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Abstract. We present a new residual-type energy-norm a posteriori error analysis for interior
penalty discontinuous Galerkin (dG) methods for linear elliptic problems. The new error bounds
are also applicable to dG methods on meshes consisting of elements with very general polygo-
nal/polyhedral shapes. The case of simplicial and/or box-type elements is included in the analysis
as a special case. In particular, for the upper bounds, an arbitrary number of very small faces is
allowed on each polygonal/polyhedral element, as long as certain mild shape-regularity assumptions
are satisfied. As a corollary, the present analysis generalizes known a posteriori error bounds for dG
methods, allowing in particular for meshes with an arbitrary number of irregular hanging nodes per
element. The proof hinges on a new conforming recovery strategy in conjunction with a Helmholtz
decomposition formula. The resulting a posteriori error bound involves jumps on the tangential de-
rivatives along elemental faces. Local lower bounds are also proven for a number of practical cases.
Numerical experiments are also presented, highlighting the practical value of the derived a posteriori
error bounds as error estimators.
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1. Introduction. Recent years have witnessed extensive activity in the devel-
opment of various Galerkin methods posed on meshes consisting of general polygo-
nal/polyhedral (henceforth collectively referred to as polytopic) elements. A central
question that has arisen is the derivation of computable error bounds for such dis-
cretizations, so that the extreme geometric flexibility of such meshes can be harnessed.

Residual-type a posteriori error bounds for interior penalty discontinuous Galerkin
(dG) methods on composite/polytopic meshes appeared in [30, 21]. Also, in the
context of virtual element methods, corresponding bounds are proven in [14, 19], while
for the weak Galerkin approach, an a posteriori error analysis can be found in [39].
In addition, corresponding results for the hybrid high-order method can be found in
[24]. All aforementioned results are proven for shape-regular polytopic meshes, under
the additional assumption that the diameters of elemental faces are of comparable
size to the element diameter. Although the latter may be a reasonable assumption
in the context of standard, simplicial meshes, it can be rather restrictive for general
polytopic elements. This is because general polygons/polyhedra with more than d
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A POSTERIORI ERROR ESTIMATES FOR DG 2353

faces can simultaneously be shape-regular and contain small faces, i.e., faces whose
diameter is arbitrarily small compared to the element diameter.

This work aims exactly at rectifying this restrictive state of affairs. We prove
new energy-norm a posteriori upper error bounds for interior penalty discontinuous
dG methods posed on meshes containing polytopic elements, including with an arbi-
trary number of small faces, as long as certain mild shape-regularity assumptions are
satisfied. The case of simplicial and/or box-type elements is included in the analy-
sis as a special case. For accessibility, we restrict the discussion to a model elliptic
problem, noting, nevertheless, that various generalizations are possible with minor
modifications.

As a general principle, residual-based a posteriori error analysis of nonconforming
and, in particular, dG methods requires a recovery of the numerical solution into a
related conforming function. The pioneering work of Karakashian and Pascal [35] (see
also [34]) proposed the recovery of the dG solution by a nodal averaging operator for
which a crucial stability result was proven [35, Theorem 2.2]; cf. also [34, Theorem
2.1] for an extension. This construction allowed for the first rigorous a posteriori error
analysis of a dG method for elliptic problems. A number of related results followed,
improving various aspects of the theory; for instance, see [3, 33, 18, 46, 1, 8, 32, 23, 37].
A key reason for the aforementioned restrictive assumption that all elemental faces
are of comparable size to the element diameter in existing a posteriori error analysis
for polytopic dG methods [30, 21] is exactly the lack of availability of a stability result
corresponding to [35, Theorem 2.2] for polytopic element meshes containing elements
with small faces.

In this work, we crucially avoid the use of averaging operators. Instead, the
proof of the upper error bound hinges on a new recovery into H1-conforming func-
tions, in conjunction with a Helmholtz decomposition. To complete the analysis, we
also require the existence of appropriate auxiliary simplicial meshes on which quasi-
interpolants are defined. This can be verified in practice using simple and efficient
algorithms. We provide two such algorithms, one based on a submesh and one em-
ploying tools from computational geometry and, in particular, constrained Delaunay
triangulations [20, 43]. The resulting a posteriori error bound involves also jumps on
the tangential derivatives along elemental faces.

Local lower bounds are also proven for a number of practical cases, indicating
the optimality of the new estimators. The key challenge in the proof of the latter
is, again, the treatment of small/degenerating element faces and the construction of
respective bubble functions. In particular, local lower bounds for the element residuals
are proven allowing for arbitrarily small faces. Lower bounds for the flux residuals
are proven under more restrictive assumptions (see Assumption 4.6 below), allowing,
nevertheless, for arbitrarily small faces.

We note that the case of meshes consisting of simplicial and/or box-type elements
is included in the analysis as a special case. For such ``classical"" mesh concepts,
the developments presented below provide a new class of a posteriori error bounds
applicable even to hp-version dG methods, allowing in particular for meshes with an
arbitrary number of irregular hanging nodes per element.

The remainder of this work is structured as follows. In section 2, we define the
elliptic model problem, the admissible meshes, and finite element spaces and the inte-
rior penalty dG method on polytopic meshes. We also prove some important technical
results regarding the construction of auxiliary meshes which will be instrumental in
the proof of a posteriori error bounds. In section 3, we prove the a posteriori upper
error bound, using the aforementioned technical developments, while in section 4 we
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2354 A. CANGIANI, Z. DONG, AND E. H. GEORGOULIS

provide respective lower bounds for the energy-norm error for a number of practical
cases. Finally, in section 5, we present some numerical experiments confirming the
robustness and efficiency of the derived a posteriori error bound and highlighting its
practical value as an error estimator.

2. Model problem and numerical method. For a Lipschitz domain \omega \subset \BbbR d,
d = 1,2,3, we denote by Hs(\omega ) the Hilbertian Sobolev space of index s \geq 0 of real-
valued functions defined on \omega , endowed with the seminorm | \cdot | Hs(\omega ) and norm \| \cdot \| Hs(\omega ).
Furthermore, we let Lp(\omega ), p\in [1,\infty ], be the standard Lebesgue space on \omega , equipped
with the norm \| \cdot \| Lp(\omega ). In the case p= 2, we shall simply write \| \cdot \| \omega to denote the
L2-norm over \omega and simplify this further to \| \cdot \| when \omega = \Omega , the physical domain.
Finally, | \omega | denotes the d-dimensional Hausdorff measure of \omega .

2.1. Model problem. Let \Omega be a bounded, simply connected, and open polygo-
nal/polyhedral domain in \BbbR d, d= 2,3. The boundary \partial \Omega of \Omega is split into two disjoint
parts \Gamma D and \Gamma N with | \Gamma D| \not = 0. For technical reasons, when d= 3 and | \Gamma N| \not = 0, the
interface between \Gamma D and \Gamma N is assumed that is made up of straight planar segments.
We consider the linear elliptic problem: find u\in H1(\Omega ), such that

(2.1)

 - \nabla \cdot (a\nabla u) = f in \Omega ,

u= gD on \Gamma D,

a\nabla u \cdot \bfitn = gN on \Gamma N,

with known f \in L2(\Omega ), gD \in H1/2(\Gamma D), and gN \in L2(\Gamma N) and symmetric diffusion
tensor a\in [L\infty (\Omega )]d\times d such that

(2.2) \alpha \ast | \xi | 2 \geq \xi \top a(x)\xi \geq \alpha \ast | \xi | 2 > 0 \forall \xi \in \BbbR d, a.e. x\in \Omega ,

for some constants \alpha \ast , \alpha \ast > 0. For simplicity of the presentation, we assume that a is
piecewise constant, although this is not an essential restriction for the validity of the
developments below.

Setting H1
D := \{ v \in H1(\Omega ) : v = 0 on \Gamma D\} , the weak formulation of (2.1) is as

follows: find u\in H1(\Omega ), u= gD on \Gamma D such that

(2.3)

\int 
\Omega 

a\nabla u \cdot \nabla v dx=

\int 
\Omega 

fv dx+

\int 
\Gamma \mathrm{N}

gNv ds

for all v \in H1
D(\Omega ). The well-posedness is guaranteed by the Lax--Milgram lemma.

2.2. Finite element spaces and trace operators. We consider meshes \scrT 
consisting of general polygonal (for d= 2) or polyhedral (for d= 3) mutually disjoint
open elements K \in \scrT , henceforth termed collectively as polytopic, with \cup K\in \scrT \=K =
\=\Omega . Given hK := diam(K), the diameter of K \in \scrT , we define the mesh function
\bfith : \cup K\in \scrT K \rightarrow \BbbR + by \bfith | K = hK , K \in \scrT . Further, we let \Gamma := \cup K\in \scrT \partial K denote
the mesh skeleton and set \Gamma int := \Gamma \setminus \partial \Omega . The mesh skeleton \Gamma is decomposed into
(d  - 1)-dimensional simplices F denoting the mesh faces, shared by at most two
elements. These are distinct from elemental interfaces, which are defined as the
simply connected components of the intersection between the boundary of an element
and either a neighboring element or \partial \Omega . As such, an interface between two elements
may consist of more than one face, separated by hanging nodes/edges shared by those
two elements only. This includes both ``classical"" hanging nodes, typically created
by local mesh refinement, and nonstandard ones separating non-coplanar faces. The
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A POSTERIORI ERROR ESTIMATES FOR DG 2355

K

Fig. 1. Element K \in \scrT with its facewise neighbors; hanging nodes are highlighted by bullets.

latter may be created, for instance, by a mesh agglomeration procedure; we refer the
reader to Figure 1 for an illustration for d= 2.

The finite element space S\scrT with respect to \scrT is defined by

S\scrT \equiv Sp
\scrT := \{ u\in L2(\Omega ) : u| K \in \scrP p(K),K \in \scrT \} 

for some p \in \BbbN with \scrP p(K) denoting the space of d-variate polynomials of total
degree up to p on K. We stress that the local elemental polynomial spaces employed
within S\scrT are defined in the physical coordinate system, i.e., without mapping from
a given reference or canonical frame. This approach allows us to retain the full local
approximation properties of the underlying finite element space. We refer the reader
to [13, 12] for a detailed discussion on the benefits and implementation issues resulting
from this choice.

