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ABSTRACT

Context. We recently introduced a new method for simulating collisional gravitational N-body systems with approximately linear
time scaling with N. Our method is based on the multi-particle collision (MPC) scheme, previously applied in fluid dynamics and
plasma physics. We were able to simulate globular clusters with a realistic number of stellar particles (at least up to several times 106)
on a standard workstation.
Aims. We simulated clusters hosting an intermediate mass black hole (IMBH), probing a broad range of BH-cluster and BH–average-
star mass ratios, unrestricted by the computational constraints that affect direct N-body codes.
Methods. We set up a grid of hybrid particle-in-cell-MPC N-body simulations using our implementation of the MPC method,
MPCDSS. We used either single mass models or models with a Salpeter mass function (a single power law with an exponent of
−2.35), with the IMBH initially sitting at the centre. The force exerted by and on the IMBH was evaluated with a direct sum scheme
with or without softening. For all simulations we measured the evolution of the Lagrangian radii and core density and velocity disper-
sion over time. In addition, we also measured the evolution of the velocity anisotropy profiles.
Results. We find that models with an IMBH undergo core collapse at earlier times, the larger the IMBH mass the shallower they
are, with an approximately constant central density at core collapse. The presence of an IMBH tends to lower the central velocity
dispersion. These results hold independently of the mass function of the model. For the models with Salpeter MF, we observed that
equipartition of kinetic energies is never achieved, even long after core collapse. Orbital anisotropy at large radii appears to be driven
by energetic escapers on radial orbits, triggered by strong collisions with the IMBH in the core. We measured the wander radius, that
is the distance of the IMBH from the centre of mass of the parent system over time, finding that its distribution has positive kurtosis.
Conclusions. Among the results we obtained, which mostly confirm or extend previously known trends that had been established
over the range of parameters accessible to direct N-body simulations, we underline that the leptokurtic nature of the IMBH wander
radius distribution might lead to IMBHs presenting as off-centre more frequently than expected, with implications on observational
IMBH detection.
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1. Introduction

A plausible mechanism for super massive black hole (SMBH)
seeding is required to explain the observation of quasars
at high redshift (Inayoshi et al. 2020; Pacucci & Loeb 2022).
Early seeding would rely on pristine gas and is speculated to
take place either through direct collapse (Loeb & Rasio 1994;
Lodato & Natarajan 2006; Volonteri et al. 2008) or population
III stars (Carr et al. 1984; Yoshida et al. 2006; Greif 2015).
Later or continuous seeding would instead happen through
dynamically mediated gravitational runaway scenarios in dense
environments (Miller & Hamilton 2002; Ebisuzaki et al. 2001;
Portegies Zwart et al. 2004; Li 2022). SMBH seeds should be
detectable today as intermediate mass black holes (IMBHs)

in dense stellar systems such as star clusters (Greene et al.
2020; Di Carlo et al. 2021; Rizzuto et al. 2021, 2023), especially
if the second scenario is prevalent, modulo expulsion from
the host system via gravitational wave recoil kicks (see e.g.,
Holley-Bockelmann et al. 2008; Weatherford et al. 2023). Quan-
titatively addressing the seeding mechanism requires us to con-
strain the fraction of ‘rogue’ IMBHs (i.e. not associated with a host
star cluster, which may still be detectable by other means, e.g.,
Ballone et al. 2018), requiring IMBH ejection from the parent
cluster to be modelled correctly. Moreover, when looking for elec-
tromagnetic signatures of accretion (e.g., Tremou et al. 2018), it is
crucial to have a good estimate for the wander radius of an IMBH
within its host star cluster. An underestimate may lead off-centre
radio sources, which could be potential IMBHs, to be excluded.
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Finally, when an IMBH claim is made based on radial
velocity signatures, as in the case of the IMBH in the Leo I
dwarf spheroidal (Bustamante-Rosell et al. 2021), velocity dis-
persion anisotropy could be an important source of confusion
(Zocchi et al. 2016), as strongly radially anisotropic systems
could be compatible with a massive central object as well as with
radially biased initial conditions.

Estimating the probability of IMBH expulsion and the wan-
der radius, and tracing the evolution of anisotropy in the presence
of an IMBH are three applications for which the recently intro-
duced MPCDSS code (Di Cintio et al. 2021, 2022) becomes
competitive in terms of realism with direct N-body codes and
other approximate approaches, as we argue in the following.

Direct N-body simulations of stellar systems are often per-
ceived as more realistic (e.g., see Takahashi & Portegies Zwart
2000; Baumgardt 2001; Hurley et al. 2005; Baumgardt et al.
2008; Bortolas et al. 2016; Wang 2020) than other approaches,
such as Monte Carlo methods for instance (e.g., see
Freitag & Benz 2001; Giersz 2006; Hypki & Giersz 2013;
Giersz et al. 2013; Sollima & Mastrobuono Battisti 2014;
Vasiliev 2015; Sollima & Ferraro 2019; Aros et al. 2020), espe-
cially when collisional dynamics is involved (see the discussions
in Kim et al. 2008; Heggie 2011; Kamlah et al. 2022).
However, star clusters that are both in a collisional dynamic
regime and contain N > 106 particles are a common occurrence,
even in our Galaxy (see the discussion in Di Cintio et al. 2021).
Direct N-body models of these star clusters cannot be simulated
using a one-to-one star to stellar-particle ratio, due to the com-
putational constraints of the method. This greatly reduces the
faithfulness of direct N-body simulations.

