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ASYMPTOTIC BEHAVIOR OF THE DIRICHLET ENERGY

ON POISSON POINT CLOUDS

ANDREA BRAIDES AND MARCO CAROCCIA

Abstract. We prove that quadratic pair interactions for functions defined on planar Poisson

clouds and taking into account pairs of sites of distance up to a certain (large-enough) threshold
can be almost surely approximated by the multiple of the Dirichlet energy by a deterministic

constant. This is achieved by scaling the Poisson cloud and the corresponding energies and

computing a compact discrete-to-continuum limit. In order to avoid the effect of exceptional
regions of the Poisson cloud, with an accumulation of sites or with ‘disconnected’ sites, a suitable

‘coarse-grained’ notion of convergence of functions defined on scaled Poisson clouds must be

given.
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1. Introduction

The object of this paper is an analysis of the asymptotic behaviour of quadratic energies on
Poisson random sets. Loosely speaking such sets are characterized by the property that the number
of their points contained in a given set has a Poisson probability distribution, and that the random
variables related to disjoint sets are independent. Even more loosely, in average the number of

Key words and phrases. Poisson random sets, homogenization, discrete-to-continuum, Bernoulli percolation.
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1

ar
X

iv
:2

20
3.

16
87

7v
1 

 [
m

at
h.

A
P]

  3
1 

M
ar

 2
02

2



2 ANDREA BRAIDES AND MARCO CAROCCIA

points contained in a set is proportional to the Lebesgue measure of the set. We denote by η such
a random set.

In order to define some almost-sure properties of η we use a discrete-to-continuum approach that
has been fruitfully used to derive continuum theories from microscopic interactions (see [2]). A
simple interpretation of this method is as a finite-difference approximation. If η is a deterministic
periodic locally finite discrete set in Rd, then we can consider real-valued functions u : η → R and
quadratic interaction potentials between points on η. The corresponding Dirichlet-type energy is∑

〈x,y〉

(u(x)− u(y))2, (1.1)

where 〈x, y〉 indicates summation over nearest-neighbouring pairs (x, y) in η. We can then intro-
duce a small parameter ε and scale both the environment and the energies accordingly; namely,
considering u : ε η → R and ∑

〈x,y〉

εd−2(u(x)− u(y))2, (1.2)

now summing over nearest-neighbouring pairs (x, y) in ε η. By letting ε → 0 we obtain a limit
continuum energy, of the form ˆ

Rd
A∇u · ∇udx, (1.3)

where the matrix A carries information about the microstructure of the original set η. Note that in
order to perform this passage to the limit we have to embed our energies in a common environment
identifying functions on η with suitable interpolations. The limit is meant in the sense of Γ-
convergence, which implies that minimum problems for the limiting energies are approximations
of the discrete ones, and can also be performed ‘locally’, by considering interactions only for
x ∈ εη ∩ U for a fixed open set U .

In order to define analogs of (1.1) and (1.2) for the realization of a Poisson cloud η we face a
choice regarding what to consider as ‘interacting sites’, whether nearest neighbours in the sense of
Voronoi cells or points ‘close’ in the sense of the ambient space. For the random set η these two
choices are not equivalent since nearest-neighbouring points on η may be indeed arbitrarily distant
in the ambient space, and conversely a very small distance between points of η does not ensure
that they are nearest neighbours in η. We choose the second option, which also seems closer to
applications; namely, we introduce an interaction radius λ > 0 and consider the energies

Fε(u) =
∑

x,y∈Q∩εη,
|x−y|<ελ

εd−2(u(x)− u(y))2, (1.4)

defined for u : ε η∩Q→ R, where Q is the unit coordinate cube centered in 0 (for ease of notation
we treat only this case, which anyhow, up to scaling and localization, implies the result for any
bounded Lipschitz open set in Rd). Note that, if a Γ-limit of such energies does exist then, thanks
to the invariance properties by rotations of η, it must be a multiple of the Dirichlet integral (i.e.,
A in (1.3) is equal to a multiple of the identity matrix), which we expect to be almost surely
deterministic.

The main issue in proving the convergence of Fε consists in providing a suitable notion of
convergence for discrete functions uε to a continuum parameter u, for which a compactness theo-
rem can be proved under an assumption of boundedness of the energies. While for periodic η we
can use piecewise-constant interpolations on Voronoi cells (or, equivalently, piecewise-affine inter-
polations on the related Delaunay triangulation), for a Poisson point process we cannot control
the behaviour of such interpolation due to the presence of arbitrarily large and arbitrarily small
Voronoi cells. Nevertheless, we can prove that the union of ‘regular’ Voronoi cells with suitably
controlled dimensions form an infinite connected set in which we find ‘paths’ of cells such that also
cells at distance λ are regular. This is done by exploiting a Bernoulli site-percolation argument.
In the planar case d = 2 the complement of this set of Voronoi is composed of isolated sets with
controlled dimensions, so that the ambient space can be thought of as a “perforated domain”, in
which we do not have a control of the discrete functions only in isolated ‘holes’ of controlled size.
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Figure 1.1. A representation of a regular grid in Q with two ‘paths’ highlighted.

This allows to define a suitable convergence by choosing a subset Gε of εη composed of paths
mentioned above whose union Vε(Gε) has the geometry of a square grid (see Fig. 1.1) We thus
use these grids to define a suitable convergence notion: given a sequence of function uε : ε η → R
we say that u is the L2-limit of uε ifˆ

Vε(Gε)
|ûε − u|2 dx→ 0; (1.5)

namely, if the L2-distance between the piecewise-constant extensions ûε of uε and u, restricted to
the Voronoi cells of the grid Gε vanishes as ε→ 0. Regular grids allow also to give a meaningful
notion of boundary-value problems; in particular we can consider affine boundary condition as in
the cell problems

m(ξ;TQ) := inf

 ∑
x∈η∩(TQ)

∑
y∈η∩Bλ(x)

|v(x)− v(y)|2
∣∣∣∣∣∣

v : η → R
v(x) = ξ · x for all x ∈ η such that

dist(x, ∂(TQ)) ≤ 2λ

 .

(1.6)
Using subadditive ergodic theorems we then can prove that, if ξ 6= 0, the constant Ξ given by

Ξ := lim
T→+∞

m(ξ;TQ)

T 2|ξ|2

exists and is deterministic. Moreover, by the invariance properties of η it does not depend on ξ.
This allows to state and prove the main result of the paper, which is the almost sure Γ-convergence
in the planar case d = 2 of functionals (1.4) to

F(u) = Ξ

ˆ
Q

|∇u|2dx (1.7)

with respect to the convergence in (1.5). Note that more in general we may consider energies of
the form

Faε (u) =
∑

x,y∈Q∩εη
εd−2a

(x− y
ε

)
(u(x)− u(y))2, (1.8)

with a positive and with compact support, recovering the case in (1.4) as a special case when a(ξ)
is the characteristic function of the ball centered in 0 and radius λ. If a is radially symmetric the
same limit result holds with obvious modifications in the statements.

The convergence theorem can be compared with various results in the literature. Our result is
inspired by the recent paper [7], where perimeter energies on Poisson random sets are considered.
In that context a simpler compactness result can be obtained with respect to the convergence is
measure of sets, by using a covering lemma that ensures that the energy cannot concentrate on
non-regular Voronoi cells. In the present context, this would correspond to an extension theorem
for Sobolev functions from regular sets, which seems hard to obtain due to the random geometry
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of clusters of non-regular Voronoi cells. Furthermore, we can compare our approach to that in
[4, 3], where a notion of stochastic lattice η is given for which energies of the form (1.8) can be
considered. Differently from Poisson random sets, stochastic lattices are more regular, in that
all Voronoi cells have controlled dimension and hence are regular in the terminology above, a
condition that seems a considerable restriction in terms of applications. The regularity of the
lattice implies that functionals Faε are coercive with respect to the L2 convergence of piecewise-
constant interpolations on Voronoi cells. Conversely, in general the limits of functionals Faε ,
which exist under ergodicity and stationarity assumptions, are not isotropic even if a is radially
symmetric, except for specially constructed examples [16]. More general random distributions of
sites have been considered within problems in Machine Learning by D. Slepcev et al. [9, 12, 18]
(see also the references therein). In their approach the convergence is given in terms of suitable
interpolations of discrete functions using Optimal-Transport techniques. The presence of non-
regular Voronoi cells is mitigated by considering kernels aε with increasing support as ε → 0,
which also allow to obtain isotropy in the limit (see also [8] for variational limits using a coarse-
graining approach). Energies (1.8) have a continuum approximation in terms of a convolution
double integral, for which random homogenization has been considered in [6] (see also [1]). We
note that the existence of regular paths can be proved in any dimension d ≥ 2, but if d > 2 the
geometry of regular grids can be thought as a set of “fibers” rather than a perforated domain. We
believe that the same asymptotic result holds but with an even more complex argument. Finally,
we mention, following a remark by D. Slepcev in a private communication, that our results may
also have practical implications for the study of the graph Laplacian. Namely, one can show that
if one drops all of the eigenmodes of the graph Laplacian on a low degree random geometric graph
where the eigenvector has large L∞ norm (in other words concentrates at few nodes) one still
recovers the continuum spectrum.

We briefly outline the plan of the paper. In Section 2 we introduce the necessary definitions
and notation for Poisson point clouds. This allows to give a definition of Dirichlet energy on
a Poisson cloud η and to prove some asymptotic properties as the Poisson set is scaled by a
small parameter η and correspondingly the energies Fε as in (1.4). We introduce the notation for
Voronoi cells and define grids of paths of regular cells Gε,t depending on an additional parameter
t > 0. This allows to define the convergence of piecewise-constant functions uε on Voronoi cells to
a continuum function u as the successive convergence of averages of uε computed on Gε,t at the
“mesoscopic scale” t to piecewise-constant functions ut defined on a square grid and then of such
ut to a limit u as t→ +∞ (Definition 2.7). This is proved to be equivalent to the L2 convergence
on grids as in (1.5), and actually independent of the choice of the family of grids. In Section 3
we state the main results of the paper. Theorem 3.1 states the pre-compactness the sense of the
convergence above of sequences with equi-bounded Dirichlet energy; Theorem 3.3 is an almost-sure
homogenization result characterizing the Γ-limit of Dirichlet energies as a deterministic quantity
as in (1.7). Section 4 is devoted to the proof of the Compactness Theorem, based on the geometric
properties of the grids that allow the use of Poincaré inequalities. In Section 5 we prove the
Homogenization Theorem. The lower bound is obtained by using the Fonseca and Müller blow-up
method, which is possible thanks to the use of cut-off functions that are locally constant close to
non-regular Voronoi cells. The construction of recovery sequences is also made possible thanks
to these ‘regular’ cut-off functions. Finally Section 6 (the Appendix) contains the proof of the
existence of regular grids.

2. Notation and preliminaries

In this section we introduce the main ingredients required to perform our analysis. For the sake
of simplicity, and since our analysis will take place in this context, we always consider the ambient
space dimension to be two-dimensional, even though some of the definitions and results can be
extended to general space dimension.

2.1. General notation. We let Q := (−1/2, 1/2)
2

denote the unit coordinate square centered in
0. We will also write Qr = rQ, Qr(x) = x + rQ. The same notation applies to Br(x), being B
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the unit ball of R2. For a Radon measure ν ∈M+(R2) the space L2(A; ν) is defined as the space
of all measurable functions u : spt (ν) ∩A→ R such thatˆ

A

|u(x)|2 dν(x) < +∞.

When ν = L2, the Lebesgue measure, we simply write L2(A). We denote by Bor(A) the collection
of all Borel subsets of A. The notation |E| stands for the Lebesgue measure of E. For a set A and
for t > 0 we define

(A)t := {x ∈ R2 | dist(x,A) ≤ t}.
If no confusion arises, the notation {xi ∈ Xi}i∈I is used for a family xi indexed by I, such that
xi ∈ Xi

2.2. Poisson point clouds. Some basic properties of the stationary stochastic point process
called Poisson point cloud are here recalled. A complete treatment of this subject can be found in
[10, 17]. In order to formally introduce this notion, we consider the family Ns of simple measures;
i.e.,

Ns :=

{∑
i∈I

δxi ∈M+(R2)

∣∣∣∣∣ {xi}i∈I ∈ R2, xi 6= xj for all i, j ∈ I, and I a subset of N
}

Here and in the sequel, δx is the Dirac delta at x. For any Borel set E ∈ Bor(R2) and k ∈ N we
define the subset AE,k := {µ ∈ Ns | µ(E) = k} of Ns and consider the σ-Algebra N generated
by {AE,k | E ∈ Bor(R2), k ∈ N}.

Definition 2.1. A Poisson point process on R2 with intensity γ is a random element η on (Ns,N );
that is, a map from a probability space (Ω,F ,P) onto (Ns,N ), such that

1) P(η ∈ AE,k) =
(γ|E|)k

k!
e−γ|E|;

2) denoted by η(B) : (Ω,F ,P)→ N the random variable induced by η when fixing B, (namely
η(B) := η(ω)(B) for ω ∈ Ω) then, for any B1, . . . , Bm pairwise disjoint Borel sets we have
that η(B1), . . . , η(Bm) are independent.

For any Poisson point process η we can observe that its probability distribution Pη on (Ns,N )
satisfies

P(η(A) = k) := Pη(AE,k) = P(η ∈ AE,k) := P({ω ∈ Ω | η(ω) ∈ AE,k}) =
(γ|E|)k

k!
e−γ|E|.

We will often make use of the notation x ∈ η, or x ∈ η(ω) by meaning that x ∈ spt (η(ω)) for
some realization ω ∈ Ω. Accordingly, x ∈ ε η(ω) will stand for x ∈ ε spt (η(ω)).

Definition 2.1 implies (see [15, Proposition 8.3]) in particular that the Poisson point process on
R2 with intensity γ is stationary : if we define τxη(A) := η(A+x), then τxη is equal in distribution
to η for any x ∈ Rd. This implies in particular that P(η(R2) < +∞) = 0 (see [15, Proposition
8.4]). In the sequel, whenever we speak of a Poisson point process we always mean a Poisson point
process on R2 with intensity γ.

2.3. Dirichlet energy on point clouds. Let η be a Poisson point process. Without loss of
generality, we fix the intensity to be γ = 1 and we carry out our analysis on the unit square
Q. This is not a restriction since we may localize our energies on regular subsets of Q where
the analysis applies unchanged, while we can deal with arbitrary bounded regular open sets by
rescaling them to subsets of Q.

Let λ > 0 be a fixed parameter (the interaction radius) and for u ∈ L2(Q; ηε), for a subset
A ⊂ Q define

Fε(u;A) :=
∑

x∈ηε∩A

∑
y∈ηε∩Bλε(x)

|u(x)− u(y)|2,

where we have set
ηε(A) := η(ε−1A), spt (ηε) = ε spt (η).
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Remark 2.2. The definition of Fε takes into account the values of u in a λε-neighbourhood of
A. As a consequence, the energy Fε is subadditive on essentially disjoint sets, namely

Fε(u;A ∪B) ≤ Fε(u;A) + Fε(u;B) for all A,B ⊂ R2, |A ∩B| = 0.

