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Content of the thesis

This thesis treats two main topics. The first one, contained in Chapter 2 and Chapter
3 and taken from [35] and [48], is the study of functional inequalities linked to optimal
transport in spaces satisfying synthetic Ricci curvature lower bounds. The focus is on an
indeterminacy estimate linking the Wasserstein distance and the perimeter measure and on
optimal transport estimates related to eigenfunctions of the Laplacian. The results contain
new contributions also in the classical setting. Two additional inequalities involving optimal
transport and heat flow are presented in Appendix A.
The second topic, contained in Chapter 4 and taken from [34], concerns a proof of the
existence of a solution to the Monge problem for the distance cost between absolutely
continuous measures, with bounded densities, in an infinite product of CD(K,N) spaces
with finite N provided that some additional hypotheses are satisfied.
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Introduction

I Spaces with synthetic Ricci curvature lower bounds

The theory of metric measure spaces satisfying synthetic Ricci curvature lower bounds, born
around twenty years ago, has faced in the last decades a very rapid growth.

The works of Cordero-Erasquin, McCann and Schmuckenshläger [47] and Sturm and
Von Renesse [99] proved that for a smooth Riemannian manifold, having Ricci curvature
bounded from below by K is equivalent to displacement convexity properties of an entropy
functional along 2-Wasserstein geodesics. This second formulation, relying only on the
metric of the manifold and on the volume measure, led Lott and Villani [73] and Sturm [93],
[94] to the definition of a synthetic notion of lower Ricci curvature bounds for metric measure
spaces (i.e. metric spaces endowed with a non negative Borel measure finite on bounded
sets). This notion is called Curvature Dimension Condition CD(K,∞) or CD(K,N), the
second one encoding in a synthetic sense also an upper bound on the dimension of the
space. The CD(K,N) condition is compatible with the smooth case in the sense that a
smooth Riemannian manifold satisfies the CD(K,N) condition if and only if its dimension
is less or equal than N and its Ricci curvature is greater or equal than K. CD(K,N) spaces
are also closed under measured Gromov Hausdorff convergence, and thus contain limits of
Riemannian manifolds.

Since the class of CD spaces includes also Finsler structures, the more restrictive Rie-
mannian curvature dimension condition, RCD(K,N), was later introduced in [10] ([6] for
the σ-finite setting) in the infinite dimensional case and in [58] in the finite dimensional case.
This is defined by coupling the CD condition with the Infinitesimal Hilbertianity condition,
which requires the Sobolev space W 1,2 to be an Hilbert space. We also recall the weaker
RCD∗(K,N) condition (in correspondence with the weaker CD∗(K,N) condition introduced
in [16]) which is now known to be equivalent to RCD(K,N) for finite measure after [37].
Moreover an equivalent distributional formulation of RCD(K,N) spaces using the so called
Bakry-Émery curvature dimension condition is also available ([11, 55, 13]).

We finally mention a weaker variant of the CD(K,N) condition, namely the Measure
Contraction Property defined through a convexity condition only along the 2-Wasserstein
geodesics ending in a Dirac delta (see [78] and [94]). This weaker condition includes spaces,
like the Heisenberg group which has been proved in [66] to not satisfy the CD(K,N) condi-
tion for any K and N but to satisfy the MCP(K,N) condition for suitable K and N . It is
out of the scope of this note to give a deeper introduction to the history and developments
of the theory and to give a complete list of references. During the treatment we will describe
more in detail the aspects we are interested in.
In the following sections we introduce and present in detail the content of this thesis. In
particular, Section II is an introduction to the works in Chapter 2 and 3. Section III is
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an introduction to Chapter 4. Finally Section IV contains description of some additional
results contained in two appendices, respectively Appendix A and Appendix B.

II Indeterminacy estimates, eigenfunctions of the Laplacian
and optimal transport

This is a short introduction to the works presented in Chapter 2 and Chapter 3 which treat
similar topics, but use different approaches and tools. We give a detailed review of the
content of them respectively in Section II.I and Section II.II.

In a smooth closed Riemannian manifold (M, g), an eigenfunction of the Laplacian
operator ∆ (the Laplace Beltrami operator of the manifold) of eigenvalue λ > 0 is a function
fλ which satisfies the equation

−∆fλ = λfλ in M.

The nodal set of an eigenfunction, namely its zero level set, has been object of an extensive
investigation. An aspect of particular interest has been the study of its volume. Around
1980 Yau conjectured, in [100], that in a smooth closedN dimensional Riemannian manifold,
eigenfunctions of the Laplacian of eigenvalue λ satisfy

C
√
λ ≥ HN−1{fλ = 0} ≥

√
λ

C
, (1)

where C depends only on the manifold and HN−1 is the (N − 1)-dimensional Hausdorff
measure. Among the many contributions we name Brüning [25] who solved the conjecture
for N = 2, Donnelly and Fefferman [53] who settled the case of real analytic metrics, Colding
and Minicozzi [46], Sogge and Zelditch [85, 86] who independently obtained the lower bound
HN−1({fλ = 0}) ≥ cλ

3−N
4 , proved later also by Steinerberger [88]. A breakthrough on the

problem has been obtained by Logunov in 2018, proving, for any N ∈ N, a polynomial
upper bound [70] and the complete lower bound [71]. For an overview and more references
we refer to [72].

One could ask if analogous estimates hold for sum of eigenfunctions. In this direction,
up to very recently, the only results were the Sturm Oscillation Theorem in dimension one
(see [92], [19]), and an upper bound by Donnelly [52] in higher dimension.

In the first part of this thesis we focus on a new approach relating optimal transport and
eigenfunctions introduced by Steinerberger (see [89]) to study the zero set of sum of them.
This method turs out to be useful to prove that in a N -dimensional closed Riemannian
manifold a function f which is a linear combination of eigenfunctions of eigenvalue bigger
or equal than λ, satisfies

HN−1{f = 0} ≥
√

λ

log(λ)N C(∥f∥L1 , ∥f∥L2 , ∥f∥L∞). (2)

In [89] it is considered the case of 2-dimensional Riemannian manifolds, while in [82] the
Euclidean case of any dimension (see also [90]). An analogous estimate has been proved in
[30], without the logarithmic factor, for Riemannian manifolds of any dimension.

The idea to get (2) is to combine two inequalities: an upper bound of the type

W1(f+, f−) ≤

√
log(λ)
λ

C(∥f∥L1 , ∥f∥L2 , ∥f∥L∞), (3)
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for f linear combination of eigenfunctions of eigenvalue bigger or equal than λ with an
indeterminacy estimate of the type

W1(f+, f−)HN−1({f = 0}) ≥ C(∥f∥L1 , ∥f∥L∞),

valid in a smooth closed N -dimensional Riemannian manifold for any continuous function
f with zero integral (for a more detailed presentation on this type of inequality, see the next
subsection). With W1(f+, f−) we mean W1(f+Vol, f−Vol) which makes sense if f has zero
integral, as it is the case of eigenfunctions.

We mention also that in relation to (3), Steinerberger in [91] conjectured that in a closed
Riemannian manifold there exist constants C and c such that

C√
λ

∥fλ∥
1
p

L1 ≥ Wp(f+
λ , f

−
λ ) ≥ c√

λ
∥fλ∥

1
p

L1 . (4)

His motivation behind this guess is the intuition that eigenfunctions oscillate at scale 1√
λ

and so one would hope to transport their positive part into the negative one by moving
everything by 1√

λ
(see [91]). We mention that the upper bound for p = 1 was proved in

[30].

This approach of using the tool of optimal transport to get a lower bound for the
measure of the zero set of (linear combinations of) eigenfunctions is particularly suitable
to the context of metric measure spaces satisfying synthetic lower Ricci curvature bounds
where the smooth tools developed in the classical literature are not at our disposal. The
links between indeterminacy estimates, eigenfunctions of the Laplacian and bounds on the
Wasserstein distance between the positive part and the negative part of an eigenfunctions
are the focus of Chapter 2 and Chapter 3. We give a detailed presentation of them in the
two next subsections.

II.I Indeterminacy estimate via localization and lower bound for the
nodal set of eigenfunctions

In this Section we review the results obtained in [35] that are presented in detail in Chapter
2.

Indeterminacy estimate I

Recently there has been an emerging interest in indeterminacy estimates of the following
type. Let f : [0, 1]N → R be a continuous function with

∫
[0,1]N f(x) dx = 0. Then

W1(f+dx, f−dx)HN−1{f = 0} ≥ C

( ∥f∥L1

∥f∥L∞

)α
∥f∥L1 ,

for some α ≥ 1.
First Steinerberger in [89] proved the inequality in dimension N = 2 with exponent α =

1. Then Sagiv and Steinerberger proved the result in any dimension N with a dimensional
exponent 4− 1

N in [82]. In that work they also conjectured that the estimate should hold with
exponent α = 1. Carrol, Massaneda and Ortega-Cerdá extended the result to the setting
of smooth closed Riemannian manifolds of any dimension N and improved the exponent
to 2 − 1

N in [30]. They also gave a proof of the fact that the estimate cannot hold with
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exponent smaller than α = 1. A particular case of this inequality appeared recently also in
[29].

The first part of Chapter 2, more precisely, Section 2.1 and Section 2.2, are devoted
to the proof of an indeterminacy estimate with sharp exponent α = 1, which holds in the
general setting of metric measure spaces satisfying synthetic Ricci curvature lower bounds.
In particular we prove the following result which is presented in its full generality in Theorem
2.2.2.

Theorem 1. Let (X, d,m) be an essentially non-branching m.m.s. satisfying the CD(K,N)
condition with 1 < N < +∞. Let f : X → R a continuous function with

∫
X f m = 0.

Assume also the existence of x0 ∈ X such that
∫
X |f(x)| d(x, x0)m(dx) < ∞. Then

W1(f+m, f−m) · Per ({x ∈ X : f(x) > 0}) ≥ C(K,D) ∥f∥2
L1

∥f∥L∞
, (5)

where D = diam (X).

The constant C(K,D) is explicit and does not depend on D if K ≥ 0, in which case the
result is non trivial also in the unbounded case (see Theorem 2.2.2). The perimeter measure,
which can be defined also in metric measure spaces, plays the role of the codimension-one
Hausdorff measure. The class of spaces considered in the previous theorem includes smooth
Riemannian manifolds and in particular the Euclidean space.

We get the sharp non dimensional exponent, α = 1, thanks to the 1-dimensional localiza-
tion technique which particularly fits to L1-optimal transport problems (see Section III for
an introduction and Section 1.6 for a more detailed treatment and references). In particular,
localization allows to reduce the problem to one dimensional problems lying on weighted
intervals with CD(K,∞) densities if starting from a CD(K,N) space or with MCP(K,N)
densities if starting from a MCP(K,N) space. To prove the estimate in weighted intervals
we proceed in two steps. In Section 2.1.1 we first prove a sharp, in the exponent, indeter-
minacy estimate for the flat real interval, slightly different from the one already present in
[91]. Notice that when dealing with the problem in one dimension, it is easier to get the
sharp exponent and we remark that in dimension N = 1 and N = 2, the results already
present were sharp. For completeness we add that recently the sharp and rigid version of
the one dimensional indeterminacy estimate has been proved in [54]. The second step is to
use part of the proof of estimate of Section 2.1.1, to prove an indeterminacy estimate still
sharp in the exponent in the weighted interval, provided that the weighted measure satisfies
some curvature dimension condition. In Section 2.1.2 we tackle the case of CD(K,∞) den-
sities while in Section 2.1.3 we go through the case of MCP(K,N) densities. The key idea
is to exploit the log-concavity properties of the densities to get an indeterminacy estimate
involving the corresponding perimeter measure.

Finally in Section 2.2, we “reintegrate” the estimate by using the localization theorem
for CD(K,N) spaces or MCP(K,N) spaces. In passing from “one dimensional” geodesics to
the whole space the same exponent is kept. Moreover in the CD(K,N) case, no dependence
on the N appears.

Estimates for the measure of nodal sets of eigenfunctions

In the second part of Chapter 2, (Section 2.3) we apply the indeterminacy estimate proved
before to get lower bounds for the measure of the nodal set of eigenfunctions of the Laplacian
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(and sums of them) in the non-smooth setting. Thanks to the weak notion of Laplacian
which is available in the metric setting, (see Section 1.4.1) we can consider its eigenfunctions.
We mention that even if the space satisfies some strong curvature assumption like the
RCD(K,N) condition, where eigenfunctions of the Laplacian are continuous (see Remark
1.4.13 for more details and references) and the zero set is then a well defined closed set, in
singular spaces no regularity results are at our disposal. As opposed to smooth manifolds,
where the zero set is a codimension-one submanifold up to a codimension-two set (see [63],
[28]), in our case it is not excluded yet that it has non-empty interior. This is because the
weak unique continuation property for eigenfunctions is not known to hold. We mention for
completeness in this regard the recent [51] which disproved the strong unique continuation
property for harmonic functions in RCD(K,N) spaces, N ≥ 4. So on one hand the zero
set lacks of regularity, on the other side many of the tools developed to build the smooth
theory are not available, as a consequence of the absence of a unique continuation result.
For this reason the optimal transport approach which requires lower regularity is suitable
for our setting. Notice, in this regard, that the estimate we proved in Theorem 3 involved,
in place of the codimension-one measure of the zero set, the term Per({f > 0}), which can
be thought as the measure of the interface between the positive and negative part of f .
From now on we refer to Per({f > 0}) also as measure of the nodal set.

As said at the beginning of this section, the idea to get lower bound on Per({fλ > 0}),
for fλ eigenfunction of eigenvalue λ, is to link the indeterminacy estimate, with an upper
bound on W1(f+

λ , f
−
λ ). In Subsection 2.3.1 we derive estimates for W1(f+

λ , f
−
λ ) in the cases

of MCP and CD spaces. We obtain the following upper bound (see Lemma 2.3.1):

W1(f+
λ m, f−

λ m) ≤
√
m(X)√
λ

∥fλ∥L2 .

This combined with the indeterminacy estimate in (6) gives the lower bound in the case of
a CD(K,N) space:

Per({x ∈ X : fλ(x) > 0}) ≥ CK,D

√
λ√

m(X)
·

∥fλ∥2
L1

∥fλ∥L2∥fλ∥L∞
,

for every eigenfunction fλ of eigenvalue λ > 0, where D = diam (X) (see Theorem 2.3.2 for
the precise statement). An analogous estimate holds in the MCP case (see Theorem 2.3.3).
In Section 2.3.2 we tackle the problem in spaces satisfying the RCD(K,N) condition. The
presence of a linear heat flow allows to get a better estimate of W1(f+

λ , f
−
λ ). The idea is to

combine the fact that given fλ eigenfunction of eigenvalue λ > 0, Ht(fλ) = e−λtfλ decays
very fast to zero if λ is large, with a W2-convergence estimate to the initial datum (see
Theorem 2.3.4). In particular we show (see Proposition 2.3.6)

W1(f+
λ m, f−

λ m) ≤ CK,N,D

√
log λ
λ

∥fλ∥L1 .

Again combining this with the indeterminacy estimate (6) and also a L1 −L∞ estimate for
eigenfunctions from [12] gives the following result.
Theorem 2. Let K,N ∈ R with N > 1. Let (X, d,m) be a m.m.s. verifying RCD(K,N),
with diam (X) = D < ∞ and m(X) = 1. Let fλ be an eigenfunction of the Laplacian of
eigenvalue λ > max {2, D−2}. Then:

Per ({x ∈ X : fλ(x) > 0}) ≥ 1
C̄K,D,N

1√
log λ

λ
1−N

2 .
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See Theorem 2.3.8 for a more detailed statement. It is worth to mention that in the
smaller class of non-collapsed RCD(K,N) spaces, the perimeter coincides, as in the smooth
setting, with the (N − 1)-Hausdorff measure of the reduced boundary (see [3] and [24]).
Finally the linearity of the Laplacian in the Infinitesimally Hilbertian case allows to prove
similar lower bounds for linear combinations of eigenfunctions. This is treated in Section
2.4.

In conclusion, thanks to the optimal transport approach we are able to get results on
the nodal sets of eigenfunctions even under very low regularity assumptions. We underline
that our estimate is meaningful also in the case of an eigenfunction having a zero set with
non-empty interior. Finally, by improving on the L1 − L∞ estimate (to the one present in
the smooth setting in [86]) and by getting the conjectured upper bound for W1 in (4) one
would be able to recover the estimate by Colding and Minicozzi.

II.II Indeterminacy estimate and lower bound for the Wassertein dis-
tances of eigenfunctions via heat flow

In this Section we review the results obtained in [48], in collaboration with Nicolò De Ponti,
that are presented in detail in Chapter 3.

Indeterminacy estimate II

We dedicate Section 3.2 to a proof of the indeterminacy estimate in a different setting than
in the previous chapter. As we already observed, estimate in Theorem 1 does not depend
on the parameter N in the CD(K,N) condition. This suggests that an analogous estimate
should hold in a space without upper bounds on the dimension: this is what we prove here.
We underline that apart from the different setting, the interest in this estimate lies also on
its proof which uses very different techniques from the previous presented. To state our first
result we first need to recall the definition of Cheeger constant of a finite measure metric
measure space (X, d,m):

h(X) := inf
{Per(A)

m(A) : A ⊂ X Borel with 0 < m(A) ≤ m(X)
2

}
.

Theorem 3. Let (X, d,m) be a space of finite measure satisfying the RCD(K,∞) condition
for some K ∈ R. Let f ∈ L∞(X) be such that

∫
X f m = 0 and

∫
X d(x̄, x) |f(x)| m(dx) < +∞

for some x̄ ∈ X. Then one has

W1(f+m, f−m)Per({f > 0}) ≥ C(K,h(X))
( ∥f∥L1

∥f∥L∞

)
∥f∥L1 , (6)

where C(K,h(X)) is explicit. If K ≥ 0, C(K,h(X)) is a numeric constant.

It is important to remark that C(K,h(X)) is positive whenever h(X) is positive (see
Theorem 3.2.1). Observe in addition that we get again the sharp exponent discussed in the
previous part.

The crucial ingredients of our proof are an inequality proved by Luise and Savaré in [74,
Theorem 5.2], that we report in Proposition 3.1.1, linking the Wasserstein distance between
two finite measures with the same total mass to the Hellinger distance (see Definition 1.3.1)
between their evolution via the heat flow. As one can observe we get the result only for a
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subclass of CD(K,∞) spaces. This is because our proof relied on linearity properties of the
heat flow that are guaranteed only adding the infinitesimal Hilbertianity assumption (see
Section 1.4).

Note that, differently from Theorem 1, we are not requiring the space to have finite
diameter for K < 0. In particular, estimate (6) is meaningful also for spaces with finite
measure, infinite diameter and positive Cheeger constant. One example of space satisfying
these three assumptions can be found in [50]. We remark that in addition the assumption
of having finite diameter implies the positivity of the Cheeger constant.

We then show that from the previous indeterminacy estimate it can directly be derived
the analogous, sharp (in the exponent) indeterminacy estimate valid for Wp, for any p ≥ 1.
Namely, under the same hypotheses of Theorem 3 it holds:

Wp(f+m, f−m)Per({f > 0}) ≥ Cp(h(X),K)
( ∥f∥L1

∥f∥L∞

)
∥f∥

1
p

L1 .

We conclude Section 3.2 by showing an analogous indeterminacy estimate for the more
general Hellinger-Kantorovich distance (see 1.10 for the definition). We do not report here
the precise statement (see Theorem 3.2.7), but we notice that it is more refined if compared
with Theorem 3, even if more implicit, and valid also for functions with non zero integral.

Lower bound for the Wasserstein distances of eigenfunctions

In Section 3.3 we prove the lower bound in the conjecture of Steinerberger (4) for any p ≥ 1:
we state it in the setting of RCD(K,∞) spaces, recalling that smooth closed Riemannian
manifolds are included in the class of RCD(K,∞) spaces provided that their Ricci curvature
is bounded from below by K.
Theorem 4. Let M > 0, K ∈ R and (X, d,m) be an RCD(K,∞) space of finite measure.
Then for any non-constant eigenfunction fλ of the Laplacian, of eigenvalue λ ≥ M and
satisfying

∫
X d(x̄, x)|fλ(x)| dm(x) < +∞ for some x̄ ∈ X, it holds

Wp(f+
λ m, f−

λ m) ≥ C(K,M, p) 1√
λ

∥fλ∥
1
p

L1 .

The proof, for the case p = 1, is again based on the Wasserstein-Hellinger contraction
estimate in Proposition 3.1.1. The case p > 1 directly follows as for the indeterminacy
estimate. We point out that contemporarily to our result appeared in [77] a proof of the
same lower bound, in the case of closed Riemannian manifolds. The argument there is
completely different from our and uses fine properties of eigenfunctions and elliptic PDE’s
techniques.

III L1-optimal transport
In this Section we describe briefly what is contained in Chapter 4. We first give a short
general introduction and then we describe in detail our results.

III.I An introduction to L1-optimal transport and localization

In a metric space (X, d), the L1-optimal transport problem between two probability mea-
sures µ and ν, is the one of finding a minimizer for

T 7→
∫
X×X

d(x, T (x))µ(dx),
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among all the Borel maps T : X → X which satisfy the compatibility condition T♯µ = ν
(see (1.4) for the definition). A first attempt of solution for X = Rn and µ, ν ≪ Ln, is given
by Sudakov. His proof is based on reducing the problem to subregions of lower dimension
of Rn on which the Kantorovich potential is linear. Even if his original argument in [95]
contains a gap, his idea turns out to be effective for the solution of the problem. More in
detail, his strategy is to fix a Kantorovich potential φ and partition almost all the space into
maximal oriented segments (x, y), called transport rays, such that φ(x)−φ(y) = |x− y|. Via
disintegration theory, one can reduce the problem to one dimensional transport problems,
lying on the rays, between the conditional measures of µ and ν. If the marginals of µ are
non atomic, then one can consider the monotone rearrangements along the rays and glue
them to get an optimal map in the whole space. The gap in Sudakov’s argument is in the
justification that the marginals are non atomic and his approach is made rigorous later in
[1]. Different proofs of the existence of L1-optimal maps are present in [56], [96], [27], [15]
(see also [57] for the setting of Riemannian manifolds).

In [21] the L1-optimal transport problem is studied by Bianchini and Cavalletti in the
setting of non-branching geodesic metric spaces. A metric space is called non-branching if
two different geodesics cannot coincide for a positive amount of time (see Definition 1.1.7).
Their approach is a generalization of the Sudakov decomposition where transport rays are
geodesics of the space. The main difficulty is again in proving that the conditional measures
given by the disintegration are non atomic: in particular some additional hypotheses on the
space are needed. Everything is based on the good behaviour of the measure µ with respect
to a suitable evolution of sets along transport rays. Informally said, for a set A, they build
an evolution (0, 1) ∋ t 7→ At which roughly “translates” the set along the rays and assume
conditions of the type

µ(At) ≥ Cµ(A). (7)

It turns out that curvature bounds on the space guarantee that this kind of assumptions are
satisfied. For example, in [21], it is also shown that if (X, d,m) is non-branching, satisfies
the MCP(K,N) condition and µ ≪ m, then a version of assumption (7) is verified. The
theory has also been extended to m.m.s. spaces satisfying a weaker assumption than non-
branching, called essentially non-branching (see Definition 1.4.11). In particular in [32] it
is proved the existence of L1-optimal transport maps for spaces satisfying the RCD∗(K,N)
condition, N < +∞ which satisfy this assumption as shown in [80], the argument applies
also to essentially non-branching CD(K,N) spaces, N < +∞, after the work in [38]. See
also [33] for an overview. Finally we mention that the results in [21] are applied in [31] to
the possibly infinite dimensional case of Wiener spaces.

In Chapter 4 we approach the problem of optimal transport map in a different “infinite
dimensional” case. The motivation for us to study this problem is the link of L1-optimal
transport with the theory of localization, which we now explain.

1-dimensional localization

Starting from a metric measure space, as we have mentioned above, curvature properties
of the space guarantee that the partition into transport rays, starting from a 1-Lipschitz
function, and the disintegration with respect to this partition, have better regularity. This
is what is described more in detail by the localization theorem. Having its roots in convex
geometry, the localization theory is developed in the setting of Riemannian manifolds by
Klartag [68]. He proves that when disintegrating the volume measure of the manifold with
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respect to a geodesic foliation, then the needles and the conditional measures keep the Ricci
curvature lower bound. If (X, d,m) is a metric measure space, it turns out analogously
that disintegrating the reference measure m, with respect to a partition into transport rays,
constructed starting from a one Lipschitz function, each ray endowed with the relative
conditional measure is itself a one-dimensional metric measure space satisfying the same
curvature bounds of the ambient space. This was proved in [39] in the case of essentially
non-branching CD(K,N) spaces and extended in [42] to the MCP case (a first version in
non-branching MCP setting was proved in [21] in a different formulation). For the precise
statements, see Section 1.6. This localization property of the synthetic Ricci curvature
lower bounds turned out to be a crucial tool in proving the globalization theorem for the CD
condition (see [37]) and in proving sharp inequalities (also in quantitative form) in the non-
smooth setting. We mention for example the Levy-Gromov isoperimetric inequality ([39]
and [36]), the p-spectral gap and Sobolev inequalities (see [40]), the quantitative Obata’s
theorem (see [43]).
On the technical side, one of the main difficulties to obtain the localization of curvature
bounds, is to prove the absolute continuity of the conditional measures, which is a step
further the non-atomicity needed for the existence of the optimal maps and it is available so
far only in the finite dimensional setting. Therefore our solution to the Monge problem in
the CD(K,∞) setting, besides its own relevance as one of the most natural question in the
theory, is also a first step towards a complete understanding of the localization still missing
at this level of generality.

III.II Existence of optimal maps in CD(K, ∞) product-spaces

We present the main results of Chapter 4 obtained in [34]. In Section 4.1 we gather
the definitions and the main properties of the space we work in. Briefly, we consider
spaces which are infinite product of finite dimensional non-branching CD(K,N) spaces.
Namely take a sequence {(Xi, di,mi)}i∈N of metric measure spaces, with (Xi, di,mi) non-
branching, mi(Xi) = 1, and satisfying the CD(K,Ni) condition for 1 < Ni < +∞, with∑
i∈N diam (Xi)2 < +∞. We assume in addition that for any n ∈ N the product of

{(Xi, di,mi)}1≤i≤n is a CD(K,N(n))) space with N(n) < +∞. Then we define

(X, d,m) :=

∏
i∈N

Xi,

√∑
i∈N

d2
i , ⊗i∈Nmi

 ,
which is a CD(K,∞) non-branching space. Our main result is the following.

Theorem 5. Let µ and ν ∈ P(X), with µ, ν ≪ m with bounded densities and µ ⊥ ν, then
there exists an optimal map for the L1-optimal transport problem between µ and ν.

We now describe the strategy of the proof. In Section 4.2, we show a standard procedure
to construct an optimal transport map, by gluing optimal maps along rays, provided that
the partition into transport rays and the disintegration of the measure m with respect to this
partition satisfy some regularity properties. We then need to prove that the partition into
transport rays and the disintegration with respect to this partition, in our setting, satisfy
these properties. This is done in Section 4.3. The main goal is as said above, to build a
positive evolution as in (7). We follow, in Section 4.3.1 an approximation scheme similar
to the one used in [31] for Wiener spaces that consists in approximating the problem with
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finite dimensional problems. Informally for any n ∈ N we consider the optimal transport
problem between

µn := (Pn)♯µ, νn := (Pn)♯ν,

where Pn : X → X is the projection on the first n components of the space X (defined
in (4.5)). For any n we take a Kantorovich potential between µn and νn and we build a
positive evolution along its transport rays, A 7→ At,n, for t ∈ (0, 1) with

mn(At,n) ≥ Cµn(At,n), (8)

with mn = (Pn)♯m. The evolution is built by using the optimal plan πn ∈ Opt1(µn, νn) which
is induced by gluing the monotone rearrangements along the transport rays. The main
difficulty with respect to [31] is that in their case the finite dimensional approximations
live in Rn while here we have to deal with more general metric measure spaces. What
allows us to get this estimate here is that in any Pn(X) ≃

∏n
i=1Xi, which is a CD(K,N(n))

space for a finite N(n), we can use the Localization Theorem. Therefore we can perform
the computations along the rays, where the plan is induced by the classical monotone
rearrangement. The key point is that the constant C in (8) does not depend on the upper
bound on the dimension N(n) of the space Pn(X), which goes to +∞ for n → +∞. This
independence of N , is obtained by using the CD(K,∞) condition satisfied by the marginal
measures along the rays. Finally by sending n → +∞ we get a positive evolution along rays
of a Kantorovich potential between µ and ν, by using a π ∈ Opt1(µ, ν) obtained as weak
limit of πn for n → +∞. This is done in Section 4.3.1. Using this result, in Section 4.3.2
we can prove that the partition and the disintegration are good enough. More precisely
we first show that the transport rays do not have too many common extrema and then
that the conditional measures are non atomic. We can finally apply the result on the glued
monotone rearrangements proved before, to get the optimal map, in Section 4.4.

IV Additional results

IV.I Wasserstein-Hellinger inequality: the case p > 2
In Appendix A we present two inequalities partially inspired by the investigation of the
topics in [48], obtained in collaboration with Nicolò De Ponti and Luca Tamanini, that will
appear in a joint future work.

In particular the goal of the appendix is to prove an analogous of Proposition 3.1.1
(taken from [74] and valid for p ≤ 2) in the case p > 2.

Proposition 1. Let (X, d,m) be an RCD(K,∞) metric measure space, K ∈ R and m(X) <
+∞. For p > 2 and µ0, µ1 ∈ Pp(X) it holds

p√
p− 1(RK(t))

1
2 Hep(H∗

t µ0, H
∗
t µ1) ≤ Wp(µ0, µ1) ∀ t > 0,

where RK(t) :=
{
e2Kt−1
K if K ̸= 0,

2t if K = 0.

We remark that this type of inequalities appeared, in the context of RCD(K,∞) spaces,
for the first time in [10, Corollary 6.9] for the case p = 1 as a consequence of the L∞-
to-Lipschitz regularization property of the heat flow. In [74], Luise and Savaré proved
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the inequality for the case 1 < p ≤ 2. Their proof is based on linking Wp(µ0, µ1) to
Hep(H∗

t µ0, H
∗
t µ1) by using their dual dynamical formulations and the reverse Poincaré in-

equality for the heat semigroup. Namely if (X, d,m) is a m.m.s. satisfying the RCD(K,∞)
condition, then any f ∈ L∞ satisfies for t > 0

RK(t)|DHt(f)|2 ≤ Ht(f2) −Ht(f)2, (9)

from which by neglecting the negative term, taking the q
2 power and applying Jensen in-

equality follows
RK(t)

q
2 |DHt(f)|q ≤ Ht(|f |q), (10)

for any q ≥ 2. For the case q < 2, which corresponds by duality to the case p > 2 in
Proposition 1, the lack of convexity does not allow to pass from (9) to (10). Therefore we
prove, with a refined approach, an analogous refined estimate, of its own interest, valid for
q < 2.

Proposition 2. Let (X, d,m) be an RCD(K,∞) metric measure space with m(X) < +∞,
K ∈ R. Then for every 1 < q < 2 and f ∈ L∞(X) it holds

(q − 1)RK(t)|DHt(f)|2w ≤ (Ht(|f |q))
2
q − (Ht(f))2, m-a.e. in X, for any t > 0. (11)

IV.II More regularity for the conditional measures

In Appendix B we show a partial result strictly linked to Chapter 4. We have explained
in Section III.I, that starting from a m.m.s. (X, d,m) and taking a 1-Lipschitz function,
then one can consider the transport rays associated to this function. If the space has
good properties, one can expect that when disintegrating the measure with respect to
the partition into transport rays, which are geodesics, almost any marginal distribution is
absolutely continuous with respect to the 1-Hausdorff measure of the corresponding ray.
In this appendix, in the setting of Chapter 4, we start from µ and ν probability measures,
absolutely continuous with respect to m, with bounded densities respectively ρµ and ρν . We
consider in (X, d,m) as in Section 4.1 the evolution that we have constructed by taking a
limit π of good approximating plans πn ∈ Opt1(µn, νn) (induced by the gluing of monotone
maps). We show that if this evolution is d2-monotone along the rays (as it it the case
for any finite dimensional evolution constructed via πn) then the conditional measures are
absolutely continuous with respect to H1 in the sets where ρµ and ρν are positive. See
Theorem B.5 for the complete statement.
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Chapter 1

Preliminaries

1.1 Basics about metric spaces

To fix notations, the space of Lipschitz functions on (X, d) will be denoted by Lip(X) =
Lip(X, d) while Lipc(X) = Lipc(X, d) will be the subspace of compactly supported Lipschitz
functions, Lipb(X) is the set of Lipschitz and bounded functions and Lipbs(X) is the set of
Lipschitz functions with bounded support. If the function is locally Lipschitz in an open
set A, i.e. for every x ∈ A, the function is Lipschitz in a neighbourhood of x, then we use
the notation Liploc(A). We denote by Lip(f) the Lipschitz constant of a function f . We
write Cb(X) to denote the space of real valued, bounded and continuous functions on X.

