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and Applications NoDEA

On the minimum problem for
non-quasiconvex vectorial functionals

Sandro Zagatti

Abstract. We consider functionals of the form

F(u) =

∫
Ω

f(x, u(x), Du(x)) dx, u ∈ u0 + W 1,r
0 (Ω,Rm),

where the integrand f : Ω × R
m × M

m×n → R is assumed to be non-
quasiconvex in the last variable and u0 ∈ W 1,r(Ω,Rm) is an arbitrary
boundary value. We study the minimum problem by the introduction of
the lower quasiconvex envelope f of f and of the relaxed functional

F(u) =

∫
Ω

f(x, u(x), Du(x)) dx, u ∈ u0 + W 1,r
0 (Ω,Rm),

imposing standard differentiability and growth properties on f . In addi-
tion we assume a suitable structural condition on f and a special regu-
larity on the minimizers of F , showing that under such assumptions F
attains its infimum. Futhermore, we study the minimum problem for a
class of functionals with separate dependence on the gradients of compet-
ing maps by the use of integro-extremality method, proving an existence
result inspired by analogous ones obtained in the scalar case (m = 1).
This last argument does not require the special regularity assumption
mentioned above but the usual notion of classical differentiability (almost
everywhere).

Mathematics Subject Classification. 49J45.
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1. Introduction

This paper is a contribution to the study of the minimum problem for the
classical vectorial functionals of the Calculus of Variations of the form

F(u) =
∫

Ω

f(x, u(x),Du(x)) dx,
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where the competing maps u : Ω(⊆ R
n) → R

m are Sobolev functions
subject to a prescribed boundary condition expressed by imposing that u
belongs to the set u0 + W 1,r

0 (Ω,Rm), for some u0 ∈ W 1,r
0 (Ω,Rm), where

the exponent r ∈ ]1,∞[ is related to standard growth properties at infin-
ity of the integrand f = f(x, p, ξ) with respect to the variables p, ξ. The
lagrangian f : Ω × R

n × M
m×n is assumed to be non-quasiconvex in the last

variable and our aim is to treat the consequent non-(sequential weakly lower)-
semicontinuity of the functional F in the Sobolev space of definition. Indeed
it is well known that, dropping the quasiconvexity, the functional is not se-
quentially weakly lower semicontinuous and then it may have no minimizers.
However many applications induce to consider functionals which do not satisfy
such property, and we mention arguments in optimal design (see [1,14]), the
problem of singular values ( [11]), of potential wells ( [7,13,15,16]) and, in gen-
eral, studies in nonlinear elasticity, as described and discussed, for example, in
[2,3].

In these mentioned papers, the authors treat specific non-quasiconvex
problems adopting techniques developed for each singular case, since a general
theory for non-semicontinuous variational problems is up to now lacking. In
particular, the excellent and celebrated works [6,7], in the part which concerns
with variational problems, transform them in implicit first order differential
equations or differential inclusions, and this fact forces strong restrictions on
the boundary datum u0 and on the lagrangian f .

Futher efforts in the solution of non-quasiconvex problems have been
made by various authors, and we mention papers [4,6,8–10,17,20]. Unfortu-
nately, also in these studies, special assumption are imposed on the lagrangians
f and on the boundary datum u0, so that the need of a satisfactory theory
remains unsatisfied.

These mentioned difficulties emerge clearly if we sketch the main ap-
proach to this class of variational problems. As shown in several papers and
monographs (see for example [5]), it is based on the introduction of the relaxed
functional, given by

F(u) =
∫

Ω

f(x, u(x),Du(x)) dx,

where f is the lower quasiconvex envelope of f with respect to the last variable
ξ, and in the search for a minimizer of F solving the differential equation

f(x, u(x),Du(x)) = f(x, u(x),Du(x))
for almost every x ∈ Ω. (1.1)

The direct solution of (1.1) is very hard. First of all it is a fully nonlinear
partial differential equation in several variables and in a vector valued unknown
function u = (u1, . . . , um); in addition the set of possible solutions is restricted
to the family of minimizers of the relaxed functional. Due to these difficulties
all papers mentioned above provide only partial results.
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In paper [21] we try to build up a rather general method in order to solve
the problem along the line just sketched, considering integrands of sum type

f(x, p, ξ) = g(x, ξ) + h(x, p), f(x, p, ξ) = g(x, ξ) + h(x, p),

where g is the lower quasiconvex envelope of g. In detail we adopt the integro-
extremality method, which consists in the selection of a specific minimizer of
the the relaxed functional F which, by extremizing the integral of one compo-
nent ui, forces the competing map u = (u1, . . . , um) to solve equation (1.1).
In order to reach the result, in such paper we need the following hypotheses:
(a) the map M

m×n � ξ �→ g(x, ξ) is quasiaffine on the set in which g(x, ξ) >
g(x, ξ);

(b) the map pi �→ h(x, p) is monotone in one single component pi of the
vector p = (p1, . . . pm).

(c) there exits at least one minimizer of F which is piecewice C1 on Ω.
Conditions (a-b) seem to be unavoidable in the treatment of these prob-

lems and integro-extremality method allows to solve equations (1.1) in a pow-
erful way. Unfortunately the third regularity requirement (c) is very strong
and difficult to be proved. This fact induces to explore further techniques in
the declared goal of finding a general theory in this field.

Actually, in the present article, we propose a new way to face non-
quasiconvex variational problems, following ideas firstly introduced in papers
[22,23], which are devoted to one-dimensional non-convex problems, corre-
sponding to dimensions n = 1, m > 1. This new approach is based on Euler-
Lagrange equations and the relevant novelty of the results is that they provide
almost necessary and sufficient conditions for existence of minimizers. Such
conditions are suspected to be extendable also to the multidimensional case
and, actually, in the present work, we made a first step in this direction. We
sketch now the main hypotheses used in our present theory, so that the reader
may easily and quickly compare them with those listed above, in relation to
the quoted paper [21], and to those adopted in [22,23].