When dealing with IMBH hosting systems, this limitation
can be recast in terms of two dimensionless ratios that are impor-
tant for determining the dynamical evolution of the system: the
ratio of IMBH mass to the average stellar mass in the system,

µ ≡ MIMBH/〈m〉, (1)

and the ratio of IMBH mass to the total mass in the system

α ≡ MIMBH/M. (2)

We can better appreciate the role of these two ratios by way
of a very simplified example, where the star cluster has a typ-
ical size R, is virialized, and equipartition of kinetic energies
holds between the IMBH and the surrounding stars with velocity
dispersion σ. With these assumptions, the radius of the sphere
of influence of the IMBH (i.e. the radius below which the BH
potential ΦIMBH = −GMIMBH/r dominates over the contribution
of the stellar component, e.g., see Peebles 1972; see also Merritt
2004) is

rinf =
GMIMBH

σ2 ≈ R
MIMBH

M
= Rα, (3)

while the so-called wander radius (the typical distance at
which the IMBH is found from the host centre of mass, see
Bahcall & Wolf 1976; Brockamp et al. 2011) works out to

rwan = R

√
〈m〉

MIMBH
= Rµ−1/2. (4)

In other words, the sphere of influence is the region within
which the motion of a star is heavily affected by the presence
of the IMBH, while the wander radius is the typical distance at
which we expect to find the IMBH from the bottom of the cluster
potential well.
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Fig. 1. Observational claims of IMBH detection in the (µ = MIMBH/〈m〉,
α = MIMBH/M) plane, shown as black diamonds. Any technique (most
notably the direct N-body one) that cannot simulate more than a given
number of particles N must trade α for µ at any given N, being unable to
access the top left region, which is shown shaded in orange for a typical
value of N for direct N-body codes currently available, N = 106. As a
reference, N = 105 is also shown as a dashed line.

Seeing how rinf and rwan describe two different but equally
important aspects of the IMBH-host interaction and how they
depend on the two ratios introduced above, we must conclude
that a simulation must match both α and µ of a real star cluster
to be considered a realistic model thereof. However, the number
of particles in a simulation is by definition

N ≡
M
〈m〉

=
µ

α
, (5)

so a constraint on the number of particles N that can be simulated
via direct N-body simulations translates to an inaccessible region
in the (µ, α) plane.

In Fig. 1 we show observational claims of IMBH detections
in Milky Way globular clusters (GCs) in the (µ, α) plane. IMBH
masses are based on Table 1 of Mezcua (2017), which includes
maximum masses in case of a negative claim. The average stel-
lar mass in each system is assumed to be 0.5 M� and the total
GC mass is taken from Baumgardt & Hilker (2018). As argued
above, a correct modelling of the dynamical effects of an IMBH
on its host GC must match both mass ratios. Figure 1 shows that
this is simply not possible for about half of the claims reported
by Mezcua (2017) unless simulations are run with at least a mil-
lion stellar particles. This is at the limit of the current direct N-
body simulation state of the art.

An example may help clarify the meaning of Fig. 1. If a
simulation contains 105 particles, and if the typical mean stel-
lar mass for an old star cluster is 0.5 M�, we can consider the
simulation to model a 5 × 104 M� star cluster with a one-to-
one star-to-particle ratio. If we wish to study the effect of an
IMBH whose size is 0.5% of the total mass of this cluster, then
the IMBH must have a mass of 2.5 × 102 M�, which is a rather
small IMBH in comparison to the stars with which it interacts.

A8, page 2 of 11



Di Cintio, P., et al.: A&A 673, A8 (2023)

Alternatively, we can imagine that the stellar particles in our sim-
ulation do not track actual stars one-to-one, but then any claims
that direct N-body models are more realistic than other approxi-
mate methods would become untenable, and it is harder to justify
applying stellar evolution to each stellar particle as if it were an
individual star.

In this article we thus leverage our recently introduced
MPCDSS code, which treats two- and multiple-body colli-
sions in an approximate fashion, to simulate large-N systems
with a one-to-one particle-to-star ratio while correctly mod-
elling the IMBH-host interaction in the sense discussed above.
In Di Cintio et al. (2022), we observed that while the presence
of a mass spectrum generally speeds up the core collapse of a
given model with respect to the parent system with the same total
mass and N but with equal mass particles, a central IMBH typi-
cally induces a shallower core collapse. It has yet to be determine
how the velocity dispersion and density profiles are affected by
the presence of a central IMBH, and more relevantly how the
anisotropy profile even evolves. Here we performed additional
numerical experiments with a broader range of IMBH masses
and different initial anisotropy profiles for equilibrium models
with equal masses and the Salpeter (1955) initial mass function
(IMF).

The paper is structured as follows: In Sect. 2 we discuss the
simulation setup and the generation of the initial conditions, in
addition to introducing the structure of MPCDSS. In Sect. 3 we
present the results on the evolution of dynamical models of star
clusters with a central IMBH. Finally, we provide a summary in
Sect. refsec4.

2. Simulations

2.1. Initial conditions

In this work we have run a set of hybrid numerical simulations
with our MPCDSS code discussed in DC2020, which combine
a standard particle-mesh approach for the stellar potential with
a multi-particle collision scheme for the collisions to a direct
N-body code for the dynamics of the BH(s). The direct N-body
treatment of the BH is a negligible overhead with respect to pure
MPCDSS since the BH is only one body.

We performed simulations with 3 × 103 ≤ N ≤ 106, and
adopted the usual Plummer (1911) profile

ρ(r) =
3

4π
Mr2

s

(r2
s + r2)5/2

(6)

as an initial condition, with total mass M and scale radius rs set
to unity. Particle masses mi are either equal to M/N or extracted
from a Salpeter (1955) power-law mass function with the expo-
nent −2.35 truncated such that the minimum-to-maximum-mass
ratio R = mmin/mmax equals 10−3.

