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Abstract

In this thesis we study a surprising connection relating the second Painlevé transcendent, anharmonic
oscillators and degenerate orthogonal polynomials. This connection arose from the investigations into
the similarity of two sets of points in the complex plane. On one side is the set of zeroes of the Vorob’ev-
Yablonskii polynomials, that is, the poles of rational solutions of the second Painlevé transcendent

d2u

dt2
= 2u3 + tu+ α, α ∈ C,

where u = u(t) is a complex function of the complex variable t. On the other side is the values of t ∈ C
for which the spectrum of the quartic anharmonic oscillator in the complex domain

d2y

dz2
−
(
z4 + tz2 + 2Jz

)
= Λy,

has eigenvalues Λ of algebraic multiplicity at least 2 (under suitable boundary conditions). The simi-
larity between these two sets of points when α = n and J = n + 1, with n ∈ N, was first observed by
Shapiro and Tater in [ST22] and we give an explanation for this phenomenon.

The study of this problem naturally lead us to the notion of certain non-hermitian orthogonal poly-
nomial polynomials Pn satisfying an excess of orthogonality conditions

∫

Γ

Pn(z)z
keθ(z)dz = 0, k = n, n+ 1, . . . , n+ ℓ− 1,

where θ is such that θ′ is a rational functions as below and the contour Γ depends on θ.

These degenerate orthogonal polynomials are in one-to-one correspondence to the solutions of the
Stieltjes-Fekete equilibrium problem

∑

k ̸=j

1

zj − zk
=

A(z)

2B(z)
, θ′(z) = −A(z) +B′(z)

B(z)
,

where A,B are relatively prime polynomials. This generalises the famous result of Stieltjes, which
relates the zeroes of the classical orthogonal polynomials to the configuration of points on the line that
minimize a suitable potential with logarithmic interactions under an external field. We study the case
when the derivative of the external field is an arbitrary rational complex function. When the differential
of the external field is of degree 3 on the Riemann sphere our result reproduces Stieltjes original findings
and, for more than a century after the original result, provides a direct generalisation for higher degree.
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Chapter 1

Introduction and statement of results

1.1 Overview

This thesis consists of two distinct but related pieces of work. The first concerns the second Painlevé
equation, which famously appears in many applications in mathematical physics and integrable sys-
tems. In particular we look at the similarity between the poles t = a of its rational solutions and certain
degenerations of the Exactly Solvable spectrum (t,Λ) of a particular linear ODE with quasi-polynomial
solutions y(z) = pn(z)e

θ(z). This resemblance was first noticed by Shapiro and Tater back in 2014, but
only recently published in [ST22], when studying the quasi-exactly solvable spectrum of a quartic po-
tential. An illustrative picture of this similarity can be seen in Fig. 1.1. A priori, there is no connection
between these two sets of points, since one is coming from a linear ODE and another from a non-linear
ODE. Using the isomondromic representation of the Painlevé equations and the exact WKB method,
we are able to explain the similarity of these two sets of points in the large n limit.

Along the way we discover that the polynomials pn(z) appearing in the quasi-polynomial solution
satisfy an excess of orthogonality conditions, and are thus called degenerate orthogonal polynomials.
Furthermore, we show that the roots of this degenerate orthogonal polynomials satisfy certain equa-
tions analogous to the electrostatic equilibrium of the classical orthogonal polynomials. This is the
motivation for the second part of this thesis, where we introduce the concept of degenerate orthogo-
nal polynomials, and we show they solve a linear ODE with rational potential and their roots satisfy
the Stieltjes-Fekete equilibrium, thus generalising some of the well known properties of the classical
orthogonal polynomials.

The structure of this thesis is the following.

Chapter 2 contains a review of the isomonodromic theory of ODEs in the complex plane, and its
relation with the Painlevé equations.

Chapter 3 is an overview of the relevant results in the theory of orthogonal polynomials and the
exact WKB method which will be used to prove our main theorems.

Chapter 4 is dedicated to the proof of the aforementioned phenomenon first noticed by Shapiro
and Tater. The result of this chapter are taken from our preprint “Exactly solvable anharmonic oscillator,
degenerate orthogonal polynomials and Painlevé II”, written in collaboration with T. Grava and M. Bertola
[BCG22-1]

Chapter 5 introduces the notion of degenerate orthogonal polynomials in the complex plane and
provides necessary and sufficient conditions for their existence based on a electrostatic equilibrium
of their roots. The result of this chapter are taken from our preprint “The Stieltjes–Fekete problem and
degenerate orthogonal polynomials”, also written in collaboration with T. Grava and M. Bertola [BCG22-2]

We will now describe our results in more detail.

1



1.2 The Shapiro-Tater conjecture

The second Painlevé equation
d2u

dt2
= 2u3 + tu+ α (1.1)

admits rational solutions when α = n ∈ Z in the shape

un(t) =
d

dt
log

Yn−1(t)

Yn(t)
. (1.2)

Here Yj denotes the recursively defined polynomials

Yj+1(t)Yj−1(t) = tY 2
j (t)− 4

[
Y ′′
j (t)Yj(t)−

(
Y ′
j (t)

)2]
, j ≥ 1, (1.3)

with Y0(t) = 1 and Y1(t) = t. This was recognized by Vorob’ev and Yablonskii in two separate papers
[Vor65, Yab59], and for this reason the polynomials Yj are called Vorob’ev-Yablonskii polynomials. For
α = ±n there are n2 poles of the rational solution, of which n(n − 1)/2 correspond to poles residue +1
and the remaining n(n+1)/2 correspond to poles residue−1. The poles of negative and positive resiude
are the zeros Yn(t) and Yn−1(t) respectively. The roots of the Vorob’ev-Yablonski follow a “triangular”
pattern that has been studied extensively in the community of researchers of Painlevé equations [BB15,
BM12, BM14, BM15].

A seemingly unrelated problem is the study of the quasi-exactly solvable spectrum of the quartic
oscillator

d2y

dz2
− (z4 + tz2 + 2Jz + Λ)y = 0 (1.4)

y(sekπi/3)→ 0, s→ +∞, k = −1, 1, 3. (1.5)

In their paper [ST22] 1 Shapiro and Tater expressed the spectrum associated to quasi-polynomial solu-
tions y(z) = pn(z)e

θ(z) when J = n explicitly in terms of a determinant. Thus they were able to obtain
its branching locus in terms of a discriminant i.e. they obtained the points t ∈ C for which the spectrum
Λ is repeated. Upon inspection of this discriminant, they found a remarkable similarity between these
points and the roots of the Vorob’ev-Yablonskii polynomials which lead them to make the conjecture
which we now explain full detail.

The conjecture. We start by looking at the boundary value problem of the anharmonic oscillator
where t and J are in general complex parameters and z and y(z) are the complex independent and
dependent variables, respectively.

Consider quasi-polynomial solutions to (1.4), that it, solutions of the form

y(z) = p(z)eθ(z), θ(z) =
z3

3
+
tz

2
, (1.6)

where p(z) is a polynomial. We may sometimes use the notation θ(z; t) to emphasize the dependence of
θ on the parameter t. A simple substitution leads us to the following differential equation satisfied by
p(z):

d2p

dz2
+ 2

(
z2 +

t

2

)
dp

dz
− 2(J − 1)zp =

(
Λ− t2

4

)
p. (1.7)

Upon setting J = n + 1, one readily notices the ODE preserves the finite-dimensional linear space of
polynomials of degree at most n. Interpreting the left hand side of (1.7) as a linear operator Ln acting
on this space, we can find the associated spectrum by considering the matrix eigenvalue problem

Mn(t)v = λv (1.8)

1This anharmonic oscillator differs from the one in Shapiro and Tater in that it has three boundary conditions instead of two.
This ensure that all the solutions are quasi-polynomial, as will be shown Proposition 4.7.

2



Figure 1.1: Scaled roots of the Vorob’ev-Yablonsky polynomials Yn(n2/3s) in red, and roots of the dis-
criminant Dn(n

2/3s) in black, for n = 30. This particular scaling was conjectured by Shapiro and Tater
in [ST22].

where v = [v0, v1, . . . , vn]
⊤ is the vector of coefficients of the polynomial p and Mn(t) =

[
m

(i,j)
n

]n
i,j=0

is

the matrix associated to Ln with respect to the standard basis {1, z, z2, . . . , zn}. In other words Ln(z
j) =∑n

i=0m
(i,j)
n zi. A straight-forward computation shows thatMn(t) is a band matrix with zeroes along the

diagonal

Mn(t) =




0 −2n
t 0 −2(n− 1)
2 2t 0

6 3t 0
. . .

12
. . . . . . −4
. . . 0 −2

n(n− 1) nt 0




(1.9)

This way the associated spectrum can be computed from the characteristic polynomial

Cn(t, λ) := det
[
Mn(t)− λI

]
. (1.10)

We call this the Exactly Solvable spectrum.

In turn, the points t ∈ C where the spectrum becomes repeated can be obtained from the discrimi-
nant of Cn(t) with respect to λ

Dn(t) := DiscλCn(t, λ). (1.11)

In other words, the roots of Dn(t) = 0 are precisely the values of t such that the matrix Mn(t) has
eigenvalues of algebraic multiplicity greater than 1.

The conjecture made by Shapiro and Tater in [ST22] relates the zeroes of Dn(t) to the poles of rational
solutions un(t) of the second Painlevé equation 1.1, as in (2.36). They noticed that the zeroes of the

3



n Dn(t)
1 t

2 t3 +
27

8

3 t6 +
35

2
t3 − 243

4

4 t10 +
215

4
t7 +

89

8
t4 +

4084101

512
t

5 t15 +
255

2
t12 +

76211

32
t9 +

3730405

64
t6 − 8700637815

4096
t3 − 125005275

32

n Yn(t)
1 t
2 t3 + 4
3 t6 + 20t3 − 80
4 t10 + 60t7 + 11200t
5 t15 + 140t12 + 2800t9 + 78400t6 − 3136000t3 − 6272000

Table 1.2: The first five monic Vorob’ev–Yablonskii polynomials Yn(t) and discriminant polynomials
Dn(t) .

discriminant Dn(t) and the Vorob’ev-Yablonskii polynomials Yn(t) form a coinciding triangular pattern
in the complex plane, as can be observed in Fig. 1.1. This observation can be summarized in the next
loosely formulated conjecture.

Conjecture 1.1. The roots of the scaled discriminant Dn(n
2
3 s) in (1.11), and the roots of the scaled Vorob’ev-

Yablosnkii polynomials Yn(n
2
3 s) form two coinciding lattices as n→∞.

The evidence leading Shapiro and Tater to make their conjecture was mostly numerical, and partly
suggested by some estimates for the rate of growth of both sets of roots. However, there was a priori
no understanding why the two collection of points may be related to each other. The numerical picture
is so precise that one may be tempted to compare the polynomials for Yn and Dn; however a simple
computation of these using a computer algebra package shows that the coefficients of these polynomials
are not close to each other, as see in Table 1.2.

Strategy and main results. Our approach to this conjecture is contained in Chapter 4 and can be
summarised in four steps.

1. Finding the connection between Painlevé II 1.1 and the Shapiro-Tater (ST) problem (1.4). We
obtain an anharmonic oscillator equivalent to the Jimbo-Miwa (JM) Lax pair near the pole of the
transcendent, which turns out to be almost identical to the ST anharmonic oscillator.

2. Understanding the Stokes phenomenon of the quasi-polynomials solutions of the ST anharmonic
oscillator. We characterise the Stokes phenomenon of the Exactly Solvable spectrum, and we find
explicit integrals (4.87) of the quasi-polynomial solution which determine the degeneracy of the
ES spectrum.

3. Obtaining quantisation equations determining the location of both the zeroes of Vorob’ev-Yablonskii
polynomials (the JM case) and the Exactly Solvable spectrum (the ST case). This is done by match-
ing the Stokes phenomenon of both anharmonic oscillator using the exact WKB method. However,
in the ST case it is necessary to additionally impose the repeated eigenvalue condition (4.87) in
the WKB expansion in order to obtain leading order quantisation conditions.

4. Comparing the quantisation conditions. We show that both sets of points are determined by the
same geometry to order O

(
ℏ2
)

near the origin, and they match to order O (ℏ) in the bulk, thus
explaining their similarity.

4



We now explain each step in more detail.

STEP 1 is covered in section 4.1. We obtain an anharmonic oscillator which is equivalent to the
Jimbo-Miwa Lax pair (2.43) of Painlevé II 1.1 near one of its poles. This Lax pair is reduced to a scalar
ODE by means of the gauge transformation (4.5). The resulting ODE has a potential which is almost
identical to the ST potential, differing only in the linear term. This idea was originally used in [IN86]
to study certain real-valued solution of Painlevé II and [Mas10b, Mas10b] to study the poles of the
tritronqueé solution of Painlevé I. The key results in this section can summarised as follows:

Proposition 1.2. Fix α ∈ C and let t = a be a pole with residue −1 of the second Painlevé transcendent (PII)
function u(t) with parameter α. The Jimbo-Miwa Lax pair (2.43) is equivalent in the limit t → a to the the
following scalar ODE

d2y

dz2
− VJM(z; a, b, α)y = 0,

VJM(z; a, b, α) = z4 + az2 + (2α+ 1)z +

(
7a2

36
+ 10b

)
.

(1.12)

Furthermore, the Stokes phenomenon of this ODE is the same as the original Stokes phenomenon of the Jimbo-
Miwa Lax pair (2.43).

STEP 2 is contained in section 4.2. In this section we study the eigenvalue problem (1.4), (1.5) and we
compute explicit expression for the Stokes phenomenon corresponding to quasi-polynomial solutions.
Furthermore, we characterise the repeated ES spectrum (t,Λ)in terms of integrals of the square of the
quasi-polynomial. These results can be summarised as follows:

Theorem 1.3. The point (t,Λ) ∈ C2 is in the ES spectrum of the ST eigenvalue problem (1.4) with the boundary
conditions (1.5) and J = n + 1 ∈ N if and only if (1.4) admits a quasi-polynomial solution y(z) = p(z)eθ(z).
Furthermore, these quasi-polynomial solutions have the following Stokes phenomenon:

S2j = I, S2j+1 =

[
1 s2j+1

0 1

]
, (1.13)

where the s2j+1 are given explicitly in (4.33).

Finally, if (t,Λ) corresponds to the repeated ES spectrum, that is t ∈ C is such that Λ is a repeated eigenvalue,
then we have the vanishing of the following integrals (4.87):

∫ ∞3

∞1

(
pn(z)e

θ(z;t)
)2

dz = 0,

∫ ∞5

∞3

(
pn(z)e

θ(z;t)
)2

dz = 0. (1.14)

Here and below∞k indicates that the contour of integration extends to infinity along the direction
arg(z) = k π

3 .

Along the way, we also discover that y = pne
θ is a quasi-polynomial solution of (1.4) if and only if pn

is an orthogonal polynomials satisfying an excess of orthogonality conditions along a certain weighted
contour. See Corollary 4.14 for details. In Chapter 5 this result is generalised to the case when θ(z) has
a rational derivative. We also show that the roots of such degenerate orthogonal polynomials solve a
Stieltjes-Fekete equilibrium problem.

STEP 3 is contained in sections 4.3 and 4.4. We introduce the following scaled variables for the ST
and JM anharmonic oscillators:

Shapiro-Tater: ζ = ℏ1/3z, s = ℏ2/3t, E = ℏ4/3Λ, ℏ−1 = n+ 1,

Jimbo-Miwa: ζ = ℏ1/3z, s = ℏ2/3a, b̂ = ℏ4/3b, ℏ−1 = n+
1

2
.

(1.15)

The reason for the difference in scaling is that it yields the same WKB-type equation with small param-
eter ℏ and a n-independent quartic potential

ℏ2
d2y

dζ2
−Q(ζ; s, E)y = 0, Q(ζ; s, E) = ζ4 + sζ2 + 2ζ + E. (1.16)
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This puts both the ST and JM anharmonic oscillators on the same footing and allows us to use the
exact WKB method to compute asymptotic expressions for the Stokes phenomenon of both systems
simultaneously. This is done in Theorem 4.24. We then use these expressions to obtain leading order
quantisation conditions which implicitly determine the position of both sets of points in question. We
summarise the consequences of Theorem 4.27 (JM case) and the Theorems 4.28, 4.29 (ST case) as follows:

Theorem 1.4. Suppose that (a, b) ∈ C determine a rational solution of the Painlevé II equation1.1 with α = n ∈
N and Laurent expansion (4.3). Then in the scaled plane (1.15) they implicitly satisfy the following quantisation
equations to leading order O (ℏ):

(2n+ 1)

∫ τ0

τ1

√
Q(ζ+; s, E)dζ = − iπ − 2πik1,

(2n+ 1)

∫ τ0

τ2

√
Q(ζ+; s, E)dζ = − iπ − 2πik2,

(2n+ 1)

∫ τ0

τ3

√
Q(ζ+; s, E)dζ = − iπ − 2πik3,

(1.17)

where k1, k2, k3 are three positive integers such that k1 + k2 + k3 = n− 1.

Similarly, suppose (t,Λ) determine a point in the Exactly Solvable spectrum of the ST eigenvalue problem (1.4)
with Λ a repeated eigenvalue. Then in the scaled plane (1.15) they implicitly satisfy the following quantisation
equations to leading order O (ℏ):

2(n+ 1)

∫ τ0

τ1

√
Q(ζ+; s, E)dζ = log

( −1
1 + τ (s, E)

)
− 2iπ(m1 + 1)

2(n+ 1)

∫ τ0

τ2

√
Q(ζ+; s, E)dζ = log

(
−1− 1

τ (s, E)

)
− 2iπ(m2 + 1)

2(n+ 1)

∫ τ0

τ3

√
Q(ζ+; s, E)dζ = log (τ (s, E))− 2iπ(m3 + 1)

(1.18)

where m1,m2,m3 are positive integers such that m1 +m2 +m3 = n − 1 and τ (s, E) is the ratio of periods of
holomorphic differentials as expressed in (4.165).

Despite the similar nature of both results, the ST and JM cases are proved in a very different ways.

The JM case is proved in a simple manner by matching the Stokes data corresponding to the rational
solutions of Painlevé II 1.1 with the expressions for the Stokes matrices in Theorem 4.24. This Stokes
data has been studied before in [BM12, BM14, BM15].

The ST case is more complicated, since matching the Stokes data corresponding to quasi-polynomial
solution in Theorem (4.8) is not enough to determine quantisation equations for a point in the repeated
Exactly Solvable spectrum of the ST anharmonic oscillator. Instead, this only determines a one parame-
ter family of points in the ES spectrum (Type D), or quantisation equations that are later ruled out (Type
E). See Theorem 4.28. In order to obtain the desired quantisation conditions, we need to impose the
repeated eigenvalue condition (1.14), which we then estimate using the WKB method in Theorem 4.29.
This rules out the quantisation equations of Type E and together with the parametrisation (4.157), yield
the correct quantisation conditions as above.

STEP 4 is contained in section 4.5. We study the lattices given by both quantisation conditions. We
show that both of the lattices in the s-plane form a slowly modulated hexagonal lattice, see Proposi-
tion 4.31. These lattices are determined by essentially the same geometry, namely the periods of the
same holomorphic differentials (4.205). Then we show that both lattices match to order O

(
ℏ2
)

near the
origin in the (s, E)-plane, see Theorem 4.32. Together these results explain the similarity of the ST and
JM set of points as n→∞.

It is worth noting that in the Exactly Solvable spectrum the scaling we use differs slightly from the
one conjectured by Shapiro and Tater in [ST22]. We believe this difference to be inessential and we
justify this in Appendix B.

6



1.3 Degenerate orthogonal polynomials

The motivation for the introduction of degenerate orthogonal polynomials stems from the characterisation
they provide to the solutions of the Stieljes-Fekete equilibrium problem.

Given a smooth real-valued external potential Q(z) the problem consists of finding a critical configu-
ration of n points Zn = {z1, . . . , zn} ⊂ C, called the weighted Fekete points, providing a minimum to the
energy functional

E(z1, . . . , zn) = −
n∑

j,k=1
j ̸=k

log |zj − zk|+
n∑

j=1

Q(zj). (1.19)

These weighted Fekete points can be given an electrostatic interpretation: they are identical point-
charges in C that interact via a logarithmic potential under the influence of an external field Q. The
problem of finding the critical configurations of (1.19) is referred to as the Stieltjes-Fekete problem. For
an introduction to the weighted Fekete problem and its connection with logarithmic potentials in an
external field we refer the reader to [ST97].

Depending on the context under consideration, the external potential may satisfy suitable additional
assumptions and the Fekete points may belong to some fixed domain D. However for our purposes we
will be interested in the case where Q is a harmonic function such that

Q(z) = 2Re θ̂(z) (1.20)

where θ̂(z) is analytic, except for a finite number of singularity and branch cuts and has a rational
derivative θ̂′(z). If, under suitable assumptions, a configuration Zn = {z1, . . . , zn} forms an equilibrium
configuration, it then realises the zero gradient of the energy functional E , from which we obtain the
Stieltjes-Bethe equations:

n∑

j,k=1
j ̸=k

1

zj − zk
= ∂zQ(zj) =

A(zj)

2B(zj)
. (1.21)

Here A,B are two relatively prime polynomials (with B monic) related to the fact that θ̂ has a rational
derivative, and derivative ∂z = 1

2

(
∂
∂x − i ∂

∂y

)
for the complex variable z = x+ iy.

It is worth noting that specific choices of θ̂(z) and the domain D are associated with the equilibrium
satisfied by the zeroes of the classical orthogonal polynomials:

• Hermite: θ̂(z) = z2 and D = R;

• Laguerre: θ̂(z) = z − (α+ 1) log z, α > −1, and D = (0,∞);

• Jacobi: θ̂(z) = −(α+ 1) log(1− z)− (β + 1) log(1 + z), α, β > −1, and D = (−1, 1).

The electrostatic interpretation of the zeroes of the classical orthogonal polynomials is a classical
result dating back to Stieltjes, although it was also studied by Bochner, Heine, Van Vleck, and Polya.
For a review of this classical result we refer the reader to [MMM07].

Equations of similar nature as (1.21) are also sometimes referred to as Stieltjes-Bethe equations due
of their appearance in Bethe-Ansatz for spin-chains [Gau76, HW95] and can also be considered on
Riemann surfaces of higher genus [Kor18].

In this thesis we extend these results and show that the criticality condition of the energy functional
(1.19) also applies to a larger family of orthogonal polynomials. Our results answer some of the ques-
tions posed in the excellent review [MMM07] around this circle of ideas, such as:

• Are there generalizations of electrostatic models to other families of polynomials?

• Why necessarily the global minimum of the energy E should be considered? Which other types
of equilibria described above could be linked to the zeros of the polynomials?
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• What is the appropriate model for the complex zeros (when they exist)?

In Chapter 5 we address and answer precisely the above three questions and the result can be de-
scribed concisely by the following statement:

There is a one-to-one correspondence between the solutions of the Stieltjes–Bethe equations (1.21) and the maxi-
mally degenerate orthogonal polynomials of degree n for a semiclassical moment functional of type (A,B).

In order to understand what this means and formulate our main Theorem 1.8 below, we first need
to define a some of the notions. We start with a semiclassical moment functional, which is a particular case
of a moment functional explained in section 3.1

Definition 1.5. A moment functional M : C[z] → C is called semiclassical if there exist two relatively
prime polynomials A(z), B(z) of degree a, b, respectively such that

M
[
A(z)p(z)

]
=M

[
B(z)p′(z)

]
, ∀p(z) ∈ C[z]. (1.22)

Furthermore, we say that such a semiclassical functionalM is of type (A,B).

The concept of semiclassical moment functional originated in [Mar87, MR98], see also the previously
mentioned review [MMM07]. The main result of [IMR91, MR98, Mar87] is that a semiclassical moment
functionalM can be represented by the moment functionalMΓ,θ defined by the expression

MΓ,θ : C[z]→ C, (1.23)

zj 7→ MΓ,θ[z
j ] = µj =

∫

Γ

zjeθ(z)dz, (1.24)

where the symbol θ of the exponential weight satisfies

θ′(z) = −A(z) +B′(z)
B(z)

, (1.25)

and the integral is taken over a “weighted contour” Γ =
∑d

j=1 sjγj defined so that the integral over Γ
is ∫

Γ

f(z)dz :=

d∑

j=1

sj

∫

γj

f(z)dz. (1.26)

The weighted contour Γ is expressed in terms of contours γj in the complex plane that extend from a
zero of B to another (or to infinity) described in Section 5.2.1; the complex parameters sj , j = 1, . . . d
parametrize the space of semiclassical moment functionals of a given type (A,B).

The maximum number d of contours γj is the degree of the pole divisor of θ′(z)dz on the Riemann
surface minus 2. In keeping the notation as simple as possible, we omit the explicit dependence of the
moment functional on the Γ and θ and we will simply write M instead of MΓ,θ where the choice is
obvious but implicit.

Given a semiclassical moment functionalM, the corresponding orthogonal polynomials, when they
exist, are a sequence {Pj(z)}j∈N of polynomials, each of degree at most j, satisfying

M
[
Pj(z)Pk(z)

]
= δjkhk, j, k ∈ N, (1.27)

for some constants hj ∈ C. In this manner we can obtain the classical orthogonal polynomials from the
semiclassical moment functionals shown in Table 1.3.

Now we introduce the concept of degenerate orthogonal polynomials.

Definition 1.6. A polynomial Pn of degree n is called ℓ–degenerate orthogonal, with ℓ = 0, 1, 2, . . . , if
it satisfies the following excess of orthogonality conditions

M
[
Pn(z)z

k
]
=

d∑

j=1

sj

∫

γj

Pn(z)z
keθ(z)dz = 0, k = 0, 1 . . . , n+ ℓ− 1. (1.28)

The polynomial Pn(z), is called maximally degenerate if ℓ = d− 1 with d = max{degA,degB − 1}.
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Name Symbol θ(z) Type (A,B) Contour Γ

Jacobi α log(1− z) + β log(1 + z) −
(
β + α+ 2)z − (α− β), z2 − 1

)
[−1, 1]

Hermite −z2 (−2z, 1) R

Laguerre −z + α log z (z − α− 1, z) R+

Table 1.3: The classical orthogonal polynomials (Jacobi, Hermite, Laguerre) can be obtained from a
semi-classical moment functional MΓ,θ of type (A,B) with symbol θ(x) and contour Γ as indicated.
The common feature is that dθ = θ′dx is a differential on the Riemann sphere P1 with total degree of
poles = 3.

Remark 1.7 (Connection to Painlevé equations). These types of moment functionals were analyzed in
[BEH06] where it was shown that the Hankel determinant of the moments, when considered as function
of the coefficients of A,B, are “isomonodromic tau functions” in the sense of [JMU-I]. In particular this
means that specializing the symbol θ one can connect the theory of orthogonal polynomials to certain
solutions of the Painlevé equations II,. . . , VI, as well as many integrable generalizations thereof. In this
perspective the maximal degeneration of a polynomial implies that the tau-function must vanish and
hence, in the cases that overlap with the theory of Painlevé transcendents, we are considering poles of
the corresponding transcendent.

For a given type of moment functional and given degree n ∈ N, we consider the conditions of
degeneracy as (homogeneous) constraints on the parameters s1, . . . , sd. For this reason in general we
expect a maximal degeneracy of d−1. If d = 1 then any orthogonal polynomial is maximally degenerate
(i.e. 0–degenerate) by default. This applies to all the classical moment functionals giving rise to the
classical orthogonal polynomials (see Table 1).

We now have all the ingredients to formulate our main theorem (modulo some technical assump-
tions that will be treated later).

Theorem 1.8. Let Z = {z1, . . . , zn} be a critical configuration of weighted Fekete points satisfying the Stieltjes-
Bethe equilibrium equations

∑

k ̸=j

1

zj − zk
=

A(zj)

2B(zj)
, j = 1, . . . , n, (1.29)

where A(z), B(z) are relatively prime arbitrary polynomials with B monic. Then

(1) the polynomial Pn(z) =
∏n

j=1(z − zj) is a (non-hermitean) maximally degenerate orthogonal polynomial
for a semiclassical moment functionalM of type (A,B).

(2) The quasi-polynomial y(z) = Pn(z)
√
B(z)e

1
2 θ(z), with

θ′(z) = −A(z) +B′(z)
B(z)

(1.30)

satisfies the differential equation
y(z)′′ − V (z)y(z) = 0 (1.31)

where the function V is a rational function of the form

V (z) =
1

2
θ′′ +

1

4
(θ′)2 +

B′′

2B
−
(
B′

2B

)2

+
B′

2B
θ′ +

Q

B
, (1.32)

where Q is a polynomial of degree degQ ≤ d− 1, see formula (5.58). Equivalently Pn solves

B(z)P ′′
n −A(z)P ′

n −Q(z)Pn(z) = 0. (1.33)
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Vice versa, if Pn is a maximally degenerate orthogonal polynomial of degree n for a semiclassical moment func-
tionalM of type (A,B) then its zeroes zj satisfy (1.29) and the quasi-polynomial Pn(z)

√
B(z)eθ(z)/2 satisfies

an ODE as in (1.31) with an appropriate rational function V .
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Chapter 2

Painlevé equations and Isomonodromic
deformations

2.1 Monodromy theory

In this section we review the monodromy theory of linear ordinary differential equations (ODEs) in the
complex plane. We mainly follow the exposition of [FIKN06]; for more details and proofs we refer the
reader to the aforementioned book and the references therein.

2.1.1 The local picture

Consider a N × N matrix-valued rational differential A(λ)dλ in the Riemann sphere λ ∈ CP1. We’re
interested in the solutions to the linear system

dΦ

dλ
= A(λ)Φ. (2.1)

In a neighbourhood of a point λ0 ∈ CP1 the behaviour the solutions Φ of (2.1) is determined by the type
of singular point at λ = λ0 of the matrix differential form A(λ)dλ. There are three distinct possibilities
depending whether λ0 is a:

1. Regular point. The matrix differential A(λ)dλ is holomorphic at λ0.

2. Fuchsian point. The matrix differential A(λ)dλ has a simple pole at λ0.

3. Non-Fuchsian point. The matrix differential A(λ)dλ has a multiple pole at λ0.

In each of these cases the condition of being holomorphic or having a pole at λ means that in a local
parameter near λ0 ( i.e. ζ = λ− λ0 if λ ∈ C is in the finite complex plane or ζ = 1/λ if λ0 = ∞) we can
write the following local representation

A(λ)dλ =

∞∑

j=k

Ajζ
jdζ, Ak ̸= 0, λ ∈ Dλ0 (2.2)

where Dλ0 is a small disk centered (punctured in the case of a singularity) at λ0 and with k ≥ 0 if λ0 in
the regular case, k = −1 in the Fuchsian case, and k ≤ −2 in the non-Fuchsian case. In the non-Fuchsian
case we call the positive integer integer r = −(k+1) the Poincaré rank of the singularity. In other words,
if λ = λ0 is a pole of order 2 then we obtain a non-Fuchsian singularity of Poincaré rank r = 1, if the
pole has order 3 we obtain a singularity of Poincaré rank r = 2, etc.

The unassuming reader will not notice anything uncomfortable with this explanation. However the
experienced one will be certain to point out that the definition of the coefficients Aj in (2.2) is in conflict
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with the notation used in [FIKN06]. We will of course follow the expedient convention, since there is a
good reason for it that will become apparent in the following. However we choose to leave the equation
(2.2) in print as a stepping stone for the more naïve and easily confused readers such as my previous
self. In fact the conventional representation near a singular point λ0 is

A(λ)dλ =

∞∑

j=−r−1

Aj+1ζ
jdζ, Ak ̸= 0, λ ∈ Dλ0

\ {λ0}, r = 0, 1, 2, . . . (2.3)

It is clear that if r = 0 we are in the Fuchsian case, and if r ≥ 1 we’re in the non-Fuchsian case. The
convention is such that the r+1 polar coefficients are labelled from 0 to r i.e. Aj , j = 0,−1, . . . ,−(r+1).

