
Mathematics Area - PhD course in

Mathematical Analysis, Modelling, and Applications

A Reduced Order Approach
for Arti�cial Neural Networks
applied to Object Recognition

Candidate:
Laura Meneghetti

Advisor:
Prof. Gianluigi Rozza

Co-advisor:
Dr. Nicola Demo

Industrial Supervisor:
Dr. Daniele Turrin

Academic Year 2021-22

What is, then, that makes scientists wander about in universe

of ideas and experimentation? It may be the search for knowledge

or, in more mundane terms, simple curiosity. Nagging questions;

the pressing need to �gure something out and the inability to do

anything else until the answer is found; the tingling feeling that a

discovery may be just around the corner; the intuition that a puzzle

is starting to take shape, until eventually one reaches the answer

and feels the thrilling joy of understanding.

—Rodrigo Quian Quiroga—

Borges and Memory: Encounters with the Human Brain

Con lo scudo o sopra di esso.

Ringraziamenti

Arrivati alla �ne di questo viaggio mi sento di dover ringraziare tutte le persone che ne hanno

fatto parte. Mi scuso intanto per il passaggio all’italiano, necessario ad esprire al meglio i miei

ringraziamenti ed emozioni.

Ringrazio innanzitutto il mio relatore Gianluigi Rozza per essere stato in questi anni non solo

un’ottima guida nel mondo della ricerca, ma anche una persona con una grande empatia e un gran

lato umano. Non è così scontato avere un relatore su cui poter contare e che creda sempre in te,

anche nei momenti di di�coltà, e per questo motivo io mi sento estremamente fortunata e grata.

Ringrazio poi il mio correlatore Nicola Demo per il grande aiuto che mi ha dato in questi

anni e forse anche per la pazienza che ha avuto nei miei confronti. All’inizio le mie conoscenze

nella programmazione erano davvero poche, ma grazie ad un continuo confronto sono riuscita ad

imparare un sacco di cose e spero anche di essere migliorata nel mentre.

Ringrazio anche tutto il mio gruppo di ricerca, SISSA MathLab, per avermi accolto �n da subito

con grande entusiasmo. La cosa bella di essere in un gruppo non è solo poter conoscere più persone

(da disturbare), ma anche avere sempre un punto �sso su cui contare nei momenti felici e anche in

quelli più tristi. Non posso elencare ogni persona del gruppo perchè sarebbero troppe e rischierei di

dimenticarmi qualcuno, ma ci tengo a ringraziare in particolar modo Andrea Mola per essere stato

il mio primo tutor in SISSA e un grande amico.

Un ringrazimento va anche ad Electrolux Professional, ed in particolar modo a Riccardo Furlan-

etto, per avermi permesso di vivere tutto questo. Un dottorato accademico ed industriale non è

sicuramente un percorso facile, ma si è rivelato essere una bella esperienza, in cui ho avuto la

possibilità di vedere la produzione di elettrodomestici dal vivo, capire come funzionavano e tutta

la bellezza che sta dietro questo mondo. Ringrazio quindi tutte le persone che ho incontrato nel

gruppo R&D e nel Research Hub per aver allietato le mie giornate a Pordenone: Riccardo, Daniele,

Viktoria, Alessandro, Davide, Mauro, Michele, Emidio, Eleonora, Debora, Bermet, Juri, Yuri, Giulia,

Andrea C., Andrea A., Federico.

Ringrazio poi tutte le persone che mi hanno supportata e sopportata costantemente in questi

anni. Inizio con la mia famiglia che rappresenta e sempre rappresenterà una parte importante della

mia vita. Li ringrazio per esserci sempre e per farmi sentire coccolata ogni volta che torno. Ringrazio

in particolar modo mia sorella che è la mia prima sostenitrice da sempre e anche una buona amica.

Un ringraziamento enorme va ai miei compagni di dottorato: Sara, Luigi, Ale, Carlo, Maggico,

Cianci, Stefano, Dario. Mi risulta di�cile riassumere questi quattro anni senza emozionarmi. Siamo

cresciuti così tanto da quando ci siamo conosciuti e non posso che essere felice di aver condiviso

questo percorso con voi. Ringrazio poi i miei compagni di 402 passati e presenti, Pier, Moaad, Giulio,

Maria, Matteo, Sarina, Audrey, per non avermi (ancora) cacciato dall’u�cio per le troppe lamentele

ed aver ascoltato sempre con pazienza le mie storie avvincenti. Un ringraziamento va anche a tutti i

miei amici della SISSA e a tutte le persone conosciute in questi anni che hanno allieatato questo

bellissimo periodo. Fra pochi giorni inizierà un nuovo percorso e spero sarete ancora tutti qui a

tenermi compagnia.

Un ringraziamento va poi a tutte le persone che ho incontrato e che hanno caratterizzato questi

anni triestini. Parto con Irene S., una delle prime persone che ho conosciuto a Trieste, amica

�data con cui condividere disagi, pizze e gelati al pistacchio. Poi non posso non ringraziare le mie

compagne di avventure in convento: So�a, Miriana e Giorgia, con cui ho condiviso molte feste,

gite, esperienze culinarie e racconti. Ringrazio poi Barty, Pietro e Giorgia (again) per essere parte

iii

iv

di quel Dream Team che tutti sogniamo. Un grazie va anche a Marija e Nicola per tutte le belle

serate passate assieme. Ringrazio poi Cassie, Ele ed Enrico per avermi fatto assaporare quegli anni

universitari che non ho vissuto appieno, facendomi sentire parte integrante del vostro gruppo.

Ringrazio in�ne Francesco C., perchè nonostante tutto mai per caso nulla accade.

Abstract

Amajor breakthrough in the �eld of computer vision and image processing has been represented

by the introduction of Convolutional Neural Networks (CNNs). They are highly accurate models

able to classify and localize multiple objects of di�erent classes in the same image or video. Despite

their impressive success in solving many complex tasks, such as image recognition and object

detection, these architectures are characterized by a high number of degrees of freedom, resulting

in a longer optimization step and, on a practical side, a bigger architecture to manage. In the

academic community, the dimension of these networks is not considered a bottleneck of this

methodology, contrarily to what happens in many engineering �elds, where CNNs may be applied

in embedded systems with limited hardware. In this industrial context, real-time performance,

robustness of algorithms, and fast training processes are indeed fundamental properties required

from the developed models.

This thesis investigates thus the e�ective deployment of CNNs in engineering �elds, and in

particular in embedded systems. The restricted resources, such as memory constraints, in these

processors, have led to the necessity of designing methods to create light weights versions of the

original model. Based on techniques widely used in the Reduced Order Modeling (ROM) community,

such as Active Subspaces (AS) and Proper Orthogonal Decomposition (POD), we have developed a

dimensionality reduction framework lowering the number of degrees of freedom of the network.

The original CNN is split into two cascading parts, the pre-model, and the post-model, based on

the choice of a cut-o� index, identifying the layer at which we are cutting the net. Since we are

retaining only the layer contained in the pre-model, this index represents a key parameter, that

takes into account the information we are discarding by replacing the post-model. The core of our

approach lies then in the reduction layer, which aims at projecting the high-dimensional feature

maps of the pre-model in a low-dimensional space constructed using the aforementioned techniques.

Finally, a response surface is introduced to create a mapping between the reduced feature maps and

the �nal predicted output of the model. Two di�erent methods have been tested also in this case:

the Polynomial Chaos Expansion (PCE) and a Feedforward Neural Network (FNN).

We have thus employed our proposed methodology to image recognition and object detection,

two problems of great interest to the company we have worked with. This project has indeed been

conducted within an industrial Ph.D. grant �nanced by Electrolux Professional. Therefore, we have

tested our reduction technique with a custom dataset, collected in the laboratory of the company, as

well as a benchmark one for more academic purposes. We have thus obtained a reduced version of

the original network, containing just a few of the initial layers and demonstrating a reduction of the

network dimension. Furthermore, our experiments show that the reduced architectures can achieve

a level of accuracy similar to the original model, gaining a remarkable speedup in the �ne-tuning of

the network in a transfer learning context.

v

Contents

List of Figures ix

List of Tables xi

Introduction xiii

1 Arti�cial Neural Networks 1
1.1 Introduction . 1

1.2 Neuron: The Base Element . 3

1.3 Arti�cial Neural Networks . 5

1.3.1 The Learning Paradigm . 7

1.4 Neural Network Topologies . 8

1.4.1 Feedforward Neural Network . 9

1.4.2 Convolutional Neural Network . 10

1.4.3 Recurrent Neural Network . 10

1.4.4 Autoencoder . 11

1.5 Feedforward Neural Networks . 11

1.5.1 Forward Propagation . 12

1.5.2 Backward Propagation . 13

1.5.3 Backpropagation Algorithm . 14

1.5.4 Gradient Descent Algorithm . 17

1.5.5 Stochastic Gradient Descent Algorithm . 19

1.5.6 Momentum Method . 20

1.5.7 Adam Optimization Algorithm . 22

1.5.8 Master Equations for a FNN . 25

1.5.9 Testing Phase . 26

1.6 Parameter Initialization Strategies . 27

1.6.1 Xavier Initialization . 28

1.6.2 Kaiming He Initialization . 31

2 Convolutional Neural Networks 35
2.1 Introduction . 35

2.2 Convolutional Neural Networks . 37

2.2.1 Convolutional Layer . 39

2.2.2 Nonlinearity Layer . 43

2.2.3 Pooling Layer . 44

2.2.4 Fully Connected Layers . 48

2.2.5 Equivalence Convolutional Layers and Fully Connected Layers 49

2.2.6 Backpropagation . 49

2.2.7 Testing Phase . 50

2.2.8 CNN Initialization . 51

2.3 Image Recognition . 52

2.3.1 Datasets . 52

vii

CONTENTS viii

2.3.2 CNN Architectures for Image Recognition 54

2.4 Object Detection . 65

2.4.1 Bounding Boxes . 66

2.4.2 Anchor Boxes . 66

2.4.3 Intersection over Union . 67

2.4.4 Labeling Anchor Boxes during Training . 68

2.4.5 Non-Maximum Suppression . 69

2.4.6 Datasets . 69

2.4.7 Object Detectors: Architectures for Object Detection 71

3 A Reduced Order Approach for Arti�cial Neural Networks 81
3.1 Introduction . 81

3.2 Numerical Tools . 82

3.2.1 Dimensionality Reduction Techniques . 82

3.2.2 Input–output Mapping . 84

3.3 Reduced Arti�cial Neural Networks . 85

3.3.1 Splitting Network . 86

3.3.2 Reduction Layer . 87

3.3.3 Input-Output Mapping . 88

3.3.4 Training Phase . 89

3.4 A Reduced Approach for Convolutional Neural Networks 90

3.4.1 Reduction Strategies for Convolutional Neural Networks 90

3.4.2 Practical Application on VGG-16 . 93

3.5 Reduction Strategies for Object Detectors . 96

3.5.1 Reduction of SSD-Type Object Detectors . 97

3.5.2 Network Splitting . 99

3.5.3 Reduction Layer . 99

3.5.4 Predictor . 100

3.5.5 Numerical Results . 100

4 Conclusions and Future Perspectives 105

A Frequent Direction Method 109

Bibliography 110

Symbols 133

Acronyms 137

List of Figures

1 Fundamental steps for developing a neural network model. xiv

1.1 Schematic structure of a neuron. 4

1.2 Some examples of activation functions. 5

1.3 Data processing in a neuron [165]. 6

1.4 Schematic structure of a Feedforward Neural Network. 9

1.5 Schematic structure of a Convolutional Neural Network. 10

1.6 Schematic structure of a Recurrent Neural Network. 11

1.7 Schematic structure of an Autoencoder. 12

2.1 Schematic representation of a Convolutional Neural Network. 37

2.2 The components of a typical convolutional block: a convolutional layer followed by

a nonlinear layer and a pooling layer. 38

2.3 Schematic representation of the convolutional operation. 40

2.4 Illustration of a single convolutional layer. 40

2.5 Example of application of the convolutional step using zero-padding with ?̃=1 and

stride B=1. 42

2.6 Comparison between interactions in a generic Arti�cial Neural Network (ANN) and

in a CNN, that is characterized by sparse interactions. 43

2.7 Example of a �lter to detect vertical edges. 43

2.8 Plot of PReLu with U = 0.2. 44

2.9 Illustration of a pooling layer. 47

2.10 Example of application of max-pooling on a squared domain. 48

2.11 Samples from the MNIST Dataset. Image from Yann LeCun, Corinna Cortes, Christo-

pher J.C. Burges, http://yann.lecun.com/exdb/mnist/. 53

2.12 CIFAR-10 and Imagenet Datasets. On the left, (a) presents a complete list of all

the classes that compose CIFAR-10 and an example of 10 random pictures for each

category. (Source: https://www.cs.toronto.edu/ kriz/cifar.html.) On the right, (b)

depicts some random samples from the validation set of the ImageNet Dataset.

(Source: original paper [265].) . 53

2.13 Architecture of LeNet-5, original picture taken from [171]. 55

2.14 Architecture of AlexNet, original picture taken from [167]. 56

2.15 Di�erent VGG con�gurations as presented in the original paper [289]. The depth

of the nets increases as we move from left to right, i.e. from (A) to (E), since more

layers (the bold ones) are added. The ReLU function is not mentioned for brevity

but is added after each convolutional layer. 57

2.16 The basic residual block (left) and the proposed bottleneck design (right). Source:

original paper [118]. 58

2.17 The overall architecture for all ResNets, as presented in the original paper [118]. . . 58

2.18 GoogleNet architecture [299]. 59

2.19 Basic architecture of the inception block [156]. 59

ix

LIST OF FIGURES x

2.20 Modi�cations of the inception module in Inception-V2 and Inception-V3 (a, b and c)

and structure of the reduction block (d), as presented in [301, 298]. 60

2.21 Overall schema for Inception-V2, as described in [298]. 61

2.22 Overall schema for Inception-V4 (a) and for Inception-ResNet (b), as presented in [298]. 62

2.23 Architecture of MobileNet. Source: original paper [138]. 63

2.24 Representation of channel shu�e with group convolution: original paper [335]. . . 64

2.25 Organization of convolution �lters in the Fire module, as presented in the original

paper [141]. 64

2.26 Example of priors around a central pixel (on the left) and for a general one in which

priors overshoot the edges of the feature map (on the right). In both, there are 5

priors with aspect ratios 1, 2, 3, 1/2, 1/3 and areas of a square of side 0.55, and a 6th

prior with aspect ratio 1 and of side 0.63. 67

2.27 Examples of images from (a) PASCAL VOC [83, 82, 269], and (b) MS COCO [189]. . 70

2.28 Example of annotated images from Open Images dataset [168, 164]. 71

2.29 Schema of the R-CNN architecture (a) and of the class and location detection proce-

dure for the region of interests (b). Source: original papers [96, 95]. 72

2.30 Overall schema of Fast R-CNN taken from the original paper [94]. 72

2.31 Structure of the Region Proposal Network (a) and of Faster R-CNN (b), as presented

in [249]. 74

2.32 The Mask R-CNN framework. Image from the original paper [117]. 75

2.33 Schematic representation of the process of localization and detection in YOLO (a)

and of its architecture (b) [246, 247, 163]. 76

2.34 SSD architecture. Source: original paper [194]. 78

3.1 Graphical representation of the reduction method proposed for a CNN. 93

3.2 Graphical representation of VGG-16 architecture. 93

3.3 Graphical representation of the reduction method proposed for an object detector. . 97

3.4 Comparison of the results obtained using the original SSD300 and its reduced version

on two test images. 102

3.5 Comparison of the results obtained using the original SSD300 and its reduced version

on three test images from PASCAL VOC. 104

List of Tables

2.1 Priors used in the original implementation. As can be seen there are a total of 8732

priors de�ned for the SSD300. 79

3.1 Results obtained with CIFAR-10 dataset. 94

3.2 Results obtained with the custom dataset. 94

3.3 Results obtained for the reduced net POD+FNN (7) trained on CIFAR-10 with di�er-

ent structures for the FNN. 95

3.4 Results obtained with the cat-dog dataset. 101

3.5 Results obtained with Electrolux Professional dataset. 101

3.6 Results obtained with PASCAL VOC. 102

3.7 Accuracy obtained for each class of the PASCAL VOC dataset with SSD300 and our

reduced version. 103

xi

Introduction

In the last decades a growing amount of researchers have focused their attention on the study of

the human brain, and in particular on algorithms that can mimic its main functions: memorization,

learning, recognition, and retrieval of objects [7, 252]. A �rst attempt at reproducing such tasks

is represented by Arti�cial Neural Networks (ANNs) [165, 42, 197, 115], biologically inspired

mathematical models composed of arti�cial neurons grouped to form di�erent architectures. The

power of such algorithms lies in their ability to learn from data, through the so-called training
process. In particular, the backpropagation phase is responsible for tuning their parameters to

gain predicted outputs close to those expected. This great property is also justi�ed by a classical

result in this context, the Universal Approximation theorem for Neural Networks [58, 137], stating
that su�ciently wide (shallow) neural networks can approximate any (continuous) function. This

opened the possibility to apply ANNs to a wide range of �elds to address approximation problems,

such as in the context of Reduced Order Modeling (ROM) [21, 22, 23, 261, 267, 260, 306, 262,

325, 235]. The Proper Orthogonal Decomposition-Arti�cial Neural Network (POD-ANN) [125,

268, 46] approach couples indeed the POD method [126, 22, 262] with ANNs to reconstruct the

functional relationship between input parameters and output solution �eld in a fast and reliable

way. The bene�ts of this technique has thus led to its application in several �elds ranging between

automotive [332], casting [279], combustion [316], bifurcating �uid phenomena [239, 122, 124], and

hemodynamics [287, 288]. Furthermore, the scienti�c community has also focused its attention on

a better mathematical characterization of the approximation properties of data-driven techniques

based on ANNs, as represented by the Neural Network shifted-Proper Orthogonal Decomposition

(NNsPOD) [234, 233] algorithm. Another growing impact approach coincides with the Physics–

Informed Neural Networks (PINNs) [243, 216, 284, 274], employed successfully for solving both

forward and inverse problems for PDEs for various applications [204, 63, 198, 244].

The accuracy of such models is then strictly related to the number of layers, neurons, and

inputs [99, 155, 310], therefore, to tackle even more complex problems, architectures are forced to

go deep. These huge structures have thus led to the creation of Deep Learning [99, 274, 4], a thriving

�eld with many practical applications, as visual object recognition [167, 48], robotics [226, 240],

speech recognition [104, 151, 224], natural language processing [328, 70], radiomics and medical

imaging [313, 16, 49, 80], autonomous vehicles [139, 145], and digitalization [113]. Alongside this

wide range of tasks, it has started to show its impact also on regression problems [20, 291], and on

data-driven inverse problems [13, 190], such as image reconstruction and image restoration.

A particular type of ANN, that has achieved impressive results in dealing with computer vision

problems, is represented by Convolutional Neural Networks (CNNs) [6, 172, 99]. They are indeed

widely used to tackle and solve di�cult tasks, such as image recognition and object detection, the
main topics of this thesis. Image recognition faces the problem of recognizing the items represented

in pictures, whereas object detection deals also with the localization of the detected objects. The key

ingredient for solving such problems is represented by the feature learning process, characterizing

the building block of CNNs. Hence, to distinguish between di�erent items in a picture, special

structures, called �lters, are introduced to detect object features. In particular, the �rst layers are

responsible to capture low-level features, such as minor details of the image, while the later layers

will learn to recognize high-level features, namely detect objects and larger shapes in the picture.

Therefore, by stacking these �lters in several layers, several architectures can be constructed to

solve the aforementioned tasks. Regarding the object detection problem, there is also the need of

xiii

xiv

introducing an additional structure to localize the items and to construct the bounding boxes, that
wrap around the object providing the coordinates of its position.

1

2

3

4

5

Get
Data

Prepare
Data/Model

Train
Model

Test
Model

Practical
Application

Figure 1: Fundamental steps for developing a neural network model.

This work focuses thus on developing a model that can solve the aforementioned problems

of image recognition and object detection for a test case connected with the practical application

inside a professional appliance for Electrolux Professional. We collaborate with this company during

the doctorate, following all the needed steps to prepare and use the CNN framework for these tasks.

Such steps are summarized in Figure 1 for sake of clarity. The �rst key ingredient is represented

by the dataset. There can be two di�erent choices, based also on the goal of the project: use a

benchmark or a custom dataset. The latter is the common case in the industrial �eld, where there

is the need to have data that are not general, but speci�c to the problem under consideration. In

the research framework, instead, the interest is slightly di�erent, more connected to having a

comparison of the developed network with the state of the art, done using benchmark datasets.

The second fundamental choice is represented by the model. At the beginning, it is typical to use

an already implemented CNN model, created to solve a particular task, but this can represent also

the starting point for developing a new architecture. The accurate selection of the model and the

preparation of the data, to have the correct structure to use, are thus the core of the second step.

The third phase is a crucial point in the development process because the accuracy of the �nal

model depends on it. In fact, here is where learning takes place through the training of the CNN.

We provide some input-output pairs and we want that the model learns the existing association rule

between them. Once a trained model has been created, we should use the acquired knowledge to

understand how accurate our CNN is in making predictions on new samples. We are thus testing the

generalization capability of our algorithm, namely if it can solve the same problem having di�erent

inputs, never seen before. At the end of this phase, we should have a well-performing CNN for the

required task, otherwise an additional �ne-tuning of the CNN parameters is needed. The last step

coincides then with the practical application of our algorithm to solve a real-world problem in the

industrial �eld. In our case, the developed CNN has to run in an embedded system placed inside a

professional appliance and characterized by restricted resources, such as strict memory constraints.

Our model requires more space than available, leading thus to a dimensionality problem and the

necessity to create a reduced version of our CNN. The collaboration with Electrolux Professional in
this Ph.D. project was thus fundamental to understand the needs and bottlenecks in applying such

algorithms inside professional appliances.

Such industrial experience has con�rmed last year’s trend in developing even more deep (and so

heavy) architectures to tackle complex problems. If on one hand, we have an increasing precision,

on the other hand, the high number of degrees of freedom results in a longer optimization step and,

xv CHAPTER 0. INTRODUCTION

on a practical side, a bigger architecture to manage. Whereas in the past, the main problem was

having enough computational power to make these machine learning algorithms work, nowadays

the fundamental goal is providing real-time solutions from the developed models. While the training

phase can be performed o�ine on servers, the �nal testing phase has to be performed locally on the

professional appliance, where it should be applied. Hence, a great e�ort is made to improve the

e�ciency of these deep learning algorithms to move the inference phase from servers to embedded

devices, usually characterized by limited hardware [259]. The dimension of the network represents

thus a bottleneck in the application of CNNs in many engineering �elds, and in particular in these

limited hardware processors, leading to the necessity of a reduction in the number of degrees of

freedom of the network.

Finding the intrinsic dimension of neural networks is a very challenging task that has attracted

a lot of interest in the last decades, thanks also to the increasing application of ANNs. To the best of

the authors’ knowledge, there exist approximation results providing estimates on the necessary

size required for certain approximation tasks [17, 213, 327, 280, 241], but there are no rigorous

theoretical proofs determining the precise number of ANN parameters. However, for the purpose

of obtaining light-weights ANNs, di�erent methods have been proposed, such as network pruning

and sharing [110, 196, 192], low-rank matrix and tensor factorization [266, 336, 227], parameter

quantization [56, 69], manual architecture design [188, 138, 335, 141], and neural architecture

search [259, 342, 40, 302]. Despite the great bene�ts connected with these approaches, most of

these techniques are not changing network architectures by performing an analysis on redundant

or non-signi�cant information, but are only deleting model parameters or manually designing

layers and network structures. To face this problem, we have instead explored the idea presented

in [57], extending it to have a more general approach [210, 211]. Therefore, mimicking the procedure

presented in [57], the reduced network is constructed starting from the original architecture, initially

split into two cascading parts, the pre- and post-model. Assuming that the latter brings a negligible

contribution to the �nal outcome, we are retaining only the knowledge contained in the �rst layers

and replacing the remaining ones with an input-output mapping. This response surface is indeed

built to �t the data, with the aim of approximating such part of the model without introducing a

larger error. Since the output features of the pre-model belong to a high-dimensional space, this

implies the necessity of a dimensionality reduction approach to reduce the pre-model outputs,

which corresponds also with the input parameters of the response surface. The reduced network is

thus constructed by splitting the net into two parts — the pre-model and the input-output mapping

— connected by the reduced method, which helps in reducing the typically large dimensions of the

intermediate layers by keeping the reduction computationally a�ordable. In this way, we obtain

a reduced version of the network by performing a smart selection of the main parameters of the

network, which allows us reducing the required resources and the computing time to infer the

model.

Starting from [57], where the Active Subspaces (AS) [51, 53] and Polynomial Chaos Expansion

(PCE) [320] are exploited to create a reduced version of the original network, we have investigated

other mathematical tools to provide a generic framework for neural network reduction. In [210, 212],

we have indeed explored another technique widely used in the ROM community, namely POD [126,

22, 306, 262], that similarly to AS, compress the data by projecting it onto a low-dimensional space.

To construct the input-output mapping we have then applied a fully connected Feedforward Neural

Network (FNN), recalling the common classi�cation part in a CNN architecture. It is, in particular,

characterized by few layers and neurons, reducing further the already minimal space demand of

the PCE method. Employing another neural network to approximate part of an original ANN has

also the advantage of making the software integration easier, especially when the hosting system is

embedded.

Combining all these ingredients, we have designed a reduction method to create a light-weight

xvi

version of a general ANN. In particular, we have applied the proposed technique to CNNs and object

detectors in order to solve the aforementioned problems of image recognition and object detection.

Our experiment shows that the reduced nets obtained can achieve a level of accuracy similar to the

original model under examination while saving in memory allocation. Furthermore, our method

performs better on a simple CNN with respect when applied to the object detection framework, due

to the additional complexity of localizing the objects in a picture. Improving the performances in

this context represents a possible continuation of this thesis work. We specify also that the proposed

method has been tested against a realistic industrial dataset, but also benchmark ones.

In this thesis, we start by outlining in Chapter 1 the most important features of ANNs. We

present the building elements of their structure, called neurons, combining which di�erent neural

network topologies can be created. We focus then on the description of FNNs and, in particular, on

the learning process, the fundamental step to obtain a well-performing model. Finally, we report

some commonly used initialization strategies for ANN parameters.

Chapter 2 is devoted to the introduction of CNNs. First of all, we provide a detailed mathematical

description of the fundamental layers composing their architectures. Then, we focus on two main

problems, introduced before: image recognition and object detection. Hence, we present for each

task a review of commonly used datasets and models.

In Chapter 3 we cover in detail our proposed framework to develop a reduced version of an

ANN in order to overcome the constraint of memory storage usually connected with embedded

systems [210, 211, 212]. We provide, �rst of all, an algorithmic overview of all the numerical methods

involved in the reduction framework, namely AS, POD, PCE, and FNN, and then the application in

the context of image recognition and object detection. Furthermore, we present the results obtained

by reducing with the proposed methodology a benchmark CNN and object detector testing against

di�erent datasets, benchmark and custom ones.

Finally, some conclusions and future perspectives follow.

This thesis has been carried out in cooperation with the Research Hub
1
by Electrolux Professional

in the framework of an industrial doctoral grant agreement.

1
The Research Hub is a technology enabling agent, bringing together several universities and research centers within

Electrolux Professional. More details can be found on the related web-page: https://theresearchhub.electroluxprofessional.com/

CHAPTER
1 Arti�cial Neural Networks

1.1 Introduction

Arti�cial Neural Networks (ANNs) represent a trending and debated topic, thanks to their power

to solve complex tasks and a variety of real-world problems coming from several di�erent �elds,

such as neuroscience, psychology, mathematics, physical sciences, and engineering. The basic idea

of ANNs is the reproduction of the human brain, in particular, the way of thinking and making

decisions, using appropriate structures and architectures [7, 252]. Before diving deep into these

topics, it is important to understand why they became such popular for many applications.

The �rst pioneering work that started the success of ANNs was that of McCullogh, a psychiatric

and neuroanatomist, and Pitts, a mathematician, published in 1943 [208]. They proposed a �rst

computational model of a neuron, called MCP neuron, that mimics the functionality of a biological

neuron, by unifying neurophysiological studies and mathematical logic. This type of model is

also referred to as all-or-none since the inputs are of boolean type and also the output is boolean,

in analogy with the biological neuron where the input and output signals can be excitatory and

inhibitory. Another essential element introduced in this construction is that of time and in particular

of cycle-time, i.e. the time needed to provide the output of an operation using a network. Hence, a

su�cient number of these MCP neurons can then be combined into little temporal sequences to

create a network, constituted of these simple units connected through synaptic connections, that

was argued to be able to perform any operation of the calculus of propositions.

In 1949, Hebb proposed in [121] an explicit statement of a physiological learning rule for synaptic

modi�cation following up an early suggestions by Ramón y Cajál [41]. Hebb’s postulate of learning,

known as Hebb’s rule concerns synaptic plasticity, which corresponds to the ability of the brain to

change and adapt to new information by strengthening or weakening the synapses over time. This

represents a great achievement in the �eld of neural networks since he was the �rst to describe

brain connectivity as dynamic, i.e. as something continually changing while learning di�erent

functional tasks. For this reason, Hebb’s work became a source of inspiration for the development

and application of computational models of learning and adaptive systems, as happened in 1954 for

Farley and Clark, who were the �rst to use computational machines (calculators) to simulate Hebbian

networks [84]. Another important attempt to use computer simulation to test a neural theory based

on Hebb’s postulate of learning was that of Rochester, Holland, Habit, and Duda in 1956 [251]. In

the same years, Uttley in [312] suggested the importance of classi�cation in the organization of the

nervous system by demonstrating that a neural network with modi�able synapses may learn to

classify simple sets of binary patterns into corresponding classes.

In the 1950s the interest in associative memory started to grow, i.e. in the ability of the brain to learn

and remember the existing relationships between uncorrelated items. Some signi�cant contributions

are represented by Taylor in 1956 [304], and by Anderson [8], Kohonen [161], and Nakano [223] in

1972. The novel feature introduced by the latter work is the idea of a correlation matrix memory,
storing existing associations between patterns, based on an outer product learning rule, as the one

of Hebb.

In 1958 Rosenblatt introduced in [257] a novel approach to the pattern recognition problem by

creating a supervised learning method called perceptron. Starting from the MCP neuron model, some

improvements were brought including the Hebbian theory of learning. In particular, by relaxing

some rules that characterized the MCP neuron model — e.g. the equal contribution of all inputs, their

1

1.1. INTRODUCTION 2

integer nature, . . . — Rosenblatt devised a model, composed of arti�cial neurons and with a single

layer of output neurons
2
, able to learn from data and thus �gure out the correct weights directly

from training data. The Perceptron learning rule convergence theorem summarized this achievement,

giving the idea that neural networks could solve any problem. For this reason, neural network

models started to become very popular with the creation of also multilayer networks [143].

In 1969 Minsky and Papert demonstrated in [215] that perceptrons have fundamental limits on what

they can compute and that there was no reason to assume that multilayer neural networks could

overcome the problems and limitations of perceptrons. The low processing power of computers at

the time was also not able to handle the computation required by large neural networks, slowing

the research in that �eld. The 1970s were thus characterized by a dampening of continued interest

in neural networks, except for psychologists and neuroscientists.

The 1980s represent a resurgence of interest in neural networks since new and important contribu-

tions to the theory and design of neural networks were made. Firstly, there was the introduction

of a class of neural networks with feedback in 1982 by Hop�eld [135]. This model, called Hop�eld
Network, attracted great interest because an energy function was introduced to understand the

computation performed by recurrent networks with symmetric synaptic connections. In this way,

the stored patterns represent the equilibrium points for the dynamics of the net and in particular

Lyapunov stable points for the de�ned energy function. Furthermore, Hop�eld Networks established

a strong link with physics [7], since Hop�eld proved the existence of an isomorphism between such

a recurrent network and the Ising model [142], commonly used in statistical physics. This model

paved thus the way for an interest in attractor neural networks and in studying the stability of this

type of content addressable memory, as done by Cohen and Grossberg [50] in 1983.

In 1985 Ackley, Hinton, and Sejnowski developed the �rst successful realization of a multilayer

neural network, called Boltzmann machine [2], using simulated annealing [159], a new procedure

for solving combinatorial optimization problems. In the mid-1980s, there was then the rediscovery

of the backpropagation algorithm by Rumelhart, Hinton, and Williams [263] — initially found by

Werbos in 1974 [319] —, that has emerged as the most popular learning algorithm for training

multilayer perceptrons. In 1986 Rumelhart and McClelland introduced in [264] the idea of parallel

distributed processing to simulate neural networks, known by the name of connectionism.

1985 represents then a turning point year since it was held the �rst Neural Networks for Computing
meeting by the American Institute of Physics, followed in 1987 by the �rst IEEE annual international
ANN conference. ANNs were thus de�nitely attracting a lot of attention and interest, catching the

imagination of the world in solving increasingly complex problems, such as image recognition.

In 1989, Yann LeCun developed a new machine learning method, biologically inspired, to recognize

handwritten digits, then called Convolutional Neural Networks (CNNs) [171, 170]. 1997 saw then the

introduction of a type of Recurrent Neural Network (RNN), called Long Short-Term Memory (LSTM),

by Schmidhuber and Hochreiter [134], characterized by a truncated backpropagation version to

deal with the vanishing gradient problem. In fact, despite the great achievements and results, CNNs,

RNNs and in general deep neural networks, i.e. models with more stacked layers, brought also a

new issue connected with slow and unstable training processes due to vanishing gradients problems

during backpropagation [133].

Despite this, 2010 represented the year of the growth and expansion of deep learning. To improve

the training step of deep networks, a great e�ort was put into studying a speci�c activation function

to transmit information, e.g. ReLU [222], and better optimization algorithms, such as ADAM [158].

A great role in this big bang of deep learning was also played by Nvidia™, which created the �rst

Graphics Processing Unit (GPU) to support the training of much deep learning neural networks [273].

2012 was then the year in which CNN brought a lot of attention and interest in them since they

2
Perceptron is a Feedforward Neural Network with a single layer of output neurons, i.e. composed only of the input and

output layer.

3 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

were exploited by Krizhevsky in the ImageNet Large Scale Visual Recognition Challenge, a data

science competition to classify pictures, achieving great results and error rates using also GPUs for

training [167].

Nowadays, ANNs are used in several applications to solve complex tasks such as regression prob-

lems [20, 291], data-driven forward and inverse problems [243, 274], visual object recognition [167,

48, 226], natural language processing [328, 70], speech recognition [104, 224], autonomous vehi-

cles [139, 145], and digitalization [113]. The architectures of these models have also undergone a

great improvement with respect to the model of McCullogh and Pitts, and the perceptron: they are

not composed of only one layer, but they are characterized by particular structures, suitable for

overcoming speci�c di�culties, and by having many layers. Certainly, neural networks have not

come to an end, but still, have a great deal of room for growth and development in many research

and engineering �elds.

In this Chapter, we will thus discuss ANNs by presenting their main characteristics. We will start

in Section 1.2 with the base element of a network, that is the neuron. After we have collected the

main notions of it, we can construct the ANN itself. Section 1.3 will thus be in charge of presenting

what is an ANN and its capacity of learning tasks. In Section 1.4 the typical architecture of an ANN

is discussed, providing also an overview of di�erent neural network topologies. Section 1.5 will

concentrate on Feedforward Neural Networks (FNNs) and the explanation of the backpropagation

algorithm. To conclude, Section 1.6 describes the main strategies to initialize an ANN.

1.2 Neuron: The Base Element

The building block of an Arti�cial Neural Network is the so-called abstract neuron [42, 165], a

unit element that tries to mimic how a biological neuron works. It can be formally de�ned in the

following way:

De�nition 1.2.1 (Abstract Neuron [42]). An abstract neuron is a quadruple (x,, , f , ŷ) where

• x = (G0, . . . , G=)) ∈ R= represents the input vector3;

• , = (F0, . . . ,F=)) ∈ R= is the weight vector;

• F0 = 1 and G0 = −1 are the bias and the corresponding input signal, respectively;

• f is the activation function;

• ŷ ∈ R is the outcome of the neuron, determined by

ŷ = f (x),) = f
(
=∑
8=0

F8G8

)
. (1.1)

Therefore, it can be described as a unit that given some inputs (incoming signals) can provide an

output using the corresponding weights (synaptic weights) and an activation function (neuron �ring

model). We have placed in brackets the corresponding neuroscience terms in order to highlight the

structure’s analogy with a biological neuron.

De�nition 1.2.1 introduces the key ingredients connected with a neuron, depicted in Figure 1.1. As

described before, the 0th component of the weight and input vectors represents the bias and the

corresponding input signal. The bias is an additional constant parameter added to help the model in

3
Here we are using the notion of vector for simplicity, but in general the input x can also be a matrix or a tensor, as in

the case of Convolutional Neural Networks treated in Chapter 2.

1.2. NEURON: THE BASE ELEMENT 4

G=

G2

G1

−1

∑

F=

F2

F1

F0

f ~̂

inputs weights

Activation

function Output

Figure 1.1: Schematic structure of a neuron.

�tting better the given data, therefore the associated input component has to be equal to 1 or −1. In
this case G0 = −1 following the same convention used in [42], but equivalently it can be considered

the biasF0 = −1 and the corresponding input G0 = 1.

A crucial role is played by the activation function f since it introduces nonlinearity in the model.

We present here a list of common choices [165, 42, 331], depicted in Figure 1.2:

• Step functions: biologically inspired activation functions characterized by an upward jump

that models a neuron activation [208]. An example is represented by the signum function,
see Figure 1.2 (a), and is described in the following way:

B86=(G) =
{
−1 if G < 0,

+1 if G ≥ 0.
(1.2)

• Recti�ed Linear Unit (ReLU): commonly used in the context of image recognition since it

does not saturate and speeds up the learning process [222, 167]. The ReLU function is linear

for G ≥ 0, see Figure 1.2 (b), and is thus de�ned by:

'4!* (G) = max{G, 0} =
{
0 if G < 0,

G if G ≥ 0.
(1.3)

• Softplus function: a smoothed version of the ReLU function [75, 98]. As depicted in Fig-

ure 1.2 (c), it is an increasing positive function given by:

B? (G) = 1

V
log(1 + exp(VG)), for V ∈ R. (1.4)

• Sigmoid functions: smoothed version of the step functions [106]. An example is represented

by the logistic function with parameter c>0, see Figure 1.2 (d):

f2 (G) =
1

1 + exp(−2G) , (1.5)

where 2 controls the �ring rate of a neuron, since larger values of 2 lead to a fast change from

0 to 1.

5 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

Another example of a sigmoid function is the hyperbolic tangent de�ned by:

tanh(G) = 4G − 4−G
4G + 4−G , (1.6)

where, as can be seen in Figure 1.2 (e), it has two horizontal asymptotes at ~ = ±1.

−10 −5 5 10

−1

−0.5

0.5

1

B86=(G)

(a) Signum function

−10 −5 5 10

2

4

6

8

10

'4!* (G)

(b) ReLU function

−10 −5 5 10

1

2

3

4 B? (G)

(c) Softplus function V = 1

−10 −5 5 10

0.2

0.4

0.6

0.8

1

f2 (G)

(d) Logistic function 2 = 1

−10 −5 5 10

−1

−0.5

0.5

1

tanh(G)

(e) Hyperbolic tangent

Figure 1.2: Some examples of activation functions.

1.3 Arti�cial Neural Networks

Starting from the base element described in the previous section, we can de�ne an Arti�cial
Neural Network (ANN) [165, 42, 197, 115]:

De�nition 1.3.1 (Arti�cial Neural Network [165]). An ANN is a sorted triple (N , + ,F), where:

• N is the set of neurons;

• + = {(8, 9) | 8, 9 ∈ N} is a set whose elements represent the connections between neuron 8 and 9 ;

• F : + → R is a function that de�nes the weights of the net, i.e. the valueF8 9 of the connection
between neuron 8 and neuron 9 . The weights are then stored in a matrix, = {F8 9 }8, 9 , called
weight matrix.

As can be understood, since data are transferred through the connections existing between

neurons, the values stored in the weight matrix, play a key role. Hence, based on what is discussed

1.3. ARTIFICIAL NEURAL NETWORKS 6

Figure 1.3: Data processing in a neuron [165].

in Section 1.2, the focus is on how every single neuron processes the information arriving in input,

as summarized in Figure 1.3 and in Equation (1.1). The data transfer process inside neuron 8 can

thus be described with the following steps:

1. Data input: Based on matrix, , it can be determined all the neurons 91, . . . , 9= that have a

connection with neuron 8 and are transferring their outputs {~̂: } 9=:=91 to 8 . The inputs G1, . . . , G=
to 8 coincides thus with the outputs coming from the connected neurons.

2. Propagation function: A propagation function 5prop is then applied to the determined inputs,

considering the corresponding connecting weights, in order to obtain the propagated signal h.
A common choice is represented by the weighted summation, as in Equation (1.1):

ℎ8 = 5prop (~̂ 91 , . . . , ~̂ 9= ,F 91,8 , . . . ,F0,8 ,F 9=,8) =
∑
9 ∈�

F 98~̂ 9 +F0,8~̂0 =
∑
9 ∈�

F 98~̂ 9 − 18 , (1.7)

where � = { 91, . . . , 9=} is the set of neurons connected to 8 andF0.8 the bias. It is important to

highlight that also the bias represents an input for 8 , since it can be thought of as a neuron

with an output equal to ~̂0 = −1 and corresponding weight F0,8 = 18 . In particular, its role

resembles that of the threshold value indicating the activation of a biological neuron.

3. Activation function: Once we have the transformed input value ℎ8 , we produce the neuron

output by applying an activation function f , introducing nonlinearity in the network. This

function depends on ℎ8 , as de�ned in the following equation:

08 = f (ℎ8) = f
(∑
9 ∈�

F 98~̂ 9 − 18

)
. (1.8)

4. Output function: the output function calculates the values which are transferred to the

other neurons connected to 8 . It is usually de�ned globally for all neurons to be equal to the

7 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

identity function. Hence, the output of neuron 8 coincide with the value computed in step 3,

~̂8 = 08 .

Therefore, given an ANN, as described in De�nition 1.3.1, input data will be processed by the N
neurons following the previous steps and producing at the end the output vector of the ANN. Using

these notions, we can then construct di�erent neural networks, that di�er from each other in how

these interactions between neurons are made, as will be described in Section 1.4.

Before moving to this brief review of the most common Neural Network architectures, we must

introduce a crucial notion in this context: Learning.

1.3.1 The Learning Paradigm
ANNs have been designed to mimic the behavior of a biological neural network [208, 257], that

has the ability to learn, store, and recall information. Hence, one of the main topics connected with

ANNs is that of Learning [281]: the process of converting experience into expertise or knowledge.

The experience is represented by data, whereas the output is the expertise, leading to the ability

to perform a particular task) . Given thus) and some data, we want to develop an ANN able to

acquire knowledge from these samples about) , to be used to perform) also with new samples.

To implement and then improve the learning process, two steps are needed: the training phase

and the testing phase. The training phase or learning phase coincides with the process in which

the network is learning the task) , whereas the testing phase is performed after the ANN has been

trained. During this process, the network is tested in order to validate its accuracy and performance

on new input data. In particular, given a set of data D, we do not use all the data for training and

then for testing the model, but usually we have that D is split into two parts, one for each of the

aforementioned phases: a training dataset Dtrain, responsible for the learning of the desired task

from the ANN and thus containing most of the data; and a testing dataset Dtest, corresponding to

the remaining part of D, used to test the accuracy of the ANN.

There exists then three main learning paradigms used to teach an ANN how to behave as a biological

neural network, which di�er from each other in the nature of the interaction between learner and

environment [165, 116, 197, 281]: Supervised Learning, Unsupervised Learning, and Reinforcement

Learning. Supervised Learning [9, 218, 281] is a technique where the input and expected output

(target) are provided in the training dataset Dtrain, and we use an ANN to model the relationship

between input and target. Hence, it is describing a scenario in which the experience, namely the

training samples, contains important information to be applied in the testing database Dtest, where

this knowledge is missing. In this case, we can think of the environment as the teacher that is

supervising the learner by providing training data, i.e. the pair input-output. In Unsupervised
Learning [220, 129, 281], this distinction between training and test data does not exist, since labeled

data or target variables are not provided to the net. Hence, this is a method that tries to discover

patterns and trends within a dataset in order to use them to make predictions about new data.

There is also an intermediate learning setting, where the learner is required to predict even more

information from the test examples. Reinforcement Learning [150, 230, 218] di�ers indeed from

the others because of the presence of rewards and punishments based on the ANN performances.

There is also in this case a speci�c expected outcome towards which we are pushing the network to

move, but the ANN will learn the optimal path to achieve it using rewards and punishments signals.

Even if there exist several learning paradigms, in our discussion we are going to concentrate on

supervised learning, so from now on all the details provided concern this type of learning.

Given now a dataset D, that is composed of input-output pairs (x, y), we are interesting in approxi-

mating the target function 5 , describing the desired relation existing between the target variable y
and the input variable x— that can be one- or multi-dimensional vectors, random variables or tensors

—, namely y = 5 (x). In order to do this we can use an ANN, thanks to its property of behaving as

1.4. NEURAL NETWORK TOPOLOGIES 8

an universal approximator [58, 137, 181] for functions with any desired degree of accuracy. The

process of obtaining an accurate approximation can thus be interpreted as the learning process of

this desired function 5 .

More technically speaking, an ANN can be described as a function [62, 281], that modi�es the input

variables using a certain rule to provide an output ŷ:

ŷ = ANN(x) = ANN,,b (x), (1.9)

where the subscripts, and b are indicating the network parameters
4
. As pointed out before, the

ANN tries to approximate the relation existing between x and y, namely the function 5 , by learning

from the data provided in D. In particular, to reach this goal, we need to perform the training

phase, where the ANN will tune the parameters (, ,b) until the distance between the expected

output y and the predicted output ŷ is small enough. This proximity can be measured in di�erent

ways, depending also on the loss function used to model this distance L(y, ŷ) = 38BC (y, ŷ). Hence,
the net is tuning and �nding the optimal parameters by minimizing the loss function. A technical

description of this process is carried out in Section 1.5.2, where we will concentrate on learning

for FNNs. After this learning step, where we have employed the data in Dtrain to train the ANN,

we need to evaluate the accuracy of the network using the remaining samples composing Dtest.

During the testing phase, we are thus computing the distance between the expected output y and

the predicted one ŷ using some techniques and measures, that are described in Section 1.5.9 for the

case of a FNN.

1.4 Neural Network Topologies

We provide in this section an overview of the usual neural network topologies [165, 180, 42], i.e.
the connections between neurons of di�erent layers that de�ne di�erent types of ANN architectures.

In the following description we will refer to the structure of neural networks as made up of vertically

stacked components, called layers, organized as follow:

• Input layer: �rst layer of the network, composed of =in neurons that accept the data and

pass it to the rest of the network.

• Hidden layers: second type of layer found in an ANN. Hidden layers are either one or more in

number for a neural network, depending on the problem at hand. There exists approximation

results providing upper bounds on the su�cient size of a network, but also establishing lower

bounds on the necessary size required for certain approximation tasks [17, 213, 327, 280, 241].

Hence, they play a central role in an ANN, being responsible for the accurate performance

and complexity of the net.

• Output layer: last layer of the network, composed of =out neurons that holds the �nal output

of the problem.

A layer of neurons is thus a processing step into a neural network and, depending on the weights

and activation function used, di�erent types of layers can be constructed, e.g. fully-connected layer
if all the neurons in a layer are connected with those in the next layer; convolution layer and pooling
layer, that will be described in details in Section 2.2.

Formally, if we consider an ANN made up of ! hidden layers
5
, one input layer and one output layer,

4
From now on we will omit the subscripts, except in cases where it is important to specify them.

5
We have decided to follow the convention for which ! indicates the number of hidden layers without considering also

the output layer. Thus, in total, an ANN, with ! hidden layers, has ! + 1 layers.

9 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

we can provide a description of an ANN as composition of functions. As discussed in Section 1.3.1,

an ANN can be see as a function ANN , that, given an input x, it provides an output following

a certain rule [62]. Hence, taking up the notation of De�nition 1.3.1, if the set of neurons N is

organized in di�erent layers based on the existing connections between neurons, enclosed in + , we

can denote with x(ℓ)
the output for layer ℓ , that is made up of =ℓ neurons

6
, where 0 ≤ ℓ ≤ ! + 1.

Now, based on Section 1.3, layer ℓ , for 1 ≤ ℓ ≤ ! + 1, can be described as a function 5ℓ : R
=ℓ−1 → R=ℓ

that maps an input that lies in R=ℓ−1 , i.e. the output of the previous layer, into a tensor
7
in R=ℓ ,

and in particular as a composition of functions, the propagation function 5
(ℓ)
prop

: R=ℓ−1 → R=ℓ , the
activation function f (ℓ)

: R=ℓ → R=ℓ and the output function 5
(ℓ)
out

: R=ℓ → R=ℓ :

5ℓ = 5
(ℓ)
out

◦ f (ℓ) ◦ 5 (ℓ)
prop

, (1.10)

where there could be di�erent choices for the di�erent functions 5
(ℓ)
prop

, f (ℓ)
, 5

(ℓ)
out

, yielding di�erent

types of layers and thus di�erent neural networks.

We can thus provide a formal de�nition of an ANN as the composition of functions 51, . . . , 5!+1,
which characterize each layer of the net:

ANN(x0) = 5!+1 ◦ 5! ◦ · · · ◦ 51 (x(0)), x(0) ∈ R=0 , (1.11)

where the type of layer de�ned by each function 5ℓ will determine the neural network topology we

are constructing, as it will be understood in the following discussion.

1.4.1 Feedforward Neural Network

.

.

.
.
.
.

.

.

. .
.
.

G=in

G1

G2

~̂1

~̂=out

Input

layer

Hidden

layer 1

Hidden

layer 2

Output

layer

Figure 1.4: Schematic structure of a Feedforward Neural Network.

The simplest form of neural network model is represented by Feedforward Neural Networks
(FNNs), also called multilayer perceptron. This type of neural network is usually employed for

6
It is useful to point out that in the following sections and chapter we will refer to the number of input neurons =0 also

with =in, and to the number of output neurons =!+1 with =out or =class in Chapter 3.

7
As discussed before, the output of a layer can be a vector, a scalar, a general tensor. The notion that includes all these

possibilities is that of tensor since scalars and vectors can be seen as particular cases of tensors. For this reason, from now

on, we are using the general term tensor to indicate the output of layer ℓ . In particular, if we have a generic tensor we can

think of R=ℓ as the Cartesian product of spaces, e.g. R=ℓ = R3, × R3� × R3� .