In the runs without a central IMBH, we extracted the initial
particles’ velocities using the rejection method on the numeri-
cally recovered phase-space distribution function with Osipkov-
Merritt (hereafter OM, Osipkov 1979; Merritt 1985) radial
anisotropy defined by

f (Q) =
1
√

8π2

∫ 0

Q

d2ρa

dΦ2

dΦ
√

Φ − Q
. (7)

In the equation above, Q = E + J2/2r2
a, with E and J being

the particle’s energy and angular momentum per unit mass1,

1 We note that, by doing so we are assuming that the degree of
anisotropy is independent of the specific particle mass. In principle,

respectively, Φ being the gravitational potential of the model, ra
being the anisotropy radius, and ρa being the augmented density,
defined by

ρa(r) ≡
(
1 +

r2

r2
a

)
ρ(r). (8)

The anisotropy radius ra is the control parameter associated with
the extent of velocity anisotropy of the model, so that, for a given
density profile, the velocity-dispersion tensor is nearly isotropic
inside ra, and more and more radially anisotropic for increasing
r. In other words, small values of ra correspond to more radially
anisotropic systems, and thus to larger values of the anisotropy
parameter ξ (see e.g., Binney & Tremaine 2008) defined by

ξ ≡
2Kr

Kt
, (9)

where Kr and Kt = Kθ + Kφ are the radial and tangential compo-
nents of the kinetic energy tensor that read as

Kr = 2π
∫

ρ(r)σ2
r (r)r2dr, Kt = 2π

∫
ρ(r)σ2

t (r)r2dr, (10)

where, σ2
r and σ2

t are the radial and tangential phase-space-
averaged square velocity components, respectively.

For the Plummer density distribution (6), f (Q) is given
explicitly in terms of elementary functions (e.g., see Dejonghe
1987; Breen et al. 2017) as

fP(Q) =

√
2

378π2Gr2
sσ0

− Q
σ2

0

7/2 1 − rs

ra
+

63r2
s

4r2
a

− Q
σ2

0

−2 ,
(11)

where σ0 =
√

GM/6rs is the (scalar) central velocity dispersion.
In the simulations featuring a central IMBH, again we

extracted the particles’ positions from the density distribution
(6). The correspondent velocities were sampled from the stan-
dard phase-space distribution given by Eq. (11) if their radial
position r is larger than the influence radius rinf , while instead for
r ≤ rinf the velocities were generated sampling the isotropic dis-
tribution function f (E) for a homogeneous and non-interacting
‘atmosphere’ of density ρ0 = 3M/4πr3

s and radius rinf in equilib-
rium in ΦIMBH, which reads as

f (E) =
ρ0

2π2
√

2
(−E)−3/2 ; for E ≤ −

GMIMBH

rinf
. (12)

For the specific choice for a Plummer density profile, the influ-
ence radius is given as a function of the Plummer’s scale radius
rs and the IMBH mass in units of the mass ratio α as

rinf = αrs

√
1

1 − α2 . (13)

We note that in previous work (e.g., see Chatterjee et al.
2002a,b), the initial conditions for the stellar component have
always been set up by sampling the phase-space distribution for
a Plummer model without the BH and later renormalized so that
the resulting systems’ stars+BH system was virialized. We note
also that, in principle, a system with a cored density profile (such
as the Plummer used here) cannot have a consistent equilibrium

it would also be possible to generate initial conditions where different
masses are associated with different degrees of radial anisotropy, e.g.,
see Gieles & Zocchi (2015), and also Webb et al. (2023).
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phase-space distribution when embedded in an external poten-
tial associated with a singular density profile (such as that of the
central BH, see Ciotti 1996).

In line with all of these works, we simulated the IMBH by
adding a particle, initially sitting at rest in the centre of the sys-
tem with mass 10−4M ≤ MIMBH ≤ 10−2M. For the range of
simulation particles 3 × 103 ≤ N ≤ 106, such a choice corre-
sponds to a range in mass ratios 3 ≤ µ ≤ 3 × 103. In Table 1
we summarize the parameter of the simulations discussed in the
next sections.

2.2. Numerical scheme

Following Di Cintio et al. (2021, 2022), we evolved all sets
of isolated initial conditions up to 2 × 104 dynamical times
tdyn ≡

√
r3

s /GM, so that in all cases the systems reach core
collapse and are evolved further after it for at least another
103tdyn. We employed our recent implementation of MPCDSS
where the gravitational potential and force were computed by
the standard particle-in-cell scheme on a fixed spherical grid of
Ng = Nr × Nϑ × Nϕ mesh points (e.g., see Londrillo & Messina
1990).

In the simulations presented here, we have used Nr = 1024,
Nϑ = 16, and Nϕ = 16 with logarithmically spaced radial bins
and averaged the potential along the azimuthal and polar coordi-
nates in order to enforce the spherical symmetry throughout the
simulation.

The multi-particle collisions (see Di Cintio et al. 2017, 2021,
2022, 2023 for details) were performed on a different mesh with
Ng = 32 × 16 × 16 extended only up to rcut = 100rs and condi-
tioned with a standard rejection step to the local (i.e. cell depen-
dent) collision probability pi given by

pi = Erf (β∆tνc) , (14)

where ∆t is the simulation time step, νc is the collision frequency,
β is a dimensionless constant of the order of twice the number of
the simulation cells, and Erf(x) is the standard error function.

In Eq. (14), β is a dimensionless constant of the order of the
total number of cells in the system and the collision frequency is
defined as usual as

νc =
8πG2m̄2

i ni log Λ

σ3
i

, (15)

where ni the local stellar number density, m̄i and σi the aver-
age particle mass and the putative velocity dispersion in the cell,
respectively, and the Coulomb logarithm log Λ is fixed to 10.

In all simulations presented here, we used the same normal-
ization such that G = M = rs = tdyn = vs = 1. Hereafter
(except where otherwise stated), all distances and velocities are
given in units of the Plummer scale radius rs and scale velocity
vs ≡ rs/tdyn. In our simulations, for such a choice for our units,
we adopted a constant times step ∆t and used a second order leap
frog scheme to propagate the particle’s equations of motion. The
specific (fixed) value of the time step in units of tdyn depends on
the number of particles N and their mean closest approach dis-
tance (e.g., see Dehnen & Read 2011) and ranges from 3 × 10−3

for N = 3 × 103 to 1.25 × 10−2 for N = 106.
In the runs including the central IMBH, its interaction with

the stars was evaluated directly, that is to say the IMBH did not
take part in the MPC step nor in the evaluation of the mean field

Table 1. Summary of the initial conditions.