Indeed, the energy of a function u on some open set A, takes into account also the contribution
of all those points

BA := {y ∈ (R2 \A) ∩ ηε | there exists x ∈ A ∩ ηε such that |x− y| ≤ λε}.
Note that Fε is not local, since we may not have Fε(u;A) = Fε(v;A) if u = v on A due to the
interaction around boundary points. However, if u = v on A we can infer that

Fε(u;A \ (∂A)λε) = Fε(v;A \ (∂A)λε).

We now give some estimates on the asymptotic behavior of Fε and ηε by means of a kind of
(spatial) Mean Ergodic Theorem. We show that, almost surely, the average number of points in
some open set A, lying at a distance less then λε can be bounded from above by the Lebesgue
measure of A (the proof of Proposition 2.3 follow the lines of the proof of [15, Theorem 8.14]).

Proposition 2.3. There exists a constant C, depending on λ only, such that the following property
holds almost surely:

lim sup
ε→0

∑
x∈ηε∩A

ε2ηε(Bλε(x)) ≤ C|A| (2.1)

for any A ⊆ Q with Lipschitz boundary.

Proof. We consider a sequence {εn}n∈N such that εn → 0 and

1

C
≤ εn
εn+1

≤ C, (2.2)

where C > 1 is a fixed universal constant. For an open set A we define the following objects

I(A) := {i ∈ λZ2 | Qλ(i) ∩A 6= ∅}, Q(A) := {Qλ(i) | i ∈ I(A)}, N(A) := #(I(A)),

and consider, for any i ∈ λZ2 the random variable Xi := η(Qλ(i))2. Note that

E(Xi) = e−λ
2

+∞∑
k=1

k2 (λ)2k

k!
= τλ < +∞.

Let R := (0, a)× (0, b) for a, b ∈ R. Then, we can relabel each square Qλ(i) ∈ Q(ε−1
n R) in such a

way that

1

N(ε1−
n R)

∑
i∈I(ε1−n R)

η(Qλ(i))2 =
1

N(ε−1
n R)

N(ε−1
n R)∑
k=1

Xik .

If we now invoke the law of large numbers (see for instance [15, Theorem B.11]), we have that

lim
R→+∞

1

N(ε−1
n R)

∑
i∈I(ε−1

n R)

η(Qλ(i))2 = τλ = E(X1)

almost-surely. Since ε2
nN(ε−1

n R)→ |R|
λ2 and ηεn(Qλεn(εni)) = η(Qλ(i)), we have that∑

i∈I(ε−1
n R)

ε2
n ηεn(Qλεn(εni))

2 =
(ε2
nN(ε−1

n R))

N(ε−1
n R)

∑
i∈I(ε−1

n R)

η(Qλ(i))→ |R|
λ2
τλ

for almost all ω ∈ Ω. Let now

µε(R) :=
∑

i∈I(ε−1R)

ε2ηε(Qλε(εi))
2, µn(R) := µεn(R),

R0 := {R = [0, p]× [0, q] | p, q ∈ Q, p, q,≤ 2}

Ω0 :=

{
ω ∈ Ω

∣∣∣ µn(R)→ |R|
λ2
τλ for all R ∈ R0

}
.
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Since R0 is a countable family of rectangles we have that P(Ω0) = 1. Let now R := [p, p′]× [q, q′] ⊂
Q with p, p′, q, q′ ∈ Q and define

R1 := [0, p′]× [0, q], R2 := [0, p]× [0, q′]

R3 := [0, p]× [0, q], R4 := [0, p′]× [0, q′].

so that R = R4 \ (R1 ∪R2), |R| = |R4| − |R1| − |R2|+ |R3|. Moreover

µn(R) := µn(R4)− µn(R1)− µn(R2) + µn(R3) + sn,

with

sn ≤ C
4∑
j=1

∑
i∈I(ε−1

n ∂Rj)

ε2
nηεn(Qλεn(εni))

2.

Since sn → 0 we immediately have µn(R)→ |R|
λ2 τλ. In particular, having defined

R := {[p, p′]× [q, q′] ⊂ Q | p, p′, q, q′ ∈ Q},

we have µn(R)→ |R|
λ2 τλ for all ω ∈ Ω0 and R ∈ R.

Let R ∈ R, let ω ∈ Ω0 be a realization and let {ε̃k = ε̃k(ω)}k∈N be a sequence along which

lim sup
ε→0

∑
i∈I(ε−1R)

ε2η(ω)(Qλ(i))2 = lim
k→+∞

∑
i∈I(ε̃−1

k R)

ε̃2
kη(ω)(Qλ(i))2.

Consider εnk ≤ ε̃k ≤ εnk+1. By (2.2), we can find R̃ ∈ R0 with |R̃| ≤ C|R| (for a universal

constant C) and such that ε̃−1
k R ⊂ ε−1

nk
R̃ for all k ∈ N. Note that I(ε̃−1

k R) ⊂ I(ε−1
nk
R̃) and thus∑

i∈I(ε̃−1
k R)

ε̃2
kη(ω)(Qλ(i))2 ≤

∑
i∈I(ε−1

nk
R̃)

ε2
nk+1η(ω)(Qλ(i))2 ≤ C

∑
i∈I(ε−1

nk
R̃)

ε2
nk
η(ω)(Qλ(i))2.

By taking the limit and exploiting that R̃ ∈ R0, ω ∈ Ω′, we achieve

lim sup
ε→0

∑
i∈I(ε−1R)

ε2η(ω)(Qλ(i)) ≤ C|R|,

where C depends on λ only. In particular we have that

lim sup
ε→0

µε(R) = lim sup
ε→0

∑
i∈I(ε−1R)

ε2η(Qλ(i)) ≤ C|R|

almost surely. For any open set A ⊂ Q and for any δ > 0 we can find a finite covering of disjoint

rectangles {Rk}Nkk=1 ⊂ R with
∑Nk
k=1 |Rk| ≤ |A|+ δ. Then, since µε is sub-additive on disjoint sets,

we conclude that

µε(A) ≤
Nk∑
k=1

µε(Rk)⇒ lim sup
ε→0

µε(A) ≤ C
Nk∑
k=1

|Rk|

almost surely. Now, since∑
x∈A∩ηε

ε2ηε(Bλε(x)) ≤ C
∑

i∈I(ε−1A)

ε2ηε(Qλε(εi))
2 = Cµε(A)

for a universal constant independent of λ, n, ω we obtain the claim for all ω ∈ Ω0, which has
probability 1. �

Corollary 2.4. Fix λ > 0. There exists a constant C depending on λ only such that almost surely
it holds

lim sup
ε→0

Fε(u;A) ≤ C
ˆ
A

|∇u|2 dx (2.3)

lim
ε→0

ε2
∑

x∈ηε∩A
u(x)2ηε(Bλε(x)) ≤ C

ˆ
A

|u|2 dx (2.4)

for any u ∈ C1(Q) and for any A ⊂⊂ Q with Lipschitz boundary.
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Proof. Fix A ⊂ Q. Let Qm := {Qmi }i∈N be a dyadic division of Q in squares of size 1
m . Since

u ∈ C1 for any fixed δ we can find K ≥ 1 such that∣∣∣max
x∈Qmi

{u(x)} − min
x∈Qmi

{u(x)}
∣∣∣ ≤ δ for all Qmi ∈ Qm such that Qmi ∩A 6= ∅∣∣∣ max

x∈(Qmi )λεn

{|∇u(x)|} − min
x∈(Qmi )λεn

{|∇u(x)|}
∣∣∣ ≤ δ for all Qmi ∈ Qm such that Qmi ∩A 6= ∅

whenever m,n ≥ K. Moreover (A)2/m ⊃
⋃

Qmi ∩A6=∅

Qmi and

ˆ
(A)2/m

u(x)2 dx ≤
ˆ
A

u(x)2 dx+ δ,

ˆ
(A)2/m

|∇u(x)|2 dx ≤
ˆ
A

|∇u(x)|2 dx+ δ.

Then

ε2
∑

x∈ηε∩A
ηε(Bλε(x))u(x)2 ≤

∑
Qmi ∩A6=∅

max
x∈Qmi

{u(x)2}
∑

x∈ηε∩Qmi

ε2ηε(Bλε(x)).

In particular by invoking Proposition 2.3, almost surely we have

lim sup
ε→0

ε2
∑

x∈ηε∩A
ηε(Bλε(x))u(x)2

≤ C
∑

Qmi ∩A6=∅

max
x∈Qmi

{u(x)2}|Qmi | = C
∑

Qmi ∩A 6=∅

ˆ
Qmi

max
x∈Qmi

{u(x)2} dx

≤ C
∑

Qmi ∩A6=∅

ˆ
Qmi

(u(x)2 + δ2) dx = C

ˆ
(A)2/m

u(x)2 dx+ Cδ2|Q|

≤ C
ˆ
A

u(x)2 dx+ Cδ|Q|

for a constant that depends on λ only. Since δ is arbitrary we get (2.4). Also

Fε(u;A) =
∑

x∈ηε∩A

∑
y∈ηε∩Bλε(x)

|u(x)− u(y)|2

≤
∑

Qmi ∩A 6=∅

∑
x∈ηε∩Qmi

∑
y∈ηε∩Bλε(x)

|u(x)− u(y)|2

≤
∑

Qmi ∩A 6=∅

∑
x∈ηε∩Qmi

∑
y∈ηε∩Bλε(x)

|u(x)− u(y)|2

≤ λ2
∑

Qmi ∩A6=∅

max
x∈(Qmi )λε

|∇u(x)|2
∑

x∈ηε∩Qmi

ε2ηε(Bλε(x)).

Then Proposition 2.3 almost surely yields

lim sup
ε→0

Fε(u;A) ≤ C
∑

Qmi ∩A 6=∅

ˆ
Qmi

max
x∈(Qmi )λε

{|∇u(x)|2} dx

≤ C
ˆ
A

|∇u(x)|2 dx+ Cδ2|Q|

for a constant that depends on λ only. The arbitrariness of δ yields (2.3). �

2.4. Voronoi cells and paths. We now consider η : Ω → Ns a Poisson point process. For a
given realization ω we identify the Voronoi cell of x ∈ η as

C(x, η) := {y ∈ Rd | |y − x| ≤ |z − x| for all z ∈ Rd}.

Note that C(x, ηε) = εC
(
x
ε , η
)

.
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We say that x, y are nearest neighbors if C(x, η) shares a common edge with C(y, η). In this
case we write 〈x, y〉. Given x ∈ R2 we define

πη(x) := argmin{x ∈ η | |x− y|} ,

where, in case of multiple choices we consider the lexico-graphical order. We say that

p(x, y) := {xi1 , . . . , xiM }

is a path in η connecting x to y if xim ∈ η for m = 1, . . . ,M , xi1 = πη(x), xiM = πη(y) and
〈xim , xim+1

〉 for m = 1, . . .M − 1. Moreover, we let `(p) := #(p) denote the length of a path p.
This notion induces a natural metric on η

τη(x, y) := min{`(p(x, y)) | p(x, y) is a path in η connecting x to y}.

We say that a sub-cluster S ⊂ η is connected if for every x, y ∈ S there is a path p(x, y) :=
{xi1 , . . . xiM ∈ S} connecting x to y.

2.5. Piecewise-constant extensions. Let q ⊆ ηε be a family of points in the point cloud. We
define

Vε(q) :=
⋃
x∈q

C(x, ηε).

For u : ηε ∩Q→ R we define the piecewise-constant extension

û : Q→ R, û(x) :=
∑

y∈ηε∩Q
u(y)1C(y,ηε)(x).

2.6. Geometric structure of Poisson point processes. Now we state and prove some sta-
tistical properties of Poisson point processes that we find useful in the treatment of the Dirichlet
energy on point clouds. For t ∈ R+ and a Borel set A ⊂ R2 we define

It(A) :=
{
J ∈ tZ2 : Qt(J) ∩A 6= ∅

}
, Qt(A) := {QtJ := Qt(J), J ∈ It(A)}, kt(A) :=

√
#(It).

When it is clear from the context that A = Q we sometimes write κt in place of κt(Q). For
J ∈ It(Q) we have J = t(i, j), i, j ∈ Z. Therefore, we set QtJ = Qti,j ∈ Qt the square placed on
the i-th row and j-th column.

For i = 1, . . . , kt, j = 1, . . . , kt we define the vertical and horizontal rectangles as

Rh
i (t) :=

kt⋃
j=1

Qti,j , Rv
j(t) :=

kt⋃
i=1

Qti,j .

2.6.1. Selecting a sub-cluster: Percolation Theory. For a Poisson point process η we consider the
sub-cluster

ηα(λ) :=
{
x ∈ η

∣∣ in(C(x, η)) > α, diam(C(x, η)) < α−1, η(Bλ(x)) ≤ α−1λ2
}

where the in-radius of a set in(A) is defined as

in(A) := sup{s > 0 | there exists Bs(x) ⊂ A}

Definition 2.5. Fix α and λ. Let ε, t > 0 be fixed. We say that a family of vertical and horizontal
paths

Gε,t = {him,vjm, i, j ∈ {1, . . . , kt},m ∈ {1, . . . ,Mε,t}}
is a regular t-grid with Υ bounds for ηε, if the following properties are satisfied

a) all the paths are in εηα(λ);
b) for any m = 1, . . . ,Mε,t, him connects the two opposite sides of Rhi (t) of size t and is

strictly contained in Rhi (t);
c) for any m = 1, . . . ,Mε,t, vjm connects the two opposite sides of Rvj (t) of size t and is

strictly contained in Rvj (t);
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Figure 2.1. A graphic visualization of Definition 2.5.

d) the following bounds hold for any i, j ∈ {1, . . . , kt}, m ∈ {1, . . . ,Mε,t}, kt ∈ N;

t

Υε
≤ `(him ∩Qti,j) ≤

Υt

ε
,

t

Υε
≤ `(vjm ∩Qti,j) ≤

Υt

ε

t

Υε
≤Mε,t ≤

Υt

ε

(2.5)

e) dist(him,h
i′

s ) ≥ 3λε and dist(vjm,v
j′

s ) ≥ 3λε, for all i, i′, j, j′ ∈ {1, . . . , kt}, m, s ∈
{1, . . . ,Mε,t} (with m 6= s for i = i′ or j = j′);

f) If x ∈ (him)3λε ∩ ηε, (x ∈ (vjm)3λε ∩ ηε) it holds ηε(Bλε(x)) ≤ 1
αλ

2;

g) If x, y ∈ him, (x, y ∈ vjm) neighboring points then |x− y| ≤ λε;
For the family of (ε, t) regular grids with Υ bounds we use the notation Gt(Υ; ηε).

We invite the reader to confront Definition 2.5 with the situation depicted in Figure 2.1, which
has the only purpose of being illustrative. For any t > 0 we consider the k2

t ≈ 1/t2 squares covering
Q. Then we consider horizontal and vertical rectangles made by union of these squares and labeled
suitably (from left to right for the vertical, and from bottom to top for the horizontal). We define
a grid to be regular if inside each rectangles we can find a certain number of paths of points with
properties (a)–(g) of Definition 2.5. These paths are further labeled inside each rectangles (from
left to right in the vertical rectangles, and from bottom to top in the horizontal rectangles). In
Figure 2.1 are depicted the sets Vε(vjm) and Vε(him) composed of the Voronoi cells of the points
of the path. Theorem 2.6 ensures the existence of such grids with uniform bounds, by exploiting
a Bernoulli site-percolation argument (see Section 6).

