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Preface

In the past decades, rapid advances in the experimental control of quantum systems have opened
up unparalleled capabilities of engineering exotic quantum states. Nowadays, we may consider
ourselves witnesses of a second quantum revolution [1, 2] as strongly correlated quantum matter is
regularly created, on a daily basis, within the most diverse platforms, e.g. arrays of Rydberg
atoms [3–5], ultra-cold atoms in optical lattices [6, 7], superconducting qubits [8, 9], trapped
ions [10, 11], and quantum dots [12]. In this era, dubbed Noisy-Intermediate Scale Quantum
[13] (NISQ) era, the effort in pursuing research for realizing quantum technologies with practical
purposes, such as quantum computing [14, 15], simulations [16], communication [17] and metrol-
ogy [18], has greatly accelerated, and we are just starting to experience the immense progress that
could be achieved.
The remarkable breakthrough we are facing builds upon seminal theoretical and experimental
advances in quantum physics. The key achievements in atomic, molecular, and optical (AMO)
physics have opened up the possibility of controlling, trapping, and measuring single atoms, one
by one, with high accuracy and reliability [19–21]. In parallel, from a theoretical point of view,
the study of quantum entanglement and correlations has bridged AMO physics and quantum
information with crucial proposals for the realization of universal quantum computers [22, 23].
In this context, entanglement has emerged as one of the key tools to characterize and to exploit
quantum many-body systems for quantum information purposes [15, 24].
Entanglement is the intrinsic expression of the non-locality of quantum mechanics and has gen-
erated a lot of questions since its foundation. The interest in quantum entanglement is interdis-
ciplinary, as it spans in several communities, ranging from quantum information and computa-
tion [15, 24] to condensed matter [25, 26], high energy physics, and cosmology [27–31]. Since
entanglement is intimately related to the complexity of many-body quantum states and our capa-
bility of representing them efficiently, it has served as a tool to probe quantum phases of matter
[25, 26], benchmark experimental platforms [32, 33], and develop advanced numerical techniques
such as tensor network methods [34, 35].
In this thesis, we will study quantum entanglement in several scenarios to investigate and probe
complex quantum many-body systems. We will consider examples ranging from generic mixed
states in equilibrium to out-of-equilibrium dynamics, with and without dissipation, and topolog-
ically non-trivial systems. The leitmotif of this work will be how entanglement and correlations
can be exploited to characterize the many-body quantum state describing a physical system and
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how entanglement can be detected in an experimentally efficient manner. We will proceed by
asking ourselves the following questions: i) how is it possible to detect entanglement in mixed
states, in such a way that it is experimentally feasible in nowadays quantum platforms? ii) how
the role of symmetry intertwines with entanglement both in- and out-of-equilibrium? iii) can en-
tanglement serve as a probe to characterize topological features of quantum matter?
For the sake of clarity, we divide the thesis into four parts. Each one is self-contained to give a
complete picture of the topic studied. We provide a short introduction, which summarizes the
notation we use and briefly introduces some technical aspects, in Part I. We divide the work as
follows:

In Part I we give an overview on entanglement measures for pure and mixed states. We discuss
the generalization of entanglement in case the system has a U(1) symmetry, introducing
the notion of symmetry resolved entanglement and reviewing its study in previous works.
Furthermore, we describe an experimental protocol to measure observables on state-of-the-
art quantum platforms, named randomized measurement protocol [36]. This protocol has been
extensively used and improved in the past years and has been exploited in this thesis to
post-process the published data of Ref. [11], for estimating several quantities that will be
discussed in the respective chapters.

In Part II we tackle the problem of mixed state entanglement from different points of view. First,
we attempt a characterization of entanglement in terms of operator properties which goes
beyond the well known one for entanglement Hamiltonians [37, 38]. We discuss the idea of
negativity Hamiltonian for the partial transpose of a reduced density matrix and propose
a quasi-local structure for it. Then, we focus on entanglement detection via the partial
transpose moments of a reduced density matrix, intending to devise experimentally effi-
cient entanglement criteria. We employ the moments of the partial transpose and symmetry
resolved entanglement to go beyond the standard PPT-criterion [39, 40], we observe that
exploiting symmetry is extremely useful to extend the capability of witnessing many-body
entanglement, both experimentally and theoretically.

In Part III we study the entanglement evolution in open quantum dynamics when the unitary
dynamics preserves an additive conserved charge. We unveil a new effect, supported by
experimental evidence, that we name dynamical purification. It is due to the interplay be-
tween coherent and incoherent dynamics, and it is remarkably general and observable only
if symmetry resolved entanglement is investigated. Then, we study the operator entangle-
ment, observing the so-called entanglement barrier [41–44] and uncovering two interesting
physical effects: a time delay for the onset of the growth of symmetry-resolved operator
entanglement and an effective equipartition between charge sectors.

In Part IV we study entanglement in topologically non-trivial 1D systems. We build an entangle-
ment based topological invariant, similar to the one discussed in Ref. [45, 46], for detecting
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symmetry-protected topological order, and apply it to two prototypical models: the inter-
acting Kitaev model and the Su-Schrieffer-Heeger chain.
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Introduction
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1
Entanglement

1.1 Introduction

Entanglement has been a central concept in quantum mechanics since its foundation, being the
key feature distinguishing between classical and quantum mechanics [1–4]. It has gained re-
newed interest, in the early 2000s, thanks to the development of quantum information science [1]
and, subsequently, as a promising - and potentially revolutionary - tool in other areas of physics
such as statistical mechanics and quantum field theory [5]. It has been used to characterize quan-
tum phases of matter and dynamics of many-body quantum systems [6–12], exploited as a re-
source to allow quantum platforms to outperform their classical counterparts [13–15], and em-
ployed as a benchmark tool for gauging the performances of today available NISQ devices [6, 9].
The problem of quantifying and computing entanglement is already very difficult for simple few-
body systems. However, a lot has been understood thanks to the efforts coming from disparate
and disconnected communities. For example, entanglement has been observed to play an im-
portant role in the physics of phase transitions where it is often used as a tool to probe critical-
ity [16, 17]: the investigation of entanglement can be employed to distinguish if the system is in a
gapped or gapless phase and is known to display universal features in critical systems. Entangle-
ment can provide more detailed information about the order of a quantum state, e.g. if the system
has non-trivial topological order [18]. In fact, it has been observed to contain a sub-leading con-
stant term indicating the existence of a long-range structure that originates from the topological
nature of the system. In a generic quantum system with non-zero correlation length, the calcu-
lation of this topological term may not be straightforward, as it can be hard to separate from the
leading one and various other non-universal contributions.
Concerning out of equilibrium phenomena, an important and well-established result is the quasi-

3
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particle picture for entanglement spreading in a system after a global quantum quench [19]. This
idea is based on a simple semi-classical argument. Imagine to perform a homogeneous quan-
tum quench such to bring the system out-of-equilibrium at time t = 0+. From the perspective of
the post-quench Hamiltonian, the system lays in a highly excited state, and one can depict such
a state as a collection of excitations, that start to spread in the system1. Thus, one can say that
the traveling particles are responsible of the entanglement (and correlation) spreading. In the
original formulation of Ref. [19], quasi-particles are assumed to be produced in pairs of opposite
momenta and spreading in opposite directions. This is the simplest assumption which respects
translational invariance, and it is the common situation in most quench protocols and in exactly
solvable quenches in integrable models.
Finally, let us close this introduction by touching on a problem that is of recent interest, thanks
to the development of efficient quantum simulators, that is the detection of entanglement in mix-
tures of quantum states, i.e. systems described by density matrices. It is well established that the
only necessary and sufficient condition for the separability of a density matrix known so far, i.e.
the Peres’ criterion (or PPT), requires the full spectral resolution of it and it is not affordable in real
world devices. Going beyond this particular issue is still a vivid topic of study in the quantum
information community, since it is of present interest for the realization of commercial quantum
computers.

1.2 Entanglement measures

Entanglement is conventionally defined via its opposite: separability. A pure quantum state |ψ⟩
is called separable when it can be written as a tensor product:

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩ , (1.1)

where |ψX⟩ lives in the Hilbert space HX (X = A, B). Conversely, any state that is not separable
is called entangled and cannot be created via local operations aided by classical communication
(LOCC) [2]. The same can be phrased for mixtures of pure quantum states, i.e. density matrices ρ.
To rule out the possibility that a state (both pure or mixed) is entangled, it is necessary to define
entanglement witnesses. An entanglement witness is a tool that can be used to figure out whether
a state is separable or not. In formulas one could say that a state is entangled if an Hermitian
operator W exists such that

tr(Wρ) ≪ 0 if ρ is entangled,

tr(Wρ) ≥ 0 if ρ is separable.
(1.2)

1In the case the post-quench Hamiltonian is described by a conformal field theory or is an integrable model,
these excitations undergo a ballistic motion and are stable. Conversely, if the state evolves under a non-integrable
dynamics, the quasi-particle acquire a finite life-time.
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The operator W is then called entanglement witness. While an entanglement witness gives infor-
mation about a quantum state being entangled or not, an observable that is able to quantify the
amount of entanglement present in a given quantum state is called entanglement measure. A good
entanglement measure E is defined by the following properties:

1. E(ρ) is a map from density matrices to positive real numbers, ρ → E(ρ) ∈ R+, where ρ is an
arbitrary state of a bipartite quantum system. The measure is normalized such E(|ϕ+

d ⟩) =

log(d) for maximally entangled state, e.g. |ϕ+
d ⟩ = 1√

d ∑d−1
i=0 |ii⟩, where d is the Hilbert space

dimension and |ii⟩ denotes the quantum state of a bipartite system, where each subsystem
is in the same physical state |i⟩.

2. E(ρ) = 0 for a separable quantum state.

3. Entanglement cannot increase under LOCC: E(MLOCC(ρ)) ≤ E(ρ), with MLOCC some local
operations performed on the system or nonlocal classical communication.

4. Convexity. E
(

∑j pjρj
)
≤ ∑j pjE(ρj), where pj > 0 and ∑j pj = 1.

5. Additivity. Given n identical copies of ρ, the amount of entanglement of the whole ensemble
is n times the entanglement of a single copy: E(ρ⊗n) = nE(ρ). This condition can be also be
satisfied asymptotically

E∞(ρ) = lim
n−→∞

E(ρ⊗n)

n
.

6. Subadditivity. For any pair of states ρ1 and ρ2, one can write E(ρ1 ⊗ ρ2) ≤ E(ρ1) + E(ρ2).

Any function satisfying the first three conditions is called entanglement monotone [2]. In the
following sections we will introduce the entanglement measures, monotones, witnesses which
are used to characterize many-body quantum states and that we use throughout this thesis. We
also comment on how and in which contexts they have been successfully employed to investigate
quantum matter.

1.3 Entanglement entropies

In most cases, one is interested in bipartite systems, with a partition A ∪ B. In the case of a
many-body pure state, the bipartite entanglement between A and B is fully encoded in the re-
duced density matrix ρA = trBρ of the given subsystem A, and is characterized via n-order Rényi
entropies, defined as

S(n)
A =

1
1 − n

log tr{ρn
A}. (1.3)

Bipartite entanglement being symmetric: S(n)
A = S(n)

B . For n → 1, these reduce to the renowned
von Neumann entanglement entropy

S(ρA) ≡ lim
n→1

S(n)
A = − trA (ρA log ρA) . (1.4)
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The von Neumann entropy of the reduced density operator is a rigorous entanglement measure
for pure states, and the corresponding Rényi entropies with n > 1 provide rigorous lower bounds.
Both Rényi and von Neumann entropies have found widespread applications in the realm of
many-body physics, from the characterization of topological matter, to dynamics out of equilib-
rium, to the understanding of tensor network methods - see, e.g., Ref. [4] for a review.

1.4 Symmetry-resolved Renyi entropies

For a quantum system whose Hamiltonian dynamics preserves an additive conserved charge, it is
possible to identify and compute the contributions to the entanglement related to each symmetry
sector [20–23]. Here, we focus on global symmetries.

Let Q denote such a conserved charge (Q = QA ⊗ 1B + 1A ⊗ QB). Then, the reduced density
matrix ρA is necessarily block diagonal and each block corresponds to an eigenvalue q of QA. One
can thus introduce Πq, the projector into the eigenspace related to eigenvalue q, and the associated
density matrix ρA(q)

ρA(q) ≡
ΠqρAΠq

tr
{

ρAΠq
} , tr{ρA(q)} = 1, (1.5)

so that
ρA = ⊕q p(q) ρA(q) (1.6)

with p(q) = tr
{

ρAΠq
}

the probability of being in charge sector q. We introduce the symmetry-
resolved purity

PA(q) ≡ tr
{

ρA(q)2
}

. (1.7)

It quantifies how mixed the state is in a given symmetry sector. PA(q) ranges in [2−dim(HA(q)), 1],
where dim(HA(q)) is the dimension of the Hilbert space associated to the symmetry sector q of
subsystem A.

The symmetry-resolved Rényi entropies are a straightforward extension of this concept:

S(n)
A (q) ≡ 1

1 − n
log tr{ρA(q)n} . (1.8)

Computing tr{ρA(q)n} (in cases when a direct application of projectors in not feasible) requires
the knowledge of the spectral resolution in QA of ρA. As pointed out in Refs. [22, 23], for some of
the computations below, it will be more convenient to study the charged moments Zn(α),

Zn(α) ≡ tr
{

ρn
AeiαQA

}
, (1.9)

since those do not directly require spectral resolution to start with. The charged moments have
been calculated in several cases [22–38]. Starting from the computation of Zn(α), it is possible to
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obtain tr
{

ρn
AΠq

}
by means of a Fourier transform:

tr
{

ρn
AΠq

}
=
∫ π

−π

dα

2π
Zn(α)e−iαq. (1.10)

We will exploit this last route for the simulations of free fermions in Sec. 6.5.
Recent studies have discussed the basic properties of these symmetry-resolved contributions

both in-[22–26, 28–36, 39] and out-of-equilibrium [27, 37], in presence of disorder [38], and in
the context of gauge theories [20–23, 27, 40]. In most cases, it has been shown that symmetry-
resolved Rényi entropies of large subsystems exhibits entanglement equipartition at long times
(namely all symmetry-resolved Rényi entropies are equal) for the most relevant and populated
symmetry sectors. The non equilibrium dynamics of symmetry-resolved Rényi entropies has been
considered for isolated systems, both after a local [37] and a global [27] quantum quench, and has
revealed the presence of a universal time delay for the activation of a given sector [27]. The
investigation of symmetry-resolved Rényi entropies is far from complete and the characterization
of its behavior in the presence of dissipation is one of the topic we will focus on in this thesis.

1.5 Entanglement negativity

In the case the system S is in a mixed state, the entropies of the reduced density matrix are no
longer proper measures of bipartite entanglement, as they are also sensitive to classical correla-
tions, although they still provide useful information. A more appropriate and commonly used
quantity to witness entanglement in these cases is the negativity [41].

Considering A = A1 ∪ A2, according to Peres’ criterion [42], also called positive partial trans-
pose (PPT) criterion, a necessary condition for separablity is that the eigenvalues λi of its partial
transpose ρT1 (with respect to subsystem A1) are exclusively non-negative (λi ≥ 0).

For a bosonic system, the partial transpose of the reduced density matrix ρT1 with respect to
A1 is defined by performing a standard transposition in HA1 , i.e. exchanging the matrix elements
in A1,

ρT1
A = (TA1 ⊗ 1A2)ρA = = ∑

i,j,k,l

〈
eA1

k , eA2
j

∣∣∣ ρA

∣∣∣eA1
i , eA2

l

〉 ∣∣∣eA1
i , eA2

j

〉 〈
eA1

k , eA2
l

∣∣∣ . (1.11)

The partial transposition has also an interpretation in terms of a time-reversal transformation or
mirror reflection in phase space [43]. Namely, considering the one-to-one correspondence be-
tween density matrices and Wigner distribution functions W(q, p) then

ρA → ρT
A ⇐⇒ W(q, p) → W(q,−p).

This can be conveniently observed starting from a bosonic density matrix written in a coherent
state basis, since time-reversal transformation (T ) can be identified with the complex conjuga-
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tion [44]. Taking |α⟩, a bosonic coherent state, one has

(|α⟩ ⟨α∗|) T−→ |α∗⟩ ⟨α| = (|α⟩ ⟨α∗|)T. (1.12)

Starting from the partial transposition one can define the entanglement negativity written as

N ≡ ∑
i

max{0,−λi} = 1
2

(
tr
{
|ρT1

A |
}
− 1
)

(1.13)

that quantifies the degree to which ρT1
A fails to be positive semidefinite. So, a non-zero negativity

implies the presence of entanglement between A1 and A2.

To construct the partial transpose for fermionic systems one has to observe that Eq.(1.12) does
not hold anymore. Let us start by writing the density matrix of a fermionic system in terms of
Majorana operators cj, which are defined in terms of the fermionic operators aj obeying {a†

k , aj} =

δkj as c2j−1 = aj + a†
j ,

c2j = i(aj − a†
j ).

(1.14)

We consider a system A = A1 ∪ A2 and denote with the subscripts {m1, . . . , ml1} the operators
in the subset A1 and with {n1, . . . , nl2} the ones in the subset A2; here l1(l2) corresponds to the
number of sites in subsystem A1(A2). One can write [45]:

ρA = ∑
κ,τ

wκ,τcκ1
m1 . . . c

κ2l1
m2l1

cτ1
n1 . . . c

τ2l2
n2l2

(1.15)

where we defined κ = (κ1, . . . , κ2l1) and τ = (τ1, . . . , τ2l2) with κj, τj = 0, 1. We also set |κ| =
∑2l1

j=1 κj and |τ| = ∑2l2
j=1 τj. Since the physical fermionic states must commute with the parity

operator one has that the sum of the moduli of κ and τ must be even. The partial transpose (1.11)
leaves unaltered the state in A2 and exchanges the states in A1 as

ρT1
A = ∑

κ,τ
(−1) f (κ)wκ,τcκ1

m1 . . . c
κ2l1
m2l1

cτ1
n1 . . . c

τ2l2
n2l2

(1.16)

where

(−1) f (κ) =

0 |κ| mod 4 ∈ {0, 3}
1 |κ| mod 4 ∈ {1, 2}

. (1.17)

The easiest way to see this is to perform the partial transpose in the occupation number basis and
then write the density matrix in terms of Majorana operators.
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As a prototypical example, let us now consider a Gaussian state that can be written in the form

ρA =
1
Z

e
1
4 ∑kl Wklckcl , (1.18)

where ck are fermionic Majorana operators and W is a 2ℓ × 2ℓ matrix (ℓ size of the system de-
scribed by ρ), with eigenvalues ∈ R. The latter is related to the correlation matrix Γ (i.e. the
matrix with elements Γi,j =

1
2⟨[ci, cj]⟩) by the relation

Γ = tanh
W
2

. (1.19)

Here Γ has eigenvalues between [−1, 1]. It is convenient to introduce the block structure of Γ as

Γ =

(
ΓA1 A1 ΓA1 A2

ΓA2 A1 ΓA2 A2

)
. (1.20)

Using Eq. (1.16) it can be shown that [45]

ρT1
A =

1 − i
2

O+ +
1 + i

2
O− (1.21)

where O± = ∑κ,τ o±κ,τcκ1
m1 . . . c

κ2l1
m2l1

cτ1
n1 . . . c

τ2l2
n2l2

with

o±κ,τ =

±i(−1)
|κ|−1

2 wκ,τ |κ| odd

i(−1)
|κ|
2 wκ,τ |κ| even.

(1.22)

The operators O± are Gaussian and can be written as

O+ = O†
− =

1
Z

e
1
4 ∑kl(NA)klckcl (1.23)

where NA is related (as in Eq. (1.19)) to the correlation matrix Γ+ defined according to the follow-
ing equation:

Γ+ =

(
−ΓA1 A1 iΓA1 A2

iΓA2 A1 ΓA2 A2

)
. (1.24)

It is clear that the partially transposed reduced density matrix (1.21) is not a Gaussian operator,
but rather the sum of two of them. Even more troubling, the density matrix defined starting from
Eq. (1.21) does not satisfy additivity nor subadditivity and fails to capture, for this reason, some
topological features of fermionic Majorana systems such as the entanglement due to zero-energy
modes in Kitaev’s chain [44].

For all the above reasons, a different partial transpose has been introduced for fermionic sys-
tems starting from the analogy with the time-reversal transformation [44, 46, 47]. In a coherent
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state basis the reduced density matrix of a fermionic system reads [44, 45, 47, 48]

ρA =
1
Z

∫
d[ξ]d[ξ̄]e−∑j ξ̄ jξ j

〈
{ξ j}

∣∣ ρA
∣∣{ξ̄ j}

〉 ∣∣{ξ j}
〉 〈

{ξ̄ j}
∣∣ . (1.25)

Here ξ, ξ̄ are Grassman variables and |ξ⟩ = e−ξa† |0⟩,
∣∣ξ̄〉 = ⟨0| e−a† ξ̄ are the related fermionic

coherent states. The partial time reversal, analog of Eq. (1.12), is [44]

|ξ⟩
〈
ξ̄
∣∣ T→

∣∣iξ̄〉 ⟨iξ| (1.26)

This definition can be readily generalized to multi-particle states. Considering a system A =

A1 ∪ A2 one has

(
∣∣{ξ j}j∈A1{ξ j}j∈A2

〉 〈
{χ̄j}j∈A1{χ̄j}j∈A2

∣∣)R1 =
∣∣{iχ̄j}j∈A1{ξ j}j∈A2

〉 〈
{iξ j}j∈A1{χ̄j}j∈A2

∣∣ , (1.27)

where {ξ j}j∈AX ,{χj}j∈AX are Grassman variables on sites j ∈ AX. In the occupation number basis,
the above equation reads [44]

(
∣∣{nj}j∈A1{nj}j∈A2

〉 〈
{n̄j}j∈A1{n̄j}j∈A2

∣∣)R1 =

= (−1)ϕ({nj,n̄j}) ×
∣∣{n̄j}j∈A1{nj}j∈A2

〉 〈
{nj}j∈A1{n̄j}j∈A2

∣∣ .
(1.28)

Here the term ϕ({nj, n̄j}) is a phase factor depending on the occupation number

ϕ({nj, n̄j}) =
τA1(τA1 + 2)

2
+

τ̄A1(τ̄A1 + 2)
2

+ τA2 τ̄A2+

+ τA1τA2 + τ̄A1 τ̄A2 + (τ̄A1 + τ̄A2)(τA1 + τA2),
(1.29)

with τA1 = ∑j∈A1
nj (τA2 = ∑j∈A2

nj) and τ̄A1 = ∑j∈A1
n̄j (τ̄A2 = ∑j∈A2

n̄j). Hence the definition
in Eq. (1.28) is equivalent to a standard partial transposition up to phase factor depending on the
parity of the two subsystems, as in Eq. (1.29). In terms of Majorana operators, the transformation
in Eq. (1.28) can be rewritten as

ρR1
A = ∑

|κ|+|τ|even
wκ,τ i|κ|c

κm1
m1 · · · c

κm2l1
m2l1

c
τn1
n1 · · · c

τn2l2
n2l2

(1.30)

where we used the notation c0
x = 1, c1

x = cx. The matrix ρR1
A satisfies three necessary properties

for a partial transposition:

1. (ρR1
A )R2 = ρR

A,

2. (ρR1
A )R1 = ρA,

3. (ρ1 ⊗ ρ2 · · · ρn)R1 =
(

ρR1
1 ⊗ ρR1

2 ⊗ · · · ⊗ ρR1
n

)
.
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This density operator ρR1
A is not Hermitian and, in general, has complex eigenvalues. Neverthe-

less, one can still define a fermionic logarithmic negativity as [44]

E = log tr
√
(ρR1

A )†ρR1
A (1.31)

where the object (ρR1
A )†ρR1

A is Hermitian and its spectrum is positive. In spite of the name, the
fermionic negativity has nothing to do with the negativeness of the spectrum of ρR1

A . However It
can be proved that it is a proper entanglement monotone [49] and it has been shown that it can
detect entanglement when the standard negativity fails [44]. In [46] it has also been shown that,
in general, there is a freedom in the definition of the partial transpose operation. This leads to an
alternative definition for the fermionic negativity (1.31) given by

E = log tr|ρR̃1
A |. (1.32)

with
ρR̃1

A = ρR1
A (−1)FA1 , (1.33)

where FA1 = ∑j∈A1
nj is the number of fermions in the subsystem A1. Given that the spectrum of

ρR̃1
A is real, the fermionic negativity is a measure of the negativeness of the eigenvalues of the latter.

Notice that ρR1
A for fermionic gaussian systems is nothing but O+ in Eq. (1.21). Furthermore,

in the case of Gaussian states the relation between ρR̃1
A and ρR1

A simplifies and one can write

eÑA =
1+ Γ+

1− Γ+
UA1 , (1.34)

where the matrix UA = −1A1 ⊕ 1A2 is related to the transformation (−1)FA1 . A last comment
concerns the structure of the spectrum of ρR̃1

A . The eigenvalues of Γ̃ are of the form ±ν̃j. In terms

of these, the density matrix ρR̃1
A can be brought into a diagonal form

ρR̃1
A =

1
Z

ℓ1+ℓ2

∏
j=1

1 + iν̃jd2jd2j−1

2
, (1.35)

where dj are a set of real fermionic operators. Since the eigenvalues of d2jd2j−1 are ±i, the 2ℓ

eigenvalues of ρR̃1
A are given by all possible products of

1±ν̃j
2 . Hence, in order to have negative

eigenvalues a necessary conditions is that some νj are larger than 1. Focusing now, for practical
reasons, to the case of two intervals of length ℓ1 and ℓ2 respectively, we anticipated in the main
text that the eigenvalues of ÑA are either real or real +iπ. To be more precise, the spectrum of ÑA

is of the form {λj + iπ}, λj ∈ R for j = 1, · · · , 2ℓ1 and {λj}, λj ∈ R for j = 2ℓ1 + 1, · · · , 2(ℓ1 + ℓ2).

The presence of the terms iπ is what determines the negative eigenvalues in the spectrum of ρR̃1
A .
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Indeed, using the relation

Γ̃ = tanh
ÑA

2
, (1.36)

if the eigenvalues are λj + iπ, then νj = tanh
(
λj/2 + iπ/2

)
= coth

(
λj/2

)
, and so νj = coth

(
λj/2

)
>

1.
We finally mention that the fermionic logarithmic negativity in Eq. (1.32) can be computed as

E =
ℓ1+ℓ2

∑
j=1

log
[∣∣∣1 − ν̃j

2

∣∣∣+ ∣∣∣1 + ν̃j

2

∣∣∣]+ log tr(ρR̃1
A ), (1.37)

where tr(ρR̃1
A ) =

√
detΓA1 A1 . Note that the sum is over half of the eigenvalues of Γ̃.

In recent years, the negativity has been extensively studied in a large variety of physical situa-
tion, including critical [50–54] and disordered systems [55, 56], topological phases [57–61], and out
of equilibrium [62–68]. The same holds for the fermionic counterpart of the negativity which has
been investigated to characterise the entanglement in fermionic mixed states [44–46, 48, 69–72].

1.6 Symmetry-resolved entanglement negativity

In analogy to entanglement entropy, one can consider the negativity for a system, with a parti-
tion A ∪ B, possessing some additive conserved charge Q = QA ⊗ 1B + 1A ⊗ QB. Interestingly,
ρTA admits a block diagonal form in the quantum numbers of the charge imbalance, that is, the
difference of charge between A and B, Q̃ = QA − QTA

B [73]. Let Πq̃ denote the projector onto
the eigenspace of Q̃ associated with eigenvalue q̃. We define the normalized symmetry-resolved
partially transposed density matrix [73, 74]

ρTA(q̃) ≡ Πq̃ρTA Πq̃

tr
{

ρTA Πq̃
} , tr

{
ρTA(q̃)

}
= 1, (1.38)

such that

ρTA = ⊕q̃ p(q̃)ρTA(q̃) (1.39)

with p(q̃) = tr
{

ρTA Πq̃
}
≥ 0 the probability of being in charge imbalance sector q̃. We can thus

define the symmetry-resolved negativity as

N (q̃) ≡ tr
{
|ρTA(q̃)|

}
− 1

2
(1.40)

with N = ∑q̃ p̃(q̃)N (q̃). To compute the symmetry-resolved negativity, one needs the spectral
resolution of ρTA as in the previous case. Beyond the case of exact simulations, this challenging
calculation is performed in two steps. We first focus on the moments tr

{
(ρTA(q̃))n}, from which
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the negativity is obtained from a replica trick [51]. Then we consider the charged moments [46, 73]

Rn(α) ≡ tr
{(

ρTA
)n

eiαQ̃A
}

(1.41)

and performing a Fourier transform we get the desired tr
{
(ρTA(q̃))n}. This way of performing

the calculation is very powerful when combined with 1 + 1D CFTs [51, 73], which also provided
exact results for the time evolution of the symmetry-resolved negativity after a local quantum
quench [37]. The extension of symmetry resolved negativity for fermionic systems (i.e. fermionic
partial transpose) is not discussed in this work; the reader could refer to Ref.[74] and references
therein for more information.

1.7 Operator entanglement

In this section we introduce the operator entanglement (OE) of a reduced density matrix and
discuss its symmetry resolution in the presence of an additive global conserved charge.

1.7.1 Definition of operator entanglement

Let us formally consider the OE of a density matrix ρAB of a bipartite system A ∪ B. Despite we
restrict to this choice, all the definitions of this section hold for a generic operator O acting on a
bipartite system. In Ref.[75] several examples are discussed. We observe that it admits a Schmidt
decomposition:

ρAB√
Tr(O†O)

=
srank(O)

∑
i=1

λiOA,i ⊗ OB,i. (1.42)

It has the property that all expansion coefficients λi are positive and the associated operators
OA,i, OB,i are Hermitian and orthonormal with respect to the Hilbert-Schmidt inner product

Tr(O†
A,iOA,j) = Tr(O†

B,iOB,j) = δi,j.

Normalization on the lhs of Eq. (1.42) moreover ensures that the expansion coefficients obey

∑i λ2
i = 1, i.e. the set

{
λ2

i
}

forms a probability distribution of (squared) Schmidt value. The
smallest summation range for which Eq. (1.42) is possible is called the operator Schmidt rank
srank(O) of ρAB, see e.g. [76]. From this decomposition, we can quantify the operator entangle-
ment properties of ρAB through the Rényi α-OE

S(α)(ρAB) :=
1

1 − α
log ∑

i
λ2α

i for α > 1. (1.43)

The limit α → 1 gives the OE
S(ρAB) := ∑

i
−λ2

i log λ2
i . (1.44)
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We have presented the OE in terms of ‘operator Schmidt decompositions’, Eqs. (1.42), but it
is equivalent to apply the standard Schmidt decomposition —of a pure state— to the vector-
ization of the density matrix ρAB. The vectorization is nothing but the mapping (known as
Choi–Jamiołkowski isomorphism)

ρAB = ∑
ij
(ρAB)ij |i⟩ ⟨j| → |ρAB⟩ = ∑

ij
(ρAB)ij |i⟩ |j⟩ , (1.45)

where |i⟩ is an arbitrary basis in the Hibert space of AB. It follows that the Schmidt decomposition
of |ρAB⟩ is equivalent to (the vectorization of) Eq. (1.42)

1.8 Symmetry resolved operator entanglement

In the presence of a global symmetry, the OE of the operator ρAB can be split into different charge
sectors, similarly to the state entanglement [77, 78].

This happens in particular for global U(1) symmetry, when the U(1) charge operator acting on
A ∪ B is a sum of the two charge operators acting on subsystems A and B, QAB = QA ⊗ IB +

IA ⊗ QB. If density matrix ρAB commutes with QAB, then it is possible to organize the terms in
the Schmidt decomposition according to their charge q,

ρAB√
Tr[ρ2

AB]
= ∑

q
∑

j
λ
(q)
j O(q)

A,j ⊗ O(−q)
B,j , (1.46)

where
[QA, O(q)

A,j] = q O(q)
A,j, [QB, O(−q)

B,j ] = −q O(−q)
B,j , (1.47)

so that
[QA ⊗ IB + IA ⊗ QB, O(q)

A,j ⊗ O(−q)
B,j ] = 0.

As above, the operators O(q)
A,j and O(q)

B,j in the decomposition (1.46) are orthonormal sets,

Tr[O(q1)
A,j1

O(q2)
A,j2

] = Tr[O(q1)
B,j1

O(q2)
B,j2

] = δq1,q2δj1,j2 .

We can define the total weight of the terms at fixed q,

p(q) := ∑
j
(λ

(q)
j )2. (1.48)

This weight satisfies ∑q p(q) = 1, so it is a probability distribution on the different charge sectors.
In terms of that probability distribution, the OE (1.44) reads

S(ρAB) = ∑
q

p(q)Sq(ρAB) + ∑
q
−p(q) log p(q), (1.49)



CHAPTER 1. ENTANGLEMENT 15

where the ‘symmetry-resolved operator entanglement’ (SROE) of ρAB in the charge sector q is

Sq(ρAB) := ∑
j
−
(λ

(q)
j )2

p(q)
log

(λ
(q)
j )2

p(q)
. (1.50)

Similarly, for a generic Rényi index α, the Rényi-α SROE is defined as

S(α)
q (ρAB) :=

1
1 − α

log ∑
j

(λ
(q)
j )2α

p(q)α
. (1.51)

Again, the same result can be derived applying the standard Schmidt decomposition to the
vectorization of the density matrix ρAB. The charge ‘superoperator’ QAB which acts on the vec-
torized density matrix |ρAB⟩ reads

QAB = QAB ⊗ 1− 1⊗ QT
AB, (1.52)

so that
QAB |ρAB⟩ = |QABρAB⟩ − |ρABQAB⟩ = |[QAB, ρAB]⟩ . (1.53)

Similarly, the charge superoperators acting only on subsytems A and B are defined as QA =

QA ⊗ 1− 1⊗ QT
A and QB = QB ⊗ 1− 1⊗ QT

B. The terms in the Schmidt decomposition of |ρAB⟩
can be organized according to the eigenvalue of the charge superoperators QA (= −QB) and this
is equivalent to (the vectorization of) Eq. (1.46).

Importantly, in Chap. 7 we focus on a density matrix that is the reduced density matrix of
the subsystem A ∪ B, obtained after tracing out degrees of freedom in C in a tripartite system
A ∪ B ∪ C. It turns out this naturally yields an operator ρAB which commutes with the U(1)
charge operator in A ∪ B,

[QAB, ρAB] = 0. (1.54)

To understand how this happens, let us look at a minimal illustrative example: a 3-qubits system,
whose qubits are labeled A, B and C, in a state of the form (|α|2 + |β|2 + |γ|2 = 1)

|ψ⟩ABC = α |100⟩+ β |010⟩+ γ |001⟩ . (1.55)

This is an eigenstate of the total charge operator QABC = ∑j=A,B,C |1⟩j ⟨1|j. The reduced density
matrix of the subsystem AB is

ρAB = (α |10⟩+ β |01⟩) (α∗ ⟨10|+ β∗ ⟨01|) + |γ|2 |00⟩ ⟨00| , (1.56)

which commutes with QA ⊗ IB + IA ⊗ QB. Therefore the above definitions can be applied and it
makes sense to study the SROE of the reduced density matrix ρAB in this minimal example.
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Let us proceed vectorizing the reduced density matrix ρAB:

|ρAB⟩ = |γ|2 |00⟩A |00⟩B + |β|2 |00⟩A |11⟩B + |α|2 |11⟩A |00⟩B

+ βα∗ |01⟩A |10⟩B + β∗α |10⟩A |01⟩B .
(1.57)

From this, we can build the object |ρAB⟩ ⟨ρAB| and take the trace over the subsystem over B. This
gives

TrB⊗B |ρAB⟩ ⟨ρAB| = |β|4 |00⟩ ⟨00|
+ |β|2|α|2(|01⟩ ⟨01|+ |10⟩ ⟨10|)
+ (|γ|2 |00⟩+ |α|2 |11⟩)(|γ|2 ⟨00|+ |α|2 ⟨11|).

(1.58)

By reshuffling the elements of the basis, we find out that the matrix has a block-diagonal decom-
position as

TrB⊗B |ρAB⟩ ⟨ρAB| ∼=
(
|α|2|β|2

)
q=−1

⊕
(
|β|4 + |γ|4 |α|2|γ|2
|α|2|γ|2 |α|4

)
q=0

⊕
(
|β|2|α|2

)
q=1

. (1.59)

The eigenvalues of each block correspond to the λ
(q)
j ’s in Eq. (1.46). From this expression, is clear

that each block is labelled by the imbalance between the charge in A and in its copy, coming from
the vectorization of ρAB, or equivalently from the difference between the charge QA acting from
the left and from the right, as formally stated in Eq. (1.47).



2
Randomized measurements

2.1 Introduction

In the era of noisy intermediate-scale quantum devices, experimentalists and theorists are work-
ing together on developing and employing effective tools to investigate and characterize the fea-
tures of many-qubit quantum states prepared in the laboratory. Usually, the most naive way
of tackling this problem consists of preparing and measuring the same quantum state multiple
times, such that, collecting enough information it is possible to completely reconstruct an N-qubit
state: this is denoted as full state tomography [79–83]. This approach is inefficient and hopelessly
applicable on large systems, as it requires a number of repetitions of the experiments which scales
exponentially in N (system size), and classical post-processing which would be a daunting chal-
lenge even for the most powerful super-computers.

In the past years, it has been shown that the number of experiments and the subsequent post-
processing may be profitably optimized, for most of the properties of quantum states need a far
less complete description to be efficiently estimated. This comes at the expense of a small sta-
tistical uncertainty on the observable at stake, whose upper bound can be estimated analytically
[84, 85]. The main idea, which goes under the umbrella of randomized measurements protocol, is that
global properties of quantum states can be computed using a modest number of measurement
repetitions. Before performing the measurements, one can act with random unitary operations
such that the single qubits are actually measured in a random basis in the Hilbert space. This pro-
tocol effectively translates the quantum information of the system in a classical representation of
the states in terms of unitary operations and classical bit-strings. As a result, a lot of information is
discarded, but many relevant features of the quantum state can still be extracted through classical

17
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Figure 2.1: Sketch of randomized measurement protocol. A N qubits quantum state ρ is prepared and
undergoes a given dynamics. A set of random unitaries sampled from a suitable ensemble {u1, . . . , uN}
(e.g Clifford group or CUE) is applied on it. The state is then measured in the computational basis and bit
strings are collected s = {s1, . . . , sN}. Via classical post-processing of bit-strings and unitaries it is possible
to estimate many non-linear functions of the density matrix ρ.

post-processing of the data. In the following section we review a particular randomized measure-
ment scheme that employs single-qubit measurements to construct a, so-called, classical shadow of
a quantum state. Here we describe the standard protocol of randomized measurements. We con-
sider a quantum system consisting of n qubits with associated Hilbert space C⊗n

2 . A randomized
measurement, schematically depicted in Fig.2.1, consists in the following steps:

(i) the quantum many-body state ρ of interest is prepared in the laboratory;

(ii) a unitary operation U, selected at random from a suitable ensemble of unitary operations,
is applied to ρ. Often it is considered the case when U consists of n local unitaries U =

u1 ⊗ · · · ⊗ un. The individual single-qubit rotations are sampled from suitable ensembles
of single-qubit unitary operations, e.g. the Clifford group or the Circular Unitary Ensemble
(CUE);

(iii) a projective measurement in the computational basis is performed, collecting the bit-string
s = {s1, ..., sn} with sj ∈ 0, 1 for j = 1, . . . , n.

These steps are repeated Nm · Nu times in total. Nu counts the number of different unitary sets
considered and Nm the number of repetitions for each unitary set. After completing the exper-
iment, the obtained data can be used to extract information about the underlying many-body
system with full classical post-processing.
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2.2 Classical shadows

Here we consider the particular case of randomized measurements which consists in collecting
classical snapshots of the quantum state taken into account, i.e. classical shadows.
We are interested in quantum systems comprised of n qubits. Suppose furthermore, that we
can perform certain unitary transformations U ∈ E (ensemble), as well as a measurement in the
computational basis:

{|b⟩⟨b| : b ∈ {0, 1}n} .

It is instructive to analyze the quantum-to-classical channel that arises from first performing a
randomly selected unitary transformation ρ 7→ UρU† followed by a computational basis mea-
surement:

ME (ρ) =
∫
E ∑

b∈{0,1}n
Pr
[
b̂ = b|UρU†]U†|b⟩⟨b|UdU

=
∫
E

dU ∑
b∈{0,1}n

⟨b|UρU†|b⟩U†|b⟩⟨b|U. (2.1)

The integral over E is an average over all possible classically randomized measurement settings.
The summation over b averages over quantum randomness associated with measurement out-
comes (Born’s rule). It is easy to check that ME (·) is always a quantum channel, i.e. a completely
positive and trace-preserving map.

Viewed as a linear operator, this channel is also invertible if the underlying ensemble E is
sufficiently expressive. More precisely, we require that the complete family

{
U†|b⟩⟨b|U : U ∈ E

}
of admissible basis measurements is tomographically complete [84]. That is, for all ρ ̸= σ, there
exists a U ∈ E and a outcome b ∈ {0, 1}n such that ⟨b|UρU†|b⟩ ̸= ⟨b|UσU†|b⟩.

Therefore, assuming that
{

U†|b⟩⟨b|U : U ∈ E , b ∈ {0, 1}n} is a tomographically complete fam-
ily of basis measurements, ME has a well-defined and unique inverse M−1

E (·). From now on, we
will always assume that we are dealing with tomographically complete families of basis measure-
ments.

Classical shadow estimation with randomized measurements is based on the following basic
routine:

1. state preparation: prepare a copy of the unknown quantum state ρ;

2. randomized single-shot measurement: sample U ∼ E at random, transform ρ 7→ UρU† and
measure in the computational basis;
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3. construct a classical snapshot: upon receiving outcome b̂ ∈ {0, 1}n, compute

ρ̂ =M−1
E
(

U†|b̂⟩⟨b̂|U
)

. (2.2)

By construction, each snapshot is a random matrix that exactly reproduces the true underlying
state ρ in expectation (over both the classical choice of transformation and the quantum random-
ness in the basis outcome). That is,

E [ρ̂] =M−1
E
(

EU∼EEb̂∈{0,1}nU†|b̂⟩⟨b̂|U
)

=M−1
E (ME (ρ)) = ρ.

Statistically speaking, ρ̂ is an unbiased estimator of the underlying quantum state ρ. But a single
snapshot is only a very poor estimator. This situation changes if we have access to multiple
independent snapshots {ρ̂1, . . . , ρ̂N}. We call such a collection a classical shadow of ρ with size
N. Forming the empirical average of snapshots within a classical shadow produces ever more
accurate approximations of the true underlying state:

1
N

N

∑
i=1

ρ̂i
N→∞−→ 1

N

N

∑
i=1

E [ρ̂i] = ρ. (2.3)

The main results in Ref. [84] highlight that classical shadows of moderate size already allow joint
estimation of many interesting state properties. More precisely, the classical shadow formalism
allows for computing powerful a-priori bounds on the convergence behavior of such estimators.

Before moving on, it is worthwhile to emphasize implicit assumptions within the classical
shadows model. It turns out that almost all of them can be relaxed without threatening statistical
guarantees like error bounds or confidence intervals.

Perfect/noiseless measurements: the original randomized measurement framework is contin-
gent on perfect knowledge of the average quantum-to-classical channel (2.1). Erroneous exe-
cutions of the ensemble rotation U, or noisy executions of the subsequent computational basis
measurement can thwart this assumption. However, recent results [86, 87] highlight that a suit-
ably extended shadow formalism can handle such imperfections. The key idea is to adjust the
inversion formula (2.2) appropriately. Ref. [87] achieves such an adjustment by assuming explicit
knowledge of the (average) noise channel, while Ref. [86] actually goes a step further and pro-
poses a tractable calibration protocol that reveals sufficient information to appropriately correct
Eq. (2.2).

Independent and identically distributed state copies: because quantum measurements are
typically destructive, most estimation protocols assume access to a perfect source that produces
independent and identically distributed (iid) copies of the underlying quantum state ρ. Formally,
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N queries of such a perfect iid state source produce the state ρ⊗N and we subsequently proceed
to measure independent copies sequentially. This particular tensor product structure is a strong
assumption that combines stochastic independence (individual state copies are completely un-
correlated) with identical distribution (all state copies are identical). This second assumption is
often violated in concrete experimental architectures. Small fluctuations within the device can
lead to state copies that, although uncorrelated, vary in time (“drifting source”). N state copies
produced by such drifting (but independent) sources can be modelled by a sequence {ρi}N

i=1 of
non-identical quantum states.

The classical shadow formalism can readily handle drifting (but independent) sources. Each
snapshot ρ̂i will have a different expectation value and Eq. (2.3) needs to be adjusted accordingly:

1
N

N

∑
i=1

ρ̂i −→ 1
N

N

∑
i=1

Eρ̂i =
1
N

N

∑
i=1

ρi =: ρavg. (2.4)

Hence, empirical averages of classical shadows are well-suited for approximating linear proper-
ties of the average source state ρavg. We will show below that this desirable feature extends to the
shadow estimation of polynomials as well.

In order to handle drifting sources, we will also assume access to trusted classical random-
ness that allows us to randomly select unitary transformations U ∈ E . Mild by comparison,
this assumption also features as an explicit (or implicit) assumption in other statistically sound
treatments of entanglement detection, see e.g. [88] and references therein.

Finally, we point out that assuming access to independent state copies (tensor product struc-
ture) is not a mild assumption. But, the classical shadow estimators below are invariant under
permuting individual state copies. Permutation invariance suggests that strong proof techniques
from quantum cryptography – like the quantum de Finetti theorem, see e.g. [89, Chapter 7] and
references therein – may be applicable and allow for relaxing the independence assumption as
well.

2.3 Predicting linear functions with classical shadows

We are now ready to discuss the simplest use-case of classical shadows: estimate a linear function,
say tr(Oρ), based on N randomized measurements of independent (but not necessarily identical)
states. We can achieve this by simply replacing the unknown quantum state ρ by an empirical
average of snapshots within a classical shadow:

ô(N) =
1
N

N

∑
i=1

tr (Oρ̂i) obeys (2.5)

Eô =tr

(
O 1

N

N

∑
i=1

Eρ̂i

)
= tr

(
O 1

N

N

∑
i=1

ρi

)
= tr

(
Oρavg

)
.
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Independence ensures that the individual snapshots ρ̂i are stochastically independent random
matrices. This in turn implies that each tr(Oρ̂i) is a stochastically independent random variable.
Empirical averages of independent random variables tend to concentrate sharply around their
expectation value – regardless of the underlying distribution. The variance is an important pa-
rameter that can control the rate of convergence. Chebyshev’s inequality, for instance, implies for
ϵ > 0

Pr
[∣∣∣ô(N) − tr

(
Oρavg

)∣∣∣ ≥ ϵ
]
≤ 1

ϵ2 Var
[
ô(N)

]
= 1

Nε2

(
1
N

N

∑
i=1

Var [tr (Oρ̂i)]

)
. (2.6)

This tail bound is a consequence of independence alone. The remaining average variance does de-
pend on the ensemble E . Different ensemble give rise to different variance contributions [84, 90].
Here, we focus on the practically most relevant case: randomized, single-qubit measurements. Each
qubit is measured in either the X-, the Y-, or the Z-basis. More formally, the ensemble E sub-

sumes random single qubit Clifford rotations. That is U = u1 ⊗ · · · ⊗ un with u1, . . . , un
iid∼ Cl(2)

and Cl(2) denotes the single-qubit Clifford group, i.e., the finite group generated by Hadamard
and phase gates. More generic single-qubit ensembles (like Haar-random unitaries) are also an
option – what matters is that the single qubit ensemble forms a 3-design [91, 92]. The (single-
and multi-qubit) Clifford group is one ensemble with this feature [93–95]. As demonstrated in
Ref. [84], the 3-design assumption allows us to compute the measurement channel (2.1), as well
as its inverse. Let D1/3(X) = 1/3 (X + tr(X)I) denote the single-qubit depolarizing channel with
parameter 1/3. Then,

M
(

n⊗
k=1

Xk

)
=

n⊗
k=1

D1/3(Xk) = 3−n
3⊗

k=1

(Xk + tr(Xk)I) ,

M−1

(
n⊗

k=1

Xk

)
=

n⊗
k=1

D−1
1/3(Xk) =

n⊗
k=1

(3Xk − tr(Xk)I) ,

and we refer to [84, Supplementary Information, Section C] for details. We see that the measure-
ment channel (and its inverse) factorizes nicely into a tensor product of single-qubit operations.
This is also true for snapshots (2.2) within a classical shadow:

ρ̂ =
n⊗

k=1

(
3u†

k |b̂k⟩⟨b̂k|uk − I
)

. (2.7)

This explicit formulation allows for deriving powerful and useful variance bounds, see [84, Sup-
plementary Information, proof of Proposition S3].

If we fix an observable O and suppose that ρ̂i is the snapshot (2.7) of an unknown quantum



CHAPTER 2. RANDOMIZED MEASUREMENTS 23

state, then
Var [tr(Oρ̂i)] ≤ 2w(O)tr(O2), (2.8)

where w(O) denotes the observable’s weight; that is, the number of qubits on which it acts non-
trivally.

We can combine Eq. (2.8) with Eq. (2.6) to obtain

Pr
[∣∣∣ô(N) − tr

(
Oρavg

)∣∣∣ ≥ ϵ
]
≤ 2w(O)tr(O2)

Nϵ2 . (2.9)

There are different ways to capitalize on this tail bound. Firstly, we can fix a desired approxima-
tion accuracy ϵ, as well as a desired (maximal) failure probability δ. Eq. (2.9) then provides us
with a lower bound on the number of measurements N required to achieve these values.

