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Chapter 1

Introduction

Quantum mechanics is nowadays considered the cornerstone of fundamental physics. During
the last century, it has been a guiding line for the formulation of theories aimed to describe
a variety of puzzling and counterintuitive phenomena that have been observed in microscopic
systems (atoms, particles, cold gases, and so on). While so far a satisfying unifying theory to
describe our universe is probably missing, a landscape of quantum models with distinct features
has been proposed. A key feature shared by these different formulations is entanglement, which
is arguably the distinct signature of the quantum world [17, 18]. It tells us that a local probe on a
quantum system can have instantaneous consequences for arbitrarily distant points. At the very
naive level, the presence of these non-local correlations seems to be unavoidable in contrast with
relativity, where a maximum velocity of information spreading is present, and with causality:
for this reason Einstein was skeptical about quantum theory and used to refer to entanglement
as a spooky action at a distance[19]. Nowadays, although we know that it is not the case, still
the consequences of entanglement are highly counterintuitive, as they are not usually observed
in everyday life.

Quantum correlations are at the center of many problems in physics, and apparently dis-
connected communities, ranging from condensed matter to high-energy, are interested in their
characterization. Attempting to compile a comprehensive list of topics where entanglement holds
relevance is likely a daunting task, but I will make an attempt nonetheless.

In 1982 Feynman proposed that quantum systems might be efficiently simulated with a
computer operating through the rules of the quantum realm [20]. That was a (say, the) input
for the development of quantum information theory. During 90s, it was taken into account the
possibility of a ’quantum advantage’ could arise indeed if ’quantum-bits’ (qu-bit) were employed
as fundamental pieces of information: these could be atoms, photons, but most importantly
they have to be small physical systems where quantum effects play a role. We only mention the
famous Shor’s algorithm [21], the branch of quantum cryptography [22], quantum teleportation
[23], and so on. While many of these protocols were born as ’theoretical possibilities’, our ability
to manipulate quantum systems has grown up during the last decades, and the dream of Feynman
could eventually become a reality in the next few years. Behind these studies, the advantage
with respect to the common classical protocols is usually strictly related to the possibility to
store and manipulate a large number of highly correlated (entangled) qubits. This is a hard
task, as any possible source of noise arising from a coupling with an external environment seems
to destroy any possible coherence, making entanglement extremely fragile.

For these reasons, physical systems whose quantum correlations are robust with respect to
local perturbation are probably the best candidates to be realistic qubits. Among them, we
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6 CHAPTER 1. INTRODUCTION

mention topological systems [24], as spin liquids, or Quantum Hall phases [25, 26], whose ability
to store non-local information (dubbed as topological order) has been considered a promising
feature in this respect.

The aforementioned quantum systems/protocols can also be simulated using classical com-
puters. However, this simulation task is typically highly demanding, as expected due to the
’quantum advantage’. Additionally, the efficiency of describing a given quantum system using
conventional classical methods is closely tied to the level of entanglement present in the system
being simulated. For example, the accuracy of Matrix Product States (MPS) representations,
such as the Density Matrix Renormalization group, heavily relies on the amount of entanglement
within the system [27–30]. This explains why these methods effectively describe ground-states
of gapped one-dimensional systems with a finite amount of entanglement.

A comprehensive understanding of entanglement is essential in the realm of high-energy
physics as it enables the exploration of connections and compatibility between gravity and micro-
scopic quantum principles. Specific examples highlighting this significance are the quantum hole-
information paradox, the Bekenstein-Hawking entropy [31, 32] along with the Ryu-Takayanagi
formula [33, 34] within the framework of AdS/CFT [35].

1.1 What is (NOT) entanglement?

So far, we have discussed mostly areas of physics where entanglement is relevant. However, we
have not provided a specific definition of entanglement, nor have we distinguished it from other
types of (classical) correlations that we are familiar with. In order to clarify this, I would like to
present a simple example to illustrate what entanglement is not.

Imagine there is a bag with two balls inside, one is black, and the other one is white. Two
guys, say Mario and Luigi, have to pick a ball each. They do it, they keep the ball in their hand,
they take a train, traveling to very distant locations, and eventually, they open their hand to see
the color of their ball. If Mario sees a white ball in his hand he immediately knows that Luigi
has a black ball in his hand, and viceversa. Superficially, one might argue that information is
being transmitted instantaneously in this scenario. However, fortunately, this notion is not taken
seriously. It is widely understood that the correlation between the colors observed by Mario and
Luigi is merely ”apparent” and stems from their incomplete knowledge prior to opening their
hands. In reality, the color of each ball was already determined and fixed from the moment they
made their selections.

The previous one was an example of classical correlations, and, as we have explained, they
cannot be considered as an intrinsic property of a given scenario, and they are related to in-
complete information about the systems. Viceversa, in the quantum world a similar, albeit
conceptually different, an example can be provided to show that certain correlations can be
indeed intrinsic, and ultimately quantum. Alice and Bob take two spins 1/2 and prepare the
system in a singlet state

|Ψ⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩) . (1.1)

Each of them picks one of the two spins, keeping it decoupled from the environment, and eventu-
ally measures its polarization along a given axis, say the z-axis. When Alice founds a spin-up, she
immediately knows that Bob will measure spin down, and viceversa. At first glance, apart from
the distinct mathematical formulation of the problem, this scenario may not appear significantly
different from the earlier example with Mario and Luigi. However, there exists a crucial dis-
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tinction: it is possible to demonstrate that the indeterminacy described above arises not merely
from Alice and Bob’s incomplete knowledge, but from an intrinsic property. In particular, this
property stems from the fact that measurements of magnetization can be performed along any
direction, but subsequent measurements along two distinct directions do not commute (the order
in which they are conducted matters).

The two examples above should be able to show in their simplicity, that there might be issues
and subtleties to define properly which correlations are classical and which ones are quantum,
and how to quantify/distinguish them. This is where entanglement measures appear and help
us to discriminate those cases. We will not enter the details, but we mention that there is a
widely accepted definition of what classical correlations are. These are correlations that can be
generated by local operation and classical communication (LOCC), and the interested reader can
find mathematical details in Ref. [36]. We only mention that the example of Mario and Luigi
satisfies those conditions, therefore no quantum correlations are present in that scenario.

When no classical correlations are present, namely for pure states, one might be interested
to quantify quantum correlations. This is the purpose of the so-called von Neumann entropy, or
simply entanglement entropy [37, 38]: it tells us how much certain (algebra of) complementary
observables are correlated among each other in a given pure state. In the case where the system
is described by the composition of two subsystems A and B, say the Hilbert space is

H = HA ⊗HB (1.2)

and the correlations between A and B are concerned, the von Neumann entropy is expressed by

S = −Tr (ρA log ρA) , (1.3)

with ρA = TrB (|Ψ⟩ ⟨Ψ|). Here |Ψ⟩ ∈ H is the state of the system, while ρA is its reduced density
matrix. Using the definition above, one can easily verify that in the example of Alice and Bob
the von Neumann entropy between the two spins is precisely S = log 2; moreover, one can show
that that value is maximal for the system under consideration, therefore we say that the spins
are maximally entangled.

If both classical and quantum correlations are present, the story becomes much more compli-
cated. Indeed, tons of inequivalent entanglement measures have been provided in those settings
to isolate the quantum contributions (mutual information [39], purity [40], reflected entropy [41]).
We spend some words for the negativity [42, 43], important for later purposes. Given a, possibly
mixed, state ρ of HA ⊗HB, the logarithmic negativity is defined as

E = log |ρTA
A | (1.4)

With ρTA
A being the partial transposed reduced density matrix and | . . . | the trace norm. With

respect to the von Neumann entropy, the negativity allows dealing with spurious classical corre-
lations, say with an additional environment, not contributing to its value: for this reason, it can
be considered a good measure of quantum correlations.

The definitions presented earlier can be easily applied to compute the entanglement of sys-
tems with a small number of degrees of freedom. However, complications arise when dealing
with many-body systems. Firstly, evaluating the provided entanglement measures directly is
computationally intensive, limiting investigations to relatively small system sizes (such as spin
chains of 15-20 sites). Secondly, and perhaps more significantly, these measures often diverge in
the large-scale limit of interest. Therefore, it becomes more meaningful to understand how these
measures scale with increasing system size rather than their specific values at a given large size.
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Insights into these questions have emerged from the study of quantum field theories (QFT).
Specifically, it has been recognized that the entanglement between spatial regions in the vacuum
state of a QFT arises from correlations across the boundaries of these regions. The entanglement
entropy follows a sub-extensive behavior1, adhering to what is known as an ”area law” [44,
45]. On the other hand, for typical high-energy states (states with finite energy density), the
entropy matches the thermodynamic entropy of the corresponding Gibbs ensemble and exhibits
an extensive character.

While this scenario, referred to as the ”standard” case, is expected to hold for a broad range
of theories, our quantitative understanding primarily stems from 1+1 QFTs. In particular, this
understanding is prominent in conformal field theories (CFTs) [46], which describe quantum
critical points with relativistic features, and integrable field theories [47, 48], corresponding to
specific types of massive deformations.

Most of this thesis will be devoted to the investigation of some specific features of entangle-
ment in the context of one-dimensional quantum systems at, or close to, criticality. For those
systems, analytical techniques employed in 1+1 QFTs are fundamental, and they allow investi-
gating properties that are impossible (or, at least, very hard) to establish by first principles.

1.2 Structure of the thesis

The primary focus of the first part of this thesis revolves around the fundamental question
regarding the relationship between entanglement and (global) symmetries in many-body quantum
systems. This inquiry arises from the noteworthy experimental findings reported by Lukin et al.
[49], which established that comprehending the finer structure of entanglement, influenced by the
presence of symmetry sectors, enables a better understanding of distinct regimes observed in the
entanglement dynamics of certain disordered systems. That was the birth of Symmetry-resolved
entanglement.

Specifically, when investigating systems that conserve the number of particles, corresponding
to a U(1) symmetry, entanglement manifests in two distinct forms: number entanglement and
configurational entanglement. Number entanglement quantifies the potential variations in the
number of particles observed within a specific spatial region, while configurational entanglement
measures the abundance of configurations that can be observed with a given number of particles.

Concurrently, theoretical frameworks have been developed by Xavier, Alcaraz, and Sierra in
[50] and Goldstein and Sela in [51] to address the challenge of extracting these two contributions
separately. These frameworks provide quantitative predictions, particularly in one-dimensional
critical systems employing CFT, revealing a characteristic known as entanglement equipartition.
This property indicates that the contributions to entanglement originating from particle numbers
close to the average are equal. The origin of this feature has been traced back to the large amount
of quantum fluctuations stored in a critical ground state.

Our initial goal was to explore massive (integrable) field theories in order to gain insight into
the subtle changes that occur in symmetry-resolved entanglement slightly away from the critical
point. This task is non-trivial as certain properties are shared with the underlying CFT, such
as the entropy divergence for small (UV) cut-off, while others depend on the existence of a finite

1Strictly speaking, the entropy of a QFT is usually infinite: roughly this is related to the presence of an
infinite number of degrees of freedom in any given region. However, it is possible to address this issue by initially
applying ultraviolet regularization to cure the divergences, followed by extracting the limit of large volume. It
is important to note that the regularization procedure can influence certain quantitative aspects, and only the
so-called ”universal” characteristics can be deemed physically meaningful.
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correlation length, which becomes apparent through the decoupling of entangled points at large
distances. To address this challenge, we employ the integrable bootstrap technique to analyze
the ground state entanglement of specific QFTs, including free fermions/bosons (Chapter 2) and
the 3-state Potts model(Chapter 3). This approach enables us to systematically investigate the
large-distance behavior of symmetry-resolved entanglement and make analytical predictions re-
garding its universal features. Furthermore, we were able to observe the recovery of entanglement
equipartition, which arises from the presence of UV divergent fluctuations akin to those observed
in CFTs.

Subsequently, we proceed to examine excited states with zero energy density, which can
be effectively characterized as perturbations above the ground state. Since many similarities
exist between these excited states and the ground state, it is crucial to exercise caution in
distinguishing them. Firstly, we direct our attention toward regions that are comparable in size
to the system itself. Secondly, since quantum fluctuations in the ground state dominate in QFT
2, it becomes needed to isolate the contributions stemming from the excitations. To accomplish
this, we demonstrate the universality of specific ratios of charged moments. These ratios exhibit
well-behaved thermodynamic limits and effectively capture the distinct features of various states.

We explore two distinct classes of states in our analysis. Firstly, in Chapter 4 we examine
quasiparticle states, which exhibit an effective decoupling between zero-point fluctuations and
excitations. For these states, we can provide simple model-independent semiclassical predictions.
Specifically, we offer a general prediction for the ratio of charged moments, which we verify
through both analytical and numerical methods in specific cases. By establishing the validity and
generality of this mechanism, which has eluded microscopic description thus far, we introduce
a unifying framework that holds true in any dimension. This framework relies on minimal
assumptions regarding the large-distance behavior of ground state correlation functions, along
with algebraic relationships between certain twist operators and local fields.

Next, we shift our focus to analyzing the low-lying states of CFT. In Chapter 5 we introduce
a novel concept of a symmetry-resolved measure of indistinguishability for these states, expand-
ing upon our previous examination of symmetry-resolved entropies in Ref. [1]. Interestingly,
these states lack a simple semiclassical interpretation, and no decoupling with zero-point fluctu-
ations is observed. Consequently, a case-by-case analysis becomes necessary, and we provide a
comprehensive investigation of the lowest energy states of free Dirac massless fermions utilizing
bosonization techniques. Additionally, we explore an operator product expansion approach that
offers predictive capabilities for small subsystems and allows for establishing generic features
across a wide range of states.

The second part of the thesis focuses on examining the entanglement of one-dimensional
systems when localized defects are present. Specifically, it investigates the impact of these
impurities on systems that would otherwise exhibit translational invariance. A paradigmatic
example of the impact was elucidated by Kane and Fisher [52]. It was shown that a local impurity
can be a relevant or irrelevant perturbation to a Luttinger Liquid depending on the sign of the
interaction. In the absence of interactions, the defect becomes marginal, and non-trivial scale
invariant boundary conditions emerge. Striking consequences are present for critical free systems
for the entanglement across the defect. In particular, it was first observed numerically and then
characterized analytically a logarithmic scaling of the entropy with a prefactor depending on the
details of the defect [53–55] and not only on the underlying central charge (as it happens for the
homogeneous counterpart, see [46]). While many specific cases have been addressed, and exact

2Specifically, UV divergences are independent of the state
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predictions have been provided, the underlying mechanism is yet not completely understood in
a satisfactory manner.

To address the quantum correlations arising from the coupling of multiple one-dimensional
critical systems (wires) via a scale-invariant defect, we initially present in Chapter 6 a CFT
approach to entanglement entropy and negativity. Previous studies have demonstrated that, for
two wires, the characteristics of the defect can be captured by a single parameter representing
the transmission. However, the governing factors dictating the entanglement among subsets of
wires in the case of multiple wires remained unclear prior to our work. Our objective was to fill
this knowledge gap. Specifically, we established that the spectrum of certain projections of the
boundary scattering matrix is responsible for this entanglement. We provided explicit predictions
for free bosons and fermions, establishing a connection between the above-mentioned spectrum
and the entanglement measures.

We move to the dynamics, analyzing two distinct quenches protocols showing macroscopic
effects induced by the defect. First, in Chapter 7 we considered a global quench, and we inves-
tigate the linear growth of entanglement across a defect. Our original contribution was to show
that, due to the coherence between the long-range correlations arising from the defect and the
dynamically generated ones, the analytical predictions for the entanglement growth escape any
simple naive semiclassical interpretation (in contrast to homogeneous systems, see also Ref. [56]
). The mechanism above has been deeply characterized for lattice free fermions, and a quasipar-
ticle picture, which keeps track of interference effects, has been provided. Furthermore, a second
original contribution was to formulate the problem in a CFT framework, employing a novel no-
tion of boundary twist fields. This approach allowed us to tackle the dynamics of initial states
with thermal properties, and it also looked promising to solve some previous puzzles regarding
the equilibrium features.

Lastly, in Chapter 8 we delve into the dynamics resulting from an inhomogeneous initial state,
specifically a quench protocol known as domain-wall melting. Initially, we offer a seemingly
straightforward and intuitive description of the dynamics, based on the evolution of a local
occupation function in the semiclassical phase space. This description proves to be effective
in predicting local observables, and we provide analytical predictions for the density profiles.
However, when it comes to quantitatively describing the entanglement properties across the
interface, this approach fails due to the dynamical generation of long-range correlations at the
interface. To overcome this limitation, we introduce a quasiparticle prescription that successfully
addresses these issues, enabling us to provide analytical predictions for the entanglement entropy
in this scenario.
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Chapter 2

U(1) symmetry resolved
entanglement in free 1+1
dimensional field theories via form
factor bootstrap

In this chapter, we delve into the investigation of symmetry resolved entanglement in free massive
Dirac and complex boson theories, building upon the findings presented in Ref. [2]. Our primary
focus is on analyzing the ground state of these theories and computing the charged moments
of an interval. To achieve this, we develop a bootstrap program designed to calculate the form
factors of the charged twist fields. We rigorously solve and cross-validate these form factors
using the ∆-theorem. The analytical solutions obtained enable us to express the behavior of the
two-point correlation function of charged twist fields in the limit of large distances, facilitating
the extraction of symmetry resolved entropies.

2.1 Introduction

We consider the ground-state |0⟩ of a quantum field theory and, given a spatial subsystem A, we
denote its reduced density matrix (RDM) by

ρA ≡ TrĀ (|0⟩ ⟨0|) , (2.1)

that is an operator encoding the entanglement properties between A and its complement Ā.
In the presence of a global U(1) symmetry, it is possible to investigate a fine structure of the
entanglement via the so-called symmetry resolution of entanglement, a recent idea put forward
in Refs. [49, 51, 57, 58]. For instance in a symmetric ground-state, the conserved charge
corresponding to the U(1) symmetry Q̂ commutes with the density matrix |0⟩ ⟨0|; under general
circumstances also the restriction of Q̂ to the subsystem Q̂A, commutes with the RDM as

[ρA, Q̂A] = 0 . (2.2)

Such commutation implies that ρA admits a decomposition in sectors, associated with the
eigenspaces of Q̂A. For instance, one can express

ρA =
∑
qA

P(qA)ρA, (2.3)

17
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with P(qA) being the projector onto the subspace associated to eigenvalue qA of Q̂A. This
fact has the important consequence that also entanglement measures can be decomposed in
symmetry sectors as well. For instance, one defines the symmetry resolved Rényi and von
Neumann entropies as

Sn(qA) =
1

1− n
log

[
Zn(qA)

Zn
1 (qA)

]
, and S(qA) = − ∂

∂n

[
Zn(qA)

Zn
1 (qA)

]
n=1

, (2.4)

with
Zn(qA) = Tr (ρnAP(qA)) . (2.5)

It is worth to give a physical interpretation of the quantities above as follows. Imagine we have
access only to the subsystem A of our physical system, and we perform a measure of the restricted
global charge Q̂A (e.g. associated to the number of particle in A). In general, the process above
alters the initial state and, if the outcome qA is observed, the post-measure state would be
just ρAP(qA)

Tr(ρAP(qA)) , that is the (normalized) projection of the RDM onto the sector qA. Then, the

symmetry resolved entropies defined in Eq. (2.4) are nothing but the entropies of the state after
the measurement, conditioned to the outcome qA. Thus, the knowledge of the symmetry resolved
entropies for any possible value of qA encodes the residual quantum correlations between A and
Ā after the measurement protocol.

The calculation of all these symmetry resolved quantities requires in general the simultaneous
diagonalisation of ρA and Q̂A, an extremely costly task for many-body quantum systems. An
ingenious way to circumvent this difficult path passes through the charged moments [51]

Zn(α) = Tr
(
ρnAe

iαQ̂A

)
. (2.6)

These are related to the main quantity of interest Zn(qA) via Fourier transform, as [51]

Zn(qA) =

∫ π

−π

dα

2π
Zn(α)e

−iαqA . (2.7)

This approach is particularly powerful for field theoretical calculations in path-integral formalism.
In the replica approach, valid for n integer, TrρnA is a partition function on an n-sheeted Riemann
surface Rn, obtained by joining cyclically the n sheets along the subsystem A [46, 59, 60]. In this
language, the charged moments (2.6) correspond to an additional insertion of an Aharonov-Bohm
flux on one of the sheets of Rn [51], giving rise to a charged partition function.

For 1+1 field theories, one can express the partition functions above as expectation values
of twist fields in a n-copy version of the original model. The latter perspective is particularly
useful for critical theories, where the dimensions of these fields are exactly known [60–62], and
their two-point function, constrained by scale-invariance, gives immediately the entanglement
of one-interval [60]. In addition, for integrable theories away from criticality the form factor
bootstrap allows for the calculation of the matrix elements of the branch-point twist field [47,
63, 64], that provides a systematic technique to compute their correlation functions.

In a recent work [65] the Z2 symmetry resolution of entanglement was investigated for the
Ising and Sinh-Gordon Field theories with a form-factor approach. The aim of our work [2]
was to generalize those techniques to the case of U(1) symmetry, and eventually study the
symmetry resolution of complex massive free theories. Although these theories have been already
analyzed in [66], albeit with different techniques, it was instructive to study them with form factor
bootstrap, to shed light on some general properties shared with massive interacting theories. In
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particular, we mention that a generalization for the U(1) symmetry of the sine-Gordon model
was considered after our work was completed [67].

In the next sections, we will first go through the bootstrap approach which allows computing
the form factors of the standard and U(1) composite twist fields, that are the building blocks to
reconstruct their correlation functions. Then, we will express the two-point functions of those
fields in the infrared limit, relating them eventually to the symmetry resolution of an interval.

2.2 Form Factors of Twist Fields for integrable theories

In this section, we give a brief introduction to the form-factor theory of the standard twist fields
in integrable field theory, following closely Refs. [2, 47]. This is important to introduce some
basic ingredients of integrable field theory, and give the building blocks to compute the Rényi
entropies, in the replica approach. This construction will be eventually generalized in the other
sections to tackle the additional insertion of the U(1) flux via the notion of U(1) charged twist
fields.

First of all, let us recall that form factors are matrix elements of (semi-)local operators O(x, t)
between the vacuum and asymptotic states, i.e.,

FO
β1,...,βn

(ϑ1, . . . , ϑn) = ⟨0|O(0, 0)|ϑ1, . . . ϑn⟩β1,...,βn . (2.8)

In massive relativistic field theories, the asymptotic states are multi-particle excitations whose
dispersion relation is (E, p) = (m coshϑ,m sinhϑ), where ϑ is the rapidity, and m the mass.
Moreover, as many particle species are present in principle, we label each specie by an index βi.
The multi-particle states are excitations above the vacuum state |0⟩ as

|ϑ1, ϑ2, ..., ϑn⟩β1,...,βn = A†
β1
(ϑ1)A

†
β2
(ϑ2) . . . .A

†
βn
(ϑn)|0⟩ , (2.9)

where the operator A†
βi
(ϑi) creates a particle of specie βi with rapidity ϑi. In integrable field

theories, the creation/annihilation operators satisfy the Zamolodchikov-Faddeev (ZF) algebra,
which, for diagonal scattering, reads

A†
βi
(ϑi)A

†
βj
(ϑj) = Sβi,βj

(ϑi − ϑj)A
†
βj
(ϑj)A

†
βi
(ϑi) ,

Aβi
(ϑi)Aβj

(ϑj) = Sβi,βj
(ϑi − ϑj)Aβj

(ϑj)Aβi
(ϑi) ,

Aβi
(ϑi)A

†
βj
(ϑj) = Sβi,βj

(ϑj − ϑi)A
†
βj
(ϑj)Aβi

(ϑi) + δβi,βj
2πδ(ϑi − ϑj). (2.10)

Here Sβi,βj
(ϑi − ϑj) denotes the two-particle scattering matrix of particles βi, βj , with incoming

rapidities ϑi, ϑj respectively: as a consequence of relativistic invariance, it depends on the rapidity
difference only.

We now replicate the theory above n times. That amounts to the introduction of an additional
internal (replica) index µ = 1, . . . , n, and each particle specie is now identified by a pair (βi, µi).
Since particles in different replicas do not interact by construction, the scattering matrix in the
replica model is

S(βiµi),(βjµj)(ϑ) = 1, i, j = 1, ..., n and µi ̸= µj ,

S(βiµi),(βjµj)(ϑ) = Sβi,βj
(ϑ), i, j = 1, .., n and µi = µj .

(2.11)
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The resulting model admits a Zn symmetry, associated to the cyclic permutation of different
replicas, which can be implemented via the introduction of twist fields as we explain below.
Given any local field Ψi inserted in the i-th replica, we require that a twist field T satisfies

Ψi(y)T (x) = T (x)Ψi+1(y) x < y,

Ψi(y)T (x) = T (x)Ψi(y) x > y.
(2.12)

For instance T (x) introduces a branch-cut over [x,∞) where it acts on local fields as a replica
shift i → i + 1. Similarly, the inverse permutation i → i − 1 is implemented by another twist
field T̃ satisfying

Ψi(y)T̃ (x) = T̃ (x)Ψi−1(y) x> y,

Ψi(y)T̃ (x) = T̃ (x)Ψi(y) x < y.
(2.13)

The characterization of these fields can be ultimately formulated in terms of their form factors.
These are constrained by the bootstrap equations, whose general expression is [47]

F
T |(βµ)
k (ϑ) = S(βiµi),(βi+1µi+1)(ϑi,i+1)F

T |...(βi+1µi+1),(βiµi)...
k (. . . ϑi+1, ϑi, . . .), (2.14)

F
T |(βµ)
k (ϑ1 + 2πi, ϑ2, . . . , ϑk) = F

T |(β2µ2),...,(βkµk),(β1µ̂1)
k (ϑ2, . . . , ϑn, ϑ1), (2.15)

−i Res
ϑ′
0=ϑ0+iπ

F
T |(βµ),(β̄µ),(βµ)
k+2 (ϑ′0, ϑ0, ϑ) = F

T |(βµ)
k (ϑ), (2.16)

−i Res
ϑ′
0=ϑ0+iπ

F
T |(βµ),(β̄µ̂),(βµ)
k+2 (ϑ′0, ϑ0, ϑ) = −

k∏
i=1

S(βµ̂),(βiµi)(ϑ0i)F
T |(βµ)
k (ϑ),

−i Res
ϑ′
0=ϑ0+iūδ

βγ

F
T |(βµ),(γµ′),(βµ)

k+2 (ϑ′0, ϑ0, ϑ) = δµµ′Γδ
βγF

T |(δµ),(βµ)
k+1 (ϑ0, ϑ), (2.17)

where ϑij = ϑi − ϑj , ϑ and (βµ) are shorthands for ϑ1, ϑ2, ..., ϑk and (β1µ1), (β2µ2)...., (βkµk)

respectively; µ̂ = µ+1 and β̄ denotes the anti-particle of species β. In the last equation ūδβγ refers

to the position of the pole of the bound state of the particle δ in the S-matrix Sβ,γ and i
(
Γδ
βγ

)2
is the corresponding pole strength. These equations are natural generalization of the ones for
conventional local fields [68–70]. The main difference is the presence of a non-trivial monodromy
condition arising from the branch-cut (roughly, a rapidity shift ϑ → ϑ + 2πi is equivalent to a
replica shift µ → µ + 1). These equations, which are involved in general interacting theories,
simplify drastically for complex free boson/fermions. Indeed, no dynamical poles are present
(say Γδ

βγ = 0), the S-matrices do not depend explicitly on the rapidity, and only two species of
particles are present (particle/antiparticle respectively).

It is important to mention that, albeit the bootstrap equations severely constraint the form-
factors, they admit a pletora of inequivalent solutions. In general this is expected, and it is
compatible with the fact that an infinite number of fields share the same features. However, for
physical applications one is usually interested in the lighter field with some given properties. In
this respect, a very useful tool is the ∆-theorem [71]. Such a theorem states that the ultraviolet
(UV) conformal weight of a field O is

∆UV = − 1

4π⟨O⟩

∫
d2x⟨Θ(x)O(0)⟩c, (2.18)
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where Θ(x) is the trace of the stress-energy tensor and ⟨O⟩ is the vacuum expectation value of
O(x). After expanding the (connected) two-point function ⟨Θ(x)O(0)⟩c in the basis of asymptotic
states, one eventually gets

∆UV = − 1

2 ⟨O⟩

∞∑
n=1

∑
β1,...,βn

∫
dϑ1...dϑn
(2π)nn!

E−2
n F

Θ|β
n (ϑ1, . . . , ϑn)F

O|β
n (ϑ1, . . . , ϑn)

∗ . (2.19)

where En =
∑n

k=1mβk
coshϑk and F

O|β
n , F

Θ|β
n are the form factors of O,Θ. Consequently, if

the dimension of the operator O is known, the ∆-theorem rules out most of the solutions to the
bootstrap equations. In particular, in the large rapidity limit ϑi → ±∞, the growth of a given
form factor is utmost eyO|ϑi| with yO ≤ ∆UV . We mention also that, while the exact evaluation
of ∆UV from (2.19) requires in principle the knowledge of an infinite numbers of form factors,
the series is usually rapidly converging and its truncation up to the two-particle form factors
gives already a good estimation.

We summarize below the strategy employed to get the 2-particle form factors for the twist
fields in the absence of dynamical poles. The idea is to focus first on the case in which the particles
belong to the same replica, say the first one. Here, one can first solve the monodromy condition,
finding a minimal solution without zeros and poles, and then add a contribution associated to
a kinematic pole (arising when the rapidity difference is iπ). Given that, the other form factors
with different replica indices can be easily recovered using the monodromy properties.

The starting point is the monodromy equation for the minimal form factor F
T |(β1),(γ1)
min de-

termined by Eq. (2.14) and (2.15) as

F
T |(β1),(γ1)
min = F

T |(γ1),(β1)
min (−ϑ, n)Sβ,γ(ϑ) = F

T |(γ1),(β1)
min (−ϑ+ 2πin, n) . (2.20)

Given the integral representation of the S-matrix as

Sβ,γ(ϑ) = exp

[∫ ∞

0

dt

t
gβ,γ(t) sinh

tϑ

iπ

]
, (2.21)

it is possible to show that the solution for the minimal form factor is

F
T |(β1),(γ1)
min (ϑ, n) = N exp

[∫ ∞

0

dt

t sinhnt
gβ,γ(t) sin

2

(
it

2

(
n+

iϑ

π

))]
, (2.22)

with N being a normalization constant. Taking into account the equation for the kinematic
poles (2.16) one eventually express the two-particle form factor as

F
T |(βk),(β̄j)
2 (ϑ, n) =

⟨T ⟩ sin π
n

2n sinh
(
iπ(2(j−k)−1)+ϑ

2n

)
sinh

(
iπ(2(k−j)−1)−ϑ

2n

) F T |(βk),(β̄j)
min (ϑ, n)

F
T |(β1),(β̄1)
min (iπ, n)

, (2.23)

with ⟨T ⟩ being the vacuum expectation value of the twist field. A similar result is valid for the
twist field T̂ and, employing replica symmetry, it is possible to show that

F
T |(βk),(γj)
2 (ϑ, n) = F

T̂ |(βn−j),(γn−k)
2 (ϑ, n) . (2.24)

At this point, it is instructive to write down the explicit solution for complex boson and
fermions. The particle content of these theories is given by two species (particle/antiparticle)
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labeled by ±. The scattering matrix does not depend on the species or the rapidity difference,
and it is simply given by S(ϑ) = ±1 for bosons/fermions respectively. Since the twist field is
neutral wrt the U(1) symmetry, the only non-vanishing 2-particle form factors are the ones with
exactly one particle (+) and one antiparticle (−), expressed as

F
T |(±j),(∓k)
2 (ϑ, n) =

⟨T ⟩ sin π
n

2n sinh
(
iπ(2(j−k)−1)+ϑ

2n

)
sinh

(
iπ(2(k−j)−1)−ϑ

2n

) F
T |j,k
min (ϑ, n)

F
T |1,1
min (iπ, n)

. (2.25)

The only difference between bosons and fermions is given here by the explicit expression of the
minimal form factor. For bosons, we have

F
T |1,1
min (ϑ, n) = 1 , (2.26)

being the monodromy equation trivial, while the result for fermions is

F
T |1,1
min (ϑ, n) = −i sinh ϑ

2n
. (2.27)

For later purposes, in particular for the application of the ∆-theorem, we also need the form
factors of the stress-energy tensor Θ. The only non-vanishing ones are the 2-particle form factors,
that can be written as

F
Θ|(±j),(∓k)
2 (θ, n) =

{
2πm2 j = k

0 j ̸= k .
(2.28)

for bosons, and

F
Θ|(±j),(∓k)
D,2 (θ, n) =

{
−i2πm2 sinh ϑ

2 j = k

0 j ̸= k
(2.29)

for fermions, where m is the mass of the particle/antiparticle. It is worth to notice explicitly
that the form factors with particles in different replicas vanish, a property related to the fact
that the field Θ does not mix distinct replicas (in contrast to T ).

2.3 Form factors of the composite U(1) twist fields for free Dirac
fermions

In this section, we generalize the previous construction of standard twist fields to the U(1)
composite twist fields of Dirac fermions. In particular, we construct a new field T α(x) which
acts both shifts the replicas, and it adds an Ahranov-Bohm flux related to the global U(1)
symmetry. This idea can be rephrased in terms of the commutation relation between T α and
the fermionic fields as

Ψi(y)T α(x) = eiα/nT α(x)Ψi+1(y) x < y,

Ψi(y)T α(x) = T α(x)Ψi(y) x > y.
(2.30)

and similarly for T̃

Ψi(y)T̃ α(x) = e−iα/nT̃ α(x)Ψi−1(y) x> y,

Ψi(y)T̃ α(x) = T̃ α(x)Ψi(y) x < y.
(2.31)
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Here, Ψi(x) is the fermion field in the i-th replica, and a flux eiα/n is introduced between the
i-th and the i + 1-th replica. This choice is dictated by the requirement, that the total phase
picked up by the particle when turning around the n-sheeted branch-point has to be eiα. For
n = 1, Tα becomes the U(1) twist-field of the Dirac theory, that will be denoted here as Vα .

We now specialize the bootstrap equations to the U(1) composite twist field as

F
T α|(βµ)
k (ϑ) = S(βiµi),(βi+1µi+1)(ϑi,i+1)F

T α|...(βi+1µi+1),(βiµi)...
k (. . . ϑi+1, ϑi, . . .), (2.32)

F
T α|(βµ)
k (ϑ1 + 2πi, ϑ2, . . . , ϑk) = eiαβ1/nF

T α|(β2µ2),...,(βkµk),(β1µ̂1)
k (ϑ2, . . . , ϑn, ϑ1), (2.33)

−i Res
ϑ′
0=ϑ0+iπ

F
T α|(βµ),(β̄µ),(βµ)
k+2 (ϑ′0, ϑ0, ϑ) = F

T α|(βµ)
k (ϑ), (2.34)

−i Res
ϑ′
0=ϑ0+iπ

F
T α|(βµ),(β̄µ̂),(αµ)
k+2 (ϑ′0, ϑ0, ϑ) = −eiαβ/n

k∏
i=1

S(βµ̂),(βiµi)(ϑ0i)F
T α|(βµ)
k (ϑ), (2.35)

where β = ±1 refers to particle/antiparticle, while µ = 1, . . . , n is the replica index. The presence
of the U(1) flux is ultimately related to a mutual locality index, which enters the bootstrap
equations and modifies the monodromy properties (wrt T ).

We present below the solution for the two-particle form factors, which is non-vanishing only if
a particle and an anti-particle are present (T α is U(1) neutral, as T ). For instance, the solution
for n = 1 was known from earlier investigations [72–74],

F
Vα|(±),(∓)
2 (ϑ, α) = ±

i2 sin α
2 e

±ϑα
2π sinh ϑ

2

sinhϑ
.. (2.36)

In the limit α→ 0, the U(1) field Vα becomes the identity fields, and consequently its two-particle
form factors vanish, which is compatible with Eq. (2.36).

To get the solution at n > 1, we follow the same approach adopted for the standard twist
fields, and we focus on the case of particle/antiparticles belonging to the first replica. For the
minimal form factor, we have to solve the monodromy condition

F
T α|(±1),(∓1)
min (ϑ, n) = −F T α|(∓1),(±1)

min (−ϑ, n) = e±iαF
T α|(∓1),(±1)
min (−ϑ+ 2πin, n) . (2.37)

A solution is given

F
T α
D |(±1),(∓1)

min (ϑ, n, α) = −ie±
ϑα
2πn sinh

ϑ

2n
. (2.38)

which is compatible with (2.27) in the limit α→ 0. We now need to modify the minimal solution,
to take into account the presence of kinematic poles. For instance, the physical form-factor should
have a pole at ϑ = iπ, 2inπ − iπ with residue i⟨T α⟩,−ieiα⟨T α⟩ respectively, as expressed by the
bootstrap Eqs. (2.34)(2.35). In our work, we provided the solution

F
T α|(±1),(∓1)
2 (ϑ, n, α) =

−i⟨T α⟩ sin π
n

2n sinh iπ−ϑ
2n sinh iπ+ϑ

2n

(
cos α

2n sinh ϑ
2n

sin π
2n

±
sin α

2n cosh ϑ
2n

cos π
2n

)
e±

ϑα
2πn , (2.39)

which is compatible both with the limit α → 0, which gives the form-factor of the standard
twist field T , and the known results for n = 1. The other form factors with two different replica
indices are similarly recovered using the monodromy equations and the final result is

F
T α|(±j),(∓k)
2 (ϑ, n) =

{
e±iα(k−j)/nF

T α|(∓1),(±1)
2 (2πi(k − j)− ϑ, n) if k > j,

e∓iα(j−k)/nF
T α|(±1),(∓1)
2 (2πi(j − k) + ϑ, n) otherwise.

. (2.40)
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As already mentioned, the solutions to the bootstrap equations are not unique, and we tested
the validity of our results with ∆-theorem. Indeed, from (2.19) we get the UV conformal weight
of T α (half of its scaling dimension) as

∆T α = − n

32π2m2⟨T α⟩

∫ ∞

−∞
dϑ
F

Θ|1,1
2 (ϑ)

(
F

T α|(±1),(∓1)
2 (ϑ, n)∗ + F

T α|(∓1),(±1)
2 (ϑ, n)∗

)
cosh2 (ϑ/2)

. (2.41)

The integral can be computed explicitly and the result is

∆T α =
1

24

(
n− n−1

)
+

1

2n

( α
2π

)2
, (2.42)

which is compatible with the known UV result [51].

2.4 Form factors for free complex bosons

In this section, we treat the case of the complex boson, and we provide a solution to the 2-particle
form factor of the composite U(1) twist field. The main difference with fermions is the scattering
phase, that is just +1. Thus, the bootstrap equations are eventually expressed by

F
T α|(βµ)
k (ϑ) = F

T α|...(βi+1µi+1),(βiµi)..
k (. . . ϑi+1, ϑi, . . .), (2.43)

F
T α|(βµ)
k (ϑ1 + 2πi, ϑ2, . . . , ϑk) = eiαβ1/nF

T α|(β2µ2),...,(βkµk),(β1µ̂1)
k (ϑ2, . . . , ϑn, ϑ1), (2.44)

−i Res
ϑ′
0=ϑ0+iπ

F
T α|(βµ),(β̄µ),(βµ)
k+2 (ϑ′0, ϑ0, ϑ) = F

T α|(βµ)
k (ϑ), (2.45)

−i Res
ϑ′
0=ϑ0+iπ

F
T α|(βµ),(β̄µ̂),(βµ)
k+2 (ϑ′0, ϑ0, ϑ) = −eiαβ/nF

T α|(βµ)
k (ϑ). (2.46)

We mention that the solutions for the case n → 1 are known [75]. In particular, one gets the
(bosonic) U(1) field Vα whose 2-particle form factors as

F
Vα|(±1),(∓1)
2 (ϑ, α) = − sin

α

2

e±
ϑ(α−π)

2π

cosh ϑ
2

, α ∈ [0, 2π]. (2.47)

We now proceed with the case n > 1, following the same logic applied for the fermions. In this
case, the monodromy equations for the minimal form factors are

F
T α
B |(±1),(∓1)

min (ϑ, n) = F
T α
B |(∓1),(±1)

min (−ϑ, n) = e±iαF
T α
B |(∓1),(±1)

min (−ϑ+ 2πin, n). (2.48)

An ansatz for the minimal solution satisfying the previous equation is

F
T α|(±1),(∓1)
min (ϑ, n, α) = −e±

ϑ(α−π)
2πn cosh

ϑ

2n
. (2.49)

Then, we have to modify this solution taking into account the kinematic poles, as done for
fermions. We proposed the following expression

F
T α|(±1),(∓1)
2 (ϑ, n, α) =

⟨T α⟩ sin π
n

2n sinh iπ−ϑ
2n sinh iπ+ϑ

2n

(
cos α−π

2n cosh ϑ
2n

cos π
2n

∓
sin α−π

2n sinh ϑ
2n

sin π
2n

)
e±

ϑ(α−π)
2πn ,

(2.50)
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which is compatible with the known results for α→ 0 and n→ 1. Finally, we express the other
form-factors as

F
T α|(±j),(∓k)
2 (ϑ, n) =

{
e±iα(k−j)/nF

T α|(∓1),(±1)
2 (2πi(k − j)− ϑ, n) if k > j,

e∓iα(j−k)/nF
T α|(±1),(∓1)
2 (2πi(j − k) + ϑ, n) otherwise ,

(2.51)

exploiting the monodromy relations. The validity of our ansatz was checked by the ∆-theorem
as

∆T α = − n

32π2m2⟨T α⟩

∫ ∞

−∞
dϑ
F

Θ|1,1
2 (ϑ)

(
F

T α|(±1),(∓1)
2 (ϑ, n)∗ + F

T α|(∓1),(±1)
2 (ϑ, n)∗

)
cosh2 (ϑ/2)

=

2

24

(
n− n−1

)
+

1

2n

α

2π

(
1− α

2π

)
, α ∈ [0, 2π],

(2.52)

which is compatible with the exact UV result [66].

2.5 Replica diagonalization approach

In this section, we provide an alternative derivation of the two-particle form factors of the
composite U(1)twist fields, based on the diagonalisation in the space of replicas [76]. This
technique has been already employed in [77] for the computation of the form factors of the
standard branch-point twist fields. It works well for free theories when the S-matrix does not
depend explicitly on the rapidities, and it is more closely related to the approach of Ref. [66].
We will briefly summarize this formalism, discussing the case in which a non-vanishing flux is
inserted. This provides an additional non-trivial check of our results, besides ∆-theorem.

Let us consider the creation operator A†
j,±(ϑ) of a particle/antiparticle in the j-th replica.

The cyclic symmetry of replicas can be diagonalised moving to a “replica Fourier space”

Â†
k,±(ϑ) =

1√
n

n−1∑
j=0

e∓i 2πkj
n A†

j,±(ϑ), (2.53)

where we identified the replica indices j ∼ j + n and k ∼ k + n. In order to account for the
correct (anti)commutation relations (and hence S-matrix) of bosons and fermions, the index k
should be either integer or half-integer according to the following rules

• for bosons (S(ϑ) = 1) k = 0, . . . , n− 1;

• for fermions (S(ϑ) = −1) k = −n−1
2 , . . . , n−1

2 .

We mention that while different prescriptions can be found in the literature for the diagonalisation
in the replica space [47, 66, 76, 78], they are all related to each other by unitary transformations
and in the end, the diagonal modes simply get a phase. Since here we are only interested in the
absolute value squared of the form factors, this issue is irrelevant to our purpose. The advantage
of this approach is that the composite twist field field T α does not mix different Fourier modes.
We denote its non-vanishing 2-particle form factor as

Fα
k,±(ϑ) ≡ ⟨0|T α(0)Â†

k,±(ϑ)Â
†
k,∓(0)|0⟩, (2.54)
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which satisfies the bootstrap equations

Fα
k,±(ϑ+ 2πi) = e±iα

n
± i2πk

n Fα
k,∓(−ϑ), (2.55)

Res
ϑ=iπ

Fα
k,±(ϑ) = i(1− e±iα

n
± i2πk

n )⟨T α⟩, (2.56)

Fα
k,±(−ϑ) = S(ϑ)Fα

k,∓(ϑ). (2.57)

These equations are similar to the ones satisfied by the U(1) twist field Vα [62], studied in [79]:

the only difference is the monodromy phase, which is e±iα
n
± i2πk

n (rather than e±iα). We thus can
employ the known results for boson and fermions [79] to get the solution of our problem. After
that, we can eventually express the physical form-factor via Fourier transform as follows

⟨0|T α(0)A†
j,+(ϑ)A

†
j,−(0)|0⟩ =

⟨0|T α(0)

(
1√
n

∑
k

Â†
k,+(ϑ)e

+i 2πkj
n

)(
1√
n

∑
k′

Â†
k′,−(ϑ)e

−i 2πk′j
n

)
|0⟩ = 1

n

∑
k

Fα
k,+(ϑ). (2.58)

For the fermions, we get the solution

Fα
k,+(ϑ) = i⟨T α⟩ sin

(
α

2n
+
πk

n

)
eαϑ/2πn+kϑ/n

cosh ϑ
2

. (2.59)

and using the relation
n−1
2∑

k=−n−1
2

eiγk =
eiγn/2 − e−iγn/2

eiγn/2 − e−iγn/2
=

sin nγ
2

sin γ
2

, (2.60)

we get the sum over the modes as

⟨0|T α(0)A†
1,+(ϑ)A

†
1,−(0)|0⟩ = (2.61)

− i⟨T α⟩ eαϑ/2πn

2n sinh iπ+ϑ
2n sinh iπ−ϑ

2n

(
eiα/2n sinh

ϑ− iπ

2n
+ e−iα/2n sinh

ϑ+ iπ

2n

)
, (2.62)

and this provides an alternative derivation of the FF in Eq. (2.39).We also mention that the
same expression can be derived starting from the ansatz

⟨0|T α(0)A†
1,+(ϑ)A

†
1,−(0)|0⟩ = ⟨T α⟩ eαϑ/2πn

2n sinh ϑ+iπ
2n sinh ϑ−iπ

2n

(
C0e

−ϑ/2n + C1e
ϑ/2n

)
, (2.63)

compatible with the monodromy equations, and choosing C0, C1 such that the kinematic poles
are

Res
ϑ=iπ

⟨0|T α(0)A†
1,+(ϑ)A

†
1,−(0)|0⟩ = i⟨T α⟩, (2.64)

Res
ϑ=2inπ−iπ

⟨0|T α(0)A†
1,+(ϑ)A

†
1,−(0)|0⟩ = −ieiα⟨T α⟩. (2.65)

We now apply the same technique to the complex boson, starting from the solution of the
bootstrap equations

Fα
k,+(ϑ) = −⟨T α⟩ sin

(
α

2n
+
πk

n

)
eαϑ/2πn+kϑ/n−ϑ/2

coshϑ/2
. (2.66)
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The sum over the modes is easily done using

n−1∑
k=0

eiγk =
eiγn − 1

eiγ − 1
= e

iγ
2
(n−1) sin

nγ
2

sin γ
2

, (2.67)

and the form-factor for the boson is thus expressed as

⟨0|T α(0)A†
1,+(ϑ)A

†
1,−(0)|0⟩ = −i⟨T α⟩ eαϑ/2πn−ϑ/2n

2n sinh ϑ+iπ
2n sinh ϑ−iπ

2n

(
eiα/2n−iπ/2n sinh

ϑ− iπ

2n
− (c.c.)

)
,

(2.68)
which corresponds to the result (2.50). As for fermions, the same result can be recovered starting
from the ansatz

⟨0|T α(0)A†
1,+(ϑ)A

†
1,−(0)|0⟩ = ⟨T α⟩ eαϑ/2πn−ϑ/2n

2n sinh ϑ+iπ
2n sinh ϑ−iπ

2n

(
C0e

−ϑ/2n + C1e
ϑ/2n

)
, (2.69)

and fixing C0, C1 compatibly with the kinematic poles.

2.6 Two-point function of composite U(1) twist fields

In this section, we compute the large-distance limit of the 2-point function of the composite
U(1) twist fields, exploiting the analytic results of the previous sections. In particular, as we see
below, the first correction to the asymptotic factorization is given by a 2-particle contribution,
which is determined as a function of the corresponding form factor.

Inserting a resolution of the identity in terms of the quasi-particle states, we approximate

⟨T α(0)T̃ α(ℓ)⟩ ≈⟨T α⟩2 +
n∑

j,k=1

∫ ∞

−∞

dϑ1dϑ2
(2π)22!

|F T α|(+j),(−k)
2 (ϑ1 − ϑ2, n)|2e−mℓ(coshϑ1+coshϑ2)

+

n∑
j,k=1

∫ ∞

−∞

dϑ1dϑ2
(2π)22!

|F T α|(−j),(+k)
2 (ϑ1 − ϑ2, n)|2e−mℓ(coshϑ1+coshϑ2)

=⟨T α⟩2
(
1 +

n

4π2

∫ ∞

−∞
dϑfα(ϑ, n)K0 (2mℓ cosh (ϑ/2))

)
,

(2.70)

where K0(z) is a Bessel function, and fα(ϑ, n) is a universal function defined as

⟨T α⟩2fα(ϑ, n) =
n∑

j=1

|F T α|(+1),(−j)
2 (ϑ, n)|2 + |F T α|(−1),(+j)

2 (ϑ, n)|2

=

n−1∑
j=0

|F T α|(−1),(+1)
2 (2πij − ϑ, n)|2 +

n−1∑
j=0

|F T α|(+1),(−1)
2 (2πij − ϑ, n)|2 .

(2.71)

Here, the terms with more than two particles have been neglected, as their contribution goes
exponentially to zero faster than the two-particle one whenmℓ→ +∞. Instead, there are no one-
particle contributions as the corresponding form factors are zero (since the particle/antiparticles
are charged, while the twist field is neutral). It is worth to notice that the integral appearing in
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(2.70) localizes at ϑ = 0, and only the behavior of fα(ϑ, n) at small ϑ is relevant. In particular,
for later convenience, we write down the approximation

1

2π2

∫ ∞

−∞
dϑK0

(
2mℓ cosh

ϑ

2

)(
ϑ

2

)2k

=
Γ
(
k + 1

2

)
2π3/2

e−2mℓ

(mℓ)k+1
(1 +O((mℓ)−1), (2.72)

which comes directly for the asymptotic expression K0(z) ≈ e−z
√

π
2z (see [80]) valid in the large

z limit.

We focus first on the case n > 2 integer, which gives for both bosons and fermions

⟨T α(0)T̃ α(ℓ)⟩ ≃ ⟨T α⟩2
(
1 +

n

4π

e−2mℓ

mℓ

)
. (2.73)

Here we used the Taylor expansion of fα(ϑ, n) at ϑ = 0, and the approximation (2.72) (for
k = 0), keeping only the dominant contribution given by fα(0, n). Similarly, it is possible to
consider the case n = 1, and we get

⟨T α(0)T̃ α(ℓ)⟩ ≃ ⟨T α⟩2
(
1 + 2 sin2

α

2

1

4π

e−2mℓ

mℓ

)
. (2.74)

We notice that the next-to-leading term depends on α explicitly only for n = 1, which is a specific
feature of the form factors of our theories.

So far we considered n integer, but in principle, we can make an analytic continuation over n,
that is relevant for the computation of the von Neumann entropy. This task has been performed
in [47] for the standard twist field, and the main result was the discovery of a singular limit
n→ 1. Using a similar approach, we obtain that fα(ϑ, n) becomes a singular distribution in the
limit n→ 1, and one is not allowed anymore to Taylor expand around ϑ = 0. More precisely, we
found for both bosons and fermions (see Appendix 2.A)

lim
n→1

∂

∂n
fα(ϑ, n) = π2 cosα δ(ϑ) +′ non-singular part′, (2.75)

which immediately gives

∂

∂n

⟨T α(0)T̃ α(ℓ)⟩
⟨T α⟩2

|n=1 ≃
1

4
cosαK0(2mℓ) ≃ cosα

√
π

8

e−2mℓ

√
mℓ

, (2.76)

up to corrections of order O
(
e−2mℓ

ℓ

)
. These formulas, based solely on the form factor bootstrap,

are the main results of our work and perfectly match with the results of Ref. [66], derived by
completely different means.

