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A GLOBAL METHOD FOR DETERMINISTIC AND

STOCHASTIC HOMOGENISATION IN BV

FILIPPO CAGNETTI, GIANNI DAL MASO, LUCIA SCARDIA, AND CATERINA IDA ZEPPIERI

Abstract. In this paper we study the deterministic and stochastic homogenisation of free-

discontinuity functionals under linear growth and coercivity conditions. The main novelty of

our deterministic result is that we work under very general assumptions on the integrands
which, in particular, are not required to be periodic in the space variable. Combining this

result with the pointwise Subadditive Ergodic Theorem by Akcoglu and Krengel, we prove a

stochastic homogenisation result, in the case of stationary random integrands. In particular, we
characterise the limit integrands in terms of asymptotic cell formulas, as in the classical case of

periodic homogenisation.

Keywords: Free-discontinuity problems, Γ-convergence, stochastic homogenisation, blow-up method.

MSC 2010: 49J45, 49Q20, 74Q05, 74E30, 60K35.

1. Introduction

In this paper we derive deterministic and stochastic homogenisation results for free-discontinuity func-
tionals in the space of functions of bounded variation.

We consider families of free-discontinuity functionals of the form

Eε(ω)(u,A) =

∫
A

f(ω, x
ε
,∇u) dx+

∫
Su∩A

g(ω, x
ε
, [u], νu) dHn−1, (1.1)

where ω belongs to the sample space of a given probability space (Ω, T , P ) and labels the realisations of
the random integrands f and g, while ε > 0 is a parameter of either geometrical or physical nature, and
sets the scale of the problem. In (1.1) the set A belongs to the class A of bounded open subsets of Rn
and the function u belongs to the space SBV (A,Rm) of special Rm-valued functions of bounded variation
on A (see [21] and [5, Section 4.5]). Moreover, ∇u denotes the approximate gradient of u, [u] stands for
the difference u+ − u− between the approximate limits of u on both sides of the discontinuity set Su, νu
denotes the (generalised) normal to Su, and Hn−1 is the (n− 1)-dimensional Hausdorff measure in Rn.

Functionals as in (1.1) are commonly used in applications in which the physical quantity described by
u can exhibit discontinuities, e.g. in variational models in fracture mechanics, in the theory of computer
vision and image segmentation, and in problems involving phase transformations.

We are interested in determining the almost sure limit behaviour of Eε as ε → 0+, when f and g
satisfy linear growth and coercivity conditions in the gradient and in the jump, respectively. The linear
growth of the volume energy sets the limit problem naturally in the space BV of functions with bounded
variation. Indeed, in this setting, limits of sequences of displacements with bounded energy can develop
a Cantor component in the distributional gradient.

This is in contrast with our previous work [16] (in the deterministic case) and [17] (in the stochastic
case), where, under the assumption of superlinear growth for f , the limit problem was naturally set in the
space SBV of special functions with bounded variation.

The two main results of this paper are a deterministic homogenisation result for functionals of the type
(1.1), when ω is fixed and f and g are not necessarily periodic, and a stochastic homogenisation result,
obtained for P -a.e. ω ∈ Ω, under the additional assumption of stationarity of f and g.

1.1. The deterministic result. For the deterministic result we consider ω as fixed in (1.1) and write
Eε(u,A) instead of Eε(ω)(u,A). We study the limit behaviour of the functionals Eε(·, A), for every A ∈ A ,
as ε→ 0+, under the assumption that the energy densities f and g belong to suitable classes F and G of
admissible volume and surface densities (see Definition 3.1). As announced above, a key requirement for
the class F is that f satisfies linear upper and lower bounds in the gradient variable. Additionally, we
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require that the recession function f∞ of f is defined at every point. For the class G, we require that g is
bounded from below and from above by the amplitude of the jump, and that its directional derivative g0

in the jump variable at [u] = 0 exists and is finite. The functions f∞ and g0 will play an important role
in determining the limiting densities.

We stress here that we do not require any periodicity in the spatial variable x for the volume and
surface densities; moreover, we do not require any continuity in the spatial variable either, since it would
be unnatural for applications.

Under these general assumptions, using the so-called localisation method of Γ-convergence [18], we can
prove that there exists a subsequence (εk) such that, for every A ∈ A , (Eεk (·, A)) Γ-converges to an

abstract functional Ê(·, A), that Ê(·, A) is finite only in BV , and that, for every u ∈ BVloc(Rn,Rm), the

set function Ê(u, ·) is the restriction to A of a Borel measure (see Theorem 5.1).

Note that, without any additional assumptions, one cannot expect that Ê(·, A) can be written in an

integral form. In particular, since there is no guarantee that z 7→ Ê(u(·−z), A+z) is continuous (which is
instead automatically satisfied in the periodic case), we cannot directly apply the integral representation
result in BV [10]. Our integral representation result is hence obtained under some additional assumptions,
which are though more general than periodicity. We require that the limits of some rescaled minimisation
problems, defined in terms of f , g, f∞, and g0, exist and are independent of the spatial variable. These

limits will then define the densities of Ê.
More precisely, for A ∈ A , w ∈ SBV (A,Rm), f ∈ F , and g ∈ G we set

mf,g(w,A) := inf
{∫

A

f(x,∇u) dx+

∫
Su∩A

g(x, [u], νu) dHn−1 : u ∈ SBV (A,Rm), u = w near ∂A
}
, (1.2)

and we assume that for every ξ ∈ Rm×n the limit

lim
r→+∞

mf,g0(`ξ, Qr(rx))

rn
=: fhom(ξ) (1.3)

exists and is independent of x ∈ Rn, and that for every ζ ∈ Rm and ν ∈ Sn−1 the limit

lim
r→+∞

mf∞,g(urx,ζ,ν , Q
ν
r (rx))

rn−1
=: ghom(ζ, ν) (1.4)

exists and is independent of x ∈ Rn, where In (1.3), `ξ denotes the linear function with gradient ξ; in
(1.4), Qνr (rx) := Rν

(
(− r

2
, r

2
)n
)

+ rx, where Rν is an orthogonal n×n matrix such that Rνen = ν, and

urx,ζ,ν(y) :=

{
ζ if (y − rx) · ν ≥ 0,

0 if (y − rx) · ν < 0.

The limits (1.3) and (1.4) are the counterpart of the asymptotic cell-formulas in the classical periodic
homogenisation [10]. In that case, periodicity in the spatial variable x ensures the existence of the limits
and their homogeneity in x, that here we have to postulate. Our assumptions are however weaker than
periodicity: notably, they are fulfilled in the case of stationary integrands, as we show in the present work.

In line with the result in [10], the functional being minimised in (1.3) (respectively in (1.4)) has densities
f and g0 (respectively f∞ and g) rather than f and g. We note that, if the density f satisfied a superlinear
growth, then f∞(·, ξ) = +∞ for ξ 6= 0. Since one always has f∞(·, 0) = 0, in the superlinear case there
would be the following changes in (1.4): on the one hand the minimisation would be done over functions
with ∇u = 0; on the other hand the functional to be minimised would reduce to just the surface term.
This is indeed the situation in [16], where we assume a superlinear growth for f . Moreover, in [16] we
work under different growth conditions for g as well, which in particular satisfies g ≥ c, for a given fixed
positive constant. In that case g0 ≡ +∞ (see (3.3)), and hence formally the minimisation in (1.3) would
be over Sobolev functions, and the functional to be minimised would reduce to just the bulk term. Again,
this is exactly what happens in [16] (see also [11, 28]).

In Lemmas 4.2 and 4.5 we show that fhom ∈ F and ghom ∈ G; the fact that fhom ∈ F guarantees
in particular the existence of its recession function f∞hom. In Propositions 6.2, 7.2, and 8.3, we show

that the functions fhom, ghom and f∞hom are the densities of the volume, surface, and Cantor terms of Ê,
respectively. To do so we use the blow-up technique of Fonseca and Müller [27] (see also [12]), extended to
the BV -setting by Bouchitté, Fonseca, and Mascarenhas [10]. More precisely, thanks to (1.3) and (1.4),
we prove that the following identities hold true for every A ∈ A and for every u ∈ L1

loc(Rn,Rm) with
u|A ∈ BV (A,Rm):

dÊ(u, ·)
dLn (x) = fhom(∇u(x)) for Ln-a.e. x ∈ A,
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dÊ(u, ·)
dHn−1 Su

(x) = ghom([u](x), νu(x)) for Hn−1-a.e. x ∈ Su ∩A,

and
dÊ(u, ·)
d|C(u)| (x) = f∞hom

( dC(u)

d|C(u)| (x)
)

for |C(u)|-a.e. x ∈ A,

where Ln is the Lebesgue measure in Rn, Hn−1 Su is the measure defined by (Hn−1 Su)(B) :=
Hn−1(Su ∩ B) for every Borel set B ⊂ Rn, and C(u) is the Cantor part of the distributional deriva-
tive of u.

In particular, since the right-hand sides of the previous equalities do not depend on (εk), the homogeni-
sation result holds true for the whole sequence (Eε). Moreover, the fact that fhom ∈ F and ghom ∈ G
implies that the classes F and G are closed under homogenisation, and that on SBV the functionals Eε
and their Γ-limit Ê are free-discontinuity functionals of the same type.

As observed before, fhom and ghom depend on both the volume and the surface densities of the functional
Eε. Indeed, the minimisation problems in (1.3) and (1.4) involve both f (or f∞) and g (or g0). In other
words, volume and surface term do interact in the limit, which is a typical feature of the linear-growth
setting. This is in contrast with the case of superlinear growth considered in [16], in which the limit
volume density only depends on the volume density of Eε, and similarly the limit surface density only
depends on the surface density of Eε. The volume-surface decoupling is typical of the SBV -setting in
presence of superlinear growth conditions on f [11, 16, 28].

Note however that, even in the superlinear case, if f and g satisfy “degenerate” coercivity conditions,
due for instance to the presence of perforations or “weak” inclusions in the domain, the situation is
more involved. Indeed, while in [7, 14, 15, 25, 33] the volume and surface terms do not interact in the
homogenised limit, in [6, 8, 20, 32, 34, 35] they do interact and produce rather complex limit effects.

1.2. The stochastic result. In Section 9 we prove the almost sure Γ-convergence of the sequence of
random functionals Eε(ω) in (1.1) to a random homogenised integral functional, under the assumption
that the volume and surface integrands f and g are stationary (see Definition 3.12 and Remark 3.16). In
the random setting stationarity is the natural counterpart of periodicity, since it implies that f and g are
“statistically” translation-invariant, or “periodic in law”.

The application of the deterministic result Theorem 4.1, at ω fixed, ensures that Eε(ω) Γ-converges to
the free-discontinuity functional

Ehom(ω)(u,A) :=

∫
A

fhom(ω,∇u) dx+

∫
Su∩A

ghom(ω, [u], νu) dHn−1 +

∫
A

f∞hom

(
ω,

dC(u)

d|C(u)|

)
d|C(u)|,

with

fhom(ω, ξ) := lim
r→+∞

mf(ω),g0(ω)(`ξ, Qr(rx))

rn
, (1.5)

for every ξ ∈ Rm×n, and

ghom(ω, ζ, ν) := lim
r→+∞

mf∞(ω),g(ω)(urx,ζ,ν , Q
ν
r (rx))

rn−1
, (1.6)

for every ζ ∈ Rm and ν ∈ Sn−1, provided the limits in (1.5) and (1.6) (which are the same as (1.3)
and (1.4), modulo the additional dependence on the random parameter ω) exist and are independent of
x ∈ Rn. Therefore, to show that the Γ-convergence of Eε(ω) towards Ehom(ω) actually holds true for
P -a.e. ω ∈ Ω it is necessary to show that the limits in (1.5) and (1.6) exist and are independent of x ∈ Rn
for P -almost every realisation ω ∈ Ω. To do so, we follow the general strategy firstly introduced in [19] in
the Sobolev setting, and then extended to the SBV -setting in [17] (see also [3]).

This strategy relies on the Subadditive Ergodic Theorem by Akcoglu and Krengel [1] (see Theorem 3.15)
and requires, among other things, to show that the minimisation problems in (1.5) and (1.6) define two
subadditive stochastic processes (see Definition 3.13).

This task however poses a challenge even at the very first step: proving that ω 7→ mf(ω),g0(ω) and
ω 7→ mf∞(ω),g(ω) are measurable. Indeed, while both mf(ω),g0(ω) and mf∞(ω),g(ω), by (1.2), involve the
minimisation of measurable functionals in the random variable ω, such minimisation is performed over the
space SBV , which is not separable. Since the infimum in (1.2) cannot be reduced to a countable set, the

measurability of ω 7→ mf(ω),g0(ω) and ω 7→ mf∞(ω),g(ω) cannot be inferred directly from the measurability
in ω of f , f∞, g and g0 (see the Appendix). Let us also observe that the situation here is substantially
different from that treated in [16, 17], for a number of reasons. Indeed in [16, 17], as observed before, due
to the different assumptions on f and g, the Γ-limit exhibits a “separation” of the volume and surface term.
In particular, the limit volume density is obtained as the limit of some minimisation problems similar to
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(1.2), but where the minimisation is done over the space of Sobolev functions. Hence in that case the limit
volume density is ω-measurable, due to the separability of the space (see also [19]). On the other hand,
the measurability of the minimisation problems defining the limit surface density was delicate also in [17],
since the minimum was taken over Caccioppoli partitions. However, in [17] the minimisation involved only
the surface term of the functional, which makes the proof much simpler than the one required now.

Once the measurability in ω is established (see Proposition A.12), we have to face yet another difficulty:
determining the dimension of the stochastic processes. Indeed, using the competitors `ξ and urx,ζ,ν in

the minimisation problems mf(ω),g0(ω) and mf∞(ω),g(ω), respectively, suggests the rescalings in (1.5) and

(1.6). Hence it suggests that mf(ω),g0(ω) should define an n-dimensional process, while mf∞(ω),g(ω) should
define an (n− 1)-dimensional process. On the other hand, in both cases the functionals appearing in the
minimisation problems, if seen as set functions, are defined on n-dimensional sets.

To solve this problem we proceed as in [3, 13] and [17], where similar issues arise in the study of pure
surface energies of spin systems, and in the case of free-discontinuity problems with superlinear growth,
respectively.

Finally, the last difficulty consists in showing that, as in [3, 17], the limits in (1.5) and (1.6) do not
depend on x. This is particularly delicate for (1.6), due to the presence of an x-dependent boundary
condition.

We conclude by observing that our analysis also shows that, if f and g are ergodic, then the homogenised
integrands fhom and ghom are ω-independent, and hence the limit Ehom is deterministic.

1.3. Outline of the paper. This paper is organised as follows. In Section 2 we introduce some notation.
Section 3 consists of two parts: in Section 3.1 we introduce the stochastic free-discontinuity functionals
and recall the Ergodic Subadditive Theorem; in Section 3.2 we state the main results of the paper.

Sections 4-8 focus on the deterministic results. More in detail, in Section 4 we state the deterministic
Γ-convergence results and prove some properties of the limit densities; Section 5 is devoted to the abstract
Γ-convergence result; the volume, surface and Cantor terms of the abstract Γ-limit are then identified in
Sections 6, 7 and 8, respectively.

Finally, Section 9 focuses on the stochastic homogenisation result, while the proof of the measurability
of ω 7→ mf(ω),g0(ω) and ω 7→ mf∞(ω),g(ω) is postponed to the Appendix.

2. Notation

We introduce now some notation that will be used throughout the paper.

(a) m and n are fixed positive integers, with n ≥ 2, R is the set of real numbers, while Q is the set of
rational numbers. The canonical basis of Rn is denoted by e1, . . . , en. For a, b ∈ Rn, a · b denotes
the Euclidean scalar product between a and b, and | · | denotes the absolute value in R or the
Euclidean norm in Rn, Rm, or Rm×n (the space of m× n matrices with real entries), depending
on the context. If v ∈ Rm and w ∈ Rn, the symbol v ⊗ w stands for the matrix in Rm×n whose
entries are (v ⊗ w)ij = viwj , for i = 1, . . . ,m and j = 1, . . . , n.

(b) Sm−1 := {ζ = (ζ1, . . . , ζm) ∈ Rm : ζ2
1 + · · · + ζ2

m = 1}, Sn−1 := {x = (x1, . . . , xn) ∈ Rn :

x2
1 + · · ·+ x2

n = 1}, and Ŝn−1
± := {x ∈ Sn−1 : ±xi(x) > 0}, where i(x) is the largest i ∈ {1, . . . , n}

such that xi 6= 0. Note that Sn−1 = Ŝn−1
+ ∪ Ŝn−1

− .

(c) Ln denotes the Lebesgue measure on Rn and Hn−1 the (n − 1)-dimensional Hausdorff measure
on Rn.

(d) A denotes the collection of all bounded open subsets of Rn; if A, B ∈ A , by A ⊂⊂ B we mean
that A is relatively compact in B.

(e) For u ∈ BV (A,Rm), with A ∈ A , the jump of u across the jump set Su is defined by [u] :=
u+ − u−, while νu denotes the (generalised) normal to Su (see [5, Definition 3.67]).

(f) For every u ∈ BV (A,Rm), with A ∈ A , the distributional gradient, denoted by Du, is an Rm×n-
valued Radon measure on A, whose absolutely continuous part with respect to Ln, denoted by
Dau, has a density ∇u ∈ L1(A,Rm×n) (which coincides with the approximate gradient of u),
while the singular part Dsu can be decomposed as Dsu = Dju+C(u), where the jump part Dju
is given by

Dju(B) =

∫
B∩Su

[u]⊗ νudHn−1 for every Borel set B ⊂ A,

and the Cantor part C(u) is an Rm×n-valued Radon measure on A which vanishes on all Borel
sets B ⊂ A with Hn−1(B) < +∞.
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(g) For x ∈ Rn and ρ > 0 we define

Bρ(x) := {y ∈ Rn : |y − x| < ρ},
Qρ(x) := {y ∈ Rn : |(y − x) · ei| < ρ

2
for i = 1, . . . , n}.

(h) For every ν ∈ Sn−1 let Rν be an orthogonal n×n matrix such that Rνen = ν; we assume that

the restrictions of the function ν 7→ Rν to the sets Ŝn−1
± defined in (b) are continuous and that

R−νQ(0) = RνQ(0) for every ν ∈ Sn−1; moreover, we assume that Rν ∈ O(n) ∩ Qn×n for every
ν ∈ Qn ∩ Sn−1. A map ν 7→ Rν satisfying these properties is provided in [16, Example A.1 and
Remark A.2].

(i) For x ∈ Rn, ρ > 0, and ν ∈ Sn−1 we set

Qνρ(x) := RνQρ(0) + x.

For k ∈ R, with k > 0, we also define the rectangle

Qν,kρ (x) := Qν,kρ (0) + x

where Qν,kρ (0) is obtained from Qνρ(0) by a dilation of amplitude k in the directions orthogonal
to ν; i.e.,

Qν,kρ (0) := Rν
(
(− kρ

2
, kρ

2
)n−1 × (− ρ

2
, ρ

2
)
)
.

We set

∂⊥ν Q
ν,k
ρ (x) := ∂Qν,kρ (x) ∩Rν

(
(− kρ

2
, kρ

2
)n−1 × R

)
,

∂‖νQ
ν,k
ρ (x) := ∂Qν,kρ (x) ∩Rν

(
Rn−1 × (− ρ

2
, ρ

2
)
)
,

namely the union of the faces of Qν,kρ (x) that are orthogonal and parallel to ν, respectively.
(j) Let µ and λ be two Radon measures on A ∈ A , with values in a finite dimensional Hilbert space

X and in [0,+∞], respectively; for every x ∈ A the Radon-Nikodym derivative of µ with respect
to λ is defined as

dµ

dλ
(x) := lim

r→0+

µ(x+ rC)

λ(x+ rC)

whenever the limit exists in X and is independent of the choice of the bounded, closed set
C containing the origin in its interior (see [26, Definition 1.156]); according to the Besicovich

differentiation theorem dµ
dλ

(x) exists for λ-a.e. x ∈ A and µ = dµ
dλ
λ+ µs, where µs is the singular

part of µ with respect to λ (see [26, Theorem 1.155]).
(k) For ξ ∈ Rm×n, the linear function from Rn to Rm with gradient ξ is denoted by `ξ; i.e., `ξ(x) := ξx,

where x is considered as an n×1 matrix.
(l) For x ∈ Rn, ζ ∈ Rm, and ν ∈ Sn−1 we define the function ux,ζ,ν as

ux,ζ,ν(y) :=

{
ζ if (y − x) · ν ≥ 0,

0 if (y − x) · ν < 0.

(m) For x ∈ Rn and ν ∈ Sn−1, we set

Πν
0 := {y ∈ Rn : y · ν = 0} and Πν

x := {y ∈ Rn : (y − x) · ν = 0}.
(n) For a given topological space X, B(X) denotes its Borel σ-algebra. For every integer k ≥ 1, Bk

is the Borel σ-algebra of Rk, while Bn
S stands for the Borel σ-algebra of Sn−1.

3. Setting of the problem and statements of the main results

This section consists of two parts: in Section 3.1 we introduce the stochastic free-discontinuity func-
tionals and recall the Ergodic Subadditive Theorem; in Section 3.2 we state the main results of the paper.

3.1. Setting of the problem. Throughout the paper we fix the following constants: c1, c2, c3, c4,
c5 ∈ [0,+∞), with 0 < c2 ≤ c3, and α ∈ (0, 1). Moreover, we fix two nondecreasing continuous functions
σ1, σ2 : [0,+∞)→ [0,+∞) such that σ1(0) = σ2(0) = 0.

Definition 3.1 (Volume and surface integrands). Let F = F(c1, c2, c3, c4, c5, α, σ1) be the collection of
all functions f : Rn×Rm×n → [0,+∞) satisfying the following conditions:

(f1) (measurability) f is Borel measurable on Rn×Rm×n;
(f2) (continuity in ξ) for every x ∈ Rn we have

|f(x, ξ1)− f(x, ξ2)| ≤ σ1(|ξ1 − ξ2|)
(
f(x, ξ1) + f(x, ξ2)

)
+ c1|ξ1 − ξ2|

for every ξ1, ξ2 ∈ Rm×n;
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(f3) (lower bound) for every x ∈ Rn and every ξ ∈ Rm×n

c2|ξ| ≤ f(x, ξ);

(f4) (upper bound) for every x ∈ Rn and every ξ ∈ Rm×n

f(x, ξ) ≤ c3|ξ|+ c4;

(f5) (recession function) for every x ∈ Rn and every ξ ∈ Rm×n the limit

f∞(x, ξ) := lim
t→+∞

1
t
f(x, tξ), (3.1)

which defines the recession function of f , exists and is finite; moreover, f∞ satisfies the inequality

|f∞(x, ξ)− 1
t
f(x, tξ)| ≤ c5

t
+ c5

t
f(x, tξ)1−α (3.2)

for every x ∈ Rn, every ξ ∈ Rm×n, and every t > 0.

Let G = G(c2, c3, σ2) be the collection of all functions g : Rn×Rm×Sn−1 → [0,+∞) satisfying the
following conditions:

(g1) (measurability) g is Borel measurable on Rn×Rm×Sn−1;
(g2) (continuity in ζ) for every x ∈ Rn and every ν ∈ Sn−1 we have

|g(x, ζ2, ν)− g(x, ζ1, ν)| ≤ σ2(|ζ1 − ζ2|)
(
g(x, ζ1, ν) + g(x, ζ2, ν)

)
for every ζ1, ζ2 ∈ Rm;

(g3) (lower bound) for every x ∈ Rn, ζ ∈ Rm, and ν ∈ Sn−1

c2|ζ| ≤ g(x, ζ, ν);

(g4) (upper bound) for every x ∈ Rn, ζ ∈ Rm, and ν ∈ Sn−1

g(x, ζ, ν) ≤ c3|ζ|;
(g5) (directional derivative at 0) for every x ∈ Rn, ζ ∈ Rm, and ν ∈ Sn−1 the limit

g0(x, ζ, ν) := lim
t→0+

1
t
g(x, t ζ, ν) (3.3)

exists, is finite, and is uniform with respect to x ∈ Rn, ζ ∈ Sm−1, and ν ∈ Sn−1.
(g6) (symmetry) for every x ∈ Rn, ζ ∈ Rm, and ν ∈ Sn−1

g(x, ζ, ν) = g(x,−ζ,−ν).

For every f ∈ F , g ∈ G, A ∈ A , and u ∈ SBV (A,Rm) we set

Ef,g(u,A) :=

∫
A

f(x,∇u) dx+

∫
Su∩A

g(x, [u], νu) dHn−1,

and for every w ∈ SBV (A,Rm) we set

mf,g(w,A) := inf{Ef,g(u,A) : u ∈ SBV (A,Rm), u = w near ∂A}. (3.4)

The expression “u = w near ∂A” means that there exists a neighbourhood U of ∂A such that u = w Ln-
a.e. in U ∩A. More in general, if Λ ⊂ ∂A is a relatively open subset of ∂A, the expression “u = w near Λ”
means that there exists a neighbourhood U of Λ in Rn such that u = w Ln-a.e. in U ∩A.

For technical reasons, related to the details of the statement of the Subadditive Ergodic Theorem, it
is convenient to extend this definition to an arbitrary bounded subset A of Rn, by setting mf,g(w,A) :=
mf,g(w, intA), where intA denotes the interior of A.

Remark 3.2. If f ∈ F and g ∈ G, then f∞ ∈ F and g0 ∈ G. Moreover, the lower bounds (f3) and (g3)
imply that

c2|Du|(A) ≤ min{Ef,g(u,A), Ef,g0(u,A), Ef
∞,g(u,A), Ef

∞,g0(u,A)}
for every A ∈ A and u ∈ L1

loc(Rn,Rm), with u|A ∈ SBV (A,Rm).

Remark 3.3. From (f4) and (f5) it follows that for every L > 0 there exists M > 0, depending on c3, c4,
c5, and L, such that

|f∞(x, ξ)− 1
t
f(x, tξ)| ≤ M

tα
for every x ∈ Rn, ξ ∈ Rm×n with |ξ| = 1, and t ≥ L. (3.5)

Conversely, if the limit in (3.1) exists and f satisfies (f3), (f4), and (3.5) for some L > 0 and M > 0,
then for every x ∈ Rn, ξ ∈ Rm×n, and t > 0 we have|f

∞(x, ξ)− 1
t
f(x, tξ)| ≤ M

tα
|ξ|1−α = M

t
|tξ|1−α ≤ M

tc1−α2

f(x, tξ)1−α if t|ξ| ≥ L,

|f∞(x, ξ)− 1
t
f(x, tξ)| ≤ 2c3L

t
+ c4

t
if t|ξ| < L,
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where in the last inequality we used the fact that that f∞(x, ξ) ≤ c3|ξ| for every x ∈ Rn and ξ ∈ Rm×n.
This implies that f satisfies (3.2) for a suitable constant c5, depending only on c2, c3, c4, L, and M .

Remark 3.4. If (f4) holds, then (f5) is equivalent to the fact that

| 1
s
f(x, sξ)− 1

t
f(x, tξ)| ≤ c5

s
+ c5

s
f(x, sξ)1−α + c5

t
+ c5

t
f(x, tξ)1−α (3.6)

for every x ∈ Rn, every ξ ∈ Rm×n, and every s, t > 0. Indeed, using the triangle inequality we obtain
(3.6) from (3.2) for s and t. Conversely, if (f4) holds, then c5

t
+ c5

t
f(x, tξ)1−α → 0 as t→ +∞. Therefore

(3.6) implies that t 7→ 1
t
f(x, tξ) satisfies the Cauchy condition as t→ +∞, hence the limit in (3.1) exists,

while (3.2) follows from (3.6) by taking the limit as s→ +∞.

Remark 3.5. Assume that g : Rn×Rm×Sn−1 → [0,+∞) satisfies (g5) and let λ : [0,+∞) → [0,+∞) be
defined by

λ(t) := sup{|g0(x, ζ, ν)− 1
τ
g(x, τ ζ, ν)| : x ∈ Rn, ζ ∈ Sm−1, ν ∈ Sn−1, τ ∈ (0, t]}. (3.7)

Then λ is nondecreasing and

lim
t→0+

λ(t) = 0, (3.8)

|g0(x, ζ, ν)− 1
t
g(x, t ζ, ν)| ≤ |ζ|λ(t|ζ|), (3.9)

for every x ∈ Rn, ζ ∈ Rm, and ν ∈ Sn−1. If g satisfies also (g3), then (3.9) gives

|g0(x, ζ, ν)− 1
t
g(x, t ζ, ν)| ≤ 1

c2
λ(t|ζ|) 1

t
g(x, t ζ, ν). (3.10)

Conversely, if the limit in (3.3) exists (even with no uniformity assumptions) and g satisfies (g4) and
(3.10), then it satisfies (3.9) with λ replaced by c3

c2
λ, which implies that g satisfies (g5).

Remark 3.6. If g : Rn×Rm×Sn−1 → [0,+∞) satisfies (g3), (g4), and (g5), then by (3.10) and by the
triangle inequality we get

| 1
s
g(x, s ζ, ν)− 1

t
g(x, t ζ, ν)| ≤ 1

c2
λ(s|ζ|) 1

s
g(x, s ζ, ν) + 1

c2
λ(t|ζ|) 1

t
g(x, t ζ, ν) (3.11)

for every s, t > 0, x ∈ Rn, ζ ∈ Rm, and ν ∈ Sn−1. Conversely, if (g4) and (3.11) hold, with some function
λ satisfying (3.8), then λ(t|ζ|) 1

t
g(x, t ζ, ν) → 0 as t → 0+ and hence, using (3.11), we deduce that the

function t 7→ 1
t
g(x, t ζ, ν) satisfies the Cauchy condition as t → 0+. This implies that the limit in (3.3)

exists and is finite. Moreover, passing to the limit as s→ 0+ from (3.11) we obtain (3.10), which, in turn,
yields (g5).

We are now ready to introduce the probabilistic setting of our problem. In what follows (Ω, T , P )
denotes a fixed probability space.

Definition 3.7 (Random integrands). A function f : Ω×Rn×Rm×n → [0,+∞) is called a random volume
integrand if

(a1) f is T ⊗Bn ⊗Bm×n-measurable;
(b1) f(ω, ·, ·) ∈ F for every ω ∈ Ω.