LetKi andKj be two adjacent elements of \scrT sharing a face F \subset \partial Ki\cap \partial Kj \subset \Gamma int.
For v and \bfitq elementwise continuous scalar- and vector-valued functions, respectively,
we define the average across F by \{ \{ v\} \} | F := 1

2 (v| F\cap Ki
+v| F\cap Kj

), \{ \{ \bfitq \} \} | F := 1
2 (\bfitq | F\cap Ki

+
\bfitq | F\cap Kj

), respectively, and the jump across F by [[v]] := v| F\cap Ki
 - v| F\cap Kj

, [[\bfitq ]] :=
\bfitq | F\cap Ki  - \bfitq | F\cap Kj , using the convention i > j in the element numbering to determine
the sign. On a boundary face F \subset \Gamma D, with F \subset \partial Ki, Ki \in \scrT , we set \{ \{ v\} \} := vi,
\{ \{ \bfitq \} \} := \bfitq i, [[v]] := vi, and [[\bfitq ]] := \bfitq i, respectively.

For v \in S\scrT we denote by \nabla hv the elementwise gradient; namely, (\nabla hv)| K :=
\nabla (v| K) for all K \in \scrT . Also, we denote by \nabla Tv the facewise tangential gradient
operator acting on the traces of v on \Gamma , noting that \nabla Tv is double-valued on \Gamma int.
With a slight abuse of notation, we use the same symbol to denote the tangential
gradient of boundary functions such as the Dirichlet datum gD.

2.3. Mesh assumptions, inverse inequalities, and approximation re-
sults. Each mesh \scrT is required to conform to the problem data in the following
basic way. First, \scrT must represent exactly the domain, namely \cup K\in \scrT K =\Omega , and be
consistent with the subdivision of \partial \Omega into \Gamma D and \Gamma N. Moreover, we require resolu-
tion of multiscale features of the domain, such as complex boundaries and bottlenecks.
Note that, in the context of polytopic meshes, such resolution is not intrinsic in that
multiscale geometrical features can be represented by relatively ``large"" elements with
``small"" faces. Hence we assume that the local mesh size of each mesh \scrT is comparable
to the local finest scale of \Omega . It is clear that such saturation-type assumptions can
always be satisfied, possibly after a finite number of refinements of an original coarse
mesh. Further, we require the following general polytopic mesh regularity assumption.

Assumption 2.1 (mesh regularity). We assume that each mesh \scrT satisfies the
following mesh regularity conditions. For each K \in \scrT the following hold:
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2356 A. CANGIANI, Z. DONG, AND E. H. GEORGOULIS

K

\bfx 0
1

K1

\bfx 0
2

K2

K

\bfx 0

Fig. 2. Left panel: A polygonal element K with 7 nodes is subdivided into two polygons K1 and
K2 which are star-shaped with respect to the points x0

1 and x0
2, respectively. Right panel: A patch of

polygonal elements. The element K has 12 nodes and is star-shaped with respect to a ball centered
in x0.

(a) K is star-shaped with respect to an inscribed ball of radius rK \geq \tau  - 1hK ,
centered at some point x0 \equiv x0

K \in K; see Figure 2 (right panel) for an
illustration when d= 2.

(b) Each face F \subset \partial K \cap \partial \Omega is star-shaped with respect to a (d - 1)-dimensional
ball of radius rF \geq \tau  - 1hK .

Here, \tau > 1 is a constant independent of the discretization parameters. In what
follows, we assume that the centers of the inscribed balls are selected to be chosen so
that \tau is as minimal.

Remark 2.2. All results below generalize immediately to meshes containing poly-
topic elements that are finite unions of star-shaped polytopes; see Figure 2 (left panel)
for an example. The minimal modifications required in the proofs are detailed in Re-
mark 2.10 below.

Assumption 2.1 allows for very general element shapes, including nonconvex poly-
topes with an arbitrary number of degenerating faces, i.e., element faces F \subset \partial K with
| F | << hd - 1

K . Notable examples of acceptable subdivisions comprise elements with
a bounded number of possibly degenerate hanging nodes and elements with ``many""
faces obtained by agglomeration of very fine triangulations of the problem domain.
Note, however, that Assumption 2.1(b) forbids degenerating/shape-irregular elemen-
tal faces on the boundary. This restriction can be relaxed to some extent at the
expense of introducing unknown/hard-to-estimate constants, as discussed in Remark
3.7 below.

To the best of our knowledge, Assumption 2.1 allows for the most general poly-
topic meshes for which a posteriori error bounds are proven, for any Galerkin dis-
cretization and for any PDE problem. Nevertheless, it is, perhaps inevitably, more
restrictive compared to the respective ones required for stability and a priori error
analysis of dG methods; see [11], [12, section 4], and [10] for details. The key ad-
vantage of the present setting is that it allows us to be as explicit as possible in the
constants involved in the a posteriori error bounds.

We also require the following standard local quasi-uniformity assumption.

Assumption 2.3 (local quasi-uniformity). Each mesh \scrT is locally quasi-uniform,
i.e., there exists a constant \rho > 0 such that \rho  - 1 \leq hKi

/hKj
\leq \rho , whenever Ki,Kj \in \scrT 

share a common face.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

7/
23

 to
 1

47
.1

22
.2

2.
15

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A POSTERIORI ERROR ESTIMATES FOR DG 2357

We now state and prove a few results stemming from the above shape-regularity
and local quasi-uniformity assumptions. A first, geometrical, consequence is that the
number of interface neighbors of each K \in \scrT is, in fact, bounded.

Lemma 2.4. Under Assumptions 2.1 and 2.3, the number of interface neighbors
of each element of \scrT is uniformly bounded.

Proof. Denote by \omega K the set of elements in \scrT which are neighbors of K. We
derive a rough upper-bound on the cardinality n of \omega K as follows. If K \prime \in \omega K , then
K \prime \subset BhK+hK\prime (x

0
K) \subseteq B(1+\rho )hK

(x0
K) thanks to Assumption 2.3. On the other hand,

Assumption 2.1 implies that K \prime contains the ball BrK\prime (x
0
K\prime ) with rK\prime \geq \tau  - 1hK\prime . Let-

ting C2 := \pi and C3 := 4\pi /3, we thus have | K \prime | \geq Cdr
d
K\prime \geq Cd\tau 

 - dhdK\prime \geq Cd\tau 
 - d\rho  - dhdK .

Therefore, n(Cd\tau 
 - d\rho  - dhdK) \leq Cd(1 + \rho )dhdK , or n \leq \tau d\rho d(1 + \rho )d, thereby showing

that the number of neighbors of K is uniformly bounded as required.

In particular, the presence of ``many small"" faces is allowed if these are grouped
into a few interfaces only; see Figure 2 (right panel) for an example. Complex in-
terfaces may be produced by agglomeration procedures used to perform numerical
upscaling of complex domains described through very fine triangulations [5, 12, 40]
or within adaptive algorithms to align the mesh to solution features and coefficient
anisotropies [27, 12, 15]

Lemma 2.5. Let K \in \scrT satisfying Assumption 2.1. Then, for all v \in H1(\Omega ), we
have the trace estimate

(2.4) \| v\| 2\partial K \leq Ctr

\biggl( 
\zeta 

hK
\| v\| 2K +

hK
\zeta 

\| \nabla v\| 2K
\biggr) 

for any \zeta > 0 and Ctr a positive constant only depending on \tau and on d.
Also, for each v \in \scrP p(K), the inverse estimate

(2.5) \| v\| 2\partial K \leq Cinv

hK
\| v\| 2K

holds with Cinv := \tau (p+ 1)(p+ d).

Proof. These estimates are special cases of the corresponding ones presented
in [10]. The trace estimate (2.4) follows from [10, Lemma 4.7] in conjunction with
Assumption 2.1, while (2.5) follows from [10, Lemma 4.4] along with
Assumption 2.1.

Lemma 2.6. Given K \in \scrT satisfying Assumption 2.1, for each v \in H1(K), K \in \scrT ,
we have the bounds

(2.6) \| v - \Pi 0v\| K \leq CPFhK\| \nabla v\| K

and

(2.7) \| v - \Pi 0v\| \partial K \leq \~CPF

\sqrt{} 
hK\| \nabla v\| K ,

with \Pi 0 :L2(\Omega )\rightarrow S0
\scrT , the orthogonal L2-projection onto S0

\scrT , the space of elementwise
constants; here CPF , \~CPF > 0 depend on d and on \tau only.

Proof. The key technical difficulty is to show that CPF and \~CPF are independent
of the shape of K. Under Assumption 2.1, for K \in \scrT we can apply the Poincar\'e--
Friedrichs inequalities proven in [50, Theorem 3.5] and [47, Proposition 2.10], with
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2358 A. CANGIANI, Z. DONG, AND E. H. GEORGOULIS

explicit dependence on the shape-regularity constant \tau and dimension d, yielding
(2.6). Then, (2.7) follows using the trace inequality (2.4).

A crucial technical aspect of the analysis below is the availability of a shape-
regular, auxiliary triangulation defined as follows.

Definition 2.7 (auxiliary mesh). Given the sequence of meshes \scrT , we name
as the auxiliary mesh a corresponding sequence of conforming simplicial meshes \widehat \scrT 
satisfying for each \widehat \scrT and T \in \widehat \scrT 

(a) (shape-regularity) the radius rT of the largest circle inscribed in T is such that
rT \geq \widehat \tau  - 1hT , where hT denotes the diameter of T ;

(b) (local mesh-size compatibility) if K \in \scrT is such that K \cap T \not = \emptyset , it holds
that \widehat \rho  - 1 \leq hT /hK \leq \widehat \rho ,

with \widehat \tau , \widehat \rho > 1 constants independent of the discretization parameters.

An immediate consequence of the above definition is that, if \widehat \scrT is an auxiliary
mesh sequence, then the number of intersections of each T \in \widehat \scrT with the elements of
the corresponding polytopic mesh \scrT is uniformly bounded as a function of the shape-
regularity and local quasi-uniformity constants of both the polytopic and auxiliary
meshes. The proof of this fact follows along the lines of that of Lemma 2.4.

We note that the evaluation of the error estimator presented below does not re-
quire the construction of auxiliary meshes in practice. As long as their existence can
be assumed, the a posteriori error bound holds. Moreover, we do not expect such an
assumption to limit in any possible way the configurations of very general polytopic
mesh sequences allowed by Assumptions 2.1 and 2.3. Rather, the issue is to show that
auxiliary meshes tightly close to the polytopic meshes can be constructed in princi-
ple. To this end, we present two possible algorithms for the construction of auxiliary
meshes which apply to progressively complicated primal mesh configurations. Both
algorithms are easily and cheaply implementable. As such, if desired, the correspond-
ing auxiliary mesh quality parameters may be computed in practice, thus permitting
the explicit evaluation of their impact on the a posteriori error bound.

2.3.1. Auxiliary submesh. Assume that the mesh \scrT is fully shape-regular in
the sense that, for each K \in \scrT , each face F \in \partial K satisfies the shape-regularity
property which is stated in Assumption 2.1(b) for boundary faces. Then, an auxiliary
mesh can be simply constructed by joining F to x0

K , the center of star-shapedness of
K \in \scrT , for each K \in \scrT and F \in \partial K. This approach can be extended to the more
general case in which every interface can be replaced by a shape-regular triangulated
surface which does not compromise the shape-regularity of the neighboring elements.
For instance, any of the four circular interfaces appearing in Figure 2 (right panel)
may be replaced by the segment joining its endpoints. This will result in the auxiliary
submesh shown in Figure 3 (left panel).