The behaviour of solutions Φ(λ) locally near a point λ0 is classified in the following theorems, de-
pending whether λ0 is a regular, Fuchsian or non-Fuchsian point. The proofs can be found in [FIKN06].

Theorem 2.1 (Regular case). Let A(λ)dλ be N ×N matrix-valued holomorphic differential form in the neigh-
bourhood of the point λ0 ∈ CP1, and let Φ0 be a constant N × N matrix. Then there exists a unique solution
Φ(λ) of the equation 2.1 which is holomorphic in the same neighbourhood and such that Φ(λ0) = Φ0

For the Fuchsian case we make the additional assumption that the leading coefficient A0 in the
expansion (2.3) is diagonalisable and non-resonant, namely we can write

A0 = PΛ0P
−1, detP ̸= 0, (2.4)

where Λ0 is a diagonal matrix with (possibly repeated) eigenvalues whose difference is not a (non-zero)
integer. The following statement can be adapted to the resonant and non-diagonalisable cases. See
[Was87, Sib90] for further details.

Theorem 2.2 (Fuchsian case). Let A(λ)dλ be N × N matrix-valued differential form in a punctured neigh-
bourhood of singularity λ0 ∈ CP1 of Fuchsian type (i.e. simple pole). Suppose that the leading coefficient A0

in the Laurent expansion (2.3) is diagonalisable as in (2.4) and non-resonant. Then the linear ODE 2.1 has a
fundamental solution in the punctured neighbourhood of λ0 of the form

Φ(λ) = P


I+

∞∑

j=1

Φjζ
j


 ζΛ0 . (2.5)

where the power series is convergent and ζ is a local variable near λ0.

We shall call the matrix Λ0 the formal monodromy exponents.

In the case of a non-Fuchsian singularity, also known as an irregular singularity, we make the follow-
ing assumption: the leading coefficient coefficient A−r in (2.3) is diagonalisable with distinct eigenval-
ues, namely

A−r = PΛ−rP
−1, detP ̸= 0, Λ−r = diag(d1, . . . , dN ) (2.6)

and dj ̸= di whenever i ̸= j.

Theorem 2.3 (non-Fuchsian case). Let A(λ)dλ be N × N matrix-valued differential form in a punctured
neighbourhood of a non-Fuchsian singularity λ0 ∈ CP1 of Poincaré rank r (i.e. pole of order r+1). Suppose that
the leading coefficient A−r in the Laurent expansion (2.3) is diagonalisable as in (2.6) with distinct eigenvalues.
Then the linear ODE (2.1) has formal fundamental solution in the punctured neighbourhood of λ0 of the form

Φformal(λ) = P


I+

∞∑

j=1

Φjζ
j


 exp

(
Λ−r

−r ζ
−r + · · ·+ Λ−1

−1 + Λ0 log ζ

)
(2.7)

where all the matrices Λ−j , j = 0, 1, . . . , r are all diagonal. Furthermore, the coefficients Φj and the exponents
Λj can all be determined recursively as polynomials in the coefficients Aj in the expansion (2.3).

12



The series solution (2.7) is called formal because it is not convergent in general. This is the main
difference between the Fuchsian and non-Fuchsian case. To understand the connection between the
formal solutions and actual solutions in the non-Fuchsian case we need to introduce the Stokes sectors.

Fix a pair of eigenvalues αj , αi of the leading coefficient matrix A−r in the expansion (2.3). Define
the following 2r rays emanating from the origin in the ζ-plane:

l(i,j)n =

{
ζ ∈ C : |ζ| < ρ, arg ζ =

1

r
arg (αj − αi) +

π

r

(
n+

1

2

)}
, n = 0, 1, . . . , 2r − 1. (2.8)

The rays l(i,j)n are called Stokes rays. We will say a sector Ω around the point λ0 is a Stokes sector if for
each pair (i, j) with i < j it contains exactly one Stokes ray from the family {l(i,j)n }2r−1

n=0 .

This definition is rather clunky and obtuse, however, it is the correct one since it ensures that in each
Stokes sector the fundamental solution Φformal has a mixture of dominance and recessiveness in each
sector. Fortunately for us, there is a canonical way of choosing Stokes sectors [FIKN06]. Indeed, any
sector of opening π/r + δ, for a sufficiently small δ, is a Stokes sector. Let us then define the following
collection of 2r + 1 sectors {Ωk}2r+1

k=0 covering the punctured disk Dλ0 \ λ0:

Ωk := ei
π
r kΩ⋆, k = 0, 1, . . . , 2r,

Ω⋆ :=
{
ζ ∈ C : 0 < |ζ| < ρ, θ < arg ζ < θ +

π

r
+ δ
} (2.9)

where θ is arbitrary and ρ, δ are sufficiently small. Note that Ω2r = Ω0 = Ω⋆. We are now ready to
formulate the following foundational theorem.

Theorem 2.4. Let A(λ)dλ be N × N matrix-valued differential form in a punctured neighbourhood of a non-
Fuchsian singularity λ0 ∈ CP1 of Poincaré rank r. Suppose that the leading coefficientA−r in the Laurent expan-
sion (2.3) is diagonalisable as in (2.6) with distinct eigenvalues. Additionally suppose that Ωk, k = 0, 1, . . . , 2r
are canonical Stokes sectors at the singular point λ0. Then there exist unique solutions Φk of the linear ODE (2.1)
which are asymptotic 1 to the formal solution Φformal in each Stokes sector Ωk:

Φk(λ) ≃ Φformal(λ), k = 0, 1, . . . , 2r

λ→ λ0, λ ∈ Ωk

(2.10)

where Φformal(λ) is given in (2.7) and the branch of the logarithm in that formula is chosen appropriately. The
solutions Φk, k = 0, . . . , 2r are termed the canonical solutions.

We are now ready to understand the following key concepts.

Characteristic exponent matrices. Owing to Theorem 2.2, the local solutions of the system (2.1) near a
Fuchsian singular point are multivalued due to the presence of the formal monodromy factor

ζΛ0 := eΛ0 log(ζ). (2.11)

Suppose we fix a determination of branch cuts. If we perform a loop 2 starting at a point λ⋆ and going
around the singular point λ0, it is clear that the multivalued function (2.11) attains an extra factor of
e2πiΛ0 . We denote this by

ζΛ0 ⇝
γ
ζΛ0e2πiΛ0 (2.12)

where γ is a closed contour starting and ending at λ⋆
Stokes phenomenon. Note that Φk are in general different solution all with the same asymptotics in dif-
ferent sectors. From this result it is straight forward to understand the concept of Stokes phenomenon.
Around each non-Fuchsian singular point λ0 there exist 2r + 1 canonical solutions to (2.1). Any two
solutions of the same linear ODE are related by a invertible linear transformation, so that we can write

Φk+1(λ) = Φk(λ)Sk, det Sk ̸= 0, k = 0, . . . , 2r − 1. (2.13)

1in the sense of Poincaré.
2a.k.a. analytic continuation along a closed contour
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These matrices are called Stokes matrices and their non-trivial entries are called Stokes parameters or
multipliers. These matrices can be shown to be upper or lower triangular with ones along the diagonal.
Furthermore, these matrices together with the datum of exponents Λ−r, r = 0, . . . , r completely deter-
mine the linear system (2.1) up to local holomorphic gauge equivalent, see [FIKN06, Thm 1.5] for more
details. It is worth noting that although Ω0 = Ω2r, in general the canonical solutions Φ0(λ) ̸= Φ2r(λ).
This is due to the logarithm in the formal solution (2.7), and so we obtain

Φ2r(λ) = Φ0e
2πiΛ0 . (2.14)

Furthermore, around an irregular singular point λ0 the Stokes matrices are related by

S0S1 . . . S2r−1 = e2πiΛ0 (2.15)

where Λ0 is the formal monodromy exponent.

2.1.2 The global picture

In this section we consider the global behaviour of solutions of the linear ODE (2.1). The following
theorem will be essential for what follows.

Theorem 2.5 (Monodromy theorem). Consider the singular points aj ∈ CP1, j = 1, . . . ,m of the coefficient
matrix A(λ) of the linear system (2.1), and suppose that γ is a contour in CP1 avoiding all the singular points

γ : [0, 1]→ CP1 \ {a1, . . . , am} . (2.16)

with endpoints λ0 = γ(0) and λ1 = γ(1). Then any germ of a solution Φ(λ) at the (regular) point λ0 can be
analytically continued along the contour γ to another local solution at the point λ1. Furthermore, this analytic
continuation depends only on the homotopy class (with fixed endpoint at λ0 and λ1) of the contour γ.

This theorem gives us a rather disappointing answer to the problem of obtaining global solutions
of the linear ODE (2.1): take any local solution and “simply” perform analytic continuation! This is
however more easily said than done, for performing analytic continuation is not as straight forward as
one may hope. 3 This approach however allows us to define the key theoretical concept of monodromy
representation.

Take the singular points aj ∈ CP1, j = 1, . . . ,m of the coefficient matrix A(λ) of the linear system
(2.1) and fix a base point λ⋆ ∈ CP1 \ {a1, . . . , am}. Consider the fundamental group of the punctured
Riemann sphere, namely the homotopy classes of loops starting at a⋆ and avoiding the singular points

π1 =

{
[γ] :

γ : [0, 1]→ CP1 \ {a1, . . . , am, }
γ(0) = γ(1) = λ⋆

}
. (2.17)

Fix a solution Φ(λ) with initial condition Φ(λ⋆) = Φ0. The analytic continuation of this solution along a
loop γ ∈ π1 yields another solution Φγ(λ) differing from the initial solution Φ(λ) by an invertible linear
transformation

Φγ(λ) = Φ(λ)Mγ . (2.18)

We shall call Mγ the monodromy matrix. It is clear from the Monodromy Theorem 2.5 that Mγ only
depends on the homotopy class of the contour γ. This defines a representation of the fundamental
group of the punctured Riemann sphere

M : π1

(
CP11 \ {a1, . . . , am}

)
→ GLN(C),

γ 7→Mγ .
(2.19)

3Ask any student analytic number theory how to derive the functional equation of the Riemann zeta function.
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It is possible to relate the monodromy matrices, Stokes matrices, characteristic exponents in the follow-
ing fashion

M1M2 . . .Mm = I, (2.20a)

E−1
j e2πiΛ

(j)
0 Ej =Mj , (if aj is Fuchsian sing.), (2.20b)

E−1
j e2πiΛ

(j)
0

(
S(j)0 . . . S(j)2rj−1

)−1

Ej =Mj (if aj is a non-Fuchsian sing. of Poincaré rank rj) (2.20c)

where througout j = 1, . . . ,m and Mj is the monodromy matrix corresponding to a loop around aj , S(j)k

with k = 0, . . . , 2rj−1 is a Stokes matrix of the irregular singular point aj of Poincaré rank rj and Λ
(j)
0 is

the formal monodromy matrix of the singular point aj . Furthermore Ej is the connection matrix relating
solutions at the base point λ⋆ to solutions near the singular points aj . For more details see [FIKN06, Ch.
2.0.3, 2.0.4].

It is worth noting that the characteristic exponents, monodromy matrices and Stokes matrices are
highly transcendental quantities and they are only known explicitly in very specific cases such as the
hypergeometric case.

2.1.3 The inverse monodromy problem

We shall now describe what is known as the extended monodromy data, which describes the linear system
globally. Suppose that the linear system (2.1) has m singularities aj , where p of them are Fuchsian for
j = 1, . . . , p ≤ m and m− p of them are non-Fuchsian for j = p+ 1, . . . ,m.

We now collect all the important matrices that we’ve considered in the previous section. For the
Fuchsian points corresponding to j = 1, . . . , p take the characteristic exponents Λ

(j)
0 as defined in (2.4).

For the non-Fuchsian points corresponding to j = p + 1, . . . ,m, each of them with Poincaré rank rj ,
take the “extended” characteristic exponents Λ

(j)
rj , . . . ,Λ

(j)
0 , as well as the associated Stokes matrices

S(j)0 , . . . ,S(j)2rj−1. So far all these matrices provide only local information. For this reason we also need
to consider, regardless of the nature of the singular point, the connection matrices Ej which give rise
to the global monodromy matrices, as defined in formulas (2.20a)–(2.20c). Together with the location
of the poles, this datum forms the so called extended monodromy data of the rational coefficient A(λ),
and we denote it

M :=





Singular
points
aj

(j=1,...,m)

,

Formal monodromy
of Fuchsian pts.

Λ
(j)
0

(j=1,...,p)

,

Extended formal monodromy
of non-Fuchsian pts.

Λ
(j)
rj , . . . ,Λ

(j)
0

(j=p+1,...,m)

,

Stokes matrices of
non-Fuchsian pts.

S(j)0 , . . . ,S(j)2rj−1

(j=p+1,...,m)

,

Connection
matrices
Ej

(j=1,...,m)




.

(2.21)
It is shown in [FIKN06, Ch.2.0.5] that the extended monodromy data M uniquely determines the linear
ODE (2.1) with rational coefficient A(λ) with a fixed number m of points of given multiplicities rj . In
other words, the map A(λ) 7→M is one to one.

This map however, is highly transcendental and there is no easy way of realising it. This setting is
also highly rigid since the bijective nature leaves no room for deformations. For this reason, we consider
a more unconstrained version of the extended monodromy data M known as the essential monodromy
data:

m :=





Formal monodromy
of singular pts.

Λ
(j)
0

(j=1,...,m)

,

Stokes matrices
of non-Fuchsian pts.

S(j)0 , . . . ,S(j)2rj−1

(j=p+1,...,m)

,

Connection
matrices
Ej

(j=1,...,m)





(2.22)

Thus the monodromy theory of linear ODEs in the complex domain with rational coefficients attempts
to understand the direct monodromy map

A(λ) 7−→ m (2.23)

and the inverse monodromy map
M 7−→ A(λ). (2.24)
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The inverse monodromy problem, also known as the Riemann-Hilbert problem, has a long and illus-
trious history. It started as one of Hilbert’s 21st problem [Hil00], consisting of proving the existence
of a linear system with Fuchsian singularities at prescribed locations with prescribed monodromy. In
Hilbert’s own words (or rather the words of Hilbert’s translator) [Hil02]:

“ In the theory of linear differential equations with one independent variable z, I wish to indicate an
important problem, one which very likely Riemann himself may have had in mind. This problem is
as follows: to show that there always exists a linear differential equation of the Fuchsian class, with
given singular points and monodromic group. The problem requires the production of n functions of
the variable z, regular throughout the complex z plane except at the given singular points ; at these
points the functions may become infinite of only finite order, and when z describes circuits about
these points the functions shall undergo the prescribed linear substitutions. The existence of such
differential equations has been shown to be probable by counting the constants, but the rigorous proof
has been obtained up to this time only in the particular cases [. . . ]. The theory of linear differential
equations would evidently have a more finished appearance if the problem here sketched could be
disposed of by some perfectly general method. ”

The Riemann-Hilbert problem was initially thought to be solved by J. Plemelj in 1908, but a counterex-
ample of was found. This original setting has been generalised Birkhoff to the case of a linear system
with arbitrary singularities (i.e. admitting non-Fuchsian points) and prescribed Stokes phenomena, and
depending on the specific formulation has been resolved by Bolibruch [AB94].

2.1.4 Isomonodromic deformations

Since the essential monodromy data (2.22) does not uniquely determine the linear system (2.1) one may
wonder what kind of perturbations keep the essential monodromy data m intact. This is what is known
as isomonodromic deformations.

Consider a family linear ODE with rational coefficients

∂Φ

∂λ
= A(λ, t)Φ (2.25)

parametrised by t = (t1, . . . , tq) ∈ Cq , where A(λ, t) is rational in t and holomorphic in t.

Definition 2.6 (Isomonodromic deformation). Suppose that the holomorphic family of linear ODEs
with rational coefficients (2.25) satisfies the conditions:

(I) The number m of poles aj , j = 1, . . . ,m is independent of the deformation parameters t. Addi-
tionally, as t varies the poles do not become arbitrarily close.

(II) The spectrum of the leading coefficient A−rj of the Laurent expansion (2.3) of the coefficient ma-
trix A(λ)dλ near the singular point aj is independent of t and satisfies the usual conditions for
Fuchsian and non-Fuchsian points.

(III) At each irregular singular point aj(t) with Poincaré rank rj ≥ 1, the set of Stokes sectors can be
chosen unambiguously so that it is t independent and invariant under the map λ 7→ λ− aj(t).

(IV) Canonical solutions (2.5) near Fuchsian points are holomorphic in t and and the asymptotics of
canonical solutions (2.10) near irregular points holds uniformly in t.

If the essential monodromy data m =
{
Λj
0,S

j
k, Ej

}
is independent of t then we say the linear system (2.25)

is isomonodromic.

Assuming that one of the poles is always at infinity (i.e. am(t) = ∞) and other additional technical
assumptions (see [FIKN06, p.134]) it is possible to describe isomonodromic deformations in terms of
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nonlinear differential equations. This was first done in [JMU-I] who considered the differential form

Θ(λ, t) = dΦ · Φ−1 =




q∑

j=1

∂Φ

∂tj
dtj


Φ−1. (2.26)

Due to the isomonodromic property of the system, this differential 1-form is a single-valued in the
punctured Riemann sphere CP1 \ {a1, . . . , am}. In fact, more can be stated about this differential form.

Theorem 2.7. The differential form Θ(λ, t) is rational in λ with poles at a1, . . . , am−1, am = ∞ with the same
Poincaré rank rj of the corresponding poles of A(λ)dλ. Furthermore Θ(λ, t) is determined by the coefficients of
the partial fraction decomposition of the rational function A(λ):

Θ(λ, t) = Θ(λ; {A(j)
k }, {aj}) (2.27)

where

A(λ, t) = A(∞)(λ) +

m−1∑

j=1

A(j)(λ), (2.28)

A(j)(λ) =

rj+1∑

k=1

A
(j)
−k+1

(λ− aj)k
, (2.29)

A(∞) =





−
r∞−1∑

k=0

A
(∞)
−k−1λ

k if r∞ > 0,

0 if r∞ = 0,

(2.30)

where the A(j)
k coincide with the Laurent expansion in (2.3).

The determination of these coefficients A(j)
k and consequently of the differential form Θ(λ, t) can be

done recursively and explicitly, see [FIKN06, p.135] for more details. The importance of this differential
is that it allows us to write an auxiliary linear system in the parameters t, so that

dΦ = Θ(λ, t)Φ, i.e.
∂Φ

∂tj
= Θj(λ, t)Φ (j = 1, . . . , q) (2.31)

where we use Θ(λ, t) =
∑

j Θj(λ, t)dtj . Therefore the function Φ (2.25) satisfies the overdetermined
linear system





∂Φ

∂λ
= A(λ, t)Φ,

dΦ = Θ(λ, t)Φ.
i.e.





∂Φ

∂λ
= A(λ, t)Φ,

∂Φ

∂tj
= Θj(λ, t)Φ, (j = 1, . . . , q)

(2.32)

The imposing the condition of equality of mixed partial derivatives we obtain the following compatibility
conditions

dA− ∂Θ

∂λ
+ [A,Θ] = 0, (2.33)

which hold identically in Λ. Equating both sides of the equations yields a system of non-linear differ-
ential equations in t for the matrix coefficient A(j)

k (t). In their seminal papers Jimbo, Miwa and Ueno
realised all of the Painlevé transcendents in this manner: as the compatibility condition of an isomon-
odromic system. Furthermore, they showed that the compatibility condition 2.33 is not only necessary,
but also sufficient to ensure isomonodromy. See the original papers [JMU-I, JM-II, JM-III] or [FIKN06]
for a more comprehensive approach.
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2.2 Painlevé equations

The six Painlevé transcendents are non-linear second order ordinary differential equations (ODEs) sat-
isfying an equation

d2u

dt2
= F

(
t, u,

du

dt

)
(2.34)

where F is meromorphic in t and rational in u, ut. They were introduced at the turn of the century
by Paul Painlevé and his followers as a result of the classification problem of second order ODEs 4

satisfying the

Painlevé property. All the solutions are free from movable critical points, i.e. the locations of branch points
and essential singularities does not depend on initial conditions.

This property is enjoyed by all linear ODEs, however even the simplest non-linear differential equa-
tion yt = (2y)−1, which has solution y(t) = (t + c)1/2, fails the Painlevé property movable since it
has a branch point at t = c. This is critical point is movable since it depends on the initial conditions
y(0) = c1/2. The motivation for this classification problem is now clear. Any solutions of a Painlevé
transcendent can be analytically continued to the universal covering the punctured Riemann sphere,
which is determined uniquely by the equation. Therefore they bridge the gap between linear and non-
linear equations, and they provide important examples of non-linear special functions, as opposed to
the classical special functions (Airy, Bessel, Hypergeometric, etc.) which are all given in terms of linear
ODEs.

The following are the canonical form of the six Painlevé equations:

u′′ = 6u2 + t, (PI)

u′′ = 2u3 + tu+ α, (PII)

u′′ =
1

u
(u′)2 − u′

t
+

1

t
(αu2 + β) + γu3 +

δ

u
, (PIII)

u′′ =
1

2u
(u′)2 +

3

2
u3 + 4tu2 + 2(t2 − α)u+

β

u
, (PIV)

u′′ =
3u− 1

2u(u− 1)
(u′)2 − u′

t
+

(u− 1)2

t2

(
αu+

β

u

)
+
γu

t
+
δu(u+ 1)

u− 1
, (PV)

u′′ =
1

2

(
1

u
+

1

u− 1
+

1

u− t

)
(u′)2 −

(
1

t
+

1

t− 1
+

1

u− t

)
u′+

+
u(u− 1)(u− t)
t2(t− 1)2

(
α+ β

t

u2
+ γ

t− 1

(u− 1)2
+ δ

t(t− 1)

(u− t)2
)
.

(PVI)

where ′ = d
dt and α, β, γ, δ are arbitrary complex parameters.

2.2.1 Special solutions of PII

In general Painlevé equations cannot be solved explicitly, this is why they are often called Painlevé
transcendents. However, for special choice of the parameters it is possible to obtain explicit solutions
that can be written explicitly in terms of previously known special functions. To exemplify this point,
we will focus on the special solutions of the second Painlevé transcendent.

It was recognised by Vorob’ev and Yablonskii in [Yab59, Vor65] that the PII equation admits rational
solutions when α = n ∈ Z. They are explicitly given in terms of the homonymous polynomials defined
in (1.3)

A priori the recursion only determines a rational function of t. However it can be shown, as the name
suggests, that Yn(t) is in fact a polynomial and additionally that the polynomials Yn(t) have degree
n(n + 1)/2. It is worth noting that the arrangement of the roots of Yn(t) follows a rather symmetric
triangular pattern, as can be seen in Fig. 2.1. Surprisingly, these polynomials also admit a representation

4The classification of first order ODEs with the aforementioned property was established by Poincaré and L. Fuchs who showed
that they must be either the Weierstrass ℘–function or a solution of the Riccati equation.
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Figure 2.1: Roots of the Vorob’ev-Yablonskii polynomial Yn(t) with n = 30.

in terms of Schur polynomials indexed with the “staircase partition” [KO96]

Yn(t) =

(
−4

3

)n(n+1)
6

(
n∏

k=1

(2k − 1)!!

)
S(n,n−1,··· ,1)

((
−3

4

) 1
3

t, 0, 1, 0, 0, . . .

)
. (2.35)

These polynomials give an explicit formula for the rational solutions of PII.

Theorem 2.8. The second Painlevé equation (PII) admits rational solutions if and only if α = n ∈ Z. We denote
these solutions un(t). In particular, if α = 0 the solution is trivial u0(t) = 0; if n ≥ 1 the solution is given in
terms of the Vorob’ev-Yablonskii polynomials:

un(t) =
d

dt
log

Yn−1(t)

Yn(t)
=
Y ′
n−1(t)

Yn−1(t)
− Y ′

n(t)

Yn(t)
. (2.36)

For a negative integer α = −n the corresponding rational solution is given by u−n(t) = −un(t).

We remark that the poles of solutions to PII are always simple and have residue ±1 [GLS02]. In the
case of rational solutions un(t) this can be deduced from the formula (2.36) and the fact that consecutive
Vorob’ev–Yablonskii polynomials do not share any roots [Tan00]. Consequently the poles of residue +1
correspond to the zeroes of Yn−1(t) and the poles of residue −1 correspond to the zeroes of Yn(t).

In light of the Painlevé property, the study of the location of poles of solutions of any of the Painlevé
transcendents remains an interestingly remarkable challenge . The problem has received significant
attention for the cases of the tritronquée solution of the first Painlevé equation [Mas10a, Mas10b], the
rational solutions of the second Painlevé transcendent [BM12, BM12, BM14, BM15, BB15], its hierarchy
[CM03, BBB16] and the fourth Painlevé transcendent [MR18, BM20].
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2.2.2 Lax pairs of Painlevé II

Following the isomonodromic deformation theory outlined in Section 2.1 we introduce two distinct
rank-2 Lax pair representations for the second Painlevé transcendent (PII) which will be of crucial im-
portance in the upcoming computations. The isomonodromic theory of Painlevé equations has been
developed in [JMU-I, JM-II, JM-II]. They are known as the Flaschka-Newell and the Jimbo-Miwa Lax
pairs and they’re given as an overdetermined system of the shape





∂Φ

∂z
= A(z, t)Φ,

∂Φ

∂t
= B(z, t)Φ.

(2.37)

The relation with the framework in Section 2.1.4 is that z ∈ C is a local coordinate of λ ∈ CP1, and
that there is only one parameter t = t1 ∈ C. In this case the compatibility condition (2.33) becomes the
equality of the partial derivatives Φxt = Φtx, which is equivalent to

∂A

∂t
− ∂B

∂t
+ [A,B] = 0, (2.38)

gives a system of non-linear ODEs which is equivalent to the second Painlevé equation, different in
each case. Throughout we denote the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
(2.39)

and additionally we define

σ+ =

[
0 1
0 0

]
, σ− =

[
0 0
1 0

]
. (2.40)

Flaschka-Newell Lax pair

Theorem 2.9 ([FN80]). The Painlevé II equation (PII) for the function u(t) is determined from the compatibility
condition of the following rank-2 overdetermined linear system (2.37) with the coefficients matrices

A(z, t) = −i(4z2 + t+ 2u2)σ3 +
(
4zu+

α

z

)
σ1 − 2vσ2,

B(z, t) = −izσ3 + uσ1,
(2.41)

where u = u(t) and v = v(t) are meromorphic functions of t.

This system describes an isomonodromic deformation of a rank-2 linear ODE with a Fuchsian sin-
gularity at the z = 0 and an non-Fuchsian singularity of Poincaré rank 3 at z = ∞. The compatibility
condition of the partial derivatives (2.38) yields the non-linear system

du

dt
= v,

dv

dt
= 2u3 + tu+ α, (2.42)

which undoubtedly will be recognised as (PII) for u(t).

Jimbo-Miwa Lax pair

Theorem 2.10 ([JM-II]). The second Painlevé equation (PII) for the function u(t) is determined from the com-
patibility condition of the rank-2 overdetermined linear system (2.37) with the coefficients matrices

A(z, t) =

(
z2 + w +

t

2

)
σ3 + (z − u)vσ+ −

2

v

(
zw + uw − α+

1

2

)
,

B(z, t) =
z

2
σ3 +

v

2
σ+ −

w

v
σ−,

(2.43)

where u = u(t), v = v(t), w = w(t) are meromorphic functions of t.
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This system describes the isomonodromic deformation of a rank-2 linear ODE with a non-Fuchsian
singularity of Poincaré rank 3 at λ = ∞. The compatibility condition of the partial derivatives (2.38)
gives the non-linear system for u, v, w

du

dt
= u2 + w +

t

2
,

dv

dt
= −uv, dw

dt
= −2uw + α− 1

2
. (2.44)

Eliminating w from this system one finds that u(t) satisfies (PII) with parameter α. In a similar manner
getting rid of u one discovers that w(t) satisfies the the thirty-fourth equation of the original Painlevé
classification,

d2w

dt2
=

1

2w

(
dw

dt

)2

+ 4aw2 − tw − 1

2w
(PXXXIV)

as listed in [Inc44, p.340].
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Chapter 3

Orthogonal Polynomials and the exact
WKB method

3.1 Speedy introduction to Orthogonal polynomials

In this section we give a quick introduction the some of the facts of the theory of orthogonal polynomi-
als. For more detail we refer the reader to the classic book on the topic [Sze75] as well as [Chi78] for the
moment functional approach, as well as the more modern approach [Sim15].

A moment functional is a linear map on the space of polynomialsM : C[z] → C, associating to the
monomial powers zj , to a sequence of moments µj and then extended by linearity:

M[zj ] = µj , j ∈ N, (3.1)
M [aP (z) + bQ(z)] = aM [P (z)] + bM [Q(z)] (3.2)

for all polynomials P (z), Q(z) ∈ C[z].

Definition 3.1. We say that Pn ∈ C[z] is an orthogonal polynomial of degree n if it satisfies

⟨Pn, z
m⟩ =M [Pn(z)z

m] = δnmhn hn, ̸= 0, m = 1, 2, . . . , n. (3.3)

These orthogonal polynomials are unique up to a non-zero multiplicative factor and their existence
is guaranteed by the non-vanishing of the Hankel determinants

∆n = det [µi+j ]
n
i,j=0 = det




µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
... . . .

...
µn µn+1 . . . µ2n


 ̸= 0. (3.4)

Furthermore the orthogonal polynomials have the following determinantal expression:

Pn(z) = det




µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
... . . .

...
µn−1 µn . . . µ2n−1

1 z . . . zn



̸= 0. (3.5)

One of the key properties of orthogonal polynomials is that they satisfy a 3-term recurrence relation.

Theorem 3.2 (3-term recurrence relation). Suppose that {Pn}∞n=1 is a sequence of orthogonal polynomials
defined with respect to the moment functionalM. Then there exist sequences an and bn such that

zPn(z) = bnPn+1(z) + anPn(z) + bn−1Pn−1(z). (3.6)
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We remark that the orthogonality (3.3) is sometimes called “non-Hermitean” because the inner prod-
uct is complex and bilinear rather than sesquilinear. This will be the setting of the orthogonal polyno-
mials considered in Chapter 5. However, the sesquilinear case is the most studied and it leads us to the
classical orthogonal polynomials.

3.1.1 Classical orthogonal polynomials

Definition 3.3. The Hermite polynomials Hn are defined by

Hn(z) = (−1)nez2 dn

dzn
e−z2

. (3.7)

The Laguerre polynomials L(α)
n with parameter α > −1 are defined by

L(α)
n (z) =

1

n!
z−αez

dn

dzn
(
e−zzn+α

)
. (3.8)

The Jacobi polynomials with parameter α, β > −1 are defined by

J (α,β)
n (z) =

(−1)n
n!2n

(1− z)−α(1 + z)−β dn

dzn
[
(1− z)n+α(1 + z)n+β

]
. (3.9)

Collectively, these polynomials are known as the classical orthogonal polynomials because they satisfy
the following orthogonality conditions:

∫ +∞

−∞
Hn(z)Hm(z)e−z2

dz =
√
π2nn!δnm (3.10)

∫ +∞

0

L(α)
n (z)Lm(z)zαe−zdz =

Γ(n+ α+ 1)

n!
δnm (3.11)

∫ +1

−1

J (α,β)
n (z)J (α,β)

m (z)(1− z)α(1 + z)βdz = κnδnm (3.12)

where the normalisation constant κn in the Jacobi case is

κn =
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 2)

n!Γ(n+ α+ β + 1)
, (3.13)

and the parameters satisfy α, β ≥ −1.

