjoint aCtiOl’l) (adIErEIQ)G:S)U,j = (1201(4}(]1)) (Gg)mj . (349)
i=1

The following lemma is the counterpart of Lemma 3.5 in [23]. We omit its proof.
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Lemma 34.5. Let N > 1, ¢; € R, consider G%(u) in L3. Assume that the coefficients (G).; satisfy
(recall Def. 3.4.1)

’(GE)UJ‘ < Cz/J’S(j)ﬁllul(])iqla Vo € {_17+1}37 j € Zd \ {0}7

for some B; > 0and C; > 0,1 =1,2.

(i) (Estimates on Sobolev spaces). Set § = 6;, ¢ = q;, B = Bs, C = C; and G = Gs fori = 1,2. There
is so = so(B,d) such that for s > so, G3 defines naturally a smooth function from H§(T%;C) to R. In
particular one has the following estimates:

|Gs(w)| Ss Cllwlls
1 X, (W)l rsta Ss Cllwls
X gz (w)llzzs Ss CNTfwllFs

for any w € H§(T%;C).
(ii) (Poisson bracket). The Poisson bracket between Gzl,) and G% satisfies the estimate

{G3,G3} s CL0a|wl[fys -
Let F : H3(T4;C) — R a C' Hamiltonian function such that
IXF ()l Ss Csllwllzs,

for some Cs > 0. Then one has
{G3. F}| S5 C1C5]|wl|3 -

We have the following result.

Lemma 3.4.6 (Energy estimate). Consider the Hamiltonians Ny in (3.4.7), Gs € L3 and write G3 =
Géﬂ) + Gé_l) (recall Definition 3.4.2). Assume also that the coefficients of Gs satisfy

(GS)os] < Cus()Pimn ()9, Vo € {=1,4+1}%, j € Z4\ {0},n € {~1,+1},

forsome 3 >0, C > 0and q > 0. We have that the Hamiltonian Qén) = {Ns, ng)}, n € {—1,1}, belongs
to the class L3 and has coefficients satisfying

1, if n=—1

ODY 1< O (Y50 ()25 10 ()0 =
((@37)ol S5 Crus()™ ()G~ a: {07 iy — 41,

Proof. One can reason as in the proof of Lemma 4.2 in [23]. OJ

Remark 3.4.7. As a consequence of Lemma 3.4.6 we have the following. The action of the operator { N, -}
on multi-linear Hamiltonian functions as in (3.4.1) where the two highest indexes have opposite sign (i.e.,
Gz(;l)), provides a decay property of the coefficients w.r.t. the highest index. This implies (by Lemma

3.4.5-(47)) a smoothing property of the Hamiltonian { N, Gg_l)},
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3.4.2 Proof of Proposition 3.4.3

Recalling Definitions 3.4.2, 3.4.4 and considering the Hamiltonian Ia?) in (3.4.2), (3.2.36), we write Ia,g’) =
K8 4+ €37 We define (see (3.4.9))

BT = (adge) NG KDY, BSY = (adge) THNG, (KED)EM, (3.4.10)

and we set B3 := E§+1) + E:g_l). It is easy to note that F'5 € L£3. Moreover, using that |(l€§13))g,j] <1 (see
(3.4.3)), Lemma 3.4.6 and Proposition 3.3.1, one can check that the coefficients (E3), ; satisfy the (3.4.5).
Using (3.4.10) we notice that

{Ne, K9} + (B3, K} = (N, (KP )53 (34.11)
Combining Lemmata 3.4.5 and 3.4.6 we deduce
[{NV, (KM} (w)] S N7 |w| s (3.4.12)

for s large enough with respect to M. We now prove the estimate (3.4.6). We have

(N, + B3, Ko}t P27 (N, + B3, K? + KB + £ (3.4.13)
= {N,, K} (3.4.14)
+ {Ng, K®} + {B5, K2} (3.4.15)
+ {E3, K3 + KEHYY + (N, KDY (3.4.16)

We study each summand separately. First of all note that (recall (3.4.7), (3.4.2)) the term (3.4.14) vanishes.
By (3.4.4), (3.4.5) and Lemma 3.4.5-(i7) we obtain

13.4.16)| <s N 21og?™ (1 4+ N)|jw]|3 -
Moreover, by (3.4.11), (3.4.12), we deduce
|34.15) S N~ |wl[ -

The discussion above implies the bound (3.4.6).

3.4.3 Proof of the main result

Consider the Hamiltonian Izm(w,w) in (3.4.2) and the associated Cauchy problem

{ 10w = OgKa(w, ) (3.4.17)

w(0) = wo € Hy(T%C),
for some s > 0 large. We shall prove the following.

Lemma 3.4.8 (Main bootstrap). Let sy = so(d) given by Proposition 3.4.3. For any s > s, there exists
g0 = €o(s) such that the following holds. Let w(t,x) be a solution of (3.4.17) with t € [0,T), T > 0 and
initial condition w(0,z) = wo(z) € Hi(T%C). Forany ¢ € (0,20) if

lwollas <e, sup ||w(t)||ps <2, T < 5_1_‘1’%110g_d_2 (1+ 6T1'1) , (3.4.18)
tel0,T)

then we have the improved bound sup,c(o 1y |[w(t)||gs < 3/2¢.
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First of all we show that the energy N, + F5 constructed by Proposition 3.4.3 provides an equivalent
Sobolev norm.

Lemma 3.4.9 (Equivalence of the energy norm). Let N > 1. Let w(t,x) as in (3.4.18) with s > 1 large
enough. Then, for any 0 < ¢y < 1, there exists C = C(s,d,co) > 0 such that, if we have the smallness

condition
eCN2logl V(1 4+ N) <1, (3.4.19)

the following holds true. Define
Es(w) := (N5 + E3)(w) (3.4.20)

with Ny is in (3.4.7), E3 is given by Proposition 3.4.3. We have
1/(1+ co)Es(w) < |lw||Fs < (14 co)&s(w), Vt€[0,T]. (3.4.21)
Proof. Fix cg > 0. By (3.4.5) and Lemma 3.4.5, we deduce
|E3(w)| < Cllw||3s N 21logd1) (1 + N), (3.4.22)

for some C' > 0 depending on s. Then, recalling (3.4.20), we get

. (3.4.19)
[Es(w)] < Jwl|F (1 + Cllwl| s N ?1log (1 + N)) < [|w][3s (1 + o) ,

where we have chosen C in (3.4.19) large enough. This implies the first inequality in (3.4.21). On the other
hand, using (3.4.22) and (3.4.18), we have

[w]|3s < Es(w) + CN21og D (1 + N)el|wl|3. .
Then, taking C in (3.4.19) large enough, we obtain the second inequality in (3.4.21). 0

Proof of Lemma 3.4.8. We study how the equivalent energy norm £, (w) defined in (3.4.20) evolves along
the flow of (3.4.17). Notice that
O€s(w) = —{&, H}(w).

Therefore, for any ¢ € [0,T], we have that

T
/ 6t53(w) dt¢
0

Let 0 < o and set N := ¢~ “. Hence we have

(3.4.6),(3.4.18)
<, TN 2logld) (1 + N)et + N3,

T
/ 0 Es(w) dt‘ <o 2T (272D gD (1 4 e7) 4 glFe), (3.4.23)
0

‘We choose o« > 0 such that
2—a(d-2)=14a«a, ie, a:=——. (3.4.24)

Therefore estimate (3.4.23) becomes

T
/ 0:Es(w) dt‘ Ss 2Teat logm™ (1 +e7%).
0
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Since € can be chosen small with respect to s, with this choices we get

T
/ 06, (w) dt‘ =
0

as long as
1
T < e @D ]og=d72 (1 4 e1-4). (3.4.25)

Then, using the equivalence of norms (3.4.21) and choosing ¢y > 0 small enough, we have
T
/ OiE(uw) dt‘ }
0

for times 7" as in (3.4.25). This implies the thesis. ]

lw(®)IFs < (1+co)o(w(t)) < (1+ co) [58(10(0)) +

< (14 co)e? + (1 4+ ¢p)e?/4 < 23)2,

Proof of Theorem 3.1.1. In the same spirit of [72], [32] we have that for any initial condition (pg, ¢g) as in
(3.1.4) there exists a solution of (QHD) satisfying

1 1
sup (=|lp(t, ) ms + —=||Ta (¢, )| = ) < 2e
s (Gl + e Tgo )

for some T > 0 possibly small. The result follows by Lemma 3.4.8. By Lemma 3.2.4 and estimates (3.2.34)
we deduce that the function w solving the equation (3.2.37) is defined over the time interval [0,7"] and
satisfies

sup_[w(t) - < 4v/m(1+ VEB)e.
t€[0,T]
As long as v € [1,2]? (defined as at the beginning of section 3.3) belongs to the full Lebesgue measure set
given by Proposition 3.3.1, we can apply Proposition 3.4.3 if € is small enough. Then by Lemma 3.4.8 and
by a standard bootstrap argument we deduce that the solution w(t) is defined for ¢ € [0,7;], T% as in (3.1.5),
and

sup Jlw(t)||gs < 8v/m(l + VEB)e.

t€[0,T%]

Using again Lemma 3.2.4 and (3.2.34) one can deduce the bound (3.1.5). Hence the thesis follows. ]



Chapter 4

Hamiltonian Birkhoff normal form for
water waves

4.1 Introduction to Chapter 4

We consider the Euler equations of hydrodynamics for a 2-dimensional perfect and incompressible fluid
with constant vorticity vy, under the action of gravity and capillary forces at the free surface. The fluid fills
the time dependent region

Dy:={(z,y) eTxR : —h<y<n(taz)}, T:=T,:=R/(27Z), (4.1.1)

with depth h > 0, possibly infinite, and space periodic boundary conditions. The unknowns are the free
u(t,m,y)
v(t,z,y)
vorticity v; — uy = -y (a property which is preserved along the time evolution), the velocity field is the

sum of the Couette flow (*3 y), which carries all the vorticity ~y, and an irrotational field, expressed as the
gradient of a harmonic function ®, called the generalized velocity potential.

We study the water waves problem in the Hamiltonian Zakharov-Craig-Sulem [124, 50] formulation,
extended by Constantin, Ivanov, Prodanov [45] and Wahlén [115] for constant vorticity fluids. Denoting by
¥(t,z) the evaluation of the generalized velocity potential at the free interface ¢ (t,z) := ®(¢,z,n(t,x)),
one recovers ® as the unique harmonic function A® = 0 in D,; with Dirichlet boundary condition ® = ) at
y = n(t,2) and Neumann boundary condition ®,(¢,z,y) — 0 as y — —h. Imposing that the fluid particles
at the free surface remain on it along the evolution (kinematic boundary condition) and that the pressure of
the fluid plus the capillary forces at the free surface is equal to the constant atmospheric pressure (dynamic
boundary condition), the time evolution of the fluid is determined by the non-local quasi-linear equations

surface y = n(t,z) of D, and the divergence free velocity field ( ) In case of a fluid with constant

o = Gy + ye

1 1 (netz + G(n)y)? n _ (4.1.2)
Op = —gn — sU2 + 1% 2 V) + Hax{ixl] + e + 70, G(n)y
2772 14 (1+n2)}
where g > 0 is the gravity constant, k > 0 is the surface tension coefficient, 0, [(14-2%] is the curvature
of the surface and G(n) is the Dirichlet-Neumann operator

We will derive the equation of motion (4.1.2) for the water waves problem in Appendix C.

95
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The quantity [7(z)dx is a prime integral of (4.1.2) (indeed [ G(n)yydz = 0) and then, with no loss
of generality, we restrict to interfaces with zero average fT n(z)dx = 0. The component 7 of the solution of

1
(4.1.2) will lie in a Sobolev space H, g i (T) of periodic functions with zero mean. Moreover the vector field
on the right hand side of (4.1.2) depends only on 7 and ¢ — 5~ Jp®dz (indeed G(n)[1] = 0) and therefore

1 will evolve in a homogeneous Sobolev space H =1 (T) of periodic functions modulo constants.
By [124, 50, 45, 115] the equations (4.1.2) are the Hamiltonian system

) = Vi Hy (1,1) (0 1

and

1
H,(n,9) == Q/T(wG(n)w+gn2)dx+n/T\/1+ngdm+g/T(—%nMgn?’)dx. (4.1.5)

The L?-gradients (V, H.,,VH,) in (4.1.4) belong to (a dense subspace of) LQ(’]I‘) x L3(T).
Since the bottom of D,, in (4.1.1) is flat, the Hamiltonian vector field X, defined by the right hand side
of (4.1.2), is translation invariant, namely

Xyorg=70X,, YeeR, where 7 f(z) f(z+5) (4.1.6)

is the translation operator. Equivalently the Hamiltonian H., in (4.1.5) satisfies H, o7, = H,, forany ¢ € R.
The associated conservation law induced by Noether theorem is the momentum [ 1) (x)n, (x) dz.

The main result of the present chapter (Theorem 4.1.1) is that, for almost all surface tension coefficients
K, for any integer IV, the solutions of the water waves equations (4.1.2) with initial data (smooth enough)
of size ¢ small enough, are defined over a time interval of length at least ce=™V~!. This is the most general
almost global existence in time result for the solutions of the water waves equations with periodic boundary
conditions known so far. We present below the mathematical literature concerning the local and global well
posedness theory of water waves, focusing on the maximal time life span of the solutions.

In order to state precisely the main theorem we define, for any s € R, the Sobolev spaces

HE(T,C) = {u(:v) € H*(T,C) : /u(a:)da? - o}, [*(T,C) = H*(T,C)/C,

T

equipped with the same norm

1 1
2 . 2
lullizg = Nl e = (30 MMwulZen®)* = (37 fuPLi>)

neN FEZ\{0}

-

where II,, denote the orthogonal projectors from L?(T,C) on the sub-spaces spanned by {e~1"® ,'eim} and
u; are the Fourier coefficients of u(z). The quotient map induces an isometry between H§ and H* and we
shall often identify H§ with H*. Our main result is the following.

Theorem 4.1.1. (Almost global in time gravity-capillary water waves with constant vorticity) For any
value of the gravity g > 0, depthh € (0,400] and vorticity y € R, there is a zero measure set K C (0,+00)
such that, for any surface tension coefficient k € (0,+00) \ K, for any N in Ny, there is so > 0 and, for
any s > sq, there are g > 0,¢ > 0,C > 0 such that, for any 0 < € < g, any initial datum

+1 cs—1 i
(n0,0) € Hy' *(T.R) x H™*(T,R)  with o]l ..y + ol oy <,
0
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system (4.1.2) has a unique classical solution (n,1)) in

1
s+3

g1
CU([—Ta,TE], SHarR) x {5 (T,R)) with T. > ce™N1, 4.1.7)
satisfying the initial condition n|i—y = 1o, ¥ |t=0 = 9. Moreover

sup nl eer H [ 1) < Ce. (4.1.8)
tE[—Tg,Ts](H HH0+4 1l 2

Here are comments on the result.

1. COMPARISON WITH [27]. We first discuss the relation between Theorem 4.1.1 and the result in Berti-
Delort [27]. Theorem 4.1.1 extends the one in [27] in two ways: (¢) the equations (4.1.2) may have a non
zero vorticity, whereas the water waves in [27] are irrotational, i.e. v = 0. (i) Also in the irrotational case
Theorem 4.1.1 is new since the almost global existence result in [27] holds for initial data (79, 0) even in
x, whereas Theorem 4.1.1 applies to any (1,0). We remark that, in the irrotational case, the subspace of
functions even in x -the so called standing waves- is invariant under evolution, whereas for «v # 0 it is not
invariant under the flow of (4.1.2) and the approach of [27] can not be applied.

2. PERIODIC SETTING VS R?. Global (and almost global) in time results [119, 76, 120, 77, 85, 4, 82, 86, 62]
have been proved for irrotational water waves equations on R¢ for sufficiently small, localized and smooth
initial data, exploiting the dispersive effects of the linear flow. So far no global existence is known for
the solutions of (4.1.2) in R2, not even for irrotational fluids ([62] applies in R3). The periodic setting
is deeply different, as the linear waves oscillate without decaying in time, and the long time dynamics of
the equations strongly depends on the presence of N-wave resonant interactions and the Hamiltonian and
reversible nature of the equations.

3. DISPERSION RELATION AND NON-RESONANT PARAMETERS. The water waves equations (4.1.2) may
be regarded as a quasi-linear complex PDE of the form

Ou = —iQ(D)u + N (u,w), u(z)= \/%ZjeZ\{o}uj el

where N is a quadratic non-linearity (depending on derivatives of w) and Q; (k) is the dispersion relation

7 G(J , 5 VG0
Qj(k) == wj(/@)—l—Q(j), wj(k) = \/G(])<g+/€]2+4j(_2)), (4.1.9)
where G(£) = [£[tanh(h|£]|) (= [¢] in infinite depth) is the symbol of the Dirichlet-Neumann operator G(0).
The linear frequencies €2;(x) actually depend on (k,g,h,7). The restriction on the parameters required in
Theorem 4.1.1 arises to ensure the absence of N-wave resonant interactions

QJI(K,):E:EQ]N(H) 750 (4110)

(with quantitative lower bounds as (4.1.13) below) among integer indices ji,...,jny which are not super-
action preserving, cfr. Definition 4.7.4. In Theorem 4.1.1 we fix arbitrary (g,h,~) and require k ¢ IC, but
other choices are possible.

4. ENERGY ESTIMATES. The life span estimate (4.1.7) and the bound (4.1.8) for the solutions of (4.1.2)
follow by an energy estimate for [|(1,%)[[x= := [In]l ..3 4 [1%]l .y of the form
HO

t
1, 2) (O %s Soon [1(m,) ()1 +/O 1(n, ) ()15 dr. (4.1.11)
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The fact that the right hand side in (4.1.11) contains the same norm || || xs of the left hand side is non trivial
because the equations (4.1.2) are quasi-linear. The presence of the exponent NV is not trivial at all because
the non-linearity in (4.1.2) vanishes only quadratically for (n,v)) = (0,0). Actually it will be a major
consequence of our Hamiltonian Birkhoff normal form reduction, as we explain below.

5. LONG TIME EXISTENCE OF WATER WAVES. We now describe the long time existence results proved in
literature for space periodic water waves, with or without capillarity and vorticity.

(i) T. > ce~'. The local well posedness theory for free boundary Euler equations has been developed
along several years in different scenarios in [104, 122, 49, 117, 118, 92, 2, 3, 35, 100, 109, 95, 46,
111, 112, 84, 7]. As a whole they prove the existence, for sufficiently nice initial data, of classical
smooth solutions on a small time interval. When specialized to initial data of size ¢ in some Sobolev
space, imply a time of existence larger than ce~! (the non-linearity in (4.1.2) vanishes quadratically
at zero). We remark that other large initial data can lead to breakdown in finite time, see for example
the papers [43, 47] on “splash” singularities.

(#3) T. > ce—2. Wu [119], Ionescu-Pusateri [85], Alazard-Delort [4] for pure gravity waves, and Ifrim-
Tataru [83], Ionescu-Pusateri [86] for k > 0, g = 0 and h = +o0, proved that small data of size
¢ (periodic or on the line) give rise to irrotational solutions defined on a time interval at least cs 2.
We quote [84] for k = 0, g > 0, infinite depth and constant vorticity, [80] for irrotational fluids, and
[79] in finite depth. All the previous results hold in absence of three wave interactions. Exploiting
the Hamiltonian nature of the water waves equations, Berti-Feola-Franzoi [28] proved, for any value
of gravity, capillarity and depth, an energy estimate as (4.1.11) with N = 1, and so a cs~? lower
bound for the time of existence. The interesting fact is that in these cases three wave interactions may
occur, giving rise to the well known Wilton ripples in fluid mechanics literature. We finally mention
the e~3+ long time existence result [87] for periodic 2D gravity-capillary water waves (see [08, 74]
for NLS).

(iii) T. > ce~3. A time of existence larger than ce > has been recently proved for the pure gravity water
waves equations in deep water in Berti-Feola-Pusateri [29]. In this case four wave interactions may
occur, but the Hamiltonian Birkhoff normal form turns out to be completely integrable by the formal
computation in Zakharov-Dyachenko [125],implying an energy estimate as (4.1.11) with N = 2. This
result has been recently extended by S. Wu [121] for a larger class of initial data, developing a novel
approach in configuration space, and, even more recently, by Deng-lonescu-Pusateri [63] for waves
with large period.

(iv) T. > cne ™ for any N. Berti-Delort [27] proved, for almost all the values of the surface tension
k € (0,4+00), an almost global existence result as in Theorem 4.1.1 for the solutions of (4.1.2) in the
case of zero vorticity v = 0 and for initial data (79,v0) even in z. The restriction on the capillary
parameter arises to imply the absence of N-wave interactions, for any N. As already said, Theorem
4.1.1 extends this result for any v and for any periodic initial data, see comment 1.

The results [27, 29, 28] are based on para-differential calculus. We remark that all the transformations
performed to get energy estimates, as the celebrated Alinhac good unknown [5, 2, 3, 4], are not symplectic.
In [29, 28] an a-posteriori identification argument allows to prove that the corresponding quadratic and cubic
Poincaré-Birkhoff normal forms are nevertheless Hamiltonian. This argument does not work for any N. We
note that also the local well posedness approach of S.Wu [117, 118] introduces coordinates which break the
Hamiltonian nature of the equations.

The lack of preservation of the Hamiltonian structure is a substantial difficulty in order to deduce long
time existence results. A major novelty of this our work is to provide an effective tool to recover, in the
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framework of para-differential calculus, the nonlinear Hamiltonian structure, at any degree of homogeneity
N. The present approach is in principle applicable to a wide range of quasi-linear PDEs.

6. OPEN PROBLEM: we do not know if the almost global solutions of the Cauchy problem proved in
Theorem 4.1.1 are global in time or not, being (4.1.2) a quasi-linear system of equations with periodic
boundary conditions (no dispersive effects of the flow nor conservation laws at the regularity level of the
local well posedness theory can be exploited). Nevertheless several families of time periodic/quasi-periodic
solutions of (4.1.2) have been constructed in the last years in [116, 1, 30, 34] (other KAM results for pure
gravity water waves are proved in [106, 88, 14, 31, 69]). We point out that it could also happen that small,
smooth and localized initial data lead to solutions which blow-up in finite time (as it happen for quasi-linear
wave equations [89] and for compressible Euler equations [110]). The following natural question therefore
remains still open: what happens to the solutions of (4.1.2) which do not start on a KAM invariant torus for
times longer than the ones provided by Theorem 4.1.1?

We now illustrate some of the main ideas of our approach.

1. PARA-DIFFERENTIAL HAMILTONIAN BIRKHOFF NORMAL FORM. For PDEs on a compact manifold
(where dispersion is not available) a natural tool to extend the life span of solutions is normal form ideas.
This approach has been developed for Hamiltonian semi-linear PDEs starting with the seminal works by
Bambusi [15], Bambusi-Grebért [19], Bambusi-Delort-Grebért-Szeftel [17], and for quasi-linear ones by
Delort [58, 59]. These methods do not work for the quasi-linear equations (4.1.2), as we explain below. The
long time existence result of Theorem 4.1.1 relies on a novel para-differential Hamiltonian Birkhoff normal
Jform reduction for quasi-linear PDEs in presence of resonant wave interactions.

The situation is substantially more difficult than in [27] which exploits only the reversible structure of
the water waves, and it is preserved by usual para-differential calculus. On the subspace of functions even
in z, it implies that its normal form possesses the actions |u,|? as prime integrals (on the subspace of even
functions the linear frequencies w;(x) in the dispersion relation are simple). On the other hand, without this
restriction, the wj(/s) in (4.1.9) are double and the approach in [27] fails. We remark that, in view of the
8-wave resonant interactions (4.1.15) described below, also for v # 0 the approach in [27] fails. In order to
prove Theorem 4.1.1, it is necessary to change strategy and preserve the Hamiltonian nature of the normal
form to show that the super-actions

ITnullFe = [u—p® + |un|?, Vn €N, (4.1.12)

are prime integrals. This is a major difficulty since usual para-differential calculus transformations per-
formed to get energy estimates do not preserve the Hamiltonian structure.

2. SYMPLECTIC DARBOUX CORRECTOR. In order to preserve the Hamiltonian structure along the normal
form reduction -it is sufficient up to homogeneity N- we construct symplectic correctors of usual para-
differential transformations. We remind that the first step to apply para-differential calculus to PDEs relies
on a suitable para-linearization of the equations. For Hamiltonian PDEs, the para-differential part inherits
a linear Hamiltonian structure that is preserved by performing “linearly symplectic” transformations. The
aim of the abstract Theorem 4.4.1 is to correct para-differential (more generally spectrally localized) lin-
early symplectic maps (up to homogeneity V) to nonlinear symplectic ones, up to an arbitrary degree of
homogeneity. Theorem 4.4.1 is proved via Darboux-type arguments. The Darboux corrector turns out to
be a smoothing perturbation of the identity. As a consequence it only slightly modifies the para-differential
structure of the PDE.

Symplectic corrections via Darboux-type arguments have been used in different contexts by Kuksin-
Perelman [91], Bambusi [16], Cuccagna [54, 55], Bambusi-Maspero [20, 21]. The present case is much
more delicate since the symplectic form to be corrected might be an unbounded perturbation of the stan-
dard one (in all the above works it is a smoothing perturbation). This requires a novel analysis that we
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describe below. The present approach is quite efficient in PDE applications, since it systematically allows
to symplectically correct usual para-differential transformations which lead to energy estimates.

Para-differential calculus has been also developed by Delort [58, 59] for Hamiltonian quasi-linear Klein-
Gordon equations on spheres, with a different approach. Also in these works the Hamiltonian structure is
preserved only up to homogeneity V.

3. NON-RESONANCE CONDITIONS. A key ingredient to achieve the Hamiltonian Birkhoff normal form
reduction which possesses the super-actions (4.1.12) as prime integrals, are the non-resonance conditions
(B.0.1) for the linear frequencies §2;(x) in (4.1.9) proved in Theorem B.0.1, which exclude, for almost all
surface tension coefficients, N-wave interactions,

19, (k) £ ... £Q;, (k)| 2 max(|ji],...,[in]) "7, (4.1.13)

for all integer indices ji,...,jn which are not super-action preserving. Their proof is based on the Delort-
Szeftel Theorem 5.1 in [60] about measure estimates for sub-levels of sub-analytic functions.

4. SAP-HAMILTONIANS. Thanks to the non-resonance conditions (B.0.1) we eliminate the Hamiltonian
monomials which do not Poisson commute with the super-actions (4.1.12), cfr. Lemma 4.7.7. The remaining
monomials, which we call super-action-preserving (SAP) (Definition 4.7.8), have either the integrable form
|zj, |2...|2j,.|? or the form

2j1Z—j1 « - ZjmZ—jm X integrable monomial (4.1.14)
(with not necessarily distinct indexes ji, ..., jm,). The not integrable monomials (4.1.14) allow an exchange
of energy between the Fourier modes {z;,, 2—j, }, a = 1,...,m, but, thanks to the Hamiltonian structure,

each super-action |zj,|? + |z_;, |? remains constant in time.

We may not expect to get an integrable Hamiltonian Birkhoff normal form for the water waves equations
(4.1.2) starting from the degree of homogeneity 8. Actually, using the conservation of momentum, the fourth
order Hamiltonian Birkhoff normal form is integrable, see Remark 4.7.16. The same holds if v # 0 also at
degree 6. But there are 8-wave resonant interactions corresponding to SAP not integrable monomials

Zny Z—nq ZngZ—ng Z—ns3 Zns Z—ng fng

(which are momentum preserving if ny + ny = ng + ng) for any & > 0 and any v € R. Indeed, for any
positive integer n1,n2,n3,n4 we have, if h = +o0,

QTM (K) - Q*nl (H) + Qn2 (K) - Q*nz (K) + Q*ns (H) - Qn3 (K) + Q*n4 (K) - Qn4 (H)

419 . . . .
“L )7(81gn(n1) + sign(ng) — sign(ng) — sign(ng)) = 0.

(4.1.15)

The analytical difficulties of the loss of derivatives caused by the quasi-linearity of the equations and the
small divisors in (4.1.10) along the Birkhoff normal form reduction is overcome by preserving the para-
differential structure of the equations. The final outcome is that the water waves system in Hamiltonian
Birkhoff normal form satisfies an energy estimate of the form

t
12(8)11%. < 11201 +C(8)/O ()l dr (4.1.16)

5. COMPARISON WITH THE APPROACH IN [58, 59] AND [27]. The Hamiltonian approach to para-
differential calculus in [58, 59] is developed for quasi-linear Klein-Gordon equations and can not be applied
to prove Theorem 4.1.1. Indeed, since the Klein-Gordon dispersion relation is asymptotically linear, it is
not required a reduction to x-independent para-differential operators up to smoothing remainders: since the
commutator between first order para-differential operators is still a first order para-differential operator, it
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is possible to implement a Hamiltonian Birkhoff normal form reduction in degrees of homogeneity, in the
same spirit of semi-linear PDEs. This approach can not be applied for (4.1.2) since the dispersion relation
(4.1.9) is super-linear. It is for this reason that we first reduce in Proposition 4.7.2 the paralinearized water
waves equations to xz-independent symbols up to smoothing remainders. This was done in [27] for v = 0
(in a different way) but breaking the Hamiltonian structure (see [71] for NLS). Incidentally we mention that
the para-differential normal form in [27] is not a Birkhoff normal form: for standing waves it is not needed
to reduce the z-independent symbols to deduce that the actions |u,,|? are prime integrals.
Summarizing, the proof of Theorem 4.1.1 demands

* a reduction of the water waves equations (4.1.2) to para-differential z-independent symbols up to
smoothing remainders, done in [27] for v = O (in a different way) losing the Hamiltonian structure,
and, additionally, reduce the x-independent symbols to super-action preserving Birkhoff normal form;

* preserve the Hamiltonian structure of the Birkhoff normal form, goal achieved in [58, 59] but only for
Klein-Gordon equations.

The resolution of these requirements is a main achievement of our work.

Before presenting further ideas of the proof of Theorem 4.1.1 we state the following byproduct of the
Darboux-type Theorem 4.4.1 concerning a symplectic version of the Alinhac good unknown. Such result
may be of separate interest and use for water waves results in other contexts.

Symplectic good unknown up to homogeneity N. The celebrated Alazard, Burq, Zuily approach [2, 3,
5] to local well posedness extends Lannes [92] introducing the nonlinear, not symplectic, Alinach good
unknown

wi=1— OpBW (B(U,@D))ﬁ where B(777'9Z}) = ((I)y)(:ﬂay)h/:n(x)

and ® is the generalized harmonic velocity potential in (4.1.3) (the notation Op"" (-) refers to a para-
differential operator in the Weyl quantization, according to Definition 4.2.4). The nonlinear map

T\ _ onBW 1 0\ (n
o (w) - Ov <—B(n,¢) 1) <¢> ) (4.1.17)

although not symplectic, is linearly symplectic, namely

-
Loy 10 0 -Id
Op"" (B(n ) 1> EoOp®" (B(n 9 1> = Ey where Ey = (Id 0 ) . (4.1.18)

A direct corollary of Theorem 4.4.1 is the following result, proved at the end of Section 4.4. We refer to
Definition 4.2.7 for the precise definition of smoothing operators.

Theorem 4.1.2. (Symplectic good unknown up to homogeneity N) Ler N € N. There exists a pluri-
homogeneous matrix of real smoothing operators R<n(-) in E{V Rq ¢ ® My(C) for any ¢ > 0 such that

(Id + R<n () 0 Ga(n, ) (4.1.19)

is symplectic up to homogeneity N, according to (4.3.40).

Let us make some comments about Theorem 4.1.2 and the more general Theorem 4.4.1.

1. The pluri-homogeneous smoothing correcting operators R« (-) in (4.1.19) are constructed in Proposition
4.4.7 by a Darboux deformation argument a la Moser. More precisely the R<y(-) are defined as approxi-
mate inverses of approximate flows, up to homogeneity N, generated by smoothing vector fields, which are
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algorithmically determined by the Darboux mechanism and depend only on the pluri-homogeneous compo-
nents of G up to degree N (more in general of B<y in (4.4.1)).

2. The Alinhac good unknown map (4.1.17) is bounded, but Theorem 4.4.1 also holds for a (spectrally
localized) map B<x(U) in (4.4.1) which is unbounded. This is the case for example when B<x(U) is the
Taylor expansion of a linear flow generated by an unbounded operator, as we discuss later in (4.1.23).

3. We do not expect to find in Theorem 4.4.1 a corrector which produces a completely symplectic transfor-
mation of the phase space, but only up to an arbitrary degree of homogeneity N. In the Darboux approach
of Section 4.4 this is because the equation (4.4.28) for the smoothing vector field Y", whose flow defines
the symplectic corrector, can be solved only in homogeneity having the form E.Y”™ = R(V,Y",dyY") and
so losing derivatives, see Remark 4.4.6. We remark that also the transformations in [58, 59] are symplectic
at degree of homogeneity < N. A similar problem appears in [73].

4. Darboux perturbative methods for Hamiltonian PDEs have been developed in different contexts in
[16, 20, 21, 54, 55, 91]. In all these cases, the perturbed symplectic form is a smoothing perturbation
of the standard one and thus Darboux correctors are symplectic maps. On the other hand, in this work the
perturbed symplectic tensor is a (possibly) unbounded perturbation of the standard one,

E<n(V) = E. + (possibly) unbounded operator . (4.1.20)

A key tool to overcome this difficulty is the structural Lemma 4.4.5.

5. A symplectic map up to homogeneity N, transforms a Hamiltonian system up to homogeneity N into
another Hamiltonian system up to homogeneity N, see Lemma 4.3.15.

Further ideas of proof and plan of the chapter

The chapter is divided in
1. Part I) containing the abstract functional setting and the Darboux result;
2. Part IT) with the proof of the almost global in time Theorem 4.1.1.

We first illustrate the way we proceed to preserve the Hamiltonian structure, up to homogeneity NV, in a
generic transformation step along the proof of Theorem 4.1.1.

Symplectic conjugation step up to homogeneity N. Consider a real-to-real system in para-differential
form

U = X(U) =0p™ (A(U; t,x,9) U]+ R(U;t)[U], U= [Z] , (4.1.21)
where A(U;t,z,&) is a matrix of symbols and R(U;t) are p-smoothing operators, which admit a homoge-
neous expansion up to homogeneity N, whereas the terms with homogeneity > N are dealt, as in [27], as
time dependent symbols and remainders, see Section 4.2.1. This is quite convenient from a technical point
of view because it does not demand much information about the higher degree terms. Moreover this enables
to directly use the paralinearization of the Dirichlet-Neumann operator proved in [27]. System (4.1.21)
is Hamiltonian up to homogeneity N, namely the homogeneous components of the vector field X (U) of
degree < N + 1 have the Hamiltonian form

JVH(U)  where J,:= P _1} (4.1.22)
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is the Poisson tensor and H(U) is a real valued pluri-homogeneous Hamiltonian of degree < N + 2.
Moreover the para-differential operator Op®" (A(U)) in (4.1.21) is a linear Hamiltonian operator, up to ho-
mogeneity N, namely of the form Op®" (A(U)) = J.Op®" (B(U)) where B(U) is a symmetric operator
up to homogeneity N, see Definition 4.3.6.

In order to prove energy estimates for (4.1.21) we transform it under several changes of variables.
Actually we do not really perform changes of variables of the phase space, but we proceed in the time
dependent setting due to the high homogeneity terms. Let us discuss a typical transformation step. Let
G(U;t) := G7(U;t)|r=1 be the time 1-flow

0,G7(U;t) = J.Op™ (B(U;7,t,2,8))G"(Ust), G(Ust) =1d, (4.1.23)

generated by a linearly Hamiltonian operator .J. Op®" (B (U ;T,t,x,g)) up to homogeneity N. The trans-
formation G(U;t) is invertible and bounded on H*(T) x H*(T) for any s € R and it admits a pluri-
homogeneous expansion G« (U), which is an unbounded operator if the generator .J, Op®" (B) is un-
bounded, see Section 4.3.3. If U solves (4.1.21) then the variable

W :=G(U;t)U (4.1.24)
solves a new system in para-differential form
W = X (W) = Op”" (Ap (W;t,2,)) W]+ Ry (W) W] (4.1.25)

(actually the symbols and remainders of homogeneity > N in (4.1.25) are still expressed in terms of U,
but for simplicity we skip to discuss this issue here). In Section 4.6 we perform several transformations
of this kind, choosing suitable generators .J. Op"" (B ) (either bounded or unbounded) in order to obtain a
diagonal matrix A with z-independent symbols.

We remark that, with this procedure, since the time one flow map G(U;t) of the linear Hamiltonian
system (4.1.23) is only linearly symplectic up to homogeneity /N, namely

G(U;t)'EG(Ust) = B. + Esn(Ust), E-n(U;t) = O(|JU|N Y,

where E. := J ! is the standard symplectic tensor, the new system (4.1.25) is not Hamiltonian anymore,
not even its pluri-homogeneous components of degree < N + 1. The new system (4.1.25) is only linearly
symplectic, up to homogeneity IV, see Lemma 4.3.9. In order to obtain a new Hamiltonian system up
to homogeneity [N, we use the Darboux results of Section 4.4 to construct perturbatively a “symplectic
corrector” of the transformation (4.1.24).

Let us say some words about the construction of the symplectic corrector. We remark that the perturbed
symplectic tensor E< (V') induced by the non-symplectic transformation G< n (U) is not a smoothing per-
turbation of the standard Poisson tensor E, cfr. (4.1.20). However, Lemmata 4.4.4 and 4.4.5 prove that, for
any pluri-homogeneous vector field X (V'), we have

E<n(V)[X(V)] = E.X(V)+ VW(V) 4+ smoothing vector fields + high homogeneity terms

where W(V) is a scalar function. This algebraic structural property enables to prove the Darboux Proposi-
tion 4.4.7, thus Theorem 4.4.1, via a deformation argument a la Moser. We also remark that the operators
R<n(-) of Theorem 4.4.1 are smoothing for arbitrary o > 0, since they have 2 equivalent frequencies,
namely maxs(ni,...,np41) ~ max(nl,...,np+1) in (4.2.38), arising by applications of Lemma 4.2.21.
This property compensates the presence of unbounded operators in G<y (U).
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In conclusion, Theorem 4.4.1 provides a nonlinear map W + R<n (W)W, where R< (W) are pluri-
homogeneous p-smoothing operators for arbitrary o > 0, such that the pluri-homogeneous map

Dy (U) == (Id + R<n(+)) 0 Gen(U)U
is symplectic up to homogeneity N, i.e.
[duDn (V)] " Ee [duDn(U)] = E. + Esn(U) (4.1.26)

where E- n(U) is an operator of homogeneity degree > N + 1. As a consequence, since (4.1.21) is
Hamiltonian up to homogeneity N, the variable

Z(t) == DU(t);t) := W(t) + Ren(W()) = (Id + R<n () 0 GU#);)U(2)

satisfies a system which is Hamiltonian up to homogeneity N as well, and which has, since R<y(-) are
smoothing operators, the same para-differential form as in (4.1.25),

hZ = X4++(Z) = Op"" (A1 (Z3t,2,€))[Z] + Ry4(Z:1)[Z]. (4.1.27)

This is the content of Theorem 4.7.1. Note that the matrix of symbols A (Z;t,x,£) in (4.1.27) is obtained
by substituting in A, (W;t,z,&) therelation W = Z—R<x(Z)+... obtained inverting Z = W+R< (W)
approximately up to homogeneity /N. This procedure is rigorously justified in Lemmata A.0.4 and A.0.5.
Scheme of proof of Theorem 4.1.1. In part II we apply the abstract formalism developed in part I to prove
Theorem 4.1.1. We proceed as follows.

Section 4.5: paralinearization of the water waves equations. In Section 4.5 we first paralinearize the water
waves equations (4.1.2), we introduce the Wahlén variables (7, () in (4.5.2) and the complex variable U in
(4.5.6) which diagonalizes the linearized equations at zero. The resulting paralinearized equations (4.5.37)
are a Hamiltonian system of the form

oU = J.VH,(U) (4.1.28)

where H, is the Hamiltonian in (4.1.5) written in the variable U. Our goal is to perform several changes of
variable to prove energy estimates for (4.5.37), i.e. (4.1.28), valid up to times of order e~ N=1 We split the
proof in two major steps.

Section 4.6: Hamiltonian para-differential normal form. In Section 4.6.1 we introduce the good unknown
of Alinhac G(U) (written in complex coordinates), obtaining a system which has energy estimates for times
of order e~!. The Alinhac good unknown is not symplectic and therefore the transformed system (4.6.4)
is not Hamiltonian anymore. Next we transform (4.6.4) into a diagonal matrix of x-independent symbols
up to smoothing remainders, in order to compensate along the Birkhoff normal form reduction process the
loss of derivatives due to the small divisors and the quasi-linear nature of the water waves equations, see
Proposition 4.6.1. The resulting system

aW = OpBY (im% (U;t,g))W + R(UHW (4.1.29)

is no longer Hamiltonian. In (4.1.29) the imaginary part of the symbol m3 has order zero and homogeneity
larger than N, whereas R(U;t) is a smoothing remainder vanishing lineaily inU.

Section 4.7: Hamiltonian Birkhoff normal form. In order to recover the Hamiltonian structure we apply
the symplectic corrector given by Theorem 4.4.1: using Theorem 4.7.1 and Lemmata A.0.4 and A.0.5, we

obtain in Proposition 4.7.2 system (4.7.4) which is Hamiltonian up to homogeneity N. We perform the
Hamiltonian Birkhoff normal form reduction for any value of the surface tension « outside the set X defined
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in Theorem B.0.1. Iteratively we first reduce the p—homogeneous x-independent para-differential symbol to
its super-action-preserving component, via the linear flow generated by an unbounded Fourier multiplier, see
(4.7.42). Since such transformation is only linearly symplectic, we apply again Theorem 4.7.1 to recover a
Hamiltonian system up to homogeneity IV, see system (4.7.56). Finally we reduce the (p+ 1)-homogeneous
component of the Hamiltonian smoothing vector field to its super-action preserving part, see (4.7.70). The
key property is that a super-action preserving Hamiltonian Poisson commutes with the super-actions defined
in (4.1.12). After N iterations, the final outcome is the Hamiltonian Birkhoff normal form system (4.7.21),
which has the form

&2 = JVHS®) (7)) + opBY (—i(m%)>N(U;t,§)>Z + Ron(U;t)U (4.1.30)
where HS*?)(Z) is a super-action preserving Hamiltonian (Definition 4.7.8) and the higher order homo-
geneity para-differential and smoothing terms admit energy estimates in Sobolev spaces (the imaginary part
of the symbol (m %)> ~ has order zero).

Section 4.8: energy estimates. The Hamiltonian Birkhoff normal form equation 8,7 = J,V H (S4?) (Z) ob-
tained neglecting the terms of homogeneity larger than N in (4.1.30) possesses the super—actions |z_,|? +
|2|?, for any n € N, as prime integrals. Thus it preserves the Sobolev norms and the solutions of (4.1.30)
with initial data of size ¢ have energy estimates up to times of order e~V ~!, In conclusion, since the Sobolev
norms of U in (4.1.28) and Z in (4.1.30) are equivalent, we deduce energy estimates for (4.1.28),

t
IO 1Fe S 1U0)]F; +/0 U5+ dr

valid up to times of order e V1. A standard bootstrap argument concludes the proof of Theorem 4.1.1.

Notation: The notation A < B means that there exists a constant C' > 0 such that A < C'B. We denote
N={1,2,...} and Ny := NU {0}.
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4.2 Functional Setting

This section contains the abstract functional setting necessary for this chapter.

In Section 4.2.1 we present definitions and results about para-differential calculus following Berti-Delort
[27], but defining the different notion of m-operators. Using the same classes of symbols and smoothing
operators of [27] has the advantage to directly rely on the result in [27] concerning the paralinearization of
the Dirichlet-Neumann operator with multilinear expansions. In Section 4.2.2 we introduce the notion of
spectrally localized maps which includes, as a particular case, para-differential operators of any order. Then
we prove several properties of spectrally localized maps among which that the transpose of the differential of
a homogeneous spectrally localized map is smoothing, see Lemma 4.2.21. This result generalizes a lemma
which has been proved in Feola-Iandoli [73] for para-differential operators, and it is relevant for producing
the Hamiltonian corrections to the homogeneous components of the vector field in Section 4.4, by means
of a Darboux approximate procedure. In Section 4.2.3 we construct approximate inverses of non-linear
maps and approximate flows up to an arbitrary degree of homogeneity. In Section 4.2.4 we introduce the
formalism of pluri-homogeneous k-forms, Lie derivatives and Cartan’s magic formula. Let us first fix some
notation used along the chapter.

Function spaces. Along the chapter we deal with real parameters
s>s0>K>0>N (4.2.1)

where N € Ny is the constant in Theorem 4.1.1.
Given an interval I C R symmetric with respectto ¢ = 0 and s € R, we define the space

K
CE(I,H* (T,C?)) == () C* (1, B *(T,C?))

k=0
endowed with the norm
K
StuI;IIU(tw)HK,s where IIU(t,-)HK,s:ZZH@fU(t,')HHs_gk, (4.2.2)
€ k=0

and we also consider its subspace
. s U
ClR(1,H*(T,C?) = {U € CK(I1,H* (T,C%) : U= <u> }

Given r > 0 we set BX (I;7) the ball of radius r in CX (I, H* (T,C?)) and by BfR(I; r) the ball of radius
rin CK (I, H® (T,C?)).

The parameter s in (4.2.2) denotes the spatial Sobolev regularity of the solution U (¢, -) and K its regular-
ity in the time variable. The gravity-capillary water waves vector field loses 3/2-derivatives, and therefore,
differentiating the solution U (t) for k-times in the time variable, there is a loss of %k:-spatial derivatives.
The parameter o in (4.2.1) denotes the order where we decide to stop our regularization of the system and
depends on the number N of steps of Birkhoff normal form that we will perform and the smallness of the
small divisors due to the resonances.

We denote L2(T,C) := H(T,C) and L? := L?(T,R) = H°(T,R) the subspace of L?(T,C) made by
real valued functions. Given u,v € L?(T,C) we define

(u,v) 2 ::/Hé‘u(a:)ﬂé‘v(ac)dz, respectively  (u,v) ;- ::/Hé‘u(a:)ﬂé-v(m)dm, (4.2.3)
" T T
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where H&u =u— % [ u(z)dx is the projector onto the zero mean functions.
We also consider the non-degenerate bilinear form on L?(T;C?)

+ +
< <Zi> ’ (Zi) > = (v ) o+ (07 v ) g2 (4.2.4)

Fourier expansions. Given a 27-periodic function u(z) in the homogeneous space L%(T,C), we identify
u(x) with its zero average representative and we expand it in Fourier series as

ooy € ai -_L w(z)e V% dx
u@) = 3 A= ) M/T ()e 7 dg 42.5)

JEZ\{0}
ut
We shall expand a function <u‘> as

eiajm - 1

(u*) =Y g = W0 (0f) = —— / w7 (z)e 9" dz (4.2.6)
)~ YOV T by -

o€+ jez\{0}
1 _ 0
qt = <0>, q = <1> . 4.2.7)

For n € N we denote by II,, the orthogonal projector from L?(T,C) to the linear subspace spanned by
{einm’ e—inm},

where

eina: e—inz
M) (x) :=u(n)—— + u(—n , 4.2.8
() ) = ) o+ ) @28)
and we denote by II,, also the corresponding projector in L?(T,C?).
IfUd = (Uy,...,Up) is a p-tuple of functions and 77 = (n1,...,np) € NP, we set
U = (I, Uy,... 1L, Uy), 7l o= (7Uy,..., 7cUp)
For j, = (j1,---,Jp) € (Z\ {0})? and &), = (071,...,0p) € {£}P we denote |J,| := max(|j1],...,|jp|) and
u;: = u?ll...uj:, Gp-Jp =011+ ...+ 0pjp. (4.2.9)

Note that, under the translation operator 7. defined in (4.1.6), the Fourier coefficients of 7cu transform as

(ru)f = e

We finally denote
Tp i= { Usp) € (Z\ (O x {£}7: G-, =0} (4.2.10)

Real-to-real operators and vector fields. Given a linear operator R(U)[] acting on L?(T;C) we associate
the linear operator defined by the relation

R(U)[v] := R(U)[¥], Yv:T— C. (4.2.11)

An operator R(U) is real if R(U) = R(U). We say that a matrix of operators acting on L?(T;C?) is
real-to-real, if it has the form

Ry(U) Rz(U)) , 4.2.12)

R(U) = (m(U) Ri(U)
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for any U in

L3(T,C?) = {v € L2(T,C?) : V = (Z) } 4.2.13)
We define similarly H3(T,C?). A real-to-real matrix of operators R(U) acts in the subspace L2 (T,C?).
If R1(U) and Ry (U) are real-to-real operators then also R1(U) o Ro(U) is real-to-real.
Similarly we will say that a vector field

X(U) = <§Eg§+> is real-to-real if X (U)T = X(U)~, VU e L(T,C?). (4.2.14)

4.2.1 Para-differential calculus

We first introduce the para-differential operators (Definition 4.2.4) following [27]. Then we define the new
class of m-Operators (Definition 4.2.5) that, for m < 0, are the smoothing ones (Definition 4.2.7), and we
prove properties of m-operators under transposition and composition.

Classes of symbols. We give the definition of the classes of symbols that we use. Roughly speaking
the class Fm contains symbols of order m and homogeneity p in U, whereas the class I'} K.K'p contains
non- homogeneous symbols of order m that vanishes at degree at least p in U and that are (K K ")-times
differentiable in ¢; we can think the parameter K’ like the number of time derivatives of U that are contained
in the symbols. In the following we denote H°(T;C?) := Nser H*(T;C?).

Definition 4.2.1. Letm € R, p, N € Ny, K, K’ 'eNp with K! < K, andr > 0.