Name N MF ξ0 α µ

s1e5xi1 105 S 1.0 / /
s1e5xi2.5 105 S 2.5 / /
s1e5m10xi1 105 S 1.0 10−4 10
s1e5m30xi1 105 S 1.0 3 × 10−4 30
s1e5m100xi1 105 S 1.0 10−3 100
s1e5m300xi1 105 S 1.0 3 × 10−3 300
s1e5m1e3xi1 105 S 1.0 10−2 103

e1e5xi1 105 E 1.0 / /
e1e5xi2.5 105 E 2.5 / /
e1e5m10xi1 105 E 1.0 10−4 10
e1e5m30xi1 105 E 1.0 3 × 10−4 30
e1e5m100xi1 105 E 1.0 10−3 100
e1e5m300xi1 105 E 1.0 3 × 10−3 300
e1e5m1e3xi1 105 E 1.0 10−2 103

e1e6m100xi1 106 E 1.0 10−4 100
e1e6m300xi1 106 E 1.0 3 × 10−4 300
e1e6m1e3xi1 106 E 1.0 10−3 103

e1e6m3e3xi1 106 E 1.0 3 × 10−3 3000
e1e6m1e4xi1 106 E 1.0 10−2 104

s1e6xi1 106 S 1.0 / /
s1e6xi1.5 106 S 1.5 / /
s1e6xi2.5 106 S 2.5 / /
s1e6m1e3xi1 106 S 1.0 10−3 103

s1e6m1e3xi1.5 106 S 1.5 10−3 103

s1e6m1e3xi2.5 106 S 2.5 10−3 103

e1e6xi1 106 E 1.0 / /
e1e6xi1.5 106 E 1.5 / /
e1e6xi2.5 106 E 2.5 / /
e1e6m1e3xi1 106 E 1.0 10−3 103

e1e6m1e3xi1.5 106 E 1.5 10−3 103

e1e6m1e3xi2.5 106 E 2.5 10−3 103

s3e3m3xi1 3 × 103 S 1.0 10−3 3
s1e4m10xi1 104 S 1.0 10−3 10
s3e4m30xi1 3 × 104 S 1.0 10−3 30
s1e5m100xi1 105 S 1.0 10−3 100
s3e5m300xi1 3 × 105 S 1.0 10−3 300
e3e3m3xi1 3 × 103 E 1.0 10−3 3
e1e4m10xi1 104 E 1.0 10−3 10
e3e4m30xi1 3 × 104 E 1.0 10−3 30
e1e5m100xi1 105 E 1.0 10−3 100
e3e5m300xi1 3 × 105 E 1.0 10−3 300
e3e5m30xi1 3 × 105 E 1.0 10−4 30
e3e5m100xi1 3 × 105 E 1.0 3.34 × 10−4 100
e3e5m1e3xi1 3 × 105 E 1.0 3.34 × 10−3 1000
e1e3m10xi1 103 E 1.0 10−2 10
e1e3m3xi1 103 E 1.0 3 × 10−3 3
e1e4m100xi1 104 E 1.0 10−2 100
e1e4m3xi1 104 E 1.0 3 × 10−4 3
e1e4m30xi1 104 E 1.0 3 × 10−3 30
e3.3e3m10xi1 3.34 × 103 E 1.0 3 × 10−3 10
e3.3e4m10xi1 3.34 × 104 E 1.0 3 × 10−4 10
e3.3e4m100xi1 3.34 × 104 E 1.0 3 × 10−3 100
e3e2m3xi1 300 E 1.0 10−2 3
e3e3m30xi1 3000 E 1.0 10−2 30
e3e4m3xi1 3 × 103 E 1.0 10−4 3
e3e4m300xi1 3 × 104 E 1.0 10−2 300

Notes. After the name of each simulation (Col. 1), we report the number
of simulation particles (Col. 2), the mass function (S for Salpeter, E for
equal masses, Col. 3), the initial anisotropy parameter (ξ0, Col. 4), the
mass ratio α (Col. 5), and the mass ratio µ (Col. 6).

potential. In order to keep the same rather large ∆t of the simu-
lation, the potential exerted by the IMBH was regularized as

ΦIMBH = −
GMIMBH

2ε

(
3 −

r2

ε2

)
; r ≤ ε, (16)
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Fig. 2. Evolution of the Lagrangian radii r5% enclosing 5% of the sys-
tem’s mass (top panels) and central velocity dispersion σc evaluated for
particles inside r5% (bottom panels) for models with a Salpeter mass
function (left) and equal masses (right), and α = 10−4, 3 × 10−4, 10−3,
3 × 10−3, and 10−2. In all cases the systems were initially isotropic and
N = 105 so that µ = α × 105.

where we used ε = 10−4 in units of rs so that for the IMBH mass-
to-cluster mass ratio 10−3, the softening length was always of the
order of one tenth of the influence radius of the IMBH rinf . With
such choices for simulation parameters, on average, the MPC
simulations on a single core are a factor ∼10 faster than direct
N-body simulations for N of the order of 104, and they remain
faster down to a factor ∼2 for N = 106.