The formulæ in Definition 3.3 is known as the Rodriges formula. Although we take it as a definition,
the classical orthogonal polynomials can also be defined in other ways (such as from equations (3.10))
from which the Rodriges formulæ can be rederived.

However, we will be consider them as arising from a moment functional given by the integral

M[zj ] =

∫

Γ

zjeθ(z)dz, (3.14)

where in each of the cases, Hermite, Jacobi and Laguerre the symbol θ and contour Γ is chosen according
to:

Hermite : θ(z) = −z2, Γ = R, (3.15)
Jacobi : θ(z) = α log(1− z) + β log(1 + z), Γ = [−1, 1], (3.16)

Laguerre : θ(z), = −z + α log(z), Γ = [0,∞). (3.17)

Many things can be said about these polynomials but a noteworthy feature of all of them is that they all
satisfy a second order ODEs
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Theorem 3.4. The Hermite polynomials Hn satisfy the differential equation:
(
− d2

dz2
+ 2z

d

dz

)
Hn(z) = 2nHn(z). (3.18)

The Laguerre polynomials L(α)
n satisfy the differential equation:
(
−x d2

dz2
+ (x+ 1− α) d

dz

)
L(α)
n (z) = nL(α)

n (z). (3.19)

The Jacobi polynomials J (α,β)
n (z) satisfy the differential equation:

(
−(1− z)2 d2

dz2
+ [(α+ β + 2)z + α− β] d

dz

)
P (α,β)
n (z) = n(n+ α+ β + 1)P (α,β)

n (z) (3.20)

Furthermore, the converse of this theorem holds, and which is name after Bochner and Brenke.

Theorem 3.5 ([Sim15]). Suppose that {Pn}∞n=0 is a family of orthogonal polynomials in the real line that obey
a differential equation of the form

f(x)
d2Pn

dx2
+ g(x)

dPn

dx
+ h(x)Pn(x) = λnPn(x) (3.21)

where only λn is dependent on n. Then, up to a change of variables x 7→ ax + b with a ∈ R \ {0}, b ∈ R, the
polynomial Pn is one of the classical orthogonal polynomials Hn, L

(α)
n , J

(α,β)
n .

In Chapter 5 we show that the degenerate orthogonal polynomials share many properties with the
classical orthogonal polynomials. For example, they are proved to be as solutions to a second order
ODE in the complex plane with rational coefficients. More importantly we show the distribution of the
roots of degenerate orthogonal polynomials can be given an electrostatic interpretation, similar to the
one of the classical orthogonal polynomials (1.21).

3.1.2 Riemann-Hilbert problem for Orthogonal Polynomials

Orthogonal polynomials have a characterisation in terms of a Riemann-Hilbert problem, which we
now explain. We overlook some of the finer analytic issues,1 opting instead to point the reader to the
excellent introduction [Dei99].

Let µ be a measure which is absolutely continuous with respect to the Lebesgue measure so that we
can write dµ(z) = w(z)dz. We also assume that that dµ = wdz has finite moments. Let us denote by
πn(z) the monic orthogonal polynomial of degree n satisfying

∫

Γ

πn(z)πm(z)w(z)dz = hnδn,m. (3.22)

Consider the following Riemann-Hilbert problem.

Riemann-Hilbert Problem 3.6. Fix an positive integer n ∈ N and the contour Γ = R, oriented from −∞ to
+∞, and the weight function w(z). Find a 2× 2 matrix-valued function Y = Yn(z) such that:

(1) The function Y (n)(z) is analytic in C \ Γ.

(2) It satisfies the jump condition Y (n)
+ (z) = Y

(n)
− (z)

[
1 w(z)
0 1

]
for z ∈ Γ.

(3) It is normalised at infinity Y (n)(z) =
(
I+O

(
z−1

)) [zn 0
0 z−n

]
as z →∞.

1This is a speedy introduction after all
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The celebrated results of Its, Fokas and Kapaev [FIK91, FIK92] characterises the solutions of this
Riemann-Hilbert problem in terms of the orthogonal polynomials and their Cauchy transform.

Theorem 3.7 (Its-Kitaev-Fokas). Let Y (n) be the solution of the Riemann-Hilbert problem 3.6. Then

Y (n)(z) =




γ−1
n πn(z)

1

2πi

∫

Γ

πn(x)w(x)

x− z dx

cnπn−1(z)
1

2πi

∫

Γ

πn−1(x)w(x)

x− z dx


 (3.23)

where cn is the constant
cn = −2πih−1

n−1 (3.24)

Moreover, the coefficients in the three term recurrence relation are given by:

an =
(
Y

(n)
1

)
1,1
−
(
Y

(n)
1

)
1,1

(3.25)

b2n =
(
Y

(n)
1

)
1,2

(Y
(n)
1 )2,1 (3.26)

where we express

Y (n)(z) =

(
I+

Y
(n)
1

z
+O

(
z−2

)
)[

zn 0
0 z−n

]
. (3.27)

3.2 Brief introduction to exact WKB analysis

In this section we review the theory of the exact WKB analysis, as initiated by [Vor83] and further
developed by the Japanese school [KT05]. We follow the exposition in [IN14]

Consider the following Schrödinger equation with small parameter ℏ

ℏ2
d2ψ

dz2
−Q(z)ψ = 0 (3.28)

We assume the potential Q(z) is a meromorphic function and that Q(z) it is ℏ-independent. For the
general case in which the potential depends on ℏ we refer the reader to [IN14].

The poles of the potential Q(z) determine the singular points of the differential equation; we denote
the set of poles of Q(z) by P = {p0, p1, p2, . . . }. In the exact WKB analysis the zeroes also of critical
importance.

Definition 3.8. A zero of Q(z) is called a turning point. We say a turning point is simple if it is a simple
zero of Q(z) and we denote the set of zeroes by T = {τ0, τ1, τ2, . . . }

3.2.1 Construction of WKB solutions

To construct the WKB solutions of (3.28) we make the following ansatz

ψ(z, ℏ) = exp

(∫ z

S(ζ, ℏ)dζ
)

(3.29)

where S(z, ℏ) is a formal series in ℏ

S(z, ℏ) =
∞∑

n=−1

ℏnSn(z) =
1

ℏ
S−1(z) + S0(z) + S1(z) + · · · . (3.30)

This formal series satisfies the Ricatti equation

dS

dz
+ S2 = ℏ−2Q(z), (3.31)
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which means the coefficient functions Sn(z) satisfy the recursion

S2
−1 = Q(z), (3.32)

2S−1Sn+1 = −dSn

dz
−
∑

i+j=n

SiSj (n ≥ −1). (3.33)

Depending on the sign chosen for S−1(z) = ±
√
Q(z) we obtain two sequences of coefficients {S(±)

j }∞j=1.
If we change the sign in S−1 then all the odd S2k+1 flip their sign while the even S2k remain unchanged.
With the choice S−1 =

√
Q, the first three coefficients are:

S−1 =
√
Q(z), S0 = −1

4

Q′(z)
Q(z)

, S1 =
4Q(z)Q(z)′′ − 5(Q(z)′)2

32Q(z)
5
2

. (3.34)

The choice of initial sign for S−1 gives two formal series solutions S±(z, ℏ) to the Ricatti equation (3.31).
In turn, these correspond to two linearly independent (formal) solutions to (3.28)

ψ(z, ℏ) = exp

(∫ z

S±(ζ, ℏ)dζ
)
. (3.35)

These solutions however, can be simplified further as we now explain. Let us define

Sodd(z, ℏ) :=
1

2
(S+(z, ℏ)− S−(z, ℏ)) , (3.36)

Seven(z, ℏ) :=
1

2
(S+(z, ℏ) + S−(z, ℏ)) . (3.37)

Since the potential Q(z) is independent of ℏ it follows that Sodd only contains odd powers of ℏ

Sodd(z, ℏ) =
1

ℏ
√
Q(z) + ℏS1 + ℏ3S3 + . . . . (3.38)

It was shown in [KT05] that

Seven(z, ℏ) = −
1

2

d

dx
logSodd(z, ℏ). (3.39)

This allows us to rewrite the formal solution in terms of Sodd.

Definition 3.9 (WKB solutions). The WKB solutions to (3.28) are formal power series in ℏ given in terms
of Sodd in (3.38). We give two different normalizations that will be used throughout this paper.

• Near a turning point τ ∈ T of the potential Q(z) we define the normalized WKB solutions to be:

ψ
(τ)
± (z, ℏ) :=

1√
Sodd(z, ℏ)

exp

(
±
∫ z

τ

Sodd(ζ, ℏ)dζ
)

(3.40)

• Near a pole p ∈ P we define the normalized WKB solutions to be:

ψ
(∞)
± (z, ℏ) :=

1√
Sodd(z, ℏ)

exp
(
±R(z; ℏ)

)
(3.41)

where

R(z; ℏ) :=
1

ℏ

∫ z [√
Q(w)

]
−
dw +

∑

j≥0

ℏ2j+1

∫ z

p

S2j+1(w)dw (3.42)

where we denote by [Q(w)dw]− denotes the polar part of the differential
√
Q(w)dw at w = p, i.e. the

strictly negative powers in the Puiseux expansion at infinity. Notice that R(x; ℏ) is the anti-derivative
of Sodd(x, ℏ) that does not have a constant term in the expansion as |x| → ∞.
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Remark 3.10 (Geometry of the WKB solutions). The integral in the exponent of ψ(τ)
+ is to be understood

term by term in each coefficient of the powers of ℏ. Additionally, Sodd(z, ℏ) is multivalued in C with
branch points at the zeroes T of the potential Q(z). Thus the integrals should be considered on the the
compact Riemann surface Σ obtain from the curve

Σ =
{
(w, z) ∈ C2 : w2 = Q(z)

}
. (3.43)

For our purposes the potentialQ(z) will be a quartic polynomial, which means that Σ will be a compact
elliptic curve of genus 1 obtained from Σ by adding two points at infinity P±

∞.

The projection π : Σ 7→ C from the Riemann surface to the extended complex plane mapping
(w, z) 7→ z realizes Σ as a double cover of C ramified at the turning points of the ODE (3.28) (i.e. at
the zeroes of Q(z)). The pre-image of any point x ∈ C are the two points

π−1(z) = {(z,+w), (z,−w)} ∈ Σ (3.44)

on the two sheets of the Riemann surface where the numbering of the sheets is such that (x,w =

+
√
Q(x)) belongs to the first sheet. Choosing branch cuts and the first sheet of the Riemann surface,

we can talk about the integral from a turning point τ to x by defining:
∫ z

τ

Sodd(z, ℏ)dz :=
1

2

∫

γ(z)

Sodd(z, ℏ)dz (3.45)

where the contour γ(z) lives in the Riemann surface Σ joining the points in the pre-image of π−1(z),
oriented from the second sheet to the first sheet. This integral is a well defined convergent integral.

Remark 3.11. It is shown in [IN14] that, under certain conditions (which are met our case of a quartic
polynomial), the higher order terms in Sodd, namely S2j+1(z)dz for j ≥ 0 is integrable at any pole p ∈ P.

3.2.2 Stokes curves and Stokes graph

The WKB series are asymptotic to actual solutions of (3.28) in certain regions of the complex plane that
we presently define. We begin by introducing the notion of Stokes’ curve, which we will use to build
Stokes’ graphs.

Definition 3.12 (Stokes curve). A Stokes curve of the potential Q(z) is a horizontal trajectory of the
quadratic differential Q(x)dx2 where one of the end-points is a turning point. In other words, in a local
coordinate z of Σ, it is a curve emanating from a turning point τ ∈ T and satisfying

Im

∫ z

τ

√
Q(w)dw = 0. (3.46)

The support of the curve is independent of choice of determination of
√
Q. Furthermore the orientation

of a Stokes curve is defined by the direction in which

Re

∫ z

τ

√
Q(w)dw (3.47)

is increasing. The orientation of a Stokes curve near a pole p ∈ P is denoted by the symbol ⊕ or ⊖
depending whether (3.47) is increasing or decreasing, respectively, along the z in the Stokes curve. We
say the Stokes curve is oriented towards ⊕ and away from ⊖, respectively.

The Stokes curves always end at either a pole p ∈ P or at a turning point τ ∈ T of the potential Q(z)
[Str84]. This means we can consider the turning points and points T ∪ P as vertices and the Stokes’
curves as edges of a graph embedded in the Riemann surface Σ.

Definition 3.13 (Stokes graph). The Stokes graph G = (V,E) associated to the potential Q(z) is the
graph embedded in CP1 where the vertices are the turning points and poles V = T ∪ P and the edges
are the Stokes curves.

In addition, call a decorated Stokes graph a Stokes graph with the following additional contours:

27



20 15 10 5 0 5 10 15 20
20

15

10

5

0

5

10

15

20
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(a) (s, E) = (0.00001, 1000i)

3 2 1 0 1 2 3

3

2

1

0

1

2

3

Stokes graph for Shapiros potential, with a=0.1j,  =2

(b) (s, E) = (0.1i, 2)
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Stokes graph for Shapiros potential, with a=(1+1j),  =0

(c) (s, E) = (1 + i, 0)

Figure 3.1: Generic Stokes graph for the quartic polynomialQ(z) = z4+sz2+2z+E for various choices
of (s, E). We remark that under small perturbations of (s + ϵ, E + δ) the geometry of the Stokes graph
varies continuously (provided (s, E) are generic), however, the underlying graph structure remains the
same.

• Branch cuts. We draw arbitrary (smooth) paths called branch-cuts between pairs of turning points
in such a way they do not intersect any Stokes curve. Their orientation is fixed in an arbitrary way
that we shall specify in each case.

• Ideal paths. We draw arbitrary smooth paths connecting the different poles P in all possible ways
that do not intersect any of the Stokes curves.

We say a Stokes graph is simple if all of its

Definition 3.14 (Stokes regions). Consider the connected components of the complement of the Stokes
embedded graph in CP1 (i.e. the faces of the graph). Amongst them, the components with at least one
Stokes curve on the boundary will be called Stokes regions. The remaining ones will be called external
regions.

The construction of Stokes regions is crafted so that, under the genericity Assumptions 3.15, each
Stokes region has precisely exactly one turning point on its boundary.

Assumption 3.15. The following assumptions shall prevail.

• Simplicity. The zeroes of the potential Q(z) are all simple.

• Genericity. There are no saddle trajectories, i.e. there are no Stokes curves connecting two turning
points. Saddle trajectories can only occur if there is a contour γ ∈ H1(Σ) in the homology group
of the Riemann surface for which

Im

∮

γ

√
Q(z)dz = 0. (3.48)

3.2.3 Normalised solutions and connection formulæ

Near a simple turning point τ there are three Stokes curves emanating from it, and so there are three
different Stokes regions surrounding τ .

In each Stokes region D one can select a fundamental basis of solutions of the ODE (3.28) as we now
explain. Consider a Stokes curve γ originating at the turning point τ extending to a pole p ∈ P and
oriented towards ⊕ (with similar considerations for the ⊖ curves): since the real part of

∫ z

τ

√
Q(x)dx

is increasing, there is a region around γ near p where the real part is positive; then the formal solution
ψ
(τ)
− is recessive (i.e. exponentially small as ℏ → 0+). Then there is a unique solution Ψ(z; ℏ) which is
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asymptotic to this ψ(τ)
− in both Stokes regions on the two sides of γ. If D is one of these regions, we will

denote this first selected solution by Ψ
(D)
− .

To uniquely determine the other solution Ψ
(D)
+ , it is not sufficient to examine its asymptotic be-

haviour near γ because its asymptotics there is dominant (i.e. exponentially large as ℏ→ 0+). However,
the same Stokes region must be bounded also by either a ⊖ trajectory or a branch-cut. In the former
case, in a neighbourhood of the ⊖ trajectory the formal solution ψ(τ)

+ is now recessive and this allows to
uniquely determine Ψ(D)

+ . If, instead, the other boundary is a branch-cut, we need to consider the Stokes
region, D ′ on the other side of the cut: in this region, due to having crossed the branch-cut, the formal
solution ψ(τ)

+ is now somewhere recessive and this allows to fix Ψ
(D)
+ uniquely. We refer to [BK21, §5]

for more details.

Theorem 3.16 (Existence of solutions). Let D be a Stokes’ region. Then, under the Assumptions 3.15, there
exist unique solutions Ψ(D)

± of (3.28), that we refer to as normalized solutions, that are asymptotic to the WKB
solutions in Def. 3.9 uniformly in x in the Stokes region, that is:

Ψ
(D)
± (x) ∼ ψ(τ)

± (x; ℏ) ℏ→ 0, x ∈ D . (3.49)

Remark 3.17. In the exact WKB literature, this result is usually stated in terms of Borel resummation
of of the asymptotic series ψ(τ)

± , and it is typically attributed to the work of Koike and Schäfke in 2014.
Their work concerned the Borel summability of WKB solutions of Schrödinger-type equations with
polynomial potentials (although other accounts such as [IN14] assume the potential is meromorphic).
Unfortunately, this paper was never published 2 and only a sketch of their ideas can be found [Tak17].
However a different, more geometrical, account by Nikolaev [Nik20, Nik21] puts their results on rigor-
ous footing.

The following theorem of Vöros [Vor83, KT05] relates the WKB solutions of different Stokes regions
near the same turning point.

Theorem 3.18 (Voros connection formulæ). Let D be a Stokes’ region. Then, under the Assumptions 3.15,
there exist unique solutions Ψ(D)

± of (3.28), that we refer to as normalized solutions, that are asymptotic to the
WKB solutions in Def. 3.9 uniformly in x in the Stokes region, that is:

Ψ
(D)
± (x) ∼ ψ(τ)

± (x; ℏ) ℏ→ 0, x ∈ D . (3.50)

Furthermore, let Dℓ,Dr be two adjacent Stokes regions separated by the Stokes curve γ oriented as in Def. 3.12
with Dℓ on the left and Dr on the right of γ. Then the corresponding solutions Ψ{Dℓ}

± ,Ψ
{Dr}
± are related by:

[
Ψ

(Dℓ)
+ Ψ

(Dℓ)
−

]
=
[
Ψ

(Dr)
+ Ψ

(Dr)
−

]





B :=

[
1 0

−i 1

]
if γ is oriented towards ⊕

R :=

[
1 i

0 1

]
if γ is oriented away from ⊖.

(3.51)

We can formulate a result similar to Thm. 3.18 but relating two regions of a decorated Stokes graph
separated by an ideal path. As we see below, the relationship between such WKB solutions is a simple
scaling.

Proposition 3.19. Let Dℓ,Dr be two Stokes regions separated by an ideal path, with Dℓ on the left and Dr on
the right of σ with the orientation given in Def. 3.13. Let τℓ, τr be the (unique) turning points on the boundaries
of Dℓ,Dr, respectively. Then we have the following connection formula

[ψ
(τℓ)
+ , ψ

(τℓ)
− ] = [ψ

(τr)
+ , ψ

(τr)
− ] exp(σ3vℓr) (3.52)

where
vℓr = vℓr(ℏ) :=

∫ τr

τℓ

Sodd(ζ+, ℏ)dζ (3.53)

2The author thanks Nikita Nikolaev for explaining this issue to me, and saving me many headaches in the process.
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with the integration along the branch cut according to Def. 4.18.

The corresponding actual solutions Ψ(Dℓ)
± ,Ψ

(Dr)
± given in Thm. 3.18 are similarly related:

[Ψ
(Dℓ)
+ ,Ψ

(Dℓ)
− ] = [Ψ

(Dr)
+ ,Ψ

(Dr)
− ] exp(σ3v̂ℓr) (3.54)

where now v̂ℓr(ℏ) is a function of ℏ that is asymptotic, in the Poincaré sense, to vℓr(ℏ) in (3.53).
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Chapter 4

The Shapiro-Tater conjecture

This chapter is dedicated to the to the proof of the conjecture made by Shapiro and Tater regarding the
similarity of two set of points in the complex plane. For full details of the conjecture and the approach
we follow we refer the reader to section 1.2.

4.1 From Lax pair to scalar potential

In this section we outline how we obtain a scalar ODE from the Lax pairs in Section 2.2.2. In what
follows we will need local expressions near a pole of the solutions to (PII) and of the system (2.44). The
Laurent series of all of the Painlevé transcendents is well known and can be found in the encyclopedic
book [GLS02].

Proposition 4.1 ([GLS02]). Let t = a be a pole of residue ϵ = ±1 of the second Painlevé transcendent (PII).
Then u(t) has the following Laurent series expansion near t = a:

u(t) =
ϵ

t− a −
ϵa

6
(t− a)− α+ ϵ

4
(t− a)2 + b(t− a)3 +O

(
(t− a)4

)
(4.1)

where b ∈ C is arbitrary and the higher coefficients are polynomial in a and b.

Starting from this Laurent series it is easy to determined expansion for the functions v(t), w(t) ap-
pearing in the system (2.44). It is a simple (though tedious) computation to check the following (We
seriously advise the reader the use of a computer algebra program for this purpose.)

Proposition 4.2. Let t = a be a pole of residue +1 of the Painlevé II function u(t) with parameter α. Then the
system (2.44) has the following Laurent series expansion near t = a

u(t) =
1

t− a −
a

6
(t− a)− α+ 1

4
(t− a)2 + b(t− a)3 +O

(
(t− a)4

)
,

w(t) = − 2

(t− a)2 −
a

3
− 1

2
(t− a) +

(
−a

2

36
+ b

)
(t− a)2 +O

(
((t− a)3)

)
, (4.2)

v(t) = c

(
1

t− a +
a

12
(t− a) + α+ 1

12
(t− a)2 +O

(
(t− a)3

))
,

where b is arbitrary and c ̸= 0 is a constant of integration. Similarly, if t = a is a pole of residue −1, then the
system has a Laurent expansion near t = a

u(t) =
−1
t− a +

a

6
(t− a)− α− 1

4
(t− a)2 + b(t− a)3 +O

(
(t− a)3

)
,

w(t) =

(
1

2
− α

)
(t− a) +

(
5b− a2

36

)
(t− a)2 + a(2α− 1)

6
(t− a)3 +O

(
(t− a)4

)
, (4.3)

v(t) = c
(
(t− a)− a

12
(t− a)3 +O

(
(t− a)4

))
,
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where again b is arbitrary and c ̸= 0 is a constant of integration.

With a particular gauge transformation we can convert matrix ODE to a scalar ODE. The procedure
results in adding an apparent singularity in the scalar equation at the position z = u(t). Thus when the
independent variable t tends to one of the poles of the Painlevé transcendent u(t) the location of the
singularity “escapes” to infinity resulting in a polynomial ODE. This procedure was originally used in
[Mas10a] to obtain asymptotic quantisation conditions for the poles of the tritronquée solution of the
first Painlevé transcendent. We now explain it in detail and apply it to both the Flaschka-Newell (2.41)
and Jimbo-Miwa (2.43) Lax pairs.

Consider a traceless rank-2 system

∂Φ

∂z
= A(z, t)Φ, A(z, t) :=

[
a11(z, t) a12(z, t)
a21(z, t) a11(z, t)

]
. (4.4)

The gauge transformationW = G(z, t)Φ with

G(z, t) :=


 a

− 1
2

12 0

− a′
12

2a
3
2
12

+ a11

a
1
2
12

a
1
2
12


 (4.5)

(where ′ = ∂
∂z ) converts the original matrix ODE into ∂

∂zW = Ã(z, t)W with the coefficient matrix

Ã(z, t) =
∂G

∂z
G−1 +GAG−1 =

[
0 1

V (z, t) 0

]
(4.6)

and the function V (z, t) is given in term of the entries of the initial coefficient matrix A(z, t):

V (z, t) = a12a21 + a211 + a′11 − a11
a′12
a12
− a′′12

2a12
+

3

4

(
a′12
a12

)2

, (4.7)

where again ′ = ∂
∂z . Therefore the matrix ODE ∂

∂zW = Ã(z, t)W is equivalent to the Wronskian matrix
of pair of independent solutions of the scalar ODE

∂2y

∂z2
− V (z, t)y = 0. (4.8)

It is remarkable that applying this transformation to the Jimbo-Miwa (2.43) and Flaschka-Newell (2.41)
Lax pairs, the limit of the potential V (z, t) as t approaches a pole a of Painlevé has a neat formula.

Proposition 4.3 (FN potential). Fix α ∈ C and let t = a be a pole with residue +1 of the second Painlevé
transcendent (PII) with parameter α. Then the Flaschka-Newell Lax pair (2.41) is equivalent in the limit as
t→ a to the scalar ODE

d2y

dζ2
− VFN(ζ; s, r, α)y = 0,

VFN(ζ; s, r, α) := ζ4 + sζ2 +

(
s2

18
+ 10r

)
+
α(α− 1)

ζ2
,

(4.9)

in the scaled variables z = i2−2/3ζ, a = −2−1/3s, b = 2−2/3r. Furthermore, for a pole of residue −1 the
associated scalar ODE has potential VFN(ζ; s,−r, α− 1).

Proof. We apply the gauge tranformation (4.5) to the matrix ODE ∂
∂zΦ = A(z, t)Φ of the Flaschka-Newell

Lax pair (2.41). This gives us a potential V (z, t) which is a a rational function of z and t, as well as the
functions v(t) and u(t). The explicit expression of this potential is obtained using symbolic algebra
software and we choose not to include it here as it is a very long and complicated formula. The key
point is that substituting the series (4.1) for u(t) and v(t) = d

dtu(t), and taking limits we obtain

lim
t→a

V (z, t) = −16z4 − 8z2a− 2a2

9
− 40b+

α(α− 1)

z2
(4.10)
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so that the associated ODE becomes

d2y

dz2
−
(
−16z4 − 8z2a− 2a2

9
− 40b+

α(α− 1)

z2

)
y = 0. (4.11)

After the scaling
z = i2−2/3ζ, a = −2−1/3s, b = 2−2/3r, (4.12)

we obtain the differential equation

d2y

dζ2
−
(
ζ4 + sζ2 +

(
s2

18
+ 10r

)
+
α(α− 1)

ζ2

)
y = 0. (4.13)

This is the claimed equation (4.9). ■

A similar result holds for the Jimbo-Miwa Lax pair.

Proposition 4.4 (JM potential). Fix α ∈ C and let t = a be a pole with residue −1 of the second Painlevé
transcendent (PII) function u(t) with parameter α. The Jimbo-Miwa Lax pair (2.43) is equivalent in the limit
t→ a to the the following scalar ODE

d2y

dz2
− VJM(z; a, b, α)y = 0,

VJM(z; a, b, α) = z4 + az2 + (2α+ 1)z +

(
7a2

36
+ 10b

)
.

(4.14)

For a pole t = a of residue +1 we obtain the same ODE with the potential VJM(z; a,−b, α− 1).

Proof. We apply the gauge transformation (4.5) to the matrix ODE ∂
∂zΦ = A(z, t)Φ of the Jimbo-Miwa

Lax pair (2.43). This gives us a potential V (x, t) which is a function of both z and t, via the functions
u(t) and v(t).

V (z, t) =
1

(z − u(t))2

[
2w (t)u(t)4 + (−4 zw (t)− 2α+ 1)u(t)3

+

(
w(t)2 +

(
2 z2 + t

)
w(t) + z4 + tz2 + (6α− 1)z +

t2

4

)
u(t)2

+

(
−2 zw(t)2 + (−2 tz + 1)w(t)− 2 z5 − 2 tz3 − 1

2
t2z − 6α z2 +

t

2

)
u(t)

+ z2w(t)2 +
(
tz2 − z

)
w(t) + z6 + tz4 +

t2z2

4
+ 2α z3 − tz

2
+

3

4

]
.

(4.15)

Substituting the Laurent series expansions (4.3) of u(t), v(t), w(t) in the (complicated) expression above,
and taking the limit as t→ a, we obtain:

lim
t→a

V (z, t) = z4 + az2 + (2α+ 1)z +

(
7a2

36
+ 10b

)
. (4.16)

As claimed, the associated scalar ODE becomes

d2y

dz2
−
(
z4 + az2 + (2α+ 1)z +

(
7a2

36
+ 10b

))
y = 0. (4.17)

A similar computation can be done for the case with residue +1. ■

The transformation from a matrix ODE to a scalar ODE is important to us for the following reason:
the gauge transformation (4.5) introduces a singularity at the zeroes of a1,2(z; t), which in the Jimbo-
Miwa case happens at x = u(t), namely, at the value of the Painlevé transcendent solution u(t). The
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singularity is of square-root type with local monodromy −1. Other than this, the Stokes’ phenomenon
of the differential equation y′′(z) − V (z; t)y(z) = 0 remains unchanged and independent of t by con-
struction.

The key observation has the consequence that as t approaches one of the poles of the given solution
u(t) of the Painlevé transcendent, the additional singularity x = u(t) moves off to infinity. Therefore we
have the following simple but essential statement that we formalise in the proposition below.

Proposition 4.5. Let u(t) be a solution of the Painlevé II equation corresponding to a particular set of Stokes
data for the Jimbo-Miwa Lax pair (2.43). Let t = a be a pole of u(t) with residue −1 and b the coefficient in the
Laurent expansion (4.3). Then the Stokes phenomenon of the ODE

y′′(z)−
(
z4 + az2 + (2α+ 1)z + Λ

)
y(z) = 0, Λ :=

7a2

36
+ 10b (4.18)

is the same as the original Stokes phenomenon of the Jimbo-Miwa Lax pair (2.43).

4.2 A study in quasi-polynomials

In this section we find a characterization of the (quasi)-polynomials corresponding to a repeated eigen-
value for the operator , namely, the Shapiro-Tater eigenvalue problem (1.4) We will call the set (t, J, λ)
for which there is a solution of the problem (1.4)-(1.5), the Exactly Solvable (ES) spectrum. Our setting is
slightly different from [ST22], where the authors considered a modified eigenvalue problem (1.4) with
only two boundary conditions. In this case only a finite portion of the spectrum can be computed explic-
itly (in terms of a determinant), and for this reason it is called a Quasi Exactly Solvable (QES) spectrum,
owing the name to [BB98].

We will see below that with three boundary conditions at infinity as in (1.5), the whole spectrum can
be characterised by the vanishing of a finite determinant, and it is therefore Exactly Solvable.

The following lemma characterises the quasi-polynomials as the solutions to (1.4) with the three
boundary conditions (1.5).

Lemma 4.6. The equation (1.4) admits quasi–polynomial solutions of the form

y(z) = p(z)eθ(z;t) where θ(z; t) =
z3

3
+
tz

2
(4.19)

with p(x) a polynomial of degree n if and only if J = n+ 1 and λ = Λ− t2

4 is an eigenvalue of the operator

LJ :=
d2

dz2
+ 2

(
z2 +

t

2

)
d

dz
− 2(J − 1)z (4.20)

acting on the space of polynomials of degree up to n.

Proof. Substituting y(z) = p(z)eθ(z) in the ODE (1.4) gives an equivalent differential equation for the
function p(z):

LJ [p(z)] = λp(z) where λ = Λ− t2

4
, (4.21)

and LJ as in (4.20). One can readily see that if J = n+ 1 then the operator Ln+1 in (4.21) preserves the
space of polynomials of degree at most n and then Λ is, by definition, an eigenvalue of (1.4).

