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ABSTRACT
We study a solution of interacting semiflexible polymers with curvature energy in poor-solvent conditions on the d-dimensional cubic lattice
using mean-field theory and Monte Carlo computer simulations. Building upon past studies on a single chain, we construct a field-theory
representation of the system and solve it within a mean-field approximation supported by Monte Carlo simulations in d = 3. A gas-liquid
transition is found in the temperature-density plane that is then interpreted in terms of real systems. Interestingly, we find this transition to
be independent of the bending rigidity. Past classical Flory–Huggins and Flory mean-field results are shown to be particular cases of this more
general framework. Perspectives in terms of guiding experimental results towards optimal conditions are also proposed.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0171911

I. INTRODUCTION

Determining the phase behaviour of a solution of flexible
and semiflexible polymers in poor-solvent conditions is a partic-
ularly challenging problem for several reasons. Unlike the case of
colloidal liquids, where unambiguous gas-liquid and liquid-solid
transitions are theoretically well characterized1 and experimentally
observed,2 in the case of polymer solutions the presence of chain
connectivity3–6 makes a full understanding of its phase behavior
much more challenging, in particular at high concentrations.

One of the emerging conceptual problems hinges on the diffi-
culty to discriminate between purely kinetic effects and those associ-
ated with the underlying thermodynamics.7,8 For instance, polymers
do not completely crystallize when cooled down but become struc-
tured into a hierarchy of ordered structures.9 Also, it has been argued

that on cooling a polymer melt undergoes a spinodal decomposition
thus making the crystallization metastable and leaving the system
out of equilibrium.7 Another difficulty stems from the large num-
ber of thermodynamic and structural parameters that need to be
taken into consideration: in fact, in addition to usual thermody-
namic quantities such as temperature and pressure that control the
system, many other microscopic parameters such as interchain (in
addition to the intrachain) interactions, the number of monomers
in a chain, the stiffness of the fiber and the total polymer volume
fraction have to be taken into account3–6 and become axes of a large
parameter space.

Particularly important appears to be the case of semiflexi-
ble polymers, as a paradigmatic example of the protein folding
problem10–13 or biopolymers in a crowded environment,14 and this
is currently stimulating many studies along these lines. Our current
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understanding of these system comes, in particular, from computer
simulations which, however, have been limited so far to particu-
lar situations. A first group of studies derived the gas-liquid phase
diagram for flexible15 and semiflexible16 bead-spring chains up to
only 100 monomers per chain using Monte Carlo (MC) simulations.
In particular, they found a phase-equilibrium diagram very similar
to that of simple liquids with some minor effects ascribed to the
bending rigidity. Similar results were obtained by more recent and
extensive simulations.17 Other simulations aimed at understanding
entanglement properties between distinct chains18–20 or the onset
of nucleation process.21 However, a comprehensive picture of the
phase behavior of semiflexible polymers in poor-solvent solutions is
currently lacking.

Surprisingly, even in the case of a single semiflexible poly-
mer, a general theoretical understanding of the phase behaviour
is still lacking notwithstanding several studies with different tech-
niques have recently appeared22–27 that remained, however, focused
on rather specific questions. For instance, by using mean-field argu-
ments supported by bead-spring MC simulations, it has been argued
that the ground state of a single semiflexible chain can be either
a rod-like or a toroidal structure depending on the bending rigid-
ity and the contour length of the polymer28,29 and this has been
confirmed recently30 by computer simulations which also accounts
for the temperature dependence. Interestingly, classical studies of a
lattice model31,32 observe only rod-like phases, in the form of Hamil-
tonian paths, likely due to the geometrical constraints imposed by
the lattice. Remarkably, the observed phase diagram is in excel-
lent agreement with mean-field predictions using a field theoretical
approach.13

While a full understanding of the differences observed in lat-
tice and off-lattice simulations is an interesting issue on its own right
(and that will be discussed elsewhere), the present study will focus on
providing the multi-chains counterpart of the aforementioned sin-
gle chain studies.13,31,32 Specifically, in the wake of the long-standing
tradition of lattice models for modeling polymer structure,10–13,33–45

here we develop a field-theoretical description of semiflexible self-
avoiding chains with attractive interactions on the d-dimensional
hypercubic lattice, and solve it within a mean-field approxima-
tion. Lattice grand canonical MC simulations will then be presented
demonstrating the remarkable accuracy of the mean-field predic-
tions. The multi-chain field theory approach that is proposed here
build on past work by des Cloizeaux35 that extends the classical rela-
tion pointed out long ago by de Gennes4,34 of self-avoiding walks
as the n→ 0 limit of a spin O(n)-model, n being the number of
components of each spin on a lattice point.

Notwithstanding its limitation, the present lattice approach has
the great merit of making transparent the underlying physics and
provide a guidance of the regions of this large parameter space that
warrant a more in-depth analysis with dedicated numerical or exper-
imental techniques. As a by-product of the theoretical analysis, we
will re-obtain some classical results within a wider framework, as we
will see.

The paper is organized as the following. In Sec. II, we pro-
vide a concise summary of the current understanding of the phase
behavior of interacting semiflexible polymers. In particular, due to
its specialized nature and for having inspired this work, we are
going to highlight some salient aspects related to the past work of
Orland and colleagues.10,13,42 Moreover, we will also discuss some

conclusions from recent computational work by other groups which
has the advantage of providing a broader view beyond the mean-
field approach. The novel part of this work starts in Sec. III A, where
we will introduce the exact grand canonical partition function Z
of the lattice model for a multi-chain system (i.e., a polymer solu-
tion) on the d-dimensional cubic lattice which takes into account
the local bending stiffness of the polymer fiber, excluded-volume
and short-range attractive interactions between close-by monomers.
Then, by exploiting the analogy between self-avoiding polymers
and the spin O(n→ 0)-model, we construct (Sec. III B) the exact
field-theoretic representation of Z. Since an exact computation of
Z is unfeasible, we describe a uniform saddle-point approximation
(Sec. IV) and obtain the corresponding mean-field solution of the
problem, the reliability of which is demonstrated by comparison to
MC computer simulations (Secs. V and VI). Finally we show that
our results (Sec. VII) recapitulate, as particular cases, several mod-
els that have been discussed in the past and we demonstrate the
equivalence between our approach and the classical Flory–Huggins
theory46,47 for mixtures. Discussion and conclusions, with an out-
line on open problems and possible future perspective, are presented
in Sec. VIII.

II. REVIEW OF THE SINGLE-CHAIN FORMALISM:
HAMILTONIAN RINGS

Before introducing (Sec. III) our field-theoretic formalism for
semiflexible polymer solutions and in order to set the stage, it proves
instructive to recapitulate the single chain formalism.10,13,42

Denoting by L the linear size of the hypercubic lattice in d
dimensions and by a the lattice spacing, we consider Hamilto-
nian paths, polymer chains whose number of nodes N is equal to
V/ad = (L/a)d where V is the volume of the lattice: that is, we con-
sider all lattice points occupied and no vacancies. For simplicity,
we further restrict our considerations to closed paths, or Hamil-
tonian rings (HR), knowing that the statistics is the same in the
thermodynamic limit.42

Consider the following O(n)-vector model where the n-
component vector,

S⃗(x⃗) ≡ (S1(x⃗), S2(x⃗), . . . , Sn(x⃗)), (1)

is associated to each lattice point x⃗. By defining the scalar product
S⃗(x⃗) ⋅ S⃗(x⃗ ′) ≡ ∑n

i=1 Si(x⃗)Si(x⃗ ′) between any two vectors associated
to lattice points x⃗ and x⃗ ′, we assume the following constraint on the
norm-square of S⃗(x⃗):

S⃗(x⃗)2 ≡ S⃗(x⃗) ⋅ S⃗(x⃗) =
n

∑
i=1

Si(x⃗)2 = n. (2)

The reduced Hamiltonian for the n-vector model in zero external
field reads

− βH = J
2∑x⃗,x⃗ ′

Δ(x⃗, x⃗ ′) S⃗(x⃗) ⋅ S⃗(x⃗ ′), (3)
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where β = 1/(kBT), kB being the Boltzmann constant and T being
the temperature, J is the coupling constant between the spins, and
where

Δ(x⃗, x⃗ ′) =
⎧⎪⎪⎨⎪⎪⎩

1, if ∣x⃗ − x⃗ ′∣ = a,

0, otherwise.
(4)

From now on we assume periodic boundary conditions and Eq. (3)
can be also written as

− βH = J∑
x⃗

d

∑
μ=1

S⃗(x⃗) ⋅ S⃗(x⃗ + êμ), (5)

where êμ is the unit lattice vector pointing towards the “+μ”-
direction. Then, we introduce the integration measure,

dΩn(x⃗) = dS⃗(x⃗) δ(
n

∑
i=1

Si(x⃗)2 − n), (6)

with the Dirac δ-function enforcing the constraint Eq. (2) and the
related geometrical average (or, trace operation)

⟨⋅ ⋅ ⋅ ⟩Ω ≡ ∫∏x⃗ dΩn(x⃗) (⋅ ⋅ ⋅ )
∫∏x⃗ dΩn(x⃗)

. (7)

A very peculiar feature of the operation defined in Eq. (7) is that,
in the formal limit n→ 0, the following equality for the moment-
generating function holds:4

⟨∏
x⃗

eS⃗ (x⃗ )⋅φ⃗ (x⃗ )⟩
Ω

=∏
x⃗
(1 + 1

2
φ⃗(x⃗)2), (8)

i.e., the moment-generating function has a simple quadratic form.
Further consequences of this fact will be illustrated in Appendix A.