The following result ensures that we can find a universal constant Υ such that Gt(Υ; ηε) 6= ∅ for
a suitable choice of the parameters ε, t, α, λ. It comes as a re-adaptation of a percolation result in
[7] coupled with a technical geometric construction. We postpone the proof to Appendix 6.

Theorem 2.6. There exists α0, λ0 with the following properties. Provided

α ≤ α0, λ > max

{
2

α
, λ0

}
, (2.6)

we can find a constant Υ > 0, depending on α only, and, for any t ∈ R+ and for almost all
realizations ω, a constant ε0(ω, t) > 0, such that, if ε ≤ ε0 then Gt(Υ; ηε) 6= ∅.
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In order to lighten the notation we now choose α, λ satisfying (2.6) and we consider them to
be fixed for the rest of the paper. We are covering Q with squares of size t and in horizontal,
and vertical rectangles given by union of squares from the subdivision. We are considering the
paths lying inside the rectangles and satisfying geometric properties (a)–(g). In particular, we find
sometimes convenient to work on Qtkt ⊃ Q, which represent a slightly bigger square and can be
divided in exactly k2

t squares of size t.

2.7. A notion of convergence for functions on Poisson point clouds. For a fixed t we
introduce the set of simple function on Q as the space

Xt :=

{
w ∈ L2(Qtkt)

∣∣∣∣ w =

k2t∑
i,j=1

ci,j1Qti,j

}
.

Fix now (ε, t) and consider a grid Gε,t ∈ Gt(Υ; ηε). For every i, j = 1, . . . kt we denote by

(u)
Gε,t
i,j :=

1

ηε(Gε,t ∩Qti,j)
∑

x∈Gε,t∩Qti,j

u(x), (2.7)

and we consider the operator TG : L1(Q; ηε)→ Xt to be

TGε,t(u)(x) :=

kt∑
i,j=1

(u)
Gε,t
i,j 1Qti,j

(x). (2.8)

Definition 2.7. A sequence of function uε : ηε ∩ Q → R, uε ∈ L2(Q; ηε) is said to converge to
u : Q → R, and we simply write uε → u, if there exists Υ ∈ R+ such that, for any t ∈ R and for
any sequence of grids {Gε,t ∈ Gt(Υ; ηε)}ε>0, it holds

TGε,t(uε) −→ ut in L2(Qtkt) as ε→ 0,

where {ut ∈ Xt}t∈R+ satisfies

ut → u in L2(Q) as t→ +∞.

Remark 2.8. We note that in order to have a meaningful notion of convergence, it is necessary
to prove that the convergence is well defined; that is, it is independent of the choice of the grids.
This will be a consequence of Lemma 4.3. Also note that this convergence implies (and, along
sequences with equibounded energy, is in fact equivalent to) the L2 convergence of the piecewise
constant extension ûε restricted to the (Voronoi cells of the) grids (see Propositions 4.4 and 4.5)

Remark 2.9 (Convergence up to subsequences). Note that with this notion of convergence, a
sequence uε converge to u up to subsequences if there exists {εn}n∈N such that for any sequence
of regular grids {{Gεn,t}n∈N ∈ Gt(Υ; ηεn)}t∈R+

it holds

TGεn,t(uεn)→ ut as n→ +∞ in L2(Qtkt), ut −→ u as t→ 0 in L2(Q).

3. The main results

We have now introduced all the basic notation and we are thus ready to state our main results,
which regard the asymptotic behavior of Fε. The first one is a compactness result.

Theorem 3.1 (Compactness Theorem). Let Ω ⊃ Q and given λ0 > 0 as in Theorem 2.6, if
λ > λ0 the following holds. If {uε ∈ L2(Ω; ηε)}ε>0 is a sequence satisfying

sup
ε>0

{ ∑
x∈ηε∩A

∑
y∈ηε∩Bλε(x)

|uε(x)− uε(y)|2 +
∑

x∈ηε∩Q
ε2u2

ε(x)

}
< +∞, (3.1)

where Q ⊂ A ⊂ Ω is any open set strictly containing Q, then there exists u ∈ W 1,2(Q) such that
uε converge to u, up to subsequences, in the sense of Definition 2.7.
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Remark 3.2. Note that in requiring to a sequence to have equibounded energy on Q we need to
take into account Remark 2.2 and the fact that the energy is carried also on BQ. For this reason
we state the compactness Theorem in terms of uε ∈ L2(Ω; ηε), with a uniform bound for the
energy assumed on a set A, provided Q ⊂ A ⊂ Ω. In other words we are asking to the functions
uε to be defined on a slightly bigger open set than just Q.

With this compactness theorem in mind, that will be proved in Section 4, the following Γ
convergence result is then meaningful.

Theorem 3.3 (Γ-convergence). There exists a deterministic constant Ξ such that, for almost all
realizations ω, the energy Fε(·;Q) Γ-converges to

F(u;Q) = Ξ

ˆ
Q

|∇u(x)|2 dx

in the topology induced by the convergence of Definition 2.7. Namely

(lim inf) if uε → u in the sense of Definition 2.7 then

lim inf
ε→0

Fε(uε;Q) ≥ Ξ

ˆ
Q

|∇u(x)|2 dx;

(lim sup) for any u ∈ W 1,2(Q) there exists a sequence {uε ∈ L2(Q; ηε)}ε>0 such that
uε → u in the sense of Definition 2.7 and

lim sup
ε→0

Fε(uε;Q) ≤ Ξ

ˆ
Q

|∇u(x)|2 dx.

The constant Ξ is identified by the relation

Ξ := lim
T→+∞

m(ξ;QT )

T 2|ξ|2

where, for any open set A, m(·;A) denotes the cell problem

m(ξ;A) := inf

 ∑
x∈η∩A

∑
y∈η∩Bλ(x)

|v(x)− v(y)|2
∣∣∣∣∣∣

v : η → R
v(x) = ξ · x for all x ∈ η such that

dist(x, ∂A) ≤ 2λ

 . (3.2)

This theorem will be proved in Section 5. More precisely, in Section 5.1 we will prove the
relation between Ξ and cell problem (3.2), in Section 5.3 the lower bound and finally in Section
5.4 the upper bound.

4. Proof of the compactness theorem

This section is entirely devoted to the proof of the compactness Theorem 3.1. We first need a
few technical lemmas in order to guarantee that the convergence of Definition 2.7 is well defined
and that any sequence with bounded energy is pre-compact.

4.1. Preliminary lemmas. For u ∈ L2(Q; ηε) we adopt the shorthand

Dεu(x) :=
∑

y∈ηε∩Bλε(x)

|u(y)− u(x)|2.

For any ε, t fixed we set

Hor(i;Gε,t) := {hi1, . . . ,hiMε,t
}

Ver(j;Gε,t) := {vj1, . . . ,v
j
Mε,t
}.

Next lemma ensures that we can choose a “skeleton” of Gε,t connecting two neighboring squares
and carrying small energy (see Figure 4.1). This lemma is stated and proved for horizontal
neighboring squares but it holds also for vertical neighboring squares with obvious changes in the
proof. It will be used in the proof of Theorem 3.1 (in particular in the proof of Lemma 4.2).
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Figure 4.1. The “skeleton” obtained in Lemma 4.1. The blue part is carrying
less energy than the grid (in red). In particular this allows to link each y ∈ Qti,j
to w ∈ Qti,j+1 on particular paths that follows ph(i,j). Again, for illustrative reason

we are depicting the Voronoi cells of the point clouds.

Lemma 4.1. Fix ε > 0. Let t ∈ R+, Gε,t ∈ Gt(Υ; ηε) and u ∈ L2(Q; ηε). For all Qti,j , Q
t
i,j+1

(horizontal) neighboring squares there exists two vertical paths and a horizontal path

v̄j ∈ Ver(j;Gε,t), v̄j+1 ∈ Ver(j + 1;Gε,t), h̄i ∈ Hor(i;Gε,t)

such that, setting

phi,j := (v̄j ∩Qti,j) ∪ (v̄j+1 ∩Qti,j+1) ∪ (h̄i ∩ (Qti,j ∪Qti,j+1)),

we have ∑
x∈ph

(i,j)

Dεu(x) ≤ Υε

t
Fε(u; (Qti,j ∪Qti,j+1)).

Proof. Since both horizontal and vertical paths are all disjoint we have that

Mε,t∑
m=1

∑
x∈him∩(Qti,j∪Qti,j+1)

Dεu(x) ≤ Fε(u; (Qti,j ∪Qti,j+1))

Mε,t∑
m=1

∑
x∈vjm∩Qti,j

Dεu(x) +

Mε,t∑
m=1

∑
x∈vj+1

m ∩Qti,j+1

Dεu(x) ≤ Fε(u;Qti,j) + Fε(u;Qti,j+1).

In particular there are three paths h̄i ∈ Hor(i;Gε,t), v̄i ∈ Ver(j;Gε,t), v̄
j+1 ∈ Ver(j+ 1;Gε,t) such

that ∑
x∈h̄i∩(Qti,j∪Qti,j+1)

Dεu(x) ≤ 1

Mε,t
Fε(u;Qti,j ∪Qti,j+1)

∑
x∈v̄j∩Qti,j

Dεu(x) +
∑

x∈v̄j+1∩Qti,j+1

Dεu(x) ≤ 1

Mε,t
[Fε(u;Qti,j) + Fε(u;Qti,j+1)]

Note that, by the properties of the grid we have 1
Mε,t

≤ Υ ε
t . Therefore, we conclude. �

We now provide a lemma that allows to estimate the difference of TGε,t(uε), defined as in (2.8),
between neighboring squares of the squares partition Qt. Once again, we limit ourselves to prove
the statement for horizontal neighboring squares since the vertical case follows in the same way
up to changing the notation accordingly.
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Lemma 4.2. There exists a constant C > 0 independent of ε and t such that for any Gε,t ∈
Gt(Υ; ηε) any u ∈ L2(Q; ηε) and any pair Qti,j , Q

t
i,j+1 of neighboring squares there holds∣∣∣(u)

Gε,t
i,j − (u)

Gε,t
i,j+1

∣∣∣2 ≤ CFε(u;Qti,j ∪Qti,j+1).

Proof. Let h̄i, v̄j , v̄j+1 be the paths given by Lemma 4.1. Let p := phi,j and let

(u)pi,j :=
1

ηn(p ∩Qti,j)
∑

x∈p∩Qti,j

u(x), (u)pi,j+1 :=
1

ηε(p ∩Qti,j+1)

∑
x∈p∩Qti,j+1

u(x).

We will make use of the above quantities (namely the average of the function u on the skeleton

p) to estimate (u)
Gε,t
i,j .

For any x ∈ p ∩ Qti,j we now build a family of paths Pi,j(x) which links x to all points

y ∈ Gε,t ∩ Qti,j . The construction will be such that we may control the number of times a path

path passes through a point y ∈ Gε,t ∩ Qti,j . We say that y ∈ Gε,t ∩ Qti,j is a horizontal point if
it belongs to some horizontal path h ∈ Hor(i;Gε,t) and does not belongs to any v ∈ Ver(j;Gε,t).
We say instead that it is vertical if the converse happens. We say that it is nodal if it belongs
to the intersection of horizontal and vertical paths. We briefly describe the construction: if y is
horizontal, say it belongs to him the m-th horizontal path, then we consider the path starting from
x, following p until we meet him and then following him until we reach y. If instead y is vertical

and belongs to vjl we start from x, follow p until we meet vjl and then follow vjl to reach y. If it is
nodal we follow any of the two possibilities. This family of paths, call it Pi,j(x), have the following
property, which is crucial in what follows. For any x ∈ p ∩ Qti,j , each point y ∈ (Gε,t ∩ Qti,j) \ p

belongs to not more than Ct
ε paths t ∈ Pi,j(x). Indeed, if y ∈ him then it belongs only to the paths

with initial points in him, which do not exceed Ct/ε. Moreover, the length of each path does not
exceed Ct/ε as well.

We now divide the rest of the proof in two steps.

Step one: Comparison between (u)pi,j and (u)
Gε,t
i,j . For the sake of shortness set

Nj := ηε(p ∩Qti,j), N ′j := ηε(Gε,t ∩Qti,j)

Then, by using Jensen’s inequality twice and property (g) of Definition 2.5 we have∣∣∣(u)
Gε,t
i,j − (u)pi,j

∣∣∣2 ≤ 1

NjN ′j

∑
x∈p∩Qti,j

∑
y∈Gε,t∩Qti,j

|u(x)− u(y)|2

≤ C

NjN ′j

∑
x∈p∩Qti,j

∑
t∈Pi,j(x)

`(t)
∑
y∈t

Dεu(y)

By invoking property (d) we can further deduce∣∣∣(u)
Gε,t
i,j − (u)pi,j

∣∣∣2 ≤ Ct

εNjN ′j

∑
x∈p∩Qti,j

∑
y∈Gε,t∩Qti,j

Dεu(y)
∑

t∈Pi,j(x)

1t(y)

≤ Ct

εNjN ′j

∑
x∈p∩Qti,j

∑
y∈(Gε,t∩Qti,j)\p

Dεun(y)
∑

t∈Pi,j(x)

1t(y)

+
Ct

εNjN ′j

∑
x∈p∩Qti,j

∑
y∈p

Dnun(y)
∑

t∈Pi,j(x)

1t(y)

≤ Ct2

(ε)2NjN ′j

∑
x∈p∩Qti,j

∑
y∈(Gε,t∩Qti,j)\p

Dεu(y) +
Ct3

(ε)3NjN ′j

∑
x∈p∩Qti,j

∑
y∈p

Dεu(y)

≤ Ct2

ε2N ′j
Fε(u;Qti,j) +

Ct3

ε3N ′j

ε

t
Fε(u;Qti,j ∪Qti,j+1),
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where the last inequality follows from the particular choice of p given by Lemma 4.1. Since the
properties of the grid (property (d) of Theorem 2.6) also imply that

N ′j ≥
Ct2

ε2
,

we conclude that ∣∣∣(u)
Gε,t
i,j − (u)pi,j

∣∣∣2 ≤ CFε(u;Qti,j ∪Qti,j+1). (4.1)

The same exact computation shows also that∣∣∣(u)
Gε,t
i,j+1 − (u)pi,j+1

∣∣∣2 ≤ CFε(u;Qti,j ∪Qti,j+1). (4.2)

Step two: Comparison between (u)pi,j+1 and (u)pi,j . For x ∈ p∩Qti,j let P ′j+1(x) be the family

of paths t on p which link each point of p ∩ Qti,j+1 to x. By considering one path for each

y ∈ p ∩ Qti,j+1 we can build P ′j+1(x) in a way that each t ∈ P ′j+1(x) contains not more than
Ct/ε) points. Moreover, each point z ∈ p is contained in at most Ct/ε paths. With the notation
introduced above, we then compute∣∣(u)pi,j − (u)pi,j+1

∣∣2 ≤ 1

NjNj+1

∑
x∈p∩Qti,j

∑
y∈p∩Qti,j+1

|u(x)− u(y)|2

≤ C

NjNj+1

∑
x∈p∩Qti,j

∑
t∈P′j+1(x)

`(t)
∑
y∈t

Dεu(y)

≤ Ct

εNjNj+1

∑
x∈p∩Qti,j

∑
y∈p∩(Qti,j∪Qti,j+1)

Dεu(y)
∑

t∈P′j+1(x)

1t(y)

≤ Ct2

ε2NjNj+1

∑
x∈p∩Qti,j

∑
y∈p∩(Qti,j∪Qti,j+1)

Dεu(y)

≤C
∑

x∈p∩Qti,j

ε

t
Fε(u;Qti,j ∪Qti,j+1)

≤CFε(u;Qti,j ∪Qti,j+1). (4.3)

Conclusion. By means of Step one and Step two, in particular by collecting (4.1), (4.2) and
(4.3) and by means of a triangular inequality we conclude. �

4.2. Properties of the convergence for sequences with equibounded energy. We now
state and prove some useful properties of the convergence in Definition 2.7. We start with the
following lemma, which ensures that the limit of sequences with equibounded energy, when it exists,
is unique and does not depend on the choice of the sequence of regular grids {Gε,t ∈ Gt(Υ; ηε)}ε,t>0

when ε, t→ 0.

