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Abstract

The research carried out in this thesis builds on the pioneering discoveries by Larry Ab-
bott, Shimon Marom, Eve Marder, and others, who’s research provided key insights on
the dynamics of neuronal excitability over long timescales. By combining Optogenetics
with substrate-integrated microelectrode arrays, I developed a novel approach to ob-
serve and characterise single-neuron activity, in response to repetitive light stimulation
and upon pharmacological isolation of neurons from synaptic interactions. This offers
a detailed and systematic observation window of neuronal excitability over very long
periods of time, which I inferred by probing the input-output properties of individual
cells. A distinctive feature of our approach is the methodological advantage offered
by Optogenetics, as we can restrict my investigation to genetically-identified cell types
e.g., putative glutamatergic cells. My method also allows for stable recordings of a large
number of simultaneous neurons, undergoing repeated wide-field photo-activation
and retaining long experimental stability of the spike waveform at very low and com-
paratively high stimulation rates. I also develop an algorithm to resolve and separate
individual neuronal units at each microelectrode. Through the analysis of my experi-
mental results, I characterise rich dynamical processes underlying neuronal excitability,
reflected in power-law relations across various stimulation frequencies and various
degrees of cross-correlations along multiple timescales. As an important consequence,
besides further clarifying the physiological processes of biological excitability, my results
also provide the community with insights and quantitative experimental data, very
much needed for designing novel mathematical models of cells and circuits, capable to
capture neuronal dynamics to a full extent and paving the way for more realistic in silico
exploration of the adaptive responses of the nervous system.
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1. Introduction

1.1. Overview

This interdisciplinary exploration of neuronal excitability over long timescales unfolds

along my own personal academic journey. In my PhD project, I experimentally probed

and analysed the dynamics of excitability at the single-cell level in putative glutamatergic

cortical neurons. Throughout this work, I have closely realised the importance of taking

great care of an experimental design, with respect to its timescales as well as in terms of

of the nature of the external stimuli used. I am convinced that by widening our current

perspectives on the cell’s intrinsic adaptation mechanisms and memory processes, we can

bolster the creation of more accurate analytical computational models in Neurobiology.

To illustrate the motivation of my research, in Sec. 1.2 I review different definitions of

excitability and their impact on experimental and modelling approaches. I then extend

this preamble to a series of research questions addressed in Chp. 2, where I examine

the current literature and present relevant experimental and theoretical arguments. My

first step is to review established capabilities of a single neuron based on both in vivo

and in vitro studies, as well as explore how neuron models have evolved to keep up

with these tasks. Then, I explore the intricate timescales related to intrinsic cellular

phenomena, ranging from gene expression to morphological changes, and how these
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Chapter 1 Introduction

mechanisms relate to changes in excitability at the organisation level of the neuronal

membrane. Beyond this level, I also examine state-of-the-art stimulation paradigms,

which are important to probe and characterise the dynamical properties of excitability.

In terms of methodology, I adopt an established characterisation and quantification of

neuronal excitability, over extended timescale, as first proposed by Gal and coworkers

(Gal et al., 2010).

My PhD project is then divided into separate goals, each corresponding to a specific

work package presented in Chp. 3. These include the use of microelectrode arrays (MEA)

as substrates for growing rat cortical neurons ex vivo in combination with optogenetic

tools (Sec. 3.2.1) to selectively target the expression of a fast-kinetic channelrhodopsin

(ChR) in the cell membrane (Sec. 3.1). These led to an extended campaign of experi-

ments involving extracellular electrophysiology (Sec. 3.3) as well as to a short series of

supporting intracellular recordings (Sec. 3.4.2), and finally to the side exploration of

computational models of neuronal excitability (Sec. 4.3) to replicate to some extent the

experimental findings. Chp. 4 presents the implementation of the methodology (Sec. 4.1)

and describes the findings related to long experiments on genetically-identified cortical

neuronal type (Sec. 4.2). Results also include the numerical simulations of established as

well as improved mathematical models of neuronal excitability (Sec. 4.3), and finally a

direct characterisation of channelrhodopsins kinetics (Sec. 4.3), besides the central part

of my work that revealed and confirmed a very rich dynamical behaviours of neuronal

excitability over extended timescales (Sec. 4.2). After a brief discussion of the outcomes,

I summarise my observations and propose potential future research directions in Chp. 5.

I am overall convinced that a multifaceted and interdisciplinary approach - in both

the definition of the research questions and methods - offers the greatest prospects for

significant impact, and I am excited to be able to share my contributions to the field

along this direction and philosophy.
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Chapter 1 Introduction

1.2. Motivations

Defining the question is part of the answer.

Excitability is a fundamental property of neurons and it is essential for information

processing in the nervous system, together with learning1 and memory2. Excitability

can be defined in several ways, depending on the experimental paradigm of choice and,

importantly, the related timescales of observations.

One commonly used definition revolves around the cell’s ability to produce an action

potential in response to an external stimulus. At the dawn of the twentieth century, as the

neuron gained recognition for being a distinct unit within the neuronal system, signifi-

cant discoveries were made regarding action potentials. Early studies on isolated sensory

axons by (Adrian and Zotterman, 1926) showed that excitability changes both over short

and relatively long periods of time. Regarding the former case, it was observed that each

action potential leads to a brief refractory phase, where neuron can hardly be excited

again. This state is then followed by gradual recovery of excitability, through spike

frequency adaptation. In 1952, Hodgkin and Huxley (Hodgkin and Huxley, 1952) were

the first to confirm these observations and precisely dissect their underlying subcel-

lular mechanisms, at the level of transmembrane conductances of voltage-dependent

ion channels. In addition, they provided a mathematical model capable of accurately

describing the dynamics of membrane excitability and the generation and propagation

of action potentials. On the observational timescales chosen by Hodgkin and Huxley,

successive discharges can be accounted for by the recent changes of the membrane

voltage. Changes in excitability can, therefore, be described by a process on a timescale

of two to three orders of magnitude longer than the action potential itself. In other words,

1 Learning refers to a process of alterations in the state of a system over time.
2 In its simplest form, memory refers to a process of information retention in a system over time, which

can be accessed, and erased from the past states of the system.
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Chapter 1 Introduction

the neuronal membrane learns locally and the neuron retains a short memory relayed on

a specific timescale. The model proposed by Hodgkin and Huxley thus marked a signifi-

cant advancement in Neuroscience, and subsequently became the most used and most

useful framework for describing cellular electrophysiology. This success can be primarily

attributed to the model’s ability to provide a comprehensive representation of a complex

mechanism using only a limited number of measurable biophysical parameters. In this

context, any effects exceeding a few hundred milliseconds, such as those that occur

during long-term memory formation, must be explained by the persistent modifications

e.g., at the level of synaptic interactions between neurons, where excitability can be

assessed on a larger context of time and space. After all, the brain is a multifaceted

system comprising units that operate across several levels of organisation, from simple

microcircuits (Abeles, 1991) to large-scale brain structures (Buzsáki, 2010).

Consequently, over the past six decades, top-down paradigms have evolved towards

simultaneously recording single-unit activity (Buzsáki, 2004) from an exponentially

growing number of neurons (Stevenson and Kording, 2011) with the aim to infer their

connectivity and capture their interactions. Extracellular techniques such as tetrodes,

substrate-integrated microelectrodes arrays (MEA), and CMOS-based probes (e.g. Neu-

ropixels) combined with various spike sorting methods (see Harris et al., 2000; Wang

et al., 2019) have allowed for the isolation of 20–200 neurons per brain structure and a

maximal count of more than 700 neurons (Atlas, 2021). The experimental paradigms

gradually broadened at the level of the neuronal populations, regarded as the primary

information processing unit capable of executing the intricate “neuronal code” 3.

Indeed, when examined at the level of the activity emerging from interconnected neu-

rons, dynamical properties of populations display a repertoire of behaviours that go

3 For a distributed dynamical systems like the brain, “coding” may be an inadequate analogy (Brette,
2019/ed).

15



Chapter 1 Introduction

beyond those observed in individual neurons. Extensive research has corroborated

the existence of short and long-term plasticity in groups of neurons that co-activate.

Short-term synaptic plasticity changes are often due to the presynaptic neuron’s recent

history of firing, and as such, are reflective of the memory capacity already described

as characteristic of a single neuron; in contrast, long-term synaptic plasticity involves

more permanent changes in synaptic strength that occur over extended periods of time,

ranging from minutes to hours or even days: a biophysical process that appears adequate

to account for high-level learning and memory processes in the brain. Furthermore,

the interactions between short-term and long-term synaptic plasticities might play a

role in shaping the pairwise connectivity motifs observed in experiments and models.

Specifically, short-term plasticity could modulate the timing and frequency of pre- and

post-synaptic activity, while long-term plasticity could induce more permanent changes

in the strength of synaptic connections. These processes could work together to create

connectivity patterns that are optimised for specific neuronal computations (Vasilaki

and Giugliano, 2014).

Populations of neurons can perform dense-coding through the propagation of unique

activity patterns initiated by different neurons, as evidenced by studies on neuronal

populations (Alejandre-García et al., 2022; Carrillo-Reid et al., 2016). Additionally, an-

other theory suggests that synchronously firing neurons are not necessarily synaptically

connected. For instance, interneurons with broad axon arbours that signal to multiple

cells may not be linked together, resulting in sparse pyramidal neuron groups encoding

memories (sparse-coding) (Beyeler et al., 2019; Dahmen et al., 2022; Gastaldi et al., 2021;

Krupic, 2017; Yap et al., 2021). The discovery of ”concept cells” (Quiroga, 2012) pre-

sented an intermediate scenario, where the latter singularly encode local concepts and

concurrently participate in sparse-coding for encoding associations between concepts

(Dahmen et al., 2022; Gastaldi et al., 2021).
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All proposed and assessed hypotheses possess both weaknesses as well as unique

strengths that have been proven beneficial. Nonetheless, single-neuron alterations

and adaptation over extended timescale has been mainly overlooked. Related studies

typically devise experimental protocols to unearth correlations among spike activity

from distinct cells. These trials prioritise replication and consist of trials of relatively

short duration, spanning many hundreds of repetitions. While months-long recordings

from the same neurons in awake behaving mice (Fu et al., 2016) and over the animal’s

entire adult life (Zhao et al., 2023) reveal slow changes in excitability, captured at the

single-cell level.

To sum up, we can state that behaviours resulting from high-level neuronal dynamics

in proposed experimental paradigms differ from those exhibited by single neurons

(Krakauer et al., 2017). Population-level activity gives rise to emergent dynamical

features over extended time periods. But in order for this to hold, is the fact that a

neuron operates solely within a particular timescale a necessary prerequisite?

All models are wrong, some models are useful.

A model aims, in principle, to simplify and explain. In 1954, a neuron was first abstracted

in a (artificial) binary unit, with interesting properties when operating in concert with

other units, as a simple feed-forward network (McCulloch and Pitts, 1943). Today the

complexity of a neuron can be better approximated by a deep neural network with 5–8

layers, the depth arising from the interaction between NMDA receptors, and dendrite

branches, conceptualised as a set of spatiotemporal pattern detectors (Beniaguev et al.,

2021). Before the establishment of the Hodgkin-Huxley model, spiking neuron models

were pragmatic integrate-and-fire descriptions, such that the membrane voltage is

a function of the input current, and predicts the spike times without any variables

of biophysical processes that shape the time course of a spike. Models have been
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developed to also combine features of standard leaky integrate-and-fire models with a

second variable reflecting adaptation, refractory period, or a dynamic threshold (Badel

et al., 2008; Teka et al., 2014). The Hodgkin-Huxley biophysical model evolved to include

other kinetic equations accounting for different ion channels, which inevitably led to

the same tendency for detailed modelling compared to the top-down approach, and

the development of in silico neurons. The latter is based on a full reconstruction of the

different morpho-electrophysiological cell types (noa), their expression profiles, as well

as Connectomics (part of neocortex simulation in Markram et al., 2015; model of the

hippocampus in Romani et al., 2022).

The Hodgkin-Huxley model can also be reduced to lower dimensional models (Gerst-

ner, 2002), which are obtained applying approximation techniques aimed at grouping

together the ionic variables of gating which have the same characteristic times or by con-

sidering quasi-stationary variables that reach a constant value very quickly (Soudry and

Meir, 2012; Wang and Buzsáki, 1996). In the framework of conductance-based neuron

models, ion channels are modelled by their voltage-dependent conductances, and the

excitable membrane is represented by a capacitor. This approach provides robust means

of investigating the complex interplay of ions and voltage dynamics within neurons.

Both in experiments and theory, two paradigms exists: top-down and bottom-up. The

top-down paradigm treats complexity as an enigmatic "black box" and concentrates on

input-output dynamics to draw statistical conclusions about its underlying processes.

Meanwhile, the bottom-up paradigm aims to deconstruct complexity into comprehensible,

manageable elements through simplification and abstraction.

Recent developments in both paradigms usually result in more elaborate ans less in-

terpretable descriptions (Bzdok et al., 2019). The inclusion of a larger set of neurons

in recordings (top-down approach) and incorporating extensive biophysical intricacies
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(bottom-up approach) results in an increased model complexity. Most of contemporary

modelling efforts are computationally intensive, and driven by the expectation that a

larger number of degrees of freedom will increase the accuracy in predicting neuronal

activity. Overall, besides being demanding, in terms of “big data” availability, analysis,

and modelling, both approaches are importantly at risk of missing or neglecting the role

of the single neuron.

To conclude, if we are to understand how learning and memory emerge from a col-

lection of neurons, both artificial and biologically-accurate neuronal models need to

first accurately describe intrinsic input-output dynamical properties over extended

timescales.
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2. Background

This chapter delves into research that emphasises the potential of a single neuron for

learning, memory, and computational capabilities.

2.1. Inside-out perspective: the intrinsic excitability

The origin of intrinsic excitability lies in cellular processes below the membrane level,

such as the behaviour of ion channels, the changes in ion conductances, the proteins

turnover, and gene expression. We examine instances that exemplify each of these

mechanisms.

2.1.1. Learning and memory in single neurons

Intrinsic plasticity

In the preceding section, we explored research that substantiates the concept of synaptic

plasticity. However, the formation of primary memory is likely to involve the interplay

of intrinsic neuron excitability plasticity and synaptic plasticity (Papoutsi et al., 2011).

When there is an increase in excitation at the cellular level, neurons can trigger synaptic
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Chapter 2 Background

changes that are homeostatic in nature, as demonstrated in the study by Goold and Nicoll

(2010). Specifically, to maintain the stability of a neuronal ensemble, cell-autonomous

intrinsic mechanisms that affect long-term dynamics of excitability are hypothesised to

be involved (Daoudal and Debanne, 2003; Debanne and Poo, 2010; Gallistel and Balsam,

2014). One mechanism underlying the increased excitability during ensemble forma-

tion is a combined increase in membrane resistance and reduction of firing threshold

(Alejandre-García et al., 2022). To stabilise neuronal activity, homeostatic excitability

plasticity, which is a slow process, can complement Hebbian synaptic plasticity as a

compensatory mechanism (Gasselin et al., 2017). The neuron’s long memory capacity

is upheld by intricate learning that takes place through non-synaptic means, which

showcases input and cell specificity and operates on various timescales. As recurrent

interactions take place, the slower timescales become more effective (Zeraati et al., 2021).

Neurons can potentially perform different types of computations, depending on the

levels of background noise and the expression of ionic channels. The operation they

perform can vary from leaky integration (without strong negative feedback) to differenti-

ation (e.g. firing rate adaptation), or fractional differentiation in the presence of multiple

timescales of adaptation (Lundstrom et al., 2008).

Ionic currents and ion channels

Ori et al. demonstrate that macroscopic cellular invariant, given microscopic varia-

tion and robustness of excitability, benefits from the variability of history-dependent

timescales that ion channels display. Specific ionic currents in well-defined neuronal

systems undergo transformations lasting days after associative learning with physi-

ological stimuli. During acquisition the intracellular calcium increases; the increase

in calcium is accompanied by specific potassium current reduction that lasts for days

after conditioning. Calcium is known to mediate many activity-dependent processes,
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Chapter 2 Background

including the magnitude of ionic currents (Alkon, 1984). Additionally, the increase

of calcium enhances Calmodulin-dependent phosphorylation of proteins that either

regulate or are part of ion channels.