2.3.2. Constrained Delauney auxiliary mesh. Auxiliary submeshes are in
general not obvious to construct, and, moreover, employing a submesh is not possible
when the element faces are shape-irregular and/or of arbitrarily small size with respect
to the elemental size. In this case, it is necessary to consider auxiliary meshes which
are not logically submeshes of the corresponding polytopic meshes. One possibility,
designed to maximize shape-regularity while maintaining the auxiliary mesh as close
as possible to the polytopic mesh in terms of local mesh size, is to exploit the concept
of constrained Delaunay triangulations, introduced in [20] for d = 2 and generalized
to any d in [43]; see also [26, 44]. We recall their definition, limiting ourselves to the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

7/
23

 to
 1

47
.1

22
.2

2.
15

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A POSTERIORI ERROR ESTIMATES FOR DG 2359

Fig. 3. A mesh with 5 elements (solid lines) and associated auxiliary meshes (dashed lines).
Left panel: Auxiliary submesh with 24 elements. Right panel: Auxiliary constrained Delauney mesh
with 16 elements. The dual nodes belonging to the set \scrP of Definition 2.7 are marked with grey
bullets.

case of interest, namely when the constraints are given by the mesh faces lying on the
boundary of \Omega .

Definition 2.8 (constrained Delaunay triangulation). Let \scrX = \{ \scrP ,\scrF \} with \scrP a
set of points in \Omega \subset \BbbR d and \scrF the set of boundary faces of the mesh \scrT . A constrained
Delaunay triangulation (CDT) associated to \scrX is a triangulation of \Omega , which conforms
to \scrF , has \scrP as its set of internal vertices, and satisfies the following constrained
Delaunay property: for every k \in \{ 1, . . . , d\} and every k-dimensional simplex S in the
triangulation which is not on \partial \Omega , there exists a circle \scrC such that

(1) the vertices of S are on the boundary of \scrC ;
(2) if a vertex P of the CDT is in the interior of \scrC , then the straight line con-

necting P to at least one of the vertices of S intersects \partial \Omega . (Then, we say
that P cannot be seen from one of the vertices of S.)

This definition generalizes the concept of Delaunay triangulations in that, if no
constraints are given, it would coincide with the definition of Delaunay triangulations.
Moreover, as Delaunay triangulations, CDTs maximize the minimum angle among all
triangulations generated by the cloud of points \scrP and constrained by \scrF . The existence
of CDTs is analyzed in [20, 43, 44]: CDTs always exists for d= 2 while for d= 3 they
exist if any ridge formed by \scrF is strongly Delaunay. A simplex is strongly Delaunay
if the circle \scrC of Definition 2.8 does not enclose any other point in \scrX . As shown
in [43, 44], this condition can always be satisfied, possibly after the insertion of a
finite number of regular nodes on nonstrongly Delaunay ridges in the skeleton of \scrF .
Moreover, once every boundary edge is strongly Delaunay, the restriction of the CDT
on each interface is Delaunay.

Given the polytopic mesh \scrT , here we consider the CDT of \Omega with seeds \scrP =
\{ x0

K\} K\in \scrT , possibly after the modification of \scrF discussed above. We refer the reader
to Figure 3 (right panel) for an illustration.

Remark 2.9. We expect the CDTs associated to \scrT to always satisfy the auxiliary
mesh Definition 2.7 owing to their shape-regularity maximization property and the
fact that the seeds in \scrP are well distanced by assumption. However, due to the
extreme generality of \scrT , proving this fact appears to be challenging and would result in
overly pessimistic estimation of the shape-regularity and quasi-uniformity constants.
Specifically, the difficulty comes from the contrasting requirements of shape-regularity
and local mesh size compatibility, due to which an element of the CDT may overlap
with elements of \scrT which are not direct neighbors; see Figure 4 (right panel) for an
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T

T

T
\gamma T

Fig. 4. Constrained Delauney auxiliary mesh examples. Different configurations for the set \Gamma T

of (2.10) for the auxiliary element T marked in grey. Left: \Gamma T = \Gamma \mathrm{c}
T . Center: \Gamma T = \Gamma \mathrm{o}

T . Right:
\Gamma \mathrm{o}
T is made of a single interface \gamma T , while the rest of \Gamma T belongs to \Gamma \mathrm{c}

T . The simplices required in
the proof of Lemma 2.13 to estimate the contributions from each edge in \gamma T partially overlap (not
shown).

example. Hence, in the a posteriori error analysis below, we have opted for keeping the
requirements of Definition 2.7 as an assumption which can be verified economically
and sharply in practice. Indeed, contrary to auxiliary submeshes, CDTs can always
be constructed, and their construction is, in fact, simpler in general. If desired, their
qualitative parameters may be easily evaluated using well-established and efficient
algorithms [20, 43, 44].

Remark 2.10. In the case of meshes with elements made of finite unions of star-
shaped subpolytopes, auxiliary meshes should be constructed starting from the centers
of the subpolytopes instead. The results below still hold as long as local quasi-
uniformity is assumed for the submesh comprising the star-shaped subpolytopes.

2.3.3. Auxiliary mesh interpolation and inverse estimates. We recall the
following Scott--Zhang-type quasi-interpolation result [42, 41, 48, 17].

Lemma 2.11 (quasi-interpolant). Let \widehat \scrT be a shape-regular simplicial subdivision
of \Omega not containing any hanging nodes. Then, there exists a quasi-interpolation op-
erator Ih :H1(\Omega )\rightarrow H1(\Omega )\cap S1\widehat \scrT , such that

(2.8) \| v - Ihv\| T + hT \| \nabla (v - Ihv)\| T \leq CszhT \| \nabla v\| \omega T
,

where \omega T denotes the patch of elements in \widehat \scrT with nonempty intersection with T .
The constant Csz > 0 depends only on the shape-regularity constant \widehat \tau of the auxiliary
mesh \widehat \scrT . If the function v has nonhomogeneous piecewise linear trace on \partial \Omega , we have
Ihv| F = v| F for all F \subset \partial T \cap \partial \Omega , T \in \widehat \scrT .

Moreover, we have

\| v - Ihv\| 2\partial K \leq CinhK\| \nabla v\| 2\widehat \omega K
,(2.9)

with Cin > 0 depending only on the shape-regularity of \scrT and of \widehat \scrT . Here, \widehat \omega K =\cup \{ \omega T :
T \cap K \not = \emptyset , T \in \widehat \scrT \} .

Proof. The proof of (2.8) can be found in [42, 41, 48, 17] for various levels
of generality. Noting that (2.9) refers to the trace on the skeleton of the original
polytopic mesh, we apply the trace inequality (2.4) with \zeta = 1,

\| v - Ihv\| 2\partial K \leq Ctr

\bigl( 
h - 1
K \| v - Ihv\| 2K + hK\| \nabla (v - Ihv)\| 2K

\bigr) 
\leq Ctr

\sum 
T\in \widehat \scrT :T\cap K \not =\emptyset 

\bigl( 
h - 1
K \| v - Ihv\| 2T + hK\| \nabla (v - Ihv)\| 2T

\bigr) 
,
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and (2.9) follows from (2.8), depending on the shape-regularity of \scrT through Ctr and
on the shape-regularity of \widehat \scrT through (2.8).

The next polynomial inverse estimation result, relating L2-norms on subsets of
the mesh skeleton \Gamma of \scrT with L2-norms over elements of the auxiliary mesh \widehat \scrT , will
be important for the analysis below. In this context, for each T \in \widehat \scrT , we consider the
set of cut interfaces obtained by the intersection of \Gamma with the simplex T , which we
characterize as follows:

(2.10) \Gamma T := \Gamma \cap T =\Gamma c
T \cup \Gamma o

T ,

with \Gamma c
T the set of interfaces \gamma T \in \Gamma T \cap \Omega such that \gamma T \subset \partial K with K an element of \scrT 

whose center of star-shapedness is a vertex of T , and \Gamma o
T := \Gamma T \setminus \Gamma c

T . Note that the
number of interfaces in \Gamma T is bounded since the number of intersections of T with the
elements K \in \scrT is bounded; however, each such interface may be made of an arbitrary
number of cut faces, due to the complexity of the intersecting polytopic elements.

The subdivision in (2.10) reflects increasing levels of difficulty, with \Gamma o
T collecting

complex interfaces for which the proof of the inverse estimate is more challenging. As
usual, the proof rests in employing simplices obtained by joining each face composing
\Gamma T with the most appropriate vertex of T and summing up all contributions. When
\Gamma o
T \not = \emptyset , such simplices may overlap. In this case, the constant of the resulting inverse

estimate depends on the number of such overlaps and thus reflects the complexity
of \Gamma T . The complex interface \gamma T highlighted in Figure 4 (right panel) provides an
example in which this eventuality may occur.

Remark 2.12. In the case of submesh auxiliary meshes, we always have \Gamma o
T = \emptyset .

Instead, for constrained Delauney auxiliary meshes, \Gamma o
T \not = \emptyset in general; we refer the

reader to Figure 4 for some examples.

Lemma 2.13. Let Assumptions 2.1 and 2.3 hold, and let \widehat \scrT be an auxiliary mesh
related to \scrT . Given q \in \BbbN , for all T \in \widehat \scrT and v \in \scrP q(T ), we have

(2.11) \| v\| 2\Gamma T
\leq 
\widehat Cinv

hT
\| v\| 2T .

The constant \widehat Cinv depends on d, q, and on shape-regularity and local quasi-uniformity
of both \scrT and \widehat \scrT only. If \Gamma T \equiv \Gamma c

T , then \widehat Cinv = \tau (q+ 1)(q+ d). If \Gamma o
T \not = \emptyset , \widehat Cinv

depends also on the number of overlaps no required to cover the elements of \Gamma o
T ; cf.

(2.13). In particular, if \Gamma o
T \subset \partial \Omega , then no \leq d.