Lemma 4.3. If {uε ∈ L2(Q; ηε)}ε>0 is a sequence of function satisfying (3.1) and {Gε,t ∈
Gt(Υ; ηε)}ε,t>0, {Ḡε,t ∈ Gt(Υ′; ηε)}ε,t>0 (with possibly Υ 6= Υ′) are two sequences of regular grids
such that

TGε,t(uε)
ε→0−→ ut, T Ḡε,t(uε)

ε→0−→ ūt

then

lim
t→0

ˆ
Q

∣∣ut(x)− ūt(x)
∣∣2 dx = 0.

Proof. Fix Qti,j ∈ Qt and let p, p̄ be the union of paths given by Lemma 4.1 relative to Qti,j (and

one of its neighbors, say Qti,j+1 without loss of generality) and to to the grid Gε,t, Ḡε,t respectively.

Now by construction we have that p∩Qti,j , p̄∩Qti,j share at least two points. In particular, for any

x ∈ p ∩Qti,j we can still build a family P(x) of paths that link each y ∈ p̄ ∩Qti,j to x containing

only points in p ∪ p̄ ∩Qti,j . We can also ensure that each t ∈ P(x) contains not more than Ct/ε
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points and that any point in z ∈ p ∪ p̄ ∩ Qti,j is contained in at most Ct/ε paths in P(x). With
the notation introduced in the proof of Lemma 4.2 we now compute

∣∣(uε)pi,j − (uε)
p̄
i,j

∣∣2 ≤ 1

NjN̄j

∑
x∈p∩Qti,j

∑
y∈p̄∩Qti,j

|uε(x)− uε(y)|2

≤ 1

NjN̄j

∑
x∈p∩Qti,j

∑
t∈P(x)

`(t)
∑
y∈t

Dεu(x)

≤ CFε(uε;Qti,j ∪Qti,j+1),

where we have used the properties of p, p̄ and of t ∈ P(x). Now, by recalling that (4.1),(4.2) are
in force respectively on Gε,t,p and Ḡε,t, p̄ by means of the same arguments used to prove Step
one of Lemma 4.2, with a triangular inequality we obtain

∣∣∣(uε)Gε,ti,j − (uε)
Ḡε,t
i,j

∣∣∣2 ≤ CFε(uε;Qti,j ∪Qti,j+1).

If we sum up over all i, j and we observe that the energy of each square is counted at most a finite
number of time (independent of t, n) we reach

kt∑
i,j=1

∣∣∣(uε)Gε,ti,j − (uε)
Ḡε,t
i,j

∣∣∣2 ≤ CFε(uε;Qtkt) ≤ CFε(uε;A).

By means of this last relation we have

ˆ
Q

∣∣∣TGε,t(uε)(x)− T Ḡε,t(uε)(x)
∣∣∣2 dx = t2

kt∑
i,j=1

∣∣∣(uε)Gε,ti,j − (uε)
Ḡε,t
i,j

∣∣∣2 ≤ Ct2
In particular, if TGε,t(uε)

ε−→ ut, T Ḡε,t(uε)
ε−→ ūt then

ˆ
Q

∣∣ut(x)− ūt(x)
∣∣2 dx ≤ Ct2

and we conclude. �

Now we proceed to state and prove Proposition 4.4 and Proposition 4.5, which will give us a
useful characterization of the convergence in Definition 2.7. We will make use of the notion of
piecewise-constant extension introduced in Section 2.5.

Proposition 4.4 (L2 convergence on the grids). Let {uε ∈ L2(Q; ηε)}ε>0 be a sequence satisfying
(3.1) and assume that uε → u in the sense of Definition 2.7. Then

lim
t→0

lim sup
ε→0

ˆ
Vε(Gε,t)∩Q

|ûε(x)− u(x)|2 dx = 0 (4.4)

for any sequence of regular grids {Gε,t ∈ Gt(Υ; ηε)}ε,t>0.
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Proof. By means of similar computations as the ones used in the proof of Lemmas 4.2 and 4.3, we
can infer also that for any x ∈ Gε,t ∩Qti,j (adopting the same notation)∣∣uε(x)− (uε)

p
i,j

∣∣2 ≤ C

Nj

∑
y∈p∩Qti,j

|uε(x)− uε(y)|2 ≤ C

Nj

∑
t∈Pi,j(x)

∑
y∈t

Dεu(y)

≤ C

Nj

∑
y∈Gε,t∩Qti,j

Dεuε(y)
∑

t∈Pi,j(x)

1t(y)

≤ Ct

Njε

∑
y∈Gε,t∩Qti,j\p

Dεuε(y) +
Ct2

Njε2

∑
y∈p∩Qti,j

Dεuε(y)

≤ Ct

Njε

∑
y∈Gε,t∩Qti,j\p

Dεuε(y) +
Ct

Njε
Fε(uε;Qti,j ∪Qti,j+1)

≤CFε(uε;Qti,j ∪Qti,j+1) (4.5)

for a constant independent of t, ε. In particular, by collecting (4.5) and (4.1) we have∣∣∣uε(x)− (uε)
Gε,t
i,j

∣∣∣2 ≤ CF(uε;Q
t
i,j ∪Qti,j+1),

which, summed up over x ∈ Gε,t and i, j ∈ {1, . . . , kt}, and taking into accounting property (d)
of Definition 2.5 (implying that #(Gε,t ∩Qti,j) ≤ Ct

2/ε2 ), yields

ε2
∑

x∈Gε,t∩Q

∣∣uε(x)− TGε,t(uε)(x)
∣∣2 ≤ Ct2Fε(uε;A). (4.6)

In particular, if uε → u, and {ut ∈ Xt}t∈R+
denotes the sequence of intermediate functions with

respect to Gε,t, then

t2
∑

J∈It(Q)

|(uε)
Gε,t
J − utJ |2

ε−→ 0

and thus

ε2
∑

x∈Gε,t∩Q
|uε(x)− ut(x)|2 ≤ε2

∑
x∈Gε,t∩Q

∣∣uε(x)− TGε,t(uε)(x)
∣∣2 + Ct2

∑
J∈It(Q)

∣∣∣(uε)Gε,ti,j − u
t
J

∣∣∣2
≤Ct2Fε(uε;A) + Ct2

∑
J∈It(Q)

∣∣∣(uε)Gε,tJ − utJ
∣∣∣2 .

This implies thatˆ
Vε(Gε,t)∩Q

|ûε(x)− u(x)|2 dx ≤
ˆ
Vε(Gε,t)∩Q

|ûε(x)− ut(x)|2 dx+

ˆ
Gε,t

|ut(x)− u(x)|2 dx

≤ Ct2
1 +

∑
J∈It(Q)

∣∣∣(uε)Gε,tJ − utJ
∣∣∣2
+

ˆ
Q

|ut(x)− u(x)|2 dx

and then also (4.4) holds for any sequence of regular grids {Gε,t ∈ Gt(Υ; ηε)}ε,t>0. �

Proposition 4.5. Let εn, tn be two sequences. Set ηn := ηεn . Let {un ∈ L2(Q; ηn))}n∈N be a
sequence satisfying (2.5). If there exists a sequence of regular grids {Gn ∈ Gtn(Υ; ηn)}n∈N such
that

lim
n→+∞

ˆ
Vεn (Gn)∩Q

|ûn(x)− u(x)|2 dx = 0. (4.7)

Then un → u in the sense of Definition 2.7.



18 ANDREA BRAIDES AND MARCO CAROCCIA

Proof. We first show that

lim
n→+∞

ˆ
Q

|TGn(un(x))− u(x)|2 dx = 0. (4.8)

Indeed, by means of the same computation as in the proof of Proposition 4.4 we can achieve (4.6);
that is,

ε2
n

∑
x∈Gn∩Q

|un(x)− TGn(un)(x)|2 ≤ Ct2nFεn(un;Q).

This implies that

lim
n→+∞

ˆ
Vεn (Gn)∩Q

|ûn(x)− TGn(un)(x)|2 dx = 0,

which, together with hypothesis (4.7) implies (4.8).

We now fix t ∈ R and we provide a suitable rearrangement of Gn in order to obtain a grid
G̃εn,t ∈ Gt(Υ; ηn), provided n is large enough. We describe the construction. Inside each Rhi (t) we
can find at least cn = b(t− 2tn)/tnc horizontal rectangles Rhi′(tn), . . . Rhi′+cn(tn) strictly contained

in Rhi (t) and each containing Mn disjoint horizontal paths hi1, . . . ,h
i
Mn

. Note that

t

2
≤ tncn ≤ 2t (4.9)

In particular, by relabeling the paths of Gn as {him, m = 1, . . . ,Mncn} ⊂ Rhi (t) for each horizontal

rectangle accordingly. We repeat the same argument for vertical paths and we obtain a grid G̃n,t.

Thanks to (4.9) we have that G̃n,t ∈ Gt(2Υ, ηn).

We now show that T G̃n,t(un)→ ut and ut → u in L2(Q). Let now J ∈ It(Q) and consider

In(Qt(J)) := {J ′ ∈ Itn(Qt(J)) : Qtn(J ′) ⊂ Qt(J)}, rn(J) := #(In(Qt(J))).

Recalling the notation

(un)GnJ′ =
1

ηn(Gn ∩Qt(J ′))
∑

x∈Gn∩Qt(J′)

un(x), (un)
G̃n,t
J =

1

ηn(G̃n,t ∩Qt(J))

∑
x∈G̃n,t∩Qt(J)

un(x),

we have

(un)
G̃n,t
J =

1

ηn(G̃n,t ∩Qtn(J))

∑
x∈G̃n,t∩Qtn (J)

un(x)

=
1

ηn(G̃n,t ∩Qt(J))

∑
J′∈In(Qt(J))

∑
x∈G̃n,t∩Qtn (J′)

un(x) +Rn(J)

=
∑

J′∈In(Qt(J))

ηn(G̃n,t ∩Qtn(J ′))

ηn(G̃n,t ∩Qt(J))
(un)GnJ′ +Rn(J)

=
∑

J′∈In(Qt(J))

κn(J ′)(un)GnJ′ +Rn(J),

where

κn(J ′) =
ηn(G̃n,t ∩Qtn(J ′))

ηn(G̃n,t ∩Qt(J))

Rn(J) =
1

ηn(G̃n,t ∩Qt(J))

∑
J′ /∈In(Qt(J))

∑
x∈Gn∩Qtn (J′)∩Qt(J)

un(x).

Observing that

(u)Qt(J) =
t2n
t2

∑
J′∈In(Qt(J))

(u)Qtn (J′) +
1

t2

∑
J′∈Itn (∂Qt(J)))

ˆ
Qtn (J′)∩Qt(J)

u(y) dy
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we haveˆ
Q

∣∣∣T G̃n,t(un)(x)−
∑

J∈It(Q)

(u)Qt(J)1Qt(J)(x)
∣∣∣2 dx

=
∑

J∈It(Q)

t2|(un)
G̃n,t
J − (u)Qt(J)|2

= C
∑

J∈It(Q)

t2
∣∣∣ ∑
J′∈In(Qt(J))

κn(J ′)(un)GnJ′ − (u)Qt(J)

∣∣∣2 +
∑

J∈It(Q)

t2|Rn(J)|2

≤ C
∑

J∈It(Q)

t2
∣∣∣ ∑
J′∈In(Qt(J))

κn(J ′)(un)GnJ′ −
t2n
t2

(u)Qtn (J′)

∣∣∣2 + C
∑

J∈It(Q)

t2|R′n(J)|2, (4.10)

where we have set

R′n(J) := Rn(J) +
1

t2

∑
J′∈Itn (∂Qt(J)))

ˆ
Qtn (J′)∩Qt(J)

u(y) dy.

We now concentrate on proving separately the estimates required.∣∣∣ ∑
J′∈In(Qt(J))

κn(J ′)(un)GnJ′ −
t2n
t2

(u)Qtn (J′)

∣∣∣2
≤
∣∣∣ ∑
J′∈In(Qt(J))

κn(J ′)
[
(un)GnJ′ − (u)Qtn (J′)

]∣∣∣2
+

∑
J′∈In(Qt(J))

∣∣∣κn(J ′)− t2n
t2

∣∣∣2|(u)Qtn (J′)|2

≤
∑

J′∈In(Qt(J))

κn(J ′)2 rn(J)

t2n

ˆ
Qtn (J′)

|(un)GnJ′ − u(x)|2 dx

+
∑

J′∈In(Qt(J))

∣∣∣κn(J ′)− t2n
t2

∣∣∣2|(u)Qtn (J′)|2 (4.11)

Observe that rn(J) ≤ t2

t2n
, κn(J ′) ≤ C t2n

t2 , and then∑
J′∈In(Qt(J))

κn(J ′)2 rn(J)

t2n

ˆ
Qtn (J′)

|(un)GnJ′ − u(x)|2 dx

≤C
t2

∑
J′∈In(Qt(J))

ˆ
Qtn (J′)

|(un)GnJ′ − u(x)|2 dx ≤ C

t2

ˆ
Qt(J)

|TGn(un)(x)− u(x)|2 dx. (4.12)

We also have ∑
J′∈In(Qt(J))

∣∣∣κn(J ′)− t2n
t2

∣∣∣2|(u)Qtn (J′)|2 ≤ C
t2n
t4

∑
J′∈In(Qt(J))

ˆ
Qtn (J′)

|u|2 dx

≤ C t
2
n

t4

ˆ
Qt(J)

|u|2 dx. (4.13)

In particular, (4.12) and (4.13) yield∑
J∈It(Q)

t2
∣∣∣ ∑
J′∈In(Qt(J))

κn(J ′)(un)GnJ′ −
t2n
t2

(u)Qtn (J′)

∣∣∣2 ≤C ˆ
Q

|TGn(un)(x)− u(x)|2 dx

+
Ct2n
t2

ˆ
Q

|u|2 dx.