By M(X)+ we denote the space of non negative Radon measures on X, by M(X)
the space of finite, non-negative, Borel measures on X and P(X) the space of probability
measures on X. We write µ ∈ Mp(X) if µ ∈ M(X) and there exists x̄ ∈ X such that∫

X
d(x̄, x)p µ(dx) < +∞,

while Pp(X) ⊂ Mp(X) denotes the subset of probability measures with finite p-moment.
When X is endowed with a Borel measure m, we denote by Lp(X,m) the Lebesgue space
of p-integrable (m-equivalence class of) functions, p ∈ [1,∞]. For simplicity, we often write
Lp(X) (or Lp) in place of Lp(X,m). Finally, Bb(X) is the set of bounded Borel functions
on X.

Now we fix the notion of weak convergence of probability measures that we will use and
we recall a useful property of the space of probability measures when endowed with the
weak convergence. We say that a sequence of probability measures {µn}n∈N ⊂ P(X) weakly
converges to µ ∈ P(X) if for any φ ∈ Cb(X)

lim
n→+∞

∫
X
φµn =

∫
X
φµ. (1.1)

Remark 1.1.1. Let (X, d) be a metric space and let τw be the topology induced by the
weak convergence. The space (P(X), τw) is metrizable and compact if X is compact (see
e.g. [61, Section 1.1]).

Given a subsetA of a metric space (X, d) and a number ε > 0 we define the ε-enlargement
of A as (A)ε := {x ∈ X : d(x,A) < ε}.
In a metric space one has a distance between sets, that is the following.
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Definition 1.1.2 (Hausdorff distance and convergence). Let (X, d) be a metric space and
A,B ⊂ X. We define the Hausdorff distance between A and B as

dH(A,B) := inf{δ > 0 : A ⊂ (B)δ, B ⊂ (A)δ}.

Moreover we say that a sequence {An}n∈N Hausdorff converges to a set B ⊂ X if
limn→+∞ dH(An, B) = 0.

Note that, without further assumptions on the sets, the Hausdorff distance is only a
pseudometric. We recall the following classical result (see e.g. [26, Theorem 7.3.7]).

Theorem 1.1.3. Let (X, d) be a compact metric space and C be the set of non-empty closed
subsets of X. Then (C, dH) is a compact metric space.

The following lemma combines the lower semicontinuity of the weak convergence on
closed sets with the Hausdorff convergence of sets.

Lemma 1.1.4. Let (X, d) be a proper metric space. Let {µn}n∈N be a sequence of proba-
bility measures weakly converging to µ ∈ P(X). Let {An}n∈N be a sequence of Borel sets
converging Hausdorff to a bounded closed set A. Then

µ(A) ≥ lim sup
n→+∞

µn(An).

Proof. We use the fact that for any A closed set

µ(A) = inf
{∫

fµ : f ∈ Cb(X), f ≥ 0 and f ≥ 1 on a neighbourhood of A
}
.

So fix ε > 0 and take f ∈ Cb(X), f ≥ 0 such that
∫
fµ ≤ µ(A) + ε. If n is sufficiently big,

by definition of Hausdorff convergence, f = 1 on An. Therefore
∫
fµn ≥ µn(An) and by

passing to the limits ∫
fµ = lim

n→+∞

∫
fµn ≥ lim sup

n→+∞
µn(An).

We finally recall the notion of slope (or local Lipschitz constant) of a function.

Definition 1.1.5 (Slope). Let (X, d) be a metric space and u : X → R be a real valued
function. We define the slope of f at the point x ∈ X as

|Du| (x) :=

lim supy→x
|u(x)−u(y)|
d(x,y) if x is not isolated

0 otherwise.

Curves in metric spaces

In a metric space (X, d) we denote by C([0, 1], X) the set of curves γ : [0, 1] → X which are
continuous. A curve γ : [0, 1] → X is absolutely continuous if there exists f ∈ L1(0, 1) such
that for any s, t ∈ [0, 1], d(γ(s), γ(t)) ≤

∫ t
s f(r)dr. For any absolutely continuous curve γ

there exists for almost every t ∈ [0, 1] the limit

|γ̇t| := lim
h→0

d(γ(t+ h), γ(t))
|h|

,
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that is called metric speed of γ. For any absolutely continuous curve γ it holds

d(γ(0), γ(1)) ≤
∫

(0,1)
|γ̇t| dr. (1.2)

A geodesic between the points γ0, γ1 ∈ X is a minimizing constant speed curve γ : [0, 1] →
X, γ(0) = γ0, γ(1) = γ1 which satisfies for any s, t ∈ [0, 1] the inequality

d(γ(s), γ(t)) ≤ |s− t| d(γ(0), γ(1)).

In particular actually equality holds for any s, t ∈ [0, 1]. Equivalently a curve γ ∈ C([0, 1], X)
is a geodesic if and only if γ is absolutely continuous and it satisfies∫

(0,1)
|γ̇r|2 dr = d(γ(0), γ(1))2 (1.3)

and in particular by (1.2) also |γ̇r| = d(γ(0), γ(1)) for any r ∈ [0, 1].

Remark 1.1.6. Given two geodesics γ1 : [0, 1] → X, γ2 : [0, 1] → X such that γ1(1) =
γ2(0). The curve γ : [0, 1] → X defined by concatenating the curve γ2 after γ1 and re-
parametrized with constant speed is a geodesic if and only if d(γ1(0), γ1(1))+d(γ2(0), γ2(1)) =
d(γ1(0), γ2(1)).

We call Geo(X) ⊂ C([0, 1], X) the set of geodesics on X endowed with the sup-distance.
A space (X, d) is a geodesic space if for any two points x, y ∈ X there exists γ ∈ Geo(X)
such that γ(0) = x, γ(1) = y.

Definition 1.1.7 (non-branching). A subset G ⊂ Geo(X, d) of geodesics is called non-
branching if for any γ1, γ2 ∈ G the following holds:

∃ t ∈ (0, 1) : γ1(s) = γ2(s) ∀ s ∈ [0, t] =⇒ γ1(s) = γ2(s) ∀ s ∈ [0, 1].

(X, d) is called non-branching if Geo(X, d) is non-branching.

We define in addition the evaluation map at time t ∈ [0, 1], the map et : C([0, 1], X) →
X, et(γ) := γ(t).

1.2 Introduction to optimal transport
We recall here some classical fact about optimal transportation: for a more detailed treat-
ment see e.g [5, Chapter 1], [7, Chapter 6], [98], [97].
Given two complete and separable metric spaces (X1, d1), (X2, d2) a Borel measure on X1,
Borel map T : X1 → X2, the pushforward of µ via T is the Borel measure T♯µ on X2 defined
as

T♯µ(A) = µ(T−1(A)) (1.4)
for any A ∈ B(X2). A useful characterization of the pushforward measure is the following:
T♯µ = ν, with ν Borel measure on X2, if and only if for any φ : X2 → [0,+∞] Borel∫

X2
φν =

∫
X1
φ ◦ T µ. (1.5)

Let c : X1 × X2 → [0,+∞) be a cost function and µ ∈ P (X1), ν ∈ P (X2). The optimal
transportation problem admits two classical formulations.
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Monge formulation

inf
T♯µ=ν

∫
X1×X2

c(x, T (X))µ(dx) (MP)

Such a T is called transport map between µ and ν. A transport map is optimal if it realizes
the infimum in (MP).
The set of transport plans between µ and ν ∈ P(X) is

Adm(µ, ν) := {π ∈ P(X ×X) : (P1)♯π = µ, (P2)♯π = ν} .

Kantorovich formulation

min
π∈Adm(µ,ν)

∫
X1×X2

c(x, y)π(dx,dy) (KP)

A transport plan is optimal if it realizes the infimum in (KP). Any transport map T between
µ and ν induces a transport plan: (Id, T )♯µ ∈ Adm(µ, ν). While the existence of optimal
transport maps is not guaranteed a priori by general conditions on the cost, if the cost c
is lower semicontinuous and bounded from below then there exists a π ∈ Adm(µ, ν) which
minimizes (KP). Moreover if the cost is continuous and µ is non atomic, then inf (MP) =
min (KP) (see [1]).

Conditions for optimality

In this part we recall how optimality for a plan is a property only of its support, introducing
the notion of cyclical monotonicity and Kantorovich potential. Let c : X1 ×X2 → [0,+∞)
be a cost function. A set Γ ⊆ X1 × X2 is c-cyclically monotone if for any set {(xi, yi) i =
1, . . . , n, n ∈ N} and for any σ permutation of {1, . . . , n}, it holds

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yσ(i)).

Given a function φ : X1 → R ∪ {±∞}, its c-transform is φc : X2 → R ∪ {±∞} defined as

φc(y) := inf
x∈X1

c(x, y) − ψ(x).

The definition is the symmetric one for the c-transform of φ : X2 → R∪ {±∞}. A function
φ : X1 → R ∪ {−∞} is c-concave if there exists ψ : X2 → R ∪ {±∞} such that φ = ψc.
The c-superdifferential of a c-concave function φ : X1 → R ∪ {−∞} is the set ∂cφ :=
{(x, y) ∈ X1 ×X2 : φ(x) + φc(y) = c(x, y)}. The c-superdifferential of a c-concave function
is a c-cyclically monotone set.

Remark 1.2.1. If (X, d) is a metric space and c(x, y) = d(x, y), a function φ is c-cyclically
monotone if and only if it is 1-Lipschitz. Moreover φc = −φ and

∂cφ := {(x, y) ∈ X ×X : φ(x) − φ(y) = d(x, y)}.

Theorem 1.2.2 (Fundamental Theorem of optimal transport). Let c : X1 ×X2 → [0,+∞)
be a cost function. Assume that there exists a ∈ L1(X1, µ), b ∈ L1(X2, µ) such that c(x, y) ≤
a(x) + b(y) for any x ∈ X1, y ∈ X2. For π ∈ Adm(µ, ν) the following are equivalent:
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1. π is optimal,

2. the set supp(π) is c-cyclically monotone;

3. there exists a c-concave function φ such that max{φ, 0} ∈ L1(µ) and supp(π) ⊂ ∂cφ.

The optimal transport problem admits a dual formulation that we recall.
Dual formulation

sup
φ(x)+ψ(y)≤c(x,y)∀x∈X1, y∈X2

∫
X1
φµ+

∫
X2
ψ ν (DP)

where the supremum is among all φ ∈ L1(X1, µ), ψ ∈ L1(X1, µ). Under the same assump-
tions of the fundamental Theorem of Optimal Transport

min(KP) = sup(DP),

and the supremum in (DP) is attained among couples of the type (φ,φc) with φ c-concave.
We call a φ such that (φ,φc) maximizes (DP) Kantorovich Potential for the problem.

Remark 1.2.3. The existence of a Kantorovich potential is guaranteed by point (3) of
Theorem 1.2.2.

Moreover for any maximizing pair (φ,φc) for (DP) and for any π minimizer of (KP) it
holds

φ(x) + φc(y) = c(x, y) π a.e. (x, y) ∈ X1 ×X2. (1.6)

Some results in dimension one

In dimension one, under mild assumptions, the monotone rearrangement map is an explicit
optimal transport map for the cost dp for any p ≥ 1. The following Theorem follows from
e.g. [7, Theorem 6.0.2, Theorem 6.2.7] (see also [97]).

Theorem 1.2.4. Let µ and ν ∈ P(R), µ without atoms, compactly supported and let

G(x) := µ((−∞, x)), F (y) := ν((−∞, y))

be respectively the cumulative distribution functions of µ, ν. Then the non decreasing map
Tmon : R → R̄ defined as

Tmon(x) := sup{y ∈ R : F (y) ≤ G(x)}

maps µ into ν in the sense that (Tmon)♯µ = ν. In addition it is an optimal map for the
optimal transport problem with cost d(x, y)p for any p ≥ 1. If p > 1 it is the unique optimal
transport map. Moreover, if µ and ν are absolutely continuous with respect to the Lebesgue
measure, then T ′

mon > 0 µ a.e..

Remark 1.2.5. In the above theorem, if both µ and ν are absolutely continuous with
respect to the Lebesgue measure, then the map T is µ-essentially invertible, meaning that
T is injective outside a µ-negligible set.
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The following measure theoretical results will be useful in computations involving opti-
mal maps and densities in dimension one. For more detailed results, stated also in general
dimension see [7, Section 5.5].
Theorem 1.2.6. Let ρ ∈ L1(R) be a nonnegative function. Let µ = ρL1. Let f : R → R be
a function and E ⊆ R Borel such that f is injective and differentiable on E and µ(R\E) = 0.
Then f♯µ ≪ L1 if and only if |f ′| > 0 µ a.e. in E and

f♯(ρL1) = ρ

|f ′|
◦ f−1

|f(E)L
1.

Theorem 1.2.7. Let f : R → R be a function. Let E ⊆ R Borel such that f is differentiable
and injective on E. Then∫

E
ψ(x)

∣∣f ′∣∣ (x) dx =
∫
f(E)

ψ(f−1(y)) dy

for any ψ : R → [0,+∞] Borel function.

1.3 Distances between measures
Wasserstein distance

Let (X, d) be a metric space. The Wasserstein distance between µ and ν with µ, ν ∈ Pp(X)
is for p ≥ 1,

Wp(µ, ν)p := inf
{∫

X×X
d(x, y)pπ(dx,dy) : π ∈ Adm(µ, ν)

}
,

where Pp(X) is defined at the beginning of Section 1.1. Denote the set of optimal transport
plans for the cost dp : X ×X → [0,+∞) as

Optp(µ, ν) :=
{
π ∈ Adm(µ, ν) :

∫
X×X

d(x, y)pπ(dx,dy) = Wp(µ, ν)p
}
.

Notice that Wp(µ1, µ2) = +∞ whenever µ1(X) ̸= µ2(X), but Wp(µ1, µ2) is finite if µ1, µ2 ∈
Mp(X) and have the same total mass. Moreover Wp is a distance on Pp(X) which metrizes
the weak convergence of measures plus convergence of the p-moment (see e.g. [98]). In
addition (Pp(X),Wp) is complete and separable if (X, d) is complete and separable.

It is also useful to recall that the space (P2(X),W2) is geodesic if and only if (X, d)
is geodesic. A curve [0, 1] ∋ t 7→ µt ∈ P2(X) is a W2-geodesic if and only if there exists
ν ∈ P(Geo(X)), such that (et)♯ν = µt for any t ∈ [0, 1] and (e0, e1)♯ν ∈ Opt(µ0, µ1).
The set of optimal geodesic plans, OptGeo(µ0, µ1) is the set of ν ∈ P(Geo(X)) such that
(e0, e1)♯ν ∈ Opt(µ0, µ1).

When (X, d) is a length metric space (see e.g. [26, Definition 2.1.6. 7.3.7] for the defi-
nition) one can prove a dynamic formulation of the Wasserstein distance (see for instance
[74, Prooposition 2.10]):

1
p
W p
p (µ0, µ1) = sup

{∫
X
ζ1 µ1−

∫
X
ζ0 µ0, ζ ∈ C1([0, 1],Lipb(X)), ∂tζt+

1
q

|Dζt|q ≤ 0
}
, (1.7)

where we are using the notation |Df | (x) for the slope of a Lipschitz function defined in
Definition 1.1.5.

Throughout the thesis with a little abuse of notation, we will tacitly assume the Wasser-
stein distance to be defined on any couple of non-negative Borel measures (not necessarily
of probability measures) having the same finite mass.
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Hellinger and Hellinger-Kantorovich distance

Definition 1.3.1. Given µ0, µ1 ∈ M(X) and p ∈ [1,+∞), the p-Hellinger distance Hep
(also called Matusita distance) [65, 75] between µ0 and µ1 is defined as

Hepp(µ0, µ1) :=
∫
X

∣∣∣ρ1/p
0 − ρ

1/p
1

∣∣∣p dλ,

where λ is any dominating measure of µ0, µ1 and ρi are the relative densities: µi ≪ λ and
µi = ρiλ for i = 0, 1.

The case p = 1 corresponds to the classical total variation, the case p = 2 is the original
distance studied by Hellinger.

An immediate consequence of the elementary inequality |t− s| ≥
∣∣t1/2 − s1/2∣∣2 is that

He1(µ0, µ1) ≥ He2
2(µ0, µ1) for every µ0, µ1 ∈ M(X). (1.8)

It is not difficult to show that all the p-Hellinger distances induce the same strong
convergence of the total variation, and are complete distances on M(X).

It is useful to recall here that also the p-Hellinger distances admit a dynamic formulation
for p > 1 [74, Proposition 2.8], specifically:

Hepp(µ0, µ1) = sup
{∫

X
ζ1 µ1−

∫
X
ζ0 µ0, ζ ∈ C1([0, 1],Bb(X)), ∂tζt+(p−1)ζ

p
p−1
t ≤ 0

}
. (1.9)

We also introduce the weighted Hellinger-Kantorovich distance HKα, α > 0, following
the theory developed in [69]. For convenience we decided to introduce only its dynamical
formulation: on a length metric space (X, d) it reads as follow

HK2
α(µ0, µ1) := sup

{∫
X
ζ1 µ1 −

∫
X
ζ0 µ0, ζ ∈ C1([0, 1],Lipb(X)), ∂tζt + α

4 |Dζt|2 + ζ2
t ≤ 0

}
.

(1.10)
Notice that HKα(µ0, µ1) is finite even if µ0(X) ̸= µ1(X) and one can prove that HKα is
indeed a distance on M(X).

For every two measures µ0, µ1 ∈ M(X) one can prove (see [69, Chapter 7]) the following
relations between He2, W2 and HK

HKα(µ0, µ1) ≤ He2(µ0, µ1) and lim
α↓0

HKα(µ0, µ1) = He2(µ0, µ1), (1.11)
√
αHKα(µ0, µ1) ≤ W2(µ0, µ1) and lim

α↑+∞

√
αHKα(µ0, µ1) = W2(µ0, µ1). (1.12)

1.4 Metric measure spaces

With metric measure space, m.m.s. for short we will denote a triple (X, d,m) where:

− (X, d) is a complete and separable metric space,
− m is a non negative Borel measure finite on bounded sets.
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1.4.1 Calculus on metric measure spaces

We recall the definition of Sobolev space on a metric measure space (X, d,m), introduced
in [45] and [84] (see also [59], [64], [22], [9], [8] for a more details and references). We first
define the Cheeger energy, Ch : L2(X,m) → [0,+∞], given by

Ch(f) := inf
{

lim inf
n→∞

1
2

∫
|Dfn|2 dm : fn ∈ Lip(X) ∩ L2(X,m), ∥fn − f∥L2 → 0

}
.

The domain of the Cheeger energy D(Ch) ⊂ L2(X,m) is defined as D(Ch) := {f ∈
L2(X,m) : Ch(f) < +∞}. We put

W 1,2(X, d,m) := D(Ch),

endowed with the norm ∥f∥2
W 1,2 := ∥f∥2

L2 + 2Ch(f). Since Ch is a convex and lower
semicontinuous functional over L2(X,m), W 1,2(X, d,m) is a Banach space. For simplicity,
we will often drop the dependence of the metric measure structure and write W 1,2(X) (or
W 1,2) in place of W 1,2(X, d,m) (the same for L2(X)).
For any f ∈ W 1,2(X), the Cheeger energy admits an integral representation

Ch(f) = 1
2

∫
X

|Df |2w dm ,

where |Df |w ∈ L2(X) is called minimal weak upper gradient. For f ∈ W 1,2(X) ∩ Lip(X)

|Df |w ≤ Lip(f), m-a.e.. (1.13)

Finally for any f, u ∈ W 1,2(X) (see [58]), define the functions D±f(∇u) ∈ L1(X) by

D+f(∇u) := inf
ε>0

|D(u+ εf)|2w − |Du|2w
2ε ,

while D−f(∇u) is obtained replacing infε>0 with supε<0. It holds that m-a.e.∣∣∣D+f(∇u)
∣∣∣ ≤ |Df |w |Du|w , (1.14)

D+f(∇f) = |Df |2w = D−f(∇f). (1.15)

Metric Laplacian

We recall the definition of subdifferential for the functional Ch. Given f ∈ W 1,2(X), we say
that g ∈ ∂−Ch(f), namely g is in the subdifferential of Ch at f , if∫

X
g(ψ − f) dm ≤ Ch(ψ) − Ch(f) ∀ψ ∈ L2(X).

Definition 1.4.1 (L2-Laplacian, [9] (see also [58])). The Laplacian −∆f ∈ L2(X,m) of a
function f ∈ W 1,2(X, d,m) is the element of minimal L2(X,m)-norm in the sub-differential
∂−Ch(f), provided the latter is non-empty. Accordingly a function f ∈ W 1,2(X, d,m) is an
eigenfunction of eigenvalue λ > 0 provided −∆f = λf .

It will be clear from the proof of our results that the minimality requirement in the
previous definition does not play any role: our main results will be valid for any element of
the sub-differential.

The following is a version of the integration by parts formula for the Laplacian, which
is a consequence of [58, Proposition 4.9].
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Proposition 1.4.2. For every f ∈ W 1,2(X) and every h ∈ ∂−Ch(f) it holds that∫
X
D−u(∇f)m ≤ −

∫
X
hum ≤

∫
X
D+u(∇f)m, (1.16)

for each u ∈ W 1,2(X).

Remark 1.4.3. It is straightforward to check that any eigenfunction has zero mean, pro-
vided m(X) < ∞. Here we only sketch the argument when X is proper. Consider any
sequence (χn) of 1-Lipschitz functions with bounded support and values in [0, 1] such
that χn ≡ 1 in Bn(x̄), for some fixed x̄ ∈ X. Since we are assuming X to be proper,
χn ∈ Lipc(X) ⊆ W 1,2(X) and therefore∫

D−χn(∇f)m ≤ λ

∫
χnf m ≤

∫
D+χn(∇f)m;

for both quantities, ∣∣∣∣∫ D±χn(∇f)m
∣∣∣∣ ≤

∫
X\Bn(x̄)

|∇f |w m

that are both converging to zero, provided m(X) < ∞, giving
∫
f m = 0 by dominated

convergence theorem.

Infinitesimal Hilbertianity and heat flow

We give an equivalent definition of the Infinitesimal Hilbertianity condition introduced in
[58] (see Definition 4.19 and Proposition 4.22 for equivalent definitions).

Definition 1.4.4. A m.m.s. (X, d,m) is Infinitesimally Hilbertian if the Cheeger energy Ch
is a quadratic form on W 1,2(X, d,m), i.e. for every f and g ∈ W 1,2(X, d,m) the following
equality is satisfied

Ch(f + g) + Ch(f − g) = 2Ch(f) + 2Ch(g).

In an Infinitesimally Hilbertian space, the subdifferential of Ch where non empty is single
valued. Moreover the Laplacian is a linear operator. A property that is useful for us is that
for any f and g ∈ W 1,2(X, d,m)

D+f(∇g) = D−f(∇g) m − a.e..

We call, following [58],
∇f · ∇g := D+f(∇g) = D−f(∇g).

It holds that W 1,2(X, d,m) ∋ f 7→ ∇f · ∇g is linear and ∇f · ∇g = ∇g · ∇f for any
f, g ∈ W 1,2(X, d,m).

It follows from Proposition 1.4.2, that given f ∈ W 1,2(X, d,m) and its Laplacian −∆f ,
if it exists, satisfy for any g ∈ W 1,2(X, d,m)∫

X
−∆f gm =

∫
X

∇f · ∇gm. (1.17)

From the convexity and lower semicontinuity of Ch and from the fact that W 1,2(X) is
dense in L2(X), it follows, using the theory of gradient flows in Hilbert spaces, that for any
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f ∈ L2(X) there exists a unique locally absolutely continuous curve t 7→ Ht(f), t ∈ (0,+∞),
with values in L2(X), which satisfies

{
d
dtHtf = −∂−Ch(Htf) a.e. t > 0,
limt→0Htf = f in L2(X).

{Ht}t≥0 is called the heat semigroup and for any t > 0, f 7→ Htf is a linear contraction in
L2(X). By the density of L2(X) ∩ Lp(X) in Lp(X), it can be extended to a semigroup of
linear contractions in any Lp(X), p ≥ 1. It can also be extended to L∞(X) and it is known
that Htf , for f ∈ L∞(X), admits an integral representation via the heat kernel.

We remark that in our setting, the heat semigroup satisfies the maximum principle:

Htf ≤ C if f ≤ C m-a.e. , (1.18)

from which follows that it is sign preserving. Moreover, Ht is also measure preserving∫
X
Htf dm =

∫
X
f dm, ∀f ∈ L1(X), ∀ t > 0.

If one considers the evolution at time t via the heat flow of an eigenfunction fλ of eigenvalue
λ, then

Htfλ = e−λtfλ. (1.19)

Perimeter and sets of finite perimeter

Given a metric measure space one can introduce a notion of perimeter which extends the
classical one in Rn. We recall the notion of sets of finite perimeter in a m.m.s. taken from
[76] (see also the more recent [4]).

Definition 1.4.5 (Perimeter). Let E ∈ B(X), where B(X) denotes the class of Borel sets
of (X, d), and let A ⊂ X be open. We define the perimeter of E relative to A as:

Per(E;A) := inf
{

lim inf
n→∞

∫
A

|Dun|m : un ∈ Liploc(A), un → χE in L1
loc(A,m)

}
,

where |Du| (x) is the slope of u at the point x (see Definition 1.1.5). If Per(E;X) < ∞, we
say that E is a set of finite perimeter. We denote Per(E;X) with Per(E).

When E is a fixed set of finite perimeter, the map A 7→ Per(E;A) is the restriction to
open sets of a finite Borel measure on X, defined as

Per(E;B) := inf {Per(E;A) : A open, A ⊃ B} .

1.4.2 Synthetic notions of Ricci curvature bounds

In this section we recall the main definitions and properties that we will need about spaces
satisfying synthetic lower Ricci curvature bounds. For more background and references on
the topic we refer to ([2, 98, 73, 93, 94, 9, 11, 10, 55, 14, 13]).
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Distorsion coefficients

We first need to recall the definitions of distortion coefficients. Given K ∈ R and N ∈ (0,∞],
define:

DK,N :=


π√
K/N

K > 0 , N < ∞

+∞ otherwise
. (1.20)

In addition, given t ∈ [0, 1] and 0 < θ < DK,N , define:

σ
(t)
K,N (θ) :=

sin(tθ
√

K
N )

sin(θ
√

K
N )

=



sin(tθ
√

K
N

)
sin(θ

√
K
N

)
K > 0 , N < ∞

t K = 0 or N = ∞
sinh(tθ

√
−K
N

)
sinh(θ

√
−K
N

)
K < 0 , N < ∞

,

and set σ(t)
K,N (0) = t and σ

(t)
K,N (θ) = +∞ for θ ≥ DK,N . Given K ∈ R and N ∈ (1,∞], the

distortion coefficients are defined as:

τ
(t)
K,N (θ) := t

1
N σ

(t)
K,N−1(θ)1− 1

N .

When N = 1, set τ (t)
K,1(θ) = t if K ≤ 0 and τ

(t)
K,1(θ) = +∞ if K > 0. Now we are ready to

define the first synthetic notion of Ricci curvature lower bound.

CD condition

Given a metric measure space (X, d,m), we define the Boltzman entropy Ent : P2(X) →
[−∞,+∞], as

Ent(µ) :=
{∫

X ρ log(ρ)m, µ = ρm,

+∞ otherwise.

We recall that it is well defined if for some a, b ≥ 0 and for some x̄ ∈ X m(Br(x̄)) ≤ aebr
2

for all r > 0, which is also a natural assumption in this setting (see [94]). Note that we will
mainly work with spaces with finite measure which trivially satisfy the latter condition.

We are ready to introduce the first notion of synthetic Ricci curvature lower bound for
a metric measure space ([93, 94, 73]).
Definition 1.4.6 (CD(K,∞) condition). (X, d,m) verifies the CD(K,∞) condition for some
K ∈ R, if for any pair of probability measures µ0, µ1 ∈ P2(X) µ0, µ1 ≪ m and Ent(µi) < ∞,
i = 0, 1, there exists (νs)s∈[0,1] ∈ Geo(P2(X)), with ν0 = µ0, ν1 = µ1 such that for any
t ∈ [0, 1]

Ent(νt) ≤ (1 − t)Ent(ν0) + tEnt(ν1) − K

2 t(1 − t)W2(µ0, µ1)2).

It will be useful for us to recall that the CD(K,∞) condition is stable under the notion
of convergence for metric measure spaces induced by the D-distance introduced in [94] (see
also [60]).
Definition 1.4.7. Given (X, d,m) and (X ′, d′,m′) normalized m.m.s.

D((X, d,m), (X ′, d′,m′)) = inf
(∫

X×X′
d̂2(ψ(x), ψ′(x′)) q̂(dx, dx′)

) 1
2

where the infimum is taken among all (M̂, d̂) metric spaces, ψ : X → M̂ , ψ′ : X ′ → M̂
isometric embeddings, q̂ ∈ P(X ×X ′) coupling of m and m′.
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The CD(K,∞) condition can be refined by considering an entropy which takes into
account also a parameter N playing the role of an upper bound on the dimension. The
N -Rényi entropy with respect to the base measure m, EN : P2(X) → [−∞, 0] is defined as

EN (µ) := −
∫
X
ρ1− 1

N m,

where µ = ρm+µ⊥ is the Lebesgue decomposition of µ with respect to m with µ⊥ singular
with respect to m.

Definition 1.4.8 (CD(K,N) condition). (X, d,m) verifies the CD(K,N) condition for some
K ∈ R, N ∈ (1,∞) if for any pair of probability measures µ0, µ1 ∈ P2(X) with bounded
support and with µ0, µ1 ≪ m, there exists ν ∈ OptGeo(µ0, µ1) such that µt := (et)♯ν ≪ m
and

EN ′(µt) ≤
∫ {

τ
(1−t)
K,N ′ (d(γ(0), γ(1)))ρ− 1

N′
0 (γ(0)) + τ

(t)
K,N ′(d(γ(0), γ(1)))ρ− 1

N′
1 (γ(1))

}
ν(dγ)

for any N ′ ≥ N , t ∈ [0, 1].

For our purposes it is crucial to recall the following definitions (see e.g. [37, Appendix
A]).

Definition 1.4.9 (CD densities). Let I be a real interval and h a non-negative function
defined on I, then

• h is a CD(K,N) density, for K,N ∈ R and N ∈ (1,∞), if for all x0, x1 ∈ I and
t ∈ [0, 1]:

h(tx1 + (1 − t)x0)
1

N−1 ≥ σ
(t)
K,N−1(|x1 − x0|)h(x1)

1
N−1 + σ

(1−t)
K,N−1(|x1 − x0|)h(x0)

1
N−1 ;

• h is a CD(K,∞) density if for all x0, x1 ∈ I and t ∈ [0, 1]:

log h(tx1 + (1 − t)x0) ≥ t log h(x1) + (1 − t) log h(x0) + K

2 t(1 − t)(x1 − x0)2;

• h is a CD(K, 1) density on I iff K ≤ 0 and h is constant on the interior of I.

For the proof of the following result see [37, Theorem A.2].

Lemma 1.4.10. If h is a CD(K,N) density on an interval I ⊂ R then the m.m.s.
(Ī , |·| , h(t)L1) verifies the CD(K,N) condition. Conversely, if the m.m.s. (R, |·| , µ) verifies
CD(K,N) and Ī = supp(µ) is not a point, then µ ≪ L1 and there exists a version of the
density h = dµ

dL1 which is a CD(K,N) density on I.