Proof. We consider \Gamma c
T and \Gamma o

T separately, starting with \Gamma c
T . Exploiting the star-

shapedness property of \Gamma c
T with respect to the vertices of T , which is inherited from

Assumption 2.1, the inverse inequality

\| v\| 2\Gamma \mathrm{c}
T
\leq \tau (q+ 1)(q+ d)

hT
\| v\| 2T

follows in the same way as (2.5).
Considering now the set \Gamma o

T , we observe that each cut interface belonging to \Gamma o
T

may be partitioned into a set of (d - 1)-dimensional simplices. Indeed, each interface
inherits a set of, possibly cut, simplicial faces from \Gamma . If a face F \in \Gamma is only partially
contained in \Gamma o

T , then F \cap T is still an interval if d = 2 while it can always be

subdivided into four triangles if d = 3. Let now \widehat F be one such (d - 1)-dimensional
simplex within \Gamma o

T . We note that, if a simplex T has inradius rT , then, for any
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given intersecting hyperplane Z, there exists a vertex V of T such that d(V,Z) \geq r.
Otherwise, S must be contained in the region \{ x\in \BbbR d : d(x,Z)< r\} , in contradiction
with the fact that T contains a (closed) ball of radius r. It follows that we can always
construct a nondegenerate simplex T \widehat F by joining \widehat F with a vertex V of T such that

d(V, \widehat F )\geq r. We thus have (cf. (2.5)) the inverse estimate:

(2.12) \| v\| 2\widehat F \leq \widehat \tau (q+ 1)(q+ d)

hT
\| v\| 2T \widehat F \forall v \in \scrP q(T ).

Then, summing up over all \widehat F \in \Gamma o
T , we conclude that

(2.13) \| v\| 2\Gamma \mathrm{o}
T
\leq \widehat \tau (q+ 1)(q+ d)

hT

\sum 
\widehat F\in \Gamma \mathrm{o}

T

\| v\| 2T \widehat F \leq no
\widehat \tau (q+ 1)(q+ d)

hT
\| v\| 2T ,

with no the number of overlaps of the simplices T \widehat F , \widehat F \in \Gamma o
T . In particular, if \Gamma o

T

is only made of boundary interfaces, then no \leq d, as there may be at most d such
interfaces, each made of a single (d - 1)-dimensional simplex. The required estimate
now follows by summing up the contributions from \Gamma c

T and \Gamma o
T .

Remark 2.14. The constant \widehat Cinv appearing in (2.11) accounts for the complexity
of the mesh in terms of topology and shape, quantified by the number no of overlap
required to cover the mesh skeleton; see the mesh shown in Figure 4 (right) for an
illustrative example. In typical practical cases, e.g., meshes stemming from standard
algorithms such as Voronoi tessellations, as well as shape-regular adaptively generated
meshes, we expect to have \Gamma T \equiv \Gamma c

T for the vast majority of auxiliary elements. For
instance, for the adaptively refined mesh with multiple hanging nodes shown Figure
4 (left), \Gamma o

T either is empty or contains a single boundary edge, i.e., no overlaps are

required, resulting in the ``ideal"" constant \widehat Cinv = \tau (q+ 1)(q+ d) for each T \in \widehat \scrT .

2.4. Discontinuous Galerkin method. Let \scrV := S\scrT +H1(\Omega ). The symmetric
interior penalty dG method reads as follows: find uh \in S\scrT such that

(2.14) B(uh, vh) = \ell (vh) for all vh \in S\scrT ,

whereby B(\cdot , \cdot ) : \scrV \times \scrV \rightarrow \BbbR is defined by

(2.15)

B(w,v) :=

\int 
\Omega 

a\nabla hw \cdot \nabla hv dx+

\int 
\Gamma \setminus \Gamma \mathrm{N}

\sigma [[w]][[v]] ds,

 - 
\int 
\Gamma \setminus \Gamma \mathrm{N}

(\{ \{ a(\Pi \nabla w) \cdot \bfitn \} \} [[v]] + \{ \{ a(\Pi \nabla v) \cdot \bfitn \} \} [[w]]) ds,

for w,v \in \scrV , and \ell (\cdot ) : \scrV \rightarrow \BbbR by

\ell (v) :=

\int 
\Omega 

fv dx - 
\int 
\Gamma \mathrm{D}

gD
\bigl( 
(a(\Pi \nabla v)) \cdot \bfitn  - \sigma v

\bigr) 
ds+

\int 
\Gamma \mathrm{N}

gNv ds,

with \Pi : [L2(\Omega )]
d \rightarrow [S\scrT ]

d denoting the orthogonal L2-projection operator onto the
(vectorial) finite element space, and \sigma \in L\infty (\Gamma \setminus \Gamma N) being the so-called discontinuity-
penalization function given by

(2.16) \sigma (x) :=

\left\{         
C\sigma max

K\in \{ Ki,Kj\} 

\Bigl\{ \=aKCinv

hK

\Bigr\} 
, x\in F \in \Gamma int, F \subseteq \partial Ki \cap \partial Kj ,

C\sigma 
\=aKCinv

hK
, x\in F \in \Gamma D, F \subset \partial K,
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with C\sigma a positive constant and \=aK := | 
\surd 
a| 22| K , K \in \scrT ; here | \cdot | 2 denotes the natural

matrix-l2-norm. The known dependence of the penalty on the local polynomial degree
is included in Cinv for brevity; see [12, 10] for details. Note that, using (2.3) and that
[[v]] = 0 on \Gamma \setminus \Gamma N for all v \in H1

D, we have B(u, v) = \ell (v) for all v \in H1
D, with u\in H1(\Omega )

the solution to (2.3).

Remark 2.15. To avoid further notational overhead, we opted in exposing the
main results for elementwise constant diffusion tensors, i.e., a\in (S0

\scrT )
d\times d, and for the

classical interior penalty dG method. With minor modifications, the results below
can also be extended to more general coefficients. Moreover, we expect that a corre-
sponding analysis to what is presented below holds also for the interior penalty dG
variants from [29, 25].

Upon defining the dG norm by | \| v| \| :=
\bigl( 
\| 
\surd 
a\nabla hv\| 2 + \| 

\surd 
\sigma [[v]]\| 2\Gamma \setminus \Gamma \mathrm{N}

\bigr) 1/2
, we have

the following result.

Lemma 2.16. Under Assumption 2.1, there exists C\sigma > 0, such that

(2.17) B(v, v)\geq Ccoer| \| v| \| 2 and B(w,v)\leq Ccont| \| w| \| | \| v| \| for all v \in \scrV ,
respectively, with Ccoer,Ccont > 0, independent of h of p, and K \in \scrT .

We refer the reader to [12, 10] for the proof and the explicit definition of C\sigma . A priori
error bounds are also available [12, 10].

3. A posteriori error analysis. The following analysis requires Assumptions 2.1
and 2.3 and that an auxiliary mesh according to Definition 2.8 is given.

We decompose the error into two components:

e= u - uh = (u - uc) + (uc  - uh) =: ec + ed,

whereby uc \in H1(\Omega ) is the recovery of the discrete solution uh \in S\scrT , defined by

(3.1) B(uc, v) =B(uh, v) \forall v \in H1
D(\Omega ),

and uc = gD on \Gamma D. The existence and uniqueness of uc are guaranteed by the
Lax--Milgram lemma.

Remark 3.1. The construction of uc is known in the theory of finite element meth-
ods and has been used in various contexts, e.g., in [28] for the design of equilibrated
flux a posteriori error estimators and in [45] for the analysis of domain decomposition
preconditioners. A crucial reason of using this recovery instead of the averaging oper-
ator as in [35] is that it is essentially independent of the mesh geometry and topology;
this is clearly helpful in the present context of very general polytopic meshes.

3.1. Bounding the nonconforming error \bfite \bfitd . Inspired by [22, 16] (cf. also
[6, 9]), we decompose the nonconforming error ed = uc  - uh further via a Helmholtz
decomposition.

Lemma 3.2. Given that \Omega is simply connected, for any \bfitw \in (L2(\Omega ))
d, there exist

\xi \in H1
D(\Omega ) and \phi \in [H1(\Omega )]2d - 3, d= 2,3, such that

(3.2) aw= a\nabla \xi + curl\phi in \Omega ,

and \phi can be chosen so that

(3.3) curl\phi \cdot \bfitn = 0 on \Gamma N.

Moreover, the following relations hold:

(3.4) \| 
\surd 
aw\| 2 = \| 

\surd 
a\nabla \xi \| 2 + \| a - 1/2curl\phi \| 2,
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2364 A. CANGIANI, Z. DONG, AND E. H. GEORGOULIS

and

(3.5) \| \nabla \phi \| \leq C\Omega \| curl\phi \| ,

with a constant C\Omega > 0 only depending on \Omega .

Proof. The proof of (3.2) is given in [22, Theorem 3.1] for the d = 2 case and is
extended to d= 3 in [16]. Since \nabla \xi is orthogonal to curl\phi , from the symmetry of the
diffusion tensor a, the orthogonality (3.4) follows immediately. Finally, the proof of
(3.5) can be found in [16]; for d= 2, we have C\Omega = 1.

Remark 3.3. The Helmholtz decomposition can be generalized to multiply con-
nected domains [31]. However, concerning the validity in this setting of the relation
(3.5), which is fundamental to our analysis, we are only aware of the recent preprint
[7]. For this reason, we prefer to limit the current analysis to the simply connected
setting, leaving possible extensions to future work.

Condition (3.3) imposes a constraint on \Gamma N for \phi \in [H1(\Omega )]2d - 3. Namely, curl\phi \cdot 
\bfitn F = 0 on F \subset \Gamma N, implying that \phi \in [H1(\Omega )]3 has constant components on each
(d - 1)-dimensional planar subset of \Gamma N.

We apply the Helmholtz decomposition with \bfitw = \nabla hed. Hence \xi \in H1
D(\Omega ) and

\phi \in [H1(\Omega )]2d - 3 are such that a\nabla hed = a\nabla \xi + curl\phi , and we have

\| 
\surd 
a\nabla hed\| 2 =

\int 
\Omega 

a\nabla hed \cdot \nabla \xi dx+

\int 
\Omega 

\nabla hed \cdot curl\phi dx.(3.6)

Since uc \in H1(\Omega ) with uc| \Gamma \mathrm{D}
= gD and \xi \in H1

D(\Omega ), (3.1) implies\int 
\Omega 

a\nabla hed \cdot \nabla \xi dx= - 
\int 
\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

\{ \{ a(\Pi \nabla \xi ) \cdot \bfitn \} \} [[uh]] ds - 
\int 
\Gamma \mathrm{D}

(a(\Pi \nabla \xi ) \cdot \bfitn )(uh  - gD)ds.