Prolonged spiking activity in a neuron results in modifications of the intracellular

and extracellular concentrations of Na+ and K+, respectively, and triggers homeostatic

mechanisms that regulate ionic gradients at timescales much slower than action potential

genesis (Contreras et al., 2021). These non-stationarities bear consequences for neuronal

computation.

Protein turnover and gene expression

Learning induced long-term modulation of intrinsic excitability in pyramidal neurons

is protein synthesis dependent, and is capable of bi-directional altering of temporal

processing (Chandra and Barkai, 2018; Debanne et al., 2019). Mechanisms at the level of

genes and transcription factors are activated within minutes after a neuron receives a

particular stimulus. Neurotransmitters may rapidly activate specific gene transcription

in differentiated neuronal cells (Greenberg et al., 1986) inducing a bidirectional peri-

somatic1 inhibitory plasticity in a sparse network of Fos-activated neurons (Yap et al.,

2021).

The role of intrinsic neuronal excitability during disease is still young when compared

with the work focused on synaptic mechanisms, but it can be useful to uncover the

fundamental mechanisms of excitability. For example, dramatic up-regulation of intrinsic

bursting in CA1 pyramidal cells toward a phasic phenotype, particularly the appearance

of Ca2+-dependent bursting have been reported in models of chronic epilepsy (Sanabria

et al., 2001). Several lines of evidence indicate that high-threshold bursting is driven by

1 The perisomatic region is defined as the domain of the plasma membrane which includes the proximal
dendrites, the cell body and the axon initial segment (AIS; Freund & Buzsaki, 1996).
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persistent Na+ current at or near the soma (Chen et al., 2011). This may be connected to

up-regulation in expression of ion channels and various receptors. A healthy neuron,

in turn, moves smoothly between low and high firing rates in broad range. These are

mediated by specific ionic currents, e.g., A-type potassium currents, as well as by the

interactions between multiple currents, implying a need for ion channel degeneracy in

the tuning of neuronal properties (Drion et al., 2015).

2.1.2. Morphology of the excitable membrane

Morphological polarisation of the neuron can have a significant effect on intrinsic

excitability dynamics. The changes in homeostatic mechanisms that regulate ionic

gradients at slow timescales are bidirectional, affecting the signal propagation in the

axon, the dendrites, and the soma, and appear to be cell specific (Hansel and Disterhoft,

2020; Lisman et al., 2018; Titley et al., 2017).

At the beginning of the previous section, I introduced a definition of excitability in

regards to membrane organisation and the duration of a single spike. Hodgkin and

Huxley have measured the dynamics of short-span excitability using the K+ and Na+

channel conductances in the squid giant axon2 in space-clamp. However, a neuron has

diverse functional compartments and as a result, there are notable differences between

the spike waveform in the axon and dendrite membranes compared to that in the soma of

the same neuron. In voltage clamp, the soma membrane voltage is the same at different

places and undergoes simultaneous change upon spike generation, but there may be

current flow between the soma, dendrites and axon that alters the shape of the spike to

some extent. For most pyramidal neurons in the mammalian brain, the spike initiated

in the axon initial segment (AIS) is far enough (30–50 µm) from the soma, so the spike

2 The squid ganglion is composed of the three largest neurons on the planet.
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waveform recorded in the soma can show clear effects arising from non-uniformity of

voltage. For example, the way a spike is shaped is substantially affected at presynaptic

terminals, where shape is important for the timing of presynaptic calcium entry, leading

to dramatic changes in postsynaptic currents. According to the resistive coupling theory,

an interplay between the axon initial segment and the electrotonic perisomatic load

determines the spike waveform. This phenomenon not only alters the shape of spikes

recorded at the soma, but also determines the dynamics of excitability across a variety

of timescales shown in different classes of multi-compartmental mathematical models

of rodent and human cortical tissue (Verbist et al., 2020). The AIS is clustering high

densities of voltage-gated sodium (Nav) channels and defines the location from where

all action potentials are initiated and propagate bidirectionally, towards the presynaptic

terminals, then back into the soma and dendrites. It is noteworthy that ion channel

density is a determinant factor in the transition from regular to fast spiking in the soma,

but not in axons (Zeberg et al., 2010). Conversely, unlike axons, the soma have the ability

to fire across a broader range of frequencies and display considerable changes in firing

frequency in response to slight variations in input currents.

The large number of dendritic branches in cortical pyramidal neurons contain voltage-

dependent ion channels, the activation of which produce local membrane potential

nonlinearities3 (Na+, Ca2+ or NMDA spikes). These markedly shape both incoming

synaptic input and action potential output. Independently of circuit connectivity and

synaptic machinery, a variety of activity-dependent changes which affect the intrinsic

firing properties of the neuron, can also promote computationally relevant structural

rearrangements of its axon and dendrite trees (Remme and Wadman, 2012).

3 The change of the output is not proportional to the change of the input in a system.
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2.1.3. Phenotypes of excitability

Figure 2.1. “Classes” of neuronal electrical responses. The figure shows prototyp-
ical steady-state responses to a sustained (step) current injection in the soma: non-
accommodating (NAC); accommodating (AC); stuttering (STUT); bursting (BST); and
irregular spiking (IS). Most classes contain three subclasses: delay (d); classic (c) and
burst (b). For bursting interneurons, the three types are repetitive (r), initial (i) and
transient (t). RS (regular spiking) is an example of a classic discharge of a pyramidal cell.
Reproduced with permission from Springer Nature (Markram et al., 2004)

25



Chapter 2 Background

Cells that are easily stimulated possess the capability to generate and spread spikes,

which are distributed in a wide range of electrical phenotypes (e-types) that can either

be discreet or appear as continuous, as summarised by Huang and Paul. In fact, novel

morpho-functional and electrophysiological cell types are frequently being introduced

(Hunt et al., 2018).

Considering short-term excitability, the complexity of firing behaviour depends on the

expression of more types of voltage-dependent ion channels and the role of specific

types of ion channels in generating these differences in excitability. A staggering number

of ion channel types and distinct voltage-dependent conductances have been discovered

to shape excitability in the cell bodies among various types of neurons in the mammalian

brain (review in Bean, 2007).

Neurons can be classified based on both the onset and the steady-state response to a step

current injection into the soma (Markram et al., 2004). In neuron spiking behaviour, there

are five most fundamental classes of neurons in response to current input that affect

firing, shown in Fig. 2.1. There classes include regular spiking, fast spiking, intrinsic

bursting, chattering, and low-threshold spiking. Regular spiking neurons are usually

excitatory and have pyramidal cell morphology. They respond to depolarisation with a

burst sequence with adaptation. Regular spiking cells have transient potassium currents

that slow down the onset of the first spike and increase refractory periods resulting in

frequency adaptation. Only some of the various voltage-dependent potassium currents

present in a neuron are activated during regular spiking. Fast-spiking neurons are

associated with the Kv3 family of voltage-gated potassium channels, which have fast

kinetics that are appropriate for narrow spikes and short refractory periods.

Different combinations of conductance densities can regulate electrical activity on vari-

ous time scales in homeostatic self-tuning models, even if similar activity patterns are
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present in the context of slow modulations on intrinsic excitability. It is intriguing that

there is no specific set of conductance parameters that elicits a particular behaviour;

instead, there is significant flexibility in the expression of diverse conductances to main-

tain a cell-intrinsic readout of activity among different neuron types. The onset response

patterns of electrically stimulated single cells illustrated in Fig 2.2 resemble the different

types of steady-state responses to stimuli identified as "classes" in Fig 2.1 (Markram

et al., 2004).
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Figure 2.2. Long-term response “classes” and pattern modes from Gal et al. (2010).
The top part of the composite figure shows panels A-F from Fig.8. Long-term response
“classes” i.e., prototypical onset response patterns of different neurons to stimulation
rate of 20 Hz; the first row panels show the entire response, bottom row panels show
an enlargement of a segment within the intermittent phase. The bottom part of the
composite figure shows panels A-D from Fig.10. Quasi-stable pattern modes in the
intermittent phase in one given neuron recorded over 55 h under 25 Hz stimulation;
transition between modes in panels E-F. Adapted from Fig.8 and Fig.10 of Gal et al. (2010);
reprinted under the Creative Commons licence.
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2.1.4. Background noise and temporal variability

Subthreshold voltage oscillations as a whole mainly arise from the membrane excitability

of single neurons. Information in neurons is encoded through action potential patterns,

which are influenced by both large ionic currents and smaller threshold currents. These

currents affect the timing, pattern, and frequency of spikes, all of which are crucial for

understanding how neurons encode information.

At the single neuron level, temporal variability is observed in evoked activity over long

timescales (Faisal et al., 2008; Reinartz, 2019; Yarom and Hounsgaard, 2011, review),

leading to wide temporal range dynamics that have functional and theoretical implica-

tions. This cell-to-cell variability and cell-intrinsic variability is potentially connected to

a relationship between the number of events measured on short and longer timescales,

indicating a dependencies on past values. In general, by comparing different realisations

of a process functioning as an input as well as a cell response output, we can better

understand the underlying dynamics, make predictions, and estimate parameters. For

example, fluctuating input currents can determine the statistics of a neuron’s output

spike train, while cell membrane resonance can cause different spiking patterns.

The phenomenon of resonance is commonly observed in neurons and is known as

subthreshold membrane potential oscillations. When a neuron is at rest, its membrane

potential is maintained at a relatively stable value. However, when a depolarising

current is injected into the neuron, the membrane potential begins to oscillate at a cer-

tain frequency. This oscillation is caused by the interplay between the cell membrane

capacitance and the potassium current inductance. The electrical properties of a neu-

ron, including its cell membranes, intracellular plasma, and channel proteins, can be

compared to those of electronic circuit components. In an "electrical circuit", the cell

membrane capacitance represents the ability of the membrane to store electrical charge,
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while the potassium current inductance represents the tendency of the potassium ions

to resist changes in their flow. When a depolarising current is injected, the membrane

potential rises, causing the potassium channels to open and allowing the ions to flow out

of the cell. This leads to a decrease in the membrane potential, causing the potassium

channels to close and allowing the membrane potential to rise again. This process re-

peats, leading to the generation of subthreshold membrane potential oscillations (Ge and

Liu, 2016, review). Regular spiking and intrinsic bursting neurons typically exhibit reso-

nance at resting potentials, while fast spiking neurons do not. Additionally, subthreshold

oscillations, or inductance, contribute to both the circuit and single-cell properties that

affect network rhythms. These low-frequency electrical activities are primarily caused

by intrinsic subthreshold voltage oscillations, which are unique to neurons. Despite

varied stimuli, cortical neurons exhibit consistently similar frequency selectivity, which

is based on intrinsic neuronal principles.

In conclusion, all of the above described processes which are intrinsic to the single cell

practically cover any observable physiology timescale.

2.2. Outside-in perspective: the stimulus

Cell excitability can change over time, both in response to individual stimuli and through

long-term changes in the intrinsic properties of the neuron itself.

With this section we highlight the importance of understanding the temporal and spatial

input4 patterns to neurons in order to understand the long-term change of the neuron’s

intrinsic properties. Hodgkin and Huxley described how action potentials are gener-

4 Adrian and Zotterman hinted at the significance of stimulus design for excitability: persistent stimulus
is accompanied by a slow decline in its exciting value.
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ated in response to axial current injection, but physiological input currents are often

unpredictable and noisy. Temporal variability is inherent to the cell over long timescales

(review by Reinartz, 2019), and it is observed in practically all of evoked activity (Faisal

et al., 2008; Yarom and Hounsgaard, 2011). Mainen and Sejnowski demonstrated that

neurons respond to specific temporal input features rather than solely to current ampli-

tude, resulting in high response reliability to the repeated injection of the same noisy

input and significantly variable responses to identical direct current injections across

trials. Besides net membrane currents, modulation of the total membrane conductance

is stimulus-dependent, which is not reproduced by standard current-clamp protocols.

Understanding how neurons transform inputs is crucial for comprehending both their

input and output. Quantitative differences are expected to occur in neuronal responses

when comparing different stimulation paradigms, effectively determining the neuron’s

input-output (I/O) dynamical transfer properties. Differences in ionic conductances

which produce differences in firing patterns will in principal also produce differences in

spike shape. These are more evident on a short timescale, hence, experimental paradigms

are gradually changing to alter current mathematical models of action potential initiation,

particularly for human cortical neurons, as observed over a single action potential

timescale.

By using statistical analysis of the properties of synaptic background activity, such as

the temporal correlations and fluctuations in conductance, it is possible to generate

synthetic input that closely resembles the natural input to cortical neurons. This can

be done by creating models based on the statistical properties of real neural networks,

and using these models to generate synthetic input that can be injected into the cells

during experiments. One example of this is the use of the maximum entropy principle

to generate synthetic conductance waveforms that reproduce the statistical properties

of synaptic background activity observed in vivo (Destexhe et al., 2001). This approach
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allows for the creation of input that closely mimics the natural input to cortical neurons,

improving the physiological relevance of the experiments. Furthermore, statistical

physics can be used to analyse the response of neurons to different types of input,

providing insights into the mechanisms underlying cortical information processing. For

example, by studying the response of neurons to different input statistics, it is possible

to identify the features of synaptic input that are important for information processing

in cortical networks (Destexhe et al., 2003).

Over longer timescales, changes in external inputs can adjust the neurons’ intrinsic

properties. In particular, the study by Reinartz et al. suggests that slow changes in

excitability may be influenced by the specific patterns of synaptic activity experienced

by neurons. Consistent activation of a neuron’s synapses in a specific sequence can

change the properties of its ion channels and receptors, causing long-lasting alterations

in excitability. Hence, neuronal firing sequences triggered by synapses play a role in the

gradual changes in excitability over time.

2.2.1. Optogenetics and ChannelRhodopsin ShChR

While Optogenetics had been already proposed in in vitro MEA studies before (Lignani

et al., 2013; Pulizzi et al., 2016), its full potential as a minimally invasive probing-

approach has not yet been fully exploited when studying long adaptive cell responses in

the presence of external stimuli.

In 2005, it was reported that introducing a single-component microbial opsin gene into

mammalian neurons resulted in precise control of action potentials. This discovery was

soon followed by additional studies that confirmed the feasibility of using microbial

opsins as optogenetic control tools. Additionally, it was found that mature mammalian
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brains and all vertebrate tissues examined contained sufficient amounts of all-trans reti-

nal, making it possible to define a single-component strategy. By 2010, the primary types

of ion-conducting microbial opsins, including bacteriorhodopsin, channelrhodopsin,

and halorhodopsin, were all demonstrated to function as optogenetic control tools in

mammalian neurons (?).

Channelrhodopsins are a subfamily of Rhodopsins that are light-gated ion channels.

They serve as photo-receptors in unicellular green algae, controlling movement in re-

sponse to light. Expressed in cells of other organisms, they enable light to control electri-

cal excitability, intracellular acidity, calcium influx, and other cellular processes. Variants

that are sensitive to different colours of light or selective for specific ions have been

engineered. Closely related to the archaeal sensory Rhodopsins, the light-gated proton

channel ChannelRhodopsin-1 ChR1 and light-gated cation channel ChannelRhodopsin-2

ChR2 from the green alga Chlamydomonas reinhardtii are the first discovered Channel-

Rhodopsins (Nagel et al., 2003). The essential features of these microbial optogenetic

tools stem from the behaviour of their native host organisms, which rely on seven-

transmembrane proteins encoded by type I opsin genes to sense and react to their sur-

roundings. When bound to retinal, these opsin gene products are known as rhodopsins.