We will restrict ourselves to spaces which satisfy the CD condition and additionally
satisfy the following generalized notion of non-branching introduced in Definition 1.1.7.

Definition 1.4.11. (X, d,m) is called essentially non-branching if for any µ0, µ1 ≪ m with
µ0, µ1 ∈ P2(X) any ν ∈ OptGeo(µ0, µ1) is concentrated on a Borel non-branching subset
G ⊂ Geo(X, d).

This definition was introduced in [80] by Rajala and Sturm. The restriction to essentially
non-branching spaces is natural and facilitates avoiding pathological cases. One example is
the failure of the local-to-global property for a general CD(K,N) in [79], property that has
been recently verified in [37] under the assumption of essentially non-branching (and finite
m).
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RCD condition

The CD condition can be strengthened to get a “more Riemannian” structure. This was
done in the infinite dimensional setting giving rise to the definition of Riemannian curvature
dimension condition RCD(K,∞) in [10] (see also [6] for the case of σ-finite measure). The
finite dimensional counterpart was introduced in [58].

Definition 1.4.12. (X, d,m) m.m.s satifies the RCD(K,N) condition for K ∈ R and N ∈
[1,+∞] if it satisfies the CD(K,N) condition and it is Infinitesimally Hilbertian.

If (X, d,m) satisfies the RCD(K,∞) condition then for any f ∈ L∞(X,m) we have that
Htf belongs to the space Lipb(X), with the bound [49, Proposition 3.1]

∥ |DHtf |w ∥L∞ ≤
√

2K
π(e2Kt − 1) ∥f∥L∞ if K ̸= 0,

∥ |DHtf |w ∥L∞ ≤
√

1
πt

∥f∥L∞ if K = 0,
(1.21)

(which is sharp in the case K > 0).
From properties (1.18) and (1.21), Ht maps Cb(X) into itself, so it is defined its adjoint

operator H∗
t : P(X) → P(X) that satisfies

H∗
t (ρm) = Ht(ρ)m (1.22)

for any probability density ρ ∈ L1
+(X,m) (see [11, Proposition 3.2] for details).

Finally if one considers the metric gradient flow of the Boltzmann entropy Ent in
P2(X, d). it has been proven in [9] (the result is valid in CD(K,∞) spaces) that for any
µ ∈ D(Ent) there exists a unique gradient flow of Ent starting from µ (for details we refer
to [9]). This gives rise to a semigroup (Ht)t≥0 on P2(X, d) defined by Htµ = µt where µt is
the unique gradient flow of Ent starting from µ.

In [9] it is proven that the identification of the two gradient flows holds: if (X, d,m) is
a CD(K,∞) space and f ∈ L2(X,m) such that fm = µ ∈ P2(X, d), then

Htµ = (Htf)m, ∀ t ≥ 0. (1.23)

Remark 1.4.13. We mention that in a RCD(K,∞) space of finite measure, the condition
diam (X) < ∞, or K > 0 implies that the embedding of W 1,2(X) into L2(X) is compact
(see [60, Proposition 6.7] and [50, Theorem 2.17]). This implies the existence of a basis of
L2(X) formed by eigenfunctions corresponding to a diverging sequence of eigenvalues.

Moreover if in addition the space satisfies the RCD(K,N) condition for a finite N , then
eigenfunctions are Lipschitz continuous (see [12, Proposition 7.1]).

MCP condition

For our purposes we also need to introduce a weaker variant of CD called Measure Contrac-
tion Property, MCP(K,N) in short, introduced separately by Ohta [78] and Sturm [94] with
two definitions that slightly differ in general metric spaces, but that coincide on essentially
non-branching spaces.

Definition 1.4.14 (MCP(K,N)). A m.m.s. (X, d,m) is said to satisfy MCP(K,N) if for
any o ∈ supp(m) and µ0 ∈ P2(X, d,m) of the form µ0 = 1

m(A)m|A for some Borel set
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A ⊂ X with 0 < m(A) < ∞ (and with A ⊂ B(o, π
√

(N − 1)/K) if K > 0), there exists
ν ∈ Opt(µ0, δo) such that:

1
m(A)m ≥ (et)♯

(
τ

(1−t)
K,N (d(γ0, γ1))Nν(dγ)

)
∀t ∈ [0, 1]. (1.24)

If (X, d,m) is a m.m.s. verifying MCP(K,N), then (supp(m), d) is Polish, proper and
it is a geodesic space. With no loss in generality for our purposes we will assume that
X = supp(m).

It has been proven (see e.g. [94, 44]) that the MCP condition is implied by the CD
condition and there are examples of spaces satisfying the first one and not satisfying the
second one (see e.g. [66]).

In analogy to the case of CD densities, we recall the following definition of MCP density
followed by a result describing the link between MCP density and MCP condition.

Definition 1.4.15 (MCP(K,N) density). Given K,N ∈ R and N ∈ (1,∞), a non-negative
function h defined on an interval I ⊂ R is called a MCP(K,N) density on I if for all
x0, x1 ∈ I and t ∈ [0, 1]:

h(tx1 + (1 − t)x0) ≥ σ
(1−t)
K,N−1(|x1 − x0|)N−1h(x0). (1.25)

Lemma 1.4.16. If h is a MCP(K,N) density on an interval I ⊂ R then the m.m.s.
(I, |·| , h(t)dt) verifies MCP(K,N). Conversely, if the m.m.s. (R, |·| , µ) verifies MCP(K,N)
and I = supp(µ) is not a point, then µ ≪ L1 and there exists a version of the density
h = dµ

dL1 which is a MCP(K,N) density on I.

The inequality (1.25) implies several known properties that we collect in what follows.
We define for κ ∈ R the function sκ : [0,+∞) → R (on [0, π/

√
κ) if κ > 0)

sκ(θ) :=


(1/

√
κ) sin(

√
κθ) if κ > 0,

θ if κ = 0,
(1/

√
−κ) sinh(

√
−κθ) if κ < 0.

(1.26)

We assume I = (a, b) with a, b ∈ R; hence (1.25) implies(
sK/(N−1)(b− x1)
sK/(N−1)(b− x0)

)N−1

≤ h(x1)
h(x0) ≤

(
sK/(N−1)(x1 − a)
sK/(N−1)(x0 − a)

)N−1

, (1.27)

for x0 ≤ x1. Hence denoting with D = b− a the length of I, for any ε > 0 it follows that

sup
{
h(x1)
h(x0) : x0, x1 ∈ [a+ ε, b− ε]

}
≤ Cε, (1.28)

where Cε only depends on K,N , provided 2ε ≤ D ≤ 1
ε . In particular, MCP(K,N) densities

will be locally Lipschitz in the interior of their domain and continuous on its closure (see
[42] for details).

1.5 L1 optimal transport setting
What is contained in this section is taken from [21], [33], [42] (see also [39]). Since a large
part of the thesis is based on L1-optimal transport, we report all the statements that we
need with the proofs, when possible.
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1.5.1 Disintegration of measures

Given a measure space (X,R), and a measure m on R we say that a set A ⊆ X is m-
measurable if it belongs to the m-completion of the σ algebra R obtained by adding to
R all the subsets of sets having zero m-measure. Analogously a function f : X → R is
measurable if counterimages of real Borel sets are m-measurable.

It is useful for what follows to recall that given a measure space (X,R) and a function
Q : X → Q, with Q a set, we can endow Q with the push forward σ-algebra Q of R:

C ∈ Q ⇐⇒ Q−1(C) ∈ X ,

that is the biggest σ-algebra on Q such that Q is measurable. Moreover, given a measure m
on (X,R), we can define a measure q on (Q,Q) by pushing forward m via Q, i.e. q := Q♯m.

Definition 1.5.1 (Disintegation via a map). Let (X,R) be a measure space and m a
measure on it, Q a set and Q : X → Q a map. A disintegration of m consistent with Q is a
map:

Q ∋ α 7−→ mα ∈ P(X,R)
such that:

1. for all B ∈ R, the map α 7→ mα(B) is q-measurable;

2. for all B ∈ R and C ∈ Q, the following consistency condition holds:

m
(
B ∩ Q−1(C)

)
=
∫
C
mα(B) q(dα).

A disintegration of m is called strongly consistent with respect to Q if in addition:

(3) for q-a.e. α ∈ Q, mα is concentrated on Q−1(α).

The measures mα are sometimes called marginal distributions.
We will focus in the disintegration in the following particular case.

Remark 1.5.2. Let (X,R) be a measure space, Q a set of indexes and {Xα}α∈Q is a
partition of X. One can take the following quotient map: Q : X → Q, the map which
associates to any element of X the index of the element of the partition to which it belongs
(quotient map), i.e.

Q(x) = α ⇐⇒ x ∈ Xα.

We endow Q with the quotient σ-algebra Q and the quotient measure q as described above
obtaining the quotient measure space (Q,Q, q). When a disintegration α 7→ mα of m is
(strongly) consistent with the quotient map Q, we will say that it is (strongly) consistent
with the partition.

Let {Xα}α∈Q be a partition of X, a set S ⊂ X is a section for the partition if for any
α ∈ Q, S ∩ Xα is a singleton {xα}. By the axiom of choice, a section S always exists. A
set of indexes Q and a section S can always be identified via the map Q ∋ α 7→ xα ∈ S.
A set Sm is an m-section if there exists Y ∈ R with m(X \ Y ) = 0 such that the partition
Y = ∪α∈Qm(Xα ∩ Y ) has section Sm, where Qm = {α ∈ Q;Xα ∩ Y ̸= ∅}.

A σ-algebra A is countably generated if there exists a countable family of sets so that A
coincides with the smallest σ-algebra containing them.

Now we recall a version of an existence and uniqueness result of the disintegration taken
from [20, Theorem A.7, Proposition A.9].
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Theorem 1.5.3. Assume that (X,R,m) is a countably generated probability space and that
{Xα}α∈Q is a partition of X. Then there exists an essentially unique disintegration α 7→ mα

consistent with the partition.
If in addition R contains all singletons, then the disintegration is strongly consistent if

and only if there exists a m-section Sm ∈ R of the partition such that the σ-algebra on Sm
induced by the quotient-map contains the trace σ-algebra R ∩ Sm := {A ∩ Sm;A ∈ R}.

We will always apply the previous theorem in the following particular case.

Remark 1.5.4. Let (X, d) be a separable metric space. A sufficient condition for having
a unique strongly consistent disintegration for a Borel measure m on X with respect to a
partition, is to have a section for the partition which is Borel and for which the quotient
map is Borel. Indeed in this case the trace σ algebra is the sigma algebra induced by the
Borel sets. In addition since the quotient map is Borel then the pre-image of any Borel set
is Borel, therefore the push-forward σ-algebra contains the trace σ-algebra.

In the following lemma it is shown that under assumption of existence and uniqueness
of the disintegration, if we disintegrate, with respect to the same map, two measures which
are absolutely continuous one with respect to the other, then the absolutely continuity is
preserved both by the pushforward measures and by the marginal distributions.

Lemma 1.5.5. Let (X,R) be a countably generated measure space and Q : X → Q a
map and Q the pushforward sigma algebra on Q. Let m and µ be measures on (X,R) with
µ = ρµm. Assume that we have disintegrations of m and µ consistent with Q,

Q ∋ q 7−→ mq ∈ P(X,R),
Q ∋ q 7−→ µq ∈ P(X,R),

with Q♯m = qm, Q♯µ = qµ. Then, setting l(q) :=
∫
X ρµmq, we have

qµ = l(q)qm (1.29)

and qµ a.e. q ∈ Q, l(q) ̸= 0 and

µq = ρµ
l(q)mq.

Proof. Take A ∈ Q. Then

qµ(A) = µ(Q−1(A)) =
∫
Q

∫
Q−1(A)

ρµmq qm(dq) =
∫
A

∫
X
ρµmq qm(dq) =

∫
A
l(q)qm(dq).

Since it holds for any A ∈ Q, then the first claim in the statement follows. It also follows
that

µ =
∫

Q
ρµmq qm(dq) =

∫
Q
µq qµ(dq) =

∫
Q
µql(q) qm(dq),

which by the uniqueness of the disintegration means that qm a.e. q ∈ Q, µql(q) = ρµmq.
Moreover from (1.29) l(q) ̸= 0 for qµ-a.e. q ∈ Q from which also the second part follows.
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1.5.2 Main definitions

For a more detailed reference about what follows see e.g. [1] and [15] for works about L1-
optimal transport in the euclidean space, [21] for the generalization to the general setting
of geodesic metric spaces. Since large part of this thesis is based on L1-optimal transport
results we tried to keep the exposition self-contained when possible.

Let (X, d) be a geodesic metric space. Let φ : X → R be a 1-Lipschitz function. Define
the following d-monotone set associated to φ:

Γφ := {(x, y) ∈ X ×X : φ(x) − φ(y) = d(x, y)}.

Define in addition:

• the transport relation associated to φ

Rφ := Γφ ∩ Γ−1
φ ;

where Γ−1
φ := {(x, y) ∈ X ×X : (y, x) ∈ Γφ};

• for any x ∈ X, the section of Γφ through x, Γφ(x) := {y ∈ X : (x, y) ∈ Γφ}, and
analogously Γ−1

φ (x). Set also Rφ(x) := Γφ(x) ∪ Γ−1
φ (x);

• the transport set with end points,

T e
φ := P1(Rφ \ {(x, x) : x ∈ X});

equivalently x ∈ T e
φ ⇐⇒ there exists y ̸= x such that (x, y) ∈ Rφ,

• the set of initial and final points,

aφ :={x ∈ T e
φ : ∄ z ∈ X, x ̸= z : z ∈ Γ−1

φ (x)},
bφ :={x ∈ T e

φ : ∄ z ∈ X, x ̸= z : z ∈ Γφ(x)};

• the set of forward (and respectively backward) branching points:

A+
φ := {x ∈ T e

φ : ∃z, w ∈ Γφ(x), (z, w) /∈ Rφ},
A−
φ := {x ∈ T e

φ : ∃z, w ∈ Γ−1
φ (x), (z, w) /∈ Rφ},

more in general we define the set of branching points as A+
φ ∪A−

φ ;

• the non-branching transport set,

T nb
φ := T e

φ \ (A+
φ ∪A−

φ ). (1.30)

Remark 1.5.6. We notice that if x ∈ A+
φ and y ∈ Γ−1

φ (x), then y ∈ A+
φ . Analogously if

x ∈ A−
φ and y ∈ Γφ(x), then y ∈ A−

φ .

Remark 1.5.7. If the space is non-branching, the set of branching points can still be non
empty. However, in this case A+

φ ⊆ aφ and A−
φ ⊆ bφ. Indeed take x ∈ A+

φ . Then there
exists z, w such that (x, z) ∈ Γφ, (x,w) ∈ Γφ and (z, w) /∈ Rφ. Assume by contradiction
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that x /∈ aφ, then there exists y ̸= x such that (y, x) ∈ Γφ. Note that the points y, x, z, w,
are all distinct. We can observe that

d(y, x) + d(x, z) = φ(y) − φ(x) + φ(x) − φ(z) = φ(y) − φ(z) ≤ d(y, z),

therefore d(y, x)+d(x, z) = d(y, z) and the same holds with y, x, w. Therefore from Remark
1.1.6 there exists two geodesic γ1 and γ2 satisfying γ1(0) = y, γ1(1) = z, γ2(0) = y,
γ2(1) = w, both satisfying γi(t̄) = x for i = 1, 2 and t̄ ∈ (0, 1) and coinciding on t ∈ [0, t̄].
this contradicts the non-branching hypothesis. Analogously we can show that A−

φ ⊆ bφ.

We recall some notions of measure theory (see [87]) and collect here some measurability
observations about the sets we constructed.

Definition 1.5.8. Let X be a Polish space. A set B ⊆ X is called analytic if it is the
projection of a Borel set of X × X. A subset of X is universally measurable if it is m
measurable for any Borel measure m on X.

Proposition 1.5.9. Let X be a Polish space. Analytic sets are universally measurable i.e.
if A is analytic then it is universally measurable (see [67, Theorem 21.10]).

Remark 1.5.10. Projections of analytic sets are analytic (see [87, Proposition 4.1.2]).

Lemma 1.5.11. Let (X, d) be a metric space and φ be a 1-Lipschitz function. Consider
the sets constructed above. Then

1. Rφ is closed;

2. T e
φ is universally measurable; moreover if the space is proper it is σ-compact;

3. A+
φ and A−

φ are universally measurable; moreover if the space is proper they are σ-
compact;

4. T nb
φ is universally measurable; moreover if the space is proper it is Borel;

5. aφ and bφ are universally measurable; moreover if the space is proper they are Borel.

Proof. 1. it follows from the fact that φ continuous;

2. T e
φ is the projection of the difference of two closed sets, so it is the projection of a Borel

set and therefore analytic, hence by Proposition 1.5.9 it is universally measurable. For
the second part call D := {(x, x) : x ∈ X} and Dε its open ε enlargement,

Rφ \D = ∪n∈N
(
Rφ ∩ (D

1
n )c
)
.

Therefore Rφ \ D is countable union of closed sets and so σ-compact if the space is
proper. Hence T e

φ is σ-compact.

3. It is immediate from the definition that

A+
φ = P1

(
(T e
φ ×Rcφ) ∩ (P−1

1,2 (Γφ) ∩ (P−1
1,3 (Γφ)

)
where P1,2 (resp. P1,3) is the projection X×X×X → X×X onto the first and second
(resp. first and third) component. Therefore A+

φ is the projection of an analytic set,
so analytic and universally measurable. If the space is proper T e

φ is σ-compact as
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shown in point (2) and Rcφ is an open set in a metric space and so countable union
of closed sets and therefore σ-compact. Moreover P−1

1,2 (Γφ), P−1
1,2 (Γφ) are closed and

thus σ-compact since Γφ is closed and the projections are continuous. The proof for
A−
φ is analogous.

4. It follows from the fact that T nb
φ = T e

φ \ (A+
φ ∪A−

φ ) and the previous points.

5. We need to observe that

acφ ∩ T e
φ = P1(T e

φ ×X ∩ Γ−1
φ ).

So arguing as above acφ∩T e
φ is universally measurable. Therefore aφ = (acφ∩T e

φ )c∩T e
φ

is universally measurable. The Borelianity in a proper space follows as in the previous
cases. bφ can be treated in the same way.

Notice that if two points are in relation through Rφ then any couple of points in a
geodesic connecting them is also in relation as shown in the following result.

Lemma 1.5.12. Let γ be a geodesic with (γ(0), γ(1)) ∈ Γφ. Then (γ(s), γ(t)) ∈ Γφ for any
s ≤ t ∈ [0, 1].

Proof. Let t ≥ s,

d(γ(s), γ(t)) ≥ φ(γ(s)) − φ(γ(t))
= φ(γ(s)) − φ(γ(0)) + φ(γ(0)) − φ(γ(1)) + φ(γ(1)) − φ(γ(t))
≥ d(γ(0), γ(1)) − d(γ(s), γ(0)) − d(γ(1), γ(t)) = d(γ(s), γ(t)).

Rφ is in general not an equivalence relation, in particular it is not necessarily transi-
tive. In the following proposition we show that it is when restricted to the non-branching
transport set.

Proposition 1.5.13. The relation Rφ∩(T nb
φ ×T nb

φ ) is an equivalence relation. In particular
Rφ defines a partition on T nb

φ into equivalence classes.

Proof. The relation is reflexive and symmetric by definition of Γφ and Rφ. We need only
to check transitivity.
Let x, y, z be distinct elements of T nb

φ , such that (x, y) ∈ Rφ and (y, z) ∈ Rφ, then we have
the following cases. If y ∈ Γφ(x) and z ∈ Γφ(y) one has

d(x, z) ≥ φ(x) − φ(z) = φ(x) − φ(y) + φ(y) − φ(z) = d(x, y) + d(y, z) ≥ d(x, z),

so equality follows and (z, x) ∈ Rφ. If y ∈ Γφ(x) and z ∈ Γ−1
φ (y) then x, z ∈ Γ−1

φ (y), and
since y /∈ A−

φ , then (x, z) ∈ Rφ. If y ∈ Γ−1
φ (x) and z ∈ Γφ(y), then x, z ∈ Γφ(y), and since

y /∈ A+
φ , then as before (x, z) ∈ Rφ. If y ∈ Γ−1

φ (x) and z ∈ Γ−1
φ (y) then x ∈ Γφ(y) and

y ∈ Γφ(z) so as in the first case (x, z) ∈ Rφ.

We call [x]φ the equivalence class of an element x ∈ T nb
φ determined by the equivalence

relation Rφ ∩ (T nb
φ × T nb

φ ). Note that [x]φ = Rφ(x) ∩ T nb
φ .
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1.5.3 Structure of the transport set

We start with a remark.

Remark 1.5.14. For any x ∈ T nb
φ , φ|Rφ(x) is an isometry. Indeed if [x]φ is a point, we are

done. Otherwise let y, z be two different points of [x]φ. Then (y, z) ∈ Rφ (by definition
of equivalence class). We assume without loss of generality that (y, z) ∈ Γφ and therefore
φ(y) − φ(z) = d(y, z). φ|[x]φ is an isometry.

Lemma 1.5.15. For every x ∈ T nb
φ the set φ([x]φ) is an interval I ⊆ R (open closed or

none of them). In particular [x]φ is isometric to I.

Proof. It is enough to show that φ([x]φ) is connected. If φ([x]φ) is a point we are done
taking as I a degenerate interval. Otherwise let a < b ∈ R such that φ(z) = a, φ(w) = b for
z, w ∈ [x]φ. Let γ : [0, 1] → X be a geodesic such that γ(0) = w, γ(1) = z. We show that
γ(s) ∈ [x]φ for any s ∈ [0, 1] from which follows by continuity of φ that φ([x]φ) is connected.
Let (w, z) ∈ Rφ by definition of equivalence class and since φ(w) > φ(z), (w, z) ∈ Γφ.
Therefore we can apply 1.5.12 to deduce that (γ(s), γ(1)) ∈ Γφ and (γ(0), γ(s)) ∈ Γφ for
any s ∈ [0, 1]. It remains to show that γ(s) ∈ T nb

φ . We need to prove that γ(s) /∈ A+
φ ∪A−

φ .
Assume that γ(s) ∈ A+

φ , then this would imply that also x = γ(0) ∈ A+
φ (see Remark 1.5.6)

which is false. Assume that γ(s) ∈ A−
φ , then this would imply that also y = γ(1) ∈ A−

φ

which is still false. So γ(s) ∈ T nb
φ and (γ(0), γ(s)) ∈ Γ(φ) and hence γ(s) ∈ [x]φ. The

second part follows from Remark 1.5.14.

Remark 1.5.16. For any x ∈ T nb
φ , it follows analogously that φ|Rφ(x) is an isometry and

φ(Rφ(x)) is connected.

1-Lipschitz functions and disintegration

Given a 1-Lipschitz function φ we apply the Disintegration result of section 1.5.1 to the
partition of the non-branching transport set constructed through the equivalence relation
induced by φ. In order to apply the Disintegration Theorem to the latter partition, we
need a set of indexes. We will choose as set of indexes a section for the partition. Since
we want the disintegration to be strongly consistent, we need the section to satisfy some
measurability properties. This is possible thanks to the following lemma.

Lemma 1.5.17. Let (X, d) be a proper and geodesic metric space and φ be a 1-Lipschitz
function. Let T nb

φ be the set and Rφ the equivalence relation constructed above. Consider
the measure space (T nb

φ , B(T nb
φ )). There exists a section Q ∈ B(T nb

φ ) for the partition into
equivalence classes given by Rφ, for which the quotient map

fφ : (T nb
φ , B(T nb

φ )) → (Q, σ(Q))

is Borel, where σ(Q) = B(Q) is the trace sigma algebra on Q.

Proof. See [33] Proposition 3.4.8.

Let Q be the set of Lemma 1.5.17. We denote for any q ∈ Q,

Xφ
q := {x ∈ T nb

φ : fφ(x) = q} = [q]φ, (1.31)

the equivalence class of the element x ∈ T nb
φ such that fφ(x) = q. From now on when

referring to the equivalence classes, we will use the notation {Xφ
q }q∈Q dropping the previous
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one of {[q]φ}q∈Q. Sometimes we will drop the dependence on φ using Xq in place of Xφ
q . We

call each Xq a transport ray. The following proposition shows that Disintegration Theorem
1.5.3 holds in the measure space (T nb

φ , B(T nb
φ )) with respect to the partition into equivalence

classes {Xφ
q }q∈Q.

Proposition 1.5.18. Let (X, d) be a proper metric space. Let φ be a 1-Lipschitz func-
tion, T nb

φ the set defined above. Let m be a finite Borel measure on X. Consider the space
(T nb
φ ,B(T nb

φ )) and m|T nb
φ

. Then there is an essentially unique strongly consistent disinte-
gration of m|T nb

φ
with respect to the partition into equivalence classed {Xφ

q }q∈Q, i.e. there
exists a q := (fφ)♯m|T nb

φ
essentially unique map Q ∋ q 7→ mq ∈ P(T nb

φ ) such that

m|T nb
φ

=
∫

Q
mqq(dq) (1.32)

and mq is concentrated on Xq for q-a.e. q, where Q and fφ are any Borel section of the
partition and any Borel quotient map.

Proof. Since our space (X, d,m) is separable, then B(X) is countably generated and so is
B(T nb

φ ). By Lemma 1.5.17 the section Q is m|T nb
φ

-measurable since it is Borel. Moreover
the sigma algebra on Q induced by the quotient map fφ contains the trace sigma algebra
of Borel sets since the map fφ is Borel. This means that we can apply the complete version
of the Disintegration Theorem 1.5.3. So there exists an essentially unique disintegration
strongly consistent with the partition {Xφ

q }q∈Q.

Remark 1.5.19. The measure q in Proposition 1.5.18 is a Borel measure on Q ⊆ X. This
follows from the fact that fφ is Borel.

Remark 1.5.20. Up to renormalizing one can choose q ∈ P(Q) and consequently mq ∈
M(X) not necessarily of total mass equal to one.

Parametrization of the non-branching transport set

We have shown in Lemma 1.5.15 that any equivalence class is isometric to a real interval.
Informally, this means that we have constructed for our space a sort of system of coordinates
lying on Q × R. Now we show that this choice of coordinates can be done in a measurable
way. Recall more precisely that we have proved in Lemma 1.5.15 that given a 1-Lipschitz
function φ, fixed the section Q for the partition of T nb

φ , for any q ∈ Q, Xq is isometric to
a real interval Iq. In particular, up to reparametrization, we have isometries, for any q,
γφq : Iq → Xq satisfying γφq (0) = q.

Definition 1.5.21 (Ray map). Set Dom(g) := ∪q∈Q{q} × Iq

g : Dom(g) ⊂ Q× R → T nb
φ

(q, t) 7→ γφq (t),

where γφq : Iq → X is the isometry defined above. Notice that it holds: graph(g) = S, with

S :=
{

(q, t, x) ∈ Q × [0,+∞) × T nb
φ : (q, x) ∈ Γφ, d(q, x) = t

}
∪
{

(q, t, x) ∈ Q × (−∞, 0] × T nb
φ : (x, q) ∈ Γφ, d(q, x) = −t

}
. (1.33)
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We are not calling {γφq }q∈Q geodesics since they are not parametrized in [0, 1] and they
can have infinite length.

Proposition 1.5.22. Let (X, d) be a proper and geodesic metric measure space and φ be a
1-Lipschitz function. Let g be the map defined in Definition 1.5.21. Then the set Dom(g)
is analytic and the map g : Dom(g) → T nb

φ is Borel. In addition g is a bijection with
g−1 : T nb

φ → Dom(g) also Borel.

We recall here a measurability result that we use in the proof of the Proposition. It is
taken from Theorem 4.5.2 in [87].

Theorem 1.5.23. Let X and Y be two Polish spaces. Let A ⊆ X be analytic and f : A →
Y . Then if graph(f) is analytic, f is Borel measurable.

Proof of Proposition 1.5.22. We claim that the set S in (1.33) is Borel. We show that the
first term of the union is Borel. The second is analogous.{

(q, t, x) ∈ Q × [0,+∞) × T nb
φ : (q, x) ∈ Γφ, d(q, x) = t

}
= (Q × [0,+∞) × T nb

φ ) ∩ {(q, t, x) : (q, x) ∈ Γφ, t ∈ R} ∩ {(q, t, x) : d(q, x) − t = 0}

where Q×[0,+∞)×T nb
φ is Borel since Q and T nb

φ are Borel and {(q, t, x) : (q, x) ∈ Γφ, t ∈ R}
and {(q, t, x) : (q, x) ∈ Γφ, t ∈ R} are closed. Therefore P1,2(S) = Dom(g) is analytic. In
addition thanks to Theorem 1.5.23 one has that the map g is Borel. The fact that g−1 is
Borel follows from the fact that for x ∈ T nb

φ , g−1(x) = (fφ(x), φ(x) −φ(fφ(x))) where fφ is
the Borel quotient map defined above.

1.6 One dimensional localization

In this section we will state some of the results in this context, that will be useful for us
without pretension of being exhaustive.

Localization of the CD(K, N) and MCP(K, N) conditions

The construction made in the previous section turned out to inherit curvature properties of
the space. Informally we have that if (X, d,m) is a m.m.s. and φ is a 1-Lipschitz function,we
can consider the construction made in the previous Section, namely we can built the set
T nb
φ and partition it into equivalence classes {X}q∈Q constructed through the equivalence

relation Γφ. By applying the Disintegration Theorem we get a disintegration of the measure
m|T nb

φ
, q 7→ mq with almost any mq concentrated on Xq. If the space is essentially non-

branching and satisfies the CD(K,N) condition or the MCP(K,N) condition almost all the
spaces (Xq, d|Xq×Xq

,mq) satisfy the same synthetic Ricci curvature lower bound.

First we remark that if the space satisfies some curvature assumption like the MCP
condition and is essentially non-branching, then the sets constructed through the 1-Lipschitz
function enjoy some additional properties. The first one concerns the negligibility of the
branching points. It was proved first in [32] for RCD(K,N) spaces relying on existence and
uniqueness of L2-optimal maps ([62]), in particular after [38] it extends to the MCP case.
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Proposition 1.6.1. Let (X, d,m) be an essentially non-branching m.m.s. satisfying the
MCP(K,N) condition. Let φ be a 1-Lipschitz function. Let A+

φ and A−
φ be the sets of

forward and backwards branching points defined in Section 1.5.2. Then

m(A+
φ ) = m(A−

φ ) = 0.

This in particular implies that one is able to get a disintegration of the measure not
only on T nb

φ but on the whole transport set T e
φ .

The second good property implied by the curvature assumptions, is the maximality of the
equivalence classes. In particular under the same assumptions of the previous proposition
it holds

Rφ(q) = X̄q ⊇ Xq ⊃
◦
Rφ(q), for q − a.e. q ∈ Q,

where Q is a Borel section for the partition, fφ a Borel quotient map, q := (fφ)♯m|T nb
φ

and
◦
Rφ(q) is Rφ(q) without its endpoints (recall Remark 1.5.16). This was proved in [37] relying
only on existence and uniqueness of L2-optimal maps and Proposition 1.6.1.

Finally equivalence classes inherits curvature properties of the space as stated in the
following theorems.

Theorem 1.6.2. Let (X, d,m) be an essentially non-branching m.m.s. with m(X) < +∞,
verifying the CD(K,N) (resp. MCP(K,N)) condition for K ∈ R, N ∈ [1,+∞). Let φ
be a 1-Lipschitz function. Consider the partition of the set T nb

φ into equivalence classes
{Xφ

q }q∈Q, Q a Borel section for the partition and fφ a Borel quotient map. Consider in
addition the strongly consistent disintegration of m|T nb

φ

m|T nb
φ

=
∫

Q
mqq(dq),

with q := (fφ)♯m|T nb
φ

. Then for q a.e. q ∈ Q, (X̄q, d,mq) satisfies the MCP(K,N) (resp.
CD(K,N)) condition.

In the particular case where φ is a Kantorovich potential for an L1-optimal transport
problem the partition which inherits curvature properties of the space is also the one which
allows to reduce the optimal transport problem to one dimensional transport problems.