A function g : Ω× Rn × Rm × Sn−1 → [0,+∞) is called a random surface integrand if

(a2) g is T ⊗Bn ⊗Bm ⊗Bn
S -measurable;

(b2) g(ω, ·, ·, ·) ∈ G for every ω ∈ Ω.

Let f be a random volume integrand and let g be a random surface integrand. For every ω ∈ Ω and
every ε > 0 we consider the free-discontinuity functional Eε(ω) : L1

loc(Rn,Rm)×A −→ [0,+∞] defined by

Eε(ω)(u,A) :=


∫
A

f(ω, x
ε
,∇u) dx+

∫
Su∩A

g(ω, x
ε
, [u], νu) dHn−1 if u|A∈ SBV (A,Rm),

+∞ otherwise inL1
loc(Rn,Rm).

(3.12)

Definition 3.8. Il f is a random volume integrand, we define f∞ : Ω× Rn × Rm×n → [0,+∞) by

f∞(ω, x, ξ) := lim
t→+∞

1
t
f(ω, x, tξ). (3.13)

If g is a random surface integrand, we define g0 : Ω× Rn × Rm × Sn−1 → [0,+∞) by

g0(ω, x, ζ, ν) := lim
t→0+

1
t
g(ω, x, t ζ, ν). (3.14)
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Remark 3.9. The existence of the limit in (3.13) follows from (b1) in Definition 3.7 and from (f5). Since
for every t > 0 the functions (ω, x, ξ) 7→ 1

t
f(ω, x, tξ) are T ⊗Bn ⊗Bm×n-measurable by (a1), the same

property holds for f∞. Moreover, from Remark 3.2 and from (b1) we deduce that f∞(ω, ·, ·) ∈ F for
every ω ∈ Ω. We conclude that f∞ is a random volume integrand.

The existence of the limit in (3.14) follows from (b2) in Definition 3.7 and from (g5). Since for every
t > 0 the functions (ω, x, ζ, ν) 7→ 1

t
g(ω, x, t ζ, ν) are T ⊗Bn ⊗Bm ⊗Bn

S -measurable by (a2), the same
property holds for g0. Moreover, from Remark 3.2 and from (b2) we deduce that g0(ω, ·, ·, ·) ∈ G for every
ω ∈ Ω. We conclude that g0 is a random surface integrand.

In the study of stochastic homogenisation an important role is played by the notions introduced by the
following definitions.

Definition 3.10 (P -preserving transformation). A P -preserving transformation on (Ω, T , P ) is a map
T : Ω→ Ω satisfying the following properties:

(a) (measurability) T is T -measurable;
(b) (bijectivity) T is bijective;
(c) (invariance) P (T (E)) = P (E), for every E ∈ T .

If, in addition, every set E ∈ T which satisfies T (E) = E (called T -invariant set) has probability 0 or 1,
then T is called ergodic.

Definition 3.11 (Group of P -preserving transformations). Let d be a positive integer. A group of P -
preserving transformations on (Ω, T , P ) is a family (τz)z∈Zd of mappings τz : Ω→ Ω satisfying the following
properties:

(a) (measurability) τz is T -measurable for every z ∈ Zd;
(b) (bijectivity) τz is bijective for every z ∈ Zd;
(c) (invariance) P (τz(E)) = P (E), for every E ∈ T and every z ∈ Zd;
(d) (group property) τ0 = idΩ (the identity map on Ω) and τz+z′ = τz ◦ τz′ for every z, z′ ∈ Zd;

If, in addition, every set E ∈ T which satisfies τz(E) = E for every z ∈ Zd has probability 0 or 1, then
(τz)z∈Zd is called ergodic.

We are now in a position to define the notion of stationary random integrand.

Definition 3.12 (Stationary random integrand). A random volume integrand f is stationary with respect
to a group (τz)z∈Zn of P -preserving transformations on (Ω, T , P ) if

f(ω, x+ z, ξ) = f(τz(ω), x, ξ)

for every ω ∈ Ω, x ∈ Rn, z ∈ Zn, and ξ ∈ Rm×n.
Similarly, a random surface integrand g is stationary with respect to (τz)z∈Zn if

g(ω, x+ z, ζ, ν) = g(τz(ω), x, ζ, ν)

for every ω ∈ Ω, x ∈ Rn, z ∈ Zn, ζ ∈ Rm, and ν ∈ Sn−1.

We now recall the notion of subadditive stochastic process as well as the Subadditive Ergodic Theorem
by Akcoglu and Krengel [1, Theorem 2.7].

Let d be a positive integer. For every a, b ∈ Rd, with ai < bi for i = 1, . . . , d, we define

[a, b) := {x ∈ Rd : ai ≤ xi < bi for i = 1, . . . , d},
and we set

Id := {[a, b) : a, b ∈ Rd, ai < bi for i = 1, . . . , d}. (3.15)

Definition 3.13 (Subadditive process). A d-dimensional subadditive process with respect to a group
(τz)z∈Zd , d ≥ 1, of P -preserving transformations on (Ω, T , P ) is a function µ : Ω× Id → R satisfying the
following properties:

(a) (measurability) for every A ∈ Id the function ω 7→ µ(ω,A) is T -measurable;
(b) (covariance) for every ω ∈ Ω, A ∈ Id, and z ∈ Zd we have µ(ω,A+ z) = µ(τz(ω), A);
(c) (subadditivity) for every A ∈ Id and for every finite family (Ai)i∈I ⊂ Id of pairwise disjoint sets

such that A = ∪i∈IAi, we have

µ(ω,A) ≤
∑
i∈I

µ(ω,Ai) for every ω ∈ Ω;

(d) (boundedness) there exists c > 0 such that 0 ≤ µ(ω,A) ≤ cLd(A) for every ω ∈ Ω and every
A ∈ Id.
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Definition 3.14 (Regular family of sets). A family of sets (At)t>0 in Id is called regular (with constant
C > 0) if there exists another family of sets (A′t)t>0 ⊂ Id such that:

(a) At ⊂ A′t for every t > 0;
(b) A′s ⊂ A′t whenever 0 < s < t;
(c) 0 < Ld(A′t) ≤ CLd(At) for every t > 0.

If the family (A′t)t>0 can be chosen in a way such that Rd =
⋃
t>0 A

′
t, then we write lim

t→+∞
At = Rd.

We now state a variant of the pointwise ergodic Theorem [1, Theorem 2.7 and Remark p. 59] which is
suitable for our purposes. This variant can be found in [30, Theorem 4.1].

Theorem 3.15 (Subadditive Ergodic Theorem). Let d ∈ {n − 1, n} and let (τz)z∈Zd be a group of P -
preserving transformations on (Ω, T , P ). Let µ : Ω × Id → R be a subadditive process with respect to
(τz)z∈Zd . Then there exist a T -measurable function ϕ : Ω→ [0,+∞) and a set Ω′ ∈ T with P (Ω′)=1 such
that

lim
t→+∞

µ(ω,At)

Ld(At)
= ϕ(ω),

for every regular family of sets (At)t>0 ⊂ Id with lim
t→+∞

At = Rd and for every ω ∈ Ω′. If in addition

(τz)z∈Zd is ergodic, then ϕ is constant P -a.e.

Remark 3.16 (Covariance with respect to a continuous group (τz)z∈Rd). Definitions 3.11, 3.12, 3.13 and
Theorem 3.15 can be adapted also to the case of a continuous group (τz)z∈Rd , see for instance [17,
Section 3.1].

3.2. Statement of the main results. In this section we state the main result of the paper, Theorem
3.18, which provides a Γ-convergence result for the random functionals (Eε(ω))ε>0 introduced in (3.12),
under the assumption that the volume and surface integrands f and g are stationary.

The next theorem proves the existence of the limits in the asymptotic cell formulas that will be used
in the statement of the main result.

When f and g are random integrands it is convenient to introduce the following shorthand notation

mf,g0
ω := mf(ω,·,·),g0(ω,·,·,·) , mf∞,g

ω := mf∞(ω,·,·),g(ω,·,·,·) , mf∞,g0
ω := mf∞(ω,·,·),g0(ω,·,·,·), (3.16)

where mf,g0 , mf∞,g, and mf∞,g0 are defined as in (3.4), with (f, g) replaced by (f, g0), (f∞, g), and
(f∞, g0), respectively.

Theorem 3.17 (Homogenisation formulas). Let f be a stationary random volume integrand and let g be
a stationary random surface integrand with respect to a group (τz)z∈Zn of P -preserving transformations
on (Ω, T , P ). Then there exists Ω′ ∈ T , with P (Ω′) = 1, such that

(a) for every ω ∈ Ω′, x ∈ Rn, ξ ∈ Rm×n, ν ∈ Sn−1, and k ∈ N the limit

lim
r→+∞

mf,g0
ω (`ξ, Q

ν,k
r (rx))

kn−1rn

exists and is independent of x, ν, and k;
(b) for every ω ∈ Ω′, x ∈ Rn, ζ ∈ Rm, ν ∈ Sn−1 the limit

lim
r→+∞

mf∞,g
ω (urx,ζ,ν , Q

ν
r (rx))

rn−1

exists and is independent of x.

More precisely, there exist a random volume integrand fhom : Ω×Rm×n → [0,+∞), and a random surface
integrand ghom : Ω × Rm × Sn−1 → [0,+∞) such that for every ω ∈ Ω′, x ∈ Rn, ξ ∈ Rm×n, ζ ∈ Rm, and
ν ∈ Sn−1

fhom(ω, ξ) = lim
r→+∞

mf,g0
ω (`ξ, Q

ν,k
r (rx))

kn−1rn
= lim
r→+∞

mf,g0
ω (`ξ, Qr)

rn
, (3.17)

ghom(ω, ζ, ν) = lim
r→+∞

mf∞,g
ω (urx,ζ,ν , Q

ν
r (rx))

rn−1
= lim
r→+∞

mf∞,g
ω (u0,ζ,ν , Q

ν
r )

rn−1
, (3.18)

where Qr := Qr(0) and Qνr = Qνr (0).
For every ω ∈ Ω′ and ξ ∈ Rm×n let

f∞hom(ω, ξ) := lim
t→+∞

fhom(ω, tξ)

t
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(since fhom(ω, ·) ∈ F , the existence of the limit is guaranteed by (f5)). Then for every ω ∈ Ω′, x ∈ Rn,
ξ ∈ Rm×n, ν ∈ Sn−1, and k ∈ N we have

f∞hom(ω, ξ) = lim
r→+∞

mf∞,g0
ω (`ξ, Q

ν,k
r (rx))

kn−1rn
= lim
r→+∞

mf∞,g0
ω (`ξ, Qr)

rn
. (3.19)

If, in addition, (τz)z∈Zn is ergodic, then fhom and ghom are independent of ω and

fhom(ξ) = lim
r→+∞

1

rn

∫
Ω

mf,g0
ω (`ξ, Qr) dP (ω), (3.20)

ghom(ζ, ν) = lim
r→+∞

1

rn−1

∫
Ω

mf∞,g
ω (u0,ζ,ν , Q

ν
r ) dP (ω), (3.21)

f∞hom(ξ) = lim
r→+∞

1

rn

∫
Ω

mf∞,g0
ω (`ξ, Qr) dP (ω). (3.22)

We are now ready to state the main result of this paper, namely the almost sure Γ-convergence of the
sequence of random functionals (Eε(ω))ε>0 introduced in (3.12).

Theorem 3.18 (Almost sure Γ-convergence). Let f and g be stationary random volume and surface
integrands with respect to a group (τz)z∈Zn of P -preserving transformations on (Ω, T , P ), and for every
ε > 0 and ω ∈ Ω let Eε(ω) be as in (3.12). Let Ω′ ∈ T (with P (Ω′) = 1), fhom, f∞hom, and ghom be as in
Theorem 3.17, and for every ω ∈ Ω let Ehom(ω) : L1

loc(Rn,Rm)×A −→ [0,+∞] be the functional defined
by

Ehom(ω)(u,A) :=

∫
A

fhom(ω,∇u) dx+

∫
Su∩A

ghom(ω, [u], νu) dHn−1 +

∫
A

f∞hom

(
ω,

dC(u)

d|C(u)|

)
d|C(u)|,

if u|A ∈ BV (A,Rm), and by Ehom(ω)(u,A) := +∞, if u|A /∈ BV (A,Rm). Then for every ω ∈ Ω′ and
every A ∈ A the functionals Eε(ω)(·, A) Γ-converge to Ehom(ω)(·, A) in L1

loc(Rn,Rm), as ε→ 0+.
If, in addition, (τz)z∈Zn is ergodic, then Ehom is a deterministic functional; i.e., it does not depend

on ω.

Thanks to Theorem 3.18 we can also characterise the asymptotic behaviour of some minimisation
problems involving Eε(ω). An example is shown in the corollary below. Since for every A ∈ A the values
of Eε(ω)(u,A) and Ehom(ω)(u,A) depend only on the restriction of u to A, in the corollary we regard
Eε(ω)(u, ·) and Ehom(ω)(u, ·) as functionals defined on L1(A,Rm).

Corollary 3.19 (Convergence of minima and mininisers). Let f and g be stationary random volume and
surface integrands with respect to a group (τz)z∈Zn of P -preserving transformations on (Ω, T , P ), and for
every ε > 0 and ω ∈ Ω let Eε(ω) be as in (3.12). Let Ω′ ∈ T (with P (Ω′) = 1) be as in Theorem 3.17,
and let Ehom(ω) be as in Theorem 3.18. Given ω ∈ Ω′, A ∈ A , and h ∈ L1(A,Rm), we have

inf
u∈SBV (A,Rm)

(
Eε(ω)(u,A) + ‖u− h‖L1(A,Rm)

)
−→ min
u∈BV (A,Rm)

(
Ehom(ω)(u,A) + ‖u− h‖L1(A,Rm)

)
(3.23)

as ε→ 0+. Moreover, if (uε) ⊂ SBV (A,Rm) is a sequence such that

Eε(ω)(uε, A) + ‖uε − h‖L1(A,Rm) ≤ inf
u∈SBV (A,Rm)

(
Eε(ω)(u,A) + ‖u− h‖L1(A,Rm)

)
+ ηε (3.24)

for some ηε → 0+, then there exists a sequence εj → 0+ such that (uεj )j∈N converges in L1(A,Rm), as
j → +∞, to a solution of the minimisation problem

min
u∈BV (A,Rm)

(
Ehom(ω)(u,A) + ‖u− h‖L1(A,Rm)

)
. (3.25)

Proof. If A has a Lipschitz boundary, then the functionals Eε(ω)(·, A) + ‖ ·−h‖L1(A,Rm) are equi-coercive

in L1(A,Rm) thanks to Remark 3.2. Since we have Γ-convergence in L1(A,Rm) by virtue of Theorem
3.18, the proof readily follows from the fundamental property of Γ-convergence (see, e.g., [18, Corollary
7.20]).

We now show that the convergence of minimum values and of minimisers can be obtained even if ∂A
is not regular. Let us fix ω ∈ Ω′, A ∈ A , and h ∈ L1(A,Rm). By Theorem 3.18 for every A′ ∈ A the
functional Ehom(ω)(·, A′) is a Γ-limit in L1

loc(Rn,Rm), hence it is lower semicontinuous in L1
loc(Rn,Rm)

(see [18, Proposition 6.8]). This implies that Ehom(ω)(·, A′), considered as a functional on L1(A′,Rm), is
lower semicontinuous. Since

Ehom(ω)(·, A) = sup{Ehom(ω)(·, A′) : A′ ∈ A , A′ ⊂⊂ A},
the functional Ehom(ω)(·, A), defined on L1(A,Rm), is lower semicontinuous with respect to the conver-
gence in L1

loc(A,Rm).
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Since fhom(ω, ·) and f∞hom(ω, ·) belong to F , while ghom(ω, ·, ·) belongs to G, it follows from the definition
of Ehom(ω)(·, A) that c2|Du|(A)+‖u‖L1(A,Rm) ≤ Ehom(ω)(u,A)+‖u−h‖L1(A,Rm) +‖h‖L1(A,Rm) for every
u ∈ BV (A,Rm). This shows that the functional u 7→ Ehom(ω)(u,A) + ‖u − h‖L1(A,Rm) is coercive in

BV (A,Rm) with respect to the convergence in L1
loc(A,Rm). Therefore it attains a minimum value in

BV (A,Rm), which we denote by µ0.
Let u0 be a minimum point in BV (A,Rm). We extend u0 to a function of L1

loc(Rn,Rm), still denoted by
u0. By Γ-convergence, for every sequence (εj) of positive numbers converging to 0 there exists a sequence
uj converging to u0 in L1

loc(Rn,Rm) such that Eεj (ω)(uj , A)→ Ehom(ω)(u0, A) < +∞. By the definition
of Eεj (ω) we have uj ∈ SBV (A,Rm) for j large enough, hence

inf
u∈SBV (A,Rm)

(
Eεj (ω)(u,A) + ‖u− h‖L1(A,Rm)

)
≤ Eεj (ω)(uj , A) + ‖uj − h‖L1(A,Rm).

This implies that

lim sup
j→+∞

inf
u∈SBV (A,Rm)

(
Eεj (ω)(u,A) + ‖u− h‖L1(A,Rm)

)
≤ µ0.

Since the sequence εj → 0 is arbitrary, we obtain

lim sup
ε→0+

inf
u∈SBV (A,Rm)

(
Eε(ω)(u,A) + ‖u− h‖L1(A,Rm)

)
≤ µ0. (3.26)

To prove the opposite inequality for the liminf, as well as the last statement of the corollary, we fix a
sequence (uε) ⊂ SBV (A,Rm) satisfying (3.24). For every sequence (εj) of positive numbers converging to
0, by Remark 3.2 and by (3.26) the sequence (uεj ) is bounded in BV (A,Rm). Therefore a subsequence,

not relabelled, converges in L1
loc(A,Rm) to a function u∗ ∈ BV (A,Rm).

Given A′ ∈ A , with A′ ⊂⊂ A, we can consider the functions vj , defined by vj := uεj in A′ and vj := 0

in Rn \ A′, which converge in L1(Rn,Rm) to the function v∗, defined by v∗ := u∗ in A′ and v∗ := 0 in
Rn \A′. Since Eεj (ω)(·, A′) Γ-converges to Ehom(ω)(·, A′) in L1

loc(Rn,Rm), we have

Ehom(ω)(u∗, A
′) = Ehom(ω)(v∗, A

′) ≤ lim inf
j→+∞

Eεj (ω)(vj , A
′) ≤ lim inf

j→+∞
Eεj (ω)(uεj , A),

which implies that

Ehom(ω)(u∗, A
′) + ‖u∗ − h‖L1(A′,Rm) ≤ lim inf

j→+∞

(
Eεj (ω)(uεj , A) + ‖uεj − h‖L1(A,Rm)

)
.

Taking the supremum for A′ ⊂⊂ A in the previous inequalities we obtain

Ehom(ω)(u∗, A) ≤ lim inf
j→+∞

Eεj (ω)(uεj , A), (3.27)

and

µ0 ≤ Ehom(ω)(u∗, A) + ‖u∗ − h‖L1(A,Rm) ≤ lim inf
j→+∞

(
Eεj (ω)(uεj , A) + ‖uεj − h‖L1(A,Rm)

)
≤ lim inf

j→+∞
inf

u∈SBV (A,Rm)

(
Eεj (ω)(u,A) + ‖u− h‖L1(A,Rm)

)
. (3.28)

By the arbitrariness of the sequence εj → 0, this chain of inequalities, together with (3.26), gives (3.23)
and shows that u∗ is a solution of the minimisation problem (3.25).

In turn, (3.23), (3.27), and (3.28) imply that ‖uεj−h‖L1(A,Rm) → ‖u∗−h‖L1(A,Rm). Since uεj converges

to u∗ in L1
loc(A,Rm), from the general version of the Dominated Convergence Theorem we obtain that

uεj converges to u∗ in L1(A,Rm). This concludes the proof of the last statement of the corollary. �

4. Deterministic homogenisation: properties of the homogenised integrands

Let f ∈ F and g ∈ G. For ε > 0 consider the functionals Eε : L1
loc(Rn,Rm)×A −→ [0,+∞] defined by

Eε(u,A) :=


∫
A

f(x
ε
,∇u) dx+

∫
Su∩A

g(x
ε
, [u], νu) dHn−1 if u|A∈ SBV (A,Rm),

+∞ otherwise inL1
loc(Rn,Rm).

(4.1)

In this section we prove the Γ-convergence of Eε under suitable assumptions on f and g, which are more
general than the periodicity with respect to x.

The main result of this section is the following theorem.

Theorem 4.1 (Homogenisation). Let f ∈ F , g ∈ G, and let mf,g0 and mf∞,g be defined as in (3.4) with
(f, g) replaced by (f, g0) and (f∞, g), respectively. Assume that
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(a) for every x ∈ Rn, ξ ∈ Rm×n, ν ∈ Sn−1, and k ∈ N the limit

lim
r→+∞

mf,g0(`ξ, Q
ν,k
r (rx))

kn−1rn
=: fhom(ξ) (4.2)

exists and is independent of x, ν, and k;
(b) for every x ∈ Rn, ζ ∈ Rm, and ν ∈ Sn−1 the limit

lim
r→+∞

mf∞,g(urx,ζ,ν , Q
ν
r (rx))

rn−1
=: ghom(ζ, ν) (4.3)

exists and is independent of x.

Then fhom ∈ F and ghom ∈ G. Let f∞hom be the recession function of fhom and let Ehom : L1
loc(Rn,Rm) ×

A −→ [0,+∞] be the functional defined by

Ehom(u,A) :=

∫
A

fhom(∇u) dx+

∫
Su∩A

ghom([u], νu)dHn−1 +

∫
A

f∞hom

( dC(u)

d|C(u)|

)
d|C(u)| (4.4)

if u|A ∈ BV (A,Rm), while Ehom(u,A) := +∞ if u|A /∈ BV (A,Rm). Then, for every A ∈ A the
functionals Eε(·, A) defined as in (4.1) Γ-converge to Ehom(·, A) in L1

loc(Rn,Rm), as ε → 0+, meaning
that for every sequence (εj) of positive numbers converging to zero the sequence (Eεj (·, A)) Γ-converges to

Ehom(·, A) in L1
loc(Rn,Rm).

The proof of the homogenisation result Theorem 4.1 will be carried out in three main steps. In the first
step (Lemmas 4.2 and 4.5) we show that fhom ∈ F and ghom ∈ G. In the second step (Theorem 5.1) we
prove that, up to subsequences, for every A ∈ A the functionals Eε(·, A) Γ-converge to some functional

Ê(·, A), whose domain is BV (A,Rm). Further, we prove that Ê satisfies some suitable properties both as

a functional and as a set-function. In particular Ê(u, ·) is the restriction to A of a Borel measure.
In the third and last step we show that (4.2) and (4.3) imply, respectively, that the following identities

hold true for every A ∈ A and for every u ∈ L1
loc(Rn,Rm) with u|A ∈ BV (A,Rm):

dÊ(u, ·)
dLn (x) = fhom(∇u(x)) for Ln-a.e. x ∈ A, (4.5)

dÊ(u, ·)
dHn−1 Su

(x) = ghom([u](x), νu(x)) for Hn−1-a.e. x ∈ Su ∩A, (4.6)

dÊ(u, ·)
d|C(u)| (x) = f∞hom

( dC(u)

d|C(u)| (x)
)

for |C(u)|-a.e. x ∈ A (4.7)

(see Propositions 6.2, 7.2, and 8.3). Moreover, thanks to (4.5)-(4.7) we deduce that Ê coincides with the
functional Ehom defined in (4.4); as a consequence, the Γ-convergence result proved in the second step
actually holds true for the whole sequence (Eε).

In the next lemmas we prove that the homogenised integrands fhom and ghom belong to the classes F
and G, respectively.

Lemma 4.2. Let f ∈ F and g ∈ G. Assume that hypothesis (a) of Theorem 4.1 is satisfied and let fhom

be defined as in (4.2). Then fhom ∈ F .

Proof. To prove (f2) we fix ξ1, ξ2 ∈ Rm×n and set ξ := ξ2 − ξ1. We claim that for every r > 0

|mf,g0(`ξ1 , Qr)−m
f,g0(`ξ2 , Qr)| ≤ σ1(|ξ|)(mf,g0(`ξ1 , Qr) +mf,g0(`ξ2 , Qr)) + c1|ξ|rn, (4.8)

where Qr := Qr(0). Indeed, by (f2), for every u ∈ SBV (Qr,Rm) we have

Ef,g0(u+ `ξ, Qr) ≤ Ef,g0(u,Qr) + σ1(|ξ|)
(
Ef,g0(u+ `ξ, Qr) + Ef,g0(u,Qr)

)
+ c1|ξ|rn.

By rearranging the terms we get

(1− σ1(|ξ|))Ef,g0(u+ `ξ, Qr) ≤ (1 + σ1(|ξ|))Ef,g0(u,Qr) + c1|ξ|rn.

If σ1(|ξ|) < 1, we minimise over all functions u ∈ SBV (Qr,Rm) such that u = `ξ1 near ∂Qr and, using
(3.4), we obtain

(1− σ1(|ξ|))mf,g0(`ξ2 , Qr) ≤ (1 + σ1(|ξ|))mf,g0(`ξ1 , Qr) + c1|ξ|rn.

This inequality is trivial if σ1(|ξ|) ≥ 1. Exchanging the roles of ξ1 and ξ2 we obtain (4.8). We now divide
both sides of this inequality by rn and, passing to the limit as r → +∞, from (4.2) we obtain that fhom

satisfies (f2).
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Property (f1) for fhom follows from the continuity estimate (f2), since fhom does not depend on x.
The lower bound (f3) for fhom follows from the lower bound in Remark 3.2, which gives

c2 inf |Du|(Qr) ≤ mf,g0(`ξ, Qr)

for every ξ ∈ Rm×n, where the infimum is over all functions u ∈ SBV (Qr,Rm), and such that u = `ξ near
∂Qr. By Jensen’s inequality the left-hand side is equal to c2|ξ|rn. Using (4.2) we conclude that that fhom

satisfies (f3).
Property (f4) for fhom follows from the fact that for every ξ ∈ Rm×n we have

1

rn
mf,g0(`ξ, Qr) ≤

1

rn
Ef,g0(`ξ, Qr) =

1

rn

∫
Qr

f(x, ξ) dx ≤ c3|ξ|+ c4.

Passing to the limit as r → +∞, from (4.2) we obtain that fhom satisfies (f4).
We now prove that fhom satisfies (f5). Fix ξ ∈ Rm×n, s > 0, t > 0, and η ∈ (0, 1). By (3.4) for every

r > 0 there exists ur ∈ SBV (Qr,Rm), with ur = `ξ near ∂Qr, such that∫
Qr

f(x, t∇ur) dx+

∫
Sur∩Qr

g0(x, t[ur], νur ) dHn−1 ≤ mf,g0(`tξ, Qr) + ηrn. (4.9)

By (3.6) for every x ∈ Rn and ξ ∈ Rm×n we have

1
s
f(x, sξ)− c5

s
− c5

s
f(x, sξ)1−α ≤ 1

t
f(x, tξ) + c5

t
+ c5

t
f(x, tξ)1−α,

hence, using the positive 1-homogeneity of g0,

1

s

1

rn

∫
Qr

f(x, s∇ur) dx−
c5
s
− c5

s

1

rn

∫
Qr

f(x, s∇ur)1−αdx+
1

s

1

rn

∫
Sur∩Qr

g0(x, s[ur], νur ) dHn−1

≤ 1

t

1

rn

∫
Qr

f(x, t∇ur) dx+
c5
t

+
c5
t

1

rn

∫
Qr

f(x, t∇ur)1−αdx+
1

t

1

rn

∫
Sur∩Qr

g0(x, t[ur], νur ) dHn−1.

By Hölder’s inequality we obtain

1

s

1

rn

∫
Qr

f(x, s∇ur) dx+
1

s

1

rn

∫
Sur∩Qr

g0(x, s[ur], νur ) dHn−1 − c5
s
− c5

s

( 1

rn

∫
Qr

f(x, s∇ur) dx
)1−α

≤ 1

t

1

rn

∫
Qr

f(x, t∇ur) dx+
1

t

1

rn

∫
Sur∩Qr

g0(x, t[ur], νur ) dHn−1 +
c5
t

+
c5
t

( 1

rn

∫
Qr

f(x, t∇ur) dx
)1−α

.

By (4.9) this inequality implies that

1

s

( 1

rn

∫
Qr

f(x, s∇ur) dx+
1

rn

∫
Sur∩Qr

g0(x, s[ur], νur ) dHn−1
)
− c5

s

−c5
s

( 1

rn

∫
Qr

f(x, s∇ur) dx+
1

rn

∫
Sur∩Qr

g0(x, s[ur], νur ) dHn−1
)1−α

≤ 1

t

( 1

rn
mf,g0(`tξ, Qr) + η

)
+
c5
t

+
c5
t

( 1

rn
mf,g0(`tξ, Qr) + η

)1−α
. (4.10)

If
1

rn
mf,g0(`sξ, Qr)− c5

( 1

rn
mf,g0(`sξ, Qr)

)1−α
≤ 0, (4.11)

then we have

1

s

1

rn
mf,g0(`sξ, Qr)−

c5
s
− c5

s

( 1

rn
mf,g0(`sξ, Qr)

)1−α

≤ 1

t

( 1

rn
mf,g0(`tξ, Qr) + η

)
+
c5
t

+
c5
t

( 1

rn
mf,g0(`tξ, Qr) + η

)1−α
, (4.12)

just because the left-hand side is negative and the right-hand side is positive. Since the function τ 7→
τ − c5τ1−α, defined for τ > 0, is increasing in the half-line where it is positive, from the inequality

mf,g0(`sξ, Qr) ≤
∫
Qr

f(x, s∇ur) dx+

∫
Sur∩Qr

g0(x, s[ur], νur ) dHn−1

and from (4.10) we deduce that (4.12) is satisfied even if (4.11) is not.
Passing to the limit first as r → +∞ and then as η → 0+, from (4.2) and (4.12) we obtain

1

s
fhom(sξ)− c5

s
− c5

s
fhom(sξ)1−α ≤ 1

t
fhom(tξ) +

c5
t

+
c5
t
fhom(tξ)1−α.