However, in experiments where they are expressed in a different system, the precise

form of the retinoid-bound state is typically unknown. For the purposes of neuroscience

research, these tools are simply referred to as opsins (a more convenient and accurate

shorthand term since "opsin" applies to both the genes and the protein products). Unlike

mammalian type II opsins, microbial opsins are single-component systems that carry

out both light sensing and ion conductance functions with the same protein (?). When

exposed to blue light, the protein undergoes structural changes that allow positively-

charged ions such as protons or sodium ions to flow across the cell membrane. This

results in a depolarisation of the membrane, which can trigger action potentials in ex-

33



Chapter 2 Background

citable cells. The S. helveticum ChannelRhodopsin (ShChR) has very fast kinetics, with a

turn-on time of 2.3 ± 0.3 ms and a turn-off time of 3.6 ± 0.2 ms. These are fast on, off, and

recovery kinetics for precise and accurate control of the spike timing (Klapoetke et al.,

2014).

ShChR (Chronos)

Figure 2.3. Tools for optogenetic manipulation of membrane voltage and local ion
concentrations. The top panel (left) shows single-component optogenetic tool families;
transported ions and signalling pathways are indicated; the top panel (right) shows
channelrhodopsins for optogenetic manipulation of membrane voltage - adapted from
Fig.1 of ?. Bottom panel (left) shows commonly used optogenetic tools for excitation or
inhibition of neuronal activity include cation-conducting ChRs eTsChR254, Cheriff203,
CoChR30, CrChR2TC, ChroME77 and derivatives, SSFO/Soul120, ChRmine, bReaChES
and f-Chrimson (black arrow), chloride and potassium-conducting ChRs (for example,
GtACR1, GtACR2 and HcKCR1, inward directed proton pumps (for example, NsXeR
and outward-directed proton, sodium and chloride pumps (for example, Arch3.0, eKR2,
eNpHR3.0), all plotted according to their peak excitation wavelength and temporal
kinetics - adapted from Fig.2 of Emiliani et al. (2022); Bottom panel (right) shows maximal
current values of some channelrhodopsins - adapted from Fig.1 of (Klapoetke et al., 2014).
Red arrows are noting ShChR (Chronos) kinetics and maximal currents. All figures are
adapted with modifications under the Creative Commons licence.
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2.3. Related Work

This section provides a summary of previous sections through pertinent studies that

explored and examined the relevant facets concerning long-term intrinsic excitability in

single neurons.

Figure 2.4. Neuronal response to ongoing stimulation is characterised by distinct
phases. The top panel (F) shows the latency of a single neuron after repeated stimulation
over time of two interchanging stimulation frequencies: 1 and 20 Hz. The bottom panel
(A) shows duplicates of the latency for different stimulation frequencies over a different
time window: 1 - 50 Hz. Adapted from Fig.1 and Fig.2 of Gal et al. (2010) under the Creative
Commons licence.

35



Chapter 2 Background

In 1994, Marom and Abbott propose that neurons have a significant memory capacity,

possibly related to their intrinsic excitability machinery. The study focuses on the idea

that a neuron’s ability to change its electrical properties and generate action potentials

can influence its long-term memory retention capabilities. The intrinsic excitability ma-

chinery could be related to the neuron’s ability to generate complex patterns of activity,

store and retrieve memories, and engage in learning and adaptation. They provide a

theoretical framework for understanding the fundamental properties of neurons and

their role in general. However, it is unclear how neurons actively use this capability.

Marder et al. in 1996 and Desai et al. 1999 found neuron’s behaviour and function are

not fixed but can be modified by its past experiences, such as the frequency and pattern

of its firing. This plasticity is important for learning, memory, and adaptation to changes

in the environment. Additionally, neurons adjust the level and type of ion channels

and receptors in response to external signals and internal feedback, allowing them to

maintain a certain level of activity or change their firing properties over time.

In 2010, Gal et al. extend the observational window on the single neuron in ex vivo

developing cortical neurons. Specifically, they analysed the behaviour of synaptically

isolated neurons in response to electrical stimulation. They found that there is a critical

latency and critical spiking threshold that marks the transition to intermittency. The

variability in neuronal responses observed in the experiments suggests that the response

of individual cells to electrical stimulation is not deterministic and can exhibit a wide

range of behaviours. This variability can have important consequences for the overall

modelling of neurons and neural circuits. The studies suggest a need for a shift in

experimental and stimulation paradigms that can account for the individual variability

in neuronal responses. Three distinct phases of neuronal responses to stimulation were

identified: a stable phase, a transient phase, and an intermittent phase Fig. 2.4. The
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transition to intermittency is characterised by a critical latency and critical spiking

threshold (Gal and Marom, 2013; Marom, 2010).

The current lack of data from very long experiments of neurons motivates this thesis, in

which we provide an experimental framework for the study of long-term excitability in

genetically-identified cell types.

2.4. Quantifying long-term intrinsic excitability

This portion emphasises the measure of sustained excitability over prolonged exper-

iments lasting up to 12 hours. In order to address key questions about the complex

adaptive mechanisms, underlying slow effects on cell excitability, Neuroscience makes

several abstractions. First, it abstracts neuronal networks from the brain; then a neuronal

microcircuits from a network; and finally, it abstracts a single neuron from the circuit

effects, tackling their time-dependent intrinsic properties.

We adopted this sequence of abstractions and then conceived a novel experimental

methodology, combining Optogenetics with substrate-integrated microelectrode arrays

(MEA). This allowed for a detailed and systematic study of single-neuron excitability

over long periods of time, while restricting our investigation to genetically-identified

neuronal cell types. In particular, we decided to focus on putative glutamatergic (i.e.

excitatory) neurons, whose selective expression of ShChR was ensured by the CaMKIIα

promoter in the AAV-mediated transduction protocols of our choice.

In order to study long=term excitability, we apply brief and repeated photo stimuli able

to elicit a single action potential, in those neurons that have been engineered to express

light-activated ionic currents. Then, upon collection of the sequence of neuronal response
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latency or response failures at varying stimulation frequencies and over extended periods

(i.e. up to 12 h), we can indirectly access and analyse cell excitability.
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3. Materials and Methods

The experimental design comprises of four distinct components in its methodology:

1. The first component involves devising and testing methods for targeting specific

cell types and cell segments, and assessing expression levels of ShChR.

2. The second component involves extracellular recording of primary cortical neu-

rons, followed by photostimulation.

3. The third component comprises intracellular photostimulation and recording of

HEK293T cells.

4. Finally, the methodology involves employing various computational models.

3.1. Transgene delivery in cell cultures in vitro

Plasmid DNA is employed for the cell line, while AAV is required for primary neurons

in vitro.
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3.1.1. Transfecting Plasmids into Cells

The CAG promoter, a robust synthetic promoter commonly utilised to induce significant

gene expression in mammalian expression vectors, was employed to transfect HEK293T

mammalian cells with the plasmid pAAV-CAG-ShChR-eGFP (#99232, Addgene). This

plasmid has demonstrated high levels of expression for both recombinant proteins like

eGFP and transgenes such as ChannelRhodopsins.

3.1.2. Utilising Adeno-Associated Viral Vectors for Gene Delivery

Adeno-associated viral vector AAV particles were custom made using optimised proce-

dures at the Leuven Viral Vector Core (LVC, KU Leuven, Belgium). For all requested

AAV, the protocol consists of 1) cloning, 2) DNA plasmid preparation, and 3) AAV

production with quality control.

First, HEK293T cells are transiently transfected with three plasmids: the first encodes the

transgene cassette flanked with AAV2 ITRs, the second codes for the rep gene of AAV2

and the cap gene of the specific serotype requested, and the third provides the adenoviral

helper functions. The resulting DNase-resistant AAV particles are quality-controlled

using the qPCR method to assess a physical titer for each production. AAV vectors are

always produced in mycoplasma-free conditions.

3.2. Extracellular electrophysiology

The experimental design for extracellular photostimulation and recording includes

four distinct steps. The first involves building of the setup. It is followed by the long-
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Promoter > Transgenes Serotype Titer Source
ChR variant Fluo. tag

CaMKII0.4 > ShChR mCherry AAV2/7 7.34e+12 Dittgen et al. (2004)

CaMKII0.4 > ShChR - KA2 mCherry AAV2/7 5.09e+12 Shemesh et al. (2017)

hDlx > Chrimson tdTomato AAV2/5 3.72e+12 Dimidschstein et al. (2016)

mDlx > Chrimson tdTomato AAV2/5 2.54e+12 Dimidschstein et al. (2016)

CMV > - eGFP AAV 5 1.35e+12 Foecking and Hofstetter (1986)

mGAD65 > - mCherry AAV2/7 3.10e+12 Hoshino et al. (2021)

mGAD65 > ShChR - AAV2/7 3.10e+12 Hoshino et al. (2021)

Table 3.1. Tested AAVs for selective transgene expression.

term in vitro culturing of mammalian neurons, dissociated from rat neocortices and

plated on MEA. The second requires the genetic targeting and manipulation of cells, by

adeno-associated viral vectors AAV, so that putative glutamatergic neurons expressed

ChannelRhodopsins variance ShChR or light-activated ion channels. The third and last

step consisted in the pharmacological isolation of individual neurons, such that each

neuron would be insensitive to synaptic transmission from nearby cells. With such an

experimental layout, the electrical activity of neurons was monitored non-invasively

and for very long times, while being evoked by repeated, brief pulses of blue light in

wide-field (as illustrated in Fig. 4.3).

3.2.1. Design and construction of the experimental setup

The experimental setup is tested inside a mini-incubator using two different MEA system

configurations. In both cases, the complete data acquisition uses 1–3000 Hz broadband

and standard gain of 1200. The digitised data is stored on disk for offline post-processing.
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MEA1060-Up-BC system and MicroElectrode Arrays MEA60

We establish our experiments on MEA of type 60MEA200/30iR-ITO-gr using a standard

MEA1060-Up-BC amplifier (MultiChannel Systems, Reutlingen, Germany). This MEA

has one internal reference and 59 flat round TiN electrodes of size 30 µm, arranged

in an 8 x 8 layout grid with inter-electrode distance of 200 µm. The electrodes, which

interface neurons cultured on the MEA surface, measure the localised electrical potential

changes during spike generation (see extracellular field theory, Humphrey and Schmidt,

1990). These source signals are amplified by the 60 channels of the MEA pre- and filter

amplifiers. Subsequently, the analogue output signals are sampled at 25 kHz/channel

and digitised at a resolution of 16 bit using an A/D converter (MCCard, MultiChannel

Systems, Reutlingen, Germany).

MEA120-Mini system and MicroElectrode Arrays MEA120

As in the MEA60 system, the setup is implemented using the new compact MEA120-

Mini amplifier featuring a 24 bit A/D resolution. We increase the throughput of our

experiments with the MEA of type 120MEA100/30iR-ITO-gr (MultiChannel Systems,

Reutlingen, Germany), which has four internal reference and 120 flat round TiN elec-

trodes in a 12 x 12 layout grid and inter-electrode distance of 100 µm.

Custom-made LED devices for photostimulation

We activate the genetically modified neurons using light flashes of 1 ms duration at

frequencies of up to 50 Hz. To achieve this, we employ custom made LED devices. In

all experiments, the power density of the emitted light reaching the electrodes area
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is 2 mW/mm2 (measured by a calibrated photodiode; 818-ST2-UV, Newport Spectra-

Physics, Netherlands).

In addition to the MEA60 system, LED device is assembled (Pulizzi et al., 2016). A blue

(470 nm) light-emitting diode (LED, Rebel, Quadica Development, Canada) is centred in

a parabolic reflector lens to uniformly distribute (collimate) the emitted light in wide-

field at the bottom of the MEA. The LED is powered by a low-voltage DC constant current

driver (BuckPuck, LUXDrive, USA), which regulates the current to avoid damage or

thermal runaway of the LED. It does so by delivering a constant forward current, while

compensating for changes in forward voltage1. A stimulus generator with a voltage

output (STG2008, MultiChannel Systems, Reutlingen, Germany) is then connected to

the LED device. The STG2008 receives programmed TTL2 pulses via a BNC connector to

define the timing and length of the output pulses for triggering the LED with a 20 µs

precision.

In addition to the MEA120-Mini system, the signal collector unit SCU is employed to

control a custom made aoLED device (CyNexo, Italy) for precise monitoring as well

as design of the light output. The aoLED accepts 0–5 V voltage inputs, which can be

analogue or TTL compatible digital input signals, and integrates a linear and stable LED

driver, able to generate a high bandwidth (<1 MHz) and high intensity light signal. The

embedded light power sensor is used to monitor the generated light signal, recorded

in the analogue output channel of the InterFace Board IFB connected to a dedicated

computer for recording.

1 The forward current is the amount of current flowing through the LED; the forward voltage is the
amount of voltage needed to get current to flow across the LED.

2A TTL input signal is defined as "low" when between 0 V and 0.8 V with respect to the ground terminal,
and "high" when between 2 V and VCC (5 V).
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Surface coating of MicroElectrode Arrays

Prior to cell plating, the microelectrode arrays MEA surface is functionalised for favour-

ing cell attachment. A thin mono-layer of poly-cation particles of Polyethileneimine

(50 wt.% in H2O PEI, Mw = 750 kDa, Mn = 60 kDa; SKU: 181978, Sigma-Aldrich) is

formed on the MEA surface through electrostatic bonds with the negatively ionised

MEA surface, which is achieved by exposing MEA to air plasma. The plasma cleaning

process removes micro-contaminants, generates negatively charged surface species, and

increases surface hydrophilicity (wetting). The plasma is generated at 0.1 mbar and radio

frequency electromagnetic waves at a power of 10 W using a plasma cleaner (Zepto BRS,

Diener electronic GmbH, Ebhausen, Germany). After plasma cleaning, sterilised MEA

are suction dried and each dish is filled with 1 mL of 0.1 wt.% PEI water dispersion,

prepared by bath ultrasonication for at least 40 min. Following an overnight incubation

at room temperature, unbound PEI is removed by aseptic water rinse. The dishes are

suction dried before seeding the prepared suspension of dissociated cells.

Primary neuronal culture preparations

Cortical and hippocampal primary cultures are prepared from Wistar newborn rats

within 24 h from birth (i.e. post-natal day 0 - P0). Tissue from six P0 pups is dissected

from the superior part of both neocortices, cutting along the axial plane at a thickness of

1 mm. Then the two hippocampi are carefully extracted. Cells are isolated through steps

of chemical and mechanical dissociation, and the obtained cell suspension is seeded

at a density of 6500 cells/mm2. The cell medium is a standard Minimum Essential

Medium (MEM) (21090022, GibcoTM) supplemented with 5 vv.% heat-inactivated horse

serum (26050088, GibcoTM), 20 mM D(+)Glucose (G7528, Sigma-Aldrich), 10 µg/mL

gentamycin (15090046, GibcoTM) and L-glutamine (GlutaMAXTM). For cell seeding and
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up to 7 div, we use a custom made cell medium H-MEM with relatively high L-glutamine

concentration 100µM. For medium change after 8 div, we use the cell medium N-MEM

which contains a reduced concentration of L-glutamine 50 µM to prevent overgrowth

of glial cells and maintain a healthy culture in the long-term. The MEA cultures are

maintained for up to 35 div in a conventional cel culture incubator.

AAV-mediated transduction of primary neurons

Cells are infected at 5 div with vectors designed for heterologous expression of ShChR

labelled with the fluorescent tag mCherry under the CaMKIIα promoter (Fig. 4.3B).

For this purpose, we use infectious Adeno-Aassociated Viral particles AAV, custom-

produced at the Leuven Viral Vector Core LVC according to an established protocol (Van

der Perren et al., 2011). We infect cells using concentrations between 4500 and 9000

gc/cell in 360 µL of medium applied in the dish by total medium replacement.

3.3. Extracellular recording protocols and data analysis

Photostimulation of synaptically-isolated neurons

All experiments are performed after 19 div, in accord with published data on neuronal

network and cell maturation (Marom and Shahaf, 2002; Pulizzi et al., 2016) and ShChR

expression (Klapoetke et al., 2014).