Theorem 1.6.3. Under the hypotheses and notations of the previous theorem, assume that
φ is a Kantorovich potential for the L1-optimal trasport problem between f+m and f−m
where f : X → R is m-integrable such that

∫
X f m = 0 and

∫
X |f(x)| d(x, x0)m(dx) < ∞ for

some x0 ∈ X.
Then

• q-almost every q ∈ Q, it holds
∫
Xq
f mq = 0,

• f = 0 m-a.e. in (T nb
φ )c.

Theorem 1.6.2 and 1.6.3 were proved in the CD(K,N) case in [39], while the MCP version
is discussed in [42]. A localization result under the stronger assumption of non-branching,
in the MCP case already appeared in [21].

We finally report for completeness the Localization in its classical statement which is
presented in a more implicit version, including also the case of σ-finite measures proved in
[42].
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Theorem 1.6.4. Let (X, d,m) be an essentially non-branching metric measure space with
supp(m) = X. Let f : X → R be m-integrable such that

∫
X f m = 0 and assume the

existence of x0 ∈ X such that
∫
X |f(x)| d(x, x0)m(dx) < ∞.

Assume also (X, d,m) verifies CD(K,N) (resp. MCP(K,N)) condition for some K ∈ R
and N ∈ [1,∞).

Then the space X can be written as the disjoint union of two sets Z and T with T
admitting a partition {Xq}q∈Q and a corresponding disintegration of m|T such that:

m|T =
∫
Q
mq q(dq),

where q is a Borel probability measure over Q ⊂ X such that Q♯(m|T ) ≪ q, with Q the
quotient map associated to the partition and the map Q ∋ q 7→ mq ∈ M+(X) satisfying the
following properties:

• for any m-measurable set B, the map q 7→ mq(B) is q-measurable;

• for q-a.e. q ∈ Q, mq is concentrated on Q−1(q) = Xq (strong consistency);

• For q-almost every q ∈ Q, it holds
∫
Xq
f mq = 0 and f = 0 m-a.e. in Z.

• For q-almost every q ∈ Q, the set Xq is a geodesic (even more a transport ray) and
the one dimensional m.m.s. (Xq, d,mq) verifies CD(K,N) (resp. MCP(K,N)).

Moreover, fixed any q as above such that Q♯(m|T ) ≪ q, the disintegration is q-essentially
unique.

The following remark together with the localization theorem will allow us to work in
the weighted interval.

Remark 1.6.5. In Theorem 1.6.2 and Theorem 1.6.4, for q-almost every q ∈ Q the space
(Xq, d|Xq

,mq) is isomorphic to (Iq, |·| , m̃q) via the inverse of the ray map g(q, ·)−1 : Xq → Iq
with Iq real interval. In particular Lemma 1.4.10 (resp. 1.4.16) implies that

g(q, ·)−1
♯ mq = m̃q = hq · L1

with hq is a CD(K,N) (resp. MCP(K,N)) density.

Localization of the CD(K, ∞) condition under MCP(K̄, N) condition

Theorem 1.6.2 is not known for a general CD(K,∞) spaces. We state here a version of
the localization of this condition under the additional assumption that the space satisfies
additionally the MCP(K ′, N ′) for some K ′, N ′ ∈ R (with possibly K ′ different from K).
This assumption excludes all the technical issues and the proof of the following localization
result just follows as the one of Theorem 1.6.4.

Theorem 1.6.6. Let (X, d,m) be an essentially non-branching metric measure space with
supp(m) = X. Let f : X → R be m-integrable such that

∫
X f m = 0 and assume the

existence of x0 ∈ X such that
∫
X |f(x)| d(x, x0)m(dx) < ∞.

Assume also (X, d,m) verifies CD(K,∞) and MCP(K ′, N ′) conditions for some K,K ′ ∈
R and N ′ ∈ [1,∞).
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Then the space X can be written as the disjoint union of two sets Z and T with T
admitting a partition {Xq}q∈Q and a corresponding disintegration of m|T such that:

m|T =
∫
Q
mq q(dq),

where q is a Borel probability measure over Q ⊂ X such that Q♯(m|T ) ≪ q and the map
Q ∋ q 7→ mq ∈ M+(X) satisfies the following properties:

• for any m-measurable set B, the map q 7→ mq(B) is q-measurable;

• for q-a.e. q ∈ Q, mq is concentrated on Q−1(q) = Xq (strong consistency);

• For q-almost every q ∈ Q, it holds
∫
Xq
f mq = 0 and f = 0 m-a.e. in Z.

• For q-almost every q ∈ Q, the set Xq is a geodesic (even more a transport ray) and
the one dimensional m.m.s. (Xq, d,mq) verifies CD(K,∞).

Moreover, fixed any q as above such that Q♯(m|T ) ≪ q, the disintegration is q-essentially
unique.
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Chapter 2

Indeterminacy estimate via
localization and lower bound for
the nodal set of eigenfunctions

In this chapter we report and describe the results obtained in [35].

2.1 One dimensional indeterminacy estimates
As already described in the introduction, the first part of the chapter is devoted to the proof
of an indeterminacy estimate in the setting of metric spaces with synthetic Ricci curvature
lower bounds. The first step towards the proof consists in proving an indeterminacy estimate
in the standard real interval, that is what we do in the following subsection. We then will
use part of the proof of the Euclidean indeterminacy estimate in Section 2.1.2 and 2.1.3 to
derive the corresponding version for intervals with weighted Lebesgue measure, respectively
with weight being a CD density or MCP density.

2.1.1 Indeterminacy estimate in the standard real interval

We first need to fix some notations.
Definition 2.1.1. Given an interval I = [x, y] ⊂ R (with x, y possibly −∞ or +∞) and
a set A open in I, we define the counting boundary CB(A, I) ⊂ Int(I) as follows. Let
C1, . . . , Cn be the connected components of A in I (which are intervals open in I), with
n possibly +∞. In particular ∪nk=1C̄k = ∪mk=1[ak, bk], with [ak, bk] ⊂ I disjoint, with m
possibly +∞, ak, bk ∈ R ∪ {±∞}. Then we set

CB(A, I) := ∪mk=1{ak, bk} \ {x, y}.

Definition 2.1.2. Given a function f : I → R with zero mean, with I real closed inter-
val, possibly of infinite length, satisfying the hypotheses of Theorem 1.6.4 we say that the
transport of f goes along a unique transport ray if applying Theorem 1.6.4 one has that
the partition in {Xq}q is made of only one element.

Remark 2.1.3. Given f ∈ L1(I) with
∫
I f(x) dx = 0. If the transport of f goes along a

unique transport ray, then φ(x) = x ( or φ(x) = −x) is a Kantorovich potential for the
L1-optimal transport problem between f+L1 and f−L1.
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We can now state and prove our first estimate.

Proposition 2.1.4. Let f : [0, 1] → R be a continuous function having zero mean w.r.t
Lebesgue measure, i.e. ∫

(0,1)
f+(x) dx =

∫
(0,1)

f−(x) dx,

and assume that the transport of f goes along a unique transport ray, (see Definition 2.1.2).
Then it holds:

W1(f+L1, f−L1) H0 (CB({x | f(x) > 0}, [0, 1])) ≥
∥∥f+∥∥2

L1(0,1)
2 min{∥f+∥L∞(0,1), ∥f−∥L∞(0,1)}

.

(2.1)

Proof. Step 1 We claim that given two non-negative functions h, g ∈ L∞(0, 1) such that∫
[0,1] h(x) dx =

∫
[0,1] g(x) dx and which satisfy the following condition on the supports: there

exists x̄ ∈ (0, 1) such that

supp{h} ⊆ [0, x̄], supp{g} ⊆ [x̄, 1], (2.2)

then one has

W1(hL1, gL1) ≥ 1
2

∥h∥2
L1

min{∥h∥L∞ , ∥g∥L∞}
. (2.3)

Indeed we can consider the two following rearrangement of the masses

rhL1 := ∥h∥L∞ χ(x̄−τh,x̄)L1, rgL1 := ∥g∥L∞ χ(x̄,x̄+τg)L1,

with τh and τg chosen so that the total mass of rhL1 is the same total mass of hL1, and the
same for rgL1 and gL1. We notice that by direct calculation it holds

W1(rhL1, rgL1) = 1
2

( ∥h∥2
L1(0,1)

∥h∥L∞(0,1)
+

∥g∥2
L1(0,1)

∥g∥L∞(0,1)

)
, (2.4)

and then we observe that

W1(hL1, gL1) ≥ W1(rhL1, rgL1). (2.5)

Indeed for any π optimal transport plan between hL1 and gL1, one has

W1(hL1, gL1) =
∫

|x− y|π(dxdy) =
∫

(x̄,1)
(y − x̄)g(y) dy +

∫
(0,x̄)

(x̄− x)h(x) dx

=
∫

(x̄,1)
yg(y) dy +

∫
(0,x̄)

−xh(x) dx ≥
∫

(x̄,1)
yrg(y) dy +

∫
(0,x̄)

−xrh(x) dx

where the last inequality follow from the two following observations:

• g − rg ≤ 0 in (x̄, x̄+ τg) and g − rg ≥ 0 in (x̄+ τg, 1) ,

• h− rh ≤ 0 in (0, x̄− τh) and h− rh ≥ 0 in (x̄− τh, x̄),
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and the fact that for a function ψ : (0,+∞) → R with zero mean and such that ψ ≤ 0 in
(0, a) and ψ ≥ 0 in (a,+∞) it holds that

∫
(0,+∞) xψ(x) dx ≥ 0. So finally putting (2.4) and

(2.5) together we obtain

W1(hL1, gL1) ≥
∥h∥2

L1(0,1)
2 min{∥h∥L∞(0,1), ∥g∥L∞(0,1)}

.

Step 2 Let f : [0, 1] → R be as in the hypotheses.
We define the sets Dk as follows: let C1, . . . , Cn be the connected components of {x ∈ [0, 1] |
f(x) > 0}, with n possibly +∞, then the sets {Dk}k are the closed disjoint intervals such
that

∪nk=1C̄k = ∪mk=1Dk.

We observe that if m = +∞ then H0(CB({x | f(x) > 0}, [0, 1])) = +∞ and the statement
is trivially true. So we assume that m < +∞.

Let T : [0, 1] → R be an optimal transport map for the problem.
We prove the following claim:

W1(f+
|Dk

L1, T♯(f+
|Dk

L1)) ≥ 1
2

∥f+
|Dk

∥2
L1(0,1)

min{∥f+∥L∞(0,1), ∥f−∥L∞(0,1)}
, ∀ 1 ≤ k ≤ m.

Proof of the claim.
We observe that T#(f+

|Dk
L1) ≤ f−L1 (actually equality holds), for any k, so in particular

it is absolutely continuous with respect to the Lebesgue measure. We consider

h := f+
|Dk

, g :=
dT♯(f+

|Dk
L1)

dL1 , (2.6)

and we notice that they satisfy the hypotheses of the previous step. Indeed

supp(h) ⊆ Dk, supp(g) ⊆ T (Dk) and T (x) ≥ x ∀x ∈ Dk or T (x) ≤ x ∀x ∈ Dk.

To see this observe that, since the transport of f goes along a unique transport ray, we have
that either u(x) := −x or u(x) := x is a Kantorovich potential for the problem. Assuming
without loss of generality u(x) = −x and using the definition of Kantorovich potential we
have that each couple (x, T (x)) with x ∈ suppf+ satisfies u(x) − u(T (x)) = |x − T (x)| so
in particular T (x) = x+ |x−T (x)| and T (x) ≥ x. The claim follows by applying the result
of the previous step to h and g and observing that ∥g∥L∞ ≤ ∥f−∥L∞ .

Once that we proved the claim, we notice that being the sets Ck disjoint, we can sum
over k the inequalities (2.6), and we get

W1(f+L1, f−L1) =
m∑
k=1

W1(f+
|Dk

L1, T♯(f+
|Dk

L1))) ≥ 1
2

m∑
k=1

∥f+
|Dk

∥2
L1(0,1)

min {∥f+∥L∞(0,1), ∥f−∥L∞(0,1)}
.

Applying Cauchy-Schwartz inequality the result follows:

W1(f+L1, f−L1) ≥ 1
2 min {∥f+∥L∞(0,1), ∥f−∥L∞(0,1)}

1
m

(
m∑
k=1

∥f+
|Dk

∥L1(0,1)

)2

= 1
2m

∥f+∥2
L1(0,1)

min {∥f+∥L∞(0,1), ∥f−∥L∞(0,1)}
,

and we can conclude by observing that m ≤ H0(CB({x | f(x) > 0}, [0, 1])).
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Remark 2.1.5. We observe that in the preceding proposition the fact that the interval in
which we are working in is exactly [0, 1] plays no role, so it analogously holds for an interval
[a, b] or in general for intervals of infinite length provided that the function f is in L1.

Remark 2.1.6. Proposition 2.1.4 holds also if the hypothesis that the transport of f goes
along a unique transport ray is removed: the only difference being a worse constant in the
inequality (4 in place of 2). The result can be obtained in this case with an analogous proof,
by observing that each Dk, in the notation of the proof of Proposition 2.1.4, can be decom-
posed asDk := D+

k ∪D−
k whereD+

k := {x ∈ Dk : T (x) > x} andD−
k := {x ∈ Dk : T (x) < x}.

By performing the same computations as in the previous proof, the inequality follows.

As already mentioned in the introduction, a slightly different version of the following
Proposition 2.1.4 was already present in the literature [91, Theorem 4] while a sharp and
rigid version can be found in [54].

2.1.2 One dimensional densities: the case of CD(K, ∞) densities

Before stating the main result of this section, we include the following fact about the perime-
ter in the weighted one dimensional case. For a proof we refer to [41, Proposition 3.1] where
there is an analogous statement for CD(K,N) densities.

Lemma 2.1.7. Let m = hL1 be a non-negative measure on R, with h a CD(K,∞) density
on its support, which in particular is an interval. Let E be an open set in supp(m). It holds

Perh(E) =
∑

x∈CB(E, supp(m))
h(x),

where Perh is the Perimeter functional in the space (supp(m), |·|, hL1) and CB(·, ·) is defined
in Definition 2.1.1.

We now obtain the one-dimensional estimate for a weighted Lebesgue measure, where
the weight is a CD(K,∞) density. As before, we will first consider the case of functions
defined on a compact interval [0, D] and then we will discuss the non-compact case in the
following Remark 2.1.9.

Proposition 2.1.8. Let h : [0, D] → [0,+∞) be a CD(K,∞)-density (recall Definition
1.4.9). Let f : [0, D] → R be a continuous function having zero mean w.r.t the measure
hL1:

∫
(0,D) f(x)h(x) dx = 0. Assume also that the transport of fh goes along a unique

transport ray. Then it holds

W1(f+hL1, f−hL1)

 ∑
x∈CB({f>0},[0,D])

h(x)

 ≥
∥fh∥2

L1(0,D)
8CK,D∥f∥L∞(0,D)

, (2.7)

(see Definition 2.1.1 for the definition of CB(., .)) where

CK,D :=
{

1 K ≥ 0,
e−KD2/2 K < 0.

(2.8)
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Proof. Step 1 We make the following preliminary observation. From CD(K,∞) assumption
it follows that the map

[0, D] ∋ x 7→ log h(x) +K
(x− x̄)2

2 ,

is concave. In particular, for each x̄ ∈ (0, D) either is increasing in [0, x̄] or is decreasing in
[x̄, D]. Hence in the first case

log h(x) +K
(x− x̄)2

2 ≤ log h(x̄), ∀ x ∈ [0, x̄];

while in the second case:

log h(x) +K
(x− x̄)2

2 ≤ log h(x̄), ∀ x ∈ [x̄, D];

The combination of the two previous inequalities yields

min{∥h∥L∞[0,x̄], ∥h∥L∞[x̄,D]} ≤ h(x̄)CK,D, (2.9)

where CK,D is defined in (2.8).
Similarly to Step 1 of the previous proof we make a base estimate that we will use in
the next step: we take two non negative bounded functions f, g : [0, D] → R such that∫

[0,D] fh dx =
∫

[0,D] gh dx, satisfying

supp{f} ⊆ [0, x̄], supp{g} ⊆ [x̄, D]. (2.10)

We can now apply (2.3) to fh, gh (recalling that h is positive) and

W1(fhL1, ghL1) ≥
∥fh∥2

L1(0,D)
2 min{∥fh∥L∞(0,D), ∥gh∥L∞(0,D)}

≥
∥fh∥2

L1(0,D)
2CK,D max{∥f∥L∞(0,D), ∥g∥L∞(0,D)}h(x̄) , (2.11)

where the second inequality follows from (2.9).
Step 2 Consider C1, . . . , Cn the connected components of {f > 0} with n possibly +∞. As
in Definition 2.1.1 we consider the set ∪nk=1C̄k. We observe that it is the union of disjoint
closed intervals: ∪nk=1C̄k = ∪mk=1[ak, bk], with m possibly +∞. We will proceed as in the
proof of Proposition 2.1.4: we consider an optimal transport map T and we obtain

W1(f+hL1, f−hL1) =
m∑
k=1

W1(f+hL1
|(ak,bk), T♯(f+hL1

|(ak,bk))).

Then we can apply (2.11) (as in the previous proof using the fact that the transport of f+h
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into f−h goes along a unique transport ray) to obtain:

W1(f+hL1, f−hL1) =
m∑
k=1

W1(f+hL1
|(ak,bk), T♯(f+hL1

|(ak,bk)))

≥
m∑
k=1

∥∥f+h
∥∥2
L1(ak,bk)

2CK,D ∥f∥L∞(ak,bk) (h(ak) + h(bk))

≥ 1
2CK,D ∥f∥L∞(0,D)

m∑
k=1

∥∥f+h
∥∥2
L1(ak,bk)

(h(ak) + h(bk))

≥
∥fh∥2

L1(0,D)
8CK,D ∥f∥L∞(0,D)

∑m
k=1(h(ak) + h(bk))

,

with the convention that if ak = 0 (resp. bk = D) the term h(ak) (resp. h(bk)) does not
appear. From this we get

8CK,DW1(f+hL1, f−hL1)
(

m∑
k=0

(h(ak) + h(bk))
)

≥
∥fh∥2

L1(0,D)
∥f∥L∞(0,D)

,

with the same convention on h(0), h(D) as above, from which the conclusion follows.

Remark 2.1.9. The case of non-compact intervals of definition holds without modifications.
The only relevant case is K ≥ 0 and D = ∞ indeed for K < 0 and D = ∞, the claim
becomes empty. Notice that D plays a role only in (2.9) where, in the relevant cases, it
becomes independent on D.

2.1.3 One dimensional densities: the case of MCP(K, N) densities

We now address the case of an MCP(K,N)-density. As it is clear from the proof of Proposi-
tion 2.1.8, the only place where the CD(K,∞) assumption has been used is to ensure h > 0
over (0, D) and to derive (2.9). A similar estimate, with suitable variations, can be obtained
also for MCP(K,N)-densities.

Lemma 2.1.10. Let h : [0, D] → [0,∞] be an MCP(K,N)-density for some real parameters
K,N with N ≥ 1. Then for any x̄ ∈ [0, D] the following estimates holds true:

min{∥h∥L∞[0,x̄], ∥h∥L∞[x̄,D]} ≤ h(x̄)CK,N,D, (2.12)

where

CK,N,D :=

2N−1 K ≥ 0
2N−1e

√
−K(N−1) D

2 K < 0.
(2.13)

Proof. The claim will follow from simple manipulations of (1.27). For clarity we recall it:
for all 0 ≤ x0 ≤ x1 ≤ D(

sK/(N−1)(D − x1)
sK/(N−1)(D − x0)

)N−1

≤ h(x1)
h(x0) ≤

(
sK/(N−1)(x1)
sK/(N−1)(x0)

)N−1

;

indeed for x ∈ [0, x̄]

h(x) ≤
(
sK/(N−1)(D − x)
sK/(N−1)(D − x̄)

)N−1

h(x̄) ≤ h(x̄)
sK/(N−1)(D − x̄)N−1 sup

0≤x≤x̄
sK/(N−1)(D − x)N−1
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and for x ∈ [x̄, D]

h(x) ≤
(
sK/(N−1)(x)
sK/(N−1)(x̄)

)N−1

h(x̄) ≤ h(x̄)
sK/(N−1)(x̄)N−1 sup

x̄≤x≤D
sK/(N−1)(x)N−1.

Then if K ≥ 0, in particular h will be MCP(0, N) giving

sup
0≤x≤x̄

h(x) ≤ h(x̄)
(

D

D − x̄

)N−1
, sup

x̄≤x≤D
h(x) ≤ h(x̄)

(
D

x̄

)N−1
,

and therefore

min{∥h∥L∞[0,x̄], ∥h∥L∞[x̄,D]} ≤ h(x̄)DN−1 min{1/(D − x̄), 1/x̄}N−1 ≤ 2N−1h(x̄),

proving the inequality if K ≥ 0. If K < 0, arguing analogously one gets

min{∥h∥L∞[0,x̄], ∥h∥L∞[x̄,D]} ≤ h(x̄)2N−1e
√

−K(N−1) D
2 ,

concluding the proof.

Putting together the proof of Proposition 2.1.8 and Lemma 2.1.10 we straightforwardly
obtain the next
Proposition 2.1.11. Let h : [0, D] → [0,+∞) be an MCP(K,N)-density. Let f : [0, D] → R
be a continuous function having zero mean w.r.t the measure with density h:

∫
(0,D) f(x)h(x) dx =

0. Assume also that the transport of fh goes along a unique transport ray:
∫

(0,s) f(x)h(x) dx ≥
0 for all s ∈ [0, D]. Then it holds

W1(f+hL1, f−hL1)

 ∑
{x∈CB({f>0},[0,D])}

h(x)

 ≥
∥fh∥2

L1(0,D)
8CK,N,D∥f∥L∞(0,D)

, (2.14)

where CK,N,D is given by (2.13).
Remark 2.1.12. The case of non-compact intervals of definition holds again without mod-
ifications. The only relevant case here will be K = 0 and D = ∞; if K > 0, then MCP
implies that D < DK,N (see (1.20)) while if K < 0 and D = ∞, the claim becomes empty.
Notice that D plays a role only in (2.9) that is the content of Lemma 2.1.10.

2.2 Indeterminacy estimate via localization
We now use the one-dimensional estimates of the previous section to deduce the following
sharp indeterminacy estimates. We first observe the following fact.
Lemma 2.2.1. Let (X, d,m) be a metric measure space, E ⊆ X be a Borel set. Assume that
we are given a strongly consistent disintegration of m|T associated to the partition {Xq}q∈Q
induced by a 1-Lipschitz function φ, as given in Theorem 1.6.4:

m|T =
∫
Q
mq q(dq),

where q is a Borel probability measure over Q ⊂ X such that and mq ∈ M+(X). Then it
holds

Per(E) ≥
∫
Q

Perq(Eq) q(dq),

where Eq = E ∩Xq and Perq is the perimeter functional in the space (X̄q, d,mq).

33



Proof. Let {fn}n ∈ Liploc(X) be a sequence of functions converging in L1(X,m) to χE .
Then, by disintegration

0 = lim
n→+∞

∫
X

|fn(x) − χE(x)|m|T (dx) = lim
n→+∞

∫
Q

∫
Xq

|fn(x) − χE(x)|mq(dx) q(dq),

so up to extracting a subsequence, that we call again {fn}, we have that for q-a.e. q ∈ Q

lim
n→+∞

∫
Xq

|fn(x) − χE(x)|mq(dx) = 0.

Recalling that each mq is concentrated on Xq and denoting Eq := E ∩ Xq, we have that
(fn)|Xq

converges on L1(Xq,mq) to χEq for q-a.e q ∈ Q. We observe in addition that if fn
is Lipschitz then (fn)|Xq

is Lipschitz as well with a smaller local Lipschitz constant. Hence,
taken {fn}n ∈ Liploc(X) a sequence of functions attaining in the limit Per(E), we have that

Per(E) = lim inf
n→∞

∫
X

|∇fn|m ≥ lim inf
n→∞

∫
X

|∇fn|m|T = lim inf
n→∞

∫
Q

∫
Xq

|∇fn|mq q(dq)

≥ lim inf
n→∞

∫
Q

∫
Xq

|∇(fn)|Xq
|mq q(dq) ≥

∫
Q

lim inf
n→∞

∫
Xq

|∇(fn)|Xq
|mq q(dq)

≥
∫
Q

Perq(Eq)mq q(dq),

and the claim follows.

Now we can state our main result concerning indeterminacy estimates.

Theorem 2.2.2. Let K,K ′, N ∈ R with N > 1. Let (X, d,m) be an essentially non-
branching m.m.s. satisfying either CD(K,N) or MCP(K ′, N) and CD(K,∞). Let f ∈
L1(X,m) a continuous function or, alternatively, f ∈ W 1,2(X, d,m) be such that

∫
X f m = 0.

Assume also the existence of x0 ∈ X such that
∫
X |f(x)| d(x, x0)m(dx) < ∞. Then the

following indeterminacy estimate is valid:

W1(f+m, f−m) · Per ({x ∈ X : f(x) > 0}) ≥
∥f∥2

L1(X,m)
8CK,D∥f∥L∞(X,m)

, (2.15)

where D = diam (X) and

CK,D :=
{

1 K ≥ 0,
e−KD2/2 K < 0.

Remark 2.2.3. Notice that curvature assumptions CD(K,N) and MCP(K,N) imply D <
∞ only in the range K > 0 and N ∈ (1,∞). Hence under the second set of assumptions
(MCP(K ′, N ′) and CD(K,∞)), the result (2.15) for K ≥ 0 gives a non-trivial bound also in
the non-compact case D = ∞.

Proof of Theorem 2.2.2. Given f as in the assumptions, we can use localization result (The-
orem 1.6.4 and Theorem 1.6.6) yielding a decomposition of the space X as X = Z ∪ T ,
where f is zero m-a.e. in Z and T can be partitioned into {Xq}q with q in a Borel set
Q ⊂ X, and a disintegration of m,

m|T =
∫
Q
mq q(dq),
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with q Borel probability measure with q(Q) = 1 and Q ∋ q 7→ mq ∈ M+(X) satisfying the
properties of Theorem 1.6.4. In particular, (X̄q, d,mq) is a CD(K,N) space (or CD(K,∞) see
Theorem 1.6.6),

∫
Xq
f mq = 0 and every Xq is a transport ray associated to the L1-optimal

transport of f+m into f−m.
As proven in [42, Proposition 4.4.] for the case of signed distance functions, q can

be identified with a test plan, see [9, Definition 5.1]; hence, if f ∈ W 1,2(X, d,m), by the
identification between different definitions of Sobolev spaces [9, Theorem 6.2], for q-a.e. q
the function f restricted to the geodesic Xq is Sobolev and therefore continuous.

As said in Remark 1.6.5, we have an isomorphism between each space (X̄q, d,mq) and
spaces (Iq, | · |, hq ·L1), with Iq a real interval (of possible infinite length) satisfying the same
CD(K,N) (or CD(K,∞)) condition,

∫
Iq
fq(x)hq(x) dx = 0 being fq the corresponding of f|Xq

through the isomorphism and Iq transport ray for fq. Whenever possible, for simplicity of
notation, we will use f = fq.

So now we can apply Proposition 2.1.8 and we have that q-a.e. q ∈ Q it holds

W1(f+
q hqL1, f−

q hqL1)

 ∑
x∈CB({fq>0},Īq)

hq(x)

 ≥
∥f∥2

L1(Xq ,mq)

8CK,D∥f∥L∞(Xq ,mq)
. (2.16)

By Lemma 2.1.7 ∑x∈CB({fq>0},Īq) hq(x) = Perhq ({x ∈ Īq : f(x) > 0}), hence using the
isomorphisms of metric measure spaces we have

W1(f+mq, f
−mq) Perq ({x ∈ Xq : fq(x) > 0}) ≥

∥f∥2
L1(Xq ,mq)

8CK,D∥f∥L∞(Xq ,mq)
.

where Perq is the perimeter in (X̄q, d,mq) and Perhq in (Īq, | · |, hq · L1). In the previous
factor we have tacitly used that CK,D ≥ CK,Dq , where Dq is the length of Xq. Integrating
the square root of the inequality with respect to the measure q on Q and applying Holder
inequality, we get(∫

Q
W1(f+mq, f

−mq) q(dq)
) 1

2
(∫

Q
Perq({x ∈ Xq : fq(x) > 0}) q(dq)

) 1
2

≥
∫
Q

(
W1(f+mq, f

−mq) · Perq({x ∈ Xq : fq(x) > 0})
) 1

2 q(dq)

≥
∫
Q

∥f∥L1(Xq ,mq)

2
√

2CK,D∥f∥
1
2
L∞(Xq ,mq)

q(dq)

≥ 1

2
√

2CK,D∥f∥
1
2
L∞(X,m)

∫
Q

∫
Xq

|f(x)|mq(dx) q(dq)

=
∥f∥L1(X,m)

2
√

2CK,D∥f∥
1
2
L∞(X,m)

.

Clearly
∫
QW1(f+mq, f

−mq) q(dq) = W1(f+m, f−m); therefore

W1(f+m, f−m)
1
2

(∫
Q

Perq({x ∈ Xq : f(x) > 0}) q(dq)
) 1

2
≥

∥f∥L1(X,m)

2
√

2CK,D∥f∥
1
2
L∞(X,m)

.

The conclusion follows using Lemma 2.2.1.
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Repeating the same argument of the previous proof and using Proposition 2.1.11, we
also obtain the analogous estimate for spaces verifying the weaker MCP(K,N); as expected,
weaker curvature assumptions yields a dependence on the dimension of the estimate.

Theorem 2.2.4. Let K,N ∈ R with N > 1. Let (X, d,m) be an essentially non-branching
m.m.s. verifying MCP(K,N).

Let f ∈ L1(X,m) a continuous function or, alternatively, f ∈ W 1,2(X, d,m) be such that∫
X f m = 0. Assume also the existence of x0 ∈ X such that

∫
X |f(x)| d(x, x0)m(dx) < ∞.

Then the following indeterminacy estimate is valid:

W1(f+m, f−m) · Per ({x ∈ X : f(x) > 0}) ≥ ∥f∥2
L1

8CK,N,D∥f∥L∞
, (2.17)

where diam (X) = D and

CK,N,D :=

2N−1 K ≥ 0,
2N−1e

√
−K(N−1) D

2 K < 0.

Remark 2.2.5. With the same argument of Corollary 3.2.5 one can obtain the indetermi-
nacy estimate involving Wp still sharp in the exponent.

2.3 Estimates for the measure of nodal sets of eigenfunctions
In this section we obtain lower bounds on the nodal set of eigenfunctions under curvature
assumptions. Building on the previous Theorem 2.2.2 and Theorem 2.2.4, this will reduce
to finding an upper bound on the W1 distance between the positive and the negative part
of the eigenfunction.

2.3.1 Measure of the nodal set under MCP and CD
The first version of the upper bound on W1 combines integration by parts and the duality
formulation of optimal transport.

Lemma 2.3.1. Let (X, d,m) be a bounded m.m.s. verifying MCP(K,N). Let f be an
eigenfunction of the Laplacian with eigenvalue λ ̸= 0 accordingly to Definition 1.4.1 and
assume moreover the existence of x0 ∈ X such that

∫
X |f(x)| d(x, x0)m(dx) < ∞.

Then
W1(f+m, f−m) ≤

√
m(X)√
λ

∥f∥L2 .