(4.14)
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Finally, we estimate

t2|Rn(J)|2 ≤ t2
( ∑
J′∈It(∂Qt(J))

κn(J ′)(un)GnJ′
)2

≤ t2#(Itn(∂Qt(J)))
∑

J′∈Itn (∂Qt(J))

κn(J ′)2|(un)GnJ′ |
2

≤ Ctn
t

∑
J′∈Itn (∂Qt(J))

t2n|(un)GnJ′ |
2

≤ Ctn
t

∑
J′∈Itn (∂Qt(J))

ˆ
Qtn (J′)

|TGn(un)(x)|2 dx. (4.15)

Also, we have

1

t2

( ∑
J′∈Itn (∂Qt(J)))

ˆ
Qtn (J′)∩Qt(J)

u(y) dy
)2

≤ C#(Itn(∂Qt(J)))

t2

∑
J′∈Itn (∂Qt(J)))

(ˆ
Qtn (J′)∩Qt(J)

u(y) dy
)2

≤ C tn
t

∑
J′∈Itn (∂Qt(J)))

ˆ
Qtn (J′)∩Qt(J)

u(y)2 dy (4.16)

By collecting (4.14), (4.15) and (4.16) we then haveˆ
Q

∣∣∣T G̃n,t(un)(x)−
∑

J∈It(Q)

(u)Qt(J)1Qt(J)(x)
∣∣∣2 dx

≤ C

ˆ
Q

|TGn(un)(x)− u(x)|2 dx+
Ct2n
t2

ˆ
Q

|u|2 dx

+
Ctn
t

∑
J∈It(Q)

∑
J′∈Itn (∂Qt(J))

ˆ
Qtn (J′)

(|TGn(un)(x)|2 + |u(x)|2) dx

≤ C

ˆ
Q

|TGn(un)(x)− u(x)|2 dx+
Ct2n
t2

ˆ
Q

|u|2 dx

+
Ctn
t

ˆ
Q

(|TGn(un)(x)|2 + |u(x)|2) dx.

Hence, by taking the limit as n→ +∞ we obtain T G̃n,t(un)→ ut in L2(Q) where

ut :=
∑

J∈It(Q)

(u)Qt(J)1Qt(J)(x).

Note that ut → u in L2(Q). In particular we exhibit a sequence of regular grids along which
convergence in the sense of Definition 2.7 holds. Lemma 4.3 ensures then that it occurs on any
sequence of regular grids, achieving thus the proof. �

Remark 4.6. Note that Propositions 4.4 and 4.5 imply also that the stronger convergence on the
piecewise-constant functions implies the convergence in the sense of Definition 2.7, provided the
sequence has equibounded energy. Indeed if uε is a sequence satisfying (2.5) and

lim
ε→0

ˆ
Vε(ηε)∩Q

|ûε(x)− u(x)|2 dx = 0

then, in particular it converges when restricted to any sequence of regular grids, allowing us to
invoke Proposition 4.5 and thus to conclude that uε → u in the sense of Definition 2.7. This has
some useful consequence, as in the proof of the locality of the convergence (Lemma 4.7) and the
fact that we can diagonalize in the L2 convergence (Lemma 4.8).
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Lemma 4.7. Let uε → u in the sense of Definition 2.7 and satisfying (3.1). Let A ⊆ Q and
suppose that uε = w on A for some w ∈ C1(A) and for all ε > 0. Then u = w on A.

Proof. Let {Gε,t ∈ Gt(Υ, ηε)}ε,t>0 be a sequence of regular grids. Then, Proposition 4.4 gives

lim
t→0

lim sup
ε→0

ˆ
Vε(Gε,t)∩A

|ûε(x)− u(x)|2 dx = 0.

Moreover, since uε(x) = w(x) on ηε∩A and since |x− y| ≤ λε for x ∈ Gε,t, y ∈ C(x; ηε) (property
(g) of Definition 2.5) and |C(x; ηε)| ≤ Cε2, we haveˆ

Vε(Gε,t)∩A
|ûε(y)− w(y)|2 dy =

∑
x∈Gε,t∩A

ˆ
C(x;ηε)∩A

|w(x)− w(y)|2 dy

≤ C‖∇w‖2∞
∑

x∈ηε∩A
ε4 ≤ Cε2,

where C depends on α, λ and |A|. Here we have used Proposition 2.3. Then, for some subsequence
{εn, tn}n∈N and by means of a triangular inequality we have

lim
n→+∞

ˆ
Vεn (Gεn,tn )∩A

|u(x)− w(x)|2 dx = 0.

Observe now that 1Vεn (Gεn,tn ) ⇀ f weakly L2(A) and f(x) ≥ s0 > 0 due to the good properties
of the grids. In particular

s0

ˆ
A

|u(x)− w(x)|dx = lim
n→+∞

ˆ
Vεn (Gεn,tn )∩A

|u(x)− w(x)|dx = 0.

Being s0 > 0 we conclude u = w on A. �

Lemma 4.8. Let {un,r ∈ L2(Q; ηεn), r > εn > 0} be a sequence such that

a) For any r > 0, un,r → ur as n goes to +∞ in the sense of Definition 2.7;
b) {ur}r>0 ⊂W 1,2(Q), ur → u as r goes to 0 in L2(Q) for some u ∈W 1,2(Q);
c) supr>εn>0{Fεn(un,r;A)} < +∞ on some open set A ⊃ Q.

Then there is a sequence rn >> εn such that rn → 0 and for which un,rn → u in the sense of
Definition 2.7.

Proof. By invoking Proposition 4.4 we have (up to a subsequence)

lim sup
n→+∞

ˆ
Vεn (Gn)∩Q

|ûn,r(x)− ur(x)|2 dx = 0.

Since also ur → u we have

lim
r→0

lim sup
n→+∞

ˆ
Vεn (Gn)∩Q

|ûn,r(x)− u(x)|2 dx = 0.

Hence, we can select the sought sequence rn to satisfy

lim sup
n→+∞

ˆ
Vεn (Gn)∩Q

|ûn,rn(x)− u(x)|2 dx = 0.

Property (c) and Proposition 4.5 imply now that un,rn → u in the sense of Definition 2.7. �

4.3. Proof of the compactness theorem. We are now ready to prove Theorem 3.1. We rely
on the following Lemma 4.9, which comes as a consequence of [2, Theorem 3.1]. Recall that

It(Q) := {J = (i, j) ∈ tZ2 ∩Q}.

If |J−J ′| = t we write 〈J, J ′〉, meaning that the square QtJ = Qti,j and QtJ′ = Qti′,j′ are neighboring
squares.
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Lemma 4.9. Let {ut ∈ Xt}t∈R+
be a sequence of function such that

sup
t∈R+

{ ∑
J∈It(Q)

∑
J′∈It(Q):
〈J,J ′〉

|utJ − utJ′ |2 + t2
∑

J∈It(Q)

|utJ |2
}
< +∞.

Then there exists a function u ∈ W 1,2(Q) and a subsequence {tl}l∈N such that the piecewise-
constant interpolation of utl converge to u in L2(Q).

Proof of Theorem 3.1. Let α, λ be fixed and ensuring the validity of Theorem 2.6 and choose
{Gε,t ∈ Gt(Υ; ηε)}ε,t to be a sequence of regular grids. Then, by invoking Lemma 4.2 and by
summing up on i, j ∈ {1, . . . , kt}, we infer that∑

J∈It(Q)

∑
J′∈It(Q):
〈J,J ′〉

∣∣∣(uε)Gε,tJ − (uε)
Gn,t
J′

∣∣∣2 ≤ CFε(uε;A) < +∞, (4.17)

where we have adopted the shorthand (uε)
Gε,t
J = (uε)

Gε,t
i,j for J = (i, j). Moreover, by Jensen’s

inequality and the properties of the grid we have

t2
∑

J∈It(Q)

∣∣∣(uε)Gε,tJ

∣∣∣2 ≤ Cε2
∑

J∈It(Q)

∑
y∈Gε,t∩QtJ

|uε(y)|2

≤ Cε2
∑

J∈It(Q)

∑
y∈∩QtJ

|uε(y)|2 ≤ Cε2
∑
y∈∩Q

|uε(y)|2 < +∞. (4.18)

Fix now a sequence {tl}∈N ∈ R+ going to zero and observe that, for any J ∈ Itl(Q) we have∣∣∣(uε)Gε,tlJ

∣∣∣2 ≤ 1

ηε(Gε,tl ∩Q
tl
J )

∑
x∈Gε,tl∩Q

tl
J

|uε(x)|2 ≤ ε2

t2l

∑
x∈Gε,tl∩Q

tl
J

|uε(x)|2 < +∞.

Therefore, for such a fixed tl ∈ R+, we can find {εm}m∈N such that (uεm)
Gεm,tl
J → utlJ . Up to a

diagonal extraction argument we may find {εm}m∈N such that

(uεm)
Gεm,tl
J → utlJ for any J ∈ {1, . . . , ktl}2, l ∈ N.

This means that we can find a sequence of functions {utl ∈ Xtl}l∈N and a subsequence {εm}m∈N
such that

TGεm,tl (uεm) m−→ utl in L2(Q).

If we now invoke Lemma 4.9, combined with estimates (4.17) and (4.18), we can find a subsequence
of {tl}l∈N and a function u ∈W 1,2(Q) such that, with a slight abuse of notation, utl → u in L2(Q)
along the subsequence. But then, by Proposition 4.4 we have

lim
l→+∞

lim sup
m→+∞

ˆ
Vεm (Gεm,tl )∩Q

|ûεm(x)− u(x)|2 dx = 0.

and by invoking Proposition 4.5 this means that there is a subsequence of {uεm}m∈N converging
to u in the sense of Definition 2.7. �

5. Proof of the Γ-convergence Theorem 3.3

In this section we prove Theorem 3.3. We state and prove some preliminary results, subordi-
nated to the identification of the constant Ξ and to the development of the technical machinery
required to present the proof.
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5.1. The cell problem. We recall the notation for the boundary-value problem

m(ξ;A) := inf

{ ∑
x∈η∩A

∑
y∈η∩Bλ(x)

|v(x)− v(y)|2
∣∣∣∣ v : η → R
v(x) = ξ · x for all x ∈ η such that

dist(x, ∂A) ≤ 2λ

}
The first thing we need is the following lemma on the asymptotic behavior of the “cell problem”
m(ξ;QT ) when the boundary values are fixed on a cube QT and T diverges.

Lemma 5.1. For any ξ ∈ R2 it holds

Ξ|ξ|2 := lim
T→+∞

m(ξ;QT )

T 2

where Ξ is a constant independent of the realization.

Remark 5.2. In light of Lemma 5.1, the constant Ξ can be identified as

Ξ := lim
T→+∞

m(e1;QT )

T 2
.

The proof of Lemma 5.1 comes as a consequence of Proposition 5.3 below.

We denote by M(ϑ) a clockwise rotation of an angle ϑ around the origin.

Proposition 5.3. For all ξ ∈ R2 there exists almost surely the limit

f(ξ) := lim
T→+∞

m(ξ;QT )

T d

independent of the realization. Moreover, there exists a function g : R+ → R+ such that

lim
R→+∞

g(R) = +∞

and such that, for any sequence yT with |yT | ≤ Tg(yT ) and any rotation M(ϑ) we have

lim
T→+∞

m((ξ;M(ϑ)QT (yT ))

T d
= lim
T→+∞

m(ξ;QT )

T d
= f(ξ).

Proof. Note that

m(ξ;A ∪B) ≤ m(ξ;A) + m(ξ;B)

whenever |A∩B| = 0. In particular, by arguing exactly as in the proof of [6, Lemma 5.1], invoking
the uniform version of the sub-additive ergodic theorem, [14, Theorem 1], we can achieve the
existence of g and f such that for any family of translations {yT }T∈N satisfying |yT | ≤ Tg(|yT |)
it holds

f(ξ) = lim
T→+∞

m(ξ;M(ϑ)QT (yT ))

T d
.

as desired. �

We now focus on proving Lemma 5.1. During the proof we find it convenient to explicit the
dependence of F1 and mδ on η and λ. In particular, if η′ is another Poisson point process, λ′ ∈ R
we write

F1(v;A, η′λ′) :=
∑

x∈η′∩A

∑
y∈η′∩Bλ′(x)

|v(x)− v(y)|2,

and

m(ξ;A, η′, λ′) := inf

F1(v;A, η′λ′)

∣∣∣∣∣∣
v : η′ → R

v(x) = ξ · x for all x ∈ η′ such that
dist(x, ∂A) ≤ 2λ′

 .

We also refer, whenever needed, to fη′(ξ, λ
′) as the limit in T of m(ξ;A,η′,λ′)

T 2 (which exists because
the argument in Proposition 5.3 applies to a generic Poisson point process η′).



24 ANDREA BRAIDES AND MARCO CAROCCIA

Proof of Lemma 5.1. We argue as follows. We prove the following two relations on f :

f(M(ϑ)ξ) = f(ξ) for all ϑ ∈ [0, 2π) (5.1)

f(rξ) = r2f(ξ) for all r ∈ R+. (5.2)

Equations (5.1) and (5.2) tells us that, setting Ξ := f(e1) then f(ξ) = Ξ|ξ|2. We proceed then to
the proof of (5.1) and (5.2) separately.

Step one: invariance by rotation. Observe that

F1(v;QT , η, λ) =
∑

x∈η∩QT

∑
y∈η∩Bλ(x)

|v(x)− v(y)|2

=
∑

z∈M(ϑ)η∩(M(ϑ)QT )

∑
w∈M(ϑ)η∩Bλ(z)

|v(M(−ϑ)z)− v(M(−ϑ)w)|2

= F1(v(M(−ϑ)·),M(ϑ)QT ,M(ϑ)η, λ).

If v = ξ · x on (∂QT )2λ, then v(M(−ϑ)x) = ξ · (M(−ϑ)x) for x ∈ (∂(M(ϑ)QT ))2λ. In particular

m(M(−ϑ)ξ;M(−ϑ)QT , η, λ) = m(ξ;QT ,M(ϑ)η, λ)

By dividing by T 2 and taking the limit, recalling that the limit exists (Proposition 5.3) , we get

fM(ϑ)η(ξ, λ) = lim
T→+∞

m(ξ;QT ,M(ϑ)η, λ)

T 2

= lim
T→+∞

m(M(−ϑ)ξ;M(−ϑ)QT , η, λ)

T 2
= fη(M(−ϑ)ξ, λ). (5.3)

Noting that M(ϑ)η = η in distribution, we conclude that m(ξ;Q,M(ϑ)η, λ) = m(ξ;QT , η, λ) in
distribution. This equality in distribution implies that fη(ξ, λ) = fM(ϑ)η(ξ, λ) in distribution.
Since fη and fM(ϑ)η are independent of the realizations, as stated in Proposition 5.3, we conclude
that

fη(ξ, λ) = fM(ϑ)η(ξ, λ). (5.4)

Thus, by combining (5.3), (5.4) we get (5.1).

Step two: positive homogeneity of degree two. Fix r ∈ R+ and observe that

F1(v;QT , η, λ) =
∑

x∈η∩QT

∑
y∈Bλ(x)

|v(x)− v(y)|2

=
∑

z∈η/r∩QT/r

∑
w∈Bλ/r(z)

|v(rz)− v(rw)|2

=r2F1(v(r·)/r;QT/r, η/r, λ/r).

If v(x) = ξ · x on x ∈ (∂QT )2λ then v(rx)
r = ξ · x on x ∈ (∂QT/r)2λ/r. In particular, we also get

that m(ξ;QT , η, λ) = r2m(ξ;QT/r, η/r, λ/r). By dividing by T 2 and taking the limit, using the

existence result in Proposition 5.3, we get (setting T̃ = T/r)

fη(ξ, λ) = lim
T→+∞

m(ξ;QT , η, λ)

T 2
= lim
T→+∞

r2m(ξ;QT/r, η/r, λ/r)

T 2

= lim
T̃→+∞

m(ξ;QT̃ , η/r, λ/r)

T̃ 2
= fη/r(ξ, λ/r). (5.5)

Analogously we have

F1(v;QT , η, λ) = r4F1(v(r·)/r2;QT/r, η/r, λ/r).

