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Abstract

Following a general introduction in Chapter 1, this thesis is divided into

two main parts.

The first part, consisting of chapters 2 to 6, focuses on grid cells and spa-

tial cognition. Chapter 2 provided a concise overview of the experimental

results on spatial representations. Chapter 3 introduces various models

that have been proposed to elucidate the formation of grid cells. In chap-

ters 4 and 5, we investigate our model of grid pattern formation based

on adaptation follow questions include grid pattern in non-planar envi-

ronments like a burrow environment, grid pattern anchoring in a square

environment, and grid pattern distortion in an irregular environment like

a trapezoid environment. In Chapter 6, due to the increasing complexity

and richness of functions attributed to grid cells being described recently,

we aim to describe the basic encoding properties of grid cells with a sim-

plified self-organized model.

The second part, encompassing chapters 7 to 9, is dedicated to explor-

ing another form of regularity representation in the brain, which is brain

oscillations. Specifically, our focus lies on infra-slow oscillations with pe-

riods lasting around several hundred seconds, observed in the frontal and

parietal cortex during both natural sleep and anesthesia. In Chapters 7

and 8, we performed analyses of recordings obtained during natural sleep,

exploring the intricate properties of infra-slow oscillations and their inter-

actions with oscillations at faster timescales. Transitioning to Chapter 9,

we shifted our attention to analyzing recordings acquired during states of

anesthesia.
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Chapter 1

General Introduction

Knowing where one is, where to go, and how to get there are some of the most

fundamental and important challenges faced by all animals. Spatial cognition is the

concept from neuroscience that concerns questions that appear from these topics.

The hippocampus formation and its surrounding areas are particularly appealing

for spatial cognition study due to two reasons: Firstly, it exhibits a relatively sim-

ple architecture, which, if not entirely, is definitely much easier and better defined

than other cortex areas. It shapes a comprehensible hierarchical structure with the

hippocampus sitting at the top, receiving multiple lines of converging inputs. Sec-

ondly, the recording of local activities shows a close correlation with many spatial

concepts, such as location, direction, distance, speed, and time, among others. Al-

though explicit explanations about the questions we have and the mechanisms the

brain employs are still a work in progress, the knowledge accumulated based on what

is already known enables us, at the very least, to attempt defining a division of work

among these areas. It helps us describe the mechanisms underlying the generation of

various types of representations, specific computations involved, and their respective

roles in the process.

The information conveyed through spatial concepts is stored in the firing patterns

of individual neurons and the collective activity patterns of neuron ensembles. Recent

research has revealed the mechanisms behind these neural codes and their role in

spatial cognition. Two types of neuron firing patterns in the hippocampus formation

encoding locations may sit at the top of the information flow hierarchy, which are

place cells (O’Keefe, Dostrovsky, 1971) and grid cells (Fyhn et al., 2004; Hafting

et al., 2005). Discovered at a distance of 30 years from one another, they are the

prominent neuron types found in the hippocampus and in the medial entorhinal

cortex, respectively. Grid cells sit one synapse away from hippocampal place cells both

as an input and output of the hippocampal circuit (Kloosterman et al., 2003; Witter,
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Moser, 2006). The relationship between place cells and grid cells is demonstrated by

their similarity in representation, although they remain distinct in their response to

changes in the environment, and appear to rely on different dynamic processes.

Grid cells are remarkable for their remarkable regularity. The regularity of the

grid pattern allows for more accurate and efficient spatial navigation, as the individual

can use the grid pattern as a reference point to determine their location relative to

their surroundings. Research also suggests that the regularity of grid cell patterns

may be important for other cognitive functions such as memory consolidation and

decision-making, further highlighting the importance of precise spatial cognition for

overall cognitive performance.

After a general prologue on spatial cognition (Chapter 2) and the computational

mechanism of grid cell modeling (Chapter 3), we investigate the formation of grid

patterns in a realistic burrow environment in chapter 4, using a virtual rat to explore

it and allowing the simulated mEC units to form patterns through a self-organization

process. Our findings show that the mEC units can create a stable representation of

the entire environment. However, due to the limited size of the chambers in natural

burrows, the grid units can only express a few fields, and the symmetry structure is

only locally observed. By incorporating these results, we are able to better understand

the process of grid pattern formation in real-world scenarios.

We then proceed to chapter 5, we put forward the idea that the grid cell firing

pattern is not solely determined by the path integration information that would result

in a hexagonal grid pattern. Instead, it also responds to local information and long-

range correlations, which could potentially lead to shifts or distortions in the grid

pattern. We try to clarify this idea by simulation with a virtual rat sampling the

environment with a biased strategy of the border area to account for the phenomenon

that the grid pattern is stably anchored to the wall in the square environment with a

7.5◦ (Stensola et al., 2015), and reduce the frequency of changes in running direction

to let the virtual rat trajectories contain more long-range correlation can be captured

by self-organization model to show long-range correlation would cause the grid pattern

distortion in irregularly shaped environments such as trapezoids.

Then in chapter 6, based on the recent experimental results and simulation findings

regarding pattern formation of mEC units in burrow environments, we proceed with

a discussion on grid cell encoding properties with a simplify self-organized model.

This thesis is divided into two main parts. below is the second part which centers

around oscillations, particularly infra-slow oscillations, which are often associated

with regularity and periodicity.
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From chapter 7 to chapter 9, our focus shifted to brain oscillations, which play

a significant role in representing the regularity of brain activity (Buzsáki, 2006).

Specifically, we delved into the study of infra slow oscillations in freely behaving rats,

as well as in anesthetized rats.

In chapter 7, from freely behaving rats, infra slow oscillation range of around

several hundred seconds appeared clearly. Detailed properties were analyzed in this

chapter. In chapter 8, we show that infra slow oscillations in several frequency bands

exhibit bimodality, which characterized by a relatively abrupt transition between

high and low values. Furthermore, different frequency bands display distinct cou-

pling structures. In chapter 9, we conducted an analysis of infra slow oscillations

in anesthetized rats. These oscillations manifest in various forms, including upper

envelope, lower envelope, up state duration, down state duration, state duration,

up/down duration ratio, and up/state duration ratio. Furthermore, the different

frequency bands are all coupled together.
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Chapter 2

Introduction of Spatial Cognition
and Oscillation

Spatial cognition can be described as the study of how humans and animals perceive,

process, and use spatial information to navigate through their environment and in-

teract with objects in space. It encompasses a range of mental processes such as

perception, attention, memory, reasoning, and problem-solving that are involved in

spatial tasks like wayfinding, map reading, spatial orientation, and spatial memory

(Waller, Nadel, 2012).

Traditionally, research on the brain has mainly focused on studying the earli-

est sensory areas, particularly those associated with the early visual stream (Hubel,

Wiesel, 1959, 1998). However, efforts to study regions further downstream have been

met with challenges due to the complexity of the neural activities and structures

involved. Recent advances in spatial cognition research have been a significant step

forward, revealing that neurons in the hippocampal formation and related areas pro-

vide detailed representations of spatial information (Waller, Nadel, 2012; Moser et al.,

2017; Hardcastle et al., 2017). These findings highlight the potential for investigating

neuronal coding beyond typical sensorimotor processing and extending our under-

standing into the more complex cortices that govern higher-level cognition. This

presents exciting opportunities for further exploration and discovery in the field of

neuroscience.

Recent research has revealed a variety of different types of spatial representations

in the brain. These start with place cells (O’Keefe, Dostrovsky, 1971), which are

followed by head direction cells (Ranck, 1984; Taube et al., 1990a,b), grid cells (Fyhn

et al., 2004; Hafting et al., 2005), and border/boundary vector cells (Solstad et al.,

2008; Lever et al., 2009), among others. Many of the results are from the hippocam-

pus. Together, these different types of cells create a diverse family that narrates a
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fascinating scientific story about spatial cognition. As more research is conducted in

this area, it is likely that new members of this family will continue to be discovered,

providing even deeper insights into how the brain interprets and represents spatial

information.

This chapter will provide a brief review of some experimental findings that will

serve as the foundation for subsequent discussions on modeling studies. Some of these

findings will be revisited throughout the thesis.

2.1 Hippocampus and place cells

Anatomically, both the rodent and primate (human included) hippocampus that have

been heavily studied can be subdivided into three primary sub-regions (dentate gyrus

(DG), CA3, and CA1). These regions differ in their connectivity, interneurons, and

projection neurons (Andersen et al., 2007; van Strien et al., 2009).

Figure 2.1: Hippocampal anatomy in the rat and human. The diagram on the left
is based on the details known from rat anatomy. On the right, the image shows the
comparative location of the hippocampus in both rats and humans. Adapted from
(Waller, Nadel, 2012).

The activity of place cells in the rodent hippocampus is one of the most no-

table encoding patterns that reveal how complex cognition is represented in neurons

(O’Keefe, Dostrovsky, 1971; O’Keefe, 1976). These cells exhibit an increased firing

rate when the animals enter specific areas of their environment, as depicted in Figure

2.2. Building upon this observation and drawing inspiration from Tolman’s concept
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of cognitive map in the brain, O’Keefe and Nadel proposed that place cells are fun-

damental components of an allocentric spatial cognitive map in animals (O’Keefe,

Nadel, 1979). Place cells exist in all three sub-regions of the hippocampus (DG, CA3,

CA1), but in the DG, the place fields tend to be more sparsely distributed (Gothard

et al., 2001; Jung et al., 1994) and responsive to subtle changes in the environment

(Leutgeb et al., 2007).

Figure 2.2: Place cells. (a) First place cell described(O’Keefe, Dostrovsky, 1971).
(b) An example of the spatial distribution of spikes from a hippocampal place cell is
illustrated. On the top, the trajectory of the rat is depicted as a gray line, while the
spike locations of this particular cell are superimposed as black dots. The bottom
section shows a color-coded rate map, where dark red represents the maximum firing
rate of the corresponding place cell. The blue color indicates silence, and the region
surrounding the maximum firing rate, which also exhibits a relatively higher firing
rate, is referred to as the ’place field’ of this place cell. Adapted from (Moser et al.,
2017).

In the following, we will explore the characteristics of place cells, which can be

classified into three main categories: single-cell properties, firing sequence, and con-

text sensitivity.
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2.1.1 Encoding properties of place cells

A typical place cell in the hippocampus is characterized by a confined firing field

known as a place field, which corresponds to a specific spatial area within an experi-

mental environment. The environment in which the majority of place cell properties

have been described is typically a standardized cylinder with a diameter of 1 meter or

a square box with sides measuring 1 meter. Different place cells exhibit distinct place

fields, which can vary in terms of their shape, size, and intensity of firing. However,

the exact significance of these variations remains uncertain.

Along the dorsal-to-ventral axis, there is a clear trend of increasing size for cor-

responding place fields. Place cells in the dorsal region tend to have smaller place

fields, whereas those in the ventral region exhibit larger place fields (Jung et al., 1994;

Kjelstrup et al., 2008; Royer et al., 2010). This encoding structure allows for the rep-

resentation of multiscale information about space (Fiete et al., 2008; Maurer et al.,

2005). The presence of broad place fields provides an opportunity for different types

of information to be integrated within a single cell. This may explain why the ven-

tral hippocampus is often associated with contextual and environmental-emotional

associations, as it enables the incorporation of diverse information within these larger

place fields (Bannerman et al., 2004).

In a linear track, which can be viewed as a one-dimensional environment, many

place cells exhibit preferential firing when the rat moves in one direction but not in

the other. However, in a normal two-dimensional environment, most, if not all, place

cells are omnidirectional. Additionally, in a three-dimensional environment, both

bats (Yartsev, Ulanovsky, 2013) and rats (Grieves et al., 2020) have place cells that

encode the three-dimensional space uniformly, indicating that these cells represent

the spatial information across multiple dimensions.

Place cells are not limited to having only one firing field per environment. In a

typical laboratory setting, which often consists of a small and regular environment,

most place cells exhibit a single field. However, in larger and more complex envi-

ronments, some place cells may display multiple firing fields. This is considered an

adaptive mechanism that enables the efficient encoding of intricate and expansive

surroundings (Fenton et al., 2008; Rich et al., 2014).

As animals traverse a place field of a specific place cell, the relationship between

the timing of spikes in that cell and the local field potential theta oscillation at around

7 Hz undergoes a distinct alteration. Initially, the spikes of the place cell occur later

in the theta cycle upon entering the place field, but they progressively shift to earlier
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phases of the cycle upon exiting the field. This phenomenon, known as phase preces-

sion, refers to the change in the phase relationship between spikes and theta oscillation

as an animal moves through a place field (O’Keefe, Recce, 1993; Skaggs et al., 1996).

It is hypothesized that phase precession may serve as a potential mechanism for the

binding and compression of sequential events, allowing for the integration of temporal

information within the spatial representation of the hippocampus.

2.1.2 Sequence properties of place cells

In addition to exhibiting higher firing rates within their place fields, hippocampal

place cells also display increased firing rates when the animal pauses or rests. Re-

markably, by decoding the spatial location information from recorded hippocampal

place cells, it becomes possible to reconstruct the trajectory that the animal has

recently traveled. This phenomenon is referred to as replay, as it involves the reacti-

vation or replaying of the neural activity patterns associated with the animal’s past

experiences or spatial navigation. Replay events are believed to play a crucial role in

memory consolidation and the offline processing of spatial information (Frank et al.,

2004; Kentros et al., 1998; Wilson, McNaughton, 1993, 1994).

When a rat is positioned at a choice point, it has been observed that the hip-

pocampal place cells exhibit sequences of firing activity that create the illusion of the

rat traversing a particular path, even though it has not physically done so (David-

son et al., 2009; Foster, Wilson, 2006; Gupta et al., 2010). This phenomenon is

referred to as preplay, as it involves the representation of future trajectories before

they are actually executed. These findings provide valuable insights into the mecha-

nisms underlying critical functions in which the hippocampal formation is involved,

such as the consolidation of long-term memory (Marr, Brindley, 1971; Sutherland,

McNaughton, 2000) and future planning (Foster, Wilson, 2006; Diba, Buzsáki, 2007;

Karlsson, Frank, 2009; Lansink et al., 2009). Preplay suggests that the hippocampus

is not only involved in encoding past experiences but also in simulating and planning

future spatial trajectories based on internal representations and contextual informa-

tion.

2.1.3 Context sensitivity

The spatial representations in the hippocampus are heavily influenced by sensory in-

put. If the external cues that provide spatial information change, the place cells may

undergo shifts in the locations they represent. They can also become silent or exhibit
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activity in different locations. Furthermore, the firing rates of place cells can be mod-

ulated in response to changing sensory input (Muller et al., 1987; Sharp et al., 1990;

Bostock et al., 1991; Kubie, Muller, 1991). The term ’remapping’ was introduced

to describe these changes in the spatial representation of place cells. Subsequently,

terms like ’global,’ ’partial,’ and ’local’ remapping were coined to characterize how

the ensemble of place cells responds to such changes (Knierim, McNaughton, 2001).

The recruitment of various forms of remapping allows the hippocampus to possess a

large capacity for encoding spatial information, enabling flexible and adaptive repre-

sentations of the environment.

Research has demonstrated that changes in the way stimuli are represented by

hippocampal cells can occur not only due to variations in spatial features, but also

in response to variations in other nonspatial aspects of the environment, such as

color (Bostock et al., 1991), texture (Young et al., 1994), and temporal stages of the

experiment (Hampson et al., 1993). These findings suggest that hippocampal cells

integrate information from multiple sensory modalities, responding conjunctively to

both spatial and nonspatial variables. By considering the effects of these diverse en-

vironmental factors on neural activity, we can begin to develop a more comprehensive

understanding of how the brain processes and represents complex stimuli in the world

around us.

2.2 Entorhinal Cortex and Grid Cells

Following the initial discovery of place cells in the hippocampus, significant efforts

have been dedicated to studying spatial cognition within and around this brain region.