Let us consider now the quantity ⟨e−βH⟩Ω. One can show that,
in the formal limit n→ 0, the following expansion holds:

⟨e−βH⟩
Ω
= 1 + n(

N

∑
ℓ=1

Jℓ Zℓ) + O(n2), (9)

where Zℓ is the total number of self-avoiding closed paths of total
length ℓ [extended details on the derivation of Eq. (9), which is
non-trivial, are provided in Appendix A]. At the same time, by
using the standard Hubbard–Stratonovich transformation,48,49 we
obtain

⟨e−βH⟩
Ω
=
∫∏x⃗ dφ⃗(x⃗) e−A ⟨e

√
J∑x⃗ S⃗ (x⃗ )⋅φ⃗ (x⃗ )⟩

Ω

∫∏x⃗ dφ⃗(x⃗) e−A , (10)

where

A = 1
2∑x⃗,x⃗ ′

Δ−1(x⃗, x⃗ ′)φ⃗(x⃗) ⋅ φ⃗(x⃗ ′), (11)

with Δ−1 the inverse of the matrix Δ [Eq. (4)]. At this point it has
to be noted that, strictly speaking, the matrix Δ is not positive def-
inite, therefore the Hubbard–Stratonovich transformation itself is,

in principle, ill-defined. However, this technical difficulty can be
overcome through the more rigorous approach42,44 involving Fres-
nel integrals which leaves the final results unaffected. In the end
then and in the limit n→ 0, the numerator of Eq. (10) can be easily
computed by resorting to Eq. (8), granting the result

⟨e−βH⟩Ω = ∫
∏x⃗ dφ⃗(x⃗) e−A∏x⃗ (1 + J

2 φ⃗(x⃗)
2)

∫∏x⃗ dφ⃗(x⃗) e−A . (12)

We now notice that ZN in Eq. (9) – which coincides with the total
number of HR on our lattice – can be formally50 obtained as

ZN = lim
n→0

lim
J→∞

1
n

1
JN ⟨e

−βH⟩Ω. (13)

Finally, by combining Eq. (12) with (13) we get the following
expression for ZN ,

ZN = lim
n→0

1
n
∫∏x⃗ dφ⃗(x⃗) e−A∏x⃗

1
2 φ⃗(x⃗)

2

∫∏x⃗ dφ⃗(x⃗) e−A , (14)

which was introduced first in Ref. 42. It is important to stress
that, in order to compute ZN , we have used the fact that the
trace operation Eq. (7) has the very peculiar properties described
in Appendix A. Finally, for the purpose of computing ZN , the
geometrical origin of this trace (i.e., constraining the spin vec-
tors on the surface of a sphere of radius

√
n) becomes completely

irrelevant.
We demonstrate now that there exists an alternative method51

of finding ZN (14) that represents both a shortcut with respect to
the approach presented so far and has the great advantage of being
exportable to the more general situation considered here (Sec. III) in
a relatively straightforward manner.

The method consists in defining a priori a trace operation –
that we denote by the symbol ⟨⋅⟩0 – characterized by the desired
mathematical properties:

⟨1⟩0 = 0, (15)

⟨Si⟩0 = 0, (16)

⟨SiS j⟩0 = δij , (17)

⟨Si1 Si2 . . . Sik⟩0 = 0, if k ≥ 3, (18)

between spin components on the same lattice site, while S-vectors on
different sites are independent from each other. Notice that the only
difference from the trace (7) is that now the trace of 1 is equal to 0
(see Appendix A).

Based on the definitions (15)–(18) and by taking J = 1 in the
Hamiltonian of the n-vector model [Eq. (3)], the partition function
(14) of the HR is equivalent to:

ZN = lim
n→0

1
n
⟨e−βH⟩

0
. (19)
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In fact, by taking the Hubbard–Stratonovich transformation of the
term inside brackets [Eq. (10) with J = 1], we have

ZN = lim
n→0

1
n
∫∏x⃗ dφ⃗(x⃗) e−A ⟨∏x⃗eS⃗ (x⃗ )⋅φ⃗ (x⃗ )⟩

0

∫∏x⃗ dφ⃗(x⃗) e−A

= lim
n→0

1
n
∫∏x⃗ dφ⃗(x⃗) e−A∏x⃗ ⟨1+(S⃗(x⃗) ⋅ φ⃗(x⃗))+ 1

2(S⃗(x⃗) ⋅ φ⃗(x⃗))
2⟩

0

∫∏x⃗ dφ⃗(x⃗) e−A

= lim
n→0

1
n
∫∏x⃗ dφ⃗(x⃗) e−A∏x⃗

1
2 φ⃗(x⃗)

2

∫∏x⃗ dφ⃗(x⃗) e−A , (20)

and the last line of Eq. (20) is identical to Eq. (14). Notice that
the factorization of the product in the second line of Eq. (20) and
the expansion up to second-order follow straightforwardly from
definitions (15)–(18). This concludes the proof.

In Sec. III, we will present a suitable generalization of defi-
nitions (15)–(18) to treat solutions of semi-flexible polymers with
bending stiffness and monomer-monomer attractive interactions for
poor-solvent conditions.

III. THE MANY-CHAIN FIELD THEORY
A. The model

We generalize here the formalism introduced in Sec. II and we
consider a system (i.e., a solution) of semiflexible linear polymer
chains with attractive interactions between non-bonded monomer
pairs modelling poor-solvent conditions.6

Chains are arranged on the same hypercubic lattice in d dimen-
sions introduced in Sec. II. Again, lattice spacing, linear side length,
volume and total number of sites are denoted, respectively, by: a,
L, V = Ld and N = V/ad. Chains are self- and mutually-avoiding,
i.e., any two monomers – be they from the same or different chains
– cannot occupy the same lattice site. Chain stiffness is modeled
by introducing a bending energy penalty ϵa > 0 for two consec-
utive bonds along the same chain forming a turn (or, an angle),
while attractive interactions between non-bonded monomers are
accounted for by an energy reward −ϵi < 0 (ϵa, ϵi > 0) for any two
monomers which are separated by a unit lattice distance and either
are non-consecutive if they belong to the same chain or they are on
distinct chains.

For computational convenience, we work in the grand canon-
ical ensemble where neither the number of chains nor the number
of bonds are fixed and we introduce the grand canonical partition
function,

Z = Z(κ,η, ϵa, ϵi) =∑
{ C}

w(κ,η, ϵa, ϵi; C), (21)

where the sum is intended over the set of all possible configu-
rations {C} and where the thermal (Boltzmann) weight for each
conformation C,

w(κ,η, ϵa, ϵi; C) = κNb( C) η2Nc( C) e−βϵaNa( C)+βϵiNi( C), (22)

depends on: (a) Nb(C), the total number of bonded monomer pairs
with corresponding bond fugacity κ; (b) Nc(C), the total number
of chains with corresponding chain fugacity52 η2; (c) Na(C) and

FIG. 1. Schematic illustration of a particular configuration C on the square lat-
tice (d = 2). By assuming periodic boundary conditions (PBC, see text for
details), we have: Nc(C) = 4 chains, Nb(C) = 27 bonds, Na(C) = 14 turns or
angles (marked as blue corners), and Ni(C) = 15 pairs of interacting monomers
(connected by dashed red lines, with two pairs interacting through PBC.

Ni(C), respectively the total number of corners and the total num-
ber of non-bonded monomer pairs separated by one lattice distance.
Again, β = 1/(kBT) is the Boltzmann factor at temperature T and kB
is the Boltzmann constant, and we assume periodic boundary con-
ditions through the hypercubic lattice. Less obviously, we anticipate
here and justify briefly in Sec. III B that closed chains are ruled out
in our field theory. An example illustrating a particular configura-
tion C on the square lattice (d = 2) is shown in Fig. 1. Notice that,
per our definition, the smallest length of a single chain corresponds
to 1 lattice bond.