Thus, if v(x) = (rξ · x) on (∂QT )2λ then v(rx)
r2 = ξ · x on (∂QT/r)2λ/r. As a consequence we also

have the equality

m(rξ;QT , η, λ) = r4m(ξ;QT/r, η/r, λ/r),
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Figure 5.1. In the proof of Proposition 5.4 we refer to the notation depicted here. .

which, dividing by T and sending to T → +∞, still by Proposition 5.3 yields

fη(rξ, λ) = lim
T→

m(rξ;QT , η, λ)

T 2
= r4 lim

T→+∞

m(ξ;QT/r, η/r, λ/r)

T 2

= r2 lim
T̃=T/r→+∞

m(ξ;QT̃ , η/r, λ/r)

T̃

= r2fη/r(ξ, λ/r). (5.6)

By combining (5.5),(5.6) we thus get fη(rξ, λ) = r2fη(ξ, λ); that is, (5.2). �

5.2. A boundary-value fixing argument. We now concentrate on a key ingredient of these
types of results; that is, the possibility of modifying boundary values. Before proceeding, we
introduce the notation by referring to Figure 5.1. We fix δ > 0, N > 0 and we divide (∂Q1)δ ∩Q
(depicted in soft grey on the left in Figure 5.1) in N sectors Si of size δ/N (see one of them in dark
grey on the left). Given Gεn,tn ∈ Gtn(Υ; ηn) inside each sector we can find ci1, . . . , c

i
Kn

disjoint
“annuli” (one of them is depicted in red on the right) composed of portions of paths from the grid
and all contained in Si. Still the good properties of the grid allows us to estimate Kn ≈ δ/εn.
We consider this annuli labelled increasingly from the outer one, and we call Q(cij) the portion

of the square bounded by the Voronoi cells of cij and including them (on the right: the union of
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the region depicted in dark grey and all the red regions). Clearly Q(cij′) ⊂ Q(cij) for j′ ≥ j. We
use this geometry to build cut off functions hi that we will use to change the boundary data of a
sequence of functions un converging to u in the sense of Definition 2.7.

Proposition 5.4. Let U ⊂ Q, be an open set with Lipschitz boundary. Let {xn}n∈N be a sequence
of points and pick {Gεn,tn ∈ Gtn(Υ; ηn−εnxn)}n∈N a sequence of grids and a sequence of functions
{un ∈ L2(Q; εn(η − xn))}n∈N such that

lim
n→+∞

ˆ
Vεn (Gεn,tn )∩U

|ûn(x)− u(x)|2 dx = 0

for some u ∈ C1(U). Suppose that the sequence also satisfies

sup
n∈N
{Fn(un;A, ηεn − xnεn), λ)} = ζ < +∞

for a supset A ⊃ Q. Then, for any δ > 0 there exists a sequence {vn}n∈N such that

vn = u on (ηεn − xnεn) ∩ (∂U)δ ∩ U,

lim
n→+∞

ˆ
Vεn (Gεn,tn )∩U

|v̂n(x)− u(x)|2 dx = 0

and

lim inf
n→+∞

Fn(vn;U, ηεn − xnεn, λ) ≤ lim inf
n→+∞

Fn(un;U, εn(η − xn), λ) + CP (U)‖∇u‖2∞δ (5.7)

where C = C(α, λ) depends on α and λ only and P (U) denotes the perimeter of U .

Proof. For the sake of simplicity we will prove the result only in the case U = Q since the general
case results only in a heavier notation. So we assume U = Q and we fix δ > 0 and N > 0. Consider

Si := Q
1− (i−1)

N δ
\Q1− i

N δ
, i = 1, . . . , N.

For any fixed n > 0, if Gεn,tn ∈ Gtn(Υ; ηn−εnxn) is a regular grid, by joining the paths of the grid
suitably, as in the proof of Theorem 2.6 (see Appendix) for any Si we can find (and eventually
relabel) annuli ci1, . . . , c

i
Kn

where

δ

Υεn
≤ Kn ≤

Υδ

εn
for a Υ uniform in n (see Figure 5.1). We moreover observe, due to the properties of the grid, that

dist(cij , c
i′

j′) ≥ 3λεn for all i, j, i′j′; (5.8)

dist(cij , ∂Si) ≥ 3λεn for all i, j. (5.9)

Moreover, we have

if x ∈ (cij)3λεn ∩ η̃n then η̃n(Bλεn(x)) ≤ 1

α
λ2. (5.10)

Both properties (5.8) and (5.9) derive from property (e) of Definition 2.5 and from the fact that
cij is made of paths of Gεn,tn . Property (5.10) is instead consequence of Property (f) of Definition

2.5. Let Q(cij) denote the portion of the square bounded by cij and containing the Voronoi cells

of points in cij (we refer to Figures 5.1 and 5.2). For i = 1, . . . , N we set

hin(x) :=


0 if x ∈ Q(ci1)c
s
Kn

if x ∈ Q(cis) \Q(cis−1)

1 if x ∈ Q(cKn).
(5.11)

Finally we adopt the shorthand η̃n := εn(η − xn). Note that

N∑
i=1

∑
x∈Si∩η̃n

∑
y∈Bλεn (x)∩η̃n

(un(x)− un(y))2 ≤ 2Fn(un;Q \Q1−δ, η̃n, λ),
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Figure 5.2. The situation in the proof of Proposition 5.4. The difference hn(x)−
hn(y) is different from 0 only on pairs (x, y) satisfying the relation (5.12).

where the constant 2 arises since the interaction around ∂Si are counted twice when summed up
over i. We can thus pick i = 1, . . . , N for which it holds∑

x∈Si∩η̃n

∑
y∈Bλεn (x)∩η̃n

(un(x)− un(y))2 + (u(x)− u(y))2

≤ 2

N
(Fn(un;Q \Q1−δ, η̃n, λ) + Fn(u;Q \Q1−δ, η̃n, λ))

Then, we set hn = hin, cj = cij and

vn(x) := (1− hn(x))u(x) + hn(x)un(x)

Set also Gn := Gεn,tn . We immediately conclude that

ε2
n

∑
x∈Gn∩Q

(vn(x)− u(x))2 = ε2
n

∑
x∈Gn∩Si

(vn(x)− u(x))2(1− hn(x))2

≤ ε2
n

∑
x∈Gn∩Q

(un(x)− u(x))2,

giving vn → u. We also note that

vn(x)− vn(y) =(1− hn(y))(u(y)− u(x)) + hn(y)(un(x)− un(y))

+ (hn(x)− hn(y))(un(x)− u(x)).

Thanks to the structure of vn we thus have∑
x∈Q∩η̃n

∑
y∈Bλεn (x)∩η̃n

(vn(x)− vn(y))2 ≤
∑

x∈(Q\Si)∩η̃n

∑
y∈Bλεn (x)∩η̃n

(vn(x)− vn(y))2

+
∑

x∈Si∩η̃n

∑
y∈Bλεn (x)∩η̃n

(vn(x)− vn(y))2

≤ Fn(un;Q, η̃n, λ) + Fn(u;Q \Q1−δ, η̃n, λ)

+
∑

x∈Si∩η̃n

∑
y∈Bλεn (x)∩η̃n

(vn(x)− vn(y))2,

where the second inequality exploits property (5.9) and the fact that vn agrees with u and un on
a slightly bigger sets than the two connected components of Q \ Si. The choice of i now allows to
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estimate∑
x∈Si∩η̃n

∑
y∈Bλεn (x)∩η̃n

(vn(x)− vn(y))2 ≤C
N

(Fn(un;Q \Q1−δ, η̃n, λ) + Fn(u;Q \Q1−δ, η̃n, λ))

+ C
∑

x∈Si∩η̃n

(un(x)− u(x))2
∑

y∈Bλεn (x)∩η̃n

(hn(x)− hn(y))2,

where C, here and in the rest of the proof, stands for a constant depending on α, λ only and
that may vary from line to line. We now exploit property (5.8): the annuli paths lie at a certain
distance between each other and therefore we have that

(hn(x)− hn(y))2
1Bλεn (x)(y) ≤ Cε2

n
if x /∈ Q(cj), y ∈ η̃n ∩Q(cj) for some j

and |x− y| ≤ λεn
(5.12)

(hn(x)− hn(y))2
1Bλεn (x)(y) = 0 otherwise. (5.13)

In particular, we get∑
x∈Si∩η̃n

(un(x)− u(x))2
∑

y∈Bλεn (x)∩η̃n

(hn(x)− hn(y))2

=
∑
(x,y)

satisfies (5.12)

(un(x)− u(x))2(hn(x)− hn(y))2

≤C ε
2
n

δ2

Kn∑
j=1

∑
x∈η̃n:

x∈Q(cj)
c∩(cj)λεn

∑
y∈Bλεn (x)∩Q(cj)

(un(x)− u(x))2

≤C ε
2
n

δ2

Kn∑
j=1

∑
x∈η̃n:

x∈Q(cj)
c∩(cj)λεn

(un(x)− u(x))2,

where the last equality follows from property (5.10) of the annuli. For x ∈ η̃n ∩Q(cj)
c ∩ (cj)λεn ,

let zx ∈ cj be such that |x− zx| ≤ λεn (see Figure 5.2). Then∑
x∈η̃n:

x∈Q(cj)
c∩(cj)λεn

(un(x)− u(x))2 ≤ C
( ∑
x∈Q(cj)c∩(cj)λεn

(un(x)− un(zx))2 +
∑
x∈η̃n:

x∈Q(cj)
c∩(cj)λεn

(u(x)− u(zx))2

+
∑
x∈η̃n:

x∈Q(cj)
c∩(cj)λεn

(un(zx)− u(zx))2
)

≤C
∑
x∈cj

∑
y∈Bλεn (x)∩η̃n

(un(x)− un(y))2 + (u(x)− u(y))2

+ C
∑
x∈cj

(un(x)− u(x))2,

where the last inequality follow from property (5.10) and the fact that |x − zx| ≤ λεn. Thus, by
summing up over j = 1, . . . ,Kn we obtain

Kn∑
j=1

∑
x∈η̃n:

x∈Q(cj)
c∩(cj)λεn

(un(x)− u(x))2 ≤ CFn(un;Q, η̃n, λ) + CFn(u;Q, η̃n, λ)

+ C
∑
x∈Gn

(un(x)− u(x))2
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Then we conclude that

Fn(vn;Q, η̃n, λ) ≤ Fn(un;Q, η̃n, λ) + Fn(u;Q \Q1−δ, η̃n, λ)

+
C

N
(Fn(un;Q \Q1−δ, η̃n, λ) + Fn(u;Q \Q1−δ, η̃n, λ))

+
C

δ2

[
ε2
nFn(un;Si, η̃n, λ) + ε2

nFn(u;Si, η̃n, λ) + ε2
n

∑
x∈Gn

(un(x)− u(x))2

]
,

where the constant C is independent of n,N, δ. We now use Proposition 2.3 (by observing that
η − xn has the same distribution than η) and consider the limit in n and achieve

lim inf
n→+∞

Fn(vn;Q, η̃n, λ) ≤ lim inf
n→+∞

Fn(un;Q, η̃n, λ) + CP (Q)‖∇u‖2∞δ

+
C

N
(1 + P (Q)‖∇u‖2∞δ).

A further limit in N yields (5.7). �

Proposition 5.5 (Blow-up). Let un → u, u ∈W 1,2(Q) and pick x0 ∈ Q a Lebesgue point of ∇u.
Fix a sequence of regular grids {Gεn,t ∈ Gt(Υ; ηεn)}t∈R+ such that

lim
t→0

lim sup
n→+∞

ˆ
Gεn,t∩Q

|un(x)− u(x)|2 dx = 0.

Then, for any ρ > 0 it holds

Gρεn,t(x0) :=
Gεn,t ∩Qρ − x0

ρ
∈ Gt/ρ

(
Υ; ηρ,x0

εn

)
,

where

ηρ,x0
εn :=

ηεn − x0

ρ
.

Moreover, for any δ > 0 we can choose two sequences tn, ρn → 0 such that

tn
ρn
→ 0,

εn
ρn
→ 0,

|x0|
ρn
≤ g

(
|x0|
εn

)
, (5.14)

where g is the function given by Proposition 5.3. Finally, setting

Gn(x0) :=
Gεn,tn ∩Qρn − x0

ρn
,

we have

lim
n→+∞

ˆ
Vεn (Gn(x0))∩Q

|ûρn,x0
n (x)−∇u(x0) · x|2 dx = 0, (5.15)

where

uρ,x0
n (x) :=

un(x0 + ρx)− u(x0)

ρ
for x ∈ ηρ,x0

εn ∩Q

Proof. We start by proving that Gρεn,t(x0) ∈ Gt/ρ
(
Υ; ηρ,x0

εn

)
. Indeed, property (b) and (c) follow

immediately by construction. By scaling we also get property (e), (f) and (g) from their validity

on Gεn,t. Since Gεn,t ∈ εnηα(λ) we also obtain property (a): Gρεn,t(x0) ⊂
(
ηα(λ)−x0

εn

)
. Property

(d) is immediate since, by replacing t with t/ρ and εn with εn/ρ the bounds (2.5) given by Υ are
still in force.

The second part of the statement comes just from a diagonalization argument in n, t, ρ and by
exploiting that x0 is a Lebesgue point of ∇u. �
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5.3. Proof of the lower bound. We follow the blow-up method by Fonseca and Müller [11] (see
also [5] for its adaptation to homogenization). Let uε → u in the sense of Definition 2.7. Without
loss of generality we can assume that

lim inf
ε→0

Fε(uε;Q) < +∞

Fix x0 ∈ Q a Lebesgue point of ∇u and u, and a subsequence εn → 0 achieving the lim inf. Define

µn(A) := Fεn(uεn ;A).

Then µn
∗
⇀ µ (up to a subsequence) for some measure µ, and un := uεn → u in the sense of

Definition 2.7. Moreover u ∈W 1,2(Q) due to Theorem 3.1. We would like to show that

dµ

dL2
(x) ≥ Ξ|∇u(x)|2

for L2-almost every x ∈ Q. This would imply that

lim inf
ε→0

Fε(uε;Q) = lim
n→+∞

Fεn(un;Q) ≥ Ξ

ˆ
Q

|∇u(x)|2 dx.

Note that

dµ

dL2
(x0) = lim

ρ→0

µ(Qρ(x0))

ρ2
= lim
ρ→0

lim
n→+∞

µn(Qρ(x0))

ρ2
.

Since un → u then, for any t ∈ R+ and any gridGεn,t there exists a ut ∈ Xt such that TGεn,t(un)→
ut. With fixed δ, by invoking Proposition 5.5 we can find two subsequences ρn, tn such that (5.14)
and (5.15) holds. By relabeling ε̃n := εn/ρn, t̃n = tn/ρn, xn := x0/εn and by invoking Proposition
5.4 we can find {vn ∈ L2(Q, ε̃n(η − xn))}n∈N such that

vn(x) = ∇u(x0) · x on Q1 \Q1−δ

and

lim inf
n→+∞

Fε̃n(vn;Q, ε̃n(η − xn), λ) ≤ lim inf
n→+∞

Fε̃n(uρn,x0
n ;Q, ε̃n(η − xn), λ) + C|∇u(x0)|2δ.

Observe now that
dµ

dL2
(x) = lim

n→+∞

Fn(un;Qρn(x0); εnη, λ)

ρ2
n

.