By exchanging the roles of s and t we obtain (3.6). Recalling that fhom satisfies (f4), we can apply Remark
3.4 and we obtain that fhom satisfies (f5). �
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To prove that ghom ∈ G we need the truncation result given by the following lemma, which will be used
several times in this paper. The proof is given in [9, Lemma 3.7] (see also [10, Lemma 2.8]).

Lemma 4.3. Let C1 > 0, C2 > 0, and η > 0. Then there exists a constant M = M(C1, C2, η) > 0
such that for every f ∈ F and g ∈ G, for every A ∈ A , for every w ∈ SBV (A,Rm) ∩ L∞(A,Rm), with
‖w‖L∞(A,Rm) ≤ C1, and for every u ∈ BV (A,Rm), with ‖u‖L1(A,Rm) + |Du|(A) ≤ C2 and u = w near
∂A, there exists ũ ∈ SBV (A,Rm) ∩ L∞(A,Rm) such that

(a) ‖ũ‖L∞(A,Rm) ≤M ,

(b) Ef,g(ũ, A) ≤ Ef,g(u,A) + η,
(c) ‖ũ− w‖L1(A,Rm) ≤ ‖u− w‖L1(A,Rm),
(d) ũ = w near ∂A.

Remark 4.4. A careful inspection of the proof of [9, Lemma 3.7] shows that the lemma also applies if u
only attains the boundary conditions on a subset of ∂A, as defined after (3.4). More precisely, if Λ ⊂ ∂A
is a relatively open subset of ∂A, U is a neighbourhood of Λ in Rn, w ∈ SBV (A,Rm) ∩ L∞(U ∩ A,Rm),
and u = w Ln-a.e. in U ∩A, then the conclusion still holds true, with (d) replaced by

(d′) ũ = w Ln-a.e. in U ∩A,

and in this case M = M(C̃1, C2, η) > 0, where ‖w‖L∞(U∩A,Rm) ≤ C̃1.

We are now ready to prove that ghom ∈ G.

Lemma 4.5. Let f ∈ F and g ∈ G. Assume that hypothesis (b) of Theorem 4.1 is satisfied and let ghom

be defined as in (4.3). Then ghom ∈ G.

Proof. To prove (g2) we fix ζ1, ζ2 ∈ Rm and ν ∈ Sn−1, and we set ζ := ζ2 − ζ1. We claim that for every
r > 0

|mf∞,g(u0,ζ1,ν , Q
ν
r )−mf∞,g(u0,ζ2,ν , Q

ν
r )| ≤ σ2(|ζ|)(mf∞,g(u0,ζ1,ν , Q

ν
r ) +mf∞,g(u0,ζ2,ν , Q

ν
r )), (4.13)

where Qνr := Qνr (0). Indeed, for every u ∈ SBV (Qνr ,Rm), by (g2) we have

Ef
∞,g(u+ u0,ζ,ν , Q

ν
r ) ≤ Ef

∞,g(u,Qνr ) + σ2(|ζ|)
(
Ef
∞,g(u+ u0,ζ,ν , Q

ν
r ) + Ef

∞,g(u,Qνr )
)
.

By rearranging the terms we get

(1− σ2(|ζ|))Ef
∞,g(u+ u0,ζ,ν , Q

ν
r ) ≤ (1 + σ2(|ζ|))Ef

∞,g(u,Qνr ).

If σ2(|ζ|) < 1, we minimise over all functions u ∈ SBV (Qνr ,Rm) such that u = u0,ζ1,ν near ∂Qνr and by
(3.4) we obtain

(1− σ2(|ζ|))mf∞,g(u0,ζ2,ν , Q
ν
r ) ≤ (1 + σ2(|ζ|))mf∞,g(u0,ζ1,ν , Q

ν
r ).

This inequality is trivial if σ2(|ζ|) ≥ 1. Exchanging the roles of ζ1 and ζ2 we obtain (4.13). We now divide
both sides of this inequality by rn−1 and, passing to the limit as r → +∞, from (4.3) we obtain that ghom

satisfies (g2).
In view of (g2), to prove (g1) for ghom it is enough to show that for every ζ ∈ Rm the restriction of the

function ν 7→ ghom(ζ, ν) to the sets Ŝn−1
+ and Ŝn−1

− is continuous. We only prove this property for Ŝn−1
+ ,

the other case being analogous. To this end, let us fix ζ ∈ Rm, ν ∈ Ŝn−1
+ , and a sequence (νj) ⊂ Ŝn−1

+

such that νj → ν as j → +∞. Since the function ν 7→ Rν is continuous on Ŝn−1
+ , for every δ ∈ (0, 1

2
) there

exists an integer jδ such that

|νj − ν| < δ and Q
νj
(1−δ)r ⊂⊂ Q

ν
r ⊂⊂ Q

νj
(1+δ)r, (4.14)

for every j ≥ jδ and every r > 0. Fix j ≥ jδ, r > 0, and η > 0. By (3.4) there exists u ∈ SBV (Qνr ,Rm),
with u = u0,ζ,ν near ∂Qνr , such that∫

Qνr

f∞(x,∇u) dx+

∫
Su∩Qνr

g(x, [u], νu) dHn−1 ≤ mf∞,g(u0,ζ,ν , Q
ν
r ) + η. (4.15)

We define v ∈ SBVloc(Q
νj
(1+δ)r,R

m) as

v(x) :=

{
u(x) if x ∈ Qνr ,
u0,ζ,νj (x) if x ∈ Qνj(1+δ)r \Q

ν
r .

Then v = u0,ζ,νj near ∂Q
νj
(1+δ)r and Sv ⊂ Su ∪ Σ, where

Σ :=
{
x ∈ ∂Qνr : (x · ν)(x · νj) < 0

}
∪
(
Π
νj
0 ∩ (Q

νj
(1+δ)r \Q

ν
r )
)
.
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By (4.14) there exists ς(δ) > 0, independent of j and r, with ς(δ) → 0 as δ → 0+, such that Hn−1(Σ) ≤
ς(δ)rn−1. Thanks to (g4), (3.4) and (4.15) we then have

mf∞,g(u0,ζ,νj , Q
νj
(1+δ)r) ≤

∫
Q
νj
(1+δ)r

f∞(x,∇v) dx+

∫
Sv∩Q

νj
(1+δ)r

g(x, [v], νv) dHn−1

≤
∫
Qνr

f∞(x,∇u) dx+

∫
Su∩Qνr

g(x, [u], νu) dHn−1 + c3|ζ|ς(δ)rn−1

≤ mf∞,g(u0,ζ,ν , Q
ν
r ) + η + c3|ζ|ς(δ)rn−1,

where we used the fact that f∞(x, 0) = 0 for every x ∈ Rn. Dividing by rn−1 and passing to the limit as
r → +∞, recalling (4.3) we obtain

ghom(ζ, νj)(1 + δ)n−1 ≤ ghom(ζ, ν) + c3|ζ|ς(δ).

Letting j → +∞ and then δ → 0+ we deduce that

lim sup
j→+∞

ghom(ζ, νj) ≤ ghom(ζ, ν).

An analogous argument, now using the cubes Q
νj
(1−δ)r, implies that

ghom(ζ, ν) ≤ lim inf
j→+∞

ghom(ζ, νj),

hence the restriction of the function ν 7→ ghom(ζ, ν) to Ŝn−1
+ is continuous. This concludes the proof of

(g1) for ghom.
The lower bound (g3) for ghom can be obtained from the lower bound in Remark 3.2, which gives

c2 inf |Du|(Qνr ) ≤ mf∞,g(u0,ζ,ν , Q
ν
r )

for every ζ ∈ Rm and ν ∈ Sn−1, where the infimum is over all functions u ∈ SBV (Qνr ,Rm) and such that
u = u0,ζ,ν near ∂Qνr . In turn, this infimum is larger than or equal to

c2 inf |Dv|(Qνr ), (4.16)

where the infimum is now over all scalar functions v ∈ SBV (Qνr ) and such that v = u0,|ζ|,ν near ∂Qνr .
Using (4.3), property (g3) for ghom follows from these inequalities and from the fact that the value of
(4.16) is c2|ζ|rn−1. This is a well kown fact, which can be proved, for instance, using a slicing argument
based on [5, Theorem 3.103].

Property (g4) for ghom follows from the fact that for every ζ ∈ Rm and ν ∈ Sn−1 we have

1

rn−1
mf∞,g(u0,ζ,ν , Q

ν
r ) ≤ 1

rn−1
Ef
∞,g(u0,ζ,ν , Q

ν
r ) =

1

rn−1

∫
Πν0∩Qνr

g(x, ζ, ν) dx ≤ c3|ζ|.

Passing to the limit as r → +∞, from (4.3) we obtain that ghom satisfies (g4).
We now prove that ghom satisfies (g5). Fix ζ ∈ Sm−1, ν ∈ Sn−1, s > 0, t > 0, and η ∈ (0, 1). By (3.4)

for every r > 0 there exists vr ∈ SBV (Qνr ,Rm), with vr = u0,ζ,ν near ∂Qνr , such that∫
Qνr

f∞(x, t∇vr) dx+

∫
Svr∩Qνr

g(x, t[vr], νvr ) dHn−1 ≤ mf∞,g(u0,tζ,ν , Q
ν
r ) + ηtrn−1,

hence ∫
Qνr

f∞(x,∇vr) dx+
1

t

∫
Svr∩Qνr

g(x, t[vr], νvr ) dHn−1 ≤ 1

t
mf∞,g(u0,tζ,ν , Q

ν
r ) + ηrn−1,

where we used the positive 1-homogeneity of f∞(x, ·).
Let Qν := Qν1(0) and let wr ∈ SBV (Qν ,Rm) be the rescaled function, defined by wr(x) := vr(rx) for

every x ∈ Qν . Then wr = u0,ζ,ν near ∂Qν and, by a change of variables,∫
Qν

f∞(rx,∇wr) dx+
1

t

∫
Swr∩Qν

g(rx, t[wr], νwr ) dHn−1 ≤ 1

t

1

rn−1
mf∞,g(u0,tζ,ν , Q

ν
r ) + η, (4.17)

where we used the positive 1-homogeneity of f∞(x, ·). Since the function gr,t defined by gr,t(x, ζ, ν) :=
1
t
g(rx, tζ, ν) satisfies (g3) with the constant c2 independent of r and t, and by (g4)

1

trn−1
mf∞,g(u0,tζ,ν , Q

ν
r ) ≤ 1

trn−1
Ef
∞,g(u0,tζ,ν , Q

ν
r ) =

1

trn−1

∫
Πν0∩Qνr

g(x, tζ, ν) dHn−1 ≤ c3|ζ| = c3,

from Remark 3.2 and (4.17) we deduce that there exists a constant C such that |Dwr|(Qν) ≤ C, for every
r > 0, t > 0, and η ∈ (0, 1). In addition, since wr coincides with u0,ζ,ν near ∂Qν , we can apply Poincaré’s
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inequality and from the bound on its total variation we deduce that wr is bounded in BV (Qν ,Rm), uni-
formly with respect to r, by a constant that we still denote with C; namely, ‖wr‖L1(Qν ,Rm) + |Dwr|(Qν) ≤
C.

By Lemma 4.3 for every η ∈ (0, 1) there exists a constant Mη > 0, depending on C but not on t > 0,
r > 0, ζ ∈ Sm−1, and ν ∈ Sn−1, such that for every r > 0 there exists a function w̃r ∈ SBV (Qν ,Rm) ∩
L∞(Qν ,Rm) with the following properties: w̃r = u0,ζ,ν near ∂Qν , ‖w̃r‖L∞(Qν ,Rm) ≤Mη, and∫

Qν
f∞(rx,∇w̃r) dx+

1

t

∫
Sw̃r∩Qν

g(rx, t[w̃r], νw̃r ) dHn−1

≤
∫
Qν

f∞(rx,∇wr) dx+
1

t

∫
Swr∩Qν

g(rx, t[wr], νwr ) dHn−1 + η,

where we used the fact that f∞ ∈ F and gr,t ∈ G. By (4.17) this implies that∫
Qν

f∞(rx,∇w̃r) dx+
1

t

∫
Sw̃r∩Qν

g(rx, t[w̃r], νw̃r ) dHn−1 ≤ 1

t

1

rn−1
mf∞,g(u0,tζ,ν , Q

ν
r ) + 2η. (4.18)

Let ṽr ∈ SBV (Qνr ,Rm) ∩ L∞(Qνr ,Rm) be the function defined by ṽr(x) := w̃r(
x
r
) for every x ∈ Qνr .

Then ṽr = u0,ζ,ν near ∂Qνr , ‖ṽr‖L∞(Qνr ,Rm) ≤Mη, and, by a change of variables,∫
Qνr

f∞(x,∇ṽr) dx+
1

t

∫
Sṽr∩Qνr

g(x, t[ṽr], νṽr ) dHn−1 ≤ 1

t
mf∞,g(u0,tζ,ν , Q

ν
r ) + 2ηrn−1, (4.19)

where we used (4.18) and the positive 1-homogeneity of f∞(x, ·). Since ‖ṽr‖L∞(Qνr ,Rm) ≤ Mη, by (3.11)
we have (

1− 1

c2
λ(2sMη)

)(∫
Qνr

f∞(x,∇ṽr) dx+
1

s

∫
Sṽr∩Qνr

g(x, s[ṽr], νṽr ) dHn−1
)

≤
(

1 +
1

c2
λ(2tMη)

)(∫
Qνr

f∞(x,∇ṽr) dx+
1

t

∫
Sṽr∩Qνr

g(x, t[ṽr], νṽr ) dHn−1
)
. (4.20)

Assume that

1− 1
c2
λ(2sMη) > 0. (4.21)

Since sṽr = u0,sζ,ν near ∂Qνr , using the positive 1-homogeneity of f∞ we obtain that

1

s
mf∞,g(u0,sζ,ν , Q

ν
r ) ≤

∫
Qνr

f∞(x,∇ṽr) dx+
1

s

∫
Sṽr∩Qνr

g(x, s[ṽr], νṽr ) dHn−1.

Hence from (4.19) and (4.20) we have(
1− 1

c2
λ(2sMη)

)
1
s
mf∞,g(u0,sζ,ν , Q

ν
r ) ≤

(
1 + 1

c2
λ(2tMη)

)(
1
t
mf∞,g(u0,tζ,ν , Q

ν
r ) + 2ηrn−1). (4.22)

This inequality holds also when (4.21) is not satisfied, since in that case the left-hand side is nonpositive.
Since Mη does not depend on t, s, and r, we can divide (4.22) by rn−1 and, passing to the limit as

r → +∞, by (4.3) we obtain(
1− 1

c2
λ(2sMη)

)
1
s
ghom(sζ, ν) ≤

(
1 + 1

c2
λ(2tMη)

)(
1
t
ghom(tζ, ν) + 2η

)
,

which gives

1
s
ghom(sζ, ν)− 1

t
ghom(tζ, ν) ≤ 1

c2
λ(2sMη) 1

s
ghom(sζ, ν) + 1

c2
λ(2tMη) 1

t
ghom(tζ, ν) + 2η

(
1 + 1

c2
λ(2tMη)

)
.

Since ghom satisfies (g4) and |ζ| = 1, from the previous inequality we deduce that

1
s
ghom(sζ, ν)− 1

t
ghom(tζ, ν) ≤ c3

c2
λ(2sMη) + c3

c2
λ(2tMη) + 2η

(
1 + 1

c2
λ(2tMη)

)
.

Exchanging the roles of s and t we obtain

| 1
s
ghom(sζ, ν)− 1

t
ghom(tζ, ν)| ≤ c3

c2
λ(2sMη) + c3

c2
λ(2tMη) + 2η

(
2 + 1

c2
λ(2sMη) + 1

c2
λ(2tMη)

)
(4.23)

for every s > 0, t > 0, ζ ∈ Sm−1, and ν ∈ Sn−1.
Given τ > 0, we fix η > 0 such that 4η < τ

5
. Then, using (3.8), we find δ > 0 such that for every

t ∈ (0, δ) we have c3
c2
λ(2tMη) < τ

5
and 2η 1

c2
λ(2tMη) < τ

5
. From (4.23) we obtain

| 1
s
ghom(sζ, ν)− 1

t
ghom(tζ, ν)| ≤ τ (4.24)

for every s, t ∈ (0, δ), ζ ∈ Sm−1, and ν ∈ Sn−1. This shows that the function t 7→ 1
t
ghom(tζ, ν) satisfies

the Cauchy condition for t→ 0+, hence the limit

ghom,0(ζ, ν) := lim
t→0+

1
t
ghom(tζ, ν)
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exists and is finite. This limit is uniform with respect to ζ ∈ Sm−1 and ν ∈ Sn−1 thanks to (4.24). This
concludes the proof of (g5).

Property (g6) for ghom follows from (4.3) and from the fact that u0,−ζ,−ν = u0,ζ,ν − ζ and Qνr = Q−νr
(see (h) in Section 2). �

5. Γ-convergence of a subsequence of (Eε)

In this short section we show that, up to a subsequence, the functionals Eε defined in (4.1) Γ-converge

to some functional Ê as ε→ 0+, and study the main properties of this functional.

Theorem 5.1 (Properties of the Γ-limit). Let f ∈ F , let g ∈ G, and for ε > 0 let Eε : L1
loc(Rn,Rm) ×

A −→ [0,+∞] be the functionals defined in (4.1). Then, for every sequence of positive numbers converging

to zero, there exist a subsequence (εj) and a functional Ê : L1
loc(Rn,Rm) × A −→ [0,+∞] such that for

every A ∈ A the functionals Eεj (·, A) Γ-converge to Ê(·, A) in L1
loc(Rn,Rm), as j → +∞. Moreover, Ê

satisfies the following properties:

(a) (locality) Ê is local; i.e., Ê(u,A) = Ê(v,A) for every A ∈ A and every u, v ∈ L1
loc(Rn,Rm) such

that u = v Ln-a.e. in A;

(b) (semicontinuity) for every A ∈ A the functional Ê(·, A) is lower semicontinuous in L1
loc(Rn,Rm);

(c) (bounds) for every A ∈ A and every u ∈ L1
loc(Rn,Rm) we have

c2|Du|(A) ≤ Ê(u,A) ≤ c3|Du|(A) + c4Ln(A) if u|A ∈ BV (A,Rm),

Ê(u,A) = +∞ otherwise;

(d) (measure property) for every u ∈ L1
loc(Rn,Rm) the set function Ê(u, ·) is the restriction to A of

a Borel measure defined on Bn, which we still denote by Ê(u, ·);
(e) (translation invariance in u) for every A ∈ A and every u ∈ L1

loc(Rn,Rm) we have

Ê(u+ s,A) = Ê(u,A) for every s ∈ Rm.

Proof. Given an infinitesimal sequence (εj) of positive numbers, let Ê′, Ê′′ : L1
loc(Rn,Rm)×A −→ [0,+∞]

be the functionals defined as

Ê′(·, A) := Γ- lim inf
j→+∞

Eεj (·, A) and Ê′′(·, A) := Γ- lim sup
j→+∞

Eεj (·, A).

In view of the bounds (f3), (f4), (g3), and (g4) satisfied by f and g, it immediately follows that

c2|Du|(A) ≤ Ê′(u,A) ≤ Ê′′(u,A) ≤ c3|Du|(A) + c4Ln(A) if u|A ∈ BV (A,Rm), (5.1)

Ê′(u,A) = Ê′′(u,A) = +∞ if u|A /∈ BV (A,Rm). (5.2)

By the definition of Eεj and the general properties of Γ-convergence, we can also deduce that the

functionals Ê′ and Ê′′ are local [18, Proposition 16.15], lower semicontinuous (in u) [18, Proposition 6.8],

and increasing (in A) [18, Proposition 6.7]. Moreover Ê′ is superadditive (in A) [18, Proposition 16.12].

Since it is not obvious that Ê′ and Ê′′ are inner regular (in A), at this stage of the proof we consider their

inner regular envelopes; i.e., the functionals Ê′−, Ê
′′
− : L1

loc(Rn,Rm)×A −→ [0,+∞] defined as

Ê′−(u,A) := sup
A′⊂⊂A
A′∈A

Ê′(u,A′) and Ê′′−(u,A) := sup
A′⊂⊂A
A′∈A

Ê′′(u,A′).

Also Ê′− and Ê′′− are increasing, lower semicontinuous [18, Remark 15.10], and local [18, Remark 15.25].
Moreover, by [18, Theorem 16.9] we can find a subsequence of (εj) (not relabelled) such that the corre-

sponding functionals Ê′ and Ê′′ satisfy

Ê′− = Ê′′− =: Ê. (5.3)

The functional Ê defined in (5.3) is inner regular [18, Remark 15.10] and superadditive [18, Proposi-
tion 16.12].

By virtue of [11, Proposition 3.1] applied with p = 1 we can immediately deduce that the functionals
Eε satisfy the so-called fundamental estimate uniformly in ε. Therefore [18, Proposition 18.4] yields the

subadditivity of Ê(u, ·). Therefore, invoking the measure-property criterion of De Giorgi and Letta [18,

Theorem 14.23], we can deduce that, for every u ∈ L1
loc(Rn,Rm), the set function Ê(u, ·) is the restriction

to A of a Borel measure defined on Bn.
Moreover [18, Proposition 18.6] and (5.1) imply that Ê(u,A) = Ê′(u,A) = Ê′′(u,A) whenever u|A ∈

BV (A,Rm). Finally, it follows from (5.1) and (5.2) that Ê(u,A) = Ê′(u,A) = Ê′′(u,A) = +∞ if
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u|A /∈ BV (A,Rm). We then conclude that Ê = Ê′ = Ê′′ in L1
loc(Rn,Rm) × A , hence that Ê(·, A) is the

Γ-limit of Eεj (·, A) in L1
loc(Rn,Rm) for every A ∈ A .

Eventually, the translation invariance in u of Ê(·, A) can be easily checked arguing as in [11, Lemma 3.7].
�

For later use we need to introduce the following notation. Let A ∈ A and w ∈ BV (A,Rm), we set

mÊ(w;A) := inf{Ê(u,A) : u ∈ L1
loc(Rn,Rm), u|A ∈ BV (A,Rm), u = w near ∂A}.

6. Identification of the volume term

In Proposition 6.2 below we characterise the derivative of Ê with respect to the Lebesgue measure Ln.
In order to prove this result we need the estimate established in the following lemma, whose proof is an
immediate consequence of (3.9).

Lemma 6.1. Let g ∈ G, A ∈ A , and u ∈ BV (A,Rm) ∩ L∞(A,Rm). Then for every t > 0∫
Su∩A

∣∣g0(x, [u], νu)− 1
t
g(x, t[u], νu)

∣∣ dHn−1 ≤ λ(t‖[u]‖L∞(Su∩A,Rm))

∫
Su∩A

|[u]| dHn−1,

where λ is the function defined in (3.7).

Proposition 6.2 (Homogenised volume integrand). Let f , g, Eε, (εj), and Ê be as in Theorem 5.1.
Assume that (a) of Theorem 4.1 holds, and let fhom be as in (4.2). Then for every A ∈ A and every
u ∈ L1

loc(Rn,Rm), with u|A ∈ BV (A,Rm), we have that

dÊ(u, ·)
dLn (x) = fhom

(
∇u(x)

)
for Ln-a.e. x ∈ A.

Proof. Let us fix A ∈ A and u ∈ L1
loc(Rn,Rm), with u|A ∈ BV (A,Rm). We divide the proof into two

steps.

Step 1: We claim that

dÊ(u, ·)
dLn (x) ≤ fhom

(
∇u(x)

)
for Ln-a.e. x ∈ A. (6.1)

By (a)-(e) of Theorem 5.1 and by [10, Lemmas 3.1 and 3.5], arguing as in the proof of (3.16) in [10,
Theorem 3.7], for Ln-a.e. x ∈ A we have

dÊ(u, ·)
dLn (x) = lim

ρ→0+

mÊ(`ξ(x), Qρ(x))

ρn
, (6.2)

where ξ(x) := ∇u(x). Fix x ∈ A such that (6.2) holds and set ξ := ξ(x) = ∇u(x).
For every ρ > 0 we have

fhom(ξ) = lim
r→+∞

mf,g0(`ξ, Qr(
rx
ρ

))

rn
, (6.3)

since the above identity directly follows from (4.2) by replacing x with x
ρ

.

Let us fix η ∈ (0, 1). By (3.4) for every ρ > 0 and r > 0 there exists vρr ∈ SBV (Qr(
rx
ρ

),Rm), with

vρr = `ξ near ∂Qr(
rx
ρ

), such that

Ef,g0(vρr , Qr(
rx
ρ

)) ≤ mf,g0(`ξ, Qr(
rx
ρ

)) + ηrn ≤
∫
Qr( rx

ρ
)

f(y, ξ) dy + ηrn ≤ (c3|ξ|+ c4 + 1)rn, (6.4)

where we used that g0(·, 0, ·) = 0 and (f4). We extend vρr to Rn by setting vρr (y) = `ξ(y) for every
y ∈ Rn \Qr( rxρ ).

For every y ∈ Rn let wρr (y) := 1
r
vρr ( rx

ρ
+ ry)− 1

ρ
`ξ(x). Clearly wρr ∈ SBVloc(Rn,Rm) and wρr = `ξ near

∂Q and in Rn \Q, where Q := Q1(0). Moreover, by a change of variables we obtain∫
Q

f
(
rx
ρ

+ ry,∇wρr (y)
)
dy+

∫
S
w
ρ
r
∩Q

g0

(
rx
ρ

+ ry, [wρr ](y), νwρr (y)
)
dHn−1(y) =

1

rn
Ef,g0(vρr , Qr(

rx
ρ

)), (6.5)

where we used the 1-homogeneity of g0 in the second variable. By the lower bounds (f3) and (g3), from
(6.4) and (6.5) we deduce that there exists a constant K, depending on |ξ|, such that |Dwρr |(Q) ≤ K for
every ρ > 0 and r > 0. In addition, since wρr coincides with `ξ in Rn\Q, we can apply Poincaré’s inequality
and from the bound on its total variation we deduce that the sequence (wρr ) is bounded in BVloc(Rn,Rm).
In particular it is bounded in BV (Q,Rm), uniformly with respect to ρ and r, by a constant that we still
denote with K.
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By Lemma 4.3 and by (6.4) and (6.5) for every η ∈ (0, 1) there exists a constant Mη, depending also
on |ξ| and K, such that for every ρ > 0 and r > 0 there exists w̃ρr ∈ SBV (Q,Rm) ∩ L∞(Q,Rm) with the
following properties: w̃ρr = `ξ near ∂Q, ‖w̃ρr‖L∞(Q,Rm) ≤Mη, and∫

Q

f
(
rx
ρ

+ ry,∇w̃ρr (y)
)
dy +

∫
S
w̃
ρ
r
∩Q

g0

(
rx
ρ

+ ry, [w̃ρr ](y), νw̃ρr (y)
)
dHn−1(y) ≤

mf,g0(`ξ, Qr(
rx
ρ

))

rn
+ 2η.

Let ṽρr ∈ SBVloc(Rn,Rm) be defined by ṽρr (y) := rw̃ρr ( y
r
− x

ρ
) + r

ρ
`ξ(x). Then ṽρr = `ξ near ∂Qr(

rx
ρ

)

and, by a change of variables,

‖[ṽρr ]‖L∞(S
ṽ
ρ
r
∩Qr( rx

ρ
),Rm) ≤ 2Mηr, (6.6)

Ef,g0(ṽρr , Qr(
rx
ρ

)) ≤ mf,g0(`ξ, Qr(
rx
ρ

)) + 2η rn. (6.7)

Moreover, by combining (6.4) and (6.7) with the lower bound (g3) we immediately deduce the existence
of a constant C > 0, depending on |ξ|, such that

1

rn

∫
S
ṽ
ρ
r
∩Qr( rx

ρ
)

|[ṽρr ]| dHn−1 ≤ C. (6.8)

By Lemma 6.1, applied with t = ρ/r, using (6.6) and (6.8) we obtain

1

rn

∫
S
ṽ
ρ
r
∩Qr(

rx
ρ

)

∣∣∣g0(y, [ṽρr ], νṽρr )− r
ρ
g(y, ρ

r
[ṽρr ], νṽρr )

∣∣∣ dHn−1 ≤ Cλ(2ρMη).

This inequality, together with (6.3) and (6.7), gives

lim sup
r→+∞

1

rn

(∫
Qr(

rx
ρ

)

f(y,∇ṽρr ) dy +

∫
S
ṽ
ρ
r
∩Qr(

rx
ρ

)

r
ρ
g(y, ρ

r
[ṽρr ], νṽρr ) dHn−1

)
≤ fhom(ξ) + 2η + Cλ(2ρMη).

Given ε > 0 and ρ > 0, we choose r = ρ/ε and for every y ∈ Rn we define uρε(y) := ε ṽρr ( y
ε
) = ρ

r
ṽρr ( ry

ρ
).

Then uρε ∈ SBVloc(Rn,Rm), uρε = `ξ near ∂Qρ(x) and in Rn \Qρ(x). By a change of variables, from the
previous inequality we get that for every ρ > 0

lim sup
ε→0+

Eε(u
ρ
ε , Qρ(x))

ρn
≤ fhom(ξ) + 2η + Cλ(2ρMη). (6.9)

Since the functions uρε coincide with `ξ in Q(1+η)ρ(x)\Q(1−δε)ρ(x) for some δε ∈ (0, 1), by (f4) we have
Eε(u

ρ
ε , Q(1+η)ρ(x)) ≤ Eε(uρε , Qρ(x)) + (c3|ξ|+ c4)2nρnη, which, together with (6.9), gives

lim sup
ε→0+

Eε(u
ρ
ε , Q(1+η)ρ(x))

ρn
≤ fhom(ξ) + Cλ(2ρMη) + K̃η, (6.10)

where K̃ := 2 + (c3|ξ|+ c4)2n. Since uρε coincides with `ξ in Rn \Qρ(x), using Poincaré’s inequality and
the lower bounds (f3) and (g3) we deduce from (6.10) that for every ρ > 0 there exists ε(ρ) > 0 such that
the sequence (uρε) is bounded in BVloc(Rn,Rm). In particular it is bounded in BV (Qρ(x),Rm) uniformly
with respect to ε ∈ (0, ε(ρ)). Note that the bound on the L1-norm can be obtained by e.g. [5, Theorem
3.47]. Then there exists a subsequence, not relabelled, of the sequence (εj) considered in Theorem 5.1,
such that (uρεj ) converges in L1

loc(Rn,Rm) to some uρ ∈ BVloc(Rn,Rm) with uρ = `ξ in Q(1+η)ρ(x)\Qρ(x).