This led to numerous significant experimental and theoretical study results being

proposed regarding the encoding of brain spatial information. One such result is

the recordings in the dorsal medial entorhinal cortex (mEC), which is considered the

interface of the hippocampus as it is only one synapse away (Kloosterman et al., 2004;

Witter, Moser, 2006; Moser et al., 2014b). The detailed circuit is depicted in Figure

2.3.

2.2.1 Encoding properties of grid cells

The grid cell encoding patterns shown in Figure 2.4 indicate that cells in this region

exhibit sharply defined firing fields, similar to those observed in the hippocampus.

However, unlike hippocampal spatial encoding cells, each cell in the medial entorhinal
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Figure 2.3: Schematic representation of the parahippocampal-hippocampal circuitry.
According to this standard view, neocortical projections are aimed at the parahip-
pocampal region (PHR), which in turn provides the main source of input to the hip-
pocampal formation (HF). The EC has projects to all subregions of the hippocampal
formation. Entorhinal layer II projects to the dentate gyrus (DG) and CA3, whereas
layer III projects to CA1 and the subiculum (Sub). The Roman numerals indicate
cortical layers. Adapted from van Strien et al. (2009).

cortex (mEC) has multiple firing fields that are distributed throughout the environ-

ment. These fields form a hexagonal grid, effectively tessellating the entire space

available to the animal (Fyhn et al., 2004; Hafting et al., 2005).

The grid is characterized by its orientation relative to the environment, spatial

phase (location), period (distance between fields), as well as the size and firing rates

of its firing fields.(Hafting et al., 2005; Stensola et al., 2012; Tukker et al., 2021).

In layer III and deep-layer of mEC, grid cells were found also encoding head di-

rections, shown in Figure 2.4 d (Sargolini et al., 2006). Phase precession is commonly
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Figure 2.4: Grid cells. (a) Firing patterns of one of the first grid cells reported
in Hafting et al. (2005). Left: black line indicates the trajectories of the rat with
spike locations from this cell in red spots superimposed on top of it. Middle: color-
coded rate map with peak rate indicated (peak rate to no firing represented from
red to dark blue). Right: spatial autocorrelogram, color-coded from blue (r = –1)
through green (r = 0) to red (r = 1). (b) Sagittal section of the rat brain showing
the hippocampus and the MEC (red) and grid cells of different scales recorded at
three locations on the dorsoventral axis (trajectories with spike locations as in a).
Note that the expansion of grid scale changes from dorsal to ventral MEC. (c) Grid
cells show module organization (Stensola et al., 2012). (d) Conjunctive grid × head
direction cell in layer III of MEC. Adapted from Moser et al. (2017)

observed in layer II neurons in the mEC, it is not as prevalent in neighboring layer

III neurons (Hafting et al., 2008).

The axes of the grids are offset from the walls by an angle of 7.5◦ degrees. This off-

set was proposed in order to minimize symmetry with the borders of the environment

and enhance the distinctiveness of the grid patterns (Stensola et al., 2015).

Grid cell responds differently on one-dimensional tracks, the encoding fields are

not arranged periodically, peak amplitudes vary across fields, and the mean spacing

between fields is larger than in two-dimensional environments (Yoon et al., 2016).

And in three-dimensional environment, only local order has been reported to reserved

(Ginosar et al., 2021).
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This spatially periodic firing pattern is originally considered to be independent

of the geometric properties of the environment. However, experiments have pointed

at increased irregularity and plasticity of grid activity patterns, whether due to large

environments (Stensola et al., 2015), non-standard shapes (Krupic et al., 2015), mod-

ulation by local cues (Ismakov et al., 2017), boundary changes (Wernle et al., 2017)

or the presence of goals (Boccara et al., 2019).

Experiments with monkeys have expanded the range of spaces that can be rep-

resented by grid cells. These experiments demonstrated the existence of neurons in

the entorhinal cortex (EC) that exhibit firing patterns in a hexagonal lattice of on

positions a screen, corresponding to the visual space being explored by the animals

(Killian et al., 2012).

Grid cells, similar to place cells have been found to exhibit responses to non-

spatial features in addition to their role in spatial representation (Aronov et al.,

2017; Bellmund et al., 2018). For example, studies have shown that grid cells in the

entorhinal cortex can encode information about reward-related variables, such as the

anticipation and delivery of rewards (Aronov et al., 2017). These findings suggest

that grid cells may play a role in reward processing and motivation. Furthermore,

grid cells have also been found to respond to non-spatial sensory cues. In a study by

Bellmund et al. (2018), grid cells in the entorhinal cortex of humans were observed to

exhibit firing patterns modulated by visual cues, even without any spatial information.

This suggests that grid cells may be involved in processing and integrating sensory

information from different modalities, contributing to the formation cognitive of maps

and spatial representations. The ability of grid cells to respond to both spatial and

non-spatial features highlights their versatility and suggests their involvement in a

wide range of cognitive processes. These findings provide further insights into the

complex nature of grid cell function and their contribution to cognitive mapping and

navigation.

Grid cells have not only been observed in the entorhinal cortex, but also in other

brain regions such as the somatosensory cortex and visual cortex (Long, Zhang, 2021;

Long et al., 2021). These findings suggest that grid cell-like properties may be present

in multiple sensory modalities, indicating a broader role for grid cell networks in

spatial representation and navigation across different sensory domains. The presence

of grid cells in these diverse brain regions highlights the significance of spatial coding

and suggests a potential integration of spatial information across various sensory

systems.
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2.2.2 Correlation between grid cells

Grid cells exhibit variations in grid spacing, grid phase, and grid orientation. It has

been observed that grid cells in close proximity to each other tend to have similar

grid orientations and spatial periods (Hafting et al., 2005; Stensola et al., 2012).

When a rat is introduced to a novel environment, the grid cells in its brain maintain

a consistent pattern firing same the with field size and grid spacing. However, there

are changes notable in the grid phase and orientation. Remarkably, these alterations

occur consistently across all within cells same module (Fyhn et al., 2007).

By sampling a large number of grid cells across the dorsoventral axis within an-

imals, researchers have identified four or five distinct modules characterized by a

common grid spacing and orientation (Stensola et al., 2012). Interestingly, the in-

crease in grid spacing along the axis appears to occur in discrete jumps, with a ratio

approximately equal to
√
2, as depicted in Figure 2.4c. This finding suggests a system-

atic organization of grid cells, where the spacing between grid fields from proximity

modules increases in a specific and consistent manner.

2.2.3 Context sensitivity

When a rat is placed in a new environment, the grid cells in its brain continue to fire

a in consistent pattern with the same field size and grid spacing. However, there are

notable changes in the grid phase and grid orientation. Interestingly, these alterations

occur consistently across all nearby cells within the same module (Fyhn et al., 2007).

2.3 Other forms of spatial responses

In addition to place cells in the hippocampus and grid cells in the mEC, the brain

employs various other mechanisms to encode spatial concepts and understand the

relationships between objects and environments. These mechanisms enable us to

comprehend and navigate the spatial world around us. Two important patterns

involved in this process are head direction cells, and boundary cells or boundary

vector cells.

2.3.1 Head direction cells

Head direction cells were first discovered in the postsubiculum of rats by Ranck in

1984 (Ranck, 1984). These specialized neurons exhibit firing activity when the rat’s

head is oriented within a specific range of directions, known as the preferred direction
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Figure 2.5: Examples of the firing patterns of a head direction Cell (left) and of a
border Cell (right). a, a head direction cell, spikes are covering the whole environment
when the head of the rat is heading upper right. b, a border cell, encodes the wall on
the left side, when a new wall is introduced parallel to the left wall, a new field has
appeared shown in the rate map on the right. Adapted from Sargolini et al. (2006)
and Solstad et al. (2008).

and relatively remain silent for other directions. The firing rate of head direction cells

typically follows a triangular or Gaussian tuning curve, with the highest firing rate

occurring in the preferred direction and gradually decreasingly symmetric around it

(Taube et al., 1990a,b).

Each head direction cell has a unique preferred direction, meaning that different

cells within the head direction cell population are active for specific directions the rat

is facing. This population of head direction cells collectively represents the full range

of possible head orientations. By integrating the of activity these cells, the brain can

establish a stable reference frame for spatial navigation and orientation, allowing the

rat to accurately perceive its heading in the environment.

2.3.2 Border cells

Border cells are a type of neuron that exhibit activity near the borders of an environ-

ment. They were initially documented by Solstad et al. (2008); Savelli et al. (2008).

These cells possess firing fields that undergo a change in location when the position of

the subject shifts. Moreover, when new borders are introduced into the environment,

additional firing fields are added. If two border cells fire along adjacent borders in

one enclosure, they are likely to fire along adjacent borders in other similar boxes as

well.

egocentric and allocentric border cells (Hinman et al., 2019; Gofman et al., 2019),

Egocentric and allocentric border cells are two subtypes of border cells that have

been identified in the brain. Hinman et al. (2019) and Gofman et al. (2019) have
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conducted studies on these cell types. Egocentric border cells are neurons that exhibit

activity near the borders of an environment based on the individual’s own position or

viewpoint. These cells encode the position of the borders relative to the individual’s

own body or reference frame. Allocentric border cells, on the other hand, encode the

position of the borders in relation to external cues or landmarks in the environment.

These cells are not influenced by the individual’s own position or viewpoint, but

rather represent the absolute location of the borders.

The coexistence of grid cells, border cells, head and direction cells in the me-

dial entorhinal cortex, presubiculum, and parasubiculum has been demonstrated in a

study by Boccara et al. (0201). This study emphasizes the of importance integrating

spatial maps with information on location and direction in the brain’s navigation

and orientation processes. The coexistence of these cell types suggests that the brain

integrates multiple sources of spatial information to create a comprehensive represen-

tation of the environment. This integration allows for more navigation accurate and

orientation in space. The medial entorhinal cortex, presubiculum, and parasubiculum

are all involved in this process, highlighting their crucial roles in spatial cognition.

2.4 Brain oscillations

Oscillation refers to the rhythmic and repetitive motion or behavior observed in many

natural and engineered systems. It is characterized by the regular and periodic varia-

tion of a system’s state or output over time. Oscillations can have various frequencies,

amplitudes, and waveforms. The concept of oscillation plays a fundamental role in

understanding the behavior and dynamics of various natural and engineered systems.

Understanding oscillations is crucial in many fields, including physics, engineering,

biology, and social sciences. Oscillatory systems can exhibit remarkable properties,

such as resonance, synchronization, and entrainment, which have important implica-

tions for the functioning of biological systems, the design of electronic circuits, the

stability of power grids, and the dynamics of social networks.

The term ”brain oscillations” or ”neural oscillations” describes the rhythmic and

repetitive electrical activity that occurs spontaneously or in response to stimuli in

neural tissue within the central nervous system. The discovery of brain oscillations is

often attributed to Hans Berger (1873-1941), who recorded the first electroencephalo-

gram (EEG).

The frequency ranges of brain oscillations are typically divided into several bands,

delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-
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100 Hz) (Cole, Voytek, 2017). Each frequency band has been shown to be associated

with different cognitive and physiological processes.

In recent decades, there has been a growing recognition of the correlation of brain

oscillations as with in sensory-cognitive processes (Ward, 2003; Buzsáki, Draguhn,

2004). Researchers have increasingly emphasized the functional significance of these

oscillations in various cognitive functions, including perception (Busch et al., 2009),

attention (Jensen et al., 2007), memory (Lega et al., 2012), and information processing

(Fries, 2015).

Infra-slow oscillations (ISO), which are a form of low-frequency brain activity

occurring at a rate below 0.1 Hz, are significantly slower than traditional neural

oscillations (Aladjalova, 1957).

ISO has been observed in various regions of the brain, including the cortex, tha-

lamus, and hippocampus. It is believed to play a crucial role in coordinating and

integrating neural activity across different brain regions, thereby facilitating commu-

nication and information processing (Watson, 2018; Dash, 2019).
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Chapter 3

Models of grid cells

The discovery of grid cells is followed with discussions about the mechanism behind

the generation of grid patterns and their potential functions (Giocomo et al., 2011b;

Zilli, 2012; Moser et al., 2014a; Moser, Moser, 2013; Moser et al., 2017).

Many studies have focused on related questions (O’Keefe, Burgess, 2005; Burgess,

Barry, 2007; Giocomo et al., 2007; Hasselmo et al., 2007; Burgess, 2008; Fuhs, Touret-

zky, 2006; Burak, Fiete, 2009; Shipston-Sharman et al., 2016; Kropff, Treves, 2008;

Si, Treves, 2013; DiTullio, Balasubramanian, 2021), and despite differences between

these models, they can be categorized into a few common prototypes. Below, we

outline three main subclasses:

• Continuous attractor neural network models

• Oscillatory interference models

• Self-organized models

3.1 Continuous attractor neural network models

Continuous attractor neural network models are commonly employed to simulate grid

cells by utilizing an interconnected system of neurons that generates a continuous at-

tractor landscape. In these models, each neuron is assigned a specific spatial position

or virtual location, and the strength of connections between neurons varies based

on their distance. The activity of these neurons can be conceptualized as a mov-

ing ”bump” or peak of firing that dynamically traverses the network in response to

stimuli. The process of translation is believed to rely on a mechanism of path in-

tegration, where changes in speed and direction continuously modulate the effective
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Figure 3.1: Schematic illustration of the continuous Attractor Neural Network Mod-
els. (a) One-dimensional continuous Attractor Neural Network, units are evenly dis-
tributed on a linear track (ring here to have a periodic boundary), and each unit
connects with nearby cells with a synaptic strength (or connection probability) that
declines as a function of distance. (b) Two dimensional continuous Attractor Neural
Network, neurons are evenly distributed on a two dimensional space, the connections
of neurons at the edges are wrapped around to create a periodic boundary. (c) By
using an intermediate layer of cells that are conjunctive for position and head orien-
tation, it is possible to make the bump move in correspondence with a rat’s motion.
Adapted from (McNaughton et al., 2006).

connectivity between cells (Zhang, 1996; Fuhs, Touretzky, 2006; Burak, Fiete, 2009;

Shipston-Sharman et al., 2016).

Continuous attractor neural network models depend on the establishment of pre-

cise neural connections among neighboring neurons, which play a critical role in the

formation of continuous attractors that are susceptible to noise. However, the require-

ment for precise connectivity in these models presents challenges when attempting to

directly apply them as explanations for grid cells in the brain (Burak, Fiete, 2009).

3.2 Oscillatory interference model

The mechanism behind the generation of grid patterns is still a topic of ongoing re-

search and debate. One proposed mechanism is the oscillatory interference model,

which suggests that the grid pattern arises from the interaction between different
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oscillatory frequencies in the entorhinal cortex. According to this model, the inter-

ference between these oscillations generates the hexagonal firing pattern observed in

grid cells.

In the oscillatory interference model, the regular firing pattern of grid cells emerges

within the cell as an interference results between a relatively constant theta oscillation

with other internal or external theta oscillators with their frequency being modulated

by the instantaneous velocity of the animals along a preferred direction (Burgess,

Barry, 2007; Hasselmo et al., 2007; Burgess, 2008; Hasselmo, Brandon, 2008). The

interference between each oscillator and the reference membrane oscillation results

in the creation of bands of activity that have the same orientation as the preferred

orientation of the oscillator that is modulated by velocity. As a result, if the velocity-

controlled oscillators are oriented 60 degrees apart, it is expected that a periodic

spatial activity with a hexagonal shape will be observed. The oscillatory interfer-

ence model provides a theoretical framework for understanding how the interaction

between theta oscillations and velocity-controlled oscillators can give rise to the char-

acteristic hexagonal firing pattern observed in grid cells.

In this type of models, the exact neural circuits and regions involved in generating

these oscillations are still under investigation, potential candidates include the medial

entorhinal cortex, hippocampus, and other areas involved in spatial navigation and

memory.

3.3 Self organization models

Self-organization models involve the identification of principles and mechanisms that

lead to the spontaneous emergence of specific temporal or spatial patterns through

interactions among individual units. Analyzing the properties of dynamical systems

in self-organization models requires the use of mathematics, physics, and computer

simulations (Karsenti, 2008).