Proof. First from Remark 1.4.3,
∫
f m = 0 and, by definition, f ∈ W 1,2(X, d,m). By

assumption Kantorovich duality has a solution and therefore there exists a 1-Lipschitz
Kantorovich potential u : X → R such that

W1(f+m, f−m) =
∫
X

(f+(x) − f−(x))u(x)m(dx) =
∫
X
f(x)u(x)m(dx). (2.18)

Since f is a eigenfunction in the sense of Definition 1.4.1, then the following integration
by-parts formula ∫

X
D−g(∇f)m ≤ λ

∫
X
gf m ≤

∫
X
D+g(∇f)m,
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is valid for any g ∈ W 1,2(X, d,m) from Proposition 1.4.2.
From the boundedness it follows that u ∈ W 1,2(X, d,m), hence together with (2.18)

gives

W1(f+m, f−m) ≤ 1
λ

∫
X
D+u(∇f)m ≤ 1

λ

∫
X

|Du|w |Df |w m ≤ Lip(u)
λ

∫
X

|Df |w m,

where we used the fact that |D±u(∇f)| ≤ |Du|w |Df |w and (1.13). Then by Holder in-
equality we have

∫
X

|Df |w m ≤ m(X)
1
2

(∫
X

|Df |2w m

) 1
2

= m(X)
1
2

(∫
X
D−f(∇f)m

) 1
2

≤ m(X)
1
2
√
λ

(∫
X
f2 m

) 1
2

noticing that Df+(∇f) = |Df |2w (see (1.15)) and f itself as test-function.

Putting together Lemma 2.3.1 and the previous result we obtain the next result.

Theorem 2.3.2. Let (X, d,m) be a bounded essentially non-branching m.m.s. verifying
either CD(K,N) or MCP(K ′, N ′) and CD(K,∞).

Let f be an eigenfunction of the Laplacian of eigenvalue λ > 0 accordingly to Definition
1.4.1 and assume moreover the existence of x0 ∈ X such that

∫
X |f(x)| d(x, x0)m(dx) < ∞.

Then the following estimate on the size of its nodal set holds true:

Per({x ∈ X : f(x) > 0}) ≥
√
λ

8CK,D
√
m(X)

·
∥f∥2

L1

∥f∥L2∥f∥L∞
,

where D = diam (X) and

CK,D :=
{

1 K ≥ 0,
e−KD2/2 K < 0.

Proof. Theorem 2.2.2 and Lemma 2.3.1 imply the claim.

Using Theorem 2.2.4, we obtain the following analogous statement for spaces verifying
the weaker MCP(K,N) condition with dimension-dependent constant appearing. The proof,
being completely the same is omitted.

Theorem 2.3.3. Let (X, d,m) be a bounded essentially non-branching m.m.s. verifying
MCP(K,N).

Let f be an eigenfunction of the Laplacian of eigenvalue λ > 0 accordingly to Definition
1.4.1 and assume moreover the existence of x0 ∈ X such that

∫
X |f(x)| d(x, x0)m(dx) < ∞.

Then the following estimate on the size of its nodal set holds true:

Per({x ∈ X : f(x) > 0}) ≥
√
λ

8CK,N,D
√
m(X)

·
∥f∥2

L1

∥f∥L2∥f∥L∞
,

where D = diam (X) and

CK,N,D :=

2N−1 K ≥ 0,
2N−1e

√
−K(N−1) D

2 K < 0.

37



2.3.2 The infinitesimally Hilbertian case

Assuming the heat flow to be linear yields a more sophisticated argument and sharper
estimates. In particular we have at disposal the following result.

Theorem 2.3.4 (Theorem 3 of [55]). Let (X, d,m) be a metric measure space verifying
RCD(K,N), then for any µ, ν ∈ P2(X) and s, t > 0

W2(Htµ,Hsν)2 ≤ e−Kτ(s,t)W2(µ, ν)2 + 2N 1 − e−Kτ(s,t)

Kτ(s, t) (
√
t−

√
s)2, (2.19)

where τ(s, t) = 2(t+ s+
√
ts)/3.

For the definition of Htµ see Section 1.4.2.
We include the following technical lemma that will be useful for the proof of the next

proposition.

Lemma 2.3.5. Let (X, d,m) be a m.m.s. with diam (X) < D. Let f, g : X → [0,∞) be
functions with ∥f∥L1 = ∥g∥L1. Then

W1(f m, gm) ≤ D∥f − g∥L1 .

Proof. Construct an admissible plan π̄ ∈ Π(f m, gm), with π̄ = π1 + π2 by defining

π1 := (Id, Id)♯
(
gm|{g≤f}

)
+ (Id, Id)♯

(
f m|{g>f}

)
and considering any π2 ∈ Π((f−g)+m, (f−g)−m). Then it is straightforward to check that

W1(f m, gm) ≤
∫
X×X

d(x, y)π2(dxdy) ≤ Dπ2(X ×X) = D

∫
X

(f − g)+ m(dx),

proving the claim.

We are now ready to state our refined upper bound for W1. We follow the proof in [91],
where the result has been proved in the smooth setting.

Proposition 2.3.6. Let (X, d,m) be a m.m.s. verifying RCD(K,N) and such that diam (X) =
D < ∞. Let f be an eigenfunction of eigenvalue λ > 2. Then

W1(f+m, f−m) ≤ C(K,N,D)
√

log λ
λ

∥f∥L1 ,

with C(K,N,D) growing linearly in D and as square root in N .

Proof. We define
µ±

0 := f± m, µ±
t := Htµ

±
0 ,

and by triangular inequality

W1(µ+
0 , µ

−
0 ) ≤ W1(µ+

0 , µ
+
t ) +W1(µ+

t , µ
−
t ) +W1(µ−

t , µ
−
0 ),
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notice indeed that µ+
t (X) = µ+

0 (X) = µ−
0 (X) = µ−

t (X). Then by Theorem 2.3.4 we deduce
that

W1(µ±
t , µ

±
0 ) =

(∫
X
f+ m

)
W1(µ±

t /µ
±
t (X), µ±

0 /µ
±
0 (X))

≤ ∥f∥L1(X,m)W2(µ±
t /µ

±
t (X), µ±

0 /µ
±
0 (X))

≤
√
t∥f∥L1(X,m)C(t,K,N),

where C(t,K,N) :=
(
2N 1−e−K2t/3

K2t/3

)1/2
, (with C(t,K,N) ≤

√
2N if K ≥ 0).

To bound W1(µ+
t , µ

−
t ) we use Lemma 2.3.5. Call gt the evolution of a function g through

the heat flow (gt = Htg), by the identification (1.23), it follows that (recall that f ∈
W 1,2(X, d,m) by definition)

µ±
t = (Htf

±)m = f±
t m.

Notice that by infinitesimal Hilbertianity

f+
t − f−

t = Ht(f+ − f−) = Ht(f) = e−λtf,

where the last identity is a consequence of f being an eigenfunction (see 1.19). Then we
have that

W1(µ+
t , µ

−
t ) ≤ D∥f+

t − f−
t ∥L1 = D∥ft∥L1(X) = De−λt∥f∥L1 .

So finally
W1(µ+

0 , µ
−
0 ) ≤

(√
tC(t,K,N) +De−λt

)
∥f∥L1 .

Choosing t = 1
λ log(λ) we obtain

W1(f+ m, f− m) ≤ C(K,D,N)
√

log λ
λ

∥f∥L1 ,

with C(K,N,D) growing linearly in D and as square root in N .

The estimate is not sharp in λ. The sharp version where the logarithmic factor does not
appear has been proved for smooth closed Riemannian manifolds in [30].

Once that we have the upper bound of the previous proposition, we can state our first
theorem on the size of the nodal set in this setting.

Theorem 2.3.7 (Nodal set RCD-spaces I). Let K,N ∈ R with N > 1. Let (X, d,m) be
a m.m.s. satisfying RCD(K,N). Assume moreover diam (X) = D < ∞. Let f be an
eigenfunction of the Laplacian of eigenvalue λ > 2. Then the following estimate is valid:

Per ({x ∈ X : f(x) > 0}) ≥
√

λ

log λ · ∥f∥L1

C̄K,D,N∥f∥L∞
, (2.20)

where C̄K,D,N grows linearly in D if K ≥ 0 and exponentially if K < 0 and grows with
power 1/2 in N .

Proof. Since diam (X) < ∞, it follows that m(X) < ∞ and therefore f ∈ L1(X), it has zero
mean and satisfies the growth conditions and regularity needed to invoke Theorem 2.2.2.
Hence Theorem 2.2.2 implies that

W1(f+m, f−m) · Per ({x ∈ X : f(x) > 0}) ≥ ∥f∥2
L1

8CK,D∥f∥L∞
,
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that together with Proposition 2.3.6 implies that

Per ({x ∈ X : f(x) > 0}) ≥
√

λ

log λ
∥f∥L1

C(K,N,D)CK,D∥f∥L∞
,

giving therefore the claim.

From the previous theorem follows an explicit lower bound on the size of the nodal set of
an eigenfunction thanks to an estimate of the L∞ norm available in the RCD(K,N) setting.

Theorem 2.3.8 (Nodal sets on RCD spaces II). Let K,N ∈ R with N > 1. Let (X, d,m) be
a m.m.s. verifying RCD(K,N), and with diam (X) = D < ∞; finally pose m(X) = 1. Let
fλ be an eigenfunction of the Laplacian of eigenvalue λ > max {2, D−2}. Then the following
estimate is valid:

Per ({x ∈ X : fλ(x) > 0}) ≥ 1
C̄K,D,N

1√
log λ

λ
1−N

2 . (2.21)

Proof. It is a straightforward consequence of Theorem 2.3.7 and of the following observation:
given an eigenfunction f of eigenvalue λ, there exists a constant C = C(K,N,D) such that

∥f∥L∞ ≤ Cλ
N
2 ∥f∥L1 ,

provided λ ≥ D−2. Indeed from [12, Proposition 7.1] and assuming m(X) = 1, one has that

∥f∥L∞ ≤ Cλ
N
4 ∥f∥L2 ≤ Cλ

N
4 ∥f∥

1
2
L∞∥f∥

1
2
L1 ,

from which the claim follows dividing by the L∞ norm and squaring both sides.

2.4 Linear combinations of eigenfunctions

We now consider functions obtained as linear combination of eigenfunctions. As expected,
for the following results it will be necessary to assume the linearity of the Laplacian, i.e.
infinitesimal Hilbertianity.

We however present two different upper bounds for the W1 distance between the positive
and the negative part of the function, one following the lines of Proposition 2.3.6 valid for
RCD spaces and one following Lemma 2.3.1 valid for MCP spaces.

Proposition 2.4.1. Let (X, d,m) be an essentially non-branching m.m.s. verifying MCP(K,N)
with diam (X) = D < ∞; assume moreover (X, d,m) to be infinitesimally Hilbertian.

Let f be a continuous function or, alternatively, f ∈ W 1,2(X, d,m), such that it sat-
isfies in L2 sense f = ∑

λk≥λ akfλk
, k ∈ N, where {fλk

}k∈N are mutually L2 orthogonal
eigenfunctions of eigenvalue λk.

Then the following estimate on the size of the nodal set of f holds true:

Per({x ∈ X : f(x) > 0}) ≥
√
λ√

m(X)8CK,N,D
·

∥f∥2
L1

∥f∥L2∥f∥L∞
,

where CK,N,D is given by Theorem 2.2.4.
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Proof. From diam (X) < ∞, it follows that m(X) < ∞ and therefore f ∈ L1(X,m), it has
zero mean and it satisfies the growth conditions needed to apply Theorem 2.2.4. To prove
the claim it will be therefore sufficient to obtain an upper bound for W1(f+ m, f− m). Let for
simplicity k̄ be the minimum k such that λk̄ ≥ λ. Using the Kantorovich formulation, there
exists a 1-Lipschitz function u ∈ W 1,2(X) such that W1(f+m, f−m) =

∫
X fum. Therefore

we have the following chain of inequalities that we explain at the end:

W1(f+m, f−m) =
∫
X
fum =

∫
X

+∞∑
k=k̄

akfλk
um =

+∞∑
k=k̄

ak

∫
X
fλk

um

= lim
n→+∞

n∑
k=k̄

ak

∫
X
fλk

um = lim
n→+∞

n∑
k=k̄

ak

∫
X

−∆fλk

λk
um (2.22)

= lim
n→+∞

n∑
k=k̄

∫
X

ak
λk

∇fλk
· ∇um = lim

n→+∞

∫
X

n∑
k=k̄

ak
λk

∇fλk
· ∇um (2.23)

≤ lim sup
n→+∞

∥|D
n∑
k=k̄

ak
λk
fλk

|w∥L2∥|Du|w∥L2 (2.24)

≤ lim sup
n→+∞

√
m(X)∥|D

n∑
k=k̄

ak
λk
fλk

|w∥L2 (2.25)

= lim sup
n→+∞

√
m(X)

√√√√ n∑
k=k̄

|ak|2

λ2
k

∥|Dfλk
|w∥2

L2 (2.26)

= lim sup
n→+∞

√
m(X)

√√√√ n∑
k=k̄

|ak|2

λk
∥fλk

∥2
L2

≤ lim sup
n→+∞

√
m(X)√
λ

√√√√ n∑
k=k̄

∥akfλk
∥2
L2 =

√
m(X)√
λ

∥f∥L2 ,

where in (2.22) we used that fλk
is an eigenfunction of the Laplacian, u ∈ W 1,2(X), the

space is Infinitesimally Hilbertian and therefore (1.17) holds. The inequality between (2.23)
and (2.24) follows from (1.14). The equality between (2.25) and (2.26) follows by observing
that for i ̸= j, thanks to the L2-orthogonality of {fλk

}k≥k̄, one has∫
X

∇fλi
· ∇fλj

m = 0,

for i ̸= j which together with (1.15) and the fact that f 7→ ∇f ·∇g is linear, ∇f ·∇g = ∇g·∇f
for any f and g in W 1,2(X), and (1.15), gives for any n ≥ k̄

∥|D
n∑
k=k̄

ak
λk
fλk

|w∥2
L2 =

n∑
k=k̄

|ak|2

λ2
k

∥|Dfλk
|w∥2

L2 .

Finally we used that ∥|Dfλk
|w∥2

L2 = λk∥fλk
∥2
L2 , and in the last equality that {fλk

}k≥k̄
satisfy

+∞∑
k=k̄

∥akfλk
∥2
L2 = ∥f∥L2 .
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Lemma 2.4.2. Let (X, d,m) be a m.m.s. verifying RCD(K,N) and such that diam (X) =
D < ∞ and K ≥ 0. Let f : X → R be a continuous function or, alternatively, f ∈
W 1,2(X, d,m), such that

f =
∑
λk≥λ

⟨f, fλk
⟩fλk

, {λk}k∈N,

where {fλk
}k∈N are eigenfunctions of the Laplacian with eigenvalue λk, ⟨f, fλk

⟩ is the scalar
product of L2(X,m), ⟨fλj

, fλk
⟩ = δj,k and the convergence of the series is in L2(X,m). Then

if λ ≥ 2
√
m(X)

W1(f+m, f−m) ≤ C(K,N,D,m(X))
( 1
λ

log
(
λ

∥f∥L2

∥f∥L1

)) 1
2

∥f∥L1 ,

with C(K,N,D,m(X)) an explicit constant.

Proof. Following the approach and the same notation of the proof of Proposition 2.3.6 we
have

W1(µ+
0 , µ

−
0 ) ≤ W1(µ+

0 , µ
+
t ) +W1(µ+

t , µ
−
t ) +W1(µ−

t , µ
−
0 ),

and deduce from Theorem 2.3.4 that

W1(µ±
t , µ

±
0 ) ≤

√
t∥f∥L1(X,m)C(t,K,N),

where C(t,K,N) :=
(
2N 1−e−K2t/3

K2t/3

)1/2
. Then to bound W1(µ+

t , µ
−
t ), again using Lemma

2.3.5, by orthonormality of {fλk
}k it follows that

∥ft∥2
L1(X,m) =

∥∥∥∥∥∥
∑
λk≥λ

e−λkt⟨f, fλk
⟩fλk

∥∥∥∥∥∥
2

L1(X,m)

≤ m(X)

∥∥∥∥∥∥
∑
λk≥λ

e−λkt⟨f, fλk
⟩fλk

∥∥∥∥∥∥
2

L2(X,m)

= m(X)
∑
λk≥λ

e−2λkt|⟨f, fλk
⟩|2 ≤ m(X)e−2λt∥f∥2

L2(X,m). (2.27)

So finally

W1(µ+
0 , µ

−
0 ) ≤

√
t∥f∥L1(X,m)C(t,K,N) +D

√
m(X)e−λt∥f∥L2(X,m).

Using that K ≥ 0 (so C(t,K,N) ≤
√

2N) and choosing t = 1
λ log

(
λ∥f∥L2(X,m)
∥f∥L1(X,m)

)
, it holds

W1(µ+
0 , µ

−
0 ) ≤ C(K,N,D,m(X))

( 1
λ

log
(
λ

∥f∥L2

∥f∥L1

)) 1
2

∥f∥L1 ,

proving the claim.

The following result is then a straightforward consequence

Corollary 2.4.3. Let (X, d,m) be a m.m.s. verifying RCD(K,N) with K ≥ 0 and such
that diam (X) = D < ∞.

Let f : X → R be a continuous or, alternatively, f ∈ W 1,2(X, d,m) such that

f =
∑
λk≥λ

⟨f, fλk
⟩fλk

, {λk}k∈N, λ > 0,
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where {fλk
}k∈N are eigenfunctions of the Laplacian with eigenvalue λk, ⟨f, fλk

⟩ is the scalar
product of L2(X,m), ⟨fλj

, fλk
⟩ = δj,k and the convergence of the series is in L2(X,m).

Then the following estimate on the size of the nodal set of f holds true:

Per({x ∈ X : f(x) > 0}) ≥
√
λ

8C(K,N,D,m(X)) log
(
λ

∥f∥L2

∥f∥L1

)−1/2
· ∥f∥L1

∥f∥L∞
,

with C(K,N,D,m(X)) the same constant of Lemma 2.4.2, provided that λ ≥ 2
√
m(X).
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Chapter 3

Indeterminacy estimate and lower
bound for the Wasserstein
distances of eigenfunctions via heat
flow

3.1 A crucial inequality

In this section we only present a crucial inequality which is due to Luise and Savaré on which
the results in the two next sections are based. The inequality shows how the regularizing
effect of the heat flow allows to get an estimate on the Hellinger distance in terms of the
weaker W2 distance. Also a more refined version for the Hellinger-Kantorovich distance is
included. For the definition of Hellinger distance and Hellinger-Kantorovich distance see
Section 1.3. We recall again the definition of RK(t) for t > 0, which will appear often in
the sequel:

RK(t) :=
{
e2Kt−1
K if K ̸= 0,

2t if K = 0.
(3.1)

Proposition 3.1.1. [74, Theorem 5.2 and 5.4] Let (X, d,m) be an RCD(K,∞) metric
measure space for some K ∈ R, and let p ∈ [1, 2]. For µ0, µ1 ∈ Pp(X) it holds

Wp(µ0, µ1) ≥ p(RK(t))
1
2 Hep(H∗

t µ0, H
∗
t µ1) ∀ t > 0. (3.2)

Moreover, for every µ0, µ1 ∈ M(X) it holds

HK4RK(t)(µ0, µ1) ≥ He2(H∗
t µ0, H

∗
t µ1) ∀ t > 0. (3.3)

3.2 Indeterminacy estimate via the use of heat flow

In this section we prove a version of the sharp (in the exponent) indeterminacy estimate valid
in spaces which satisfy the RCD(K,∞) condition of finite measure. The proof is completely
different from the one of Section 2.2 and uses heat flow techniques. The Cheeger constant
of the space plays a role in the estimate. So we first recall the definition of Cheeger constant
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of a metric measure space (X, d,m):

h(X) := inf
{Per(A)

m(A) : A ⊂ X Borel with 0 < m(A) ≤ m(X)
2

}
. (3.4)

Theorem 3.2.1. Let (X, d,m) be a space of finite measure satisfying the RCD(K,∞) condi-
tion for some K ∈ R. Let f ∈ L∞(X,m) be such that

∫
X f dm = 0 and

∫
X d(x̄, x) |f(x)| dm(x) <

+∞ for some x̄ ∈ X. Then one has

W1(f+m, f−m)Per({f > 0}) ≥ C(K,h(X))
( ∥f∥L1

∥f∥L∞

)
∥f∥L1 , (3.5)

with

C(K,h(X)) :=



√
π

27
√

2
K ≥ 0 ,(

1 − 1
(2π) 1

4

)
h(X)

8h(X) + 2 |K|
1
2

K < 0 .

We start by a result which follows from the computations performed in Theorem 1.1
in [49]. For the convenience of the reader we report the proof. To state it we need the
following:

JK(t) :=
∫ t

0

√
2

πRK(s) ds =


√

2
πK arctan

(√
e2Kt − 1

)
if K > 0,

2√
π

√
t if K = 0, t > 0.√

− 2
πK arctanh

(√
1 − e2Kt

)
if K < 0.

(3.6)

Proposition 3.2.2. Let (X, d,m) be a space of finite measure satisfying the RCD(K,∞)
condition for some K ∈ R. Let A ⊆ X be a Borel set. Then∫

Ac
Ht(χA)m ≤ 1

2JK(t)Per(A),

where JK(t) is defined in (3.6).

Proof. By the above mentioned regularizing effect of the heat semigroup we know ([49,
Proposition 3.1]) that for every function f ∈ L∞(X) it holds

∥|D(Htf)|w∥L∞ ≤
√

2
πRK(t)∥f∥L∞ . (3.7)

By a duality argument, from (3.7) one easily derives

∥f −Ht(f)∥L1 ≤ JK(t)∥|Df |w∥L1 , (3.8)

say for f ∈ Lipbs(X). Now, for any Borel set A we consider a sequence fn ∈ Lipbs(X),
fn → χA in L1(X), recovery sequence for Per(A). By applying (3.8) to fn and passing to
the limit n → ∞ we deduce

JK(t)Per(A) ≥ ∥χA −Ht(χA)∥L1 =
∫
A

[1 −Ht(χA)]m +
∫
Ac
Ht(χA)m (3.9)

=
∫
A

[1 −Ht(χA)]m +
∫
X
Ht(χA)m −

∫
A

1m +
∫
Ac
Ht(χA)m = 2

∫
Ac
Ht(χA)m. (3.10)

as desired.
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We now derive a sort of generalization of the previous Proposition 3.2.2 valid for bounded
functions.

Proposition 3.2.3. Let (X, d,m) be a metric measure space of finite measure satisfying
the RCD(K,∞) condition for some K ∈ R, and let f ∈ L∞(X,m). Then∫

X

√
Ht(f+)Ht(f−)m ≤ JK(t)

1
2 Per({x ∈ X | f(x) > 0})

1
2 ∥f∥

1
2
L1∥f∥

1
2
L∞ ,

where JK(t) was defined in (3.6).

Proof. By taking advantage of the maximum principle for the heat semigroup, the Cauchy-
Schwarz inequality and Proposition 3.2.2, one has∫

{f>0}

√
Ht(f+)Ht(f−)m ≤ ∥f−∥

1
2
L∞

∫
{f>0}

√
Ht(f+)Ht(χ{f≤0})m

≤ ∥f−∥
1
2
L∞∥Ht(f+)∥

1
2
L1

(∫
{f>0}

Ht(χ{f≤0})m
) 1

2

≤ 1√
2

∥f−∥
1
2
L∞∥f+∥

1
2
L1JK(t)

1
2 Per({f > 0})

1
2 ,

where we have also used that the heat flow is mass preserving. Along the same lines, one
also gets ∫

{f≤0}

√
Ht(f+)Ht(f−) dm ≤ 1√

2
∥f+∥

1
2
L∞∥f−∥

1
2
L1JK(t)

1
2 Per({f ≤ 0})

1
2 .

In particular splitting the integral in the statement of the proposition in an integral on the
set where f is positive, and an integral on the set where f is non-negative, we deduce∫

X

√
Ht(f+)Ht(f−)m =

∫
{f>0}

√
Ht(f+)Ht(f−)m +

∫
{f≤0}

√
Ht(f+)Ht(f−)m

≤ 1√
2

∥f−∥
1
2
L∞∥f+∥

1
2
L1JK(t)

1
2 Per({f > 0})

1
2 + 1√

2
∥f+∥

1
2
L∞∥f−∥

1
2
L1JK(t)

1
2 Per({f ≤ 0})

1
2 .

The conclusion follows by observing that Per({f > 0}) = Per({f ≤ 0}), ∥f±∥L∞ ≤ ∥f∥L∞

and ∥f+∥L1 + ∥f−∥L1 = ∥f∥L1 .

In the course of the proof of Theorem 3.2.1 we also take advantage of the following easy
Lemma.

Lemma 3.2.4. Let (X, d,m) be a metric measure space of finite measure. Then, for every
f ∈ L∞(X,m) of null mean we have

∥f∥L∞Per({f > 0})
∥f∥L1

≥ h(X)
2 , (3.11)

where h(X) is the Cheeger constant of the space defined in (3.4).

Proof. We can suppose without loss of generality that m({f > 0}) ≤ m(X)/2 (since the left
hand side of (3.11) does not change if we replace f with −f). We have

∥f∥L1 =
∫
X
f+m +

∫
X
f−m = 2

∫
{f>0}

f+m ≤ 2m({f > 0})∥f∥L∞ .
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As a consequence,
∥f∥L∞Per({f > 0})

∥f∥L1
≥ Per({f > 0})

2m({f > 0}) ≥ h(X)
2

where in the last passage we have used the definition of Cheeger constant, since the set
{f > 0} is a possible competitor in the right hand side of (3.4).

We are now able to prove the indeterminacy estimate.

Proof of Theorem 3.2.1. We divide the proof in two steps.

Step 1: general estimate involving time.
Using the inequality (3.2) with p = 1, the definition of H∗

t (1.22) and the inequality (1.8)
we have that for every t > 0

W1(f+m, f−m) ≥ RK(t)
1
2 He1

(
Ht(f+)m, Ht(f−)m

)
≥ RK(t)

1
2 He2

2
(
Ht(f+)m, Ht(f−)m

)
.

(3.12)

Now we make use of the explicit expression of He2, of the mass preservation property of the
heat flow, and of Proposition 3.2.3 to obtain

He2
2(Ht(f+)m, Ht(f−)m) =

∫
X

(
Ht(f+) +Ht(f−) − 2

√
Ht(f+)Ht(f−)

)
dm

≥ ∥f∥L1 − 2JK(t)
1
2 Per({f(x) > 0})

1
2 ∥f∥

1
2
L1∥f∥

1
2
L∞ .

(3.13)

By putting together (3.12) and (3.13) we thus obtain that for every t > 0

W1(f+m, f−m) ≥ RK(t)
1
2 ∥f∥L1 − 2

(
RK(t)JK(t)Per({f(x) > 0})∥f∥L1∥f∥L∞

) 1
2
. (3.14)

Step 2: optimizing in t.
In the case K = 0 the right hand side of (3.14), that we denote with g(t), has the following
expression

g(t) =
√

2∥f∥L1 t
1
2 − 4

π
1
4

∥f∥
1
2
L1∥f∥

1
2
L∞Per({f > 0})

1
2 t

3
4 . (3.15)

By choosing

t̄ = π

324
∥f∥2

L1

∥f∥2
L∞Per({f > 0})2

we maximize the function g and we obtain

W1(f+m, f−m) ≥ g(t̄) =
(√

2
√

π

324 − 4
π

1
4

π
3
4

324 3
4

) ∥f∥2
L1

∥f∥L∞Per({f > 0})

=
√
π

27
√

2
∥f∥2

L1

∥f∥L∞Per({f > 0}) .

For K < 0 we use again the notation g(t) for the right hand side of (3.14) so that

g(t) = DK(f)
√

1 − e2Kt
[
1 − 2 5

4

π
1
4

(
DK(f) arctanh(

√
1 − e2Kt)

) 1
2
] ∥f∥2

L1

∥f∥L∞Per({f > 0}) ,

(3.16)
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where we have denoted by DK(f) the quantity

DK(f) := ∥f∥L∞Per({f > 0})
∥f∥L1 |K|

1
2

.

We use the change of variable (0, 1) ∋ s :=
√

1 − e2Kt and we consider the function

g1(s) := DK(f)s
[
1 − 2 5

4

π
1
4

(
Dk(f) arctanh(s)

) 1
2

]
s ∈ (0, 1).

We recall now the elementary inequality

arctanh(s) ≤ s

1 − s
s ∈ (0, 1),

so that

g1(s) ≥ DK(f)s
[
1 − 2 5

4

π
1
4

(
Dk(f) s

1 − s

) 1
2
]

=: g2(s) s ∈ (0, 1).

We finally take the admissible choice

s̄ := 1
8DK(f) + 1

and, putting everything together, we obtain

W1(f+m, f−m) ≥ g2(s̄)
∥f∥2

L1

∥f∥L∞Per({f > 0})

=
(

1 − 1
(2π) 1

4

)
DK(f)

8DK(f) + 1
∥f∥2

L1

∥f∥L∞Per({f > 0}) . (3.17)

Notice that, thanks to Lemma 3.2.4 we know that

DK(f) ≥ h(X)/(2|K|
1
2 ). (3.18)

Moreover, the function
x 7→ x

8x+ 1 x > 0,

is increasing, so that we can bound from below the right hand side of (3.17) using (3.18)
and obtain

W1(f+m, f−m) ≥
(

1 − 1
(2π) 1

4

)
h(X)

8h(X) + 2|K|
1
2

∥f∥2
L1

∥f∥L∞Per({f > 0}) ,

which concludes the proof.

In the next corollary we show how to obtain an indeterminacy estimate for the p-
Wasserstein distance as a simple consequence of the indeterminacy estimate for the 1-
Wasserstein distance.

Corollary 3.2.5. Let (X, d,m) be a metric measure space of finite measure satisfying the
RCD(K,∞) condition for some K ∈ R, and let f ∈ L∞(X,m) with null mean and satisfying∫
X d(x̄, x)|fλ(x)|m(dx) for some x̄ ∈ X. Then, for any p > 1

Wp(f+m, f−m)Per({f > 0}) ≥ 2
p−1

p C(h(X),K)
( ∥f∥L1

∥f∥L∞

)
∥f∥

1
p

L1 , (3.19)

where C(h(X),K) is the constant appearing in Theorem 3.2.1.
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Proof. The result follows from Theorem 3.2.1 and the bound

Wp(f+m, f−m)
∥f∥

1− 1
p

L1

21− 1
p

≥ W1(f+m, f−m) (3.20)

which is a consequence of the Holder’s inequality for the Wasserstein distance (see for
instance [98, Remark 6.6] and recall that the measures here have total mass equal to
∥f+∥L1 = ∥f−∥L1 = ∥f∥L1

2 ).

Remark 3.2.6. We notice that one can recover an indeterminacy estimate involving the
∞-Wasserstein distance for example by taking the limit for p → +∞ in (3.19) and observing
that the constant depending on p does not degenerate for p → +∞.

We conclude the section with an indeterminacy estimate for the Hellinger-Kantorovich
distance. In analogy with the comparison between the estimates (3.2) and (3.3), we obtain
an implicit but more refined result than Theorem 3.2.1. Another advantage of the following
Theorem is that it is not restricted to functions f with null mean and bounded moment.

Theorem 3.2.7. Let (X, d,m) be a metric measure space of finite measure satisfying the
RCD(K,∞) condition for some K ∈ R, and let f ∈ L∞(X,m). Then

HK4RK(t)(f+m, f−m) ≥
(
∥f∥L1 − 2JK(t)

1
2 Per({f(x) > 0})

1
2 ∥f∥

1
2
L1∥f∥

1
2
L∞

) 1
2 ∀ t > 0 ,

(3.21)
where RK(t) and JK(t) were defined in (3.1) and (3.6) respectively.

Proof. Using the inequality (3.3) and the definition of H∗
t (1.22) we have that for every

t > 0
HK2

4RK(t)(f+m, f−m) ≥ He2
2
(
Ht(f+)m, Ht(f−)m

)
. (3.22)

With the same estimate as in (3.13) we can now bound from below the square of the
2-Hellinger distance and reach the desired conclusion.