(i) p-homogeneous symbols. We denote by Fm the space of symmetric p-linear maps from (H* (T;C?))?
to the space of C* functions from T xR to C, (z, f ) — a(U;x,§), satisfying the following: there exist j1 > 0
and, for any «, 5 € Ny, there is a constant C > 0 such that

p
1020¢ a(Talts 2, €)| < Cli* ()™ P T I, Ul 2 (4.2.15)
j=1

foranyU = (Uy,...,U,) € (H*(T;C?))P and it = (ni,...,n,) € NP. Moreover we assume that, if for
some (ng,...,np) € Ng x NP, I, a (HmUl,...anUp;-) # 0, then there is a choice of signs oy, ...,0p €
{—1,1} such that Z?:o ojn; = 0. In addition we require the translation invariance property

a(tl;z,€) =al;z +,8), Vs €ER, (4.2.16)

where T is the translation operator in (4.1.6).

For p = 0 we denote by fg" the space of constant coefficients symbols § — a(&) which satisfy (4.2.15)
with o = 0 and the right hand side replaced by C(£)™5

We denote by Eév f;” the class of pluri-homogeneous symbols Zé\]:p aqg with ag € f;” Forp> N +1
we mean that the sum is empty.

(i) Non-homogeneous symbols.  We denote by I'g i, [r] the space of functions (U;t,x,§)
a(U;t,x,€), defined for U € BSIS/(I;T) for some sg large enough, with complex values, such that for
any 0 < k < K — K/, any 0 > sq, there are C > 0, 0 < r(0) < r and for any U € BK(I r(o)) N
CkE'(I,HO(T;C?)) and any o, 3 € No, with o < 0 — s one has the estimate

|0F 0207 a(Ust,2, )| < CLO™ PIUIR Jer o 1Tkt 570 (4.2.17)
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If p = 0 the right hand side has to be replaced by C(¢)™
(iéi) Symbols. We denote by X' 1/ | [r, N| the space of functions (U;t,z,&) — a(U;t,x,£), with

complex values such that there are homogeneous symbols aq € I'j", ¢ = p, ..., N and a non-homogeneous
symbol axn € T 11\ 1 such that

a(U;t,z,&) = Zaq LUz, 8) +asy(Ust,x,€). (4.2.18)

We denote by X1 i, [, N] @ M2 (C) the space of 2 x 2 matrices with entries in ST 1, [r, NJ.
We say that a symbol a(U;t,x,§) is real if it is real valued for any U € BSO R(I;r).

o If a(U/;-) is a homogeneous symbol in f;” then a(U,...,U;) belongs to I'g  [r ] for any r > 0.

e If ais a symbol in X'} 1, [r,N] then d;a € EF%’K,’I;[T, NJ]and O¢a € EFK &1 plr» N]. If in addition b
is a symbol in ST ., [, N] then ab € EF?}”}HP [r, N].

o Notation for p-homogeneous symbols: If a,, (Ui, ...,Up;x,&) is a p-homogeneous symbol, with a slightly

abuse of notation, we also denote by a,(U;z,§) := ap(U ,o.., Usz, &) the corresponding polynomial and say
that a,(U;z,€) is in I}

Remark 4.2.2. (Fourier representation of symbols) The translation invariance property (4.2.16) means

that the dependence with respect to the variable x of a symbol a(U/;z,&) enters only through the functions
U(z), implying that a symbol a,(U;z,§) in I';*, m € R, has the form (recall notation (4.2.9))

aUiz,&) = > (1))l (Qule (4.2.19)

Je(Z\{0}),5e{+£1}1

where (aq);f(f ) € C are Fourier multipliers of order m satisfying: there exists > 0, and for any 3 € Ny,
there is C'z > 0 such that

107 ()7 (€)] < Gl (€™ P, V(7,8) € (Z\ {0} x {£}7. (4.2.20)

A symbol a,(U;x,€) as in (4.2.19) is real if

(ag)7 (€) = (ag)77 (€). (4.221)

By (4.2.19) a symbol a; in fT can be written as a; (U;z,§) = Zjez\{o}pzi(al)?(f)u?elajz and there-
fore, if a; is independent of z, it is actually a; = 0.

We also define classes of functions in analogy with our classes of symbols.

Definition 4.2.3. (Functions) Let p, N € Ny, K,K' € Ny with K' < K, r > 0. We denote by F ,
resp. Fr k' plr], EF Kk k7 p[r, N|, the subspace of TO, resp. F?(,K’,p [r], resp. EF(}(’K,J)[T, N), made of those
symbols which are independent of &. We write FX, resp. ]:% K'p [], E]:}g K'p [r, N], to denote functions in
fp, resp. F k' pl7], EF K i p[r, N, which are real valued for any U € Bg:R(I;T).
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Para-differential quantization. Given p € Ny we consider functions x, € C®(RP x R;R) and x €
C>(R x R;R), even with respect to each of their arguments, satisfying, for 0 < § < 1,

suppxp C {(€,6) e RP x R;[€'] < 0(6)},  xp(€,€) =1 for [€'] < 6(¢)/2,
suppx C {(£,€) e R x R;[¢€'| < 6(€)}, x(€,6) =1 for [€'] < 6(¢)/2.

For p = 0 we set xg = 1. We assume moreover that
10205 xp(&,€)] < Capl€) ™!, Ya € Ny, B € N, [0205x(€,6)] < Cap() ™7, Vo, B € Ny.

If a(z, &) is a smooth symbol we define its Weyl quantization as the operator acting on a 27-periodic function
u(x) (written as in (4.2.5)) as

Oop" (a)u = fZ(Z k—l_‘])u(j))\e/%

kEZ  jEL

where a(k,€) is the k*" —Fourier coefficient of the 27 —periodic function 2 — a(z,&).

Definition 4.2.4. (Bony-Weyl quantization) If a is a symbol in I'™, respectively in LR g pr], we set

ay, Us,€) == xp (71,€) a(ll5l; 3, €),
”EF” (4.2.22)
o(Uitn,€) = 5 [ X(€. UL e g

where in the last equality a stands for the Fourier transform with respect to the x variable, and we define
the Bony-Weyl quantization of a as

Op”"(a(U;+)) = Op" (ay, U;-)),  Op™(a(Ust,-)) = Op" (ay (Ust,-)). (4.2.23)

If ais a symbol in X1 o1 [r, N, we define its Bony-Weyl quantization

N
Op™ (a(Ust,-)) = > _Op™(ag(U,...,U;")) + Op"" (asn (Ust,-)).

We will use also the notation

a(U;t,x,€) 0 ]) o (z,6) == a(z,—€). (4.2.24)

Op (a(U;t,x,£)) :== Op™" <[ 0 JTit7.9)

e The operator Op®" (a) acts on homogeneous spaces of functions, see Proposition 3.8 of [27].

e If @ is a homogeneous symbol, the two definitions of quantization in (4.2.23) differ by a smoothing
operator according to Definition 4.2.7 below. With the first regularization in (4.2.22) we guarantee the
important property that Op®" (a) is a spectrally localized map according to Definition 4.2.16 below.

o The action of Op®" (a) on homogeneous spaces only depends on the values of the symbol a = a(U;t,z,&)
(or a(U;t,z,&)) for || > 1. Therefore, we may identify two symbols a(U;t,x,£) and b(U;t, x,§) if they
agree for |£| > 1/2. In particular, whenever we encounter a symbol that is not smooth at { = 0, such as,
for example, a = g(z)|£|™ for m € R\ {0}, or sign(§), we will consider its smoothed out version x(¢)a,
where x € C*°(R;R) is an even and positive cut-off function satisfying

X =0if [gl<g, x(€)=11if [(]>], x(§)>0 VEe (5,3)-
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e Definition 4.2.4 is independent of the cut-off functions X, X, up to smoothing operators that we define
below (see Definition 4.2.7), see the remark at pag. 50 of [27].

o If for some (n, ...,np41) € NPF2 1L, Op™" (a(IlzU; ) )y, ., Upt1 # 0, then there exist signs ¢; €
{£},j=0,...,p+ 1, such that Zg“ ejnj = 0 and the indices satisfy (see Proposition 3.8 in [27])

ng ~ nptr1, nj <Congr1, nj <Cong, j=1,...,p. (4.2.25)

e Given a para-differential operator A = Op®" (a(z,&)) it results
A=0p™ (a(w,=9), AT =0p™ (alx,~€)), A" =O0p™ (a(e,8)). (4.2.26)

where AT and A* denote respectively the transposed and adjoint operator with respect to the complex,

respectively real, scalar product of L2 in (4.2.3). It results A* = ZT;
e A para-differential operator A = Op®" (a(x,£)) is real (i.e. A = A) if

a(z,&) = a’(x,&) where a’(z,8) := a(z,—-£). (4.2.27)

e A matrix of para-differential operators Op®" (A(U;t,z,€)) is real-to-real, i.e. (4.2.12) holds, if and only
if the matrix of symbols A(U;t,x,£) has the form

a(Ust,z,€)  bU;t,z,€) )

AU;z,€) = (bv(U;m’g) U t3.6) (4.2.28)

Classes of m-Operators and smoothing Operators. Given integers (ni,...,np41) € NP*!, we denote
by maxs(n1,...,n,+1) the second largest among n1,...,n,+1. We shall often use that maxs is monotone
in each component, i.e. if n; > n; for some j, then

maxo(ni,...,Nj,...,np) < maXQ(nl,...,nz-,...,np) ) (4.2.29)
In addition maxs is non decreasing by adding elements, namely
maxa(ny,...,np) < maxa(ni,...,np, Npy1)- (4.2.30)

We now define the m-operators. The class /W;” denotes multilinear operators that lose m derivatives and
are p-homogeneous in U, while the class M? K',p contains non-homogeneous operators which lose m
derivatives, vanish at degree at least p in U, satisfy tame estimates and are (K — K')-times differentiable in
t. The constant w in (4.2.31) takes into account possible loss of derivatives in the “low” frequencies.

Definition 4.2.5. (Classes of m-operators) Let m € R, p, N € Ng K, K’ € No with K' < K, and r > 0.
(i) p-homogeneous m-operators. We denote by M the space of (p + 1)-linear operators M from

(H>(T;C?))P x H®(T;C) to H*(T;C) which are symmetric in (Uy,...,U,), of the form
(UL,...,Ups1) = M(UL,...,Up)Upss

that satisfy the following. There are jn > 0, C' > 0 such that

p+1
Uptillzz < Cmaxa(ni,...,npe1)" max(ng,...,npp1)" H [T, Ujllp2 (4.2.31)
j=1

HHHOM(HﬁU)H

Tp+1
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foranyU = (Uy,...,Up,) € (H®(T;C?))?, any Upyy € H®(T;C), 7@ = (n1,...,n,) in NP, any ng,ny1 €
N. Moreover, if

I1,, M (11,,, Ul,...,anUp)an+1Up+1 #0, (4.2.32)
then there is a choice of signs oy,...,0p+1 € {E1} such that Z?Zé ojn; = 0. In addition we require the
translation invariance property

M () [rUps1] = 7e(M(U)Upy1), Vs €R. (4.2.33)

We denote Mvp = Ungﬂy and Ei,v//\\/l/g1 the class of pluri-homogeneous operators Zé\[:p My with My in
./K/lv;“. Forp > N + 1 we mean that the sum is empty. We set Ep./{/lvgl = Unen E:f,vﬂzn.

(ii) Non-homogeneous m-operators. We denote by MY 1/ | [r] the space of operators (U,t,V)
M (U;t)V defined on Bgl (I;r) x I x CO(I, H*(T,C)) for some sy > 0, which are linear in the variable
V' and such that the following holds true. For any s > s there are C > 0 and r(s) €]0,r[ such that for any
U € BE(I;r(s)) N CK(I,H3(T,C?)), any V € CE=K'(I,H*(T,C)), any0 < k < K — K', t € I, we
have that

10F MUOV)| e SC D WV I slUNR s g gy + IV s U 1 ger g IU Nl s - (4.2.34)

2
K/ +k" =k
In case p = 0 we require the estimate ||0F (M(U;t)V)]| . vomihem < Cl[V][k,s.
(iii) m-Operators. We denote by XM .1 , [7’ N], the space of operators (U,t,V) — M (U;t)V such

that there are homogeneous m-operators M, in /\/lq , ¢ = p,...,N and a non—-homogeneous m-operator
Moy in M i 4[] such that

N
MUV = M(U,...,U)V + Moy (Ust)V. (4.2.35)
q=p
We denote
p - U Mp ) MKK’,p . U MKK’ , EMK7K/7P[’I“,N] = U EM}T(]‘7K/7P[T‘,N],
m>0 m>0 m>0

and XM 1) [r, N]® Ma(C) the space of 2 x 2 matrices whose entries are operators in SM g [, N.

o If M(U,...,U) is a p~homogeneous m-operator in MVZL then the differential of the non-linear map
M(U,...,U)U, dy(M(U,...,0)U)V = pM(V,U,...,U)U + M(U,...,U)V is a p-homogeneous m-
operator in ./\A/l/m This follows because the right hand side of (4.2.31) is symmetric in (n1,...,7p41).

o If my < mo then > KK/ [r,N] C EM%?K,J)[T,N].

e Notation for p-homogeneous m-operators: if M (Uy,...,U,) is a p-homogeneous m-operator, we shall
often denote by M (U) := M(U,...,U) the corresponding polynomial and say that M (U) is in Mv;”
Viceversa, a polynomial can be represented by a (p + 1)-linear form M (Uy,...,U,)U,+1 not necessarily
symmetric in the internal variables. If it fulfills the symmetric estimate (4.2.31), the polynomial is generated
by the m-operator in M* obtained by symmetrization of the internal variables. We will do this consistently
without mentioning it further.

¢ Notation for projection on homogeneous components: given an operator M (U;t) in MY [r, N]
of the form (4.2.35) we denote by

N
Pn[M(Ust)] := > My(U), resp. Pg[M(Ust)] := My(U), (4.2.36)

a=p
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the projections on the pluri-homogeneous, resp. homogeneous, operators in Eév MG, resp. in M. Given
an integer p < p’ < N we also denote

N p’
Pop[M(U;t)] := ZMQ(U>7 Py [M(U;1)] := ZMq(U)~

The same notation will be also used to denote pluri-homogeneous/homogeneous components of symbols.

Remark 4.2.6. Definition 4.2.5 of homogeneous m-operators is different than the one in Definition 3.9
in [27], due to the different bound (4.2.31). However for m > 0 the class of homogeneous m-operators
contains the class of homogeneous maps of order m in Definition 3.9 of [27], and in view of (4.2.31) is
contained in the class of maps of order m + p of [27]. On the other hand the class of non-homogeneous
m-operators coincides with the class of non-homogeneous maps in Definition 3.9 of [27].

If m < 0 the operators in X M 1., p[r, N] are referred to as smoothing operators.

Definition 4.2.7. (Smoothing operators) Let ¢ > 0. A (—p)-operator R(U) belonging to SM ;% p[r, N]
is called a smoothing operator. Along the chapter will use also the notation

3 o o B (4.237)
Ry plrl = Mg o lrls BRI N = SM i~ N

e Given g > 0, an operator R(U ) belongs to 7?,;9 if and only if there is yu = p(9) > 0 and C' > 0 such that

p+1

maxa(ny,...,Np41)*
U, <C 1L,.U; . 4.2.38
piillne < (11,7112 j];[lH n; UjllLe ( )

|11, R(I17U)1T

Np+1

We remark that Definition 4.2.7 of smoothing operators coincides with Definition 3.7 in [27].

e In view of (4.2.31) and (4.2.38) a homogeneous m-operator in Mv;” with the property that, on its support,
maxo(ni,...,Np4+1) ~ max(ni,...,ny4+1) is actually a smoothing operator in 7%;9 for any o > 0.

o The Definition 4.2.7 of smoothing operators is modeled to gather remainders which satisfy either the prop-
erty maxs(ni,...,np41) ~ max(ni,...,n,41) or arise as remainders of compositions of para-differential
operators, see Proposition 4.2.14 below, and thus have a fixed order o of regularization.

Lemma4.2.8. If M (Uy,...,U,) is a p-homogeneous m-operator in ./{/lvzl then forany K € Ngand(0 < k <
K there exists so > 0 such that for any s > so, for any U € CX (I, H*(T,C?)), any v € CK(I, H*(T,C)),
one has

107 (M (U, Up)o)|

p
gt Sk 0 (1ol TT 10l s,
a=1

v+t kg 1=k
(4.2.39)

p p
1000 > Ml TT 10l )
a=1 a=1

a#a

In particular M (U) is a non-homogeneous m-operator in M%op [r] for any r > 0 and K € Ny.
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Proof. Forany 0 < k < K we estimate

1 kp kpt1
10F (M (U, ..., Up)o)| g Sk Y IMOPUL, L0 U0 Vll o3

Hs m— s—m—ﬁk‘
kit +kpr1=k

We now estimate each term in the above sum. We denote 7ip11 = (n1,...,np41) € NP+, Opt1 =
(01,...,0p41) € {£}P*! and Z(no,0pt1) == {ﬁp+1 eNPHL g =oing + ...+ Up+1np+1}. We get

M@ UL, ..., 0 Up) O o “2R |, (M (8;“U1,...,8prp)6fp“v)HL2H€%O

(4.232) || s—m—_3Ek k k
2 k1 P p+1
‘ ng > I (M (1L, 0 U T, 0y Up ML 0 0) 2
Gpp1e{£)ptl "o
7ip+1€7(n0,%p+1)
(4.2. 31) 31 " -
+
S Y maxetn,mpe) max(an ) (A olle,
Op+1 Tip+1€L(n0,5pt1) a=1
where in the last inequality we also used that ng < max{ni,...,np41} and s — m — 7l<: > 0 to bound
3
S—m—
n . For any choice of 641 € {£}P*1, we split the internal sum in p + 1 components
p+1
S, e ¥
Tpt1’ Fpt1
fip+1€Z(n0,Gp+1)
max(ni,...,np+1)=nNg
. 1 .
We first deal with the term Zf_fp L). In this case we bound
P
Fp+1 E”p+1 +1y Crpia
g . — el
Tl 947 0l € 52 07 gy S 5 ol
”p+1 Mp+i

(a) (a)
Cn, Cng
||Hna6faUa||L2 < ﬂ HakaU HHqul ka S —r ||U(Z||ka7ﬂ/+1? a=1,....,p

I-L+1 ka
(l
~ . . _3
for some sequences (¢, )nens, ( e, ) en in £2(N). With these bounds, and using max(ny,...,n,11)* 2% =
s"k s—3k —3k -3
2+l 271 —ahp
p+1 S Ny Ny ..np © T, We get
(1) (p) P
(p+1) ~ Cny ¢
[=e], 2l X RUCITS | (AT
"o (fip41)ENPTT 0 a=1

no=oini+-+op+1Np+1

Applying Young inequality for convolution of sequences and using that (cﬁf”n—l)n oy € £1(N), we finally
arrive at

yn(P+1)
Up+1

p
2, < Hkapﬂ,s l_IIHUa”kmSO o kit ARy =k,
a=

which is the first term of inequality (4.2.39) with s = max(m + %K .1 + 1). Proceeding similarly we
obtain, foranya = 1,...,p,

155 N2, S Wollky ot [Uallgs TT 10Ually i
a#a
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which are terms in the sum in the second line of (4.2.39). If U, = U for any a, we deduce by (4.2.39) and
the estimate ||U[[, , < HUHk_kaﬁ that M (U) fulfills (4.2.34) with K’ = 0, k" := kpi1, k' = k — kp41.
Hence M (U) belongs to M7, [r] forany r > 0 and K € No. O

e A pluri-homogeneous nonlinear map Z + R<n(Z)Z where R<y(Z) isin B ﬁq_ ¢ ® My(C) satisfies the
following bound: for any K € Ny there is 59 > 0 such that for any s > 50, 0 < r < ro(s, K) small enough
and any Z € BE (I;r) N CK(I; H*(T,C?)) one has

2_1||Z||k75 <||Z+ R<n(Z2)Z||ks < 2||Z]|ks, VO<Ek<K. (4.2.40)
Fourier representation of m-operators. We may also represent a matrix of operators

M{(U) ML (U)

M(U) = <M+(U) M_<U)> € M, ® M;(C) (4.2.41)

through their Fourier matrix elements, see (4.2.6), writing

]\4([])‘/)Jr G, 0o & elaka:
M(U)V = (( _ (M(U)V)U = Z MEP u’r 0'
MUV ’ Tgk Wi, Vi )
V) Godk)e@ioprte v Ve (4.2.42)
(Gp,0’)e{£}PT!
ok=8p-Jp+o'j
where ! o o
U o o 101]1Z’ elopip® qo 610 jx e~ lokz
T : M Ul R op -q’ dx

, 101]135 iopjpT io’jx efiokm
S Y O i) Gl P Iy
/11* o \4 Vo 4 V2T Vord 27
and g% are defined in (4 2. 7) In (4.2.42) we have exploited the translation invariance property (4.2.33)
which implies that if M % ’,U "7 = 0 then

ok=¢&, 7,+0j. (4.2.44)

Note also that since M is symmetric in the internal entries, the coefficients M I ’,U "7 in (4.2.43) satisfy the
following symmetric property: for any permutation 7 of {1,...,p}, it results

Tr(1)r-Tn(p)0 0 O14eees0p,0" 0
inttydnimyodd = My ik (4.2.45)

The operator M (U) is real-to-real, according to definition (4.2.12), if and only if its coefficients fulfill

op,o’o &p,—0’,—0
MO = M7 (4.2.46)

The matrix entries of the transpose operator M (U) T with respect to the non-degenerate bilinear form (4.2.4)
are

1(71]11: eiapjpa: qa 610 jx qae—iak:c
NZo = [ M (@ = )| |- dz (4.2.47)
j”’j K / 4 V2T V2T Vor

el iopjpx o, —ickx o’ Jio'jx
/M ne '7qape/ )[q ,e/ }'q\/e do = ]Upfkaj
27 2 27 P

),v: (v ) € C?wesetu-v:=uiv1 + uvs.
2

Ui
U2

'Given u = (
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One can directly verify that (M T);:]UI;U fulfill (4.2.44), (4.2.45). If M(U) is real-to-real (i.e. (4.2.46)
holds) then M (U) " is real-to-real as well.

Lemma 4.2.9. (Characterization of m-operators in Fourier basis) Ler m € R. A real-to-real linear
operator M (U) as in (4.2.42)-(4.2.43) is a matrix of p-homogeneous m-operators in Mj* @ M2 (C) if and
only if its coefficients M;}’jf];’o satisfy (4.2.44), (4.2.45), (4.2.46) and there exist 1 > 0 and C' > 0 such that
for any (7p,5) € (Z\A{OHP*, (5p,0) € {£}P,

|M(Z;Uk U‘ < Cmax?{‘jl‘w ce ‘jp’v |j|}“max{|j1|, ) |jp|7 ‘]‘}m (4248)

Proof. Let M(U) be a matrix of m-operators in Mv;” ® M3(C). Then by (4.2.43), applying Cauchy-
Schwartz inequality and recalling (4.2.8) we get

G0l o . eloine i elopipT eio/j:p
P> 1
M5 | < HMJ (a L R G e )[Hm*\/g}
(4.2.32) 101]193 eiapjpa: eia’jx
< > HHnOM3 ( Q" Iy, = e G~ )[Hm }
€1,...,€p,E{E} 2 \/ﬁ
no=e1|j1|++ep|ip|+eljl
@23y ' o . .
< C2""maxo{|j1l,. .-, |jpl, 71} max{|j1l,.... |5, 5]}

proving (4.2.48). Viceversa suppose that M (U) is an operator as in (4.2.41)-(4.2.43) with coefficients
satisfying (4.2.48). Then, for any 0,0’ € {£},

ickx

o’ Op,0’ o op o' €
1T Mg (T Ut T U)o gz = | D0 M ) ()75

.]1 :l:’VZl, 7]1)7 Np
J=Enpi1,k=Eng

2 L2

(4.2.48) . e : 0 m o1 op
< Yo maxa{ljil il L max{lial o Ll L ()G ()32 [0F |
Ji=%£n1,....jp==Enyp
j=%tnpi1,k=Eng
P
< C27 P maxg{ny, ..., np, nppa P max{ny,...,np,nps1 ™ | [ 1T, Uell 2T, 0]l 2
/=1
proving (4.2.31). O

The transpose of a matrix of m-operators is a m’-operator.

Lemma 4.2.10. (Transpose of m-Operators) Let p € No, m € R. If M(U) is a matrix of p~homogeneous
m-operators in My @ Ma(C) then M (U )T (where the transpose is computed with respect to the non-

degenerate bilinear form (4.2.4)) is a matrix of p-homogeneous operators in ./T/l/;”/ ® My (C) for some
m’ > max(m,0).
If in addition there exists C' > 1 such that
M;':’” £0 = C Yk <|j| <ClK| (4.2.49)

then M(U)T € M © Ms(C).
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Proof. By (4.2.47), (4.2.48) (applied to MU”’U o’ _;)andssince, by (4.2.44), |k| < (p+1)max{|j|,|ji,---,[7p[},
we deduce that

‘(MT);T;}UICU’ S maX2{|j1|7' < |jp‘7 ‘k‘}#max{‘jl‘r ) ‘jp‘v ’k‘}m (4'2'50)

< max{[j1],..., |gp|, || praxtmO+e

proving (4.2.48) for M (U) " with m ~» m’ := max(m,0) + .

If in addition (4.2.49) holds true then max{|j1|,...,|jpl, |k|}"™ ~ max{|ji|,....|jpl,|j|}™ for any m €
R and similarly maxa{|j1|, ..., [jpl, |E[}* ~ maxa{|ji|,...,|jpl, || }* for any 1o > 0. We deduce by (4.2.50)
that M (U) " is in M ® My(C). O

Remark 4.2.11. (Transpose of Smoothing operators) If R(U) is a matrix of smoothing operators in
75; ¢ ® My(C) and the spectral condition (4.2.49) holds true, then R(U)' is a smoothing operator in
the same class. Without the spectral condition (4.2.49) this might fail: for example consider R(U) such that
its transpose is

R(UL,...,Up) TV := Op™™ (A(V,Un,...,Up-1))U, , A(-) € TH @ M3(C) . (4.2.51)

As a consequence of Lemma 4.2.21 below, we have that R(U) = [R(U)T]T is in R, 2 @ My(C) for any
0> 0,but R(U)T in (4.2.51) is a p-operator.

We conclude this subsection with the paralinearization of the product (see e.g. Lemma 7.2 in [27]).
Lemma 4.2.12. (Bony paraproduct decomposition) Let uy,us be functions in H° (T;C) with o > %
Then

UjUgy = OpBW (’LLl)UQ -+ OpBW (ug)ul + R; (ul)’LLQ + RQ(Ug)ul (4.2.52)

where for j = 1,2, R; is a homogeneous smoothing operator in ﬁ,fgfor any o > 0.

Composition theorems. Let o(D,, D¢, Dy, D,)) :== D¢ Dy — D, D, where D, := %ax and D¢, Dy, D,, are
similarly defined. The following is Definition 3.11 in [27].

Definition 4.2.13. (Asymptotic expansion of composition symbol) Let p, p' in Ny, K,K' € Ny with
K'< K, 0>0,m,m" € R, r>0. Consider symbols a € XI'g 1, [r,N]and b € EFKK, [, N|. For U

in BE(I;r) we define, for 0 < o — sq, the symbol

4

1 /] k
(a#tob)(Ust,z,€) :=» ,< o(Dq, De, Dy, Dy, )) [G(U;t,x,f)b(U;t,ym)‘ (4.2.53)
k=0 z=y,§=n

modulo symbols in ZF%}TZ;FQP [, N,

e The symbol a#,b belongs to ZF%’J}(’?’; L [T N

e We have that a# ,b = ab + 3-{a,b} up to a symbol in EF%}W;__EP, [r, N], where
{a,b} := 0:a0;b — 0,a0eb
denotes the Poisson bracket.
° Iic is ﬁymbol in EF%:/K,JDN [, N then a# ,b# oc+c# ,b# ,a—2abc is a symbol in EF%*}Z‘Z:_’Z Jr_pz/, [r, N].
o aV#,bV = aFt,b’ where aV is defined in (4.2.27).

The following result is proved in Proposition 3.12 in [27].
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Proposition 4.2.14. (Composition of Bony-Weyl operators) Let p, q,N K K' e Ngwith K' < K, 0> 0,
m,m’ € R, v > 0. Consider symbols a € X' 1, [r,N]and b € ZFKK’ [r,N]. Then

Op™ (a(Ust,z,€)) o Op™™ (b(Ust,x,€)) — Op™" ((a#eb)(Ust, z,£)) (4.2.54)

o+m—+m/’
is a smoothing operator in YR g~y ' [r, N]

We now prove other composition results concerning m-operators.

Proposition 4.2.15. (Compositions of m-operators) Let p,p/, N, K, K' € Ny with K' < K and r > 0.
Let m,m' € R. Then

) it)isin |y N | an it)isin e r, N | then the composition ;t)o
) I M(Ust) is in SM o [r,N] and M'(Ust) is in SM [, N] then th M(U
.. +max(m’,0
M'(U;t) is in EM?;?;l;? )[r, N].
(13) If M(U) is a homogeneous m-operator in MVZL and MO (U;t), £ = 1,....p + 1, are matrices of
my-operators in SMy, | [r, N @ Mo(C) withmy € R, g, € N, then
MM U;HU,...,MP (U U)MPH)(U;1)

belongs to ZM?}W,MQ[T, N] withm = §+11 max(my,0) and q := Ze 1 e

(#11) If M(Ust) is in Mo [7] for any 7 € RT and Mo(U;t) belongs to M%K,’O[r] ® M2 (C), then
M(Mo(U;t)Ust) is in Mg 1 [r].

(iv) Let c be a homogeneous symbol in f;” and MO(U;t), £ = 1,...,p, be operators in EME k1 .q,[r N
with gy € Ng. Then

U—bU;t,x,§) = C(M(l)(U;t)U,...,M(p)(U;t)U;t,x,f)

is a symbol in ZF%K, [r, N] withq = q1 + -+ + q, and

P+q

OpBW(C(le ey Wp;t7x7€))‘WZ:M(Z)(U¢)U = OpBW(b(Uat7x7§)) + R(th)

where R(U;t) is a smoothing operator in ER[_{QK, r,N| for any ¢ > 0.

Proof. PROOF OF (7i): It is sufficient to prove the thesis for m, > 0 otherwise we regard M (¢ )(U t)asa
0-operator in EM%’K,J)[T, N]. We decompose, forany £ = 1,...,p + 1, M Z a—q, M M(J)V as
in (4.2.35). Given integers ay € [q¢, N], £ = 1,...p + 1, we use the notation ay := a1 + --- + ay + £ and
ap := 0. Note that ap11 — 1 =a1 + ... + apy1 +p > g+ p. We also denote the vector with a, elements

Z/{g = (Ual—1+17"'7UE€*1)7 621,,]9-1-1

By multi-linearity we have to show on the one hand that, if @,; — 1 < N then

M (M§}> U)Uay 1, MP) (up)Uap) MO Uyyr) (4.2.55)

a ap+1

is a homogeneous operator in /\/lm+m 1- On the other hand, if @41 — 1 > N + 1 then

ai ap Ap+1

M(MPW,..,0)U,..., ME(U,... . 0)U ) MEED(U,....,U) (4.2.56)
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is a non-homogeneous operator in M?}m, ~-117], having included for notational convenience the inhomo-

geneous term as M](\ﬁl(U, L U) = Mg])v(U;t) which belongs to M., v [7].

We first study (4.2.55). First of all, using the notation 7iy := (ng,_,+1,--.,7a,—1) one has

T M (Mcgp(nmul VMg, Uss -, M) (T Uy )T, Uap) MO (M Uyt Ty Usy, 22
< > HpgM (Hn/1 M) (g, Uy ), Usy, . Ty M (T, Up )T, Uap)
”/17""”;;+1
oTLy  MP'D (I, Ups 1)y Usyo |12 (4.2.57)

Thanks to the conditions (4.2.32) for M and M () the indices in the above sum satisfy, for some choice of

signs op,€5,b=1,...,apy1,j = 1,...,p+ 1, the restrictions
p+1 ap
no=>» enf, np= Y oy, L=1,...p+1. (4.2.58)
j=1 b=a,_1+1

As a consequence (4.2.55) satisfies the corresponding condition (4.2.32) and

ny < max{fs,ng,} Vi=1,....p+1, (4.2.59)
then we have
max{ny,...,n,, 1} S max{ny,...,na,,, } (4.2.60)
/ / (4.2.59)
maxa{nj,... ,an} < maxo {max{nl,nal}, ... ,max{np+1,nap+1}} < maxa{ni,... ,napﬂ}
where in the last inequality we used that {n1,...,ng,,, } is the disjoint union of the sets {7i¢, ng, }¢=1,... p+1-

Using (4.2.58), (4.2.31) for M and M) we get, with i’ := (nf,...,n}, )

p+1 ap+1
(42.57) < maxy {1 Y max{ii'}"™ | [ maxa{ii, ng, }* max{7ig,ngz,}™ [ IITn, Usllz2
=1 b=1
(4.2.60),(4.2.30),m;>0 B - / Apt1
< maxo{ni,...,ng,,, }"' max{ni,...,ng, , }" max{n’ }" H |1, Upllr2, (4.2.61)
b=1

where 71 := p 4 p1 + -+ + ppy1 and recall v = mq + -+ + myp41. We claim that
max{ri'}" < maxa{ni,...,ng, W max{na,... My ) (4.2.62)

for some y” > 0. Then (4.2.31), (4.2.61) and (4.2.62) imply that the operator in (4.2.55) belongs to
e

gZJ+:n—1'

We now prove (4.2.62). If m > 0 it follows by (4.2.60) with 1" = 0. So from now on we consider
m < 0. We fix £ such that

max{ni,...,ng,,, } = max{iiz, ng,} (4.2.63)
and we distinguish two cases:
Case 1: nj; > Tmax{7y, na,}. In this case

m (4.2.63)

v m<0 Im Casel Im| R im| -
max{7i'}"" < (ny)" < 2" max{ii; ng,} 2m max{ni,...,na,,, }
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which proves (4.2.62) with p”/ = 0.
Case 2: n’Z < %max{ﬁz, naz}. In view of the momentum condition (4.2.58),

max{7ig, ng } < agmaxe{ity, na,} +nj

Case?2

. 1 _
< agmaxa{iiz, ng,} + smax{iy, ng,}

2
and consequently
max{iig, naz} < 2azmaxso{1iy, naz}. (4.2.64)

Then, since m < 0,

(4.2.64)
max{i’'}" <1 < (2az)|m| maxa {7y, naf}|m| max {7z, ng,}"

(4.2.63),(4.2.30) i m m
< (2ap)"™maxa{ny,...,na,, }""'max{ni,...,ng,,, }

which proves (4.2.62) with /= |m/|. This concludes the proof of (4.2.62) and then that the operator in
(4.2.55) is in M7

ap+1 1 o
Now we prove that the operator in (4.2.56) is in M?}”} N4l [r]. We have to verify (4.2.34) with m ~»

m + m and p ~ N + 1. For simplicity we denote Mc(%)(U) = Mg)(U, ..., U). First we apply (4.2.39)

to M(U) € ,/Vlm (with Uy ~ Méf)(U)U, v~ Méfjll)(U)v and s ~ s — m) getting, for any £ =
0,....K — K,

108 (25600 ooy S D (IMEED @0, mH MO, 4265
ki4-4kpr1=k
(p+1)( ¢
+ HMGI;LI k p+1:50 Z ” U” H HM( ) kavSO) '
1'#
(4.2.66)

Then we estimate line (4.2.65) where, by Lemma 4.2.8, each M(%)(U) is in My, [r] and M](Vzrl(U)
belongs to M7}, n1lr]. Forany ¢ = 1,... p, using (4.2.34) (with m ~» my and p ~ a,) we bound
(since ky <k —kpp1and 0 < k < K — K')

4 +1 +1
[ MU)UII,WO < CNUI ke sorm < CNUNR kst (4.2.67)
—1
IMED@Yl, <O ST ol U ey + Bl s IO s 10 s
k/+k”§kp+1
-1
<C Z ”ka’”,s”U||Zp—+k1”+K’,so + ||v“k”7soHUHijkl”—i-K’,soHUHk—k”—i—K’,S
k”Skarl

since k' < k — k" (being kp11 < k). By (4.2.67) and since k — kp1 + K' < k — k" + K’, we get
+eotapat +otapy1+p—1
4265 Sics D ol U0 TR T + Nl o MU TR SR WU s
K<k

E : N+1 N
S,K,s ||UHI<;”,S||U||kj€”+K’,so+ﬁ + ||,UH]<:”7S()HU”k‘—k”-ﬁ-K’,So-{-ﬁ”U”k—k’"-‘y—K’,s (4268)
E'<k
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because aj + -+ +apt1+p = Gpr1 —1 > N +1 (for [|U|| k so+m < 1). Regarding (4.2.66), we first bound
by (4.2.34) (and (4.2.67) with s = 59 + M)

?
1MW, < OO g U g ers < OO ki s 10 ity

IMEED @)l SO D 0l sy WU IR sgm
k' <kpi1

and, proceeding similarly to the previous computation, we deduce

N
4.2.66) Sics D 0llgr sl UlR g 17 o sl U ko s s (4.2.69)
k”gk

Hence (4.2.68), (4.2.69) imply that forany k = 0,..., K — K’

N+1 N
107 (4.256)0) | g Sis Y N0llir MU TR g+ 10l om0 i om0 i
K +k"=k
(4.2.70)
proving that the operator (4.2.56) satisfies (4.2.34) with m ~ m +m, p~ N + 1 and sg ~ sg + m.

PROOF OF (i): Decomposing M = ZN M, + M~y and M’ = Z Mg + MLy as in (4.2.35),

by item (ii) we deduce that Mg, (U)M,,(U) is in MZig;ax{m O i q1 + g2 < N, and My, (U)M_,(U),

q1+q2 > N+1and My, (U)M. 5 (Ust), g1 = p,...,N,arein M’;}Tzﬁﬂl 0}[ |. Furthermore, proceeding
as in the proof of (4.2.70), one shows that M-~ n U,t M (U),qa=9p,...,N,and M=y (U;t)M. (U;t
p q2 >N

. m+max{m’,0}
are operators in M-, 'y 7 [r].

PROOF OF (iii): As My(U;t) € MKK, [r] ® M2(C), forany U € Bﬁgl (I;7), the function My (U;t)U €
B (I;Cr), for some C > 1. Hence the composition M(My(U;t)U) is a well defined operator. Moreover,
for any U € BE (I;r(c)), we have the quantitative estimate | Mo(U;t)U ||, , S 1U|ly, s fork =0,.... K —
K'and o > s¢. To bound the time derivatives of M (M (U;t)U) we use (4.2.34) and the previous estimate
to get, forany k =0,..., K — K’

198 (M (Mo(Us)YU)V) |35,
S D MU, Vs + IMo(U)U [l [IMo(Us)U |25 [V o4,

Kk =k
—1
D WVl slU kg9 + IV so 1T 1 s s 1U s,
Kk =k
proving (4.2.34).
PROOF OF (iv): It follows, in view of Remark 4.2.6, by Proposition 3.17-(i) and Proposition 3.18 in [27].

O]

We shall use the following facts which follow by Proposition 4.2.15.
o If a(U;t,z,§) is a symbol in XI'R ;. [, N] and U is a solution of ;U = M (U;1)U for some M (U;1)
in SM g g0, N] © Ms(C), then d,a(U;t, z,€) is a symbol in ST Tl N
o If R(U;t) is a smoothing operator in ZRKK,J) [r,N] and U is a solution of O,U = M (U;t)U for some
M(U;t)in XMk o o[r, N] ® M2(C), then 0, R(U;t) is a smoothing operator ER;(?K,+LP[T, N].
o If M(U;t)isin EMR 1 [r, N]and R(U;t) isin ZRI_(?K,J), [r, N then the composition M (U;t)oR(U;t)

isin EMR o [, N], and so it is not a smoothing map.
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4.2.2 Spectrally localized maps

We introduce the notion of a “spectrally localized” map. The class g;” denotes p-linear m-operators with
the spectral support similar to a para—differential operator (compare (4.2.25) and (4.2.71)), i.e. the “ internal
frequencies” are controlled by the “external” ones which are equivalent. On the other hand the class S}? Kp
contains non-homogeneous m-operators which vanish at degree at least p in U, are (K — K')-times differ-
entiable in ¢, and satisfy estimates similar to para—differential operators, see (4.2.72). These maps include
para—differential operators, smoothing remainders which come from compositions of para—differential op-
erators (see (4.2.54)) and also linear flows generated by para—differential operators. The class of spectrally
localized maps do not enjoy a symbolic calculus and it is reminiscent of the maps introduced in Definition
1.2.1in [59].

The class of spectrally localized maps is closed under transposition (Lemma 4.2.18) and under “external”
and “internal” compositions, see Proposition 4.2.19. A key property is that the transpose of the internal
differential of a spectrally localized map is a smoothing operator, see Lemma 4.2.21.

Definition 4.2.16. (Spectrally localized maps) Let m € R, p, N € Ny, K, K’ € Ny with K' < K and

r > 0. N

- (i) Spectrally localized p-homogeneous maps. We denote by S,* the subspace of m-operators S(U) in

M satisfying the following spectral condition: there exist § > 0, C' > 1 such that for any (Uy,...,Up,) €
. ; , Jor any 1 € : ; and for any ng,...,Np+1 € N such that

H>(T;C?))? Upt1 € H®(T;C) and p+1 € N such th

oS (M, Uty . Ty ULy, Upgr # 0,

it results
max{ni,...,np} <onpr1,  Clng <ny <Cng. (4.2.71)

We denote §p =Un gg"” and by Eév gg"‘ the class of pluri-homogeneous spectrally localized maps of the
form Zévzp Sq with S4 € §g”b and Zpggl = Unen Eévggl. For p > N + 1 we mean that the sum is empty.

(ii) Non-homogeneous spectrally localized maps. We denote Si¢ y. , [r] the space of maps (U,t,V') —
S(U;t)V defined on legl(l;r) x I x CY(I,H*(T,C)) for some sy > 0, which are linear in the variable
V' and such that the following holds true. For any s € R there are C' > 0 and r(s) €0, r[ such that for any
U € BE(I;r(s)) N CK(I,H(T,C?)), any V € CE=X'(I,H*(T,C)), any 0 < k < K — K', t € I, we
have that

10F (SWsOV) () g C D MU ger g IV s (4.2.72)
K+ =k
In case p = 0 we require the estimate ||OF (S(U;t)V)HHS_%k_m <OV | |k,s-

We denote S k' N[1| = U,, SK 17 n[T]-
(iii) Spectrally localized Maps. We denote by XS} i, [, N, the space of maps (U,t,V)) — S(U;t)V
of the form

N
SUsV =Y " Sy(U,....U)V + Ssn(Ust)V (4.2.73)
q=p
where S, are spectrally localized homogeneous maps in gg“, q=7p,...,N and S N is a non—homogeneous

spectrally localized map in Si o v 11l7]. We denote by XS K,’p[r, N] ® My(C) the space of 2 x 2
matrices whose entries are spectrally localized maps in L.S3} ., p[r, N]. We will use also the notation
ESk k[ N = Um0 ESIT?,K’,p[T’ NJ.
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e Note that (4.2.71) implies that max{n1,...,np41} ~ np1 and maxo{ny,...,np41} ~ max{ni,...,n,}
and therefore, by (4.2.31), S € S;” if and only if (4.2.71) holds and there are ¢+ > 0, C' > 0 such that

p+1
T S (M, Ut T Up) i Upst [l 22 < Cmax(ng,... np) 0y T 1T, Usll 12 (4.2.74)
j=1

for any ng,...,npy1 € N.
e In view of Lemma 4.2.9 a matrix of spectrally localized maps S(U) is characterized in terms of its Fourier

coefficients as follows: S(U) is in g;” ® My(C) if and only if S‘g)pfl;’a (defined as in (4.2.43)) satisfy, for
some p > 0,C > 0,

157097 < Canax ([, LI Vs ) € (Z\{O)PF, (Gpuo’s0) € {£)P72, (42.75)

and if S;f;”f,;’” # 0 then (4.2.44), (4.2.45) hold and, for some 6 > 0,
max{[ji],...[5p[} < 0Ll CTH[K| < || < CAl. (4.2.76)

e If S is a p~-homogeneous spectrally localized map in g‘;” then S(U)[V] defines a non-homogeneous
spectrally localized map in S}(”’O’p [r] for any r > 0. The proof is similar to the one of Lemma 4.2.8 noting
that the estimate (4.2.72) holds for any s € R because of the equivalence ng ~ 1,1 ~ max{ni,...,npy1}
in (4.2.71).

o (Para-differential operators as spectrally localized maps) If a(U;t,x,&) is a symbol in EF}Q Kp [r, N]
then the para-differential operator Op”" (a(U;t,z,)) is a spectrally localized map in 3Sg 5/ [r, N]. This
is a consequence of Proposition 3.8 in [27]. We remark that for a homogeneous symbol this is a consequence
of the choice of the first quantization in (4.2.23).

e If S(U,...,U) is a p-homogeneous spectrally localized map in S,,, then the differential of the non—linear
map S(U,...,U)U, dy (S(U,...,U)U)V = pS(V,U,...,U)U + S(U,...,U)V is a p-homogeneous op-
erator in Mp, not necessarily spectrally localized. Indeed the operator S(V,U,...,U)U is not, in general,
spectrally localized.

o If my < meo then ES}?}K,’p[r, N] C ZS%QK/’p[r, N]. If K] < K}, then ES?J(LP[T, N] C ES}?’Ké’p[r, NIJ.

Remark 4.2.17. The constant 6 > 0 in the spectral condition (4.2.71) is not assumed to be small (unlike
the one in (4.2.25) for para-differential operators).

The class of matrices of spectrally localized homogeneous maps is closed under transposition.

Lemma 4.2.18. Letp € No, m € R. If' S (U) is a matrix of p~homogeneous spectrally localized maps
in S' @ M3(C) then ST is in S ®@ Ma(C), where the transpose is computed with respect to the
non-degenerate real bilinear form (4.2.4).

Proof. Tt results

T\Gp,o' 0| (4247) | (Gpo0’ | FETD) . . 4.2.76) . . :
((SHZTTIT=180% 1 < Cmax{ji]e L E™ < C'max{|jal, - p [F5™
which means that (ST);:’;];’U satisfies (4.2.75). Since |j| ~ |k| then max{|j1],...,[jp|} < dC|k| hence

T\Gp,o’ 0
(4.2.76) holds for (S )jp’j’k . O

We now prove some further composition results for spectrally localized maps.
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Proposition 4.2.19. (Compositions of spectrally localized maps) Let p,p’,p", N, K, K' € Ny with K’ <
Kandr > 0. Let m,m’ € R and S(U;t) be a spectrally localized map in ©Sg y, [r, N]. Then

(i) if R(U;t) is a smoothing operator in ER;(?K,J;,, [r, N for some ¢ > 0, then S(U;t) o R(U;t) and

R(U;t) o S(U;t) are smoothing operators in ER;(Q;fnpaj;T’O) [r, N].

(11) If S'(U;t) is in 28?7/K,7p, [r, N| then the composition S(U;t) o S'(U;t) is in ZS}’(@}%}”, [r, N].