As a consequence of the Γ-convergence of Eεj (·, Q(1+η)ρ(x)) to Ê(·, Q(1+η)ρ(x)), from (6.10) we obtain

mÊ(`ξ, Q(1+η)ρ(x))

ρn
≤
Ê(uρ, Q(1+η)ρ(x))

ρn
≤ lim sup

j→+∞

Eεj (u
ρ
εj , Q(1+η)ρ(x))

ρn
≤ fhom(ξ) + Cλ(2ρMη) + K̃η.

Finally, passing to the limit as ρ→ 0+, from (3.8) and (6.2) we get

(1 + η)n
dÊ(u, ·)
dLn (x) ≤ fhom(ξ) + K̃η.

Since ξ := ∇u(x), this gives (6.1) by the arbitrariness of η > 0.

Step 2: We claim that

dÊ(u, ·)
dLn (x) ≥ fhom

(
∇u(x)

)
for Ln-a.e. x ∈ A. (6.11)

We extend u to Rn by setting u = 0 on Rn \A. By Γ-convergence there exists (uε) ⊂ L1
loc(Rn,Rm), with

uε|A ∈ SBV (A,Rm), such that

uε → u in L1
loc(Rn,Rm) and lim

ε→0+
Eε(uε, A) = Ê(u,A), (6.12)



20

along the sequence (εj) considered in Theorem 5.1. Passing to a further subsequence we have

lim
ε→0+

uε(x) = u(x) (6.13)

for Ln- a.e. x ∈ A. In the rest of the proof ε will always be an element of this sequence.
By (j) of Section 2 and by [5, Definition 3.70], for Ln-a.e. x ∈ A we have

lim
ρ→0+

1

ρn
|Du|(Qρ(x)) = |∇u(x)| < +∞, (6.14)

lim
ρ→0+

1

ρn+1

∫
Qρ(x)

|u(y)− u(x)−∇u(x)(y − x)| dx = 0, (6.15)

lim
ρ→0+

Ê(u,Qρ(x))

ρn
=
dÊ(u, ·)
dLn (x). (6.16)

Let us fix x ∈ A such that (6.13)-(6.16) hold true.

Recalling (5.1) we have that Ê(u,Qρ(x)) ≤ c3|Du|(Qρ(x)) + c4ρ
n, hence by (6.14) and (6.16) there

exists ρ0 ∈ (0, 1) such that

Qρ(x) ⊂⊂ A and
Ê(u,Qρ(x))

ρn
≤ c3|∇u(x)|+ c4 + 1 (6.17)

for every ρ ∈ (0, ρ0). Since Ê(u, ·) is a Radon measure, there exists a set B ⊂ (0, ρ0), with (0, ρ0) \ B at

most countable, such that Ê(u, ∂Qρ(x)) = 0 for every ρ ∈ B. Then we have

Ê(u,A) = Ê(u,Qρ(x)) + Ê(u,A \Qρ(x))

for every ρ ∈ B. By Γ-convergence we also have

lim inf
ε→0+

Eε(uε, Qρ(x)) ≥ Ê(u,Qρ(x)) and lim inf
ε→0+

Eε(uε, A \Qρ(x)) ≥ Ê(u,A \Qρ(x)),

so that by (6.12) it follows that for every ρ ∈ B

lim
ε→0+

Eε(uε, Qρ(x)) = Ê(u,Qρ(x)). (6.18)

Note that for every ρ ∈ B there exists ε(ρ) > 0 such that for every ε ∈ (0, ε(ρ))

Eε(uε, Qρ(x))

ρn
≤ Ê(u,Qρ(x))

ρn
+ ρ ≤ c3|∇u(x)|+ c4 + 2, (6.19)

where in the last inequality we used (6.17).
The rest of this proof is devoted to modifying uε in order to construct a competitor for the minimisation

problems appearing in (4.2), which defines fhom. To this end, for every ρ ∈ B and ε > 0 we consider the
blow-up functions defined for y ∈ Q := Q1(0) by

wρε(y) :=
uε(x+ ρy)− uε(x)

ρ
and wρ(y) :=

u(x+ ρy)− u(x)

ρ
.

Then wρε ∈ SBV (Q,Rm) and wρ ∈ BV (Q,Rm). Since uε → u in L1(Qρ(x),Rm) by (6.12), using (6.13)
for every ρ ∈ B we obtain

wρε → wρ in L1(Q,Rm) as ε→ 0 + . (6.20)

Moreover, from (6.15) we can deduce that

wρ → `ξ in L1(Q,Rm) as ρ→ 0+, (6.21)

where we set ξ := ∇u(x). Therefore, by possibly reducing the values of ρ0 and ε(ρ), we may assume that

‖wρε − `ξ‖L1(Q,Rm) ≤ 1, (6.22)

for every ρ ∈ B and ε ∈ (0, ε(ρ)). By the definition of wρε , a change of variables gives

Eε(uε, Qρ(x))

ρn
= Eρε (wρε , Q), (6.23)

where Eρε is the functional corresponding to the integrands fρε (y, ξ) := f(x+ρy
ε
, ξ) and gρε (y, ζ, ν) :=

1
ρ
g(x+ρy

ε
, ρζ, ν); i.e.,

Eρε (w,Q) :=

∫
Q

f(x+ρy
ε
,∇w(y)) dy +

∫
Sw∩Q

1
ρ
g(x+ρy

ε
, ρ[w](y), νw(y))dHn−1(y)

for every w ∈ SBV (Q,Rm). Note that fρε satisfies (f3) and (f4), while gρε satisfies (g3) and (g4).
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We now modify wρε in a way such that it attains the linear boundary datum `ξ near ∂Q. To this end
we apply the Fundamental Estimate [11, Proposition 3.1] to the functionals Eρε . Thus for η ∈ (0, 1

2
) fixed

there exist a constant Lη > 0 with the following property: for every ρ ∈ B and ε ∈ (0, ε(ρ)) there exists
a cut-off function ϕρε ∈ C∞c (Q), with 0 ≤ ϕρε ≤ 1 in Q, supp(ϕρε) ⊂ Q1−η := Q1−η(0), and ϕρε = 1 in
Q1−2η := Q1−2η(0), such that, setting ŵρε := ϕρεw

ρ
ε + (1− ϕρε)`ξ, we have

Eρε (ŵρε , Q) ≤ (1 + η)
(
Eρε (wρε , Q) + Eρε (`ξ, Q \Q1−2η)

)
+ Lη‖wρε − `ξ‖L1(Q,Rm). (6.24)

We note that ŵρε = `ξ in Q \Q1−η, as desired. Moreover in view of (f4) we have

Eρε (`ξ, Q \Q1−2η)) ≤ (c3|ξ|+ c4)Ln(Q \Q1−2η)) ≤ (c3|ξ|+ c4)2nη. (6.25)

From (6.19), (6.22), (6.23), (6.24) and (6.25) we obtain

Eρε (ŵρε , Q) ≤ 3
2
(c3|ξ|+ c4 + 2 + (c3|ξ|+ c4)n) + Lη (6.26)

for every ρ ∈ B and ε ∈ (0, ε(ρ)). By the lower bounds (f3) and (g3), we deduce that the total variation of
ŵρε is bounded uniformly with respect to ρ ∈ B and ε ∈ (0, ε(ρ)). Note moreover that also the L1-norm of
ŵρε is bounded uniformly, by (6.22). In conclusion, the sequence (ŵρε) is bounded in BV (Q,Rm) uniformly
with respect to ρ ∈ B and ε ∈ (0, ε(ρ)).

By Lemma 4.3 there exist a constant Mη > 0 with the following property: for every ρ ∈ B and
ε ∈ (0, ε(ρ)) there exists w̃ρε ∈ SBV (Q,Rm) ∩ L∞(Q,Rm), with w̃ρε = `ξ near ∂Q, such that

‖w̃ρε‖L∞(Q,Rm) ≤Mη, ‖w̃ρε − `ξ‖L1(Q,Rm) ≤ ‖ŵ
ρ
ε − `ξ‖L1(Q,Rm), and Eρε (w̃ρε , Q) ≤ Eρε (ŵρε , Q)+η. (6.27)

We now set r := ρ
ε

and vρε (y) := rw̃ρε( y
r
− x

ρ
) + r

ρ
`ξ(x); clearly vρε ∈ SBV (Qr(

rx
ρ

),Rm), vρε = `ξ near

∂Qr(
rx
ρ

), and, by a change of variables

‖[vρε ]‖L∞(S
v
ρ
ε
∩Qr( rx

ρ
),Rm) ≤ 2Mηr, (6.28)

1

rn

(∫
Qr(

rx
ρ

)

f(y,∇vρε ) dy +

∫
S
v
ρ
ε
∩Qr(

rx
ρ

)

r
ρ
g(y, ρ

r
[vρε ], νvρε ) dHn−1

)
= Eρε (w̃ρε , Q). (6.29)

Moreover, by combining (6.26), (6.27), and (6.29) with the lower bound (g3) we immediately deduce the
existence of a constant C > 0, depending on |ξ|, such that

1

rn

∫
S
v
ρ
ε
∩Qr( rx

ρ
)

|[vρε ]| dHn−1 ≤ C. (6.30)

By Lemma 6.1, applied with t = ρ/r, using (6.28) and (6.30) we deduce that

1

rn

∫
S
v
ρ
ε
∩Qr(

rx
ρ

)

∣∣∣g0(y, [vρε ], νvρε )− r
ρ
g(y, ρ

r
[vρε ], νvρε )

∣∣∣ dHn−1 ≤ Cλ(2ρMη)

for every ρ ∈ B and ε ∈ (0, ε(ρ)). From this inequality and from (6.23), (6.24), (6.25), (6.27), and (6.29)
we obtain

Ef,g0(vρε , Qr(
rx
ρ

))

rn
≤ (1 + η)

Eε(uε, Qρ(x))

ρn
+Kη + Cλ(2ρMη) + Lη‖wρε − `ξ‖L1(Q,Rm),

where K := (c3|ξ|+ c4)3n+ 1. Recalling that vρε = `ξ near ∂Qr(
rx
ρ

), we get

mf,g0(`ξ, Qr(
rx
ρ

))

rn
≤ (1 + η)

Eε(uε, Qρ(x))

ρn
+Kη + Cλ(2ρMη) + Lη‖wρε − `ξ‖L1(Q,Rm).

Since r = ρ
ε
, by (4.2) with x replaced by x

ρ
, the left-hand side of the previous inequality converges to

fhom(ξ) as ε → 0+. By (6.18) and (6.20) we can pass to the limit in the right-hand side as ε → 0+ and
we obtain

fhom(ξ) ≤ (1 + η)
Ê(u,Qρ(x))

ρn
+Kη + Cλ(2ρMη) + Lη‖wρ − `ξ‖L1(Q,Rm).

By (3.8), (6.16), and (6.21), passing to the limit as ρ→ 0+ we get

fhom(ξ) ≤ (1 + η)
dÊ(u, ·)
dLn (x) +Kη.

Since ξ = ∇u(x), this inequality gives (6.11) by the arbitrariness of η > 0. �
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7. Identification of the surface term

In Proposition 7.2 below we characterise the derivative of Ê(u, ·) with respect to the measureHn−1 Su
for a given BV -function u. In order to prove this result we need the estimate established in the following
lemma.

Lemma 7.1. Let f ∈ F , A ∈ A , v ∈ BV (A,Rm). Then for every t > 0∫
A

|f∞(x,∇v)− 1
t
f(x, t∇v)| dx ≤ 1

t
c5(1 + c1−α4 )Ln(A) +

1

tα
c5c

1−α
3 (Ln(A))α‖∇v‖1−αL1(A,Rm).

Proof. Let t > 0. By (f4) and (3.2), using Hölder’s inequality, we obtain that∫
A

|f∞(x,∇v)− 1
t
f(x, t∇v)| dx ≤ c5

t
Ln(A) +

c5
t

∫
A

f(x, t∇v)1−α dx

≤ c5
t
Ln(A) +

c5
t

(Ln(A))α
(∫

A

f(x, t∇v) dy
)1−α

≤ 1

t
c5(1 + c1−α4 )Ln(A) +

1

tα
c5c

1−α
3 (Ln(A))α‖∇v‖1−αL1(A,Rm).

This concludes the proof. �

Proposition 7.2 (Homogenised surface integrand). Let f , g, Eε, (εj), and Ê be as in Theorem 5.1.
Assume that (b) of Theorem 4.1 holds, and let ghom be as in (4.3). Then for every A ∈ A and every
u ∈ L1

loc(Rn,Rm), with u|A ∈ BV (A,Rm), we have that

dÊ(u, ·)
dHn−1 Su

(x) = ghom

(
[u](x), νu(x)

)
for Hn−1-a.e. x ∈ Su ∩A.

Proof. Let us fix A ∈ A and u ∈ L1
loc(Rn,Rm), with u|A ∈ BV (A,Rm). We divide the proof into two

steps.

Step 1: We claim that

dÊ(u, ·)
dHn−1 Su

(x) ≤ ghom([u](x), νu(x)) for Hn−1-a.e. x ∈ Su ∩A. (7.1)

By (a)-(e) of Theorem 5.1 and by [10, Lemmas 3.1 and 3.5], arguing as in the proof of (3.17) in [10,
Theorem 3.7], for Hn−1-a.e. x ∈ Su ∩A we have

dÊ(u, ·)
dHn−1 Su

(x) = lim
ρ→0+

mÊ(ux,[u](x),νu(x), Q
νu(x)
ρ (x))

ρn−1
. (7.2)

Fix x ∈ Su ∩A such that (7.2) holds and set ζ := [u](x) and ν := νu(x).
For every ρ > 0 we have

ghom(ζ, ν) = lim
r→+∞

mf∞,g
(
u rx
ρ
,ζ,ν , Q

ν
r ( rx

ρ
)
)

rn−1
, (7.3)

since the above identity directly follows from (4.3) by replacing x with x
ρ

.

Let us fix η ∈ (0, 1). By (3.4) for every ρ ∈ (0, 1) and r > 0 there exists vρr ∈ SBV (Qνr ( rx
ρ

),Rm), with

vρr = u rx
ρ
,ζ,ν near ∂Qνr ( rx

ρ
), such that

Ef
∞,g(vρr , Q

ν
r ( rx

ρ
)) ≤ mf∞,g(u rx

ρ
,ζ,ν , Q

ν
r ( rx

ρ
)
)

+ η rn−1

≤
∫

Πνrx
ρ
∩Qνr ( rx

ρ
)

g(y, ζ, ν) dHn−1 + ηrn−1 ≤ (c3|ζ|+ 1)rn−1, (7.4)

where we used that f∞(·, 0) = 0 and (g4). We extend vρr to Rn by setting vρr (y) = u rx
ρ
,ζ,ν(y) for every

y ∈ Rn \Qνr ( rx
ρ

).

By combining (7.4) with the lower bound (f3) we immediately deduce the existence of a constant
C > 0, depending on ζ, such that

1

rn−1

∫
Qνr ( rx

ρ
)

|∇vρr | dy ≤ C. (7.5)

By Lemma 7.1, applied with t = r/ρ, using (7.5), we deduce that

1

rn−1

∫
Qνr (

rx
ρ

)

∣∣f∞(x,∇vρr )− ρ
r
f(x, r

ρ
∇vρr )

∣∣ dy ≤ c5(1 + c1−α4 )ρ+ c5c
1−α
3 ραC1−α.
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This inequality, together with (7.3) and (7.4), gives

lim sup
r→+∞

1

rn−1

(∫
Qνr ( rx

ρ
)

ρ
r
f(y, r

ρ
∇vρr ) dy +

∫
S
v
ρ
r
∩Qνr ( rx

ρ
)

g(y, [vρr ], νvρr ) dHn−1
)
≤ ghom(ζ, ν) + η +Kρα,

where K := c5(1 + c1−α4 ) + c5c
1−α
3 C1−α.

Given ε > 0 and ρ ∈ (0, 1), for every y ∈ Rn we define uρε(y) := vρr ( y
ε
) = vρr ( ry

ρ
), with r := ρ/ε. Then

uρε ∈ SBVloc(Rn,Rm), uρε = ux,ζ,ν near ∂Qνρ(x) and in Rn \ Qνρ(x). By a change of variables, from the
previous inequality we get that for every ρ ∈ (0, 1)

lim sup
ε→0+

Eε(u
ρ
ε , Q

ν
ρ(x))

ρn−1
≤ ghom(ζ, ν) + η +Kρα. (7.6)

Since the functions uρε coincide with ux,ζ,ν in Qν(1+η)ρ(x) \Qν(1−δε)ρ(x) for some δε ∈ (0, 1), by (g4) we

have Eε(u
ρ
ε , Q

ν
(1+η)ρ(x)) ≤ Eε(uρε , Qνρ(x)) + c3|ζ|2n−1ρn−1η, which, together with (7.6), gives

lim sup
ε→0+

Eε(u
ρ
ε , Q

ν
(1+η)ρ(x))

ρn−1
≤ ghom(ζ, ν) +Kρα + K̃η, (7.7)

where K̃ := 1 + c3|ζ|2n−1. Since uρε coincides with ux,ζ,ν in Rn \Qνρ(x), using the lower bounds (f3) and
(g3) and Poincaré’s inequality we deduce from (7.7) that for every ρ > 0 there exists ε(ρ) > 0 such that
the functions uρε are bounded in BVloc(Rn,Rm) uniformly with respect to ε ∈ (0, ε(ρ)). Then there exists
a subsequence, not relabelled, of the sequence (εj) considered in Theorem 5.1, such that (uρεk ) converges

in L1
loc(Rn,Rm) to some uρ ∈ BVloc(Rn,Rm) with uρ = ux,ζ,ν in Qν(1+η)ρ(x) \Qνρ(x). As a consequence of

the Γ-convergence of Eεj (·, Qν(1+η)ρ(x)) to Ê(·, Qν(1+η)ρ(x)), from (7.7) we obtain

mÊ(ux,ζ,ν , Q
ν
(1+η)ρ(x))

ρn−1
≤
Ê(uρ, Qν(1+η)ρ(x))

ρn−1
≤ lim sup

j→+∞

Eεj (u
ρ
εj , Q

ν
(1+η)ρ(x))

ρn−1
≤ ghom(ζ, ν) +Kρα + K̃η.

Finally, passing to the limit as ρ→ 0+, from (7.2) we get

(1 + η)n−1 dÊ(u, ·)
dHn−1 Su

(x) ≤ ghom(ζ, ν) + K̃η.

Since ζ := [u](x) and ν = νu(x), this gives (7.1) by the arbitrariness of η > 0.

Step 2: We claim that

dÊ(u, ·)
dHn−1 Su

(x) ≥ ghom([u](x), νu(x)) for Hn−1-a.e. x ∈ Su ∩A. (7.8)

We extend u to Rn by setting u = 0 on Rn \A. By Γ-convergence there exists (uε) ⊂ L1
loc(Rn,Rm), with

uε|A ∈ SBV (A,Rm), such that

uε → u in L1
loc(Rn,Rm) and lim

ε→0+
Eε(uε, A) = Ê(u,A), (7.9)

along the sequence (εk) considered in Theorem 5.1.
By [5, Definition 3.67 and Step 2 in the proof of Theorem 3.77] and thanks to a generalised version of

the Besicovitch Differentiation Theorem (see [31] and [26, Sections 1.2.1-1.2.2]), for Hn−1-a.e. x ∈ Su ∩A
we have

lim
ρ→0+

1

ρn−1
|Du|(Qνu(x)

ρ (x)) = |[u](x)| 6= 0, (7.10)

lim
ρ→0+

1

ρn

∫
Q
νu(x)
ρ (x)

|u(y)− ux,[u](x),νu(x)(y)|dy = 0, (7.11)

lim
ρ→0+

Ê(u,Q
νu(x)
ρ (x))

ρn−1
=

dÊ(u, ·)
dHn−1 Su

(x). (7.12)

Let us fix x ∈ Su ∩A such that (7.10)-(7.12) are satisfied, and set ζ := [u](x) and ν := νu(x).

Recalling (5.1) we have that Ê(u,Qνρ(x)) ≤ c3|Du|(Qνρ(x))+c4ρ
n, hence by (7.10) there exists ρ0 ∈ (0, 1)

such that

Qνρ(x) ⊂⊂ A and
Ê(u,Qνρ(x))

ρn−1
≤ c3|ζ|+ 1 (7.13)
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for every ρ ∈ (0, ρ0). Since Ê(u, ·) is a Radon measure, there exists a set B ⊂ (0, ρ0), with (0, ρ0) \ B at

most countable, such that Ê(u, ∂Qνρ(x)) = 0 for every ρ ∈ B. Proceeding as in the proof of (6.18), by
(7.9) we can show that for every ρ ∈ B

lim
ε→0+

Eε(uε, Q
ν
ρ(x)) = Ê(u,Qνρ(x)). (7.14)

Hence, for every ρ ∈ B there exists ε(ρ) > 0 such that for every ε ∈ (0, ε(ρ))

Eε(uε, Q
ν
ρ(x))

ρn−1
≤
Ê(u,Qνρ(x))

ρn−1
+ ρ ≤ c3|ζ|+ 2, (7.15)

where in the last inequality we used (7.13).
The rest of this proof is devoted to modifying uε in order to construct a competitor for the minimisation

problems appearing in (4.3), which defines ghom. To this end, for every ρ ∈ B and ε > 0 we consider the
blow-up functions defined for y ∈ Qν := Qν1(0) by

wρε(y) := uε(x+ ρy) and wρ(y) := u(x+ ρy).

Then wρε ∈ SBV (Qν ,Rm) and wρ ∈ BV (Qν ,Rm). Since uε → u in L1(Qνρ(x),Rm) by (7.9), for every
ρ ∈ B we obtain

wρε → wρ in L1(Qν ,Rm) as ε→ 0+; (7.16)

moreover, from (7.11) we have

wρ → u0,ζ,ν in L1(Qν ,Rm) as ρ→ 0 + . (7.17)

Up to possibly reducing the values of ρ0 and ε(ρ), we may then assume that

‖wρε − u0,ζ,ν‖L1(Qν ,Rm) ≤ 1, (7.18)

for every ρ ∈ B and ε ∈ (0, ε(ρ)). By a change of variables, we obtain the relation

Eε(uε, Q
ν
ρ(x))

ρn−1
= Eρε (wρε , Q

ν), (7.19)

where Eρε is the functional corresponding to the integrands fρε (y, ξ) := ρf(x+ρy
ε
, ξ
ρ
) and gρε (y, ζ, ν) :=

g(x+ρy
ε
, ζ, ν); i.e.,

Eρε (w,Qν) :=

∫
Qν

ρf(x+ρy
ε
, 1
ρ
∇w(y)) dy +

∫
Sw∩Qν

g(x+ρy
ε
, [w](y), νw(y))dHn−1(y)

for every w ∈ SBV (Qν ,Rm). Note that fρε satisfies (f3) and (f4) (recall that ρ < 1), while gρε satisfies
(g3) and (g4).

We now modify wρε in a way such that it attains the boundary datum u0,ζ,ν near ∂Qν . This will be done
by applying the Fundamental Estimate [11, Proposition 3.1] to the functionals Eρε . Thus for η ∈ (0, 1

2
)

fixed there exist a constant Lη > 0 with the following property: for every ρ ∈ B and ε ∈ (0, ε(ρ)) there
exists a cut-off function ϕρε ∈ C∞c (Qν), with 0 ≤ ϕρε ≤ 1 in Qν , supp(ϕρε) ⊂ Qν1−η := Qν1−η(0), and ϕρε = 1
in Qν1−2η := Qν1−2η(0), such that, setting ŵρε := ϕρεw

ρ
ε + (1− ϕρε)u0,ζ,ν , we have

Eρε (ŵρε , Q
ν) ≤ (1 + η)

(
Eρε (wρε , Q

ν) + Eρε (u0,ζ,ν , Q
ν \Qν1−2η)

)
+ Lη‖wρε − u0,ζ,ν‖L1(Qν ,Rm). (7.20)

By definition we clearly have ŵρε = u0,ζ,ν in Qν \ Qν1−η, as desired. Moreover, from (f4) and (g4) we
obtain the bound

Eρε (u0,ζ,ν , Q
ν \Qν1−2η)) ≤ c4Ln(Qν \Qν1−2η) + c3|ζ|Hn−1(Πν

0 ∩ (Qν \Qν1−2η))

≤ 2c4nη + 2c3|ζ|(n− 1)η, (7.21)

and hence, from (7.20) and (7.21) we have that

Eρε (ŵρε , Q
ν) ≤ (1 + η)Eρε (wρε , Q

ν) +Kη + Lη‖wρε − u0,ζ,ν‖L1(Qν ,Rm), (7.22)

for every ρ ∈ B and every ε ∈ (0, ε(ρ)), where K = 3(c4ρn + c3|ζ|(n − 1)). Note that (f3), (g3), (7.15),
(7.18), (7.19) and (7.22) imply that

c2

∫
Qν
|∇ŵρε(y)| dy ≤ (1 + η)(c3|ζ|+ 1) +Kη + Lη, (7.23)

for every ρ ∈ B and ε ∈ (0, ε(ρ)).
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We finally set r := ρ
ε

and vρε (y) := ŵρε( y
r
− x

ρ
); clearly vρε ∈ SBV (Qνr ( rx

ρ
),Rm), vρε = u rx

ρ
,ζ,ν near

∂Qνr ( rx
ρ

), and via a change of variables, using also (7.23), we have that

1

rn−1

∫
Qνr (

rx
ρ

)

|∇vρε (y)| dy ≤ C, (7.24)

1

rn−1

(∫
Qνr (

rx
ρ

)

ρ
r
f(y, r

ρ
∇vρε ) dy +

∫
S
v
ρ
ε
∩Qνr (

rx
ρ

)

g(y, [vρr ], νvρε ) dHn−1
)

= Eρε (ŵρε , Q
ν), (7.25)

where C depends only on |ζ|. Hence by Lemma 7.1, applied with t = r/ρ, using (7.24), we have

1

rn−1

∫
Qνr (

rx
ρ

)

∣∣f∞(y,∇vρε )− ρ
r
f(y, r

ρ
∇vρε )

∣∣ dy ≤ c5(1 + c1−α4 )ρ+ c5c
1−α
3 ραC1−α ≤ K̃ρα (7.26)

for every ρ ∈ B and ε ∈ (0, ε(ρ)), where K̃ := c5(1 + c1−α4 ) + c5c
1−α
3 C1−α. From (7.19), (7.22), (7.25),

and (7.26) we obtain

Ef
∞,g(vρε , Q

ν
r ( rx

ρ
))

rn−1
≤ (1 + η)

Eε(uε, Q
ν
ρ(x))

ρn−1
+Kη + Lη‖wρε − u0,ζ,ν‖L1(Qν ,Rm) + K̃ρα.

Since vρε = u rx
ρ
,ζ,ν near ∂Qνr ( rx

ρ
), we have that

mf∞,g(u rx
ρ
,ζ,ν , Q

ν
r ( rx

ρ
))

rn−1
≤ (1 + η)

Eε(uε, Q
ν
ρ(x))

ρn−1
+Kη + Lη‖wρε − u0,ζ,ν‖L1(Qν ,Rm) + K̃ρα.

Since r = ρ
ε
, by (4.3) with x replaced by x

ρ
, the left-hand side converges to ghom(ξ) as ε→ 0+. By (7.14)

and (7.16) we can pass to the limit in the right-hand side as ε→ 0+ and we obtain

ghom(ζ, ν) ≤ (1 + η)
Ê(u,Qνρ(x))

ρn−1
+Kη + Lη‖wρ − u0,ζ,ν‖L1(Qν ,Rm) + K̃ρα.

By (7.12) and (7.17), passing to the limit as ρ→ 0+ we get

ghom(ζ, ν) ≤ (1 + η)
dÊ(u, ·)

dHn−1 Su
(x) +Kη.

Since ζ = [u](x) and ν = νu(x), this inequality gives (7.8) by the arbitrariness of η > 0.
�

8. Identification of the Cantor term

In Proposition 8.3 below we characterise the derivative of Ê(u, ·) with respect to |C(u)|, the variaton
of the Cantor part of the measure Du. At the end of this section we conclude the proof of Theorem 4.1.

The following proposition shows that the recession function of fhom, which is defined in terms of the
minimum values mf,g0 , can be obtained from suitably rescaled limits of the minimum values mf∞,g0 ,
involving now the recession function f∞ of f .

Proposition 8.1. Let f ∈ F and g ∈ G, and let mf,g0 and mf∞,g0 be as in (3.4), with (f, g) replaced by
(f, g0) and (f∞, g0), respectively. Assume that (a) of Theorem 4.1 holds, and let fhom be as in (4.2). Let
f∞hom be the recession function of fhom (whose existence is guaranteed by the fact that fhom ∈ F). Then

f∞hom(ξ) = lim
r→+∞

mf∞,g0(`ξ, Q
ν,k
r (rx))

kn−1rn
(8.1)

for every x ∈ Rn, ξ ∈ Rm×n, ν ∈ Sn−1, and k ∈ N.