We assume standard growth properties ensuring the existence of mini-
mizers of the relaxed functional F and the validity of classical necessary con-
ditions in weak form. In addition we impose structural conditions that can be
summarized as follows:
(i) the function M

m×n � ξ �→ f(x, p, ξ) is quasiaffine on the set on which
f > f ,

(ii) the map R � pi �→ f(x, p, ξ) is strictly monotone for at least one compo-
nent pi of the vector variable p = (p1, . . . , pm).

Unfortunately, also in the present theory we have to impose a regularity prop-
erty on the minimizers of F . More precisely, instead of piecewise continuity of
the derivative Du of one minimizer u of F , as it happens in [21], we impose
that
(iii) there exists at least one minimizer u of the relaxed functional F which

is locally Lipschitz-continuous and the derivative Du is strongly approx-
imately continuous almost everywhere in Ω.
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The notion of strong approximate continuity for a measurable maps is firstly
introduced in this paper and we anticipate now the definition. Let f : Rd → R

δ

be a measurable function and x0 ∈ R
d a Lebesgue point of f ; we say that f is

strongly approximately continuous at x0 if, for every ε > 0, there exists a map
ω = ωε : [0,+∞[ → [0,+∞[ with ω(t) → 0 as t → 0+, such that we have

m ({x ∈ B(x0, ρ) : |f(x) − f(x0)| ≥ ε})
m(B(x0, ρ))

= ρω(ρ). (1.2)

The difference with respect to classical approximate continuity (see for
example section 1.7 in [12]) is that here, at the right hand side of (1.2), we
have the extra factor ρ multiplying ω(ρ). It is then evident that continuity
implies strong approximate continuity which, in turn, implies approximate
continuity, and we stress that the reason of this assumption is merely technical,
since, without it, we are not able to carry on the proof of our main result. In
Sect. 2 (remark 2.4) we give a simple example explaining the relation between
continuity and (strong) approximate continuity.

Under conditions (i)-(iii) we are able to prove the existence of minimiz-
ers of the non-quasiconvex functional, and the main novelties of the present
work are two: we remove the piecewice C1 requirement on the minimizers of
F ; we are going towards a theory, inspired by the analogous one in the one-
dimensional case treated in [22,23], which is claimed to provide almost nec-
essary and sufficient conditions for the minimization of non-semicontinuous
functionals of the Calculus of Variations.

As a simple explicative example (see remark 3.3), we exhibit the func-
tional

F(u) =
∫

Ω

(
(|Du|2 − 1)2 + ψ · u

)
dx

defined for u ∈ u0 + W 1,4
0 (Ω,Rm) with a boundary datum u0 ∈ W 1,4(Ω,Rm).

Assuming that at least one component of the function ψ = (ψ1, . . . , ψm) ∈
C0(Ω,Rm) is strictly positive on Ω, and invoking classical results on relaxation
(see remark 3.3 in Sect. 3), we show that the above conditions (i)-(ii) are
satisfied.

In the last section of the paper we treat a class of functionals which do
not fit properties (i)-(ii). We assume separate dependence with respect to the
rows ξi of the matrix ξ = (ξ1, . . . , ξm), imposing that the lagrangian has the
following form:

f(x, p, ξ) =
m∑

i=1

gi(x, ξi) + h(x, p).

In such situation we may apply the integro-extremality method introduced
for scalar functional, along the lines that the reader can find, for example,
in [19]. In this case we do not need strong approximate continuity (iii), but
classical differentiability almost everywhere, as it happens in the scalar case
(see [18,19]).
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2. Notations

In this paper R
d is the d-dimensional euclidean space (d = m or n) and |p| .=

(
∑d

i=1 p2
i )

1
2 is the euclidean norm in R

d, while the inner product of the vectors
p, q ∈ R

d is written p ·q .=
∑d

i=1 piqi. Given x0 ∈ R
d and ρ > 0 we call B(x0, ρ)

the open ball in R
d of center x0 and radius ρ; for E ⊆ R

d we denote by m(E)
the Lebesgue measure and by χE the characteristic function.

By M
m×n we denote the space of m × n real matrices (with m rows and

n columns) and an element ξ ∈ M
m×n is written as

ξ =
(
ξi
j

)(
i=1,...,m
j=1,...,n

) =

⎛
⎜⎝

ξ1
1 . . . ξ1

n
...

. . .
...

ξm
1 . . . ξm

n

⎞
⎟⎠ .

Identifying M
m×n with R

mn, given ξ, η ∈ M
m×n, we write

ξ · η
.=

∑
(
i=1,...,m
j=1,...,n

) ξi
jη

i
j

and

|ξ|2 .=
∑

(
i=1,...,m
j=1,...,n

)(ξ
i
j)

2.

Given a differentiable function F : Rm → R, F = F (p), we denote its gra-
dient by Fp = ∇F = (Fp1 , . . . Fpm

), where Fpi
= ∂F/∂pi. Analogoulsy, for a

differentiable function F : Mm×n → R, F = F (ξ), we write

Fξ = DξF =

⎛
⎜⎝

Fξ1
1

. . . Fξ1
n

...
. . .

...
Fξm

1
. . . Fξm

n

⎞
⎟⎠ .

For every s = 2, . . . m ∧ n
.= min{m,n} we introduce the matrix of all s × s

subdeterminants of a matrix ξ ∈ M
m×n:

(ms(ξ))
(i1,...,is)
(j1,...,js)

.= det

⎛
⎜⎝

ξi1
j1

. . . ξi1
js

...
. . .