3. Results

3.1. Evolution of density and central velocity dispersion

As an indicator of the evolution of the concentration of a given
system, we followed the evolution of the Lagrangian radii con-
taining a given fraction of the system’s mass and within such
radii we also computed the mean velocity dispersion. In Fig. 2
(upper panels), we show the evolution of the Lagrangian radius
r5% enclosing 5% of a N = 3 × 105 initially isotropic (i.e.
ξ0 = 1) Plummer model with Salpeter IMF (left panels) and
equal masses (right panels) and different values for the IMBH
mass ratio α. As expected, models with a mass spectrum contract
on shorter timescales (at least when the specific value for MIMBH
is low in units of M), with respect to their counterparts with equal
mass particles. For large values of α, r5% grows rapidly with-
out showing signs of an earlier contraction. This implies that
the presence of a massive IMBH should be associated with an
inflated core (see also Fig. 9 in Di Cintio et al. 2022).

The evolution of the average central velocity dispersion σc
evaluated within r5% is shown in the lower panels of Fig. 2 (see
also the last column in Table 2). We observe that for the mod-
els with a mass spectrum, σc steadily decreases for the cases
with α > 10−3, while it grows reaching its maximum (surpris-
ingly independent of α) at around tcc and then decreases for the
systems hosting a lower-mass IMBH. In models in which all

stars have the same mass, the behaviour of σc is the same for
α > 10−3, while it appears somewhat more complex at lower αs.
Remarkably, σc reaches different maximum values before start-
ing to decrease for different values of the mass ratio α. In other
words, one can conclude that the presence of a massive IMBH in
a star cluster, long after its core collapse, should induce a colder
and larger core with respect to a star cluster in the same mass
range but without a central IMBH.

3.2. Radial anisotropy profiles

Before exploring the effects of a central IMBH on the orbital
anisotropy of a given model, we studied the evolution of the
anisotropy profiles for systems without an IMBH well beyond
core collapse (and mass segregation). For OM systems charac-
terized by different values of N and ξ, we have evaluated the
radial anisotropy profile (see e.g., Binney & Tremaine 2008)

β(r) = 1 −
σ2

t (r)
2σ2

r (r)
(17)

at different times. We find that, surprisingly, for all values of N
considered here between 3 × 103 and 106, all isotropic models
(ξ0 = 1, β(r, 0) = 0 everywhere) with a (Salpeter) mass spec-
trum have already evolved right before core collapse (typically
at around ∼40tdyn) in an ‘isotropic core’ for r < 3rs surrounded
by an increasingly anisotropic halo of weakly bound particles
kicked out during the process of mass segregation. At later times,
the profile of β remains relatively unchanged, as shown for the
N = 106 case in the left panel of Fig. 3 showing β at t = 100,
2000, and 10 000tdyn (solid lines) and at the time of core collapse
tcc (thick dotted-dashed line).

The systems starting with initial conditions sampled from
OM models with a larger degree of anisotropy (cf. middle and
right panels of Fig. 3) remarkably become less and less radi-
ally anisotropic, with respect to their initial state, marked in the
figure by the thin dashed lines2. We verified that such behaviour
holds true even for other power-law mass spectra (not shown
here) proportional to m−0.6, m−1, and m−3. In these cases, the pro-
file of β at tcc for systems with low and large values for the mass
function slope α are qualitatively very similar for both highly
anisotropic Plummer initial conditions – which are closer to the
critical value of the anisotropy indicator – for consistency (i.e.
ξ0 = 2.5), as well as for moderately anisotropic initial condi-
tions (i.e. ξ0 = 1.5); both cases show almost isotropic ‘cores’ up
to r ≈ 10.

In practice, independently of the specific values of ξ0 > 1,
the anisotropy radius of the model increases with time as the sys-
tem undergoes core collapse and re-expands. Vice versa, initially
isotropic star clusters do ‘anisotropize’ during core collapse and
mass segregation, though their anisotropy radius also increases
for t � tcc. Isotropic equal masses’ models (not shown here),
with substantially longer core collapse timescales in the absence
of a mass spectrum (see Col. 2 in Table 2), remain substantially
isotropic everywhere (i.e. with final anisotropy radii usually at
about 5r50%), while OM-anisotropic equal masses’ models also
experience an increase in anisotropy up to core collapse as their
multi-mass counterparts. We observe that, in general, the models
have a longer core collapse timescale at a fixed mass for increas-
ing values of the initial anisotropy parameter ξ0, independently
of the specific mass spectrum.

2 We note that, in Osipkov-Merritt models, the radial profile of β can
be written explicitly as a function of the anisotropy radius ra as β(r) =
r2/(r2

a + r2).
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Table 2. Summary of the simulation properties.