Viceversa, if p(z) is a polynomial of degree n and solves (4.21) then one finds by inspection that
the l.h.s is a polynomial of degree n + 1 whose leading coefficient is 2(n − J + 1) while the r.h.s. is a
polynomial of degree n. Thus J = n + 1. Then Ln+1 preserves the space of polynomials of degree n
and Λ (and the corresponding λ as per (4.21)) is an eigenvalue of the corresponding finite dimensional
operator. ■
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4.2.1 Stokes phenomenon of quasi-polynomials

Proposition 4.7. The eigenvalue problem (1.4) with the boundary conditions (1.5) requires that J = n+1, n =

0, 1, . . . and that λ in (4.21) is an eigenvalue of the operator L̂J . In particular the solutions are quasipolynomials
as in Lemma 4.6.

Proof. The equation (1.4) can be written as a first order system for the Wronkstian matrixW(x):

dW
dz

=

[
0 1

z4 + tz2 + 2Jz + Λ 0

]
W(z), Λ = λ+

t2

4
. (4.22)

This differential equation has a singularity at infinity with Poincaré rank 3. Following the ordinary
asymptotic analysis [Was87] we see that we have formal-series solutions of the form

Wform(z) ∼z−σ3(I− σ+ + σ−)
(
I+O

(
z−1

))
zJσ3eθ(z;a)σ3 , θ(z; t) =

z3

3
+
tz

2
(4.23)

=

[
zJ−1 +O

(
zJ−2

)
−z−J−1 +O

(
z−J−2

)

zJ+1 +O
(
zJ
)

z−J+1 +O
(
z−J

)
]
eθ(z;t)σ3 , z →∞. (4.24)

We define the Stokes sectors as shown in Figure 4.1, i.e. Sk is the sector of opening π/3 centered around
the rays of argument π/6− kπ/3:

Sk =
{
z ∈ C :

∣∣∣arg(z)− π

6
+ k

π

3

∣∣∣ < π

6

}
, k = 0, 1, 2, 3, 4, 5. (4.25)

Each open sector Ωk =
{
z ∈ C :

∣∣arg(z)− π
6 + k π

3

∣∣ < π
6 + δ

}
with δ > 0, strictly contains a Stoke sector

Sk. Then there exists a unique solutionW(k)(z) of (4.22) in Ωk asymptotic toWform(z), namely

W(k)(z) ≃ Wform(z), z →∞, z ∈ Ωk, k = 0, . . . , 5. (4.26)

Since W(k)(z) and W(k+1)(z) have the same asymptotic expansion in Ωk ∩ Ωk+1, there is a constant
matrix Sk called Stokes multiplier, such that

W(k+1)(z) =W(k)(z)Sk, z ∈ Ωk ∩ Ωk+1, k = 0, 1, . . . , 5, (4.27)

where the Stokes multipliers are of the form

S2k =

[
1 0
s2k 1

]
, S2k+1 =

[
1 s2k+1

0 1

]
, k = 0, 1, 2. (4.28)

By standard methods one can see that the Stokes phenomenon consists of the following relation

W(6)(z) =W(0)(x)S0S1 . . . S5, W(6)(z) =W(0)(z)e2πiJσ3 (4.29)

which gives the relation
[
1 0
s0 1

] [
1 s1
0 1

] [
1 0
s2 1

] [
1 s3
0 1

] [
1 0
s4 1

] [
1 s5
0 1

] [
e−2iπJ 0

0 e2iπJ

]
= I (4.30)

The first six matrices are the Stokes matrices associated with the directions arg(z) = k π
3 , k = 0, 1, .., 5

and the last matrix is the formal monodromy matrix. The boundary conditions (1.4) imply that s0 =
s2 = s4 = 0 because it means that the recessive solution along the direction arg(x) = π

3 is also recessive
along the directions arg(z) = k π

3 , k = 3, 5. But then the matrix equation (4.30) implies that

s1 + s3 + s5 = 0 (4.31)

and e2iπJ = 1 and hence J must be an integer.

To show that J = n+ 1 is a positive integer and that λ is an eigenvalue of LJ we proceed as follows.
Given that now the Stokes matrices are all upper triangular, the first column of the solution is an entire
function which is asymptotic to the first column of the formal-series solution (4.23) along all directions.
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[
1 0
0 1

]

[
1 s1
0 1

][
1 0
0 1

]

[
1 s3
0 1

]

[
1 0
0 1

] [
1 s5
0 1

]

S1

S2

S3

S4

S5

S0

Figure 4.1: Stokes matrices and Stokes sectors for the Shapiro-Tater eigenvalue problem (1.4) with quasi-
polynomial solutions. The Stokes matrices S0,S2,S4 are all the identity.

But then the asymptotic (4.23) implies that the (1, 1) entry is of the form p(z)eθ(z;t) with p(z) entire
and bounded at infinity by zJ−1. Then Liouville’s theorem implies that if J ≥ 1 then p(z) is a polyno-
mial, and for J = 0,−1,−2, . . . p(z) should vanish at infinity and hence it should be identically zero,
leading to a contradiction.

We have now established that the only solutions of the eigenvalue problem (1.4) are quasipolyno-
mials and therefore the hypothesis of Lemma 4.6 prevail, thus showing that λ is the claimed eigen-
value. ■

Theorem 4.8. Let J = n + 1, n ∈ N and Λ be an eigenvalue of the boundary value problem (1.4)-(1.5) with
eigenfunction the quasi-polynomial F = pn(z)e

θ(z). Let Gk be the linearly independent solutions of the ODE
(1.4), which can be expressed as

Gk(z) = F (z)

∫ z

∞k

dζ

F (ζ)2
, k = 0, 2, 4. (4.32)

Here∞k indicates that the contour of integration extends to infinity along the direction arg(z) = k π
3 .

Then the Stokes phenomenon for the solutions [F,Gk] is given by the following equations:

[F,G2] =[F,G0]

[
1 s1
0 1

]
, s1 :=

∫ ∞0

∞2

dζ

F (ζ)2

[F,G4] =[F,G2]

[
1 s3
0 1

]
, s3 :=

∫ ∞2

∞4

dζ

F (ζ)2

[F,G0] =[F,G4]

[
1 s5
0 1

]
, s5 :=

∫ ∞4

∞0

dζ

F (ζ)2
.

(4.33)

Furthermore the Stokes parameters sj satisfy (4.31).

Proof. Let pn(z) be a polynomial solution of degree n of (4.21) with J = n + 1. We can obtain a second
linearly independent solution q of (4.21) using the Wronskian identity:

dpn
dx

q − pn
dq

dx
= e−2θ. (4.34)

The solution is written as:

q(z) := pn(z)

∫ z

z0

(
pn(ζ)e

θ(ζ;t)
)−2

dζ (4.35)
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∞0

∞1∞2

∞3

∞4 ∞5

γ

γ̃

Figure 4.2: Directions at infinity∞k of argument k iπ
3 . The shaded regions denote the sectors of domi-

nance of eθ(x;t) where θ(z, t) = z3

3 + tz
2 . The unshaded regions denote the sectors of recessiveness.

with z0 is arbitrary. We have thus found two linearly independent solutions of (4.21), and in turn we
found two particular solutions of the eigenvalue problem (1.4), namely:

F (z) :=pn(z)e
θ(z;t), (4.36)

G2k(z) :=F (z)

∫ z

∞2k

dζ

F (ζ)2
, k = 0, 1, 2. (4.37)

Note that eθ(z;t) → 0 along rays arg(z) = π/3, π, 5π/3 (see Fig. 4.2), and so the function F (z) satisfies
the boundary conditions (1.5), while G2k is unbounded as z →∞ along the same directions.

We can split the integral representation of G2k in (4.32) as follows: for k = 0, 1, 2 we have

G2k+2(z) =F (z)

∫ z

∞2k+2

dζ

F (ζ)2
(4.38)

=F (z)

(∫ ∞2k

∞2k+2

dζ

F (ζ)2
+

∫ z

∞2k

dζ

F (ζ)2

)
(4.39)

=s2k+1F (z) +G2k(z) (4.40)

were the indices are taken mod 6 and we have defined

s1 :=

∫ ∞0

∞2

F (ζ)−2dζ, s3 :=

∫ ∞2

∞4

F (ζ)−2dζ, s5 :=

∫ ∞4

∞0

F (ζ)−2dζ, (4.41)

owing to the observation the contour of integration in s2k+1, k = 0, 1, 2 crosses the Stokes line of argu-
ment (2k + 1)π/3 with k = 0, 1, 2.

The specific contour of integration of the Stokes parameters s2k+1 defined in (4.33) does not matter
as long as it avoids the poles of the integrand F (z)−2dz. Indeed the integrand F (z)−2dz has zero residue
in the finite complex plane because if there was a non-zero residue at a pole, the function G2k(z) would
have non-trivial monodromy around that pole, but this cannot be the case since G2k is a solution to the
linear ODE system (1.4) which has analytic coefficients in the finite complex plane C. By an application
of Cauchy’s theorem we conclude that the sum of the Stokes parameters vanishes:

s1 + s3 + s5 = 0. (4.42)

■
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4.2.2 Quasi-polynomials as degenerate orthogonal polynomials

In this section we introduce the concept of degenerate orthogonality of polynomials, and we show that
it is satisfied by the polynomial part of the quasi-polynomial solutions of (1.4).

In the following we will consider weighted contours of the type

Γ =

n∑

j=1

sjγj (4.43)

where sj ∈ C are parameters and γj ⊂ C are contours in the complex plane. For an arbitrary complex
function we will denote ∫

Γ

f(z)dz :=

n∑

j=1

sj

∫

γj

f(z)dz. (4.44)

provided the integrals of f(z)dz along γj exist and are well defined. Using this notation, pn(z) is a
non-hermitian orthogonal polynomial with respect to the weighted contour Γ and the weight w(z) =
eθ(z)dz if it satisfies:

⟨pn(z), zk⟩ :=
∫

Γ

pn(w)w
ke2θdw = 0, k = 0, 1, 2, . . . , n− 1. (4.45)

In this classical definition, the orthogonality condition of pn(z) affects all the polynomials of degree d <
n. We now introduce a the concept of degenerate orthogonality, in which additionally to the conditions
(4.45), pn(z) is orthogonal to polynomials of degree d ≤ ℓ and ℓ ≥ n.

Definition 4.9 (Naïve degenerate orthogonality). Let θ(z) be a fixed polynomial of degree d + 1 and
positive leading coefficient, and let Γ =

∑d
j=1 s2j−1γ2j−1, where γ2j−1 are the wedge contours extending

from∞2j−1 to∞2j+1 and∞k denotes the point at infinity in the directions arg(z) = kπ
d+1 .

We say the polynomial pn(z) is ℓ-degenerate orthogonal if we additionally to the orthogonality
conditions (4.45), it satisfies

⟨pn(z), zn+k⟩ = 0 k = 0, 1, . . . , ℓ− 1. (4.46)

In Chapter 5 this concept is generalised to the case when θ′(z) is a rational function, for this reason
we call it here naïve degenerate orthogonality.

To prove that the quasi-polynomials solving (1.4) are degenerate orthogonal polynomials we will
interpret the Stokes phenomenon in Theorem 4.8 as the jumps of a Riemann-Hilbert problem for or-
thogonal polynomials [Dei99].

Theorem 4.10. Supppose that F (z) = pn(z)e
θ(z;t) is a quasi-polynomial solution of the ODE (1.4). Then

pn(z) is a 1-degenerate non-hermitian orthogonal polynomial with respect to the weight w(z) = e2θ(z,t)dz on the
contour

Γ = κγ + κ̃γ̃ (4.47)

where κ = s1, κ̃ = s5 as defined in (4.33). The contour γ is the wedge contour from ∞1 to ∞3 and γ̃ is the
wedge contour from∞5 to∞3 (see Figure 4.2).

Proof. Consider the quasi-polynomial F (z) := pn(z)e
θ(z;t) which solves (1.4) with J = n + 1. Define

Gk(z), k = 0, 2, 4 as in (4.32), which also solves the same ODE, and let us set

Ψk(z) := [F (z), Gk(z)], k = 0, 2, 4 (4.48)

to be a fundamental solution of (1.4). We interpret Theorem 4.8 as an 2 × 2 Riemann-Hilbert problem
solved by Ψk(z) in the sectors of opening 2π/3 :

Sk ∪ Sk+1, k = 0, 2, 4. (4.49)

The jump conditions (4.33) imply that Gk satisfies:

eθ(z;t)Gk+2(z) = eθ(z;t)Gk(z) + sk+1pn(z)e
2θ(z;t), k = 0, 2, 4. (4.50)
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The three functions Gk, k = 0, 2, 4 define a piecewise–analytic function G(z) with discontinuities along
the three rays [0,∞j ], j = 1, 3, 5 where it satisfies

eθ(z;t)G+(z) = eθ(z;t)G−(z) + sjpn(z)e
2θ(z;t), z ∈ [0,∞j ], j = 1, 3, 5. (4.51)

By the Sokhotski–Plemelj formula we can expressG as the following Cauchy transform over a weighted
contour Γ:

G(z) :=
e−θ(z;t)

2πi

∫

Γ

pn(w)e
2θ(w;t)

w − z dw, Γ := s1γ + s5γ̃ (4.52)

where the contours γ, γ̃ are as in Fig.4.2. Note that the two contours overlap with the same orientation
on the ray [0,∞3]. The function G defined by (4.52) coincides with Gk in each appropriate sector, since
they satisfy the same Riemann-Hilbert jumps and both G(z)eθ(z) and Gk(z)e

θ(z) are normalised with
behaviour O

(
z−1

)
at infinity.

To prove the normalisation it is sufficient to use the formula (4.52) for G and the asymptotics (4.23)
for Gk. Indeed, writing

1

w − z = −1

z

(
1 +

w

z
+O

(
z−2

))
(4.53)

we find
G(z)eθ(z;t) = − 1

2πiz

∫

Γ

pn(w)we
2θ(w;t)dw +O

(
z−2

)
, (4.54)

which shows that G(z) = O
(
z−1

)
as z →∞. We obtain similar asymptotics for Gk(z) from the asymp-

totics (4.23). Taking J = n + 1 we see the Wronskian matrix of the ODE (4.22) for the pair of solutions
(F,Gk) has the following asymptotic expansion (using ′ = d

dz ):
[
F (z) Gk(z)
F ′(z) G′

k(z)

]
∼
[
zneθ(z) −z−n−2e−θ(z)

zn+2eθ(z) z−ne−θ(z)

] (
I+O

(
z−1

))
,

z →∞, z ∈ Sk ∪ Sk+1, j = 0, 2, 4

(4.55)

The (1, 2) entry of the Wronskian shows that Gk(z)e
θ(z;t) = O

(
z−1

)
. Therefore G(z) and Gk(z) coincide

in each appropriate sector as claimed.

These considerations imply the degenerate orthogonality of the polynomials pn(z). Taking F and G
given as above, it follows that (4.55) is the asymptotic expansion of F andG in each of the sectors (4.49).
Thus the asymptotic

G(z) =
e−θ(z)

2πi

∫

Γ

pn(w)e
2θ(w)

w − z dw (4.56)

=− 1

z

e−θ(z)

2πi

∫

Γ

pn(w)e
2θ(w)

(
1 +

w

z
+ · · ·+ wn+1

zn+1
+ . . .

)
dw ∼ −z−n−2e−θ(z) (4.57)

implies the vanishing of the integrals:
∫

Γ

pn(z)z
ke2θ(z)dz, k = 0, 1, . . . , n− 1, n. (4.58)

Identifying κ = s1 and κ̃ = s5 we find Therefore the polynomials pn are degenerate orthogonal as
claimed. ■

In order to prove the converse of the previous theorem we need the following lemma, which makes
use of the basic properties of the indicial equation associated to an ODE; we refer the reader to [Olv97].

Lemma 4.11. Consider the second order ODE

d2y

dz2
− V (z)y = 0. (4.59)

Suppose that z = z∗ is a (possible) singularity of the potential V (z) and it is a pole of order at most 2. Assume
that it is an apparent singularity, in the sense that the two linearly independent solutions to the ODE are actually
analytic at the point z = z∗. Then, V (z) is locally analytic at z∗.
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Proof. We argue by contradiction and consider separately the cases when V (z) has a double pole and
when V (z) has a simple pole.

• Case 1: simple pole. Suppose that near the singular point z = z⋆ the potential is of the form

V (z) =
a

ζ
+ b+O (ζ) (4.60)

with a ̸= 0 and ζ = z − z⋆. The indicial equation of the ODE

d(d− 1) = 0 (4.61)

has two solutions d1 = 1 and d2 = 0 differing by a non-zero integer d1− d2 = 1, meaning that that
there are two linearly independent solutions y1(z), y2(z) such that

y1(z) = O
(
ζd1
)
, (4.62)

y2(z) = O
(
ζd2
)

(4.63)

as z → z⋆. But it is evident that y2(z) = 1 + O (ζ) cannot solve the differential equation (4.59)
since the left of the equation is analytic at z = z⋆ and the right side has a pole at z = z⋆ This is a
contradiction, and so V (z) cannot have a simple pole.

• Case 2: double pole. Suppose that near the singular point z = z⋆ the potential has the shape

V (z) =
a

ζ2
+
b

ζ
+O (1) (4.64)

with a ̸= 0 and again we denote ζ = z − z⋆. The indicial equation now gives

a =d(d− 1) . (4.65)

Let d1, d2 be the two solutions of the indicial equation (4.65). By the assumption that the solutions
to the ODE are all analytic, we must have that d1 and d2 must be non-negative integer and not
equal to each other (if d1 = d2 then one of the solutions has a logarithmic singularity). Note that
d1 = d2 if and only if d1 = d2 = 1/2, so we may simply assume that d1, d2 are non-negative
integers. Rewriting the equation d1(d1 − 1) = d2(d2 − 1) as

(d1 − d2)(d1 + d2 − 1) = 0 (4.66)

we see that the only non-negative integer solutions are d1 = 0 and d2 = 1 and vice versa. In either
case from the indicial equation we find that a = 0, which is a contradiction. Therefore V (z) cannot
have a double pole.

■

We now are ready to prove the converse of Theorem 4.10, namely that the degenerate orthogonal
polynomials are precisely the polynomial part of the quasi-polynomial solutions to the Shapiro-Tater
eigenvalue problem (1.4).

Theorem 4.12. Suppose that pn(z) is a 1-degenerate orthogonal polynomial with respect to the weight w(z) =
e2θ(z;t)dz on the contour Γ := κγ + κ̃γ̃ introduced in Theorem 4.10. Then F (z) = pn(z)e

θ(z;t) is a quasi-
polynomial solution of the boundary problem (1.4)-(1.5) with J = n+ 1.

Proof. Suppose that pn(z) satisfies
∫

Γ

pn(w)w
ke2θ(w;t)dw = 0, k = 0, 1, . . . , n, (4.67)
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namely, pn(z) is a degenerate orthogonal polynomial with respect to the measure dµ(z) = e2θ(z;t)dz on
the weighted contour Γ as in (4.47). Let us define the functions

F (z) := pn(z)e
θ(z;t), (4.68)

G(z) :=
e−θ(z;t)

2πi

∫

Γ

pn(w)e
2θ(w;t)dw

w − z . (4.69)

We claim the WronskianW = Wr{F,G} = FG′−F ′G is constant. Indeed, the degenerate orthogonality
condition implies that

G(z) ∼
(
hnz

−n−2 +O
(
z−n−3

))
e−θ(z;t), z →∞ (4.70)

where the leading factor is

hn := − 1

2πi

∫

Γ

pn(w)e
2θ(w;t)wn+1dw. (4.71)

Furthermore, by differentiating (denoting ′ = d
dx ) we find

G′(z) =− θ′(z)G(z) + e−θ(z;t)

2πi

∫

Γ

pn(w)e
2θ(w;t)

(w − z)2 dw (4.72)

=− θ′(z)G(z) + 1

z2
e−θ(z;t)

2πi

∫

Γ

pn(w)e
2θ(w;t)

(
1 + 2

w

z
+ 3

w2

z2
+ . . .

)
dw (4.73)

=e−θ(z;t)
(
−hnz−n +O

(
z−n−1

))
+

1

z2
e−θ(z;t)

2πi
O
(
z−n−1

)
(4.74)

=e−θ(z;t)
(
−hnz−n +O

(
z−n−1

))
. (4.75)

Additionally, since pn(z) is a monic polynomial, we have that F (z) ∼ zneθ(z;t) and F ′(z) ∼ zn+2eθ(z;t),
which means that the Wronskian is bounded at infinity, i.e.

W (z) = F ′(z)G(z)− F (z)G′(z) = −2hn +O
(
z−1

)
, z →∞. (4.76)

Using the fact that the derivative of the Cauchy transform G(z) satisfies the jump condition

G′
+(z)−G′

−(z) = skF
′(z), z ∈ γ, γ̃, (4.77)

we can see that the Wronskian has no jump-discontinuities since on each contour z ∈ γ, γ̃ we have

W+ = F ′G+ − FG′
+ = F ′(skF +G−)− F (skF ′ +G′

−) = F ′G− − FG′
− =W−. (4.78)

Finally, since W is built from locally analytic functions, it also follows that W (x) has no poles and so W
must be an entire function. We observe that W (z) is bounded at infinity since F ′G,FG′ are bounded in
the complement of the contour. By the theorem of Liouville we conclude that W (x) must be a constant,
i.e.

W (z) = F ′(z)G(z)− F (z)G′(z) ≡ −2hn. (4.79)

Differentiating this equation gives that F ′′/F ≡ G′′/G. Let us denote by V (z) this ratio; then both F
and G satisfy a 2nd order linear ODE of the form:

y′′ − V (z)y = 0 with potential V (z) :=
F ′′(z)
F (z)

. (4.80)

We can rewrite the potential using the defining expression F (z) = pn(z)e
θ(z) in terms of the polynomial

pn(z), which gives us:

V (z) = θ′′(z) + θ′(z)2 + 2θ′(z)
p′n(z)
pn(z)

+
p′′n(z)
pn(z)

. (4.81)

Let z0 be one of the zeros of pn of multiplicity d and write pn(z) = (z−z0)dh(z). Expand the potential
(4.81) near z = z0:

V (z) =
d(d− 1)

(z − z0)2
+

2d

z − z0

(
h′(z0)
h(z0)

+ θ′(z0)

)
+O (1) , z → z0. (4.82)
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This shows that V (z) may have at most a second-order pole, depending on the multiplicity of the zero
z0. But both F (z) and G(z) are analytic near z = c and satisfy (4.80), and so we deduce that all the
singularities of the ODE are apparent. We can thus apply Lemma 4.11 to the ODE (4.80), from which it
follows V (z) = F ′′/F is an entire function.

We conclude that d = 1, namely all the zeros z1, . . . , zn of the polynomial pn(x) are simple and we
obtain the following singular expression for the potential:

V (z) = θ′′(z) + (θ′(z))2 + 2nz + 2

n∑

j=1

zj +

n∑

j=1

1

z − zj


θ′(zj) +

n∑

k=1
k ̸=j

1

zj − zk


 . (4.83)

Since V (z) must be entire, the zero residue condition implies that

θ′(zj) =
n∑

k=1
k ̸=j

1

zk − zj
, j = 1, . . . , n. (4.84)

This gives the potential

V (z) = z4 + tz2 + 2z(n+ 1) +
t2

4
+ 2

n∑

j=1

zj (4.85)

which coincides with the potential in (1.4) after identifying Λ = t2

4 + 2
∑n

j=1 zj ■

Remark 4.13. This proof shows that V (z) is a quartic polynomial if and only if the zeroes z1, . . . , zn
of pn(z) are simple and satisfy a Fekete type equilibrium property (4.84). This curious observation is
generalised to the zeroes of all non-hermitian degenerate orthogonal polynomials and it is the main
issue under consideration in Chapter 5.

Corollary 4.14. The following statements are equivalent:

1. The Shapiro-Tater boundary problem (1.4) admits quasi-polynomial solutions F (z) = pn(z)e
θ(z) where

pn(z) is a polynomial of degree n.

2. The polynomial pn(z) is a 1-degenerate orthogonal polynomial of degree n on the weighted contour Γ =
κγ + κ̃γ̃ with the weight w(z) = eθ(z); and where κ = s1, κ̃ = s5 are explicitly given in terms of pn(z)
via the formulæ (4.33).

4.2.3 Degenerate spectrum

In this section we prove a key theorem that will be necessary for what follows. It characterises the
degenerate spectrum, i.e. the repeated eigenvalues, of the Shapiro-Tater eigenvalue problem (1.4) in
terms of the vanishing of the square of the quasi-polynomials.

Theorem 4.15. The following statements are equivalent:

1. The value of t ∈ C is such that the Exactly Solvable spectrum of (1.4) has a repeated eigenvalue.

2. The values of J, t,Λ in (1.4) satisfy

Cn(t, λ) = 0,
d

dλ
Cn(t, λ) = 0, J = n+ 1 ∈ N, (4.86)

where Cn(t, λ) is the characteristic polynomial defined in (1.10) and λ = Λ− t2

4 .

3. There is a quasi-polynomial solution pn(x)eθ(x;t) of (1.4) that satisfies
∫

γ

(
pn(z)e

θ(z;t)
)2

dz = 0,

∫

γ̃

(
pn(z)e

θ(z;t)
)2

dz = 0 (4.87)

where γ and γ̃ are defined as in Theorem 4.10 (wedge contours from ∞1 → ∞3 and ∞3 → ∞5 respec-
tively).

42



Proof.

(1⇒2) Suppose that y(z) is a solution to the eigenvalue problem (1.4) with an associated eigenvalue
Λ of algebraic multiplicity greater than 1. Then y(z) = p(z)eθ(z;t) must be a quasi-polynomial
according to Proposition 4.7, and we must have that J = n+ 1.

It is clear that Λ is a repeated eigenvalue of (1.4) if and only if λ = Λ − t2

4 is an eigenvalue
of the polynomial differential equation (1.7), and this happens precisely when the characteristic
polynomial Cn(t, λ) in (1.10) vanishes.

Moreover, this eigenvalue is repeated precisely then the derivative of the characteristic polyno-
mial d

dλCn(t, λ) also vanishes.

(2⇒1) This is immediate consequence of Lemma 4.6 together with the fact that the derivative of a poly-
nomial vanish at each root of multiplicity higher than one.

(2⇒3) Suppose that the statement 2 is satisfied. This means the parameter t ∈ C must be such that the
eigenvalue Λ has algebraic multiplicity at least 2 and so we can consider the generalized eigen-
vector.

We kindly remind the reader that if v ∈ Cn+1 is the eigenvector of the matrix Mn(t) in (1.9) with
eigenvalue λ, then a generalized eigenvector w ∈ Cn+1 satisfies the equation

(M − λI)w = v. (4.88)

Thus the generalized eigenvector equation associated to the linear operator (1.7) takes the form of
the following differential equation for a polynomial r(x) of degree at most n:

d2r

dz2
+ 2

(
z2 +

t

2

)
dr

dz
− (2(J − 1)z + λ)r = pn(z). (4.89)

The homogeneous part of this differential equation is precisely (1.7), therefore two linearly inde-
pendent are given by pn(z) (a polynomial of degree n = J − 1) and

qk(z) = pn(z)

∫ z

∞k

F (w)−2dw, (4.90)

where F (z) := pn(z)e
θ(x;a) is the a quasi-polynomial and we can choose any k = 0, 2, 4. Then we

can find a particular solution r0(z) of (4.89) by “variation of parameters” as follows:

r0(z) := pn(z)

∫ z

∞0

F (s)−2

(∫ s

∞1

F (w)2dw

)
ds

︸ ︷︷ ︸
H(z)

. (4.91)

This solution of (4.89) is defined up to addition of a linear combination of pn(z), q0(z), so we mus
verify that we can choose constants A,B such that r0(z) + Apn(z) + Bq0(z) is a polynomial of
degree at most n. Clearly here only the value of B is relevant (since pn is already a polynomial).
Thus the issue boils down to whether r0 +Bq0 is a polynomial for some value of B.

We first observe that B must be zero. Indeed, consider the asymptotic behaviour as z → ∞1:
the inner integral defining H(z) tends to zero at exponential rate as as z → ∞1 and hence one
sees that H(z) is bounded. However, qk(z) has dominant exponential growth in this direction.
Thus we necessarily have B = 0 for otherwise r = r0 + Bq0 is not polynomially bounded in the
direction of∞1.

We deduce that r0 must itself be a polynomial. Now we consider the behaviour of r0 near∞3,∞5.
We can write, for example for∞3,

r0(z) = pn(z)

∫ z

∞0

F (w)−2

(∫ ∞3

∞1

F (s)2ds+

∫ w

∞3

F (s)2ds

)
dw

=

(∫ ∞3

∞1

F (s)2ds

)
q0(z) + pn(z)

∫ z

∞0

F (w)−2

(∫ w

∞3

F (s)2ds

)
dw (4.92)
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The second term above is polynomially bounded near ∞3, by the same argument used to show
that H is bounded near∞1. But since q0 is exponentially dominant also near∞1 we deduce that
the

∫∞3

∞1
F (s)2ds = 0. One similarly deduces

∫∞3

∞5
F (s)2ds = 0, which establishes (4.87).

(3⇒2) Consider the expression (4.91). It is easy to see directly that it satifies the generalized eigenvector
equation (4.89); we must only verify that the conditions (4.87) guarantee that r0(z) is a polynomial.
But this follows again from the Liouville theorem and using (4.92).

■

Remark 4.16. The Theorem 4.15 seems at first sight nothing short of a miracle; indeed once we fix
J = n + 1 ∈ N, then the ODE (1.4) has only two continuous parameters t, λ. However the multiple
eigenvalue condition apparently involves now three equations which are:

(i) the existence of a quasi-polynomial solution which determines λ as a function of t as per Lemma 4.6;

(ii) the two equations involving the vanishing of the integral of the square of quasi-polynomials (4.87)
for the parameter t.

However, the system is actually not overdetermined due to the following reasoning: for a given J =
n+1 ∈ N, if the pair (t,Λ) is in the Exactly Solvable spectrum then Theorem 4.10 demonstrates that pn(z)
is a degenerate orthogonal polynomial, namely

κ
∫

γ

p2n(z)e
2θ(z;t)dz + κ̃

∫

γ̃

p2n(z)e
2θ(z;t)dz = 0, (4.93)

with γ, γ̃,κ, κ̃ defined in the same theorem. The coefficients κ, κ̃, which are explicitly given by the
Stokes multipliers as in Theorem 4.10, cannot be both vanishing for otherwise the Stokes phenomenon
of the ODE would be trivial by (4.31), which is not possible. Then the two equations (4.87) yield only
one additional constraint.

4.3 Stokes phenomenon via exact WKB

In this section we make use of the exact WKB analysis to study the properties of the Shapiro-Tater
eigenvalue problem (1.4) and the Jimbo-Miwa anharmonic oscillator (4.14).

To begin, we see that after scaling appropriately, both ODEs become of the form (3.28), and so we
are able to apply the exact WKB method to study these ODEs. The small parameter ℏ is dependent on
each case. These scalings work as follows.

Shapiro-Tater potential.

VST(z; t,Λ) = z4 + tz2 + 2(n+ 1)z + Λ,

ζ = (n+ 1)−
1
3 z, s = (n+ 1)−

2
3 t, E = (n+ 1)−

4
3Λ,

(4.94)

where (t,Λ) are part of the Exactly Solvable spectrum of the eigenvalue problem (1.4)-(1.5).

Jimbo-Miwa potential.