1.4. NEURAL NETWORK TOPOLOGIES 10

input image

convolutional

block 1

convolutional

block 2

convolutional

block 3

fully connected

layer

output

layer

Figure 1.5: Schematic structure of a Convolutional Neural Network.

function regression [85, 215, 257, 291], computer vision [167, 282], data compression [278, 12],

pattern recognition [14, 250, 25], �nancial prediction [290, 207], time series forecasting [303, 162],

speech and handwritten characters recognition [104, 48]. Its architecture, depicted in Figure 1.4, is

characterized by forward connections, namely input data travel in one direction only from left to

right, passing through arti�cial neural nodes of the several layers and exiting through the output

nodes. An exhaustive discussion about FNN will be carried out in Section 1.5 since this represents

an architecture we have extensively used in the following chapters.

1.4.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are very popular deep
8
neural networks used to solve

complex problems such as image recognition, speech recognition, or computer vision [6, 172, 99].

It is a particular type of FNN, since also in this case the net is characterized only by forward

connections between its layers. Figure 1.5 presents the common structure of a CNN, which can be

seen as a combination of two basic building blocks: the convolutional blocks and the fully connected

feedforward layers. A more detailed description of the architecture and the way of using CNNs is

provided in Chapter 2 since they represent one of the central topics of this thesis.

1.4.3 Recurrent Neural Network

Recurrent Neural Network (RNN) is a type of ANN commonly used for ordinal or temporal

problems, such as language translation, natural language processing (NLP), and speech recognition.

As depicted in Figure 1.6, the net is composed of a particular type of hidden layers, called recurrent
neural network layers, which di�er from the usual ones in the dependence of their outputs on

the previous elements within the sequence. Therefore, to take into account these existing time

relationships, these algorithms are characterized by a memory, where information from previous

states ŷ(C−1)
provides an outcome and an input to the next state ŷ(C)

, with C being the time step we

are considering [77, 209].

8
The term ‘deep’ is used to identify the width of the net, i.e. the high number of layers that compose it.

11 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

.

.

.
.
.
.

.

.

. .
.
.

G=in

G1

G2

~̂1

~̂=out

Input

layer

Recurrent

layer 1

Recurrent

layer 2

Output

layer

Figure 1.6: Schematic structure of a Recurrent Neural Network.

1.4.4 Autoencoder
Another type of ANN are Autoencoders (AEs) [99, 131, 275, 179], a model widely used for

classi�cation, clustering, and feature compression. As depicted in Figure 1.7, they mainly consist

of three components: an encoder with the corresponding encoding method, a code and a decoding

method connected with a decoder. It is important to highlight that both the encoder and the decoder

are fully-connected FNNs and thus they are each other’s mirror image. More technically speaking,

an AE functions in the following way: �rst the input x passes through the encoder to produce the

lower dimensional code z, then the decoder maps the code to a reconstruction of the input x̃. Hence,
the AE performs a dimensionality reduction on the input, which is then reconstructed from the

reduced version. In order to obtain an output almost identical with the input, AEs are trained the

same way as ANNs minimizing, in this case, the reconstruction loss L(G̃, x), that quanti�es the
quality of the reconstruction G̃ .

1.5 Feedforward Neural Networks

Feedforward Neural Networks (FNNs) or multilayer perceptrons (MLPs) represent a

popular type of ANNs widely used in the context of deep learning [99, 85, 42]. As previously

introduced in Section 1.4.1 and depicted in Figure 1.4, they mainly consist of an input layer, an

output layer, and a certain number of hidden layers in the middle
9
. The base elements that compose

each of these layers are the neurons and the associated weights, describing the strength of the

existing connections, as discussed in Section 1.2.

As stated in Section 1.3.1, in order to employ a FNN as model to solve a task, we need to let

the network learn the problem and the knowledge we have about it, contained in the training

dataset Dtrain, and then test its performances exploiting the testing samples in Dtest. We shall now

provide more details about how the training and testing phases are carried out for a FNN. There

are indeed two main notions connected to these topics: forward propagation and backward

9
The number of hidden layers is not determined a priori looking only at the data provided. It depends on the problem

under consideration and is usually determined empirically by testing di�erent architectures [310].

1.5. FEEDFORWARD NEURAL NETWORKS 12

encoder decoder

input output

Figure 1.7: Schematic structure of an Autoencoder.

propagation. The forward step indicates the simple evaluation of the output, given some inputs,

and is thus strictly connected with the testing phase. On the other hand, backward propagation is

the key ingredient of the training process, representing thus the learning method for a FNN.

1.5.1 Forward Propagation
With the term forward propagation [42] we are referring to the process of going forward

through the network, i.e. �nding all the neuron outputs. Therefore, to obtain the �nal output of the

network ŷ ∈ R=out , we have to start from Equation (1.1) and the notions presented in Section 1.3.

Therefore, let x(0) ∈ R=in be the input vector and ! the total number of hidden layers of the FNN.

Since in a FNN neurons are organized in sequential layers without feedback connections in which

outputs of the model are fed back into itself, the output of each layer depends only on the output of

the previous layer. Coupling this feature with Equation (1.1), we obtain the following expression for

the output of the 9-th x in layer ℓ , G
(ℓ)
9
, [42]:

G
(ℓ)
9

= f (ℎ (ℓ)
9
) = f

(
=ℓ−1∑
8=0

F
(ℓ)
98
G
(ℓ−1)
8

)
= f

(
=ℓ−1∑
8=1

F
(ℓ)
98
G
(ℓ−1)
8

− 1 (ℓ)
9

)
, for 9 = 1, . . . , =ℓ , (1.12)

where G
(ℓ−1)
8

are the input signals coming from the previous layer ℓ − 1; =ℓ , ℓ = 0, 1, . . . , !, ! + 1,

represents the number of neurons in layer ℓ ; ℎ
(ℓ)
9

is the transformed input value or total input of

neuron 9 as introduced in Equation (1.7);, (ℓ) = (F (ℓ)
98
) 98 , 9 = 1, . . . , =ℓ , 8 = 1, . . . , =ℓ−1 represents

the weight matrix of the net, and G
(ℓ)
0

= −1 the fake input linked to the bias 1
(ℓ)
8

related to layer ℓ .

Note that we are using the upper script ℓ to denote the layer number, where ℓ = 0 denotes the input

layer and ℓ = ! + 1 is the output layer. Furthermore, in any weights subscript, we are using the

convention that the �rst number matches the index of the neuron in the next layer and the second

number matches the index of the neuron in the previous layer.

Each component of the output vector G
(ℓ)
9

is hence obtained through the application of an activation
function f to the weighted sum of all the inputs arriving at it from the previous layer. As discussed

in section 1.2 and section 1.3, there are plenty of choices for f [99, 165], depending on the problem

in exam. Usually, the same activation function is used in all hidden layers, but there exists also the

13 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

possibility of choosing di�erent functions.

Equation (1.12) can also be written in a more compact form, using matrix notation [42]:

x(ℓ) = f
(
, (ℓ)) x(ℓ−1) − b(ℓ)

)
, (1.13)

where we are using the convention that the activation function applied on a vector acts on each of

the components of the vector and we have that x(ℓ) ,, (ℓ)
, and b(ℓ) corresponds to:

x(ℓ) = (G (ℓ)
1
, . . . , G

(ℓ)
=ℓ)

) , , (ℓ) = (F (ℓ)
98
) 98 , b(ℓ) = (1 (ℓ)

1
, . . . , 1

(ℓ)
=ℓ)

) ,

with 1 ≤ 8 ≤ =ℓ−1 and 1 ≤ 9 ≤ =ℓ .
Now, since we are considering a FNN made of ! hidden layers, the �nal output can be seen as a

weighted sum of the inputs arriving at the neurons in the output layer followed by the activation

function, where each of these inputs can be rewritten in the same way generating a recursive

formula:

~̂ 9 = f

(
=!∑
8=0

F
(!+1)
98

G
(!)
8

)
= f

(
=!∑
8=0

F
(!+1)
98

(
f

(
=!−1∑
@=0

F
(!)
8@
G
(!−1)
@

)))
= · · · =

= f

(
=!∑
8=0

F
(!+1)
98

(
f

(
=!−1∑
@=0

F
(!)
8@

(
f

(
. . .

(
f

(
=8=∑
:=0

F
(1)
B:
G:

)))))))
, 9 = 1, . . . , =out,

(1.14)

It is important to point out that, when constructing a FNN, usually the weights and the other

parameters of the network are randomly initialized following some criteria, as described in detail

in Section 1.6. For this reason, at the end of the forward pass, we could not expect to obtain the

correct predictions. This is thus preparing the ground for the second step of the method: the

backward propagation.

1.5.2 Backward Propagation

Let Dtrain = {x8 , y8 }=train
8=1

be the training dataset and ŷ = FNN(x) be the predicted output

of a FNN. As introduced in section 1.3.1, in order to measure the distance between the expected

output y and the predicted output ŷ, a cost or loss function L = L,,b (y, ŷ) = 38BC (y, ŷ) needs to
be introduced

10
. There exist several types of functions that can be used for this purpose, as the

following:

• ℓ2-Error Function: it measures the Euclidean distance between the predicted and expected

outputs for each sample in the training dataset, i.e. is de�ned as:

Lℓ2 (., .̂) =
1

=train

=train∑
8=1

L8
ℓ2
(y8 , ŷ8) = 1

=train

=train∑
8=1

1

2

‖y8 − ŷ8 ‖2 = 1

=train

=train∑
8=1

=out∑
9=1

1

2

(~89 − ~̂89)2,

(1.15)

where . = [y1, . . . , y=train] and .̂ = [ŷ1, . . . , ŷ=train].

• Mean-Squared Error (MSE): commonly adopted in regression problems [281, 218], it is

de�ned by:

LMSE (., .̂) =
1

=train

=train∑
8=1

L8
MSE

(y8 , ŷ8) = 1

=train

=train∑
8=1

(y8 − ŷ8)2. (1.16)

10
Also here we will omit, from now on, to specify the subscripts identifying the parameters of the FNN for simplicity in

the notation.

1.5. FEEDFORWARD NEURAL NETWORKS 14

• Mean Absolute Error (MAE): it measures the mean absolute value of the element wise

di�erence between y8 and ŷ8 , for 8 = 1, . . . , =train:

LMAE (., .̂) =
1

=train

=train∑
8=1

L8
MAE

(y8 , ŷ8) = 1

=train

=train∑
8=1

| y8 − ŷ8 | . (1.17)

• Cross Entropy (CE) Loss: commonly used in the context of binary classi�cation prob-

lems [99], but can be easily extended for multi-class classi�cation [305], as described in Sec-

tion 2.2.6. The loss is obtained by computing the following average:

LCE (., .̂) =
1

=train

=train∑
8=1

L8
CE
(y8 , ŷ8) = − 1

=train

=train∑
8=1

(
y8 log(ŷ8) + (1 − y8) log(1 − ŷ8)

)
. (1.18)

Also in this case, the correct loss depends on the problem in exam [6, 99] and should be chosen

based on some empirical observations. Sometimes to avoid over�tting the training data and to deal

with small values of the parameters, a penalization term may be included in the de�nition of the

loss function [42, 331]:

Lpenalty (., .̂) = L(., .̂) + _� (,), (1.19)

where _ is the regularization parameter and � (,) is the non-negative regularization term. Com-

monly choices are represented by the !1− or !2-regularization, i.e. the !1 or !2 norms of ,

respectively.

In order to tune all FNN’s parameters, we need to perform Backward propagation [253, 263,

331]. Going backward through the networks means computing the gradient of the cost function

L to update the parameters set using the gradient descent method [43, 108], which will lead

to an improved prediction of the expected output. It is important to point out that a fundamental

assumption to apply backward propagation is having only forward connections in the network.

This is the reason why we are describing these methods for FNNs and not for a generic ANN.

Once we have determined a loss function to model the proximity between expected and predicted

outputs, the FNN will tune the parameters (, ,b) until this distance is small enough. Hence, we want

to �nd a set of weights and biases which make the loss as small as possible, namely the following

minimization problem needs to be solved:

min

(,,b)

{
1

=train

=train∑
8=1

L8
, ,b (y

8 , ŷ8)
}
. (1.20)

The optimal parameters of the net are then in particular obtained using the aforementioned Gradient
Descent algorithm, where the gradients are computed through the Backpropagation algorithm. There

exists also other techniques that can be used to solve the minimization problem (1.20). Here we have

decided to focus only on the gradient descent (see Section 1.5.4) and on three popular extension, the

stochastic gradient descent (see Section 1.5.5), the Momentum Method (see Section 1.5.6) and Adam
(see Section 1.5.7), since these represent the methods used in our tests. A list of other optimization

algorithms can be found in [42, 99].

1.5.3 Backpropagation Algorithm
For the purposes of gradient descent, as it will be discussed in Section 1.5.4, we need to perform

the computation of the gradient ∇L = (∇,L,∇bL) [62].
Starting with the partial derivative of L with respect to the weights, , we can notice that the

15 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

weightF
(ℓ)
98

a�ects the loss only in the total input for neuron 9 of layer ℓ , ℎ
(ℓ)
9
. Therefore, using the

chain rule the following relation is provided [42]:

mL
mF

(ℓ)
98

=
mL
mℎ

(ℓ)
9

mℎ
(ℓ)
9

mF
(ℓ)
98

= X
(ℓ)
9

mℎ
(ℓ)
9

mF
(ℓ)
98

, (1.21)

where we have introduced the delta notation X
(ℓ)
9

to denote the sensitivity of the loss with respect

to ℎ
(ℓ)
9
. The second term in Equation (1.21) can then be computed explicitly using Equation (1.12):

mℎ
(ℓ)
9

mF
(ℓ)
98

= G
(ℓ−1)
8

. (1.22)

Substituting this relation in Equation (1.21), this yields:

mL
mF

(ℓ)
98

= X
(ℓ)
9
G
(ℓ−1)
8

. (1.23)

Similarly, we can carry out the same analysis for the biases b. Also in this case the loss L is a�ected

by the bias 1
(ℓ)
9

only through the total input for neuron 9 of layer ℓ , ℎ
(ℓ)
9
. Exploiting the chain rule

in the computation of the partial derivative of L with respect to the bias 1
(ℓ)
9
, we obtain [42]:

mL
m1

(ℓ)
9

=
mL
mℎ

(ℓ)
9

mℎ
(ℓ)
9

m1
(ℓ)
9

= X
(ℓ)
9

mℎ
(ℓ)
9

m1
(ℓ)
9

, (1.24)

where we have exploited the delta notation introduced before. Di�erentiating ℎ
(ℓ)
9
, de�ned in Equa-

tion (1.12), with respect to the bias 1
(ℓ)
9
, we get:

mℎ
(ℓ)
9

m1
(ℓ)
9

= −1, (1.25)

that can then be substituted in Equation (1.24), providing:

mL
m1

(ℓ)
9

= −X (ℓ)
9
. (1.26)

Both Equation (1.23) and Equation (1.26) contain an unknown term X
(ℓ)
9

that we are now going

to compute using the backpropagation algorithm. The key step of this method coincides exactly

with the backpropagation of deltas, i.e. their computation exploiting deltas coming from the next

layer [42]. Therefore, we start with the computation of deltas in the last layer ! + 1, X
(!+1)
9

, with

1 ≤ 9 ≤ =out, that are de�ned as:

X
(!+1)
9

=
mL

mℎ
(!+1)
9

. (1.27)

From this relation is clear that X
(!+1)
9

depends on the form of the loss function, as each X
(ℓ)
9
, for

1 ≤ ℓ ≤ !. For instance, we can consider the !2-error function de�ned in Equation (1.15), focusing

on only one generic sample (x, y) with the associated prediction ŷ:

L!2 (y, ŷ) =
1

2

‖y − ŷ‖2 = 1

2

=out∑
8=1

(~8 − ~̂8)2. (1.28)

1.5. FEEDFORWARD NEURAL NETWORKS 16

Based on Equation (1.12), we can rewrite each component of the predicted output as:

~̂8 = f (ℎ (!+1)8
). (1.29)

Hence, if we explicit the computation of X
(!+1)
9

exploiting the !2-loss introduced in Equation (1.28)

and the chain rule, we gain:

X
(!+1)
9

=
mL

mℎ
(!+1)
9

= (~ 9 − ~̂ 9)f ′(ℎ (!+1)
9

). (1.30)

This relation can be further expanded based on the form of the activation function f chosen
11
. For

example, if we now consider the logistic function with 2 = 1 de�ned in Equation (1.5):

f (G) = 1

1 + 4 (−G)
=

4G

1 + 4 (−G)
,

we can compute its derivative:

3f (G)
3G

=
4 (G) (1 + 4 (G)) − 4 (G)4 (G)

(1 + 4 (−G))2
=

4 (G)

(1 + 4 (G))2
= f (G) (1 − f (G))

and substitute in Equation (1.30) to get:

X
(!+1)
9

= (~ 9 − ~̂ 9)f (ℎ (!+1)8
) (1 − f (ℎ (!+1)

8
)) .

Once we have understood how to compute deltas for the output layer, we need to �nd an expression

for the deltas of layer ℓ − 1 in terms of the deltas of layer ℓ . Hence, exploiting the chain rule in the

relation de�ning X
(ℓ−1)
8

, we have:

X
(ℓ−1)
8

=
mL

mℎ
(ℓ−1)
8

=

=ℓ∑
:=1

mL
mℎ

(ℓ)
:

mℎ
(ℓ)
:

mℎ
(ℓ−1)
8

=

=ℓ∑
:=1

X
(ℓ)
:

mℎ
(ℓ)
:

mℎ
(ℓ−1)
8

, (1.31)

where we have used the fact that the loss function is a�ected by ℎ
(ℓ−1)
:

trough all the ℎ
(ℓ)
:

from

layer ℓ : it can be noticed that ℎ
(ℓ−1)
:

in layer ℓ − 1 represents an input for all neurons in layer ℓ , i.e.

for all ℎ
(ℓ)
:

, explaining also the need of a summation over the neurons in layer ℓ .

The last thing we shall compute is the term

mℎ
(ℓ)
:

mℎ
(ℓ−1)
8

, that measures the sensitivity of the total input

ℎ
(ℓ)
:

to neuron : in layer ℓ with respect to the total input ℎ
(ℓ−1)
8

to neuron 8 in layer ℓ − 1. This can

be done by di�erentiating Equation (1.12):

mℎ
(ℓ)
:

mℎ
(ℓ−1)
8

=
m

mℎ
(ℓ−1)
8

(
=ℓ−1∑
<=1

F
(ℓ)
:<
G
(ℓ−1)
< − 1 (ℓ)

:

)
=

m

mℎ
(ℓ−1)
:

(
=ℓ−1∑
<=1

F
(ℓ)
:<
f (ℎ (ℓ−1)<) − 1 (ℓ)

:

)
= F

(ℓ)
:8
f ′(ℎ (ℓ−1)

8
).

(1.32)

11
See Section 1.2 for a list of possible choices for f .

17 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

Using this relation in Equation (1.31), we gain the backpropagation formula for the deltas [42]:

X
(ℓ−1)
8

= f ′(ℎ (ℓ−1)
8

)
=ℓ∑
:=1

X
(ℓ)
:
F

(ℓ)
:8
. (1.33)

In this way, we have obtained a formula for the deltas in layer ℓ − 1 in terms of the deltas in layer ℓ

using a weighted sum.

Also in this case, if we consider for instance the logistic function with 2 = 1 de�ned in Equation (1.5),

the previous Equation (1.33) becomes:

X
(ℓ−1)
8

= f (ℎ (ℓ−1)
8

) (1 − f (ℎ (ℓ−1)
8

))
=ℓ∑
:=1

X
(ℓ)
:
F

(ℓ)
:8
.

1.5.4 Gradient Descent Algorithm
The gradient descent method [43, 108, 42, 99, 165, 62] is a �rst-order iterative optimization

algorithm for �nding a local minimum of a di�erentiable function. The basic idea is to take, from

any starting point, repeated steps in the opposite direction of the gradient of the function, with

the size of the steps being proportional to the norm of the gradient. Hence, we are searching the

minimum of a function in the direction in which the value of the function is decreasing mostly,

called the steepest descent, that is identi�ed by the negative gradient.

More technically speaking, we aim at �nding the unitary direction u ∈ R= in which a function 5 ,

represented in our case by the loss function L, decreases more within a given small step size `. To

measure the change of the value of a function between an initial point x0 ∈ R= and the value after a
step ` in the direction v, we need to consider the following linear approximation:

5 (x0 + `u) − 5 (x0) =
=∑
8=1

m5

mG8
(x0)`D8 + > (`2) = `〈∇5 (x0), u〉 + > (`2). (1.34)

Since we attempt to �nd the direction u in which the function has the change with the largest

negative value, we can neglect the e�ect of the quadratic term > (`2), considering that ` is small

enough, and then use the Cauchy inequality for the scalar product:

− ‖∇5 (x0)‖‖u‖ ≤ 〈∇5 (x0), u〉 ≤ ‖∇5 (x0)‖‖u‖ . (1.35)

In the previous relation we can note that the equality is satis�ed when u = _∇5 (x0), _ ∈ R. Hence,
since for hypothesis ‖v‖ = 1, we have that the minimum occurs for

12

u = − ∇5 (x0)
‖∇5 (x0)‖

. (1.36)

Therefore, based on these considerations, Equation (1.34) can be approximated as:

5 (x0 + `u) − 5 (x0) = `〈∇5 (x0), u〉 = −`‖∇5 (x0)‖, (1.37)

representing the largest change in the function. The step size ` is a positive scalar, called learning
rate. There exist several ways to determine `: it can be set to a small �xed constant or determined

using a line search approach that seeks the value of ` resulting in the smallest objective function

value.

The gradient descent algorithm can thus be summarized with the following steps [42], which attempt

to construct the sequence (xC)C , with xC being the result of the application of C step of this procedure

to x0, i.e. xC = x0 (C) ∈ R= :

12
It is more clear if we think that 〈∇5 (x0), u〉 = ‖∇5 (x0) ‖ ‖u‖ cos(\) . The minimum is reached when \ = c , i.e. when

u points in the opposite direction of the gradient.

1.5. FEEDFORWARD NEURAL NETWORKS 18

(i) Choose an initial point x0 = x0 (0) in the basin of attraction of the global minimum x∗.

(ii) Construct the sequence (xC)C as:

xC+1 = xC − `
∇5 (xC)
‖∇5 (xC)‖

, (1.38)

that is guaranteeing a negative change in our function 5 .

As pointed out in [42], this procedure has a drawback: the sequence (xC)C is not converging since
‖xC+1 − xC ‖ = ` > 0. It shall be assumed that the learning rate ` is not �xed, but adjustable, in

the sense that it becomes smaller as the gradient is smaller, i.e. when the function changes slower.

We are thus assuming that exists a constant [> 0 such that the learning rate at iteration C is

proportional to the gradient:

`C = [‖∇5 (xC)‖. (1.39)

Using this new expression for the learning rate, the iteration (1.38) becomes:

xC+1 = xC − [∇5 (xC). (1.40)

We can now provide a necessary and su�cient condition that guarantees the convergence of this

sequence:

Proposition 1.5.1 ([42]). The sequence (xC)C de�ned by (1.40) is convergent if and only if the sequence
of gradients (∇5 (xC))C converges to zero.

Proof. ⇒: The sequence (xC)C is convergent, hence, using Equation (1.40), we have:

0 = lim

C→∞
‖xC+1 − xC ‖ = [lim

C→∞
‖∇5 (xC)‖,

i.e. the sequence of gradients converges to zero.

⇐: In order to prove that the sequence (xC)C is convergent, we need to show that it is a Cauchy

sequence. So, let : ≥ 1, applying the triangle inequality we obtain:

‖xC+: − xC ‖ ≤ ‖xC+: − xC+:−1‖ + · · · + ‖xC+1 − xC ‖ = [
:∑
8=0

‖∇5 (xC+8)‖.

Now, if : is �xed, taking the limit to in�nity yields:

lim

C→∞
‖xC+: − xC ‖ ≤ [

:∑
8=0

lim

C→∞
‖∇5 (xC+8)‖ = 0.

After we have understood the basic notions of gradient descent algorithm, we can apply it to

our case [42], i.e. the minimization of the loss function, as described in Equation (1.20). We are thus

interested in �nding the optimal set of weights, ∗
and biases b∗ that solves our problem.

Let, (ℓ) (0) and b(ℓ) (0) represent the initial system of weights and biases, initialized randomly

followed the procedure described in Section 1.6. After the training phase of the FNNwith the gradient

descent algorithm, the optimum values of weights and biases are determined by using Equation (1.40)

19 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

coupled with Equations (1.23) and (1.26). The approximation sequences are thus de�ned recursively

by the following equations:

F
(ℓ)
98

(C + 1) = F (ℓ)
98

(C) − [X (ℓ)
9

(C)G (ℓ−1)
8

(C),

1
(ℓ)
9
(C + 1) = 1 (ℓ)

9
(C) + [X (ℓ)

9
(C),

(1.41)

where the outputs G
(ℓ−1)
8

(C) and deltas X
(ℓ)
9

(C) depend on the weightsF
(ℓ)
98

(C) and biases 1
(ℓ)
9
(C) at

time step C .

1.5.5 Stochastic Gradient Descent Algorithm
One thing that characterizes machine learning is the use of large datasets for training neural

networks, leading to computationally expensive training processes [30, 99, 42]. In particular, as

we have seen in Section 1.5.2, the loss functions can often be decomposed as a sum over training

samples of some per-sample losses:

L,,b (., .̂) =
1

=train

=train∑
8=1

L8
, ,b (y

8 , ŷ8). (1.42)

In order to solve the minimization problem (1.20), we need to compute the gradient of L, i.e. of L8
,

for 8 = 1, . . . , =train, with respect to the parameters of the net θ = (,, b):

∇θLθ (., .̂) =
1

=train

=train∑
8=1

∇θL8
θ (y

8 , ŷ8). (1.43)

This operation has a computational cost of $ (=train), which becomes prohibitively long as the

training set size grows. Hence, a solution to this problem is represented by batch training, i.e.
sampling a random mini-batch and computing an estimation of the gradient from it. This process

of updating the network parameters estimating the loss gradient with an average of gradients

measured on randomly selected training samples composing a mini-batch is called Stochastic
Gradient Descent (SGD) [30, 31, 99, 42].
Speci�cally, as described in Algorithm 1, on each step of the algorithm, a mini-batch of independent

and identically distributed (i.i.d.) samples D10C2ℎ = {x1, . . . , x<}, with< be the size of the mini-

batch, is extracted uniformly from the whole training dataset Dtrain. Usually, the size of the batch is

�xed to a value relatively small with respect to =train, e.g. ranging from 8 to 100. Equation (1.43) is

thus replace in SGD with:

˜∇θLθ (.batch, .̂batch) =
1

<

<∑
8=1

∇θL8
θ (y

8 , ŷ8), (1.44)

where .batch and .̂batch represents respectively the expected and predicted outputs related to the

chosen samples that compose the mini-batch Dbatch.

The update of the parameter will follow the same relation described in Equation (1.40), using in this

case the estimated gradient in the mini-batch:

θC+1 = θC − [˜∇Lθ (.batch, .̂batch), (1.45)

where θC+1 = θ(C + 1) = (W (C + 1), b(C + 1)). Also in this case, the learning rate [is not �xed but

will decrease over time to balance the noise introduced in the random sampling of the mini-batch

1.5. FEEDFORWARD NEURAL NETWORKS 20

Algorithm 1 Stochastic Gradient Descent Update [99]

Inputs:

• Loss function Lθ ;

• training dataset Dtrain = {x8 , y8 }=train
8=1

;

• batch size<;

• predicted outputs of the FNN .̂ = {ŷ9 }=train
9=1

;

• initial value for the parameters θ0 = θ(0) = (, (0), b(0));
• number of mini-batches =batch =

=train

<
;

• learning rates at iteration 0 and g : [0 and [=batch .

1: for k=1,. . . ,=batch do
2: Sample a mini-batch of< i.i.d. samples Dbatch = {x1, . . . , x<};
3: Determine the corresponding expected outputs y8 for each sample in Dbatch;

4: Compute estimation of the gradient:
˜∇θLθ (.batch, .̂batch);

5: Compute learning rate [C using (1.47);

6: Update of the parameters: θC = θC−1 − [C ˜∇θLθ (.batch, .̂batch).
7: end for

and let the SGD gradient estimator be close to zero when approaching the minimum [99]. In practice,

the learning rate decays linearly, until a chosen iteration g , as:

[C = (1 − U)[0 + U[=g , with U =
C

g
, (1.46)

where g usually coincides with the number of iterations required to make a few hundred passes

through the training set. The initial learning rate [0 is then chosen based on the learning curve,

i.e. how the loss varies on time [99]. Its value will be a trade-o� between a slow learning process,

common for low values of [0, and violent oscillations of the loss due to a large learning rate. The

value of [C0D is then set roughly to 1 percent of the value of [0 [99].

After iteration g the learning rate is commonly left �xed to a constant [. Therefore, we have that

the learning rate [C is determined by:

[C =

{
(1 − U)[0 + U[=g , for C < g,

[, for C ≥ g .
(1.47)

Starting from SGD, several optimization methods with adaptive learning rate have been developed.

Two popular modi�ed versions of SGD are represented by AdaGrad (Adaptive Gradient) [74, 42]

and Root Mean Square Propagation (RMSProp) [309, 42].

1.5.6 Momentum Method
In order to avoid getting stuck in a local minimum or slow learning processes, gradient descent

is modi�ed by introducing a velocity variable. We have thus that the gradient is modifying the

velocity and not the position, which is a�ected by the changes of the velocity itself. This kind

of technique has the goal of accelerating learning while performing the minimization of the loss

function and it is calledmomentum method [242, 263, 99, 42].

Formally, a variable v is introduced with the role of velocity, representing thus the speed at which the
parameters move in the parameter space. From a physical point of view, the momentum coincides

21 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

Algorithm 2 Stochastic Gradient Descent With Momentum [99]

Inputs:

• Loss function Lθ ;

• training dataset Dtrain = {x8 , y8 }=train
8=1

;

• batch size<;

• predicted outputs of the FNN .̂ = {ŷ9 }=train
9=1

;

• initial value for the parameters θ0 = (, (0), b(0)) and for the velocity v0;

• number of mini-batches =batch =
=train

<
;

• learning rate [and momentum coe�cient U .

1: for k=1,. . . ,=batch do
2: Sample a mini-batch of< i.i.d. samples Dbatch = {x1, . . . , x<};
3: Determine the corresponding expected outputs y8 for each sample in Dbatch;

4: Compute estimation of the gradient:
˜∇θLθ (.batch, .̂batch) =

1

<

<∑
8=1

∇θL8
θ (y

8 , ŷ8);

5: Compute velocity update: vC = UvC−1 − [˜∇θLθ (.batch, .̂batch);
6: Update of the parameters: θC = θC−1 + v: .
7: end for

with mass times velocity and the negative gradient represents a force moving a particle through the

parameter space, according to Newtons laws of motion. In our case, we are assuming unit mass, so

velocity v coincides with the momentum of the particle.

As presented in [242], the simultaneous updates for the position and velocity are given by the

following rule:

vC+1 = v(C + 1) = Uv(C) − [∇5 (x(C)),
xC+1 = x(C + 1) = x(C) + v(C + 1),

(1.48)

with [be the learning rate and U ∈ [0, 1) a hyperparameter, calledmomentum coe�cient, controlling
how quickly the contributions of previous gradients exponentially decay [99]. Furthermore, the

larger U than [, the more the previous gradients are a�ecting the current direction. It is also worth

noting that, when U → 0, the system of equations (1.48) becomes the gradient descent method

presented in Section 1.5.4. Usually, U is set to be equal to 0.5, 0.9 or 0.99, but, as for the learning

rate, it also may be adapted over time, starting from a small value, then raised during the process.

Also in this case, we can provide a convergence result
13
as for the gradient descent method, that

guarantees the convergence of both sequences (xC)C and (vC)C when the sequence of gradients tends

to zero [42].

By applying equations (1.48) to our case, we gain the expression for the update of the parameters at

step C , i.e. vC+1 = v(C + 1) and θC+1 = θ(C + 1):

vC+1 = UvC − [
1

<

<∑
8=1

∇θL8
θ (y

8 , ŷ8),

θC+1 = θC + vC+1,

(1.49)

13
We are not proving this proposition since this would require the introduction of other notions and theorems and this is

not the goal of our discussion. The interested reader can refer to Section 4.4 of [42] for the complete proof.

1.5. FEEDFORWARD NEURAL NETWORKS 22

where θ = (,, b) are the parameters of the FNN and we are using, as in Section 1.5.5, batch

training. Algorithm 2 is summarizing the process of parameters update in the case of SGD coupled

with momentum.

A variant of the momentum method is represented by Nesterov Momentum or Nesterov Accelerated
Gradient (NAG) [297, 99], which is a �rst-order optimization method inspired by Nesterov’s ac-

celerated gradient method [225] and characterized by a better convergence rate than the gradient

descent [42].

1.5.7 Adam Optimization Algorithm

Adam is an adaptive learning rate optimization algorithm, inspired by the previous AdaGrad

e RMSProp methods [158, 42, 99]. The name Adam derives from adaptive moments, hence it uses
estimations of the �rst and second moments of the gradient to adapt the learning rate for each weight

of the neural network and then includes some bias corrections to these estimates, as summarized

in Algorithm 3.

Formally, the loss function L(θ) can be considered a random variable, since it is usually evaluated

on some small random batch of data, di�erentiable with respect to θ. Hence in this case we are

interested in solving this minimization problem:

θ∗ = argminθE[L(θ)] . (1.50)

The # -th momentum of a random variable - is the expected value of that variable to the power of

:

"# = E[-#] .

In particular, we are interested in the �rst and second moments, which represent the mean, and the

uncentered
14
variance respectively. Denoting with 6C = 6(C) = ˜∇θ (C)L(.batch, .̂batch) the gradient of

the loss function at time step C on the current mini-batch Dbatch and �xing an initial value for the

parameter θ(0) = θ0, in order to estimate the moments, Adam uses exponentially moving averages

computed on the gradient evaluated on the current mini-batch:

mC = m(C) = V1m(C − 1) + (1 − V1)6C ,
vC = v(C) = V2v(C − 1) + (1 − V2) (6C)2,

(1.51)

where (6C)2 denotes the elementwise square of6C ; V1 ∈ [0, 1) and V2 ∈ [0, 1) are two hyperparameters

representing exponential decay rates for the momentum estimates, with default values of 0.9 and

0.999 respectively [158]. Then, we have that the vectors of moving averages are initialized with

zeros, i.e. m(0) = 0 and v(0) = 0.

The moving averages m(C) and v(C) can be interpreted as biased estimates of the �rst and second

moment of the gradient de�ned by the exponential moving average. We now want to correlate

them with the �rst and second momentum of 6C , to gain, in the end, the following property:

E[m(C)] = E[6C],
E[v(C)] = E[(6C)2] .

(1.52)

14
Uncentered refers to the fact that we are not subtracting the mean during variance calculation.

23 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

First, we need to rewrite Equations (1.51) in a more compact form. Hence, considering the relation

de�ning m(C), we have:

m(0) = 0,

m(1) = V1m(0) + (1 − V1)61 = (1 − V1)61,
m(2) = V1m(1) + (1 − V1)62 = V1 (1 − V1)61 + (1 − V1)62,
m(3) = V1m(2) + (1 − V1)63 = V21 (1 − V1)61 + V1 (1 − V1)62 + (1 − V1)63,

. . .

Algorithm 3 Adam Optimization Algorithm [99]

Inputs:

• Loss function Lθ ;

• training dataset Dtrain = {x8 , y8 }=train
8=1

and predicted outputs of the FNN, .̂ = {ŷ9 }=train
9=1

;

• batch size< and number of mini-batches =batch =
=train

<
;

• learning rate [and constant n , default values [= 0.001 and n = 10
−8
;

• exponential decay rates for moment estimates V1, V2 with default values set at V1 = 0.9 and

V2 = 0.999;

• initial value for the parameters θ0 = (, (0), b(0));
• initial values for �rst and second moment m(0) = 0 and v(0) = 0.

1: for t=1,. . . ,=batch do
2: Sample a mini-batch of< i.i.d. samples Dbatch = {x1, . . . , x<};
3: Determine the corresponding expected outputs y8 for each sample in Dbatch;

4: Compute estimation of the gradient: 6C = ˜∇θ (C)Lθ (.batch, .̂batch) =
1

<

<∑
8=1

∇θ (C)L8
θ (y

8 , ŷ8);

5: Compute biased �rst moment estimate: m(C) = V1m(C − 1) + (1 − V1)6C ;
6: Compute biased second moment estimate: v(C) = V2v(C − 1) + (1 − V2) (6C)2;
7: Bias correction �rst moment: m̂(C) = m(C)

(1 − VC
1
) ;

8: Bias correction second moment: v̂(C) = v(C)
(1 − VC

2
) ;

9: Update of the parameters: θ(C) = θ(C − 1) − [m̂(C)√
| v̂(C) | + n

.

10: end for

Proceeding by induction we can obtain the following formulas for m(C) and v(C):

m(C) = (1 − V1)
C∑
8=1

VC−8
1
68 ,

v(C) = (1 − V2)
C∑
8=1

VC−8
2

(68)2 .
(1.53)

1.5. FEEDFORWARD NEURAL NETWORKS 24

Now if we apply the expectation operator and we assume that the �rst and second moments for 68
are stationary, we have:

E[m(C)] = (1 − V1)
C∑
8=1

VC−8
1
E[68] = (1 − VC

1
)E[6C],

E[v(C)] = (1 − V2)
C∑
8=1

VC−8
2
E[(68)2] = (1 − VC

2
)E[(6C)2],

(1.54)

where in the last two equalities we have exploited the formula for the sum of a �nite geometric

series. Therefore, from these relations we can deduce that we have a biased estimator, that, in order

to obtain (1.52), needs to be corrected by employing, for example, the bias-correction. In this case,

the obtained bias-corrected moments are thus:

m̂(C) = m(C)
(1 − VC

1
) ,

v̂(C) = v(C)
(1 − VC

2
) .

(1.55)

The �nal recursive formula for parameters update is then constructed using these moving averages

to scale the learning rate individually for each parameter, yielding:

θ(C) = θ(C − 1) − [m̂(C)√
| v̂(C) | + n

, (1.56)

with n > 0 a scalar introduced for numerical stabilization to prevent division by zero. Following [158],

some default values for[and n are represented in this case by 0.001 and 10−8 respectively. A summary

of the procedure can be found in Algorithm 3.

In [158], a variant of Adam, called AdaMax or Adaptive Maximum Method, is also presented, where

v becomes the !-in�nity norm of the value of v at the previous step and the past gradients.

Another optimization strategy using Adam is represented by SWATS [154], which employs Adam

together with SGD during the training process, switching from one to another when certain criteria

hits. It has been shown in [322] that adaptive methods such as Adam do not generalize as well

as SGD with momentum, especially when tested on a diverse set of deep learning tasks. For this

reason, SWATS has been proved to achieve results comparable to SGD with momentum [322], since

Adam outperforms SGD in earlier stages of the learning process, but then when it saturates, there is

the transition to SGD.

25 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

1.5.8 Master Equations for a FNN
We can conclude by summarizing the relations obtained in the previous sections in a set of

master equations [42]:

G
(ℓ)
9

= f

(
=ℓ−1∑
8=1

F
(ℓ)
98
G
(ℓ−1)
8

− 1 (ℓ)
9

)
, 1 ≤ 9 ≤ =ℓ

X
(!+1)
9

= (~ 9 − ~̂ 9)f ′(ℎ (!+1)
9

), 1 ≤ 9 ≤ =out,

X
(ℓ−1)
8

= f ′(ℎ (ℓ−1)
8

)
=ℓ∑
:=1

X
(ℓ)
:
F

(ℓ)
:8
, 1 ≤ 8 ≤ =ℓ−1,

mL
mF

(ℓ)
98

= X
(ℓ)
9
G
(ℓ−1)
8

, 1 ≤ 9 ≤ =ℓ , 1 ≤ 8 ≤ =ℓ−1,

mL
m1

(ℓ)
9

= −X (ℓ)
9
, 1 ≤ 9 ≤ =ℓ ,

F
(ℓ)
98

(C + 1) = F (ℓ)
98

(C) − [X (ℓ)
9

(C)G (ℓ−1)
8

(C), 1 ≤ 9 ≤ =ℓ , 1 ≤ 8 ≤ =ℓ−1,

1
(ℓ)
9
(C + 1) = 1 (ℓ)

9
(C) + [X (ℓ)

9
(C), 1 ≤ 9 ≤ =ℓ ,

(1.57)

where we have that:

• the �rst equation provides a forward recursive formula of the outputs in terms of weights

and biases;

• the second one gives an expression for the delta in the output layer (in the case the cost

function is the !2-error function);

• the third equation represents the backpropagation formula for the deltas;

• the fourth and the �fth equations are the partial derivative of the loss function L with respect

to weights and biases;

• the last two equations represent the approximation sequences for the optimal values of

weights and biases.

The fourth and the �fth equations can also be used to obtain the di�erential of the loss function L,

assessing thus the sensitivity of L with respect to small changes in weights and biases:

3L =

!+1∑
ℓ=1

=ℓ−1∑
8=1

=ℓ∑
9=1

mL
mF

(ℓ)
98

3F
(ℓ)
98

+
!+1∑
ℓ=1

=ℓ∑
9=1

mL
m1

(ℓ)
9

31
(ℓ)
9

=

!+1∑
ℓ=1

=ℓ−1∑
8=1

=ℓ∑
9=1

X
(ℓ)
9
G
(ℓ−1)
9

3F
(ℓ)
98

−
!+1∑
ℓ=1

=ℓ∑
9=1

X
(ℓ)
9
31

(ℓ)
9
,

(1.58)

The previous set of equations (1.57) can then be rewritten in a more compact and simple form using

the matrix notation. To do this, we need to introduce the Hadamard product of two vectors [42,

136], i.e. the elementwise product between two vectors. Let u and ũ be two elements of R= , the
Hadamard product, denoted with �, is a vector in R= de�ned as:

u � ũ = (D1D̃1, . . . , D=D̃=)) . (1.59)

1.5. FEEDFORWARD NEURAL NETWORKS 26

Hence, using the following matrix notations:

x(ℓ) = (G (ℓ)
1
, . . . , G

(ℓ)
=ℓ)

) , , (ℓ) = (F (ℓ)
98
) 98 , b(ℓ) = (1 (ℓ)

1
, . . . , 1

(ℓ)
=ℓ)

) , δ (ℓ) = (X (ℓ)
1
, . . . , X

(ℓ)
=ℓ)

) ,

h(ℓ) = (ℎ (ℓ)
1
, . . . , ℎ

(ℓ)
=ℓ)

) , y = (~1, . . . , ~=out)) , ŷ = (~̂1, . . . , ~̂=out)) ,
(1.60)

and the convention that the activation function f acts on each component, equation (1.57) can be

rewritten as:

x(ℓ) = f
(
, (ℓ)) x(ℓ−1) − b(ℓ)

)
,

δ (!+1) = (y − ŷ) � f ′(h(!+1)),

δ (ℓ−1) =
(
, (ℓ)δ (ℓ)

)
� f ′(h(ℓ−1)),

mL
m, (ℓ) = x(ℓ−1)δ (ℓ)) ,

mL
mb(ℓ)

= −δ (ℓ) ,

, (ℓ) (C + 1) =, (ℓ) (C) − [x(ℓ−1) (C)δ (ℓ)) (C),
b(ℓ) (C + 1) = b(ℓ) (C) + [δ (ℓ) (C).

(1.61)

It should be pointed out that the right side of the fourth equation (also present in the sixth equation)

represents a =ℓ−1 × =ℓ matrix, where each component is given by G
(ℓ−1)
8

X
(ℓ)
9

and not a number.

1.5.9 Testing Phase
Once a FNN has been trained, it needs to be tested in order to understand how accurate is in

making predictions
15
[334]. The purpose of the testing phase is thus to compare the FNN outputs,

ŷ against targets, i.e. the expected values y, using a di�erent set with respect to the one used for

training, namely the testing set Dtest. This represents a fundamental step in a deployment phase

because only when we have a performing FNN, we can move to the practical application of the

model. There exist di�erent methods to compute the level of accuracy of a FNN, based on the task

to solve. Usually, to evaluate the entity of testing errors, we introduce a loss function, that measures

the di�erence between the predicted output of a FNN and the expected output for the sample in

Dtest. Some typical examples were provided in Section 1.5.2, but there can be also other options.

For instance, we can employ the Minkowski error :

LMinkowski (., .̂) =
1

=train

=train∑
8=1

L8
Minkowski

(y8 , ŷ8) = 1

=train

=train∑
8=1

(y8 − ŷ8)W , (1.62)

where the exponent W , called the Minkowski parameter, can vary between 1 and 2. It can thus be

deduced that this is a general version of the MSE, where W = 2, that, thanks to the introduction of W

is more insensitive to outliers
16
.

In classi�cation problems, as the one presented in Chapter 2, the most common performance metric

relies on confusion matrix [112, 314]. Based on the expected and predicted outputs for each sample

in Dtest, we can construct that matrix, where the rows represent the target classes in the data set

15
We should highlight that the topic of this section, namely the testing phase, remains valid when applied to a general

ANN. In this case, the hypothesis of having only forward connections is not required, contrary to the backpropagation case.

16
With the term outlier we refer to data points which lie far away from most of the data points.

27 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

and the columns the corresponding predicted output classes. Hence, for each output of the FNN

under consideration, we are evaluating if the prediction is correct or not. In particular, in order

to quantify the level of accuracy of our model, the notions of true positive, true negative, false

positive, and false negative are introduced, together with that of recall and precision. However, the

explanation of these concepts is postponed to the next chapter and in particular in Section 2.2.7,

where we will introduce the problems of image recognition and object detection.

1.6 Parameter Initialization Strategies

When building a neural network, we do not only need to decide the topology of the ANN, but we

also need to initialize its parameters. This represents an important step because, if done optimally,

then the learning phase will proceed quickly reaching the optimal solution, otherwise converging

to a minimum using gradient descent will be impossible or very slow. The magnitude of parameters

plays also a fundamental role in avoiding, as much as possible, problems connected with vanishing

and exploding gradients [42, 99].

The most natural choice may seem to be to initialize all weights and biases to zero or sample them

from a uniform or a Gaussian distribution of zero mean. In the case of a small ANN, made of few

layers, this can be a good option since it usually provides satisfactory enough converge results [42].

This is not true when coming to deep neural networks. Having zero initialization or parameters close

to zero leads to the loss of meaning in the output signal. In order to understand this statement, we

can show that the variance of the input decreases as it passes through each layer of the network [42].

To prove this, we need to recall Equation (1.12), de�ning the output of layer ℓ :

G
(ℓ)
9

= f

(
=ℓ−1∑
8=1

F
(ℓ)
98
G
(ℓ−1)
8

− 1 (ℓ)
9

)
, for 9 = 1, . . . , =ℓ ,

and to derive a variance approximation formula
17
for 5 (x), with 5 a di�erentiable function [42].

Let <̄ = E[x] and consider the linear approximation of 5 at E[x]:

5 (x) = 5 (<̄) + 5 ′(<̄) (x − <̄) + > (x − <̄)2.

By applying the variance on both sides and by employing variance properties, we gain the following

approximation formula for the variance of 5 (x):

+0A (5 (x)) ≈ 5 ′(<̄)2+0A (x) = 5 ′(E[x])2+0A (x), (1.63)

where we are hypothesizing that the mean and the variance of x are �nite.

Starting again from Equation (1.12), if we compute the variance of both sides of the equation and

we use formula (1.63) and the properties of variance and expected value, we obtain the following

approximation:

+0A (G (ℓ)
9
) ≈ f ′

(
=ℓ−1∑
8=1

F
(ℓ)
98
E[G (ℓ−1)

8
] − 1 (ℓ)

9

)
2
(
=ℓ−1∑
8=1

(F (ℓ)
98
)2+0A (G (ℓ−1)

8
)
)
, (1.64)

where we are assuming that G
(ℓ)
9

are independent and identically distributed (i.i.d.) random variables

for each 9 = 1, . . . , =ℓ , ℓ = 0, . . . , ! + 1, and we are treating the weights as constants and not as

random variables. We can observe that the variance of the output of 9-th neuron in layer ℓ is written

17
For more details the reader can refer to Appendix D.4 of [42].

1.6. PARAMETER INITIALIZATION STRATEGIES 28

in terms of the variances of neurons output of the previous layer. Exploiting now Cauchy-Schwarz

inequality in the second multiplication factor yields:

=ℓ−1∑
8=1

F
(ℓ)
98
+0A (G (ℓ−1)

8
) ≤

(
=ℓ−1∑
8=1

(
F

(ℓ)
98

)
2

)
1/2 (

=ℓ−1∑
8=1

(
+0A (G (ℓ−1)

8
)
)
2

)
1/2

. (1.65)

Supposing that the �rst derivative of the activation function is bounded, i.e. (f ′)2 < 2 , then if we

take the sum over 9 in Equation (1.64) and we use the inequality (1.65), this leads to:

=ℓ∑
9=1

+0A (G (ℓ)
9
) < 2

(
=ℓ−1∑
8=1

(
F

(ℓ)
98

)
4

)
1/2 (

=ℓ−1∑
8=1

(
+0A (G (ℓ−1)

8
)
)
2

)
1/2

.

Taking then the square, we obtain:

=ℓ∑
9=1

(
+0A (G (ℓ)

9
)
)
2

≤
(
=ℓ∑
9=1

+0A (G (ℓ)
9
)
)
2

< 22

(
=ℓ−1∑
8=1

(
F

(ℓ)
98

)
4

) (
=ℓ−1∑
8=1

(
+0A (G (ℓ−1)

8
)
)
2

)
. (1.66)

Since we have made the hypothesis that the weights are close to zero, this is indicating that the

sum of the square of variances in layer ℓ is lower than the sum of the square of variances in the

ℓ − 1 layer. In other words, the signal’s variance is decreasing to zero after passing through a few

layers, leading to an output too low to be signi�cant.

The opposite case coincides with having too large weights, which induce to have ampli�ed variance

as it passes through network layers, exploding values during forward or backward propagation,

or a vanishing gradient problem [42]. To understand this we can consider the identity function as

activation function f (x) = x, thus taking the variance in Equation (1.12) yields:

+0A (G (ℓ)
9
) =

=ℓ−1∑
8=1

(F (ℓ)
98
)2+0A (G (ℓ−1)

8
), (1.67)

which implies that the variance of the output of 9-th neuron in layer ℓ is also large. On the other

hand, if f is of sigmoid type, large weights bring

∑
8

F
(ℓ)
98
G
(ℓ−1)
8

to have larger values and hence the

activation function f tends to saturate, leading to an approaching zero gradient problem and a slow

learning process.