B. Partition function and field-theoretic
representation

The central quantity of our work, the grand canonical partition
function Z (21), admits a field-theoretic representation.

To show it, the first point consists in devising a method
“to count” the total number of bonds (Nb), chains (Nc), angles
(Na), and non-bonded monomer-monomer pairs (N i) character-
izing each given chain configuration C. To this purpose, we start by
defining the scalar function for the configuration C,

ω C(x⃗) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if lattice position x⃗
is occupied by a monomer

0, otherwise

(23)
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By using the matrix Δ(x⃗, x⃗ ′) [Eq. (4)], we have

Nb(C) +Ni(C) =
1
2∑x⃗,x⃗ ′

Δ(x⃗, x⃗ ′)ω C(x⃗)ω C(x⃗ ′), (24)

and the Hubbard–Stratonovich transformation48,49 of the exponen-
tial of the rhs of Eq. (24) is equivalent to the expression containing
the scalar field ψ = ψ(x⃗)

∫ Dψ exp
⎡⎢⎢⎢⎢⎣
−1

2∑x⃗,x⃗ ′
Δ−1(x⃗, x⃗ ′)ψ(x⃗)ψ(x⃗ ′) +∑

x⃗
ω C(x⃗)ψ(x⃗)

⎤⎥⎥⎥⎥⎦
(25)

with

Dψ ≡ (2π)−N/2 (detΔ)−1/2∏
x⃗

dψ(x⃗). (26)

Then, at each lattice position x⃗ we introduce d distinct n-component
vectors, S⃗μ(x⃗) ≡ (S1

μ(x⃗), S2
μ(x⃗), . . . , Sn

μ(x⃗))with μ = 1, 2, . . . , d, obey-
ing the generalized trace rules:

⟨1⟩0 = 1, (27)

⟨Si
μ⟩0 = 0, (28)

⟨Si
μS j

ν⟩0 = δij[δμν + (1 − δμν)e−βϵa], (29)

⟨Si1
μ1 Si2

μ2 . . . Sik
μk⟩0 = 0, if k ≥ 3. (30)

Again, S-vectors on different sites are independent from each other
under the trace operations just defined.

By using Eqs. (24)–(26) and the discussion in Appendix A,

Z = ∫ Dψ e
− 1

2 ∑
x⃗ ,x⃗ ′

Δ−1
(x⃗,x⃗ ′) ψ(x⃗) ψ(x⃗ ′)

× lim
n→0
⟨∏

x⃗

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1 +H(x⃗)
d

∑
μ=1

S1
μ(x⃗)
⎞
⎠

×
d

∏
μ=1
[1 + h(x⃗)h(x⃗ + êμ) S⃗μ(x⃗) ⋅ S⃗μ(x⃗ + êμ)]

⎫⎪⎪⎬⎪⎪⎭
⟩

0

, (31)

where êμ is the unit lattice vector pointing towards the “+μ”-
direction introduced in Sec. II and

H(x⃗) = η
1 + (d − 1)e−βϵa

e
√

βϵi
2 ψ(x⃗ ),

h(x⃗) =
√
κe−βϵi/2e

√

βϵi
2 ψ(x⃗ ).

Importantly, it must be noticed that Eq. (31) takes into account the
fact that there must be no branching points [owing to the trace def-
initions (27)–(30), any branching point gives a contribution equal
to 0] and no closed loops (from Appendix A, the statistical weight
of any configuration C with k closed-loops is proportional to nk

and so its contribution disappears in the n→ 0 limit). In fact, the

term of Eq. (31) appearing under the limit of n→ 0 can be also
written as

lim
n→0
⟨∏

x⃗

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

1 +H(x⃗)
d

∑
μ=1

S1
μ(x⃗)
⎞
⎠

× exp
⎡⎢⎢⎢⎢⎣

d

∑
μ=1

h(x⃗)h(x⃗ + êμ) S⃗μ(x⃗) ⋅ S⃗μ(x⃗ + êμ)
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
⟩

0

= lim
n→0
⟨∏

x⃗

⎛
⎝

1 +H(x⃗)
d

∑
μ=1

S1
μ(x⃗)
⎞
⎠

× exp
⎡⎢⎢⎢⎢⎣

1
2∑x⃗,x⃗ ′

d

∑
μ=1

Δμ(x⃗, x⃗ ′) h(x⃗)h(x⃗ ′) S⃗μ(x⃗) ⋅ S⃗μ(x⃗ ′)
⎤⎥⎥⎥⎥⎦
⟩

0

,

(32)

since, again because of the trace definitions (27)–(30), in the expan-
sion of the exponential all terms higher than the first are of order n
and they disappear in the n→ 0 limit and where, by analogy with the
matrix Δ [Eq. (4)], we have defined

Δμ(x⃗, x⃗ ′) =
⎧⎪⎪⎨⎪⎪⎩

1, if ∣(x⃗ − x⃗ ′) ⋅ êμ∣ = a,

0, otherwise.
(33)

For expression (31) to be helpful, we have to remove the
dependence on the S⃗-vectors in favor of real fields. To this pur-
pose, we perform a Hubbard–Stratonovich transformation48,49 of
the exponential term of the last line of Eq. (32) containing the
S⃗-vectors,

e
1
2∑x⃗,x⃗ ′∑

d
μ=1Δμ(x⃗,x⃗ ′) h(x⃗)h(x⃗ ′) S⃗μ(x⃗)⋅S⃗μ(x⃗ ′)

= ∫ Dφ e
− 1

2∑x⃗,x⃗ ′∑
d
μ=1Δ

−1
μ (x⃗,x⃗ ′) φ⃗μ(x⃗)⋅φ⃗μ(x⃗ ′)+∑

x⃗
h(x⃗)∑d

μ=1 S⃗μ(x⃗)⋅φ⃗μ(x⃗)
, (34)

where we have introduced the d real vector fields φ⃗μ(x⃗)
(μ = 1, . . . , d) with φ⃗μ(x⃗) ≡ (φ1

μ(x⃗),φ2
μ(x⃗), . . . ,φn

μ(x⃗)) and the cor-
responding measure [see Eq. (26), for analogy]

Dφ ≡ (2π)−ndN/2
d

∏
μ=1
(detΔμ)−n/2∏

x⃗

d

∏
μ=1

dφ⃗μ(x⃗). (35)

Finally by (i) inserting Eq. (34) into Eq. (31) via Eq. (32); (ii)
Taylor-expanding the term containing the φ⃗μ-fields; (iii) applying
the trace definitions (27)–(30) and (iv) noticing that the first two
terms in Eq. (35) give = 1 in the limit n→ 0, one can show that, up
to an unimportant multiplicative constant,

Z = lim
n→0∫ ∏x⃗

dψ(x⃗)∫ ∏
x⃗

d

∏
μ=1

dφ⃗μ(x⃗)

× exp
⎧⎪⎪⎨⎪⎪⎩
−A[{ψ}] −

d

∑
μ=1

Aμ[{φ⃗μ}]

+ ∑
x⃗

ln [1 + e
√
βϵiψ(x⃗ )B[{φ⃗μ(x⃗)}]]

⎫⎪⎪⎬⎪⎪⎭
, (36)
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where we have defined the following functionals:

A[{ψ}] = 1
2∑x⃗,x⃗ ′

Δ−1(x⃗, x⃗ ′)ψ(x⃗)ψ(x⃗ ′), (37)

Aμ[{φ⃗μ}] =
1
2∑x⃗,x⃗ ′

Δ−1
μ (x⃗, x⃗ ′) φ⃗μ(x⃗) ⋅ φ⃗μ(x⃗ ′), (38)

B[{φ⃗μ(x⃗)}] =
κe−βϵi

2

⎡⎢⎢⎢⎢⎣
(1 − e−βϵa)

d

∑
μ=1
∣φ⃗μ(x⃗)∣2 + e−βϵa

⎛
⎝

d

∑
μ=1

φ⃗ μ(x⃗)
⎞
⎠

2⎤⎥⎥⎥⎥⎦

+
√
κηe−βϵi/2

d

∑
μ=1

φ1
μ(x⃗). (39)

Importantly, notice the explicit presence of φ1
μ(x⃗) in Eq. (39). This

is a direct consequence of the fact that, in order to describe a sys-
tem of multiple chains through the O(n→ 0) formalism, it suffices
to introduce an external magnetic field in the spin Hamiltonian.4,35

This field can pick any arbitrary direction: in our derivation, we have
chosen the direction with μ = 1. As a validation of Eqs. (36)–(39),
we report that, in the “single-chain” limit η→ 0, we get back the
original result by Doniach et al.13 for a single semiflexible chain
with non-bonded attractive interactions in the presence of lattice
vacancies.