2.7 Symmetry resolved Rényi entropies

In this section, we use the results of the previous section to express the charged moments of
an interval and eventually compute the symmetry resolved entropies. We consider the interval
A = [0, ℓ] and, following [66], we express the charged moments as

Zn(α) = Tr
(
ρnAe

iαQ̂A

)
= ζαn ε

2dαn⟨T α(0)T̃ α(ℓ)⟩, (2.77)
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where ε is a UV regulator, and dαn is the scaling dimension of the composite U(1) twist field

dT α = 2∆T α =

{
1
12

(
n− n−1

)
+ α2

(2π)2n
, Dirac fermions,

1
6

(
n− n−1

)
− α2

(2π)2n
+ |α|

2πn , complex bosons,
(2.78)

valid for α ∈ [−π, π]. ζαn are non-universal normalization constants, that we discard from now
on.

Following Ref. [66], we can write the logarithm of the charged moments for both fermions/bosons
as

logZn(α) ≃ logZ(0)
n (α) +

ne−2mℓ

4πmℓ
+ . . . ,

logZ1(α) ≃ logZ
(0)
1 (α) +

e−2mℓ

2πmℓ
sin2

α

2
+ . . . ,

d

dn
logZn(α)|n→1+ ≃ d

dn
logZ(0)

n (α)|n→1+ +
1

4
cosαK0(2mℓ) + . . . ,

(2.79)

where logZ
(0)
n (α) is the ℓ independent term

logZ(0)
n (α) =

(
1

6

(
n− n−1

)
+

α2

2π2n

)
log(mε), Dirac fermions, (2.80)

logZ(0)
n (α) =

(
1

3

(
n− n−1

)
− α2

2π2n
+

|α|
πn

)
log(mϵ), complex bosons, (2.81)

and the non-universal contributions of order O(1) (in the limit of small UV cutoff ε) are neglected
explicitly.

From Eq. (2.79) the symmetry resolved von Neumann and Rényi entropies can be straightfor-
wardly computed following [66]. We only report here the leading and sub-leading contributions
to the entropies as

Sn(qA)− Sn ≃− 1

2
log log (mε)−1 +O(1) for Dirac fermion ,

Sn(qA)− Sn ≃− log log (mε)−1 +O(1) for complex boson ,
(2.82)

for n ≥ 1. The total Rényi and von Neumann entropy has the following large ℓ behaviour

Sn ≃ c

6

(
n− n−1

)
log(mε)−1 − n

n− 1

e−2mℓ

4πmℓ
+ . . . n > 1,

S1 ≃
c

3
log(mε)−1 − 1

4
K0(2mℓ) + . . . ,

(2.83)

where the non-universal constants are again neglected explicitly and c is the central charge
(c = 1, 2 for complex fermions and bosons, respectively). We recall that the result for S1 is
already known from Ref. [47]; in particular, the correction −1

4K0(2mℓ) is the double of what
was found in the Ising field theory: this comes from the presence of two particles species in the
Dirac theory, compared to Ising.

At leading order, one observes the equipartition of entanglement, namely Sn(qA) does not
depend explicitly on qA. Still, the equipartition is broken when the cut-off ε is finite compared
to the other relevant length scales m−1, ℓ. A careful analysis has been performed in [66], and the
terms which break equipartition can be written as a power series in 1

log(mε)−1 .
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Finally, we mention that the total von Neumann entropy can be decomposed as [39]

S1 =
∑
qA

p(qA)S(qA)−
∑
qA

p(qA) log p(qA) = Sc + Sf , (2.84)

where p(qA) = Z1(qA) equals the probability of finding qA as the outcome of a measurement
of Q̂A. The contribution Sc is called configurational entanglement entropy, and it measures the
average entropy of each charge sector [49, 81]. The fluctuation (or number) entanglement entropy
Sf , which instead takes into account the entropy due to the fluctuations of Q̂A [49, 82–84].

2.8 Concluding remarks

In our work we applied the 1+1D bootstrap approach to compute the form factors of the com-
posite U(1) branch-point twist fields which are directly related to symmetry resolved entropies.
The technique was initiated in Ref. [65] for discrete symmetries and we generalised here to a
U(1) conserved charge. For simplicity, we focused on free theories, namely the free massive Dirac
theory and the free massive complex boson theory, both of which admit a global U(1) symme-
try. We found solutions to the bootstrap equations that we test in some inequivalent ways. In
particular, we used the ∆-theorem to check the compatibility with known CFT results, and we
use replica diagonalization to recover our formulas. These calculations were a warm-up toward
interacting integrable theories, as the whole machinery of form factor bootstrap was applied with
the minimum amount of technical complications (absence of non-diagonal scattering, absence of
bound-states, etc.).

Some general conclusions appear independent of the details of the underlying field theory, and
they are manifest within the language of form factors. For instance, we found that the charged
moments go to a constant in the limit of large intervals (mℓ≫ 1), which is compatible with the
asymptotic factorization of U(1) twist fields and their non-vanishing vacuum expectation value.
The exponential subleading corrections arising in this limit, which is the focus of this work,
are instead ruled by the lightest excitations above the vacuum. These features are related to a
description of the theory in terms of massive asymptotic particles, and do not rely on the explicit
absence of interactions. We interpret the factorization described above as a sort of ’area-law’ of
symmetry-resolved entanglement, related to the localization of quantum correlations around the
entangling points: here the typical correlation length is given by the inverse mass m−1.

2.A Analytic continuation n → 1

The analytic continuation of fα(ϑ, n), defined by (2.71), is a subtle issue. In the absence of
U(1) flux, say for α = 0, it was shown in Ref. [47] that the limit n → 1 is singular, and the
convergence fα(ϑ, n) is non-uniform, which is better understood in the language of distributions.

In particular, a contribution proportional to δ(ϑ) arises in the derivative lim
n→1

∂

∂n
fα(ϑ, n). We

found a similar mechanism for α ̸= 0, that we summarize below.
We first claim that it is possible to express

fα(ϑ, n) =− tanh
ϑ

2
Im
[
F

T α|(+1)(−1)
2 (−2ϑ+ iπ, n) + F

T α|(−1)(+1)
2 (−2ϑ+ iπ, n)

−e−iαF
T α|(+1)(−1)
2 (−2ϑ+ i2πn− iπ, n)− eiαF

T α|(−1)(+1)
2 (−2ϑ+ i2πn− iπ, n)

]
.

(2.85)
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where T α is normalized as ⟨T α⟩ = 1: this assumption is irrelevant for the final expression
fα(ϑ, n), as the latter does not depend on the field normalization, and it only simplifies the
notation. The relation above can be derived from the definition (2.71) by expressing the sum
as a contour integral on the complex plane, as explained in details in [2, 47]. From the explicit
expression (2.85) it is possible to recognize a pathological behaviour in the double limit n → 1
and ϑ → 0. Namely, in this limit tanh ϑ

2 → 0 while the 2-particle form factors diverge due to

the kinematic residue of F
T α|(±1)(∓1)
2 (ϑ, n) at ϑ = iπ, 2iπn− iπ. We carefully analyze this limit,

and we express the leading contributions as

fα(ϑ, 1 + ϵ) ≃ −ϑ
2

(
i

−2ϑ
− ieiα

−2ϑ− 2iϵπ
+

i

2ϑ
− ie−iα

2ϑ− 2iϵπ

)
+ c.c., (2.86)

valid for ϵ, ϑ small. We first observe that at ϑ = 0 the result depends discontinuously on n, and

fα(0, 1 + ϵ) =

{
(1− cosα) ϵ = 0,

1 ϵ ̸= 0.
(2.87)

Then, we analyse the derivative wrt n, that is

∂fα(ϑ, n)

∂n
≃ ϑπ sinα

ϵ2π2 − ϑ2

(ϑ2 + π2ϵ2)2
. (2.88)

While the support of the function above shrinks, as it is localised around the region |ϑ| ≤ ϵ, the
typical value of ∂nf

α(ϑ, n) diverges there: in particular, the integral∫ ∞

−∞
dϑ
∂fα(ϑ, n)

∂n
(2.89)

is finite, which means that ∂nf
α(ϑ, n) converges to a δ-distribution in the limit n → 1. Fixing

carefully the normalization constant, we eventually reach to

lim
n→1

∂

∂n
fα(ϑ, n) ≃ π2 cosα δ(ϑ). (2.90)

We mention that (2.90) is not an exact relation, as it was derived using only the most leading
singularities of the form factors. Indeed, corrections to (2.90) given by smooth (non-singular)
terms are present, and their explicit expression differ for fermions and bosons. However, their
contribution to the two-point function decays faster to zero for mℓ → ∞, and then (2.90) rules
the dominant infrared behavior in the limit n→ 1.

2.B Vacuum expectation values

The determination of the vacuum expectation value (VEV) is generally a difficult task, and
for the standard/composite twist field it has been derived only for free theories [47, 65, 85].
The main issue is that the form-factor bootstrap approach is able to characterize a field up to
proportionality constants, and it does not give any recipe to compute the VEVs. Indeed, to fix
the field normalization one needs to impose a condition in the UV limit, i.e. requiring

lim
ℓ→0

⟨T α(0)T̃ α(ℓ)⟩ |ℓ|2dT α = 1, (2.91)
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that is difficult to express in terms of form-factors. In this appendix, we derive the VEV T α for
the U(1) free theories, with a logic similar to 2.5, making use of the diagonalization in the space
of replicas.

We focus on fermions first, using the ideas of Refs. [47, 65, 76, 86]. Let us denote the fermion
fields living on the jth replica by Ψj . We consider the multiplet of n fields (Ψ1, ...,Ψn), and we
look for the matrix τ whose action in the space replica corresponds to the U(1) composite twist
field. Since the total phase picked up by the twist field when turning around the entire Riemann
surface is eiα, the transformation matrix τ can be obtained by multiplying the transformation
matrix of the conventional fields [76] by eiα/n, as done in Ref. [66]. Accordingly, the following
representation is obtained

τ = ei
α
n



0 0 0 0 · · · 0 (−1)n+1

1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 0 0
...

...
. . .

. . .
...

0 0 0 0
. . . 0 0

0 0 0 0 · · · 1 0


. (2.92)

The transformation matrix τ has to be diagonalised for the determination of the VEV [47]. The
eigenvalues of τ can be written as ei2πk/neiα/n, with

k = −n− 1

2
, . . . ,

n− 1

2
(2.93)

being an integer/half-integer for n odd/even. The eigenvectors of τ correspond to some new
fermionic fields Ψk, which pick a phase under the action of τ . Indeed, one easy shows that they
satisfy canonical anticommutation relations {Ψk(x),Ψ

†
k′(x

′)} = δk,k′δ(x−x′), {Ψk(x),Ψk′(x
′)} =

0 and {Ψ†
k(x),Ψ

†
k′(x

′)} = 0. Since these fields are not mixed among each by τ , it follows [66]
that the composite U(1) twist field can be factorised as

T α =

(n−1)/2∏
k=−(n−1)/2

T α
k . (2.94)

Here T α
k is a twist-field acting non-trivially on the mode Ψk with a phase ei2πk/neiα/n, that is the

corresponding eigenvalue of the twist matrix τ . Since T α
k correspond to single-replica U(1) twist

fields, their VEV can be computed with the results of [87] as

⟨T α
k ⟩ =

(m
2

)(k/n+α/(2πn))2 1

G(1− k/n− α/(2πn))G(1 + k/n+ α/(2πn))
, (2.95)

where G(x) is the Barnes G-function. Hence, for the n-replica Dirac theory we get

⟨T α⟩ =

n−1
2∏

k=−n−1
2

⟨T α
k ⟩ =

(m
2

)(n−n−1

12
+ α2

(2π)2n

) n−1
2∏

k=−n−1
2

1

G(1− 2k+α/π
2n )G(1 + 2k+α/π

2n )
, (2.96)
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which can be equivalently expressed as

⟨T α⟩ =
(m
2

)(n−n−1

12
+ α2

(2π)2n

)
×

× exp

[∫ ∞

0

dt

t

(
sinh t cosh

(
tα
πn

)
− n sinh t

n

2 sinh t
n sinh2 t

−
(
n− n−1

12
+

α2

(2π)2n

)
e−2t

)]
(2.97)

using the integral representation of the Barnes G-function.
For the case of the complex boson, we can proceed in a similar fashion, and our eventual

computation expresses the VEV of the composite branch-point twist field as a product of VEVs
for conventional U(1) twist fields. Contrary to the case of the free Dirac theory, however, we
now face an important subtlety when defining those VEVs in the complex boson theory. For
instance, this theory is not compact and as a consequence the short-distance behaviour of the
theory and the proper definition of the VEV is non-trivial [85], because of the presence of a zero
mode. Consequently, the explicit value of the VEV is non-universal, in the sense that depends
on the employed normalisation. This problem was carefully discussed in Ref. [85], where an
expression for the VEV was actually proposed based on a natural regularisation of the fields and
on the angular quantisation scheme, and we adopt these conventions.

To proceed, we need the transformation matrix τ , whose action in the multiplet (Φ1, ...,Φn)
corresponds to the composite twist field. We write it as [66]

τ = ei
α
n



0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 0 0
...

...
. . .

. . .
...

0 0 0 0
. . . 0 0

0 0 0 0 · · · 1 0


, (2.98)

and its eigenvalues are ei2πk/neiα/n, with

k = 0, . . . , n− 1. (2.99)

Similarly to the Dirac case, one can introduce new Bose fields, which satisfy the canonical
commutation relations [Φk(x),Φ

†
k′(x)] = δk,k′δ(x−x′), [Φk(x),Φk′(x

′)] = 0 and [Φ†
k(x),Φ

†
k′(x

′)] =
0 and diagonalize the action of τ . Again, we decompose again T α as (2.94), and, employing the
results of [85], we write down

⟨T α
k ⟩ =N (meγE )φ(1−φ)/(2π)2 exp

{
− 2

π

∫ ∞

0
dt

sinh t ln(cosh t)

(4t2 + π2) cosh2 t

[
π cos

φ

2
sinh

(
t
(
1− φ

π

))
+

+2t sin
φ

2
cosh

(
t
(
1− φ

π

))]}
,

(2.100)

with φ ≡ k
n + α

2πn , γE the Euler’s constant, and N given by

N = exp

{
−1

3
(γE + ln 2) +

1

2
(1− ln(2π))−

∫ ∞

0

dt

t
e−t

(
sinh t− t

(e−t − 1)(cosh t− 1)
+

1

3

)}
. (2.101)
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Eventually, one gets the VEV of T α of the bosonic n-replica theory as

⟨T α⟩ =
n−1∏
k=0

⟨T α
k ⟩ = N n (meγE )

(
1
6(n−

1
n)−

α2

(2π)2n
+

|α|
(2π)n

)
exp

{
− 1

2π

∫ ∞

0
dt

sinh t ln(cosh t)

(4t2 + π2) cosh2 t
×[

(2t− iπ) csc

(
π − 2it

2n

)
cos

(
−2iπ(n+ 1)t+ 2it |α| − π |α|+ π2

2πn

)
+

+(2t+ iπ) csc

(
π + 2it

2n

)
cos

(
π(π + 2i(n+ 1)t)− (π + 2it) |α|

2πn

)
+

+(2t− iπ) csc

(
π − 2it

2n

)
sin

(
(π − 2it)(π(n− 1) + |α|)

2πn

)
+

+(2t+ iπ) csc

(
π + 2it

2n

)
sin

(
(π + 2it)(π(n− 1) + |α|)

2πn

)]}
.

(2.102)



Chapter 3

Z3 symmetry resolved entanglement
of the 3-state Potts model via form
factor bootstrap

In this chapter, based on [4], we apply the form factor bootstrap approach to the twist fields in
the 3-state Potts model. This is an integrable interacting massive quantum field theory with a
global Z3 symmetry, which is unbroken in the paramagnetic phase. Its ground state can be thus
analyzed with the lens of symmetry resolved entanglement, and we provide exact results giving
the solutions of the bootstrap equations. Our predictions are carefully checked using ∆-theorem.

3.1 The model

In this section, we review the scattering theory of the q-state Potts model for 0 < q < 4, firstly
analyzed in [88], and we focus on q = 3 [89, 90]. We first formulate the property of this model,
following closely [91], in its ferromagnetic phase, where excitations are multi-kink states inter-
polating different vacua. Then, we discuss the paramagnetic phase, which is the main focus of
our work.

The q-state Potts model admits q distinct vacua, labeled by an index α = 1, . . . , q. A generic
p-kink state is written as

|Kα0α1(θ1)Kα1α2(θ2) . . .Kαp−1αp(θp)⟩ with αi ̸= αi+1 ∀ i = 1, . . . , p, (3.1)

where θi are the rapidity variables, andKαα′(θ) which represent an elementary kink interpolating
between vacua α, α′. Such a state is “neutral” if α0 = αp and “charged” if α0 ̸= αp. Since
the model is integrable the scattering theory is fully determined by the two-particle scattering
amplitudes. In addition, the permutation symmetry under exchange of the vacua implies that
there are only four independent functions that need to be computed namely the Zamolodchikov-
Faddeev (ZF) [92, 93] algebra may be written as

Kαγ(θ1)Kγβ(θ2) = S0(θ12)
∑
δ ̸=γ

Kαδ(θ2)Kδβ(θ1) + S1(θ12)Kαγ(θ2)Kγβ(θ1) α ̸= β,

Kαγ(θ1)Kγα(θ2) = S2(θ12)
∑
δ ̸=γ

Kαδ(θ2)Kδα(θ1) + S3(θ12)Kαγ(θ2)Kγα(θ1).
(3.2)

35
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where θij = θi − θj and the first term in the relations above indicates that the scattering is
generally non-diagonal. The amplitudes Si(θ) with i = 0, 1, 2, 3 are constrained by a number
of equations related to physical requirements such as unitarity. These equations can be solved
analytically, giving

S0(θ) =
sinhλθ sinhλ(θ − iπ)

sinhλ
(
θ − 2πi

3

)
sinhλ

(
θ − iπ

3

)S(θ),
S1(θ) =

sin 2πλ
3 sinhλ(θ − iπ)

sin πλ
3 sinhλ

(
θ − 2πi

3

)S(θ),
S2(θ) =

sin 2πλ
3 sinhλθ

sin πλ
3 sinhλ

(
θ − iπ

3

)S(θ),
S3(θ) =

sinλπ

sin πλ
3

S(θ),

(3.3)

in terms of the variable λ which is related to q as

√
q = 2 sin

πλ

3
. (3.4)

From this definition, it follows that q is only an integer for very particular values of λ, but we
mention that it is possible to make sense of the model even for generic λ [88]. For λ = 3

2 we have
q = 4 and the resulting theory has 4 particles and S-matrices which can be identified with those
of the D4-minimal Toda theory. Similarly, λ = 1 corresponds to q = 3, λ = 9/4 to q = 2 (the
Ising model) and λ = 5/2 to q = 1. The function S(θ) may be expressed as an infinite product
of gamma functions or also through an integral representation given by

S(θ) =
sinhλ

(
θ − iπ

3

)
sinhλ (θ − iπ)

eA(θ), (3.5)

with

A(θ) =

∫ ∞

0

dt

t

sinh t
2

(
1− 1

λ

)
− sinh t

2

(
1
λ − 5

3

)
sinh t

2λ cosh t
2

sinh
tθ

iπ
. (3.6)

For λ ≤ 1, and in particular q = 3, the function S(θ) has no poles on the physical sheet. However,
the amplitudes S0(θ) and S1(θ) have a pole at θ = 2πi

3 in the direct channel corresponding to
the formation of a bound state, which is itself an elementary kink K with three point coupling

(ΓK
KK)2 =

1

λ
sinh

2πλ

3
eA( iπ

3
). (3.7)

Correspondingly, the amplitudes S2(θ) and S3(θ) have a pole in the cross-channel at θ = iπ
3 . We

mention that for λ > 1 additional poles arise, and the particle spectrum becomes more involved,
but this is beyond our purpose, and we do not discuss it further.

From now on, we focus on q = 3, corresponding to λ = 1, where the S-matrices reduce to
[88–90]

S1(θ) =
sinh 1

2

(
θ + 2πi

3

)
sinh 1

2

(
θ − 2πi

3

) S2(θ) = −
sinh 1

2

(
θ + πi

3

)
sinh 1

2

(
θ − πi

3

) and S3(θ) = 0 . (3.8)
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Figure 3.1: Left: Scattering amplitude for real rapidity difference (Im(θ) = 0) in the 3-state
Potts model. When θ = 0 we have SAĀ(θ = 0) = 1 and SAA(θ = 0) = −1, while for |θ| → +∞
the scattering amplitude goes to a constant. Right: Scattering amplitude for imaginary values of
the rapidity difference (Re(θ) = 0) in the 3-state Potts model. The imaginary part is vanishing
and the amplitudes develop dynamical poles associated with the presence of a bound state.

So far, we discussed the ferromagnetic phase only, but it is worth giving some additional details
for the 3-state Potts model in the other phases. The model can be seen as a perturbed CFT [91],
with Euclidean action given by

S = SCFT + τ

∫
d2x ε(x) . (3.9)

The underlying conformal field theory [94], obtained for τ = 0 (critical phase), is the tricritical
3-state Potts model, that is the minimal model M(6, 5) of central charge c = 4/5. The energy
density field ε(x) is identified with the primary field Φ2,1 with conformal dimensions

(∆ε, ∆̄ε) =

(
2

5
,
2

5

)
, (3.10)

and it is a relevant perturbation driving the system away from the critical point: depending on
the sign of τ , one has the paramagnetic or ferromagnetic phase. Here, we comment more on the
paramagnetic (or disordered) phase (see [95, 96]), in contrast with the analysis of the ferromag-
netic phase given at the beginning of this section. For what concerns scattering properties, the
choice of the phase makes little difference, as we will see below. Instead, it amounts to a change
in the way we identify the fundamental particles of the theory. In the paramagnetic phase, we
consider particles as fundamental excitations above a vacuum |0⟩, that is the only ground-state
unbroken under Z3. Multiparticle states are then constructed in terms of particles belonging
to one of two species, denoted here A and Ā, related by charge conjugation. The scattering is
diagonal and the only non-trivial scattering phases are the transmission amplitudes

SAA(θ) ≡ SAA
AA(θ) =

sinh 1
2(θ +

2πi
3 )

sinh 1
2(θ −

2πi
3 )

, SAĀ(θ) ≡ SAĀ
AĀ(θ) = −

sinh 1
2(θ +

iπ
3 )

sinh 1
2(θ −

iπ
3 )
, (3.11)

whose expression is identical in the ferromagnetic phase (3.8). The latter amplitudes are related
by crossing symmetry SAA(θ) = SAĀ(iπ − θ). Moreover, since the theory is invariant under
charge conjugation and parity symmetry, then SĀĀ(θ) = SAA(θ) and SAĀ(θ) = SĀA(θ).

A dynamical pole is present for SAA(θ) with associated residue

Res
θ=i2π/3

SAA(θ) = (ΓĀ
AA)

2 = i
√
3 , (3.12)
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which corresponds to the bound state formation process

A+A→ Ā . (3.13)

In Fig. 3.1 we plot the S-matrix as a function of the rapidity difference θ along the real and the
imaginary axis respectively. An important feature is that SAA(0) = −1 which implies fermionic
statistics; for this reason, we call SAA(θ) a fermionic-type scattering matrix. Instead SAĀ(0) = 1
and similarly SAĀ(θ) are bosonic-type scattering matrices.

Critical to our analysis is the global Z3 symmetry, present in this theory. It is generated by
the following action on the particles

A→ e
2πi
3 A, Ā→ e−

2πi
3 Ā. (3.14)

We can then associate a Z3-charge to each particle, which is additive and equals +1 for species
A, and −1 for species Ā, while the ground state |0⟩ is neutral. Note that the charge is conserved
in the process (3.13), since

(+1) + (+1) = −1 (mod 3). (3.15)

In the 3-state Potts model there are order and disorder fields which are either local or semi-local
w.r.t. the Z3 symmetry. We call them σ1(x), µ1(x) respectively. While σ1(x) is local w.r.t. the
particles and has the meaning of a magnetization operator (say a local order parameter), µ1(x) is
non-local and acts nontrivially introducing an Aharonov-Bohm flux of value ei2π/3 for each space
point y > x. In other words, µ1(x) is the twist field associated with Z3 symmetry. The conjugate
fields are σ−1(x) and µ−1(x) and the latter gives an Aharonov-Bohm flux of value e−i2π/3. The
two order/disorder operators µ±1, σ±1 share the same conformal dimensions

(∆σ±1 , ∆̄σ±1) = (∆µ±1 , ∆̄µ±1) =

(
1

15
,
1

15

)
, (3.16)

which dictate the ultraviolet behaviour of their correlation functions. At criticality, these fields
are identified with the primary field Φ2,3 of the minimal modelM(6, 5) [97]. Away from criticality,
one can relate the paramagnetic and ferromagnetic phase via the Kramers-Wannier duality, which
exchanges the role of the order and disorder operators. This last observation is useful as it implies
that we can compare results for the disorder operator in the paramagnetic phase to those for the
order operator in the ferromagnetic phase, discussed in [91].

3.2 Twist fields and their form factors

In this section, we introduce and characterize the twist fields of the (replica) Potts model, giving
analytical predictions for their 2-particle form factors. We remind that these fields are non-local
or semi-local with respect to other fields in the theory, a property that translates into non-trivial
equal-time commutation relations. For our purpose, three different types of twist fields have to
be considered:

• the branch-point twist fields, Tn and its conjugate T̃n, associated with cyclic permutation
symmetry Znamong copies in the n-replica model. These fields play a central role in
the characterization of the Rényi entropy and, via analytical continuation n → 1, the
entanglement entropy.
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• The disorder fields µ±1 associated with the global Z3 symmetry of the 3-state Potts model.

• The composite twist fields T ±
n , T̃ ±

n that from the fusion of the previous fields, originally
described in [98–101] gives rise to composite twist fields T ±

n and T̃ ±
n . These fused fields

play a central role in the computation of the symmetry resolved entanglement entropies,
as described in [51].

The exchange relations for standard branch-point twist field in a replica QFT are [47]

Tn(x)Oi(y) = Oi+1(y)Tn(x) for y > x , (3.17)

= Oi(y)Tn(x) for x > y , (3.18)

where Oi is a local field of the i-th replica (i = 1, . . . , n). Similarly T̃n(x), the hermitian conjugate
of Tn(x), is associated with the inverse cyclic permutation, and its exchange relations are

T̃n(x)Oi(y) = Oi−1(y)T̃n(x) for y > x , (3.19)

= Oi(y)T̃n(x) for x > y . (3.20)

Let us now consider an operator Vα(x) which introduces an Aharonov-Bohm flux eiα in
the region y > x. For the moment, we assume α being generic, keeping in mind that the
allowed values in the 3-state Potts model are α = 0 (corresponding to the identity operator)
and α = ±2π/3 (corresponding to µ±1). Doing so, the generator of the symmetry eiαQA of the
subsystem A = [0, ℓ] can be identified by

eiαQA ∼ Vα(0)(Vα)
†(ℓ). (3.21)

The mutual locality between Vα and another operator O is identified by the relation

O(y, t′)Vα(x, t) = eiκOαVα(x, t)O(y, t′), (3.22)

or, when using the radial quantisation picture,

O(0, 0)Vα(e
−i2πz, ei2π z̄) = eiκOαO(0, 0)Vα(z, z̄). (3.23)

We refer to κO as the charge of the operator O for the symmetries under consideration. The
fusion between the standard twist field Tn and Vα gives rise to the so-called composite twist fields
which can be defined very precisely in CFT [98–100]

:Tn Vα : (y) := n2∆α−1 lim
x→y

|x− y|2∆α(1− 1
n
)

n∑
j=1

Tn(y)Vα,j(x) , (3.24)

where Vα,j(x) is the copy of field Vα(x) living in replica j, : • : represents normal ordering and
the power law involves the conformal dimension ∆α of the field Vα (for spinless fields, this is
half of the scaling dimension hα given earlier). For the Z3 symmetry of the Potts model, where
α = 0,±2π/3 we identify

V0 = 1, V±2π/3 = µ±1. (3.25)

Similarly, the composite twist fields of the replica theory will be denoted by

T ±
n (x) := :Tn µ±1 : (x) and T 0

n (x) := Tn(x) ,
T̃ ∓
n (x) := : T̃n µ±1 : (x) and T̃ 0

n (x) := T̃n(x) . (3.26)
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With the exchange relations (3.17) at hand, one can formulate the branch-point twist fields
form factor equations in integrable QFTs (IQFTs)[64, 75, 77, 98, 102–111], which generalize the
standard form factor programme for local fields [70, 73]. These equations were first given in [47]
for diagonal theories and then in [63] for non-diagonal ones. Here, we discuss the paramagnetic
phase of the Potts model, giving a complementary description to previous studies [91] that focused
on the ferromagnetic phase. In this phase, the ground state |0⟩ is unique, and the asymptotic
states are multiplarticle-excitations: two species of particle are present, and we denote them as
A, Ā. The forecoming approach is very similar to the one considered for complex free theories in
[2], and the only novelty is the explicit presence of interactions encoded in a non-trivial scattering
matrix. We denote the form factors of a (semi-)local operator O(x, t), that are matrix elements
between the vacuum and asymptotic states, as

FO
γ1...γk

(θ1, . . . , θk) = ⟨0|O(0, 0)|θ1, . . . θk⟩γ1...γk . (3.27)

The dispersion relation of the particles is parametrized as (E, p) = (mγi cosh θ,mγi sinh θ), where
γi indicates the particle species (A or Ā for us) and θ is the rapidity. Any multi-particle state
can be constructed from the vacuum state |0⟩ as

|θ1, θ2, ..., θk⟩γ1...γk = Z†
γ1(θ1)Z

†
γ2(θ2) . . . .Z

†
γk
(θk)|0⟩ , (3.28)

where Z†s are particle creation operators; in particular, the operator Z†
γi(θi) creates a particle

of species γi with rapidity θi. The creation and annihilation operators Z†
γi(θ) and Zγi(θ) satisfy

the ZF algebra [92, 93] which (in the case of diagonal scattering) reads

Z†
γi(θi)Z

†
γj (θj) = Sγiγj (θij)Z

†
γj (θj)Z

†
γi(θi) ,

Zγi(θi)Zγj (θj) = Sγi,γj (θij)Zγj (θj)Zγi(θi) ,

Zγi(θi)Z
†
γj (θj) = Sγiγj (θji)Z

†
γj (θj)Zγi(θi) + δγi,γj2πδ(θi − θj), (3.29)

where Sγiγj (θij) denotes the two-body S-matrices of the theory as function of rapidity differences.
For any given integrable QFT we consider the n-replica model, that is understood as follows:
the internal degrees of freedom of the particles are parametrized with a pair

(γ, ν), ν = 1, . . . , n (3.30)

where ν is a replica index and γ labels the species of the original model. The scattering matrix
is then

S(γi,νi)(γj ,νj)(θ) =

{
Sγiγj (θ) νi = νj

1 νi ̸= νj ,
(3.31)

namely particles in different replicas do not interact. To make our notations easier we introduce
the multi-index, following [47]

ai = (γi, νi) , (3.32)

together with

āi = (γ̄i, νi), âi = (γi, νi + 1), (3.33)

where γ̄i denotes the anti-particle of γi. We now aim to characterize the 2-particle form factors
for the three types of twist fields previously introduced.
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3.2.1 Form factors of Branch Point Twist Fields

The bootstrap equations for form factors of Tn, denoted by Fa(θ, n), are

Fa(θ, n) = Saiai+1(θi,i+1)F...ai−1ai+1aiai+2...(. . . θi+1, θi, . . . , n), (3.34)

Fa(θ1 + 2πi, θ2, . . . , θk, n) = Fa2a3...akâ1(θ2, . . . , θk, θ1, n), (3.35)

−i Res
θ′0=θ0+iπ

Fā0a0a(θ
′
0, θ0, θ, n) = Fa(θ, n), (3.36)

−i Res
θ′0=θ0+iπ

Fā0â0a(θ
′
0, θ0, θ, n) = −

k∏
l=1

Sâ0al(θ0l)Fa(θ, n),

−i Res
θ′0=θ0+iūγ̄

γγ

F(γ,ν0)(γ,ν′0)a
(θ′0, θ0, θ, n) = δν0,ν′0Γ

γ̄
γγF(γ̄,ν0)a(θ0, θ, n), (3.37)

where θ and a are shorthands for θ1, θ2, ..., θk and (γ1, ν1)(γ2, ν2)....(γk, νk) respectively, where
γ = A, Ā. We emphasize that two particles of type A can form bound state Ā, or the other way
round, and this is encoded in the bound state equation (3.37), a feature that is absent in free
theories. It is easy to see, however, that, since Tn is Z3 neutral, both the one-particle form factors
and the 2-particle one with equal species ((A,A) or (Ā, Ā)) are vanishing. As a consequence, the
first non-trivial form factor, excluding the VEV, is the particle-antiparticle one ((A, Ā)) which
is not affected by bound state poles. For this reason, the strategy we adapt to construct the
solution of the bootstrap equations is similar to the one employed for complex free theories.

Following Ref. [47] it is easy to write down the two-particle FF of the BPTF Tn for particles
in the same copy (say 1), which reads as follows

F(A,1)(Ā,1)(θ, n) =
⟨Tn⟩ sin π

n

2n sinh iπ+θ
2n sinh iπ−θ

2n

h(θ, n)

h(iπ, n)
, (3.38)

where ⟨Tn⟩ is the vacuum expectation value (VEV) of Tn and h(θ, n) is an entire function known
as the minimal form factor which we present in Appendix 3.A. From F(A,1)(Ā,1)(θ, n) we obtain
F(A,j)(Ā,k)(θ, n), via the monodromy conditions, as

F(A,j)(Ā,k)(θ, n) =

{
F(A,1)(Ā,1)(2πi(k − j)− θ, n) if k > j,

F(A,1)(Ā,1)(2πi(j − k) + θ, n) otherwise,
(3.39)

and
F(A,j)(Ā,k)(θ, n) = F(Ā,j)(A,k)(θ, n) (3.40)

The form factors of the other field T̃n, denoted by F̃ , can be simply obtained from those of Tn
[47] through the relation

F̃(A,j)(Ā,k)(θ, n) = F(A,n−j)(Ā,n−k)(θ, n) . (3.41)

coming from the property T̃n(x) = (Tn(x))†.

3.2.2 Form factors of the Disorder operator µ1

In this subsection we consider the form factor equations for the field µ1, the disorder operator
associated to the flux ei2π/3. This can be seen as a particular case of the composite twist field
T µ1
n when just a single replica is present (n = 1). As mentioned before, we provide results for
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the disordered phase of the model, which are related to those in the ordered phase under the
exchange of order/disorder operator (µ1 ↔ σ1 [91]).

The disorder operators µ±1 are Z3 invariant, so the form factors F
µ±
AA(θ) F

µ±
ĀĀ

(θ) vanish by
symmetry; from now on we focus one the particle-antiparticle form factors. The monodromy
equation is

Fµ1

AĀ
(θ + 2πi) = e

2πi
3 Fµ1

ĀA
(−θ), (3.42)

since a mutual locality index eiα = ei2π/3 among A and µ1 is present. The unitarity equation is

Fµ1

ĀA
(−θ)SAĀ(θ) = Fµ1

AĀ
(θ) (3.43)

A kinematical residue is present at θ = iπ and it is related to the VEV ⟨µ1⟩ via

Res
θ=iπ

Fµ1

AĀ
(θ) = i(1− e

2πi
3 )⟨µ1⟩, (3.44)

while no dynamical poles are present1. Similar equations hold if one exchanges A↔ Ā, keeping
in mind that the only difference would be the mutual locality index e−i2π/3 between Ā and µ1.
A solution to these equations is given by2

Fµ1

AĀ
(θ) = −⟨µ1⟩ sin

π

3

e−
θ
6

cosh θ
2

h(θ, 1)

h(iπ, 1)
, (3.45)

Fµ1

ĀA
(θ) = −⟨µ1⟩ sin

π

3

e
θ
6

cosh θ
2

h(θ, 1)

h(iπ, 1)
, (3.46)

where the minimal form factor h(θ, 1) is the n = 1 case of the function analysed in Appendix
3.A. The structure of this solution can be easily justified: the minimal form factor solves the
equations

h(θ, 1) = S(θ)h(−θ, 1) = h(2πi− θ, 1) , (3.47)

that is, the form factor equations in the absence of the semi-locality phase e
2πi
3 . The factors

r±(θ) :=
e∓

θ
6

cosh θ
2

then account for this phase by satisfying

r±(θ) = r∓(−θ) = e±
2πi
3 r∓(2πi− θ) , (3.48)

and finally the denominator cosh θ
2 ensures the presence of a kinematic pole at θ = iπ whilst the

constant factors ensure the correct normalisation of the residue at the pole. For θ → +∞ it is
possible to show that

h(θ, 1) ∼ e
|θ|
3 , |θ| → +∞ (3.49)

thus, our solution has the following asymptotics

lim
θ→−∞

Fµ1

AĀ
(θ) = const., (3.50)

1Note that this equation is different from the corresponding equation for branch-point twist fields at n ≥ 2,
where instead there are two separate kinematic residue for θ = iπ, 2inπ − iπ. The case n = 1 is indeed special,
and the limit n → 1 gives rise to a fusion of two poles: the residue of the resulting pole is just the sum of the two
(present for n > 1).

2This solution is inspired from the solutions available for U(1) fields in complex non-compact free boson, which
is discussed in [77]
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that is in complete agreement with results of [91, 112] and the general form of the momentum
space cluster property. For the other disorder operator µ−1 similar considerations apply. A way
to get easily the form factors of µ−1 is exploiting the charge-conjugation symmetry, meaning that
µ−1 is the charge-conjugated field of µ1 and so its form factors can be obtained by interchanging
A↔ Ā in the previous formula.

3.2.3 Form factors of the composite twist fields

Here, we characterize the form factors of the composite twist fields in the n-th replica model
(with n ≥ 2). Similarly to Refs. [2, 65, 67], it is possible to write down the bootstrap equations
for these novel twist fields. Importantly, these equations take into account the presence of an
additional Aharanov-Bohm flux e±i2π/3 inserted between the first and the n-th replica. This is
a slightly different choice wrt the approach employed for U(1) theories in Refs. [2, 67], where
the total flux eiα was fractionalized, and a flux eiα/n was present among any pair of consecutive
replicas. This is a technical point, still, while most of the physical quantities of interest are not
affected by this specific convention, the bootstrap equations are slightly modified compared to
(2.45). For instance, the form factors of T τ

n denoted by F τ
a (θ, n) satisfy

F τ
a (θ, n) = Saiai+1(θi,i+1)F

τ
...ai−1ai+1aiai+2...,n(. . . θi+1, θi, . . . , n), (3.51)

F τ
a (θ1 + 2πi, θ2, . . . , θk, n) = F τ

a2a3...akâ1
(θ2, . . . , θk, θ1, n)×

{
eiκ1τ2π/3 ν1 = n

1 otherwise
,(3.52)

−i Res
θ′0=θ0+iπ

F τ
ā0a0a(θ

′
0, θ0, θ, n) = F τ

a (θ, n), (3.53)

−i Res
θ′0=θ0+iπ

F τ
ā0â0a(θ

′
0, θ0, θ, n) = −

k∏
l=1

Sâ0al(θ0l)F
τ
a (θ, n)×

{
eiκ0τ2π/3 ν0 = n

1 otherwise
,

−i Res
θ′0=θ0+iūγ̄

γγ

F τ
(γ,ν0)(γ,ν′0)a

(θ′0, θ0, θ, n) = δν0,ν′0Γ
γ̄
γγF

τ
(γ̄,ν0)a

(θ0, θ, n), (3.54)

with all notations compatible with the ones for the branch-point twist fields discussed earlier.
As for the disorder operator µ1, and Tn as well, the composite twist field T τ

n is Z3 neutral and
the first non-trivial form factor is the particle/antiparticle one.

Under these considerations, the Watson’s equations for the 2-particle form factors in the first
replica can be summarised as

F τ
(A,1)(Ā,1)(θ, n) = SAĀ(θ)F

τ
(Ā,1)(A,1)(−θ, n) = eiτ2π/3F τ

(Ā,1)(A,1)(2πin− θ, n) . (3.55)

The kinematic residue equation (3.53) is

−iRes
θ=iπ

F τ
(A,1)(Ā,1)(θ, n) = ⟨T τ

n ⟩ (3.56)

with ⟨T τ
n ⟩ being the VEV. Similarly, as previously discussed for the twist field Tn, the form-factors

with arbitrary replica indices can be recovered as

F τ
(A,j)(Ā,k)(θ, n) =

{
F τ
(Ā,1)(A,1)

(2πi(k − j)− θ, n) if k > j,

F τ
(A,1)(Ā,1)

(2πi(j − k) + θ, n) otherwise.
(3.57)

A solution to these equations is given by

F+
(A,1)(Ā,1)

(θ, n) = −i⟨T +
n ⟩ e−

θ
6n

2n sinh θ+iπ
2n sinh θ−iπ

2n

(
e

iπ
6n sinh

θ − iπ

2n
− (c.c.)

)
h(θ, n)

h(iπ, n)
, (3.58)
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which, apart from the different pole structure, is very much reminiscent of the solution (3.45).
Here h(θ, n) is the minimal form factor discussed in Appendix 3.A.

Similar conclusions hold for the form factor F+
(Ā,1)(A,1)

(θ, n) (antiparticle/particle) except for

the kinematical residue value at θ = 2inπ − iπ which is given by

Res
θ=2inπ−iπ

F+
(Ā,1)(A,1)

(θ, n) = −ie−2iπ/3⟨T +
n ⟩. (3.59)

In this case, the solution is

F+
(Ā,1)(A,1)

(θ, n) = i⟨T +
n ⟩ e

θ
6n

2n sinh θ+iπ
2n sinh θ−iπ

2n

(
e−

iπ
6n sinh

θ + iπ

2n
+ (c.c.)

)
h(θ, n)

h(iπ, n)
. (3.60)

We mention that, while so far we assumed n ≥ 2 integer explicitly, we can analytically continue
these results over n. In particular, in the limit n → 1 the poles at θ = iπ, 2iπ − inπ of the
form factors F+

(A,1)(Ā,1)
(θ, n) and F+

(Ā,1)(A,1)
(θ, n), defined by Eqs. (3.58) and (3.60), combine to

produce a single pole with residue given by the sum of the two residues present for n ̸= 1. As
expected, the form factors found above give in this limit the solutions for µ1 previously obtained.

Figure 3.2: Two-particle form factors of the standard twist field Tn for n = 2 replicas. This
figure shows the real and the imaginary parts of the AĀ form factor, which equal those of ĀA,
for real values of the rapidity difference θ. They both go to zero when θ → ±∞.

In Figs. 3.2 and 3.3 we show the behaviour of the two-particle form factor for Tn and T +
n

respectively as a function of θ for n = 2; our plots are normalized by the VEV of the fields (say
we set them equals to 1). While for the standard twist field the correspondent form factor is
vanishing in the limit θ → ±∞, it approaches an asymptotic non-zero value for T +

n , as expected
from clustering.

3.2.4 Checks via ∆-sum rule

In this subsection, we check the compatibility of our solutions for the 2-particle form factors with
the ∆-theorem. The method, and the logic, are the same that have been applied for complex free
theories in [67]. The only crucial difference is that, while for free theories, the stress-energy tensor
Θ has only two-particle form factors, this is not the case for the Potts model. Consequently, we
do not have all the ingredients to write down an exact version of the ∆-theorem. However, we
keep only the 2-particle contribution, which is expected a good estimation of the correct result
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Figure 3.3: Two-particle form factors of the composite twist field T +
n for n = 2 replicas. This

figure shows the AĀ and ĀA form factors, which are different, for real values of the rapidity
difference θ. They converge to a non-zero constant as θ → ∓∞ respectively.

(see e.g. [47] for the BPTF of the sinh-Gordon model). According to this approximation, we
write down the UV conformal weight ∆O of a field O as

∆O ≃ − 1

32π2⟨O⟩m2

∫ ∞

−∞
dθ

1

cosh2 θ/2

∑
a,a′

FΘ
a;a′(θ)F̄

O
a;a′(θ). (3.61)

where we used the fact that the two-particle form factors of Θ vanish for different replica indices
[47]. The only non-vanishing two-particle form factors of Θ are

FΘ
(A,1)(Ā,1)(θ) = FΘ

(Ā,1)(A,1)(θ) = 2πm2 h(θ, 1)

h(iπ, 1)
(3.62)

and they are normalised such that FΘ
(A,1)(Ā,1)

(iπ) = 2πm2.

We now apply the ∆-theorem to the twist fields, and we get

∆τ
n ≃ − n

32π2m2⟨T τ
n ⟩

∫ ∞

−∞
dθ

1

cosh2 θ/2
(FΘ

(A,1)(Ā,1)(θ)F̄
τ
(A,1)(Ā,1)(θ, n)+F

Θ
(Ā,1)(A,1)(θ)F̄

τ
(Ā,1)(A,1)(θ, n)),

(3.63)
with ∆τ

n being the conformal weight of T τ
n . This result has to be compared with the CFT

prediction, which reads as follows [51, 100]

∆τ
n = ∆n +

∆τ

n
with ∆n =

c

24

(
n− 1

n

)
(3.64)

where ∆n,∆τ is the weight of Tn [61, 62] and of µτ respectively, while c = 4/5 is the central
charge.

Figs. 3.4 and 3.5 show this comparison for standard and composite twist fields respectively,
where the integral appearing in Eq. (3.63) has been performed numerically. The data are very
close to the CFT value, but discrepancies are expected to be present since we are neglecting
higher particle form factors.
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Figure 3.4: Conformal dimension of Tn as obtained from the ∆-theorem (red dots) compared to
the exact CFT formula (blue dots).

Figure 3.5: Conformal dimension of the composite twist field T +
n as obtained from the ∆-theorem

(red dots) compared to the exact CFT formula (blue dots).

3.3 Two-point function of composite Z3 twist fields

In this section, we analyze the long-distance behaviour of the correlation function of composite
twist fields, using our predictions for their form factors. We give a prediction valid for any n in
the limit mℓ→ ∞, and then we focus on two singular cases n→ ∞ n→ 1.

We first expand the correlation function ⟨T τ
n (0)T̃ τ

n (ℓ)⟩ in the quasiparticle basis keeping only
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the two-particle contribution, and we get

⟨T τ
n (0)T̃ τ

n (ℓ)⟩ ≃⟨T τ
n ⟩2 +

n∑
j,k=1

∫ ∞

−∞

dθ1dθ2
(2π)22!

|F τ
(A,j)(Ā,k)(θ1 − θ2, n)|2e−ℓm(cosh θ1+cosh θ2)

+

n∑
j,k=1

∫ ∞

−∞

dθ1dθ2
(2π)22!

|F τ
(Ā,j)(A,k)(θ1 − θ2, n)|2e−ℓm(cosh θ1+cosh θ2)

=⟨T τ
n ⟩2

1 +
n

4π2

∑
γ,γ′=A,Ā

∫ ∞

−∞
dθfγγ′(θ, n, τ)K0 (2mγℓ cosh (θ/2))

 .

(3.65)

Above, K0(z) is the modified Bessel function and the functions fγγ′(θ, n, τ) are implicitly defined
as

fAĀ(θ, n, τ)⟨T τ
n ⟩2 =

n∑
j=1

|F τ
(A,1)(Ā,j)(θ, n)|

2 =

n−1∑
j=0

|F τ
(A,1)(Ā,1)(θ − 2iπj, n)|2 , (3.66)

and similarly for fĀA(θ, n, τ). We remind that, due to the Z3 symmetry in the current theory
fAA(θ, n, τ) = fĀĀ(θ, n, τ) = 0 and mA = mĀ = m (particles and antiparticles have equal mass).
Then, expanding the integral in Eq. (3.65) at leading order in the limit mℓ→ ∞ we get

⟨T τ
n (0)T̃ τ

n (ℓ)⟩ ≃ ⟨T τ
n ⟩2

(
1 +

n

2π
fAĀ(0, n, τ)

e−2mℓ

mℓ

)
. (3.67)

where we used the fact that fAĀ(0, n, τ) = fĀA(0, n, τ).

For n = 1 and τ = 0 the twist field becomes the identity operator and fAĀ(θ, 1, 0) =
fĀA(θ, 1, 0) = 0. However, for τ ̸= 0 we have that fAĀ(θ, 1,±1) ̸= 0, as the (composite) twist
field becomes the disorder operator µ1 that is non-trivial. Had we chosen a different convention
for the flux insertion, the form factors F τ

(A,i)(Ā,j)
(θ, n) would have differed by the presence of a

phase for distinct replica indices i ̸= j. Indeed, the relation (3.57) would have been modified,
due to an additional phase coming from the monodromy among distinct replicas (see [2] [65]
for further details ). Nevertheless, since here we are only interested in the squares of the form
factors, the presence of this additional phase is irrelevant.

In Fig. 3.6 we plot fAĀ(0, n, τ)+fĀA(0, n, τ) = 2fAĀ(0, n, τ) as a function of n, for n integer,
for both τ = 0 and τ = ±1 (which are identical). From the figure, it is evident that fAĀ(0, n, τ)
converges to a τ -independent constant when n→ ∞. We were able to compute analytically this
constant (see Appendix 3.B for the details). The result is

2fAĀ(0,∞, τ) =
16

π2
Γ2 (5/6) Γ2 (2/3)

Γ2 (4/3) Γ2 (1/6)

(
5F4

[
−1/2,−1/2, 5/6, 5/6, 1; 1

1/2, 1/2, 3/2, 3/2

]
− 1/2

)
≃ 0.575153 ,

(3.68)
and the derivation is very similar to the sinh-Gordon analysis presented in [47].

Finally, we consider the singular limit n→ 1, that requires an analytic continuation over the
integers. The main subtlety is the occurence of a δ-singularity in the derivative d

dnfAĀ(θ, n, τ)|n=1,
coming from the collision of kinematical poles. The mechanism is well understood in the absence
of flux, and a careful analysis of the Ising and sinh-Gordon model has been performed in [47,
64]. The generalization in the presence of the flux follows the same logic of U(1) free theories
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Figure 3.6:
2fAĀ(0, n, τ) is shown
as a function of n
both for the standard
(τ = 0) and CTFs
(τ = ±1). As expected,
its asymptotic value in
the limit n → ∞ does
not depend on τ .

[67], that we briefly summarize below. We first represent the sum in (3.66) as a contour integral.
Namely, we relate the value of the integral

1

2πi

∮
C
dzπ cot (πz) |F τ

(γ,1)(γ′,1)(θ − 2iπj, n)|2, (3.69)

where the contour is a rectangle with vertices (−0+− iL, n− 0+− iL, n− 0++ iL,−0++ iL), to
the value of fγγ′(θ, n, τ) using the residue theorem. The integral is in general hard to compute,
but if we just focus on the singular limit n → 1 for which the kinematic poles collide, then we
get

fγγ′(θ, n, τ) = − tanh2
θ

2
Im
(
F τ
(γ,1)(γ̄,1)(iπ − 2θ, n)− e−iαγF τ

(γ,1)(γ̄,1)(iπ(2n− 1)− 2θ, n)
)
δγ′γ̄

+(reg. terms), (3.70)

where eiαγ is the Aharonov-Bohm phase picked by the particle γ, and we assume the normaliza-
tion ⟨T τ

n ⟩ = 1 for simplicity. Taking the derivative in n and then the limit n→ 1 in the previous
expression, we eventually get

lim
n→1

d

dn
fγγ′(θ, n, τ) =

π2

2
cosαγ δ(θ)δγ′γ̄ + (smooth θ-dependent part). (3.71)

If one specializes this prediction to the 3-state Potts model, where just two species of particles
A and Ā are present, picking a phase α = ±2π/3, we get

lim
n→1

d

dn
fAĀ(θ, n,±1) =

π2

2
cos

2π

3
δ(θ) + (smooth θ-dependent part). (3.72)

Inserting this result in the two-point function of composite twist field, we finally get

d

dn

[
⟨T +

n (0)T̃ +
n (ℓ)⟩

⟨T +
n ⟩2

]
n→1

≃ 1

4
cos

2π

3
K0(2mℓ), (3.73)
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valid in the limit of large mℓ.
One final remark on Eq. (3.71) is probably needed. As we stated before, it encodes the two-

particle contribution only, and its singular behaviour does not really depend on the S-matrix,
but it comes from the kinematic poles of the particle-antiparticle form factors. For a QFT with
no one-particle contributions, one can generalize (3.73) as

d

dn

[
⟨T +

n (0)T̃ +
n (ℓ)⟩

⟨T +
n ⟩2

]
n→1

≃ 1

8

∑
γ

cosαγ K0(2mγℓ) + (ℓ− indep. terms) + . . . , (3.74)

with mγ being the mass of particle γ and the eiαγ its monodromy phase. However, in generic
QFTs one-particle contributions can be present, which would be leading for large distances. In
particular, this is possible in the presence of a neutral particle, appearing as a virtual bound state
in a particle/antiparticle scattering. An explicit example for this mechanism has been carefully
discussed in the sine-Gordon model in Ref. [67].