...
ξis
js

. . . ξis
js

⎞
⎟⎠ , (2.1)

where 1 ≤ i1 < · · · < is ≤ m, 1 ≤ j1 < · · · < js ≤ n. In order to clarify the
notation we remark that, if m = n and s = n−1, ms(ξ) describes all cofactors
or order n − 1 of the matrix ξ. More precisely, let I = (1, 2, . . . , n) and, for
j ∈ I, call Ij the (n − 1)-ple obtained from I by suppressing the element j.
Then we have (see Sect. 5.2 in [5] for notations and more details):

(
Adjn−1(ξ)

)i

j
= (−1)i+j (mn−1(ξ))

Ii

Ij
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and, in particular,

det ξ =
〈(

Adjn−1(ξ)
)i

, ξi
〉

=
n∑

j=1

(
Adjn−1(ξ)

)i

j
ξi
j ∀i ∈ I. (2.2)

Throughout the paper Ω is an open bounded subset of Rn with Lipschitz
boundary, and we consider vector valued maps

u =

⎛
⎜⎝

u1

...
um

⎞
⎟⎠ : Ω → R

m, (2.3)

writing Dj = ∂/∂xj , for j = 1, . . . , n, and

Du =

⎛
⎜⎝

∇u1

...
∇um

⎞
⎟⎠ =

⎛
⎜⎝

D1u
1 . . . Dnu1

...
. . .

...
D1u

m . . . Dnum

⎞
⎟⎠ : Ω → M

m×n.

In particular, recalling (2.1), we have

(ms(Du))(i1,...,is)
(j1,...,js) =

∂(ui1 , . . . , uis)
∂(xj1 , . . . , xjs

)
.

We use the spaces Ck(Ω,Rm), Ck
c (Ω,Rm) (k ∈ N ∪ {0,∞}), Lr(Ω,Rm)

and the Sobolev spaces W 1,r(Ω,Rm), W 1,r
0 (Ω,Rm), for 1 ≤ r ≤ ∞, with their

usual (strong and weak) topologies. By a Sobolev map in W 1,r(Ω,Rm) we
mean its precise representative and, given a real valued function v, by v+ we
denote its positive part.

We use the notion of quasiconvex and quasiaffine function and of qua-
siconvex envelope, defined and discussed in chapters 5 and 6 of [5], recalling
that a quasiaffine function F : Mm×n → R is an affine function of all subdeter-
minants of the matrix ξ, more precisely we have the following representation.

Proposition 2.1. Let F : M
m×n → R be a quasiaffine function. Then there

exist A ∈ M
m×n, real numbers b

(i1,...,is)
(j1,...,js), for s = 2, . . . m ∧ n, 1 ≤ i1 < · · · <

is ≤ m, 1 ≤ j1 < · · · < js ≤ n, and c such that

F (ξ) =
∑

(
i = 1, . . . , m
j = 1, . . . , n

) Ai
jξ

i
j

+
m∧n∑
s=2

∑
(i1,...,is)

1≤i1<···<is≤m

∑
(j1,...,js)

1≤j1<···<js≤n

b
(i1,...,is)
(j1,...,js) (ms(ξ))

(i1,...,is)
(j1,...,js) + c.
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It is evident by this proposition that a quasiaffine function F = F (ξ)
defined on M

m×n is a polynomial of degree k, where k is an integer 0 ≤ k ≤
min{n,m}, and we say that k is the degree of F . Hence, in particular, for
every r ≥ k and u ∈ W 1,r(Ω,Rm) we have F (Du) ∈ L1(Ω,R). We recall the
following well known property (corollary 5.22 in [5]).

Proposition 2.2. Let F : Mm×n → R be a quasiaffine function of order k and
r ∈ [k,∞] be a real index. Then, for every u, v ∈ W 1,r(Ω,Rm) such that
u − v ∈ W 1,r

0 (Ω,Rm), we have∫
Ω

F (Du(x)) dx =
∫

Ω

F (Dv(x)) dx.

We shall use the following notion.

Definition 2.3. Let f : R
d → R

δ be a measurable function and x0 ∈ R
d a

Lebesgue point of f . We say that f is strongly approximately continuous at
x0 if, for every ε > 0, there exists a map ω = ωε : [0,+∞[ → [0,+∞[ with
ω(t) → 0 as t → 0+, such that we have

m ({x ∈ B(x0, ρ) : |f(x) − f(x0)| ≥ ε})
m(B(x0, ρ))

= ρω(ρ). (2.4)

Remark 2.4. The above definition differs from the classical notion of approxi-
mate continuity by the presence of the factor ρ at the right hand side of (2.4).
Removing it, indeed, we obtain the classical notion, and it is well known that
any measurable function is approximately continuous almost everywhere. In
addition, it is evident that continuity implies strong approximate continuity
which, in turn, implies approximate continuity.

In order to give a simple and pictorial image of this notion, we exhibit
the following example for functions defined on the space R

2.
Consider a parameter α ≥ 0, define the set

Eα
.=

{
(x1, x2) : x1 > 0, 0 < x2 ≤ x1+α

1

}
and introduce the map

uα(x1, x2)
.= χEα

(x1, x2).

Call Br the ball of center zero and radius r in R
2, and observe that there exist

two positive constant a, b, with 0 < a < b, depending on α but independent
on r, such that, for any t ∈ ]0, 1[, we have

arα ≤ m(Br ∩ {uα ≥ t})
m(Br)

≤ brα.

Remarking that uα(0, 0) = 0, it is immediate to see that uα is not continuous
at the point (0, 0) for every α ≥ 0. Then we immediately see that

– for α > 1, uα is strongly approximately continuous at the point (0, 0);
– for 0 < α ≤ 1, uα is approximately continuous, but not strongly approx-

imately continuous, at the point (0, 0);
– for α = 0, uα is not approximately continuous at the point (0, 0).
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The reason and the use of this notion is merely technical, and in remark
3.5 below we point out the passage of the proof of our main theorem in which
it is required and necessary to impose the existence of a minimizer u of the
functional F such that its gradient Du is strongly approximately continuous at
almost everypoint of Ω. Clearly this property is intermediate between (almost
everywhere) approximate continuity, which is enjoyed by the gradient Du of
any Sobolev map, and (piecewise) C1-regularity of a map u. In this sense, our
theory marks a step from existing results (see paper [21] and points (a,b,c)
of the introduction) towards an existence theory for the class of problems
considered in this paper.