IV. MEAN-FIELD SOLUTION: SADDLE-POINT
APPROXIMATION

The exact grand canonical partition function Z [Eq. (36)]
is the central result of this work. As for the single chain case
a direct evaluation of Z is not feasible but the field theoretical
formulation [Eq. (36)] is very suitable for its mean field (MF)
treatment.10,13,42

We start by differentiating the exponential in Eq. (36) with
respect to φi

μ(x⃗) andψ(x⃗) and set the obtained expressions equal to 0
in order to get the stationary solution. We further take the solutions
to be homogeneous assuming translational invariance and break the
O(n) symmetry of the vector field so that

φ⃗μ(x⃗) = (φ, 0, . . . , 0), (40)

ψ(x⃗) = ψ, (41)

for every x⃗ and every μ, thus obtaining

φ
2
=

e
√
βϵiψ( κe−βϵi q(β)

2 φ +√κ η e−βϵi/2)

1 + e
√
βϵiψd( κe−βϵi q(β)

4 φ2 +√κ η e−βϵi/2 φ)
, (42)

ψ
2d
=
√
βϵi e

√
βϵiψd( κe−βϵi q(β)

4 φ2 +√κ η e−βϵi/2 φ)

1 + e
√
βϵiψd( κe−βϵi q(β)

4 φ2 +√κ η e−βϵi/2 φ)
, (43)

where13 q(β) = 2 + 2(d − 1)e−βϵa . In terms of the solutions53

φ = φ(κ,η, ϵi, ϵa) and ψ = ψ(κ,η, ϵi, ϵa) of the MF Eqs. (42) and

(43), the grand potential per lattice site (up to unimportant additive
constants) reads

βΩ(κ,η, ϵa, ϵi) =
ψ2

4d
+ dφ2

4
− ln [1 + d e

√
βϵi ψ

× (κe−βϵi q(β)
4

φ2 +
√
κ η e−βϵi/2 φ)]. (44)

Notice that with the ansatz (40) and (41) every dependence upon n
disappears, and thus the limit n→ 0 is trivial.

On setting η = 0, Eqs. (42) and (43) reduce to the ones obtained
in Ref. 13 for the single chain model. In the following, we will thus
solve the saddle-point equations in the case η > 0 that will be then
compared with Monte Carlo simulations (Sec. V) in Sec. VI.

V. MONTE CARLO SIMULATIONS
In order to check the validity of the MF approximation as

well as to assess its limits, we have performed Metropolis54 grand
canonical Monte Carlo (GCMC) computer simulations of the lattice
model (Sec. III) on the three-dimensional cubic lattice. Essentially,
the goal of the GCMC simulations is to obtain a representative sam-
ple of polymer configurations in agreement with the grand canonical
partition function (21).

The implementation of our algorithm is relatively straightfor-
ward, and it works as the following. As explained in Sec. III, the
Boltzmann weight w [see Eq. (22)] of each polymer configuration C
in the ensemble is a function of the total number of bonds [Nb(C)],
distinct chains [Nc(C)], turns [Na(C)] and pairs of non-bonded
nearest-neighbor monomers [Ni(C)]. Therefore, at each MC step
one single bond is randomly inserted in or removed from the lattice,
provoking a change of the configuration C0 to the configuration C1.
In order to enforce the condition of detailed balance, we accept54 the
new conformation with probability given by the expression:

acc(C0 → C1) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

min{1,
d
ϕb,1

w(κ, η, ϵa, ϵi; C1)

w(κ, η, ϵa, ϵi; C0)
} (bond inserted),

min{1,
ϕb,0

d
w(κ, η, ϵa, ϵi; C1)

w(κ, η, ϵa, ϵi; C0)
} (bond removed),

(45)
where ϕb,0 (respectively, ϕb,1) is the bond density [see Eq. (46)]
of the configuration C0 (resp., C1). Whenever the insertion of a
new bond leads to a forbidden configuration (e.g., for the pres-
ence of branching points or closed loops), the move is automatically
discarded.

In order to check for finite-size effects, we have performed pre-
liminary calculations and compared corresponding results for lattice
sizes L/a = 4, 8, 16. This analysis indicates that for L/a ≥ 8 the results
do not change significantly with the lattice size and hence we will
fix L/a = 8 in all calculations henceforth. This guarantees a good
compromise between computational efficiency and accuracy.

For each chosen pair of (κ,η) values, we have led a simulation
run consisting of 107 MC steps. Then, for each GCMC trajectory, a
standard block analysis procedure55 has been carried out in order
to estimate uncertainties on the considered physical observables.
Every trajectory has been checked individually in order to make
sure that all the curves obtained from corresponding block analy-
ses and representing the MC-time evolution of the distinct quantities
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have completely equilibrated. This procedure has been applied to the
number of bonds, the number of chains and the internal energy of
the system.

VI. MEAN-FIELD SOLUTION VS MONTE CARLO
SIMULATIONS

From our mean-field estimate of the grand potential, Eq. (44),
we can compute:

● The bond density,

ϕb ≡
⟨Nb⟩

N
= −βκ∂Ω(κ,η, ϵi, ϵa)

∂κ
= d

4
φ2; (46)

● The chain density,

ϕc ≡
⟨Nc⟩

N
= −βη

2
∂Ω(κ,η, ϵi, ϵa)

∂η

= d
2

e
√
βϵi ψ√κ η e−βϵi/2 φ

1 + d e
√
βϵiψ( κe−βϵi q(β)

4 φ2 +√κ η e−βϵi/2 φ)
; (47)

● The total monomer density,

ϕ ≡ ϕb + ϕc =
1√
βϵi

ψ
2d

. (48)

In the rest of this section, we specialize the saddle-point
Eqs. (42) and (43) to various particular cases and compare
the corresponding results to Monte Carlo simulations in
d = 3.

A. Case ϵa = ϵi = 0
The simplest case to be considered is the case of non-interacting

(still non-overlapping) flexible chains with no bending penalty nor
monomer-monomer attractive interactions. In spite of its simplicity,
this case proves to be rather instructive. In this case Eqs. (42) and
(43) read

φ
2
= κd φ +√κ η

1 + d( κd
2 φ2 +√κ η φ)

, (49)

ψ
2d
= 0. (50)

The only relevant field is thus φ and, since it satisfies the simple
cubic Eq. (49), in principle three (real) solutions can be possi-
ble. However two additional constraints identify the only accept-
able solution. First, the argument of the logarithm in Eq. (44)
[i.e., the denominator in Eq. (49)] must be strictly >0. Second,
the chain density [Eq. (47)] must satisfy the inequality 0 ≤ ϕc
≤ 1/2. In Appendix B we provide evidence that, for every κ ≥ 0 and
η > 0, there exists one and only one such solution φ > 0 which is a
continuous function of the parameters. This solution can then be
inserted in Eqs. (46) and (47) to obtain the bond and chain density,
ϕb and ϕc.

FIG. 2. ϵa = ϵi = 0. Bond density ϕb (a) and chain density ϕc (b) as a function of
the bond fugacity κ and for chain fugacities η = 0.2 (blue) and η = 1.5 (red). Solid
lines and symbols are, respectively, for the MF solution and the GCMC computer
simulations.

MF calculations for the bond and chain density, ϕb and ϕc, as
a function of the bond fugacity κ and for two representative chain
fugacities η = 0.2 (small) and η = 1.5 (large) are shown as solid lines
in Fig. 2 [panels (a) and (b), respectively] and compared to cor-
responding GCMC simulations (symbols). The nearly quantitative
agreement between the MF calculations and the GCMC simulations
is remarkable, thus validating our MF approach.

One striking feature of the bond density curves [see Fig. 2(a)]
is that they intersect at a certain κ = κ∗, such that ϕb(κ

∗) ≃ 0.5.
Although odd at first sight, this behaviour can be simply rational-
ized as the following. When ϕb < 0.5 it is likely that the insertion of
a new bond will also lead to the creation of a new chain. Thus, for
κ < κ∗, the bond density increases faster for larger values of η [red
curve in Fig. 2(a)] than for smaller values of η (blue curve) because
configurations with a larger number of chains are more favoured.
Conversely, when ϕb > 0.5 once a new bond is inserted it will link
two different chains, thus reducing their total number. Under these
conditions, for κ > κ∗ the bond density increases faster for smaller
values of η (blue curve) than for larger ones (red curve). A further
support to this interpretation also stems by the fact that the chain
density [Fig. 2(b)] has a maximum at κ ≃ κ∗.