In the context of grid cells, self-organization models emphasize the development

of the network and the emergence of spatial patterns, rather than relying on spe-

cific hypotheses about network connectivity patterns (Kropff, Treves, 2008; Mhatre

et al., 2012; Grossberg, Pilly, 2012; Pilly, Grossberg, 2013; Castro, Aguiar, 2014; Wid-

loski, Fiete, 2014; Stepanyuk, 2015; DiTullio, Balasubramanian, 2021). These models

aim to understand how grid cell firing patterns can arise through the self-organizing

properties of neural networks, without explicitly specifying the exact connectivity

patterns.
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Figure 3.2: Schematic illustration of the interference model. (a), Example of in-
terference between a single dendritic oscillation and a soma oscillation. When two
oscillations are in phase (green line), their summation can result in a larger amplitude
of the membrane potential fluctuations of the neuron, which is large enough to cross
the threshold for action potential firing and generate a spike (red dot). On the other
hand, if the summation of the oscillations does not reach the threshold for action
potential firing, no spikes will be generated. (b) Top: the speed-modulated head
direction input affect the frequency of oscillations in three different dendrites, three
different head direction inputs have preferred firing directions offset by 60 degrees
relative to each other, when the dendritic oscillations interact with the baseline soma
oscillation, an interference pattern has been generated. Bottom: Applying a thresh-
old to the interference pattern generatedcan produce a firing pattern that resembles
that of grid cells. Adapted from (Giocomo et al., 2011a).

By focusing on the self-organization of spatial patterns, these models offer valuable

insights into the development of grid cells and their characteristic firing properties.

They provide alternative perspectives on the underlying mechanisms, moving away

from pre-determined connectivity patterns and instead focusing on the emergent prop-

erties of neural networks. These models shed light on how grid cells can form their

hexagonal firing patterns through the interactions and dynamics within the network.

By simulating the self-organizing properties of neural networks, they contribute to

our understanding of how spatial representations emerge in the brain.

Different models can indeed provide us with different perspectives on the proper-

ties of grid cells. Each model may make different assumptions, incorporate different

mechanisms, or focus on different aspects of grid cell behavior. As a result, they can

offer unique insights into the underlying mechanisms and functions of grid cells.
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Figure 3.3: [Schematic illustration of the self organized model. The input layer sup-
plies the second layer mEC units with spatially modulated input. Through synaptic
adaptation, mEC units undergo self-organization by modifying their activity levels
and strength of the connections between each other. As a result, the units in mEC
organize themselves into a hexagonal grid pattern. Adapted from (Kropff, Treves,
2008).

For example, continuous attractor network models emphasize the role of attractor

dynamics and synaptic connectivity in generating grid-like firing patterns. These

models provide insights into how grid cells maintain their firing patterns and update

them based on self-motion cues.

On the other hand, oscillatory interference models highlight the importance of

theta oscillations and their interaction with velocity-controlled oscillators in generat-

ing grid cell firing patterns. These models provide insights into how grid cells integrate

temporal and spatial information to encode the animal’s position in space.

Self-organization models focus on the emergence of grid-like firing patterns through

the interactions and plasticity of the network. These models provide insights into grid

how cells may develop their firing properties without relying on pre-determined con-

nectivity patterns.

By considering and comparing these different models, we can gain a more com-

prehensive understanding of the properties and mechanisms of grid cells. Each model
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offers a unique perspective to contribute and our overall knowledge of how grid cells

function in spatial navigation and cognition.
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Chapter 4

Grid cells in wild

4.1 Introduction

The nervous system acquires from experience multiple representations of the external

world. Extensively studied examples are in the hippocampus and adjoining cortices of

rodents and other small mammals, near the apex of their cortical hierarchy(Felleman,

Van Essen, 1991). There, the position of the animal in its immediate surround-

ings and other spatial variables are clearly prominent correlates of neural activity,

as exemplified by 50 years of research on place cells (O’Keefe, Dostrovsky, 1971),

but high level representations have been described also for other variables, including

time(MacDonald et al., 2011; Buzsáki, Tingley, 2018), auditory frequency(Aronov

et al., 2017), odours(Eichenbaum et al., 1987; Taxidis et al., 2020) and taste(Herzog

et al., 2019). Spatial representations have been thoroughly studied in the labora-

tory, yielding amazing results (Moser et al., 2017) but in conditions rather different

from those prevailing in the wild. The medial entorhinal cortex (mEC), one synapse

upstream of and a major source of inputs to the hippocampus, includes numerous

functionally-defined cell types contributing to spatial representations. Significant

fractions of its cells have been characterized as grid cells(Hafting et al., 2005), border

cells(Solstad et al., 2008), head direction and conjunctive cells(Sargolini et al., 2006),

speed cells(Kropff et al., 2015) and irregular spatial cells(Diehl et al., 2017). Should

we understand this characterization as encompassing the different components of a

precisely engineered system, or as a list of some of the most salient properties ex-

pressed by this population of neurons, which is however not rigidly partitioned into

cell classes? The question is made more relevant by the failure, over the years, to

identify a precise correspondence of such putative classes with cell properties observed

in other species, notably in primates.
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Place cells fire action potentials when the animal moves through locations in the

environment, specific to each cell, called place fields. A simple intuitive model envis-

ages place cells as being assigned, at random, each a location in the environment to

represent with its activity, so that at a population level from the list of cells active

at a moment in time one can easily decode the position of the animal – who effec-

tively, then, has available a spatial map with its own position annotated on it. This

model does not seem outrageously inappropriate, particularly given that the majority

of place cells show only one field in the classical laboratory environment, typically

smaller than 1m2. Several recent experiments, however, show that in larger envi-

ronments place cells often have multiple and irregularly arranged place fields(Fenton

et al., 2008; Park et al., 2011; Rich et al., 2014; Harland et al., 2021). Still, since the

multiple fields are irregularly arranged, one expects that a different list of active cells

will uniquely identify each location. Thus place cells, on their own, should effectively

represent or map a number of locations in space exponential in the number of cells

considered. Even huge environments could be mapped by a sufficient number of place

cells.

The effectiveness of the spatial code would appear more doubtful with grid cells,

discovered later in the medial entorhinal cortex (mEC)(Hafting et al., 2005). At least

in the simplest intuitive model, each grid cell fires at multiple discrete spaced loca-

tions, regularly arranged on a hexagonal pattern that tiles the entire space available

to the animal in a laboratory environment. Taken to the extreme, the model would

predict that the list of active cells is the same at all locations situated on the hexago-

nal pattern, which the code would then be unable to distinguish. But are the intuitive

models abstracted from experiments in the lab relevant to ecological conditions, where

these neural systems have evolved over millions of years?

In this paper, we focus on the pattern formation process of grid cells, based on

feed-forward spatial information contributed by place cells, as expressed in our self-

organizing adaptation model.

The spatial representations expressed by grid cells and place cells have been re-

ported to differ substantially in the amount of local information they incorporate.

Place cells can show global remapping, given sufficient changes in the external en-

vironment (Latuske et al., 2018), indicating that they are highly influenced by local

spatial information. Grid cells, at least in flat regular environments, do not show

global remapping, once the population as a whole has been anchored to the local en-

vironment (Stensola et al., 2015). Major changes in the environment, which cause the
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global remapping of place cells, on an individual basis, appear to induce only a coher-

ent population realignment by grid cells(Fyhn et al., 2007). Subsequent experiments

have partially qualified these results, by showing that the grid pattern is influenced by

walls(Barry et al., 2007), unstructured but oddly shaped environments(Krupic et al.,

2015), local cues(Ismakov et al., 2017), goals(Boccara et al., 2019). The simple radical

notion that grid cells provide a universal spatial metric has therefore been challenged.

In addition, in the search of grid patterns in 3D environments, only local order, ex-

pressed e.g. by relatively uniform inter-field distances, has been seen to be partially

preserved (Ginosar et al., 2021), in agreement with the theoretical predictions of the

self-organizing adaptation model in 3D (Stella, Treves, 2015).

To better understand the spatial selectivity expressed by grid cells, it seems in-

creasingly urgent to move out of artificial laboratory settings. Grid cells have been

observed in several species, including rats (Hafting et al., 2005), mice (Fyhn et al.,

2008) and crawling bats (Yartsev et al., 2011), with related cellular selectivity also in

monkeys (Killian et al., 2012) and humans (Doeller et al., 2010; Jacobs et al., 2013),

pointing at some degree of universality underlying the phenomenon. These animals

experience space in their natural environment, whether large scale 2D where they

roam, or 3D where they swim, jump, climb and fly, or curved and crooked, for those

who live in burrows. One could start by considering three simple types of geometry,

flat 2D, 3D, and curved.

Flat 2D(Kropff, Treves, 2008; Si et al., 2012; Si, Treves, 2013; Urdapilleta et al.,

2017), 3D(Stella, Treves, 2015), and curved(Stella et al., 2013; Urdapilleta et al.,

2015; Stella et al., 2020) environments have indeed all been considered in studies of

the grid pattern emerging with the self-organizing adaptation model.

In this paper, we aim to further our understanding of grid patterns in burrows,

where rats, arguably the most frequently used species for the study of spatial repre-

sentations, usually live in the wild (Calhoun, 1962; Schweinfurth, 2020).

Norway rats, a most common strain of rats widely used in research, usually re-

ferred to as the common rat, have seen their burrowing habits meticulously described

by John B. Calhoun (Calhoun, 1962), with the original motivation to control their

proliferation in the city of Baltimore. Calhoun has produced estimates of the quan-

titative characteristics of typical burrows housing ca. 11 adult rats: on average 10

chambers (2 terminal; 8 with at least 2 entrances), linked by 40 tunnels (including

on average 13 to exits; 20 internuncial; 7 blind). A sketch is shown in Figure 4.1 left

(Calhoun, 1962). On these descriptions we base our virtual burrows, generated by an

25



in-house algorithm, one of which is shown in Figure 4.1 right. The yellow line is an

example of a simulated trajectory.

4.2 Simulation

4.2.1 The construction of the burrows

Our computer model generates virtual burrows with a simple geometry, in which

the chambers are represented by spheres, of variable diameter, while the tunnels are

schematized as sequences of short curved cylinders (i.e. sections of tori) of variable

length and external (curvature) radii, and fixed internal diameter – just enough for

a virtual rat to run through. Spheres are thus assigned a center and a diameter,

while curved cylinders are defined by a circular basis (with a fixed diameter and a

centre and normal versor such that it lies on a sphere, or at the end of another tunnel

segment) which is then translated along an arc of circumference (with parameters the

versor and magnitude of the curvature radius, and the arc length). Additionally, we

draw on the work of Calhoun (Calhoun, 1962) to define probability distributions for

e.g. the diameters of the spheres and the lengths of the tunnels.

Burrow construction proceeds by generating a given number of spheres, with di-

ameters and center-center distances compatible with the observed chamber sizes and

distribution of tunnel lengths. Then, the internal burrow connectivity develops, ran-

domly split between chamber-chamber and tunnel-chamber tunnels. Finally, some

blind and exit tunnels are added.

The tunnels start with an existing object - sphere or tunnel - and define the initial

segment of the new tunnel as a short, straight cylinder with the basis circumference

Figure 4.1: Left, sample map of a Norway rat burrow (Calhoun, 1962). Right, a
simulated rat burrow environment which contains 10 sphere representing chambers
and 29 tunnels.
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tangent to the preexisting object at a random location, then new curved segments

are added, with a basis that coincides with the top of the previous one (same centre,

radius and normal versor), while the remaining parameters are randomly generated.

The tunnels terminate after randomly growing in random directions for a random

length if blind tunnels, when penetrating a target sphere or tunnel if internuncial

tunnels, or upon reaching a predefined horizontal plane (i.e. the ground) if exit

tunnels. In the last two cases, the direction of growth is biased towards the target

destination, with a probability inversely proportional to the distance to the target,

and we restrict the choice of the plane of the radial curvature so as to point towards

the desired outcome.

4.2.2 Trajectories

In the simulations, a virtual rat explores one of the virtual burrows described above

with a constant speed v = 40cm/s. Each time step in the simulation is taken to

correspond to 10ms in real time. The total length of a simulation is 100 million

steps (which would correspond to nearly 12 days of continuous running, to ensure

that the self-organization process has approached its asymptote). To obtain smooth

random trajectories, resembling those observed in experiments, the change in running

direction in the chambers is sampled from a Gaussian distribution with zero mean

and standard deviation σRD = 0.2 radians; in tunnels, since the size of the tunnels

normally can only allow a single rat to pass, the running direction of the virtual rat

is always following the tunnels. If the random trajectories lead the virtual rat to the

junctions, the virtual rat changes sub-environment (from chamber to tunnel, from

tunnel to chamber, or from tunnel to another tunnel). If the tunnel has a dead end,

the virtual rat turns back when it reaches the end. The trajectories are limited to

the lower half of the environment because of gravity.

4.2.3 Network model

The model is comprised of two layers. The input layer represents, for example, the

CA1 region of the hippocampus and contains Nhip = ρS + Lt/lc model place cells,

which we refer to as place units below, where ρ = 8000m2 is the density of input units

in chambers, S is the total area of the chambers, Lt is the total length of the tunnels,

lc is the mean local inter distance of place units in tunnels. This guaranteed that

the place units are equally distributed and cover the whole environment. The output
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layer represents a population of NmEC = 100 model mEC units, which we refer as

grid units below.

The input to grid unit i at time t is given by

hti =
∑
j

W t
ijr

t
j (4.1)

Here we assume that grid units develop their maps from scratch, receiving spatially

modulated inputs from the place units which have already developed, in line with

observations in rat pups, which show that place cells mature earlier than grid cells

(Langston et al., 2010; Wills et al., 2010).

Although weak spatial input is sufficient for grid pattern formation (Kropff, Treves,

2008), regularly arranged place cells are ideal for this function and reduce the aver-

aging necessary for learning with respect to more irregular inputs. Here the activity

of each place input unit in space is modeled as a Gaussian place field centered at

preferred position x⃗j0

rtj = exp−
(
||x⃗t − x⃗j0||2

2σ2
p

)
(4.2)

where x⃗t is the current location of the virtual rat. ||·|| is the shortest distance (dis-

tances in chambers are calculated along great circles, and in tunnels longitudinally,

adding them up if x⃗t and x⃗j0 are not in the same sub-environment). σp = 5cm is the

radius of the place fields.

4.2.3.1 Single-unit dynamics

The firing rate ψti of grid unit i is determined through a threshold-nonlinear transfer

function

ψti = ψsat arctan[g
t(αti − µt)]Θ(αti − µt) (4.3)

where ψsat = 2/π normalizes the firing rate into arbitrary units. Θ(·) is the Heaviside
function. The variable µt is a threshold while αti represents a time-integration of the

input hi, adapted by the dynamical threshold βi

αti = αt−1
i + b1(h

t−1
i − βt−1

i − αt−1
i ),

βti = βt−1
i + b2(h

t−1
i − βt−1

i )
(4.4)

where βi has slower dynamics than αi, and b2 is set to b2 = b1/3, b1 = 0.1. These

adaptive dynamics make it more difficult for a neuron to fire for a long period of

time, and endow grid units with fatigue dynamics(Kropff, Treves, 2008). The gain gt

and threshold µt are iteratively adjusted at every time step to fix the mean activity

a =
∑

i ψ
t
i/N and the sparsity s = (

∑
i ψ

t
i)

2/(N
∑

i ψ
t
i
2
) within a 10% relative error

bound from pre-specified values, a0 = 0.1 and s0 = 0.3 respectively.
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4.2.3.2 Head direction modulation and collateral connections

Head direction (HD) modulation and collateral connections are important for grid

alignment, as suggested by the detailed analysis in (Kropff, Treves, 2008; Si et al.,

2012). The head direction in the chambers (spheres) is defined as the angle between

a vector and the vector pointing toward the north pole.