At the beginning of each experimental protocol, the main excitatory (AMPA, NMDA)

and inhibitory (GABAA) postsynaptic receptors are blocked. We use 20 µM APV, 10 µM

CNQX, and 5 µM gabazine, respectively.
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Experimental protocols

The photostimulation pulse is 1 ms, which is a short enough time to evoke a spike at

a light power density of 2 mW/mm2. The initial stimulation rate is set at 1 Hz. At

this low rate, typically most of the microelectrodes in a MEA capture both reliable and

precise responses 3 with preserved spike waveforms (Fig. 4.5). These electrodes are used

further in the experiments. The stimulation rates in the remainder of the protocol range

between 2 to 50 Hz, which is the upper limit for the kinetics of the ShChR (Klapoetke

et al., 2014) at which photostimuli are able to faithfully evoke spikes following the same

spike probability as with electrical stimulation. The stimulation time is between one and

twelve hours.

3 Reliability here means that a spike is evoked after each stimulus; precision refers to low variability in
the delay between stimulus and response.
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Downstream processing

We recorded the extracellular electrophysiological activity of primary cultured neurons,

growing on 100 MEA. Raw voltage waveforms were sampled at 25 kHz and digitised a

resolution of 16 bit. Files were stored in MultiChannel Systems’ proprietary file format 4.

as well as in the open HDF5 file format 5. Once converted into the HDF5 format, files

were processed offline by custom data analysis pipe-line, entirely based on MATLAB

R2022 (The MathWorks, Inc., Natick, MA, USA). Briefly, a single HDF5 file stores raw

data hierarchically in groups. Associated meta data is also available, as attachments

to each of the groups. With a syntax similar to the Unix filesystem, we access group

‘/Data/Recording_0/AnalogStream/’ which contains two analogue output streams each

having two datasets: ‘ChannelData’ and ‘InfoChannel’. The first output stream, labelled

‘Electrode’, contains ‘ChannelData’ with 60/120 channels of electrode raw data; the

second stream, termed ‘Auxiliary’, holds a dataset with only one channel, recording the

aoLED output6. For both streams, the ‘InfoChannel’ dataset carries respective info for

conversion from recorded binary values to voltage. Each channel is read in slices of equal

size [1, 25k sample points], split along logical boundaries in the array representation

of the data (Fig. 3.1). Despite we working with very large files (> 100 GB), only one

slice is loaded into memory (RAM) at a time of processing making data handling and

manipulation possible.

4 File extensions: .mcd file extension of the MC Rack software (old); the .msrs file extension of the MC
Experimenter software (new).

5 Hierarchical Data Format version 5 (The HDF Group): an open source binary data format, explicitly
designed to store and organise very large data sets, easily accessible from Matlab (HDF5 version 1.10.8)
and Python.

6 The forward voltage is the amount of voltage needed to get current to flow across the LED.
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Figure 3.1. Downstream processing and analysis of analogue raw data. A: In the top
panel, the relation between the raw data (hd5) and the measurement data is schematically
shown. B: In the bottom left panel, we show the data processing algorithm as applied
to slices 1 through N slices. C: In the bottom right panel the relevant features extracted
upon interpolation of the spike waveform are shown.

Raw-voltage waveforms processing

Electrode channels are accessed serially in order of time. For a channel, each slice is

processed in five stages (Fig. 3.1A). First, the loaded data of a slice is converted from

binary to raw voltage data based on the conversion data in the dataset. Secondly, these
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are filtered with an elliptic band pass between 400 and 3000 Hz (MATLAB ‘filtfilt’ and

‘ellip’) followed by a step for spikes identification (Fig. 3.1C). Typically, spike detection

algorithms use automatically calculated amplitude threshold as a multiple of the stan-

dard deviation of the background noise, followed by a time window in which further

detection is suppressed (“detection dead time”). In our case, however, each electrode

captures spikes from multiple neurons, which are simultaneously activated. Their spikes

can occur as partially overlapping, therefore falling into each others detection dead time,

which leads to many spikes over the course of the experiment being left undetected.

This is why we introduce a modified detection approach which uses a threshold on the

voltage increments ∆V/∆t in addition to the amplitude threshold. At a sampling rate of

25 kHz, instantaneous voltage increments which precede the local negative amplitude

peak (spike onset) are much more pronounced than within the background noise. After

a sum of three consecutive ∆V crosses the threshold, we find the first local minimum

and index it. We then extract the 15 sampling points prior and 20 after each index as

voltage snippets. In the forth step, these are interpolated by a piece-wise cubic spline

method (MATLAB ‘interp1’) to approximate spike waveforms, in order to accurately

estimate spike times and the corresponding spike amplitudes (Fig. 3.1C). All spike

waveforms are aligned to their negative amplitude peaks and saved for spike sorting.

Photostimulation signal processing

The aoLED digital or analogue output channel is processed as follows. Each slice is con-

verted from binary to digital or raw voltage data based on the associated conversion info,

respectively. In the case of the analogue LED output, voltage values 0–5 V reconstruct

positive, rectangular pulses defined by an amplitude of 5 V and a duration of 1 ms. The

number of pulses per second is the frequency of stimulation. The time points at the

onset of each stimulation pulse are extracted as stimulation times (Fig. 3.1B).
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Figure 3.2. Illustration of the spike sorting and classification steps. A: In the left panel,
a voltage trace is shown with spikes from multiple neurons per stimulus (black, red and
orange) classified as recorded from three separate neurons. B: All detected spikes from
a 3-hour voltage trace were subjected to spike sorting and classification based on the
spike features (spike latency and amplitude), as shown in the right panel.

Finally, we calculate spike latencies for all the spike times as the delay from the stim-

ulation times which evoked them which are used for spike sorting and classification

(Fig. 3.2).

Spike sorting and classification

Each electrode in a MEA often captures spikes from more than one neuron (multi-unit

recording, Fig. 3.2A). Therefore, all spikes need to be grouped into separate neuronal

units, each corresponding to an individual neuron. This classical problem in Neuro-

science is addressed by many clustering algorithms (Wang et al., 2019) which parse

individual spike trains depending on the temporal structure of the waveforms. At

the beginning, we employed the superparamagnetic clustering SPC method, which is

motivated by the phenomenon of superparamagnetism in physics (Chaure et al., 2018).

Specifically, we tested the Wave Clus 3 algorithm. Our results, however, revealed a

tendency to under-classify or over-classify spikes into an erroneous number of clusters,

50



Chapter 3 Materials and Methods

likely due to the incremental changes in spike waveforms observed during prolonged

stimulation. This manifests in the sorting of spikes from a single neuron into three

distinct clusters, as exemplified by the application of SPC to a single neuron dataset

(see Fig. 4.5). In itself though, the misclassification provides a valuable insight into the

temporal evolution of the waveform (Sec. 4.1.1).

In order to tackle the challenge of sorting spikes into clusters, we have developed a

new algorithm that operates along the dimension of latency. Our approach involves

representing each spike as a point in a 2D feature space based on two extracellular

characteristics of excitability: amplitude and latency. To estimate the maximal number of

neurons spiking, we rely on the maximal number of spikes evoked by a photostimulus

over the course of the experiment. in the beginning, we focus on the transient phase and

create post-stimulus groups of data points sequentially, with the first group containing

the first spikes and so on. We then use these groups to grow a kD-Tree. By utilising

the kD-tree nearest neighbour searcher model, we can re-classify query points into the

class with the highest representation among their respective nearest neighbours. If the

resulting cluster classes are well separated, we save them as separate neuronal units for

further statistical analysis. If the voltage threshold line cuts off the amplitude values,

then the corresponding cluster class is excluded from the analysis as shown in Fig. 3.2B.

Spike train statistics

The spiking activity of a neuron is reduced to a sequence of spike times i.e., a spike train

SN = {t1, t2, ..., tmax} or in mathematical terms - a point process on the line (Thurner

et al., 1997), N being the number of spikes. In order to characterise the structure and

variability in the number of spike occurrences over different timescales, a spike train

is modelled as a point process (Turcott and Teich, 1996). To begin with, real time is
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subdivided into non-overlapping, successive bins of equal width T. Then the number

of spikes occurring per bin is counted. This sequence forms a discrete-time stochastic

process of non-negative integers. For small enough bin widths T, each bin will eventually

contain at most one spike, thus generating a sequence with values of either 0 (no spike)

or 1 (spike). For increasing bin sizes, we investigate how the occurrence of spikes

fluctuates while observed over longer periods of time. For this, we define the sequence

of counts Z(T) = {Z1(T), Z2(T), ...ZN(T)}, where Zk(T) is the spike count in the kth bin

(1 ≤ k ≤ N) (see Figure4_methods for visualisation of the process).

We then apply the normalised variance or Fano factor (Fano, 1947):

F(ZT) =
σ2

F(T)

E[Z(T)]
,

where E[Z(T)] is the mean count:

µZ(T) =
1
N ∑N

k=1 Zk(T),

and σ2
F(T) is the variance defined as:

σ2
F(T) =

1
N ∑N

k=1 (Zk(T)−E[Z(T)])2.

A complementary method is the Allan factor A(T) or the normalised Haar-wavelet variance

(Lowen and Teich, 1996).

A(T) =
E[(Zk+1(T)− Zk(T))2]

2 E[Z(T)]
.
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Figure 3.3. Pipeline for generating sequences of counts with varying bin size. At
the top, a voltage trace with spikes is shown. The right side displays spike waveforms
overlaid with differently coloured mean waveforms as in Fig. 3.2. From it, spike times
are extracted for neuron ‘1’ and ‘2’ for further analysis (black and yellow dots). Only for
neuron ‘1’, the process of generating sequences using different sized bins is illustrated
(see bin counts in bottom half).

We analyse Z(T) in a range of 300 values of T (1 ms ≤ T ≤ tmax/4), where tmax is the last

spike time. The computed values of F(T) and A(T) are plotted on a doubly logarithmic

scale. The slopes of both the Fano factor and Allan factor curves in the large T regime
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give the estimates αF and αA of the real scaling exponent α, such that F(T) ∼ T αF and

A(T) ∼ T αA . Linear regression algorithm is used to calculate the slope by automatically

selecting the maximal number of data points, which can be linearly fitted at a minimal

MSE (mean square error). We use αA to classify long-term dynamics in the spiking of

single CaMKIIα/ShChR neurons, with the possibility to distinguish between fGn versus

fBm derived processes outside a theoretically derived uncertainty range (0.87–1.13) (Eke

et al., 2000; Turcott and Teich, 1996).

Fano factor analysis is used to estimate the range of correlations, since the power-law

in the Fano curve starts at least a decade before the onset in the Allan curve. We

validate the existence of correlations among counted events in consecutive bins with

increasing width T by testing ten surrogate spike trains derived from the original data as

follows. We first compute the inter-spike times ISIoriginal, then shuffle them by random

permutation (MATLAB ‘randperm’). The values in the resulting array ISIshuffled are then

cumulatively summed to obtain the new spike times i.e., surrogate spike train. This

procedure keeps the mean, variance, and frequency distribution identical to those of

the original spike train, but eliminates any existing long-range correlations between the

events of the original process. Simulated time series of a homogeneous Poisson process

and a Brownian motion process with µ = σ = 1 are as well tested for cross-validation

(not shown).

3.4. Intracellular electrophysiology

This section delves into the dynamics of ShChR over realatively lengthy periods of time.
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3.4.1. HEK293 cell cultures and transfection

Non-spiking HEK293 cells Acc number: 85120602 Lot:18H003 are cultured in DMEM/F12

medium supplemented with 10% FBS, 1% penicillin/streptomycin, and 1% sodium pyru-

vate. For recording, cells are plated on glass coverslips at 20% confluence, transfected

with a kit x-treme GENE 9 DNA transfection reagent and recorded via whole-cell patch

clamp, two days after transfection 1.25 µg of DNA was delivered.

3.4.2. Intracellular recording protocols and postprocessing

Whole-cell patch clamp experiments

Whole-cell patch clamp recordings are performed in isolated non-spiking HEK293 cells

to avoid space clamp issues due to the constitutive expression of gap juntions on HEK

cells. Visualisation of the positive trasnfected cells was done through an inverted

microscope Olympus Ix70 equipped with ×20 and ×40 objectives and a typical cube

for mCherry visualisation (excitation Filter 510-550, dichroic Mirror 593 and Barrier

Filter 610IF). All recordings were performed using the Axopatch 200B amplifier and the

Digidata 1440 digitiser (Molecular Devices, LLC, UK) at room temperature. To ensure

accurate measurements, we use cells with access resistance <25 MΩ and holding current

within ±50 pA. Typical membrane resistance was between 500 MΩ and 2 GΩ. Patch

pipettes were made of borosilicate glass (WPI, Sarasota, FL, USA) with a PP-830 puller

(Narishige, Tokyo, Japan) with tested resistance between 3 and 6 MΩ. Photostimulation

of patch-clamped cells was performed using a Olympus mercury burner light lamp (U-

RFL-T) interposing with an Olympus U-MWIB2 fluorescence microscope reflector cube

equipped with an excitation Filter 460-490, dichroic Mirror 505 and Barrier Filter 520IF.

Additionally, dense optic filter (0.5 - 0.7) was added to the optical path for achieving
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a light density of (2 mW/mm2) at the bottom of the sample. The photostimulation

protocol was designed then implemented by use of a TTL controlled mechanic shutter

(Uniblitz VCM-D1 shutter driver).

To describe the kinetics of the channel, the extracellular ringer solution, adjusted with

NaOH, comprised 125 mM NaCl, 2 mM KCl, 3 mM CaCl2, 1 mM MgCl2, 10 mM HEPES,

30 mM glucose, and had a pH of 7.3 with an osmolarity of 305 mOsm. The intracellular

solution, adjusted with KOH, contained 125 mM K-gluconate, 8 mM NaCl, 0.1 mM

CaCl2, 0.6 mM MgCl2, 1 mM EGTA, 10 mM HEPES, 4 mM Mg-ATP, 0.4 mM Na-GTP,

and had a pH of 7.3 with an osmolarity of 295—300 mOsm, adjusted with sucrose. The

inward current was measured using 1 ms light pulses at a rate between 1 and 50 Hz.

3.5. Mathematical models for long-term excitability dynamics

Through a step-by-step investigation (Appx. A), we arrived at the optimal Wang-Buzsáki-

Güler stochastic model as the ideal foundation for executing the computational optoge-

netics.

3.5.1. Modelling of the stimulation input

The stimulation input is modelled as at train of stimuli. We assume a rectangular

function, defined as:

Π(t) =


0 if |t| > ∆

1 if |t| ≤ ∆
(3.1)
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where ∆ is the half duration of the input. The input is modelled as a train of stimuli. The

previous rectangular equation is revised as follows:

Πtrain(t) = I
n

∑
k=1

Π(t− kT). (3.2)

3.5.2. Wang-Buzsáki-Güler stochastic model

The stochastic model exploited was introduced by Güler in (Güler, 2013), and falls into

the conductance noise family of models.

I = CM
dV
dt

+ ḡKΨK(V− EK)︸ ︷︷ ︸
IK

+ ḡNaΨNa(V− ENa)︸ ︷︷ ︸
INa

+ ḡL(V− EL)︸ ︷︷ ︸
IL

(3.3)

where ΨK and ΨNa are defined as:

ΨK = n4 +

√
n4(1− n4)

NK
qK (3.4)

ΨNa = m3h +

√
m3(1−m3)

NNa
hNaqNa (3.5)

The periodic stochastic variables qK and qNa satisfy two second-order linear stochastic

differential equations, which can be written as four first-order stochastic differential

equations:
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τq̇K = pK

τ ṗK = −γK pK −ω2
K[αn(1− n) + βnn]qK + eK

τq̇Na = pNa

τ ṗNa = −γNapNa −ω2
Na[αm(1−m) + βmm]qNa + eNa.

(3.6)

where γK, ωK, αn, βn, NK, eK, γNa, ωNa, αm, βm, NNa, and eNa are constants.

The first equation for each variable gives the rate of change of the activation variable

itself, while the second equation gives the rate of change of its corresponding momentum

variable, which is related to the stochastic force acting on the variable.

The constants γK and γNa represent the damping coefficients, which account for the

dissipation of energy due to ion movement through the channels. The constants ωK

and ωNa represent the natural frequencies of the channel activation variables, while αn,

βn, αm, and βm are gating variables that describe the voltage-dependent opening and

closing of the potassium and sodium channels.

The constants NK and NNa represent the number of channels, while eK and eNa are the

external stimulations that influence the activation variables. The time constant τ is

related to the scale of the dynamics.