Hence, using the Cauchy--Schwarz inequality, the trace inverse estimate (2.5), the
definition of \sigma , and the orthogonality (3.4), we have, respectively,\int 

\Omega 

a\nabla hed \cdot \nabla \xi dx

\leq \| \sigma  - 1/2\{ \{ a(\Pi \nabla \xi )\} \} \| \Gamma \setminus \Gamma \mathrm{N}

\Bigl( 
\| 
\surd 
\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\Bigr) 1/2
\leq 
\Bigl( 
C\sigma 

 - 1
\sum 
K\in \scrT 

\| \Pi (
\surd 
a\nabla \xi )\| 2K

\Bigr) 1/2\Bigl( 
\| 
\surd 
\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\Bigr) 1/2
(3.7)

\leq (C\sigma )
 - 1/2\| 

\surd 
a\nabla \xi \| 

\Bigl( 
\| 
\surd 
\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\Bigr) 1/2
\leq \| 

\surd 
a\nabla hed\| 

\Bigl( 
\| 
\sqrt{} 
\sigma C - 1

\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}
+ \| 
\sqrt{} 
\sigma C - 1

\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\Bigr) 1/2
.

To bound the second term on the right-hand side of (3.6), we first decompose

(3.8)

\int 
\Omega 

\nabla hed \cdot curl\phi dx=

\int 
\Omega 

\nabla hed \cdot curl(\phi  - Ih\phi )dx+

\int 
\Omega 

\nabla hed \cdot curl Ih\phi dx,

with Ih the (componentwise if d= 3) quasi-interpolation operator of Lemma 2.11.
Starting with the first term, observing that curl\nabla uc = 0, and using the fact that

\phi \in [H1(\Omega )]2d - 3 satisfying (3.3), implying that \phi is a constant function on each planar
section of \Gamma N, and choosing \phi = Ih\phi on \Gamma N, we have\int 

\Omega 

\nabla uc \cdot curl(\phi  - Ih\phi )dx=

\int 
\Gamma \mathrm{D}

(\phi  - Ih\phi )\nabla TgD ds.
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Applying integration by parts, observing that curl\nabla ed| K = 0, and using that (\phi  - Ih\phi )
is single valued on each face and (\phi  - Ih\phi )\Gamma \mathrm{N} = 0 yields

(3.9)

\sum 
K\in \scrT 

\int 
K

\nabla ed \cdot curl(\phi  - Ih\phi )dx

=  - 
\int 
\Gamma 

(\phi  - Ih\phi )[[\nabla Tuh]] ds+

\int 
\Gamma \mathrm{D}

(\phi  - Ih\phi )\nabla TgD ds

=  - 
\int 
\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

(\phi  - Ih\phi )[[\nabla Tuh]] ds - 
\int 
\Gamma \mathrm{D}

(\phi  - Ih\phi )\nabla T(uh  - gD)ds.

Further, using (2.9) and, finally, (3.5) and (3.4), the right-hand side of (3.9) can
be further estimated from above by
(3.10)\sum 

K\in \scrT 
\| h - 1/2

K (\phi  - Ih\phi )\| \partial K\setminus \Gamma \mathrm{N}

\Bigl( 
\| 
\surd 
hK [[\nabla Tuh]]\| \partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t} + \| 

\surd 
hK\nabla T(uh  - gD)\| \partial K\cap \Gamma \mathrm{D}

\Bigr) 

\leq 

\Biggl( \sum 
K\in \scrT 

CtrCI\| \nabla \phi \| 2\widehat \omega K

\Biggr) 1/2 \bigl( 
\| 
\surd 
h[[\nabla Tuh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
h\nabla T(uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2
\leq C1\| \nabla \phi \| \Omega 

\bigl( 
\| 
\surd 
h[[\nabla Tuh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
h\nabla T(uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2
\leq C1C\Omega 

\surd 
\alpha \ast \| 

\surd 
a\nabla hed\| 

\bigl( 
\| 
\surd 
h[[\nabla Tuh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
h\nabla T(uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2
for C1 a constant depending only on the shape-regularity constant \widehat \tau of the auxiliary
mesh \widehat \scrT , and on the local quasi-uniformity constants \rho and \^\rho .

We now consider the second term in (3.8). Since Ih\phi \in [H1(\Omega )]2d - 3, we have
\nabla \cdot curl Ih\phi = 0 on \Omega and, hence, [[curl Ih\phi \cdot \bfitn ]] = 0 on \Gamma int. Moreover, given that
Ih\phi is constant on each component of \Gamma N, we also have curl Ih\phi \cdot \bfitn = 0 on \Gamma N. Then,
integration by parts and working as above gives\int 

\Omega 

\nabla hed \cdot curl Ih\phi dx=
\sum 
K\in \scrT 

\int 
\partial K

ed\bfitn K \cdot curl Ih\phi ds

= - 
\int 
\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

[[uh]](\bfitn \cdot curl Ih\phi )ds - 
\int 
\Gamma \mathrm{D}

(uh  - gD)(\bfitn \cdot curl Ih\phi )ds.

Next, applying to Ih\phi the trace inverse inequality with respect to the auxiliary mesh\widehat \scrT given in (2.11), we obtain\int 
\Omega 

\nabla hed \cdot curl Ih\phi dx

\leq 
\bigl( 
\| 
\surd 
\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2\left(  \sum 
T\in \widehat \scrT 

\| \sigma  - 1/2curl Ih\phi \| 2T\cap (\Gamma \setminus \Gamma \mathrm{N})

\right)  1/2

\leq 
\bigl( 
\| 
\surd 
\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2\left(  \sum 
T\in \widehat \scrT 

\widehat Cinvh
 - 1
T \| \sigma  - 1/2curl Ih\phi \| 2T

\right)  1/2

\leq C2

\bigl( 
\| 
\sqrt{} 
\sigma C - 1

\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}
+ \| 
\sqrt{} 
\sigma C - 1

\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2\| curl Ih\phi \| 
for C2 > 0 constant depending on Cinv, \widehat Cinv, \widehat \rho , and on \alpha \ast . Next, we use the stability
of Ih from Lemma 2.11 together with (3.5) to deduce

(3.11) \| curl Ih\phi \| \Omega \leq Cc\| \nabla \phi \| \Omega \leq CcC\Omega 
\surd 
\alpha \ast \| a - 1/2\nabla \phi \| \leq CcC\Omega 

\surd 
\alpha \ast \| 

\surd 
a\nabla hed\| .
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2366 A. CANGIANI, Z. DONG, AND E. H. GEORGOULIS

Hence, combing (3.7), (3.9), (3.10), and (3.11), we arrive at the bound

\| 
\surd 
a\nabla hed\| 2 \leq Cnc

\Bigl( 
\| 
\sqrt{} 
\sigma C - 1

\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}
+ \| 
\sqrt{} 
\sigma C - 1

\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

+ \| 
\surd 
h[[\nabla Tuh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
h\nabla T(uh  - gD)\| 2\Gamma \mathrm{D}

\Bigr) 
;(3.12)

the constant Cnc > 0 depends on Cinv, \widehat Cinv, \widehat \rho , C\Omega , and on \alpha \ast , \alpha \ast , but is independent
of h and the number and measure of the mesh faces.

Remark 3.4. We stress that the mesh size h in (3.12) is the local element diameter
for \scrT , i.e., independent of the measure of the faces and the number of faces per
element. This new bound refines the now classical results in [35] by showing that the
dG error has, in fact, two sources: the normal flux and the tangential gradient. By
applying the inverse inequality on each face F , the L2-norm of the tangential jump can
be bounded from above by the L2-norm of the jump term itself, thus recovering the
bound in [35]. However, such a bound would be proportional to diam(K)/diam(F )
for each face F \in \Gamma , which may be severely pessimistic for increasingly small faces F .

3.2. Bounding the conforming error \bfite \bfitc . For v \in H1
D, we have

(3.13) B(e, v) = \ell (v) - B(uh, v) = \ell (\eta ) - B(uh, \eta ),

with \eta := v - vh, for any vh \in S\scrT . Recalling that e= ec+ ed, since ec \in H1
D we can fix

v= ec in (3.13) to further deduce

(3.14) \| 
\surd 
a\nabla ec\| 2 =B(ec, ec) = (\ell (\eta ) - B(uh, \eta )) - B(ed, ec) = \ell (\eta ) - B(uh, \eta ),

from (3.1). The right-hand side of (3.14) can now be bounded via standard arguments
[35]: integration by parts, application of [4, eq. (3.3)], the observation that \Pi \nabla uh =
\nabla uh, and elementary manipulations yield

\ell (\eta ) - B(uh, \eta ) =

\int 
\Omega 

(f +\nabla h \cdot (a\nabla huh))\eta dx - 
\int 
\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

[[a\nabla uh \cdot \bfitn ]]\{ \{ \eta \} \} ds

 - 
\int 
\Gamma \mathrm{N}

(a\nabla uh \cdot \bfitn  - gN)\eta ds - 
\int 
\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

\sigma [[uh]][[\eta ]] ds - 
\int 
\Gamma \mathrm{D}

\sigma (uh  - gD)\eta ds

+

\int 
\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

\{ \{ a(\Pi \nabla \eta ) \cdot \bfitn \} \} [[uh]] ds+
\int 
\Gamma \mathrm{D}

\bigl( 
a(\Pi \nabla \eta ) \cdot \bfitn 

\bigr) 
(uh  - gD)ds=:

7\sum 
i=1

Ti.(3.15)

Setting \eta = ec  - \Pi 0ec and using (2.6), we have

(3.16) T1 \leq CPF\alpha 
 - 1/2
\ast 

\Biggl( \sum 
K\in \scrT 

\| hK(f +\nabla \cdot (a\nabla uh)\| 2K

\Biggr) 1/2

\| 
\surd 
a\nabla ec\| .

Employing (2.7), along with standard manipulations, we also have

T2 + T3 \leq 
\sum 
K\in \scrT 

\sum 
F\subset \partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t}

\| h - 1/2
K \eta \| F \| 

\surd 
hK [[a\nabla uh \cdot \bfitn ]]\| F

+
\sum 
K\in \scrT 

\sum 
F\subset \partial K\cap \Gamma \mathrm{N}

\| h - 1/2
K \eta \| F \| 

\surd 
hK(a\nabla uh \cdot \bfitn  - gN)\| F(3.17)

\leq \~CPF\alpha 
 - 1/2
\ast \| 

\surd 
a\nabla ec\| 

\Bigl( 
\| 
\surd 
h[[a\nabla uh \cdot \bfitn ]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
h(a\nabla uh \cdot \bfitn  - gN)\| 2\Gamma \mathrm{N}

\Bigr) 1/2
.
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Similarly, using the definition of \sigma from (2.16), we have

T4 + T5 \leq 
\bigl( 
\| 
\surd 
\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2\| \sigma 1/2[[\eta ]]\| \Gamma \setminus \Gamma \mathrm{N}

\leq 

\Biggl( \sum 
K\in \scrT 

max
F\in \partial K\setminus \Gamma \mathrm{N}

\sigma \| \eta \| 2\partial K\setminus \Gamma \mathrm{N}

\Biggr) 1/2 \bigl( 
\| 
\surd 
\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2
(3.18)

\leq 
\sqrt{} 
C\sigma \alpha \ast /\alpha \ast Cinv

\~CPF \rho \| 
\surd 
a\nabla ec\| 

\bigl( 
\| \sigma 1/2[[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2
.