Fix ϵ, δ ∈ (0, 1) and a linear observable O. Suppose that we perform

N ≥ 2w(O)tr(O2)

ϵ2δ

randomized single-qubit measurements on independent states. Then, the associated classical
shadow suffices to ϵ-approximate the expectation value of the average source state:∣∣∣ô(N) − tr

(
Oρavg

)∣∣∣ ≤ ϵ with prob. (at least) 1 − δ.

Alternatively, we can fix a confidence level α and a total measurement budget N. In this case,
Eq. (2.9) provides us with a bound on the accuracy of the approximation we made. Together with
the empirical average ô(N) itself, this provides a statistically sound confidence interval.

Fix an observable O, a confidence level α ∈ (0, 1), as well as a measurement budget N (com-
prised of independent states). Then, the true observable average tr(Oρavg) is contained in the
interval [

ô(N) − ϵ, ô(N) + ϵ
]

with ϵ =

√
2w(O)tr(O2)

N(1 − α)

with probability (at least) α.
These statements tell us that the measurement budget N (required number of independent

state copies) should scale with 2w(O)tr(O2) and the approximation error decays as 1/
√

N. This
is asymptotically optimal because of the central limit theorem, (as the sample size N gets larger,
the central limit theorem implies that

√
N
(

ô(N) − o(N)

)
) but the scaling in 1/(1− α) is extremely

poor. More sophisticated estimation techniques – like median of means instead of empirical av-
erages [84] – improve this dependence exponentially from 1/(1 − α) to const × log(1/(1 − α)).
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2.4 Predicting quadratic functions with classical shadows

2.4.1 U-statistics estimator

The linear prediction ideas from above do extend to higher order polynomials. But in contrast
to before, independent, but not identical, state copies (“drifting sources”) do require extra atten-
tion. Here, we restrict our attention to quadratic polynomials [84]. An extension to higher order
polynomials is conceptually straightforward, but can become somewhat tedious to analyze [96].
Recall that we can rewrite any quadratic function in ρ as a linear function in the tensor product
ρ ⊗ ρ:

q(ρ) = tr (Qρ ⊗ ρ) .

We can approximate this function by replacing each exact copy of the unknown state with distinct
classical snapshots (say ρ̂i and ρ̂j, with i ̸= j). Independence of the underlying states ensures
stochastic independence of the classical snapshots and we conclude

tr
(
Qρ̂i ⊗ ρ̂j

)
obeys Etr

(
Qρ̂i ⊗ ρ̂j

)
= tr

(
Qρi ⊗ ρj

)
.

This is not a good estimator (yet). We can improve approximation accuracy by empirically aver-
aging over all distinct pairs of N classical shadows ρ̂1, . . . , ρ̂N:

q̂(N) =
1

N(N−1) ∑
i ̸=j

tr
(
Qρ̂i ⊗ ρ̂j

)
. (2.10)

This is the simplest example of a U-statistics estimator [97]. It is invariant under permuting the in-
dividual snapshots ρ̂i and ρ̂j. This invariance allows us to also symmetrize the quadratic observ-
able. We can without loss assume tr(QX ⊗Y) = tr (QY ⊗ X) for all matrices X, Y with compatible
dimension. Such a symmetry will simplify our derivations considerably.

2.4.2 Deterministic bias

The estimator average (2.10) exactly reproduces q
(
ρavg

)
= tr(Qρavg ⊗ ρavg) if and only if the

underlying states are identical (ρ1 = · · · = ρN = ρ). If this is not the case, the expectation values
of individual classical shadows can be distinct from each other. This can introduce a bias when
attempting to estimate the average behavior of a quadratic function. Fortunately, any such bias
is suppressed by 1/N and approaches zero once the number of measurements gets sufficiently
large. This is the content of the following statement. Let ∥ · ∥1 and ∥ · ∥∞ denote the trace and
operator norm, respectively.

Let {ρ̂1, . . . , ρ̂N} be a classical shadow that arise from measuring independent states ρ1, . . . , ρN.
Set ρavg = 1

N ∑N
i=1 ρi and consider a quadratic function q(σ) = tr(Qσ ⊗ σ). Then, the associated
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U-statistics estimator (2.10) obeys

Eq̂(N) = q(ρavg) +
∆

N−1 with |∆| ≤ max
1≤k≤N

∥ρavg − ρk∥1∥Q∥∞.

Note that the bias term ∆ vanishes if all states are identically distributed (ρi = ρj for all 1 ≤
i, j ≤ N) and can never be too large either:

|∆| ≤ 2∥Q∥∞,

as the trace norm difference between two quantum states is at most two. Many quadratic func-
tions, which are particularly relevant in entanglement detection, also obey ∥Q∥∞ ≤ 1.

The previous result can be proved as in the following. Apply E
[
ρ̂i ⊗ ρ̂j

]
= ρi ⊗ ρj (indepen-

dence) and elementary reformulations to conclude

∆ =(N − 1)
(
q
(
ρavg

)
− Eq̂N

)
= 1

N

(
N−1

N

N

∑
i,j=1

tr
(
Qρi ⊗ ρj

)
− ∑

i ̸=j
trE

(
Qρ̂i ⊗ ρ̂j

))

= 1
N

(
N

∑
i=1

tr (Qρi ⊗ ρi)− 1
N

N

∑
i,j=1

tr
(
Qρi ⊗ ρj

))

= 1
N

N

∑
i=1

tr
(
Qρi ⊗

(
ρi − ρavg

))
.

Apply matrix Hoelder to this reformulation to obtain a slightly stronger version of the advertised
bound:

|∆| ≤ 1
N

N

∑
i=1

∥Q∥∞∥ρi ⊗ (ρi − ρavg)∥1

=∥Q∥∞
1
N

N

∑
i=1

∥ρi − ρavg∥1,

because the trace norm is multiplicative under tensor products and quantum states ρi satisfy
∥ρi∥1 = 1.

2.4.3 Variance bounds

In analogy to the linear estimator (2.5) (empirical average), the U-statistics estimator (2.10) con-
verges to its expectation value E

[
q̂(N)

]
. The variance, which we compute in the following, pro-

vides a useful summary parameter for the rate of this convergence. Use E
[
ρ̂i ⊗ ρ̂j

]
= ρi ⊗ ρj to
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rewrite the U-statistics variance as

Var
[
q̂(N)

]
=E

( 1
N(N−1) ∑

i ̸=j
tr
(
Q
(
ρ̂i ⊗ ρ̂j − ρi ⊗ ρj

)))2


= 1
N2(N−1)2 ∑

i ̸=j
∑
k ̸=l

E
[
tr
(
Q
(
ρ̂i ⊗ ρ̂j − ρi ⊗ ρj

))
tr (Q (ρ̂k ⊗ ρ̂l − ρk ⊗ ρl))] .

We can now analyze these contributions separately. And, owing to stochastic independence, most
of them vanish identically. It is at this point, where the assumption of independent state copies
(and access to independent randomness for selecting measurements) matters the most. For in-
stance, if all indices i, j, k, l are distinct, the expectation value factorizes and produces a zero
contribution. As detailed in [96, Supplemental Material] the only exceptions are contributions
where at least two indices coincide. Together with symmetry of the observable (tr (QX ⊗ Y) =

tr (QY ⊗ X)) and the AM-GM inequality (XjXk ≤ |Xj||Xk| ≤ 1
2

(
|Xj|2 + |Xk|2

)
= 1

2

(
X2

j + X2
k

)
),

we obtain

Var
[
q̂(N)

]
≤ 4(N−2)

N2(N−1)2 ∑
i ̸=j

E
[
tr
(
Q (ρ̂i − ρi)⊗ ρj

)2
]
+ 2

N2(N−1)2 ∑
i ̸=j

E
[
tr
(
Q
(
ρ̂i ⊗ ρ̂j − ρi ⊗ ρj

))2
]

≤ 4(N−2)
N2(N−1)2 ∑

i ̸=j
Var

[
tr
(
tr2
(
QI ⊗ ρj

)
ρ̂i
)]

+ 2
N2(N−1)2 ∑

i ̸=j
Var

[
tr
(
Qρ̂i ⊗ ρ̂j

)]
.

The final reformulation allows us to re-use the linear variance bound from Lemma 2.8. For 1 ≤
j ≤ N, we define the effective single-copy observable

Qj = tr2
(
QI ⊗ ρj

)
(2.11)

to recognize simple linear variance terms within the first sum.

Var
[
q̂(N)

]
≤ 4(N−2)

N2(N−1)2 ∑
i ̸=j

2w(Qj)tr
(

Q2
j

)
+ 2

N2(N−1)2 ∑
i ̸=j

2w(Q)tr(Q2)

≤ 2
N

(
2 max

1≤i≤N
2w(Qi)tr(Q2

i ) +
1

N−12w(Q)tr(Q2)

)
. (2.12)

Clearly, this upper bound becomes smaller as the measurement budget N increases.
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2.4.4 Error bound and confidence interval

Having derived bounds on deterministic bias and variance allows us to deduce a general error
bound. Markov’s inequality implies

Pr
[∣∣∣q̂(N) − q

(
ρavg

)∣∣∣ ≥ ϵ
]
= Pr

[(
q̂(N) − q(ρavg)

)2
≥ ϵ2

]
≤ 1

ϵ2 E

[(
q̂(N) − E

[
q̂(N)

]
+ E

[
q̂(N)

]
− q

(
ρavg

))2
]

= 1
ϵ2

(
E

[(
q̂(N) − E

[
q̂(N)

])2
]
+
(

E
[
q̂(N)

]
− q

(
ρavg

))2
)

= 1
ϵ2

(
Var

[
q̂(N)

]
+

∆2

(N − 1)2

)
,

where we have isolated statistical fluctuations from the underlying deterministic bias. Inserting
the bounds from Eq. (2.12) and Lemma 2.4.2 renders this bound more explicit:

Pr
[∣∣∣q̂(N) − q

(
ρavg

)∣∣∣ ≥ ϵ
]
≤ 4 max

1≤i≤N

2w(Qi)tr(Q2
i )

ϵ2N
+ 2

2w(Q)tr(Q2)

N(N − 1)ϵ2 + 4
∥Q∥2

∞
(N − 1)2ϵ2 .

Term two and three have a comparable scaling in N and ϵ. The first term is different and starts
to dominate as N increases. Recall that Q(ρi) = tr (QI ⊗ ρi) denotes an effectively linear function
on a single copy of AB. This is the power of U-statistics. Asymptotically, it is an effectively linear
scaling term that dominates the statistical convergence rate of a quadratic estimator. The other
terms, however, can dominate in the small-N regime.



3
Experimental platform and simulations

During this thesis we will discuss several experimental results obtained from analyzing the data
of the experiment described in Ref. [98]. In this chapter we give the basics for understanding the
setup and the modeling of the latter.
We want to emphasize here that, thanks to the protocol described in the previous chapter, it has
been possible to post-process the randomized measurements of [98] several years after the exper-
iment has been done, leading to new experimental observations. Indeed a fundamental asset of
randomized measurements is that they are based on a unifying experimental recipe to acquire
data, which is then openly available to the community (see also the paragraph on ‘measure first,
ask questions later’ in Ref. [99]).

3.1 Experiment and modeling of the evolution

The experimental platform in [98] is realized with trapped 40Ca+ atoms, each one encoding a
single qubit. Coupling all ions off-resonantly with a laser beam subjects the ions to realize long-
range Ising model in presence of a transverse field, whose effective Hamiltonian writes:

H = h̄ ∑
i<j

Jijσ
x
i σx

j + h̄B ∑
i

σi, (3.1)

with i, j = 1, . . . , N and N is the total system size. To model the experiment using numerical
simulations, we approximate the interaction matrix Jij as a power-law Jij = J0/|i − j|α, where the
values of J0 and α depend on the specifics of each experimental realization. For the experiments
conducted with strings of 10 ions, α = 1.24 and J0 = 420 s−1. For those experiments with 20 ions,
α = 1.01 and J0 = 370 s−1. The effective magnetic field B is considered much larger than the

28
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interaction term (B ≃ 22J0) such that terms that would break the conservation of the total magne-
tization, i.e. σ+

i σ+
j + h.c. are energetically suppressed. The effects of decoherence on the system

are taken into account considering the time evolution subject to local spin-flips and spin excita-
tion loss. The full system dynamics is described according to a Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) master equation whose 2N local jump operators are written as Ci =

√
γxσx

i
(spin flip), Ci+L =

√
γ−σ−

i (excitation loss), i = 1, . . . , L, with rates γx, γm. Furthermore, the ex-
perimentally prepared state is not pure. As such, it can be written as the following mixed product
state ρ0 =

⊗
i (pi |↑⟩ ⟨↑|+ (1 − pi) |↓⟩ ⟨↓|) with pi ≈ 0.004 for i even and pi ≈ 0.995 for i odd.

In the case of the 10-ions experiment, the evolution described by the GKSL master equation
is solved via exact diagonalization, utilizing the QuTiP toolbox [100]. In the case of the 20-ions
experiment, the numerical simulations are done using tensor network algorithms. For the uni-
tary part of the dynamics we approximate the interaction matrix Jij as a sum of 3 exponentially
decaying terms which can efficiently be represented as MPOs. To treat the decoherence we use
quantum trajectories [101], applying the quantum jumps Ci, to the state approximated as an MPS.
The latter is evolved according to the Time-Dependent Variational Principle (TDVP) [102]. Before
calculating the observables we are interested in, we average our results on 1500 trajectories, re-
constructing the full density matrix of the system.
In Sec. 3.3 we comment on the use of quantum trajectories and why building the full density
matrix is convenient in our cases with respect to the stochastic average of the estimation of the
observables on independent trajectories.

3.2 Measurement protocol

To build a classical snapshot of the quantum state of the experiment, randomized measurements
were performed through individual rotations of each qubit by a random unitary Ui, sampled
from the Circular Unitary Ensemble (CUE), followed by a state measurement in the z basis. The
random unitary is decomposed as a product of three rotations Ui = Rz(θ1)Ry(θ2)Rz(θ3). To
make the drawing of random unitaries from the CUE more robust against miscalibration or drift
of experimental control parameters, two random unitaries are concatenated to obtain a random
unitary with a distribution that is closer to the ideal one. The projective measurement in the
logical z basis is realized through spatially resolved fluorescence. The procedure is repeated NU =

500 times and for each application of a unitary set U1 ⊗ · · · ⊗ UN, where N is the total number
of qubits, Nm = 150 measurements are performed. This same procedure is applied both to the
N = 10 and N = 20 experiments we will discuss in this thesis. During the application of the
local random unitary, local depolarizing noise is acting on the system. From the point of view of
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simulations, we modify the density matrix obtained via our numerical algorithms as

ρ(t̄) → (1 − pDPN)ρ(t̄) + pDP ∑
i

Tri[ρ(t̄)]⊗
Ii

2
, (3.2)

to take into account this effect. We consider pDP ≈ 0.02 and t̄ denoting the time at which the
measurement is performed.

3.3 Master equation and quantum trajectories

In Sec. 3 we have anticipated that the open evolution of the experimental system is described
according to a GKSL master equation

ρ̇ = − i
h̄
[H, ρ] + ∑

k

[
LkρL†

k −
1
2
{L†

k Lk, ρ}
]

(3.3)

where ρ is the density matrix describing the system, H is the Hamiltonian ruling the coherent
part of the dynamics and Lk are local jump operators describing the dissipative effects due to the
environment. The assumptions needed to adopt this description are well satisfied in any state-
of-the-art experimental platform [101], as well as in the trapped ion quantum simulator taken
into account in this thesis. In Chap. 6 we will directly work on the master equation to derive the
behaviour at early times of ρ(t) at first order in perturbation theory.
Here, we believe it is necessary to comment on the fact that the numerical simulations describing
the experiment in the following chapters consider a different approach to model the decoherence
term, namely quantum trajectories.

Quantum trajectories have been introduced in the 90s, to avoid the need to propagate a full
density matrix in time [103–106]. In fact, this is often numerically prohibitive even with state-of-
the-art numerical technique. This approach involves replacing the complexity of the simulation
of the full density matrix with stochastic sampling, hence rewriting the master equation as a
stochastic average over individual trajectories, which can be evolved in time numerically as pure
states. The simplest realization of quantum trajectories is obtained evolving the pure state coher-
ently under the effective Hamiltonian, for a time step dt, and follow with the action of a quantum
jump, stochastically sampled according to a probability distribution dependent on the particular
physical scenario.
In this way, one can see that taking a stochastic average over trajectories is equivalent to the mas-
ter equation in Eq. 3.3. In order to compute a particular quantity at time t, one can compute the
expectation value for each of the stochastically propagated trajectories, and take the average of
this quantity over all of them. Evidently, if the observable is non-linear this is not equivalent to
estimating an observable on the density matrix evolved according to the master equation. For
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this reason, to compare the results obtained describing the system with the quantum trajectories
or with the GKSL equation, in this work we will always average the quantum trajectories to com-
pute the full density matrix before estimating any observable and we will use the newfound ρ to
calculate the observable at stake.
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4
Negativity Hamiltonian

4.1 Introduction

Over the past two decades, entanglement has been a central concept in many branches of quan-
tum physics ranging from quantum information [1, 2] to condensed matter theory [3, 4] and
high-energy physics [5–9]. In particular, it has been successfully utilized to characterize quan-
tum many-body systems both theoretically and experimentally [10–16]. The main object which
enters in its quantification is the reduced density matrix (RDM). For a given state ρ, the RDM of a
region A, ρA, is obtained by tracing ρ over the complement of A, B, that is:

ρA = trBρ =
e−HA

ZA
, ZA = tre−HA , (4.1)

where the operator HA is the entanglement (or modular) Hamiltonian (EH).
From a many-body viewpoint, the entanglement properties of pure states can be construed in

a hierarchical manner. Firstly, there exists a characterization of its entanglement properties via
entanglement entropies. Those are uniquely dependent on the spectrum of HA - also known as
entanglement spectrum. Secondly, it is possible to characterize the properties of the RDM directly
at the operator level, via the full characterization of the EH - a paradigmatic example being the
Li-Haldane conjecture in the context of topological matter [17].

The EH fully characterizes the “local” properties of entanglement in a many-body system - that
is, it allows to understand whether the RDM can be interpreted as the exponential of a local opera-
tor composed solely of few-body local terms. In the context of quantum field theory, this principle
of locality is an established pillar - the Bisognano-Wichmann (BW) theorem [18, 19]. Such local-
ity is at the heart of several physical phenomena - from topological order, to the nature of area

39
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laws in gapped systems-, and is the key element at the basis of theory and experiments aimed at
large-scale reconstructions of the RDM [20–22]. However, it is presently unknown whether it is
possible to associate locality and entanglement in a similar way for the case of mixed-state entan-
glement, that encompasses a variety of scenarios of key experimental and theoretical relevance -
from mixed states, to correlations between partitions in pure states.

Here, we introduce and investigate the negativity Hamiltonian - an operator that allows us to
cast the relation between locality and entanglement (in particular, that related to Peres-Horodecki
criterion) for general mixed states. Our work is directly motivated by a series of recent results that
have emphasized the importance of the entanglement negativity in a variety of settings, including
harmonic oscillator chains [23–29], quantum spin models [30–38], free-fermionic systems [39–44],
(1+1)d conformal and integrable field theories [45–55], out-of-equilibrium settings [56–64], and
topological order [65–70]. Importantly, the negativity is directly linked to the partial transpose
ρT1

A of the RDM - and, as such, does lend itself naturally to an interpretation based on statistical
mechanics. For the case of a subpartition of A = A1 ∪ A2, we define the negativity Hamiltonian NA

as
ρT1

A = Z−1
A e−NA . (4.2)

Clearly NA is non-hermitian because negative eigenvalues of ρT1
A are the signature of mixed-state

entanglement. Nevertheless, it is still natural to wonder about the locality properties of NA and
about the location of its eigenvalues in the complex plane.

After discussing the definition of NA for both bosonic (spin) and fermionic systems, we unveil
the operator structure of NA for two relevant cases: (1+1)-d fermionic conformal field theory and
a tight-binding model of spinless fermions on a chain. Both cases show a characteristic quasi-
local (in a sense to be specified below) structure - a first demonstration of the relation between
entanglement and locality at the operator level beyond the case of complementary partitions. On
top of its conceptual relevance, and similarly to what has been discussed in the context of pure
states for the case of local EHs, this fact enables some immediate consequences: i) interpreting
the negativity spectrum, i.e. the analog of the pure-state entanglement spectrum for mixed states
[38, 50], ii) simulating this object in nowadays available quantum platforms [10] iii) applying
well-established statistical mechanics tools such as tensor networks [71, 72] and quantum Monte
Carlo [73] to access the entire partial transpose ρT1

A .

4.2 The Negativity Hamiltonian and its quasi-local structure

To introduce the concept of the negativity Hamiltonian, the first step is to discuss the partial
transpose for bosonic and fermionic systems. We already introduced it in Sec.1.5; here we elabo-
rate again on the definitions and set the notation that will be used in the following. Let us start
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considering a bosonic system A = A1 ∪ A2 described by

ρA = ∑
i,j,k,l

〈
eA1

i , eA2
j

∣∣∣ ρA

∣∣∣eA1
k , eA2

l

〉 ∣∣∣eA1
i , eA2

j

〉 〈
eA1

k , eA2
l

∣∣∣ , (4.3)

where
∣∣∣eA1

i

〉
,
∣∣∣eA2

j

〉
denote orthonormal bases in the Hilbert spaces HA1 and HA2 corresponding

to subsystems A1 and A2. The partial transpose of the reduced density matrix ρT1
A with respect

to the system A1 is defined performing a standard transposition in HA1 , i.e. exchanging the
matrix elements in A1, ρT1

A = (TA1 ⊗ 1A2)ρA. The presence of negative eigenvalues of ρT1
A is a

signature of mixed state entanglement [74], which can be quantified by the logarithmic negativity
E = log tr|ρT1

A | [75, 76].
The partial transposition has also an interpretation in terms of a time-reversal transformation

or mirror reflection in phase space [77]. Namely, considering the one-to-one correspondence be-
tween density matrices and Wigner distribution functions W(q, p) then

ρA → ρT
A ⇐⇒ W(q, p) → W(q,−p). (4.4)

This can be conveniently observed starting from a bosonic density matrix written in a coherent
state basis, since time-reversal transformation (T ) can be identified with the complex conjuga-
tion [39]. Taking |α⟩, a bosonic coherent state, one has

(|α⟩ ⟨α∗|) T−→ |α∗⟩ ⟨α| = (|α⟩ ⟨α∗|)T. (4.5)

In the case of fermionic systems, the equivalence above does not hold and the definition of par-
tial transposition differs when looking at the density matrix or at the Wigner distribution function.
In a coherent state basis the RDM reads [39, 44, 78, 79]

ρA =
1
Z

∫
d[ξ]d[ξ̄]e−∑j ξ̄ jξ j

〈
{ξ j}

∣∣ ρA
∣∣{ξ̄ j}

〉 ∣∣{ξ j}
〉 〈

{ξ̄ j}
∣∣ . (4.6)

Here ξ, ξ̄ are Grassman variables and |ξ⟩ = e−ξa† |0⟩,
∣∣ξ̄〉 = ⟨0| e−a† ξ̄ are the related fermionic

coherent states. The partial time reversal, analog of Eq. (4.5), is [39]

|ξ⟩
〈
ξ̄
∣∣ T→

∣∣iξ̄〉 ⟨iξ| (4.7)

The partial time reversal ρR1
A , obtained by acting with (4.7) in (4.6) only in A1, provides the

fermionic negativity as
E = log Tr|ρR1

A |, (4.8)

although its spectrum is not real in general [40]. To have a more transparent interpretation of the
fermionic negativity, an alternative partial transpose, called twisted fermionic partial transpose,
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has been defined as [40]
ρR̃1

A = ρR1
A (−1)FA1 , (4.9)

where FA1 = ∑j∈A1
nj is the number of fermions in the subsystem A1. This new object has only

real eigenvalues and the logarithmic negativity

E = log tr|ρR̃1
A |. (4.10)

is a measure of the negativeness of the eigenvalues, exactly as for the bosonic partial transpose.
We define the negativity Hamiltonian related to ρR1

A as NA and the one related to ρR̃1
A as ÑA.

The BW theorem gives a general structure for the entanglement Hamiltonian of the ground
state of a relativistic invariant quantum field theory with Hamiltonian density H(x), when con-
sidering a bipartition between two half spaces of an infinite system. In formulas, considering a
d-dimensional system, x = {x1, . . . , xd}, and a partition A = {x|x1 > 0}, the EH of the ground
state is

HA = 2π
∫

x∈A
dx x1H(x) + c, (4.11)

where c is a normalization constant that guarantees the trace of the density matrix to be set to
unity. This result does not depend on the dimensionality of the system or on any apriori knowl-
edge of the ground state and can be applied to a large variety of systems and quantum phases.
For conformal invariant theories, the BW theorem is easily generalized to some different geome-
tries by conformal mappings [80–83]. This equivalence does not hold when A is the union of
two disjoint intervals, but, nevertheless, the EH for this geometry is known for 1+ 1-dimensional
free Dirac fermions [84]. In this case, it is possible to identify a local part in the entanglement
Hamiltonian proportional to the energy density and a quasi-local part quadratic in the fermionic
field. We will make explicit use of this example in the following. We will also check our ana-
lytical prediction against lattice simulations. In fact, the BW theorem can be used to construct
approximate entanglement Hamiltonians for lattice models. This has been extensively investi-
gated both for one- and two-dimensional models and it has been shown that the approximation
provided by BW theorem allows to build entanglement Hamiltonians that encode all the relevant
entanglement properties of the ground states [85–87].

To build the negativity Hamiltonian, we should first recall the path integral construction of
the (bosonic) partial transpose [46, 47]. The partial transposition corresponds to the exchange
of row and column indices in A1 which naturally leads to a space inversion within A1. On a
fundamental level, this fact can be deduced from CPT theorem. Indeed, the partial transposition
is equivalent to a partial time reversal that, by CPT, is the same as a parity operation in the world-
sheet combined with a charge conjugation. This second construction holds true also for ρR1

A in
fermionic systems.

Therefore, starting from the entanglement hamiltonian for two disjoint intervals and doing a
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Figure 4.1: Benchmark of the analitycal prediction for the Negativity Hamiltonian of a real fermion. We
consider A1 = [1, ℓ], A2 = [ℓ+ 1, 2ℓ] embedded in the infinite line. The symbols correspond to numerical
data, while the solid lines to the discretized form of Eq. (4.12). Upper panel: NA,loc. Lower panel: |NA,q−loc|.
Inset: data collapse

spatial inversion of the interval A1 = [a1, b1], one obtains the partial time reversal of the density
matrix. Although this procedure is fully general, the entanglement hamiltonians of disjoint inter-
vals are known only in few cases [84, 88–94]. In particular, starting from the EH for the massless

real (Majorana) fermion Ψ(x) [84], Ψ(x) =

(
ψ1(x)
ψ2(x)

)
, and performing this inversion, we get after

simple algebra
NA = NA,loc + iNA,q−loc,

NA,loc = 2π
∫

A
βR

loc(x)Ttt(0, x)dx,

NA,q−loc = 2π
∫

A
βR

q−loc(x)Tq−loc(x, x̄R(x))dx,

(4.12)

where

βR
loc(x) =

1
wR′(x)

, βR
q−loc(x) =

βR
loc(x̄R(x))
x − x̄R(x)

, (4.13)

with

wR(x) = log
[
− (x − b1)(x − a2)

(x − a1)(x − b2)

]
,

x̄R(x) =
(a1b2 − b1a2)x + (a1 + b2)b1a2 − (b1 + a2)a1b2

(a1 − b1 + b2 − a2)x + b1a2 − a1b2
.

(4.14)

Here Ttt(0, x) is the energy density operator of the theory while Tq−loc(x, x̄) is a bilinear of the real
fermionic fields, with x ∈ A1 and x̄ ∈ A2 (and viceversa), i.e.

Tq−loc(x, y) ≡ i : (ψ1(x)ψ1(y) + ψ2(x)ψ2(y)) : . (4.15)

The structure of Eq. (4.12) is very suggestive: it consists of a local term proportional to the
energy density and an additional non local part given by a quadratic expression in the fermionic
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field. The latter, however, has a mild non-locality: each point x ∈ A1 is coupled to only a specific
y = x̄R ∈ A2 (that is a consequence of the mirror symmetry for equal intervals). Thus, following
[84], we refer to NA,q−loc as a quasi-local operator. Its existence is the reason of the imaginary
components in the spectrum of NA, which is one characteristic treat of ρR1

A . The shape of |NA,q−loc|
(see also Fig. 4.1) is compatible with the results of the negativity contour [42] suggesting that the
largest contribution to the negativity comes from the boundary region between A1 and A2.

To test the validity of Eq. (4.12), we consider a lattice discretization of the Hamiltonian of free
real fermions. Because of the gaussianity of ρR1

A [39], the numerical evaluation of the negativity
Hamiltonian amounts to compute the single particle operator NA defined as

NA = ∑
ij
(NA)i,jψjψi, (4.16)

related to the covariance matrix [95, 96]. We focus on two equal adjacent intervals A = A1 ∪ A2

made up of ℓ sites labelled by 1 ≤ j ≤ 2ℓ. In this case, the point x̄R in Eq. (4.14) is just x̄R = 2ℓ− x
and so the quasi-local term lies entirely on the antidiagonal. As a consequence, in Fig. 4.1 we
show only the subdiagonal (NA)j,j+1 (a similar behaviour can be found for (NA)j+1,j) and the
antidiagonal (NA)j,2ℓ−j which correspond, respectively, to the local and to the quasi-local parts
of NA. The agreement between lattice exact and field-theoretical discretized NA is remarkable
over the all parameter regime, and even for modest system sizes. Small discrepancies up to a few
percent are present far from the boundaries: those have very little effects on the negativity, as they
affect only very small (in absolute value) eigenvalues of the partial transpose. We verified that
the other matrix elements of NA are negligible, in the sense that they are subleading as ℓ → ∞ (in
the same sense as subleading terms in the EH are negligible, see Refs. [85–87, 97–101]).

We have also studied the structure of negativity Hamiltonian ÑA for two adjacent intervals
of equal length, ℓ1 = ℓ2 = ℓ. We remind that ρR̃1

A = Z−1
A e−Ñ , where ρR̃1

A is defined in Eq. (4.9).
The advantage in the analysis of this operator is that it is Hermitian, so the logarithmic negativity
recovers its original meaning of measure of the negativeness of the eigenvalues, as we are going to
show by discussing the spectrum of this operator. Although we did not manage to derive its form
explicitly, we provide a conjecture that very accurately matches numerical data on the lattice. It
reads ÑA = ÑA,diag + ÑA,loc + ÑA,qloc, with

ÑA,diag = 2πi
∫

A
β̃diag(x)dx,

ÑA,loc = 2π
∫

A
β̃loc(x)dxTtt(0, x),

ÑA,q−loc = 2π
∫

A
β̃q−loc(x)Tq−loc(x, x̄R)dx,

(4.17)
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Figure 4.2: Summary of our results for adjacent intervals of equal length ℓ on the infinite line for lattice free
fermions (geometry in the inset). The one-particle negativity hamiltonians NA and ÑA are dominated by
quasi-local terms appearing close to the diagonal and on the antidiagonal (see the right panels for ℓ = 8).
Left panel: Comparison of the exact logarithmic negativity with the approximate one coming from field
theoretical ÑA, see text.

where
β̃diag(x) =

1
2
− x

8ℓ
,

β̃loc = −x(8ℓ2 − 6ℓx + x2)

8ℓ2 ,

β̃q−loc(x) = 4

(
x − 2ℓ− 1

2
4ℓ

)4

+
1
2

(
x − 2ℓ− 1

2
4ℓ

)2

− 1
2

,

(4.18)

Let us observe that by choosing a1 = 0, b1 = a2 = ℓ, b2 = 2ℓ, ÑA,loc and NA,loc coincide, while
ÑA,non−loc and NA,non−loc are different because the former is a quartic function of x, while the
latter is quadratic. As a non-trivial test for the accuracy of this conjecture, we verified that it
provides a logarithmic negativity that, as ℓ increases, approaches the exact numerical value (see
Fig. 4.2). We also benchmarked the analytical predictions from Eq. (4.17) for free real fermions on
the lattice, as shown in Fig. 4.3, for the one-particle NH, i.e. ÑA = ∑ij(ÑA)i,jψjψi. Remarkably,
the formulas above are in good agreement with simulations and, as already observed, the small
discrepancies do not affect sizeably the logarithmic negativity approximation. The inset illustrates
how results from different partition sizes collapse onto a single functional form, signaling scale
invariance.

A final comment concerns the spectrum of ÑA: it consists of two parts {λj + iπ}, λj ∈ R for
j = 1, · · · , 2ℓ and {λj}, λj ∈ R for j = 2ℓ + 1, · · · , 4ℓ. By simple exponentiation, we get the

eigenvalues of ρR̃1
A , see SM. We can then trace back the appearance of negative eigenvalues in the

spectrum of ρR̃1
A (and, as a consequence, of a non-zero negativity) to the presence of the factors iπ
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Figure 4.3: Benchmark of the analytic prediction for the Negativity Hamiltonian ÑA. The symbols cor-
respond to numerical data, while the solid lines correspond to the discretized form of Eq. (4.17) for two
adjacent intervals of length ℓ. Comparison of ÑA,loc, ÑA,q−loc and ÑA,q−loc with exact lattice simulations.
Insets: Data collapse

in ÑA.
Other tests of the analytic formulas for the negativity hamiltonian NA, including different and

disjoint intervals, are reported in Sec.4.4.

4.3 From the Entanglement Hamiltonian and Bisognano Wich-

mann theorem to the Negativity Hamiltonian in field theory

The calculation of the exact entanglement Hamiltonian is in general a very difficult task. How-
ever, for conformal invariant field theories (CFTs) it is possible to generalize the Bisognano Wich-
mann (BW) result for a bipartition between two half spaces of an infinite system to different
geometries [80–83].

Let us consider the vacuum state of a d-dimensional Hamiltonian of a relativistic quantum
field theory,

H =
∫

Rd
ddx h(x) (4.19)

and a subsystem A which consists of the degrees of freedom in a half-space, x1 > 0. The BW
theorem guarantees that the entanglement Hamiltonian HA can be expressed as an integral of the
Hamiltonian density h(x)

HA =
2π

v

∫
A

dd−1x x1 h(x), (4.20)

where, from now on, we fix the velocity v = 1. There are other examples in the ground-state of a
1+1 dimensional CFT in which HA can be written as a local integral over the Hamiltonian density.
They include the case of a single interval A = (0, ℓ) in an infinite system, and its generalizations
to finite size or finite temperature [83]. In these cases, HA takes the form

HA = 2π
∫

A
dx

h(x)
f ′(x)

, (4.21)

where f ′(x) is the conformal mapping from the Euclidean space-time to a rectangle with height
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2π and width 2 log(ℓ/ϵ), ϵ UV cutoff. More concretely, some mappings are

• finite interval in an infinite system:

f (x) = log
x

ℓ− x
;

• finite interval in a finite system:

f (x) = log
e2πix/L − 1

e2πiℓ/L − e2πix/L .

Despite the result of Bisognano and Wichmann and the conformal symmetry allow to compute
the aforementioned modular Hamiltonians, in general it is not an easy task to get analytic expres-
sions, even in CFTs. One of these examples is the modular Hamiltonian for the ground state of
the free 1 + 1 dimensional massless Dirac fermion for several disjoint intervals on the infinite line
[84, 89, 90]. We have already discussed its peculiar structure in the main text and here we report
the explicit analytical expression. The massless 1 + 1 dimensional Dirac field ψ(t, x) is a doublet
made by the two complex fields

ψ(t, x) =

(
ψ1(t, x)
ψ2(t, x)

)
. (4.22)

The normal ordered component of the energy-momentum tensor of the Dirac field corresponding
to the energy density reads

Ttt(t, x) ≡ i
2

: [((∂xψ∗
1)ψ1 − ψ∗

1 ∂xψ1) (x + t)− ((∂xψ∗
2)ψ2 − ψ∗

2 ∂xψ2) (x − t)] : . (4.23)

The modular Hamiltonian for two disjoint intervals A ≡ [a1, b1]∪ [a2, b2] on the line can be written
as the sum HA = Hloc + Hq−loc, where the local term Hloc and the quasi-local term Hq−loc are
defined respectively as

Hloc = 2π
∫

A
βloc(x)Ttt(0, x)dx,

Hq−loc = 2π
∫

A
βq−loc(x)Tq−loc(0, x, x̄)dx,

(4.24)

with Ttt(0, x) the energy density in Eq. (4.23), while Tq−loc(0, x, y) is given by

Tq−loc(t, x, y) ≡ i
2

: [(ψ∗
1(x + t)ψ1(y + t)− ψ∗

1(y + t)ψ1(x + t))+

(ψ∗
2(x − t)ψ2(y − t)− ψ∗

2(y − t)ψ2(x − t))] : .
(4.25)

Here the asterisk denotes the Hermitian conjugation. The other functions in Eq. (4.24) can be
written as

βloc(x) =
1

w′(x)
βq−loc(x) =

βloc(x̄(x))
x − x̄(x)

, (4.26)
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Figure 4.4: Contour plot of the conformal mapping wR(z) defined in Eq. (4.14), where z = x + iy. Here A
consists of two disjoint intervals whose endpoints are the black dots on the horizontal axis. The absence
of singular points along the imaginary axis is the main difference with respect to the conformal mapping
w(z) in Eq. (4.27).

with

w(x) = log
[
− (x − a1)(x − a2)

(x − b1)(x − b2)

]
,

x̄(x) =
(b1b2 − a1a2)x + (b1 + b2)a1a2 − (a1 + a2)b1b2

(b1 − a1 + b2 − a2)x + a1a2 − b1b2
.

(4.27)

Here x and x̄(x) belong to different intervals in A (if x ∈ A1 then x̄ ∈ A2 and viceversa). In the
limit b1 → a2 we get back a single interval and so the quasi-local part vanishes and we recover
the result in Eq. (4.21), where now A = [a1, b2].

The entanglement Hamiltonian in Eq. (4.24) is the starting point to obtain an analytical ex-
pression for the negativity Hamiltonian NA. As explained in the main text, in the path integral
representation the partial transposition has the net effect to perform a spatial inversion within
A1 plus a charge conjugation. This implies that the negativity Hamiltonian NA can be obtained
from the entanglement Hamiltonian HA by inverting the endpoints a1 ↔ b1 in the expression
for HA, Eq. (4.24). Furthermore, since under partial time reversal ψ(x) → iψ(x) if x ∈ A1, the
term Tq−loc(0, x, x̄) defined in Eq. (4.25) gets an i prefactor, because if x ∈ A1 then x̄ ∈ A2 (and
viceversa). To sum up, we get the following expression for the negativity Hamiltonian of a Dirac
field

NA = NA,loc + iNA,q−loc,

NA,loc = 2π
∫

A
βR

loc(x)Ttt(0, x)dx,

NA,q−loc = 2π
∫

A
βR

q−loc(x)Tq−loc(0, x, x̄R(x))dx,

(4.28)

where βR
loc, βR

q−loc, x̄R(x) are given in Eq. (10)-(11) of the main text and they are obtained by
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Figure 4.5: Negativity Hamiltonian corresponding to ρR1
A for complex fermions on two adjacent intervals

of equal length ℓ on the infinite line. The symbols correspond to numerical data, while the solid lines
correspond to the discretized form of Eq. (4.28). The right panel is NA,loc, while the left one is |NA,q−loc|.
Using the notation of Eq. (11) of the main text, here we have a1 = 0, b1 = ℓ = a2, b2 = 2ℓ.

switching a1 and b1 in the definitions of βloc, βq−loc, x̄(x) given above. In Fig. 4.4, we show a con-
tour plot of the real and imaginary part of wR(x). The curves Im(wR(x)) do not exhibit singular
points for which the mapping fails to be conformal, contrarily to what happens for Im(w(x)) and
showed in Fig. 9 of [83]. The presence of this singularity prevents from applying the BW theorem
with a conformal mapping given by w(x) [83]. The operators Ttt, Tq−loc are the ones in Eq. (4.23),
(4.25), respectively.

At this point, the result for real (Majorana) fermions can be obtained without any further
effort. Indeed, the Dirac spinor in Eq. (4.22) can be written in terms of two Majorana spinors (real
fermions). Rewriting the negativity (entanglement) hamiltonian in terms of these components,
the mixed term cancel and NA (HA) is the sum of the two negativity (entanglement) hamiltonians
for each real component of the complex field. As a consequence Eq. (4.24) is valid also for real
massless fermions in 1+1 dimensions with Ttt(0, x) the energy density of the real fermions and
Tq−loc(0, x, y) given by Eq. (12) of the main text. There, we have explicitly reported only the
expression of NA and ÑA for Majorana, while in Eq. (4.28) we report the explicit expression of
NA for Dirac. The functional form of βR

loc, βR
q−loc, x̄R(x) is the same and only the definition of

Ttt(0, x) and Tq−loc(t, x, y) in terms of a real or complex fermionic field change.

4.4 Lattice Negativity Hamiltonian and numerical checks

In this section we review the numerical procedure that we used to benchmark our analytical
results. We consider lattice systems described by the quadratic Hamiltonian

H(λ, γ) =
i
2

∞

∑
l=−∞

(1 + γ

2
c2lc2l+1 −

1 − γ

2
c2l−1c2l+2 + λc2l−1c2l

)
. (4.29)



CHAPTER 4. NEGATIVITY HAMILTONIAN 50

1 18 36 54 72
site j

10

5

0

5

10

i(N
A
) j,

j+
1

1 = 2 = d = 4
1 = 2 = d = 8
1 = 2 = d = 12
1 = 2 = d = 16

1 18 36 54 72
site j

0.0

0.1

0.2

0.3

0.4

|(N
A
) j,

2
j|

1 = 2 = d = 4
1 = 2 = d = 8

1 = 2 = d = 12
1 = 2 = d = 16

Figure 4.6: Negativity Hamiltonian for a real free fermion and for the geometry of two disjoint intervals
of equal length ℓ on the infinite line. The symbols correspond to numerical data, while the solid lines
correspond to the discretized form of NA (Eq. (9) of the main text), both the local part (left panel) and the
quasi-local one (right panel).

The one-particle energy levels are

Λk =
√
(λ − cos k)2 + γ2 sin2 k (4.30)

where k ∈ [−π, π] is the physical momentum. For (λ, γ) = (1, 1) or (λ, γ) = (0, 0) the system is
critical and Lorentz invariant at low energy. In the former case, the critical behavior is described
by the conformal field theory of a free massless real fermion with central charge equal to 1/2
(Majorana) while in the latter case the critical behavior is described by a free massless complex
fermion with central charge equal to 1 (Dirac). Thus, the Hamiltonian (4.29), H(0, 0) or H(1, 1), is
the ideal setting to compute the lattice negativity Hamiltonian NA and benchmark the analytical
expression in Eq. (9) of the main text (real fermion) and in Eq. (4.28) here (complex fermions).

Let us now consider the ground state of the Hamiltonian (4.29). For free complex fermions
(H(0, 0)), the covariance matrix Γ is given as

Γ2j1−1,2j2 = −Γ2j2−1,2j1 = i(2Cj1,j2 − δj1,j2), (4.31)

with Cij = f j−i and f j

f j =
1

π j
sin

π j
2

, f0 =
1
2

. (4.32)

For real fermions (H(1, 1), the elements of the covariance matrix are instead

Γ2j1−1,2j2 = −Γ2j2,2j1−1 = gj2−j1 , (4.33)

where
gj = − i

π

1
j + 1

2

. (4.34)
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If now we focus on two intervals A = A1 ∪ A2, adjacent or disjoint and of arbitrary lengths, the
correlation matrix ΓA is obtained from the Γ above simply restricting to the subsystem of interest
and leading to the block structure of Eq. (1.20). If the total length of A is ℓ1 + ℓ2, the covariance
matrix has dimension 2(ℓ1 + ℓ2)× 2(ℓ1 + ℓ2). From this, the covariance matrix Γ+ corresponding
to the fermionic partial transpose is obtained by building Eq. (1.24). As a consequence, the nu-
merical evaluation of the single particle negativity Hamiltonian corresponding to ρR1

A , which is a
Gaussian operator, just amounts to compute NA = log 1+Γ+

1−Γ+
. The case of two adjacent intervals of

equal length for the real fermion has been reported in the main text finding small discrepancies
up to a few percent between field theory and numerics. Here we substantiate our findings by
displaying further tests of our predictions.

4.4.1 Intervals of equal length ℓ1 = ℓ2

We start from Fig. 4.5 reporting the case of two equal adjacent intervals for a complex fermion
(H(0, 0)). As in the main text, the agreement between numerics and field theory is remarkable.
There are small deviations (up to ∼ 6%) between the theoretical curves and the numerical com-
putation that however, as also motivated in the main text, they do not affect the lower part of the
negativity spectrum and hence any universal aspect of the negativity Hamiltonian, as also found
for the entanglement Hamiltonian, see e.g. [98, 99].

We observe that the data in the right panel of Fig. 4.5 show also some parity (in ℓ) effects that
were not present for the real fermions. Such oscillations are well known finite ℓ effects [102, 103]
and disappear as ℓ → ∞.

We now move to another geometry starting from real fermions. In Fig. 4.6 we report the case
of two equal disjoint intervals at distance d and we benchmark once again our analytical result
found in Eq. 9 of the main text. The curves again show a good agreement with the numerical
computation, since the discrepancy is at most ∼ 6%.

4.4.2 Intervals of different length ℓ1 ̸= ℓ2

Finally, we analyze in Fig. 4.7 the case of two disjoint intervals of different length, ℓ1 ̸= ℓ2 for a
real fermion. In this case, the reflected point x̄R (Eq. (11) main text) is not on the antidiagonal
and does not correspond to an integer number. Consequently its contributions “spreads” to the
neighbouring integer. Such an effect is well shown in the right panel of 4.7 in which it is clear
that the largest terms of the quasi-local parts of the negativity Hamiltonian are centered around
x̄R. A more quantitative analysis of the quasilocal terms would require a weighted sum of the
nearby elements to get the correct continuum limit, a procedure similar to the one exploited for
the entanglement Hamiltonian in Refs. [19, 100, 101, 104, 105]. Such analysis is beyond our scope
and for this reason we focus on the local term which instead is easily discretized. This is shown
in the left panel of Fig. 4.7. Also in this case, the field theory prediction correctly matches the
numerics, with small deviations that are at most ∼ 6% for the system sizes considered.
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Figure 4.7: Negativity Hamiltonian for a real free fermion and for two disjoint intervals of different length
ℓ1 ̸= ℓ2. In this case, the discretized form of NA correctly reproduces the local behavior of the negativity
Hamiltonian (left panel). However, the reflected point x̄R is not an integer living on the antidiagonal, as
in the case of two intervals of equal length. Therefore, we only plot the location of x̄R, Eq. (11) main text,
in order to show that its shape is compatible with the structure of the quasi-local part of NA. Here we fix
ℓ1 = 2ℓ2 = 2d = 4 (right panel).

4.5 Discussion and outlook

In the previous sections we initiated the study of the negativity Hamiltonian in many-body quan-
tum systems. Although our field theoretical construction in terms of the EH of disjoint intervals
is very general, its applicability relies crucially on the exact knowledge of the latter, that is not
always available. We stress that the knowledge of the negativity Hamiltonian encodes the en-
tire information content about the entanglement in the mixed states. This is remarkable with
respect to the scalar quantities used to compute the entanglement (e.g. the negativity), which do
not allow to reconstruct the whole partial transpose reduced density matrix. We expect that the
quasi-local structure of the negativity Hamiltonian can be generalised to other contexts, at least
for free fermions, such as a single interval in an infinite system at finite temperature [83], or two
disjoint intervals in the presence of a point-like defect [91]. At present, it is unclear whether this
quasi-local structure survives to finite interaction strengths and in higher dimensions.

Having established an explicit approximate functional form for the negativity Hamiltonian
that is quasi-local opens up several possible applications. First, one could design experiments
aimed at a direct realization of NA: since the corresponding operators have simple functional
form, this could be done by combining local tuning with tailor-engineered long-distance cou-
plings similarly to what has already been proposed in the context of quantum chemistry simula-
tions [106]. Second, the local structure of NA paves the way for a direct reconstruction of partial
transposes in experiments, utilizing, e.g., Hamiltonian reconstruction methods that have already
been combined with the BW theorem [21]. Both of these applications would allow a direct mea-
surement of the negativity spectrum, something that is presently unachievable by any method
other than full state tomography. Thirdly, it may be possible to design efficient classical or hybrid
classical-quantum algorithms for the ab initio determination of NA, similarly to what has been
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done for the EH following a BW inspired ansatz [20, 22, 107]. Having an explicit functional form
could enable computations that are then not available otherwise - one example being quantum
Monte Carlo algorithms aimed at computing the negativity utilizing meta-dynamics, similarly to
what has been done in the context of the EH [108].



5
Entanglement-detection via partial transpose

moments

5.1 Introduction

In the past years, considerable effort led to the building of larger and larger NISQ devices [109,
110]. For the benchmarking of such devices comes the need for more scalable tools in order
to characterize the underlying many-body quantum state (see e.g. [111] and references therein).
For instance, characterizing the entanglement properties of these quantum states is, besides the
intrinsic theoretical interest, essential to gauge the performance and verify the proper working of
the NISQ devices.

As a first prominent example among the tools to characterize entanglement, there is the con-
cept of entanglement witness [112, 113]. As we have discussed in Chap.1, an entanglement wit-
ness is a functional of the quantum density matrix that separates a specific entangled state from
the set of all separable states 1 (for specific examples of entanglement witnesses in various types
of systems, see e.g. Ref. [114] and references therein). By contrast we shall focus on a superset
of the set of separable states: the set of states with positive partial transpose. In other words,
we will focus on sufficient conditions for entanglement (equivalently, necessary conditions for
separability).