3.4 Symmetry resolved entanglement

In this section, we relate the 2-point function of composite twist fields, previously characterized,
to the Z3 symmetry resolved entropy of an interval A = [0, ℓ]. We mention that similar analysis
has been already performed [113] for the same model in the critical regime, which corresponds to
the limit of vanishing massm→ 0. Here we instead are interested in the long distance behaviour,
for instance the limit of mℓ→ ∞ with m kept fixed, where our approach is predictive.

The technique employed is closely related to the U(1) symmetry resolution, where the connec-
tion between charged partition functions and symmetry resolved entanglement was established
[114–120]. We denote by |Ψ⟩ the ground-state of the Potts model in the paramagnetic phase,
and ρA is its RDM on A = [0, ℓ]. Due to the Z3 symmetry of the state, the RDM commute with
the reduced generator of the symmetry, a property encoded in the relation

ρA = eiαQAρAe
−iαQA , α = 0,±2π/3 (3.75)

in analogy with the U(1) case [51]. It follows that ρA admits a block decomposition in charge
sectors, whose associated projectors are

Πq, q = 0,±1. (3.76)

After introducing the symmetry resolved partition function

Zn(q) ≡ tr(ρnAΠq), (3.77)

we define the symmetry resolved Rényi and von Neumann entropies as follows

Sn(q) ≡
1

1− n
log

Zn(q)

Z1(q)n
, and S(q) ≡ − d

dn

[
Zn(q)

Z1(q)n

]
n=1

. (3.78)

The crucial observation is that the symmetry resolved partition functions are related to the
charged moments via (discrete) Fourier transform as

Zn(q) = Tr(ρnAΠq) =
1

3

1∑
k=−1

Zn

(
2πk

3

)
e−i 2πkq

N (3.79)
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where the charged moments Z(α) are defined via

Zn(α) ≡ Tr
(
ρnAe

iαQ
)
. (3.80)

Similarly, for the U(1) case, the charged moments corresponds directly to the 2-point function
of twist fields [51] as follows

Zn(α) = ϵ4∆
τ
n⟨T τ

n (0)T̃ τ
n (ℓ)⟩ with α =

2πτ

3
(3.81)

for the subsystem [0, ℓ]. Here, the constant ϵ plays the role of UV regulator, and we suppose
that ℓ,m−1 ≫ ϵ so that the scaling limit is reached. Putting everything together, one eventually
obtains

Zn(q) =
1

3
ϵ4∆n

(
⟨Tn(0)T̃n(ℓ)⟩+ 2 cos

(
2π

3
q

)
ϵ

4
n
∆+⟨T +

n (0)T̃ +
n (ℓ)⟩

)
, (3.82)

since by charge conjugation symmetry of the state Zn(2π/3) = Zn(−2π/3). At leading order in
our analysis, namely in the limit of small cut-off ϵ, we can approximate

Zn(q) ≃
1

3
Zn(0). (3.83)

In this limit, the dependence on q is lost and the symmetry resolved entropy becomes

Sn(q) ≃ Sn − log 3, (3.84)

showing an explicit equipartion of charge. Beyond this approximation, a dependence on q is
found. We investigate the first corrections to Eq. (3.84) coming from the lowest powers of the
regulator ϵ. For n > 1 we obtain the following

Sn(q) = Sn − log 3 +
1

1− n
2 cos

2πq

3
ϵ

4
n
∆+

⟨T +
n (0)T̃ +

n (ℓ)⟩
⟨Tn(0)T̃n(ℓ)⟩

+ o(ϵ
4
n
∆+). (3.85)

The case n → 1 has to be analyzed carefully, since logarithmic corrections appear. Let us thus
expand S1(q), keeping just the correction of order O(ϵ4∆+) and O(ϵ4∆+ log ϵ)

S1(q) = −∂n logZn(q)|n=1 + logZ1(q)

= S1 − log 3− 2 cos
2πq

3
ϵ4∆+⟨µ1(0)µ−1(ℓ)⟩ (3.86)

×
(
−4∆+ log ϵ+ ∂n log⟨T +

n (0)T̃ +
n (ℓ)⟩|n=1 − ∂n log⟨Tn(0)T̃n(ℓ)⟩|n=1 − 1

)
+ o(ϵ4∆+).

Although in the previous expression enters the normalization constants of the fields, which have
not been fixed, they contribute just as ℓ-independent constant. Moreover, since we are interested
in the large mℓ limit, we can just keep

∂n log⟨T +
n (0)T̃ +

n (ℓ)⟩|n=1 − ∂n log⟨Tn(0)T̃n(ℓ)⟩|n=1 , (3.87)

as the only ℓ-dependent term; the reason is that the next-to-leading order large ℓ correction to
⟨µ1(0)µ−1(ℓ)⟩ is of order

⟨µ1(0)µ−1(ℓ)⟩ ≃ ⟨µ1⟩2 +O

(
e−2mℓ

mℓ

)
. (3.88)
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whereas the contributions from (3.87) are proportional to K0(2mℓ) ≈ e−2mℓ
√
mℓ

. Therefore, at

leading and next-to-leading order for large ℓ we can write

S1(q) = S1 − log 3− 2 cos
2πq

3
ϵ4∆+ |⟨µ1⟩|2

×
(
−4∆+ log ϵ+

1

4

(
cos

2π

3
− 1

)
K0(2mℓ) + (ℓ− indep. terms)

)
+ o

(
ϵ4∆+ ,

e−2mℓ

√
mℓ

)
. (3.89)

3.5 Concluding remarks

In this work, we apply the form factor bootstrap approach to compute the two-particle form
factors of Z3 composite branch point twist fields in the 3-state Potts model, that is an interacting
integrable quantum field theory in 1+1 dimensions. Our main analytical result is an expression
for the leading and next-to-leading large-distance behaviour of the symmetry resolved Rényi
and von Neumann entropies of the paramagnetic ground-state. Despite the explicit presence of
interactions, some features are shared with U(1) free theories, albeit most of the quantitative
predictions rely on the exact form of the scattering matrix. In this context, the main finding
is the singular limit n → 1, that turns out to be dependent on the pole structure of the from-
factor only, and the predictions share the same functional form observed for free theories. This
mechanism was established in the absence of the flux (leading to ’model-independent’ correction
of the von Neumann entropy [121]), and we found its generalization when the flux is present.

Finally, we mention that, in principle, our techniques employed to investigate other geometries
(two or more intervals), or other entanglement measures (negativity, relative entropies, etc.).
Also, our analysis can be slightly adapted to deal with other integrable models displaying internal
symmetries as the integrable perturbations of the parafermionic ZN theories [122].

3.A Minimal form factor

In this appendix we analyize the behavior of the minimal form factor h(θ, n) in the replica 3-state
Potts model. As in the previous appendix and following closely [47], we start with an integral
representation of the S-matrix

SAĀ(θ) = −
sinh

(
θ
2 + iπ6

)
sinh

(
θ
2 − iπ6

) = exp

(∫ ∞

0

dt

t
sinh

tθ

iπ

2 sinh
(
2
3 t
)

sinh t

)
. (3.90)

Then, the only solution (up to a multiplication constant) which does not have zeros or poles in
the region Imθ ∈ (0, 2πn) and satisfies the bootstrap axioms

h(θ + 2πin, n) = h(−θ, n), h(−θ, n)SAĀ(θ) = h(θ, n) , (3.91)

is given by

h(θ, n) = exp

[∫ ∞

0

dt

t sinh(nt)

2 sinh 2t
3

sinh t
sin2

(
it

2

(
n+

iθ

π

))]
. (3.92)

It is easy to prove that for real θ the integral is convergent, since the for t → ∞ it scales as
t−1e−t/3 and no singularity is present in the limit t → ∞. However, for θ = −i|θ| the integrand
goes as t−1e−t/3+t|θ|/π for large t, that is, it is no longer convergent for Im(θ) ≤ π/3.
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For real θ in the limit θ → +∞ a more careful but standard estimate of the integral gives∫ ∞

0

dt

t sinh(nt)

2 sinh
(
2
3 t
)

sinh t
sin2

(
it

2

(
n+

iθ

π

))
≃ 4

3n

∫ ∞

0

dt

t2
sin2

tθ

π
=

θ

3n
. (3.93)

The approximate equality holds at order O(θ), and so the asymptotic growth of the minimal
form factor is

h(θ, n) ∼ e
θ
3n , θ → +∞. (3.94)

Finally, we would like to present the mixed product representation of h(θ, n) that we have used
in our numerical work. Expanding3 1/ sinh t as

1

sinh t
= 2e−t

N−1∑
n=0

e−2nt +
e−2Nt

sinh t
(3.95)

and using the integral representation of the Γ-function

Γ(z) = exp

(∫ ∞

0

dt

t

(
e−tz − e−t

1− e−t
+ (z − 1)e−t

))
, (3.96)

the integral (3.92) gives, after a lengthy but straightforward calculation

h(θ, n) =
N∏

m=0

Γ
(
2m+n+ 1

3
2n

)2
Γ

(
2m− iθ

π
+ 5

3
2n

)
Γ

(
2m+2n+ iθ

π
+ 5

3
2n

)
Γ
(
2m+n+ 5

3
2n

)2
Γ

(
2m− iθ

π
+ 1

3
2n

)
Γ

(
2m+2n+ iθ

π
+ 1

3
2n

)× (3.97)

exp

(∫ ∞

0

dt

t sinh(nt)
e−2t(N+1) 2 sinh

(
2
3 t
)

sinh t
sin2

(
it

2

(
n+

iθ

π

)))
. (3.98)

For real rapidity difference θ the integral representation (3.92) converges, as we commented
before, so the mixed-product form is not really needed. However, for numerical work, Eq. (3.98)
is really useful since the integral factor in (3.98) becomes exponentially suppressed for large N .

3.B Computation of fAĀ(0,∞, 0)

We present here an analytic computation of the value of the function fAĀ(θ, n, τ) at θ = 0,
n = ∞ and τ = 0 in the 3-state Potts model. As seen in Fig. 3.6 the result is independent of τ ,
so we simply choose the simplest case τ = 0 and follow closely the calculation presented in [47]
for the sinh-Gordon model. We start from the definition

fAĀ(0, n, 0) = fĀA(0, n, 0) =
1

⟨Tn⟩2
n−1∑
j=0

|F(A,1)(Ā,1)(2iπj, n)|2 (3.99)

where the form factor F(A,1)(Ā,1)(θ) is given by

F(A,1)(Ā,1)(θ, n) = ⟨Tn⟩
sin π

n

2n sinh θ−iπ
2n sinh θ+iπ

2n

h(θ, n)

h(iπ, n)
. (3.100)

3We can also choose to expand the factor 1/ sinh(nt), leading to an equivalent representation.
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Figure 3.7: Plot of the minimal form factor in the n-th replicated theory for imaginary values
of the rapidity. For different values of n (n = 1, 2, 3) the real and the imaginary part, which is
vanishing, are shown.

In the sum (3.99), the j-th and (n − j)-th terms are identical by periodicity. This means
that, in the large n limit, one can replace the sum by the series

fAĀ(0, n, 0) ≃ 1

|⟨Tn⟩|2

2

⌊n
2
⌋−1∑

j=0

|F(A,1)(Ā,1)(2iπj, n)|2 − |F(A,1)(Ā,1)(0, n)|2


=
1

|⟨T∞⟩|2

2
∞∑
j=0

lim
n→∞

(
|F(A,1)(Ā,1)(2iπj, n)|2 − |F(A,1)(Ā,1)(0, n)|2

) ,(3.101)

that is rapidly converging. The limit inside the sum above can be computed, as we explain below.
Let us consider the different factors involved in F(A,1)(Ā,1)(θ, n). We have

sin π
n

2n sinh θ−iπ
2n sinh θ+iπ

2n

→ − 2π

(2iπj − iπ) (2iπj + iπ)
, (3.102)

and

h(2iπj, n)

h(iπ, n)
→

exp

(
−1

2

∫∞
0

dt
t

2 sinh( 2t
3 )

sinh t e−2tj

)
exp

(
−1

2

∫∞
0

dt
t

2 sinh( 2t
3 )

sinh t e−t

) =
Γ
(
5
6 + j

)
Γ (2/3)

Γ
(
1
6 + j

)
Γ(4/3)

. (3.103)

Putting all the pieces together, we get

fAĀ(0,∞, 0) =
8

π2

∞∑
j=0

1

(2j − 1)2(2j + 1)2
Γ2
(
5
6 + j

)
Γ2
(
3
2

)
Γ2
(
1
6 + j

)
Γ2
(
4
3

) − 4

π2
Γ2
(
5
6

)
Γ2
(
3
2

)
Γ2
(
1
6

)
Γ2
(
4
3

) . (3.104)

The result is given in terms generalized hypergeometric functions defined as

pFq

[
a1, a2, . . . , ap; z
b1, b2, . . . , bq

]
=

∞∑
k=0

(a1)k(a2)k . . . (ap)k
(b1)k(b2)k . . . (bq)k

zk

k!
, (3.105)
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where (a)k ≡ Γ(a+k)
Γ(a) is the Pochhammer symbol. The sum of both particle orderings fAĀ(0,∞, 0)+

fĀA(0,∞, 0) = 2fAĀ(0,∞, 0) then gives

2fAĀ(0,∞, 0) =
16

π2
Γ2 (5/6) Γ2 (2/3)

Γ2 (4/3) Γ2 (1/6)
×(

5F4

[
−1/2,−1/2, 5/6, 5/6, 1; 1

1/2, 1/2, 3/2, 3/2

]
− 1/2

)
≃ 0.575153.

(3.106)



Chapter 4

Symmetry- resolved entanglement of
quasiparticle states

In this chapter, based on two works [5, 6], we study the symmetry-resolved entanglement of states
resulting from exciting a finite number of quasiparticles above the ground state in free quantum
field theory. Previous works pointed out the universality of the excess of entanglement entropy
these states have compared to the ground state value, and simple formula depending only on the
number of excitations were obtained. Here, we show that a similar mechanism is found for the
symmetry-resolved entanglement, and we provide analytical predictions for the ratio of charged
moments.

We organize this chapter as follows. In Sec. 4.1 we provide a brief introduction, summarizing
the main results. In Sec 4.2 we discuss simple states, arising as magnon excitations of spin
chains, where our formula can be recovered with elementary methods. A non-trivial case where
our results hold, that is for (free) massive field theories, is discussed in Sec. 4.3 via form factor
techniques. A unifying framework which recovers all the previous cases, and covers in principle
any quantum system admitting quasi-particle excitations, is presented in Sec. 4.4. We test
numerically the validity of our formulae in Sec. 4.5, where lattice free (fermionic and bosonic)
chains are discussed. We finally provide some final remarks in Sec. 4.6.

4.1 Introduction and main results

Before entering the core of this chapter, we set some notations, following closely [5, 6] (that
slightly differ from chapter 2), and give a summary of our main finding.

Let |Ψ⟩ be a pure state of a many-body system and let us define a spatial into two comple-
mentary regions A and Ā so that the Hilbert space of the theory H also decomposes into a tensor
product HA ⊗HĀ. Then the reduced density matrix associated to subsystem A is obtained by
tracing out the degrees of freedom of subsystem Ā in

ρA = TrĀ(|Ψ⟩ ⟨Ψ|) (4.1)

and the von Neumann and nth Rényi entropy of a subsystem A are defined as

S = −TrA(ρA log ρA) and Sn =
log(TrAρ

n
A)

1− n
. (4.2)

55



56CHAPTER 4. SYMMETRY- RESOLVED ENTANGLEMENTOFQUASIPARTICLE STATES

where TrAρ
n
A := Zn/Zn

1 can be interpreted as the normalised partition function of a theory
constructed from n non-interacting copies or replicas of the original model. As is well known,
the von Neumann entropy can be obtained as the limit S = limn→1 Sn.

We assume that the theory has a global U(1) symmetry generated by a charge operator Q
satisfying

Q = QA ⊗ I+ I⊗QĀ. (4.3)

Whenever the state |Ψ⟩ has a definite value of the charge, one can show that [QA, ρA] = 0.
The latter relation brings to a block-diagonal decomposition of ρA in the charge sectors of the
restricted charge QA labeled by q. Given the projector P(q) onto the sector with charge q, we
define

Zn(q) = TrA(ρ
n
AP(q)), (4.4)

and we express the symmetry resolved entropies as

Sn(q) =
1

1− n
log

Zn(q)

Zn
1 (q)

and S(q) = lim
n→1

Sn(q) . (4.5)

As discussed in [51] these quantities can best be obtained in terms of their Fourier modes, the
charged moments Zn(α) = TrA(ρ

n
Ae

2πiαQA) as

Zn(q) =

∫ 1
2

− 1
2

dαZn(α)e
−2πiαq. (4.6)

We mention that a 2π factor of difference is present wrt Chapter 2, that is only a notational
choice for later convenience.

When the system is described by a certain hamiltonian H which commutes with Q, then
(in the absence of spontaneous symmetry breaking) the eigenstates of H have a definite value
of the U(1) charge, and one can symmetry-resolved their entanglement. This is the case for
the ground-state, already discussed in Chapter 2, but also for the states with vanishing energy
density, that are the focus of this chapter.

More precisely, we consider a one-dimensional quantum system in a ring of length L, we take
the subsystem A to be an interval of length ℓ, and we consider the limit in which ℓ, L → ∞
with the ratio r = ℓ/L being fixed. We also assume that the number of particles, together with
the associated momenta, are fixed in the limit above. This leads to an excited state with finite
energy difference compared to the ground-state, that has vanishing energy-density by definition.
In a series of works [77, 104–106] it was first shown using form factor techniques that the entropy
difference of these excited states took a remarkably simple expression, with a striking intuitive
semiclassical interpretation. In particular, it has been observed a sort of ’decoupling’ between
zero-point fluctutations, associated to the ground-state entanglement, and the quasi-particle
entanglement, depending only on the probability of observing the particles in the given subregion
A. While the original derivation refers to massive free quantum field theories in 1+1 dimensions,
it was argued in [104] (and illustrated on the example of one and two magnon states) that the
formulae should hold much more generally, for interacting and even higher-dimensional theories1,
as long as a notion of localised excitations and stable quasi-particle exists. These claims have been
substantiated through additional recent results. In particular, a series of works by Rajabpour and
collaborators [123–128] has expanded previous work in various directions. Similar formulae have

1In [106] the same formulae were shown to hold for free bosons in any dimension if r is replaced by the ratio
of generalised volumes.
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also been found for interacting higher-dimensional theories in [129] and even in the presence of
an external potential, arising from a semiclassical limit [130]. Indeed, the formulae found in [104]
were not entirely unexpected as they can be derived for semiclassical systems [131], however their
wide range of applicability, well beyond the semiclassical regime, as well as their derivation in the
context of QFT were new. Finally, we mention that violations to those formulae were observed
in [132] at the critical point (free CFTs) for low-lying excited states with energy proportional to
1/L: for those states, the semiclassical picture and the ’decoupling’ of zero-point fluctuations just
did not apply, while a proper field theoretic characterization was needed to capture quantitatively
their entanglement.

Within the hypothesis discussed so far, we were able to find some universal results that we
summarize below. Let ZΨ

n (L, ℓ, α) be the charged moments of the symmetry resolved nth Rényi
entropy of a connected region of length ℓ, in a pure state |Ψ⟩nL of an n-replica theory in finite
volume L. Then, the ratio of moments

lim
L→∞

ZΨ
n (L, rL;α)

Z0
n(L, rL;α)

=:MΨ
n (r;α) , (4.7)

between the state |Ψ⟩nL and the ground state |0⟩nL, in the infinite volume limit with r fixed, is
given by a universal formula, which depends very simply on r and α. There are two particularly
useful cases from which more general formulae can be constructed. When |Ψ⟩nL = |1ϵ⟩nL is a state
of a single particle excitation with U(1) charge ϵ we have that

M1ϵ

n (r;α) = e2πiϵαrn + (1− r)n , (4.8)

whereas for a state of k identical excitations of charge ϵ we have that

Mkϵ

n (r;α) =

k∑
j=0

[fkj (r)]
ne2πijϵα , (4.9)

where fkj (r) := kCj r
j(1 − r)k−j and kCj = k!

j!(k−j)! is the binomial coefficient. Formula (4.9) is

the building block for all other results (formula (4.8) is the k = 1 case of (4.9)). A generic state
comprising s groups of kϵii identical particles of charge ϵi will have

M
k
ϵ1
1 ...kϵss

n (r;α) =
s∏

i=1

M
k
ϵi
i

n (r;α) . (4.10)

For α = 0, these formulae reduce to those found in [77, 104–106] and the universality of moment
ratios can be expressed as the universality of entropy difference. However, universality is not
implied for the difference of symmetry resolved Rényi entropies, due to the Fourier transform
which relate them to the charged moments. As an example, for the one-particle state |Ψ⟩nL = |1ϵ⟩nL
the symmetry resolved Rényi entropies are (n > 1)

S1ϵ

n (r; q) =
1

1− n
log

Z1ϵ
n (r, q)

(Z1ϵ
1 (r, q))n

=
1

1− n
log

Z0
n(q − ϵ)rn + Z0

n(q)(1− r)n

(Z0
1 (q − ϵ)r + Z0

1 (q)(1− r))n
, (4.11)

showing that the ground-state partition function Z0
n(q − ϵ) enters non-trivially. In the general

case of higher-particle excitations, the expressions become more cumbersome, and we will only
discuss a few specific examples. Instead, we aim to establish the validity of our universal results
(4.9) in some paradigmatic systems.
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4.2 Magnons

In the works [77, 104, 105] several models and approaches were considered, including the study
of the entanglement of certain states of magnons. In the present context, such states are useful
as they provide a simpler way of obtaining our formulae for the ratios of charged moments, in
fact much simpler than those of QFT. Here we generalize those computations taking into account
the presence of a U(1) flux associated to the number of particles.

The main idea behind this construction is somewhat similar in spirit to the qubit picture
[5, 77], namely, that the entanglement content of quasiparticles can be easily understood if one
factors out the zero-point fluctuations. In other words, instead of considering the full quantum
theory where the quasiparticles are constructed on top of a nontrivial ground state, which in
general has its own entanglement content, we consider a simpler theory in which particles are
constructed above a trivial ground state. It turns out that the entanglement of this simpler
model keeps track of the exact entanglement of the quasiparticle and discards explicitly the
entanglement of the true ground state.

4.2.1 One-Magnon States

We firstly focus on a single magnon state on the lattice, belonging to the one-particle sector of
a quantum spin-12 chain of length L. This state can be written as

|Ψ⟩ = 1√
L

L∑
j=1

eipj |j⟩ , (4.12)

where |j⟩ is the state of a localised magnon in position j. If one requires periodic boundary
conditions, the momentum p has to be quantized as follows

p ∈ 2π

L
Z . (4.13)

We introduce the action of the symmetry operator e2πiαQ, where Q is associated with the internal
symmetry of particle number. For our purposes we just need to specify its action on the vacuum
state |0⟩, the state without particles, and on the one-particle sector. We focus on the sublattice
A = {1, 2, . . . , ℓ} and we aim to characterize the restricted symmetry generator e2πiQA , that is

ei2παQA |0⟩ = |0⟩ , e2πiαQA |j⟩ = e2πiαδj∈A |j⟩ , (4.14)

where δj∈A gives 1 if j is in A and 0 otherwise. The reduced density matrix of the region A is

ρA ≡ TrĀ (|Ψ⟩ ⟨Ψ|) = 1

L

∑
j,j′∈A

eip(j−j′) |j⟩
〈
j′
∣∣+ (1− r) |0⟩ ⟨0| . (4.15)

These two terms appearing in the formula above are interpreted as the contributions associated
to the presence/absence of the particle in subsystem A, respectively. For later convenience, we
compute

e2πiαQAρnA =

 1

L

∑
j,j′∈A

eip(j−j′) |j⟩
〈
j′
∣∣n

e2πiα + (1− r)n |0⟩ ⟨0| , (4.16)
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a relation which is compatible the U(1) symmetry of the RDM ρA that is [ρA, e
2πiαQA ] = 0).

After a straightforward calculation, one gets

TrA

 1

L

∑
j,j′∈A

eip(j−j′) |j⟩
〈
j′
∣∣n

= rn, TrA ((1− r)n |0⟩ ⟨0|) = (1− r)n, (4.17)

with r = ℓ/L. Putting the previous pieces together, we arrive at the final result

Tr
(
ρnAe

2πiαQA
)
= rne2πiα + (1− r)n , (4.18)

which provides the exact charged moments of a single magnon state.

4.2.2 Two-magnon states

In the following, we consider a state of two magnons with the same charge and given quasimo-
menta p, p′. This example is interesting as it allows us to test the robustness of our prediction
in the presence of interactions, encoded in a non-trivial scattering phase. Given a pair of quasi-
momenta p and p′, we express the state as

|Ψ⟩ = 1√
L

L∑
j,j′

Sj,j′e
ipj+ip′j′

∣∣j, j′〉 , (4.19)

where Sj,j′ is a scattering matrix and |j, j′⟩ is the state with two localised magnons at sites j
and j′. The choice of the matrix S is not really relevant for our purpose, but for the sake of
concreteness we set

Sjj′ =


eiφ for j > j′,

1 for j < j′,

0 for j = j′,

(4.20)

using the same conventions as in [104]. For the sake of concreteness, we write down explicitly
the action of the restricted symmetry operator e2πiαQA on the two-particle sector as

e2πiαQA
∣∣jj′〉 = e2πiα(δj∈A+δj′∈A)

∣∣jj′〉 . (4.21)

Following [104], we decompose the RDM ρA ≡ TrĀ (|Ψ⟩ ⟨Ψ|) as

ρA =
1

L

(
ρ
(0)
A + ρ

(1)
A + ρ

(2)
A

)
, (4.22)

where ρ
(0)
A is the vacuum contribution (no particles in A), ρ

(1)
A is the one-particle contribution

(one particle in A and one in Ā) and ρ
(2)
A is the two-particle contribution (both particles in A).

The introduction of the flux gives rise to the following relation

ρnAe
2πiαQA =

1

Ln

((
ρ
(0)
A

)n
+
(
ρ
(1)
A

)n
e2πiα +

(
ρ
(2)
A

)n
e4πiα

)
, (4.23)

that is useful to evaluate the charged moments. No approximation was made up to this point, but

the explicit expressions of ρ
(j)
A , given in [104], are cumbersome and not particularly enlightening
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for our purpose. However, one can show that in the limit L → ∞ and ℓ/L, p ̸= p′ kept fixed,

TrA

(
(ρ

(j)
A )n

)
simplifies drastically:

TrA

(
(ρ

(2)
A )n

)
≃ Lnr2n, TrA

(
(ρ

(0)
A )n

)
≃ Ln(1−r)2n, TrA

(
(ρ

(1)
A )n

)
≃ 2Lnrn(1−r)n. (4.24)

Putting all the pieces together one finally gets

TrA
(
ρnAe

2πiαQA
)
≃ r2ne4πiα + 2rn(1− r)ne2πiα + (1− r)2n = (rne2πiα + (1− r)n)2. (4.25)

This computation shows that, in this particular scaling limit, the interaction between the two
particles has no effect on the final result, and the total charged moment is just a product of two
single-particle charged moments (which is compatible with the lack of correlations between the
two particles).

A different result is obtained if p = p′ is kept fixed. In that case, the magnons are indistin-
guishable and correlations are no more negligible. Similar calculations lead to

TrA

(
(ρ

(2)
A )n

)
≃ Lnr2n, TrA

(
(ρ

(0)
A )n

)
≃ Ln(1−r)2n, TrA

(
(ρ

(1)
A )n

)
≃ 2nLnrn(1−r)n, (4.26)

so that

TrA
(
ρnAe

2πiαQA
)
≃ r2ne4πiα + 2nrn(1− r)ne2πiα + (1− r)2n, (4.27)

which no longer factorizes into one-magnon contributions. We can explain the discrepancy
between the cases p ̸= p′, and p = p′ as follows. In the first case, it is possible to observe
a single particle in A with momentum p or with momentum p′, and they are distinct events.
In contrast, in the second case there is only an event associated with the presence of a single
particle in A, and one gets a sort of ’Bose-Einstein’ statistics for the number of particles. These
considerations generalize easily to the case of multi-magnon states, and similar calculations lead
directly to our prediction (4.9).

4.3 Form factors approach to 1+1 free theories

In this section, we investigate the excited states of the complex U(1) free quantum field theories
in 1+1 dimensions (complex bosons and Dirac fermions). We make use of the twist fields to
express the charged moments, in the same spirit of Chapter 2, and we evaluate their correlation
functions via the form factor expansion. The analysis, which is rather technical compared to the
magnon states, shows the explicit decoupling of the non-trivial zero-point fluctuations related to
the vacuum expectation values of the twist fields.

For concreteness, we consider a system of length L with periodic boundary conditions and
the subsystem A is an interval of length ℓ. Given any state |Ψ⟩ of the system, we can express
the moment of the associated RDM as

TrρnA = ε4∆n × n ⟨Ψ| Tn(0)T̃n(ℓ) |Ψ⟩n , (4.28)

where Tn, T̃n are the branch-point twist field of the n-replica model with conformal dimension
[47, 60–62]:

∆n =
c

24

(
n− 1

n

)
with c the central charge. (4.29)
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Here ε is a short-distance non-universal cut-off and |Ψ⟩n ≡ |Ψ⟩⊗ · · ·⊗ |Ψ⟩ is the replicated state.
Given |0⟩ the ground-state of the system, one can express the ratio of moments as

n ⟨Ψ| Tn(0)T̃n(ℓ) |Ψ⟩n
n ⟨0| Tn(0)T̃n(ℓ) |0⟩n

, (4.30)

that is expected to be a universal function of ℓ/L (and |Ψ⟩,n as well) in the limit L → ∞ with
ℓ/L kept fixed. We remind that the dependence on L is implicit in the states |Ψ⟩ , |0⟩, that
are states of the Hilbert space of the finite size system of length L. The generalization to the
charged moments, that are the key objects for the symmetry resolution, is straightforward, and
it amounts to replace Tn with the U(1) composite twist fields T α

n . The latter are obtained via
point-splitting procedure as

T α
n (y) := : T Vα : (y) = n2∆α−1 lim

x→y
|x− y|2∆α(1− 1

n
)

n∑
j=1

Tn(y)Vj
α(x) , (4.31)

where Vα is the U(1) symmetry field associated with the insertion of an Aharonov–Bohm with
phase e2πiα. Here Vj

α(x) represent the insertion of the symmetry field at the j-th replica. We
denote by ∆α

n the conformal dimension of the composite twist fields and, as shown in [98–100],
its value is

∆α
n ≡ ∆n +

∆α

n
, (4.32)

with ∆α being the dimension of Vα, which depends on the theory under analysis (and differs
explicitly for complex bosons/fermions). Following [51], we express the charged moments of |Ψ⟩
as

Tr
(
ρAe

2πiαQA
)
= ε4∆

α
n × n ⟨Ψ| T α

n (0)T̃ α
n (ℓ) |Ψ⟩n . (4.33)

The main result of this section is the finding that the ratio of charged moments admits a universal
large volume limit

MΨ
n (r;α) = lim

L→∞

n ⟨Ψ| T α
n (0)T̃ α

n (rL) |Ψ⟩n
n ⟨0| T α

n (0)T̃ α
n (rL) |0⟩n

(4.34)

which is a function of the ratio r, the charge α and the state |Ψ⟩, and whose value is summarized
in the introduction.

A key technical problem, that was solved in [77], is the question of how to evaluate finite
volume form factors of the branch-point twist field. The same question arises here for the
composite U(1) twist field. Although a finite volume form factor programme for generic local
fields exists [133, 134] this cannot be directly employed for twist fields (its extension to this
case is still an open problem). In the absence of such a programme, an alternative approach
can be used for complex free theories, where the internal U(1) symmetry on each replica can be
exploited to diagonalise the action of the (composite) branch point twist field [135]. The idea is
that we can find a factorisation

T α
n =

n∏
p=1

Tp+α , T̃ α
n =

n∏
p=1

T−p−α , (4.35)

for complex free bosons and

T α
n =

n−1
2∏

p=−n−1
2

Tp+α , T̃ α
n =

n−1
2∏

p=−n−1
2

T−p−α , (4.36)
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for complex free fermions, of the CTFs where the factors Tp+α are (single replica) U(1) twist field
inserting a flux e2πi(p+α)/n. These U(1) twist fields are nothing but the U(1) symmetry fields Vα

whose conformal dimension is

∆α =
α2

2
, for free fermions ,

∆α =
|α| − α2

2
for free bosons ,

(4.37)

where α ∈ [−π, π].
The fields Tp+α satisfy the usual equal-time exchange relations for U(1) fields, which involve

what is termed a factor of local commutativity γp+α = exp(2πi(p+ α)/n), that is, the phase
that a field φ(x) with charge 1 accrues when taking a trip around the twist field. As reviewed
in [77], this factor is the key ingredient in determining the form factors of these fields.

The computation presented in [77] for the total entanglement entropy may be easily extended
to the case of the ratio MΨ

n (r;α) in excited states. First of all, a word is due regarding the
excited state |Ψ⟩. In general, any state in the replica QFT can be characterised in terms of
the rapidities and quantum numbers of the excitations above the ground state. Considering a
free complex theory, we may define creation operators (aϵj)

†(θ) where ϵ = ± is the U(1) charge
of the particle, j = 1, . . . , n is the replica number, and θ is its rapidity. Unlike the works [77,
104–106] where complex theories were considered only in order to access results for real ones,
here we are interested in obtaining results for complex models as they carry the U(1) symmetry
we are interested in. For this reason, the type of excited states that we want to consider is in fact
simpler and more natural than those studied in previous works. The type of k-particle excited
state that we are interested in consists of n identical copies of a standard k-particle state

|Ψ⟩n =

n∏
j=1

(aϵ1j )†(θ1)(a
ϵ2
j )†(θ2) · · · (aϵkj )†(θk) |0⟩n , (4.38)

where θi are the rapidities, ji the copy numbers and ϵi = ± specifies the charge that is created
by the action of the creation operator (aϵiji)

†(θi). We first discuss the bosonic case, and then we
will analyze the fermions.

4.3.1 Complex free boson

In order to represent the state, it is convenient to move to a basis where the composite twist
field action is diagonal, that is the idea of replica diagonalization. In this basis, the state can be
expressed in terms of creation operators a†p(θ) and b†p(θ) associated with the two bosonic species
(particles/antiparticles). They are related to the creation operators in the standard basis as [77]

a†p(θ) =
1√
n

n∑
j=1

e
2πijp

n (a+j )
†(θ) and b†p(θ) =

1√
n

n∑
j=1

e−
2πijp

n (a−j )
†(θ), (4.39)

where p = 1, . . . n labels the Fourier modes of the replica space.

As an example, let us consider the case of a single particle excitation. We will write the
replicated state as |1ϵ⟩n where ϵ = ± represents the U(1) charge of boson type. In the original
basis, this would simply be the state (aϵ1)

†(θ)(aϵ2)
†(θ) . . . (aϵn)

†(θ) |0⟩n, that is a state where a
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single complex boson of rapidity θ and charge ϵ is present in each replica. Going to the Fourier
basis, such a state takes the form

∣∣1+〉n =
∑
{N+}

An({N+})
n∏

p=1

[a†p(θ)]
N+

p
∣∣0+〉n , ∣∣1−〉n =

∑
{N−}

An({N−})
n∏

p=1

[b†p(θ)]
N−

p |0⟩n ,

(4.40)
where the indices {N±} = {N+

1 , N
−
1 , . . . , N

+
n , N

−
n } are bosonic occupation numbers in each

sector, and they are constrained by the condition that they must add up to n

n∑
p=1

N±
p = n . (4.41)

The numerical coefficients A({N±}) can be obtained systematically from the relationships (4.39)
and their inverses. We now expand the 2-point correlation of the composite twist field in the
excited state |1±⟩n as follows

n
〈
1+
∣∣ T α

n (0)T̃ α
n (ℓ)

∣∣1+〉n =
∑
{N+}

∑
{M+}

A∗
n({N+}) An({M+}) (4.42)

×
n∏

p=1

⟨0| [ap (θ)]N
+
p Tp+α(0) T−p−α(ℓ) [a

†
p(θ)]

M+
p |0⟩ .

n
〈
1−
∣∣ T α

n (0)T̃ α
n (ℓ)

∣∣1−〉n =
∑
{N−}

∑
{M−}

A∗
n({N−}) An({M−}) (4.43)

×
n∏

p=1

⟨0| [bp (θ)]N
−
p Tp+α(0) T−p−α(ℓ) [b

†
p(θ)]

M−
p |0⟩ .

The expansion above shows explicitly a factorization in contributions coming associated with
Fourier modes that are not mixed among each other.

To proceed further, we sum over a complete set of states between the two U(1) fields, as
detailed in Appendix 4.6. A particular subtlety of this kind of computation is that, because of
finite volume, the momenta/rapidities of excitations are quantised. In particular, as explained in
[77], as the twist fields connect untwisted and twisted sectors, non-trivial quantization conditions
for the momenta arise, depending on p and α and ultimately related to the monodromy of the
fields. For instance, we have:

P (θ±i ) = m sinh θ±i = 2πJ±
i ± 2π(p+ α)

n
, J±

i ∈ Z , (4.44)

where θ±i are understood as rapidities of particles of type ± respectively, which would be present
in the sum over intermediate states. In contrast, the rapidity θ of the ’physical’ particle is
quantised through P (θ) = 2πI for I ∈ Z, as it is associated to the untwisted sector. Note the
quantity p+α

n is never an integer for α ∈ [−1
2 ,

1
2 ] and p ̸= n. This guarantees that only non-

diagonal form factors (that is, matrix elements involving only distinct right and left states) will
be involved in the computation of the leading large-volume contribution to (4.42).

Once a sum over a complete set of states is inserted in (4.42) the problem reduces to the
computation of matrix elements of the U(1) fields Tp+α. Such matrix elements have been known
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for a long time, but they were re-derived in [2, 77]. Because of the free nature of the theory, all
the matrix elements can be expressed in terms of the basic building blocks being the two-particle
form factors

fnp+α(θ12) ≡ ⟨0| Tp+α(0) a
†
p(θ1)b

†
p(θ2) |0⟩ = −τp+α sin

π(p+ α)

n

e(
p+α
n

− 1
2)θ12

cosh θ12
2

, (4.45)

where τp+α is the vacuum expectation value of Tp+α and θ12 ≡ θ1 − θ2. In summary, all results
obtained in [77] follow through for the composite twist fields with the replacement p → p + α.
In particular, the ratio of the moments for an excited state of one excitation are nearly identical
to formula (4.19) in [77], and the final result is

M1±
n (r;α) =

∑
{N±}

|An({N±})|2
n∏

p=1

(N±
p !)[gn±(p+α)(r)]

N±
p = e±2πiαrn + (1− r)n , (4.46)

with
gnp (r) := 1− (1− e

2πip
n )r . (4.47)

For free bosons, this can be generalised to states containing k identical excitations (with equal
rapidites) to find (4.9). Moreover, for states containing k different particles (with different
rapidities and any combination of charges ϵi) the result is factorized

M1ϵ1 ...1ϵk
n (r;α) =

k∏
s=1

∑
{N±}

|Cn({N±})|2
n∏

p=1

N+
p,s! N

−
p,s!
(
gnp+α(r)

)N+
p,s
(
gn−p−α(r)

)N−
p,s

=

k∏
j=1

[
e2πiϵjαrn + (1− r)n

]
.

In these formulae Cn({N±}) and An({N±}) are numerical coefficients which are determined by
the form of the state in the diagonal basis. Both results are special cases of (4.10), and the
details of the derivation are reported in Appendix 4.6.

4.3.2 Complex free fermion

For complex free fermions the computation is very similar, but states involving identical exci-
tations are forbidden and the relationship between the original creation operators and those in
the diagonal base is also slightly different. We first express the Fourier modes of the creation
operators as

a†p(θ) =
1√
n

n∑
j=1

e
2πijp

n (a+j )
†(θ) and b†p(θ) =

1√
n

n∑
j=1

e−
2πijp

n (a−j )
†(θ) (4.48)

where now p = −n−1
2 , . . . n−1

2 and the operators (a±j )
†(θ) anticommute for distinct values of j,

the replica index. The explicit expression of the particle-antiparticle form factor associated to
the U(1) twist field (see Ref. [136]) is

fnp+α(θ12) = ⟨0| Tp+α(0) a
†
p(θ1)b

†
p(θ2) |0⟩ = iτp+α sin

π(p+ α)

n

e(
p+α
n )θ12

cosh θ12
2

, (4.49)
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with τp+α being the VEV Tp+α(0).
Then, we make explicit the replicated state consisting of a single particle excitation that is,

as for the boson

∣∣1+〉n =
n∏

j=1

(a+j )
†(θ) |0⟩n =

n∏
j=1

1√
n

n−1
2∑

p=−n−1
2

ωjpa†p(θ) |0⟩
n , (4.50)

∣∣1−〉n =
n∏

j=1

(a−j )
†(θ) |0⟩n =

n∏
j=1

1√
n

n−1
2∑

p=−n−1
2

ω−jpb†p(θ) |0⟩
n (4.51)

with ω = e−
2πi
n the n-th root of unity. Thanks to the fermionic anticommutation relations, the

expression above gives a much simpler structure compared to the bosonic case, once expanded.
For instance, for n = 2 we have∣∣1+〉2 = 1

2
(ia†− 1

2

(θ)− ia†1
2

(θ))(−a†− 1
2

(θ)− a†1
2

(θ)) |0⟩2 = −ia†− 1
2

(θ)a†1
2

(θ) |0⟩2 , (4.52)

and similarly for n = 3 ∣∣1+〉3 = ia†−1(θ)a
†
0(θ)a

†
1(θ) |0⟩

3 . (4.53)

In general, one easily show that for generic n the one-particle replicated state is

∣∣1+〉n = eiκ

n−1
2∏

p=−n−1
2

a†p(θ) |0⟩
n ,

∣∣1−〉n = e−iκ

n−1
2∏

p=−n−1
2

b†p(θ) |0⟩
n (4.54)

with eiκ a phase that is irrelevant to our purpose.
At this point, to compute the two-point function of twist fields, we make use of the factorisa-

tion (4.36) and we expand over a complete set of states. The details are presented in Appendix
4.6, and, eventually, one arrives to the final result

M1±
n (r;α) =

n−1
2∏

p=−n−1
2

gn±p±α(r) =

n−1
2∏

p=−n−1
2

[
1− (1− e±

2πi(p+α)
n )r

]
. (4.55)

It is possible below to write down the product as a more compact expression, which provides
the analytical continuation for non-integer values of n, as we show below. Indeed, thanks to the
expression

n−1
2∏

p=−n−1
2

(x− e±
2πip
n y) = xn + (−y)n, (4.56)

that is the factorization of the polynomial (xn + yn), one arrives to

n−1
2∏

p=−n−1
2

gn±p±α(r) = e±2πiαrn + (1− r)n. (4.57)

This is the same formula we found for the boson in the case of one-particle excited states.
Similarly, it is possible to consider distinct excitations (say particles with distinct momenta) and
the results presented in the previous subsection would be recovered. Finally, we emphasize that
excitations made by multiple particles with the same quantum numbers are just ruled out in
fermionic systems due to the Pauli exclusion principle.
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4.4 A unified framework: higher dimensions and the twist op-
erator approach

So far we have derived the behaviour of the charged moments of quasiparticle excited states
making use of two different formalism: the form factor expansion in 1+1 integrable QFTs, and
the analysis of magnon states on the lattice. Unfortunately, the applicability of those techniques
strongly relies on assumptions not directly related to the range of validity of our final results.
For instance, the form factor approach we employed is specific to 1+1 theories and makes use
of relativistic invariance. Moreover, an elementary lattice approach for the magnon states is not
able to capture the zero-point (ground-state) fluctuations, thus does not clarify how the latter
are decoupled from the entanglement of quasi-particle in the limit we are considering.

In this section, we consider a generic QFT in any dimension, and we give a unified framework
to derive our results. To this aim, we employ the notion of twist operators, generalizing the branch
point twist fields which are special of 1+1 dimensional QFT [47, 60]. Our method follows the
ideas [106], where the excitations of the free massive boson in d dimensions have been extensively
analysed and their Rényi entropy was computed in terms of graph partition functions. In this
section we slightly generalise the formalism of [106], to take into account the insertion of the U(1)
flux and the possible presence of interactions, which are not expected to validate the results as
long as quasi-particle excitations exist. As a proof of concept, a simple calculation of symmetry
resolved entanglement of a single-particle excited state is shown. The key ingredients we need
are the description of the excited states as local operators acting on a vacuum state and their
commutation relation with a twist operator, which generalizes the composite branch point twist
field to higher dimensional settings. The only strong assumption we make in our derivation
is the presence of a finite correlation length for the vacuum correlation function (say, a finite
gap is present above the ground-state). We mention that the latter assumption is not really a
necessary condition, since the emergence of the universal entanglement content is also expected
for some high-energy states in massless theories (see [126, 128], for the analysis of the gapless
XY chain). However, we keep this assumption here mostly to avoid technical complications in
some intermediate passages, leaving the analysis of massless theories to future investigations.

We anticipate here that our formulae (4.8)-(4.10) are unchanged in higher dimensional theo-
ries, up to the identification

r =
VA
V
, (4.58)

which is the ratio of volumes between subsystem A and the total system.

4.4.1 Excited States and Operator Algebra

Let us consider a vacuum state |0⟩ of a Hilbert space H, together with an algebra A of operators
representing the physical observables 2, acting on H and having |0⟩ as a cylic vector (we refer
[137] for a modern review of this algebraic viewpoint of entanglement in QFT). This allows us
to represent any state |Ψ⟩ of the Hilbert space as

|Ψ⟩ = O |0⟩ with O ∈ A. (4.59)

We would like to assume further that the vacuum state is translation invariant, namely that it is
invariant under a certain faithful representation of the translation group in d dimensions. Strictly

2In the case of a single real boson, A is just the algebra of generated by the field Φ(x) and its conjugated
momentum Π(x).
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speaking, since we consider a finite-size system, we have to slightly modify this requirement.
Specifically, we put our system on a d-dimensional torus M of volume V and we require that
|0⟩ is invariant under the isometries of the torus. Other boundary conditions can be considered
too, but they do not change the picture in the scaling limit we are interested in. We also require
locality of the observables, asking that A is generated by fields {O(x)}, which can be applied at
any point of M. For any field O(x), one can construct its Fourier transform O(p) as

O(p) =

∫
M
ddxe−ipxO(x) , (4.60)

that is the building block for the following set of translation invariant states

O1(p1) . . .Ok(pk) |0⟩ , . (4.61)

The state above corresponds physically to k particles distributed onM with momenta {pj}j=1,...,k,
and the choice of the fields {Oj} may depend on the particle species and quantum numbers. In
particular, up to quantization of momenta, these states are eigenstates for free theories or inte-
grable theories.

This construction is similar to the usual way of generating particle states in free theories,
acting with creation operators on the vacuum on a Fock space. However, the real advantage of
our formulation is that it is directly related to local observables, a property which is fundamental
to correctly define entanglement measures (encoded in the commutation relations among local
fields and twist operators).

Let us take a set of orthogonal fields {Oj}, so that the correlation function ⟨O†
i (x)Oj(x

′)⟩
vanishes for i ̸= j. In other words the fusion

O†
i ×Oj → 1 (4.62)

is present only if i = j and their operator product expansion (OPE) can be expressed formally
as

O†
i (x)Oj(x

′) ≃ δij ⟨0| O†
i (x− x′)Oi(0) |0⟩+ . . . , (4.63)

where we neglected explicitly the contributions coming from less relevant operators. The exact
evaluation of the correlation function above can be hard for a generic theory, but the assumption
of a finite gap m ensures that it vanishes exponentially for |x − x′| ≫ m−1. This is the only
property we really need in our subsequent discussion.

We now construct a smeared version of the modes O(p), having support in a subsystem only,
that is a region of space. To each spatial region A ⊆ M and field O(x), we associate

OA(p) =

∫
A
ddxe−ipxO(x). (4.64)

Given any two regions A and A′, we compute3 O†
A(−p)OA′(p′), making use of some approxima-

tions. First, we consider only the most relevant term in the fields OPE, namely

O†
A(−p)OA′(p′) ≃

∫
A
ddx

∫
A′
ddx′eipx−ip′x′ ⟨0| O†(x)O(x′) |0⟩ . (4.65)

3One should note that hermitian conjugation and Fourier transform do not commute. Indeed, we have that
O†

A(−p) = (OA(p))
†.
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Second, since we are working in the limit of small correlation length (compared to the geometry),
the leading contribution comes from the insertion of the fields at small distances, which is present
if x,x′ are close to each other and they both belong to A ∩ A′; this observation motivates the
change of variable x′′ = x′ − x, and the subsequent approximation

O†
A(−p)OA′(p′) ≃

∫
A∩A′

ddxei(p−p′)x ·
∫
M
dx′′e−ip′x′′ ⟨0| O†(0)O(x′′) |0⟩ (4.66)

The second integral (over x
′′
) may be difficult to compute and in principle it could require a UV

regularisation for |x′′| < ϵ≪ m−1. However, it does not depend on the regions A,A′ and in our
computation appears only as a multiplicative constant. In conclusion, we end up with

O†
A(−p)OA′(p′) ∝ VA∩A′δp,p′ , (4.67)

where VA∩A′ is the volume of A ∩ A′ and the proportionality constant do not depend on the
regions, which is the main result of this subsection.

It is natural to ask how our discussion above would be modified for a vanishing gap m = 0.
The main change is in the scaling of correlations functions: exponential localization of the
correlation function in a region of typical length m−1 does not hold any longer, due to the
long algebraic tails of the correlation functions. We conjecture that, as long as the momenta
are fixed in the infinite-volume limit, the main conclusion (4.67) is unchanged. A qualitative
argument is that in this case the inverse momentum, say the De Broglie length, plays the role of
typical length scale. In order to make this consideration more precise, let us analyse Eq. (4.66)
for a 1+1D CFT, where O is a field of conformal dimension ∆O. We focus on the following
integral ∫

M
dx′′e−ip′x′′ ⟨0| O†(0)O(x′′) |0⟩ , (4.68)

which we regulate both in the UV, with a cutoff ϵ, and in the IR, with a cutoff L, as follows∫ L

ϵ
dxe−ipx 1

x4∆O
+ (c.c.). (4.69)

This integral can be explicitly computed. However, the important feature is that for ∆O > 0,
p > 0 and ϵ > 0 all fixed, the integral converges to a finite value when L → +∞. This is no
longer the case if p ∼ 1/L in the infinite-volume limit. In practice, this means that for small
momentum and scaling dimension 0 < ∆O ≤ 1 the considerations we made so far regarding
the scaling at large sizes cannot be applied. As a matter of fact, for free CFTs the scaling
dimensions of the fundamental fields are smaller than 1: the fermionic field Ψ has dimension 1/2
while the derivative of a compact boson ∂xΦ has dimension 1. While the latter considerations
are not mathematically rigorous, they are sufficient to explain why in gapless theories the low-
energy states, or multiparticle states with small momenta difference, are not well captured by
our predictions. Indeed, for such states the excess entanglement was computed in [132, 138] in
some specific cases, and is clearly different from the formulae of [77, 104].

4.4.2 Replica construction of the charged moments

Consider now a replica theory, consisting of n copies of the original theory. For any state |Ψ⟩
we consider its replicated version |Ψ⟩n. Our goal is to define a composite U(1) twist operator,
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which generalises the composite branch point twist field as defined in [51], to higher dimensional
theories. In particular, its expectation value over |Ψ⟩n gives exactly the charged moments Zn(α)
we are interested in.

This type of operator was already considered in the literature, at least in the absence of
the flux insertion (see for example [106, 139–141]), but here we are mostly interested in its
relationship with the algebra of local operators.

The first point we have to clarify regards the symmetry, and its action on the space of fields.
Starting from e2πiαQ, the global generator of U(1) symmetry in the non-replicated theory, we
say that O(x) has charge κO if

e2πiαQO(x)e−2πiαQ = e2πiακOO(x). (4.70)

Since one can decompose the space of fields as irreducible representations of U(1), it is sufficient
analysis to charged fields with a given charge. Going back to the replicated theory, we consider
the algebra of replicated observables An as the algebra generated by the tensor product of n
observables in A. Thus, to any field O(x) ∈ A, we associate Oj(x) ∈ An defined as

Oj(x) = 1⊗ · · · ⊗ 1⊗O(x)⊗ 1 · · · 1, (4.71)

where O(x) lives only in the jth replica. Consider a spacial region A, and its complement Ā. We
define a composite twist operator Tα

A which implements the structure of the n-sheets, cyclically
connected, Riemann surface with the additional U(1) flux. As for a composite twist field in a
1+1 QFT, it does so via its commutation relations with any local charged field Oj(x), which we
require to be

Tα
AOj(x) =

{
e2πiκOαδj,nOj+1(x)Tα

A x ∈ A,

Oj(x)Tα
A x ∈ Ā.