The gating variables n, m, and h are described by two additional stochastic differential

equations (SDE) similar to those presented in the literature (Fox, 1997). These equations
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follow the fundamental Wang-Buzsáki model and are given by:



ṅ = αn(1− n) + βnn + ηn

ḣ = αh(1− h) + βhh + ηh

m =
αm

αm + βm

(3.7)

The numerical simulation method was modified to solve the stochastic SDE. The Gaus-

sian noise terms have zero means, with variances given by:



Var(ϵK) = γKTK[αn(1− n) + βnn]

Var(ϵNa) = γNaTNa[αm(1−m) + βmm]

Var(ηn) =
αn(1−n)+βnn

4NK

Var(ηh) =
αh(1−h)+βhh

NNa

(3.8)

The fixed parameters in the stochastic dynamics are retrieved from reference (Fox, 1997),

and they remain constant throughout the simulation. The diffusion coefficients are care-

fully constructed to approximate the stochastic dynamics. The drift coefficients contain

stochastic components, qK and qNa, which are designed to capture non-trivial cross-

correlation persistence (NCCP) effects. These effects refer to the correlation between

the fluctuations in the transmembrane voltage and the component of open channel

fluctuations, which arises due to gate multiplicities. The equations that describe qK

and qNa are written using the formalism of the Brownian oscillator, since they exhibit

similarities to NCCP properties.
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3.5.3. Single compartment morphological soma model

Neurons are not mere points, but rather complex spatial entities, composed of dendrites,

soma, and axon compartments, each with its own distinct function. When a powerful

stimulation pulse is applied to a compartment, the resulting signal propagates through

the neuron, altering the excitability of each compartment it passes through. This excitabil-

ity threshold relies on internal variables, such as ion channel properties and membrane

potential, as well as the stimulation current entering the compartment. The resulting

action potential, generated when the stimulation is sufficient, then travels along the axon.

However, if there is conduction failure in a compartment on the propagation path, the

signal will not reach its final destination, and no action potential will be detected. This

can happen due to factors such as inadequate membrane depolarisation or a inactivation

of ion channels in that compartment.

A single compartment morphological soma model is a simplified representation of

a neuron’s soma, or cell body, that is used to study the basic properties of neuronal

behaviour. This type of model assumes that the soma is a single compartment. We

assume, the membrane potential at a neuron’s soma is evenly distributed over its entire

surface. The soma is considered to be ”electrotonically compact” and can be regarded

as a sole ”compartment”. This compartment features a solitary membrane potential,

membrane capacity, and membrane resistance. We present here the outcomes of a

single compartment model that incorporates morphological variables, in opposition to

preceding chapters. The construction of this realistic neuron model involved utilising

the Neuron-python package to conduct simulations.

As a development from the point neuron model we use the Neuron-Python environment

to build a real soma model, characterised by relevant morphological parameters:
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nseg = 1,

L = 100,

Ra = 35.4,

diam = 500,

cm = 0.5,

(3.9)

where nseg, L and diam are morphological parameters, Rais is the cytoplasmic resistance

and cm is the capacitance. From the conclusions of the previous sections, the neuron’s

ions behaviour is simulated using is a combination of the Wang-Buzsáki and Güler

stochastic model.

As in the previous models, a train current pulses, with duration dt, an amplitude and a

period, is injected into the soma segment of the real neuron.

3.5.4. Computational Optogenetics and implementation of a ChR2 model

ChR2 was modelled as a non-specific ion channel with four states: two closed states (C1,

C2), and two open, conducting states (O1, O2) (Foutz et al., 2012). To incorporate the

ChR2 biophysical mechanism into NEURON, we had to adjust and compile the mod

file that contains the NMODL code. Through this process, we developed a NEURON

simulator variant of the ChR2-H134R model, which depends on voltage and light

sensitivity and was derived through experimental research by (Williams et al., 2013).

In 2018, Michele Giugliano released the NEURON model implementation of this ChR2

version on ModelDB.
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dO1
dt = Ga1C1 − (Kd1 + e12)O1 + e21O2

dO2
dt = Ga2C2 − (Kd2 + e21)O2 + e12O1

dC2
dt = Gd2O2 − (Ga2 + Kr)C2

1 = O1 + O2 + C1 + C2

(3.10)

where O1, O2, C1, and C2 are functions of time t. The first equation describes the rate

of change of O1, the concentration of an open state of a receptor or ion channel. It

depends on the concentration C1 of a ligand that activates the receptor, the dissociation

constant Kd1, the rate constant e12 for interconversion between O1 and O2, and the rate

constant e21 for reverse interconversion. The second equation is similar, but for O2,

which depends on C2, Kd2, e21, and e12. The third equation describes the rate of change

of C2, the concentration of the ligand, which is produced at a rate Gd2 and decays due to

binding to C2 or unbinding to the extracellular compartment with rate constants Ga2 and

Kr, respectively. The last equation simply states that the sum of all four concentrations is

constant and equal to 1, which is a normalisation constraint.

In order to accurately describe the response of ChR2 current to a light pulse, six empirical

measures are employed in the model. These measures include two amplitude measures,

namely peak current (Ip) and steady-state current (Iss), as well as four kinetic measures

such as time constant of activation (τON), deactivation (τOFF), inactivation (τINACT), and

recovery from inactivation (τR). These parameters, which capture the morphology, are

determined through experimental traces recorded at varying voltage and light intensity

levels. To ensure that the ChR2 model can be used for simulations under physiological

conditions, temperature scaling factors, or Q10 parameters, are incorporated into the

model. Q10 values for the kinetic parameters, as well as for the Iss/Ip ratio, were derived

using experimental data and were found to be independent of voltage. Typically, higher
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temperature results in faster kinetics and a larger fraction of the sustained current

(Iss). However, for the wavelengths (470 nm) and low light intensity levels considered,

any temperature changes caused by optical stimulation are negligible. Finally, ChR2

transmembrane channel conductance is influenced by factors such as membrane voltage

(V), reversal potential (EChR2 set to 0 mV), and channel conductance (gChR2). During

illumination, the current (iChR2) to be added to Eq. 3.9 is defined by these factors as

follows:

iChR2 = 0.001 gChR2 δV(O1 + γO2)(V − EChR2) (3.11)

where γ is the ratio of conductances in the states O2/O1, δV is a voltage-specific constant.

The uniform insertion of ChR2 opsin dynamics in the soma compartment of the cell,

and the neuron membrane circuit model is modified as in Fig. 3.4. As in the previous

section, we consider the Wang-Buzsáki model for the membrane voltage dynamics, with

the addiction of iChR2, and Güler stochastic model. The photostimulation protocols is, in

congruence with previous simulations, a train of light stimuli with defined frequency,

duration and intensity of the light pulse as in Eq. 3.2.

3.5.5. Markov model of long-term ShChR dynamics

A Markov model is a simplified phenomenological representation of (bio)physical

process dynamics, described quantitatively as a set of discrete states and by the ease of

transition through time from one state to another. Based on the experimental data, we

propose to partition five distinct states at each moment in time: two "excited" E1 and E2

(open channel), two "inactive" (I1 and I2 (closed, recovering channel), and one "ready"

state R (closed, ready channel).
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The kinetic relationship between these states can be visualised by a five-state Markov

scheme.

E1 ← R → E2

↘↗ ↖ ↙

I1 I2

• Excited transition R→ E1 is associated with probability e1

• Excited transition R→ E2 is associated with probability e2.

• Recovery transition I1 → R is associated with a rate r1

• Recovery transition I2 → R is associated with the rate r2

• Inactivation E→ I is associated with rate τi which is set to 0.01.

R + E1 + E2 + I1 + I2 = constant (3.12)

d(R + E1 + E2 + I1 + I2)

dt
= 0 (3.13)

We set the constant to 1, upon appropriate normalisation of the individual state variables

R, E, and I. We associate to each transition a kinetic rate, which can be equivalently

expressed also as the inverse of a time constant.

We assume that the activation of ShChR occurs extremely rapidly, and it is associated

to a precise time (e.g., ShChR τon ≈ 2.3 ms); at the time of a photostimulation pulse, a

percentage of ShChR opens and R depletes with a probability α1 + α2:

R = −(α1 + α2)R and
dR
dt

=

(
I1

τ1
+

I2

τ2

)
(3.14)
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The inactivation processes are also fast (e.g. ShChR τoff ≈ 4.6 ms). The open ShChR close

with rates τi.

dE1

dt
= α1R− E1

τi
and

dE2

dt
= α2R− E2

τi
(3.15)

The recovery processes are instead much slower than the inactivation ones.

dI1

dt
=

E1

τi
− I1

τ1
and

dI2

dt
=

E2

τi
− I2

τ2
(3.16)

We simulate the model numerically and optimise the parameters for each of the photo-

stimulation frequencies used in the experimental data. We make conventional choices

for some of the parameters that respects our assumptions above.
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ChR

ChR

A

B

Williams et al., 2013

Saran et al., 2018

Hodgkin-Huxley

circuit diagram

Figure 3.4. Equivalent electronic circuit of a neuron with expressed ChR channels.
The electrical properties of a neuron, including its cell membranes, intracellular plasma,
and channel proteins, can be compared to those of electronic circuit components. The
properties presented are voltage, current, resistance, conductance and capacitance: Cm
is the membrane potential, IK, INa, and IL are the ionic currents; gK, gNa, and gL are
the voltage-dependent conductances (as in Hodgkin and Huxley); gChR is the light-
dependent conductance which is governed by the ChR photocycle. Panel A adapted with
permission from Williams et al. (2013) showing the four-state photocycle of ChR2; Panel B
is adapted from Saran et al. (2018).
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4. Results

This chapter presents the experimental characterisation of the dynamics of response

latency, during repeated photo-stimulation of glutamatergic cells. Such a characterisation

is supported by a thorough statistical analysis and it is contrasted with the numerical

simulations of neuronal models. The material presented here is currently in an advanced

stage of preparation as a manuscript for submission to a peer-reviewed journal.

4.1. Implementation of the methodology

Targeting the soma of glutamatergic neurons

The promoter for CaMKIIα is specific to neurons and only expressed in excitatory

neurons found in the neocortex, hippocampus, and pyramidal neurons. By utilising

the CaMKIIα promoter in transgene expression, we obtain preferred ShChR expression

in putative excitatory neuron populations (Fig. 4.1). An attempt was made to test the

expression of somatic channelrhodopsin (CaMKIIα-KA2), but it proved ineffective.
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ShChR-mCherry    β-III-Tubulin

DIV 32 100 µm

Figure 4.1. Fluorescence image of targeted putative glutamatergic neurons. The image
displayed depicts fluorescence captured by a confocal microscope at 20x magnification.
β-III-Tubulin staining appears in green, while putative glutamatergic neurons are visible
in yellow due to the expression of ShChR-mCherry. Cell count indicates approximately
2% transfection efficiency.

Targeting GABAergic neurons

Regarding the GABAergic neuron, expression under both Dlx promoters was observed

to be successful, albeit with a delay of 2 weeks post-infection, but this approach did
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not prove to be optimal for our experimental requirements. Consequently, we have

been working on implementing the use of mGAD65, which has shown promise for our

purposes, and this work is discussed briefly in the future work section.

Targeting putative glutamatergic cells

Fig. 4.3 depicts the key features of our experimental paradigm. It enabled us to simulta-

neously record and stimulate multiple neurons over prolonged periods of time, probing

individual neuronal responses independently. We employ the ShCh (Chronos) Channel-

Rhodopsin under the CaMKII promotor (i.e. putative glutamatergic cells), which boasts

rapid kinetics and reduced desensitisation periods (Klapoetke et al., 2014; Mager et al.,

2018). These features enable reliable and stable performance over repeated stimuli, while

minimising potential side effects and confounding factors. We show that the technique

of synaptic isolation of individual neurons for continuous stimulation can be adapted to

our system. Here, we utilise wide-field light pulses to activate potential glutamatergic

neurons (as depicted in Fig. 4.4 and Fig. 4.5) simultaneously.
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synaptic
blockers

electrode A4

stimulation at 1-50 Hz

DIV 19-32

DIV 5

CaMKII0.4 ShChR mCherry

AAV 2/7

Figure 4.2. Microelectrode array recording with photostimulation. This figure shows
the experimental paradigm employed of Optogenetics coupled with ex vivo developing
neuronal networks on MEA.
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100 µmDIV 21

Figure 4.3. ShChR-mCherry expression. Fluorescence microscopic image of pri-
mary neuronal culture at DIV21 on a MEA120 transduced with AAV encoding ShR-
ChannelRhodopsin fused to a red fluorescent protein (ShChR-mCherry). B: Image taken
using a 40× objective and 488 nm excitation light to visualise ShChR-mCherry expression.
The inset show an enlargement of a section for visualisation of the expression throughout
the cell membrane, mainly in the soma, and less along the neurites.

4.1.1. Stable recordings of photoactivated neurons

In Fig. 4.4, we demonstrate our methodology (detailed in Chp. 3). Cells are developing

ex vivo on a MEA into large random networks, infected by AAV2/7 viral particles at 5
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div (Fig. 4.4A). The latter process results in the expression of photosensitive ion channels

ShChR (Chronos) along the entire cellular membrane (dendritic, somatic and axonal) in

a subpopulation which is known to exclusively code the CaMKIIα promoter i.e., putative

glutamatergic cells (Fig. 4.4B). Only these cells are sensitive to the wide-field light pulses,

such that the ShChR channels open upon stimulation (Saran et al., 2018). The rise of

photocurrents follows extremely fast kinetics described in (Klapoetke et al., 2014).The

membrane begins to depolarise due to an influx of cations via the light-gated passive

cation conductance of ShChR, similar to the mechanism of the synaptically evoked spike

(Häusser, 2000).
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Figure 4.4. Simultaneous photostimulation and recording of single cells over lengthy
timescales. A: The method involves the application of viral particles to the microelec-
trode array (MEA) using a serotype AAV2/7, which contains the CaMKIIα promoter
for heterologous expression of the ShChR and mCherry transgenes. Experiments are
performed between 19 and 32 div, and the initiating protocol is always a photostim-
ulation at 1 Hz for 5 minutes. Supra-threshold pulses with a duration of 1 ms and
intensity of 2 mW/mm2 are then applied in a wide-field manner at the bottom of the
MEA, uniformly reaching the electrode area. B: Description at the level of the extracellu-
lar space (<50µm) around a single electrode. Upon stimulation, only a subpopulation
of putative glutamatergic neurons (illustrated in red) undergo direct activation. C:
Pharmacological blocking of synaptic connections. D-G: Example of a single channel
recording for establishing a response baseline at a stimulation rate of 1Hz for 5min. ’+
SB’, blocked synapses; and ’- SB’, without blockage of synapses. D: Recorded activity
of all directly and synaptically activated nearby neurons. E: Recorded activity of only
the directly activated neurons, post synaptic blockers application. F: Enlargement of the
direct jittered responses from E (latency = 3.2 ± 0.83 ms). G: Enlargement of the direct
responses from F where latency values adopt a narrow range (2.3 ± 0.05ms).
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We study the contribution of intrinsic excitability to spike generation over long periods

of time. In order to control cell activation independently of the extrinsic excitability

component from the network, we follow the approach by (Gal et al., 2010), similarly phar-

macologically blocking synaptic transmission but eliciting neuronal responses by brief

photo-stimuli instead of extracellular electrical stimuli (see Fig.1, Gal et al., 2010). We

represent the activity recorded at a single electrode, comparing neuronal responses to a

sequence of pulses at 1 Hz before and after the application of synaptic receptors blockers

(SB). In the former case (Fig. 4.4C, top section), the electrode detects an early component

of post-stimulus spike responses from a glutamatergic cell, and a late component which

is synaptically mediated (latency ≤20 ms), hence characterised by reverberating bursts

with highly variable latency (Marom and Shahaf, 2002; Wagenaar et al., 2004). After SB

application, the neuron’s basal excitability remains quiescent for approximately 15-30

minutes after the cessation of synaptic communication between neighbouring neurons,

hence, there is a complete absence of the late component (Fig. 4.4C, bottom section).