From the numerous theoretical sufficient conditions for entanglement that have been devel-
oped in the literature, many cannot be straightforwardly implemented experimentally, mainly be-
cause they require the (exponentially expensive) knowledge of the full density matrix [115, 116].

1When this functional is linear, it can be identified with an observable whose expectation value can be used to
decide whether the target state is entangled or not.

54
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This is for instance the case of the celebrated PPT condition [74, 112], which states that a separable
state ρ always has a positive semi-definite (PSD) partial transpose (PT) ρΓ2 for any bipartite split-
ting of its subsystems. Thus, if ρΓ has (at least) a single negative eigenvalue, then ρ is entangled.
The negativity, which resulted from this condition, is the most renowned entanglement measure
for mixed states [75, 117, 118].

This powerful entanglement condition, which found many applications in theoretical works
[34, 50, 66, 69, 119–122], is difficult to apply in experimental conditions as the PT spectrum is
difficult to access. To overcome this challenge, it was shown in Ref. [12] that valuable information
about the PT spectrum can be obtained from a few PT moments tr(ρΓ)k only. Using the first three
PT moments, an entanglement condition, called p3-PPT, was proposed and shown to be useful
for detecting entangled states in several different contexts. Moments tr(ρΓ)k have the advantage
that they can be estimated using shadow tomography [12] in a more efficient way than if one had
to reconstruct ρ via full quantum state tomography.

Indeed, the k-th order PT moment of a state ρ can be expressed as the expectation value of
some k-copy permutation operator O [12], i.e. tr(ρΓ)k = tr

(
Oρ⊗k). As shown in Ref. [123], the

classical shadow formalism allows to estimate such an expectation value from independent clas-
sical snapshots ρ̂1, . . . , ρ̂k (which can each be obtained from post-processing single-qubit measure-
ment outcomes) through the U-statistics estimator ôk = tr (Oρ̂1 ⊗ · · · ⊗ ρ̂k). Therefore, as in other
randomized measurements protocols probing entanglement [10, 12, 123–131], the classical shad-
ows formalism only requires (randomized) single-qubit measurements in experiments realizing
the single-copy state ρ. Here, we follow this idea of using PT moments to build experimentally
computable entanglement conditions, and extend the p3-PPT condition in two directions.

On the one hand, we propose different entanglement detection strategies depending on how
many PT moments can be estimated. Starting from the third order moment, we show that the
estimation of each higher order moment gives access to an independent entanglement condition.
Interestingly, if all the PT moments can be estimated, this set of conditions is then necessary and
sufficient for the state to be PPT (i.e. to have a positive semi-definite partial transpose). Of course,
the higher the moment, the larger the number of experimental runs needed. In case higher order
moments cannot be accessed, we show how to obtain an optimal entanglement condition using
PT moments of order up to three.

On the other hand, we investigate the effect of symmetries on this entanglement detection
method. As shown in Ref. [11] for the case of dynamical purification3, taking symmetries into
account to define symmetry-resolved (SR) versions of the tools usually used to characterize quan-
tum states can enable a finer characterization of some quantum features and even reveal phenom-
ena that cannot be observed without symmetry-resolution. For states preserving an extensive
quantity, we define SR versions of the PT-moment inequalities mentioned previously and show
that these are indeed better suited to detect the entanglement of such states. Furthermore, we also

2ρΓ is used to define the PT with no particular reference to given system geometries.
3This will be described in details in Chap.6.
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show that these SR inequalities provide a sufficient entanglement condition for states that do not
possess any symmetry.

The conditions derived here are particularly interesting from an experimental (and numerical)
point of view, as low moments of (partially transposed) density operators are accessible. We show
how source drifts in an experiment can be taken into account and how the quantities which are
of interest here can be accurately estimated via local measurements on single copies of the state.

The chapter is structured as follows. In Sec. 5.2, we summarize our results. Our methods to
obtain entanglement conditions from PT-moments are presented in Sec. 5.3. In Sec. 5.5 we study
the effect of symmetries and show how to obtain a SR version of these PT-moment inequalities. In
Sec. 5.7, we apply these inequalities to a variety of physical systems and compare their efficiency
for detecting entanglement. Finally, we conclude and give some outlook in Sec. 5.8.

5.2 Definitions and summary of results

In this section, we introduce the basic definitions needed for the entanglement detection criteria
below, and summarize in a succinct manner our main results. Given a bipartite state ρ = ρAB, we
denote by ρΓ its partial transpose with respect to subsystem B. We say that ρ is PPT if ρΓ is positive
semi-definite, and NPT otherwise. All NPT states are entangled, however there are entangled
states, known as bound-entangled states, that are not NPT. We focus here on the detection of NPT
entangled states.

We denote the k-th order moment of a matrix M by

pk(M) ≡ trMk. (5.1)

We will mostly consider moments of ρΓ, and sometimes use the short-hand notation pk ≡ pk(ρ
Γ).

In the presence of symmetries, the partial transpose can be cast in block diagonal form: we denote
as ρΓ

(q) the resulting blocks, where q indicates a quantum number, and define the corresponding
moments pk(ρ

Γ
(q)) as from Eq. (5.1).

We start by recalling the p3-PPT condition of Ref. [12], i.e. that any PPT state satisfies

p3(ρ
Γ)p1(ρ

Γ) ≥ (p2(ρ
Γ))2 . (5.2)

Any state violating this condition is NPT and therefore entangled. The p3-PPT condition will
serve as a reference point below in accessing the predictive power of the new relations.

i) the first set of conditions, that we dub Dn conditions, also contains polynomial inequalities
in the moments pk of order up to k ≤ n. The first non-trivial such a condition is D3, and reads:

p3(ρ
Γ) ≥ −1

2
(p1(ρ

Γ))3 +
3
2

p1(ρ
Γ)p2(ρ

Γ). (5.3)

Knowing only the first three moments p1(ρ
Γ), p2(ρ

Γ) and p3(ρ
Γ), this condition is optimal for
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detecting entanglement if 1/2 ≤ p2(ρ
Γ) ≤ 1. Knowing moments of order up to the dimension of

ρΓ, the set of Dn conditions provides a necessary and sufficient condition for NPT entanglement;
ii) the second set of conditions, dubbed Stieltjesn, involves inequalities among the moments pk

of order up to n. The condition Stieltjes3 is equivalent to p3-PPT, while Stieltjes5 reads:

det

p1 p2 p3

p2 p3 p4

p3 p4 p5

 ≥ 0 (5.4)

and similar conditions are obtained including higher moments;
iii) in case high-order moments are difficult or too expensive to access, we also show how to

obtain an optimized, necessary condition for PPT using only PT moments of order up to three.
We call this condition Dopt

3 ;
iv) all of the above conditions can be cast in terms of ρΓ

(q), in which case we add the prefix SR
(for symmetry-resolved). For instance, the SR-p3-PPT condition for sector q reads

p3(ρ
Γ
(q))p1(ρ

Γ
(q)) ≥ (p2(ρ

Γ
(q)))

2. (5.5)

Since these conditions are sensitive to the presence of negative eigenvalues in a specific symmetry
sector, they are typically much more sensitive than their non-SR counterparts, as illustrated in
Fig. 5.1.

In the SR case, it is worth mentioning that also the SR-D2 condition,

p2(ρ
Γ
(q)) ≤ (p1(ρ

Γ
(q)))

2 , (5.6)

is non-trivial;
v) we show how SR conditions can, in fact, be applied to arbitrary states, via application of a

proper transformation on the density matrix of interest. In practice, this transformation is effec-
tively carried out in the post-processing step of the classical shadows;

vi) as illustrated in Fig. 5.1, the uncertainty in estimating the moments can be bounded, in
principle, using the classical shadows formalism. Here, we show how to combine those bounds
to provide rigorous confidence intervals for SR-D2, which considerably strengthen the impact of
our results in real experiments.

5.3 Entanglement detection from partial transpose moments

In this section, we present entanglement conditions based on PT moments. We extend the idea
behind the p3-PPT condition (c.f. Eq. (5.2)) of Ref. [12] in two directions. On the one hand, we
present a set of inequalities involving all the PT moments which provides a necessary and suffi-
cient condition for the underlying state to be PPT. In addition, each condition of this set is itself
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Figure 5.1: An illustration of the proposed method for entanglement detection. We assume the experimen-
tally relevant situation of a source producing non-identical but independent copies {ρ1, . . . , ρN} ("drift").
Randomly-chosen unitaries Ui are applied to the qubits of each copy and then measured in the standard
basis. Using classical shadows [123], these measurement outcomes are post-processed to obtain the mo-
ments pj = tr(ρΓ

avg)
j. As explained in the main text, we combine those moments to derive inequalities

whose violation implies that the state ρavg is NPT, thus showing that at least one of the states ρk produced
by the source is entangled. We also show how symmetry-resolution techniques can be used to enhance the
entanglement detection capabilities.

a necessary PPT condition. On the other hand, we show how to optimize such entanglement
conditions when only few low-order PT moments are accessible.

The idea behind this set of conditions is to use Descartes’ rule of signs on the characteristic
polynomial of a Hermitian matrix to obtain a set of moment inequalities that has to be satisfied
by any PSD matrix. Applied to the partially transposed matrix ρΓ, such conditions can then be
used to detect the entanglement of NPT quantum states. More precisely, using the definition of
the elementary symmetric polynomials on d variables,

ei(x1, . . . , xd) = ∑
1≤j1<···<ji≤d

xj1 · · · xji , (5.7)

for i = 1, . . . , d, and e0(x1, . . . , xd) = 1, we derive in Appendix A.1 the following lemma.

Lemma 1. A Hermitian matrix A of dimension d is PSD if and only if ei(λ1, . . . , λd) ≥ 0 for all i =

1, . . . , d, where λ1, . . . , λd are the eigenvalues of A, and ei denote the elementary symmetric polynomials
(Eq. (5.7)).

Using Newton’s identities, which relate the elementary symmetric polynomials, ek, in the
eigenvalues of A to the moments of A through the recursive formula

kek =
k

∑
i=1

(−1)i−1ek−i pi(A), (5.8)

each inequality ei ≥ 0 can be transformed into an inequality involving moments of A of order up
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to i. We denote by Di these moments inequalities. As an illustration, the conditions D1 to D4 read

p1(A) ≥ 0, (5.9)

p2(A) ≤ (p1(A))2, (5.10)

p3(A) ≥ −1
2
(p1(A))3 +

3
2

p1(A)p2(A), (5.11)

p4(A) ≤ 1
2

(
(p1(A))2 − p2(A)

)2
− 1

3
(p1(A))4 +

4
3

p1(A)p3(A), (5.12)

respectively. One has p1(ρ
Γ) = 1 for any quantum state ρ, implying that D1 is trivially satisfied.

Similarly, since p2(ρ
Γ) is equal to p2(ρ) (i.e., to the purity of ρ) for any quantum state ρ, the

inequality D2 is also trivially satisfied. Therefore, when ρ is a quantum state, the first non-trivial
inequality for ρΓ is D3. As will be shown in the next section, it is sometimes more efficient (in order
to detect entanglement) to apply these inequalities to projections of ρΓ onto specific subspaces,
rather than to ρΓ itself. We would like to stress here that, in that case, the argument above does
not hold, so that the inequality D2 is not trivially satisfied and can already reveal the presence of
entanglement (see Sec. 5.5).

When applied to ρΓ, Lemma 1 and Newton’s identities (5.8) can thus be used to detect NPT
entangled states from PT moments only. From an experimental point of view, this is an important
aspect of this entanglement detection scheme, as PT moments are experimentally more affordable
to estimate than, for instance, the whole spectrum of ρΓ. As PT moments are more expensive to
be estimated the higher the order, these inequalities should be considered starting from those in-
volving the lowest moment orders. Even though showing that a state is NPT with this method
can in principle require the knowledge of all the PT moments, we will provide many experimen-
tally relevant instances where entanglement can be effectively detected from low-order moments
even in the presence of errors.

Similarly, let us mention here that necessary and sufficient conditions for a matrix to be PSD
can be expressed as different sets of polynomial inequalities in its moments. One of such sets
can be deduced from the well-known (truncated) Stieltjes moment problem (see Appendix A.2). In
Sec. 5.7, we illustrate the usefulness of these inequalities by applying them to the entanglement
detection of the ground state of the XXZ model (c.f. Fig 5.5). Let us finally also mention that, from
a few moments of a Hermitian matrix, one can also obtain bounds on the distance between this
matrix and the PSD cone [132].

5.4 Optimized condition for low-order moments

Due to (experimental) constraints, it might not be possible to determine all, but only a few, PT
moments. This is why, we show here how to optimize necessary PPT conditions using only PT
moments of order up to three. From the previous sections, we already have two examples of
such conditions, namely the p3-PPT and D3 conditions. As illustrated in Fig. 5.2, the p3-PPT (D3)
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Figure 5.2: Plot of the value of the third moment p3 saturating the p3-PPT (dashed orange curve), the
D3 (dashed green line) and the optimal Dopt

3 (dashed black curve) conditions as a function of the second
moment p2 for a normalized Hermitian matrix. According to the p3-PPT condition, any state ρ with a
value of p3(ρΓ) below the dashed orange curve is entangled. Similarly, the condition D3 shows that any
state ρ with a value of p3(ρΓ) below the dashed green line is entangled. From this plot, it is clear that,
for p2(ρΓ) > 1/2, all entangled states detected by the p3-PPT condition are also detected by D3, which
coincides with Dopt

3 in this case. When p2(ρΓ) < 1/2, the p3-PPT condition is then stronger than D3, and
Dopt

3 represents a slight improvement over the p3-PPT condition.

condition is tighter than D3 (p3-PPT) for states with purity larger (smaller) than 1/2, respectively.
As the low-order moments are easier to access experimentally, we now address the question about
the optimal inequality involving PT moments of order up to three.

To answer this question, we use the following approach. For fixed values p1 and p2 of the first
two moments, we determine the minimal value pmin

3 that the third moment can reach for any PSD
matrix 4. From this bound, we know that any Hermitian matrix with a smaller third moment is
necessarily not PSD. Naturally, we restirc ourselves to values of p1 and p2 which are compatible
with a PSD matrix, and therefore satisfy Eqs. (5.9) and (5.10) 5.

Given a d × d PSD matrix A, with non-zero eigenvalues λ1, . . . , λr, for some r ∈ [1, d], this op-
timization can be performed with the help of Lagrange multipliers. As shown in Appendix A.3,
this leads to solutions with only two distinct eigenvalues λa, λb with multiplicity ra, r − ra, respec-
tively, for ra ∈ [1, r]. Assuming, without loss of generality, that λa ≥ λb, the optimization of p3

leads then to ra = r − 1. For each value of r, the optimal value of p3 can be easily determined in
the interval [1/r, 1/(r − 1)]. For r = 2 this leads to D3 whereas for r > 2 one obtains an optimal
value of p3 which is slightly better than p3-PPT. Observe that pmin

3 (p2) is a piece-wise function
and the derivative ∂pmin

3 /∂p2 is discontinuous at points p2 = 1/r (see Fig. 5.2).

4Note that we want here to minimize p3 because it is an odd moment (for which negative eigenvalues would have
the tendency to decrease the value of the moment). For an even moment, we would instead maximize the value of
this moment over PSD matrices. This is also reflected in the Dn conditions (5.10)–(5.12), where the inequality sign
alternates between even and odd values of n.

5Recall that for the partial transpose of a density operator this is always fulfilled.
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5.5 Symmetry-resolved entanglement detection

Symmetries, as they often occur in physical situations, can be exploited to observe relevant phe-
nomena (see e.g. Refs. [11, 133–143]). Here, we use symmetries to ease the detection of entangle-
ment. More precisely, we apply the previously developed tools to symmetric states, which will
lead to conditions of entanglement involving much lower moments of the partial transpose pro-
jected onto certain subspaces. Despite the fact that these quantities differ significantly from the
moments of ρΓ, we will show later on that they can nevertheless be estimated using the frame-
work of classical shadows.

We consider a bipartite state ρ = ρAB, with subsystems A and B containing n and m qubits,
respectively. We assume that this state commutes with ∑n+m

i=1 Zi, or similarly with the total number
operator N = NA +NB. Here and in the following, we denote by X, Y, Z the Pauli operators.
Obviously, such a state has a block diagonal form, i.e.,

ρ =
n+m⊕
q=0

ρ(q) = ∑
q

QqρQq, (5.13)

where each block (or sector) is labeled by an eigenvalue q ∈ {0, 1, . . . , n + m} of the operator N
and has support in the corresponding eigenspace. Here,

Qq = ∑
a+b=q

Πa(A)⊗ Πb(B),

with
Πk(A) = ∑

i1+···+in=k
|i1 · · · in⟩ ⟨i1 · · · in|

and similarly for B. It has been shown [144] that, for this type of symmetry, the partial transpose
ρΓ is also block diagonal, but in a different basis. In fact, ρΓ = ⊕n

q=−mρΓ
(q) = ∑q PqρΓPq, where Pq

is the projector onto the eigenspace of NA −NB with eigenvalue q ∈ {−m,−m + 1, . . . , n} 6, i.e.

Pq = ∑
a−b=q

Πa(A)⊗ Πb(B). (5.14)

The size of the sector corresponding to the eigenvalue q in the block-decomposition of ρΓ is given
by

trPq = ∑
a−b=q

(
n
a

)(
m
b

)
=

(
n + m
q + m

)
.

6This can be easily seen as follows. Consider a matrix element ρab,a′b′ |ab⟩ ⟨a′b′| of ρ with eigenvalue i of NA +NB.
Precisely, let us write NA |a⟩ = na |a⟩, NA |a′⟩ = na′ |a′⟩, NB |b⟩ = nb |b⟩, and NB |b′⟩ = nb′ |b′⟩ with na + nb =
na′ + nb′ = i. After partial transposition, ρab,a′b′ |ab⟩ ⟨a′b′| 7→ ρab,a′b′ |ab′⟩ ⟨a′b|. For our particular case, NB = N Γ

B and
one can see that (NA −NB) |ab′⟩ = (na − nb′) |ab′⟩ and (NA −NB) |a′b⟩ = (na′ − nb) |a′b⟩ with na − nb′ = na′ − nb.
This shows that matrix elements within a block of ρ are mapped, via partial transposition, to matrix elements within
a block of ρΓ.
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When the partial transpose of a density matrix has a block structure, it is naturally PSD iff
each block is itself a PSD matrix. Therefore, one can apply the conditions of the previous section
directly to the blocks ρΓ

(q) of the partial transpose. For the p3-PPT condition, the corresponding
symmetry-resolved (SR) inequalities are simply

p3(ρ
Γ
(q))p1(ρ

Γ
(q)) ≥ (p2(ρ

Γ
(q)))

2

for all q = −m,−m + 1, . . . , n. Any violation of a PSD condition in one of the blocks is then
sufficient to show that ρΓ has at least one negative eigenvalue and that ρ is therefore entangled.

When using the Di conditions, symmetry-resolution can be a significant advantage (see e.g.
Sec. 5.7). First, the necessary and sufficient PSD conditions involve moments of order at most
equal to the dimension of the largest block, that is ( n+m

⌊(n+m)/2⌋), which is necessarily smaller than
the dimension of the density matrix itself. Second, since a block ρΓ

(q) of ρΓ is (in general) not the
partial transpose of any positive matrix 7, the inequality:

p2(ρ
Γ
(q)) ≤ (p1(ρ

Γ
(q)))

2 (5.15)

is not necessarily satisfied. This implies that moments of order two can already be sufficient to
detect entanglement.

As stressed in the introduction, using PT-moment inequalities to detect entanglement is partic-
ularly interesting from an experimental point of view, because such PT moments can be estimated,
for instance using shadow tomography [12]. As we show in the following lemma, the shadow to-
mography protocol used in Ref. [12] can also be used to estimate moments of blocks of the partial
transpose (which differ significantly from the PT moments) by slightly modifying the non-linear
observable that has to be measured.

Lemma 2. Given a symmetric state ρ = ∑i QiρQi, for each eigenvalue i of NA −NB, it holds that

tr(Piρ
ΓPi)

k = tr(L(k)
i ρ⊗k)

where the operators L(k)
i are given by

L(k)
i =

(
∑

a−b=i
Πa(A1)⊗ 1 ⊗ · · · ⊗ 1 ⊗ Πb(Bk)

)
· S̃(A1, . . . , Ak)⊗ S(B1, . . . , Bk) (5.16)

with
S̃(A1, . . . , Ak) = ∑

a1

· · ·∑
ak

|aka1 · · · ak−1⟩ ⟨a1 · · · ak| ,

S(B1, . . . , Bk) = ∑
b1

· · ·∑
bk

|b2 · · · bkb1⟩ ⟨b1 · · · bk| .

7This is, there could be no σ > 0 such that ρΓ
(q) = σΓ.
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Here, the sum over each ai (bi) runs from 1 to 2n (2m) respectively.

Proof. Denoting by ρab,a′b′ the entries of the operator and using that ρab,a′b′ = ρΓ
ab′,a′b, it is straight-

forward to see that

tr\A1Bk

(
S̃(A1, . . . , Ak)⊗ S(B1, . . . , Bk)ρ

⊗k
)

= ((ρΓ)k)Γ . (5.17)

Then, we have that

tr(L(k)
i ρ⊗k) = tr

(
Pi ((ρ

Γ)k)Γ
)
= tr

(
PΓ

i (ρΓ)k
)
= tr

(
Pi (ρ

Γ)k
)

.

Here, the first equality follows from the definition of L(k)
i and Eq. (5.17); the second, from tr(RSΓ) =

tr(RΓS) for any two matrices R, S; and the third, from PΓ
i = Pi. Finally, using that Pi = P2

i are
orthogonal projectors, the cyclic property of the trace, and the block structure of ρΓ, we have

tr
(

Pi (ρ
Γ)k
)
= tr

(
Pi (ρ

Γ)kPi

)
= tr

(
Pi ρΓPi

)k
,

which completes the proof.

5.6 SR inequalities applied to states without symmetries

SR inequalities can also be used to detect the entanglement of arbitrary states, including those
that do not have any symmetry.

The reason for that is that there exists a local channel C that transforms any state ρ into a state
σ ≡ C(ρ) that has the desired block structure. The channel can be realized with local operations
assisted by classical communication, and can thus not generate entanglement. Therefore, the
initial state ρ must be at least as entangled as the final block diagonal state σ. This statement
holds for any entanglement measure. As a consequence, if entanglement is detected in σ (which
can be investigated using the symmetry-resolved tools), then ρ is necessarily also entangled. In
other words, looking at the entanglement of σ, the "block-diagonalized" version of ρ, provides a
sufficient condition of entanglement for ρ. This condition is not necessary as it could be that the
channel C destroys all the entanglement of ρ.

The local channel that can be used for this approach is the following:

C : ρ → C(ρ) = 1
2k

2k−1

∑
i=0

U⊗(n+m)
i ρ (U†

i )
⊗(n+m) (5.18)

where k = ⌊log(n + m)⌋+ 1 and Ui = Zi/2k
. The fact that this channel maps ρ to a state σ that

is block-diagonal in the number-of-excitations basis can easily be seen as follows. First, observe
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that for any j ∈ {0, . . . , 2(n+m) − 1}, the computational basis state |j⟩ is an eigenvector of Ui,
associated to an eigenvalue, (−1)|j|i/2k

, that essentially depends on |j|, the number of excitations
of |j⟩. Therefore, we have

σ =
1
2k

2(m+n)−1

∑
j,j′=0

2k−1

∑
i=0

(−1)
i(|j|−|j′ |)

2k ρj,j′ |j⟩⟨j′|. (5.19)

For any j and j′ having different number of excitations, i.e. such that |j| ̸= |j′|, the sum over i in
Eq. (5.19) vanishes, explaining why σ is diagonal in the number-of-excitations basis.

As can be seen from the argument above, the non-zero elements of σ are all equal to the cor-
responding elements of ρ. This implies that the channel can effectively be replaced by a sum of
projectors onto all the number-of-excitations sectors. From an experimental point of view, the
practical implementation of this channel can thus be circumvented by using the observables of
Lemma 2 in the post-processing of the classical shadows.

5.7 Applications

In this section, we apply and compare the entanglement conditions presented in the previous
sections on various physical systems. For the systems possessing a symmetry as discussed in
Sec. 5.5, we highlight some of the advantages that can result from considering symmetry-resolved
entanglement detection tools.

5.7.1 Entanglement detection in quench dynamics

We begin by considering the situation of quench dynamics, where entanglement emerges from the
dynamics of a many-body Hamiltonian. We consider the model presented in Ref. [11], where the
interplay between coherent dynamics with U(1) symmetry and dissipation leads to a dynamics
of ‘purification’. Here, we will use the same formalism to show how entanglement is generated
at short times, and can be detected via the symmetry-resolved versions of the D2 and p3-PPT
conditions. In the next section, we will consider an analogous experimental situation obtained
with trapped ions [10].

Our model is described by a master equation

∂tρ = − i
h̄
[HXY, ρ] + ∑

j
γ

[
σ−

j ρσ+
j − 1

2
{σ+

j σ−
j , ρ}

]
, (5.20)

with the lowering and raising operators σ−
j = (Xj − iYj)/2, σ+

j = (Xj + iYj)/2, and the Hamilto-
nian

HXY =
h̄
2 ∑

i<j
Jij(XiXj + YiYj) (5.21)
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and where γ is the spontaneous emission rate. Here, we consider open boundary conditions.
The hopping between spins i and j is described by the coefficient Jij and we consider this section
nearest-neighbor hopping Jij = Jδi+1,j with strength J. The initial state is the Néel state ρ(0) =

|ψ(0)⟩ ⟨ψ(0)|, with |ψ(0)⟩ = |↓↑⟩⊗N/2. As shown in Ref. [11], the time evolved state ρ(t) of the N
spin system has the block diagonal form of Eq. (5.13). Moreover, the partially transposed matrix
w.r.t a partition A, ρΓ is also block diagonal with blocks ρΓ

(q). Here, the index q represents the
difference between the number of spin excitations in A and the one in the complement partition
B (see also Sec. 5.5).

As we are interested in short time dynamics, we can solve Eq. (5.20) in first order in perturba-
tion theory, which is valid for t ≪ 1/J, 1/γ. Considering for concreteness a half-partition A, made
of the first NA sites, we obtain a block with a negative eigenvalue [11]. Assuming for simplicity
NA = N/2, NA even, we obtain

ρΓ
(−1)(t) = γt

NA/2

∑
m=1

σ−
2mρ(0)σ+

2m + Jt
(
−iσ+

NA+1ρ(0)σ+
NA

+ h.c
)

. (5.22)

The presence of a negative eigenvalue in this sector can be detected from the value of the moments

p1(ρ
Γ
(−1)(t)) =

γNAt
2

, (5.23)

p2(ρ
Γ
(−1)(t)) = 2J2t2, (5.24)

p3(ρ
Γ
(−1)(t)) = 3γJ2t3, (5.25)

in leading order in J ≫ γNA. In particular, the p3-PPT ratio

p3(ρ
Γ
(−1)(t))p1(ρ

Γ
(−1)(t))

p2(ρΓ
(−1)(t))

2
=

3γ2NA

8J2 ≪ 1, (5.26)

and the D2 condition

p1(ρ
Γ
(−1)(t))

2

p2(ρΓ
(−1)(t))

=
γ2N2

A
8J2 ≪ 1, (5.27)

can be used to reveal the presence of entanglement at short times. We show in Fig. 5.3 a nu-
merical confirmation of these results for various values of γ/J and N = 8, which was obtained
by simulating Eq. (5.20). We note that, in the present context, utilizing symmetry-resolution is
fundamental to detect entanglement: this is due to the fact that the negative eigenvalues in ρΓ ap-
pear in sectors that are not macroscopically populated [11], so that moments without symmetry
resolution would not be able to detect them.
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Figure 5.3: Symmetry resolved entanglement detection in quench dynamics with spin excitation loss. We
study SR-entanglement in quench dynamics in a system consisting of N = 8 spins initialized in a Néel state
|↓↑⟩⊗N/2 and evolved with HXX subject to spin excitation loss with various rates γ (γ/J increases with the
darkness of the color, see insets). We take A = [1, 2, 3, 4] and B = [5, 6, 7, 8]. In panels a) and b), the D2
ratio and p3-PPT ratio of sector q = −1 are shown, respectively. Entanglement is detected for values below
unity in the shaded gray areas. The insets in a) and b) show the early time value at t = 0+ of the D2-ratio a)
and p3-PPT ratio b), respectively, as function of the decoherence rate γ/J. Black lines are the perturbation
theory results displayed in Eqs. (5.27) and (5.26).

5.7.2 Experimental demonstration in a trapped-ion quantum simulator

In the previous section, we showed in an idealized theoretical setting that entanglement is gen-
erated –and can be revealed via SR-entanglement conditions– at early times after a quantum
quench. Here, we demonstrate this effect experimentally via the measurement of the SR-D2 and
SR-p3-ppT condition using randomized measurement data taken at early times after quantum
quench in a trapped ion quantum simulator (c.f. Ref. [10]). In particular, we show that the SR-D2

condition and SR-p3-PPT condition allow for a fine-grained detection of bipartite entanglement,
in regimes where the corresponding global conditions [12] and conditions relying on the purities
of different subsystems [10] are not conclusive.

In the experiment reported in Ref. [10], a one-dimensional spin-1/2-chain, consisting of N =

10 spins, was initialized in the Néel state |↑↓⟩⊗5 and time-evolved with the Hamiltonian HXY

[Eq. (5.21)] where the coupling parameter Jij follows the approximate power-law decay Jij ≈
J0/|i − j|α, with α ≈ 1.24, J0 = 420s−1. The Hamiltonian evolution exhibits a global U(1)-
symmetry conserving the total magnetization of the system (i.e., [H, ∑i Zi] = 0). Symmetry-
breaking terms (such as σ+

i σ+
j + h.c.) are strongly suppressed due to a large effective magnetic

field [10]. As detailed in Refs. [10, 11] weak decoherence effects are present in the experiment, in-
cluding imperfect initial state preparation, local spin-flips and spontaneous emission during the
dynamics, and measurement errors model as local depolarization. Note that coherent spin-flips
do not preserve the global magnetization and block-diagonal form of the (reduced) density ma-
trix. On the timescales accessed in the experiment, these effects are however very weak (causing
in numerical simulations including the above decoherence model a purity mismatch of the order
of 10−5 of the full 10-spin density matrix ρ vs. the projected one ρQ = ∑q QqρQq at t = 5ms).
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Figure 5.4: Experimental SR-entanglement detection in a trapped ion quantum simulator using data ob-
tained in Ref. [10]. For a total system of N = 10 spins and subsystem A, B = [4, 5], [6, 7], we present in a) the
SR-D2 ratio and b) SR-p3-PPT ratio as a function of time for various symmetry sectors . In both panels, en-
tanglement is detected in regimes where the corresponding global conditions do not reveal entanglement,
as indicated in the shaded grey areas (values below unity). The points with error bars correspond to the
values and uncertainties extracted from the experimental data from Ref. [10], whereas the dashed (solid)
lines are theoretical simulations of unitary dynamics (taking decoherence effects into account), as detailed
in Refs. [10, 11].

In Ref. [10] randomized measurements were performed at various times (t = 0ms, . . . , 5ms)
after the quantum quench. As described in detail in Ref. [11] (see also Chap. 6), we can use
this data to estimate SR-PT moments and the SR entanglement conditions via classical shadow
formalism [123]. In Fig. 5.4, we present the SR D2 and p3-PPT conditions in the different sectors,
for a subsystem consisting of the neighbouring spins A, B = [4, 5], [6, 7] and where the partial
transpose is taken in the subsystem A = [4, 5]. Similar to the results of the previous section, both
conditions detect entanglement at short times in the sector q = −1. The corresponding global
conditions, in particular the global p3-PPT condition, do not reveal the presence of entanglement
in this regime [see Fig. 5.4 b)].

The fact that the SR-D2 condition can reveal the presence of entanglement is particularly inter-
esting from an experimental point of view as it implies that entanglement can be detected from the
estimation of only two moments of the partial transpose (in a sector). For the shadow estimation
of D2(−1), it can be proven (Ref.[13]) ∼ 1.3× 106 measurements would be sufficient to guarantee
entanglement detection with a probability of 95%. While this represents an upper bound, valid
irrespective of the quantum state in question, for the specific states in the experiment only 8× 105

have been performed. The errorbars of the experimental are then drawn at 1.96σ where the stan-
dard error of the mean σ has been estimated for each data point using Jackknife resampling 8.

While the SR-D2 condition requires only the estimation of first and second PT-moment, the
third order SR-p3-PPT condition [panel b)], allows to detect entanglement in an even wider time

8For normally distributed data with empirical mean µ, µ ± 1.96σ defines a 95% confidence interval. While normal
distribution is here not guaranteed a priori, we checked through additional numerical simulations of many experi-
ments (with fixed number of runs per experiment) that errorbars of length 1.96σ indeed approximate a confidence
interval with confidence level 95%.
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Figure 5.5: Entanglement conditions on the ground state of XXZ model. With X ∈ [D3, Dopt
3 , Stieltjes5, p2

2 −
p3 p1, N] we denote the conditions computed on ρA and with X(1) the ones on ρA(q = 1) . Chain length
L = 14, subsystem length ℓ = 10. We consider in a)-b) a connected subsystem A of length ℓ at the center
of the chain; in c)-d) a disjoint interval A consisting of ℓ/2 sites at the beginning and ℓ/2 sites at the end
of the chain. We set the sign of the inequalities such that a positive value indicates the violation of a PPT
condition, and thus the presence of entanglement. To compare data of different magnitude we multiply
the Stieltjes5 condition by 102 in a), 105 in b), 104 in c), 105 in d).

window. In comparison to the global p3-PPT condition [red curve in panel b)], this clearly demon-
strates the benefit of taking symmetry-resolution into account.

5.7.3 Entanglement detection in the ground state of the XXZ model

The XXZ spin chain is a generalization of the Heisenberg chain including an anisotropy in the
interaction along the z direction, whose Hamiltonian reads:

H =− J

(
∑

i
XiXi+1 + ∑

i
YiYi+1 + Jz ∑

i
ZiZi+1

)
. (5.28)

We will fix J = 1 as energy unit: Jz sets the strength of the anisotropy along the z-axis. The
phase diagram at zero temperature is known [145]: the system hosts an antiferromagnetic phase
when Jz < −1, a Luttinger liquid for Jz ∈ [−1, 1], and a ferromagnetic one for Jz > 1. We might
expect that the entanglement conditions we described in the previous sections will detect that the
state is not PPT in the range Jz ∈]− ∞,−1]. Since the XXZ spin chain exhibits a U(1) symmetry
related to magnetization conservation, we can exploit the symmetry-resolved counterpart of the
Dk conditions, the p3-PPT and their optimized version Dopt

3 .
The simulation results are shown in Fig. 5.5. We consider the ground state of an open chain

of L = 14 sites. In a) and b), we select ℓ = 10 sites in the middle as subsystem A and divide it in
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two parts A = A1 ∪ A2. We use the negativity as a reference to benchmark the efficiency of some
entanglement conditions to detect entanglement between A1 and A2.

In Fig. 5.5a), we calculate the p3-PPT, the D3, the optimal Dopt
3 condition and the Stieltjes

condition using moments up to order five (see Appendix A.2). The convention we choose in the
plot is that entanglement is detected whenever the value is positive. All the conditions work in
most of the interval Jz ∈ [−4, 1], where we expect entanglement to be sizeable, except for D3

failing in the vicinity of Jz = 1. The presence of entanglement is confirmed by the calculation of
the negativity (red line).

In Fig. 5.5b) we focus on the q = 1 sector. In this case, we observe that all conditions indicate
the presence of at least a negative eigenvalue in the sector ρΓ

A(q = 1) - that is, they are infor-
mative about which sector for the reduced density matrix contributes to violating PPT. In this
specific instance, SR is however not fundamental in detecting entanglement beyond what non-SR
conditions can.

In Fig. 5.5c) and d), we carry out the same analysis for disconnected partitions. We consider
A = A1 ∪ A2, where A1 consists of the first l/2 sites and A2 of the last l/2, and L = 14, l = 10.
In Fig. 5.5c) for Jz ∼ −1.9 all the quantities except Stieltjes5 are below zero, thus not revealing
entanglement even though the negativity is positive. In this plot, one can also see that, for Jz <

−2, the optimized condition Dopt
3 detects entanglement whereas both p3-PPT and D3 fail. This

illustrates that the slight improvement obtained from the optimization in Sec. 5.4 (see Fig. 5.2) can
be decisive to detect the entanglement of physically relevant states from the first three moments
only.

5.7.4 Entanglement detection under constrained dynamics

As a third example, we study the detection of mixed-state entanglement in subsystems of con-
strained spin models after a global quantum quench. Such models have been realized experimen-
tally with neutral atoms in optical tweezer arrays coupled to Rydberg states [146, 147]. Below
we simulate an experiment, in which moments of the partially transposed density matrix are
obtained from a classical shadow involving global random unitaries available in current experi-
mental setups. In particular we demonstrate that periodic revivals of mixed state entanglement
can be detected from the conditions D3 and D4 (Eqs. (5.11) and (5.12)) requiring only a small
number of experimental runs.

We consider the Fibonacci chain with open boundary conditions described by the Hamiltonian

H = Ω ∑
i
Pi−1XiPi+1 , (5.29)

where Pi = |0⟩i ⟨0| are local projectors. As can be seen from (5.29), each spin undergoes inde-
pendent Rabi-oscillations as long as the neighbouring spins are in their ground state |0⟩. This
constraint breaks the tensor product structure of the Hilbert space (as it the case in a lattice gauge
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Figure 5.6: a) Coherent oscillations of the Zi-expectation values in a quench with a 18-site Fibonacci chain
from a staggered initial state: |Ψ0⟩ = |1010 . . .⟩. b) Von Neumann entropy of half partition of the chain as
a function of time. c) Entanglement detection in a subsystem of 5 spins (corresponding to the red dots in
the inset), with partial transpose taken with respect to the first three. All plotted curves are tuned so that
positive values indicate entanglement. Revivals indicate periodic entangling and disentangling of spins.
The points are obtained from a classical shadow consisting of 5000 global random unitaries. Error bars are
obtained by repeating the procedure 20 times and estimating the standard error.

theory [148]). The model effectively resembles the experimental situation in [146] if the Rydberg
atoms are driven close to resonance and neighbouring atoms cannot be simultaneously in the
state |1⟩ due to the Rydberg blockade mechanism. The Hamiltonian (5.29) has recently attracted
great interest in the context of quantum many-body scarring [149, 150]. In particular, performing
a quantum quench on special unentangled product states results in long-lived periodic revivals
which have been attributed to the existence of quantum scarred eigenstates in the many-body
spectrum [149].

In the following we study the conditions given in Eqs. (5.11) and (5.12), when a quench is
performed from a product state that leads to kinetically constrained dynamics. To this end, the
initial state |Ψ0⟩ = |10⟩⊗N/2 is time evolved with the Hamiltonian ((5.29)) up to t = 50/Ω. Fig. 5.6
a) shows the local Zi-expectation values exhibiting long-lived persistent oscillations. This striking
departure from a thermalizing behaviour is also reflected in the slow growth of entanglement
entropy (Panel b). We now analyse the time resolved behaviour of mixed state entanglement for
a subsystem depicted in the inset of Fig. 5.6 c). The revivals in the negativity indicate that spins in
the subsystem get periodically entangled and disentangled with each other. Interestingly, the p3-
PPT condition is unable to detect the revivals, while D3 yields positive values at the first 3 peaks
in the negativity. At later times, the D3 fails to detect the entanglement present in the system, but
this entanglement is still captured by D4.

Finally, we investigate the required number of experimental runs in order to measure the con-
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ditions up to given error bar. The classical shadow is constructed by sampling bit strings from
the quantum state after applying a global random unitary on the subsystem A. At each point
in Fig. 5.6 c), we collect 5000 bit strings in different random basis. Note that global random uni-
taries in Rydberg systems can be implemented via random quenches with local disorder poten-
tials [151]. The entire estimation of the conditions is repeated 20 times in order to obtain statistical
uncertainties. Note that statistical covariances among the measured moments tr(ρΓ)n can give
rise to nonuniform sizes for the error bars. In Fig. 5.6 c) we depict the 2σ error bars, showing that
entanglement can be detected with a moderate experimental effort.

5.8 Conclusions and outlook

The study of entanglement has a long and prominent history in a variety of disciplines. And with
the advent of serious quantum technologies, reliable entanglement generation is more important
than ever. We provided a novel and principled approach to reliably detect bipartite entangle-
ment between subsystem A and subsystem B. We have presented a set of inequality conditions
Dk (1 ≤ k ≤ 2|AB|). Each Dk is an inequality that involves the first k moments of the partially
transposed density operator. Violation of a single inequality implies that the underlying density
operator cannot have a PSD partial transpose. This in turn implies that the state must be entan-
gled. Conversely, if the underlying state is not PPT, then, there must exist at least one Dk that is
violated. This motivates a sequence of one-sided entanglement tests. Start with D3 – the lowest
non-trivial condition – and check whether it is violated. If this is the case, we are done. If not,
we move on to the next higher condition (D4) and repeat until we find a violation. For states
having an extensive conserved quantity (such as total magnetization, in the case of spin systems),
both the density matrix and its partial transpose have a block-diagonal structure [144]. In this
case, it is advisable to apply these conditions directly to individual symmetry sectors of the par-
tial transpose. The resulting sequence of symmetry-resolved conditions is stronger in the sense
that lower order moments (of blocks of the partial transpose) suffice to detect entanglement. Im-
portantly, this approach is not only conceptually sound, but also tractable from an experimental
perspective. The classical shadows formalism [123] allows for reliably estimating moments of the
partial transpose from randomized single-qubit measurements. We demonstrated how to include
the experimentally relevant situation of non identical (however independent) copies in the anal-
ysis.For a derivation on error bounds and confidence intervals for D2, with a natural extension to
quantities involving higher order moments, the reader could refer to Ref. [13]. Empirical evalua-
tions complement our theoretical findings. Applications to several theoretical models, as well as
experimental data, demonstrate both tractability and viability of our approach.

The results provided in this chapter may open up several interesting future research direc-
tions. Firstly, the sequence of Dk’s is designed to detect bipartite entanglement in a reliable and
experimentally accessible fashion. A natural next step is to try to extend similar ideas to multipar-
tite entanglement detection, e.g. using non–linear entanglement witnesses [152, 153]. Secondly,
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the complete sequence of Dk’s is used to answer a binary question: is the partial transpose nega-
tive or not? Entanglement measures, like the negativity, address entanglement in a quantitative
fashion, but are also harder to estimate. Is it possible to use moments (or other density matrix
functionals) to define entanglement measures that are experimentally tractable?

Another promising direction of research would be to try to detect and characterize phase tran-
sitions in quantum mechanical Hamiltonians at finite (non-zero) temperature. Quantum phase
transitions at zero temperature originate from quantum fluctuations, whereas quantum phase
transitions at finite temperature are due to thermal fluctuations. Following Ref. [154], quantum
phase transitions at finite temperature can be studied using the negativity. It would be interesting
to investigate whether low-order PT moments, intimately related to the negativity, can also be
used to this end.



A
Additional information on entanglement

detection conditions

A.1 Descartes’ rule of signs

Let A be a Hermitian matrix of dimension d. Its eigenvalues λ1, . . . , λd are the roots of the charac-
teristic polynomial

P(t) = det (A − t1) =
d

∏
i=1

(λi − t).

For convenience, let us now consider the polynomial P(−t), which effectively replaces the posi-
tive eigenvalues of A by negative ones and vice versa. The coefficients of this polynomial can be
expressed using the elementary symmetric polynomials in its roots, ei(λ1, . . . , λd), defined as

ei(λ1, . . . , λd) = ∑
1≤j1<···<ji≤d

λj1 . . . λji ,

for i = 1, . . . , d and with e0(λ1, . . . , λd) = 1. This yields

P(−t) =
d

∑
i=0

ei(λ1, . . . , λd) td−i.

For a polynomial with real roots (as it is the case here), Descartes’ rule of sign states that the
number of positive roots is given by the number of sign changes between consecutive elements
in the ordered list of its non-zero coefficients (see Ref. [155] and references therein). The matrix A
is PSD iff P(−t) has only negative roots, which by Descartes’ rule is the case iff there is no sign
change in the ordered list of its non-zero coefficients, i.e., iff ei(λ1, . . . , λd) ≥ 0 for all i = 1, . . . , d,
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since e0(λ1, . . . , λd) = 1.

A.2 Stieltjes moment problem

Given a sequence of moments, (mn)d
n=0, the (truncated) Stieltjes moment problem consists in find-

ing necessary and sufficient conditions for the existence 1 of a measure µ on the half-line [0, ∞)

such that
mn =

∫ ∞

0
xndµ(x), ∀n ∈ {0, . . . , d}. (A.1)

Defining the matrices

A(n) =



m0 m1 m2 · · · mn

m1 m2 m3 · · · mn+1

m2 m3 m4 · · · mn+2
...

...
... . . . ...

mn mn+1 mn+2 · · · m2n


(A.2)

and

B(n) =



m1 m2 m3 · · · mn+1

m2 m3 m4 · · · mn+2

m3 m4 m5 · · · mn+3
...

...
... . . . ...

mn+1 mn+2 mn+3 · · · m2n+1


, (A.3)

a solution to this problem can be stated as follows [156]. If d is odd – such that d = 2k + 1 for
some integer k – there exists such a measure µ if and only if

A(k) ≥ 0, B(k) ≥ 0 and (mk, . . . , m2k+1)
T ∈ R[A(k)], (A.4)

where, given a matrix M, the notation M ≥ 0 indicates that M is PSD and R(M) denotes the
range of M. If d is even – such that d = 2k for some integer k – there exists such a measure µ if
and only if

A(k) ≥ 0, B(k − 1) ≥ 0 and (mk+1, . . . , m2k)
T ∈ R[B(k − 1)]. (A.5)

These solutions to the Stiltjes moment problem can be used to obtain entanglement condi-
tions. Given λ1, . . . , λr the eigenvalues of ρΓ for some density matrix ρ, let us define the (atomic)
eigenvalue distribution function

dµ(x) =
r

∑
i=1

δ(x − λi) ,

where δ is the Dirac delta distribution. If ρ is PPT, this density function has support on [0, ∞) and

1If such a measure exists, one may wonder whether it is unique or not. For our purposes, it will be enough to
discuss only its existence.
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reproduces the moments of ρΓ, as

mn =
∫ ∞

0
xndµ(x) = pn(ρ

Γ).

Therefore, according to the solution of the Stieltjes moment problem mentioned above, the mo-
ments of any PPT state necessary satisfy either condition (A.4) or (A.5), depending on the value
of r. The violation of any of these conditions for a set of PT moments thus reveals that the cor-
responding state must be entangled. The range condition may require the knowledge of all the
moments to be checked, but the PSD conditions can be broken into sets of simpler conditions.
And some of them only involve low order moments. Indeed, it is well known (see e.g. [157])
that a matrix is PSD if and only if all its principal minors are non-negative. For instance, looking
at the principal minor at the intersection of the first two rows and columns of B(k), one obtains
the condition m1m3 − (m2)

2 ≥ 0. This condition is nothing but the p3-PPT condition (which we
know is useful to detect entanglement [12]). Extending this principal minor to the third row and
column, one gets another PPT condition:

det

 m1 m2 m3

m2 m3 m4

m3 m4 m5

 ≥ 0. (A.6)

We call this condition Stieltjes5. We illustrate in Sec. 5.7 (c.f. Fig 5.5) that this condition is also
useful for entanglement. Numerical computations suggest that this condition is a powerful tool
to detect the entanglement of random mixed states, in the sense that it detects more random
entangled states than either popt

3 or D5. Not all Stieltjes moment conditions are this powerful,
though. For instance, the principal minor condition for the first two rows and columns of A(k) is
trivial.

Note that, because we consider here an atomic density function, we have m0 = r. We could
naturally renormalize the density function so that m0 = 1, but it would imply a re-scaling of
the first moment, i.e., the trace of ρΓ, would be 1/r. Since the partial transpose and the density
function cannot be normalized at the same time, we chose to keep normalized partial transposes.

A.3 Optimizing conditions involving moments up to degree three

Given a PSD matrix A, with non-zero eigenvalues λ1, . . . , λr, for some r ∈ [1, dim A], consider the
Lagrangian function

L(λ1, . . . , λr, C1, C2)
r

∑
i=1

λ3
i + C1

(
r

∑
i=1

λ2
i − p2

)
+ C2

(
r

∑
i=1

λi − p1

)
, (A.7)

where C1 and C2 are Lagrange multipliers.
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Here we show that, for all 1 ≤ r ≤ dim A, the stationary points (λ1, . . . , λr) of the Lagrangian
function (A.7) are such that the variables λi can take at most two distinct values. These stationary
points, for which the derivatives of the Lagrangian (A.7) with respect to each variable vanish,
satisfy the set of equations

3λ2
i + 2C1λi + C2 = 0 , i = 1, . . . , r (A.8)

r

∑
i=1

λ2
i = p2 , (A.9)

r

∑
i=1

λi = p1 . (A.10)

We first sum up Eq. (A.8) for all values of i and then insert Eqs.(A.9) and (A.10) into it. This yields

C2 =
−2C1p1 − 3p2

r
.

Inserting this relation into Eq. (A.8) and considering this equation for two distinct values of i, say
1 and k ̸= 1, one can eliminate the variable C1 to get a relation between λ1 and λk. After some
algebra, one finds

λk = λ1 or λk =
λ1p1 − p2

λ1r − p1
.