(4.72)

According to this choice, the flux is inserted only between the nth and the first replica. We
mention that (4.72) does not identify unambiguously Tα

A , rather a space of twist operators satis-
fying those relations. While in principle this could be an issue and further properties has to be
specified to characterize Tα

A , in practice (4.72) is sufficient to give predictions in our regime.

We would like to emphasize that a similar definition has already appeared in the context of
1+1D integrable QFTs (see [2, 4, 65, 67]). In particular, for A = [0, ℓ], one can identify

Tα
A = T α

n (0)T̃ α
n (ℓ), (4.73)

and the commutation relations for Tα
A can be expressed as commutation relations for the com-

posite twist fields T α
n .

With all the ingredients given so far, we are now ready to relate the twist operator to the
symmetry resolved entanglement. The charged moments of |Ψ⟩ are given by

ZΨ
n (α) =

n ⟨Ψ|Tα
A |Ψ⟩n

n ⟨Ψ|Ψ⟩n
. (4.74)

The above definition, together with the commutation relations (4.72) and the OPE of Eq. (4.67),
turns out to be enough to prove the explicit analytical expression of the ratio of charged moments
between |Ψ⟩ and the ground state (4.7). We now show how these ideas come together for a simple
example.
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4.4.3 Single-Particle State

Here, we analyse an excited state |Ψ⟩ made of a single quasiparticle with momentum p generated
by a charged field O. Its explicit expression is given by

|Ψ⟩ = O(p) |0⟩ , (4.75)

and the replicated version is just

|Ψ⟩n = O1(p) . . .On(p) |0⟩n . (4.76)

For the sake of convenience, we split

Oj(p) = Oj
A(p) +Oj

Ā
(p), (4.77)

so that the commutation relations with Tα
A become more transparent. Indeed, using just (4.72)

one can express

Tα
A |Ψ⟩n = Tα

A(O1
A(p) +O1

Ā(p)) . . . (O
n
A(p) +On

Ā(p)) |0⟩
n =

(O2
A(p) +O1

Ā(p)) . . . (O
1
A(p)e

2πiακO +On
Ā(p))T

α
A |0⟩n .

(4.78)

Up to now, everything is exact. For an approximate evaluation of n ⟨Ψ|Tα
A | |Ψ⟩n we make use of

the OPE contraction in (4.67), neglecting explicitly the less relevant terms. Among all the terms
which are generated once the sums are expanded, all but two are vanishing, and they give

n ⟨Ψ|Tα
A |Ψ⟩n ≃ e2πiακO × n ⟨0| (O†)nA(−p) . . . (O†)1A(−p)O2

A(p) . . .On
A(p)O1

A(p)T
α
A |0⟩n

+n ⟨0| (O†)nĀ(−p) . . . (O†)1Ā(−p)O1
Ā(p)O

2
Ā(p) . . .O

n
Ā(p)T

α
A |0⟩n

∝
(
e2πiακOV n

A + (V − VA)
n
) n ⟨0|Tα

A |0⟩n
n ⟨0|0⟩n

.

(4.79)

Similarly, we can evaluate the norm n ⟨Ψ|Ψ⟩n, which does not require the splitting of Oj(p), as

n⟨Ψ|Ψ⟩n = n ⟨0| (O†)n(−p)(O†)1(−p)O1(p) . . .On(p) |0⟩n ∝ V n. (4.80)

In the evaluation of the ratio
n ⟨Ψ|Tα

A |Ψ⟩n
n ⟨Ψ|Ψ⟩n

(4.81)

the proportionality constant (which is non-universal and could be absorbed in a redefinition of
the field) cancels out, and one can write

n ⟨Ψ|Tα
A |Ψ⟩n

n ⟨Ψ|Ψ⟩n
≃
(
e2πiακOrn + (1− r)n

) n ⟨0|Tα
A |0⟩n

n ⟨0|0⟩n
(4.82)

with r = VA
V . In the expression above, the first piece is universal while the second is not, but it

is just the nth charged moment of the ground-state. Indeed, taking the ratio of the two charged
moments, we finally arrive to the desired result

MΨ
n (r, α) =

n ⟨Ψ|Tα
A |Ψ⟩n

n ⟨Ψ|Ψ⟩n
n ⟨0|0⟩n

n ⟨0|Tα
A |0⟩n

≃ e2πiακOrn + (1− r)n. (4.83)
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Results for multiparticle states can be obtained in a similar fashion, just more terms would arise
and one should distinguish the cases with equal/distinct momenta.

To conclude, the striking simplicity of these results relies especially on the truncation of the
OPE in (4.63), which is expected to become exact in the limit mdV ≫ 1. We further expect that
for finite mdV further contributions in the OPE can be recast as a (possibly non-integer) power
series in (mdV )−1, which generalises the explicit (mL)−1 power expansion that is obtained for
1+1D free theories using form factor techniques [5]. In massless theories, for the cases our results
apply, we instead conjecture corrections as a power series in (|p|dV )−1.

The explicit evaluation of these corrections, which are expected to be momentum and QFT-
dependent, and any possible issues regarding the convergence of these power series are all beyond
our purpose.

4.5 Numerical Results

In this section, we present numerical results for two very different discrete models. First we
consider a 1D lattice Fermi gas, which has critical features but also possesses highly excited
states whose entanglement is well described by our formulae, and then we look at the harmonic
chain, whose scaling limit is a massive free boson. Whereas for the first model we can only
consider distinct excitations, due to Pauli principle, for the second we consider also states of
identical excitations. The good agreement found confirms the more general picture that these
kinds of formulae hold under the broad assumption of ’localised’ excitations. These are present
both in gapped systems due to finite mass scale/correlation length, and in critical systems, when
the De Broglie wave length of the excitations (which is inversely proportional to their momentum)
is sufficiently small compared to subsystem size.

4.5.1 1D Lattice Fermi Gas

Here, we analyse a particle-hole excited state of a 1D lattice Fermi gas, comparing our analyt-
ical predictions with the numerical data. Even though the model is critical, it was realised in
[125] that certain highly energetic quasiparticle excitations still have a universal entanglement
content. More precisely, if one assumes that a set of quasiparticles with small enough De Broglie
wavelengths (compared to the typical geometric lengths) is present and their momenta are suf-
ficiently separated, then the quasiparticles will be essentially uncorrelated with each other and
with respect to zero-point fluctuations. We refer the interested reader to [123–128] for further
details about the universal entanglement content of quasiparticles in critical systems.

Here we briefly review the numerical techniques involved in the characterisation of fermionic
Gaussian states [142] and their application to the computation of symmetry resolved measures.
We start by considering the Hamiltonian of free spinless fermions on a circle of length L

H = −1

2

∑
j

f †j+1fj + f †j fj+1 + µ
∑
j

f †j fj , (4.84)

where µ is the chemical potential and {fj}j=1,...,L , {f †j }j=1,...,L are the fermionic operators
obeying the standard anticommutation relations

{fj , fj′} = {f †j , f
†
j′} = 0, {fj , f †j′} = δjj′ . (4.85)
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When |µ| < 1 the theory is gapless, and the ground state is a Fermi sea with Fermi momentum
kF = arccos(µ). The two-point function evaluated in the ground-state at Fermi momentum kF
takes the following form

C0(j, j
′) ≡ ⟨f †j fj′⟩0 =

sin kF (j − j′)

L sin π(j−j′)
L

. (4.86)

Here, we analyse the quasiparticle excited state described by the following two-point function

C(j, j′) = C0(j, j
′) +

1

L
e−i(kF+π

4
− π

L
)(j−j′) − 1

L
e−i(kF−π

4
+ π

L
)(j−j′) . (4.87)

It corresponds to the insertion of a fermion of momentum k = kF + π
4 above the ground state

and the removal of another fermion (or equivalently, the insertion of a hole) at k = kF − π
4 .

The choice of the momentum shift |k − kF | = π
4 is not important in the continuum limit, where

the only necessary condition is that |k − kF | remains finite when L → ∞ 4. We now have to
specify the symmetry of the model. The Hamiltonian (4.84) is invariant under an internal U(1)
symmetry associated to the number of fermions generated by

Q =
∑
j

f †j fj , (4.88)

and it clearly satisfies the locality condition Q = QA +QĀ, with

QA =
∑
j∈A

f †j fj , QĀ =
∑
j∈Ā

f †j fj . (4.89)

As subsystem A we consider the segment of length ℓ, that is the sites j = 1, . . . , ℓ and investigate
its entanglement properties with the complementary region Ā containing sites j = ℓ+ 1, . . . , L.
We denote by CA

0 and CA the ℓ× ℓ matrices resulting from projection of the matrices C0 and C
(defined by Eqs. (4.86) and (4.87) respectively) onto subsystem A, keeping only j = 1, . . . , ℓ as
spacial indices. Following [1] we express the charged moments of the particle-hole state and the
ground state by means of the determinants

TrA(ρ
n
Ae

2πiαQA) = det
(
(CA)ne2πiα + (1− CA)n

)
, (4.90)

TrA(ρ
n
A,0e

2πiαQA) = det
(
(CA

0 )
ne2πiα + (1− CA

0 )
n
)
, (4.91)

with ρA and ρA,0 the respective reduced density matrices. According to our analytical predictions,
we expect that the ratio of the charged moments takes the following universal form

TrA(ρ
n
Ae

2πiαQA)

TrA(ρnA,0e
2πiαQA)

≃ (rne2πiα + (1− r)n)(rne−2πiα + (1− r)n) , (4.92)

that is, the expression for two distinct excitations with charges ±1, which contribute to the
charged moment with an Aharonov-Bohm phase e±2πiα. We write ≃ to indicate that equality is
only expected in the scaling limit of the lattice model.

To test the validity of Eq. (4.92) we consider two entanglement measures, namely the excess
of (total) Rényi entropy and the so-called (following the terminology of [1]) “excess of variance”.

4In the work [1] another particle-hole state satisfying |k−kF | ∼ 1/L was analysed. The entanglement measures
of that low-lying state turned out to be captured instead by CFT predictions, due to the strong correlation effects
between the particle/hole and the zero-point fluctuations.
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The excess of entropy is recovered from our formulae for α = 0 and for two distinct excitations
takes the simple form

∆Sn ≡ 1

1− n
log

TrA(ρ
n
A)

TrA(ρnA,0)
≃ log (rn + (1− r)n)2

1− n
. (4.93)

We define the variance5 associated to ρA as

⟨∆Q2
A⟩n ≡

TrA(ρ
n
AQ

2
A)

TrA(ρnA)
−
(
TrA(ρ

n
AQA)

TrA(ρnA)

)2

=
1

(2πi)2
d2

dα2
log

TrA(ρ
n
Ae

2πiαQA)

TrA(ρnA)

∣∣∣∣
α=0

. (4.94)

Similarly, we denote by ⟨∆Q2
A⟩n,0 the variance of the ground state ρA,0. From (4.92) it then

follows that the excess of variance is given by

⟨∆Q2
A⟩n − ⟨∆Q2

A⟩n,0 ≃
2rn(1− r)n

(rn + (1− r)n)2
. (4.95)

A way to physically interpret the result of Eq. (4.95) is to regard this excess of variance as twice
the contribution associated to a single quasiparticle, since particles and antiparticles contribute
in the same way. The latter is just the variance of a Bernoulli random variable with success
probability given by

p =
rn

rn + (1− r)n
, (4.96)

namely the probability one associates to the presence of a quasiparticle in A computed with the
density matrix ρnA. Since the variance of a Bernoulli variable with probability p is just p(1− p),
we get Eq. (4.95).

In Fig. 4.1 we report the numerical values of ∆Sn and ⟨∆Q2
A⟩n − ⟨∆Q2

A⟩n,0, computed from
(4.90) and (4.91) using exact diagonalisation of the correlation matrices CA, CA,0, and our an-
alytical predictions. We keep L fixed, analysing different values of r = ℓ/L. Our choice is
motivated by the expectation that these plots should be universal at large L, meaning different
data obtained with different L should collapse to the same universal prediction (independent of
lattice details as kF ) when L → ∞. As we see from the plots in Fig. 4.1, the match between
numerics and analytics is really good.

4.5.2 Complex harmonic chain

Here we consider a complex massive free boson. Unlike the 1D Fermi gas, this model and its
lattice version allow us to test formulae for states containing two or more identical excitations.
Our numerical computation is based on the wave-functional method introduced in [77] (see
Appendix A of that paper) that has been generalized in [6] in the presence of a U(1) flux. We
do not review all the details the method, that are found in [6]. Instead, we summarize below the
idea behind.

The crucial observation regarding the free boson is that, while its ground-state is Gaussian
state and its entropy can be characterized efficiently [143], this is not the case for its excited
states. One can overcome this issue via the replica-trick, describing the n-th Rényi entropies

5The choice of this terminology comes from the fact that for n = 1 the physical variance of the charge is obtained.
For n > 1 this variance has not a direct physical meaning, nevertheless it is still useful for the understanding of
the symmetry resolved entanglement.
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Figure 4.1: Numerical data versus analytical prediction for the particle-hole excited state de-
scribed by the correlation function (4.87). The data is for kF = π/2, L = 200 and different
values of n for r = ℓ/L ∈ [0, 1]. Left: Excess Rényi entropy checked against Eq. (4.93). Right:
Excess variance, checked against Eq. (4.95). The numerical results are in very good agreement
with the analytical formulae.

as an expectation value of a twist operator over the excited state. The latter can be further
expressed as an expectation value over the ground-state, where additional fields are inserted,
that is indeed a Gaussian state and can be described efficiently via the Wick theorem. In the
end, in order to compute the Rényi entropies of the excited states, one needs to perform the
following procedure

• Construct the Gaussian measure associated with the insertion of the U(1) twist in the
replica model. This step is performed numerically, and it gives rise to a nN × nN matrix
which encodes all the possible Wick contractions, with N being the number of sites of the
chain.

• Describe the excited-state expectation value of the twist operator as an expectation value
over the Gaussian measure constructed above. This gives rise to many Wick contractions,
which are evaluated numerically and summed over.

The method above can be applied for any lattice realization of the free boson, but we perform
numerics in a one-dimensional chain. In particular, we start from the hamiltonian

H =

∫ L

0
dx
(
Π†Π+ (∂xΦ)

†(∂xΦ) +m2Φ†Φ
)
, (4.97)

with periodic boundary conditions, and we regularize over a lattice with L sites, namely the
lattice spacing is ∆x = 1. This amount to discretize the Laplace operator as

∂2xΦ(x) → Φ(x+∆x) + Φ(x−∆x)− 2Φ(x)

(∆x)2
. (4.98)

The latter can be diagonalized in Fourier space and the set of momenta is

p ∈ 2π

L
{0, . . . , L− 1}, (4.99)
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Figure 4.2: Numerical data (triangles) versus analytical predictions (dashed lines) for
M1+1+

2 (r;α) (top row) andM2+
2 (r;α) (bottom row). We consider n = 2, system size L = 30 with

m = 0.1. The left/right panels in each row show the real/imaginary part of the function. In both
rows we take values of the flux α = 0, 0.1, . . . 0.5. The numerics for the top row figures employ
momenta p1 = π, p2 = 2π/5 whereas for the bottom row we took equal momenta p1 = p2 = π.

giving rise to the dispersion relation

Ep =

√
m2 +

(
2 sin

p

2

)2
, (4.100)

from which the relativistic relation E2
p = m2 + p2 is obtained when p ≪ 1. We study the

entanglement of a single interval of length ℓ < L and we evaluate the ratio of charged moments
as functions of r = ℓ/L.

In Fig. 4.2 we compare results for two kinds of two-particle excited states: those of particles
with identical charges and either distinct or equal momenta p1 and p2. Our analytical predictions
for Mn(r;α) are

M1+1+

n (r;α) = (rne2iπα + (1− r)n)2 , p1 ̸= p2 ,

M2+

n (r;α) = r2ne4πiα + 2n(1− r)nrne2πiα + (1− r)2n , p1 = p2 . (4.101)

In our numerics we have chosen L = 30, and we also fix the mass scale to m = 0.1, which
corresponds to a typical correlation length of ξ = m−1 = 10 sites. Finally, we choose either
p1 = p2 = π or p1 = π and p2 =

2π
5 , both in units of the lattice spacing.

Similarly, Fig. 4.3, we consider the following three-particle excited states: a state of three
equal momenta, that is p1 = p2 = p3, a state of two equal momenta among the three, that is
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Figure 4.3: Numerical data (triangles) versus analytical predictions (dashed lines) for M3+
2 (r;α)

(top row), M2+1+
2 (r;α) (central row), and M1+1+1+

2 (r;α) (bottom row). We consider n = 2,
system size L = 30 with m = 0.1. The left/right panels in each row show the real/imaginary
part of the function. In each rows we take values of the flux α = 0, 0.1, . . . 0.5. The numerics for
the top row figures employ momenta p1 = p2 = p3 = π, for the central row p1 = p2 = π, p3 = π/3,
whereas for the bottom row we took p1 = π, p2 = π/3, p3 = π/5.
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p1 = p2 ̸= p3, and a state with three distinct momenta, that is p1, p2, p3 distinct. In this case
the analytical predictions are

M3+

n (r;α) = r3ne6iπα + 3nr2n(1− r)ne4iπα + 3nrn(1− r)2ne2iπα + (1− r)3n , p1 = p2 = p3 ,
(4.102)

and

M2+1+

n (r;α) =M2+

n (r;α)(rne2iπα + (1− r)n) , p1 = p2 ̸= p3 ,

M1+1+1+

n (r;α) = (rne2iπα + (1− r)n)3 , p1 ̸= p2 ̸= p3 .
(4.103)

The set of momenta is p1 = p2 = p3 = π for the first excited state, p1 = p2 = π, p3 = π/3 for the
second state, and p1 = π, p2 = π/3, p3 = π/5 for the third one.

In all our figures we chose non-negative values of α. Given the formulae above, taking α < 0
is equivalent to complex conjugation with α positive, so the figures for negative α are identical
except for a change of sign in the imaginary part of all functions. We have also considered the
value α = 0 (in green) which is the limit where there is no flux. As expected, in this case our
formulae recover those for the excess Rényi Entropies in [77, 104], which are symmetric in r and
have vanishing imaginary part. Despite the fact that the correlation length is not particularly
small with respect to the system’s size L (ξ ≃ 0.33L), we took highly energetic states (momenta
being fixed in the large-volume limit) and we thus expect the validity of our predictions.

In both Fig. 4.2 and 4.3, we plot the numerical data (triangles) against analytical predictions
((4.101) and (4.103)) as functions of r fixing n = 2 for several values of α between 0 and 1

2 ,
which correspond to flux ±1, respectively. At these two points, the ratio becomes purely real.
The figures show excellent agreement between numerical data and analytical predictions.

4.6 Concluding remarks

We gave predictions for the symmetry resolved entanglement of quasi-particle state, extending
the results of [77] (in the absence of the flux). For instance, via many different approaches,
we showed the universality of the ratio of charged moments between the excited state and the
ground-state. We also found that the difference of symmetry resolved Rényi entropies does
not lead in general to any universal result (in contrast to the difference of standard entropies
considered in [77]).

Besides the precise form of our predictions, one of the main achievement of our work was the
development of a general framework to tackle the problem. In particular, we showed how few
simple algebraic properties between some twist operators and the local fields lead directly to our
results. This approach turns out to be far more simple and predictive wrt the brute force form
factor expansion (first considered in [77]), and it also looks really promising for further possible
applications (other entanglement measures, dynamics).

Some questions are still open. We mentioned that for CFTs (say massless free theories) even
if the low-lying excited states do not follow our predictions, some finite energy excitations are
expected to do so. If that is true, it means that while the edge of the spectrum of CFTs is
truly theory dependent, some general features at finite energy might be universal, similarly as it
happens in the middle of the spectrum (finite energy density). It would be interesting to analyse
this mechanism, trying to understand a possible universality for the correlations functions of
heavy states in CFTs.
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Another question regards the possibility of characterizing the entanglement of excited states
in the middle of the spectrum for theories without a clear quasi-particle description (say non-
integrable). Generically, one expects that the properties of those states might be captured by
Gibbs ensembles, but it is not clear which assumptions are actually needed and if the twist
operator formalism might shed light on these questions.

4.A Form factor computations

In this Appendix, we present the form factor computation of the ratio of charged moments for
the free complex free theories. Beside some technical steps related to the involved combina-
torics structure, we anticipate the importance of two elements that enter the computation: the
(modified) quantization condition for the quasi-particle momenta in the twisted sector and the
universality of the kinematic poles. These ingredients lead directly, after tedious algebra, to the
universal predictions (4.9).

4.A.1 Single-Particle bosonic state

The two-point function in Eq. 4.42 can be computed by inserting a sum over a complete set of
states between the U(1) fields as follows:

n
〈
1+
∣∣ T α

n (0)T̃ α
n (ℓ)

∣∣1+〉n =
∑
{N+}

∑
{M+}

A∗
n({N+}) An({M+})

n∏
p=1

∞∑
m±=0

∑
{J±}

m+∏
j=1

m−∏
r=1

1

m+!m−!

×n ⟨0| [ap (θ)]N
+
p Tp+α(0)a

†
p(θ

+
j )b

†
p(θ

−
r ) |0⟩

n × n ⟨0| ap(θ+j )bp(θ
−
r )T−p−α(ℓ) [a

†
p(θ)]

M+
p |0⟩n ,

(4.104)

and similarly for |1−⟩ (the anti-particle state). The matrix elements involved are the finite-
volume ones. However, as explained in [133, 134] they differ from the infinite-volume ones by
exponentially small corrections in the system-size, thus from now on we do not make this explicit
distinction. Therefore, following closely [77], we express the two-point function as

n
〈
1+
∣∣ T α

n (0)T̃ α
n (ℓ)

∣∣1+〉n =
∑
{N+}

∑
{M+}

A∗
n({N+}) An({M+})

n∏
p=1

∞∑
m±=0

∑
{J±}

1

m+!m−!
(4.105)

× e
iℓ
(∑m+

j=1 P (θ+j )+
∑m−

r=1 P (θ−r )−M+
p P (θ)

)
√
LE(θ)

N+
p +M+

p ∏m+

j=1 LE(θ+j )
∏m−

r=1 LE(θ−r )
Fn,p

N+
p +m++m−(θ

+
1 . . . θ

+
m+ , θ̂, . . . θ̂, θ

−
1 . . . θ

−
m−)

×Fn−p,n

M+
p +m++m−(θ . . . θ, θ̂

−
1 . . . θ̂

−
m− , θ̂

+
1 . . . θ̂

+
m+) ,

being θ̂±j = θ±j + iπ, E(θ) = m cosh θ and P (θ) = m sinh θ the single-particle energy/momentum
respectively, and the F -functions are just the infinite-volume form factors (details can be found
in [77]). The complete formula for the form factors above was given in [77] and they can be
fully expressed as sums of products of two-particle form factors: they are non-vanishing for
N+

p =M+
p = m+ −m−, and zero otherwise.

If the same intermediate rapidity θ+j is paired up with the rapidity of the excited state θ from
the in- and out-states, the dominant contribution in the form factor product will come from
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kinematic poles. In other words, if θ+j ≃ θ two-particle form factors will appear as follows:

Fn,p

N+
p +m++m−(θ

+
1 . . . θ

+
m+ , θ̂ . . . θ̂, . . . ) ≃ N+

p f
n
p+α(θ

+
j − θ̂) (4.106)

×Fn,p

N+
p +m++m−−2

(θ+1 . . . θ
+
j−1θ

+
j+1 . . . θ

+
m+ , θ̂ . . . θ̂ . . . )

Fn−p,n

M+
p +m++m−(θ . . . θ, . . . θ̂

+
1 . . . θ̂

+
m+) ≃M+

p f
n
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×Fn−p,n

M+
p +m++m−−2

(θ . . . θ, . . . θ̂+1 . . . θ̂
+
j−1θ̂

+
j+1 . . . θ̂

+
m+),

where the number of θ̂ (θ) in the arguments of the form factors in the right-hand side term are
now N+

p − 1 (M+
p − 1). The main property of the matrix elements in (4.104) that determines

the final formula for (4.42) is the infinite volume limit of the terms such as

∑
J+∈Z

fnp+α(θ
+ − θ̂)fnn−p−α(θ − θ̂+)eiℓ(P (θ+)−P (θ))

cosh θ cosh θ+
≃

(mL)2
∑
J+
i ∈Z

sin2 π(p+α)
n

π2
e2πir(J

+−I+ p+α
n

)

(J+ − I + p+α
n )2

= (mL)2gnp+α(r) , (4.108)

with gnp+α(r) the functions defined in (4.47) and the indices J+, I are integers resulting from the
quantisation conditions of the rapidities of intermediate states (4.44) and of the rapidity of the
physical one-particle state P (θ) = 2πI with I ∈ Z. In other words, the exact calculation simplifies
once only the leading terms, coming from almost equal incoming/intermediate momenta, are kept
and the form factors approximated close to their poles.

Once all possible contractions with a rapidity of the excited in- and out- state have been
carried out, the leading contribution is expressed as a sum over the intermediate quantum number
J and comes from the terms with M = N . It can be written as

n
〈
1+
∣∣ T α

n (0)T̃ α
n (ℓ)
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× e
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−
m−)

(4.110)

with q+ = m+ − N+
p . Dividing by the vacuum two-point function ⟨0| Tp+α(0)T̃p+α(ℓ) |0⟩, we

eventually obtain the formula (4.46) for the ratio of moments for a one-particle state. We finally
point out that the approximations employed in the intermediate steps, become exact in the limit
L, ℓ → ∞ with ℓ/L and m fixed as explained in [77]. In contrast, one has to be more careful
whenever the typical correlation length m−1 and the size L are compatible. In that case, while
the general approach can be still employed, it is extremely hard to make quantitative predictions
due to the presence of many subtleties that play a role: difference between finite and infinite
volume form factors, explicit form factors needed (not only their value close to the kinematic
poles), etc.
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4.A.2 Single-Particle fermionic state

Below, we present the explicit computation of the two-point function of composite twist fields
in an excited state consisting of a single positively-charged particle. The logic and most of the
intermediate steps are in common with the bosonic case, but some technical differences arise.
Thanks to the factorisation (4.36), we first cast the two-point function as
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where the resolution of the identity is inserted. Notice that since the excitations are fermionic,
the quantization of the Bethe number can be J±

i ∈ Z or J±
i ∈ Z+ 1

2 : for the sake of simplicity,
we will consider the case where these numbers are integer, an assumption that does not play any
significant role in this context.

The non-vanishing contributions in the large L limit come from the terms in the previous
expression in which the rapidity of the particle is contracted with θi, i = 1, . . . , s+ 1. The s+ 1
possible contractions in F p+α,n

2s+2 give rise to:

F p+α,n
2s+2 (θ1, . . . , θs+1; θ̂, θs+2, . . . , θ2s+1)

∼ fnp+α(θi − θ̂)F p+α,n
2s (θ1, . . . , θ̌i, . . . , θs+1; θs+2, . . . , θ2s+1) (4.112)

and close to the kinematical pole we approximate

fnp+α(θi − θ̂) ∼
θ≃θi
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Finally, we can separately perform the s+ 1 summations over the quantum numbers J+
i as
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and, therefore, we obtain
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where we re-labelled the rapidities of the intermediate states: β1 = θs+2, . . . , βs = θ2s+1. We can
perform the product over p, and we get the ratio of charged moments

M1+

n (r;α) =

n−1
2∏

p=−n−1
2

gnp+α(r) = (1− r)n + e2πiαrn.. (4.116)

An analogous result can be obtained for a negatively charged particle, up to the replacement
α→ −α.





Chapter 5

Symmetry-resolved relative entropies
and distances in low-lying excited
states of a CFT

In this chapter, based on [3], we introduce the notion of symmetry-resolved subsytem trace
distance and relative entropies. In particular, we consider the low-lying excited states of a
critical one-dimensional system at finite size L, with an energy proportional to 1/L, and we
develop a systematic approach using CFT techniques. We provide analytical expressions for free
massless Dirac fermions in some cases, making use of bosonization techniques. Moreover, we
exploit the OPE expansion of composite twist fields to provide very general results when the
subsystem size is much smaller than the total system.

5.1 Introduction and definitions

In this section, we review the notion of relative entropies and trace distances, and then we propose
a definition for their symmetry resolution, as done in [3]. For this purpouse, we first consider
two (mixed) states defined by their density matrix ρ and σ and we aim to measure ’how much
they are different’. In this respect, the most studied quantity so far is surely the relative entropy
[144]

S(ρ||σ) = Tr(ρ log ρ)− Tr(ρ log σ), (5.1)

for two (reduced) density matrices ρ and σ. The relative entropy is often interpreted as a measure
of the distinguishability of quantum states. The relative entropy attracted a lot of interest from
the field theory community, see e.g. [145–161], also, but not only, for its relation with the modular
Hamiltonian [162, 163] and quantum null energy condition [164].

However, the relative entropy has a major drawback. Indeed, a proper measure of the dif-
ference between states should be a distance in a mathematical sense, meaning it should be
non-negative, symmetric in its inputs, equal to zero if and only if its two inputs are the same,
and should obey the triangular inequality. Unfortunately, the relative entropy does not match
these requirements, as it is not symmetric in its entries. An important family of distances, all
satisfying the above rules, is given by the Schatten distances

Dn(ρ, σ) =
1

21/n
∥ρ− σ∥n, (5.2)

83
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where n ≥ 1 is a generic real parameter. Here || · ||n stands for the n-norm, see below. It is well
known that the trace distance D(ρ, σ) = 1

2∥ρ − σ∥1 (i.e. (5.2) for n = 1) has several properties
that make it special and more effective compared to the others values of n and even compared
to other distances, see e.g. the examples and discussions in Refs. [39, 165–168].

In our work, we considered the reduced density matrices of a subsystem, say an interval of
length ℓ, associated to different low-energy excited states of a critical system, and we aimed to
distinguish them. In particular, we wanted to understand the differences among these states in
the U(1) symmetry sectors of a given subsystem. To do so, we put together several pieces of
a puzzle already present in the literature, namely: (I) the construction of the RDM in excited
states of a CFT [132, 138], (II) the replica trick for relative entropies [146, 157–159] and distances
[167, 169], (III) the symmetry resolution of these density matrices via charged moments [50, 51].

5.1.1 Symmetry resolved relative entropies and distances

In this section, we recap the notion of symmetry resolution of entanglement measures and provide
new definitions for the measures of the subsystem distinguishability of two states within the
symmetry sector. Namely, we define symmetry resolved relative Rényi entropies and subsystem
Schatten distances.

We start with a quantum theory with a Hilbert space H that admits a decomposition in
sectors as follows

H =
⊕
q

Hq, (5.3)

where q is an index labelling the sector Hq. Although we are mainly interested in sectors
arising from irreducible representations of a group associated with global symmetries (say q
parametrizes the value of a U(1) charge), this is not yet a required assumption. Let us denote
by Πq the linear projector onto the sector Hq under consideration. For any density matrix ρ
satisfying tr(Πqρ) ̸= 0, we can define a conditioned density matrix ρ(q) as

ρ(q) ≡ ΠqρΠq

tr(ΠqρΠq)
, (5.4)

where the denominator ensures the normalisation tr(ρ(q)) = 1. Whenever [ρ,Πq] = 0, it holds
ΠqρΠq = ρΠq = Πqρ. Hereafter, we focus on symmetric states, i.e. such ρ commutes with all
Πq, so that we can decompose the density matrix in a block diagonal form

ρ =
∑
q

p(q)ρ(q), p(q) = tr(ρΠq), (5.5)

where p(q) is the probability of the q sector. In the previous chapters, we only considered the
Rényi entropies of those matrices ρ(q), dubbed as symmetry-resolved entropies, but in principle
other entanglement measures can be considered as well. For instance, given two density matrices
ρ and σ, we define the symmetry-resolved relative entropy (5.1) for each sector q, i.e.,

S(ρ∥σ)(q) ≡ S(ρ(q)∥σ(q)) = tr(ρ(q) log ρ(q))− tr(ρ(q) log σ(q)), (5.6)

as a measure of distinguishability between the states in that sector. In terms of the total density
matrices and projectors, S(ρ∥σ)(q) may be written as

S(ρ∥σ)(q) ≡ −tr(ρ log σΠq)

tr(ρΠq)
+

tr(ρ log ρΠq)

tr(ρΠq)
− log

tr(ρΠq)

tr(σΠq)
. (5.7)
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From the expression above, one shows that the symmetry resolved relative entropies satisfy the
sum rule

S(ρ∥σ) =
∑
q

pρ(q)S(ρ∥σ)(q) +
∑
q

pρ(q) log
pρ(q)

pσ(q)
, (5.8)

where
pρ(q) ≡ tr(ρΠq), pσ(q) ≡ tr(σΠq). (5.9)

Following Refs. [146, 157–159], the relative entropy can be obtained as the replica limit n → 1
of the n-th Rényi entropy of the sector q as

Sn(ρ∥σ)(q) ≡ Sn(ρ(q)∥σ(q)) =
1

1− n
log

tr(ρ(q)σ(q)n−1)

tr(ρ(q)n)
=

1

1− n
log

tr(ρσn−1Πq)(tr(ρΠq))
n−1

tr(ρnΠq)(tr(σΠq))n−1
.

(5.10)
We mention that other more physical forms of Rényi relative entropies exist, see e.g. [157], but
from a replica perspective they just represent an inessential complication.

On the same line, we can define the symmetry resolved Schatten n-distance Dn(ρ, σ) as

Dn(ρ, σ)(q) ≡ Dn(ρ(q), σ(q)) =
1

21/n
∥ρ(q)− σ(q)∥n, (5.11)

where the n-norm of the operator Λ is

∥Λ∥n ≡

(∑
i

λni

)1/n

, (5.12)

with λi being the eigenvalues of
√
Λ†Λ. We recall that for infinite dimensional Hilbert spaces, not

all distances are equivalent, and thus one has in general different notions of indistinguishability
of states. Moreover one has to be particularly careful on how the states are regularised in the
continuum limit, otherwise the distance can diverge or going to zero in an undesired way, see e.g.
Refs. [167, 169] for practical examples. Unfortunately, the natural definition (5.11) of distances
between sectors is untreatable analytically (and also very difficult numerically). For this reason,
we introduce also another notion of (still unnormalised) symmetry resolved distance as

D′
n(ρ, σ)(q) ≡

1

21/n
∥Πq(ρ− σ)∥n =

1

21/n
(tr (|ρ− σ|nΠq))

1/n. (5.13)

As we shall see, D′
n is analytically treatable and it is related to the total n-distance by the

following sum rule ∑
q

(D′
n(ρ, σ)(q))

n = (Dn(ρ, σ))
n. (5.14)

5.1.2 Reduced density matrices and charged moments

Until this point, everything is valid for arbitrary density matrices, independently of their origin.
Here we are interested in entanglement properties and so to the case when the density matrices
correspond to spatial subsystems of a larger system in a pure state |Ψ⟩, with ρ = |Ψ⟩ ⟨Ψ|. Such
spatial bipartition induces the decomposition of the Hilbert space H = HA ⊗ HB so that the
reduced density matrix of the subsystem is

ρA ≡ trB(|Ψ⟩ ⟨Ψ|). (5.15)
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Now we consider a system having an internal U(1) symmetry, meaning that the state ρ commutes
with a local charge operator Q [51] [ρ,Q] = 0. Taking the partial trace of the previous relation,
one gets

[ρA, QA] = 0, (5.16)

i.e. ρA has a block diagonal form with blocks corresponding to the eigenvalues q of QA. An
effective way to write the projectors Πq, particularly useful for field theory calculations, is through
Fourier transform

Πq =

∫ π

−π

dα

2π
eiαQAe−iαq. (5.17)

The reason why this technique, introduced in Ref. [51], is powerful is that it provides a formalism
which connects non local objects, as the symmetry-resolved entanglement measures, to local
quantities, as correlation functions in a replicated theory. Generalizing the method of [51], one
can introduce charged composite moments for the relative entropies and trace distances, whose
Fourier transforms are eventually related to the quantity of interest. For the relative entropy
between two RDMs ρA and σA, we just need to compute the following charged moments

tr(ρAσ
n−1
A eiαQA) , (5.18)

and its Fourier transform

tr(ρAσ
n−1
A Πq) =

∫ π

−π

dα

2π
e−iqα tr(ρAσ

n−1
A eiαQA) (5.19)

readily provides the Rényi relative entropies defined as in Eq. (5.10).
We now consider the subsystem Schatten distance, whose replica trick is based on the expan-

sion of tr(ρA − σA)
n as

tr(ρA − σA)
n =

∑
S
(−)|S| tr

(
ρ1S · · · ρ(n)S

)
, (5.20)

where the summation S is over all the subsets of S0 = {1, · · · , n}, |S| is the cardinality of S and
ρjS = σA if j ∈ S and ρA otherwise. This expression coincides with the Schatten distance only
for n even. All other (real) values of n, including the important n = 1 being the trace distance,
are obtained taking the analytic continuation from the sequence of even n = ne, as explained
in [167, 169]. Crucially, each term in the sum appearing in the rhs of Eq. (5.20) is related to
a partition function on an n-sheeted Riemann surface. In the presence of a flux, Eq. (5.20) is
trivially generalised as

tr
[
(ρA − σA)

neiαQA
]
=
∑
S
(−)|S| tr

(
ρ1S · · · ρ(n)Se

iαQA
)
, (5.21)

whose Fourier transform is exactly D′
n(q) in Eq. (5.13) for even n. It should be now clear why

the distance in Eq. (5.13) is easily computed by replicas, while (5.11) is not.

5.2 From replicas and charged twist fields to symmetry resolved
relative entropies and distances

In the replica approach, the moments of the RDM, TrρnA, are evaluated for any (1+1)-dimensional
quantum field theory as partition functions over the n-sheeted Riemann surfaceRn in which the n
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sheets (replicas) are cyclically joined along the subsystem A [46, 60]. Similarly [51], the charged
moments find a geometrical interpretation by inserting an Aharonov-Bohm flux through such
surface, so that the total phase accumulated by the field upon going through the entire surface
is eiα. Then the partition function on such modified surface gives the charged moments.

This partition function can be equivalently rewritten in terms of the correlator of twist fields
in the replicated theory. Those fields are characterized by the commutation relations with local
observables, and for a U(1) bosonic field theory, they read as as [47, 51, 60]

Tn,α(x, τ)ϕj(x′, τ) =

{
ϕj+1(x

′, τ)eiαδj,nTn,α(x, τ), if x < x′,

ϕj(x
′, τ)Tn,α(x, τ), otherwise.

(5.22)

Similarly, one introduces the field T̃n,α = T †
n,α that introduces a flux e−iα between the 1st and

the n-th replica, and it implements the replica permutation j → j − 1. We will refer to Tn,α for
α ̸= 0 as the charged (or composite) twist field while to Tn ≡ Tn,0 as the standard twist field. For
later purpose, it is useful to work out the OPE of the charged twist fields, and we do it in the
following subsection.

5.2.1 Operator product expansion of twist fields

In this subsection, we first review the construction of the OPE of standard twist fields (following
Refs. [170–172]), and then we generalise these results to charged twist fields.

Let us consider a given CFT of central charge c, and we focus on its holomorphic sector (the
antiholomorphic sector is similarly treated). We write the full set of primaries as

{Oa}a. (5.23)

We refer to CFTn as the theory built with n replicas of the original CFT with central charge is
nc (say CFTn ≡ CFT⊗n). A full set of operators which are primary w.r.t all n copies of CFTn

is
{O1

a1 ⊗ · · · ⊗ On
an}, (5.24)

where the upper index is a replica index. This CFTn has a permutation symmetry Zn which can
be promoted to a global symmetry, leading to the construction of the orbifolded theory CFTn/Zn.
The field content of the latter is different from the one of CFTn and, in particular, the twist
fields appear as local operators (a clear and complete treatment of the orbifold construction in
the context of entanglement can be found in [173]). Roughly, the twist field Tn(z) is defined
such that its insertion in the spacetime of the orbifolded theory corresponds to an opening of
a branch-cut in the time slice [z,∞] which connects the j-th replica to the j + 1-th [46]. The

conformal dimension of Tn is read off from three-point function ⟨Tn(z)T̃n(z′)T (w)⟩ with T̃n = T †
n

and the stress-energy tensor of CFTn

T =
n∑

j=1

T j , (5.25)

where T j is a short notation for 1⊗ · · · ⊗ T ⊗ . . . 1 (the stress-energy tensor of the j-th replica).
Through unfolding procedure induced by the transformation ζ(z) = z1/n one gets [46]

⟨Tn(0)T̃n(∞)T (z)⟩
⟨Tn(0)T̃n(∞)⟩

= ⟨
n∑

j=1

(
dζ

dz

)2

T (ζe−i 2πj
n ) +

cn

12
{ζ, z}⟩ = c

24z2

(
n− 1

n

)
, (5.26)
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which is equivalent to say that the scaling dimension of the twist field is hTn = c
24

(
n− 1

n

)
.

Moreover, since T̃n = T †
n , the following fusion is present

[Tn]× [T̃n] → [1], (5.27)

and then all the descendants of the conformal tower of the identity are generated in the OPE
of Tn, T̃n. Similarly, we conclude that the primary (nonidentity) operator Oj

a is not present in
the OPE twist fields, because its one-point function ⟨Oj

a(ζ)⟩ on the plane is zero. However, if
[Oaj ]× [Oak ] → [1] (implying that Oaj and Oak have the same conformal dimension haj = hak),
the following fusion is present

[Tn]× [T̃n] → [Oj
ajO

k
ak
], (5.28)

and the unfolding leads to

⟨Tn(0)T̃n(∞)(Oj
ajOk

ak
)(z = 1)⟩

⟨Tn(0)T̃n(∞)⟩
=

1

nhaj+hak
⟨Oj

aj (ζ = e−i 2πj
n )Ok

ak
(ζ = e−i 2πk

n )⟩. (5.29)

Here products of operators at coinciding points are intended as applied on different sheets on
the unfolded theory, see Ref. [173] for details. All the other fusions between the twist fields and
the other primaries of the replicated theory can be obtained from m-point functions of primaries
in the unreplicated theory.

For the charged twist fields, the discussion follows the same logic, but some additional caveats
arise. Let us first identify the primary operator Vα(z) of the original theory which generates the
U(1) symmetry we are interested in, i.e. it inserts an additional flux eiα, in the time-slice
∈ [z,+∞). The composite twist field Tn,α is constructed by fusing together Tn and Vj=n

α , which

means that it is the lightest operator appearing in the OPE Tn(z)Vj=n
α (0) (see e.g. [98, 99, 113,

174]). We use the convention that the additional flux is inserted between the n-th and the first
replica, but other equivalent choices do not affect the following discussion in any relevant part.

Once one unfolds the theory, the charged twist field generate additional insertions of Vα,V−α,
that were absent for the standard twist fields. In particular, we can employ the latter property
to compute the dimension of the modified twist field [51]

⟨Tn,α(0)T̃n,α(∞)T (z)⟩
⟨Tn(0)T̃n(∞)⟩

=

⟨Vα(0)V−α(∞)

(∑n
j=1

(
dζ
dz

)2
T (ζe−i 2πj

n ) + cn
12{ζ, z}

)
⟩

⟨Vα(0)V−α(∞)⟩
=

hVα
n + hTn
z2

,

(5.30)
so

hTn,α =
hVα

n
+ hTn . (5.31)

As we explain below, the fusion rule Tn,α× (Tn,α)† is eventually reconstructed from (m+2)-point
function of m primaries Ok

ak
and the two symmetry operators Vα(0),V−α(∞). In particular, it

holds

⟨Tn,α(0)T̃n,α(∞)(Oj
ajOk

ak
)(z = 1)⟩

⟨Tn(0)T̃n(∞)⟩
=

1

nhaj+hak
⟨Vα(0)Oj

aj (ζ = e−i 2πj
n )Ok

ak
(ζ = e−i 2πk

n )V−α(∞)⟩,

(5.32)
which is the generalization of (5.29) in the presence of a nontrivial flux. An important dif-
ference is found with the standard twist fields, namely, a single primary operator Oj

aj might
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appear in the OPE Tn,α × (Tn,α)†; this is indeed the case whenever the three-point function

⟨Vα(0)V−α(∞)Oj
aj (1)⟩ is non-vanishing.

Summing up, the OPE Tn,α × T̃n,α restricted to the conformal tower of the identity is

Tn,α(z)T̃n,α(0) = ⟨Tn,α(z)T̃n,α(0)⟩

1 + z2
2hTn,α

nc

n∑
j=1

T j(0) + . . .

 , (5.33)

where ⟨Tn,α(z)T̃n,α(0)⟩ = 1

z
2hTn,α

is the normalized correlator among twist fields computed in the

vacuum. Similarly, the restriction of the OPE in the space of primaries {Oj}j reads

Tn,α(z)T̃n,α(0) = ⟨Tn,α(z)T̃n,α(0)⟩

 zhO

nhO
COVαV−α

n∑
j=1

Oj(0) + . . .

 , (5.34)

and COVαV−α is the OPE coefficient of the fusion [Vα]× [V−α] → [O] in the unreplicated theory.

5.2.2 Charged moments of the excited states

The last ingredient we need is the CFT description of the low-energy excited states. In this
section, we address this task, and eventually we express the charged moments of those excited
states as correlation functions in the original CFT.

Given a local field Υ(x, τ), it is possible to construct an excited state |Υ⟩ inserting Υ at past
infinite imaginary time as

|Υ⟩ ∼ lim
τ→−∞

Υ(x, τ) |0⟩ , (5.35)

where |0⟩ is the vacuum of the CFT. In particular, given ∆ the scaling dimension of Υ, the
energy of the excitation |Υ⟩ is

E =
2π∆

L
. (5.36)

This mapping is known as state-operator correspondence (see, e.g., the textbook [97] for details).
The corresponding field-theoretic representation of the density matrix ρ = |Υ⟩⟨Υ| presents two
insertions of Υ at z = x+ iτ = ±i∞.

We now assume periodic boundary conditions along the space direction, so that the worldsheet
is an infinite cylinder of circumference L. We focus on the subsystem A = [0, ℓ] (embedded in
the system [0, L]) and, for later purpose, we introduce the dimensionless ratio

x ≡ ℓ

L
. (5.37)

This particularly useful, since the quantities we are interested depend on the lengths ℓ, L via x.
Given the excited states, we are now interested in their (charged) moments, and the con-

struction is summarized below. Hereafter, we omit explicitly the subscript A for notational
convenience, denoting by ρΥ ≡ trB(|Υ⟩ ⟨Υ|) the reduced density matrix associated with the state
|Υ⟩, referring to the subsystem A only when strictly necessary.

For an arbitrary operator Υ, tr(ρnΥ) is obtained sewing cyclically along A, n of the cylinders
defining the reduced density matrix ρΥ. Following Ref. [132], we introduce the quantity ratio

F
(n)
Υ (x) ≡

tr(ρnΥ)

tr(ρn1)
, (5.38)
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with ρ1 being the ground-state reduced density matrix. This allows to ’simplify’ the UV divergent

entanglement contributions of the ground-state, so that F
(n)
Υ (x) depends eventually only on

dimensionless parameters. In particular, one obtains [132, 138]

F
(n)
Υ (x) =

〈
n∏

k=1

Υ(z−k )Υ
†(z+k )

〉
Rn

⟨Υ(z−1 )Υ
†(z+1 )⟩nR1

, (5.39)

where z∓k corresponds to the points at past/future infinite respectively of the k-th copy of the
system (k = 1, ..., n) in Rn (R1 is just the cylinder). Clearly, the normalisation factor of the

field Υ does not matter because it cancels out in the ratio (5.39); moreover, F
(1)
Υ (x) = 1 since

the trace of the density matrices is 1.
The correlation functions appearing so far are evaluated over the Riemann surface Rn. How-

ever, it is convenient to ’unfold’ the Riemann surface, going back to a geometry without branch-
cuts. Thus, we apply the conformal mapping [138]

w(z) = −i log

(
−
sin π(z−u)

L

sin π(z−v)
L

)1/n

, (5.40)

and the Riemann surface Rn is transformed into a single cylinder. At this point, one has
to transform also the field Υ under a conformal mapping, a task that in general is involved
(especially for higher descendants [97]). However, if we focus on primary states, describing the
lowest-energy excitations, the transformation law becomes simply

Υ(w, w̄) =

(
dz

dw

)h( dz̄
dw̄

)h̄

Υ(z, z̄), (5.41)

with (h, h̄) the conformal weights of Υ. Hence, for primary operators, one can easily express

F
(n)
Υ (x) in terms of correlation functions over the cylinder. The final result reads [138]

F
(n)
Υ (x) = n−2n(h+h̄) ⟨

∏
k Υ(w−

k )Υ
†(w+

k )⟩cyl
⟨Υ(w−

1 )Υ
†(w+

1 )⟩ncyl
, (5.42)

where w±
k are the points corresponding to z±k through the map w(z), i.e.

w−
k =

π(1 + x) + 2π(k − 1)

n
, w+

k =
π(1− x) + 2π(k − 1)

n
, with k = 1, ..., n. (5.43)

We mention that in the literature it is possible to find also some extension to descendant states
[175–177] and boundary theories [178, 179].

The generalisation in the presence of the flux has been worked out in our previous work [1].
Following this reference, we introduce a generating function associated to |Υ⟩1,

pΥn (α) ≡
tr(ρnΥe

iαQ)

tr(ρnΥ)
(5.44)

1We stress that to make sense of U(1) symmetry resolution for |Υ⟩, we have to be sure that the state has a
definite value of the charge. This is indeed the case if the corresponding field |Υ⟩ (z) has a given charge, namely
it transforms under an irreducible representation of U(1).
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and the ratio

fΥn (α) ≡ pΥn (α)

p1n(α)
. (5.45)

The key idea behind the definitions above was to isolate explicitly the dependence on the flux
eiα, that is the important information for the symmetry resolution. A field theoretic expression
for fΥn (α) can be recovered, and it is eventually expressed as a correlation function of the fields
Υ and Vα. Using the same conventions of Eq. (5.39) for the insertions of Υ and Υ†, we have

fn(α) =

〈
Vα(u1)V−α(v1)

n∏
k=1

Υ(z−k )Υ
†(z+k )

〉
Rn

⟨Vα(u1)V−α(v1)⟩Rn

〈
n∏

k=1

Υ(z−k )Υ
†(z+k )

〉
Rn

. (5.46)

Here u1 and v1 are the points where the flux is inserted (coinciding with the branch points),
which are identified with the points 0 and ℓ of the first replica.

As a last step, we have to express the charged moments necessary for the relative entropies
and subsystem distances are in Eqs. (5.18) and (5.21). They can all be written in terms of
tr(eiαQρ1 . . . ρn) with properly chosen density matrices ρi. The corresponding correlation func-
tions are then the ones for the neutral moments reported in [146, 169] with the additional insertion
of two charge operators Vα. Given some RDMs ρj ≡ trB(|Υj⟩ ⟨Υj |), the charged moments of
interest are conveniently parametrised as

tr(eiαQρ1 . . . ρn)

tr(eiαQρn1)

tr(ρn1)

tr(ρ1 . . . ρn)
=

〈
Vα(0)V−α(∞)

n∏
k=1

Υk(ζ
−
k )Υ†

k(ζ
+
k )

〉
C

⟨Vα(0)V−α(∞)⟩C

〈
n∏

k=1

Υk(ζ
−
k )Υ†

k(ζ
+
k )

〉
C

=

〈
Vα(−i∞)Vα(i∞)

n∏
k=1

Υk(w
−
k )Υ

†
k(w

+
k )

〉
cyl

⟨Vα(−i∞)Vα(i∞)⟩cyl

〈
n∏

k=1

Υk(w
−
k )Υ

†
k(w

+
k )

〉
cyl

. (5.47)

The points ζ∓k , w
∓
k correspond respectively to the infinite past/future points in the k-th sheet of

the Riemann surface (k = 1, . . . , n). Their explicit expression is read off from Eq. (5.43), i.e.

ζ∓k = exp

(
−i2π(k − 1)

n
+
iπ(1± x)

n

)
, w±

k =
2π(k − 1)

n
+
π(1± x)

n
. (5.48)

The locations of these operator insertions in the ζ and w planes are reported in Fig. 5.1.
In the calculation of relative entropies and distances, we are dealing with just two (primary)

fields at a time, says Υ and χ, and we need to work with combinations of the form ρm1
Υ ρm2

χ ρm3
Υ . . . .