3.3 Lower bound on the Wasserstein distance between eigen-
functions

We recall a conjecture proposed by Steinerberger. Given a (M, g) smooth closed Riemannian
manifold, for any p ≥ 1 there exists a constant C, depending only on p and on the manifold,
such that for every non-constant eigenfunction fλ, of eigenvalue λ, it holds

C√
λ

∥fλ∥
1
p

L1(M) ≥ Wp(f+
λ m, f−

λ m) ≥ 1
C

√
λ

∥fλ∥
1
p

L1(M) . (3.23)

In this section we prove the lower bound in the Steinerberger’s conjecture (3.23) for any
p ≥ 1. We actually prove a more general result valid for a class of spaces which includes
closed Riemannian manifolds. The case p = 1 is stated in the following Theorem, while the
case p > 1 is be derived from the case p = 1 and it is stated in Corollary 3.3.5.
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Theorem 3.3.1. Let M > 0, K ∈ R and (X, d,m) be an RCD(K,∞) space of finite
measure. Then for any non-constant eigenfunction fλ of the Laplacian, of eigenvalue λ ≥ M
and satisfying

∫
X d(x̄, x)|fλ(x)|m(dx) < +∞ for some x̄ ∈ X, it holds

W1(f+
λ m, f−

λ m) ≥ C(K,M) 1√
λ

∥fλ∥L1 ,

where

C(K,M) :=


e− 1

2 if K ≥ 0 ,(
1 − K

M

) M
2K

− 1
2

if K < 0 .
(3.24)

Remark 3.3.2. Notice that in Theorem 3.3.1 we are not requiring any compactness of
the space (X, d), nor are we assuming that the spectrum of the metric measure space is
discrete. The assumptions m(X) < ∞ and

∫
X d(x̄, x)|fλ(x)|m(dx) < +∞, trivially satisfied

for compact spaces, are requested here to ensure that the measures f+
λ m, f−

λ m have the
same total mass and finite 1-moment.

From the above result, in the case of Riemannian manifolds, together with the upper
bound obtained in [30, Theorem 3], follows the full conjecture (3.23) for p = 1 and an
equivalent formulation of Yau’s conjecture:

Corollary 3.3.3. Let (M, g) be a smooth, closed, Riemannian manifold. Then there exists
a constant C, depending only on the manifold, such that for any non-constant eigenfunction
fλ, of eigenvalue λ, the following inequality is satisfied

C√
λ

∥fλ∥L1(M) ≥ W1(f+
λ m, f−

λ m) ≥ 1
C

√
λ

∥fλ∥L1(M) .

As a consequence, Yau’s conjecture holds if and only if there exists a constant C, depending
only on the manifold, such that for any eigenfunction fλ the following inequality is satisfied

C∥fλ∥L1(M) ≥ W1(f+
λ m, f−

λ m)Hn−1 ({x : fλ(x) = 0}) ≥
∥fλ∥L1(M)

C
.

Proof of Theorem 3.3.1. As in the case of Theorem 3.2.1, we divide the proof in two steps.

Step 1: general estimate involving time.
Using the inequality (3.2) with p = 1 and the definition of H∗

t (1.22) we bound from
below the cost W1 in terms of the total variation:

W1(f+
λ m, f−

λ m) ≥ (RK(t))
1
2 He1(Ht(f+

λ )m, Ht(f−
λ )m) . (3.25)

We observe that

He1(Ht(f+
λ )m, Ht(f−

λ )m) = ∥Ht(f+
λ ) −Ht(f−

λ )∥L1(X) = ∥Ht(fλ)∥L1(X) = e−λt∥fλ∥L1(X),
(3.26)

using the linearity of the heat flow and recalling that Ht(fλ) = e−λtfλ.
So inequality (3.25) reads as

W1(f+
λ m, f−

λ m) ≥ (RK(t))
1
2 e−λt∥fλ∥L1(X) ∀ t > 0.
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Step 2: optimizing in t.
In the case K = 0 the result follows by choosing t̄ = 1

2λ in the previous inequality.

For K < 0 we choose instead t̄ = 1
2K log( λ

λ−K ) in order to obtain

W1(f+
λ m, f−

λ m) ≥ 1√
λ

√
− λ

K

(
e(− λ

K
) log λ

λ−K − e(1− λ
K

) log λ
λ−K

)
∥fλ∥L1(X).

The result follows by standard computations, setting x = − λ
K ≥ −M

K > 0 and noticing that
the function

x 7→
√
x
(
ex log x

x+1 − e(1+x) log x
x+1
)

=
(

x

x+ 1

)x+1
2

is increasing.

Remark 3.3.4. We notice that in the proof of Theorem 3.3.1 we have avoided using fine
properties of Laplace eigenfunctions, exploiting only the equality Ht(fλ) = e−λtfλ in the
last passage of (3.26).

Along the same lines of Corollary 3.2.5, one can easily prove the following:

Corollary 3.3.5. Let M > 0, K ∈ R and (X, d,m) be an RCD(K,∞) space of finite
measure. Then for any non-constant eigenfunction fλ of the Laplacian, of eigenvalue λ ≥ M
and satisfying

∫
X d(x̄, x)|fλ(x)|m(dx) < +∞ for some x̄ ∈ X, it holds for any p > 1

Wp(f+
λ m, f−

λ m) ≥ 2
p−1

p C(K,M) 1√
λ

∥fλ∥
1
p

L1 ,

where C(K,M) was defined in (3.24).

Remark 3.3.6. One can recover a lower bound for the ∞-Wasserstein distance as in Re-
mark 3.2.6.
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Chapter 4

Monge problem for distance cost
on an infinite product

This chapter contains the results obtained in [34].

4.1 Setting
In this section we give the definition of the space in which we are going to work and we
show the properties that we are going to use.

4.1.1 Definition of the space

For any k ∈ N, let (Yk, d̄k, ηk), with ηk ∈ P(Yk), be non-branching metric measure spaces
satisfying the CD(K,Mk) condition for a K ∈ R and Mk ≥ 1. Assume that∑

k∈N
diam (Yk)2 < +∞. (4.1)

For any n ∈ N, define the finite product spaces (X̃n, d̃n, m̃n) where d̃n is the distance on
the product of the first n spaces given by the Pythagorean Theorem and m̃n is the product
measure, namely

X̃n :=
n∏
k=1

Yk; d̃2
n(x, y) :=

n∑
k=1

d̄2
k(xk, yk); m̃n := ⊗n

k=1ηk,

with xi, yi ∈ Yi, for i ∈ {1, . . . , n}. We assume in addition that for any n ∈ N, the space
(X̃n, d̃n, m̃n) satisfies the CD(K,Nn) condition with Nn < +∞.

Infinite product

Define

X :=
+∞∏
k=1

Yk;

d2(x, y) :=
+∞∑
k=1

d̄2
k(xk, yk) x = (xk)k, y = (yk)k ∈ X; (4.2)

m :=
⊗
k∈N

ηk,
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where m is the infinite product measure defined on the following σ-algebra generated by
cylinders Ec(X) (see [23, Vol 1, Sec. 3.5]),

Ec(X) := σ

{+∞∏
n=1

Bn with Bn ∈ B(Yn), Bn = Yn ∀n ∈ N \ J with J ⊂ N finite
}
.

We say that a set C ⊆ X is a cylinder of base B, C = C(B) for short, with B ⊆ X̃n for
some n ∈ N, if C = B ×

∏+∞
k=n+1 Yn.

We mention that this type of product was considered as an example for the tensorization
property of the RCD curvature bounds in [10, Section 6.4].

Proposition 4.1.1. (X, d,m) is a compact probability metric measure space and the topol-
ogy induced by d on X is the product topology.

Proof. From (4.1) it is easily checked that d is a distance on X.
Compactness follows once we prove that d induces the product topology since countable

product of compact spaces is compact. From compactness, completeness and separability
follow.

To prove that the topology induced by d on X is the product topology we call τd the
topology induced by d and τp the product topology, namely:

τd := τ({Bd
r (x) : x ∈ X, r ∈ R}),

τp := τ({
+∞∏
n=1

Bn : Bn = Bd̄n
rn

(xn) ⊆ Yn, ∀n ∈ J, Bn = Yn ∀n ∈ N \ J with |J | < +∞}),

where with the symbol τ(A) we mean the topology generated by the sets in A, and we show
that the two inclusions hold.
τp ⊆ τd:
let Ap ∈ τp and x ∈ Ap, x = (x1, x2, . . . ). We have to prove that there exists an open set
Ad ∈ τd with x ∈ Ad ⊂ Ap. W.l.o.g. we can assume Ap = ∏+∞

n=1An with An = Bd̄n
rn

(xn) ⊆
Yn, ∀n ∈ J, An = Yn ∀n ∈ N \ J with |J | < +∞. Then for r := min{rn : n ∈ J} one has
that x ∈ Bd

r (x1, x2, . . . ) ⊆ Ap.
τp ⊇ τd:
let Ad ∈ τd, x̄ ∈ Ad, with x̄ = (x̄1, . . . , x̄n, . . . ). We need to prove that there exists an open
set Ap ∈ τp with x̄ ∈ Ap ⊂ Ad. W.l.o.g. we can assume that Ad = Bd

r (x̄). We fix N ∈ N
such that ∑+∞

n=N+1 diam (Yn)2 < r2

2 . Let

Ap :=
{
x = (x1, x2, . . . ) ∈ X : sup

1≤n≤N
d̄2
n(xn, x̄n) < r

2N

}
.

Then Ap is open by definition of product topology. Clearly x̄ is in Ap and any x ∈ Ap
satisfies

d2(x, x̄) =
N∑
n=1

d̄2
n(xn, x̄n) +

+∞∑
n=N+1

d̄2
n(xn, x̄n) <

N∑
n=1

r2

2N + r2

2 = r2. (4.3)

Finally the equality of the two topologies implies that m is a Borel measure on X since
Ec(X) contains the Borel sets generated by τp.
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Immersions and projections

Fix ȳ := (ȳ1, . . . , ȳn, . . . ) ∈ X and define for any n ∈ N the isometric embeddings In : X̃n →
X, In(x) := (x1, . . . , xn, ȳn+1, . . . ). We call

Xn := In(X̃n),
dn := d|Xn×Xn

, (4.4)
mn := (In)♯m̃n.

In particular (Xn, dn,mn) is isomorphic as a m.m.s. to (X̃n, d̃n, m̃n). Define in addition for
any n ∈ N the map

Pn : X → Xn ⊂ X, (4.5)
Pn(x) := (x1, . . . , xn, ȳn+1, . . . ) for x = (x1, . . . xn, xn+1, . . . ). (4.6)

We observe that for any x ∈ X, limn→+∞ d(Pn(x), x) = 0.

Lemma 4.1.2. For any n ∈ N it holds mn = (Pn)♯m. In particular (Xn, dn, (Pn)♯m) is a
non-branching CD(K,Nn) m.m.s..

Proof. We first show that mn = (Pn)♯m. Let A be a Borel set in X. Then

mn(A) = (In)♯m̃n(A) = m̃n(I−1
n (A)) = m̃n({(x1, . . . , xn) : In(x1, . . . , xn) ∈ A})

= m̃n({(x1, . . . , xn) : (x1, . . . , xn, ȳn+1, ȳn+2, . . . ) ∈ A}),

and analogously

(Pn)♯m(A) = m((Pn)−1(A)) = m({(x1, . . . , xn) : (x1, . . . , xn, ȳn+1, ȳn+2, . . . ) ∈ A} ×
+∞∏

k=n+1
Yk)

= m̃n ⊗+∞
k=n+1 ηk({(x1, . . . , xn) : (x1, . . . , xn, ȳn+1, ȳn+2, . . . ) ∈ A} ×

+∞∏
k=n+1

Yk)

= m̃n({(x1, . . . , xn) : (x1, . . . , xn, ȳn+1, ȳn+2, . . . ) ∈ A}).

The second claim follows from the fact that isomorphisms preserve the CD condition (see
e.g. [94]).

Remark 4.1.3. Let γ : [0, 1] → X, γ = (γ1, γ2, . . . , γn, . . . ) be an absolutely continuous
curve in (X, d). Then for any n ∈ N, γn : [0, 1] → Yn is absolutely continuous in (Yn, d̄n).
Indeed for any s < t,with s, t ∈ [0, 1] we have

d̄n(γn(s), γn(t)) ≤ d(γ(s), γ(t)) ≤
∫

(s,t)
|γ̇r| dr.

Moreover it can be checked that ∑+∞
n=1

∣∣∣ ˙(γn)t
∣∣∣2 ≤ |γ̇t|2 for a.e. t ∈ (0, 1).

Lemma 4.1.4. Let γ : [0, 1] → X, γ = (γ1, γ2, . . . , γn, . . . ). Then γ is a geodesic of (X, d)
if and only if for any n ∈ N, γn : [0, 1] → Yn is a geodesic of (Yn, d̄n).
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Proof. Assume first that γ[0, 1] → X is a geodesic. We know that by the characterization
in (1.3) that γ satisfies

+∞∑
n=1

d̄2
n(γn(0), γn(1)) = d(γ(0), γ(1))2 =

∫
(0,1)

|γ̇t|2 dt ≥
+∞∑
n=1

∫
(0,1)

∣∣∣ ˙(γn)t
∣∣∣2 dt, (4.7)

where
∣∣∣ ˙(γn)t

∣∣∣ = limh→0
dn(γn(t+h),γn(t))

|h| is the metric speed of the curve γn in the space
(Yn, dn). Since γn is an absolutely continuous curve, as explained in (1.2)

d̄2
n(γn(0), γn(1)) ≤

(∫
(0,1)

∣∣∣ ˙(γn)t
∣∣∣ dt)2

≤
∫

(0,1)

∣∣∣ ˙(γn)t
∣∣∣2 dt. (4.8)

By combining (4.7) and (4.8) we get that for any n ∈ N, γn satisfies

d̄n(γn(0), γn(1))2 =
∫

(0,1)

∣∣∣ ˙(γn)t
∣∣∣2 dt. (4.9)

which is precisely the characterization of geodesic in (1.3).
Assume now that γn is a geodesic for any n ∈ N.
Then d̄n(γn(t+ h), γn(t)) = |h|d̄n(γn(0), γn(1)) and

∣∣∣ ˙(γ)t
∣∣∣2 = lim

h→0

1
h2

∞∑
n=1

d̄n(γn(t+ h), γn(t))2 =
∞∑
n=1

d̄n(γn(0), γn(1))2 = d(γ(0), γ(1))2,

from which we conclude again by the characterization in (1.3).

By using the notion of D convergence (see Definition 1.4.7), one can obtain that the
infinite product space satisfies some curvature dimension condition.

Proposition 4.1.5. The m.m.s. (X, d,m) is the D-limit of (X̃n, d̃n, m̃n) and it satisfies the
CD(K,∞) condition.

Proof. (X, d,m) is the D-limit of (X̃n, d̃n, m̃n): it follows considering the definition of
D−convergence and taking (M̂, d̂) := (X, d), the isometric embeddings In in (4.4) and
the coupling (Id, Pn)♯m ∈ Adm(m,mn). The convergence follows from condition (4.1).
The CD(K,∞) condition follows from the fact that every (X̃n, d̃n, m̃n) satisfies the CD(K,∞)
condition and the CD(K,∞) condition is stable under D−convergence, see [94].

Remark 4.1.6. The space (X, d,m) is the D limit of (Xn, dn,mn), since (Xn, dn,mn) are
isomorphic to (X̃n, d̃n, m̃n).

Proposition 4.1.7. The space (X, d,m) is geodesic and non-branching.

Proof. The fact that X is geodesic follows from Lemma 4.1.4. We pass to the non-branching
property. Let γ1 = (γ1

1 , γ
1
2 , . . . ) and γ2 = (γ2

1 , γ
2
2 , . . . ) be two geodesics, and t ∈ (0, 1) such

that γ1(s) = γ2(s) for any s ∈ [0, t]. Then for any n ∈ N, γ1
n(s) = γ2

n(s) and since γ1
n and

γ2
n are geodesic (again by Lemma 4.1.4) in the non-branching space (Yn, d̄n), γ1

n(s) = γ2
n(s)

for any s ∈ [0, 1] which implies that γ1(s) = γ2(s) for any s ∈ [0, 1].
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4.1.2 Approximation of measures in the infinite product space

Proposition 4.1.8. Let (X, d,m) as in (4.2). Let µ, ν ∈ P(X) with µ := ρµm, ν := ρνm,
ρµ, ρν ≤ C. Let for any n ∈ N, (Xn, dn,mn) be as in (4.4). Set

µn := (Pn)♯µ;
νn := (Pn)♯ν.

Then

1. µn and νn have supports contained in Xn, µn = ρµnmn, νn = ρνnmn with ρµn , ρνn ≤ C,
and µn and νn converge weakly respectively to µ and ν in the sense of (1.1);

2. for any sequence πn ∈ Opt1(µn, νn) there exists a subsequence converging to some
π ∈ Opt1(µ, ν).

Proof. µn, νn ≤ Cmn for any n. Indeed from µ ≤ Cm, we get for any A ∈ B(X), µn(A) =
(Pn)♯µ(A) = µ(P−1

n (A)) ≤ Cm(P−1
n (A)) = C(Pn)♯m(A) = Cmn(A). The same holds for

νn. In addition {µn}n converges weakly to µ and {νn}n converges weakly to µ. Indeed take
φ ∈ Cb(X), from (1.5) we have

lim
n→+∞

∫
X
φµn(dx) = lim

n→+∞

∫
X
φ ◦ Pn(x)µ(dx) =

∫
X
φ(x)µ(dx), (4.10)

since φ ◦ Pn are uniformly bounded and limn→+∞ Pn(x) = x. Finally π ∈ Adm(µ, ν), since
the weak convergence is preserved by the pushforward via the projections on the first and
second component. π is optimal since the weak convergence preserves optimality (see e.g.
[98, Proposition 5.20]).

The aim of the next sections is to prove that in the space (X, d,m) one can solve the
Monge problem between µ and ν are good enough.

4.2 Optimal map via disintegration
In this section we heavily use the notations and the objects introduced in Section 1.5.2.
In particular we show how one can define an optimal map for the L1-optimal transport
problem, by reducing the problem to L1-optimal transport problem in the real line. The
results are well known, but we report here the versions that we need with detailed proof
to keep the exposition self contained (see [21] or [33] for references). We consider φ a 1-
Lipschitz function in a proper non-branching geodesic metric space (X, d). We recall that
we defined the set Γφ as

Γφ := {(x, y) ∈ X ×X : φ(x) − φ(y) = d(x, y)}

and the set T nb
φ

T nb
φ := T e

φ \ (A+
φ ∪A−

φ ).

where T e
φ := P1(Rφ \ {(x, x) : x ∈ X}) and A+

φ , A
−
φ are the set of branching points (see

Section 1.5.2 for detailed definitions), which in the non-branching case are contained re-
spectively in aφ and bφ (see Remark 1.5.7). The set Γφ gives a partition of T nb

φ (see
Proposition 1.5.13 and (1.31)) into equivalence classes {Xq}q∈Q. We also have that in the
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space (T nb
φ ,B(T nb

φ )), Proposition 1.5.18 holds. Therefore we can disintegrate Borel measures
m if restricted to T nb

φ :
m|T nb

φ
=
∫

Q
mqq(dq)

given a Borel section of the partition Q and a Borel quotient map fφ (which exists thanks
to Lemma 1.5.17), with q = (fφ)♯m|T nb

φ
.

Here we assume φ to be a Kantorovich potential for an L1-optimal transport problem
between two probability measures and we analyse the links between disintegration and op-
timal transport. The next result shows two things. First that we can disintegrate measures
µ and ν and π ∈ Opt1(µ, ν) using the same common measure on the quotient set (that we
call qc). Second that the marginal plans are optimal plans between the marginal measures.
Lemma 4.2.1. Let (X, d) be a proper geodesic space. Let µ and ν be two probability
measures in P1(X). Let φ be a Kantorovich potential for the L1-optimal transport problem.
Let T nb

φ be the set defined above and Q Borel quotient set and fφ : T nb
φ → Q Borel quotient

map. Assume that µ(T nb
φ ) = ν(T nb

φ ). Then

qc := (fφ)♯µ|T nb
φ

= (fφ)♯ν|T nb
φ
. (4.11)

In particular if we consider the qc unique disintegration of µ and ν given by Proposition
1.5.18, we get

µ|T nb
φ

=
∫
Q
µqqc(dq), ν|T nb

φ
=
∫
Q
νqqc(dq). (4.12)

Moreover if π ∈ Opt1(µ|T nb
φ
, ν|T nb

φ
), then there exists a weakly measurable map q 7→ πq ∈

P(X ×X) satisfying
π =

∫
Q
πq qc(dq),

with πq ∈ Opt1(µq, νq), qc a.e. q ∈ Q.

With q 7→ πq ∈ P(X ×X) weakly measurable, we mean that for any B ⊆ X ×X Borel,
the map Q ∋ q 7→ πq(B) is measurable (with (Q,B(Q))).

Proof. Let π ∈ Opt1(µ|T nb
φ
, ν|T nb

φ
). Consider the space (T nb

φ × T nb
φ , B(T nb

φ × T nb
φ )), with the

partition {Xq × T nb
φ }q∈Q. Then we apply Theorem 1.5.3 and we have an essentially unique

disintegration consistent with the partition: q 7→ πq

π =
∫

Q
πqqπ(dq),

with qπ := ψ♯π where ψ := fφ ◦P1 is a quotient map with quotient set Q ⊂ X (see Remark
1.5.2). Fix a point x̄ ∈ T nb

φ . Consider the Borel section Q × {x̄} and the Borel quotient
map (fφ, x̄), we can apply Remark 1.5.4 to get that our disintegration is strongly consistent.
Now we show that qπ = (fφ)♯µ|T nb

φ
= (fφ)♯ν|T nb

φ
For any A ∈ B(Q) we have

(fφ)♯µ|T nb
φ

(A) = µ|T nb
φ

((fφ)−1(A)) = π((fφ)−1(A) ×X) = π(ψ−1(A)) = ψ♯π(A),

which shows that qπ = ψ♯π = (fφ)♯µ|T nb
φ
. Moreover (fφ)♯µ|T nb

φ
= (fφ)♯ν|T nb

φ
, since for any

A ∈ B(Q) we have

µ|T nb
φ

((fφ)−1(A)) = π((fφ)−1(A) ×X) = π((fφ)−1(A) ×X ∩ Γφ)

= π(X × (fφ)−1(A) ∩ Γφ) = ν|T nb
φ

((fφ)−1(A)),
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where we have used that π is concentrated on Γφ by optimality condition and (fφ)−1(A) ×
T nb
φ ∩ Γφ = T nb

φ × (fφ)−1(A) ∩ Γφ. To show this last fact we observe that

((fφ)−1(A) × T nb
φ ) ∩ Γφ = ∪q∈A

(
(Xq × T nb

φ ) ∩ Γφ
)

= ∪q∈A ((Xq ×Xq) ∩ Γφ)

= ∪q∈A
(
(T nb
φ ×Xq) ∩ Γφ

)
= T nb

φ × (fφ)−1(A) ∩ Γφ.

From now on we set qc := (fφ)♯µ|T nb
φ

= (fφ)♯ν|T nb
φ

= ψ♯π.
It remains to show that πq ∈ Opt1(µq, νq) for qc-a.e. q ∈ Q. We first show that it is

admissible. To prove that for qc a.e. q ∈ Q, µq = (P1)♯πq, we show that for any A ∈ B(T nb
φ )∫

Q
(P1)♯πq(A)qc(dq) =

∫
Q
µq(A)qc(dq),

from which we deduce the result by the uniqueness of the disintegration.∫
Q

(P1)♯πq(A)qc(dq) =
∫

Q
πq(A×X)qc(dq)

= π(A×X) = µ|T nb
φ

(A) =
∫

Q
µq(A)qc(dq).

The fact that qc a.e. q ∈ Q, νq = (P2)♯πq can be proved analogously. It remains to show
that qc a.e. q ∈ Q, πq ∈ Opt1(µq, νq). This follows from the fact that π is concentrated on
Γφ, so

π(X ×X) = π(Γφ) =
∫

Q
πq(Γφ)qc(dq),

therefore πq(Γφ) = πq(X×X), qc a.e. q ∈ Q and the conclusion follows by the Fundamental
Theorem of Optimal Transport 1.2.2.

Remark 4.2.2. Let (X, d), µ, ν, φ be as in the previous Lemma. Let m be a finite Borel
measure on X. Assume in addition that µ = ρµm, ν = ρνm. Let q 7→ mq be the disintegra-
tion of m|T nb

φ
as in (1.32)

m|T nb
φ

=
∫
Q
mqqm(dq),

with qm = f♯m. Then for qm a.e. q ∈ Q∫
ρµmq =

∫
ρνmq. (4.13)

This is immediate by combining (4.11) with (1.29).

Gluing monotone rearrangements

In the following we show that if the partition into transport rays is good enough, namely if
the branching points have zero measure and the marginal measures are non atomic, then one
can glue together the monotone rearrangements along the rays to get an optimal transport
map. Since we will heavily use this construction in the next section, we decided to present
here the whole construction and proof (see [21] and [33] for references).
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Lemma 4.2.3. Let (X, d) be a proper geodesic space. Let µ and ν be two probability
measures in P1(X). Let φ be a Kantorovich potential for the L1-optimal transport problem.
Let T nb

φ as in (1.30). Let Q and fφ be a Borel quotient set and a Borel quotient map of
the partition {Xq}q∈Q of T nb

φ induced by φ. Consider the disintegrations q 7→ µq, q 7→ νq of
µ|T nb

φ
and ν|T nb

φ
strongly consistent with the partition. Assume that

1. µ(A+
φ ) = ν(A−

φ ) = 0,

2. there exists Q̄ ⊆ Q Borel with qc(Q \ Q̄) = 0, such that for any q ∈ Q̄, µq has no
atoms,

where qc := (fφ)♯µ|T nb
φ

= (fφ)♯ν|T nb
φ

(recall Lemma 4.2.1).
Then there exists T : X → X Borel optimal map for the L1-transport problem between

µ and ν. Moreover T can be taken as

T (x) :=
{
Tmon,Xq (x) x ∈ T nb

φ , q = fφ(x),
x x ∈ X \ T nb

φ ,
(4.14)

where Tmon,Xq : supp(µq) → Xq is the monotone rearrangement on Xq between µq and νq
if q ∈ Q̄ defined as

x 7→ Tmon,Xq (x),
x 7→ g−1(x) = (q, t) 7→ (q, Tmon,q(t)) 7→ g(q, Tmon,q(t)),

with g the ray map defined in Definition 1.5.21 and where Tmon,q(t) is the monotone rear-
rangement between µ̃q := g−1

♯ µq and ν̃q := g−1
♯ νq. If q ∈ Q \ Q̄ we set Tmon,Xq (x) := x.

Proof. Step 1
We notice that µ(T nb

φ ) = ν(T nb
φ ) and if T̄ is an optimal transport map between µ|T nb

φ
and

ν|T nb
φ

, then the map

T (x) :=
{
T̄ (x) x ∈ T nb

φ ,

x x ∈ X \ T nb
φ ,

is an optimal transport map between µ and ν. To prove this it is enough to show the
following
claim: if π is in Opt1(µ, ν), then it is concentrated on the set

(T nb
φ × T nb

φ ) ∪D (4.15)

with D := {(x, x) ∈ X} the diagonal. If the claim is true then

µ(T nb
φ ) = π(T nb

φ ×X) = π((T nb
φ ×X) ∩ (T nb

φ × T nb
φ ) ∪D)

= π(T nb
φ × T nb

φ ) = π((X × T nb
φ ) ∩ (T nb

φ × T nb
φ ) ∪D) = π(X × T nb

φ )
= ν(T nb

φ ),

from which we also get that π|T nb
φ ×T nb

φ
∈ Adm(µ|T nb

φ
, ν|T nb

φ
). We can then show the claim as

follows. Let π̄ := (Id, T )♯µ. It is in Adm(µ, ν) since µ|(T nb
φ )c = ν|(T nb

φ )c which follows again
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by (4.15). Moreover taking π ∈ Opt1(µ, ν), then∫
X×X

d(x, y)π̄(dx, dy) =
∫

T nb
φ ×T nb

φ

d(x, y)π̄(dx, dy)

≤
∫

T nb
φ ×T nb

φ

d(x, y)π(dx,dy) ≤
∫
X×X

d(x, y)π(dx, dy),

where we have used that π|T nb
φ ×T nb

φ
∈ Adm(µ|T nb

φ
, ν|T nb

φ
). Hence π̄ is also optimal. Now we

show (4.15). We observe that

• X ×X = (T e
φ × T e

φ ) ∪ (T e
φ × T e

φ )c

We know that any optimal transport plan for the L1 optimal transport problem between µ
and ν is concentrated on Γφ. We have that

• (T e
φ × T e

φ )c ∩ Γφ ⊆ D;

• T e
φ × T e

φ ∩ Γφ ⊆ A+
φ × T e

φ ∪ T nb
φ × T nb

φ ∪ T e
φ ×A−

φ ∪A−
φ ×A+

φ ∩ Γφ;

since (A−
φ ×T nb

φ )∩Γφ = ∅, (T nb
φ ×A+

φ )∩Γφ = ∅. In addition let π be any plan in Opt1(µ, ν),
we have

• π(A+
φ × T e

φ ) ≤ π(A+
φ ×X) = µ(A+) = 0;

• π(T e
φ ×A−

φ ) ≤ π(X ×A−
φ ) = ν(A−

φ ) = 0.

Finally A−
φ × A+

φ ∩ Γφ ⊂ D. Therefore let π be in ∈ Opt1(µ, ν), we just proved that it is
concentrated on

(T nb
φ × T nb

φ ) ∪D.

Step 2
So let T : X → X be the map in (4.14). We only need to prove that T|T nb

φ
is an optimal

map between µ|T nb
φ

and ν|T nb
φ

. Then the statement follows by Step 1. We first observe that
the map T|T nb

φ
is Borel if the map

T̄ : ∪q∈Q{q} × Iq → ∪q∈Q{q} × Iq

(q, t) 7→ (q, Tmon,q(t))

is Borel (see Definition 1.5.21 for the definition of Iq), where Tmon,q(t) is the monotone
rearrangement between µ̃q and ν̃q if q ∈ Q̄ and the identity map for q ∈ Q \ Q̄. Indeed
T|T nb

φ
= g ◦ T̄ ◦ g−1, where we are using that g and g−1 are Borel (see Proposition 1.5.22).

We prove that T̄ is Borel. Let for any q ∈ Q̄

Fµ̃q (t) := µ̃q((−∞, t)),
Fν̃q (t) := ν̃q((−∞, t)),

be the repartition functions of µ̃q and ν̃q. Then Tmon,q(t) = F−1
ν̃q

◦Fµ̃q , by defining F−1
ν̃q

(s) :=
sup{t : Fν̃q (t) ≤ s}. The maps (q, t) 7→ Fµ̃q (t) and (q, t) 7→ F−1

ν̃q
(t) are Borel. We show that

(q, t) 7→ Fµ̃q (t) is Borel by showing that the counterimage of (−∞, a) is a Borel set for any
a ∈ R. This follows from the fact that since q 7→ µ̃q is continuous and non decreasing, the
following equality holds

{(q, t) : Fµ̃q (t) < a} = ∪s∈Q{(q, t) : Fµ̃q (s) < a, t ≤ s},
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where any term of the union is Borel, by recalling that q 7→ µ̃q(A) is Borel for any A Borel.
Analogously one can prove that (q, t) 7→ F−1

ν̃q
(t) is Borel. It follows that ∪q∈Q̄{q} × Iq ∋

(q, t) 7→ (q, Tmon,q(t)) is Borel and therefore T̄ is Borel. It remains to show that T|T nb
φ

is an
optimal transport map between µ|T nb

φ
and ν|T nb

φ
. We first show that (T|T nb

φ
)♯µ|T nb

φ
= ν|T nb

φ
.

Take A ∈ B(X),

(T|T nb
φ

)♯µ|T nb
φ

(A) = µ|T nb
φ

(T−1
|T nb

φ
(A)) =

∫
Q
µq(T−1

|T nb
φ

(A))qc(dq) =
∫

Q
µq(T−1

|T nb
φ

(A) ∩Xq)qc(dq)

=
∫

Q
µq(T−1

mon,Xq
(A ∩Xq))qc(dq) =

∫
Q
νq(A ∩Xq))qc(dq) = ν|T nb

φ
(A).