Since this argument holds for any k ̸= 1, it must hold that the eigenvalues λi are either all equal
or can only take two distinct values. In the first case, in which all the eigenvalues are equal, one
obtains the isolated points (p2, p3) = (1/r, 1/r2) in Fig. 5.2 in the main text. In the second case,
the rank r PSD matrices corresponding to the stationary points of the Lagrangian (A.7) have a
spectrum with ra degenerate eigenvalues λa and r − ra eigenvalues λb. Assuming, without loss of
generality, λa > λb, one can show that the minimal value of the third moment is obtained when
ra = r − 1.

Bibliography

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge
University Press, 2009).

[2] G. Benenti, G. Casati, and G. Strini, Principles of Quantum Computation and Information
(WORLD SCIENTIFIC, 2004).

[3] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (2008).

[4] N. Laflorencie, Physics Reports 646, 1 (2016).

[5] M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).

http://dx.doi.org/10.1017/cbo9780511976667
http://dx.doi.org/10.1142/5528
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1016/j.physrep.2016.06.008
http://dx.doi.org/10.1103/PhysRevLett.71.666


BIBLIOGRAPHY 77

[6] X. Dong, Nature Comm. 7, 12472 (2016).

[7] S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006).

[8] M. Van Raamsdonk, Gen. Rel. and Grav. 42, 2323 (2010).

[9] J. Maldacena and L. Susskind, Fortschr. Phys. 61, 781–811 (2013).

[10] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt,
and C. F. Roos, Science 364, 260 (2019).

[11] V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller, P. Calabrese, B. Ver-
mersch, and M. Dalmonte, SciPost Phys. 12, 106 (2022).

[12] A. Elben, R. Kueng, H.-Y. R. Huang, R. van Bijnen, C. Kokail, M. Dalmonte, P. Calabrese,
B. Kraus, J. Preskill, P. Zoller, and B. Vermersch, Physical Review Letters 125, 200501 (2020).

[13] A. Neven, J. Carrasco, V. Vitale, C. Kokail, A. Elben, M. Dalmonte, P. Calabrese, P. Zoller,
B. Vermersch, R. Kueng, and B. Kraus, npj Quantum Inf 7, 152 (2021).

[14] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner,
Science 353, 794 (2016).

[15] A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman, S. Choi, V. Khemani, J. Léonard,
and M. Greiner, Science 364, 256–260 (2019).

[16] R. Islam, R. Ma, P. M. Preiss, M. Eric Tai, A. Lukin, M. Rispoli, and M. Greiner, Nature 528,
77 (2015).

[17] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008).

[18] J. J. Bisognano and E. H. Wichmann, Journal of Mathematical Physics 17, 303 (1976).

[19] R. E. Arias, D. D. Blanco, H. Casini, and M. Huerta, Phys. Rev. D 95, 065005 (2017).

[20] C. Kokail, B. Sundar, T. V. Zache, A. Elben, B. Vermersch, M. Dalmonte, R. van Bijnen, and
P. Zoller, Phys. Rev. Lett. 127, 170501 (2021).

[21] C. Kokail, R. van Bijnen, A. Elben, B. Vermersch, and P. Zoller, Nature Physics 17 (2021).

[22] W. Zhu, Z. Huang, and Y.-C. He, Phys. Rev. B 99, 235109 (2019).

[23] K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner, Phys. Rev. A 66 (2002).

[24] A. Ferraro, D. Cavalcanti, A. García-Saez, and A. Acín, Phys. Rev. Lett. 100 (2008).

[25] D. Cavalcanti, A. Ferraro, A. García-Saez, and A. Acín, Phys. Rev. A 78 (2008).

http://dx.doi.org/10.1038/ncomms12472
https://link.aps.org/doi/10.1103/PhysRevLett.96.181602
https://doi.org/10.1007/s10714-010-1034-0
http://dx.doi.org/10.1002/prop.201300020
http://dx.doi.org/10.1126/science.aau4963
http://dx.doi.org/ 10.21468/SciPostPhys.12.3.106
http://dx.doi.org/ 10.1103/PhysRevLett.125.200501
https://doi.org/10.1038/s41534-021-00487-y
http://dx.doi.org/10.1126/science.aaf6725
http://dx.doi.org/10.1126/science.aau0818
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
https://link.aps.org/doi/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1063/1.522898
http://dx.doi.org/ 10.1103/PhysRevD.95.065005
http://dx.doi.org/ 10.1103/PhysRevLett.127.170501
https://doi.org/10.1038/s41567-021-01260-w
http://dx.doi.org/10.1103/PhysRevB.99.235109
http://dx.doi.org/10.1103/PhysRevA.66.042327
http://dx.doi.org/10.1103/PhysRevLett.100.080502
http://dx.doi.org/10.1103/PhysRevA.78.012335


BIBLIOGRAPHY 78

[26] S. Marcovitch, A. Retzker, M. B. Plenio, and B. Reznik, Phys. Rev. A 80 (2009).

[27] V. Eisler and Z. Zimborás, New J. Phys. 16, 123020 (2014).

[28] N. E. Sherman, T. Devakul, M. B. Hastings, and R. R. P. Singh, Phys. Rev. E 93 (2016).

[29] C. De Nobili, A. Coser, and E. Tonni, J. Stat. Mech. 2016, 083102 (2016).

[30] H. Wichterich, J. Molina-Vilaplana, and S. Bose, Phys. Rev. A 80 (2009).

[31] A. Bayat, S. Bose, and P. Sodano, Phys. Rev. Lett. 105 (2010).

[32] A. Bayat, S. Bose, P. Sodano, and H. Johannesson, Phys. Rev. Lett. 109 (2012).

[33] T.-C. Lu and T. Grover, Phys. Rev. B 99, 075157 (2019).

[34] P. Ruggiero, V. Alba, and P. Calabrese, Physical Review B 94, 035152 (2016).

[35] X. Turkeshi, P. Ruggiero, and P. Calabrese, Phys. Rev. B 101 (2020).

[36] G. B. Mbeng, V. Alba, and P. Calabrese, J. Phys. A 50, 194001 (2017).

[37] S. Wald, R. Arias, and V. Alba, J. Stat. Mech. 2020, 033105 (2020).

[38] H. Shapourian, S. Liu, J. Kudler-Flam, and A. Vishwanath, PRX Quantum 2, 030347 (2021).

[39] H. Shapourian, K. Shiozaki, and S. Ryu, Physical Review B 95, 165101 (2017).

[40] H. Shapourian, P. Ruggiero, S. Ryu, and P. Calabrese, SciPost Physics 7, 37 (2019).

[41] K. Shiozaki, H. Shapourian, and S. Ryu, Phys. Rev. B 95, 205139 (2017).

[42] J. Kudler-Flam, H. Shapourian, and S. Ryu, SciPost Phys. 8 (2020).

[43] V. Eisler and Z. Zimborás, Physical Review B 93 (2016).

[44] V. Eisler and Z. Zimborás, New Journal of Physics 17, 053048 (2015).

[45] E. Cornfeld, E. Sela, and M. Goldstein, Phys. Rev. A 99 (2019).

[46] P. Calabrese, J. Cardy, and E. Tonni, Physical Review Letters 109, 130502 (2012).

[47] P. Calabrese, J. Cardy, and E. Tonni, Journal of Statistical Mechanics: Theory and Experi-
ment 2013, P02008 (2013).

[48] P. Calabrese, L. Tagliacozzo, and E. Tonni, J. Stat. Mech. 2013, P05002 (2013).

[49] P. Calabrese, J. Cardy, and E. Tonni, Journal of Physics A: Mathematical and Theoretical 48,
015006 (2014).

http://dx.doi.org/10.1103/PhysRevA.80.012325
http://dx.doi.org/10.1088/1367-2630/16/12/123020
http://dx.doi.org/10.1103/PhysRevE.93.022128
http://dx.doi.org/10.1088/1742-5468/2016/08/083102
http://dx.doi.org/10.1103/PhysRevA.80.010304
http://dx.doi.org/10.1103/PhysRevLett.105.187204
http://dx.doi.org/10.1103/PhysRevLett.109.066403
https://link.aps.org/doi/10.1103/PhysRevB.99.075157
http://dx.doi.org/10.1103/PhysRevB.94.035152
http://dx.doi.org/10.1103/PhysRevB.101.064207
http://dx.doi.org/10.1088/1751-8121/aa6734
http://dx.doi.org/ 10.1088/1742-5468/ab6b19
http://dx.doi.org/10.1103/PRXQuantum.2.030347
http://dx.doi.org/10.1103/PhysRevB.95.165101
http://dx.doi.org/10.21468/SciPostPhys.7.3.037
http://dx.doi.org/10.1103/PhysRevB.95.205139
http://dx.doi.org/10.21468/SciPostPhys.8.4.063
http://dx.doi.org/10.1103/PhysRevB.93.115148
http://dx.doi.org/10.1088/1367-2630/17/5/053048
http://dx.doi.org/10.1103/PhysRevA.99.062309
http://dx.doi.org/10.1103/PhysRevLett.109.130502
http://dx.doi.org/10.1088/1742-5468/2013/02/p02008
http://dx.doi.org/10.1088/1742-5468/2013/02/p02008
https://doi.org/10.1088/1742-5468/2013/05/p05002
http://dx.doi.org/10.1088/1751-8113/48/1/015006
http://dx.doi.org/10.1088/1751-8113/48/1/015006


BIBLIOGRAPHY 79

[50] P. Ruggiero, V. Alba, and P. Calabrese, Physical Review B 94, 195121 (2016).

[51] O. Blondeau-Fournier, O. A. Castro-Alvaredo, and B. Doyon, J. Phys. A 49, 125401 (2016).

[52] D. Bianchini and O. A. Castro-Alvaredo, Nucl. Phys. B 913, 879–911 (2016).

[53] O. A. Castro-Alvaredo, C. De Fazio, B. Doyon, and I. M. Szécsényi, JHEP 2019 (2019).

[54] O. A. Castro-Alvaredo, C. De Fazio, B. Doyon, and I. M. Szécsényi, J. Math. Phys. 60, 082301
(2019).

[55] F. Ares, R. Santachiara, and J. Viti, JHEP 2021 (2021).

[56] V. Eisler and Z. Zimborás, New J. Phys. 16, 123020 (2014).

[57] M. J. Gullans and D. A. Huse, Phys. Rev. X 9, 021007 (2019).

[58] J. Kudler-Flam, Y. Kusuki, and S. Ryu, JHEP 2020 (2020).

[59] M. Hoogeveen and B. Doyon, Nucl. Phys. B 898, 78–112 (2015).

[60] B. Shi, X. Dai, and Y.-M. Lu, (2021), arXiv:2012.00040 .

[61] V. Alba and P. Calabrese, EPL 126, 60001 (2019).

[62] A. Coser, E. Tonni, and P. Calabrese, J. Stat. Mech. 2014, P12017 (2014).

[63] X. Wen, P.-Y. Chang, and S. Ryu, Phys. Rev. B 92 (2015).

[64] S. Murciano, V. Alba, and P. Calabrese, (2021), arXiv:2110.14589 .

[65] T.-C. Lu, T. H. Hsieh, and T. Grover, Physical Review Letters 125, 116801 (2020).

[66] C. Castelnovo, Physical Review A 88, 042319 (2013).

[67] O. Hart and C. Castelnovo, Phys. Rev. B 97 (2018).

[68] Y. A. Lee and G. Vidal, Phys. Rev. A 88 (2013).

[69] X. Wen, P.-Y. Chang, and S. Ryu, Journal of High Energy Physics 2016, 12 (2016).

[70] X. Wen, S. Matsuura, and S. Ryu, Phys. Rev. B 93 (2016).

[71] U. Schollwöck, Ann. of Phys. 326, 96 (2011).

[72] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

[73] A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991).

[74] A. Peres, Physical Review Letters 77, 1413 (1996).

http://dx.doi.org/10.1103/PhysRevB.94.195121
http://dx.doi.org/10.1088/1751-8113/49/12/125401
http://dx.doi.org/10.1016/j.nuclphysb.2016.10.016
http://dx.doi.org/10.1007/JHEP11(2019)058
http://dx.doi.org/10.1063/1.5098892
http://dx.doi.org/10.1063/1.5098892
http://dx.doi.org/10.1007/JHEP10(2021)175
http://dx.doi.org/10.1088/1367-2630/16/12/123020
http://dx.doi.org/10.1103/PhysRevX.9.021007
http://dx.doi.org/10.1007/JHEP04(2020)074
http://dx.doi.org/10.1016/j.nuclphysb.2015.06.021
http://arxiv.org/abs/2012.00040
http://dx.doi.org/10.1209/0295-5075/126/60001
http://dx.doi.org/10.1088/1742-5468/2014/12/P12017
http://dx.doi.org/10.1103/PhysRevB.92.075109
http://arxiv.org/abs/2110.14589
http://dx.doi.org/10.1103/PhysRevLett.125.116801
http://dx.doi.org/10.1103/PhysRevA.88.042319
http://dx.doi.org/10.1103/PhysRevB.97.144410
http://dx.doi.org/10.1103/PhysRevA.88.042318
http://dx.doi.org/10.1007/JHEP09(2016)012
http://dx.doi.org/10.1103/PhysRevB.93.245140
http://dx.doi.org/https://doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.43.5950
http://dx.doi.org/10.1103/PhysRevLett.77.1413


BIBLIOGRAPHY 80

[75] G. Vidal and R. F. Werner, Physical Review A 65, 032314 (2002).

[76] M. B. Plenio, Phys. Rev. Lett. 95 (2005).

[77] R. Simon, Phys. Rev. Lett. 84, 2726 (2000).

[78] H. Shapourian, K. Shiozaki, and S. Ryu, Phys. Rev. Lett. 118, 216402 (2017).

[79] J. Eisert, V. Eisler, and Z. Zimborás, Physical Review B 97, 1 (2018).

[80] H. J. Borchers and J. Yngvason, Journal of Mathematical Physics 40, 601–624 (1999).

[81] H. Casini, M. Huerta, and R. C. Myers, Journal of High Energy Physics 2011 (2011).

[82] G. Wong, I. Klich, L. A. P. Zayas, and D. Vaman, Journal of High Energy Physics 2013 (2013),
10.1007/jhep12(2013)020.

[83] J. Cardy and E. Tonni, Journal of Statistical Mechanics: Theory and Experiment 2016, 123103
(2016).

[84] H. Casini and M. Huerta, Class. Quant. Grav. 26, 185005 (2009).

[85] M. Dalmonte, B. Vermersch, and P. Zoller, Nature Physics 14, 827 (2018).

[86] G. Giudici, T. Mendes-Santos, P. Calabrese, and M. Dalmonte, Phys. Rev. B 98, 134403
(2018).

[87] J. Zhang, P. Calabrese, M. Dalmonte, and M. A. Rajabpour, SciPost Phys. Core 2, 7 (2020).

[88] R. Longo, P. Martinetti, and K.-H. Rehren, Rev. Math. Phys. 22 (2010).

[89] R. E. Arias, H. Casini, M. Huerta, and D. Pontello, Phys. Rev. D 98, 125008 (2018).

[90] M. Mintchev and E. Tonni, JHEP 2021, 204 (2021).

[91] M. Mintchev and E. Tonni, JHEP 2021 (2021).

[92] S. Hollands, (2019), arXiv:1904.08201 .

[93] I. Klich, D. Vaman, and G. Wong, Phys. Rev. Lett. 119 (2017).

[94] P. Fries and I. A. Reyes, Phys. Rev. Lett. 123 (2019).

[95] I. Peschel, Journal of Physics A: Mathematical and General 36, L205 (2003).

[96] I. Peschel and V. Eisler, Journal of Physics A: Mathematical and Theoretical 42, 504003
(2009).

[97] I. Peschel and M.-C. Chung, J. Phys. A 32 (1999).

http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1103/PhysRevLett.118.216402
http://dx.doi.org/10.1103/PhysRevB.97.165123
http://dx.doi.org/10.1063/1.532678
http://dx.doi.org/10.1007/JHEP05(2011)036
http://dx.doi.org/10.1007/jhep12(2013)020
http://dx.doi.org/10.1007/jhep12(2013)020
http://dx.doi.org/10.1088/1742-5468/2016/12/123103
http://dx.doi.org/10.1088/1742-5468/2016/12/123103
http://dx.doi.org/10.1088/0264-9381/26/18/185005
http://dx.doi.org/https://doi.org/10.1038/s41567-018-0151-7
http://dx.doi.org/10.1103/PhysRevB.98.134403
http://dx.doi.org/10.1103/PhysRevB.98.134403
http://dx.doi.org/10.21468/SciPostPhysCore.2.2.007
http://dx.doi.org/10.1142/S0129055X10003977
https://link.aps.org/doi/10.1103/PhysRevD.98.125008
http://dx.doi.org/10.1007/JHEP03(2021)204
http://dx.doi.org/10.1007/JHEP03(2021)205
http://arxiv.org/abs/1904.08201
http://dx.doi.org/10.1103/PhysRevLett.119.120401
http://dx.doi.org/10.1103/PhysRevLett.123.211603
http://dx.doi.org/10.1088/0305-4470/36/14/101
http://dx.doi.org/10.1088/1751-8113/42/50/504003
http://dx.doi.org/10.1088/1751-8113/42/50/504003
http://dx.doi.org/10.1088/0305-4470/32/48/305


BIBLIOGRAPHY 81

[98] V. Eisler and I. Peschel, J. Phys. A 50, 284003 (2017).

[99] V. Eisler and I. Peschel, J. Stat. Mech. 2018, 104001 (2018).

[100] V. Eisler, G. Di Giulio, E. Tonni, and I. Peschel, J. Stat. Mech. 2020 (2020).

[101] G. Di Giulio and E. Tonni, J. Stat. Mech. 2020 (2020).

[102] P. Calabrese and F. H. L. Essler, J. Stat. Mech. 2010, P08029 (2010).

[103] P. Calabrese, M. Campostrini, F. Essler, and B. Nienhuis, Phys. Rev. Lett. 104 (2010).

[104] V. Eisler, E. Tonni, and I. Peschel, J. Stat. Mech. 2019 (2019).

[105] G. Di Giulio, R. Arias, and E. Tonni, J. Stat. Mech. 2019 (2019).

[106] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller, and J. I. Cirac, Nature 574 (2019).

[107] F. Parisen Toldin and F. F. Assaad, Phys. Rev. Lett. 121 (2018).

[108] T. Mendes-Santos, G. Giudici, R. Fazio, and M. Dalmonte, New J. Phys. 22, 013044 (2020).

[109] I. H. Deutsch, PRX Quantum 1, 020101 (2020).

[110] J. Preskill, Quantum 2, 79 (2018).

[111] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, and
E. Kashefi, Nature Reviews Physics 2, 382 (2020).

[112] M. Horodecki, P. Horodecki, and R. Horodecki, Physics Letters A 223, 1 (1996).

[113] B. M. Terhal, Physics Letters A 271, 319 (2000).

[114] N. Friis, G. Vitagliano, M. Malik, and M. Huber, Nature Reviews Physics 1, 72 (2019).

[115] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865
(2009).

[116] O. Gühne and G. Tóth, Physics Reports 474, 1 (2009).
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6
Symmetry-resolved dynamical purification

6.1 Introduction

Symmetry and entanglement represent two cornerstones of our present understanding of many-
body quantum systems. The former governs, e.g., the nature of phases of matter [1–3], while
the latter characterizes different classes of quantum dynamics in and out-of-equilibrium [4–6].
Perhaps surprisingly, the intertwined role of these two pillars - falling under the umbrella of
symmetry-resolved quantum information - has been relatively unexplored until comparatively
recently [7–12]. Such connections are of immediate experimental interest in the context of quan-
tum simulation and quantum computing. Aiming at the ultimate goal of engineering perfectly
isolated quantum systems, experiments in synthetic quantum matter and quantum devices re-
alize system dynamics where coupling to an external bath, whatever weak, is ubiquitous - two
paradigmatic examples being quantum simulators [13, 14] and noisy intermediate-scale quantum
(NISQ) devices [15]. In these settings, the microscopic dynamics is local, and is often captured by
a master equation with global Abelian symmetries, related to observables such as magnetization
or particle number. Against this background, it is an open question whether symmetry-resolved
quantum information can reveal novel, generic classes of quantum dynamics that emerge as a
genuine effect of the competition between unitary and incoherent dynamics that is epitomized
by quantum simulators and NISQ devices. In fact, symmetry-resolved quantum information has
never been studied in the context of open quantum systems.

Here, we develop a theory and an experimental probe protocol for symmetry-resolved quan-
tum information dynamics in synthetic quantum matter and quantum devices. We are interested
in the prototypical scenario depicted in Fig. 6.1a-b): an initial product state of a lattice model is
subjected to the evolution of a U(1) invariant dynamics, where coherent couplings (J) are stronger
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Figure 6.1: Evolution of symmetry-resolved entropies in NISQ devices. Panel a,b): sketch of the models dis-
cussed in the main text. a): free fermions on a square lattice, with tunneling matrix element J and one-body
loss rate γ. b): spin-1/2 chains with long-range XY exchange interactions, and single site spin relaxation
rate γ. The grey areas represent the geometries of the A bipartition of linear length ℓ considered below.
Panel c): time evolution of the symmetry-resolved purity in the sector q = ±1, PA(±1) = tr[ρ2

A,±1], in
NISQ devices undergoing three distinct regimes (indicated by different colors, see text for their relations to
microscopic timescales). The purity initially increases as a function of time, signalling dynamical purifica-
tion (gray dot).

than incoherent ones (γ). Such scenarios are ubiquitous in current experiment settings, and en-
compass both interacting and free theories. They are realized in analogue quantum simulators as
diverse as trapped ions [16], cold atoms in optical lattices [17], arrays of Rydberg atoms [18], and
circuit quantum-electrodynamics settings [19]. Similarly, the interplay between coherent U(1) dy-
namics and dissipation is of direct relevance to certain nascent quantum computers – those that
implement two-qubit SWAP or phase gates with a conserved number of qubit excitations. Con-
crete examples include architectures based on superconducting qubits [20] and trapped ions [21].

Under these rather ubiquitous conditions, we show that a specific set of symmetry-resolved
reduced density matrices undergo dynamical purification as a function of time. This phenomenon
is strikingly different from purification to an uncorrelated steady state, because it does not come at
the expense of quantum information. Using symmetry-resolved negativities, it can be addressed
that entanglement remains finite and sizeable over the entire purification dynamics, both in its
generic and symmetry-resolved formulation 1. Furthermore, the scenario we are interested in is
fundamentally different from (dissipative) state preparation protocols [23–25] (see below).

The dynamical purification we discuss is at odds with conventional expectations based on in-
formation dynamics in many-body systems: starting from low entropy states, Hamiltonian evo-
lution is largely believed to lead to entropy increase, and similar considerations often apply to
non-engineered dissipative evolution. What we show is that, for symmetric systems, there exist
symmetry sectors 2 that evade this scenario. The reason behind this generic - and, we believe, sur-
prising - exception is rooted into the so-far-unexplored combination of the competition between

1We note here that entanglement as witnessed by the negativity requires a different symmetry-resolution with
respect to the reduced density matrix [22]. This is due to the presence of partial transposition.

2In fact, for continuous symmetries, a large majority of the symmetry sectors will display dynamical purification,
albeit at different timescales.
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Figure 6.2: Evolution of symmetry-resolved entropies in NISQ devices. Panel a,b): time evolution of the
symmetry-resolved purity normalized by the partition volume, correspondent to a quantum quench from
a charge-density-wave state, with the dynamics described in Fig.6.1a-b), respectively. At short times, de-
coherences induces a universal scaling behavior. Panel c): symmetry-resolved purity for a long-range XY
spin chain of L = 10 sites, with ℓ = 4. The lines represent theoretical simulations, with (solid) and without
(dashed) decoherence. Dynamical purification is only present in the first case. Circles represent experimen-
tally reconstructed data from for the symmetry-resolved purity in the trapped ion experiment of Ref. [29].
Dynamical purification is experimentally observed for q = −1, and evident for q = 1 in agreement with
both theory and numerics.

coherent and incoherent dynamics, and the presence of a global conserved charge in a many-body
system.

In the exemplifying scenario we anticipated above, we let an initial product state evolve and
observe that no purification takes place in the presence of only one of the two contributions (i.e.
J = 0 or γ = 0). We note that symmetry plays a crucial role for the effect of such competition to
arise, as the latter occurs in reduced density matrices restricted to specific symmetry sectors and
is inaccessible in the absence of symmetry resolution. The fact that we need a global charge to be
conserved and, most emphatically, that we predict unusual scaling laws for entanglement prop-
agation (see below) allow us to designate dynamical purification as a genuine many-body effect.
Thus, dynamical purification is fundamentally distinct from single-body phenomena known in
the realm of quantum optics [26–28], such as collapses and revivals, where still purity can increase
as a function of time for several reasons. From a more practical viewpoint, dynamical purifica-
tion can be seen as a direct – and universal – signature of a dominant coherent dynamics in both
quantum simulators and NISQ devices, thus providing a simple proxy to evaluate their function-
ing. Importantly, such phenomenon appears for a broad class of interacting theories, including
Hubbard-like, long-range and even confining interactions.

The competition between coherent and incoherent processes reflects into the existence of two
distinct dynamical regimes in terms of symmetry-resolved entropy scaling. At short times dissi-
pation is the dominant effect and the symmetry-resolved entropy displays a log-volume behavior
as function of the volume of the partition where it is computed. At intermediate time, it exhibits a
log-area one, since coherent dynamics partly overcomes dissipation and enhances purity in given
quantum number sectors. The corresponding change of dynamical behavior has dramatic conse-
quences on the experimentally relevant symmetry-resolved purity: the latter quantity scales with
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inverse volume and inverse area (Fig. 6.2a-b), respectively. Hence it provides an ideal proxy to
diagnose scaling regimes during dynamical purification. For longer time scales, thermodynam-
ics comes back into the game and all symmetry-resolved entropies show the standard extensive
behavior in subsystem size [12].

The interplay between the two regimes can be illustrated in context of a simplified Marko-
vian master equation for the symmetry-resolved reduced density matrix: within that framework,
the presence of the coherent dynamics interferes with the action of dissipation and thus leads to
a transient regime where entropy is soaked out of the symmetry-resolved reduced density ma-
trix itself. We corroborate our theoretical framework with numerical simulations on a variety of
experimentally relevant scenarios. In particular, we showcase the generality of dynamical purifi-
cation by studying both one- and two-dimensional systems (some of them depicted in Fig. 6.1a-b)
with partitions of different topologies, including both fermionic and bosonic degrees of freedom,
and using different types of (weakly-entangled) initial states.

In order to connect our results to experiments, we develop a protocol to access symmetry
resolved reduced density matrices building on the random measurement toolbox [30–36]. We
show how experimentally demonstrated tools allow for accessing symmetry-resolved moments
of symmetry-resolved reduced density matrices and symmetry-resolved Rényi entropies by means
of post-selecting data. This procedure is very efficient and allows to reach system sizes that
are considerably beyond what can be achieved via full-state tomography, when applicable (See
Ref. [37] for a recent demonstration). We apply our protocol to the trapped ion experiment re-
ported in Ref. [29], reconstructing both symmetry-resolved entropies and momenta of the symmetry-
resolved reduced density matrix. The experiment reveals a sharp dynamical purification (Fig. 6.2c)
which confirms our theoretical findings. This observation demonstrates the general applicability
of our theoretical framework, and concretely illustrates the potential of utilizing symmetry as an
enhanced probing tool in state-of-the-art settings.

This chapter is organized as follows. In Sec. 6.2, we specify the time evolution we are inter-
ested in, and develop a theory for the time evolution of both entropies and negativities in NISQ
devices. We illustrate how entropies show distinct scaling behavior at short (log-volume) and
intermediate (log-area) times, so that symmetry-resolved purities actually increase as a function
of time (dynamical purification). We then argue that, along this purification, entanglement is typ-
ically preserved, so that purification does not take place at the expenses of quantum correlations.
In Sec. 6.5, we present numerical results for both spin chains and fermionic systems supporting
our theoretical findings. In Sec. 6.6, we discuss the protocol for the experimental measurement
of symmetry-resolved entropies, and present a first application in the context of the trapped ion
experiment, that supports the observation of dynamical purification. Finally, we draw our con-
clusions.
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6.2 Time-evolution of symmetry-resolved entropies and nega-

tivities

In this section, we present a theoretical description of symmetry-resolved quantum information
in NISQ devices. We are specifically interested in the short- to intermediate timescales, that is,
before dissipation takes over the system dynamics overwhelming coherent effects.

We shall first discuss the generic setting and subsequently focus on a specific example that
presents the generic features we are interested in: the existence of distinct regimes of entropy
scaling, dynamical purification, and its interplay with entanglement. While, for the sake of clarity,
most of the technical discussion will be based on illustrative examples, we point out that our
conclusions are only relying on very generic conditions, that we now specify in the next section,
6.3. In the following, we will consider, for the sake of simplicity, h̄ = 1 and lattice constant a = 1.

6.3 Short-time dynamics: emergent purification

The system dynamics we are interested in features the following characteristics:

• a D-dimensional system, and a ’convex’ partition A herein with smooth boundaries3, vol-
ume VA and area ∂VA;

• an initial state |ψ0⟩ which is a product state in real space;

• the full system dynamics shall be described by a Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation. In particular, we will be interested in Markovian time-evolution;

• the system Hamiltonian shall have a global symmetry G. For the sake of simplicity, we will
consider U(1) below 4; most results are immediately extended to ZN symmetries, and might
also be applicable to the symmetry resolution of continuous non-Abelian groups when sec-
tors are labelled by Abelian subgroups. We assume local (i.e., nearest-neighbor, one- and
two-body) couplings, that are homogeneous in space. We define as J the energy scale asso-
ciated to these terms. Below, we will discuss how sufficiently long-range interactions can
also be included;

• dissipation shall instead be described by local (single-site) jump operators. For the sake of
simplicity, it is assumed that all sites are affected by the same dissipative processes. Dissipa-
tion shall violate the symmetry G. We define as γ the energy scale associated to these terms,

3This assumption is only needed to a have simple count of the coherent processes. Essentially, we do not want to
have sites of the complement that are accessible from two sites of the partition within first order perturbation theory.

4The treatment can be extended to local symmetries, and thus gauge theories. The latter case is more complicated
due to the definition of reduced density matrices in Hilbert spaces without tensor-product structure. We consider
a 1D case in the Sec. 6.5, that is closer in spirit to the case of global symmetries since Gauss law can be integrated
exactly in that case.
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that is, the bare inverse decay rate. Other sources of dissipation can in principle be intro-
duced: as it will be clear below, we expect that their effects are not particularly interesting
for the sake of our treatment.

Such assumptions are ubiquitous in the context of synthetic quantum systems, such as cold atoms
in optical lattices or tweezers, trapped ions, and arrays of superconducting qubits. Engineering
initial states in product state form (up to initialization errors) is of widespread practice, as this
can be typically carried out by manipulating quantum states locally. The system dynamics is
often local and associated to continuous symmetries, such as particle number or magnetization
conservation. Dissipation is generically violating conservation laws associated to the latter quan-
tities: examples include particle loss in cold atom Hubbard models, and fully depolarizing noise
and spin relaxation in trapped ions and superconducting circuit architectures.

Most of the present experimental settings are able to access parameter regimes where dissipa-
tion is weaker than the coherent dynamics, with the ratio γ/J ranging from 10−3 to 10−1 [14, 17].
We will focus explicitly on this parameter regime, and consider dissipation as a perturbation on
the top of the coherent dynamics.

Under these assumptions, one can identify three timescales: two intrinsic, and one typical of
the subsystem one is interested in. The first one tJ = 1/J is associated to coherent local dynamics.
The second one t2 = 1/γ is instead related to a timescale after which (on average) all sites within
the partition have undergone a quantum jump. The last one, typical of the subsystem A, t1 =

1/(VAγ) is related to the timescale required to observe a single quantum jump within A.
Let us mention here, that in contrast to the notion of dissipative state preparation [23–25], we

study here a given evolution of a physical system. That is, we are not engineering the coupling to
the bath to drive the system into a desired state, but rather, discuss the dynamics corresponding
to naturally present quantum noise. In addition, whereas dissipative state preparation can be
utilized to obtain as a unique stationary state a highly entangled many-body state, or states whose
subsystems can be very pure, the situation we consider here is not related to long-time dynamics.
We will indeed show that dynamical purification occurs at intermediate times.

For times t ≫ t2, ρA will be completely mixed, also in its symmetry-resolved sectors because
the dissipative contribution is overwhelming. Similarly, for regimes where γ ≫ J, the system
dynamics is dominated by incoherent processes. A promising regime to observe competition
between coherent and incoherent dynamics is thus VAγ, J > γ, and is the one we will consider
below. We remark that this is a rather generic situation for quantum simulators of many-body
systems, where one tries to realize dynamics that are as coherent as possible (J > γ) for large
number of degrees of freedom (VA ≫ 1). This second condition is not needed in general: however,
it considerably simplifies the theoretical treatment, as it allows to treat timescales in a way that is
easier to interpret. We will thus assume that below, and comment on that at the end of the section.
In Sec. 6.5, we will discuss in more details in which experimental platforms such conditions are
met.

We emphasize there that the presence of three dynamical regimes (that, as we will show below,
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are captured by different entropy scaling) stems from purely geometrical considerations: while
Hamiltonian dynamics is acting solely at the boundary between the partitions5, incoherent pro-
cesses are instead present over the entire volume of the partition one is interested in. As such, the
short-time evolution of symmetry-resolved density matrices will be dictated by this competition,
and is expected to be largely insensitive to other characteristics, including the partition geome-
try and topology, and (to a weaker extent) the initial state. The theoretical apparatus discussed
in the next section can be adapted to incorporate such generic features. We nevertheless opted
to focus on a simple, yet paradigmatic example, and defer the demonstration of generality of
symmetry-resolved dynamical purification to the numerical experiments discussed in Sec. 6.5.

6.3.1 Explicit example: hard-core Bose-Hubbard model in 2D

For the sake of clarity and to make the connections with the numerical experiments below more
evident, we start by focusing on a specific instance, and return to the general case at the end of
the section. We consider a model of hard-core bosons hopping on an infinite 2D square lattice,
described by the Hamiltonian

H =
J
2 ∑
<i,j>

(b†
i bj + h.c.). (6.1)

Here, bj (b†
j ) is the bosonic annihilation (creation) operator at site j such that nj = b†

j bj gives the
number operator for that site. The Hamiltonian dynamics conserves the total number of bosons,
and is thus U(1) invariant. The system time-evolution is described by a master equation:

∂tρ = −i[H, ρ] + ∑
j

γ

[
bjρb†

j + b†
j ρbj −

1
2
{bjb†

j + nj, ρ}
]

(6.2)

where the second term describes single particle loss and gain processes with decay rate γ. The
full dynamics is schematically depicted in Fig. 6.3a. While we will keep generality in the theory
part with respect to the possible dissipation mechanisms, in the numerical examples below, we
will only consider loss terms, as those are more readily accessible experimentally.

We investigate the dynamics starting from a charge-density wave (CDW), with alternating
empty (grey) and filled (blue) sites (see Fig.6.3b). Within this state, we consider the reduced den-
sity matrix ρA corresponding to a rectangular partition A of size Lx × Ly. Let Q = ∑j∈A nj − 1

2 LxLy

the number of bosons in the partition A above half-filling. Note that, while the full time evolution
breaks U(1) invariance, the reduced density matrix ρA preserves its block-diagonal form: this is
more conveniently seen when interpreting Eq. (6.2) as a collection of quantum trajectories, each
corresponding to the solution of a stochastic Schrödinger equation. Within each trajectory, the
total number of particles at each time t is well defined: a single quantum jump only changes that
value by an integer value. Following the previous section, we denote such symmetry-resolved

5In the case of sufficiently short ranged power-law interactions, such actions is extended to the few sites close to
the boundary.
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Figure 6.3: Schematics of the short-time dynamics in lattice models considered here; we show here the
sector with q = −1. Panel a: the system is defined on a square lattice. The initial state is a charge-density
wave |Ψ⟩: grey and blue circles represent empty and full sites, respectively. At short time, the evolution
involves states belonging to the E0 and E1 subspaces only (see examples, where sites circled in red are the
ones changed with respect to |Ψ⟩). The influence of the rest of the Hilbert space E2 on the system dynamics
is neglected, as accessing these states will require at least 3 proceeses starting from |Ψ⟩. Panel b): same
as in panel a, but for the 1D case. Note that, in the following sections, several partition topologies will
be discussed. Panel c): structure of the time evolved reduced-density matrix. At short times, it is further
block-diagonal in both E0 and E1, where the E2 sector is traced away.

reduced density matrices as ρA(q).
We are interested in short time evolution, where dissipation and coherent dynamics strongly

compete. Specifically, we focus on timescales accessible within perturbation theory, that is,

J2t2, tγ ≪ 1.

Therefore, we can solve Eq. (6.2) in second order in t to obtain the time-evolved density matrix
ρ(t) as a function of the initial state ρ(0) [38]. We focus on the q = −1 sector of the reduced
density matrix, that is, the one where the number of bosons in the partition is decreased by 1 with
respect to half-filling. At short times, this is the most populated sector that does contribute to the
initial state. We will comment on the other sectors below. Within this framework, we assume that
only the diagonal elements of the reduced density matrix are affected by the time evolution. This
assumption can be proven for initial states that are product states in real space.

We now divide ρA(−1) into three blocks, schematically depicted in Fig. 6.3:

1. E0(−1): states that are connected to the CDW by a single hopping process: these states differ
from the CDW by a single occupied site at the boundary. We denote the (Lx + Ly) diagonal
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eigenvalues of these states as λE0
k ;

2. E1(−1): states that are connected to the CDW by a single pump process in the bulk; these
states differ from the CDW by a single empty site in the bulk. We denote the (Lx − 2)(Ly −
2)/2 diagonal eigenvalues of these states as λE1

k ;

3. E2(−1): states that are not connected to the CDW by a single tunneling or pump process.
We denote the diagonal eigenvalues of these states as λE2

k . For two-body interacting Hamil-
tonians, these states will be accessed only in third order perturbation theory.

At second order in perturbation theory (the lowest order relevant to the present case), one has the
following scaling of the eigenvalues of ρA(−1):

λE0
k = (J2t2 + γt)/A(t), λE1

k = γt/A(t) (6.3)

with λE2
k = 0, and

A(t) = γt(LxLy − 4)/2 + J2t2(Lx + Ly) (6.4)

We can now compute the time-evolution of the symmetry-resolved entanglement entropies. At
short times t < t1, only dissipation is relevant. In particular, the rank of the reduced density
matrix will be (LxLy), and the corresponding Renyi-2 entropy results:

S(2)
A (q = −1) ∝ log[LxLy] for t ≪ t1, Lx, Ly ≫ 1 (6.5)

and is time-independent. The corresponding purity is:

PA(−1) ∝ 1/[LxLy]. (6.6)

It is worth noting that such ’log-volume’ regime is valid at arbitrarily small times, the simple
reason being that the initial state has no component in the q = −1 subspace.

At intermediate times t1 < t < tJ , tunneling affects the system dynamics. While unitary
time evolution generically leads to further information propagation and, correspondingly, en-
tropy production, here, the opposite takes place: the symmetry-resolved density matrix purifies
as a function of time, i.e., the purity increases and the entropy decreases. The reason for this phe-
nomenon stems from the natural competition between volumetric and perimetral contributions to
the system dynamics: while dissipation has an effect that scales with the volume of the partition,
and thus populates a number of eigenvalues that are proportional to the volume itself, short-time
coherent dynamics is related to boundary effects, and thus favors a much smaller number of states
within the Hilbert space of the partition.

In order to elucidate this effect, we observe that our reduced density matrix is already normal-
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ized, and compute

PA(−1) =
t2

A(t)2 [(Lx + Ly)(J2t + γ)2 + (Lx − 2)(Ly − 2)γ2]

that, in the large volume limit becomes

PA(−1) ≃ 1/(Lx + Ly) for tJ > t > t1.

The corresponding Renyi-2 entropy follows a ‘log-area’ scaling:

S(2)
A (q = −1) ∝ log[Lx + Ly] for tJ > t > t1.

This implies that the transition between the two regimes is characterized by an emergent purifi-
cation, that transits the system from a purity that is inversely proportional to the volume of the
partition, to one that is inversely proportional to its surface. Note that the explicit time evolution
can be computed from the previous equation, and in principle, the position of the ’maximum’ of
the purification can be extracted. While the corresponding formulas reveal no more physical in-
sight, they signal the fact that the purification time decreases as the partition size increases. Due to
the condition tJ < t2, it is not possible to analytically compute the VA → ∞ limit; we nevertheless
expect dynamical purification to systematically decrease with the partition size, as a consequence
of the area versus volume competition.

The calculation above can be straightforwardly generalized to any dimension, modulo the
conditions mentioned at the beginning of the section, under the assumption that dynamics is
acting non-trivially at the boundary (e.g., a state with a layer of empty sites at the boundary will
not experience any meaningful coherent evolution at short times in the q = −1 sector). The
corresponding scaling behavior decomposes into three regimes:

PA(−1) ∝


1/VA t1 ≫ t ≥ 0 (short time),

1/(∂VA) tJ > t > t1 (int. time),

1/2VA t ≫ tJ (long time).

(6.7)

This equation succinctly describes the dynamical scaling regimes depicted in Fig. 6.1. Starting
from an unsurprising short time behavior (top case), the system purifies at intermediate time
scales (center case) before eventually getting fully mixed (bottom case) due to both coherent and
incoherent system dynamics.

6.3.2 General remarks: nature of interactions, initial state, and dissipation

In the explicit example before, we have focused on the most populated sector of the reduced
density matrix not present in the initial state, we expect dynamical purification to occur also
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in other sectors - with, however, a weaker effect due to higher order perturbative processes. The
presence of long-range interactions that decay fast enough (at most as power law) shall not change
this picture at the qualitative level: however, it will lead to a renormalization of the timescale
tJ . Importantly, long-range interactions will not modify the structure of the Hilbert subspaces
discussed above.

While we have focused on purities, additional information can in principle be obtained from
the population of the different sectors (denoted with A(t) above) as well. One example is equili-
bration at long-times: this is beyond the perturbative treatment we have developed, and will be
discussed in the next sections in both simulations and experiments.

The treatment above is specific to an initial state: however, the competition between volumet-
ric and perimetral contributions is in fact generic to a much broader set of experimentally relevant
configurations. For the case of pure states, dynamical purification shall occur as long as the initial
state is separable or weakly entangled, as we show in one of the fermionic examples below. For
highly entangled initial states, the theory above is not immediately applicable. Below, we will
discuss a 1D numerical example, where the initial state has log(ℓ) entanglement: in that case, we
observe no purification. It is also important to stress that, while we have assumed γVA > J, this
is technically not needed at all: indeed, since dissipation acts already at first order in perturbation
theory, there exists always a time scale for which γVA > J2t. In fact, the size of the partition is
irrelevant, as long as it can host significant dynamics within a given symmetry sector.

Most importantly, dynamical purification is present also for initial states that are globally
mixed. In those cases, this is simply due to the fact that the coherent dynamics selects a sub-
set of states in ρA(−1) that are populated due to coupling to Ā. The extent of the dynamical
purification depends on the details of the action of the Hamiltonian on the initial state: we will
investigate a specific scenario below while discussing trapped ion experiments.

Another aspect that is worth discussing is, which type of noise leads to dynamical purifica-
tion. The noise we have considered here has two characteristics: (i) it is described by a Marko-
vian master equation, and (2) it is quantum noise, as testified by the fact that it is described by
non-hermitian jump operators. While these conditions are typically very well satisfied when de-
scribing the dynamics of cold atoms in optical lattices using a master equation, we find useful to
provide a short discussion of these two elements in view of possible applications to other settings.

The first assumption above is delicate. Since we are interested in intermediate time dynamics,
it is reasonable to expect that our findings will not be affected by a bath featuring short-lived
memory effects, as long as the weak system-bath approximation (that we nevertheless consider,
since γ ≪ J) holds. However, more complicated bath structures including strong memory effects
- such as a low-temperature Ohmic bath - cannot be immediately connected to the physical picture
we present here.

The second assumption above is crucial: Hermitian jump operators (such as those, for in-
stance, describing classical noise) would not lead to any dynamical purification. This can be eas-
ily seen by considering the action of dephasing on the various sectors of the symmetry-resolved
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reduced density matrix: for the type of initial states we consider, the latter will not affect popu-
lations. This implies that entropy will be dominated by coherent dynamics, thus increasing with
time. The relevance of the first assumption can potentially be exploited as a diagnostic in the con-
text of quantum noise tomography; interestingly enough, such a probe would be very sensitive,
as the effects we describe can be present for very small values of γ, and can be tuned by changing
the volume of the partition in numerical simulations as well as in experiments.

Finally we find it useful to add two comments framing the physics we observe in the context
of open quantum systems (especially since the primary physical platform we are interested in
are nothing but many-body quantum optical systems, as exemplified by the experimental results
below). First, we observe that the effective dynamics describing the evolution of ρA can be inter-
preted as the time evolution of a density matrix of a system coupled to a bath. This provides an
additional viewpoint on the phenomenon we are interested in, that could be of help to translate
it to other contexts (for instance, in case the two partitions are made of two different types of
degrees of freedom, e.g., describing light-matter interactions). A detailed discussion of this fact is
provided in the appendix, together with a proof of the fact that such effective dynamics is Marko-
vian. Second, we point out that the phenomenology we describe here is fundamentally distinct
from other instances of open system dynamics that may feature a decrease in entropy. One ex-
ample here are revivals in the Jaynes-Cummings model [27] (and similar effects in the context of
non-Markovian dynamics of single spins coupled to cavity modes): there, the phenomenon one
observes is intrinsically few body, and has no relation whatsoever with (continuous) symmetries.
This fundamental difference is clearly apparent into the fact that the universal regimes we have
proposed have not been reported so far in those contexts.

6.4 Negativity over dynamical purification

While the system purifies at short time, due to its coupling to the environment, it cannot be es-
tablished a priori whether this is associated to a loss of shared entanglement between the partition
and its complement. For instance, dynamical purification (with or without symmetry resolution)
can also occur at long times in systems under the presence of dissipation only: a typical example
is relaxation to a vacuum state, that is driven by a single jump operator, and leads to a trivial
state, with no left-over correlations between A and B, and within A. Below, we show explicitly
how symmetry-resolved dynamical purification is drastically distinct from this mechanism: In
particular we show how not only entanglement between A and B is generated as a function of
time, but also that, in any given symmetry sectors (now labeled by quantum number differences),
entanglement remains finite and sizeable (negativity of order 1) over the entire purification pro-
cess. This is a key element that characterizes this symmetry-resolved phenomena, and we will
show below how this is also captured within perturbation theory.

We study the entanglement dynamics for two connected partitions A and B of a spin (or hard-
core boson) system, as governed by Eq. (6.2), in a regime where the partition A undergoes dy-
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namical purification. For the sake of simplicity, we will deal explicitly with the 1D case analog to
the setup described above (see Fig. 6.3b), and restrict the decoherence channels to particle loss, as
this will allow us to keep our notations compact. Our findings are however general, as illustrated
in the next section for various geometries and partition configurations.

In contrast to the situation of dynamical purification, the key features of short-time entan-
glement dynamics of the partial transpose reduced density matrix can already be captured by
solving Eq. (6.2) in first-order perturbation theory, i.e. by studying the dynamics of ρ(t) in first
order in t ≪ 1/(γN), 1/J (≪ 1/γ). We rewrite this as

ρ(t) = ρ(0)− i[H, ρ(0)]t + γt ∑
j

(
bjρ(0)b†

j − 1
2 b†

j bjρ0 − 1
2 ρ0b†

j bj

)
. (6.8)

Consider for concreteness that the even sites 2m, m = 1, . . . , N/2 are occupied and, NA = NB is
even, the density matrix in first-order perturbation theory can be re-expressed as 6

ρ(t) =
(

1 − Nγt
2

)
ρ(0) + Jt(−ib†

NA+1bNA ρ(0) + h.c) + γt
N/2

∑
m=1

b2mρ(0)b†
2m + ... (6.9)

which corresponds to a diagonal part parametrized by the decoherence rate γ, and a pair of off-
diagonal elements associated with the hopping J. Note that there is no diagonal contribution
due to the hopping, as this only appears in next-to-leading order as discussed above. Taking the
partial transpose of Eq.(6.9) leads to

ρTA(t) =
(

1 − Nγt
2

)
ρ(0) + Jt(−ib†

NA+1ρ(0)b†
NA

+ h.c) + γt
N/2

∑
m=1

b2mρ(0)b†
2m, (6.10)

which has a 3-block structure associated with the quantum number q̃ = qA − qB

ρTA(q̃ = 0, t) =

(
1 − Nγt

2

)
ρ(0) (6.11)

ρTA(q̃ = −1, t) = γt
NA/2

∑
m=1

b2mρ(0)b†
2m ++Jt(−ib†

NA+1ρ(0)b†
NA

+ h.c)

ρTA(q̃ = 1, t) = γt
N

∑
m=NA/2+1

b2mρ(0)b†
2m.