Hence, each partition S = (m1, . . . ,mk) of n (m1 + · · · + mk = n) is related to a product of
RDMs according to the rule

S = (m1, . . . ,mk) → AS ≡ ρm1
Υ ρm2

χ ρm3
Υ . . . . (5.49)
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Figure 5.1: Points where the operators are inserted in the correlations
〈
VαV−α

∏n
k=1ΥkΥ

′†
k

〉
in

Eq. (5.47). We report n = 3 for the two geometries, planar (left) and cylindrical (right).

We define also the following quantities

pΥ,χ
S (α) ≡ tr(ASe

iαQ)

tr(AS)
, fΥ,χ

S (α) ≡
pΥ,χ
S (α)

p1n(α)
. (5.50)

With a slight abuse of notation, we will refer to pS(α) as probability generating function. Al-
though pS(α) is normalised as pS(α = 0) = 1, it is not guaranteed that AS is hermitian, nor
that it has non-negative spectrum.

However, none of these complications is a problems for our aims and we can safely define

pΥ,χ
S (q) ≡ tr(ASΠq)

tr(AS)
=

∫ π

−π

dα

2π
pΥ,χ
S (α)e−iαq, (5.51)

although it does not have a direct interpretation as a probability, like it happens for the entropy.
After having set up the framework for our calculation, we are already in position to make

a first fundamental observation, without doing any calculation. Namely, the fluctuations of the
U(1) charge are divergent in the limit L → ∞, as variance grows as logL [51, 180–182]; more
precisely, the way this divergence appear is the same for the ground-state and the low-lying
states, while the differences are seen in the O(1) contribution. Hence, pΥ,χ

S (q) at the leading
order in L is always a Gaussian shaped probability with a variance growing like logL that does
not depend on the choice of the states. In particular, in the limit of L → ∞ with q, ℓ/L fixed,
one can show

pΥ,χ
S (q)

p1n(q)

L→∞−→ 1. (5.52)

Consequently, for the states considered above it always holds

Sn(ρΥ∥ρχ)(q)
L→∞−→ Sn(ρΥ∥ρχ), (5.53)
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and similarly, one can show that
D1(ρΥ, ρχ)(q)

D1(ρΥ, ρχ)
→ 1. (5.54)

The Eqs. above shows that, in the limit we are considering, there is no explicit dependence on
the charge q. This property has been dubbed as equipartition for the entanglement resolution of
a single state [50], and we showed that it holds also for measures of distinguishability (relative
entropies and distance).

5.3 Analytical predictions for the compact boson and the Dirac
fermions

In this section, we provide some explicit expressions for the universal functions of the correlation
functions necessary for relative entropies and subsystems distances, generically given by Eq.
(5.47), and we consider the low-lying states of the compact boson. In some cases, especially
when the calculation becomes too involved, we are able to analyze small subsystem sizes via the
OPE of composite twist fields.

The CFT of the compact boson (or Luttinger liquid) is described by the Euclidean action
[97]

S[φ] =
1

8πK

∫
d2x(∂µφ)

2, (5.55)

with the additional requirement that the bosonic field is compact

φ ∼ φ+ 2π. (5.56)

This CFT has central charge c = 1. The left and right modes of the fields are decoupled, so one
can write in complex coordinates

φ(z, z̄) = ϕ(z) + ϕ̄(z̄). (5.57)

This theory admits a topological U(1) symmetry generated by the following vertex operator

Vα(z, z̄) = ei
α
2π

ϕ(z)+i α
2π

ϕ̄(z̄), (5.58)

that we aim to investigate through symmetry-resolution.The primaries of this CFT and their
conformal weights (h, h̄) are respectively

(i∂ϕ)(z) (1, 0), (i∂̄ϕ̄)(z̄) (0, 1), Vβ,β̄(z, z̄) ≡ eiβϕ(z)+iβ̄ϕ̄(z̄)

(
Kβ2

2
,
Kβ̄2

2

)
. (5.59)

Not all the values of (β, β̄) give rise to physical states, but the set of the allowed values is
quantised (see [97]); however, this discussion is not important for our purposes. We also choose
to deal only with the holomorphic part of the vertex operator (β̄ = 0), keeping β as a free
parameter.

In what follows, we will fix K = 1. This value of K is related to a free Dirac fermion
via bosonisation, corresponding to a lattice Fermi gas which we will use to numerically test
the analytic predictions obtained in the following. In that case, the symmetry is the global
U(1) charge given by the number of particles minus the number of antiparticles. The explicit
correspondence between microscopic low energy excitations of the XX chain and the primary
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operators of the compact boson, via bosonisation techniques, has been discussed in the work by
Alcaraz et al. [132]. We mention that although the Dirac fermions and the compact boson are
related, the correspondence is non-local and their entanglement is different in general (see [170]
for the case of two intervals): however, this issue does not play a role in the following discussion,
as we focus on a single-interval geometry only.

Let us briefly recall the OPE among the primaries [97] of the compact boson, which can be
recovered by their 3-point functions, see Appendix 5.A. The following fusion rules are present

[Vβ]× [V−β] → [1] + [i∂ϕ], [i∂ϕ]× [i∂ϕ] → [1]. (5.60)

The only nontrivial (the others are 1) OPE coefficient is

Ci∂ϕ
VβV−β

= β. (5.61)

We will also make use of the OPE coefficient associated to the generation of the stress-energy
tensor T = 1

2(i∂ϕ)
2, which is fixed by the Virasoro algebra only (see [97]), as

CT
i∂ϕi∂ϕ = 2, CT

VβV−β
= β2. (5.62)

Finally, going to the replica theory, we also need the OPE of the charged twist fields. We will
focus only on the fusion channels 2

Tn,α × (Tn,α)† → 1, i∂ϕ, T, (5.63)

discarding explicitly the generation of the vertex operators. For instance, while are generated in
the OPE, their expectation value is zero for the states we consider (by neutrality condition), and
thus they do not contribute to the quantity we are interested in. In the forthcoming subsections,
we will characterise fΥ,χ

S (α) for different states, giving the exact results when possible or the
leading order, obtained by OPE expansion, for x = ℓ

L → 0 in the other cases.

5.3.1 Universal function for the pair of states Υ = Vβ1 and χ = Vβ2

Let us start from those excited states both associated vertex operators with weight β1 and β2,

i.e. Υ = Vβ1 and χ = Vβ2 . We first consider the universal function f
Vβ1

,Vβ2
S (α) in Eq. (5.45) for

the partition S = (m1,m2), given as

f
Vβ1

,Vβ2
S (α) =

〈
Vα/2π(−i∞)V−α/2π(i∞)

m1∏
k=1

Vβ1(w
−
k )V−β1(w

+
k )

m2∏
k=m1+1

Vβ2(w
−
k )V−β2(w

+
k )

〉
cyl

⟨Vα/2π(−i∞)V−α/2π(i∞)⟩cyl

〈
m1∏
k=1

Vβ1(w
−
k )V−β1(w

+
k )

m2∏
k=m1+1

Vβ2(w
−
k )V−β2(w

+
k )

〉
cyl

=

m1∏
k=1

⟨Vα/2π(−i∞)Vβ1(w
−
k )⟩cyl⟨V−α/2π(i∞)Vβ1(w

−
k )⟩cyl

⟨Vα/2π(−i∞)V−β1(w
+
k )⟩cyl⟨V−α/2π(i∞)V−β1(w

+
k )⟩cyl

m2∏
k=m1+1

⟨Vα/2π(−i∞)Vβ2(w
−
k )⟩cyl⟨V−α/2π(i∞)Vβ2(w

−
k )⟩cyl

⟨Vα/2π(−i∞)V−β2(w
+
k )⟩cyl⟨V−α/2π(i∞)V−β2(w

+
k )⟩cyl. (5.64)

2To be precise, we are considering the generation of the following operators in the orbifold theory: 1⊗ · · · ⊗ 1,
1⊗ . . . i∂ϕ · · · ⊗ 1, 1⊗ . . . T · · · ⊗ 1, where i∂ϕ and T are inserted in any of the n replicas.
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Here we used the correlation function between vertex operators on the cylinder

⟨
∏
j

Vβj
(wj)⟩cyl =

∏
i<j

(
L

π
sin

π(wi − wj)

L

)βiβj

, if
∑
j

βj = 0, (5.65)

while it vanishes if
∑

j βj ̸= 0: the requirement
∑

j βj = 0 is the neutrality condition. All the
correlation functions appearing in the first line of Eq. (5.64) satisfy the neutrality condition, and
so the previous formula can be safely applied. With a slight abuse of notation, we identify (for
notational convenience) the putative two-point correlators in (the rhs of) Eq. (5.64) as

⟨Vβi
(wi)Vβj

(wj)⟩cyl =
(
L

π
sin

π(wi − wj)

L

)βiβj

. (5.66)

Eq. (5.64) has to be regularised due to the insertion of the vertex operators at infinity. One way
to do so is through their insertion at ±iΛ and, only at the end, take the limit Λ → +∞. Doing
so, with calculations similar to those in Ref. [1], one straightforwardly gets

⟨Vα/2π(−i∞)Vβ(w
−
k )⟩cyl⟨V−α/2π(i∞)Vβ(w

−
k )⟩cyl

⟨Vα/2π(−i∞)V−β(w
+
k )⟩cyl⟨V−α/2π(i∞)V−β(w

+
k )⟩cyl = ei

αβx
n . (5.67)

Taking the product over the different k’s we finally obtain the extremely simple form f
Vβ1

,Vβ2
S (α) =

e
iαx
n

[m1β1+m2β2]. Clearly, because of the simple factorisation property of the correlation functions,
if we chose a different partition S, i.e. a different order of insertion of Vβ1 , Vβ2 in the replicase,
we would have got the same result, i.e.

f
Vβ1

,Vβ2
S (α) = e

iαx
n

[m1β1+m2β2], ∀S. (5.68)

As a byproduct, we compare the result (5.68) with the OPE expansion valid in the small x limit,
that is expected to give

f
Vβ1

,Vβ2
S (α) ≃ 1 +

iαx

n
[m1β1 +m2β2] +O(x2). (5.69)

To do so, we first express f
Vβ1

,Vβ2
S (α) as an expectation value of charged twist fields as

f
Vβ1

,Vβ2
S (α) =

⟨Vβ1 , · · · , Vβ2 , · · ·| Tn,α(0)T̃n,α(ℓ) |Vβ1 , · · · , Vβ2 , · · ·⟩
⟨Vβ1 , · · · , Vβ2 , · · ·| Tn(0)T̃n(ℓ) |Vβ1 , · · · , Vβ2 , · · ·⟩

⟨0, . . . , 0| Tn(0)T̃n(ℓ) |0, · · · , 0⟩
⟨0, . . . , 0| Tn,α(0)T̃n,α(ℓ) |0, · · · , 0⟩

.

(5.70)
Restricting our analysis to order O(x) (non-vanishing) contributions in the OPE, we can approx-
imate

Tn(0)T̃n(ℓ) ≃ ⟨Tn(0)T̃n(ℓ)⟩C(1 + o (ℓ)), (5.71)

T α
n (0)T̃ α

n (ℓ) ≃ ⟨Tn(0)T̃n(ℓ)⟩C
(
1 +

ℓ

n
Ci∂ϕ
Vα/2πV−α/2π

∑
j

(i∂ϕ)j(0) + o(ℓ)
)
. (5.72)

The expectation value of
∑

j(i∂ϕ)
j(0) is just the sum of the contributions of each single replica,

namely

⟨0, . . . , 0|
∑
j

(i∂ϕ)j(0) |0, . . . , 0⟩ = 0, (5.73)

⟨Vβ1 , · · · , Vβ2 , · · ·|
∑
j

(i∂ϕ)j(0) |Vβ1 , · · · , Vβ2 , · · ·⟩ =
i2π

L
(m1β1 +m2β2) . (5.74)
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Figure 5.2: Excess of the average charge ⟨q⟩1,Vβ

(1,1) − ⟨q⟩12 as a function of x = ℓ/L for different

values of β (β = −2,−1, 1, 2). The universal CFT results, which are linear functions of x, cf.
Eq. (5.76) are tested against exact numerical result for the XX chain at half-filling (L = 200).

Putting all the pieces together

⟨Vβ1 , · · · , Vβ2 , · · ·| Tn,α(0)T̃n,α(ℓ) |Vβ1 , · · · , Vβ2 , · · ·⟩
⟨Vβ1 , · · · , Vβ2 , · · ·| Tn(0)T̃n(ℓ) |Vβ1 , · · · , Vβ2 , · · ·⟩

⟨0, . . . , 0| Tn(0)T̃n(ℓ) |0, · · · , 0⟩
⟨0, . . . , 0| Tn,α(0)T̃n,α(ℓ) |0, · · · , 0⟩

≃(
1 +

ℓ

n

α

2π

i2π

L
(m1β1 +m2β2)

)
=
(
1 + i

αx

n
(m1β1 +m2β2)

)
, (5.75)

that is precisely the result (5.69) we expected.

In Figs. 5.2 and 5.3 we test the CFT prediction (5.68) against numerics for the XX chain
(obtained with the methods of Appendix 5.B). We focus on the excess of average charge

⟨q⟩Vβ1
,Vβ2

S − ⟨q⟩1n ≡ 1

i

d

dα
f
Vβ1

,Vβ2
S (α)

∣∣∣
α=0

=
m1β1 +m2β2

n
x, (5.76)

and plot it as a function of x = ℓ/L. As shown in Fig. 5.2, for n = 2 and S = (1, 1) the
agreement with numerical data (system size L = 200) is remarkable for different vertex states and
no significant corrections are visible for this relatively small system size. In Fig. 5.3 we consider
instead n = 4 considering the partitions S = (2, 2) and S = (1, 1, 1, 1). We emphasise that now
there are evident deviations of the numerics from the CFT predictions with the numerical data
oscillating around the analytical value, with an amplitude of going to zero as the system size
increases. This behavior is expected from the exact analysis of the symmetry-resolved Rényi
entropies of the XX chain performed in [183], where the deviations from CFT are more severe
as the number of replicas n is increased (and it is a consequence of the presence of well known
unusual corrections to the scaling [184]).

5.3.2 Universal function for the pair of states Υ = i∂ϕ and χ = 1

Here, we compare the excitation associated with Υ = i∂ϕ with the ground state, i.e. χ = 1. In
Ref. [1], we analyzed the symmetry-resolved entropy of i∂ϕ, and we were able to express f i∂ϕn (α)
as a characteristic polynomial of a certain matrix. The argument of [1] was based on the fact
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Figure 5.3: Excess of average charge ⟨q⟩1,V1

S −⟨q⟩14 for the partitions S = (2, 2) and S = (1, 1, 1, 1)
(left/right panel respectively) as a function of x = ℓ/L. The CFT predictions are tested against
numerical data for the XX chain for different system sizes (L = 100, 200, 400, 800). The order of
insertion of the operator is different in the two cases, indeed V1 is present in the first and second
replica for S = (2, 2) while for S = (1, 1, 1, 1) it is inserted in the second and fourth replica;
nevertheless, the analytical prediction is the same which is a special feature of the vertex states.

that 〈
Vα/2π(−i∞)V−α/2π(i∞)

n∏
k=1

(i∂ϕ)(w−
k )(i∂ϕ)(w

+
k )

〉
cyl

⟨Vα/2π(−i∞)V−α/2π(i∞)⟩cyl
(5.77)

has a certain diagrammatic expansion (see the Appendix 5.A) which can be recast in a clever
way. For instance, the order O(α0) is given by the contractions of the derivative operators among
themselves, which can be expressed as a determinant using Wick theorem. At order O(α2) two
derivative operators are contracted with V±α/2π, while the remaining 2(n−1) ones are contracted
among themselves, and so on.

The same argument can be applied to f i∂ϕ,1S , that is the quantity we are interested here. The
only difference is the explicit form of the resulting matrix for the characteristic polynomial. For
instance, for any partition S where ρi∂ϕ appears mi∂ϕ times in the product AS , we construct an
antisymmetric matrix M of dimension 2mi∂ϕ × 2mi∂ϕ with elements

Mij ≡


1

2 sin
(

wi−wj
2

) i ̸= j,

0 i = j,
(5.78)

with {wi} being the set of points in which i∂ϕ is inserted in the cylindrical geometry, cf. Eq.

(5.48). In terms of M , f i∂ϕ,1S (α) is expressed as follows

f i∂ϕ,1S (α) =
det
(
M ± iα

2π

)
det(M)

, (5.79)

that provides an analytical result for any integer n and for any partition S. However, its form
becomes more and more cumbersome when many derivative operators are inserted, as the size
of matrix M increases.
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As an example, let us see what happens in the simplest case, namely f i∂ϕ,1(1,n−1)(α), so that the
matrix M is

M =

(
0 1

2 sin πx
n

− 1
2 sin πx

n
0

)
, ⇒ det

(
M + i

α

2π

)
=

1

4 sin2 πx
n

−
( α
2π

)2
, (5.80)

and we get

f i∂ϕ,1(1,n−1)(α) = 1− α2

π2
sin2

πx

n
. (5.81)

As the number of replicas n increases, it is really unlikely to get a simple close formula that can
be eventually analytically continued in n. A case that has been handled explicitly (see Ref. [1])is

S = (n, 0), when f i∂ϕ,1S = f i∂ϕn (α) that is

f i∂ϕn (α) =
n∏

p=1

(
1−

(α
π

)2 1

( n
sin(πx) − n− 1 + 2p)2

)
=

(
Γ(1 + n+ 1

2(
n

sin(πx) − n− 1) + α
2π )

Γ(1 + 1
2(

n
sin(πx) − n− 1) + α

2π )

)
(
Γ(1 + n+ 1

2(
n

sin(πx) − n− 1)− α
2π )

Γ(1 + 1
2(

n
sin(πx) − n− 1)− α

2π )

)(
Γ(1 + 1

2(
n

sin(πx) − n− 1))

Γ(1 + n+ 1
2(

n
sin(πx) − n− 1))

)2

. (5.82)

We now consider the small x behaviour of f i∂ϕ,1S (α) for a general partition S, which can be
obtained via OPE of charged twist fields.

Let us start with the partition S = (mi∂ϕ, n−mi∂ϕ). The function f i∂ϕ,1S is written in terms
of twist fields as

f i∂ϕ,1S (α) =
⟨i∂ϕ, · · · , 0, · · ·| Tn,α(0)T̃n,α(ℓ) |i∂ϕ, · · · , 0, · · ·⟩
⟨i∂ϕ, · · · , 0, · · ·| Tn(0)T̃n(ℓ) |i∂ϕ, · · · , 0, · · ·⟩

⟨0, . . . , 0| Tn(0)T̃n(ℓ) |0, · · · , 0⟩
⟨0, . . . , 0| Tn,α(0)T̃n,α(ℓ) |0, · · · , 0⟩

,

(5.83)
where |i∂ϕ, . . . , 0, . . .⟩ stands for the state where i∂ϕ appears mi∂ϕ times in the first replicas.
Since the terms of order O(x2) in the OPE come from the expectation value of the stress energy-
tensor, we keep

Tn(0)T̃n(ℓ) = ⟨Tn(0)T̃n(ℓ)⟩

1 + ℓ2
2hTn,α

n

∑
j

T j(0) + o(ℓ2)

 , (5.84)

where we used that the central charge of this model is c = 1. Putting the pieces together, we get

f i∂ϕ,1S (α) ≃ 1 + ℓ2
2hVα

n2

∑
j

(
⟨i∂ϕ, · · · , 0, · · ·|T j(0) |i∂ϕ, · · · , 0, · · ·⟩ − ⟨0, . . . , 0|T j(0) |0, . . . , 0⟩

)
.

(5.85)
Using the dimension of the U(1) twist fields

hVα = hVα/2π
=

1

2

( α
2π

)2
(5.86)
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and (see e.g. [167])∑
j

⟨i∂ϕ, · · · , 0, · · ·|T j(0) |i∂ϕ, · · · , 0, · · ·⟩ − ⟨0, . . . , 0|T j(0) |0, . . . , 0⟩ = −4π2

L2
mi∂ϕ, (5.87)

one finally obtains the desired result

f i∂ϕ,1S (α) ≃ 1−
mi∂ϕ

n2
x2α2. (5.88)

As a consistency check, for mi∂ϕ = 1, Eq. (5.82) reduces to

f i∂ϕn (α) ≃ 1− α2x2

n
. (5.89)

This simple result has an interesting physical meaning: in the small x regime, the contributions
coming from each replica are decoupled (at order O(x2)), that is a consequence of the additivity
of the stress-energy tensor. It also means that, while the partition S = (mi∂ϕ, n − mi∂ϕ) was
chosen for clarity, the same result is recovered for other partitions with mi∂ϕ insertion of the
derivative operator (at the leading order O(x2)).

We now test how the CFT results in this subsection match with the numerical data for the
XX chain. We start from f i∂ϕ,1(1,n−1)(α) in Eq. (5.81). In Fig. 5.4 we plot the CFT result of excess
of variance

⟨∆q2⟩i∂ϕ,1(1,1) − ⟨∆q2⟩i∂ϕ,12 =
1

(i)2
d2

dα2
log f i∂ϕ,1(1,1) (α)

∣∣∣
α=0

=
2

π2
sin2

πx

2
, (5.90)

as a function of x = ℓ/L against the numerics for different sizes (L = 100, 200, 400, 800). The
O(x2) approximation is indistinguishable from the full result up to x ∼ 0.3. As expected, the
numerical data approach the prediction when x is kept fixed and L gets larger. The finite-size
corrections are small for x close to 0, but they become rather large in the opposite regime x→ 1.

In Fig. 5.5 we plot f i∂ϕ,1(1,n−1)(α) for n = 2, 3 (left/right panel respectively) as functions of α
with fixed x and compare it with numerical data. We consider system sizes large enough so that
the finite size-corrections of the excess of variance are negligible; in particular, as n increases a
larger L is required to satisfy the latter requirement (as expected from the ground state results

[183]). The numerical data give a function f i∂ϕ,1(1,n−1)(α) which is always smooth and periodic under
α → α + 2π. Although we expect a singularity at α = ±π from the analytical predictions of
f i∂ϕ,1(1,n−1)(α), the convergence of the numerics to this singularity is slow. This is the reason why in
the neighborhood of α = ±π numerics and CFT do not yet match well and much larger system
sizes are required to reproduce correctly the singularity. A full and detailed explanation of these
phenomena is given in Ref. [185]. We just notice that as x gets larger, the phenomenon is
amplified, as shown in Fig. 5.4.

5.4 Symmetry resolution

In this section, we link the universal results that can be obtained by CFT to the symmetry re-
solved measures of indistinguishability we have introduced (relative entropies and distances). In
principle, one just needs to put together many ingredients that have been characterized carefully
in the previous section, a task that is technically cumbersome. While our original paper exten-
sively analyzed the low-energy states of the compact boson, our current focus is primarily on the
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Figure 5.4: Excess of variance associated to the partition S = (1, 1) of the operators (Υ, χ) =
(i∂ϕ,1). The universal CFT results are compared to the XX chain at half-filling. The numerical
data for different sizes (L = 100, 200, 400, 800) are compared with both the full CFT result (solid
line) and the small x expansion at order O(x2) (dashed line).

overall structure of the results in the thermodynamic limit (with large system size, denoted as L,
and fixed ℓ/L), taking into account the most prominent corrections. We commence by examining
the symmetry resolved relative entropy, and subsequently provide insights into certain aspects
of the distances.

Given ρΥ, ρχ the two RDM associated to the excited states Υ, χ, we express their symmetry
resolved relative entropy as [3]

Sn(ρΥ∥ρχ)(q) = Sn(ρΥ∥ρχ) +
1

1− n
log

pΥ,χ
(1,n−1)(q)

pΥn (q)
+ log

pχ1 (q)

pΥ1 (q)
. (5.91)

As we have discussed already, in the thermodynamic limit, the ratio of probabilities tends to 1
(cf. Eq. (3.84)) leading relative entropy equipartition (5.53), i.e. Sn(ρΥ∥ρχ)(q) ≃ Sn(ρΥ∥ρχ).
Starting from Eq. (5.91), we can systematically characterise the corrections to this asymptotic
behaviour and identify the terms breaking the equipartition. The leading and physically most
important corrections to equipartition comes from the orders O(α) and O(α2) of fΥ,χ

(1,n−1)(α).

At this order, the generalised probabilities appearing in Eq. (5.91) are Gaussian 3, but with
different values of average charge and variance compared to the vacuum. We now compute the
probability distributions appearing in Eq. (5.91) via Fourier transform of the corresponding
charged moments. In particular, we express pΥ,χ

S (α) = p1n(α)f
Υ,χ
S (α), for the partitions S =

(1, n− 1) of interest, and pΥ/χ(α) = p1n(α)f
Υ/χ(α), so that the ground state contribution p1n(α)

is explicitly factorized out. At the leading order, we write p1n(q) as

p1n(α) ≃ exp

(
−α

2

2
⟨∆q2⟩1n

)
, p1n(q) ≃

1√
2π⟨∆q2⟩1n

exp

(
− q2

2⟨∆q2⟩n

)
, (5.92)

where the ground state average charge has been set to 0 (⟨q⟩1n = 1). We recall that the (general-
ized) variances of the ground state diverge logarithmically in the system size, and from CFT [1]

3This leading Gaussian behaviour is a consequence of the α-dependence of the scaling dimension of the modified
twist fields, which leads to a diverging variance in the continuum limit. Other cumulants are present, but they do
not affect the leading behaviour
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Figure 5.5: The universal functions f i∂ϕ,1(1,1) (α) and f i∂ϕ,1(1,2) (α) (left/right panels respectively) as

functions of α for different values of x (x = 1/10, 1/4, 1/2). The agreement with numerical data
for the XX chain at half-filling, is good for small α but it worsens as α gets closer to ±π, as
discussed in the text.

one easily gets

⟨∆q2⟩1n =
1

π2n
log

[
L

π
sin
(
π
ℓ

L

)]
+ κn + o(1) , (5.93)

where the additive constant κn is not universal (but it is known [183] in the XX chain, used for
the numerics). Also pΥ,χ

S (q) is Gaussian, and we write

pΥ,χ
S (α) ≃ exp

(
iα⟨q⟩Υ,χ

S − α2

2
⟨∆q2⟩Υ,χ

S

)
, pΥ,χ

S (q) ≃ 1√
2π⟨∆q2⟩Υ,χ

S

exp

(
−
(q − ⟨q⟩Υ,χ

S )2

2⟨∆q2⟩Υ,χ
S

)
.

(5.94)

The average charge and variance of these distributions are read directly from the expansion
of the universal functions fΥ,χ

S (α)

log fΥ,χ
S (α) = iαaΥ,χ

S − α2

2
bΥ,χ
S +O(α4), (5.95)

and so

⟨q⟩Υ,χ
S = aΥ,χ

S , ⟨∆q2⟩Υ,χ
S = ⟨∆q2⟩1n + bΥ,χ

S . (5.96)

Obviously, the very same formulas remain valid if there is the insertion of a single operator in
pΥn (q) (which indeed correspond to S = (n, 0). Crucially, while the explicit values of these means
and variances shifts (aΥ,χ

S and bΥ,χ
S ) clearly depend on the states and the ratio x = ℓ/L, we know

that they are universal (they are finite in the thermodynamic limit we are considering). This
means that the dominant behavior is basically ruled by the ground state fluctuations. Thus, we
express the symmetry resolved entropy as a formal expansion in the inverse of the ground state
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variances and, after long but straightforward algebra, we eventually get

Sn(ρΥ∥ρχ)(q) = Sn(ρΥ∥ρχ)+

1

2(1− n)⟨∆q2⟩1n

−(q − aΥ,χ
(1,n−1))

2

1−
bΥ,χ
(1,n−1)

⟨∆q2⟩1n

+ (q − aΥn )
2

(
1− bΥn

⟨∆q2⟩1n

)
+

1

2⟨∆q2⟩11

(
(q − aΥ1 )

2

(
1− bΥ1

⟨∆q2⟩11

)
− (q − aχ1 )

2

(
1− bχ1

⟨∆q2⟩11

))
+ . . . . (5.97)

This shows that quite generally equipartition is broken at order (logL)−1 (unless some fine-tuned
cancellations take place), as the relative entropy Sn(ρΥ∥ρχ) is finite in the thermodynamic limit
[159].

For the sake of completeness, we briefly review a result for the short ℓ expansion of the
standard relative entropies [159] that is

S1(ρΥ∥ρχ) ∝ (⟨Ψ⟩Υ − ⟨Ψ⟩χ)2 (ℓ)2∆Ψ + o
(( ℓ

L

)2∆Ψ
)
, (5.98)

where Ψ is the lightest quasi-primary satisfying ⟨Ψ⟩Υ − ⟨Ψ⟩χ ̸= 0. The prefactor is a universal
dimensionless number, that has been worked out explicitly for the case in which Ψ is a primary
operator or the stress-energy tensor T [159]. The expansion (5.98) shows explicitly universal
features, as ⟨Ψ⟩ ∼ 1/L∆Ψ (from scale invariance) and the relative entropy depends on ℓ/L
only. Furthermore, it is evident that the most significant observable (Ψ) effectively captures the
distinction between the two states, Ψ and χ, when considering a small subsystem size, a property
that is ultimately related to the OPE expansion (of twist fields).

We now investigate the distances and their symmetry resolution. To do so, we have to
characterise the following quantity

tr((ρΥ − ρχ)
neΠq), (5.99)

with ne being an even integer and eventually analytically continue the result to any value of ne
[167, 186], in particular ne → 1 that is the most interesting value. In quantum field theory, it is
custom to normalise the distances via the moments of the RDM of vacuum. In particular, it is
convenient to define

Dn(ρΥ, ρχ) ≡
1

2

tr |ρΥ − ρχ|n

tr((ρ1)n)
, (5.100)

as it is universal in the thermodynamic limit. As discussed in Ref. [167] it might be hard
characterise tr((ρΥ − ρχ)

n) analytically. However, in the small x = ℓ/L one gets [167] a simple
expansion coming from the OPE

tr((ρΥ − ρχ)
n)

tr((ρ1)
n)

=
∑

Ψ1,...,Ψn

bΨ1,...,Ψnℓ
∆Ψ1

+···+∆Ψn (⟨Ψ1⟩Υ − ⟨Ψ1⟩χ) . . . (⟨Ψn⟩Υ − ⟨Ψn⟩χ). (5.101)

In the presence of the flux, those techniques can be extended and shows the universality of the

ratio
tr((ρΥ−ρχ)neiαQ)

tr((ρ1)
neiαQ)

in the thermodynamic limit. However, when the Fourier transform is taken

and the symmetry resolution is performed, the ’universality’ is somehow lost (as it happens for
the relative entropies) and one needs to be careful.
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In analogy with [167, 186], we first define

D′
n(ρΥ, ρχ)(q) ≡

1

2

tr (Πq|ρΥ − ρχ|n)
tr((ρ1)

n)
, (5.102)

which differs from D′
n(ρΥ, ρχ)(q) for an overall q-independent constant. D′

n(ρΥ, ρχ)(q) satisfies
the following sum-rule ∑

q

D′
n(ρΥ, ρχ)(q) = Dn(ρΥ, ρχ) (5.103)

analogous to Eq. (5.14). In the limit n → 1, since the RDM is normalised as tr(ρ1) = 1,
D′

n(ρΥ, ρχ)(q) and D
′
n(ρΥ, ρχ)(q) become equal, but for n ̸= 1 this is not the case. The sum rule

above has a simple consequence, that might be disappointing at first sight. For instance, since
Dn(ρΥ, ρχ) is finite while the variance of q diverges in the thermodynamic limit, one has that
D′

n(ρΥ, ρχ)(q) is expected to vanish for any given q. In particular, in [3] we have showed that

D′
n(ρΥ, ρχ)(q) ≃

1√
2π⟨∆q2⟩1n

exp

(
− q2

2⟨∆q2⟩1n

)(
Dn(ρΥ, ρχ) +

cΥ,χ
n

2⟨∆q2⟩1n

(
−1 +

q2

⟨∆q2⟩1n

))
,

(5.104)
with cΥ,χ

n being a universal number (related to the CFT predictions of the main text). This
equation shows that, at leading order, the symmetry resolved distance D′

n(ρΥ, ρχ)(q) is just
given by the total distance Dn(ρΥ, ρχ) weighted with the (ground state) probability distribution
p1n(q). Beyond the leading order, one can investigate systematically the corrections, expressing
D′

n(ρΥ, ρχ)(q)/p
1
n(q) as a formal power series of 1/⟨∆q2⟩1n ∼ 1/ logL.

5.5 Concluding remarks

We extended the measures of indistinguishability, such as the relative entropies and the Schat-
ten distances, by employing the concept of symmetry resolution. Specifically, we introduced a
natural definition using ”projected” density matrices, inspired by the symmetry resolution of
entanglement entropies explored in previous literature. Additionally, we established a formalism
to systematically study the low-energy states of CFTs. By employing this framework, we derived
analytical predictions for the universal ratio of charged moments in compact systems, which we
validated through numerical testing in the XX chain.

It is necessary to include some general remarks, particularly in relation to Chapter 4. We
demonstrated that various aspects of the low-lying states of CFTs are crucial for calculating
entanglement measures. For instance, determining the explicit value of a multi-point correla-
tion function is necessary for providing analytical predictions of the universal ratio of charged
moments. This quantity heavily relies on the specific theory and states under consideration. In
principle, it is also possible to analyze descendant states corresponding to higher energy excita-
tions. Although the overall framework remains intact, dealing with descendant states becomes
technically challenging due to the non-trivial transformation law of descendant [97]. Nonetheless,
the OPE expansion of twist fields suggests that the energy of the states influences the behavior
in small subsystem sizes.

In contrast, the findings presented in Chapter 4 emphasize the simplicity and generality of
certain entanglement measures for a broad class of quasi-particle states. These measures do not
explicitly depend on the energy of excitations or other specific state details. It remains unclear
how the results from this chapter can be reconciled with those of Chapter 4. Nevertheless, it is
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important to note that the CFT approach developed here focuses on low-energy states (with fixed
EL in the thermodynamic limit) of CFTs, while the predictions from Chapter 4 are expected
to be applicable to massless theories for excitations at a given energy (E fixed). In the future,
we plan to revisit the problem and explore the possibility that a pure CFT approach, utilizing
correlation functions of heavy states, could potentially yield results similar to those presented in
Chapter 4.

5.A Correlation functions of primaries for the massless compact
boson

In this appendix, following Ref. [1], we give a graphical representation of the correlation function

⟨Vα1(ζ1) . . . Vαk
(ζk)(i∂ϕ)(z1) . . . (i∂ϕ)(zn)⟩C (5.105)

evaluated in the ground state of a planar geometry. In the following we keep the Luttinger
parameter K generic, but we do not superimpose explicitly the quantization conditions for the
vertex operators, keeping their charge generic.

The starting point is the correlation function between chiral vertex operators

⟨Vα1(ζ1) . . . Vαk
(ζk)⟩C =

∏
i<j

(ζi − ζj)
Kαiαj , (5.106)

valid for
∑

j αj = 0 , otherwise it vanishes. Hereafter, we suppose that the neutrality condition∑
j αj = 0 is always satisfied. The derivative operator i∂ϕ can be represented as follows

(i∂ϕ)(z) = lim
ϵ→0

1

ϵ
(∂Vϵ)(z), (5.107)

allowing us to write (5.105) as a number of derivatives of (5.106). The full expression that arises
is quite involved (see [1] for some details), so we introduced diagrammatic rules to deal with it.

Diagrammatic rules (for the planar geometry C):

• The full correlation function is made by different terms containing different contractions.

• The contraction between (i∂ϕ)(z) and Vα(ζ) gives a factor Kα
ζ−z .

• The contraction between Vαi(zi) and Vαj (ζj) gives a factor (ζi − ζj)
Kαiαj .

• The contraction between (i∂ϕ)(zi) and (i∂ϕ)(zj) gives a factor K
(zi−zj)2

.

• Every (i∂ϕ)(zj) is contracted to just another operator.

• Every Vα(ζj) is contracted to any other operator, keeping the previous constraint.

Fig. 5.6 reports all possible contractions for ⟨Vα1(ζ1)Vα2(ζ2)(i∂ϕ)(z1)(i∂ϕ)(z2)⟩.
In the case of a cylindrical geometry of circumference L, it is enough to make the following

replacement in Eq.(5.106)

ζi − ζj →
L

π
sin

(
π(ζi − ζj)

L

)
. (5.108)

Also, the results for K ̸= 1 can be obtained starting from K = 1 and replacing

αj →
√
Kαj i∂ϕ→

√
Ki∂ϕ, (5.109)

a simple fact that follows directly from Eq. (5.106).
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Figure 5.6: This is a graphical representation for ⟨Vα1(ζ1)Vα2(ζ2)(i∂ϕ)(z1)(i∂ϕ)(z2)⟩.

5.B Numerical methods for the XX chain

We consider the tight-binding 1D chain of free fermions described by the hamiltonian

H = −
∑
j

[
c†jcj+1 + c†j+1cj − 2h

(
c†jcj −

1

2

)]
, (5.110)

where c†j , cj are the creation/annihilation operators of spinless fermions at the site j. One can
study either the Ramond(R) or the Neveu-Schwarz sectors, which correspond to periodic or
antiperiodic boundary conditions respectively. By Jordan-Wigner transformation, this fermion
model is mapped to the XX spin-chain.

The correlation matrix of a given state ρ is defined as

Cij = tr(ρc†icj). (5.111)

The restriction of C to a subsystem A is denoted by CA, that is a ℓ× ℓ matrix with ℓ the number
of sites in A. A quadratic hamiltonian like (5.110) admits a basis of gaussian eigenstates, whose
RDM is also gaussian, i.e.

ρA ≡ trB(ρ) ∝ exp

−
∑
i,j

ϵijc
†
icj

, (5.112)

and ϵ is a ℓ× ℓ matrix. By Wick theorem, ϵ and CA are related as [142, 187]

CA =
1

eϵ + 1
. (5.113)

The proportionality constant in (5.112) ensures that tr(ρA) = 1 and it is given by det(CA).
Given two gaussian states ρ1, ρ2 also their product ρ = ρ1ρ2 is gaussian. In particular, the

correlation matrix for the product ρ is [188, 189]

C = C1 × C2 ≡ C2
1

1− C1 − C2 + 2C1C2
C1. (5.114)

We now focus on the U(1) symmetry associated to the number of lattice fermions, that is

generated by Q ≡
∑

j c
†
jcj . Its full-counting statistics in a given state ρ is

p(α) ≡ tr(ρeiαQ), (5.115)

and for a gaussian state it can be expressed as a function of C [51, 180–182]

p(α) = det
(
Ceiα + (1− C)

)
. (5.116)
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Consequently, the average number of particles ⟨Q⟩ and its variance ⟨∆Q2⟩ are

⟨Q⟩ ≡ 1

i

d

dα
log p(α)

∣∣∣
α=0

= tr(C), (5.117)

⟨∆Q2⟩ ≡ 1

(i)2
d2

dα2
log p(α)

∣∣∣
α=0

= tr(C)− tr(C2). (5.118)

The formula expressed above are sufficient to compute efficiently the charged moments considered
in the main text.



Part II

Interfaces

107





Chapter 6

Rényi entropy and negativity for free
theories at conformal interfaces and
junctions

We are examining the ground state of a quantum system composed of M wires connected through
a junction, with the objective of understanding the entanglement between these wires. Our focus
is on critical systems governed by conformal field theories (CFTs) featuring interface defects. We
present analytical predictions specifically for massless free theories involving fermions and bosons.
Our main goal is to establish a systematic approach for calculating the Rényi entropies for any
division between the wires, as well as the entanglement negativity between two sets of wires
that are not complementary. We have discovered that these measures of entanglement exhibit
logarithmic growth with respect to the size of the wires, which extends the findings of Sakai and
Satoh for a bosonic system consisting of two wires[55]. Crucially, the logarithmic prefactor is
universal and depends on the scattering matrix that describes the defect: it is determined by the
eigenvalues of a specific projection of the scattering matrix, which varies between bosons and
fermions. This chapter is based on Refs. [8, 9]

6.1 CFT approach

In this section, we present a CFT approach to characterize the junction, that is employed in
the evaluation of the entanglement measures. The method, which closely follows Refs. [55, 190,
191], does not require any explicit assumption of the underlying CFT. However, the explicit
construction and the predictions for the entropy and the negativity will be given for complex
free (Dirac) fermions and bosons only.

Let us consider M wires of length L, each of them described by a CFT denoted by

CFTj , j = 1, . . . ,M. (6.1)

These wires are coupled together at a single spatial point, and boundary conditions, encoding
the details of the junction, have to be specified at that point. In Euclidean space-time, the
junction geometry above is pictorially represented by a booklet (with each page corresponding
to one CFT) bound along the imaginary axis at x = 0, see the left panel of Fig. 6.2.

109
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Figure 6.1: The conformal junction: M wires are joined together at x = 0 by a conformally
invariant scattering matrix S. We consider a tripartition in three sets A,B,C withMA,MB,MC

wires each. The entanglement between A and B is given by the negativity. A bipartite configu-
ration is simply obtained by letting MC = 0.

For later convenience, we are going to work in the folded picture in which the system is
represented as a single CFT

M-CFT = CFT1 ⊗ · · · ⊗ CFTM , (6.2)

i.e. the world-sheet is a single infinite strip of width L where M copies of the CFT live. See the
middle panel of Fig. 6.2 for a pictorial representation.

The joining between the distinct wires is specified by the boundary conditions along the lines

Re(w) = 0, Re(w) = L, (6.3)

that correspond to boundary states (see Ref. [97] for details about the correspondence) of
M-CFT.

We require that the boundary condition at Re(w) = L decouples the replicas, and can be
thus described by a boundary state |B⟩ factorised as

|B⟩ = |B1⟩ ⊗ . . . |BM ⟩ , (6.4)

with |Bj⟩ being a boundary state of CFTj .
Instead, the boundary conditions at Re(w) = 0, describing the defect/junction, in general

couple explicitly distinct wires. We denote by |S⟩ the associated boundary state in M-CFT.
In the remainder of the manuscript, the precise details of the boundary state |B⟩ appearing at

Re(w) = L would not matter, and so we do not specify more about it. The physical motivation
is that, as long as it decouples the wires, we do not expect that its features affect (at least at
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Figure 6.2: The folding procedure. The junction in Euclidean spacetime is the booklet with the
CFTs bound in x = 0 (left panel). The folding consists in merging together the M CFTs in a
worldsheet being a single infinite strip with an appropriate boundary state |S⟩ at x = 0 (middle
panel). To compute the entanglement, we cut the system for |w| < ε and w > |L| (dashed lines)
and map the M-CFT onto a rectangle of size log L

ε × π (right) with Re(z) ∈ [log ε, logL] and
Im(z) ∈ [−π/2, π/2].

leading order) the correlation properties among distinct wires. In contrast, this is not the case
for the boundary state |S⟩, and for this reason we have to be careful about its characterisation,
as the features |S⟩ rule the leading behavior of the entanglement measures.

We now describe a convenient conformal map, that eventually will be employed to express
the entanglement measures as thermal partition functions (with proper boundary conditions
along the thermal direction). We first regulate the theory through an ultraviolet and infrared
cut-off, that is a standard procedure to extract the leading divergence of the entropy [59, 192–
195]: we ’cut’ the space-time for |w| < ε and |w| > L (see Fig. 6.2, middle panel), keeping
only ε < |w| < L. In principle, this procedure gives a different boundary field theory, and, to
make the theory well-defined, boundary conditions should be specified at |w| = ε, L (see [195]).
However, these issues do not affect the leading behavior of the entanglement measures, and we
do not discuss them further.

The cut strip can then be mapped into a rectangle by the conformal transformation

z = logw. (6.5)

The semicircles |w| = ε and |w| = L are mapped respectively onto the segments

z ∈ log ε+ i[−π/2, π/2], z ∈ logL+ i[−π/2, π/2]. (6.6)

The line at Re(w) = 0, describing the defect, is mapped onto the two lines Im(z) = ±π/2.
The resulting geometry is thus another strip of spatial length logL/ε and inverse temperature
β = π, as shown in the right panel of Fig. 6.2.

The partition function can be written as

Z = ⟨S| exp (−πH) |S⟩ , (6.7)

where π is the height of the rectangle (see Fig. 6.2), while the hamiltonian is (up to the Casimir
energy which does not play any role in our discussion)

H =
2π

log L
ε

(
L0 + L̄0

)
, (6.8)
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with L0, L̄0 being generators of the Virasoro algebra of CFT1 ⊗ . . .CFTM . In the limit L ≫ ε,
one expects [190] that the free-energy, i.e. the logarithm of the partition function Z, is extensive

logZ ∝ log
L

ε
, (6.9)

with a prefactor carrying information about the boundary conditions in the time-like direction
(Im (z) = ±π/2).

So far, everything is general and no assumption on the bulk theory or the boundary state
|S⟩ has been made yet. Small variations of the method presented so far allow to compute the
entanglement measures we are interested in, that requires the replica trick and the insertion of
an additional branch-cut [46, 60]. While the general picture applies for both boson and fermions,
some technical differences are present, and we prefer to analyse them separately. We do it in the
following sections, giving predictions for the Rényi entropies and the Rényi negativity.

6.2 Free Fermions

6.2.1 Boundary states

Here, we first review the construction of boundary states for a theory of many species of massless
Majorana fermions [190, 196], and then we discuss the straightforward generalisation to Dirac
fermions, obtained through a doubling of the degrees of freedom [97].

We consider the CFT given by M copies of the Majorana free fermionic theory. This CFT
has central charge c = M/2, and it is described in terms of the left/right chiral fermionic fields
denoted by

ψj , ψ̄j , j = 1, . . . ,M. (6.10)

We focus on the Neveu-Schwarz (NS) sector[97], and we decompose the fermionic fields in their
Laurent modes1

ψj(z) =
∑

k∈Z+1/2

ψj
k

zk+1/2
, ψ̄j(z̄) =

∑
k∈Z+1/2

ψ̄j
k

z̄k+1/2
. (6.11)

Within this convention, the creation/annihilation operators of a fermion of the j-th species
in the mode k (k > 0) are ψj

∓k. The number k is (proportional to) the momentum of the particle.
More precisely, one can show that the commutation relations between the fermionic fields and
the Virasoro operators L0, L̄0 are

[L0, ψ
j
−k] = kψj

−k, [L̄0, ψ̄
j
−k] = kψ̄j

−k. (6.12)

A family of boundary states, each one associated with a (boundary) scattering matrix S and
labeled by |S⟩, is characterized by the following consistency condition(

ψj
k + iSjj′ψ̄

j′

−k

)
|S⟩ = 0, (6.13)

where, hereafter, repeated indices are summed over. As shown in [197, 198], the M ×M matrix
S has to be orthogonal in order to represent a physical boundary state 2, namely

S ∈ O(M). (6.14)

1In the Ramond sector, k would be integer and the discussion would be slightly more involved due to the
presence of a zero mode for k = 0.

2This requirement comes from the absence of flows of energy/momentum across the boundary (see Ref. [97]
for details).
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In particular, any possible momentum-dependence of the scattering matrix is ruled out by scale
invariance. The solution for |S⟩ of Eq. (6.13) is simply

|S⟩ =
∏

k∈N−1/2

exp
(
iSjj′ψ

j
−kψ̄

j′

−k

)
|0⟩ , (6.15)

with |0⟩ being the vacuum of the theory. Thus, we interpret |S⟩ as a coherent state constructed
as linear combination of many multiparticle-excitations above the vacuum.

Notice that the different values of k are decoupled, a fact that will simplify the forthcoming
computations. Nevertheless, in general, different species of particles, expressed by the index
j, are coupled, due to the possible occurrence of non-diagonal terms in the matrix S. Those
terms represent physically the amplitudes of transmission between different wires and cause the
entanglement among them.

We now consider a theory of M free Dirac fermions (having central charge c =M), for which
the associated fields are

Ψj , Ψ†j , Ψ
j
, Ψ

†j
, j = 1, . . . ,M, (6.16)

where Ψ and Ψ† represent the particles/antiparticles respectively. This theory is equivalent to
a theory with 2M Majorana fermions, and so the previous derivation is valid also in this case.
The number of degrees of freedom is doubled and one should take an orthogonal real 2M × 2M
scattering matrix S ∈ O(2M). However, we are interested in boundary conditions which preserve
the global U(1) symmetry

Ψ → eiθΨ, Ψ† → e−iθΨ†, (6.17)

that is ultimately related to the conservation of the number of particles in the corresponding
microscopic realization of the theory. This means that S has to satisfy some additional require-
ments. In particular, U(1) symmetry implies that a left/right-moving particle can be produced
from the vacuum (through the boundary state) together with its right/left antiparticle only. In
the end, with a slight abuse of notation, we parametrize the U(1) symmetric boundary states
via complex unitary M ×M matrix

S ∈ U(M), (6.18)

that constrains the corresponding boundary state |S⟩ as(
Ψ†j

k + iSjj′Ψ
j′

−k

)
|S⟩ = 0,

(
Ψj

k + iSjj′Ψ
†j′

−k

)
|S⟩ = 0, (6.19)

with S̄ being the matrix complex conjugated to S. The solution of such constraint is

|S⟩ =
∏

k∈N−1/2

exp
(
iSjj′Ψ

†j
−kΨ

j′

−k + (Ψ ↔ Ψ†)
)
|0⟩ , (6.20)

and it shows the explicit absence of pair-production amplitudes of two particles with the same
charge.

6.2.2 Rényi entropies

We describe how to compute the n-th Rényi entropy of a subset made up of MA ≤ M wires
via the replica trick. In the path integral approach [46, 60], the (ground state) Rényi entropy of
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integer order n can be obtained as a path-integral over a n-sheeted Riemann surface Rn, with
a branch-cut along the subsystem A connecting the i-th and the (i + 1)-th sheet [60]. More
precisely, the moments of the reduced density matrices can be then written in terms of a ratio
of partition functions as

Tr (ρnA) =
Zn

Zn
1

, (6.21)

where Zn is the partition function of Rn, while Zn
1 is just the partition function of a single

replica raised to the n-th power. For free Dirac fermion, the partition function Zn can be further
factorised using the replica diagonalisation as, e.g., shown in [76]. Within this method, the
replicated partition function Zn is expressed as the product of n single-replica U(1) charged
partition functions Z1(α), where a flux eiα is inserted along the branch-cut. In this way Zn can
be rewritten as

Zn =

n−1
2∏

p=−n−1
2

Z1

(
α =

2πp

n

)
. (6.22)

The partition function Z1(α) is, up to an irrelevant normalization factor (that vanishes in the
ratio (6.21) ), the ground-state expectation value of the U(1) generator restricted to A, denoted
by QA, say

Z1(α) = ⟨0|eiαQA |0⟩. (6.23)

In Ref. [76] the factorisation above is derived by writing Zn as a fermionic Gaussian integral,
therefore it strongly relies on the ’Gaussian properties’ of the ground-state. The same consid-
erations can be applied in our case of interest, that is the conformal junction, as the boundary
condition we are considering leads to a ground state that is Gaussian. Technically, the latter
property is related to the explicit expression of the boundary state |S⟩ in Eq. (6.20), that is
Gaussian too (and it obtained as an exponential of a bilinear of fermion applied to the vacuum).