To see that it is optimal we take π ∈ Opt1(µ|T nb
φ
, ν|T nb

φ
). We have a strongly consistent

disintegration as explained in Lemma 4.2.1 q 7→ πq, π =
∫

Q πqψ♯q(dq). Now∫
X×X

d(x, y)π(dx, dy) =
∫

Q

∫
X×X

d(x, y)πq(dx,dy) q(dq)

=
∫

Q

∫
X×X

d(x, y)(Id, Tmon,Xq )♯µq q(dq) =
∫

Q

∫
X×X

d(x, Tmon,Xq (x))µq q(dq)

=
∫

Q

∫
X

d(x, T|T nb
φ

(x))µq q(dq) =
∫
X

d(x, T|T nb
φ

(x))µ(dx) =
∫
X

d(x, y)(Id, T|T nb
φ

)♯µ(dx,dy),

where the second equality follows from the fact that πq ∈ Opt1(µq, νq) as shown in Lemma
4.2.1, and (Id, Tmon,Xq ))♯µq is optimal since Tmon,Xq is isometric image of Tmon,q which is
optimal between µ̃q and ν̃q (see Theorem 1.2.4).

4.3 Regularity of the disintegration

In this section we prove that our partition and our disintegration of the measure µ are good
enough to construct an optimal transport map by gluing monotone rearrangements along
the rays.

4.3.1 Positive evolution

Our main objective is to construct a positive evolution along the rays. This is done in three
steps. The first of them is the following Lemma. We give a lover bound for the evolution
on a weighted interval of a set of positive measure, when restricted to the set where the
optimal plan is a graph. This technical assumption allow us to use the change of variable
formula.

Lemma 4.3.1. Let h be a CD(K,∞) density on an interval I ⊆ R (recall Definition 1.4.9).
Let

m̃ := hL1
|I .

Let µ̃, ν̃ ∈ P(I), compactly supported, with µ̃ := ρµ̃m̃, ν̃ := ρν̃m̃, ρµ̃, ρν̃ ≤ C for some
positive constant C. Let T̃ be the monotone rearrangement between µ̃ and ν̃ defined in
Theorem 1.2.4, and π := (Id, T̃ )♯µ̃ ∈ Opt1(µ̃, ν̃). Let Γ ⊆ graph(T̃ ) be a Borel set such that
π(Γ) = 1. Then for any t ∈ [0, 1] and any Borel set and A ∈ B(I) the following estimate
holds

m̃(Tt(Γ ∩A× I)) ≥ CK,M
C

µ̃(A), (4.16)
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where

CK,M :=
{

1 K ≥ 0,
e

K
8 M

2
K < 0;

M ≥ sup{d(x, y) : x ∈ supp(µ̃), y ∈ supp(ν̃)} and Tt : I × I → R is given by Tt(x, y) :=
(1 − t)x+ ty.

Proof. Since T̃ is monotone it is differentiable at µ̃-a.e. point and by Theorem 1.2.4 we have
that T̃ ′ positive at µ̃-a.e. point. Define T̃t : supp(µ̃) → I, T̃t(x) = (1 − t)x+ tT̃ (x). We have
that

˜(Tt)
′(x) = (1 − t) + tT̃ ′(x) > 0, µ̃− a.e.

so we can take the logarithms on both sides and we have

log((T̃t)′(x)) = log((1 − t) + tT̃ ′(x)) ≥ t log(T̃ ′(x)) µ̃− a.e.,

where we used the concavity of the logarithm. We get that

(T̃t)′(x) ≥ T̃ ′(x)t µ̃− a.e. (4.17)

Now we observe that T̃t : supp(µ̃) → R is µ̃-essentially injective (see Remark 1.2.5), so we
can consider its inverse T̃−1

t . In order to avoid measurability issues, we fix ε > 0 and take
Γε ⊆ Γ compact in I×I with π(Γε) ≥ 1−ε and Aε ⊆ A compact such that µ̃(Aε) ≥ µ̃(A)−ε.
So we have that (T )t(Γε∩A×I) is a Borel set (is compact), moreover P1(Γε) is Borel. Note
that Tt(Γε ∩Aε × I) = T̃t(P1(Γε) ∩Aε) because Γε ⊆ graph(T̃ ). Then

m̃(Tt(Γε ∩Aε × I)) =
∫
T̃t(P1(Γε)∩Aε)

m̃(dx) ≥
∫
P1(Γε)∩Aε

(T̃t)′(x)h ◦ T̃t(x) dx (4.18)

where the second inequality follows by applying Theorem 1.2.7 to f = T̃t and ψ = h ◦ T̃t
and by observing that T̃t is injective and differentiable µ̃ a.e. Now combining (4.18) and
(4.17) we get

m̃((T )t(Γε ∩Aε × I)) ≥
∫
P1(Γε)∩Aε

T̃ ′(x)th ◦ T̃t(x) dx = (4.19)

∫
P1(Γε)∩Aε

(
ρµ̃(x)h(x)

ρν̃ ◦ T̃ (x)h ◦ T̃ (x)

)t
h ◦ T̃t(x) dx (4.20)

≥
∫
P1(Γε)∩Aε

ρµ̃(x)t−1

(ρν̃ ◦ T̃ (x))t
h(x)t−1

(h ◦ T̃ (x))t
h ◦ T̃t(x) µ̃(dx),

where we used that

T̃ ′(x) = ρµ̃(x)h(x)
ρν̃ ◦ T̃ (x)h ◦ T̃ (x)

L1 a.e. in supp(µ̃)

combining Theorem 1.2.6 and the fact that h is positive in I̊ and ρν̃ ◦ T̃ > 0 L1 a.e. in
supp(µ̃). Now we observe that by the fact that h is a CD(K,∞) density we have

log h(T̃t(x)) = log h((1 − t)x+ tT̃ (x))

≥ (1 − t) log h(x) + t log h(T̃ (x)) + K

2 t(1 − t)(x− T̃ (x))2

= log
(
h(x)1−t(h(T̃ (x))t

)
+ K

2 t(1 − t)(x− T̃ (x))2
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which gives by taking the exponential of both sides

h(T̃t(x)) ≥ h(x)1−t(h(T̃ (x))te
K
2 t(1−t)(x−T̃ (x))2 ≥ CK,Mh(x)1−t(h(T̃ (x))t (4.21)

with

CK,M :=
{

1 K ≥ 0,
e

K
8 M

2
K < 0.

So by (4.21) we get

h(T̃t(x)) h(x)t−1

(h(T̃ (x))t
≥ CK,M . (4.22)

In addition
(ρµ̃(x))t−1

(ρν̃(T̃ (x)))t
≥ 1
C
, (4.23)

since ρµ̃ ≤ C and ρν̃ ≤ C. We combine (4.19) with (4.22) and (4.23) and we get

m̃(Tt(Γ∩A×I)) ≥ m̃((T )t(Γε∩Aε×I)) ≥ CK,M
C

µ̃(Aε∩P1(Γε)) ≥ CK,M
C

(µ̃(Aε)−2ε). (4.24)

The result follows by letting ε → 0.

After having proved a one dimensional result, the second step is to show that it can be
used together with the localization theorem, to prove that an analogous result can be used
in any essentially non-branching CD(K,N) space with finite N .

Corollary 4.3.2. Let (X, d,m) be an essentially non-branching m.m.s. satisfying the
CD(K,N) condition for some N < +∞. Let µ, ν ∈ P(X) be two compactly supported
probability measures absolutely continuous with respect to m: µ = ρµm and ν = ρνm, with
ρµ, ρν : X → R, ρµ, ρν ≤ C. Then there exists π ∈ Opt1(µ, ν), with π = (Id, T )♯µ such
that for any Γ ⊆ graph(T ), Γ Borel with π(Γ) = 1, for any t ∈ [0, 1] and A ∈ B(X), one
has

m(Tt(Γ ∩A×X)) ≥ CK,M
C

µ(A), (4.25)

with

CK,M :=
{

1 K ≥ 0,
e

K
8 M

2
K < 0,

M ≥ sup{d(x, y) : x ∈ supp(µ), y ∈ supp(ν)} and Tt is the possibly multivalued midpoint
map defined as Tt : X ×X → X, Tt(x, y) := {z : d(x, z) = (1 − t)d(x, y), d(y, z) = td(x, y)}.

Proof. We observe that we are under the hypotheses of Lemma 4.2.3. Indeed let φ be a
Kantorovich potential for the L1-optimal transport problem between µ and ν. Then from
Proposition 1.6.1 m(A+

φ ) = m(A−
φ ) = 0. Let T nb

φ as in (1.30). Let Q and fφ be Borel
quotient map and quotient set of the partition {Xq}q∈Q of T nb

φ induced by φ. Consider
the disintegrations q 7→ µq, q 7→ νq, q 7→ mq of µ|T nb

φ
, ν|T nb

φ
and m|T nb

φ
respectively, strongly

consistent with the partition (as in Proposition 1.5.18). Recall that qc := (fφ)♯µ|T nb
φ

=
(fφ)♯ν|T nb

φ
(by Lemma 4.2.1). We have in particular (see Lemma 1.5.5)

m|T nb
φ

=
∫
Q
mqqm, µ|T nb

φ
=
∫
Q
µqqc, ν|T nb

φ
=
∫
Q
νqqc.
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By (4.13) we have that
∫
X ρµmq =

∫
X ρνmq for qm a.e. q ∈ Q. Therefore we call l(q) :=∫

X ρµmq and we have by Lemma 1.5.5

qc = l(q)qm, µq = ρµ
l(q)mq, νq = ρµ

l(q)mq (4.26)

qc a.e. q ∈ Q. By Theorem 1.6.2 and Lemma 1.4.10 qm a.e. q ∈ Q, mq ≪ H1
|Xq

. Therefore
µq ≪ H1 qc a.e. q ∈ Q which implies that µq are non atomic. Hence we are in the
hypotheses of Lemma 4.2.3 and we can take the optimal map T given by the statement.
Let π := (Id, T )♯µ. Let Γ ⊆ graph(T ) Borel with π(Γ) = 1. We first get the estimate for
m(Tt(Γ ∩ (A ∩ T nb

φ ) ×X)). We have

m(Tt(Γ ∩ (A ∩ T nb
φ ) ×X)) ≥ m|T nb

φ
(Tt(Γ ∩ ((A ∩ T nb

φ ) ×X)))

=
∫

Q
mq

(
(Tt(Γ ∩ ((A ∩ T nb

φ ) ×X)))
)
qm(dq)

=
∫

Q
mq

((
Tt(Γ ∩ (A ∩ T nb

φ ) ×X
)

∩Xφ
q

)
qm(dq)

=
∫

Q
mq(Tt(Γ ∩ (A×X) ∩ (Xφ

q ×Xφ
q )) ∩Xφ

q )qm(dq).

where the last equality follows from the definition of the map T and Γ ⊆ graph(T ). Before
going on with the estimate, we need to fix some notations and make some observations. Let
g : Dom (g) → X be the Ray Map defined in 1.5.21. We set for qc a.e. q ∈ Q, following the
notations already used,

m̃q := g−1
♯ mq, µ̃q := g−1

♯ µq, ν̃q := g−1
♯ νq.

Iq := g−1(Xq).

We also set

Aq := A ∩Xφ
q , Ãq := g−1(Aq),

Γq := Γ ∩ (Xφ
q ×Xφ

q ), Γ̃q := (g−1, g−1)(Γq).

We prove that (Iq, |·| , m̃q), µ̃q, ν̃q, Γ̃q, Ãq satisfy the hypotheses of Lemma 4.3.1. We first
observe that by Theorem 1.6.2 and Remark 1.6.5 we have that qc a.e. q ∈ Q, (Īq, |·| , m̃q)
are CD(K,N) spaces and m̃q = hqL1 with hq being CD(K,N) densities and consequently
CD(K,∞) densities on Iq. Then we observe that from Disintegration Theorem we also have
that µq(Xφ

q ) = νq(Xφ
q ) = 1 qc a.e. q ∈ Q. In addition, from (4.26) the densities of µq and

νq with respect to mq are bounded from above by C
l(q) for qc a.e. q ∈ Q, and since g(q, ·) is

an invertible isometry, µ̃q, ν̃q ≪ m̃q with densities ρ̃qµ, ρ̃qν ≤ C
l(q) . Let Tmon,q be the monotone

rearrangement between µ̃q and ν̃q. Then Γ̃q is Borel and Γ̃q ⊆ graph(Tmon,q), by definition
of T (see Lemma 4.2.3) and from the fact that Γ ⊆ graph(T ). Finally it remains to verify
that for qc a.e. q ∈ Q, calling π̃q := (Id, Tmon,q)♯µ̃q,

π̃q(Γ̃q) = 1. (4.27)
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To prove this we notice that by definition of µq

µ|T nb
φ

((Id, T )−1(Γ)) =
∫

Q
µq((Id, T )−1(Γ))qc(dq) =

∫
Q
µq((Id, T )−1(Γ) ∩Xq)qc(dq)

=
∫

Q
µq((Id, T )−1(Γ ∩Xq ×Xq) ∩Xq)qc(dq) =

∫
Q
µq((Id, T )−1(Γq) ∩Xq)qc(dq)

=
∫

Q
µq((Id, Tmon,Xq )−1(Γq) ∩Xq)qc(dq) =

∫
Q
µq((Id, Tmon,Xq )−1(Γq))qc(dq).

In addition by hypotheses

µ|T nb
φ

((Id, T )−1(Γ)) =
∫

Q
µq(X)qc(dq),

indeed
(Id, T )−1(Γ) ∩ T nb

φ = (Id, T )−1
(
Γ ∩ (T nb

φ ×X)
)
,

and µq(X) = 1, qc a.e. q ∈ Q. It follows that

µq((Id, Tmon,Xq )−1(Γq)) = 1 qc a.e. q ∈ Q,

and by definition of Tmon,Xq ,

µ̃q((Id, Tmon,q)−1(Γ̃q)) = 1 qc a.e. q ∈ Q.

The last one is precisely (4.27).
Therefore we can apply Lemma 4.3.1 to obtain that for qc a.e. q ∈ Q

m̃q(Tt(Γ̃q ∩ (Ãq × Iq)) ≥ CK,M
C

l(q)µ̃q(Ãq).

Notice that inequality

m̃q(Tt(Γ̃q ∩ (Ãq × Iq)) ≥ CK,M
C

l(q)µ̃q(Ãq)

is true also qm a.e. (recall that qc = l(q)qm) since if l(q) = 0 it is trivially verified. We now
observe that

Tt(Γ ∩ (A×X) ∩ (Xφ
q ×Xφ

q )) ∩Xφ
q = Tt(Γ ∩ (A×X) ∩ (Xφ

q ×Xφ
q )),

and
Tt(Γ ∩ (A×X) ∩ (Xφ

q ×Xφ
q )) ∩Xφ

q = g(q, ·)(Tt(Γ̃q ∩ (Ãq × Iq))),

as a consequence of the definition of Γ̃q, Ãq and of the fact that g(q, ·) is an isometry. It
follows that∫

Q
mq(Tt(Γ ∩ (A×X) ∩ (Xφ

q ×Xφ
q )) ∩Xφ

q )qm(dq) =
∫

Q
mq(g(q, ·)(Tt(Γ̃q ∩ (Ãq × Iq)))qm(dq)

=
∫

Q
m̃q((Tt(Γ̃q ∩ (Ãq × Iq)))qm(dq) ≥ CK,M

C

∫
Q
l(q)µ̃q(Ãq)qm(dq)

= CK,M
C

∫
Q
l(q)µq(g(q, ·)(Ãq))qm(dq) = CK,M

C

∫
Q
µq(Aq)l(q)qm(dq)

= CK,M
C

∫
Q
µq(Aq)qc(dq) = CK,M

C
µ|T nb

φ
(A).
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So what we get is
m(Tt(Γ ∩ (A ∩ T nb

φ ) ×X)) ≥ CK,M
C

µ|T nb
φ

(A). (4.28)

Now we get the analogous estimate for m(Tt(Γ∩(A∩(T nb
φ )c)×X)). SetD := {(x, x) : x ∈ X},

we can observe that since T = Id in (T nb
φ )c and Γ ⊆ graph(T ),

Tt(Γ ∩ (A ∩ (T nb
φ )c) ×X) = Tt(Γ ∩D ∩ (A ∩ (T nb

φ )c ×X))

and so recalling that µ ≤ Cm,

m(Tt(Γ ∩ (A ∩ (T nb
φ )c) ×X)) = m(P1(Γ) ∩ (A ∩ (T nb

φ )c)

≥ 1
C
µ(P1(Γ) ∩ (A ∩ (T nb

φ )c)) = 1
C
µ((A ∩ (T nb

φ )c)). (4.29)

So by putting together (4.28) and (4.29) we get

m(Tt(Γ ∩ (A ∩ ×X))) ≥ CK,M
C

µ(A).

Remark 4.3.3. Under the same assumptions on the preceding Corollary, for Γ̂ ⊆ graph(T ),
one has that

m(Tt(Γ̂ ∩A×X)) ≥ CK,M
C

µ(P1(Γ̂) ∩A),

for any t ∈ [0, 1] and A ∈ B(X). Indeed

Γ̂ = (P1(Γ̂) ×X) ∩ graph(T ). (4.30)

So from (4.25) one has

m(Tt(Γ̂ ∩A×X)) = m(Tt(graph(T ) ∩ (A ∩ P1(Γ̂) ×X)) ≥ CK,M
C

µ(P1(Γ̂) ∩A).

We are finally ready for the last step which is the main result of this section. We prove
that in the infinite product space we have a positive evolution constructed through an
optimal plan which is limit of good approximating plans. These plans lie on finite products
spaces and are given by Corollary 4.3.2.

Proposition 4.3.4. Let (X, d,m) be a CD(K,∞) space as in 4.2. Let µ, ν ∈ P(X) be two
probability measures absolutely continuous with respect to m: µ = ρµm and ν = ρνm, with
ρµ, ρν : X → R, ρµ, ρν ≤ C on their supports.

Then there exists π∞ ∈ P(X × X) such that for every Γ∞ ⊆ X × X Borel such that
π∞(Γ∞) = 1, every closed set A ⊆ X, for any t ∈ [0, 1] it holds

m(Tt(Γ∞ ∩A×X)) ≥ CK,M
C

µ(A), (4.31)

where M is a constant such that M ≥ sup{d(x, y) : x ∈ supp(µ), y ∈ supp(ν)}, Tt is the
possibly multivalued midpoint map defined as Tt : X × X → X, Tt(x, y) := {z : d(x, z) =
(1 − t)d(x, y), d(y, z) = td(x, y)} and

CK,M :=
{

1 K ≥ 0,
e

K
8 M

2
K < 0.
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Proof. Step 0
Let µn := (Pn)♯µ, νn := (Pn)♯ν, mn := (Pn)♯m. Then by Proposition 4.1.8, µn ≤ Cmn,
νn ≤ Cmn. Recall from Lemma 4.1.2 that the space (Xn = Pn(X),mn, d) is a CD(K,Mn)
non-branching m.m.s. Hence, for any n, we are in the hypotheses of Corollary 4.3.2, and we
call πn = (Id, Tn)♯µn ∈ Opt1(µn, νn) the one given by the statement. By Proposition 4.1.8
up to a subsequence πn converges to a π∞ ∈ Opt1(µ, ν). Let Γ∞ be such that π∞(Γ∞) = 1.

Step 1
We fix δ > 0. Let Γδ ⊆ Γ∞ be a compact set satisfying π∞(Γδ) ≥ 1 − δ. Let Γn be
supp(πn). We want to approximate Γδ with subsets of Γn. For any fixed ε > 0, we
construct a subsequence nd, compact sets {Γnd,ε}d∈N and Γε satisfying:

1. Γnd,ε ⊆ Γnd
and πnd

(Γnd,ε) ≥ 1 − ε− δ;

2. Γnd,ε converges Hausdorff to Γε for d → +∞;

3. Γε ⊆ Γδ, π∞(Γε) ≥ 1 − ε− δ.

We can proceed as follows. For any d ∈ N we consider the 1
d -enlargement of Γδ, namely

(Γδ)
1
d which is an open set. Thanks to the lower semicontinuity of the weak convergence

for open sets one has that

lim inf
n→+∞

πn((Γδ)
1
d ) ≥ π∞((Γδ)

1
d ) ≥ π∞(Γδ) ≥ 1 − δ;

so in particular for any fixed ε > 0 there exists nd = nd(ε) depending on ε such that

πnd

(
cl((Γδ)

1
d ))
)

≥ πnd
((Γδ)

1
d ) ≥ 1 − ε− δ;

where cl((Γδ)
1
d ) is the closure of (Γδ)

1
d .

Then we can define the compact set Γnd,ε := cl((Γδ)
1
d ) ∩ Γnd

. Point (1) clearly holds
true. The convergence in (2) follows up to subsequences from the fact that they are all
closed sets of a compact space (recall Theorem 1.1.3). We call Γε the limit. To prove
point (3) we observe that given x ∈ Γε then x ∈

⋂
d∈N cl((Γδ)

1
d ) = Γδ. The fact that

π∞(Γε) ≥ 1 − ε− δ follows from Lemma 1.1.4. From now on the sequence {nd}d∈N will be
denoted for convenience only by {n}n∈N.

Step 2 Let A ⊆ X be a cylinder with base B, with B closed subset of Xn̄ for some
n̄ ∈ N: A = C(B) of positive µ measure. We claim that the family {Tt(Γn,ε ∩ A×X)}d∈N
converges up to subsequences for n → +∞ in the Hausdorff distance to a subset Cε of
Tt(Γε ∩ A × X). To prove the claim we first observe that for any n, Tt(Γε,n ∩ A × X) is
closed. Let {xk}k be a sequence of points in Tt(Γn,ε ∩ A×X) converging to some c. Then
each xk satisfies

d(xk, ak) = td(ak, bk), (4.32)
d(xk, bk) = (1 − t)d(ak, bk), (4.33)

for some ak ∈ P1(Γn,ε) ∩ A and bk ∈ P2(Γn,ε) compact sets. So up to subsequences
limk→+∞ ak = a ∈ P1(Γn,ε) ∩ A and limk→+∞ bk = b ∈ P2(Γn,ε). So passing to the limit in
(4.32) and (4.33) we have

d(a, c)) = t d(a, b),
d(b, c)) = (1 − t) d(a, b).
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Hence limk→+∞ xk = c ∈ Tt(Γn,ε ∩ A × X). Since {Tt(Γn,ε ∩ A × X)}n are closed in a
compact space, they converge up to subsequences for n → +∞ in the Hausdorff distance to
a closed set Cε. It remains to show that Cε is a subset of Tt(Γε ∩A×X). Let c be a limit
point of points cn ∈ Tt(Γn,ε ∩A×X). As before

d(cn, an) = td(an, bn), (4.34)
d(cn, bn) = (1 − t)d(an, bn), (4.35)

for some (an, bn) ∈ Γn,ε ∩ A × X. From compactness of the space {(an, bn)}n converges up
to subsequences to (a, b), and (a, b) ∈ Γε ∩ A × X since Γn,ε ∩ A × X Hausdorff converges
to Γε ∩A×X. So by passing to the limit in (4.34) and (4.35) we have that

d(a, c)) = t d(a, b),
d(b, c)) = (1 − t) d(a, b).

Therefore c ∈ Tt(Γε ∩A×X).
Step 3 Note that as above the set Tt(Γε ∩A×X) is closed since Γε and A are both closed,
in particular it is m measurable. It follows that

m(Tt(Γε ∩A×X)) ≥ m(Cε) ≥ lim sup
n→+∞

mn(Tt(Γn,ε ∩A×X))

≥ CM,K

C
lim sup
n→+∞

µn(P1(Γn,ε ∩ graph(Tn)) ∩A)

≥ CM,K

C

(
lim sup
n→+∞

µn(A) − ε− δ

)
= CM,K

C
(µ(A) − ε− δ) ;

where the second inequality follows from Lemma 1.1.4, the third inequality follows from
Remark 4.3.3 and the fourth inequality from (2) of Step 1. The last equality is a conse-
quence of the fact that A = C(B) with B ⊆ Xn̄ which implies that µn(A) = (Pn)♯µ(A) =
µ(P−1

n (A)) = A for any n ≥ n̄.
Step 4 Let A be any compact set. We consider the following sequence of sets An =
C(Pn(A)). We observe that An satisfies the hypotheses of the previous step. In addition
An is a decreasing sequence of sets An ⊇ An+1 ⊇ A with

∩n∈NAn = A. (4.36)

The inclusion ∩n∈NAn ⊃ A is trivial. For the other inclusion, let x be in ∩n∈NAn. Then for
any n

d(x,A) ≤ d(x, Pn(x)) + d(Pn(x), Pn(A)) + d(Pn(A), A). (4.37)
First we observe that limn→+∞ Pn(x) = x which implies that the first and the third terms
go to zero for n → +∞. In addition we observe that by the definition of An, Pñ(∩n∈NAn) =
Pñ(A) for any ñ, therefore Pñ(x) ∈ Pñ(A), which implies that the second term is zero for
any n. Therefore by passing to the limit in (4.37) we see that x ∈ A since A is closed. For
any n, by the previous step we have

m(Tt(Γε ∩An ×X)) ≥ CM,K

C
(µ(An) − ε− δ) ≥ CM,K

C
(µ(A) − ε− δ) . (4.38)

Finally we notice that also {Tt(Γε ∩An ×X)}n is a decreasing sequence and

∩n∈NTt(Γε ∩An ×X) = Tt(Γε ∩A×X).
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To prove this last equality, we observe that ⊇ is trivial being A ⊆ An for any n. For the
other inclusion, we take a point x ∈ ∩n∈NTt(Γε ∩ An × X), then there exists (an, bn) ∈ Γε
with an ∈ An such that

d(x, an) = td(an, bn), (4.39)
d(x, bn) = (1 − t)d(an, bn). (4.40)

Up to subsequences limn→+∞ an = a, limn→+∞ bn = b with (a, b) ∈ Γε (since Γε is closed)
and a ∈ A from (4.36) and the closedness of A. Therefore x ∈ Tt(Γε ∩ A × X) by passing
to the limit in (4.39).
Passing to the limit for n → +∞ in (4.38) we get

m(Tt(Γε ∩A×X))) = lim
n→+∞

m(Tt(Γε ∩An ×X)) ≥ CM,K

C
(µ(A) − ε− δ) .

Since Γε ⊆ Γδ ⊆ Γ∞, we get

m(Tt(Γ∞ ∩A×X)) ≥ CM,K

C
(µ(A) − ε− δ) ,

for any ε > 0 and δ > 0, which gives (4.31) letting ε and δ go to 0 .

4.3.2 Regularity of the conditional measures

In this section we use the positive evolution built in the previous section to prove that if
φ is a Kantorovich potential between two probability measures µ and ν, and we consider
the partition of the transport set induced by φ, then the set of initial and final points of all
transport rays has measure zero.

Lemma 4.3.5. Let (X, d,m) be as in (4.2). Let µ, ν ∈ P(X) be two probability measures
absolutely continuous with respect to m: µ = ρµm and ν = ρνm, with ρµ, ρν : X → R,
ρµ, ρν ≤ C and µ ⊥ ν. Let φ be a Kantorovich potential associated to the L1 optimal
transport problem of transporting µ into ν. Then µ(aφ) = 0.

Proof. Assume by contradiction that there exists A ⊆ aφ Borel of positive µ measure. Then
by inner regularity of µ there exist δ > 0 and a closed set Â ⊆ A of positive µ measure with
ρµ ≥ δ m-a.e. in Â. Let π∞ ∈ P(X×X) be given in Proposition 4.3.4. Let Γ be a Borel set
such that π∞(Γ) = 1, Γ ⊆ ∂cφ = Γφ, where Γφ is defined in Section 1.5.2 (such a Γ exists
thanks to (1.6)) and Γ ∩ D = ∅, indeed π(Γ \ D) = π(Γ) since π(D) = 0. By Proposition
4.3.4 one has

m(Tt(Γ ∩ Â×X)) ≥ Cµ(Â),
with Tt the t midpoint map defined in Proposition 4.3.4 and C independent on t. Call
Ât := Tt(Γ ∩ Â × X). Then Ât ∩ Â = ∅ for any t > 0. Indeed let x ∈ Ât, by construction
there exists a couple of distinct points (x0, x1) ∈ Γ ⊆ Γφ such that d(x0, x) = td(x0, x1) and
d(x1, x) = (1 − t)d(x0, x1) since Γ ∩D = ∅. It follows by Lemma 1.5.12 (since the space is
geodesic) that (x0, x) ∈ Γφ. Then x /∈ aφ. Fix ε > 0, then for any t < ε

diam (X) , Ât ⊆ Âε

where Âε is the ε-enlargement of Â. So

m(Âε) ≥ m(Â) + m(Ât) ≥ m(Â) + Cµ(Â) ≥ (1 + Cδ)m(Â),

which gives a contradiction by sending ε to 0 and observing that limε→0 m(Âε) = m(Â)
being Â closed.
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Another consequence of the construction of the positive evolution is that we can prove
that the conditional measures are non atomic.

Lemma 4.3.6. Let (X, d,m) be as in (4.2). Let µ, ν ∈ P(X) be two probability measures
absolutely continuous with respect to m: µ = ρµm and ν = ρνm, with ρµ, ρν : X → R,
ρµ, ρν ≤ C and µ ⊥ ν. Let φ be a Kantorovich potential associated to it. Let T nb

φ be the set
defined in Section 1.5.2. Consider the disintegration of µ|T nb

φ
given by Proposition 1.5.18

µ|T nb
φ

=
∫

Q
µqqµ(dq). (4.41)

For q a.e. q ∈ Q the measure µq has no atoms.

We recall here two results of Lusin that are useful in the next proof: the first one is the
classical Lusin theorem, the second one is a result on Borel sets (see [87, Theorem 5.8.11]
for more details).

Theorem 4.3.7 (Lusin Theorem). Let (X, τX) be a topological space with a finite Borel
measure m. Let (Y, τY ) be a second countable topological space. Let f : X → Y be a
measurable function. Then for any ε > 0 there exists a compact K ⊆ X such that m(X \
K) < ε and f : K → Y is continuous.

Theorem 4.3.8. Let X and Y be two Polish spaces. Let B ⊂ X×Y be a Borel set. Assume
that for any x ∈ P1(B) the x-section of B, B(x) := {y : (x, y) ∈ B}, is countable, then B is
a countable union of Borel graphs.

Lemma 4.3.9. Consider (Q,B(Q)) a measure space , (X,B(X)). Let q 7→ mq ∈ P(X) be
a map. Assume that for any B ∈ B(X), q 7→ mq(B) is a Borel map Q → R. Then the map

(Q, σ(Q), qµ) → (P(X), τw)
q 7→ µq

is Borel.

Proof. From the fact that q 7→ mq(B) is Borel for any q ∈ Q it follows that for any
φ ∈ Cb(X), the map q 7→

∫
φmq is Borel. Then we can fix f̄ ∈ Cb(X) and ν ∈ P(X) and

ε > 0. The set {
q :
∣∣∣∣∫ f̄ν −

∫
f̄µq

∣∣∣∣ < ε

}
is Borel. It follows by using the definition of open neighbourhood for the weak topology
that the preimage of open neighbourhoods is Borel, from which we can conclude that the
map is Borel.

Proof of Lemma 4.3.6. We consider the two following spaces (Q, σ(Q), qµ) and (P(X), τw).
Then as explained in Remark 1.5.19 qµ is a Borel probability measure on Q and as a
consequence of 1.1.1, the space (P(X), τw) is second countable. We observe in addition
that by the Definition 1.5.1, point (1) we know that for any Borel set B ∈ B(X) the map
q 7→ µq(B) is Borel and so as said in Lemma 4.3.9 the map

(Q, σ(Q), qµ) → (P(X), τw)
q 7→ µq
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is Borel. Therefore we can apply Lusin Theorem 4.3.7. In particular for any n ∈ N we have
a compact set Qn ⊆ Q such that q(Q\Qn) ≤ 1

n and q 7→ µq is continuous on Qn. We define

An := {(q, x) : q ∈ Qn, x ∈ T nb
φ , µq({x}) > 0},

and we call An(q) := {x : (q, x) ∈ An}, the q-section of An. We claim that µ(P2(An)) = 0.
If the claim is true then

0 = µ(P2(An)) =
∫
Q
µq(P2(An))qµ(dq) =

∫
Qn

µq(An(q))qµ(dq),

and so µq(An(q)) = 0 qµ a.e. q ∈ Qn which means that qµ a.e. q ∈ Qn, card(An(q)) = 0.
If the claim is true for any n we have that q a.e. q ∈ ∪n∈NQn, µq has no atoms and
qµ(Q \ ∪n∈NQn) = 0.
We prove the claim for a fixed n ∈ N. We first observe that An is a σ closed set and
therefore Borel. Indeed An = ∪k∈NAn,k with

An,k := {(q, x) : q ∈ Qn, x ∈ X, µq({x}) ≥ 2−k}.