With the addition of HD modulation and collateral connections, Eq.(4.1) for the

inputs to grid unit i is rewritten

hti = fθi(ωt)(
∑
j

W t−1
ij rtj + ρt1

∑
k

W t−1
ik ψt−τk ) (4.5)

where ψt−τk is the activity of other grid unit k reverberated by collateral connections

W t
ik with a delay τ = 25 steps. ρt1 = φt/T when t < T and φ when t ≥ T , where

T = 5× 106 for each simulation, φ is a set value controlling the strength of recurrent

connections. Then the time-dependent strength ρt1 is gradually increasing from zero,

in order to reduce the influence of the initial random weights.

fθi(ωt) is the HD tuning function that has maximal value when the current head

direction ωt of the simulated rat is along the preferred direction θi.

fθ(ω) = c+ (1− c) exp(v(cos(θ − ω)− 1)) (4.6)

c = 0.1 and v = 0.8 are parameters determining the baseline activity and the width

of head direction tuning.

4.2.3.3 Synaptic plasticity

All weights in the network self-organize while the virtual rat explores the environment

and the updating following the Hebbian rule.

Weights between place units and grid units are changed according to

∆W t
ij = ϵt(ψtir

t
j − ψ̄t−1

i r̄t−1
j ) (4.7)

where ϵt = ξ(1−0.9t/T ) when t < T and 0.1ξ when t ≥ T , here T = 5×106, ξ = 0.01.

ψ̄ti and r̄
t
j are estimated mean firing rates.

ψ̄ti = ψ̄t−1
i + η(ψti − ψ̄t−1

i ),

r̄ti = r̄t−1
i + η(rti − r̄t−1

i ),
(4.8)

and η = 0.05 is a positive averaging factor.
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The collateral weights between grid units are adapted according to

∆W t
ik = ζψti(ψ

t−τ
k − κ) (4.9)

Here ζ = 6.6× 10−5 is a learning rate smaller, at least initially, than the learning

rate for feed-forward weights between place units and grid units. κ = 0.1 is an

inhibition factor.

All the weights in the network are initialized as random numbers (1 − γ) + γu.

γ = 0.1, and u is a random variable uniformly distributed in [0, 1].

After initialization or weight changes, all weights are normalized to a unitary L2

norm ∑
j

W t
ij
2
= 1 (4.10)

4.3 Results

In the simulations, grid units may have been expected to form highly regular patterns,

as they do in flat 2D environments (Kropff, Treves, 2008). However, in our burrows,

modelling the natural environment of real rats, the activity patterns that get estab-

lished are not nearly as regular. Figure 4.2 shows the grid map of one sample unit.

The lower half of the sphere, representing a chamber, was projected to a horizontal

plane, while the upper half was discarded, as trajectories are limited to the lower half

to model gravity. Tunnels were straightened into 1D segments. Sufficiently explored

chambers show clearly identifiable fields, while those where the virtual rat spent less

time show only blurred, often overlapping fields. Longer simulations make for little

improvement. Tunnels, as they are 1D structures, are easier to learn and show clear

fields even in shorter simulations.

The grid maps in a chamber include very few fields, as indicated in Figure 4.2 top.

In fact, chamber width is at most 0.3m (reported as 298mm, with median 221mm

and minimum 155mm (Calhoun, 1962)), unlike the 2m diameter of the flat circular

enclosure used in the Moser lab (Hafting et al., 2005), and even considerably smaller

than the small square boxes used earlier and in several later studies (e.g., 1.0× 1.0m

(Fyhn et al., 2004)). Due to this reason, to be able to study the layout of the fields in

a spherical chamber we have used larger diameters in our model curved environments,

so they would include e.g. the 12 fields of the most regular pentagonal arrangement

(Stella et al., 2013, 2020) (on the entire sphere, top and bottom, with 6 in the lower

half).
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For grid patterns to be stable, the feed-forward learning rate between place units

and grid units has to be very small. As shown in Figure 4.2 bottom, with learning

rate ξ = 0.01 grid units may keep shifting their fields as the simulation proceeds, so

that their correlation with those at any reference time keeps changing; with learning

rate ξ = 0.001 the stability is markedly improved, and with ξ = 0.0001 grid units

appear to form stable maps both in chambers and in tunnels.

The gridness score has been widely used to quantify the spatial periodicity of

grid patterns, but it can be applied only to patterns with six-fold symmetry. Results

from simulations in curved environments show regular grid patterns with five-fold or

lower symmetry for constant positive curvature, and seven-fold or higher symmetry

for negative curvature (Stella et al., 2013; Urdapilleta et al., 2015). In the burrows

simulated here, inter-field distances vary also within chambers (light blue distribution

in Figure 4.3 top), indicating that spatial periodicity is not a property of grid cells in

natural environments.

The inter field distances in tunnels (green distribution in Figure 4.3 top) have a

larger peak value than in chambers. In chambers, in fact, our simulated trajectories

are curved as the running direction keeps changing, unlike the trajectories in tunnels

which can only follow the 1D tunnels, so the distance traveled over the adaptation

time scale is longer in tunnels than in chambers. For real rats, of course, the distance

traveled in each sub environment depends strongly on their prevailing speed, likely

contributing to the different representation of grid cells in tunnels and chambers.

The virtual rat learns the entire environment at the same time, since the randomly

generated trajectories span it all. We asked, then, whether grid units form a con-

tinuous representation of the whole environment, by checking whether the junctions

connecting chambers and tunnels break the continuity. In Figure 4.3 bottom left,

field B and field A are the closest fields to a junction, from the tunnel and chamber

side, respectively, and x and y represent their distance from the junction, so that

x = field distance –y. As shown in Figure 4.3 bottom right, x and y do not show

the expected negative correlation (with −1 or with any other clear slope), but rather

a loose relationship. This indicates that spatial representations by simulated grid

units are effectively independent in distinct portions of the environment, as this is in

practice partitioned up by the junctions.

Realistic simulated burrows like that in Figure 4.1 right require enormous CPU

time to be explored with sufficient statistics, and even then the maps that form espe-

cially in the chambers often present rather unclear fields, as in Figure 4.2. Therefore,

in the following analyses we consider a simplified burrow, with only three chambers
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Figure 4.2: Grid maps in burrows and their stability. Top and center, the maps
of one unit in chambers (the lower half of each chamber is shown), and in tunnels
(straightened and taken to be 1D). Chambers (tunnels) are shown in order of radius
(length), with the percent time spent in each by the virtual rat indicated top left,
top right indicates the maximum firing rate (always in the range [0 ,1], given Eq.(3)).
Bottom, from the first to the third row, the initial learning rate is lowered from
ξ = 0.01 through ξ = 0.001 to ξ = 0.0001; while from the first to the third column,
the reference time points are 2× 105, 6× 105, 10× 105.
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Figure 4.3: Top, inter fields distributions of fields in the same chambers and tunnels,
indicating the location of the peaks. Bottom left, field A and field B are the closest
fields to a junction, and y and x represent their distance to the junction from the
chamber and tunnel side. Bottom right, the correlation between the x and y measures.

and three tunnels connecting them, and compare the maps emerging there with those

in a square box or in/on a sphere. Since the gridness score cannot be readily applied,

we use instead the distributions of inter field distance (left column of Figure 4.4)

and of the angles between triplets of nearby fields (right column of Figure 4.4); such

triplets are defined by mutual distance in the range of 50% to 150% of the first peak

in the field distance distribution. We generated data for the square box environment

setting the strength of recurrent connections at φ = 0.125, much stronger than in the

sphere and burrow, where it was set at φ = 0.05, in order to have in each environ-

ment as regular grid patterns as they could be (see Figure 4.6 below). The effect of

recurrent strength in different environments will be described in details later. Other

parameters were kept constant.

The inter-field distance distribution in the box environment (of size 1.5× 1.5m2)

has clear peaks, shown in Figure 4.4 upper left. The fourth and fifth peaks are shifted
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to the left compared with those of perfectly regular six-fold grids, probably because

the virtual trajectories are limited by the hard border (which reflects the trajectory

as in a mirror when it hits the border). The angles have a distribution centered at

60 degrees, shown in Figure 4.4 upper right.

The spherical environment, with radius r = 0.5m, allows most grid units to de-

velop 12 fields. Their distribution of field distances also has clear peaks (Figure 4.4

center left). The angle distribution is centered at 71.8 degrees (Figure 4.4 center

right), just 0.2 degrees below the 72 degrees value of the perfectly regular five-fold

grid pattern.

In the burrow environment, simulations have parameters consistent with those in

the sphere. The field distance distribution does not have clear peaks, however (Figure

4.4 lower left). The angle distribution shows more variability than in the box and in

the sphere (Figure 4.4 lower right). This suggests that the formation of regular grid

patterns in natural environments, like rat burrows, is very challenging for the same

system that produces them easily in laboratory conditions.

The grid maps of cells recorded at the same electrode position show generally a

small correlation or rather an anti-correlation (Hafting et al., 2005), because even with

similar grid spacing and orientation, a relative phase shift between cells is sufficient

to remove the correlation between them. The results from simulations in the flat box

environment point at the same phenomenon, with in fact most pairs of grid units

ending up negatively correlated, as shown in Figure 4.5 top. Away from six-fold

symmetry, however, things are a bit different. In the sphere, units can form five-fold

symmetric grid patterns, when they have 12 fields, fields which cannot be translated

on top of each other, because translations do not exist on curved surfaces. So the bulk

of the units are less anti-correlated, and the peak correlation shifts to less negative.

In the burrow, without regular grid patterns, map correlations show a peak located

at even higher values, near zero.

Both in the box and sphere environments, the correlation between some units

reaches to almost 1, while most pairs of units are actually anti-correlated. The distri-

bution is much less spread out in the burrow environment where, as we said (Figure

4.5 top), most pairs of units have correlation close to zero, and the most correlated

ones hardly reach above 0.6 spatial (Pearson) correlation. Despite this, the examples

in Figure 4.5 bottom show that a standard K-means algorithm identifies 6 clusters

of units in the burrow data, with the same or even greater ease than in the box or

sphere data. It appears that the reason is that in the sphere, and even more in the

box, different units map out with their fields a low-dimensional spatial continuum, so
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Figure 4.4: Inter field distance and angles from local triangles. Left column, distri-
bution of inter field distance in box, spherical and burrow environments. Shown in
red for the box and sphere is the distribution valid for regular grids, with the first
peak aligned with that in our simulations. All peaks are indicated. Right column,
the angle distribution, where again the red dotted curve refers to regular grids; the
blue indicates simulation data, with standard deviation are annotated.
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that breaking them into clusters is quite arbitrary – an intuitive example would be

that of grid units with fields equi-spaced on a 1D ring, that would themselves describe

a ring if randomly spread out, and not a clustered structure. In the multi-chamber

environment of the simplified burrow, clusters apparently emerge spontaneously (see

Figure 4.5 bottom).

Figure 4.5: Top, map correlation between pairs of simulated units, in different en-
vironments. What is shown is the distribution of Pearson correlation values across
pairs. Bottom, map clusters visualized with t-Distributed Stochastic Neighbor Em-
bedding method (TSNE). The map distance between pair of units is defined by 1
minus their Pearson correlation, and units were clustered with a K-means algorithm
into 6 clusters.

Local recurrent connections have been identified as a key element of grid pattern

formation (Couey et al., 2013), in particular to align the grids in a flat environment

(Si, Treves, 2013; D’Albis, Kempter, 2020; Tukker et al., 2021). We asked how the

strength of recurrent connections affects the pattern formation process in our model

environments. We simulated the adaptation model in flat and curved environments,

and took the standard deviation of the angles from local triangles as a measure of the

regularity of the grid pattern.

Considering two flat environments, a square box and a trapezoid with the same

area, grid patterns show minimal standard deviation in the square box when the

strength of recurrent connections takes a specific value φ = 0.14, as shown in Figure
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4.6; and a larger minimum value (Figure 4.6) for somewhat weaker recurrent con-

nections (φ = 0.12) in the trapezoid, known to distort the grid pattern of real cells

(Krupic et al., 2015).

In the sphere, however, the minimum standard deviation, comparable with that in

the box environment (as both allow for regular tessellation, five-fold in one case and

six-fold in the other), is reached with much weaker recurrent connections, φ = 0.05,

as shown in Figure 4.6. In even the simplified burrow, the standard deviation of the

angle distribution is inherently higher, because of the lack of long-range order even in

the absence of recurrent connections, and recurrent connections are bound to increase

the irregularity further (see Figure 4.4 lower left).

In general, the strength of the recurrent connections might contribute to the rigid-

ity of the grid pattern across environments, but also perhaps to its flexibility in the

interaction with walls (Barry et al., 2007), changes in the boundary (Wernle et al.,

2017) and the appearance of local cues (Ismakov et al., 2017), including goals (Boccara

et al., 2019).

Figure 4.6: Standard deviation in local angles for the square box, trapezoid, and
sphere environments varying the strength of recurrent connections. The square box
environment is 150cm×150cm, while the trapezoid has parallel walls 87cm and 174cm
long, with symmetric 179.4cm side walls. The sphere has a 50cm radius, suited to
include 12 fields per unit. The solid line is the mean value of the standard deviation,
the shaded regions indicate its own standard deviation.

4.4 Discussion

The structure of the natural habitat of any species would appear to be a prime

determinant of exactly how that species has adapted to live in that habitat; yet in
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exploring the spatial memory and navigation abilities in rodents, and in particular

the neural systems that subserve them, early experiments have focused on artificial

laboratory environments, incongruent with those prevailing in the wild. The discovery

of the remarkable spatial selectivity of grid cells, evident in such laboratory set-ups,

has raised the issue of what grid cell firing patterns would look like, in an ecological

setting.

More recent experiments have pointed at increased irregularity and plasticity of

grid activity patterns, whether due to large environments (Stensola et al., 2015), non-

standard shapes (Krupic et al., 2015), modulation by local cues (Ismakov et al., 2017),

boundary changes (Wernle et al., 2017) or the presence of goals (Boccara et al., 2019).

These observations, however, were largely framed as deviations or perturbations from

the ideal notion of a regular tessellation of the environment, exhibiting long-range

order ad infinitum, which had been evoked by the early findings.

The possibility that long-range order may not apply at all in an ecological set-

ting was raised initially by looking at the activation patterns that emerge, with the

adaptation model, in 3D (Stella, Treves, 2015) or on curved 2D surfaces (Stella et al.,

2013; Urdapilleta et al., 2015), and is confirmed in a long-running experimental study

in bats (Ginosar et al., 2021). While bats fly, rats are burrowing animals, and natural

burrows are much more complicate structures than open arenas or other schematic

laboratory settings.

In the present study, we have modeled the burrow environment based on the de-

tailed quantitative descriptions by John Calhoun, and we have let a virtual rat ran-

domly explore it; then using our self-organizing adaptation model we have observed

grid pattern formation in model units. Grid units can attain stable representation

of the whole environment, if acquiring it slowly, but less explored sub environments

tend to be represented by blurred maps. The limited size of the chambers in natural

burrows only allows grid units to express very few fields, challenging the very idea

that grid cells may show long-range order outside the lab. One may wonder whether

the reports of a six-fold symmetry in imaging data from humans, a putative signature

of an underlying grid-like representation, might be due to large virtual arenas used

in those studies (Doeller et al., 2010). It comes as no surprise, then, that the char-

acteristic signature was not observed in the limited and non-flat vowel space (Kaya

et al., 2020), although of course there may be many other reasons for a null result.

The continuity of spatial representations depends on the exploration. In (Carpen-

ter et al., 2015), with a multi-compartment environment, real grid cells firing patterns

could establish a single, continuous representation that spanned both compartments
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after prolonged experience. In natural burrows however, tunnels are so narrow that

they are effectively 1D structures, and as such they necessarily break any potential

continuity in the representation of the chambers. What is left, at least when studied

with the adaptation model, is effectively a representation in terms of disjoint spa-

tial fragments, which coincide, in our modelling framework, with the better explored

chambers.

The fragmentary nature of these spatial representations finds expression also at

the level of neural populations. Compared with simulations in regular environments

(in the square box, but also to some extent in the large hemi-sphere which can ac-

commodate 6 fields), grid units simulated in burrows have more of a tendency to

cluster in groups with similar fields. This might be part of the drive that leads to the

observed modularity of grid activity (Stensola et al., 2012; Urdapilleta et al., 2017).