We employ these ideas to compute the charged partition Z1(α) in the junction geometry. In
particular, after the conformal transformation z = logw, we identify the expectation value of
the symmetry operator over the finite-size geometry as a charged thermal partition function as
follows

Z1(α) = ⟨S| eiαQAqL0+L̄0 |S⟩ . (6.24)

Here, the modular parameter q is defined as

q = exp

(
− 2π2

log (L/ε)

)
. (6.25)

We are interested in the subsystem A given by the firstMA species of fermions, corresponding to
the first MA wires, while the complement B is made by the remaining MB = M −MA species.
Therefore, it is convenient to split the set of indices j = 1, . . . ,MA +MB, associated to all the
species, in the following two subsets

a = 1, . . . ,MA, b = 1, . . . ,MB (6.26)

to shorthand the species of A and B respectively. In this way, the charge operator QA is just

QA =
∑

k∈N−1/2

Ψa
−kΨ

a
k + Ψ̄a

−kΨ̄
a
k − (Ψ → Ψ†), (6.27)
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where the summation over the index a is understood. Similarly, it is convenient to decompose S
in a block form as

S =

(
SAA SAB

SBA SBB

)
, (6.28)

with SAA being a MA ×MA matrix, SAB a MA ×MB matrix, and so on.
Our goal then becomes the computation of

Z1(α) =
∏

k∈N−1/2

⟨0| exp
(
−i(S†)jj′Ψ

j
kΨ

†j′
k + (Ψ ↔ Ψ†)

)
qL0+L̄0eiαQA×

exp
(
iSjj′Ψ

†j
−kΨ

j′

−k + (Ψ ↔ Ψ†)
)
|0⟩ , (6.29)

in the limit q → 1, corresponding to L
ε → ∞. We consider the contribution to the partition

function (6.29) coming from the single Laurent mode k, which requires the evaluation of

⟨0| exp
(
−i(S†)jj′Ψ

j
kΨ

†j′
k

)
qL0+L̄0eiαQA exp

(
iSjj′Ψ

†j
−kΨ

j′

−k

)
|0⟩ . (6.30)

The commutation relations among qL0+L̄0eiαQA and the fermionic fields are

qL0+L̄0eiαQAΨ†a
−k = e−iαqkΨ†a

−kq
L0+L̄0eiαQA ,

qL0+L̄0eiαQAΨ†b
−k = qkΨ†b

−kq
L0+L̄0eiαQA ,

qL0+L̄0eiαQAΨ̄a
−k = eiαqkΨ̄a

−kq
L0+L̄0eiαQA ,

qL0+L̄0eiαQAΨ̄b
−k = qkΨ̄b

−kq
L0+L̄0eiαQA ,

(6.31)

and they can be easily derived from the momentum/charge of the Laurent modes. Using the
neutrality of the vacuum and its vanishing energy, namely qL0+L̄0eiαQA |0⟩ = |0⟩, together with
the commutation relations (6.31), we get

⟨0| exp
(
−i(S†)jj′Ψ

j
kΨ

†j′
k

)
qL0+L̄0eiαQA exp

(
iSjj′Ψ

†j
−kΨ

j′

−k

)
|0⟩ =

⟨0| exp
(
−i(S†)jj′Ψ

j
kΨ

†j′
k

)
×

exp
(
iq2kSaa′Ψ

†a
−kΨ

a′

−k + iq2kSbb′Ψ
†b
−kΨ

b′

−k + ie−iαq2kSab′Ψ
†a
−kΨ

b′

−k + ieiαq2kSba′Ψ
†b
−kΨ

a′

−k

)
|0⟩ .
(6.32)

The last expression can be evaluated (see Eq. 6.A in the Appendix), and we get

⟨0| exp
(
−i(S†)jj′Ψ

j
kΨ

†j′
k

)
qL0+L̄0eiαQA exp

(
iSjj′Ψ

†j
−kΨ

j′

−k

)
|0⟩ =

det

((
1 0
0 1

)
+ q2k

(
S†
AA S†

BA

S†
AB S†

BB

)(
SAA e−iαSAB

eiαSBA SBB

))
. (6.33)

Using the unitarity of S, SS† = S†S = 1, one can show that (see Appendix 6.B),

det

((
1 0
0 1

)
+ q2k

(
S†
AA S†

BA

S†
AB S†

BB

)(
SAA e−iαSAB

eiαSBA SBB

))
∝

det
(
1 + 2(S†

AASAA + (1− S†
AASAA) cosα)q

2k + q4k
)
, (6.34)
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where the proportionality constant is an unimportant α-independent prefactor (see the ap-
pendix). Putting all the pieces together and taking into account the contribution coming from
exchanging Ψ ↔ Ψ†, we find the analytic expression of the U(1) charged partition function in
Eq. (6.29)

Z1(α) ∝
∏

k∈N−1/2

det
(
1 + 2(S†

AASAA + (1− S†
AASAA) cosα)q

2k + q4k
)2
. (6.35)

According to Eq. (6.22), the n-sheeted partition function Zn can be written finally as

Zn =

n−1
2∏

p=−n−1
2

Z1(α = 2πp/n) ∝

n−1
2∏

p=−n−1
2

∏
k∈N−1/2

det
(
1 + 2(S†

AASAA + (1− S†
AASAA) cos(2πp/n))q

2k + q4k
)2
, (6.36)

which is the main result of this section, and we discuss it below.
From Eq. (6.36) it is clear that in the presence of several wires belonging to A, MA ≥ 1,

there are MA factorised contributions depending on the eigenvalues of 1− S†
AASAA and coming

from the presence of the determinant of a MA ×MA matrix. In other words, if we define

Zn,Ta =

n−1
2∏

p=−n−1
2

∏
k∈N−1/2

(
1 + 2((1− Ta) + Ta cos(2πp/n))q2k + q4k

)2
, (6.37)

as the contribution coming from the generic eigenvalue Ta ∈ Spec(1− S†
AASAA), one has

Zn =

MA∏
a=1

Zn,Ta . (6.38)

Ta can be somehow interpreted as ’generalized effective’ transmission probability3. Plugging this
relation in the definition of the Rényi entropy, one gets

Sn(A) =

MA∑
a=1

Sn,Ta , (6.39)

with

Sn,Ta =
1

1− n
log

Zn,Ta
Zn
1,Ta

(6.40)

being the Rényi entropy associated to each Ta. For the sake of completeness, we provide the
explicit result for the partition functions and for the entanglement entropies in the relevant limit
L
ε → ∞. Since the total entropy is just given by the sum of MA independent contributions with

3For M = 2 and MA = 1, the only eigenvalue Ta is precisely the transmission probability across the interface.
In the other cases, the analogy is only handwaving (and this is the reason of the sloppy term ’generalized effective’)
as the relation between the entries of SA and its eigenvalues is not simple.
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effective transmission, Ta it is sufficient to write only one term (for a given value of TA). For
convenience, we also define a parameter α′, being a function of α and the effective transmission
Ta, satisfying

2 cosα′ = 2(1− Ta + Ta cosα). (6.41)

The infinite product appearing in Eq. (6.35) which gives the U(1) partition function is explicitly
evaluated in Appendix 6.C, obtaining

Z1(α)

Z1(0)
=

(
θ3
(
α′

2π , q
)

θ3(0, q)

)2

. (6.42)

In the limit q → 1, the leading term of the partition function gives

log
Z1(α)

Z1(0)
≃ 1

log q

(
Li2(−eiα

′
) + Li2(−e−iα′

)− 2Li2(−1)
)
= −

(
α′

2π

)2

log
L

ε
, (6.43)

with α′ given by (6.41). Summing over the n values of the flux α, one gets straightforwardly the
n-th Rényi entropy plugging Eq. (6.43) into Eq. (6.22). After some long but simple algebra, the
final result is

Sn,Ta =

 2

π2(n− 1)

⌊n/2⌋∑
p=1

arcsin2
(√

Ta cos
(2p− 1)π

2n

) log
L

ε
, (6.44)

which matches the one in Ref. [199]. We stress that the major advance in this section, compared
to the existing literature [196, 199] has been to understand how the elements of SAA combine

(via the eigenvalues of (1− S†
AASAA)) to give the entanglement entropy of more than one wire,

while previous studies focused on a single one. For instance, Ref. [196] proposed a conjecture
for the value of the entropy of many wires, that has been ruled out in our work4.

6.2.3 Rényi negativities

In this section, we apply the CFT formalism to the calculation of the negativity between two
subsets of wires of a conformal junction. In particular, we consider here the partial time-reversal
negativity (often just called fermionic negativity), which is a more suitable entanglement measure
for fermionic systems (see [119, 120, 200–206]). We provide a general set up for any number of
wires, giving explicit results only for M = 3 wires. We proceed via the evaluation of the Rényi
negativity for even n = ne, and then we will perform the replica limit ne → 1.

We consider the conformal junction of Fig. 6.1 with the subsystems A,B, and C formed
by three sets of wires. We are interested in the fermionic negativity between A and B, which
requires specific a notion of partial time-reversal transformation of the reduced density matrix
[119] that slightly differ wrt the one usually employed for bosons or spin-system: in this section
we will always refer to these ’fermionic’ definitions.

4In their concluding remarks, Ref.[196] proposed an extension of their research, suggesting that the outcomes
when multiple wires are present can be derived by considering the single wire case and identifying a total trans-
mission probability T . This probability is obtained by summing the squared entries of SAA. However, upon closer
examination, this conjecture is found to be inconsistent with our findings, at least in the general case.
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The replica approach to the negativity [207, 208] starts from the computation of the moments
of the partial transpose reduced density matrix that can be written in terms of a ratio of partition
functions as

Tr(ρTB
AB)

n =
Ẑn

Ẑn
1

. (6.45)

Here Ẑn is a partition function in a n-sheeted Riemann surface built in such a way to implement
the partial time reversal transposition in the subsystem B (see Refs. [207, 208] for more details
on the partial transpose and [119, 120] for the fermion case). The negativity is finally obtained
as [207, 208]

E = lim
ne→1

Tr(ρTB
AB)

ne , (6.46)

i.e. by taking the analytic continuation from the even sequence of replicas, n = ne. For free
fermions, Ẑn can be further factorised, using the replica diagonalisation, due to the Gaussian
properties of the transposed RDM ρTB

AB. In this way, it becomes the product of n single-replica
U(1) charged partition functions, similarly to what has been done for the Rényi entropy in the
previous section.

Let us focus on even n = ne, which is the only necessary object to compute the negativity.
The needed charged partition Ẑ1(α) has twisting phases equal to eiα in A and ei(π−α) in B, i.e.
it reads [119, 202]

Ẑ1(α) = ⟨0| eiαQAe−i(α−π)QB |0⟩ . (6.47)

The operator eiαQA implements a flux eiα over A, while e−i(α−π)QB inverts the flux (α → −α)
and it introduces an additional phase −1 along B, which is the combined net effect of the partial
transpose operation on fermionic systems. The final result of this approach is that the ne-th
Rényi negativity can be computed as

Ene ≡ log Tr
(
|ρTB

AB|
ne

)
= logTr

(
(ρTB

AB)
ne

)
=

ne−1
2∑

p=−ne−1
2

log
Ẑ1(α = 2πp/ne)

Ẑ1(0)
. (6.48)

So far the discussion is general, and it refers to any free fermionic system with U(1) symmetry.
We now express the U(1) charged partition function in the junction geometry and, in analogy
with the previous section, we get

Ẑ1(α) = ⟨S| qL0+L̄0eiαQA−i(α−π)QB |S⟩ =∏
k∈N−1/2

⟨0| exp
(
−i(S†)jj′Ψ

j
kΨ

†j′
k + (Ψ ↔ Ψ†)

)
qL0+L̄0×

eiαQA−i(α−π)QB exp
(
iSjj′Ψ

†j
−kΨ

j′

−k + (Ψ ↔ Ψ†)
)
|0⟩ . (6.49)

To proceed for the calculation we restrict to the following specific situation:

• MA,MB,MC = 1, so that the total number of wires is M = 3.

• S is not only unitary but also Hermitian, which means that S2 = 1 and its eigenvalues
can be just ±1. For some physical systems (including the Schrodinger junction [199]), the
hermiticity of the S matrix is a necessary condition for physical consistency. Hence, this is
not at all a very restrictive assumption.
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With these working assumptions, it is possible to obtain nice analytic results in a rather compact
form. It is clear from Eq. (6.49) that the key object to be evaluated is

⟨0| exp
(
−iSjj′Ψ

j
kΨ

†j′
k

)
qL0+L̄0eiαQA−i(α−π)QB exp

(
iSjj′Ψ

†j
−kΨ

j′

−k

)
|0⟩ =

det

1 + q2kS

 SAA −e−i2αSAB e−iαSAC

−ei2αSBA SBB −eiαSBC

eiαSCA −e−iαSCB SCC

 , (6.50)

where we used the commutation relations between qL0+L̄0eiαQA−i(α−π)QB and the fields (see Eq.
(6.31)), and the formulas in Appendix 6.A, which provides the vacuum expectation value. The
determinant of the 3× 3 matrix appearing in (6.50) can be evaluated directly, and the working
assumption S† = S simplifies its expression, as we see below. We first define the matrix O as

O = S

 SAA −e−i2αSAB e−iαSAC

−ei2αSBA SBB −eiαSBC

eiαSCA −e−iαSCB SCC

 , (6.51)

and we verify the following properties:

• O is unitary (OO† = 1) and its eigenvalues are phases;

• det(O) = 1 and the product of the eigenvalues is 1;

• O = SO†S and the spectrum of O is thus invariant under complex conjugation, a feature
that relies on our hermiticity assumption S = S†.

These properties imply that the spectrum of O has to take this form

Spec (O) = {1, eiα̂′
, e−iα̂′}, (6.52)

with α̂′ a real parameter. After straightforward linear algebra, we can finally rewrite the deter-
minant in Eq. (6.50) as

det
(
1 + q2kO

)
= (1 + q2k)(1 + 2 cos α̂′q2k + q4k), (6.53)

and the explicit expression of α̂′ as a function of the S matrix is

2 cos α̂′ = −1+S2
AA+S

2
BB+S2

CC+(−1−S2
CC+S2

BB+S2
AA) cos(2α)+2(S2

BB−S2
AA) cosα. (6.54)

It is worth notice that α̂′ depends on the matrix S only through its diagonal entries.
Putting all the pieces together, we express the partition function Ẑ1(α) as

Ẑ1(α) =
∏

k∈N−1/2

(1 + q2k)2(1 + 2 cos α̂′q2k + q4k)2. (6.55)

We find the same formal structure of the partition function which appeared for the Rényi en-
tropies in Eq. (6.35), up to the replacement α′ → α̂′. Analogously to Eq. (6.43), for L/ϵ ≫ 1,
we have

log
Ẑ1(α)

Ẑ1(0)
≃ −

(
α̂′

2π

)2

log
L

ε
, (6.56)
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with α̂′ given by Eq. (6.54), which is the main result of this section. Indeed, by plugging this
result into Eq. (6.48), we obtain the Rényi negativities

Ene = −
( 1

4π2

(ne−1)/2∑
p=−(ne−1)/2

arccos2
(
S2
CC + (−1− S2

CC + S2
BB + S2

AA) cos(2πp/ne)
2+

+(S2
BB − S2

AA) cos(2πp/ne)
) )

log
L

ε
. (6.57)

We provide few simple consistency checks in some limits. If the wire C is decoupled from the
other two, then S2

CC = 1 and the transmission probability between A and B is 1−S2
AA = 1−S2

BB.
In that case

2 cos α̂′ = 2S2
AA − 2(1− S2

AA) cos(2α). (6.58)

This value of α̂′ is the same one would obtain for α′ in the U(1) partition function of A and
B in the presence of a flux −ei2α inserted along A. The reason is that in this limit the system
becomes invariant under the U(1) symmetry generated by QA +QB and, thanks to

eiαQA−i(α−π)QB = e−i(α−π)(QB+QA)ei(2α−π)QA , (6.59)

one recognises an equivalence with the insertion of ei(2α−π)QA .
Finally, we consider α = π/2 because it corresponds to the evaluation of the 2-Rényi nega-

tivity (indeed, from Eq. (6.48), E2 = log
(
Ẑ1(π/2)Ẑ1(−π/2)/Ẑ2

1 (0)
)
= 2 log Ẑ1(π/2)/Ẑ1(0)). In

this case,
2 cos α̂′ = 2S2

CC , (6.60)

and there is no explicit dependence on SAA, SBB. Now this parameter is the same α′ one would
get in the presence of a flux eiπ/2 along C only. In this way, we reproduced the general identity
[207]

Tr
((
ρTB
AB

)2)
= Tr

((
ρAB

)2)
, (6.61)

which is the well known relation between the 2-Rényi negativity and the 2-Rényi entropy.
We conclude this section with the analytic continuation ne → 1, that provides the negativity

E . The idea is simple, and it relies mostly on an integral representation of the charged partition
function Ẑ1(α). In particular, the strategy is:

• Using the identities of Appendix 6.C, the U(1) partition function Ẑ1(α) in Eq. (6.56) can
be expressed through an integral representation in the limit q → 1

log
Ẑ1(α)

Ẑ1(0)
=

∑
k∈N−1/2

2 log[(1 + q2k)−2(1 + 2 cosα′q2k + q4k)]

≃ − 1

log q

∫ ∞

0

dt

t
[log
(
1 + 2 cosα′t+ t2

)
− 2 log

(
1 + t2

)
]; (6.62)

• The sum over the value of fluxes (6.57) can now be performed inside the integral. Through
some simple trigonometric identities, this leads to an analytic continuation of the integrand.

• The result is an integral, which represents our analytic continuation, and it is eventually
evaluated numerically.
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The final expression we get (see [8] for the details) is

E =
log(L/ε)

π2

∫ 1

0

dt

t

log
((x1 −

√
−c2 + x21)

1/2 + (x1 +
√

−c2 + x21)
1/2)((x2 −

√
−1 + x22)

1/2 + (x2 +
√

−1 + x22)
1/2)

(1 + t)
,

(6.63)

where the variables a, b, c, x1, x2, which depend on t as well, are defined as

a = 1 + 2S2
CCt+ t2, b = 2(S2

BB − S2
AA)t, c = 2(S2

AA + S2
BB − S2

CC − 1)t, (6.64)

x1 =
b+

√
b2 − 4ac

2
, x2 =

b−
√
b2 − 4ac

2c
. (6.65)

We finally mention that, in the remarkable limit S2
CC = 1, where the third wire is decoupled

from the other two, E gives the 1/2-Rényi entropy (as ρAB is now a pure state, see Ref. [209]).
In this case, we obtain

E =
1

π2

∫ 1

0

dt

t
log

(
1 +

2
√
t
√

1− S2
AA

1 + t

)
=

1

π2
arcsin

(√
1− S2

AA

)(
π − arcsin

√
1− S2

AA

)
,

(6.66)
a result that has been obtained already in Ref. [199].

6.3 Free Bosons

We consider the junction CFT of complex free boson, and we characterize the entanglement
among the wires. As we will see, the salient features are shared with the Dirac fermions (con-
sidered in Sec. 6.2). Specifically, we examine a specific set of boundary conditions that rely
on a single-particle scattering matrix, denoted as S. The entanglement of the ground state is
ultimately expressed through functions of the matrix elements of S. We should note that the
bosonic system discussed in this section is unrelated, in terms of bosonization, to the fermionic
system of Sec. 6.2. As we demonstrate, the quantitative predictions for the R’enyi entropies and
negativities differ explicitly between the two systems.

6.3.1 Boundary states

In this section, we review the characterisation of the boundary states of a multispecies free
complex boson, following [190, 196]. We emphasise that a complex bosonic system can be
expressed as two copies of a real bosonic one, thus one can generalise the results available for
real bosons via a doubling of the degrees of freedom. In particular, a theory made byM complex
bosonic species has a total central charge

c = 2M, (6.67)

since each real bosonic specie carries a central charge c = 1 [97]. We denote the left/right
components of the j-th species of the field Φ as

Φj(z), Φ̄j(z̄), j = 1, . . . ,M, (6.68)
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and, similarly, for the antiparticle field Φ† we use the following symbols

(Φ†)j(z), (Φ̄†)j(z̄), j = 1, . . . ,M. (6.69)

Expanding the fields in their Laurent modes via radial quantisation [97], it is possible to extract
the creation/annihilation operator. In fact, to each mode, parametrised by a natural number
k ∈ N, we can associate an operator Φj

−k, which creates a left-moving particle of the j-th species,

and an annihilation operator Φj
k that destroys it. For the sake of convenience, we normalise the

Fourier modes so that their commutation relations are5

[Φj
k,Φ

j′

−k′ ] = δj,j′δk,k′ , k, k′ > 0, j, j′ = 1, . . . ,M. (6.70)

The same construction applies for the right modes, and similarly to the left/right modes of the
antiparticle field Φ†.

Particular emphasis needs to be placed on the zero-mode, that is k = 0. The zero-modes of
the fields commute among each other

[Φj
0,Φ

j′

0 ] = 0, j, j′ = 1, . . . ,M (6.71)

as explained in [97], and with the other modes, thus they can be regarded as constants of motion.
For the sake of simplicity, we will assume that

Φj
0 |0⟩ = Φ̄j

0 |0⟩ = (Φ†)j0 |0⟩ = (Φ̄†)j0 |0⟩ = 0, (6.72)

which amounts to neglect the presence of the zero modes. This technical assumption does not
spoil the leading behaviour of the entanglement measures we are interested in, and simplifies the
calculations (see [190, 196] for further details about the zero modes contributions).

Let us proceed with the explicit construction of the boundary states, and we require that the
global U(1) symmetry

Φj → eiθΦj , (Φ†)j → e−iθ(Φ†)j , (6.73)

corresponding to the imbalance of particles and antiparticles (that is a symmetry in the bulk),
is preserved. In analogy with the fermions, the set of Gaussian boundary conditions, compatible
with the U(1) symmetry above, is parametrised by a unitary matrix S such that

S ∈ U(M), (6.74)

and the associated boundary states |S⟩ satisfy

(Φi
k − SijΦ

j
−k) |S⟩ = (Φi

k − S̄ijΦ
j
−k) |S⟩ = 0. (6.75)

Here S̄ is the matrix complex conjugated to S and the sum over j is implicit. A solution to the
previous relation is provided by

|S⟩ =
∏
k>0

exp
(
Sjj′Φ

†j
−kΦ

j′

−k + (Φ ↔ Φ†)
)
|0⟩ . (6.76)

5This is rather common in the condensed matter community, but it slightly differs from the ’stringy’ convention
adopted [97].
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6.3.2 Rényi entropies

We now consider a subset A of MA ≤ M wires, and we describe how to compute the Rényi
entropies using the replica trick. As usual, the key objects are the moments of the reduced
density matrix ρA, expressed by [46, 60]

Tr(ρnA) =
Zn

Zn
1

, (6.77)

with Zn being a partition of the n-replicated theory with branch-cuts along A and Z1 the
partition function of the single replica theory. To proceed with the calculations, we employ a
relation between Zn and a U(1)-charged single-replica partition function Z1(α), that is a property
of free bosons. In particular, as shown in [143], we make use of the following factorisation

Zn =
n−1∏
p=0

Z1

(
α =

2πp

n

)
. (6.78)

This is completely analogous to the replica diagonalisation considered for free fermions in Eq.
(6.22): the only difference is given by the values of the flux we have to pick to reconstruct Zn.

In our specific case, where A is given by a set of MA wires, we express the charged partition
function as

Z1(α) = ⟨S| eiαQAqL0+L̄0 |S⟩ , (6.79)

in analogy with the fermions, where the modular parameter q is

q ≡ exp

(
− 2π2

log (L/ε)

)
. (6.80)

We now proceed with the computation of Z1(α) given by

Z1(α) =
∏
k>0

⟨0| exp
(
(S†)jj′Φ

j
kΦ

†j′
k + (Φ ↔ Φ†)

)
qL0+L̄0eiαQA×

exp
(
Sjj′Φ

†j
−kΦ

j′

−k + (Φ ↔ Φ†)
)
|0⟩ . (6.81)

Here L0 and L̄0 act on the creation operators of Φ (or equivalently Φ†) as

[L0,Φ
j
−k] = kΦj

−k, [L0, Φ̄
j
−k] = kΦ̄j

−k. (6.82)

Then, we split the set of indices j = 1, . . . ,MA+MB, associated to all the species, in the following
two sets

a = 1, . . . ,MA, b = 1, . . . ,MB (6.83)

to shorthand the species of A and B respectively. This allows us to write explicitly the U(1)
charge QA, representing the imbalance between particles and antiparticles in A, as

QA =
∑
k>0

Φa
−kΦ

a
k + Φ̄a

−kΦ̄
a
k − (Φ → Φ†), (6.84)
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where the sum over a is implicit. As a consequence, it is possible to derive straightforwardly

qL0+L̄0eiαQAΦ†a
−k = e−iαqkΦ†a

−kq
L0+L̄0eiαQA ,

qL0+L̄0eiαQAΦ†b
−k = qkΦ†b

−kq
L0+L̄0eiαQA ,

qL0+L̄0eiαQAΦ̄a
−k = eiαqkΦ̄a

−kq
L0+L̄0eiαQA ,

qL0+L̄0eiαQAΦ̄b
−k = qkΦ̄b

−kq
L0+L̄0eiαQA .

(6.85)

We now focus on the contribution of a single bosonic mode k of field Φ, namely we evaluate

⟨0| exp
(
(S†)jj′Φ

j
kΦ

†j′
k

)
qL0+L̄0eiαQA exp

(
Sjj′Φ

†j
−kΦ

j′

−k

)
|0⟩ =

⟨0| exp
(
(S†)jj′Φ

j
kΦ

†j′
k

)
×

exp
(
q2kSaa′Φ

†a
−kΦ

a′

−k + q2kSbb′Φ
†b
−kΦ

b′

−k + e−iαq2kSab′Φ
†a
−kΦ

b′

−k + eiαq2kSba′Φ
†b
−kΦ

a′

−k

)
|0⟩ ,
(6.86)

where the property qL0+L̄0eiαQA |0⟩ = |0⟩ has been used. To further represent the expression
above, we decompose S in a block form

S =

(
SAA SAB

SBA SBB

)
, (6.87)

and (see Appendix 6.A) we compute

⟨0| exp
(
(S†)jj′Φ

j
kΦ

†j′
k

)
qL0+L̄0eiαQA exp

(
Sjj′Φ

†j
−kΦ

j′

−k

)
|0⟩ =

det−1

((
1 0
0 1

)
− q2k

(
S†
AA S†

BA

S†
AB S†

BB

)(
SAA e−iαSAB

eiαSBA SBB

))
. (6.88)

Thanks to the unitarity of S, one can show (see Appendix 6.B and Ref. [8] for similar calculations)

det−1

((
1 0
0 1

)
− q2k

(
S†
AA S†

BA

S†
AB S†

BB

)(
SAA e−iαSAB

eiαSBA SBB

))
∝

det−1
(
1− 2(S†

AASAA + (1− S†
AASAA) cosα)q

2k + q4k
)
, (6.89)

up to an irrelevant α-independent proportionality constant. Combining the contributions coming
from all the modes k of Φ and Φ†, one arrives at the following closed expression for the charged
partition function

Z1(α) ∝
∏
k>0

det−2
(
1− 2(S†

AASAA + (1− S†
AASAA) cosα)q

2k + q4k
)
. (6.90)

Summing over the n values of the U(1) flux, we can finally write the n-sheeted partition function
Zn as

Zn =
n−1∏
p=0

Z1(α = 2πp/n) ∝

n−1∏
p=0

∏
k>0

det−2
(
1− 2(S†

AASAA + (1− S†
AASAA) cos(2πp/n))q

2k + q4k
)
. (6.91)
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As shown for fermions in Sec. 6.2, one easily realises that, whenever MA ≥ 1, the bosonic
partition function Zn can be written as a product of MA factorised contributions corresponding
to the eigenvalues of the MA ×MA matrix 1− S†

AASAA.

Indeed, for each eigenvalue Ta ∈ Spec(1− S†
AASAA) we introduce the following quantity

Zn,Ta ≡
n−1∏
p=0

∏
k>0

det−2
(
1− 2((1− Ta) + Ta cos(2πp/n))q2k + q4k

)
, (6.92)

so that Zn can be written as

Zn =

MA∏
a=1

Zn,Ta . (6.93)

Plugging this relation into the definition of the Rényi entropy, we obtain

Sn(A) =

MA∑
a=1

Sn,Ta , Sn,Ta =
1

1− n
log

Zn,Ta
Zn
1,Ta

, (6.94)

where Sn,Ta is the contribution coming from the eigenvalue Ta.
We proceed further to get the leading term in the limit q → 1, corresponding to L

ε → ∞. For
future convenience, we define a parameter α′, depending on α and Ta, as follows

2 cosα′ ≡ 2(1− Ta + Ta cosα), (6.95)

a relation which appeared already for fermions in Eq. (6.41). Using the results of the Appendix
6.C, we first express the product in Eq. (6.90) as a Theta function and we recast it as an interval
(see [9] for details), and we finally obtain

log
Z1,Ta(α)

Z1,Ta(0)
≃ −

(
α′

2π
−
(
α′

2π

)2
)
log

L

ε
, α ∈ [0, 2π], (6.96)

valid in the limit L/ε ≫ 1 which is the main result of this section. Making explicit the Ta
dependence as

α′ = 2arcsin
(√

Ta sin
α

2

)
, (6.97)

we write down its correspondning contribution to the Rényi entropy as

Sn,Ta = log
L

ε

1

n− 1

n−1∑
p=0

[
1

π
arcsin

(√
Ta sin

πp

n

)
−
(
1

π
arcsin

(√
Ta sin

πp

n

))2
]
. (6.98)

As a sanity check, we specialise this prediction to the case M = 2, MA = 1, and

S =

(
0 1
1 0

)
, (6.99)

which describes a completely transmissive interface between two wires. Here SAA = 0 is just a
number and the only eigenvalue of 1− S†

AASAA is thus

Ta = 1. (6.100)
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Inserting this value of Ta in (6.95) one finds α′ = α. Putting all the pieces together we get

Sn(A) =
1

1− n

n−1∑
p=0

log
Z1,Ta(α = 2πp/n)

Z1,Ta(0)
≃ log

L

ε

1

n− 1

n−1∑
p=0

( p
n

)
−
( p
n

)2
=

1

6

(
1 +

1

n

)
log

L

ε
.

(6.101)

For n→ 1, this is compatible with the general prediction available for a boundary CFT of central
charge c = 2 (i.e. the complex boson)

S1(A) ≃
1

3
log

L

ε
. (6.102)

Similarly, for a partially trasmissive interface with scattering matrix

S =

(
−
√
1− T

√
T√

T
√
1− T

)
, (6.103)

the only eigenvalue of 1− S†
AASAA is precisely

Ta = T , (6.104)

with T the parameter entering in the definition of the scattering matrix S. In this case, the
Rényi entropy takes the following form

Sn(A) ≃ log
L

ε

1

n− 1

n−1∑
p=0

[
1

π
arcsin

(√
T sin

πp

n

)
−
(
1

π
arcsin

(√
T sin

πp

n

))2
]
, (6.105)

which gives back (6.101) once specialised to T = 1.
We mention that the result (6.105) already appeared in the literature [55] for the real boson

(i.e. the prefactor of the logarithmic term is half of the one appearing in Eq. (6.105)), together
with its analytical continuation for n→ 1 which is not reported here.

6.3.3 Rényi negativities

The replica approach for the computation of the negativity [207, 208, 210], which eventually
boils down the characterization of single-replica charged partition functions, is closely related to
method described for fermions in Sec. 6.2. There is however an important conceptual difference,
and, while here we consider the standard (bosonic) negativity, in Sec. 6.2 we employed its
fermionic counterpart. This difference gives rise to a different expression of the charged partition
function, and the key quantity we aim to compute is

Ẑ1(α) = ⟨eiαQAe−iαQB ⟩, (6.106)

where the expectation value ⟨...⟩ refers to the ground-state of the junction. As we see, the
discrepancy is the absence of the additional flux −1 over B that is present for fermions (see Eq.
(6.47)). From Ẑ1(α) one recovers the Rényi negativity En via replica diagonalization (see Ref.
[9] for further details) as

En =

n−1∑
p=0

log
Ẑ1(α = 2πp/n)

Ẑ1(0)
. (6.107)



6.3. FREE BOSONS 127

In our case, we focus on A being a set of wires and, after the conformal transformation (6.5)
we express

Ẑ1(α) ≡ ⟨S| qL0+L̄0eiαQA−iαQB |S⟩ =∏
k>0

⟨0| exp
(
(S†)jj′Φ

j
kΦ

†j′
k + (Φ ↔ Φ†)

)
qL0+L̄0×

eiαQA−iαQB exp
(
Sjj′Φ

†j
−kΦ

j′

−k + (Φ ↔ Φ†)
)
|0⟩ , (6.108)

that we evaluate explicitly below. We evaluate the building block entering in our formula as

⟨0| exp
(
Sjj′Φ

j
kΦ

†j′
k

)
qL0+L̄0eiαQA−iαQB exp

(
Sjj′Φ

†j
−kΦ

j′

−k

)
|0⟩ =

det−1

1− q2kS

 SAA e−i2αSAB e−iαSAC

ei2αSBA SBB eiαSBC

eiαSCA e−iαSCB SCC

 , (6.109)

a relation which can be shown through the formula (6.175), as done for the Rényi entropies.
So far, we did not specify explicitly the number of wires belonging to the bipartitions. To pro-

vide some compact analytical results, from now on we restrict to the following specific situations
considered already for fermions

• MA = MB = MC = 1, so that the total number of wires is M = 3 and we compute the
negativity between two of them;

• S is not only unitary but also Hermitian, which implies S2 = 1 and its eigenvalues can be
just ±1.

After some algebraic manipulations, using the unitarity of S and taking the product over the
Fourier modes, one can show that (see [8] for similar computations)

Ẑ1(α) ∝
∏
k>0

(1− 2 cos α̂′q2k + q4k)−2, (6.110)

up to an irrelevant α-independent prefactor, with α̂′ being a function of the S-matrix and the
flux α defined by

2 cos α̂′ = −1+S2
AA+S2

BB +S2
CC +(1+S2

CC −S2
BB −S2

AA) cos(2α)+ 2(1−S2
CC) cosα. (6.111)

We sress that the expression above for α̂′, valid for bosons, differs explicitly from the result of
free fermions in Ref. [8], as a consquence of the different flux insertion in the correspondning
charged partition functions.

The same formal structure of Z1(α), appearing for the calculation of the Rényi entropy, is
found for Ẑ1(α) (see Eq. (6.96)) up to the replacement α′ → α̂′, and we get

log
Ẑ1(α)

Ẑ1(0)
≃ −

(
α̂′

2π
−
(
α̂′

2π

)2
)
log

L

ε
, α ∈ [0, 2π], (6.112)

which already provides a prediction of the Rényi negativity En

Ene =

n−1∑
p=0

log
Ẑ1(2πp/n)

Ẑ1(0)
, (6.113)
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for integer values of n. By plugging the results (6.111) for α̂′ into Eq. (6.113), we finally obtain

En =
n−1∑
p=0

( 1

4π2
arccos2

(
−1 + S2

BB + S2
AA + (1 + S2

CC − S2
BB − S2

AA) cos(2πp/n)
2

+(1− S2
CC) cos(2πp/n)

)
− 1

2π
arccos

(
−1 + S2

BB + S2
AA+

(1 + S2
CC − S2

BB − S2
AA) cos(2πp/n)

2 + (1− S2
CC) cos(2πp/n)

))
log

L

ε
(6.114)

which is the main result of this subsection.
To conclude this part, we give some checks for the charged partition function Ẑ1(α) in specific

simple cases. For instance, let us assume that the third wire is decoupled from A and B, which
implies

S2
CC = 1. (6.115)

In this case A and B are coupled via a transmission probability

1− S2
AA = 1− S2

BB, (6.116)

and α̂′ is given by
2 cos α̂′ = 2S2

AA + 2(1− S2
AA) cos(2α). (6.117)

One recognises that this is the same value one would obtain for the parameter α′ in Eq. (6.95),
once a flux ei2α is inserted along A in the U(1) partition function Z1(α) involving A and B
only. Indeed, in this specific limit the theory becomes invariant under the symmetry generated
by QA +QB, being C decoupled, and since

eiαQA−iαQB = ei2αQA−iα(QA+QB), (6.118)

the equivalence with the insertion of ei2αQA is manifest.
We now consider α = π, whose value is related to the 2-nd Rényi negativity, and from (6.113)

one gets
E2 = log Ẑ1(π). (6.119)

In this case
2 cos α̂′ = 2S2

CC − 2(1− S2
CC), (6.120)

which is the same value we would get for a charged partition function with the insertion of eiπQC

only. This is expected since it follows from the more general identity

Tr((ρTB
AB)

2) = Tr((ρAB)
2) = Tr((ρC)

2), (6.121)

which relates the 2-Rényi negativity to the 2-Rényi entropy.
Finally, we provide an expression for the logarithmic negativity by applying the replica limit

ne → 1 from the expression we got. To this goal, we use the same strategy employed for fermions
in Sec. 6.2, and we summarize below the main finding (the details are found in [9]), that is

E = − log(L/ε)

π2

∫ 1

0

dt

t
×

log
((x1 −

√
x21 − c2)1/2 − (x1 +

√
x21 − c2)1/2)((x2 −

√
x22 − 1)1/2 − (x2 +

√
x22 − 1)1/2)

2(1− t)
,

(6.122)
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with a, b, c, x1, x2 being

a = 1+2(1−S2
AA−S2

BB)t+ t
2, b = 2(S2

CC −1)t, c = 2(S2
AA+S2

BB−S2
CC −1)t, (6.123)

x1 =
b+

√
b2 − 4ac

2
, x2 =

b−
√
b2 − 4ac

2c
. (6.124)

6.4 Numerics for the fermions: Schroedinger junction

In this section, we describe a fermion gas on a star graph modelling a junction made up of M
wires of length L, joined together through a single defect. This is employed as a microscopic
model to test the CFT predictions numerically.

We consider a star graph like the one in Fig. 6.1, with M wires joined together at the vertex
via a defect described by a scattering matrix. We take the laplacian on such graph, and we
construct a Fermi sea with the first MN levels being occupied, following the procedure of Refs.
[199, 211, 212]. The resulting many-body state hosts non-trivial quantum correlation, whose
universal properties are described by the CFT of Dirac fermions (with a defect) in the limit
N ≫ 1, that we aim to characterize below.

We parametrize each point of the junction with a pair

(x, j), x ∈ [0, L], j = 1, . . . ,M, (6.125)

where j is the index identifying the wire and x the spatial coordinate along the wire. The bulk
hamiltonian of the Fermi gas is

H =
M∑
j=1

∫ L

0
dx

1

2

(
∂xΨ

†
j(x)

)
(∂xΨj(x)) , (6.126)

with Ψj ,Ψ
†
j being the fermionic fields associated to the j-th wire (also called Schroedinger field,

from which the name Schroedinger junction). To make this problem well-defined, it is essential to
provide explicit boundary conditions6 at x = 0 and x = L, and this is where the defect appears.
We consider a scale-invariant, say momentum independent, scattering matrix Sjj′ at x = 0

Sjj′ , j, j′ = 1, . . . ,M, (6.127)

which has to be hermitian and unitary [199, 213]

S = S†, SS† = 1. (6.128)

S describes the mixing among the wires, and, in terms of the fermionic fields, it expresses the
boundary conditions

λ(1− S)Ψ(0)− i(1 + S)∂xΨ(0) = 0, (6.129)

where Ψ = {Ψj}j=1,...,M , λ is an arbitrary real parameter with the dimension of mass. We also
fix the boundary conditions at x = L to be of the Dirichlet type, namely

Ψj(L) = 0. (6.130)

6More precisely, to make H self-adjoint, it is necessary to specify the boundary terms. Many choices are
possible, and each boundary condition corresponds to a possible self-adjoint extension of the Laplace operator.
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In order to simplify the treatment, it is possible to diagonalise S via a unitary transformation U
and its eigenvalues are just ±1. In this way, a set of unphysical fields {φj(x)} is introduced

Ψi(x) =

M∑
j=1

Uijφj(x), (6.131)

whose boundary conditions at the defect are just Neumann/Dirichlet ∂xφj(0) = 0, φj(0) = 0
depending on the corresponding eigenvalue of S (±1 respectively); moreover, at x = L they
satisfy φj(0). Hence, the unphysical fields φj(x) have either Neumann or Dirichlet bc (boundary
conditions) at x = 0 and Dirichlet bc’s at x = L, so that it is natural to use the shorthand
notation

ND Neumann-Dirichlet, DD Dirichlet-Dirichlet, (6.132)

to refer to the two possibilities. For these two possible boundary conditions, the single-particle
wavefunctions are

ϕDD
n (x) =

√
2

L
sin

nπx

L
, n = 1, . . .

ϕND
n (x) =

√
2

L
cos

(n− 1/2)πx

L
, n = 1, . . . .

(6.133)

with x ∈ [0, L]. We now consider the ground state with N particles for each unphysical field φj ,
so that the correlation function is

⟨φ†
j(x)φj(x

′)⟩ = δjj′ ×

{
CDD(x, x

′), DD bc’s

CND(x, x
′), ND bc’s,

(6.134)

with

CDD(x, x
′) =

N∑
n=1

ϕDD
n (x)ϕDD

n (x′) =
sin N+1/2

L π(x− x′)

2L sin π(x−x′)
2L

− (x′ → −x′)

CND(x, x
′) =

N∑
n=1

ϕND
n (x)ϕND

n (x′) =
sin N

L π(x− x′)

2L sin π(x−x′)
2L

+ (x′ → −x′).

(6.135)

Going back to the physical fields {Ψj}j , linear algebra straightforwardly gives

Cjj′(x, x
′) ≡ ⟨Ψ†

j(x)Ψj′(x
′)⟩ =

(
1 + S

2

)
jj′
CND(x, x

′) +

(
1− S

2

)
jj′
CDD(x, x

′). (6.136)

Here, the matrices 1±S
2 are the projectors over the eigenspaces of S with eigenvalues ±1 respec-

tively.
The correlation functions (6.136) are continuous kernel of the spatial variables. While it

is possible to work directly with such kernels (as done, e.g., in Refs. [214, 215]), it is more
convenient to work with a finite-dimensional representation of such correlation. Hereafter, we
set L = 1 without loss of generality.

We start noticing that Cjj′(x, x
′) can be thought as an operator acting on the Hilbert space

CM ⊗ L2([0, 1]), with CM representing the space of the wires and L2([0, 1]) being the one of
wave-functions on [0, 1]. Although L2([0, 1]) is an infinite-dimensional Hilbert space, both CND
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and CDD are projectors acting non-trivially only in a finite-dimension subspace H0. We can
choose the following basis for H0

en ≡

{
ϕDD(n, x), 1 ≤ n ≤ N

ϕND(n−N, x), 1 +N ≤ n ≤ 2N,
(6.137)

which is not orthonormal. Careful is needed to represent the projectors CND, CDD onto the
non-orthogonal basis above, that amounts to consider the dual basis of {en} and to compute the
matrix elements among the two basis. We only report the final results, while the details can be
found in [8]. The projectors CND, CDD are represented by the following 2N × 2N block matrix

CDD =

(
1 Q
0 0

)
, CND =

(
0 0
Q† 1

)
, (6.138)

with Q being a N ×N matrix

Qn,n′ =
2n

π (n2 − (n′ − 1/2)2)
, n, n′ = 1, . . . , N. (6.139)

Finally, we represent the correlation kernel Cjj′(x, x
′) in Eq. (6.136) as a (2MN, 2MN) matrix

acting on
CM ⊗H0 ≃ CM ⊗ C2N , (6.140)

as follows

C =
1− S

2
⊗
(
1 Q
0 0

)
+

1 + S

2
⊗
(

0 0
Q† 1

)
. (6.141)

In this way, we first make explicitly that the non-vanishing spectrum of C is finite: this is not
surprising as, since MN particles are present in the systems, we already know that C has to
have only +1 as non-trivial eigenvalue with multiplicity MN (simple algebra shows also that it
is the case for the matrix in Eq. (6.141)). Furthermore, we discover that the projection of the
kernel onto a subset of the wire exhibits a finite non-zero spectrum too. This characteristic is of
utmost importance as it enables efficient numerical computation of entanglement among wires,
as shown in the next sections.

6.4.1 The Rényi entropy between two arbitrary sets of wires

A useful auxiliary quantity for the computation of the entanglement entropy and negativity is the
matrix Γ = 1− 2C (sometimes referred to as covariance matrix) of dimension 2N . We construct
its restriction to an arbitrary set ofMA wire, and we denote it by ΓAA, that is a (2MAN, 2MAN)
matrix. This amounts to construct a linear map

End(CM ⊗ C2N ) → End(CMA ⊗ C2N ), (6.142)

that is obtained by projecting the S matrix over A, and gives Γ → ΓAA. Using that CND, CDD

are projectors (they square to themselves), it is not difficult to show that

1− Γ2
AA = (1− S2

AA)⊗ (CND − CDD)
2, (6.143)

with SAA being a MA ×MA matrix. In the end, the entanglement contribution from the defect
is eventually encoded in the projected S-matrix SAA, that satisfies S

2
AA ≤ 1 (and SAA = S†

AA),
but in general is not unitary, as the inequality is not always saturated.
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Figure 6.3: The Rényi entropies Sn(A) in a four-wire junction where A is made up of two wires.
We choose different values of s, θ, n and we plot it as a function of the number of particles N .
The lines show the curve Cn(s, θ) logN + b0 + b1N

−1/n where the coefficients bi are fitted using
the data for N ≥ 80. The coefficients Cn(s, θ) are obtained by summing over the single-wire
results, as explained in Eq. (6.44)

Once the covariance matrix ΓAA is known, the entanglement Rényi entropy between A and
the complement is [187]

Sn(A) =
1

1− n
Tr log

((
1 + ΓAA

2

)n

+

(
1− ΓAA

2

)n)
=
∑
Ta

Sn,Ta , (6.144)

and it is easy to show that

Sn(A) =
∑
Ta

Sn,Ta , (6.145)

where the Ta’s are the eigenvalues of 1−S2
AA, and Sn,Ta is the Rényi entropy of a single wire with

transmission probability Ta. This analytic results for the microscopic model perfectly match Eq.
(6.44) in CFT.

To conclude this subsection, we present a numerical test, obtained from the exact diagonal-
ization of the matrix ΓA, for the validity of the CFT result. In particular, we check that the
prefactor of logarithmic scaling in the limit N ≫ 1 is compatible with the analytical predictions.
We mention that the case of A consisting of a single wire has been discussed and tested in Ref.
[199], and here we focus on a four-wire junction with the subsystem A consisting of two wires.
The S matrix is chosen of the form

S = U


−
√
1− s2 −s 0 0

−s
√
1− s2 0 0

0 0 −1 0
0 0 0 1

U−1, U =


1 0 0 0
0 − cos θ − cos θ sin θ sin2 θ
0 sin θ − cos2 θ cos θ sin θ
0 0 sin θ cos θ

 .

(6.146)
The numerical results are reported in Fig. 6.3 finding a perfect agreement with CFT.
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6.4.2 Entanglement negativity

We now consider a tripartition A∪B ∪C, where A (B) contains MA (MB) wires, and we study
the entanglement negativity between A and B. This amounts to project the scattering-matrix
S over a subset of rows/columns belonging to A ∪B. In particular, we denote

(CA∪B)jj′(x, x
′) ≡ ⟨Ψ†

j(x)Ψj′(x
′)⟩, j, j′ = 1, . . . ,MA +MB, (6.147)

as the correlation function of A ∪B, and

(SA∪B)jj′ ≡ Sjj′ , j, j′ = 1, . . . ,MA +MB, (6.148)

as the restriction of the scattering matrix; SA∪B is not unitary in general, and it satisfies the
following relations

(SA∪B)
† = (SA∪B), 0 ≤ (SA∪B)

2 ≤ 1. (6.149)

Using the matrix representation of the correlation function C in Eq. (6.141) and restricting it
to A ∪ B, we obtain a (2N(MA +MB), 2N(MA +MB)) matrix CA∪B. The covariance matrix
ΓA∪B has the natural block form

ΓA∪B =

(
ΓAA ΓAB

ΓBA ΓBB

)
, (6.150)

from which we construct the matrix [119, 203]

Γ×
A∪B ≡ 2

1 + Γ2
A∪B

(
−ΓAA 0

0 ΓBB

)
. (6.151)

The latter matrix Γ×
A∪B is the crucial object to write the Rényi negativities Ene which indeed are

[119]

Ene ≡ log Tr (|ρA∪B|ne) =

Tr log

((
1 + Γ×

A∪B
2

)ne/2

+

(
1− Γ×

A∪B
2

)ne/2
)
+

ne
2
Tr log

((
1 + ΓA∪B

2

)2

+

(
1− ΓA∪B

2

)2
)
, (6.152)

The above equation is valid for arbitrary real ne (i.e. also for a non-even integer) and so the
negativity E is obtained just by taking ne = 1.

Eq. (6.152) gives the Rényi negativities in terms of the correlation matrices that, once
numerically evaluated, provides a test of the CFT results for the coefficient of the logarithm
obtained in Section 6.2. For the numerical evaluation, we focus on a three-wire junction and on
the two-parameter family of scattering matrices given by

S = U

−
√
1− s2 −s 0

−s
√
1− s2 0

0 0 −1

U−1, U =

1 0 0
0 − cos θ sin θ
0 sin θ cos θ

 . (6.153)

We select as subsystems A and B the first two wires and compute numerically the Rényi
negativity for several values of s, θ, and N . In Fig. 6.4 we reported the coefficient of the
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Figure 6.4: The coefficient of the logarithmic term of the negativity between two wires (A and
B) as a function of θ, with fixed s = 0.75. The solid line corresponds to Eq. (6.122) while the
points have been obtained through a fit of the numerics with the form a logN + b0 + b1N

−1.

logarithm obtained as follows. We fixed s = 0.75 and we selected some values of θ; for each value
of (s, θ), we calculated numerically the negativity, for several values of N up to 200. We fitted
the obtained numerical results with a logN + b0 + b1N

−1. Fig. 6.4 finally reports the best fit
of a as a function of theta and compares it to the corresponding analytic result, finding perfect
agreement.

6.5 Numerics for the bosons: harmonic chain

In this section, we describe a lattice realisation of a junction made of M wires hosting bosonic
degrees of freedom, employing standard techniques for Gaussian states [187]. These exact com-
putations are the tested for the CFT predictions of the previous sections.

We start with a formulation of the problem in the continuous, that is analogous to the
Schroedinger junction for the fermions. For instance, we consider a one-dimensional complex
massless boson on the line [0, L] with Hamiltonian:

H =

M∑
j=1

∫ L

0
dx Π†

j(x)Πj(x) +
(
∂xΦ

†
j(x)

)
(∂xΦj(x)) , (6.154)

with Πj(x),Π
†
j(x) being the conjugated momentum associated to the bosonic fields Φj(x),Φ

†
j(x)

respectively. The boundary conditions at x = 0 are described by a scattering matrix S, while at
x = L we pick Dirichlet boundary conditions. This is completely equivalent to the Schroedinger
junction, and we do not repeat all the details here.

For the sake of convenience, we decide to discretize the system, taking L/a = N +1, where a
is the lattice spacing (from now on, we set a = 1) and N is integer, and discretizing the Laplace
operator. The main reason behind this choice is that, strictly speaking, the entanglement entropy
of the bosonic system is infinite in the continuous, and it diverges logarithmically in the number
of sites when regularized on a lattice.
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The ground-state correlation functions can be computed [9], and eventually one gets

Xjj′(x, x
′) ≡ ⟨Φ†

j(x)Φ
†
j′(x

′)⟩ =
(
1 + S

2

)
jj′
XND(x, x

′) +

(
1− S

2

)
jj′
XDD(x, x

′),

Pjj′(x, x
′) = ⟨Π†

j(x)Π
†
j′(x

′)⟩ =
(
1 + S

2

)
jj′
PND(x, x

′) +

(
1− S

2

)
jj′
PDD(x, x

′),

(6.155)

with x, x′ = 1, . . . , N . Here, the kernels XND/DD, PND/DD are just

XDD/ND(x, x
′) =

N∑
k=1

ϕ
DD/ND
k (x)ϕ

DD/ND
k (x′)

2ω
DD/ND
k

,

PDD/ND(x, x
′) =

N∑
k=1

ω
DD/ND
k

ϕ
DD/ND
k (x)ϕ

DD/ND
k (x′)

2
,

(6.156)

where the single-particle eigenfunctions/eigenvalues read as (see [53, 208])

• Dirichlet-Dirichlet: ϕDD
k (x) =

√
2

N+1 sin
(

πk x
N+1

)
, ωDD

k = 2 sin
(

πk
2N+2

)
,

• Neumann-Dirichlet: ϕND
k (x) =

√
2

N+1/2 cos
(
π(k−1/2)
N+1/2 (x− 1/2)

)
, ωND

k = 2 sin
(
π(k−1/2)
2N+1

)
.

In this way, the correlation functions appearing in Eq. (6.155) are just MN ×MN matrices,
that can be directly employed to computer the entanglement measures as we explain in the next
sections.

6.5.1 Rényi entropy

Let us now consider the Rényi entropy between the first MA wires and the remaining M −MA

ones. It is convenient to introduce the matrices XA and PA of dimension (MAN,MAN) obtained
from X,P in Eq. (6.155) by restricting j, j′ = 1, . . . ,MA.

In terms of these matrices, the Rényi entropy of A is given by [143]

Sn(A) = − 2

1− n
Tr log

(
(
√
XAPA + 1/2)n − (

√
XAPA − 1/2)n

)
. (6.157)

We mention that the prefactor 2 is absent for real bosons, and it comes from the fact we are
considering complex bosons (say, the degrees of freedom are doubled).