Moreover the following holds

Fn(un;Qρn(x0); εnη, λ) =
∑

x∈Qρn (x0)∩εnη

∑
y∈Bλεn (x)∩εnη

|un(x)− un(y)|2

=
∑

x∈Qρn∩(εnη−x0)

∑
y∈Bλεn (x)∩(εnη−x0)

|un(x0 + x)− un(x0 + y)|2

=
∑

x∈Q∩ εnρn (η−xn)

∑
y∈Bλ εn

ρn
(x)∩ εnρn (η−xn)

|un(x0 + ρnx)− un(x0 + ρny)|2

= ρ2
n

∑
x∈Q∩ε̃n(η−xn)

∑
y∈Bλε̃n (x)∩ε̃n(η−xn)

|uρn,x0
n (x)− uρn,x0

n (y)|2

= ρ2
nFε̃n(uρn,x0

n ;Q, ε̃n(η − xn), λ).

In particular, we have

dµ

dL2
(x) = lim

n→+∞

Fn(un;Qρn(x0); εnη, λ)

ρ2
n

≥ −Cδ|ξ|2 + lim inf
n→+∞

Fε̃n(vn;Q, ε̃n(η − xn), λ),
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and finally

Fε̃n(vn;Q, ε̃n(η − xn), λ) =
∑

x∈Q∩ε̃n(η−xn)

∑
y∈Bλε̃n (x)∩ε̃n(η−xn)

|vn(x)− vn(y)|2

= ε̃2
n

∑
x∈Q1/ε̃n (xn)∩η

∑
y∈Bλ(x)∩η

∣∣∣∣vn (ε̃n(x− xn))

ε̃n
− vn(ε̃n(y − xn))

ε̃n

∣∣∣∣2 .
Since vn(x) = ∇u(x0) · x for x ∈ (Q \Q1−δ) ∩ ε̃n(η − xn), we get

vn (ε̃n(x− xn))

ε̃n
+∇u(x0) · xn = ∇u(x0) ·

(
y

ε̃n
+ xn

)
= ∇u(x0) · x

for x ∈
(
Q1/ε̃n(xn) \Q1/ε̃n(1−δ)(xn)

)
∩ η. In particular, we have

Fε̃n(vn;Q, ε̃n(η − xn), λ) ≥ ε̃2
nm(∇u(x0) · x;Q1/ε̃n(xn)) ≥ ε̃2

nm(∇u(x0) · x;Q1/ε̃n(xn))

Considering Tn = 1
ε̃n

and observing that

|xn| =
|x0|
ρnẽn

≤ Tn
|x0|
ρn
≤ Tngδ(|xn|),

we conclude that

lim
n→+∞

ε̃2
nm(∇u(x0) · x;Q1/ε̃n(xn)) = lim

n→+∞

m(∇u(x0) · x;QTn(xn))

Tn
= f(∇u(x0)) = Ξ|∇u(x0)|2

by Proposition 5.3. Hence,

dµ

dL2
(x0) ≥ −Cδ|∇u(x0)|2 + Ξ|∇u(x0)|2.

By considering the limit as δ → 0 we get

dµ

dL2
(x0) ≥ Ξ|∇u(x0)|2.

as desired. �

5.4. Proof of the upper bound. We prove the statement in several steps, in order to clarify
the diagonalization process that we use. The strategy will be to approximate a generic function
u ∈ W 1,2(Q) with a sequence of functions {vk}k∈N which are piecewise affine on simplexes and
then show how to recover the energy of each vk. Then we will exploit a diagonalization procedure
(by means of Lemma 4.8). The recovery sequence for piecewise-affine maps is constructed in
Step two below. The major technical point consists in handling the interaction at the common
boundary between two simplexes S, S′. To deal with this issue we build, for a generic simplex S
and for an affine function v on S, an almost recovery sequence, which agrees with v in an internal
neighborhood of ∂S. This is done in the Step one below.

Step one: We prove that for any triangle S ⊆ Q, for u(x) = ξ · x on S ⊆ Q and for any fixed
δ > 0 there exists a sequence {uεn,δ ∈ L2(S; ηn)}n∈N such that

un,δ → ξ · x in the sense of Definition 2.7 (5.16)

un,δ = ξ · x on (∂S)δ ∩ S. (5.17)

lim
n→+∞

Fεn(uεn,δ ;S \ (∂S)λεn) ≤ Ξ|S||ξ|2 + Cδ (5.18)

with C depending on S and |ξ| only.
The construction is illustrated in Fig. 5.3: we fix δ > 0, m ∈ N and we pick a grid of squares of

size 1/m. For a square Q1/m(J) that intersect in a non trivial way (∂S)δ∩S we define uε,m,δ = ξ ·x
on Q1/m(J) ∩ S. If instead Q1/m(J) is well contained in S we consider uε,m,δ to agree with the
quasi minimum vε of the cell problem m on a the subsquare Q(1−δ)/m(J) and uε,m,δ = ξ · x on

Q1/m(J)\Q(1−δ)/m(J). In this way uε,m,δ = ξ ·x on Aδm and this construction ensures convergence
and the lim sup upper bound for the function u(x) = ξ · x on S.
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Figure 5.3. construction of recovery sequences on a triangular domain.

We now formalize this argument. Fix δ > 0, m ∈ N and introduce the sub-class of indexes

I1,m(S) := {J ∈ (1/mZ2) ∩Q | Q1/m(J) ⊂ S, Q1/m(J) ∩ (∂S)δ = ∅}
I2,m(S) := {J ∈ (1/mZ2) ∩Q | Q1/m(J) ∩ (∂S)δ ∩ S 6= ∅}.

For J ∈ I1,m(S) consider uJε ∈ L2(1/εQ(1 − δ)/m(J); η) such that

uJε,m,δ(x) = ξ · x for all x ∈ η ∩ 1/εQ(1 − δ)/m(J) : dist(x, ∂(1/εQ(1 − δ)/m(J)) ≤ 2λ

and ∑
x∈η∩1/εQ(1 − δ)/m(J)

∑
y∈η∩Bλ(x)

|uJε,m,δ(x)− uJε,m,δ(y)|2 ≤ m(ξ; 1/εQ(1 − δ)/m(J)) + 1.

For J ∈ I2,m(S) consider just

uJε,m,δ(x) := ξ · x for all x ∈ η ∩ (1/εQ1/m(J) ∩ 1/εS).

In particular, setting

vJε,m,δ(x) :=

{
εuJε,m,δ(x/ε) for x ∈ ηε ∩Q(1 − δ)/m(J) ∩ S;

ξ · x for x ∈ ηε ∩ [Q1/m(J) \Q(1 − δ)/m(J)] ∩ S;
(5.19)

we see that, for J ∈ I1,m(S) we have

vJε,m,δ(x) =ξ · x for all x ∈ ηε ∩Q1/m(J) : dist(x, ∂Q1/m(J)) ≤ 2λεn +
δ

m

and, by applying Corollary 2.4,∑
z∈ηε∩Q1/m(J)

∑
y∈ηε∩Bλε(z)

|vJε,m,δ(z)− vJε,m,δ (y) |2 ≤ ε2m(ξ; 1/εQ(1 − δ)/m(J)) + ε2 + C|ξ|2 δ

m2
,

while vJε,m,δ(x) = ξ · x for all x ∈ ηε ∩Q1/m(J) ∩ S if J ∈ I2,m(S). Hence, we define

vε,m,δ(x) :=
∑

J∈I1,m(S)∪I2,m(S)

1Q1/m(J)∩S(x)vJε,m,δ(x).
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In this way, by applying again Corollary 2.4

Fε(vε,m,δ;S \ (∂S)λεn) ≤
∑

J∈I1,m(S)

Fε(vε,m,δ;Q1/m(J)) +
∑

J∈I2,m(S)

Fε(vε,m,δ;Q1/m(J) \ (∂S)λεn)

≤C
∑

J∈I2,m(S)

|ξ|2|Q1/m(J) ∩ S|+
∑

J∈I1,m(S)

Fε(vε,m,δ;Q1/m(J))

≤CP (S)|ξ|2δ +
∑

J∈I1,m(S)

Fε(vε,m,δ;Q1/m(J))

≤CP (S)|ξ|2δ +
∑

J∈I1,m(S)

(
ε2m(ξ; 1/εQ(1 − δ)/m(J)) + ε2 + C|ξ|2 δ

m2

)
The existence of the limit of m(·;QT ) given by Lemma 5.1 yields the existence of ε0 such that, for
all ε < ε0 we have also

ε2m(ξ; 1/εQ(1 − δ)/m(J) ≤ Ξ|ξ|2|Q(1 − δ)/m(J)|+ 1

m3
for all J ∈ I1,m(S).

Therefore

Fε(vε,m,δ;S \ (∂S)λεn) ≤ CP (S)|ξ|2δ +
∑

J∈I1,m(S)

(
ε2m(ξ; 1/εQ(1 − δ)/m(J)) + ε2 + C|ξ|2 δ

m2

)

≤ Ξ|ξ|2
∑

J∈I1,m(S)

|Q(1 − δ)/m(J)|+
(

1

m3
+ ε2

)
#(I1,m(S)) + C|ξ|2δ

≤ Ξ

ˆ
S

|ξ|2 +

(
1

m
+ ε2m2

)
|S|+ C|ξ|2δ. (5.20)

Moreover
sup

1/m>ε>0

{Fε(vε,m,δ;S)} < +∞.

Thanks to the compactness Theorem 3.1 we can thus conclude that vεn,m,δ → um,δ in the sense
of Definition 2.7. Observe also that vε,m,δ(x) = ξ · x for all x ∈ Aδm, where

Aδm :=
⋃

J∈I1,m(Q)

{
x ∈ S : dist(x, ∂Q1/m(J)) ≤ δ/m

}
∪
( ⋃
J∈I2,m(S)

Q1/m(J) ∩ S
)
.

This in particular implies that um,δ = ξ · x on Aδm. Since um,δ ∈W 1,2(S) and

Ξ

ˆ
S

|∇um,δ|2 dx ≤ lim inf
n→+∞

Fεn(vεn,m,δ;S) < Ξ|S|ξ|2 + C

(
1

m
+ δ

)
we also have that, up to sub-sequences um,δ → ξ · x in L2(S). Hence, by applying Lemma 4.8 we
can find mε → +∞, with εmε → 0 and for which uε,δ := vε,mε,δ → ξ ·x and also (5.18) and (5.17)
hold.

Step two: we prove the existence of a recovery sequence for the piecewise-affine function

v =
∑
S∈S

vS(x)

with S a finite family of essentially disjoint triangles partitioning Q and vS(x) = vS′(x) for
x ∈ ∂S ∩ ∂S′. Note that, being each vS affine it can be represented as vS(x) = ξS · x + bS on S.
Fix δ > 0 and for any S ∈ S let {uSn,δ ∈ L2(S; ηn)}n∈N be the functions constructed in Step one

and satisfying (5.18),(5.17), and (5.16) relatively to ξS . Set

vε,δ(x) :=
∑
S∈S

1S(x)(uSn,δ(x) + bS).

We have that vε,δ → v in the sense of Definition 2.7. Moreover,

Fε(vε,δ;Q) ≤
∑
S∈S
Fε(vε,δ;S \ (S)λεn) +

∑
S∈S
Fε(vε,δ; (S)λεn).
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Then we just observe that∑
S∈S
Fε(vε,δ; (S)λεn) =

∑
S∈S

∑
x∈ηn∩(S)λεn

∑
y∈ηn∩Bλεn (x)

|vε,δ(x)− vε,δ(y)|2.

Recall that, by construction we have that, for x ∈ S, vε,δ(x) = v(x) on (S)λεn and, since it is
continuous and piecewise affine, it is in particular a Lipschitz map. Then we have

∑
S∈S
Fε(vε,δ; (S)λεn) =

∑
S∈S

∑
x∈ηn∩(S)λεn

∑
y∈ηn∩Bλεn (x)

|vε,δ(x)− vε,δ(y)|2

≤ C
∑
S∈S

∑
x∈ηn∩(S)λεn

∑
y∈ηn∩Bλεn (x)

|x− y|2

≤ C
∑
S∈S

∑
x∈ηn∩(S)δ

ηn(Bλεn(x))ε2
n

≤ C
∑
S∈S

P (S)δ,

where in the last inequality we have used Proposition 2.3. Thus

lim sup
ε→0

Fε(vε,δ(x);Q) ≤
∑
S∈S

Ξ|S||ξ|2 + Cδ = Ξ

ˆ
Q

|∇v|2 dx+ Cδ.

By now diagonalizing along δ, with the aid of Lemma 4.8, we find uε → v such that

lim sup
ε→0

Fε(vε,δ(x);Q) ≤ Ξ

ˆ
Q

|∇v|2 dx.

Step three: we prove the existence of a recovery sequence for a generic u ∈W 1,2(Q). We just
observe that for any u ∈ W 1,2(Q) we can find a sequence of piecewise-affine functions {vk}k∈N
with the structure as in Step two such that vk → u in L2 andˆ

Q

|∇vk|2 dx→
ˆ
Q

|∇u|2 dx.

The construction developed in Step two, for each k, and a further application of the diagonalizing
procedure (Lemma 4.8) conclude the existence of the desired sequence. �

6. Appendix

6.1. Existence of regular grids. We here focus on proving Theorem 2.6. Let

RvT,δ(x0) :=

[
x0 −

Tδ

2
, x0 +

Tδ

2

]
×
[
x0 −

T

2
, x0 +

T

2

]
RhT,δ(x0) :=

[
x0 −

T

2
, x0 +

T

2

]
×
[
x0 −

Tδ

2
, x0 +

Tδ

2

]
Definition 6.1. Let {Xj}j∈Z2 be a sequence of i.i.d random variable such that

Xj =

{
1 with probability p
0 with probability 1− p (6.1)

We say that {ji}Mi=1 is an open path for the realization ω if Xji(ω) = 1 for all i = 1, . . . ,M and ji,
ji+1 are neighboring squares.

We recall the following percolation property from [13].

Theorem 6.2 (Property of Bernoulli site percolation). There exists a probability pcr such that
the following holds. Let C be a compact set, for any δ > 0 there exists Kδ such that for almost all
ω ∈ Ω we can find T0(ω) > 0 for which any rectangles RvT,δ(x0), RhT,δ(x0) with T > T0 and x0 ∈ TC
contains at least KδT disjoint paths that connects the two opposite sides of RvT,δ(x0), RhT,δ(x0)
respectively in the horizontal and in the vertical direction.
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For the sake of brevity we introduce the following notation confined to this section. For
RhT,δ(x0), RvT,δ(x0) we denote by hT1 (x0), . . . ,hTM (x0) and by vT1 (x0), . . . ,vTM (x0), the families of

horizontal (and respectively vertical) disjoint paths connecting the two opposite sides of RhT,δ(x0)

(and RvT,δ(x0) respectively).