It also proves instructive to derive simple analytical expressions
for ϕb and ϕc in the limit κ≫ 1. In this regime, Eq. (49) depends
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only on one parameter, namely the ratio η/√κ, and has the following
solutions

φ ≃

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
4
d
− 1

2d
η√
κ

, if
η√
κ
≪ 1

√
2
d
+
√

d
8

√
κ
η

, if
η√
κ
≫ 1

(51)

By plugging these results into the expressions for ϕb [Eq. (46)] and
ϕc [Eq. (47)] we find

ϕb ≃

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − 1
2
√

d
η√
κ

, if
η√
κ
≪ 1

1
2
+
√

d
8

√
κ
η

, if
η√
κ
≫ 1

(52)

and

ϕc ≃

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2
√

d
η√
κ

, if
η√
κ
≪ 1

1
2
−
√

d
8

√
κ
η

, if
η√
κ
≫ 1

(53)

For κ≫ 1 the monomer density ϕ = ϕb + ϕc is always ≃ 1. However,
there are two different scenarios: if η/√κ≪ 1 then ϕb/ϕc ≫ 1, i.e.,
the number of chains is very low, but on average they are very long.
On the other hand, if η/√κ≫ 1 then ϕb/ϕc ≃ 1, that is the number
of chains is large but they are all essentially formed by one single
bond, in agreement with previous interpretation.

B. Case ϵa > 0, ϵi = 0
With only the contribution of the bending penalty but no

monomer-monomer attractive interactions, Eqs. (42) and (43) read

φ
2
=

κq(β)
2 φ +√κη

1 + d( κq(β)
4 φ2 +√κη φ)

, (54)

ψ
2d
= 0. (55)

It is easy to see that this is the same situation of Sec. VI A
with renormalized fugacities κ→ κq(β)/2d and η→ η

√
2d

q(β) . Since
2 ≤ q(β) ≤ 2d, introducing a non-zero bending stiffness leads ulti-
mately to a lower effective bond fugacity and a larger effective
chain fugacity. Hence, as seen in Sec. VI A, again we have only
one acceptable solution which is a continuous function of the
parameters.

By fixing the bending stiffness to the convenient value ϵa = kBT,
MF calculations for the bond and chain density, ϕb and ϕc, as a
function of the bond fugacity κ and for chain fugacities η = 0.2 and
η = 1.5 are shown as solid lines in Fig. 3 [panels (a) and (b),
respectively] and compared to corresponding GCMC simulations
(symbols). As in previous Sec. VI A, the agreement between MF
calculation and GCMC simulations is remarkable.

In principle, here one would have expected an isotropic-to-
nematic transition which would be observable as a singularity in the
average “angle” density, ϕa. However, due to the fact that the only
contribution of the bending stiffness is to renormalize the fugac-
ities, our MF treatment does not display the appearance of such

FIG. 3. ϵa/kBT = 1, ϵi = 0. Bond density ϕb (a) and chain density ϕc (b) as a
function of the bond fugacity κ and for chain fugacities η = 0.2 (blue) and η = 1.5
(red). Solid lines and symbols are as in Fig. 2.

FIG. 4. ϵa/kBT = 1, ϵi = 0. Angle density ϕa as a function of the bond fugacity κ
and for chain fugacities η = 0.2 (blue) and η = 1.5 (red). Solid lines and symbols
are as in Fig. 2.

transition. This is made evident in Fig. 4 where we show the aver-
age angle density as obtained in the MF approximation [solid lines,
see formula (64)] in favorable comparison to the results of GCMC
simulations (symbols).
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C. Case ϵa = 0, ϵi > 0
This is the complementary case of previous one, where

monomer-monomer attraction is present but there is no bending
penalty. In this case, Eqs. (42) and (43) read

φ
2
= e

√
βϵiψ(κe−βϵi d φ +√κ η e−βϵi/2)

1 + e
√
βϵiψd( κe−βϵi d

2 φ2 +√κ η e−βϵi/2 φ)
, (56)

ψ
2d
=
√
βϵi e

√
βϵiψd( κe−βϵi d

2 φ2 +√κ η e−βϵi/2 φ)

1 + e
√
βϵiψd( κe−βϵi d

2 φ2 +√κ η e−βϵi/2 φ)
. (57)

which do not admit a simple closed solution for ψ as in the
previous cases. Hence these equation have to be solved numer-
ically with the two constraints discussed in Sec. VI A plus the
condition 0 ≤ ϕ ≤ 1, that implies 0 ≤ ψ ≤ 2d

√
βϵi, for the total

monomer density ϕ [Eq. (48)]. Interestingly, in this case one finds
that there are multiple acceptable solutions for this system, and
hence the most stable solution corresponds to that minimizing
the grand potential Ω [Eq. (44)]. In particular, this leads to the

FIG. 5. ϵa = 0, ϵi/kBT = 1. Bond density ϕb (a) and chain density ϕc (b) as
a function of the bond fugacity κ and for chain fugacities η = 0.15 (blue) and
η = 0.25 (red). The discontinuity predicted by MF calculations (lines) is confirmed
by GCMC simulations (symbols), yet the critical value of κ is slightly different
between theory and simulations.

appearance of discontinuities in ϕb and ϕc (see Appendix C for
details).

In fact, by fixing the monomer-monomer interaction to the
convenient value ϵi = kBT, MF calculations for the bond and chain
density, ϕb and ϕc, as a function of the bond fugacity κ and for chain
fugacities η = 0.15 and η = 0.25 are shown as solid lines in Fig. 5
[panels (a) and (b), respectively] and compared to corresponding
GCMC simulations (symbols). In both panels one can easily dis-
tinguish two different phases, with both densities acting as order
parameters. In the first (gas-like) phase, the total monomer density
ϕ = ϕb + ϕc is close to 0 and ϕb/ϕc ≃ 1. This is valid up to some crit-
ical value κcr above which ϕ is close to 1 and ϕb/ϕc > 1 (liquid-like
phase).

By varying systematically the parameters βϵi and η, we have
extracted each corresponding critical value κcr through the numer-
ical solution of the coupled Eqs. (56) and (57). Three illustrative
“coexistence” lines corresponding to the values βϵi = 0.75, 1.00
and 1.25 are shown in panel (a) of Fig. 7 (solid lines). Similarly
[panel (b), filled symbols], we have determined the values of the
total monomer density ϕ [Eq. (48)] at the coexistence by varying
βϵi systematically and for the two representative fugacity values
η = 0.1 and η = 0.3. We will discuss these results in full fledged way
in Sec. VIII.

D. Case ϵa > 0, ϵi > 0
When both the attractive monomer-monomer interaction and

bending stiffness are non-zero, we need to solve the complete system
of Eqs. (42) and (43). Again, the strategy is the same as in Sec. VI B:
renormalizing the fugacities [κ→ κq(β)/2d and η→ η

√
2d

q(β) ] to
absorb the terms accounting for the bending stiffness and obtain
a system of equations which is equivalent to that presented in
Sec. VI C. The general behavior of the solutions will thus be exactly
the same (and, so, the discontinuities in ϕb and ϕc) as for a system
with no bending stiffness, the only difference being in the changing
of the coexistence line between the two phases in the (κ,η)-plane,
depending on the value of ϵa.

By fixing again the bending stiffness and the monomer-
monomer interaction to the values ϵa = ϵi = kBT, MF calculations
for the bond and chain density, ϕb and ϕc, as a function of the bond
fugacity κ and for chain fugacities η = 0.15 and η = 0.25 are shown
as solid lines in Fig. 6 [panels (a) and (b), respectively] and com-
pared to corresponding GCMC simulations (symbols). As expected,
GCMC simulations confirm MF calculations and we can distin-
guish once again the gas (ϕ = ϕb + ϕc ≈ 0) and liquid (ϕ ≈ 1) phases.
Finally, analogously to Sec. VI C, we produce examples of coex-
istence and gas-liquid transition lines, see panel (a) [dashed lines,
different colors are for different ϵi (see caption)] and panel (b)
[empty symbols, different colors are for different η (see caption)]
of Fig. 7.

VII. CONNECTIONS TO THE FLORY-HUGGINS
THEORY OF MIXING

It turns out that it is possible to obtain some information on the
system even without directly solving Eqs. (42) and (43). As we are
interested in the free energy rather than in the grand potential, we
perform a Legendre transform in order to have a dependence upon
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FIG. 6. ϵa/kBT = ϵi/kBT = 1. Bond density ϕb (a) and chain density ϕc (b) as
a function of the bond fugacity κ and for chain fugacities η = 0.15 (blue) and
η = 0.25 (red). As in the case with no bending stiffness (Fig. 5), the discontinu-
ity predicted by MF calculations (lines) is apparent and its presence is confirmed
by GCMC simulations (symbols). Again, the critical value for κ is quantitatively
different between theory and simulations.