An,k is closed indeed if {(qj , xj)}j∈N is a sequence in An,k converging to a (q, x), (in the
product topology on Q × X induced by (Qn, d), (X, d)) then q ∈ Qn since Qn is compact,
and by Lemma 1.1.4

µq({x}) ≥ lim sup
j→+∞

µqj ({xj}) ≥ 2−k.

In addition An(q) is countable since µq is a finite measure. So we can apply Theorem 4.3.8 to
(Qn, d), (X, d), An and we get that An = ∪j∈NGj with Gj Borel graph. Now we assume by
contradiction that there exists j̄ such that µ(P2(Gj̄)) > 0. Then by disintegration formula
(4.41)

0 < µ(P2(Gj̄)) =
∫

Q
µq(P2(Gj̄))qµ(dq) =

∫
P1(Gj̄)

µq(P2(Gj̄))qµ(dq),

and so qµ(P1(Gj̄)) > 0. Again by inner regularity there exists Â ⊆ P2(Gj̄) such that
µ(Â) > 0 and Â ⊆ {ρµ > δ} for a positive δ. Let π∞ be a plan as in Proposition 4.3.4
and Γ be a Borel set such that π∞(Γ) = 1, Γ ⊆ Γφ (see Section 1.5.2 for the definition)
and Γ ∩ D = ∅. Then for t < ε

diam (X) we have that Tt(Γ ∩ Â × X) ⊆ Âε. Moreover
Tt(Γ ∩ Â × X) ∩ Â = ∅. Indeed suppose that y ∈ Tt(Γ ∩ Â × X) ∩ Â, then y belongs to a
non trivial (since Γ ∩ D = ∅) geodesic γ such that (γ0, γ1) ∈ Γ ⊆ Γφ and γ(0) ∈ Â. Then
by Lemma 1.5.12 (γ(0), y) ∈ Γφ. This implies that γ(0) and y belong to the same Xφ

q

equivalence class for some q ∈ Q and this is a contradiction since it implies that (q, γ(0)),
(q, y) ∈ Gj̄ , which is a graph. Therefore

m(Âε) ≥ m(Â) + m(Tt(Γ ∩ Â×X)) ≥ CK,M
C

µ(Â) + m(Â) ≥
(
CK,M
C

+ δ

)
m(Â),

by using Proposition 4.3.4. Since the inequality holds for any ε > 0 we get a contradiction.

In the next proposition we sum up the regularity for µ and prove the analogous for ν.
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Proposition 4.3.10. Let (X, d,m) be as in (4.2). Let µ, ν ∈ P(X) be two probability
measures absolutely continuous with respect to m: µ = ρµm and ν = ρνm, with ρµ, ρν :
X → R, ρµ, ρν ≤ C and µ ⊥ ν. Let φ be a Kantorovich potential associated to it. Assume
that µ(bφ) = 0. Let T nb

φ be the set defined in Section 1.5.2. Let in addition Q be a Borel
section and f : (T nb

φ , B(T nb
φ )) → (Q, σ(Q)) be a Borel quotient map.

Set qc := f♯µ = f♯µ and consider the disintegrations q 7→ µq, q 7→ νq, of µ|T nb
φ

and ν|T nb
φ

respectively:
µ|T nb

φ
=
∫

Q
µqqc(dq), ν|T nb

φ
=
∫

Q
νqqc(dq). (4.42)

Then

1. µ(aφ) = 0;

2. ν(bφ) = 0;

3. for qc a.e. q ∈ Q, the marginal distributions µq and νq have no atoms.

Proof. Point 1 follows immediately from Lemma 4.3.5. To show point 2 we know that since
φ is a Kantorovich potenstial for the L1 optimal transport problem between µ and ν, then
−φ s kantorovich potential for the problem between ν and µ. In addition Γ−φ = Γ−1

φ .
From which it follows that a−φ = bφ. Therefore we can apply Lemma 4.3.5 with swapped
measures and −φ Kantorovich potential. We get that ν(a−φ) = 0 which is precisely point
2. Analogously 3 follows by applying Lemma 4.3.6 for µq by considering as Kantorovich
potential φ for νq by considering as Kantorovich potential −φ.

4.4 Solution to the Monge problem
We finally prove that the Monge problem between two mutually singular absolutely con-
tinuous and bounded measures in our (X, d,m) CD(K,∞) product space has a solution. In
the following with µ ⊥ ν we mean that µ and ν are mutually singular.

Theorem 4.4.1. Let (X, d,m) be a m.m.s as in (4.2). Let µ, ν ∈ P(X) be two probability
measures absolutely continuous with respect to m: µ = ρµm and ν = ρνm, with ρµ, ρν :
X → R, ρµ, ρν ≤ C and µ ⊥ ν. Then there exists a solution to the Monge problem (MP),
i.e. a Borel map T : X → X such that T♯µ = ν and∫

X
d(x, T (x))µ(dx) = inf

T♯µ=ν

∫
X

d(x, T (x))µ(dx).

Proof. To prove the Theorem we need to verify that the hypotheses of Lemma 4.2.3 are
satisfied. We observe that our space is compact geodesic and non-branching by construction
as shown in Proposition 4.1.1. µ, ν are in P1(X) since the space is bounded. The existence
of a Kantorovich potential φ is guaranteed (see Remark 1.2.3). Hypothesis (1) is satisfied:
in Proposition 4.3.10 we prove that µ(aφ) = 0 and since the space is non-branching, as
shown in Remark 1.5.7 we have that A+ ⊆ aφ which gives µ(A+) ≤ µ(aφ) = 0. Analogously
ν(A−) ≤ ν(bφ) = 0. Hypothesis (2) is satisfied as proven in Proposition 4.3.10. Therefore
we can apply the Lemma and we get the existence of the desired map.
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Appendix A

Wasserstein-Hellinger inequality:
the case p > 2

We remark that what is present in this appendix is obtained in collaboration with Nicolò
De Ponti and Luca Tamanini and will be present in a joint future work.

Our result shows that the regularizing effect of the heat semigroup Ht allows to control
the stronger p-Hellinger distance in terms of the weaker p-Wasserstein distance. We recall
that in the case p ∈ [1, 2] it has been firstly proved in [74, Theorem 5.2].

As short preliminaries we first recall two properties of the heat flow evolution that we
use in the sequel and are valid in the setting of RCD(K,∞) spaces. Given f ∈ L∞(X),
since Htf ∈ Lipb(X) (recall Section 1.4.2), its slope |DHtf | is well defined and for all t > 0
(see [11, Theorem 3.17]),

|DHtf |w = |DHtf | m a.e. ∈ X. (A.1)

Additionally the following improved version of the Bakry-Emery inequality (recall [11])
proved in [83, Corollary 3.5] holds:

|DHtf |2αw ≤ e−2αKtHt(|Df |2αt ), m-a.e., (A.2)

for any f ∈ W 1,2(X) and α ∈ [1
2 , 1].

To state the first result, we recall the following definition:

RK(t) :=
{
e2Kt−1
K if K ̸= 0,

2t if K = 0.
(A.3)

Proposition A.1. Let (X, d,m) be an RCD(K,∞) metric measure space with m(X) < +∞,
K ∈ R. For p > 2 and µ0, µ1 ∈ Pp(X) it holds

p√
p− 1(RK(t))

1
2 Hep(H∗

t µ0, H
∗
t µ1) ≤ Wp(µ0, µ1) ∀ t > 0. (A.4)

To prove Proposition A.1 we take advantage of a new functional inequality for the heat
flow.

Proposition A.2. Let (X, d,m) be an RCD(K,∞) metric measure space, K ∈ R and
m(X) < +∞. Then for every 1 < q < 2 and f ∈ L∞(X) it holds

(q − 1)RK(t)|DHt(f)|2w ≤ (Ht(|f |q))
2
q − (Ht(f))2, m-a.e. in X, for any t > 0. (A.5)
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The strategy of the proof of the previous inequality is based on a classical semigroup
interpolation argument which has been extensively used in the last decades, (see e.g. [17,
18]). We follow [49, Proposition 3.1] in which similar results have been obtained also in the
context of RCD spaces, where some additional technical arguments are needed to perform
the computations (see also [11, Corollary 2.3]).

Proof of Proposition A.2. We approximate the function t 7→ |t|q, which second derivative is
not defined a t = 0, with the following function

ϕqε(t) := (t2 + ε2)
q
2 − εq,

which is C∞(R), ϕqε(0) = 0. We consider the map s 7→ (Hs(ϕqε(Ht−sf)))
2
q and we have that

it is locally Lipschitz from (0, t) to L2. This follows from the very definition of heat flow,
that is a locally Lipschitz map from (0,+∞) to L2 and the fact that its extension to Lp(X)
preserves this property, together with the fact that ϕqε is smooth. So in particular using the
fundamental theorem of calculus for the Bochner integral in the space L2(X) and computing
the derivative inside the integral, we have that for any fixed and sufficiently small δ > 0
one has

(Ht−δ(ϕqε(Hδf)))
2
q − (Hδ(ϕqε(Ht−δf)))

2
q =

∫ t−δ

δ

d

ds(Hs(ϕqε(Ht−sf)))
2
q ds

= 2
q

∫ t−δ

δ
(Hs(ϕqε(Ht−sf)))

2
q

−1
[
∆Hs(ϕqε(Ht−sf)) +Hs

(
(ϕqε)′(Ht−s(f)) d

ds
Ht−sf

)]
ds

= 2
q

∫ t−δ

δ
(Hs(ϕqε(Ht−sf)))

2
q

−1
[
Hs

(
∆(ϕqε(Ht−s(f))) − (ϕqε)′(Ht−s(f))∆(Ht−s(f))

)]
ds

= 2
q

∫ t−δ

δ
(Hs(ϕqε(Ht−sf)))

2
q

−1
[
Hs

(
(ϕqε)′′(Ht−s(f))|D(Ht−sf)|2w)

)]
ds, (A.6)

where the last equality follows from the chain rule of the Laplacian thanks to the fact that
(ϕqε)′′ is locally bounded. Now recalling that Ht is an integral operator, we apply Holder’s
inequality

Ht(hg) ≤ Ht(|h|p′)
1
p′Ht(|g|q′)

1
q′ 1

p′ + 1
q′ = 1

with exponents p′ = 2
q and q′ = 2

2−q , namely

[
Hs

(
|D(Ht−sf)|qp′((ϕqε)′′(Ht−sf))

q
2p

′
)] 1

p′ [
Hs

(
(ϕqε)(Ht−sf)(1− q

2 )q′
)] 1

q′

(A.7)

≥ Hs

(
|D(Ht−sf)|qw((ϕqε)′′(Ht−sf))

q
2 (ϕqε)(Ht−sf)(1− q

2 )
)
.

We observe that the left hand side of (A.7) to the power 2
q is exactly the integrand of (A.6),

so we get that

(Ht−δ(ϕqε(Hδf)))
2
q − (Hδ(ϕqε(Ht−δf)))

2
q

≥ 2
q

∫ t−δ

δ

(
Hs

(
|D(Ht−sf)|qw((ϕqε)′′(Ht−sf))

q
2 (ϕqε)(Ht−sf)(1− q

2 )
)) 2

q

ds.
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Now we take ψ ∈ L∞(X), ψ ≥ 0. We integrate the previous inequality against ψ in order
to be able to tackle the limit ε → 0:∫

X
(Ht−δ(ϕqε(Hδf)))

2
q − (Hδ(ϕqε(Ht−δf)))

2
qψm

≥ 2
q

∫ t−δ

δ

∫
X

(
Hs

(
|D(Ht−sf)|qw((ϕqε)′′(Ht−sf))

q
2 (ϕqε)(Ht−sf)(1− q

2 )
)) 2

q

ψmds.
(A.8)

Noticing that f ∈ L∞(X), ϕqε(t) ∈ C∞(R) and using (1.21), we can infer that the
integrands in both sides of (A.8) are uniformly integrable with respect to ε.

So we can take the limit for ε → 0 in both sides of the inequality using the dominated
convergence theorem, obtaining∫

X
(Ht−δ(|(Hδf)|q))

2
q − (Hδ(|Ht−δf |q))

2
qψ dm

≥ 2
q
q(q − 1)

∫ t−δ

δ

∫
X
Hs(|D(Ht−sf)|qw)

2
qψmds

≥ 2(q − 1)
∫ t−δ

δ

∫
X

|DHs(Ht−sf)|2we2Ksmds = 2(q − 1)
∫ t−δ

δ
e2Ks ds

∫
X

|D(Htf)|2wψm,

where the last inequality follows from (A.2) with α = q
2 . Now we can send δ → 0 in the

previous inequality and get∫
X

(Ht(|f |q))
2
q − (Ht(f))2ψm ≥ (q − 1)e

2Kt−1

K

∫
X

|D(Htf)|2wψm,

and observing that inequality holds for any non-negative ψ ∈ L∞(X), the result is proved.

Proof of Proposition A.1. We closely follow the proof of [74, Theorem 5.2], to which we refer
for details. The main difference is that we deduce (A.12) from Proposition A.2, while in
[74] the equivalent estimate is deduced by combining the classical Bakry-Émery inequality
(which corresponds to (A.5) with q = 2) with Jensen’s inequality.
The proof makes use of the dual dynamic formulations of both the p-Wasserstein and the
p-Hellinger distances, stated respectively in (1.7) and (1.9), that we report here for the
convenience of the reader:

1
p
W p
p (µ0, µ1) = sup

{∫
X
ξ1 µ1 −

∫
X
ξ0 µ0 : ξ ∈ C1([0, 1],Lipb(X)), ∂sξs + 1

q
|Dξs|q ≤ 0

}
,

(A.9)
Hepp(H∗

t µ0, H
∗
t µ1) =

= sup
{∫

X
ξ1 (H∗

t µ1) −
∫
X
ξ0 (H∗

t µ0) : ξ ∈ C1([0, 1], Bb(X)), ∂sξs + (p− 1)|ξs|q ≤ 0
}

= sup
{∫

X
Htξ1 µ1 −

∫
X
Htξ0 µ0 : ξ ∈ C1([0, 1], Bb(X)), ∂sξs + (p− 1)|ξs|q ≤ 0

}
,

where Bb(X) is the space of bounded Borel functions on X and q is the conjugate exponent
of p:

1
p

+ 1
q

= 1.
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In particular we use the dual formulation of the p-Wasserstein distance in the following
rescaled version valid for a > 0

1
a
W p
p (µ0, µ1) = sup

{∫
X
ξ1 µ1 −

∫
X
ξ0 µ0 : ξ ∈ C1([0, 1],Lipb(X)), ∂sξs + aq−1

qpq−1 |Dξs|q ≤ 0
}
,

which can be derived from (A.9) as follows:

1
a
W p
p (µ0, µ1) = p

a

1
p
W p
p (µ0, µ1)

=p

a
sup

{∫
X
ξ1 µ1 −

∫
X
ξ0 µ0 : ξ ∈ C1([0, 1],Lipb(X)), ∂sξs + 1

q
|Dξs|q ≤ 0

}
= sup

{∫
X

p

a
ξ1 µ1 −

∫
X

p

a
ξ0 µ0 : ξ ∈ C1([0, 1],Lipb(X)), ∂sξs + 1

q
|Dξs|q ≤ 0

}
= sup

{∫
X
ϕ1 µ1 −

∫
X
ϕ0 µ0 : ϕ ∈ C1([0, 1],Lipb(X)), ∂sϕs + aq−1

qpq−1 |Dϕs|q ≤ 0
}
.

The last inequality follows observing that ξ ∈ C1([0, 1],Lipb(X)) satisfies

∂sξs + 1
q

|Dξs|q ≤ 0,

if and only if ϕ := p
aξ ∈ C1([0, 1],Lipb(X)) and satisfies

a

p
∂sϕs + 1

q

(
a

p

)q
|Dϕs|q ≤ 0,

so in particular

∂sϕs + 1
q

(
a

p

)q−1
|Dϕs|q ≤ 0.

To get the result it is enough to prove that any function ξ ∈ C1([0, 1], Bb(X)) satisfying

∂sξs + (p− 1)|ξs|q ≤ 0, (A.10)

is such that Ht(ξs) satisfies

∂sHt(ξs) + a(t)q−1

qpq−1 |DHt(ξs)|q ≤ 0, t > 0, (A.11)

with
a(t) :=

( 1
p− 1

) p
2
ppRK(t)

p
2 ,

so that Ht(ξs) is an admissible competitor in the definition of 1
a(t)W

p
p (µ0, µ1). The fact that

(A.10) implies (A.11) follows by applying Ht to the inequality (A.10), recalling the fact that
Ht is sign preserving and then by using the key inequality

(q − 1)
q
2 (RK(t))

q
2 |DHt(ξs)|q ≤ Ht(|ξs|q), (A.12)

which is a consequence of (A.5) neglecting the negative term in the right hand side and
taking the q

2 -power. We remark that in (A.12) we use the slope of Ht(ξs) in place of the
weak upper gradient thanks to equality (A.1), since ξs ∈ L∞(X).
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Appendix B

More regularity for the conditional
measures

Definition B.1. Let Γ ⊆ R2. We say that Γ is monotone if for any couple (x1, y1), (x2, y2) ∈
Γ,

x1 < x2 ⇒ y1 ≤ y2.

We fix in addition the following notation: for a set Γ ⊆ R2 we define for any x ∈ R2 the
x-section of Γ, Γ(x) := {y : (x, y) ∈ Γ}.

Lemma B.2. Let I be a real interval. Let m̃ ∈ P(I). Let µ̃ ∈ M(I) be compactly supported.
Assume that there exists a monotone set Γ ⊂ I × I Borel such that d(Γ(x), x) > δ for every
x where Γ(x) ̸= ∅ for a positive δ > 0 and that for every set A Borel in I we have for any
t ∈ [0, 1],

m̃(Tt(Γ ∩A× I)) ≥ Cµ̃(A), (B.1)

for a constant C > 0, where Tt : I × I → R, Tt(x, y) = (1 − t)x+ ty.
Then µ̃ ≪ L1.

Proof. The proof will be divided in three steps.
Step 1
Up to enlarging Γ, we can assume that there exists a non decreasing map T : I → I such
that:

Γ = {(x, y) ∈ I × I : lim
z→x−

T (z) ≤ y ≤ lim
z→x+

T (z)}, (B.2)

and such that T (x) ≥ x + δ. We recall that a monotone map on the real line can have at
most a countable number of discontinuities. We call

T (x−) := lim
z→x−

T (z),

T (x+) := lim
z→x+

T (z).

Note that T (x−) is left-continuous.
We take a point x in supp(µ) and we want to get an estimate from above of µ([x−r, x+r])

depending on x and r. We define for t ∈ [0, 1]

It(x, r) := [(1 − t)(x− r) + tT ((x− r)−), (1 − t)(x+ r) + tT ((x+ r)+)].

79



We choose 0 = t1 < t2 < · · · < tN < 1, with N = N(x, r), such that

∪Ni=1 Iti(x, r) ⊇ [x, T ((x− r)−)], (B.3)

and Iti(x, r) ∩ Iti+1(x, r) is a single point for any i. We do not write the dependence of N
on x and r anymore. In particular Iti ∩ Itj = ∅ whenever |i− j| > 1. This can be done by
choosing t0 = 0 and inductively

(1 − ti)(x+ r) + tiT ((x+ r)+) = (1 − ti+1)(x− r) + ti+1T ((x− r)−).

Step 2
We give an estimate from below on N . We call dx := (T (x−) − x) ≥ δ

2 > 0. Note that by
left-continuity dx,r := L1(x, T ((x− r)−) ≥ dx if r is taken small enough (with respect to x),
which we will assume from now on. Moreover limr→0+ dx,r = dx. Hence we have that the
length of the union of the sets we constructed, namely L1

(
∪Ni=1Iti(x+ r)

)
is more that dx

by (B.3).
Calling

Qx,r := T ((x+ r)+) − (x+ r)
T ((x− r)−) − (x− r) > 0,

a direct computation gives

L1 (Iti(x, r)) = 2rQi−1
x,r ∀i ∈ {1, . . . , N}.

It follows that

L1
(
∪Ni=1Iti

)
= 2r (Qx,r)N − 1

Qx,r − 1 ≥ dx,r,

from which we get

N ≥
log(dx,r

2r (Qx,r − 1) + 1)
log(Qx,r)

. (B.4)

On the other hand we get an estimate from above of µ([x− r, x+ r]) in terms of N . To do
this note that by (B.2)

Tt(Γ ∩ [x− r, x+ r] × I) = It(x, r).

From hypothesis (B.1) we have that

2 = 2m(I) ≥ 2m(∪Ni=1I̊ti(x, r) ∪ ∪Ni=1∂Iti(x, r)) = 2
(
m(∪Ni=1I̊ti(x, r)) + m(∪Ni=1∂Iti(x, r))

)
≥

N∑
i=1

m(I̊ti(x, r)) +
N∑
i=1

m(∂Iti(x, r)) =
N∑
i=1

m(Iti) =
N∑
i=1

m(Tti(Γ ∩ [x− r, x+ r] × I))

(B.5)
≥ NCµ([x− r, x+ r]).

By putting together (B.4) and (B.5) it follows that

µ([x− r, x+ r]) ≤ 2
CN

≤ 4
C

(
log(Qx,r)

log(dx,r

2r (Qx,r − 1) + 1)

)
.
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Step 3
We recall that a monotone function is a BV function. So let DT ∈ M(I) the measure
derivative of T . We recall in addition that by the Lebesgue Decomposition Theorem DT
can be decomposed as the sum of two mutually singular measures, one absolutely continuous
w.r.t. L1 the other orthogonal to L1, namely

DT = T ′L1 + T⊥.

We define
ν := L1 + T ′L1 + T⊥.

We prove that µ is absolutely continuous with respect to L1 by proving the following.
Claim 1 The Radon-Nykodym derivative of µ with respect to ν, namely dµ

dν when it exists
is finite. We call fµ(x) := dµ

dν (x) when it exists. In addition from the computation of the
derivative we have:
Claim 2 fµ = 0, T⊥-a.e.

If the two claims are true we have that

µ = fµν = fµ(L1 + T ′L1 + T⊥) = fµ(1 + T ′)L1 + fµT
⊥ = fµ(1 + T ′)L1.

Proof of Claim 1 : dµ
dν (x) < +∞ if it exists.

We take a sequence of {rn}n∈N such that limn→0+
µ([x−rn,x+rn])
ν([x−rn,x+rn]) = dµ

dν (x). Then up to
extracting a subsequence we can distinguish three cases:

1. rn is such that limrn→0
DT ([x−rn,x+rn])

2rn
= l > 0 and l < +∞;

2. rn is such that limrn→0
DT ([x−rn,x+rn])

2rn
= +∞;

3. rn is such that limrn→0
DT ([x−rn,x+rn])

2rn
= 0.

We want to estimate
lim

rn→0+

µ([x− rn, x+ rn])
DT ([x− rn, x+ rn]) .

It will be useful to consider

Qx,r − 1 = T ((x+ r)+) − T ((x− r)−) − 2r
T ((x− r)−) − (x− r) = DT ([x− r, x+ r]) − 2r

T ((x− r)−) − (x− r) ,

Qx,r − 1
2r =

(
DT ([x− r, x+ r])

2r − 1
) 1
T ((x− r)−) − (x− r) . (B.6)

In case (1) we can compute limrn→0
Qx,rn −1

2rn
= (l−1)

dx
, from which follows that limrn→0Qx,rn =

1. So at the end using that ν ≥ L1, what we get is

fµ(x) = dµ
dν (x) = lim

rn→0+

µ([x− rn, x+ rn])
ν([x− rn, x+ rn]) ≤ lim

rn→0+

4
2rnC

 log(Qx,rn)
log(dx,r

rn
(Qx,rn − 1) + 1)


= lim

rn→0+

4
2rnC

 log(1 + (Qx,rn − 1))
log(dx,r

rn
(Qx,rn − 1) + 1)

 = 4
C

lim
rn→0+

(Qx,rn − 1)
2rn

1
log(dx,r

2rn
(Qx,rn − 1) + 1)

= (l − 1)
dx

1
log l < +∞.
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In case (2) we can observe that

µ([x− rn, x+ rn])
DT ([x− rn, x+ rn]) ≤ 4

C

1
DT ([x− rn, x+ rn])

 log(Qx,rn)
log(dx,r

2rn
(Qx,rn − 1) + 1)


= 4
C

 log(1 + (Qx,rn − 1))
log(dx,r

2rn
(Qx,rn − 1) + 1)

 1
DT ([x− rn, x+ rn]) , (B.7)

so

• if lim suprn→0DT ([x− rn, x+ rn]) = k > 0, then by observing that by (B.6) we have
limrn→0+ Qx,rn − 1 = k

dx
and limrn→0+

Qx,rn −1
rn

= +∞ and so using that ν ≥ DT ,

fµ(x) = dµ
dν (x) ≤ lim

rn→0+

µ([x− rn, x+ rn])
DT ([x− rn, x+ rn]) = 0;

• lim suprn→0DT ([x− rn, x+ rn]) = 0, then again from (B.7), by observing that by
(B.6) we have limrn→0+ Qx,rn − 1 = 0 and limrn→0+

Qx,rn −1
rn

= +∞ and so using that
ν ≥ DT ,

fµ(x) = dµ
dν (x) ≤ lim

rn→0+

µ([x− rn, x+ rn])
DT ([x− rn, x+ rn]) = 0;

In case (3) we can observe that limrn→0+ Qx,rn − 1 = 0 and limrn→0+
Qx,rn −1

2rn
= − 1

dx
. So by

following the computations that we did in case (1) we have

fµ(x) = dµ
dν (x) ≤ lim sup

rn→0+

µ([x− rn, x+ rn])
ν([x− rn, x+ rn]) ≤ 4

C
lim

rn→0+

(Qx,rn − 1)
2rn

1
log(dx,r

2rn
(Qx,rn − 1) + 1)

= 0.

Proof of Claim 2 : we observe that T⊥(({x : dDT
dL1 (x) = +∞})c) = 0. Indeed we know

that dT⊥

dL1 (x) = +∞ T⊥-a.e. (see e.g. [81, Theorem 7.15]). The claim follows because fµ ̸= 0
only in case (1).

Proposition B.3 (Regularity of the conditional measures). Let (X, d,m) be as in (4.2).
Let µ, ν ∈ P(X) be two compactly supported probability measures absolutely continuous with
respect to m: µ = ρµm and ν = ρνm, with ρµ, ρν : X → R, ρµ, ρν ≤ C for some positive
C. Assume in addition that dist(supp(µ), supp(ν)) > 0. Let φ be a Kantorovich potential
for the problem and consider the partition of T nb

φ into equivalence classes {Xq}q∈Q. Let Q
be a Borel quotient set and fφ be a Borel quotient map. Let q 7→ mq be the disintegration
of m|T nb

φ
, and define µq := ρµmq. Assume that there exists a closed Γ ⊆ Γφ ∩ (T nb

φ × T nb
φ )

with P1(Γ) ⊂ supp(µ), P2(Γ) ⊂ supp(ν), which satisfies the two following hypotheses:

• there exists C̃ > 0 such that for any A Borel and t > 0,

m(Tt(Γ ∩A×X)) ≥ Cµ(A); (B.8)

• for q-a.e. q ∈ Q, Γ ∩Xq ×X is d2-cyclically monotone.

Then for q a.e. q ∈ Q the measure µq is absolutely continuous with respect to H1
Xq

.
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Remark B.4. An important observation is that, given µ, ν as in the hypotheses, the rest
of assumptions would be all satisfied if the plan π∞ ∈ Opt1(µ, ν) given by Proposition 4.3.4
was concentrated on a set Γ̃ ⊂ X×X such that Γ∩Xq×X is d2-cyclically monotone q-a.e..
Indeed if this was true, then we could take

Γ := Γ̃ ∩ supp(µ) × supp(ν) ∩ Γφ ∩ (T nb
φ × T nb

φ ).

This is because by Proposition 4.3.4 hypothesis (7) holds as soon as π∞(Γ) = 1, which is
easily checked since π∞({x = y}) = 0 (recall also that µ(T e

φ \ T nb
φ ) = ν(T e

φ \ T nb
φ ) = 0).

Proof of Proposition B.3. The proof will be made in two steps: in the first step we start
from the estimate in (B.8) and we show that it can be localized to any equivalence class
Xq. In the second step we will show that for q a.e. q ∈ Q the measure mq is absolutely
continuous with respect to H1 by applying Lemma B.2.

Step 1. We need to prove that there exists a set Q̄ of q full measure in Q such that for
any A ⊆ X Borel

mq(Tt(Γ ∩ (A×X))) ≥ CK,M
C

µq(A) (B.9)

holds for any q ∈ Q̄. We first claim that for a fixed A Borel, for q a.e. q ∈ Q

mq(Tt(Γ ∩ (A×X))) ≥ CK,M
C

µq(A). (B.10)

To prove the claim we show that for any Q̃ ∈ B(Q) and for any A Borel one has∫
Q̃
mq(Tt(Γ ∩ (A×X)))q(dq) ≥ CK,M

C

∫
Q̃
µq(A)q(dq).

Indeed fix Q̃ ∈ B(Q) and A ⊆ X Borel. Define SQ̃ := ∪q∈Q̃Xq which is Borel since it is
the preimage through the quotient map fφ of Q̃. Consider the Borel set Ã := A ∩ SQ̃.

By the Disintegration theorem, by defining µq := ρµmq, we have∫
Q
mq(Tt(Γ ∩ (Ã×X)))q(dq) ≥ CK,M

C

∫
Q
µq(Ã)q(dq),

and therefore ∫
Q̃
mq(Tt(Γ ∩ (A×X)))q(dq) =

∫
Q̃
mq(Tt(Γ ∩ (Ã×X)))q(dq)

=
∫

Q
mq(Tt(Γ ∩ (Ã×X)))q(dq) ≥ C

∫
Q̃
µq(A)q(dq).

Now we can take C := {Br(xi) : r ∈ Q, i ∈ N}, where {xi}i∈N is a dense subset of X.
Then there exists Q̄ such that for q a.e. q ∈ Q̄ estimate (B.10) holds for any A ∈ C since
it is a countable set. This implies that for any q ∈ Q̄ (B.10) holds for any open set A. By
taking decreasing subsequence of open sets the estimate (B.10) holds for any q ∈ Q̄ for any
A closed.

Step 2. Take q ∈ Q̄ of the previous step. Let Aq be closed set of Xq. Then Aq = A∩Xq

for some closed set A of X. We define Γq := Γ ∩Xq ×Xq, and we have

mq(Tt(Γq ∩ (Aq ×Xq))) = mq(Tt(Γ ∩ (A×X))) ≥ Cµq(A) = Cµq(Aq). (B.11)
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We call

Iq := g−1(Xq); Γ̃q := (g−1, g−1)(Γq); Ãq := g−1(Aq);
m̃q := g−1

♯ mq; µ̃q := g−1
♯ µq;

We claim that for q a.e. q ∈ Q: (Iq, |·| , m̃q), µ̃q, ν̃q, Γ̃q, satisfy the hypotheses of Lemma
B.2. Indeed hypothesis (2) implies that Γ̃q is monotone for any q. Now from the previous
step we have that for q a.e. q ∈ Q

m̃q(Tt(Γ̃q ∩ (I × Iq))) ≥ Cµ̃q(I),

for any I interval closed in Iq. Moreover dist(Γ̃q(x), x) ≥ dist(supp(µ), supp(ν)) > 0 for
every x ∈ Iq by hypotheses and since g(q, .) is an isometry.

Therefore from Lemma B.2 µ̃q ≪ L1, which gives the claim since g(q, ·) is an isometry.

Corollary B.5. Under the same hypotheses of the previous proposition for q a.e. q ∈ Q,
(mq)|{ρµ>0} is absolutely continuous with respect to H1

|Xq
.

Proof. It follows immediately from the previous Proposition and the definition of µq =
ρµmq.

Remark B.6. The proof that (mq)|{ρν>0} is absolutely continuous with respect to H1
|Xq

follows analogously.
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