Name tcc/tdyn %esc %esc,C rwan/rs ṽIMBH/vtyp ρc/r−3
s σc/vtyp

s1e5xi1 1.46 × 103 22.8% 14% / / 42.10 0.234
s1e5xi2.5 1.54 × 103 24.5% 15% / / 42.80 0.233
s1e5m10xi1 1.30 × 103 16% 14.7% 0.545 0.311 41.26 0.238
s1e5m30xi1 1.79 × 103 22.8% 13.5% 0.082 0.400 12.61 0.233
s1e5m100xi1 1.29 × 103 20.6% 16.1% 0.110 0.167 3.250 0.224
s1e5m300xi1 0.62 × 103 18.9% 19.5% 0.082 0.075 1.520 0.223
s1e5m1e3xi1 0.24 × 103 23.1% 35.5% 0.071 0.031 1.000 0.222
e1e5xi1 3.24 × 103 6.1% / / / 0.860 0.222
e1e5xi2.5 3.01 × 103 6.0% / / / 20.01 0.250
e1e5m10xi1 8.50 × 103 8.0% / 0.075 0.221 38.50 0.271
e1e5m30xi1 7.10 × 103 7.7% / 0.058 0.166 2.550 0.232
e1e5m100xi1 3.48 × 103 9.9% / 0.066 0.097 0.805 0.224
e1e5m300xi1 0.78 × 103 15.1% / 0.055 0.040 0.450 0.220
e1e5m1e3xi1 0.10 × 103 24.9% / 0.049 0.017 0.350 0.220
e1e6m100xi1 >104 0.6% / 0.044 0.060 1.000 0.234
e1e6m300xi1 9.51 × 103 1.17% / 0.038 0.057 0.717 0.225
e1e6m1e3xi1 4.50 × 103 3.70% / 0.041 0.043 0.340 0.205
e1e6m3e3xi1 103 9.8% / 0.037 0.027 0.300 0.200
e1e6m1e4xi1 0.5 × 103 10.6% / 0.016 0.008 0.569 0.230
s1e6xi1 1.47 × 103 8.7% 6.9% / / 20.50 0.223
s1e6xi1.5 4 × 103 8.7% 7.1% / / 21.45 0.221
s1e6xi2.5 8 × 103 9% 7.2% / / 20.50 0.202
s1e6m1e3xi1 0.75 × 103 7.4% 6.7% 0.072 0.100 0.910 0.220
s1e6m1e3xi1.5 1.97 × 103 7.5% 6.9% 0.068 0.098 0.971 0.230
s1e6m1e3xi2.5 2.22 × 103 7.6% 7.0% 0.083 0.121 1.010 0.210
e1e6xi1 >104 0.6% / / / 1.100 0.265
e1e6xi1.5 >104 0.45% / / / 0.775 0.264
e1e6xi2.5 >104 0.41% / / / 0.550 0.244
e1e6m1e3xi1 4.7 × 103 3.7% / 0.035 0.042 0.360 0.255
e1e6m1e3xi1.5 6.6 × 103 3.3% / 0.041 0.043 0.320 0.265
e1e6m1e3xi2.5 8.0 × 103 3% / 0.049 0.045 0.275 0.229
s3e3m3xi1 8.0 × 103 14.9% 7% 1.680 0.200 5.000 0.260
s1e4m10xi1 3.1 × 103 18.7% 9.7% 0.675 0.552 8.000 0.250
s3e4m30xi1 1.4 × 103 27.3% 11% 0.114 0.291 9.831 0.238
s1e5m100xi1 0.8 × 103 30.7% 11.2% 0.311 0.092 17.61 0.232
s3e5m300xi1 0.7 × 103 33.5% 11.3% 0.131 0.156 30.10 0.224
e3e3m3xi1 4.8 × 103 6.97% / 0.290 0.344 0.800 0.250
e1e4m10xi1 4.6 × 103 12.5% / 0.191 0.189 1.000 0.260
e3e4m30xi1 6.9 × 103 13.1% / 0.141 0.123 21.75 0.300
e1e5m100xi1 4.1 × 103 15.8% / 0.075 0.081 0.750 0.245
e3e5m300xi1 5.1 × 103 11.1% / 0.045 0.064 0.450 0.230
e3e5m30xi1 1.6 × 104 10.67% / 0.059 0.371 9.500 0.222
e3e5m100xi1 104 3.37% / 0.057 0.231 1.200 0.224
e3e5m1e3xi1 0.4 × 103 13.34% / 0.041 0.058 0.317 0.225
e1e3m10xi1 103 6.3% / 0.322 0.232 1.900 0.162
e1e3m3xi1 9.4 × 103 1.8% / 0.218 0.328 2.000 0.220
e1e4m100xi1 103 12% / 0.170 0.091 0.200 0.158
e1e4m3xi1 >104 7.32% / 0.392 0.460 20.00 0.265
e1e4m30xi1 >104 7% / 0.229 0.235 18.00 0.262
e3.3e3m10xi1 9 × 103 3.96% / 0.259 0.243 1.000 0.225
e3.3e4m10xi1 7 × 103 9.68% / 0.100 0.281 3.000 0.215
e3.3e4m100xi1 1.41 × 103 14.8% / 0.132 0.082 0.150 0.141
e3e2m3xi1 7.88 × 103 6.67% / 0.467 0.406 4.000 0.202
e3e3m30xi1 >104 6.43% / 0.256 0.146 0.400 0.180
e3e4m3xi1 9 × 103 10.3% / 0.217 0.265 61.00 0.292
e3e4m300xi1 >104 22.37% / 0.113 0.039 0.100 0.106

Notes. After the name of each simulation (Col. 1), we report the time of core collapse (Col. 2), the fraction of escapers at t = 104tdyn (Col. 3), the
fraction of escapers in the last mass bin (i.e. m > 25〈m〉) at t = 104tdyn (Col. 4), the estimated IMBH wander radius (Col. 5) and typical velocity
(Col. 6), the core density at core collapse (Col. 7), and the central velocity dispersion at core collapse (Col. 8).

Adding a central BH, for all of the initial conditions dis-
cussed here, has the effect of systematically reducing tcc of a
factor between 2 and 3.5. As observed for models without a cen-
tral BH, isotropic initial conditions tend to evolve towards more
anisotropic states also for the cases with a BH (see left panels in
Fig. 4) with or without a mass spectrum. In the latter case, the

strong kicks exerted by the BH on eccentric orbits play the role
of mass segregation in populating the outer radii of low angu-
lar momentum stars. OM models with a central BH again evolve
towards less anisotropic states with equal mass systems with sig-
nificantly flatter β profiles at late times. Of course, the interplay
between the evolution of the anisotropy profiles and that of the
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Fig. 3. Evolution of the radial anisotropy profile β(r) in Plummer models without a central IMBH, with a Salpeter IMF, N = 106, and from left
to right ξ0 = 1 (isotropic), 1.5 (limit for stability), and 2.5 (critical, for consistency). The thin dashed lines mark the initial (analytical) anisotropy
profile, while the dot-dashed lines mark the profile β at the indicated time of core collapse tcc.
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Fig. 4. Evolution of the radial anisotropy profile β(r) in Plummer models with a central IMBH of mass MIMBH = 10−3 M, with a Salpeter IMF (top
panel row) or equal masses (bottom panel row), N = 106, and from left to right ξ0 = 1 (isotropic), 1.5 (limit for stability), and 2.5 (critical for
consistency). The thin dashed lines mark the initial (analytical) anisotropy profile. The empirical lines become somewhat noisy to the left because
of the increasingly low number of particles available for calculating β(r) at small radii.