In section 4 we shall need the following tools (see [19]).

Definition 2.5. We set

M−(Ω,Rn) .=
{
γ ∈ W 1,∞(Ω,Rn) : −div ≥ 0 a.e.

}
,

where −div(·) denotes the divergence operator. In particular, for every γ ∈
M−(Ω,Rn) and w ∈ W 1,1

0 (Ω) such that w ≥ 0 in Ω, we have∫
Ω

γ · ∇w dx ≥ 0.

Lemma 2.6. Let Ω be an open subset of R
n, r ∈ [1,∞], v ∈ W 1,r(Ω,R). Let

x0 ∈ Ω be a point at which v is classically differentiable with differential
∇v(x0), t > 0 and ρ > 0 such that B(x0, ρ) ⊆ Ω. Then there exists a map
v̌ ∈ W 1,r(Ω,R) with the following properties:

v̌ − v ∈ W 1,r
0 (Ω,R), (2.5)

v̌(x) ≤ v(x) for a.e. x ∈ U, (2.6)

Λ̌ .= {x ∈ Ω: v̌(x) < v(x)} is nonempty and Λ̌ ⊆ B(x0, ρ), (2.7)

|∇v̌(x) − ∇v(x0)| = t, for a.e. x ∈ Λ̌, (2.8)

∇v̌(x) = ∇v(x), for a.e. x ∈ Ω \ Λ̌ (2.9)∫
Ω

v̌ dx <

∫
Ω

v dx, (2.10)
∫

Λ̌

γ · (∇v̌ − ∇v) dx ≤ 0 ∀γ ∈ M−(Ω,Rn). (2.11)

This last statement is a simpler version of lemma 2 in [19] and we refer
to such paper for the proof.

We end this section by an elementary property.

Lemma 2.7. Let x0 ∈ R
n and ρ > 0. Then there exists β > 0 such that, setting

ϕρ(x) .=
β

ρn

(
1 − |x − x0|

ρ

)+

, (2.12)

we have ϕρ ∈ W 1,∞
0 (Rn,R), suppϕρ = B(x0, ρ), ϕρ ≥ 0 almost everywhere,∫

Rn

ϕρ dx =
∫

B(x0,ρ)

ϕρ dx = 1; (2.13)
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and

|∇ϕρ| =
β

ρn+1
χB(x0,ρ), a.e. in R

n. (2.14)

Proof. Straightforward. �

3. Main results

We consider a continuous function f : Ω × R
m × M

m×n → R, where Ω is
a bounded open subset of Rn with Lipschitz boundary and f = f(x, p, ξ) is
assumed to be non-quasiconvex in the last variable ξ. The lower quasiconvex
envelope with respect to ξ, denoted by f = f(x, p, ξ), is also assumed to be a
continuous function f : Ω × R

m × M
m×n → R.

We devote our study to the minimization of the functional

F(u) =
∫

Ω

f(x, u(x),Du(x)) dx, u ∈ W.

The set W of competing maps is defined by

W .= u0 + W 1,r
0 (Ω,Rm), (3.1)

where r ∈ ]1,∞[ is an index related to the growth of f at infinity (see Hypoth-
esis 1 below) and the boundary datum u0 is a given map in W 1,r(Ω,Rm). We
introduce the relaxed functional

F(u) =
∫

Ω

f(x, u(x),Du(x)) dx, u ∈ W

and, for convenience, we set F(u) = F(u) = +∞ for every u ∈ W 1,r(Ω,Rm) \
W.

Our theory requires three hypotheses on the lagrangians f and f . The first
one is the classical growth conditions which ensure the existence of minimizers
for the relaxed functional F , while the second one consists in the regularity
assumpions usually imposed in order to guarantee that such minimizers sat-
isfy Euler-Lagrange equations in weak form. Finally we have to impose the
structural conditions which are necessary to treat the non quasiconvexity of
the lagrangian f .

Hypothesis 1. There exist r > 1, c1 > 0, c2 ≥ c1, c3 ∈ R and two maps
γ1, γ2 ∈ L1(Ω,R) such that for a.e. x ∈ Ω, ∀p ∈ R

m, ∀ξ ∈ M
m×n, we have

c1|ξ|r + c3|p|r1 + γ1(x) ≤ f(x, p, ξ) ≤ c2(|ξ|r + |p|r) + γ2(x), (3.2)

where 1 ≤ r1 < r.

Remark 3.1. By classical results, condition (3.2) ensure the existence of a min-
imizer of F on W, that is to say an element u ∈ W such that F(u) ≤ F(v) for
every v ∈ W.
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Hypothesis 2. We assume that f : Ω×R
m ×M

m×n → R is differentiable with
respect to the variables p, ξ and that the gradients fp, fξ : Ω×R

m×M
m×n → R

are continuous functions satisfying the following growth properties: there exist
c4 ≥ 0 and γ3 ∈ L1(Ω,R) such that, for a.e. x ∈ Ω, ∀p ∈ R

m, ∀ξ ∈ M
m×n,

we have

|f(x, p, ξ)|, |fp(x, p, ξ)|, |f ξ(x, p, ξ)| ≤ γ3(x) + c4(|p|r + |ξ|r) (3.3)

where r > 1 is the same index of Hypothesis 1.

Remark 3.2. Inequalities (3.3) guarantee that any minimizer of F satisfies
Euler-Lagrange equations in the following form:∫

Ω

[
fξ(x, u(x),Du(x)) · Dφ(x) + fp(x, u(x),Du(x)) · φ(x)

]
dx = 0 (3.4)

for every φ ∈ W 1,∞
0 (Ω,Rm).