The sector q̃ = 0 corresponds to the initial state component, has a weight tr(ρTA
q̃=0(t)) of order

1, and features no entanglement. The sector q̃ = −1, corresponding to the situation where the A
partition loses one excitation with respect to partition B, has the richest structure, representing the
interplay between particle loss from A and coherence dynamics (hopping from A to B). Finally,

6For the sake of clarity, we do not include intra-partition hopping terms: at lowest order, their only effect is to
renormalize the dynamics in the q̃ = 0, that we are not immediately interested here
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the last sector q̃ = 1 represent decoherence events occurring in the B partition. In each sector, we
can calculate the spectrum

λ̃(q̃ = 0, t) =

(
1 − Nγt

2

)
(6.12)

λ̃(m=1,..., NA
2 −1)(q̃ = −1, t) = γt (6.13)

λ̃(m=
NA

2 , NA
2 +1)(q̃ = −1, t) = (γ ±

√
γ2 + 4J2)

t
2
≈ (

γ

2
± J)t (6.14)

λ̃(m=1,..., NB
2 )(q̃ = 1, t) = γt, (6.15)

where, in the last part of the third line, we have neglected the term γ2 ≪ J2.
The existence of a negative eigenvalue λ̃(m=NA/2)(q̃ = −1) = −Jt + γt/2 ≈ −Jt < 0 demon-

strates that the state is entangled, and remains so over dynamical purification. After normaliza-
tion, we obtain the symmetry-resolved negativity

N (q̃ = −1) ≈ 2Jt
NAγt

=
2J

NAγ
(6.16)

that features a characteristic 1/γ scaling (that is reminiscent of the fact that this is a perturbative
effect). Interestingly, the short-time behavior of the negativity is constant: this is consistent with
the fact that only one, large negative eigenvalue dominates its behavior. The inverse scaling with
the partition size is due to the fact that we are normalizing symmetry-resolved density matrices,
so boundary contributions to the entanglement generated by the mechanism described above are
expected to be of order 1/NA.

6.5 Numerical results

6.5.1 Spin chains

In this section, we provide numerical evidence for symmetry-resolved purification in one-dimensional
spin chains. Specifically, we consider quench dynamics in the XY-model with Hamiltonian

HXY = ∑
i>j

Jij(σ
+
i σ−

j + σ−
i σ+

j ) + ∑
i

δiσ
z
i (6.17)

where σ±
j = (σx

j ± iσy
j )/2, subject to spin excitation loss with rate γ, modeled via the jump oper-

ators
√

γσ−
i for i = 1, . . . , N. The coherent hopping is here determined by the interaction matrix

Jij. We consider next-neighbour interactions, Ji,j = Jδi+1,j, and long-range interactions with power
law coefficient α, Ji,j = J/|i − j|α, respectively. A disordered longitudinal field δi can be added
which we sample independently for each lattice site from the uniform distribution on [−δ, δ]. We
initialize the system with N = 8 sites, divided into subsystems A = [1, 2, 3, 4] and B = [5, 6, 7, 8],
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Figure 6.4: Dynamical purification and symmetry-resolved entanglement for one-dimensional XY spin
models. We choose a system with N = 8, initialized in a Néel state |↓↑⟩⊗N/2 and evolved with HXY subject
to particle loss with rate γ (see main text). We take A = [1, 2, 3, 4] and B = [5, 6, 7, 8]. In panels (a,b,d,e), we
consider short-range interactions Jij = Jδi−1,j and vanishing disorder δ/J = 0. We present the symmetry-
resolved purity PA(q) [panels (a,d)] and the normalized symmetry-resolved negativity N (q̃) [panels (b,e)]
for various imbalance sectors q̃ (a,b) and decoherence rates γ (d,e). The inset in (e) shows the early time
value N (−1)|t=0+ as function of γ/J. In panels (c,f), we present the symmetry-resolved purity for various
imbalance sectors (c) and decoherence rates (f) in a system with long-range interactions Jij ∼ J/|i − j|1.2

and a fixed disordered longitudinal field, sampled uniformly from [−δ, δ] with δ/J = 0.86. Gray lines in
(d,e) are results from perturbation theory, Eqs. (B.4) and (6.16), respectively.

in the Néel state |Ψ0⟩ = |↓↑⟩⊗N/2 with total magnetization Sz = ∑N
i=1 σz

i = 0. While the total
magnetization is conserved by the Hamiltonian part of the dynamics HXY, the incoherent spin
excitation loss leads to a population of various sectors.

In Fig. 6.4 (a,d), we display the symmetry-resolved purity of the subsystem A with NA = 4
sites for various sectors q in a system with short-range interactions Jij = Jδi−1,j and vanishing
disorder δ/J = 0. Clearly, the sector q = −1 exhibits dynamical purification at times Jt ≈ 1
which is absent in the sector q = 0 and also for the purity tr[ρ2

A] of the total density matrix ρA.
Note that the second peak in panel (a) (at around Jt = 4) is a boundary effect due to the partition
size. As predicted by perturbation theory [Eq. (6.7)], purification is pronounced most strongly for
weak decoherence [see Fig. 6.4d)]. While the initial values PA(1)|t=0+ = 2/NA is independent
of γ, the peak of the purity is approaching the value of the purity for unitary dynamics. On the
contrary, for γ ≳ J, the dynamics is dominated by decoherence, and purification is absent.

In Fig. 6.4 (b,e), we show the symmetry-resolved negativity N (q̃). We observe that symmetry-
resolved entanglement between A and B is dominated by the magnetization imbalance sector
q̃ = −1 sector. The magnitude of the negativity of sector q̃ is much larger than the total system
negativity. In addition, as shown in the inset, the early time value at Jt = 0+ is decreasing as
∼ 1/γ with increasing decoherence rate γ, as predicted by perturbation theory [Eq.(6.16)].
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Figure 6.5: Symmetry-resolved purity for the Bose-Hubbard model in one dimension. We consider a system
with L = 8 and we take A = [1, 2, 3, 4] and B = [5, 6, 7, 8]. In panel a) and b) we start from the state
|ψ0⟩ = |1, 2⟩⊗L/2 and consider: a) U = 0.5J, γ = 0.1J; b) and q = 5, γ = 0.1J. In panel c) and d) we start
from the state |ψ0⟩ = |0, 1⟩⊗L/2 and consider: a) U = 0.5J, γ = 0.1J; b) and q = 1, γ = 0.1J.

Long-range, disordered spin chains. - To illustrate the phenomenon of dynamical purification
in more generic interacting spin chains, we display in panels (c,f) the symmetry-resolved purity in
a system with long-range hopping with powerlaw coefficient α = 1.2 and in the presence of a fixed
disordered longitudinal field with δ = 0.86J. Our findings are qualitatively very similar to the
case of the (non-interacting) model with short-range interaction: dynamical purification is clearly
observed in the symmetry sector q = −1 with increasing magnitude for weaker decoherence.

Experimental setups. - The dynamics discussed in this section is relevant for a variety of setups.
In the next section, we will discuss and demonstrate implementation with trapped ions in Paul
traps. Another natural setting is Rydberg atoms in optical tweezers or optical lattices. Within
those, the dipolar version of the XY Hamiltonian in Eq. (6.17) is naturally realized when consid-
ering direct dipole-dipole interactions within the Rydberg manifold (for a many-body demon-
stration, see Ref. [39]). Spin excitation losses occur naturally, and can be further enhanced via
incoherently coupling the two Rydberg states. A very similar scenario (dipolar couplings) is also
realized with superconducting qubits in 3D cavities, and with polar molecules or magnetic atoms
in optical lattices.
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6.5.2 Bose Hubbard model

In this section we discuss numerical simulations of the Bose-Hubbard model. This allows us
to provide explicit evidence of dynamical purification in a full parameter regime connecting the
strongly interacting case discussed above for the XY model, and Gaussian theories described later
in the section.

The model Hamiltonian reads:

HBH = J ∑
i

(
b†

i bi+1 + b†
i+1bi

)
+ U ∑

i
ni (ni − 1) . (6.18)

Here b, b† are bosonic operators, ni = b†
i bi is the number operator on site i. For computational

convenience, we truncate the number of bosons at a maximum of two per site (this also emulates
well experiments in the presence of strong three-body losses [40, 41]). The Hamiltonian preserves
the total number of particles N = ∑i ni. The system dynamics is also subjected to particle loss
modeled by γbi, i = 1, . . . , L. The loss parameter γ is fixed to γ = 0.1J for all the simulations.

We consider a bipartite system of L = 8, where A = [1, 2, 3, 4] and B = [5, 6, 7, 8]. According
to the criteria discussed above, dynamical purification will take place for several choices of the
initial state: we focus here on two cases: the state |ψ0⟩ = |1, 2⟩⊗L/2, where 2 means that the site is
doubly occupied while 1 means that there is a single boson; and the state |ψ0⟩ = |0, 1⟩⊗L/2 where
0 denotes an empty site. We calculate, during the evolution of the system, the symmetry-resolved
purity PA(q), where q denotes the number of particles in subsystem A.

In Fig. 6.5 we plot the symmetry-resolved purity as a function of time, starting from the state
(1, 2, 1, 2..): in panel a) we consider sectors q = 4, 5, 6 with U = 0.5J, in panel b) we fix q = 5 and
take into account different values of U. In agreement with our theory, we observe no purification
in the sector q = 6 in panel a) since it is the only one occupied in the initial state. Sectors q = 4, 5
instead purify at intermediate times with a more pronounced purification visible in the nearest
sector q = 5. Afterwards the curves approach the same value of purity as information equiparti-
tion shall occur at long times. In panel b) we observe the same phenomenology for several values
of the interaction strength. Here the sector q = 5 experience purification but the value and the
position of the peak changes as function of U.

In panels c) and d) of Fig. 6.5, we investigate the same scenario but starting from the state
(0, 1, 0, 1..), and consider in panel c) the symmetry-resolved purity for sectors q = 1, 2 with U =

0.5J, and in panel d) the same quantity for q = 1 and several values of U. We observe the same
phenomenology of panel c) and d). Dynamical purification is, in fact, present for any initial state
which is a product state. Here we observe that the sector q = 1 purifies and the effect is present
also when the strength of the interaction increases, as witnessed in panel d).

The results of the Bose-Hubbard and XY models indicate, as predicted by our theory, that
dynamical purification occurs over the entire interaction regime - from weak to infinite coupling.
It is worth noticing that the maximum purity is weakly affected, while the time to reach the
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maximum itself is sensitive to both initial filling fraction, and interactions. The first effect can
be traced back to bosonic enhancement. The second is instead likely due to the effect of a more
constrained dynamics for strong interactions (many states becoming non-resonant), that is likely
affecting terms beyond second order in perturbation theory.

Experimental setups. - Bose-Hubbard models with single particle losses describe well the dy-
namics of cold atoms in optical lattices, where some of the probing techniques introduced here
can be implemented [30, 32].

6.5.3 U(1) lattice gauge theory

An even stronger form of interacting system in 1D is provided by gauge theories with U(1) center.
For those models, Coulomb interactions follow a genuine linear increase as a function of distance
due to confinement. However, since charge creation is still a local process, one expects dynamical
purification to still occur, albeit at a possibly slower rate when compare to models with local
interactions. In order to illustrate this, we have investigated the short time dynamics of the lattice
Schwinger model, a U(1) lattice gauge theory describing the coupling between fermions and U(1)
gauge fields. The model Hamiltonian reads:

H = w ∑
i
(ψ†

i Ui,i+1ψi+1 + h.c.) + J ∑
i

E2
i + m ∑

i
(−1)iψ†

i ψi (6.19)

where ψ are fermionic annihilation operators, U are U(1) parallel transporters, and E is corre-
sponding electric field terms. The first term describes minimal coupling, the second the field
interaction strength, and the third represents a mass term, that features a staggering typical of
Kogut-Sussking (also known as staggered) fermions. For our simulations, we find it convenient
to recast the Schwinger model as a spin Hamiltonian with long range interaction in the following
way [42]:

HS = H± + HZ + HE;

H± = w ∑
i

(
σ+

i σ−
i+1 + σ−

i σ+
i+1

)
;

HZ =
m
2 ∑

i
(−1)iσz

i −
J
2

N−1

∑
n=1

(nmod2)
N

∑
l=1

σz
l ;

HE = J
N−1

∑
n=1

E2
n.

(6.20)

Here σ±
j = (σx

j ± iσy
j )/2. It can be shown that

HE = J
N−1

∑
n=1

[
ϵ0 +

1
2

n

∑
l=1

(
σz

l + (−1)l
)]2

. (6.21)
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Figure 6.6: Symmetry-resolved purity for the Schwinger model in one dimension. We consider a system
with L = 8 and we take A = [1, 2, 3, 4] and B = [5, 6, 7, 8]. Panel a): w = 1,ϵ0 = 0, m = 0, J = 0.1, γ = 0.05.
Panel b) w = 1, m = 0, γ = 0.05. The dynamics starts from state |↓↑⟩⊗N/2.

It gives rise to a long range spin-spin interaction and local energy offsets, that represent Coulomb
law between staggered fermions.

In Fig. 6.6 we plot the symmetry-resolved purity during the dynamics of spin system evolving
under the Hamiltonian in Eq. (6.20), starting from the state |Ψ0⟩ = |↓↑⟩⊗N/2 with total magne-
tization Sz = ∑N

i=1 σz
i = 0. We observe that the coherent dynamics preserves the magnetization

while the dissipation, modeled by
√

γσ−
i (∀i = 1, . . . , L), does not.

In panel a) the symmetry resolved purity is plotted for w = 1,ϵ0 = 0, m = 0, J = 0.1, γ = 0.05.
In panel b) we fix w = 1, m = 0, γ = 0.05 and let J and ϵ0 to vary. We see that even a long-
range, strongly interacting system experience dynamical purification in both sectors q = −2,−1.
Changing the values of the long range coupling J and of the background field ϵ0 does not change
qualitatively the picture. A richer structure seems to emerge in the q = −2 sector at long times,
suggesting that, while dynamical purification occurs smoothly, entanglement equipartition does
not.

Experimental setups. - The dynamics of the Schwinger model in the Wilson formulation has
been realized in 4-site trapped ion experiments [43]. However, one would need larger system sizes
to observe dynamical purification. Several proposals, based on a variety of platform, exist [44],
either in the formulation including gauge fields, or on the integrated theory. Specific dissipation
sources have not been discussed in detail so far: however, in most platforms, they are likely to be
similar to the Bose-Hubbard case discussed above [44].

6.5.4 Fermionic systems in 1D and 2D

While all models discussed so far are intrinsically interacting, we now provide numerical evi-
dences of the physics described in the previous sections in free fermionic systems [45, 46]. The
latter allow us to consider larger system sizes and two-dimensional geometries. Most importantly,
it allows us to check systematically specific features of our predictions, such as the dependence
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Figure 6.7: Results of the simulation of PA(ℓ/2 + q) for a quadratic open fermionic system. We omit ℓ/2
and use q = q − ℓ/2 to label the symmetry sectors. Parameters: J = 1, µ = 0. First line: symmetry-resolved
Rényi entropy for a) 1D system with L = 64, l = 32, γ = 0.05; b) 1D system for L = 2ℓ, q = 1, γ = 0.05; c)
2D system with L = 4ℓ, N = L2, q = 1, γ = 0.2. Second line: symmetry-resolved Rényi entropy for d) 1D
system with L = 64, l = 16, γ = 0, purely coherent dynamics; e) 1D system for L = 2ℓ, q = 1, γ = 0.05,
starting from the Majumdar-Ghosh dimer state; f)1D system for L = 2ℓ, q = 1, γ = 0.05, starting from the
ground state of a nearest-neighbours tight binding model with J = 1.

on the partition size, dimensionality, and topology of the partition (e.g.: in 1D, we will consider
explicitly disconnected partitions).

We start from a charge-density-wave (half-filling), and let it evolve according to a GKSL master
equation master with jump operator lj = γcj and Hamiltonian:

H = −J ∑
⟨i,j⟩

c†
i cj − 2µ ∑

j

(
c†

j cj −
1
2

)
. (6.22)

The first sum runs over nearest neighbours, c†
i , ci denote fermionic creation and annihilation oper-

ators, J is the hopping constant (that we set to unity below, J = 1) and µ is the chemical potential
(µ = 0 unless stated otherwise). In free fermionic theories, at each time t one can compute the
charged-moments Zn(α) (Eq. (7.11)) via the two-point fermionic correlation matrix Cij = ⟨c†

i cj⟩
and its evolution according to Ref. [47]. We consider both 1D chains and 2D square lattices and
check numerically the analytical predictions in the previous sections. In 1D, the tight-binding
model is mapped to the XY Hamiltonian (6.17) by a Jordan-Wigner transformation (but the jump
operators are different): the GKSL master equation we will consider are similar to one of the
examples discussed in Ref. [48].

In Fig. 6.7, we show some representative numerical results. In panels a)-b) we consider PA(q),
cf. Eq. (1.7), in 1D. The system is divided into three parts as S = A ∪ B ∪ A with |A| = ℓ/2
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and ℓ = L/2, a representation of the system is in Fig 6.7a). The choice of the topology of the
partition allows us to illustrate the generality of dynamical purification, that is indeed topology
independent as long as ℓ ≫ tJ. In panel c) we compute the same quantity for a two-dimensional
square lattice to highlight that the features of the dynamics are not dependent on the dimension-
ality or connectivity of the partition. Here we consider S = A ∪ B where A is a square of linear
dimension ℓ = L/4 at the center of the system. In panels d)-e)-f) we focus on the behavior of
the symmetry-resolved purity in the absence of dissipation, to emphasize that the bath plays a
decisive role in the dynamical purification, and on quenches starting from different states, since
we expect our results to hold when the initial state is separable (cf. 6.3). The initial state being at
half-filling, q = ℓ/2 is the only populated sector at t = 0. We will consider the quantity PA(q)
where, for instance, q = 1 refers to the sector ℓ/2 + 1 (one particle more than half-filling). We
omit ℓ/2 to be concise. Let us now discuss the plots in details. In all the following simulations we
always consider open boundary conditions (OBC).

In Fig. 6.7a), we show PA(q) for q = 0, 1, 2, 3, L = 128. The sector q = 0 is the only one
occupied at t = 0. It is pure at the start of the evolution and does not experience any purification.
Oppositely, as soon as dynamics kicks in, the sector q = 1 becomes mixed. Its purity increases
at intermediate times (dynamical purification) and approaches equipartition for longer times. This
is highlighted in the inset showing the behavior of PA(q) for Jt ∈ [1, 5] in logarithmic scale. The
purification for the other sectors is present, but less evident as it is connected to higher-order
perturbative processes.

In Fig. 6.7b) we fix q = 1 and consider PA(q) for different values of ℓ with L = 2ℓ. In agreement
with theory, the peak of the curves decreases, approaching zero. The point at t = 0+ should
approach zero as ∼ 1/ℓ, as well, like it has been anticipated in the previous sections. The inset
shows a fit of PA(q = 1, t = 0+) as a function of ℓ, which demonstrates the log-volume regime
already discussed.

The behavior of the symmetry-resolved purity for a two-dimensional systems is analogous.
In Fig. 6.7c) we plot the purity, at fixed q = 1, for different values of L. The total number of sites
of the lattice is N = L2 and the subsystem A consists of l2 = N/16 sites picked at the center of
the square. Studying the position of the point at t = 0+ one observes that it scales as ∼ 1/ℓ2

as calculated in Eq. (6.6) and shown in Fig. 6.2a): this confirms a 2D log-volume scaling at short
times, with the corresponding symmetry-resolved Rényi entropy displayed in the inset for the
sake of completeness.

In Fig. 6.7d), we take into account the symmetry-resolved purity in the case of a purely co-
herent dynamics. This show remarkably how the purification process is strictly related to the
presence of a bath for this class of models. We consider L = 64 and ℓ = 32. While q ̸= 0 sectors
are mixed at time t = 0+ in presence of bath, this is not the case for γ = 0. In the inset one can see
the population of each given sector as a function of time. As the coherent dynamics starts playing
its role, the population increases and the purity decreases correspondingly. The q ̸= 0 sectors
are involved in the evolution but they do not experience any purification, instead their purity de-
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creases monotonously to a unique value independent of q, witnessing information equipartition.
All these results are compatible with the exact ones reported in Ref. [12].

Finally, in Fig. 6.7e-f), we depict the symmetry-resolved purity in the sector q = 1, in the case
of a global quench starting from two different states. Firstly, in e), we consider a global quench
from the Majumdar–Ghosh dimer product state and an evolution under the Hamiltonian in Eq.
(6.22); secondly, in f), we take as starting point the ground state of Eq. (6.22) and evolve the system
according to a long range hopping Hamiltonian in the form:

H = −∑
ij

J
|i − j|α c†

i cj, (6.23)

where α = 2.
The purpose of panels e) and f) is to show that the dynamical purification is present only in

the case the initial state is separable, as it happens for Fig. 6.7b)-e). In the inset of Fig. 6.7e) we
show a fit of PA(q = 1, t = 0+) as a function of ℓ, which exhibits a 1/ℓ behavior, as predicted
by perturbation theory. Oppositely, if the initial state is entangled, one cannot see any emergent
purification during the dynamics (Fig. 6.7f)). This is due to the fact that the symmetry-resolved
reduced density matrix is already mixed in all Ek sectors, and thus, local coherent dynamics is
insufficient to purify the state, as the number of non-zero eigenvalues in each sector is exponen-
tially large in the partition size. In the inset of the figure the populations of sectors q = 0, 1, 2 for
L = 256 are shown. Evidently, all the sectors are occupied already at t = 0.

Experimental setups. - The U(1) dynamics discussed in this section is of direct relevance for
various experimental settings. The first ones are fermionic or (hard-core) bosonic atoms trapped
into optical lattices. There, one of the main sources of dissipation (in addition to spontaneous
emission, that can be made small with the use of blue detuned lattices) is single particle loss.
While in principle loss rates due to inelastic background scattering are small when compared to
the typical lattice dynamics, localized losses can be engineered in a variety of ways, including
weak-laser coupling to untrapped levels or via electron beams.

The second setting that is relevant to this section are arrays of superconducting qubits. In the
strong coupling limit, the dynamics of such systems can be well approximated by an XY model.
Qubit relaxation will then play the same role as single particle loss.

6.6 Experimental protocol for measuring symmetry-resolved pu-

rities

Our protocol to extract symmetry-resolved purities is based on randomized measurements. These
methods have been introduced and experimentally demonstrated to measure entanglement en-
tropies [29, 31, 32, 34], and other nonlinear functions of the density matrix, such as state fideli-
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ties [49], out-of-time ordered correlators [50, 51], topological invariants [52, 53], and entanglement
negativity [36, 54]. In the quantum information context, the moments of statistical correlations
between randomized measurements can also be used to define powerful entanglement witnesses
without reference frames [36, 55–59].

While standard projective measurements performed in a fixed basis can only give access to
expectation values of a particular observable, randomized measurements consist instead in mea-
suring our quantum state in different random bases, giving access to complicated non-linear func-
tionals of the density matrix, here symmetry-resolved purities.

As in Refs. [34, 36], our approach is based on the idea of combining two results: randomized
measurement tomography [30, 60], and ‘shadow’ tomography [34, 61]. Let us consider here a spin
system and show how to measure the symmetry-resolved purity of a reduced state ρA made of
NA spins.

Randomized measurements are realized by applying random local unitaries ρA → uρAu†,
u = u1 ⊗ · · · ⊗ uNA , where each ui is a spin rotation that is taken, independently, from a unitary
3-design [62, 63]. After the application of random unitary, a projective measurement is realized in
a fixed basis. This procedure is repeated with M different random unitaries, in order to obtain a
list of M measured bitstrings k(r), r = 1, . . . , M.

Randomized measurementsare tomographically complete in expectation and can be used to
provide an estimator of the density matrix [30, 34, 35, 60, 64], a classical shadow [34],

ρ̂
(r)
A =

⊗
i∈A

[
3(u(r)

i )†
∣∣∣k(r)i

〉 〈
k(r)i

∣∣∣ u(r)
i − I2

]
, (6.24)

with the expectation value over randomized measurements E[ρ̂
(r)
A ] = ρA. It is not our aim to

reconstruct the density matrix based on Eq. (6.24) i.e., to perform tomography, as it will be too
costly in terms of measurements (and classical post-processing). However, we can make use of
this expression Eq. (6.24), in order to relate directly polynomial functionals of ρ to the measured
data k(r) [34]. For the symmetry-resolved purity, simply consider two independent randomized
measurements r ̸= r′, and define the symmetrized estimator

PA(q)(r,r′) = 1
2 tr[(ρ̂(r)A Πq)(ρ̂

(r′)
A Πq)] +

1
2 tr[(ρ̂(r

′)
A Πq)(ρ̂

(r)
A Πq)]. (6.25)

Using Eq. (6.24), this can be seen as a simple bi-linear function of the measurement data. Averag-
ing over many pairs (r, r′), boosts convergence to the estimator’s expectation value

E[PA(q)(r,r′)] = 1
2 tr[(E[ρ̂

(r)
A ]Πq)(E[ρ̂

(r′)
A ]Πq)] +

1
2 tr[(E[ρ̂

(r′)
A ]Πq)(E[ρ̂

(r)
A ]Πq)] = PA(q). (6.26)

Here, we have used that ρ̂
(r)
A and ρ̂

(r′)
A are independent realizations of Eq. (6.24). This means

that PA(q)(r,r′) is an unbiased estimator of the symmetry-resolved purity. This procedure can
be straightforwardly extended to higher moments with triplets of randomized measurements
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r ̸= r′ ̸= r′′, etc. Appropriate implementation of partial transposes moreover allows for extracting
symmetry-resolved Rényi entropies (1.8). This is the content of Ref. [65], where we also provide
a thorough statistical analysis for estimating symmetry-resolved quantities based on randomized
measurements. The upshot is that estimator (6.25) can be equipped with rigorous confidence
bounds. Already 2NAPA(q)/ϵ2 measurement repetitions suffice to estimate a given symmetry-
resolved purity PA(q) up to accuracy ϵ. This favorable scaling is a key advantage over full quan-
tum state tomography In particular, the scaling depends only on the symmetry resolved purity
PA(q) and not on (the inverse) of the population trρAΠq. This can make a large difference, espe-
cially when the population is tiny. Our analysis of experimental data, c.f. next section, support
this favorable picture.

Therefore, we believe that symmetry-resolved purities can be measured in various NISQ plat-
forms up to moderate partition sizes NA = 10 ∼ 20, which are sufficient large to observe many-
body effects, such as dynamical purification. The second advantage of randomized measure-
ments with respect to tomographic-type estimations is the post-processing step. Here, the esti-
mation of PA(q)(r,r′) from the data simply consists in multiplying estimators ρ̂

(r)
A with an efficient

tensor-product representation (Eq. (6.24)) with a projection operator with sparse-matrix structure
(which can be for instance efficiently written as a Matrix-Product-Operator [66]).

Note finally that here randomized unitaries do not have a symmetric structure, and therefore
each estimation of the density matrix does not have a block-diagonal structure. Alternatively, one
can envision to perform symmetry-resolved random unitaries incorporating symmetries [30, 32,
33]. While these random unitaries appear as more challenging to realize experimentally compared
to local spin rotations, one should expect a reduction of statistical errors in this situation [60].

6.7 Experimental observation of dynamical purification in trapped

ion chains

In this section, we demonstrate symmetry-resolved purification experimentally in a trapped ion
quantum simulator, using data taken in the context of Ref. [29]. Here, quench dynamics with a
long-range XY-model introduced in Eq. (6.17), with δi = B, Jij ≈ J/|i − j|α the coupling matrix
with an approximate power-law decay α ≈ 1.24, and J = 420s−1. The effective magnetic field is
taken to be large B ≈ 2π · 1.5kHz ≈ 22J: this way, that the unitary dynamics conserve the total
magnetization Sz = ∑i σz

i , since terms that would break it (such as σ+
i σ+

j + h.c.) are energetically
suppressed [29].

In addition, decoherence is present in the experiment, during initial state preparation, time
evolution and the randomized measurement. As detailed in Ref. [29], we can model these deco-
herence effects as follows.

The time evolution is subject to local spin-flips, and spin excitation loss (spontaneous de-
cay). We describe the corresponding dynamics with a master equation with jump operators
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Figure 6.8: Experimental demonstration of symmetry-resolved purification in a trapped ion quantum sim-
ulator, using data obtained in the context of Ref. [29]. We consider a system of N = 10 spins, with subsys-
tems A = [4, 5, 6, 7] and B = [1, 2, 3, 8, 9, 10]. In panels a) and b), the symmetry-resolved populations and
Rényi entropies of various magnetization sectors q = 0,±1 of the reduced density matrix ρA are shown as
function of time (see Fig. 6.2 for symmetry-resolved purities). Error bars have been calculated with Jack-
knife resampling. In panel b), data for the magnetization sector q = 1 at Jt = 0 has been omitted due
to large errorbars, resulting from small populations. Lines are numerical simulations of unitary dynamics
(dashed) and including decoherence (solid) as decribed in the text.

Ci =
√

γFσx
i for i = 1, . . . , N and Ci+N =

√
γDσ−

i for i = 1, . . . , N, capturing the spin flip and
excitation loss, respectively. Here, the rates are γF ≈ γD ≈ 0.7/s.

In the experiments, the initial state is not pure, but rather it is a mixed product state

ρ0 =
⊗

i
(pi |↑⟩ ⟨↑|+ (1 − pi) |↓⟩ ⟨↓|) (6.27)

with pi ≈ 0.004 for i even and pi ≈ 0.995 for i odd. Finally, during the application of the local
random unitary, local depolarizing noise is acting which is modeled as

ρ(tfinal) → (1 − pDPN)ρ(tfinal) + pDP ∑
i

tri[ρ(tfinal)]⊗
1i

2

with pDP ≈ 0.02.
In Fig. 6.8, we present experimental results, obtained with the estimators defined in Eq. (6.25),

and numerical simulations, for unitary dynamics and including the decoherence model described
above. In panel a), the populations trΠqρA of the magnetization sectors q of the reduced density
matrix ρA are shown, with A consisting of spins A = [4, 5, 6, 7], and VA = 4. Initially, the (q = 0)-
sector is predominantly populated, with small fractions in other sectors, due to the finite initial
state preparation fidelity. With time, the population in other sectors, in particular q = ±1, in-
creases.

The symmetry-resolved second Rényi entropy S(2)
A (q) is shown in panel b) for various magne-

tization sectors (see Fig. 6.2 for the corresponding symmetry-resolved purity). The experimental
data clearly shows dynamical purification (decrease of the Rényi entropy) in the q = −1 sector.
Data in the q = +1 sector are also suggestive of dynamical purification, even if a strong statement
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cannot be made here due to comparatively larger error bars. In particular, this demonstrates that
dynamical purification can be observed in one-dimensional systems with algebraically decaying
long-range interactions (see also Sec. 6.3). At long times, the symmetry-resolved Rényi entropies
approach similar values for all displayed sectors, consistent with expected equipartition of the
symmetry sectors [10]. Finally, we note that, in the experiment, there is clear separation of scales
tJ ≪ t2, while t1 and tJ are not separated. As discussed in the theory section, this shows com-
pellingly how the second condition is not required to observe dynamical purification, since at
short times, decoherence dominates regardless of the volume of the partition considered.

6.8 Conclusions

Symmetry is an ubiquitous element characterising synthetic quantum matter - from quantum
simulators, to noisy-intermediate scale quantum devices. We have developed a theoretical frame-
work for the description of symmetry-resolved information spreading in such open quantum
systems, focusing on the epitome case of U(1) symmetries common to several experimental plat-
forms - from cold gases in optical lattices, to trapped ions and superconducting circuits. We
have shown how, for various settings encompassing a wide spectrum of interacting and non-
interacting theories, specific quantum number sectors undergo dynamical purification under
ubiquitous conditions of weak noise and separable initial states, without experiencing quantum
information loss. Such phenomenology is general, occurs in any dimension, is not sensitive to the
partition topology, and features specific scaling scenarios for the entropy as a function of partition
size. Most importantly, the dynamical purification considered here occurs in symmetric systems
and stems from the competition between coherent and incoherent dynamics that is a leitmotif of
current NISQ devices.

We have introduced and experimentally demonstrated a protocol to measure symmetry-resolved
quantum information quantities based on a combination of randomized measurement probing
and shadow tomography. Our approach is scalable to partition sizes that are well beyond what
is accessible to full state tomography, and is applicable to a broad spectrum of experimental set-
tings with single site control and high repetition rate. Both scalability and applicability are of
key importance in order to probe genuinely many-body features of entanglement dynamics in
state-of-the-art experiments. Two key features of our protocol are the fact that symmetry can be
enforced a posteriori on a given data set, without necessarily relying on the implementation of
symmetry-preserving random unitaries, and that errors are provably under control even in cases
where populations in given subsectors are small (that is a challenge specific to symmetry-resolved
density matrices). Based on our protocol, we have shown how the experiments performed in
Ref. [29] have already realized dynamical purification in a trapped ion chain described by a long-
range XY model. This observation, in full agreement with our theory predictions, testifies for
the generality of symmetry-resolved dynamical purification under experimentally realistic con-
ditions. While our protocol is generically applicable to lattice models, it would be interesting to
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extend it to continuous systems, where the role of symmetry-resolved information is relatively
unexplored outside of conformal field theories [67, 68].

The capability of addressing the combined role of symmetry and quantum correlations in
NISQ devices opens a novel interface between theory and experiments, where many-body effects
intertwine with information theoretic applications. The first instance of that is what role symme-
try plays in quantum information protocols, in particular, error correction. Our tools may be of
particular importance here, as several error correcting codes can be cast as gauge theories, one ex-
ample being the toric code [69]. In this context, the role of specific symmetry sectors is associated
to the presence of excitations. It may thus be useful to employ the experimental tools we have
used here to access how specific perturbations compromise the reliability of a quantum memory.
Going beyond that, understanding whether dynamical purification occurs in the presence of local
symmetries is an open question, that could be in principle addressed within the same methods
presented here.

The second possible applications of our methods concerns the capability of utilizing dynam-
ical purification as a proxy of the system dynamics, in particular, to determine its dissipative
dynamics. One first element is that dynamical purification is expected for a quantum noise, that
is local: it is thus informative about the nature of the dissipation. The fact that the dissipation
rates intertwines with the partition size could also help to quantify the relative strength of inco-
herent versus coherent processes, at least in cases where specific initial states could be realized
with high fidelity. Remarkably, despite being a short-to-intermediate time phenomenon, thanks
to the area-to-volume ratio being tunable, dynamical purification is also informative about very
weak dissipation: this is particularly important for diagnostics, as one would expect that the latter
requires long-time evolution to be characterized.

On more general grounds, symmetry-resolved dynamical purification reveals how certain
many-body phenomena can only be properly characterized utilizing symmetry to emphasize or
even magnify relevant information. In particular, symmetry-resolution allows to properly diag-
nose physical phenomena that would not be accessible otherwise, by amplifying the role of sec-
tors in the reduced density matrix whose information content could be otherwise overwhelmed
by other less informative - but highly-weighted - sectors. In this context, the many-body the-
ory we develop seems to suggest that symmetry can be used to develop improved entanglement
detection that could outperform their respective ’symmetry-blind’ counterparts [65].



7
Operator entanglement dynamics and its

symmetry resolution

The operator entanglement (OE) is a key quantifier of the complexity of a reduced density ma-
trix, and in out-of-equilibrium situations, e.g. after a quantum quench from a product state, it is
expected to exhibit an entanglement barrier. The OE of a reduced density matrix initially grows
linearly as entanglement builds up between the local degrees of freedom, it then reaches a maxi-
mum, and it ultimately decays to a small finite value as the reduced matrix converges to a simple
stationary state through standard thermalization mechanisms. Here, by performing a new data
analysis of the published experimental results of Ref. [29], we obtain the first experimental mea-
surement of the OE of a subsystem reduced density matrix in a quantum many-body system.
We employ the randomized measurements toolbox and we introduce and develop a new effi-
cient method to post-process experimental data in order to extract higher-order density matrix
functionals and access the OE. The OE thus obtained displays the expected barrier as long as the
experimental system is large enough. For smaller systems it is absent. As U(1) symmetry plays
a key role in our analysis, we introduce the notion of symmetry resolved operator entanglement
(SROE), in addition to the total OE. To gain further insights into the SROE, we provide a thorough
theoretical analysis of this new quantity in chains of non-interacting fermions, which, in spite of
their simplicity, capture most of the main features of OE and SROE. In particular, we uncover
three main physical effects: the presence of a barrier in any charge sector, a time delay for the
onset of the growth of SROE, and an effective equipartition between charge sectors.

113
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7.1 Introduction

The investigation of the non-equilibrium dynamics of isolated many-body quantum systems is
a major challenge of modern physics. Owing to the highly tunable modern experimental set-
tings for analog simulations [16, 70–72], it has been possible to engineer Hamiltonian dynamics of
isolated quantum systems, ranging from integrable to chaotic systems, and measure non-trivial
physical properties, as the entanglement growth following a quantum quench [73–76] or out-of-
time ordered correlators [77–79]. Unfortunately, the absence of numerical algorithms to effec-
tively simulate these systems on a classical computer for large times is the main obstacle toward
the complete understanding of quantum relaxation and thermalization. In this respect, the most
effective and versatile algorithms are surely those based on matrix product state (MPS) and ten-
sor networks methods [80–84]. However, the linear growth of the entanglement entropy [85, 86]
requires an exponential complexity (bond dimensions) of the MPS approximating the physical
state, severely limiting the largest simulable times [87]. Typically, these systems relax to statistical
ensembles with little or no entanglement. How is it compatible with the growth of complexity
of the MPS approximation? The solution of such a conundrum is simple: the relaxation being
local [88–90], one has to focus solely on the reduced density matrix ρ of a subsystem S, not on the
entire pure state containing physically irrelevant correlations. Indeed, rather than an MPS, the
subsystem density matrix is approximated by a matrix product operator (MPO) with small bond
dimension D [91–97]. What is the quantity that correctly assesses the validity of this approxima-
tion?

To this end, as anticipated in Sec. 1.7, it useful to note that every bipartite density matrix ρAB

can be decomposed as follows:

ρAB√
Tr(ρ2

AB)
= ∑

i
λiOA,i ⊗ OB,i. (7.1)

This is called an operator Schmidt decomposition and it has the property that all expansion coeffi-
cients λi are positive and the associated operators OA,i, OB,i are Hermitian and orthonormal with
respect to the Hilbert-Schmidt inner product (tr(O†

A,iOA,j) = tr(O†
B,iOB,j) = δi,j. Normalization

on the lhs of Eq. (7.1) moreover ensures that the expansion coefficients obey ∑i λ2
i = 1, i.e. the

set
{

λ2
i
}

forms a probability distribution of (squared) Schmidt values. The smallest summation
range for which Eq. (7.1) is possible is called the operator Schmidt rank of ρAB [98].

In an MPO algorithm, the density matrix ρAB is ‘compressed’ by truncating the full sum to
only the D largest contributions. This thresholding approximation is accurate provided that
the distribution

{
λ2

i
}

of squared Schmidt values in Eq. (7.1) has small Shannon entropy, i.e.
OE(ρAB) = −∑i λ2

i log
(
λ2

i
)
≪ 1. This quantity is called the operator entanglement [91, 92, 99, 100]

of the bipartite density matrix ρAB.
The main physical feature of the operator entanglement of a density matrix is the presence
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of an entanglement barrier [94, 101, 102]: after a quantum quench from a low-entangled state, the
OE of a subsystem density matrix initially grows linearly and then decays at longer times, thus
displaying a barrier-shaped curve. The initial linear growth is a consequence of the generic lin-
ear growth of the (state) entanglement entropy after a quench [85, 86], while the decay at later
times reflects the convergence of the reduced density matrix towards a simple stationary state
[94], through the mechanism of thermalization [88, 89, 103–108] (or relaxation to a Generalized
Gibbs ensemble [109–112]). The emergence of the entanglement barrier for the OE of a reduced
density matrix in ergodic dynamics can be linked straightforwardly to the distribution of squared
Schmidt values {λ2

i } in Eq. (7.1). At early times the evolution starts from a pure product state,
when only a single Schmidt value is different from zero. The building up of entanglement is re-
flected in the increasing number of nonzero Schmidt coefficients λi. Eventually, for long times
the system locally approaches a Generalized Gibbs or Gibbs ensemble, which obeys the operator
area law [94], i.e. it is constant in the subsystem size, and again only few Schmidt values give a
sizeable contribution to the OE. For example, in the infinite temperature limit, since the density
matrix is proportional to the identity, ρ ∝ 1 = (1A ⊗ 1B), only a single Schmidt value is different
from zero and the OE vanishes.

Inspired by the relevance of the entanglement barrier, our goal is to observe it in an experi-
mental quantum many-body system, using the randomized measurement data of the trapped
ion experiment of Ref. [75]. The randomized measurement toolbox [113] has enabled measuring
state-agnostically properties of the underlying quantum state such as purity and Rényi entangle-
ment entropies [75, 76, 113–115], negativities [54, 65, 116], state fidelities [117, 118] with a lower
measurement cost compared to quantum state tomography [64, 119–122]. One particular fruitful
development is the formalism of classical shadows [114, 123] that provides estimation of non-
linear functionals of the density matrix, such as the OE [124]. However, measuring OE using
the current randomized measurement toolbox requires a prohibitively expensive postprocessing
method. To overcome this limitation and observe OE for a reasonable system size, we introduce
in this work the batch shadows estimator. This new estimator, which should be of independent
interest for the randomized measurement toolbox, provides a fast postprocessing technique for
estimating polynomial functions of the density matrix. Importantly, this method offers, up to
factors of order one in the experimentally relevant scenario, the same performance guarantees as
classical shadows in terms of required number of measurements to overcome statistical errors.
This enables us to experimentally access the OE and, in turn, witness the entanglement barrier.

As a second important result, the experimental setup of Ref. [75] provides us with an oppor-
tunity to study how the OE content is structured due to the presence of symmetries, which is
here a U(1) symmetry associated with the number of spin excitations. In the case of pure state
entanglement, the fruitful notion of symmetry-resolved entropies [125–127] has been introduced
recently, computed theoretically [68, 128–136] and experimentally observed [65, 116, 137]. Here,
we generalize this to the case of operator entanglement. Based on suitable supercharge opera-
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tors1, we introduce a notion of symmetry resolved operator entanglement (SROE), for which we also
provide tractable estimation protocols. We note, however, that a slightly different definition of
SROE, with respect to the one in this thesis, was already introduced in Ref. [97].

Using the SROE, we can theoretically study and experimentally observe a symmetry-resolved
entanglement barrier. This is relevant for understanding thermalization in U(1) symmetric non-
equilibrium quantum systems, but also for numerical simulations, as symmetries can be incorpo-
rated in MPO algorithms.

The chapter is organised as follows. In Sec. 7.2 we provide a bird’s eye view of the results in
this chapter. In Sec. 1.7 we introduce formally the operator entanglement (OE) and its symmetry
resolution. In Sec. 7.3 we demonstrate and describe the details of the randomized measurement
protocol used to measure OE and SROE of the experiment performed in Ref. [75]. In Sec. 7.4, using
a combination of conformal field theory (CFT) and of exact analytical and numerical calculations
in critical free fermion chains, we study the SROE of the reduced density matrix of a subsystem
after a quantum quench.

7.2 Summary of the main results

Here we provide a short summary of the results in this chapter. The main points are also illus-
trated in Fig. 7.1. With the new analysis method we were able to measure the OE and SROE of
a subsystem’s density matrix in a many-body quantum system from the published experimental
data of Brydges et al. [75] presenting a U(1) conserved charge. We employ the randomized mea-
surements toolbox [113] and introduce a new efficient method to post-process experimental data
in order to extract arbitrary higher-order density matrix functionals of the form Tr

(
O(n)ρ⊗n) ex-

pressed in terms of an n-copy operator O(n). A schematic of this procedure is shown in Fig. 7.1a)
whose details are elaborated in Sec. 7.3 and in App.B of Ref. [138]. This tool is employed to extract
the experimental results presented in Fig. 7.1b)-c). Here we show the measured OE and SROE, as
in Eq. (1.43), which are supported by tensor network simulations modelling the full experiment,
i.e. the open dynamics of a long-range XY model starting from the Néel state, with conserved
magnetization along the z-axis. Our main observations of Sec. 7.3 are summarized here:

1. We witness experimentally the entanglement barrier of the OE and of the SROE, in the
charge sector q = 0, (Fig. 7.1b), for a bipartite subsystem A ∪ B comprised of four out of
N = 20 ions. These barriers present bump structures due to finite size effects. When N is
too small these finite size effects suppress the emergence of the entanglement barrier, as we
show in Fig. 7.1c) for a subsystem of four out of N = 10 ions.

2. We observe a qualitative agreement of SROE with the numerical results for charge sectors
q = ±1 at early times. The sizeable deviation between theory and experiment for N = 20

1Throughout all the chapter we refer to the operators in the space of operators as superoperators and to the
corresponding charges as supercharges.



CHAPTER 7. SYMMETRY-RESOLVED OPERATOR ENTANGLEMENT 117

   

    

   

   

   

 
  
 

 
 
 
 

   

   

   

    

(𝑑) (𝑒)

(𝑏)

𝑆
(2
)

       

   

   
     

   

    

𝑡(𝑚𝑠)
       

   

   
     

   

    

𝑇𝑜𝑡𝑎𝑙

𝑞 = 0

𝑞 = ±1

𝑇𝑜𝑡𝑎𝑙
𝑞 = 0

𝑞 = ±1

𝑆
(2
)

𝑆
(2
) /
ℓ

      

   

   

   
     

   

    

(𝑐)

𝑆
(2
)

𝑡(𝑚𝑠)

𝑇𝑜𝑡𝑎𝑙

𝑞 = 0

𝑞 = ±1

(𝑓)

    

 

   

   

   

 
  
 

     

   

    

𝑇𝑜𝑡𝑎𝑙
𝑞 = 0
𝑞 = ±1

𝐽𝑡
   

 

   

   

   

 
  
 

     

   

    

𝑆
(2
)

𝐽𝑡

𝑇𝑜𝑡𝑎𝑙
𝑞 = 0
𝑞 = ±1

𝑆
2
/ℓ

2𝐽𝑡/ℓ

𝑞 = 0

𝑞 = 1

𝑞 = 4

𝑞 = 10

Experiment:

𝑁 = 20 𝑁 = 10

Free Fermions:

𝑁 = 20 𝑁 = 10 𝑁 = 8ℓ

Experimental protocol

:= Single Batch Shadow

Q
u

e
n

ch
 D

y
n

a
m

ic
s

𝑢2

𝑢3

𝑢4

𝑢1

𝑢5

Randomized 
Measurements

𝑨

𝑩

𝑆
(2
)

Estimate:

...

𝐓𝐫 𝑶(𝒏) 𝝆⊗𝒏

101010….010100

011001....111010

001110....000111

110011....100111

101001….011010

Construct 
Batch Shadows:

Collect
Bit-strings

(𝑎)

Figure 7.1: Overview of the results: a) Schematic of the method to post-process the experimental data.
After the quench dynamics, randomized measurements are performed. The collected bit-strings are used to
estimate OE and the SROE with a method we dub batch shadows estimator. b)-c) Experimental results for the
Rényi 2-OE (Eq. (1.43)) and its symmetry resolution (Eq. (1.50)) of a reduced density matrix of partition of 4
ions out of 20 (panel (b)) and 10 ions (panel (c)) from the data of [75] after the global quantum quench. The
points correspond to the experimental data, the curves are numerical results obtained via tensor network
algorithms with (solid) or without (dashed) dissipation considered. The entanglement barrier is visible for
the total operator entanglement and the symmetry sector q = 0 with N = 20. d)-f) Symmetry resolution
of the OE of the reduced density matrix after a global quantum quench in a free fermion chain under
unitary evolution. d) (and e)) Symmetry resolution of the OE of the reduced density matrix after a global
quantum quench, for 4 sites out of a 20 (out of 10) sites chain. Comparing with the experimental results in
b) and c) respectively, we can spot several qualitative features of OE although the model is short ranged
and there is no dissipation. f) Numerical data (symbols) with subsystem length ℓA = 120 compared with
analytical prediction of Ref.[138] (continuous lines). This plot shows the three main features of the SROE
in the thermodynamic limit, i.e. the barrier in each sector q, the delay time and the equipartition for small
q.

(Fig. 7.1b) are caused by the small populations in the corresponding charge sectors and by
the low measurement statistics performed in the experiment.

To gain insights into SROE and into its own entanglement barrier, we also provide an analysis
in chains of non-interacting fermions, which despite their simplicity capture the main physical
features of the OE and SROE. This is already visible for small system sizes N, by comparing Fig.
7.1b) and 7.1c) with 7.1d) and 7.1e), respectively. Moreover, for these free models it is possible
to obtain a general formula using CFT results [138], which governs the evolution of the SROE.
This formula allows us to uncover three main physical effects, which we expect to appear more
generically in chains of qubits, beyond the simple non-interacting fermion ones. These effects are:

1. the appearance of a barrier for SROE in any charge sector, which resembles the behavior of
the total OE;

2. a delay time for the onset of the SROE that grows linearly with the charge sector of the
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subsystem;

3. the effective equipartition in the scaling limit of large time and subsystem size for small
charges, where by equipartition we mean that the SROE is equally distributed among the
different symmetry sectors.

These effects are visible in Fig. 7.1f). There we plot OE and SROE of the reduced density matrix,
for a bipartition A ∪ B, where A and B are of lengths ℓA and ℓB respectively (here ℓ ≡ ℓA + ℓB =

256). The numerical results are obtained for a quench in the tight-binding model from the Néel
state (the calculation is performed in a finite periodic chain of total size N = 8 × (ℓA + ℓB)). The
solid lines correspond to the theoretical prediction in Ref. [138].

7.3 Operator entanglement in the quench dynamics of trapped

ions

Let us come to the development of tractable methods to extract Rényi α−OE in an experiment,
and the corresponding experimental observations of the entanglement barriers with Rényi 2−OE
and its symmetry resolution.

In Sec. 7.3.1 we detail the experimental protocol of classical shadows and, in Sec. 7.3.2, the
associated efficient method for the post-processing of the measurement data, dubbed as the batch
shadows estimator. In Sec. 7.3.3 we discuss the experimental results and some of its features.