Furthermore, a substantial difference is apparent in the jitters of the direct responses

between the two conditions (Fig. 4.4D). Both the waveform and the latency of the directly

evoked responses are precise in the presence of SB (Fig. 4.4D, bottom section), suggesting

that spike initiation is influenced only negligibly by external, highly variable synaptic

transmission of coupled cells that may ensue few milliseconds after stimulation (Jimbo

et al., 2000; Wagenaar et al., 2004).

In Fig. 4.5 we show the subtle changes in temporal development of the spike waveform

of a unitary neuronal activity and its dependence on the excitability. A glutamatergic

cell isolated at an electrode is photoactivated at a constant rate of 1 Hz and 20 Hz. The

resulting spike waveforms are sorted using the SPC method, where we fix the cluster

density parameter i.e., the “temperature” following (Chaure et al., 2018). The temporal

development of the respective latency is shown as a function of time.
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4.1.2. Stability of the spike waveform over extended timescales

Spikes evoked at a stimulation rate of 1 Hz show low variability in both waveform and

latency (Fig. 4.5A; grey). In response to a higher frequency of stimulation (20 Hz), SPC

falsely sorts the waveforms into three clusters, here included as insets (see Methods for

further details). We observe an increase in latency, together with a decrease in spike

amplitude and bending of the global-minimum-to-local-maximum slope which is equivalent

to a depolarisation slope as registered by an intracellular electrode (Henze et al., 2000).

After an initial step-wise increase in the latency (dark magenta), the neuronal activity

reaches a firing rate plateau (orange) where both the latency and amplitude fluctuate

around their mean values. Long uninterrupted response activity may undergo abrupt

joint change in latency and waveform, characterised by further flattening of the spike

response (light magenta), which is restored back to the stable response activity regime

(orange).
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Figure 4.5. Evaluation of spike shape fidelity on a sample neuron activity under two
1 h-long uniform stimulation rates. A: he process of spike sorting involves analysing
the entire length of each voltage trace. The resulting sorted waveforms are displayed as
insets, with each waveform assigned a specific colour based on its corresponding latency
as shown in the graph below. The vertical calibration for the graph is 50 µ V. All sorted
waveforms are shown as insets, colour-coded as their corresponding latency in the graph
bellow. Vertical calibration is 50 µ V. Upper left: At a low stimulation frequency (1Hz), all
spikes (grey, 3346 spikes, 1 spike/s) are automatically sorted as a single neuronal unit;
spike amplitude is 118±2µV, with a latency of 1.70 ± 0.08ms. Upper middle: When the
neuron is activated at a high stimulation regime (20 Hz), spike shape fidelity is affected;
spike amplitude drops to 67 ± 11µV, as the latency increases to 3.5 ± 0.5ms. Upon
application of the SPC algorithm (see Chp. 3), three groups of spikes are separated, then
attributed to different phases in the latency development: transient (violet, 2720 spikes),
stable (orange, 69079 spikes), and shift (pink, 171 spikes) neuronal responses. Upper
right: There is an abrupt change (orange to pink) in both waveform and latency, without
a change in spike count. B: Latency development (black) at 20 Hz stimulation on a
logarithmic horizontal timescale. Three-step transient phase with two transitional and
an intermittent steady phase. A total of 62393 ISI (blue) are attributed to the plateau of the
spike train (3113.5 s); mean ISI is equal to the mode value of 50 ms. There is a downward
drift in latency with time, suggesting that a steady phase is reached and maintained for
an extended period of time, instead of an expected intermittency response.
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Fig. 4.5B shows the same unitary neuronal activity as Fig. 4.5A (20 Hz) but on a loga-

rithmic scale. This specific neuron reliably responds to all delivered stimuli. A transient

phase and an intermittent phase exist, as previously observed in electrically (Gal et al.,

2010) and synaptically (Reinartz et al., 2014) activated neurons. In our case, intricate tran-

sients and extra complexity is revealed in the long-term photoactivated glutamatergic

single cells.

4.2. Rich and heterogeneous features in glutamatergic neurons

excitability

We further analyse the phases of excitability by alternating the stimulation rate between

a baseline (1 Hz) and two higher repetition rates (20 Hz and 40 Hz) as shown in Fig. 4.6A.

At 1 pulse per second, the evoked responses are reliable (i.e., with a probability of 1) and

precise (i.e., with a low variability of the latency). Upon switching to a regime of 20 Hz,

we observe a U-shaped transient phase. For this particular neuron, the reliable responses

of the transient phase in the 20 Hz regime are followed by a chain of failures; whereas a

switch in stimulation rate from 1 to 40 pulses per second pushes the excitability faster

through a U-shaped transient phase and into a chaotic state, where both the latency and

spike probability fluctuate around their mean values. Analogously to the 20 Hz regime,

we observe continuous failures towards the end of the stimulation block. This process

is reversible and a switch to baseline from both 20 Hz and 40 Hz produces the same

behaviour of gradual recovery. We observe very pronounced U-shaped transient phases

in about half of the analysed glutamatergic neurons. These temporal structures stretch

over hundreds of seconds as a function of stimulation rate. The other half of neurons

exhibit these structures less pronounced or have a more similar behaviour to the neuron

observed as in Fig.3A adapted from Gal et al. (2010).
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Fig. 4.6B depicts distinct patterns exhibited by a specific neuron when subjected to brief

random blocks of photostimulation with rates ranging from 1 to 50 Hz, with adequate

recovery periods between blocks. In is evident that the time needed for the onset of

intermittency decreases with rising stimulation rates akin to the trend observed in

Fig.3A of (Gal et al., 2010). Furthermore, the transients of the latency also decrease with

increasing stimulation frequency (Fig. 4.6B; black to green).
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Figure 4.6. A: Stimulation frequencies are alternated without breaks with the following
pattern: 5 minutes at 1 Hz, 2 minutes at 20 Hz, 5 minutes at 1 Hz, 2 minutes at 40
Hz, and 5 minutes at 1 Hz. B: A neuron is stimulated with rates of 1, 2, 10, 20, 25,
30, 35, 40, 45, and 50 Hz. Stimulation is presented randomly in 2-minute blocks with
5-minute intervals between them. The latency of the spike is plotted against the time
since the block began, with each colour representing a different stimulation rate. A
higher stimulation rate results in a faster onset of intermittency and as well as in the
the two-step transient rise. C: The latency for each block is shown as a box-plot with
the mean and standard deviation for each stimulation rate. D: The mean spike rate is
estimated for each block with respect to the stimulation rate.
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Likewise, the variability of latency increases (as shown in Fig. 4.6C). Fig. 4.6D illustrates

a critical stimulation frequency that separates the steady and intermittent phases. In

this specific neuron, there is a sharp transition in the output rate at ~35Hz. During

the intermittent phase, the mean latency remains constant (Fig. 4.6C). Additionally,

the linear relationship between firing rate and stimulation rate breaks down at the

onset of intermittency. After analysing neuronal traces from 100 MEA, we conclude

that a transient phase is followed by either a steady phase - characterised by variable

latency but dependable response dynamics - or an intermittent phase that exhibits both

periodic and chaotic states, features specific response patterns, transition modes between

response patterns, and rate modulations.
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4.2.1. ”Classes” of glutamatergic responses are on a continuum
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Figure 4.7. A-D: Shown is the intermittent phase of four neurons under a stimulation rate
of 20 Hz. Neurons are simultaneously activated with the neuron shown in Fig. 4.1.2B-C.
The left panels show the entire response to a 1-hour stimulation block, while the right
panels show an enlargement of segments used to identify specific patterns. Neurons A-C
exhibit bursting-like behaviour where spikes are clustered together in an ordered manner
with typical cluster size and inter-cluster intervals. Both B and C show oscillating ’U-
shaped" structures throughout, with patterns from A present at the beginning of each
"U-shape" structure in C. Additionally, A exhibits a "vertical stripes" pattern at varying
timescales, which also appears in B and C. Neuron D responds with irregularly sized
and spaced patterns of spikes and clusters of spikes, as shown in the binary response
sequence in E, with white pixels representing failures and black pixels representing
spikes. The length of the horizontal sequences in E is 10 s, counted left to right and top
to bottom of the panel. F: CV of the bin counts as function of bin size for the neuron in E.

We initially investigate the intermittent phase during a high-rate long-stimulation regime

of 1 hour at 20 Hz, as shown in Fig. 4.7. We present four response patterns of differ-
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ent neurons activated and recorded simultaneously with the regular spiking neuron

mentioned in Fig. 4.5B-C. Previous studies have classified irregular spiking, bursting,

and stuttering as hallmarks of interneurons, while regular spiking is characteristic of

glutamatergic pyramidal cells, using standard intracellular stimulation regimes Fig. 2.1

from Markram et al. (2004). Similarly, Gal et al. have described stable, irregular, regular-

clustered, and irregular-clustered response classes Fig. 2.2. Notably, they use extra-

cellular electrical pulse stimulation paradigm over very long times. Baltz and Voigt

report a 60:40 ratio of two response types, with stable responses favoured over clustered

responses (Baltz and Voigt, 2015). Interestingly, we observe all of these prototypical

behaviours in the evoked responses of glutamatergic neurons. Figures 4.7A-C show

bursting-like neurons with oscillatory and repetitive activity patterns, with a latency

that occasionally jumps between two levels, and in some cases, U-structures emerge in a

repetitive manner throughout the experiment, similarly to the ones observed in transient

phases Fig. 4.6A-B, which is further examined computationally (Sec. 4.3). The spikes

appear to be organised into clusters with typical cluster size and inter-cluster intervals.

The responses in Fig. 4.7D form complex patterns including clusters, individual spikes,

and failures, with irregular cluster sizes and intervals. We observe the development of

neuronal excitability through quasi-stable pattern modes on this intermediate timescale,

compared to Fig. 2.2 from (Gal et al., 2010). Gradual transitions occur from periodicity

to chaos or irregular spiking and finally to regular and stable spiking, with only few

systemic failures, as shown in Fig. 4.7E.

Nevertheless, we find the firing rate dynamics of this neuron to indicate towards long

correlations. This is demonstrated by plotting the coefficient of variation CV of the spike

count as a function of a logarithmically-increasing time window T. Namely, after an

initial sharper decrease, the rate practically plateaus at ~0.5 over increasingly larger

values of T (Fig. 4.7F). The variance of the counted number of spikes reflects a variability
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stretched on a slow timescale over seconds, minutes, and hours. We further examine the

statistics in Sec. 4.2.2.

4.2.2. Statistics of the intermittent phase

Upon extraction of the excitability features, we sort spike events recorded at individual

electrodes into separate neuronal units (Sec. 3.3). With regard to the type of process

underlying timescale-invariant behaviour, we looked at the interval and count statistics,

which are fundamentally related on theoretical grounds (Nawrot, 2010). As explained

by Lowen and Teich, a dynamical process can be said to “scale” with the temporal

resolution employed, if fluctuations in the number of events on a short timescale are

proportional i.e., statistically self-similar to those measured on longer timescales: scale

invariant in occurrence. Mathematically, this will lead to power-law dependencies in the

scaled quantities and the “long tail” of the resulting power-law function can be fitted

as a straight line on a doubly logarithmic graph. We constructed sequences of counts

(Chp. 3, Fig. 3.2).

Above a certain critical stimulation rate, the neuron exhibits scale-free dynamics with

power-law statistics, indicating consistent macroscopic properties of the evoked spike

trains across various stimulation regimes. Our research builds upon prior studies on rat

cortical neurons and specifically focuses on a sub-population of excitatory cells that are

photoactivated. Using the Allan factor and Fano factor methods shown in Fig. 4.8, we

analysed point processes generated by responses to stimulation rates ranging from 20-50

Hz during intermittent phases lasting up to 12 hours. At the outset, F(T) and A(T) values

were around 1, suggesting a low probability of success in a Bernoulli process where zero

spikes counted for window sizes smaller than the shortest ISI. However, both F(T) and

A(T) curves subsequently dipped below 1, with a more pronounced dip observed in
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the Allan factor curve, indicating synchronised cell responses to the 20 Hz rhythmic

stimulation. The initial spiking activity’s quasi-stable mode exhibited an oscillatory

bursting component that caused the peak at ~30 s. A power-law in the Fano factor

curve emerged near a window size of ~0.05 s, while the Allan factor curve shifted near 2

s. The power-law in the Fano factor curve spanned four time scales, while that in the

Allan factor curve exceeded four decades, with the scaling exponent of the power-law in

the Fano factor curve approaching its theoretical maximum (α = 0.98) and the Allan α

significantly higher (α = 1.45), indicating that the spike train is fBm-based.
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Figure 4.8. Methods for Estimating Scaling Exponent: Fano and Allan Factors. A: By
scaling with T1, the Fano factor shows a maximum possible value of α = 1. B: On the
other hand, scaling with T3, the Allan factor can reach a maximum value of α = 3.
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Figure 4.9. Variation of scaling exponent α values with frequency. This plot shows the
variation of both α values for various stimulation frequencies (colour coded) estimated
by the Fano factor and the Allan factor methods. The plot marks in the central panel
indicate individual measurements of single cells. The histograms at the upper and right
border show the histogram of the marginal distribution. Underneath, we provide a
classification scheme of the Allan α values and the corresponding stochastic process.

Figure 4.9 illustrates the distribution of scaling exponents for various bin sizes, captur-

ing the power-law relationship observed in Fano and Allan factor curves from 1200

individual neuronal units. The majority of processes underlying neurons responding

to all frequencies are within the fractal Brownian motion (fBm) realm, with most clus-
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tering between α= 2 and 2.5. Fractal-based point processes belonging to the fBm class

exhibit statistically self-similar behaviours, indicating long-range correlations across

the data points. Despite power-law distributed intervals being capable of producing

scale-invariant behaviour as a fractal renewal process, in this instance, the fBm implies

that intervals are not independently identically distributed. However, α= 2.0 repre-

sents a such a unique case of fBm, which entails Brownian motion or random walk

with no long-range correlations, a "dummy" dataset was created by shuffling the ISI

to compare each spike train with the same number and frequency of ISI present in the

investigated neuronal spike train. The power-law in the Fano and Allan factor curves

for 20 surrogates was flattened (results are not depicted in the graphs). We used the

highest standard deviation documented by Thurner et al. as an approximate value for

a signal with a known α = 1.5, in order to establish an interval of 1.87–2.13 around the

anticipated occurrence of these unique cases. The spike number fluctuations exposed

long-range correlations, indicating that there were unclassified cases within the original

point process bracketed by the dashed vertical lines in Figure 4.9. A substantial fraction

of spike trains could be distinguished as stochastic processes based on fBm. The Allan

values calculated for varying stimulation rates were comparable and exhibited a positive

correlation.

The collected data often display bias and significant deviations from theoretically derived

exponents, which are estimated through various methods. This phenomenon is primarily

caused by default lower and upper cutoffs in measurements that lead to information

loss due to point process generation and limited experimental time. However, in our

particular situation, we are able to observe a range of scaling exponent values for spike

trains that are derived from different stimulation rates. This range falls within the scope

of long-memory processes. In the case of Fano factor curves, the power-law extends

beyond four timescales. As a result, fluctuations in spike probability and latency over
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time can be confidently attributed to long-range correlated fractional Brownian motion

processes.

4.3. Mathematical models of intrinsic excitability

In our quest to emulate the long-term dynamics of cell excitability, we scrutinise models

of various degrees of intricacy. Initially, we opt for a validated reduced model, centred

on conductances, which we subject to stochastic perturbations to accommodate the

intrinsic uncertainty of ion channel kinetics. Subsequently, we advance our inquiry

from a single compartment model, denoting a point neuron, to a more complex multi-

compartmental model incorporating both soma and axon geometry. Our ambition is to

furnish a comprehensive investigation, and hence we undertake an in silico experiment

employing a layer five pyramidal neuron template from the Blue Brain project.

By leveraging the work from (Gal et al., 2010) alongside our own experimental observa-

tions, we endeavour to replicate the results using two stimulation techniques: classical

current injection and Optogenetics. With regard to the stimulation design, following

the stimulation methodology introduced by Soudry and Meir, we employ a train of

stimuli to mimic the stimulation patterns employed in the aforementioned experiments.