VST(z; a, b) = z4 + az2 + (2n+ 1)z +

(
7a2

36
+ 10b

)
,

ζ =

(
n+

1

2

)− 1
3

z, s =

(
n+

1

2

)− 2
3

a, b̂ =

(
n+

1

2

)− 4
3

b,

(4.95)

where a is a pole of residue −1 of a solution to PII with α = n ∈ N and b is the coefficient in the Laurent
expansion, as in (4.3).
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In either case the scaling yields an ODE with the same potential, but with different small parameter
ℏ depending on each case:

ℏ2
d2y

dζ2
−
(
ζ4 + sζ2 + 2ζ + E

)
y = 0, ℏ =

{
(n+ 1)−1 in Shapiro-Tater case
(n+ 1

2 )
−1 in Jimbo-Miwa case

(4.96)

The potential, which we denote

Q(ζ; s, E) := ζ4 + sζ2 + 2ζ + E, (4.97)

is independent of n. Crucially, this would not be the case if we took ℏ = n−1 as our large parameter for
the Jimbo-Miwa potential VJM, instead giving a potential dependent on h = n−1.

4.3.1 Exact WKB applied to the quartic potential

When we apply the exact WKB method to the potential (4.97) we will encounter the differential
√
Q(ζ; s, E)dζ,

which is multivalued in the C with branch points at the zeroes of the potentialQ(ζ; s, E). For this reason
we make the following definitions to avoid ambiguity in the upcoming calculations.

Definition 4.17 (Square root of Q). Choosing the branch cuts B ⊂ C of
√
Q(ζ) in the finite part of the

complex plane in an arbitrary way, the function
√
Q(z) becomes single valued in the complement of

B. We fix a determination of
√
Q(ζ) in such a way that

√
Q(ζ) ∼ ζ2 as |ζ| → ∞. This choice identifies

the first sheet of the Riemann surface Σ. The second sheet correspond to the choice
√
Q(ζ) ∼ −ζ2 as

|ζ| → ∞.

To minimize confusion when performing integrations along the branch cuts we will make the fol-
lowing explicit definition.

Definition 4.18 (Branch cut integration). Let τ and τ̂ be two zeroes of Q(z; s, E) joined by a branch cut.
We denote by ∫ τ̂

τ

√
Q(ζ+; s, E)dζ (4.98)

to be the integral of
√
Q(z; s, E) along the + side when the branch cut is oriented from τ to τ̂ . Similarly,

we denote by ∫ τ̂

τ

√
Q(ζ−; s, E)dζ (4.99)

the corresponding integral along the − side of the branch cut. As usual, the + and − sides correspond
to left side and right side of the oriented contour, respectively.

With this definition in mind, we have the following relation between periods and branch cut inte-
gration: ∮

γ

√
Q(ζ; s, E)dζ = 2

∫ τ̂

τ

√
Q(ζ+; s, E)dζ = −2

∫ τ̂

τ

√
Q(ζ−; s, E)dζ (4.100)

where γ is an clockwise contour surrounding τ and τ̂ .

It is useful to relate the periods of S1 to the periods of S−1. To this end we have the following

Proposition 4.19. Let us denote

I(s, E) =

∮

γ

S−1(ζ; s, E)dζ (4.101)

where γ is a closed contour and S−1(ζ; s, E) =
√
Q(ζ; s, E) as in (3.34). Then corresponding period of S1 in

(3.34) is given in terms of I(s, E) by
∮

γ

S1(ζ; s, E)dζ =

(
− ∂2

∂s∂E
− s

6

∂2

∂E2

)
I(s, E) (4.102)
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(c) Graph of type Z

Figure 4.3: Generic decorated Stokes graph configurations for a quartic polynomial Q(x). Solid lines
depict the Stokes curves emanating from the turning points τj , dashed lines denote the triangulation of
the hexagon and green curvy lines correspond to our choice of branch cuts. We remark that for various
(s, E) ∈ C2 the potential Q(ζ; s, E) may have a different different Stokes lines in C but the underlying
Stokes graph will be topologically identical to one of the types depicted.

Proof. From the expression of the quartic potential (4.97) we see that

∂E
√
Q(x; s, E) =

1

2
√
Q(x; s, E)

, (4.103)

where we denote ∂E = ∂
∂E . Now, dropping the explicit dependence on ζ, s, E, we write

S1 =
1

48

Q′′

Q
3
2

− 5

24

(
1√
Q

)′′
, (4.104)

where ′ = ∂
∂z The periods of the second term in (4.104) vanish because this gives an exact differential;

the first term reads

1

48

Q′′

Q
3
2

=
6x2 + s

24Q
3
2

= −(6∂s + s∂E)

(
1

12Q
1
2

)
= −(6∂s + s∂E)∂E

(
1

6
Q

1
2

)
. (4.105)

Integrating (4.104) along γ and using the identity (4.105) completes the proof. ■

In the quartic case we will work under the assumption that all the turning point are simple and that
there are no saddle trajectories, as specified below.

Assumption 4.20. The following assumptions shall prevail.

• Simplicity. The roots of the potential are all simple. In the case of the potential Q(x; s, E), there are
no repeated roots if and only if (s, E) satisfy:

Es4 − 8E2s2 + 16E3 − s3 + 36Es− 27 ̸= 0. (4.106)

• Genericity. There are no saddle trajectories i.e. there are no Stokes’ curves connecting two turning
points. Saddle trajectories can only occur if there is a contour γ in the homology group of the
Riemann surface Σ for which

Im

∮

γ

√
Q(z)dz = 0. (4.107)

The assumption of simplicity means there are exactly three Stokes’ curves emanating from each
turning point. The assumption of genericity implies that all the Stokes’ curves must extend to∞. With
these assumptions we can classify all the possible Stokes graphs.
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Proposition 4.21 (Classification of generic Stokes graph). Under the Assumptions 4.20 and with determi-
nation of

√
Q in Definition 4.17 (with the branch cuts chosen as in Fig. 4.3), the Stokes graphs are in one-to-one

correspondence with the triangulations of the hexagon, so there are 14 such configurations. Three of them are
topologically distinct (as graphs), they’re depicted in Fig. 4.3 and named E,D and Z. The remaining configura-
tions can be obtained from the graphs of types E,D and Z shown in Fig. 4.3 by a Z6 rotation and by a reflection
along the line∞3 →∞0.

Proof. Assuming simplicity, from each turning point there are exactly three Stokes curves emanating
from it. These Stokes curves end either at infinity or at another turning point. Assuming genericity
the latter cannot happen, therefore the Stokes curves determine an ideal triangulation of the Riemann
sphere with a small disk around infinity removed and with 6 marked points in the boundary (corre-
sponding to the asymptotic directions at infinity). These triangulations correspond to triangulations of
the hexagon, and there are 14 such triangulations.

Indeed, we can view these 6 marked points as determining a (topological) hexagon. Furthermore,
each of the turning points τj determines a triangle inside the hexagon by connecting the asymptotic
directions at infinity with a Stokes curve originating from τj . Up to rotations and reflections of the
hexagon there are 3 distinct such triangulations, named E, D and Z as depicted in Fig. 4.3. The 14 pos-
sible configuration can be obtained as follows. From configurationD we obtain one other configuration
rotating by 2π/6. From configuration Z we obtain 6 distinct configurations, 3 of them corresponding to
a Z3 (i.e. 2π/3) rotation, and another 3 corresponding to a reflection followed by a Z3 rotation. Finally
from configuration E+ we obtain 6 distinct configurations corresponding to a Z6 (i.e. 2π/6) rotation.
Finally, 2 + 3 + 3 + 6 = 14 as claimed. ■

4.3.2 WKB Riemann-Hilbert problem

In this section we coordinate the classification of Stokes graphs in Proposition 4.21 with the connec-
tion formulæ in Theorem 3.18 and Proposition 3.19 in order to formulate a Riemann-Hilbert problem
satisfied by the WKB solutions.

Riemann-Hilbert Problem 4.22 (Quartic WKB jumps). Fix a quartic polynomial potentialQ(z) and suppose
that its Stokes graph is of type D,E or Z as indicated in Fig. 4.3. The Riemann-Hilbert problem for the vector
valued function Ψ such that Ψ|D = (Ψ

(D)
+ ,Ψ

(D)
− ) with Ψ|D defined in Theorem 3.18, consists of the following

oriented contours in C with their associated jump matrices.

1. Square root branch cuts: To each square-root branch cut (coloured green in Fig. 4.4 ), with the orientation
indicated in Fig. 4.4, we associate the jump matrix

G :=

[
0 i
i 0

]
. (4.108)

2. Fourth root branch cuts: in configurations E and Z there is an extra jump contour corresponding to the
fact that √

Sodd(x, ℏ) ∼ h−1/2Q(x)1/4 +O
(
ℏ1/2

)
. (4.109)

To each fourth-root branch cut we associate the jump matrix Y = G2 = −1. The fourth-root branch cuts
are coloured in yellow in Fig. 4.4. Note there is no need to specify the orientation of these contours.

3. Stokes curves: along each Stokes curve oriented towards ⊕ and away from ⊖ we assign the jump matrices
B and R (respectively)

B :=

[
1 0
−i 1

]
, R :=

[
1 i
0 1

]
. (4.110)

The Stokes curves are coloured blue or red, respectively, in Fig. 4.4.
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(b) RHP for graphs of type E.
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(c) RHP for graphs of type Z.

Figure 4.4: Generic WKB Riemann-Hilbert problem corresponding to each Stokes graph configuration
of the quartic polynomial potential Q(x).

4. Inner ideal paths: along the inner ideal paths with the orientation in Def. 3.13 (and indicated in Fig. 4.4)
we associate the following jump matrix corresponding to the connection formula in Proposition 3.19:

Vjk := exp (σ3vjk) =

[
evjk 0
0 e−vjk

]
, vjk(ℏ) =

∫ τk

τj

Sodd(z+, ℏ)dz (4.111)

where j, k ∈ {0, 1, 2, 3} and τj , τk are turning points. These contours are denoted by a brown dashed line
in Fig. 4.4.

5. Outer ideal paths: along the outer ideal paths separating the external regions from the Stokes regions we
associate the jump matrix corresponding to the connection formula between turning points and infinity:

Wj := exp(σ3wj) =

[
ewj 0
0 e−wj

]
, wj(ℏ) := R(z; ℏ)−

∫ z

τj

Sodd(w, ℏ)dw. (4.112)

where j ∈ {0, 1, 2, 3}, τj is a turning point and R(x; ℏ) is defined in (3.42) and in the quartic polynomial
case it has the following asymptotics

R(z; ℏ) :=
1

ℏ
lim
p→∞

[∫ z

p

√
Q(z)dz −

(
p3

3
+
t

2
p+ log p

)]
+
∑

j≥0

ℏ2j+1

∫ z

∞
S2j+1(z)dz (4.113)

=
1

ℏ

(
z3

3
+
t

2
z + log(z)

)
+O

(
z−1

)
O (ℏ) , z →∞. (4.114)

The outer ideal paths are denoted by a black dashed line in Fig. 4.4.

As a consequence of Proposition 4.21, the construction above produces, up to rotations and reflec-
tions, three distinct WKB Riemann-Hilbert problem, which are shown in Fig. 4.4.

This Riemann-Hilbert problem allows us to express the normalised solutions Ψ(D) in a particular
Stokes region D as a linear combination of the normalised solutions Ψ(D′) in any other region D ′. This
linear combination is dictated by the jump matrices in the Riemann-Hilbert problem above.

Doing this one can verify that the monodromy is trivial around any of the finite vertices of the
Riemann-Hilbert Problems, i.e. around any of the vertices of the graphs in Fig. 4.4 that are not an
asymptotic direction at infinity. This is a consequence (or rather a requirement when building the WKB
Riemann-Hilbert problem) of the fact that any solution to the Schrödinger equation (3.28) with the
polynomial potential Q(ζ; s, E) is entire so that solutions have no monodromy in the finite complex
plane. Indeed, a simple computation of each possible configurations gives

• Type 1: RB−1G−1B−1 = I,

• Type 2: GB−1RY B−1 = I,
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Figure 4.5: Possible configuration of edges incident in each finite vertex of the decorated Stokes graph.
Around each of these points the monodromy is trivial. Note that the configurations of type 1,2 and 5
correspond to edges emerging from a turning point τ ∈ T, where as the vertex in configurations of type
3 and 4 are the intersection point of a branch cut and inner ideal path.

• Type 3: GV −1
jk G−1V −1

jk = I,

• Type 4: Y VjkY V −1
jk = I,

• Type 5: GB−1GB−1GB−1 = I,

where each type refers to a possible configuration of edges near a vertex in Fig. 4.4, as indicated in the
Fig. 4.5

In order to simplify the upcoming computations we will make some notational definitions. Given
turning points τj and τk of the potential Q(ζ; s, E) connected by a branch cut as indicated in Fig. 4.4, we
will denote

ξjk := exp(2vjk) = exp

(
2

∫ τk

τj

Sodd(ζ+, ℏ)dζ

)
(4.115)

with the determination of Sodd given in Def. 4.17 and the boundary value ζ+ in accordance to Def. 4.18.
Note that ξjk is in fact an asymptotic series in ℏ, however, for convenience we drop the dependence on
ℏ. We will call the above parameter the Fock-Goncharov parameters, in reference to the works [GMN13,
IN14, All19]. Confusingly, we will abuse the same notation to indicate the “exact” Fock-Goncharov
parameters, namely, the result of the Borel resummation of the asymptotic series ξjk. To phrase it
differently, we will not distinguish in the notation the Borel resummation from its asymptotic expansion
in ℏ.

In each configuration of a Stokes graph, the Fock-Goncharov parameters satisfy certain relations
corresponding to the homological nature of the integrals through which they are defined.

Proposition 4.23. Suppose that (s, E) ∈ C2 determine a Stokes graph of type D. Then the Fock-Goncharov
parameters satisfy the following equations:

ξ10ξ20ξ30 = e
2πi
ℏ , (4.116)

ewj−wk = ξk0ξj0, (4.117)

where (j, k) ∈ {(1, 2), (2, 3), (3, 1)}. Similarly, if (s, E) ∈ C2 determine a Stokes graph of type E or type Z, then
the Fock-Goncharov parameters satisfies:

ξ01ξ23 = e
2πi
ℏ . (4.118)

Proof. According to Definition 4.18 we express the Fock-Goncharov in terms of the contour integrals on
the Riemann surface Σ:

ξjk = exp

(∮

γjk

Sodd(ζ; ℏ)dζ

)
(4.119)

where γjk is a contour surrounding the turning points τj and τk in the clock-wise direction.
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Consider a Stokes graph of type D. One can readily verify that the contour 1 γ10 + γ20 + γ30 is
homologous to the sum of two contours

γ10 + γ20 + γ30 = Γ∞ + Γτ0 . (4.120)

Here Γ∞ is a contour which surrounds infinity with winding number 1 and Γτ0 a contour surrounding
τ0 with winding number 2. Due to the winding of Γτ0 and the location of the branch cuts, the following
integral vanishes: ∮

Γτ0

Sodd(ζ, ℏ)dζ = 0. (4.121)

Thus the only contribution comes from the residue at infinity:
(∮

γ01

+

∮

γ02

+

∮

γ03

)
Sodd(ζ, ℏ)dζ =Res

ζ=∞
ℏ−1

√
Q(ζ; s, E)dζ =

2πi

ℏ
. (4.122)

Exponentiating this expression we obtain the first relationξ01ξ02ξ03 = e
2πi
ℏ . The second relation in con-

figuration D follows from the definition of wj in (4.112):

wj − wk =

∫ z

τk

Sodd(ζ, ℏ)dζ −
∫ z

τj

Sodd(ζ, ℏ)dζ (4.123)

=

∫ τj

τk

Sodd(ζ, ℏ)dζ (4.124)

=

∫ τ0

τk

Sodd(ζ+, ℏ)dζ +
∫ τj

τ0

Sodd(ζ−, ℏ)dζ (4.125)

=

∫ τ0

τk

Sodd(ζ+, ℏ)dζ −
∫ τ0

τj

Sodd(ζ−, ℏ)dζ (4.126)

=

∫ τ0

τk

Sodd(ζ+, ℏ)dζ +
∫ τ0

τj

Sodd(ζ+, ℏ)dζ. (4.127)

Here we have made use of the orientation of the branch cuts of Stokes graphs of type D as in Fig. (4.4),
and this imposes the condition (j, k) ∈ {(1, 2), (2, 3), (3, 1)}. Exponentiating the previous expression
gives the relation ewj−wk = ξk0ξj0.

Next, in a Stokes graph of type D or Z have the same the topology of the branch cuts so that we can
consider both cases simultaneously. One readily verifies that the contour γ01 + γ23 is homologous to a
contour surrounding infinity. Thus

(∮

γ01

+

∮

γ23

)
Sodd(ζ, ℏ)dζ =Res

ζ=∞
ℏ−1

√
Q(ζ; s, E)dζ =

2πi

ℏ
. (4.128)

Exponentiating the expression above we obtain the relation ξ01ξ23 = e
2πi
ℏ . ■

We are now ready to formulate the main theorem of this section, where we will compute the Stokes
matrices of the WKB ODE (3.28) in terms of the Fock-Goncharov parameters.

Theorem 4.24. The Stokes matrices

Sj =
[
1 0
sj 1

]
, j = 0, 2, 4, Sj =

[
1 sj
0 1

]
, j = 1, 5, S3 =

[
1 s3
0 1

]
e

2iπ
ℏ σ3 , (4.129)

in each of the WKB Riemann-Hilbert problems in Fig. 4.4 are expressed in terms of the contour integrals vjk, wj

1Rather, their class in the homology group H1(Σ) of the Riemann surface Σ.
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in (4.111), (4.112) and the Fock-Goncharov parameters ξjk in (4.115) as follows:

Type D Type E Type Z

s0 = −ie2w1(ξ10ξ30 + ξ10 + 1),

s1 = −ie−2w1

s2 = −ie2w2(ξ20ξ10 + ξ20 + 1),

s3 = −ie−2w2

s4 = −ie2w3(ξ30ξ20 + ξ30 + 1),

s5 = −ie−2w3 .

s0 = −ie2w0(ξ01ξ12ξ32
+ξ01ξ12 + ξ01 + 1),

s1 = −ie−2w0

s2 = −ie2w1(ξ01 + 1),

s3 = −ie−2w2(ξ12 + 1)

s4 = −ie2w3(ξ32 + 1),

s5 = −ie−2w3 .

s0 = −ie2w0(ξ01ξ12 + ξ01 + 1),

s1 = −ie−2w0

s2 = −ie2w1(ξ01 + 1),

s3 = −ie−2w3(ξ32ξ12 + ξ32 + 1)

s4 = −ie2w3

s5 = −ie−2w2(ξ32 + 1).

(4.130)

Proof. We compute the Stokes matrices associated to Configuration D of the Riemann-Hilbert problem
in Fig. 4.4. Consider the vertex∞0 in Configuration D, there are seven edges incident on it. The Stokes
matrix S0 is given by the clockwise (about the vertex∞0) product of all the jump matrices corresponding
to the edges incident to∞0 as follows

S0 =W−1
3 BV30BV10BW1 (4.131)

Notice that the jump matrix V30 is in the correct order since we consider the negative side of the branch
cut and

exp

(
2

∫ τ3

τ0

Sodd(z−, ℏ)dz
)

= exp

(
2

∫ τ0

τ3

Sodd(z+, ℏ)dz
)
, (4.132)

where z+ and z− is the boundary values of Sodd(z, ℏ) on the left and right side, respectively, of the
segment [τ0, τ3] oriented as in Fig. 4.4. Therefore we have

S0 = exp [σ3(w1 − w3 + v10 + v30)]

[
1 0
s0 1

]
, s0 = −ie2w1(ξ10ξ30 + ξ10 + 1). (4.133)

We observe that

w1 − w3 = −
∫ x

τ1

Sodd(z, ℏ)dz +
∫ x

τ3

Sodd(z, ℏ)dz =
∫ τ1

τ3

Sodd(z, ℏ)dz. (4.134)

and
v10 + v30 =

∫ τ0

τ1

Sodd(z+, ℏ)dz +
∫ τ0

τ3

Sodd(z+, ℏ)dz =
∫ τ3

τ1

Sodd(z, ℏ)dz (4.135)

where the integral from τ1 to τ3 is with the determination in Def. 4.17 (note there is not branch cut
joining τ1 and τ3 so there is no need to specify boundary values of z±). Therefore we obtain

w1 − w3 + v10 + v30 =

∫ τ1

τ3

Sodd(z, ℏ)dz +
∫ τ3

τ1

Sodd(z, ℏ)dz = 0, (4.136)

and so we obtain
exp (σ3[w1 − w3 + v10 + v30]) = I, (4.137)

and consequently:

S0 =

[
1 0
s0 1

]
, s0 = s0 = −ie2w1(ξ10ξ30 + ξ10 + 1) (4.138)

In a similar manner one can compute the remaining Stokes matrices for each possible configuration. We
omit them here no to bore the reader with tedious calculations.

The extra e2iπℏ
−1σ3 in the form of S3 is due to our choice of branch-cut for the logarithm in (4.113).

The fact that the product of all Stokes matrices is trivial follows by construction. ■
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Remark 4.25 (Gauge arbitrariness). We remind the reader that the Stokes phenomenon is not intrinsi-
cally defined because we can conjugate the fundamental matrix by an arbitrary diagonal matrix. This
freedom translates to the following scaling equivalence for the Stokes parameters s0, . . . , s5:

s2j+1 7→ χs2j+1, s2j 7→ χ−1s2j , χ ∈ C× (4.139)

Using this freedom we can rewrite the Stokes parameters completely in terms of the Fock-Goncharov
parameters ξjk as follows

Configuration D Configuration E Configuration Z

χ = −e2w1

s0 = i(ξ10ξ30 + ξ10 + 1),

s1 = i

s2 = i ξ20ξ10
(ξ20ξ10 + ξ20 + 1),

s3 = i ξ10ξ20

s4 = i ξ30ξ10
(ξ30ξ20 + ξ30 + 1),

s5 = i ξ10ξ30
.

χ = −e2w0

s0 = i(ξ01ξ12ξ32 + ξ01ξ12 + ξ01 + 1),

s1 = i

s2 = iξ01(ξ01 + 1),

s3 = iξ−1
02 (ξ12 + 1)

s4 = iξ03(ξ32 + 1),

s5 = iξ−1
03

χ = −e2w0

s0 = i(ξ01ξ12 + ξ01 + 1),

s1 = i

s2 = iξ01(ξ01 + 1),

s3 = iξ−1
03 (ξ32ξ12 + ξ32 + 1)

s4 = iξ03

s5 = iξ−1
02 (ξ32 + 1).

(4.140)
We chose to leave the factor of i intact in the Stokes parameters for reasons that will become aparent in
the following section.

4.4 Quantization conditions

In this section we derive quantisation conditions for both the zeroes of the Vorob’ev-Yablonskii polyno-
mials (the Jimbo-Miwa case) and for the points of the Exactly Solvable spectrum corresponding to the
repeated eigenvalues in the eigenvalue problem (1.4) (the Shapiro-Tater case).

These quantisation conditions are given in terms Fock-Goncharov coordinates ξjk (or alternatively
in terms of Sodd), and are therefore asymptotic expressions in ℏ. They can be turned into “exact” quan-
tisation equations by the process of Borel resummation, but that is beyond the scope of this thesis. To
leading order these quantization conditions yield a system of equations describing both sets of points
in terms of contour integral of

√
Q(ζ; s, E).

In the Jimbo-Miwa case this is achieved by matching the Stokes’ phenomenon of the Jimbo-Miwa
Lax pair representation of (PII) with the Stokes’ phenomenon of the quartic WKB Riemann-Hilbert
problem (4.24).

In the Shapiro-Tater case it is not enough matching the Stokes phenomenon obtained in Theorem 4.8
as can be seen from Theorem 4.28. For this reason we additionally impose the condition (4.87), which
yields the correct quantisation equations (4.194) from an application of Theorem (4.29).

4.4.1 The Jimbo-Miwa case

The parameters s, E in the potential Q(ζ; s, E) i.e. the parameters t,Λ corresponding to the pole with
residue −1 of the rational solution un and “eigenvalue” of the potential (4.14) are determined by the
implicit requirement that the Stokes phenomenon for the ODE matches the one indicated below.

Indeed it was shown in [BM14] that rational solutions of the Painlevé II equation correspond to
a particular Stokes phenomenon as shown in Fig. 4.6. We recall that the map to the Stokes’ data for
general solution of the Painlevé II transcendent was obtained originally in [IN86], see also [FIKN06].

Theorem 4.26. ([BM14]) The matrices S0, . . . ,S5 in Fig. 4.6 form the monodromy data of the Jimbo-Miwa Lax
pair (2.43) corresponding to the rational solutions of PII.
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S0 =

[
1 0
i 1

]

S1 =

[
1 i
0 1

]
S2 =

[
1 0
i 1

]

S3 =

[
−1 −i
0 −1

]

S4 =

[
1 0
i 1

]
S5 =

[
1 i
0 1

]

Figure 4.6: Stokes data for the Lax pair (2.43) corresponding to rational solutions of Painlevé II

Instead of studying the Stokes’ phenomenon of the Jimbo-Miwa isomonodromic system, we can
instead leverage Proposition 4.5 and study instead the scalar system (4.14). To see this in more detail
consider a rational solution un(t) (2.36) of the PII equation with α = n ∈ Z. Take a pole a of residue
−1, namely a zero of the Vorob’ev-Yablonskii polynomial Yn(t). Let b be the coefficient in the Laurent
expansion as in (4.3), and set Λ = 7a2

36 + 10b as in (4.14). Then, according to Proposition 4.5, the Stokes
phenomenon of the ODE (4.18) must coincide with the one in Fig. 4.6. Viceversa, if the anharmonic
potential (4.18) exhibits the Stokes phenomenon as in Fig. 4.6, then the pair of values a, b characterize
uniquely the solution u(t) of the Painlevé II equation with a pole at t = a through the Laurent expansion
(4.3). Furthermore, this solution must necessarily be a rational of PII, owing to its Stokes parameters.
This idea was first utilised by Masoero in [Mas10a, Mas10b] to study the poles of the tritronquée solu-
tion of the first Painlevé transcendent, which were associated to a cubic anharmonic oscillator.

Thus, to find the positions of a pole, we can find for which values of a, b in (4.18) (with α = n) the
Stokes phenomenon matches Fig. 4.6. Of course the map that associates to the parameters a, b in (4.18)
the Stokes data is highly transcendental.

It is the nature of our problem, however, that we are interested in the behaviour when n is large and
also in the re-scaled plane. Thus we can apply our exact WKB analysis to obtain asymptotic information
on the Stokes parameters using Theorem 4.24 and set up an implicit equation for a, b, or rather their
rescaled counterparts s, E as in (4.97) with the identifications (4.95).

In order to apply the exact WKB method, we set our large parameter to be ℏ−1 = (n + 1/2) in the
Jimbo-Miwa case.. By the general theory in Section 3.2, we construct the WKB solutions associated to
(4.96) as formal power series in ℏ:

ψ
(τ)
± (ζ, ℏ) =

1√
Sodd(ζ; ℏ)

exp

{(
±
∫ ζ

τ

Sodd(w; ℏ)dw

)}
(4.141)

normalized near a turning point τ (i.e. a root of the potential Q(ζ; s, E)).

Theorem 4.27 (Vorob’ev-Yablonskii quantisation). Suppose that (a, b) ∈ C2 determine a rational solution of
PII with α = n and Laurent expansion (4.3). Let us consider the scaled (s, E)-plane

s = ℏ2/3a, E =
7s2

36
+ ℏ4/3b, ℏ−1 = n+

1

2
(4.142)

in accordance to (4.95).

Then the Stokes’ graph for the potential Q(z; s, E) must be of type D and the corresponding Fock–Goncharov
parameters (4.115) must satisfy

ξ10 = ξ20 = ξ30 = −1. (4.143)
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Alternatively, in terms of Sodd, these exact quantisation equations become

πi(2k1 + 1) = 2

∫ τ0

τ1

Sodd(w+, ℏ)dw, (4.144)

πi(2k2 + 1) = 2

∫ τ0

τ2

Sodd(w+, ℏ)dw, (4.145)

πi(2k3 + 1) = 2

∫ τ0

τ3

Sodd(w+, ℏ)dw. (4.146)

Proof. The strategy is very simple: simply take the Stokes data for the Jimbo for the Jimbo-Miwa Lax
pair corresponding to rational solutions of PII in Fig. 4.6 and equate it to the Stokes matrices from the
WKB Riemann-Hilbert problem in each configuration of Theorem 4.24. Note that in this case ℏ−1 =
n+ 1/2 so that the extra factor in S3 in (4.129) becomes

exp

(
2πi

ℏ
σ3

)
= exp

(
πi (2n+ 1)σ3

)
= −I. (4.147)

Therefore the Stokes parameters must satisfy

s0 = s1 = s2 = s3 = s4 = s5 = i. (4.148)

From each configuration of the Stokes graph we obtain a system of 6 equations involving the exponen-
tials of the periods vjk. For example, in configuration D we obtain from (4.140) the following system:

i = i(ξ10ξ30 + ξ10 + 1) (4.149)

i = i
ξ20
ξ10

(ξ20ξ10 + ξ20 + 1), (4.150)

i = i
ξ30
ξ10

(ξ30ξ20 + ξ30 + 1), (4.151)

i = i
ξ10
ξ20

, (4.152)

i = i
ξ10
ξ20

. (4.153)

There are 5 equations instead of 6 because s2 = i with the Stokes parameter as in (4.140) does not yield
any meaningful conditions.

One can readily verify that the only solutions to this system is

ξ10 = ξ20 = ξ30 = −1. (4.154)

Indeed, the last two equations imply that the ξ10, ξ20, ξ30 must be all equal, and the first three equations
reduce their value to the solutions of the polynomial equation x2 + x = 0. Finally note the Fock-
Goncharov coordinates cannot be zero since due to their exponential nature.

Direct inspection of the formulas in Theorem 4.24 shows that it is impossible to satisfy the constraints
(4.148) in configurations E and Z. ■

4.4.2 Shapiro-Tater case

Unlike in the previous section the matching of the Stokes matrices (4.129) to the Stokes’ phenomenon in
Theorem 4.8 is not enough to determine the parameters s, E in the potential Q(ζ; s, E) corresponding
to the degenerate Exactly Solvable spectrum, that is, the parameters t, λ in (1.11) such that λ is an
eigenvalue of algebraic multiplicity at least 2. This is made precise in the following theorem:
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Theorem 4.28. Suppose that (t,Λ) ∈ C2 belong to the ES spectrum, i.e. they determine a quasi-polynomial
solution y = pn(z)e

θ(z;t) to the boundary problem (1.4)-(1.5) with J = n+ 1. Consider the scaled (s, E)-plane

s = ℏ−
2
3 t, E = ℏ−

4
3Λ, ℏ−1 = n+ 1, (4.155)

in accordance to (4.94).

Then the Stokes’ graph for the potential Q(ζ; s, E) must be of type D or E; type Z cannot occur. In the case of
configurations D and E the “exact” Fock–Goncharov parameters ξjk in (4.115) must satisfy one of the following
systems

• Type D (Fig. 4.3a): 



ξ10ξ30 + ξ10 + 1 = 0,

ξ20ξ10 + ξ20 + 1 = 0,

ξ30ξ20 + ξ30 + 1 = 0.

(4.156)

This systems cuts an affine rational curve in C3 given by:

ξ10 = ρ, ξ20 = − 1

ρ+ 1
, ξ30 = −ρ+ 1

ρ
. (4.157)

• Type E (Fig. 4.3c) or its Z3 rotations:




ξ01ξ12(ξ23 + 1)+ ξ01 + 1 = 0,

ξ01 + 1 = 0,

ξ23 + 1 = 0.