7.3.1 Rényi OE from randomized measurements

In the previous sections, we have expressed OE as a function of the Schmidt spectrum {λi}. In
order to express estimators of these quantities based on experimental data, one needs to rewrite
them into a functional of the density matrix ρAB. In particular, the Rényi 2−OE is a fourth order
function of ρAB that explicitly writes as [124]:

S(2) = − log
Tr
(
S ρ⊗4

AB

)
Tr(ρ2

AB)
2

= S̃(2)(ρAB)− 2R(2)(ρAB), (7.2)

where S = S
(A)
1,4 ⊗ S

(A)
2,3 ⊗ S

(B)
1,2 ⊗ S

(B)
3,4 is defined in terms of the swap operators Sk,l(|ik⟩ ⊗ |il⟩) =

|il⟩ ⊗ |ik⟩. We also have defined the unnormalized Rényi 2-OE S̃(2)(ρAB) = − log
(

Tr(Sρ⊗4
AB)
)

.
Similar expressions for the SROE in App. C.1.2. Such functions of the density matrix for a N-
qubit system can be accessed in qubit experiments via randomized measurements [113, 114, 124],
as shown in Fig. 7.1a). We start with the preparation of our N-qubit state in the experiment. We
apply local random unitaries ui (i = 1, . . . , N), sampled from the circular unitary ensemble (CUE)
or a unitary 2−design, on the N-qubit state. We store the measurement outcome recorded on
a fixed basis s = s1, . . . , sN. We repeat this procedure for a set of Nu distinct unitaries u(r) and
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collect NM bit-strings for each applied unitary s(r,m) = s(r,m)
1 , . . . , s(r,m)

N with r = 1, . . . , Nu and
m = 1, . . . , NM . This recorded data can then be used to construct an operator ρ̂(r,m) as

ρ̂(r,m) =
N⊗

i=1

[
3(u(r)

i )†
∣∣∣s(r,m)

i

〉 〈
s(r,m)

i

∣∣∣ (u(r)
i )− I2

]
. (7.3)

This operator is called a classical shadow [114] and is an unbiased estimator of the underlying
quantum state, i.e. E(ρ̂(r,m)) = ρ, with the expectation value taken over the applied unitaries and
measurement outcomes (see also App.B of Ref.[138]).

In order to measure functions Xn = Tr(O(n)ρ⊗n) that are expectation values of a n-copy ob-
servable O(n) (here, in particular, we are interested in O(4) = S on four copies), one can define an
U-statistics estimator X̂n given by

X̂n =
1
n!

(
Nu

n

)−1

∑
r1 ̸=... ̸=rn

Tr
[
O(n)

n⊗
i=1

ρ̂(ri)
]

(7.4)

where we have the classical shadow ρ̂(r) = ENM [ρ̂
(r,m)] constructed by averaging over all mea-

sured bit-strings for an applied unitary u(r). The estimator X̂n is unbiased, i.e E[X̂n] = Xn.
This estimator has been used to access properties involving functions up to n ≤ 3 [52, 65, 116].

However, such a procedure is computationally resource heavy as it requires summing over all
possible combinations of n shadows ρ̂(r1), . . . , ρ̂(rn) for ri ∈ [1, . . . , Nu], whose runtime scales with
the number of terms involved in the above sum: O(Nn

u ), a number that grows exponentially
with the polynomial degree n. This scaling prevents us from extracting the Rényi 2−OE from
experimental data of [75] (as n > 3). Thus we are in dire need of an alternate method with a
(substantially) reduced runtime.

7.3.2 Fast estimation of high order functionals using randomized measure-

ments data via batch shadows

In order to improve the post-processing run time of classical shadows, we propose to form b =

1, . . . , n′ ≥ n ‘batch shadows’, where each of them is an average of Nu/n′ shadows:

ρ̃(b) = (n′/Nu)
bNu/n′

∑
r=(b−1)Nu/n′+1

ρ̃(r). (7.5)

This allows us to define an alternate unbiased estimator as in Eq. (7.4):

X̃(n′)
n =

1
n!

(
n′

n

)−1

∑
b1 ̸=... ̸=bn

Tr
[
O(n)

n⊗
i=1

ρ̃(bi)
]

(7.6)
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The first step to evaluate the above estimator needs the construction of n′ batch shadows. This is
achieved by summing up all classical shadows that belong to a respective batch – a subroutine that
requires O(Nu) arithmetic operations (provided that the sample complexity Nu exceeds the total
number of degrees of freedom in the reduced density matrix). These individual summation steps
can be obviously paralellized on n′ cores. Note also that, in contrast to the bare classical shadows
ρ(r,m), the batch shadows ρ̃(b) are stored in memory as dense 2NAB × 2NAB matrices: E[ρ̃(b)] = ρ

for all batches b = 1, . . . , n′. This limits our fast estimation methods to systems sizes of up to
NAB ≈ 15 qubits.

The second step requires the evaluation of X̃(n′)
n from the constructed batch shadows that

scales as O(n′n). Thus by choosing n′ = n and assuming that Nu ≫ n′n, we obtain the fastest
estimator with an evaluation time O(Nu). This is a drastic runtime improvement compared to
the original U-statistics estimator in Eq. (7.4): O(Nu) steps (new) vs. O(Nn

u ) steps (old). As we
increase n′, one starts to incorporate more terms with distinct combinations of n different shadows
that were not previously considered. This results in a convergence towards the U-stat estimator,
i.e X̃(Nu)

n = X̂n, as well as in an increasing of the post-processing run-time. In order to gauge the
performance of the estimator X̂(n′)

n , we study its the statistical error behavior.
Statistical errors — The statistical errors in randomized measurements arise due to applying

a finite number of random unitaries Nu and performing finite number of readout measurements
NM. The statistical errors of any estimator X̂ is governed by its variance Var[X̂]. One can provide
rigorous performance guarantees to estimate Xn with an accuracy ϵ from our protocol by studying
variance bound provided by the Chebyshev’s inequality:

Pr[|X̂(n′)
n − Xn| ≥ ϵ] ≤ Var[X̂(n′)

n ]/ϵ2. (7.7)

In App. C.1.1, we provide a general framework that can be applied to calculate variance bounds
on the batch shadow estimator for arbitrary multi-copy operators. We can provide then rigorous
performance guarantees for our estimation formulas, which we can also compare with the results
for classical shadows presented in Ref. [139].

From this study, in the limit of NM = 1, we notice that Var[X̂(n′)
n ] and Var[X̂n] have the same

scaling behavior in the high accuracy regime of ϵ → 0: that is, they are first order in 1/Nu and
scale ∝ n2/Nu. Moreover, for n′ = n, at second order in 1/Nu, Var[X̃(n)

n ] is larger than Var[X̂n] by
a factor of n/(n − 1). This shows that the required number of measurements to achieve a given
accuracy ϵ is essentially the same for the fast batch shadow estimator Eq. (7.6) and the standard
shadow estimator Eq. (7.4).

Of course, we can apply our general variance bound formalism to the quantities of interest
for this work: O(2) = S(AB)

12 and O(4) = S that give access to R(2)(ρAB) and S̃(2)(ρAB), respec-
tively. In the case of Clifford shadows (i.e. each random unitary is chosen uniformly from the
single-qubit Clifford group) and n′ = n, we find that in order to estimate them with a confidence
interval of δ, that is Pr[|X̃(n)

n − Xn| ≥ ϵ] ≤ δ, we require a number of measurements that scale
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as Nu ∝ 3N/ϵ2. See Ref.[138] for details. Hence, in the worst case scenario, our measurement
bound of the batch-shadow estimator of X̃(n)

n scales as 3N irrespective of the order n = 2, 4. For
evaluating S̃(2)(ρAB), in particular, this measurement bound is an exponential improvement over
the previously obtained bounds in [124]. We conjecture that this desirable scaling persists when
we increase α to evaluate higher-order Rényi α−OE.

7.3.3 Experimental results using batch shadows

The batch shadow formalism allows us to extract experimentally the Rényi 2−OE along with its
symmetry resolution. We perform our set of observations on two sets of experiments, where a
global quench with a long-range XY model was realized on a string of 10 and 20 ions respec-
tively [75]. The global quench was followed by the implementation of randomized measurement
protocol involving a total of Nu = 500 Haar random unitaries. For each of the applied unitaries
NM = 150 bit-string measurements were made. Details on the modelling of quench dynamics
with tensor network algorithms and the protocol have been discussed in App. C.1.1.

We consider two bipartite reduced density matrices ρAB defined on the subsystems A = [2, 3]
and B = [4, 5] and A = [8, 9] and B = [10, 11] for a total chain of 10 ion and 20 ion respectively,
where we have labelled the ions along the chain from 1 to N. Fig. 7.1(b-c) and Fig. 7.2 show all our
experimental results with corresponding numerical simulations with, and without decoherence of
the experiment. Panels a) and b) in Fig. 7.2, highlight the extracted Rényi 2-OE with the simplest
batch shadow estimator.

We first observe the entanglement barrier for the considered partition of the 20 ion system in
Fig. 7.1b) and Fig. 7.2a). We observe a barrier composed of a growth phase from t = 0 to t ≈ 3
ms, and a decay phase from t ≈ 3 ms to the last data point at t = 10 ms. The peak at t ≈ 3
ms actually looks more like a double-peak with maxima at t ≈ 1.8 ms and t ≈ 3.8 ms, but we
interpret this as oscillations on top of the main barrier caused by the small size of subsystems
A and B. This interpretation is supported by the fact that similar finite-size effects are found
in our free fermion model, as shown in Fig. 7.2d (see also Sec. 7.4). The growth phase at early
times signals the creation of correlations between the two subsystems A and B, while the decay
phase reflects the fact that ρAB goes towards a thermal-like density matrix with small OE. Since
the system is finite, we also expect revivals of the OE at longer times, however such revivals are
not yet visible in the available time window. The barrier can also be understood as a competition
between the terms S̃(2)(ρAB) and R(2)(ρAB) in the respective regimes as shown in Fig. 7.2c) [101].
In the growth phase, the unnormalised Rényi 2-OE S̃(2)(ρAB) grows at a faster rate compared to
the state entropy 2R(2)(ρAB). In the decay phase, this behavior is inverted. These general features
are consistent with the theoretical predictions of different models shown in Refs. [94, 101, 140].

Comparing Fig. 7.2a) and b), we see, however, that in the smaller system of 10 ions no similar
barrier is found. In particular, we do not observe the decay phase. We discuss this case in more
detail below.
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Figure 7.2: Further experimental observations: Panels (a-b) show the measured Rényi 2-OE and corre-
spondingly, panels (c-d) the measured values of S̃(2)(ρAB) and R(2)(ρAB) relating to Rényi 2-OE as in
Eq. (7.2) for a reduced density matrix of 4 ions from a total a system consisting of N = 20 and N = 10
ions. We observe the two phases of the entanglement barrier that is separated by a black dashed line for
panels a) and c) given by: (1) the growth phase followed by (2) the decay phase. Panels (e-f) show the
corresponding populations p(q) for symmetry sectors q = 0 ± 1, on a reduced density matrix of 4 ions
taken from their respective total system of (N = 20 and N = 10). The points show experimental results
with the error bars calculated with Jackknife resampling. Lines correspond to numerical simulations of the
unitary dynamics (dashed) and including dissipation (solid).

Overall Fig. 7.2b) and d) show excellent agreement of the experimental data with the numeri-
cally modeled results for the 10 ion experiment. On the other hand, it is quite surprising to see that
even though the individual estimations of S̃(2)(ρAB) and R(2)(ρAB) from the 20 ion experiment as
shown in Fig. 7.2c) have systematic shifts of the experimentally measured values which is likely
to an imperfect modeling of decoherence during the experiment and the measurement protocol,
the corresponding measured Réyni 2-OE shows quite good agreement with the theoretical model
as in Fig. 7.2a). This suggests a robustness feature of the Rényi 2-OE were errors in estimations
of the two terms compensate each other. We also remark that the measured values of Rényi 2-OE
are lower as shown in Fig .7.2(a-b) from the numerical simulations of the experiment.

The corresponding symmetry-resolutions for the considered bipartitions of N = 20 and N =

10 ions are shown Fig. 7.1b) and c). Their respective populations in a given symmetry sector q
is given by p(q) = Tr(Πq |ρAB⟩ ⟨ρAB|) where Πq is the projector into the eigenspace of the charge
sector q [116]. This is highlighted in Fig. 7.2e) and f) respectively. At t = 0, we see that q = 0
sector is substantially populated, while the other sectors q = ±1 increase in population as a
function of time. In particular, for the 20 ion system, as shown in Fig. 7.2e), we observe very
low population for the section q = ±1 as it decays as a function of time. This and the finite
measurement statistics available from the experiment prevents us to resolve the experimental
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points for symmetry resolution sector of q = ±1 for later times. In general, we also observe from
Fig. 7.1b) and c), that the sector q = 0, follows the features of the Rényi 2-OE. This translates, as
shown in Fig. 7.1b), to an entanglement barrier for q = 0 sector for the 20 ions system. One can
also note the absence of the barrier for q = 0 sector from the symmetry resolution of the 10 ion
system.

Interestingly, our experimental results can also be interpreted based on the free fermions cal-
culations detailed in Sec. 7.4, with which we can qualitatively reproduce the behavior of the OE
and the SROE for systems of 10 and 20 qubits. The analogy between the experimental setup and
our free fermion model originates in the fact that the breaking of integrability in the experiment is
weak. Therefore the short-time dynamics is comparable to the one of an integrable system, where
entanglement generation can be qualitatively understood in terms of entangled pairs of quasipar-
ticles propagating freely through the system [86]. Deviations from integrable dynamics become
relevant only on longer time scales, not accessible in the available data. As pointed out above,
comparing Figs. 7.1b) and 7.1d) for 20 qubits and 20 fermionic sites respectively, we observe the
same barrier shape for the OE, with oscillations due to the small subsystem size. The same barrier
is found for the SROE for q = 0, while for q = 1, there is no apparent decay of the OE at long
times.

We now come back to the absence of a barrier for 10 ions, Fig. 7.1c). Importantly, this absence
is also noticeable in our free fermion simulations with 10 sites, see Fig. 7.1e). Instead of a single
barrier, the free fermion OE displays a double-peaked shape. The second peak can be understood
from a quasi-particle picture as a consequence of the subsystem A being particularly close to the
boundary, as we explain now.

Recall that A = [2, 3] and B = [4, 5] for the chain of 10 ions, with ions labelled from 1 to
10. Importantly, part C then consists of two asymmetric pieces, C = {1} ∪ [6, 10], with a very
short interval on the left and a longer one on the right. The first growth phase of the OE is
interpreted as originating from pairs of quasi-particles, initially located at the same position, that
travel through the system in opposite directions and generate entanglement when one member of
the pair is in A and the other is in B. This interpretation of entanglement growth is usually given
for the standard entanglement entropy [85], but it carries over to the OE. After the OE reaches its
first maximum, it decreases because some quasiparticles, that formerly belonged to pairs shared
between A and B, arrive in C and therefore stop contributing to the OE of ρAB. If the subsystems A
and B were far away from the boundaries, then the OE would ultimately go to zero as the number
of pairs shared between A and B would eventually vanish. This does not happen here because
the particles that escape from A to C (i.e. go from site 2 to site 1 in the chain) are soon reflected
against the left boundary of the system. Consequently, they come back and are re-injected into
A. As a result, the OE grows again, which explains the second peak in Fig. 7.1.e). The decay of
that second peak occurs because, after the reflection, both members of a pair travel to the right, so
they ultimately escape to the right half-system [6, 10]. The decay of the second peak is not visible
in the experiment, Fig. 7.1.c). We believe that the decay occurs later, on time scales not accessible
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with the experimental data.
It should be possible to adapt the quasi-particle picture to describe both the experimental data

and our free fermion results more quantitatively, following for what is done for the time evolution
of the entanglement entropy in nearly integrable dynamics, see e.g. Ref. [141] which implements
previous ideas for local observable [142]. This is however far beyond the scope of our work.

7.4 Symmetry-resolved operator entanglement in free fermionic

chains

So far we have presented results for finite-size systems, in direct connection with the experimental
setup. We have shown in Fig. 7.1 that most of their qualitative features can be also observed in
free-fermion chains under unitary evolution, despite the model is short ranged and there is no
dissipation. This connection led us to wonder whether one could extract the main physical traits
of the OE and SROE of the reduced density matrix by studying the unitary time evolution of free
fermions in the thermodynamic limit. Therefore, in this section, we show that in this regime the
problem can be tackled analytically, unveiling some interesting properties of the SROE, such as
the time delay of the charge sectors or the equipartition.

To achieve our goal, the calculation of the SROE by the definition (1.50) is a difficult task,
especially for an analytic derivation. Therefore, we can apply a trick similar to what has been
done for the standard entanglement resolution, i.e. connecting it with the computation of the
charged moments of the reduced density matrix. Using the vectorized version of the operator
ρAB, the object we want to compute is

Zα(q) =
1

(Tr[ρ2
AB])

α
Tr[Πq (TrB(|ρAB⟩ ⟨ρAB|))α], (7.8)

where q are the (integer) eigenvalues of QA and Πq is the projection operator. To do so, we use
the Fourier representation of Πq

Πq =
∫ π

−π

dθ

2π
e−iqθeiθQA , ∑

q
Πq = 1. (7.9)

By plugging Eq. (7.9) into (7.8), we get

Zα(q) =
∫ π

−π

dθ

2π
e−iqθZα(θ), (7.10)

where we have finally introduced the charged moments

Zα(θ) =
1

(Tr[ρ2
AB])

α
Tr[(TrB(|ρAB⟩ ⟨ρAB|))α eiθQA ], (7.11)
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which will be the main objects we compute in the following part of this section. From Eq. (7.8),
the SROE read

S(α)
q (ρAB) =

1
1 − α

log
Zα(q)
Zα

1 (q)
. (7.12)

7.4.1 Free-fermion techniques for the OE

For the eigenstates of quadratic lattice Hamiltonians, it is possible to compute the entanglement
entropies in terms of the eigenvalues of the correlation matrix of the subsystem [143, 144]. This
trick can be applied also for the computation of the OE and, more generally, of the charged mo-
ments (7.11).

Let us take a free-fermionic chain of length N with U(1) symmetry, described by the Hamilto-
nian

H = −1
2

N

∑
i=1

(c†
i+1ci + h.c.) (7.13)

where c†
i (ci) is the creation (annihilation) operator such that the anticommutator {ci, c†

j } = δij and
cN+1 = c1, c†

N+1 = c†
1, i.e. we impose periodic boundary conditions. The reduced density matrix

for a subsystem A ∪ B, ρAB, where A ∪ B = [1, ℓA] ∪ [ℓA + 1, ℓA + ℓB] consists of two adjacent
intervals, can be put in a diagonal form as

ρAB =
ℓA+ℓB⊗

k=1

e−λkd†
k dk

1 + e−λk
, (7.14)

where e−λk = nk
1−nk

, with nk the occupation number at a given wave vector k and dk’s are also
fermionic operators satisfying {dk, d†

k′} = δkk′ . It is more convenient to write Eq. (7.14) as

ρAB =
ℓA+ℓB⊗

k=1

|0⟩k ⟨0|k + e−λk |1⟩k ⟨1|k
1 + e−λk

=
ℓA+ℓB⊗

k=1

[(1 − nk) |0⟩k ⟨0|k + nk |1⟩k ⟨1|k], (7.15)

so that by applying the vectorization trick in Eq. (1.45) for ρAB, we get

|ρAB⟩√
Tr[ρ2

AB]
=

ℓA+ℓB⊗
k=1

1√
Zk

[(1 − nk) |0⟩k |0⟩k̃ + nk |1⟩k |1⟩k̃] =
ℓA+ℓB⊗

k=1

1√
Zk

[1 − nk + nkd†
k d̃†

k ] |0⟩ , (7.16)

where Zk = n2
k + (1 − nk)

2 and the d̃†
k ’s are new creation operators that anti-commute with all the

dk’s, and |0⟩ is the state annihilated by all the dk’s and d̃k’s. The 2(ℓA + ℓB)× 2(ℓA + ℓB) correlation
matrix of the state |ρAB⟩ reads

⟨ρAB|
(

d†
k

d̃k

)(
dk′ d̃†

k′

)
|ρAB⟩ =

δkk′

Zk

(
n2

k nk(1 − nk)

nk(1 − nk) (1 − nk)
2

)
. (7.17)
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In the basis of dk, d̃k’s, the supercharge operator takes the form

Q = ∑
k

d†
kdk − ∑

k
d̃†

k d̃k. (7.18)

We can collect the operators into the vector f = (d1, . . . dℓA+ℓB , d̃†
1 . . . d̃†

ℓA+ℓB
)t such that Q reads

Q = f†f − (ℓA + ℓB), where ℓA + ℓB is an additive constant.
At this point, to evaluate the charged moments in Eq. (7.11), we need to focus on the subsystem

A, i.e. we can restrict the supercharge operator to QA and the correlation matrix to the subspace
corresponding to the subsystem A. Going back to the spatial basis and diagonalising this matrix,
we get 2ℓA real eigenvalues ξi between 0 and 1. Therefore, one can compute the charged moments
of the reduced density matrix built from |ρAB⟩ in terms of the eigenvalues ξi as

Zα(θ) = e−iα(ℓA+ℓB)
2ℓA

∏
a=1

(ξα
a eiθ + (1 − ξa)

α). (7.19)

Using the results in Eq. (7.12), we can compute exactly the SROE for the reduced density matrix
of a free fermionic chain. We mention that this trick also allows the computation of the total OE
as

S(α)(ρAB) =
1

1 − α

2ℓA

∑
a=1

(log[ξα
a + (1 − ξa)

α)]. (7.20)

Using this approach we compared the analytical result in Ref.[138] and the numerical results
in the tight-binding model chain is displayed in Fig. 7.1f).

The agreement is good and we can also observe that there are some charge sectors with zero
entanglement for t < tD. However, for t > (ℓA + ℓB)/2 the discrepancy between the numerics
and the analytical prediction is larger. One explanation could be that at finite ℓA and t the data
exhibit some small corrections, and our prediction is recovered only in the scaling limit t, ℓA, ℓB →
∞ with their ratio fixed.
For small |q| we find that [138]

S(α)
q (ρAB) = J (t)

(
2 log 2 − q2

J (t)2

)
. (7.21)

This result states that for small |q| there is an effective equipartition of the OE with violations of
order q2/(ℓA + ℓB).
We observe that the SROE is small both at short and at large times, so it can be captured by an
MPO with small bond dimension. However, it blows up linearly in the transient regime t ≤ (ℓA +

ℓB)/(2), preventing efficient simulation using the MPO representation, whose bond dimension
would blow up exponentially in that time window. This also happens for the total OE [94]. At
short times, the reduced density matrix is still very close to the one of the pure state, and one
does not gain much by approximating ρAB instead of the corresponding state; this trick becomes
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efficient only at later times.
We conclude by commenting Figs. 7.1d) and 7.1e). We show that the dynamics of the SROE in the
different charge sectors is affected by the finite size of the system. In particular, for N = 20 one
can observe the entanglement barrier only in the sector q = 0, while for q = 1 the absence of the
decay is consistent with the experimental results of Fig. 7.1b). Moreover, for this system size the
total OE presents a single peak, while for N = 10, we notice the presence of two peaks in the total
OE, which can be justified by the quasiparticle picture explained at the end of Sec. 7.3.3.

7.5 Conclusions

This chapter is devoted to a thorough analysis of the OE of the reduced density matrix after a
global quantum quench and its symmetry resolution. These quantities linearly increase in time,
before they decrease and saturate to a finite value. The presence of this barrier is strongly affected
by the finite size of the system, as we demonstrated experimentally here. This feature is also
visible for free fermionic systems evolving under unitary evolution.

The experimental results, also supported by tensor network simulations, have been obtained
by a novel post-processing method of randomized measurements data, dubbed batch shadows
estimator, that has practical applications to probe non-linear properties of quantum many-body
systems. This method provides a faster and more efficient data-treatment technique with respect
to the known ones [113] and enable us to effectively measure the OE.

We observe the presence of the entanglement barrier of the reduced density matrix of a parti-
tion of 4 ions out of N = 10, 20 both for the total OE and for the charge sector q = 0 and N = 20.
However, the finite size effects prevent the appearance of such a barrier in the charge sectors
q = ±1 and for q = 0, N = 10. When N = 20, in the charge sectors q = ±1, the available statistics
only allows us to explore the early time behavior of the SROE.

For small system sizes N, the phenomenology mentioned above can be also observed in free
fermionic systems without dissipation. Therefore, guided by conformal field theory and free-
fermion techniques, we show that the semiclassical picture of moving quasiparticles [85, 86] can
be adapted in this context, leading to a general conjecture for the charged OEs whose Fourier
transform gives the desired SROE. Beyond the barrier, we observe a delay time proportional to
the charge sector and an effective equipartition for small q.

Because of this phenomenology, we expect our main physical findings to show up for rather
generic quench protocols. However, it would be very interesting to engineer situations in which
some of them are absent, e.g. with the entanglement barrier appearing only in given charge
sectors, breaking equipartition.

We mention that the time evolution of the total OE is closely related to other entanglement
measures such as the reflected entropy [145, 146] (which is the OE of

√
ρAB), negativity [147–

150], and temporal entanglement [151–153]: in these latter cases, the connection is only merely
technical, but the fact that they can be computed in a similar way leads to analogous results, like
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the entanglement barrier of the logarithmic negativity after a quench [154]. Our works naturally
paves the way for their symmetry resolution and to understand whether their connection could
be understood sector by sector.

To conclude, we remark that the also OEs of operators different from the RDM are known
to capture important universal properties of the dynamics [91–94, 97, 101, 140, 155–157]. For in-
stance, the OE of the evolution operator U(t) = e−iHt grows linearly in ergodic phases [94, 155],
but only logarithmically in localized phases [93, 94]. Another example is the OE of a local op-
erator O evolving in Heisenberg-picture, O(t) = eiHtOe−iHt, which grows linearly in systems
with chaotic dynamics [155] but only logarithmically for integrable dynamics [140, 156, 157]. It is
then natural to wonder what happens to their SR version. Such analysis is presented in Ref.[138],
where we show preliminary steps towards the general understanding of the symmetry resolution
of OE, which certainly deserves further investigation.



B
Additional information on

symmetry-resolved dynamics

B.1 Effective Markovian dynamics

We now provide a simple interpretation of the effective description derived in Sec 6.2. Our main
interest here is to determine whether dynamical purification is an effect that relies on a specific
correlation present in an effective bath (derived by applying the symmetry-resolved projectors to
the density matrix), or whether it is unrelated to that, and thus captured entirely by an emergent
Markovian dynamics describing ρA,q.

Indeed, even though the evolution of the global density matrix ρ is governed by the Markovian
master equation of Eq. (6.2), the symmetry-resolved reduced density matrix ρA,q could have a
non-Markovian time evolution. The dissipation rates derived in Eq. (6.3) can be interpreted as
an effective master equation acting directly on the symmetry-resolved reduced density matrix,
with time dependent rates. We consider two arbitrary density-matrices product states, whose
symmetry-resolved reduced density matrix can be written in diagonal form ρI , ρI I , with matrix
elements ajj;I and ajj;I I , respectively. What we are interested in is whether the two states can
become dynamically more distinguishable as a function of time: if this is possible even for a finite
time window, the time evolution is non-Markovian [158]. In order to address this point, we define
the distance between these states as:

DI,I I = tr
√

ρIρI I . (B.1)

After a few lines of algebra, and defining as N, M the total rank of the density matrix and the
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number of the states belonging to E0, respectively, one obtains:

∂D
∂t

= − 1
2(1 + Nγt + MJ2t2)2 ×

×
∑

j∈E0

γ(ajj;I + ajj;I I + 2γt)√
(ajj;I + γt)(ajj;I I + γt)

+

+ ∑
j∈E1

(γ + 2J2t)(ajj;I + ajj;I I + 2γt + 2J2t2)√
(ajj;I + γt + J2t2)(ajj;I I + γt + J2t2)

+

− 2(Nγ + 2MJ2t)
(1 + Nγt + MJ2t2)3 ×

×
[

∑
j∈E0

√
(ajj;I + γt)(ajj;I I + γt) +

+ ∑
j∈E1

√
(ajj;I + γt + J2t2)(ajj;I I + γt + J2t2)

]

so that, under the condition above, one has ∂D/∂t < 0, as this is just the sum of two negative
terms. This implies that arbitrary states of the type discussed above become less distinguishable
as a function of time, a signature of effective Markovian dynamics.

The very same conclusion can be obtained on more general grounds by noticing that the rate
equations above all have positive rates, thus satisfying P-divisibility criteria. At the physical level,
this is a consequence of the fact that the relaxation time of the environment (in this case, the part
of the system we are tracing upon in a symmetry-resolved fashion 1) is much longer than the
timescales we are interested in. For longer times (not accessible to the regime we can tackle with
our theory, but definitely numerically accessible), we expect that such effective Markovian de-
scription would ultimately break down due to the bath dynamics timescales being comparable to
the one characterizing the partition.

B.2 Purification in one-dimensional systems

The system we consider here is a one-dimensional version of the system considered in Sec. 6.3,
that we divide into two connected partitions A∪ B with NA and NB sites, respectively. We assume
that the system is initialized in a charge-density wave |ψ0⟩ = |↓, ↑, . . . , ↑⟩ (a Néel state), and for
simplicity, take NA and NB to be even. We consider dynamics governed by Eq. (6.8) and focus
on timescales accessible within perturbation theory, that is, J2t2, tγ ≪ 1. We are interested in the
sector q = −1. Adapting the 2D calculations presented in the main text, we find that ρA(q = −1)

1We emphasize that we are dealing with a specific symmetry-resolved sector, as other sectors may feature infor-
mation backflow - a proxy of non-Markovianity - at earlier times.
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is divided into two blocks (in perturbation theory):

1. E0(−1): the state that is connected to the CDW by a single hopping process, or a loss event,
at the boundary with rate λE0

0

2. E1(−1): the (NA/2 − 1) states that are connected to the CDW by a single loss in the rest of
the system with eigenvalue λE1

k ;

At the lowest order in perturbation theory, one has the following scaling of the eigenvalues of
ρA(−1):

λE0
0 = (J2t2 + γt)/A(t), λE1

k = γt/A(t) , (B.2)

with normalization
A(t) = γt(NA/2) + J2t2. (B.3)

This gives

PA(−1) =
(NA/2 − 1)γ2t2 + (J2t2 + γt)2

[(NA/2)γt + J2t2]2
. (B.4)

B.3 Sectors populations

In the quench dynamics we investigate, the population in each different subsector plays an impor-
tant, practical role: it quantifies how relevant is the sector where dynamical purification occurs.
Within the Bose-Hubbard model example, considering the approximation that the (−1) and (0)
sectors are the only ones populated at short times, one expects that the population of the latter
increases as a function of time in a manner that is linear at very short times, and quadratic in the
regime of purification (a scaling similar to the prefactor A(t)).

In Fig. B.1, B.2, B.3, we show some sample results that illustrate this fact (that is also found in
the experimental data). It is interesting to note that, for most cases, the population in the (−1)
sectors is comparable to the one in the (0) around the purification timescale, irrespectively of
system size and interaction regime. This feature signals that observing such effect beyond the
spin models discussed in the text should involve only very modest post-selection.
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Figure B.1: Population of the symmetry sectors during the evolution of the systems described in Fig.s6.5.
We consider a system with L = 8 and we take A = [1, 2, 3, 4] and B = [5, 6, 7, 8] Here we fix U = 0.5J,
γ = 0.1J and start from a) |ψ0⟩ = |0, 1⟩⊗L/2, b) |ψ0⟩ = |1, 2⟩⊗L/2.
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Figure B.2: Population of the symmetry sectors during the evolution of the system described in Fig.6.6,
starting from state |↓↑⟩⊗N/2. We consider a system with L = 12 and we take A = [1, 2, 3, 4, 5, 6] and
B = [7, 8, 9, 10, 11, 12]. Panel a) w = 1, m = 0, J = 1, ϵ0 = 0; b) w = 1, m = 0, J = 0.1, ϵ0 = 0; c)w = 1
m = 0, J = 1, ϵ0 = 0.5.

Figure B.3: Population of the symmetry sectors during the evolution of the systems described in Fig.s
6.7a)-c). We use ∆q = q − ℓ/2 to label the symmetry sectors. We fix J = 1, µ = 0. In panel a) 1D chain with
L = 64, ℓ = 32, γ = 0.05; b) 2D square lattice, L = 16, ℓ = 4, γ = 0.2.



C
Additional information on

symmetry-resolved operator entanglement

C.1 More details on the experiment and classical shadows

C.1.1 Experimental platform and the theoretical modelling

This platform is realized with trapped 40Ca+ atoms, each one encoding a single qubit. Coupling
all ions off-resonantly with a laser beam subjects the ions to realize long-range Ising model in
presence of a transverse field, whose effective Hamiltonian writes:

H = h̄ ∑
i<j

Jijσ
x
i σx

j + h̄B ∑
i

σi, (C.1)

with i, j = 1, . . . , N and N is the total system size. To model the experiment using numerical
simulations, we approximate the interaction matrix Jij as a power-law Jij = J0/|i − j|α, where
the values of J0 and α depend on the specifics of each experimental realization and will be dis-
cussed later. The effective magnetic field B is considered much larger than the interaction term
(B ≃ 22J0) such that terms that would break the conservation of the total magnetization, i.e.
σ+

i σ+
j + h.c. are energetically suppressed. The effects of decoherence on the system are taken

into account considering the time evolution subject to local spin-flips and spin excitation loss.
The full system dynamics is described according to a Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation whose 2N local jump operators are written as Ci =

√
γxσx

i (spin flip),
Ci+L =

√
γ−σ−

i (excitation loss), i = 1, . . . , L, with rates γx, γm. Furthermore, the experimen-
tally prepared state is not pure. As such, it can be written as the following mixed product state
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ρ0 =
⊗

i (pi |↑⟩ ⟨↑|+ (1 − pi) |↓⟩ ⟨↓|) with pi ≈ 0.004 for i even and pi ≈ 0.995 for i odd.
In the experiment, local depolarizing noise is acting during the application of the local random
unitary. We model it as

ρ(t̄) → (1 − pDPN)ρ(t̄) + pDP ∑
i

Tri[ρ(t̄)]⊗
Ii

2
(C.2)

with pDP ≈ 0.02 and t̄ denoting the time at which the measurement is performed.

C.1.2 Batch shadows for Rényi 2-OE and its symmetry resolution

We used the batch shadow estimator to access the Rényi 2-OE and its symmetry resolution from
experimental data. The estimator of Rényi 2-OE constructed using n′ batches explicitly writes
following Eq: (7.2) as

S(2) = − log
X̃(n′)

4(
X̃(n′)

2
)2 = − log

1
4! (

n′
4 )

−1
∑b1 ̸=... ̸=b4

Tr
[
S⊗4

i=1 ρ̃(bi)
]

(
1
2! (

n′
2 )

−1
∑b1 ̸=b2

Tr
[
S
⊗2

i=1 ρ̃(bi)
])2 (C.3)

To estimate the Rényi 2-OE from the data as shown in the main text, we used the simple estimator
with n′ = 4. Alternately, the symmetry resolution for the Rényi 2-OE can be expressed as

S(2)
q = − log

Tr
(

Πq
[
TrB(|ρAB⟩ ⟨ρAB|)

]2Πq

)
p(q)Tr(ρ2

AB)
2

(C.4)

where Πq is the projector into the eigenspace of the symmetry sector q and p(q) = Tr(Πq |ρAB⟩ ⟨ρAB|)
are the probabilities of being in the charge sector q defined as a second order function of the den-
sity matrix ρAB. As E[ρ̃(bi)] = ρAB for all batch shadows, we can obtain a batch estimator of
the SR Rényi 2-OE by replacing each vectorized density matrix by a distinct batch shadow. This
explicitly writes:

S(2)
q = − log

1
4! (

n′
4 )

−1
∑b1 ̸=... ̸=b4

Tr
(

ΠqTrB
( ∣∣∣ρ̃(b1)

〉 〈
ρ̃(b2)

∣∣∣ρ̃(b3)
〉 〈

ρ̃(b4)
∣∣∣ )

1
2!(

n′
2 )

−1
∑b1 ̸=b2

Tr(Πq
∣∣ρ̃(b1)

〉 〈
ρ̃(b2)

∣∣)× (X̃(n′)
2 )2

(C.5)

The SR Rényi 2-OE were extracted from the experimental data by taking n′ = 16.
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8
Kitaev p-wave superconductor

8.1 Introduction

Recently, entanglement has emerged as a groundbreaking diagnostic to characterize and classify
many-body quantum phenomena in- and out-of-equilibrium [1–4]. An archetypal example is
the possibility of unambiguously detecting topological order in two-dimensional systems via the
topological entanglement entropy (TEE) [5–7]. The latter spots the presence of ‘long-range’ en-
tanglement which is not distillable via local operations; consequently, it defines a genuine entan-
glement order parameter, that distinguishes phases depending on their quasiparticle content [8].
This insight has been widely employed in the characterization of topologically ordered states in
numerical simulations [9–11], and has stimulated the search for experimentally realistic entangle-
ment probes [12–18].

While the definition of the TEE naturally emerges from gauge theories in two-dimensions, the
existence of topological invariants based solely on entanglement properties in one-dimensional
(1D) topological matter - e.g., in the form of an order parameter - is presently not clear. In 1D, bi-
partite entanglement of connected partitions does not display informative scaling corrections [2, 3].
Its finer structure - captured by the entanglement spectrum -, provides sharp sine qua non [19–21],
but even the entanglement spectrum of single partitions is not able to distinguish the topological
character of wave functions 1. Indeed, at the field theory level and in 1D, connected bipartite
entanglement is strongly influenced by ultra-violet contributions due to edges, and is thus not
immediately linked to ’universal’ information.

In this work, we show how entanglement and Rényi entropies of disconnected partitions pro-
vide a set of entanglement order parameters for one-dimensional topological superconductors

1Examples include the equivalence between the entanglement spectra of the ground state of finite Ising and Kitaev
chains, and spin ladders [19].
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Figure 8.1: (Color online) Partitions associated with the entanglement topological order parameter and the
phase diagram of the interacting Kitaev chain. Panel a): schematics of the partitions A (shaded, green) and
B (shaded, blue) considered here. Each site of the chain hosts a spin-less fermion degree of freedom aj, that
can be decomposed into two Majorana fermions c2j and c2j+1. The orange circle magnifies the cut across
partitions: deep in the topological phase, neighboring Majorana fermions belonging to different physical
sites are coupled (dashed line). The partition cut takes place exactly between the two coupled Majorana
fermions. Panel b): disconnected von Neumann entropy SD as a function of µ/t, U/t, at fixed ∆ = 1. Black
lines are from Ref. [22]. The color plot is obtained via interpolation on a 5 x 7 grid. Clearer evidence of the
quantization of SD in a phase and the sharpness of the transition requires a lot of points, as we highlight
on the lines I and II in Sec. 8.3.2.

(TSCs) [23, 24]. These order parameters satisfy the following properties: (i) they are quantized to
0 or log 2 when the phase is topologically trivial or not-trivial respectively, and are thus able to de-
tect the single entanglement bit - an ebit - that can be distilled from the ground state manifold; (ii)
they display a scaling behavior when approaching quantum phase transitions, thus defining en-
tanglement critical exponents that describe the build-up of non-local quantum correlations across
such transitions; (iii) some of them are experimentally measurable in- and out-of-equilibrium
utilizing recently introduced [14, 15] and demonstrated [25] techniques based on random mea-
surement methods [26].

Following Ref. [27], we consider the F-function between two partitions A, B, which compen-
sate for all edges and volume contributions in an open chain of length L. These properties are
required to avoid non-universal effects: the significance of our diagnostics relies on an under-
lying gauge theory description below, which calls for quantities that are divergence-free in the
continuum limit, whose details can be found in Ref. [28]. To diagnose the presence of non-local
correlations in the system, we choose two partitions with different connectivity, as shown in Fig. 8.1
a). The resulting disconnected n-entropies SD

n read:

SD
n = SA,n + SB,n − SA∪B,n − SA∩B,n, (8.1)
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where SF,n is the bipartite Rényi entropy of order n of the partition F = A, B, A ∪ B or A ∩ B. We
define Lα as the size of a given partition and LD as the distance between the two different parts
of B. Unless stated otherwise, we consider the representative case LA = LB, which provides a
cleaner finite-size scaling analysis.

We denote the case n = 1 as SD, that corresponds to the von Neumann entropy, and satis-
fies SD > 0 because of strong subadditivity. This entropy improves from Ref. [29] that uses two
systems with different boundary conditions. It has been considered in Ref. [30], which pointed
out a strong analogy between bosonic symmetry-protected topological phases (SPTPs) and error-
correcting codes. Here, we focus instead on fermionic phases where topology stems from an
underlying fundamental symmetry (parity) which cannot be broken by any Hamiltonian pertur-
bation. This condition plays a crucial role in defining the gauge-theory picture describing the
entanglement content of such states while the non-local correlations introduced by the fermionic
algebra via the Jordan-Wigner string are responsible for such analogy.

At a qualitative level, the key in SD
n is the disconnected partition B: all other terms are comple-

mentary, and only required to eliminate non-universal boundary and volume terms. In Fig. 8.1 b),
we show the finite-size behavior of SD across the phase diagram of interacting Kitaev chains: this
plot illustrates graphically how, even at modest system and partition sizes, SD clearly distinguish
topological from trivial phases. We note that Ref. [31] computes a quantity coinciding with SD

n for
the non-interacting Kitaev chain, but it should deviate when a quantum spontaneous symmetry
breaking phase is involved.

The present study is divided into the theoretical part Sec. 8.2 and the computational part
Sec. 8.3. The first part introduces shortly the Kitaev model (Sec. 8.2.1). Then, it both derives
and gives an intuitive picture of entanglement and the topological order parameter SD in the
deep topological or trivial regime (Sec. 8.2.2) and using lattice gauge theories (App. D.1). The
computational part displays the efficiency of SD as a topological detector (Sec. 8.3.1), reveals its
universal behavior at the transition (Sec. 8.3.2), shows its response to quenches which is typical of
a topological invariant (Sec. 8.3.3), and confirms its robustness to symmetry-preserving disorder
(Sec. 8.3.4). We then discuss the existing experimental relevancy of the detector in Sec. 8.4, before
concluding. The appendices mirror the main structure of the article and add miscellaneous details
referred to in the text. In particular, appendix D.2 provides a longer introduction on the Kitaev
wire for the unfamiliar reader while appendix D.4 attempts a proof of the equivalence between
all SD

n as topological detecting quantities.

8.2 Disconnected entropy of the interacting Kitaev wire

The Kitaev wire gives a prime example of a topological phase in 1D, with well-known behavior
deep into either the topological or trivial phase. There, a topological signature is more easily
extracted and identified from the entanglement of a ground state. An analytical treatment is
possible and presented here.
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8.2.1 The Model Hamiltonian.

We consider the interacting version of Kitaev p-wave superconductor, whose Hamiltonian reads:

H =
L−1

∑
j=1

[
−t(a†

j aj+1 + h.c.) + (∆ajaj+1 + h.c.) + 4U
(

nj −
1
2

)(
nj+1 −

1
2

)]
− µ

L

∑
j=1

nj, (8.2)

where a†
j (aj) are the creation (annihilation) operators of the spinless fermion on site j, nj = a†

j aj,
t is the hopping amplitude, ∆ is the superconducting amplitude, U is the nearest-neighbor inter-
action, and µ is the chemical potential. The phase diagram of the model is known [22, 32] and
displays a TSC phase, in addition to topologically trivial phases, including a band insulator, a
Mott insulator, and an incommensurate charge-density-wave (ICDW) phase. For any state in the
Hilbert space, the bipartite properties of a simply connected partition are equivalent to the ones
of the XYZ spin chain obtained from Eq. (8.2) after applying a Jordan-Wigner transformation. As
such, they are uninformative about the topological origin of a given phase.

8.2.2 Disconnected entropies at exactly soluble points

Therefore, the goal is to find a combination of entropies able to both unambiguously capture the
influence of non-locality in the ground state properties and identify the amount of information -
in this case, a single ebit - that can be stored in the ground state manifold. The goal is reached for
SD which contains the simplest non-trivial disconnected partition, SB while all other terms only
compensate possible volume and edge effects.

For conformal phases, SD
n is immediately given by conformal field theory [2, 33, 34], and van-

ishes in the thermodynamic limit. For gapped phases, one has to distinguish between topologi-
cally trivial and non-trivial phases. We analyze here the limiting cases.

(i) t = ∆ = U = 0, µ > 0: the system is a band insulator, and the density matrix of arbitrary
partitions has rank 1 both in fermionic and spin systems. This immediately gives SD

n = 0. The
same result holds in the Mott insulator phase. Thus, the thermodynamic limit of SD

n cannot distin-
guish conformal phases and trivial phases. Only the finite size correction of SD

n may distinguish
them.

(ii) t = ∆ = 1 ≫ |µ|, U = 0: this regime is representative of the TSC phase. Its correspon-
dent in the XYZ model is a ferromagnetic phase, which we analyze first as a representative of a
symmetry-broken phase. There, the lowest energy states at any finite size are equal weight super-
positions of the two ferromagnetic states, |ΨXYZ⟩ = (| ↑↑↑ ...⟩ ± | ↓↓↓ ...⟩/

√
2, separated by a gap

δ ∝ e−L. For both states, any reduced density matrix of an arbitrary spatial partition is equivalent,
and thus SD

n = 0.
For the TSC, the situation is different. While SA, SA∩B, SA∪B are the same as in the spin model,

SB has a sharply different behavior. In this regime, the ground state is two-fold degenerate (again,
up to a gap δ ∝ e−L): Each of the two states |Ψ⟩± can be written as an equal weight superposition
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of states with a given parity |ψ⟩±, i.e., |Ψ⟩± = (1/2L−1)∑ψ |ψ⟩±. The proper fermionic trace
evaluates the entanglement structure of arbitrary partitions so that we obtain SB = 2 log 2. This
returns a disconnected entropy SD = log 2. A full derivation is given in appendix D.3.

The behavior of these cartoon wave functions sharply distinguishes the TSC phase with re-
spect to all other phases. We need to go beyond these cartoons to understand if this behavior is a
property of a phase, and if the value of SD remains quantized in the whole TSC phase. Before pre-
senting numerical results in support of these findings, we now illustrate how the quantization of
SD emerges naturally when utilizing a lattice gauge theory (LGT) description of the Kitaev chain.

8.3 SD
n as a topological invariant order parameter

SD is efficient as a topological order parameter even for modest system size. Indeed, we simulate
the quantity and obtain a sharp phase diagram of the Kitaev wire. Sharp, because close to the
phase transition, it displays universal behavior typical of an order parameter and allows defini-
tion of critical entanglement exponents. Its characteristics as a topological invariant are confirmed
by its invariance after a quench as expected from Sec. D.1 and by its robustness to disorder.

8.3.1 Scaling of SD and phase diagram

We therefore turn to the numerical investigation of Eq. (8.2). We used free fermion techniques [35]
to investigate the non-interacting case U = 0, and density-matrix-renormalization group (DMRG) [36,
37] for U ̸= 0. Since DMRG does not give immediate access to SB, we performed separate simu-
lations to obtain this quantity, by modifying the lattice connectivity. We kept at least 1200 states
after truncation and performed at least 30 sweeps. Typical discarded weights at the end of the
simulation were of order 10−8.

The phase diagrams in Figs. 8.1 b) and 8.2 a) (with and without interactions) show how, even
at very modest partition sizes, SD is large and finite only in the TSC phase. Comparison between
Figs. 8.2 a) and b) shows the equivalence between SD and SD

2 . In Fig. 8.3 a), we show the finite-
size-scaling behavior of SD for representative points in the TSC (µ/t = 1.0, 1.5) and topologically
trivial (µ/t = 4) phase. The asymptotic values are quantized within numerical accuracy of our
fits to log 2 and 0, respectively, in agreement with the theoretical discussion above. Fig. 8.3 b)
shows how, in the TSC phase, quantization is approached exponentially fast in system size; the
same holds true for SD

n .

8.3.2 Universal behavior and entanglement critical exponents.

Since SD captures universal properties of each phase, it is natural to wonder whether such quan-
tities can display universal scaling behavior when crossing a quantum phase transition. Here, we
focus on the transition between TSC and band insulator, which belongs to the Ising universality
class.
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Figure 8.2: Color plot of the disconnected n-entropies, SD
n , of the Kitaev wire without interaction, U = 0,

for (a) n = 1 and (b) n = 2. The results are obtained with the free-fermion technique. The y-axis represents
the chemical potential, µ/t, while the x-axis the superconducting amplitute, |∆|/t. A grid with 16 × 30
points is considered. The two theoretically expected phase transition lines occur for |∆| = 0 and µ/t = 2,
respectively. Using the definitions of Fig. 8.1 a), L = 50, LA = LB = 12 and LD = 32. The diagrams coincide
with the results obtained in Ref. [31].
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Figure 8.3: (Color online) Finite-size scaling properties of SD in a) normal scale, b) log scale, for a chain
with LA = LB = (LA∩B + LA∪B)/2, and U = 0, ∆/t = 1. In the topologically trivial phase, SD quickly
vanishes. In contrast, in the topological phase (µ = 1.0, 1.5), SD increases as a function of system size, and
approaches its thermodynamic value exponentially fast when increasing LA, as shown in b).
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Figure 8.4: Finite size scaling of SD (in units of log2) along the line (I) and (II) of Fig. 8.1 as a function of
LD and µ or U using DMRG. In all plots, LA = LB = 12. (a) SDL as a function of µ for different sizes:
the critical value µc is the intersection of all curves; we obtain µc = 1.978. (b) Scaling of λ(x) for different
system sizes: curve collapse. The collapse is best realized for a = b = 1, values that also minimize the
square root of the residual sum of squares.(c) SDL as a function of U for different sizes: the critical value is
here Uc(12) = −0.314. (d) The collapse is again best realized for a = b = 1. Simulations with more sites
(especially using free fermion techniques) only confirm these results.