Correct initialization of parameters is hence very important since it makes a signi�cant di�erence

in the way the optimality algorithm is converging, but also in the performances of the network. It

is thus needed to �nd a reasonable range of values for the parameters (,, b). In the next section,

we are going to describe two approaches, commonly used approaches for parameter initialization:

Xavier and Kaiming He.

1.6.1 Xavier Initialization
Following [42, 99], a reasonable initialization of parameters can be derived by assuming that

they are uniform- or Gaussian- distributed random variables with zero mean. In particular, since

the propagation of the error in a deep neural network can be quantized using the variance of the

output of each layer [42], we are interested in keeping the variance under control, i.e. away from

exploding or vanishing. It is thus necessary to �nd the weight values that leave the variance roughly

unchanged through each layer of the network.

Starting again from Equation (1.12), we are assuming that G
(ℓ)
8

, for ℓ = 0, . . . , ! + 1, are i.i.d. random

29 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

variables with zero means, and F
(ℓ)
98
, for 9 = 1, . . . , =ℓ , 8 = 1, . . . , =ℓ−1 and ℓ = 1,! + 1, are i.i.d.

random variables with zero mean, i.e. such that E[F (ℓ)
98
] = 0. We are also making the hypothesis

that each G
(ℓ)
8

is independent of eachF
(ℓ)
98
. Using formula (1.63) in Equation (1.12), we obtain

+0A (G (ℓ)
9
) = f ′

(
=ℓ−1∑
8=1

E[F (ℓ)
98
G
(ℓ−1)
8

] − 1 (ℓ)
9

)
2

+0A

(
=ℓ−1∑
8=1

F
(ℓ)
98
G
(ℓ−1)
8

)
= f ′(1 (ℓ)

9
)2
=ℓ−1∑
8=1

+0A

(
F

(ℓ)
98
G
(ℓ−1)
8

)
= f ′(1 (ℓ)

9
)2
=ℓ−1∑
8=1

+0A (F (ℓ)
98
)+0A (G (ℓ−1)

8
)

= =ℓ−1f
′(0)2+0A (F (ℓ)

98
)+0A (G (ℓ−1)

8
),

(1.68)

where we have employed in the second identity the property E[F (ℓ)
98
G
(ℓ−1)
8

] = E[F (ℓ)
98
]E[G (ℓ−1)

8
] = 0

and the additivity of variance for independent variables. In the third identity, we have exploited

Goodman’s formula
18

[101], de�ning the multiplicative property of variance, for independent

variables with zero means. In the last identity we have assumed that the bias is initialized to 0 and

we have used that weightsF
(ℓ)
98

and G
(ℓ)
9

are identically distributed.

Once we gain this equation, we can impose the condition that the variance is invariant under the

ℓ-th layer:

=ℓ−1f
′(0)2+0A (F (ℓ)

98
)+0A (G (ℓ−1)

8
) = +0A (G (ℓ−1)

8
), (1.69)

from which it can be obtained the following relation for the variance of weights:

+0A (F (ℓ)
98
) = 1

=ℓ−1f ′(0)2 . (1.70)

Now there can be several cases, based on the distribution chosen for the variables. For example, if

we consider having uniform o normal distributed random variables [42], we obtain:

1. Normal distribution: F (ℓ)
98

∼ N
(
0,

1

=ℓ−1f ′(0)2

)
;

2. Uniform distribution: F (ℓ)
98

∼ *=8 5 [−0, 0], i.e. we are considering the weights as uniform

distributed random variables on the interval [−0, 0] with zero mean. Now using the fact that

the variance for this type of variables is given by 02/3, we can equate the relations we have

obtained for the variance ofF
(ℓ)
98

and get the value of 0, that is

√
3

f ′(0)√=ℓ−1
. Hence at the end

we have: F
(ℓ)
98

∼ *=8 5
[
−

√
3

f ′(0)√=ℓ−1
,

√
3

f ′(0)√=ℓ−1

]
.

In this approach, we have only taken into account the number of input for the ℓ-th layer, =ℓ−1,
without involving also the outgoing number of neurons. Starting from this and assuming that the

activation functions are linear, it can be derived a new formula, called Xavier initialization [97],

18
Goodman’s formula [101] is providing an expression for the variance of the product of two independent variables -

and . :

+0A (-.) = E[-]2+0A (.) + E[.]2+0A (-) ++0A (-)+0A (.),
that in the case of variables with zero means simply becomes+0A (-.) = +0A (-)+0A (.) .

1.6. PARAMETER INITIALIZATION STRATEGIES 30

that aims at preserving the backpropagation signal as well. In this case, we are thus assuming also

that the variances of the cost function gradient remain unchanged as the output is backpropagated

through the ℓ-th layer:

+0A
©­« mL
mF

(ℓ−1)
98

ª®¬ = +0A
©­« mL
mF

(ℓ)
98

ª®¬ . (1.71)

Using now Equation (1.23), derived for the partial derivative of the loss function with respect to the

weights, we obtain:

+0A (X (ℓ−1)
9

G
(ℓ−2)
8

) = +0A (X (ℓ)
9
G
(ℓ−1)
8

). (1.72)

Equation (1.33) provides an explicit expression for deltas, where if we use the hypothesis of linearity

of f , e.g. f (x) = x, we gain:

X
(ℓ−1)
8

= f ′(ℎ (ℓ−1)
8

)
=ℓ∑
:=1

X
(ℓ)
:
F

(ℓ)
:8

=

=ℓ∑
:=1

X
(ℓ)
:
F

(ℓ)
:8
. (1.73)

It can be noticed
19
that each X

(ℓ)
:

is independent ofF
(ℓ)
:8

and G
(ℓ−1)
8

. Hence, taking the expected value

in the last relation leads to:

E[X (ℓ−1)
8

] = E[
=ℓ∑
:=1

X
(ℓ)
:
F

(ℓ)
:8

] =
=ℓ∑
:=1

E[X (ℓ)
:

]E[F (ℓ)
:8

] = 0,

where we are using the assumption that the weights are random variables with zero mean. Hence,

this implies that E[X (ℓ
8
] = 0 for each 8 = 1, . . . , =ℓ and for each ℓ = 1, . . . , ! + 1.

Going back to Equation (1.72), if we exploit the fact that x(ℓ)
8

are random variables with zero mean

and the Goodman’s formula in the case of independent variables with zero mean, we have:

+0A (X (ℓ−1)
9

)+0A (G (ℓ−2)
8

) = +0A (X (ℓ)
9
)+0A (G (ℓ−1)

8
), (1.74)

that can be further simpli�ed using the assumption that the variance is invariant under layer ℓ − 1,

i.e. +0A (G (ℓ−2)
8

) = +0A (G (ℓ−1)
8

):
+0A (X (ℓ−1)

9
) = +0A (X (ℓ)

9
). (1.75)

This last expression is hence proving that also the deltas variance remains unchanged.

Once, we have obtained that deltas are characterized by zero mean and this invariant property of

the variance, we can apply the variance in Equation (1.73) obtaining:

+0A (X (ℓ−1)
8

) =
=ℓ∑
:=1

+0A (X (ℓ)
:

)+0A (F (ℓ)
:8

) = =ℓ+0A (X (ℓ):
)+0A (F (ℓ)

:8
), (1.76)

where we have used the fact that the deltas and weights are i.i.d., the properties of variance, and

Goodman’s formula. Exploiting now Equation (1.75), this yields:

+0A (F (ℓ)
:8

) = 1

=ℓ
, (1.77)

namely the variance of the weights in layer ℓ is inversely proportional to the number of neurons

in that layer. This expression has to coexist with the one derived before (1.70), that in this case of

linear activation function becomes:

+0A (F (ℓ)
:8

) = 1

=ℓ−1
. (1.78)

19
It can be proved by induction using the backpropagation formula. The interested reader can check Chapter 6 of [42] for

the proof.

31 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

Equation (1.77) and Equation (1.78) are satis�ed simultaneously if and only if =ℓ = =ℓ−1, i.e. the
number of neurons in any two consecutive layers is the same. Since this represents a strong condition

to impose, a compromise can be to take the arithmetic average of the two di�erent expressions:

+0A (F (ℓ)
:8

) = 2

=ℓ−1 + =ℓ
. (1.79)

We can emphasize again what happens for the weights in the two di�erent cases highlighted before:

1. Normal distribution: F (ℓ)
98

∼ N
(
0,

2

=ℓ−1 + =ℓ

)
;

2. Uniform distribution: F (ℓ)
98

∼ *=8 5
[
−

√
6

√
=ℓ−1 + =ℓ

,

√
6

√
=ℓ−1 + =ℓ

]
, that is also called normalized

initialization.

1.6.2 Kaiming He Initialization
Xavier initialization is very e�ective in improving the functionality of the backpropagation

process but has been derived for a neural networkwithout nonlinearity. This assumption is obviously

too restrictive, even if it has been shown that this initialization strategy performs well also in the

case of nonlinear activation functions symmetric around zero and with values in [−1, 1], such as

the hyperbolic tangent [99]. Hence, if we are considering other types of activation functions, e.g.

ReLU, the Kaiming He initialization [119] should be used.

In order to derive the Kaiming He initialization, we should make the following assumptions:

1. G
(ℓ)
8

, for ℓ = 0, . . . , ! + 1, are i.i.d. random variables;

2. F
(ℓ)
98
, for 9 = 1, . . . , =ℓ , 8 = 1, . . . , =ℓ−1 and ℓ = 1,! + 1, are i.i.d. random variables with zero

mean;

3. G
(ℓ)
8

andF
(ℓ)
98
, with 9 = 1, . . . , =ℓ , 8 = 1, . . . , =ℓ−1 and ℓ = 1,! + 1, are independent of each

other.

It is important to highlight that in this case G
(ℓ)
8

does not have zero mean as for Xavier, because it is

the result of a ReLU which does not have zero mean.

Let’s start by considering the argument of the activation function in Equation (1.12) de�ning the

total input arriving at neuron 9 in layer ℓ :

ℎ
(ℓ)
9

=

=ℓ−1∑
8=1

F
(ℓ)
98
G
(ℓ−1)
8

− 1 (ℓ)
9
, 9 = 1, . . . , =ℓ . (1.80)

For simplicity and in accordance with [119], the bias is set to be equal to zero. Note that the expected

value for ℎ
(ℓ)
9

is zero in this case since the weights have zero mean and from hypothesis 3 we have

the independence of the variables:

E[ℎ (ℓ)
9
] = E

[
=ℓ−1∑
8=1

F
(ℓ)
98
G
(ℓ−1)
8

]
=

=ℓ−1∑
8=1

E[F (ℓ)
98
]E[G (ℓ−1)

8
] = 0.

If we take the variance on both sides in Equation (1.80), we obtain:

+0A (ℎ (ℓ)
9
) = +0A

(
=ℓ−1∑
8=1

F
(ℓ)
98
G
(ℓ−1)
8

)
=

=ℓ−1∑
8=1

+0A (F (ℓ)
98
G
(ℓ−1)
8

) = =ℓ−1+0A (F (ℓ)
98
G
(ℓ−1)
8

), (1.81)

1.6. PARAMETER INITIALIZATION STRATEGIES 32

where hypothesis 3 justi�es the fact that the variance of the sum is the sum of variances, while

hypotheses 1 and 2 the last equality, sinceF
(ℓ)
98

and G
(ℓ)
8

are identically distributed. Now, applying

Goodman’s formula and using the fact that weights have zero mean yields:

+0A (ℎ (ℓ)
9
) = =ℓ−1

(
E[F (ℓ)

98
]2+0A (G (ℓ−1)

8
) ++0A (F (ℓ)

98
)E[G (ℓ−1)

8
]2 ++0A (F (ℓ)

98
)+0A (G (ℓ−1)

8
)
)

= =ℓ−1
(
+0A (F (ℓ)

98
)E[G (ℓ−1)

8
]2 ++0A (F (ℓ)

98
)+0A (G (ℓ−1)

8
)
)

= =ℓ−1+0A (F (ℓ)
98
)
(
E[G (ℓ−1)

8
]2 ++0A (G (ℓ−1)

8
)
)

= =ℓ−1+0A (F (ℓ)
98
)E[(G (ℓ−1)

8
)2],

(1.82)

where in the last step we have used the de�nition of variance. It is now needed to compute the

expected value of (G (ℓ−1)
8

)2:

E[(G (ℓ−1)
8

)2] =
∫ ∞

−∞
(G (ℓ−1)
8

)2% (G (ℓ−1)
8

)3G (ℓ−1)
8

=

∫ ∞

−∞
max(0, ℎ (ℓ−1)

9
)2% (ℎ (ℓ−1)

9
)3ℎ (ℓ−1)

9

=

∫ ∞

0

(ℎ (ℓ−1)
9

)2% (ℎ (ℓ−1)
9

)3ℎ (ℓ−1)
9

=
1

2

∫ ∞

−∞
(ℎ (ℓ−1)
9

)2% (ℎ (ℓ−1)
9

)3ℎ (ℓ−1)
9

=
1

2

+0A (ℎ (ℓ−1)
9

),

where in the second equality we have used the fact that G
(ℓ−1)
8

is obtained from ℎ
(ℓ−1)
9

by applying

the ReLU activation function.

Substituting this relation in Equation (1.82) gains:

+0A (ℎ (ℓ)
9
) = 1

2

=ℓ−1+0A (F (ℓ)
98
)+0A (ℎ (ℓ−1)

9
). (1.83)

Now rewriting this equation for layer ! + 1, i.e. for the output of the net, we obtain:

+0A (ℎ (!+1)
9

) = +0A (~̂ 9) = +0A (~1)
(
!+1∏
8=2

=ℓ−1
2

+0A (F (ℓ)
98
)
)
. (1.84)

We need now to impose the condition that the variance at the output and at the beginning is the

same, preventing thus exploding or vanishing gradients. In accordance with [119], a su�cient

condition is represented by:

=ℓ−1
2

+0A (F (ℓ)
98
) = 1, ∀ ℓ, (1.85)

that implies:

+0A (F (ℓ)
98
) = 2

=ℓ−1
. (1.86)

Following [119], a good way to initialize the weights is using a zero-mean normal distribution:

F
(ℓ)
98

∼ N
(
0,

2

=ℓ−1

)
. (1.87)

33 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

As before, after obtaining a relation using only the forward pass, we need to derive one also

taking into account backpropagation [119]. Hence, starting from Equation (1.73) without using

the hypothesis of having linear activation functions as in the Xavier framework, and taking the

variance of both sides we obtain:

+0A (X (ℓ−1)
8

) = +0A (f ′(ℎ (ℓ−1)
8

)
=ℓ∑
:=1

X
(ℓ)
:
F

(ℓ)
:8

)

= +0A (f ′(ℎ (ℓ−1)
8

))
=ℓ∑
:=1

+0A (X (ℓ)
:

)+0A (F (ℓ)
:8

)

=
1

2

=ℓ+0A (X (ℓ):
)+0A (F (ℓ)

:8
),

(1.88)

where in the second equality we have used the three hypotheses done and we have assumed that

f ′(ℎ (ℓ−1)
8

) is independent of deltas and weights. In the last equality we have then employed
20

that +0A (f ′(ℎ (ℓ−1)
8

)) = 1/2. Imposing also in this case the property that the variance of deltas is

invariant, we have that:

+0A (F (ℓ)
:8

) = 2

=ℓ
. (1.89)

Now using a zero-mean normal distribution, we conclude:

F
(ℓ)
98

∼ N
(
0,

2

=ℓ

)
. (1.90)

We have thus obtained two equations, (1.86) and (1.89), for the variance of the weights that have to

be satis�ed simultaneously. Substituting Equation (1.89) in Equation (1.84) and using the property

that the variance is invariant, we obtain:

1 =

!+1∏
8=2

=ℓ−1
2

+0A (F (ℓ)
98
) =

!+1∏
8=2

=ℓ−1
2

2

=ℓ
=

!+1∏
8=2

=ℓ−1
=ℓ

, (1.91)

that is imposing a condition on the design of the network, not as strict as for Xavier initialization.

20
In order to obtain this relation, it is only needed to derive the expression for the derivative of the ReLU function and

hence compute �rst the expected value and then the variance, taking into account that the two possible assumed values

have the same probability [119].

CHAPTER
2 Convolutional Neural

Networks

2.1 Introduction

Computer vision is a broad interdisciplinary scienti�c �eld, that deals with extracting informa-

tion and a high-level understanding from digital images or videos. As for ANNs, the key inspiration

comes from the human brain and the will to imitate the biological processes related to vision [72].

For example, a key ability of the human brain coincides with invariant object recognition, which
refers to an instantaneous and accurate recognition of objects and in particular their similarity with

something known in the presence of variations such as size, rotation, illumination, and position.

Hence, even in presence of complex, distorted scenes, it allows us to identify objects in a fraction of

a second. This increasing interest in understanding how this works and how it can be reproduced

arti�cially leads to a growth of studies and experiments in this �eld.

In the 1950s and 1960s, David Hubel and Torsten Wiesel addressed the topic of visual perception

through neurophysiological research conducted on cats [140]. By studying how neurons reacted to

various stimuli, it emerged that each neuron �red when exposed to certain features, but not to all

of them, leading to the discovery of di�erent types of cells in the visual cortex — simple, complex,

and hypercomplex — responsible for learning simple things such as detecting edges and corner,

or, as they become more complex, more and more speci�c features. In the 1970s, David Marr, a

neuroscientist at MIT, published one of the fundamental books in this context [206], paving the way

for various biologically-inspired research on computer vision. He discovered indeed that the visual

system is hierarchical, hence �rst of all neurons detect simple features, called low-level features,
like edges, corners, then feed into high-level features, namely more complex features, e.g. shapes,

or more complex visual representations, taking into account possible relations between features.

One of Marr’s central contributions was also connected with his representational framework for
vision, which focused on the vision task of deriving shape information from images. Hence, he

proposed a model based on the generation of a sequence of increasingly symbolic representations

of a scene. The input image is translated into a ‘primal sketch’ of the retinal image, where low-level

features, such as corners, blobs, edges, and lines, are detected. Starting from this, progressively

a more complex image is constructed, called the ‘2.5D sketch’, analyzing the visible surface of

the objects in terms of its spatial properties such as orientation, discontinuities, and depth. The

�nal step coincides with the ‘3D model representation’, dealing with spatial and volume properties,

appearance, and other relations between items. This theory was later improved by Steven Palmer at

the end of 1990s [231], by proposing hismodel of visual perception, characterized by four stages with
increasing degrees of abstraction: image-based processing, surface-based processing, object-based

processing, and category-based processing. These steps correspond exactly to those proposed by

Marr, except for the introduction of the object-based stage, where occluded or unclear parts in a

three-dimensional representation are �lled in.

The ideas described in these studies have thus paved the way for the development of deep learning

algorithms able to reproduce this task [14, 276]. A breakthrough in the computer vision community

was indeed represented by the introduction of Convolutional Neural Networks (CNNs) [171] by

Yann LeCun in 1989. In [171], he proposed LeNet-5, a simple network composed of two convolu-

tional layers, a max pooling layer, and a fully connected layer, for optical character recognition in

35

2.1. INTRODUCTION 36

documents, i.e. identifying handwritten zip codes on letters using a label data benchmark, called

the Modi�ed National Institute of Standards and Technology (MNIST) database. Even if it may not

be suitable for complicated tasks, LeNet can be considered the backbone of the most recent CNN

architectures. In [175], it was also investigated the possibility of extending the knowledge on ANN

optimization by using SGD during the backpropagation phase to train a CNN.

The increased interest in employing such models to solve more complex tasks has forced CNN

architectures to go deep, leading to computationally costly neural networks [149]. Furthermore, the

lack of available fast computing resources resulted in a practical limitation for training CNNs, until,

in the early 2000s, GPUs were introduced to enhance the capabilities to speed up these processes.

In this period, the notion of deep learning, introduced in [4], started thus to become more and

more important and attract a lot of attention. This new term represented not only a novel �eld

of investigation but above all a breakthrough in the machine learning community, thanks to the

development of new algorithms and processing units [128]. Deep learning began thus to heat up

in the academic community, having its center in several universities, such as Stanford University,

New York University, and the University of Montreal, but also started to attract the attention of

companies like Microsoft and Google. 2012 represented then a revolutionary year, thanks to the

introduction of CNNs in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [68],

an annual image classi�cation competition where research teams evaluate their algorithms on the

given data set, in order to achieve higher accuracy on several visual recognition tasks. A team led by

Alex Krizhevsky, from the University of Toronto, developed indeed for this purpose a CNN, called

AlexNet [167], that achieved an unprecedented error rate of 15.3%, lower than the previously reached
threshold of 26%. In particular, this represented also the �rst time that a team employed neural

networks to tackle the image classi�cation task of the challenge, changing thus the role of these

algorithms in the computer vision scenario. The use of deep learning technology, such as GPUs,

was then a breakthrough in the image processing �eld, leading to a performance improvement of

CNNs, like that of AlexNet, and their application in numerous domains. In the following years of the

competition, all the participants designed similar CNNs to solve the problem. In 2014, VGGNet [289]
entered the competition, con�rming that increasing the depth of the model has a crucial impact

on improving performance. Even if VGG was not the winner of ILSVRC2014, it paved the way for

further explorations of the key idea behind it. ResNet [118], winner of ILSVRC2015, encapsulated
this idea in its architecture, by introducing also a new module, called Residual Block, to deal with the

problem of vanishing and exploding gradients. Other important improvements are connected with

Inception networks [301, 298], that proven the necessity of using wider modules, called inception

blocks, to push performance in terms of speed and accuracy.

CNNs has thus revolutionized arti�cial intelligence by tackling complex problems, such as visual

object recognition [167, 48], robotics [226, 240], speech recognition [104, 151, 224], natural language

processing [328, 70], and autonomous vehicles [139, 145]. In this Chapter and thesis, we will focus

only on two problems of interest to Electrolux Professional: image recognition and object detection.

Image recognition has the aim of classifying the items in pictures, whereas object detection addresses

also the intention to detect the position of these objects as well. The aforementioned CNNs represent

a model solving the image recognition task, but also the building block of object detectors, deep
learning architectures specialized for classi�cation and localization of objects in images.

This chapter will deal with CNNs by explaining how they can be used to solve the problems of

image recognition and object detection. In Section 2.2, a detailed description of the several layers

composing the CNN architectures is carried out. Section 2.2.8 will then introduce common tech-

niques employed to initialize the parameters for this kind of models.CNNs represents a possible

solution for the image recognition task, topic of Section 2.3. We will indeed present this problem

by introducing datasets and architectures widely employed in this context. In Section 2.4, we then

extend the previous description to object detection by presenting the key notions of this framework.

37 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.1: Schematic representation of a Convolutional Neural Network.

Also in this case, we brie�y review commonly used benchmark datasets and architectures.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [171] are deep learning algorithms specialized in

processing data with a known grid-like topology
21
, such as time series (1-D grid) or images (2-D grid

of pixels). For example, given in input an image, a CNN can extract information from it assigning

importance to various features of the objects and hence di�erentiate between them through the

parameters of the net, represented by the weights.

As depicted in Figure 2.1, the structure of a CNN can be mainly subdivided into two parts: the

feature learning part, responsible for the detection of objects’ features, and the classi�cation part, that
provides the category to which the objects in the picture belong to. The �rst part is characterized

by several convolutional blocks
22
, composed of a convolutional layer, a nonlinearity layer, and a

pooling layer (see Figure 2.2), whereas a fully connected Feedforward Neural Network, i.e. a FNN

made of fully-connected layers, is used for classi�cation. Intuitively, the idea is that in the �rst

part a CNN detects several features, such as corners, lines, or blocks of color in the initial layers

(low-level features), or combinations gradually more complex in the upper layers (high-level features),
and then fed them into a FNN to obtain the �nal classi�cation. In the following subsections, we are

going to provide more details on each of these structures [99, 42, 334], in order to understand how a

CNN works.

Before diving deeply into the description of the di�erent layers of a CNN, we need to introduce the

notation that will be used in the whole chapter, following the one set in Chapter 1. Since a CNN is a

particular type of ANN, it can be represented as a function CNN , that maps an input tensor x0

into the output predicted by the net ŷ:

ŷ = CNN(x(0)), (2.1)

where x(0) ∈ R=in and ŷ ∈ R=out . In the context of computer vision, and in particular of image

recognition and detection, that is the one we are interested in investigating, the input tensors in

21
In the further discussion, we will concentrate on images as input for a CNN because this is the case we will then deal in

detail and we are interested in studying. However, all the details we are going to provide are still true in other cases, e.g.

with tensors with di�erent shapes.

22
There is not a convention in the number of blocks to use to construct a CNN. As discussed in Chapter 1 for the case of a

general ANN, this depends on the problem in the exam. However, there exists some upper and lower bounds on the depth of

an ANN that can help in designing its architecture, see Section 1.4.

2.2. CONVOLUTIONAL NEURAL NETWORKS 38

Figure 2.2: The components of a typical convolutional block: a convolutional layer

followed by a nonlinear layer and a pooling layer.

exams are images and thus have a rectangular shape with a third dimension representing the color

channels. For example, for black and white images there will be only 1 channel, while RGB images

have 3 channels. Hence, we have that our input tensor has shape (3 inW, 3 in
�
, 3 in
�
), where we are using

the notation such that 3W and 3� represent the width and height of the tensor in exam, whilst 3� its

number of channels. The output tensor is then the result of the application of the CNN function to

the input image. In particular, since the last part of a CNN is represented by a fully connected FNN,

the output is a vector of length =out, that, if we refer to the case of image recognition, corresponds

to the number of categories in which the dataset D is subdivided. Hence, ŷ is a vector whose

components are the probability of belonging to the corresponding class.

Also in this case, CNN can be described as the composition of functions 5ℓ , for 1 ≤ ℓ ≤ ! + 1, where
each of these represents a layer of the CNN, i.e. convolutional layer, nonlinear layer, pooling layer,

fully connected layer:

ŷ = CNN(x(0)) = 5!+1 ◦ 5! ◦ · · · 51 (x(0)), (2.2)

where ! is the total number of hidden layers of the CNN and, as done in the previous chapter, we

de�ne x(ℓ) as the output of layer ℓ . If x(ℓ) is the output of a layer belonging to the feature learning

part, it is a tensor with shape (3
(ℓ)
W ,3

(ℓ)
�

,3
(ℓ)
�

), where 3
(ℓ)
�

represents the channel depth, i.e. how many

channels there are. Intuitively, in the case of image recognition, each channel can be thought to

respond to some di�erent set of features. To be precise, this does not correspond to reality since

there is not a single channel for learning a particular feature but rather a direction in channel

space for detecting it [334]. This is also justi�ed by the fact that “feature detectors”, i.e. the �lters

of a convolutional layer, are learned during the optimization process and not chosen during the

initialization of the CNN, as will be described in Section 2.2.1.

As discussed in [44, 24, 272, 177, 317], some deep neural networks, and in particular some CNN

architectures such as ResNet [118, 156, 315], can also be represented as discretisations of dynamic

systems of the form:

¤x = f (, x + b), (2.3)

where the parameters of the network correspond to the control variables. As presented in [24] and

in [272], the training of the deep neural network can thus be formulated as an Optimal Control

39 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

problem, where Pontryagin’s Maximum Principle can be employed to learn the optimal parame-

ters [184]. This is part of a novel approach in the deep learning context, characterized by a growing

interest in understanding mathematically deep learning methods.

2.2.1 Convolutional Layer
The primary goal of the convolution step is to extract features from the input by passing many

�lters over it, each of which picks up a di�erent signal or feature. CNNs derive their name from the

convolutional layer and in particular from the convolutional operation [99, 173, 42]. The operation

used in CNNs does not correspond precisely with the one de�ned in mathematics but can be derived

from it [99], as we are going to prove.

De�nition 2.2.1 (Convolution). Let 5 and 6 be two real-valued functions. The convolution of 5 and
6, denoted with 5 ∗ 6, is de�ned by the following integral:

(5 ∗ 6) (C) =
∫ ∞

−∞
5 (g)6(C − g)3g, (2.4)

where t is a variable, not necessarily representing time.

In the context of CNNs, we are working with discrete data, thus we can derive a discrete version

of Equation (2.4):

(5 ∗ 6) (C) =
∞∑

g=−∞
5 (g)6(C − g). (2.5)

Now, for a CNN the two arguments of convolution are represented by an input � , namely a multi-

dimensional array of data, such as an image, and a kernel or �lter , a multidimensional array of

parameters tuned during the learning process. In general, these multidimensional arrays are tensors,

e.g. a two-dimensional image � and a two-dimensional kernel . Therefore, usually convolution

is applied over more than one axis at a time. In the example of a two-dimensional image � with a

two-dimensional kernel , the convolution of � and is given by:

(� ∗) (8, 9) =
∑
U

∑
V

� (U, V) (8 − U, 9 − V), (2.6)

where we have a summation over each axis of our objects. It is important to note that also in this

case the commutative property, proper to classical mathematical convolution, holds and thus we

can write:

(∗ �) (8, 9) =
∑
U

∑
V

� (8 − U, 9 − V) (U, V). (2.7)

This is not the relation commonly used in convolutional neural networks and in their implementa-

tion [99, 42]. In fact, the convolution function described in Equation (2.7) is substituted with the

cross-correlation function:

(� ∗) (8, 9) =
∑
U

∑
V

� (8 + U, 9 + V) (U, V), (2.8)

that can be seen to be very close to Equation (2.7). Figure 2.3 provides a practical example of the

convolutional operation for a 2D image � with a 2D kernel .

We now need to derive an operational formula to compute convolutional operation for 3D tensors

x, with shape (3W, 3� , 3�), as usually happens when working with images. In this case, the �lter

2.2. CONVOLUTIONAL NEURAL NETWORKS 40

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

I

∗
1 0 1

0 1 0

1 0 1

K

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I ∗ K

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.3: Schematic representation of the convolutional operation.

input image

or input feature map

output feature maps

Figure 2.4: Illustration of a single convolutional layer.

K is a 4D tensor, with size (3 W , 3
�
, 3 in

�
, 3out
�

), where 3 W and 3
�
are the width and height of

the kernel respectively; whilst 3 in
�
are the input channels, corresponding to those of x, and 3out

�

the number of �lters = we are using, representing thus the number of channels in the output.

Hence, let G (ℓ−1) ∈ R3
(ℓ−1)
W ×3 (ℓ−1)

�
×3 (ℓ−1)
� be the input for the ℓ-th layer of a CNN, that corresponds to a

convolutional layer, and let (ℓ) ∈ R3
 ,(ℓ)
W ×3 ,(ℓ)

�
×3 (ℓ−1)
�

×3 (ℓ)
� be the kernel for this convolutional layer.

Starting from Equation (2.8), if we convolve (ℓ)
across G (ℓ−1)

(see Figure 2.4), we can derive the

following expression:

G
(ℓ)
8, 9,:

=

3
 ,(ℓ)
W∑
U=1

3
 ,(ℓ)
�∑
V=1

3
(ℓ−1)
�∑
<=1

G
(ℓ−1)
8+U−1, 9+V−1,<

(ℓ)
U,V,<,:

, for : = 1, . . . , 3
(ℓ)
�
, (2.9)

noticing how the convolution operation is applied separately for each �lter
(ℓ)
:,:,:,:

characterizing the

ℓ-th layer. The presence of −1 in the sub-indexes is due to the fact we are using 1 as the �rst index

for our arrays.

Since 3
 ,(ℓ)
W < 3

(ℓ−1)
W and 3

 ,(ℓ)
�

< 3
(ℓ−1)
�

, we have that the convolution kernel is overlapped on the

tensor G (ℓ−1)
. Therefore, if we apply convolution using Equation (2.9) this will be only applied locally

on G (ℓ−1)
on the portion of it in which the �lter window is placed. It is thus necessary to introduce a

parameter that controls the spatial movements (horizontally and vertically) in all possible positions

on G (ℓ−1)
. Usually, the kernel overlap starts at the upper-left corner of the input tensor and slides by

a certain number B of pixels at a time. This parameter B is called stride and is de�ning the number

of pixels by which we move to the right and then down. The previous formula (2.9) can thus be

41 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

generalized by taking into account the stride [99]:

G
(ℓ)
8, 9,:

=

3
 ,(ℓ)
W∑
U=1

3
 ,(ℓ)
�∑
V=1

3
(ℓ−1)
�∑
<=1

G
(ℓ−1)
(8−1)×B+U,(9−1)×B+V,<

(ℓ)
U,V,<,:

+ 1 (ℓ) , for : = 1, . . . , 3
(ℓ)
�
, (2.10)

where b(ℓ) represents the bias vector. In this case, as it usually happens, we have used the same

stride B in both directions of motion, but in general, there could be a di�erent value for the height

and width components, (BW, B�).
As pointed out before, we can then note how the convolution operation is applied separately for

each �lter
(ℓ)
:,:,:,:

characterizing the ℓ-th layer. In this way, each �lter is creating a di�erent output,

that corresponds to a di�erent channel of x(ℓ) . The output of a convolutional layer is thus generating
a tensor with shape (3

(ℓ)
W , 3

(ℓ)
�

, 3
(ℓ)
�

), de�ned as [331, 334]:

3
(ℓ)
W =

3
(ℓ−1)
W − 3 ,(ℓ)W

BW
+ 1,

3
(ℓ)
�

=
3
(ℓ−1)
�

− 3 ,(ℓ)
�

B�
+ 1,

3
(ℓ)
�

= = ,

(2.11)

where each channel is also called feature map since it is supposed to contain some image features

characteristic to the kernel [42]. In these relations we have used, as mentioned above, di�erent

values of the stride for height and width, i.e BW and B� . Then, by analyzing the role played by BW
and B� in these expressions, we can deduce that they are parameters determining how much we are

reducing the dimensionality, i.e. a larger stride leads to smaller feature maps.

From the previous discussion, we derive that the described convolution operation computed using a

�lter has the bene�t of reducing the size of the input tensor, but is losing information about pixels

on the perimeter of the image
23
[334]. Hence, if we want to increase the size of the output and

save the information presented in the corners, we can use padding [331, 334]. This is a technique

that consists in adding extra rows and columns on the outer dimension of the images, basically

extending the area of an image in which a CNN processes. There is no rule de�ning the values to

append, but a common choice is represented by same or zero padding [99, 47], i.e. zeros are added

around the border of the input tensor (see Figure 2.5). However, adding padding to an image or in

general to a feature map allows for a more accurate analysis of these tensors.

Figure 2.5 provides a practical example of the use of padding inside the convolutional step, where

the dimensions of the output are bigger than the one of the input. We need now to derive some

expressions to determine the �nal shape of a tensor x(ℓ−1)
, once we apply the convolutional step

with padding. Let ?̃� and ?̃W be the number of columns and rows we are adding, in this case, the

output of convolution will have the following shape [331, 334]:

3
(ℓ)
W =

3
(ℓ−1)
W − 3 ,(ℓ)W + 2?̃W

BW
+ 1,

3
(ℓ)
�

=
3
(ℓ−1)
�

− 3 ,(ℓ)
�

+ 2?̃�

B�
+ 1,

3
(ℓ)
�

= = .

(2.12)

23
If we think about a pixel on the border of the image, it is immediate to understand how it is considered only when the

�lter has a side on the perimeter, but this does not happen so often.

2.2. CONVOLUTIONAL NEURAL NETWORKS 42

Figure 2.5: Example of application of the convolutional step using zero-padding with

?̃=1 and stride B=1.

Also in this case we have introduced two di�erent values for the padding for the height and width,

?̃� and ?̃W , but usually we have the same value of padding ?̃ in both directions of motion, i.e.

?̃ = ?̃� = ?̃W .

Convolution is characterized by the property of equivariance to translations [42, 99]. The following

proposition states that if the input is a�ected by a translation, then also the output of the convolution

is a�ected by the same translation.

Proposition 2.2.2 (Equivariance to translation [42]). Let 5conv be a convolution operation, x be the
input and)U,V the translation operation in the direction of the vector (U, V), de�ned by ()U,V ◦ x)8 9 =
G8−U,9−V . Convolution operation preserves translations, i.e.

5conv ()U,V ◦ x) =)U,V ◦ 5conv (x).

Hence, for example, considering time-series data, this property translates into producing a

timeline showing when di�erent features are present in the input. Similarly, with images, this

means that convolution produces a 2D map regarding the appearence of features in the picture.

From the previous discussion, we have seen that in a convolutional layer the product between

the input and the �lter is not describing the interaction between each input unit and each output

unit, but between only local portions. To be precise, in a traditional neural network the output is

computed using the formula (1.7), where every output interacts with every input through the weight

matrix, as can be seen in Figure 2.6 (a). A CNN is instead characterized by having sparse interactions
(also referred to as sparse connectivity or sparse weights) [99], i.e. when computing the output only a

portion of the input, the one identi�ed by the �lter, is involved in its calculation (see Figure 2.6 (b)).

In this way, we need to store fewer parameters, and hence the number of operations to compute the

output is also decreased. If we denote as =ℓ and =ℓ+1 the number of neurons in layers ℓ and ℓ + 1, and
we consider a kernel with 3 W = 3

�
with 3 W < =ℓ , we are moving from $ (=ℓ × =ℓ+1) operations to

$ (3 W × =ℓ+1).
Another relevant property of CNNs is parameter sharing [99]. In a generic ANN, we have that

each element of the weight matrix, is used exactly once when computing the output of the

corresponding layer. In a CNN, weights are tied, since the weight value applied to one input is

linked to the value of a weight applied elsewhere. In fact, the same kernel is applied throughout the

image, in every position. In this way, convolution weights are shared between di�erent locations,

leading to the necessity to learn a set of parameters for multiple locations instead of learning a

separate set for every location. Also in this case, as consequence, we will have a reduction in the

number of parameters to store, $ (3 W × =ℓ+1).
From the previous discussion, it is easy to understand which is the role played by �lters in the

convolutional step and in general in the feature learning part: extract relevant features from an

input image, and in particular from the items depicted in it. To be precise, CNNs use the �rst

43 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

(a) Generic ANN (b) Convolutional Neural Network

Figure 2.6: Comparison between interactions in a generic ANN and in a CNN, that is

characterized by sparse interactions.

convolutional layers to learn low-level features, i.e. minor details of the image such as lines or dots,

while the later layers will learn to recognize high-level features, i.e. detect common objects and

larger shapes in the picture. Figure 2.7 provides an example of a �lter for vertical edge detection.

Under each matrix (input, kernel, output) we have a representation of it in grayscale: values greater

than 0 give rise to a white zone, less than 0 to a black stripe, and when there are 0 columns we have

a gray zone. Hence, we want to detect the vertical line that separates the white and gray zone in

the input. Using that particular kernel matrix, we obtain in output a matrix with a white zone in

the middle, indicating the presence of the vertical line. In this case, it can be seen that the stripe

that detects the vertical edge is wide, but this is connected to the fact we have small matrices. If we

move to larger dimensions, this results in a more precise detection.

Figure 2.7: Example of a �lter to detect vertical edges.

It is important to point out that, in the implementation of a CNN, we are not placing in each layer

kernel matrices with some particular structure to detect a de�ned feature, but they are initialized

randomly or using a particular distribution and then �ne-tuned during backpropagation and the

training phase. A brief insight on the topic can be found in Section 2.2.8.

2.2.2 Nonlinearity Layer

As described in Section 1.3 for a general ANN, after the propagation function, here represented

by 5conv, a nonlinear function f is applied. In literature is also not uncommon to see the convolutional

layer combined with the nonlinearity layer, without having two separate layers [147].

2.2. CONVOLUTIONAL NEURAL NETWORKS 44

Given the output of the convolutional layer x(ℓ) and let f be the activation related to the nonlinear

layer ℓ + 1, we will obtain:

G (ℓ+1) = f (G (ℓ)). (2.13)

In Section 1.2, a list of common choices can be found. However, it has been demonstrated that

ReLU [222], and in particular one of its variants Parametric Recti�ed Linear Unit (PReLU) [119]
(see Figure 2.8), with %'4!* = max{UG, G}, U ≤ 1, improve the performances of CNNs in the

context of image recognition. Obviously, also in this case, the choice of the activation function is

strictly correlated with the problem under consideration, so PReLu can be a good starting point, but

other choices should also be taken into account when developing a CNN.

−10 −5 5 10

−10

−5

5

10

G

~

Figure 2.8: Plot of PReLu with U = 0.2.

2.2.3 Pooling Layer
Pooling function is a machine learning technique used to reduce the dimensionality of each

feature map by retaining the most important information and thus producing a summary of the

input [99, 42, 331, 178]. To understand the idea of pooling, we can start by considering a partition

of the domain of a function. Pooling determines the most representative value of the function on

that set, which is then substituted in place of function values on that partition. There exists several

ways to determine these most important values, such as maximum, average, and minimum, that we

are now going to brie�y describe. Following [42], we start by presenting the one-dimensional case

for simplicity, and then we extend everything to a multidimensional case.

Max-pooling

Let 6 : [U, V] → R be a continuous function de�ned on an interval [U, V], characterized by the

following uniform partition of # points:

U = @0 < @1 < · · · < @#−1 < @# = V.

The partition size de�ned as B̃ =
V−U
#

. If we denote with "8 = max

[@8−1,@8]
6(@), the maximum in each

sub-interval, we can de�ne the simple function

(̂# (@) =
#∑
8=1

"81[@8−1,@8) (@). (2.14)

The goal of max-pooling is thus approximating our function6(@) with the simple function (̂# (@) [341,
42].

45 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

Min-pooling

Similar to max-pooling, we can de�ne a similar method by using the minimum value instead of

the maximum. Hence, we can consider<8 = min

[@8−1,@8]
6(@), and the simple function

B̂# (@) =
#∑
8=1

<81[@8−1,@8) (@). (2.15)

Hence, also in this case min-pooling represents the process of approximating our function 6(@) by
the simple function B̂# (@) [42].

Average-pooling

For average-pooling, we are considering the notion of average for a continuous function 6,

with 6 : [U, V] → R, de�ned on an interval with the same uniform partition introduced above.

The average of 6 on each sub-interval [@8−1, @8] is given by 6̄8 =
1

@8 − @8−1

∫ @8

@8−1

6(D)3D, thus we can

introduce a function �̂# , describing the average-pooling, as:

�̂# (@) =
#∑
8=1

6̄81[@8−1,@8) (@), (2.16)

with which we want to approximate 6(@) [42].

It is now needed a result that ensures that these pooling functions are good approximators for 6,

and is represented by the following theorem
24
[42].

Theorem 2.2.3 ([42]). Let 6 : [U, V] → R be a continuous function de�ned on the interval [U, V].
Then, the three sequences ((̂#)# , (B̂#)# , and (�̂#)# , whose terms are de�ned by Equation (2.14), Equa-
tion (2.15), and Equation (2.16) respectively, converge uniformly to 6 on the interval [U, V], as # → ∞.
More precise, we have that ∀n > 0, ∃ #̃ ≥ 1 such that

|(̂# (@) − 6(@) | < n, |B̂# (@) − 6(@) | < n, |�̂# (@) − 6(@) | < n, ∀@ ∈ [U, V], ∀# ≥ #̃ .

Pooling is then characterized also by the property of local translation invariance [42, 99], i.e.
approximately invariant to small translations of the input. This means that, if the input is translated

by a small amount, the values of the pooled outputs do not change, and thus we do care more

about whether some features are present instead of where they are. There exists a result
25
which

guarantees this property for pooling [42].

Proposition 2.2.4 (Translation invariance [42]). Let 6 : R→ R be a continuous function, 5pool be
a pooling function and)W the translation operator, de�ned as ()W ◦ 6) (@) = 6(@ − W). There exists a
partition of R such that:

5pool ()W ◦ 6) = 5pool (6),

for any small enough value of W .

24
The interested reader can �nd the proof of the theorem in Chapter 15 of [42].

25
Also in this case, we are not proving this result since is out of scope for this discussion. The complete proof of it can be

found in Chapter 15 of [42].

2.2. CONVOLUTIONAL NEURAL NETWORKS 46

Since convolution has the property of equivariance to translations (see Proposition 2.2.2), we

derive that pooling and convolution are two operations that are compatible and can be applied

together [42]. Hence, let 6 : R2 → R, we have:

5pool ◦ 5conv ()W,X ◦ 6) = 5pool ◦ 5conv (6),
5conv ◦ 5pool ()W,X ◦ 6) = 5conv ◦ 5pool (6).

(2.17)

We can now show how pooling can be extended to the multidimensional case [42]. Let now

6 : � → R be a continuous function de�ned on a compact � ⊂ R# , and consider a covering of �:

� =
⋃
8∈�

�̄8 ,

where �8 are open sets, �̄8 denotes the closure of �8 and � is an index set. Hence, the previous

pooling functions will now be rewritten as:

(̂# (@) =
∑
8∈�

"81�8 (@) with "8 = max

�̄8

6(@),

B̂# (@) =
∑
8∈�

<81�8 (@) with <8 = min

�̄8

6(@),

�̂# (@) =
∑
8∈�

6̄81�8 (@) with 6̄8 =
1

` (�8)

∫
�̄8

6(@),

(2.18)

where ` (�8) represents the measure of the set �8 . Also in this case, there exists a result similar to

Theorem 2.2.3 ensuring that we are taking good approximators for our function 6 [42].

In our test case, we are considering tensors of size (3W, 3� , 3�), hence, �xed a channel, we have to

consider a covering for each 3W × 3� tensor. More technically speaking, let a pooling layer, with

5
(ℓ)
pool

the related pooling function, be the ℓ-th layer in a CNN and let x(ℓ−1) ∈ R3
(ℓ−1)
W ×3 (ℓ−1)

�
×3 (ℓ−1)
� be

the input for that layer, that represents the feature maps of layer ℓ − 1 (see Figure 2.9). Fixing a

channel : , for : = 1, . . . , 3
(ℓ−1)
�

, let {�8 : 8 ∈ � } be a cover for x(ℓ−1)
: : :

∈ R3
(ℓ−1)
W ×3 (ℓ−1)

� , i.e. the :-th

feature map of layer ℓ − 1. Note that we are considering the same cover for each channel of x(ℓ−1) ,
since each x(ℓ−1)

: : :
, : = 1 . . . , 3

(ℓ−1)
�

, has the same dimensions (3 (ℓ−1)
W , 3

(ℓ−1)
�

) and at the end each

feature map of layer ℓ should have the same size (3
(ℓ)
W , 3

(ℓ)
�

).

We now assume that each�8 is characterized by having the same rectangular shape of size 0W ×0� ,
and thus the same measure, ` (�8) = 0�0W, ∀8 ∈ � . It is important to point out that we are

not assuming that the elements of the covering are disjoint sets, therefore we need to de�ne a

“measure” of how distant two elements of the covering are in the two spatial directions, e.g. width

and height. We want thus to quantize by how many pixels to move to �nd the next rectangle.

This remembers the role of stride in convolution described in Section 2.2.1. For this reason, also in

pooling, this parameter is called stride26Intuitively the idea of pooling is presented by de�ning a

�xed window, similar to the �lter of the convolutional layer, that is slid through the tensor with a

step B = (BW, B�) [47].. Since we have that 3 (ℓ−1)
�

≠ 3
(ℓ−1)
W , we need to introduce a stride in each

dimension BW and B� . There is not a default choice for these values, but it is easy to understand

that they satisfy this property:

BW ≤ 3 (ℓ−1)
W − 0W,

B� ≤ 3 (ℓ−1)
�

− 0� .
(2.19)

47 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

feature maps

layer (ℓ − 1)
feature maps

layer ℓ

Figure 2.9: Illustration of a pooling layer.

Note that we are assuming that we have always the same stride in each dimension, i.e. the distance

between a subset �8 and the next one � 9 is always B� and BW in the directions of height and width

respectively
27
.

Setting a value for B, and B� , if we apply 5
(ℓ)
pool

to x(ℓ−1)
: : :

, we gain for each subset �8 :

x(ℓ)
: : : |�8

= 5
(ℓ)
pool |�8

(
x(ℓ−1)
: : : |�8

)
, ∀: = 1, . . . , 3

(ℓ−1)
�

. (2.20)

where 5pool |�8 is the pooling function applied to the subset �8 , x
(ℓ−1)
: : : |�8

is the :-th feature map of

layer ℓ − 1 restricted to the subset �8 , and x(ℓ)
: : : |�8

represents the element of the :-th feature map in

layer ℓ related to �8 . The �nal output of the pooling layer x(ℓ) can thus be computed as:

x(ℓ) = 5 (ℓ)
pool

(
x(ℓ−1)

)
, (2.21)

where x(ℓ) has size (3 (ℓ)
W , 3

(ℓ)
�
, 3

(ℓ)
�

) determined by:

3
(ℓ)
W =

3
(ℓ−1)
W − 0,
BW

+ 1,

3
(ℓ)
�

=
3
(ℓ−1)
�

− 0�
B�

+ 1,

3
(ℓ)
�

= 3
(ℓ−1)
�

,

(2.22)

Note that the function 5
(ℓ)
pool

is not applied globally to x(ℓ−1) but locally on each subset of the collection
covering each feature map, as described by Equation (2.20). Furthermore, it is also a function acting

independently on each channel of our tensor. Hence it is important to point out that pooling acts

independently on each feature map and, since is not characterized by the presence of weights, it is

not involved in backpropagation.

We should also consider a particular example of the one described, that is the case of an input tensor

26

27
We can set an order in the collection of subsets covering x(ℓ−1)

: : :
. First, we can de�ne the distance between two subsets

in a dimension —height or width—as the number of pixels that separate them. Then, given a subset�8 , the next subset in the

direction of the height is the one with the smaller distance from it, and the same for the width.

2.2. CONVOLUTIONAL NEURAL NETWORKS 48

Figure 2.10: Example of application of max-pooling on a squared domain.

that has 3� = 3W , as usually happens in the context of image recognition. Therefore, let x(ℓ−1) be a
tensor of size (3 (ℓ−1)

W , 3
(ℓ−1)
�

, 3
(ℓ−1)
�

). In this case, we cover each feature map x(ℓ−1)
: : :

using a partition

of it, i.e. with disjoint square open sets of shape (0& , 0&):

x(ℓ−1)
: : :

=
⋃
8∈�

�̄8 with �81 ∩�82 = ∅, ∀81, 82 ∈ � , 81 ≠ 82. (2.23)

Since we are assuming that each �8 has the same measure, is a square, and is disjoint from the

others, we can conclude that the stride in each dimension is the same, i.e. B� = BW . We can then

compute the output of the pooling layer x(ℓ)
using Equation (2.20) with the partition described

before, as depicted in Figure 2.10, that is providing a practical example of max-pooling.