ϕc and ϕb. To this aim, we need to be able to express κ and η in terms
of these densities.

Making use of Eqs. (46) and (47), and without an explicit
derivation of the solutions for φ and ψ, one can express the fugacities
η and κ in terms of ϕb and ϕc as:

η =
√

q(β) ϕc e−dβϵi(ϕb+ϕc)

√
d (1 − ϕb − ϕc) (ϕb − ϕc)

, (58)

κ = (ϕb − ϕc) eβϵi

q(β) ϕb (1 − ϕb − ϕc) e2dβϵi(ϕb+ϕc)
. (59)

This allows us to compute the reduced free energy per site

β f = βΩ + ϕb ln κ + 2ϕc ln η (60)

where it is clear that f depends on both, ϕb and ϕc. How-
ever, it is more convenient to express it in terms of ϕ and

FIG. 7. (a) Coexistence lines between the gas phase and the liquid phase in the (κ,
η)-plane. Solid lines correspond to ϵa = 0, whereas dashed lines are for ϵa/ϵi = 1.
Lines colors blue, green and red are for ϵi/kBT = 0.75, 1.00 and 1.25, respectively.
Below the coexistence line the system is in the gas phase (ϕ ≃ 0), whereas above
the coexistence line it is found in the liquid phase (ϕ ≃ 1). (b) Gas-liquid transition
in the [ϕ, 1/(βϵi)]-plane. Above the critical point, the system is in a single homo-
geneous gas phase. Below the critical point, the system phase-separate in a gas
phase coexisting with a liquid phase, and the figure display the coexistence (bin-
odal) line. Symbols colors blue and red are for η = 0.1 and η = 0.3, respectively.
Filled symbols correspond to ϵa = 0, whereas empty symbols are for ϵa/ϵi = 1.
For each data set the relative grey symbol marks the value of the corresponding
“critical” temperature (letters “C” and “C′”), with grey lines used for guiding the eye.

ℓ̄ = ϕ/ϕc (i.e., a measure of the average number of monomers per
chain):

β f = −d βϵi ϕ2 + (1 − ϕ) ln (1 − ϕ)

+ ϕ{1
ℓ̄

ln ϕ − (1 − 2
ℓ̄
) ln(q(β)

e
) + (1 − 1

ℓ̄
)βϵi

+(1 − 2
ℓ̄
) ln( ℓ̄ − 2

ℓ̄ − 1
) − 1

ℓ̄
ln(d ℓ̄ (ℓ̄ − 1)

e
)}, (61)

where e = 2.718 28 . . . is the Euler’s number. Equation (61) is a key
result of our mean-field analysis. Notice that, since in our model
the minimum length of a chain is defined to be = 1 bond (i.e., 2
monomers), it must be ℓ̄ ≥ 2.
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Now that we have a mean-field estimate of the free energy, we
employ Eq. (61) and compute the internal energy U of the system:

U
N
= ∂β f

∂β
= ⟨Ni⟩

N
(−ϵi) +

⟨Na⟩
N

ϵa. (62)

where

⟨Ni⟩
N
= dϕ2 − ϕ(1 − 1

ℓ̄
), (63)

⟨Na⟩
N
= q(β) − 2

q(β) (1 − 2
ℓ̄
)ϕ. (64)

Equations (63) and (64) bear interesting physical interpretations. Let
us first discuss Eq. (63). Within our mean-field approach the num-
ber of interactions per lattice site ⟨Ni⟩

N is not guaranteed to be always
non-negative. From Eq. (63) in fact, we readily see this to be true
only when ϕ ≥ 1

d(1 −
1
ℓ̄
). On the other hand, in the limiting case

ϕ = 1, it is easy to check that the density of interactions is exactly
that predicted by Eq. (63), namely d − (1 − 1/ℓ̄). Also, the interac-
tion density is a decreasing function of the average chain length, as
it should be since the interaction is only between non-consecutive
nearest neighbour monomers. Then we focus on Eq. (64), noticing
that the density of angles is linear in ϕ and the value of the bending
rigidity can only modify the corresponding proportionality constant.
From the dependence of Eq. (64) on the number of monomers per
chain ℓ̄, we see that: (i) if ℓ̄ = 2 (i.e., all chains consist of 1 bond only)
the total number of angles is = 0, as expected; (ii) increasing ℓ̄ leads to
a larger number of angles; (iii) the proportionality constant between
the angle density and ϕ is less than 1 for every value of βϵa and ℓ̄, as
it should.

Further insights can be obtained by comparing our results with
past work by Flory who also derived a statistical thermodynamics
theory for semiflexible chain molecules on a lattice using combi-
natorial arguments.33 A central quantity of his theory is the mean
bending degree of the chain,

gF =
2(d − 1)e−βϵa

1 + 2(d − 1)e−βϵa
, (65)

which results to be independent of the concentration. The same
quantity can be computed [by using Eq. (64)] within our approach
as well, i.e.,

g = ⟨Na⟩
N

1
ϕc(ℓ̄ − 2) =

(d − 1)e−βϵa

1 + (d − 1)e−βϵa
, (66)

is the average monomer fraction where the polymer chain displays
a turn. As a direct consequence of Eq. (64), our estimate of g is also
independent of the concentration ϕ, in agreement with Flory. This
means that the degree of bending is only dependent on the temper-
ature, irrespective of whether the chain is in a melt or in a dilute
solution.56

Note that a comparison between the two estimates gives g < gF .
On the other hand we can also argue that gF is clearly overestimat-
ing the true value because it means that at each position along the
chain, the possible directions available to make a turn are always
2(d − 1), thereby not accounting for the long-range correlations due

to self-avoidance. By contrast, Eq. (66) implies that the number of
possible directions to make a turn at each step along the chain is
on average d − 1, thus effectively accounting for possible long-range
correlations induced by self-avoidance.

As both estimates Eqs. (65) and (66) are independent of the
concentration as remarked, it seems not plausible that it may act
as an order parameter for a phase transition. Nevertheless, Flory
postulates the existence of a phase-separated, ordered state (g = 0)
also at T > 0, and assumes that the entropy of such state is 0. He
then proceeds in computing the free energy difference between the
latter and a completely mixed, disordered state (g ≠ 0), the free
energy of which is computed within the same mean-field theory.
He then verifies a posteriori that there exists a critical temper-
ature below which the ordered state is thermodinamically more
stable. The premise that the entropy of the ordered state is 0 is
crucial for the derivation of Flory, and it is ultimately this assump-
tion that leads to the appearance of a critical temperature, corre-
sponding to a first-order phase transition. Later studies by Gujrati
and co-workers36,38,40 were however able to derive an exact lower
bound for the entropy of a system of self-avoiding chains on a
lattice that was found to be strictly positive at any temperature
T > 0, therefore proving that a completely ordered state cannot exist
unless T = 0.

Another interesting point is related to the free energy difference
between a mixed and a phase separated state at the same temper-
ature and, therefore, at the same g. This free energy difference is
calculated as

Δ f (ϕ, ℓ̄) = f (ϕ, ℓ̄) − ϕ f (1, ℓ̄) − (1 − ϕ) f (0, ℓ̄) (67)

By using Eq. (61), we get

βΔ f (ϕ, ℓ̄) = d βϵi ϕ(1 − ϕ) +
1
ℓ̄
ϕ ln ϕ + (1 − ϕ) ln (1 − ϕ), (68)

which is essentially identical to the result of the Flory–Huggins (FH)
model.6,33,47,57

Equation (68) deserves some comments. The energetic term
in the original FH model6,57 also includes a (Flory) parameter
accounting for the polymer-solvent and the solvent-solvent inter-
action. Within our field theory, it is not difficult to account too
for the polymer-solvent interactions by modifying Eq. (39) as
follows

B[{φ⃗μ(x⃗)}] =
κe−2(d−1)βϵms e−βχ

2

×
⎡⎢⎢⎢⎢⎣
(1 − e−βϵa)

d

∑
μ=1
∣φ⃗μ(x⃗)∣2 + e−βϵa

⎛
⎝

d

∑
μ=1

φ⃗ μ(x⃗)
⎞
⎠

2⎤⎥⎥⎥⎥⎦

+
√
κ η e−(2d−1)βϵms e−βχ/2

d

∑
μ=1

φ1
μ(x⃗). (69)

In Eq. (69), we have introduced ϵms as the interaction parameter
between monomer and solvent and we have replaced ϵi with the
combination χ = βϵi + 2βϵms, which closely resembles the so called
Flory parameter in the original FH formulation.6,57 By repeating
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the exact same procedure of Sec. IV and by performing the same
Legendre transform already discussed in this section, one finds

βΔ f (ϕ, ℓ̄) = dχϕ(1 − ϕ) + 1
ℓ̄
ϕ ln ϕ + (1 − ϕ) ln (1 − ϕ), (70)

where now the energetic term includes also an explicit polymer-
solvent interaction.