It is well known (See Sect. 3.4.2 in [5]), that the conditions expressed
in Hypothesis 1 and 2 can be weakened in relation to the dimension n of the
space. We leave to the reader the faculty of checking such weakened conditions
directly in the quoted section of [5]. What is needed here is the existence of
minimizers of F and the validity of equations (3.4).

The next hypothesis contains the structural conditions on f and f which
allow us to manage the non-(s.w.l)semicontinuity of the functional F , that is
to say the non-quasiconvexity of f .

Hypothesis 3. There exist an index i ∈ {1, . . . , m} and a positive constant
α > 0 such that

fpi(x, p, ξ) ≥ α ∀(x, p, ξ) ∈ Ω × R
m × M

m×n. (3.5)

For every (x, p, ξ) ∈ Ω × R
m × M

m×n such that

f(x, p, ξ) > f(x, p, ξ) (3.6)

we have

fξi(x, p, ξ) = 0. (3.7)

Remark 3.3. While Hypotheses 1 and 2 are classical requirements in order to
ensure the existence of minimizer an the validity of Euler equations, Hypothesis
3 is the structural assumption on the lagrangians f an f that we impose in
order to manage the non-semicontinuity (i.e. the non-quasiconvexity) of our
problem. In particular, condition (3.7) is an affinity assumption with respect to
a single component ξi of the matrix ξ = (ξ1, . . . , ξm) on the relaxed lagrangian
f in the detachment set on which the inequality (3.6) holds true.

If we consider the scalar case, corresponding to m = 1, this condition
reduces to affinity in plain sense, that is to say that on the set on which
f(x, p, ξ) > f(x, p, ξ), the relaxed lagrangian has the following form:

f(x, p, ξ) = m · ξ,

where m ∈ R
n is a fixed vector and ξ is the variable ranging in R

n.
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This situation is clear if we consider a model scalar functional of sum
type corresponding to a lagrangian f : Ω × R

n × R
n → R of the form

f(x, p, ξ) = g(x, ξ) + h(x, p),

with

g(x, ξ) = a(x)(|ξ|2 − 1)2,

with a factor a ∈ C0(Ω,R) such that a(x) ≥ a > 0 for every x ∈ Ω. In the
scalar case quasiconvexity reduces to convexity, hence it is immediate to see
that the convex envelope with respect the variable ξ of the function g = g(x, ξ)
is given by

g(x, ξ) =

{
g(x, ξ) |ξ| ≥ 1
0 |ξ| < 1.

Then we have

f(x, p, ξ) = g(x, ξ) + h(x, p).

Observe that the condition (3.6) is equivalent to require |ξ| < 1 and for such
vaues of the vector ξ we have g(ξ) = 0. The affinity condition (3.7) is then
obviously satisfied, and, in addition, we may assert that it holds true also for
a lagrangian of the form

f(x, p ξ) = g(x, ξ) + h(x, p) + m · ξ,

where m ∈ R
n.

This example is quite instructive, since it can be translated to the vec-
torial setting. Take now a lagrangian f : Ω × R

n × M
m×n → R of the same

form

f(x, p, ξ) = g(x, ξ) + h(x, p), (3.8)

where

g(x, ξ) = a(x)(|ξ|2 − 1)2 (3.9)

with a factor a(·) as above. By the results exposed in Sect. 6.6.7 p. 309 of
[5], we see that, also in this case, the quasiconvex envelope with respect the
variable ξ of the function g = g(x, ξ) coincides with the convex envelope and
is given by

g(x, ξ) =

{
g(x, ξ) |ξ| ≥ 1
0 |ξ| < 1.

(3.10)

Then we have

f(x, p, ξ) = g(x, ξ) + h(x, p). (3.11)

Maintaining all notations, we set r = 4 and assume that the term h :
Ω × R

m → R is a continuous function, differentiable in the variable p ∈ R
m,

that hp : Ω × R
m → R

m is itself a continuous function and that the following
growth conditions are satisfied for every (x, p) ∈ Ω × R

m:

C3|p|r1 + β1(x) ≤ h(x, p) ≤ C4|p|4 + β2(x),
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|hp(x, p)| ≤ β3(x) + C5|p|4,
where C3 ∈ R, C4, C5 ≥ 0 are suitable constants, β1, β2, β3 are L1(Ω,R)-
functions and 1 ≤ r1 < 4.

It is easy to see that Hypotheses 1, 2 are satisfied. The monotonicity
assumption (3.5) assume the form

hpi(x, p) ≥ α ∀(x, p) ∈ Ω × R
m, (3.12)

while the affinity condition (3.7) can be easlily verified by a direct inspection
of formulas (3.8), (3.9) and (3.10).

Hence we conclude that Hypotheses 1, 2, 3 are satisfied and we may apply
Theorem 3.4 below with r = 4 and u0 ∈ W 1,4(Ω,Rm).

Theorem 3.4. Assume Hypotheses 1, 2, 3 and that there exists a minimizer u
of F belonging to W ∩ W 1,∞

loc (Ω,Rm) such that Du is strongly approximately
continuous almost everywhere in Ω. Then u is a minimizer of F .

Proof. We claim that

f(x, u(x)Du(x)) = f(x, u(x),Du(x)) for a.e. x ∈ Ω. (3.13)

Assume, by contradiction, that there exists a measurable E ⊆ Ω, with
m(E) > 0, such that

f(x, u(x)Du(x)) > f(x, u(x),Du(x)) for a.e. x ∈ E, (3.14)

so that we have

fξi(x, u(x),Du(x)) = 0 for a.e. x ∈ E. (3.15)

Take x0 point of density of the set E and Lebesgue point of Du at
which Du is strongly approximately continuous. Since, by assumption u lies
in W 1,∞

loc (Ω,Rm), we may assume that it is continuous at x0. Take ρ > 0 such
that B(x0, ρ) ⊆ Ω, ε > 0, and, for every ρ ∈ ]0, ρ] consider the sets

Sρ,ε
.= {x ∈ B(x0, ρ) : |Du(x) − Du(x0)| ≥ ε} . (3.16)