(13i) If S isin g;" and S\ (U;t) are spectrally localized maps in ES%J(’,% [r, N] for some £, € R and
Qe €N, a=1,...,p, then also the internal composition

S(SYw;tU,...,sP(U;t)U) (4.2.77)
is a spectrally localized map in LS}¢ ., o[r, N| with q := SP . qa

(iv) If S(U;t) is in SR, [7] for any ¥ € RT and Mo(Ust) belongs to M%7K,70[7”] ® Ma(C), then
S(Mo(Ust)Ust) is in Sg ger [7]-

(v) If S(U) is a matrix of p-homogeneous spectrally localized maps in S @ Ms(C) and S, (U;t) are in
S;(nfk/y%z [T] ® M2(C)’ a = 172; mg S R, thel’l

dv (SO)U)ls, way [52(U;t)U]

.. + X s
is in S?}KI?ZJF(;EE? [r] ® Ma(C).
Proof. PROOF OF (i). The operator R(U;t) o S(U;t) is in ER}?}{EDT;T’O) [r, N| by Proposition 4.2.15-(7)
since S(U;t) is in SM g, [, N]. Then we prove that S(U;t) o R(Ust) is in ZRI_(Q;?;T;T’O) [r,N]. It
is sufficient to consider the case m > 0 since, if m < 0, we regard S(U;t) as a spectrally localized map
in ZS?(’K,’I)[T‘, N]. Decomposing S = Zévzp Sq+ Ssn asin (4.2.73) and R = Zf]v:p/, R, + R~y asin
(4.2.35), we have to show, on the one hand that

Sql (U17 ce Ulh )an (Ulh-l—la T UQ1+Q2) (4.2.78)
is a homogeneous smoothing operator in 75;1%:;? if g1 + g2 < N and, on the other hand, that

Sa(U,...,U)Rg,(U,...,U), a1 + @2 =2 N + 1,
Son(U;t)Ry, (U,...,U), g2 =p",...,N,
Su(U,....,U)R-N(U;t), ¢1 =p,...,N,
Son(U;t)Rsn(Ust)

(4.2.79)

are non—-homogeneous smoothing operators in R;(QI'(F?%N 11 [r]. We first study (4.2.78). First of all one has

HHno Sq1 (Hm Ui,... ?anl Uq1)RQ2 (an1+1 Uq1+1, ol UQ1+Q2)an1+q2+1UQ1+Q2+1 HL2 (4.2.80)

) gy +qg

< Z ||Hno Sq1 (Hm Ui,... ’H”q1 Uq1 )Hn’Rq2 (an1+1 Uq1+17 s 7an1+q2 Uq1+qz )an1+q2+1 Uq1+qz+1 HLQ‘
!

n
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Thanks to the conditions (4.2.32), (4.2.71) for S and (4.2.32) for R the indices in the above sum satisfy, for

some choice of signs 04, a = 1,...,q1 + g2 + 1, the restrictions
q1 q1+g2+1
n' = g Oala, N = g OaNg, max{ni,...,ng}t Sn', ng~n'. (4.2.81)
a=0 a=q1+1

As a consequence (4.2.78) satisfies the corresponding condition (4.2.32) and

/
n 5 max{nq1+1, s 7”Q1+Q2+1}7 max{nlv s ’nQ1+QQ+1} ~ max{nqlJrlv s ’HQ1+Q2+1}‘ (4.2.82)
We also claim that
max{ni,...,ng } S maxo{ni,...,Ng, +qgo+1}- (4.2.83)

Indeed, by (4.2.81) and (4.2.82), we have

max{ni,...,ng } S max{ng11,...,Ng+q2+1}, (4.2.84)

and we distinguish two cases. If max{ni,...,ng +g+1} = max{ng,+1,...,7q,+¢+1} then we directly
obtain max{n,...,ng } < maxa{ni,...,Ng +¢+1} Which gives (4.2.83). If max{ni,...,ng, +qo+1} =
max{ni,...,ng } thenmax{ng, +1,...,Mg +g+1} < maxa{ni,...,Ng, +¢,+1} Which together with (4.2.84)
proves (4.2.83). Using (4.2.80), (4.2.81), (4.2.74), (4.2.31) (with m = —p and p ~ ') we get

HHHO Slh (Hm Ula s 71—‘[nq1 UQ1)RQ2 (an1+1UQ1+17 s ’an1+q2 Uq1+qz)an1 +q9+1 UQ1+Q2+1 HL2
r q1+qe+1

)
D T (I Ut b G R eSSV ) G
n' max{ng,+1,-..,Mg +q2+1}° a=1
(4.2.83),(4.2.82),m>0 ot
2 m CmaXz{nla-"anm*‘%‘*’l} H ”Hn Ua”L2'
— maX{nh e anq1+Q2+1}gim a=1 ’

This proves that (4.2.78) is in ﬁq_l‘j:gb.
In order to prove that the operators in (4.2.79) satisfy (4.2.34) (with m ~ —p+m and p ~ N) we recall

that Sg, (U, ..., U) defines a spectrally localized map in S¢, . [r] (as remarked below Definition 4.2.16) and

Ry, (U,...,U) defines a smoothing operator in R, .. [] thanks to Lemma 4.2.8. Then the thesis follows
by estimates (4.2.72) and (4.2.34). For instance consider the last term in (4.2.79). Forany k = 0,..., K — K’

k N
108 (SN U Ban UV g SC 3 WUk RN (U3OV s
K/ -k =k
N N N
<C >3 IR (VI sl I ke gy + IV so U1 e s U515

k' +k"=k 0<j<k”
3’4" =j

k
<O VI IR ko s + IV 7,0 OIS g o 10 k1
§'=0

using that ¥’ < k — j” and j' < k — j”. This proves that (4.2.78) is in R;(?;TNH[T] (as ||U]| ks < D.
PROOF OF (i7). Decomposing S = Zévzp Sg+ Ssnyand S" = Zévzp, Sy 4 SL y as in (4.2.73), we have to
show, on the one hand that

Sar (Ut .U ) St (U1, Ugian) (4.2.85)
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is a homogeneous spectrally localized map in gg?ig;/ if g1 + g2 < N and, on the other hand, that

Sql(U,...,U)S(/D(U,...,U), q+q>N+1,
Ssn(U;t)S,,(U,...,U), g2 =p',...,N,

S (U,...,U)SLn(Ust), ¢i = p,..., N,
S>n(Ust)SSy(Ust)

are non-homogeneous spectrally localized map in S;?}’T‘;V 417]- We first prove that (4.2.85) is in
First of all one has

Ty Sqy (T, Ut . Ty U ) Sty (Mg o1 Ugr 1+ Mg oy Ui g gy o1 Ui gt 22 (4.2.87)
< Z HHnoSql (Hm Ul?"‘7]'_‘[nq1 Uql)Hn’Sz/p (an1+1 Uq1+1a s 7an1+q2 Uq1+q2)an1+q2+1Uq1+q2+1”L2'

n

(4.2.86)

om—+m’
Sql +q2 -

Thanks to the conditions (4.2.32), (4.2.71) for S and S’ the indices in the above sum satisfy, for some choice
of signs 04, a = 1,...,q1 + g2 + 1, the restriction

q1 q1+q2+1
n' = Zaana, n' = Z Oalas
=0 azartl (4.2.88)
/ !
max{ni,...,ng } < on max{ng 11, Ng1+q} < 0 Mg 4got1
n / n’ 0!
o <n < Cnyg, @anl-i-qg—klécna

for some C,C” > 1 and 6,8’ > 0. Therefore

/ /
max{nla e anQ1+Q2} < max{5 ,0C }nQ1+Q2+1
& < Ngitgr1 < CCMng.

This proves that Sy, o 81/12 fulfills the localization property of Definition 4.2.16 () (see (4.2.71)). In addition
(4.2.85) satisfies the corresponding condition (4.2.32). Using (4.2.87), (4.2.74) we get

HHno SQI (Hm Ui,..., an1 Uq1 )St/p (an1+1 Uq1+17 cr an1+q2 Uq1+q2 )an1+q2+1 Uq1+q2+1 HL2

q1+q2+1
’ /
< Cmax{nla RRERL }M(n/)mmax{nqﬂrb <y Ng1+q2 H nz-l—qg—&-l H 1L, Uall 2
a=1
(4.2.88) - ey
< Cmax{nlv"'?”Q1+Q2} (an1+q2+1) H HHnaUaHLZ
a=1

which proves that S, o S(’]2 satisfies (4.2.74). In order to prove that the terms in (4.2.79) satisfy (4.2.72) we
first note that, thanks to (i) of Lemma 4.2.18, we have that Sy, (U,...,U) € Si¢ . [r] and Sg, (U,...,U) €

S}(”:Q " [r] and then the thesis follows using (4.2.72). For instance consider the first term in (4.2.86). Using
twice (4.2.72) (with K/ = 0) we get, forany &k = 0,..., K,

Haf (Sq1 (U7t)S(/]2(U7t)V)HHS—%k—ml—mQ S C Z ||UHZ}750HSQQ(U;t)VHk”,S*WQ
K k" =k

<C S S WL TN Vi

k'+k"=k 0<j<k’
345" =j

k
+
<O OISR IV Il
§"=0
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where in the last step we used that j' < k — j” and k¥’ < k — j”. The last line is (4.2.72) with p replaced by
@ +q>N+1

PROOF OF (7i7): We now consider the internal composition (4.2.77) in the homogeneous case. For simplic-
ity of notation we consider the case go = - = g, = 0, S@) =...= 80 =Idand ¢; =g =: ¢, the general
case follows in the same way. So we need to show that S(S()(U)U,U,...,U) is a spectrally localized map

- )
in Sp e We first estimate

ML S (SW (1L, Uy X, UMy U1 Xy Ugns ooy Iy Ugiop) s Uptgi 2 (42.89)
< My S (M SY (M, Un, - T Uy, U1, Ty o Ugs - g Ugop) gy Upigi |l 2.

n/
Thanks to the conditions (4.2.32) for S and S () the indices in the above sum satisfy, for some choice of
signs 04, a = 1,...,p+q+1, the restrictions n/ = ZZE Oangandn’ = Uono+zg+gié 04N, proving that
S(SM(UHU,U,...,U) fulfills (4.2.32). Moreover the condition (4.2.71) for S and S(!) imply the existence
of 4,81 > 0, C,C71 > 1 such that

max{n’,ngy2,...,Ngtp} < MNgipti max{ni,...,ng} < 01ng41 (4.2.90)
G < nprgr1 < Cng, & <ngr < Cind,
and therefore max{ni,...,nyq} < max(d61C1,0C1)ng1py1 and 2 < npigp1 < Cng, proving that
S(SWO(U)U,U,...,U) fulfills (4.2.71). We now prove it fulfills also (4.2.74). We get
1
T S(SV (T, U,y T U o U1, s Uyt e+ X oy Ugeiop) iy 4 oy Upeigtt || 22
(4.2.89),(4.2.74) / W ptatl
< max(n', Ng+2, .-, Ng+p)" Mpl g 11 Max(n,...,ng)" nty H 1L, Uql| 12
n/
(4.2.90),nq 4 1~n' o pta+l
< S max(ns 1 gm0 max(n, gl [ T Ul
n a=1
p+g+1

< max(nl,...,np+q)”+“ Fmax(0.41) Nyt gt1 H [, Uallz2

proving that S(SM(U)U,U,...,U) is a spectrally localized map in Sﬁq Finally ssMaHu,u,...,U)

satisfies also (4.2.33), concluding the proof that it is a spectrally localized map in SI’ﬁrq
PROOF OF (iv): By the estimate below (4.2.34) for Mo (U’;t), forany U € BE (I;r) andany k = 0,..., K —
K, IMo(U;)U|lk,50 S I|U|lk,s0- Then estimate (4.2.72) for S(Mo(U; t)U t)forany0 < k < K — K’
follows from the ones for S(U;t) arguing as in (¢4¢) of Proposition 4.2.15.

PROOF OF (v): It follows computing explicitly the differential di;(S(U)U)[V], evaluating it at U ~»

S1(U;t)U and V ~» So(U;t)U and using item (i7) and (7i7) of the proposition. O

The following lemma proves that the internal composition of a spectrally localized map with a map, is a
spectrally localized map plus a smoothing operator whose transpose is another smoothing operator.

Lemma 4.2.20. Letp € N, g € Ng, m € Rand m’ > 0. Let S(U) be a matrix of spectrally locallzed
homogeneous maps in Sm ® My(C) and M(U) be a matrix of homogeneous m’-operators in ./\/lm

Ms(C). Then
S(MU)U,U,...,U) = S'(U) + R(U) 4.2.91)

where
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® M3(C);

° I . . . . oy
S'(U) is a matrix of spectrally localized homogeneous maps in S},

* R(U) is a matrix of homogeneous smoothing operators in ﬁ;fq ® My (C) forany o > 0, and R(U) "

is a matrix of homogeneous smoothing operators in R 2 ® My (C) for any o > 0 as well.

P+q

Proof. By multilinearity we expand

S(M(Uy,...,Ug)Uqgs1,Ugs2, .- Uptq) (4.2.92)
= > IS (I M (1L, U, .. I UL Ugn, My o Ug2, - Il Up g ) I

) ptq Tp+q+1

(n/,n0,....;npyq+1)EN
where A is a subset of NPT9+3 made by indexes fulfilling, by restrictions (4.2.71) and (4.2.32), the following
conditions: there exist signs {c;,€;,€¢'} C {£} and constants 6 > 0, C' > 1 such that
max(n',ng+2, ..., Nptq) < Mptgt1 (a)
C™ng < npigy1 < Cno (b) (4.2.93)
n =Y om, no=en'+ 3 em; (o).

We fix &’ > 4§ and we denote by A/ the subset of V' made by indices which satisfy the additional restriction

max(ni,...,Ng+1) < 0 Mptgi1- (4.2.94)
Then we define
S'(Uy,...,Uptq) (4.2.95)
= Z Hnos(Hn’M(HnlUly---aanUq)an+1Uq+17an+2Uq+2a--~7an+qu+q)an+q+1~

(10, sNptq+1)EN’

By (4.2.93) and (4.2.94) one has that S’(U) fulfills the spectral condition ng ~ np4q11, max(ni,...,nprq) <
5 Np4q+1 Which is the condition (4.2.71). Moreover using (4.2.74) and (4.2.31) we bound

| 0y 8 (T M (T, U T, U W U1, T U2 Wy Ut ) g Up

L2
ptq+1
S max(ng,..o )™ 0l 0y [ IMenUallpe 42.96)
a=1

for some 2 > 0. Finally by (4.2.93)(c) one has also that (4.2.32) holds. One checks that also (4.2.33) holds
true. We have proved that S"(U) is a matrix of spectrally localized maps in S} , @ Mz (C).
Then, recalling (4.2.92) and (4.2.95), we define
R(Uy,...,Uptq) (4.2.97)

= > I S (W M (I, Un, . T U)o U1, Iy o Ui, oo I U )T

)= Mptq Tp+q+1°
(n/7n07 "'7np+q+1)€N\N/

We claim that there is C’ > 0 such that if (n/, ng, ..., np1q11) € N\ N7 then

max(ng42, .-, Nptq) < 0 Mpigr1 (a)

C~'ng < npygi1 < Cng (0) (4.2.98)
Nptqgr1 < C'maxo(ny,...,ng11) (c)

max(ni,...,ng+1) < C'maxs(ny,...,ng+1) (d).



132

Before proving (4.2.98) we note that it implies

—

a)
max(ni,...,nprq+1) < (14 8)max(ni,...,ng+1,"prq+1)

)+(d)

+
< (14 §)C'maxa(ny,...,ngt1) < (1+8)C'maxa(ny,...,npiqgt1)

—

proving that max(ni,...,Npyq+1) ~ Maxa(ni,...,Nprq+1). Then by (4.2.97) and (4.2.96) we obtain

p+g+1
HHnoR(HmUlw--aan+qu+q)an+q+1Up+q+1HLz S max(ni,. .., Nprgr1)” H [T, Uall 2
a=1

maxa (11, ..., Npiqi1) 0 prat ) . ,
< H |, Usl| 2 with &= p+m + max(m,0),
a=1

max(ni,...,Nptq+1)°

showing that R(U) is a (p + ¢)-homogeneous smoothing operator in ﬁ; 2, ® Ms(C) for any ¢ > 0.
We now prove (4.2.98). Note that (a) and (b) of (4.2.98) follow by (a) and (b) of (4.2.93) and &' > §.
Then note that if (n/, ng, ..., nptq+1) € N\ N then

HlaX(?’Ll, . ,an) > 5'np+q+1 . (4.2.99)

Then, by (c) of (4.2.93), one has

max(ni,...,ngt1) = €n’ + Z ejnj <n'+ gqmaxa(ny,...,ngs1) (4.2.100)

nj<maxa(ni,...,ng+1)
so that maxa(n1,...,ng+1) > ¢ (max(ny,...,ng41) — n’). We deduce using (4.2.99) and (4.2.93)(a) that

& -0

maxa(ny,...,Ng+1) > Nptg+1 (4.2.101)

thus proving (4.2.98) (¢). Finally using (4.2.100), (4.2.93) (a) and (4.2.101) we get

J

5 + 1)maX2(n1,...,nq+1)

max(ni,...,ngt1) < Q(

which proves (d) of (4.2.98).
We finally prove that R(U) " is a smoothing operator. First note that if II,, R(Ilz) "I, , ., # O then

I, .. R(U)IL,, # 0, which implies that C~'nyy 11 < 1o < Cnypyqr by (4.2.98) (b). Then R(U) T
is a smoothing operator in R, 7, ® My(C) for any ¢ > 0 by Lemma 4.2.10 and Remark 4.2.11. O

We finally prove the following lemma which generalizes a result in [73] for para-differential operators:
the transpose of the internal differential of a spectrally localized map is a smoothing operator (with two
equivalent frequencies).

Lemma 4.2.21. Let p € N and m € R. Given a matrix of spectrally localized p-homogeneous maps
S(U) € 8§ @ M3(C), consider

Vs L)V = ;dUS(U) VU = S(V,U,..., U . 4.2.102)

Then the transposed map L(U)T is a matrix of smoothing operators in 75; ¢ ® Ms(C) for any o > 0.
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Proof. We first note that the matrix entries L(U) " defined as in (4.2.43) are

[LT]EZ,,U’,U 4.247) . G),0,0"

jpvjvk - ‘Tlﬁ_kv_j
(4.2.43) elo1jiz elopipT qae—iakx /eia’jx 1
24 L( o1 " >[ } o "
/T d V2T d V2T V2T a4 V2T
(4'2_102)/ S( Ue—iakac o ei01j1$ . eiapljpmc) [qapeiapjpx] o eig’jx e
T vor ' e NoT vor 1Y e
(4.243) 40,01,...,0p—1,0p,0”
= S (4.2.103)
which, by (4.2.76), are different from zero only if
max{|k|, |1],..., |jp—1} < 8ljpl,  CT'i| < ldpl < Cl4)- (4.2.104)
The restriction (4.2.104) implies that
max(|j1|,. c |jp’7 |j|) ~ max2(|j1|, sy |jp|7 |]|) (42105)

because

+ 0) max(|7p|,|4])

max(‘jl‘v-“?’jP’aUD (1
C(1 + d)maxa(|jpl, 7]) < C(1 + d)maxa(|jil,. .., |jpl14])-

<
<

Finally by (4.2.103), we estimate

o, st | 4279 _ . ,
(LT = STyt | < Cmax{ [k oo Lp—1 Y41 ™
@2.104) , 111 pmax(m,0)
< Cmax{|]1|w-w|]p‘7‘]‘} 7
42105, maxa{|ja, ... lgpl, [ [}Hmextm0+e
= max{|j1|,...,[jpl, |7]}2

implying, in view of Lemma 4.2.9 (with m ~» —g and p ~ p + max(m,0) + o), that L(U)T is a matrix of
smoothing operators in R, ¢ @ My(C) for any g > 0. O

We conclude this section with a lemma which shall be used in Section 4.3.4.

Lemma 4.2.22. Let p € Nand ¢ > 0. Let S(U) be a matrix of p-homogeneous spectrally localized maps
in S, @ M (C) of the form
S(U)=L{U)+ R(U), (4.2.106)

where L(U)" and R(U) are matrices of p-homogeneous smoothing operators in 7%; ¢ @ Ms(C). Then
S(U) is a matrix of p-homogeneous smoothing operators in R, ° @ Mz (C).

Proof. Tn view of (4.2.47) and (4.2.48) (for L(U)T € R;° ® My(C)),

Lok = (L)% < Cmaxa{|gl, .., pl, K} max{|ju, ..., ], [K]} 7€ - (4.2.107)
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Since S(U) is spectrally localized, its non zero Fourier coefficients S o ’.U ' (defined as in (4.2.43)) satisfy
|7] ~ |k| (see (4.2.76)) and, in view of (4.2.106),

|S:7p, f | < |L0p,<7 O" + |Rcrp,cr’ 0| (4'2'107%(4'2'48) Hl&XQ{’(.]'1|,...,|"]'p|,|k|}“ max2{|‘.7'1|7"'7“.jp‘7 |J’}M
S Tk max{|jal,...,|gpl, [k} max{|j],-... |7pl: 7]}
|J|zlk| maxz{|j1],- -, |jp‘7 Vi
max{|j1|,...,|jp|,\j|}9
proving that S(U) is a smoothing operator in R, ¢ @ Ms(C). O

4.2.3 Approximate inverse of non-linear maps and flows

In this section we construct an approximate version of two fundamental non—linear operations that we will
need: the inverse of a non—linear map and the flow generated by a non-linear vector field. We first provide
the definition of an approximate inverse of a map, up to homogeneity V.

Definition 4.2.23. (Approximate inverse up to homogeneity N) Let p, N € N with p < N. Consider
Von(U) = U+ Mcn(U)U  where M<y(U) € N M, © Ms(C) (4.2.108)
is a matrix of pluri-homogeneous operators. We say that
(V) =V +Mcy(V)V  where Mcy(V) € N M, ® My(C), (4.2.109)
is an approximate inverse of W< n(U) up to homogeneity N if

(Id + M<n(@<n (V) (Id + M<y(V)) = 1d + ML\ (V)

y (4.2.110)
(Id + M<n(¥<n(U))) (Id + M<y(U)) =1d + ML\ (U)

where M. (V') and M \,(U) are pluri-homogeneous matrices of operators in ZNHMVQ ® My (C).
Note that, if @< (V) is an approximate inverse up to homogeneity NV of W<y (U) then
Uy o @en(V) =V +MN(V)V, @<yoVan(U)=U+MINU)U, (4.2.111)
and, by differentiation and taking the transpose

dp Py (@<n(V)dy @<y (V) =1d + MLy (V)

(
dy @<y (T<n(U))dyV<n(U) = Id + M2y (U) 42.112)
dy@<n(V) T dpVen(@<n (V)" =1d 4+ M3 (V)
(

dyP<n(P<n (V) dv@an(V)" =Td + M2y (V)

where M¢ \(V'),a = 1,...,4 are other pluri-homogeneous operators in X N+1qu®M2 (C) (the differential
of a homogeneous m-operator is a homogeneous m-operator by the first remark after Definition 4.2.5, so is
its transpose by Lemma 4.2.10).

The following lemma ensures the existence of an approximate inverse.
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Lemma 4.2.24. (Approximate inverse) Let p, N € N withp < N. Consider V<n(U) = U + M<n(U)U
as in (4.2.108). Then there exists an approximate inverse of V<n(U) up to homogeneity N (according to
Definition 4.2.23) of the form (4.2.109) with

PplM<n (V)] = —Pp[M<n(V)]. (4.2.113)
Moreover, if M<n(U) in (4.2.108) is a matrix of pluri-homogeneous

(i) spectrally localized maps in Eévgg” ® M2(C), m > 0, then MgN in (4.2.109) is a matrix of pluri-
homogeneous spectrally localized maps in Eé\rg;n(N—p—s-l) ® M3z (C) and ML \;, M, in (4.2.110)
belong to ENHg;n(prJFZ) ® My (C);

(ii) smoothing operators in Eévﬁq_g ® Mao(C) for some o > 0, then MSN in (4.2.109) is a matrix of
pluri-homogeneous smoothing operators in Ei,VR;Q ® M3(C) and M. y, M7y in (4.2.110) belong
to 2N+1Rq_g & MQ((C)

Proof. We expand in homogeneous components
N —
MU) :=1d+ M<y(U) =1d + ZMq(U) with M, (U) € M, ® M3(C). 4.2.114)
q=p

In order to solve the first equation in (4.2.110) we look for a pluri-homogeneous operator

N
M(V)=1d+ M<y(V) = My(V) + > My(V) with My(V):=1d, Mo(V) € My @ My(C),
a=p
(4.2.115)
such that
M(M(V)V)M(V) =1d + Msy(V)  with My (V) € Sy My @ Ma(C). (4.2.116)
By (4.2.114), (4.2.115) we get
M(M(V)V)M(V)
N N
=1+ M(WV)+>. > MM, (V)V,..., My, (V)V) My, (V)
pr q:pofal,...aq+1§N
N
=T+ Y[+ DD MMy (V)Vieo, Moy (VIV) My (V)] + Moy (V)
l=p p<q<d
qgtai+-+agr1=~
and therefore equation (4.2.116) is recursively solved by defining, for any £ = p,..., N,
My(V,...,V) = — > My(May(V)V,..., My, (V)V) My, (V). (4.2.117)

g+ai+-+agr1=~L

Note that each M, ¢(V,..., V) is a matrix of homogeneous operators by (ii) of Proposition 4.2.15. We proved
the first identity in (4.2.110).
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We now prove the second identity in (4.2.110). Using the same recursive procedure we find a matrix of
pluri-homogeneous operators of the form

N
M"(U)=1d+ > M}(U) with M}(U)€ My ®& My(C) (4.2.118)

such that M" (U) is an approximate right inverse of M (V), i.e.
M(M"(U)UYM"(U) =1d + Msn(U)  with  Msy(U) € Sy 1My @ Ma(C). (4.2.119)

Applying (4.2.116) with V' = M"(U)U and right-composing it with A" (U) defined in (4.2.118), we obtain
by (4.2.119) and Proposition 4.2.15 that

M(U + Msn(U)U) = M"(U) + ML 5 (U) (4.2.120)

where M- n(U) and M. (U) are operators in 3 N+1ﬂq ® My(C). Then, expanding the left hand side of
(4.2.120) by multilinearity, we get

M(U) - M"(U ZZ() ((Mon(O)U,...,Mon(U)U,U,...,U) + MLy (U) = Moy (U)
q=p (=1

{—times

where M- y(U) is in 2N+1ﬂq ® M3 (C) thanks to (i) of Proposition 4.2.15. This implies, since both
M(U) and M"(U) are pluri-homogeneous operators up to homogeneity N (cfr. (4.2.114), (4.2.118)), that
M(U) = M"(U) and, by (4.2.119), we conclude that

M(MU)U)M(U) = 1d + M=y(U). (4.2.121)

This proves, recalling the notation (4.2.114), (4.2.115), (4.2.108), the second identity in (4.2.110). Moreover
fgr ¢ = p the sum in (4.2.117) reduces to the unique element with ¢ = p, a1 = --- = ag41 = 0 and
M, (V) = —M,(V), proving (4.2.113).

(7) If M<n(U) is a spectrally localized map in Eév g’;” ® Ms(C) we claim that M,(V') is a spectrally
localized map in @mJFm(Z_p) ® My(C) for £ = p,...,N. For £ = p by (4.2.113) we have M, (V) =
—M,(V') which is in ;S'Vg" ® M3 (C). Then supposing inductively that M, (V') is in Smtmla=p) g My (C)
fora = p,...¢ — 1, we deduce by (ii) and (i7i) of Proposition 4.2.19, that each term in the sum in (4.2.117)
is a spectrally localized map in (S'er(mMn(aq+1 ") % My(C) which is included in @mJFm(Z_p ) ® Ms(C)
using that a1 < ¢ — 1.

(77) In the same way, if M<xy(U) is a smoothing operator in E;Vﬁgg ® M3(C), thanks to (ii) of
Proposition 4.2.15 one proves recursively that M,(V) are smoothing operators in 7%29 ® Mo (C). O

Vector fields: We introduce the following definition of vector fields.

Definition 4.2.25 (Homogeneous vector fields). Let m € R and p,N € Ng. We denote by xm o1 the

space of (p + 1)-homogeneous vector fields of the form X (U) = M(U)U where M (U) is a matrix of
p-homogeneous m-operators in Mj' @ Ma(C). We denote X1 := Um>0% oy1 and Zév ++11%m the class of

pluri-homogeneous vector fields. We also set EpH%q = Unen E;V ++11.’£ The vector fields in x e i1 020,
are called smoothing.
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Note that X (U) = M (U)U is real-to-real in the sense of (4.2.14) if and only if the operator M (U) is
real-to-real in the sense of (4.2.12).
e Fourier representation of (p + 1)-homogeneous vector fields: A (p + 1)-homogeneous vector field can
be expressed in Fourier as: for any o = =+,

elokz - -
XUy = 3 XUk XU = DD T (4.2.122)

kez\{0} (Op+1,k,0p+1,—0)ETpt2

Up+17

the last sum being in (Jp41,0p+1), with coefficients X € C given by

1
O01;.-+,0p;0p41,0 O1,-+,0p,0p+1,0 Op+15--+,0p,01,0 O1;.-+,0p41,0p,0
X =—— M P M B M, 4.2.12

N S P | J1sdpsdp+1,k + Jpt1sdpdk Tt My SIptdpik )0 ( 3)

namely they are obtained symmetrizing with respect to the first p + 1 indices the coefficients M ?ﬁ jlka of
M(U).
In particular they satisfy the symmetry condition: for any permutation 7 of {1,...,p + 1},

Om(1)r:9m(p41):9 _ 01,--,0p+1,0
X]w(l)’ )]W(p+l)7k - le,u.,jp+1,k : (42124)

In addition, if X (U) is real-to-real, see (4.2.14), then one has

VT - . Fprit oy Fpilr—
X)) =X({U), ie. ij":;k = Xjﬁ’;fkl . (4.2.125)
By Lemma 4.2.9 we obtain the following characterization of vector fields.

Lemma 4.2.26. (Characterlzatlon of vector fields in Fourier basis) Ler m € R. A real-to-real vector field

X (U) belongs to o1 if and only if its coefficients X U’f Y7 (defined as in (4.2.122)) fulfill the symmetric
and real-to-real conditions (4.2.124), (4.2.125) and.: there exist > 0 and C > 0 such that

|XUP+1’ | < Cmaxa{|j1l,. .., |dp+1|}" max{|jil], .., |dps1[}™ (4.2.126)

Jp+1
fOi’ any (.71’+17k15p+17 _U) € ‘Ip+2 (Cfr’ (4210))
We now define the approximate flow of a smoothing T—dependent vector field.

Definition 4.2.27. (Approximate flow of a smoothing vector field up to homogeneity N) Let p, N € N
with p < N. An approximate flow up to homogeneity N of a T—dependent pluri-homogeneous smoothing
vector field X7 (Z) in $p11X %, defined for T € [0,1] and some ¢ > 0, is a non-linear map,

Fin(Z2)=Z+ FIy(2)Z, Tel0,1], (4.2.127)

where FZ ~(2) is a matrix of pluri-homogeneous, T—dependent, smoothing operators in Eév ﬁ; C@M;3(C),
with estimates uniform in T € [0, 1], solving

0-FIN(Z) = XT(FIn(Z)) + Rin(2)Z, Fen(Z)=Z, (4.2.128)

where RT (Z) is a matrix of T—dependent, smoothing operators in ¥ N+1Rq 2 © My(C), with estimates
uniform in T € [0,1].

The following lemma ensures the existence of an approximate flow.
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Lemma 4.2.28. (Approximate flow) Ler p, N € N with p < N. Consider a pluri-homogeneous 7—
dependent smoothing vector field X" (Z) in £,41%4 %, defined for T € [0,1] and some ¢ > 0. Then

* there exists an approximate flow FZ 5 according to Definition 4.2.27;

s denoting by G,(Z)Z with G},(Z) € ﬁ;g ® Mo(C) the (p+1)-homogeneous component of X™ (Z),
then the p-homogeneous component of the smoothing operator FZ N(Z)in (4.2.127) is

Pp(FIn(Z / GT (4.2.129)

Proof. We write X7(Z) := G™(Z)Z with G7(Z) = YL G5(Z) and G}(Z) € Ry ° @ M3(C), and we
look for an approximate flow solution of (4.2.128) of the form

N
Z)=Z+Y F[(Z...2)Z with  F[(Z)€R;°® My(C).

Since G7(Z) = M g—p Gq(Z) then, using the notation F{ (Z) := Id, we expand by multilinearity

M N+(N+1)M
XT(FIN(Z)) =) Gy(FIn(Z),.. .. FLn(Z)FIn(Z) = ) X1(Z)Z
q=p a=p
where
X1(Z) = > Gy (FL(2)Z,....F[(Z2)Z)F], (%) . (4.2.130)
q=p;...,M
51,...,£q+1€{0,p,...,N}
b1+ +Hlgr1+g=2a
Then we solve (4.2.128) defining recursively fora = p,..., NV,
. +(N+1)M
)= [ X2, R(2) = Y xo
0 a=N+1

Using recursively formula (4.2.130) and Proposition 4.2.15 one verifies that each X T(Z) is aa-homogeneous
smoothing operator in Ra % ® Ms(C), so is F7(Z), and RT \(Z) is a pluri-homogeneous smoothing op-
erator in X N+17€; ¢ ® M3(C). Note that for a = p the sum in (4.2.130) reduces to the indices ¢ = p,
{1 =+ =Lg41 = 0. As a consequence I (Z fo GT Z)dr’ proving (4.2.129). O

4.2.4 Pluri-homogeneous differential geometry

In this section we introduce pluri-homogeneous k-forms. We revisit the classical identities of differential
geometry (d? = 0, Cartan’s magic formula) for & = 0, 1,2 which are the only cases needed our purpose.

Definition 4.2.29. (r-homogeneous k-form) Let p € Ny, £k = 0,1,2 and setr := p+2 — k. A r-
homogeneous k-form is a (r + k)-linear map from (H>®(T;C2))" x (H*®(T;C?))* to C of the form
A(Uy,...,U)[W1,..., Vi, symmetric in the variables U := (Uy,...,U,) and antisymmetric in the entries
V= (W,..., V), satisfying the following: there are constants C' > 0 and m > 0 such that

AL, Uy,... 1L, Up) Iy, VA, T, Vi

r k
< Cmax{ny,. .., ey} ™ [ [ 100, Ujllze [ 1T, . Vel 2 (4.2.131)
j=1 =1
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foranyU € (H™(T;C?))", any V € (H®(T;C2))¥, and any (n1,...,npsz) in N'T5. Moreover, if

A(Hnl U17 cee 7Hn7» Ur) [Hnr+1V1 nr+k ] 7é O

then there is a choice of signs o1,...,0,4 € {£1} such that ZTHC ojn; = 0. In addition we require the
translation invariant property:

A(rU)[r V] = AU)[V], Vs €R. (4.2.132)

We also require that A(U)[V] is real valued for anyU € (L%(T,C2))" and V € (L(T,C?))*, cfr (4.2.13).
We denote by /\k the space of r- homogeneous k-forms and by LY /\k the space of pluri-homogeneous
k-forms. We set 3, /\ = UN>TZ /\

e A r-homogeneous 0-form is also called a homogeneous Hamiltonian.
e Fourier representation of (p + 2)-homogeneous O-forms: Let p € Ny. A (p + 2)-homogeneous 0-form
can be expressed in Fourier as (recall (4.2.10))

= — Gp+2, Opt2
HU =0 . Hu (4.2.133)
(‘Tp+27§p+2)€$p+2

The reality condition H(U) € R for any U € L% (T, C?) amounts to

Ipt2 _ py—Op+2
Hy e =H., (4.2.134)
Moreover the scalar coefficients H f’*; =H 235122 € C satisfy the symmetric condition: for any permu-
tation 7 of {1,...,p + 2}
On(1) 97 (p42) __ O1,-++,0p42
-]7!'(1)7 7.77T(p+2) - Hjl,-..,jp+2 (4.2.135)
and, for some m > 0, the bound
O' . .
|H27 2| < max([j1],- .-, [dp2))™ (4.2.136)

JIp+2

e Fourier representation of (p + 1)-homogeneous 1-forms: A (p + 1)-homogeneous 1-form can be
expressed in Fourier as

o(U)[V] = 3 QP10 Tr iy (4.2.137)

Jp+1k TIpr1
(j:DJrl 7k731)+1 7U)€TP+2

The reality condition §(U)[V] € R for any U,V € L%(T,C?) amounts to

QIrt1e — g Trt1T (4.2.138)

Jp+17k7 - Jp+17k

Moreover the coefficients satisfy, for some m > 0,

U bl .
@771 | S max(|al,... [p+1 )™ (4.2.139)
e Fourier representation of p-homogeneous 2-forms: A p-homogeneous 2-form can be expressed in
Fourier as

AU [V, Va] = > Aj:jk"ujp (v1)7 (v2)] - (4.2.140)

(jp 7j:k:61770-/70-) E(Ip+2
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The antisymmetry condition A(U)[V1, V2] = —A(U)[V2, V1] amounts to

= ! = /
Op,0,0 A 0p,0,0
Ajpvjvk - jpvknj ' (42141)

The reality condition A(U)[Vi,Va] € R for any U, V4, V2 € L(T,C?) amounts to

NGp0 0y —Gp,—0'—0
ik = N0k : (4.2.142)
Moreover the coefficients satisfy, for some m > 0,
& »Ulza- — .
A7 S max(| 71, 15)™ (4.2.143)

The following lemma characterizes 0, 1 and 2 forms.
Lemma 4.2.30. (Operatorial characterization of Hamiltonians and 1- 2 forms) Let p € Ny. Then

(i) A O-form H(U) belongs to /~\2 1o if and only if there exists a matrix of p-homogeneous real-to-real
operators M (U) in Mvp ® Ma(C), such that,

H(U) = (M(U)U,U),, YU e H*(T;C?). (4.2.144)

(1) A 1-form O(U) belongs to /~\;) 1 if and only if there exists a matrix of pluri-homogeneous real-to-real
operators M (U) in Mp ® Ma(C), such that,

O(U)[V] = (M(U)U,V),, VYV e H®(T;C?. (4.2.145)

(7i1) A 2-form A(U) belongs to /~\12) if and only if there exists a matrix of pluri-homogeneous real-to-real
operators M(U) in Mvp ® Mo(C), satisfying M(U)" = —M (U), such that

AUV, Vo] == (M(U)V1, Va),, V(V1,Va) € (H™®(T;C?))?. (4.2.146)
Proof. PROOF OF (i): Identity (4.2.144) follows with an operator M (U) which has Fourier entries

A L (4.2.147)
IpsJs p+ 2 Ipsds
where the Fourier coefficients of H are defined in (4.2.133). By (4.2.136) and Lemma 4.2.9 the operator
M (U) defined by (4.2.147) is a matrix of m-operators in M} ® M2 (C). Note that, in view of (4.2.147),
the entries of the operator M (U) satisfy the corresponding momentum condition &, - J, + ¢’j = ok thanks
to the restriction in (4.2.133). The reality condition (4.2.134) is equivalent to (4.2.46).
PROOF OF (ii): Identity (4.2.145) follows with an operator M (U) which has Fourier entries

Gp,0’,0 _ ~p,0l0

Mok =95k (4.2.148)
where the Fourier coefficients of © are defined in (4.2.137). By (4.2.139) and Lemma 4.2.9 the operator
M(U) defined by (4.2.148) is a matrix of m-operators in M} @ M2 (C). Note that, in view of (4.2.149),

the entries of the operator M (U) satisfy the corresponding momentum condition &, - 7, + ¢’j = ok thanks
to the restriction in (4.2.134). The reality condition (4.2.138) comes from (4.2.46).
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PROOF OF (#i7): Identity (4.2.146) follows with an operator M (U) which has Fourier entries (cfr. (4.2.43))

= / = /
o7 = AT T 4.2.14
Jp,J,k Jpa]’_k ( o 9)

where the Fourier coefficients of A are defined in (4.2.140). By (4.2.143) and Lemma 4.2.9 the operator
M (U) defined by (4.2.149) is a matrix of m-operators in M} ® M2 (C). Note that, in view of (4.2.149),
the entries of the operator M (U) satisfy the corresponding momentum condition &), - 7, + ¢’j = ok thanks
to the restriction in (4.2.140). The antisymmetry of A(U) amounts to M (U)" = —M (U) and the reality
condition (4.2.142) comes from (4.2.46). L]

We now extend to pluri-homogeneous k-forms the typical “operations” of differential geometry.

Definition 4.2.31. (Exterior derivative) We define the exterior derivative of a r-homogeneous k-form A(U)

in /~\,’f as
k+1 ‘ R
dA(U) [‘/Yla RE) Vk—i—l] = Z(_l)]_ldU (A(U) U/la RE) ‘/j7 RRE) Vk-l—l]) [‘/3] (4.2.150)
j=1
where the notation [V1,. .., ‘A/j, ., V1] denotes the k-tuple obtained excluding the j-th component.

o If H(U) is a p + 2-homogeneous 0-form in /~\2 o then its exterior differential coincides with the usual
differential of functions, namely dH (U)[V] = dy H(U)[V]. Moreover dH (U) is a 1-form in /N\Il) 41 and we
define the gradient VH (U) := VyH (U) as the vector field in .’%pﬂ such that, cfr. (4.2.145),

dH(U)[V] := (VH(U),V),, YV e H>®(T;C?). (4.2.151)

e If9(U)is a (p+ 1)-homogeneous 1-form in /~\11) 41 Written as in (4.2.145) then its exterior differential is
A9(U) Vi, Vo] = <(dUX(U) - dUX(U)T)Vl,Vz> . X(U) = MU)U (4.2.152)

where dyy X (U) and dy X (U) " are, by the first remark below Definition 4.2.5 and Lemma 4.2.10, matrices
of operators in M, ® M3 (C). Moreover df(U) belongs to A2.

Definition 4.2.32. Let p,p’ € Ny and set r := p + 2 — k. Given a r-homogeneous k-form A(U) in /~\7’f and
a matrix of homogeneous operators M (U) in M,y @ Ma(C) we define the
e Pull back of A(U) via the map o(U) := M(U)U as

(@A) V1, Vi) i= Mp(U) [dup (U)W, .., dup(U) Vi - (4.2.153)

o Lie derivative of A(U) along the vector field X (U) := M(U)U as

k
(LxA) ()i Vil = doAO) X O] [Vis-- - Vil + Y AO) Vi do X (O) V), Vi
! (4.2.154)
e Contraction of A(U) with the vector field X (U) = M (U)U as

(ixA)(U)[Vi,...,Vi1] = AO)[X(U),Vi,..., Vi_1]- (4.2.155)
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Let A(U) be a r-homogeneous k-form in /~\7’f k = 0,1,2. Thanks to the first bullet below Defini-
tion 4.2.5, Lemma 4.2.10 and (¢) and (é¢) of Proposition 4.2.15 (see also (4.2.160)-(4.2.161)), one has the
following:

o if o(U) = M(U)U is a map where M (U) is a pluri-homogeneous operator in Eév./TA/q ® M3 (C) then
(¢*A)(U) defined in (4.2.153) belongs to 27«7\’;;

e if X (U) is a homogeneous vector field in Zpurl%q for some p’ € Ny, then (Lx A) (U) defined in (4.2.154)
belongs to X4 /N\’;;

o if k =1,2then (ixA)(U) defined in (4.2.155) belongs to zr+p,+17\’;—1;
e the basic identities of differential geometry are directly verified for pluri-homogeneous k-forms: Let
p € Ng, £k = 0,1,2. Then for any A in /\’;ZJr2 it results

d’A = 0. (4.2.156)
Given @(U) := M(U)U with M (U) in SoM, ® My(C), it results
d(p*A) = (¢*dA) . (4.2.157)
Given also ¢(U) := M'(U)U with M'(U) € Eoﬂq ® M(C), it results
" 0" A = (po@)A. (4.2.158)

Given X (U) in ¥, X, then
LxA=doixA+ixodA; (4.2.159)

o if (U) = M'(U)U is a map where M'(U) is a pluri-homogeneous operator in Egﬂq ® M3(C) and
0(U) € Ay, and A(U) € A are represented as in (4.2.145), (4.2.146) then

(@™ 0)(U)[V] = (dup(U)" M(p(U))(U),V); (4.2.160)
(" M) (U)[V1,Va] = (duep(U) T M(p(U)) dyp(U)V1,Va). 4.2.161)

In Section 4.4 we shall use the following result about Lie derivatives and approximate flows.

Lemma 4.2.33. Let p, N € Nwithp < N. Let 07 be a T-dependent family of 1-forms in 217\; defined for
T € [0,1]. Let FZn be the approximate flow generated by a pluri-homogeneous, T—dependent smoothing

vector field Y™ (U) in ZPH%Q_Q, defined for T € [0,1] and some ¢ > 0 (cfr. Lemma 4.2.28). Then

d *T T * T T T
T (FEN)07 = (FZn)"[Lye07 + 0:67] + 61y, (4.2.162)

where 07 | is a pluri-homogeneous 1-form in ¥ N+2/\é, with estimates uniform in T € [0, 1].

Proof. Recalling the definition of pullback (4.2.153) and using that FZ y fulfills the approximate equation
(4.2.128) (with Y™ replacing X ™) we get

FLN) 0 (U)[0) = o (67 (FL (U) [du FEy (0)0])

dr :7

= 0,0"(FZ N (U))[duFZn(U)T] + dy0" (FLy(U) YT (FZn(U)) + RL 5 (U)U[du FZ 5 (U)U]
+ 0T (FLy (U [AvY ™ (FZy(U))duFEy (U)U + dy(RL 5 (U)U)U]
GO (L) [y 07+ 0,07 (U)[O] 4 07y (D)D)
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where

0%y 1 (U)[0] := dv 07 (FLy(U) Ry (U)U][du FZy (U)T] + 67 (FLy (U)[dur (RLy (U)U)T].
B (4.2.163)
We now verify that 67 | is a 1-form in 3 N+2/\c11- Representing, by Lemma 4.2.30,

0™ (U)[U] = (M™(U)U,T), with M (U) € oM, ® Ms(C),

and since 2\ (U) = (Id+RZ ;(U))U with RZ \(U) in Zgﬁ;Q@)Mg(C), the 1-form 67 ,;_ ; in (4.2.163)
reads

T 73 3 T T T
v (@)Ul = (M O)U,U), where M'(U):=[dyFZy(U)] dv(M VIV)ly=rz o) Bon(U)
+[du(RLy (U)U)]" MT(FZy(U))(1d + RZx (U))
is a T-dependent matrix of operators in ¥ N+1qu ® M2 (C), with estimates uniform in 7 € [0, 1], because

R N (U) are smoothing operators in X1 Rq ¢ ® Ms(C), and using (4), (ii) of Proposition 4.2.15 and
Lemma 4.2.10. Thus 67 is a 1-form in Xy oAl, with estimates uniform in 7 € [0, 1], O

4.3 Hamiltonian formalism

Along the chapter we consider real Hamiltonian systems and their symplectic structures in real, complex
and Fourier coordinates, that we describe in Section 4.3.1. In Section 4.3.2 we introduce the notion of vector
fields which are Hamiltonian up to homogeneity /N and we prove that the classical Hamiltonian theory is
preserved “up to homogeneity N”. In Section 4.3.3 we present results about linear symplectic flows. In
Section 4.3.4 we discuss Hamiltonian systems with a para-differential structure.

4.3.1 Hamiltonian and symplectic structures

Real Hamiltonian systems. We equip the real phase space L% X L'72q with the scalar product in (4.2.4) and
the symplectic form

(@) (&) = (@) (@) =omirmen,

where Ej is the symplectic operator acting on L% X L% defined by

0 -Id
Ey:= (Id 0 ) : 4.32)

The Hamiltonian vector field X iy associated to a (densely defined) Hamiltonian function H : Lz X L% — R
is characterized as the unique vector field satisfying

Q <XH(77,C), <Z>) = dH(n,¢) [(g)] .V <Z> e L2 x L2 (4.3.3)

) |(1)] = amwom + acmmow = ((375) (), @34

IS¢
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where (V,,H,V H) € L? x L? denote the L?- gradients, the Hamiltonian vector field is given by

- VoH\ ( V¢H 1 (0 I
Xg=J <V<H> = (—VWH> where J:=FE; = <—Id NE 4.3.5)

wnol ()= a(2)-()),

the Liouville 1-form. Note that dfy = ), where the exterior differential is recalled in Section 4.2.4.

We also denote by

Real linear Hamiltonian systems. We now consider the most general quadratic real Hamiltonian

H(n,¢) = %<A <Z> : (2) > A= (;T g) ., AT =A, 4.3.7)

where A, B, D are linear real operators acting on Lg and the operators A, D are symmetric, i.e. AT = A,
DT = D, where AT denotes the transpose operator with respect to the real scalar product ( , ) j2- AT is

the transpose with respect to the scalar product (-, ), in (4.2.4).
Definition 4.3.1. (Linear Hamiltonian operator) A linear operator A acting on (a dense subspace) of

L2 x L2 is Hamiltonian if it has the form

— _ A B _ T
A_JA_J<BT D), A=A", (4.3.8)

with A, B, D real operators satisfying A = A" and D = D" ; equivalently if EgA = A is symmetric with
respect to the real scalar product (-,-), defined in (4.2.4).

We now provide the characterization of a real linear Hamiltonian para-differential operator. In view of
(4.3.8) and (4.2.26) a matrix of para-differential operators is Hamiltonian if it has the form

o (e al)=or By Seal) e

with

a(z,&) € R, a(x,&) = a(z,—&), d(x,£) eR, d(x,§) =d(x,—E), bx,—§) =b(z,§). (4.3.10)

Real Hamiltonian systems in complex coordinates. We now describe the above real Hamiltonian sys-
tems in the complex coordinates defined by the change of variables

N L (u 1 (1d 1 o1 (1d i -1 (1 —i
() e (). e (), e L(93) er L (M Yy

Note that C is a map between the real subspace of vector functions Lﬁ(']l‘, C?) into Lz X LE In the sequel

The pull-back €2, := C*(2g of the symplectic form {2 in (4.3.1) is

(@) @) = me @) @D - =G E) e

to save space we denote also as (u,u).
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where E.. is the symplectic operator acting on L2 (T,C?)
0 —i .
E. = (i 0 > =iFy. 4.3.13)

Remark that E;r = —F. and EC2 = Id. Similarly the Liouville 1-form 6 in (4.3.6) is transformed into the
symplectic form 6, := C*fg given by

1
6.(U) V] = 5 (BEUV),, VU= (Z) V= <”> (4.3.14)
and it results
df. = Q. (4.3.15)
Next we show how the differential and gradient of a Hamiltonian transform under the complex change of

coordinates. The pull-back under C of the 1-form (cfr. (4.3.4)) dH (n,¢)[-] = < (g"g) ,-> is
C r

" _ _ VuH
camenleo = (5) oo (4)), @316
where
1
V2
Furthermore, by (4.3.11),

Vol = = (VoH —iVeH) lem s Vel = —= (VyH +iVeH) ) - (4.3.17)

1
V2
(C*dH)(u,w)[(v,0)] = duH |c(um)[v] + daH |¢(um) 0]

having defined

d,H := (dyH —id¢H) ‘C(u,ﬂ)a dgH = —= (d,H +id¢:H) |C(u,ﬂ)-

1 1
V2 V2
In the sequel we also use the compact notation, given U = (u, ),

~

dg H(U)[U] := d, H(U)[@] + deH(U)[@], VU = (:) .

Real Hamiltonian vector fields in complex coordinates. Given a real valued Hamiltonian H (7, (), con-
sider the Hamiltonian in complex coordinates H. := H o C which is a function of (u, ). Recalling the
characterization (4.3.3) of the Hamiltonian vector field and (4.3.16), the associated Hamiltonian vector field
is

_ V.H —iVzH,
. 1 _ ullc ) o udle
Xu. (U):=C (XH)|C(U) =J. <quC> =J.VH.(U) = ( iV, H, ) (4.3.18)
where J. 1= E_ I = E, is the Poisson tensor in (4.1.22). One has also the characterization
Q(Xp,,") = duH(U)[]. (4.3.19)

In case H is the quadratic form (4.3.7), the transformed Hamiltonian H. = H o C is given by

1 U U AT _(R1 R
Hc(u,u)—2<R<u>,<u) > R:=CTAC = <R2 R1> (4.3.20)
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where R := (A—D)—i(B+B"), Ry := (A+ D) +i(B— BT). The operator R is real-to-real according
to (4.2.12). In addition, since A is symmetric, cfr. (4.3.7), the operator R is symmetric with respect to the
real non-degenerate bilinear form (-, -),, namely

R=R'", ie. Ri=R/, R} =R». (4.3.21)

Definition 4.3.2. (Linear Hamiltonian operator in complex coordinates) A real-to-real linear operator
J.M is linearly Hamiltonian if M = M is symmetric with respect to the non-degenerate bilinear form
() cfr: (4.3.21).

In view of (4.2.26) and (4.3.21) a matrix of para-differential real-to-real complex operators is linearly
Hamiltonian if

(4.3.22)

JCOpBW<bl<U;t,x,£> bz(U;t,w,ﬁ)) {bl(U;t,x,—@=b1(U;t,:c,5>,

bQ(U;t7$7_§) bl(U7t7x7_§) bQ(U;t7$,£) ER,
namely b; is even in £ and bs is real valued.