Proof. Let x ∈ Rn, ξ ∈ Rm×n, ν ∈ Sn−1, k ∈ N, and η ∈ (0, 1) be fixed. By (3.4) for every r > 0 there
exists vr ∈ SBV (Qν,kr (rx),Rm), with vr = `ξ near ∂Qν,kr (rx), such that

Ef
∞,g0(vr, Q

ν,k
r (rx)) ≤ mf∞,g0(`ξ, Q

ν,k
r (rx)) + ηkn−1rn. (8.2)

Note that, by (f3) and (f4), this implies that

c2

∫
Q
ν,k
r (rx)

|∇vr|dy ≤ mf∞,g0(`ξ, Q
ν,k
r (rx)) + ηkn−1rn ≤ (c3|ξ|+ 1)kn−1rn, (8.3)
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where we used the fact that f∞ satisfies (f4) with c4 = 0. Let t > 1; by Lemma 7.1 and by (8.3), recalling
that α ∈ (0, 1), we have∫

Q
ν,k
r (rx)

∣∣f∞(y,∇vr)− 1
t
f(y, t∇vr)

∣∣ dy
≤ 1

t
c5(1 + c1−α4 )kn−1rn +

1

tα
c5c

1−α
3 (kn−1rn)α‖∇vr‖1−α

L1(Q
ν,k
r (rx),Rm)

≤ 1

tα
Kkn−1rn,

where K = c5(1 + c1−α4 ) + c5(c3/c2)1−α(c3|ξ|+ 1)1−α. Hence

Eft,g0(vr, Q
ν,k
r (rx)) ≤ Ef

∞,g0(vr, Q
ν,k
r (rx)) +

1

tα
Kkn−1rn,

where ft(y, ξ) := 1
t
f(y, tξ).

Since vr ∈ SBV (Qν,kr (rx),Rm) and vr = `ξ near ∂Qν,kr (rx), the previous inequality, together with (3.4)
and (8.2), gives

mft,g0(`ξ, Q
ν,k
r (rx))

kn−1rn
≤ mf∞,g0(`ξ, Q

ν,k
r (rx))

kn−1rn
+ η +

1

tα
K. (8.4)

We now let r → +∞ in the previous estimate. For the left-hand side we note that, by the definition
of fhom, (3.4), and the positive 1-homogeneity of g0 with respect to its second variable, by a change of
variables we have

lim
r→+∞

mft,g0(`ξ, Q
ν,k
r (rx))

kn−1rn
= lim
r→+∞

mf,g0(`tξ, Q
ν,k
r (rx))

t kn−1rn
=
fhom(tξ)

t
. (8.5)

Hence, from (8.4) and (8.5) we have that

fhom(tξ)

t
≤ lim inf

r→+∞

mf∞,g0(`ξ, Q
ν,k
r (rx))

kn−1rn
+ η +

1

tα
K.

By letting t→ +∞, since η ∈ (0, 1) is arbitrary, we obtain the inequality

f∞hom(ξ) ≤ lim inf
r→+∞

mf∞,g0(`ξ, Q
ν,k
r (rx))

kn−1rn
.

Exchanging the roles of ft and f∞, an analogous argument yields the inequality

lim sup
r→+∞

mf∞,g0(`ξ, Q
ν,k
r (rx))

kn−1rn
≤ f∞hom(ξ),

and hence (8.1) follows. �

For later purposes it is convenient to prove that f∞hom can be equivalently expressed in terms of a
(double) limit involving minimisation problems where the Dirichlet conditions are prescribed only on a

part of the boundary. We recall that the definitions of ∂⊥ν Q
ν,k
r (rx) and ∂

‖
νQ

ν,k
r (rx) are given in (i) in

Section 2, while the meaning of the boundary condition on a part of the boundary is explained after (3.4).

Lemma 8.2. Under the assumptions of Proposition 8.1 we have that

f∞hom(a⊗ ν) = lim
k→+∞

lim inf
r→+∞

m̃f∞,g0(`a⊗ν , Q
ν,k
r (rx))

kn−1rn
= lim
k→+∞

lim sup
r→+∞

m̃f∞,g0(`a⊗ν , Q
ν,k
r (rx))

kn−1rn
(8.6)

for every x ∈ Rn, a ∈ Rm, and ν ∈ Sn−1, where

m̃f∞,g0(`a⊗ν , Q
ν,k
r (rx)) := inf{Ef

∞,g0(v,Qν,kr (rx)) : v ∈ Uν,ka,r (x)}, (8.7)

with Uν,ka,r (x) := {v ∈ SBV (Qν,kr (rx),Rm) : v = `a⊗ν near ∂⊥ν Q
ν,k
r (rx)}.

Proof. Let x ∈ Rn, a ∈ Rm, and ν ∈ Sn−1 be fixed, and for every r > 0 and k > 0 let Qν,kx,r := Qν,kr (rx).

Since ∂⊥ν Q
ν,k
x,r ⊂ ∂Qν,kx,r, we have m̃f∞,g0(`a⊗ν , Q

ν,k
x,r) ≤ mf∞,g0(`a⊗ν , Q

ν,k
x,r). Due to (8.1), to obtain (8.6)

we only need to prove the inequality

f∞hom(a⊗ ν) ≤ lim inf
k→+∞

lim inf
r→+∞

m̃f∞,g0(`a⊗ν , Q
ν,k
x,r)

kn−1rn
. (8.8)

To this aim, let us fix h ∈ N. For every r ≥ 1 and k ∈ N, with k ≥ h, there exists vkr ∈ Uν,ka,r (x) such that

Ef
∞,g0(vkr , Q

ν,k
x,r) ≤ m̃f∞,g0(`a⊗ν , Q

ν,k
x,r) + 1 ≤ (c3|a|+ 1)kn−1rn, (8.9)

where we used the fact that f∞(y, ξ) ≤ c3|ξ| and 1 ≤ kn−1rn. By (f3) and (g3), inequality (8.9) implies
that

c2|Dvkr |(Qν,kx,r) ≤ (c3|a|+ 1)kn−1rn. (8.10)
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Changing vkr in an Ln-negligible set, we may assume that vkr (y) coincides with the approximate limit of
vkr at y for every y ∈ Qν,kx,r \ Svkr (see [5, Definition 3.63]). By Fubini’s theorem we have∫ k

k−h

∫
∂
‖
νQ

ν,λ
x,r

|vkr − `a⊗ν |dHn−1dλ =
2

r

∫
Q
ν,k
x,r\Q

ν,k−h
x,r

|vkr − `a⊗ν | dy ≤
2

r

∫
Q
ν,k
x,r

|vkr − `a⊗ν | dy.

Since vkr − `a⊗ν = 0 near ∂⊥ν Q
ν,k
x,r, by Poincaré’s inequality on strips we have

1

r

∫
Q
ν,k
x,r

|vkr − `a⊗ν | dy ≤ |Dvkr − a⊗ ν|(Qν,kx,r) ≤ |Dvkr |(Qν,kx,r) + |a|kn−1rn. (8.11)

SinceHn−1 is σ-finite on Svkr , we haveHn−1(Svkr ∩∂
‖
νQ

ν,λ
x,r) = 0 for L1-a.e. λ ∈ (k−h, k). From (8.10)-(8.11)

we deduce that there exists λkr ∈ (k − h, k) such that Hn−1(Svkr ∩ ∂
‖
νQ

ν,λkr
x,r ) = 0 and∫

∂
‖
νQ

ν,λkr
x,r

|vkr − `a⊗ν |dHn−1 ≤ 2

h
|Dvkr |(Qν,kx,r) +

2|a|
h
kn−1rn ≤ C

h
kn−1rn. (8.12)

where C := 2(c3|a|+ 1)/c2 + 2|a|.
To prove (8.8) we need to modify vkr so that it attains the affine boundary datum `a⊗ν near the whole

boundary ∂Qν,kx,r, and hence is a competitor for the minimisation problem in the definition of f∞hom. The
modified function is defined by

v̂kr :=

{
vkr in Q

ν,λkr
x,r ,

`a⊗ν in Rn \Qν,λ
k
r

x,r .

Then v̂kr ∈ SBV (Qν,kx,r,Rm) and v̂kr = `a⊗ν near ∂Qν,kx,r. Moreover, since Hn−1(Svkr ∩∂
‖
νQ

ν,λkr
x,r ) = 0, by (f4)

and (g4) we have

Ef
∞,g0(v̂kr , Q

ν,k
x,r) ≤ Ef

∞,g0(vkr , Q
ν,k
x,r) + c3|a|Ln(Qν,kx,r \Q

ν,λkr
x,r ) + c3

∫
∂
‖
νQ

ν,λkr
x,r

|vkr − `a⊗ν |dHn−1. (8.13)

Since kn−1 − (λkr )n−1 ≤ kn−1 − (k − h)n−1 ≤ (n− 1)kn−2h, from (8.9), (8.12), and (8.13) we obtain

mf∞,g0(`a⊗ν , Q
ν,k
x,r) ≤ Ef

∞,g0(v̂kr , Q
ν,k
x,r) ≤ m̃f∞,g0(`a⊗ν , Q

ν,k
x,r) + (n− 1)c3|a|kn−2hrn +

c3C

h
kn−1rn + 1.

We then divide both sides of the previous inequality by kn−1rn, to obtain

mf∞,g0(`a⊗ν , Q
ν,k
x,r)

kn−1rn
≤
m̃f∞,g0(`a⊗ν , Q

ν,k
x,r)

kn−1rn
+ (n− 1)c3|a|

h

k
+
c3C

h
+

1

kn−1rn
.

Taking the limit first as r → +∞, then as k → +∞, and finally as h→ +∞, from (8.1) we obtain (8.8),
and hence (8.6). �

In the next proposition we characterise the derivative of Ê(u, ·) with respect to |C(u)|, for any BV -
function u.

Proposition 8.3 (Homogenised Cantor integrand). Let f , g, Eε, (εk), and Ê be as in Theorem 5.1.
Assume that (a) of Theorem 4.1 holds, let fhom be as in (4.2), and let f∞hom denote its recession function
(whose existence is guaranteed by the fact that fhom ∈ F). Then for every A ∈ A and every u ∈
L1

loc(Rn,Rm), with u|A ∈ BV (A,Rm), we have that

dÊ(u, ·)
d|C(u)| (x) = f∞hom

(
dC(u)

d|C(u)| (x)

)
for |C(u)|-a.e. x ∈ A.

Proof. Let us fix A ∈ A and u ∈ L1
loc(Rn,Rm), with u|A ∈ BV (A,Rm). We divide the proof into two

steps.

Step 1: We claim that

dÊ(u, ·)
d|C(u)| (x) ≤ f∞hom

(
dC(u)

d|C(u)| (x)

)
for |C(u)|-a.e. x ∈ A. (8.14)

By Alberti’s rank-one theorem [2] we know that for |C(u)|-a.e. x ∈ A we have

dC(u)

d|C(u)| (x) = a(x)⊗ ν(x) (8.15)
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for a suitable pair (a(x), ν(x)) ∈ Rm×Sn−1. Moreover, by (a)-(e) of Theorem 5.1 and by [10, Lemma 3.9]
we have that for |C(u)|-a.e. x ∈ A there exists a doubly indexed positive sequence (tρ,k), with ρ > 0 and
k ∈ N, such that

for every k ∈ N tρ,k → +∞ and ρ tρ,k → 0+ as ρ→ 0+, (8.16)

dÊ(u, ·)
d|C(u)| (x) = lim

k→+∞
lim sup
ρ→0+

mÊ(`tρ,ka(x)⊗ν(x), Q
ν(x),k
ρ (x))

kn−1ρn tρ,k
. (8.17)

Let x ∈ A be fixed such that (8.15)-(8.17) hold true and set a := a(x) and ν := ν(x).
For every ρ > 0 and every k ∈ N we have

f∞hom(a⊗ ν) = lim
r→+∞

mf∞,g0(`a⊗ν , Q
ν,k
r ( rx

ρ
))

kn−1rn
, (8.18)

since the above identity directly follows from (8.1) by replacing x with x
ρ

.

Let us fix η ∈ (0, 1
2
). By (3.4) for every k ∈ N, ρ ∈ (0, 1) and r > 0 there exists a function vρ,kr ∈

SBV
(
Qν,kr

(
rx
ρ

)
,Rm

)
with vρ,kr = `a⊗ν near ∂Qν,kr ( rx

ρ
) and such that

Ef
∞,g0(vρ,kr , Qν,kr ( rx

ρ
)) ≤ mf∞,g0(`a⊗ν , Q

ν,k
r ( rx

ρ
)) + η kn−1rn ≤ (c3|a|+ 1)kn−1rn, (8.19)

where we used the fact that f∞(y, ξ) ≤ c3|ξ|. We extend vρ,kr to Rn by setting vρ,kr (y) = `a⊗ν(y) for every
y ∈ Rn \Qν,kr ( rx

ρ
).

For every y ∈ Rn we define wρ,kr (y) := 1
r
vρ,kr ( rx

ρ
+ ry)− `a⊗ν(x

ρ
). Clearly wρ,kr ∈ SBVloc(Rn,Rm) and

wρ,kr = `a⊗ν near ∂Qν,k and in Rn \ Qν,k, where Qν,k := Qν,k1 (0). Moreover, by a change of variables,
using the 1-homogeneity of g0 in the second variable we have

Ef
∞
r,ρ,g

r,ρ
0 (wρ,kr , Qν,k) =

1

rn
Ef
∞,g0(vρ,kr , Qν,kr ( rx

ρ
)), (8.20)

where Ef
∞
r,ρ,g

r,ρ
0 is the functional with integrands f∞r,ρ(y, ξ) := f∞( rx

ρ
+ ry, ξ) and gr,ρ0 (y, ζ, ν) := g0( rx

ρ
+

ry, ζ, ν); i.e.,

Ef
∞
r,ρ,g

r,ρ
0 (w,Qν,k) =

∫
Qν,k

f∞( rx
ρ

+ ry,∇w(y)) dy +

∫
Sw∩Qν,k

g0( rx
ρ

+ ry, [w](y), νw(y)) dHn−1(y)

for every w ∈ SBV (Qν,k,Rm). Note that f∞r,ρ ∈ F and gr,ρ0 ∈ G. By the lower bounds (f3) and (g3), from

(8.19) and (8.20), using also Poincaré’s inequality, we deduce that ‖wρ,kr ‖L1(Qν,k,Rm) + |Dwρ,kr |(Qν,k) ≤
Ckn−1 for every ρ ∈ (0, 1) and r > 0, with C := 2(c3|a|+ 1)/c2 + 2|a|.

By Lemma 4.3 there exist a constant Mη,k > 0, depending also on |a| and C, such that for every
ρ ∈ (0, 1) and r > 0 there exists w̃ρ,kr ∈ SBV (Qν,k,Rm) ∩ L∞(Qν,k,Rm) with the following properties:
w̃ρ,kr = `a⊗ν near ∂Qν,k, ‖w̃ρ,kr ‖L∞(Qν,k,Rm) ≤Mη,k, and

Ef
∞
r,ρ,g

r,ρ
0 (w̃ρ,kr , Qν,k) ≤ Ef

∞
r,ρ,g

r,ρ
0 (wρ,kr , Qν,k) + η kn−1 ≤

mf∞,g0(`a⊗ν , Q
ν,k
r ( rx

ρ
))

rn
+ 2η kn−1, (8.21)

where the last inequality follows from (8.18) and (8.19). Let ṽρ,kr ∈ SBVloc(Rn,Rm) be defined by
ṽρ,kr (y) := rw̃ρ,kr ( y

r
− x

ρ
) + `a⊗ν( rx

ρ
). Then ṽρ,kr = `a⊗ν near ∂Qν,kr ( rx

ρ
) and, by a change of variables,

‖[ṽρ,kr ]‖L∞(Sṽρ,kr ∩Qr( rx
ρ

),Rm) ≤ 2Mη,k r, (8.22)

Ef
∞,g0(ṽρ,kr , Qν,kr ( rx

ρ
)) = rnEf

∞
r,ρ,g

r,ρ
0 (w̃ρ,kr , Qν,k) ≤ mf∞,g0(`a⊗ν , Q

ν,k
r ( rx

ρ
)) + 2η kn−1rn, (8.23)

where the last inequality follows from (8.21). Moreover, by combining (8.19) and (8.23) with the lower
bounds (f3) and (g3) we immediately deduce the existence of a constant C > 0, depending on |a|, such
that

1

kn−1rn

∫
Q
ν,k
r (

rx
ρ

)

|∇ṽρ,kr | dy ≤ C, (8.24)

1

kn−1rn

∫
Sṽρ,kr ∩Qν,kr (

rx
ρ

)

|[ṽρ,kr ]|dHn−1 ≤ C. (8.25)
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Let ρ ∈ (0, 1) and k ∈ N, with tρ,k > 1. By Lemma 7.1, applied with t = tρ,k, and (8.24), recalling that
α ∈ (0, 1), we obtain that

1

kn−1rn

∫
Q
ν,k
r ( rx

ρ
)

∣∣∣f∞(y,∇ṽρ,kr )− 1
tρ,k

f(y, tρ,k∇ṽρ,kr )
∣∣∣ dy

≤ 1

tρ,k
c5(1 + c1−α4 ) +

1

tαρ,k
c5c

1−α
3 C1−α ≤ K1

tαρ,k
, (8.26)

where K1 := c5(1 + c1−α4 ) + c5c
1−α
3 C1−α.

For every r > 0 and ρ ∈ (0, 1) we can apply Lemma 6.1 with t :=
ρ tρ,k
r

. By (8.22) and (8.25) we obtain

1

kn−1rn

∫
Sṽρ,kr ∩Qν,kr ( rx

ρ
)

∣∣g0(y, [ṽρ,kr ], ν
ṽ
ρ,k
r

)− r
ρ tρ,k

g(y,
ρ tρ,k
r

[ṽρ,kr ], ν
ṽ
ρ,k
r

)
∣∣ dHn−1 ≤ λ(2Mη,k ρ tρ,k)C (8.27)

for every r > 0 and ρ ∈ (0, 1).
Estimates (8) and (8.27), together with (8.18) and (8.23), give

lim sup
r→+∞

1

kn−1rntρ,k

(∫
Q
ν,k
r ( rx

ρ
)

f(y, tρ,k∇ṽρ,kr ) dy +
r

ρ

∫
S
ṽ
ρ,k
r
∩Qν,kr ( rx

ρ
)

g(y,
ρ tρ,k
r

[ṽρ,kr ], ν
ṽ
ρ,k
r

) dHn−1
)

≤ f∞hom(a⊗ ν) + 2η +K1t
−α
ρ,k + λ(2Mη,k ρ tρ,k)C. (8.28)

Given k ∈ N and ρ ∈ (0, 1), for every ε > 0 and y ∈ Rn we define uρ,kε (y) := ε tρ,kṽ
ρ,k
r ( y

ε
) =

ρ
r
tρ,kṽ

ρ,k
r ( ry

ρ
), with r := ρ/ε. Then uρ,kε ∈ SBVloc(Rn,Rm), uρ,kε = tρ,k`a⊗ν near ∂Qν,kρ (x) and in

Rn \Qν,kρ (x). By a change of variables, from (8.28) we have

lim sup
ε→0+

Eε(u
ρ,k
ε , Qν,kρ (x))

kn−1ρntρ,k
≤ f∞hom(a⊗ ν) + 2η +K1t

−α
ρ,k + λ(2Mη,kρ tρ,k)C. (8.29)

Since uρ,kε coincides with tρ,k`a⊗ν in Rn \Qν,kρ (x), using Poincaré’s inequality and the lower bounds (f3)

and (g3) we deduce from (8.29) that for every ρ > 0 there exists ε(ρ) > 0 such that the functions uρ,kε are
bounded in BVloc(Rn,Rm) uniformly with respect to ε ∈ (0, ε(ρ)). Then there exists a subsequence, not
relabelled, of the sequence (εj) considered in Theorem 5.1, such that (uρ,kεj ) converges in L1

loc(Rn,Rm) to

some uρ,k ∈ BVloc(Rn,Rm) as j → +∞ with uρ,k = tρ,k`a⊗ν in Qν,k(1+η)ρ(x) \Qν,kρ (x). As a consequence of

the Γ-convergence of Eεj (·, Q
ν,k
(1+η)ρ(x)) to Ê(·, Qν,k(1+η)ρ(x)), from (8.29) we obtain

mÊ(`tρ,ka⊗ν , Q
ν,k
(1+η)ρ(x))

kn−1ρn tρ,k
≤
Ê(uρ, Qν,k(1+η)ρ(x))

kn−1ρn tρ,k
≤ lim sup

j→+∞

Eεj (u
ρ
εj , Q

ν,k
(1+η)ρ(x))

kn−1ρn tρ,k

≤ f∞hom(a⊗ ν) + 2η +K1t
−α
ρ,k + λ(2Mη,k ρ tρ,k)C.

Now, passing to the limit as ρ→ 0+, from (8.16) and (3.8) we get

lim sup
ρ→0+

mÊ(`tρ,ka⊗ν , Q
ν,k
(1+η)ρ(x))

kn−1ρn tρ,k
≤ f∞hom(a⊗ ν) + 2η.

Finally, passing to the limit as k → +∞, by (8.17) we obtain

(1 + η)n
dÊ(u, ·)
d|C(u)| (x) ≤ f∞hom(a⊗ ν) + 2η.

Since a := a(x) and ν = ν(x), by (8.15) this inequality gives (8.14) by the arbitrariness of η > 0.

Step 2: We claim that

dÊ(u, ·)
d|C(u)| (x) ≥ f∞hom

(
dC(u)

d|C(u)| (x)

)
for |C(u)|-a.e. x ∈ A. (8.30)

We extend u to Rn by setting u = 0 on Rn \A. By Γ-convergence there exists (uε) ⊂ L1
loc(Rn,Rm), with

uε|A ∈ SBV (A,Rm), such that

uε → u in L1
loc(Rn,Rm) and lim

ε→0+
Eε(uε, A) = Ê(u,A), (8.31)

along the sequence (εj) considered in Theorem 5.1.
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For |C(u)|-a.e. x ∈ A there exist a(x) ∈ Rm and ν(x) ∈ Sn−1 such that for every k ∈ N we have

lim
ρ→0+

Du(Qν,kρ (x))

|Du|(Qν,kρ (x))
=

dC(u)

d|C(u)| (x) = a(x)⊗ ν(x), (8.32)

lim
ρ→0+

|Du|(Qν,kρ (x))

ρn
= +∞, (8.33)

lim
ρ→0+

|Du|(Qν,kρ (x))

ρn−1
= 0, (8.34)

lim
ρ→0+

Ê(u,Qν,kρ (x))

|Du|(Qν,kρ (x))
=
dÊ(u, ·)
d|Du| (x) < +∞, (8.35)

where (8.32) follows by [2, Corollary 3.9], (8.33) and (8.34) are consequences of [4, Proposition 2.2], while
(8.35) holds true thanks to a generalised version of the Besicovitch Differentiation Theorem (see [31] and
[26, Sections 1.2.1-1.2.2]).

Let us fix x ∈ A such that (8.32)-(8.35) hold true, and set a := a(x) and ν := ν(x). For k ∈ N and
ρ ∈ (0, 1) we set

tρ,k :=
|Du|(Qν,kρ (x))

kn−1ρn
.

Then

dÊ(u, ·)
d|C(u)| (x) =

dÊ(u, ·)
d|Du| (x) = lim

ρ→0+

Ê(u,Qν,kρ (x))

kn−1ρntρ,k
. (8.36)

Note that, by (8.33) and (8.34), the following properies hold:

for every k ∈ N tρ,k → +∞ and ρ tρ,k → 0+ as ρ→ 0+. (8.37)

Recalling (5.1), we have that Ê(u,Qν,kρ (x)) ≤ c3|Du|(Qν,kρ (x)) + c4k
n−1ρn, hence by (8.37) there exists

ρk ∈ (0, 1) such that

Qν,kρ (x) ⊂⊂ A and
Ê(u,Qν,kρ (x))

kn−1ρntρ,k
≤ c3 + 1 for every ρ ∈ (0, ρk). (8.38)

Since Ê(u, ·) is a Radon measure, there exists a set Bk ⊂ (0, ρk), with (0, ρk) \Bk at most countable, such

that Ê(u, ∂Qν,kρ (x)) = 0 for every ρ ∈ Bk. Proceeding as in the proof of (6.18) and (7.14), by (8.31) we
can show that for every ρ ∈ Bk

lim
ε→0+

Eε(uε, Q
ν,k
ρ (x)) = Ê(u,Qν,kρ (x)). (8.39)

Hence, for every ρ ∈ Bk there exists ε(ρ, k) > 0 such that for every ε ∈ (0, ε(ρ, k))

Eε(uε, Q
ν,k
ρ (x))

kn−1ρn tρ,k
≤
Ê(u,Qν,kρ (x))

kn−1ρn tρ,k
+ ρ ≤ c3 + 2, (8.40)

where in the last inequality we used (8.38).
Now, for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)) we consider the blow-up functions defined for y ∈ Qν,k :=

Qν,k1 (0) by

wρ,kε (y) :=
1

kn−1ρ tρ,k

(
uε(x+ ρy)− 1

kn−1ρn

∫
Q
ν,k
ρ (x)

uε(z) dz
)

wρ,k(y) :=
1

kn−1ρ tρ,k

(
u(x+ ρy)− 1

kn−1ρn

∫
Q
ν,k
ρ (x)

u(z) dz
)
.

Then wρ,kε ∈ SBV (Qν,k,Rm) and wρ,k ∈ BV (Qν,k,Rm). Since uε → u in L1(Qν,kρ (x),Rm) by (8.31), for
every ρ ∈ Bk we obtain

wρ,kε → wρ,k in L1(Qν,k,Rm) as ε→ 0+. (8.41)

Moreover, recalling (8.32), we have that the function wρ,k satisfies∫
Qν,k

wρ,k(y) dy = 0 and Dwρ,k(Qν,k) =
Du(Qν,kρ (x))

|Du|(Qν,kρ (x))
→ a⊗ ν as ρ→ 0+.

By [4, Theorem 2.3] and [29, Lemma 5.1] up to a subsequence (not relabelled),

wρ,k → wk in L1(Qν,k,Rm) as ρ→ 0+, (8.42)
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where wk ∈ BV (Qν,k,Rm) can be represented as

wk(y) = ψk(y · ν)a, (8.43)

ψk( 1
2
)− ψk(− 1

2
) = 1

kn−1 and

∫ 1/2

−1/2

ψk(t) dt = 0, (8.44)

with ψk nondecreasing. By monotonicity these equalities imply that − 1
kn−1 ≤ ψk(− 1

2
) ≤ 0 ≤ ψk( 1

2
) ≤

1
kn−1 , and so

|ψk(t)| ≤ 1
kn−1 for every t ∈ [− 1

2
, 1

2
]. (8.45)

By a change of variables we obtain the equality

Eε(uε, Q
ν,k
ρ (x))

kn−1ρn tρ,k
= Eρ,kε (wρ,kε , Qν,k), (8.46)

where Eρ,kε is the functional corresponding to the integrands fρ,kε (y, ξ) := 1
kn−1tρ,k

f(x+ρy
ε
, kn−1tρ,k ξ) and

gρ,kε (y, ζ, ν) := 1
kn−1ρ tρ,k

g(x+ρy
ε
, kn−1ρ tρ,kζ, ν); i.e.,

Eρ,kε (w,Qν,k) :=

∫
Qν,k

1

kn−1 tρ,k
f(x+ρy

ε
, kn−1tρ,k∇w(y)) dy

+

∫
Sw∩Qν,k

1

kn−1ρ tρ,k
g(x+ρy

ε
, kn−1ρ tρ,k[w](y), νw(y))dHn−1(y) (8.47)

for every w ∈ SBV (Qν,k,Rm). Note that fρ,kε satisfies (f3) and (f4), the latter with c4 replaced by
c4/(k

n−1tρ,k), while gρ,kε satisfies (g3) and (g4).
Let `k be the affine function on Rn which satisfies `k(y) = ψk(± 1

2
)a for y · ν = ± 1

2
; i.e.,

`k(y) := 1
kn−1 `a⊗ν(y) +

(
ψk( 1

2
)− 1

2kn−1

)
a =

(
1

kn−1 y · ν + ψk( 1
2
)− 1

2kn−1

)
a (8.48)

for every y ∈ Rn. We now want to modify wρ,kε in a way such that it attains the boundary datum `k near
∂⊥ν Q

ν,k (see (i) in Section 2 and after (3.4)). This will be done by applying the Fundamental Estimate
[11, Proposition 3.1] to the functionals Eρ,kε . First note that, since by (8.37) tρ,k → +∞ as ρ → 0+, we
can reduce the value of the constant ρk > 0 introduced in (8.38) so that tρ,k ≥ 1 for every ρ ∈ (0, ρk).