IMBH should be, in principle, studied in models starting from
initial conditions where the proto-cluster is far from being viri-
alized with or without a significantly massive seed for the IMBH,
such as those produced in Torniamenti et al. (2022).

3.3. Wander radius

For the IMBH hosted in the models discussed in the previous
sections, we have evaluated the probability density functions
(PDF) of the radial position with respect to the geometric cen-

tre of the stellar distribution f (r) and velocity f (v). In Fig. 5,
we show said distributions for initially isotropic models with
N = 106 and 10−4 ≤ α ≤ 10−2 and either single-mass or Salpeter
mass spectra, respectively. As an indicator of the extension of the
BH wander radius rwan, we extracted the radius corresponding to
the peak of f (r). We observe that (see Fig. 6) for fixed N while
the peak of the velocity distribution f (v) moves at lower veloci-
ties for increasing α (for both equal mass and Salpeter systems),
the peak of the radial position distribution f (r) (i.e. the putative
wander radius) is somewhat independent of α for equal mass
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Fig. 5. Radial and velocity distributions for the IMBHs. Upper panels:
distributions of the radial coordinate (left) and velocity (right) attained
by IMBHs hosted in a Plummer model with N = 105 equal mass parti-
cles with an initially isotropic velocity distribution and the same com-
binations of α and µ as in Fig. 2. Lower panels: same as above but for
models with Salpeter MF.

models, while it moves to smaller values of r for increasing α in
systems with a mass spectrum.

When fixing α while decreasing µ (i.e. we changed N so
that the BH mass-to-mean stellar mass 〈m〉 varied), both f (r)
and f (v) become broader and peak at larger r and v, respec-
tively (see Fig. 7, main panels). Remarkably, we recovered (at
least for µ . 200) the predicted rwan ∝ µ−1/2 trend, while we
observe a clear vIMBH ∝ µ

−1/3 behaviour for the typical velocity
of the IMBH (dashed and dotted lines in the right panel of Fig. 7,
respectively). Not surprisingly, for fixed µ we observe larger val-
ues for the wander radius rwan in systems with a smaller α, as in
those cases the larger cluster mass forms a deeper potential well.
This is exemplified in Fig. 8 where rwan (top panel) and vIMBH
(bottom panel) are plotted and colour coded against α and µ for
the equal m cases.

We observe that, in general, for mass ratios µ larger than
ten, all such trends are weakly affected by the mass spectrum
or the specific anisotropy profile of the model at hand. However,
we notice that for increasing initial values of ξ, the distribution
of the radial coordinate of the IMBH shows systematically fat-
ter tails, corresponding to a decreasing (negative) kurtosis κ. As
an example, in Fig. 9 we show f (r) for µ = 103, α = 10−3,
and ξ0 = 1, 1.5, and 2.5, as well as Salpeter (left panel) and
equal mass (right panel) models. This implies that IMBHs in
models with markedly anisotropic initial conditions might have
a non-negligible probability of being displaced by a few scale
radii from the geometric centre of the star cluster. We note that
Chatterjee et al. (2002a,b), by means of direct N-body simula-
tions, and Fokker-Planck calculations in a static cluster poten-
tial Φ estimated a limit rwan of the order of 0.1rs, where rs is
some scale length roughly equal to the half-mass radius of the
model at hand. Such a value is typically assumed as the radial
distance3 within which to look for IMBH candidates in GCs in

3 Such a radius of about 0.1rs is also consistent with the typical core-
stalling radius where dynamical friction and dynamical buoyancy com-
pensate for each other (e.g., see Banik & van den Bosch 2021, 2022).
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Fig. 6. Most probable velocity and putative wander radius of the IMBH,
respectively, shown as a function of the mass ratio α for single mass
models (empty circles) and models with a Salpeter mass function (filled
circles). In all cases, N = 105.

many observational studies. It is important to note that, on the
one hand, such N-body runs had the natural limits of the rela-
tively small number of (equal mass) particles N and their overall
large computational cost. On the other hand, the Fokker-Planck
models used, somewhat arbitrarily, a Gaussian force fluctuation
distribution f (δF). Therefore, in both cases, the rare but strong
encounters were systematically neglected.

Di Cintio et al. (2020) studied the dynamics of massive
BH in galactic cores using a model based on the inte-
gration of stochastic (i.e. Langevin) equations (see also
Pasquato & Di Cintio 2020) of the form

r̈BH = −∇Φ − ηvBH + δF, (18)

where η is the Chandrasekhar dynamical friction coefficient and
δF is a fluctuating force (per unit mass). They show that the
position distribution of the BH extracted from short time N-
body simulations is qualitatively ‘intermediate’ between those
obtained in longer Langevin simulations with force fluctuations
that are sampled from a Gaussian and a Holtsmark (1919) dis-
tribution for f (δF) (see their Fig. 1). We stress the fact that
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Fig. 7. Distributions of the radial coordinate (left panel) and velocity (middle panel) of the IMBHs embedded in a Plummer model with 3 × 103 ≤

N ≤ 106 equal mass particles and an initially isotropic velocity distribution. The top right and top left panels show the peaks of the velocity and
radial distributions as function of the mass ratio µ, respectively. Furthermore, ṽIMBH shows a markedly µ−1/3 trend (dotted line), while rwan has a
trend compatible with µ−1/2 for µ < 3 × 102 (dash ed line). In all cases, α = 10−3.

the Holtsmark distribution is the correct one that models the
force fluctuations in a system of particles interacting with a
1/r2 force law (Chandrasekhar & von Neumann 1942, 1943).
We also remark that, in the MPC simulations discussed in the
present work the interactions between the IMBH and the stars
are evaluated with a direct sum scheme (as in Chatterjee et al.
2002a), but the evolution time, being of the order of several thou-
sands of crossing times, is much larger, thus allowing for strong
encounters (typically corresponding to strong force fluctuations
described by the heavy F−5/2 tails of the Holtsmark distribution)
to have a non-negligible role in the dynamics of the IMBH.