Definition 4.3.3. (Linearly symplectic map) A real-to-real linear transformation A is linearly symplectic
if A*Q. = Q. where Q. is defined in (4.3.12), namely A" E. A = E., where E, is the symplectic operator
defined in (4.3.13).

Hamiltonian systems in Fourier basis. Given a Hamiltonian H (U) expanded as in (4.2.133) we charac-

terize its Hamiltonian vector field. We decompose each Fourier coefficients as u; = xj\gyj , Uj = %,
where z; := v/2Re (u;) and y; := v/2Im (u;) and we define
1 ) 1 .

Ou; = ﬁ(axj —i0y,), O = —2(8%. +19y,) (43.23)
so that 6u<; u}’ =1, forany o = &+, and 8u3,r u]q’ = 0, for any 0o’ = —1. For a real valued Hamiltonian H it
results

aujH = %H (4.3.24)

We now write a Hamiltonian vector field (4.3.18) in the coordinates (u;) ez {0} For notational simplicity
we also denote u = (u;)jez)\ o). We first note that, by (4.3.12) and (4.2.5), the symplectic form (4.3.12)
reads, for any U = (u,u), V = (v,0),

Q(UV) = > —iwguy +iwvy =—i > ou; 0. (4.3.25)
jez\{0} s

Lemma 4.3.4. (Fourier expansion of a Hamiltonian vector field) The Fourier components of the Hamil-
tonian vector field associated to a real Hamiltonian H(U) are, for any c = £, k € Z \ {0},

(J.VH(U)), = ~i00, - H(U). (4.3.26)
In particular, if the Hamiltonian H is expanded as in (4.2.133), then

(JVHU)) = —io Y HIHL7 0 43.27)

1k T pta
(Fp+1,k,0p+1,—0)ETp 2

Proof. The expression (4.3.26) is a consequence of (4.3.25) and the definition (4.3.19) of a Hamiltonian
vector field, using (4.3.24). Finally (4.3.27) is a consequence of (4.3.26), (4.2.134), (4.2.135). ]
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By (4.3.27) and (4.2.122) we deduce the following characterization of Hamiltonian vector fields:

Lemma 4.3.5. (Characterization of (p-+1)-homogeneous Hamiltonian vector fields) A (p-+1)-homogeneous
real-to-real vector field X (U) € Xpi1 of the form (4.2.122) is Hamiltonian if and only if the coefficients

5";,4,1,0’ o . O_:p+17_0'
- = —io X.
Jp+1,k Jp+1,k 7

satisfy (4.2.135), (4.2.134) and (4.2.136). In such a case X (U) is the Hamiltonian vector field generated by

V(Jpt1,k,0p41,0) € Tpya, (4.3.28)

_ Fpt+2, Fpt2 Fp+2 . Fp+1,—0pt2
H(U) = p+2 Z priz J{+2 ’ J}iz T 10p+2Xfpp+1,jp+§
(jp+2>5p+2)egp+2
The Poisson bracket between two real functions F, G is, by (4.3.19), (4.3.25), (4.3.26), (4.3.24),
{F,G} = dF(Xg) = Q(Xp, X) = Y i(au—jFaujG - aqualTjG) . (4.3.29)
JeZ\{0}

Note that the right hand side of (4.3.29) is well-defined also for complex valued functions F' and G and,
with a small abuse of notation, we shall still refer to it as the Poisson bracket between F' and G.

4.3.2 Hamiltonian systems up to homogeneity N

Along the chapter we encounter vector fields which are Hamiltonian up to homogeneity N. We distinguish
between linear and nonlinear ones.

Linear Hamiltonian operators. In the sequel let p, N, K, K’ € Nyand K’ < K, r > 0.

Definition 4.3.6. (Linearly Hamiltonian operator up to homogeneity N) A real-to-real matrix of spec-
trally localized maps J.B(U;t) in XSk i ,[r, N] @ My(C) is linearly Hamiltonian up to homogeneity /N
if the pluri-homogeneous component P<y(B(U;t)) (defined in (4.2.36)) is symmetric, namely

P<n(B(U;t)) = P<n(B(U;t) ). (4.3.30)

In particular, a matrix of para-differential real-to-real complex operators is linearly Hamiltonian up to
homogeneity NV if it has the form (cfr. (4.3.22))

4.3.31)

J OpBW ( bl(Uataxvf) bQ(Uataxvg) ) {bl(U,tax7_£) - bl(U7t7m7£) € F%J{’,N-Fl[r]

ba(Ust,z,—§) b1 (Ust,x,—§) Imby(Ust,2,€) € T s i 1]
for some m,m’ in R.

Definition 4.3.7. (Linearly symplectic map up to homogeneity N) A real-to-real matrix of spectrally
localized maps S(U;t) in ¥Sk g1 o[r, N] ® M2(C) is linearly symplectic up to homogeneity N if

S(U;t)" E.S(U;t) = E. 4+ Ssn(U;t) (4.3.32)

where E. is the symplectic operator defined in (4.3.13) and S~ n(U;t) is a matrix of spectrally localized
maps in Sk g N+1[r] @ M2 (C).

The approximate inverse up to homogeneity N of a linearly symplectic map up to homogeneity NV is
still linearly symplectic up to homogeneity N.
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Lemma 4.3.8. Let p, N € Nwithp < N. Let ®<n(U) := B<ny(U)U be such that B<ny(U) —1Id €
Z]]D\fgq ® M2 (C) and B<n(U) is linearly symplectic up to homogeneity N (Definition 4.3.7). Then its
approximate inverse V< (V'), constructed in Lemma 4.2.24, has the form Y<n (V) = A<n(V)V where
Acn(V) —1Id is in E;,Vg’q ® M2(C) and A<y (V) is linearly symplectic up to homogeneity N, more
precisely

An(V) E.A<ny(V) = E. + Son(V) (4.3.33)

where S~ N (V') is a matrix of pluri-homogeneous spectrally localized maps in N+1§q ® My(C).

Proof. As B<x(U) is symplectic up to homogeneity N, one has
Boy(U)" E.B<y(U) = E. + Ssn(U) (4.3.34)

where S n(U) is a pluri-homogeneous operator in N+1§q ® Mjy(C), being the left hand side above a
pluri-homogeneous operator). Then we evaluate (4.3.34) at U = W< (V'), apply A<y (V') to the right and
An(V)T to the left and use (4.2.110) and the composition properties in Proposition 4.2.19. The operator
Ssn (V) is pluri-homogeneous as the left-hand side of (4.3.33). O

The class of linearly Hamiltonian operators up to homogeneity N is closed under conjugation under a
linearly symplectic up to homogeneity N map.

Lemma 4.3.9. Let J.B(U;t) be a linearly Hamiltonian operator up to homogeneity N (Definition 4.3.6)
and G(U;t) be an invertible map, linearly symplectic to homogeneity N (Definition 4.3.7). Then the op-
erators G(U;t)J.B(U;t)G(U;t)~! and (0:G(U;t))G~1(U;t) are linearly Hamiltonian up to homogeneity
N.

Proof. Set B := B(U;t) and G := G(U;t) for brevity. As G is invertible, we deduce from (4.3.32) that
P<n(GJe) = P<n (Je[G7]"). Then

Pen (GIBG ) = Py (GJP<n[BIG ) =7 Pey (Jc[gfl]TPSN[B]gfl) — JM

where M := P<y ([T P<n[B]G™?) is symmetric since P<y[B'] = P<y[B]. This proves that
G.J.BG~! is linearly Hamiltonian up to homogeneity N.
Next, differentiating (4.3.32) (with G(U;t) replacing S(U;t)), we get

Pen [E(06)97"] = ~Pen [(67)(019) Ee| = Pen [ (E(0:9)97") ]

showing that (9;G)G ! is linearly Hamiltonian up to homogeneity NN. 0

Nonlinear Hamiltonian systems up to homogeneity N. Let K, K’ € Ny with K’ < K, r > 0 and
U € BE(I;r). Let
Z:=Mo(Ust)yU with  Mo(Ust) € MY gr [r] ® M2(C). (4.3.35)

Definition 4.3.10. (Hamiltonian system up to homogeneity N) Let N, K, K' € Ng with K > K' +1 and
assume (4.3.35). A U-dependent system

07 = JNH(Z)+ Msy(U;t)[U] (4.3.36)

is Hamiltonian up to homogeneity N if B
e H(Z) is a pluri-homogeneous Hamiltonian in Eé\f”/\g;
o M- n(U;t) is a matrix of non-homogeneous operators in Mg g1 nN+1[r] © Mao(C).
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In view of the first bullet after Definition 4.2.31 the Hamiltonian vector field .J.V H(Z) is in +1§q.

We shall perform nonlinear changes of variables which are symplectic up to homogeneity [V according
to the following definition.

Definition 4.3.11. (Symplectic map up to homogeneity N) Let p, N € N withp < N. We say that
D(Zt) =M (Z;t)Z with M(Z;t) —1d € Mg g p[r, N] @ Mo(C), (4.3.37)

is symplectic up to homogeneity N, if its pluri-homogeneous component D<n(Z) := (P<nM(Z;t))Z
satisfies
(D) Qe = Qo + Qo (4.3.38)

where Q= v is a pluri-homogeneous 2-form in N+1/\Z-

Equivalently, by (4.3.12) and the operatorial representation (4.2.146) of 2-forms, the nonlinear map
D(Z;t) is symplectic up to homogeneity N, if

[dngN(Z)]T EcdszN(Z) =F.+ E>N(Z) with E>N(Z) S EN—}-IMq ® Mz(@) . (4.3.39)

Remark 4.3.12. In the real setting we say that a map D(n,() is symplectic up to homogeneity if its pluri-
homogeneous component D< y (7, () satisfies

[d(n,c)DSN(U,C)}TEo [d(.0P<n(n,€)] = Eo + E~n(n,¢) (4.3.40)

where E is the real symplectic tensor defined in (4.3.2) and E's v is matrix of real operators in X N+1leV ¢®
My (C).

We now show that the usual properties of symplectic maps still hold, up to homogeneity N. For example
the approximate inverse of a symplectic up to homogeneity N map is symplectic up to homogeneity N as
well.

Lemma 4.3.13. Let p,N € Nwithp < N. Let D<n(Z) = Z + M<n(Z)Z as in (4.2.108) be symplectic
up to homogeneity N. Then its approximate inverse E<n(V) =V + M<n(V)V up to homogeneity N as
in (4.2.109) (provided by Lemma 4.2.24) is symplectic up to homogeneity N as well. Moreover

[d2D<n(2)]Je[dzD<n(2)] | = Je+ Jon(2), Jon(Z) € SnpiMy® Ma(C) . (43.41)

Proof. As D<n(Z) is symplectic up to homogeneity [N, we get that, using also the first bullet after Defini-
tion 4.2.32,

(E<n)* (D<n) Qe = (E<n) Qe+ Qon] = (E<n) Qe+ Doy (4.3.42)

for some pluri-homogeneous 2-forms 2+ v, (~2> NinX N+1/~\3. Now recall that, being < (V') the approx-
imate inverse of D<x(Z) up to homogeneity N, by (4.2.111) one has D<y o E<y = Id + F5 y for some

Fon(V) = Msn(V)V with My (V) in EN+1Mq ® M3(C). Thus we can also write

(E<n)* (D<n) Qe 2 (Doy 0 Ecn) Qe = (Id + Fon) Qe “2V Qo+ QL4 (V)  (43.43)

for some pluri-homogeneous 2-form QY ,; in 3 N+1/~\2 (by the first bullet below Definition 4.2.5, Lemma
4.2.10 and Proposition 4.2.15). Then (4.3.42)-(4.3.43) prove that £< y is symplectic up to homogeneity V.
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Next we prove (4.3.41). We start from (4.3.39) for E< v evaluated at D<y(Z), i.e.
[AvEn(D<n(2))] " EedvE<n(D<n(2)) = E. + E-n(2) (4.3.44)

with Es n(Z) in EN—}-IMq ® M2 (C), by Proposition 4.2.15 and Lemma 4.2.10. Then apply J, to the left

of (4.3.44) and [dzD<n(2)]Jc[dzD<n(2)] " to the right of it and use the first and last of (4.2.112), and
Proposition 4.2.15 to deduce (4.3.41). ]

The approximate flow of a Hamiltonian smoothing vector field is symplectic up to homogeneity N.

Lemma 4.3.14. Let p, N € N withp < N. Let Y (U) be a homogeneous Hamiltonian smoothing vector
field in %;fl for some ¢ > 0. Then its approximate flow FZ y, (provided by Lemma 4.2.28) is symplectic up
to homogeneity N (Definition 4.3.11).

Proof. Recalling that 2. = df. we have

d vy 2157 d o
ar Fan) e = g (Fan) e
42162 T \x z
@212 4 <n) Ly be +dOy
(2INGLIDEZI0 (27 yeq(i30,) + doT
.1 N c >N+1

(4.3.19) % (4.2.156)
= (FLy) AP Hpo + 00y 1 = dOT (4.3.45)

where H,, is the Hamiltonian of Y'(U) and 67y ; is a pluri-homogeneous 1-form in X N+2Ké. Integrating
(4.3.45) from O to 7, and using that ]-'%N = Id, we get

(FIn) Qe = Q.+ Q%y, Ly 12/0 A6l dt

where - is in X N+1/N\3. This proves that FZ y is symplectic up to homogeneity V. O

A symplectic map up to homogeneity N transforms a Hamiltonian system up to homogeneity N into
another Hamiltonian system up to homogeneity N.

Lemma 4.3.15. Let p, N € Nwithp < N, K,K' € Ngwith K > K' + 1. Let Z := My(U;t)U as in
(4.3.35). Assume D(Z;t) = M(Z;t)Z is a symplectic map up to homogeneity N (Definition 4.3.11) such
that

EMK’K’,p[T,N](@MQ((C) if My(U;t) =1d,

. (4.3.46)
EMpg oplt, N] @ Ma(C), V7 >0 otherwise.

M(Z;t)—1d € {

If Z(t) solves a U-dependent Hamiltonian system up to homogeneity N (Definition 4.3.10), then the variable
W := D(Z;t) solves another U-dependent Hamiltonian system up to homogeneity N (generated by the
transformed Hamiltonian).

Proof. Decompose D(Z;t) = D<n(Z) + MP\(Z;t)Z where D<n(Z) := P<n[M(Z;t)|Z is its pluri-
homogeneous component and

Mk Ny1[r] @ Ma(C) if Moy(U;t) =1d,

MP(Z:t) €
> (Z31) {MKﬁo,N+1[7*]®M2(C),V7*>O otherwise.
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By Definition 4.3.11 the map D< y(Z) satisfies (4.3.38). If Z(t) solves (4.3.36) then W = D(Z;t) solves
OW = (dzD<n(Z) + M2y (Z:0)) [JeV 2H (Z) + Moy (Ust)U] + (0:MEy (Z;1) Z

=dzD<n(2)J.NzH(Z)+ ML y(U;t)U (4.3.47)

where, by the first bullet below Definition 4.2.5 and Proposition 4.2.15,
In(Ust) € Mg i1 nr] @ Ma(C) . (4.3.48)
Denote by 253 ~ (W) the approximate inverse up to homogeneity N of D<y(Z) (see Lemma 4.2.24). Then
Den(W) = Dan(D<n(Z) + MEN(Z:4)Z) = Z + ML\ (Z;t)Z

where, by (4.2.111) and Proposition 4.2.15,

(Z:t) € Mk k' N1[r] @ Ma(C) if Moy(U;t) =1d,
Mg on+1[F] @ M2(C), V@ >0 otherwise.

Finally we substitute Z = Mo (U;)U, cfr. (4.3.35), in the non—homogeneous term M { n(Z;t)Z and using
(7i7) and (7) Proposition 4.2.15 we get

Z = Den(W) + M n(U;)U (4.3.49)

with Ms n(Ust) € My o n11]r] © Ma(C). We substitute (4.3.49) in the term V2 H(Z) in (4.3.47) to
obtain

W = dyDen(Z2)J N zH(D<n(W)) + ML\ (U; 1)U

G 45Dy (2) 114 D<n(2)) T [dwDen (D (2))] TV 2 H(Dan (W) + MLy (Us)U
JJdw Dy (W) TV 2 H(D<ny(W)) + MY (U;H)U
= J.Vw(H o Dey)(W) + M (U t)U (4.3.50)

where MY\ (U;t), M2\ (U;t), M2 (U;t) are matrices of operators as in (4.3.48). Note that in the very
last passage we also substituted D<y(Z) = W + M~y (U;t)U where M- y(U;t) is a matrix of operators
as in (4.3.48). This proves that system (4.3.50) is Hamiltonian up to homogeneity N. O

(4.3.41&4.3.35)

4.3.3 Linear symplectic flows

We consider the flow of a linearly Hamiltonian up to homogeneity IV para-differential operator.

Lemma 4.3.16. (Linear symplectic flow) Ler p € N, NN K, K' € Nowith K' < K, m < 1, r >
0. Let J.Op®" (B) be a linearly Hamiltonian operator up to homogeneity N (Definition 4.3.6) where
B(1,U;t,x,€) is a matrix of symbols

bi(t,Ust,x,&)  bo(1,U;t,x,€) ) {bl € EF?(,K’,p[r7N]

B(1,Ust,x,£) = 4.3.51
(rUst,2.¢) <b2(T,U;t,x,—£) bi(r,Ust,2,—€) by € ST g0 [, N, ( )

with by — by in F(}( k' n+117] and the imaginary part Im by in P(}(,K/,NH[T] (cfr. (4.3.31)) uniformly in
|7| < 1. Then there exists sy > 0 such that, for any U € BSO g(L;7), the system

{ang(U;t) = J.0p™™ (B(r,U;t,,£))G5(U;t)

4.3.52
GO (Ust) = Id, (3:352)

has a unique solution G, (U ) defined for all || < 1, satisfying the following properties:
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(i) Boundedness: For any s € R the linear map G5 (U;t) is invertible and there is r(s) €]0,r[ such that
forany U € Bg,R(I;T(S))forany 0<k<K-K,VeCE-K(I,HT,C?)),

105 (GBUsOV)I| aegie + 105 (GE U)WV amgi < (14 Csgell Ul rr0) 1V [, (4.3.53)

uniformly in |7| < 1.

Inparticular G5 (U;t) and G5 (U;t) ™! are non-homogeneous spectrally localized maps in 8% 4, olrl®
My (C) according to Definition 4.2.16.

(ii) Linear symplecticity: The map GL(U;t) is linearly symplectic up to homogeneity N (Definition
4.3.7). If J.Op®" (B) is linearly Hamiltonian (Definition 4.3.2), then GF,(U;t) is linearly symplectic
(Definition 4.3.3).

(iii) Homogeneous expansion: G%(U;t) and its inverse are spectrally localized maps and G, (U;t)* —1d

belong to ES%Y;{;”IO [r, N] ® M2 (C) with mg := max(m,0), uniformly in |7| < 1.

Proof. Since the symbols b; and Im by have order O and Re by has order m < 1, the existence of the
flow G5 (U;t) and the estimates (4.3.53) (actually with loss of k derivatives instead of %k) are classical
and follow as in Lemma 3.22 of [27]. In view of (4.2.72), the bounds (4.3.53) imply that G;(U;t) is in
S?{,K',o[r] ® Mz (C). The inverse G5 (U;t)~! satisfies the same estimates regarding it as the time 7-flow

Qg, (U;t)|r = of the system
0y Gy (Ust) = JOp®" (B~ (1,7, Ust,2,6))Gp- (Ust), G% (U;t) =1d, (4.3.54)

where B~ (1,U;t,x,§) :== —B(t — 7,U;t,x,§).
Let us prove item (i7). Set B := Op®"(B(7,U;t,x,¢)) and G := G} (U;t) for brevity. By (4.3.52)
we get, for any 7,

0-(G E.G"=—(G")'B"J.E.G" + (G7) E.J.BG"
JeEe=1d,(43.13) (gT)T(B B BT)QT (4.3.30) (QT)T(B>N B BIN)QT'
Therefore

(G ) E.G" = E.+ S-ny where Soy:= / (G7) " (Bsy —Bly)G dr’
0

is a matrix of spectrally localized maps in Sk x/ n+1[r] ® Ma(C) because G (U;t) and G5 (U;t)~! are in
8%7 & olr]® M2 (C), the para-differential operator B belongs to XS3%/ [r]® M2(C) (see the fourth bullet
after Definition 4.2.16), and (7) of Proposition 4.2.19. This proves that the G (U;t) is linearly symplectic
up to homogeneity N according to Definition 4.3.7. The same proof shows that, if J.Op®" (B) is linearly
Hamiltonian, then Gf;(U;t) is linearly symplectic.

Let us prove item (7i7). By (4.3.52), iterating N—times the fundamental theorem of calculus we get the
expansion

N
Gp(Ust) =1d+ > ST(U) + 8L, n (Ust) (4.3.55)
j=1

where

ST(U) ::/0 /0 /0 J.Op®V (B(m,U;t,x,8)) -+ J.Op®" (B(7;,U;t,x,&))dry - --d7;
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and, writing for brevity Op"" (B(7;,U)) := Op"" (B(7;,U;t,,¢)),

T T1 TN
SLpn) (Ust) = /O /0 /O J.0p®Y (B(11,U)) - - J.OP®Y (B(7n4+1,U) G (U ) dry -+~ AT 1.

Since each Op™" (B(;,U)) belongs to BSg%, [r] @ M2(C) and G5¥' (U) is in Si s o © Ma(C) we
deduce, by (i7) of Proposition 4.2.19, that G5, (U;t) — Id in (4.3.55) is a matrix of spectrally localized maps

in ZS%NJr,l;mO [r, N] ® M3(C), uniformly in |7| < 1. The analogous statement for G5 (U;¢)~! — Id follows
by (4.3.54). O

The flow generated by a Fourier multiplier satisfies similar properties.

Lemma 4.3.17. (Flow of a Fourier multiplier) Let p € N and g,(Z;£) be a p-homogeneous, x-independent,
3
real symbol in I'y. Then the flow Gg (Z) defined by

0:G;,(Z) = Oyl (19p(Z:€))G5,(2), Gy, (Z) =14, (4.3.56)
is well defined for any |T| < 1 and satisfies the following properties:

(i) Boundedness: For any K € N and r > 0 the flow Q;p (Z) is a real-to-real diagonal matrix of
spectrally localized maps in 89(’070[7’] ® Ma(C). Moreover there is so > 0 such that for any s € R,
there is r(s) € (0,7) such that for any functions Z € Bg}R(I;r(s)) and W € CK(I,H*(T,C?)), it
results, forany 0 < k < K,

107 (Gg, (Z)W)] 1105 (Gg, (Z) " W) g < (14 Ol Zese) IW s (43.57)

H87 % k
uniformly in |7| < 1.
(74) Linear symplecticity: The flow map 9, (Z) is linearly symplectic (Definition 4.3.3).

(7i7) Homogeneous expansion: The flow map gng(Z ) and its inverse 9, "(Z) are matrices of spectrally

3
localized maps such that QEZT(Z) — Id belong to ZSIQ((éVJI) [r, N] ® M2(C), uniformly in |7| < 1.

Proof. Since gp(Z;¢§) is real and independent of z, then the flow G7 (Z) is well defined in H* and it is
unitary, namely ||G (Z2)W || ;7. = ||W| ;7. Moreover, since gj, is a Fourier multiplier of order 3, we have

10:(Gg, (Z)W)] =G5, (Z)OW || .. + 1Opgc (18:9,(Z:€))Gg, ()W |

S Wlles + CIZIT o W los -

. 3 . 3
™% H°™%

The estimates for the k—th derivative follow similarly using also that G/ (Z)7! = 9o (7).

To prove (i) we use that, in view of (4.2.24), (4.3.22) and since g,(Z;£) is real valued, the operator
OpZY (ig,(Z;€)) is linearly Hamiltonian, according to Definition 4.3.2. Then, as for item (i7) of Lemma
4.3.16, the flow G7 (Z) is linearly symplectic. Finally also item (é¢) follows as for item (z77) of Lemma

3
4.3.16, since OpZY (igp(Z;ﬁ))k is in Sprk ® M2(C) and G7 (Z) is in 8%7070[r] ® M2 (C), uniformly in
7| < 1. O
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4.3.4 Para-differential Hamiltonian structure

In order to compute the Hamiltonian vector field associated to a para-differential Hamiltonian we provide
the following result.

Lemma 4.3.18. Letp € N, m € R Let S (U) be a real-to-real symmetric matrix of p-homogeneous
spectrally localized maps in S' ® M3 (C) and define the Hamiltonian function

HU) = %<S(U)U,U>T . (4.3.58)
Then its gradient
VH(U)=SU)U + R(U)U (4.3.59)

where R(U) is a real-to-real matrix of homogeneous smoothing operators in 7%5 ?® Ms(C) for any o > 0.

Proof. By the definition (4.2.151), the gradient VH (U) is the vector field
1
VHU)=SU)U + LU)'U where L(U)W := idUS(U)[W]U. (4.3.60)

As S(U) is a spectrally localized map in :S'V;” ® My(C), by Lemma 4.2.21 the transposed of its internal

differential, namely L(U) T, is a smoothing operator in 751? ?® My(C) for any o > 0. Then (4.3.59) follows
from (4.3.60). 0

As a corollary we obtain the Hamiltonian vector field associated to a para-differential Hamiltonian.

Lemma 4.3.19. Let p € N, m € R and a(U;x,§) a real valued homogeneous symbol in f;” Then the
Hamiltonian vector field generated by the Hamiltonian

H(U) == Re (A(U)u @) 13 = %< (A(OU) A(OU)) UUY) , AU) = 00 (a(U5e,6)),

J.VH(U) = OpBW (—ia(U;z,6))U + R(U)U

vec

where R(U) is a real-to-real matrix of homogeneous smoothing operators in 7%; ¢ @ Ms(C) for any o > 0.

We now prove that if a homogeneous Hamiltonian vector field X (U) = J.VH(U) can be written in
para-differential form
X(U) = J.Op®" (A(U))U + R(U)U

where A(U) is a matrix of symbols and R(U) is a smoothing operator, then Op®" (A(U)) = Op®" (A(U))"
up to a smoothing operator. As a consequence we may always assume, up to modifying the smoothing oper-

ator, that the para-differential operator Op®" (A(U)) is symmetric, namely that J.Op®" (A(U)) is linearly

Hamiltonian.

Lemma 4.3.20. Letp € N, m € Rand o > 0. Let
X(U) = J.Op™™ (A(U;2,£))U + R(U)U = J.VH(U) (4.3.61)
be a (p + 1)-homogeneous Hamiltonian vector field, where (cfr. (4.2.28))

a(U;z,€) b(U;:L‘,é))
b(U;z,—€) a(U;z,—§)

AU;z,€) = ( (4.3.62)
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is matrix of symbols in f;l ® Mo (C) and R(U) is a real-to-real matrix of smoothing operators in ﬁ; °’®
My (C). Then we may write

X(U) = J.Op® (A1 (U;2,6))U + Ry (U)U (4.3.63)

where the matrix of para-differential operators Op®" (A1 (U;x,&)) is symmetric, with matrix of symbols

1/a+a” b+
Al(U;x,£)=2<bv+bv W) (4.3.64)

and Ry (U) is another real-to-real matrix of smoothing operators in 755 ¢ ® M (C).

Proof. The linear vector field dy X (U), obtained linearizing a Hamiltonian vector field X (U) = J.VH(U),
is Hamiltonian, namely

dyX(U) = J.S(U) where S(U)=S(U)" issymmetric.
On the other hand, by linearizing (4.3.61),
S(U) = Op”™(A(U)) + Op™ (dy A(U)[)U + JR(U)

where R(U) := R(U) + dyR(U)[-]U is a matrix of smoothing operators in R, ¢ © My(C) (see the remark
after Definition 4.2.5). Then, since S(U) is symmetric, it results, writing for brevity A := A(U),

Op®" (4) = 0p™™ (4)T = ((JR(U))T —Op™ (dy A(U)[)U) + ([0p™ (dp AU)[NU] " = J.R(U)).

We now apply Lemma 4.2.22 to the spectrally localized map Op®" (A(U)) — Op®" (A(U))" which has
the form (4.2.106) with

L= ((JRU) = 0p™ (dy AW)DU), R:= ([0p™ (duAU)[NU]" = JRU)). (43.65)

By Lemma 4.2.21, the operator [Op"" (dy A(U)[])U] Tisin R, ¢ ® My(C), and therefore both L™ and R

in (4.3.65) are p-homogeneous smoothing operators in R, ¢ ® Mz (C). The assumptions of Lemma 4.2.22
are satisfied, implying that

Op™" (A(U)) — Op®™™ (A(U))T =: R'(U) € R, ® M5(C).
In conclusion we deduce (4.3.63) with
1 1
Op™ (41(U) = 5 (O™ (AW)) + OP™ (AW ). Ri(U) = JJR(U) + R(U),
and (4.3.64) follows recalling (4.2.26). ]

Another consequence of Lemma 4.2.22 is the following.

Lemma 4.3.21. Letp € N, m € Rand ¢ > 0. Let S(U) be a matrix of spectrally localized homogeneous
maps in S, ® Ma(C) which is linearly Hamiltonian (Definition 4.3.2) of the form

S(U) = J.0p™™ (A(U;x,8)) + R(U), (4.3.66)
where A(U;x,€) is a real-to-real matrix of symbols in f;” ® M3(C) as in (4.3.62), and R(U) is a real-to-
real matrix of smoothing operators in R, ° @ My (C). Then we may write

S(U) = J.O0p”" (AL(U;2,8)) + Ra(U)
where the matrix of symbols A1 (U;x,€) in f;” ® Ma(C) has the form (4.3.64) and Ry(U) is another

matrix of real-to-real smoothing operators in 7%; ¢ ® My(C). In particular the homogeneous operator
J.Op®V (A1(U)) is linearly Hamiltonian.
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Proof. It is enough to prove that the operator Op=" (A(U)) is equal to Op®" (A(U))" up to a matrix of
smoothing operators. To prove this claim, recall that S(U) linearly Hamiltonian means that E.S(U) is
symmetric, so that by (4.3.66) one gets

Op™ (A(U)) = Op™™ (A(U))" = —R(U)E. — E.R(U).

Now, since S(U) and Op”" (A(U)) are spectrally localized maps, so is R(U) in (4.3.66). By Remark
4.2.11 the transpose R(U) " is also a smoothing operator in R, ¢ ® Mo(C), proving the claim. O

4.4 Construction of a Darboux symplectic corrector

If B(U;t) is a spectrally localized map which is linearly symplectic up to homogeneity N, then the asso-
ciated nonlinear map @<y (U) := B<n(U)U, where B<n(U) = P<n(B(U;t)), is not symplectic up to
homogeneity IN. In this section we provide a systematic procedure to construct a nearby nonlinear map
which is symplectic up to homogeneity N according to Definition 4.3.11.

Theorem 4.4.1. (Symplectic correction up to homogeneity N) Let p, N € N with p < N. Consider a
nonlinear map
S n(U) :=B«n(U)U, 4.4.1)

where
(i) B<n(U) — Id is a matrix of pluri-homogeneous spectrally localized maps in Eév gq ® My(C);
(ii) B<n(U) is linearly symplectic up to homogeneity N (Definition 4.3.7).
Then there exists a real-to-real map
C<n(W) =W + Ren(W)W  with R<y(W) € BNR.2® Ms(C), foranyp>0,  (44.2)
such that the Darboux correction

Dn(U) := (C<y 0 P<n)(U) = (Id + Ren(®<n(U)))P<n(U) (4.4.3)

is symplectic up to homogeneity N, according to Definition 4.3.11.

Remark 4.4.2. The first assumption implies that the operator in (4.4.7) is smoothing for any ¢ > 0. This
fact and the second assumption allow to deduce that the vector field representing the perturbed symplectic
1-form O<y in (4.4.10) is a smoothing perturbation of E .V, see (4.4.11). These properties are crucial to
guarantee that the vector field Y7 (V') solving the Darboux equation (4.4.26) is smoothing (see Lemma
4.4.9), which in turn implies that the Darboux corrector C< (W) in (4.4.2) is a smoothing perturbation of
the identity.

The rest of this section is devoted to the proof of Theorem 4.4.1.

In order to correct the nonlinear map ® < defined in (4.4.1) we develop a perturbative Darboux proce-
dure to construct a nearby symplectic map up to homogeneity N. The map ®<y induces the nonstandard
symplectic 2-form

Qeny :=Vn Qe 444

where W<y is the approximate inverse of ®< defined by Lemma 4.2.24 and Q.. is the standard symplectic
form in (4.3.12). The next lemma describes properties of the approximate inverse W< y.
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Lemma 4.4.3. (Approximate inverse) The approximate inverse up to homogeneity N of the map ®<n(U) =
B<n(U)U defined in (4.4.1) has the form
Ven(V)=Acn(V)V (4.4.5)

where

(i) A<y (V) —1d is a matrix of pluri-homogeneous spectrally localized maps in E;,V g'q ® Ms(C);

(ii) A<y (V) is linearly symplectic up to homogeneity N (Definition 4.3.7), more precisely (4.3.33) holds.

In addition

~

dvTen(V)=An(V)+Gen(V),  Gen(V)V i=dvAcy(V)[V]V, (4.4.6)
and
(iii) G<n (V') is a matrix of pluri-homogeneous operators in Zgﬂq ® Ma(C);
(iv) the transposed operator
GIy(V) = [Gen(V)]" € BIR @ My(C) (4.4.7)
is a matrix of p-smoothing operators for arbitrary ¢ > 0.

Proof. Ttems (i) and (i) are proved in Lemma 4.3.8, and (¢ii) follows by the fifth bullet after Definition
4.2.16. Finally (iv) follows applying Lemma 4.2.21 to each spectrally localized map P,(A<n(V)) for

q=p,...,N (with U ~ V and V ~ V). 0
We now compute 2< .

Lemma 4.4.4. (Non-standard symplectic form 1<) The symplectic 2-form Q< = WZ y € in (4.4.4)
is represented as Q<N (V') = (E<n(V)-,-),» with symplectic tensor

E<n(V) = EA+ALN(V)E.G<n(V)+GIy(V)EA<N(V)+GIy(V)EG<n(V)+Ssn(V) (44.8)
where

(i) G;N(V)ECASN(V) and G;N(V)ECGSN(V) are matrices of pluri-homogeneous smoothing op-
erators in EzNﬁq_Q ® Ma(C) for any o > 0;

(ii) Ssny(V) := A;N(V)ECASN(V) — E. is a matrix of pluri-homogeneous spectrally localized maps

in X118, ® My(C).
Moreover
Qcny =dl<n, (4.4.9)
where the 1-form
Oy :=Uinbc,  O(V):= %<ECV,->T, (4.4.10)

has the form

O<n(V) = %<[Z§N(V)+S>N(V)]V,-> with  Z<n(V) = Ee+ GLy(V) E. A<y (V). (44.11)

- r
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Proof. By (4.2.161) we have that
Qen (V)X Y] = (d0en (V)" E.dP<n(V)X,Y),

which, using (4.4.6) and the fact that A<y (V') is linearly symplectic up to homogeneity N (cfr. (4.3.33)),
provides formula (4.4.8). Then items (z)-(i7) follow by (4.4.6), (4.4.7) and Proposition 4.2.15. The identity
(4.4.9) follows by (4.3.15) and (4.2.157). Finally (4.4.11) follows similarly computing \II*SNOC by (4.2.160),

On (V)[X] = S (v Tan(V)T ey (V), X),

and using (4.4.5), (4.4.6) and AL\ (V)E. A<y (V) = E. + Sxn(V). 0

The key step is to implement a Darboux—type procedure to transform the symplectic form Q< back
to the standard symplectic form 2. up to arbitrary high degree of homogeneity. It turns out that the re-
quired transformation is a smoothing perturbation of the identity as claimed in Theorem 4.4.1, see Propo-
sition 4.4.7. This is not at all obvious, since in the expression (4.4.8) of E<x (V') the second operator
AL (V)E.G<n(V) is not smoothing. However it has a nice structure that we now describe.

Lemma 4.4.5. Let X (V') be a pluri-homogeneous vector field in qu_l.'%q for some p’ € Ny. Then
ALN(V)EGn(V)X(V)] = YW(V) + R(V)V + Moy (V)V (4.4.12)
where
* W(V) is O-form in Ep+p/+2/~\2;
* R(V) is matrix of pluri-homogeneous smoothing operators in Ep+p/7§,; ¢ ® Ms(C) for any o > 0;

* M~ n(V) is a matrix of pluri-homogeneous operators in ENHMq ® My (C).

Proof. For simplicity of notation we set A (V') := A<y (V) and G(V) := Gn (V).
STEP 1: For any vector W, the linear operator

Kw (V) :=AV)" E. [dvA(V)[W]] (4.4.13)
is symmetric up to homogeneity N, precisely
Ky (V) = Kw (V)" =dvSsn(V)[W] (4.4.14)

where S~ N (V) is the spectrally localized map in EN+1§Q ® M3 (C) of Lemma 4.4.4.
Indeed, differentiating the relation A (V)" E.A(V) = E, + Ssn(V) (see Lemma 4.4.4 (ii)), in direction
W, we get

dvSon(V)[W] = A(V)T B, [dv A(V)[W]] + [dv A(V)[W]] " E.A(V)
= A(V)TE, [dy A(V)[W]] — (A(V)TEc [dVA(V)[W]])T

proving, in view of (4.4.13), (4.4.14).
STEP 2: The linear operator

K(V):=Kxu)(V) = AWV)TE, [dy A(V)[X (V)] (4.4.15)
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can be decomposed as

K(V)=5(V)+R(V)+ Msn(V) (4.4.16)
where
o S(V') is a symmetric matrix of spectrally localized pluri-homogeneous maps in ¥, §q ® Ms(C);
) R(V) is a symmetric matrix of pluri-homogeneous smoothing operators in Ep+p/7€; ¢ ® Mo (C) for any
o > 0 as well as its transpose; -
o Moy (V) = 3dySsn(V)[X (V)] is a matrix of pluri-homogeneous operators in ¥y 41 Mg ® Ma(C).
We apply Lemma 4.2.20 to each component A, (V') := P,[A(V)], ¢ = p,..., N, each of which is a map in
gq ® M3(C), see Lemma 4.4.3 (7). Lemma 4.2.20 (with M (U)U ~ X (V)) gives the decomposition

N
dvAV)[X(V)] =D qA(X(V),V,....V) =S (V) + R(V), (4.4.17)

where S’(V') is a matrix of spectrally localized pluri-homogeneous maps in 3, gq ® M3(C) and R'(V)
is a matrix of pluri-homogeneous smoothing operators in 3,1,y R4 ¢ ® Mz (C) for any ¢ > 0, as well as its
transpose. Then we obtain by (4.4.14) (with W = X (V)),

K(V) = 5 (K(V) + K(V)T) + 5dvSon (V)X (V)
(4.4.15),(4.4.17) 1 1

S [ATES — STEA)(V)+ 5 [ATER — RTEA)(V)+Msn(V),

=8(V), S(V)=8(V)T =R(V), R(V)=R(V)T

where M~ (V) = 2dySsn(V)[X (V)] is in ZNH.MVQ ® Ms(C) by Proposition 4.2.15. Since the maps
S'(V') and A (V') are spectrally localized then S(V) belongs to 3,1,y S; @ M3 (C) by Proposition 4.2.19 (i)
and Lemma 4.2.18. The operator R(V) is in Y1y Rq? ® Mz (C) for any o > 0 by Proposition 4.2.19 (i),
Lemma 4.2.18 and the fact that B’ (V') belongs 1,y Rq® @ M3 (C) for any o > 0 as well as its transpose.
CONCLUSION: The identity (4.4.12) follows by Step 2 defining
1 .
W) = §<S(V)V,V>T, S(V)in (4.4.16) .
Indeed by Lemma 4.3.18, VW(V) = S(V)V + R"(V)V for some smoothing operator R” (V') belonging

to ﬁ;fp, ® M3 (C) for any p > 0. Then we get

(4.4.12),4.4.6) (4.4.16)

K(V)V S(V)V + R(V)V + Msn(V)V
= VW) =R'(V)V +RV)V + Mon(V)V,

AlLy(V)EG<n(V)[X(V)]

proving (4.4.12) with R(V) := R(V') — R"(V') which belongs to Ep+p/7€;9 ® Mo(C) forany o > 0. O

Remark 4.4.6. The vector field R(V)V in (4.4.12) depends on X (V') and its differential dy X (V). This is
because S(V') depends linearly on X (V') (actually it is the term S’(V) that depends linearly on X (1), see
(4.4.17)). Hence the smoothing vector field R”(V)V coming from the gradient VWW(V'), given explicitly
by R"(V)V := L(V)"V where L(V)W = dyS(V)[W]V (see (4.3.60)), depends on the differential of
X(V).

Now we present the main Darboux procedure.
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Proposition 4.4.7. (Darboux procedure) There exists a T—dependent pluri-homogeneous smoothing vector
field Y™ (V) in 2p+1f£;fl,f0r any o > 0, defined for T € [0,1], such that its approximate time 1—-flow

F<n(V) =V +Ron(V)V  with R<n(V) € ZVR2® My(C), Yo >0, (4.4.18)

(given by Lemma 4.2.28) satisfies
FinQen = Qe+ Qon (4.4.19)

. . . A2
where )~ N is a pluri-homogeneous 2-form in ¥y 1 /\y.

Proof. We follow the famous deformation argument by Moser. We define the homothety between the sym-
plectic 2-forms €2, and 2< defined in (4.4.4) by setting

O = Q +7(Qeny — Q), Ve [0,1]. (4.4.20)

Equivalently Q™ = (E7(V)-,-), with associated symplectic tensor
E™(V) = E.+7(E<n(V) — Ec) (4.4.21)
LY B+ mRan(V) + TALy(V) E. Gen(V) + 78sn (V) (4.4.22)

where
e R n(V) is the matrix of pluri-homogeneous smoothing operators

Ron(V) = GIy(V) EAA<n(V) + GLy(V) E. Gen(V)

belonging to Z,ﬁ;g ® M (C) for any o > 0;
e S.n (V) is the map in ¥y 1Sy ® M2(C) of Lemma 4.4.4.
In addition, by (4.4.9) and (4.3.15), we have
O =do™, 07 = 0.+ 7(0<x — 0.) (4.4.23)

where < is given in (4.4.11).
We look for a 7—dependent pluri-homogeneous smoothing vector field Y7 (V) in ¥,41%, %, for any
0 = 0, such that its approximate flow FZ , up to homogeneity /N (defined by Lemma 4.2.28), satisfies

d
dr
,in X N+2/~\é. Then, integrating (4.4.24) and recalling (4.4.20), we deduce

(FIn)" Q" =d0ln g, VT €[0,1], (4.4.24)

3 T
for a certain 1-form 0> Nt

1
(FLy) ey = O, + / 407 1 dr
0

which proves (4.4.19) with F<y := ]-"%N and Qs = fol dol \ ,dT.
We now construct the vector field Y7 (V). Using the definition of Lie derivative and the Cartan magic
formula, we derive the chain of identities

d vy @Ga23)@215n o d o
STy R g (= (FLy) )

T * T d T nT
(( ZN) (Lyr0 +59 )) +d0% vy
(4.2.159&4.2.157)

(42162) 4

GARL2E0 (77 ) d(iy~Q7 + 0y — 0) + dOL gy (4.4.25)
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where 5; N1 is a 1-form in ¥ N+2/~\é by Lemma 4.2.33. We look for a vector field Y7 (V') and a 0-form

WT (V') such that
iy 4 Oy — O = 00,y + AW, (4.4.26)

for some pluri-homogeneous 1-form é; N1 nX N+27\<11' If (4.4.26) holds, then, in view of (4.4.25), equa-
tion (4.4.24) is satisfied with

— j ) Al
Ingr = (FEN)" oy 0581 € Engay.

We turn to solve equation (4.4.26). Using (4.4.21), (4.4.11), recalling that 6.(V') = %(ECV, )y, and writing
§;N+1(V) = %(Z;N(V)V, )y, we first rewrite (4.4.26) as the equation

ET(V)YT(V) + 1(Zgzv(V)V ~EV + S>N(V)v) _ 1

2 SZIN(VV +VWT(V). (4.4.27)

Remark 4.4.8. This equation is linear in Y7 (V). In the works [91, 16, 54, 55, 20, 21] the operator E” (V)
is a smoothing perturbation of E., so is its inverse and the vector field Y7 (V') is immediately a smoothing
vector field. In our case, E™ (V') is a (possibly) unbounded perturbation of E., and its (approximate) inverse
is only an m-operator. Hence, the composition of the (approximate) inverse of E7 (V') with the smoothing
operator Z<n (V') — E. (see (4.4.11)) is only an m-operator, not a smoothing one (see the bullet at pag.
124). Therefore we cannot directly conclude that Y7 (V') is a smoothing vector field. We proceed differently
and solve the equation (4.4.27) in homogeneity, exploiting the freedom given by the function VW™ (V') to
remove the non-smoothing components of the equation, thanks to structural Lemma 4.4.5.

By (4.4.22) and (4.4.11), equation (4.4.27) becomes

EYT(V)=—-31Gly(V) Ec Acy(V)V — TR<n (V)Y (V)
—TAIN(V)EG<n(V)YT(V) + VW (V) (4.4.28)
+1ZIN(V)V = ASon(V)V = 7Son (V)Y (V).

We now solve (4.4.28) for a smoothing vector field Y7 (V'), a suitable function W7 (V') and a high ho-
mogeneity pluri-homogeneous map Z7 ;(V') by an iterative procedure in increasing order of homogeneity.
Note that G;N(V) E. A<y (V) and R< (V') are smoothing operators unlike A;N(V)EOGSN(V)YT(V)
that will be canceled using VW (V'), thanks to the structure property explicated in Lemma 4.4.5.
Lemma 4.4.9. Fix N € N such that (N + 2)p > N + 1. There exist
e a pluri-homogeneous smoothing vector field Y™ (V') = ZZLV:O Y(Z)(V) defined for any T € [0,1], with
Y(Z)(V) in E(a“)pﬂ%q_gfor any o > 0, uniformlyﬁft T € [0,1];
e a pluri-homogeneous Hamiltonian W7 (V') = Zivzo Wi,y (V), defined for any T € [0,1], with W(Ta)(V)
in Z(a+1)p+2/~\2, uniformly in T € [0,1];
e a pluri-homogeneous matrix of operators Z;N(V), defined for any 7 € [0,1), in EN+1MQ ® M3 (C),
uniformly in 7 € [0,1];

which solve equation (4.4.28).

Proof. We define

{Y(O)(V) =3B 'GLy(V) E. Acn(V)V (4.4.29)

Wiy (V) =0
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Note that Yy (V) is smoothing vector field in Ep+1%¢;g for any ¢ > 0, since G;N(V) E. Acy(V) are

smoothing operators in Epﬁq_ ¢ ® My(C) for any o > 0, by Lemma 4.4.4-(3).
For a > 0, we prove the following recursive statements: there exist a _
(S1),, pluri-homogeneous smoothing vector field Y(Z) (V') belonging to E(aJrl)pH%;gfor any o > 0;

(S2), pluri-homogeneous Hamiltonian Wi (V) in E(a+1)p+2/~\2;

(83), matrix of pluri-homogeneous operators ZZ (a) (V)in% N+1Mq ® Ma(C);
uniformly in T € [0, 1], with (Y(B)(V),W(TO)(V),Z;N (0)(V)) defined in (4.4.29), satisfying, for any a > 1,

EY[(V) = —mRan(V)Y],_

— AN (V)E, G<N< Y1y (V)] + YW, (V) (4.4.30)
+ Z N V)V = mSsn (V)Y (o) (V).

Given (Y( 1 V), Wia—1 V), 22y (a=1) (V)) we now prove (S1),-(S3),. Note that the first term in (4.4.30)

is a smoothing vector field of homogeneity (a + 1)p + 1 while the first term in the second line of (4.4.30)
has homogeneity (a + 1)p + 1 but it is not a smoothing vector field. However by Lemma 4.4.5 we have the
decomposition

Aly(V)EG<n(V) Yoy = vVVV(Ta—l)(V) + }?(Ta_l)(V)V + M;N,(a—l)(v)v’

where W(Ta_l ) (V') is a Hamiltonian in E(a+1)p+2/\ R(a 1) (V) is a pluri-homogeneous smoothing operator
in ¥ 411),Rq °®M3(C) and M;M(a_l) (V) is a pluri-homogeneous operator in 2N+1qu®M2(C). Then
equation (4.4.30) becomes
EY(y (V) = =rR<n(V)Y(,_1)(V) = TR, ,(V)V
VOV (V) = W (V)
Z;N,(a)(v) —7MZ >N, (a— 1)(V)V - 7'S>N(V)Y(Z—1)(V)

which is solved by

(V)= =B [rRan (V)Y _y (V) + TR, ;) (V)V]
Wi, (V) == TW],_ H(V)

ZIN VIV = 7_‘M>N (-1 (V)V + 18>8 (V)Y

(a-1n(V)

proving (S1),-(S3),. B
Summing (4.4.29) and (4.4.30) for any a = 1,...,N we find that Y™ (V) = Zivzo Y(Z)(V) and

W (V) = S0 W, (V) solve (4.4.28) with

N
1 1 T T
SZINVV = SSan(VIVAY 22y (o (VIVAT[Ren (V)+ALy (V) EG ey (V) 4858 (V)] Y (V)
a=1
which is an operator in ZNHMq ® Mo (C), since (N + 2)p > N + 1. Lemma 4.4.9 is proved. O

The approximate flow up to homogeneity N of the smoothing vector field Y defined by Lemma 4.4.9
solves (4.4.24). This concludes the proof of Proposition 4.4.7. O
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Proof of Theorem 4.4.1. The map £y := W<y o F<n, where F<y is defined in Proposition 4.4.7, fulfills

X ok (444) (4.4.19)
and so £y is symplectic up to homogeneity /N. We define the map C< y in (4.4.2) as the approximate inverse
(given by Lemma 4.2.24) of the nonlinear map F<y in (4.4.18), hence it has the claimed form. Since V< y
is an approximate inverse of ®<x, the map Dy := C<y o < is an approximate inverse of £y, and so it
is symplectic up to homogeneity N by Lemma 4.3.13. O

Proof of Theorem 4.1.2. We write the good-unknown of Alinhac (4.1.17) in complex variables (u,u) in-
duced by the transformation C defined in (4.3.11), obtaining the real-to-real spectrally localized, linearly
symplectic map (according to Definition 4.3.3)

Ge(U) = cOp™ ([_pler §1) ¢, () = CU,

where B(n,1) is the real function defined in (4.5.14) which, as stated in Lemma 4.5.1, belongs to E}—%o,l [r, N].
Then Theorem 4.1.2 follows by applying Theorem 4.4.1 to the pluri-homogeneous spectrally localized map

By (U) = P<n(Ge(U)) = COP™ ([ p_ iy 1])C O
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Almost global existence of water waves
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We now begin the proof of the almost global existence Theorem 4.1.1 for solutions of the gravity-
capillary water waves equations (4.1.2) with constant vorticity.