Now, using the trace inverse estimate (2.5), the stability of the L2-projection operator,
and that \nabla \eta | K =\nabla ec| K , we deduce that

T6 + T7 \leq 
\bigl( 
\| 
\surd 
\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2\| \sigma  - 1/2\{ \{ a(\Pi \nabla ec) \cdot \bfitn \} \} \| \Gamma \setminus \Gamma \mathrm{N}

\leq 
\Bigl( \sum 

K\in \scrT 
max

F\in \partial K\setminus \Gamma \mathrm{N}

\sigma  - 1\| 
\surd 
a(\Pi (

\surd 
a\nabla ec)) \cdot \bfitn \| 2F

\Bigr) 1/2
\times 
\bigl( 
\| 
\surd 
\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2
(3.19)

\leq C - 1/2
\sigma \rho \| 

\surd 
a\nabla ec\| 

\bigl( 
\| 
\surd 
\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

\bigr) 1/2
.

Hence, by collecting above bounds (3.16), (3.17), (3.18), (3.19), and (3.15), we arrive
at the following bound on the conforming error:

\| 
\surd 
a\nabla ec\| \leq Cco

\Bigl( 
\| h(f +\nabla h \cdot (a\nabla huh)\| 2 + \| 

\surd 
\sigma [[uh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - gD)\| 2\Gamma \mathrm{D}

+ \| 
\surd 
h[[a\nabla uh \cdot \bfitn ]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
h(a\nabla uh \cdot \bfitn  - gN)\| 2\Gamma \mathrm{N}

\Bigr) 1/2
,(3.20)

with Cco depending on C\sigma , \rho , \tau , the polynomial degree p, CPF , and \~CPF , but inde-
pendent of h and the number and measure of the elemental faces.

We are now ready to present the a posteriori error upper bound.

Theorem 3.5 (upper bound). Let u be the solution of (2.1) and let uh \in S\scrT be its
dG approximation on a polytopic mesh satisfying Assumptions 2.1 and 2.3. Also let
an auxiliary mesh according to Definition 2.8 be given. Then, we have the following
a posteriori error bound:

| \| u - uh| \| 2 \leq Cup

\sum 
K\in \scrT 

(R2
K +O2

K),(3.21)

with the local estimator R2
K =R2

K,E +R2
K,N +R2

K,J +R2
K,T , and the data oscillation

O2
K =O2

K,E +O2
K,N +O2

K,J +O2
K,T , given by

RK,E := \| h(\Pi f +\nabla \cdot (a\nabla uh))\| K ,

RK,N :=
\bigl( 
\| 
\surd 
h[[a\nabla uh \cdot \bfitn ]]\| 2\partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
h(a\nabla uh \cdot \bfitn  - \=gN)\| 2\partial K\cap \Gamma \mathrm{N}

\bigr) 1/2
,

RK,J :=
\bigl( 
\| 
\surd 
\sigma [[uh]]\| 2\partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
\sigma (uh  - \=gD)\| 2\partial K\cap \Gamma \mathrm{D}

\bigr) 1/2
,

RK,T :=
\bigl( 
\| 
\surd 
h[[\nabla Tuh]]\| 2\partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t}

+ \| 
\surd 
h\nabla T(uh  - \=gD)\| 2\partial K\cap \Gamma \mathrm{D}

\bigr) 1/2
,

OK,E := \| h(f  - \Pi f)\| K , OK,N := \| 
\surd 
h(gN  - \=gN)\| \partial K\cap \Gamma \mathrm{N}

,

OK,J := \| 
\surd 
\sigma (gD  - \=gD)\| \partial K\cap \Gamma \mathrm{D}

, OK,T := \| 
\surd 
h\nabla T(gD  - \=gD)\| \partial K\cap \Gamma \mathrm{D}

,

with Cup depending on Cco and Cnc only, but independent of h and of the number and
measure of the elemental faces; here, for any for K \in \scrT , such that \partial K \cap \Gamma S \not = \emptyset with
S \in \{ D,N\} , we set \=gS | \partial K\cap \Gamma S

\in \scrP pk
(\partial K \cap \Gamma S) with gS denoting an approximation of

the Dirichlet and Neumann data, respectively.
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2368 A. CANGIANI, Z. DONG, AND E. H. GEORGOULIS

Proof. The proof follows immediately from the bounds (3.12) and (3.20), together
with the triangle inequality | \| u - uh| \| \leq | \| ec| \| + | \| ed| \| .

Remark 3.6. In the above, we followed a known approach in splitting the estimator
into a ``residual part"" and a ``data oscillation part,"" assuming that f \in L2(\Omega ) and for
sufficiently smooth boundary data. In this setting the data oscillation error is typically
dominated by the residual estimators. However, if the forcing data f \in H - 1(\Omega ), then
data oscillation may dominate the error [38]. It would be an interesting future
development to investigate the approach from [38] in the context of dG methods.

Remark 3.7. Theorem 3.5 has been proven under Assumption 2.1(b) which dis-
allows boundary faces with arbitrarily small size relative to the local mesh size. This
assumption is reasonable, as much resolution of the problem domain is required in or-
der for the numerical solution to incorporate the boundary conditions. Nevertheless,
this assumption can be relaxed in the case of Dirichlet boundary conditions as follows.
Note that the latter is only required to construct the interpolant of the divergence-free
component \phi of the nonconforming error, which is not constrained on the Dirichlet
boundary. Thus, the interpolant may be constructed for an extension \~\phi , (e.g., as a
Stein-type extension operator) defined on an extended domain \~\Omega \supset \Omega whose respec-
tive mesh \~\scrT would correspond ``closely"" to the primal mesh \scrT and is constructed so
that it may contain no small boundary faces. The resulting bounds, however, would
depend on the, typically unknown, boundedness constant of the extension operator.

4. Lower bounds. We now derive lower bounds for the a posteriori error es-
timator of Theorem 3.5. Of particular interest is the extent to which the efficiency
of the estimator can be shown to be independent of the number and of the relative
sizes of (d - 1)-dimensional faces in the mesh. The situation differs for the elemental
residual and face jump residuals; for clarity, we deal with them separately.

4.1. Elemental residual. Lower bounds for the elemental residual can be de-
rived under no further assumptions on the mesh. The analysis is based on a new
element bubble function and some auxiliary results.

Lemma 4.1 ([10, Corollary 4.24]). Let \scrT satisfy the Assumption 2.1. Then, for
each K \in \scrT , p\in \BbbN , and v \in \scrP p(K), the following inverse inequality holds:

(4.1) \| \nabla v\| 2K \leq Cinv,Kh
 - 2
K \| v\| 2K ,

with Cinv,K a positive constant depending only on d, p, and \tau . Note also the trivial
inequality \| curlv\| 2K \leq (d - 1)\| \nabla v\| 2K .

Next, for a generic d-dimensional simplex T , we denote its barycentric coordi-
nates by \lambda iT , d = 0, . . . , d, and denote by Fi, i = 0, . . . , d, the corresponding (d - 1)-
dimensional simplicial face of T such that \lambda iT | Fi = 0. Note that \| \nabla \lambda iT \| L\infty (T ) =
d| Fi| /| T | , since \nabla \lambda iT is constant. Importantly, the maximum norm is determined by
the distance of the ith vertex from the face Fi, but it is independent of the measure
of face Fi; see Figure 5 (left) for an illustration.

Let K \in \scrT and let mK be the number of its faces. Given that K is star-shaped
by Assumption 2.1, we can construct a nonoverlapping subdivision of K into mK

simplicial subelements \tau j by joining the face Fj , j = 1, . . . ,mK , of K with the center
of the largest ball inscribed in K; see Figure 5 (right) for an illustration. Note that
hK \geq diam(\tau j)\geq rK \geq \tau  - 1hK . Moreover, letting \lambda j := \lambda i\tau j with i such that \lambda i\tau j is the
barycentric coordinate of \tau j corresponding to the vertex of \tau j which is internal to K,
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Fi

T
K

O

Fi

τi

Fig. 5. Left: A triangle with one ``small"" face. Right: A polytopic element with many ``small""
faces.

it follows that

(4.2) h - 1
K \leq \| \nabla \lambda j\| L\infty (\tau j) = d| \partial \tau j \cap \partial K| /| \tau j | \leq \tau h - 1

K .

Definition 4.2 (element bubble). Let K \in \scrT and let mK be the number of its
faces. With the above notation, the element bubble function bK is defined as

(4.3) bK | \tau j = \lambda j

for j = 1, . . . ,mK .

By construction, bK is a continuous piecewise polynomial function with zero trace
and with values in [0,1] on K. Next, we will derive some important properties of the
new bubble function (4.3).

Lemma 4.3. For each K \in \scrT satisfying the Assumption 2.1 and for each v \in 
\scrP p(K), we have

(4.4) \| \nabla (bKv)\| 2K \leq 2(\tau 2 +Cinv,K)h - 2
K \| v\| 2K ,

with \tau as in Assumption 2.1 and Cinv,K as in (4.1), and

(4.5) \| v\| 2K \leq Cb,K\| b1/2K v\| 2K ,

with Cb,K := [2(p+ 2)]2d dd+1

(d - 1)! .

Proof. Using the triangle inequality, the bound (4.2), and the inverse inequality
(4.1), we have, respectively,

\| \nabla (bKv)\| 2K \leq 2\| (\nabla bK)v\| 2K + 2\| bK(\nabla v)\| 2K

\leq 2

mK\sum 
j=1

\| \nabla \lambda j\| 2L\infty (\tau j)
\| v\| 2\tau j + 2\| bK\| 2L\infty (K)\| \nabla v\| 

2
K

\leq 2\tau 2h - 2
K

mK\sum 
i=1

\| v\| 2\tau i + 2Cinv,Kh
 - 2
K \| v\| 2K = 2(\tau 2 +Cinv,K)h - 2

K \| v\| 2K ,(4.6)

which is the bound required in (4.4). We now prove the norm equivalence relation
(4.5). Recalling the norm equivalence relation for each v \in \scrP p(T ) on a simplex T from
[49, section 3.6], we have

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

7/
23

 to
 1

47
.1

22
.2

2.
15

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



2370 A. CANGIANI, Z. DONG, AND E. H. GEORGOULIS

(4.7) \| v\| 2T \leq [2(p+ 2)]2d
\Bigl( d

d+ 1

\Bigr) d+1 1

(d - 1)!
\| (\psi T )

1/2v\| 2T ,

with \psi T := (d + 1)d+1(
\prod d

i=0 \lambda 
i
T ). Then, by using \| \lambda iT \| L\infty (T ) = 1, i = 0, . . . , d, we

deduce

(4.8) \| v\| 2T \leq Cb,K\| (\lambda iT )1/2v\| 2T
for each i\in \{ 0, . . . , d\} . Hence, the bound (4.5) is proven using the definition of bK(x)
in (4.3):

\| v\| 2K =

mK\sum 
j=1

\| v\| 2\tau j \leq 
mK\sum 
j=1

Cb,K\| (\lambda j)1/2v\| 2\tau j =Cb,K\| b1/2K v\| 2K .(4.9)

Remark 4.4. The new element bubble function on polytopic meshes in the above
lemma is different from the classical element bubble function on simplices. In par-
ticular, we note that the important relations (4.4) and (4.5) are independent of the
number and measure of the faces of the element K.