In general, this is a straightforward yet efficacious stimulation protocol enables us to

deduce analytical input-output mappings of neuronal responses.

Wang-Buzsáki-Güler stochastic model

The response pattern of a neuron to the onset of a stimulation block may depend on the

stimulation rate but remains consistent across repetitions with the same rate. Such be-

haviour was previously modelled using the Hodgkin-Huxley model with slow sodium
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inactivation and potassium inactivation model with varying values of the current con-

ductance gM (Soudry and Meir, 2012), albeit with limited success. We implemented

the Wang-Buzsáki-Güler stochastic model to investigate quasi-stable pattern modes in

the intermittent phase (Fig. 2.4) and ourselves (Fig. 4.7). We followed the suggestion of

applying different durations of the input rectangular pulse train at different stimulation

rates. According to Güler, non-trivial cross-correlation persistence effects greatly influ-

ence excitability, spontaneous firing, and spike coherence, and the developed model

accurately captures these functional correspondences.

Our findings demonstrate that with increase in stimulation frequency, as shown in the

scenario in Fig. 4.10, the intermittent mode undergoes a behavioural transformation

from highly reliable to somewhat erratic behaviour close to the critical point, ultimately

resulting in failures and intermittency due to low excitability. These results qualitatively

emulate several experimental discoveries as presented in Fig. 2.4, especially the forma-

tion of the transient phase. However, it is crucial to note that the intermittent phase

statistics do not exhibit the scale-free correlations observed in the spiking behaviour of

biological neurons.
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Figure 4.10. Latency versus time in the Wang-Buzsáki-Güler model. A: This figure
shows the latency versus time for various stimulation frequencies as generated by the
Wang-Buzsáki-Güler model and B: shows the tuning of the correlation time τ.

Wang-Buzsáki-Güler model realisation in soma morphology

We proceeded with implementing the stochastic model we devised by utilising the

soma’s morphological traits. Initially, we applied electrical stimulation to the soma and

meticulously recorded the corresponding reactions.

When the input stimuli frequency is sufficiently low, the soma remains stable. Neverthe-

less, with an increase in stimulation rate, the neuron transitions swiftly from a temporary

to an intermittent phase (Fig. 4.10). The neuron’s response is reliant on its morphological

features. To ensure consistent voltage dynamics, the diameter and length must double

while the current input should be halved. Alterations in Ra do not seem to considerably

impact the membrane potential behaviour, possibly due to a limited range of variation.
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Wang-Buzsáki-Güler model realisation in soma morphology with optogenetics

We extend the investigation of the long-term dynamics of the single neuron to the case

of photostimulation of an existing model of ChannelRhodopsin-2 (ChR2). Williams et al.

demonstrate that the process of recovery from inactivation (τR) is dependent on both

voltage and light power, however, we observed that more positive voltages significantly

slow down the recovery, while higher light power has a mild speeding effect on the

recovery from inactivation.
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Figure 4.11. Optogenetics stimulation implemented in the Wang-Buzsáki model. This
figure shows the latency versus time for various stimulation frequencies as generated by
the Wang-Buzsáki model implementing Optogenetics stimulation.
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Fig. 4.11 illustrates that a transient initial phase occurs when a light stimulus is used

during the initial seconds of the response, which is not observed using electric stimula-

tion (when the ChR2 channel is inactive). Although this phase was not reported by Gal

et al., we have observed and described the two-step transient phase in the responses of

photoactivated glutamatergic cells in Fig. 4.6. The graph demonstrates that an ”initial

transient” phase develops into a stable phase, and eventually, the latency stabilises at a

higher steady state or exhibits intermittency.
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Figure 4.12. ChR2 dynamics in the slow gate. This figure shows the slow variable
versus time for different stimulation frequencies. Higher stimulation frequencies are
shown in the left, lower frequencies in the right panel.

Previous research on the prolonged dynamics of single-compartment electrical stimu-

lation, as documented in studies Soudry and Meir from 2010 and 2014, has identified

gates is as the cause of latency response. This is due to its manifestation of slow neuron

kinetics. When studying the gate response to light stimuli, an opposing behaviour

was observed in comparison to the electrical stimulation scenario at higher frequencies.

The gate response reached a higher steady state value with increasing frequency, as

depicted in Fig. 4.13A. However, at lower frequencies, where the initial intermittent

phases slowed down and the latency behaviour aligned with the results of the Gal et al.

experiment, the gate response exhibited a higher steady state value as the frequency
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decreased, as shown in Fig. 4.13B. These findings are in line with those reported in

Soudry and Meir (2010).
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Figure 4.13. ChR2 dynamics in the open states: O1 and O2. This figure shows the
dynamics of the ChR2 in the open states O1 and O2 for different stimulation frequencies
with the same colour code as in Fig. 4.12.

Long-term ShChR Dynamics: experiment and model

Expanding upon the findings in biological neuronal transients and utilising insights

gained from our ChR2-incorporating model, our study investigated the kinetics of the

ShChR channelrhodopsin through experimentation.

The experiment involved examining the dynamics of ShChR within a frequency range

of 2-40 Hz. To analyse ShChR, we patch-clamped an isolated HEK297 cell expressing

ShChR-eGFP. The inward current peaks of ShChR were extracted and normalised using

the initial and maximum current peak values. This was shown in a graph that plotted the

number of photostimulation pulses against the normalised current peaks. Another graph

displayed the same curves, but in relation to the continuous time of the experiment.
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Figure 4.14. ShChR dynamics: experiment 2-40 Hz. A: Patch-clamp of an isolated
HEK297 cell expressing ShChR-eGFP. B: The recorded ShChR inward current peaks are
normalised by the first and maximal current peak. Shown are normalised current peaks
versus the number of photostimulation pulses for stimulation frequencies from 2 to 40
Hz. C: The same curves as in B, presented versus continuous time of the experiment.

The analysis of ShChR dynamics over the long term involved extracting peak current

values following each 1 ms stimulation pulse. These values were then plotted against

the number of stimulation pulses in Fig. 4.14B and Fig. 4.15, and against continuous

time in Fig. 4.14C. A log-log plot of the data indicates a power law relationship at the

start of each stimulation, which later transforms into an exponential drop after about
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100 stimulation pulses. Finally, after approximately 1000 stimulation pulses, the trend

continues as a power law relationship.
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Figure 4.15. Long-term ShChR dynamics. This figure shows visual representation
depicts the progression of the maximum ionic current over a long period of time and the
relating optimised data points of the five-state Markov model.
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5. Discussion and conclusion

In this chapter, we discuss the outcomes that have been put forth and deliberate upon

the principal discoveries and their plausible meanings.

In context of the methodology, we attained dependable electrophysiological recordings of

solitary neuron electrical reactions via non-invasive repeated photoactivation, which

ensured the steadfastness of the spike waveforms at low and high stimulation rates.

Additionally, we introduced a computational method to manage huge data files ac-

cumulated from every experiment and developed an algorithm to optimally classify

individual neuronal units detected at each electrode.

During the neuronal data processing we encounter two critical challenges: distinguishing

neuronal units, as well as detecting power-law relationships present in the data. The

former entails the identification of individual neurons by analysing their extracellular

imprints of excitability by use of spike sorting algorithms, while the latter involves

graphical methods to identify dynamical processes with scale free correlations. In our

endeavour to sort spikes from data, we initially relied on conventional algorithms in

neuroscience. However, these methods fell short in accurately classifying highly variable

spike waveforms, inevitably leading to significant statistical errors. To overcome this

challenge, we have developed an algorithm that leverages extracellular imprints of

excitability, such as spike time, latency, and amplitude, to sort the spikes. We must
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analyse the spike data in a sequential manner, keeping in mind that following each

stimulus a maximum of one response is expected from each neuron. Overall, our

algorithm provides an effective approach for accurately and efficiently sorting spikes into

clusters based on large datasets. Nonetheless, these difficulties present an opportunity

for the development of novel and more efficient techniques by the machine learning

community for organising spike data accumulated during ongoing stimulation protocols.

Additionally, we took great care in our analysis in fitting power-laws1 as straight lines on

double logarithmic plots over at least three decades (Lowen and Teich, 2005; Lundstrom

et al., 2008; Turcott and Teich, 1996). These plots necessitate vast amounts of data to

deliver reliable estimates of the scaling exponents. Given that both conditions of effective

neuronal units classification and the existence of power-law over three decades were

satisfied in our case, we can confidently infer the nature of the underlying dynamical

processes to be scale-free, indicating the absence of a characteristic timescale.

By utilising wide-field stimulation and combining it with spike sorting algorithms, we

were able to detect and analyse the responses from a large number of neurons, which

is a significant advancement from previous studies that only examined responses one

neuron at a time, providing a novel and comprehensive set of observations. Furthermore,

by utilising the genetically-specific, fast variant of ShChR, we could selectively activate

only putative glutamatergic neurons, resulting in a more precise and regulated form

of stimulation in comparison to conventional electrical methods. It is worth noting

that glutamatergic neurons are known to demonstrate less inter-cell diversity than

the GABAergic subpopulation shown in (Markram et al., 2004), which increases the

uniformity of our sample and reinforces the significance of our discoveries within the

broader framework of neuronal excitability. These classifications by Markram et al. are

based on an experimental method designed to uncover the unique pattern-generating

1A power-law is inferred when the graph of a function is a straight line on a double logarithmic plot.
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capabilities of a neuron, ultimately providing insights into its representative firing

behaviour within a population of neurons i.e, larger neural network.

To begin with our findings, we can first contrasts them with the typical electrical activity

seen on a brief timescale, as demonstrated in Fig. 2.1, using the prototypical model

outlined in (Markram et al., 2004). It is clear that the firing patterns of glutamatergic

neurons are not accurately characterised by the regular spiking behaviour suggested

by Markram et al., as they exhibit much more complex electrical phenotypes. It was

surprising to discover that glutamatergic cells have diverse and dynamic behaviours

over extended periods (Fig. 4.7). The wide range of patterns exhibited by these cells

has significant implications for neuroscience experiments, especially in the context of

bottom-up paradigms. We thoroughly examined glutamatergic neurons for extended

periods and conducted statistical assessments on over 2000 spike trains in these neurons.

In this way, we confirm and expand upon previous findings, highlighting the importance

of accurately characterising the responses of genetically identified neuron types. To

accurately record neuron activity, longer datasets must be used, and new mathematical

models are needed to explain the processing of information, learning, and memory in

single neurons. Furthermore, the relationship between temporal dynamics and event

frequency across intervals shows a long time dependence on past values. By assessing

memory capacity compared to the realisations of fBm processes, we hypothesised the

nature of the intrinsic mechanisms driving excitability at the level of action potentials

i.e., single neuron level, especially over extended periods of time.

The differences in latency development in the transient phase (Fig. 4.6) compared to

previous research by Gal et al. indicate the possibility of a connection between the

kinetics of channelrhodopsin and the occurrence of spikes over extended time periods,

from minutes to hours. This could suggest that the phenomenon is an artefact of the

optogenetic tool or that channelrhodopsin has its own memory process that interacts
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with neuronal excitability after repetitive activation. Our study started to investigate

our version of ShChR (Chronos) as a tool for extended and varied activation frequencies.

In addition, we created computational models for both short and long time intervals

to supplement biological experiments and gain a more comprehensive understanding

of ShChR excitability. However, further experimentation and collection of more data

points are necessary to draw statistically conclusive hypotheses about these findings.

To delve deeper into the topic, it is crucial to modify conventional experimental models

by considering the inherent excitability mechanisms (as discussed in Chp. 2), and

devising stimulus patterns that mimic the synaptic inputs received by brain cells. Such

adaptations have been developed and some have resulted in more accurate descriptions

of the neuron’s input-output dynamical properties on the action potential timescale

(Sec. 2.2). In synaptically evoked action potentials, the activation of KV channels lags

behind that of NaV channels. This is because the membrane depolarises due to cation

influx through ligand-gated ion channels which activates NaV channels, leading to a

substantial influx of Na+ ions into the cell. At the same time, KV channels are also

activated, but their slower kinetics mean that substantial outward K+ flow typically

occurs only after the NaV channels are fully activated, causing membrane re-polarisation.

In contrast, during external electrical stimulation, the change in extracellular potential is

usually very brief, necessitating unphysiologically high pulse amplitudes to achieve a

sufficiently large change in trans-membrane potential (Irnich, 1980).

In the case of optogenetics, it is important to consider multiple factors that can influence

the membrane’s response to a single supra-threshold light pulse, such as the properties

of the optogenetic protein and the specifics of the light pulse. After each stimulus, the

ShChR ion channels situated across the cell membrane open up simultaneously, which

enables positively charged ions, especially sodium ions, to flow in. This can last for a

mere millisecond (one stimulation pulse), and if the membrane potential surpasses the
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activation threshold, voltage-gated ion channels quickly expose themselves, resulting

in a surge of more sodium ions and swift depolarisation, eventually leading to the

generation of an action potential. ShChR channels activate with fast kinetics and a

robust response to variable light densities reaching the cell at different parts of the cell

body, dendrites, and axon (Klapoetke et al., 2014). Nonetheless, the limited ability to

control the number and localisation of expressed ShChR channels has implications that

we further explore in an ongoing work. Furthermore, it is important to consider the fact

that optogenetic stimulation is not a perfect mimic of natural synaptic inputs. Indeed,

the activation of ShChR channels is not limited to synapses, but rather activates channels

throughout the entire neuron, including the cell body, dendrites, and axon. This can

lead to activation of neurons in a non-physiological manner, potentially influencing

excitability in a particular way in vivo (?). In fact, the results of our study revealed

the potential impact of the long-term dynamics of channelrhodopsins on the transient

phase (Sec. 4.2), and the need to asses the consequences of the ubiquitous expression of

channelrhodopsins along the full membrane morphology of cells.

Overall, our findings provide computational neuroscientists with a novel and large

set of observations that models must capture when aiming to replicate cortical cellular

excitability. As we take the first step in examining the responses from different genetically

identified cell types, future developments on the special/restricted expression of opsins

and photoactivation hardware may help this process. Both the study of long-term

excitability at the single-cell level and the investigation of channelrhodopsin hold merit,

as does modelling of both systems. We believe that scientific progress may require a

comprehensive integration of empirical and theoretical approaches, with continuous

refinement and testing of models based on new data. However, we currently observe

a lack of effective understanding and communication between experimentalists and

computational neuroscientists.
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A. Exploration of Conductance-based

neuron models

Hodgkin-Huxley model

Hodgkin-Huxley model is based on the complex dynamics of ions through the cell

membrane related to the evolution of the voltage potential based on the electrical circuit

in Fig. 3.4. The elements of the circuit, arranged in parallel, are: a capacitance capacitor

CM to describe the action of the semipermeable cell membrane which separates the

interior of the cell from the extracellular liquid, two nonlinear resistors RK and RNa to

describe the ionic channels, respectively, of potassium and sodium and, finally, a passive

resistance RL that represents all the remaining ionic species (especially Cl− ions). Usually

the Hodgkin-Huxley model is built on the spatial and temporal dependence in order to

describe the evolution of the membrane voltage, but for simplicity we considered the

following ordinary differential equation for V(t):

I = CM
dV
dt

+ ḡKn4(V − EK) + ḡNam3h(V − ENa) + ḡL(V − EL) (A.1)

The coefficients that appear in the equation have the following meaning:

• gK: maximum value of the potassium conductance.
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• gNa: maximum value of the sodium conductance.

• gL: term of constant conductance relative to all other ionic species.

• EK: Equilibrium potential for potassium ions.

• ENa: Equilibrium potential for sodium ions.

• EL: Equilibrium potential for all other ionic species (mostly Cl− ions).