(4.158)

This system has the following solution:

ξ01 = −1, ξ23 = −1 ξ12 = 1. (4.159)

Proof. In Proposition 4.7 it was shown that if J = n + 1 and (t,Λ) belong to the ES spectrum (i.e. there
is a solution of the boundary problem (1.4) and (1.5)) then the Stokes parameters s0, s2, s4 all vanish
simultaneously. In Theorem 4.24 we have expressed the Stokes parameters in terms of the exact Fock-
Goncharov parameters ξjk. Thus we only have to see which configurations are compatible with the
three equations 0 = s0 = s2 = s4.

Note that ℏ−1 = (n + 1) and hence e
2iπ
ℏ = 1 in the aforementioned Theorem. Taking the even-

numbered Stokes parameters (4.140) and equating them to zero gives the system (4.156) for Stokes
configuration of type D and the system (4.158) for Stokes configuration of type E. Note that the type E
system (4.158) only determines ξ01, ξ23. The Fock-Goncharov parameter ξ12 is determined by using the
relations in Proposition 4.23. ■

4.4.3 Repeated eigenvalue condition

Theorem 4.28 establishes the conditions for the Vöros symbols to yield a point in the ES spectrum;
together with Theorem 4.28 the conditions are equivalent to the statement that the Stokes’ graph is
either of D or E type and the Fock-Goncharov parameters ξjk satisfy the corresponding conditions
specified in Theorem 4.28.

In addition we must now impose the condition that the eigenvalue is a repeated one: as proved in
Theorem 4.15 this requires that all the integrals of p2ne2θ between∞2k+1 vanish. It was also explained
in the theorem that it suffices to impose one of the three vanishing conditions and the other two will
follow. Thus the strategy now is to compute the integrals

I13 =

∫ ∞3

∞1

pn(ζ)
2e2θ(ζ;t)dζ, I35 =

∫ ∞5

∞3

pn(ζ)
2e2θ(ζ;t)dζ, (4.160)
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Figure 4.7: Labelled regions in the WKB Riemann-Hilbert problem.

using the asymptotic expansion in terms of formal WKB solutions obtained so far.

In order to simplify the upcoming computations, we will label the regions in the WKB Riemann-
Hilbert problem according to Fig. 4.7. This will help us distinguish between the solutions to (3.28)
which are asymptotic to WKB solutions ψ(τj)

± in different regions. We will denote

Ψ
(R)
± (ζ) ∼ ψ(τj)

± (ζ; ℏ) =
1√

Sodd(ζ, ℏ)
exp

(
±
∫ ζ

τj

Sodd(w, ℏ)dw

)
ℏ→ 0, ζ ∈ R, (4.161)

where R is one of the labelled regions in Fig. 4.7, and τj is one of the turning points in its boundary.

Note that the function Ψ
(A1)
+ is proportional to the quasi-polynomial pn(x)2e2θ(x;t), since they are

both recessive on the direction ∞1. Using this particular solution, instead of working with the inte-
grals (4.160) we can equivalently compute the integral of Ψ(A1)

+ because we are only interested in the
vanishing of I13, I35. We recall that Ψ(A1)

+ is the entire solution of the differential equation (3.28) that
is asymptotic to the WKB solution ψ

(τ)
+ in Def. 3.40 in the region (A1), in accordance with Thm. 3.18.

Thus, the main aim of this section is to prove the following Theorem.

Theorem 4.29. Suppose that (t,Λ) ∈ C2 belong to the ES spectrum, i.e. they determine a quasi-polynomial
solution y = pn(z)e

θ(z;t) to the boundary problem (1.4)-(1.5) with J = n+ 1. Consider the scaled (s, E)-plane

s = ℏ−
2
3 t, E = ℏ−

4
3Λ, ℏ−1 = n+ 1, (4.162)

in accordance to (4.94). Then we have the following WKB asymptotic estimates for the integral I13 as ℏ→ 0.

1. In configuration D as in Fig. (4.7) we have:
∫ ∞3

∞1

Ψ
(A1)
+ (ζ; ℏ)2dζ ∼ 2iℏ

(
e2v12

∫ τ0

τ2

dζ√
Q(ζ+; s, E)

−
∫ τ0

τ1

dζ√
Q(ζ+; s, E)

)
+O(ℏ2). (4.163)

Furthermore, the rescaled parameters (s, E) of the ES spectrum correspond to a repeated eigenvalue when-
ever

exp

(
2

ℏ

∫ τ2

τ1

√
Q(ζ; s, E)dζ

)
= τ (s, E) +O(ℏ), (4.164)

where

τ (s, E) =

∫ τ0

τ1

dζ√
Q(ζ+; s, E)∫ τ0

τ2

dζ√
Q(ζ+; s, E)

, Im
(
τ (s, E)

)
> 0. (4.165)
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2. In configuration E as in Fig. (4.4) we have
∫ ∞3

∞1

Ψ
(A1)
+ (ζ; ℏ)2dζ ≃ 2i

∫ τ0

τ2

ℏdζ√
Q(ζ+; s, E)

+O(ℏ2). (4.166)

Furthermore, the rescaled parameters (s, E) of the ES spectrum cannot correspond to a double eigenvalue
for large n.

The proof of this theorem is relatively straightforward but significantly technical and delicate. For
this reason, we first give here the heuristics of the naïve approach which is appealing for its simplicity
and we defer the technicalities for the later section. In fact this approach yields the correct result, but
over-estimates the error term.

Proof idea. The idea is to replace Ψ
(A1)
+ with the appropriate linear combinations of the formal WKB

solutions along the pieces of the contour of integration that traverse each Stokes region indicated in
Fig. 4.7.

We will only consider the case of a Stokes graph of type D as it will transpire that this is the only
meaningful case. First we deform the path of integration between the infinities ∞1 and ∞3 to run
along the branch cuts joining the the turning points τ1, τ0, τ2, and we split it into four segments along
these three points. The integrals over the unbounded paths are then along steepest descent paths for
the integrand and can be neglected. In the integrations along [τ1, τ0] and [τ0, τ2] we observe that, as a
consequence of the Riemann-Hilbert problem 4.22 we can express Ψ(A1)

+ as suitable linear combinations
of ψ(τj)

± in different regions:

Ψ
(A1)
+ (ζ; ℏ) ≃




ψ
(τ1)
+ (ζ; ℏ) + iψ

(τ1)
− (ζ; ℏ) ζ ∈ Br

1 ∪Bℓ
1

ev12
(
ψ
(τ2)
+ (ζ; ℏ)− iψ(τ2)

− (ζ; ℏ)
)

ζ ∈ Cr
1 ∪ Cℓ

1

(4.167)

where we have assumed that the (implicit) scaled parameters (s, E) ∈ C2 correspond to the ES spectrum
so that Theorem 4.28 applies and the even-numbered Stokes matrices Sj , j = 0, 2, 4 in (4.24) are trivial.
Computing the square of Ψ(A1)

+ , we have that the cross–products yield non-oscillatory functions that
contribute to the leading order while the squares of the “pure” WKB solutions give oscillatory integrals
which can be neglected to leading order.

Thus one is lead to the rough estimate
∫ ∞3

∞1

(
Ψ

(A1)
+ (ζ)

)2
dζ ≃ 2i

∫ τ0

τ1

ψ
(τ1)
+ (ζ)ψ

(τ1)
− (ζ)dζ − 2ie2v12

∫ τ2

τ0

ψ
(τ2)
+ (ζ)ψ

(τ2)
− (ζ)dζ (4.168)

≃ 2i

∫ τ0

τ1

ℏdζ√
Q(ζ−; s, E)

− 2ie2v12
∫ τ2

τ0

ℏdζ√
Q(ζ+; s, E)

(4.169)

where, confusingly, the boundary values of
√
Q(z; s, E) are due to our choice of orientations for the

branch-cuts in Fig. 4.7 (i.e. not according to Def. 4.18 2 ). Rearranging the endpoints and boundary
values yields (4.163).

The reason why the above reasoning is defective is that it replaces the formal WKB expansions also
in the neighbourhoods of the turning points, where the formal WKB solutions have a singularity. One
may still make sense of the resulting integrals because they involve a singularity of type (ζ−τ)− 1

2 which
is integrable. However, approaching the integrals in this way and using a (formal) application of the
Laplace method would suggest that the subleading order is O(ℏ 4

3 ). The careful analysis, instead, of the
contribution near the turning points reveals that the subleading correction is of order is O(ℏ2).

Unfortunately we could not find a reference in the vast literature on exact WKB analysis that helps
us in this analysis and the details become quite awkward. For this reason we have postponed this part
of the proof to the next section, with most of the technical details buried in the Appendix A

2This is done to keep consistency with the WKB Riemann-Hilbert problems and so that the reader is able to navigate the
computations with the help of the map in Fig. 4.7
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+ ∞0

+

∞2

+

∞4

−

∞1

−∞3

−

∞5

τ3

τ0

τ1

τ2

τ+1

τ−1

τ+0

τ−0

τ−2τ+2

τ0τ−0

τ+0

ξ0

Figure 4.8: The splitting of the integration of (4.182) along the three contours for each of the three
integrands near τ0.

4.4.4 Proof of Theorem 4.29

We will consider in detail only the case of a Stokes graph of type D because it contains all the intricacies.

Since we want to impose that the integral I13 in (4.160) vanishes, it suffices to determine the integral
of a function that is proportional to yn = pne

2θ. Keeping this in mind we then observe that in the region
(A1) along the Stokes curve (τ1,∞1) the function is recessive as n → ∞ and as x → ∞1. Hence it must
be proportional to Ψ

(A1)
+ (z; ℏ) and thus asymptotic to ψ(τ1)

+ . We will then forget about yn and integrate
instead the function Ψ

(A1)
+ (z; ℏ)2 along a contour γ going from ∞1 to ∞3. Recall that this function is

entire since it is the solution of a WKB-type ODE (4.96). with a quartic polynomial potential.

Let us refer to Fig. 4.7. We choose the contour γ to follow the steepest descent from∞1 to τ1, then
the branch-cut to τ0, then to τ2 and the descent path to∞3. The branch-cut will be chosen to follow the
anti–Stokes curve 3 in a neighbourhood of each turning point.

We then split our contour γ =
⋃7

j=1 γj in several pieces:

∞1
γ1−→ τ+1

γ2−→ τ−1
γ3−→ τ+0

γ4−→ τ−0
γ5−→ τ+2

γ6−→ τ−2
γ7−→∞3, (4.170)

where the τ±j are determined according to Fig. 4.8.

In order to simplify notation, in the following we will drop the dependence on ζ, ℏ as well as the
specification of the Stokes region A1 and simply write

Ψ := Ψ
(A1)
+ (ζ; ℏ). (4.171)

Observe that Ψ is recessive both on the Stokes line ∞1 → τ1 as well as on the Stokes line τ2 → ∞3

because we are already on a point of the ES spectrum, where the Stokes matrices satisfy S0 = S2 = S4 =
1. More precisely it follows that

Ψ := Ψ
(A1)
+ (ζ; ℏ) = Ψ

(D5)
+ (ζ; ℏ) = ev12Ψ

(D1)
+ (ζ; ℏ) = ev12Ψ

(A3)
+ (ζ; ℏ). (4.172)

3i.e. the curve emanating from the turning point τ determined by z ∈ C such that Re

∫ z

τ

√
Q(ζ)dζ = 0
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Contributions of γ1, γ7. On both these contours the integral is exponentially small as ℏ → 0+ since
Ψ = Ψ

(A1)
+ is recessive on γ1 and Ψ = ev12Ψ

(D1)
+ is recessive on γ7.

Contributions of γ2, γ6. These are estimated by the use of Theorem A.3
∫ τ−

1

τ+
1

Ψ2dζ =

∫ τ−
1

τ1

2iℏdz√
Q(ζ−; s, E)

+O(ℏ2), (4.173)

∫ τ−
2

τ+
2

Ψ2dζ = e2v12
∫ τ−

2

τ+
2

(
Ψ

(D1)
+

)2
dζ = e2v12

(∫ τ2

τ+
2

2iℏdζ√
Q(ζ−; s, E)

+O(ℏ2)
)
. (4.174)

The boundary value is the − because the orientation of the branch-cut that we have chosen is the one
leaving from the turning point, while in Theorem A.3 it was the one towards the turning point (and the
boundary value was the + one).

Contributions of γ3, γ5. Along either paths we are away from the turning points and can substitute
the asymptotic expressions in terms of the WKB solutions. We can use the Riemann–Hilbert problem
4.22 to see that the function Ψ = Ψ

(A1)
+ has the asymptotic behaviour

Ψ
(A1)
+ (ζ; ℏ) ≃





ψ
(τ1)
+ (ζ; ℏ) + iψ

(τ1)
− (ζ; ℏ) ζ ∈ Br

1

e−v10ψ
(τ0)
+ (ζ; ℏ) + iev10ψ

(τ0)
− (ζ; ℏ) ζ ∈ Bℓ

1

ev12
(
ev20ψ

(τ0)
+ (ζ; ℏ)− ie−v20ψ

(τ0)
− (ζ; ℏ)

)
ζ ∈ Cr

1

ev12
(
ψ
(τ2)
+ (ζ; ℏ)− iψ

(τ2)
− (ζ; ℏ)

)
ζ ∈ Cℓ

1

(4.175)

The different expressions in the regions Bℓ
1 and Br

1 are due simply to the different choice of normaliza-
tion point for the WKB formal solutions, but we can use either of the two expressions also as asymptotic
expansion in the other. The same occurs for the pair Cℓ

1 and Cr
1 . Consequently we can estimate the con-

tribution of the whole γ3 using the asymptotic expression for Br
1 as follows:

∫ τ+
0

τ−
1

Ψ2dζ ≃
∫ τ+

0

τ−
1

(
(ψ

(τ1)
+ )2 − (ψ

(τ1)
− )2

)
dζ + 2i

∫ τ+
0

τ−
1

ψ
(τ1)
+ ψ

(τ1)
− dζ, (4.176)

with similar expression for the integral along γ5. The contribution of the first integral in the right side
of (4.176) is of order O(ℏ2) as we show a few lines below. The main contribution comes instead from
the last integral and it yields

2i

∫ τ+
0

τ−
1

ψ
(τ1)
+ ψ

(τ1)
− dζ = 2i

∫ τ+
0

τ−
1

ℏdζ√
Q(ζ−, s, E)

+O(ℏ2), (4.177)

where the− boundary value in the last integral is due to the fact that the regions Bℓ
1 and Br

1 lie on the−
side of the branch-cut, with the orientation that we have chosen. In particular this contribution together
with the contribution (4.173) yield a single integration from τ1 to τ+0 . Similar considerations apply to
the integral along γ5 which yield

∫ τ+
2

τ−
0

Ψ2dζ ≃ ξ12
(∫ τ+

2

τ−
0

2iℏdζ√
Q(ζ+; s, E)

+O(ℏ2)
)

(4.178)

To see that the first integral in (4.176) is sub-dominant, for example consider the integration of (ψ(τ1)
+ )2.

We can deform the path of integration (at fixed endpoints) into the region C3 where the formal solution
is recessive. Then a simple estimate shows that the only contribution come from the neighbourhood of
the endpoints of integration (at which points the real part of the exponential is zero). Then we can use
Laplace’s method to easily estimate their contribution of order4 O(ℏ2). A similar reasoning applies to
the integration of (ψ(τ1)

− )2 where instead we deform the contour within the region B1.
4Note that the function being integrated has already an ℏ in front, and the integral contributes another order O(ℏ).
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Contribution of γ4. We are going to show that this integral is estimated as follows:

∫ τ−
0

τ+
0

Ψ2dζ ≃ −
∫ τ0

τ+
0

2iℏ√
Q(ζ+; s.E)

(1 +O(ℏ))dζ −
(
1 + e2v12

) ∫ τ−
0

τ0

2iℏ√
Q(ζ+; s.E)

(1 +O(ℏ))dζ (4.179)

In the regions Bl
1 our function Ψ = Ψ

(A1)
+ can be expressed as

Ψ = Ψ
(Bl

1)
+ + iΨ

(Bl
1)

− . (4.180)

Near τ0 the function Ψ is, along the contours of integration, an oscillatory solution. We express it in
terms of the normalized solutions in the right side Br

1 :

Ψ
(A1)
+ = ev10Ψ

(Br
1 )

+ + ie−v10Ψ
(Br

1 )
− (4.181)

⇓
(
Ψ

(A1)
+

)2
= e−2v10

(
Ψ

(Br
1 )

+

)2

︸ ︷︷ ︸
(a)

−e2v10
(
Ψ

(Br
1 )

−
)2

︸ ︷︷ ︸
(b)

+2iΨ
(Br

1 )
+ Ψ

(Br
1 )

−︸ ︷︷ ︸
(c)

. (4.182)

Refer now to Fig. 4.8: the term marked (a) is recessive in the blue-shaded region, the term (b) in the
pink-shaded region while (c) is oscillatory throughout. Consequently we will split the integration of
Ψ2 into three paths from τ+0 to τ−0 and integrate (a) along the blue path, (b) along the red path and (c)
along the green path.

The whole contribution of (b) is then sub-leading and of order O(ℏ2) where the main contributions
come from the neighourhoods of τ±0 .

The contribution of (a) near τ+0 and ξ0 similarly is of orderO(ℏ)2 (with the main contribution coming
solely from the neighbourhood of τ−0 ). The integration from ξ0 to τ−0 is achieved by Theorem A.3 and
we have

(a) 7→ e−2v10

∫ τ−
0

ξ0

(
Ψ

(Br
1 )

+

)2
dζ = e−2v10

∫ τ−
0

τ0

2iℏ(1 +O(ℏ))dζ√
Q(ζ+; s, E)

. (4.183)

We then have the contribution of (c) along the green path; for this we need to use a similar reasoning as
in the proof of Theorem A.3. The function Ψ

(Br
1 )

+ is recessive in the blue-shaded region of Fig. 4.8; thus
in the coordinate ξ(z; ℏ) along the direction arg ξ = 0 and is therefore proportional to Ai(ℏ− 2

3 ξ)/
√
ξ′

after the change of coordinates. Similarly the function Ψ
(Br

1 )
− is recessive in the pink-shaded region and

hence proportional to Ai(ℏ− 2
3ω2ξ)/

√
ξ′ , with ω = e2iπ/3:

∫ τ−
0

τ+
0

Ψ
(Br

1 )
+ Ψ

(Br
1 )

− dζ = C(ℏ)
∫ ξ−

ξ+

Ai(ℏ− 2
3 ξ)Ai(ℏ− 2

3ω2ξ)dξ

(ξ′)2
≃ C(ℏ)

(∫ τ−
0

τ+
0

iℏ 1
3 dζ

4π
√
Q(ζ+; s, E)

+O(ℏ 4
3 )

)
.

(4.184)
The latter integral was estimated as in the first part of this proof using part 2 of Proposition A.2: it
requires the case j = 0, k = 2 in (A.16). The proportionality constantC(ℏ) is now estimated by matching
the asymptotic behaviour;

ℏ√
Q(ζ; s, E)+

≃ Ψ
(Br

1 )
+ Ψ

(Br
1 )

− ≃ C(ℏ) ℏ 1
3 e

iπ
3

4πξ
1
2 ξ′

(4.185)

So, the coefficient (1 + e2v12) in (4.179) comes from the contribution of (c) and (a) while the first term
in (4.179) is coming only from the integration of (a) from (4.182). We have thus established (4.179). To
complete the proof we now recall that the parameters ξjk = e2vjk satisfy the relation (4.157) so that
1 + ξ10 = −ξ−1

20 so that all the integrals combine nicely. Indeed putting together all contributions we
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obtain

∫

γ

Ψ2dζ =

(γ2)∫ τ−
1

τ1

2iℏdz√
Q(ζ−; s, E)

+

(γ3)∫ τ+
0

τ−
1

2iℏdζ√
Q(ζ−, s, E)

(γ4)

−
∫ τ0

τ+
0

2iℏ(1 +O(ℏ))dz√
Q(ζ+; s.E)

+ (4.186)

−

(γ4)
′

(
1 + e−2v10

) ∫ τ−
0

τ0

2iℏ(1 +O(ℏ))dz√
Q(ζ+; s.E)

+

(γ5)

ξ12

∫ τ+
2

τ−
0

2iℏ(1 +O(ℏ))dζ√
Q(ζ+; s, E)

+ (4.187)

+

(γ6)

ξ12

∫ τ2

τ+
2

2iℏ(1 +O(ℏ)) dz√
Q(ζ−; s, E)

(4.188)

where above each term we have recalled with contribution it comes from. We now see that the con-
tribution indicated with (γ4)

′ and (γ5) combine to give a single integral: this is due to the fact that
e−2v10 = ξ−1

10 and from (4.157) we see
1 + ξ−1

10 = −ξ30.
Then, using the identity
∫ τ0

τ3

Sodd(z+; ℏ)dζ = 2iπ(n+1)−
∫ τ0

τ1

Sodd(z+; ℏ)dζ−
∫ τ0

τ1

Sodd(z+; ℏ)dζ = 2iπ(n+1)+

∫ τ2

τ1

Sodd(z+; ℏ)dζ

(4.189)
we deduce that ξ30 = (ξ10ξ20)

−1 = ξ12 = e2v12 , which allows us to write the two terms (4.187) as a single
integral. Adding all the contributions yields the final statement. ■

4.5 Comparison of quantization conditions

In this section we compare both of hte

The ST case. In view of Theorem 4.29 we can now express, to within the leading order, the quan-
tization conditions that characterize those points (s, E) in the ES spectrum with a double eigenvalue.
Due to the residue at infinity and that ℏ−1 = n + 1, it follows that in a Stokes graph of type D the
Fock-Goncharov parameters satisfy ξ12 = ξ30. Thus the quantisation condition (4.164) becomes

exp

(
2

ℏ

∫ τ0

τ3

√
Q(ζ+; s, E)dζ

)
= τ (s, E) +O (ℏ) (4.190)

In view of the parametrisation (4.157) it follows that

ξ10 =
−1

1 + τ
, ξ20 = −1− 1

τ
, ξ30 = τ . (4.191)

Thus in terms of the Voros’ symbols and to leading order O (ℏ):

2(n+ 1)

∫ τ0

τ1

√
Q(ζ+; s, E)dζ = log

( −1
1 + τ (s, E)

)
− 2iπ(m1 + 1) (4.192)

2(n+ 1)

∫ τ0

τ2

√
Q(ζ+; s, E)dζ = log

(
−1− 1

τ (s, E)

)
− 2iπ(m2 + 1) (4.193)

2(n+ 1)

∫ τ0

τ3

√
Q(ζ+; s, E)dζ = log (τ (s, E))− 2iπ(m3 + 1) (4.194)

where the three integers satisfy m1 +m2 +m3 = n− 1 due to the fact that the sum of the three integrals
on the left is −2iπ(n + 1) while the sum of the three logarithms is 2iπ (principal determination) due to
the definition of τ (s, E) as in (4.165).
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τ0

τ1

τ2

τ3

A

B

Figure 4.9: Canonical basis of cycles for the homology of the elliptic Riemann surface Σ with Stokes
graph configuration of typeD. The points τj are the branch points of

√
Q(ζ; s, E) and the lines connect-

ing them are the branch cuts.

The JM case. On the other hand, the quantization conditions (4.144) of the zeroes of the Vorob’ev-
Yablonskii polynomial give to leading order O (ℏ):

(2n+ 1)

∫ τ0

τj

√
Q(ζ+; s, E)dζ = −iπ − 2iπkj , (4.195)

k1 + k2 + k3 = n− 1. (4.196)

Both conditions (4.194), (4.195) involve a triple of positive integers adding to n − 1 but they differ
notably in the multiplicative factor 2(n+ 1) vs. (2n+ 1) on the left side, and on the values on the right
side. We now analyze the two lattices to explain their similarity which is apparent from the numerical
experiments.

Analysis of the two lattices

Both lattices involve implicit equations for the parameters (s, E) via the periods of the differential√
Q(ζ; s, E)dζ. We introduce a canonical basis of cycles A,B of the elliptic Riemann surface Σ as in

the Fig.4.9 so that

τ (s, E) =

∫ τ0

τ1

dζ√
Q(z+; s, E)∫ τ0

τ2

dζ√
Q(z+; s, E)

=

∫

B

dζ√
Q(z; s, E)∫

A

dζ√
Q(z; s, E)

. (4.197)

Notice that the quantities vj0 defined in (4.111) can be written in the form

v10 =
1

2

∫

B

√
Q(ζ; s, E)dζ, v20 =

1

2

∫

A

√
Q(ζ; s, E)dζ, v30 = −1

2

∫

A+B

√
Q(ζ; s, E)dζ (4.198)

The Jacobian determinant of the map (s, E) 7→ (IA, IB) is a constant as we prove in the next lemma.

Lemma 4.30. Let A and B be the canonical homology basis as in Fig. 4.9 and consider the periods

IA =

∮

A

√
Q(ζ; s, E)dζ, IB =

∮

B

√
Q(ζ; s, E)dζ. (4.199)
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Then

det




∂IA
∂s

∂IA
∂E

∂IB
∂s

∂IB
∂E


 = iπ. (4.200)

Proof. The determinant gives

det J =
∂IA
∂s

∂IB
∂E
− ∂IB

∂s

∂IA
∂E

. (4.201)

Since Q(ζ; s, E) = ζ4 + sζ2 + 2ζ + E, the derivative w.r.t. E gives the holomorphic periods and the
derivative in s gives second-kind periods. Thus we can compute the above expressions with the Rie-
mann bilinear identity to give

det J =
1

4

∫

A

ζ2dζ√
Q(ζ; s, E)

∫

B

dζ√
Q(ζ; s, E)

− 1

4

∫

A

ζ2dζ√
Q(ζ; s, E)

∫

B

dζ√
Q(ζ; s, E)

(4.202)

= 2iπ
1

2
res

z=∞+

ζ2dζ√
Q(ζ; s, E)

∫ z

τ1

dw√
Q(w; s, E)

= iπ (4.203)

where we have used that

ζ2dζ√
Q(ζ; s, E)

=
(
1 +O(ζ−2)

)
dζ

∫ ζ

τ1

dw√
Q(w; s, E)

=

∫ ∞

τ1

dw√
Q(w; s, E)

− 1

ζ
+O(ζ−2). (4.204)

and the contribution from the point∞− is the same as the point∞+. ■

We observe that

ω :=
∂IA
∂E

=

∫ τ0

τ2

dζ√
Q(ζ+; s, E)

, ω′ :=
∂IB
∂E

=

∫ τ0

τ1

dζ√
Q(ζ+; s, E)

(4.205)

are the half periods of the holomorphic differential dζ√
Q(ζ;s,E)

. The lemma is useful in that it allows us

to explore the geometry of the quantization conditions, which is what we do next.

Proposition 4.31. Let (s0, E0) correspond to the first-order quantization conditions (4.194) or (4.195) in the
bulk, namely, mj/n ≃ cj ̸= 0. Then the neighbour points in the s–plane form a slowly modulated hexagonal
lattice in the sense that the six closest neighbours of s0 are

s0 + 2ℏ (ω∆m1 − ω′∆m2) (4.206)

where ω and ω′ are the half periods of the holomorphic differentials in (4.205) and

∆mj ∈ {−1, 0, 1}, |∆m1 +∆m2| ≤ 1, |∆m1|+ |∆m2| ≥ 1. (4.207)

Proof. Let (m1,m2,m3) be a triple of quantization numbers for either (4.194) or (4.195). The neighbour
points correspond to adding/subtracting 1 from each, subject to the constraints

∆m1 +∆m2 +∆m3 = 0, ∆mj ∈ {−1, 0, 1}. (4.208)

There are six elementary possibilities

(∆m1,∆m2,∆m3) ∈
{
(1,−1, 0), (1, 0,−1), (0, 1,−1), (−1, 1, 0), (−1, 0, 1), (0,−1, 1)

}
. (4.209)

The values of the periods
∫ τ0
τℓ

√
Q(z+; s, E)dz, ℓ = 1, 2, 3, change by ℏ∆mℓ, where ℏ = (n + 1)−1 in the

ST case and ℏ(n+ 1/2)−1 in the VY case.
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Let (s, E) = (s0, E0) + (∆s,∆E) be a neighbour point in the lattice. We want to estimate (∆s,∆E):
we observe that
∫ τ0

τ2

√
Q(ζ+; s, E)dζ =

1

2
IA,

∫ τ0

τ1

√
Q(ζ+; s, E)dζ =

1

2
IB,

∫ τ0

τ3

√
Q(ζ+; s, E)dζ = −1

2
IA −

1

2
IB

(4.210)
where IA and IB are defined in Lemma 4.30. If we take for example the first two periods and expand
(4.194) or (4.195) to linear order, we obtain

[
∆s
∆E

]
≃ 2ℏ




∂IA
∂E

−∂IB
∂E

−∂IA
∂s

∂IB
∂s



[
∆m1

∆m2

]
(4.211)

so that, from the definition (4.205) one recovers (4.206). This local lattice generators ω and ω′ are slowly
modulated across the elliptic region. ■

Near the origin. If (s, E) = O(ℏ) then the elliptic surface is w2 = z4 +O(ℏ)z2 + 2z +O(ℏ) and then a
direct computation shows that τ = e

2iπ
3 +O(ℏ). Note that the Z3 symmetry of the limiting elliptic curve

gives

e2iπ/3 = τ =
−1

1 + τ
= −1− 1

τ
. (4.212)

We are now going to show that two quantization conditions yield the same lattices to order ℏ2.

Theorem 4.32. The rescaled lattices of the zeroes of the VY Polynomials, and of the ST problem coincide to within
order O(ℏ2) = O(n−2) in a O(ℏ) neighbourhood of the origin in the s–plane. More precisely the quantization
conditions (4.194), (4.195) corresponding to the triples (m1,m2,m3) satisfying m1 + m2 + m3 = n − 1 and
the triples (k1, k2, k3) satisfying k1 + k2 + k3 = n − 1 with mj = kj single out values of s, E that differ by a
discrepancy of order O(ℏ2), provided that mj − n−1

3 remain bounded as n→∞.