Beyond their formal resemblance, it must be also stressed that
Eq. (70) is more general than the original FH theory, since it includes
also the case when the system is polydisperse. The monodisperse
limiting case is selected when dividing by the average chain length
ℓ̄ in the second term. Finally, it is evident from Eq. (70) that Δ f
does not depend on ϵa. Although this may appear surprising at a
first sight, it is a natural consequence of the fact that all the terms
featuring the bending stiffness are linear in ϕ, therefore they dis-
appear when one computes the free energy variation as defined
in Eq. (67).

VIII. DISCUSSION AND CONCLUSIONS
The goal of the present study was to shed some light on the

challenging problem of predicting the phase behavior of a system of
interacting semiflexible polymers in solution because of its impor-
tant consequences on protein aggregations58,59 as well as on polymer
crystallization.9

To this aim, we made the following approximations. First,
we work with implicit solvent where both intrachain and inter-
chain interactions display a short-range attraction mimicking the
effect of the solvent. Second, we work on a d-dimensional lattice
where these attractive energies are taken to be equal and acting
only between non-consecutive nearest-neighbours chain points, and
bending rigidity is represented by an energy penalty attributed on
each turn of a chain. Hence the system of interacting semiflexible
polymers is represented by a system of self-avoiding walks where
each turn is penalized and each nearest-neighboring occurrence is
rewarded. Finally, we constructed a field theory representation of
this system and solved it within a mean-field approximation. Specif-
ically, we have derived a mean-field solution of the grand potential
Ω(κ,η, ϵa, ϵi) of the system [Eq. (44)] obtained by making use
of a field-theoretical representation based on the polymer-magnet
analogy [O(n→ 0)-model4,13,34].

By solving the saddle point Eqs. (42) and (43), we have deduced
the bond [Eq. (46)], chain [Eq. (47)] and, hence, monomer [Eq. (48)]
density as a function of the parameters of the model. A discontinuity
appears only (Secs. VI C and VI D) for non-zero attractive inter-
action between non-consecutive nearest-neighbouring monomers
where there is an abrupt shift in the total monomer density ϕ
(taken here as the order parameter) from a gas phase (ϕ ≃ 0) to a
liquid-like phase (ϕ ≃ 1). Notably, Grand Canonical Monte Carlo
simulations of the lattice model were found in very good agree-
ment with (and, hence, confirm) the mean-field results. Notice that a
similar gas-liquid transition was observed also in previous MC sim-
ulations of multi-chain systems16,17 and in experiments.9 Last but
not least, our theory predicts (Sec. VII) that the free energy varia-
tion upon mixing has a Flory–Huggins-like form, yet our result is
slightly more general as it accounts for the situation where the sys-
tem remains polydisperse. Otherwise, since each contribution to the
free energy depending on the bending stiffness is linear in ϕ, the

free energy variation upon mixing is independent of the bending
stiffness.

In principle, different transitions might be expected.17 First, a
gas-liquid transition from a low density to a high density phase.
Second, a isotropic-nematic transition from a randomly oriented
isotropic phase to a phase where the stiffness induces an overall ten-
dency to align along a common director. Finally, a coexistence of
these two might also be present as the isotropic-nematic transition
can be located either on the high-density (liquid) side of the gas-
liquid transition for small stiffness, or on the low-density region of
the low-density (gas) side for sufficiently stiff chains. Triple points
then might also be present.

Quite surprisingly, the bending rigidity plays no role in our
theory, its effect being to renormalize the bond and chain fugacity
in apparent contradiction with numerical simulations17 predicting
instead the liquid phase to be nematic. The origin of this discrep-
ancy is likely to be ascribed to the fact that within our approach
chains are polydisperse, and polydispersity is known to destabilize
the isotropic-nematic transition.60

Our approach extends previous mean-field analysis for a sin-
gle chain13 to multi-chain systems by accounting, in an intuitive
and transparent manner, for all the fundamental ingredients of
polymer solutions (chain connectivity, bending stiffness, monomer-
monomer interactions, role of dilution). While few mean-field the-
ories do exist in the literature for multi-chain systems,33,35,37,41 none
of them considered the general approach proposed here. Overall, we
trust that our theory will provide a guidance toward more dedicated
approaches dealing with specific cases. For instance, a recent study61

discussed the possibility of tailoring the conditions for observing the
folding of a double helix from the self-folding of a single semiflexible
polymer. Providing a guidance for navigating in the large parameter
space that is usually required for such investigations would prove an
invaluable tool.
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APPENDIX A: DERIVATION OF EQ. (9)

In order to demonstrate Eq. (9), we start by characterizing
first the consequences of the geometrical average Eq. (7) and, in
particular, of the quadratic form [Eq. (8)] of the corresponding
moment-generating function in the limit n→ 0. For instance, it is
easy to see that the m-th moment of the spin component Si,

lim
n→0
⟨(Si)m⟩Ω = lim

n→0

∂m

∂(φi)m ⟨e
S⃗ ⋅φ⃗ ⟩Ω∣

φ⃗=0
, (A1)

is different from 0 only if m = 0 or m = 2. Similarly, the moment
containing different components

lim
n→0
⟨SiSj⟩Ω = lim

n→0

∂

∂φi
∂

∂φj ⟨e
S⃗ ⋅φ⃗ ⟩Ω∣

φ⃗=0
(A2)

gives δij. To summarize, given the previous two equations it is not
difficult to see that in the limit n→ 0, the geometrical average Eq. (7)
has the following properties:

⟨1⟩Ω = 1, (A3)

⟨Si⟩Ω = 0, (A4)

⟨SiSj⟩Ω = δij , (A5)

⟨Si1 Si2 . . . Sik⟩Ω = 0, if k ≥ 3. (A6)

We focus now on Eq. (9). By using the expression for the lattice
Hamiltonian Eq. (5) we have:

lim
n→0
⟨e−βH⟩Ω = lim

n→0
⟨∏

x⃗

d

∏
μ=1
(1 + JS⃗(x⃗) ⋅ S⃗(x⃗ + êμ)

+ J2

2
(S⃗(x⃗) ⋅ S⃗(x⃗ + ê μ))2)⟩

Ω
. (A7)

It is, in fact, sufficient to stop at the second term in the expansion
because of the property Eq. (A6), or every term in which a spin at a
given site appears more than twice gives contribution = 0.

Interestingly, we can assign the following meaning to each of
the terms in Eq. (A7):

● The term 1 corresponds to an empty site;
● The term S⃗(x⃗) ⋅ S⃗(x⃗ + êμ) corresponds to a bond connecting

sites x⃗ and x⃗ + êμ;
● The term (S⃗(x⃗) ⋅ S⃗(x⃗ + ê μ))2 correspond to a two-step

closed loop between sites x⃗ and x⃗ + êμ.

Let us consider the particular bond configuration depicted in panel
(a) of Fig. 8. The corresponding term is

J4
⟨(S⃗(x⃗2) ⋅ S⃗(x⃗6)) (S⃗(x⃗6) ⋅ S⃗(x⃗7)) (S⃗(x⃗2) ⋅ S⃗(x⃗3)) (S⃗(x⃗3) ⋅ S⃗(x⃗7))⟩Ω

= J4
∑

i1 ,i2 ,i3 ,i4

⟨Si1(x⃗2)S
i1(x⃗6) Si2(x⃗6)S

i2(x⃗7) Si3(x⃗2)S
i3(x⃗3) Si4(x⃗3)S

i4(x⃗7)⟩Ω

(A8)

that, since spins on different sites are independent under the
geometrical average ⟨⋅⟩Ω, can be factorized as

J4 ∑
i1 ,i2 ,i3 ,i4

⟨Si1(x⃗2)Si3(x⃗2)⟩Ω ⟨Si1(x⃗6)Si2(x⃗6)⟩Ω

× ⟨Si3(x⃗3)Si4(x⃗3)⟩Ω ⟨Si2(x⃗7)Si4(x⃗7)⟩Ω. (A9)

It is now easy to realize that, in order for this term to be non-zero,
the only possibility is to take i1 = i2 = i3 = i4 = i, leading to the result:

J4
n

∑
i=1

1 = nJ4. (A10)

It is not difficult to extend this result and conclude that every possi-
ble self-avoiding loop of k steps will appear in the expansion with a
weight nJk. Let us now consider an open chain as, for instance, the
one in panel (b) of Fig. 8 corresponding to the term:

J3⟨(S⃗(x⃗2) ⋅ S⃗(x⃗6)) (S⃗(x⃗2) ⋅ S⃗(x⃗3)) (S⃗(x⃗3) ⋅ S⃗(x⃗7))⟩Ω
= J3 ∑

i1 ,i2 ,i3

⟨Si1(x⃗2)Si1(x⃗6) Si2(x⃗2)Si2(x⃗3) Si3(x⃗3)Si3(x⃗7)⟩Ω
(A11)

Again, we can factorize

J3 ∑
i1 ,i2 ,i3

⟨Si1(x⃗2)Si2(x⃗2)⟩Ω ⟨Si2(x⃗3)Si3(x⃗3)⟩Ω ⟨Si1(x⃗6)⟩Ω ⟨Si3(x⃗7)⟩Ω.