Similarly to conventional quantum critical behavior, we fit SD using a phenomenological
finite-size scaling ansatz:

SDL
a
b = λ

(
L

1
b (α − αc)

)
, (8.3)
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where α = µ or U is the varying parameter chosen, a and b (a priori different depending on the
chosen parameter) take place of the usual critical exponent β and ν, and λ(x) is a scaling function.
We extract these parameters using curve intersections and collapse shown in Figs. 8.4 across the
transition indicated in Fig. 8.1 with the yellow arrows (I) and (II). The results of the collapse
scaling locates correctly the transition point (with errors 10−4). Most surprisingly, we find that
the entanglement critical exponents satisfy a = b = 1 irrespectively of where the transition line
is crossed, a sharp signature of universal behavior. The quality of the collapse scaling in the
interacting case is already good for modest system sizes, further corroborating such universal
behavior.

8.3.3 Invariance of SD
n under coherent dynamics.

In the thermodynamic limit, topological invariants cannot change under unitary evolution (as
long as specific symmetries are not broken explicitly [38–40]). To check that SD is a true topolog-
ical invariant, we performed an extensive investigation based on quantum quenches within and
across the topological phase.

A representative sample of our results is presented in Figs. 8.5. In panel a), we plot the time
evolution of SD for a quench from an initial value of the superconducting amplitude ∆ = 0.5 to
a final value ∆ = 1.5. Different lines correspond to different system sizes. For each size, one
can sharply distinguish two regimes. At short times, SD does not change with time and exhibits
a plateau up to a time tc that depends on LA. After this timescale, quantization is lost, and the
dynamics is dictated by non-universal dynamics. To understand whether quantization is a robust
feature, we perform a finite-size scaling analysis in panel d): our results show that tc (defined as
the time when SD = 0.95) grows approximately linearly with system size and will diverge at the
thermodynamic limit. This behavior confirms the topological invariant nature of SD. Panels b),
e), and c), f) confirms these results for the quench µ0 = 1.0 to µ = 3.0 (from topological to trivial)
and µ0 = 3.0 to µ = 1.0 (from trivial to topological). For f), tc is the time when SD = 0.05.

8.3.4 Robustness of SD
n to disorder

In 1D, the effect of disorder is the most drastic: localization of the wave function occurs as soon
as disorder exists, and not even diffusive transport is possible [41]. Topological insulators and
superconductors escape the effect, in the sense that their extended edge states stay robust against
symmetry-preserving disorder. The same disorder should also preserve SD that relies on these
edge states. Numerical simulations indeed confirm the robustness of SD to disorder for the non-
interacting Kitaev wire.

We introduce finite Anderson-like disorder using:

µi = µ + δi, δi ∈ [−W/2; W/2] , (8.4)
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Figure 8.5: (Color online) Time evolution of SD after a quantum quench from a) ∆0 = 0.5 to ∆ = 1.5, b)
from µ0 = 1.0 to µ = 3.0 and c) from µ0 = 3.0 to µ = 1.0 with U = 0, µ = 0, L = 8LA. Finite-size scaling
of tc or t′c for two values of d) ∆, e) µ0 and f) µ of the quenched Hamiltonian. In all cases, the width of the
plateau diverges linearly with system size, as expected for topological invariants. The threshold lines of
SD according to the definition of tc are depicted as a dashed line.

where µi is the new position-dependent (i) chemical potential in the Hamiltonian Eq. (8.2) (with
U = 0). δi is a random variable of uniform distribution, and W is the amplitude of the disorder.
The new potential breaks the translation symmetry, but not the protecting symmetries of the
topological phase that persists for a reasonable amplitude of the disorder. In Fig. 8.6, we draw
the mean value of SD over realizations of disorder for different W as we increase the system size
L. SD scales exponentially in system size towards the quantized value of log 2 for the topological
phase, 0 otherwise.

8.4 Experimental measurement and comparison to other diag-

nostics.

The probes SD
n are experimentally-relevant because they are already informative for modest par-

tition sizes, and because Rényi entropies can be measured. The proposals in Ref. [14] discuss how
to perform measurements of Rényi-2 entropies in synthetic quantum systems: the complexity of
the measurements is not sensitive to the connectivity of the partition itself, but only to its total
size. Given that a large LD allows the distillation of the correct information from the wave func-
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Figure 8.6: Scaling in system size of the mean value of SD for t = ∆ = µ = 1, U = 0, LA = LB = (LA∩B +
LA∪B)/2 and for three amplitudes of disorder: W = 1 and 3 in the topological phase, and W = 12 for the
trivial disordered phase (200 realizations of the disorder for each point). The inset provides a logarithmic
scale for the axis of SD: the scaling is exponential. The standard deviation is smaller than 10−6 for each
point. The same study using Rényi-2 entanglement entropies leads to the same results quantitatively. The
phase transition is expected at Wc ∼ 11 for these parameters [42, 43].

tion, measuring SD is as complex as measuring its largest partition A. We note that partitions of
sizes up to 10 spins have already been probed in experiments [25].

Finally, we comment on the relation between SD and other diagnostics. Topological invariants
such as the many-body Chern number [4, 44] are unrelated to bipartite entanglement properties,
as they do not depend solely on the spectrum of density matrices, but also on their eigenfunc-
tions. For specific symmetries, specific topological invariants can be defined [45–50] (and poten-
tially experimentally measured [51]) also utilizing the matrix-product-state (MPS) classification
of SPTPs; these quantities are genuinely sensitive to the response of a state to specific (symmet-
ric) operations, and not immediately connected to entanglement. From a theoretical viewpoint,
all these diagnostics represent complementary tools, that give access to qualitatively different fea-
tures characterizing topological matter. Examples now include: response of wave functions under
changing boundary conditions (Chern number), properties with respect to protecting symmetry
(MPS order parameters), and non-local entanglement content of wave functions (disconnected
entropies).

8.5 Conclusions.

We have shown how the entanglement of disconnected partitions uniquely distinguishes topo-
logical superconducting phases in one-dimensional systems. This distinction is naturally inter-
preted within a lattice gauge theory framework, and leads to key footprints both at the ground
state level, and in quantum quenches. Entanglement order parameters display universal scal-
ing behavior when crossing phase transitions, characterized by entanglement critical exponents.
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Our findings show that modest partition sizes - of the order of what has been already experi-
mentally demonstrated - are sufficient to uniquely characterize topological superconductors via
entanglement. It would be intriguing to investigate whether other forms of quantum correlations
between disconnected partitions, such as discord [52] or quantum coherences [53], display similar
characteristic features, and if entanglement topological invariants can be used to characterize the
real-time dynamics of interesting topological matter [40].



9
SSH Model

9.1 Introduction

When a phase is topological, then its ground state(s) displays robust entanglement properties.
The converse is more uncertain: to what extent are entanglement properties unique to topolog-
ical states? This attempt at understanding topological phases through the lens of entanglement
is recent [8]. It has been successful for (true) topological order that is now characterized by the
topological entanglement entropy (TEE) [5–7]. This quantity works both in- [1–4] and out-of-
equilibrium [54–56], and is included in the textbooks’ definition of these phases [57, 58]. It pro-
vides a useful discriminating characterization of topology for numerical simulations [9–11] and it
stimulated the search for corresponding experimental entanglement probes [12–18].

Topological insulators and superconductors or, more generally, symmetry-protected topolog-
ical phases (SPTP) also display characteristic entanglement features. Amongst these features, the
most used is the entanglement spectrum [19, 21, 59]. It serves as an entanglement-based sine
qua non signature of an SPTP. This spectrum corresponds to all the eigenvalues of the bipartite
reduced ground state’s density matrix of the system. The degeneracy of the matrix’ few largest
eigenvalues is imposed by the dimension of the possible representations of the edge states [19, 59–
61]. Because the same spectrum may come from a non-topological state, the diagnosis it provides
is a necessary but not sufficient condition 1.

The disconnected entanglement entropy SD is another entanglement signature for SPTPs of
systems with open boundary conditions. SD was suggested and tested through simulations for
some examples of bosonic topological phases in Ref. [50]. Like the TEE, it extracts a topological-

1An example is the entanglement spectrum of the topological ground state of the Kitaev wire, which is identical
to the spectrum of the corresponding ground state of the non-topological ferromagnetic spin 1/2 Ising chain after the
Jordan-Wigner mapping.
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exclusive contribution to the bipartite entanglement entropy. Unlike the TEE [7, 62], this contri-
bution is not (yet) predicted by quantum field theory as it is related to short-range or edge-edge
entanglement. Ref. [28] used the Kitaev wire [63] to prove that SD is also valid for 1D topological
superconducting phases, where it is captured within a lattice gauge theory framework. In the
Kitaev wire, SD is traced back to the entanglement necessarily present by construction between
the only two fractional (Majorana) modes of the model, even when the modes are localized on
each edge of the chain.

This paper aims at characterizing the properties of SD for the case of one-dimensional topo-
logical insulators, focusing on a simple, yet paradigmatic example: the Su-Schrieffer-Heeger
model [64, 65] (SSH). This model of spinless fermions displays a topologically trivial phase and an
SPTP with two edge modes. Each of these states is usually represented as one dangling fermion
unentangled with the bulk on either side of the chain. The bulk is short-range entangled [66].
However, the finite size of the chain ensures a systematic maximal entanglement between the
two a priori independent edge states as predicted in bosonic topological phases [67, 68]. As we
show below, SD is sensitive to this long-range entanglement and takes the maximal possible value
of 2 log 2 in the SPTP 2. In contrast, this value is 0 in the trivial phase. Therefore, our first claim
is that SD can be a good signature of topology for SPTP without fractional edge states like in the
SSH model.

We also find that SD provides additional quantitative topological exclusive information on the
entanglement properties of the ground state. Indeed, SD displays a system-size scaling behavior
close to the critical phase transition, akin to the magnetization of an Ising chain. We obtain the
resulting critical exponents using exact numerical methods. Within the topological phase, SD

remains quantized on average in the presence of disorder. Such a scaling behavior and critical
exponents are different with respect to the Kitaev wire [28] (the only other occurrence of such
an analysis for fermionic systems to our knowledge) and to bosonic cluster models realized as
instances of random unitary circuits (e.g. Ref. [69]). This indicates that while scaling behavior
is likely a generic feature of SD at criticality, the corresponding critical entanglement exponents
depend on the nature of the associated topological phase transition.

Finally, we apply unitary evolution to the system in the form of quantum quenches either
within the two phases or across the phase transition. After the quench, we observe that SD keeps
its initial value in the limit of an infinite chain, a behavior characteristic of a topological invariant
associated with particle-hole symmetry [70]. This set of observations mimics the phenomenology
observed for the TEE in the context of true topological order and allows us to define SD as a valid
entanglement order parameter.

This work is structured as follows. We introduce the SSH model and the disconnected en-
tanglement entropy in Sec. 9.2. In Sec. 9.3, we present the analytical computation of SD in the
topological phase, trace it back to the systematic maximal entanglement of the edge states, and

2This result is consistent with a previous study of the spinfull interacting SSH model in Ref. [29]. Another quantity
is used then that also extracts the edge entanglement and coincides with SD for this model.
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explain its exponential finite-size scaling. In Sec. 9.4, we present our numerical results for the case
of the ground state of a clean SSH chain. In Sec. 9.5, we investigate quantum quench protocols,
that provide a clear characterization of SD as a topological invariant. In Sec. 9.6, we showcase
one application of SD, by investigating the entanglement properties of disordered SSH chains,
and showing how the disconnected entropy recovers the predicted phase diagram. We discuss
the generality of our findings within the BDI and D classes of the tenfold-ways in Sec. 9.7, and
conclude the study in Sec. 9.8.

9.2 Model Hamiltonian and disconnected entropies

We briefly introduce the SSH model and both its topological and trivial phases in Sec. 9.2.1. We
introduce SD in Sec. 9.2.2. In Sec. 9.2.3, we confront the strengths and the limits of SD that become
apparent for the SSH model with periodic boundary conditions. We establish the equivalence of
using SD with either the von Neumann and Rényi-2 entanglement entropies for the SSH model
in Sec. 9.2.4.

9.2.1 The SSH model

The Su-Schrieffer-Heeger model [64, 65] describes a one-dimensional spinless fermionic chain
with a staggered hopping between sites. The chain is composed of N unit cells. Each cell is
divided into one site A connected to one site B. The number of sites in a chain is, hence, L = 2N.
The Hamiltonian of the model with open boundary conditions is:

HSSH = −v
N

∑
i=1

(
c†

iAciB + h.c
)
− w

N−1

∑
i=1

(
c†

i+1AciB + h.c
)

, (9.1)

where c†
iX (ciX) is the creation (annihilation) operator of a spinless fermion on the unit cell i, site

X = A, B. v > 0 (w > 0) is the intra-(inter-)cell hopping amplitude. The chain is represented in
Fig. 9.1a).

At half-filling, the model displays two phases. When v/w ≫ 1, A and B within a unit cell
dimerize and the phase is topologically trivial. There is one particle per unit cell (box in Fig. 9.1a)).
The vanishing entanglement between the unit cells increases until v/w = 1 where the phase
transition occurs. When v/w < 1, the phase is topological. The single-particle spectrum displays
two zero-mode edge states in the gap between two bands. When v/w ≪ 1, the density profile
of each edge state shows one localized fermion in the leftmost or rightmost site of the chain. The
dynamics of this fermion is independent of symmetry-preserving perturbations of the bulk. Since
Pauli’s filling rule applies, at half-filling and zero temperature, all the lower band is occupied. The
ground state is unique and its bulk is short-range entangled: one fermion forms a Bell pair on each
strong link (darkest line in Fig. 9.1a) ). When v = 0, the Bell pair on the link between cell i and
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i + 1 is strictly localized. The Bell pair can be expressed as:

(|0iB1i+1A⟩+ |1iB0i+1A⟩) /
√

2. (9.2)

For a finite chain with open boundary conditions, the ground state has one fermion populating
each strong link, and one extra fermion in the superposition of Eq. (9.2) of the two edge states (see
Sec. 9.3). This superposition entangles the two distant edges maximally. It is the only long-range
entanglement in the system and contributes to the entanglement entropy. We will show that this is
the contribution extracted by SD (Sec. 9.2.2). The topological and the trivial phases are separated
by a critical phase transition at v/w = 1.

The topological invariant of this model is the Zak phase [71], a quantity proportional to the
Berry phase [72]. By definition, a topological invariant is constant and quantized over the whole
phase and only changes across a phase transition. Here, the Zak phase distinguishes the two
regimes of v/w while the way their ground states at half-filling breaks the initial symmetries
can not. This situation is beyond the spontaneous symmetry breaking paradigm and signals
that at least one of the two phases is topological. For open boundary conditions, the topological
regime is the only one displaying edge states (and a non-zero Zak phase). For periodic boundary
conditions, the values of the Zak phase for the two regimes can be exchanged with the renaming:

A → B, v → w, (9.3a)

B → A, w → v, (9.3b)

with unchanged values of the amplitudes. In this case, the Zak phase only ensures that the two
phases are topologically distinct.

The topological edge states are protected by charge conservation (U(1) symmetry), the time-
reversal T, the particle-hole C, and the chiral S (or rather, the sublattice) symmetry 3. The phase is
part of of the BDI-class of the Altland-Zimbauer ten-fold ways [74] leading to a Z classification.
This classification indicates that there are an infinite countable number of distinct topological
phases with unbroken T,C and S in 1D. The classification will be Z8 if symmetry-preserving
interactions are allowed [75]. This latter classification means that there are only seven non-trivial
topological phases left. While the translation symmetry is needed to compute some non-local
topological order parameters such as the winding number in k space, the topological phase is not
protected by this last symmetry.

In simulations, the Zak phase, the winding number, the presence of edge states, or the entan-
glement spectrum have all served as smoking guns for topology. In experiments, the winding
number was measured [76, 77] for the SSH model and its generalization [78]. In these instances,
the winding number is contained in the time evolution of the chiral mean displacement observ-
able. This observable quantifies the relative shift between the two projections of the tracked state

3There are several definitions of these symmetries, leading to several self-consistent 10-fold ways. We use the
definitions of Ref. [73].
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Figure 9.1: (Color online) The SSH chain and the partition used for SD. a) The SSH chain is a spinless
fermionic chain of sites A and B (blue and red on the figure) connected with staggered hoppings v and w.
A pair of sites A and B forms a unit cell (a box on the figure). b) Partitions A (shaded, blue) and B (shaded,
orange) associated with the entanglement topological order parameter SD. For large systems, the exact
locations of the cuts ϵi, i = 1, 2, 3, 4, of each partition do change the value of the bipartite entanglement
entropy but do not change SD.

onto the eigenstates of the chiral operator [77]. It follows a random walker [77] or the entire
atomic population after a sudden quench [76, 78]. The observable is measured using chiral- and
site-resolved imaging over several times. SD completes this list of topological detectors. Amongst
them, SD is the only probe that is both unambiguous and entanglement-based 4. Thus, SD is the
optimal tool to study the topological entanglement properties of the SSH model.

9.2.2 The disconnected entanglement entropy SD

The disconnected entanglement entropy SD has been introduced in Ref. [50] as a generalization of
the topological entanglement entropy Stopo for all the topological phases (topological order and
SPTP). Stopo is an exclusive marker for topological orders. Both SD and Stopo aim to isolate a
constant topological-exclusive contribution in the bipartite entanglement entropy. Thus, they are
both built using the same linear combination of entropies but they differ in the partitioning of
the system. In both cases, the combinations are chosen to cancel volume law (linear in system
size) and area law (linear in the number of internal cuts) contributions in the bipartite entan-
glement entropy. For Stopo, the leftover constant contribution is topological-exclusive, as shown
by topological quantum field theory arguments [7, 62]. A similar generic proof is missing for
SD. Instead, simulations, exact solutions, or a gauge theory analogy validate its success for some
examples [28, 50, 80].

The original definition of SD [50] uses the von Neumann entanglement entropy of a bipartition
of the system. For a chain divided into two complementary subsets A and Ā, the reduced density
matrix of the subset A is

ρA = trĀρ.

trĀ stands for the partial trace on the subset Ā, and ρ is the full (pure) density matrix of the system,
always taken as a ground state in this study. A may be a collection of disconnected sites of the

4Another entanglement-based topological detecting quantity that applies to the SSH model would be the bound-
ary susceptibility [79].
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chain. The von Neumann bipartite entanglement entropy follows:

SA = −trAρA log (ρA) . (9.4)

SD uses the partitioning of the chain in Fig 9.1b), so that:

SD = SA + SB − SA∪B − SA∩B. (9.5)

The lengths of A, B, and the disconnected subset D = A ∪ B are respectively LA, LB, and LD.
The formula is best understood when comparing what happens for the other possible gapped

phases in 1D: disordered (paramagnetic) and ordered phases, the latter ones characterized by
some of form of spontaneous symmetry breaking (SSB) of a discrete symmetry.

A trivial phase always has one single ground state independently of its boundary conditions
and for both the thermodynamical limit (large number of particle) and finite (large) size. When
this state is a product state, any choice of partition leads to a bipartite entanglement entropy of
zero. An example of such a case is the ground state of a (quantum) spin-1/2 chain with only a
magnetic field. The ground state can also be short-range entangled: if C1 and C2 are two simply
connected partition of the chain separated by a large distance, then

ρC1C2 ∼ ρC1 ⊗ ρC2 . (9.6)

The trivial SSH phase is an example of this scenario. In that phase, the mutual information
I(C1 : C2) of two disjoint and distant partitions is zero, and so is SD for open boundary condi-
tions (the conditional mutual information in this context). Indeed, for large subsets in Fig. 9.1b),
Eq. (9.6) applies, such that :

SD = SA +
(

SA∩B + SB\A

)
−
(

SA + SB\A

)
− SA∩B = 0 (9.7)

for A and B the partitions in Fig. 9.1b), and where B\A means B without A ∩ B. For periodic
boundary conditions, both A and B\A are connected such that SD = I(A : (B\A)). For these
conditions, SD may vary within a phase.

A SSB phase always has several ‘ground states’ independently of its boundary conditions. A
basis of these states may be expressed as product states. For a finite-size systems, the degeneracy
is lifted by corrections that are exponentially small in system size: the single ground state has a
GHZ-type of quantum entanglement [50]. An example of a SSB phase is the Ising chain with a
small transverse magnetic field. The true finite-size ground state is then the maximally entangled
symmetric superposition between the state with all spin up and all spin down: the GHZ-state.
Any bipartite entanglement entropy of this state has the same non-zero value such that all the
entropies in Eq. (9.5) are equal and SD = 0 5. Like in the trivial case, additional short-range

5When LD = 0, A ∪ B spans over the whole system. In this case, the combination Eq. (9.5) reduces to the tripartite
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entanglement in the ground state does not change SD.
For periodic boundary conditions, the ground state of an SPTP is unique. This state is short-

range entangled after defining the proper unit-cell. Like the periodic trivial case, SD = I(A :
(B\A)) then. Unlike the trivial case, the SPTP imposes neighboring unit cells to be maximally
entangled, saturating SD (cf Sec. 9.2.3) so that it will not vary within the same phase. For open
boundary conditions, an SPTP displays edge (zero)-modes. A basis of these modes can sometimes
be written as separable states, like the SSB case 6. Unlike the SSB case, the edge modes all have the
same bulk, and the superposition of the same bulk does not increase the entanglement. For a SSH
chain with two edges, the true ground state is a maximally entangled superposition of these edge
states. This superposition generates an additional saturated contribution (i.e. of maximal possible
value) to the entanglement entropy of a partition that includes one edge without the second (like
A and B in Fig. 9.1b)). SD then behaves like in Eq. (9.7), but with this extra edge contribution for
SA and SB that is not compensated by SA∪B and SA∩B.

Only this edge contribution sets SD to a quantized, non zero value. Similarly to Ref. [29], the
value of SD in the thermodynamical limit is fixed by the number of edge states D (or, equivalently,
by the dimension 2D of the Hilbert space they span):

lim
L→∞

SD = 2 logD. (9.8)

D is fixed by the bulk-edge correspondence outside of the accidental increase of global symmetry
due to fine-tuning. Thus, D is almost a robust topological invariant, and so is SD. The SSH
topological phase fits in this scenario.

Thus, the SPTP case can be interpreted as a trivial gapped phase with saturated short-range
entanglement in the bulk, with an extra entanglement between the edge states for a finite open
system.

9.2.3 Periodic boundary conditions

Following the previous discussion, we will solely focus on open boundary conditions in the rest
of the text. We take a brief detour in this section to discuss the physical interpretation of SD for
closed chains.

For periodic boundary conditions and at half-filling, SD only extracts the saturated entangle-
ment of the cut between the connected partitions A and B\A of the single bulk ground-state. The
saturation comes from cutting the singlet between two neighboring projective representations on
each side of the cut. This picture stems from the cohomology and supercohomology classifica-
tion [81, 82]. It means that if G is the unbroken symmetry group of the chain, then cutting a chain

entanglement entropy [50], and is non-zero for both SSB and SPT phases.
6If we define separable in terms of sites, the edge states are separable for the topological SSH, but they are not

separable for the topological Kitaev wire. In terms of Majorana fermions, both are separable. In terms of unit cells,
neither are separable. Interactions typically prevents separability.
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between two unit cells leaves an edge state on each side of the cut. One edge state transforms
according to a projective representation of G, and the other transforms according to the conjugate
representation of the former edge. When connected back, the two edge states form a singlet that
is maximally entangled by construction. This topological pattern repeats all along the chain and
explains the saturation of the bulk short-range entanglement.

The projective representations involved in this internal cut also transforms the edge states
of the chain with open boundary conditions. SD has thus the same saturated value for both
boundary conditions in the topological phase. In contrast, SD is systematically zero only for the
trivial phase of a system with open boundaries. Therefore a sharp phase transition between the
two phases only exists for open boundary conditions.

This structure is explicit in the SSH model: the two phases for v/w < 1 and v/w > 1 are
a collection of coupled dimers between B and A or A and B (the order matters) respectively.
These dimers become uncoupled when v = 0 and w = 0 respectively. The contribution to the
entanglement entropy for any bipartition of the system then corresponds to the contribution of
each cut: log 2 for a cut in the middle of a dimer and 0 otherwise. Defining ϵj = 1 when the cut
j = 1, 2, 3, 4 (see Fig. 9.1b)) separates a dimer and ϵj = 0 when the cut is between two of them,
Eq. (9.5) becomes:

SD/ log 2 = ((ϵ1 + ϵ3) + (ϵ1 + ϵ2 + ϵ3 + ϵ4)− (ϵ3 + ϵ4)− (ϵ2 + ϵ3))

= 2ϵ1.
(9.9)

Eq. (9.9) is not one-site translation-invariant for the two phases. This lack of invariance stems
from the ambiguity highlighted in Eq. (9.3) and is only lifted after defining the unit cell and al-
ways cutting between two of them. Note that ϵ1 is exactly the quantity extracted by the “edge
entanglement entropy” of Ref. [29] when there are no volume nor GHZ-like contributions in the
bipartite entanglement entropy. ϵ1 is also the contribution in the value of the bipartite entangle-
ment entropy that is linked to the Zak phase in the small localization length and thermodynamical
limit [83]. Consequently both ϵ1 and the Zak phase change depending on the definition of the unit
cell.

9.2.4 Disconnected Rényi-2 entropy

Similarly to the bipartite entanglement entropy, it is possible to define and use the disconnected
entropy using the Rényi-α entanglement entropies [28]. These extensions are useful for two rea-
sons. First, for small values of α, the Rényi-α entanglement entropies are experimentally measur-
able. Second, for α = 2 (and, with increasing complexity, for larger integer values of α as well),
they can be computed using Monte Carlo methods, providing a natural framework to extend our
methods to interacting systems.
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The Rényi-α entanglement entropy [84] of a bipartition A, Ā of the chain is defined as:

SA,α =
1

1 − α
log trA (ρα

A) , (9.10)

where the case α → 1 is the von Neumann entanglement entropy. The subsequent versions of SD

are:
SD

α = SA,α + SB,α − SA∪B,α − SA∩B,α, (9.11)

for the partition of the chain in Fig. 9.1b). To motivate and then support the relation between SD

and SD
α , we will make use of the following known properties:

1. For all α ∈]0,+∞[, Sα has the property of minimum value [85] (i.e. Sα(ρ) = 0 ⇔ ρ is a
pure state). Hence every individual bipartition in Eq. (9.5) and Eq. (9.11) are simultaneously
zero or non-zero, i.e. SX,α ̸= 0 ⇔ SX ̸= 0.

2. For all α > 1, Sα has the property of monotonicity [86], i.e., for 1 < α1 ≤ α2, Sα1(ρ) ≥ Sα2(ρ).
This property can be extended to the von Neumann case α = 1. All bipartite von Neumann
entanglement entropy of 1D gapped isolated systems are finite, and thus, by monotonicity,
so will be their Rényi-α > 1 counterpart. Thus, there are no divergent terms in Eq. (9.11) for
the SSH model with w ̸= v 7.

3. Despite open boundary conditions and for large enough subsets, translation invariance im-
poses equality of finite entropies of simply connected subset, i.e. SA,α = SA\B,α = SB\A,α

and SA∩B,α = SD,α (the presence of exactly one edge matters). With additional homoge-
neous disorder, the equalities become ⟨SA,α⟩ = ⟨SA\B,α⟩ = ⟨SB\A,α⟩ and ⟨SA∩B,α⟩ = ⟨SD,α⟩.
A corollary follows: if X and Y are simply connected large subsets that include the same
number of edges, then SX = SY ⇐⇒ SX,α = SY,α. When the system is translation-
invariant every two sites (or more) instead, like the SSH model, the value of a connected
entropy changes depending on the position of its two cuts relatively to the unit cells. These
changes are compensated in SD, similarly to how internal cuts compensate each others in
Eq. (9.9). This difficulty can be bypassed by considering only the unit cells instead of the
sites, and only the cuts between unit cells.

4. For all α > 1, Sα has the property of additivity. This property imposes SB,α = SA∩B,α + SB\A,α

for short-range entangled 1D systems.

The first point establishes the qualitative correspondence between the von Neumann and the
Rényi-α bipartite entanglement entropies: one of the two entropies is zero if and only if the sec-
ond is also zero. The von Neumann entanglement entropy never diverges for gapped phases.

7For α ∈]0, 1[, we must assume that each term in Eq. (9.11) will also be finite for all bipartition of 1D gapped sys-
tem. Then, the rest of the demonstration applies, and SD

α can also be used for α ∈]0, 1[. The Rényi-1/2 entanglement
entropy is useful as it coincides with the logarithmic negativity for pure states.
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As a consequence, the second point prevents the Rényi entropies to diverge as well. The third
point ensures that the considerations of Sec. 9.2.2 for the archetypal trivial phase and SSB phase
stay valid for SD

α . The fourth point extends this validity for the short-range entangled variations
around the archetypal cases and the SPTP. The value of SD and SD

α may differ by a finite factor γα:
SD = γαSD

α .
The von Neumann entanglement entropy is important in quantum information as it counts

the maximum amount of distillable entangled pair between a subset and its complementary. In-
stead, the Rényi-2 entropy can be measured experimentally [14, 15, 25, 87] for all systems in all
dimensions, so that SD

2 is experimentally measurable for small subset sizes. The disconnected
part can be large. The sizes of LA = 8 or 12 are both accessible experimentally [25] and enough
to reach the saturated value of SD

2 in the simulations Sec. 9.4 to 9.6. In practice, measuring SD
2 is

done by measuring each bipartite entanglement entropy in Eq. (9.5) successively (using the same
system if needed).

9.3 Analytical predictions on SD: long-range entanglement be-

tween edges

In this section, we present an explicit calculation of SD for the SSH model to justify the cartoon
pictures of Sec. 9.2. In the topological phase, we show that the ground state always contains the
maximally entangled superposition of the two localized edge states. This superposition ensures
that SD = 2 log 2 up to exponential corrections in the size of the system. SD = 0 for the non-
topological phase. This result is valid only when the chain has two edges, i.e. for a finite chain of
arbitrary large length.

We first show that the two edge states in the one-body spectrum are in the symmetric and
antisymmetric superposition when the chain is finite but of arbitrary large length. We obtain
the exact expressions of the two states for weak link hopping v = 0 (see Fig. 9.1a)) and track
their change when v increases [88]. This hopping v slightly spreads the localized edge states
and lifts the degeneracy between the two such that the symmetric superposition of the two is
lower in energy. We thus observe the exponential convergence of SD in L to 2 log 2. This result
is quantitatively consistent with the simulations (see Fig. 9.2b)) away from the phase transition
(v = w = 1) and for large system size. Ref. [89] provides an exact but more involved derivation
of the spectrum and eigenstates of the SSH chain for all v and w.

Ref. [88] provides the detailed derivation followed in this section. We remind here the main
steps and results. The SSH Hamiltonian with disorder is:

Hdis
SSH = −

N

∑
i=1

vi

(
c†

iAciB + h.c
)
−

N−1

∑
i=1

wi

(
c†

i+1AciB + h.c
)

. (9.12)

Since the Hamiltonian is non-interacting, a complete solution only requires the one-body spec-
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trum and the corresponding eigenstates. At zero temperature, each state is filled in order of
increasing energy until the target filling fraction is reached. Because of chiral symmetry, the spec-
trum is symmetric around E = 0, and when they exist, the edge states are the only states at that
energy. It follows that the ground state of the topological phase corresponds to the full lower
band filled (i.e. all bulk dimers filled with one particle each), and one edge state populated. To
express the wave function of latter, we consider the most generic one-body wave function:

|Ψ⟩ =
N

∑
i=1

(
aic†

i,A + bic†
i,B

)
|0⟩, (9.13)

where |0⟩ is the particle vacuum and ai and bi are complex weights. This state is a zero-mode of
the Hamiltonian Eq. (9.12) for the infinite chain. For the finite chain (of arbitrarily large length),
the approximation Hdis

SSH|Ψ⟩ = 0 imposes (for vi, wi > 0):

For i = 2, ..., N, ai = a1Πi−1
j=1

−vj

wj
,

For i = 1, ..., N − 1, bi = bN
−vL

wi
ΠN−1

j=i+1
−vj

wj
,

b1 = aN = 0. =

(9.14)

In the limit N → ∞, first and second equations of Eq. (9.14) reveal two states, |L⟩ and |R⟩. The
two states are exponentially localized on either the first site A or the last site B of the chain with
(average) localization length:

ξ =
N − 1

log
(

ΠN−1
i=1 |wi|/|vi|

) . (9.15)

The third condition of Eq. (9.14) is instead incompatible with the existence of zero-energy modes
and one must consider the (small) lift in the degeneracy between the two edge states. In this
case, the best approximations of the two edge states are the two orthogonal real equal-weighted
superpositions of |L⟩ and |R⟩. When the cuts in Fig. 9.1b) are far apart both from each other and
the boundaries, this superposition ensures SD = 2 log 2 approached exponentially.

When one vi = 0, the exponential tail of both localized edge state |L⟩ and |R⟩ is truncated at
site i. When instead one wi = 0, the exponential tails also stop and two new edge states appear
between the cells i and i + 1. Subsequent hybridization between the now four edge states lifts the
degeneracy. The “edge” states around i are not robust against the small local perturbation of wi =

0 in contrast to the real boundary edge states that require a non-local perturbation connecting the
two ends. Hence, the system with one wi = 0 still belongs to the regular topological phase of the
SSH model. The value of SD is lower, however.

When two zero v’s or w’s are too close to each other, the approximation breaks down. More
generally, when the disorder is too strong, it induces a phase transition beyond which no zero
modes may exist anymore.
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9.4 SD within a phase and scaling analysis at the phase transition

In this section and the next, we employ free fermion techniques to obtain SD for generic parame-
ters of the system. This method is equivalent to exact diagonalization and relies on the fact that
the SSH model describes non-interacting fermions. We briefly review this technique in Sec. 9.4.1.
In Sec. 9.4.2, we obtain SD for a range of parameters around the phase transition where SD dis-
plays a system-size scaling behavior.

9.4.1 Computing the entanglement spectra

The combination of analytical and numerical techniques reviewed in Ref. [35, 90] allows direct
access to the spectrum and eigenvalues of any quadratic Hamiltonians. It computes efficiently the
reduced density matrix’ entanglement spectra that are necessary to deduce SD in Eq. (9.5). The
technique is faster than direct exact diagonalization as its complexity grows only algebraically in
system size. The reader may also refer to Ref. [79] that also uses the same technique for the SSH
model to study entanglement at the phase transition. The scaling analysis realized in Ref. [79]
concerns the bipartite entanglement for increasing subset size for infinite or semi-infinite chains.
In contrast, we use the technique in Sec. 9.4.2 to study SD for increasing system size.

The correlation matrix is related to the reduced density matrix. The many-body reduced den-
sity matrix ρX of a subsystem X can be written as

ρX = Z−1
X e−HX , (9.16)

with ZX = trX
[
e−HX

]
and where HX is the entanglement Hamiltonian of ρX. HX is a quadratic

Hamiltonian as long as the system’s Hamiltonian describes non-interacting fermions. The SSH
Hamiltonian Eq. (9.1) preserves the number of particles, so the technique provides the eigenvalues
of HX, i.e. the entanglement spectrum, using only the correlation matrix (CX)mn = ⟨c†

mcn⟩ of the
state of interest, where m, n are site indices belonging to X. Indeed, the entanglement Hamiltonian
and the correlation matrix are related [91]:

HX = log
1 − CX

CX
. (9.17)

The one-body eigenstates of the initial Hamiltonian H, the {Φk}k, are obtained with exact
diagonalization (restricted to one-body states). The many-body ground state correlation matrix
CX follows:

(CX)mn = ∑
|k|<kF

Φ∗
k(m)Φk(n), (9.18)

where kF is Fermi’s momentum. We then numerically diagonalize the matrix Eq. (9.18) (of the
same length of X) using a computer. From the spectrum, we compute the entanglement entropies
in SD using Eqs. (9.17), (9.16) and (9.4).
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The procedure is also useful to track a time-dependent state and its entanglement: Starting
from the ground state of H0 = ∑ij h0

ijc
†
i cj for t < 0, the system evolves after a sudden quench

at t = 0. The Hamiltonian becomes H = ∑ij hijc†
i cj for t > 0. Along with the state ρ(t), the

correlation matrix acquires a time dependence:

(CX)mn (t) = tr
[
ρ(t)c†

m(0)cn(0)
]

= tr
[
ρ(0) c†

m(t)cn(t)
]

= ∑
kk′,m′n′

Φ∗
k(m)Φk′(n)e−iEk′ teiEkt(CX)m′n′(0)Φ∗

k′(n
′)Φk(m′),

(9.19)

where Ek and Φk are the eigenvalues and the eigenvectors of H, c†
m(t) (resp. cm(t)) is the Heisen-

berg representation of c†
m (resp. cm), (CX)mn(0) follows Eq.(9.18) for the ground state of H0, and

the sum over the k and k′ in Eq. (9.19) includes all the momenta. Eq. (9.19) is valid for any reduced
subsystem X. From the spectrum of CX(t) for any X = A, B, A ∪ B, and A ∩ B, we obtain SD(t).

9.4.2 Phase diagram and scaling analysis

Using this technique, we compute SD and recover the expected phase diagram for the SSH model
with open boundary condition in Fig. 9.2a). SD fulfils its role as a “topological detector” as it is
non-zero in the topological phase (v/w < 1) and zero in the topological-trivial phase (v/w >

1). SD
2 (as in Eq. (9.11)) is found identical, up to minor quantitative changes close to the phase

transition.
Both the correlation length and the localization length increase close to the transition. The

resulting spreading of the internal dimers and the edge states prevents a clean extraction of the
edge entanglement, damping the value of SD. In the large size limit (LA, LB, LD → ∞), the well-
quantized plateau of SD = 2 log 2 and SD = 0 extends over their whole respective phases accord-
ing to the scaling of Fig. 9.2b).

We observe a system-size scaling behavior for SD at the second-order phase transition as in
Ref. [28]. We use the following Ansatz, typical of an order parameter:

SDL
a
b = λ

(
L

1
b (α − αc)

)
, (9.20)

with fixed LA and LB so that L(LD) is the only scaling parameter left. α = v/w is the varying
parameter and αc is the critical value of this parameter at the phase transition. λ(x) is the universal
function at the phase transition, and a and b are entanglement critical exponents, similar to β

and ν for the 1D Ising chain at the paramagnetic/ferromagnetic phase transition. λ(x) behaves
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Figure 9.2: (Color online) a) SD as a function of the ratio v/w and the total length L for L = 2LA =
2LB = 4LD. The critical point is at v/w = 1. SD is non-zero for the topological phase, and zero outside:
SD qualifies as a good topological detector. b) Scaling behavior of SD towards its quantized convergence
value. For the topological phase (left y-axis; v/w = 0.1 and 0.5 resp. squares and dots), SD converges to
2 log 2. For the non-topological phase (right y-axis; v/w = 2 and 10 resp. diamonds and triangles), SD

converges to zero. The increments on both the left and right y-axis are the same. The scaling behavior of
SD is exponential with the size of the chain L = 2LA = 2LB = 4LD for parameters in both phases. The
results of the simulations (scattered points) agree with the analytic approximations of Sec. 9.3 (full lines).
The saw-teeth variations of the latter are due to the alternating sign in Eq. (9.14).

asymptotically as:

λ(x) → ∞ when x → −∞, (9.21a)

λ(x) → 0 when x → +∞. (9.21b)

The curve intersection and curve collapse of Figs. 9.3 give the value αc = 0.958, a = 1.01, and
b = 0.81 for the best mean square fit. The exponents a and b are obtained as the optimal values
from a discrete mesh of spacing 0.01. It is not straightforward to assign a rigorous interval of
confidence to the values we have obtained. From the data shown in the inset of Fig. 9.3(a), one
can observe a drift of order 1% in the crossing position between the curves representing the two
smaller (blue and red line) and the two larger (yellow and violet) system sizes, respectively. It is
thus reasonable to assume that the relative error on αc is at the percent level.

The Ansatz Eq. (9.20) fails to describe the scaling behavior of SD close to quantized plateau at
2 log(2) at α = αt(L). αt(L) gives an estimate of the transition region. With LA and LB still fixed,
we have, in general:

SDL
a
b = Θ

(
L, L

1
b (α − αc)

)
, (9.22)
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Figure 9.3: (Color online) a) Curve intersection of SDL as a function of the ratio v/w for LA = LB = 64.
It extracts the critical point at the crossing, v/w = 0.958 here (1 theoretically). b) Best curve collapse of
the Ansatz Eq. (9.22) obtained for a = 1.01 and b = 0.81. The clear collapse in inset signals the universal
behavior of λ at the transitions.

such that, according to Fig. 9.3 b):

Θ
(

L, L
1
b (α − αc)

)
=


L log 2 when L

1
b (α − αc) < x∗(L),

λ
(

L
1
b (α − αc)

)
when L

1
b (α − αc) > x∗(L),

a non universal
regularization

when L
1
b (α − αc) ∼ x∗(L),

(9.23)

where x∗(L) = L
1
b (αt(L) − αc) < 0 marks the end of the plateau and the start of the universal

regime. We find neither x∗(L) nor αt(L) to be universal, a result that is not unexpected as the
plateau is due to a UV property of the phase.

9.5 Invariance of SD after global quenches

In this section, we show that disconnected entanglement carries robust signatures of quantization
after global quantum quenches, as expected for topological invariants associated with particle-
hole symmetry (PHS) [70].

In Sec. 9.5.1, we elaborate on two arguments discussed in Ref. [70]. These arguments predict
the conservation of topological edge states over time, and thus, according to Eq. (9.8), the conser-
vation of SD. This prediction is consistent with our simulations in Sec. 9.5.2. Quantum quenches
are thus ideal test-bed to determine whether a given quantity is indeed a topological invariant
associated with particle-hole symmetry.
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9.5.1 Invariance of SD during unitary evolution: the role of particle-hole sym-

metry

We provide here the two arguments explaining why topological invariants associated with PHS
are invariant to symmetry-preserving quenches that are presented in Ref. [70]. In particular, we
explicitely prove why the D classification applies to the Hamiltonian in the interaction picture,
which is an important step in one of the two arguments. We then use one of the conclusion of
Ref. [70]: the stability of the edge states after a quench, to prove the invariance of SD. Thus,
we argue that SD behaves like a topological invariant that keeps track of the initial maximally
entangled edge states.

Given a system, a quantized topological invariant associated with a symmetry is computed
from the ground state. If this state locally evolves in time without breaking the symmetry, the
topological invariant remains constant. To prove the statement for PHS, we denote as Hi and H f

the initial Hamiltonian (before quench) and the final Hamiltonian (after quench), respectively. If
|ψ(0)⟩ is a ground state of Hi, then the state evolves after the quench as |ψ(t)⟩ = U(t)|ψ(0)⟩,
where the unitary evolution operator depends only on H f and t. Hi is PHS if CH∗C† = −H,
where C is the PHS operator and Hi = ∑ml ψ†

mHmlψl. In that case, ρ(0) = |ψ(0)⟩⟨ψ(0)| is also
PHS, i.e. Cρ∗C† = 1 − ρ. If H f is also PHS, so will ρ(t). So if a topological invariant associated
with PHS is initially fixed to a quantized value by ρ(0), this value remains quantized along the
PHS-preserving dynamics.

The second alternative argument consists in viewing the evolving state as the ground state of
the quenched Hamiltonian in the interaction picture. Time becomes a parameter of this fictitious
Hamiltonian on which we apply the topological insulator classification associated with the PHS
symmetry. Specifically, |ψ(t)⟩ is a ground state of the fictitious Hamiltonian Hfic(t):

Hfic(t) = U(t)HiU(t)†.

Hfic(t) is PHS if Hi and H f are PHS. The spectrum is invariant in time, so there is no gap closing
along the dynamics. Since Hi and H f are finite-ranged, we show explicitly that Hfic(t) is short-
ranged. Indeed, using the Baker-Campbell-Hausdorff formula,

Hfic(t) = Hi +
∞

∑
n=1

(it)n

n!
Cn(H f , Hi), (9.24)

where Cn(H f , Hi) = [H f , [H f , ...[H f , Hi]...]] where H f appears n times and [A, B] is the commuta-
tor between A and B. Assuming that both Hi and H f only involve nearest neighbors hoping, we
write n = 2l when n is even, n = 2l − 1 when n is odd. Thus:

C2l(H f , Hi) = ∑
k=0,l

αi,k(l)c†
i ci+2k+1 + H.c. (9.25a)
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C2l−1(H f , Hi) = ∑
k=1,l

α̃i,k(l)c†
i ci+2k + H.c. (9.25b)

where |αi,k| ≤ Λ2l+122lSl
k and |α̃i,k| ≤ Λ2l22l−1Sl

k (for all i). Λ is the largest absolute value of all
the hopping amplitude in Hi and H f and Sl

k are obtained from the Catalan triangle [92] such that
(l ∈ N∗, 0 ≤ k ≤ l):

Sl
k = Binomial(2l, l − k)− Binomial(2l, l − k − 1) if n is even, (9.26a)

Sl
k = Binomial(2l − 1, l − k)− Binomial(2l − 1, l − k − 1) if n is odd, (9.26b)

where by convention Binomial(n,−1)=0. Rewriting Hfic(t) as:

Hfic(t) = ∑
i,r

βi,r(t)
(

c†
i ci+r + H.c

)
.

We thus have:

|βi,r(t)| ≤
∞

∑
l=k

Λ2l+1 (2t)2l

(2l)!
Sl

k if r = 2k − 1 using Eq.(9.26a), (9.27a)

|βi,r(t)| ≤
∞

∑
l=k

Λ2l (2t)2l−1

(2l − 1)!
Sl

k if r = 2k using Eq.(9.26b). (9.27b)

Using Mathematica:

∞

∑
l=k

Λ2l+1 (2t)2l

(2l)!
Sl

k =
(2k + 1)I2k+1(4Λt)

2t
= o(1/k), (9.28a)

∞

∑
l=k

Λ2l (2t)2l−1

(2l − 1)!
Sl

k =
2kI2k(4Λt)

2t
= o(1/k), (9.28b)

where In(x) is the modified Bessel function of the first kind such that I0(0) = 1. Thus, βi,r(t) =

o(1/r) on all sites and for all times: although the range of Hfic(t) increases with time, the Hamil-
tonian is short range.

Hi and Hfic(t) are thus connected unitarily, continuously, locally and without closing the gap,
as if by an adiabatic connection [38–40] (no extra hypothesis of adiabaticity was imposed in the
reasoning). Therefore, unless the system experiences a dynamical phase transition, Hi and Hfic(t)
are in the same topological phase relative to the PHS, and if one has robust edge states, so does
the other. Consequently, the topological invariant associated with the PHS (like the Zak phase
modulo 2π) is also invariant. The reasoning extends to interacting systems according to Ref. [70].
Note that, when the system is finite, and after a certain time t ∼ tc, U(t) effectively becomes an
infinite-ranged (non-local) transformation such that the topology associated with the state |ψ(t)⟩
is not well-defined anymore. The topological invariant starts then to vary.

We stress that these considerations concern PHS (a unitary symmetry leaving time invariant)
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only, and not the time-reversal (TRS) or chirality symmetry (CS), which are broken by time evo-
lution in this reasoning. Hence, a topological invariant fixed by, e.g. TR, may vary in time even
when both Hi and H f are TRS. This means that, while there is an infinite amount of topological
phases in the BDI class that can be distinguished using the Zak phase (in πZ, fixed by TRS, PHS,
and CS), only two are distinguished by the Zak phase modulo 2π (fixed by THS) as time evolves.

Thus, if SD is a topological invariant, then SD of a topological ground-state (at equilibrium) is
conserved when the state is time-evolved by any local, unitary, and symmetry-preserving oper-
ator until a time tc fixed by the finite size of the chain. We argue that the quenches we consider
only induce such time-evolution. The conservation of the topological invariants of the system
implies the conservation of the associated bulk-boundary correspondence. The conserved cor-
respondence implies conserved edge states, and, thus, conserved SD. Indeed, we observe this
conservation of SD in Sec. 9.5.2. We conclude that SD is likely a topological invariant.

The reasoning also shows that SD keeps track of the topology of the initial state while the
topological invariant associated with PHS, the Zak phase (modulo 2π), does not. Indeed, the Zak
phase in the topological phase of the SSH model is 2π = 0 modulo 2π (while the Zak phase of e.g.
the Kitaev model is π). Hence, the topological SSH phase and the trivial phase are not expected to
be topologically different in the dynamical context. Yet, SD distinguishes between states with and
without long-range edge entanglement, an observable feature that we traced back to topology.

We conclude that SD is likely a topological invariant. Furthermore, SD keeps track of the
topology of the initial state, whereas another topological invariant like the Zak phase modulo 2π

does not.

9.5.2 Invariance of SD after quenches: finite-size scaling analysis

We performed an extensive investigation of the evolution of SD after a quantum quench within
and across the topological phase. We used the procedure detailed in Sec. 9.4.1. Specifically, we first
derive the one-body eigenvalues of the desired initial Hamiltonian H0. Using these eigenvalues
and Eq. (9.18), we obtain the full correlation matrix CX(0) of the initial ground state. Similarly, we
derive both the one-body spectrum and the eigenvalues of the Hamiltonian post-quench H. Using
(CX)mn(0), the spectrum and eigenvalues of H, and Eq. (9.19), we obtain the time-dependent full
correlation matrix CX(t) of the quenched state. From CX(t), we finally compute SD(t) like in
the static case. Fig. 9.4a) gives the representative example of the time evolution of SD(t) after a
quench from the topological phase to the trivial phase. Instead, Fig. 9.4c) corresponds to a quench
from to trivial phase to the topological phase.