2.2.4 Fully Connected Layers
The last part of a CNN is responsible for the classi�cation of the image features that have been

captured during the feature learning part. Hence, the detected features are fed into a fully connected

FNN that drives the �nal decision, by grouping the information obtained, analyzing them, and at

the end providing a number identifying the class to which the input tensor belongs.

In practice, to be a suitable input for the fully connected FNN, the output of the feature learning

part, that is a tensor, needs to be �attened into a column vector, as depicted in Figure 2.1. Let

x(ℓ−1) ∈ R3
(ℓ−1)
W ×3 (ℓ−1)

�
×3 (ℓ−1)
� be the input for the classi�cation part, we need to de�ne a function

5�atten, that converts x(ℓ−1) into a 1-dimensional array. A way to do it is to de�ne 5�atten as a linear

mapping between two spaces, R3
(ℓ−1)
W ×3 (ℓ−1)

�
×3 (ℓ−1)
� and R3

(ℓ−1)
W ∗3 (ℓ−1)

�
∗3 (ℓ−1)
� , as:

5�atten : R3
(ℓ−1)
W ×3 (ℓ−1)

�
×3 (ℓ−1)
� → R3

(ℓ−1)
W ∗3 (ℓ−1)

�
∗3 (ℓ−1)
� , (2.24)

that maps the (8, 9, :) component of x(ℓ−1)
in the<-th element of the output vector x(ℓ−1)

�at
, with

< = (9 − 1) ∗ 3 (ℓ−1)
W + 8 + (: − 1) ∗ (3 (ℓ−1)

W ∗ 3 (ℓ−1)
�

).
Once we have �atten the input vector obtaining x(ℓ−1)

�at
, this becomes the input for a fully connected

FNN, made of !̃ layers. The output of each layer is determined using Equation (1.12), where in this

case ReLU is usually used in the intermediate layers, whereas, to obtain the �nal output ŷ of the

CNN, a common choice for the activation function in the output layer is represented by the softmax
or normalized exponential function [99, 26]. Formally, given a vector u ∈ R= the softmax function is

de�ned as:

D̂8 = f (D8) =
4G? (D8)
=∑
9=1

4G? (D 9)
, for 8 = 1, . . . , =. (2.25)

49 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

The application of this activation function is important because it normalizes all the vector compo-

nents, that at the end will be in the interval [0, 1]. In this way, each element of û is between 1 and 0,

but also the entire vector sums to 1, providing thus a valid probability distribution.

Hence, following the notation introduced in Section 1.3, we have:

ŷ = f (h(!+1)) (2.26)

where ŷ and h(!+1)
belong to R=out . In this case, since we are solving a classi�cation task, =out

corresponds to the number of classes that composes our dataset D.

2.2.5 Equivalence Convolutional Layers and Fully Connected Layers

Intuitively, we can understand from the previous discussion that fully connected layers are a

special case of convolutional layers. For example, given a convolutional layer and an input tensor

of size 3 inW × 3 in
�
× 3 in

�
, the output is obtained by applying a �lter K, with shape 3 W×3

�
×3 in

�
× 3out

�
,

to it, as described in Equation (2.10), and it will be a tensor of size 3outW × 3out
�

× 3out
�

. Hence, if we

consider the case in which 3 in
�

= 3out
�

= 1 and 3 inW = 3outW = 1, we are exactly in the case of a fully

connected layer. Therefore, to be more precise, we can establish an equivalence between these two

types of layers, namely a way of converting one into the other [202, 238]. Hence, to convert the ℓ-th

convolutional layer of a net into a fully connected layer, we need to transform its input G (ℓ−1)
into

a 1-dimensional array and its weight matrix, (ℓ)
, that corresponds to the kernel (ℓ)

mentioned

before, into a 2-dimensional array. For the input tensor G (ℓ−1)
, this is simply done employing the

�atten function 5�atten, de�ned in Equation (2.24):

x(ℓ−1)
�at

= 5�atten (x(ℓ−1)), with x(ℓ−1)
�at

∈ R3
(ℓ−1)
W ∗3 (ℓ−1)

�
∗3 (ℓ−1)
� , x(ℓ−1) ∈ R3

(ℓ−1)
W ×3 (ℓ−1)

�
×3 (ℓ−1)
� , (2.27)

that maps the (8, 9, :) element of x(ℓ−1) into the<-th element of x(ℓ−1)
�at

, where< = (9 − 1) ∗ 3 (ℓ−1)
W +

8 + (: − 1) ∗ (3 (ℓ−1)
W ∗ 3 (ℓ−1)

�
). For the weight matrix, we can de�ne a similar function 5,

�atten
:

5,
�atten

: R3
 ,(ℓ)
W ×3 ,(ℓ)

�
×3 (ℓ−1)
�

×3 (ℓ)
� → R3

 ,(ℓ)
W ∗3 (ℓ)

�
∗3

(ℓ−1)×3 (ℓ)
�

�

,
(ℓ)
�at

= 5,
�atten

(, (ℓ)),
(2.28)

that maps the (8, 9, :, 2) element of, (ℓ)
into the (<,2) element of its �atten version,

(ℓ)
�at

, with<

de�ned as before.

For the other conversion, i.e. from a fully connected layer to a convolutional layer, we only need to

use the inverse of the function introduced. For example, 5tensor = 5
−1
�atten

is the function that maps a

1-dimensional array into a 3-dimensional tensor. In particular, it maps the<-th component of the

1-dimensional array into the (< − (9 − 1) ∗ 3 (ℓ−1)
W − (: − 1) ∗ (3 (ℓ−1)

W ∗ 3 (ℓ−1)
�

), 9, :) component of

the input tensor for the ℓ-th convolutional layer.

2.2.6 Backpropagation

As described in Section 1.5 for FNNs, after we have initialized the network we need to tune all

its parameters using Backward propagation to gain good performances. This can be applied also

for CNN, since this method remains valid till we have a network without recurrent connections

or loops, hence only with forward connections. As discussed in Section 1.5.2, an important role

is played by the loss function. In the context of multi-class or binary classi�cation problems, a

2.2. CONVOLUTIONAL NEURAL NETWORKS 50

common choice is represented by the Cross-Entropy Loss [99, 305], de�ned in Equation (1.18) for

two-classes problems. Hence, a general expression is given by [329]:

L(., .̂) = − 1

=train

=train∑
8=1

=out∑
9=1

~89 log(~̂89), (2.29)

where =out is the number of categories in Dtrain; y89 has value 0 or 1, indicating whether the class
label 9 is the correct classi�cation label or not for y8 and same for ŷ89 , where 1 represents that

the prediction for the 8-th sample corresponds to the 9-th category. Note that in this case we are

summing also on the classes ofDtrain for each training example. It is also important to highlight that

the vectors {ŷ8 }=train
8=1

used in the computation of the loss should have been normalized between 0 and

1, i.e. should have been passed to the softmax function. Hence, if in the last layer the normalized

exponential function is not present, to compute the loss function L, we need to introduce this

activation function [329], obtaining:

L(., .̂) = − 1

=train

=train∑
8=1

=out∑
9=1

~89 log

(
exp(~̂89)∑=out

<=1
exp(~̂8<)

)
. (2.30)

2.2.7 Testing Phase
As introduced in Section 1.5.9, the testing phase is a fundamental step in the model development

process. In the classi�cation context, the error is not measured through the typical loss function.

Since we have to deal with =class possible outputs, we have to introduce a performance metric able

to take into account the correctness of the prediction for the CNN, namely the confusion matrix [112,

314]. It is constructed based on the expected and predicted outputs from our model, where on the

rows there are the target classes in the data set and on the columns the corresponding predicted

output classes. Based on the values contained in that matrix, we can de�ne Average Precision

(AP) [83, 265], a popular metric in measuring the accuracy of CNNs and object detectors. In order

to understand its de�nition we need to introduce the notions of precision and recall [228, 102, 37,
191]. Precision is the fraction of relevant instances among the retrieved instances, hence it measures

the ability of a system to present only relevant items. Recall, on the other hand, is the fraction

of relevant instances that have been retrieved over the total amount of relevant instances, i.e. it

measures the ability of a system to present all relevant items. In machine learning and statistics, we

usually introduce the notions of true positive, true negative, false positive, and false negative [314,

112] to explain these concepts. True positive (TP) is a model outcome that correctly indicates the

presence of a condition or characteristic, whereas false positive (FP) is a test result that wrongly
indicates that a particular condition or attribute is present, hence providing an incorrect prediction.

Similarly, we have a true negative (TN), when the output of the model correctly indicates the absence

of a condition or characteristic. On the other hand, a false negative (FN) is a model outcome that

incorrectly indicates the absence of a condition or an attribute. In this way, precision can be de�ned

as the percentage of predictions that are correct and recall as the accuracy of the model in �nding

all the positives:

% = %A428B8>= =
)%

)% + �% ,

' = '420;; =
)%

)% + �# .
(2.31)

Starting from this, we can express precision as a function of recall and plot his graph. A popular

measure that represents a summary of this precision-recall curve, is the AP. In practice, it is de�ned

51 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

as the average value of % (') over the entire interval from the recall value 0 to 1, i.e. the area under

the precision-recall curve [292]:

�% =

∫
1

0

% (')3', with 0 ≤ �% ≤ 1, (2.32)

that in practice becomes the following �nite sum:

�% =

=∑
8=1

%8Δ'8 =
=∑
8=1

%8 ('8 − '8−1), (2.33)

where Δ'8 represents the change in recall from 8 − 1 and 8 and = is the number of predictions made.

By taking the mean of the APs computed over all the classes in the dataset we obtain the metric

commonly used to evaluate the performance of a CNN and an object detector, the Mean Average

Precision (mAP) [83, 282]:

<�% =
1

=class

=class∑
9=1

�% 9 , 0 ≤ <�% ≤ 1, (2.34)

where =class is the total number of categories. Usually, the mAP value is then multiplied by 100 to

obtain the percentage of accuracy for all the classes of the dataset.

Starting from recall, another performance metric can be de�ned: top-k accuracy [169, 193]. It

computes the number of times the correct label is predicted among the top k labels, ranked by

probability prediction scores. Therefore, the outputs of the softmax function, i.e. the last layer

of a CNN, are ordered based on their con�dence score, and only the top : values are taken into

consideration. Top-: accuracy is thus evaluating how often the predicted class falls in the top :

values. In particular, when : = 1, namely when we consider the top-1 accuracy, we are extracting

only the maximum value out from the �nal outputs of the CNN and hence measuring the proportion

of examples for which the predicted label matches the target one. Therefore, top-1 accuracy can

provide a measure of how much the model can generalize what has been learned from the training

dataset, whereas top-: accuracy gives an insight into the need for an additional �ne-tuning of the

CNN parameters.

2.2.8 CNN Initialization
In Section 1.6, we have discussed several parameter initialization strategies, that can be applied

also to CNNs. Hence, after we have constructed a CNN we can initialize from scratch all the

parameters using those methodologies. In this case, a common and highly e�ective approach is

to use pretrained weights [47], obtaining thus a pretrained network. This is meaning that we are

not using weights initialized following some rules and distributions, e.g. Kaiming He, random,

but we are using the weights obtained by training previously that network on a large dataset,

such as ImageNet
28
[167], typically solving a large-scale classi�cation task. This technique that

exploits those pretrained weights to initialize weights in a new classi�cation task is called Feature
Learning [232, 283, 99]. The idea behind this method is thus of employing what has been learned in

one setting. i.e. to solve a task, to improve generalization in another setting, namely for a di�erent

task that is sharing some relevant features with the previous one. For example, in a classi�cation

environment, we may want to classify cats and dogs and then use this knowledge acquired to

distinguish between ants and wasps. This is very e�ective since many visual categories share

28
Refer also to Section 2.3.1 for a brief description of Imagenet.

2.3. IMAGE RECOGNITION 52

low-level notions of edges and visual shapes, changes in lightning, the e�ect of geometric changes,

and so on. For this reason, typically, only convolutional layers in the feature learning part use

pretrained weights. The classi�er part, as well as the entire network, is then trained starting from

this initialization. The reason for this choice is that the representations learned by the convolutional

layers are more generic and thus more reusable, whereas the ones learned by the classi�er are

necessarily speci�c and connected to the set of classes composing the dataset used for training.

These layers indeed contain only information about the presence probability of a category in the

picture, and not about the localization of it [47].

Pretraining [78] is an approach very similar to the one presented for transfer learning. The main

di�erence lies in the fact that in the latter the network architectures must be transferred as well as

the weights. Pretraining, on the other hand, enables the initialization of weights using big datasets,

while still enabling �exibility in network architecture design. In this case, pretrained weights can

thus be generated using a di�erent architecture with respect to the one in which we are then loading

them.

2.3 Image Recognition

In the previous section, we have introduced and explained the notion of CNNs, giving importance

to the application in the context of image recognition, since is the one we are interested in. Image

recognition is thus the task of identifying objects of interest within an image and recognizing which

category they belong to. CNNs represent then the algorithms that solve this problem. In this section,

we are going to review some of the datasets that are used in literature to test and train CNNs, but

also some of the architectures that have been developed in this �eld.

2.3.1 Datasets
When choosing a dataset to train and test a CNN there are basically two choices that can be

followed: create a custom dataset or use one freely available online, commonly used for machine

learning research. In the �rst case, the experiments are strictly connected with a particular problem

we may have, in the second one, the choice of using a dataset of this type could be connected with

the will to compare the results of our network with the one already present in the literature.

For the benchmark databases, there are plenty of datasets that can be used for this purpose [329].

A �rst example is represented by MNIST database of handwritten digits [170, 175] from the

National Institute of Standards and Technology (NIST). It contains 60, 000 training images and

10, 000 testing images, with shape (28, 28, 1), created by re-mixing samples from NIST’s original

datasets [107]. In Figure 2.11 we can see some examples of samples from theMNIST. Other commonly

used databases are represented by CIFAR-10 and CIFAR-100 datasets [166], collected by Alex

Krizhevsky, Vinod Nair, and Geo�rey Hinton, from the Canadian Institute For Advanced Research.

They contain 60, 000 32 × 32 color images divided in 10 and 100 di�erent classes respectively,

with 50, 000 training pictures and 10, 000 testing pictures. Figure 2.12 (a) provides an example of

samples extracted from all the categories in CIFAR-10, whereas Figure 2.12 (b) represents another

dataset commonly employed in the �eld of computer vision: ImageNet [68, 265]. It deals with the

object recognition task, which, as pointed out in [265], encompasses not only the problem of image

classi�cation but also of object detection, which will be the topic of Section 2.4. The ImageNet

dataset represents the backbone of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
and is organized accordingly to the WordNet hierarchy [214], a lexical database that establishes

semantic relations between words in more than 200 languages. It is a very large visual database

since it contains more than 14 million hand-annotated images divided into 20, 000 categories and

for at least one million of them, object detection annotations are also provided.

53 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.11: Samples from the MNIST Dataset. Image from Yann LeCun, Corinna

Cortes, Christopher J.C. Burges, http://yann.lecun.com/exdb/mnist/.

(a) CIFAR-10 Dataset (b) ImageNet Dataset

Figure 2.12: CIFAR-10 and Imagenet Datasets. On the left, (a) presents a complete list of

all the classes that compose CIFAR-10 and an example of 10 random pictures for each

category. (Source: https://www.cs.toronto.edu/ kriz/cifar.html.) On the right, (b) depicts

some random samples from the validation set of the ImageNet Dataset. (Source: original

paper [265].)

In both cases, whether we are using custom data or a benchmark dataset, data should be formatted in

a proper way [47, 331] to be fed into a CNN. Therefore, after data collection, we need to preprocess

images by converting them into a grid of pixels (usually with the RGB format) and then into

�oating-point tensors. It is also common to normalize data following a certain mean ˆ̀ and standard

deviation f̂ , using for example the standard score normalization or z-normalization [331]. Hence,

given an input image x(0) , each value is replaced with the I-score:

G̃
(0)
8

=
G
(0)
8

− ˆ̀

f̂
,

leading to a new tensor x̃(0) with zero mean and standard deviation 1.

It is widely accepted that bigger datasets result in better Deep Learning models [295, 109, 285]. When

using a custom dataset, we may however have few samples to learn from, rendering it ine�ective to

train a model that can generalize to new data [47]. In many scenarios, such as medicine, it is tough

2.3. IMAGE RECOGNITION 54

and expensive to obtain data and then label it. Therefore, it becomes increasingly important to

augment training data arti�cially via several random transformations that yield believable-looking

images. Data augmentation [203, 47, 285, 99] represents thus this approach of generating more

training data from existing training samples. There exist several techniques that can be employed

for this purpose [285], e.g. geometric transformations, color space transformations, kernel �lters,

random erasing, GAN-based augmentation.

The class of augmentations based on geometric transformations is characterized by their ease of

implementation. They include techniques such as �ipping, rotation, cropping, and translations,

that can avoid positional bias in the data. Color space and kernel �lter transformations, such as

color augmentations, isolation of one color channel, change of the brightness of the image, use of

grayscale images, blur and noise addition, can then help CNNs to learn more robust features close

to real-life examples. All these methods start thus from the color histogram related to a picture and

manipulate it by applying �lters changing the color space characteristics of the image.

Random erasing [340] is an interesting Data Augmentation technique developed to face the problem

of occlusion, i.e. when some parts of the object are unclear. Hence, a picture is manipulated

to guarantee that a network pays attention to the entire image, rather than just a subset of it.

Technically speaking, it is performed by randomly selecting a patch of an image and masking it

with either value equal to 0 or 255, mean pixel values, or random values.

New data can also be created using another neural network. This is the approach carried out by

Generative Modeling and in particular by Generative Adversarial Networks (GANs) [100, 34, 99].

The GAN model architecture involves two sub-models, that can be multilayer perceptron networks

or also CNNs: a generator model for generating new plausible examples for the problem domain

and a discriminator model for classifying whether generated examples are real, from the domain, or

fake, generated by the generator model. The discriminator model is particularly useful during the

training process to understand how close are generated picture to the real one. Hence, after the

training process, it is discarded, since only the generator is then used to create new samples. In this

way, GANs are thus able to unlock additional information from a dataset by constructing arti�cial

instances that retain similar characteristics to the original set.

2.3.2 CNN Architectures for Image Recognition

Over the last 30 years, several CNN architectures have been presented [5, 6, 156, 315] to tackle the

problem of image recognition. It is widely recognized that the �rst CNN that has been proposed was

LeNet, invented by LeCun, Boser, Denker, Henderson, Howard, Hubbard, and Jackel, in 1989 [170]

and further made popular with the work [175]. The success of LeNet opened the way to the birth

of great interest in CNNs and their potentiality. In particular, the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [265] attracted a large number of researchers aiming to solve the

classi�cation task connected with the benchmark dataset Imagenet, leading to a development of a

great number of CNNs. In this section, we will thus brie�y discuss some of these models [156, 315],

starting from the pioneer one: LeNet.

LeNet LeNet-5 [170, 171, 175, 174] is known for its ability to classify and recognize digits, handling

a variety of di�erent problems connected with digits, such as variances in position and scale, rotation

and squeezing. The introduction of that network is strictly connected with that of the MNIST

database [171], which was the standard benchmark in the digit recognition �eld. Although the

development of LeNet-5 means the emergence of CNNs, this model was not so popular in the 1990s

because of the lack of hardware equipment, especially GPUs [334].

As depicted in Figure 2.13, it consists of two pairs of Convolutional and Pooling Layers, followed by

two fully connected layers and a Gaussian connection layer for classi�cation. A Gaussian connection

55 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

is simply a fully connected layer, characterized by using a Euclidean Radial basis function (RBF)

as an activation function to provide the �nal output of the network. The structure of LeNet was

able to overcome the main limitations of traditional multilayered fully connected neural networks,

that considered each image pixel as a separate input, in which applying some transformation [87].

LeNet, instead, was the �rst net able to learn features from raw pixels automatically by considering

them correlated to the other neighboring pixels. The introduction of convolution with learnable

parameters represents also an e�ective way to extract object features at multiple locations with few

parameters.

Figure 2.13: Architecture of LeNet-5, original picture taken from [171].

AlexNet AlexNet [167, 156] was designed by Alex Krizhevsky in collaboration with Ilya Sutskever

and Geo�rey Hinton in 2012. While LeNet starts the era of CNNs for digit recognition, AlexNet

showed groundbreaking results for image classi�cation and recognition tasks connected with a

huge dataset as ImageNet [68, 265]. These impressive performances on this database have created a

growing interest in using ImageNet for testing new architectures, leading then also to a competition,

ILSVRC, for developing the best CNNs for the task of image recognition trained and tested on

ImageNet

Figure 2.14 illustrates the basic design of AlexNet. It is characterized by eight layers, where the �rst

�ve are convolutional layers, with some of them followed by max-pooling layers, and the last three

are fully connected layers. As an activation function, ReLU is employed, due to its non-saturating

property that improves the convergence rate by alleviating the problem of vanishing gradients [222,

132]. The increase in depth and the use of several parameter optimization strategies then improve

the generalization for di�erent resolutions of images and its learning ability.

VGGNet Simplicity is a world that characterizes the CNN introduced by Simonyan and Zisserman

in 2014, called VGG [289], from the name of their research group Visual Geometry Group. Even if it

was not the winner of the ImageNet competition of that year, that was GoogleNet, it has introduced

important features to the architecture of a CNN, that opened the path for the creation of ResNet,

winner of the ILSVRC 2015. VGG explores deeper structure (11, 13, 16, or 19 weight layers
29
) with

simpler layers than the CNNs developed up to that point. Zeiler and Fergus in 2013 suggested that

small size �lters can improve the performance of CNNs, proposing a CNN called ZfNet [333]. Hence,

based on these �ndings, VGG replaced the 11 × 11 and 5 × 5 �lters with a 3 × 3 convolutional layer

followed by a 2 × 2 pooling layer [315, 156]. The use of smaller size �lters reduces the number of

29
The total number of layers having tunable parameters is 11, 13, 16, or 19 of which the �rst are convolutional layers and

the last 3 are fully connected layers. Max-pooling layers or in general pooling layers do not have weights to tune and thus

are not used in the backpropagation phase, as discussed in Section 2.2.3.

2.3. IMAGE RECOGNITION 56

Figure 2.14: Architecture of AlexNet, original picture taken from [167].

weights, thus providing an additional bene�t of low computational complexity. Despite this, VGG

is characterized by having a huge number of parameters, e.g. 138 million in the case of VGG-19,

representing its main limitation by making it computationally expensive and di�cult to deploy on

low resource systems.

As described in Figure 2.15, several con�gurations for VGGNet were presented in [289], that

di�er from each other in depth, i.e. from the number of weights layers. The main structure of

VGGNets is hence characterized by having the feature learning part composed of a certain number

of convolutional layers coupled with ReLU function and followed by a max-pooling layer and at the

end 3 fully-connected layers with softmax as the output function.

ResNet Residual Net (ResNet) [118, 156, 315] explores the idea introduced by VGG: use a deeper

structure with simple layers. Increasing only the number of layers of a CNN, gaining thus a deep

network, is not su�cient, because it leads to worse results for the training and testing phases. In

fact, using deeper plain networks increases the occurrence of the problem of vanishing/exploding

gradients. The main breakthrough ResNet introduces to solve this kind of problem lies indeed in

Residual Blocks (see Figure 2.16), which is composed of a certain number of convolutional layers and

a skip/shortcut connection from the input to the output of the block. The idea behind this method is

that the input x of a certain layer can be passed to the component some layers later either following

the traditional path which involves convolutional layers and ReLU transform succession or going

through an express way that directly passes x there. The �nal outcome xout is thus determined

by [120]:

xout = F (x) + x, (2.35)

where F represents the composition of the several layers of the Residual Block. It is easy to notice

that, if we are facing the problem of vanishing gradients in the convolutional layers, we now always

still have the identity x to transfer back to earlier layers.

Figure 2.16 (b) proposes a variant of the residual block, Bottleneck Residual Block, that utilises 1 × 1

convolutions to create a bottleneck. Hence, a 1 × 1 convolutional layer is added to the start and

end of the block. The use of a bottleneck is thus increasing the number of layers but on the other

hand, it reduces the number of parameters and matrix multiplications, while not degrading the

performance of the network [120].

57 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.15: Di�erent VGG con�gurations as presented in the original paper [289]. The

depth of the nets increases as we move from left to right, i.e. from (A) to (E), since more

layers (the bold ones) are added. The ReLU function is not mentioned for brevity but is

added after each convolutional layer.

A comparison between several ResNet architectures, as proposed in the original paper [118], is

described in Figure 2.17. As can be seen, the basic structure is characterized by the feature learning

part, composed of a convolutional layer, a max-pooling layer, and then four residual or bottleneck

blocks, followed by the classi�cation part with an average pooling and a fully-connected layer. It is

also useful to point out that the di�erence between the �rst two networks in Figure 2.17 and the

others is the presence of the bottleneck blocks, which leads to deeper networks.

GoogleNet GoogleNet [299], known also as Inception-V1, was the winner of the ILSVRC com-

petition in 2014. Figure 2.18 provides a schematic representation of its architecture, as presented

in [299]. It can be noticed that conventional convolutional layers are substituted by inception blocks.
Inception module, depicted in Figure 2.19, performs max-pooling and convolutions on the input

arriving from the previous layer, with 3 di�erent sizes of kernels or �lters, speci�cally 1 × 1, 3 × 3,

and 5 × 5. Hence, it encapsulates �lters of di�erent sizes in order to capture spatial information at

di�erent scales, i.e. at �ne and coarse grain levels. The basic idea under the inception block can be

summarized as split, transform, and merge, three operations that help in learning diverse types of

variations present in the same category of images having di�erent resolutions.

Then, to regulate the computations connected with bigger kernels, a bottleneck layer of 1 × 1

convolutional �lter is also added before employing large-size kernels or after the pooling layer.

Even if this lowers the number of parameters, it also drastically reduces the feature space in the

next layer, leading sometimes to the loss of useful information [156]. The connection’s density

was also reduced by using a global average pooling layer, that takes a feature map of 7 × 7 and

averages it to 1× 1, decreasing the number of associated trainable parameters to 0. In this way, these

2.3. IMAGE RECOGNITION 58

Figure 2.16: The basic residual block (left) and the proposed bottleneck design (right).

Source: original paper [118].

Figure 2.17: The overall architecture for all ResNets, as presented in the original

paper [118].

parameter tunings are causing a signi�cant decrease in the number of weights from 138 million (as

for VGG-19) to 4 million. Then, at the end of the architecture, there is the classi�cation part, made

of two fully-connected layers followed by the softmax classi�cation function.

To regularise and prevent over�tting, the authors have also added an additional component, known

as an Auxiliary Classi�er. They essentially applied softmax to the outputs of two of the inception

modules and computed an auxiliary loss over the same labels. As can be deduced, auxiliary classi�ers

are only utilized during training and then removed during inference. Hence, for training purposes,

the total loss function is a weighted sum of the auxiliary loss and the real loss.

Inception Network In the improvement and development of CNNs, the inception network repre-

sents an important milestone. Compared to traditional CNNs, which just stacked convolution layers

deeper and deeper, its complex and heavily engineered structure was able to push performance,

both in terms of speed and accuracy. Several versions were created from the �rst one, GoogleNet:

Inception-V2 and -V3 [301], Inception-V4 and Inception-ResNet [298], where each version is an

iterative improvement over the previous one. The presence of large �lters, as 5 × 5 in the classical

inception module, causes the input dimension to decrease by a large margin, leading to a possible

loss in accuracy. For this reason, in Inception-V2 [301], the 5 × 5 convolution is replaced with 3 × 3

kernels, as described in Figure 2.20 (a). Another change introduced is factorization: the conversion

59 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.18: GoogleNet architecture [299].

Figure 2.19: Basic architecture of the inception block [156].

of 3 × 3 �lters into an asymmetric convolution 1 × 3 followed by a 3 × 1 convolution, that has been

proven to reduce computational complexity of 33% [301] (see Figure 2.20 (b)). Then, in order to

avoid too deeper modules with an excessive reduction in dimensions and thus loss of information,

the �lter banks were expanded, making the block wider instead of deeper (see Figure 2.20 (c)). The

above three principles were thus used to build three di�erent types of inception modules: A, B, and

C, described in Figure 2.20. Hence, the overall schema for Inception-V2 is summarized in Figure 2.21,

where the �rst layers of the net are referred to in [301] as the stem of the architecture, composed of

three convolutional layers, a max-pooling layer, and other three convolutional layers.

Inception-V3 [301] represents an evolution of the previous version: it incorporates all of the upgrades

of Inception-V2 but with some modi�cations. RMSprop [309, 42] was introduced as an optimizer,

whereas, in the auxiliary classi�ers, batch normalization or dropout is used to let the auxiliary loss

have a bigger contribution.

Inception-V4 was introduced in combination with Inception-ResNet in 2016 [298]. It distinguishes

itself from Inception-V3 for a more uniform structure, characterized by many di�erent inception

2.3. IMAGE RECOGNITION 60

a) Inception module A b) Inception module B

c) Inception module C d) Reduction Block

Figure 2.20: Modi�cations of the inception module in Inception-V2 and Inception-V3 (a, b and c)

and structure of the reduction block (d), as presented in [301, 298].

modules
30
, indicated in Figure 2.22 (a) with A, B and C. Each of these inception blocks combines

the same features presented in the previous version (Figure 2.20) using, in each of it, di�erent size

�lters and sequences of layers. At the beginning, before these blocks, there is also an initial set

of layers, called the stem layer, with a similar structure to the one in Inception-V2. Inception-V4

introduced then specialized Reduction Blocks for the purpose of e�cient size reduction of the feature

maps by changing their width and height. In this way, the grid size is reduced e�ciently whilst

the activation dimension of the network �lters is expanded. As depicted in Figure 2.20 (d), these

modules are composed of two parallel blocks of convolution and pooling later concatenated.

In [298], it is explored also the possibility of using residual networks on the Inception model by

proposing two sub-versions of Inception ResNet: Inception-ResNet V1 and Inception-ResNet V2.

Hence, these CNNs are characterized by the presence of an Inception-ResNet module, compu-

30
Since the purpose of this Section is to o�er an overview of commonly used CNN architectures, we are not going to

provide all the details about the structure of these inception modules, the stem, and the reduction layers, both for Inception-V4

and for Inception-ResNet. The interesting reader can refer to the original paper [298].

61 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.21: Overall schema for Inception-V2, as described in [298].

tationally less expensive than the original Inception blocks used in Inception V4 [298]. In each

Inception-ResNet block, the pooling operation is replaced in favor of the residual connections (the

identity mapping). Then, to ensure that the residual addition operation is feasible and thus that

the input and output after convolution have the same dimensions, a 1 × 1 convolution is inserted

to match the depth after the original convolution block operation. Pooling operations are not

deleted at all from the CNN: they can still be found in the reduction blocks, that are similar to those

introduced for Inception-V4. These two CNNs present a similar structure apart from the stem block:

in Inception-ResNet V2 is the same as Inception-V4, while the one in Inception-ResNet V1 is close

to the one in Inception-V3.

MobileNet MobileNet [138, 271] is TensorFlows �rst mobile computer vision model open-sourced

by Google, designed speci�cally to be used in mobile applications. It is characterized by the use of

depthwise separable convolutions, which signi�cantly reduces the number of parameters resulting in

lightweight deep neural networks. A depthwise separable convolution is made from two operations:

a depthwise convolution, and a pointwise convolution. This type of convolution originated from the

idea of spatial separable convolution, namely a �lters depth and spatial dimension can be separated.

Hence, given a 2-D �lter matrix, it can be rewritten as the scalar product between two vectors:

 = u1 · u2 = u1u)2 , with ∈ R3 W×3
� , u1 ∈ R3

W×1, u2 ∈ R3

�
×1. (2.36)

It is easy to understand that this operation is reducing the number of parameters needed: we go

from 3 W ∗ 3
�
to 3 W + 3

�
. However, this operation can be employed only if the kernel matrix can

be separated into two smaller kernels, applied sequentially, but this is not always true. For this

reason, depthwise separable convolutions were introduced to deal also with �lters that cannot be

factorized and to take into account also their depth, i.e. the number of channels. Similar to the

spatial separable convolution, a depthwise separable convolution splits a kernel into two separate

kernels that do two convolutions: the depthwise convolution and the pointwise convolution. In

the �rst part, depthwise convolution, we apply to the input image x, with shape (3 inW, 3 in
�
, 3 in
�
), a

convolution operation without changing its depth. Hence, we are applying to the input 3 in
�
�lters of

size 3 W × 3
�
× 1, where 3 in

�
represents the number of channels in the input and in this case also in

the output. After this, there is the pointwise convolution, which aims at increasing the number of

channels in the previous feature maps. It is so named because it uses a 1 × 1 kernel, or a kernel that

iterates through every single point. Therefore, here we are using 3out
�

kernel matrices, with shape

1 × 1 × 3 in
�
, to get the �nal output.

We can understand the bene�t of this factorization by calculating the number of multiplications

needed for the original and this new convolution. In the standard case, given a �lter of dimension

2.3. IMAGE RECOGNITION 62

Figure 2.22: Overall schema for Inception-V4 (a) and for Inception-ResNet (b), as presented

in [298].

3 W ×3
�
×3 in

�
×3out

�
, it moves 3outW ∗3out

�
times through the input. Hence, the computational cost of

this operation is:

3 W ∗ 3 � ∗ 3 in� ∗ 3out� ∗ 3outW ∗ 3out� ,

where 3outW and 3out
�

are the width and height of the output feature maps respectively. Whereas, in

the same setting, with above operations the computational cost is:

3 W ∗ 3 � ∗ 3 in� ∗ 1 ∗ 3outW ∗ 3out� + 1 ∗ 1 ∗ 3 in� ∗ 3out� ∗ 3outW ∗ 3out� ,

where the �rst addendum takes care of the multiplication in the depthwise convolution, whilst the

second of the pointwise convolution. The main di�erence between these two convolutions lies thus

in the fact that the classical one is transforming the input 3out
�

times, whereas depthwise separable

is transforming it once in the depthwise step and elongating it to 3out
�

channels in the pointwise

part, leading to save computational power. The computation reduction is indeed:

3 W ∗ 3
�
∗ 3 in

�
∗ 1 ∗ 3outW ∗ 3out

�
+ 1 ∗ 1 ∗ 3 in

�
∗ 3out

�
∗ 3outW ∗ 3out

�

3 W ∗ 3
�
∗ 3 in

�
∗ 3out

�
∗ 3outW ∗ 3out

�

=
1

3out
�

+ 1

3 W ∗ 3
�

.

Figure 2.23 summarizes the overall architecture ofMobileNet, whereConv dw indicates the depthwise

convolution and Conv the classical one. It is also important to point out that Batch Normalization

and ReLU are applied after each convolution.

Shu�leNet Shu�eNet [335, 201] was proposed and designed by Face++ team for mobile devices

with limited computing power. In this architecture, the commonly used pointwise convolutions,

63 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.23: Architecture of MobileNet. Source: original paper [138].

namely convolution with 1 × 1 kernel matrices, are substituted by pointwise group convolutions,

mitigated using a channel shu�e operation to reduce computation costs. Group convolution is a

generalization of the aforementioned depthwise convolution, where we are not imposing having the

same number of input and output channels. In fact, in this case, the input feature maps are divided

into two or more groups in the channel dimension, and then convolution is performed separately on

each group, as depicted in Figure 2.24. In a group-wise convolution, the input and output channels

are thus not the same, because the number of output channels for each group does not have to equal

the number of input channels in the group. In this way, since the weights are not shared between

the groups and each convolution �lter works on fewer input channels than before, the number of

parameters needed is reduced. This kind of operation presents a side e�ect. Each feature map in the

output derives from only a fraction of the inputs, without having interactions with other groups,

limiting thus the networks ability to learn interesting things. In order to solve this problem, channel
shu�ing is introduced. Hence, as described in Figure 2.24, after performing grouped convolution,

the output feature maps are rearranged along the channels dimension through the channel shu�e

operation.

Starting from this, the basic building block of Shu�eNet is constructed. It is characterized by the

presence of 1 × 1 bottleneck grouped convolution layer followed by channel shu�e. Then, there is

a 3 × 3 depthwise convolution layer with batchnorm, where ReLU is dropped. The �nal layer of the

block is composed of another 1 × 1 grouped convolution operation, which is used to expand the

number of channels again in order to match the channels of the input. This is fundamental because

the Shu�eNet block is characterized also by the presence of a residual connection.

The full architecture then starts with a regular 3 × 3 convolution with stride 2 followed by max

pooling. Then there are three stages, each with 4 or 8 Shu�eNet blocks. In the end, there is global

2.3. IMAGE RECOGNITION 64

Figure 2.24: Representation of channel shu�e with group convolution: original paper [335].

average pooling and a fully-connected layer that does the classi�cation. There exists also another

version of this net, Shu�eNet V2 [201], where an analysis on grouped convolution is performed. To

have a lite model, the group convolutions are substituted with a new channel split operation, which

sends half the channels through the residual branch, i.e. leaving them unchanged, and the other half

through the Shu�eNet block branch. In the end, the outputs of these two groups are not summed as

before but concatenated. The overall architecture of Shu�eNet V2 remains the same as the previous

version, changing only the structure of the building blocks, leading to less computational e�ort.

SqueezeNet SqueezeNet [141] was one of the �rst designed lite models, able to achieve great

performances: it has ImageNet accuracy similar to AlexNet, but with 50 times fewer parameters.

Also in this case, the basic idea of this net is to substitute convolution layers with large kernels,

common in CNNs, with small �lters, such as 1 × 1 and 3 × 3. In order to obtain parameter reduction

in the network, a �re module is introduced as the building block of the CNN. Figure 2.25 summarizes

Figure 2.25: Organization of convolution �lters in the Fire module, as presented in the original

paper [141].

65 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

the fundamental operations of the �re module. Firstly, there is a squeeze layer, that consists of
a 1 × 1 convolutional layer reducing the number of channels. The role of this layer is thus that

of compressing data by reducing the number of parameters. This is then followed by an expand
block composed of two parallel convolution layers: one with a 1 × 1 kernel, the other with a 3 × 3

kernel. The outputs of these two groups of layers are concatenated, leading thus to an increase in

the number of channels again.

The overall architecture of SqueezeNet is then characterized by having convolutional and max-

pooling layers at the beginning, followed by eight �re modules in succession, sometimes with

max-pooling layers between them. The interesting feature of this net is that classi�cation is not

performed through fully-connected layers, but employing a convolution layer followed by global

average pooling. A variant of SqueezeNet is represented by SqueezeNext [91]. The architectural
improvements introduced are connected with the �re module. Now there is the introduction of

the residual connection and there are two squeeze layers for the aim of channel reduction. After

these bottlenecks, there is no longer a 3 × 3 convolution, that has been split up into two smaller

convolutions, 3× 1 and 1× 3, to decrease again the number of parameters needed. This new module

is thus decreasing, as pointed out, the number of channels, and thus of parameters, increasing, on

the other hand, the depth of the network to have a general improvement in the model. In the end,

there is again, as in the previous version, an expansion layer, composed of a 1 × 1 convolutional

layer increasing the number of channels, to be the same as the output of the residual connection. In

this case, also the classi�cation part is changed, employing a fully-connected layer together with a

bottleneck layer and a global average pooling to reduce spatial dimensions.

2.4 Object Detection

Object detection [59, 316, 337, 149, 338, 191, 334] consists of the methodologies to automatically

detect and localize speci�c objects in images or videos. It thus aims at solving the task of locating

the presence of objects with a bounding box and recognizing the classes of the located objects in an

image. Hence, this kind of algorithm produces, as output, a list of object categories present in the

image along with an axis-aligned bounding box indicating the position of every instance for each

object category. As it can be understood, this is a more challenging problem than image classi�cation,

since in this case, when searching for the localization of an object, numerous candidates must also

be processed in order to �nd a good candidate with good precision. When dealing with image

recognition tasks, we also assume that there is only one major object in the image and hence the

focus is on assigning the correct category to it, but generally, there can be multiple objects in a

picture of interest. Object detection aims then at solving also this problem, providing the speci�c

positions for each item in the image.

Connected to object detection, there is the problem of image segmentation31 [334, 10, 60, 185, 256,
153, 117], that aims at recognizing and localizing semantic regions at pixel level. Hence, it focuses

on detecting the pixel-level regions of each object instance in an image, called masks, providing an
understanding on how to divide a picture into regions belonging to di�erent semantic classes.

We introduce now the basic notions connected to this topic, useful to understand how the classi�ca-

tion and localization of the objects are predicted and hence the subsequent discussion about the

di�erent types of architectures developed to solve this problem (see Section 2.4.7).

31
We are not going into details on this topic, since in our project we have focused only on image recognition and object

detection. However, due to its connection to some databases and architectures described, it was important to mention it to

get a more complete overview.

2.4. OBJECT DETECTION 66

2.4.1 Bounding Boxes
To localize objects we need to de�ne bounding boxes, i.e. boxes that wrap around an object

representing thus its bounds [334]. A usual way to represent them is by providing a vector with

the coordinates of the abscissa @1 and the ordinate @2 that constitute its boundaries, i.e. the coordi-

nates of the upper-left corner of the rectangle and the such coordinates of the lower-right corner:

(@min

1
, @min

2
, @max

1
, @max

2
). Another common way used to represent boxs position and dimensions is to

use the coordinates of the center 2 of the bounding box, its width F and height ℎ, i.e. the vector

(2@1 , 2@2 ,F, ℎ). These two vectors are strictly related to each other, in fact we can de�ne a function to

convert between these two representations. For example, let (@min

1
, @min

2
, @max

1
, @max

2
) be the boundary

coordinates, we can determine the center-size coordinates in this way [334]:

2@1 =
@min

1
+ @max

1

2

,

2@2 =
@min

2
+ @max

2

2

,

F = @max

1
− @min

1
,

ℎ = @max

2
− @min

2
.

(2.37)

Then, starting from these relations, it is easy to de�ne the inverse function, that, given the center-size

coordinates, provides the boundary coordinates.

2.4.2 Anchor Boxes
Usually, to predict bounding boxes for the objects of interest, object detection algorithms sample

a large number of regions in the input image, determine if they contain the objects of interest, and

then adjust the boundaries of the regions to make more accurate predictions. To create these regions,

many schemes can be adopted: one of these is represented by the anchor boxes, �rst introduced
in Faster R-CNN [249], and also known as priors [194]. This method corresponds to generating

multiple bounding boxes with varying scales and aspect ratios centered on each pixel and using

them to obtain the predicted bounding boxes.

Objects in pictures can occur at any position with any size and shape, thus, generally, we may

have in�nite possibilities for where and how an object can occur. Obviously, we cannot investigate

all these options, and furthermore some can be excluded since they are simply improbable or

uninteresting. We need thus to discretize the mathematical space of potential predictions into an

acceptable number of possibilities, which are the anchor boxes. Hence, priors are these precalculated,

�xed reference boxes, placed at every possible location in a feature map to account for variety in

position and representing probable and approximate box predictions.

To generate multiple anchor boxes with di�erent shapes, we need to introduce the notions of scale
and aspect ratio. Let x be an input image with widthF and height ℎ and letF� and ℎ� be the width

and height of an anchor box. The aspect ratio U∈ (0, 1] is basically the ratio between width and

height of the prior, whereas the scale Z> 0 refers to the length or width in pixels of a box as a

proportion of the total length or width in pixels of its containing image. They are thus de�ned as

follows [334]:

Z 2 = F� ∗ ℎ�,

U =
F�

ℎ�
,

(2.38)

from which we can obtain that the width and height of the anchor box are given byF� = Z
√
U and

ℎ� = Z /
√
U . Therefore, if we want to generate multiple priors characterized by having di�erent

67 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

shapes, we need to set a series of scales Z1, . . . , Z= and of aspect ratios U1, . . . , U< . In this way, we

are generatingF ∗ ℎ ∗ = ∗< reference boxes with each pixel as the center. This is unpractical, in

fact usually we de�ne a scale for all the feature maps in a layer and then provide a list of aspect

ratios. Figure 2.26 provides an example of these default boxes for a central pixel and for a general

one in which priors overshoot the edges of the feature map. In that case, priors are then clipped

in order to be totally contained inside the image. In addition, since the �rst layers of a CNN are

characterized by having larger feature maps, their priors have smaller scales, ideal for detecting

smaller objects. Then, going deeper in the network, Z will increase to let the model detect also

bigger elements.

Figure 2.26: Example of priors around a central pixel (on the left) and for a general one in which

priors overshoot the edges of the feature map (on the right). In both, there are 5 priors with

aspect ratios 1, 2, 3, 1/2, 1/3 and areas of a square of side 0.55, and a 6th prior with aspect ratio 1

and of side 0.63.

As pointed out before, anchor boxes are introduced as an approximate starting point to �nd out

how much they need to be adjusted to get a more exact prediction for a bounding box. Hence, in the

end, each predicted box is a slight deviation from a prior. In order to account this, let (2̂@1 , 2̂@2 , F̂, ˆℎ)
be the center-size coordinates of a predicted bounding box, and (2�@1 , 2

�
@2
,F�, ℎ�) those of the anchor

box with which the prediction was made. The o�sets from a prior are thus de�ned as:

62@
1

=
2̂@1 − 2�@1
F�

,

62@
2

=
2̂@2 − 2�@2
ℎ�

,

6F = log

(
F̂

F�

)
,

6ℎ = log

(
ˆℎ

ℎ�

)
,

(2.39)

where it can be noted that each of them is normalized by the corresponding dimension of the prior.

These four o�sets (62@
1

, 62@
2

, 6F, 6ℎ) can thus be used also to encode the predicted bounding box’s

position and location.

2.4.3 Intersection over Union
Once the possible predicted bounding boxes and the category for each object in a picture are

determined, we need to de�ne a speci�c performance metric to take into account the accuracy of the

prediction with respect to the expected label and the ground-truth bounding box of the object, i.e. the

2.4. OBJECT DETECTION 68

hand-labeled bounding box that encloses the targeted object. Hence, the overlapping area between

the predicted box and the ground-truth box needs to be evaluated, for example using the Intersection
over Union metric. The Intersection over Union (IoU) or Jaccard Index or Jaccard Overlap [334, 265,

83, 282] is an evaluation metric measuring the degree or extent to which two boxes overlap. It can

thus be used to account for the detector accuracy by evaluating the overlapping area between the

predicted bounding box e the related ground-truth. Given two sets A and B, their IoU is the size of

their intersection divided by the size of their union:

IoU(A,B) = A ∩ B
A ∪ B . (2.40)

Its value is between 0 and 1: 0 means that two bounding boxes do not overlap at all, while 1 indicates

that the two bounding boxes are equal. Hence, the higher values of IoU indicate the better predicted

locations of the bounding boxes for the targeted objects. Usually, a value of 0.5 determines a good

prediction and is �xed as IoU threshold to choose the box candidates to keep.

2.4.4 Labeling Anchor Boxes during Training
To train an object detection model, we need class and o�set labels for each anchor box, where

the former is the category of the object in the prior and the latter is the o�set of the ground-truth

bounding box relative to it. Hence, to label any generated anchor box, the ground-truth bounding

boxes with the related classes of the objects in the pictures composing the training dataset should be

exploited. In the following, we present an algorithmic procedure for assigning the closest ground-

truth bounding boxes to anchor boxes [334].

Let x be an input image, A1, . . . ,A=0 be the anchor boxes, and B1, . . . ,B=1 be the ground-truth

boxes, with =0 ≥ =1 . We can de�ne a matrix M ∈ R=0×=1 , where each component<8 9 represents

the IoU between A8 and B9 . In order to assign a ground-truth and thus a label to each anchor box,

we need to follow these steps [334]:

1. Find the maximum value in M and denote with 81 and 91 the corresponding row and column

indices. In this way, we are assigning the ground-truth box B91 to the prior A81 . After the

�rst assignment, all the elements in the 81-th row and the 91-th column inM are discarded.

2. Find now the maximum value among the remaining elements ofM, identi�ed by indices 82
and 92 for the row and column, respectively. The anchor box A82 is thus coupled with the

ground-truth B92 and, as in the previous step, we discard all the elements in the corresponding

row and column ofM.

3. We proceed in this way until all the =1 ground-truth bounding boxes have been assigned to

an anchor box, i.e. till all the elements in the =1 columns have been discarded.

4. For the remaining =0 − =1 anchor boxes, we can assign a ground-truth box B9 to each anchor

A8 by searching for the largest IoU between them throughout the 8-th column ofM. B9 will be

then linked to A8 , only if the connected Jaccard index is greater than a prede�ned threshold.

5. Assign to each anchor box the label of the related ground-truth box and then determine

the o�sets between them using Equations (2.39). The priors that have not a link with a

ground-truth bounding box are labeled with 0, that is the integer connected with the class

“background”, and are thus characterized also by 0s o�sets.

In the last step, we have assigned the category background to anchor boxes without a linked

ground-truth box. It is useful to point out that usually when preparing the dataset, this category is

69 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

added to the set of class labels to take into account these cases. Priors whose classes are background

are often referred to as negative anchor boxes, di�erentiating from the rest which are called positive
anchor boxes [334].

2.4.5 Non-Maximum Suppression
During the prediction phase, multiple highly overlapping anchor boxes, predict classes, and

o�sets are usually generated for the same object in a picture, providing thus redundant information.

To solve the issue of duplicate proposals, it is usually employed a simple algorithmic approach called

Non-Maximum Suppression (NMS) [258, 334, 28]. More technically speaking, for each predicted

bounding box
ˆB, we evaluate the predicted likelihood for each class, where the largest value ?

denotes the predicted class for it. This value is usually referred to as the con�dence or score of the
predicted bounding box. All the predicted non-background bounding boxes are then sorted by

con�dence in descending order to generate a list L. Now the sorted list is manipulated through

these steps [334]:

1. Select the proposals with the highest con�dence score, remove them from L and use them to

form a basisU.

2. Compare the bounding boxes in U with the remaining in L using the Jaccard index as an

element of similarity. Hence, we calculate the IoU between each element in U and each

element in L and then remove from L the proposals with IoU greater than a prede�ned

threshold X . In this way, we are keeping the predicted bounding boxes with the highest

con�dence — the one in U — but dropping others that are too similar to it but with non-

maximum scores, namely the proposals discarded from L.

3. Select the proposals with the second highest con�dence from the remaining bounding boxes

in L. Remove them from this list and add them to the basis U. Calculate again the IoU of the

elements in U with all the proposals in L and suppress the boxes which have high IoU than

threshold X .