Theorem 4.5 (elemental residual lower bound). Let u be the solution of (2.1)
and let uh \in S\scrT be its dG approximation under Assumptions 2.1 and 2.3. Then, for
each K \in \scrT , we have

(4.10) \| h(\Pi f +\nabla \cdot (a\nabla uh))\| 2K \leq 2Cb,K

\bigl( 
2
\bigl( 
\tau 2 +Cinv,K)(\alpha \ast )2\| 

\surd 
a\nabla e\| 2K +O2

K,E

\bigr) 
.

Proof. We fix v \in H1
D(\Omega ) as v| K = bK(\Pi f +\nabla \cdot (a\nabla uh)), where bK is the element

bubble function in (4.3), and extended to zero outside K. Using relations (3.13),
(3.15), (4.4), and bK \leq 1, we obtain\int 

K

bK(\Pi f +\nabla \cdot (a\nabla uh))2 dx=

\int 
K

(\Pi f  - f)v dx+

\int 
K

a\nabla e \cdot \nabla v dx

\leq \| \Pi f  - f\| K\| v\| K + \| 
\surd 
a\nabla e\| K\| 

\surd 
a\nabla v\| K

\leq (\| \Pi f  - f\| K +
\sqrt{} 

2
\bigl( 
\tau 2 +Cinv,K)\alpha \ast h - 1

K \| 
\surd 
a\nabla e\| K

\bigr) 
\| (\Pi f +\nabla \cdot (a\nabla uh))\| K .(4.11)

Recalling (4.5), we have \| \Pi f +\nabla \cdot (a\nabla uh)\| 2K \leq Cb,K\| b1/2K (\Pi f +\nabla \cdot (a\nabla uh))\| 2K from
which the result (4.10) already follows.

4.2. Flux residuals. In view of proving the lower bound for the flux residuals,
we require the number of faces of each element to be uniformly bounded. Furthermore,
in the case d = 3 we shall assume that each face F is shape-regular. Note that such
assumptions still allow for arbitrarily small faces.

Assumption 4.6. The number of faces of every element K \in \scrT is uniformly
bounded. For d = 3 only, for every F \in \Gamma int, the radius rF of the largest (d  - 1)-
dimensional ball inscribed in F satisfies rF \geq \tau  - 1hF , with \tau as in Assumption 2.1.

Note that the above assumption does not forbid the size of a mesh face to be arbitrarily
smaller than that of the elements it belongs to.

To construct the face bubble function, we consider the standard face bubble func-
tions supported in a pair of simplices contained in the neighboring elements.

Definition 4.7 (face bubble). Let K \in \scrT and F \subset \partial K a mesh face satisfying
Assumption 4.6. Define TK

F \subset K to be the simplex having F as a face and opposite
vertex the point at distance hF from F along the segment joining the barycenter of F
with the center of star-shapedness of K. The face bubble function bF is defined on K
as the standard bubble function of TK

F , cf. [2, 35], extended by zero to the rest of K.
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Lemma 4.8. Let K \in \scrT and F \subset \partial K be a mesh face under Assumption 2.1. Let
v \in \scrP p(F ) and denote by v also the constant extension in TK

F of v in the direction
normal to F . We have

(4.12) \| v\| 2F \leq Cb,F \| b1/2F v\| 2F ,

with Cb,F := [2(p+ 2)]2(d - 1) (d - 1)d

(d - 2)! , and

(4.13) \| \nabla (bF v)\| 2TK
F

\leq Cinv,ThKh
 - 2
F \| v\| 2F ,

with Cinv,T the constant of the inverse inequality (4.1) in the case of d - 1-dimensional
simplices. Moreover, we have

(4.14) \| curl (bT v)\| 2TK
F

\leq (d - 1)Cinv,ThKh
 - 2
F \| v\| 2F .

Proof. The bound (4.12) is given in [35] and (4.13) follows immediately from
(4.1), the fact that bF \leq 1, and the fact that \| v\| 2

TK
F

\leq hK\| v\| 2F . Finally, the bound

(4.14) is a trivial consequence of (4.13) observing once again that \| curlv\| 2K \leq (d  - 
1)\| \nabla v\| 2K .

Theorem 4.9 (flux residuals lower bound). Let u be the solution of (2.1) and
let uh \in S\scrT be its dG approximation under Assumptions 2.1, 2.3, and 4.6. Then, for
each K \in \scrT , we have

\| h1/2[[a\nabla uh \cdot \bfitn ]]\| 2\partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t}

(4.15)

\leq 6Cb,F

\Biggl( 
2Cb,K

\bigl( 
\tau 2 +Cinv,K)(\alpha \ast )2\| 

\surd 
a\nabla e\| 2\omega K

+
\sum 

K\prime \in \omega K

(1 + 2Cb,K)O2
K\prime ,E

+ \alpha \ast Cinv,T

\sum 
F\in \partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t}

h - 1
F hF\bot \| 

\surd 
a\nabla e\| 2\omega F

\Biggr) 
,

and

(4.16) \| h1/2[[\nabla Tuh]]\| 2\Gamma \mathrm{i}\mathrm{n}\mathrm{t}
\leq 2Cb,F (d - 1)\alpha \ast Cinv,T

\sum 
F\in \partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t}

h - 1
F hF\bot \| 

\surd 
a\nabla e\| 2\omega F

;

here, \omega K is the patch of elements neighboring K, \omega F = TK
F \cup TK\prime 

F with K \prime the element
neighboring K across F and hF\bot :=max\{ hK , hK\prime \} .

Proof. In view of proving (4.15), we first consider any F \in \partial K with F \in \Gamma int.
Further, we fix v \in H1(\omega F ) as the constant extension of [[a\nabla uh \cdot \bfitn ]]| F in the direction
normal to F , so that bF v \in H1

0 (\omega F ); cf. Lemma 4.8. Then, testing the error equation
(3.13) with bF v extended to zero on the whole of \Omega , we get\int 

\omega F

a\nabla he \cdot \nabla (bF v)dx=

\int 
\omega F

(f  - \Pi f)(bF v)dx+

\int 
\omega F

(\Pi f +\nabla \cdot (a\nabla uh))(bF v)dx

 - 
\int 
F

[[a\nabla uh \cdot \bfitn ]]2bF ds.
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2372 A. CANGIANI, Z. DONG, AND E. H. GEORGOULIS

From this, using (4.13) and the fact that \| bF v\| 2K = \| bF v\| 2TK
F

\leq hK\| [[a\nabla uh \cdot \bfitn ]]\| 2F , the
same bound being true on K \prime , we obtain

\| [[a\nabla uh \cdot \bfitn ]]b1/2F \| 2F \leq 
\sum 

\scrK \in \{ K,K\prime \} 

\Bigl[ 
(\| \Pi f  - f\| T\scrK 

F
+ \| (\Pi f +\nabla \cdot (a\nabla uh))\| T\scrK 

F
)\| bF v\| T\scrK 

F

+\| 
\surd 
a\nabla e\| T\scrK 

F
\| 
\surd 
a\nabla (bF v)\| T\scrK 

F

\Bigr] 
\leq 

\sum 
\scrK \in \{ K,K\prime \} 

\Bigl[ 
h
1/2
\scrK (\| \Pi f  - f\| T\scrK 

F
+ \| (\Pi f +\nabla \cdot (a\nabla uh))\| T\scrK 

F
)

+(\alpha \ast Cinv,Th
 - 1
F h\scrK )

1/2h
 - 1/2
F \| 

\surd 
a\nabla e\| T\scrK 

F

\Bigr] 
\| [[a\nabla uh \cdot \bfitn ]]\| F .

This, together with (4.12), gives

\| h1/2[[a\nabla uh \cdot \bfitn ]]\| 2F \leq 2Cb,F

\sum 
\scrK \in \{ K,K\prime \} 

\Bigl[ 
(\| h(\Pi f  - f)\| T\scrK 

F
+ \| h(\Pi f +\nabla \cdot (a\nabla uh))\| T\scrK 

F
)

+(\alpha \ast Cinv,T )
1/2h - 1

F h\scrK \| 
\surd 
a\nabla e\| T\scrK 

F

\Bigr] 2
.

Summing over all internal faces of K, noting carefully that the involved domains do
not overlap, we finally obtain

\| h1/2[[a\nabla uh \cdot \bfitn ]]\| 2\partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t}
\leq 6Cb,F

\Bigl( 
\| h(\Pi f  - f)\| 2\omega K

+ \| h(\Pi f +\nabla \cdot (a\nabla uh))\| 2\omega K

+ \alpha \ast Cinv,T

\sum 
F\in \partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t}

(h - 1
F hF\bot )2\| 

\surd 
a\nabla e\| 2\omega F

\Bigr) 
,(4.17)

as hF\bot :=max\{ hK , hK\prime \} , from which (4.15) now follows by employing (4.10).
The proof concerning the tangential jump residual is similar. Given F \in \Gamma int, we

fix v \in H1(\omega F ) as the constant extension of [[\nabla Tuh]]| F in the direction normal to F ,
so that bF v \in H1

0 (\omega F ). Using the fact that curl\nabla u= 0, we have the key observation

(4.18)

\int 
\omega F

curl (bF v) \cdot \nabla udx= 0.

Integration by parts and (4.14) give

\| [[\nabla Tuh]]b
1/2
F \| 2F =

\int 
\omega F

curl (bF v) \cdot \nabla uh dx=

\int 
\omega F

curl (bF v) \cdot \nabla (uh  - u)dx

\leq \alpha \ast 
\sum 

\scrK =K,K\prime 

\| 
\surd 
a\nabla e\| T\scrK 

F
\| curl (bT v)\| T\scrK 

F

\leq \alpha \ast 
\bigl( 
(d - 1)Cinv,Th\scrK 

\bigr) 1/2
h - 1
F \| [[\nabla Tuh]]\| F

\sum 
\scrK \in \{ K,K\prime \} 

\| 
\surd 
a\nabla e\| T\scrK 

F
.