Therefore, for η ∈ (0, 1
2
) fixed, by slightly modifying the proof of [11, Proposition 3.1] we obtain

the following property: for every k ∈ N, ρ ∈ Bk, and ε ∈ (0, ε(ρ, k)) there exists a cut-off function

ϕρ,kε ∈ C∞c (Qν,k), with 0 ≤ ϕρ,kε ≤ 1 in Qν,k, supp(ϕρ,kε ) ⊂ Rν,k1−η := Rν
(
[− k

2
, k

2
]n−1 × [− 1−η

2
, 1−η

2
]
)
, and

ϕρ,kε = 1 in Rν,k1−2η := Rν
(
[− k

2
, k

2
]n−1 × [− 1−2η

2
, 1−2η

2
]
)
, such that, setting ŵρ,kε := ϕρ,kε wρ,kε + (1− ϕρ,kε )`k

and Sν,k2η := Qν,k \Rν,k1−2η, we have

Eρ,kε (ŵρ,kε , Qν,k) ≤ (1 + η)
(
Eρ,kε (wρ,kε , Qν,k) + Eρ,kε (`k, Sν,k2η )

)
+ L

η
‖wρ,kε − `k‖

L1(S
ν,k
2η ,Rm)

, (8.49)

where L > 0 is independent of η, k, ρ, and ε. By definition we clearly have ŵρε = `k in Qν,k \ Rν,k1−η, as

desired. Moreover, from the bound fρ,kε (y, ξ) ≤ c3|ξ|+ c4/(k
n−1tρ,k) we obtain the bound

Eρ,kε (`k, Sν,k2η )) ≤
∫
S
ν,k
2η

(c3|∇`k|+
c4

kn−1tρ,k
) dy

=
( c3|a|
kn−1

+
c4

kn−1tρ,k

)
Ln(Sν,k2η ) =

(
c3|a|+

c4
tρ,k

)
2η. (8.50)

Hence, from (8.40), (8.46), and (8.49), using also the inequalities η < 1
2

and tρ,k ≥ 1, we obtain

Eρ,kε (ŵρ,kε , Qν,k) ≤ 3

2

(
c3 + 2 + c3|a|+ c4

)
+ L

η
‖wρ,kε − `k‖

L1(S
ν,k
2η ,Rm)

. (8.51)

We can estimate the last term in the following way:

‖wρ,kε −`k‖L1(S
ν,k
2η ,Rm)

≤ ‖wρ,kε −wρ,k‖L1(Qν,k,Rm) + ‖wρ,k−wk‖L1(Qν,k,Rm) + ‖wk−`k‖
L1(S

ν,k
2η ,Rm)

. (8.52)

By (8.43) and (8.48), thanks to a change of variables we have

‖wk − `k‖
L1(S

ν,k
2η ,Rm)

= |a|
∫
S
ν,k
2η

|ψk(y · ν)− 1
kn−1 y · ν − ψk( 1

2
) + 1

2kn−1 | dy

= |a|kn−1

∫
Iη∪Jη

|ψk(t)− 1
kn−1 t− ψk( 1

2
) + 1

2kn−1 | dt,
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where Iη = (− 1
2
,− 1

2
+ η) and Jη = ( 1

2
− η, 1

2
). Hence, by (8.44) and (8.45), by using the continuity of ψk

at the endpoints, there exists a continuous function τk : [0, 1
2
]→ [0, 3], with τk(0) = 0, such that

kn−1|ψk(t)− 1
kn−1 t− ψk( 1

2
) + 1

2kn−1 | ≤ τk(η) for every t ∈ Iη ∪ Jη.
This gives

‖wk − `k‖
L1(S

ν,k
2η ,Rm)

≤ 2|a|ητk(η). (8.53)

In particular, from (8.41), (8.42), (8.52), and (8.53), possibly reducing the values of the constants ρk > 0
and ε(ρ, k) > 0, we obtain

‖wρ,kε − `k‖
L1(S

ν,k
2η ,Rm)

≤ 1, (8.54)

for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)).
Note that (f3), (g3), (8.51), and (8.54) imply that the total variation of ŵρε in Qν,k is bounded uniformly

with respect to ρ ∈ Bk and ε ∈ (0, ε(ρ, k)). Since ŵρε = `k near ∂⊥ν Q
ν,k, using Poincaré’s inequality we

obtain a uniform bound also for the L1 norm of ŵρε in Qν,k. Hence by Lemma 4.3 and Remark 4.4 there
exists a constant Mη,k > 0 with the following property: for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)) there exists
w̃ρ,kε ∈ SBV (Qν,k,Rm) ∩ L∞(Qν,k,Rm), with w̃ρ,kε = `k near ∂⊥ν Q

ν,k, such that

‖w̃ρ,kε ‖L∞(Qν,k,Rm) ≤Mη,k and Eρ,kε (w̃ρ,kε , Qν,k) ≤ Eρ,kε (ŵρ,kε , Qν,k) + η. (8.55)

We now set r := ρ
ε

and vρ,kε (y) := rw̃ρ,kε ( y
r
− x

ρ
) + r

ρ
1

kn−1 `a⊗ν(x) − r
(
ψk( 1

2
) − 1

2kn−1

)
a; then vρ,kε ∈

SBV (Qν,kr ( rx
ρ

),Rm), vρ,kε = 1
kn−1 `a⊗ν near ∂⊥ν Q

ν,k
r ( rx

ρ
), and, by a change of variables

‖[vρ,kε ]‖
L∞(Svρ,kε ∩Qν,kr ( rx

ρ
),Rm)

≤ 2Mη,k r, (8.56)∫
Q
ν,k
r (

rx
ρ

)

f(y, kn−1tρ,k∇vρ,kε ) dy +
1

ε

∫
Svρ,kε ∩Qν,kr (

rx
ρ

)

g(y, kn−1ε tρ,k[vρ,kε ], ν
v
ρ,k
ε

)dHn−1

= kn−1rntρ,kE
ρ,k
ε (w̃ρ,kε , Qν,k). (8.57)

Moreover, recalling (8.47) and combining (8.51), (8.54), (8.55), and (8.57) with the lower bounds (f3) and
(g3), we deduce the existence of a constant C > 0 such that

1

rn

∫
Q
ν,k
r (

rx
ρ

)

|∇vρ,kε |(y) dy ≤ C (8.58)

1

rn

∫
Svρ,kε ∩Qν,kr (

rx
ρ

)

|[vρ,kε ]|dHn−1 ≤ C. (8.59)

for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)).
By Lemma 7.1, applied with t = kn−1tρ,k, using (8.58) and the inequality tρ,k ≥ 1 we obtain

1

rn

∫
Q
ν,k
r ( rx

ρ
)

∣∣∣f∞(y,∇vρ,kε )− 1
kn−1tρ,k

f(y, kn−1tρ,k∇vρ,kε )
∣∣∣ dy

≤ 1

tρ,k
c5(1 + c1−α4 ) +

1

tαρ,k
c5c

1−α
3 C1−α ≤ K1

tαρ,k
, (8.60)

for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)), where, as in (8), K1 := c5(1 + c1−α4 ) + c5c
1−α
3 C1−α.

Now note that, since by (8.37) ρtρ,k → 0+ as ρ→ 0+, we can reduce the value of the constant ρk > 0
introduced in (8.38) so that 2Mη,kk

n−1ρ tρ,k ≤ 1 for every ρ ∈ (0, ρk). By Lemma 6.1, applied with
t := kn−1ε tρ,k, using (8.56) and (8.59), we deduce that

1

rn

∫
Svρ,kε ∩Qν,kr (

rx
ρ

)

∣∣g0(y, [vρ,kε ], ν
v
ρ,k
ε

)− 1
kn−1ε tρ,k

g(y, kn−1ε tρ,k[vρ,kε ], ν
v
ρ,k
ε

)
∣∣ dHn−1

≤ λ(2Mη,kk
n−1ρ tρ,k)

1

rn

∫
Svρ,kε ∩Qν,kr ( rx

ρ
)

|[vρ,kε ]| dHn−1 ≤ λ(2Mη,kk
n−1ρ tρ,k)C, (8.61)

for every ρ ∈ Bk and ε ∈ (0, ε(ρ, k)).
From (8.46), (8.49), (8.50), (8.54), (8.55), (8.57), (8.60), and (8.61) we obtain

Ef
∞,g0(vρ,kε , Qν,kr ( rx

ρ
))

rn
≤ (1 + η)

Eε(uε, Q
ν,k
ρ (x))

kn−1ρntρ,k
+
(3

2

(
c3|a|+

2c4
tρ,k

)
+ 1
)
η

+
L

η
‖wρ,kε − `k‖

L1(S
ν,k
2η ,Rm)

+
K1

tαρ,k
+ λ(2Mη,kk

n−1ρ tρ,k)C. (8.62)
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By the positive 1-homogeneity of Ef
∞,g0 , thanks to (8.7), and recalling that vρ,kε = 1

kn−1 `a⊗ν near

∂⊥ν Q
ν,k
r ( rx

ρ
), we have

m̃f∞,g0
(
`a⊗ν , Q

ν,k
r

(
rx
ρ

))
kn−1rn

≤
Ef
∞,g0(vρ,kε , Qν,kr ( rx

ρ
))

rn
.

Combining this inequality with (8.62), we obtain

m̃f∞,g0
(
`a⊗ν , Q

ν,k
r

(
rx
ρ

))
kn−1rn

≤ (1 + η)
Eε(uε, Q

ν,k
ρ (x))

kn−1ρntρ,k
+
(3

2

(
c3|a|+

2c4
tρ,k

)
+ 1
)
η

+
L

η
‖wρ,kε − `k‖

L1(S
ν,k
2η ,Rm)

+
K1

tαρ,k
+ λ(2Mη,kk

n−1ρ tρ,k)C.

Passing to the limit as ε→ 0+, recalling that r = ρ
ε
, and thanks to (8.39) and (8.41), we have

lim sup
r→+∞

m̃f∞,g0
(
`a⊗ν , Q

ν,k
r

(
rx
ρ

))
kn−1rn

≤ (1 + η)
Ê(u,Qν,kρ (x))

kn−1ρntρ,k
+
(3

2

(
c3|a|+

2c4
tρ,k

)
+ 1
)
η

+
L

η
‖wρ,k − `k‖

L1(S
ν,k
2η ,Rm)

+
K1

tαρ,k
+ λ(2Mη,k k

n−1ρ tρ,k)C.

Now, passing to the limit as ρ→ 0+, by (3.8), (8.36), and (8.37), and (8.42),

lim sup
r→+∞

m̃f∞,g0
(
`a⊗ν , Q

ν,k
r

(
rx
ρ

))
kn−1rn

≤ (1 + η)
dÊ(u, ·)
d|C(u)| (x) +

(3

2
c3|a|+ 1

)
η +

L

η
‖wk − `k‖

L1(S
ν,k
2η ,Rm)

.

Passing to the limit as η → 0+, by (8.53) we deduce that

lim sup
r→+∞

m̃f∞,g0
(
`a⊗ν , Q

ν,k
r

(
rx
ρ

))
kn−1rn

≤ dÊ(u, ·)
d|C(u)| (x).

Finally, taking the limit as k → +∞, by (8.6) we deduce that

f∞hom(a⊗ ν) = lim
k→+∞

lim sup
r→+∞

m̃f∞,g0
(
`a⊗ν , Q

ν,k
r

(
rx
ρ

))
kn−1rn

≤ dÊ(u, ·)
d|C(u)| (x).

By (8.32), this concludes the proof of (8.30), since a = a(x) and ν = ν(x). �

We are now in a position to prove the deterministic homogenisation theorem.

Proof of Theorem 4.1. By Lemma 4.2 the function fhom defined by (4.2) belongs to F and by Lemma 4.5
the function ghom defined by (4.3) belongs to G. By Theorem 5.1 for every sequence of positive numbers

converging to zero, there exist a subsequence (εj) and a functional Ê : L1
loc(Rn,Rm)×A −→ [0,+∞] such

that for every A ∈ A the functionals Eεj (·, A) Γ-converge to Ê(·, A) in L1
loc(Rn,Rm), as j → +∞.

Let us fix A ∈ A and u ∈ L1
loc(Rn,Rm). If u|A ∈ BV (A,Rm), then by Theorem 5.1(c) and (d)

the function Ê(u, ·) is a nonnegative bounded Radon measure on B(A), which satisfies the inequality

Ê(u, ·) ≤ c3|Du| + c4Ln. By the decomposition of the gradient of a BV function (see (f) in Section 2),

the measure Ê(u, ·) is absolutely continuous with respect to the measure Ln +Hn−1 Su + |C(u)|. Since
Ln, Hn−1 Su, and |C(u)| are carried by disjoint Borel sets, by the properties of the Radon-Nikodym
derivatives mentioned in (j) of Section 2 we have

Ê(u,A) =

∫
A

dÊ(u, ·)
dLn dx+

∫
Su∩A

dÊ(u, ·)
dHn−1 Su

dHn−1 +

∫
A

dÊ(u, ·)
d|C(u)| d|C(u)|.

Using Propositions 6.2, 7.2, and 8.3 we obtain

Ê(u,A) =

∫
A

fhom(∇u) dx+

∫
Su∩A

ghom([u], νu)dHn−1 +

∫
A

f∞hom

( dC(u)

d|C(u)|

)
d|C(u)|.

If u|A /∈ BV (A,Rm), we have Ê(u,A) = +∞ by Theorem 5.1(c). Therefore,

Ê(u,A) = Ehom(u,A) for every u ∈ L1
loc(Rn,Rm) and every A ∈ A ,

where Ehom is the functional defined in (4.4). Since the limit does not depend on the subsequence, by
the Urysohn property of Γ-convergence in L1

loc(Rn,Rm) (see [18, Proposition 8.3]) the functionals Eε(·, A)
Γ-converge to Ehom(·, A) in L1

loc(Rn,Rm), as ε→ 0+. �
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9. Stochastic homogenisation

In this section we prove Theorems 3.17 and 3.18 concerning stationary random integrands, according
to Definition 3.12. We adopt the shorthand notation introduced in (3.16).

We start by proving the existence of the limits which define the the homogenised random volume
integrand fhom.

Proposition 9.1 (Homogenised random volume integrand). Let f be a stationary random volume inte-
grand and let g be a stationary random surface integrand with respect to a group (τz)z∈Zn of P -preserving
transformations on (Ω, T , P ). Then there exists Ω′ ∈ T , with P (Ω′) = 1, such that for every ω ∈ Ω′,
x ∈ Rn, ξ ∈ Rm×n, ν ∈ Sn−1, k ∈ N, and ρ > 0 the limit

lim
r→+∞

mf,g0
ω (`ξ, Q

ν,k
ρr (rx))

kn−1ρnrn
(9.1)

exists and is independent of x, ν, k, and ρ. More precisely, there exists a random volume integrand
fhom : Ω× Rm×n → [0,+∞) such that for every ω ∈ Ω′, x ∈ Rn, ξ ∈ Rm×n, ν ∈ Sn−1, k ∈ N, and ρ > 0

fhom(ω, ξ) = lim
r→+∞

mf,g0
ω (`ξ, Q

ν,k
ρr (rx))

kn−1ρnrn
= lim
r→+∞

mf,g0
ω (`ξ, Qr(0))

rn
. (9.2)

If, in addition, (τz)z∈Zn is ergodic, then fhom is independent of ω and

fhom(ξ) = lim
r→+∞

1

rn

∫
Ω

mf,g0
ω (`ξ, Qr(0)) dP (ω).

Proof. We divide the proof into four main steps.

Step 1: Existence of the limit in (9.1) for ξ ∈ Qm×n and ν ∈ Sn−1 ∩Qn fixed.

Let (Ω, T̂ , P̂ ) denote the completion of the probability space (Ω, T , P ). Let ξ ∈ Qm×n and ν ∈ Sn−1∩Qn
be fixed. For every ω ∈ Ω and A ∈ In (see (3.15)) we set

µξ,ν(ω,A) :=
1

Mn
ν

mf,g0
ω (`ξ,MνRνA), (9.3)

where Rν is the orthogonal n × n matrix defined in (h) in Section 2, and Mν is a positive integer such
that MνRν ∈ Zn×n.

We now claim that the map µξ,ν : Ω×In → R defines an n-dimensional subadditive process on (Ω, T̂ , P̂ ),
according to Definition 3.13.

We start observing that the T̂ -measurability of ω 7→ µξ,ν(ω,A) follows from the T̂ -measurability of
ω 7→ mf,g0

ω (`ξ, A) for every A ∈ A , which is ensured by Proposition A.12, taking into account Remark 3.9.
We are now going to prove that µξ,ν is covariant; that is, we show that there exists a group (τνz )z∈Zn of

P̂ -preserving transformations on (Ω, T̂ , P̂ ) such that

µξ,ν(ω,A+ z) = µξ,ν(τνz (ω), A), for every ω ∈ Ω, z ∈ Zn, and A ∈ In.

We have

MνRν(A+ z) = MνRνA+MνRνz = MνRνA+ zν ,

where zν := MνRνz ∈ Zn. Then by (9.3) we get

µξ,ν(ω,A+ z) =
1

Mn
ν

mf,g0
ω (`ξ,MνRνA+ zν).

Given u ∈ SBV (int(MνRνA+zν),Rm) with u = `ξ near ∂(MνRνA+zν), let v ∈ SBV (int(MνRνA),Rm)
be defined as v(x) := u(x + zν) − ξzν for every x ∈ Rn. By a change of variables, using the stationarity
of f and g0 we obtain∫

MνRνA+zν
f(ω, x,∇u) dx+

∫
Su∩(MνRνA+zν)

g0(ω, x, [u], νu) dHn−1

=

∫
MνRνA

f(ω, x+ zν ,∇v) dx+

∫
Sv∩(MνRνA)

g0(ω, x+ zν , [v], νv) dHn−1

=

∫
MνRνA

f(τzν (ω), x,∇v) dx+

∫
Sv∩(MνRνA)

g0(τzν (ω), x, [v], νv) dHn−1.

Since we have v = `ξ near ∂(MνRνA), we deduce that

mf,g0
ω (`ξ,MνRνA+ zν) = mf,g0

τzν (ω)(`ξ,MνRνA),
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and hence the covariance of µξ,ν with respect to the group of P̂ -preserving transformations (τνz )z∈Zn :=
(τzν )z∈Zn .

We now show that µξ,ν is subadditive. To this end let A ∈ In and let (Ai)i=1,...,N ⊂ In be a

finite family of pairwise disjoint sets such that A =
⋃N
i=1 Ai. For fixed η > 0 and i = 1, . . . , N , let

ui ∈ SBV (int(MνRνAi),Rm), with ui = `ξ near ∂(MνRνAi), be such that∫
MνRνAi

f(ω, x,∇ui) dx+

∫
Sui∩(MνRνAi)

g0(ω, x, [ui], νui) dH
n−1 ≤ mf,g0

ω (`ξ,MνRνAi) + η

and on MνRνA define u(x) := ui(x) if x ∈ MνRνAi for i = 1, . . . , N . By construction we have that u is
a competitor for mf,g0

ω (`ξ,MνRνA), since u ∈ SBV (MνRνA,Rm) and u = `ξ near ∂(MνRνA). Moreover
Su ∩ ∂(MνRνAi) = Ø for every i = 1, . . . , N . Therefore it holds

mf,g0
ω (`ξ,MνRνA) ≤

∫
MνRνA

f(ω, x,∇u) dx+

∫
Su∩(MνRνA)

g0(ω, x, [u], νu) dHn−1

=

N∑
i=1

(∫
MνRνAi

f(ω, x,∇ui) dx+

∫
Sui∩(MνRνAi)

g0(ω, x, [ui], νui) dH
n−1
)

≤
N∑
i=1

mf,g0
ω (`ξ,MνRνAi) +Nη,

thus the subadditivity of µξ,ν follows from (9.3), by the arbitrariness of η > 0. Note that the same proof
shows that

mf,g0
ω

(
`ξ,

N⋃
i=1

Ai
)
≤

N∑
i=1

mf,g0
ω (`ξ, Ai) for every finite disjoint family (Ai)i=1,...,N ⊂ In, (9.4)

even when
⋃N
i=1 Ai /∈ In.

Eventually, in view of (f4) we have

µξ,ν(ω,A) =
1

Mn
ν

mf,g0
ω (`ξ,MνRνA) ≤ 1

Mn
ν

∫
MνRνA

f(ω, x, ξ) dx ≤ (c3|ξ|+ c4)Ln(A), (9.5)

for every ω ∈ Ω.
We note now that for every x ∈ Rn, k ∈ N, and ρ > 0, we have that (Qen,kρr (rx))r>0 is a regular

family in In (cf. Definition 3.14). Therefore for every fixed ξ ∈ Qn and ν ∈ Sn−1 ∩ Qn we can apply

Theorem 3.15 to the subadditive process µξ,ν on (Ω, T̂ , P̂ ) to deduce the existence of a T̂ -measurable

function ϕξ,ν : Ω→ [0,+∞) and a set Ω̂ξ,ν ⊂ Ω, with Ω̂ξ,ν ∈ T̂ and P (Ω̂ξ,ν) = 1 such that

lim
r→+∞

µξ,ν(ω,Qen,kρr (rx))

kn−1ρnrn
= ϕξ,ν(ω), (9.6)

for every ω ∈ Ω̂ξ,ν , x ∈ Rn, k ∈ N, and ρ > 0. Then, by the properties of the completion there exist a set
Ωξ,ν ∈ T , with P (Ωξ,ν) = 1, and a T -measurable function, which we still denote by ϕξ,ν , such that (9.6)
holds for every ω ∈ Ωξ,ν . Thus choosing in (9.6) x = 0, k = 1, and ρ = 1, thanks to (9.3) we get

ϕξ,ν(ω) = lim
r→+∞

µξ,ν(ω,Qr(0))

rn
= lim
r→+∞

mf,g0
ω (`ξ, Q

ν
r (0))

rn
.

Furthermore, if (τz)z∈Zn is ergodic, then Theorem 3.15 ensures that ϕξ,ν is independent of ω.

Step 2: Existence of the limit in (9.1) for every ξ ∈ Rm×n and ν ∈ Sn−1.

Let Ω̃ denote the intersection of the sets Ωξ,ν for ξ ∈ Qn and ν ∈ Sn−1∩Qn; clearly Ω̃ ∈ T and P (Ω̃) = 1.

For every k ∈ N and ρ > 0 we now introduce the auxiliary functions fρ,k, fρ,k : Ω̃×Rn ×Rm×n × Sn−1 →
[0,+∞) defined as

fρ,k(ω, x, ξ, ν) := lim inf
r→+∞

mf,g0
ω (`ξ, Q

ν,k
ρr (rx))

kn−1ρnrn

fρ,k(ω, x, ξ, ν) := lim sup
r→+∞

mf,g0
ω (`ξ, Q

ν,k
ρr (rx))

kn−1ρnrn
.

We notice that
fρ,k(ω, x, ξ, ν) = fρ,k(ω, x, ξ, ν) = ϕξ,ν(ω) (9.7)

for every ω ∈ Ω̃, ξ ∈ Qm×n, ν ∈ Sn−1 ∩ Qn, k ∈ N, and ρ > 0. The proof of property (4.8) in Lemma

4.2 can be adapted to the rectangles Qν,kρr (rx), obtaining that for every ω ∈ Ω̃, x ∈ Rn, ν ∈ Sn−1, k ∈ N,

and ρ > 0, the functions ξ 7→ fρ,k(ω, x, ξ, ν) and ξ 7→ fρ,k(ω, x, ξ, ν) are continuous on Rm×n, and their
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modulus of continuity does not depend on ω, x, ν, k, and ρ. By (9.7) this implies that for every ξ ∈ Rm×n
and ν ∈ Sn−1 ∩Qn there exists a T -measurable function, which we still denote by ϕξ,ν , such that

fρ,k(ω, x, ξ, ν) = fρ,k(ω, x, ξ, ν) = ϕξ,ν(ω) (9.8)

for every ω ∈ Ω̃, x ∈ Rn, k ∈ N, and ρ > 0.

We now show that, for every ω ∈ Ω̃, x ∈ Rn, ξ ∈ Rm×n, k ∈ N, and ρ > 0, the functions ν 7→
fρ,k(ω, x, ξ, ν) and ν 7→ fρ,k(ω, x, ξ, ν), restricted to Ŝn−1

+ and Ŝn−1
− , are continuous. We will only prove

this property for fρ,k and Ŝn−1
+ , the other proofs being analogous. To this end, let ω ∈ Ω̃, x ∈ Rn,

ξ ∈ Rm×n, k ∈ N, and ρ > 0 be fixed. Let ν ∈ Ŝn−1
+ and let (νj) ⊂ Ŝn−1

+ be such that νj → ν as j → +∞.

Since ν 7→ Rν is continuous in Ŝn−1
+ , for every δ ∈ (0, 1/2) there exists an integer ̂, depending on ρ, k,

and δ, such that

Q
νj ,k

(1−δ)ρr(rx) ⊂⊂ Qν,kρr (rx) ⊂⊂ Qνj ,k(1+δ)ρr(rx)

for every j ≥ ̂ and r > 0. Given r > 0, j ≥ ̂, and η > 0, let u ∈ SBV (Qν,kρr (rx),Rm) be such that u = `ξ
near ∂Qν,kρr (rx) and∫

Q
ν,k
ρr (rx)

f(ω, y,∇u) dy +

∫
Su∩Qν,kρr (rx)

g0(ω, y, [u], νu) dHn−1 ≤ mf,g0
ω (`ξ, Q

ν,k
ρr (rx)) + ηkn−1ρnrn.

We define now v ∈ SBV (Q
νj ,k

(1+δ)ρr(rx),Rm) as

v(y) =

{
u(y) if y ∈ Qν,kρr (rx),

`ξ(y) if y ∈ Qνj ,k(1+δ)ρr(rx) \Qν,kρr (rx).

Note that v = `ξ near ∂Q
νj ,k

(1+δ)ρr(rx) and that ∂Qν,kρr (rx) ∩ Sv = Ø. Therefore,

mf,g0
ω (`ξ, Q

νj ,k

(1+δ)ρr(rx))

≤
∫
Q
νj,k

(1+δ)ρr
(rx)

f(ω, y,∇v) dy +

∫
Sv∩Q

νj,k

(1+δ)ρr
(rx)

g0(ω, y, [v], νv) dHn−1

≤
∫
Q
ν,k
ρr (rx)

f(ω, y,∇u) dx+

∫
Su∩Qν,kρr (rx)

g0(ω, y, [u], νu) dHn−1 + (c3|ξ|+ c4)
(
(1 + δ)n − 1

)
kn−1ρnrn

≤ mf,g0
ω (`ξ, Q

ν,k
ρr (rx)) + ηkn−1ρnrn + (c3|ξ|+ c4)

(
(1 + δ)n − 1

)
kn−1ρnrn.

Dividing by kn−1ρnrn and passing to the liminf as r → +∞ we obtain

(1 + δ)nfρ,k(ω, x, ξ, νj) ≤ fρ,k(ω, x, ξ, ν) + η + (c3|ξ|+ c4)
(
(1 + δ)n − 1

)
.

Passing to the limsup first as j → +∞, then as δ → 0+ and η → 0+ we get

lim sup
j→+∞

fρ,k(ω, x, ξ, νj) ≤ fρ,k(ω, x, ξ, ν).

A similar argument, using the cubes Q
νj ,k

(1−δ)ρr(rx), gives

fρ,k(ω, x, ξ, ν) ≤ lim inf
j→+∞

f(ω, x, ξ, νj),

and so the continuity of ν 7→ fρ,k(ω, x, ξ, ν) follows.

It is known that Qn ∩ Sn−1 is dense in Sn−1(see, e.g., [16, Remark A.2]). Arguing as in the proof of

[16, Theorem 5.1] it is easy to show that Qn ∩ Ŝn−1
± is dense in Ŝn−1

± . Therefore, from the continuity

property proved above and from (9.8) we deduce that for every ξ ∈ Rm×n and ν ∈ Sn−1 there exists a
T -measurable function, which we still denote by ϕξ,ν , such that

fρ,k(ω, x, ξ, ν) = fρ,k(ω, x, ξ, ν) = ϕξ,ν(ω) (9.9)

for every ω ∈ Ω̃, x ∈ Rn, ξ ∈ Rm×n, ν ∈ Sn−1, k ∈ N, and ρ > 0. This implies that

ϕξ,ν(ω) = lim
r→+∞

mf,g0
ω (`ξ, Q

ν,k
ρr (rx))

kn−1ρnrn
(9.10)

for every ω ∈ Ω̃, x ∈ Rn, ξ ∈ Rm×n, ν ∈ Sn−1, k ∈ N, and ρ > 0, concluding the proof of Step 2.

Step 3: The limit in (9.1) is independent of ν.

We now show that ϕξ,ν(ω) does not depend on ν; i.e., we show that

ϕξ,ν(ω) = ϕξ,en(ω) for every ω ∈ Ω̃, ξ ∈ Rm×n, ν ∈ Sn−1. (9.11)
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For every r > 0 let Qνr := Qνr (0) and let η > 0 be fixed. Let (Qρi(xi)) be a family of pairwise disjoint
cubes, with ρi ∈ (0, 1), i = 1, . . . , Nη, with faces parallel to the coordinate axes, such that

Nη⋃
i=1

Qρi(xi) ⊂ Q
ν
r and Ln

(
Qν1 \

Nη⋃
i=1

Qρi(xi)

)
= 1−

Nη∑
i=1

ρni < η.

By using arguments similar to those used to prove the subadditivity in Step 1, we can prove that

mf,g0
ω (`ξ, Q

ν
r ) ≤ mf,g0

ω

(
`ξ,

Nη⋃
i=1

Qρir(rxi)

)
+ η(c3|ξ|+ c4)rn.

Then, by (9.4), for every r > 0 we have

mf,g0
ω (`ξ, Q

ν
r )

rn
≤

Nη∑
i=1

mf,g0
ω (`ξ, Qρir(rxi))

rn
+ η(c3|ξ|+ c4)

=

Nη∑
i=1

mf,g0
ω (`ξ, Qρir(rxi))

ρni r
n

ρni + η(c3|ξ|+ c4).

Hence, passing to the limit as r → +∞ and using (9.10) we obtain

ϕξ,ν(ω) ≤ ϕξ,en(ω)

Nη∑
i=1

ρni + η(c3|ξ|+ c4) ≤ ϕξ,en(ω) + η(c3|ξ|+ c4),

thus taking the limit as η → 0+ we get ϕξ,ν(ω) ≤ ϕξ,en(ω). By repeating a similar argument, now using
coverings of Q1(0) by cubes of the form Qνρi(xi), we obtain the opposite inequality, and eventually the
claim.

Step 4: Definition and properties of fhom.

For every ω ∈ Ω and ξ ∈ Rm×n we define

fhom(ω, ξ) :=

{
ϕξ,en(ω) if ω ∈ Ω̃,

c2|ξ| if ω ∈ Ω \ Ω̃.

Then (9.2) follows from (9.10) and (9.11). From the measurability of ϕξ,en , proved in Step 2, we obtain
that fhom(·, ξ) is T -measurable in Ω for every ξ ∈ Rm×n. Moreover, since the function ξ 7→ fρ,k(ω, x, ξ, ν)

is continuous on Rm×n, from (9.9) we deduce that fhom(ω, ·) is continuous in Rm×n for every ω ∈ Ω,
and this implies the T ⊗ Bm×n-measurability of fhom on Ω × Rm×n. Finally, Lemma 4.2 allows us to
conclude that fhom(ω, ·) ∈ F for every ω ∈ Ω. Therefore, fhom is a random volume integrand according
to Definition 3.7. �

The following result is a direct consequence of Propositions 8.1 and 9.1. In the ergodic case, (9.13)
can be obtained by integrating (9.12) and observing that, thanks to (9.5), we can apply the Dominated
Convergence Theorem.