Choosing ρ and ε sufficiently small, by the continuity of f , f and u, for every
ρ ∈ ]0, ρ], we have

f(x, u(x)Du(x)) > f(x, u(x),Du(x)) for a.e. x ∈ B(x0, ρ) \ Sρ,ε, (3.17)

and then, by (3.6)–(3.7) in Hypothesis 3,

fξi(x, u(x),Du(x)) = 0 for a.e. x ∈ B(x0, ρ) \ Sρ,ε. (3.18)

In addition, recalling definition 2.3, there exists a map ω : [0,+∞[ → [0,+∞[
such that

lim
t→0+

ω(t) = 0 (3.19)

and
m(Sρ,ε)

m(B(x0, ρ))
= ρω(ρ). (3.20)
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Recalling that u ∈ W 1,∞
loc (Ω,Rm), we take M > 0 such that∣∣fξi(x, u(x),Du(x))

∣∣ ≤ M for a.e. x ∈ B(x0, ρ). (3.21)

Now, for every ρ ∈ ]0, ρ], we consider the map ϕρ ∈ W 1,∞
0 (Ω,R) given by

lemma 2.7 and φ ∈ W 1,∞
0 (Ω,Rm) defined by

φj
.= 0 for j �= i, φi

.= ϕρ. (3.22)

Then we write equations (3.4) for the minimizer u, which take the form∫
Ω

(
fξi(x, u(x),Du(x)) · ∇ϕρ(x) + fpi(x, u(x),Du(x))ϕρ(x)

)
dx = 0.

(3.23)

Recalling condition (3.5) in Hypothesis 3, we have

0 < α = α

∫
Ω

ϕρ(x) dx ≤
∫

Ω

fpi(x, u(x),Du(x))ϕρ(x) dx

= −
∫

Ω

fξi(x, u(x),Du(x)) · ∇ϕρ(x) dx

≤
∫

B(x0,ρ)

|fξi(x, u(x),Du(x))| · |∇ϕρ(x)| dx

=
β

ρn+1

∫
Sρ,ε

|fξi(x, u(x),Du(x))|, dx

+
β

ρn+1

∫
B(x0,ρ)\Sρ,ε

|fξi(x, u(x),Du(x))|, dx

≤ β

ρn+1

∫
Sρ,ε

M dx

=
βM

ρn+1
m (Sρ,ε)

=
βM

ρ

m (B(x0, ρ))
ρn

m (B(x0, ρ) ∩ Sρ,ε)
m (B(x0, ρ))

≤ Cω(ρ) → 0, as ρ → 0+, (3.24)

where C is a positive constant and we have used all properties (3.18)-(3.21).
The obtained nequality is the contradiction, coming from the assumption of
the existence of the set E in (3.13), which concludes the proof. �

Remark 3.5. It is clear from computation (3.24) in the above proof, that as-
suming that Du is strongly approximately continuous is necessary for our ar-
gument. This situation is radically different with respect to the scalar case, as
treated in the quoted papers [18,19], since in that situation it possible to mod-
ify locally the scalar minimizer u without affecting the value of the functional,
obtaining in such a way the existence result by integro-extremality method.
In the present vectorial setting, being u a vector, a simultaneous modification
of two or more components of the minimizer u would destroy the contradic-
tory argument used in the scalar situation. The mixture of the components of
the competing map u = (u1, . . . , um) in the determination of the value of the
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functional F(u) is the crucial difference which makes impossible, in general, to
translate the integro-extremality method to the vectorial case. Anyway, such
translation is possible if the contribution of the single components ∇ui of the
matrix Du to the value of F(u) is not mixed, and this surely happens when-
ever the dependence of the functional F(u) from the lines of the matrix Du
is separate. Actually, this idea is developed in subsequent section 4, where we
prove an existence theorem directly inspired by the quoted scalar results.

We stress that in the related one-dimensional theory developed in [22,23],
it is not necessary to assume strong approximate continuity of the derivatives,
due to the standard nice properties of maps depending on a scalar real variable,
which allow to manage Euler equations in a more efficient way.

We now give a version of Theorem 3.4 in which the quasiconvex envelope
f is quasiaffine on the set f > f . We have to modify the structural Hypothesis
3.

Hypothesis 4. There exists an index i ∈ {1, . . . , m} and a positive constant
α > 0 such that

fpi(x, p, ξ) ≥ α ∀(x, p, ξ) ∈ Ω × R
m × M

m×n. (3.25)

There exist a quasiaffine function G : M
m×n → R of order k and a

function β ∈ L1(Ω,R)∩C0(Ω,R) such that for every (x, p, ξ) ∈ Ω×R
m×M

m×n

such that

f(x, p, ξ) > f(x, p, ξ) (3.26)

we have

f(x, p, ξ) = β(x) + G(ξ). (3.27)

Definition 3.6. Given a real index r > k, we define the lagrangians f1 : Ω ×
R

m × M
m×n → R and f

1
: Ω × R

m × M
m×n → R by setting

f1(x, p, ξ) .= f(x, p, ξ) − [β(x) + G(ξ)], (3.28)

and

f
1
(x, p, ξ) .= f(x, p, ξ) − [β(x) + G(ξ)]. (3.29)

Then we introduce the corresponding functionals

F1(u) =
∫

I

f1(x, u(x),Du(x)) dx, u ∈ W
and

F1(u) =
∫

I

f
1
(x, u(x),Du(x)) dx, u ∈ W,

where, as above, W = u0 + W 1,r
0 (Ω,Rm), u0 is a given map in W 1,r(Ω,Rm)

and r > k.
For convenience, we set also

G(u) =
∫

I

[β(x) + G(Du(x))] dx, u ∈ W.
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Lemma 3.7. Assume Hypotheses 1, 2, 4 and let r > k. Then

(i) the function f
1

is the lower quasiconvex envelope of f1 with respect to
the last variable.