3.4. Escapers’ and compact objects’ retention fraction

In Di Cintio et al. (2021), we compare the time-dependent frac-
tion of escapers (i.e. particles reaching, with positive total
energy, a truncation radius fixed at ∼20r50%) in MPC and direct
simulations with isotropic initial conditions with N of the order
of 104, finding a rather good agreement for several choices for
the mass spectrum. Here we evaluate the fraction of escapers for
a broader range of N and different choices for ξ0 (cf. Col. 3 in
Table 2).

In general, over a time span of 104tdyn, models with equal
masses tend to have a lower fraction of escapers than those with
the same N and ξ0 with a mass spectrum; this is ascribed to
the mass segregation process that pushes heavier stars to the
inner regions of the cluster lowering their potential energy, at the
expense of lighter stars that are pushed outside with increasing
kinetic energies. This is also observable in Di Cintio et al. (2021;
cf. Fig. 6 therein), where models characterized by heavier tailed
mass functions (i.e. larger fractions of heavy particles at fixed
〈m〉) show a steeper time increase in the escapers’ fraction.

The presence of an IMBH, even if associated with a shal-
lower core collapse, typically enhances particle evaporation via
direct collisions with larger escapers’ fractions for increasing
values of the mass ratio µ. For the models with or without
an IMBH, the initial anisotropy profile has little influence on
the fraction of escapers and no apparent trend is evident, as
the latter might depend on µ, ξ, and α simultaneously (see
Fig. 10 below).

For the models with a Salpeter mass function, we have
also evaluated the mass-dependent escaper fraction, dividing the
mass spectrum of the system into 50 logarithmically spaced mass
bins. In Col. 4 of Table 2, we give the fraction of escapers in the
largest bin (corresponding roughly to m > 25〈m〉). For star clus-
ters with a mean stellar mass of about 0.5 M�, these would cor-
respond to m > 10 M�, likely encompassing collapsed objects.
Not surprisingly, bigger values of µ are associated with increas-
ing fractions of heavy escapers. In the worst case, up to 35% of
particles in the largest mass bin are ejected before 104tdyn, which
corresponds to a compact object retention fraction of about 65%.
Again, the initial anisotropy profile does not have a significant
effect on the retention fraction for fixed values of µ or α.

4. Discussion and conclusions

With multi-particle collision simulations with MPCDSS, we
have investigated the dynamics of IMBHs in star clusters under
different characteristics of the host (mass spectrum, orbital
anisotropy) and the IMBH itself (mass ratio to the typical star
and to the total host mass). Thanks to the linear complexity of
MPCDSS with the number of particles, we have had the oppor-
tunity to explore a wider range in these mass ratios as discussed
in the Introduction.

We have confirmed our preliminary results of Di Cintio et al.
(2022) that the presence of a central BH with a mass of about
10−3 in units of the total cluster mass induces a faster but shal-
lower core collapse. This remains true for other values of the
mass rations µ and α defined in Sect. 1.

In practice, clusters hosting a central IMBH would be
observed as ‘dynamically older’ than their counterparts with no
BH and with a more diffuse and colder core. Moreover, for fixed
mean stellar mass, all systems with the central BH have a signif-
icantly larger fraction of escapers (and a smaller retention frac-
tion of heavier stars) than those with no BH. We have explored
the effect of Osipkov-Merritt initial anisotropy profiles, finding
that long after the core collapse time was reached, independently
of the initial value of ξ and the presence or lack thereof of an
IMBH, the clusters show a anisotropy profile with β between
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Fig. 8. Wander radius (scaled to 0-1 over the simulation sample) as a
function of µ and α (top panel) and wander velocity as a function of
µ and α (bottom panel). The diagonal lines correspond to a constant
number of particles: 104 (solid), 105 (dashed), 106 (dotted), and 107

(dot-dashed).

two and ten initial scale radii rs, or of about five final half-mass
radii r50%.

We have evaluated the PDF of the radial displacement of
the IMBH f (r) (i.e. the distribution of its radial distance from
the geometric centre of the star cluster) and defined its absolute
maximum as an IMBH wander radius. If on the one hand, we
recover the (MIMBH/〈m〉)−1/2 trend (independently of the clus-
ter mass and anisotropy profile), on the other hand, we observe
that such a radius is seemingly less dependent on the α ratio,
being typically of the order of 10−1r50%. A result whose impor-
tance cannot be overstated is that the distribution of the distance
as well as the sky-projected distance from the centre attained by
the IMBH in our simulations becomes distinctly leptokurtic for
increasing values of the systems’ initial anisotropy. This corre-
sponds to the presence of heavy tails, with the associated risk
of underestimating the probability of low probability events. A
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Fig. 9. Distribution of the IMBH radial coordinate for Plummer models
with N = 106, MIMBH = 10−3, and ξ = 1, 1.5, and 2.5, for the model with
a Salpeter mass function (left panel) and equal masses (right panel).
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Fig. 10. Fraction of escapers as a function of µ and α (top panel) as a
function of µ and α (bottom panel). The diagonal lines correspond to
a constant number of particles: 104 (solid), 105 (dashed), 106 (dotted),
and 107 (dot-dashed).

possible astrophysical consequence could be the unduly exclu-
sion of potential IMBH candidates when they happen to be too
far away from the host systems’ centre based on our Gaussian
and Brownian expectations. Tremou et al. (2018), for instance,
exclude several radio sources from their analysis even though
they are relatively near to the host star cluster centre, because
they are further out than the estimated Brownian radius of an
IMBH of the relevant mass.
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