4. Repeat the above process until all the proposals in L have been used, i.e. have been discarded

or used as a basis. In this way, the IoU of any pair of predicted bounding boxes in U is below

the prede�ned threshold X , and hence they are not too similar to each other.

The bounding boxes inU represent thus the remaining proposal for the objects in a picture and

are thus the ones that will be displayed in the output. At this point and after the application of the

NMS process, there should be a single bounding box for each object in the image, but this is strictly

connected with the choice of the IoU threshold. If it is too high there can be too many proposals for

the same object, whereas, on the other hand, if it is too low we may end up missing proposals for

objects. A value that is usually chosen is 0.6 [334].

2.4.6 Datasets
Datasets play a key role in the object detection task, especially in determining the �nal accuracy

and hence the capability of the model in solving a problem [191, 338, 282]. Using a huge number of

images can help in capturing a vast richness and diversity of objects, but can lead to computationally

expensive tests. On the other hand, a small amount of data is easy to manage but can be connected

to the low performance of the model. As described for the problem of image recognition in Sec-

tion 2.3.1, there are basically two possible choices for the dataset: construct a custom set of data or

use a benchmark one. The common features between them are the elements strictly necessary to

2.4. OBJECT DETECTION 70

construct this type of database. In addition to images, we need �les, called annotations encoding
information about the objects present in them with the corresponding label and ground-truth box

for each item. In benchmark datasets, these annotations are provided, whereas in the custom case

the images are hand-annotated.

a) PASCAL VOC [83, 269]

b) MS COCO [189]

Figure 2.27: Examples of images from (a) PASCAL VOC [83, 82, 269], and (b) MS COCO [189].

From the point of view of benchmark sets of data, there are four famous choices for object detec-

tion [191, 338, 282]: PASCAL VOC [83, 82], ImageNet [68] (see Section 2.3.1), MS COCO [189] and

Open Images [168, 164]. PASCAL VOC (PASCAL Visual Object Classes) dataset [83, 82] consists of

11,530 images for training and validations with 27,450 annotations for regions of interest. Starting

from only four categories in 2005, the dataset has increased to 20 categories that are common in

everyday life (see Figure 2.27 (a)): person, bird, cat, cow, dog, horse, sheep, airplane, bicycle, boat,

bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa, tv/monitor.

MS COCO (Microsoft COCO) dataset [189] was a response to the criticism connected with the

pictures in ImageNet, where the objects to be detected are large and well centered, creating thus

atypical scenarios for real-world cases. In this database, instead, there are complex everyday scenes

with common objects in their natural context, closer to real-life — objects can be partially occluded,

at a wide range of scales—, where fully-segmented instances are provided for each object for a more

accurate detector evaluation. Hence, MS COCO can be used not only to solve the problem of object

detection through bounding boxes but in particular that of object segmentation. It is composed of

300,000 fully segmented images, subdivided into 80 categories, some examples of which are shown

in Figure 2.27 (b). Another famous database is then represented in Figure 2.28 byOpen Images [168,
164], currently the largest publicly available object detection dataset. It di�ers from ImageNet and

MS COCO not merely in terms of the signi�cantly increased number of classes, images, bounding

box annotations, and instance segmentation mask annotations, but also in the annotation process.

In the former, instances of all classes in the dataset are exhaustively annotated, whereas for Open

Images a classi�er was applied to each image and only those labels with su�ciently high scores were

sent for human veri�cation and then annotated in case of human-con�rmed positive labels [19].

71 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.28: Example of annotated images from Open Images dataset [168, 164].

2.4.7 Object Detectors: Architectures for Object Detection

A huge number of architectures have been developed to deal with the problem of object de-

tection [149, 338, 191, 294, 282]. They can generally be categorized into two classes: Single-stage
object detectors [194, 246, 277, 247] and Two-stage object detectors [95, 61, 96, 94, 249, 117]. The main

di�erence lies in the fact that the latter �rstly generate some candidate object proposals and then

classify them into speci�c classes, whereas one-stage methods simultaneously extract and classify

all the object proposals. This results in having higher detection accuracy but slower detection speed

for the two-stage methods, and a much faster detection speed and comparable detection accuracy

for the single-stage detectors. We are now brie�y introducing these two di�erent types of object

detectors by providing some examples of existing architectures.

Two-stage Methods for Object Detection In the two-stage methods [149, 338, 191], object

detection is treated as a multistage process: �rstly, given an input image, some proposals of possible

objects are extracted, then they are classi�ed into speci�c object categories. Among the various two-

stage object detectors developed, the series of R-CNN, including R-CNN [96, 95], Fast R-CNN [94],

Faster R-CNN [249], and Mask R-CNN [117], is very representative of this category.

To distinguish di�erent objects in an image, we need a method to detect the region of interest, where

the targeted items can be found. A naive approach to solve this problem, called exhaustive search,
consists in selecting di�erent parts of the image, and using a CNN to classify the presence of the

object within that region. Obviously, this leads to a computationally infeasible technique since we

need to pick a huge number of regions to cover all the possible positions and scales objects may have.

The Region-based Convolutional Network (R-CNN) [96, 95] represents a method to bypass this

problem. It introduces a new approach to detect region proposals: the selective search method [311].

To generate the proposal boxes for the targeted objects, it starts by initializing small regions in the

picture and then merges them using a greedy algorithm exploiting a hierarchical grouping, where

the detected regions are merged according to a variety of color spaces and similarity metrics. Hence,

trough this procedure just 2000 regions are extracted from the image, representing thus the region
proposals or Region of Interest (RoI) [96]. As depicted in Figure 2.29, these 2000 candidate proposals

are warped into a square and then fed into a CNN to extract a �xed-length (4096-dimensional)

feature vector from each of these regions. These features are then classi�ed using Singular Vector

Machines (SVMs) and, in case the presence of an object is detected, a linear regressor is used to

tighten and adjust the bounding box of the objects, giving in output the four o�set values described

in Equation (2.39) de�ning the predicted box. In this way, a R-CNN tries to mimic the �nal stages of

classi�cation in CNNs, where fully-connected layers are used to output a score and category for

2.4. OBJECT DETECTION 72

a) R-CNN b) Close-up on the detection procedure

Figure 2.29: Schema of the R-CNN architecture (a) and of the class and location detection

procedure for the region of interests (b). Source: original papers [96, 95].

the image under consideration, that in this case corresponds to the several region proposals. Even

if this method is very intuitive, it presents a lot of problems. First of all, the computation of CNN

features of di�erent proposals are not shared: for each of the 2000 object proposals in an image, a

CNN forward pass has to be performed, leading to a time-consuming training procedure. Then, the

candidate regions are generated employing the selective search algorithm, which is a �xed method

not involved in backpropagation. For this reason, this represents a weak point, because, since it is

not a�ected by the learning phase, it can lead to bad candidate region proposals.

The drawbacks of R-CNN were solved by the same authors by building a faster object detection

algorithm, called Fast R-CNN [94]. The approach is similar to R-CNN with the di�erence that the

2000 region proposals are not fed into the CNN every time, but the CNN operation is done only

once per image, providing a faster algorithm. Hence, as described in Figure 2.30, the entire image is

Figure 2.30: Overall schema of Fast R-CNN taken from the original paper [94].

used as: (8) input for the CNN, that extracts features from it before having the region proposals;

(88) starting point to identify the region proposals through the selective search method. Once the

convolutional feature maps are obtained, they are scaled to get a valid pre-de�ned size region of

interests through a Region of Interest pooling layer. Hence, for every detected RoI, it takes a section

of the input feature map that corresponds to it and divides it into a prede�ned number of equal-sized

sections. The output of the RoI layer is then obtained by �nding the maximum value in each

section. At this point, the convolutional feature maps have thus been warped into �xed-size spatial

regions, that are fed into two fully connected layers. To be precise, the classi�cation part is made of

two sibling branches with fully connected operations responsible for object classi�cation and box

regression. Therefore, the output of the box regression will be the o�set values for the bounding

box, whereas a softmax layer is employed for the class prediction. Since now Fast R-CNN has two

sibling outputs for object classi�cation and box regression, the loss L should re�ect this property,

73 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

becoming the joint of a classi�cation loss Lcls and a regression loss Lloc. Hence, a multi-task loss is

de�ned for each labeled RoI as follows [94, 149]:

L |RoI,8 (ŷcls, ycls, ŷloc, yloc) = Lcls |RoI,8 (ŷcls, ycls) + _[ycls ≥ 1]Lloc |RoI,8 (ŷloc, yloc), for 8 = 1, . . . , =RoI,

(2.41)

where =RoI is the total number of region proposals; ŷcls represents the predicted output of the object
detector, i.e. ŷcls = (?̂0, . . . , ?̂=class) is the predicted discrete probability distribution (per RoI) over all

the=class+1, since we added also category 0 as background; whereas ŷloc are the four predicted o�sets
ŷloc = (~̂loc,@1 , ~̂loc,@2 , ~̂loc,F, ~̂loc,ℎ). Then, y = (ycls, yloc) is the total output of the object detector,
where ycls and yloc are the expected classi�cation and localization outputs respectively. As stated

in [94], Lcls is the log loss (1.18) the log loss for the true class ycls:

Lcls (ŷcls, ycls) = − log(?̂ycls) . (2.42)

The bounding-box regression loss Lloc is determined by:

Lloc (ŷloc, yloc) =
∑

9 ∈{@1,@2,F,ℎ}
B<>>Cℎ!1 (~̂loc, 9 − ~loc, 9), (2.43)

where B<>>Cℎ!1 is a robust !
1
loss less sensitive to outliers, de�ned in [94] as:

B<>>Cℎ!1 =

{
0.5G2, if |G | < 1,

|G | − 0.5, otherwise.
(2.44)

The classi�cation and localization losses are then balanced through the hyper-parameter _ and

using the Iverson bracket indicator function
32 [ycls ≥ 1] [144, 160] to evaluate when ycls is equal

0. Namely, when we have the background class, there is no bounding box, and thus the RoI is not

contributing to the regression loss.

Even if Fast R-CNN solved the problem of the long training phase connected with the multiple CNN

forward steps and several SVM’s, there was still an open issue with the presence of the selective

search algorithm, that it proved to be a time-consuming procedure for generating region proposals.

This problem was overcome by the last evolution of this network: Faster R-CNN [249], where

a Region Proposal Network (RPN) is introduced to generate region proposals. As described

in Figure 2.31 (a), to construct these candidates, a small network is slid over a convolutional feature

map, e.g. the output of a CNN. Hence, RPN is implemented in a fully convolutional way: a 3 × 3

convolutional layer, followed by two sibling 1 × 1 convolutional layers for box regression and box

classi�cation. To be more precise, for each sliding window location, multiple region proposals are

simultaneously predicted based on : anchors of di�erent aspect ratios and scales. For example, in the

original implementation of Faster R-CNN in [249], three di�erent aspect ratios of {1 : 2, 1 : 1, 2 : 1}
and three di�erent scales of {0.5, 1, 2} are used, providing thus : = 9 di�erent anchor boxes at each

sliding window.

After this step, the two parallel 1 × 1 convolutional layers are applied, and thus, for each of these

anchor boxes, two di�erent types of predictions are provided: the binary classi�cation and the

bounding box regression adjustment. For the classi�cation layer, there are 2: outputs for each

sliding window, where 2 is related to the fact of having a binary classi�cation, i.e. the score of being

32
We recall that the Iverson brackets are a generalization of the Kronecker delta. Given a statement S, it is thus de�ned as:

[S] =
{
1 if S is true,

0 otherwise.
(2.45)

2.4. OBJECT DETECTION 74

a) Region Proposal Network b) Faster R-CNN

Figure 2.31: Structure of the Region Proposal Network (a) and of Faster R-CNN (b), as presented

in [249].

background (not an object) and the score of being foreground (an actual object). On the other hand,

the box regression layer has 4: outputs for each sliding window, representing the 4 o�sets value

that needs to be applied to the center of the proposal to better �t the object it is predicting. For

training this network, �rst, binary class labels need to be assigned to identify whether an anchor

contains an object or background. In [249], two conditions are used to assign a positive label to an

anchor: having the highest IoU with a ground-truth box or having an IoU overlap higher than 0.7

with any ground-truth box. The negative label is then assigned to all the anchors with an IoU lower

than 0.3 for all ground truth boxes. On the other hand, all the anchors having neither positive nor

negative label does not contribute to training. Now, a multitask loss is then introduced [249] to take

into account the classi�cation and box localization predictions for each RoI:

L({ŷcls}, {ŷloc}) =
1

#cls

=RoI∑
8=1

Lcls (ŷcls,8 , ycls) + _
1

#loc

=RoI∑
8=1

[ycls ≥ 1]Lloc (ŷloc, yloc), (2.46)

where the classi�cation loss Lcls and regression loss Lloc are the same introduced for Fast R-CNN.

In this case, ~̂cls,8 represents the predicted probability of anchor 8 being an object, whilst ycls is the
ground truth label (binary) of whether anchor 8 is an object, i.e. is 1 when we have a positive prior.

Hence, in particular, Lcls corresponds with the log loss over two classes, object versus non-object:

Lcls (ŷcls,8 , ycls) = −ycls log(ŷcls,8) − (1 − ycls) log(1 − ŷcls,8). (2.47)

Then, the index 8 refers then to the index of an anchor box, #cls and#loc are the terms to, respectively,

normalize classi�cation loss and location loss, representing the batch size (e.g. 256 [249]) and the

number of anchor locations (e.g. about 2400 [249]).

Therefore, as depicted in Figure 2.30 (b), Faster R-CNN integrates proposal generation, proposal

classi�cation, and proposal regression into a uni�ed network, and can thus be subdivided into

two modules: RPN to extract candidate object proposals, avoiding the selective search method and

leading to accelerated training and testing processes and improved performances; and Fast R-CNN

detector to classify these proposals into the speci�c categories and predict more accurate proposal

locations. RPN and Fast R-CNN are then not trained independently, since they share the same base

network. Following [249], a possible way to train them is using alternating training: namely, RPN

is �rstly trained generating some proposals, that are then used to train Fast R-CNN. Otherwise,

another approach is represented by approximate joint training, where RPN and Fast R-CNN are seen

75 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

as a uni�ed network. In this way, the total loss is given by the joint of the RPN loss and Fast R-CNN

loss, and, at each iteration of the training process, the proposals generated by RPN are treated as

�xed proposals when training Fast R-CNN detector, i.e. the derivative of proposals coordinates are

ignored.

The detectors proposed deal only with the problem of object detection by predicting locations for

the objects in a picture and the related class label. Mask R-CNN33
[117] has been proposed to

solve the problem of instance segmentation: detect precisely the pixels that correspond to an object

and label them. Mask R-CNN incorporates thus instance segmentation and object detection into

Figure 2.32: The Mask R-CNN framework. Image from the original paper [117].

a uni�ed framework based on Faster R-CNN architecture. Speci�cally, as depicted in Figure 2.32,

it replaces the RoI pooling layer with the Region of Interest alignment layer, which makes use of

bilinear interpolation to preserve the spatial information on the feature maps, hence more suitable

for pixel-level prediction. In particular, these feature maps are used not only for class and bounding

box prediction for each RoI but also to detect the pixel-level position of the object, i.e. its mask,

using an additional fully convolutional network. In this case, the loss will also take into account

this new task, by adding a mask loss to the loss described for Faster R-CNN. The multitask loss of

Mask R-CNN on each sampled RoI align is thus the joint of classi�cation loss, regression loss, and

mask loss:

L = Lloc + Lcls + Lmask, (2.48)

where Lmask is the average binary cross-entropy loss de�ned in Equation (1.18), only including :-th

mask if the RoI Align is associated with the ground truth class : :

Lmask = − 1

<2

∑
1≤8, 9≤<

[
−~8 9 log(~̂:8 9) − (1 − ~8 9) log(1 − ~̂:8 9).

]
, (2.49)

where we are considering having masks with dimension< ×<, one for each class =class.

One-stage Methods for Object Detection Even if Faster R-CNN brought large bene�ts as an

accelerated training process with improved detection accuracy with respect to previous detector’s

model attempts, the presence of two di�erent components for classi�cation and detection (RPN

and Fast R-CNN) represents a bottleneck in real-time applications due to the time needed to handle

these two di�erent parts. One-stage networks, based on global regression and classi�cation, aim to

overcome this di�culty by simultaneously predicting object category and object location [149, 338,

191]. In this way, by mapping straightly from image pixels to bounding box coordinates and class

probabilities, one-stage frameworks can reduce time expense, having much faster detection speed,

33
We are not going into details of image segmentation and related architectures because it is outside the scope of this

thesis. The interested readers can refer to [117, 334, 185, 60, 10, 256, 153].

2.4. OBJECT DETECTION 76

but with comparable detection accuracy. Among the one-stage methods, we focus on YOLO [246,

247] and SSD [194].

YOLO (You Only Look Once) [246, 247, 248] is a uni�ed object detector, that treats the problem of

object detection as a regression problem from image pixels to spatially separated bounding boxes

and associated class probabilities, as described in Figure 2.33 (a). Unlike region-based approaches

a) Schematic representation of YOLO [246].

b) YOLO architecture [246, 163]

Figure 2.33: Schematic representation of the process of localization and detection in YOLO (a)

and of its architecture (b) [246, 247, 163].

discussed for the two-stage methods, YOLO uses features from an entire image globally and not

from a local region. More technically speaking, the input image is divided into an (× (grid, being

(≥ 1 a constant integer value, where each grid cell is responsible for predicting the object centered

in it, thus providing as output � bounding boxes with objectness scores and =class conditional

class probabilities. Therefore, the prediction for each bounding box corresponds with a vector

(2̂@1 , 2̂@1 , F̂, ˆℎ, >̂cs), where the �rst four components are the center-size coordinates of the bounding

box and >̂cs is the corresponding con�dence objectness score, de�ned as [246, 338]:

>̂cs = Pr($1 942C) ∗ IoUtruth

pred
. (2.50)

which indicates how likely there exist objects, Pr($1 942C) ≥ 0, and, if an object exists in that cell, it

shows the con�dence of its prediction IoU
truth

pred
, i.e. the IoU between the predicted box and the ground

truth. These con�dence scores are thus re�ecting how con�dent the model is in its predictions

about the presence of an object and its accuracy on those predictions. In addition to this, at the

same time, =class conditional class probabilities ?̂: = Pr(�;0BB: | $1 942C) are also predicted for each

grid cell. It should be noticed that these probabilities are conditioned on the grid cell containing an

object and thus only the contribution from the grid cell containing an object is calculated. During

77 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

testing time, class-speci�c con�dence scores for each box are achieved by multiplying the individual

box con�dence predictions with the conditional class probabilities in this way [246, 338]:

>̂cs ∗ ?̂: = Pr($1 942C) ∗ IoUtruth

pred
∗ Pr(�;0BB: | $1 942C) = Pr(�;0BB:) ∗ IoUtruth

pred
, (2.51)

that encodes both the probability of class-speci�c objects in the box and the accuracy of the box

prediction, namely the �tness between the predicted box and the object.

When training the object detector, we need to take into account both localization errors and

classi�cation accuracy predictions. Hence, as done for the two-stage methods, a multi-part loss

function balancing the two parts needs to be introduced [246, 338]:

L(.̂cls, .̂loc) = _coord
(2∑
8=0

�∑
9=0

1
obj

8 9

[
(28@1 − 2̂

8
@1
)2 + (28@2 − 2̂

8
@2
)2

]
+

+ _coord
(2∑
8=0

�∑
9=0

1
obj

8 9

[
(28@1 − 2̂

8
@1
)2 + (28@2 − 2̂

8
@2
)2

]
+

+
(2∑
8=0

�∑
9=0

1
obj

8 9
(?8 − ?̂8)2 + _noobj

(2∑
8=0

�∑
9=0

1
noobj

8 9
(?8 − ?̂8)2+

+
(2∑
8=>

1
noobj

8

=classes∑
:=1

(~8
:
− ~̂8

:
)2,

(2.52)

where the predicted localization outputs are .̂loc = [ŷ1
loc
, . . . , ŷ(

2

loc
] with ŷ8

loc
= (2̂8@1 , 2̂

8
@2
.F̂ 8 , ˆℎ8), for .

Similarly, y8
loc

= (28@1 , 2
8
@2
.F 8 , ℎ8), for 8 = 1, . . . , (2, represents the expected localization outputs for

each grid cell. Then, y9
cls

= (~ 9
1
, . . . , ~

9
=class) and ŷ

9

cls
= (~̂ 9

1
, . . . , ~̂

9
=class), for 9 = 1, . . . , (2, are respectively

the expected and predicted classi�cation outputs, i.e. the expected and predicted probabilities that

an object in a grid cell belongs to a certain category. Then, 1
noobj

8
denotes if an object appears in

cell 8 , whilst 1
noobj

8 9
highlights that the 9-th bounding box predictor in cell 8 is responsible for that

prediction.

Note that the �rst terms in the loss take into account the bounding box coordinates predictions,

the next two the con�dence scores, whereas the last one the classi�cation predictions. The two

parameters, _coord and _noobj accomplish the need to weigh the multiple tasks, localization and

classi�cation. In the original paper [246], these values are set to 5 and 0.5 respectively, i.e. the loss

from bounding box coordinate predictions is increased, whilst the loss from con�dence predictions

for boxes that don’t contain objects is decreased. We need to point out also that the loss function

penalizes classi�cation errors only when an object is present in the grid cell under consideration,

and, in the same way, the box predictor penalizes localization errors when the highest IoU of any

predictor in that grid cell is achieved.

Figure 2.33 (b) shows the overall architecture of YOLO, which basically consists of 24 convolutional

layers and 2 fully-connected layers, where some convolutional layers construct ensembles of

inception modules with 1× 1 reduction layers followed by 3× 3 convolutional layers. YOLOv2 [247]

represents an improved version of YOLO which adopts several impressive strategies, such as Batch

Normalization, anchor boxes learned via dimension cluster, and multi-scale training, to improve its

performance. In [247], YOLO9000 is also introduced. It can detect over 9000 object categories in

real-time using a joint optimization method to train simultaneously on an ImageNet classi�cation

dataset and a COCO detection dataset with WordTree in order to combine data from multiple

sources. In this way, YOLO9000 can be used to perform weakly supervised detection, i.e. detecting

object classes that do not have bounding box annotations.

2.4. OBJECT DETECTION 78

As can be understood from the previous discussion, YOLO has many bene�ts. Since the region

proposal generation stage is completely dropped, this detector is using a smaller set of candidate

regions, only 98 per image, with respect to the 2000 proposals of the selective search method.

On the other hand, YOLO makes more localization errors than Faster R-CNN, due to the coarse

division of bounding box location, scale, and aspect ratio that leads the detector to fail in localizing

some objects, especially small ones. To overcome the di�culties, SSD (Single Shot Detector) was

introduced in [194]. Given a speci�c feature map, instead of using �xed grids as in YOLO, SSD,

Figure 2.34: SSD architecture. Source: original paper [194].

inspired by MultiBox [79], RPN [249] and multi-scale representation [18], takes advantage of a

set of default anchor boxes with di�erent aspect ratios and scales in order to discretize the output

space of bounding boxes. As described in Figure 2.34, the architecture of SSD can be divided

mainly in three parts: (8) a base net, i.e. a CNN as VGG-16 [289], the one used in the original

paper [194], providing the low-level feature maps; (88) some auxiliary convolutional layers, namely

extra feature layers added to extract higher-level feature maps; (888) two predictors, responsible
for localizing and identifying objects in these feature maps. Hence, given in input a RGB image

34

x, it is initially processed by a CNN to extract low-level features of the objects. As discussed

in Section 2.2, the last layers of a CNN are specialized in the classi�cation and labeling of objects

in a picture. Thus, since now additional steps are needed to extract the region of interests to be

classi�ed, the fully-connected layers at the end of the CNN are converted into convolutional layers
35

by exploiting the equivalence existing between these two types of layers (see Section 2.2.5). In

particular, these converted convolutional layers are numerous and large in size, and thus need to

be modi�ed in order to reduce their number and the size of each �lter. A useful way to do this is

by subsampling parameters, e.g. picking every<-th parameter along a particular dimension, as

happens in decimation. The modi�ed CNN obtained is then followed by the auxiliary layers, which

are simple convolutional blocks providing additional feature maps each progressively smaller than

the last.

At this point, to de�ne the region proposals, we need to introduce priors. As stated in [194], they are

applied to several low- and high-level feature maps: referring to the notation used in Figure 2.34, the

output of an intermediate layer of the base net, 2>=E4_3, the output of the modi�ed base net, 2>=E7,

the output of each auxiliary convolutional block, 2>=E8_2, 2>=E9_2, 2>=E10_2, 2>=E11_2. Following

the original paper [194], we use di�erent anchor boxes, with the convention that larger feature maps,

i.e. 2>=E4_3, 2>=E7, have priors with smaller scales and are therefore ideal for detecting smaller

objects. Table 2.1 summarizes all the priors’ scales and aspect ratios used for the several feature

34
The size of the input image is 300×300×3 for SSD-300 and 512×512×3 for SSD-512, as stated in the original paper [194].

35
Following [194], we are converting all the fully-connected layers in the classi�cation part, ��6, ��7, into convolutional

layers, 2>=E6, 2>=E7, except for the last layer, ��8, which is completely tossed away, since it is the one providing the �nal

classi�cation vector. The labels of the layers refer to the notation used in the original paper [194] and present in Figure 2.34.

79 CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

maps. It can also be pointed out that we are using 8732 priors in total, where this number is obtained

by summing up the number of reference boxes de�ned in each pixel of each feature map. Now,

given these priors, for each of them, hence at each location in each feature map, we want to predict

the o�sets for a predicted bounding box and =class scores for it, namely the probability an object in a

region proposal belongs to a precise class of the dataset (including also the background category). In

Table 2.1: Priors used in the original implementation. As can be seen there are a total of 8732

priors de�ned for the SSD300.

Feature map
from

Feature map
dimensions Prior scale Aspect ratios

Number of priors
per positions

Total Number
of priors

2>=E4_3 38 × 38 0.1

1:1, 2:1, 1:2 +

an extra prior
4 5776

2>=E7 19 × 19 0.2

1:1, 2:1, 1:2, 3:1, 1:3

+ an extra prior
6 2166

2>=E8_2 10 × 10 0.375

1:1, 2:1, 1:2, 3:1, 1:3

+ an extra prior
6 600

2>=E9_2 5 × 5 0.55

1:1, 2:1, 1:2, 3:1, 1:3

+ an extra prior
6 150

2>=E10_2 3 × 3 0.725

1:1, 2:1, 1:2

+ an extra prior
4 36

2>=E11_2 1 × 1 0.9

1:1, 2:1, 1:2

+ an extra prior
4 4

Grand Total - - - - 8732 priors

order to solve this task, two predictors are inserted at the end of SSD: one for localization predictions

and one for class predictions. In both cases, this predictor corresponds to a convolutional layer with

a 3 × 3 kernel. For the localization case we have 4 × = (ℓ)
priors

channels, where 4 is the number of the

o�sets and =
(ℓ)
priors

the number of priors for each location in that feature map ℓ , whereas for the class

classi�er the �lter has =class × = (ℓ)
priors

channels, since we are predicting a set of =class scores for each

prior at each location in the ℓ-th feature map. Hence, since we have in total 8732 priors, the �nal

outputs will be reshaped in the form 8732 × 4 for the localization layer and 8732 × =class for the
classi�cation layer.

To train the model for solving these two di�erent tasks (bounding box localizations and class scores),

we need to introduce a loss function L, calledMultibox loss [194], that extended the one presented
in [79, 300] to handle multiple object categories. It thus takes into account both types of predictions

through a weighted sum of the two di�erent losses connected:

L =
1

#pos

(Lcls + ULloc) , (2.53)

where U is a learnable parameter, set to 1 in the original paper [194], whereas #pos is the number

of positive matches, about which we will talk about in more detail now. To understand how the

localization loss Lloc and the classi�cation loss Lcls are de�ned, we need to set up a way to identify

when we have positive and negative matches between priors and ground truth boxes. Hence, �rst

of all, the IoU between each anchor box and the ground truth bounding boxes are computed. Then,

2.4. OBJECT DETECTION 80

all the priors with IoU greater than 0.5 are positive matches, i.e. they contain an object, whereas,

if IoU < 0.5, we have negative matches, with background as a related label. Now, the localization

loss is computed only on the positive matches, since there are no ground truth coordinates for

the negative ones. Hence, in order to understand how accurately we regress positively matched

predicted boxes to the corresponding ground truth coordinates, we use as Lloc the averaged smooth

!1 function, introduced in Equation (2.44):

Lloc ({ŷloc}, {yloc}) =
1

#pos

∑
8∈P

∑
<∈C

[�>* ≥ 0.5]B<>>Cℎ!1 (~̂8loc,< − 68
loc,<), (2.54)

where =pos is the number of positive region proposals, i.e. the cardinality of the set P containing

all the indexes of these positive priors, whereas C = {2@1 , 2@2 ,F, ℎ} are the coordinates of the

o�sets. It can be pointed out that we are not using the coordinates of the ground truth box, but the

coordinates of the o�set with respect to the prior 8 under consideration, i.e. a vector 6loc de�ned as

in Equation (2.39). Then, [�>* ≥ 0.5] represents the Iverson bracket indicator for matching the 8-th

default box to the ground truth box, de�ned in Equation (2.45).

To de�ne the classi�cation loss, we need before to introduce the notion of Hard Negative Mining [194,
36]. As discussed above, we have associated a ground truth box and the corresponding ground truth

label to each prior, if the match between them is positive. Now, after the matching step, a great

number of default boxes will be negative and thus characterized by having a 0 label, namely they do

not contain an object. This happens especially when the number of possible priors is large. Hence,

this introduces a signi�cant imbalance between the positive and negative training examples and

thus leads to a model that is less likely to detect objects because, more often than not, it is taught

to detect the background class. In order to overcome this problem, we need to limit the number

of negative matches that will be evaluated in the loss function by using only the hard negatives,
namely those predictions where the model found it hardest to recognize that there are no objects.

In particular, these correspond to the negative examples with the highest con�dence loss for each

default box. The con�dence loss is thus simply the sum of the Cross-Entropy losses among the

positive and hard negative matches, i.e. the softmax loss over multiple classes con�dences de�ned

in Equation (2.30):

Lcls ({ŷcls}, {ycls}) = −
∑
8∈P

=class∑
:=1

[�>* ≥ 0.5]~8
cls,:

log

(
exp(~̂8

cls,:
)∑=class

<=1
exp(~̂8

cls,<
)

)
−

∑
9 ∈HN

log

(
exp(~̂ 9

cls,0
)∑=class

<=1
exp(~̂8

cls,<
)

)
,

(2.55)

whereHN represents the set of indexes that corresponds to the hard negative samples.

Once the SSD has been trained, it can be applied to new images to solve the problem of object

detection. As stated before, we have 8732 boxes, thus it is needed to de�ne a criterion to eliminate

some of these proposals, especially the one that corresponds to the same object. Therefore, we need

to discard boxes that are overlapping, which can lead to the detection of more objects than present,

since some of them are counted more than once. In order to do this, NMS, described in Section 2.4.5,

is applied, producing in this way a single box for each object in the image as �nal detection.

Despite its speed and accuracy, SSD presents some drawbacks connected with the detection of

smaller objects. The presence of shallow layers may not generate enough high-level features to do

prediction for small objects. For this reason, there is a need of introducing data augmentation and

thus to have a large number of data for training purposes.

CHAPTER
3 A Reduced Order Approach

for Arti�cial Neural
Networks

3.1 Introduction

The previous chapter has introduced the �eld of computer vision by presenting two applications:

image recognition and object detection. The core of the aforementioned discussion was in particular

Convolutional Neural Networks (CNNs), a family of models designed to solve these tasks. Even if

CNNs are widely used for several applications in the academic and industrial �elds, most research

on CNNs does not consider the possible limitations that can be encountered running these models

on embedded systems or more in general on low-cost hardware. In particular, when it comes

to having a practical application in embedded devices, deep neural networks should have fast

and e�cient architectures, providing real-time predictions. Typical benchmark CNNs presented

in Section 2.3.2, such as ResNet and VGGNet, are characterized by millions of parameters, leading

to several implications when running models in practice, especially for the possible long training

time [99, 299] and for the required storage space. For this reason, it emerges the need to develop

lightweight versions of the aforementioned CNNs or manually designed CNNs for this purpose.

When dealing with the development of highly optimized architectures or convolutional layers, we

have to take into account the necessity of having resulting models as accurate as the benchmark

ones, but requiring less computational e�ort and less storage space.

In recent years, several methods have been employed to create lightweight Arti�cial Neural Networks

(ANNs), in particular CNNs and object detectors. A possible approach consists in performing model

compression on an already trained model to decrease the memory footprint, using for example input

resizing and network pruning [110, 196, 192, 92, 29], low-rank matrix, and tensor factorization [266,

336, 227], parameter quantization [56, 69]. Therefore, starting from the image recognition and

object detection architectures presented in Section 2.3.2 and in Section 2.4.7, we can construct the

compressed versions of them by employing the aforementioned techniques. On the other hand, a

branch of research in this area has focused on manually designing convolutional layers, and thus

CNN architectures, for memory-constrained systems. As described in Section 2.3.2, some example

are represented by MobileNet [138], Shu�eNet [335], and SqueezeNet [141]. These hardware-

e�cient CNNs can then be employed as the backbone for object detector’s implementation, leading

in this way to light-weight deep neural networks with reasonable performances [270, 138, 219, 296,

186, 324, 148].

In our works [210, 211, 212], we have proposed another type of approach than those listed here. The

core of our idea lies in well-established techniques, widely employed in the context of Reduced Order

Modeling (ROM) [21, 22, 23, 261, 267, 260, 306, 262, 325, 235]: Proper Orthogonal Decomposition

(POD) [126, 22, 306, 262] and Active Subspaces (AS) [51, 53]. Our reduced network is thus constructed

from the original model structure by retaining only a certain number of layers, responsible to detect

the important features of the objects. The remaining part is then substituted with a reduction

layer, compressing the high-dimensional feature maps into low-dimensional ones, followed by an

input-output mapping, providing the �nal prediction of the network. The resulting model is thus

characterized by a decreased number of parameters, chosen through a smart selection procedure,

81

3.2. NUMERICAL TOOLS 82

allowing us to reduce the required resources and the computing time to infer the model.

In this chapter we will thus describe our general approach for the reduction of ANNs [210, 211,

212]. Section 3.3 will deal exactly with the explanation of the reduction technique proposed for a

general ANN, employing the numerical tools, such as AS, POD, and Polynomial Chaos Expansion

(PCE), introduced in Section 3.2.1. In Section 3.4 we will then apply this dimensionality reduction

method to a CNN, and in particular to VGG-16 to solve the image recognition task for CIFAR-10

and for a custom dataset, connected with the collaboration with Electrolux Professional. Section 3.5

extends then the proposed reduction procedure to more complex architectures, like the one that

deals with the problem of object detection. We will then describe also in this case a practical

application of this method to SSD-type architectures, employing PASCAL VOC as the dataset.

3.2 Numerical Tools

We introduce in this section all the techniques employed for the reduction of the network, to

make it easier to understand the framework in Section 3.3.

3.2.1 Dimensionality Reduction Techniques
The subsection is devoted to an algorithmic overview of the reduction methods tested within

this contribution, the Active Subspaces (AS) property and the Proper Orthogonal Decomposition

(POD). Widely employed in the ROM [21, 22, 23, 126, 261, 267, 260, 306] community, such techniques

are used to reduce the dimensionality of the output for the intermediate layer, e.g. high-dimensional

convolutive features, but we postpone to the next sections the details. We just specify that, even if

in this thesis, such as in [210], we have focused on AS and POD, the proposed framework is generic,

allowing in principle to replace these two with other reduction techniques.

Active Subspaces

Active Subspaces [51, 53] method is a reduction tool used to identify important directions in

the parameter space by exploiting the gradients of a function of interest. Such information allows

applying a rotational transformation to the domain in order to obtain, in the end, an approximation

of the original function in a lower dimension. As discussed in [308, 306, 66, 105, 52, 262, 67, 307], its

application has been proven successful in several parametrized engineering models.

We now brie�y review the process of �nding active subspaces of a scalar function 6, depending

on the inputs µ. Let µ = [`1 . . . `=]) ∈ R= represent a =-dimensional variable characterized by a

probability density function d (µ), and let 6 : R= → R be the function of interest. We are assuming

here that 6 is scalar and continuous, but there exists also a vector-valued extension [254, 330].

Starting from this, we can construct an uncentered covariance matrix C of the gradient of 6 by

considering the average of the outer product of the gradient with itself:

C = E[∇6(µ)∇6(µ))] =
∫

(∇µ6) (∇µ6)) ddµ, (3.1)

where the symbol E[·] denotes the expected value, and ∇µ6 ≡ ∇6(µ). We suppose that the gradients

are computed during the simulation, otherwise, if not provided, they can be approximated with

di�erent techniques such as local linear models, global models, �nite di�erence, or Gaussian process

[3, 321], for example.

It can be noted that C is real and symmetric, hence it admits the following eigenvalue decomposi-

tion [136]:

C = V�V) , � = diag(_1, . . . , _=), _1 ≥ · · · ≥ _= ≥ 0, (3.2)

83 CHAPTER 3. A REDUCED ORDER APPROACH FOR ARTIFICIAL NEURAL NETWORKS

where V is the = ×= orthogonal matrix whose columns {v1, . . . , v=} are the normalized eigenvectors

of C, whereas � is a diagonal matrix containing the corresponding non-negative eigenvalues _8 , for

8 = 1, . . . , =, arranged in descending order.

Let now =AS be an integer
36
, such that =AS < =, we can decompose the two matrices V and � as:

� =

[
�1

�2

]
, V = [V1 V2], V1 ∈ R=×=AS , V2 ∈ R=×(=−=AS) . (3.3)

The space spanned by V1 columns is called the active subspace of dimension =AS < =, whereas

the inactive subspace is described as the range of the remaining eigenvectors in V2. Once we have

de�ned these spaces, the input µ ∈ R= can be reduced to a low-dimensional vector µ̃1 ∈ R=AS using
V1 as projection map. To be more precise, any µ ∈ R= can be expressed as the sum of two addends,

involving the active and inactive subspaces, using the decomposition in Equation (3.3) and the

properties of V:
µ = VV)µ = V1V)1µ + V2V)2µ = V1µ̃1 + V2µ̃2, (3.4)

where the two new variables µ̃1 and µ̃2 are the active and inactive variable respectively:

µ̃1 = V)
1
µ ∈ R=AS , µ̃2 = V)

2
µ ∈ R=−=AS . (3.5)

For the actual computations of the AS we have used the open-source Python package called

ATHENA [255], and in particular the Frequent Directions method [90, 57], as it will be described

in Section 3.3.2.

Proper Orthogonal Decomposition

In this section, we are going to describe the Proper Orthogonal Decomposition (POD) approach

of ROM [126], commonly employed for decreasing the number of degrees of freedom of a parametric

system in various applications [38, 39, 200, 64, 66, 65, 306, 262, 123, 76, 236, 286, 127].

Let S = [u1 . . . u=(] be a matrix composed of =(full order system outputs u8 ∈ R= , called snapshots
matrix. The aim of POD is to describe these collected solutions as a linear combination of a few

main structures, the POD modes, and thus project them onto a low dimensional space spanned by

these modes. To calculate the POD modes, we need to compute the Singular Value Decomposition

(SVD) of the snapshots matrix S:
S = ΨΣΘ) , (3.6)

where the left-singular vectors, i.e. the columns of the unitary matrix Ψ, are the POD modes, and

the diagonal matrix Σ contains the corresponding singular values in decreasing order.

Let now =POD be an integer, such that =POD < =. We can de�ne a projection matrix from a space of

dimension = to one of dimension =POD by selecting the �rst modes, i.e. the �rst =POD column of Ψ.
In this way, by discarding the last =−=POD columns, we are retaining only the most energetic modes,

de�ning a reduced space into which we project the high-�delity solutions. Technically speaking, let

Ψ=POD be the aforementioned projection matrix. By considering the multiplication between Ψ=POD
and the snapshots matrix §, we can obtain a reduced version of S:

SPOD = Ψ)=PODS. (3.7)

where the columns of SPOD represent the reduced snapshot ũ8 ∈ R=POD , with ũ8 = Ψ)=PODu
8
.

36
As described in [57], a possible way to choose the reduction parameter =AS is represented by the number of active

neurons in layer ; , =;,�(. Given �, =;,�(, for any layer index 1 ≤ ; ≤ ! + 1, is de�ned in the following way:

=;,�(= 0A6<8=

{
8 :

_1 + · · · + _8
_1 + · · · + _=;

≥ 1 − n
}

where n > 0 is a de�ned threshold.

3.2. NUMERICAL TOOLS 84

3.2.2 Input–output Mapping
Once the outputs of the intermediate layer are dimensionally reduced, we need to correlate the

latter to the �nal output of the original network, e.g. the belonging classes in an image identi�cation

problem. As described in [210, 57], an input–output mapping is thus built starting from the output

of the reduction layer z, employing for approximating this map two methods: the Polynomial Chaos

Expansion (PCE) [326, 320] and fully-connected Feedforward Neural Networks (FNNs) [85].

Polynomial Chaos Expansion

The Polynomial Chaos Expansion theory was initially proposed by Wiener in [320], showing

that a real-valued random variable - : R' → R can be decomposed in the following way:

- (ξ) =
∞∑
9=0

2 9φ9 (ξ), (3.8)

hence as an in�nite sum of multivariate orthogonal polynomials φ9 weighted by unknown de-

terministic coe�cients 2 9 [146]. The vector ξ = (b1, . . . , b') represents then a multi-dimensional

random vector, where each element is associated with uncertain input parameters.

Starting from Equation (3.8), we can derive a �nite approximation of this in�nite sum by truncating

it at the (% + 1)-th term, with % being a �nite integer:

- (ξ) ≈
%∑
9=0

2 9φ9 (ξ), (3.9)

where the number of unknown coe�cients in this summation is given by % + 1 =
(?+')!
?!'!

[89], and ?

indicates the degree of the polynomial we are considering in the '-dimensional space.

Assuming that the parameters b1, . . . , b' are independent, we can decompose φ9 (ξ) into products

of one-dimensional functions [88]:

φ9 (ξ) = φ9 (b1, . . . , b') =
'∏
:=1

q
3:
:
(b:), 9 = 0, . . . , %, 3: = 0, . . . , ?, B .C .

'∑
:=1

3: ≤ ?. (3.10)

Now, in order to determine the PCE, we need to �nd out the polynomial chaos expansion coe�cients

2 9 for 9 = 0, . . . , % , and the one-dimensional orthogonal polynomial q
3:
:
, : = 1, . . . , ', of degree 3: .

Based on the work of Askey and Wilson [15], we can provide the orthogonal polynomials for

di�erent distributions. One of the possible choices is represented by the Gaussian distribution with

the related Hermite polynomials. On the other hand, the estimation of the coe�cients of PCE can

be carried out in di�erent ways [293]: following a projection method based on the orthogonality of

the polynomials or following a regression method, that is the one we are going to describe.

To determine the coe�cients 2 9 , we need thus to solve the following minimization problem:

c = argmin

c∗∈R%

1

=PCE

=PCE∑
8=1

(
-̂ −

%∑
9=0

2∗9φ9 (ξ8)
)
, (3.11)

where =PCE indicates the total number of realizations of the input vector we are considering, whereas

-̂ represents the real output of the model. In order to solve Equation (3.11), we need to consider the

matrix � de�ned as:

� =

©­­­­«
φ0 (ξ1) φ1 (ξ1) · · · φ% (ξ1)
φ0 (ξ2) φ1 (ξ2) · · · φ% (ξ2)

...
...

. . .
...

φ0 (ξ=PCE) φ1 (ξ=PCE) · · · φ% (ξ=PCE)

ª®®®®¬
. (3.12)

85 CHAPTER 3. A REDUCED ORDER APPROACH FOR ARTIFICIAL NEURAL NETWORKS

Thus, the solution of Equation (3.11) is computed by a least-square optimization [35]:

c = (�)�)−1�) -̂ , (3.13)

where, if the matrix �
)
� is ill-conditioned, as it may happen, the singular value decomposition

method should be employed.

Fully-Connected Feedforward Neural Network

A fully-connected FNN is an ANN characterized by having forward fully connections, i.e. each

neuron in a layer is connected with all the neurons in the next layer. Since a detailed description

of this type of ANNs has been carried out in Section 1.5, we recall here only the most important

expressions connected with this model.

Let x̃ ∈ R=in be the input vector and" the total number of hidden layers of the FNN. The output

vector yFNN ∈ R=out is hence obtained using Equation (1.14):

~FNN9 = f

(
="∑
8=1

F
("+1)
98

G̃
(")
8

)
= f

(
="∑
8=1

F
("+1)
98

(
f

(
="−1∑
@=1

F
(")
8@

G̃
("−1)
@

)))
= · · · =

= f

(
="∑
8=1

F
("+1)
98

(
f

(
="−1∑
@=1

F
(")
8@

(
f

(
. . .

(
f

(
=8=∑
:=1

F
(1)
B:
G̃:

)))))))
, 9 = 1, . . . , =out,

(3.14)

where =< ,< = 1, . . . , " , represents the number of neurons in layer<, whereas =in and =out are the

neurons in the input and output layers respectively,,< = (F (<)
:8

):8 , : = 1, . . . , =<, 8 = 1, . . . , =<−1
indicates the weight matrix related to layer<. To �nd the optimal values of the weights leading

to optimal performances, the backpropagation algorithm should then be employed, as discussed

in Section 1.5.2.

3.3 Reduced Arti�cial Neural Networks

Starting from the idea explored in [57], we propose a general framework to construct a reduced

version of a ANN, based on the techniques described in Section 3.2. We provide thus in this

section the rigorous description of the proposed reduction method for a generic ANN [210, 57,

212], on which we only make the assumption on its depth, i.e. on the number of layers. Let

ANN : R=in → R=out be the original ANN composed by ! hidden layers
37
and then consider the

train dataset Dtrain = {x(0), 9 , y9 }=train
9=1

made of =train input samples and corresponding expected

outputs. We denote with {ŷ9 }=train
9=1

the predicted outputs of theANN for each element of Dtrain. As

discussed in Section 1.4, an ANN can be described as composition of functions 59 : R
= 9−1 → R= 9 for

9 = 1, . . . , ! + 1, representing the di�erent layers of the network, e.g. convolutional, fully connected,

batch-normalization, ReLU, pooling layers:

ANN = 5!+1 ◦ 5! ◦ · · · ◦ 51 . (3.15)

Our method starts from the original structure of the ANN and provides a reduced version of it

following the procedure described in Algorithm 4 composed of the following three steps [210, 212]:

1. Network Splitting (Section 3.3.1): This �rst step deal with the detection of the information we

want to retain and discard from the original model. The ANN is thus split into two parts, a

pre-model and a post-model, determined by the cut-o� layer ; .

37
In this Chapter, we are employing the same notation introduced in Section 1.4. Hence, also in this case, if we have an

ANN with ! hidden layers, the net is composed of ! + 1 layers.

3.3. REDUCED ARTIFICIAL NEURAL NETWORKS 86

2. Reduction Layer (Section 3.3.2): The second step deals with the dimensionality reduction of

the pre-model output, which usually lies in a high-dimensional space. Two ROM methods,

AS and POD, are employed for this purpose.

3. Input-Output Mapping (Section 3.3.3): Once the pre-model output has been reduced, we need

a mapping to link the output of the reduction layer with the �nal output of the network. In

this case, PCE and fully-connected FNNs have been used to construct this input–output map.

We are now going to describe in detail each of these modules by employing the numerical tools

introduced in Section 3.2.

Algorithm 4 Pseudo-code for the construction of the reduced Arti�cial Neural Network

Inputs:

• a dataset with =train input samples Dtrain = {x(0), 9 , y9 }=train
9=1

;

• an arti�cial neural network ANN ;

• {ŷ9 }=train
9=1

real output of the ANN ;

• reduced dimension A ;

• index of the cut-o� layer ; .

1: ANN ;
pre
,ANN ;

post
= splitting_net(ANN , ;);

2: x(;) = ANN ;
pre

(x(0));
3: z = reduce(x(;) , A);
4: ỹ = input_output_map(z, ŷ);
5: Training of the constructed reduced net.

Output: Reduced Net ANN red
.

3.3.1 Splitting Network
Let the index ; denote the cut-o� layer, namely the layer at which we are cutting the net. The

original network ANN : R=in → R=out is thus split in two di�erent parts such that the �rst ; layers

constitutes the pre-model while the last ! + 1 − ; layers form the so-called post-model. Considering
the description of the network as a composition of functions (3.15), we can formally de�ne the pre-

and the post-model as:

ANN ;
pre

= 5; ◦ 5;−1 ◦ · · · ◦ 51, ANN ;
post

= 5!+1 ◦ 5! ◦ · · · ◦ 5;+1. (3.16)

Therefore, the original model can be rewritten as a composition of the post-model with the pre-

model:

ANN(x(0)) = ANN ;
post

(ANN ;
pre

(x(0))), (3.17)

for any 1 ≤ ; ≤ ! and for any x(0) ∈ Dtrain. The reduction of the network e�ectively happens by

copying the pre-model from the original net and approximating the post-model with the algorithm

we are going to describe. It is important to specify that the cut-o� layer ; is the only parameter

of this initial step, and it plays an important role in the �nal outcome. This index indeed de�nes

how many layers of the original network are kept in the reduced architecture, by simply checking

how much information of the original network we are discarding. As done in [57], it is chosen

empirically based on considerations about the network and the dataset at hand, balancing the �nal

accuracy and the compression ratio.

87 CHAPTER 3. A REDUCED ORDER APPROACH FOR ARTIFICIAL NEURAL NETWORKS

3.3.2 Reduction Layer

Fixed a cut-o� layer ; , consider the pre-model ANN ;
pre

de�ned in Equation (3.17), and compute

its output at input x(0) ∈ Dtrain:

x(;) = ANN ;
pre

(x(0)). (3.18)

As introduced previously, the output of the pre-model x(;) usually lies in a high-dimensional space,

thus we aim to project it onto a low-dimensional space of dimension A , with A < =; , using the two

reduction techniques introduced in Section 3.2.1:

• Active Subspaces: as described in [57, 210, 212] and in Section 3.2.1, we consider as function

of interest 6; de�ned as the composition of the post-model with a chosen loss function for

the problem at hand:

6; (x(;)) = loss(ANN ;
post

(x(;))), (3.19)

in order to extract the most important directions and determine the projection matrix Wproj

used to reduce the pre-model output. Given the pre-model outputs {x8,(;) }=train
8=1

computed

for each sample of Dtrain, the empirical covariance matrix Ĉ is computed by considering a

discrete version of Equation (3.1):

Ĉ =
1

=train

=train∑
8=1

∇6; (x8,(;))∇6; (x8,(;))) . (3.20)

Since computing the eigenvalue decomposition of Ĉ is computational expensive, to save

computational cost, we have employed the memory saving Frequent Direction method38 [90,
57], implemented inside ATHENA [255]. Algorithm 5 describes how the frequent direction

Algorithm 5A pseudo-code for the computation of the Active Subspace using the frequent direction

algorithm

Inputs:

– dataset with =train input samples Dtrain = {x9,(0) }=train
9=1

;

– the pre-model ANN ;
pre

(·);
– a subroutine for computing ∇6; (x);
– the dimension of the truncated singular value decomposition A .