After further describing the Hamiltonian structure of the water waves equations (4.1.2) and diagonaliz-
ing the linearized system at the equilibrium, we paralinearize the water waves equations (4.1.2) with constant
vorticity, written in the Zakharov-Craig-Sulem (7),%)) variables, which are the Hamiltonian system (4.1.4)
with the non—standard Poisson tensor .J,. Then we express such paralinearized system in the Wahlén coor-
dinates (1, () in (4.5.2), which coincides with the Hamiltonian system in (4.5.3) in standard Darboux form.
Finally we write such paralinearized system in the complex variable U defined in (4.5.6), i.e. (4.5.36). The
final system (4.5.37) is Hamiltonian in the complex sense, i.e. has the form (4.3.18).

4.5 Paralinearization of the water waves equations

From now on we consider (4.1.2) as a system on (a dense subspace of) the homogeneous space L% X L%,
namely, denoting X, (n,) the right hand side in (4.1.2), we consider

O(n,¥) = X, (Ign, 1) 4.5.1)

where H& is the L2-projector onto the space of functions with zero average. For simplicity of notation
we shall not distinguish between (4.5.1) and (4.1.2), which are equivalent via the isometric isomorphism
IIg between LQ(T;R) and L3(T;R). System (4.5.1) is the Hamiltonian system as in (4.1.4) defined on (a
dense subspace of) Lz X L% generated by the Hamiltonian HV(H&U, 1), with H, in (4.1.5), computing the
L2-gradients (VyH,,VyH,) with respect to the scalar product (-, ) j2 in (4.2.3) and regarding the Poisson

tensor .J,, in (4.1.4) as a linear operator acting in L2 x L2. We shall not insist more on this detail.

Wahlén variables. The variables (7,1) are not Darboux coordinates, since the Poisson tensor .J in (4.1.4)
is not the canonical one when ~ # 0. Wahlén noted in [115] that, introducing the variable ¢ := 1) — 30, I,
the coordinates (7,() are canonical coordinates. Precisely, under the linear change of variables

(@b) B W(C) , W= <’2Ya;1 Id> , W= (_ga;l Id> ; (4.5.2)

the Poisson tensor J, becomes the standard one,

. T (0 1d
Wl HT =, J.-(_Id NE

and the Hamiltonian system (4.1.4) assumes the standard Darboux form

1\ _  (VatH(n.) B -
o <<> - J(%Hi(m@))’ Hy(0,€) = Hy (0. + 5.0, 7n). 4.5.3)

Note that the new Hamiltonian H is still translation invariant so is its Hamiltonian vector field.

Linearized equation at the equilibrium. The linearized equations (4.5.3) at the equilibrium (7,¢{) = (0,0)
are obtained by conjugating the linearized equations (4.1.2) at (n,%) = (0,0), namely

M\ _ - 0 G(0) _ 3G(0)9; G(0) n
o <<>_W 1(—<g+nD2) vG(0)8x1>W_ <—(g+ml2?2+?fG(0)D‘2) Zax‘lG(O)) <<>
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where D := %61 and the Dirichlet-Neumann operator G (0) at the flat surface 7 = 0 is the Fourier multiplier
with symbol

tanh(h 0<h<+o0
6(&) :=4° (82) (4.5.5)
€] h = +o0.
We diagonalize system (4.5.4) introducing the complex variables
U\ _ aq-1(7
(5) =+ ()
(4.5.6)
Mo L( MD)  MD)\ 1 (MD)T iM(D)
T V2 \-iM~Y(D) iM~Y(D))’ T V2 \M~YD) —iM(D))’
where M (D) is the Fourier multiplier
1
M(D) := G(OQ) . 4.5.7)
g+ kD? 4+ L-G(0)D~2
A direct computation (cfr. Section 2.2. in [30]), using the identities
2
M(D)(g + D> + %G(O)D—Q)M(D) =w(D) =M~ Y(D)G(0O)M~ (D) (4.5.8)
where w(D) is the Fourier multiplier with symbol
> 6(6)
._ 2 17ES)
w(§) == \/G(ﬁ) (g+n§ e ) (4.5.9)
(with G(§) defined in (4.5.5)) shows that the variables (u,u) in (4.5.6) solve the diagonal linear system
AN u (D) 0
Oy (u) = —iQ(D) <u> , QD) := ( 0 —Q(D)) (4.5.10)
where
Q(D) = w(D) + i%G(O)@;l, Q(D) == w(D) — i%G(O)@;l. 4.5.11)

The real-to-real system (4.5.10) amounts to the scalar equation

Ouw = —1Q(D)u, wu(x)= L Z uj eIt

which, written in Fourier basis, decouples in infinitely many harmonic oscillators
at’LLj = —in(K])u]‘, j € Z\ {0},

where

Qj(k) == wj(k) + 1—,, w;j(k) = \/G(j)<g + kjZ + ZEGJ(Z)> ) (4.5.12)

Note that the map j — §2;(k) is not even because of the vorticity term %# which is odd.

A fundamental property that we prove in Appendix B is that the linear frequencies {Qj(ﬁ)}jez\{o}
satisfy the non-resonance conditions of Theorem B.0.1. Thus one can think to implement a Birkhoff normal
form procedure. Since the water waves equations (4.1.2) are a quasilinear system we first paralinearize

them.
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Paralinearization of the water waves We denote the horizontal and vertical components of the velocity
field at the free interface by

V =V(n,) = (0:®)(z,n(x)) = s — B, (4.5.13)
G xT X
B = Blyv) = 00 wn(a)) = SO, @5.14)

Lemma 4.5.1. (Water-waves equations in Zakharov-Craig-Sulem variables) Ler N € Ny and o > 0.
For any K € Ny there exist so,r > 0 such that, if (n,1)) € BE (I;r) solves (4.1.2), then

9 = G(0)Y + Op™™ (=B(n, ¢ 2)|E| — iV4 (0,5 2)€ + ao(n,;x,£))n + Op™" (b_1(n;2,) )¢

+ Ri(m)¢ + Ry(n,¢)n, (4.5.15)
Oy = —(g+ kD*)n +vG(0), b + Op®" (=t (n; )&% — B (n,¢;2)[€] + co(n, 3 2,€))n

+ Op®" (B(n,¢;2)[&] — iV (n,052)€ + do(n,;2,6))¢ + Ra(n,9)1 + Ry(n,4)n  (4.5.16)

where

* Vy(n, ;) ==V (n,¢;x) —yn(x) is a function in 2.7-"}137071 [r, N| as well as the functions V, B defined
in (4.5.13)-(4.5.14);

* ay, o, do are symbols in EF(}(’OJ [r, N]and b_1(n;x,) is a symbol in EF;&OJ [r, N| satisfying (4.2.27);
* the function f(n;z) := (1 + n%(x))_% — 1 belongs to E}"}%O,Q[r, NJ;
* Ry, R}, Ro, R} are real smoothing operators in ER;(?OJ [r, N].

Moreover (4.5.15)—(4.5.16) are the Hamiltonian system (4.1.4).

Proof. By Proposition 7.4 of [27], the function B defined in (4.5.14) belongs to Z}"}% 0.1 [r, N], as well as
the function V in (4.5.13) and V;, = V — 1. ’
PARALINEARIZATION OF THE FIRST EQUATION IN (4.1.2). We use the paralinearization of the Dirichlet-
Neumann operator G(n)1) proved in [27]. By Propositions 7.5 and 8.3 in [27] where w := ¢ —Op®" (B)n is
the “good unknown” of Alinhac, using Propositions 4.2.14 and 4.2.19-(%), the second bullet below (4.2.53),
and noting that £ tanh(h¢) — €] € fag, for any p > 0, we get

Gy = G(0)(v — Op®Y(B)n) + Op®" ( —iVE + ao)n + Op®" (b—1) (v — Op™" (B)n)
+ R'(n,4))n + R(n)Y
= G(0)y + Op®™ (=BI¢| —iVE + ag)n + Op®" (b-1)¢ + R(n)y + R'(n,¢)n  (4.5.17)

where G, a, are symbols in EF%’OJ [r, N], b_1 is a symbol in FI_{}D,l [r, N] depending only on 7, and R(n),
R'(n,1) are smoothing operators in ¥R %) ; [r, N].

We now paralinearize the term with the ,Vorticity. Using Lemma 4.2.12, Proposition 4.2.14, the identity
1. = Op®" (i€)n and (i) of Proposition 4.2.15 we get

mmaz = Op®" (7)Op®" (i€)n + Op®" (nz)n + R(n)n = Op™" (iné + ins)n + R(n)n (4.5.18)

where R(n) is a homogeneous smoothing operator in 751_9. Then (4.5.17) and (4.5.18) imply (4.5.15) with
symbol ag := ag + 37, in ZI’(}( o.1(7, V. Furthermore, since (4.5.15) is a real equation we may assume that

ag and b_; satisfy (4.2.27) eventually replacing them with %(ao + @) and %(b,l + 5\:1) and replacing the
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smoothing remainders with % (R + Ry) and (R} + Rj) .
PARALINEARIZATION OF THE SECOND EQUATION IN (4.1.2). By Lemma 4.2.12 and Proposition 4.2.14
we get

1 .
=S¥ = —Op™" (i€ — 3vaa) ¥ + R($)¥ (4.5.19)
where R(1)) is a smoothing operator in 751_9. Next, recalling (4.5.14) and using Lemma 4.2.12, we get

1(G oPe)? 1

= SOD™ (14 2)B) B+ O™ (B)[(1+72)B] + Rin )+ R (n,u)n

where R(n,1), R'(n,1) are smoothing operators in ¥R %) | [r, N]. Consider the second term in the right
hand side of (4.5.20). Applying Lemma 4.2.12, Propositions 4.2.14 and 4.2.15 (and since Op®" (B)[1] is a
constant which we neglect because we consider (4.1.2) posed in homogeneous spaces) we get

30p”"(B)[(1+52)B] = 300" (1 +n3) B) B +i0p™ (B*n:€ + &o)n + R(n, ) + R (n,4)n
(4.5.21)
where ¢ is a symbol in EF%OJ[T, N and R(n,v), R'(n,v) are smoothing operators in R % | [r, N].
Then by (4.5.20)-(4.5.21) and (4.5.14) we deduce that

1

S+ n2)B* = Op"Y (B)[G(n)% + nut] —10p®" (B*ne€ + &o)n + R(n, )¢ + R (n,4)n. (4.5.22)

In order to expand this term we first write
Mot = O™ (1126 — 3712) 0 + OP®" (10 — 3%0a ) + R(M)Y + R ()1 (4.5.23)

where R(n), R/ (1) are smoothing homogeneous operators in ﬁl_g . Finally, using (4.5.17), (4.5.23), Propo-
sition 4.2.15, and exploiting the explicit form (4.5.13) of the function V', we conclude that (4.5.22) is equal
to

(4.5.20) = Op™" (= B?[¢] + &) + Op™" (BI¢| + iBno + do)y + R(n, )y + R'(n, ) (4.5.24)
where &, dj are symbols in EF?(,O,I [r,N] and R(n,), R'(n,v) are smoothing operators in ¥R .5, ; [r, N].
Next we paralinearize the capillary term

t

KO, {7779”] = k0 F(ng), F(t):= W

(1+n3)'/2
The Bony paralinearization formula for the composition (Lemma 3.19 in [27]) and Proposition 4.2.14 imply
. _3
0 F () = Op™ (1€)Op™" (F'(12))1a + R(n)y = Op™ (= (1+n2) "3+ ¢ ) + R(n)
= —D%)— Op®" (£(n;2)€* + ch)n + R(n)n

! (4.5.25)

where ¢, is symbol in ¥T% [, N, the function £(1;z) := (1 + n2(z))"2 — 1 belongs to SFR 02l N
and R(n) is a smoothing operator in ¥R %)  [r, N].
Next, by Lemma 4.2.12 and Proposition 4.2.14 we get

ne = Op®Y (iné — 3n.) ¥ + Op®™ () + R(n)Y + R (¥)n (4.5.26)
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where R(n), R'(¢) are homogeneous smoothing operators in 751_9.
Finally using (4.5.17), Propositions 4.2.14 and 4.2.15-(4), and that 9, ' = Op®" (%) we get
95 ' G(n)y = G(0)9, ' + Op®" (c—2)) + Op™" (dg)n + R(n,)n + R/ (1,4)¢ (4.5.27)

where ¢_5 is a symbol in EFI_(?OJ [r, N, the symbol dj is in EF(}(@J [r, N] and R, R are smoothing operators
in SRy [ NJ.

In conclusion, collecting (4.5.19), (4.5.24), (4.5.25), (4.5.26), (4.5.27) and using the explicit form of
V in (4.5.13) we deduce the second equation (4.5.16) with symbols ¢y := ¢y — k¢ + Y + vdj, and
do = %%x +do— 37z +yc_2 in ZF?{,O’I [r, N]. Since (4.5.16) is a real equation we may assume that ¢
and dj satisfy (4.2.27) arguing as for the first equation. O

Remark 4.5.2. The symbols ag, cg, dg in (4.5.15)—(4.5.16) can be explicitly computed in terms of V and B
(e.g. see [29]). On the other hand the symbol b_1(n;x,&) is expected to be of order —oo but in [27] it has
been estimated as a symbol of order —1 only.

We write (4.5.15)-(4.5.16) as the system

o (:D N <—(g f kD?) VG%%;l) (Z) (4.5.28)

sw (| —BIE|l —iV5€ 0 ap b_y i n
+Op ([—nf&? ~ Y% Bl —ivyf] * [Co doD (w) + B, ¢) <w>

Wahlén coordinates. We now transform system (4.5.28) in the Wahlén coordinates (7,() defined in
(4.5.2).

Lemma 4.5.3. (Water-waves equations in Wahlén variables) Let N € Ny and 0 > 0. For any K € Ny
there exist so, 7 > 0 such that, if (n,v)) € BE (I;r) solves (4.1.2) then (1,() = W™ (n, ) defined in (4.5.2)
solves

n\ _ 3G(0)9; G(0) n
o <<> B <<g+ <D? T G(0)D2) 3G(0)6;1> <C>

L Op™ ([—Bm(n,q;xm — iV, Gl 0 D <n>
—kf(n;2)&2 = [BO(n,¢;2)2[¢]  BW(n,Ga)lg] — VD (n,¢2)¢] ) \¢
(1)
sw [ |ag (0, G2,E)  boi(n;a,€) <n> <77>
o ([cé”(n,c;x,@ dé”(n,c;a:,f)]) ¢) TN (4529

where

« BO(n,¢;x) := BOV(1,¢);) and VD (n,¢x) = Vo, (W(n,);2) are functions in 2‘7:}1?0’1[7“7 NJ,
f(n;x) is the function in 2}—50,2 [r, N| defined in Lemma 4.5.1;

. a(()l)(n,g;:c,f), c(()l)(n,C;a:,f), dél)(n, ¢;x, &) are symbols in EF?{,OJ[r, N]| satisfying (4.2.27), and the
symbol b_1(n;z,€) in EFI_(TOJ[T, N is defined in Lemma 4.5.1;

* R(n,¢) is a matrix of real smoothing operators in YR ;% [r,N] ® M3(C).

Moreover system (4.5.29) is the Hamiltonian system (4.5.3).



172
Proof. By (4.5.2) and (4.5.28) one has

T =wt 0 G(0) n
" <<> - <—(9 +kD?) VG(O)al,l) w <§> (4.5.30)
1. BW —lﬂf‘—dlgg 0 }) <n>
o inf(n)f? — B2|¢| B¢ —iVi¢ Wi 4.531)
“1neBw (@0 b1 n n
o < [00 do DW (g) + B(m,¢) <C) (4.5.32)

where R(n,() is a matrix of smoothing operators in SR %, ;[r, N] ® M3 (C). We now compute the above
conjugated operators applying the transformation rule

(A B) A+ 1Bo;! B
- 2 . 4533
" <C )" = \e-gor1a- Yo sor + ooy D308 (#4233

The operator in the right hand side of (4.5.30) is given in (4.5.4). Then by (4.5.33) and Proposition 4.2.14,

 (VBW —Bl¢| — iV ¢ 0
(4.5.31) = Op <[—/<af(77)§2 i BQIVE‘ L Bl - iVﬁD + R(n,0), (4.5.34)

where the symbol ¢y := 3 #,[BI¢| + 1V,€] + 3[BIE] — iV, €]#,5¢ belongs to ST% [, N] and R(1, )
is matrix of smoothing operators in YR %), [r, N] @ M3(C).
Finally, by (4.5.33) and Proposition 4.2.14, we deduce that

(4.5.32) = Op®" ({‘Zg bd‘él]) + R(n,0), (4.5.35)

where ay, ¢{), d{, are symbols in EF?(7071[7”, N] and R(n,¢) are smoothing operators in ERI_(?OJ[T, N] ®
M3 (C). In conclusion, by (4.5.4), (4.5.34), (4.5.35), we deduce that system (4.5.30)-(4.5.32) has the form
(4.5.29) with symbols a(()l) = ay, c(()l) == ¢y + ¢} and d(()l) := dj, evaluated at (n,v) = W(n,() which
belong to EF(}(,Q1 [r, N]. Since the Wahlén transformation is a real map, we may assume that a(()l) , c((]l) , d(()l)
satisfy (4.2.27) arguing as in the previous lemma. O

Remark 4.5.4. The first two matrices of para-differential operators in (4.5.29) have the linear Hamiltonian
structure (4.3.9)-(4.3.10). We do not claim that the third matrix of para-differential operators in (4.5.29) has
the linear Hamiltonian structure (4.3.9)-(4.3.10). Nevertheless in Lemma 4.5.5 we shall recover the complex

(2))

linear Hamiltonian structure of J.Op®" (A;”), up to homogeneity N, thanks to the abstract Lemma 4.3.20.

Complex coordinates. We now diagonalize the linear part of the system (4.5.29) at (n,¢) = (0,0) intro-
ducing the complex variables

U= <Z> = M! (Z) . MU HPI(T,R) x H* i(T,R) — Hi(T,C?), Vs € R,  (4.5.36)

where M is the matrix of Fourier multipliers defined in (4.5.6).
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Lemma 4.5.5. (Hamiltonian formulation of the water waves in complex coordinates) Ler N € Ny and
0 > 0. For any K € Ny there exist so,r > 0 such that, if (n,) € Bfg([;r) is a solution of (4.5.29) then U
defined in (4.5.36) solves

aU = J.Op" (Ag(U;x)w(§)>U + Iao)ortu
2 2 , (4.5.37)
+JOP™ (Ay(Us,€) + Ay (U, ) + AP (U3, )U + RU)U

where J. is the Poisson tensor defined in (4.1.22) and
.3
» w(§) € I'§ is the symbol in (4.5.9);

e A3(U;x) € E]:}l?o,o[r, N] ® My(C) is the matrix of real functions

v fWz) 1+ f(U;z)
A3 (Usz) = (1+f(U;a:) U > (4.5.38)

3
2

where f(Usz) = 2£(MU;x) belongs to SF 5 5[r,N]. Note that J.Op"" (Asw(§)) is linearly
b 2
Hamiltonian according to Definition 4.3.2;

e A (U;x,€) € ZF}QOJ[T, N] ® My(C) is the matrix of symbols

e (1BOUsa)E| —VO(U;a)¢
0= (Ve o) (4539

where B® (U;z) := BW(MU;z) and V@ (U;z) := V(MU x) are real functions in 2-7:%071 [r, N
Note that J.Op®" (A1) is linearly Hamiltonian;

1
. A% (Usz,§) € XTf o[, N] @ M2 (C) is the symmetric matrix of symbols

11

AUz €)= ; (1 1) [BP(U:2)*[¢]M(€) (4.5.40)

1
2

1
where M (§) € Fo is the symbol of the Fourier multiplier M (D) in (4.5.7). Note that J.Op®" (A
is linearly Hamiltonian;

)

1
2
. A( )(U x,€) is a matrix of symbols in ZFKO 1lrs N1 ® Mo(C) and the operator JCOpBW(A(()2)) is
lmearly Hamiltonian up to homogeneity N accordmg to Definition 4.3.6;
* R(U) is a real-to-real matrix of smoothing operators in R ;%) [, N| @ M3 (C).
Moreover system (4.5.37) is Hamiltonian in the complex sense, i.e. has the form (4.3.18).

Proof. We begin by noting that the operator M in the change of coordinates (4.5.36) has the form (cfr.

(4.5.6))
Y o (M(D) 0
M= MoC, M._< 0 M(D)—1>

where M (D) is the Fourier multiplier in (4.5.7) and C the matrix in (4.3.11). The operator M is symplec-
tic whereas under the change of variables C a real Hamiltonian system in standard Darboux form (4.5.3)
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assumes the standard complex form (4.3.18), see the paragraph at page 145. Therefore U solves a system
which is Hamiltonian in the complex sense.
Since (7, () solves (4.5.29), the complex variable U in (4.5.36) solves

) 1G(0)0; ! G(0)
_ 1 2 T
U = M (_(g kD2 4 2oy 1000 ) MY (4.5.41)

Sigpew ([ ~BUI —ive 0

+ M~ Op <[_,‘qf(n)£2_[3(l)]2‘£’ B(l)‘ﬂ—iv(l)f MU (4.5.42)
(1)

b_

+ M topw [ %0 1

(3 %

)MU + R(U)U (4.5.43)

where R(U) is a real-to-real matrix of smoothing operators in YR .2 Kol N|® Ma(C).

The operator in the right hand side of (4.5.41) is computed in (4. 5. 10)-(4.5.11). In order to compute the
conjugated operators in (4.5.42)-(4.5.43), we apply the following transformation rule, where we denote by
M := M(D) the Fourier multiplier in (4.5.7) (which satisfies M (D) = M (D)),

-1 A As
M ( s A4)M (4.5.44)

@56 L (M7 AM + MAM ™' +iMAsM —iM 7 A M~ M7 AM — MAM ™' +iMAsM +iM ™ A M}
9\ MT'AM - MAM T —iMAM —iM T A M T MUV AM + MAGM T — iMAsM +iM T A MY

Using (4.5.44) and Proposition 4.2.14 we get that

(4.5.42) = OpBW<[ZII 2\1/]>+R(U) (4.5.45)
where a1, b; are the symbols
ay == M1 (§)#,( — B! |§! )#oM(€) + M(&)#,(BY|E] — EH#oM(E)
M(é)#@( [ VI21e]) 0 M (€)
by == M~ (&)#,(— B |€! Ve #M(§) — M(€)#o(BVIE| — iV #,M (€
+IM(§)#,( — [ DI21e]) 0 M (€)

and R(U) is a real-to-real matrix of smoothing operators in ¥R ;% ;[r, N] ® M3(C). Noting that

w(€) = VRlEZ €Ty, M(€) —rale| 7 eTyt, MY(¢) - ril¢]i ey ?, (4.5.46)

N

-

so that k€2 M?(€) — w(€) € Ty 2, we deduce, using also the remarks after Definition 4.2.13, that
= 21V —if(nw(§) —i[BWPEIM? () +ap  with ap € ST o, [r, N], (4.5.47)
by = —2BW¢| — it (n)w(€) — i[BUP|EIM(€) + by with b € BT o 4[r, N]. (4.5.48)
_1
Finally, noting that M~ (&)# ob—1#,M ~' (&) belongs to XT' 1%, [, N], we deduce that

(4.5.43) = Op”¥ (A4)) + R(U) (4.5.49)
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where Aj is a real-to-real matrix of symbols in EF%OJ[T, N] ® M3(C) and R(U) is a real-to-real matrix
of smoothing operators in R, , [, N] @ Mz (C).

In conclusion, by (4.5.10)-(4.5.11), (4.5.45), (4.5.47), (4.5.48), (4.5.49), computing the symbols at
(n,{) = MU, we deduce that system (4.5.41)-(4.5.43) has the form (4.5.37). Note that the matrices of
para-differential operators JCOpBW(A%w(f)), J.Op"®" (A1), JcOpBW(A%) in (4.5.38), (4.5.39), (4.5.40)

are linearly Hamiltonian according to (4.3.22), whereas J.Op®" (A(()z)) might not be. Thanks to Lemma

4.3.20 we replace each homogeneous component of Asw(§) + A1 + A1 + A(()Q) with its symmetrized ver-
2 2
sion, by adding another smoothing operator. Since the symbols with positive orders are unchanged we

obtain a new operator J.Op"" (A((JZ)) (that we denote in the same way) which is linearly Hamiltonian up to
homogeneity N. O

4.6 Block-diagonalization and reduction to constant coefficients

In this section we perform several transformations in order to symmetrize and reduce system (4.5.37) to
constant coefficients up to smoothing remainders. In particular we will prove the following:

Proposition 4.6.1. (Reduction to constant coefficients up to smoothing operators) Let N € Ny and
0> 3(N + 1). Then there exists K' := K'(9) > 0 such that for any K > K’ there are sy > 0, 7 > 0 such
that for any solution U € ng ’R(I ;1) of (4.5.37), there exists a real-to-real invertible matrix of spectrally

3
localized maps B(U ;t) such that B(U;t) —1d € ES;((Q,—EIB L1, N1 @ M2 (C) and the following holds true:

(i) Boundedness: B(U;t) and B(U;t)~! are non-homogeneous maps in 8%75,_1’0[r] ® Ms(C), cfr
4.2.72y withm = N = 0.

(7i) Linear symplecticity: The map B(U;t) is linearly symplectic up to homogeneity N, according to
Definition 4.3.7.

(7i7) Conjugation: If U solves (4.5.37) then W := B(U;t)U solves

vec

W = OpBW (im% (U;t,g))w + R(UHW 4.6.1)

(recall notation (4.2.24)) where

766
2 ¢

m

(U1,6) == = | (L4 CUNw(&) + 5= + VU )E + b3 (Ust)[&]2 + bo(Us,6) (4.6.2)

o

and

~3
» w(&) € I'§ is the Fourier multiplier defined in (4.5.9);

* ((U) is a real function in E]—'}R;’O o[r, N| independent of x;

» V(U;t) is a real function in Ef}%m[?“, N| independent of x;

* b1 (U;t) is a real function in E]—"}%Q’Q[r, N] independent of x;

1
2

bo(U;t, &) is a symbol in EF(I)( i o|T> N independent of x and its imaginary part Tmbg(U;t,¢§) is in
I9 B

Ko N1 T

* R(U;t) is a real-to-real matrix of smoothing operators in ER;(Q;?(INH) [r, N] ® M2 (C).
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Remark 4.6.2. The symbol m3 (U;t,£) in (4.6.2) is real valued except for the term by (U;¢,£) whose imag-
2

inary part has order 0 and homogeneity at least N 4 1. Hence system (4.6.1) fulfills energy estimates in
H*(T,C?), of the type (4.8.15) with N = 0.

Remark 4.6.3. One can choose K'(p) > 30— 8(N + 1) + 1.

The rest of Section 4.6 is devoted to the proof of Proposition 4.6.1. We shall use constantly the identities

3 ~_1 3 1 ~_3
w(€) = VrIElZ + T %, () = SVRlE]Z signE+ T * (4.6.3)

4.6.1 A complex good unknown of Alinhac

In this section we introduce a complex version of the good unknown of Alinhac, whose goal is to diagonalize
the matrix of para-differential operators of order 1 in (4.5.37) and remove the para-differential operators of
order % The complex good unknown that we use coincides at principal order with M ~1G4 M where G 4 is
the classical good unknown of Alinhac in (4.1.17) and M is the change of variables in (4.5.6).

Lemma 4.6.4. Let N € Ny and ¢ > 0. Then for any K € N there are sy > 0, r > 0 such that for
any solutionU € B g r(I;7) of (4.5.37), there exists a real-to-real invertible matrix of spectrally localized

maps G(U) satisfying G(U) — 1d € 28%7071 [r, N] @ M2(C) and the following holds true:
(i) Boundedness: G(U) and its inverse are non—homogeneous maps in 3%7070[7"] ® M3(C).
(7i) Linear symplecticity: The map G(U) is linearly symplectic according to Definition 4.3.3;
(7i7) Conjugation: If U solves (4.5.37) then V := G(U)U solves

OiVo = JOP™ (A3 (Us2)w(€) ) Vo + 3 G(0)0; Vo

(4.6.4)
+ O (—iV@ (U32)€) Vo + J.Op™ (AP (U3,2,6) ) Vo + R(U)Vy

where

* the matrix of real functions A% (U;z) € 2.77%070[1", N] ® My (C) and the real function V(z)(U;x) c
2.7:}1%0,1 [r, N are defined in Lemma 4.5.5;

~3
* w(&) € I'§ is the symbol defined in (4.5.9);

* The matrix of symbols A(()g) (U;t,z,&) belongs to EF%M [r, N|®M3(C) and the operator J.Op®" (Agg))
is linearly Hamiltonian up to homogeneity N according to Definition 4.3.6;
* R(U) is a real-to-real matrix of smoothing operators in R ;% ;[r, N| @ M3 (C).
Proof. We define G(U) to be the real-to-real map

G(U) ==1d - % <_11 _11> Op™" (B("‘)(U ;:r>M2(§)) (4.6.5)

~_1
where B(?) (U; ) is the function in E]—"}R;’O 1[r, N defined in (4.5.39) and M (§) € T * is the symbol of the
Fourier multiplier M (D) defined in (4.5.7). Its inverse and transpose are given by

G(U) " =1d+ 3 ( g _11) Op™ (BA (i) M (9))

) (4.6.6)
G _}) Op™ (B (U2)M2(6) ).

T_1q_2t
()" =1d -3
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By the fourth bullet below Definition 4.2.16 the matrices of para-differential operators G(U)*! — Id belong
to ES?(’OJ [r, N]® M2(C) and item (7) follows. Also (ii) follows by a direct computation using the explicit
expressions in (4.6.5) and (4.6.6).

Let us prove item (i73). Since U solves (4.5.37) the variable Vj := G(U)U solves

OVo = G(U) [JOP™ (A3w(€) + A1 + Ay + AP ) + 2G(0)9| 6(U) Vo + (29 (V)G(U) Vo
+GU)RU)GU) V. (4.6.7)

We now expand each of the above operators. By (4.6.5), the form of J. in (4.1.22), (4.6.6), the symbolic
calculus Proposition 4.2.14, writing JeAsw(§) = —i(§ % )w(§) —i( 2 1) F(U)w() (see (4.5.38)), and
2

since (_11 4 ) 2 = 0, after a lengthy computation we obtain that the first term in (4.6.7) is

G(U)JOp™ (Agw())g7(U) = J OpBW (43()
OpBqu(ﬁ)#gB IM2(6) = BEM2(€) ¢ 0(6) w(&)#@B@)M%s)+B<2>M2<5>#gw<§>]>
w(€)#BOM? () + BOM()#w(€) w(©)#,B%M?(€) — BOM3(¢
-3 ( g _11> Op™" (B<2>M2<s>#gw<f>#gB<2>M2<f)) + R(U)

(@)
= J.0p™ (Agel©)) +0p™" ([ Bg)\fl ’ 0 |§|D

. % (_11 _11> OpBW ([B(Z)]QM‘MQ(f)) + JCOpBW(Ao) + R(U), (468)

where Ag is a matrix of symbols in XT) K017 N]®M2(C) and R(U) is a matrix of smoothing operators in
YR 0.1 NJ®@ Mz (C). In the last passage to get (4.6.8) we also used that M2(€)w(€) = G(€) = [€|+1, 2,
for any o > 0, cfr. (4.5.8), (4.5.5).

Next using the explicit form (4.5.39) of A; we get, arguing similarly,

G(U)J.0p™ (A)G(U)™!

— JOp"Y (A) +i (_1 _11> Op™ ([BOPRIEIMA(6)) + J0p™ (4p) + R(U)  (4.69)

1
where Aj, is a matrix of symbols in EF%»OJ [r, N] ® M2(C) and R(U) is a matrix of smoothing operators

in ER;(?O’I[T, N] ® M3(C).
Moreover, using the form (4.5.40) of A1 we get
2

6(0)7.00" (4,)(0) " = 200 (ay) =5 (1 1Yo (182PIelar9). @0

Then, since A((JQ) is a matrix of symbols of order zero, by Proposition 4.2.14 we have
G(U) [J Op®" (A< )) 7G( 0)0; } GU)~! = %G(O)@;l +JO0pPY (AL + R(U),  (4.6.11)

for a matrix of symbols Af in XT'% | [r, N] © M3(C) and smoothing operators R(U) in TR ,[r, N] &
Mo (C). Next by (4.6.5)-(4.6.6)

(2,6 (U))GU)™ = J.Op®" (A ) +RU), A_y:= % G 1) Op®" (8tB(2)M2(§)> (4.6.12)

1
2
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where, in view of the last bullets at the end of Section 4.2.1 and Proposition 4.2.15-(iv), A_1 is a matrix of

1
3
_1
symbols in XT3 | [r, N]@ M3(C) and R(U) is a matrix of smoothing operator in SR % ; [r, N]®@ M3(C).
Finally by Proposition 4.2.19 we have that G(U)R(U)G(U)~! is a matrix of smoothing operators in
SR 11 N ®@ Ms(C), being G(U) a spectrally localized map.
Note that, using the expression (4.5.39), the sum of the terms of order 1 which are in (4.6.8) and (4.6.9)
is
0 B@j¢ .
J.Op"" (A1) + Op"" ([ BO)e] 0' ) = OopBW (—1V(2)(U;x)£). (4.6.13)
Note also that the sum of terms which are of order % in (4.6.8), (4.6.9) and (4.6.10) equals zero.
In conclusion, by (4.6.8), (4.6.9) (4.6.10), (4.6.11), (4.6.12) and (4.6.13) we obtain that system (4.6.7)
has the form (4.6.4) with A(()?’) = Ao+ Ay + Af + A_1 in % | | [r, N] ® M3(C). Note that the para-
2 1y

differential operators of positive order in (4.6.4) are linearly Hamiltonian, whereas JCOpBW(A(()3)) might
not be. However the operator in the first line of (4.6.7) is a spectrally localized map which is linearly

Hamiltonian up to homogeneity N by Lemma 4.3.9, with a para-differential structure as in (4.3.66). Then
0o -v® (B) -

v@e o 5} + Ay with its

symmetrized version, by adding another smoothing operator. Since the symbols with positive orders are

by Lemma 4.3.21 we replace each homogeneous component of Azw(§) + {
2

unchanged we obtain a new operator JcOpBW(A(()g’)) (that we denote in the same way) which is linearly
Hamiltonian up to homogeneity N. O
4.6.2 Block-Diagonalization at highest order

In this section we diagonalize the operator J.Op"" (A3 (U;z)w(£)) in (4.6.4) where Az is the matrix
2 2
defined in (4.5.38). Note that the eigenvalues of the matrix

oy | A fUz) = f(Usx)
VD= pwy 1w @619

where f(U;x) is the real function defined in (4.5.38), are £i\(U;x) with
MNU;z) =/ (14 f(U;2)2 — f(U;2)2 = \/1+2f(U;x). (4.6.15)

Since the function f(U;z) is in SFk 4 5[r, N], for any U € Bg g(L;7) with r > 0 small enough it results
that | f(U;z)| < 1, the function A(U;z) — 1 belongs to Z]—"}%OQ[T, N] and

JA

3
2

AU;z) > Y2 >0, VeeT.

Actually the function \(U;x) is real valued also for not small U, see Remark 4.6.6.
A matrix which diagonalizes (4.6.14) is

FUie) = <g<U;x> h(U@))
14 f+ _ —f

N ey EAN Y/ ay ey ey o

Note that F(U; ) is well defined since (14 f + )% — f2 = (14+2f + A)(1+A) > . Moreover the matrix
F(U;z) is symplectic, i.e.

(4.6.16)

det F=h?>—¢*>=1. (4.6.17)
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The inverse of F'(U;x) is the symplectic and symmetric matrix

F(U;z) ! = (_h;%‘ig) _hg(g];;)) . (4.6.18)

Moreover F'(U;x) — Id is a matrix of real functions in E}—%o,l [r, N] @ M2(C) and

FU;x) 1 J.A (4.6.19)

wiorwa) = | AT D]

3 0 iNU;x)

which amounts to (h? + ¢2) (1 + f) + 2hgf = X and 2hg(1 + f) + (h* + ¢*)f = 0.

Lemma 4.6.5. Let N € Ny and o > 0. Then for any K € N there are sy > 0, r > 0 such that for
any solution U € Bsfg ’R(I ;1) of (4.5.37), there exists a real-to-real invertible matrix of spectrally localized
maps W1(U) satisfying V1 (U) — 1d € B8}, [r, N| ® Ma(C) and the following holds true:

(7) Boundedness: The operator V1 (U) and its inverse are non—-homogeneous maps in 89(7070 [r] @ M2(C);
(ii) Linear symplecticity: The map ¥ (U) is linearly symplectic according to Definition 4.3.3;

(7i7) Conjugation: If Vj solves (4.6.4) then Vi := W1 (U)Vj solves the system

oi = OpLY (=iM(Usa)w(§) — iV (Us2) )i + 2G(0)0; Vs
(4.6.20)
+ J.Op®" (Ag‘*)(U;t,x,g))vl + R(U:HW;

where

e the function \(U;x) € 2.7-"}1%070[7", N, defined in (4.6.15), fulfills \(U;z) — 1 € Ef§7072[7“, NJ;

3
* the Fourier multiplier w(&) € I'§ is defined in (4.5.9);

« the real function V? (U; ) € 2]:50 1|, N is defined in Lemma 4.5.5;

* the matrix of symbols A[()4) (Ust,z,€) belongs to ZF(I](,l,l [r, N|@M3(C) and the operator J.Op"" (AE)4))
is linearly Hamiltonian up to homogeneity N;

* R(U;t) is a real-to-real matrix of smoothing operators in ¥R % {[r, N] ® Ma(C).

Proof. By Lemma 3.11 of [29], there exists a real valued function m(U;z) € SFk 0,17 V] (actually
m(U;x) := —log(h(U;x) + g(U;x))) such that the time 1 flow ¥ (U) := W7 (U)|;=1 of

0-¥™(U) = J.Op"" (M(U;2))¥™(U) N [-imUaz) o
{\IIO(U) =1d, M<U’x) T 0 im(Us;z) | ?
fulfills
Uy (U) = 0p® (F~1(Us2)) + R(U), ¥ (U)™' = 0p® (F(U;x)) + R'(U), (4.6.21)

where the matrix of functions F'(U;z) is defined in (4.6.16) and R(U), R'(U) are matrices of smoothing
operators in SR %) ; ® My (C).
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Since the operator J.Op®" (M (U;z)) is linearly Hamiltonian according to Definition 4.3.2, Lemma
4.3.16 guarantees that W1 (U) is invertible, linearly symplectic and ¥; (U)*! —1Id belong to 25%70’1 [r,N]®
M;(C).

Since Vj solves (4.6.4) then the variable V3 = W1 (U)Vj solves

Vi = W1(U) | JOp™ (Age(§)) + 3G(0)0;" + OpiZ! (=ivPg) + L.0p™ (A7) | wa(0) '

+ (0T (U) U1 (U)W + Uy (U)R(U) (U)W (4.6.22)

Next we compute each term in (4.6.22). We begin with J.Op"" (Aszw(§)). Using (4.6.21), Proposition
2
4.2.19-(3), Proposition 4.2.15-(7) and the explicit form of A s in (4.5.38), one computes

U, (U)J.OpPY (A%w(.f))\lll(U)_l = Op*" (F~1).J,Op™" (A%w(é))OpBW (F) + R(U)

where R(U) is a real-to-real matrix of smoothing operators in ¥R %) | [r, N] ® M3(C) and using (4.6.14),

a 1
(g
(4.6.16), (4.6.18), Proposition 4.2.14, we have

b

Njw

7 > + R(U) (4.6.23)

as = —i[h#o(1 + flwoh + g#o(1 + flw#og + h#tofw#og + g# o fw#oh]
b1 = —i[h#o(1 + flwHeg + g#o(1 + [w#oh + hi#t o fw#oh + g# o fwH#og] -

1
2
The real-to-real structure of the symbols in (4.6.23) follows also by the last bullet after Definition 4.2.13.
By the symbolic calculus rule (4.2.53), the second and third bullets after Definition 4.2.13 and (4.6.19) one
has

ag = —i[(h2—l—g2)(1—|—f)+2hgf]w+a_% = —idw+a

_1
2

by = —i[2hg(1 + f) + (h* + ¢*) flw + 57% — 57%
y 1
with symbols a_ 1 b_ 1 in XI' ;5 4 [r, N]. Then we obtain
as b 1 B
OpBW b 2\/ 7\2/ = Opve‘::v (_1)\("}) + JCOpBW (A—%) (4624)
1 3
—3 2

1
where A_ 1 is a real-to-real matrix of symbols in ¥I",.5 | [r, N] ® M2 (C).
2 bl
Proceeding similarly one finds that

U, (U)Opye’ (—iV(Q)f)\Ifl(U )=t = Oop®¥ ([Z& ZOVD + R(U) (4.6.25)
0 1

where R(U) is a real-to-real matrix of smoothing operators in ¥R % ; [r, N] ® M2 (C) and

a1 1= h o (—V ) #oh — g o (—1V D) g = (12 — ) (—iV @) “E7 iy ¢

by = h#g(—iV(Q)f)#gg - 9#9(_1V(2)§)#9h € .7:}%071[7“, NJ.
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In addition, using (4.6.21), the last bullets at the end of Section 4.2.1, Proposition 4.2.15-(v) we obtain that

0(U) [5G0 + 1.0p™ (A7) ] wi(U) ! + (@) (U)

= %G(O)&;l + J.Op™™ (A}) + R(U;t) (4.6.27)

where AJ is a real-to-real matrix of symbols in EF%}M [r, N]@ M2(C) and R(U;t) is a matrix of real-to-real
smoothing operators in SR | [r, N] ® Ms(C).

Finally, by Proposition 4.2.19, U1 (U)R(U)¥1(U)~! is a matrix of smoothing operators in ERI_(?OJ [r, N]®
M;(C).

In conclusion, by (4.6.23)-(4.6.24), (4.6.25)-(4.6.26) and (4.6.27) we deduce that system (4.6.22) has the
form (4.6.20) with a matrix of symbols A(()4) = Af% +Je [b% boo} +Ajin EI’%M [r, N]® M2 (C). Note that

the para-differential operators of positive order in (4.6.20) are linearly Hamiltonian, whereas .J.Op®"" (Agl))
might not be. However the sum of the operators in the first line of (4.6.22) plus (9,¥1(U))¥1(U)~ 1 is a
spectrally localized map which is a linearly Hamiltonian operator up to homogeneity N by Lemma 4.3.9,
with a para-differential structure as in (4.3.66). Then by Lemma 4.3.21 we can replace each homogeneous
component of A(()4) with its symmetrized version obtaining that JcOpBW(A((J4)) is linearly Hamiltonian up
to homogeneity N, by adding another smoothing operator. O

Remark 4.6.6. In view of Lemmata 4.5.5 and 4.5.1 the function A(U;z) in (4.6.15) is equal to (1 + 773)_%.
Therefore the symbols +i\(U;x)w(§) are elliptic also for not small data and system (4.6.20) is hyperbolic
at order % This is the well known fact that, in presence of capillarity, there is no need of the Taylor sign
condition for the local well-posedness.

4.6.3 Reduction to constant coefficients of the highest order

In this section we perform a linearly symplectic change of variable which reduces the highest order para-
differential operator Op2Y (—iA(U;z)w(€)) in (4.6.20) to constant coefficients.

vec

Lemma 4.6.7 (Reduction of the highest order). Let N € Ny and ¢ > 2(N + 1). Then for any K € N
there are sy > 0, r > 0 such that for any solution U € BQ’R(I;T) of (4.5.37), there exists a real-to-real

invertible matrix of spectrally localized maps U5 (U ) satisfying Uo(U) —1d € SSR §4[r, N] ® M»(C) and
the following holds true:

(i) Boundedness: The linear map W5 (U) and its inverse are non-homogeneous maps in Sy, o[r]@ Ma(C);
(7i) Linear symplecticity: The map Vo (U) is linearly symplectic according to Definition 4.3.3;
(7i7) Conjugation: If V solves (4.6.20) then Vo := Wy (U) V) solves the system

OiVa = Opi! (=i(1+ C(U))w(§) — VO WUst.)¢ ) Vo + SG(0)0; Vo

o (4.6.28)
+ JLOp®Y (AO (U;t,a:,ﬁ))VQ + R(U;)Va

where
* ¢(U) is a x-independent function in E]:%OQ[T, N] and w(§) is defined in (4.5.9);

« VO)(U;t,z) is a real valued function in SF 5 | {[r,N];
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 The matrix of symbols A(()S)(U it,x,&) belongs to EF?{JJ[T’, N] ® My (C) and the para-differential
operator JCOpBW(A(()5)) is linearly Hamiltonian up to homogeneity N;
* R(U;t) is a real-to-real matrix of smoothing operators in ERI}?;;Q(NH) [r, N] ® M2 (C).
Proof. We define the map W(U) as the time 1 flow Wo(U) := ¥7(U)|,=1 of
0: V7 (U) = J.Op™ (B(r,Usz,)¥7(U),  ¥(U) =1d,

where B(U:2)

. — 0 b(r,Usz,£) . — e

B(r,Usz,€) = (b(T,U;IV—S) 0 )’ brUsa,€) = 1 +Tﬁz(U;$)€’
and the function 3(U;x) in ©F%  5[r, N] has to be determined. As 3(U;x) is real valued, the operator
J.Op®" (B(7,U;)) is linearly Hamiltonian. Thus Lemma 4.3.16, applied with m = 1, guarantees that
Uy (U) is a spectrally localized map in S?(,o o[r]®Ms(C), itis linearly symplectic and W5 (U)* —Id belongs
to 23%3712 [r, N] ® M2(C). Note that the diagonal operator J.Op"" (B) = Op"" (ib(7,U;z,&))Id is a
multiple of the identity and hence the flow Wo(U) acts as a scalar operator.
Since V; solves (4.6.20), then the variable Vo = Wy (U)V; solves

8V = Wo(U) [opBW (—i)\w(g) - iV(2)§> n %G(O)@;l + J.Op?" (Ag;”)} o (U) 114

vec

+ (0rV2(U)) 0 Wo(U)~'Vo + Wa(U)R(U; 1) Wa(U) ™ Va.

(4.6.29)

We now compute each term in (4.6.29). By Lemma 3.21 of [27], the diffeomorphism ®¢; : x — x+ (U;x)
of T is invertible with inverse ®;,*: y +— y + 3(U;y) and 5(U;y) belongs to 2.7-"}1%0’2[7", N]. By Theorem
3.27 of [27] one has

Uy (U) Opid (=i (U3 2)w(£)) Wa(U) ™

vec

= Obyec. ( [~ (801 + By(Ui))] ‘ (4.6.30)

) + J.Op™" (Ai ) + R(U)

1
y=oy (z) 2

_1
with a diagonal matrix of symbols A_, in XI'.% ;[r, N] ® M32(C), and a diagonal matrix of smoothing
2 "y

o438 N 3
operators R(U) in ZRKQJf [r,N] ® My(C). Note that w(&(1 + B,(U;y))) is a symbol in ET'%  ,[r, N]
by Lemma 3.23 of [27].
Now we choose 3 in such a way that the principal symbol in (4.6.30) is xz-independent. Since, by
1

(4.5.46), w_1(&) :=w(§) — \/E\§|% is a Fourier multiplier in 1:55 we get
2

A(U;y)w(é(l + By(U;y))) — \NU;y)VrIE]2 |1 + By(U;y)I% +AUsy)w_1 (61 + 5y (Usy)))
(4.6.31)

and we select 3(U;-) so that
. 3
AUsy) 1+ B, (Usy)|* =1+ ¢(U) (4.6.32)
with a y-independent function ((U). In order to fulfill (4.6.32) we define the functions
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1
which belong to LF 5 0.2[rsN]. By (4.6.32) and since w(§) — \/E]§|g € I'y ?, the expression (4.6.31)
becomes

Uiy (6(1+ B,(U39))) = VRIS (1+ C0)) + A3yl (€0 + By (Usw)
= w(§)(1+(U) +a

1
2

_1 y
where a_1 is areal valued symbol in T2 | [r, N]. Note that we used that w_1 (£(14 8, (U;9)))A(Us; y) —
2 Vs 2

1
w_1(&) is a symbol in XI' ;% [, N]. In conclusion (4.6.30) is
2 "y

Wo(U)OPLY (—iXw(©)W2(U) ™ = Op{LY (—i(1+C(U))w(€)) + KO0p™ (A_y ) + R(U) (4633)
1
where A_ 1 is a diagonal matrix of symbols in XT';% ; [r, N] ® M2(C) and R(U) is a diagonal matrix of
_o+3
smoothing operators in ¥R Ki;’r Ll Nl ® My(C).
We now compute the other terms in (4.6.29). Again by Theorem 3.27 of [27] (and Lemma A.4 of [29])

o (U) OpElY (—iv®¢) wa(U) ™! = Opf (-iV(U32)¢) + R(V) (4.6.34)

where V (U ) is a real function in 2.7-"%071 [r, N], and R(U) is a diagonal matrix of smoothing operators in
ER;("J 11 [r, N] ® M2(C). In addition, again by Theorem 3.27 of [27]

Uy (U) %G(O)&;l + JOpPY (Ag@)} Wo(U) ) = %G(O)&;l + JLOP™Y (Ag) + R(U)  (4.6.35)

where A is a real-to-real matrix of symbols in EF%O [r, NJ@ M(C) and R(U) € SR, ,[r, N]. More-
over, by Lemma A.5 of [29]

(0:a(U)) 0 Wa(U) ™" = OpllY (—ig(Ust,x)€) + R(U;t) (4.6.36)

where g(U;t,z) is a real function in 2-7:%1,1[7"7 N] and R(U;t) is a matrix of real-to-real smoothing op-
erators in ER;(gfrll [r, N] ® M3(C). Finally Wo(U)R(U;t)¥2(U)~! in (4.6.29) is a matrix of real-to-real
smoothing operators in ER}?;T 12 (V1) [r, N] ® M2(C), by Proposition 4.2.19.