In flat environments recurrent connections promote regularity (and can align out-

of-spatial-phase patterns). In simple environments with constant non-zero curvature,

recurrent connections promote irregularity (Stella et al., 2020). In real-life environ-

ments, it is likely that they cause both irregularity and clustering into groups of units

with similar selectivity, running against the principle of representing space evenly,

expressed in the most idealized conceptual model by the notion of a continuous at-

tractor.

Experiments in artificial laboratory settings, which utilize well-controlled and sim-

plified paradigms, thus gave us the opportunity to admire a most impressive feat of

the rodent nervous system, its ability to approximate a regular tiling of an infinite

plane. While an exhilarating experience, this may have distracted us from under-

standing the characteristics of grid cells in ecological conditions, and possibly their

function in an evolutionary perspective.
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Chapter 5

Biased sampling and grid pattern
distortion

5.1 Introduction

Grid cells, a crucial type of cell for spatial representation, provide capabilities that

may increase animals’ accuracy on depicting their surrounding environment by firing

in multiple fields arranged in a highly organized hexagonal pattern (Fyhn et al., 2004;

Hafting et al., 2005). This remarkably regular pattern was previously believed to be

unaffected by the shape of the environment, leading to theories about the potential

of grid cells as a universal and unchanging metric for representing spatial information

(Fuhs, Touretzky, 2006; Fiete et al., 2008; Burgess, 2008).

Recent studies have provided insights into the impact of environmental features on

the formation of grid cell patterns, affecting their spacing, alignment, and symmetry

(Barry et al., 2007; Krupic et al., 2014, 2015; Stensola et al., 2015; Krupic et al.,

2018; Boccara et al., 2019; Bellmund et al., 2020). These phenomena can be broadly

categorized into two major components: anchoring to the environment and pattern

distortion.

Anchoring to the environment involves connecting the spatial representation to

specific local features, such as a goal (Boccara et al., 2019), or to the boundary

(Stensola et al., 2015; Julian et al., 2018). Regarding the anchoring to the boundary,

the analysis of grid cells recorded in square recording environments has shown that

the orientation of the grid axes is not randomly distributed (Stensola et al., 2015;

Julian et al., 2018). Instead, within each module of grid cells, the orientation of

the grid axes tends to cluster around the cardinal axes, indicating alignment with the

geometric features of the environment. Moreover, the distribution of minimal angular
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deviation from the walls across the cell population shows a distinct unimodal peak

centered at 7.5 degrees.

Grid pattern distortion can be induced by the shape of environments, primar-

ily due to the influence of environmental boundaries and geometry on the spatial

representation of grid cells (Krupic et al., 2014, 2015, 2018). In irregularly shaped

environments, such as trapezoids or other non-rectangular geometries, the grid pat-

tern becomes distorted, leading to alterations in the spacing, orientation, alignment

and symmetry of grid fields.

These deviations in grid patterns could potentially be explained by the patterns

of environment exploration.

During cognitive tasks, such as spatial exploration, animals demonstrate highly

structured behavior, with spatio-temporal patterns recurring across their actions

(Donnarumma et al., 2021). These behavioral patterns or motifs can reveal essential

latent dimensions related to how animals interact with the external world.

In this chapter, we will begin by investigating how rats sample their environment

through an analysis of their exploration behavior patterns. Subsequently, we will sim-

ulate the trajectory patterns of a virtual rat exploring a square box environment, uti-

lizing the insights gained from these observations. Next, employing a self-organizing

network model as described in (Kropff, Treves, 2008; Si, Treves, 2013), we will simu-

late the formation of grid patterns based on the trajectory simulations. By analyzing

the orientation of the grid axes in these patterns, we have identified a trend in the

change of anchoring angles relative to different exploration behaviors.

Additionally, we hypothesize that long-range correlation might partially account

for the grid pattern distortion observed in irregularly shaped environments. We ex-

amined this hypothesis through the exploration pattern, which entails reducing the

frequency of changes in running direction.

5.2 Network model for grid pattern formation

To simulate the formation of grid maps from disorderly encoding patterns under the

influence of firing rate adaptation, a two-layer network was constructed.

The first layer of the network is composed of place units, each of which contains

a single place field randomly scattered throughout the environment. The fields are

distributed beyond the border to mitigate any border effects that may arise from the

distribution of place cells. This layer supplies explicit location information to the

subsequent layer.
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The firing rate of a place unit i which has its field centered at position x⃗i0 when

rat is located at x⃗t is

rti = exp

(
−||x⃗t − x⃗i0||2

2σ2
p

)
(5.1)

where σp = 5cm is the radius of the place fields.

The second layer of the network is composed of mEC units which are expected

to develop grid-like firing patterns from an initial random firing pattern. Each mEC

unit receives input from the initial layer, as well as collateral connections from other

mEC units. The input for mEC unit j at time t is denoted by htj,

htj =
∑
i

W t−1
ij rti + ρ1

∑
k

W t−1
jk ψt−τk (5.2)

where Wij is the weight from place unit i to mEC unit j, ψt−τk is the activity of

mEC unit k which have been reverberated by collateral connections W t
jk with a delay

τ = 25 steps. ρ1 = 0.1 here is a strength of inter layer connections.

The firing rate ψtj of mEC unit j is determined through a threshold-nonlinear

transfer function

ψtj = ψsat arctan[g
t(αtj − µt)]Θ(αtj − µt) (5.3)

where ψsat = 2/π normalizes the firing rate into arbitrary units. Θ(·) is the Heaviside
function which equals zero when negative. The variable µt is a threshold while αti rep-

resents a time-integration of the input hj, which adapted by the dynamical threshold

βj

αtj = αt−1
j + b1(h

t−1
j − βt−1

j − αt−1
j ),

βtj = βt−1
j + b2(h

t−1
j − βt−1

j )
(5.4)

where βj has slower dynamics than αj, and b2 is set to b2 = b1/3, b1 = 0.1. The

adaptive dynamics referred to here make it more challenging for a MEC neuron to

maintain its firing over an extended period, thus giving rise to fatigue dynamics

in MEC units (Kropff, Treves, 2008). The gain gt and threshold µt are iteratively

adjusted at every time step to fit the mean activity a =
∑

j ψ
t
j/N and the sparsity

s = (
∑

j ψ
t
j)

2/(N
∑

j ψ
t
j
2
) within a 10% relative error bound from pre-specified values,

here a0 = 0.1 and s0 = 0.3 respectively.

As the virtual rat explores the environment, all weights in the network undergo

self-organization and are updated according to the Hebbian rule.

Weights between the first layer unit i and the second layer unit j are modified

according to

∆W t
ij = ϵ(ψtjr

t
i − ψ̄t−1

j r̄t−1
i ) (5.5)
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where ϵ = 5 × 10−3 is a positive learning rate. ψ̄ti and r̄
t
j are estimated mean firing

rates and updating as follow,

ψ̄ti = ψ̄t−1
i + η(ψti − ψ̄t−1

i ),

r̄ti = r̄t−1
i + η(rti − r̄t−1

i ),
(5.6)

and η = 0.05 is a positive averaging factor.

The collateral weights between second layer mEC units j and k are adapted ac-

cording to

∆W t
ik = ζψti(ψ

t−τ
k − κ) (5.7)

where ζ = 6.6 × 10−5 is a learning rate much smaller than the learning rate ϵ with

feed-forward weights between first layer place units and second layer mEC units.

κ = 0.1 is an inhibition factor.

All the weights in the network are initialized as random numbers (1 − γ) + γu.

γ = 0.1, and u is a random variable uniformly distributed in [0, 1].

After initialization or weight updates, all weights in the network are normalized

to have a unit L2 norm, ∑
j

W t
ij
2
= 1 (5.8)

5.3 Behavior of rats around border area

Through the analysis of behavior data from rats exploring square enclosures, we have

observed several exploration patterns. Rats tend to move at a slower speed in the

direction perpendicular to the walls but move faster along the walls. Furthermore,

when running close to the walls, rats exhibit a preference for either clockwise or

counterclockwise running along the walls.

Building upon the analysis of rat exploration behavior, we conducted a study to

model the trajectory patterns of exploration. To simulate the behavior data, we de-

veloped a virtual rat tasked with exploring a 200 by 200 cm2 square environment.

At each time step, the virtual rat’s running direction was subject to a random per-

turbation. The magnitude of this perturbation was determined by drawing from

a generalized Gaussian distribution, tailored to fit the observed rat behavior data

discussed above.

p(d) =
β

2αΓ(1/β)
exp((−|d|

α
)β) (5.9)
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where α = 0.04 and β = 0.6 are chosen to match the real rat data. Γ denotes the

gamma function, Γ(n) =
∫∞
0
x(n−1)e(−x)dx.

To accommodate the observed rat behavior of moving more slowly when per-

pendicular to the walls in the border region, we incorporated a potential function,

denoted as u. This potential function u is designed in a way that its negative gradient

generates a repelling force, which reduces the virtual rat’s speed as it approaches the

wall.

u(x, y) = A[µ(r(x)) + µ(r(y))] (5.10)

µ(r) =

{
exp( (r−r0)

2

2σ2 )− 1 ifr < r0
0 otherwise

(5.11)

where r0 = 20cm, which specifies the border region. The function u becomes zero

beyond this distance. The distance to the closest wall in the x direction is given by

r(x) = min(x − xmin, xmax − x), where [xmin, xmax] = [−100cm, 100cm] denotes the

range of positions in the x direction. This applies to the y direction. The magnitude

of the potential function is A = 100 exp(− r20
2σ2 ) in the absence of further specifications,

where σ = 3cm represents the width of the potential function.

The intended velocity components of the rat as adapted from the description above

described as below,

ṽx,t = vt−1cos(ωt)− fx(xt) + ϕθ(xt)
ṽy,t = vt−1sin(ωt)− fy(yt) + ϕθ(yt)

(5.12)

Here, v denotes the speed of the rat. The gradients of u are given by fx(x) =
∂u(x,y)
∂x

and fy(y) =
∂u(x,y)
∂y

. In the border area, |θ(x)| = r0− r(x), where the value is positive

or negative, depending on which border the rat is near. This provides a trend for the

rat’s clockwise or counterclockwise running preference. The same applies to θ(yt).

To address the constraint of the rat moving faster along the wall, we make further

adjustments to its velocity, as outlined below.

vx,t = ṽx,t + ϵ[ax(xt−1, yt−1)vcos(ω̃t)− ṽx,t]
vy,t = ṽy,t + ϵ[ay(xt−1, yt−1)vsin(ω̃t)− ṽy,t]

(5.13)

where v = 40cm/s is the mean speed in the center of the environment. The

intended running direction is given by ω̃t = arctan( ṽy,t
ṽx,t

). ϵ = 0.1 is an averaging
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constant. The ax(xt−1, yt−1) and ay(xt−1, yt−1) are defined as below,

ax(x, y) =

{
1+α∗sign(vy)∗(ymax−y)/r0

1+ψ∗rx/r0 ifry < r0, ry < rx
1 otherwise

ay(x, y) =

{
1+α∗sign(vx)∗(xmax−x)/r0

1+ψ∗ry/r0 ifrx < r0, rx < ry
1 otherwise

(5.14)

The velocity vt =
√
v2x,t + v2y,t and the new position (xt, yt) can be calculated from

above. In Figure 5.1, we compared the velocity patterns of actual rats and simulated

virtual rats.

Figure 5.1: Velocity comparison with real rats and simulated rats. The comparison
between the velocity of the simulated (in cyan) and the real rat (in red). The lines with
markers are the mean speed, and the lighter lines show the ± standard deviations.

Based on the analysis above, the parameters ϕ in equation 5.12 and ψ from equa-

tion 5.14 play a critical role in shaping the virtual rat’s trajectories. Specifically, the
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parameter ϕ determines the strength of the directional bias, leading to either clock-

wise or counterclockwise running along the border, while ψ determines the degree of

speed anisotropy in the border region.

5.4 Simulation results of the grid pattern bound-

ary anchoring

5.4.1 Simulated trajectory analysis

In the analysis here, we examined the properties of simulated trajectories under dif-

ferent parameter values. Figure 5.2 illustrates a comparison of simulated trajectories

in the border area for various values of ϕ and ψ. We focused on three key factors:

1) the time spent in the border relative to the center area, 2) the speed difference

between the border and center areas, and 3) the preference for running direction in

the border area (for simplicity, we only considered counterclockwise running). As ϕ

and ψ increase, the simulated rats spend more time in the border area and exhibit

higher velocities along the border. The speed anisotropy has no effect on the direction

preference in the border area.

5.4.2 Grid pattern anchoring to the boundary

One hundred simulations were conducted for each combination of ϕ and ψ, each

simulation consists of 200 mEC units. Simulations that failed to form coherent grid

patterns were discarded (the standard deviation of the angle from the wall larger than

2 degrees). Across the range of ϕ and ψ values analyzed, we observed that the mEC

units tended to form grid patterns with gridness high enough for further analysis.

Examples of grid patterns from different simulations are shown in Figure 5.3.

To identify the grid axis of the mEC units, we employed the same method de-

scribed in the paper by Stensola et al. (2015). Specifically, we analyzed the auto-

correlation map for each grid map, from each the inner six fields were identified to

obtain the axis. We used this axis as a reference for calculating the smallest angle

between the grid axis and the wall for each mEC unit. The right column in Figure

5.3 presents the distribution of angles from the wall from all the simulations after

discarded the simulations with standard deviation of the angle from the wall larger

than 2 degrees.
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Figure 5.2: Simulated trajectories analysis. The first row left side of the figure displays
the ratio of time spent in the border area relative to the time spent in the center area.
We calculated this ratio by dividing the total time spent per unit area in the border
region by the total time spent per unit area in the central area. Since we introduced
a repelling force near the borders to simulate the observed behavior of rats running
slower when perpendicular to the walls, the time simulated rats spent in the border
area decreased. To account for this effect, we normalized these values under different
conditions by dividing each value by the value obtained when ϕ = 0 and ψ = 0. In
the first row right, the ratio of speed in the border area is calculated using the same
method as the time spent in the border area. In the second row left side, we measured
the mean direction difference of the rat’s running direction with the closest wall.

5.4.3 Boundary alignment

Results about how the grid pattern anchored to the boundary were shown in Figure

5.4.

In the absence of speed anisotropy (ψ = 0.00), as the preference for counter-

clockwise running increases, there is a corresponding shift in the angles of the grid
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Figure 5.3: Example of simulated mEC units with different grid axis preference. The
results shown in the first row were obtained when ϕ = 0 and ψ = 0. The left
column shows the rate map of an example single unit. The center column shows the
corresponding auto-correlation map. The gridness, which ranges from 0 to 2, as well
as the angle from the wall in degrees and ellipse ratio are indicated on top. The right
column shows the distribution of angles from the wall from all the simulations after
discarded the simulations with standard deviation of the angle from the wall larger
than 2 degrees. The second row of the figure shows the results when ϕ = 0.04 and
ψ = 0.10, while the third row shows results when ϕ = 0.04 and ψ = 0.20.

axis away from the wall from 4.26±4.11 degrees (when ϕ = 0.00) to 2.56±1.40 degrees

(when ϕ = 0.04). Notably, the standard deviation of the anchor angle decreased from

4.11 degrees to 1.40 degrees. This reduction in variability suggests that the grid

patterns become more consistent across different trials. One possible explanation for
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this effect is an increase in the biased sampling of the border area, which leads to

greater coordination of the grid patterns with the boundary cues.

As ψ increased to 0.10, we also observed a decrease in the standard deviation of

the angles of the grid axis from the wall, from 3.50 degrees to 2.12 degrees, as ϕ

increased from 0.00 to 0.04. The angle away from the wall changed from 3.35± 3.50

degrees (when ϕ was 0.00) to 7.54 ± 2.12 degrees (when ϕ was 0.04). These results

indicate that as the preference for running along the wall increases, the alignment of

the grid cells with the wall becomes more consistent and less variable across different

trials.