Proof. Let (s, E) = O(ℏ). Then the two quantization conditions (4.194), (4.195) read, to order ℏ,

2(n+ 1)

∫ τ0

τj

√
Q(ζ+; s, E)dζ = −2iπ

(
mj +

2

3

)

(2n+ 1)

∫ τ0

τj

√
Q(ζ+; s, E)dζ = −2iπ

(
kj +

1

2

) (4.213)

By fixing s = ∆s and E = ∆E, and setting ∆s = ℏδs, ∆E = ℏδE, we can use the linear approximation
∫ τ0

τj

√
Q(ζ+; s, E)dζ ≃

∫ τ0

τj

√
Q(ζ+; 0, 0)dζ + ℏδs

∫ τ0

τj

ζ2dζ

2
√
Q(ζ+; 0, 0)

+ ℏδE
∫ τ0

τj

dζ

2
√
Q(ζ+; 0, 0)

(4.214)

= − iπ
3

+ ℏ
(
c2e

2iπ
3 (j−1)δs+ c0e

− 2iπ
3 (j−1)δE

)
e

7iπ
6 (4.215)

cℓ =

∫ 0

−2
1
3

ζℓdζ

2
√
|ζ4 + 2z|

, c0 ≃ 1.9276, c2 ≃ 0.9409. (4.216)

where ℏ means either (n+1)−1 or (n+1/2)−1 depending on the case we are considering. Replacing the
above expansions in (4.213) we obtain (all to within O(ℏ));

2(n+ 1)

(
− iπ

3
+

1

n+ 1

(
c2e

2iπ
3 (j−1)δs+ c0e

− 2iπ
3 (j−1)δE

)
e

7iπ
6

)
= −2iπ

(
mj +

2

3

)
(4.217)

(2n+ 1)

(
− iπ

3
+

1

n+ 1
2

(
c2e

2iπ
3 (j−1)δs+ c0e

− 2iπ
3 (j−1)δE

)
e

7iπ
6

)
= −2iπ

(
kj +

1

2

)
(4.218)
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Simplifying we get the quantization rules for δs, δE in identical form provided we identify mj = kj :

2
(
c2e

2iπ
3 (j−1)δs+ c0e

− 2iπ
3 (j−1)δE

)
e

7iπ
6 = −2iπ

(
mj −

n− 1

3

)
+O(ℏ). (4.219)

Thus, the two quantization conditions give two approximate lattices that differ by O(ℏ2) as long as
mj − n−1

3 remain bounded as n→∞. ■

Remark 4.33. The differential equation (1.4) for t = 0 = Λ can be solved in terms of Whittaker
Wµ,ν ,Mµ,ν functions (i.e. confluent hypergeometric functions) [DLMF 13.14] as follows:

y′′ − (ζ4 + 2Jζ)y = 0, y1 =
1

ζ
M− J

3 , 16

(
2ζ3

3

)
, y2 =

1

ζ
W− J

3 , 16

(
2ζ3

3

)
. (4.220)

Writing J = n + 1 with n = 0, 1, 2, . . . we have that for n ≡ 1 mod 3 (J ≡ 2 mod 3) the solution y1 is
our quasi-polynomial solution. For example

J = 2 y1(z) =

(
2

3

) 2
3

ζ eζ
3/3 (4.221)

J = 5 y1(ζ) =

(
2

3

) 2
3 ζ

2
(ζ3 + 2) eζ

3/3 (4.222)

J = 8 y1(ζ) =

(
2

3

) 2
3 ζ

7
(ζ6 + 7ζ3 + 7) eζ

3/3 (4.223)

J = 11 y1(ζ) =

(
2

3

) 2
3 ζ

70
(2ζ9 + 30ζ6 + 105ζ3 + 70) eζ

3/3 (4.224)

et cetera. This corresponds to the quantization conditions mj =
n−1
3 , j = 1, 2, 3.
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Chapter 5

The Stieljes-Fekete equilibrium
problem

5.1 Examples

In order to illustrate and motivate the following results, we will begin by providing a some examples
of degenerate orthogonal polynomials.

5.1.1 The Shapiro-Tater degenerate orthogonal polynomials

We have already encountered the first example of a 1-degenerate orthogonal polynomial.

In section 4.2.2 we showed that the polynomial part of the quasi-polynomial solution y(z) = pn(z)e
θ(z;t)

is a 1-degenerate orthogonal polynomial. Here the symbol is 2θ(z; t) = 2z3

3 + tz and the contour is given
by Γ = κγ + κ̃γ̃ with the particular choices of κ = s1 and κ̃ = s5 as in (4.33). This means that

M[Q] = κ
∫

γ

Q(z)e2θ(z;t)dz + κ̃
∫

γ̃

Q(z)e2θ(z;t)dz, Q ∈ C[z] (5.1)

is the associated semiclassical moment functional is of type (A,B) = (2z2 + t, 1) so that d = 2 and l = 1.

Indeed, the quasi-polynomial y(z) = pn(z)e
θ(z;t) solves the Shapiro-Tater differential equation

d2y

dz2
− VST(z)y, VST(z) = z4 + az2 + 2(n+ 1)z + Λ (5.2)

as predicted by Theorem 1.8. Furthermore, it was shown in the proof of Theorem (4.12) that the roots
of pn(z) satisfy the Stieltjes-Bethe equations

n∑

k=1
k ̸=j

1

zk − zj
=

A(zj)

2B(zj)
= θ(zj ; t) = z2j +

t

2
, j = 1, 2, . . . , n. (5.3)

5.1.2 Semiclassical functional with Freud weight.

Motivated by [Fre76], we consider the symbol θ(z) = − z4

2 and the weighted contour Γ = s1γ1 + s2γ2 +

s3γ3 where γj is the contour extending to infinity from the directions arg(z) = (j − 1)π2 to arg(z) = jπ
2 ,

j = 1, 2, 3, and the complex parameters sℓ are not all simultaneously zero. Next we define the moment
functional

M[zj ] =

(
s1

∫

γ1

+s2

∫

γ2

+s3

∫

γ3

)
zje−z4/2dz. (5.4)
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According to [MR98], a characterization of such a moment functional is that it satisfies the semiclassical
condition

M[2z3 p(z)] =M[p′(z)], ∀p ∈ C[z]. (5.5)

which can be verified by integration by parts. Thus M is a semiclassical moment functional of type
(A(z) = 2z3, B(z) = 1). The parameters sℓ can be thought of as parametrizing the space of solutions of
(5.5).

The corresponding orthogonal polynomials, when they exist, are a sequence {Pj(z)}j∈N of polyno-
mials of degree≤ j that satisfy the orthogonality relation (3.3). Clearly only the ratios of the parameters
sℓ are relevant for the definition of orthogonal polynomials, so that we can think of the family of func-
tionals (5.4) with the same symbol θ(z) = − z4

2 as parametrized by a point [s1 : s2 : s3] ∈ P2 in projective
space. Having the freedom to choose the point [s1 : s2 : s3] ∈ P2, one can impose an excess of orthog-
onality. In this case the notion of maximally degenerate orthogonal polynomial is the following; for any
n ∈ N there is [s1 : s2 : s3] ∈ P2 such that a (nontrivial) polynomial Pn(z) of degree n exists with the
properties

M[zjPn(z)] = 0, j = 0, 1, 2, . . . , n− 1︸ ︷︷ ︸
orthogonality

, n, n+ 1︸ ︷︷ ︸
degenerate

orthogonality

. (5.6)

We have emphasized that the orthogonality of Pn extends beyond the range of powers that character-
izes an ordinary orthogonal polynomial. The reader with some prior experience will quickly conclude
that the two extra conditions can be fulfilled if and only if two certain determinants of size n + 1 that
involve the moments vanish simultaneously: this is indeed the case, see Lemma 5.7. This places two
homogeneous polynomial conditions on the parameters s1, s2, s3. In this case our theorem states that
the zeros of such a maximally degenerate polynomial will satisfy eq. (1.21) with A(z) = 2z3 = −θ′(z)
and B = 1.

Remark 5.1. The function θ̂(z) =
∫

A
B appearing in the energy functional (1.19) is just θ̂(z) = z4/2 =

−θ(z), and it is real for z ∈ R. It is simple to see from the electrostatic interpretation that there is
an optimal configuration with zj ∈ R. Our theorem says that the corresponding polynomial Pn(z) =∏n

j=1(z − zj) is indeed an orthogonal polynomial, but not for the orthogonality chosen on the real
axis. This could not be because then the moment functional is strictly positive definite and the Hankel
determinant of the moments cannot vanish. Instead, the moment functional is

M[z2j+1] =

∫

R
z2j+1e−

z4

2 dz + s

∫

iR
z2j+1e−

z4

2 dz = 0

M[z2j ] =

∫

R
z2je−

z4

2 dz + s

∫

iR
z2je−

z4

2 dz = (1 + (−1)j Im(s))2
2j−3

2 Γ

(
2j + 1

4

) (5.7)

where Γ is the standard gamma-function, and s ∈ iR has been chosen pure imaginary in order to obtain
real moments.

We observe that, using our previous notation, the integration over the real line R is homotopic to the
path −γ1 − γ2, while the integration along the imaginary axis is homotopic to the path −γ2 − γ3. The
degeneracy condition on the polynomial of degree n = 10, gives s = 0.00001349595i and for n = 11 one
obtains s = −3.79352745 × 10−6i. The zeros of the corresponding degenerate orthogonal polynomials
give a solution of the Stieltjes–Bethe equation (1.21), and are plotted in Fig. 5.1.

5.1.3 Contours and dual contours for Freud-type symbols.

In order to motive the dual contours introduced in the next section, we first consider the case where
B(z) = 1 and A(z) is a polynomial of degree a. This means that θ(z) = −

∫
Adz is a polynomial of

degree a + 1 and d = a. Without major loss of generality we assume that A(z) = za + . . . is a monic
polynomial.
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Figure 5.1: The numerically computed Fekete points with n = 10 (top) and n = 11 (bottom) on the real
axis for the Freud weight e−x4/2.

The linear space of moment functionals is in one-to-one correspondence with the solutions of the
Pearcey–like ODE

A

(
∂

∂λ

)
Φ(λ) = λΦ(λ). (5.8)

Its solutions are described as follows. We denote by ∞(j) the asymptotic directions arg(z) = jπ
a+1 for

j = 0, . . . , 2a + 1 and by γj+1 the oriented contour connecting∞(2j) to∞(2j+2) for j = 0, . . . a and by
γa+1 the oriented contour from∞(2a) to∞(0), as seen in Fig. 5.2. Then the space of solutions to the ODE
(5.8) is spanned by

Φj(λ) =

∫ ∞(2j+2)

∞(2j)

eθ(z)+λzdz, j = 1, . . . , a. (5.9)

Furthermore we associate solutions of the Pearcey equation to moment functionals by

Φj(λ) ←→ Mγj
[p] =

∫

γj

p(z)eθ(z)dz, p ∈ C[z], (5.10)

where throughout, the contour integrals are seen to be absolutely convergent on account of the fact that
θ(z) = − za+1

(a+1) + O(za). Due to the Cauchy residue theorem the a + 1 moment functionals defined in
the above formula satisfy the linear relation

Mγ1 + · · ·+Mγa+1 ≡ 0 (5.11)

and hence the general moment functional of type (A, 1) is expressed as

M[p] =

a∑

j=1

sjMγj
[p] =

a∑

j=1

sj

∫

γj

p(z)eθ(z)dz, ∀p ∈ C[z]. (5.12)

The dual contours γ̂j are the contours extending from∞(2a+1) to∞(2j−1), j = 1, . . . , a, see Fig. 5.2. They
have the property that the intersection number is

γ̂j ◦ γℓ = δjℓ. (5.13)

5.1.4 Bessel degenerate orthogonal polynomials

In order to illustrate Theorem 1.8 let us consider the Bessel case, namely θ(z) = −z−1 + ν log z. The
only contour of integration is in Fig. 5.3 and a for dual we can take the positive real axis. The piecewise
analytic remainder function G(z) defined by (5.35), outside of the cardioid coincides with the definite
integral (formula (5.65))

G∞(z) := F (z)

∫ z

∞

dw

F 2(w)
(5.14)
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Figure 5.2: The contours, and dual contours, for the Freud-type symbol θ(z) = −z5, here with d = a = 4.
In the figure∞(j) are the asymptotic directions arg(z) = jπ

5 for j = 0, . . . , 9.

Here the direction of integration at∞ is immaterial since as long as 2n+ ν > −1 we have

F (z)2 ≃ z2n+ν+2. (5.15)

Inside the cardioid G(z) must be recessive near z = 0 along the positive direction and hence it must
coincide with the definite integral

G0(1)(z) := F (z)

∫ z

0(1)

dw

F 2(w)
, (5.16)

where we recall that the notation 0(1) denotes the steepest ascent direction of the symbol θ near the
point z = 0. Thus we easily conclude that, for z ∈ γ (with γ the cardioid, oriented as indicated in Fig.
5.3),

G(z+) = G(z−) + sF (z), s =

∫ ∞

0

dw

F (w)2
(5.17)

as claimed.

5.2 Contours for semiclassical moment functionals

We now provide a quick summary of the definition and some properties of semiclassical moment func-
tionals. The notion originates in the works of Maroni [Mar87] and Marcellán-Rocha [MR98] and has
also been extended to the bi-orthogonal case in [Ber03].

Recall now that for two relatively prime polynomials, A(z), B(z) of degree a, b, respectively, the
semiclassical moment functional of type (A,B) are those satisfying Definition 1.5. The main result of
[IMR91, MR98, Mar87] (see also the introduction of [Ber03]) is that any such moment functional can be
represented in a similar form as (5.4):

M[p] =

d∑

ℓ=1

sℓ

∫

γℓ

p(z)eθ(z)dz θ′(z) = −A(z) +B′(z)
B(z)

(5.18)
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Figure 5.3: Left: the contour and dual contour for the Bessel functional of Table 1.3, for the case ν ̸∈ Z;
for the case ν ∈ Z one can choose simply a circle. Right: plot of n = 64 points in critical configuration
for the Bessel case with A = 1− (2 + i)z, B = z2.

and γℓ are suitable contours that extend from a zero of B to another (or to infinity) and described in
the next section. If follows from a judicious use of Cauchy integral theorem and counting that there are
d = max{b− 1, a} such linearly independent contours; this integer d is also the total degree of the poles
of the meromorphic differential θ′(z)dz on the Riemann sphere, minus 2.

For brevity we will denote by Γ =
∑d

ℓ=1 sℓγℓ the element of a suitable homology space and simply
denote by

∫
Γ

the operation
∑
sℓ
∫
γℓ

.

Remark 5.2. We warn the reader that the symbol θ as defined in (5.18) may be regular at some (or all)
of the zeros of B if they simplify in the ratio that appears in (5.18); in particular this means that there
may be different moment functional with the same symbols but a different number d of contours of
integration. This happens when there are “hard-edge” contours of integration. An example is the case
of the Jacobi polynomials with α = β = 0; in this case the symbol is θ = 0 and the moment functional
M[p] =

∫ 1

−1
p(x)dx satisfies

M
[
(x2 − 1)p′(x)

]
=M

[
− 2xp(x)

]
, ∀p ∈ C[x], (5.19)

so thatB = x2−1 andA = −2x. This follows from a simple integration by parts, where the contribution
of the boundary evaluation vanishes thanks to the fact that B(±1) = 0.

5.2.1 Directions of steepest descent, contours and dual contours

To provide a complete and general description of the moment functionals we need to introduce a notion
used in [Ber03] which defines dual homologies and a non-degenerate intersection pairing. The notion
is, interestingly, related to the notion of bilinear concomitant of a pair of differential equations, one the
(formal) adjoint of the other; details of this connection can be found in loco citato.

We have already encountered dual contours in the case of Freud-type symbols in section 5.1.3. The
general case follows a similar logic. We report a canonical choice of contours γ1, . . . , γd as defined in
[BEH06, MS61, Ber03]. We say that a zero of B is a visible singularity if it is a pole of θ′; the zeros of B
that simplify in the ratio that defines the symbol (5.18) will be called hard-edges. Note that these latter
are necessarily simple zeros of B due to the assumption that A,B are relatively prime. We write the
partial fraction decomposition

θ′(z) = −A(z) +B′(z)
B(z)

= U ′
∞(z) +

k∑

j=1

U ′
j(z) (5.20)
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where U ′
∞(z) is a polynomial of degree d∞−1 with d∞ := degA−degB+1, and U ′

j(z) are polynomials
in (z − cj)−1 of degree at most dcj + 1 = ordcjB, where cj are the visible singularities. If degA < degB,
then the term U ′

∞(z) is simply zero. The local behaviour of θ(z) for each visible singularity c = cj of
order dcj is

θ(z) =
Tj

(z − cj)dcj

(1 +O(z − cj)) + rj log(z − cj), z → cj , (5.21)

where
rj = Res

z=cj
θ′(z)dz. (5.22)

Definition 5.3 (Local directions of steepest descent). Let c ∈ P1 be a pole of θ′(z)dz.

• Suppose that c has order dc + 1 ≥ 2 so that

θ′(z)dz =
Tc

ζdc+1
c

(1 +O(ζc))dζc (5.23)

where Tc is the coefficient of the leading singularity in the local parameter ζc. 1 We denote by

c(ℓ) :=

{
arg(ζc) =

− arg Tc
dc

+ ℓ
π

dc

}
, ℓ = 0, 1, . . . , 2dc − 1. (5.24)

Namely, Re θ tends to −∞ along the directions c(2k) and to ∞ along the odd directions c(2k+1).
These will be called local directions of steepest descent, ascent (respectively). Note that c(2dc) =
c(0).

• Suppose that c is a simple pole of θ′(z)dz. We will denote its residue by

rc = Res
c
θ′(z)dz. (5.25)

A simple pole with Re(rc) > − 1
2 will be called “end-pole”, and “flag-pole” if Re(rc) < − 1

2 . If
rc = − 1

2 we can consider the pole “end” or “flag” depending on later convenience.

The motivation behind this definition is that we can integrate the weight function w(z) = eθ(z)dz on
contours that approach a pole c along the steepest descent directions (if dc ≥ 1) or along any direction
in the case of end-poles (dc = 0, Re rc > −1) while obtaining a well defined integrable integrand.

Consequently we will denote by
∫ s(m)

c(ℓ)
an integration along a path that approaches the poles c and s

along the specified directions c(ℓ) and s(m).

For each pole c ∈ P1 we now describe certain contours emanating from it. We give first the descrip-
tion of these contours for the case degA ≥ degB so that d∞ ≥ 1 and U∞ is a polynomial of degree at
least 1.

Definition 5.4 (Contours γj). For each pole c ∈ P1 of θ′(z)dz we define a number of contours depending
on the order of the pole.

• For each pole c ̸=∞ of order dc +1 ≥ 2 we choose dc contours (“petals”) approaching c along the
consecutive steepest descent directions c(2k), c(2k+2). We also pick a contour (“stem”) extending
from c(0) to a steepest descent direction at∞.

• For the pole at c = ∞ we choose d∞ − 1 contours between [∞(2k),∞(2k+2)], k = 0, . . . , d∞ − 2,
with the definition of the steepest descent directions as in Def. 5.3. Note that there is no contour
between∞(2d∞−2) and∞(0) (see Fig. 5.4) 2. These contours will be taken so as to leave all zeros
of B on their left region.

1To avoid lengthy case distinctions, the local parameter near a point in the finite complex plane c ∈ C is simply ζc = z − c
while if c = ∞ the local parameter will be ζ∞ = 1

z
.

2Note that for the Freud weight A(z) = za we have d∞ = a+ 1 = d+ 1.
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Figure 5.4: Left: The contours in the case with d∞ = 3 and d1 = 3, (the center of the “shamrock”,
p1), d2 = d3 = 0. We also have a flag-pole (the point surrounded by the “lasso”, p2 ) and an end-pole
(the endpoint of γ7, p3). In this example B(z) = (z − p1)4(z − p2)(z − p3) and A is a relatively prime
polynomial of degree 8 with positive leading coefficient. Right: the case where B is as above but A is a
polynomial of degree less than that of B. The dual contours go to infinity in an arbitrary direction.

• For each end-pole c (including the hard-edges, i.e. the zeros of B that are not poles of θ′) we pick
a contour from c to∞ along a steepest descent direction.

• For each flag-pole c with non-integer residue we choose a contour (“lasso”) coming from∞(2k),
circling c in the counter-clockwise direction and returning to ∞(2k), where k is any choice. If
the flag-pole has negative integer residue, we can replace this choice by a small circle. We will
consider all poles with rc = − 1

2 to be flag-poles.

It is understood that the contours are chosen by avoiding the zeros ofB except possibly at the endpoints,
and are chosen so that they do not intersect each others except, possibly, at endpoints.

Dual contours and intersection pairing. For reasons that will become apparent but that already mo-
tivated a similar construction in [Ber03], we need to define “dual contours” and a notion of intersection
pairing.

To give a sense of the motivation, we mention that the space of semiclassical moment functionals of
type (A,B) is in duality with that of type (−A−B′, B): the weight functions are

(A,B) 7→ eθ(z), θ′(z) = −A(z) +B′(z)
B(z)

(5.26)

(−A−B′, B) 7→ e−θ(z)

B(z)
= eθ̂(z), θ̂′(z) = −θ′(z)− d

dz
logB(z) =

A(z)

B(z)
. (5.27)

This duality maps the steepest descent directions of one symbol function into the ascent directions of
the other, the end-poles (including hard-edges) of one into the flag-poles of the other, and viceversa. 3

The simplest explanation of the duality is by considering a generating function Φ(λ) = M[eλz] of
type (A,B) and a generating function Ψ(λ) = M̂[e−λz] of the dual type defined similarly toM but with

3Since we have stipulated that the poles c with rc = − 1
2

are considered flag-poles for the functional M, then for the dual
functional they will be treated as end-poles.
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the symbol θ̂ (5.26) and integration along suitable contours (Def. 5.5). A simple exercise shows that they
satisfy the two adjoint differential equations:

(
λB

(
∂

∂λ

)
−A

(
∂

∂λ

))
Φ(λ) = 0,

(
B

(
− ∂

∂λ

)
λ−A

(
− ∂

∂λ

))
Ψ = 0. (5.28)

The solution spaces of two adjoint equations are put in duality by the bilinear concomitant [Inc44]: for
equations with linear coefficients in λ the bilinear concomitant has a homological interpretation as in-
tersection pairing of the dual contours that we are describing here and are illustrated in Fig. 5.4.

Definition 5.5 (Dual contours γ̂j). For each pole c ∈ P1 θ′(z)dz we define a number of contours dual to
the contours γj in Def. 5.4.

• For each pole c of order dc + 1 ≥ 2 we choose dc contours (“anti-petals”) originating from c along
the directions c(2k+1), k = 0, . . . , dc − 1 and extending to ∞(2d∞−1). We also pick a contour
(“anti-stem”) lassoing c from∞(2d∞−1) and intersecting only the corresponding stem.

• For the pole at c = ∞ we choose d∞ − 1 contours [∞(2d∞−1),∞(2k+1)], k = 0, . . . , d∞ − 2. Note
that they can be arranged so as to intersect only the corresponding steepest descent contours (see
Fig. 5.4).

• For each end-pole c of the original functional (which is a flag-pole for the dual functional) we pick
a lasso from∞(2d∞−1). If the residue of c in θ′dz is a positive integer (i.e. a zero of the weight eθ

(end-pole) and a pole of the dual weight e−θ/B), we will choose a circle.

• For each flag-pole c we choose a contour [c,∞(2d∞−1)] this includes the poles, if any, where rc =
− 1

2 (which were considered as flag-poles).

The construction is such that for each contour γj there is exactly one dual contour γ̂j that intersects
γj at a single point γj and has no intersections with any other contour. The orientations are chosen so
that

γ̂j ◦ γk = δjk. (5.29)

5.2.2 The case degA < degB

In this case we assume that B has at least one zero, z = p0, of multiplicity higher than 1. Note that in
this case the condition that A and B are relatively prime prevents A to be a multiple of B′; this means
also that the moment functional is of infinite rank. See Remark 5.6. Then the symbol θ has a pole
at z = p0 with at least one steepest descent direction and one steepest ascent direction. We keep the
same terminology. The contours will be chosen similarly as in the previous case but with the “stems”,
”lassoes”, and the contours to the flag-poles extending, instead to p

(1)
0 (the point p0 along the first-

steepest ascent direction) instead of∞(2d∞−1). The dual contours are exactly as before, extending to∞
(in any direction, for example the positive axis). The reason for this definition of dual contours in this
case is motivated by the use that we need to make of them in the main Theorems 5.10, 5.12.

We will not treat the case where all the zeros ofB are simple (the classical Heine-Stieltjes electrostatic
problem); in this case the contours should be chosen, generically (i.e. for non-integer residues of θ′) as
Pochhammer contours (group-commutators of the generators in the fundamental group of the plane
minus the zeros of B) There are case distinctions according to whether the residues of θ′ at these poles
are positive integers, negative integers or neither which complicate the description.

Remark 5.6. The case when degA < degB allows in general the possibility that A is a multiple of B′. If
A is an integer multiple of B′, A = kB′ with k = 1, 2, 3 . . . then the weight of the semiclassical moment
functional is

A = kB′ ⇒ eθ(z) =
1

B(z)k+1
. (5.30)

In this case the moment functionalsM are of finite rank (they are linear combinations of derivatives of
Dirac delta functions supported at the zeroes of B, with the order of derivative being equal to k times
the multiplicity of said zero).
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Then it follows that the orthogonal polynomials of degree n ≥ (k + 1) degB are all the polynomials
divisible by Bk+1, a type of solution that we could call “improper”.

5.3 Characterisation of degenerate orthogonal polynomials

5.3.1 ℓ-degeneracy

It is well known that Pn(z) is an orthogonal polynomial if and only if a certain Hankel determinant
is non-vanishing [Sze75, Chi78, Dei99]. A similar result holds in the case of degenerate orthogonal
polynomials, however, we require the vanishing of some additional determinants.

Lemma 5.7. The orthogonal polynomial Pn(z) is ℓ–degenerate (ℓ ≥ 1) if and only if the following determinants
vanishes:

Dn+1,k(s) := detHn+1,k = 0, k = 0, 1, . . . , ℓ− 1, (5.31)

where Hn+1,k are the matrices

Hn+1,k :=




µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
µn−1 . . . µ2n−1

µn+k µn+k+1 . . . µ2n+k



. (5.32)

Proof. Using the determinantal expression (3.5) for the orthogonal polynomial Pn(z) and distributing
the integration over the last row we get:

⟨Pn, z
n+k⟩ =

∫

Γ

zn+k det




µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
µn−1 . . . µ2n−1

1 z . . . zn



dz (5.33)

=det




µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
µn−1 . . . µ2n−1

∫

Γ

zn+kdz

∫

Γ

zn+k+1dz . . .

∫

Γ

z2n+kdz




= Dn+1,k(s) (5.34)

Thus Pn(z) is ℓ-degenerate if and only if Dn+1,k(s) vanishes for all k = 0, 1, . . . , ℓ− 1. ■

According to Definition 1.6, a 0–degenerate polynomial is just an orthogonal polynomial (no con-
ditions are imposed) and generically it exists. We will say that Pn is maximally degenerate if it is
d − 1–degenerate, where d = max a, b− 1. The justification of the terminology is that the condition
of ℓ–degeneracy imposes ℓ homogeneous polynomial equation constraints on the parameters s1, . . . , sd
and hence, generically, we can impose at most d− 1 such constraints while expecting to have solutions.

The notion of ℓ-degeneracy is made relevant by the following proposition.

Proposition 5.8. LetM be a semiclassical moment functional of type (A,B) with degA = a,degB = b and
let θ be its symbol according to (5.18). Given any polynomial Pn(z) we set

F (z) :=
√
B(z)Pn(z)e

1
2 θ(z), (5.35)

G(z) :=
√
B(z)Rn(z)e

− 1
2 θ(z) (5.36)

Rn(z) :=
1

2iπ

∫

Γ

Pn(x)e
θ(x)dx

(x− z) , (5.37)
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where Γ =
∑d

j sjγj and the contours γj have been defined in Section 5.2.1.

Then the Wronskian
W = Wr{F,G} = F ′G−G′F (5.38)

is a polynomial with degW ≤ max{a + n − 1, b + n − 2}. Furthermore, if Pn is an ℓ–degenerate orthogonal
polynomial, then W is a polynomial of degree d− 1− ℓ, with d = max{a, b− 1}.

Proof. We first show that W does not have jump discontinuities across the contours γj and extends to
an entire function.

A direct computation shows:

W = θ′BPnRn +B(P ′
nRn − PnR

′
n) = −ÂPnRn +B(P ′

nRn − PnR
′
n), (5.39)

where, for brevity, we have set Â(z) = A(z)+B′(z). Now, let Γ =
∑d

j sjγj and take z ∈ γj . The Cauchy
transform Rn satisfies

Rn(z+)−Rn(z−) = Pn(z)e
θ(z), (5.40)

R′
n(z+)−R′

n(z−) =
(
P ′
n(z) + θ′(z)Pn(z)

)
eθ(z) (5.41)

where we approach z in the oriented contour γj from the ± sides correspondingly. Thus, with ∆Rn =
Rn(z+)−Rn(z−) the jump operator, we have

W (z+)−W (z−) =− ÂPn∆Rn +B(P ′
n∆Rn − Pn∆R

′
n) (5.42)

=(BP ′
n − ÂPn)∆Rn −BPn∆R

′
n (5.43)

=(BP ′
n − ÂPn)Pne

θ −BPn

(
P ′
n + θ′Pn

)
eθ = 0, (5.44)

where we have used the equation (5.18) for θ′ in the last line. This concludes the proof of the absence of
discontinuities.

The only possible singularities of θ′ are the zeroes of B, although they may also be regular points
of θ′, as per Remark 5.2. Thus from the Wronskian expression (5.39) it is clear that the only possible
singularities are at the endpoints of the contours γj . In the case this contours is petal or stem, then the
integrand tends to zero exponentially and hence the singularity of Rn is at worst logarithmic. In the
case of an end-pole then the integrand in the definition ofRn behaves as (w−c)rc and hence the Cauchy
transform has at worst growth bounded by

max{|z − c|Re(rc), | log |z − c||} (5.45)

see [Gak90] for details. This shows that a priori, the expression (5.39) for the Wronskian may have at
worst an isolated singularity at the zero z = c with growth bounded by |z− c|Re(rc) (if Re(rc) ∈ (−1, 0)).
So it actually must have a removable singularity and W extends analytically also at the zeroes of B.
This shows that the Wronskian W is entire.

Noting that Rn(z) = O
(
z−1

)
it follows that W is a polynomial of order at most max{a + n − 1, b +

n− 2}, as claimed.

Finally, suppose that Pn is an ℓ–degenerate polynomial. This means that the Cauchy transform Rn

is of order O(z−n−1−ℓ) as |z| → ∞. Then, from (5.39) we see that we have

W (z) = O(zmax{a−ℓ−1,b−2−ℓ}), |z| → ∞. (5.46)

This completes the proof. ■

Counting the number of solutions

A naïve counting would suggest, based on Bézout’s theorem, that there are (n + 1)d−1 solutions of the
set of equations that characterize the maximal degeneracy:

Dn+1,0(s) = 0, . . . , Dn+1,d−2(s) = 0. (5.47)

However, the conditions of Bézout’s theorem are not satisfied due to the following result.
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Proposition 5.9. Suppose that Dn,0 = Dn+1,0 = 0. Then Pn(z) ≡ 0; more specifically, considering Pn(z) ∈
C[z] ⊗ C[µ0, . . . , µ2n] then Pn(z)

2 lies in the ideal generated by Dn,0 and Dn+1,0. In particular we also have
Dn+1,k = 0, ∀k ∈ N.

Proof. Consider the expression for Pn(z) :

Pn(z) = det




µ0 µ1 . . . µn−1 µn

µ1 µ2

...
...

µn−1 µn . . . µ2n−2 µ2n−1

1 z . . . zn



= Cnz

n − Cn−1z
n−1 + · · ·+ (−1)nC0. (5.48)

We are going to show that CkCr ∈ ⟨Dn,0, Dn+1,0⟩ (the ideal generated by the two polynomials) for all
k, r = 0, . . . , n; this immediately implies the two subsequent statements.

Recall the (general) Desnanot-Jacobi identity; if M is an n × n matrix and J,K are two subsets
of {1, . . . , n} of the same cardinality r (and listed in increasing order) then we denote by MJ;K the
(n − r) × (n − r) matrix obtained by deleting the rows indexed by J and the columns indexed by K.
Then the identity reads

detM detM [a,b];[c,d] = detM [a];[c] detM [b];[d] − detM [b];[c] detM [a];[d]. (5.49)

Let H be the Hankel matrix of the moments of size n+ 1; then from (5.49) we obtain

detH detH [j,n+1];[k,n+1] = detH [j];[k] detH [n+1];[n+1] − detH [j];[n+1] detH [n+1];[k]. (5.50)

The last term in the right side of (5.50) is precisely CjCk so that we have

CjCk =
(
detH [j];[k]

)
Dn,0 −

(
detH [j,n+1];[k,n+1]

)
Dn+1,0 (5.51)

This proves that all the quadratic expressions belong to the claimed ideal. ■

However, the conditions of Bézout’s theorem are not satisfied because Proposition 5.9 implies that
the equations (5.47) have a common component consisting of the intersectionDn+1,0 = 0 = Dn,0. Hence
there are infinitely many solutions of (5.47) in [s1 : · · · : sd] ∈ Pd−1 as long as d ≥ 4. On the other hand,
as noted prior to the mentioned Proposition, this common component does not yield a meaningful
solution to the Stieltjes–Fekete problem because Pn(z) is the identically zero polynomial.