Proposition 6.3. Let C ⊂ R2 be a compact set. There exists Kδ,Υδ, α0, λ0 such that, provided

α < α0 , λ > max
{ 2

α
, λ0

}
,

for almost all ω ∈ Ω we can find T0(ω,C) > 0 for which any rectangles RvT,δ(x0), RhT,δ(x0) with

T > T0 and x0 ∈ TC contains at least KδT disjoint paths hT1 (x0), . . . ,hTKδT (x0), satisfying the
following properties.

a.1) hTi (x0),vTj (x0) are paths in ηα(λ) ∩QT for all i, j;

b.1) for any m = 1, . . . ,KδT , hTm connects the two opposite sides of RhT,δ(x0) and is strictly

contained in RhT,δ(x0);

c.1) for any m = 1, . . . ,KδT , vTm connects the two opposite sides of RvT,δ(x0) and is strictly

contained in RvT,δ(x0);

d.1) the following bounds hold for any m ∈ {1, . . . ,KδT};
T

Υδ
≤ `(hTm ∩RhT,δ(x0)) ≤ ΥδT

T

Υδ
≤ `(vTm ∩RvT,δ(x0)) ≤ ΥδT (6.2)

e.1) dist(hTi (x0),hTj (x0)) ≥ 3λ, dist(vTi (x0),vTj (x0)) ≥ 3λ for all i, j = 1, . . . ,KδT , i 6= j;

f.1) If x ∈ (hTj (x0))3λ ∩ η then η(Bλ(x)) ≤ α−1λ2;

g.1) If x, y ∈ hTi (x0), (x, y ∈ hTj (x0)) satisfies 〈x, y〉 then |x− y| ≤ λ;

Proof. Fix Λ ∈ N and consider the division of R2 in the grid

I := {i ∈ ΛλZ2 | (QΛλ(i) ∩QT 6= ∅}
Q := {QΛλ(i) | i ∈ I}

and, for any QλΛ(i) ∈ Q consider the refinement

J(i) := {j ∈ λZ2 | (Qλ(j) ∩QΛλ(i) 6= ∅}
Q′(i) := {Qλ(j) | j ∈ J(i)}
N ′(i) := #(J ′(i)) = Λ2.

For any i ∈ I we introduce the following events Ωα,λi of all the realizations ω with the following
properties

I) 1 ≤ η(Qλ(j)) ≤ α−1

8 λ2 for all j ∈ J(i);
II) dist(x, y) ≥ 2α for all x, y ∈ QΛλ(i) ∩ η;

III) dist(x, ∂QΛλ(i)) ≥ 2α for all x ∈ QΛλ(i) ∩ η;

We also define

ξα,λi (ω) := 1Ωα,λi
(ω).

Observe that the probability of the set of realizations satisfying properties (II) and (III) tends to
1 if α→ 0 (we refer to the same argument as in the proof of [7, Lemma 4.1]). Moreover

P
(
1 ≤ η(Qλ(j)) ≤ α−1λ2

)
= e−λ

2

bα−1

8 λ2c∑
m=1

λ2m

m!
=: pλ(α).

In particular, setting

Aα,λi :=

{
ω ∈ Ω | 1 ≤ η(Qλ(j)) ≤ α−1

8
λ2 for all j ∈ I(i)

}
we have that P(Aα,λi ) = pλ(α)Λ2

.



36 ANDREA BRAIDES AND MARCO CAROCCIA

If α → +∞ we have pλ(α) → 1 − e−λ2

. In particular, for any choice of Λ > 1, γ > 0 we can
find α0(Λ), λ0(Λ) > 0 such that

P(ξα,λi = 1) = p(α, λ) > 1− γ for all α < α0, λ > λ0

Thus for a suitably small α and big λ we can invoke Theorem 6.2 and find a Kδ independent
of the realization and T0 = T0(ω,C) such that, for any RvT,δ(x0), RhT,δ(x0) (note that this is

uniform as x0/T ∈ C) contains at least KδT disjoint paths (connecting the two opposite sides
of RvT,δ(x0), RhT,δ(x0) vertically and horizontally respectively) of neighboring squares from Q. We

now define the Voronoi paths as follows. Consider, for instance {ij}Nj=1 to be the first (from

the bottom) horizontal path in RhT,δ(x0) and let s1, . . . , sN be the segment joining the centers of

neighboring squares (for instance (sm joins the centers of QΛλ(im), QΛλ(im+1). We set

hT1 (x0) := {x ∈ η : (C(x; η) ∩ sjm) 6= ∅ for some m = 1, . . . , N}.

We define all the other horizontal paths accordingly, as well as the vertical paths. We refer to
hT1 (x0) without loss of generality in proving the properties. By arguing as in the proof of Lemma
[7, Lemma 4.1] we can derive also that

diam(C(x; η)) ≤ 1

α
, I(C(x; η)) > α.

Moreover By choosing λ > max {2/α, λ0} we can guarantee additionally that

hT1 (x0) ⊂
N⋃
j=1

⋃
m∈J(ij):

Qλ(m)∩sj 6=∅

Qλ(m)

In particular if x ∈ hT1 (x0) then x ∈ Qλ(m) ⊂⊂ QΛλ(ij) for some m ∈ J(ij) intersecting sj . In
particular, Bλ(x) is contained in the union of the eight squares whose boundary intersects in a
non trivial way the boundary of Qλ(m) and this union, call it O, is still contained in QΛλ(ij) and
made by at most 8 of such squares. Therefore

η(Bλ(x)) ≤ η(O) ≤ α−1λ2.

This implies that hT1 (x0) is a path on ηα(λ) and we get property (a.1). Properties (b.1) and (c.1)
are immediate from Bernoulli site percolation. Also property (e.1) is a consequence of the fact that
any path is contained in a square around the segment joining the centers and thus the distance
between two paths is at least 3λ. By the same principle, if Λ was chosen big enough from the
very beginning (say bigger than 10) whenever x ∈ (hT1 (x0))3λ then it belongs to a square of size
λ contained in QΛλ(ij) and the same estimate applies on η(Bλ(x)), achieving property (f.1). If
instead x, y are neighboring points in a path, then |x− y| ≤ 2

α < λ yielding property (g.1).

It remains to show property (d). Due to the fact that diam(C(x; η)) ≥ α−1 we have

`(hTm ∩RhT,δ) ≥ αT

for any m = 1, . . . ,KδT . Fix L > 0 and consider

I(L) := {m = 1, . . .KδT | `(hTm ∩RhT,δ) > LT}.

Then, since the paths are disjoint, we have⋃
m∈I(L)

V(hTm) ⊂ RhT,δ(x0),
∣∣∣ ⋃
m∈I(L)

V(hTm)
∣∣∣ ≤ T 2δ, #(I(L)) ≤ Tδ

Lα2π
.

If we now choose L = Lδ large enough we can ensure that

KδT − T
δ

Lα2π
= K ′δT

with K ′δ < Kδ. Then, up to discarding the paths labeled by I(L) (which do not affect prop-
erties (a)–(g) ) we can reduce ourselves to K ′δT paths satisfying also property (d) with Υδ =
max{Lδ, α−1}. �
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Observe that the above proposition is not sufficient to conclude the validity of Theorem 2.6
yet, since a straight application of Proposition 6.3 on RhT,t(x) (that would be required to get the

horizontal and vertical paths connecting the opposite side of Q) would yield the constants given by
property (d) of Proposition 6.3 dependent of t. We instead require a uniform geometry. Moreover
we need to localize the estimate given by property (d) of Proposition 6.3 to each square Qti,j .
Therefore an additional construction is required.

The following corollary comes as an application of Proposition 6.3.

Corollary 6.4. There exists Υ, α0, λ0 such that, for any fixed t > 0 and provided α, λ satisfies

α < α0 , λ > max
{ 2

α
, λ0

}
,

then for almost all ω ∈ Ω we can find ε0(ω, t) > 0 for which, if ε < ε0 any rectangles Rht,1/2(x), Rvt,1/2(x)

with x ∈ Qtkt contains disjoint horizontal paths hx1 , . . . ,h
x
Mε,t

, (and respectively vertical paths

vx1 , . . . ,v
x
Mε,t

) satisfying the following properties.

a.2) all the paths are in εηα(λ);
b.2) for any m = 1, . . . ,Mε,t, hxm connects the two opposite sides of Rht,1/2(x) of size t and is

strictly contained in Rht,1/2(x);

c.2) for any m = 1, . . . ,Mε,t, vxm connects the two opposite sides of Rvt,1/2(x) of size t and is

strictly contained in Rvt,1/2(x);

d.2) the following bounds hold

t

Υε
≤ `(hxm ∩Rht,1/2(x), ) ≤ Υt

ε
,

t

Υε
≤ `(vxm ∩Rvt,1/2(x), ) ≤ Υt

ε
, Mε,t ≥

t

Υε
(6.3)

e.2) dist(hxm,h
x′

s ) ≥ 3λε and dist(vjm,v
j′

s ) ≥ 3λε for all i, i′, j, j′ ∈ {1, . . . , kt}, m, s ∈ {1, . . . ,Mε,t}
(with m 6= s for i = i′ or j = j′);

f.2) If y ∈ (hxm)3λε ∩ ηε, (y ∈ (vxm)3λε ∩ ηε) it holds ηε(Bλε(y)) ≤ 1
αλ

2;
g.2) If z, y ∈ hxm, (z, y ∈ vxm) neighboring points then |z − y| ≤ λε;

Proof. By invoking Proposition 6.3, (applied with t/ε in place of T ) for almost all realizations we
can find K = K1/2,Υ

′ = Υ1/2, α0, λ0 such that, provided α, λ satisfies (6.2) then for almost

all realizations ω we can find ε0 = ε0(ω, t) for which any Rht/ε,1/2(x0), Rvt/ε,1/2(x0), (provided x0 ∈
Qktt/ε) contains at least Kt/ε disjoint paths satisfying properties (a)–(g) of Proposition 6.3. In
particular by scaling back to ηε = εη we have that, for any x ∈ Qtkt , ε < ε0 we can find
hx1 , . . . ,h

x
Kt/ε ∈ εη

α(λ) disjoint horizontal (and respectively vertical) paths contained in Rht,1/3(x)

(Rvt,1/2(x)) such that properties (a.2)–(g.2) of Corollary 6.4 are implied by Properties (a.1)–(g.1)

of Proposition 6.3 by considering Υ = max{K−1,Υ′}. �

We can now finally prove Theorem 2.6. Let us briefly explain how we will proceed. We will
consider rectangles Rht,1/2(x) whose edge proportion is fixed and for which Corollary 6.4 ensures the

existence of the sought paths. These paths are not long enough to join the opposite sides of Rhi , Rvj
but the geometry of the paths is independent of t, ε (since it depends only on the edge proportion
1/2). Thence we will perform a construction that will allow us to exploit such rectangles to build
a grid on the whole square Qtkt without affecting the constants and all the other properties. We
introduce some definitions in order to clarify the construction. We focus on vertical paths, since
the construction will be performed in just one direction (the other following in the same way).

Definition 6.5. Let R be a rectangle and h,v be a horizontal and vertical path in R connecting
opposite sides of R in the respective directions. Let x ∈ η∩R. We adopt the following terminology:

- We say that a point x lies below h in R (and we write x5R h) if any path in η ∩R that
links x to the top of R intersects h;

- We say that a point x lies above h in R (and we write x4R h) if any path in η ∩R that
links x to the bottom of R intersects h;

- We say that a point x lies on the left of v in R (and we write x�R v) if any path in η ∩R
that links x to the right of R intersects v;
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Figure 6.1. The notation adopted in the proof of Theorem 2.6. Here are depicted
the sets Vε(vij), and Vε(hj) for i = 1, 2 j = 1, . . . ,M .

- We say that a point x lies on the right of v in R (and we write x �R v) if any path in
η ∩R that links x to the left of R intersects v;

Proof of Theorem 2.6. Let Υ, α0, λ0 be given by Corollary 6.4. Fix α, λ satisfying (2.5), let t > 0.
Then for almost all realizations we can find ε0 such that, if ε < ε0, the existence of paths in
Rht,1/2(x), Rvt,1/2(x) is guaranteed for x ∈ Qtkt , according to Corollary 6.4. We set the notation

with the aid of Figure 6.1. Consider, for instance, the first square Qt1,1 on the bottom-left corner
corner. Consider the three rectangles depicted in Figure 6.1 with edges proportion of 1/2, namely
the vertical one on the bottom left Rvbl ⊂ Qt1,1, the horizontal one on the top Rhtop ⊂ Qt1,1 and the

vertical one on the top right Rvtr intersecting Rhtop and the adjacent square Qt2,1. Each of them

contains at least Mε,t ≥ Υt
ε paths satisfying properties (a.2)–(g.2) of Corollary 6.4 relatively to

their own rectangle. Now we label these paths from the

h1, . . .hM ∈ Rhtop, v1
1, . . .v

1
M ∈ Rvbl, v2

1, . . .v
2
M ∈ Rvtr,

with the shorthand M = Mε,t. Now the strategy is to join them and then refine the family in a
way that all the properties (a)–(g) are ensured.

Consider a generic v1
j . Let R = Rvbl ∩Rhtop, R̃ = Rvtr ∩Rhtop. We define the following path (see

for instance Figure 6.2).

pj := {x ∈ v1
j : x5R hM−j} ∪ {y ∈ hM−j : v1

j /R y /R̃ v2
j} ∪ {x ∈ v2

j : x4R̃ hM−j}

Note that pj is a path which has the same starting point than v1
j and the same ending point of

v2
j . Moreover with this definition we note that

dist(pj ,pj+1) > 3λε.

Indeed, suppose that for some (yj , yj+1) ∈ pj × pj+1 we have

|yj − yj+1| ≤ 3λε.

Then one of the following is necessarily in force

(I) yj ∈ hM−j and yj+1 ∈ v1
j+1;
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Figure 6.2. The paths pj in the box R built in the proof of Theorem 2.6. Again,
we are depicting the Voronoi cells of the paths Vε(·).

(II) yj ∈ hM−j and yj+1 ∈ v2
j+1;

(III) yj ∈ v1
j and yj ∈ hM−j−1;

(IV) yj ∈ v2
j and yj ∈ hM−j−1.

The other possibilities are ruled out by the fact that

dist(v1
j ,v

1
j+1) > 3λε, dist(v2

j ,v
2
j+1) > 3λε, dist(hM−j ,h

1
M−j−1) > 3λε.

Now case (I) cannot be attained since it would imply yj+15R hM−j−1 and thus hM−j would get
too close to hM−j−1. Analogously for case (II), since we would have yj /R̃ v2

j and thus v2
j would

get close to v2
j+1. The other cases follow the same line. In particular none of them can be achieved

and thus we must get that

dist(pj ,pj+1) > 3λε.

By applying this construction we can prolong v1
j a bit outside Qt1,1. If we shift this construction

and we repeat it, we can extend each path further until we reach Qtkt,1. In this way we are able

to obtain a family of Mε,t paths in each rectangle Rvj (t). By exploiting the same argument, with
the required modification we also obtain the horizontal paths. This produces a family of vertical
and horizontal paths Gε,t which satisfies properties (a), (b), (c), (f) and (g) (from the validity of
properties (a.2), (b.2), (c.2), (f.2) and (g.2) of Corollary 6.4). Property (e) instead follows by the
previous argument and the care adopted to junction the paths. It remains to show that they also
meet the requests of property (d). Up to discarding some paths (operation that never affects the
other properties) we can ensure that Mε,t ≤ Υ t

ε . Moreover, each vim ∩Qti,j (as well as the vertical
ones) is the junction of a finite number (independent of t, ε) of paths of length satisfying (6.3).
Therefore, up to increase a bit Υ (but independently of t, ε) we can guarantee that property (d)
is in force. This concludes the proof. �
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