When ψ reached 0.20, the angles of the grid axis from the wall ranged from

4.17± 3.96 to 11.30± 2.48, covering almost the entire range of 0 to 15 degrees.

Figure 5.4: Boundary alignment of the grid patterns.

5.4.4 Elliptic deformation

According to experimental data from Stensola et al. (2015), the angle offset from the

wall is consistently accompanied by an elliptic distortion of the grid pattern. This

elliptic deformation is described as the deviation of the grid pattern from a circular

shape, as observed in the inner six fields of the grid pattern.
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In our simulation results, we also observed that grid patterns exhibit elliptic dis-

tortion. The correlation of ellipticity with the border running direction preference

exploration and speed anisotropy are depicted in Figure 5.5 first and second rows.

The ellipticity has a weak correlation coefficient with the angle from the wall, as il-

lustrated in Figure 5.5 third row left, even when the angle from the wall is restricted

to 6 to 9 degrees illustrated in Figure 5.5 third row right.

Figure 5.5: Ellipticity of grid patterns. Top and second rows, ellipticity changes
with counter-clockwise preference running and speed anisotropy. Third row, a weak
correlation between ellipticity and grid axis angle from the wall.
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5.5 Environment geometry structure sampling

The sampling of environment geometry structure includes long-range correlations be-

tween environment structure cues. To investigate the impact of long-range correlation

on the encoding pattern of grid cells, we initially reduced the direction changing of

the virtual rat by keeping the direction unchanged for three consecutive steps during

environment sampling. An example is depicted in Figure 5.6.

Subsequently, we incorporated a realistic animal foraging random walk, known

as the Lévy flight foraging hypothesis, which exhibits exponential scaling of the step

lengths (Bartumeus et al., 2005).

Figure 5.6: Trajectory comparison when direction changing been reduced. The first
row depicts the square environment, while the second row shows the trapezoid envi-
ronment. On the left side, the trajectory direction changes per one step, and in the
middle, changes per three steps. On the right side, the distance traveled in 100 steps
is presented for each type of environment.

Figure 5.6 demonstrates that reducing the frequency of direction changes increases

the virtual rat’s chances of traveling longer distances. As a consequence, there is a

higher density of long-range correlations, which can be effectively captured by the

self-organization model discussed earlier.

Then for the running directions, the standard deviation of local running directions
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is shown in Figure 5.7. Reducing the frequency of changes in running direction makes

it easier to follow a consistent running path around the corners.

Figure 5.7: Standard deviation of local running directions. The left two plots are
when the running direction changes every step, the right two plots are when the
running direction changes every three steps.

By applying the environment exploration behavior described above to the self-

organization model discussed earlier, we observed the emergence of grid patterns

with distortion, as depicted in Figure 5.8 and Figure 5.9.

Figure 5.8 presents grid patterns when the direction changing is reduced to three

steps, indicated by the red rectangle. The top two rows display three examples of grid

pattern formation in a square environment. It is evident that reducing the number

of direction changes to three steps does not significantly impact the regularity of the

grid pattern in the square environment.
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However, the lower two rows show three examples of grid pattern formation in

a trapezoid environment. In this case, the regularity of the grid pattern decreases

when the direction changing step is reduced to three, as observed in the trapezoid

environment.

Figure 5.8: Regularity decreases when the direction remains unchanged for three
steps. The top two rows represent a square environment, while the lower two rows
represent a trapezoid environment. The maps framed by a rectangle depict the results
obtained when the direction is held constant for three steps.

In Figure 5.8 (a), the gridness in the square environment decreases from 1.96±0.14

to 1.74± 0.44 when each direction is held for three steps. However, in the trapezoid

environment, the gridness decreases from 1.88± 0.34 to 1.47± 0.63.

To incorporate more realistic trajectories, we implemented Lévy flight foraging,

which exhibits exponential scaling of the step lengths (Bartumeus et al., 2005). In this

approach, the step length per direction follows p(length) = exp−µ. When applying

this method to the square environment, the gridness reduced from 1.97 ± 0.15 to

1.83 ± 0.35 as µ increased from 1 to 2. Similarly, in the trapezoid environment, the

gridness decreased from 1.92± 0.28 to 1.71± 0.48 as µ increased from 1 to 2.
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Figure 5.9: Gridness reducing when the direction remains unchanged for few steps.
The top row of the figure illustrates the gridness when the direction is held for 1 or 3
steps, while the second row represents the gridness when the direction follows a Lévy
flight random walk.

5.6 Discussion

The way our brain internally represents external spatial information depends on both

internal and external factors such as the structural organization of the brain and the

nature of the spatial information available in the environment.

Grid cells are a specific type of neuron located in the medial entorhinal cortex that

displays spatially modulated firing patterns, forming a hexagonal grid that covers the
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animal’s environment. Unlike some other types of neurons, grid cells do not have

an external corresponding information structure that could explain their encoding

structure, indicating that their encoding structure may be generated endogenously.

Endogenously generated patterns possess the potential to be universal and in-

variant measures. Consequently, the grid cell patterns have sparked theories about

their potential as a universal and invariant metric for representing spatial information

(Fuhs, Touretzky, 2006; Fiete et al., 2008; Burgess, 2008).

Recent discoveries suggest that grid cells are not only involved in encoding global

spatial information but also play a role in encoding local information. One notable

observation regarding the anchoring of grid patterns to the environment is that the

grid axis remains fixed at a 7.5-degree angle from the wall in a square space (Stensola

et al., 2015; Julian et al., 2018).

By analyzing behavior data from rats exploring square enclosures, we have identi-

fied several exploration patterns. Rats tend to move at a slower speed when traveling

in the direction perpendicular to the walls, but their speed increases when moving

along the walls. Additionally, when running near the walls, rats exhibit a preference

for either clockwise or counterclockwise movement along the walls.

We simulated a virtual rat, incorporating the exploration patterns discussed above,

and used the self-organization model (Kropff, Treves, 2008; Si, Treves, 2013) to sim-

ulate the formation of grid patterns.

Upon making slight adjustments to the exploration pattern, we observed corre-

sponding variations in the anchored grid patterns within the environment. These

findings strongly support our hypothesis that the anchor pattern of grid cells is influ-

enced by the behavioral patterns exhibited in the border area.

Furthermore, grid patterns suffer severe distortion in irregularly shaped environ-

ments (Krupic et al., 2014, 2015, 2018), such as trapezoids. By simply reducing the

frequency of direction changes of the virtual rat to provide more long-range correlation

to the self-organization model, the grid pattern exhibits environment shape-specific

pattern distortion. Interestingly, this phenomenon still holds when employing a real-

istic foraging strategy known as Lévy flight.

The findings presented here suggest that the grid cell pattern is not solely de-

termined by path integration information, which would result in a perfect hexagonal

grid pattern. Instead, it also responds to biased sampling of local information and

long-range correlations, potentially leading to anchoring or distortions in the grid

pattern.
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Chapter 6

Understand grid cell with variants

6.1 Introduction

The concept of ”grid cells” was coined to describe a specific type of neuron found in the

medial entorhinal cortex (mEC) of the brain (Fyhn et al., 2004; Hafting et al., 2005).

These neurons exhibit a unique firing pattern in an environment that is characterized

by firing fields that are evenly spaced and arranged in a hexagonal grid pattern. A

prevailing perspective posits that the primary function of the grid is to establish a

universal metric for space (Hafting et al., 2005; Moser, Moser, 2008; Fuhs, Touretzky,

2006; McNaughton et al., 2006).

The study of grid cells is a highly active and prominent research topic. Since their

initial discovery, significant efforts have been dedicated to furthering our understand-

ing of grid cells. It has become evident that these cells possess a range of fascinating

properties that go beyond universal metrics (Stensola et al., 2012; Rowland et al.,

2016). They do not strictly adhere to regularity but display some degree of deviation

and variability (Barry et al., 2007; Derdikman et al., 2009; Krupic et al., 2014, 2015,

2018; Boccara et al., 2019; Gerlei et al., 2020; Ginosar et al., 2021; Grieves et al.,

2021). These findings highlight the complexity and richness of functions grid cells

may participate in, shedding light on the intricate workings of the brain’s spatial

processing system (Ginosar et al., 2023).

The accumulation of properties and discoveries associated with grid cells has re-

sulted in disagreements and challenges when it comes to defining and comprehending

the concept of ”grid cells”. During discussions about ”grid cells,” there is a higher

likelihood of encountering divergent interpretations and mismatched concepts of what

”grid cells” actually represent. Recent research from Marti et al. (2023) highlights the

idea that even seemingly well-defined concepts can have quantifiable meaning varia-
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tions. Continued and ongoing discussions regarding the definition and understanding

of the concept of ”grid cells” would be advantageous for advancing further research.

”Concepts” have definitions, which are statements or explanations of the meaning

of a word or term. Definitions provide clarity and understanding of the intended

use of the concept. They typically include information about the essential qualities,

properties, or characteristics that define the term and differentiate it from other

similar terms.

In this chapter, we explore the encoding properties of grid cells using a simplified

self-organization model. We specifically focus on two key properties of grid cells: the

number of encoding fields per grid cell and the emergence of regularity in their spatial

firing patterns. Additionally, we discuss the potential functions that grid cells may

play in the discussion.

6.2 Network model

To simplify the discussion, simplified self-organization models were utilized. In these

simulations, a virtual rat explores a square environment measuring 150× 150cm2 at

a constant speed of v = 40cm/s. Each time step in the simulation corresponds to

10ms in real-time.

A two-layered network has been constructed to simulate the development of grid

cell spatial firing patterns from initially disordered encoding patterns, with the influ-

ence of firing rate adaptation taken into account.

In this context, rather than referring to units in the network as place cells and grid

cells, we characterize them as location-encoding units that represent various locations

within the environment.

To simplify the discussion, each unit in the first layer has a Gaussian-like field

that is randomly distributed throughout the environment. It is worth noting that

while Gaussian-like fields are commonly used, they are not a requirement for location

units in the first layer of the network (Kropff, Treves, 2008).

The first layer of the network provides explicit location information to the next

layer. The firing rate of a location unit i at given time t which has its Gaussian-like

field centered at position x⃗i0 when rat is located at x⃗t is

rti = exp

(
−||x⃗t − x⃗i0||2

2σ2
p

)
(6.1)

where σp = 5cm is the radius of the place fields.
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The second layer is composed of adaptive units, they are all initialized with random

firing patterns. Each adaptive unit j receives inputs from the first layer, inputs to

this adaptive unit j at time t are given by htj

htj =
∑
i

W t−1
ij rti (6.2)

where Wij is the weight from first layer location unit i to second layer adaptive unit

j.

The firing rate ψtj of adaptive unit j is determined through a threshold-nonlinear

transfer function

ψtj = ψsat arctan[g
t(ωtj − µt)]Θ(ωtj − µt) (6.3)

where ψsat = 2/π normalizes the firing rate into arbitrary units. Θ(·) is the Heaviside
function which equals 0 when the value is negative. The gain gt and threshold µt are

iteratively adjusted at every time step to fix the mean activity a and the sparsity s

within a range of relative error bound from pre-specified values. The variable µt is a

threshold.

a =
∑
j

ψtj
N

(6.4)

s =
(
∑

j ψ
t
j)

2

(N
∑

j ψ
t
j
2)

(6.5)

In equation 6.3, depending on the specific context of the discussion, ωtj can be

defined as hj, α
t
j, β

t
j, or γ

t
j, which represent different types of manipulations applied

to the inputs from the first layer.

γtj = γt−1
j + τ3(h

t−1
j − αt−1

j − βt−1
j − γt−1

j ),

βtj = βt−1
j + τ2(h

t−1
j − αt−1

j − βt−1
j ),

αtj = αt−1
j + τ1(h

t−1
j − αt−1

j )

(6.6)

where αtj is tracking the raw first layer inputs htj with a slow dynamics. βtj is tracking

the difference between htj and α
t
j, γ

t
j is tracking the difference between htj and α

t
j+β

t
j.

Figure 6.1 illustrates an example of the different input manipulation dynamics

over time when the input ht is equal to 1. αt gradually approaches the input ht,

while βt increases when the difference between ht and αt exists and larger than βt.

Similarly to βt, γt also increases but with a faster rate in the beginning when the

difference exists and is larger than γt, and also drops more quickly as the difference
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Figure 6.1: Inputs manipulation dynamics of α, β and γ. Here τ1 = 0.10, τ2 = τ1/3,
τ3 = τ2/3.

becomes smaller. βt and γt have a fatigue phenomenon which if input ht keeps in a

high value, βt and γt drops eventually.

As the exploration of the environment, the sequence of firing in the location units

of the first layer causes all the weights to self-organize. The weights updating follows

the Hebbian rule.

Weights between the first layer and the second layer are updated according to

∆W t
ij = ϵ(ψtjr

t
i − ψ̄t−1

j r̄t−1
i ) (6.7)

where ϵ = 5 × 10−3 is a positive learning rate. ψ̄ti and r̄
t
j are estimated mean firing

rates and updating as follow,

ψ̄ti = ψ̄t−1
i + η(ψti − ψ̄t−1

i ),

r̄ti = r̄t−1
i + η(rti − r̄t−1

i ),
(6.8)

and η = 0.05 is a positive averaging factor.

6.3 Formation of encoding fields

In this discussion, simulations were conducted to examine the behavior of adaptive

units. And here the parameter ω in Equation 6.3 is equivalent to h in Equation 6.6.

We examined the response properties of adaptive units under different levels of

sparsity and mean firing rates. The number of fields generated by an adaptive unit
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was primarily influenced by the level of sparsity. To achieve Gaussian-like fields, the

mean firing rate was set within a specific range. Conditions with mean firing rates

beyond this range will be discussed later.

At low levels of sparsity and mean firing rate, some adaptive units may not develop

a field as the virtual rat explores the environment, as depicted in the top row of Figure

6.2.

As the sparsity and mean firing rate increase, all units gradually become involved

in encoding the environment with a high firing rate although the number of fields

remains limited. In the final row of Figure 6.2, where the sparsity value is 0.20 and

the mean firing rate value is 0.10, the adaptive units display multiple firing fields that

are situated in close proximity to one another, thus covering a particular region of the

environment. Grid cells recorded in the mEC exhibit firing patterns across multiple

locations throughout the environment. This phenomenon suggests that actual grid

cells possess high levels of sparsity and mean firing rate, as they can cover the entirety

of the observed environment.

Once the sparsity and mean firing rate values reach a certain threshold, the adap-

tive units begin generating fields that effectively cover the entire environment, as

depicted in Figure 6.3. Further increasing these parameters will lead to a more com-

pact arrangement of fields. The number of encoding fields per adaptive unit in the

environment is illustrated in Figure 6.4.

When the mean firing rate surpasses the required range for Gaussian-like field for-

mation, a distinct pattern of band-like fields emerges. This phenomenon is similar to

the band-like representation recorded in parasubicular and medial entorhinal cortices

(Krupic et al., 2012).

Turing (1952) proposed that by introducing activators and inhibitors into a reaction-

diffusion chemical system, spatial patterns can emerge via competitive interactions

between these reagents. The resulting patterns can take the form of regular grids or

stripes, as seen in Figure 6.5, similar to the simulation results here.

6.4 Emergence of the regularity

Based on the analysis conducted, it becomes apparent that the increase in the num-

ber of Gaussian fields generated by adaptive units leads to the emergence of the first

order of regularity in the pattern. This regularity is defined by the distance between

adjacent fields, as illustrated in Figure 6.6. As the number of fields continues to
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Figure 6.2: Response of adaptive units under the low value of sparsity and mean firing
rate. Each row shows three examples of simulation results with 200 adaptive units.
In the top row, the values of sparsity and mean firing rate are very low, leading to
some adaptive units not displaying clear firing fields. As the sparsity and mean firing
rate values increase, all adaptive units start to develop several firing fields.
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Figure 6.3: Response of adaptive units under higher sparsity and mean firing rate
values. In the top row, the units have fields that cover the whole environment in a
loose manner. As the sparsity and mean firing rate increase, the number of fields per
unit also increases, leading to a more compact arrangement.