In principle we should only count the solutions outside this locus, i.e. with Dn,0 ̸= 0; a bit frustrat-
ingly, however, we cannot exclude that there are other common components, except that experiments
suggest that this is not the case. This makes the application of general techniques of Fulton’s excess in-
tersection formulas difficult to implement. A semi-heuristic argument (to be formalized in [Mas]) would
suggest that generically the number of solutions should be the number of solutions of the equation
k1 + k2 + · · ·+ kd = n with kj non negative integers, namely (n+ 1)(n+ 2) · · · (n+ d− 1)/(d− 1)!.

5.3.2 Degenerate OP⇒ Stieltjes-Bethe equations

In view of Proposition 5.8 we deduce that if Pn is a maximally degenerate orthogonal polynomial, i.e.
d − 1-degenerate, then the Wronskian W of F and G in (5.37) is constant. We used this same argument
in Theorem 4.12, see (4.80).

This crucial property, together with Lemma 4.11 will allow us to prove half of Theorem 1.8. We
remind the reader the Lemma 4.11, which was established in section 4.2, guarantees that the potential
of a 2nd order ODE is analytic provided both of its solutions are also analytic.

Theorem 5.10. Suppose that Pn is a maximally degenerate polynomial of degree n for a semiclassical moment
functionalM of type (A,B) and with symbol θ. Then:
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(1) The function F (z) =
√
B(z)Pn(z)e

1
2 θ(z) solves the differential equation

F ′′(z)− V (z)F (z) = 0 (5.52)

where the potential V (z) is a rational function of the form:

V (z) =
1

2
θ′′ +

1

4
(θ′)2 +

B′′

2B
−
(
B′

2B

)2

+
B′

2B
θ′ +

Q

B
, degQ ≤ d− 1 (5.53)

with poles only at the zeros of B(z) which are of order at most twice the order of the zeroes of B(z).
Equivalently the polynomial Pn satisfies:

B(z)P ′′
n −A(z)P ′

n −Q(z)Pn(z) = 0. (5.54)

If B ≡ 1 the potential V is a polynomial of degree 2 degA.

(2) Let {z1, . . . , zn} be the roots of Pn; then they satisfy the Stieltjes-Bete equations:

n∑

j ̸=ℓ

1

zℓ − zj
=

A(zℓ)

2B(zℓ)
, ℓ = 1, . . . , n. (5.55)

Proof.

(1) By Proposition 5.8 the Wronskian of F,G defined in (5.35) is a constant (and necessarily non-zero).
Then we can write (up to a rescaling)

W = FG′ − F ′G = 1 ⇒ W ′ = FG′′ − F ′′G = 0. (5.56)

This means that F ′′

F = G′′

G and thus we can recast the equation (5.56) as a differential equation of
the form

y′′(z)− V (z)y(z) = 0, V :=
F ′′

F
=
G′′

G
. (5.57)

In principle the potential V in (5.57) is a rational function with poles at all the zeroes of F (i.e. the
zeroes of P ) as well as at the zeros of B. We will show that in fact V is analytic at the zeros of P .

To see this we observe that (5.57) has both F and G as solutions. The function G as presented in
(5.36) has discontinuities across the contours γj ’s that are proportional to F so we can analytically
continue G to the universal cover of the plane minus the zeros of B.

Let Pn(z) =
∏n

j=1(z− zj); then both F and the analytic continuation of G are locally analytic near
zj , j = 1, . . . , n, which is therefore an apparent singularity 4 of the equation (5.57). Then Lemma
4.11 says that V must be locally analytic at zj . This holds for all the roots of the Pn(z), so V must
be analytic at all zj , j = 1, . . . , n. By definition of V we have

V (z) =
F ′′(z)
F (z)

=
1

2
θ′′ +

1

4
(θ′)2 +

B′′

2B
−
(
B′

2B

)2

+
B′

2B
θ′ +

P ′′
n

Pn
+
θ′P ′

n

Pn
+
B′P ′

n

BPn
. (5.58)

Since V in (5.58) has no poles at the zeros of Pn, the last three terms in (5.58) are of the form

P ′′
n

Pn
+
θ′P ′

n

Pn
+
B′P ′

n

BPn
=
Q(z)

B(z)
, (5.59)

with Q(z) a polynomial of degree at most d− 1. The ODE (5.54) for Pn follows then by straightfor-
ward manipulations.

4In the literature of Sturm–Liouville equations like (5.57) it is customary to call “apparent singularity” a pole of V such that
both solutions have Puiseux series expansion in half–integer powers. Here we use the terminology “apparent singularity” in the
strict sense that both solutions of the equation must be locally analytic.
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(2) Since we have established that V is analytic at each zj , it then follows that the zeros of Pn must be
simple since F is a non-trivial solution to a second–order ODE. Then we express the zero residue
condition Res

z=zj
V (z)dz = 0 with the expression (5.58) for V and obtain

2
∑

ℓ ̸=k

1

zk − zℓ
= Res

z=zk

P ′′
n (z)

Pn(z)
dz = −θ′(zj)−

B′(zj)
B(zj)

=
A(zj)

B(zj)
. (5.60)

■

Remark 5.11. The equation (5.54) for Pn

B(z)P ′′
n −A(z)P ′

n −Q(z)Pn(z) = 0 (5.61)

is a (degenerate) Lamé equation in the terminology of [DS20].

5.3.3 Stieltjes-Bethe equations⇒ Degenerate OP

Theorem 5.12. Suppose that, for two relatively prime polynomials A(z) and B(z), a solution of the Stieltjes–
Fekete equilibrium problem (5.55) consists of n (necessarily distinct) points z1, . . . , zn . In the case degA <
degB we make the additional assumption that the polynomial B has at least one zero of higher multiplicity and
that

2n > ReΛ− 1− degB, Λ := − Res
z=∞

θ′(z)dz. (5.62)

Then the polynomial Pn(z) =
∏n

k=1(z−zk) is a maximally degenerate orthogonal polynomial for the pairing
(1.28), with the parameters sj given by

sj =

∫

γ̂j

e−θ(z)

B(z)P 2
n(z)

dz

2πi
. (5.63)

Here γ̂j is the dual path to γj in the homology as defined in Section 5.2.1.

Proof. The proof is mostly a back-tracking of the proof of Theorem 5.10. First of all the condition (5.55) is
stating that the expression for V (z) in (5.58) with F (z) =

√
B(z)Pn(z)e

1
2 θ(z), yields an analytic expres-

sion at all zeros of Pn. Now, with V given by (5.58) we are seeking the linearly independent solution of
the differential equation:

y(z)′′ − V (z)y(z) = 0, V (z) =
F (z)′′

F (z)
. (5.64)

Using Abel’s theorem (stating that the Wronskian of two solutions of (5.64) is a constant) we can write
the second linearly independent solutionv as:

Gq(z) = F (z)

∫ z

q

dw

F (w)2
. (5.65)

The basepoint q of integration in (5.65) can be chosen arbitrarily and different choices of basepoint
amount to adding to Gq a multiple of F .

The differential F (w)−2dw has double poles at the zeros of Pn but no residues. This is guaranteed
by the fact that the potential V (z) (5.58) is analytic at the zeroes of Pn(z), precisely because of the Fekete
equilibrium equations (5.55). Therefore the antiderivative has simple poles without logarithmic singu-
larity. Upon multiplication by F (z) (which has simple zeros) the poles will cancel and this provides the
proof that G(z) is locally analytic at all zeros of Pn.

Next we consider two different cases, depending on the degrees of A and B.
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Case 1: degA ≥ degB. Consider the connected components of C \ Γ =
∐

µ Dµ In the region D0 that
contains ∞(2d∞−1) we use the latter as basepoint of integration. According to our choice of contours
γj (Sec. 5.2.1) in every other connected component Dµ, such that the boundary is γj = ∂Dµ, there is
exactly one endpoint c(µ) of a dual contour γ̂j (this also include the possibility of a particular direction
of approach at infinity c(µ) =∞µ ). In those regions we therefore define Gc(µ)(z) by using the basepoint
c(µ) for integration in the formula (5.65).

Then we define a piece-wise analytic function G(z) by patching together these functions Gc(µ) in
each component Dµ

G(z) = F (z)

∫ z

c(µ)

dw

F 2(w)
=: Gc(µ)(z), z ∈ Dµ. (5.66)

If γj is the boundary of Dµ, elementary calculus shows that for z ∈ γj we have

G(z+)−G(z−) = F (z)

∫ ∞(2d∞−1)

c(µ)

dw

F 2(w)
= F (z)

∫

γ̂j

dw

F 2(w)
= sjF (z). (5.67)

Therefore if we define

Rn(z) :=
G(z)e

1
2 θ(z)√

B(z)
= Pn(z)e

θ(z)

∫ z

c(µ)

e−θ(w)dw

B(w)P 2
n(w)

, z ∈ Dµ, (5.68)

we obtain the following jump conditions

Rn(z+)−Rn(z−) = sjPn(z)e
θ(z), z ∈ γj . (5.69)

This allows us to express Rn as a Cauchy transform. Indeed equation (5.69) implies that

Rn(z) = H(z) +

d∑

j=1

sj

∫

γj

Pn(w)e
θ(w)

(w − z)
dw

2πi
(5.70)

for some entire function H(z), which we now show to be identically zero. To see this consider the com-
ponent Dk that contains the steepest ascent direction ∞(2k+1). Then the integral representation (5.68)
shows that Rn(z) is bounded by O(z−n−b+1) within that sector and also within the two neighbour-
ing steepest descent sectors. Since this holds for all the other regions that contain the steepest ascent
directions, we see that Rn(z) decays like z−n−b+1 in every direction. This then implies that H must
be identically zero by Liouville theorem, since the Cauchy integrals in (5.70) are already bounded by
O(z−1) a priori.

Now consider the Wronskian W (G,F ) which is identically 1 since F and G solve the ODE (5.64).
Using the decay of Rn(z) = O(z−1−ℓ), ℓ ≥ 0 we deduce from the Wronskian expression (5.39) that

W (G,F ) = −(A+B′)PnRn +B(P ′
nRn − PnR

′
n) = O(zd+n−1−ℓ) as |z| → ∞. (5.71)

Since W ≡ 1 we conclude that actually ℓ = d + n − 1 and Rn(z) = O(z−n−d). This implies that Pn is
maximally degenerate from inspection of the Cauchy integral representation (5.70) (with H ≡ 0).

Case 2: degA < degB. The only point in the proof where we have used the condition degA ≥ degB
is in the choice of the base-point of integration ∞(2d∞−1), as described in Section 5.2.1 for this case.
We now suppose that degA < degB and that B has at least one multiple zero, see Section 5.2.2. The
modifications to handle this case are of minor nature; since none of the contours γj extends to infinity
if degA < degB, we can choose dual contours γ̂k that have intersection δjk with the contours γj and
extend to infinity (in any direction) as explained in Section 5.2.2. Note that the only use we make of the
dual contours is in the reasoning from formula (5.67) to the end of the above proof.

Now, the integrand in the expression (5.68) (or equivalent (5.63)) is integrable at infinity under the
following conditions:

−2n+ReΛ− degB < −1 ⇐⇒ 2n > ReΛ− 1− degB, Λ := − Res
z=∞

θ′(z)dz. (5.72)
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The condition is not automatically guaranteed for small n ∈ N because ReΛ can be arbitrarily large. If
this inequality holds, however, then the integrand is O(zΛ−2n−degB) and hence the integral with base-
point at infinity isO(zΛ−2n−degB+1): it then follows that the whole expression (5.68) isO(z−n−degB+1) =
O(z−n−degB+1) = O(z−n−d). This implies the maximal degeneracy of Pn from the expression (5.70),
where H ≡ 0 is established by the use of Liouville’s theorem. We then see that the rest of the reasoning
as well as the proof of the expressions (5.63) proceed unimpeded.

Remark 5.13. For the case degA < degB in Theorem 5.12 we have assumed that B has a double zero,
as well as the condition (5.62) on the degree n of the polynomial Pn. In general it would not be very
complicated to lift the condition on the multiple zero of B, the only price being additional description
of contours (Pochhammer contours in the generic case). However it is less clear how to lift the bound
(5.62) on the degree n (i.e. the minimal number of points for our proofs to proceed unimpeded): we
thus do not know whether the theorem fails in these circumstances or only the proof would need a
modification.

■
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Appendix A

Technical results

In order to estimate integrals
∫
Ψ2dζ and rigorously prove Theorem 4.29 near turning points we need,

as a model, to estimate the corresponding integrals for the solutions of the normal form of the ODE
near a simple turning point. Namely, we need to estimate integrals involving squares of solutions of
the Airy equation, which is the result of Theorem A.3.

We will begin with the following lemma.

Lemma A.1. Let f = f(x) and g = g(x) be two arbitrary solutions of the Airy equation

y′′(x) = xy(x). (A.1)

There exists polynomials An, Bn, Cn ∈ C[x] of degrees n+ 1, n, n− 1, respectively, such that

xnf2 =
d

dx

(
Anf

2 −Bn(f
′)2 + Cnff

′) , (A.2)

xnfg =
d

dx

(
An f g −Bn f

′g′ + Cn
fg′ + gf ′

2

)
. (A.3)

They are related to each other by the following equations:

An(x) = xBn(x)−
1

2
B′′

n(x), Bn(x) + 2xB′
n(x)−

1

2
B′′′

n (x) = xn, Cn(x) = B′
n(x), (A.4)

where ′ = d
dx . The first few are:

n An Bn Cn

0 x 1 0

1 x2

3
x
3

1
3

2 x3

5 − 1
5

x2

5
2x
5

3 x4

7
x3

7 − 3
7

3x2

7

4 x2(x3−2)
9

x(x3+4)
9

4x3+4
9

. (A.5)

Finally, their leading coefficients are given explicitly by:

An(x) =
xn+1

2n+ 1
+O (xn) , Bn =

xn

2n+ 1
+O

(
xn−1

)
, Cn =

nxn−1

2n+ 1
+O

(
xn−2

)
(A.6)

Proof. We will first prove the identity (A.2). LetA,B,C be polynomials of degrees at most n+1, n, n−1
respectively and consider the ansatz

J = Af2 −B(f ′)2 + Cff ′. (A.7)

Differentiating and using that f is a solution of Airy’s equation, we get

J (f) := J ′ =
(
A′ + xC

)
f2 +

(
2A− 2xB + C ′)ff ′ +

(
C −B′)(f ′)2 (A.8)
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where we consider J to be a quadratic form in f and f ′. Thus to satisfy the identity (A.2) J (f) = xnf ,
we seek polynomials A,B,C satisfying

A′ + xC = xn, 2A− 2xB + C ′ = 0, C = B′. (A.9)

From this equations we obtain the third expression C = B′. Then it simplifies to

A′ = xn − xB′, A− xB +
1

2
B′′ = 0, (A.10)

from which we obtain thatA = xB−B′′/2. Finally, differentiating the second equation and substituting
the first we obtain:

B + 2xB′ − 1

2
B′′′ = xn. (A.11)

This last equation forB has a unique polynomial solution obtained by inverting the (finite-dimensional)
linear operator on the space of polynomials of degree≤ n. The above holds for arbitrary n ∈ N. Thus we
define the An, Bn, Cn to be the the A,B,C obtained in this way accordingly for each n. The relationship
of the leading coefficients follows by plugging into (A.2). Finally, we introduce the bilinear pairing

B(f, g) = d

dx

(
An f g −Bn f

′g′ + Cn
fg′ + gf ′

2

)
. (A.12)

Then second identity (A.3) follows from polarisation

B(f, g) = J (f + g)− J (f)− J (g) (A.13)

since we have already established that the bilinear form J can be expressed using the pairing J (f) =
B(f, f) = xnf2. ■

Now we need to establish certain results giving asymptotic estimates for particular integrals of
square functions of the scaled Airy function Ai(ℏ− 2

3x).

Proposition A.2. Let f(x) be an analytic function in a neighbourhood of the origin.

1. Let a, b > 0 . Then ∫ b

−a

Ai2(ℏ−
2
3x)f(x)dx = iℏ

1
3

∫ 0

−a

f(x)dx

2π
√
x+

+O(ℏ 4
3 ), (A.14)

where
√
x is analytic in C\(−∞, 0] and positive for x > 0 and

√
x+ denotes the boundary value from the

upper half plane.

2. Let a, b > 0 and j, k ∈ {0, 1, 2}. Then

∫ eiπ/3b

−a

Ai
(
ℏ−

2
3ωkx

)
Ai
(
ℏ−

2
3ωjx

)
f(x)dx = qjk

∫ 0

−a

iℏ 1
3 f(x)dx

2π
√
x+

+ rjk

∫ eiπ/3b

0

iℏ 1
3 f(x)dx

2π
√
x

+O(ℏ 4
3 ).

(A.15)
Here ω = e

2πi
3 and

√
x and

√
x+ are defined as above and the constants qjk and rjk are determined below:

qjk =





1 j = 0, k = 0,

e
iπ
3

2 j = 0, k = 1,

e−
iπ
3

2 j = 0, k = 2,

0 j = 1, k = 1,
1
2 j = 1, k = 2,

0 j = 2, k = 2,

rjk =





0 j = 0, k = 0,

− e
iπ
3

2 j = 0, k = 1,

e−
iπ
3

2 j = 0, k = 2,

e−
iπ
3 j = 1, k = 1,

1
2 j = 1, k = 2,

0 j = 2, k = 2.

(A.16)

Proof. We will consider f(x) = xn, with the proof being completed simply by summing the Taylor
series.
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1. We need to expand the integral ∫ b

−a

Ai2(ℏ−
2
3x)xndx (A.17)

We perform the change of variable ξ = ℏ− 2
3 , and then use Lemma A.1 exploiting that ξnAi2(ξ)dξ is

an exact differential:
∫ b

−a

Ai2(ℏ−
2
3x)xndx = ℏ

2(n+1)
3

∫ β

−α

Ai2(ξ)ξndξ (A.18)

= ℏ
2(n+1)

3

(
An(ξ)Ai2(ξ)−Bn(ξ) (Ai′(ξ))2 + Cn(ξ)Ai(ξ)Ai(ξ)′

)∣∣∣∣
β

−α

, (A.19)

where we denote the scaled limits of integration α = aℏ− 2
3 , β = bℏ− 2

3 .

We now remind the reader of the asymptotic expansion of the Airy function along [DLMF]

Ai(s) =
e−

2
3 s

3
2

2
√
πs

1
4

(
1 +O

(
s−

3
2

))
, |s| → ∞, | arg(s)| < π − ϵ (A.20)

Ai(−s) =
sin
(

2
3s

3
2 + π

4

)

√
πs

1
4

(
1 +O

(
s−3
))
−

cos
(

2
3s

3
2 + π

4

)

√
πs

1
4

(
1 +O

(
s−

3
2

))
, |s| → ∞, | arg(s)| < 2π

3
.

(A.21)

It is then clear that the evaluation at β = ℏ− 2
3 b yields exponentially small terms thanks to (A.20). For

the evaluation at −α = −ℏ− 2
3 a we use instead (A.21); thanks to the leading order estimates (A.6) we

thus conclude that:

ℏ
2(n+1)

3

∫ β

−α

Ai2(ξ)ξndξ = ℏ
2(n+1)

3
(−α)n+1

2n+ 1

1

π
√
α

(
1 +O(α− 3

2 )
)

(A.22)

= ℏ
1
3
(−a)n+1

2n+ 1

1

π
√
a

(
1 +O(α− 3

2 )
)

(A.23)

= ℏ
1
3

∫ 0

−a

xndx

2π
√−x +O(ℏ 4

3 ). (A.24)

Finally, we observe that
√−x = −i√x+ for x ∈ R<0.

2. All these integrals involve oscillatory direction for each of the arguments. The computation is of
entirely similar nature, where it is particularly important to pay great care at the relative phases.

Setting Aij(ξ) := Ai(ωjξ) and using Lemma A.1 we need to estimate integrals of the form

∫ e
iπ
3 b

−a

xnAij(xℏ−
2
3 )Aik(xℏ−

2
3 )dx = ℏ

2(n+1)
3

∫ e
iπ
3 β

−α

ξnAij(ξ)Aik(ξ)dξ = ℏ
2(n+1)

3 Hjk(ξ)

∣∣∣∣∣

e
iπ
3 β

−α

(A.25)

where we define

H(j,k)
n := B(Aij ,Aik) =

[
AnAijAik −BnAi′jAi′k − Cn

Ai′jAik +AijAi′k
2

]
(A.26)

At the point α = ℏ− 2
3 a a direct computation using the asymptotic properties (A.20), (A.21) yields:

−ℏ 2(n+1)
3 H(j,k)

n (−ℏ− 2
3 a) ≃ i

∫ 0

−a

ℏ 1
3xndx

2π
√
x+
× qjk +O(ℏ 4

3 ) (A.27)

Similarly one finds

ℏ
2(n+1)

3 H(j,k)
n (ℏ−

2
3 beiπ/3) ≃ i

∫ beiπ/3

0

ℏ 1
3xndx

2π
√
x
× rjk +O(ℏ 4

3 ) (A.28)
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Figure A.1: Integration contours for Theorem A.3.

with qjk, rjk as in (A.16). Now the integral (A.15) with f(x) = xn becomes

∫ eiπ/3b

−a

Ai(ℏ−
2
3ωkx)Ai(ℏ−

2
3ωjx)xndx = ℏ

2(n+1)
3 H(j,k)

n (ξ)

∣∣∣∣
ℏ− 2

3 e
iπ
3 b

−ℏ− 2
3 a

. (A.29)

Putting together the two terms we obtain the proof.

■

We now obtain the main technical estimate that will be needed to prove 4.29.

Theorem A.3. Let τ be a simple turning point for the potential Q(x), γd a steepest descent ⊖ path and γo the
oscillatory path on the opposite side of τ . Choose two points τ+, τ− in the neighbourhood of τ at a finite positive
distance from τ and intersecting the paths τ+ ∈ γd, τ− ∈ γo as in Fig. A.1. Let Ψ be an entire solution of the
WKB differential equation

ℏ2Ψ′′(z)−Q(z)Ψ(z) = 0. (A.30)

Suppose that Ψ is asymptotic to the recessive formal WKB solution ψ(τ)
+ . Then

∫ τ+

τ−

Ψ2(z)dz =

∫ τ

τ−

2iℏdz√
Q(z+; s, E)

+O(ℏ2). (A.31)

with the branch-cut of
√
Q(z; s, E) running along the oscillatory path and the determination the one that has

negative real part on the descent path γd.

Proof. In [Vor83] it is shown that there is a conformal mapping ξ(z; ℏ2) ∈ O(z) ⊗ C[[ℏ2]] sending a
turning point z = τ to ξ(τ ; ℏ2) ≡ 0 identically in ℏ. This conformal mapping transforms the WKB-type
Schrödinger equation (3.28) to the Airy equation:

ℏ2
∂2

∂z2
Ψ(z)−Q(z)Ψ(z) = 0 7→ ℏ2

∂2

∂ξ2
f(ξ)− ξf(ξ) = 0. (A.32)

The relationship between the two equations is as follows

Q(z) =

(
dξ

dz

)2

ξ − ℏ2

2
{ξ, z}, Ψ(z) =

f(ξ)√
dξ/dz

(A.33)

where {·, ·} denotes the Schwarzian derivative

{ξ, z} = ξ′′′

ξ′
− 3

2

(
ξ′′

ξ′

)2

, (A.34)
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where we use ′ = d
dz . The formal series ξ(z; ℏ2) is Borel–resummable to an analytic conformal mapping

whose asymptotic expansion as ℏ→ 0+ coincides with the formal series [KT05].

The arc [τ, τ+] on the contour γd is mapped to a segment [0, ξ+] ⊂ R+ in the ξ–plane, and similarly
the arc [τ−, τ ] ⊂ γo maps to [ξ−, 0] ⊂ R−.

The function Ψ is the recessive solution on γ+ and hence it must map to a multiple of the Ai function
within a whole neighbourhood of τ . Thus the integral to be estimated translates to

∫ τ+

τ−

Ψ(z; ℏ)2dz = C(ℏ)
∫ ξ+

ξ−

Ai
(
ℏ− 2

3 ξ
)2

ξ′(z−1(ξ); ℏ2)2
dξ, (A.35)

where C(ℏ) is an appropriate proportionality constant that depends on the chosen normalization of Ψ.
Our choice is to normalize Ψ so that it is asymptotic to the recessive formal solution ψ

(τ)
+ . To fix C(ℏ)

we can consider the asymptotics of the Airy function at τ+ (A.20) and compare it to the WKB solution.
Indeed we find that

Ai
(
ℏ− 4

3 ξ+

)2

ξ′(z−1(ξ+); ℏ2)
≃ ℏ 1

3 e−
4
3ℏ ξ

3
2
+

4πξ′(z−1(ξ+; ℏ2)
√
ξ+
≃

ℏ 1
3 exp

(
2

ℏ

∫ τ+

τ

√
Q(z; s, E)dz

)

4π
√
Q(τ+; s, E)

≃ 1

4ℏ 2
3π

(
ψ
(τ)
−
)2
, (A.36)

so that C(ℏ) = 4ℏ 2
3π(1 + O(ℏ2)). The integral involving the Airy function in (A.35) is of the general

form of Proposition A.2 and hence, to within O(ℏ 4
3 ) we have

∫ ξ+

ξ−

Ai
(
ℏ− 2

3 ξ
)2

ξ′(z−1(ξ); ℏ2)2
dξ =

iℏ 1
3

2π

∫ 0

ξ−

dξ

ξ′(z−1(ξ); ℏ2)2
√
ξ(z−1(ξ)+; ℏ2)

. (A.37)

Now from (A.33) we get
ξ′
√
ξ =

√
Q(z) +O(ℏ2), (A.38)

and hence, to within O(ℏ2), we have

∫ 0

ξ−

dξ

ξ′(z−1(ξ); ℏ2)2
√
ξ(z−1(ξ); ℏ2)2

=

∫ 0

ξ−

dξ

ξ′(z−1(ξ); ℏ2)
√
Q(z−1(ξ))

=

∫ τ

τ−

dz√
Q(z)

. (A.39)

Using the estimate of C(ℏ) and substituting into (A.35) we obtain the statement of the theorem. ■
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Appendix B

Overlapping patterns

In order to verify our result, we performed a series of numerical checks which validated our findings.
These numerical checks worked in the following way.

For the JM case we proceed as indicated below.

1. Compute numerically in arbitrary precision the list of zeros, Zn, of the VY polynomial Yn(t), i.e.,
the poles of the rational solution un (2.36) of PII.

For each of a ∈ Zn, compute the corresponding value of the parameter b appearing in (4.3). Thus
for each a ∈ Zn we can define the corresponding value of Λ = 7a2

36 + 10b as in (4.14). Let us call
Ln the list of the corresponding values of Λ.

2. Let Sn := Zn/(n + 1
2 )

2
3 and En := Ln/(n + 1

2 )
4
3 as per scaling (4.95). For each pair (sℓ, Eℓ) in

Sn,En we construct the corresponding potential Q(z; sℓ, Eℓ) = z4 + sℓz
2 + 2z + Eℓ and evaluate

numerically the Voros symbols including the subleading term, using Prop. 4.19, along the relevant
cycles of the Riemann surface of

√
Q(ζ; s, E)dζ. The numerical verification consists in checking

(2n+ 1)

∮ √
Q(ζ; sℓ, Eℓ)dz +

1

2n+ 1

∮
S1(z)dz ≃ iπ + 2πimℓ, (B.1)

i.e. an odd multiple of iπ. We tested up to n = 26 and the numerics indeed supports the formula.
It is interesting to observe that the leading order computation yields (unsurprisingly) less accurate
approximations of odd multiples of iπ, in particular in that it has a small but still non-negligible
real part.

For the ST case we proceed similarly as follows.

1. Compute numerically in arbitrary precision the list of zeros, Zn, of the ST discriminant Dn (1.11).

For each of t ∈ Zn, compute the characteristic polynomial of the matrix Mn(t) (1.9) and find the
double eigenvalue λ: due to the numerical error in the evaluation of the zero of the dimathscrim-
inant, one has to find the two roots that are very close to each other. Once we find λ we define
Λ = λ+ t2

4 as per (4.21). We thus construct corresponding lists Zn,Ln as in the previous case, for
the values in the ES spectrum.

2. We perform the appropriate scaling Sn := Zn/(n + 1)
2
3 and En := Ln/(n + 1)

4
3 as per scaling

(4.95). For each pair (sℓ, Eℓ) in Sn,En we construct the corresponding potential Q(z; sℓ, Eℓ) =
z4+ sℓz

2+2z+Eℓ and we compute the Voros symbols vjk to subleading order as for the previous
case. Let us remind the reader that ξjk are the Fock-Goncharov parameters defined in (4.115).
Then the numerical verification consists in two checks:

(a) We verify that the three Fock–Goncharov parameters ξ10, ξ20, ξ30 satisfy the rational parametriza-
tion (4.157).
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(a) Conjectural ST scaling ℏ−1 = n−
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3

Figure B.1: The Exactly Solvable spectrum (black) and the Vorob’ev-Yablonskii zeros (red) for n = 40.
In both pictures the VY zeroes are scaled with ℏ−1 = n+ 1

2 .

(b) We verify the equation (4.164), which returns correct within less than 1% for n = 80 with a
higher accuracy of up to 0.01%, unsurprisingly, when we check zeros that lie away from the
boundary of the elliptic region.

Discrepancy of scaling

According to our analysis, the natural scaling for the points in the ES spectrum is the one indicated
in (4.94) for the ST case, and (4.95) for the VY polynomial case. In particular for the ST case the small
parameter is ℏ−1 = (n+ 1) and for the VY case ℏ−1 = (n+ 1

2 ).

If we plot the zeros with these exact scalings, we obtain the two lattices shown in Fig. B.1, on the
left.

However, if we use the scaling ℏ = n−
2
3 for the ES spectrum, we obtain an almost perfect match as

shown on the right pane of Fig. B.1.

We cannot find a mathematical justification of this coincidence, beyond what we already have
proved; namely we can justify the coincidence of the two lattices in aO(ℏ) neighbourhood of the origin,
as well as the matching, slowly modulated, local geometry of either lattices (Prop. 4.31). However we
cannot quantify the reason why the “wrong” scaling seems to yield a much better match.

We have, however, verified that the discrepancy between the two (scaled) lattices decreases indeed
like O(n−1) in the regions at finite distance from the origin, and as O(n−2) in the O(ℏ)–region around
the origin.

To effect this test, we choose a point, s0 in the elliptic region and find the closest points of either
lattices to s0. Let ∆n(s0) be such difference; we call it the “local discrepancy”. Then we plot ln∆n(s0)
against lnn. If we choose s0 at finite positive distance from the origin, the slope of this graph is −1
while for s0 ≃ 0 the slope is −2. This plot of local discrepancy ∆n(s0) is reported in Fig. B.2 in the two
regimes of s0 ≃ 0 and s0 ̸= 0, verifying that the decrease of the discrepancy is O(n−2) in the first case
and O(n−1) in the second.
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Figure B.2: The local discrepancies ∆n(s0) against n in a log-log plot for two values of s0. The red dots
correspond to the discrepancy with the “wrong” scaling n−

2
3 . Although the “wrong” scaling is better,

the rate of convergence is the same in the local lattices. In the left picture s0 = 0 and the slope is −2 (the
dotted line is plotted for reference). In the right picture s0 = 1 + i and the slope is −1 as expected.
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