Recalling that SAA is the projected S-matrix in the subsystem S, it is relevant to observe
that

XAPA =
1

4
+

1− S2
AA

4
⊗ (XDD −XND)(PND − PDD), (6.158)

which is a straightforward consequence of XNDPND = XDDPDD = 1
4 . One can show that this

property implies

Sn(A) =
∑
Ta

Sn,Ta , (6.159)

where Ta is an eigenvalue of 1− S2
AA. Therefore, the total Rényi entropy can be decomposed as

a sum of single-wire contributions, in agreement with the CFT result in Eq. (6.94).
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Figure 6.5: The Rényi entropies Sn(A) of the bosonic junction for M = 4 MA = 2. We choose
different values of s, θ, n and we plot it as a function of the number of sites N . The lines show
the curve Cn(s, θ) logN + b0 + b1N

−1/n where the coefficients bi are fitted using the data for
N ≥ 100.

We can use the machinery developed in this section to test the validity of the CFT result for
the logarithmic scaling of the Rényi entropy. We consider the case MA = MB = 2 and the S
matrix is chosen of the form (we observe that the same choice has been done for the fermionic
junctions in [8])

S = U


−
√
1− s2 −s 0 0

−s
√
1− s2 0 0

0 0 −1 0
0 0 0 1

U−1, U =


1 0 0 0
0 − cos θ − cos θ sin θ sin2 θ
0 sin θ − cos2 θ cos θ sin θ
0 0 sin θ cos θ

 .

(6.160)
The numerical results are reported in Fig. 6.5 finding a perfect agreement with the CFT result.

6.5.2 Entanglement negativity

We now consider a tripartition A∪B ∪C, where A (B) contains MA (MB) wires, and we study
the entanglement negativity between A and B. To achieve this goal, we have to consider the
(MA+MB)N × (MA+MB)N correlation matrices XA∪B, PA∪B. As explained in [208] one needs
to construct the correlation matrices associated to the partial transposed reduced density matrix
(see Ref. [208] for details). We recall that he partial transpose operation on A has the net effect
of changing the sign of the momenta corresponding to the transposed subsystem. In other words,
given the block decomposition

PA∪B =

(
PAA PAB

PBA PBB

)
(6.161)

the partial transposition along A produces the correlation matrix

P̃A∪B =

(
PAA −PAB

−PBA PBB

)
, (6.162)
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Figure 6.6: The Rényi negativities En in the three-wire junction for different values of s, θ and
as a function of number of particles N . The lines show the curve Cn(s, θ) logN + b0 + b1N

−1

where the coefficients bi are fitted using the data for N ≥ 80.

while XA∪B is kept untouched. Eventually, one expresses the n-th Rényi negativity between A
and B as

En = −2Tr log

((√
XAP̃A + 1/2

)n

−
(√

XAP̃A − 1/2

)n)
. (6.163)

The replica limit is obtained by taking n→ 1, and it gives

E = −2Tr log

(∣∣∣∣√XAP̃A + 1/2

∣∣∣∣− ∣∣∣∣√XAP̃A − 1/2

∣∣∣∣) . (6.164)

Eq. (6.163) gives the Rényi negativities in terms of the correlation matrices that, once
numerically evaluated, provides a test of the CFT results for the coefficient of the logarithmic
growth. We test a three-wire junction with a two-parameter family of scattering matrices given
by

S = U

−
√
1− s2 −s 0

−s
√
1− s2 0

0 0 −1

U−1, U =

1 0 0
0 − cos θ sin θ
0 sin θ cos θ

 . (6.165)

Here A and B are the first two wires, and we compute numerically the Rényi negativity for
several values of s, θ, and N . In Fig. 6.6 we benchmark the N dependence of the Rényi negativity
and, in particular, the prefactor of the logarithmic term in Eq. (6.122) for different values of n
(right panel) and for the replica limit ne → 1 (left panel). In Fig. 6.7 we test the coefficient of the
logarithm obtained fixing s = 0.75 and varying θ; for each pair (s, θ), we calculate numerically
the negativity, for several values of N up to 300. We use as fitting formula for the numerical
results a logN + b0 + b1N

−1. Fig. 6.7 finally reports the best fit of a as a function of θ, finding
good agreement with the analytic continuation done in Eq. (6.122). The minor discrepancy
close to θ ∼ 0.2 (and to the symmetric point) is due to finite size corrections that for small, but
non-vanishing, s are more relevant.

6.6 Concluding remarks

We have demonstrated that certain measures of entanglement (such as entropies and negativity)
between wires in a critical junction exhibit a universal logarithmic divergence. The prefactor of
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Figure 6.7: The coefficient of the logarithmic term of the negativity between two wires (A and
B) as a function of θ, with fixed s = 0.75. The solid line corresponds to Eq. (6.122) while the
points have been obtained through a fit of the numerics with the form a logN + b0 + b1N

−1.

this divergence is predicted by CFT and can be computed for free theories. It is related to the
eigenvalues of the projections of the scattering matrix that describes the defect.

While our method can be extended to other theories and measures of entanglement, it does
have some notable limitations that we explicitly point out.

• The UV/IR cutoff procedure, based on the work of [55], appears somewhat arbitrary. While
it effectively captures the logarithmic divergences we focused on, it may not be suitable for
characterizing universal finite effects, such as the Affleck Ludwig g-function.

• It is unlikely that the same method can be employed to analyze low-energy excitations or
different regions, such as an interval within a single wire.

In a recent study [10], which addresses global quenches with a defect, we proposed an alternative
approach that potentially resolves the aforementioned issues. Specifically, we highlighted the
possibility of describing R’enyi entropies using twist fields for junction geometries. The key
aspect is that these fields possess a non-trivial boundary scaling dimension at the defect point,
which strongly depends on the boundary scattering properties. We believe that utilizing a twist
field approach could offer greater clarity on various aspects of entanglement compared to the
method presented in this chapter. We intend to revisit this problem in future research.

6.A Expectation values of Gaussian operators

6.A.1 Fermionic case

We want to prove the following identity for the expectation value of Gaussian operators

⟨0| exp
(
O′

jj′ψ
j
kψ̄

j′

k

)
exp

(
Ojj′ψ̄

j
−kψ

j′

−k

)
|0⟩ = det

(
1 +O′O

)
. (6.166)

Here ψj
∓k is the creation/annihilation operator of a Majorana fermion in the k-th left mode of

the j-th species (among the M ones), while ψ̄j
∓k is the corresponding right mover. Ojj′ and O′

jj′

are M ×M matrices and the sum over j, j′ is implicit.
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Before proving Eq. (6.166) in the most general case, we highlight simple cases in which it
holds. Let us suppose there is just one species of fermions, so that we can suppress the indices j, j′

and the matrices O and O′ become numbers. Using that the annihilation operators annihilate
the vacuum, that the fermionic operators square to zero, and applying Wick theorem, one gets

⟨0| exp
(
O′ψkψ̄k

)
exp

(
Oψ̄−kψ−k

)
|0⟩ = ⟨0|

(
1 +O′ψkψ̄k

) (
1 +Oψ̄−kψ−k

)
|0⟩ =

⟨0| 1 +O′Oψkψ̄kψ̄−kψ−k |0⟩ = 1 +O′O. (6.167)

Similarly, when O and O′ commute, one can diagonalise them simultaneously and apply the
previous consideration to show Eq. (6.166).

We provide a general proof of Eq. (6.166) using Gaussian integrals over Grassmann vari-
ables (whose basic properties can be found on [216]). We start by representing the Gaussian
operators as integrals over Grassmann variables. In particular, for each j-th Dirac fermionic
field we associate a pair of Grassmann variables ηj , η̄j , and we express the Gaussian operator

exp
(
Ojj′ψ̄

j
−kψ

j′

−k

)
as follows

exp
(
Ojj′ψ̄

j
−kψ

j′

−k

)
=

∫
dηdη̄ exp

(
−ηj η̄j + ηjOjj′ψ

j′

−k + ψ̄j
−kη̄j

)
, (6.168)

where the sums over j and j′ are implicit. Similarly, we introduce a pair of Grassmann variables

θj , θ̄j to each species j and we express exp
(
O′

jj′ψ
j
kψ̄

j′

k

)
as

exp
(
O′

jj′ψ
j
kψ̄

j′

k

)
=

∫
dθdθ̄ exp

(
−θ̄jθj + ψj

kO
′
jj′θj′ + θ̄jψ̄

j
k

)
. (6.169)

Using the previous relations, we write the product of the two Gaussian operators as follows

⟨0| exp
(
O′

jj′ψ
j
kψ̄

j′

k

)
exp

(
Ojj′ψ̄

j
−kψ

j′

−k

)
|0⟩ =

∫
dηdη̄dθdθ̄ exp

(
−ηj η̄j − θ̄jθj

)
⟨0| exp

(
θ̄jψ̄

j
k

)
exp

(
ψ̄j
−kη̄j

)
|0⟩ ⟨0| exp

(
ψj
kO

′
jj′θj′

)
exp

(
ηjOjj′ψ

j′

−k

)
|0⟩ =∫

dηdη̄dθdθ̄ exp
(
−ηj η̄j − θ̄jθj + θ̄j η̄j − ηj(OO′)jj′θj′

)
.

(6.170)

The last step is the evaluation of the Gaussian integral over the 4M Grassmann variables
ηj , η̄j , θj , θ̄j . We introduce a 4M -dimensional vector Θ of Grassmann variables as follows

Θ =


η
θ̄
η̄
θ

 , (6.171)

and the Gaussian integral in (6.170) as

⟨0| exp
(
O′

jj′ψ
j
kψ̄

j′

k

)
exp

(
Ojj′ψ̄

j
−kψ

j′

−k

)
|0⟩ =

∫
dΘexp

(
−1

2
ΘT ÕΘ

)
, (6.172)

with Õ being the following 4M × 4M matrix

Õ =


0 0 1 OO′

0 0 −1 1
−1 1 0 0

−(OO′)T −1 0 0

 . (6.173)
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The integral over Θ in Eq. (6.172) gives the Pfaffian of the matrix Õ [216], which we write as

Pf
(
Õ
)
= det1/2

(
Õ
)
= det

(
1 OO′

−1 1

)
= det(1 +O′O). (6.174)

This completes the proof of Eq. (6.166), which is the main result of this section.

6.A.2 Bosonic case

Here we prove a useful identity valid for the vacuum expectation value of Gaussian operators

⟨0| exp
(
O′

jj′Φ
j
kΦ̄

j′

k

)
exp

(
Ojj′Φ̄

j
−kΦ

j′

−k

)
|0⟩ = det

(
1−O′O

)−1
. (6.175)

We denoted by Φj
∓k the creation/annihilation operators associated to the k-th left mode of the

j-th bosonic specie, and similarly we use the symbol Φj
∓k for the right modes. We consider O

and O′ as two generic M ×M matrices, keeping implicit the sum over the indices j, j′ in Eq.
(6.175). We assume further that k ̸= 0, so that the zero-mode of the boson does not appear here,
and we use the following convention for the normalisation of the modes

[Φj
k,Φ

j′

−k′ ] = [Φ̄j
k, Φ̄

j′

−k′ ] = δjj′δkk′ , k, k′ > 0. (6.176)

It is possible to highlight a simple case where (6.175) holds. For instance, we take a single bosonic
specie (M = 1), we suppress the index j, and then O′ and O are just numbers. Expanding the
exponential as a power series in (6.175) we get

⟨0| exp
(
O′ΦkΦ̄k

)
exp

(
OΦ̄−kΦ−k

)
|0⟩ = ⟨0|

∞∑
n=0

∞∑
m=0

(O)n(O′)m

n!m!
(Φk)

n(Φ̄k)
n(Φ̄−k)

m(Φ−k)
m |0⟩ .

(6.177)
Via Wick theorem, one easily shows that

⟨0| (Φk)
n(Φ−k)

m |0⟩ = ⟨0| (Φ̄k)
n(Φ̄−k)

m |0⟩ = m!δm,n. (6.178)

Inserting this relation back into (6.177) one gets

⟨0| exp
(
O′ΦkΦ̄k

)
exp

(
OΦ̄−kΦ−k

)
|0⟩ =

∞∑
n=0

(O′O)n =
1

1−O′O
, (6.179)

which is compatible with the general case in Eq. (6.175). Clearly for M ≥ 1, whenever the
matrices O and O′ commute, one can diagonalise them simultaneously and apply the previous
argument to show the validity of (6.175).
A general proof of (6.175) is given through Gaussian integrals over complex variables. We start
from the basic property [216] ∫

dzdz̄

π
exp(−zz̄) = 1, (6.180)

which is the building block of the forecoming relations. For each j we introduce a complex

variable zj , and we express the operator exp
(
Ojj′Φ̄

j
−kΦ

j′

−k

)
as follows

exp
(
Ojj′Φ̄

j
−kΦ

j′

−k

)
=

∫
dzdz̄ exp

(
−zj z̄j + zjOjj′Φ

j′

−k + Φ̄j
−kz̄j

)
, (6.181)
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with dzdz̄ being a short-hand notation for the normalised measure

dzdz̄ ≡ dz1dz̄1 . . . dzMdz̄M
πM

, (6.182)

and the sum over j, j′ is implicit. Similarly, we represent

exp
(
O′

jj′Φ
j
kΦ̄

j′

k

)
=

∫
dwdw̄ exp

(
−w̄jwj +Φj

kO
′
jj′wj′ + w̄jΦ̄

j
k

)
, (6.183)

after the introduction of a set of complex variables {wj}j=1,...,M . We now use (6.181) and (6.183)
and we write

⟨0| exp
(
O′

jj′Φ
j
kΦ̄

j′

k

)
exp

(
Ojj′Φ̄

j
−kΦ

j′

−k

)
|0⟩ =

∫
dzdz̄dwdw̄ exp (−zj z̄j − w̄jwj)

⟨0| exp
(
w̄jΦ̄

j
k

)
exp

(
Φ̄j
−kz̄j

)
|0⟩ ⟨0| exp

(
Φj
kO

′
jj′wj′

)
exp

(
zjOjj′Φ

j′

−k

)
|0⟩ =∫

dzdz̄dwdw̄ exp
(
−zj z̄j − w̄jwj + w̄j z̄j + zj(OO′)jj′wj′

)
,

(6.184)

where the basic properties of bosonic coherent states have been used (see [216]). As a final step,
we perform the evaluation of the integral through the introduction of a 4M -dimensional vector
Θ of complex variables as follows

Θ =


z
w̄
z̄
w

 . (6.185)

In this way, we express (6.184) concisely as

⟨0| exp
(
O′

jj′Φ
j
kΦ̄

j′

k

)
exp

(
Ojj′Φ̄

j
−kΦ

j′

−k

)
|0⟩ =

∫
dΘexp

(
−1

2
ΘT ÕΘ

)
, (6.186)

where Õ is the 4M × 4M symmetric matrix given by

Õ =


0 0 1 −OO′

0 0 −1 1
1 −1 0 0

−(OO′)T 1 0 0

 . (6.187)

One can perform the Gaussian integral over Θ, which gives det
(
Õ
)−1/2

, and we express the

final result as follows

det−1/2
(
Õ
)
= det−1

(
1 −OO′

−1 1

)
= det−1(1−O′O). (6.188)

In this way, we complete the proof of Eq. (6.175) in the most general case, which is the main
result of this section.
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6.B A useful determinant

In this section we show that for a complex unitary M ×M matrix S having the block structure
(6.28) the following relation holds

det

((
1 0
0 1

)
+ q2k

(
S†
AA S†

BA

S†
AB S†

BB

)(
SAA e−iαSAB

eiαSBA SBB

))
=

det
(
1 + 2(S†

AASAA + (1− S†
AASAA) cosα)q

2k + q4k
)
(1 + q2k)M−2MA . (6.189)

Before proceeding with the proof, we notice that the α dependence in the rhs above is related
only to the non-zero eigenvalues of 1−S†

AASAA. Despite the explicit dependence of 1−S†
AASAA

on A, this fact does not lead to any asymmetry between A and B. Indeed, the unitarity of S,
SS† = S†S = 1, implies

SBBS
†
BB + SBAS

†
BA = 1, S†

AASAA + S†
BASBA = 1. (6.190)

Hence 1−SBBS
†
BB = SBAS

†
BA and 1−S†

AASAA = S†
BASBA have the same spectrum, up to zero

eigenvalues, which means that (6.189) is symmetric by exchanging A↔ B.
In order to prove Eq. (6.189), we introduce a M ×M matrix O as follows

O =

(
S†
AA S†

BA

S†
AB S†

BB

)(
SAA e−iαSAB

eiαSBA SBB

)
, (6.191)

so that Eq. (6.189) requires the evaluation of det
(
1 + q2kO

)
. Since, as a consequence of the

unitarity of S, O is unitary and it has the same spectrum of O†, we can write

det
(
1 + q2kO

)
=
√

det (1 + q2kO) det (1 + q2kO†) =
√

det (1 + q2k(O +O†) + q4k). (6.192)

Exploiting the unitarity of S, O +O† has a block diagonal structure given by

O +O† =

(
2S†

AASAA + 2(1− S†
AASAA) cosα 0

0 2S†
BBSBB + 2(1− S†

BBSBB) cosα

)
. (6.193)

Since we have already shown that 1− S†
AASAA, 1− S†

BBSBB have the same non-zero spectrum,
we get

det
(
1 + q2kO

)
∝ det

(
1 + q2k(2S†

AASAA + 2(1− S†
AASAA) cosα) + q4k

)
, (6.194)

The α-independent proportionality constant has to be a power of (1+q2k), which comes form the

possible presence of zero eigenvalues of 1− S†
AASAA (or 1− S†

BBSBB). We match this constant
by power counting. More precisely, since det

(
1 + q2kO

)
is a polynomial in q2k of order M and

det
(
1 + q2k(2S†

AASAA + 2(1− S†
AASAA) cosα) + q4k

)
(6.195)

is a polynomial in q2k of order 2MA, the right power of (1+q
2k) which matches the proportionality

constant has to be (1 + q2k)M−2MA . This concludes the proof of Eq. (6.189).
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6.C Jacobi theta functions

Here we review some properties of the Jacobi Theta functions and the dilogarithm, useful for
the evaluation of the partition functions. In particular, we discuss some specific limits of θ3, θ1
Theta functions, that apply to fermions/bosons respectively.

We consider the following infinite product representation for the Jacobi theta function θ3(z, q)
[80]

θ3(z, q) =
∞∏

m=1

(
1− q2m

) (
1 + 2 cos(2πz)q2m−1 + q4m−2

)
. (6.196)

We want to evaluate θ3(z, q)/θ3(0, q) in the limit q → 1−. To do so, we first take its logarithm,
which turns the infinite product representation into a sum, i.e.

log
θ3(z, q)

θ3(0, q)
=

∞∑
m=1

[
log
(
1 + ei2πzq2m−1

)
+ log

(
1 + e−i2πzq2m−1

)
− 2 log

(
1 + q2m−1

)]
. (6.197)

For q ≃ 1, qm goes to zero slowly as m grows and the sum can be approximated (≃) by an
integral

log
θ3(z, q)

θ3(0, q)
≃
∫ ∞

0
dx [log

(
1 + ei2πzq1+2x

)
+ log

(
1 + e−i2πzq1+2x

)
− 2 log

(
1 + q1+2x

)
] =

− 1

2 log q

∫ 1

0

dt

t
[log
(
1 + ei2πzt

)
+ log

(
1 + e−i2πzt

)
− 2 log(1 + t)] =

1

2 log q

(
Li2(−ei2πz) + Li2(−e−i2πz)− 2Li2(−1)

)
=

(2πz)2

4 log q
. (6.198)

In the previous computation, the integral representation of the dilogarithm function[80]

Li2(z) = −
∫ 1

0

dt

t
log(1− zt) (6.199)

has been employed, together with the property

Li2(−ei2πz) + Li2(−e−i2πz) = −π
2

6
+

(2πz)2

2
, (6.200)

valid for z ∈ [−1/2, 1/2].
Similar properties hold for the Theta function θ1, and we summarize them below. We first

express θ1(z, q) as the following infinite product [80]

θ1(z, q) = 2 sin(πz)q1/4
∞∏

m=1

(1− q2m)
(
1− 2 cos(2πz)q2m + q4m

)
. (6.201)

In the singular limit q → 1− we approximate the infinite product as an integral

log
θ1(z, q)

sin(πz)
≃
∫ ∞

0
dx [log

(
1− ei2πzq2x

)
+ log

(
1− e−i2πzq2x

)
] + const. =

− 1

2 log q

∫ 1

0

dt

t
[log
(
1− ei2πzt

)
+ log

(
1− e−i2πzt

)
] + const. =

1

2 log q

(
Li2(e

i2πz) + Li2(e
−i2πz)

)
+ const., (6.202)
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where the irrelevant additive constant does not depend on z. From the definition in (6.201) it is
clear that θ1(z, q)/ sin(πz) is periodic under

z → z + 1, (6.203)

and for this reason, we focus only on the region of parameter z ∈ [0, 1]. In this case one can
show that

log
θ1(z, q)

sin(πz)
≃ −π

2(z − z2)

log q
+ const., z ∈ [0, 1], (6.204)

up to an irrelevant z-independent additive constant.



Chapter 7

Entanglement evolution after a
global quench across a conformal
defect

We study the evolution of entanglement after a global quench in a one-dimensional quantum
system with a localized impurity. For systems described by a conformal field theory, the en-
tanglement entropy between the two regions separated by the defect grows linearly in time.
Introducing the notion of boundary twist fields, we show how the slope of this growth can be
related to the effective central charge that emerges in the study of ground-state entropy in the
presence of the defect. On the other hand, we also consider a particular lattice realization of the
quench in a free-fermion chain with a conformal defect. Starting from a gapped initial state with
a staggered chemical potential, we obtain the slope via a quasiparticle ansatz and observe small
universal discrepancies between the field theory and lattice results, which persist in the limit of
a vanishing gap. The origin of the discrepancy is traced back to the features of the stationary
state that is not thermal, even in a proper continuum limit. This chapter is based on Ref. [10].

7.1 CFT results

In this section, we introduce the CFT approach for the global quench in the presence of a defect.
We adapt the formalism of Ref. [56] for the dynamics after the global quench, considering the
additional inclusion of the defect. The calculation of the entanglement entropy is based on the
replica trick, and it provides a field theoretic description of the n-th Rényi entropy.

In particular, we compute a partition function of a n-sheeted Riemann surface [46], with a
branch-cut starting at the interface and extending along the half-system. This approach requires
the expectation value of the twist fields inserted in a bounded geometry, and it gives the dynamics
of the Rényi entropy.

We provide a general derivation of the linear growth of the entanglement entropy which does
not refer to any specific model, and it is based on conformal symmetry only. Before proceeding
with the calculations, it is worth to emphasize the main assumptions behind this approach.

• The post-quench Hamiltonian is described by the same CFT on both sides of the defect,
and every excitation propagates at the same speed (set to 1).
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• The interface is scale-invariant, thus no dependence on the incoming momenta is present
for the scattering properties across the interface (as explained in Ref. [190]).

• The initial state is a regularized boundary state |Ψ0⟩ ∼ exp
(
−β

4H
)
|B⟩, which is a short-

range entangled state sharing features with a thermal state at inverse temperature β [56].
Different choices of the boundary states |B⟩ lead in principle to different initial states:
however, the leading term of the entropy does not depend on |B⟩ as we will see.

7.1.1 Bulk and boundary twist field

Here we introduce and discuss the properties of the twist fields in a defect geometry, stressing the
distinction between bulk and boundary fields. First, we briefly review the standard definition of
these fields in the absence of interfaces and their connection with entanglement entropy [46]. We
consider a 1+1D quantum field theory replicated n times, and a pair of twist fields T (x), T̃ (x),
which introduce a branch-cut along the half-line [x,∞), connecting the k-th and the k ± 1-th
replica, respectively. A precise definition can be provided via commutation relations between the
twist fields and the local fields. In particular, one requires that [47, 85]

T (x)Ok(y) =

{
Ok+1(y)T (x), x < y

Ok(y)T (x), otherwise,
, T̃ (x)Ok(y) =

{
Ok−1(y)T̃ (x), x < y

Ok(y)T̃ (x), otherwise,

(7.1)
for any local operator Ok inserted at a point of the k-th replica (here k = 1, . . . , n is a replica
index and its values are identified up to k = k+n). In a CFT, the twist fields are primary fields
with scaling dimension ∆ given by [46]

∆ =
c

12

(
n− 1

n

)
, (7.2)

and c is the central charge of the theory. Their two-point function in the (homogeneous) ground-
state is thus fixed by scaling symmetry only [97], and reads

⟨T (x1)T̃ (x2)⟩ =
1

|x1 − x2|2∆
. (7.3)

The connection between the twist fields and entanglement arises as follows. One considers
the ground-state |Ψ0⟩ of a CFT, and constructs the reduced density matrix ρA associated to a
subsystem A [48]. For an interval A = [0, ℓ], one can show that for any integer n ≥ 1 [46]

Tr(ρnA) = ϵ2∆⟨T (0)T̃ (ℓ)⟩, (7.4)

with ϵ being a UV-cutoff. Putting these informations together, one can eventually express the
n-th Rényi entropy of A as [46]

Sn =
1

1− n
log Tr(ρnA) =

c

6

(
1 +

1

n

)
log

ℓ

ϵ
, (7.5)

which gives the celebrated relation [192]

S ≡ S1 =
c

3
log

ℓ

ϵ
(7.6)
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for the von Neumann entropy, once the analytical continuation n→ 1 is taken.
While the result (7.5) is specific to the translational invariant ground-state, the definition

(7.1) and the (bulk) scaling dimension (7.2) are general. However, there is an important caveat
that arises for a bounded geometry, say an interval [0, L]. The value of the scaling dimension
(7.1) refers only to a twist field T (x) inserted at a bulk point (0 < x < L), as it is well known
that boundary effects do not affect bulk dimensions [97]. Nevertheless, this is no longer true if
x is a boundary point (x = 0, L). In that case, the dimension of the twist field, which is now a
boundary field, takes in general another value, dubbed as boundary scaling dimension. Indeed,
if we consider the subsystem A = [0, ℓ], one finds for ℓ≪ L [63]

Sn ≃ 1

1− n
log⟨T (0)T̃ (ℓ)⟩ = c

12

(
1 +

1

n

)
log

ℓ

ϵ
+ . . . (7.7)

a relation which suggests immediately that the dimension of the boundary twist field T (0)
vanishes. This is expected on physical grounds, since the only contribution to the entanglement
is given by the correlations localized around the point x = ℓ.

So far we have considered a single theory, with or without boundaries, and we have discussed
the entanglement of a single interval. Now, we generalize the construction above for a system
made by two CFTs joined together through an interface. The two CFTs are denoted by CFT1

and CFT2, assumed here to be two copies of the same theory, and they extend over the regions
x ∈ [0, L] and [−L, 0] respectively. An interface is inserted at x = 0, which is a defect line
extended over the Euclidean time, and gives a field theoretical representation of the impurity
(see Refs. [55, 191]). We also need to specify the boundary conditions at x = ±L. Here, we only
assume they do not mix the two theories, so that their precise features are essentially irrelevant
for the entanglement between the two halves. We call unfolded picture the geometry described so
far. Via the so-called folding procedure, it is possible to describe the same system as the theory
CFT1 ⊗ CFT2 extended over the region x ∈ [0, L], a description which takes the name of folded
picture (see Ref. [196] for further details). Comparing the two pictures, every point x ∈ [0, L]
in the folded geometry corresponds to a pair of points x,−x (associated to CFT1 and CFT2

respectively) in the unfolded one. Moreover, the interface is now described via the boundary
condition (BC) at x = 0, denoted by b, and similarly the BC at x = L in the folded picture,
denoted by b′. Note that the latter is just the product of the BCs at x = ±L in the unfolded
picture.

The last ingredient we need to establish the correspondence among the two pictures is the
characterization of the branch-cuts in the folded geometry. The idea is to introduce a pair of
twist fields T j , T̃ j (j = 1, 2) which act nontrivially on the degrees of freedom of CFT1 or CFT2

only, and use them as the building blocks for the entanglement measures among the two theories.
We propose a definition, which is nothing but a generalization of Eq. (7.1), as follows

T j(x)Oj′,k(y) =

{
Oj′,k+1(y)T j(x), x < y, j = j′

Oj′,k(y)T j(x), otherwise,

T̃ j(x)Oj′,k(y) =

{
Oj′,k−1(y)T̃ j(x), x < y, j = j′

Oj′,k(y)T̃ j(x), otherwise,

(7.8)

with Oj,k(y) being local operators of (CFT1 ⊗ CFT2)
⊗n with species index j = 1, 2 and replica

index k = 1, . . . , n. As an illustrative example, the insertion of T 1(x1)T̃ 1(x2) at two points
0 < x1 < x2 < L of the folded geometry, corresponds to the insertion of T (x1)T̃ (x2) in the
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unfolded picture, which is a branch-cut along a segment of CFT1. Similarly, T 2(x1)T̃ 2(x2)
introduces a branch-cut on [−x2,−x1] in the unfolded picture. We summarize the construction
above in Fig. 7.1 which provides a pictorial representations of the insertion of the branch-cuts
in the folded/unfolded pictures.

Figure 7.1: Representation of a system made by two CFTs joined through an interface in the
unfolded (left) and folded (right) picture. The interface and the open boundaries are shown by
green and blue lines, and are associated to boundary conditions of type b and b′, respectively.

As long as the twist fields T j are inserted at bulk points, their (bulk) scaling dimension is
simply given by Eq. (7.2). In contrast, the dimension of T j(L) is expected to be zero, since the
two theories are not coupled at x = L and one can use the results available for a single theory.
Moreover, we argue that the scaling dimension of T j(0) is nontrivial, and strongly depends on
the boundary condition b (and n), representing the interface: we denote it by ∆b. We thus
compute the Rényi entropy among the two halves as

Sn =
1

1− n
log
(
ϵ∆b⟨T 1(0)T̃ 1(L)⟩

)
=

∆b

n− 1
log

L

ϵ
+ . . . , (7.9)

where the last equality follows from scaling arguments only, and subleading terms of order O(1)
have been neglected. More precisely, if one applies a scale transformation, say L→ Lλ, then the
geometry becomes [0, λL] and the twist fields are inserted at the boundary of this new geometry
(x = 0, λL). An additional scale factor λ∆b appears due to the scaling transformation of the
twist fields. Taking for example λ = 1/L for the scaling parameter, one completely fixes the
L-dependence of the two-point function which gives directly Eq. (7.9).

Eventually, one concludes that the entropy grows as the logarithm of the size, with an interface
dependent prefactor, a result which was firstly obtained for the free boson in [55] and for Ising/free
fermions in [191]. In particular, in the limit n→ 1 one has

S =
ceff
6

log
L

ϵ
, (7.10)

where ceff is a parameter dubbed as effective central charge. Comparing the last expression with
our formula (7.9), we establish the equivalence

ceff
6

= lim
n→1

∆b

n− 1
. (7.11)

It tells us that the origin of the nontrivial scaling of entanglement for systems with conformal
defects can be traced back to a nontrivial boundary scaling dimension of the twist field T j .
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7.1.2 Global quench

We continue with the study of a global quench for a CFT in the presence of a defect, generalizing
the approach of [56] valid without the defect. We mention that a similar method to tackle the
problem has been already employed in [217]. Here, we consider instead a novel technique based
on the use of the boundary twist fields.

We work in the folded picture, introduced in the previous subsection, and consider the theory
CFT1 ⊗ CFT2 extended over the spacial region [0, L]. We take the initial state

|Ψ0⟩ ∼ exp

(
−β
4
H

) ∣∣b′〉 , (7.12)

with |b′⟩ being a boundary state associated to the BC b′, H the post-quench Hamiltonian and
β a parameter representing the inverse temperature of the initial state. Within this choice, the
initial state is short-range entangled, having a finite correlation length of order β. Since |Ψ0⟩
is not an eigenvector of H, the unitary dynamics induced by the Hamiltonian is nontrivial. We
consider time scales much shorter than the size L, t≪ L, so that finite-size effects are negligible.
We express the Rényi entropy between the two halves as

Sn(t) =
1

1− n
log
(
⊗n ⟨Ψ0| eiHtT 1(0)T̃ 1(L)e−iHt |Ψ0⟩⊗n

)
, (7.13)

with |Ψ0⟩⊗n = |Ψ0⟩ ⊗ · · · ⊗ |Ψ0⟩ being a state of the n-replica theory (CFT1 ⊗ CFT2)
⊗n. Since

T̃ 1(L) has dimension 0, we simply drop it from Eq. (7.13), a procedure which is physically
motivated by the fact that its insertion should not affect the entanglement among the two halves
(see [47] for futher details). Taking into account the correct normalization of the state, we finally
end up with

Sn(t) =
1

1− n
log

⊗n ⟨b′| e−H(β/4−it)T 1(0)e−H(β/4+it) |b′⟩⊗n

⊗n ⟨b′| e−Hβ/2 |b′⟩⊗n . (7.14)

We now proceed further with the evaluation of the expectation value appearing in Eq. (7.14).
We work in the Euclidean theory, described as the bounded geometry (strip)

Re(z) ∈ [0,+∞), Im(z) ∈ [−β/4, β/4], (7.15)

obtained in the limit L → ∞. We insert the twist field T 1 at the position z = iτ of the strip,
with τ being the Wick rotated time

τ = it. (7.16)

To compute ⟨T 1(z = iτ)⟩, we map the strip (7.15) onto the upper half-plane Im(w) ≥ 0 through
a sequence of transformations z → ζ → w defined by

ζ(z) = sin
2πiz

β
, w(ζ) =

1 + ζ

2(1− ζ)
. (7.17)

Via this change of variables, the corners at z = ±iβ/4 are mapped onto the points w = 0,∞
respectively. In this new geometry a change of boundary conditions, from type b′ to type b,
appears at w = 0 along the real line Im(w) = 0. In Fig. 7.2 we represent the insertion of the
twist field both in the strip geometry (z variable) and the upper half-plane (w variable).

At this point, we observe explicitly that the depicted geometry (upper-half plane) shows a
scale-symmetry

w → λw, λ > 0. (7.18)
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Figure 7.2: Euclidean boundary geometry describing the global quench in the z (left) and w
(right) variable. Green/blue colors denote boundary conditions of type b/b′, respectively.

Indeed, the boundary conditions b′, b are scale-invariant and the point w = 0, representing the
change of BCs, is kept fixed. We use this property to infer the value of the one-point function
along the boundary of type b (Im(w) = 0, w > 0) which is

⟨T 1(w)⟩ ∝ 1

|w|∆b
, (7.19)

up to a w-independent proportionality constant not further specified.
We now go back to the original geometry, employing the transformation law of the twist field

T 1, which is a primary operator. We firstly apply w → ζ, reaching to

⟨T 1(ζ)⟩ =
∣∣∣∣dwdζ

∣∣∣∣∆b

⟨T 1(w)⟩ ∝
∣∣∣∣ 1

(1− ζ)2

∣∣∣∣∆b
∣∣∣∣1− ζ

1 + ζ

∣∣∣∣∆b

=

∣∣∣∣ 1

1− ζ2

∣∣∣∣∆b

, (7.20)

and similarly from the map ζ → z we get

⟨T 1(z)⟩ =
∣∣∣∣dζdz

∣∣∣∣∆b

⟨T 1(ζ)⟩ ∝
∣∣∣∣ 4π

β cos(2πiz/β)

∣∣∣∣∆b

. (7.21)

Performing the Wick rotation τ = it, for large values t/β we obtain

⟨T (z = iτ)⟩ ∼
∣∣∣∣8πβ e−2πt/β

∣∣∣∣∆b

, (7.22)

which leads directly to

Sn(t)− Sn(0) =
1

1− n
log

⟨T 1(z = iτ)⟩
⟨T 1(z = 0)⟩

≃ ∆b

n− 1

2πt

β
, (7.23)

the main result of this subsection. One can further take the analytical continuation n→ 1 from
Eq. (7.23) to extract the entanglement entropy, and, using Eq. (7.11), one gets

S1(t)− S1(0) ≃
πcefft

3β
. (7.24)

We conclude with some remarks regarding the derivation provided above. For instance, even if
we did not attempt to calculate explicitly the scaling dimension ∆b of the boundary twist field,
we got a precise relation between equilibrium (7.9) and non-equilibrium entropy (7.23) based on
conformal invariance only.

Moreover, the same derivation can be applied to the evolution of any boundary (primary)
operator, and it is not specific to the twist field. We finally stress again that the linear growth
in (7.23) is expected to be valid for β ≪ t ≪ L, so that the short-time effects, as well as the
long-time recurrences, are neglected.
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7.2 Lattice results

In the following, we consider a lattice realization of the global quench. Our main goal is to derive
a formula that relates the entropy growth in the presence of a defect to that in a homogeneous
chain. We show that, in contrast to CFT results that predict for the Rényi the appearance of the
same proportionality factor both in the global quench and the ground state, this is not true in
general for the lattice. Moreover, we provide a quasi-particle description of the protocol above,
which matches with CFT only for thermal states at low temperatures. In contrast, we study a
family of initial states parametrized by a staggered chemical potential which are not thermal,
and therefore they do not reproduce the CFT predictions.

7.2.1 Model and setup

We consider a fermionic hopping chain of length 2L with Hamiltonian

Ĥ =

L∑
x,x′=−L+1

H ′
x,x′c†xcx′ , (7.25)

where c†x, cx are fermionic creation/annihilation operators satisfying anticommutation relations

{c†x, cx′} = δx,x′ . We consider a conformal defect located in the center of the chain, with the
nonzero elements of the hopping matrix given by

H ′
x,x+1 = H ′

x+1,x =

{
−1/2 x ̸= 0
−λ/2 x = 0

, H ′
0,0 = −H ′

1,1 =
√
1− λ2/2 . (7.26)

The particular form of the coupling at the origin gives rise to scattering properties which do not
depend explicitly on the incoming momentum, and λ ∈ [0, 1] is precisely the scattering amplitude
across the defect.

Throughout this chapter, we use the prime notation to refer to various quantities of the defect
problem, whereas the same symbols without prime shall refer to the homogeneous (λ = 1) case.

The spectrum of H ′ was studied before in [53] and was shown to have a particularly simple
relation to the homogeneous case H, where the single-particle eigenvalues and eigenvectors are
given by

ϕk(x) =

√
2

2L+ 1
sin

πkx

2L+ 1
, ωk = − cos

πk

2L+ 1
(7.27)

for k = 1, . . . , 2L. Indeed, the corresponding quantities for the hamiltonian H ′ are simply related
via [53]

ϕ′k(x) =

{
αkϕk(x) x ≤ 0
βkϕk(x) x ≥ 1

, ω′
k = ωk (7.28)

where the scaling factors read

α2
k = 1 + (−1)k

√
1− λ2, β2k = 1− (−1)k

√
1− λ2 . (7.29)

In other words, the eigenvectors ofH ′ are only rescaled by a different factor on the left/right-hand
side of the defect, while the spectrum remains unchanged.
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The simple structure (7.28) of the eigenvectors has important implications on the ground-
state entanglement properties between the two halves A = [−L+ 1, 0] and B = [1, L] of the
chain. These follow from the fermionic reduced correlation C ′

A matrix with elements [187]

C ′
xx′ = ⟨c†xcx′⟩ =

L∑
k=1

ϕ′k(x)ϕ
′
k(x

′) , x, x′ ∈ A . (7.30)

In particular, the entanglement entropy of the reduced density matrix ρA = TrB ρ is obtained as

S =

L∑
l=1

s(ζ ′l) , s(x) = −x lnx− (1− x) ln(1− x) (7.31)

where ζ ′l are the eigenvalues of C ′
A. Using (7.28) for the matrix elements in (7.30), one finds the

exact relation for the ground state of the conformal defect

C ′
A(1− C ′

A) = λ2CA(1− CA) , (7.32)

which yields an analogous relation between the eigenvalues.
The latter relation can then be used to find the scaling of the entanglement entropy which

reads
S = κ(λ) lnL , (7.33)

where the prefactor of the leading logarithmic term is obtained as [218]

κ(s) = − 1

π2

{[
(1+ s) ln(1 + s)+ (1− s) ln(1− s)

]
ln s+(1+ s)Li2(−s)+ (1− s)Li2(s)

}
, (7.34)

in terms of the transmission amplitude s = λ. One can also extract the scaling of the Rényi
entropies of integer index n > 1

Sn =

L∑
l=1

sn(ζ
′
l) , sn(x) =

1

1− n
ln [xn + (1− x)n] . (7.35)

The result is completely analogous to (7.33), with the corresponding prefactor given by [53]

κn(λ) =
1

π2
1

n− 1

(n−1)/2∑
p=−(n−1)/2

arcsin2
[
λ sin

(pπ
n

)]
, (7.36)

where the sum over p runs over half-integer/integer values for n even/odd.
We now turn our attention to the quench setup. In order to mimic the global quench scenario

of the CFT setting, we choose a gapped initial Hamiltonian Ĥ0 and prepare the chain in its
ground state. The simplest way to open a gap is to add a staggered chemical potential to the
Hamiltonian (7.25) of the conformal defect

Ĥ0 = Ĥ + µ
L∑

x=−L+1

(−1)xc†xcx . (7.37)

The quench then consists of switching off the potential at time t = 0 and time evolve the initial
state with Ĥ. The size of the gap in Ĥ0 is controlled by the mass parameter µ, and in the limit
µ→ ∞ one obtains the Néel state, where each odd lattice site is occupied by a particle with the
even sites being empty.
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7.2.2 Quasiparticle picture the for homogeneous case

The entropy growth after a global quench in an integrable translational invariant chain can
be understood in terms of a quasiparticle picture [219–221]. Namely, one assumes that the
initial state is a coherent superposition of quasiparticle pairs, which are initially short-range
correlated, but they spread entanglement due to their ballistic propagation as the system evolves.
In particular, a contribution to the entanglement between the subsystems A and B is present at
time t if the two particles of the pair belong to A,B respectively.

In a free-fermion chain, for each mode with momentum q and group velocity vq, the two
particles of each pair move at velocity ±vq, therefore they entangle arbitrary distant points.
Moreover, according to this picture, the contribution of a given pair is simply the thermodynamic
entropy density taken in the steady state of the dynamics, which is uniquely determined by the
occupation numbers nq = ⟨c†qcq⟩, that are constants of motion.

Putting everything together, in the limit L → ∞ of a semi-infinite subsystem one arrives at
the expression

Sn(t) = t

∫ π

−π

dq

2π
|vq| sn(nq) , (7.38)

where the integral is performed over the first Brilluoin zone.

The quasiparticle ansatz (7.38) in the half-chain geometry thus gives a purely linear growth
of entanglement, Sn(t) = γn(µ, 1)t, where the second argument of the slope refers to λ = 1. In
order to find the slope γn(µ, 1) as a function of the quench parameter µ, one has to evaluate the
occupation numbers nq characterising the steady state after the quench. These are fixed by the
ground state of the staggered chain, and can be found by diagonalizing Ĥ0, with the result

nq =
1

2

(
1 +

cos q√
cos2 q + µ2

)
. (7.39)

In the limit µ → 0 nq converges towards the Fermi sea occupation, whereas for the Néel state,
µ → ∞, it becomes completely flat, nq = 1/2. It should be clear that, whenever µ is kept fixed
in the thermodynamic limit, while a possible quantitative agreement with QFT can be possible
only if µ≫ 11

With the result (7.39) for the occupation at hand, one can now compare the quasiparticle
ansatz (7.38) to the entropy obtained from the lattice calculation. We shall restrict ourselves to
the case n = 1. The correlations at time t are given by C(t) = U †C(0)U , where C(0) describes
the correlations of the staggered ground state, and the propagator is given by U = e−iHt. For
our numerics we choose L = 100, and consider the short-time regime t < L, where the presence
of the boundaries cannot yet influence the behaviour. The result is shown in Fig. 7.3 for various
values of µ. On the left, the linear growth with slopes γ(µ, 1) ≡ γ1(µ, 1) calculated from (7.38)
are plotted by red solid lines, showing a very good agreement with the data. Note that we have
subtracted the initial value S(0) of the entropy. On the right of Fig. 7.3 we show the corrections
to the quasiparticle ansatz by subtracting the linear piece. Interestingly, the leading correction
seems to be logarithmic in time, albeit with a very small prefactor that increases for larger µ.

1As we will see, even in this limit we have discrepancies with the thermal states of CFT. In particular, we think
that the initial state we are considering cannot be considered an irrelevant deformation of a thermal CFT’s state
(see also Ref. [56] for details about this mechanism).
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Figure 7.3: Entropy evolution for a homogeneous chain (λ = 1) with L = 100 after a global
quench for various values of µ. The red lines show the slopes calculated from (7.38) with the
occupation (7.39).

7.2.3 Quench with a defect

We now move on to consider the quench with the defect. Motivated by the CFT results, our
goal is to establish a relation between the defect and the homogeneous cases, analogous to the
one (7.32) found for the ground state.

The first step is to calculate the (single-body) propagator U ′ = e−iH′t with the defect. The
matrix elements on the same side of the defect are obtained as

U ′
xx′ =

∫ π

−π

dq

2π
e−iωqt

[
e−iq(x−x′) ±

√
1− λ2 e−iq(x+x′−1)

]
= Uxx′ ±

√
1− λ2 Ux,1−x′ , (7.40)

where the ± sign refers to the case x, x′ ≥ 1 and x, x′ ≤ 0, respectively. On the other hand, for
the offdiagonal terms with x ≤ 0 and x′ ≥ 1, as well as x ≥ 1 and x′ ≤ 0, one obtains

U ′
xx′ = λ

∫ π

−π

dq

2π
e−iωqte−iq(x−x′) = λUxx′ . (7.41)

It should be noticed that the homogeneous propagator U is translational invariant, as the hamil-
tonian is invariant too, while this is not the case for U ′ as the defect breaks explicitly the
invariance above.

For the calculation of the entropy, we need the time-evolved matrix C ′(t) = U ′†C ′(0)U ′,
where C ′(0) contains the ground-state correlations of the staggered Hamiltonian (7.37) with a
defect, and it described the initial state. In general, this is a rather complicated object of which
we do not have a closed-form expression.

To proceed further, let us first note that, due to the purity of the time evolved state, the full
correlation matrix satisfies C ′(t)(1− C ′(t)) = 0. This yields

C ′
A(t)(1− C ′

A(t)) = C ′
AB(t)C

′
BA(t) , (7.42)

where C ′
AB(t) is the offdiagonal part of the correlation matrix, and C ′

BA(t) = C ′†
AB(t). The

relation Eq. (7.42) is extremely useful, as it allows relating the entropies to the spectrum of
C ′
AB(t), a matrix which has some ’nicer’ properties compared to C ′

A(t). In particular, we found
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out that, up to corrections that turned out to be negligible, the following relation between the
homogenoeus and the defect problem holds

C ′
AB(t) ≃ λCAB(t). (7.43)

At the physical and heuristic level, we explain (7.43) as follows. We consider a pair of quasipar-
ticles generated at a certain point far from the defect. Particles spread and eventually one of
the two hits the defect and goes onto the other half of the chain. This process happens with an
amplitude λ wrt the homogenoeus case. Therefore, one expects that the overall contribution due
to defect for two-point function C ′

AB is just a factor λ. This argument does not lead to exact
results on finite-size systems, but mostly because corrections are present to the semiclassical
dynamics. Still, the consequences of Eq. (7.43) can be tested numerically for large sizes. Hence,
we expect that the relation for the eigenvalues

ζ ′l(t)(1− ζ ′l(t)) ≃ λ2ζl(t)(1− ζl(t)) (7.44)

should still hold approximately, even though the corresponding relation between the matrices
C ′
A(t) and CA(t) does not hold exactly. The eigenvalue relation is tested in Fig. 7.4 for a chain of

size L = 100, time t = 50 and two different values of µ, with full/empty symbols corresponding
to the left/right hand side of Eq. (7.44). One can see a very good overlap between the two
quantities, with only slight shifts between the symbols, except for the spectral edges where the
discrepancy becomes larger.
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Figure 7.4: Numerical check of the relation (7.44), with the left/right hand side of the equation
shown by the full/empty symbols, for L = 100, t = 50 and two different values of µ.

Therefore, we introduce n′q

n′q(1− n′q) = λ2nq(1− nq) , (7.45)

and we interpret them as the ’occupation numbers’ for the systems with the defect. While we
did not work out the details to make this interpretation rigorous, we think that the ’natural’
modes of our system should be superpositions of left/right plane waves and n′q refer to them.
Following this analogy, we also propose an ansatz for the growth of Rényi entropy that is

γn(µ, λ) =

∫ π

−π

dq

2π
|vq| sn(n′q) (7.46)
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and it gives back the usual quasiparticle prediction for λ = 1.

The result (7.46) is compared against the lattice data in Fig. 7.5 for a small and intermediate
value of the mass parameter, and various defect strengths λ. One observes a very good agreement,
with the deviations from the quasiparticle result shown on the inset. The subleading term seems
to be given by a constant for µ = 0.1, whereas for µ = 1 the corrections are likely to be logarithmic
in time, with some superimposed oscillations.
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Figure 7.5: Entropy growth after a global quench with mass parameters µ = 0.1 (left) and µ = 1
(right), for various defect strengths λ and L = 100. The red lines show the quasiparticle ansatz
with slope (7.46), while the insets show the corresponding deviations.

We specialize (7.39) to our initial state, and we get

n′q =
1

2

(
1±

√
1− λ2

µ2

cos2 q + µ2

)
. (7.47)

With the expression (7.46) for the slope at hand, one can now compare the result to the CFT
prediction. We remind that for CFTs the slope ratio for the global quench at a given λ ≤ 1 and
λ = 1 should be equal to the ground-state entropy ratio κn(λ)/κn(1). Indeed, it is reasonable to
compare the ratio above with γn(µ, λ)/γn(µ, 1).

Let us first consider the Néel limit, µ → ∞, where the occupation n′q in (7.47) becomes
piecewise constant, and the integral (7.46) simply evaluates to

γn(∞, λ) =
2

π
sn

(
1 +

√
1− λ2

2

)
. (7.48)

Obviously, this result has a rather different analytical behaviour as compared to the ground-state
prefactors. Remarkably, however, the ratios turn out to be very close to each other, as shown
by the comparison on the left of Fig. 7.6 for n = 1, 2, although the discrepancy increases with n.
In fact, in the limit of large mass µ, one does not expect the CFT result to be exact, since one
obtains contributions from the entire Brillouin zone and thus the role of the lattice dispersion
enters.

In contrast, in the limit µ→ 0 only the modes around the Fermi level q = ±π/2 contribute,
and one would expect the CFT description to become exact. Surprisingly, this turns out not
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to be the case, as demonstrated on the right of Fig. 7.6. Indeed, in the limit µ → 0, the slope
vanishes linearly with the mass and one can find the closed analytical expression for n ̸= 1

lim
µ→0

γn(µ, λ)

µ
=

1

n− 1

(n−1)/2∑
p=−(n−1)/2

[
1−

√
1− λ2 sin2(πp/n)

]
, (7.49)

as shown in appendix 7.A. The ratio γn(0, λ)/γn(0, 1) is thus finite, and the structure of (7.49)
shows a close resemblance to that in (7.36), although the expressions in the sum are eventually
different. Nevertheless, the mismatch from the ratio κn(λ)/κn(1) turns out to be very small
again, and the curves now approach the CFT limits from the other side, as compared to the
µ→ ∞ case.
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Figure 7.6: Comparison of the slope ratios (blue) to the CFT prediction (red) in the limits
µ→ ∞ (left) and µ→ 0 (right), as a function of λ. The solid/dashed lines correspond to n = 1
and n = 2.

For general µ, the behaviour of the discrepancy γ(µ, λ)/γ(µ, 1) − κ(λ)/κ(1) between the
slope ratios is shown for some fixed values of λ. The deviation remains rather small in the entire
regime 0.1 ≤ µ ≤ 5 shown. In particular, it decreases for λ → 0 and λ → 1, while the maximal
deviations are observed around λ ≃ 0.5, similarly to Fig. 7.6. Interestingly, the curves change
sign at around µ ≃ 0.3, although they do not intersect at the same µ as it might seem. Thus, in
general, the lattice quench ratios are governed by a different function of λ from the one in CFT,
albeit with such a small discrepancy that could not have been found by fitting the data, without
the analytical solution of the problem.