The variables n, m, h are functions dependent on both the time and the value of the

membrane potential of the cell, assuming values in [0, 1] and interpreted in probabilistic

terms. The evolution of the functions n(t, V), m(t, V), h(t, V) is defined by the following

differential equation structure. Let X = X(t, V) be any of the three functions n, m, h

then:
dX
dt

= αX(V)(1− X)− βX(V)X. (A.2)

X defines the probability of a gate being open defined for a specific ion. Looking at

the macroscopic scale, X can also be the fraction of gates that are in the permissive

state. The functions αX and βX determine the transfer rate of the activation particles

which, respectively, flow from the outside in proportion to (1 − X) to the inside of

the membrane and from the inside in proportion to X to the outside (or vice versa for

inactivation particles).
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Hodgkin and Huxley derived the αX and βX functions from the experimental data as

follows:

αn(V) =
0.01(V + 55)

1− exp(−0.1(V + 55))
, βn(V) = 0.125exp(−0.0125(V + 65)) (A.3)

αm(V) =
0.1(V + 40)

1− exp(−0.1(V + 40))
, βm(V) = 4exp(−0.0556(V + 65)) (A.4)

αh(V) = 0.07exp(−0.05(V + 65)), βh(V) =
1

1 + exp(−0.1(V + 35))
(A.5)

A.0.1. The Wang-Buzsáki model

The Wang-Buzsáki model is expressed using the Hodgkin-Huxley formalism to describe

a neuron with a single compartment and conductances for sodium and potassium. The

equation is given as:

I = Cm
dV
dt

+ INa + IK + IL (A.6)

where INa, IK, and IL represent the current contribution for each ionic species. The

activation variable m for the transient sodium current is considered fast and is substituted

by its steady-state function. The differential equations for the gate variables become:



dh
dt = ϕ(αh(V)(1− h)− βh(V)h)

dn
dt = ϕ(αn(V)(1− n)− βn(V)n)

m∞ = αm(V)
αm(V)+βm(V)

(A.7)

where ϕ represents the time constant of the gating variables, and α and β are the rate

constants for the respective gating variables.

The Wang-Buzsáki differential equations were numerically solved using the Runge-

Kutta method, which proved superior to both the Predictor-Corrector method and the
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Forward Euler, initially estimated on the Hodgkin-Huxley model, affording a balance

between model accuracy and computational efficiency.

Wang-Buzsáki with slow sodium inactivation

The evolution from the original Wang-Buzsáki model that we explore includes the low

inactivation of sodium channels. This mechanism is incorporated into the basic model

by introducing s, a new slow inactivation gate variable, into the sodium current:

INa = gNam3h(ENa −V) (A.8)

ṡ = δ(V)(1− s)− γ(V)s (A.9)

Eq. A.8 represents the current INa flowing through a sodium channel, where gNa is the

maximum conductance of the channel, m and h are gating variables that depend on

membrane potential V and control the opening and closing of the channel, and ENa

is the equilibrium potential for sodium ions. The equation states that the current is

proportional to the maximum conductance, the cube of the opening variable (which rep-

resents the number of channels that are open), the closing variable (which represents the

probability that a channel is open), and the difference between the sodium equilibrium

potential and the membrane potential.

Eq. A.9 represents the dynamics of a hypothetical variable s, which could represent the

activation or inactivation of some other ion channel. The function δ(V) represents the

dependence of the rate of change of s on the membrane potential V, and is zero when V

is below a certain threshold (i.e. the channel is closed at resting potential) and increases

rapidly above that threshold (i.e. the channel opens). The function γ(V) represents
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the rate at which s returns to its resting value when V is below the threshold (i.e. the

channel closes again). The equation states that the rate of change of s is proportional

to the difference between the resting value (which is assumed to be the same as the

initial value) and the current value of s, with a net rate of activation and inactivation

depending on the balance between the functions δ(V) and γ(V).

Wang-Buzsáki with slow sodium inactivation and potassium activation

We progress to augment the original Wang-Buzsáki model with an additional charac-

teristic phenomenon in the equations, namely, slow potassium current activation. This

modification, which may be either voltage or calcium dependent, has frequently been

implicated in decreasing neuronal excitability after prolonged current step stimulation,

commonly referred to as “spike frequency adaptation”. The Wang-Buzsáki model featur-

ing slow sodium inactivation, described in the preceding paragraph, is further modified

by introducing a slowly activating potassium current exhibiting M-current kinetics, such

that the total potassium current is given by:

IK = gKn4(EK −V) + gMn4s2(EK −V), (A.10)

with gM = 0.01gK and

ṡ2 = δ(V)(1− s2)− γ(V)s2 (A.11)

This is a mathematical representation of the current flowing through a voltage-gated

potassium (K) channel and a voltage-gated delayed rectifier potassium (M) channel in a

neuron.

In Eq. A.10, the current through the K channel is given by the first term and depends

on the potassium conductance (gK), the activation variable for the K channel (n), the
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reversal potential for potassium (EK), and the membrane potential (V). The current

through the M channel is given by the second term and depends on the M conductance

(gM), n, the inactivation variable for the M channel (s), and EK and V.

Eq. A.11 is the differential equation for the inactivation variable s2, which determines

the fraction of open M channels that are inactivated (i.e., cannot pass current even

if the membrane potential is favourable). The rate of change of s depends on the

voltage-dependent forward rate constant (δ) and the voltage-dependent backward rate

constant (γ), which determine the rates at which s transitions from the non-inactivated

to inactivated states and vice versa, respectively.

Wang-Buzsáki with slow sodium inactivation and potassium inactivation

The Wang-Buzsáki model is further enhanced by introducing a positive feedback mech-

anism through potassium inactivation. This type of behaviour is characterised by an

increase in neuronal excitability following depolarisation. The slow variables, repre-

sented as s, directly impact future voltage responses, while the fast variables relax to a

unique steady state and have no direct effect on future neuronal responses.

The generic form of a conductance-based neuron model includes a spike-generating

mechanism modulated in time by rapid gating variables: r := (r1, ...rm)T and slow gating

variables: s := (s1, ...sm)T.

ṙj = f j(r, s, I(t)), j = 1, ..R (A.12)

ṡi = ϵhi(r, s), i = 1, ..S (A.13)

where ϵ > 0 is a regulatory parameter, rendering the dynamics of s much slower than

the dynamics of r. For simplicity, all slow variables are normalised in the range [0, 1].
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The Hodgkin-Huxley model is a special case of this model where r = (V, m, n, h)T, and

ϵ = 0. This means that while I(t) = 0, r remains at a unique constant steady state i.e.,

the resting state. After each stimulation pulse, for certain values of initial conditions and

I0, we get either a “strong” response in r (AP generation) or a “weak” response in r (no

AP generation). For a very small set of values of initial conditions and I0 it is possible to

generate an “intermediate” response (“weak AP-response”). Generally all responses are

brief, and r rapidly relaxes back to the steady state within time tr. If ϵ > 0, we assume

that hi(r, s) = hi(r, si) is a linear function of the kind:

ϵhi(r, s) = δi(r)(1− si)− γi(r)si (A.14)

where δi and γi are rate functions of magnitude ϵ.

The three models previously presented heavily rely on the values of s. If a stimulation

pulse with a strength of I0 is given, the neuron will only produce an action potential if

the voltage surpasses a certain threshold. To keep track of past stimulations, we use an

excitability function, represented by E(s). For a neuron to produce an action potential,

the value of E(s) must be greater than 0. This means that the excitability function E(s)

sets the voltage threshold at which a neuron responds to a stimulation pulse with an

amplitude of I0. To determine the region where E(s) = 0, we set ϵ as zero and allow r to

reach a stable state before applying a stimulation pulse.

As a result of the initial analysis, it has been determined that E(s) is a monotonic function

in each individual component of s and also increases monotonically as I0 increases. Since

the sodium current promotes depolarisation, an increase in this current will increase

the probability of generating an action potential. However, an action potential will only

occur if s exceeds a specific threshold θ. Our numerical analysis has demonstrated that
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the shape of Φ is linear (though not shown) and this allows us to express the excitability

function as E(s) = s - θ, since the threshold θ varies inversely with I0.

We adjusted the transfer rate constants for the s functions in the Wang-Buzsáki model,

taking into account its slow inactivation of sodium channels. This resulted in the

following values:

γ1(V) =
0.000511

1 + e−0.3(V+17)
and δ1(V) = 0.00005 e(−V−85)/30 (A.15)

A.0.2. Stochastic conductance-based model

In the Wang-Buzsáki model, we tried to incorporate stochasticity through three methods:

1. The introduction of subunit noise in the slow sodium inactivation based on previ-

ous works by Soudry and Meir (2010, 2012);

2. The incorporation of subunit noise in the gate function based on previous works

by Fox (1997); Fox and Lu (1994); Rowat and Greenwood (2014);

3. The use of conductance noise through drift coefficients, which contain stochastic

components that maintain non-trivial cross-correlation persistence.

In the following sections we will proceed introducing channel noise into the model pre-

viously validated, defining three different stochastic models. The numerical simulations

are performed using stimulus train modelled as rectangular function in Eq. 3.2.

Results

Initially, the models of Wang-Buzsáki and Hodgkin-Huxley were created and contrasted.
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The kinetics and maximal conductances of the neuron model are modified from the

Hodgkin-Huxley model in order to display the salient properties of hippocampal and

neocortical fast-spiking interneurons used in the Wang-Buzsáki experiments. The action

potential in these cells is followed by a brief afterhyperpolarisation of -15 mV from the

spike threshold (-55 mV). Consequently, during the spike repolarisation, the membrane

potential reaches a minimum of about -70 mV instead of being close to the reversal

potential of the K+ current EK, typically set at -90 mV. This behaviour is introduced in

the model through a relatively small maximal conductance gK and a fast gating process

of IK that quickly deactivates during spike repolarisation. Furthermore, the interneurons

used in the experiments have the ability to fire repetitive spikes at high frequencies.

With fast kinetics of the inactivation of INa (h gate), the activation of IK (n gate), and the

relatively high threshold of IK, the model interneuron displays a large range of repetitive

spiking frequencies in response to a constant injected current.

Hodgkin-Huxley model

Our investigation revealed that the Hodgkin-Huxley model is effective in approximating

low frequencies but is inadequate for further study because it cannot accommodate high

frequencies due to the rapid inactivation of sodium channels.

Wang-Buzsáki model

After careful consideration of our research objectives and the guidelines presented in

(Soudry and Meir, 2012, 2014), we selected the Wang-Buzsáki model. This model is a

deterministic conductance-based neuron model, which utilises the Hodgkin-Huxley

formalism with N+
a and K+ conductances to describe a single compartment neuron model.

In the framework of conductance-based neuron models, ion channels are modelled

by their voltage-dependent conductances, and the excitable membrane is represented
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by a capacitor. This approach provided a robust means for investigating the complex

interplay of ions and voltage dynamics within a neuron.

Wang-Buzsáki model with slow sodium inactivation

Initially, we studied the original Wang-Buzsáki model, which incorporates slow inacti-

vation of sodium channels. It may seem that the use of first-order kinetics is not suitable

for accurately describing the recovery of sodium channels from slow inactivation, as it is

influenced by past events and occurs over various time frames. However, recent studies

have shown that the linear form of the equation remains applicable when analysing neu-

rons subjected to pulse stimulation. For instance, previous investigations (Soudry and

Meir, 2010) have demonstrated that it is a reliable approximation for the kinetics of ion

channels with power-law memory. Therefore, the response of the Wang-Buzsáki model’s

sodium slow inactivation, as presented in (Soudry and Meir, 2010), is not substantially

different from the outcome obtained using the equation for s Eq. A.9.
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Figure A.1. Latency versus time as generated by the deterministic Wang-Buzsáki
models for various stimulation frequencies. A: Wang-Buzsáki model with slow sodium
inactivation. B: The evolution of the slow variable in the Wang-Buzsáki model with
slow sodium inactivation. C: Wang-Buzsáki model with slow sodium inactivation and
a slowly activating potassium current exhibiting M-current kinetics. D: Wang-Buzsáki
model with slow sodium inactivation and a potassium inactivation.
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Wang-Buzsáki model with slow sodium inactivation and potassium activation/inactivation

Potassium activation, which may be either voltage or calcium dependent, has frequently

been implicated in decreasing neuronal excitability after prolonged current step stimula-

tion, commonly referred to as “spike frequency adaptation”. We introduced potassium

activation as well as a positive feedback mechanism through potassium inactivation.

This type of behaviour is characterised by an increase in neuronal excitability following

depolarisation. The slow variables, represented as s, directly impact future voltage

responses, while the fast variables relax to a unique steady state and have no direct effect

on future neuronal responses (Fig. A.1).

Previous studies have shown that the availability of sodium increases with input fre-

quency, while θ remains constant. Numerical simulations of the Wang-Buzsáki model

revealed that the transient mode ends in a stable steady state when the input frequency

is low or in an intermittent mode when s(t) reaches θ (Fig. A.1), which corresponds to

the critical latency observed in experiments.

Fig. A.1 shows latency as a function of time for different stimulation rate f from 5 to 40

Hz, using stimulation at I0 = 7.9 µA. The transient phase speeds up when the stimulation

frequency is increased, maintaining the same critical latency Lc. These results can be

explained by Fig. A.1B showing that the sodium availability traces (t) accelerates its

transient when the input frequency is increased, while θ does not change. The numerical

simulations prove that the transient mode ends either in a stable steady state (when the

input frequency is low), or in an intermittent mode, which occurs when s(t) reaches

θ, or equivalently, when the latency reaches L(θ), the critical latency observed in the

experiment. However, there is a lack of variability in the latency patterns caused by the

usage of deterministic algorithms in the model.
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However, the deterministic algorithms used in the model fail to capture the variability

in the latency patterns observed in experiments, as demonstrated by comparison with

results from Fig. 2.4 (Gal et al., 2010) as well as our own findings Fig. 4.6.

Overall, the Wang-Buzsáki extended models provide insights into neuronal behaviour

and the mechanisms behind the generation of action potentials. By incorporating fast

and slow gating variables, as well as a positive feedback mechanism through potassium

inactivation, the model is able to capture the complex dynamics of a neuron. The

excitability function, determined by the values of s, plays a crucial role in determining

whether a neuron will generate an action potential in response to a stimulation pulse.

The model provides a framework for further study and understanding of the electrical

activity of neurons and their role in neural networks.

In photostimulated neurons (Fig. 4.7), similarly to findings by Gal et al., we note a fun-

damental observation that neural responses exhibit quasi-stable modes when observed

continuously, with each mode corresponding to a typical response pattern. A neuron

can display a diverse range of response patterns when observed over a sufficient length

of time, such as stable responses, irregular responses, regular-clustered responses, and

irregular-clustered responses. These different response dynamics are influenced by

various stimulation protocols, which can make it challenging to map concepts.
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Methods

Maintaining stable experimental conditions for recording from a single neuron over

long periods can be a daunting task. Achieving functional isolation of real neurons and

resolving dynamical instabilities are fundamental in investigating the core properties

of excitability in neurons. Thus, implementing paradigms that extend the duration of

single-neuron electrophysiological experiments under such conditions is crucial.

The experiment involves stimulating cells over extended periods with varying frequen-

cies and sequences of frequencies using intracellular current injection or photo-activation

protocols. A Python script is used to run simulations from a cell template noa and create

stimuli, and data is transferred between HOC and Python using NMODL to add new

biophysical mechanisms to NEURON. The code uses the python package in NEURON

to simulate the cell soma. It creates a stimulation vector using a numpy array and a

for loop in python, and then plays the stimulation using a chosen waveform. It also

records the voltage difference across the soma of the neuron. We utilised a layer 5

pyramidal template neuron from a Blue Brain project to design in silico experiments.

We compared two protocols: the intracellular current-injection protocol and the photo-

activation protocol over with varying frequencies. The photo-activation protocol uses

a light intensity of 1-10 mW/mm2, pulse duration of 1 ms, and period length of 24 ms
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+ 1 ms. The intracellular current-injection protocol uses a current amplitude of 2-3 nA,

pulse duration of 1-2 ms, and period length of 25 ms.

Results

By conducting an in silico experiment on a realistic neuron model, we anticipated that

we would detect comparable actions to those found in biological neurons. This would

uncover any potential consequences that manifest as a result of the model neuron’s

intrinsic dynamics. However, the latency development in both cases (electrical stimula-

tion and photo-stimulation protocols) was exhibiting very poor deterministic patterns

resembling the output of the simplest deterministic conductance-based models Sec. A.
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