Figure 6.4: Number of fields per unit under different levels of sparsity.
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Figure 6.5: Band-like response patterns. a, band-like patterns appear in our simula-
tion when the mean firing rate is higher than needed for Gaussian-like field forma-
tion. b, spatially periodic bands representation recorded in parasubicular and me-
dial entorhinal cortices, adapted from (Krupic et al., 2012). c, result patterns from
the reaction-diffusion chemical system with differences in the reaction parameters,
adapted from (Borckmans et al., 2002).

increase, the distances between the fields become more clustered, leading to a dis-

tinct bump pattern. This bump pattern indicates the additional regularity observed

between non-adjacent fields in adaptive units.

Next, we utilize various response dynamics of the input from equation 6.6 as

the input of the transfer function for the second layer adaptive units. Since the

environment for regular pattern formation is a two-dimensional square environment,

we employ the gridness method to quantify the level of regularity (Hafting et al.,

2005).

Upon comparing the regularity of different response dynamics as depicted in Fig-

ure 6.7, we observe that alpha exhibits the poorest performance, followed by the direct

input, with beta performing better, and gamma providing the best performance in

terms of gridness.

63



Figure 6.6: As the number of fields increases, the emergence of regularity can be
observed in the patterns generated by the adaptive units. The left side of the figure
displays examples of these patterns for varying levels of sparsity and mean firing
rates, with the values indicated above each panel. The histograms on the left show the
distribution of distances between fields in each simulation, highlighting the emergence
of regularity.

6.5 Discussion

The development of a concept follows a systematic process that includes observation,

experimentation, analysis, and revision. This iterative and dynamic process is guided

by the accumulation of evidence and the continuous refinement of theories over time.

The concept of ”grid cells” is no exception and has also undergone a similar concept

development journey. Recent discoveries have further propelled this ongoing journey

of concept development of ”grid cells” (Ginosar et al., 2023).

In this chapter, we have delved into the discussion of grid cells and explored two

fundamental properties associated with them by a simplified self-organization model.

The first property focuses on the formation of encoding fields, which is intricately
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Figure 6.7: Gridness under different response dynamics of the input.

linked to the concept of neuronal sparsity.

Research on the sparsity of cell firing has revealed that it is influenced by a range

of factors and mechanisms within the neural system (Olshausen, Field, 2004; Spanne,

Jörntell, 2015). A general overview of some factors that can affect the sparsity of cell

firing based on commonly known principles in neuroscience lies below:

Intrinsic properties of neurons: Different types of neurons may exhibit inherent

differences in their firing patterns and sparsity. For example, certain inhibitory in-

terneurons are known to contribute to sparse firing patterns.

Network connectivity: The connectivity patterns between neurons can play a role

in shaping the sparsity of cell firing. Inhibitory connections, such as those mediated by

parvalbumin-expressing interneurons, can regulate the activity of excitatory neurons

and contribute to sparse firing patterns.

Input statistics: The statistical properties of the inputs received by neurons can

influence their firing sparsity. For instance, if the inputs are highly correlated or

exhibit specific patterns, it can impact the sparsity of cell firing.

Neuromodulation: Neuromodulatory systems, such as the release of neurotrans-

mitters like dopamine or norepinephrine, can modulate the activity of neurons and

affect their firing sparsity.
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The difference between place cells and grid cells could be attributed to the sparsity

of neuron firing.

This specific form of regularity can emerge when each unit possesses a sufficient

number of encoding fields, and the inputs are suitably manipulated, along with inter-

actions between units. In the conducted simulations, even in the absence of explicit

recurrent connections between units, the interaction between units can be understood

by considering the control of sparsity.

The study of regularity emergence has gained significant attention across multiple

disciplines, including physics, biology, computer science, and sociology. Researchers

seek to understand the underlying principles and mechanisms that give rise to these

emergent regularities, as they provide valuable insights into the fundamental princi-

ples governing complex systems.

The dynamic of grid cells which appeared as some degree of deviation and vari-

ability has been discussed in the last chapter. In a nutshell, biased sampling could

cause the dynamics.

In conclusion, grid cells can be understood as a type of brain information pro-

cessing unit that possesses a sufficient number of encoding fields, which enables the

emergence of specific regularity. Additionally, grid cells exhibit dynamics that may

arise due to biased sensory inputs discussed in the last chapter.

6.5.1 Path integration

Path integration in behavioral studies refers to the mechanism by which an animal

continuously updates its position and orientation in space based on self-motion cues

and without relying on external landmarks. It involves integrating information from

various sensory inputs, such as proprioception, vestibular cues, and motor efference,

to estimate changes in position and direction relative to a starting point (Etienne,

Jeffery, 2004; McNaughton et al., 2006; Savelli, Knierim, 2019).

Every representation system is integrating external information. However, a rep-

resentation system equipped with a robust capacity for regular representation can

notably decrease its dependence on external data. By effectively capturing and uti-

lizing internal regularities, such a system can enhance its efficiency, accuracy, and

resilience, ultimately leading to more robust and autonomous functioning.

The discussion regarding the contribution of grid cells to path integration can

be described in terms of how the presence of this type of regular pattern reduces the

spatial cognition system’s reliance on external information. With grid cells integration

speed and direction information to enable each grid cell to have the capacity to encode
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plenty of fields and the regularity between them, grid cells would assist the spatial

representation system grid cells to participate in a decrease in external information

dependent.
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Chapter 7

Infraslow Up and Down States
(IsUDS) in drug-free animals

7.1 Introduction

Behavior involves a broad spectrum of timescales, spanning from tens of milliseconds

to seconds, minutes, and beyond. The coordination of neural activity across such

diverse scales is a compelling question in neuroscience (Mehta, 2001).

Neural oscillations are commonly invoked mechanisms to tackle this challenge.

Consistently, cortical neurons show oscillations with periods ranging from ∼ 5ms

(e.g. ripples), ∼ 20ms (gamma oscillations), ∼ 100ms (theta) and ∼ 1000ms (delta).

Bridging across these different scales spanning three orders of magnitude is thought to

occur via coupling between their amplitudes and phases. For example, theta-gamma

amplitude-phase coupling is implicated in working memory (Lisman, Jensen, 2013).

This leaves open the question about how oscillations can organize neural activity

across even longer time-scales of 10s and several hundred of seconds. Recent studies

have highlighted the presence of infraslow oscillations (Dash, 2019; Cogno et al.,

2022; Bueno-Junior et al., 2023; Väyrynen et al., 2023; Turi et al., 2023). However,

the mechanisms of generation of these oscillations, their coupling to shorter timescale

oscillations, and their relationship to behavior remain to be determined (Watson,

2018).

Importantly, many studies suggest that behavior modulates rhythmic dynamics

–e.g. theta is larger during locomotion and delta is larger during immobility and

sleep. However, in contrast to this ‘outside in mechanism’ an alternate possibility

exists, ‘an inside out mechanism’ where these differential rhythms cause changes in

behavior.
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Hence we investigated the temporal dynamics of all the oscillations and their

relationship to faster oscillations in the cortex in vivo, in freely behaving rats as well

as anesthetized rats. Investigations in freely behaving, drug-free rats were done using

tetrodes that provided the Local field potential (LFP) and spiking activity of many

neurons. Anesthetized animal studies allowed simultaneous measurement of the LFP

and membrane potential from anatomically identified neurons.

7.2 Results

As a first step, we examined the LFP recorded from the parietal cortex while the rats

were resting in a box, placed in a quiet room with dim lights, without any distractors,

tasks, or rewards.

Visual examination shows clear fluctuations in the magnitude of the LFP over

periods of 800s of seconds. An example of LFP is shown in Figure 7.1.

Figure 7.1: Temporal dynamics of a freely behaving rat LFP.

This can be quantified by computing the standard deviation of the LFP over

periods of 10s which shown in Figure 7.2.

Figure 7.2: Moving standard deviation of LFP with a 10s window.

This confirms our visual impression and shows infraslow oscillations of the LFP

with a period of about 800s.
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To quantify this, we computed the autocorrelation function and power spectrum

for both the absolute value of the LFP and the moving standard deviation of the LFP.

Autocorrelation was obtained with MATLAB function autocorr from Econometrics

Toolbox. Power spectrum was obtained with MATLAB function mtspectrumc from

chronux toolbox (with parameter pad=2 and tapers=[3 1], http://www.chronux.org).

Figure 7.3: Autocorrelation function and the power spectrum of LFP. The first row is
for LFP absolute value, the second row is for the moving standard deviation of LFP
with a 10s window.

In Figure 7.3, the autocorrelation shows slow modulation with a period of around

800s. The power spectrum too shows a clear peak at 0.0012Hz, corresponding to a

period of 800s.

Further, the infraslow oscillations were bimodal, with a relatively abrupt transition

between high and low standard deviation. This was confirmed by computing the

histogram of the moving standard deviation of the LFP computed over a 10s moving

window, indicated in Figure 7.4.

Thus the infraslow oscillations of the LFP amplitude is not sinusoidal but bimodal,

i.e. infraslow up-and-down state oscillations (IsUDS), similar to the classic, Up-

and-Down states seen during slow wave sleep, also known as the delta-oscillations

(Petersen et al., 2003; Torao-Angosto et al., 2021).

Further, the IsUDS transitions were asymmetric – the transition from low to high

amplitude LFP was slow, but the transition out of high to low amplitude was relatively

abrupt. This was confirmed by computing the transition triggered average of the LFP
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Figure 7.4: Bimodality of the moving standard deviation of LFP.

magnitude, shown in Figure 7.5. The triggered average was aligned with the beginning

time point and end time point of Non-rapid eye movement sleep (NREM). NREM

was identified using a threshold method, where the amplitude of the filtered signal

in the delta band range (0.5-4Hz), obtained through the Hilbert transform, exceeded

the mean value with one standard deviation.

Figure 7.5: Triggered average of the moving standard deviation of LFP. Panel to the
left shows low-to-high STD transition triggered average. Panel to the right shows the
high-to-low amplitude transition. The mean value is shown by the solid line, standard
deviation by the thin lines

To confirm the general validity of these findings we did similar analysis on a large

set of data (39 LFPs from different recording sessions, with 4 rats). From these,
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we extracted the magnitude and frequency of the largest peak in the low-frequency

range. The lowest frequency range was restricted to corresponding to 2/duration of

recording. If a clear peak was not visible in a session, that session was discarded.

The power and period of the IsUDS are shown in Figure 7.6.

Figure 7.6: Magnitude and period of IsUDS are positively correlated. Panel to the
left shows the distribution of IsUDS periods, determined from the location of the
highest amplitude peak. The middle panel shows the amplitude of the IsUDS peak in
the power spectrum. Panel to the right shows that the two were positively correlated
with a correlation coefficient of 0.258.

Thus, data shows spontaneous IsUDS oscillations with a period of 610.64 ± 176.71

seconds, with a power of 50.16 ± 9.13 dB.

Notably, these changes occurred spontaneously, without any external events, since

the rat was left undisturbed for the entire period in a 60dB sound-insulated room.

To determine the fine structure of these IsUDS we looked carefully at a segment

of data with high amplitude LFP and another segment with low amplitude LFP.

Figure 7.7 shows that the high amplitude LFP contained slow wave sleep (SWS)

oscillations, also known as the Up-Down State (UDS) oscillations, or delta oscillations

(0.5-4Hz). This is marked by about 1s long Up states and about 100ms long down

states. Down states during SWS are not stable and rather short-lived, consistent with

classic data.

To confirm this, we filtered the LFP in the delta band (0.5-4Hz) and computed

the amplitude of the filtered signal using Hilbert transform, shown in Figure 7.8.

This too showed clear IsUDS, similar to the standard deviation of the broadband

LFP, suggesting that the 800s IsUDS oscillations of the LFP amplitude are largely

driven by fluctuations in the 1s (0.5-4Hz) delta oscillation magnitude. The autocor-

relation and the power spectrum of the delta oscillations showed results similar to

that for the moving standard deviation of LFP, shown in Figure 7.9.
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Figure 7.7: LFP segments with high (left) and low (right) amplitudes. Note the
difference in y-axis time scale.

Figure 7.8: Delta band signal accounts for the most part of moving standard deviation
of LFP IsUDS.

Across the ensemble of the same data mentioned above, results shown in Figure

7.9, clear peaks in the IsUDS band was found, with average period of 710.45 ±
168.23s and amplitude of 52.10 ± 8.46 dB. And the periods of IsUDS show positive

correlation with maximum peak in the power spectrum with a correlation coefficient of

0.415. These results are consistent with the moving standard deviation based results

confirming the hypothesis that IsUDS oscillations are largely caused by fluctuations

of delta band oscillations.

The Hilbert transform magnitude of filtered LFP in delta band (0.5-4Hz) also

shows clear bimodality, shown in Figure 7.10, similar to the moving standard deviation
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Figure 7.9: Autocorrelation and the power spectrum of the magnitude of delta band
filtered LFP. First row is for the same example as described above, the second row is
for the same data set as above.

of LFP. Further, the transition to the high amplitude delta band was slow, but the

transition out of high to low amplitude was relatively abrupt, shown in Figure 7.11

which is similar to the moving standard deviation of LFP.

The power spectrum of the low-frequency delta band filtered LFP exhibited no-

table peaks at frequencies higher than the IsUDS range, as depicted in Figure 7.12.

Power spectrum was obtained with MATLAB function mtspectrumc from chronux

toolbox (with parameter pad=2 and tapers=[3 5], http://www.chronux.org). This

observation is further supported by the moving standard deviation of the LFP.

Frequencies higher than the IsUDS range of the data set we analyzed are classified

into NREM and outside NREM, as depicted in Figure 7.13. Each delta band filtered

LFP was divided into segments of NREM and outside NREM, based on the previ-

ously detected NREM locations. For each segment of recordings, we extracted the

frequency and power from the maximum peak of the power spectrum. The periods

were restricted to correspond to 2/duration of each segment of recordings. During

NREM sleep, the power of certain signals is greater compared to periods outside of

NREM sleep. Additionally, the durations of NREM sleep periods tend to be longer

than those occurring during non-NREM states.
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Figure 7.10: Bimodality of the moving mean with 10s window for delta band filtered
LFP.

Figure 7.11: Triggered average of the moving mean with 10s window for delta band
filtered LFP.

To determine the relationship between these diverse low frequency oscillations and

neural spiking, we computed the cross-correlation between the delta band filtered

LFP and spike times, shown in Figure 7.14. The two spike times correspond to

two pyramidal neurons that display periodic correlation with IsUDS, but they occur

with distinct phase shifts. These two different pyramidal neurons were recorded

simultaneously on the same tetrode along with the LFP.

The correlation of another spontaneous recording of interneurons with IsUDS is

shown in Figure 7.15. Periodic correlation with IsUDS is clear while with an anti-

correlation at zero lag.
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Figure 7.12: Zoomed in segment of one IsUDS period showing higher frequency mod-
ulation. This is confirmed by the zoomed in autocorrelation (bottom left) and power
spectrum (bottom right) showing peaks at higher frequencies.

7.3 conclusions

Behavior spans a broad spectrum of timescales, ranging from rapid changes in the

order of tens of milliseconds to more extended periods lasting seconds, minutes, and

beyond. Neural oscillations serve as dynamic windows that facilitate the connection

between these diverse behavioral timescales and underlying neural activity. How

oscillations related to long timescales of 10s and several hundred seconds behaviors

is less discussed.

In the data recorded from freely behaving rats, infraslow up-down states (IsUDS)

range oscillations of approximately several hundred seconds were evident and clear.

The IsUDS of the LFP amplitude is largely driven by fluctuations in the delta

oscillation magnitude.

The amplitude of IsUDS oscillations in both the moving standard deviation of LFP

with a 10s window and the delta band filtered LFP smoothed with a 10s window

exhibits a bimodal distribution, resembling the characteristic pattern observed in

classic up-and-down states.