In conclusion, by (4.6.33), (4.6.34), (4.6.35), (4.6.36), we deduce that system (4.6.29) has the form
(4.6.28) with V) .= vV + g and A(()5) = A 1 + Ap. Note that the para-differential operators of positive
order in (4.6.28) are linearly Hamiltonian, whereas JCOpBW(A(()E’)) might not be. However the sum of

the operators in the first line of (4.6.29) and (0; W2 (U))Wo(U)~! is a spectrally localized map which is
linearly Hamiltonian up to homogeneity N by Lemma 4.3.9, with a para-differential structure as in (4.3.66).

Then by Lemma 4.3.21 we can replace each homogeneous component of A(()5) with its symmetrized version

obtaining that JCOpBW(A(()5)) is linearly Hamiltonian up to homogeneity /N, by adding another smoothing
operator. O

4.6.4 Block-Diagonalization up to smoothing operators

The goal of this section is to block-diagonalize system (4.6.28) up to smoothing remainders.
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Lemma 4.6.8. Let N € Ny and o > 2(N + 1). Then for any n € Ny there is K' := K'(n) > 0 (one
can choose K' = n) such that for all K > K' + 1 there are sy > 0, r > 0 such that for any solution
U e Bg ,R(I ;1) of (4.5.37), there exists a real-to-real invertible matrix of spectrally localized maps ®,,(U)
satisfying ©,(U) —1Id € 8% ., [r, N] ® Ms(C) and the following holds true:
(i) Boundedness: Each ®,,(U) and its inverse are non—homogeneous maps in S 1 o[r] ® Mz (C);
(7i) Linear symplecticity: The map ®,,(U) is linearly symplectic up to homogeneity N according to Defi-
nition 4.3.7;
(7i7) Conjugation: If V5 solves (4.6.28) then Vo := ®,(U) V2 solves
. G
0tVii2 = Opiee <—1 [(1 +(U)w() + '2”;) +VOUit2)¢ + g’ (U ;t,w,f)} ) Vata
+ JcOpBW (A_n(U;t,.%',€>)Vn+2 + R(U;t)vn-l-Q

(4.6.37)

where

* the Fourier multiplier w(&) is defined in (4.5.9), the x-independent real function {(U) € Z}—%og [r, N]
and the real function V) (U;t,x) € LFR 1.1, N] are defined in Lemma 4.6.7;

. a(()n)(U;t,a:,ﬁ) is a symbol in EF%K,J [r, N| and Ima[()n)(U;t,:L‘,f) belongs to F?QK,7N+1[T],'

* The matrix of symbols A_,,(U;t,x,§) belongs to XTIy, | |[r,N] @ M2(C) and J.Op®" (A_,,) is
a linearly Hamiltonian operator up to homogeneity N;

* R(U;t) is a real-to-real matrix of smoothing operators in ER}Q;,QJ(FJYTD [r, N] @ M2(C).
Proof. We prove the thesis by induction on n € Nj,.
Case n = 0. It follows by (4.6.28) with al”) := 0, Ag := ALY, K" = 0 and ®o(U) := Id.
Case n ~ n + 1. Suppose (4.6.37) holds. We perform a transformation to push the off diagonal part of
J.Op®" (A_,,) to lower order. We write the real-to-real matrix J.A_,, as

gV Ly ia_, b,
b, a_n) _ [lav " } Anbon € ST, [RN] (4.6.38)

—a_n ib_, b —ia

JA_, =Je (

—n —n

where, since J.Op®" (A_,,) is linearly Hamiltonian up to homogeneity NV, by (4.3.31) we have
Ima_n € Tl% iy vyalrls  bon =02, € D%y viq ] (4.6.39)

Denote by ® o) (U) := @7, (Ust)|7=1 the time 1-flow of

T — BW (n) T 0 3
{afo%)w) Op™ (FI(U)) 7, (U) o | f] w640
9., (U) =1d, flns 0
where, see (4.6.38),
bfn U;t, y —n—%
[ 3(Usta,€) = _2iw(§)((l +:Z(£U))) € ST oy, [ N]. (4.641)

_p_3
By (4.6.39), (4.6.41), the symbol f_ s — fvn 5 1S in FKnK,Q+1 ~+1(7] and therefore Op®" (F(”)(U)) is
2 - _5 b b

a linearly Hamiltonian operator up to homogeneity N. Lemma 4.3.16 implies that ® ) (U) is invertible,
linearly symplectic up to homogeneity NV and ® ..y (U)*! — Id belong to £S5% ., 1l Nl @ Ma(C).
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If V,, o fulfills (4.6.37), the variable V3 := @ j(n) (U) V), 42 solves

BViyz = ® oy (U) {Opf;? <d§”)> + J.Op®" (A_p) | @ iy (U) ™ Winss (4.6.42)
+ (0@ ) (U)® ooy (U) ™ Virgs 4+ @ oy (D) R(U38) @ ooy (U) ™ Wiy (4.6.43)

where, to shorten notation, we denoted

n . G n
AP (Uit) = —i((14 GO + 10 L VO Wit + o Uitng) . @)
2
We first expand (4.6.42). The Lie expansion formula (see e.g. Lemma A.1 of [29]) says that for any operator
M(U), setting ®(U) := @) (U), F := Op®" (F(™(U)) and Adp[M] := [F, M], one has

L 1
1 1
S(UYMU)®U)) =M+ ZaAd%[M] + L,/ (1 -7)r®e™(U)AdL ™ [M)(®7(U))dr.
) . +Jo
(4.6.45)
We apply this formula with L := L(g) > (¢ —n)/(n + %) (in this way the integral remainder above is a

smoothing operator in R ;% ; 1 [, N]@ M3(C)), and by symbolic calculus in Proposition 4.2.14, (4.6.38),
(4.6.40), (4.6.41) and formula (4.6.3) we find

3
2

(4.6.42) = OpBYW <d(”) + ia_n> Vit

- : CU I
+ N . o 2 2 Vn .
P [ — @V s 40, 0 3
2 2 2
T .0p™ (AQ . +1)>vn+3 + R(U;t) Viss (4.6.46)
with a real-to-real matrix of symbols A’ (nt1) N ZF;(”};,IJFLI[T, N] ® M32(C) and a matrix of smoothing

operators R(U;t) in ¥R, %, .4 1[r, N] ® Ma(C) (we also used Lemma 4.3.16 and Proposition 4.2.19 to

estimate the Taylor remainder in the Lie expansion formula). By (4.6.44), (4.6.41) and since agn) is of order

0, we have ,
[(H(%n))v _ d(%n>] fones Fbon=1b_, s € SULA [ N]. (4.6.47)

We pass to the first term in (4.6.43). Using the Lie expansion (cfr. Lemma A.1 of [29])

L
- 1 _
(@2U)(@U) ' =aF + ) aAd% [OF
q=2
1 1
+o ) (- ) E®T(U)AdL[0,F)(®7(U)) tdr (4.6.48)
= Jo

with the same L as above, the last bullets at the end of Section 4.2.1, Proposition 4.2.15-(iv) and (4.6.41)

we get

(O oy (U)) @ ooy (U) ™1 = JOP®Y (Q(U3t,,€)) + R(U;t) (4.6.49)

3
with a real-to-real matrix of symbols Q(U;t,x,£) in XT° KT’LK,QJFQJ [r, N] @ M2(C) and a matrix of smoothing
operators R(U;t) in ¥R %, o 1[r, N] @ Ma(C).
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Thanks to (i) and (i) of Proposition 4.2.19, the operator ® ;.u) (U)R(U;t)® piny (U) ™! in (4.6.43) is

a smoothing operator in ERI_(Q;?J(FJYYI)[T, N] ® My(C) as well as R(U;t). In conclusion, by (4.6.46),

(4.6.47), (4.6.49), the system in (4.6.42)—(4.6.43) has the form

8 Vi3 = OpBY (d(”) + ia_n> Virs + J.OpP™ (A_n_1)Viss + R(U;t)Viys (4.6.50)

3
2

where the matrix of symbols A_,,_; in EFI_{TLI;’ErZ,l[T’ N] ® M2(C) is given by A_,,_1 := Al—(n+1) +

0 b_,_g
I 3 0

—n—2

Je ] + @ and R(U;t) a matrix of smoothing operators in ZRI}Q;,ZJ(F];TU [r, N] ® M2(C). By

Lemma 4.3.21, we replace each homogeneous component of A_,,_; with its symmetrized version obtaining
that J.Op®" (A_,,_1) is linearly Hamiltonian up to homogeneity IV, by adding another smoothing operator.

In conclusion, by (4.6.44), system (4.6.50) has the form (4.6.37) at step n+ 1 with a(()nﬂ) = aén) —a_p

and K'(n+ 1) := K'(n) + 1. Note that the imaginary part Im aénﬂ) is in I ., ., [r] by the inductive
assumption and (4.6.39).
Finally we define ®,11(U) := ®pm)(U) o ®,(U). The claimed properties of ®,,(U) follow by the

analogous ones of each ® ;,(») (U) and Proposition 4.2.19. O

For any o > 2(NN + 1) we now choose in Lemma 4.6.8 a number of iterative steps n := n (o) such that
ny > 0 — 2(N + 1), so that we can incorporate J.Op®" (A_,,(U)) in the smoothing remainder R(U) in

ER;(Q;,QJ(FJITD[T, N] ® My(C). Thus, denoting Z := V,,42, we write system (4.6.37) as

8,7 = OpBW (—i [(1 + C(U))w(é) + ;G(;) +VO(U;t,2)€ + aO(U;t,x,g)} ) Z+R(U;t)Z (4.6.51)

where the symbol ag(U;t,x,§) := a(()nl)(U;t,x,f) is given in (4.6.37) with n = n1(p). Thus ao(U;t,x,£)
belongs to X' 4, [, N] and its imaginary part Imag(U;,,€) in T r 4 [r] with K7 = ny (o).

4.6.5 Reduction to constant coefficients up to smoothing operators

The goal of this section is to reduce the symbol in the para-differential operator in (4.6.51) to an z-
independent one, up to smoothing operators.

Lemma 4.6.9. Let N € Ny and 9 > 3(N + 1). Then for any n € N there is K" := K"(9,n) > 0 (one
can choose K" = K'(n1(0)) + n) such that for all K > K" + 1 there are sy > 0, r > 0 such that for
any solutionU € B g r(L;7) of (4.5.37), there exists a real-to-real invertible matrix of spectrally localized

maps F,(U) satisfying F,,(U) — 1d € ES}N;,})I/ 2 [r, N] @ M2 (C) and the following holds true:

(7) Boundedness: Each F,,(U) and its inverse are non—homogeneous maps in 8%7 g olr] @ Ma(C);

(#4) Linear symplecticity: The map F,,(U) is linearly symplectic up to homogeneity N according to Defi-
nition 4.3.7.

(7i1) Conjugation: If Z solves (4.6.51) then Z,, :== F,(U)Z solves

0 Zn = OpHlY (im(;‘)(U;t,g) + ia_g(U;t,x,§)> Zy+ R(U;t)Zy, (4.6.52)
with the r—independent symbol
n G 1 n
) (U3t,6)i= = | (14 GON(©) + 3 26 + WU+ o inlel} | 40 Uit @6

where
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* the x—independent function ((U) € Z]—"}%O,Q[r, N is defined in Lemma 4.6.7 and w(§) in (4.5.9);
o the function V(U;t) € SFx 127, N is a-independent;

* the function b1 (U;t) € 2.7:}%’272[7’, N] is x-independent;

N]]

e the symbol bé (U;t,€) € EFK ko olrs N is z—independent and its imaginary part Imb(()n)(U;tjf) is
in FK,K”,N-H[ rl;

o the symbol a,%(U;t,w,g) belongs to EF;(?I(,,+171[T, N| and its imaginary part Ima,%(U;t,x,é) is
in FK?K”Jrl,NJrl [r];

* R(U;t) is a real-to-real matrix of smoothing operators in ERKQ;,?:E?;?)[ ,N|] ® Ms(C).

Proof. We transform the equation (4.6.51) for the variable Z.
Case n = 0. Reduction to constant coefficients of order 1. We first reduce to constant coefficients the
transport term of order 1 in (4.6.51). Let @, (U) := @7 (U;t)|;=1 be the time 1-flow of

2 2

05, (U) = Opvec( iﬁé(U;t,x)lf\%)%%(U), oY (U) =1d,

1
2

where f31 is the real function in SF5 | | [r, N] defined by
2 ()

2
3VE(1+((U))

V() : /v (Ust,z)da.

81 (Ust,z) = o7 [vws) - VO Uit,)

(4.6.54)

Note that the real z-independent function V(U;t) is in E]:E—J’Q[T, N] thanks to Remark 4.2.2 (it could be
also directly verified that the linear component in U of the space average of V (3) vanishes).

By (4.3.22) the operator OpZY ( if1]€ \%> is linearly Hamiltonian. By Lemma 4.3.16, the flow

2

g, (U) is a diagonal matrix of spectrally localized maps in S}){ 10lr] ® M2(C) with its inverse, it is

2
linearly symplectic and @5, (U)*! — Id belong to ESg(NlJrll)/ *[r,N] ® My(C).

2
If Z solves equation (4.6.51), then the variable Z := O, (U)Z satisfies
2

07 = 3, (U) OpBW <—i [(1 +CU))w(&) + = =22 + Ve 4 ao} ) ®g, (U)1Z

2
+ (%123, (U) g, (U) 2 + @5, (V)R(Us1) 05, (U)7'Z.

Using the Lie expansions in (4.6.45), (4.6.48) with ® := <I>51, F := OpZW ( iﬁ;|£\%>, L = L(p) >
2

2(0 + 1) (so the integral remainders in the Lie expansions are smoothing operators in R %, ;[r, N] ®
M3 (C)), Proposition 4.2.13 and (4.6.3) we obtain

oz = op (-1 + copwie + 152 ) 2
+ Opyad (—i {V@ + §\/E<6;>$(1 + <<U)>] 5) z (4.6.55)

9

+ 0plY (=iby Ust a)l¢l? — oy (Ust,2,6)) 2 + R(U:)Z + @5, (U)R(U: )05, (U) ' 2

1
2
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where R'(U;t) belongs to YR %, | [r, N] @ M2(C) and

1

VE(+¢(U)) (255 (B1)az + (,8;)3) + 01 (4.6.56)

b1 (Ust,z) == —

1
2

is areal valued function in E}"}% 2.1 [r, N (use also the last bullets at the end of Section 4.2.1 and Proposition
4.2.15-(iv)), and we collect in a( J(Ust,2,€) all the symbols in ST% ., [r, N]. Finally by Proposition

4.2.19 we deduce that @5, (U)R(U:1) %5, (U) is in SR G r, N @ My(C). By (4.6.54) the first
order term in (4.6.55) is constant coefﬁc1ent namely

VOWst,2) + VR )aUst,2)(1+C(U) = V(T31),
and (4.6.55) reduces to

6,

oz = ot (i 1+ cOte) + 3%

V(U;1)¢ + by €|z + agl)] > Z+RU:t)Z. (4.657)

The para-differential operators of positive order in (4.6.57) are linearly Hamiltonian, whereas OpJyt (—1a(() ))

might not be. By the usual argument, we replace each homogeneous component of a(() )

version obtaining that Opvec(—iaél)) is linearly Hamiltonian up to homogeneity N, by adding another
smoothing operator.

Reduction to constant coefficients of order % The next step is to put to constant coefficients the symbol
—ib1 |§]% in system (4.6.57). Let g, (U) := @} (U;t)|=1 be the time 1-flow of
2

with its symmetrized

0,97, (U) = OpZW (iBo(Ust,x) sign&)®p, (U), oY (U) =1d,

where the real function 3y in Z]—"}%Q’l [r,N]is

2
fo(Ust,) = ma (Wit —vy i) (4.6.58)

Note that the real z-independent function b1 (U;t) is in ©F% , ,[r, N] thanks to Remark 4.2.2 (it also
2 <
follows by (4.6.56) since its linear component in U comes from Otﬁ 1 which has zero average, see (4.6.54)).

By (4.3.22), the operator Op2W (i, sign€) is linearly Hamlltonlan Hence by Lemma 4.3.16, ®3,(U) is
a diagonal matrix of spectrally localized maps in S K7270[ r]® Ma(C) with its inverse, it is linearly symplectic
and @4, (U)*! — 1d belong to £S5, [r, N] ® M3 (C).

If Z solves (4.6.57) then the variable Zy := ® 8, (U )Z solves

012 = @p,(U) Opiiy < i [(1 +C(U))w(€) + %

. 1 —
+ @317 OPrec. (—lb%IEIQ — iag ))%O(U) "2
+ (03, (U)@5,) (U) Zo + Ty (U)R(U; 1) D, (U) ™" Zo-

G(f) - V(U;t)g} ) D, (U) " Zo
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Using the Lie expansions in (4.6.45), (4.6.48) with ® := ®4,, F := OpZY (iBysign(¢)), L := L(p) large
enough so that the integral remainders in the Lie expansions are p-smoothing operators, and (4.6.3) we
obtain

ouzo = 0pl2Y (=i (14 cOete) + 34+ viwine] )z

(4.6.59)
+0pltt (i (5 VRGGua 1+ <o) - vy ) Il + 108 ) 20+ RWOZy

l

2
where a[(f) is a symbol in XTI KK’ 1 [r,N] and R(U;t) is a real-to-real matrix of smoothing operators in
XR Kg;?% (N+1)[ r, N]®@ M2(C). By (4.6.58) the symbol of order % in (4.6.59) is constant coefficient, namely

S VA(B0)a(1+ C(U)) ~ by = by (U31),
and system (4.6.59) reduces to
: 7 G(E) )
oza = 092 (=i[+ vt + 5L wvwine + vyl +ia )z

+ R(U;t)Zo

By Lemma 4.3.21, we replace each homogeneous component of Opvec(la(()Q)) so that it becomes linearly

Hamiltonian up to homogeneity N, i.e. by (4.3.31), it results that Im a(() ) belongs to EF?{ K N+1[ r,NJ.

So far we have shown that (4.6.60) becomes (4.6.52) with n = 0, putting ag := a (2) (which we consider
as a symbol in XI'%- k.5 11[mN]) and b( )= 0. We put Fo(U) := @5, (U)Pg, (U).
2

Case n ~ n + 1. The proof is by induction on n. Suppose that Z,, is a solution of system (4.6.52). Let
g, (U) := @% (U;t)|r=1 be the time 1-flow

0: 0%, (U) = Oy (i8_s_1(Ust.2,€))®F, (U), @F (U) = 1d,

where

2signé

Bon 1(Uit,z,6) = — 20, (a_n(Ust,z,8) —a_n (Ust)

1
a_Q(U;t) = %/EG_Z(U’t7CC’€)d$

2

By the inductive assumption, the symbol a_n belongs to XTI, N] and has imaginary part in

KK"41,1 [
T K.xrs1n41r]- Then the z-independent symbol a_xz belongs to ur, K’ % 41.2[r, N| thanks to Remark

_n_1
422andIma_z € . K,,+1 ~1[7]- Tt follows that the symbol 3_» 1 belongs to ¥I";%.,% | |[r, N] and
2 2 ) )

1
has imaginary part in I KN
Therefore by (4.3. 31) the operator Opyye(i8_» 1) is linearly Hamiltonian up to homogeneity N. By
2 2

Lemma 4.3.16, the flow ®x (U) is invertible, linearly symplectic up to homogeneity N and @, (U)*! —1d
belong to ZS?(’K,,JFLI[T, N]® M3(C).
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If Z,, solves (4.6.52) then the variable Z,,y; := ®p, (U)Z,, solves
875271-‘1-1 = (I)Fn(U) Opvec <

+ (0:®F, (U))®F, (U

D (Ust,6) + ia_ ><1>Fn<U>1Zn+1

" Zn 4+ Op, (U)RU; )5, (U) ™ Znga -

l\D\OJ

\_/

Using the Lie expansions in (4.6.45), (4.6.48) with & := &5 , F := Op5W (w N ;) with (L := L(o)
2

large enough), the last bullets at the end of Section 4.2.1 and Proposition 4.2.15- (w) (4.6.53), (4.6.3), we
obtain that

NJ\)—'

2
+Opvec ( _%_7 Z +R(U,t)Zn+1

n 3 1.
O1Zns1 = Op2 () 41 [SVR(y )+ )il signe + o] ) Zu
1 n+1
2
(4661)0 BW <1m(

n)
Pyec

+ia_n —l—ia_% 1> nt1 + R(U;t) Zy41 (4.6.62)

3
3 2

1

where we collect in a_n_1 all the symbols in )] A KKl

r,N], and R(U;t) is a smoothing opera-

tor in ¥R KQ;?,%J;I)[ r,N] ® My(C). By Lemma 4.3.21, we replace each homogeneous component of
Opy e (1a_£_7) so that it is linearly Hamiltonian up to homogeneity /V; which, by (4.3.31), is equivalent to
2 2
_n_1

assume that the imaginary part Im a_n_1 is a symbolin I' 52 o 4[]

System (4.6.62) has the form (4.6.52) at step n + 1 with b(()nH) = b(()n) +a_n (hence m(gnH) =

(") +a_n)and K”(n+1) == K"(n) + 1.

* The thesis follows with Fot1(U) := @p, (U)F,(U). The proof of Lemma 4.6.9 is complete. O

Proof of Proposition 4.6.1. We now choose in Lemma 4.6.9 a number n := ng(p) of iterative steps

satisfying n2(0) > 2(0—3(IN+1)) so that we incorporate Op e (ia— » ) in the smoothing remainder R(U; ),
which belongs to ER;f;iﬁtl) [r, N|@ M2(C) with K" = n1(0)+n2(0) > 30—8(N+1), withn; (o) fixed

above (4.6.51). Denoting W := Z,,, system (4.6.52) has the form (4.6.1) with by (U;t,&) := —b(()m)(U;t,f)
in (4.6.2) and taking as K’ := K” + 1 = ny(0) + n2(0) + 1 (this proves Remark 4.6.3). The variable W
can be written as W = B(U;t)U where

B(U;t) := Fny (U) 0 @y (U) 0 W2 (U) 0 W1 (U) 0 G(U)

and G(U) is the map of Lemma 4.6.4, ¥;(U) is the map of Lemma 4.6.5, U5(U) is the map of Lemma
4.6.7, ®,,(U) is the map of Lemma 4.6.8 with number of steps n; := ni(p) and F,,(U) is the map of
Lemma 4.6.9 with number of steps ne := na(g). Since

G(U)—1d, W (U)—1d € 8% o1[r,N] @ M3(C), @, (U) —1d € B8 v 1 [r,N] ® M2(C)
Ua(U) —1d € SSX L[N © M2(C),  Fuy(U) —1d € 8502 [r, N @ Ma(C),

we deduce by Proposition 4.2.19 that B(U;t) — Id is a real-to-real matrix of spectrally localized maps in

ES;(g,Jrll) L1, N]® M2 (C). In addition B(U;) is a spectrally localized map in SK K10 N]® M3 (C)
with its inverse, as each map F,,, (U), ®,, (U), V2(U), ¥1(U), G(U) separately. Finally B(U;t) is linearly
symplectic up to homogeneity NV, being the composition of linearly symplectic maps up to homogeneity V.

This completes the proof of Proposition 4.6.1.
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4.7 Hamiltonian Birkhoff normal form

The main result of this section is Proposition 4.7.12 which transforms the water waves equations in Hamil-
tonian Birkhoff normal form. This is required to ensure that the life span of the solutions is of order e~V ~1
with N € N. So from now on we take N € N.

In Proposition 4.6.1 we have conjugated the water waves Hamiltonian system (4.5.37) into (4.6.1), by
applying the transformation W = B(U;¢)U which is just linearly symplectic up to homogeneity N. Thus
the transformed system (4.6.1) is not Hamiltonian anymore. The first goal of this section is to construct
a nearby transformation which is symplectic up to homogeneity N, according to Definition 4.3.11, thus
obtaining a Hamiltonian system up to homogeneity IV, according to Definition 4.3.10.

4.7.1 Hamiltonian correction up to homogeneity N

We first prove the following abstract result, which is a direct consequence of Theorem 4.4.1.

Theorem 4.7.1. Let p,N € Nwithp < N, K,K' €e Ngwith K' +1 < K, r > 0. Let Z = My(U;t)U
with Mo(U;t) € MY 1 o[r] @ Ma(C) as in (4.3.35). Assume that Z(t) solves a Hamiltonian system up
to homogeneity N, according to Definition 4.3.10. Consider

o(Z):=B(Z;t)Z 4.7.1)
where

* B(Z;t) — Id is a matrix of spectrally localized maps in

Sk k1 pr, N] @ Ma(C) if Mo(U;t) =1d,

b 3 : 4.7.2)
ESk0p[T, N] @ Mo(C),Vr >0 otherwise.

B(Z;t) —1d € {

* B(Z;t) is linearly symplectic up to homogeneity N, according to Definition 4.3.7.

Then there exists a real-to-real matrix of pluri-homogeneous smoothing operators R<n(-) in E;,V 7%(; °®
My (C), for any o > 0, such that the non-linear map

Zy = (Id + Rey(9(2))2(2)

is symplectic up to homogeneity N (Definition 4.3.11) and thus Z solves a system which is Hamiltonian
up to homogeneity N.

Proof. We decompose B(Z;t) = B<y(Z) + Bsn(Z;t) where B<n(Z) := P<n[B(Z;t)]. Note that
B<y(Z)—Idisin E;,Vg‘q ®@ M3(C) and Bs v (Z;t) isin Sk k7 n+1[r] ® M2(C). Since B(Z;t) is linearly
symplectic up to homogeneity N, its pluri-homogeneous component B« (Z) is linearly symplectic up to
homogeneity N as well. Then Theorem 4.4.1 applied to @<y (2) 5:_B§ ~(Z)Z implies the existence
of pluri-homogeneous smoothing operators R<y(-) in Efov ﬁq_ ¢ ® My(C) for any ¢ > 0, such that the
nonlinear map Dy (Z) := (Id + R<n(P<n(Z)))P<n(Z) is symplectic up to homogeneity N. We then
write
D(Z;t) := (Id + R<n(®(2)))®(Z) = Dn(Z) + Msn(Z30)Z

where, using Proposition 4.2.15-(éi) and the first bullet after Definition 4.2.5,
Mg i My (C if My(U;t) =1d,
Moy (Zit)ye 37 8 vN“V[r]@ 2(C) ] it Mo(Ust)
Mg on41[F] @ Ma(C), V¥ >0 otherwise,

showing that D(Z;t) is symplectic up to homogeneity N as well. Then Lemma 4.3.15 implies the thesis.
O
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The first application of Theorem 4.7.1 is to provide a symplectic correction of the map ®(U) :=
B(U;t)U of Proposition 4.6.1 and to conjugate the Hamiltonian system (4.5.37) into system (4.7.4), which
is Hamiltonian up to homogeneity N.

Proposition 4.7.2 (Hamiltonian reduction up to smoothing operators). Let N € N and o > ¢(N) :=
3(N+1)+ 3(N+1)% Thenfor any K > K' (fixed in Proposition 4.6.1) there is so > 0,7 > 0, such
that for any solutlon U e BX S0, r(I57) of (4.5.37), there exists a real-to-real matrix of pluri-homogeneous

smoothing operators R(U) in E{VR(;QI ® My(C) for any o' > 0, such that defining
Zo = (Id+ R(®(U)))®(U), @U):=B(U;t)U, (4.7.3)

where B(U;t) is the real-to-real matrix of spectrally localized maps defined in Proposition 4.6.1, the fol-
lowing holds true:

(7) Symplecticity: The non-linear map in (4.7.3) is symplectic up to homogeneity N according to Definition
4.3.11.

(i) Conjugation: the variable Zy solves the Hamiltonian system up to homogeneity N (cfr. Definition
4.3.10)

0uZy = ~iQUD) Zo + Opl2Y (~ilmy)<n(Z038) — i(my)>n (U3,6) ) Zo
+R§N(Z0)Zo+R>N(U,t)U

(4.7.4)

where

* Q(D) is the diagonal matrix of Fourier multipliers defined in (4.5.10);

3
* (m ms )<~ (Z0;€) is a real valued symbol, independent of x, in Y T'2 ;

3

KK N+1[ r] with imaginary

* (m: ) ~(U;t,€) is a non—-homogeneous symbol, independent of x, in I'2
partlm( %)>N(U t,€) in FKK' N+1[ b

* R<n(Zy) is a real-to-real matrix of smoothing operators in E{Vﬁq_g—w(m ® My (C);

—o+¢(N)

* Ron(Ust) is a real-to-real matrix of non-homogeneous smoothing operators in R~y +1[ | ®

M,(C).

(iii) Boundedness: The variable Zy = My(U;t)U with My (U;t) € MY ki —1,0lr] ® M2(C) and for any

s > so, forall 0 < r < ro(s) small enough, forany U € BE (I,r)n CI (I; H*(T,C?)), there is a constant
C := Cs x > 0 such that, forallk = 0,..., K — K',

CHU ks < 11 Zolli,s < ClUlw,s - (4.7.5)

Proof. We construct the symplectic corrector to the map W := ®(U) = B(U;t)U of Proposition 4.6.1
by Theorem 4.7.1. Let us check its assumptions. By Lemma 4.5.5, the function U solves the Hamiltonian
system (4.5.37). By Proposition 4.6.1, B(U;t) — Id is a spectrally localized map in ES;’{(K,Jrll) [Nl ®
M3 (C) and B(U;t) is linearly symplectic up to homogeneity N. So Theorem 4.7.1 (in the case MO(U t) =
Id) implies the existence of a matrix of pluri-homogeneous smoothing operators R(W) in XV ﬁ; d ®

M (C), for any ¢’ > 0, such that the variable

Zo == (Id + R(®(U)))®(U) = (Id + R(W))W (4.7.6)
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solves a system which is Hamiltonian up to homogeneity N. We now prove that such system has the form
(4.7.4). We will compute it by transforming system (4.6.1) solved by W (¢) under the change of variable
Zy = (Id+R(W))W, exploiting that R(W) is a pluri-homogeneous smoothing operator. We first substitute
the variable U with the variable W in the homogeneous components up to degree NV of both the symbols and
the smoothing operator in (4.6.1). We first use Lemma A.0.1 (with My(U;t) = Id and p = 1) to construct
an approximate inverse of W = ®(U), getting

U= \IJSN(W) + M>N(U;t)U, \I/<N(W) =W+ S<N(W)W, 4.7.7)

(N+1)N 3(N+1)?

g 3
where S<n (W) € ©V¥S? ® M3(C) and M- n(Ust) is a matrix of operators in My, v [r] ®

M;(C). Next we substitute (4.7.7) in the homogeneous components of order < N in system (4.6.1) of
Opf! (imy (Ust,8)) = OPEY (imy)<n (V) +i(my)>n(Ust6)), R(U:t) = Ren(U) + Ron(Ust).

and substitute W = B(U;t)U in the term R~ n(U;t)W. By (4.6.1), (4.6.2), Lemma A.0.2 (with Z ~ U,

m/ ~ 3, m~» 2(N +1)?and o~ o — 3(N + 1)) and Proposition 4.2.15 (i) we obtain

W = —iQ(D)W + OpBY (—i(ﬁ%)SN(W§§) - i(ﬁ%)>N(U§t75)>W

- - (4.7.8)
+ RSN(W)W + R>N(U;t)U

where X
o (ms)<n(W;€) is a real valued symbol, independent of z, in ©YT'2;
3)<
3
12( KN+
of the old non-homogeneous symbol P>y 1(—m3(U;t,€)) in (4.6.1)-(4.6.2) and a purely real correction
- 2

o (m3)sn(Ust,€) is a non-homogeneous symbol, independent of z, in I' [r] given by the sum
2

coming from formula (A.0.7) (cfr. aiN) hence its imaginary part Im (ﬁ% )sn(U;t,€) is in F?QK,NH [r];
(N)

o ES ~ (W) is a matrix of pluri-homogeneous smoothing operators in ¥4 75; e+eY) & My (C) with ¢(N) =
3(N+1)+ 3(N +1)3%
e R~ (U;t) is a matrix of non—homogeneous smoothing operators in R;(g;c(]@rl [r] ® M3(C).

We finally conjugate system (4.7.8) under the change of variable Zy = W + R(W)W defined in (4.7.6).
Note that system (4.7.8) fulfills Assumption (A) at page 215 with p ~» 1, with W(¢t) replacing Z(t),
My (U;t) ~ B(U;t) and o ~ o — ¢(N). Then we apply Lemma A.0.5 with the smoothing perturbation
of the identity defined in (4.7.6) (choosing also ¢ := o + %) and we deduce that Z(t) satisfies system
(4.7.4). Ttem (ii1) follows from (4.7.3), the fact that B(U;t) € S?(,K’—l,o[r] ® M3z (C) (Proposition 4.6.1
(1)), the fact that Id + R(Z) € MY ,[¥] ® M3(C) for any # > 0 (by Lemma 4.2.8 and since R(Z) is
pluri-homogeneous) and by Propositfoﬁ 4.2.15 items (7ii) (with K’ ~» K’ — 1) and (). Finally estimate
(4.7.5) follows combining also (4.2.40) and the estimate below (4.2.72) for B(U;t) and B(U;¢) !, O

4.7.2 Super action preserving symbols and Hamiltonians

In this section we define the special class of “super—action preserving” SAP homogeneous symbols and
Hamiltonians which will appear in the Birkhoff normal form reduction of the next Section 4.7.3.

Definition 4.7.3. (SAP multi-index) A multi-index (o, 3) € Ng\{o} X N%\{O} is super action preserving if

anp+a_p=0,+0_n, Vn € N. 4.7.9)
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A super action preserving multi-index («, 8) satisfies |a| = |3| where [af := ;7 (3 - If a multi-

index («,f3) € Ng;\{o} X NOZ\{O} is not super action preserving, then the set

‘ﬁ(a,B) = {n €EN: an+a—n_ﬂn_5—n 7&0} (4710)
is not empty and, since N(a, 3) C {n € N : ay, + a_y, + B + B_pn # 0}, its cardinality satisfies
N, B)| < |a+ B] = |af + 18] (4.7.11)

Definition 4.7.4. (SAP monomial) Let p € N. Given (7,6) = (ja;0a)a=1,..p € (Z\ {0})P x {£}P we
define the multi-index (o, B) € Ng\{o} X Ng\{o} with components, for any k € Z \ {0},

a(7,0) = #{CL =1,...,p : (Ja,0a) = (k7+)}7
Br(7,5) == #{a =1,...,p : (Ja,0a) = (k7_)}

. F g . . . . . .o
We say that a monomial of the form z;l = z}’ll . sz” is super-action preserving if the associated multi-index

(o, B) = (a(7,5),B8(],7)) is super-action preserving according to Definition 4.7.3.

(4.7.12)

We now introduce the subset G,, of the indexes of T, defined in (4.2.10) composed by super-action
preserving indexes

Sy = {(j, 7)€%, (a(}),5),8(7,0)) € N%\{O} X Ng\{o} in (4.7.12) are super action preserving}.
(4.7.13)
We remark that the multi-index («, 3) associated to (7,6) € (Z \ {0} x {£})? as in (4.7.12) satisfies
la + B = pand

22 =27 = H z;‘fz*jﬁa' = H 20m O ng g Bon (4.7.14)
jezZ\{0} neN
It turns out
7 Qy(k) = o1, (k) + -+ 0, () = (a = B) - Qr) = > (o — Bu)w(k),  (4.7.15)
keZ\{0}
where we denote
Q(E) = {Qj (/i) }jEZ\{O}7 Qj(/ﬂ',) = (le (H), e ,ij (/i)) . (4.7.16)
Remark 4.7.5. In view of (4.7.14) and (4.7.9) a super action monomial has either the integrable form
|zj, .. |2, |* or the one described in (4.1.14) (with not necessarily distinct indexes ji,. .., jm)-

Remark 4.7.6. If the monomial z;f is super—action preserving then, for any j € Z \ {0}, the monomial

z;f 2jZ; is super-action preserving as well.
For any n € N we define the super action
— 2 2
In = |zn|” + 220 (4.7.17)

Lemma 4.7.7. The Poisson bracket between a monomial z;f and a super-action J,, n € N, defined in
4.7.17), is

{Z;‘j‘a Jn} = 1(ﬁn + Bon —ap — Olfn) Z;'):a (4.7.18)
where (o, ) = (a(7,7),5(7,0)) is the multi-index defined in (4.7.12). In particular a super action preserv-
ing monomial zg (according to Definition 4.7.4) Poisson commutes with any super action Jy, n € N.
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Proof. We write the monomial z;f = 2927 asin (4.7.14). Then, for any n € Nand j, k € Z \ {0}, one has

—

&\ ) ajflflg. ak—ﬁk F\ __ . a]’f,ﬁ'*l akiﬂk
0:,(27) = a2y [[ v a™, 05(27) = 62572 SR

k#j k#j
- L 4.7.19)
aszn = zj j - %Jn == Z] j -
0 j#=+n, 0 j#=+n.
Then by (4.3.29) and (4.7.19) we deduce (4.7.18). L]

We now define a super action preserving Hamiltonian.

Definition 4.7.8. (SAP Hamiltonian) Ler p € Ny. A (p + 2)-homogeneous super action preserving Hamil-
tonian HEY) (Z) is a real function of the form

p+2
(sAP) — 1 Z Opt2 Op+2
Hp+2 (Z) - p+2 Hj'p+2 pr+2
(Tp+2,0p+2)EGp 2

where G, 2 is defined as in (4.7.13). A pluri-homogeneous super action preserving Hamiltonian is a finite
sum of homogeneous super action preserving Hamiltonians. A Hamiltonian vector field is super action
preserving if it is generated by a super action preserving Hamiltonian.

We now define a super action preserving symbol.
Definition 4.7.9. (SAP symbol) Let p € Ny and m € R. For p > 1 a real valued, p—-homogeneous super
action preserving symbol of order m is a symbol mz(,SAP) (Z;€) in I')', independent of x, of the form
m(3*®)(Z;¢) = MP (€)= (4.7.20)
(7p0p)€Sp

For p = 0 we say that any symbol in fgl is super action preserving. A pluri-homogeneous super action
preserving symbol is a finite sum of homogeneous super action preserving symbols.

Remark 4.7.10. A super action preserving symbol has even degree p of homogeneity. Indeed, if z;;p is
super- action preserving then («, 3) defined in (4.7.12) satisfies |o| = || and p = |a + | = 2|a] is even.

Given a super action preserving symbol we associate a super action preserving Hamiltonian according
to the following lemma.

Lemma 4.7.11. Letp € Ng, m € R. If (m(SAP))p(Z ;&) is a p~homogeneous super action preserving symbol
in L'} according to Definition 4.7.9 then

1) (2) = Re(0p™ (@),(2:6))2.7)

is a (p + 2)—-homogeneous super action preserving Hamiltonian according to Definition 4.7.8.
Proof. By the expression (4.7.20) and (4.2.23) we have
BW SAP . 1 11— - - . Fp/ o\ O —
/TOp (ml() )(Z7§)>H0 z-Ilgzde = Z Z Xp(jp,j)Mj»pp(j)Z]-»pijZ]
JEZ\{0} (3p,0p)EGp

where G, is defined in (4.7.13). Then Remark 4.7.6 implies the thesis. For p = 0 the Hamiltonian H. éSAP) (Z)
is a series of integrable monomials z;Zz;. The proof of the lemma is complete. O
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4.7.3 Birkhoff normal form reduction

In this section we finally transform system (4.7.4) into its Hamiltonian Birkhoff normal form, up to homo-
geneity N.

Proposition 4.7.12. (Hamiltonian Birkhoff normal form) Ler N € N. Assume that, for any value of the
gravity g > 0, vorticity v € R and depth h € (0,+00], the surface tension coefficient k is outside the zero
measure set K C (0,+00) defined in Theorem B.0.1.

Then there exists o (depending on N) such that, for any o > o, for any K > K'(p) (defined in Propo-
sition 4.6.1), there exists so > 0 such that, for any s > s there is ro = ro(s) > 0 such that for all
0 < r < ro(s) small enough, and any solution U € BK(I r) N CK (I; H*(T;C?)) of the water waves
system (4.5.37), there exists a non-linear map Fpne(Zo) such that:

(1) Simpleticity: Fus(Z0) is symplectic up to homogeneity N (Definition 4.3.11);

(74) Conjugation: If Zy solves the system (4.7.4) then the variable Z := Fyne(Zy) solves the Hamiltonian
system up to homogeneity N (cfr. Definition 4.3.10)

07 = —iQUD)Z + JCVHgSAP)( Z) + J.VHS (7)
4.7.21)
+Opvec < ( %)>N(U7ta€))Z+R>N(U,t)U

where
e H éSAP) (Z) is the super action preserving Hamiltonian
2

Re <OpBW <(m(§AP))§N(Z; g)) Z’E> i

L}

~3
with a pluri homogeneous super action preserving symbol (m(;AP))S ~N(Z;€) in XYTZ, according to
2
Definition 4.7.9;

» J.VH (SAP)( Z) is a super action preserving, Hamiltonian, smoothing vector field in EN +1%q ere

Definitions 4.2.25 and 4.7.8);

(see

. (m3 )>n (U;t,€) is a non—homogeneous symbol in F
in F

K N+1[ r| with imaginarypartIm(m%)>N(U;t,§)

we vl

—oto

* Ron(U;t) is a real-to-real matrix of non-homogeneous smoothing operators in RK KN Jr1[ r] ®

Ms(C).

(73i) Boundedness: there exists C' := Cs g > 0 such that for all 0 < k < K and any Z, € Bg([;r) N
CK (I, H*(T,C?)) one has

C™ M Zollk,s < [1Faz(Zo) ks < Cll Zolln,s- (4.7.22)

and
CHUM g < N1ZW) g <CNU@) g, VEEL. (4.7.23)



4.7. HAMILTONIAN BIRKHOFF NORMAL FORM 197

Proof. We divide the proof in IV steps. At the p-th step, 1 < p < N, we reduce the p~homogeneous
component of the Hamiltonian vector field which appears in the equation to its super action preserving part,
up to higher homogeneity terms.

Step 1: Elimination of the quadratic smoothing remainder in equation (4.7.4).

-3

The x-independent symbol (ms )<y (Zo;€) in (4.7.4) belongs to £0'T'¢ and the only quadratic component
3)<

of the vector field in (4.7.4) is R1(Zy)Zp where

R1(Z0) := Pi[Ren(Z0)] € RN @ My(C) . (4.7.24)

Since system (4.7.4) is Hamiltonian up to homogeneity N, R;(Zy)Zp is a Hamiltonian vector field in
X, +e(N) that we expand in Fourier coordinates as in (4.2.122)
(R1(20)Z0);, = > X072 (20)71(20) 2 (4.7.25)
(J1.d2,k.01,02,—0)€T3

In order to remove R1(Zy)Zy from equation (4.7.4) we perform the change of variable Z; = F(l) (Zo)

where F(gl)v(ZO) is the time 1-approximate flow, given by Lemma 4.2.28, generated by the smoothing vector

field

@ER= Y G 4726
(J1,42,k,01,02,—0)€T3
with
0 if (j17j2>k7U17027_U) %Sg
G192, X1,02,0 4.1.27
J.g2:k duda.k if (j17j27k70-170-27_o-) € 3:3' ( )

(019, (k) + 020, (k) — 0Q(k))

Lemma 4.7.13. Let k € (0,+00) \ K. Then the vector field G1(Zy)Zy in (4.7.26), (4.7.27) is a well defined
Hamiltonian vector field in X5 ° with ¢’ := o — ¢(N) — 7 and where T is defined in Theorem B.0.1.

Proof. We claim that for any x € (0,+00) \ K there exist 7, > 0 such that
v

0194, (k) + 0204, (k) — Qi (k)| > E ’
01925, (k) + 028, () (5)] max{|j1|, |7, |k[}7

V(jl,jQ,k,Ul,UQ,—J) 613 (4728)

Indeed, to any (ji,j2,k,01,09,—0) we associate the multi-index («, () as in (4.7.12) whose length is
|a+ 5| = 3 and satisfies 01, (k) + 029, (k) —0Q (k) = (a—B) - (k) by (4.7.15). Having length 3, by
Remark 4.7.10, the multi-index («, 3) is not super—action preserving and therefore Theorem B.0.1 implies
(4.7.28). In view of (4.7.28) the coefficients in (4.7.27) are well defined.

Next we show that G1(Zp)Zy is a vector field in .’%2_9/. As R1(Zy)Zy belongs to %;ﬁc(m, by Lemma
4.2.26 the coefficients X;lj’fka in (4.7.25) satisfy the symmetric and reality properties (4.2.124), (4.2.125)
and the estimate: for some p > 0, C' > 0,

XoLo0 maxa{|j1], [j2| }*

’ \V/ .a.aka ) [ E‘I . 4729
Jr.g2.k = max{|j1|’|j2|}g—c(zv) (J1,72,k,01,02,—0) 3 ( )

Hence also the coefficients G‘”’U2 7 in (4.7.27) fulfill the symmetric, reality properties (4.2.124), (4.2.125)

as well as X ‘71’”2’ Moreover usmg (4.7.29), (4.7.28) and the momentum relation ok = o1j1 + 0272, they
also satisfy
‘Gm 02, cr‘ max?{‘jl‘vuﬂ}#
J1,g2,k

max{|ju], 2| }o-N) =7
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for a new constant C' > 0 (depending on v). Then Lemma 4.2.26 implies that G1(Zy)Z, belongs to %2_ ¢
with o' := 0 — ¢(N) — 7.

Finally we show that G1(Zy)Z, is Hamiltonian. Recall that R1(Zy)Zy in (4.7.25) is a Hamiltonian
vector field whose Hamiltonian function Hg, (Zy) is, thanks to Lemma 4.3.5,

HuZ) =3 Y S G GoRGoR s HIST = o X
(41,J2,3,01,02,03)€T3
(4.7.30)
Then the coefficients defined for o151 + 0272 + 0353 = 0 by
(4.7.27),(4.7.30) [Hr, )5 0050
[He, |T0720% o= —iggGILoa o T m 2 et (4.7.31)
1491,32,93 J1,J2,73 I(Ulﬁjl(ﬁ) +O.2Qj2(/€) +039j3(’f))
satisfy the symmetric, reality properties (4.2.135), (4.2.134) as well as the coefficients [Hp, |7/ 7%". Then
Lemma 4.3.5 implies that G1(Zp) Zy is the Hamiltonian vector field generated by the Hamiltonian H¢, with

coefficients defined in (4.7.31). ]

We now conjugate system (4.7.4) by the approximate time 1-flow F(<1])V(Zo) generated by G1(Z)Z pro-
vided by Lemma 4.2.28, which has the form B

2y :=FU\(Zo) = Zo + F<n(Z0)Zo, Fen(Zo) € TVR;¢ @ My(C). (4.7.32)

Since G1(Z)Z is a Hamiltonian vector field, by Lemma 4.3.14 the approximate flow F(<11)\/ is symplectic up
to homogeneity N. Applying Lemma 4.3.15 (with Z ~» Zo, W ~» Z; and My(U;t) € M?(,K/—l,o[r] ®
M3 (C)), we obtain that the variable Z; solves a system which is Hamiltonian up to homogeneity N. We
compute it using Lemma A.0.5. Its assumption (A) at page 215 holds since Zj solves (4.7.4) (with a<y =
_(mg>§N’ K’ = K'and g~ 0—¢(N)). Then Lemma A.0.5 (with W ~ Zy, p = 1and ¢’ = p—c(N)—7)

implies that the variable Z; solves

021 = —iUD) 2y + Op (—ilmy) 2y (Z138) — ilmy) Ly (U3,6) ) 20
+ [Ri(Z1) + GY (Z1)) Zy + RL4(Z1) Z1 + RE N (UsHU

(4.7.33)

where

.3
e (m3 )iN(Zl;f) is a real valued symbol, independent of z, in Eévl“g ;
2 —
3
5

K.k’ N4 7] with imag-

e (m3 )i ~ (U;t,€) is a non-homogeneous real valued symbol, independent of z, in I’
2
inary part Im(m%)>N(U;t,£) in F?( I N+1[r];

~_ A3
e R1(Z) is defined in (4.7.24) and G (Z1)Z1 € X, 2 has Fourier expansion, by (A.0.51) and (4.7.26),

(GT(21)71)5 = Z —i(019, (k) + 029, (k) — O'Qk(l‘i))G;l”]Z%}:(Zl)?ll (z1)77;  (47.34)
(41,52,k,01,02,—0)ET3
o R;Q(Zl) is a matrix of pluri-homogeneous smoothing operators in Eév 7%; ete® ® My (C) where
0(2) == c(N)+7+3; (4.7.35)
. Ri ~ (Ust) is a matrix of non-homogeneous smoothing operators in R;f;g(]arl [r] ® Ma(C).
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By (4.7.25), (4.7.34), (4.7.27) we have

Ri(Z1)Z1+ G (21)Z, =0. (4.7.36)

Step p > 2: We claim the following inductive statements hold true. Let Zj solve (4.7.4). Then for any p > 2

(S0),, There is a transformation F. ép N 2 (Zo), symplectic up to homogeneity N, fulfilling (iii) of Proposition
4.7.12 (with C = 2 x 8% in (4.7.22)) such that the variable Z, = FEy " (Zy) has the form Z,_1 =
(p 1)(U t)U with M(p 1)(U t) € MKK’ 1.0[r1 ® M2(C) and solves the system
0iZy_q = —iQUD)Zp_1 + JCV(HéSAP)) it Zp ) + IV (HET) L (Z,1)
+ Opvec ( i(m%)p(zpﬂ;f) - i(m%)2p+1(zp—1§f))zp—l + R>p(Zp-1)Zp—1
+oplY ( i(ms)>n(U;t 5)) 1+ Ron(U;t)U (4.7.37)

M\w

where

(Sl)p (H(SAP)

s )Sp+1(Zp_1) is the real valued Hamiltonian

(HéSAP)) gpﬂ(zp—l) :=Re <OPBW <( (SSAP))<:0—1(ZP—1§§)> Zp—l’zp—1>Lg (4.7.38)
with a super action preserving symbol <m(%SAP)>§p—1(Zp—1;§) in Zg_1f§ (see Definition 4.7.9); its Hamil-
tonian vector field is given by

TV (H) 1 (Zpo1) = 0D (—1<m(f "’><p—1<Zp—1;£)) vt + Rep 1(Zp1)Zp1 (47.39)
with R<,,—1(Zp-1) € 25—17€—g’ ® Mo(C) for any ¢’ > 0 (see Lemma 4.3.19). o)
—o+o

(82), J.V (H (_S: P)) <pt1 (Zp—1) is a super action preserving, Hamiltonian, smoothing vector field in ¥4 if ,
where

o(1) :==¢(N), olp) :=olp—1)+7+ %, p>2; (4.7.40)

3
(S3), (m ) (Zp 1;€) and (m% )>p+1(Zp—1;&) are real valued symbols, independent of x, respectively in I'j
and Ep +1F2 ;

(S4), R>p(Z,_1) is a smoothing operator in ENﬁq_Qﬂ)(p)

® Ms(C);
(S5), (m3 Vs~ (U;t, &) is a non—homogeneous symbol in F
inTY

KK N+1[ 7] with imaginary part Im (m%)>N(U;t,§)

KK’ N+1[ rl;
(86), R~ n(U;t) is a matrix of non—homogeneous smoothing operators in R;(fzrg’gill [r] ® Ma(C);
(S7),, the system (4.7.37) is Hamiltonian up to homogeneity N.