Hence, by using (4.12), we obtain

\| h1/2[[\nabla Tuh]]\| 2F \leq 2\alpha \ast (d - 1)Cinv,TCb,F (h
 - 1
F hF\bot )2\| 

\surd 
a\nabla e\| 2\omega F

.

The required lower bound on the jump of the tangential gradient now follows by
summing over all internal faces belonging to K.

By construction, we have | \omega F | \sim hdF for the patches \omega F . The terms involving
norms over \omega F in Theorem 4.9 reflect and account for the presence of relatively small
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faces. Indeed, linking the size of \omega F to that of F , instead of that of the element K,
allows very large ratios hK/hF .

If, on the other hand, the size of each of the element's faces is comparable to
that of the element itself, then we may modify the construction of the face bubble
of Definition 4.7 by moving the opposite vertex all the way to the center of star-
shapedness of K. In such a case, h - 1

F hF\bot \| 
\surd 
a\nabla e\| \omega F

\lesssim \| 
\surd 
a\nabla e\| K\cup K\prime . Thus, for

meshes with potentially many but regular hanging nodes, the new flux-residuals'
lower bounds revert to the classical ones, as encapsulated in the following corollary.

Corollary 4.10. Under the assumption of Theorem 4.9, if, moreover, for every
K \in \scrT and F \in \partial K it holds that hF \geq \tau  - 1hK , then

\| h1/2[[a\nabla uh \cdot \bfitn ]]\| 2\partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t}
(4.19)

\leq 6Cb,F

\Biggl( 
(2Cb,K

\bigl( 
\tau 2 +Cinv,K)(\alpha \ast )2 + \tau \alpha \ast Cinv,K)\| 

\surd 
a\nabla e\| 2\omega K

+
\sum 

K\prime \in \omega K

(1 + 2Cb,K)O2
K\prime ,E

\Biggr) 
,

and

(4.20) \| h1/2[[\nabla Tuh]]\| 2\partial K\cap \Gamma \mathrm{i}\mathrm{n}\mathrm{t}
\leq 2Cb,F (d - 1)\tau \alpha \ast Cinv,K\| 

\surd 
a\nabla e\| 2\omega K

.

Remark 4.11. Corollary 4.10 holds in the setting of fully shape-regular meshes
allowing for the submesh auxiliary mesh construction; cf. section 2.3.1. Hence, Corol-
lary 4.10 together with Theorem 4.5 and Theorem 3.5 establishes the reliability and
efficiency of the classical residual error estimator for general fully shape-regular poly-
topic meshes with multiple hanging nodes. The analysis, also in this case, differs from
the classical one in that the finite element space used to control the nonconforming
error, being based on the auxiliary mesh, is not a subspace of the discrete solution
space S\scrT . Moreover, the resulting error bound is as explicit as the classical bound
because, in this case, the auxiliary mesh quality is fully controlled by that of the
polytopic mesh. The element bubble construction is also new and accounts for the
polytopic nature of the mesh.

On the other hand, controlling the flux residuals in the extreme case of possibly
unbounded non-- shape-regular interfaces requires further new ideas. Whenever it is
possible to construct a face bubble function bF such that the bound

\| \nabla (bF v)\| 2TK
F

\leq Cinv,Th
 - 1
K \| v\| 2F

holds true, the lower bounds of the flux residuals (4.15) and (4.16) will be independent
of h - 1

F hF\bot . An alternative approach could be to consider bubble functions constructed
on a neighboring set of structured elements. Then, the bubble functions bF will be
independent of the individual face size and the number of elements. For instance,
this is the approach used in [36] to derive a lower bound of the flux residual of the
FEM employing structured anisotropic triangular meshes. However, the construction
of such face bubble functions for the general-shaped polytopic meshes considered in
this work is highly nontrivial.

5. Numerical experiments. We present two numerical examples testing the
new a posteriori error estimator. With the first example we test the impact of polyg-
onal elements with a large number of small faces on the effectivity index. With the
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2374 A. CANGIANI, Z. DONG, AND E. H. GEORGOULIS

Fig. 6. Example 1. Sample meshes with 114 (left) and 498 (right) polygonal elements obtained
by agglomeration of a fine triangular mesh made of one million elements.
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Fig. 7. Example 1. Convergence history of the error and error estimator of (3.21) for p =
1,2,3,4 (left) and respective effectivity measured as the ratio estimator over error (right).

second, we test the performance of the estimator within a nonstandard adaptive al-
gorithm. In all cases, we set C\sigma = 10.

5.1. Example 1. We construct a sequence of polygonal meshes containing 114,
498, 2063, 8912, and 32768 elements obtained by successive agglomeration of a very
fine triangular background mesh made of 106 elements. Each of the polygonal elements
contains at least 50 edges; see Figure 6 for an illustration.

We consider the problem (2.1), with a = I2\times 2 and \Omega := ( - 1,1)2. The Dirichlet
boundary conditions and the source term f are determined by the exact solution
u= sin(\pi x) sin(\pi y). Numerical results for p= 1,2,3,4 are displayed in Figure 7. The
observed convergence rate of both the error and the estimator is \scrO (DoFs - 

p
2 ), i.e.,

optimal in terms of the total number of degrees of freedom (DoFs). Moreover, the
effectivity index is bounded between 1.2 and 2.6, hence showing that efficiency is not
affected by the complexity of the element shapes. This numerical observation reflects
that Assumption 4.6 may not be necessary.

Next, we compare the percentage contribution of the different components to the
total estimator. Setting RX := (

\sum 
K\in \scrT R

2
K,X)1/2 for X \in \{ E,N,J,T\} , in Table 1 we

provide the percentage of total element residual RE , total jump residual RJ , total
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Table 1
Example 1. Estimator's components percentage contributions to the dG error for p = 1,2:

element residual RE , jump residual RJ , jump of the normal flux residual RN , and jump of the
tangential flux residual RT .

p = 1 p = 2

# elem RE RJ RN RT RE RJ RN RT

114 64% 18% 9% 9% 56% 26% 9% 9%
498 59% 23% 9% 9% 45% 36% 9% 10%
2063 36% 37% 13% 14% 45% 33% 10% 12%
8912 32% 37% 14% 17% 43% 31% 11% 15%

10
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1
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2

Fig. 8. Example 1. Convergence history of the error, error estimator of (3.21) and the classical
estimator for p= 1,2.

jump of the normal flux residual RN , and total jump of the tangential flux residual
RT for p= 1,2. For the coarse meshes of Figure 7, the element residual dominates the
total estimator, followed by RJ . For finer meshes, we observe a significant contribution
by RE , RJ , and combined RT and RN .

Further, to highlight the importance of the presence of RT in the new estimator
presented in this work, we compare it to the a posteriori error estimator that can be
derived using standard techniques from [35], which does not contain the tangential
flux jump RT . As already mentioned in Remark 3.4, it is immediate to bound RK,T

from RK,J through an inverse estimate on each face F , giving RK,T \lesssim hK

\rho F
RK,J , with

\rho F denoting the inscribed radius of the face F . Clearly, for small faces, we have
\rho F \leq hF \ll hK , showcasing that RK,T is theoretically sharper than RJ,T . In Figure 8,
we present the error, the estimator from (3.21), and the classic estimator whereby
RK,T is replaced by hK

\rho F
RK,J for p= 1,2. The superiority of the estimator presented

in this work is evident for coarse meshes with large ratio hK

hF
. We note that the jump

terms account for more than 80\% of the classical error estimator, thus indicating
that the term RJ,T is indeed responsible for the relative overestimation of the error.
This confirms the theoretical intuition and showcases the practicality of the estimator
proven in this work.

5.2. Example 2. We test a new adaptive algorithm driven by the error estimator
from section 3. Starting from a relatively coarse simplicial mesh, we use the estimator
(3.21) to mark simplicial elements for refinement through a bulk-chasing criterion (also
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2376 A. CANGIANI, Z. DONG, AND E. H. GEORGOULIS

known as D\"orfler marking), and also mark pairs of elements for agglomeration based
on the size of the jump residual terms on elemental interfaces. Refinement of simplicial
elements is performed via a newest vertex bisection algorithm. In the agglomeration
step, general, polygonal meshes will be generated. In successive iterations, polygonal
meshes which are marked for refinement are subdivided into either a finer polygonal
mesh or a simplicial mesh, depending on their level of agglomeration. For simplicity,
we do not consider the data oscillation terms. The adaptive algorithm can thus be
described as

SOLVE - \rightarrow ESTIMATE - \rightarrow MARK - \rightarrow REFINE/AGGLOMERATE.

We consider the problem (2.1) with a = I2\times 2 on \Omega := ( - 1,1)2 \setminus (0,1)\times ( - 1,0).
The Dirichlet boundary conditions and the source term f are determined by the exact
solution

u= r2/3 sin(2\psi /3) + exp( - 1000((x - 0.5)2 + (y - 0.25)2))

+ exp( - 1000((x - 0.5)2 + (y - 0.75)2)),

which has a point singularity at the origin. We test the adaptive dG algorithm
described above with p = 1,2,3, with D\"orfler's marking strategy 25\% for refinement
and the maximum marking strategy 5\% for agglomeration. We point out that the
agglomeration step is driven by the jump terms RF,N , RF,J , and RF,T for all faces
F \subseteq \partial Ki \cap \partial Kj on the meshes' interface between elements Ki and Kj .

The performance of the proposed adaptive algorithm is showcased in Figure 9.
The convergence rates of both error and estimator are optimal in terms of the total
number of DoFs, which is \scrO (DoFs - 

p
2 ). Further, on coarse mesh levels, the mesh

agglomeration dominates the mesh refinement. Consequently, the number of DoFs is
initially reduced by the adaptive algorithm, while the error is also reduced. Another
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Fig. 9. Error, estimator (top) and effectivity index (bottom) of the new adaptive polytopic dG
method with p= 1,2,3.
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Fig. 10. The sequence of meshes generated by the adaptive polytopic dG algorithm with p= 3.

Fig. 11. Example 2. Error and estimator of the new adaptive polytopic dG method and adaptive
dG method without agglomeration for p= 2,3.

important observation is that the coarse mesh level's effectivity index still seems quite
reasonable, namely 2 to 3 times greater than the asymptotic value. This is in spite
of the presence of some very large polygonal elements next to small shape-regular
triangles. These can be seen, for example, in the sequence of meshes produced by the
adaptive algorithm with p= 3 shown in Figure 10.

Finally, we perform a comparison between the adaptive algorithm with and with-
out agglomeration for p = 2,3, using the same marking parameter and stopping cri-
terion. The results are presented in Figure 11. Clearly, agglomeration helps reduce
DoFs almost without influencing the accuracy on coarse meshes. As the meshes are
refined, the advantage of polygonal elements is gradually reduced, as expected.
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