The transition into the high-amplitude LFP and theta band filtered LFP occurred

gradually, with a slow change. However, the transition from the high amplitude to
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Figure 7.13: Power spectrum period and power in frequencies higher than the IsUDS
range.

the low amplitude was relatively abrupt and occurred rapidly.

In addition to the IsUDS frequencies, the signal also encompasses numerous higher

frequencies beyond the typical range associated with IsUDS activity.

The simultaneous firing pattern of neurons, comprising both pyramidal neurons

and interneurons, displays periodic correlations with IsUDS oscillation. However,

even within the same cell types, these correlations occur with diverse phase shifts.
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Figure 7.14: Cross correlation of IsUDS with spike train.

Figure 7.15: Cross correlation of IsUDS oscillation with interneuron spike train. The
firing rates of the interneurons are labeled at the top. This first row indicates the
autocorrelation and power spectrum of the LFP from the same tetrode.
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Chapter 8

Coupling of IsUDS to faster
timescale oscillations spanning four
orders of magnitude

8.1 Introduction

In order to bridge the gap between different behavioral timescales, it is necessary for

them to be coupled. Studies have shown that coupling between theta oscillations

∼ 100ms and place cells ∼ 1000ms are crucial for sequence learning (Mehta, 2015).

Coupling between ∼ 100ms theta and ∼ 20ms gamma oscillations are crucial for

working memory (Lisman, Jensen, 2013). Theta oscillations are thought to typically

appear during awake states in the hippocampus whereas the slow delta oscillations

are thought to appear in the cortex during sleep and theta-to-delta ratio is often used

to characterize states of consciousness.

Hence here we looked at the IsUDS spectral dynamics and their coupling across

four orders of magnitude.

8.2 Results

As a first step, we obtained the filtered signal in the delta band range (0.5-4Hz),

theta band range (5-14Hz), slow gamma band range (15-55Hz), fast gamma band

range (65-115Hz), ripple band range (125-155Hz), and spike band range (185-235Hz),

shown in Figure 8.1. The frequency ranges for each band are selected to ensure that

the filtered signal exhibits a relatively higher coefficient of variation.

Further, in Figure 8.2, the IsUDS for several bands were bimodal, with a relatively

abrupt transition between high and low standard deviation. This was confirmed by
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computing the histogram of Hilbert transform amplitude of several frequency bands

and the zscore value of them.

Figure 8.2 displays the first two rows corresponding to the delta band, theta band,

and slow gamma band. The first row represents histograms of the raw Hilbert trans-

form amplitude, while the second row shows histograms of the corresponding z-scored

Hilbert transform amplitude. The title of each plot indicates the p-value for testing

the distribution’s unimodality, obtained using the MATLAB function HartigansDip-

SignifTest. The bottom two rows exhibit the fast gamma band, ripple band, and

spike band data, following the same methodology as described above.

Afterward, we calculated the cross-correlation between different frequency bands

using the MATLAB function ”crosscorr” from the Econometrics Toolbox. The out-

comes of the cross-correlation analysis are depicted in Figure 8.3. Notably, several

cross-correlations between different bands exhibit the IsUDS structure.

The cross-correlation between large-scale and narrow-scale signals is consistent,

indicating that if the cross-correlation around zero range is negative in the large scale,

it will also be negative in the narrow scale, and vice versa. The filtered LFP of high-

frequency bands, such as the ripple band and spike band, exhibit a similar structure

to the fast gamma band filtered LFP. Averaged cross-correlation shown in Figure 8.4

indicates the same structure.

8.3 conclusions

Filtered LFP in several frequency bands exhibits the IsUDS structure. IsUDS in

multiple frequency bands displays bimodality, characterized by a distinct transition

between high and low values. Additionally, different frequency bands demonstrate

unique coupling structures.
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Figure 8.1: Hilbert transform amplitude of several frequency bands.
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Figure 8.2: Bimodality of several frequency bands in Hilbert amplitude and zscored
value.
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Figure 8.3: Cross-correlation of Hilbert transform amplitude for several frequency
bands.
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Figure 8.4: Average cross-correlation of Hilbert transform amplitude for several fre-
quency bands.

84



Chapter 9

IsUDS in the membrane potential
during Urethane anesthesia

9.1 Introduction

Do the Infra-slow up down states occur in all behavioral states?

To address this we investigated data from anesthetized animals. Mice were lightly

anesthetized with urethane and then head fixed. Membrane potential of several indi-

vidual neurons from the parietal and frontal cortices was measured using whole-cell

patch clamp. Simultaneously, the LFP was measured from a nearby region to esti-

mate the ensemble signatures of single neuron responses. Neurons were filled with

biocytin and their anatomical localization and identities confirmed. Anesthesia was

delivered only once at the beginning of the experiment (barring rare cases when mice

started to wake up). During the electrophysiological measurements, mice were kept

in a quiet room without any clear external stimuli.

9.2 Results

Classical up and down states have different dynamics in slow-wave sleep and different

levels of anesthesia (Torao-Angosto et al., 2021). Here the data show clear up down

states structure and with varied durations, consistent with classic findings. The

Hidden Markov Model Inference method proposed by McFarland et al. (2011) was

used to identify up-down states. An example dataset illustrating these dynamics is

presented in Figure 9.1. Furthermore, Figure 9.2 illustrates the states duration of

the up and down states for the example data. It is evident from the figure that the

duration of the down states exhibits substantial variation.
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Figure 9.1: Example Membrane potential and local field potential from anesthetized
animals. The top two rows represent the membrane potential data, while the second
row specifically shows a portion of the data extracted from the rectangular box in the
first row. The bottom two rows represent LFP. The up and down states were denoted
by black lines in the second and fourth rows.

Autocorrelation and power spectrum analysis revealed the presence of IsUDS oscil-

lations in various forms, including upper envelope, lower envelope, up state duration,

down state duration, state duration, up/down duration ratio, and up/state dura-

tion ratio, results shown in Figure 9.3. Autocorrelation was obtained with MATLAB

function autocorr from Econometrics Toolbox. Power spectrum was obtained with

MATLAB function mtspectrumc from chronux toolbox (with parameter pad=2 and

tapers=[3 1], http://www.chronux.org).

The upper envelope was derived by taking the maximum value within each up

state. To obtain the lower envelope, the up states were replaced with NaN values,

which were then filled using the MATLAB ”fillmissing” function with the nearest

available value. State duration was calculated by summing the up state duration
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Figure 9.2: Up down states duration.

with the backward following down state duration. The up/down duration ratio was

obtained by dividing the up state duration by the duration of the subsequent down

state. Similarly, the up/state duration ratio was calculated by dividing the up state

duration by the total state duration it belongs to.

To assess the significance of the infra-slow oscillation, we shuffled the data by

shuffling the up states and down states. Up states and down states were shuffled

independently, then the shuffled up and down states were regrouped together by the

shuffled index such that each shuffled up state was paired with a shuffled down state.

The raw LFP and MEM data, upper envelope, and lower envelope were shuffled

following this shuffle of up and down states. The shuffling process was repeated 50

times per dataset.

Zscored autocorrelation and zsored power spectrum were calculated as below,

Zscored autocorrelation = (raw data autocorrelation - mean(shuffled data auto-

correlation))/std(shuffled data autocorrelation)

Zscored power spectrum = (raw data power spectrum - mean(shuffled data power

spectrum))/std(shuffled data power spectrum)

Zscored autocorrelation and zscored power spectrum of the data mentioned above

are shown in Figure 9.4. The IsUDS manifests in various distinct forms. Clear IsUDS

with around 200s period is clear in all of them. For instance, in the case of down state

duration, the membrane potential in red exhibits its first peak in autocorrelation at
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Figure 9.3: Autocorrelation and power spectrum for data from anesthetized animals.

a lag of 196.225s, which deviates by 7.81 standard deviations from the mean shuffled

value. Similarly, the LFP in blue displays its first peak in autocorrelation at a lag of
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198.547s, with a deviation of 6.92 standard deviations from the mean shuffled value.

Figure 9.4: Zscored autocorrelation and power spectrum.

To confirm the widespread occurrence of IsUDS oscillations, a substantial amount
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of data was analyzed. The dataset included 33 membrane potential recordings from

pyramidal neurons, with 15 from the parietal cortex, 6 from the frontal cortex, and 12

from the prefrontal cortex. Additionally, there were 241 LFP recordings, all obtained

from the parietal cortex.

The same method as mentioned above was applied to these datasets. The results,

shown in Figure 9.5 for membrane potential and Figure 9.6 for LFP, confirm that

IsUDS oscillations are a prevalent phenomenon.

Both Figure 9.5 and Figure 9.6 feature thick blue lines in the left two columns,

representing the mean values, and thin blue lines indicating one standard error away

from the mean value. The red lines in the figures represent the median values. The

power spectrum plots in the middle column are labeled with the peak frequency and

its corresponding z-scored value. The right column displays the peak value of z-scored

power within the IsUDS range along with their corresponding periods.

The same cross-correlation analysis used in the last chapter for different frequency

bands, as depicted in Figure 9.7 for membrane potential, indicates that all frequency

bands are coupled.

9.3 Conclusion

In anesthetized animals, IsUDS manifest in several forms, encompassing upper enve-

lope, lower envelope, up state duration, down state duration, state duration, up/down

duration ratio, and up/state duration ratio.

The analysis of different frequency bands reveals that they are all interconnected

and coupled together.
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Figure 9.5: Average from 33 membrane potential recordings.
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Figure 9.6: Average from 241 LFP recordings.
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Figure 9.7: Average cross-correlation of Hilbert transform amplitude for several fre-
quency bands.
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Chapter 10

Conclusions

Brian spatial cognition is a branch of cognitive science that focuses on the acquisi-

tion, organization, and utilization of information about external spatial environments

(Waller, Nadel, 2012).

Spatial information can be divided into several primitives, such as location, dis-

tance, direction, and time-related information, among others. From these founda-

tional elements, a wide range of complex spatial concepts can be derived.

The experimental study of spatial cognition in the brain has led to the discovery

that many spatial concepts are represented and processed by individual neurons or

groups of neurons (Waller, Nadel, 2012; Moser et al., 2017). This has resulted in the

introduction of numerous new terms, such as place cells (O’Keefe, Dostrovsky, 1971),

head direction cells (Ranck, 1984), grid cells (Fyhn et al., 2004; Hafting et al., 2005),

speed cells (Kropff et al., 2015), and others.

In recent research, significant progress has been made in spatial cognition research,

particularly with a strong emphasis on studying the hippocampus and its related areas

(Waller, Nadel, 2012; Moser et al., 2017; Hardcastle et al., 2017). The hippocampus,

located deep within the brain as an allocortex region, has gained widespread attention

in spatial cognition studies for two primary reasons. Firstly, it has a three-layer

structure and a simplified neuron connection architecture. Secondly, it accommodates

various cell types that encode spatial concepts commonly used in our everyday lives,

including location, direction, speed, and time. Place cells (O’Keefe, Dostrovsky,

1971) and grid cells (Fyhn et al., 2004; Hafting et al., 2005) were first described in

the hippocampus and one synaptic away from the hippocampus.

In this thesis work, the initial focus lies in investigating certain aspects of spatial

information encoding exhibited by these cell types.

First (in Chapter 4), we modeled the burrow environment based on the detailed

quantitative descriptions by John Calhoun (Calhoun, 1962), and we let a virtual
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rat randomly explore it; then using our self-organizing adaptation model which we

observed grid pattern formation in model units (Kropff, Treves, 2008; Si, Treves,

2013). Grid units can form a stable representation of the entire environment but they

acquire the information slowly. Undoubtedly, less explored sub-environments perform

less effectively and are often represented by vague or unclear maps. The small size of

chambers in natural burrows poses a challenge, limiting grid units to express only a

few fields. This challenge questions the notion that grid cells can exhibit long-range

order beyond laboratory conditions. As expected, this characteristic signature was

not observed in the limited and non-flat vowel space (Kaya et al., 2020). Of course, it

is essential to acknowledge that there may be various other reasons for a null result.

Then in Chapter 5, we aim to establish a correlation between the anchoring of grid

cells to the environment and the distortion observed in irregular environments with

the patterns of environment exploration behavior. Recent discoveries suggest that

grid cells are not only involved in encoding global spatial information but also play a

role in encoding local information. One notable observation regarding the anchoring

of grid patterns to the environment is that the grid axis remains fixed at a 7.5-degree

angle from the wall in a square space (Stensola et al., 2015; Julian et al., 2018). First

of all, by analyzing behavior data from rats exploring square enclosures, we have

identified several exploration patterns. Rats tend to move at a slower speed when

traveling in a direction perpendicular to the walls, but their speed increases when

moving along the walls. Additionally, when running near the walls, rats exhibit a

preference for either clockwise or counterclockwise movement along the walls. We then

simulated a virtual rat, incorporating the exploration patterns discussed above, and

used the self-organization model (Kropff, Treves, 2008; Si, Treves, 2013) to simulate

the formation of grid patterns. Upon making slight adjustments to the exploration

pattern, we observed corresponding variations in the anchored grid patterns within

the environment which include the 7.5-degree boundary anchoring. Next, we delve

into the issue of grid pattern distortion in irregularly shaped environments, such as

trapezoids, as discussed in previous studies (Krupic et al., 2014, 2015, 2018). By

merely reducing the frequency of direction changes in the virtual rat’s movements to

enhance long-range correlation in the self-organization model, the grid pattern shows

distinctive distortion patterns based on the environment shape. Intriguingly, this

phenomenon remains consistent even when employing a realistic foraging strategy

known as Lévy flight.

Chapter 6, based on the facts that the accumulation of properties and discov-

eries related to grid cells has led to disagreements and challenges in defining and

95



understanding the concept of ”grid cells.” When discussing ”grid cells,” there is a

higher probability of encountering divergent interpretations and mismatched con-

cepts regarding what ”grid cells” truly represent. In this regard, here in this chapter,

we describe the encoding properties of grid cells with a simplified self-organization

model. And the two major encoding properties of grid cells are described with sim-

ulations: the number of encoding fields per grid cell and the emergence of regularity

in their spatial firing patterns. The number of encoding fields each encoding unit has

is positively correlated with the sparsity of the ensemble. Regularity emerges when

the units have proper sparsity, allowing them to have several fields and engage in

appropriate competition with other local units.

The second part of this thesis starts from chapter 7 to chapter 9, our focus shifted

to brain oscillations, which also play a significant role in representing the regularity

of brain activity (Buzsáki, 2006). Specifically, we delved into the study of infra slow

oscillations in freely behaving rats, as well as in anesthetized rats.

In Chapter 7, from the data recorded from freely behaving rats, infraslow up-down

states (IsUDS) range oscillations of approximately several hundred seconds were ev-

ident and clear. The IsUDS of the LFP amplitude is largely driven by fluctuations

in the delta oscillation magnitude. The amplitude of IsUDS in the LFP and the

delta band filtered LFP display a bimodal distribution, resembling the characteristic

pattern observed in classic up-and-down states. Then we refer to this infra slow oscil-

lation as infra slow up down states (IsUDS). The transition into the high-amplitude

LFP and theta band filtered LFP occurred gradually, with a slow change. However,

the transition from the high amplitude to the low amplitude was relatively abrupt and

occurred rapidly. In addition to the IsUDS frequencies, the signal also encompasses

numerous higher frequencies beyond the typical range associated with IsUDS activity.

The simultaneous firing pattern of neurons, comprising both pyramidal neurons and

interneurons, displays periodic correlations with IsUDS oscillation. However, even

within the same cell types, these correlations occur with diverse phase shifts.

In Chapter 8, we show that IsUDS in several frequency bands exhibit bimodality,

which is characterized by a relatively abrupt transition between high and low values.

Furthermore, different frequency bands display distinct coupling structures.

In Chapter 9, we conducted an analysis of infra slow oscillations in anesthetized

rats. These oscillations manifest in various forms, including upper envelope, lower

envelope, up state duration, down state duration, state duration, up/down duration

ratio, and up/state duration ratio. Furthermore, the different frequency bands are all

coupled together.
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