1: Select �rst A samples from Dtrain: Dred

train
= {x8,(0) }A8=1;

2: Compute the pre-model output for each sample in Dred

train
: x8,(;) = ANN ;

pre
(x8,(0));

3: De�ne Gred = [∇6; (x1,(;)), . . . ,∇6; (xA,(;))];
4: for C = A + 1, . . . , =train do
5: Compute the SVD: Gred = V̂red

ˆ
�redÛ)

red
;

6: Update: Gred = V̂red

√
ˆ
�

2

red
− ˆ_2A ;

7: Take a new sample: xC,(;) = ANN ;
pre

(xC,(0));
8: Substitute last column of Ĝred with the gradient of the new sample: Ĝred (:, A) = ∇6; (xC,(;)).
9: end for

Output: The projection matrix V̂red ∈ R=;×A .

38
For more details on the Frequent Direction Methods the interest reader can refer to Appendix A.

3.3. REDUCED ARTIFICIAL NEURAL NETWORKS 88

method is applied for computing the active subspace. Hence, we de�ne the matrix Ĝ as:

Ĝ = [∇6; (x1,(;)), . . . ,∇6; (x=train,(;))], (3.21)

and compute its SVD:

Ĝ = V̂ ˆ
�Û) ∈ R=;×=train with

ˆ
� = diag(ˆ_1, . . . , ˆ_=;). (3.22)

We can point out that the left singular vectors in V̂ approximate the eigenvectors of Ĉ,
whereas the eigenvalues of Ĉ are approximated by the singular values of Ĝ, contained in

ˆ
�, i.e � ≈ ˆ

�

2

. Then, since we are interesting in computing the A dominant singular value

components, instead of computing the complete SVD of Ĝ we store only a reduced version

of it Ĝred ∈ R=;×A . This reduced matrix is initialized using the �rst A columns of Ĝ, i.e. the
gradients of the �rst A pre-model outputs, and then updated in the following way:

Ĝred = V̂red

√
ˆ
�

2

red
− ˆ_2A , (3.23)

where now the last column of Ĝred is zero and is then replaced with the gradient vector of a

new sample. At the end of the procedure, when we have considered all the samples in Dtrain,

we obtain the projection matrix Wproj, corresponding to V̂red, the output of the frequent

direction method summarized in Algorithm 5.

• Proper Orthogonal Decomposition: as discussed in [210, 212] and in section 3.2.1, the

projectionmatrixWproj is computed by exploiting the SVD of the snapshot matrix S, composed

by the pre-model outputs for each sample inDtrain. Hence, given the reduction parameter A ,

we can de�ne the projection matrix by considering the �rst A POD modes.

Therefore, considering the output of the pre-model x(;)
, and denoting with Wproj the projection

method, obtained using the AS or the POD, we can derive a reduced version z of x(;) as:

z = W)
proj

x(;) , with z ∈ RA , (3.24)

with A being the reduction parameter, i.e. the dimension of the low-dimensional space onto which

we are projecting our full solution. From the previous relation, it can also be deduced that the

reduction layer consists of a simple matrix multiplication between the output of the pre-model x(;)

and the projection matrixWproj, giving in output a reduced tensor z.

3.3.3 Input-Output Mapping
After the pre-model output has been dimensionally reduced and the reduced solution z has been

obtained, the last step of the method deals with the construction of the mapping to correlate z with
the �nal output of the original network, namely the predicted output ŷ. Two di�erent techniques,

introduced in Section 3.2.2, have been employed to �nd that map:

• the Polynomial Chaos Expansion introduced in section 3.2.2. As described in equation (3.8),

the �nal output of the network ŷ = ANN(x(0)) ∈ R=out , i.e. the true response of the model,

can be approximated in the following way:

ỹ ≈
?∑

|α |=0
cαφα (z), |α| = U1 + · · · + UA , (3.25)

89 CHAPTER 3. A REDUCED ORDER APPROACH FOR ARTIFICIAL NEURAL NETWORKS

where φα (z) are the multivariate polynomial functions chosen based on the probability

density function d associated with z. Therefore, the estimation of coe�cients cU is carried

out by solving the minimization problem (3.11):

min

2U

1

=train

=train∑
9=1

ŷ9 −
?∑

|α |=0
cαφα (z9)

2

. (3.26)

• a Fully-connected FNN described in section 3.2.2 and more detailed in Section 1.5. In

this case, the output of the reduction layer z coincides with the network input, and by

using Equation (3.14) we obtain that the �nal output ỹ of the reduced net
39
is determined by:

~̃ 9 =

=1∑
8=1

F
(2)
98
I
(1)
8

=

=1∑
8=1

F
(2)
98
f

(
A∑

<=1

F
(1)
8<
I<

)
, 9 = 1, . . . , =out, (3.27)

where =out corresponds to the number of neurons in the output layer, e.g. to the categories

that compose the dataset under consideration for an image recognition problem. As activation

function f , a possible choice [210, 212] is represented by the Softplus function:

Softplus(x) = 1

V
log(1 + exp(Vx)) . (3.28)

Note that in a CNN the classi�cation part is characterized by the presence of a fully-connected

FNN, as described in Section 2.2 and in Figure 2.1. Hence, this justi�es the introduction of

this kind of structure at the end of our reduction network for classi�cation.

3.3.4 Training Phase
Once the reduced version of the network under consideration is constructed, we need to

train it. Following [57], for the training phase of the reduced ANN the technique of knowledge
distillation [130], is used. A knowledge distillation framework contains a large pre-trained teacher
model, our full network, and a small student model, in our case ANN red

. Therefore, the main goal

is to train e�ciently the student network under the guidance of the teacher network in order to

gain a comparable or even superior performance.

Let ŷ be a vector of logits, i.e. the output of the last layer in a deep neural network. The probability

?8 that the input belongs to the 8-th class is given by the softmax function

?8 =
4G? (~̂8)∑=class
9=0

4G? (~̂ 9)
. (3.29)

As described in [130], a temperature factor) needs to be introduced to control the importance of

each target

?8 =
4G? (~̂8/))∑=class
9=0

4G? (~̂ 9/))
, (3.30)

where if) → ∞ all classes have the same probability, whereas if) → 0 the targets ?8 become

one-hot labels.

First of all, we need to de�ne the distillation loss, that matches the logits between the teacher

model and the student model. As done in [57], the response-based knowledge is used to transfer

39
Note that in this case the number of hidden layers is set to 1 since, as discussed in Section 3.4.2, we notice that one

hidden layer is enough to gain a good level of accuracy (see for example Table 3.3).

3.4. A REDUCED APPROACH FOR CONVOLUTIONAL NEURAL NETWORKS 90

the knowledge from the teacher to the student by mimicking the �nal prediction of the full net.

Therefore, in this case the distillation loss [103, 130] is given by:

!� (? (ŷC ,)), ? (ŷB ,))) = LKL (? (ŷC ,)), ? (ŷB ,))), (3.31)

where ŷC and ŷB indicate the logits of the teacher and student networks
40
, respectively, whereas

LKL represents the Kullback-Leibler (KL) divergence loss [157]:

LKL ((? (ŷB ,)), ? (ŷC ,))) =) 2

∑
9

? 9 (~̂C, 9 ,)) log
? 9 (~̂C, 9 ,))
? 9 (~̂B,9 ,))

. (3.32)

The student loss is de�ned as the cross-entropy loss between the ground truth label and the logits of

the student network [103]:

!((ŷ, ? (ŷB ,))) = LCE (y, ? (ŷB ,))), (3.33)

where y is a ground truth vector, characterized by having only the component corresponding to the

ground truth label on the training sample set to 1 and the others are 0. Then, LCE represents the

cross entropy loss

LCE (y, ? (ŷB ,))) =
∑
8

−~8 log(?8 (~̂B,8 ,))) . (3.34)

As can be observed, both losses, eq. (3.31) and eq. (3.33), use the same logits of the student model

but with di�erent temperatures:) = g > 1 in the distillation loss, and) = 1 in the student loss.

Finally, the �nal loss is a weighted sum between the distillation loss and the student loss:

!(x(0) ,,) = _!� (? (ŷC ,) = g), ? (ŷB ,) = g)) + (1 − _)!((y, ? (ŷB ,) = 1)), (3.35)

where _ is the regularization parameter, x(0)
is an input vector of the training set, and, are the

parameters of the student model.

3.4 A Reduced Approach for Convolutional Neural Networks

This section is dedicated to the application of the dimensionality reduction method proposed to

CNNs. First, we provide in Section 3.4.1 an overview of some of the existing techniques to enhance

the e�ciency of CNNs regarding memory footprint and computation time [259], including the one

proposed in Section 3.3. Then, in Section 3.4.2 we describe the practical application of our method

to a CNN, VGG-16, to solve the problem of image recognition for the CIFAR-10 dataset and a custom

one, namely a dataset constructed for the collaboration with Electrolux Professional.

3.4.1 Reduction Strategies for Convolutional Neural Networks

The application of Deep Neural Networks in several engineering �elds and in particular in

embedded systems with particular space constraints has led in recent years to the need for methods

to compress and speed up the inference in CNNs. Among the several existing techniques developed

for this purpose [259], we are now going to brie�y describe some of them, such as network pruning,
low-rank factorization, parameter quantization, manual architecture design, and neural architecture
search.

40
Note that in our case ŷB corresponds to the output of the reduced network ỹ.

91 CHAPTER 3. A REDUCED ORDER APPROACH FOR ARTIFICIAL NEURAL NETWORKS

Network Pruning The main goal of network pruning approaches is to prune redundant channels

in the weight matrices of a trained net by setting a substantial number of these parameters to

zero [110, 196, 259]. As a consequence, we achieve the property of parameter sparsity to enhance

resource-e�ciency for a CNN, leading to an accelerated and compressed model. There exist di�erent

sparsity constraints to select which channels have to be pruned, such as weight magnitude crite-

rion [86, 111, 183], based on the absolute value (or magnitude) of weights, and gradient magnitude

pruning [176, 27], determined from the product between gradients over a minibatch of training data

and the corresponding weight of each parameter. Then, we can distinguish between two di�erent

approaches depending on the structure to be pruned: unstructured pruning and structured pruning.
In the unstructured case, individual weights, regardless of their location in a weight tensor, are set to

zero[110, 111, 176, 114]. Among the approaches belonging to this category, we mention the optimal
brain damage algorithm [176] and the optimal brain surgeon algorithm [114], where, starting from a

pre-trained network, weights that cause the least increase in loss function are pruned. Even if we

are increasing the sparsity of the tensors, there are some drawbacks connected with this method: it

yields practical e�ciency improvements only for very high sparsity and, since most frameworks

and hardware cannot accelerate sparse matrices computation, this does not have an impact on the

�nal cost of the network. To overcome this problem is thus needed an approach that alters directly

the very architecture of the network, and this is represented by structured pruning [318, 183, 205,

199]. In this case, chosen weight structures are set to zero, namely weights of entire convolution

�lters or of a kernel row/column are removed instead of just pruning connections. This leads to

networks that are lighter to store, due to fewer parameters, and that require fewer computations

and less memory during runtime. On the other hand, great attention has to be placed when pruning

an entire kernel or removing a row/column, because this a�ects the ensuing layer and the output

dimensions. Then, although all these pruning methods achieve a high level of parameter sparsity in

the model, they are usually iterative procedures that require a �ne-tuning of the parameters, leading

thus to computationally expensive methods for deep neural networks and for some applications.

Low-rank Factorization To estimate the informative parameters of deep CNNs special matrix

structures can be introduced, in order to provide a low-rank factorization for them [266, 227]. A

possible approach could be to replace a convolutional layer with several smaller convolutional

layers applied sequentially [229]. This leads to a �nal model characterized by a much lower total

computational cost since the number of parameters involved in the �lter tensors is reduced. A

particular example of this was described in Section 2.3.2 for InceptionNet [299, 301, 298], where

some 3 × 3 convolutional layers are converted into an asymmetric convolution 1 × 3 followed by a

3 × 1 kernel. On the other hand, there exist techniques that focus on the last fully connected layers,

which also require a large amount of memory [227]. In this case, the parameters are stacked in the

weight matrix, to which the tensorization is applied. As can be understood, these approaches have

the bene�t of reducing the number of parameters and matrix multiplication, thus the computational

complexity. However, a decent amount of retraining is needed to achieve convergence when

compared to the original model, and there are no strong guarantees that using this low-rank

factorization leads to accurate models.

Parameter Quantization This technique concerns reducing the number of bits used for the

representation of the weights and the activation functions by substituting the �oating points with

integers inside the network [56, 259, 55, 245]. In this way, the created network requires less memory

to be stored and for computing predictions. Furthermore, on certain hardware, representations

using fewer bits facilitate faster computations. For instance, to quantize inputs for each convolution

layer, the activation function is replaced by a quantization function (e.g. logical XNOR), converting

each parameter to values in {−1, 1}. In this way, a sophisticated CNN becomes a simple logic circuit.

3.4. A REDUCED APPROACH FOR CONVOLUTIONAL NEURAL NETWORKS 92

Despite these bene�ts, using such approaches can lead also to a signi�cant loss in accuracy, as

there is no guarantee that approximating parameters while sacri�cing precision for a compressed

representation will not compromise the �nal results. Furthermore, training such discrete-valued

CNNs can be very challenging as they cannot be directly optimized using gradient-based methods,

but some modi�cations need to be introduced in order to reduce precision computations during

backpropagation and hence to facilitate low-resource training [56, 259].

Manual Architecture Design Instead of modifying existing architectures to make them more

e�cient, another approach could be to develop manually the design of new architectures that

are inherently resource-e�cient. Typically these architectures employed particular layers and

functions, designed speci�cally with the purpose of dimensionality reduction. An example is

represented by global average pooling [188], which helps in the transition between feature learning

and classi�cation parts, i.e. from the output tensor of a convolutional layer to the input vector

for a fully-connected layer. It basically reduces the spatial dimensions of each channel into a

single feature by averaging over all values within a channel. As already mentioned in Section 2.3.2

for InceptionNet [299, 301, 298], many architectures employ also 1 × 1 convolution to reduce

weights in the CNN architecture [299, 118]. Other particular types of convolution have already been

introduced in Section 2.3.2 since they were manually designed to build new CNN architectures:

the depthwise separable convolution, characterizing MobileNet [138, 271]; channel shu�e with

grouped convolution, a key ingredient in the building block of Shu�eNet [335, 201]; �re modules

with squeeze and expand layers, the core of SqueezeNet [141]. Despite the great reduction achieved,

the main drawback connected with this kind of methodology is the need to study and manually

design a layer that satis�es the requirement of reducing the parameters of a CNN, while keeping

good performances.

Neural Architecture Search A recently emerging approach in this �eld is represented by Neural

Architecture Search (NAS) [259, 342, 40, 302], that tries to discover automatically a good CNN

structure. To achieve this goal, we de�ne a discrete space of possible architectures in which we

subsequently search for an architecture, optimizing in the meantime an objective function, such

as the validation error. A possible procedure for this purpose is represented by using a heavily

over-parameterized model where each layer contains several parallel paths, where each of these

represents a di�erent architectural block [40]. Some probability parameters are then introduced

after each layer to drive the selection of the modules during the training phase. In this way, after

backpropagation, the selected CNN architecture is represented by the most probable path through

all the layers. Alternatively, a resource-e�cient model, called E�cientNet, can be constructed by

steps [302]: starting from a small model and then enlarging it following a principled compound

scaling approach which simultaneously increases the number of layers, the number of channels,

and the spatial resolution.

Although this approach leads to the discovery of resource-e�cient architectures, the evaluation of

the validation error represents a time-consuming step since it requires a full training run of the

whole net. Then, the space of architectures is characterized typically by exponential size in the

number of layers, leading thus to the need for a careful design to facilitate an e�cient search within

that space.

Reduced Convolutional Neural Network As described, most of the existing methods are only

deleting and changing model parameters directly without changing the network architectures, or

are designing manually layers and network structures for the purpose of dimensionality reduction.

Our proposed approach, described in Section 3.3 and in [210] for a general ANN, di�ers from the one

listed here, because, starting from an (already trained) ANN, and in particular from a CNN, we have

93 CHAPTER 3. A REDUCED ORDER APPROACH FOR ARTIFICIAL NEURAL NETWORKS

Figure 3.1: Graphical representation of the reduction method proposed for a CNN.

constructed its reduced version by modifying the whole architecture of the original net. The reduced

network is thus constructed by retaining a certain number of layers of the original CNN and replacing

the remaining ones with an input-output mapping. In this way, we are splitting the net into two

parts connected by the reduced method, which helps in reducing the typically large dimensions of

the intermediate layers by keeping only the most important information. We are performing a smart

selection of the main parameters of the network, allowing us to reduce the required resources and

the computing time to infer the model, as will be discussed in Section 3.4.2. Figure 3.1 presents then a

graphical representation of the reduction method proposed in [210] and summarized in Algorithm 4.

3.4.2 Practical Application on VGG-16
In this section, we are going to revise the results obtained by applying the di�erent reduced

methods proposed to a CNN [210]. In particular, we will present a comparison between the results

obtained with a reduced and full version of a CNN in terms of �nal accuracy, memory allocation,

and speed of the procedure.

As stated before, the problem to be solved is the running of this net within an embedded systemwith

Figure 3.2: Graphical representation of VGG-16 architecture.

particular memory constraints to perform the image recognition task. Among the several existing

CNN architectures presented in Section 2.3.2, we have chosen as testing model VGG-16 [289].

3.4. A REDUCED APPROACH FOR CONVOLUTIONAL NEURAL NETWORKS 94

Table 3.1: Results obtained with CIFAR-10 dataset.

Network Accuracy Storage (Mb) Time

VGG-16 77.98% 56.15 46 h

Epoch 0 Epoch 10 Pre-M AS/POD PCE/FNN Init Train

AS+PCE (5) 13.52% 82.01% 2.12 3.12 0.05 43 min 4.5 h

AS+FNN (5) 33.06% 80.43% 2.12 3.12 0.0047 5 h 4.5 h

POD+FNN (5) 62.16% 80.24% 2.12 3.12 0.0047 79 min 5 h

AS+PCE (6) 14.42% 84.69% 4.37 3.12 0.05 49 min 5.5 h

AS+FNN (6) 33.76% 82.13% 4.37 3.12 0.0047 5 h 4.5 h

POD+FNN (6) 63.84% 83.93% 4.37 3.12 0.0047 83 min 5 h

AS+PCE (7) 4.25% 85.60% 6.62 0.78 0.05 35 min 5.5 h

AS+FNN (7) 75.66% 86.03% 6.62 0.78 0.0047 1.5 h 5 h

POD+FNN (7) 80.17% 87.45% 6.62 0.78 0.0047 12 min 5 h

Table 3.2: Results obtained with the custom dataset.

Network Accuracy Storage (Mb) Time

VGG-16 95.65% 56.14 22 min

Epoch 0 Epoch 10 Pre-M AS/POD PCE/FNN Init Train

AS+PCE (5) 29.03% 95.21% 2.12 3.12 0.02 2 min 10 min

AS+FNN (5) 94.63% 94.92% 2.12 3.12 0.0021 12.5 min 12 min

POD+FNN (5) 96.52% 96.66% 2.12 3.12 0.0021 28 sec 11.5 min

AS+PCE (6) 29.75% 95.79% 4.37 3.12 0.02 2.5 min 10 min

AS+FNN (6) 94.92% 95.36% 4.37 3.12 0.0021 12.5 min 12.5 min

POD+FNN (6) 96.23% 96.37% 4.37 3.12 0.0021 33 sec 13 min

AS+PCE (7) 28.59% 94.05% 6.62 0.78 0.02 1.5 min 11 min

AS+FNN (7) 94.34% 94.63% 6.62 0.78 0.0021 4.5 min 13 min

POD+FNN (7) 96.37% 96.52% 6.62 0.78 0.0021 33 sec 14 min

Its structure, depicted in Figure 3.2, is composed of 13 convolutional blocks alternating with 5

max-pooling layers, representing the feature learning part, and 3 fully connected layers, responsible

for the �nal classi�cation.

The implementation of the technique proposed is carried out using PyTorch [237] as the development

environment, while for the actual computation of the active subspaces we use the open-source

Python package ATHENA [255]. The original network and its reduced versions have been trained

and tested on two di�erent datasets: a benchmark one represented by CIFAR-10 dataset [166]

(see Section 2.3.1), and a custom one. This last set of data was connected with the practical

application in a professional appliance we had to do for Electrolux Professional. It is thus composed

of 3448 32 × 32 color images organized in 4 classes: 3 non-overlapping classes and a mixed one,

characterized by pictures with objects of di�erent categories present at the same time.

First of all, the original network VGG-16 has been trained on each of the di�erent datasets presented

for 60 epochs
41
. Table 3.1 and Table 3.2 show the levels of accuracy of VGG-16 at the end of the

training phase, 77.98% for the CIFAR-10 and 95.65% for the custom dataset, which represent the

values we want to achieve or exceed with the reduced networks. We report also the results obtained

with di�erent reduced versions of VGG-16 constructed following the steps of algorithm 4 and using

41
We have chosen 60 (and then 10 for the reduced net) to be the number of epochs for the training phase as a trade-o�

between the �nal accuracy and the time needed. For this reason, we kept the same value in the two di�erent cases we are

considering to have a fair comparison.

95 CHAPTER 3. A REDUCED ORDER APPROACH FOR ARTIFICIAL NEURAL NETWORKS

three cut-o� layers
42 ; : 5, 6, and 7, as done in [57]. We remark that in the case of dimensionality

reduction with the AS technique, we employed the Frequent Direction method [90] implemented

inside ATHENA to compute the AS. The dimension of the reduced space A onto which we are

projecting the high-dimensional features —the output of the pre-model— is set to 50 both for AS

and for POD in analogy with the structural analysis considerations presented in [57].

Table 3.3 is then reporting di�erent results obtained by training the reduced net for 10 epochs

Table 3.3: Results obtained for the reduced net POD+FNN (7) trained on CIFAR-10 with di�erent

structures for the FNN.

Hidden layers
1 2 3 4

H
id
de

n
ne

ur
on

s

10
Epoch 0 81.39% 67.92% 75.52% 81.57%

Epoch 10 87.89% 87.59% 87.46% 87.26%

Storage FNN (Mb) 0.0024 0.0028 0.0032 0.0036

20
Epoch 0 80.17% 80.05% 79.97% 78.28%

Epoch 10 87.45% 87.13% 87.42% 86.68%

Storage FNN (Mb) 0.0047 0.0063 0.0079 0.0095

30
Epoch 0 77.57% 80.36% 80.43% 76.26%

Epoch 10 86.92% 86.25% 86.30% 85.25%

Storage FNN (Mb) 0.0070 0.0106 0.0141 0.0177

40
Epoch 0 71.24% 70.38% 69.31% 68.15%

Epoch 10 85.04% 84.60% 84.18% 83.64%

Storage FNN (Mb) 0.0093 0.0156 0.0219 0.0281

using di�erent FNN architectures, i.e. a di�erent number of hidden layers and also hidden neurons,

which are kept constant in each hidden layer of the net. In particular, each of the FNNs used has

been trained for 500 epochs during the initialization process, thus before the re-training step of the

whole net reported in the tables. The comparison in Table 3.3 is then made in terms of memory

allocation for the FNN and accuracy of the corresponding reduced net at epoch 0, i.e. after its

initialization, and at epoch 10, i.e. after the re-training of the whole reduced net. It can be noticed

that increasing the depth and width of the network is not leading to a remarkable gain in accuracy.

For this reason, based on considerations about the �nal accuracy and the allocation in memory of

the FNN, the structures chosen for testing the reduction method using a FNN as input-output map

are the following:

• CIFAR-10: 50 input neurons, 10 output neurons, and one hidden layer with 20 hidden

neurons.

• Custom Dataset: 50 input neurons, 4 output neurons, and one hidden layer with 10 hidden

neurons.

Starting from this, we have constructed di�erent reduced networks, i.e. AS+PCE, AS+FNN, POD+FNN,

using three di�erent cut-o� layers: 5,6, and 7. These reduced models have then been re-trained for

10 epochs using the aforementioned datasets. Table 3.1 and Table 3.2 show a comparison between

the full and reduced VGG-16 in terms of accuracy (before and after the �nal training), memory

storage, and time needed for the initialization and the training processes. From these data, we can

42
As explained in [57] and in the correspondent implementation the indices 5, 6 and 7 correspond to the indices of the

convolutional layers in a list where only convolutional and linear layers are taken into consideration as possible cut-o�

layers. Therefore, taking into account the whole net with all the di�erent layers, these correspond to 11, 13, and 16.

3.5. REDUCTION STRATEGIES FOR OBJECT DETECTORS 96

also point out that the results provided are consistent between the two di�erent sets of data.

Regarding the problem of memory constraints in an embedded system, it can be noticed that the

storage required for the proposed nets is decreased compared to that of the original VGG-16 in both

cases (see Table 3.1 and Table 3.2). In fact, the checkpoint �le
43
stored for the full net occupies 56.14

Mb, whereas that of its reduced versions less than 10 Mb. Hence, if we compute the compression

ratio related to each of these nets:

compression_ratio = 1 − compress_size

uncompress_size

(3.36)

we obtain that the saving in memory is around 90% in all the cases. It can also be highlighted that

the use of a FNN instead of the PCE is saving space in memory of two orders of magnitude: 10
−4

against 10
−2
.

From the point of view of �nal accuracy, it can be observed that the proposed reduced CNN achieved

a similar level (in most cases also greater) as the original VGG-16 but with the bene�ts of requiring

much smaller storage. Furthermore, it can be observed that increasing the cut-o� layer index ;

leads to nets with higher accuracy since we are retaining more information (i.e. features) from the

original VGG-16, but on the other hand, there is a smaller compression ratio. For this reason, as

pointed out before, the choice of index ; should be done carefully as a trade-o� between the �nal

accuracy and the level of reduction, but also taking into account the �eld of application.

Table 3.1 shows also that the reduced net POD+FNN leads also to another gain in terms of time, as

it does not require additional training with the whole dataset after the initialization, i.e. at epoch 0.

From the table, it can indeed be noticed that, before the re-training of the whole reduced network,

its accuracy is already acceptable and for index 7 is also quite high. The immediate consequence of

this is the saving of the time needed to gain a performing network, which is in the order of 5 hours.

These considerations are true and consistent also using a di�erent set of data, as the custom dataset

under consideration. In fact, Table 3.2 reports how for the three choices of ; the POD+FNN net has

an accuracy greater than the original VGG-16 even after the initialization process.

3.5 Reduction Strategies for Object Detectors

This section will deal with reduction strategies for object detectors. As introduced for CNNs,

there exists a great interest in using these models in the industrial world to solve complex tasks,

as that of object detection introduced in Section 2.4. Hence, the necessity of running these deep

neural networks in embedded systems highlights some drawbacks connected with most of these

architectures. Since object detectors are characterized by having millions of parameters, this results

in huge computational e�ort from the point of view of the training time [99, 299] and a great amount

of space for storing and running them.

In the last years, many techniques have been developed to obtain light-weight versions of this kind

of models. Some approaches employ the methods described for CNNs in Section 3.4.1. Hence, they

directly adopt the original object detection architecture employing, for example, input resizing

and network pruning [110, 92, 29]. Other methods consist in modifying the structure of the object

detectors, retaining their original image classi�er, but based on well-established hardware-e�cient

CNNs as a backbone. To lower network complexity, there is thus the introduction of highly optimized

base nets and convolutional feature layers, such as the one previously described in Section 2.3.2:

MobileNet [138], Shu�eNet [335], SqueezeNet [141]. The employment of these optimized CNNs in

43
Note that in both cases (CIFAR-10 and custom dataset) the checkpoint �le requires 56 Mb of memory, but if you need to

store additional information (on the architecture of the net, training epochs, loss,. . .) the required allocation is around 220

Mb.

97 CHAPTER 3. A REDUCED ORDER APPROACH FOR ARTIFICIAL NEURAL NETWORKS

Figure 3.3: Graphical representation of the reduction method proposed for an object detector.

commonly used object detector’s architectures, e.g. YOLO, SSD, Faster R-CNN, has the bene�t of

providing light-weight deep neural networks with reasonable performances [270, 138, 219, 296, 186,

324, 148, 323].

Unlike what was done in the aforementioned methods, to face the compute-intensive and memory-

intensive issues, we have extended and adapted the dimensionality reduction method presented

in Section 3.3 and in [210, 57] to SSD type architectures. Starting from the original structure, we

compress the network by retaining only a certain number of layers of the base net and substituting

the remaining part with this reduction layer. The dimensionality reduction operation is carried out

using POD, which is thus responsible for decreasing the number of hyperparameters of the model.

In this way, the resulting network requires less space to be stored and in �ne-tuning time. In the

next sections, we are now going to provide a detailed description of the proposed procedure for this

case and its practical application on SSD300, using PASCAL VOC as the dataset.

3.5.1 Reduction of SSD-Type Object Detectors

In this section we provide the detailed description of the proposed reduced technique for SSD-

type object detectors [211], that is summarized in Figure 3.3 and in Algorithm 6. This framework

is extending the one proposed in Section 3.3 and in [210] in order to include also more complex

networks, such as the ones that solve the problem of object detection [294, 339, 191].

Let Obj_Det be an object detector composed by # hidden layers. Following [211], the only as-

sumption we are making on Obj_Det is that we have a network composed by: i,) a base net, a

CNN extracting the low-level features, as the one introduced in Section 2.3.2; ii,) some additional

convolutional layers responsible for capturing the high-level features; iii,) a predictor, that will
output the predicted class and localization, e.g. the coordinates of the bounding box, for each object

in the image. Therefore, we have that:

Obj_Det = [basenet , auxlayers, predictor] . (3.37)

3.5. REDUCTION STRATEGIES FOR OBJECT DETECTORS 98

Algorithm 6 Pseudo-code for the construction of the reduced object detector [211].

Inputs:

• train dataset Dtrain = {x(0), 9 , y9
loc
, y9

cls
}#train

9=1
,

• Obj_Det = [basenet , auxlayers, predictor],

• reduced dimension A ,

• index of the cut-o� layer ; ,

• a test dataset Dtest = {x8 , y8
loc
, y8

cls
}#test

8=1
.

Output: Reduced Object Detector Obj_Det red

1: basenet ;
pre
, basenet ;

post
= splitting_net(basenet , ;)

2: x(;) = basenet ;
pre

(x(0))
3: z = reduce(x(;) , A)
4: ŷloc, ŷcls = predictor (x(;) , z)
5: Training of the constructed reduced net using Dtest.

Note that, as described in Section 2.4.7, an example of architecture satisfying this assumption is

SSD. It is also important to point out that we do not need to have a pre-trained object detector on

the dataset of interest, but we only need to have the status of this deep neural network after its

initialization.

As discussed in Section 1.4, an object detector can then be seen as a map between its inputs and

outputs, Obj_Det : R=in → R=out , where in this case =out = =class × 4, since we have two di�erent

outputs: a tensor ŷcls representing the predicted probability for each =class of the dataset and a tensor
ŷloc containing the four o�sets values. Let thenDtrain = {x(0), 9 , y9

loc
, y9

cls
}#train

9=1
be the training dataset,

made of =train input samples and corresponding expected classi�cation and localization outputs.

Following the procedure described in Section 3.3, our reduction method operates directly on the

original structure of an object detector, starting from its status after initialization without loading

weights from a previous train with the dataset of interest, to provide a reduced version. Algorithm 6

presents an algorithmic representation of our method, that is composed of the following three

steps [211]:

1. Network Splitting (Section 3.5.2): As described in Section 3.3.1, in this �rst step we are de�ning

the pre-model and a post-model, by �xing a cut-o� layer ; . In this way, we are also deciding

how much information of the original network, and in particular of the base net, we want to

retain.

2. Reduction Layer (Section 3.3.2): The base net is usually followed by an additional structure

responsible for the detection of the high-level features of objects, giving thus a whole under-

standing of the picture. The second step performs thus the dimensionality reduction of the

pre-model output, substituting the auxiliary layers with a reduction layer, employing POD,

described in Section 3.2.1, as ROM method.

3. Predictor (Section 3.5.4): After we have projected the high-dimensional pre-model output into

a low-dimensional space, the obtained features need to be employed for the classi�cation and

localization tasks. In this case, a predictor with the same architecture as that of the original

network is used.

99 CHAPTER 3. A REDUCED ORDER APPROACH FOR ARTIFICIAL NEURAL NETWORKS

After the reduced version of the object detector has been initialized, we need to train it. Despite

what is done for a general ANN and in particular for a CNN, we have not used the loss introduced

in Section 3.3.4 based on the knowledge distillation technique. Using such a framework for object

detection tasks has been proven to be non-trivial and sub-optimal [182]. Based on the observations

in [182], the original and reduced models present di�erent levels of precision, since they are

characterized by di�erent prediction responses and di�erent ways to rank their predicted bounding

boxes. Hence, imitating all the feature maps of the teacher network is not a good idea to improve

the accuracy of the reduced object detector. For this reason, we have used as loss function the one

designed for the object detector under consideration. Further improvements can then be introduced

in new versions of our proposed reduced method. Chapter 4 will brie�y explain how we can develop

a method for distilling knowledge from a full object detector, based on the techniques introduced

in [182, 45].

In the following sections, we are now going to provide some details on the three steps needed to

apply our reduction method of [210, 212] to an object detector, by employing the methods described

in Section 3.3 and in Section 3.2.

3.5.2 Network Splitting
Let ; be the �xed cut-o� layer and basenet the CNN base net, composed of ! hidden layers.

As done in [210, 57, 212], the base net, i.e. the �rst part of Obj_Det , is splitted in two di�erent

blocks based on ; : the pre-model and the post-model. In particular, basenet can be described as as

compositions of L functions 59 : R
= 9−1 → R= 9 , for 9 = 1, . . . , ! + 1, representing the di�erent layers

of the network (see Section 1.4):

basenet = 5!+1 ◦ 5! ◦ · · · ◦ 51. (3.38)

Equation (3.38) can now be rewritten employing the pre- and post-model:

basenet (x(0)) ≡ basenet ;
post

(basenet ;
pre

(x(0))), (3.39)

where x(0) ∈ R=in is an input image and the pre- and post-models are de�ned by:

basenet ;
pre

= 5; ◦ 5;−1 ◦ · · · ◦ 51,
basenet ;

post
= 5! ◦ 5!−1 ◦ · · · ◦ 5;+1.

(3.40)

Also here, as discussed in Section 3.3, the cut-o� layer ; should be chosen carefully, due to its

important role in the �nal outcome, controlling how many layers of the original net, i.e. information,

we are discarding. In this case, following [210, 211], the choice of ; was driven by considerations

about the network and the dataset at hand, balancing the �nal accuracy and the compression ratio.

3.5.3 Reduction Layer

Once we have de�ned the pre-model for the base net basenet (;)
pre

, we can compute its output

{x(;),8 }#train

8=1
for each sample in Dtrain:

x(;) = basenet (;)
pre

(x(0)). (3.41)

In particular, since x(;)
usually lies in a high-dimensional space, we aim at projecting it onto a

low-dimensional one by retaining only the most important directions and thus information. We

are thus introducing a linear layer performing dimensionality reduction on the pre-model output

3.5. REDUCTION STRATEGIES FOR OBJECT DETECTORS 100

x(;)
in place of the auxiliary layers, as described in Figure 3.3 and in algorithm 6. Based on the

method presented in [211] and described in Section 3.3, to decrease the huge number of parameters

characterizing the feature maps output of the pre-model, we are exploiting the POD approach

introduced in Section 3.2.1.

Therefore, once we have computed the pre-model outputs for each element ofDtrain, we unroll them

as columns of a matrix S = [x(;),1, . . . , x(;),#train], on which we apply the POD. Following Section 3.2.1,
we can decompose S using the SVD in order to determine the POD modes. Given then the reduction

parameter A , i.e. the dimension of the space onto which we want to project the output of the

pre-model, we can determine the project matrix Wproj and, hence, the reduced version of x(;) :

z8 = W)
proj

x(;),8 , for 8 = 1, . . . , #train. (3.42)

After this reduction layer, we have then in hand the reduced representation of the pre-model output

for any image in our dataset.

3.5.4 Predictor
The last block in the reduced framework is represented by the predictor, that deals with connect-

ing the reduced features {z8 }#train

8=1
to the expected outputs {y8

loc
, y8

cls
}#train

8=1
. This mapping is realized

by using the original classi�er, composed of two siblings classi�ers, one for localization prediction

and one for class prediction. Due to the structural changes made in the previous parts of the

object detector, we need to modify the inputs for the predictor. We highlight indeed that, typically,

architectures for object detection use the output of several layers — e.g. base net convolutional

layers, auxiliary layers — to predict the �nal output. In the reduced network, instead, the only inputs

are represented by the output of the pre-model x(;) and its reduced version z obtained through the

reduction layer.

Since the number of inputs has been modi�ed, this will a�ect the total number of priors of the

object detector. As discussed in Section 2.4.2, several priors with di�erent shapes are used for each

selected input, to �nd the correct place and sizes (width and height) of the predicted bounding boxes.

In particular larger feature maps — e.g. base net convolutional layers output — have priors with

smaller resolutions and are therefore ideal for detecting minor details of the image, whereas smaller

feature maps — e.g. auxiliary layers output — will be responsible for detecting high-level features,

like objects’ shapes. Now, in the proposed reduced framework, since we have decreased the number

of inputs for the predictor, there will be also fewer priors, that have to be chosen properly. Hence,

we have performed an empirical analysis in order to �nd the right scale parameter, which controls

the priors’ resolution, to gain comparable results with the original network.

3.5.5 Numerical Results
As discussed in [211], we have conducted experiments using SSD300 [195] with VGG-16 [289]

as base net. To evaluate the ability of the full and reduced nets to detect objects in pictures, we

have then trained and tested the original and compressed models on di�erent datasets: the PASCAL

VOC [81], and a custom one, linked with the collaboration with Electrolux Professional. The latter
is composed of 247 images — 197 used for training purposes and 50 for testing— subdivided into

three classes. Hence, to simulate the custom case subject to a non-disclosure agreement, we have

also created another database with similar features to the custom one. Therefore, starting from

VOC2007, a subset of PASCAL VOC, we have extracted a smaller dataset made up of 300 images

subdivided into two categories: cats and dogs.

First of all, we have trained and tested the original net SSD300 with the cat-dog dataset, the Electrolux
Professional dataset, and the whole PASCAL VOC. The results obtained are displayed in the �rst

101 CHAPTER 3. A REDUCED ORDER APPROACH FOR ARTIFICIAL NEURAL NETWORKS

Table 3.4: Results obtained with the cat-dog dataset.

Network mAP Accuracy Storage (Mb) Training Time
Cat Dog

SSD300 80.8% 76.3% 85.4% 91.09 61 min

SSD300_red 59% 50.3% 67.7% 77.45 36 min

Table 3.5: Results obtained with Electrolux Professional dataset.

Network mAP Accuracy Storage (Mb) Training Time
Class 1 Class 2 Class 3

SSD300 85.4% 74.5 % 91.1% 90.7% 92.6 2.5 h

SSD300_red 85.8% 82.4% 92.4% 82.7% 77.59 1.5 h

columns of Table 3.4, Table 3.5, and Table 3.6. In particular, for the cat-dog database, Figure 3.4

provides some examples of expected outputs from our reduced SSD300, namely outputs of the

original model.

We have then applied the reduction method described in Section 3.5.1 to the original architecture of

SSD300, where we have not used the status of the network after training, but after initialization, i.e.

with all the weights randomly initialized except those of the VGG-16, pre-trained on ImageNet [68].

Hence, the net has been cut at layer 16, i.e. cut-o� index 7, of VGG-16, and then the output of

the pre-model, having 369664 parameters, has been projected onto a reduced space of dimension

A = 50, in analogy with [210, 57]. As highlighted in section 3.5.1, the inputs to the predictor part are

di�erent from the full model. In the case of SSD300, these correspond to
44
: the output of the third

layer in the fourth convolutional block 2>=E4_3, the �nal output of the net 2>=E7, the outputs of

each block of the auxiliary layers 2>=E8_2, 2>=E9_2, 2>=E10_2, 2>=E11_2. In our reduced network

the only inputs used for predictions are the output of the pre-model, i.e. the output of layer 2>=E3_3,

and its reduced version, the output of the reduction layer. In this way, the number of priors we are

taking into account is less than before: 5782 instead of 8732 for the full net. We have then adapted

the scaling factor to our case, choosing two di�erent scales: 0.1 and 0.9, i.e. one that takes into

account smaller objects (10% of the picture) and one for bigger objects (90% of the picture). Despite

these changes connected with inputs and default boxes, the predictor block remains the same as the

original SSD300. Once the reduced SSD300 has been initialized, it has then been trained with the

aforementioned datasets. We can also mention that to train SSD300 we have employed Stochastic

Gradient Descent (SGD) as suggested in the original paper [194], whereas for our reduced model

we have seen empirically that Adam was a better choice.

Starting with the cat-dog case, it can be seen in Table 3.4 that, after a 500 epochs of training, the net

has an overall Mean Average Precision (mAP) of 70.2%. In particular, it reaches an accuracy of 86.6%

for dogs and 53.8% for cats. Table 3.4 summarizes also the results obtained with our reduced method,

by training the reduced SSD300 for 500 epochs. It can be observed that the mAP has decreased by

11% compared to the original net: the accuracy for the categories dogs and cats are now 67.7% and

50.3% respectively. Figure 3.4 shows some output images proving how the results obtained with the

full and the reduced net are comparable.

Similarly, SSD300 and the proposed reduced version have been trained and tested on the Electrolux
Professional dataset. Table 3.5 presents an overall of the results obtained in this custom case. Starting

from a full SSD300, we have constructed a new network performing as the original one, with similar

44
The labels of the layers refer to the one presented in Section 2.4.7, and in particular in Figure 2.34.

3.5. REDUCTION STRATEGIES FOR OBJECT DETECTORS 102

(a) SSD300 (b) Reduced SSD300

(c) SSD300 (d) Reduced SSD300

Figure 3.4: Comparison of the results obtained using the original SSD300 and its reduced version

on two test images.

Table 3.6: Results obtained with PASCAL VOC.

Network mAP Storage (Mb) Training Time

SSD300 77.8% 100.23 66 h

SSD300_red 39% 78.26 39 h

levels of accuracy for each class composing the dataset. Even if the cat-dog dataset was constructed

to simulate the Electrolux Professional dataset, this slight di�erence in the achieved accuracy can be

connected to the fact that the latter is composed of a smaller variety of images, strictly related to

the �nal application.

The last test case employs the whole PASCAL VOC dataset, hence a huge database compared with

the ones used in the previous cases. Table 3.6 summarizes the results obtained in this framework

after a 500 epochs training. As can be observed, here there is a higher decrease, of 50%, in the mAP of

the model with respect to the previous cases. In Table 3.7 we present also a comparison on the level

of accuracy achieved for each class in the dataset using the original and reduced SSD300. Figure 3.5

presents then some examples of output images obtained with the two object detectors. As can be

observed, the reduced network is less accurate than the full SSD300, with some outliers predictions,

but, despite this, the results are in general comparable.

From the point of view of the memory storage, we can compute the compression ratio using Equa-

tion (3.36). We have thus a reduction of 15% for the cat-dog dataset, 16% for the custom case, and

22% for PASCAL VOC. We highlight that such compression is not remarkable as the one shown for

the image recognition case in Section 3.4 and in [210] since in this case the larger dimension of the

pre-model output has led to a huge matrix for storing the POD modes, limiting a lot the potential

space gain.

Beside the slight space reduction, our proposed approach is characterized by a halving of the training

103 CHAPTER 3. A REDUCED ORDER APPROACH FOR ARTIFICIAL NEURAL NETWORKS

Table 3.7: Accuracy obtained for each class of the PASCAL VOC dataset with SSD300 and our

reduced version.

Accuracy
Category SSD300 SSD300_red

aeroplane 79% 59%

bicycle 85% 45%

bird 78% 30%

boat 71% 31%

bottle 48% 18%

bus 87% 50%

car 86% 64%

cat 89% 46%

chair 58% 16%

cow 83% 46%

dining table 78% 30%

dog 86% 37%

horse 88% 55%

motorbike 85% 48%

person 79% 34%

pottedplant 54% 22%

sheep 78% 44%

sofa 79% 30%

train 86% 52%

tvmonitor 76% 32%

and inference time, allowing thus to accelerate the �ne-tuning (performed also in the full network

to optimize the auxiliary and classi�er layers) of the network in the reduced version. Assuming

that the weights of base net layers are already pre-trained
45
, the minor number of hyperparameters

results indeed in a faster optimization task, as described in Table 3.4, in Table 3.5 and in Table 3.6.

Reduction of CNNs becomes then not only a technique to compress the architecture dimension, but

also to accelerate the learning and inference steps of the studied network.

To conclude, while the reduction in time and space is comparable regardless of the dataset, the

accuracy is much greater when the total number of classes used is low. In the latter context, our

approach seems to demonstrate the ability to automatically isolate the most important convolutional

features. Keeping the same reduced architecture for the three di�erent datasets, characterized by 2, 3

and 20 classes respectively, we have thus noticed how our proposed method is able to automatically

detect redundant and super�uous information, leading, in the end, to a drastic di�erence in the

mAP. It is therefore clear from the results shown in Table 3.4, in Table 3.5 and in Table 3.6 that there

is a trend between the compression and the accuracy of the reduced model linked to the complexity

of the problem, which is roughly quanti�ed by the number of image classes of the dataset under

consideration.

45
The presence of pre-trained weights is mandatory for building the POD space.

3.5. REDUCTION STRATEGIES FOR OBJECT DETECTORS 104

(a) SSD300 (b) Reduced SSD300

(c) SSD300 (d) Reduced SSD300

(e) SSD300 (f) Reduced SSD300

Figure 3.5: Comparison of the results obtained using the original SSD300 and its reduced version

on three test images from PASCAL VOC.

CHAPTER
4 Conclusions and Future

Perspectives

In this thesis we proposed a generic dimensionality reduction framework for ANNs, aiming at

constructing a reduced version of the net under consideration. The need to develop such a procedure

arises from the collaboration with Electrolux Professional in the framework of an industrial doctoral

grant agreement. The �nal goal of this procedure coincides thus with having a model feasible to

be placed inside a professional appliance, and in particular in an embedded system with limited

hardware. Moving the inference phase from servers with great computing power to embedded

devices with memory and power constraints represents a challenging problem in these engineering

�elds, which should be addressed by designing light-weight network models and methodologies.

Moved by the computational complexity of deep learning models, characterized by a huge

number of tunable parameters, we have thus constructed a reduced version of the original network,

by reducing the number of layers at the expense of a minimal error in the �nal prediction. Such a

reduction is performed by splitting the full ANN into two parts, namely the pre- and post-model,

identi�ed by a cut-o� layer index. The choice of this parameter represents a critical point in the

procedure because it determines the amount of information we are retaining and discarding from

the original model. At the moment, it is based on empirical analysis of the storage reduction and

accuracy level achieved. Future works will better explore this trade-o� between the complexity of

the problem and the compression of the network, aiming hopefully to �nd an automatic way to

compute the cut-o� layer depending on the problem at hand.

The reduction occurs then by replacing the post-model with a linear reduction layer, involving

ROM techniques and a response surface, creating an input-output mapping between the low-

dimensional version of the pre-model feature maps and the �nal output. We have thus analyzed

di�erent approaches to perform compression of the original ANN by combining two dimensionality

reduction methods, such as AS and POD, and input-output mappings, as PCE and a fully-connected

FNN. The experiments conducted show indeed that di�erent combinations of these techniques can

lead to di�erences in the �nal accuracy.

First of all, we have conducted numerical experiments on CNNs to tackle the image recognition

task. In this case, our proposed reduction framework produces a light-weight version of the

original network, reduced in the number of layers and parameters, keeping a good level of accuracy.

Furthermore, the combination of POD with FNN leads also to a decrease in the training time,

which makes the proposed framework better than the inspiring method proposed in [57]. In many

contexts, the learning procedure represents indeed the real bottleneck of the CNNs use. Therefore,

extending our approach to reduce the architecture dimension during the training, and not only

once it is �nished, could induce hopefully a remarkable speedup in the optimization step. Further

investigations will be carried on in this direction.

We have then tried to extend this methodology to more complex architectures, such as the one

solving object detection tasks. In this case, we are assuming that the structure of the networks has to

be of SSD-type, i.e. composed of a base net, some auxiliary layers, and two siblings predictor, one for

classi�cation and one for localization. Our proposed approach consists thus of a (linear) reduction

layer, derived from POD, connecting the selected layers of the base net (pre-model) with the original

predictor block. Comparing the original network with its reduced version, faster training and a

decreased required space are shown exploiting our framework. Therefore, this allows for a faster

105

106

and less computational expensive learning process. Consequently, this also leads to a reduced

inference time, and therefore to the possibility of having real-time predictions once the reduced

model is applied in an embedded device placed in a professional appliance.

The obtained results shows also an intuitive trend between the reduction and the accuracy with

respect to the complexity of the problem, in this case roughly quanti�ed by the number of image

classes. Keeping indeed the same reduced architecture for the several datasets employed (2, 3 and 20

classes), we have seen a drastic di�erence in the average accuracy, which demonstrates the ability

of the proposed method to automatically detect redundant and super�uous information. Hence,

in the Electrolux Professional test case, where the dataset was characterized by little variety in the

images and by few categories, the reduction manages to obtain good results as in the case of image

recognition. In the other two cases, where we have a dataset with few classes but more diversi�ed

images and a very large dataset, the accuracy results are slightly di�erent. In the �rst case, we have

a slight decrease in the value of the average accuracy, while in the other a halving of it.