Note that for p = N + 1, system (4.7.37) has the claimed form in (4.7.21) with Z = Z, Hamiltonians

(SAP) = (HéSAP))SNH, HES;‘P) = (H(f’éuj))SNJr2 and g := o(N + 1), thus proving Proposition 4.7.12.

We now prove the inductive statements (S0),-(S7),,.



200
Initialization: case p = 2. We set . g) = Fg])\, defined in (4.7.32) which is symplectic up to homo-

geneity N. Thanks to (4.2.40), the non—linear map F. gz)v satisfies (i77) of Proposition 4.7.12. The system

(4.7.33) with Ry (Z1)Z1 + G (Z1)Z1 = 0 is (4.7.37) with Hamiltonians (HS*) _, = (H®) _, =0,
g3 < <

and symbols (m%)g = Pz[(m%);v}, (m%)zg = Pzg[(m%);v] and (m%)>N = (m%)iN Furthermore

Z = M(()l)(U;t)U with M[()l)(U;t) e MY i | ,[r] ® M3(C) because the map in (4.7.32) has the form

FUN(Zo) = Mo(Zo) Zo with Mo(Zg) € MY o[r] ® Ms(C) thanks to Lemma 4.2.8, Proposition 4.7.2-
(#4i) and Proposition 4.2.15 (i) (with K’ ~» K’ — 1). Thus (S0)2-(S7)2 are satisfied.

Iteration: reduction of the p~homogenous symbol. Suppose (S0),,-(S7), hold true. The goal of this step

~3
is to reduce the real valued, z-independent, p-homogenous symbol —i(ms ), (Z,—1;§) € I'y in (4.7.37). We
2
Fourier expand as in (4.2.19)

ma)p(Zp 1) = > mP(©) (50T, m 7€) =0l (). (4.7.41)
(Tp,0p)ETp

to its super action preserving normal form. We conjugate (4.7.37) under the change of variable
W= ®y(Zp1) =Gy (Zp-1)Zp1 (4.7.42)

where lep (Z,_1) is the time 1-linear flow generated by OpZY (ig,) as in (4.3.56), where g,, is the Fourier
multiplier

. L 3
9p(Zp-136) == Y GL(E)(zp-1)7 €T3 (4.7.43)
(7p,0p)ESp
with coefficients
0 if (j},,c?p) €6,
G (&) = n’” (€) (4.7.44)
o — e if(3,,5p) € &y,
—la'p . ij (H)

where the super action set G,, is defined in (4.7.13) and ij (k) is the frequency vector in (4.7.16).
Lemma 4.7.14. Let k € (0,+00) \ K. The function g,(Z,—1;§) in (4.7.43), (4.7.44) is a well defined,
3

x-independent, real valued, p-homogeneous symbol in fg .

Proof. We claim that for any x € (0,+00) \ K there exist 7, > 0 such that
v

G- Q= (K)] > . . ’
1% -5 > T T

Jp

V() € 6, . (4.7.45)

Indeed, to any (J,,5p) we associate the multi-index («, 5) as in (4.7.12) whose length is |o + 3| = p and
satisfies &) - Q7 (k) = (@ — ) - Q(k) by (4.7.15). Recalling (4.7.13), the vector (Jp,Fp) & 6, if and only
if (o, 8) is not super action-preserving and therefore Theorem B.0.1 implies (4.7.45). Note also that, by
Remark 4.7.10, if p is odd, there are not super-action preserving indexes, i.e. &, = (.

In view of (4.7.45) the coefficients in (4.7.44) are well defined and, since the coefficients m;f: (&) of the
symbol (m s )p fulfill (4.2.20) (with m = %), then the coefficients G;T:: (£) in (4.7.44) satisfy (4.2.20) as well

~3
(with p replaced by p + 7), implying that the Fourier multiplier g, in (4.7.43) belongs to I';. Finally g, is
real because the coefficients G;: (€) in (4.7.44) satisfy (4.2.21) as rn;;’(g). d
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By Lemma 4.3.17 the flow map (4.7.42) is well defined and, by (4.3.57) for || Zp,—1]|r,s, < T < 70(s,K)
small enough,

“HZp-1llks < 12p(Zp-1)llks < 21 Zp-1llrs, Yhk=0,....K. (4.7.46)

In order to transform (4.7.37) under the change of variable (4.7.42) we use Lemma A.0.4. Its assumption

(A) at page 215 holds since Z,,_; solves (4.7.37) which, in view of (4.7.39) and (S2),, has the form (A.0.21)

(With Z = Z,_1, a<y = —(m(f“’))<p 1= (m3)p — (m3)>p11, 0~ 0 — o(p) and K’ = K.

Then Lemma A.0.4 1mphes that the Varlable w deﬁned in (4.7.42) solves

W) + .V (HE)_ (W)

<p+1 Sp+1(
+ OpE (=il(my)p(W3€) — g (W3€)] — i(my

+ OpfY (=ilmy) 2 (Ust, ) )W + RE, (Ust)U

W = —iQ(D)W + J.V (H™)
2

)L pa1 (W 5))W + R, (W)W (4.7.47)

where s
o g (W;€) € T} is given in (A.0.27);
3
(m3 )J;p 11 (W;€) is areal valued symbol, independent of =, in EN 1 Lqs

. (m3)> ~(U;t,€) is a non-homogeneous symbol independent of x in I‘

Im (m%)>N(Uat7§) m F(])( K’ N+1[ ]

KK N +1[ r] with imaginary part

. REP(W) is a matrix of pluri-homogeneous smoothing operators in EN 72 otelplrele) ® My(C) for a
certain ¢(N,p) > 0;
e RY \(U;t) is a matrix of non-homogeneous smoothing operators in RI—(ZTAT%)J:C(N@) [r] @ M2(C).

Note that the Hamiltonian part of degree of homogeneity < p in (4.7.47) has been unchanged with
respect to (4.7.37), thanks to the first identity in (A.0.26) and (A.0.28). In view of (A.0.27), (4.7.41),
(4.7.44), the symbol of homogeneity p in (4.7.47) reduces to its super action component

my)p(W:6) =g (W:6) = @), (W:8) = D0 mgr()wi?
(7p,0p) €6

where the super action set G,, is defined in (4.7.13), and then (4.7.47) becomes

oW = —iQ(D)W + va(Hgm) ot W)+ IV (HED) (W)
+ 0Dl (@) (0V3€) — i) 2,1 (W3E) )W+ RE, (W)W (4.7.48)
+ OpfY (<itmg)En (U3,) )W + REL (UsHU.
We now observe that, by Lemma 4.3.19,
Opiy < i(m (;“%(W;f))w = LV (HEY) (W) + Ry (W)W (4.7.49)

with the Hamiltonian

(), (7) 2= Re (Op™ (( RN 5)) w)., (47.50)

2 2
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which is super action preserving by Lemma 4.7.11, and a matrix of smoothing operators R, (W) in ﬁ; ‘%
My(C) for any ¢’ > 0. Therefore (4.7.48) becomes

W = — iQUD)W + J V(H(SAP ) pio(W) + IV (H (SAP))ng(W)
+opi! (—1<mg>§p+1<w;5>) W+ [RE, (W) + R, (W)W (47.51)
+ OpfY (~ima)En (U3t,)) W + REy (UsHU
where (see (4.7.38), (4.7.50))
(SAP) o (SAP) (SAP)
(H% ) <pi2 = (H% ) i1t (Hj )p o (4.7.52)

Note that the new system (4.7.51) is not Hamiltonian up to homogeneity N (unlike system (4.7.37) for

Zp—1), since the map ®,(Z,—1) = 91 (Zp—1)Zp—1 in (4.7.42) is not symplectic up to homogeneity N.
By Lemma 4.3.17 we only know that g ( »—1) is linearly symplectic. We now apply Theorem 4.7.1 to
find a correction of ®,(Z,_1) which is symplectlc up to homogeneity N. By Lemma 4.3.17, the map
®,(Z,—1) satisfies the assumptions of Theorem 4.7.1 (with Z ~ Z,,_1, B(Z;t) ~ g1 (Z,—1) and using the

inductive assumption Z, 1 = (p V(U 4)U with M(p Yw:t) e MKK, 1.0[r] ® M3(C)). Therefore
Theorem 4 7.1 implies the existence of a matrix of pluri-homogeneous smoothing operators R(p ) N (W) in

ZI])V Rq P ® My (C) (the thesis holds for any ¢ > 0 and we take o~ o + 5) such that the variable

Vi=CP (W) = (Id+ RO (W)W = (1d + RE) (@,(Zp-1))) ®p(Zp-1) (4.7.53)

is symplectic up to homogeneity IV, thus solves a system which is Hamiltonian up to homogeneity N. By
(4.7.53) one has
V =Mo(U;t)U, Mo(U;t) € MY o o[r] ® M3(C) (4.7.54)
using that Id—l—R(p) (W) belongs to MY  [r]@Mz(C) (by Lemma 4.2.8), since ®,(Z, 1) = g1 (Zp-1)Zp—1
with gl € MKOO[ r] ® M2(C) (Lemma 4.3.17 (7)), the inductive assumption Z, | = M((]p 1)(U,t)U
with M(p Y(U;t) e M gr_1,0lr] ® M2(C) and Proposition 4.2.15 (idi).
(p)

Moreover, regarding R (W) as a non-homogeneous smoothing operator in R . K 0p [ ] ® M2 (C) for
any r > 0 (see Lemma 4.2. ), estimate (4.2.40) implies, for 0 < r < ro(s, K) small, the bound

27 [ Wlks < IC2 (W) s < 2IW e, ¥k =0,....K. (4.7.55)

We compute the new system satisfied by V' in (4.7.53) using Lemma A.0.5. Its assumption (A) at page 215
holds (with K’ = K" and o ~» ¢ — o(p) — ¢(IN,p)) since W solves (4.7.51) and (4.7.52), (4.7.49), (4.7.39),
(S2),. Then Lemma A.0.5 implies that the variable V' solves

0V = —iQD)V + J.V(H <S“’))< (V) + IV (HE®Y_ (V)

<p+1

+Opll (i),
)

+Opvec( '(Eg/ (U;t,€

<p+2
(V;f)) V+ Rep(V)V (4.7.56)
)V + Bon(UsHU

>N
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where .
T ey . YN T2,
e (m s )ZPH(V, §) is a real valued symbol, independent of z, in %7 1 T'q;
. 3
. (m,%l>N(U ;t,€) is a non-homogeneous symbol independent of x in I‘IQ(’ KN +1[r} with imaginary part
Tm(ms)  (U3t,€) in L% i vl
. EZP(V) is a matrix of pluri-homogeneous smoothing operators in EI],V Ry etel)teNg) ® M3 (C);
e R n(U;t) is a matrix of non-homogeneous smoothing operators in R;(g;,g(]s):lcw’p) [r] @ M2(C).

Note that in (4.7.56) the pluri-homogeneous components up to order p 4 1 of the symbol and up to order

p — 1 of the smoothing operators are unchanged with respect to (4.7.51), whereas the homogeneous part of

. . . . s—oto(p)+c(N,
order p of the smoothing remainder have been corrected by a new smoothing operator in R, etelphelNe) ®

M3 (C), see (A.0.48).
Since system (4.7.56) is Hamiltonian up to homogeneity /N (unlike (4.7.51)), we have in particular that

—iQ(D)V + J.V ((HéSAP)) (V) + (HET) SM(V)) + Py[Rep(V)V 4.7.57)

is a pluri-homogeneous Hamiltonian vector field.
Iteration: reduction of the p—~homogeneous smoothing remainder. The goal of this step is to reduce the

smoothing homogenous vector field R, (V)V := P,[Rx,(V)]V in (4.7.57), which belongs to %;f?g(p)ﬂw’p),
to its super action preserving normal form. By (4.7.57) we deduce, by difference, that RP(V)V is Hamilto-
nian. We expand R,,(V')V in Fourier coordinates as in (4.2.122)

(R(V)V)] = Y XJnoeTe (4.7.58)

Tp+1,k "+t
(TP+1zk75p+1a70')€Tp+2
In order to reduce Ep(V)V to its super action preserving part we transform (4.7.56) under the change of

variable Z,, := F@V(V) where F(<p])V(V) is the time 1-approximate flow, given by Lemma 4.2.28, generated
by the smoothing vector field

(GOIV)i= >, GEIE (4.7.59)
(7p+17k76p+17_0)61p+2
with
0 if (%+1,k,5p+1, _U) € 6p+2
Tp+1,0 _ S Op+1,0
Gk = Xk (4.7.60)

i(o if (7, 7k;’0_: y — O (G
i(Tpta - pr+1 (k) — oQ(K)) (Tp+1 P+l ) & Spio

where the super action set G,,4 is defined in (4.7.13) (with p replaced by p + 2).

Lemma 4.7.15. Let k € (0,+00) \ K. The vector field G,(V)V in (4.7.59), (4.7.60) is a well defined

Hamiltonian vector field in X9 with o' = 0— o(p) — c¢(N,p) — 7 and where 7 is defined in Theorem

p+1
B.0.1.

Proof. We claim that for any x € (0,400) \ K there exist 7, > 0 such that

14
maX(’j1|7 ERRE) |jp+1|7 ‘k‘)T ’

’5p+1 . Qj‘p+1(lﬁ) — UQ]C(K)‘ > V(j_'p_kl,k,&p_;,_l,—d) ¢ 6p+2 . (4.7.61)
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Indeed, to any (Jp+1,k,0p+1,—0) we associate the multi-index («, 5) as in (4.7.12) whose length is |« +
Bl = p + 2 and satisfies Gpy1 - Q5 (K) — 0Q(K) = (a = B) - O(k) by (4.7.15). Recalling (4.7.13),
the vector (Jp+1,k,0p+1,—0) & Spio if and only if (a,3) is not super action-preserving and therefore
Theorem B.0.1 implies (4.7.61). Note also that, by Remark 4.7.10, if p is odd, there are not super-action

preserving indexes, i.e. §,12 = (). In view of (4.7.61) the coefficients in (4.7.60) are well defined.

Next we show that G\,(V')V is a vector field in i_gl. As R »(V)V belongs to X ffg(p)ﬂ( ), by

Lemma 4.2.26 the coefficients X f’; *11’ in (4.7.58) satisfy the symmetric and reality properties (4.2.124),
(4.2.125) and the estimate: for some 1 > 0, C' > 0,

ol max2{|j1|,...,|jp+1|}“ — -
X7 <o , ' P v V(Jpt1,k,Gpr1,—0) € Tpia. (4.7.62)
Jp+1, max{|j1,..., [jpr1]} o(p)—c(N,p)

Hence also the coefficients GU” “’ in (4.7.60) satisfy the symmetric and reality properties (4.2.124), (4.2.125)

as X%)’:l 1. - Moreover, using (4.7.62), (4.7.61) and the momentum relation ok = &)1 1-Jp+1 they also satisfy

| UpJfl’ | maX?{‘jl‘a'-"‘ijrﬂ}u
ek | S o i - CP 7

for a new constant C' > 0 (depending on v). Then Lemma 4.2.26 implies that G,(V')V belongs to %pj_’l
with o' := 0 — o(p) — ¢(N,p) — 7.

Finally we show that G),(V')V is Hamiltonian. Recall that EP(V)V in (4.7.58) is a Hamiltonian vector
field whose Hamiltonian function H 7 (V) is, thanks to Lemma 4.3.5,

_ _ 1 _ 10p+2, Opt2 Ol,s0p42 - T Op+1,—0pt2
HRp(V) T pt2 Z [HRp]Tp+2 V2 7 [HRP}]l» D2 T 10p+2XTp+1:jp+2 ) (4.7.63)
(Jp+2,0p+2) ETpt2
Then the coefficients defined for 642 - Jp+2 = 0 by
[Hx ]5p+2
5 . - 4.7.60),(4.7.63 Ry,
[He, |74 1= —io G rtt o opss (GTOOLTON o Jo2 (4.7.64)
v (Up-l-l Q]p+1( ) + 0p+2ij+2 (H’))

satisfy the symmetric and reality properties (4.2.135), (4.2.134) as well as the coefficients [H ]U" *2 Then
P
Lemma 4.3.5 implies that G,(V')V is the Hamiltonian vector field generated by the Hamiltonian H G, With
coefficients defined in (4.7.64). ]
We now conjugate system (4.7.56) by the approximate time 1-flow F(f])\,(V) generated by G,(V)V
provided by Lemma 4.2.28, which has the form -

Z,=FO (V) =V + FR(V)V, FR(V)eIVR,¢ © Ma(C). (4.7.65)
Since G,(Z)Z is a Hamiltonian vector field, by Lemma 4.3.14 the approximate flow F(<p])\, is symplectic
up to homogeneity N. Applying Lemma 4.3.15 (with Z ~ V, W ~» Z, and by (4.7.54)), the variable

Zyp solves a system which is Hamiltonian up to homogeneity /N. We compute it using Lemma A.0.5 (with
W ~> Z, and Z ~» V). Its assumption (A) at page 215 holds (with K’ = K’ and o~ ¢ — 0(p) — ¢(N,p))
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since V solves (4.7.56) and (4.7.52), (4.7.49), (4.7.39), (S2),. Lemma A.0.5 implies that the variable Z,, in
(4.7.65) solves (see in particular (A.0.50))

0,7, = —iQUD)Z, + va(HéS“’)) (Zp) + SN (HSD) L (Z)

<p+2
+ Opvec ( '(fflg)>p+1(Zp§§)> Zp + [Ep(zp) + G;(Zp)} Zp + RZp-H(Zp)Zp (4.7.66)

+ OpEY (=ily)_ (U3t,6)) 2y + Ron(UsHU

>N

where the part homogeneous up to order p of the symbol and up to order p — 1 of the smoothing operators
are unchanged with respect to (4.7.56), whereas

.3
o (1 s )2p+ (V&) is a real valued symbol, independent of x, in Zév I

. (rﬁs) (U t,€) is a non-homogeneous symbol independent of x in I‘
>

K.k’ N41|r] With imaginary part

( %) (U,t,f) lnFKK'N_H[ ]
~_ 13
p ( Zy)Zy is p+ 1-homogeneous smoothing vector field in .’{pf;r? with Fourier expansion (see (A.0.51))
(G;(Z )Zp)i = Z —i(p1 - Qg0 (k) — UQk(“))G;:Ll,f(Zp);::: ; (4.7.67)
(j hk’&:ﬂ‘#l:*a—)e(zlﬂrQ
—oto(p+1)

® R>p11(Zp) is a matrix of pluri-homogeneous smoothing operators in E 1Rq ® My (C) where

olp+1)=o(p) +c(N,p)+7+3; (4.7.68)

. . . . - 1
e R-n(U;t) is a matrix of non-homogeneous smoothing operators in R Kg;g,g(]sil) [r] @ Ma(C).

By (4.7.58), (4.7.60), (4.7.67), the smoothing operators of homogeneity p in (4.7.66) reduce to
Ry(2y)Zy + G (Z,)Z, = RE*™)(2,)Z, (4.7.69)

where RISSAP) (Z,)Z, is the vector field

Fpi1s —oto(p)+e(N.p)
(R](jSAP) (Zp)Zp)g = X%)z:rll’ka' (zp);fpjll e xp—‘rl ’

(.TP+1 7k7510+1 770)6617-0-2

that, in view of (4.7.63), is generated by the super action preserving Hamiltonian (cfr. Definition 4.7.8)

(sAP) 1 _ 10p+2 Fpt2
Hp'(Zy) = DL R JEL @)
(Tp+2,0p+2)€EGp 2

By (4.7.69) and R(SAP)(ZP)ZP = JCVHgAP) (Zp), system (4.7.66) becomes
07, = —iUD)Z, + va(Hésm) o Zo) + SV (HED) _ L ,(Z,)
+Opllt (imy) | (Z5€) ~ (), (75)) 2+ Repia (2, @.7.70)
p+2

Pt 20>
+OpfY (<img)_ (U3t,)) 2y + Ron(Ust)U

>N
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with (HE™)) _ ., defined in (4.7.52) (see also (4.7.49)-(4.7.50)),
3 <
(HEY o (2) = (HED)_ L (Z,) + H%“P)(Zp), 4.7.71)

3

L] €T

~3
(Zp;€)] e =) ,T2 .

and z-independent real symbols
(mg) . (Zpi&) = Pora[(@g)

(mg) o (Zpi&) = Popea[@y)

System (4.7.70) has therefore the form (4.7.37) at the step p + 1 with

p+

Zy = FO(Z0) = FO% 0 C 0 @, 0 FED (Zy), (4.7.72)

see (4.7.42), (4.7.53), (4.7.65). The map fipﬁf is symplectic up to homogeneity N as ]-'ipil), because C](\i;) o

®,, is symplectic up to homogeneity N (cfr. (4.7.53)) as well as the time 1-approximate flow F(<p])\, generated

by the smoothing Hamiltonian vector field G,,(V)V (cfr. Lemma 4.7.15) by Lemma 4.3.14. In addition the
map F. ip Zz,(Zo) satisfies (4.7.22) (with p-dependent constants) because of the inductive assumption, (4.7.46),

(4.7.55) and (4.2.40). Furthermore Z, = M) (U;t)U with M (Ust) € MY, ., o[r] ® M3(C). This
follows from (4.7.72) using that Id + F and Id + RY); belong to MY  [r] © M(C) (recall identities

(4.7.65), (4.7.53) and use Lemma 4.2.8), since ®,(Z,-1) = Gy (Zp-1)Zp-1 with G; € M [r] ®
M5 (C) (Lemma 4.3.17 ()), the inductive assumption ]-"g};l)(ZO) = M(()p_l)(U;t)U with M(()p_l)(U;t) €
M?ﬂﬁ’—l,om ® M3(C) and Proposition 4.2.15 (4iz). The proof of (S0),41 is complete.

System (4.7.70) satisfies also (S1),+1—(S6),41 with Q(p + 1) defined in (4.7.68) by (4.7.52), (4.7.49)-
(4.7.50) and (4.7.71). (S7),+1 follows by Lemma 4.3.15 because F. ip ]2] is symplectic up to homogeneity V.
This concludes the proof of the inductive step. -

Finally (4.7.23) follows by (4.7.22) and (4.7.5) (where C denote different constants). 0

Remark 4.7.16. (Integrability of fourth and six order Hamiltonian Birkhoff normal form) The SAP
Hamiltonian monomials (Definition 4.7.8) of degree 4 are integrable. Indeed, a-priori they are either the
integrable ones |zj, |2|2j,|? or (i) |2, |%2j,2=5, or (ii) 2j,2—}, 2j,2—;,- The momentum condition implies in
case (i) that jo = 0, which is not allowed. In case (ii) it yields j; + j2 = 0 and so 2,2 25,25, =
2j1Zjy%j5 %5, 18 integrable. The SAP Hamiltonian monomials of degree 6 may contain the not integrable
monomials

. % .. 2 2 S
() 12517 2js2 =52 255755, (80) |20 250 725525, (400) 25, 225, 250 23 2 255 -
By momentum conservation, a monomial of the form (¢) is integrable (as in case (ii) above) and a monomial

of the form (i¢) has j5 = 0 thus it is not allowed. The monomials (¢i7) turn out to be, for v £ 0, h = +o0,
Birkhoff non-resonant, namely

|, (1) = Qjy (K) + Qi (1) — Qjy (8) + Qi (1) — Qi ()|
= 7|sign(j1) + sign(j2) + sign(jz)| > .
Therefore they might be eliminated, obtaining an integrable normal form Hamiltonian at the degree 6. The
same holds in finite depth exploiting also the momentum restriction j; + j2+ j3 = 0 and that y ( tanh(hjq)+
tanh(hjz) + tanh(hjs)) # 0 by the concavity of y — tanh(hy) for y > 0. Note that for |j1|,|j2l, i3] >

M large enough we have a uniform lower bound as in (4.7.73). In conclusion the fourth and six order
Hamiltonian Birkhoff normal form of the water waves equations (4.1.2) is integrable.

(4.7.73)
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4.8 Energy estimate and proof of the main theorem

The Hamiltonian equation

0,7 = —iUD)Z + J.VH (2) + J.VH (2), 4.8.1)
2

obtained by (4.7.21) neglecting the symbol and the smoothing operator of homogeneity larger than N,
preserves the Sobolev norms. Equation (4.8.1) can be also written as the Hamiltonian PDE

o7 = J.NHE™)(7) (4.8.2)
where H($*?)(Z) is the super—action preserving Hamiltonian (cfr. Definition 4.7.8)
SAP SAP
HE™) (7) .= HO(7) + Hé (2)+ S (2), HO(Z):= Y QiR (4.8.3)
Jjez\{0}
Actually the following more precise result holds.

Lemma 4.8.1. (Super-actions) The super—actions J,(Z) = |zn|* + |2-n|? defined in (4.7.17), for any
n € N, are prime integrals of the Hamiltonian equation (4.8.1). In particular the Sobolev norm

1Z1%. = D 1Pl =) n*Ju(2)

J€Z\{0} neN

is constant along the flow of (4.8.1).

Proof. By (4.8.2), (4.3.29) and Lemma 4.7.7 we have

d
() = dzJu(2) [JCVH(SAP)(Z)} = {Jn(2),H®®) (2)} =0
since the Hamiltonian H (5*?)(Z) contains only super action preserving monomials. O

By the previous lemma, in order to derive an energy estimate for the solutions of (4.7.21), and thus for
a solution U of (4.5.37), we have to estimate the non-homogeneous term in (4.7.21). We need the following
lemma.

Lemma 4.8.2. Let K' € N. Then there is so > 0 such that, for any s > so, for all 0 < r < 7(s) small, if
U belongs to BY (I;7) N C% (I; H*(T,C?)) and solves (4.5.37), then U belongs to CL, (I, H*(T,C?)) and
V0 < k < K there is a constant 657;9 > 1 such that

1OFU O ogie < CoplU e » VEET. (4.8.4)

i
In particular the norm ||U (t)|| ks defined in (4.2.2) is equivalent to the norm ||U (t)|| zs-

Proof. We argue by induction proving that for any 0 < k£ < K, there are so,7; > 0 such that if U €
BY (I;7) N Co%(I; H(T,C?)) solves (4.5.37), then U € C¥,(I; H*(T;C?)) with estimate (4.8.4). For
k = 0 the estimate (4.8.4) is trivial. Then assume (4.8.4) holds true for 0,...,k — 1 < K — 1. Next we write
(4.5.37) as O, U = Op”" (A(U;;€))U + R(U)U where, by Lemma 4.5.5, the smoothing operator R(U )
is in ER,;_QLOJ [r, N] ® M2(C) and the matrix of symbols

Uiy + 281 4 [ Ui0,6) + A4, (Us0.8) + AP (Usa,9))

A(U,l‘,f) = J.A 2 i€

3
2
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3
belongs to XI';_, o[, N]® M3(C) and so, by the fourth bullet after Definition 4.2.16, Op®" (A(U;z,¢))
3

belongs to £S2 ; ; o[r, N] ® M3(C). Let sg := so(k) > 0 given in Definitions 4.2.5, 4.2.16. By the
inductive estimate (4.8.4) up to k — 1, we have that U € BY-1(1,C, ,r) with O, := S-"" C,, ;. Then,
for any s > sp, there is T, := 7(s,k) > 0 such that if 0 < r < 7, the operator Op®" (A(U;z,¢)) fulfills
estimate below (4.2.72) (with K/ = 0, m = %), and R(U) estimate below (4.2.34) (with K/ = 0, m = 0)
so that

107U g < 107 ™HOPY (AU 2, )|y g g + 10FT RO o33
k—1 ) o
< CspllUllk-1,s = s,kZHaiUlle_gj < Cspel|U]| g (4.8.5)
5=0

by the inductive hypothesis (4.8.4) for j = 0,...,k — 1 and setting és,k = Csp; Z;’:é aw. This proves
(4.8.4) at step k. We finally fix 7(s) := min(7y,...,7x) proving the lemma. O

Proof of Theorem 4.1.1

We deal only with the case N € N, since the cubic energy estimate (4.8.15) in case N = 0 follows directly
from Proposition 4.6.1 (see also Remark 4.6.2), yielding the local time of existence of order ¢!,

So from now on we consider N € N. For any value of the gravity g > 0, depth h € (0,+400] and
vorticity v € R, let £ C (0,400) be the zero measure set defined in Theorem B.0.1. Assume that the
surface tension coefficient  belongs to the complementary set (0,+00) \ K. Let ¢ > 0 be the constant

given by Proposition 4.7.12.
* Choice of the parameters: From now on we fix in Proposition 4.7.12 the parameters
0:=0, K:=K'(o)€N, (4.8.6)
where K'(0) is defined in Proposition 4.6.1. Thus Proposition 4.7.12 provides s, > 0 and for any
s>sy wefix 0<r <min(ry(s),7(s)), (4.8.7)

where 1(s) > 0 is given by Proposition 4.7.12 and 7(s) > 0 is given by Lemma 4.8.2. Let U(t) be a
solution of system (4.5.37) in ng([;r) N CK (I; H3(T,C?)).

In order to prove Theorem 4.1.1 we have to provide energy estimates of the non-homogenous “vector
field” in (4.7.21):

+
XZna2(U, Z)) — OpBW (—i(m%)>N(U;t,f)>Z + Ron(U;t)U. (4.8.8)

X U2)=|—"F"=-

The following lemma holds since the imaginary part of the z—independent symbol (m3 )~ (U;t,€) has
2

order zero and because, with the choice of ¢ = g in (4.8.6), the remainder R~ ~(U;t) in (4.8.8) belongs to

Lemma 4.8.3. (Energy estimate) The non-homogenous vector field X > n12(U, Z) defined in (4.8.8), where

(m3)sn and R~ n(U;t) are defined in Proposition 4.7.12 with parameters given in (4.8.6), (4.8.7), satisfies,
2

foranyt € I, the energy estimate

Re/T|D\SX§N+2(U,Z) [DPzde < Cy k|| Z|1 55 (4.8.9)
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Proof. Since (m3)> ~(U;t,€) is z—independent and has imaginary part Im (m3)> N in T'Y K.K'N alr] (efr.
Proposition 4.7. 12) then Op®" ( — i(mz)> ) commutes with the derivatives |D|S and, by (4.2.72) (with
2

k=0,m=0,s=0and K = K),
Re/ |D\SOpBW< ims)>n(Ust 5))2-|D[52dx
T 2

— Re / Op™ (m (ms) o (Ust,€)) DIz - IDJ*zdar S UL 123, @48.10)
] i

Lemma 4.8.2,(4.7.23)

S 1ZIEE

We consider now the contribution coming from the smoothing operator R~ (U;t) in R
M3 (C). Using (4.2.34) (with k = 0, m = 0), Lemma 4.8.2 and (4.7.23) we get

K, x' N+

Re/T!D\S(Rw(U;t) )" - IDI*zde ST Uk o 21l S 12115552 (4.8.11)

The estimate (4.8.9) follows by (4.8.10) and (4.8.11). ]

We now prove the following key bootstrap result. By time reversibility we may, without loss of general-
ity, consider only positive times ¢ > 0.

Proposition 4.8.4. (Bootstrap) For any s > s, there exist co := co(s,K) € (0,1), such that for any
solution U(t) € CK (I; H*(T;C?)) of (4.5.37) fulfilling, for some 0 < g1 < min(r(s),7(s)),

K
1U(0)| 7 < coe1, sup ZH@fU(t)HHS_%k <ep, T <ceeN (4.8.12)
t€[0,T] .2,
then we have the improved bound
s €1
sup Y OFU@)| . 30 < (4.8.13)
tE[O,T]kZ:O ! A
Proof. By (4.8.12) we have that U € BE(I;e;) with I := [T, T]. By Proposition 4.7.12 (applied with

T~ g1 < ry(8)), the variable
Z(t) = Fas(Zo(t)), Zo(t) := (Id+ RBU(t);t)U(t)))B(U(t);t)U(2),

where B(U;t) is defined in Proposition 4.6.1 and the smoothing operator R(-) is defined in (4.7.3), solves
(4.7.21) and has a Sobolev norm equivalent to that of U (t), see (4.7.23). Lemmata 4.8.1 and 4.8.3 (using
also e1 < min(ry(s),7(s))) imply that the solution Z(¢) of system (4.7.21) satisfies the energy estimate

d
EHZ(t)Ilz-s sk Z (4.8.14)
and therefore for all 0 < ¢ < T, by (4.7.23),

U < Coxl 2Ol < CsK<HZ( e + / 1z ||N+3d7>

4.7.23
&7 U, + O / U@ dr. “48.15)
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Then, by the a priori assumption (4.8.12) we deduce that, forall 0 < ¢ < T' < cpe, - +1)

||U(t)HHS < C;I(Cogl + Cé,K T€JIV+3 < EI(C;,KCO + Cs,KCO) . (4816)

_3
The desired conclusion (4.8.13) on the norms C’fH; 2 follows by Lemma 4.8.2, (4.8.16), choosing ¢y
small enough depending on s and K. O
Proof of Theorem 4.1.1 concluded.
Step 1: Local existence. By the local existence theory, there exist r\oc, Sjoc > 0 such that for any s > sjoc

1 Cs 1
there are Tjoc > 0,Cloc > 1 such that, any initial datum (79, 0) € HS+4 (T) x H* ™ * with

HnoHH 1+ 1%oll -3 < 7i0c

H1

-

there exists a unique classical solution (7(¢),%(t)) in C°([—Tioc, Tioc), HS+4 (T) x HsiZ(T)) of (4.1.2)
satisfying the initial condition 77(0) = 79, (0) = 1) and
0 (0]t 1O ) < Croliol vy + 0] em3)- (4.8.17)
te _,Tloc» loc HO
Remark 4.8.5. The local existence result can be derived arguing as in [70, 32]. One could also extend the
proof of [2] to the case of constant vorticity.

Step 2: Complex variables. System (4.5.37) and the water waves equations (4.1.2) are equivalent under the
linear change of variables

u -1 -1(7 1 —1 i Y o-1
U=(_)]=M"oW , u=—=M(D + —=M (D), =Y —--0,n, (4818
(4) (1) u= g+ MO, Gimv-Jor, @8y
defined in (4.5.2), (4.5.6). In view of (4.8.18) we have the equivalence of the norms: for some C :=
C(h,y,k) > 1,any ¢
U@l s < IO oy + 1D oy < CHUO gy - (4.8.19)
0

Step 3: Bootstrap argument. Consider the local solution of (4.1.2) with initial datum (19, ) satisfying

HnOHHngzll + ol o1 <€ <e0 (4.8.20)
where
_ } o -
£ := min (rO( ) T(s) ,noc), Oy i = max <7,K087K0010C) . (4.8.21)
s, K CS,K Co(S,K)
By (4.8.19), (4.8.20), (4.8.21), Lemma 4.8.2 (with  ~ CCloce0 < T(s)) and (4.8.17) we deduce that
1U(0)]| - < Ce, Han(t)HHs,%k < CyxCClee, Y0 <t < Tipe, VE=0,...,K. (4.8.22)

By (4.8.22) and (4.8.21), the solution U (t) of (4.5.37) satisfies, for any 0 < & < &, the smallness condition

1U(0)] 75 < coet, sup Z HOFU (@)l g < €1 with &1 = C e,
t€(0,Thoc] 10
which is (4.8.12) with T' = Tj,.. Proposition 4.8.4 and a standard bootstrap argument imply that the maximal
time Tinax > Tioc of existence of the solution U (t) is larger than T := coe; ¥ ' and [|U(t)| ;7. < &1 for any
0 <t < T,. By (4.8.18) this proves that the solutlon (n P)(t) = WMU (t) of the water waves equations
(4.1.2) satisfies (4.1.7) and (4.1.8) with ¢ := cOC Vand C = CC’S K-



Appendix A

Technical lemmata

We collect in this Appendix important results used along Chapter 4 about how para-differential equations
are conjugated under the flow of an unbounded Fourier multiplier (Lemma A.0.4) and an approximate flow
generated by a smoothing vector field (Lemma A.0.5).

The following result about the approximate inverse is a consequence of Lemma 4.2.24.

Lemma A.0.1. Assume (4.3.35) with U in BSI;R(I;’I"), K, K' € Ngwith K" < K, r > 0. Let p, N € N,
p < N, m > 0, and consider

W:=82Z)=2Z+S(Z;t)Z (A.0.1)
where
X8V o [r, N i M 1) =1d,
ESR 0l N] @ Ma(C), Vi >0 otherwise.

Then we may write
Z=Yn(W)+ M-nU;t)U with V<n(W):=W + ggN(W)W, (A.0.3)
where

v

* S<n(W) is a matrix of pluri-homogeneous spectrally localized maps in Eév §;” V=) & My (C),

* M- n(U;t) is a matrix of non-homogeneous operators in M?fﬁ:ﬁi? [r] ® M2(C).

Proof. By Lemma 4.2.24 there exists an approximate inverse up to homogeneity N of the pluri-homogeneous
nonlinear map (obtained by (A.0.1))

(I)SN(Z) =7+ 'PSN[S(Z;t)]Z
having the form

v

N
Ven(W) =W+ Scy(WW with  Scy(W) =Y S(W),  Se(W) € SV @ My(C).
q=p

211
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Applying U<y to (A.0.1), writing ®(Z) = @< n(Z)+S>n(Z;5t)Z with Ss v (Z5t) := S(Z;t)—P<n[S(Z;1)],
we get

Vo ny(W) = Ven(P<n(Z) + Ssn(Z3t)Z)

1
— Uy (@ (2)) + /O Ay Ve (Bx(Z) + 785 (Z:1)2) [So (Z:1) Z)dr

/

~~

=80 N (Z0)Z

where SL \(Z) € ENHST(N_HQ) ® M3(C) by Lemma 4.2.24-(7) and, according to (A.0.2), by Proposi-
tion 4.2.19-(v)

Sicgr iy [r] © Ma(C) if Mo(Ust) =1d,

ZN(Z;t) S {Sm(N_p+2)

} . . (A.0.5)
K,0,N+1 [F] ® M2(C),Vi >0 otherwise.

Finally we substitute Z = My (U;t)U where Mo (U;t) is in MY o/ o[r] ® M2(C) (cfr. (4.3.35)) in the
non-homogeneous term S\ (Z)Z and SY (Z;t)Z in (A.0.4)-(A.0.5) and using (i77) and (i) Proposition

4.2.15 we deduce (A.0.3) and that M.y (Ust) € My, P[] @ Mo(C). 0
We provide a lemma concerning how para-differential and smoothing operators change by substituting
in the ‘internal” variables a close to the identity map.

Lemma A.0.2. Assume W = Mg (U;t)U with My(U;t) € M(}(’K/’O[T] ® Mo(C), U € B§§7R(I;T) for
somer,sg>0and 0 < K' < K. Let p, N € Nwithp < N, m € R and consider a nonlinear map

Z = Uon(W) + Moy (U;)U  where Won(W) =W + M<y (W)W (A.0.6)
with .
o M<n(W) is a matrix of pluri-homogeneous m-operators in Ei,v./\/(fl” ® Ms(C);
o M- n(Ust) is a matrix of non homogeneous m-operators in M} 1) 1] @ M2(C).
Then
(i) (Symbols) if a<n(Z;€) is a pluri-homogeneous real-valued symbol, independent of x, in Y ',
m' € R, then
Op™" (a<N(Z5€)) 2wy (WMo n (Uit)U (A07)
= Op™ (aZy (Wi€) + aZy(U31,€)) + REN(W) + REy (U3t), -
where

° ai ~ (W5 €) is a pluri-homogeneous real-valued symbol independent of x in Eév 1~“Z”/ such that
Pepr1(aln(W;8)) = Pepri(acn (W38)); (A.0.8)

° a‘; ~(U;t,€&) is a non-homogeneous real valued symbol indepeniient of x in F%: K/ N+1 [7];
° R;N(W) is a pluri-homogeneous smoothing operator in E]]JV+2R;Q ® My (C) forany o > 0;
. R;r ~(U;t) is a non-homogeneous smoothing operator in R;(’QK,7 Nq1lr] for any o > 0.
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(i) (Smoothing operators) If R<n(Z) is a pluri-homogeneous smoothing operator in >3 7:\’:; ¢, for some

o > 0, then
(R<N(2)Z) 12—y W)+ n (Usyy = REN(W)W + RE (U5 )U, (A09)
Ran(2) | z=w oy W)+ Moy ity = Rony(W) + Ry (U;t) '
where ~
o RE (W) and R\, (W) are pluri-homogeneous smoothing operators in S Ry ot (N+1) max(m.0)
such that -

P<p(REN(W)) = P<p(Rey(W)) = P<p(Ran(W)); (A.0.10)

e R \(U;t) and R, (Us;t) are non-homogeneous smoothing operators in R;(Q;/(J]\[Vill) max(m,0) [r].

0+ (N+1) max(m,0)

If o < (N + 1)max(m,0) we regard R+N and R+N as operators in ENMq and respec-

rively MG Nl

Remark A.0.3. The previous lemma is stated for  independent symbols (since it is used in this case) but it
holds also for a general symbol.

Proof. Proof of (i): We expand by multilinearity the operator in (A.0.7). We denote the homogeneous
components of M<x (W) in (A.0.6) as My(W) = Py(M<n(W)) for ¢ = p,...,N and My(W) := Id.
Note that

(Me(W)W)w=mty(wir = My (U5 0)U

where MM (Ust) := My(Mo(U;t)U)Mo(U;t) belongs to M ., ,[r] @ M (C) for £ € {0,p,...,N}
thanks to (¢) and (i7) of Proposition 4.2.15. Then by multilinearity decompose the operator in (A.O. 7) as

Op™" (a<N(Z5€)) 7wy (W4 Moy (Ust)U

N N
= ZZ Z Op®" (aq(Zl’--‘vZq;g))lleMgl(W)W,...,Zq:ng(W)W (A.0.11)

a=2¢9=2{,,...4,€{0,p,....N}
014 tHlgtg=a

BW .
+ Z Z Op (a/q(Zl7.",Zq’6))|Z1:Méiv[0)(U;t)U,...,Zq:MZ(iVI())(U;t)U (A012)

q=2 E1,...,Zq6{0,p7...N}
b4 +Lg+g>N+1

N qg—1

q BW
DIDINEDD (n>0p (aq(Z1;--., Z43€) ’Z N W, MOy (A013)

q=2 ’I’L:th...,éne{o,p,...N} Zn+1— —Zq—M>N(U t)U

By (iv) of Proposition 4.2.15 we have that
(A.0.11) = Op®" (a;N(W)) +REG(W) with REy(W) € ZVR, ¢, Vo >0, (A.0.14)
where a;N(W) =N aFf(W;€) and
N
=> > ag(Me, (W)W, ..., M, (W)W;€) (A.0.15)

q=2 el,...,fqe{o,p,...,N}
b1+ +lgt+g=a
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belongs to f?'. For a < p + 1 the sum in (A.0.11) and (A.0.15) reduces to the indices ¢ = a, /1 = --- =
ls = 0. As a consequence aF (W;§) = aa(W;&) fora=2,...,p+ 1, proving (A.0.8). For the same reason
the remainder R;r ~ (W) in (A.0.14) actually belongs to ZI]JV " oRe .

Now we consider the non-homogeneous terms which arise from lines (A.0.12) and (A.0.13). Thanks to
(iv) of Proposition 4.2.15 we have that

(A.0.12) + (A.0.13) = Op"" (a2 (U;t,€)) + RN (Ust)

where RY (U;t) is a smoothing operator in R;(?K,7N+1[r] for any o > 0, and a2 \(U;t,€) is a non—

homogeneous symbol in F%/ K/ N+1 [r] which is real valued and z-independent as well as a< .
Proof of (ii): Proceeding in similarly to (i) we expand the left hand side of (A.0.9) as

(R<n(2)2)| 229 (W)t Moy (Uit)U

N N
=> > > Ry(Mo, (WW,..., My, (W)W) My, ,, (W)W (A.0.16)
a=1g=14y,...£q41€{0,p,...,N}
L1+ +Llgt1+g=a

N
+y > Ry(M{M U300, M{™ (U ) 0) MM (U5 1)U (A.0.17)
q=1 ¢1,....44€{0,p,...N }
bl Hq>N+1
N gq—1 q (Mo)
0 .
+ Z Z Z <n> Ry(Z1;.. "Z‘I)an+1 (U’t)U’ leMéiVIO)(U;t)U,...,Zn:MZ(:AO)(U;t)U
q=1 n=0 El,...7en+1 G{O,p,...N} Zn+1:"~:Zq=M>N(U;t)U
(A.0.18)
N q—1 q
PN S () Ml AN UNY 000 i
q=1n=0¢,....4,€{0,p,...N} Znpr==Zq=Ms N (Ust)U
(A.0.19)

Thanks to (ii) of Proposition 4.2.15 (with m ~» —p, my ~ m), the term in (A.0.16) can be written

as R; ~(W)W where Ri<“ ~ (W) is a pluri-homogeneous smoothing operator in £{ Ry o+ (N+1)max(m.0)

moreover R\ (W) = SN R (W) with

N
RIf(W):=>" > Ry(Me,(W)W,..., My, (W)W) My, (W). (A.0.20)

q=1 617"'7€q+1 6{07p77N}
bt Hlg1+g=a

For a < p the sum in (A.0.20) reduces to the indices ¢ = a, {1 = --- = f,41 = 0. As a consequence
RI(W) = R,(W) for a = 1,...,p, proving (A.0.10). Applying again Proposition 4.2.15 (ii) we get
that the terms in (A.0.17)~(A.0.19) can be written as RY (U;¢)U where RY \,(U;t) is a non-homogenous

smoothing operator in R;(Q;,U]V\,fl) max(m-0) (.1 This concludes the proof of the first identity in (A.0.9). The

second one follows with the same analysis, without the need of substitute the last variable. O

Conjugation lemmata. The following conjugation Lemmata A.0.4 and A.0.5 are used in the nonlinear
Hamiltonian Birkhoff normal form reduction performed in Section 4.7.
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The following hypothesis shall be assumed in both Lemmata A.0.4 and A.0.5:

Assumption (A): Assume Z := Mo(U;t)U where Mo(U;t) € MY o olr] @ Ms(C), U € BE 5 (I;7)
for somer,sg > 0and 0 < K' < K. Let N € N and assume that Z solves the system

017 = —iQD)Z + Opqot (ia<n(Z;€) +iasn(Ust,€))Z + R<n(2)Z + Ron(U;)U - (A0.21)
where (D) is the diagonal matrix of Fourier multiplier operators defined in (4.5.10) and

~3
* a<n(Z;€) is a real valued pluri-homogenous symbol, independent of x, in Eév rg;

3
* a~n(U;t,§) is a non-homogenous symbol, independent of x, in L'}, 1/ _H[r] with imaginary part
Im CL>N(U; tv 5) ll’l F?(7K’7N+1 [T];
* R<n(Z) is a real-to-real matrix of pluri-homogeneous smoothing operators in E{Vﬁq_g ® Mo (C);

. R> ~N(U;t) is a real-to-real matrix of non-homogeneous smoothing operators in R % v alrl e
M3 (C).
We also write system (A.0.21) in the form

O0Z = —iQD)Z + M<n(Z)Z + Msn(U;t)U (A.0.22)

__3 3
where M« (Z) are 3-operators in Y MZ @ Mo (C) and M~y (U;t) isin M ., NlTl @ Ma(C) b
the fourth remark below Definition 4.2.16.