The reason of the discrepancy is that, even in the limit µ → 0, the occupation (7.39) does
not correspond to a thermal distribution, which is implicitly assumed in the CFT treatment. In
fact, the calculation of the slope can be generalized to this case, since the relation (7.45) holds
for arbitrary initial occupations. Choosing a thermal initial state of the homogeneous chain

n̄q =
1

eβωq + 1
(7.50)

with ωq = − cos q, the details of the dispersion become irrelevant in the low-temperature limit,
β → ∞. As outlined in appendix 7.A, the calculation of the corresponding slope γ̄n(β, λ) can be
carried out explicitly by linearizing the dispersion around the Fermi point and yields

lim
β→∞

β γ̄n(β, λ) = 2πκn(λ) . (7.51)
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Figure 7.7: Deviation of the slope ratio from the CFT prediction with n = 1, plotted in the
regime 0.1 ≤ µ ≤ 5 for various fixed values of λ.

Hence, the slope ratios give exactly the expected CFT result in the limit β → ∞.

Finally, one should emphasize that the key connection between the ground-state and quench
scenarios is the eigenvalue relation (7.44), which is indeed identical for the two cases, even though
it is satisfied only approximately (say, up to finite-size effects) for the global quench with the
initial state chosen here. The derivation relies on a special property of the initial Hamiltonian
that is completely analogous to (7.28), and the relation C ′

AB = λCAB holds exactly for finite L
and arbitrary times.

To conclude this section, we remark that the quench results can also be generalized to other
type of defects. While CFT results and some analytical results refer mostly to the conformal
defect, whose scattering properties do not depend on the incoming momenta of the particle,
we believe this assumption is not important for the applicability of the quasi-particle ansatz.
Indeed, let us assume that the defect leaves the system free, and it is a localized perturbation
quadratic in the fermions, and it gives rise to a transmission probability T (q). In the quasiparticle
interpretation, all the formula we discussed so far are expected to be modified by replacing
λ2 → T (q), which yields

n′q =
1

2

(
1±

√
1− 4T (q)nq(1− nq)

)
. (7.52)

7.2.4 Entanglement revivals

For a chain of finite size, the result will be modified for times t > L, due to particles reflecting
from the boundaries of the chain. Such finite-size effects result in a sawtooth-like pattern of the
entropy, as shown in Fig. 7.8 for the homogeneous case λ = 1. The decay and revival of the
entropy was studied for a periodic chain in [222], and the result can easily be generalized to the
open chain by finding the proper contributions of the quasiparticle pairs after reflections. Indeed,
for a pair with fixed velocity vq > 0, the emission distance measured from the center of the chain
must satisfy x < min(vqt− 2L(n− 1), 2Ln− vqt) in order to contribute after n reflections from
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the boundary. Hence, the quasiparticle ansatz reads

Sn =

∫ π

−π

dq

2π
sn(nq) 2Lmin

[{
|vq|t
2L

}
, 1−

{
|vq|t
2L

}]
, (7.53)

where the curly brackets denote the fractional part. The formula (7.53) is plotted with red solid
lines in Fig. 7.8, showing a good agreement with the data, although the discrepancy increases
for larger times due to subleading contributions.
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Figure 7.8: Entanglement decay and revival in the homogeneous quench for various µ and L = 50.
The red solid lines show the quasiparticle ansatz (7.53).

The case of the defect requires a more careful analysis, by following the quasiparticle trajec-
tories and scattering events for large times. This is shown on the left panel of Fig. 7.9, for a pair
emitted at a distance x from the defect. When reaching the defect, the transmitted part (solid
line) of the red particle picks up an amplitude s(q), whereas the reflected component (dashed
line) receives an amplitude r(q). For short times, the dominant contribution to the entanglement
is created by the transmitted red and the blue particles. For large enough times, however, the
blue particle reaches the defect after a reflection and its transmitted part (solid line) can create
entanglement with the reflected part (dashed line) of the red particle, and vice versa. These
processes contribute in a time window depicted by the horizontal dotted lines, and both of them
carry an amplitude s(q)r(q), which we assume to add phase coherently. Finally, when the trans-
mitted and reflected beams join again, they reproduce the original wave with unit amplitude,
which is due to the fact that the amplitudes do not carry any phase and satisfy s2(q)+r2(q) = 1.

The slope for the entropy can be found by simply summing up the contributions from the two
different processes discussed above. Based on this considerations, we proposed the quasiparticle
ansatz

Sn =

∫ π

−π

dq

2π
sn(n

′
q) 2Lmin

[{
|vq|t
2L

}
, 1−

{
|vq|t
2L

}]
+

∫ π

−π

dq

2π
sn(ñ

′
q)Lmax

[
0, 1−

∣∣∣∣4{ |vq|t
4L

}
− 2

∣∣∣∣] . (7.54)

with
ñ′q(1− ñ′q) = 4λ2(1− λ2)nq(1− nq) . (7.55)



160 CHAPTER 7. ENTANGLEMENT ACROSS A DEFECT AFTER A GLOBAL QUENCH

x

s

s

r

r

1

1

1

1

L0−L

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  1  2  3  4

S
(t

)-
S

(0
)

t/L

λ=0.8
λ=0.5
λ=0.3

Figure 7.9: Left: quasiparticle trajectories with corresponding amplitudes. Right: entropy
growth compared to the quasiparticle ansatz (7.54).

The ansatz (7.54) is compared against the lattice data in the bottom right panel of Fig. 7.9,
finding a remarkably good agreement. One should stress that the pattern of entanglement is
completely different from the one found in Fig. 7.8. Indeed, instead of the decay in the time
window L < t < 2L, one finds a continued growth of entanglement with a slope that can even
exceed the one in the initial growth phase 0 < t < L. The decay of the entropy ensues only after
t > 2L, with a quasi-periodic pattern repeating itself after a full period t = 4L.

A last technical, albeit fundamental, observation is needed. While in the absence of the defect
one observes (approximate) revivals with period 2L, whenever λ < 1 revivals have period 4L.
This feature rules out immediately any possible exact validity of C ′

AB(t) = λCAB(t), that was
indeed establish without caring about finite-size effects (which are crucial here).

7.3 Concluding remarks

We examined a global quench protocol that exhibits a complex spread of quantum correlation.
The emergence of ”long-range correlations” can be attributed to both the pair structure of the
initial state and the quantum scattering at the defect point. These effects compete in a non-
trivial manner, leading to an entanglement growth prediction that defies a simple semiclassical
interpretation.

Initially, we derived our findings in the framework of (CFT), where predictions rely on min-
imal assumptions such as the initial state’s thermality and the defect’s scale-invariance. Subse-
quently, we provided a microscopic explanation of the mechanism in the context of free fermions
on a lattice. In addition to quantitative predictions, a common observation in many cases, which
appears to be general, is that greater transmissivity of the defect leads to faster entropy growth.
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This can be intuitively understood as the entropy growth arising from pairs with opposite veloc-
ities spreading across the two sides of the interface.

We would like to highlight some general remarks. While we are confident that the picture
we obtained for free fermions in the limit of infinite system size can be rigorously established,
possibly within the framework of generalized hydrodynamics (despite the presence of long-range
correlations, as discussed in [223]), the assumption of a scale-invariant defect should not play a
specific role. However, when multiple scattering events occur, such as in the presence of multiple
defects or when considering finite-size effects, the situation becomes qualitatively more intri-
cate. This complexity arises from the delicate interference of distinct semiclassical trajectories,
which makes the approach highly sensitive to modifications in local details. Consequently, it
remains unclear whether a large-scale approach can provide predictive power when these effects
are significant.

Another avenue worth exploring is the investigation of different types of defects, such as those
extended in space or even interacting defects. Specifically, it is challenging to distinguish between
a smoothly varying extended defect, which is expected to exhibit purely classical behavior with
no partial transmission or reflection, and localized defects with a non-trivial scattering matrix.
Additionally, it would be valuable to determine if it is possible to predict the entropy growth of
free fermions in the presence of an interacting defect by modifying the quasi-particle framework
we have presented thus far. We hope to come back to these in future investigations.

7.A Calculation of the slope ratio for µ → 0

In this appendix we analyze the slope of the Rényi entropy (see Eq. (7.46))

γn(µ, λ) =

∫ π

−π

dq

2π
| sin q|sn

(
1

2

(
1−

√
1− λ2

µ2

cos2 q + µ2

))
(7.56)

in the limit µ → 0+, which requires a careful analysis. A preliminary observation is that for
µ = 0 one gets

γn(0, λ) =

∫ π

−π

dq

2π
| sin q|sn(0) = 0, (7.57)

which is a correct conclusion, since in this limit the pre/post-quench Hamiltonians are the same
and there is no dynamics. However, here we are mostly interested in the way γn(µ, λ) goes to
zero as µ→ 0, to extract eventually the finite limit

lim
µ→0

γn(µ, λ)

γn(µ, 1)
, (7.58)

which we denote by γn(0,λ)
γn(0,1)

with a slight abuse of notation.

To proceed with the evaluation of (7.56), we first notice that the nontrivial contributions
to the integral come from the values of the momentum q close to ±π/2, an observation which
motivates the change of variable q → q + π/2, and we get

γn(µ, λ) =

∫ π/2

−π/2

dq

π
cos q sn

(
1

2

(
1−

√
1− λ2

µ2

sin2 q + µ2

))
. (7.59)
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At this point, it is natural to introduce the scaling variable

z ≡ sin q

µ
, (7.60)

so that we can write the slope as

γn(µ, λ) = µ

∫ 1/µ

−1/µ

dz

π
sn

(
1

2

(
1−

√
1− λ2

1

1 + z2

))
. (7.61)

Up to now, no approximation has been done and Eq. (7.61) is exact for any finite value of µ.
Nevertheless, the advantage of this expression comes from the fact that the singular behaviour
of the integrand in Eq. (7.56) is not present anymore in Eq. (7.61) , which makes the last
expression suitable for a numerical evaluation.

From now on, we consider explicitly the limit of small µ and we extract only the term of
order O(µ) in Eq. (7.61), obtaining

γn(µ, λ)

µ
≃
∫ ∞

−∞

dz

π
sn

(
1

2

(
1−

√
1− λ2

1

1 + z2

))
, (7.62)

which is the main result of this appendix. While we were not able to perform analytically
the integral (7.62) for any real value of n, and in particular for n = 1 directly related to the
entanglement entropy, we provide below a simple closed expression for integer n ≥ 2. The key
observation is the following decomposition of the density of Rényi entropy

sn(x) ≡
1

1− n
log(xn + (1− x)n) =

1

1− n

(n−1)/2∑
p=−(n−1)/2

log
(
ei2πp/nx+ (1− x)

)
, (7.63)

a simple identity which comes from the factorization of the polynomial xn + (1 − x)n. We
introduce for convenience the function f(α) as

f(α) ≡ 1

2

∫ ∞

−∞

dz

π
log

1−
√
1− λ2 1

1+z2

2
eiα +

1 +
√
1− λ2 1

1+z2

2

+

1

2

∫ ∞

−∞

dz

π
log

1−
√
1− λ2 1

1+z2

2
e−iα +

1 +
√

1− λ2 1
1+z2

2

 ,

(7.64)

related to γn(µ, λ) by the following relation

γn(µ, λ)

µ
=

1

1− n

(n−1)/2∑
p=−(n−1)/2

f(2πp/n), (7.65)

which is a straightforward consequence of Eq. (7.63).
Interestingly, one is able to compute f(α) analytically, as we will show, and then a closed

expression for the slope γn(µ, λ) for integer n ≥ 2 can be provided. To do so, we first differentiate
f(α) over α and we get

d

dα
f(α) = −

∫ ∞

−∞

dz

π

λ2 sin(α)

2λ2 cos(α) + 4z2 − 2λ2 + 4
= − λ2 sin(α)

2
√
2λ2 cos(α)− 2λ2 + 4

. (7.66)
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Then, we reintegrate back and obtain

f(α) =

√
1− λ2 sin2(α/2)− 1, (7.67)

where the integration constant has been chosen so that f(0) = 0, a property which follows from
the definition of f(α). Inserting (7.67) into (7.65) we finally arrive at the expression (7.49)
reported in the main text.

We conclude this appendix with the computation of the slopes γ̄n(β, λ) for an initial thermal
state, highlighting its discrepancies with γn(µ, λ). The occupation number of such state at
temperature β−1 is

n̄q =
1

e−β cos q + 1
, (7.68)

and the quasiparticle ansatz of the slope gives (see Eq. (7.46))

γ̄n(β, λ) =

∫ π

−π

dq

2π
| sin q|sn

(
1−

√
1− 4λ2n̄q(1− n̄q)

2

)
. (7.69)

While the latter expression is valid for any β, we are mostly interested in the low-temperature
limit (β → ∞), whose features are expected to be captured by CFT. After simple algebra, coming
from the linearization of the dispersion around the Fermi-point q = π/2, one gets

γ̄n(β, λ) ≃ 2

∫ ∞

0

dq

π
sn

1−
√
1− λ2

cosh2 βq
2

2

 =
2

β

∫ ∞

0

dx

π
sn

1−
√
1− λ2

cosh2 x
2

2

 , (7.70)

a relation valid in the limit of large β. A tedious but straightforward calculation of the integral
in Eq. (7.70), analogous to the computation of γn(µ, λ), gives for integer n ≥ 2

γ̄n(β, λ) =
1

β

2π

n− 1

(n−1)/2∑
p=−(n−1)/2

(
1

π
arcsin

(
λ sin

πp

n

))2

. (7.71)

If one compares the latter formula with the logarithmic prefactor in Eq. (7.36), valid for the
ground-state entanglement (both in CFT and on the lattice), one realizes that they are propor-
tional. This can be regarded as a non-trivial consistency check of the quasiparticle ansatz with
the CFT results in the presence of a defect.

In conclusion the main message is that, even if both the thermal occupation and the one
induced by the staggered chemical potential localize around the Fermi points (in the limit β → ∞
and µ → 0 respectively) their scaling behaviour is different. Therefore, also the quasiparticle
prediction gives a different result, and this is precisely the origin of the unusual discrepancies
with CFT we observed.





Chapter 8

Domain wall melting across a defect

In this chapter, based on [12], we study the melting of a domain wall in a free-fermionic chain
with a conformal defect and we describe the entanglement evolution. We find that the defect
enhances quantum correlations in such a way that even the smallest scatterer leads to a linear
growth of the entanglement entropy, contrasting the logarithmic behaviour in the clean system
(see Ref. [224]). We propose a modification of the well-enstablished hydrodynamic approach,
which takes into account the long-range correlation generated at the defect. In particular, the
steady production of correlated pairs at the defect gives rise correlations among arbitrarily distant
points, which is the origin of the linear growth of the entropy. It is important to remark that,
while some exact results are already present in the literature for similar specific protocols (see
e.g. Refs. [54, 225] for the dynamics, and Refs. [226, 227] for the steady state), it seems that
a large-scale general theory to address this class of problems is still missing: our work aims to
contribute as a step towards achieving this objective.

Before entering the details of the protocol, it is important to clarify from the beginning some
important conceptual differencies with the global quench analysed in Chapter 7. For instance, for
the global quench we considered a non-equilbrium state, with a certain pair structure that gives
rise to large-scale correlations even in the absence of defect: in particular, we found there that
the more the defect is transmissive the more the entropy growth is enhanced. Here, we consider
instead an initial inhomogeneous state, that is locally at equilibrium, and the only source of
long-distance correlation is precisely the defect. As we will see, we show that the maximum
entropy growth occurs when the transmission and reflection probabilities are equal.

8.1 The protocol and its hydrodynamic limit

We consider a 1D quantum chain of free fermions with 2N sites and with nearest-neighbour
hopping with a conformal defect [54] located at the center of the system. The Hamiltonian is

Ĥ =

N∑
x,x′=−N+1

hx,x′ ĉ†xĉx′ (8.1)

with

hxx′ = −1

2
(δx,x′+1 + δx+1,x′), ∀x, x′ ̸= 0, 1, (8.2)
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being the bulk contribution, and the defect term is

h0,1 = h1,0 = −λ
2
, h0,0 = −h1,1 =

1

2

√
1− λ2. (8.3)

Here ĉ†x, ĉx are the creation and annihilation operators of fermions at site x, satisfying the usual
anticommutation relations {ĉ†x, ĉx′} = δxx′ .

For λ = 1 the Hamiltonian (8.1) reduces to a standard hopping model, and the defect is said
to be purely transmissive. In contrast, for λ = 0 the two halves are decoupled and the defect is
completely reflective.

We mention that the specific structure of the defect (8.3) does not spoil the exact solvability
of the model. In particular, it keeps the model free, and everything is ultimately encoded in the
single particle spectrum, which turns out to be particularly simple. The single-particle energies
are

ωq = − cos(kq), kq = πq/(2N), q = 1, . . . , 2N, (8.4)

for any value of λ [53], which means that the momenta quantization is not affected by the defect.
Moreover, the single-particle eigenstates of Ĥ can be related to the one in the purely transmissive
case, via a specific rescaling in the left/right half chain as [53]

ϕq(x) = (Θ(−x)α+
q (λ) + Θ(x)α−

q (λ)) sin(kqx)/
√
N, (8.5)

with Θ(x) the Heaviside step function, and α±
q (λ) = [1± (−1)q

√
1− λ2]1/2. Also, in the formal

limit N → ∞, the spectrum becomes purely continuous (say, no bound states are present), and
the associated scattering problem gives rise to the following trasmission/reflection probabilities
[53, 218]

T (λ) = λ2, R(λ) = 1− λ2, (8.6)

which do not depend on the momentum k of the incoming asymptotic particle. In the upcoming
discussion, we will not explicitly utilize all the exact finite-size properties discussed thus far.
Instead, we will focus solely on tracking the scattering properties, as they are expected to be the
only relevant ones in the hydrodynamic limit.

We consider an initial state |ψ0⟩, dubbed as domain wall, as

|ψ0⟩ =
0⊗

x=−N+1

|1⟩x
N⊗

x=1

|0⟩x , (8.7)

with |1⟩x , |0⟩x being the filled/empty state at site x. This state, is locally at equilibrium, since
both |1 . . . 1⟩ and |0 . . . 0⟩ are eigenstates, and a non-trivial dynamics of |ψ0⟩ with the hamiltonian
Ĥ occurs due to the hopping across the interface. We focus on the hydrodynamic limit of the
protocol, where the system size is infinite (N → ∞) and we consider the scaling limit

x, t→ ∞, x/t fixed. (8.8)

corresponding to a large-scale ballistic dynamics. In this limit, we regard the position x as a
continuous variable, and the (single-particle) momentum k belongs to the first Brilluoin zone
k ∈ [−π, π]. The ’essential’ local information of the microspic state |Ψ0⟩ is ultimately encoded
in the local fermionic occupation number

n0(x, k) =

{
1, if x ≤ 0 and −π ≤ k ≤ π;

0, otherwise.
(8.9)
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In the absence of the defect (λ = 1), the evolution is completely understood in terms of Euler

equations. These amount to characterize the time-evolved state |Ψt⟩ ≡ e−iĤt |Ψ0⟩ as a local
occupation function nt(xk) satisfying

(∂t + v(k)∂x)nt(x, k) = 0, (8.10)

with v(k) = sin k being the group velocity at momentum k. Eq. (8.10) can be simply solved as

nt(x, k) = n0(x− t sin k, k), (8.11)

i.e. the occupation is always equal to 0 and 1 only, and a sharp separation between these
two values occur at a local Fermi contour. Intuitively, this solution encodes the fact that, in
a semiclassical picture, each particle of momentum k moves freely along the system at a given
velocity v(k). While (8.11) cannot capture all the details of the microscopic state, its predictivity
is related to the fact that no long-range correlations are generated in time, and distinct spatially
separated regions can be always considered effectively uncorrelated. As we will see, this is not
the case for a permeable defect 0 < λ < 1, and dynamically generated macroscopic correlations
have a huge impact on the entanglement growth. Nevertheless, as pointed out in Ref. [225],
a description in terms of a local occupation function is still expected as far as the evolution
of observables localized in small regions of space (say, the particle density or the current) is
concerned. We provide below a semiclassical picture for the time evolution.

Let us consider a single particle localized at position x < 0 far away from the defect with
a given momentum k > 0. At time t = | x

v(k) | it will hit the defect, being partially scattered

in two left/right moving wave packets, with probability given by the R(λ), T (λ) respectively
1. Accordingly, for t > | x

v(k) | its contribution to the local occupation in the phase space for

is expected to be a sum of two delta functions, localized at the positions/momenta of the two
wave packets weighted with the scattering probabilities. If we now consider a many-body state,
since the system is free, it is sufficient to sum all the single-particle contributions to eventually
reconstruct the dynamics. Eventually, one ends up in an ansatz for the occupation function

n
(λ)
t (x, k) that is

n
(λ)
t (x, k) = λ2Θ(x)nt(x, k) + + Θ(−x)

[
(1− λ2)nt(−x,−k) + nt(x, k)

]
, (8.12)

for the domain-wall initial state, as illustrated in Fig. 8.1. In our notations n
(λ=1)
t = nt, is the

solution Eq. (8.11) obtained when the defect is absent.
The occupation function (8.12) gives us access to the asymptotic profiles of conserved charges

as integrals over the momenta k (see [228]). For instance, the particle density profile for 0 < x ≤ t
is

n
(λ)
t (x) =

∫ π

−π

dk

2π
n
(λ)
t (x, k) = λ2

arccos(x/t)

π
. (8.13)

For x < 0, the profile can be obtained via particle-hole symmetry, and it reads

n
(λ)
t (x) = 1− λ2 arccos(|x|/t)/π, −t < x < 0. (8.14)

Outside the space-time region discussed so far, i.e., for |x| > t, the system is basically frozen,

and the occupation number is n
(λ)
t = 1 (n

(λ)
t = 0) on the left (right) half-chain.

1In principle, the scattering probability are k dependent, albeit this is not the case for the conformal defect we
are studying.
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Figure 8.1: Illustration of the evolution of the Fermi occupation function n
(λ)
t (x, k). The defect,

located at x = 0, is represented as a yellow line. The light-grey area refers to a value of the
occupation being 1. Similarly, the value in the white region is 0, in the red one is T (λ) = λ2,
and in the blue one is R(λ) = 1− λ2.

A crucial observation is that the local occupation function (8.12) for λ ̸= 1 assumes values
which are different from 0 and 1. Consequently, the local density of entropy is non-vanishing,
and long-range entanglement is generated. Physically, this phenomenology roots back to the
correlations between reflected and transmitted modes originating at the defect.

8.2 Entanglement dynamics

We now move to our main goal, which is the characterization of the entanglement dynamics.
Specifically, we focus on a spatial bipartition of the system A∪B with a reduced density matrix
ρ̂(A) = trB |ψ⟩ ⟨ψ| of a given state |ψ⟩. The n-Rényi entropy is

Sn =
1

1− n
log tr[ρ̂(A)n] (8.15)

that provides the entanglement entropy in the limit n → 1, i.e. S1(A, t) = −tr[ρ̂t(A) log ρ̂t(A)].
A microscopic description of the entanglement dynamics is usually very demanding even in the
absence of defect, due to the non-equilibrium and non-homogeneous character of the quench
problem under analysis (see Ref. [54] for details regarding our protocol). However, the extensive
behavior of the entropy of small regions of space is well captured by a simple semiclassical
approach, which requires only the knowledge of the local occupation function. Indeed, we recall
the definition of the local Yang-Yang Rényi entropy [226, 229–231]

sn(x) ≡
1

1− n

∫ π

−π

dk

2π
log
[
n(x, k)n + (1− n(x, k))n

]
, (8.16)

and for a small region of space A = [x0, x0 + dx] the Rényi entropy is approximately Sn ≃
sn(x0)dx. Moreover, whenever distinct points of the region A can be effectively considered
uncorrelated, one expects that

Sn ≃
∫
A
dxsn(x). (8.17)

If there are non-zero correlations between nearby spatial points, it is possible that there are still
subleading corrections to this prediction: however, the semiclassical result is expected to give the
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correct leading extensive behavior in the latter case. In contrast, whenever distant points of A
have non-trivial correlation, as it happens for the pairs of specular points (x,−x) in our protocol,
one needs to be more careful, and the semiclassical prediction needs further modification to be
predictive.

Let us first consider the simple case A = (−∞, x0) with x0 < 0. Here, no pairs of correlated
points belong to A, and one expects that Eq. (8.17) can be considered valid. In particular, we
predict

Sn(t) =

∫
A
dxsn(x, t) =

Nt(A)

1− n
log
[
λ2n + (1− λ2)n

]
, (8.18)

with

Nt([−∞, x0]) =
t

π

(√
1− x20

t2
− x0

t
arccos

x0
t

)
. (8.19)

For x0 = 0, we get the entropy between the two half chains that is (see also Ref. [54])

Sn(t) =
t

π(1− n)
log
[
λ2n + (1− λ2)n

]
. (8.20)

We mention that in the absence of defect, previous studies highlighted a half-system entangle-
ment growth Sn(t) ∼ 1

12
(n+1)

n log(t), arising from subleading contributions [232–234]. This is
compatible with Eq. (8.20), as (8.20) captures only the semiclassical extensive behavior, which
vanishes at λ = 1. Interestingly, there is a sharp transition from logarithmic to linear law that is
observed even for values of λ very close to unit, see Fig. 8.2. For a comparison with exact lattice
calculations, and w also refer to e.g. Refs. [224, 232] for details on the numerical implementation.

Eq. (8.18) fails to capture the behaviour of entanglement for a subsystem straddling the defect
because it counts also for the pairs of entangled particles which are both in A, but on different
sides of the defect. To understand the failure, it is sufficient to observe that the prediction
(8.18) is not symmetric under A ↔ B, which is however an exact property satisfied by Sn(A).
Such over-counting is however easily cured within the quasiparticle picture [219, 231]. In this
respect, Eq. (8.18) usually overestimates the entropy in the presence of long-range correlations,
and contributions with pairs of correlated particles both belonging to A have to be subtracted
explicitly.

To show this mechanism, we first discuss the case A = [−∞, x0] with x0 > 0. On one hand,
we know at the microscopic level (using particle-hole symmetry and Sn(A, t) = Sn(B, t) ) that

Sn((−∞, x0), t) = Sn((−∞,−x0), t) (8.21)

has to hold. On the other hand, according to the quasi particle picture, we have to subtract
from (8.18) the contribution coming from pairs of particles belonging to A: this comes precisely
from the highly correlated region [−x0, x0], and therefore the quasi particle-picture gives us

Sn(A, t) =

∫
A\[−x0,x0]

dx sn(x, t) =

∫
(−∞,−x0]

dx sn(x, t). (8.22)

Indeed, both microscopic considerations and the quasi particle picture lead to the same result,
which is a non-trivial consistency check. We checked numerically the validity of these statements
as shown in Fig. 8.2-(b).

This approach can be easily generalized to more complicated regions: one only needs to
remove from A the (maximal) subset which have a specular image belonging to A too, and
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Figure 8.2: (a) – Half-system entanglement entropy of A = [−∞, 0], denoted by S1(0, t), for
different values of λ as function of time. Symbols show the numerical data while the full lines (for
λ ̸= 1) are given by the analytical prediction Eq. (8.20). At λ = 1, the half-system entanglement
entropy is S1 = 1/6 log(t) + const (dashed line) [234], and it is signficantly smaller than the
value obtained at λ < 1. (b) – Entanglement profiles for A = [−∞, x0] plotted as function of x0
at different times and fixed λ = 0.7. Symbols show the numerical data while the full lines are
given by Eq. (8.18). As expected from particle-hole symmetry, the profile is symmetric under
x0 ↔ −x0.
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Figure 8.3: (a) – Numerical results for the entanglement of the symmetric interval A = [−x0, x0]
for different values of λ as function of time. The dashed horizontal line mark the plateau
S1 = 1/3 log(x0) + 2κ1 for λ = 1. (b) – Plot of r(λ), extracted as a fit some subsystems
sizes (x0 = 20, x′0 = 40, x′′0 = 60) as a function of λ. The full line shows the behaviour of ceff(λ),
given by Eq. (8.26).

compute semiclassically the entropy of the resulting region. Similar conclusions were obtained
in Ref. [226], where the steady state, corresponding to t→ ∞, was considered (albeit the defect
was not conformal). In particular, Ref. [226] have shown the presence of an extensive mutual
information between specular regions across the interface, related to the violation of the simple
ansatz (8.17).

8.2.1 Subleading behavior

An interesting case we want to discuss explicitly is for A = [−x0, x0] (x0 > 0), that is an interval
place symmetrically wrt the center. According to the quasi-particle picture, we simply expect

Sn(t) = 0. (8.23)

This is due to the fact that no shared pairs are present between A and its complement. The
vanishing of the entropy is not ’exact’, and it only holds at the semiclassical level. Indeed,
the ’subleading’ contribution corrections are the only non-vanishing ones. For the homogeneous
Hamiltonian (λ = 1), a useful way to incorporate quantum fluctuations in our description is
established by quantum generalised hydrodynamics [224, 232, 233, 235–239]. According to this
theory, the relevant contribution to the entanglement in zero-entropy states is given by linear
quantum fluctuations around the Fermi contour. We report below the predictions for the entropy
at λ = 1, which indeed coincides with the one in Refs. [233, 240] obtained via lattice methods

Sn([−x0, x0], t) =
n+ 1

12n
log
[
x20(1− x20/t

2)3
]
+ 2κn. (8.24)

with κn a known non-universal amplitude [241, 242] (κ1 ≃ 0.4785). For t ≫ x0, Eq. (8.24)
predicts a saturation of the half-system entanglement to the value S1([−x0, x0], t ≫ x0) ≈
1/3 log(x0) + 2κ1. Crucially, the growth of the stationary value as a function of the subsys-
tem size is logarithmic, namely subextensive.
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Numerical results for the lattice model reveal a similar behaviour for the half-system entan-
glement even in the presence of the defect λ ∈ (0, 1), see Fig. 8.3-(a). In particular, in the large
time limit, the entropy is expected to grow logarithmically in the subsystem size, namely

S1([−x0, x0],∞) ∼ r(λ)

3
log(x0) + γ(λ). (8.25)

Here r(λ) is just a dimensionless parameter which depends on λ, and we fit numerically. The
perfect collapse in Fig. 8.3-(b) of the fitted r(λ) for different pairs x0, x

′
0 is in agreement with

the conjectured behaviour of Eq. (8.25).
Surprisingly, we found that r(λ) is numerically consistent with the effective central charge

appearing in the critical ground-state entanglement of free fermions with defects [218] given by

ceff(λ) = − 6

π2

{
(1 + λ)Li2(−λ) + (1− λ)Li2(λ)

+
[
(1 + λ) log(1 + λ) + (1− λ) log(1− λ)

]
log λ

}
, (8.26)

that satisfies ceff(0) = 0 and ceff(1) = 1. Clearly, both r(λ) and ceff(λ), but we are not sure if
universal very small discrepancies at finite λ. Our conjecture is that ceff(λ) = r(λ); moreover,
we claim that an underlying (defect) CFT could be able to describe the protocol we consider in
our work in the context of quantum generalized hydrodynamics, similarly as it happens in the
homogeneous case (λ = 1). We hope to come back to this problem in the future.

8.3 Concluding remarks

We conclude this chapter with some final remarks. We have shown that long-range correlations
are generated in the dynamics of a domain wall initial state whenever a single localised defect
is present. In particular, a linear growth of entropy is observed, which is entirely due to the
permeable defect. We have provided some analytical predictions in the case of a conformal
defect for a free fermionic chain, and we think that the underlying mechanism is similar for other
defects/systems as long as the ballistic spreading dominates the dynamics.

This observation has severe consequences for any possible formulation of large-scale hydro-
dynamic theory in the presence of defects, since, as far as I know, there are no systematic ways
to keep track of these long-range correlations. In particular, the quasi-particle picture presented
here, that is a variation of [219], is far from being a theory or a method, and it only applies to
some case-by-case protocols: e.g., in the way it is formulated, it is not even predictive for the
global quench of Chapter 7, where the same microscopic Hamiltonian has been considered.

We are confident that, even for free fermions, the local occupation number nt(x, k) alone can-
not be sufficient to describe the evolution of some observables: this is the case of entropy, but also
for correlation functions between specular points. Moreover, we believe that even (strictly) local
observables might not be described quantitatively with a self-consistent equation for nt(x, k).
For example, one could naively argue that the Euler equations with properly chosen boundary
conditions at x = 0, could be sufficient to describe the evolution of nt(x, k). However, this is
probably not the case: if one considers a highly correlated initial state, quantum interference
between left/right particles moving particles hitting the defect is expected to have a huge impact
on the macroscopic dynamics, and it is probably not captured by any semiclassical approach.
For example, it is not clear to us, how to study systematically the time-reversal of the protocol
considered in this chapter.



Chapter 9

Outlook

We point out some possible directions deserving further investigation. While we think that the
whole story about symmetry resolution has been more or less understood both for finite spin
systems and for quantum field theories with a clear lattice realization, a unifying theory regarding
the symmetries of (algebra of) observables and their relation to quantum entanglement seems to
be missing: some important steps have been provided in [243, 244].

This is far more than a mere mathematical curiosity, as for many relevant systems the usual
notion of tensor product of two Hilbert spaces, associated with complementary classes of ob-
servables, simply does not apply, and it is not even clear how to formulate a good notion of
symmetry resolution for those systems. For example, for lattice gauge theories the algebra of
gauge-invariant observables is not realized as a tensor product due to the appearance of sectors
[245]. Also, semilocal observables that have proven to play a crucial role in thermalization (see
[246]) do not have a local realization in the corresponding microscopic Hilbert space. Moreover,
we emphasize that, strictly speaking, systems with infinite degrees of freedom, that is the case
for spin systems in infinite lattices, quantum field theory, gravity, are not even described by
separable Hilbert spaces, while they can be understood as von Neumann algebras of type II and
III (see Ref. [137] for a review). For the aforementioned reasons, we would like to understand
better the relation between entanglement and symmetry from the point of view of the algebra
of observables, rather than overfocus on their representation over ’abstract’ Hilbert spaces.

Finally, from our point of view, it seems that the understanding of the dynamics of quantum
many-body systems, particularly concerning the ballistic spreading of quantum correlations, is
disappointingly lacking. Specifically, as we have demonstrated through two specific protocols in-
volving free systems, the presence of long-range correlations can play a significant role, especially
in the context of global quenches or defects. In the case of interacting systems, the situation may
be even more challenging, as interactions can introduce additional sources of long-range corre-
lations. There, while it may be tempting to describe quantum systems solely in terms of their
local (generalized) Gibbs ensemble, it is evident that this perspective is profoundly unsatisfactory
when entanglement (and more generally, non-local observables) comes into play. Surprisingly,
even if tons of dynamical protocols have been considered in the last decades, the emergence and
the importance of those long-range correlations have been mostly overlooked. Recent works, in
the context Mesoscopic Fluctuation Theory, pointed out their explicit presence for both free [223]
and interacting systems [247, 248] and their role in the dynamics of observables. We also mention
that the so-called quantum generalized hydrodynamics, as formulated and applied in Refs. [236],
does not solve the aforementioned issues, as it primarily addresses ”quantum corrections” arising
from short-range correlations.

173



174 CHAPTER 9. OUTLOOK

In summary, two fundamental questions demand attention: how can we quantify systemat-
ically correlations between distant points and comprehend their dynamics within a mesoscopic
hydrodynamic framework, and how can we establish their relationship with the expectation
values of observables at intermediate times?
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[160] G. Sárosi and T. Ugajin, “Relative entropy of excited states in conformal field theories of
arbitrary dimensions”, JHEP 02, 060 (2017).

[161] T. Ugajin, “Mutual information of excited states and relative entropy of two disjoint
subsystems in CFT”, JHEP 10, 184 (2017).

[162] H. Casini, M. Huerta, and R. C. Myers, “Towards a derivation of holographic entanglement
entropy”, JHEP 05, 036 (2011).

[163] J. Bhattacharya, M. Nozaki, T. Takayanagi, and T. Ugajin, “Thermodynamical Property
of Entanglement Entropy for Excited States”, Phys. Rev. Lett. 110, 091602 (2013).

[164] R. Bousso, Z. Fisher, J. Koeller, S. Leichenauer, and A. C. Wall, “Proof of the Quantum
Null Energy Condition”, Phys. Rev. D 93, 024017 (2016).

[165] M. Fagotti and F. H. L. Essler, “Reduced density matrix after a quantum quench”, Phys.
Rev. B 87, 245107 (2013).

[166] J. Zhang, P. Calabrese, M. Dalmonte, and M. A. Rajabpour, “Lattice Bisognano-Wichmann
modular Hamiltonian in critical quantum spin chains”, SciPost Phys. Core 2, 007 (2020).

[167] J. Zhang, P. Ruggiero, and P. Calabrese, “Subsystem trace distance in low-lying states
of (1 + 1)-dimensional conformal field theories”, Journal of High Energy Physics 2019,
10.1007/JHEP10(2019)181 (2019).

[168] J. de Boer, V. Godet, J. Kastikainen, and E. Keski-Vakkuri, “Quantum hypothesis testing
in many-body systems”, SciPost Phys. Core 4, 019 (2021).

https://doi.org/10.1007/JHEP07(2018)002
https://doi.org/10.1007/JHEP07(2018)002
https://doi.org/10.1007/s11005-019-01238-z
https://doi.org/10.1007/s11005-019-01238-z
https://doi.org/10.1088/1742-5468/aa85c1
https://doi.org/10.1103/PhysRevD.99.125020
https://doi.org/10.1007/JHEP06(2016)004
https://doi.org/10.1007/JHEP10(2016)140
https://doi.org/10.1007/s10773-007-9610-0
https://doi.org/10.1088/0264-9381/25/20/205021
https://doi.org/10.1088/0264-9381/25/20/205021
https://doi.org/10.1103/PhysRevLett.113.051602
https://doi.org/10.1103/PhysRevLett.113.051602
https://doi.org/10.1103/PhysRevLett.117.041601
https://doi.org/10.1103/PhysRevLett.117.041601
https://doi.org/10.1007/JHEP07(2016)114
https://doi.org/10.1007/JHEP02(2017)060
https://doi.org/10.1007/JHEP10(2017)184
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.1103/PhysRevLett.110.091602
https://doi.org/10.1103/PhysRevD.93.024017
https://doi.org/10.1103/PhysRevB.87.245107
https://doi.org/10.1103/PhysRevB.87.245107
https://doi.org/10.21468/SciPostPhysCore.2.2.007
https://doi.org/10.1007/JHEP10(2019)181
https://doi.org/10.1007/JHEP10(2019)181
https://doi.org/10.1007/JHEP10(2019)181
https://doi.org/10.21468/SciPostPhysCore.4.2.019


186 BIBLIOGRAPHY

[169] J. Zhang, P. Ruggiero, and P. Calabrese, “Subsystem Trace Distance in Quantum Field
Theory”, Phys. Rev. Lett. 122, 141602 (2019).

[170] P. Calabrese, J. Cardy, and E. Tonni, “Entanglement entropy of two disjoint intervals in
conformal field theory”, J. Stat. Mech. 0911, P11001 (2009).

[171] P. Calabrese, J. Cardy, and E. Tonni, “Entanglement entropy of two disjoint intervals in
conformal field theory II”, J. Stat. Mech. 1101, P01021 (2011).

[172] Z. Li and J.-j. Zhang, “On one-loop entanglement entropy of two short intervals from
OPE of twist operators”, JHEP 05, 130 (2016).

[173] T. Dupic, B. Estienne, and Y. Ikhlef, “Entanglement entropies of minimal models from
null-vectors”, SciPost Phys. 4, 031 (2018).

[174] A. Klemm and M. G. Schmidt, “Orbifolds by Cyclic Permutations of Tensor Product
Conformal Field Theories”, Phys. Lett. B 245, 53–58 (1990).

[175] T. Pálmai, “Excited state entanglement in one dimensional quantum critical systems:
Extensivity and the role of microscopic details”, Phys. Rev. B 90, 161404 (2014).

[176] T. Palmai, “Entanglement Entropy from the Truncated Conformal Space”, Phys. Lett. B
759, 439–445 (2016).

[177] E. M. Brehm and M. Broccoli, “Correlation functions and quantum measures of descen-
dant states”, JHEP 04, 227 (2021).

[178] L. Taddia, J. C. Xavier, F. C. Alcaraz, and G. Sierra, “Entanglement entropies in confor-
mal systems with boundaries”, Phys. Rev. B 88, 075112 (2013).

[179] L. Taddia, F. Ortolani, and T. Pálmai, “Renyi entanglement entropies of descendant states
in critical systems with boundaries: conformal field theory and spin chains”, J. Stat. Mech.
1609, 093104 (2016).

[180] L. S. Levitov and G. B. Lesovik, “Charge distribution in quantum shot noise”, JETP
Letters 58, 230–235 (1993).

[181] I. Klich and L. Levitov, “Quantum Noise as an Entanglement Meter”, Phys. Rev. Lett.
102, 100502 (2009).

[182] D. Gioev and I. Klich, “Entanglement Entropy of Fermions in Any Dimension and the
Widom Conjecture”, Phys. Rev. Lett. 96, 100503 (2006).

[183] R. Bonsignori, P. Ruggiero, and P. Calabrese, “Symmetry resolved entanglement in free
fermionic systems”, J. Phys. A 52, 475302 (2019).

[184] J. Cardy and P. Calabrese, “Unusual Corrections to Scaling in Entanglement Entropy”,
J. Stat. Mech. 1004, P04023 (2010).

[185] S. Fraenkel and M. Goldstein, “Symmetry resolved entanglement: exact results in 1d and
beyond”, J. Stat. Mech. Theory Exp. 2020 (2019).

[186] J. Zhang and P. Calabrese, “Subsystem distance after a local operator quench”, JHEP
02, 056 (2020).

[187] I. Peschel and V. Eisler, “Reduced density matrices and entanglement entropy in free
lattice models”, J. Phys. A: Math. Theor. 42, 504003 (2009).

[188] R. Balian and E. Brezin, “Nonunitary bogoliubov transformations and extension of wick’s
theorem”, Nuovo Cim. B 64, 37–55 (1969).

https://doi.org/10.1103/PhysRevLett.122.141602
https://doi.org/10.1088/1742-5468/2009/11/P11001
https://doi.org/10.1088/1742-5468/2011/01/P01021
https://doi.org/10.1007/JHEP05(2016)130
https://doi.org/10.21468/SciPostPhys.4.6.031
https://doi.org/10.1016/0370-2693(90)90164-2
https://doi.org/10.1103/PhysRevB.90.161404
https://doi.org/10.1016/j.physletb.2016.06.012
https://doi.org/10.1016/j.physletb.2016.06.012
https://doi.org/10.1007/JHEP04(2021)227
https://doi.org/10.1103/PhysRevB.88.075112
https://doi.org/10.1088/1742-5468/2016/09/093104
https://doi.org/10.1088/1742-5468/2016/09/093104
https://doi.org/10.1103/PhysRevLett.102.100502
https://doi.org/10.1103/PhysRevLett.102.100502
https://doi.org/10.1103/PhysRevLett.96.100503
https://doi.org/10.1088/1751-8121/ab4b77
https://doi.org/10.1088/1742-5468/2010/04/P04023
https://doi.org/10.1007/JHEP02(2020)056
https://doi.org/10.1007/JHEP02(2020)056
https://doi.org/10.1007/BF02710281


BIBLIOGRAPHY 187

[189] M. Fagotti and P. Calabrese, “Entanglement entropy of two disjoint blocks in XY chains”,
J. Stat. Mech. 1004, P04016 (2010).

[190] C. Bachas, J. de Boer, R. Dijkgraaf, and H. Ooguri, “Permeable conformal walls and
holography”, JHEP 06, 027 (2002).

[191] E. M. Brehm and I. Brunner, “Entanglement entropy through conformal interfaces in the
2D Ising model”, JHEP 09, 080 (2015).

[192] C. Holzhey, F. Larsen, and F. Wilczek, “Geometric and renormalized entropy in conformal
field theory”, Nucl. Phys. B 424, 443–467 (1994).

[193] J. Cardy and E. Tonni, “Entanglement hamiltonians in two-dimensional conformal field
theory”, J. Stat. Mech. 1612, 123103 (2016).

[194] V. Alba, P. Calabrese, and E. Tonni, “Entanglement spectrum degeneracy and the Cardy
formula in 1+1 dimensional conformal field theories”, J. Phys. A 51, 024001 (2018).

[195] K. Ohmori and Y. Tachikawa, “Physics at the entangling surface”, J. Stat. Mech. 1504,
P04010 (2015).

[196] M. Gutperle and J. D. Miller, “Entanglement entropy at CFT junctions”, Phys. Rev. D
95, 106008 (2017).

[197] C. Bachas, I. Brunner, and D. Roggenkamp, “Fusion of Critical Defect Lines in the 2D
Ising Model”, J. Stat. Mech. 1308, P08008 (2013).

[198] C. Bachas, I. Brunner, and D. Roggenkamp, “A worldsheet extension of O(d,d:Z)”, JHEP
10, 039 (2012).

[199] P. Calabrese, M. Mintchev, and E. Vicari, “Entanglement Entropy of Quantum Wire
Junctions”, J. Phys. A 45, 105206 (2012).

[200] K. Shiozaki, H. Shapourian, K. Gomi, and S. Ryu, “Many-body topological invariants for
fermionic short-range entangled topological phases protected by antiunitary symmetries”,
Phys. Rev. B 98, 035151 (2018).

[201] H. Shapourian and S. Ryu, “Entanglement negativity of fermions: monotonicity, separa-
bility criterion, and classification of few-mode states”, Phys. Rev. A 99, 022310 (2019).

[202] H. Shapourian and S. Ryu, “Finite-temperature entanglement negativity of free fermions”,
J. Stat. Mech. 1904, 043106 (2019).

[203] V. Eisler and Z. Zimborás, “On the partial transpose of fermionic gaussian states”, New
J. Phys. 17, 053048 (2015).

[204] S. Murciano, R. Bonsignori, and P. Calabrese, “Symmetry decomposition of negativity of
massless free fermions”, SciPost Phys. 10, 111 (2021).

[205] E. Cornfeld, E. Sela, and M. Goldstein, “Measuring Fermionic Entanglement: Entropy,
Negativity, and Spin Structure”, Phys. Rev. A 99, 062309 (2019).

[206] S. Murciano, V. Vitale, M. Dalmonte, and P. Calabrese, “Negativity hamiltonian: an
operator characterization of mixed-state entanglement”, Phys. Rev. Lett. 128, 140502
(2022).

[207] P. Calabrese, J. Cardy, and E. Tonni, “Entanglement negativity in quantum field theory”,
Phys. Rev. Lett. 109, 130502 (2012).

https://doi.org/10.1088/1742-5468/2010/04/P04016
https://doi.org/10.1088/1126-6708/2002/06/027
https://doi.org/10.1007/JHEP09(2015)080
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1088/1742-5468/2016/12/123103
https://doi.org/10.1088/1751-8121/aa9365
https://doi.org/10.1088/1742-5468/2015/04/P04010
https://doi.org/10.1088/1742-5468/2015/04/P04010
https://doi.org/10.1103/PhysRevD.95.106008
https://doi.org/10.1103/PhysRevD.95.106008
https://doi.org/10.1088/1742-5468/2013/08/P08008
https://doi.org/10.1007/JHEP10(2012)039
https://doi.org/10.1007/JHEP10(2012)039
https://doi.org/10.1088/1751-8113/45/10/105206
https://doi.org/10.1103/PhysRevB.98.035151
https://doi.org/10.1103/PhysRevA.99.022310
https://doi.org/10.1088/1742-5468/ab11e0
https://doi.org/10.21468/SciPostPhys.10.5.111
https://doi.org/10.1103/PhysRevA.99.062309
https://doi.org/10.1103/PhysRevLett.128.140502
https://doi.org/10.1103/PhysRevLett.128.140502
https://doi.org/10.1103/PhysRevLett.109.130502


188 BIBLIOGRAPHY

[208] P. Calabrese, J. Cardy, and E. Tonni, “Entanglement negativity in extended systems: A
field theoretical approach”, J. Stat. Mech. 1302, P02008 (2013).

[209] M. Gruber and V. Eisler, “Time evolution of entanglement negativity across a defect”, J.
Phys. A: Math. Theor. 53, 205301 (2020).

[210] P. Ruggiero, V. Alba, and P. Calabrese, “Negativity spectrum of one-dimensional confor-
mal field theories”, Phys. Rev. B 94, 195121 (2016).

[211] P. Calabrese, M. Mintchev, and E. Vicari, “The entanglement entropy of one-dimensional
gases”, Phys. Rev. Lett. 107, 020601 (2011).

[212] P. Calabrese, M. Mintchev, and E. Vicari, “The Entanglement entropy of 1D systems in
continuous and homogenous space”, J. Stat. Mech. 1109, P09028 (2011).

[213] B. Bellazzini and M. Mintchev, “Quantum Fields on Star Graphs”, J. Phys. A 39, 11101–
11118 (2006).

[214] P. Calabrese, P. Le Doussal, and S. N. Majumdar, “Random matrices and entanglement
entropy of trapped fermi gases”, Phys. Rev. A 91, 012303 (2015).

[215] E. Vicari, “Quantum dynamics and entanglement in one-dimensional fermi gases released
from a trap”, Phys. Rev. A 85, 062324 (2012).

[216] J. Zinn-Justin, Quantum field theory and critical phenomena, Vol. 77, International Series
of Monographs on Physics (Oxford University Press, Apr. 2021).

[217] X. Wen, Y. Wang, and S. Ryu, “Entanglement evolution across a conformal interface”, J.
Phys. A Math. Theor. 51, 10.1088/1751-8121/aab561 (2018).

[218] V. Eisler and I. Peschel, “Entanglement in fermionic chains with interface defects”, Ann.
Phys. (Berlin) 522, 679 (2010).

[219] P. Calabrese and J. Cardy, “Evolution of Entanglement Entropy in One-Dimensional
Systems”, J. Stat. Mech.: Theor. Exp. 4, 10.1088/1742-5468/2005/04/P04010 (2005).

[220] M. Fagotti and P. Calabrese, “Evolution of entanglement entropy following a quantum
quench: Analytic results for the XY chain in a transverse magnetic field”, Phys. Rev. A
78, 10.1103/PhysRevA.78.010306 (2008).

[221] V. Alba and P. Calabrese, “Entanglement and thermodynamics after a quantum quench
in integrable systems”, Proc. Natl. Acad. Sci. 114, 10.1073/pnas.1703516114 (2016).

[222] R. Modak, V. Alba, and P. Calabrese, “Entanglement revivals as a probe of scrambling
in finite quantum systems”, J. Stat. Mech.: Theor. Exp. 2020, 083110 (2020).

[223] G. D. V. Del Vecchio, B. Doyon, and P. Ruggiero, “Entanglement r\’enyi entropies from
ballistic fluctuation theory: the free fermionic case”, arXiv preprint arXiv:2301.02326
(2023).

[224] S. Scopa, A. Krajenbrink, P. Calabrese, and J. Dubail, “Exact entanglement growth of a
one-dimensional hard-core quantum gas during a free expansion”, Journal of Physics A:
Mathematical and Theoretical 54, 10.1088/1751-8121/ac20ee (2021).

[225] M. Ljubotina, S. Sotiriadis, and T. Prosen, “Non-equilibrium quantum transport in pres-
ence of a defect: the non-interacting case”, SciPost Phys. 6, 004 (2019).

[226] S. Fraenkel and M. Goldstein, “Extensive Long-Range Entanglement in a Nonequilibrium
Steady State”, (2022).

https://doi.org/10.1088/1742-5468/2013/02/P02008
https://doi.org/10.1103/PhysRevB.94.195121
https://doi.org/10.1103/PhysRevLett.107.020601
https://doi.org/10.1088/1742-5468/2011/09/P09028
https://doi.org/10.1088/0305-4470/39/35/011
https://doi.org/10.1088/0305-4470/39/35/011
https://doi.org/10.1103/PhysRevA.91.012303
https://doi.org/10.1103/PhysRevA.85.062324
https://doi.org/10.1088/1751-8121/aab561
https://doi.org/10.1088/1751-8121/aab561
https://doi.org/10.1088/1751-8121/aab561
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1103/PhysRevA.78.010306
https://doi.org/10.1103/PhysRevA.78.010306
https://doi.org/10.1103/PhysRevA.78.010306
https://doi.org/10.1073/pnas.1703516114
https://doi.org/10.1073/pnas.1703516114
https://doi.org/10.1088/1742-5468/aba9d9
https://doi.org/10.1088/1751-8121/ac20ee
https://doi.org/10.1088/1751-8121/ac20ee
https://doi.org/10.1088/1751-8121/ac20ee
https://doi.org/10.21468/SciPostPhys.6.1.004


BIBLIOGRAPHY 189

[227] G. Gouraud, P. L. Doussal, and G. Schehr, “Stationary time correlations for fermions
after a quench in the presence of an impurity”, arXiv preprint arXiv:2211.15447 (2022).
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