Proposition 9.2 (Homogenised random Cantor integrand). Under the assumptions of Proposition 9.1,
for every ω ∈ Ω′ and ξ ∈ Rm×n let

f∞hom(ω, ξ) := lim
t→+∞

fhom(ω, tξ)

t

(since fhom(ω, ·) ∈ F , the existence of the limit is guaranteed by (f5)). Then f∞hom is a random volume
integrand and for every ω ∈ Ω′, x ∈ Rn, ξ ∈ Rm×n, ν ∈ Sn−1, and k ∈ N we have

f∞hom(ω, ξ) = lim
r→+∞

mf∞,g0
ω (`ξ, Q

ν,k
r (rx))

kn−1rn
= lim
r→+∞

mf∞,g0
ω (`ξ, Qr)

rn
, (9.12)

where Qr := Qr(0). If, in addition, (τz)z∈Zn is ergodic, then f∞hom is independent of ω and

f∞hom(ξ) = lim
r→+∞

1

rn

∫
Ω

mf∞,g0
ω (`ξ, Qr) dP (ω). (9.13)

The following proposition establishes the existence of the random surface integrand ghom.
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Proposition 9.3 (Homogenised random surface integrand). Let f be a stationary random volume inte-
grand and let g be a stationary random surface integrand with respect to a group (τz)z∈Zn of P -preserving
transformations on (Ω, T , P ). Then there exists Ω′ ∈ T , with P (Ω′) = 1, such that for every ω ∈ Ω′,
x ∈ Rn, ζ ∈ Rm, ν ∈ Sn−1, the limit

lim
r→+∞

mf∞,g
ω (urx,ζ,ν , Q

ν
r (rx))

rn−1
(9.14)

exists and is independent of x. More precisely, there exists a random volume integrand ghom : Ω × Rm ×
Sn−1 → [0,+∞) such that for every ω ∈ Ω′, x ∈ Rn, ζ ∈ Rm, and ν ∈ Sn−1

ghom(ω, ζ, ν) = lim
r→+∞

mf∞,g
ω (urx,ζ,ν , Q

ν
r (rx))

rn−1
= lim
r→+∞

mf∞,g
ω (u0,ζ,ν , Q

ν
r )

rn−1
,

where Qνr := Qνr (0). If, in addition, (τz)z∈Zn is ergodic, then ghom is independent of ω and

ghom(ζ, ν) = lim
r→+∞

1

rn−1

∫
Ω

mf∞,g
ω (u0,ζ,ν , Q

ν
r ) dP (ω).

The proof of Proposition 9.3 follows immediately from Propositions 9.4 and 9.5 below. In the first one
we prove the existence of the limit in (9.14) for x = 0, while in the second one we consider the general
case x 6= 0 and prove that the limit is independent of x.

Proposition 9.4. Let f be a stationary random volume integrand and let g be a stationary random surface
integrand with respect to a group (τz)z∈Zn of P -preserving transformations on (Ω, T , P ). Then there exist

Ω̃ ∈ T , with P (Ω̃) = 1, and a random surface integrand ghom : Ω× Rm × Sn−1 → R such that

ghom(ω, ζ, ν) = lim
r→+∞

mf∞,g
ω (u0,ζ,ν , Q

ν
r )

rn−1
, (9.15)

for every ω ∈ Ω̃, ζ ∈ Rm, and ν ∈ Sn−1, where Qνr := Qνr (0). If, in addition, (τz)z∈Zn is ergodic, then
ghom is independent of ω and

ghom(ζ, ν) = lim
r→+∞

1

rn−1

∫
Ω

mf∞,g
ω (u0,ζ,ν , Q

ν
r ) dP (ω). (9.16)

Proof. We adapt the proof of [17, Theorem 5.1]. The main difference is that now the functional to be
minimised depends also on f∞, while in [17, Theorem 5.1] it depends only on g. Since this requires some
changes, for completeness we prefer to give the whole proof in detail. We divide it into four steps.

Step 1: Existence of the limit in (9.15) for fixed ζ ∈ Qm and ν ∈ Sn−1 ∩Qn.

Let ν ∈ Sn−1 ∩Qn−1 and ζ ∈ Qm be fixed, let Rν ∈ O(n)∩Qn×n be the orthogonal n×n matrix as in
(h) in Section 2, and let Mν be a positive integer such that MνRν ∈ Zn×n. Note that, in particular, for
every z′ ∈ Zn−1 we have that MνRν(z′, 0) ∈ Πν

0 ∩ Zn, namely MνRν maps integer vectors perpendicular
to en into integer vectors perpendicular to ν.

Given A′ = [a1, b1) × · · · × [an−1, bn−1) ∈ In−1 (see (3.15)), we define the (rotated) n-dimensional
interval Tν(A′) as

Tν(A′) := MνRν
(
A′ × [−c, c)

)
, with c :=

1

2
max

1≤j≤n−1
(bj − aj). (9.17)

For every ω ∈ Ω and A′ ∈ In−1 we set

µζ,ν(ω,A′) :=
1

Mn−1
ν

mf∞,g
ω (u0,ζ,ν , Tν(A′)). (9.18)

Now let (Ω, T̂ , P̂ ) denote the completion of the probability space (Ω, T , P ). We claim that the function

µζ,ν : Ω×In−1 → R as in (9.18) defines an (n− 1)-dimensional subadditive process on (Ω, T̂ , P̂ ). Indeed,

thanks to Remark 3.9 and Proposition A.12, for every A ∈ A the function ω 7→ mf∞,g
ω (u0,ζ,ν , A) is

T̂ -measurable. From this, it follows that the function ω 7→ µζ,ν(ω,A′) is T̂ -measurable too.
We are now going to prove that µζ,ν is covariant; that is, we show that there exists a group (τνz′)z′∈Zn−1

of P̂ -preserving transformations on (Ω, T̂ , P̂ ) such that

µζ,ν(ω,A′ + z′) = µζ,ν(τνz′(ω), A′), for every ω ∈ Ω, z′ ∈ Zn−1, and A′ ∈ In−1.

To this end fix z′ ∈ Zn−1 and A′ ∈ In−1. Note that, by (9.17),

Tν(A′ + z′) = MνRν((A′ + z′)× [−c, c)) = MνRν(A′ × [−c, c)) +MνRν(z′, 0) = Tν(A′) + z′ν ,
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where z′ν := MνRν(z′, 0) ∈ Πν
0 ∩ Zn. Then, by (9.18)

µζ,ν(ω,A′ + z′) =
1

Mn−1
ν

mf∞,g
ω (u0,ζ,ν , Tν(A′ + z′)) =

1

Mn−1
ν

mf∞,g
ω (u0,ζ,ν , Tν(A′) + z′ν). (9.19)

Given u ∈ SBV (int(Tν(A′)+z′ν),Rm) with u = u0,ζ,ν near ∂(Tν(A′)+z′ν), let v ∈ SBV (int(Tν(A′)),Rm)
be defined as v(x) := u(x + z′ν) for every x ∈ Rn. By a change of variables, using the stationarity of f∞

and g we obtain ∫
Tν(A′)+z′ν

f∞(ω, x,∇u) dx+

∫
Su∩(Tν(A′)+z′ν)

g(ω, x, [u], νu) dHn−1

=

∫
Tν(A′)

f∞(ω, x+ z′ν ,∇v) dx+

∫
Sv∩Tν(A′)

g(ω, x+ z′ν , [v], νv) dHn−1

=

∫
Tν(A′)

f∞(τz′ν (ω), x,∇v) dx+

∫
Sv∩Tν(A′)

g(τz′ν (ω), x, [v], νv) dHn−1.

Since z′ν is perpendicular to ν, we have u0,ζ,ν(x) = u0,ζ,ν(x+ z′ν) for every x ∈ Rn. Therefore, from (9.18)
and (9.19) we obtain that

µζ,ν(ω,A′ + z′) = µζ,ν(τνz′(ω), A′),

where we set (
τνz′
)
z′∈Zn−1 := (τz′ν )z′∈Zn−1 .

We now show that µζ,ν is subadditive in In−1. To this end let A′ ∈ In−1 and let (A′i)1≤i≤N ⊂ In−1

be a finite family of pairwise disjoint sets such that A′ =
⋃
iA
′
i. For fixed η > 0 and i = 1, . . . , N , let

ui ∈ SBV (int(Tν(A′i)),Rm) be such that ui = u0,ζ,ν in a neighbourhood of ∂Tν(A′i) and∫
Tν(A′i)

f∞(ω, x,∇ui) dx+

∫
Su∩Tν(A′i)

g(ω, x, [ui], νui) dH
n−1 ≤ mf∞,g

ω (u0,ζ,ν , Tν(A′i)) + η. (9.20)

Note that Tν(A′) can differ from
⋃
i Tν(A′i) (see for instance [17, Figure 2]), but, by construction, we

always have
⋃
i Tν(A′i) ⊂ Tν(A′).

Now we define

u(x) :=

{
ui(x) if x ∈ Tν(A′i), i = 1, . . . , N,

u0,ζ,ν(x) if x ∈ Tν(A′) \
⋃
i Tν(A′i);

then u ∈ SBV (Tν(A′),Rm) and u = u0,ζ,ν near ∂Tν(A′). Note that we also have x

Su ∩ Tν(A′) =

N⋃
i=1

(Sui ∩ Tν(A′i)).

Indeed, Su ∩ Tν(A′) ∩ ∂Tν(A′i) = Ø for every i = 1, . . . , N . Moreover, u = u0,ζ,ν in Tν(A′) \
⋃
i Tν(A′i),

hence ∇u = 0 a.e. in this set. Therefore, recalling that f∞(ω, ·, 0) ≡ 0, we obtain∫
Tν(A′)

f∞(ω, x,∇u) dx+

∫
Su∩Tν(A′)

g(ω, x, [u], νu) dHn−1

=

N∑
i=1

(∫
Tν(A′i)

f∞(ω, x,∇ui) dx+

∫
Sui∩Tν(A′i)

g(ω, x, [ui], νui) dH
n−1

)
.

As a consequence, by (9.20),

mf∞,g
ω (u0,ζ,ν , Tν(A′)) ≤

N∑
i=1

mf∞,g
ω (u0,ζ,ν , Tν(A′i)) +Nη,

thus the subadditivity of µζ,ν follows from (9.18), by the arbitrariness of η > 0.

Finally, in view of (g4) for every A′ ∈ In−1 and for P̂ -a.e. ω ∈ Ω we have

µζ,ν(ω,A′) =
1

Mn−1
ν

mf∞,g
ω (u0,ζ,ν , Tν(A′)) ≤ 1

Mn−1
ν

∫
Su0,ζ,ν∩Tν(A′)

g(ω, x, ζ, ν) dHn−1

≤ c3|ζ|
Mn−1
ν

Hn−1(Πν
0 ∩ Tν(A′)) = c3|ζ|Ln−1(A′), (9.21)

where we used again the fact that f∞(ω, ·, 0) ≡ 0. This concludes the proof of the fact that µζ,ν is an
(n− 1)-dimensional subadditive process.
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We can now apply Theorem 3.15 to the subadditive process µζ,ν , defined on (Ω, T̂ , P̂ ) by (9.18), to

deduce the existence of a T̂ -measurable function ψζ,ν : Ω → [0,+∞) and a set Ω̂ζ,ν ⊂ Ω, with Ω̂ζ,ν ∈ T̂
and P (Ω̂ζ,ν) = 1 such that

lim
r→+∞

µζ,ν(ω, rQ′)

rn−1
= ψζ,ν(ω) (9.22)

for every ω ∈ Ω̂ζ,ν , where Q′ := [− 1
2
, 1

2
)n−1. Then, by the properties of the completion, there exist a set

Ωζ,ν ∈ T , with P (Ωζ,ν) = 1, and a T -measurable function, which we still denote by ψζ,ν , such that (9.22)
holds for every ω ∈ Ωζ,ν . Using the definition of µζ,ν we then have

ψζ,ν(ω) = lim
r→+∞

mf∞,g
ω (u0,ζ,ν , Q

ν
r )

rn−1
(9.23)

for every ω ∈ Ωζ,ν .

Step 2: Existence of the limit in (9.15) for every ζ ∈ Rm and ν ∈ Sn−1.

Let Ω̃ denote the intersection of the sets Ωζ,ν for ζ ∈ Qm and ν ∈ Sn−1 ∩ Qn; clearly Ω̃ ∈ T and

P (Ω̃) = 1. Let g, g : Ω̃× Rm × Sn−1 → [0,+∞] be the functions defined as

g(ω, ζ, ν) := lim inf
r→+∞

mf∞,g
ω (u0,ζ,ν , Q

ν
r )

rn−1
, (9.24)

g(ω, ζ, ν) := lim sup
r→+∞

mf∞,g
ω (u0,ζ,ν , Q

ν
r )

rn−1
. (9.25)

By (9.23) we have

g(ω, ζ, ν) = g(ω, ζ, ν) = ψζ,ν(ω) for every ω ∈ Ω̃, ζ ∈ Qm, and ν ∈ Sn−1 ∩Qn. (9.26)

By Lemma 4.5 (property (4.13)), for every ω ∈ Ω̃ and ν ∈ Sn−1 the functions ζ 7→ g(ω, ζ, ν) and

ζ 7→ g(ω, ζ, ν) are continuous on Rm and their modulus of continuity does not depend on ω and ν. More

precisely, recalling (g4), for every ω ∈ Ω̃ and ν ∈ Sn−1 we have

|g(ω, ζ1, ν)− g(ω, ζ2, ν)| ≤ c3 σ2(|ζ1 − ζ2|)(|ζ1|+ |ζ2|),
|g(ω, ζ1, ν)− g(ω, ζ2, ν)| ≤ c3 σ2(|ζ1 − ζ2|)(|ζ1|+ |ζ2|),

for every ζ1, ζ2 ∈ Rm. (9.27)

From these inequalities and from (9.26) we deduce that for every ζ ∈ Rm and ν ∈ Sn−1 ∩Qn there exists
a T -measurable function, which we still denote by ψζ,ν , such that

g(ω, ζ, ν) = g(ω, ζ, ν) = ψζ,ν(ω) for every ω ∈ Ω̃. (9.28)

We now claim that for every ω ∈ Ω̃ and every ζ ∈ Rm the restrictions of the functions ν 7→ g(ω, ζ, ν)

and ν 7→ g(ω, ζ, ν) to the sets Ŝn−1
+ and Ŝn−1

− are continuous. We only prove this property for g and Ŝn−1
+ ,

the other proofs being analogous. To this end, let us fix ζ ∈ Rm, ν ∈ Ŝn−1
+ , and a sequence (νj) ⊂ Ŝn−1

+

such that νj → ν as j → +∞. Since the restriction of the function ν 7→ Rν to Ŝn−1
+ is continuous, for

every δ ∈ (0, 1
2
) there exists an integer jδ such that

Q
νj
(1−δ)r ⊂⊂ Q

ν
r ⊂⊂ Q

νj
(1+δ)r, (9.29)

for every j ≥ jδ and every r > 0. Fix j ≥ jδ, r > 0, and η > 0. Let u ∈ SBV (Qνr ,Rm) be such that
u = u0,ζ,ν near ∂Qνr and∫

Qνr

f∞(ω, x,∇u) dx+

∫
Su∩Qνr

g(ω, x, [u], νu) dHn−1 ≤ mf∞,g
ω (u0,ζ,ν , Q

ν
r ) + ηrn−1.

We define v ∈ SBV (Q
νj
(1+δ)r,R

m) as

v(x) :=

{
u(x) if x ∈ Qνr ,
u0,ζ,νj (x) if x ∈ Qνj(1+δ)r \Q

ν
r .

Then, v = u0,ζ,ν near ∂Q
νj
(1+δ)r and Sv ⊂ Su ∪ Σ, where

Σ :=
{
x ∈ ∂Qνr : (x · ν)(x · νj) < 0

}
∪
(
Π
νj
0 ∩ (Q

νj
(1+δ)r \Q

ν
r )
)
.
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Moreover |[v]| ≤ |ζ| Hn−1-a.e. on Σ. By (9.29) there exists ςj(δ) > 0, independent of r, with ςj(δ) →
(1 + δ)n−1 − 1 as j → +∞, such that Hn−1(Σ) ≤ ςj(δ)rn−1. Thanks to (g4) we then have

mf∞,g
ω (u0,ζ,ν , Q

νj
(1+δ)r) ≤

∫
Q
νj
(1+δ)r

f∞(ω, x,∇v) dx+

∫
Sv∩Q

νj
(1+δ)r

g(ω, x, [v], νv) dHn−1

≤
∫
Qνr

f∞(ω, x,∇u) dx+

∫
Su∩Qνr

g(ω, x, [u], νu) dHn−1 + c3|ζ|ςj(δ)rn−1

≤ mf∞,g
ω (u0,ζ,ν , Q

ν
r ) + ηrn−1 + c3|ζ|ςj(δ)rn−1,

where we used the fact that f∞(ω, ·, 0) ≡ 0. Recalling definition (9.24), dividing by rn−1, and passing to
the liminf as r → +∞, we obtain

g(ω, ζ, νj)(1 + δ)n−1 ≤ g(ω, ζ, ν) + η + c3|ζ|ςj(δ). (9.30)

Letting j → +∞, then δ → 0+, and then η → 0+, we deduce that

lim sup
j→+∞

g(ω, ζ, νj) ≤ g(ω, ζ, ν).

An analogous argument, now using the cubes Q
νj
(1−δ)r, shows that

g(ω, ζ, ν) ≤ lim inf
j→+∞

g(ω, ζ, νj),

hence the claim follows. Note that, together with (9.27), this implies that for every ω ∈ Ω̃ the restriction of

the function (ζ, ν) 7→ g(ω, ζ, ν) to Rm× Ŝn−1
± is continuous, and the same holds true for (ζ, ν) 7→ g(ω, ζ, ν).

As we already observed in the proof of Step 2 of Proposition 9.1, the set Ŝn−1
± ∩ Qn is dense in Ŝn−1

± .
Therefore, from the continuity property proved above and from (9.28) we deduce that for every ζ ∈ Rm
and ν ∈ Sn−1 there exists a T -measurable function, which we still denote by ψζ,ν , such that

g(ω, ζ, ν) = g(ω, ζ, ν) = ψζ,ν(ω) for every ω ∈ Ω̃. (9.31)

By (9.24) and (9.25) this implies that

ψζ,ν(ω) = lim
r→+∞

mf∞,g
ω (u0,ζ,ν , Q

ν
r )

rn−1
(9.32)

for every ω ∈ Ω̃, ζ ∈ Rm, and ν ∈ Sn−1, concluding the proof of Step 2.

Step 3: Definition and properties of ghom.

For every ω ∈ Ω and ζ ∈ Rm, and ν ∈ Sn−1 we define

ghom(ω, ζ, ν) :=

{
ψζ,ν(ω) if ω ∈ Ω̃,

c2|ζ| if ω ∈ Ω \ Ω̃.

Then (9.15) follows from (9.32). From the measurability of ψζ,ν , proved in Step 2, we obtain that

ghom(·, ζ, ν) is T -measurable in Ω for every ζ ∈ Rm and ν ∈ Sn−1. Moreover, since for every ω ∈ Ω̃

the restriction of the function (ζ, ν) 7→ g(ω, ζ, ν) to Rm × Ŝn−1
± is continuous, from (9.31) we deduce

that for every ω ∈ Ω the restriction of ghom(ω, ·, ·) to Rm × Ŝn−1
± is continuous and this implies the

T ⊗Bm×n⊗Bn
S -measurability of ghom on Ω×Rm× Sn−1. Finally, Lemma 4.5 allows us to conclude that

ghom(ω, ·, ·) ∈ G for every ω ∈ Ω.

Step 4: In the ergodic case ghom is deterministic.

Set Ω̂ :=
⋂
z∈Zn τz(Ω̃); we clearly have that Ω̂ ∈ T , Ω̂ ⊂ Ω̃, and τz(Ω̂) = Ω̂ for every z ∈ Zn; moreover,

since τz is a P -preserving transformation and P (Ω̃) = 1, we have P (Ω̂) = 1. We claim that

ghom(τz(ω), ζ, ν) = ghom(ω, ζ, ν), (9.33)

for every z ∈ Zn, ω ∈ Ω̂, ζ ∈ Rm, and ν ∈ Sn−1.
We start noting that to prove (9.33) it is enough to show that

ghom(τz(ω), ζ, ν) ≤ ghom(ω, ζ, ν) (9.34)

for every z ∈ Zn, ω ∈ Ω̂, ζ ∈ Rm, and ν ∈ Sn−1. Indeed, the opposite inequality is obtained by applying
(9.34) with ω replaced by τz(ω) and z replaced by −z.
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Let z ∈ Zn, ω ∈ Ω̂, ζ ∈ Rm, and ν ∈ Sn−1 be fixed. For every r > 3|z|, let ur ∈ SBV (Qνr ,Rm) be such
that ur = u0,ζ,ν near ∂Qνr , and∫

Qνr

f∞(ω, x,∇ur) dx+

∫
Sur∩Qνr

g(ω, x, [ur], νur ) dHn−1 ≤ mf∞,g
ω (u0,ζ,ν , Q

ν
r ) + 1. (9.35)

By the stationarity of f∞ and g, a change of variables gives

mf∞,g
τz(ω)(u0,ζ,ν , Q

ν
r ) = mf∞,g

ω (uz,ζ,ν , Q
ν
r (z)). (9.36)

We now modify ur to obtain a competitor for a minimisation problem related to the right-hand side of
(9.36). Noting that Qνr ⊂⊂ Qνr+3|z|(z) we define

vr(x) :=

{
ur(x) if x ∈ Qνr ,
uz,ζ,ν(x) if x ∈ Qνr+3|z|(z) \Qνr .

Clearly vr ∈ SBV (Qνr+3|z|(z),Rm) and vr = uz,ζ,ν near ∂Qνr+3|z|(z). Moreover we notice that Svr =
Sur ∪ Σ1 ∪ Σ2, where

Σ1 :=
{
x ∈ ∂Qνr :

(
x · ν

)(
(x− z) · ν

)
< 0
}

and Σ2 := Πν
z ∩ (Qνr+3|z|(z) \Qνr ).

Moreover |[vr]| = |ζ| Hn−1-a.e. on Σ1 ∪ Σ2. Since 3|z| < r, we have Hn−1(Σ1) = 2(n− 1)|z · ν| rn−2 and
Hn−1(Σ2) = (r+ 3|z|)n−1− rn−1 ≤ 3(n− 1)|z|(r+ 3|z|)n−2 < 2n(n− 1)|z| rn−2. Therefore, using the fact
that f∞(ω, ·, 0) ≡ 0, thanks to (g4) we have∫

Qν
r+3|z|(z)

f∞(ω, x,∇vr) dx+

∫
Svr∩Qνr+3|z|(z)

g(ω, x, [vr], νvr ) dHn−1

≤
∫
Qνr

f∞(ω, x,∇ur) dx+

∫
Sur∩Qνr

g(ω, x, [ur], νur ) dHn−1 +Mζ,z r
n−2,

where Mζ,z := c3(n− 1)(2 + 2n)|z||ζ|. This inequality, combined with (9.35) yields

mf∞,g
ω (uz,ζ,ν , Q

ν
r+3|z|(z)) ≤ mf∞,g

ω (u0,ζ,ν , Q
ν
r ) + 1 +Mζ,z r

n−2. (9.37)

Recalling that τz(ω) ∈ Ω̂ ⊂ Ω̃, by (9.15) and (9.36) we get

ghom(τz(ω), ζ, ν) = lim
r→+∞

mf∞,g
τz(ω)(u0,ζ,ν , Q

ν
r ))

rn−1
= lim
r→+∞

mf∞,g
ω (uz,ζ,ν , Q

ν
r (z))

rn−1

= lim
r→+∞

mf∞,g
ω (uz,ζ,ν , Q

ν
r+3|z|(z))

rn−1
,

where in the last equality we have used the fact that rn−1/(r + 3|z|)n−1 → 1 as r → +∞. Therefore,
dividing all terms of (9.37) by rn−1 and passing to the limit as r → +∞, from (9.15) we obtain the
inequality

ghom(τz(ω), ζ, ν) ≤ ghom(ω, ζ, ν),

which proves (9.34) and hence the claim.
If (τz)z∈Zn is ergodic we can invoke [17, Corollary 6.3] to deduce that ghom does not depend on ω and

hence is deterministic. In this case, (9.16) can be obtained by integrating (9.15) over Ω and observing
that, thanks to (9.21), we can apply the Dominated Convergence Theorem. �

We now prove that the limit (9.14) that defines ghom is independent of x. More precisely we prove the
following result.

Proposition 9.5. Let f be a stationary random volume integrand and let g be a stationary random surface
integrand with respect to a group (τz)z∈Zn of P -preserving transformations on (Ω, T , P ). Then there exist
Ω′ ∈ T , with P (Ω′) = 1, and a random surface integrand ghom : Ω × Rm × Sn−1 → R, independent of x,
such that

ghom(ω, ζ, ν) = lim
r→+∞

mf∞,g
ω (urx,ζ,ν , Q

ν
r (rx))

rn−1
, (9.38)

for every ω ∈ Ω′, x ∈ Rn, ζ ∈ Rm, ν ∈ Sn−1.

Proof. The proof closely follows that of [17, Theorem 6.1], therefore here we only discuss the main differ-
ences with respect to [17].

Let ghom be the random surface integrand introduced in Proposition 9.4. Arguing as in the proof of
[17, Theorem 6.1], we can prove the existence of Ω′ ∈ T , with P (Ω′) = 1, such that (9.38) holds for every
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ω ∈ Ω′, x ∈ Rn, ζ ∈ Rm, and ν ∈ Sn−1 ∩ Qn−1. Hence, to conclude it remains to show than (9.38) holds
true for every ν ∈ Sn−1.

To this end, for fixed ω ∈ Ω′, x ∈ Rn, ζ ∈ Rm, and ν ∈ Sn−1, we introduce the auxiliary functions

g(ω, x, ζ, ν) := lim inf
r→+∞

mf∞,g
ω (urx,ζ,ν , Q

ν
r (rx))

rn−1
, (9.39)

g(ω, x, ζ, ν) := lim sup
r→+∞

mf∞,g
ω (urx,ζ,ν , Q

ν
r (rx))

rn−1
. (9.40)

Let ν ∈ Ŝn−1
+ be fixed. As we already observed in the proof of Step 2 of Proposition 9.1, the set

Ŝn−1
+ ∩Qn is dense in Ŝn−1

+ , hence there exists a sequence (νj) ⊂ Ŝn−1
+ ∩Qn−1 such that νj → ν as j →∞.

We claim that for every δ ∈ (0, 1/2) there exists jδ ∈ N such that

(1 + δ)n−1g(ω, x
1+δ

, ζ, νj) ≤ g(ω, x, ζ, ν) + c3|ζ|ςj(δ), (9.41)

g(ω, x, ζ, ν) ≤ (1− δ)n−1g(ω, x
1−δ , ζ, νj) + c3|ζ|ςj(δ), (9.42)

for every j ≥ jδ, where ςj(δ) is such that ςj(δ)→ (1 + δ)n−1 − 1 as j → +∞.
The proof of (9.41) and (9.42) is similar to that of (9.30) in Proposition 9.4. Thanks to the continuity

of the restriction of ν 7→ Rν to Ŝn−1
+ , for every δ ∈ (0, 1

2
) there exists an integer jδ such that

Q
νj
(1−δ)r(rx) ⊂⊂ Qνr (rx) ⊂⊂ Qνj(1+δ)r(rx), (9.43)

for every j ≥ jδ and every r > 0. Fix j ≥ jδ, r > 0, and η > 0. Let u ∈ SBV (Qνr (rx),Rm) be such that
u = urx,ζ,ν near ∂Qνr (rx) and∫

Qνr (rx)

f∞(ω, y,∇u) dy +

∫
Su∩Qνr (rx)

g(ω, y, [u], νu) dHn−1 ≤ mf∞,g
ω (urx,ζ,ν , Q

ν
r (rx)) + ηrn−1.

We define v ∈ SBV (Q
νj
(1+δ)r(rx),Rm) as

v(y) :=

{
u(y) if y ∈ Qνr (rx),

urx,ζ,νj (y) if y ∈ Qνj(1+δ)r(rx) \Qνr (rx).

Then, v = urx,ζ,νj near ∂Q
νj
(1+δ)r(rx), and Sv ⊂ Su ∪ Σ, where

Σ :=
{
y ∈ ∂Qνr (rx) : ((y − rx) · ν)((y − rx) · νj) < 0

}
∪
(
Π
νj
rx ∩ (Q

νj
(1+δ)r(rx) \Qνr (rx))

)
.

Moreover |[v]| ≤ |ζ| Hn−1-a.e. on Σ. By (9.43) there exists ςj(δ) > 0, independent of r, with ςj(δ) →
(1 + δ)n−1 − 1 as j → +∞, such that Hn−1(Σ) ≤ ςj(δ)rn−1. Thanks to (g4) we then have

mf∞,g
ω (urx,ζ,νj , Q

νj
(1+δ)r(rx))

≤
∫
Q
νj
(1+δ)r

(rx)

f∞(ω, x,∇v) dx+

∫
Sv∩Q

νj
(1+δ)r

(rx)

g(ω, x, [v], νv) dHn−1

≤
∫
Qνr (rx)

f∞(ω, x,∇u) dx+

∫
Su∩Qνr (rx)

g(ω, x, [u], νu) dHn−1 + c3|ζ|ςj(δ)rn−1

≤ mf∞,g
ω (urx,ζ,ν , Q

ν
r (rx)) + ηrn−1 + c3|ζ|ςj(δ)rn−1,

where we used the fact that f∞(ω, ·, 0) ≡ 0. Recalling definition (9.39), dividing by rn−1, and passing to
the liminf as r → +∞, we obtain

(1 + δ)n−1g(ω, x
1+δ

, ζ, νj) ≤ g(ω, x, ζ, ν) + η + c3|ζ|ςj(δ),

which gives (9.41) by the arbitrariness of η. The proof of (9.42) is analogous.
From (9.41) and (9.42) we get

(1 + δ)n−1g(ω, x
1+δ

, ζ, νj)− c3|ζ|ςj(δ) ≤ g(ω, x, ζ, ν) ≤ g(ω, x, ζ, ν) ≤ (1− δ)n−1g(ω, x
1−δ , ζ, νj) + c3|ζ|ςj(δ)

for every j ≥ jδ. Since νj ∈ Sn−1 ∩Qn, and (9.38) holds true for rational directions, we have

g(ω, x
1+δ

, ζ, νj) = g(ω, x
1−δ , ζ, νj) = ghom(ω, ζ, νj).