Lemma A.0.4 (Conjugation under the flow of a Fourier multlpller) Assume (A) at page 215. Let
9p(Z;€) be a p-homogeneous real symbol independent of x in F , p > 2, that we expand as

w(Z:&) = Y. GIO, GTE=GEeC (A.0.23)
(Ip,Fp)ETp

and denote by G, (Z) = g;p( ) the time 1-flow defined in (4.3.56) generated by OpEY (ig,(Z;€)). If
Z(t) solves system (A.0.21), then the variable

W =G, (2)Z (A.0.24)
solves the system
W = —iQUD)W + OpEl (1aZy (W€) +iaZ y (Us.€) )W + RE (W)W + RE\ (U )U (A.0.25)
where

~3
. a; N (W€) is a real valued pluri-homogenous symbol, independent of x, in Zév I'g, with components

P<p-1 [aiN(W; §)] = P<p-1la<n(W;8)],

(A.0.26)
Py [ty (W36)] = Py la<n (W;6)] + 65 (W3)
where g, T(W;€) € E is the real, x-independent symbol
GWie) = Y —i(G- 2 (0)GT (Ol (A.0.27)

(Jp:0p)ETp
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3
o al \(U;t,€) is a non-homogeneous symbol, independent of x, in D% ko na[r] with imaginary part
tmaZy(U3t,€) belonging t0 T 1 x 11 [r);

o+c(N,p)

. RJ<r ~ (W) is a real-to-real matrix of pluri-homogeneous smoothing operators in P 7:\’:; ®
My (C) for some c(N,p) > 0 (depending only on N,p) and fulfilling

P<p[REN(W)] = P<p[Ran(W)]; (A.0.28)

« R\ (Ust) is a real-to-real matrix of non—homogeneous smoothing operators in R[_(Q;,C(Jifvfl) [r] ®

My (C).
Proof. Since Z(t) solves (A.0.21) then differentiating (A.0.24) we get

OW =Gy, (Z)| — D) + OpRY (la<n(Z;€) + iasn(U;t,€))| Gy, (Z2) "' W (A.0.29)

+ Gy (Z) Ren(2)Z + Gy (Z) Ron (U3 )U (A.0.30)

+ (081G, (2))Gy, (Z)'W. (A.0.31)

We now compute (A.0.29)—(A.0.31) separately. As G, (Z) is the time 1-flow of a Fourier multiplier it
commutes with every Fourier multiplier, and (A.0.29) is equal to

(A.0.29) = QD)W + OpEY (ia<n(Z:€) + iasn (U;t, €)W (A.0.32)

Now we write the symbol a<x(Z;¢) in terms of W. By Lemma 4.3.17 (74i) we have that G, (Z) — Id is
3

a matrix of spectrally localized maps in 3§ f((év p+1) [7, N] ® M2(C) for any 7 > 0. By Assumption (A) we

have Z = My(U;t)U with My (U;t) € M%K,7O[r] ®M3(C). Lemma A.0.1 (with S(Z;t) = G, (Z) —1d)

provides an approximate inverse of W = G, (Z)Z of the form

Z=Uny(W)+ Mony(U;)U, Ten(W) :=W + Sy (W)W (A.0.33)

(N+1)(N—p+1

y 3
where S< (W) is a matrix of spectrally localized maps in Ef,v S¢ ) ® M3(C) and M~ N (U;t)
S(N+1)(N—p+2)

isin M2 N4l [r] ® M2(C). The map (A.0.33) has the form (A.0.6), so by Lemma A.0.2 (i) (with
m’ = 3/2) we obtain

Obyec (10N (Z3€))| zmu_y(W)s oy st
= Opt (i y(W;€) +ial y(U;t,€)) + Ron (W) + Ry (Ust) (A.0.34)

where
~3
. a’S N (W;&) is areal valued pluri-homogenous symbol independent of z in 297 I'; with

P<pri(aen(W;€)) = P<pri(a<n (W3€)); (A.0.35)

3
e a’, \(U;t,€) is a non-homogenous real valued symbol independent of z in I'z ./ 4 [r];

e R (W) is a real-to-real matrix of pluri-homogeneous smoothing operators in Zév Hﬁq_ ¢ ® My(C) for
any o > 0;

e RL \(U;t) is a real-to-real matrix of non-homogeneous smoothing operators in RI_(,QK,, N1 [r] ® M2 (C)
for any o > 0.
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3
We now consider the terms in (A.0.30). Since G, (Z) — Id belongs to XS [2(((])\[ : !

Lemma 4.3.17, Proposition 4.2.19-(7) implies that

I, N] ® My(C) by

Gy (Z)R<n(2)Z = Ron(2)Z + RLn(Z51)Z (A.0.36)

+3(N+1)

where R \(Z) is in E{Vﬁq_g ® M (C) with

P<p[R-n(2)] = P<p[R<n(Z))] (A.0.37)

and R, y(Z;t) is in RKON?{H)[%] ® Mjy(C) for any # > 0. We now substitute Z = W<n(W) +
M- N (U;t)U (cfr. (A.0.33)) in the homogeneous components of (A.0.36) and Z = M (U;t)U in the non-
homogeneous ones of (A.0.36) and (A.0.30). So using Lemma A.0.2 (with m ~» %(N + 1)(N —p+2),

0~ 0— 3(N + 1)), (i) and (ii7) of Proposition 4.2.15, () and (iv) of Proposition 4.2.19 we get

(A.0.30) = (RLN(2) Z) 122w (W) Moy (Us)U + B N (Mo (Ust)Us5 )Mo (U3 1)U
+ Gy, (Mo(Us )U) Ry (U )U = R (W)W + R (Ust)U | (A.0.38)
where

e RZ (W) is a pluri-homogeneous smoothing operator in SNR, ote(N.p) ®Ms(C) with ¢(N,p) = 3(N+
1)+ 3(N+1)%2(N —p+2)and

] (AOIO) ] (A037)

P<plREn (W) P<p[Ren (W) P<p[Ren(W)] ; (A.0.39)

e R! \/(U;t) is a non-homogeneous smoothing operator in R Kg;f%vfl)[ ] ® Mo (C).
We finally consider the last term (A.0.31). Using that G, (Z) commutes with every Fourier multiplier we
get
(A.0.31) = OpyiY (i8:gp(Z;€))W (A.0.40)

So, using (A.0.22), (A.0.23) and the identity (—i§2(D)Z)7 = —io€2;(k)z], we obtain

J

a times

0u9p(Z;€) = ng —iUD)Z,Z,...,2;€) + pgp(M<n(2) 2, Z,..., Z:€) (A.041)

+p9p(M>N(U;t)U73,~--,Z;£)|ZZMO(U¢)U
=9, (Z:6) + pgp(P<n—p(M<N)(2) 2, Z,..., Z;€)
+p9p(Pon—p(M<n)(2)Z,Z,...,Z;8) | 2=y + PIp(M>N(Ust)U, Z, ..., Z5€) | z=Mo ()0
= 0y (Z:6) + ¢ p 11 (Z:€) + gSn (U3t €)

~3

where g; is the real valued symbol in I'j in (A.0.27), the real valued pluri-homogeneous symbol Q/Zp 1
isin X +1F2 thanks to (iv) of Proposition 4.2.15 and the real valued non-homogeneous symbol g, ,; is in
Ff( k' n+117r] using also (ii) of Proposition 4.2.15. Then by (A.0.40), (A.0.41) and using the second part of

(iv) of Proposition 4.2.15 we obtain

(A.0.31) = OpiY (ig (Z:€) +ig5p41(Z:6) +ighn (U3 t,)W + RS, (2)W + RL N (Ust)U
(A.0.42)
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where RS, | is a matrix of pluri-homogeneous smoothing operators in E 1Rq ?®M;(C) and R \ (U;t)

belongs to R, %y q[r] ©® M2(C). Then we substitute the variable Z in (A.0.31) using (A.0.33) and
Lemma A.0.2, to obtain

(A.0.31) = OpBY <1gp (W3€) + 192, (W36) + gy (Ust g))w + R (W + Ry (U)U
(A.0.43)
where
° g;‘ (W;€) is the homogeneous symbol in (A.0.27);

~3
° g;r(p ) (W;€) is a pluri-homogeneous real valued symbol in Ep Jrl1“(12;

e g2y (U;t,€) is a non-homogeneous real valued symbol in F Ko Nl

Z n (W) is a matrix of pluri-homogeneous operators in Ep HRq eteNp) M (C);

e R\ (U;t) is a matrix of smoothing operators in RKQIJQ,C(NH)[ | ® M3(C).

In conclusion, combining (A.0.32), (A.0.34), (A.0.39) and (A.0.43) we deduce (A.0.25) with aiN =
ay + g5 + 93,4, and aly = asn + al y + g% which has imaginary part equal to the one of as
belonging to F% K N41 [r]. Moreover (A.0.26) follows by (A.0.35) and (A.0.28) by (A.0.38). ]

The following lemma describes how a system is conjugated under a smoothing perturbation of the
identity.

Lemma A.0.5 (Conjugation under a smoothing perturbation of the identity). Assume (A) at page 215.

Let F<n(Z) be a real-to-real matrix of pluri-homogeneous smoothing operators in Eé\[ﬁq_gl ® My (C) for
some o > 0. If Z(t) solves (A.0.21) then the variable

W =Fn(Z) =2+ Fen(2)Z (A.0.44)
solves
OW = —iQ(D)W + Op <1GJ£N(W55) + iaiN(U;t,€)>W + REG(W)W + REG(Us)U (A.0.45)
where
. a; N (W&) is a real valued pluri-homogenous symbol, independent of x, in Eév f§ , With components
Peprilaly(W;8)] = Pppilacny(W;6)]; (A.0.46)
. ai ~(U;t, &) is a non-homogeneous symbol, independent of x, in I’[%(’ K'N 41[7] with imaginary part
Ima? \ (U;t,€) belonging to F(}(,K’,NH [r];

. RJSr ~N (W) is a real-to-real matrix of pluri-homogeneous smoothing operators in »¥ 7Aéq_ & @ My (C),
0« :=min (g, 0 — %) (0 > 0is the smoothing order in Assumption (A) at page 215), with components

P<p-1[REy(W)] = P<pa[Ren(W)] (A.047)
and, denoting F,(W) := Pp(F<n(W)) in ﬁ;gl ® M3(C), one has

PplREN (W)] = Pp[Ran (W)] + dw (Fp(W)W) [-iQ(D)] + iQ(D) F,(W); (A.0.48)
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R\ (Ust) is a real-to-real matrix of non—-homogeneous smoothing operators in RI_(QK, Nl ®

M,(C).

In addition, if F<n(Z) in (A.0.44) is the approximate time 1-flow (given by Lemma 4.2.28) of a vector field
Gp(Z2)Z, where Gp(Z) € Rp® @ Ma(C) has Fourier expansion

o Gpt+1,0 O,
(Gp(2)2)] = Z G (A.0.49)

(Fp+1,k,0p+1 a_U)ETp+2

then (A.0.48) reduces to

PolRE (W)] = PylRen(W)] + Gy (W) (A.0.50)
3
where Gif (W) € R,° i ® Ma(C) is the smoothing operator with Fourier expansion
(GEVIW)E = > —i(Fpr Qg (5) — U (m) G w3 (A.0.51)

(jp+1 ’k’gp+1 770—)€TP+2

Proof. Since Z(t) solves (A.0.21) then differentiating (A.0.44) we get

W = —iQ(D)Z + OpL (ia<n(Z;€) +iasn(Ust,€))Z (A.0.52)
+ Ren(2)Z + dz(F<n(2)Z)[-iQ2(D) Z] (A.0.53)
+dz(F<n(2)Z)[OpEY (la<n(Z;€))Z) + dz(F<n(2)Z)[R<n(Z)Z] (A.0.54)

+ R n(U;t)U +dz(F<n(Z2)Z )OpVec (iasn(U;t,€))Z + dz(F<n(Z2)Z)[R=n(U;t)U].  (A.0.55)

Note that, by the first remark below Definition 4.2.5, dz(F<n(Z)Z) are pluri-homogeneous smoothing

operators in EN 7%; ‘% My (C). We proceed to analyze the various lines. In (A.0.52) we substitute Z =
W — Fen(Z )Z and use Proposition 4.2.19 (i) to get

(A.052) = —iQ(D)W + Opi (ia<n(Z;8) +iasn (Ust, €)W (A0:56)
+1Q(D) W(2)Z + Ropi1(Z)Z + Ran(U;t)U o
with smoothing operators R>,1(Z) in EN qu +3 ®@M3(C) and R, (U;t) in R;(Q;%NH [r] @ Ma(C).
Note that to obtain (A.0.56) we also substltuted Z = Moy(U;t)U with Mo(U;t) € M e o[r] @ Ma(C)
in the smoothing operators of homogeneity > N + 1 using also (i)—(ii) of Proposition 4.2.15. From now
on we will do this consistently.
We consider now lines (A.0.53), (A.0.54). Using Proposition 4.2.15 (i)—(¢i) and Proposition 4.2.19 (1)
we get

(A.0.53) + (A.0.54) = Rep1(2)Z + Ry(2)Z + Az (Fp(2) Z) [—iUD) Z]

(A.0.57)
+ R>p+1( )Z + RL N (Ust)U

with
Rep1(2) :==P<p1[R<n(Z)], Rp(Z) := Py[R<n(2)],

and smoothing operators R%, | (Z) in ZI]JVH?Aéf* @M (C)and R,y (Ust) in R % nyq [l © M2 (C),
where g, := min(p, o’ — %)
Next consider (A.0.55). Substituting Z = M (U;t)U and using Proposition 4.2.15 (i)—(ii) we get

(A055) = RLy(Ust)U - with  RLy(Ust) € Ryl nyy[r] © Ma(C). (A.0.58)
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Collecting (A.0.56), (A.0.57) and (A.0.58) we have obtained that (A.0.52)-(A.0.55) is the system

OW = —iQD)W + OpBW (la<n(Z;€) + iasn(U;t, €)W

+ Rep 1(2)Z + Ry(2)Z + dz(Fp(2)Z) iU D) Z] + iQ(D)F,(2)Z
+ R (Z2)Z + RN (UU (A.0.59)

with smoothing operators RY , | (Z) in E;)VJrlﬁ;Q* ®M>(C)and RYy ,, (Ust) in Ry [r]@ M2 (C).
Finally we replace the variable Z with the variable W in (A.0.59) by means of an approximate inverse of
W = F<n(Z) in (A.0.44). Lemma 4.2.24 implies the existence of an approximate inverse

Sony(W) =W + Fey(W)W,  Fon(W) € BR-¢ ® My (C)

of the map F< (Z) in (A.0.44). Then, applying @<y to (A.0.44), we get Z = (I)SN(W)+§>N(Z)Z where
R~ n(Z) belongs to ENH?%(;QI ® M2 (C), and substituting Z = My (U;t)U in the pluri-homogeneous
high—-homogeneity term R~ n(Z)Z and using (ii) of Proposition 4.2.15 we get

Z =& (W) 4 Ron(U;t)U where Ron(Ust) € R}?%,7N+1[r] ® Ms(C). (A.0.60)

Finally we substitute (A.0.60) in (A.0.59) and, using Lemma A.0.2 (i7), we deduce

W = —iQ(D)W + OpBW (iazN(W;i) + iaiN(U%tf))W
+ Rep i (W)W + Ry, (W)W + dw (Fp(W)W)[-i(D)W] + iQ(D) F, (W)W
+RL, (W)W + RE\(U;t)U

which gives (A.0.45) and the properties below. Note that ai ~ (U;t,€) is given by the old non-homogeneous
symbol a~ n(U;t,€) and a purely real correction coming from formula (A.0.7). Hence the imaginary part
ImaZy (U;t,€) = Imasy(U;t,€) belongs to T ey [7]-

Let us prove the last part of the lemma. By (4.2.129) and since G,(Z) is T-independent, F,(Z) =
Gp(Z). Then the correction term in (A.0.48) is G,f (W) := dw (Gp(W)W)[=i2(D)] + i2(D)G,(W),
which has the Fourier expansion (A.0.51) by (A.0.49) and the identity (—i€2(D)Z)7 = —io€2;(x)z]. Note
that the smoothing properties of G;’ (W)W can also be directly verified by the characterization of Lemma

4.209. O



Appendix B

Non-resonance conditions

The goal of this section is to prove that the linear frequencies ﬁ(m) defined in (4.7.16) and (4.5.12), satisfy,
for any value of the gravity g, vorticity -y and depth h, the following non-resonance properties, except a zero
measure set of surface tension coefficients .

Theorem B.0.1. (Non-resonance) Let M € N. Forany g > 0, h € (0,+00] and v € R, there exists a zero
measure set IC C (0,+00) such that, for any compact interval [k1,k2] C (0,4+00) there is T > 0 and, for
any k € [k1,K2] \ K the following holds: there is a positive constant v > 0 such that for any multi-index
(a,B) € N%\{O} X N%\{o} of length | + B| < M, which is not super action preserving (cfr. Definition

4.7.3), it results
= v

8(6) - (a = B)| > -
(jouma 17

(B.0.1)

where supp(aU 3) := {j € Z\ {0}: oj + B; # 0}.

Theorem B.0.1 extends Proposition 8.1 in [27], which is valid only in the irrotational case v = 0 and in
finite depth. Theorem B.0.1 follows by the next result where we fix a compact interval of surface tension
coefficients putting /C := N, ~o/C,,.

Proposition B.0.2. Let M € N and fix a compact interval T = [k1,k2] with 0 < k1 < ko. Then there
exist vyg, 7,8 > 0 such that for any v € (0,vr), there is a set K, C T of measure O(v%) such that for any

k € I\ K, the following holds: for any multi-index («,3) € Ng\{o} X N%\{O} of length | + 3| < M,
which is not super action preserving (cfr. Definition 4.7.3), one has

14
_
(_max )
J€supp(alp)

The proof makes use of Delort-Szeftel Theorem 5.1 of [60] about measure estimates for sublevels of
subanalytic functions, whose statement is the following.

() - (2= B)| >

(B.0.2)

Theorem B.0.3 (Delort-Szeftel). Let X be a closed ball B(0,79) C R? and Y a compact interval of R. Let
f: X xY — R be a continuous subanalytic function, p : X — R a real analytic function, p % 0. Assume

(HI) f is real analyticon {x € X: p(z) #0} x Y;

(H2) forall zog € X with p(xg) # 0, the equation f(xo,y) = 0 has only finitely many solutions y € Y.

221
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Then there are Ng € N, ag > 0, 6 > 0, C > 0, such that for any o € (0,a9), any N € N, N > Ny, any

with p(x) # 0,
meas{y € Y: |f(z,y)] < alp(x)|N} < Ca® |p(z)N°.

We shall first prove Proposition B.0.2 for deep water, in Section B.1, and then, for any finite depth, in
Section B.2.

B.1 Deep-water case

In the deep water case h = +o0, by (4.5.12) and (4.5.5), the linear frequencies are

() = wy(x) + Lsign(j), ws(x) = J (77 + g)lil + 2 (B.1.1)

In this case Proposition B.0.2 is a consequence of the following result.

Proposition B.1.1. Let T = [k1,k2] and consider two integers A M € N. Then there exist ag, 7,0 > 0
(depending on A,M) such that for any a € (0,ay), there is a set Ko, C I of measure O(a), such that for
any k € I\ K, the following holds: forany 1 < ny < ... < ny, any ¢ := (cg,c1,...,ca) € Z x (Z\ {0}),
with |€|ee = maxg—0,...a|Ca| <M, one has

(8%
(anwna fco > S (B.1.2)

Before proving Proposition B.1.1 we deduce as a corollary Proposition B.0.2 when h = +-oc0.

Proof of Proposition B.0.2. For any multi-index (o, 5) € N%\{O} X N%\{O} with length |a+ 3| < M, using
that w;(x) in (B.1.1) is even in j, we get

Q(“) (a—pB)= Z wj( K)(a Z 781gn P ﬂ])
JEZ\{0} jezn{oy 2
= > wn(R) @ + o = B = Bn) + men — A = Bt Bon)
n>0 n>0
= Y walk)(an+an — B —Bn) + %CO (B.1.3)
neN(a,B)

where M(a, 3) is the set defined in (4.7.10) and cg := ), gon — @—p — B + S € Z. Since (a, 3) is
not super action preserving (cfr. Definition 4.7.3) then 9(«, /3) is not empty. The cardinality A := [9(«, 3)|
satisfies 1 < A < M. Denoting by 1 < ny < ... < n, the distinct elements of 91(«, 3), and the integer
numbers

Cq = 0n, + 0_p, — Pn, — B-n, €Z\ {0}, Va=1,...,A,

we deduce by (B.1.3) that
Q( Z Wn, (K)Ca *CO

By the definition of 9(«, ), each integer ¢, # 0, a = 1,...,A, and |¢,| < ]a\ —|— |B] < M. Similarly
|co| < M. Applying Proposition B.1.1 withM = M we deduce (B 0.2) with v := 17=. O
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The rest of the section is devoted to the proof of Proposition B.1.1.

Proof of Proposition B.1.1. For any 7i := (ny,...,ns) € N* with 1 < nq < ... < na, we denote

1
xo(1) == —=— 2o(7) = zo(M)y/Na, Ya=1,.../A. (B.1.4)
Za:l Na
Clearly
O<Zﬁ o <z() <1, VYa=0,...,A. (B.1.5)
If (B.1.2) holds, then multiplying it by z¢(77)3, one gets that the inequalities
A 2
‘an \/m:g + grlxd + ’YZ.IG + %coxg > axgt? (B.1.6)
a=1

hold at any x, = (1), a = 0,...,A, defined in (B.1.4). This suggests to define the function

2
My, z0,K) := \/Hyﬁ + gyPxg + ’szg, (B.1.7)

and, for ¢ = (cq,c1,...,ca) € Z x (Z\ {0})*,

fa:[-1 1]A+1 XTI =R, fz(x,K) an T, Lo, K +%cox% (B.1.3)

where x := (xg,1,...,24).

We estimate the sublevels of x — fz(z, ) using Theorem B.0.3. Let us verify its assumptions. The set
X = [-1,1]*"! is a closed ball in R*™!. The function fz : X x Z — R is continuous and subanalytic.
Then we define the non-zero real analytic function

Hwa I @2-a). (B.1.9)

a=0 1<a<b<A

We observe that p(x) evaluated at x(77) := (z¢(7),...,x4(77)), defined in (B.1.4), satisfies

(:ZI”“) < lp( (ZTM) (B.1.10)

withm :=A+142 (g), as follows by (B.1.5), (B.1.9) and the assumption that the n,’s are all distinct, thus
|ng — np| > 1, for any a # b.

We show now that the assumptions (H1) and (H2) of Theorem B.0.3 hold true.
Verification of (H1). If p(x) # 0 then, by (B.1.9),

o #0,V0<a <A, and 22 #azl,Vi<a<b<A. (B.1.11)

In particular on the set {z € X : p(z) # 0} x Y the function A\(x, 0, %) in (B.1.7) in real analytic and thus
the function fz(x, k) in (B.1.8) is real analytic.

Verification of (H2). The fact that, for any x € X such that p(x) # 0, the analytic function k — fz(z, k)
possesses only a finite number of zeros on the interval Z, is a consequence of the next lemma.
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Lemma B.1.2. For any x € X such that p(x) # 0, the function k — fz(x, k) is not identically zero in T.

Proof. We argue by contradiction, assuming that there exists * = (24)o<a<a € X with p(x) # 0 such that
fa(z,k) = 0 for any « in the interval Z. Then the function k — fz(z, k) is identically zero also on the larger

domain of analyticity (—%3:8, +00). Note that #3 > 0 because p(z) # 0, cfr. (B.1.11). In particular, for

any [ € N, all the derivatives 0'. fz(x, x) = 0 are zero in the interval (—%2958, +00).
Now we compute such derivatives at x = 0 by differentiating (B.1.8). The derivatives of the function
Ay, xo, k) defined in (B.1.7) are given by, for suitable constants C; # 0,

ANy, zo, k) = Cry¥ Ay, z0,6)1 72, VI eN.

Thus we obtain

A0 Ko = Cily, 00} Ny 20,0)  where ) = — L m112)
gy Ty + T
and, recalling (B.1.8),
A
8,l§f5(x,n)\,{:0 = Clany,(:ca,xg)l)\(xa,xg,O), Vvl e N.
a=1
As a consequence, the conditions 8%, fz(z, k)|x—o = 0 forany [ = 1,..., A, imply that
Alz)e=0 (B.1.13)
where A(z) is the A X A-matrix
u(xl,xo);\(xl,mo,()) u(xA,mo)Q)\(xA,:Uo,O) o
Alr) = (1, 20) .A(xlal'OaO) 1(xn, o) f\(wa”Co?O) and Ti= | : | €2\ {0},
ﬂ(xl,xo)A;\(xl,ato,O) u(mA,xo)A;\(xA,xo,O) oA

Since the vector ¢ # 0, we deduce by (B.1.13) that the matrix A(x) has zero determinant. On the other
hand, by the multi-linearity of the determinant,

1 1

A 1, Ty,
det A(x) = Hu(xa,:vo))\(:xa,:no,())det l 1 o) ) a A_ o)
a=1 . .
(w1, x0)t ! pu(y, o)t
A
= HM(%CL,JZ'O)A(%@,I'O,O) H (M(maax()) - M(xb7x0)) (B114)

a=1 1<a<b<A

by a Vandermonde determinant. The condition p(x) # 0 implies, by (B.1.11), (B.1.12) and (B.1.7), that

A

1 #(xa, 20)A(wa, 20,0) # 0,

a=1
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and, in view of (B.1.14), the determinant det A(z) = 0 if and only if u(xz,,x0) = p(wp,z) for some
1 < a < b < A Since the function y — u(y, o) in (B.1.12) is even and strictly monotone on the two
intervals (0,400) and (—o0,0), it follows that

((xa, w0) = plxp, 20) = |wa| = |as].
This contradicts p(z) # 0, see (B.1.11). The lemma is proved. O

We have verified assumptions (H1) and (H2) of Theorem B.0.3. We thus conclude that there are Ny € N,
ag,0,C > 0, such that for any « € (0,], any N € N, N > Ny, any x € X with p(z) # 0,

meas{r € Z: |fa(z,r)| < alp(x)|V} < Ca® |p(x)|V. (B.1.15)
For any 7 = (n1,...,ny) € N* with 1 < nj < ... < ny, we consider the set
Bza(a,N):={r € T: |fsa(ii),r)| < alp(z(@))|N} (B.1.16)

where x(71) = (24(7))a=1,..a € X is defined in (B.1.4). By (B.1.10) we get p(z(77)) # 0. Then (B.1.15)
yields

meas Bz (o, N) < Cal|p(z(i))|N°. (B.1.17)
Consider the set
K(a,N) := U Bzi(a,N) C T. (B.1.18)

i=(n1,...,na)ENA 1<ng <...<ny
eeZx(Z\{0})*,|€loc <M

By (B.1.17) and (B.1.10) it results

1
meas K(a, N) < C(A,M)a’ R S
nlv%EN <ZQ:1 na)N5

for some finite constant C’(A,M) < o0, provided N§ > A. We fix

< C'(A,M)a° (B.1.19)

N:=[aY+1 and K,:=K(a,N)

whose measure satisfies |[Co| Sau o’ by (B.1.19). For any k € T \ K, for any i = (nq,...,n,) with
1<ny <...<nyforany @€ Z x (Z\ {0})* with |¢|, <M, one has, by (B.1.18) and (B.1.16),

(B.1.10) a
fela(@),m)l > alpa@IE 2
(Zazlna) =

Recalling the definition of fz in (B.1.8), (B.1.7) and z((7) in (B.1.4), the lower bound (B.1.20) implies
(B.1.2) with 7 := 7y N — 3, cfr. (B.1.6). ]

(B.1.20)

B.2 Finite depth case

We consider now the finite depth case 0 < h < 4-oo where the frequencies are, by (4.5.12) and (4.5.5),

S :
Q;(k) = wi(k) + % tanh(hj), w;(k) = \/jtanh(hj) (Hﬂ +g+ Ztanh(h”)) . (B2.1)

In this case Proposition B.0.2 is a consequence of the following result.
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Proposition B.2.1. Let T = [k1,k2] and consider AM € N and B € Ny. Then there exist ap, 7,0 > 0
(depending on A,B,M) such that for any o € (0,0), there is a set Ko, C T of measure O(a?), such that
for any k € T\ K, the following holds: for any 1 < ny < ... < ny any m = (mq,...,mg) € NB, any
Z:=(c1,...,ca) € (Z\ {O})* with ||ose <Mand d = (dy,...,ds) € (Z\ {0})B with |d|ec <M, one has

a

(22:1 Mo+ Y gy )7

A B
i
‘ E_lca wn, (k) + 5 bg_l dytanh(hmy)| > (B.2.2)

IfB = 0, by definition, the sums in (B.2.2) in the index b are empty and the vectors m,, d are not present.

Before proving Proposition B.2.1 we deduce Proposition B.0.2 in the case of finite depth h.

Proof of Proposition B.0.2. Let (o, 3) € N2\ x N2V pe 4 multi-index with length | + 3] < M,
which is not super action preserving (cfr. Definition 4.7.3). Let A := [9(«, 3)| > 1 and denote by 1 <
ny < ... < ny the elements of MN(«, ) defined in (4.7.10). We also consider the set M (a, 5) := {n €
N: ap, —a_y — Bn + f—n # 0}, which could be empty. We denote by B := |9M(«, )] its cardinality, which
could be zero, and 1 < m; < --- < mg its distinct elements, if any. Note that 1 <A < M and 0 <B < M.
By (B.2.1) and since w;(x) is even in j, we get

Q) - (=B = Y wilmlo; =B+ D 5 tanh(nj)(a; - 5)

jez\{0} jez\{0}

= 3" wnl®)(an + acn — B — Bn) + %Ztanh(hn)(an — 0 — B+ Bn)
n>0 n>0

= Y walontacn =B —Bo)+y D tanh(en)(an — ap — B+ )
neN(a,B) neM(a,B)

A y &

= ana(f@)ca + ) Zdb tanh(hmy) (B.2.3)

a=1 b=1
having defined
Cq = Qp, + Q_pn, — Bna - Bfmm dy = Ay, — Oy, — me + /Bfmb .

By the definition of M(«, 3), each ¢, € Z\ {0} and |¢,| < || + || < M forany a = 1,...,A. If M(«, )
is empty then B = 0, and the second sum in (B.2.3) in the index b is not present. On the other hand, if B > 1,
by the definition of M(«, ), each dp, € Z \ {0} and |dp| < || + |B] < M for any b = 1,...,B. Applying

in both cases Proposition B.2.1 with M = M we deduce (B.0.2) with v := @ ]f/‘[)T . ]
Proof of Proposition B.2.1. We write the proof in the case B > 1. In the case B = 0 the same argument
works. For any 71 := (ny,...,ny) € NA with1 <ny < ... <ny and 1 := (mq,...,mp) € NE we define
1
xo(7i,m) = xo(f,m) = xo(7,m)\/Ng, Va=1,...,A

SNt Yy (B.2.4)

te(1) := y/tanh(hn,), Ya=1,...,A, tyip(Mm):= /tanh(hmy), Vb=1,...,B.

Clearly

1 = o = _
0< ST S < zq(ri,m) <1, Vtanh(h) <t,(7) <1, Va =0,...,A,
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If (B.2.2) holds, then multiplying it by z(77,773)3, one gets, recalling (B.2.1), that the inequalities

A B

y
‘ E Cata \/Fc:cg + g2zt + Zt% zd + 5 E thbxg‘ > axgt? (B.2.6)
a=1 b=1

hold at any xy = xo(7i,M), x4 = Tq(7,M), tg = ta(7), a = 1,...,Aand ty1p = tyip(m), b = 1,.
defined in (B.2.4). This suggests to define the function

2
My, s,x0,K) 1= \//{yG + gyPxg + %521:8, (B.2.7)

and, for @ := (c1,...,ca) € (Z\ {0})* and d = (dy,...,dg) € (Z\ {0})B,

B
2 1 ’Y 2 .3
Frgi [FLAPAPH ST SR, f st k) anta (Zasta,T0, K 2;dbtA+bx0, (B.2.8)
with variables x = (zg,...,xs) and t = (t1,...,ta+8)-
We estimate the sublevels of K = fyg (a:,t,/f) using Theorem B.0.3. The set X := [—1,1]?A"B+1 j5 4

closed ball of R?A*B+1 The function Jz7: X XTI — Ris continuous and subanalytic. Then we define the
non-zero real analytic function

A
p(x,t) :== g Hmata H [(gwixé + lt2$0)xb (gzpxg + ltb )z 6} (B.2.9)

4 4
1<a<b<A
We observe the following lemma.

Lemma B.2.2. There exist positive constants c¢(A) := c(A,g,7,h), C(8) := C(A,g,7v) > 0 such that, for
any

o(7,11) = (0 (7,71) amo,...ns LA 17) 1= (t1(7), .. ta(7), tags (1), . tasn (), (B.2.10)

defined by (B.2.4), it results
c(h) (Zna + Zmb) < (e, i), 17, m))| < C(a) (Zna + Zmb) (B.2.11)

with 7o == A+ 1+ 12(5).

Proof. The upper bound (B.2.11) directly follows by (B.2.5). The lower bound (B.2.11) follows by (B.2.5)
and the fact that, since 1 < nq < ... < n, are all distinct,

2
o8 i
(gazag + Zt?z o)y — (grpag + Zt%mg))xg
2 3 3
. n n
= x2(7,m) (gng + fyztanh(hna))(gnb + ’yztanh(hnb))’ ~ “ - ~ b
gna + I tanh(hng)  gng + - tanh(hny)
> xo(it,m) "2 g? mln( d v )]n — | > cao(,m)"?
pey 9 a - I
v=l \dy gy + 2 '~ tanh(hy)
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for some constant ¢ > 0, having used in the last passage that, foranyy > 1,9 > 0,y € Rand h > 0,

d Y 4y*(8gy + 3~* tanh(hy) — y*hysech®(hy))
dy gy + 2 tanh(hy) N (4gy + ~?tanh(hy))?
21692?/22+’y4 (8g + ~v%(3tanh(hy) — hysechQ(hy))) > WSQ
using that the function 3tanh(y) — ysech?(y) is positive for y > 0. O
We show now that the assumptions (H1) and (H2) of Theorem B.0.3 hold true.
Verification of (H1). By (B.2.9), if p(z,t) # 0 then, by (B.2.9),
20 £0,Ya=0,... A, ta#0,Ya=1,... A (B.2.12)

In particular on the set {(,t) € X: p(z,t) # 0} x Y the function f rin (B.2.8) is real analytic.
Verification of (H2). For any (z,t) such that p(z,t) # 0, the analytic function x > f. »(z,t,x) possesses
only a finite number of zeros as a consequence of the next lemma.

Lemma B.2.3. For any (v,t) such that p(x,t) # 0, the analytic function k — [ 7(x,t, k) is not identically
zeroinZ. 7

Proof. Assume by contradiction that there exists
(.’I),t) eX,z= (xa)0§a§A7 t= (ta)OSaSA+B with p(.’I),t) 7é 0 such that faj(xata’%) =0

for any « in the interval Z. Then, by analyticity, the function x — f. ;(,t, k) is identically zero also on the

larger interval (—d,+00) where § := minj<g<a tg§x8 > (. Note that x% > (0 by (B.2.12). In particular,
for any | € N, all the derivatives 9. e 7(x,t,x) = 0 are zero in the interval k € (—0,+00).

We now compute such derivatives at x = 0 differentiating (B.2.8). The derivatives of the function
Ay, $,x0, k) defined in (B.2.7) are given by, for suitable constants C; # 0,

aéA(y,S,.ﬁLb,:‘i) = ClyGl)‘<y787x07K’)l_2l7 Vi eN.

Thus we obtain

6

a/lﬁA(y>5>x07K)|l€=0 = Clu(yasal‘())lA(yaSaanO) where ﬂ(yasa:UO) = 9 4 Y 72 5 67 (B.2.13)
gy“Ty + 8°%g
and, recalling (B.2.8),
A
8,l§fad~(x,t,/@)\n:0 = Clanta,u(ma,ta,xo)l)\(ma,ta,xo,O), vl € N.
a=1

As a consequence, the conditions 0", fz7(x,t, k) lk=o = O forany [ = 1,...,A imply that

Az, )7 =0 (B.2.14)

where A(z,t) is the A X A matrix
M(.’El,tl,mo))\(ffl,tl,x(],o) ,u'("I;A7tAax0)A(antA7$070)
M($17tlva)Q)\(ml)tl7x070) ,LL(Q:A,tA,CCO)2>\($A,tA,.TO,0)
A(z,t) = . ) )

M($1,t1,iEO)A)\(fL'l,tl,QTO,O) M(xAvtAny)AA(antAaanO)
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and 7’ is the vector
o= ||, Te:=cita € Z\{0},Va=1,...,A,
Ta

because by assumption each ¢, # 0 and (B.2.12) holds. Since 7 # 0, we deduce by (B.2.14) that the matrix
A(z,t) has zero determinant. On the other hand, by the multilinearity of the determinant,

1 1
A
M$17t17$0 M antAaxO
det A(z,t) = Hu(xa,ta,:co))\(xa,ta,xo,())det ( ) ) . ( ) )
a=1 . .
pu(wy,ty, o)t pu(a, ta, o)
A
== H/.L(xa,ta,iv())A(l'a,ta,lU0,0) H (,u(:ra,ta,xo) - M(.’L'b,tb,l'())) . (BZIS)
a=1 1<a<b<A

The condition p(z,t) # 0 implies, by (B.2.12), (B.2.13) and (B.2.7), that

A
H N(waytmxﬂ))\(wmtmxﬂvo) 7& 07

a=1

and, in view of (B.2.15), the determinant det A(z,t) = 0 if only if pu(xqg,tq,x0) = wu(xp,ty, o) for some
1 < a < b < A. By the definition of the function (y, s,z¢) — u(y,s,zo) in (B.2.13) it follows that

2 2
Y Y
((Tata, o) = p(@p,tp,m0) = (gz2z) + zt?ﬁg)?ﬁg — (gzjag + Ztgxg)ﬁ'?g =0.

In view of (B.2.9) this contradicts p(x,t) # 0. O

We have verified assumptions (H1) and (H2) of Theorem B.0.3. We thus conclude that there are Ny € N,
ap,d,C > 0, such that for any o € (0,c], any N € N, N > Ny, any (z,t) € X with p(z,t) # 0,

meas{r € T: |f,z(x,t,r)] < alp(z,t)[V} < Cal |p(z,t)|V. (B.2.16)
For i = (n1,...,ny) € N*with1 <ny < ... <mnyandm = (my,...,mp) € NB we consider the set
Bl N) o= {1 € To | gl i) (1,17), )| < olp(a(it, i), oG, i)V} (B217)

where z(7i,m) and t(7i,m) are defined in (B.2.10). By (B.2.11) we deduce that p(x(7i,m),t(7i,m)) # 0,
and (B.2.16) implies that

(o, N) < CO|p(a(it,m), t(7,m)) V. (B.2.18)

Consider the set
K(o,N) := U B.ima(,N)CI. (B.2.19)
fi=(n1,...,na)ENA 1<ng <...<ny
ﬁi:(ml,...mB)GNB
ae(Z\{0H*, |eoo <
de(Z\{0})®,|d]co <M
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By (B.2.18) and (B.2.11) one gets

1
meas K (a, N) < C(4,M)a < C'(A,M)a? (B.2.20)
nh%el\l (22:1 N + Zg:l my) N9

mi,...,mpEN
for some finite constant C’(A,M) < +oo, provided N§ > A + B. We fix

N :=[(A+B)§ ']+ 1 anddefine K, :=K(a,N)

whose measure satisfies || = O(a?), in view of (B.2.20).
In conclusion, for any x € Z \ K, for any 7 = (n1,...,ny) with 1 < nj < ... < ny and m € NB, any
€ (Z\{0})* with |Cloc <Mand d € (Z\ {0})® with |d |- <M, it results, by (B.2.19) and (B.2.17), that

31
S

(B2.11)
) ‘M Z A C(A)O; TN °
(Cazifa+ 2o me)

Recalling the definition of fg 71n (B.2.8) and xo(7,m) in (B.2.4), the lower bound (B.2.21) implies (B.2.2)
with 7 := 79N — 3 (cfr. (B.2.6)) and redenoting cc(A) ~ a. ]

| f (i) (71, ), k)| > ol p(a(id, ), 1 (B.2.21)

9



Appendix C

Derivation of water waves equation with
vorticity

The water waves in the domain D,, defined in (4.1.1) is described by the free surface 7(¢,2) and the velocity
field (u(t,z,y),v(t,x,y)). The equation of motions are the mass conservation and Euler’s equations

divi =0
I — (C.0.1
Oi + 1 - Vii = =V P — ge,

where P(t,z,y) denotes the pressure and g the gravity. They read in components, denoting @ := (u> ,as

Uy + vy =0
Up + Uy + VUy = — Py in D, (C.0.2)
Vg + UV + vy = —P, —g.

The boundary conditions are

v =N+ U aty =n(t,x)
v—0 fory - —h
(C.0.3)
P=P -k L aty = n(t,x).
Vi+tni),
The second condition in (C.0.3) at the bottom is equivalent to
v(t,z,—h) =0, if h isfinite,
limy o v(t,z,y) =0 if h =4o0.
Taking the rotor of the Euler equation (C.0.1) we obtain that vorticity
rot il = w = vy — Uy
evolves according to the Helmotz equation
Oww + (u0y + v0y)w = 0. (C.0.4)
We assume that the vorticity of the vector field  is constant
W= Vp — Uy =Y. (C.0.5)

231



232 APPENDIX C. DERIVATION OF WATER WAVES EQUATION WITH VORTICITY

Remark C.0.1. Notice that by (C.0.4), if initially the vorticity wj;—o = < is constant then w = ~ at any time
t.

Moving frame. We can regard these equations in a frame moving horizontally with an arbitrary constant
speed c. The new variables

]

(t,z,y) =u(t,x +ct,y) —c
3(t,2,y) = v(t, + ct,y)
(

i~

(C.0.6)

n(t,x) :==n(t,x + ct)

P(t,z,y) = P(t,a + ct.y)

satisfy the same equations (C.0.1)-(C.0.3). This means that we can always add an arbitrary constant c to the
horizontal component of the velocity field.

Lemma C.0.2. fo%’u(t,x,y) dx =0 foralltandy < —1.

Proof. Notice that, by the divergence free condition u; + v, = 0 in (C.0.2) we have

27 2w
ay/ v(t,z,y)de = / —ug(t,z,y)der =0
0 0

by the 2m-periodicity of u. Hence

2 2
/ v(t,z,y)dx = lim v(t,z,y)dx =0
0 y—=—hJjg

by the second boundary condition in (C.0.3). O

By Lemma C.0.3 below we have that there exists a constant c(¢) and potential ®(¢,x,y), 2m-periodic in
x, such that
u(t,z,y) = ¢ — vy + Pu(t, 2,y)

(C.0.7)
v(t,x,y) = ®y(t,x,y)

where
2

= — u(t,z,y)de + vy, Vy< -—1. (C.0.8)
2T 0

Notice that c is independent of y < —1. Actually c is constant in ¢.
Lemma C.0.3. 0;c = 0.

Proof. By differentiating (C.0.8) and using the second equation in (C.0.2) we get

1 2 1 2m 1
Oic(t) = ) Ou(t,z,y)dx = o /. —i(uz)z — vuy — Ppdx
1 27 27
= — —v(vy —y)dz €2 7/ vde =0
2 0 2 0

by Lemma C.0.2. O
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Thus, in view of (C.0.6) about the moving frame, i.e. substituting u,v,n, P with u,v, ﬁ,ﬁ with ¢ = ¢

we can always assume that
U(t,l’,y) =Y + q)m(t7w7y)
’U(t,.’L',y) = (I)y(tax7y)'
By (C.0.7) and since # is divergence free, it follows that
Ad(t,x,y) =0.
We can also express the boundary conditions (C.0.3) in terms of ®, getting
=Py — Loty + e aty =n(t,)
¢, — 0 fory — —h.
We define the trace at the boundary
¢(t7$) = q’(tSQ«"ay)‘y:n = ‘I’(tSIEaU(taﬂU))'
In such a way, given 77,7, the function & is recovered by solving the Dirichlet problem
A® =0 inD,

S=¢  aty=nltz)
¢, =0 aty=—h

Defining the Dirichlet-Neumann operator G (7)1 as

G(WW =V 1+ 77:% (877(I>)|y:77(t,x) = (_(I)IBUZ + (I)y)|y:n(t,w)7

we get from (C.0.11) that
ne = G + e

which is the first equation in (4.1.2).

Remark C.0.4. We have that
Gl =0, [ Gunfwlds =o.

Lemma C.0.5. (Stream function) There exists V on D,, such that
u=W¥,, v=-Y,,
and therefore U =10+ Vzi solves

@m:\fly:u—i—”yy, <I>y:—\T!I:v.

(C.0.9)

(C.0.10)

(C.0.11)

(C.0.12)

(C.0.13)

(C.0.14)

(C.0.15)

(C.0.16)

(C.0.17)

Proof. The existence of ¥ defined in D, and satisfying (C.0.16) follows from the classical Helmholtz

.. . . —v
decomposition of the irrotational vector field u

O]

Remark C.0.6. Notice that the fluid particles evolve according to the time-dependent Hamiltonian system

i =u=W,=09,(¥ - Ly?
J=v=—0, = —9,(¥ - 1y?).
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To deduce the second equation of water waves, we start again with the Euler equation and use the
vectorial identity

. |ul? q ,
u-Vu=V TN — U A rotu
to write the second equation of (C.0.1) as
, |uf? 4 .
o+ V - )~ i Arotd = —V (P + gy). (C.0.18)

Now we use that, by (C.0.9), the velocity field @ = <—gy> + V@, that, by (C.0.16), |@]?> = |V¥|? and,
finally that, by (C.0.5) and (C.0.16),

ﬁ/\rotﬁz*y( Uﬂ) = —VVU,

to write (C.0.18) in terms of @ and ¥ as

— VU |?
8, <vq>+ ( gy)> +v<|2|> + AV + V(P + gy) = 0.

Therefore in the time dependent fluid domain we have that
Ve[
8t<I>+T+’y\I/+P+gy:C(t) (C.0.19)
for some C'(t), which determines the pressure in the fluid. This generalizes Bernoulli theorem for fluids
with constant vorticity.
Evaluating (C.0.19) at the free surface, and imposing the last dynamic condition in (C.0.3) we obtain
that

V| o
ot Wy o[ ) =) aty=n(ta), (C.0.20)
2 L+nz ),

T

where ¢(t) = C(t) — Fo.

Finally we write this equation in terms of 1) and 1 only. We use the following two preliminary lemma.
Given a 2-periodic function f(x) with zero average we define g := J; ! f the unique 27-periodic function
with zero average such that 0,9 = f.

Lemma C.0.7. There is cy(t) such that

Utz n(t,2)) = =20 = 0, Gl + colt). (C.021)

Proof. We have

d y
— <‘If(t,a:,n(t,3:)) + 5772) = Wy (t,z,n(t,x)) + Wy, (t,z,n(t,2))ne + Y72

dx
= _(I)y(t)xan(tvx)) + (‘Px(tvmvn(tv‘r)) - 777(75795))% + VNN
= —G(n)y

implying (C.0.21). O



235

Remark C.0.8. The previous computation gives another proof that fT G(n)ydz = 0.

Inverting
Yy =Pp +Pyne, G =Py — Pune, aty=n(tx), (C.0.22)
see (C.0.12) and (C.0.14), we get
Ve — G ()Y
Py (z,m(x)) = 5
L4y (C.0.23)
v 1+73
By Lemma C.0.5 we have that, at y = 7,
U2 (O, —yn)? + @2 2 P2 - 2yP,n + B2
IV2 > _( ’Y;?) vy '72 Ty (C.0.24)

Differentiating (C.0.12) we have, at y = n(¢,z),

O = Py + Dy

€020),C0.15 |VI|? -
o i YW+ K <77 ) —gn +c(t) + @, (G(n)Y +ynn.).  (C.0.25)

2 V1i+n?

We now expand

_ W;W =Y+ (G ()Y + Y112
<“%¥“”JW§_ﬁ_wfw+¢?P§ﬁ+%ﬁwa+%@mw+mm%wm®
- _‘1’23 - (I;z + O, G ()Y + y1(Py 0 + Pr) + 78 ' G(0)) — yeo(t)

€0 L5 L, )+ G0 + s 905 Clno — et

(€022 —W + %(G‘(WW)2 + s + 707 G(n) — eo(t). (C.0.26)

Finally, using (C.0.23), we check the identity

P2(1+n2) 1 Y (e + G)y)?
S 1l e e f ey

(C.0.27)

and, collecting, (C.0.25), (C.0.26), (C.0.27)

v mﬂ%+GmWV+H< e

Yy =—gn— =+ ) + e + 70, G + E(t),

2 2(1+n3) Vit+n?
which is the second equation in (4.1.2) with ¢ in the homogeneous space H>.
Remark that

/Tn(a:) dz

is a prime integral of (C.0.15). For simplicity we fix andx = 0.
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Remark C.0.9. Given initial data (1g,v0) we solve (n(¢,z),1(t,x)) solving (4.1.2), then we define ®(t,x,y)
solving (C.0.13), then we define @ = (u,v)(t,z,y) according to (C.0.9), which is divergence free and has
vorticity . We notice that the boundary condition v(¢,z,—h) = 0 and so we define ¥ (¢, x,y) according to
Lemma C.0.16. Finally (C.0.19) defines the pressure inside D, so that the Euler equation (C.0.1) holds in
D,,. The first and the third kinematic and dynamics boundary conditions in (C.0.3) follow by the equations
4.1.2).

C.1 Hamiltonian formulation

We now prove that the equations (4.1.2), defined on H, 6 x H' are Hamiltonian. We denote for clarity [¢] an
element of H', remind that 1)1 ~ 1)5 if and only if 1); — ¢, = c. We define the symplectic form

W) () = (0% ) () (),

= (YO 'm — Y1, ma) e + (o) 1o (C.1.1)

and since 71,72 have zero average it is well defined and non-degenerate on H} x H'.
We consider the Hamiltonian

1
) = 5 | WG+ grP)do -+ [ VITde+ ] [ (o + Jo)de,

which is well defined on H} x H' since G(n)[1] = 0 and Jp G(n)pda = 0. The associated Hamiltonian
vector field is defined by the identity

dH(u)[d] = W(Xg(u),d), Yu:= ([Z]> = (%) .

We have!

dH(U)[a] = <V17H77/7\>L2 + <V¢H’ {l)\>L2

_ ﬁ _ N2tz + G(n)9)? _ T _ f 2 ~
—<gn+ 5 20 +12) n(m)r Yen + 5 0 ,

+ <G(n)¢ + Wmm@m
and
VyH = G(n)Y + ymn, € Hy(T)

2 2 2
vt = [ (Ve 4 G) ﬂm_,{( e ) s Lot e it

2 2(1+n3) V1+n2 2

'Setting K (1,%)) = 3 Jz G (n)1 dz we have, using the shape-derivative formula,

1 1
VoK = =5 @,Gmv + 5 @b, aty =1(x)

T 2 2(1+n2)



C.1. HAMILTONIAN FORMULATION

Comparing with (C.1.1) we see that the Hamiltonian vector field Xz (n,[1)]) € HA(T) x H' is

n\y (0 Id V,H
% (i) = (G o) (50m)
which is system (4.1.2).

If we define the symplectic form

we have
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