Besides these merits, the proposed reduction technique might be not appropriate in the case

of object detection due to the slight reduction in the storage coupled with a decreased accuracy

level. The practical application to SSD-type architectures has indeed demonstrated that dealing with

high-dimensional features in the pre-model, can vanish the compression of the network. The bigger

dimension of the POD modes, representing the pre-model features, is thus requiring more amount

of space to be stored than the simple case of image recognition. The experiments conducted have

shown that in some cases the reduction achieved is not satisfying as previously, potentially reaching

the space needed by the full network. To overcome this limit, a possible solution is represented by

the employment of hyper reduction technique or POD variants to minimize the quantity of data

that has to be saved. Furthermore, in the image recognition framework, the knowledge distillation

technique is introduced in the training phase to let the reduced model acquire knowledge from the

original network and achieve comparable performances. In this case, it was not possible to apply

this method since it is not so trivial to extend it for object detection. Another possible improvement

could thus be the implementation of a knowledge distillation framework for object detection. Based

on the state of the art [182, 45], a feasible approach corresponds to the introduction of a particular

cross-entropy loss to handle the bounding box regression and, in particular, to incorporate the

position-wise prediction di�erence as guidance for feature imitation from the full model. These

further improvements will be part of an ongoing master project carried out with S. Zanin, N. Demo,

and G. Rozza.

Another interesting topic connected with CNNs is the extension of the notion of discrete �lter,

characterizing these architectures, to a continuous one. The aim of this project is the application of

CNN �lters to unstructured data, by approximating the continuous �lter with a trainable function

constructed through a FNN. Employing such modules instead of the classical ones can have several

bene�ts:

• They can be exploited in the case of not complete images, e.g. characterized by the presence

of holes or bad quality regions, or, in a general perspective, to sparse incomplete data. This

can thus be useful also for the training of image reconstructors, aiming at restoring the quality

of images.

• The possible application to non-structured data leads to a �lter able to capture non-trivial

relationships also in an unstructured context.

• They can be used to �nd latent space representations, namely the most important information

enclosed in input data, for complex manifolds by the use of continuous Autoencoders (AEs),

exploiting continuous �lters. Hence, using the knowledge contained in the latent space, it

is possible to reproduce, by only knowing the time of the snapshot, phenomena, like the

complete liquid-gas state.

107 CHAPTER 4. CONCLUSIONS AND FUTURE PERSPECTIVES

• They can be applied for solving parametric problems for a �nite set of data, to obtain a

generalization of the solution. Hence, a continuous convolution network, containing the

convolution and the transpose convolution operation, can be employed in the context of ROM

to reconstruct the solution based on the �nite input data.

• They can be included in a generative adversarial network to construct a continuous version

of it, with the aim of enlarging, for example, the dataset for computational �uid dynamics

simulations.

In this way, deep learning architectures, based on CNNs, coupled with continuous �lters can hence

be exploited to solve problems in di�erent domain settings, such as the unstructured continuous

one characterizing the aforementioned Navier-Stokes, or the liquid-gas phase problem. These topics

are part of an ongoing internship project carried out with D. Coscia, N. Demo, G. Stabile, and G.

Rozza [54].

APPENDIX
A Frequent Direction Method

In recent years, the enormous amount of data available has led to the necessity of developing

methods to handle them. The presence of limited memory available at any given time represents

then an additional space constraint reinforcing this need. The data streaming paradigm [221, 93]

deals exactly with computations on a huge dataset, where data can be stored in a matrix. A common

approach to manage all this information is performing a low-rank approximation for such matrices

by employing the truncated SVD [90]. However, the presence of these large matrices, connected

with having this large stream of data, renders standard SVD algorithms infeasible. Therefore, a

possible solution to this problem is represented by matrix sketching approaches. Given a large

matrix �, the key idea is to compute a signi�cantly smaller matrix �, such that � ≈ �, to be used

instead of � in computations without too much loss of precision.

There exist four main matrix sketching approaches [90] that can be followed to obtain a smaller

version of the original matrix �. The �rst one generates a sparser reproduction of �, that can

thus be stored more e�ciently and provide faster calculations [1, 11, 73]. The second technique

consists of randomly combining matrix rows, relying on subspace embedding methods and strong

concentration of measure phenomena. The third approach relies on �nding a small subset of matrix

rows (or columns) approximating the entire matrix [32, 33, 71]. A fourth sketching procedure

coincides then with the Frequent Directions (FD) method [90], the approach we are interesting in

and we have employed in Chapter 3, and in particular in Section 3.3.2, to compute the AS. It is a

deterministic approach, that draws on the matrix sketching and the item frequency approximation

problems. Hence, before diving deep into the FD method, we should introduce the item frequency

estimation problem.

Algorithm 7 Frequent Items Algorithm [217]

Inputs:

• stream of data A in a domain [3];
• a number : < 3 .

1: Set) = ∅ and a counter< = 0;

2: for all 8 ∈ [3] do:
3: < =< + 1;

4: if 8 ∈) then:
5: 28 = 28 + 1;

6: else if |) |< : then:
7:) =) ∪ {8} and 28 = 1;

8: else ∀ j∈T:
9: 2 9 = 2 9 − 1;

10: if 2 9 = 0 then:
11:) =) \ { 9}.
12: end if
13: end if
14: end for
Output: Approximate frequencies 2̂8 for each 8 ∈ [3].

109

110

In many applications, an interesting problem to deal with is �nding the frequency with which

an object of interest occurs. A possible solution to this task is represented by the item frequency
approximation algorithm [217, 152, 90, 331], also known as frequent items algorithm. Algorithm 7

summarizes the procedure proposed by Misra and Gries in [217]. Given a stream of = elements

� = {01, . . . , 0=}, where each 08 ∈ [3] and [3] be a domain containing 3 elements {1, . . . , 3}, we
want to compute the number of times an item 9 appears in the stream, namely its frequency. Let now

2 9 represents this frequency of item 9 , de�ned as 2 9 =| {08 ∈ � | 08 = 9} |. A trivial approach consists

in keeping a counter for each item, leading thus to an expensive algorithm. In [217], a method

storing only : < 3 items, i.e. : counters, is proposed. Hence, we de�ne a stored items set) , which

can contain at most : elements, keeping track of the items for which we have a counter. At the

beginning,) is initialized to the empty set and will then be updated as the counter is incremented.

The algorithm counts items by checking if an object has already been encountered and is therefore

already in) . Hence, if the new item belongs to the stored items) , the corresponding counter is

increased, otherwise, if the maximum cardinality of) has not been reached, the item is allocated

in) and its counter is set to one. In the case all the : counters map to a value of at least one, we

decrease all counts by the same amount until one has a zero value. At the end of the procedure,

the �nal values 2 9 obtained give the approximate frequencies for each 9 ∈ [3], where for items not

stored in) , 2 9 is set to 0.

This procedure can then be generalized to the case where� ∈ R=×3 is a matrix given to the algorithm

as a stream of its rows [90]. First of all, we constrain the rows of � to be indicator vectors, i.e.

08 ∈ {41, . . . , 43 } with 4 9 the standard 9-th basis vector. In particular, we have that if the 8-the

element in the stream is 9 , then the 8-th row of � coincides with the 9-th unitary vector, i.e. 08 = 4 9 .

In this way, the frequency of item 9 can be expressed as 2 9 = ‖�4 9 ‖2. By applying the frequent items

algorithm 7 on�, we can construct a matrix � ∈ R:×3 , describing a low rank approximation of�. In

fact, once we have obtained the frequencies 2̂ 9 for each item 9 ∈ [3], we can set the corresponding

row in � equal to 2̂
1/2
9

· 4 9 whenever 2̂ 9 > 0. The resulting matrix � is thus characterized by having

A0=: (�) = : and ‖�4 9 ‖2 = 2̂ 9 .

Algorithm 8 Frequent Directions Algorithm [90]

Inputs:

• matrix � ∈ R=×3 ;
• a number : < 3 .

1: Set � = 0
:×3

;

2: for 8 = 1, . . . , = do:
3: �: = 08 ;

4: svd(�) = * Σ+) ;

5: � =

√
Σ2 − f2

:
�: ·+) .

6: end for
Output: Sketch matrix � ∈ R:×3 .

An extension of this result to general matrices is represented by the FDmethod [90, 187], summarized

in Algorithm 8. In this case, a sketch matrix � ∈ R:×3 , initialized to the zero matrix, is updated

every time a new row from the input matrix � is added. At each step of the procedure, a new row

from � replaces the last row of �, which is then nulli�ed by rotating and shrinking orthogonal

vectors by roughly the same amount, as described in line 5. At the end, we have thus as output a

sketch matrix �, representing a good low approximation of�, con�rmed by the goodness estimation

results presented in [90, 187].

Bibliography

[1] D. Achlioptas and F. Mcsherry. “Fast Computation of Low-Rank Matrix Approximations”.

In: J. ACM 54.2 (2007), 9–es. doi: 10.1145/1219092.1219097.

[2] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. “A learning algorithm for boltzmann ma-

chines”. In: Cognitive Science 9.1 (1985), pp. 147–169. doi: https://doi.org/10.1016/
S0364-0213(85)80012-4.

[3] K. Ahnert and M. Abel. “Numerical di�erentiation of experimental data: local versus global

methods”. In: Computer Physics Communications 177 (Nov. 2007), pp. 764–774. doi: 10.1016/
j.cpc.2007.03.009.

[4] I. Aizenberg, N. N. Aizenberg, and J. P. Vandewalle. Multi-valued and universal binary
neurons: Theory, learning and applications. Springer Science & Business Media, 2000. doi:

10.1007/978-1-4757-3115-6.

[5] A. Ajit, K. Acharya, and A. Samanta. “A review of convolutional neural networks”. In: 2020
International Conference on Emerging Trends in Information Technology and Engineering
(ic-ETITE). IEEE. 2020, pp. 1–5. doi: 10.1109/ic-ETITE47903.2020.049.

[6] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamara,

M. A. Fadhel, M. Al-Amidie, and L. Farhan. “Review of deep learning: Concepts, CNN

architectures, challenges, applications, future directions”. In: Journal of big Data 8.1 (2021),
pp. 1–74. doi: 10.1186/s40537-021-00444-8.

[7] D. J. Amit. Modeling Brain Function: The World of Attractor Neural Networks. Cambridge

University Press, 1989. doi: 10.1017/CBO9780511623257.

[8] J. A. Anderson. “A simple neural network generating an interactive memory”. In: Mathe-
matical biosciences 14.3-4 (1972), pp. 197–220. doi: 10.1016/0025-5564(72)90075-2.

[9] M. Anthony. Discrete mathematics of neural networks: selected topics. SIAM, 2001. doi: 10.
1137/1.9780898718539.

[10] A. Arnab and P. H. S. Torr. “Pixelwise Instance Segmentation with a Dynamically Instantiated

Network”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017,
pp. 879–888. doi: 10.1109/CVPR.2017.100.

[11] S. Arora, E. Hazan, and S. Kale. “A fast random sampling algorithm for sparsifying matri-

ces”. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques. Springer, 2006, pp. 272–279. doi: 10.1007/11830924_26.

[12] M. Arozullah and A. Namphol. “A data compression system using neural network based

architecture”. In: 1990 IJCNN International Joint Conference on Neural Networks. Vol. 1. 1990,
pp. 531–536. doi: 10.1109/IJCNN.1990.137619.

[13] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb. “Solving inverse problems using data-

driven models”. In: Acta Numerica 28 (2019), pp. 1–174. doi: 10.1017/S0962492919000059.

[14] Arti�cial intelligence : principles and applications / edited by Masoud Yazdani. Chapman and

Hall, 1986.

111

https://doi.org/10.1145/1219092.1219097
https://doi.org/https://doi.org/10.1016/S0364-0213(85)80012-4
https://doi.org/https://doi.org/10.1016/S0364-0213(85)80012-4
https://doi.org/10.1016/j.cpc.2007.03.009
https://doi.org/10.1016/j.cpc.2007.03.009
https://doi.org/10.1007/978-1-4757-3115-6
https://doi.org/10.1109/ic-ETITE47903.2020.049
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1017/CBO9780511623257
https://doi.org/10.1016/0025-5564(72)90075-2
https://doi.org/10.1137/1.9780898718539
https://doi.org/10.1137/1.9780898718539
https://doi.org/10.1109/CVPR.2017.100
https://doi.org/10.1007/11830924_26
https://doi.org/10.1109/IJCNN.1990.137619
https://doi.org/10.1017/S0962492919000059

BIBLIOGRAPHY 112

[15] R. Askey and J. A. Wilson. “Some basic hypergeometric orthogonal polynomials that gener-

alize Jacobi polynomials”. In: Memoirs of the American Mathematical Society 54.319 (1985).

doi: 10.1090/memo/0319.

[16] M. Avanzo, L. Wei, J. Stancanello, M. Vallières, A. Rao, O. Morin, S. A. Mattonen, and I.

El Naqa. “Machine and deep learning methods for radiomics”. In:Medical Physics 47.5 (2020),
e185–e202. doi: 10.1002/mp.13678.

[17] A. Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In:

IEEE Transactions on Information Theory 39.3 (1993), pp. 930–945. doi: 10.1109/18.256500.

[18] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. “Inside-Outside Net: Detecting Objects in

Context with Skip Pooling and Recurrent Neural Networks”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2016, pp. 2874–2883. doi: 10.1109/CVPR.
2016.314.

[19] R. Benenson, S. Popov, and V. Ferrari. “Large-scale interactive object segmentation with

human annotators”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society, 2019, pp. 11692–11701. doi: 10.1109/CVPR.2019.01197.

[20] Y. Bengio. “Deep learning of representations for unsupervised and transfer learning”. In:

Proceedings of ICML workshop on unsupervised and transfer learning. JMLR Workshop and

Conference Proceedings. 2012, pp. 17–36.

[21] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira. Model
Order Reduction: Volume 1: System- and Data-Driven Methods and Algorithms. De Gruyter,
2021. doi: 10.1515/9783110498967.

[22] P. Benner, W. Schilders, S. Grivet-Talocia, A. Quarteroni, G. Rozza, and L. Miguel Silveira.

Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms. De Gruyter, 2020.
doi: 10.1515/9783110671490.

[23] P. Benner, W. Schilders, S. Grivet-Talocia, A. Quarteroni, G. Rozza, and L. Miguel Sil-

veira. Model Order Reduction: Volume 3: Applications. De Gruyter, 2020. doi: 10.1515/
9783110499001.

[24] M. Benning, E. Celledoni, M. J. Ehrhardt, B. Owren, and C.-B. Schönlieb. “Deep learning as

optimal control problems: Models and numerical methods”. In: Journal of Computational
Dynamics 6.2 (2019), pp. 171–198. doi: 10.3934/jcd.2019009.

[25] C. M. Bishop. “Pattern recognition and feed-forward networks”. In: The MIT encyclopedia of
the cognitive sciences. Vol. 13. 2. MIT Press, 1999.

[26] C. M. Bishop and N.M. Nasrabadi. Pattern recognition andmachine learning. Vol. 4. 4. Springer,
2006.

[27] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag. “What is the state of neural network

pruning?” In: Proceedings of machine learning and systems 2 (2020), pp. 129–146.

[28] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis. “Soft-NMS Improving Object Detection

with One Line of Code”. In: 2017 IEEE International Conference on Computer Vision (ICCV).
2017, pp. 5562–5570. doi: 10.1109/ICCV.2017.593.

[29] M. Bonnaerens, M. Freiberger, and J. Dambre. “Anchor pruning for object detection”. In:

arXiv preprint arXiv:2104.00432 (2021).

[30] L. Bottou. “Online learning and stochastic approximations”. In: On-line learning in neural
networks 17.9 (1998), pp. 9–42. doi: 10.1017/CBO9780511569920.003.

https://doi.org/10.1090/memo/0319
https://doi.org/10.1002/mp.13678
https://doi.org/10.1109/18.256500
https://doi.org/10.1109/CVPR.2016.314
https://doi.org/10.1109/CVPR.2016.314
https://doi.org/10.1109/CVPR.2019.01197
https://doi.org/10.1515/9783110498967
https://doi.org/10.1515/9783110671490
https://doi.org/10.1515/9783110499001
https://doi.org/10.1515/9783110499001
https://doi.org/10.3934/jcd.2019009
https://doi.org/10.1109/ICCV.2017.593
https://doi.org/10.1017/CBO9780511569920.003

113 BIBLIOGRAPHY

[31] L. Bottou, F. E. Curtis, and J. Nocedal. “Optimization Methods for Large-Scale Machine

Learning”. In: SIAM Review 60.2 (2018), pp. 223–311. doi: 10.1137/16M1080173.

[32] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. “Near Optimal Column-Based Matrix

Reconstruction”. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.
2011, pp. 305–314. doi: 10.1109/FOCS.2011.21.

[33] C. Boutsidis, M. W. Mahoney, and P. Drineas. “An improved approximation algorithm for the

column subset selection problem”. In: Proceedings of the twentieth annual ACM-SIAM sympo-
sium on Discrete algorithms. SIAM. 2009, pp. 968–977. doi: 10.1137/1.9781611973068.105.

[34] C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, A. Hammers, D. A. Dickie, M. V.

Hernández, J. Wardlaw, and D. Rueckert. “Gan augmentation: Augmenting training data

using generative adversarial networks”. In: arXiv preprint arXiv:1810.10863 (2018).

[35] O. Bretscher. Linear Algebra with Applications. Pearson Education, 2013.

[36] M. Bucher, S. Herbin, and F. Jurie. “Hard negative mining for metric learning based zero-shot

classi�cation”. In: European Conference on Computer Vision, ECCV 2016 Workshops. Springer.
2016, pp. 524–531. doi: 10.1007/978-3-319-49409-8_45.

[37] M. Buckland and F. Gey. “The relationship between recall and precision”. In: Journal of the
American society for information science 45.1 (1994), pp. 12–19. doi: 10.1002/(SICI)1097-
4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L.

[38] T. Bui-Thanh, M. Damodaran, and K. Willcox. “Proper orthogonal decomposition exten-

sions for parametric applications in compressible aerodynamics”. In: 21st AIAA Applied
Aerodynamics Conference. 2003, p. 4213. doi: 10.2514/6.2003-4213.

[39] T. Bui-Thanh, M. Damodaran, and K. Willcox. “Aerodynamic Data Reconstruction and

Inverse Design using Proper Orthogonal Decomposition”. In: AIAA journal 42.8 (2004),

pp. 1505–1516. doi: 10.2514/1.2159.

[40] H. Cai, L. Zhu, and S. Han. “Proxylessnas: Direct neural architecture search on target task

and hardware”. In: 5th International Conference on Learning Representations (ICLR 2019)
(2019).

[41] R. y Cajal. Textura del sistema nervioso del hombre y de los vertebrados : estudios sobre el plan
estructural y composición histológica de los centros nerviosos adicionados de consideraciones
�siológicas fundadas en los nuevos descubrimientos. Volumen II. Imprenta y Librería de Nicolás

Moya, Madrid, 1904.

[42] O. Calin. Deep Learning Architectures: A Mathematical Approach. Springer Series in the Data

Sciences. Springer International Publishing, 2020. doi: 10.1007/978-3-030-36721-3.

[43] A. Cauchy. “Methode generale pour la resolution des systemes d’equations simultanees”. In:

C.R. Acad. Sci. Paris 25 (1847), pp. 536–538.

[44] E. Celledoni, M. J. Ehrhardt, C. Etmann, R. I. McLachlan, B. Owren, C.-B. Schönlieb, and

F. Sherry. “Structure-preserving deep learning”. In: European Journal of Applied Mathematics
32.5 (2021), pp. 888–936. doi: 10.1017/S0956792521000139.

[45] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker. “Learning E�cient Object Detection

Models with Knowledge Distillation”. In: Proceedings of the 31st International Conference on
Neural Information Processing Systems. NIPS’17. Curran Associates Inc., 2017, pp. 742–751.

doi: 10.5555/3294771.3294842.

[46] W. Chen, Q. Wang, J. S. Hesthaven, and C. Zhang. “Physics-informed machine learning for

reduced-order modeling of nonlinear problems”. In: Journal of Computational Physics 446
(2021), p. 110666. issn: 0021-9991. doi: 10.1016/j.jcp.2021.110666.

https://doi.org/10.1137/16M1080173
https://doi.org/10.1109/FOCS.2011.21
https://doi.org/10.1137/1.9781611973068.105
https://doi.org/10.1007/978-3-319-49409-8_45
https://doi.org/10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L
https://doi.org/10.2514/6.2003-4213
https://doi.org/10.2514/1.2159
https://doi.org/10.1007/978-3-030-36721-3
https://doi.org/10.1017/S0956792521000139
https://doi.org/10.5555/3294771.3294842
https://doi.org/10.1016/j.jcp.2021.110666

BIBLIOGRAPHY 114

[47] F. Chollet. Deep learning with Python. Simon and Schuster, 2021.

[48] D. C. Cirean, U. Meier, L. M. Gambardella, and J. Schmidhuber. “Deep, Big, Simple Neural

Nets for Handwritten Digit Recognition”. In: Neural Computation 22.12 (2010), pp. 3207–3220.
doi: 10.1162/neco_a_00052.

[49] T. J. Cleophas and A. H. Zwinderman. Machine Learning in Medicine-Cookbook. Springer,
2014. doi: 10.1007/978-3-319-04181-0.

[50] M. A. Cohen and S. Grossberg. “Absolute stability of global pattern formation and parallel

memory storage by competitive neural networks”. In: IEEE transactions on systems, man,
and cybernetics 5 (1983), pp. 815–826. doi: 10.1109/TSMC.1983.6313075.

[51] P. G. Constantine. Active subspaces: Emerging ideas for dimension reduction in parameter
studies. Vol. 2. SIAM Spotlights. SIAM, 2015. doi: 10.1137/1.9781611973860.

[52] P. G. Constantine and A. Doostan. “Time-dependent global sensitivity analysis with active

subspaces for a lithium ion battery model”. In: Statistical Analysis and Data Mining: The ASA
Data Science Journal 10.5 (2017), pp. 243–262. doi: 10.1002/sam.11347.

[53] P. G. Constantine, E. Dow, and Q. Wang. “Active Subspace Methods in Theory and Practice:

Applications to Kriging Surfaces”. In: SIAM Journal on Scienti�c Computing 36.4 (2014),

A1500–A1524. issn: 1095-7197. doi: 10.1137/130916138.

[54] D. Coscia, L. Meneghetti, N. Demo, G. Stabile, and G. Rozza. “A continuous trainable �lter

for convolution with unstructured data”. 2022.

[55] M. Courbariaux, Y. Bengio, and J.-P. David. “BinaryConnect: Training Deep Neural Networks

with BinaryWeights during Propagations”. In: Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 2. NIPS’15. Montreal, Canada: MIT Press,

2015, pp. 3123–3131.

[56] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. “Binarized neural networks:

Training deep neural networks with weights and activations constrained to+ 1 or-1”. In:

arXiv preprint arXiv:1602.02830 (2016).

[57] C. Cui, K. Zhang, T. Daulbaev, J. Gusak, I. Oseledets, and Z. Zhang. “Active subspace of

neural networks: Structural analysis and universal attacks”. In: SIAM Journal on Mathematics
of Data Science 2.4 (2020), pp. 1096–1122. doi: 10.1137/19M1296070.

[58] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Mathematics of
control, signals and systems 2.4 (1989), pp. 303–314. doi: 10.1007/BF02551274.

[59] B. Cyganek. Object detection and recognition in digital images: theory and practice. JohnWiley

& Sons, 2013.

[60] J. Dai, K. He, and J. Sun. “Instance-Aware Semantic Segmentation via Multi-task Network

Cascades”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 3150–3158. doi: 10.1109/CVPR.2016.343.

[61] J. Dai, Y. Li, K. He, and J. Sun. “R-FCN: Object Detection via Region-based Fully Convolutional

Networks”. In:Advances in Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates, Inc., 2016.

[62] M. P. Deisenroth, A. A. Faisal, and C. S. Ong. Mathematics for machine learning. Cambridge

University Press, 2020.

[63] N. Demo, M. Strazzullo, and G. Rozza. “An extended physics informed neural network for pre-

liminary analysis of parametric optimal control problems”. In: arXiv preprint arXiv:2110.13530
(2021).

https://doi.org/10.1162/neco_a_00052
https://doi.org/10.1007/978-3-319-04181-0
https://doi.org/10.1109/TSMC.1983.6313075
https://doi.org/10.1137/1.9781611973860
https://doi.org/10.1002/sam.11347
https://doi.org/10.1137/130916138
https://doi.org/10.1137/19M1296070
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/CVPR.2016.343

115 BIBLIOGRAPHY

[64] N. Demo, M. Tezzele, G. Gustin, G. Lavini, and G. Rozza. “Shape Optimization by means of

Proper Orthogonal Decomposition and Dynamic Mode Decomposition”. In: Technology and
Science for the Ships of the Future: Proceedings of NAV 2018: 19th International Conference on
Ship & Maritime Research. IOS Press, 2018, pp. 212–219. doi: 10.3233/978-1-61499-870-
9-212.

[65] N. Demo, M. Tezzele, A. Mola, and G. Rozza. “A complete data-driven framework for the

e�cient solution of parametric shape design and optimisation in naval engineering problems”.

In: VIII International Conference on Computational Methods in Marine Engineering. 2019.

[66] N. Demo, M. Tezzele, A. Mola, and G. Rozza. “An e�cient shape parametrisation by free-form

deformation enhanced by active subspace for hull hydrodynamic ship design problems in

open source environment”. In: The 28th International Ocean and Polar Engineering Conference.
2018.

[67] N. Demo, M. Tezzele, and G. Rozza. “A supervised learning approach involving active

subspaces for an e�cient genetic algorithm in high-dimensional optimization problems”. In:

SIAM Journal on Scienti�c Computing 43.3 (2021), B831–B853. doi: 10.1137/20M1345219.

[68] J. Deng,W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A large-scale hierarchical

image database”. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009,
pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[69] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li. “GXNOR-Net: Training deep neural networks with

ternary weights and activations without full-precision memory under a uni�ed discretization

framework”. In: Neural Networks: the o�cial journal of the International Neural Network
Society 100 (2018), pp. 49–58. doi: 10.1016/j.neunet.2018.01.010.

[70] L. Deng and Y. Liu. Deep learning in natural language processing. Springer, 2018. doi: 10.
1007/978-981-10-5209-5.

[71] A. Deshpande and S. Vempala. “Adaptive sampling and fast low-rank matrix approxima-

tion”. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques. Springer, 2006, pp. 292–303. doi: 10.1007/11830924_28.

[72] J. J. DiCarlo, D. Zoccolan, andN. C. Rust. “How does the brain solve visual object recognition?”

In: Neuron 73.3 (2012), pp. 415–434. doi: 10.1016/j.neuron.2012.01.010.

[73] P. Drineas and A. Zouzias. “A note on element-wise matrix sparsi�cation via a matrix-

valued Bernstein inequality”. In: Information Processing Letters 111.8 (2011), pp. 385–389.
doi: 10.1016/j.ipl.2011.01.010.

[74] J. Duchi, E. Hazan, and Y. Singer. “Adaptive subgradient methods for online learning and

stochastic optimization.” In: Journal of machine learning research 12.7 (2011), pp. 2121–2159.

[75] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. “Incorporating Second-Order

Functional Knowledge for Better Option Pricing”. In: Proceedings of the 13th International
Conference on Neural Information Processing Systems. NIPS’00. Denver, CO: MIT Press, 2000,

pp. 451–457.

[76] S. Dutta, M. W. Farthing, E. Perracchione, G. Savant, and M. Putti. “A greedy non-intrusive

reduced order model for shallow water equations”. In: Journal of Computational Physics 439
(2021), p. 110378. doi: 10.1016/j.jcp.2021.110378.

[77] J. L. Elman. “Finding structure in time”. In: Cognitive science 14.2 (1990), pp. 179–211. doi:
10.1207/s15516709cog1402_1.

https://doi.org/10.3233/978-1-61499-870-9-212
https://doi.org/10.3233/978-1-61499-870-9-212
https://doi.org/10.1137/20M1345219
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1007/978-981-10-5209-5
https://doi.org/10.1007/978-981-10-5209-5
https://doi.org/10.1007/11830924_28
https://doi.org/10.1016/j.neuron.2012.01.010
https://doi.org/10.1016/j.ipl.2011.01.010
https://doi.org/10.1016/j.jcp.2021.110378
https://doi.org/10.1207/s15516709cog1402_1

BIBLIOGRAPHY 116

[78] D. Erhan, A. Courville, Y. Bengio, and P. Vincent. “Why Does Unsupervised Pre-training

Help Deep Learning?” In: Proceedings of the Thirteenth International Conference on Arti�cial
Intelligence and Statistics. Ed. by Y.W. Teh andM. Titterington. Vol. 9. Proceedings of Machine

Learning Research. PMLR, 2010, pp. 201–208.

[79] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. “Scalable Object Detection Using Deep

Neural Networks”. In: (2014), pp. 2155–2162. doi: 10.1109/CVPR.2014.276.

[80] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado,

S. Thrun, and J. Dean. “A guide to deep learning in healthcare”. In: Nature medicine 25.1
(2019), pp. 24–29. doi: 10.1038/s41591-018-0316-z.

[81] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. “The Pascal Visual

Object Classes (VOC) Challenge”. In: International Journal of Computer Vision 88.2 (June

2010), pp. 303–338. doi: 10.1007/s11263-009-0275-4.

[82] M. Everingham, S. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. “The

pascal visual object classes challenge: A retrospective”. In: International journal of computer
vision 111.1 (2015), pp. 98–136. doi: 10.1007/s11263-014-0733-5.

[83] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. “The pascal visual

object classes (voc) challenge”. In: International journal of computer vision 88.2 (2010), pp. 303–
338. doi: 10.1007/s11263-009-0275-4.

[84] B. Farley and W. Clark. “Simulation of self-organizing systems by digital computer”. In:

Transactions of the IRE Professional Group on Information Theory 4.4 (1954), pp. 76–84. doi:

10.1109/TIT.1954.1057468.

[85] T. L. Fine. Feedforward neural network methodology. Springer Science & Business Media,

2006.

[86] T. Gale, E. Elsen, and S. Hooker. “The state of sparsity in deep neural networks”. In: arXiv
preprint arXiv:1902.09574 (2019).

[87] M. W. Gardner and S. Dorling. “Arti�cial neural networks (the multilayer perceptron)a

review of applications in the atmospheric sciences”. In: Atmospheric environment 32.14-15
(1998), pp. 2627–2636. doi: 10.1016/S1352-2310(97)00447-0.

[88] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra. Springer Science
& Business Media, 1992. doi: 10.1007/b102438.

[89] R. G. Ghanem and P. D. Spanos. Stochastic �nite elements: a spectral approach. Courier
Corporation, 2003.

[90] M. Ghashami, E. Liberty, J. M. Phillips, and D. P. Woodru�. “Frequent Directions: Simple and

Deterministic Matrix Sketching”. In: SIAM Journal on Computing 45.5 (2016), pp. 1762–1792.

doi: 10.1137/15M1009718.

[91] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and K. Keutzer. “SqueezeNext:

Hardware-Aware Neural Network Design”. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW). 2018, pp. 1719–171909. doi: 10.1109/CVPRW.
2018.00215.

[92] S. Ghosh, S. K. K. Srinivasa, P. Amon, A. Hutter, and A. Kaup. “Deep Network Pruning for

Object Detection”. In: 2019 IEEE International Conference on Image Processing (ICIP). 2019,
pp. 3915–3919. doi: 10.1109/ICIP.2019.8803505.

https://doi.org/10.1109/CVPR.2014.276
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/TIT.1954.1057468
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1007/b102438
https://doi.org/10.1137/15M1009718
https://doi.org/10.1109/CVPRW.2018.00215
https://doi.org/10.1109/CVPRW.2018.00215
https://doi.org/10.1109/ICIP.2019.8803505

117 BIBLIOGRAPHY

[93] P. B. Gibbons and Y. Matias. “Synopsis Data Structures for Massive Data Sets”. In: Proceedings
of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’99. Baltimore,

Maryland, USA: Society for Industrial and Applied Mathematics, 1999, pp. 909–910. isbn:

0898714346. doi: 10.5555/314500.315083.

[94] R. Girshick. “Fast R-CNN”. In: International Conference on Computer Vision (ICCV). 2015.

[95] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Region-Based Convolutional Networks for

Accurate Object Detection and Segmentation”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 38.1 (2016), pp. 142–158. doi: 10.1109/TPAMI.2015.2437384.

[96] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich Feature Hierarchies for Accurate

Object Detection and Semantic Segmentation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2014.

[97] X. Glorot and Y. Bengio. “Understanding the di�culty of training deep feedforward neural

networks”. In: Proceedings of the thirteenth international conference on arti�cial intelligence
and statistics. JMLR Workshop and Conference Proceedings. 2010, pp. 249–256.

[98] X. Glorot, A. Bordes, and Y. Bengio. “Deep Sparse Recti�er Neural Networks”. In: Proceedings
of the Fourteenth International Conference on Arti�cial Intelligence and Statistics. Ed. by G.

Gordon, D. Dunson, and M. Dudík. Vol. 15. Proceedings of Machine Learning Research. Fort

Lauderdale, FL, USA: PMLR, 2011, pp. 315–323.

[99] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[100] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio. “Generative Adversarial Nets”. In: Advances in Neural Information Processing
Systems. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger.

Vol. 27. Curran Associates, Inc., 2014.

[101] L. A. Goodman. “On the Exact Variance of Products”. In: Journal of the American Statistical
Association 55.292 (1960), pp. 708–713. doi: 10.1080/01621459.1960.10483369.

[102] M. Gordon and M. Kochen. “Recall-precision trade-o�: A derivation”. In: Journal of the
American Society for Information Science 40.3 (1989), pp. 145–151. doi: https://doi.org/
10.1002/(SICI)1097-4571(198905)40:3<145::AID-ASI1>3.0.CO;2-I.

[103] J. Gou, B. Yu, S. J. Maybank, and D. Tao. “Knowledge distillation: A survey”. In: International
Journal of Computer Vision 129.6 (2021), pp. 1789–1819. doi: 10.1007/s11263-021-01453-z.

[104] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. “Connectionist temporal classi-

�cation: labelling unsegmented sequence data with recurrent neural networks”. In: Pro-
ceedings of the 23rd International Conference on Machine Learning. 2006, pp. 369–376. doi:
10.1145/1143844.1143891.

[105] Z. J. Grey and P. G. Constantine. “Active subspaces of airfoil shape parameterizations”. In:

AIAA Journal 56.5 (2018), pp. 2003–2017. doi: 10.2514/1.J056054.

[106] S. Grossberg. “Contour Enhancement, Short TermMemory, and Constancies in Reverberating

Neural Networks”. In: Studies in Applied Mathematics 52.3 (1973), pp. 213–257. doi: 10.1002/
sapm1973523213.

[107] P. Grother. “NIST Special Database 19 Handprinted Forms and Characters Database”. In:

World Wide Web-Internet and Web Information Systems, 1995. doi: 10.18434/T4H01C.

[108] J. Hadamard. Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques
encastrées. Académie des sciences. Mémoires. Imprimerie nationale, 1908.

https://doi.org/10.5555/314500.315083
https://doi.org/10.1109/TPAMI.2015.2437384
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1080/01621459.1960.10483369
https://doi.org/https://doi.org/10.1002/(SICI)1097-4571(198905)40:3<145::AID-ASI1>3.0.CO;2-I
https://doi.org/https://doi.org/10.1002/(SICI)1097-4571(198905)40:3<145::AID-ASI1>3.0.CO;2-I
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.2514/1.J056054
https://doi.org/10.1002/sapm1973523213
https://doi.org/10.1002/sapm1973523213
https://doi.org/10.18434/T4H01C

BIBLIOGRAPHY 118

[109] A. Halevy, P. Norvig, and F. Pereira. “The unreasonable e�ectiveness of data”. In: IEEE
intelligent systems 24.2 (2009), pp. 8–12. doi: 10.1109/MIS.2009.36.

[110] S. Han, H. Mao, and W. J. Dally. “Deep Compression: Compressing Deep Neural Network

with Pruning, Trained Quantization and Hu�man Coding”. In: 4th International Conference
on Learning Representations. 2016.

[111] S. Han, J. Pool, J. Tran, and W. J. Dally. “Learning Both Weights and Connections for E�cient

Neural Networks”. In: Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 1. NIPS’15. Montreal, Canada: MIT Press, 2015, pp. 1135–1143.

[112] M. Harrison. Machine Learning Pocket Reference: Working with Structured Data in Python.
O’Reilly Media, 2019. isbn: 9781492047513. url: https://books.google.it/books?id=
RoirDwAAQBAJ.

[113] D. Hartmann and H. Van der Auweraer. “Digital twins”. In: Progress in Industrial Mathematics:
Success Stories. Ed. by C. M., P. C., and Q. P. Springer, 2021, pp. 3–17. doi: 10.1007/978-3-
030-61844-5_1.

[114] B. Hassibi and D. Stork. “Second order derivatives for network pruning: Optimal Brain

Surgeon”. In: Advances in Neural Information Processing Systems. Ed. by S. Hanson, J. Cowan,

and C. Giles. Vol. 5. Morgan-Kaufmann, 1992.

[115] S. Haykin. Neural Networks and Learning Machines. Vol. 10. Neural networks and learning

machines. Prentice Hall, 2009. isbn: 9780131471399.

[116] S. Haykin. Neural Networks: A Comprehensive Foundation. 2nd. USA: Prentice Hall PTR, 1998.
doi: 10.5555/521706.

[117] K. He, G. Gkioxari, P. Dollár, and R. Girshick. “Mask R-CNN”. In: 2017 IEEE International
Conference on Computer Vision (ICCV). 2017, pp. 2980–2988. doi: 10.1109/ICCV.2017.322.

[118] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”. In:

Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–
778.

[119] K. He, X. Zhang, S. Ren, and J. Sun. “Delving deep into recti�ers: Surpassing human-level

performance on imagenet classi�cation”. In: Proceedings of the IEEE international conference
on computer vision. 2015, pp. 1026–1034. doi: 10.1109/ICCV.2015.123.

[120] K. He, X. Zhang, S. Ren, and J. Sun. “Identity mappings in deep residual networks”. In:

European conference on computer vision, ECCV 2016. Springer. 2016, pp. 630–645. doi: 10.
1007/978-3-319-46493-0_38.

[121] D. O. Hebb. The organization of behavior: A neuropsychological theory. Psychology Press,

2005.

[122] M. W. Hess, A. Quaini, and G. Rozza. “A comparison of reduced-order modeling approaches

using arti�cial neural networks for PDEs with bifurcating solutions”. In: ETNA - Electronic
Transactions on Numerical Analysis 56 (2022), pp. 52–65. doi: 10.1553/etna_vol56s52.

[123] M.W. Hess, A. Quaini, and G. Rozza. “A Data-Driven Surrogate Modeling Approach for Time-

Dependent Incompressible Navier-Stokes Equations with Dynamic Mode Decomposition

and Manifold Interpolation”. 2022.

[124] M.W.Hess, A. Quaini, andG. Rozza. “Data-Driven EnhancedModel Reduction for Bifurcating

Models in Computational Fluid Dynamics”. 2022.

[125] J. Hesthaven and S. Ubbiali. “Non-intrusive reduced order modeling of nonlinear problems

using neural networks”. In: Journal of Computational Physics 363 (2018), pp. 55–78. issn:
0021-9991. doi: 10.1016/j.jcp.2018.02.037.

https://doi.org/10.1109/MIS.2009.36
https://books.google.it/books?id=RoirDwAAQBAJ
https://books.google.it/books?id=RoirDwAAQBAJ
https://doi.org/10.1007/978-3-030-61844-5_1
https://doi.org/10.1007/978-3-030-61844-5_1
https://doi.org/10.5555/521706
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1553/etna_vol56s52
https://doi.org/10.1016/j.jcp.2018.02.037

119 BIBLIOGRAPHY

[126] J. S. Hesthaven, G. Rozza, and B. Stamm. Certi�ed Reduced Basis Methods for Parametrized
Partial Di�erential Equations. 1st ed. Springer Briefs in Mathematics. Switzerland: Springer,

2015, p. 135. doi: 10.1007/978-3-319-22470-1.

[127] S. Hijazi, G. Stabile, A. Mola, and G. Rozza. “Data-driven POD-Galerkin reduced order

model for turbulent �ows”. In: Journal of Computational Physics 416 (2020), p. 109513. doi:
10.1016/j.jcp.2020.109513.

[128] G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality of Data with Neural

Networks”. In: Science 313.5786 (2006), pp. 504–507. doi: 10.1126/science.1127647.

[129] G. Hinton and T. J. Sejnowski. Unsupervised learning: foundations of neural computation. MIT

press, 1999. doi: 10.7551/mitpress/7011.001.0001.

[130] G. Hinton, O. Vinyals, and J. Dean. “Distilling the Knowledge in a Neural Network”. In: NIPS
Deep Learning and Representation Learning Workshop. 2015.

[131] G. E. Hinton and R. Zemel. “Autoencoders, Minimum Description Length and Helmholtz

Free Energy”. In: Advances in Neural Information Processing Systems. Ed. by J. Cowan, G.

Tesauro, and J. Alspector. Vol. 6. Morgan-Kaufmann, 1994, pp. 3–10.

[132] S. Hochreiter. “The vanishing gradient problem during learning recurrent neural nets and

problem solutions”. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 6.02 (1998), pp. 107–116. doi: 10.1142/S0218488598000094.

[133] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. “Gradient �ow in recurrent nets:

the di�culty of learning long-term dependencies”. In: A Field Guide to Dynamical Recurrent
Neural Networks. Ed. by S. C. Kremer and J. F. Kolen. IEEE Press, 2001.

[134] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In: Neural Computation 9.8

(Nov. 1997), pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

[135] J. J. Hop�eld. “Neural networks and physical systems with emergent collective computational

abilities”. In: Proceedings of the national academy of sciences 79.8 (1982), pp. 2554–2558. doi:
10.1073/pnas.79.8.2554.

[136] R. A. Horn and C. R. Johnson.Matrix analysis. Cambridge University Press, Cambridge, 1985.

doi: 10.1017/CBO9780511810817.

[137] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward networks are universal

approximators”. In: Neural networks 2.5 (1989), pp. 359–366. doi: 10.1016/0893-6080(89)
90020-8.

[138] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H.

Adam. “Mobilenets: E�cient convolutional neural networks for mobile vision applications”.

In: arXiv preprint arXiv:1704.04861 (2017).

[139] Y. Huang and Y. Chen. “Survey of State-of-Art Autonomous Driving Technologies with Deep

Learning”. In: 2020 IEEE 20th International Conference on Software Quality, Reliability and
Security Companion (QRS-C). 2020, pp. 221–228. doi: 10.1109/QRS-C51114.2020.00045.

[140] D. H. Hubel and T. N. Wiesel. “E�ects of monocular deprivation in kittens”. In: Naunyn-
Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie 248.6 (1964), pp. 492–
497. doi: 10.1007/BF00348878.

[141] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. “SqueezeNet:

AlexNet-level accuracy with 50x fewer parameters and< 0.5 MBmodel size”. In: arXiv preprint
arXiv:1602.07360 (2016).

https://doi.org/10.1007/978-3-319-22470-1
https://doi.org/10.1016/j.jcp.2020.109513
https://doi.org/10.1126/science.1127647
https://doi.org/10.7551/mitpress/7011.001.0001
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/QRS-C51114.2020.00045
https://doi.org/10.1007/BF00348878

BIBLIOGRAPHY 120

[142] E. Ising. “Contribution to the Theory of Ferromagnetism”. In: Zeitschrift für Physik volume
31 (1925), pp. 253–258. doi: 10.1007/BF02980577.

[143] A. Ivakhnenko, A. Ivakhnenko, V. Lapa, V. LAPA, V. Lapa, and R. McDonough. Cybernetics
and Forecasting Techniques. Modern analytic and computational methods in science and

mathematics. American Elsevier Publishing Company, 1967.

[144] K. E. Iverson. A Programming Language. John Wiley & Sons, Inc., 1962.

[145] J. Janai, F. Güney, A. Behl, and A. Geiger. “Computer Vision for Autonomous Vehicles:

Problems, Datasets and State-of-the-Art”. In: Foundations and Trends in Computer Graphics
and Vision 12 (2020), pp. 1–308. doi: 10.1561/0600000079.

[146] C. Janya-Anurak. Framework for analysis and identi�cation of nonlinear distributed parameter
systems using Bayesian uncertainty quanti�cation based on Generalized Polynomial Chaos.
Vol. 31. KIT Scienti�c Publishing, 2017. doi: 10.5445/KSP/1000066940.

[147] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. “What is the best multi-stage architec-

ture for object recognition?” In: 2009 IEEE 12th International Conference on Computer Vision.
2009, pp. 2146–2153. doi: 10.1109/ICCV.2009.5459469.

[148] L. Jiang, W. Nie, J. Zhu, X. Gao, and B. Lei. “Lightweight object detection network model

suitable for indoor mobile robots”. In: Journal of Mechanical Science and Technology (2022).

doi: 10.1007/s12206-022-0138-2.

[149] X. Jiang, A. Hadid, Y. Pang, E. Granger, and X. Feng. Deep Learning in object detection and
recognition. Springer, 2019. doi: 10.1007/978-981-10-5152-4.

[150] L. P. Kaelbling, M. L. Littman, and A. W. Moore. “Reinforcement learning: A survey”. In:

Journal of arti�cial intelligence research 4 (1996), pp. 237–285. doi: 10.1613/jair.301.

[151] U. Kamath, J. Liu, and J. Whitaker. Deep learning for NLP and speech recognition. Vol. 84.
Springer, 2019. doi: 10.1007/978-3-030-14596-5.

[152] R. M. Karp, S. Shenker, and C. H. Papadimitriou. “A Simple Algorithm for Finding Frequent

Elements in Streams and Bags”. In: ACM Trans. Database Syst. 28.1 (2003), pp. 51–55. doi:
10.1145/762471.762473.

[153] R. Ke, A. Bugeau, N. Papadakis, P. Schuetz, and C.-B. Schönlieb. A multi-task U-net for
segmentation with lazy labels. 2020.

[154] N. S. Keskar and R. Socher. Improving Generalization Performance by Switching from Adam
to SGD. 2017. eprint: 1712.07628.

[155] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. “A survey of the recent architectures of

deep convolutional neural networks”. In: Arti�cial Intelligence Review 53.8 (2020), pp. 5455–

5516. doi: 10.1007/s10462-020-09825-6.

[156] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. “A survey of the recent architectures of

deep convolutional neural networks”. In: Arti�cial Intelligence Review 53.8 (2020), pp. 5455–

5516. doi: 10.1007/s10462-020-09825-6.

[157] T. Kim, J. Oh, N. Y. Kim, S. Cho, and S.-Y. Yun. “Comparing Kullback-Leibler Divergence

and Mean Squared Error Loss in Knowledge Distillation”. In: Proceedings of the Thirtieth
International Joint Conference on Arti�cial Intelligence, IJCAI-21. Ed. by Z.-H. Zhou. Interna-

tional Joint Conferences on Arti�cial Intelligence Organization, 2021, pp. 2628–2635. doi:

10.24963/ijcai.2021/362.

[158] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun. 2015.

https://doi.org/10.1007/BF02980577
https://doi.org/10.1561/0600000079
https://doi.org/10.5445/KSP/1000066940
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1007/s12206-022-0138-2
https://doi.org/10.1007/978-981-10-5152-4
https://doi.org/10.1613/jair.301
https://doi.org/10.1007/978-3-030-14596-5
https://doi.org/10.1145/762471.762473
1712.07628
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.24963/ijcai.2021/362

121 BIBLIOGRAPHY

[159] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Annealing”. In:

Science 220.4598 (1983), pp. 671–680. doi: 10.1126/science.220.4598.671.

[160] D. E. Knuth. “Two Notes on Notation”. In: The American Mathematical Monthly 99.5 (1992),

pp. 403–422. doi: 10.2307/2325085. (Visited on 06/14/2022).

[161] T. Kohonen. “Correlation Matrix Memories”. In: IEEE Transactions on Computers C-21.4
(1972), pp. 353–359. doi: 10.1109/TC.1972.5008975.

[162] T. Kolarik and G. Rudorfer. “Time Series Forecasting Using Neural Networks”. In: Proceedings
of the International Conference on APL: The Language and Its Applications: The Language and
Its Applications. APL ’94. Antwerp, Belgium: Association for Computing Machinery, 1994,

pp. 86–94. isbn: 0897916751. doi: 10.1145/190271.190290.

[163] C. Koylu, C. Zhao, and W. Shao. “Deep Neural Networks and Kernel Density Estimation for

Detecting Human Activity Patterns from Geo-Tagged Images: A Case Study of Birdwatching

on Flickr”. In: ISPRS International Journal of Geo-Information 8 (Jan. 2019), p. 45. doi: 10.
3390/ijgi8010045.

[164] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova, H. Rom, J. Uijlings,

S. Popov, S. Kamali, M. Malloci, J. Pont-Tuset, A. Veit, S. Belongie, V. Gomes, A. Gupta, C. Sun,

G. Chechik, D. Cai, Z. Feng, D. Narayanan, and K. Murphy. “OpenImages: A public dataset

for large-scale multi-label and multi-class image classi�cation.” In: Dataset available from
https://storage.googleapis.com/openimages/web/index.html (2017).

[165] D. Kriesel. A Brief Introduction to Neural Networks. Zeta2. 2007. url: http://www.dkriesel.
com/science/neural_networks.

[166] A. Krizhevsky and G. Hinton. “Learning multiple layers of features from tiny images”. In:

Master’s thesis, Department of Computer Science, University of Toronto (2009).

[167] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classi�cation with deep convolu-

tional neural networks”. In: Advances in neural information processing systems 25 (2012),
pp. 1097–1105.

[168] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M.

Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari. “The Open Images Dataset V4: Uni�ed Image

Classi�cation, Object Detection, and Visual Relationship Detection at Scale”. In: International
Journal of Computer Vision 128 (Mar. 2020). doi: 10.1007/s11263-020-01316-z.

[169] M. Lapin, M. Hein, and B. Schiele. “Top-kMulticlass SVM”. In:Advances in Neural Information
Processing Systems. Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett.

Vol. 28. Curran Associates, Inc., 2015.

[170] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.

“Backpropagation Applied to Handwritten Zip Code Recognition”. In: Neural Computation
1.4 (1989), pp. 541–551. doi: 10.1162/neco.1989.1.4.541.

[171] Y. LeCun. “Generalization and network design strategies”. In: Connectionism in perspective
19.143-155 (1989), p. 18.

[172] Y. LeCun and Y. Bengio. “Convolutional networks for images, speech, and time series”. In:

The handbook of brain theory and neural networks. Vol. 3361. 10. MIT Press, 1995.