(ii) The functional G is constant on W.
(iii) By a suitable re-definition of the constants cl, l = 1, . . . , 5 and of the

functions γl, l = 1, 2, 3, the lagrangian f
1

satisfies all conditions in Hy-
potheses 1 and 2.

(iv) For every (x, p, ξ) ∈ Ω × R
m × M

m×n such that

f1(x, p, ξ) > f
1
(x, p, ξ) (3.30)

we have

f
1

ξi(x, p, ξ) = 0. (3.31)

Proof. Property (i) is a direct consequence of (3.26) and (3.27) in Hypothesis
4, while (ii) follows directly from proposition 2.2, and we stress that for this
reason we need r > k, because otherwise the functional G would be undefined.
Point (iii) follows from the fact that G is a polynomial in the variables ξi

j

of degree k < r. The last property (iv) is immediate, since on the open set
f1 > f

1
we have f

1 ≡ 0 �

Theorem 3.8. Assume Hypotheses 1, 2, 4 and r > k. Suppose in addition that
there exists a minimizer u of F belonging to W ∩ W 1,∞

loc (Ω,Rm) such that
Du is strongly approximately continuous almost everywhere in Ω. Then u is a
minimizer of F .

Proof. By virtue of point (ii) in lemma 3.7, the functionals F and F1, as well
as the functionals F and F1, when defined on W, differ by a constant. Hence
the minimization of F and F1, as well as the minimization of F and F1, are
equivalent. By the properties listed in lemma 3.7, we see that the integrands
f1 and f

1
satisfy the Hypotheses of Theorem 3.4. Hence the conclusion follows

immediately. �

In the proof of Theorem 3.4 we have used the properties expressed in Hy-
pothesis 3 only on the solution u. This fact induces to formulate the following
consequence.

Corollary 3.9. Assume Hypotheses 1, 2 and suppose in addition that there ex-
ists a minimizer u of F belonging to W∩W 1,∞

loc (Ω,Rm) such that Du is strongly
approximately continuous almost everywhere in Ω and the following properties
hold true:
(i) there exist an index i ∈ {1, . . . , m} and a positive constant α > 0 such

that

fpi(x, u(x),Du(x) ≥ α for a.e. x ∈ Ω;

(ii) for almost every x ∈ Ω such that

f(x, u(x),Du(x)) > f(x, u(x),Du(x)),
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we have

fξi(x, u(x),Du(x)) = 0.

Then u is a minimizer of F too.

Proof. Straightforward consequence of Theorem 3.4. �

We leave to the reader the statement of the analogous corollary under
the assumptions of Theorem 3.8.

4. The case of separate variables

In this section we consider a class of functionals not covered by previous theory,
corresponding to lagrangians with a separate dependence on the single rows
∇ui of the jacobian matrix Du. In such situation Hypothesis 3 must be mod-
ified, since the index i corresponding to the null derivative (condition (3.7))
may depend on the point (x, p, ξ) for which (3.6) holds true. On the other side,
the separation of the gradient variables allows us to adopt the approach used
in [19] for scalar functionals, so that we do not need the strong approximate
continuity of the minimizers of F and of their derivatives Du. The regularity
condition required in this case is classical differentiability almost everywhere,
which holds true, for example, by assuming that r > n.

We introduce a lagrangian f : Ω×R
n ×M

m×n → R of the following form

f(x, p, ξ) =
m∑

i=1

gi(x, ξi) + h(x, p), (4.1)

where gi : Ω×R
m → R, i = 1, . . . ,m are continuous functions and h : Ω×R

m →
R is a Caratheodory function. Denoting by gi : Ω ×R

m → R, i = 1, . . . ,m the
lower convex envelopes of the maps gi with respect to the variables ξi, we set

f(x, p, ξ) =
m∑

i=1

gi(x, ξi) + h(x, p), (4.2)

and impose growth conditions analogous to the ones of Hypothesis 1:

Hypothesis 5. There exist r > 1, c1 > 0, c2 ≥ c1, c3 ∈ R, c4 ≥ 0 and two
maps γ1, γ2 ∈ L1(Ω,R) such that for a.e. x ∈ Ω, ∀p ∈ R

m, ∀ξ ∈ M
m×n,

∀i = 1, . . . ,m, we have

c1|ξ|r + γ1(x) ≤ gi(x, ξ) ≤ c2|ξ|r + γ2(x), (4.3)
c3|p|r1 + γ1(x) ≤ h(x, p) ≤ c4|p|r + γ2(x), (4.4)

where 1 ≤ r1 < r.

As above, these growth conditions may be adapted in relation with the
dimension of the space, according to the remark of previous section.

Hypothesis 6. We assume the following structural conditions on the integrand
f .
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(i) There exists k ∈ {1, . . . , m} such that for every i ∈ {1, . . . , k} we have

gi(x, ηi) < gi(x, ηi) (4.5)

for some point (x, ηi) ∈ Ω × R
m and gi ≡ gi for i ∈ {k + 1, . . . ,m}.

(ii) For every i ∈ {1, . . . , k} there exist a field γi ∈ M−(Ω,Rn) and a function
qi ∈ C0(Ω) such that, for every point (x0, ξ

i
0) ∈ Ω × R

m for which

gi(x0, ξ
i
0) < g(x0, ξ

i
0),

there exist a neighbourhood U of x0 and τ ∈ R
+ such that

gi(x, ξi) = γi(x) · ξi + qi(x) ∀(x, ξ) ∈ U × B(ξi
0, τ) (4.6)

and

gi(x, ξi) ≥ γi(x) · ξ + qi(x) ∀(x, ξ) ∈ U × R
m. (4.7)

(iii) For every i ∈ {1, . . . , k}, the map

R � pi �→ h(x, p1, . . . , pm) = h(x, p) (4.8)

is monotone non decreasing for almost every x ∈ Ω.