For both quenches and for quenches within the topological or within the trivial phase, we
observe the same phenomenology: SD sticks to its initial value until a certain timescale tc that
depends on the quench and the size of the system as in Ref. [28]. The corresponding phenomenon
in the bipartite entanglement entropy is a constant offset during the time evolution [93]. We define
the timescale tc as the time when SD varies of 2 log 2/100 from its initial value (dotted line in inset
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Figure 9.4: (Color online) a) and c) Time evolution of SD after quenching the Hamiltonian from a) v/w =
0.1 (topological phase) to v/w = 1.5 (trivial phase) and c) v/w = 1.5 to v/w = 0.1 at t = 0 and for different
total length L with LA = LB = 2LD = L/2. SD remains at its initial value until finite-size effects change it
at t ∼ tc. Insets: zoom on the graph around t ∼ t0 and for |SD(t)− SD(0)| ≲ 2 log 2/100. b) and d) Scaling
behaviour of tc after the sudden quench a) and c) respectively. The point corresponding to smallest L in
both b) and d) is not included in the linear fit (orange line). In d), the fit includes the origin within two
standard deviation. Thus, when L → ∞, tc diverges, demonstrating that SD does not evolve after unitary
evolution for large systems.

of Fig. 9.4a) and c)). We observe that tc ∼ L/η when L > 100 in Fig. 9.4b) and d). η increases
when the amplitude of the quench increases. When L → ∞, tc → ∞ showing that SD behaves like
a topological invariant.

9.6 Robustness of SD to disorder

For 1D non-interacting systems, Anderson localization kicks in as soon as disorder is introduced [94]
(or reviewed in Ref. [95]). This localization is not antagonistic to topological phases. Both can co-
exist. The disorder can even favor the topological phase, as known for the case of quantum Hall
effects in D > 1. In the SSH model, disorder can extend the topological phase past v/w > 1. This
extended regime is called a topological Anderson insulator [96–98].

Using SD we successfully reproduce the disorder-induced phase diagram of the SSH model,
see Fig. 9.5. This phase diagram is known and was partially measured for uniform disorder [76]
and is known for quasiperiodic potential [99]. The former work extrapolated the winding number
from measurements. This topological invariant stays well quantized to 1 or 0 (mod 2) despite the
disorder for both the topological and the trivial phase. We observe a similar behavior for SD. The
robustness to disorder of SD follows the robustness of the edge states of SPTP [100].
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Figure 9.5: (Color online) Phase diagram of the SSH model obtained with SD for the uniform disorder of
Eq. (9.29) with 2W1 = W2 = W. We set LA = LB = 2LD = 32. SD is averaged over 400 realizations for
each point. The “bump” of the topological phase (in yellow) constitutes the topological Anderson insulator
regime.

Specifically, we consider uniform, chirality-preserving disorder on the hoppings of Eq. (9.12):

wi = w + W1δi, (9.29a)

vi = v + W2∆i, (9.29b)

with w = 1 fixed, δi and ∆i being random variables of uniform distribution in [−0.5, 0.5]. We then
average SD over the realizations. For weak disorder, Fig. 9.5 (2W1 = W2 = W) shows that the
topological phase is stable when SD = 2 log 2. The phase is trivial at strong disorder, and SD = 0.

We also observe the topological Anderson insulator regime like in Ref. [76]. For W1 = W2 = W
(not shown), the phase transition line is monotonous with W. The locations of both transition lines
we observe are compatible with the literature [76, 99]. Unlike the critical point W1 = W2 = 0 of
Sec. 9.4.2, SD is well-quantized at either 0 or 2 log 2 around the phase transition line. Its distribu-
tion is however a bimodal hence the damped value of the average at the transition. It is unclear
to us if such a distribution is a marker of first order phase transition.

9.7 Disconnected entropies in the BDI class

We now discuss the generality of our results in the context of the BDI class of the tenfold-way [74,
101, 102].

The SSH can be mapped locally to a stack of two coupled Kitaev wires [103]. In the formalism
of Ref. [104], this stack is called a 2-chain whereas the non-interacting Kitaev chain is the 1-chain.
Both the 1- and 2-chain can be understood with the same Z classification. The topological phases
they display belong to different classes within the BDI classification as they have a different value
for their topological invariant: the Zak phase. Specifically, the Zak phase is π in the 1-chain and
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2π in the 2-chain.
The edge states of the two chains are also different. Both chains have one (e.g., left) edge mode

protected by the time-reversal symmetry, while the other (right) mode is protected by both the
parity and the time-reversal symmetry [103]. In the 1-chain, the left and right parity operators
do not commute. It is impossible to write the left and right edge modes as linearly independent
in the same local basis. Thus, the ground state naturally requires a non-local description due to
these edge modes. This specific form of non-locality implies a non-zero value for SD.

In the 2-chain, the left and right parity operators commute. The edge modes can be written
independently from each other in a local basis (cf Sec. 9.3), and are local. For an infinite chain,
the edge entanglement can thus be zero. As we showed in this paper, that is not the case, and the
edge entanglement remains quantized and is maximal (given the Hilbert space dimension of the
edge modes) for any finite chain.

We extend the conclusions shared between the 1-chain and the 2-chain to the whole BDI clas-
sification. Indeed, all topological phases of BDI either have non-local (fractional) edge states or
local edge states, like in the 1- and the 2-chains respectively [103]. Only the association between
the protecting symmetry (time-reversal or the composition parity and time-reversal) and the pro-
tected edge (left or right) varies. These variations should have no consequences to SD that does
not distinguish between left and right. We conclude that the validity of SD extends to all BDI, as
the phenomenology of edge modes is the same as the two models considered so far.

While this is not directly relevant for the model discussed here, the generality of our con-
clusion likely extends to the D classification. Even without time-reversal symmetry, the Kitaev
wire displays a topological phase and a trivial phase. Both phases belong to the D classification
which is a Z2 classification associated with the only particle-hole symmetry. The edge states of
the topological Kitaev wire in the D class are the same as in the BDI class 8.

9.8 Conclusions

We have shown how entanglement entropies distinguish topological and non-topological insulat-
ing phases in the Su-Schrieffer-Heeger one-dimensional model with open boundary conditions.
This entanglement is quantified by the disconnected entanglement entropy SD computed for the
ground state of the system. It is 0 in the trivial phase and 2 log 2 for the topological phase in the
large system limit. We related SD to the number of zero-mode edge states, a topological invariant.
Thus, SD is quantized and enjoys robustness disorder. As the model is particle-hole symmetric,
SD is also invariant during local, unitary, and symmetry-preserving time evolution for large sys-
tem size. SD also displays a universal scaling behavior when crossing the phase transition, akin
to an order parameter. Numerical simulations show that modest and experimentally accessible
partition sizes are sufficient for SD to reach its quantized regime. Finally, combining the present

8although they are not protected by the same set of symmetries.
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findings with older results on fermionic SD in the Kitaev chain, we argued that our conclusions
extend to the full BDI class of the topological insulators and superconductors classification.

To complete the comparison of SD to a topological invariant, it would be interesting to inves-
tigate the evolution of SD when the protecting symmetry is explicitly broken and the maximal
entanglement of the edge state is no more set topologically, such as in the Rice-Mele model [105].
It would also be interesting to use entanglement topological invariants to characterize the real-
time dynamics of other instances of topological insulators in the presence of a bath [40].



D
Additional information on the Kitaev model

D.1 Gauge theory characterization of entanglement properties.

The starting point is the exact relation [106] between Eq. (8.2) and a Z2 LGT, that we schemati-
cally review. The Z2 LGT describes the coupling between the Z2 gauge fields residing on bonds
(represented here by Pauli matrices, σα

j,j+1), and the hard-core Higgs fields φj, with nj = φ†
j φj,

defined on the vertices. The gauge-invariant Hilbert space is defined as the set of states where the
local parity Pj = (1 − 2nj)σ

z
j−1,jσ

z
j,j+1 is fixed to 1 (see Fig. D.1). Under open boundary conditions

(OBC), we fix to σz
0,1 = 1 the value of the first gauge field without loss of generality. The value of

the last gauge field σz
L,L+1 = P gives the total parity of the system due to gauge invariance.

The ground state wave functions |Ψ⟩± can be described in terms of either fermionic or gauge
fields, since, in 1D, those are mutually fixed by Gauss law. In terms of LGT, the ground states
are equal-weight superpositions of all possible string states of arbitrary length, and compatible
with the boundary conditions: a sample of those are depicted in Fig. D.1 for the case P = 1.
This picture describes a 1D gauge theory in a phase with strongly fluctuating gauge fields, and is
strongly reminiscent of the loop description of 2D quenched Z2 LGT [8, 50, 107].

Evaluating entanglement entropies in this phase is straightforward by exploiting gauge in-
variance:

i) The entropy of each connected partition is log 2. Indeed, let us define σz
L, σz

R as the two
boundary spins of the partition. Their product is equal to the parity of the partition: the density
matrix of the partition is block-diagonal in this conserved quantum number. If the correlation
length is much smaller than the partition length, both positive and negative parities are equally
probable and all states count with equal weight. The corresponding von Neumann entropy is
thus log 2.

178
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Figure D.1: (Color online) Schematics of the correspondence between the Kitaev chain and Z2 lattice gauge
theories. a): Hilbert space structure and gauge-invariant building blocks. b): three examples of the mapping
between states in the fermionic (left), gauge theory (center), and string representation (right). c): string
representation of |Ψ⟩+.

ii) the entropy of disconnected partitions is (Nc − 1) log 2, where Nc is the number of partitions
such that Nc = 2 corresponds to the standard bipartition of the chain into two halves. Indeed, let
us define as σz

L,h, σz
R,h the gauge fields at the boundaries of the partition h. As long as the length

of each partition is larger than the correlation length, each patch is an equal-weight superposition
of all possible states, under the condition that Ph = +1 or −1 for partitions with or without an
out-coming flux respectively. For a fixed total parity, there are 2Nc−1 finite, equal values of the
corresponding density matrix, which returns an entropy equal to (Nc − 1) log 2.

We emphasize that the gauge theory description enables a simple calculation of the entropies
(by replacing fermionic statistics with a Z2 gauge field), and, at the same time provides a simple,
compelling physical picture, that might be extended to more exotic types of order.

D.2 The Kitaev model without interaction

In this section, we briefly present the Kitaev model and detail the derivation of all the analyti-
cal results mentioned in the main text. More specifically, we focus on the regime described in
Kitaev’s original paper [23] whose algebra is simpler while containing important features on the
entanglement properties of the whole model when it displays a topological phase. We give here
a brief reminder of the Kitaev wire of Kitaev’s seminal paper Ref. [23] for the unfamiliar reader.
The Kitaev wire is a chain of L spinless fermions with open boundary conditions described by the
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Hamiltonian:

H =
L−1

∑
j=1

(
−t
(

a†
j aj+1 + a†

j+1aj

)
−µ

(
a†

j aj −
1
2

)
+ ∆ajaj+1 + ∆∗a†

j+1a†
j

)
,

(D.1)

where t is the hopping amplitude, µ is the chemical potential, and ∆ = |∆|eiθ the induced super-
conducting gap. It is convenient to absorb the complex phase of the latter in a (completely local)
redefinition of the local creation and annihilations operators a†

j and aj such that:

(a†
j , aj) → (e−iθ/2a†

j , eiθ/2aj), (D.2)

and consider Eq. (D.1) with ∆ real only. It is then useful to introduce the Majorana fermions
operators cj (for j = 1, ..., L):

c2j−1 = aj + a†
j , c2j =

aj − a†
j

i
, (D.3)

such that:
{cm, cl} = 2δm,l, c†

m = cm, (D.4)

where δm,l is the Kronecker delta. The Hamiltonian Eq. (D.1) then becomes:

H =
i
2

L−1

∑
j=1

(
−µc2j−1c2j + (t + |∆|) c2jc2j+1

+ (−t + |∆|) c2j−1c2j+2
)

.

(D.5)

In the special regime of parameters when |∆| = t > 0 and µ = 0 (which we call the stereotypical
regime), the Hamiltonian Eq. (D.5) becomes:

H = it
L−1

∑
j=1

c2jc2j+1, (D.6)

where it is important to note that the Majorana operators appearing in each term of the sum are
not from the same sites. One can define new local fermionic creation and annihilation operators
on the link such that (for j = 1, ..., L − 1 only):

ãj =
c2j + ic2j+1

2
, ã†

j =
c2j − ic2j+1

2
, (D.7)

that only mixes two neighbouring sites. The Hamiltonian Eq. (D.6) becomes diagonal:

H = 2t
L−1

∑
j=1

(
ã†

j ãj −
1
2

)
, (D.8)
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Figure D.2: The Kitaev chain with L sites and open boundary conditions. Each site i (denoted by a dashed
circle) can be occupied by one spinless fermion, and can be decomposed into two Majorana fermions (de-
noted by black dots) in 2i − 1 and 2i. Associating the Majoranas 2i and 2i + 1 allows the construction of
a new quasi local fermionic basis denoted with tildes. The ground states in the topological stereotypical
regime will see its neighbouring Majorana fermions pairing up, so that, in the tilded basis, each site is un-
occupied. Only the two Majorana on the edges do not need to pair up.

and has two degenerate ground states, each pairing a Majorana fermion of one edge with a Ma-
jorana fermion of the other (cf Fig. D.2). Defining the non-local operators:

b =
c2L + ic1

2
, b† =

c2L − ic1

2
, (D.9)

the two ground states |0⟩ and |1⟩ satisfy:

∀j ∈ J1, L − 1K, ãj|0⟩ = 0,

∀j ∈ J1, L − 1K, ãj|1⟩ = 0,

b|0⟩ = 0,

b†|0⟩ = |1⟩.

(D.10)

In the case of periodic boundary conditions, |0⟩ becomes the only ground state.

D.3 The entanglement properties of the topological phase in the

stereotypical regime

To understand the entanglement properties of this topological phase and analytically compute
the disconnected entanglement entropy SD, it is useful to compute any reduced density matrices
for the ground states |0⟩ and |1⟩ obtained in the stereotypical regime when |∆| = t > 0 and µ = 0.
To do so, it is useful to rewrite these states in the “second quantization" formalism, but in the new
tilted basis where:

∀j ∈ J1, L − 1K, ñj = ã†
j ãj,

nb = b†b,
(D.11)
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Figure D.3: A physical cut can only be done between sites, here, on the link c, partitioning the chain into
two subsets: A and B.

where the index b stands for boundary. In that case, the two ground states can be rewritten as:

|0⟩ = |ñ1 = 0, ñ2 = 0, . . . , ñj−1 = 0, nb = 0⟩, (D.12a)

|1⟩ = |ñ1 = 0, ñ2 = 0, . . . , ñj−1 = 0, nb = 1⟩, (D.12b)

which is a quasi local basis in the sense that each ñj can be expressed in terms of operators acting
only on sites j and j + 1. For a connected bipartition of the system, as illustrated in Fig. D.3, the
ground states [Eqs. (D.12)] cannot be written as a product state, due to both the presence of edge
states and the way Majorana fermions are linked in the bulk of the system (for instance, see link
c ∈ J1, L − 1K of Fig. D.3).

To properly do the partial trace and obtain the reduced density matrix ρA, it is better to express
the ground states in terms of a local basis for both A and B. This becomes possible when rewriting
the two parts of the open Kitaev wire as two open Kitaev wires connected into a singlet on the
link c. Calling LA the size of A, and LB the size of B, such that LA + LB = L, we define a new
fermionic basis, local in A and B:

aA =
1
2
(
c2LA + ic1

)
, (D.13a)

a†
A =

1
2
(
c2LA − ic1

)
, (D.13b)

aB =
1
2
(
c2LA+2LB + ic2LA+1

)
, (D.13c)

a†
B =

1
2
(
c2LA+2LB − ic2LA+1

)
, (D.13d)

ãc =
1
2
(
c2LA + ic2LA+1

)
, (D.13e)

ã†
c =

1
2
(
c2LA − ic2LA+1

)
, (D.13f)

b =
1
2
(c2L + ic1) , (D.13g)

b† =
1
2
(c2L − ic1) , (D.13h)

so that aA and aB (and hermitian conjugate) act as boundary operators for the subchains A and
B respectively. Hence, in second quantization, and after dropping the redundant mentions of the
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ñj, j ∈ J1, L − 1K \ {c = LA}, the two ground states of the full chain are |nb = 0, ñc = 0⟩ and
|nb = 1, ñc = 0⟩. The local basis of A and B is {|nA, nB⟩} where nA = a†

AaA and nB = a†
BaB take

the values 0 or 1. Using Eqs. (D.10) and Eqs. (D.13), we find:

|nb = 0, ñc = 0⟩ = − 1√
2
(|nA = 1, nB = 0⟩

−|nA = 0, nB = 1⟩) , (D.14a)

(= |0⟩)

|nb = 1, ñc = 1⟩ = 1√
2
(|nA = 1, nB = 0⟩

+|nA = 0, nB = 1⟩) , (D.14b)

|nb = 1, ñc = 0⟩ = 1√
2
(|nA = 0, nB = 0⟩

+|nA = 1, nB = 1⟩) , (D.14c)

(= |1⟩)

|nb = 0, ñc = 1⟩ = 1√
2
(−|nA = 0, nB = 0⟩

+|nA = 1, nB = 1⟩) . (D.14d)

Tracing over B is immediate, as the only vectors of the basis of B with possible non zero contri-
butions are |nB = 0⟩ and |nB = 1⟩. In particular:

ρA (|nb = 0, ñc = 0⟩⟨nb = 0, ñc = 0|)

=
1
2
(|nA = 1⟩⟨nA = 1|+ |nA = 0⟩⟨nA = 0|) ,

(D.15)

of entanglement entropy SA = log 2. The same happens for the other ground state.
Notice that the partial trace for fermions can induce a change of sign compared to the bosonic

case. For example:

trB (|nA = 1, nB = 1⟩⟨nA = 0, nB = 1|) = −|nA = 1⟩⟨nA = 0|. (D.16)

Using Eqs. (D.14), it is possible to get the expressions of the ground states in the local basis of
an arbitrary partition. Additionally, taking a partition where all sites are their own individual
subsets leads to the expression of the ground states in the original basis, up to a phase. The gen-
eral expression of the reduced density matrix for an arbitrary partition of the system is obtained
recursively, by considering the partition A1, A2, . . . , An of connected subsets Ai that are next to
each others like in Fig. D.4. Calling A = A1 and B = B1 = ∪n

i=2Ai allow use of Eqs, (D.14)
to express the two ground states in the local basis of A and B instead of A ∪ B. The recurrence
follows. Naming ci the link between subsets Ai and Ai+1 and constructing the “local boundary
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Figure D.4: A partition of the chain into n consecutive connected subsets A1, A2, ..., An.

operators" aAi and a†
Ai

for the subset Ai and aBj and a†
Bj

for Bj = ∪n
i=j+1Ai similarly to Eqs. (D.14),

the recurrence can be written as (∀n ⩾ 2):

un (A1, . . . , An) (D.17a)
.
= |nb = 0, ñc1 = 0, . . . , ñcn−1 = 0⟩(= |0⟩) (D.17b)

=
1√
2

(
|nA1 = 0, nB1 = 1, ñc2 = 0, . . . , ñcn−1 = 0⟩

−|nA1 = 1, nB1 = 0, ñc2 = 0, . . . , ñcn−1 = 0⟩
)

(D.17c)

=
1√
2

(
|nA1 = 0⟩ ⊗ vn−1 (A2, . . . , An)

−|nA1 = 1⟩ ⊗ un−1 (A2, . . . , An)
)

, (D.17d)

vn (A1, . . . , An) (D.17e)
.
= |nb = 1, ñc1 = 0, . . . , ñcn−1 = 0(= |1⟩)⟩ (D.17f)

=
1√
2

(
|nA1 = 0, nB1 = 0, ñc2 = 0, . . . , ñcn−1 = 0⟩

+|nA1 = 1, nB1 = 1, ñc2 = 0, . . . , ñcn−1 = 0⟩
)

(D.17g)

=
1√
2

(
|nA1 = 0⟩ ⊗ un−1 (A2, . . . , An)

+|nA1 = 1⟩ ⊗ vn−1 (A2, . . . , An)
)

. (D.17h)

Calling:

Un = un + ivn, (D.18a)

Vn = un − ivn, (D.18b)

|+j⟩ = 1/
√

2
(

i|nAj = 0⟩ − |nAj = 1⟩
)

, (D.18c)

|−j⟩ = 1/
√

2
(
−i|nAj = 0⟩ − |nAj = 1⟩

)
, (D.18d)
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these relations become:

Un (A1, . . . , An) = |+1⟩ ⊗ Vn−1 (A2, . . . , An) (D.19a)

=

{
|+1 −2 · · · −n−2⟩ ⊗ U2 (An−1, An) if n is even
|+1 −2 · · ·+n−2⟩ ⊗ V2 (An−1, An) if n is odd

(D.19b)

Vn (A1, . . . , An) = |−1⟩ ⊗ Un−1 (A2, . . . , An) (D.19c)

=

{
|−1 +2 · · ·+n−2⟩ ⊗ V2 (An−1, An) if n is even
|−1 +2 · · · −n−2⟩ ⊗ U2 (An−1, An) if n is odd

(D.19d)

where:

u2 (An−1, An) =
1√
2

(
|nAn−1 = 0, nAn = 1⟩ (D.20a)

−|nAn−1 = 1, nAn = 0⟩
)

,

v2 (An−1, An) =
1√
2

(
|nAn−1 = 0, nAn = 0⟩ (D.20b)

+|nAn−1 = 1, nAn = 1⟩
)

,

so that:

U2 (An−1, An) =
√

2i|+n−1 − n⟩, (D.21a)

V2 (An−1, An) =
√

2i|−n−1+n⟩. (D.21b)

Therefore, in a local basis of A1, . . . , An, the ground states become:

|nb = 0⟩ = un (A1, . . . , An) (D.22a)

=
i√
2
(|+1 −2 . . . ⟩+ |−1 +2 . . . ⟩) , (D.22b)

|nb = 1⟩ = vn (A1, . . . , An) (D.22c)

=
i√
2
(|+1 −2 . . . ⟩ − |−1 +2 . . . ⟩) . (D.22d)

These states are not Néel states because they are made out of fermions. It becomes clear in the
basis of the subsets {⊗|nAj⟩}j up to the global phase change:

|0̃j⟩ .
= (−1)ji|0Aj⟩, and |1̃j⟩ .

= |1Aj⟩. (D.23)
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In that case:

|+1 −2 . . . ⟩ =
(
− 1√

2

)n
⊗n

i=1
[
|0̃i⟩+ |1̃i⟩

]
(D.24a)

=

(
− 1√

2

)n

∑
{nAi

}i∈J1,nK=0,1
|{nAi}i∈J1,nK⟩ (D.24b)

|−1 +2 . . . ⟩ =
(
− 1√

2

)n

× ∑
{nAi

}i∈J1,nK=0,1
(−1)n−∑ nAi |{nAi}i∈J1,nK⟩ (D.24c)

so that:
SA1∪A3∪A5∪... = ⌊n + 1

2
⌋ log 2, (D.25)

where ⌊. . . ⌋ is the floor function, and n the number of partition. This last equation proves the
exact additivity of the entropy in this case independently of the position of the cuts, which, in
addition to the non-nullity of the contribution of the individual subsets, ensure the non-nullity of
SD for any superposition of the ground states. Indeed, for n = 4:

SD = SA1∪A2 + SA2∪A4 − SA2 − SA1∪A2∪A4 , (D.26)

becomes the net contribution of one connected subset only: log 2. Alternatively, it is the contri-
bution of two cut Bell pairs of Majorana fermions. This result is valid for both the von Neumann
and the Rényi entropies.

D.4 Equivalence of the SD
n

For 1D gapped systems, all SD
n can be used interchangeably, with n ≥ 1 and finite the index of the

Rényi entropy:

• The property of minimum value shared by all Sn imply that if Sn1 ̸= 0, then Sn2 ̸= 0 and
vice-versa, so both are simultaneously non-zero.

• The property of monotonicity and the fact that all gapped 1D phases have finite von Neu-
mann entanglement entropy imposes all all Sn to also be finite for 1D gapped systems, so
no SD

n can diverge.

• For a given n-entropy Translation invariance further imposes that all connected entropy
will have the same value for big subset size, i.e. if Ai+t is the subset translated from Ai, then
Sn(Ai+t) = Sn(Ai) up to finite size effects.

• The property of additivity is shared by all Sn.
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D.5 Comparison between the topological and non-topological

phases away from the phase transition

In the topological superconductor phase, away from any phase transition, both the von Neuman
and Rényi entanglement entropies for large enough partitions (i.e., LA, LB, LD ≫ ξ for the defini-
tions of Fig. 8.1 (a), or LAi ≫ ξ for all i for Eq. (D.26)) are non zero and additive as demonstrated
above in the stereotypical regime (in addition, see next section). If A is a simply connected subset
of a partition of the chain (independent of its position), then, SA = 2Γ, where Γ = (log 2)/2 is the
contribution of one (Majorana) Bell pair. Eq. (D.26) then gives:

SD = 2Γ + 2 × 2Γ − 2Γ − 2Γ = 2Γ (D.27)

In that regard, SD is not unique: combination such as SA1∪A3 + SA2∪A4 − SA1∪A4 − SA2∪A3 would
have also work as detectors, but with less experimental relevance, and a more complicated inter-
pretation in terms of mutual information. The quantitative equality SD = SD

2 is here coincidental
and is not a generic feature for other systems.

For the band insulator phase and for large enough partitions, the contribution of each term
of Eq. (D.26) is proportional to the number of boundaries of the partition, as we expect from the
so called area law. For the 1D OBC systems, one can argue that SD = 0 by simply counting the
number of boundaries of the partitions shown in Fig. 8.1 a), which gives:

SD = Θ + 3Θ − 2Θ − 2Θ = 0, (D.28)

where Θ is the contribution for the entanglement of a single boundary. While Θ is model-
parameter depending, the ratios between each terms is constant in the limit LA, LB, LD ≫ ξ,
ensuring SD = 0. In the limit µ → ∞, each term is identically zero. The result SD = 0 in the
non-topological phase is backed up by numerical simulations.

We also discuss the behavior of SD for other non-toplogical phases. For the case of a gapped
phase displaying ground state equivalent to e.g. a maximally entangled Néel state, the entan-
glement entropy becomes non zero for each term, but is not additive, such that (calling Θ the
contribution of the only Bell pair of spin 1/2) :

SD = Θ + Θ − Θ − Θ = 0. (D.29)

For a critical phase, conformal field theory predicts a vanishing contribution. This is in agree-
ment with all of our microscopic simulations. For critical, non-conformal points, we are not aware
of any field theoretical prediction.

Finally, for the case of a rigorously dimerized phase, SD is well-defined and can be considered
additive, but is not translation invariant. More precisely, let us define ϵij, where i, j = 1, 2, 3, 4,
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such that ϵij = 1 if the cut between Ai and Aj is on a dimer, and ϵij = 0 otherwise. Then, if Θ is
the contribution of one dimer:

SD = Θ(ϵ41 + ϵ23 + ϵ12 + ϵ23 + ϵ34 + ϵ41 − ϵ12 − ϵ23 − ϵ23 − ϵ34) = 2Θϵ41, (D.30)

which is always zero if A1 and A4 are subsets at both ends of the open chain. SD is not translation
invariant in the case of periodic boundary conditions.

Bibliography

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (2008).

[2] P. Calabrese and J. Cardy, J. Physics A: Math. Theor. 42, 504005 (2009).

[3] J. Eisert, M. Cramer, and M. B. Plenio, Review Modern Physics 82, 277 (2010).

[4] E. Fradkin, Field Theories of Condensed Matter Systems (Cambridge University Press, 2013).

[5] A. Hamma, R. Ionicioiu, and P. Zanardi, Physics Lett. A 337, 22 (2005).

[6] M. Levin and X.-G. Wen, Physical Review Letters 96, 110405 (2006).

[7] A. Kitaev and J. Preskill, Physical Review Letters 96, 110404 (2006).

[8] X.-G. Wen, Science 363, 3099 (2019).

[9] S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Physical Review Letters 109, 067201
(2012).

[10] H.-C. Jiang, Z. Wang, and L. Balents, Nature Physics 8, 902 (2012).

[11] S. V. Isakov, M. B. Hastings, and R. G. Melko, Nature Physics 7, 772 (2011).

[12] D. A. Abanin and E. Demler, Physical Review Letters 109, 020504 (2012).

[13] A. J. Daley, H. Pichler, J. Schachenmayer, and P. Zoller, Physical Review Letters 109, 020505
(2012).

[14] A. Elben, B. Vermersch, M. Dalmonte, J. I. Cirac, and P. Zoller, Physical Review Letters 120,
050406 (2018).

[15] B. Vermersch, A. Elben, M. Dalmonte, J. I. Cirac, and P. Zoller, Physical Review A 97, 023604
(2018).

[16] H. Pichler, G. Zhu, A. Seif, P. Zoller, and M. Hafezi, Physical ReviewX 6, 041033 (2016).

[17] M. Dalmonte, B. Vermersch, and P. Zoller, Nature Physics 14, 827 (2018).

http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1088/1751-8113/42/50/504005
http://dx.doi.org/10.1103/RevModPhysics82.277
https://doi.org/10.1017/CBO9781139015509
http://dx.doi.org/10.1016/j.physleta.2005.01.060
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1126/science.aal3099
http://dx.doi.org/10.1103/PhysRevLett.109.067201
http://dx.doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1038/nphys2465
https://doi.org/10.1103/physrevlett.109.020504
http://dx.doi.org/10.1103/PhysRevLett.109.020505
http://dx.doi.org/10.1103/PhysRevLett.109.020505
http://dx.doi.org/ 10.1103/PhysRevLett.120.050406
http://dx.doi.org/ 10.1103/PhysRevLett.120.050406
http://dx.doi.org/ 10.1103/PhysRevA.97.023604
http://dx.doi.org/ 10.1103/PhysRevA.97.023604
https://doi.org/10.1103/PhysRevX.6.041033
http://dx.doi.org/https://doi.org/10.1038/s41567-018-0151-7


BIBLIOGRAPHY 189

[18] E. Cornfeld, E. Sela, and M. Goldstein, Phys. Rev. A 99, 062309 (2019).

[19] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Physical Review B 81, 064439 (2010).

[20] L. Fidkowski, Physical Review Letters 104, 130502 (2010).

[21] A. M. Turner, F. Pollmann, and E. Berg, Physical Review B 83, 075102 (2011).

[22] H. Katsura, D. Schuricht, and M. Takahashi, Physical Review B 92, 115137 (2015).

[23] A. Y. Kitaev, Physics-Usp. 44, 131 (2001).

[24] C. Beenakker, Ann. Review Cond. Matt. Physics 4, 113 (2013).

[25] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt,
and C. F. Roos, Science 364, 260 (2019).

[26] S. J. van Enk and C. W. J. Beenakker, Physical Review Letters 108, 110503 (2012).

[27] H. Casini and M. Huerta, Physics Lett. B 600, 142 (2004).

[28] P. Fromholz, G. Magnifico, V. Vitale, T. Mendes-Santos, and M. Dalmonte, Physical Review
B 101 (2020), 10.1103/physrevb.101.085136.

[29] D. Wang, S. Xu, Y. Wang, and C. Wu, Physical Review B 91 (2015).

[30] B. Zeng and D. L. Zhou, EPL 113, 56001 (2016).

[31] I. H. Kim, Physical Review B 89 (2014).

[32] E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. Fisher, Physical Review B 84 (2011).

[33] M. Caraglio and F. Gliozzi, JHEP 0811, 076 (2008).

[34] S. Furukawa, V. Pasquier, and J. Shiraishi, Physical Review Letters 102, 170602 (2009).

[35] I. Peschel, Journal of Physics A: Mathematical and General 36, L205 (2003).

[36] S. R. White, Physical Review Letters 69, 2863 (1992).

[37] U. Schollwöck, Review Modern Physics 77, 259 (2005).

[38] M. D. Caio, N. R. Cooper, and M. J. Bhaseen, Phys. Rev. Lett. 115, 236403 (2015).

[39] L. D’Alessio and M. Rigol, Nature Commun. 6, 8336 (2015).

[40] M. McGinley and N. R. Cooper, arXiv:1908.06875 .

[41] T. Giamarchi, Quantum physics in one dimension, InterNature Ser. Mono. Physics (Clarendon
Press, Oxford, 2004).

http://dx.doi.org/10.1103/PhysRevA.99.062309
https://doi.org/10.1103/physrevb.81.064439
https://doi.org/10.1103/physrevlett.104.130502
http://dx.doi.org/10.1103/PhysRevB.83.075102
https://doi.org/10.1103/physrevb.92.115137
http://dx.doi.org/10.1070/1063-7869/44/10s/s29
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184337
http://dx.doi.org/10.1126/science.aau4963
http://dx.doi.org/10.1103/PhysRevLett.108.110503
https://doi.org/10.1016/j.physletb.2004.08.072
http://dx.doi.org/ 10.1103/physrevb.101.085136
http://dx.doi.org/ 10.1103/physrevb.101.085136
https://doi.org/10.1103/physrevb.91.115118
http://dx.doi.org/10.1209/0295-5075/113/56001
https://doi.org/10.1103/physrevb.89.235120
https://doi.org/10.1103/physrevb.84.014503
https://doi.org/10.1088/1126-6708/2008/11/076
https://doi.org/10.1103/PhysRevLett.102.170602
http://dx.doi.org/10.1088/0305-4470/36/14/101
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/RevModPhysics77.259
https://link.aps.org/doi/10.1103/PhysRevLett.115.236403
http://dx.doi.org/ 10.1093/acprof:oso/9780198525004.001.0001


BIBLIOGRAPHY 190

[42] N. M. Gergs, L. Fritz, and D. Schuricht, Physical Review B 93 (2016).

[43] L. Levy and M. Goldstein, Universe 5, 33 (2019).

[44] Q. Niu, D. J. Thouless, and Y.-S. Wu, Physical Review B 31, 3372 (1985).

[45] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338, 1604 (2012).

[46] J. Haegeman, D. Pérez-García, I. Cirac, and N. Schuch, Phys. Rev. Lett. 109, 050402 (2012).

[47] F. Pollmann and A. M. Turner, Physical Review B 86, 125441 (2012).

[48] H. Shapourian, K. Shiozaki, and S. Ryu, Phys. Rev. Lett. 118, 216402 (2017).

[49] H. Shapourian, K. Shiozaki, and S. Ryu, Physical Review B 95, 165101 (2017).

[50] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, Quantum Information Meets Quantum Matter
(Springer New York, 2019).

[51] A. Elben, J. Yu, G. Zhu, M. Hafezi, F. Pollmann, P. Zoller, and B. Vermersch, Science Ad-
vances 6, eaaz3666 (2020).

[52] H. Ollivier and W. H. Zurek, Physics Revs Lett. 88, 017901 (2001).

[53] I. Frérot and T. Roscilde, Physical Review B 94, 075121 (2016).

[54] D. I. Tsomokos, A. Hamma, W. Zhang, S. Haas, and R. Fazio, Physical Review A 80, 060302
(2009).

[55] G. B. Halász and A. Hamma, Physical Review A 86, 062330 (2012).

[56] G. B. Halász and A. Hamma, Physical Review Letters 110, 170605 (2013).

[57] X.-G. Wen, ISRN Condensed Matter Physics 2013, 1 (2013).

[58] T. D. Stanescu, Introduction to Topological Quantum Matter & Quantum Computation (CRC
Press, 2016).

[59] L. Fidkowski, Physical Review Letters 104 (2010), 10.1103/physrevlett.104.130502.

[60] H. Li and F. D. M. Haldane, Physical Review Letters 101 (2008), 10.1103/phys-
revlett.101.010504.

[61] A. M. Turner, Y. Zhang, and A. Vishwanath, Physical Review B 82 (2010), 10.1103/phys-
revb.82.241102.

[62] P. Fendley, M. P. A. Fisher, and C. Nayak, Journal of Statistical Physics 126, 1111 (2007).

[63] A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).

https://doi.org/10.1103/physrevb.93.075129
http://dx.doi.org/10.3390/universe5010033
http://dx.doi.org/10.1103/physrevb.31.3372
https://science.sciencemag.org/content/338/6114/1604
https://link.aps.org/doi/10.1103/PhysRevLett.109.050402
http://dx.doi.org/10.1103/PhysRevLett.118.216402
http://dx.doi.org/10.1103/PhysRevB.95.165101
https://doi.org/10.1007/978-1-4939-9084-9
http://dx.doi.org/10.1126/sciadv.aaz3666
http://dx.doi.org/10.1126/sciadv.aaz3666
http://dx.doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/PhysRevB.94.075121
http://dx.doi.org/ 10.1103/PhysRevA.80.060302
http://dx.doi.org/ 10.1103/PhysRevA.80.060302
http://dx.doi.org/10.1103/PhysRevA.86.062330
http://dx.doi.org/10.1103/PhysRevLett.110.170605
http://dx.doi.org/10.1155/2013/198710
http://dx.doi.org/10.1201/9781315181509
http://dx.doi.org/10.1103/physrevlett.104.130502
http://dx.doi.org/10.1103/physrevlett.101.010504
http://dx.doi.org/10.1103/physrevlett.101.010504
http://dx.doi.org/10.1103/physrevb.82.241102
http://dx.doi.org/10.1103/physrevb.82.241102
http://dx.doi.org/10.1007/s10955-006-9275-8
http://dx.doi.org/10.1070/1063-7869/44/10S/S29


BIBLIOGRAPHY 191

[64] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Physical Review Letters 42, 1698 (1979).

[65] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Physical Review B 22, 2099 (1980).

[66] F. Verstraete, J. I. Cirac, J. I. Latorre, E. Rico, and M. M. Wolf, Physical Review Letters 94
(2005), 10.1103/physrevlett.94.140601.

[67] L. Campos Venuti, C. Degli Esposti Boschi, and M. Roncaglia, Physical Review Letters 96,
1 (2006).

[68] L. C. Venuti, S. M. Giampaolo, F. Illuminati, and P. Zanardi, Physical Review A - Atomic,
Molecular, and Optical Physics 76, 1 (2007).

[69] A. Lavasani, Y. Alavirad, and M. Barkeshli, (2020), arXiv:2004.07243 .

[70] M. McGinley and N. R. Cooper, Physical Review Letters 121, 090401 (2018).

[71] J. Zak, Physical Review Letters 62, 2747 (1989).

[72] M. V. Berry, Proceedings of the Royal Society of London. A. Mathematical and Physical
Sciences 392, 45 (1984).

[73] C.-K. Chiu, J. C. Teo, A. P. Schnyder, and S. Ryu, Reviews of Modern Physics 88 (2016),
10.1103/revmodPhysical88.035005.

[74] A. Altland and M. R. Zirnbauer, Physical Review B 55, 1142 (1997).

[75] L. Fidkowski and A. Kitaev, Physical Review B 81, 134509 (2010).

[76] E. J. Meier, F. A. An, A. Dauphin, M. Maffei, P. Massignan, T. L. Hughes, and B. Gadway,
Science 362, 929 (2018).

[77] F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. D. Filippis,
V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, Nature Com-
munications 8 (2017).

[78] D. Xie, W. Gou, T. Xiao, B. Gadway, and B. Yan, npj Quantum Information 5 (2019).

[79] J. Sirker, M. Maiti, N. P. Konstantinidis, and N. Sedlmayr, Journal of Statistical Mechanics:
Theory and Experiment 2014 (2014).

[80] Q. Wang, D. Wang, and Q.-H. Wang, EPL (Europhysics Letters) 124, 50005 (2018).

[81] X. Chen, Z.-C. Gu, and X.-G. Wen, Physical Review B 83 (2011).

[82] X. Chen, Z.-C. Gu, and X.-G. Wen, Physical Review B 84 (2011).

http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevB.22.2099
http://dx.doi.org/ 10.1103/physrevlett.94.140601
http://dx.doi.org/ 10.1103/physrevlett.94.140601
http://dx.doi.org/ 10.1103/PhysRevLett.96.247206
http://dx.doi.org/ 10.1103/PhysRevLett.96.247206
http://dx.doi.org/10.1103/PhysRevA.76.052328
http://dx.doi.org/10.1103/PhysRevA.76.052328
http://arxiv.org/abs/2004.07243
http://arxiv.org/abs/2004.07243
http://dx.doi.org/10.1103/PhysRevLett.121.090401
http://dx.doi.org/10.1103/physrevlett.62.2747
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/ 10.1103/revmodPhysical88.035005
http://dx.doi.org/ 10.1103/revmodPhysical88.035005
http://dx.doi.org/10.1103/physrevb.55.1142
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/ 10.1126/science.aat3406
https://doi.org/10.1038/ncomms15516
https://doi.org/10.1038/ncomms15516
https://doi.org/10.1038/s41534-019-0159-6
http://dx.doi.org/10.1209/0295-5075/124/50005
https://doi.org/10.1103/physrevb.83.035107
https://doi.org/10.1103/physrevb.84.235128


BIBLIOGRAPHY 192

[83] S. Ryu and Y. Hatsugai, Physical Review B - Condensed Matter and Materials Physics 73, 1
(2006).

[84] A. Rényi, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Proba-
bility, Volume 1: Contributions to the Theory of Statistics (University of California Press, Berke-
ley, Calif., 1961) pp. 547–561.

[85] X. Hu and Z. Ye, Journal of Mathematical Physics 47, 023502 (2006).

[86] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, Journal of Mathemat-
ical Physics 54, 122203 (2013).

[87] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, Nature 528,
77 (2015).

[88] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators (Springer
International Publishing, 2016).

[89] B. C. Shin, Bull. Aust. Math. Soc. 55, 249 (1997).

[90] V. Eisler and I. Peschel, Journal of Statistical Mechanics: Theory and Experiment 2018,
104001 (2018).

[91] M.-C. Chung and I. Peschel, Physical Review B 64, 064412 (2001).

[92] The OEIS Foundation Inc, “A008315,” (2020), http://oeis.org/A008315.

[93] N. Sedlmayr, P. Jaeger, M. Maiti, and J. Sirker, Physical Review B 97, 1 (2018).

[94] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Physical Review
Letters 42, 673 (1979).

[95] C. A. Müller and D. Delande, (2010), arXiv:1005.0915 .

[96] J. Li, R.-L. Chu, J. K. Jain, and S.-Q. Shen, Physical Review Letters 102 (2009).

[97] H. Jiang, L. Wang, Q. feng Sun, and X. C. Xie, Physical Review B 80 (2009), 10.1103/phys-
revb.80.165316.

[98] C. W. Groth, M. Wimmer, A. R. Akhmerov, J. Tworzydło, and C. W. J. Beenakker, Physical
Review Letters 103 (2009).

[99] T. Liu and H. Guo, Physics Letters A 382, 3287 (2018).

[100] X.-L. Qi and S.-C. Zhang, Reviews of Modern Physics 83, 1057 (2011).

[101] P. Heinzner, A. Huckleberry, and M. Zirnbauer, Communications in Mathematical Physics
257, 725 (2005).

http://dx.doi.org/10.1103/PhysRevB.73.245115
http://dx.doi.org/10.1103/PhysRevB.73.245115
http://dx.doi.org/ https://projecteuclid.org/euclid.bsmsp/1200512181
http://dx.doi.org/ https://projecteuclid.org/euclid.bsmsp/1200512181
http://dx.doi.org/10.1063/1.2165794
http://dx.doi.org/ 10.1063/1.4838856
http://dx.doi.org/ 10.1063/1.4838856
http://dx.doi.org/10.1038/nature15750
http://dx.doi.org/10.1038/nature15750
http://dx.doi.org/10.1007/978-3-319-25607-8
http://dx.doi.org/10.1017/S0004972700033918
http://dx.doi.org/10.1088/1742-5468/aace2b
http://dx.doi.org/10.1088/1742-5468/aace2b
http://dx.doi.org/10.1103/PhysRevB.64.064412
http://oeis.org/A008315
http://oeis.org/A008315
http://dx.doi.org/ 10.1103/PhysRevB.97.064304
http://dx.doi.org/10.1103/physrevlett.42.673
http://dx.doi.org/10.1103/physrevlett.42.673
http://arxiv.org/abs/1005.0915
https://doi.org/10.1103/physrevlett.102.136806
http://dx.doi.org/10.1103/physrevb.80.165316
http://dx.doi.org/10.1103/physrevb.80.165316
https://doi.org/10.1103/physrevlett.103.196805
https://doi.org/10.1103/physrevlett.103.196805
http://dx.doi.org/10.1016/j.physleta.2018.09.023
https://doi.org/10.1103/revmodPhysical83.1057
http://dx.doi.org/10.1007/s00220-005-1330-9
http://dx.doi.org/10.1007/s00220-005-1330-9


BIBLIOGRAPHY 193

[102] M. R. Zirnbauer, “Symmetry Classes,” (2010), 1001.0722 .

[103] R. Verresen, R. Moessner, and F. Pollmann, Physical Review B 96, 165124 (2017).

[104] L. Fidkowski and A. Kitaev, Physical Review B 83, 075103 (2011).

[105] M. J. Rice and E. J. Mele, Physical Review Letters 49, 1455 (1982).

[106] B. M. McCoy and M.-L. Yan, Nuc. Physics B 215, 278 (1983).

[107] C. Lacroix, P. Mendels, and F. Mila, eds., Introduction to Frustrated Magnetism (Springer
Series in Solid-State Sciences Vol. 164, 2010).

http://arxiv.org/abs/1001.0722
http://arxiv.org/abs/1001.0722
http://dx.doi.org/10.1103/PhysRevB.96.165124
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/physrevlett.49.1455
http://dx.doi.org/https://doi.org/10.1016/0550-3213(83)90216-X
https://link.springer.com/book/10.1007/978-3-642-10589-0




Conclusions

While we have provided conclusive thoughts for each chapter, discussing possible outlooks, we
would like to give here some additional remarks.
We have started this thesis by emphasizing how entanglement has been used successfully to in-
vestigate many-body quantum systems both theoretically and experimentally. Then, the focus
of this work has been bridging these two aspects. At the broader level, our results span three
different lines, whose outlooks we outline below.

Mixed state entanglement - We have defined the concept of negativity hamiltonian for the partial
transpose of a density matrix in analogy with the entanglement hamiltonian for reduced density
matrices of bipartite systems. We have described its structure in the case of (1+1)-d fermionic
conformal field theories and a tight-biding model of spinless fermions on a chain. In this regard,
there are several topics on which we could elaborate more.
First, our results only apply to equal and adjacent intervals on a line. The generalization to more
complicated geometries, as well as different models, could be an interesting topic of study. Sec-
ondly, it might be possible to engineer experimental set-ups that reconstruct the negativity hamil-
tonian in the laboratory and measure the negativity spectrum directly. Indeed, the full spectral
resolution of the density matrix and the estimation of the spectrum of its partial transpose is a
relevant topic of study in the field of entanglement detection and it has been the focus of Chap. 5.
There, we have discussed approaches to entanglement detection, different from the standard PPT-
criterion, and provided new conditions, enhanced by symmetry resolution, using the moment of
the partial transpose of a reduced density matrix.
In this respect, the full potential of the moments of the partial transpose has not been discovered
yet. Other possible routes are trying to find different combinations that can highlight other as-
pects of the entanglement content of the many-body quantum states or new conditions that allow
the detection of entanglement with low-order momenta.

Symmetry resolved entanglement dynamics - From the post-processed data of the experiment
[Brydges et al., Science 364, 260 (2019)], we have observed a new physical phenomenon, we have
dubbed symmetry-resolved dynamical purification. We have given a theoretical explanation, em-
ploying time-dependent perturbation theory, and showed its generality with extensive numerical
simulations. This work has highlighted, for the first time, the intimate connection between sym-
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metry and quantum correlations in NISQ devices and the experimental tools developed could
find useful implementation in contexts where symmetry-resolved contributions to entanglement
may be of particular interest.
From the same data, we have also computed the operator entanglement and addressed the pres-
ence of the entanglement barrier for the first time in experiments. We have defined the symmetry-
resolution of operator entanglement, given an explanation in terms of charge-imbalance, and de-
vised a new experimental protocol to access highly non-trivial functionals of the density matrix.
This method, we call batch-shadows estimator, could open up to the estimation of difficult to access
quantities as it allows the computation of multi-copy observables and the post-processing of the
data is highly parallelizable. We also have benchmarked our results against free fermionic and
tensor networks simulations providing a simple physical intuition, in terms of the quasiparticle
picture, about the dynamics of operator entanglement in the time interval investigated.
Certainly, this work may stimulate future developments in this field, as it is the first time where
symmetry-resolved operator entanglement is studied and experimentally observed, and the method
developed here, to access the experimental estimation, may have practical application to probe
non-linear properties of quantum many-body systems, in any physical context where randomized
measurements can be employed.

Entanglement topological invariants - We have proved the existence of topological invariants
based solely on entanglement properties in one-dimensional topological matter. We have ob-
served that with appropriate combinations of entanglement entropies it is possible to isolate the
topological contribution to entanglement called topological entanglement entropy.
We have studied this both for the Kitaev p-wave superconductor and the Su-Schrieffer-Heeger
model. The entanglement order parameter displays universal features at the phase transition
and behaves like a topological invariant. It would be interesting to investigate whether other
measures of entanglement could characterize the topological behavior of these kinds of models
or display similar characteristic features. As topology in open systems is a hot topic of study, it
would be interesting also to shed light on the existence of topological invariants based solely on
entanglement negativity for mixed states, as in the case of pure states.

We conclude by remarking on how the investigation of entanglement could give fundamen-
tal information in several contexts ranging from time dynamics, to entanglement detection in
mixed states and topological systems. The connection between symmetries and quantum correla-
tions also opens up new ways to exploit both of them in the context of quantum information and
quantum many-body physics. We believe the work of this thesis might pave the way to further
investigation on this topic, in intimate connection with new experimental platforms and quantum
simulators.
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