[173] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: nature 521.7553 (2015), pp. 436–444.
doi: 10.1038/nature14539.

[174] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard,W. Hubbard, and L. Jackel. “Handwrit-

ten digit recognition with a back-propagation network”. In: Advances in neural information
processing systems 2 (1989).

https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.2307/2325085
https://doi.org/10.1109/TC.1972.5008975
https://doi.org/10.1145/190271.190290
https://doi.org/10.3390/ijgi8010045
https://doi.org/10.3390/ijgi8010045
http://www.dkriesel.com/science/neural_networks
http://www.dkriesel.com/science/neural_networks
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1038/nature14539

BIBLIOGRAPHY 122

[175] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner. “Gradient-based learning applied to document

recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[176] Y. LeCun, J. Denker, and S. Solla. “Optimal brain damage”. In: Advances in neural information
processing systems 2 (1989), pp. 598–605.

[177] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski. “A theoretical framework for back-

propagation”. In: Proceedings of the 1988 connectionist models summer school. Vol. 1. 1988,
pp. 21–28.

[178] C.-Y. Lee, P. W. Gallagher, and Z. Tu. “Generalizing pooling functions in convolutional

neural networks: Mixed, gated, and tree”. In: Arti�cial intelligence and statistics. PMLR. 2016,

pp. 464–472.

[179] K. Lee and K. T. Carlberg. “Model reduction of dynamical systems on nonlinear manifolds

using deep convolutional autoencoders”. In: Journal of Computational Physics 404 (2020),
p. 108973. doi: 10.1016/j.jcp.2019.108973.

[180] S. Leijnen and F. v. Veen. “The neural network zoo”. In: Multidisciplinary Digital Publishing
Institute Proceedings. Vol. 47. 1. 2020, p. 9. doi: 10.3390/proceedings2020047009.

[181] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. “Multilayer feedforward networks with a

nonpolynomial activation function can approximate any function”. In: Neural Networks 6.6
(1993), pp. 861–867. doi: 10.1016/S0893-6080(05)80131-5.

[182] G. Li, X. Li, Y. Wang, S. Zhang, Y. Wu, and D. Liang. “Knowledge Distillation for Object

Detection via Rank Mimicking and Prediction-guided Feature Imitation”. In: AAAI. 2022.

[183] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. “Pruning Filters for E�cient

ConvNets”. In: 2017.

[184] Q. Li and S. Hao. “An optimal control approach to deep learning and applications to discrete-

weight neural networks”. In: International Conference on Machine Learning. PMLR. 2018,

pp. 2985–2994.

[185] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. “Fully Convolutional Instance-Aware Semantic Segmen-

tation”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017,
pp. 4438–4446. doi: 10.1109/CVPR.2017.472.

[186] Y. Li and C. Lv. “SS-YOLO: An Object Detection Algorithm based on YOLOv3 and Shu�eNet”.

In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC). Vol. 1. 2020, pp. 769–772. doi: 10.1109/ITNEC48623.2020.9085091.

[187] E. Liberty. “Simple and deterministic matrix sketching”. In: Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining. 2013, pp. 581–588.

[188] M. Lin, Q. Chen, and S. Yan. Network In Network. 2013. doi: 10.48550/ARXIV.1312.4400.

[189] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.

“Microsoft coco: Common objects in context”. In: European conference on computer vision.
Springer. 2014, pp. 740–755. doi: 10.1007/978-3-319-10602-1_48.

[190] J. Liu, A. I. Aviles-Rivero, H. Ji, and C.-B. Schönlieb. “Rethinkingmedical image reconstruction

via shape prior, going deeper and faster: Deep joint indirect registration and reconstruction”.

In: Medical Image Analysis 68 (2021), p. 101930. doi: 10.1016/j.media.2020.101930.

[191] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen. “Deep learning

for generic object detection: A survey”. In: International journal of computer vision 128.2

(2020), pp. 261–318. doi: 10.1007/s11263-019-01247-4.

https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.3390/proceedings2020047009
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1109/CVPR.2017.472
https://doi.org/10.1109/ITNEC48623.2020.9085091
https://doi.org/10.48550/ARXIV.1312.4400
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1016/j.media.2020.101930
https://doi.org/10.1007/s11263-019-01247-4

123 BIBLIOGRAPHY

[192] L. Liu, L. Deng, X. Hu, M. Zhu, G. Li, Y. Ding, and Y. Xie. “Dynamic Sparse Graph for E�cient

Deep Learning”. In: International Conference on Learning Representations. 2019.

[193] L.-P. Liu, T. G. Dietterich, N. Li, and Z.-H. Zhou. “Transductive Optimization of Top k

Precision”. In: Proceedings of the Twenty-Fifth International Joint Conference on Arti�cial
Intelligence. IJCAI’16. New York, New York, USA: AAAI Press, 2016, pp. 1781–1787. doi:

10.5555/3060832.3060870.

[194] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. “SSD: Single Shot

MultiBox Detector”. In: Computer Vision – ECCV 2016. Ed. by B. Leibe, J. Matas, N. Sebe, and

M. Welling. Cham: Springer International Publishing, 2016, pp. 21–37. doi: 10.1007/978-3-
319-46448-0_2.

[195] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. “SSD: Single Shot

MultiBox Detector”. In: Computer Vision – ECCV 2016. Springer International Publishing,
2016, pp. 21–37. doi: 10.1007/978-3-319-46448-0_2.

[196] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. “Rethinking the Value of Network Pruning”.

In: International Conference on Learning Representations. 2019.

[197] D. Livingstone. Arti�cial Neural Networks: Methods and Applications. Jan. 2009. doi: 10.
1007/978-1-60327-101-1.

[198] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. “DeepXDE: A deep learning library for solving

di�erential equations”. In: SIAM Review 63.1 (2021), pp. 208–228. doi: 10.1137/19M1274067.

[199] J.-H. Luo, J. Wu, and W. Lin. “ThiNet: A Filter Level Pruning Method for Deep Neural

Network Compression”. In: 2017 IEEE International Conference on Computer Vision (ICCV).
2017, pp. 5068–5076. doi: 10.1109/ICCV.2017.541.

[200] H. V. Ly and H. T. Tran. “Modeling and control of physical processes using proper orthogonal

decomposition”. In: Mathematical and computer modelling 33.1-3 (2001), pp. 223–236. doi:

10.1016/S0895-7177(00)00240-5.

[201] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. “Shu�eNet V2: Practical Guidelines for E�cient

CNN Architecture Design”. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018.

[202] W. Ma and J. Lu. An Equivalence of Fully Connected Layer and Convolutional Layer. 2017.

[203] K. Maharana, S. Mondal, and B. Nemade. “A Review: Data Pre-Processing and Data Augmen-

tation Techniques”. In: Global Transitions Proceedings (2022). doi: 10.1016/j.gltp.2022.
04.020.

[204] Z. Mao, A. D. Jagtap, and G. E. Karniadakis. “Physics-informed neural networks for high-

speed �ows”. In:ComputerMethods in AppliedMechanics and Engineering 360 (2020), p. 112789.
doi: 10.1016/j.cma.2019.112789.

[205] Z. Mariet and S. Sra. “Diversity networks: Neural network compression using determinantal

point processes”. In: International Conference of Learning Representation (ICLR) (2016).

[206] D. Marr. Vision: A computational investigation into the human representation and processing
of visual information. MIT press, 2010.

[207] S. Marso and M. El Merouani. “Predicting �nancial distress using hybrid feedforward neural

network with cuckoo search algorithm”. In: Procedia Computer Science 170 (2020), pp. 1134–
1140. doi: 10.1016/j.procs.2020.03.054.

[208] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous ac-

tivity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–133. doi: 10.1007/
BF02478259.

https://doi.org/10.5555/3060832.3060870
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-1-60327-101-1
https://doi.org/10.1007/978-1-60327-101-1
https://doi.org/10.1137/19M1274067
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1016/S0895-7177(00)00240-5
https://doi.org/10.1016/j.gltp.2022.04.020
https://doi.org/10.1016/j.gltp.2022.04.020
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1016/j.procs.2020.03.054
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259

BIBLIOGRAPHY 124

[209] L. R. Medsker and L. Jain. “Recurrent neural networks”. In: Design and Applications 5 (2001),
pp. 64–67. doi: 10.1201/9781420049176.

[210] L. Meneghetti, N. Demo, and G. Rozza. “A Dimensionality Reduction Approach for Convolu-

tional Neural Networks”. In: arXiv preprint (2021). arXiv: 2110.09163 [cs.LG].

[211] L. Meneghetti, N. Demo, and G. Rozza. “A Proper Orthogonal Decomposition approach for

parameters reduction of Single Shot Detector networks”. In: arXiv preprint (2022). arXiv:
2207.13551 [cs.LG].

[212] L. Meneghetti, N. Shah, M. Girfoglio, N. Demo, M. Tezzele, A. Lario, G. Stabile, and G. Rozza.

“A Deep Learning Approach to Improve ROMs”. In: Advanced Reduced Order Methods and
Applications in Computational Fluid Dynamics. Society for Industrial & Applied Mathematics,

2022.

[213] H. N. Mhaskar. “Approximation properties of a multilayered feedforward arti�cial neural

network”. In: Advances in Computational Mathematics 1.1 (1993), pp. 61–80. doi: 10.1007/
BF02070821.

[214] G. A. Miller. “WordNet: a lexical database for English”. In: Communications of the ACM 38.11

(1995), pp. 39–41. doi: 10.1145/219717.219748.

[215] M. Minsky and S. A. Papert. Perceptrons: An introduction to computational geometry. MIT

press, 2017. doi: 10.7551/mitpress/11301.001.0001.

[216] S. Mishra and R. Molinaro. “Estimates on the generalization error of Physics-Informed

Neural Networks for approximating PDEs”. In: IMA Journal of Numerical Analysis (2022).
doi: 10.1093/imanum/drab093.

[217] J. Misra and D. Gries. “Finding repeated elements”. In: Science of Computer Programming 2.2

(1982), pp. 143–152. doi: 10.1016/0167-6423(82)90012-0.

[218] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press,

2018.

[219] T. Mudumbi, N. Bian, Y. Zhang, and F. Hazoume. “An Approach Combined the Faster RCNN

and Mobilenet for Logo Detection”. In: Journal of Physics: Conference Series 1284.1 (2019).
doi: 10.1088/1742-6596/1284/1/012072.

[220] B. Müller, J. Reinhardt, and M. T. Strickland. Neural networks: an introduction. Springer
Science & Business Media, 1995. doi: 10.1007/978-3-642-57760-4.

[221] S. Muthukrishnan et al. “Data streams: Algorithms and applications”. In: Foundations and
Trendső in Theoretical Computer Science 1.2 (2005), pp. 117–236. doi: 10.1561/0400000002.

[222] V. Nair and G. E. Hinton. “Recti�ed Linear Units Improve Restricted Boltzmann Machines”.

In: Proceedings of the 27th International Conference on International Conference on Machine
Learning. ICML’10. Haifa, Israel: Omnipress, 2010, pp. 807–814.

[223] K. Nakano. “Associatron-A Model of Associative Memory”. In: IEEE Transactions on Systems,
Man, and Cybernetics SMC-2.3 (1972), pp. 380–388. doi: 10.1109/TSMC.1972.4309133.

[224] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan. “Speech Recognition Using Deep

Neural Networks: A Systematic Review”. In: IEEE Access 7 (2019), pp. 19143–19165. doi:

10.1109/ACCESS.2019.2896880.

[225] Y. Nesterov. “A method for unconstrained convex minimization problem with the rate of

convergence > (1/:2)”. In: vol. 269. 1983, pp. 543–547.

https://doi.org/10.1201/9781420049176
https://arxiv.org/abs/2110.09163
https://arxiv.org/abs/2207.13551
https://doi.org/10.1007/BF02070821
https://doi.org/10.1007/BF02070821
https://doi.org/10.1145/219717.219748
https://doi.org/10.7551/mitpress/11301.001.0001
https://doi.org/10.1093/imanum/drab093
https://doi.org/10.1016/0167-6423(82)90012-0
https://doi.org/10.1088/1742-6596/1284/1/012072
https://doi.org/10.1007/978-3-642-57760-4
https://doi.org/10.1561/0400000002
https://doi.org/10.1109/TSMC.1972.4309133
https://doi.org/10.1109/ACCESS.2019.2896880

125 BIBLIOGRAPHY

[226] K. Noda, H. Arie, Y. Suga, and T. Ogata. “Multimodal integration learning of robot behavior

using deep neural networks”. In: Robotics and Autonomous Systems 62.6 (2014), pp. 721–736.
doi: 10.1016/j.robot.2014.03.003.

[227] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov. “Tensorizing Neural Networks”. In:

Proceedings of the 28th International Conference on Neural Information Processing Systems -
Volume 1. NIPS’15. MIT Press, 2015, pp. 442–450.

[228] D. L. Olson and D. Delen. Advanced data mining techniques. Springer Science & Business

Media, 2008. doi: 10.1007/978-3-540-76917-0.

[229] I. Oseledets. “Tensor-Train Decomposition”. In: SIAM J. Scienti�c Computing 33 (Jan. 2011),

pp. 2295–2317. doi: 10.1137/090752286.

[230] M. van Otterlo and M. Wiering. “Reinforcement Learning and Markov Decision Processes”.

In: Reinforcement Learning: State-of-the-Art. Ed. by M. Wiering and M. van Otterlo. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 3–42. doi: 10.1007/978-3-642-27645-
3_1.

[231] S. E. Palmer. Vision science: Photons to phenomenology. MIT press, 1999.

[232] S. J. Pan and Q. Yang. “A survey on transfer learning”. In: IEEE Transactions on knowledge
and data engineering 22.10 (2009), pp. 1345–1359. doi: doi:10.1109/TKDE.2009.191.

[233] D. Papapicco. “A neural network framework for reduced order modelling of non-linear

hyperbolic equations in computational �uid dynamics”. In: Master’s thesis, Politecnico di
Torino (2021).

[234] D. Papapicco, N. Demo, M. Girfoglio, G. Stabile, and G. Rozza. “The Neural Network shifted-

proper orthogonal decomposition: A machine learning approach for non-linear reduction

of hyperbolic equations”. In: Computer Methods in Applied Mechanics and Engineering 392

(2022), p. 114687. doi: 10.1016/j.cma.2022.114687. arXiv: 2108.06558 [math.NA].

[235] D. Pasetto, A. Guadagnini, and M. Putti. “A reduced-order model for Monte Carlo simulations

of stochastic groundwater �ow”. In: Computational Geosciences 18.2 (2014), pp. 157–169. doi:
10.1007/s10596-013-9389-4.

[236] D. Pasetto, A. Guadagnini, and M. Putti. “POD-based Monte Carlo approach for the solution

of regional scale groundwater �ow driven by randomly distributed recharge”. In: Advances
in Water Resources 34.11 (2011), pp. 1450–1463. issn: 0309-1708. doi: 10.1016/j.advwatres.
2011.07.003.

[237] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.

Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,

S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. “PyTorch: An Imperative Style,

High-Performance Deep Learning Library”. In: Advances in Neural Information Processing
Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and

R. Garnett. Curran Associates, Inc., 2019, pp. 8024–8035.

[238] P. Petersen and F. Voigtlaender. “Equivalence of approximation by convolutional neural

networks and fully-connected networks”. In: Proceedings of the American Mathematical
Society 148.4 (2020), pp. 1567–1581. doi: 10.1090/proc/14789.

[239] F. Pichi, F. Ballarin, G. Rozza, and J. S. Hesthaven. “An arti�cial neural network approach to

bifurcating phenomena in computational �uid dynamics”. 2021.

[240] H. A. Pierson and M. S. Gashler. “Deep learning in robotics: a review of recent research”. In:

Advanced Robotics 31.16 (2017), pp. 821–835. doi: 10.1080/01691864.2017.1365009.

https://doi.org/10.1016/j.robot.2014.03.003
https://doi.org/10.1007/978-3-540-76917-0
https://doi.org/10.1137/090752286
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/doi: 10.1109/TKDE.2009.191
https://doi.org/10.1016/j.cma.2022.114687
https://arxiv.org/abs/2108.06558
https://doi.org/10.1007/s10596-013-9389-4
https://doi.org/10.1016/j.advwatres.2011.07.003
https://doi.org/10.1016/j.advwatres.2011.07.003
https://doi.org/10.1090/proc/14789
https://doi.org/10.1080/01691864.2017.1365009

BIBLIOGRAPHY 126

[241] A. Pinkus. “Approximation theory of the MLP model in neural networks”. In: Acta Numerica
8 (1999), pp. 143–195. doi: 10.1017/S0962492900002919.

[242] B. T. Polyak. “Some methods of speeding up the convergence of iteration methods”. In: Ussr
computational mathematics and mathematical physics 4.5 (1964), pp. 1–17. doi: 10.1016/
0041-5553(64)90137-5.

[243] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial

di�erential equations”. In: Journal of Computational Physics 378 (2019), pp. 686–707. doi:
10.1016/j.jcp.2018.10.045.

[244] M. Raissi, A. Yazdani, and G. E. Karniadakis. “Hidden �uid mechanics: A Navier-Stokes

informed deep learning framework for assimilating �ow visualization data”. In: arXiv preprint
arXiv:1808.04327 (2018).

[245] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. “Xnor-net: Imagenet classi�cation

using binary convolutional neural networks”. In: European conference on computer vision,
ECCV 2016. Vol. 9908. Springer. 2016, pp. 525–542. doi: 10.1007/978-3-319-46493-0_32.

[246] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. “You Only Look Once: Uni�ed, Real-Time

Object Detection”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Los Alamitos, CA, USA: IEEE Computer Society, 2016, pp. 779–788. doi: 10.1109/
CVPR.2016.91.

[247] J. Redmon and A. Farhadi. “YOLO9000: Better, Faster, Stronger”. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 6517–6525. doi: 10.1109/CVPR.
2017.690.

[248] J. Redmon and A. Farhadi. “YOLOv3: An incremental improvement”. In: arXiv preprint (2018).
eprint: 1804.02767.

[249] S. Ren, K. He, R. Girshick, and J. Sun. “Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks”. In: Advances in Neural Information Processing Systems. Ed.
by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates,

Inc., 2015.

[250] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

doi: 10.1017/CBO9780511812651.

[251] N. Rochester, J. Holland, L. Haibt, andW. Duda. “Tests on a cell assembly theory of the action

of the brain, using a large digital computer”. In: IRE Transactions on Information Theory 2.3

(1956), pp. 80–93. doi: 10.1109/TIT.1956.1056810.

[252] R. Rojas. Neural Networks: A Systematic Introduction. Berlin, Heidelberg: Springer-Verlag,
1996.

[253] R. Rojas. “The Backpropagation Algorithm”. In: Neural Networks. Springer, 1996, pp. 149–182.

[254] F. Romor, M. Tezzele, A. Lario, and G. Rozza. “Kernel-based Active Subspaces with application

to CFD parametric problems using Discontinuous Galerkin method”. In: arXiv preprint
arXiv:2008.12083 (2020).

[255] F. Romor, M. Tezzele, and G. Rozza. “ATHENA: Advanced Techniques for High dimensional

parameter spaces to Enhance Numerical Analysis”. In: Software Impacts 10 (2021), p. 100133.
issn: 2665-9638. doi: 10.1016/j.simpa.2021.100133.

[256] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for biomedical

image segmentation”. In: International Conference on Medical image computing and computer-
assisted intervention. Springer. 2015, pp. 234–241. doi: 10.1007/978-3-319-24574-4_28.

https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
1804.02767
https://doi.org/10.1017/CBO9780511812651
https://doi.org/10.1109/TIT.1956.1056810
https://doi.org/10.1016/j.simpa.2021.100133
https://doi.org/10.1007/978-3-319-24574-4_28

127 BIBLIOGRAPHY

[257] F. Rosenblatt. “The perceptron: a probabilisticmodel for information storage and organization

in the brain”. In: Psychological review 65.6 (1958), p. 386. doi: 10.1037/h0042519.

[258] A. Rosenfeld and M. Thurston. “Edge and Curve Detection for Visual Scene Analysis”. In:

IEEE Transactions on Computers C-20.5 (1971), pp. 562–569. doi: 10.1109/T-C.1971.223290.

[259] W. Roth, G. Schindler, M. Zöhrer, L. Pfeifenberger, R. Peharz, S. Tschiatschek, H. Fröning, F.

Pernkopf, and Z. Ghahramani. “Resource-e�cient neural networks for embedded systems”.

In: arXiv preprint arXiv:2001.03048 (2020).

[260] G. Rozza, M. Malik, N. Demo, M. Tezzele, M. Girfoglio, G. Stabile, and A. Mola. “Advances in

reduced order methods for parametric industrial problems in computational �uid dynamics”.

In: Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures
and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid
Dynamics, ECFD 2018. 2020, pp. 59–76.

[261] G. Rozza, M. Hess, G. Stabile, M. Tezzele, and F. Ballarin. In: Handbook on Model Reduction. Ed.
by P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. H. A. Schilders, and L. M. Silveira.

2020. Chap. Basic Ideas and Tools for Projection-Based Model Reduction of Parametric

Partial Di�erential Equations. doi: 10.1515/9783110671490-001.

[262] G. Rozza, G. Stabile, and F. Ballarin. Advanced Reduced Order Methods and Applications in
Computational Fluid Dynamics. Society for Industrial & Applied Mathematics, 2022.

[263] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by back-

propagating errors”. In: Nature 323.6088 (1986), pp. 533–536. doi: 10.1038/323533a0.

[264] D. E. Rumelhart and J. L. McClelland, eds. Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1: Foundations. Cambridge, MA, USA: MIT Press, 1986.

[265] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, et al. “Imagenet large scale visual recognition challenge”. In: International
journal of computer vision 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[266] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. “Low-rank matrix

factorization for deep neural network training with high-dimensional output targets”. In:

2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013,
pp. 6655–6659. doi: 10.1109/ICASSP.2013.6638949.

[267] F. Salmoiraghi, F. Ballarin, G. Corsi, A. Mola, M. Tezzele, and G. Rozza. “Advances in

geometrical parametrization and reduced order models and methods for computational

�uid dynamics problems in applied sciences and engineering: overview and perspectives”.

In: Proceedings of the ECCOMAS Congress 2016, VII European Conference on Computational
Methods in Applied Sciences and Engineering. Ed. by M. Papadrakakis, V. Papadopoulos, G.

Stefanou, and V. Plevris. 2016. doi: 10.7712/100016.1867.8680.

[268] O. San, R. Maulik, and M. Ahmed. “An arti�cial neural network framework for reduced

order modeling of transient �ows”. In: Communications in Nonlinear Science and Numerical
Simulation 77 (2019), pp. 271–287. issn: 1007-5704. doi: 10.1016/j.cnsns.2019.04.025.

[269] M. San Biagio, S. Martelli, M. Crocco, M. Cristani, and V. Murino. “Encoding structural

similarity by cross-covariance tensors for image classi�cation”. In: International Journal
of Pattern Recognition and Arti�cial Intelligence 28 (Sept. 2014), p. 19. doi: 10 . 1142 /
S0218001414600088.

[270] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. “MobileNetV2: Inverted

Residuals and Linear Bottlenecks”. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474.

https://doi.org/10.1037/h0042519
https://doi.org/10.1109/T-C.1971.223290
https://doi.org/10.1515/9783110671490-001
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ICASSP.2013.6638949
https://doi.org/10.7712/100016.1867.8680
https://doi.org/10.1016/j.cnsns.2019.04.025
https://doi.org/10.1142/S0218001414600088
https://doi.org/10.1142/S0218001414600088
https://doi.org/10.1109/CVPR.2018.00474

BIBLIOGRAPHY 128

[271] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. “Mobilenetv2: Inverted

residuals and linear bottlenecks”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 4510–4520.

[272] A. Scagliotti. “Deep Learning Approximation of Di�eomorphisms via Linear-Control Sys-

tems”. In: Math. Control Re. Fields, to appear (2022). doi: 10.48550/ARXIV.2110.12393.

[273] D. Scherer, A. Müller, and S. Behnke. “Evaluation of Pooling Operations in Convolutional

Architectures for Object Recognition”. In: Arti�cial Neural Networks – ICANN 2010. Ed. by
K. Diamantaras, W. Duch, and L. S. Iliadis. Berlin, Heidelberg: Springer Berlin Heidelberg,

2010, pp. 92–101. doi: 10.1007/978-3-642-15825-4_10.

[274] W. Schilders, ed. Mathematics: Key Enabling Technology for Scienti�c Machine Learning. 2021.

[275] J. Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural networks 61
(2015), pp. 85–117. doi: 10.1016/j.neunet.2014.09.003.

[276] T. J. Sejnowski. The Deep Learning Revolution. Cambridge, MA: MIT Press, 2018.

[277] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. “Overfeat: Inte-

grated recognition, localization and detection using convolutional networks”. In: Publisher

Copyright: ľ 2014 International Conference on Learning Representations, ICLR. All rights re-

served.; 2nd International Conference on Learning Representations, ICLR 2014 ; Conference

date: 14-04-2014 Through 16-04-2014. 2014.

[278] R. Setiono and G. Lu. “Image compression using a feedforward neural network”. In: Pro-
ceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94). Vol. 7. 1994,
4761–4765 vol.7. doi: 10.1109/ICNN.1994.375045.

[279] N. V. Shah, M. Girfoglio, P. Quintela, G. Rozza, A. Lengomin, F. Ballarin, and P. Barral. Finite
element based model order reduction for parametrized one-way coupled steady state linear
thermomechanical problems. 2021. arXiv: 2111.08534 [math.NA].

[280] U. Shaham, A. Cloninger, and R. R. Coifman. “Provable approximation properties for deep

neural networks”. In: Applied and Computational Harmonic Analysis 44.3 (2018), pp. 537–
557. issn: 1063-5203. doi: https://doi.org/10.1016/j.acha.2016.04.003. url:
https://www.sciencedirect.com/science/article/pii/S1063520316300033.

[281] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014. doi: 10.1017/CBO9781107298019.

[282] R. Shanmugamani and S. Moore. Deep Learning for Computer Vision: Expert Techniques to
Train Advanced Neural Networks Using TensorFlow and Keras. Packt Publishing, 2018.

[283] L. Shao, F. Zhu, and X. Li. “Transfer Learning for Visual Categorization: A Survey”. In:

IEEE Transactions on Neural Networks and Learning Systems 26.5 (2015), pp. 1019–1034. doi:
10.1109/TNNLS.2014.2330900.

[284] Y. Shin. “On the Convergence of Physics Informed Neural Networks for Linear Second-Order

Elliptic and Parabolic Type PDEs”. In: Communications in Computational Physics 28 (June
2020), pp. 2042–2074. doi: 10.4208/cicp.OA-2020-0193.

[285] C. Shorten and T. M. Khoshgoftaar. “A survey on image data augmentation for deep learning”.

In: Journal of big data 6.1 (2019), pp. 1–48. doi: 10.1186/s40537-019-0197-0.

[286] A. Siade, M. Putti, and W. Yeh. “Snapshot selection for groundwater model reduction using

proper orthogonal decomposition”. In:Water Resources Research - WATER RESOUR RES 46
(Aug. 2010). doi: 10.1029/2009WR008792.

https://doi.org/10.48550/ARXIV.2110.12393
https://doi.org/10.1007/978-3-642-15825-4_10
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/ICNN.1994.375045
https://arxiv.org/abs/2111.08534
https://doi.org/https://doi.org/10.1016/j.acha.2016.04.003
https://www.sciencedirect.com/science/article/pii/S1063520316300033
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1109/TNNLS.2014.2330900
https://doi.org/10.4208/cicp.OA-2020-0193
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1029/2009WR008792

129 BIBLIOGRAPHY

[287] P. Siena, M. Girfoglio, F. Ballarin, and G. Rozza. “Data-driven reduced order modelling

for patient-speci�c hemodynamics of coronary artery bypass grafts with physical and

geometrical parameters”. In: arXiv preprint arXiv:2203.13682 (2022).

[288] P. Siena, M. Girfoglio, and G. Rozza. “Fast and accurate numerical simulations for the study of

coronary artery bypass grafts by arti�cial neural network”. In: arXiv preprint arXiv:2201.01804
(2022).

[289] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Image

Recognition”. In: 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun.

2015.

[290] Y. Singh and A. S. Chauhan. “NEURAL NETWORKS IN DATA MINING.” In: Journal of
Theoretical & Applied Information Technology 5.1 (2009). doi: 10.9790/3021-04360106.

[291] D. F. Specht et al. “A general regression neural network”. In: IEEE transactions on neural
networks 2.6 (1991), pp. 568–576. doi: 10.1109/72.97934.

[292] W. Su, Y. Yuan, and M. Zhu. “A Relationship between the Average Precision and the Area

Under the ROC Curve”. In: Proceedings of the 2015 International Conference on The Theory
of Information Retrieval. ICTIR ’15. Northampton, Massachusetts, USA: Association for

Computing Machinery, 2015, pp. 349–352. doi: 10.1145/2808194.2809481.

[293] B. Sudret. “Global sensitivity analysis using polynomial chaos expansions”. In: Reliability
engineering & system safety 93.7 (2008), pp. 964–979. doi: 10.1016/j.ress.2007.04.002.

[294] F. Sultana, A. Su�an, and P. Dutta. “A Review of Object Detection Models Based on Convo-

lutional Neural Network”. In: 2020, pp. 1–16. isbn: 978-981-15-4287-9. doi: 10.1007/978-
981-15-4288-6_1.

[295] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. “Revisiting unreasonable e�ectiveness of

data in deep learning era”. In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 843–852.

[296] Y. Sun, C. Wang, and L. Qu. “An Object Detection Network for Embedded System”. In: 2019
IEEE International Conferences on Ubiquitous Computing Communications (IUCC) and Data
Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services
(SmartCNS). 2019, pp. 506–512. doi: 10.1109/IUCC/DSCI/SmartCNS.2019.00110.

[297] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. “On the importance of initialization and

momentum in deep learning”. In: Proceedings of the 30th International conference on machine
learning. Ed. by S. Dasgupta and D. McAllester. Vol. 28. Proceedings of Machine Learning

Research 3. PMLR, 2013, pp. 1139–1147.

[298] C. Szegedy, S. Io�e, V. Vanhoucke, and A. A. Alemi. “Inception-v4, inception-resnet and the

impact of residual connections on learning”. In: Thirty-�rst AAAI conference on arti�cial
intelligence. 2017.

[299] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. “Going deeper with convolutions”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015, pp. 1–9. doi: 10.1109/CVPR.2015.7298594.

[300] C. Szegedy, S. Reed, D. Erhan, and D. Anguelov. Scalable, high-quality object detection. Tech.
rep. arXiv, 2015. url: http://arxiv.org/abs/1412.1441.

[301] C. Szegedy, V. Vanhoucke, S. Io�e, J. Shlens, and Z. Wojna. “Rethinking the inception

architecture for computer vision”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 2818–2826. doi: 10.1109/CVPR.2016.308.

https://doi.org/10.9790/3021-04360106
https://doi.org/10.1109/72.97934
https://doi.org/10.1145/2808194.2809481
https://doi.org/10.1016/j.ress.2007.04.002
https://doi.org/10.1007/978-981-15-4288-6_1
https://doi.org/10.1007/978-981-15-4288-6_1
https://doi.org/10.1109/IUCC/DSCI/SmartCNS.2019.00110
https://doi.org/10.1109/CVPR.2015.7298594
http://arxiv.org/abs/1412.1441
https://doi.org/10.1109/CVPR.2016.308

BIBLIOGRAPHY 130

[302] M. Tan and Q. Le. “E�cientnet: Rethinking model scaling for convolutional neural networks”.

In: International conference on machine learning. PMLR. 2019, pp. 6105–6114.

[303] Z. Tang and P. A. Fishwick. “Feedforward neural nets as models for time series forecasting”.

In: ORSA journal on computing 5.4 (1993), pp. 374–385. doi: 10.1287/ijoc.5.4.374.

[304] W. Taylor. “Electrical simulation of some nervous system functional activities”. In: IEEE
Transactions on Information Theory - TIT (Jan. 1956).

[305] A. Tewari and P. L. Bartlett. “On the Consistency of Multiclass Classi�cation Methods”. In:

Learning Theory. Ed. by P. Auer and R. Meir. Berlin, Heidelberg: Springer Berlin Heidelberg,

2005, pp. 143–157. doi: 10.1007/11503415_10.

[306] M. Tezzele, N. Demo, A. Mola, and G. Rozza. “An integrated data-driven computational

pipeline with model order reduction for industrial and applied mathematics”. In: Novel Math-
ematics Inspired by Industrial Challenges. Ed. by M. Günther andW. Schilders. Mathematics in

Industry X. Springer International Publishing, 2022. doi: 10.1007/978-3-030-96173-2_7.

[307] M. Tezzele, N. Demo, G. Stabile, A. Mola, and G. Rozza. “Enhancing CFD predictions in

shape design problems by model and parameter space reduction”. In: Advanced Modeling and
Simulation in Engineering Sciences 7.1 (2020), p. 40. doi: 10.1186/s40323-020-00177-y.

[308] M. Tezzele, F. Salmoiraghi, A. Mola, and G. Rozza. “Dimension reduction in heterogeneous

parametric spaces with application to naval engineering shape design problems”. In: Ad-
vanced Modeling and Simulation in Engineering Sciences 5.1 (2018), p. 25. doi: 10.1186/
s40323-018-0118-3.

[309] T. Tieleman, G. Hinton, et al. “Lecture 6.5-rmsprop: Divide the gradient by a running average

of its recent magnitude”. In: COURSERA: Neural networks for machine learning 4.2 (2012),

pp. 26–31.

[310] S. Trenn. “Multilayer Perceptrons: Approximation Order and Necessary Number of Hidden

Units”. In: IEEE transactions on neural networks / a publication of the IEEE Neural Networks
Council 19 (June 2008), pp. 836–44. doi: 10.1109/TNN.2007.912306.

[311] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders. “Selective search for

object recognition”. In: International journal of computer vision 104.2 (2013), pp. 154–171.

doi: 10.1007/s11263-013-0620-5.

[312] A. M. Uttley. “The classi�cation of signals in the nervous system”. In: Electroencephalography
and clinical neurophysiology 6.3 (1954), pp. 479–494. doi: 10.1016/0013-4694(54)90064-4.

[313] J. E. Van Timmeren, D. Cester, S. Tanadini-Lang, H. Alkadhi, and B. Baessler. “Radiomics in

medical imaginghow-to guide and critical re�ection”. In: Insights into imaging 11.1 (2020),

pp. 1–16. doi: 10.1186/s13244-020-00887-2.

[314] K. R. Varshney. “Trustworthy Machine Learning”. In: Chappaqua, NY, USA: Independently
Published (2022).

[315] H. Wang and B. Raj. On the Origin of Deep Learning. 2017.

[316] X. Wang. “Deep learning in object recognition, detection, and segmentation”. In: Foundations
and Trends in Signal Processing 8.4 (2016), pp. 217–382.

[317] W. Weinan. “A Proposal on Machine Learning via Dynamical Systems”. English (US). In:

Communications in Mathematics and Statistics 5.1 (2017), pp. 1–11. doi: 10.1007/s40304-
017-0103-z.

https://doi.org/10.1287/ijoc.5.4.374
https://doi.org/10.1007/11503415_10
https://doi.org/10.1007/978-3-030-96173-2_7
https://doi.org/10.1186/s40323-020-00177-y
https://doi.org/10.1186/s40323-018-0118-3
https://doi.org/10.1186/s40323-018-0118-3
https://doi.org/10.1109/TNN.2007.912306
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1016/0013-4694(54)90064-4
https://doi.org/10.1186/s13244-020-00887-2
https://doi.org/10.1007/s40304-017-0103-z
https://doi.org/10.1007/s40304-017-0103-z

131 BIBLIOGRAPHY

[318] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. “Learning Structured Sparsity in Deep Neural

Networks”. In: Proceedings of the 30th International Conference on Neural Information Process-
ing Systems. NIPS’16. Barcelona, Spain: Curran Associates Inc., 2016, pp. 2082–2090. isbn:

9781510838819.

[319] P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
Harvard University, 1975.

[320] N. Wiener. “The Homogeneous Chaos”. In: American Journal of Mathematics 60.4 (1938),
pp. 897–936. doi: 10.2307/2371268.

[321] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning. Vol. 2. 3. MIT

press Cambridge, MA, 2006.

[322] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. “The Marginal Value of Adaptive

Gradient Methods in Machine Learning”. In: Proceedings of the 31st International Conference
on Neural Information Processing Systems. NIPS’17. Long Beach, California, USA: Curran

Associates Inc., 2017, pp. 4151–4161.

[323] A. Womg, M. J. Sha�ee, F. Li, and B. Chwyl. “Tiny SSD: A Tiny Single-Shot Detection Deep

Convolutional Neural Network for Real-Time Embedded Object Detection”. In: May 2018,

pp. 95–101. doi: 10.1109/CRV.2018.00023.

[324] B. Wu, F. Iandola, P. Jin, and K. Keutzer. “SqueezeDet: Uni�ed, Small, Low Power Fully

Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving”.

In: July 2017, pp. 446–454. doi: 10.1109/CVPRW.2017.60.

[325] C.-A. Xia, D. Pasetto, B. X. Hu, M. Putti, and A. Guadagnini. “Integration of moment equations

in a reduced-order modeling strategy for Monte Carlo simulations of groundwater �ow”.

In: Journal of Hydrology 590 (2020), p. 125257. issn: 0022-1694. doi: 10.1016/j.jhydrol.
2020.125257.

[326] D. Xiu and G. E. Karniadakis. “TheWiener–Askey polynomial chaos for stochastic di�erential

equations”. In: SIAM journal on scienti�c computing 24.2 (2002), pp. 619–644. doi: 10.1137/
S1064827501387826.

[327] D. Yarotsky. “Error bounds for approximations with deep ReLU networks”. In: Neural Net-
works 94 (2017), pp. 103–114. issn: 0893-6080. doi: https : / / doi . org / 10 . 1016 / j .
neunet.2017.07.002. url: https://www.sciencedirect.com/science/article/pii/
S0893608017301545.

[328] T. Young, D. Hazarika, S. Poria, and E. Cambria. “Recent trends in deep learning based natural

language processing”. In: IEEE Computational intelligenCe magazine 13.3 (2018), pp. 55–75.

[329] I. Zafar, G. Tzanidou, R. Burton, N. Patel, and L. Araujo. Hands-on convolutional neural
networks with TensorFlow: Solve computer vision problems with modeling in TensorFlow and
Python. Packt Publishing Ltd, 2018.

[330] O. Zahm, P. G. Constantine, C. Prieur, and Y. M. Marzouk. “Gradient-based dimension

reduction of multivariate vector-valued functions”. In: SIAM Journal on Scienti�c Computing
42.1 (2020), A534–A558. doi: 10.1137/18M1221837.

[331] M. J. Zaki and W. Meira Jr. Data Mining and Machine Learning: Fundamental Concepts and
Algorithms. Cambridge University Press, 2020.

[332] M. Zancanaro, M. Mrosek, G. Stabile, C. Othmer, and G. Rozza. “Hybrid neural network

reduced order modelling for turbulent �ows with geometric parameters”. In: Fluids 6.8 (2021),
p. 296. doi: 10.3390/fluids6080296.

https://doi.org/10.2307/2371268
https://doi.org/10.1109/CRV.2018.00023
https://doi.org/10.1109/CVPRW.2017.60
https://doi.org/10.1016/j.jhydrol.2020.125257
https://doi.org/10.1016/j.jhydrol.2020.125257
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826
https://doi.org/https://doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/https://doi.org/10.1016/j.neunet.2017.07.002
https://www.sciencedirect.com/science/article/pii/S0893608017301545
https://www.sciencedirect.com/science/article/pii/S0893608017301545
https://doi.org/10.1137/18M1221837
https://doi.org/10.3390/fluids6080296

BIBLIOGRAPHY 132

[333] M. D. Zeiler and R. Fergus. “Visualizing and understanding convolutional networks”. In:

European conference on computer vision, ECCV 2014. Springer International Publishing. 2014,
pp. 818–833. doi: 10.1007/978-3-319-10590-1_53.

[334] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola. “Dive into Deep Learning”. In: arXiv preprint
arXiv:2106.11342 (2021).

[335] X. Zhang, X. Zhou, M. Lin, and J. Sun. “Shu�eNet: An Extremely E�cient Convolutional

Neural Network for Mobile Devices”. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2018), pp. 6848–6856. doi: 10.1109/CVPR.2018.00716.

[336] X. Zhang, J. Zou, K. He, and J. Sun. “Accelerating very deep convolutional networks for

classi�cation and detection”. In: IEEE transactions on pattern analysis and machine intelligence
38.10 (2015), pp. 1943–1955. doi: 10.1109/TPAMI.2015.2502579.

[337] X. Zhang, Y.-H. Yang, Z. Han, H. Wang, and C. Gao. “Object Class Detection: A Survey”. In:

ACM Comput. Surv. 46.1 (2013). doi: 10.1145/2522968.2522978.

[338] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu. “Object DetectionWith Deep Learning: A Review”.

In: IEEE transactions on neural networks and learning systems 30.11 (2019), pp. 3212–3232.
doi: 10.1109/tnnls.2018.2876865.

[339] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu. “Object DetectionWith Deep Learning: A Review”.

In: IEEE transactions on neural networks and learning systems 30.11 (2019), pp. 3212–3232.
doi: 10.1109/tnnls.2018.2876865.

[340] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. “Random erasing data augmentation”. In:

Proceedings of the AAAI conference on arti�cial intelligence. Vol. 34. 07. 2020, pp. 13001–13008.
doi: 10.1609/aaai.v34i07.7000.

[341] Y. Zhou and R. Chellappa. “Computation of optical �ow using a neural network”. In: IEEE
1988 International Conference on Neural Networks. Vol. 2. 1988, pp. 71–78. doi: 10.1109/
ICNN.1988.23914.

[342] B. Zoph and Q. V. Le. “Neural architecture search with reinforcement learning”. In: 5th
International Conference on Learning Representations (ICLR 2017) (2017).

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1109/TPAMI.2015.2502579
https://doi.org/10.1145/2522968.2522978
https://doi.org/10.1109/tnnls.2018.2876865
https://doi.org/10.1109/tnnls.2018.2876865
https://doi.org/10.1609/aaai.v34i07.7000
https://doi.org/10.1109/ICNN.1988.23914
https://doi.org/10.1109/ICNN.1988.23914

Symbols

ANN Arti�cial Neural Network seen as a function between inputs and outputs. 9, 85, 134

U Aspect ratio anchor boxes. 66

b Tensor representing the bias of an ANN. 8, 14, 15

b(ℓ) Tensor representing the bias for the ℓ-th layer of an ANN. 13, 41

3
(ℓ)
�

Number of channels of the output tensor from layer ℓ in a Convolutional Neural Network. 38,

41

CNN Convolutional Neural Network seen as a function between inputs and outputs. 37, 38

D Generic dataset composed of pairs input-output, i.e. {x8 ,y8 }=samples

8=0
. 7, 8, 38, 49

Dtest Testing dataset. 7, 8, 11, 26

Dtrain Training dataset. 7, 8, 11, 50, 85, 87, 88, 99, 100

5conv Convolution operation. 42, 43

5�atten Flatten function. 48, 49

5pool Pooling function. 45

5
(ℓ)
pool Pooling function relative to pooling layer ℓ . 46, 47

5ℓ Function associated to layer ℓ in an Arti�cial Neural Network, mapping the output of layer ℓ − 1

into a tensor in =ℓ . 9, 38

 (ℓ)
Kernel or �lter tensor related to the ℓ-th layer in a CNN. 40

h Signal propagated by the propagation function in an ANN, i.e. the input for the activation

function. 6

3
(ℓ)
�

Height of the output tensor from layer ℓ in a Convolutional Neural Network. 38, 41, 46

3
�

Height of the kernel in a convolutional layer. 40, 49

K Kernel or �lter for a convolutional layer in a Convolutional Neural Network. 39, 40, 49

; Index of the cut-o� layer. 85–87, 98, 99, 134

ℓ Layer ℓ in an Arti�cial Neural Network. 9, 38, 40–42, 46, 49, 79, 133, 134

L Loss function. 14, 15, 17, 19, 25, 50, 72, 79

133

Symbols 134

Lcls Loss function for classi�cation. 73, 74, 79

Lloc Loss function for box prediction (localization). 73, 74, 79, 80

=class Number of classes in a dataset, i.e. number of neurons in the output layer of an Convolutional

Neural Network. 50, 51, 73, 75, 76, 79, 98

=ℓ Number of neurons composing layer ℓ of an Arti�cial Neural Network. 9, 42, 133

! Number of hidden layers in an Arti�cial Neural Network. 8, 12, 38

=in Number of neurons in the input layer of an Arti�cial Neural Network. 8

=out Number of neurons in the output layer of an Arti�cial Neural Network. 8, 38

N Set of neurons for an ANN. 5, 7, 9

= Number of �lters/kernels in a convolutional layer. 40

Obj_Det Object Detector seen as a function between inputs and outputs. 97, 99

?̃ Padding parameter of a convolutional layer. ix, 42

ANN ;
pre Pre-model obtained by cutting the ANN at cut-o� layer ; . 87

Wproj Projection matrix for the reduction layer. 87, 88, 100

A Reduction parameter. 87, 88

Z Scale anchor boxes. 66, 67

f Activation function. 3, 4, 6, 9, 12, 16, 26, 28, 30, 43

B Stride parameter of a convolutional layer. ix, 40–42

, Weight matrix. 3, 5, 8, 14, 42

, (ℓ)
Weight matrix for layer ℓ . 13, 49

3
(ℓ)
W Width of the output tensor from layer ℓ in a Convolutional Neural Network. 38, 41, 46

3 W Width of the kernel in a convolutional layer. 40, 49

x Tensor representing the input for a neuron or an Arti�cial Neural Network. 3, 7–9, 11, 15, 37, 56,

61, 78, 133

x(ℓ) Tensor representing the output for layer ℓ in an Arti�cial Neural Network. 9, 13, 38, 44

x(;) Tensor representing the output of the pre-model. 87, 88, 100

ycls Tensor representing the expected classi�cation output of an object detector. 73

ŷcls Tensor representing the predicted classi�cation output of an object detector. 73, 98

135 Symbols

y Tensor representing the expected output from a neuron or an Arti�cial Neural Network. 7, 8, 15,

26, 133

yloc Tensor representing the expected localization output of an object detector. 73

ŷloc Tensor representing the predicted localization output of an object detector. 73, 98

ŷ Tensor representing the predicted output of a neuron or an Arti�cial Neural Network. 3, 8, 15, 26,

37, 38, 48, 49, 88

ỹ Tensor representing the output of the reduction network ANN red
. 89

z Tensor representing the output of the reduction layer. 84, 88

Acronyms

AE Autoencoder. 11, 106

ANN Arti�cial Neural Network. ix, xiii, xv, xvi, 1–3, 5, 7–11, 14, 26, 27, 35–37, 42, 43, 81, 82, 85, 92,

99, 105, 133–135

AP Average Precision. 50, 51

AS Active Subspaces. v, xv, xvi, 81, 82, 86, 88, 95, 105, 109

CE Cross Entropy. 14

CNN Convolutional Neural Network. v, ix, xiii–xvi, 2, 10, 35–44, 46, 48–56, 58, 60, 61, 64, 67, 71–73,

78, 81, 82, 89–93, 96, 97, 99, 103, 105–107, 133, 134

FD Frequent Directions. 109, 110

FNN Feedforward Neural Network. v, xv, xvi, 3, 8–14, 18, 20–23, 26, 27, 37, 38, 48, 49, 84–86, 89, 95,

96, 105, 106

i.i.d. independent and identically distributed. 19–21, 27–31

IoU Intersection over Union. 68, 69, 74, 76, 77, 79, 80

MAE Mean Absolute Error. 14

mAP Mean Average Precision. 51, 101–103

MSE Mean-Squared Error. 13, 26

NMS Non-Maximum Suppression. 69, 80

PCE Polynomial Chaos Expansion. v, xv, xvi, 82, 84, 86, 96, 105

POD Proper Orthogonal Decomposition. v, xiii, xv, xvi, 81–83, 86, 88, 95, 97, 98, 100, 102, 105, 106

RNN Recurrent Neural Network. 2, 10

RoI Region of Interest. 71–75

ROM Reduced Order Modeling. v, xiii, xv, 81–83, 86, 98, 105, 107

RPN Region Proposal Network. 73–75, 78

SGD Stochastic Gradient Descent. 19, 20, 22, 24, 36, 101

SVD Singular Value Decomposition. 83, 87, 88, 100, 109

137

	Dedication
	List of Figures
	List of Tables
	Introduction
	Artificial Neural Networks
	Introduction
	Neuron: The Base Element
	Artificial Neural Networks
	The Learning Paradigm

	Neural Network Topologies
	Feedforward Neural Network
	Convolutional Neural Network
	Recurrent Neural Network
	Autoencoder

	Feedforward Neural Networks
	Forward Propagation
	Backward Propagation
	Backpropagation Algorithm
	Gradient Descent Algorithm
	Stochastic Gradient Descent Algorithm
	Momentum Method
	Adam Optimization Algorithm
	Master Equations for a FNN
	Testing Phase

	Parameter Initialization Strategies
	Xavier Initialization
	Kaiming He Initialization

	Convolutional Neural Networks
	Introduction
	Convolutional Neural Networks
	Convolutional Layer
	Nonlinearity Layer
	Pooling Layer
	Fully Connected Layers
	Equivalence Convolutional Layers and Fully Connected Layers
	Backpropagation
	Testing Phase
	CNN Initialization

	Image Recognition
	Datasets
	CNN Architectures for Image Recognition

	Object Detection
	Bounding Boxes
	Anchor Boxes
	Intersection over Union
	Labeling Anchor Boxes during Training
	Non-Maximum Suppression
	Datasets
	Object Detectors: Architectures for Object Detection

	A Reduced Order Approach for Artificial Neural Networks
	Introduction
	Numerical Tools
	Dimensionality Reduction Techniques
	Input–output Mapping

	Reduced Artificial Neural Networks
	Splitting Network
	Reduction Layer
	Input-Output Mapping
	Training Phase

	A Reduced Approach for Convolutional Neural Networks
	Reduction Strategies for Convolutional Neural Networks
	Practical Application on VGG-16

	Reduction Strategies for Object Detectors
	Reduction of SSD-Type Object Detectors
	Network Splitting
	Reduction Layer
	Predictor
	Numerical Results

	Conclusions and Future Perspectives
	Frequent Direction Method
	Bibliography
	Symbols
	Acronyms