We consider the functionals

F(u) =
∫

Ω

f(x, u,Du) dx =
∫

Ω

(
m∑

i=1

gi(x,∇ui) + h(x, u)

)
dx, (4.9)

and

F(u) =
∫

Ω

f(x, u,Du) dx =
∫

Ω

(
m∑

i=1

gi(x,∇ui) + h(x, u)

)
dx, (4.10)

defined for u ∈ W = u0 + W 1,r
0 (Ω,Rm), with the same extension of previous

section.

Remark 4.1. The functional F is clearly quasiconvex, hence the set of it mini-
mizers is nonempty. Denoting by Qf the lower quasiconvex envelope of f with
respect to the last variable ξ, clearly we have f ≤ Qf . Hence, if we are able to
find a minimizer u of F such that we have

f(x, u(x,Du(x)) = f(x, u(x),Du(x) for a.e. x ∈ Ω,

we may conclude that u minimizes F too. In particular we are not required to
show that f is the lower quasiconvex envelope of f .

In this section we do not use Euler-Lagrange equations, hence we do not
require differentiability properties on f .

As an example, we remark that a simple case satisfying our hypotheses
is the following one:

f(x, p, ξ) =
m∑

i=1

(|ξi|2 − 1
)2

+ h(x, p), (4.11)

where the map h satisfies the growth and monotonicity properties specified
above.
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Theorem 4.2. Assume Hypotheses 5 and 6. Suppose, in addition, that all the
minimizers of F are classically differentiable almost everywhere in Ω. Then F
admits a minimizer.

Remark 4.3. By classical notions on Sobolev spaces, the differentiability al-
most everywhere required in the statement is automatically satisfied if we
assume r > n.

Proof. The proof is an adaptation of the arguments performed in Theorem 1
of papers [19] or [21] to which we refer for details.

We call S ⊆ W the nonempty set of minimizers of F and observe that it
is compact with respect to the strong topology of L1(Ω,Rm).

Then we define the map

S � u �→ S(u) =
m∑

i=1

∫
Ω

ui(x) dx ∈ R, (4.12)

which is clearly continuous with respect to L1(Ω,Rm)-norm. Hence, by Weier-
trass theorem, there exists an element u ∈ S such that

S(u) ≤ S(u) ∀u ∈ S. (4.13)

Claim. The map u minimizes F .

As we have seen in previous sections, and taking into account remark 4.1,
we have to show that

gi(x,∇ui(x)) = gi(x,∇ui(x)) for a.e. x ∈ Ω, ∀i ∈ {1, k}. (4.14)

Assume, by contradiction, that there exists l ∈ {1, k} and x0 ∈ Ω such
that u is classically differentiable in x0 and

gl(x0,∇ul(x0)) > gl(x0,∇ul(x0)). (4.15)

Since u is assumed to be classically differentiable almost everywhere in Ω, if
inequality (4.16) provides a contradiction, the proof is achieved.

By the continuity of the map Ω×R
m � (x, ξl) �→ gl(x, ξl), we deduce the

existence of a neighbourhood U ⊆ Ω of the point x0 and of a number t > 0
such that

gl(x, ξl) > gl(x, ξl) ∀x ∈ U, ∀ξl ∈ B(∇ul(x0), t). (4.16)

Applying lemma 2.6, we construct a map ǔ
l with properties (2.5)–(2.11).

Then we define the map ǔ by setting ǔi = ui for i �= l and ǔl = ǔ
l, that is to

say ǔ : Ω → R
m given by

ǔ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ǔ1

...
ǔl

...
ǔm

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

u1

...
ǔ

l

...
um

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.17)
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Property (2.5) implies that ǔ ∈ W. We claim that ǔ ∈ S, that is to say
that is a minimizer of F .

By inequality (2.6) and the monotonicity of the map h expressed by (4.8)
we have that ∫

Ω

h(x, ǔ(x)) dx ≤
∫

Ω

h(x, u(x)) dx. (4.18)

Now we observe that, by (2.7), (2.9), (4.6) and (4.7), for almost every x ∈ Λ̌,
we have

gl(x,∇ǔl(x)) = γl(x) · ∇ul(x) + ql(x), for a.e. x ∈ Λ̌ (4.19)

and

gl(x,∇ul(x)) ≥ γl(x) · ∇ul(x) + ql(x) for a.e. x ∈ Λ̌. (4.20)

Formulas (2.11) and (4.19)–(4.20) imply that
∫

Λ̌

gl(x,∇ǔl(x)) dx −
∫

Λ̌

gl(x,∇ul(x)) dx

=
∫

Λ̌

γl(x) · (∇ǔl(x) − ∇ul(x)
)

dx ≤ 0. (4.21)

Putting together (2.7), (2.9), and (4.21), we obtain that
∫

Ω

gl(x,∇ǔl(x)) dx =
∫

Ω\Λ̌

gl(x,∇ǔl(x)) dx

∫
Λ̌

gl(x,∇ǔl(x)) dx

≤
∫

Ω\Λ̌

gl(x,∇ul(x)) dx

+
∫

Λ̌

gl(x,∇ul(x)) dx

∫
Ω\Λ̌

gl(x,∇ul(x)) dx

=
∫

Ω

gl(x,∇ul(x)) dx.

Recalling definition (4.17), we conclude that
∫

Ω

m∑
i=1

gi(x,∇ǔi(x)) dx ≤
∫

Ω

m∑
i=1

gi(x,∇ui(x)) dx. (4.22)

Collecting (4.18) and (4.22), we obtain that F(ǔ) ≤ F(u) and this proves that
ǔ ∈ S.

Now we observe that by definitions (4.12), (4.17) and by inequality (2.10),
we have immediately that S(ǔ) < S(u), in contradiction with the definition
(4.13) of u. This ends the proof. �
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[15] Müller, S., Sveràk, V.: Attainment results for the two-well problem by convex
integrations, in “Geometric Analysis and the Calculus of Variations. For Stefan
Hildebrandt” (J.Jost Ed.), pp. 239-251, International Press, Cambridge, (1996)
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