This, together with the previous inequality, yields

(1 + δ)n−1ghom(ω, ζ, νj)− c3|ζ|ςj(δ) ≤ g(ω, x, ζ, ν) ≤ g(ω, x, ζ, ν) ≤ (1− δ)n−1ghom(ω, ζ, νj) + c3|ζ|ςj(δ)
for every j ≥ jδ. Hence, taking the liminf as j → +∞ and then the limit as δ → 0+, we obtain

lim inf
j→+∞

ghom(ω, ζ, νj) ≤ g(ω, x, ζ, ν) ≤ g(ω, x, ζ, ν) ≤ lim inf
j→+∞

ghom(ω, ζ, νj)
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and hence
g(ω, x, ζ, ν) = g(ω, x, ζ, ν) = lim inf

j→+∞
ghom(ω, ζ, νj).

Note that, in particular, all the terms in the above chain of equalities do not depend on x. Then, in view
of the definition of g and g (see (9.39) and (9.40)) we get that the limit

lim
r→+∞

mf∞,g
ω (urx,ζ,ν , Q

ν
r (rx))

rn−1

exists and is independent of x. Therefore we obtain

lim
r→+∞

mf∞,g
ω (ux,ζ,ν , Q

ν
r (rx))

rn−1
= lim
r→+∞

mf∞,g
ω (u0,ζ,ν , Q

ν
r (0))

rn−1
= ghom(ω, ζ, ν),

for every ω ∈ Ω′, x ∈ Rn, ζ ∈ Rm, and ν ∈ Ŝn−1
+ . Since the same property holds for ν ∈ Ŝn−1

− , this
concludes the proof. �

We are now in a position to prove the theorem concerning the existence, for P -almost every ω ∈ Ω, of
the limits which define the homogenised integrands.

Proof of Theorem 3.17. Property (a), (3.17), and (3.20) are proved in Proposition 9.1, while property (b),
(3.18), and (3.21) are proved in Proposition 9.3. Equalities (3.19) and (3.22) coincide with (9.12) and
(9.13), which are proved in Proposition 9.2. �

We now prove the main result of the paper.

Proof of Theorem 3.18. It is enough to apply Theorem 3.17 together with the deterministic homogenisa-
tion result in Theorem 4.1, applied for fixed ω ∈ Ω′. �

Appendix. Measurability issues

The purpose of this section is to prove the measurability of the functions defined in (3.16). This will
be done in Proposition A.12, which requires some preliminary results.

We start by introducing some notation that will be used throughout the proofs. For every A ∈ A let
Mb(A,Rm×n) be the Banach space of all Rm×n-valued bounded Radon measures on A. This space is

identified with the dual of the space C0(A,Rm×n) of all Rm×n-valued continuous functions on A vanishing
on ∂A. For every R > 0 we set

Mm×n
R,A := {µ ∈Mb(A,Rm×n) : |µ|(A) ≤ R},

where |µ| denotes the variation of µ with respect to the Euclidean norm in Rm×n. OnMm×n
R,A we consider

the topology induced by the weak∗ topology of Mb(A,Rm×n), which will be called the weak∗ topology
on Mm×n

R,A . Since Mb(A,Rm×n) is the dual of a separable Banach space, there exists a distance dm×nR,A

on Mm×n
R,A which induces the weak∗ topology on Mm×n

R,A (see [23, Theorem V.5.1]). Moreover, the metric

space (Mm×n
R,A , dm×nR,A ) is compact by the Banach-Alaoglu Theorem.

For every µ ∈Mb(A,Rm×n) the absolutely continuous part of µ with respect to the Lebesgue measure
Ln is denoted with µa. Note that, if µ ∈Mm×n

R,A , then µa ∈Mm×n
R,A .

The following lemma concerns the mesurability properties of the density of µa with respect to Ln.

Lemma A.1. Let A ∈ A and R > 0. Then there exists a B(A) ⊗ B(Mm×n
R,A )-measurable function

γ : A×Mm×n
R,A → Rm×n such that

γ(·, µ) ∈ L1(A,Rm×n) for every µ ∈Mm×n
R,A ,

µa(B) =

∫
B

γ(x, µ) dx for every µ ∈Mm×n
R,A and B ∈ B(A). (A.1)

Proof. For every (x, µ) ∈ A×Mm×n
R,A let γ(x, µ) ∈ Rm×n be defined as

γ(x, µ) :=

 lim
ρ→0+

µ(Bρ(x) ∩A)

ωnρn
if the limit exists in Rm×n,

0 otherwise,

where ωn denotes the volume of the unit ball of Rn. From the theory of differentiation of measures (see,
e.g., [26, Theorem 1.155]), for every µ ∈Mm×n

R,A we have that γ(·, µ) ∈ L1(A,Rm×n) and

µa(B) =

∫
B

γ(x, µ) dx for every B ∈ B(A),
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which proves (A.1).
To prove the measurability of the function γ it suffices to show that for every ρ > 0 the function

(x, µ) 7→ µ(Bρ(x) ∩A) (A.2)

from A×Mm×n
R,A to Rm×n is B(A)⊗B(Mm×n

R,A )-measurable. To this end, for a fixed ρ > 0 we introduce

an increasing sequence of nonnegative functions (ϕj) ⊂ Cc(Rn) pointwise converging to the characteristic
function of the open ball Bρ(0), and we observe that

µ(Bρ(x) ∩A) = lim
j→+∞

∫
A

ϕj(y − x) dµ(y),

by the Monotone Convergence Theorem.
Let Aρ := {x ∈ A : dist(x, ∂A) > ρ}. Since for every j ∈ N the function

(x, µ) 7→
∫
A

ϕj(y − x) dµ(y)

is continuous on Aρ ×Mm×n
R,A (considering on Mm×n

R,A the weak∗ topology), the function (A.2) from Aρ ×
Mm×n

R,A to Rm×n is B(Aρ) ⊗ B(Mm×n
R,A )-measurable. By the arbitrariness of ρ > 0 we obtain that the

same function considered on A×Mm×n
R,A is B(A)⊗B(Mm×n

R,A )-measurable. �

To prove the measurability of the map µ 7→ µa, from Mm×n
R,A to Mm×n

R,A , we need the following lemma.

Lemma A.2. Let A ∈ A , let R > 0, let (Y, E) be a measurable space, and let h : A × Y → Rm×n be a
B(A)⊗ E-measurable function such that∫

A

|h(x, y)| dx ≤ R for every y ∈ Y .

For every y ∈ Y , we define the Rm×n-valued measure λy ∈Mm×n
R,A as

λy(B) :=

∫
B

h(x, y) dx for every B ∈ B(A).

Then the map y 7→ λy is measurable from (Y, E) to (Mm×n
R,A ,B(Mm×n

R,A )).

Proof. We start by observing that for every ϕ ∈ Cc(A,Rm×n) the scalar function

y 7→
∫
A

ϕ(x)·dλy(x) is E-measurable, (A.3)

where · denotes the Euclidean scalar product between matrices. Indeed, by definition we have∫
A

ϕ(x)·dλy(x) =

∫
A

ϕ(x)·h(x, y) dx,

and the measurability with respect to y follows from the Fubini Theorem.
Note now that a basis for the open sets of the space Mm×n

R,A (endowed with the weak∗ topology) is
given by the collection of sets{

λ ∈Mm×n
R,A :

∣∣∣ ∫
A

ϕi(x)·dλ(x)−
∫
A

ϕi(x)·dλ̂(x)
∣∣∣ < η for i = 1, . . . l

}
,

with η > 0, λ̂ ∈ Mm×n
R,A , l ∈ N, and ϕ1, . . . , ϕl ∈ Cc(A,Rm×n). By (A.3), the pre-image of these sets

under the function y 7→ λy belongs to E . This implies that this function is measurable from (Y, E) to
(Mm×n

R,A ,B(Mm×n
R,A )), since the weak∗ topology in Mm×n

R,A has a countable basis. �

The following lemma shows the measurable dependence of µa on µ.

Lemma A.3. The map µ 7→ µa is measurable from (Mm×n
R,A ,B(Mm×n

R,A )) to (Mm×n
R,A ,B(Mm×n

R,A )).

Proof. Thanks to (A.1), the conclusion follows from Lemma A.2 with (Y, E) = (Mm×n
R,A ,B(Mm×n

R,A )) and
h = γ. �

Given A ∈ A , we set

BV mR,A := {u ∈ BV (A,Rm) : ‖u‖L1(A,Rm) ≤ R and |Du|(A) ≤ R}. (A.4)

On BV mR,A we consider the topology induced by the distance dmR,A defined by

dmR,A(u, v) := ‖u− v‖L1(A,Rm) + dm×nR,A (Du,Dv),

where dm×nR,A is the distance on Mm×n
R,A that metrizes the weak∗ topology.
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Note that BV (A,Rm) is the dual of a separable space, and that, when A has Lipschitz boundary, the
topology just defined coincides with the topology induced on BV mR,A by the weak∗ topology of BV (A,Rm)
(see [5, Remark 3.12]).

The following lemma will be crucial in the proof of Proposition A.12.

Lemma A.4. Assume that A ∈ A has Lipschitz boundary. Then the metric space (BV mR,A, d
m×n
R,A ) is

compact.

Proof. Let (uk) be a sequence in BV mR,A. By (A.4) this sequence is bounded in BV (A,Rm). Recalling

the compact embedding of BV (A,Rm) into L1(A,Rm) and the compactness of Mm×n
R,A , there exist a

subsequence, not relabelled, and a function u ∈ BV (A,Rm) such that uk → u strongly in L1(A,Rm) and
Duk ⇀ Du weakly∗ in Mb(A,Rm×n). It is easy to see that u ∈ BV mR,A and that dm×nR,A (uk, u)→ 0. �

We now prove the measurability with respect to (ω, u) of the integral functional corresponding to a
random volume integrand.

Lemma A.5. Let A ∈ A with Lipschitz boundary, let R > 0, and let f be a random volume integrand as
in Definition 3.7. Then, the function

(ω, u) 7−→
∫
A

f(ω, x,∇u) dx

from Ω×BV mR,A to R is T ⊗B(BV mR,A)-measurable.

Proof. Let γ be the function introduced in Lemma A.1. We observe that for every u ∈ BV mR,A
γ(x,Du) = ∇u(x) for Ln-a.e. x ∈ A.

Therefore, ∫
A

f(ω, x,∇u) dx =

∫
A

f(ω, x, γ(x,Du)) dx.

We claim that the function (x, u) 7→ γ(x,Du) from A×BV mR,A to Rm×n is B(A)⊗B(BV mR,A)-measurable.
Indeed, it is the composition of the functions (x, u) 7→ (x,Du), which is continuous from A × BV mR,A to

A ×Mm×n
R,A , and the function (x, µ) 7→ γ(x, µ) from A ×Mm×n

R,A to Rm×n, which is B(A) ⊗B(BV mR,A)-

measurable, by Lemma A.1. Therefore, the function (ω, x, u) 7→ (ω, x, γ(x,Du)) is measurable from
(Ω×A×BV mR,A, T ⊗B(A)⊗B(BV mR,A)) to (Ω×Rn×Rm×n, T ⊗Bn⊗Bm×n). By the T ⊗Bn⊗Bm×n-
measurability of f we deduce that the function (ω, x, u) 7→ f(ω, x, γ(x,Du)) from Ω×A×BV mR,A to R is
T ⊗B(A)⊗B(BV mR,A)-measurable. The conclusion then follows from Fubini’s Theorem. �

The following two lemmas are used to prove the measurable dependence on u of the surface integral
functional corresponding to a continuous surface integrand.

For every A ∈ A , µ ∈Mb(A,Rm×n), x ∈ A, and ρ > 0 we set

θA,ρ(µ, x) :=
µ(Bρ(x) ∩A)

ωn−1ρn−1
, (A.5)

where ωn−1 denotes the volume of the unit ball of Rn−1.

Lemma A.6. Let A ∈ A and u ∈ BV (A,Rm). Then

lim
ρ→0+

θA,ρ(Du, x) =
(
[u](x)⊗ νu(x)

)
χSu(x) for Hn−1-a.e. x ∈ A, (A.6)

where χSu(x) = 1 if x ∈ Su and χSu(x) = 0 if x ∈ A \ Su.

Proof. Step 1. We claim that

lim
ρ→0+

θA,ρ(Du
a, x) = 0 for Hn−1-a.e. x ∈ A. (A.7)

We now recall that, for a positive Radon measure µ in A and for d ∈ N, the d-dimensional upper density
of µ at x ∈ A is defined as

Θ∗,d(µ, x) = lim sup
ρ→0+

µ(Bρ(x) ∩A)

ωdρd
,

where ωd denotes the volume of the unit ball of Rd (see, e.g., [5, Definition 2.55]). To prove (A.7) it is
then sufficient to show that

Θ∗,n−1(|Dau|, x) = 0 for Hn−1-a.e. x ∈ A. (A.8)

To do so, for any t > 0 we define the set

Et := {x ∈ A : Θ∗,n−1(|Dau|, x) > t};
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note that

Et ⊂ {x ∈ A : Θ∗,n(|Dau|, x) = +∞}.
By the Lebesgue Differentiation Theorem we have Ln(Et) = 0 and, since |Dau| << Ln, we have
|Dau|(Et) = 0.

Since |Dau| is a finite Radon measure, for every k ∈ N there exists an open set Ak ⊂ A with Et ⊂ Ak
such that

|Dau|(Ak) < 1
k
.

Thanks to [24, Section 2.10.19(3) and Section 2.10.6] this implies that

tHn−1(Et) ≤ |Dau|(Ak) < 1
k

for every k ∈ N.

Taking the limit as k →∞, we obtain that

Hn−1(Et) = 0 for every t > 0.

From this, it follows that

Hn−1({x ∈ A : Θ∗,n−1(|Dau|, x) > 0}
)

= 0

and this proves (A.8), which gives (A.7).

Step 2. We claim that

lim
ρ→0+

θA,ρ(C(u), x) = 0 for Hn−1-a.e. x ∈ A. (A.9)

As before, it is sufficient to show that

Θ∗,n−1(|C(u)|, x) = 0 for Hn−1-a.e. x ∈ A. (A.10)

To do so, for any t > 0 we define the set

Et := {x ∈ A : Θ∗,n−1(|C(u)|, x) > t}.

Now, let K ⊂ Et be a compact set with Hn−1(K) < +∞ so that, in particular, |C(u)|(K) = 0. Then, by
[24, Section 2.10.19(3) and Section 2.10.6] we have that

tHn−1(K) ≤ |C(u)|(V ) for every open set V containing K.

Since C(u) is a finite Radon measure, taking the infimum of the above inequality over all open sets V
containing K we obtain that

tHn−1(K) ≤ |C(u)|(K).

Since |C(u)|(K) = 0, from the above inequality it follows that Hn−1(K) = 0. Using the fact that Et is a
Borel (and hence Suslin) set, by [24, Corollary 2.10.48] we have that

Hn−1(Et) = sup{Hn−1(K) : K compact, K ⊂ Et, Hn−1(K) < +∞},

and so Hn−1(Et) = 0 for every t > 0, which implies (A.10) and, in turn, (A.9).

Step 3. We claim that

lim
ρ→0+

θA,ρ(D
ju, x) = 0 for Hn−1-a.e. x ∈ A \ Su. (A.11)

Observe that |Dju|(A \ Su) = 0. By [24, Section 2.10.19(4) and Section 2.10.6] we have immediately that

Θ∗,n−1(|Dju|, x) = 0 for Hn−1-a.e. x ∈ A \ Su,

which implies (A.11).

Step 4. By Besicovich Derivation Theorem (see [5, Theorems 2.22, 2.83, and 3.78]) we have that

lim
ρ→0+

θA,ρ(D
ju, x) = [u](x)⊗ νu(x) for Hn−1-a.e. x ∈ Su.

Together with the previous steps, this gives (A.6). �

Lemma A.7. Let A ∈ A and let g : A× Rm×n → R be a continuous function. Assume that there exists
a > 0 such that

|g(x, ξ)| ≤ a|ξ| (A.12)

for every (x, ξ) ∈ A× Rm×n. Then for every u ∈ BV (A,Rm)

lim
η→0+

lim
ρ→0+

∫
A

g(x, θA,ρ(Du, x))

|θA,ρ(Du, x)| ∨ η d|Du|(x) =

∫
A∩Su

g(x, [u](x)⊗ νu(x)) dHn−1(x),

where θA,ρ is defined in (A.5).
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Proof. Let u ∈ BV (A,Rm) be fixed.
Step 1. Thanks to (A.12) and to the bound∫

A∩Su
|[u](x)| dHn−1(x) < +∞, (A.13)

the function x 7→ g(x, [u](x)⊗ νu(x)) is Hn−1-integrable on A ∩ Su.

Step 2. We claim that for every η > 0

lim
ρ→0+

∫
A

g(x, θA,ρ(Du, x))

|θA,ρ(Du, x)| ∨ η d|D
au+ C(u)|(x) = 0.

By Lemma A.6 we have that

lim
ρ→0+

θA,ρ(Du, x) = 0 for |Dau+ C(u)|-a.e. x ∈ A,

and by (A.12) we have the inequality

|g(x, θA,ρ(Du, x))|
|θA,ρ(Du, x)| ∨ η ≤ a. (A.14)

The claim then follows from the Dominated Convergence Theorem, since g is continuous, g(x, 0) = 0, and
|Dau+ C(u)| is a bounded measure.

Step 3. Recalling (f) in Section 2, to conclude the proof it is sufficient to show that

lim
η→0+

lim
ρ→0+

∫
A∩Su

g(x, θA,ρ(Du, x))

|θA,ρ(Du, x)| ∨ η |[u](x)⊗ νu(x)| dHn−1(x) =

∫
A∩Su

g(x, [u](x)⊗ νu(x)) dHn−1(x).

By Lemma A.6 and by the continuity of g we have that for every η > 0

lim
ρ→0+

∫
A∩Su

g(x, θA,ρ(Du, x))

|θA,ρ(Du, x)| ∨ η |[u](x)⊗ νu(x)| dHn−1(x)

=

∫
A∩Su

g(x, [u](x)⊗ νu(x))
|[u](x)⊗ νu(x)|
|[u](x)⊗ νu(x)| ∨ η dH

n−1(x),

where we used the Dominated Convergence Theorem, thanks to (A.13) and (A.14). Note that for Hn−1-
almost every x ∈ Su

lim
η→0+

|[u](x)⊗ νu(x)|
|[u](x)⊗ νu(x)| ∨ η = sup

η>0

|[u](x)⊗ νu(x)|
|[u](x)⊗ νu(x)| ∨ η = 1,

since [u](x) 6= 0. Thanks to (A.12) and (A.13) we can apply again the Dominated Convergence Theorem
and deduce the claim in the limit η → 0+. �

We are now in a position to prove the measurable dependence on u of the integral functional corre-
sponding to a continuous surface integrand.

Lemma A.8. Let A ∈ A with Lipschitz boundary, let R > 0, and let g be as in Lemma A.7. Then the
function

u 7−→
∫
Su∩A

g(x, [u](x)⊗ νu(x)) dHn−1(x)

from BV mR,A to R is B(BV mR,A)-measurable.

Proof. By Lemma A.7 the thesis follows by proving that for every ρ, η > 0 the function

u 7→
∫
A

g(x, θA,ρ(Du, x))

|θA,ρ(Du, x)| ∨ η d|Du|(x) (A.15)

from BV mR,A to R is B(BV mR,A)-measurable. Let ρ, η > 0 be fixed. First note that, by the B(A) ⊗
B(Mm×n

R,A )-measurability of (A.2) and the continuity of g, the function

(x, µ) 7→ g(x, θA,ρ(µ, x))

|θA,ρ(µ, x)| ∨ η
is B(A)⊗B(Mm×n

R,A )-measurable. Moreover it is bounded by (A.14). So by [17, Corollary A.3]

µ 7→
∫
A

g(x, θA,ρ(µ, x))

|θA,ρ(µ, x)| ∨ η d|µ|(x)

is B(Mm×n
R,A )-measurable. Since u 7→ Du is continuous from (BV mR,A, d

m
R,A) to (Mm×n

R,A , dm×nR,A ), the

B(BV mR,A)-measurability of (A.15) follows. �
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We now prove the measurability with respect to (ω, u) of the integral functional corresponding to a
random surface integrand, with no continuity assumption with respect to x.

Lemma A.9. Let A ∈ A with Lipschitz boundary, let R > 0, and let g : Ω × A × Rm × Sn−1 → R be a
T ⊗B(A)⊗Bm ⊗Bn

S-measurable function. Assume that there exists a > 0 such that

g(ω, x, ζ, ν) = g(ω, x,−ζ,−ν), (A.16)

|g(ω, x, ζ, ν)| ≤ a|ζ|, (A.17)

for every (ω, x, ζ, ν) ∈ Ω×A× Rm × Sn−1. Then the function

(ω, u) 7−→
∫
Su∩A

g(ω, x, [u](x), νu(x)) dHn−1(x)

from Ω×BV mR,A to R is T ⊗B(BV mR,A)-measurable.

Proof. We recall that a matrix ξ ∈ Rm×n has rank ≤ 1 if and only if ξ = ζ ⊗ ν for some ζ ∈ Rm and
ν ∈ Sn−1, and that the pair (ζ, ν) is uniquely determinded by ξ, up to a change of sign of both terms.
Therefore, thanks to (A.16), we can define a T ⊗B(A)⊗Bm×n-measurable function g̃ : Ω×A×Rm×n → R
by setting for every (ω, x, ξ) ∈ Ω×A× Rm×n

g̃(ω, x, ξ) :=

{
g(ω, x, ζ, ν) if ξ = ζ ⊗ ν, with ζ ∈ Rm and ν ∈ Sn−1,

0 if rank(ξ) > 1.

By (A.17) we have |g̃(ω, x, ξ)| ≤ a|ξ| for every (ω, x, ξ) ∈ Ω×A× Rm×n.
To prove the thesis it is enough to show that

(ω, u) 7−→
∫
Su∩A

g̃(ω, x, [u](x)⊗ νu(x)) dHn−1 is T ⊗B(BV mR,A)-measurable. (A.18)

Note that the function g̃ can be written as

g̃(ω, x, ξ) = ĝ(ω, x, ξ)a|ξ|, (A.19)

where ĝ is T ⊗B(A)⊗B(Rm×n)-measurable and satisfies |ĝ| ≤ 1.
Let R be the set of all bounded T ⊗B(A)⊗Bm×n-measurable functions ĝ : Ω×A×Rm×n → R such

that the function g̃ defined as in (A.19) satisfies the claim (A.18).
In order to conclude the proof, we need to show that R contains all bounded T ⊗ B(A) ⊗ Bm×n-

measurable functions. To prove this property, note that R is a vector space of bounded real-valued
functions that contains the constants and is closed both under uniform convergence and under monotone
convergence of uniformly bounded sequences. Let C be the set of all functions ĝ : Ω×A×Rm×n → R that
can be written as

ĝ(ω, x, ξ) = α(ω)β(x, ξ),

where α : Ω→ R is bounded and T -measurable, and β : A×Rm×n → R is bounded and continuous. Note
that C is stable under multiplication and that the σ-algebra generated by C is T ⊗B(A)⊗Bm×n.

By Lemma A.8 we have C ⊂ R. Hence the functional form of the Monotone Class Theorem (see [22,
Chapter I, Theorem 21]), implies that R contains all bounded T ⊗B(A)⊗Bm×n-measurable functions,
and this concludes the proof. �

We now prove the measurability of the map u 7→ Dju.

Lemma A.10. Let A ∈ A with Lipschitz boundary and let R > 0. Then the map

u 7→ Dju

is measurable from (BV mR,A,B(BV mR,A)) to (Mm×n
R,A ,B(Mm×n

R,A )).

Proof. As in the proof of Lemma A.2 it is sufficient to show that

u 7−→
∫
A

ϕ(x)·d(Dju)(x) =

∫
A∩Su

ϕ(x)·([u](x)⊗ νu(x)) dHn−1(x)

from BV mR,A to R is B(BV mR,A)-measurable for every ϕ ∈ Cc(A,Rm×n). To this end we set g(x, ζ, ν) :=
ϕ(x)·(ζ ⊗ ν), and note that |g(x, ζ, ν)| ≤ a|ζ|, where a is the maximum of |ϕ|. Therefore, by Lemma A.9
it follows that

u 7−→
∫
Su∩A

g(x, [u](x), νu(x)) dHn−1(x)

from BV mR,A to R is B(BV mR,A)-measurable, and hence the claim. �
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The following corollary deals with the Cantor part.

Corollary A.11. Let A ∈ A with Lipschitz boundary and let R > 0. Then the map

u 7→ C(u)

is measurable from (BV mR,A,B(BV mR,A)) to (Mm×n
R,A ,B(Mm×n

R,A )).

Proof. Since C(u) = Du −Dau −Dju, the result follows from the continuity of the map u 7→ Du from
(BV mR,A, d

m
R,A) to (Mm×n

R,A , dm×nR,A ), using Lemmas A.3 and A.10. �

We are now ready to prove the main result of the section.

Proposition A.12. Let f and g be random volume and surface integrands, respectively, according to

Definition 3.7, and let (Ω, T̂ , P̂ ) be the completion of the probability space (Ω, T , P ). Let A ∈ A , let
w ∈ SBV (A,Rm), and for every ω ∈ Ω let mf,g

ω (w,A) be defined as in (3.4) and (3.16). Then the

function ω 7→ mf,g
ω (w,A) is T̂ -measurable.

Proof. For every ω ∈ Ω, B ∈ B(A), and u ∈ BV (A,Rm), we define

E(ω)(u,B) :=

∫
B

f(ω, x,∇u) dx+

∫
Su∩B

g(ω, x, [u], ν) dHn−1.

Let us fix a sequence (Aj) of open sets with Lipschitz boundary, with Aj ⊂⊂ Aj+1 for every j ∈ N and
∪jAj = A. It follows easily from the definition that

mf,g
ω (w,A) = lim

j→+∞
inf{E(ω)(u,A) : u ∈ SBV (A,Rm), u = w in A \Aj}

= lim
j→+∞

(
inf{E(ω)(u,Aj+1) : u ∈ SBV (Aj+1,Rm), u = w in Aj+1 \Aj}+ E(ω)(w,A \Aj+1)

)
= lim
j→+∞

inf{E(ω)(u,Aj+1) : u ∈ SBV (Aj+1,Rm), u = w in Aj+1 \Aj},

where in the last equality we used the fact that E(ω)(w,A \ Aj+1) → 0 as j → +∞ since, by (f4) and
(g4), we have E(ω)(w,A \Aj+1) ≤ c3|Dw|(A \Aj+1) + c4Ln(A \Aj+1).

Let us fix j ∈ N. It is obvious that

inf{E(ω)(u,Aj+1) : u ∈ SBV (Aj+1,Rm), u = w in Aj+1 \Aj}
= inf{E(ω)(u,Aj+1) : u ∈ SBV (Aj+1,Rm), E(ω)(u,Aj+1) ≤ E(ω)(w,Aj+1), u = w in Aj+1 \Aj}.

By (f4) and (g4) we have E(ω)(w,Aj+1) ≤ c3|Dw|(Aj+1) + c4Ln(Aj+1). Therefore, from Remark 3.2 we
obtain that there exists R1 > 0, depending on Aj+1 and w, such that

inf{E(ω)(u,Aj+1) : u ∈ SBV (Aj+1,Rm), u = w in Aj+1 \Aj}
= inf{E(ω)(u,Aj+1) : u ∈ SBV (Aj+1,Rm), |Du|(Aj+1) ≤ R1, u = w in Aj+1 \Aj}.

Thanks to Poincaré’s inequality, there exists R ≥ R1, depending on Aj+1, w, and R1, such that ev-
ery function u ∈ BV (Aj+1,Rm), satisfying |Du|(Aj+1) ≤ R1 and u = w in Aj+1 \ Aj , satisfies also
‖u‖L1(Aj+1,Rm) ≤ R. This implies that

inf {E(ω)(u,Aj+1) : u ∈ SBV (Aj+1,Rm), u = w in Aj+1 \Aj}
= inf{E(ω)(u,Aj+1) : u ∈ SBV (Aj+1,Rm), ‖u‖L1(Aj+1,Rm) ≤ R, |Du|(Aj+1) ≤ R, u = w in Aj+1 \Aj}.

Therefore, to prove the proposition it is enough to show that the function

ω 7→ inf{E(ω)(u,Aj+1) : u ∈ SBV (Aj+1,Rm) ∩BV mR,Aj+1
, u = w in Aj+1 \Aj} (A.20)

is T̂ -measurable.
We define H : BV mR,Aj+1

→ [0,+∞] as

H(u) :=

{
0 if C(u) = 0 and u = w in Aj+1 \Aj ,
+∞ otherwise,

where the equality C(u) = 0 means that C(u)(B) = 0 for every B ∈ B(Aj+1). By (A.20) to conclude the
proof it suffices to show that the function

ω 7→ inf{E(ω)(u,Aj+1) +H(u) : u ∈ BV mR,Aj+1
} (A.21)

is T̂ -measurable.
To this aim, we apply the Projection Theorem. Note that the function (ω, u) 7→ E(ω)(u,Aj+1) from

Ω × BV mR,Aj+1
to R is T ⊗B(BV mR,Aj+1

)-measurable, by Lemmas A.5 and A.9. Moreover, the function
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u 7→ H(u) from BV mR,Aj+1
to R is B(BV mR,Aj+1

)-measurable, since the set {u ∈ BV mR,Aj+1
: C(u) = 0}

belongs to B(BV mR,Aj+1
) by Corollary A.11, while the set {u ∈ BV mR,Aj+1

: u = w in Aj+1 \ Aj} is closed

in (BV mR,Aj+1
, dmR,Aj+1

). Hence, for every t > 0 we have

{(ω, u) ∈ Ω×BV mR,Aj+1
: E(ω)(u,Aj+1) +H(u) < t} ∈ T ⊗B(BV mR,Aj+1

). (A.22)

Since the metric space (BV mR,Aj+1
, dmR,Aj+1

) is compact thanks to Lemma A.4, by the Projection Theorem

(see, e.g., [22, Theorem III.13 and 33(a)]) the projection onto Ω of the set above belongs to T̂ . On the
other hand, the projection onto Ω of the set in (A.22) coincides with the set of points ω ∈ Ω such that

inf{E(ω)(u,Aj+1) +H(u) : u ∈ BV mR,Aj+1
} < t.

Since this set belongs to T̂ for every t > 0, the function in (A.21) is T̂ -measurable. �
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