(A12)
Notice that, since the spins in positions x⃗6 and x⃗7 appear only once,
because of the trace properties (A3)–(A6) the weight of this config-
uration is = 0. We conclude then, that a single-chain configuration
has non-zero weight if and only if each spin (i.e., each lattice site)
appears exactly twice or does not appear at all, in other words if the
configuration corresponds to a self-avoiding closed loop. Finally, let
us consider the last scenario illustrated in panel (c) of Fig. 8, namely
two disjointed loops. The corresponding contribution to the parti-
tion function has a similar form as of Eq. (A9), with eight occupied
lattice sites instead of 4 and where again each lattice sites appears
exactly twice. One can easily check that, of the eight component
indices, only the indices of spins belonging to the same connected
part of the configuration need to be equal in order for the term to
give a non-zero contribution. In turns, this leads to the following
contribution to the partition function:

J8
n

∑
i,j=1

1 = n2J8. (A13)

More in general, configurations with k disconnected loops have a
weight proportional to nk. This concludes the proof of Eq. (9).

Let us now see briefly why the definitions (15)–(18) lead directly
to the enumeration of Hamiltonian paths. The crucial point is that
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FIG. 8. Examples of some possible configurations on the 2d square lattice. (a) A
single closed loop. (b) An open chain. (c) A configuration made of two disjointed
closed loops.

⟨1⟩0 = 0. Since spins on different sites are independent under the
trace operation, the only non-zero terms in Eq. (A7) are those
where every spin appears exactly twice. Based on the previous dis-
cussion, it is easy to see that such terms correspond to Hamiltonian
closed paths. Again, these terms will have a weight proportional
to n.

To conclude, we discuss briefly the trick to count multiple open
chains instead of single closed loops. The basic idea is to introduce an

external magnetic field in an arbitrary direction in the O(n)-model
Hamiltonian. Let us denote by H the external magnetic field along
the direction 1. The expansion of ⟨e−βH⟩Ω can be truncated at

lim
n→0
⟨∏

x⃗
(1 +HS1(x⃗))∏d

μ=1(1 + JS⃗(x⃗) ⋅ S⃗(x⃗ + êμ))⟩
Ω

. (A14)

The term HS1(x⃗) now corresponds to the presence of a chain end
located at site x⃗. Thus, for instance, the configuration of Fig. 8(b)
would be described by the term

H2J3⟨S1(x⃗6) (S⃗(x⃗6) ⋅ S⃗(x⃗2)) (S⃗(x⃗2) ⋅ S⃗(x⃗3))
× (S⃗(x⃗3) ⋅ S⃗(x⃗7)) S1(x⃗7)⟩Ω. (A15)

Notice that now, with the introduction of the external field, each spin
appears exactly twice and, therefore, the weight of the configuration
is non-zero. By proceeding with the factorization we get

H2J3 ∑
i1 ,i2 ,i3

⟨S1(x⃗6)Si1(x⃗6)⟩Ω ⟨Si1(x⃗2)Si2(x⃗2)⟩Ω

× ⟨Si2(x⃗3)Si3(x⃗3)⟩Ω ⟨Si3(x⃗7)S1(x⃗7)⟩Ω. (A16)

The fact that the component 1 appears now explicitly determines
a crucial difference with respect to the previous cases: in order for
this term to be non-zero, all the component indices must be equal
to 1, i.e., the direction of the external magnetic field. Therefore, only
one term in the summation survives and the weight of the configu-
ration is simply H2J3, i.e., it is of order n0. It can be easily checked
with the same type of calculations that the weight of a configurations
with p chains and k total bonds is H2pJk. Once again, the weight of
configurations consisting of closed loops remains non-zero and of

FIG. 9. Two possible scenarios for the function p(φ) in Eq. (B1). In the first sce-
nario (blue line) p(φ) is monotonically increasing, whereas in the second one
(orange line) a local maximum and a local minimum appear. In both situations, the
curve intersects the positive φ-semiaxis once and only once.
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FIG. 10. Numerical solutions (large dots) for the system of Eq. (C1) (solid lines) and Eq. (C2) (dashed lines) in the physically admissible interval φ ∈ [0,
√

4/d] [see Eq. (46)]
for d = 3, η = 0.15 and ϵi/kBT = 1 (see Sec. VI C and Fig. 5) and four representative values of the bond fugacity κ [see legends, notice the “critical” value κcr of panel (c)].
The corresponding values for the grand potential per lattice site βΩ [Eq. (44)] are also shown.

order n. Therefore, in the limit n→ 0, we account for only those
configurations with no contribution from closed loops.

APPENDIX B: SOLUTIONS OF EQ. (49) FOR η > 0

By noticing that the denominator on the rhs of the saddle-point
Eq. (49) is equal to the argument of the logarithm in the grand poten-
tial (44) and, therefore, it must be strictly positive, we may rearrange
the (49) in the cubic form:

p(φ) ≡ d2κ
4
φ3 + d

√
κ η

2
φ2 + (1

2
− dκ)φ −

√
κη = 0. (B1)

Then we notice that the coefficient of the cubic term is positive,
so p(φ→ −∞)→ −∞ and p(φ→ +∞)→ +∞, while p(0) ≤ 0. In
order to gain some insight on the possible solutions of (B1), we study
the first derivative of p(φ) with respect to φ,

p′(φ) = 3d2κ
4

φ2 + d
√
κ η φ + (1

2
− dκ). (B2)

By setting p′(φ) = 0, only two scenarios are possible (see Fig. 9):

● If η <
√

3
2 and κ < 1

d(
1
2 −

η2

3 ) then p(φ) is a monotonically
increasing function. Since p(0) ≤ 0, Eq. (B1) has only one
real solution, >0 for any κ > 0 and = 0 for κ = 0.

● For all other values of κ and η, p′(φ) = 0 has two solutions,

φ± = −d
√
κη[1 ±

√
1 + (dκ − 1

2
) 3
η2 ], (B3)

corresponding to a local maximum (φ
+
) and a local min-

imum (φ
−
) for p(φ). Since the local maximum is for

φ
+
< 0, and always remembering that p(0) ≤ 0, also in this

case Eq. (B1) has only one real positive solution.

APPENDIX C: NUMERICAL SOLUTIONS OF EQS. (56)
AND (57)

It is not difficult to see that Eqs. (56) and (57) can be recast as
the following two equations, both expressing ψ as a function of φ
only:

ψ
2d
√
βϵi
= dφ2

4

φ + 2η
d
√
κ eβϵi/2

φ + η
d
√
κ eβϵi/2

, (C1)
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ψ
2d
√
βϵi
= 1

2d βϵi
log( φ/2

−d2κ e−βϵi φ3/4 − d
√
κ η e−βϵi/2 φ2/2 + dκ e−βϵiφ +√κ η e−βϵi/2

). (C2)

In fact Eq. (C1) follows from the ratio of the original two, while
Eq. (C2) can be obtained from Eq. (56) by extracting ψ as a func-
tion of φ. Then, it is an elementary exercise to solve numerically the
system of these two equations for given values of d, η, κ and ϵi.

As an example – and without lack of generality – we consider
again (Sec. VI C) the three-dimensional case study with ϵi/κBT = 1
and chain fugacity η = 0.15 (red lines in Fig. 5). Then, based on the
value of the bond fugacity κ, four scenarios are possible (see Fig. 10).
For low κ [panel (a)] only one solution exists, corresponding to the
gas-like phase (namely, ϕb ≃ ϕc ≪ 1). At some intermediate κ [panel
(b)], another solution appears yet the most stable one {i.e., with the
lowest grand potential βΩ [Eq. (44)]} remains the gas-like phase.
Finally [panel (d)], for κ larger than some “critical” κcr [panel (c)]
the most stable solution corresponds to the liquid-like one (namely,
ϕ = ϕb + ϕc ≃ 1). For other chain fugacities (as well as in the case
of polymers with non-zero bending stiffness, Sec. VI D) the picture
remains essentially the same, thus justifying Figs. 5 and 6.
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